Turnkey Wireless Development

Northeast Site Solutions
Denise Sabo
4 Angela's Way, Burlington CT 06013
203-435-3640
denise@northeastsitesolutions.com

October 7, 2021

\author{

Members of the Siting Council \\ Connecticut Siting Council \\ Ten Franklin Square \\ New Britain, CT 06051 \\ | RE: | Tower Share Application |
| :--- | :--- |
| 1455 Forbes Street, East Hartford CT 06118 | |
| Latitude: 41.731472 | |
| Longitude: -72.607778 | |
| | Site\# 806376_Crown_Dish |

}

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 1455 Forbes Street in East Hartford, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 5G MHz antenna and six (6) RRUs, at the 77-foot level of the existing 130 -foot monopole tower, one (1) Fiber cables will also be installed. Dish Wireless LLC equipment cabinets will be placed within $7 x 5$ lease area. Included are plans by Infinigy, dated August 09,2021 Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated June 15,2021 , confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was approved by the Connecticut Siting Council in Docket No. 139 on September 18, 1991. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Mayor Marcia A. Leclerc, Elected Official for the Town of East Hartford, Eileen Buckheit, Development Director, as well as the tower owner (Crown Castle) and property owner (Rebecca Handel-Jack)

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modification will not result in an increase in the height of the existing structure. The top of the tower is 130 -feet; Dish Wireless LLC proposed antennas will be located at a center line height of 77-feet.
2. The proposed modifications will not result in the increase of the site boundary as depicted on the attached site plan.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.

Turnkey Wireless Development
4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total power density of 59.24% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully indicates that the shared use of this facility satisfies these criteria.
A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.
B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this support tower in East Hartford. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.
C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 77 -foot level of the existing 130 -foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.
E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing guyed tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through East Hartford.

Sincerely,

Denise Sabo

Denise Sabo

Mobile: 203-435-3640
Fax: 413-521-0558
Office: 4 Angela’s Way, Burlington CT 06013
Email: denise@northeastsitesolutions.com

NORTHEEST
 SITE SOLUTIONS

Turnkey Wireless Development

Attachments cc:

Marcia A. Leclerc, Mayor
Town of East Hartford
740 Main Street East Hartford, CT 06108 860-291-7200

Eileen Buckheit, Development Director
Town of East Hartford
740 Main Street East Hartford, CT 06108

Rebecca Handel-Jack - Property Owner
1455 Forbes Street East Hartford, CT 06118

Crown Castle, Tower Owner

Exhibit A

Original Facility Approval

DOCKET NO. 139 - An application of Metro Mobile CTS of Hartford, Inc., for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance, and operation of cellular facilities in the Towns of Enfield, East Hartford, and Wethersfield, Connecticut.
Connecticut
Siting
Council

September 18, 1991

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a cellular telecommunications towers and equipment buildings at the proposed Enfield, Connecticut, alternate site and the proposed East Hartford, Connecticut, prime site including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application and therefore directs that a Certificate of Environmental Compatibility and Public Need as provided by section $16-50 \mathrm{k}$ of the Connecticut General Statutes (CGS), be issued to Metro Mobile CTS of Hartford, Inc., for the construction, operation, and maintenance of a cellular telecommunications tower, associated equipment, and building at the proposed alternate site in Enfield, Connecticut, and the proposed prime site in East Hartford, Connecticut.

The facilities shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter and subject to the following conditions:

1. The self-supporting monopole towers shall be no taller than necessary to provide the proposed communication service and in no event shall the towers exceed a total height of 163 feet above ground level (AGL) at the proposed Enfield alternate site and 123 feet AGI at the proposed East Hartford prime site, with antennas and appurtenances.
2. The Certificate holder shall prepare a Development and Management (D\&M) Plan, for approval by the Council, for these sites in compliance with sections 16-50j-75 through 16-50j-77 of the Regulations of State Agencies. This D\&M plan

Docket No. 139
Decision and Order
Page 2
shall include detailed plans of the towers, tower foundations, soil boring reports, equipment buildings, access roads, security fences, landscaping plans, detailed erosion and sedimentation control plans, and a final schedule. In addition, the $D \& M$ plan shall include for Council consideration, detailed plans and itemized costs for the placement of service utilities underground in order to further mitigate the visual effect of the facilities.
3. The Certificate holder shall comply with any existing and future radio frequency (RF) standards promulgated by State or federal regulatory agencies. Upon the establishment of any new governmental RF standards, the facilities granted herein shall be brought into compliance with such standards.
4. The Certificate holder shall provide the Council with a recalculated report of electromagnetic radio frequency power density if and when circumstances in operation cause a change in power density above the levels originally calculated and provided in the application.
5. The Certificate holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
6. If the facility does not initially provide or permanently ceases to provide cellular service following completion of construction, this Decision and Order shall be void, and the tower and all associated equipment shall be dismantled and removed or reapplication for any new use shall be made to the Council as soon as practicable before any such new use is made.
7. Unless otherwise approved by the Council, this Decision and Order shall be void if all construction authorized herein is not completed within three years of the effective date of this Decision and Order or within three years after all appeals to this Decision and Order have been resolved.

Pursuant to CGS section 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of this issuance shall be published in the Hartford Courant and the Journal Inquirer.

Docket No. 139
Decision and Order Page 3

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with section 16-50j-17 of the Regulations of State Agencies.

The parties to this proceeding are:

PARTIES
Metro Mobile CTS of Hartford, Inc. 20 Alexander Drive P.O. Box 5029 Wallingford, CT 06492 Attn: Gary Schulman

The Town of East Hartford

The Town of Enfield

ITS REPRESENTATIVE
Robinson and Cole One Commercial Plaza Hartford, CT 06103-3597 Attn: Earl Phillips, Jr. (203) 275-8200
G. Barry Goodberg Assistant Corporation Counsel Town of East Hartford 740 Main Street East Hartford, CT 06108 (203) 289-2781

Christopher W. Bromson Enfield Town Attorney 47 No. Main Street Enfield, CT 06082 (203) 745-0371 Ext. 290

SMH: bw
5534 E

CERTIFICATION

The undersigned members of the Connecticut Siting Council hereby certify that they have heard this case in DOCKET NO. 139 - An application of Metro Mobile CTS of Hartford, Inc., for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance, and operation of cellular facilities in the Towns of Enfield, East Hartford, and Wethersfield, Connecticut, or read the record thereof, and that we voted as follows:

Dated at New Britain, Connecticut the lith day of September, 1991.

Council Members
Vote Cast
\qquad

YES
Mortimer A. Gelston
Chairman

Y

Commissioner Clifton d. Leonhardt Designee:
Commissioner Richard G. Patterson

PETITION NO. 535 - AT\&T Wireless PCS, LLC and Crown
Atlantic Company LLC petition for a declaratory ruling that no Certificate of Environmental Compatibility and Public Need is required for proposed modification of an existing telecommunications tower located at 1455 Forbes Street, Eas Hartford, Connecticut.

Connecticut
Siting
Council
May 21, 2002

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the extension of an existing telecommunications tower and installation of associated equipment at an existing facility located at 1455 Forbes Street in East Hartford, Connecticut, are not significant, are not disproportionate either alone or cumulatively with other effects, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny this petition.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

1. The tower extension shall be compatible with and installed on the existing monopole, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of AT\&T Wireless PCS, LLC (AT\&T) and XM Satellite Radio, but such extension shall not exceed a height of 133 feet above ground level, including antennas and appurtenances.
2. The Certificate Holder shall provide a recalculated report of electromagnetic radio frequency power density if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.
3. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
4. The Certificate Holder shall permit public or private entities to share space on the tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
5. If the facility does not initially provide, or permanently ceases to provide cellular services following completion of construction, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
6. Any antenna that becomes obsolete and ceases to function shall be removed within 60 days after such antennas become obsolete and ceases to function.
7. Unless otherwise approved by the Council, this Decision and Order shall be void if the facility authorized herein is not completed within one year of the effective date of this Decision and Order or within one year after all appeals to this Decision and Order have been resolved.
8. All other applicable provisions of the Council's September 18, 1991 Decision and Order in Docket No. 139 remain in effect.

Pursuant to General Statutes § 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in The Hartford Courant, and The East Hartford Gazette.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

Crown Atlantic Company LLC and AT\&T Wireless PCS, LLC

Kenneth C. Baldwin, Esq.
Robinson \& Cole LLP
280 Trumbull Street
Hartford, CT 06103-3597

Exhibit B

Property Card

Town of East Hartford Property Summary Report			
1455 FORBES ST			
MAP LOT:	41-233	CAMA PID:	4723
LOCATION:	1455 FORBES ST		
OWNER NAME:	HANDEL-JACK REBECCA		

OWNER OF RECORD

HANDEL-JACK REBECCA

1455 FORBES ST

EAST HARTFORD, CT 06118

LIVING AREA:	720	ZONING:	R2	ACREAGE:	25.01

SALES HISTORY			
OWNER	BOOK / PAGE	SALE DATE	SALE PRICE
HANDEL-JACK REBECCA	$3909 / 186$	07-Jul-2020	$\$ 0.00$
HANDEL ROBERT D	$3582 / 0113$	23-Jan-2016	$\$ 0.00$
HANDEL JESSIE K EST OF C/O ROBERT D HANDEL EXECUTOR	$3534 / 0329$	19-May-2015	$\$ 0.00$
HANDEL JESSIE K	$1874 / 0345$	01-Jan-2000	$\$ 0.00$
HANDEL ALBERT P JR EST OF HANDEL JESSIE K EXEC	$0000 / 0000$	30-Dec-1999	$\$ 0.00$

CURRENT PARCEL ASSESSMENT					
TOTAL:	$\$ 332,190.00$	IMPROVEMENTS:	$\$ 291,500.00$	LAND:	$\$ 40,690.00$

ASSESSING HISTORY			
FISCAL YEAR	TOTAL VALUE	IMPROVEMENT VALUE	LAND VALUE
2019	$\$ 332,880.00$	$\$ 291,500.00$	$\$ 41,380.00$
2018	$\$ 332,880.00$	$\$ 291,500.00$	$\$ 41,380.00$
2017	$\$ 332,880.00$	$\$ 291,500.00$	$\$ 41,380.00$
2016	$\$ 332,880.00$	$\$ 291,500.00$	$\$ 41,380.00$
2015	$\$ 346,650.00$	$\$ 302,420.00$	$\$ 44,230.00$

Town of East Hartford Property Summary Report			
1455 FORBES ST			
MAP LOT:	41-233	CAMA PID:	4723
LOCATION:	1455 FORBES ST		
OWNER NAME:	HANDEL-JACK REBECCA		

BUILDING \# 1

YEAR BUILT	1865	EXT WALL 1	Vinyl Siding
STYLE	Colonial	INT WALLS 1	Plaster
MODEL	Residential	HEAT FUEL	Hot Water
STORIES	2.0	HEAT TYPE	4
OCCUPANCY	One Family	AC TYPE	1
ROOF	Gable	BEDROOMS	1
ROOF COVER	Asphalt	FULL BATHS	9
FLOOR COVER 1	Hardwood	HALF BATHS	60
\% BSMT	100	TOTAL ROOMS	0
\% FIN BSMT	0	\% REC RM	0
\% SEMI FIN	0	FIREPLACES	
BSMT GARAGE			

EXTRA FEATURES		
DESCRIPTION	CODE	UNITS
1 Story Barn	BRN1	$1 \times 5112(5112.00 \mathrm{SF})$
Shed	SHD1	$1 \times 64(64.00 \mathrm{S.F})$.
1 Story Barn	BRN1	$1 \times 3072(3072.00 \mathrm{SF})$
Shed	SHD1	$1 \times 300(300.00$ S.F. $)$
Shed	SHD1	$1 \times 561(561.00$ S.F. $)$
1 Story Barn	BRN1	$1 \times 4928(4928.00$ SF)
Shed	SHD1	$1 \times 600(600.00$ S.F. $)$

Town of East Hartford Property Summary Report			
1455 FORBES ST			
MAP LOT:	41-233	CAMA PID:	4723
LOCATION:	1455 FORBES ST		
OWNER NAME:	HANDEL-JACK REBECCA		

BUILDING \# 2

YEAR BUILT	1934	EXT WALL 1	Vinyl Siding
STYLE	Single Family	INT WALLS 1	Plaster
MODEL	Residential	HEAT FUEL	Other
STORIES	1.0	HEAT TYPE	None
OCCUPANCY	One Family	AC TYPE	1
ROOF	Gable	BEDROOMS	1
ROOF COVER	Asphalt	FULL BATHS	0
FLOOR COVER 1	Hardwood	HALF BATHS	4
\% BSMT	0	TOTAL ROOMS	0
\% FIN BSMT	0	\% REC RM	0
\% SEMI FIN	0	\% ATTIC FINISH	
BSMT GARAGE		FIREPLACES	0

EXTRA FEATURES		
DESCRIPTION	CODE	UNITS
Shed	SHD1	1×105 (105.00 S.F.)
FR/SHED	MSC55	30.00 UNIT
1 Story Barn	BRN1	1×840 (840.00 SF)
Shed	SHD1	$1 \times 144(144.00$ S.F. $)$
Shed	SHD1	$1 \times 308(308.00$ S.F. $)$
1 Story Barn	BRN1	$1 \times 3840(3840.00$ SF)

Exhibit C

Construction Drawings

dEsh wireless.

DISH Wireless L.L.C. SITE ID:

 BOBDL00047ADISH Wireless L.L.C. SITE ADDRESS:
1455 FORBES STREET EAST HARTFORD, CT 06118

CTICUT CODE COMPLIANCE
cof mes

SHEET INDEX	
SHEET No.	Sheet title
T-1	TMLE SHEET
A-1	OVERAL AND ENIARGED STE PLAN
A-2	ELEVATON, ANIENNA LYOOUT AND SCHEDLULE
A-3	EQUIPMENT PLATORM AND H-FrRME DEAALS
A-4	EQUIPMENT DEAALS
A-5	Equipment deatls
A-6	EQUIPMENT DEAALS
E-1	Electrical/mer route Plan ano notes
E-2	Electrical dealls
E-3	ELECTRICAL ONE-LNE, FAULT CALCS \& PNEL SCHEDULE
6-1	GROUNOING PLANS AND NOTES
6-2	grounoing dealls
6-3	Grounding detals
RF-1	RF CABE COLOR COOE
CN-1	Legeno and abrrematons
CN-2	GENERLL Notes
CN-3	GENERLL Notes
6N-4	GENERLL NOTES

\square SITE PHOTO

GENERAL NOTES

11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

DIRECTIONS

dish

CROWN CASTLE zam corborantrinty INFINIGY8 from zero to infinig

DRAWN BY:			
	RCD	ss	cJw
RFDS REv \#: N/A			
CONSTRUCTION DOCUMENTS			
SUBMITALS			
$\stackrel{1}{0}$	00817/2021	LSSUED For Renew	
	08/08/2022	Lssube for constuectow	
A\&E PROJECT NUMBER			
2039-Z5555C			
BobdL00047A 1455 FORBES STREET EAST HARTFORD, CT 06118			
SHEET TTLE			
title sheet			
SHEET NUMBER			
T-1			

4. Do not instal cable grounong kit at a beno avo alwars direct ground conouctor

6. AlL Grounolng parts and equipment to be suppled and installed er contracter
7. THE CONTRACTOR SHALL BE RESPONSIILE FOR INSTALING ADOTIONLL GROUNO BAR AS
8. EnSure the wre insuaton terminaton is witin $1 / 8^{\circ}$ of the barrel (no shiners).

CROWN CASTLE

INFINIGY8
from zero to infinigy

TYPICAL GROUNDING NOTES	No Scale	1	TYPICAL EXTERIOR TWO HOLE LUG	No SCME	2	TYPICAL INTERIOR TWO HOLE LUG	No SCALE	3
LUG DETAIL	No SCALE	4	NOT USED	No scale	5	NOT USED	No SCALE	6
NOT USED	No SCALE	7	NOT USED	No SCALE	8	NOT USED	No SCALE	9

[^0]

SITE ACTVITY REQUIREMENTS:

1. NOTTCE TO PROCEED - NO WORK SHALL COMMENEE PRIOR TO CONTRACTOR RECEINING A WRITEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE STIE YOU MUST C
L.L.C. AND TOWER OWNER NOC \& THE DISH Wireless LL.C. AND TOWER OWNER CONSTRUCTION MANAGER.
2. "LOOK UP" - DISH Wireless LLL.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRIT OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACLITY SHALL BE CONSIDERED DURING ALL STAGES
OF DESIGN, INSTALLTION, AND INSPECTION. TOWER MODFICATON, MOUNT REINFORCEMENTS, AND/OR EQUPMENT INSTALATIONS SHALL OF DESIGN, NSTALATIN, AND INSPECTION. TOWER MODIFCATON, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALAATONS SHAL
NOT COMPROMISE THE INTEGRIT OR FUNCTONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CIMBING FACIITTY ON
 ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFET CLIMB, INCLUDING EXISTING
CONOITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH Wiress LLC. AND DISH Wireless LL.C. AND TOWER OWNER POC P CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

4. AL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMTED TO, ERECTION PLANS, RIGGING PLANS, CLIMBBING
PLANS, AND RESCUE PLANS SHALL BE THE RESPONSBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF
 PLANS SHALL ADHERE TO ANSI/ASSE A1O.48 (LLTTEST EDITION) AND DISH Wireless LLL.C. AND TOWER OWNER STANDARDS. INCLUDING
THE REQURED INVOLVEMENT OF A QUALIIED ENGINER FOR CLASS IV CONSTRUCTON, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINE
ACCORDANCE WTH ANSITTA-322 (LATEST EDTION).
5. ALL SITE WORK TO COMPLY WTH DISH Wireless LL..C. AND TOWER OWNER INSTALATION STANDARDS FOR CONSTRUCTION
ACTVMTIEL ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSSION OF ANSI/TAA-1019-A-2012 "STANDARD FOR

 AN ALTERNATIE INSTALLA
CHANGE OF INSTALATION.
ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLCABLE CODES, REGLATIONS
AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WTTH ALL LAWS, ORDINANCES, RULESS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WTH ALL LAWS, ORDINANCES, RULES,
REGLLTONS ATS
RET

8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS
UNLESS
SPECIFICALYY STATED OTHERWISE.
9. THE CONTRACTOR SHALL CONTACT UTLITY LOCATNG SERVICES INCLUDING PRVATE LOCATES SERVICES PRIOR TO THE START
OF CONSTRUCTION.

 FALL PROTECTIO
PROCEDURES.
11 ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS,
LATEST APPROVED REVIIION.
12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULTING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF
THE WORK. IF NECESARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND THE WORK. IF NECESSAAK
DISPOSED OF LEEALY.
13. ALL Existing inactive sewer, water, gas, electric and other utilties, which interfere with the execution of the WORK, SHAL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WLL NOT INTERFERE WTH
THE EXECUTON OF THE WORK, SUBJECT TO THE APPROVAL OF DISH Wireless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTLITES.
14. THE CONTRACTOR SHALL PROVIDE STE SIENAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIISNAGE
REQUIRED BY LOCAL JURISDCTION AND SIGNAGE REQUIRED ON INDAVIDAL PIECES OF EQUPMENT, ROOMS, AND SHELERS.
15. THE STtE SHALL be graded to Cause surface water to flow away from the carrier's equipment and tower areas.
16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE
APPLCATON.
17. THE AREAS OF THE OWNERS PROPERT DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUPMENT OR
DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILZED TO PREVENT EROSION AS SPECIFED ON THE CONSTRUCTION DRAWINGS AND/OR PROUECT SPECIFICATIONS
18. CONRACTOR SHAL MINIMIZ DISTURBANCE TT EXIISTING STE DURING CONSTTUCTION. EROSION CONTROL MEASURES, IF
REQURED DURING CONSTRUCTNO, SHALL BE IN CONFORMANCE WITH THE LOCAL GUDELINES FOR EROSION AND SEDMENS CONTRLL
19. THE CONTRACTOR SHALL PROTECT EXISTTNG IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY
20. CONTRACTOR SHELL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER TTEMS 20. CONTRACTOR SHALL LEGALY AND PROPERLY DISPPSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER
REMOVED FROM THE EXISTING FACLILTY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED
LOCATON.
21. CONTRACTOR SHALL LeAvE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD be removed from site on a dally
basis
22. NO FILL OR EMBANKMEN MATERILL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERILLS, SNOW OR ICE SHALL NOT
BE PLACED IN ANY FILL OR EMBANKMENT.

general notes

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINTIONS SHALL APPLY: CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION
CARRIER:DISH Wireless L.L.C.
TOWER OWNER:TOWER OWNER
2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALY
EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINERS IN THIS OR SIMIAR LOCALTIES. IT IS ASSUMED THAT THE WORK DEPPCTED WLL BE PERFORMED BY AN EXPERENEED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLCALEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTE CONDTION OR ELEMENT II (OR CAN BE EXPLCITLY SHOON ON THESE DRAWIN.
STANDRDD GOOD PRACTICE FOR MISELLAEOUS WORK NOT EXPLICTLY SHOWN.
3. THESE DRAWINGS REPRESENT THE FINSHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR MEEHODS OF

SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND
 SITE VISTTS BY THE ENGINEER OR HIS REPRESENT
OBSERVATON OF THE FINIHED STRUCTURE ONLY.
 THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETALLS, GENERAL NOTES AN AND SPECIICATIONS,
GGEAER, MORE STRICT REQUREMENTS, SHALL GOVERN. IF FURTHER CLARIFCATION IS REQURED CONACT THE ENGINEER OF GRECTER,
SUBSTANTAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST
IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SELE RESPONSIBILTT OF THE CONTRACTOR TO

 Possibe.

ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGLATIONS
AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WTH ALL LAWS, ORDINANGES, RUUES ANDGULTIONS AND LAWFUL ORDERS OF ANY PUBLLC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED
 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MAI
NECESSARY TO COMPLLTE ALL INSTALATIONS AS INDICATED ON THE DRAWINGS.
9. THL CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATION
10. IF THE SPECIFED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATVE
OF INSTALATION.
Contractor Is to perform a site ivestigation, before submiting bids, to determine the best routing of all
conduts for power, and teco and for grounding cables as show in the power, telco, and grouning plan
DRAWINGS.
12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY
13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEM $14 . \operatorname{contractor~shall~leave~premises~in~clean~condition.~trash~and~debris~should~be~removed~from~site~on~a~dally~}$

5701 SOUTH SANTA FE DRVE
LTILTON, C CO 80120 CASTLE

CONCRETE FOUNDATIONS. AND REINFORCING STEEL

1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WTTH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN
AND CONSTRUCTON SPECIFCATION FOR CAST-IN-PLACE CONCRETE.
2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO be 1000
psf.
3. ALL CONCRETE SHALL HAVE A MINMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO
MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. MORE THAN 90 MINUTES SHAL ELAPSE FROM BATCH TIME TO TIME OF PLACE
TEMPERATURE OF CONCREEE SHALL NOT EXCEED 90° AT TIME OF PLACEMENT.
CONCRETE EXPOSED TO FREEZE-THAW CYCLLES SHALL CONTAIN AIR ENTRANNG ADMIXTURES. AMOUNT OF AR ENTRANMENT TO BE
ASES MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.
4. all steel reinforcing shall conform to astm a615. all welded wire fabric (wwf) shall conform to astm a185. all SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, SPLILES SHALL BE CLASS "B" TENSION SSLICES, UNLESS NOTTED OTHERWISE. ALL HOOKS SHALL BE
ULEES NOTED OTHERWISE. YELD STRENTH (Fy) OF STANDARD DEFRMMED AARS ARE AS FOLLOW:
\#4 BARS AND SMALLER 40 ks
\#5 BARS AND LARGER 60 ks
${ }^{6}{ }_{\text {DRAWINGS: }}^{\text {THE }}$
FOLLOWING MINMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON
CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH $3^{\prime \prime}$

- CONCRETE EXPOSED TO EARTH OR WEATHER:
\# ${ }^{\circ}$ bars and larger 2^{n}
\#5 bars and smaller 1-1/2"
- CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- slab and walls $3 / 4^{\circ}$
beams and columns $1-1 / 2^{\prime \prime}$

7. A tooled edee or a $3 / 4^{* *}$ chamfer shall be provided at all exposed edges of concrete, unless noted otherwise

Electrical instalation notes:

1. ALLL ELLCCTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WTH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLCABLE
2. CONDUIT ROUTINGS ARE SCHEMATC. CONTRACTOR SHALL INSTALL CONDUTS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED
3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WTH THE REQUIREMENTS OF THE NEC.
4. all circuits shall be segregated and maintain minimum cable separation as required by the nec.
4.1. ALL EQUIPMEN SHALL BEAR THE UNDERWRTIERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF
THE NATIONAL ELECTRICAL CODE.
 CURRENT TO WHCH THEY ARE SUBJECTED, 22,000 AIC MNIMUM. VERIFY AVALLABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED TH
RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WTH ARTILE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISOCTION.
5. EACH END OF EVERY POWER PHASE CONDCTTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WTH COLOR-CODED INSULATION OR ELECTRICAL TAPE ($3 M$ BRAND,
EQUAL). THE IDENTFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMCOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE
CONFIGURATIN, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT config
iD's).
7. PANEL boards (ID NUMBERS) SHALL be CLEARLY LABELED with pLASTIC LABELS
8. TIE WRAPS ARE NOT ALLOWED.
9. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBBG OR CONDUIT SHALL BE SINGLE COPPER CONDCTOR (\#14 OR LARGER)
WTTH TTPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATIN UNLESS OTHERWISE SPECFIED. SUPPLEMENTAL EQUIPMENT GROUND WRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (\#6 OR LARGER) WTTH
TVPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATON UNLESS OTHERWISE EPECIFED. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULT-CONDUCTOR, TTPE SOOW CORD (\#14 OR LARGER) UNLESS
OTHERWISE SPECIFIED.
POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TTPE TC CABLE (\#14 OR LARGER), WITH
TTPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, 0 RHW-2 INSULATON UNLESS OTHERWISE SPECIFED. TVPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE (\#PECIFED. 13. AL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STLLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND
BETS (OR EOUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR PPERATLON NOT ESSS THAN $75^{\circ} \mathrm{C}$ ($90^{\circ} \mathrm{C}$ IF AVAIIABLE).
10. RACEWAY and cable tray shall be listed or labeled for electrical use in accordance with nema, ul, ansi/IEEE and 15. ELLCTRICAL METALILC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUT (RMC) SHALL BE USED FOR
EXPOSED INDOOR LCCATIONS.
11. SCHEDULE 40 PVC UNDERGROUND ON STRAGHTS AND SCHEDULE 80 PVC FOR ALL ELBows/90s AND ALL APPROVED ABOVE
GRADE PVC CONDUIT.
12. LIQUID-TIGHT FLEEXBLE MEEALLIC CONDUT (LLQUID-TTIE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION
OCCURS OR FLEXBILITTIS NEEDED. 19. CONDUUT AND tubing fitings shall be threaded or compression-țpe and approved for the location used. set 20. Cabinets, boxes and wire wars shall be labeled for electrical use in accordance with nema, ul, ansi/ieee and the 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARD (WIREMOLD SPECMATE WIREWAY).
13. SLOTED Wiring duct shall be pvc and include cover (panduit tppe e or equal).
14. CONDUTS SHALL BE FASTENED SECURELY IN PLACE WTH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSNE
DEVCCS (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WIL NOT BE PERMITED. CLOSELY FOLLOW THE LINES

DEVICES (i.e. POWDER-ACTUATED) FOR ATACHING HANGERS TO STRUCTURE WLL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF

 OBSTRUCTIONS. ENDS OF CONDUTS SHALL BE TEMPO
FROM ENERNG CONDUTTS SHAL BE RIIILY CAMME
MALEEABLE IRON LOCKNUT ON OUTSIDE ANO INSIE.
24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PUL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETIER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETIER) FOR toations.
25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR
EXCEED 514 AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETER) FOR INTEROR LOCATIONS AND WEATHER PROTECTED (WP OR EXCEED UL 514 A AND NEMA OS
BETER) FOR EXTERIOR LOCATIONS.
26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETIER) FOR EXTERIOR LOCATIONS.
27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND
TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTIN PANEIS
28. THE CONTRACTOR SHALL PROVDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRBUTION PANELS IN ACCORDANCE
WTTH THE APPLCABLL CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
29. Install lamicoid label on the meter center to show "dish wireless l.l.c."
30. all emptr/SPare conduits that are installed are to have a metrred mule tape pull cord installed.

CONSTRUCTION

SUBmitals		
REv	DATE	DESCRIPTION
	00/17/2021	ISSUE Por Remew
\bigcirc	08/80/2021	SSUL Pror comsmuctow

2039-75555

BobdLoo047A
1455 FORBES STREET
EAST HARTFORD, CT 06118
SHEET TTLE
GENERAL NOTES
SHEET NUMER

GROUNDING NOTES:

1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNNNG PROTECTION AND AC POWER GES'S) SHALL
BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WTTH THE NEC.
2. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POtENTAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR

GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SH-OF-PURNISH AND INSTALL SUPPIEMENTAL GPOUD EIECTRODES AS NEEDED TO
a hive a test result of 5 OHMS OR LESS.
3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUTI INSTALATION AS
PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
4. METAL CONDUIT AND TRAY SHAL BE GROUNDED AND MADE ELECTRICALY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY
BONDING ACROSS THE DISCONTINUITY WTH \# $\# 6$ COPPER WIRE UL APPROVED GROUNDING TTPE CONDUIT CLAMPS.
5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS
WTH GREEN NSULTION, SIZED IN ACCORDANCE WTTH THE NEC, SHALL BE FURNISHED AND INSTALED WTH THE POWER CIRCUTTS TO BTS
EQUPMENT
6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL
EQUIPMENT GROUND WIRES, \#6 STRANDED COPPER OR LARGER FOR INDOOR BTS; \#2 BARE SOLD TNNED COPPER FOR OUTDOOR BTS.
7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE
OF THE GROUND BUS ARE PERMITED.

OF THE GROUND BUS ARE PERMITIED.
8. ALL EXTERIOR Ground conductors between equipment/ground bars and the ground ring shall be \#2 sold tinned
9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS,
10. USE OF 90° bends in the protection grounding conductors shall be avoided when 45° bends can be adequately
Supported.
11. EXOTHERMIC WELDS SHALL be uSEd for all grounding connections below grade.
12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND
15. APPRROVED ANTIOXIDANT COATINGS (i.e. CONDUCTVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERILL
17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND
18. BOND ALL METALLIC OBJECTS WTHIN 6 ft OF MAIN GROUND RING WITH (1) \#2 BARE SOLD TINNED COPPER GROUND
19. GROUND CONDUCTORS USED FOR THE FACIITY GROUNIING AND LGGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED
 SLEEVES THROUGH WALLS OR FLLORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUREMENTS OR LOCAL
CONDTIONS, NON-METALIC MATERAL SUCH AS PVC CONOUT SHALL BE USED. WHERE USE OF MEAL CONDUTT IS UNAVOIDABLE (ie., NONMETALLC CONDUIT PROHBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE \#2 BARE SOLD TINNED COPPER IN $3 / 4^{\prime \prime}$ NON-METALLIC, FLEXIBLE CONDUIT FROM $24^{4 "}$ BELOW GRADE TO WITHIN $3^{\prime \prime}$ TO $6^{\prime \prime}$ OF CAD-WELD TERMINATIN POINT.
OF THE CONDUIT MUST BE SEALED WITH SILCONE CAULK. (ADD TRANSTIONING GROUND STANDARD DETAIL AS WELI).

 THE EXISTING GROUNDING SYSTEM, THE BULLING STEEL COLUMNS, LIGHTNING PROTECTON SYSTEM, AND BULLDING MAIN WATER LIN (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINLLER SYSTEM PIPES.

Exhibit D

Structural Analysis Report

Crown Castle
2000 Corporate Drive
Canonsburg, PA 15317
(724) 416-2000

Subject:

Carrier Designation:

Crown Castle Designation:

Engineering Firm Designation:
Site Data:

Structural Analysis Report
DISH Network Co-Locate
Site Number: BOBDL00047A
Site Name:
BU Number: 806376
Site Name: HRT 100943239
JDE Job Number: 650042
Work Order Number: 1963271

Order Number: 556638 Rev. 1
Crown Castle Project Number: 1963271
1455 FORBES STREET, EAST HARTFORD, HARTFORD County, CT
Latitude $41^{\circ} 43^{\prime} 53.3^{\prime \prime}$, Longitude -72 ${ }^{\circ} 36^{\prime} 28^{\prime \prime}$
130 Foot - Monopole Tower

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity - 88.5\%
This analysis utilizes an ultimate 3 -second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - "Analysis Criteria".

Structural analysis prepared by: Daniel Chen
Respectfully submitted by:

Jamal A. Huwel, P.E. Director Engineering

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided
3.1) Analysis Method
3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity - LC7
4.1) Recommendations

5) APPENDIX A

tnxTower Output
6) APPENDIX B

Base Level Drawing
7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 130 ft Monopole tower designed by Valmont.
The tower has been modified multiple times to accommodate additional loading.

2) ANALYSIS CRITERIA

TIA-222 Revision:
Risk Category:
Wind Speed:
Exposure Category:
Topographic Factor:
Ice Thickness:
Wind Speed with Ice:
Seismic Ss:
Seismic S1:
Service Wind Speed:

TIA-222-H
II
125 mph
C
1
2 in
50 mph
0.18
0.064

60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	$\left\|\begin{array}{c} \text { Number } \\ \text { of } \\ \text { Antennas } \end{array}\right\|$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	
77.0	77.0	3	fujitsu	TA08025-B604	1	1-3/8
		3	fujitsu	TA08025-B605		
		3	jma wireless	MX08FRO665-21 w/ Mount Pipe		
		1	raycap	RDIDC-9181-PF-48		
		1	tower mounts	Commscope MC-PK8-DSH		

Table 2-Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	$\left\|\begin{array}{c} \text { Number } \\ \text { of } \\ \text { Antennas } \end{array}\right\|$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	
121.0	121.0	1	tower mounts	Platform Mount [LP 602-1]	$\begin{aligned} & 2 \\ & 8 \\ & 6 \end{aligned}$	$\begin{gathered} 3 / 8 \\ 3 / 4 \\ 1-1 / 4 \end{gathered}$
		1	tower mounts	Side Arm Mount [SO 102-3]		
	120.0	3	ericsson	RRUS 32 B30		
		3	ericsson	RRUS 4449 B5/B12		
		3	ericsson	RRUS 4478 B14		
		3	ericsson	RRUS 8843 B2/B66A		
		3	ericsson	RRUS E2 B29		
		3	kathrein	80010121 w/ Mount Pipe		
		3	kathrein	80010798 w/ Mount Pipe		
		6	kathrein	80010965 w/ Mount Pipe		
		6	powerwave technologies	LGP21401		
		4	raycap	DC6-48-60-18-8F		
109.0	113.0	3	samsung telecommunications	MT6407-77A w/ Mount Pipe	2	7/8
	111.0	6	andrew	SBNHH-1D65B w/ Mount Pipe		
		3	antel	BXA-80063/4CF w/ Mount Pipe		

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	
	109.0	1	raycap	RUSDC-6267-PF-48		
		3	samsung telecommunications	CBRS w/ Mount Pipe		
		3	samsung telecommunications	RFV01U-D1A		
		3	samsung telecommunications	RFV01U-D2A		
		1	tower mounts	Site Pro 1 F3P-12[W]		
		1	tower mounts	Site Pro 1 F3P-HRK12		
99.0	99.0	3	alcatel lucent	800MHz 2X50W RRH W/FILTER	-	-
		3	alcatel lucent	PCS 1900MHz 4x45W-65MHz w/ Mount Pipe		
		1	tower mounts	Side Arm Mount [SO 101-3]		
97.0	103.0	1	andrew	VHLP2-18	$\begin{aligned} & 4 \\ & 3 \\ & 3 \end{aligned}$	$\begin{gathered} 1-1 / 4 \\ 5 / 16 \\ 1 / 2 \end{gathered}$
		1	andrew	VHLP2.5-18		
	98.0	3	argus technologies	LLPX310R-V1 w/ Mount Pipe		
		3	rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe		
		3	rfs celwave	APXVTM14-ALU-I20 w/ Mount Pipe		
	97.0	3	alcatel lucent	TD-RRH8X20-25		
		2	dragonwave	HORIZON COMPACT		
		1	motorola	TIMING 2000		
		3	samsung telecommunications	RRH-2WB		
		1	tower mounts	Platform Mount [LP 713-1]		
87.0	87.0	3	ericsson	AIR -32 B2A/B66AA w/ Mount Pipe	$\begin{gathered} 11 \\ 1 \\ 1 \\ 1 \end{gathered}$	$\begin{gathered} 1-1 / 4 \\ 1-5 / 8 \\ 7 / 8 \\ 1-3 / 8 \end{gathered}$
		3	ericsson	ERICSSON AIR 21 B2A B4P w/ Mount Pipe		
		3	ericsson	KRY 112 144/1		
		3	ericsson	RADIO 4449 B12/B71		
		3	rfs celwave	APXVAARR24_43-U-NA20 w/ Mount Pipe		
		1	tower mounts	T-Arm Mount [TA 602-3]		

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	262381	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	262389	CCISITES
4-TOWER MANUFACTURER DRAWINGS	262386	CCISITES

Document	Reference	Source
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	7890057	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	6515906	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	5681337	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	3842355	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	3749907	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	3635976	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	3448150	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	3249954	CCISITES
4-POST-MODIFICATION INSPECTION	8418504	CCISITES
4-POST-MODIFICATION INSPECTION	7030743	CCISITES
4-POST-MODIFICATION INSPECTION	5921968	CCISITES
4-POST-MODIFICATION INSPECTION	5099148	CCISITES
4-POST-MODIFICATION INSPECTION	3675451	CCISITES

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.
tnxTower was used to determine the loads on the modified structure. Additional calculations were performed to determine the stresses in the pole and in the reinforcing elements. These calculations are included in Appendix C.

3.2) Assumptions

1) Tower and structures were maintained in accordance with the TIA-222 Standard.
2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Elevation (ft)	Component Type	Size	Critical Element	\% Capacity	Pass / Fail
$130-125$	Pole	TP11.775×10.525x0.1875	Pole	0.5%	
$125-120$	Pole	TP13.025x11.775x0.1875	Pole	4.6%	Pass
$120-115$	Pole	TP14.275x13.025x0.1875	Pole	26.0%	Pass
$115-110$	Pole	TP15.525x14.275x0.1875	Pole	41.8%	Pass
$110-105$	Pole	TP16.776x15.525x0.25	Pole	48.3%	Pass
$105-100$	Pole	TP18.027x16.776x0.25	Pole	60.6%	Pass
$100-95$	Pole	TP19.277x18.027x0.25	Pole	73.4%	Pass
$95-90$	Pole	TP20.528×19.277x0.25	Pole	84.8%	Pass

Elevation (ft)	Component Type	Size	Critical Element	\% Capacity	Pass / Fail
90-89.75	Pole + Reinf.	TP20.591×20.528x0.5	Reinf. 12 Tension Rupture	75.7\%	Pass
89.75-84.75	Pole + Reinf.	TP21.841×20.591×0.4813	Reinf. 12 Tension Rupture	87.3\%	Pass
84.75-84.58	Pole + Reinf.	TP21.884×21.841×0.475	Reinf. 12 Tension Rupture	87.7\%	Pass
84.58-84.33	Pole + Reinf.	TP21.946x21.884x0.6375	Reinf. 12 Tension Rupture	67.8\%	Pass
84.33-83.42	Pole + Reinf.	TP22.174×21.946x0.625	Reinf. 12 Tension Rupture	69.6\%	Pass
83.42-83.17	Pole + Reinf.	TP22.237x22.174x0.95	Reinf. 17 Tension Rupture	48.8\%	Pass
83.17-83	Pole + Reinf.	TP22.279x22.237×0.95	Reinf. 17 Tension Rupture	49.1\%	Pass
83-82.75	Pole + Reinf.	TP22.342x22.279x0.7	Reinf. 17 Tension Rupture	65.2\%	Pass
82.75-77.75	Pole + Reinf.	TP23.592x22.342x0.6625	Reinf. 17 Tension Rupture	73.3\%	Pass
77.75-74	Pole + Reinf.	TP25.531x23.592x0.65	Reinf. 17 Tension Rupture	79.9\%	Pass
74-69	Pole + Reinf.	TP25.281x24.03x0.7	Reinf. 17 Tension Rupture	82.2\%	Pass
69-67.08	Pole + Reinf.	TP25.761×25.281×0.6875	Reinf. 17 Tension Rupture	84.8\%	Pass
67.08-66.83	Pole + Reinf.	TP25.824×25.761×0.6875	Reinf. 17 Tension Rupture	85.1\%	Pass
66.83-64.08	Pole + Reinf.	TP26.512x25.824x0.675	Reinf. 17 Tension Rupture	88.5\%	Pass
64.08-63.83	Pole + Reinf.	TP26.574x26.512x0.7375	Reinf. 17 Tension Rupture	85.0\%	Pass
63.83-62.5	Pole + Reinf.	TP26.907x26.574x0.7375	Reinf. 17 Tension Rupture	86.5\%	Pass
62.5-62.25	Pole + Reinf.	TP26.969x26.907x0.8625	Reinf. 17 Tension Rupture	71.7\%	Pass
62.25-57.25	Pole + Reinf.	TP28.22x26.969x0.8375	Reinf. 17 Tension Rupture	76.4\%	Pass
57.25-53.5	Pole + Reinf.	TP29.158x28.22x0.8125	Reinf. 17 Tension Rupture	79.6\%	Pass
53.5-53.25	Pole + Reinf.	TP29.22x29.158x0.8375	Reinf. 10 Tension Rupture	78.9\%	Pass
53.25-52.58	Pole + Reinf.	TP29.388x29.22x0.825	Reinf. 10 Tension Rupture	79.5\%	Pass
52.58-52.33	Pole + Reinf.	TP29.45x29.388x0.8625	Reinf. 10 Tension Rupture	76.6\%	Pass
52.33-47.33	Pole + Reinf.	TP30.701x29.45x0.8375	Reinf. 10 Tension Rupture	80.5\%	Pass
47.33-44.58	Pole + Reinf.	TP31.389x30.701×0.8125	Reinf. 10 Tension Rupture	82.4\%	Pass
44.58-44.33	Pole + Reinf.	TP31.451×31.389x0.8125	Reinf. 10 Tension Rupture	82.6\%	Pass
44.33-41.92	Pole + Reinf.	TP32.054×31.451x0.8	Reinf. 10 Tension Rupture	84.3\%	Pass
41.92-41.67	Pole + Reinf.	TP32.117x32.054×0.8125	Reinf. 9 Tension Rupture	75.1\%	Pass
41.67-39	Pole + Reinf.	TP34.015x32.117x0.7875	Reinf. 9 Tension Rupture	76.6\%	Pass
39-34	Pole + Reinf.	TP33.408x32.159x0.8188	Reinf. 9 Tension Rupture	78.3\%	Pass
34-29	Pole + Reinf.	TP34.657x33.408×0.7938	Reinf. 9 Tension Rupture	80.6\%	Pass
29-26.92	Pole + Reinf.	TP35.177×34.657x0.7938	Reinf. 9 Tension Rupture	81.5\%	Pass
26.92-26.67	Pole + Reinf.	TP35.239x35.177x0.8938	Reinf. 7 Tension Rupture	76.3\%	Pass
26.67-21.67	Pole + Reinf.	TP36.488×35.239x0.8688	Reinf. 7 Tension Rupture	78.4\%	Pass
21.67-18	Pole + Reinf.	TP37.404×36.488x0.8563	Reinf. 7 Tension Rupture	79.8\%	Pass
18-17.75	Pole + Reinf.	TP37.467×37.404×0.9938	Reinf. 16 Tension Rupture	67.1\%	Pass
17.75-17.5	Pole + Reinf.	TP37.529x37.467x0.9938	Reinf. 16 Tension Rupture	67.2\%	Pass
17.5-17.25	Pole + Reinf.	TP37.592x37.529x0.9938	Reinf. 15 Tension Rupture	67.3\%	Pass
17.25-17.08	Pole + Reinf.	TP37.634×37.592x0.9938	Reinf. 15 Tension Rupture	67.3\%	Pass
17.08-16.83	Pole + Reinf.	TP37.697x37.634×0.8938	Reinf. 15 Tension Rupture	73.5\%	Pass
16.83-13	Pole + Reinf.	TP38.653x37.697x0.8813	Reinf. 15 Tension Rupture	74.8\%	Pass
13-12.75	Pole + Reinf.	TP38.716x38.653x1.0563	Reinf. 5 Tension Rupture	63.5\%	Pass
12.75-11.92	Pole + Reinf.	TP38.923x38.716x1.0438	Reinf. 5 Tension Rupture	63.8\%	Pass
11.92-11.67	Pole + Reinf.	TP38.985×38.923x0.8188	Reinf. 15 Tension Rupture	81.7\%	Pass
11.67-6.67	Pole + Reinf.	TP40.234×38.985x0.7938	Reinf. 15 Tension Rupture	83.3\%	Pass

tnxTower Report - version 8.1.1.0

Elevation (ft)	Component Type	Size	Critical Element	\% Capacity	Pass / Fail
6.67-6.5	Pole + Reinf.	TP40.277x40.234×0.7938	Reinf. 15 Tension Rupture	83.4\%	Pass
6.5-6.25	Pole + Reinf.	TP40.339×40.277×0.9188	Reinf. 5 Tension Rupture	77.9\%	Pass
6.25-3.75	Pole + Reinf.	TP40.963×40.339x0.9063	Reinf. 5 Tension Rupture	78.6\%	Pass
3.75-3.5	Pole + Reinf.	TP41.026x40.963x1.0063	Reinf. 14 Tension Rupture	68.1\%	Pass
3.5-3	Pole + Reinf.	TP41.151x41.026x0.9938	Reinf. 14 Tension Rupture	68.3\%	Pass
3-2.75	Pole + Reinf.	TP41.213x41.151x0.9938	Reinf. 15 Tension Rupture	73.2\%	Pass
2.75-0	Pole + Reinf.	TP41.9×41.213x1.0188	Reinf. 4 Weldment	86.8\%	Pass
				Summary	
			Pole	84.8\%	Pass
			Reinforcement	88.5\%	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	\% Capacity	Pass / Fail
1	Anchor Rods	0	84.7	Pass
1	Base Plate	0	57.1	Pass
1	Base Foundation (Structure)	0	62.2	Pass
1	Base Foundation (Soil Interaction)	0	72.7	Pass
1	Flange Bolts	110	38.4	Pass
1	Flange Plate	110	20.6	Pass

Structure Rating (max from all components) =

Notes:

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the \% capacity consumed.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

Tower Input Data

The tower is a monopole.
This tower is designed using the TIA-222-H standard.
The following design criteria apply:

- Tower base elevation above sea level: 41.0000 ft .
- Basic wind speed of 125 mph .
- Risk Category II.
- Exposure Category C.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.0000 ft .
- Nominal ice thickness of 2.0000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56.00 pcf .
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of $50^{\circ} \mathrm{F}$.
- Deflections calculated using a wind speed of 60 mph .
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1 .
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: $\mathrm{K}_{\mathrm{es}}\left(\mathrm{F}_{\mathrm{w}}\right)=0.95, \mathrm{~K}_{\mathrm{es}}\left(\mathrm{t}_{\mathrm{i}}\right)=0.85$.
- Maximum demand-capacity ratio is: 1.05 .
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options		
Consider Moments - Legs	Distribute Leg Loads As Uniform	Use ASCE 10 X-Brace Ly Rules
Consider Moments - Horizontals	Assume Legs Pinned	Calculate Redundant Bracing Forces
Consider Moments - Diagonals	\checkmark Assume Rigid Index Plate	Ignore Redundant Members in FEA
Use Moment Magnification	\checkmark Use Clear Spans For Wind Area	SR Leg Bolts Resist Compression
Use Code Stress Ratios	Use Clear Spans For KL/r	All Leg Panels Have Same Allowable
Use Code Safety Factors - Guys	Retension Guys To Initial Tension	Offset Girt At Foundation
Escalate Ice	\checkmark Bypass Mast Stability Checks	\checkmark Consider Feed Line Torque
Always Use Max Kz	\checkmark Use Azimuth Dish Coefficients	Include Angle Block Shear Check
Use Special Wind Profile	\checkmark Project Wind Area of Appurt.	Use TIA-222-H Bracing Resist. Exemption
Include Bolts In Member Capacity	Autocalc Torque Arm Areas	Use TIA-222-H Tension Splice Exemption
Leg Bolts Are At Top Of Section	Add IBC . $6 \mathrm{D}+\mathrm{W}$ Combination	Poles
Secondary Horizontal Braces Leg	\checkmark Sort Capacity Reports By Component	$\sqrt{ }$ Include Shear-Torsion Interaction
Use Diamond Inner Bracing (4 Sided)	Triangulate Diamond Inner Bracing	Always Use Sub-Critical Flow
SR Members Have Cut Ends	Treat Feed Line Bundles As Cylinder	Use Top Mounted Sockets
SR Members Are Concentric	Ignore KL/ry For 60 Deg. Angle Legs	Pole Without Linear Attachments
		Pole With Shroud Or No
		Appurtenances
		Outside and Inside Corner Radii Are

Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Top	Bottom	Wall	Bend	Pole Grade
	ft	Length	Length ft	of	Diameter	Diameter Thickness	Radius Rides	in	in

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	$\begin{aligned} & 130.0000- \\ & 125.0000 \end{aligned}$	5.0000	0.00	12	10.5250	11.7750	0.1875	0.7500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L2	$\begin{aligned} & 125.0000- \\ & 120.0000 \end{aligned}$	5.0000	0.00	12	11.7750	13.0250	0.1875	0.7500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L3	$\begin{aligned} & 120.0000- \\ & 115.0000 \end{aligned}$	5.0000	0.00	12	13.0250	14.2750	0.1875	0.7500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L4	$\begin{aligned} & 115.0000- \\ & 110.0000 \end{aligned}$	5.0000	0.00	12	14.2750	15.5250	0.1875	0.7500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L5	$\begin{aligned} & 110.0000- \\ & 105.0000 \end{aligned}$	5.0000	0.00	12	15.5250	16.7757	0.2500	1.0000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L6	$\begin{aligned} & 105.0000- \\ & 100.0000 \end{aligned}$	5.0000	0.00	12	16.7757	18.0265	0.2500	1.0000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L7	$\begin{gathered} 100.0000- \\ 95.0000 \end{gathered}$	5.0000	0.00	12	18.0265	19.2772	0.2500	1.0000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L8	$\begin{aligned} & 95.0000- \\ & 90.0000 \end{aligned}$	5.0000	0.00	12	19.2772	20.5280	0.2500	1.0000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L9	$\begin{aligned} & 90.0000- \\ & 89.7500 \end{aligned}$	0.2500	0.00	12	20.5280	20.5905	0.5000	2.0000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L10	$\begin{gathered} 89.7500- \\ 84.7500 \end{gathered}$	5.0000	0.00	12	20.5905	21.8413	0.4813	1.9250	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L11	$\begin{aligned} & 84.7500- \\ & 84.5800 \end{aligned}$	0.1700	0.00	12	21.8413	21.8838	0.4750	1.9000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L12	$\begin{aligned} & 84.5800- \\ & 84.3300 \end{aligned}$	0.2500	0.00	12	21.8838	21.9464	0.6375	2.5500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L13	$\begin{aligned} & 84.3300- \\ & 83.4200 \end{aligned}$	0.9100	0.00	12	21.9464	22.1740	0.6250	2.5000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L14	$\begin{gathered} 83.4200- \\ 83.1700 \end{gathered}$	0.2500	0.00	12	22.1740	22.2365	0.9500	3.8000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L15	$\begin{aligned} & 83.1700- \\ & 83.0000 \end{aligned}$	0.1700	0.00	12	22.2365	22.2791	0.9500	3.8000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L16	$\begin{aligned} & 83.0000- \\ & 82.7500 \end{aligned}$	0.2500	0.00	12	22.2791	22.3416	0.7000	2.8000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L17	$\begin{aligned} & 82.7500- \\ & 77.7500 \end{aligned}$	5.0000	0.00	12	22.3416	23.5923	0.6625	2.6500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L18	$\begin{aligned} & 77.7500- \\ & 70.0000 \end{aligned}$	7.7500	4.00	12	23.5923	25.5310	0.6500	2.6000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L19	$\begin{aligned} & 70.0000- \\ & 69.0000 \end{aligned}$	5.0000	0.00	12	24.0304	25.2810	0.7000	2.8000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L20	$\begin{aligned} & 69.0000- \\ & 67.0800 \end{aligned}$	1.9200	0.00	12	25.2810	25.7612	0.6875	2.7500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L21	$\begin{aligned} & 67.0800- \\ & 66.8300 \end{aligned}$	0.2500	0.00	12	25.7612	25.8237	0.6875	2.7500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L22	$\begin{aligned} & 66.8300- \\ & 64.0800 \end{aligned}$	2.7500	0.00	12	25.8237	26.5115	0.6750	2.7000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L23	$\begin{aligned} & 64.0800- \\ & 63.8300 \end{aligned}$	0.2500	0.00	12	26.5115	26.5741	0.7375	2.9500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L24	$\begin{aligned} & 63.8300- \\ & 62.5000 \end{aligned}$	1.3300	0.00	12	26.5741	26.9067	0.7375	2.9500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L25	$\begin{aligned} & 62.5000- \\ & 62.2500 \end{aligned}$	0.2500	0.00	12	26.9067	26.9693	0.8625	3.4500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L26	$\begin{aligned} & 62.2500- \\ & 57.2500 \end{aligned}$	5.0000	0.00	12	26.9693	28.2198	0.8375	3.3500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L27	$\begin{aligned} & 57.2500- \\ & 53.5000 \end{aligned}$	3.7500	0.00	12	28.2198	29.1578	0.8125	3.2500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L28	$\begin{aligned} & 53.5000- \\ & 53.2500 \end{aligned}$	0.2500	0.00	12	29.1578	29.2203	0.8375	3.3500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L29	$\begin{aligned} & 53.2500- \\ & 52.5800 \end{aligned}$	0.6700	0.00	12	29.2203	29.3879	0.8250	3.3000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L30	$\begin{aligned} & 52.5800- \\ & 52.3300 \end{aligned}$	0.2500	0.00	12	29.3879	29.4504	0.8625	3.4500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L31	$\begin{gathered} 52.3300- \\ 47.3300 \end{gathered}$	5.0000	0.00	12	29.4504	30.7010	0.8375	3.3500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L32	$\begin{aligned} & 47.3300- \\ & 44.5800 \end{aligned}$	2.7500	0.00	12	30.7010	31.3888	0.8125	3.2500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L33	$\begin{aligned} & 44.5800- \\ & 44.3300 \end{aligned}$	0.2500	0.00	12	31.3888	31.4513	0.8125	3.2500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L34	$\begin{aligned} & 44.3300- \\ & 41.9200 \end{aligned}$	2.4100	0.00	12	31.4513	32.0541	0.8000	3.2000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L35	41.9200-	0.2500	0.00	12	32.0541	32.1166	0.8125	3.2500	A572-65

tnxTower Report - version 8.1.1.0

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L36	41.6700	7.5900	4.92	12	32.1166	34.0150	0.7875	3.1500	(65 ksi)
	41.6700-								A572-65
	34.0800								(65 ksi)
L37	34.0800-	5.0000	0.00	12	32.1594	33.4082	0.8187	3.2750	A572-65
	34.0000								(65 ksi)
L38	34.0000-	5.0000	0.00	12	33.4082	34.6570	0.7937	3.1750	A572-65
	29.0000								(65 ksi)
L39	29.0000-	2.0800	0.00	12	34.6570	35.1765	0.7937	3.1750	A572-65
	26.9200								(65 ksi)
L40	26.9200-	0.2500	0.00	12	35.1765	35.2390	0.8938	3.5750	A572-65
	26.6700								(65 ksi)
L41	26.6700-	5.0000	0.00	12	35.2390	36.4877	0.8688	3.4750	A572-65
	21.6700								(65 ksi)
L42	21.6700-	3.6700	0.00	12	36.4877	37.4044	0.8562	3.4250	A572-65
	18.0000								(65 ksi)
L43	18.0000-	0.2500	0.00	12	37.4044	37.4668	0.9938	3.9750	A572-65
	17.7500								(65 ksi)
L44	17.7500-	0.2500	0.00	12	37.4668	37.5292	0.9938	3.9750	A572-65
	17.5000								(65 ksi)
L45	17.5000-	0.2500	0.00	12	37.5292	37.5917	0.9938	3.9750	A572-65
	17.2500								(65 ksi)
L46	17.2500-	0.1700	0.00	12	37.5917	37.6341	0.9938	3.9750	A572-65
	17.0800								(65 ksi)
L47	17.0800-	0.2500	0.00	12	37.6341	37.6966	0.8938	3.5750	A572-65
	16.8300								(65 ksi)
L48	16.8300-	3.8300	0.00	12	37.6966	38.6531	0.8812	3.5250	A572-65
	13.0000								(65 ksi)
L49	13.0000-	0.2500	0.00	12	38.6531	38.7156	1.0562	4.2250	A572-65
	12.7500								(65 ksi)
L50	12.7500-	0.8300	0.00	12	38.7156	38.9229	1.0438	4.1750	A572-65
	11.9200								(65 ksi)
L51	11.9200-	0.2500	0.00	12	38.9229	38.9853	0.8187	3.2750	A572-65
	11.6700								(65 ksi)
L52	11.6700-	5.0000	0.00	12	38.9853	40.2341	0.7937	3.1750	A572-65
	6.6700								(65 ksi)
L53	6.6700-6.5000	0.1700	0.00	12	40.2341	40.2766	0.7937	3.1750	A572-65
									(65 ksi)
L54	6.5000-6.2500	0.2500	0.00	12	40.2766	40.3390	0.9187	3.6750	A572-65 (65 ksi)
L55	6.2500-3.7500	2.5000	0.00	12	40.3390	40.9634	0.9063	3.6250	A572-65 (65 ksi)
L56	3.7500-3.5000	0.2500	0.00	12	40.9634	41.0258	1.0063	4.0250	A572-65
									(65 ksi)
L57	3.5000-3.0000	0.5000	0.00	12	41.0258	41.1507	0.9938	3.9750	A572-65
									(65 ksi)
L58	3.0000-2.7500	0.2500	0.00	12	41.1507	41.2132	0.9938	3.9750	A572-65
									(65 ksi)
L59	2.7500-0.0000	2.7500		12	41.2132	41.9000	1.0188	4.0750	A572-65
									(65 ksi)

Tapered Pole Properties

Section	Tip Dia. in	Area $i n^{2}$	I $i n^{4}$	r $i n$	C $i n$	I / C $i n^{3}$	J $i n^{4}$	$I t / Q$ $i n^{2}$	w $i n$	
L1	10.8301	6.2413	85.1314	3.7008	5.4520	15.6148	172.4993	3.0718	2.3182	12.364
	12.1242	6.9960	119.8981	4.1483	6.0995	19.6572	242.9461	3.4432	2.6532	14.15
L2	12.1242	6.9960	119.8981	4.1483	6.0995	19.6572	242.9461	3.4432	2.6532	14.15
	13.4183	7.7506	163.0364	4.5958	6.7470	24.1645	330.3559	3.8146	2.9882	15.937
L3	13.4183	7.7506	163.0364	4.5958	6.7470	24.1645	330.3559	3.8146	2.9882	15.937
	14.7124	8.5053	215.4492	5.0433	7.3945	29.1366	436.5585	4.1861	3.3232	17.724
L4	14.7124	8.5053	215.4492	5.0433	7.3945	29.1366	436.5585	4.1861	3.3232	17.724
	16.0065	9.2600	278.0397	5.4908	8.0419	34.5737	563.3838	4.5575	3.6582	19.51
L5	15.9845	12.2964	366.2060	5.4684	8.0419	45.5370	742.0327	6.0519	3.4907	13.963
	17.2793	13.3032	463.7302	5.9162	8.6898	53.3646	939.6431	6.5474	3.8259	15.304
L6	17.2793	13.3032	463.7302	5.9162	8.6898	53.3646	939.6431	6.5474	3.8259	15.304

tnxTower Report - version 8.1.1.0

Section	Tip Dia. in	Area $i n^{2}$	$\stackrel{I}{i n^{4}}$	$\begin{gathered} r \\ i n \end{gathered}$	$\begin{aligned} & \text { C } \\ & \text { in } \end{aligned}$	$\begin{aligned} & I / C \\ & i n^{3} \end{aligned}$	$\underset{i n^{4}}{J}$	$\begin{aligned} & I t / Q \\ & i n^{2} \end{aligned}$	$\begin{aligned} & \text { w } \\ & \text { in } \end{aligned}$	w/t
L7	18.5742	14.3101	577.1924	6.3640	9.3377	61.8129	1169.5483	7.0430	4.1611	16.644
	18.5742	14.3101	577.1924	6.3640	9.3377	61.8129	1169.5483	7.0430	4.1611	16.644
	19.8691	15.3169	707.7989	6.8118	9.9856	70.8819	1434.1925	7.5385	4.4963	17.985
L8	19.8691	15.3169	707.7989	6.8118	9.9856	70.8819	1434.1925	7.5385	4.4963	17.985
	21.1640	16.3238	856.7561	7.2595	10.6335	80.5714	1736.0201	8.0341	4.8315	19.326
L9	21.0758	32.2451	1650.9145	7.1700	10.6335	155.2559	3345.2003	15.8700	4.1615	8.323
	21.1405	32.3458	1666.4278	7.1924	10.6659	156.2389	3376.6345	15.9196	4.1783	8.357
L10	21.1471	31.1619	1608.4317	7.1991	10.6659	150.8013	3259.1186	15.3369	4.2285	8.787
	22.4420	33.1000	1927.6075	7.6469	11.3138	170.3769	3905.8553	16.2908	4.5637	9.483
L11	22.4442	32.6797	1904.2442	7.6491	11.3138	168.3118	3858.5150	16.0840	4.5805	9.643
	22.4882	32.7448	1915.6369	7.6644	11.3358	168.9898	3881.5997	16.1160	4.5919	9.667
L12	22.4309	43.6134	2512.8857	7.6062	11.3358	221.6767	5091.7877	21.4652	4.1564	6.52
	22.4956	43.7417	2535.1408	7.6286	11.3682	223.0026	5136.8825	21.5284	4.1731	6.546
L13	22.5001	42.9092	2489.8086	7.6330	11.3682	219.0150	5045.0273	21.1186	4.2066	6.731
	22.7357	43.3673	2570.4101	7.7145	11.4861	223.7839	5208.3477	21.3441	4.2676	6.828
L14	22.6211	64.9242	3732.8999	7.5982	11.4861	324.9921	7563.8672	31.9537	3.3966	3.575
	22.6858	65.1155	3765.9947	7.6206	11.5185	326.9513	7630.9263	32.0479	3.4134	3.593
L15	22.6858	65.1155	3765.9947	7.6206	11.5185	326.9513	7630.9263	32.0479	3.4134	3.593
	22.7298	65.2456	3788.6105	7.6358	11.5405	328.2869	7676.7521	32.1119	3.4248	3.605
L16	22.8180	48.6392	2890.9250	7.7253	11.5405	250.5015	5857.7978	23.9387	4.0948	5.85
	22.8828	48.7801	2916.1322	7.7477	11.5729	251.9785	5908.8744	24.0081	4.1115	5.874
L17	22.8960	46.2469	2774.2826	7.7611	11.5729	239.7215	5621.4487	22.7613	4.2120	6.358
	24.1909	48.9151	3282.6958	8.2089	12.2208	268.6148	6651.6316	24.0745	4.5472	6.864
L18	24.1953	48.0183	3226.0283	8.2134	12.2208	263.9778	6536.8079	23.6332	4.5807	7.047
	26.2023	52.0759	4114.8942	8.9074	13.2251	311.1438	8337.8912	25.6302	5.1003	7.847
L19	25.6669	52.5867	3653.4773	8.3523	12.4477	293.5051	7402.9356	25.8816	4.5641	6.52
	25.9259	55.4055	4273.0428	8.8000	13.0955	326.2974	8658.3431	27.2689	4.8993	6.999
L20	25.9303	54.4438	4203.1441	8.8045	13.0955	320.9598	8516.7095	26.7956	4.9328	7.175
	26.4274	55.5069	4454.1995	8.9764	13.3443	333.7904	9025.4158	27.3188	5.0615	7.362
L21	26.4274	55.5069	4454.1995	8.9764	13.3443	333.7904	9025.4158	27.3188	5.0615	7.362
	26.4922	55.6453	4487.6063	8.9988	13.3767	335.4796	9093.1071	27.3869	5.0783	7.387
L22	26.4966	54.6608	4412.5900	9.0032	13.3767	329.8716	8941.1036	26.9024	5.1118	7.573
	27.2087	56.1557	4784.6350	9.2495	13.7330	348.4047	9694.9676	27.6381	5.2961	7.846
L23	27.1866	61.2069	5189.8105	9.2271	13.7330	377.9086	$\begin{gathered} 10515.963 \\ 0 \end{gathered}$	30.1242	5.1286	6.954
	27.2513	61.3554	5227.6742	9.2495	13.7654	379.7700	$\begin{gathered} 10592.685 \\ 2 \end{gathered}$	30.1973	5.1454	6.977
L24	27.2513	61.3554	5227.6742	9.2495	13.7654	379.7700	$\begin{gathered} 10592.685 \\ 2 \end{gathered}$	30.1973	5.1454	6.977
	27.5957	62.1454	5432.2086	9.3686	13.9377	389.7497	$\begin{gathered} 11007.127 \\ 3 \end{gathered}$	30.5861	5.2345	7.098
L25	27.5516	72.3313	6262.3199	9.3238	13.9377	449.3085	$\begin{gathered} 12689.157 \\ 9 \end{gathered}$	35.5993	4.8995	5.681
	27.6164	72.5050	6307.5333	9.3462	13.9701	451.5032	$\begin{gathered} 12780.772 \\ 6 \end{gathered}$	35.6847	4.9163	5.7
L26	27.6252	70.4708	6142.3183	9.3552	13.9701	439.6769	$\begin{gathered} 12446.002 \\ 2 \end{gathered}$	34.6836	4.9833	5.95
	28.9199	73.8433	7067.0448	9.8029	14.6179	483.4524	$\begin{gathered} 14319.748 \\ 7 \end{gathered}$	36.3434	5.3184	6.35
L27	28.9287	71.7044	6874.8841	9.8118	14.6179	470.3068	$\begin{gathered} 13930.379 \\ 1 \end{gathered}$	35.2907	5.3854	6.628
	29.8997	74.1583	7605.1298	10.1476	15.1037	503.5269	$\begin{gathered} 15410.054 \\ 8 \end{gathered}$	36.4985	5.6368	6.938
L28	29.8909	76.3727	7818.4101	10.1387	15.1037	517.6480	$\begin{gathered} 15842.218 \\ 6 \end{gathered}$	37.5883	5.5698	6.65
	29.9556	76.5413	7870.3118	10.1610	15.1361	519.9692	$\begin{gathered} 15947.385 \\ 4 \end{gathered}$	37.6713	5.5865	6.67
L29	29.9600	75.4321	7763.0922	10.1655	15.1361	512.8855	$\begin{gathered} 15730.129 \\ 4 \end{gathered}$	37.1254	5.6200	6.812
	30.1335	75.8773	7901.3485	10.2255	15.2229	519.0430	$\begin{gathered} 16010.274 \\ 3 \end{gathered}$	37.3445	5.6649	6.867
L30	30.1203	79.2221	8228.0080	10.2121	15.2229	540.5014	$\begin{gathered} 16672.174 \\ 9 \end{gathered}$	38.9907	5.5644	6.452
	30.1850	79.3957	8282.2351	10.2345	15.2553	542.9085	$\begin{gathered} 16782.053 \\ 7 \end{gathered}$	39.0762	5.5812	6.471
L31	30.1939	77.1618	8063.2873	10.2434	15.2553	528.5563	$\begin{gathered} 16338.406 \\ 1 \end{gathered}$	37.9767	5.6482	6.744
	31.4885	80.5343	9167.4296	10.6911	15.9031	576.4554	$\begin{gathered} 18575.697 \\ 9 \end{gathered}$	39.6365	5.9834	7.144
L32	31.4974	78.1957	8916.1298	10.7001	15.9031	560.6534	18066.496	38.4856	6.0504	7.447

tnxTower Report - version 8.1.1.0

Section	$\begin{gathered} \text { Tip Dia. } \\ \text { in } \end{gathered}$	Area $i n^{2}$	$\stackrel{I}{i n^{4}}$	$\begin{gathered} r \\ \text { in } \end{gathered}$	$\begin{aligned} & \text { C } \\ & \text { in } \end{aligned}$	$\begin{aligned} & I / C \\ & i n^{3} \end{aligned}$	$\underset{i n^{4}}{J}$	$\begin{aligned} & I t / Q \\ & i n^{2} \end{aligned}$	$\begin{aligned} & w \\ & \text { in } \end{aligned}$	w/t
L33	32.2094	79.9952	9545.9589	10.9463	16.2594	587.1043	$\begin{gathered} 3 \\ 19342.700 \\ 8 \end{gathered}$	39.3712	6.2347	7.673
	32.2094	79.9952	9545.9589	10.9463	16.2594	587.1043	$\begin{gathered} 19342.700 \\ 8 \end{gathered}$	39.3712	6.2347	7.673
L34	32.2742	80.1588	9604.6435	10.9687	16.2918	589.5391	$\begin{gathered} 19461.611 \\ 7 \end{gathered}$	39.4517	6.2515	7.694
	32.2786	78.9578	9468.4591	10.9732	16.2918	581.1800	$\begin{gathered} 19185.665 \\ 2 \end{gathered}$	38.8606	6.2850	7.856
L35	32.9026	80.5106	$\begin{gathered} 10038.126 \\ 4 \end{gathered}$	11.1890	16.6040	604.5599	$\begin{gathered} 20339.965 \\ 5 \end{gathered}$	39.6248	6.4465	8.058
	32.8982	81.7358	$\begin{gathered} 10182.744 \\ 6 \end{gathered}$	11.1845	16.6040	613.2698	$\begin{gathered} 20633.001 \\ 3 \end{gathered}$	40.2279	6.4130	7.893
L36	32.9630	81.8994	$\begin{gathered} 10244.008 \\ 2 \end{gathered}$	11.2069	16.6364	615.7583	$\begin{gathered} 20757.137 \\ 8 \end{gathered}$	40.3084	6.4298	7.914
	32.9718	79.4428	9952.6148	11.2158	16.6364	598.2429	$\begin{gathered} 20166.696 \\ 0 \end{gathered}$	39.0993	6.4968	8.25
L37	34.9371	84.2566	$\begin{gathered} 11873.681 \\ 2 \end{gathered}$	11.8954	17.6198	673.8840	$\begin{gathered} 24059.297 \\ 2 \end{gathered}$	41.4686	7.0055	8.896
	34.2772	82.6258	$\begin{gathered} 10359.016 \\ 1 \end{gathered}$	11.2200	16.6586	621.8424	$\begin{gathered} 20990.175 \\ 1 \end{gathered}$	40.6659	6.4245	7.847
L38	34.2979	85.9181	$\begin{gathered} 11647.297 \\ 7 \end{gathered}$	11.6670	17.3055	673.0418	$\begin{gathered} 23600.582 \\ 9 \end{gathered}$	42.2863	6.7592	8.255
	34.3067 35.5996	83.3585 86.5503	11317.661	11.6760 12.1230	17.3055 17.9523	653.9937	$\begin{gathered} 22932.649 \\ 7 \end{gathered}$	41.0265 42.5974	6.8262 7.1608	8.6
L39	35.5996	86.5503	$\begin{gathered} 12668.115 \\ 7 \end{gathered}$	12.1230	17.9523	705.6529	$\begin{gathered} 25669.037 \\ 0 \end{gathered}$	42.5974	7.1608	9.022
	35.5996	86.5503	$\begin{gathered} 12668.115 \\ 7 \end{gathered}$	12.1230	17.9523	705.6529	$\begin{gathered} 25669.037 \\ 0 \end{gathered}$	42.5974	7.1608	9.022
L40	36.1374	87.8780	$\begin{gathered} 13260.131 \\ 0 \end{gathered}$	12.3090	18.2214	727.7216	$\begin{gathered} 26868.620 \\ 4 \end{gathered}$	43.2509	7.3001	9.197
	36.1021	98.6615	$\begin{gathered} 14800.802 \\ 3 \end{gathered}$	12.2732	18.2214	812.2743	$\begin{gathered} 29990.438 \\ 2 \end{gathered}$	48.5582	7.0321	7.868
L41	36.1668	98.8412	$\begin{gathered} 14881.820 \\ 3 \end{gathered}$	12.2956	18.2538	815.2735	$\begin{gathered} 30154.602 \\ 5 \end{gathered}$	48.6466	7.0488	7.887
	36.1756	96.1463	$\begin{gathered} 14497.157 \\ 1 \end{gathered}$	12.3045	18.2538	794.2004	$\begin{gathered} 29375.170 \\ 7 \end{gathered}$	47.3203	7.1158	8.191
L42	37.4684	99.6397	$\begin{gathered} 16135.465 \\ 3 \end{gathered}$	12.7516	18.9007	853.6990	$\begin{gathered} 32694.827 \\ 1 \end{gathered}$	49.0396	7.4505	8.576
	37.4728	98.2405	$\begin{gathered} 15920.049 \\ 3 \end{gathered}$	12.7561	18.9007	842.3017	$\begin{gathered} 32258.336 \\ 0 \end{gathered}$	48.3510	7.4840	8.74
L43	38.4218	100.7677	$\begin{gathered} 17180.545 \\ 6 \end{gathered}$	13.0842	19.3755	886.7170	$\begin{gathered} 34812.443 \\ 4 \end{gathered}$	49.5948	7.7296	9.027
	38.3733	116.5094	$\begin{gathered} 19715.264 \\ 3 \end{gathered}$	13.0350	19.3755	1017.5381	$\begin{gathered} 39948.470 \\ 6 \end{gathered}$	57.3424	7.3611	7.407
L44	38.4379	116.7092	$\begin{gathered} 19816.865 \\ 8 \end{gathered}$	13.0573	19.4078	1021.0774	$\begin{gathered} 40154.342 \\ 8 \end{gathered}$	57.4407	7.3779	7.424
	38.4379	116.7092	$\begin{gathered} 19816.865 \\ 8 \end{gathered}$	13.0573	19.4078	1021.0774	$\begin{gathered} 40154.342 \\ 8 \end{gathered}$	57.4407	7.3779	7.424
L45	38.5026	116.9090	$\begin{gathered} 19918.815 \\ 8 \end{gathered}$	13.0797	19.4401	1024.6229	$\begin{gathered} 40360.921 \\ 0 \end{gathered}$	57.5390	7.3946	7.441
	38.5026	116.9090	$\begin{gathered} 19918.815 \\ 8 \end{gathered}$	13.0797	19.4401	1024.6229	$\begin{gathered} 40360.921 \\ 0 \end{gathered}$	57.5390	7.3946	7.441
L46	38.5672	117.1088	$\begin{gathered} 20021.114 \\ 8 \end{gathered}$	13.1021	19.4725	1028.1746	$\begin{gathered} 40568.206 \\ 6 \end{gathered}$	57.6374	7.4113	7.458
	38.5672	117.1088	$\begin{gathered} 20021.114 \\ 8 \end{gathered}$	13.1021	19.4725	1028.1746	$\begin{gathered} 40568.206 \\ 6 \end{gathered}$	57.6374	7.4113	7.458
L47	38.6112	117.2446	$\begin{gathered} 20090.877 \\ 9 \end{gathered}$	13.1173	19.4945	1030.5932	$\begin{gathered} 40709.565 \\ 5 \end{gathered}$	57.7042	7.4227	7.469
	38.6464	105.7342	$\begin{gathered} 18217.503 \\ 0 \end{gathered}$	13.1531	19.4945	934.4955	$\begin{gathered} 36913.600 \\ 2 \end{gathered}$	52.0392	7.6907	8.605
L48	38.7111	105.9139	$\begin{gathered} 18310.541 \\ 8 \end{gathered}$	13.1754	19.5268	937.7123	$\begin{gathered} 37102.121 \\ 9 \end{gathered}$	52.1276	7.7074	8.624
	38.7155	104.4681	$\begin{gathered} 18072.853 \\ 0 \end{gathered}$	13.1799	19.5268	925.5398	$\begin{gathered} 36620.500 \\ 0 \end{gathered}$	51.4160	7.7409	8.784
L49	39.7058	107.1825	$\begin{gathered} 19518.536 \\ 5 \end{gathered}$	13.5223	20.0223	974.8385	$\begin{gathered} 39549.846 \\ 7 \end{gathered}$	52.7520	7.9973	9.075
	39.6441	127.8717	$\begin{gathered} 23070.895 \\ 9 \end{gathered}$	13.4597	20.0223	1152.2584	$\begin{gathered} 46747.890 \\ 0 \end{gathered}$	62.9346	7.5283	7.127
	39.7087	128.0841	23186.032	13.4820	20.0547	1156.1412	46981.188	63.0391	7.5450	7.143

Section	$\begin{gathered} \text { Tip Dia. } \\ \text { in } \end{gathered}$	Area $i n^{2}$	$\stackrel{I}{i n^{4}}$	$\begin{gathered} r \\ \text { in } \end{gathered}$	$\begin{aligned} & \text { C } \\ & \text { in } \end{aligned}$	$\begin{aligned} & I / C \\ & i n^{3} \end{aligned}$	$\underset{i n^{4}}{J}$	$\begin{gathered} I t / Q \\ i n^{2} \end{gathered}$	$\begin{aligned} & \text { w } \\ & \text { in } \end{aligned}$	w / t
L50	39.7131	126.6103	$\begin{gathered} 8 \\ 22934.464 \\ 2 \end{gathered}$	13.4865	20.0547	1143.5970	$\begin{gathered} 5 \\ 46471.442 \\ 2 \end{gathered}$	62.3138	7.5785	7.261
L51	39.9277	127.3070	$\begin{gathered} 23315.160 \\ 3 \end{gathered}$	13.5607	20.1621	1156.3882	$\begin{gathered} 47242.835 \\ 8 \end{gathered}$	62.6566	7.6341	7.314
	40.0071	100.4568	$\begin{gathered} 18616.986 \\ 9 \end{gathered}$	13.6413	20.1621	923.3676	$\begin{gathered} 37723.062 \\ 7 \end{gathered}$	49.4418	8.2371	10.061
L52	40.0718	100.6214	$\begin{gathered} 18708.657 \\ 4 \end{gathered}$	13.6636	20.1944	926.4281	$\begin{gathered} 37908.812 \\ 0 \end{gathered}$	49.5228	8.2538	10.081
	40.0806	97.6129	$\begin{gathered} 18173.065 \\ 3 \end{gathered}$	13.6726	20.1944	899.9063	$\begin{gathered} 36823.557 \\ 2 \end{gathered}$	48.0421	8.3208	10.483
L53	41.3734	100.8046	$\begin{gathered} 20014.662 \\ 9 \end{gathered}$	14.1197	20.8413	960.3379	$\begin{gathered} 40555.133 \\ 3 \end{gathered}$	49.6130	8.6555	10.905
	41.3734	100.8046	$\begin{gathered} 20014.662 \\ 9 \end{gathered}$	14.1197	20.8413	960.3379	$\begin{gathered} 40555.133 \\ 3 \end{gathered}$	49.6130	8.6555	10.905
L54	41.4174	100.9132	$\begin{gathered} 20079.371 \\ 9 \end{gathered}$	14.1349	20.8633	962.4271	$\begin{gathered} 40686.251 \\ 3 \end{gathered}$	49.6664	8.6669	10.919
	41.3733	116.4352	$\begin{gathered} 23021.432 \\ 9 \end{gathered}$	14.0901	20.8633	1103.4435	$\begin{gathered} 46647.664 \\ 5 \end{gathered}$	57.3059	8.3319	9.069
L55	41.4379	116.6199	$\begin{gathered} 23131.174 \\ 4 \end{gathered}$	14.1125	20.8956	1106.9874	$\begin{gathered} 46870.030 \\ 6 \end{gathered}$	57.3968	8.3486	9.087
	41.4423	115.0697	$\begin{gathered} 22838.176 \\ 5 \end{gathered}$	14.1169	20.8956	1092.9654	$\begin{gathered} 46276.337 \\ 3 \end{gathered}$	56.6338	8.3821	9.249
L56	42.0887	116.8918	$\begin{gathered} 23940.334 \\ 3 \end{gathered}$	14.3405	21.2190	1128.2475	$\begin{gathered} 48509.607 \\ 8 \end{gathered}$	57.5306	8.5494	9.434
	42.0535	129.4662	$\begin{gathered} 26383.442 \\ 2 \end{gathered}$	14.3047	21.2190	1243.3850	$\begin{gathered} 53460.006 \\ 8 \end{gathered}$	63.7193	8.2814	8.23
L57	42.1181	129.6685	$\begin{gathered} 26507.320 \\ 8 \end{gathered}$	14.3270	21.2514	1247.3218	$\begin{gathered} 53711.018 \\ 4 \end{gathered}$	63.8189	8.2982	8.247
	42.1225	128.0977	$\begin{gathered} 26202.574 \\ 8 \end{gathered}$	14.3315	21.2514	1232.9818	$\begin{gathered} 53093.520 \\ 5 \end{gathered}$	63.0458	8.3317	8.384
L58	42.2518	128.4973	$\begin{gathered} 26448.555 \\ 3 \end{gathered}$	14.3762	21.3161	1240.7797	$\begin{gathered} 53591.943 \\ 6 \end{gathered}$	63.2425	8.3651	8.418
	42.2518	128.4973	$\begin{gathered} 26448.555 \\ 3 \end{gathered}$	14.3762	21.3161	1240.7797	$\begin{gathered} 53591.943 \\ 6 \end{gathered}$	63.2425	8.3651	8.418
L59	42.3165	128.6971	$\begin{gathered} 26572.120 \\ 7 \end{gathered}$	14.3986	21.3484	1244.6880	$\begin{gathered} 53842.320 \\ 6 \end{gathered}$	63.3408	8.3819	8.435
	42.3076	131.8528	$\begin{gathered} 27189.835 \\ 8 \end{gathered}$	14.3896	21.3484	1273.6229	$\begin{gathered} 55093.978 \\ 9 \end{gathered}$	64.8939	8.3149	8.162
	43.0187	134.1058	$\begin{gathered} 28607.634 \\ 1 \end{gathered}$	14.6355	21.7042	1318.0690	$\begin{gathered} 57966.822 \\ 7 \end{gathered}$	66.0028	8.4990	8.343

tnxTower Report - version 8.1.1.0

130 Ft Monopole Tower Structural Analysis

Tower Elevation ft	Gusset Area (perface) ft^{2}	Gusset Thickness in	Gusset Grade Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
$\begin{gathered} \hline \text { L12 84.5800- } \\ 84.3300 \end{gathered}$			1	1	0.914408			
$\begin{gathered} \text { L13 84.3300- } \\ 83.4200 \end{gathered}$			1	1	0.926528			
$\begin{gathered} \text { L14 83.4200- } \\ 83.1700 \end{gathered}$			1	1	0.877374			
$\begin{gathered} \text { L15 83.1700- } \\ 83.0000 \end{gathered}$			1	1	0.876149			
$\begin{gathered} \text { L16 83.0000- } \\ 82.7500 \end{gathered}$			1	1	0.895771			
$\begin{gathered} \mathrm{L} 1782.7500- \\ 77.7500 \end{gathered}$			1	1	0.913883			
$\begin{gathered} \text { L18 77.7500- } \\ 70.0000 \end{gathered}$			1	1	0.90949			
$\begin{gathered} \text { L19 70.0000- } \\ 69.0000 \end{gathered}$			1	1	0.921147			
$\begin{gathered} \text { L20 69.0000- } \\ 67.0800 \end{gathered}$			1	1	0.92817			
$\begin{gathered} \text { L21 67.0800- } \\ 66.8300 \end{gathered}$			1	1	0.926992			
$\begin{gathered} \text { L22 66.8300- } \\ 64.0800 \end{gathered}$			1	1	0.930891			
$\begin{gathered} \text { L23 64.0800- } \\ 63.8300 \end{gathered}$			1	1	0.999923			
$\begin{gathered} \text { L24 63.8300- } \\ 62.5000 \end{gathered}$			1	1	0.992599			
$\begin{gathered} \text { L25 62.5000- } \\ 62.2500 \end{gathered}$			1	1	0.913797			
$\begin{gathered} \text { L26 62.2500- } \\ 57.2500 \end{gathered}$			1	1	0.914277			
$\begin{gathered} \text { L27 57.2500- } \\ 53.5000 \end{gathered}$			1	1	0.92312			
$\begin{gathered} \text { L28 53.5000- } \\ 53.2500 \end{gathered}$			1	1	0.934453			
$\begin{gathered} \text { L29 53.2500- } \\ 52.5800 \end{gathered}$			1	1	0.944853			
$\begin{gathered} \text { L30 } 52.5800- \\ 52.3300 \end{gathered}$			1	1	0.917963			
$\begin{gathered} \text { L31 52.3300- } \\ 47.3300 \end{gathered}$			1	1	0.920611			
$\begin{gathered} \text { L32 } 47.3300- \\ 44.5800 \end{gathered}$			1	1	0.935467			
$\begin{gathered} \text { L33 } 44.5800- \\ 44.3300 \end{gathered}$			1	1	0.934343			
$\begin{gathered} \text { L34 44.3300- } \\ 41.9200 \end{gathered}$			1	1	0.937794			
$\begin{gathered} \text { L35 } 41.9200- \\ 41.6700 \end{gathered}$			1	1	0.941001			
$\begin{gathered} \text { L36 41.6700- } \\ 34.0800 \end{gathered}$			1	1	0.958134			
$\begin{gathered} \text { L37 34.0800- } \\ 34.0000 \end{gathered}$			1	1	0.950472			
$\begin{gathered} \text { L38 34.0000- } \\ 29.0000 \end{gathered}$			1	1	0.9595			
$\begin{gathered} \text { L39 } 29.0000- \\ 26.9200 \end{gathered}$			1	1	0.951546			
$\begin{gathered} \text { L40 } 26.9200- \\ 26.6700 \end{gathered}$			1	1	0.968284			
$\begin{gathered} \text { L41 } 26.6700- \\ 21.6700 \end{gathered}$			1	1	0.974397			
$\begin{gathered} \text { L42 } 21.6700- \\ 18.0000 \end{gathered}$			1	1	0.973558			
$\begin{gathered} \text { L43 18.0000- } \\ 17.7500 \end{gathered}$			1	1	0.947355			
$\begin{gathered} \text { L44 17.7500- } \\ 17.5000 \end{gathered}$			1	1	0.946327			
L45 17.5000-			1	1	0.945303			

tnxTower Report - version 8.1.1.0

Tower Elevation ft	Gusset Area (per face) $f t^{2}$	Gusset Thickness in	Gusset Grade Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
17.2500								
$\begin{gathered} \text { L46 17.2500- } \\ 17.0800 \end{gathered}$			1	1	0.944608			
$\begin{gathered} \text { L47 17.0800- } \\ 16.8300 \end{gathered}$			1	1	0.961219			
$\begin{gathered} \text { L48 16.8300- } \\ 13.0000 \end{gathered}$			1	1	0.959721			
$\begin{gathered} \text { L49 13.0000- } \\ 12.7500 \end{gathered}$			1	1	0.944381			
$\begin{gathered} \text { L50 12.7500- } \\ 11.9200 \end{gathered}$			1	1	0.951948			
$\begin{gathered} \text { L51 } 11.9200- \\ 11.6700 \end{gathered}$			1	1	1.02595			
$\begin{gathered} \text { L52 11.6700- } \\ 6.6700 \end{gathered}$			1	1	1.0378			
$\begin{gathered} \text { L53 } 6.6700- \\ 6.5000 \end{gathered}$			1	1	1.03715			
$\begin{gathered} \text { L54 6.5000- } \\ 6.2500 \end{gathered}$			1	1	0.967827			
$\begin{gathered} \text { L55 6.2500- } \\ 3.7500 \end{gathered}$			1	1	0.971489			
$\begin{gathered} \text { L56 3.7500- } \\ 3.5000 \end{gathered}$			1	1	0.93422			
$\begin{gathered} \text { L57 3.5000- } \\ 3.0000 \end{gathered}$			1	1	0.943811			
$\begin{gathered} \text { L58 } 3.0000- \\ 2.7500 \end{gathered}$			1	1	0.91273			
$\begin{gathered} \text { L59 } 2.7500- \\ 0.0000 \end{gathered}$			1	1	0.881587			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From Torque Calculation	$\begin{gathered} \text { Componen } \\ t \\ \text { Type } \end{gathered}$	Placement ft	Total Number	Number Per Row	Start/En d Position	Width or Diamete r in	Perimete r in	Weight plf
$\underset{\substack{3 / 8 *}}{\text { CU12PSM9P8XXX(1- }}$	B	No	$\begin{aligned} & \text { Surface Ar } \\ & \text { (CaAa) } \end{aligned}$	$\begin{gathered} 77.0000- \\ 0.0000 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.020 \end{aligned}$	1.4110		1.66
2" Flexible Conduit	B	No	Surface Ar (CaAa)	$\begin{gathered} 121.0000- \\ 0.0000 \end{gathered}$	4	4	$\begin{aligned} & -0.200 \\ & -0.100 \end{aligned}$	2.0000		0.34
LDF6-50A(1-1/4)	B	No	Surface Ar (CaAa)	$\begin{gathered} 121.0000- \\ 0.0000 \end{gathered}$	6	3	$\begin{gathered} -0.100 \\ 0.000 \end{gathered}$	1.5500		0.60
2" Flexible Conduit	A	No	Surface Ar (CaAa)	$\begin{gathered} 97.0000- \\ 0.0000 \end{gathered}$	2	2	$\begin{aligned} & 0.000 \\ & 0.100 \end{aligned}$	2.0000		0.34
	B	No	Surface Ar (CaAa)	$\begin{gathered} 87.0000- \\ 0.0000 \end{gathered}$	14	6	$\begin{aligned} & -0.500 \\ & -0.350 \end{aligned}$	1.6600		2.40
PL 0.75x4	A	No	Surface Af (CaAa)	$\begin{gathered} 45.8300- \\ 15.8300 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	4.0000	9.5000	0.00
PL 0.75x4	B	No	Surface Af (CaAa)	$\begin{gathered} 45.8300- \\ 15.8300 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	4.0000	9.5000	0.00
PL 0.75x4	C	No	Surface Af (CaAa)	$\begin{gathered} 45.8300- \\ 15.8300 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	4.0000	9.5000	0.00
PL 0.75x4	A	No	Surface Af (CaAa)	$\begin{gathered} 68.2500- \\ 43.2500 \end{gathered}$	1	1	$\begin{aligned} & 0.250 \\ & 0.250 \end{aligned}$	4.0000	9.5000	0.00
PL 0.75x4	B	No	Surface Af (CaAa)	$\begin{gathered} 68.2500- \\ 43.2500 \end{gathered}$	1	1	$\begin{aligned} & 0.250 \\ & 0.250 \end{aligned}$	4.0000	9.5000	0.00
PL 0.75x4	C	No	Surface Af (CaAa)	$\begin{gathered} 68.2500- \\ 43.2500 \end{gathered}$	1	1	$\begin{aligned} & 0.250 \\ & 0.250 \end{aligned}$	4.0000	9.5000	0.00
PL 0.75x4	A	No	Surface Af	85.8300 -	1	1	0.000	4.0000	9.5000	0.00

tnxTower Report - version 8.1.1.0

Description	Sector	Exclude From Torque Calculation	$\begin{gathered} \text { Componen } \\ t \\ \text { Type } \end{gathered}$	Placement ft	Total Number	Number Per Row	Start/En d Position	Width or Diamete r in	Perimete r in	Weight plf
			(CaAa)	65.8300			0.000			
PL 0.75x4	B	No	Surface Af	85.8300 -	1	1	0.000	4.0000	9.5000	0.00
			(CaAa)	65.8300			0.000			
PL 0.75x4	C	No	Surface Af	85.8300 -	1	1	0.000	4.0000	9.5000	0.00
			(CaAa)	65.8300			0.000			
**										
(Area) $\mathrm{CCl}-65 \mathrm{FP}$ -	A	No	Surface Af	15.5000 -	1	1	0.000	6.0000	14.0000	0.00
060100 (H)			(CaAa)	0.0000			0.000			
(Area) CCl-65FP-	B	No	Surface Af	$15.5000-$	1	1	0.000	6.0000	14.0000	0.00
060100 (H)			(CaAa)	0.0000			0.000			
(Area) $\mathrm{CCl}-65 \mathrm{FP}$ -	C	No	Surface Af	$15.5000-$	1	1	0.000	6.0000	14.0000	0.00
$060100(\mathrm{H})$			(CaAa)	0.0000			0.000			
(Area) $\mathrm{CCl}-65 \mathrm{FP}$ -	B	No	Surface Af	20.7500 -	1	1	0.500	6.0000	14.0000	0.00
060100 (H)			(CaAa)	9.4200			0.500			
(Area) CCl-65FP-	A	No	Surface Af	20.7500 -	1	1	0.250	6.0000	14.0000	0.00
060100 (H)			(CaAa)	9.4200			0.250			
(Area) $\mathrm{CCl}-65 \mathrm{FP}$ -	C	No	Surface Af	20.7500 -	1	1	0.250	6.0000	14.0000	0.00
060100 (H)			(CaAa)	9.4200			0.250			
(Area) CCl-65FP-	B	No	Surface Af	44.4200 -	1	1	0.500	6.0000	14.0000	0.00
060100 (H)			(CaAa)	20.7500			0.500			
(Area) $\mathrm{CCl}-65 \mathrm{FP}$ -	A	No	Surface Af	29.4200 -	1	1	0.250	6.0000	14.0000	0.00
060100 (H)			(CaAa)	20.7500			0.250			
(Area) $\mathrm{CCl}-65 \mathrm{FP}$ -	C	No	Surface Af	29.4200 -	1	1	0.250	6.0000	14.0000	0.00
(Area) $\mathrm{CCl}-65 \mathrm{FP}$ -	A	No	Surface Af	56.0000 -	1	1	0.500	6.0000	14.0000	0.00
060100 (H)			(CaAa)	21.0000			0.500			
(Area) $\mathrm{CCl}-65 \mathrm{FP}$ -	C	No	Surface Af	56.0000 -	1	1	0.500	6.0000	14.0000	0.00
${ }_{\text {** }}^{060100}(\mathrm{H})$ (CaAa) 21.0000 .500										
(Area) $\mathrm{CCl}-65 \mathrm{FP}$ -	A	No	Surface Af	66.0800 -	1	1	0.500	4.5000	11.0000	0.00
045100 (H)			(CaAa)	56.0000			0.500			
(Area) $\mathrm{CCl}-65 \mathrm{FP}$ -	C	No	Surface Af	66.0800 -	1	1	0.500	4.5000	11.0000	0.00
045100 (H)			(CaAa)	56.0000			0.500			
	B	No	Surface Af	64.5000 -	1	1	0.500	4.5000	11.0000	0.00
$\underset{* *}{045100}(\mathrm{H})$			(CaAa)	44.5000			0.500			
(Area) $\mathrm{CCl}-65 \mathrm{FP}$ -	A	No	Surface Af	91.5000 -	1	1	0.500	4.5000	11.0000	0.00
045100 (H)			(CaAa)	81.5000			0.500			
(Area) $\mathrm{CCl}-65 \mathrm{FP}$ -	B	No	Surface Af	91.5000 -	1	1	0.500	4.5000	11.0000	0.00
045100 (H)			(CaAa)	81.5000			0.500			
(Area) $\mathrm{CCl}-65 \mathrm{FP}$ -	C	No	Surface Af	91.5000 -	1	1	0.500	4.5000	11.0000	0.00
$045100(\mathrm{H})$			(CaAa)	81.5000			0.500			
(Area) CCI-65FP-	A	No	Surface Af	$9.2500-$	1	1	0.250	6.5000	15.5000	0.00
$065125(\mathrm{H})$			(CaAa)	0.0000			0.250			
(Area) $\mathrm{CCl}-65 \mathrm{FP}$ -	B	No	Surface Af	20.7500 -	1	1	0.250	6.5000	15.5000	0.00
065125 (H)			(CaAa)	0.0000			0.250			
(Area) CCl-65FP-	A	No	Surface Af	20.7500 -	1	1	0.500	6.5000	15.5000	0.00
065125 (H)			(CaAa)	0.0000			0.500			
(Area) CCl-65FP-	C	No	Surface Af	20.7500 -	1	1	0.500	6.5000	15.5000	0.00
$065125(\mathrm{H})$			(CaAa)	0.0000			0.500			
(Area) $\mathrm{CCl}-65 \mathrm{FP}$ -	A	No	Surface Af	20.0000 -	1	1	-0.250	6.0000	14.0000	0.00
060100 (H)			(CaAa)	0.0000			-0.250			
(Area) $\mathrm{CCl}-65 \mathrm{FP}$ -	B	No	Surface Af	$20.0000-$	1	1	-0.250	6.0000	14.0000	0.00
060100 (H)			(CaAa)	0.0000			-0.250			
(Area) $\mathrm{CCl}-65 \mathrm{FP}$ -	C	No	Surface Af	$20.0000-$	1	1	-0.250	6.0000	14.0000	0.00
060100 (H)			(CaAa)	0.0000			-0.250			
(Area) $\mathrm{CCl}-65 \mathrm{FP}$ -	A	No	Surface Af	55.0800 -	1	1	-0.250	6.0000	14.0000	0.00
060100 (H)			(CaAa)	20.0000			-0.250			
(Area) $\mathrm{CCl}-65 \mathrm{FP}$ -	B	No	Surface Af	55.0800 -	1	1	-0.250	6.0000	14.0000	0.00
060100 (H)			(CaAa)	20.0000			-0.250			
(Area) CCl-65FP-	C	No	Surface Af	55.0800 -	1	1	-0.250	6.0000	14.0000	0.00
060100 (H)			(CaAa)	20.0000			-0.250			
(Area) CCl-65FP-	A	No	Surface Af	85.1700 -	1	1	-0.250	4.5000	11.5000	0.00
045125 (H)			(CaAa)	55.0800			-0.250			

tnxTower Report - version 8.1.1.0

Description	Sector	Exclude From Torque Calculation	$\begin{gathered} \text { Componen } \\ t \\ \text { Type } \end{gathered}$	Placement ft	Total Number	Number Per Row	Start/En d Position	Width or Diamete r in	Perimete r in	Weight plf
$\begin{gathered} \text { (Area) CCI-65FP- } \\ 045125(\mathrm{H}) \end{gathered}$	B	No	Surface Af (CaAa)	$\begin{gathered} 85.1700- \\ 55.0800 \end{gathered}$	1	1	$\begin{aligned} & -0.250 \\ & -0.250 \end{aligned}$	4.5000	11.5000	0.00
$\underset{* * * *}{\text { (Area) CCI-65FP- }} \underset{\substack{\text { (H) }}}{\text { O45125 }}$	C	No	Surface Af (CaAa)	$\begin{gathered} 85.1700- \\ 55.0800 \end{gathered}$	1	1	$\begin{aligned} & -0.250 \\ & -0.250 \end{aligned}$	4.5000	11.5000	0.00

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or Leg	Allow Shield	Exclude From Torque Calculation	$\begin{gathered} \text { Componen } \\ t \\ \text { Type } \end{gathered}$	Placement ft	Total Number		$\begin{aligned} & C_{A} A_{A} \\ & f t^{2} / f t \end{aligned}$	Weight plf
$\begin{aligned} & \text { FB-L98B-002- } \\ & 75000(3 / 8) \end{aligned}$	B	No	No	Inside Pole	$\begin{gathered} 121.0000- \\ 0.0000 \end{gathered}$	2	No Ice	0.0000	0.06
							1/2" Ice	0.0000	0.06
							1 " Ice	0.0000	0.06
							2" Ice	0.0000	0.06
WR-VG86STBRD(3/4)	B	No	No	Inside Pole	$\begin{gathered} 121.0000- \\ 0.0000 \end{gathered}$	8	No Ice	0.0000	0.58
							1/2" Ice	0.0000	0.58
							1 " Ice	0.0000	0.58
							2" Ice	0.0000	0.58

$\begin{gathered} \text { HB158-U12S24- } \\ \text { 160-LI(1-7/8) } \end{gathered}$	B	No	No	Inside Pole	$\begin{gathered} 109.0000- \\ 0.0000 \end{gathered}$	2	No Ice	0.0000	3.20
							1/2" Ice	0.0000	3.20
							1 " Ice	0.0000	3.20
							2" Ice	0.0000	3.20
$\begin{aligned} & \text { ATCB-B01- } \\ & 005(5 / 16) \end{aligned}$	A	No	No	Inside Pole	$\begin{gathered} 97.0000- \\ 0.0000 \end{gathered}$	3	No Ice	0.0000	0.07
							1/2" Ice	0.0000	0.07
							$1{ }^{\prime \prime}$ Ice	0.0000	0.07
							2" Ice	0.0000	0.07
FSJ4-50B(1/2)	A	No	No	Inside Pole	97.0000 -	3	No Ice	0.0000	0.14
					0.0000		1/2" Ice	0.0000	0.14
							$1{ }^{\prime \prime}$ Ice	0.0000	0.14
							2" Ice	0.0000	0.14
HB158-21U6S24-xxM_TMO(1-5/8)	C	No	No	Inside Pole	$\begin{gathered} 97.0000- \\ 0.0000 \end{gathered}$	3	No Ice	0.0000	2.50
							1/2" Ice	0.0000	2.50
							$1{ }^{\prime \prime}$ Ice	0.0000	2.50
							2" Ice	0.0000	2.50

Feed Line/Linear Appurtenances Section Areas

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Tower Sectio n \& Tower Elevation ft \& Face \& AR

$f t^{2}$ \& A_{F}

$f t^{2}$ \& $C_{A} A_{A}$

In Face f^{2} \& $$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
{f t^{2}}^{2}
\end{gathered}
$$ \& Weight

K

\hline \multirow[t]{3}{*}{L1} \& 130.0000- \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& 125.0000 \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{L2} \& 125.0000- \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& 120.0000 \& B \& 0.000 \& 0.000 \& 1.265 \& 0.000 \& 0.01

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{L3} \& 120.0000- \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& 115.0000 \& B \& 0.000 \& 0.000 \& 6.325 \& 0.000 \& 0.05

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{L4} \& 115.0000- \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& 110.0000 \& B \& 0.000 \& 0.000 \& 6.325 \& 0.000 \& 0.05

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{L5} \& 110.0000- \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& 105.0000 \& B \& 0.000 \& 0.000 \& 6.325 \& 0.000 \& 0.07

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline L6 \& 105.0000- \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline
\end{tabular}

[^1]130 Ft Monopole Tower Structural Analysis
Project Number 1963271, Order 556638, Revision 1

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tower Sectio \\
\(n\)
\end{tabular} \& Tower Elevation ft \& Face \& \(A_{R}\)

$f t^{2}$ \& A_{F}

$t t^{2}$ \& \[
$$
\begin{gathered}
C_{A} A_{A} \\
\text { In Face } \\
{f t^{2}}^{2} \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
{f t^{2}}^{2}
\end{gathered}
$$
\] \& Weight

K

\hline \multirow{4}{*}{L7} \& \multirow[t]{2}{*}{100.0000} \& B \& 0.000 \& 0.000 \& 6.325 \& 0.000 \& 0.08

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \multirow[t]{3}{*}{$$
\begin{gathered}
100.0000- \\
95.0000
\end{gathered}
$$} \& A \& 0.000 \& 0.000 \& 0.800 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 6.325 \& 0.000 \& 0.08

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.01

\hline \multirow[t]{3}{*}{L8} \& \multirow[t]{3}{*}{95.0000-90.0000} \& A \& 0.000 \& 0.000 \& 3.125 \& 0.000 \& 0.01

\hline \& \& B \& 0.000 \& 0.000 \& 7.450 \& 0.000 \& 0.08

\hline \& \& C \& 0.000 \& 0.000 \& 1.125 \& 0.000 \& 0.04

\hline \multirow[t]{3}{*}{L9} \& \multirow[t]{3}{*}{90.0000-89.7500} \& A \& 0.000 \& 0.000 \& 0.287 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.504 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.188 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{L10} \& \multirow[t]{3}{*}{89.7500-84.7500} \& A \& 0.000 \& 0.000 \& 6.785 \& 0.000 \& 0.01

\hline \& \& B \& 0.000 \& 0.000 \& 13.351 \& 0.000 \& 0.16

\hline \& \& C \& 0.000 \& 0.000 \& 4.785 \& 0.000 \& 0.04

\hline \multirow[t]{3}{*}{L11} \& \multirow[t]{3}{*}{84.7500-84.5800} \& A \& 0.000 \& 0.000 \& 0.436 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.753 \& 0.000 \& 0.01

\hline \& \& C \& 0.000 \& 0.000 \& 0.368 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{L12} \& \multirow[t]{3}{*}{84.5800-84.3300} \& A \& 0.000 \& 0.000 \& 0.642 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 1.107 \& 0.000 \& 0.01

\hline \& \& C \& 0.000 \& 0.000 \& 0.542 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{L13} \& \multirow[t]{3}{*}{84.3300-83.4200} \& A \& 0.000 \& 0.000 \& 2.336 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 4.029 \& 0.000 \& 0.05

\hline \& \& C \& 0.000 \& 0.000 \& 1.972 \& 0.000 \& 0.01

\hline \multirow[t]{3}{*}{L14} \& \multirow[t]{3}{*}{83.4200-83.1700} \& A \& 0.000 \& 0.000 \& 0.642 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 1.107 \& 0.000 \& 0.01

\hline \& \& C \& 0.000 \& 0.000 \& 0.542 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{L15} \& \multirow[t]{3}{*}{83.1700-83.0000} \& A \& 0.000 \& 0.000 \& 0.436 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.753 \& 0.000 \& 0.01

\hline \& \& C \& 0.000 \& 0.000 \& 0.368 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{L16} \& \multirow[t]{3}{*}{83.0000-82.7500} \& A \& 0.000 \& 0.000 \& 0.642 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 1.107 \& 0.000 \& 0.01

\hline \& \& C \& 0.000 \& 0.000 \& 0.542 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{L17} \& \multirow[t]{3}{*}{82.7500-77.7500} \& A \& 0.000 \& 0.000 \& 10.021 \& 0.000 \& 0.01

\hline \& \& B \& 0.000 \& 0.000 \& 19.326 \& 0.000 \& 0.25

\hline \& \& C \& 0.000 \& 0.000 \& 8.021 \& 0.000 \& 0.04

\hline \multirow[t]{3}{*}{L18} \& \multirow[t]{3}{*}{77.7500-70.0000} \& A \& 0.000 \& 0.000 \& 14.079 \& 0.000 \& 0.01

\hline \& \& B \& 0.000 \& 0.000 \& 29.490 \& 0.000 \& 0.40

\hline \& \& C \& 0.000 \& 0.000 \& 10.979 \& 0.000 \& 0.06

\hline \multirow[t]{3}{*}{L19} \& \multirow[t]{3}{*}{70.0000-69.0000} \& A \& 0.000 \& 0.000 \& 1.817 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 3.819 \& 0.000 \& 0.05

\hline \& \& C \& 0.000 \& 0.000 \& 1.417 \& 0.000 \& 0.01

\hline \multirow[t]{3}{*}{L20} \& \multirow[t]{3}{*}{69.0000-67.0800} \& A \& 0.000 \& 0.000 \& 4.268 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 8.112 \& 0.000 \& 0.10

\hline \& \& C \& 0.000 \& 0.000 \& 3.500 \& 0.000 \& 0.01

\hline \multirow[t]{3}{*}{L21} \& \multirow[t]{3}{*}{67.0800-66.8300} \& A \& 0.000 \& 0.000 \& 0.621 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 1.121 \& 0.000 \& 0.01

\hline \& \& C \& 0.000 \& 0.000 \& 0.521 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{L22} \& \multirow[t]{3}{*}{66.8300-64.0800} \& A \& 0.000 \& 0.000 \& 7.163 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 11.483 \& 0.000 \& 0.14

\hline \& \& C \& 0.000 \& 0.000 \& 6.063 \& 0.000 \& 0.02

\hline \multirow[t]{3}{*}{L23} \& \multirow[t]{3}{*}{64.0800-63.8300} \& A \& 0.000 \& 0.000 \& 0.642 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 1.142 \& 0.000 \& 0.01

\hline \& \& C \& 0.000 \& 0.000 \& 0.542 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{L24} \& \multirow[t]{3}{*}{63.8300-62.5000} \& A \& 0.000 \& 0.000 \& 3.414 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 6.076 \& 0.000 \& 0.07

\hline \& \& C \& 0.000 \& 0.000 \& 2.882 \& 0.000 \& 0.01

\hline \multirow[t]{3}{*}{L25} \& \multirow[t]{3}{*}{62.5000-62.2500} \& A \& 0.000 \& 0.000 \& 0.642 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 1.142 \& 0.000 \& 0.01

\hline \& \& C \& 0.000 \& 0.000 \& 0.542 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{L26} \& \multirow[t]{3}{*}{62.2500-57.2500} \& A \& 0.000 \& 0.000 \& 12.833 \& 0.000 \& 0.01

\hline \& \& B \& 0.000 \& 0.000 \& 22.844 \& 0.000 \& 0.26

\hline \& \& C \& 0.000 \& 0.000 \& 10.833 \& 0.000 \& 0.04

\hline \multirow[t]{3}{*}{L27} \& \multirow[t]{3}{*}{57.2500-53.5000} \& A \& 0.000 \& 0.000 \& 10.645 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 17.528 \& 0.000 \& 0.19

\hline \& \& C \& 0.000 \& 0.000 \& 9.145 \& 0.000 \& 0.03

\hline \multirow[t]{3}{*}{L28} \& \multirow[t]{3}{*}{53.5000-53.2500} \& A \& 0.000 \& 0.000 \& 0.767 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 1.205 \& 0.000 \& 0.01

\hline \& \& C \& 0.000 \& 0.000 \& 0.667 \& 0.000 \& 0.00

\hline L29 \& 53.2500-52.5800 \& A \& 0.000 \& 0.000 \& 2.055 \& 0.000 \& 0.00

\hline
\end{tabular}

tnxTower Report - version 8.1.1.0

130 Ft Monopole Tower Structural Analysis
Project Number 1963271, Order 556638, Revision 1

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tower Sectio \\
\(n\)
\end{tabular} \& Tower Elevation ft \& Face \& \(A_{R}\)

$f t^{2}$ \& A_{F}

$f t^{2}$ \& \[
$$
\begin{gathered}
C_{A} A_{A} \\
\text { In Face } \\
f t^{2} \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
{f t^{2}}^{2} \\
\hline
\end{gathered}
$$
\] \& Weight

K

\hline \multirow{4}{*}{L30} \& \multirow{4}{*}{52.5800-52.3300} \& B \& 0.000 \& 0.000 \& 3.229 \& 0.000 \& 0.03

\hline \& \& C \& 0.000 \& 0.000 \& 1.787 \& 0.000 \& 0.01

\hline \& \& A \& 0.000 \& 0.000 \& 0.767 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 1.205 \& 0.000 \& 0.01

\hline \multirow{3}{*}{L31} \& \multirow{3}{*}{52.3300-47.3300} \& C \& 0.000 \& 0.000 \& 0.667 \& 0.000 \& 0.00

\hline \& \& A \& 0.000 \& 0.000 \& 15.333 \& 0.000 \& 0.01

\hline \& \& B \& 0.000 \& 0.000 \& 24.094 \& 0.000 \& 0.26

\hline \multirow{3}{*}{L32} \& \multirow{3}{*}{47.3300-44.5800} \& C \& 0.000 \& 0.000 \& 13.333 \& 0.000 \& 0.04

\hline \& \& A \& 0.000 \& 0.000 \& 9.267 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 14.085 \& 0.000 \& 0.14

\hline \multirow{3}{*}{L33} \& \multirow{3}{*}{44.5800-44.3300} \& C \& 0.000 \& 0.000 \& 8.167 \& 0.000 \& 0.02

\hline \& \& A \& 0.000 \& 0.000 \& 0.933 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 1.334 \& 0.000 \& 0.01

\hline \multirow{3}{*}{L34} \& \multirow{3}{*}{44.3300-41.9200} \& C \& 0.000 \& 0.000 \& 0.833 \& 0.000 \& 0.00

\hline \& \& A \& 0.000 \& 0.000 \& 8.111 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 12.936 \& 0.000 \& 0.12

\hline \multirow{3}{*}{L35} \& \multirow{3}{*}{41.9200-41.6700} \& C \& 0.000 \& 0.000 \& 7.147 \& 0.000 \& 0.02

\hline \& \& A \& 0.000 \& 0.000 \& 0.767 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 1.267 \& 0.000 \& 0.01

\hline \multirow{3}{*}{L36} \& \multirow{3}{*}{41.6700-34.0800} \& C \& 0.000 \& 0.000 \& 0.667 \& 0.000 \& 0.00

\hline \& \& A \& 0.000 \& 0.000 \& 23.276 \& 0.000 \& 0.01

\hline \& \& B \& 0.000 \& 0.000 \& 38.472 \& 0.000 \& 0.39

\hline \multirow{3}{*}{L37} \& \multirow{3}{*}{34.0800-34.0000} \& C \& 0.000 \& 0.000 \& 20.240 \& 0.000 \& 0.06

\hline \& \& A \& 0.000 \& 0.000 \& 0.245 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.406 \& 0.000 \& 0.00

\hline \multirow{3}{*}{L38} \& \multirow{3}{*}{34.0000-29.0000} \& C \& 0.000 \& 0.000 \& 0.213 \& 0.000 \& 0.00

\hline \& \& A \& 0.000 \& 0.000 \& 15.698 \& 0.000 \& 0.01

\hline \& \& B \& 0.000 \& 0.000 \& 25.344 \& 0.000 \& 0.26

\hline \multirow{3}{*}{L39} \& \multirow{3}{*}{29.0000-26.9200} \& C \& 0.000 \& 0.000 \& 13.698 \& 0.000 \& 0.04

\hline \& \& A \& 0.000 \& 0.000 \& 8.185 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 10.543 \& 0.000 \& 0.11

\hline \multirow{3}{*}{L40} \& \multirow{3}{*}{26.9200-26.6700} \& C \& 0.000 \& 0.000 \& 7.353 \& 0.000 \& 0.02

\hline \& \& A \& 0.000 \& 0.000 \& 0.984 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 1.267 \& 0.000 \& 0.01

\hline \multirow{3}{*}{L41} \& \multirow{3}{*}{26.6700-21.6700} \& C \& 0.000 \& 0.000 \& 0.884 \& 0.000 \& 0.00

\hline \& \& A \& 0.000 \& 0.000 \& 19.675 \& 0.000 \& 0.01

\hline \& \& B \& 0.000 \& 0.000 \& 25.344 \& 0.000 \& 0.26

\hline \multirow{3}{*}{L42} \& \multirow{3}{*}{21.6700-18.0000} \& C \& 0.000 \& 0.000 \& 17.675 \& 0.000 \& 0.04

\hline \& \& A \& 0.000 \& 0.000 \& 14.661 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 21.460 \& 0.000 \& 0.19

\hline \multirow{3}{*}{L43} \& \multirow{3}{*}{18.0000-17.7500} \& C \& 0.000 \& 0.000 \& 13.193 \& 0.000 \& 0.03

\hline \& \& A \& 0.000 \& 0.000 \& 1.026 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 1.527 \& 0.000 \& 0.01

\hline \multirow{3}{*}{L44} \& \multirow{3}{*}{17.7500-17.5000} \& C \& 0.000 \& 0.000 \& 0.926 \& 0.000 \& 0.00

\hline \& \& A \& 0.000 \& 0.000 \& 1.026 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 1.527 \& 0.000 \& 0.01

\hline \multirow{3}{*}{L45} \& \multirow{3}{*}{17.5000-17.2500} \& C \& 0.000 \& 0.000 \& 0.926 \& 0.000 \& 0.00

\hline \& \& A \& 0.000 \& 0.000 \& 1.026 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 1.527 \& 0.000 \& 0.01

\hline \multirow{3}{*}{L46} \& \multirow{3}{*}{17.2500-17.0800} \& C \& 0.000 \& 0.000 \& 0.926 \& 0.000 \& 0.00

\hline \& \& A \& 0.000 \& 0.000 \& 0.698 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 1.038 \& 0.000 \& 0.01

\hline \multirow{3}{*}{L47} \& \multirow{3}{*}{17.0800-16.8300} \& C \& 0.000 \& 0.000 \& 0.630 \& 0.000 \& 0.00

\hline \& \& A \& 0.000 \& 0.000 \& 1.026 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 1.527 \& 0.000 \& 0.01

\hline \multirow{3}{*}{L48} \& \multirow{3}{*}{16.8300-13.0000} \& C \& 0.000 \& 0.000 \& 0.926 \& 0.000 \& 0.00

\hline \& \& A \& 0.000 \& 0.000 \& 16.339 \& 0.000 \& 0.01

\hline \& \& B \& 0.000 \& 0.000 \& 24.007 \& 0.000 \& 0.20

\hline \multirow{3}{*}{L49} \& \multirow{3}{*}{13.0000-12.7500} \& C \& 0.000 \& 0.000 \& 14.807 \& 0.000 \& 0.03

\hline \& \& A \& 0.000 \& 0.000 \& 1.110 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 1.610 \& 0.000 \& 0.01

\hline \multirow{3}{*}{L50} \& \multirow{3}{*}{12.7500-11.9200} \& C \& 0.000 \& 0.000 \& 1.010 \& 0.000 \& 0.00

\hline \& \& A \& 0.000 \& 0.000 \& 3.685 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 5.346 \& 0.000 \& 0.04

\hline \multirow{3}{*}{L51} \& \multirow{3}{*}{11.9200-11.6700} \& C \& 0.000 \& 0.000 \& 3.353 \& 0.000 \& 0.01

\hline \& \& A \& 0.000 \& 0.000 \& 1.110 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 1.610 \& 0.000 \& 0.01

\hline \& \& C \& 0.000 \& 0.000 \& 1.010 \& 0.000 \& 0.00

\hline L52 \& 11.6700-6.6700 \& A \& 0.000 \& 0.000 \& 21.979 \& 0.000 \& 0.01

\hline
\end{tabular}

tnxTower Report - version 8.1.1.0

130 Ft Monopole Tower Structural Analysis

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Tower Sectio n \& Tower Elevation ft \& Face \& AR

$f t^{2}$ \& A_{F}

$f t^{2}$ \& $C_{A} A_{A}$ In Face f^{2} \& $$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
f t^{2} \\
\hline
\end{gathered}
$$ \& Weight

K

\hline \multirow[t]{4}{*}{L53} \& \multirow{4}{*}{6.6700-6.5000} \& B \& 0.000 \& 0.000 \& 29.578 \& 0.000 \& 0.26

\hline \& \& C \& 0.000 \& 0.000 \& 17.567 \& 0.000 \& 0.04

\hline \& \& A \& 0.000 \& 0.000 \& 0.751 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.933 \& 0.000 \& 0.01

\hline \multirow{3}{*}{L54} \& \multirow{3}{*}{6.5000-6.2500} \& C \& 0.000 \& 0.000 \& 0.524 \& 0.000 \& 0.00

\hline \& \& A \& 0.000 \& 0.000 \& 1.105 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 1.371 \& 0.000 \& 0.01

\hline \multirow{3}{*}{L55} \& \multirow{3}{*}{6.2500-3.7500} \& C \& 0.000 \& 0.000 \& 0.771 \& 0.000 \& 0.00

\hline \& \& A \& 0.000 \& 0.000 \& 11.045 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 13.714 \& 0.000 \& 0.13

\hline \multirow{3}{*}{L56} \& \multirow{3}{*}{3.7500-3.5000} \& C \& 0.000 \& 0.000 \& 7.708 \& 0.000 \& 0.02

\hline \& \& A \& 0.000 \& 0.000 \& 1.105 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 1.371 \& 0.000 \& 0.01

\hline \multirow{3}{*}{L57} \& \multirow{3}{*}{3.5000-3.0000} \& C \& 0.000 \& 0.000 \& 0.771 \& 0.000 \& 0.00

\hline \& \& A \& 0.000 \& 0.000 \& 2.209 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 2.743 \& 0.000 \& 0.03

\hline \multirow{3}{*}{L58} \& \multirow{3}{*}{3.0000-2.7500} \& C \& 0.000 \& 0.000 \& 1.542 \& 0.000 \& 0.00

\hline \& \& A \& 0.000 \& 0.000 \& 1.105 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 1.371 \& 0.000 \& 0.01

\hline \multirow{4}{*}{L59} \& \multirow{4}{*}{2.7500-0.0000} \& C \& 0.000 \& 0.000 \& 0.771 \& 0.000 \& 0.00

\hline \& \& A \& 0.000 \& 0.000 \& 12.150 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 15.085 \& 0.000 \& 0.14

\hline \& \& C \& 0.000 \& 0.000 \& 8.479 \& 0.000 \& 0.02

\hline
\end{tabular}

Feed Line/Linear Appurtenances Section Areas - With Ice

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tower Sectio \\
n
\end{tabular} \& Tower Elevation ft \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Ice \\
Thickness in
\end{tabular} \& \(A_{R}\)

$f t^{2}$ \& A_{F}

$f t^{2}$ \& \[
$$
\begin{gathered}
C_{A} A_{A} \\
\text { In Face } \\
{f t^{2}}^{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
{f t^{2}}^{2}
\end{gathered}
$$
\] \& Weight

K

\hline \multirow[t]{3}{*}{L1} \& 130.0000- \& A \& 1.946 \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& 125.0000 \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{L2} \& 125.0000- \& A \& 1.938 \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& 120.0000 \& B \& \& 0.000 \& 0.000 \& 2.550 \& 0.000 \& 0.05

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{L3} \& 120.0000- \& A \& 1.930 \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& 115.0000 \& B \& \& 0.000 \& 0.000 \& 12.732 \& 0.000 \& 0.23

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{L4} \& $$
115.0000-
$$ \& A \& 1.922 \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& $$
110.0000
$$ \& B \& \& 0.000 \& 0.000 \& 12.711 \& 0.000 \& 0.23

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{L5} \& 110.0000- \& A \& 1.913 \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& 105.0000 \& B \& \& 0.000 \& 0.000 \& 12.689 \& 0.000 \& 0.25

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{L6} \& 105.0000- \& A \& 1.904 \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& 100.0000 \& B \& \& 0.000 \& 0.000 \& 12.666 \& 0.000 \& 0.26

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{L7} \& 100.0000- \& A \& 1.894 \& 0.000 \& 0.000 \& 1.947 \& 0.000 \& 0.03

\hline \& 95.0000 \& B \& \& 0.000 \& 0.000 \& 12.642 \& 0.000 \& 0.25

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.01

\hline \multirow[t]{3}{*}{L8} \& 95.0000-90.0000 \& A \& 1.885 \& 0.000 \& 0.000 \& 6.293 \& 0.000 \& 0.09

\hline \& \& B \& \& 0.000 \& 0.000 \& 14.055 \& 0.000 \& 0.27

\hline \& \& C \& \& 0.000 \& 0.000 \& 1.437 \& 0.000 \& 0.06

\hline \multirow[t]{3}{*}{L9} \& 90.0000-89.7500 \& A \& 1.879 \& 0.000 \& 0.000 \& 0.482 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.870 \& 0.000 \& 0.02

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.239 \& 0.000 \& 0.01

\hline \multirow[t]{3}{*}{L10} \& 89.7500-84.7500 \& A \& 1.874 \& 0.000 \& 0.000 \& 11.224 \& 0.000 \& 0.15

\hline \& \& B \& \& 0.000 \& 0.000 \& 22.827 \& 0.000 \& 0.47

\hline \& \& C \& \& 0.000 \& 0.000 \& 6.382 \& 0.000 \& 0.12

\hline \multirow[t]{3}{*}{L11} \& 84.7500-84.5800 \& A \& 1.868 \& 0.000 \& 0.000 \& 0.695 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 1.249 \& 0.000 \& 0.03

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.530 \& 0.000 \& 0.01

\hline \multirow[t]{3}{*}{L12} \& 84.5800-84.3300 \& A \& 1.867 \& 0.000 \& 0.000 \& 1.022 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 1.837 \& 0.000 \& 0.04

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.780 \& 0.000 \& 0.01

\hline L13 \& 84.3300-83.4200 \& A \& 1.866 \& 0.000 \& 0.000 \& 3.718 \& 0.000 \& 0.05

\hline
\end{tabular}

tnxTower Report - version 8.1.1.0

130 Ft Monopole Tower Structural Analysis
Project Number 1963271, Order 556638, Revision 1

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Tower Sectio n \& Tower Elevation ft \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Ice \\
Thickness in
\end{tabular} \& \(A_{R}\)

t^{2} \& A_{F}

$f t^{2}$ \& $$
\begin{gathered}
C_{A} A_{A} \\
\text { In Face } \\
{f t^{2}}^{2}
\end{gathered}
$$ \& $C_{A} A_{A}$

Out Face
$f t^{2}$ \& Weight
K

\hline \multirow{4}{*}{L14} \& \multirow{5}{*}{83.4200-83.1700} \& B \& \multirow{4}{*}{1.865} \& 0.000 \& 0.000 \& 6.684 \& 0.000 \& 0.14

\hline \& \& C \& \& 0.000 \& 0.000 \& 2.839 \& 0.000 \& 0.04

\hline \& \& A \& \& 0.000 \& 0.000 \& 1.021 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 1.836 \& 0.000 \& 0.04

\hline \multirow{3}{*}{L15} \& \& C \& \& 0.000 \& 0.000 \& 0.780 \& 0.000 \& 0.01

\hline \& \multirow[t]{2}{*}{83.1700-83.0000} \& A \& 1.864 \& 0.000 \& 0.000 \& 0.694 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 1.248 \& 0.000 \& 0.03

\hline \multirow{3}{*}{L16} \& \multirow{3}{*}{83.0000-82.7500} \& C \& \& 0.000 \& 0.000 \& 0.530 \& 0.000 \& 0.01

\hline \& \& A \& 1.864 \& 0.000 \& 0.000 \& 1.021 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 1.836 \& 0.000 \& 0.04

\hline \multirow{3}{*}{L17} \& \multirow{3}{*}{82.7500-77.7500} \& C \& \& 0.000 \& 0.000 \& 0.780 \& 0.000 \& 0.01

\hline \& \& A \& 1.858 \& 0.000 \& 0.000 \& 16.816 \& 0.000 \& 0.21

\hline \& \& B \& \& 0.000 \& 0.000 \& 33.092 \& 0.000 \& 0.70

\hline \multirow{3}{*}{L18} \& \multirow{3}{*}{77.7500-70.0000} \& C \& \& 0.000 \& 0.000 \& 11.993 \& 0.000 \& 0.18

\hline \& \& A \& 1.843 \& 0.000 \& 0.000 \& 24.136 \& 0.000 \& 0.30

\hline \& \& B \& \& 0.000 \& 0.000 \& 52.872 \& 0.000 \& 1.11

\hline \multirow{3}{*}{L19} \& \multirow{3}{*}{70.0000-69.0000} \& C \& \& 0.000 \& 0.000 \& 16.691 \& 0.000 \& 0.25

\hline \& \& A \& 1.831 \& 0.000 \& 0.000 \& 3.114 \& 0.000 \& 0.04

\hline \& \& B \& \& 0.000 \& 0.000 \& 6.871 \& 0.000 \& 0.14

\hline \multirow{3}{*}{L20} \& \multirow{3}{*}{69.0000-67.0800} \& C \& \& 0.000 \& 0.000 \& 2.154 \& 0.000 \& 0.03

\hline \& \& A \& 1.828 \& 0.000 \& 0.000 \& 7.168 \& 0.000 \& 0.09

\hline \& \& B \& \& 0.000 \& 0.000 \& 14.362 \& 0.000 \& 0.29

\hline \multirow{3}{*}{L21} \& \multirow{3}{*}{67.0800-66.8300} \& C \& \& 0.000 \& 0.000 \& 5.331 \& 0.000 \& 0.08

\hline \& \& A \& 1.825 \& 0.000 \& 0.000 \& 1.034 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 1.970 \& 0.000 \& 0.04

\hline \multirow{3}{*}{L22} \& \multirow{3}{*}{66.8300-64.0800} \& C \& \& 0.000 \& 0.000 \& 0.795 \& 0.000 \& 0.01

\hline \& \& A \& 1.820 \& 0.000 \& 0.000 \& 11.464 \& 0.000 \& 0.14

\hline \& \& B \& \& 0.000 \& 0.000 \& 20.313 \& 0.000 \& 0.41

\hline \multirow{3}{*}{L23} \& \multirow{3}{*}{64.0800-63.8300} \& C \& \& 0.000 \& 0.000 \& 8.837 \& 0.000 \& 0.13

\hline \& \& A \& 1.816 \& 0.000 \& 0.000 \& 1.013 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 1.987 \& 0.000 \& 0.04

\hline \multirow{3}{*}{L24} \& \multirow{3}{*}{63.8300-62.5000} \& C \& \& 0.000 \& 0.000 \& 0.774 \& 0.000 \& 0.01

\hline \& \& A \& 1.814 \& 0.000 \& 0.000 \& 5.385 \& 0.000 \& 0.07

\hline \& \& B \& \& 0.000 \& 0.000 \& 10.568 \& 0.000 \& 0.21

\hline \multirow{3}{*}{L25} \& \multirow{3}{*}{62.5000-62.2500} \& C \& \& 0.000 \& 0.000 \& 4.117 \& 0.000 \& 0.06

\hline \& \& A \& 1.812 \& 0.000 \& 0.000 \& 1.012 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 1.986 \& 0.000 \& 0.04

\hline \multirow{3}{*}{L26} \& \multirow{3}{*}{62.2500-57.2500} \& C \& \& 0.000 \& 0.000 \& 0.774 \& 0.000 \& 0.01

\hline \& \& A \& 1.804 \& 0.000 \& 0.000 \& 20.208 \& 0.000 \& 0.25

\hline \& \& B \& \& 0.000 \& 0.000 \& 39.650 \& 0.000 \& 0.77

\hline \multirow{3}{*}{L27} \& \multirow{3}{*}{57.2500-53.5000} \& C \& \& 0.000 \& 0.000 \& 15.453 \& 0.000 \& 0.22

\hline \& \& A \& 1.790 \& 0.000 \& 0.000 \& 16.530 \& 0.000 \& 0.19

\hline \& \& B \& \& 0.000 \& 0.000 \& 30.054 \& 0.000 \& 0.58

\hline \multirow{3}{*}{L28} \& \multirow{3}{*}{53.5000-53.2500} \& C \& \& 0.000 \& 0.000 \& 12.977 \& 0.000 \& 0.17

\hline \& \& A \& 1.784 \& 0.000 \& 0.000 \& 1.171 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 2.037 \& 0.000 \& 0.04

\hline \multirow{3}{*}{L29} \& \multirow{3}{*}{53.2500-52.5800} \& C \& \& 0.000 \& 0.000 \& 0.934 \& 0.000 \& 0.01

\hline \& \& A \& 1.782 \& 0.000 \& 0.000 \& 3.137 \& 0.000 \& 0.04

\hline \& \& B \& \& 0.000 \& 0.000 \& 5.458 \& 0.000 \& 0.10

\hline \multirow{3}{*}{L30} \& \multirow{3}{*}{52.5800-52.3300} \& C \& \& 0.000 \& 0.000 \& 2.503 \& 0.000 \& 0.03

\hline \& \& A \& 1.781 \& 0.000 \& 0.000 \& 1.170 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 2.036 \& 0.000 \& 0.04

\hline \multirow{3}{*}{L31} \& \multirow{3}{*}{52.3300-47.3300} \& C \& \& 0.000 \& 0.000 \& 0.934 \& 0.000 \& 0.01

\hline \& \& A \& 1.771 \& 0.000 \& 0.000 \& 23.362 \& 0.000 \& 0.26

\hline \& \& B \& \& 0.000 \& 0.000 \& 40.649 \& 0.000 \& 0.77

\hline \multirow{3}{*}{L32} \& \multirow{3}{*}{47.3300-44.5800} \& C \& \& 0.000 \& 0.000 \& 18.648 \& 0.000 \& 0.24

\hline \& \& A \& 1.757 \& 0.000 \& 0.000 \& 14.088 \& 0.000 \& 0.16

\hline \& \& B \& \& 0.000 \& 0.000 \& 23.569 \& 0.000 \& 0.43

\hline \multirow{3}{*}{L33} \& \multirow{3}{*}{44.5800-44.3300} \& C \& \& 0.000 \& 0.000 \& 11.505 \& 0.000 \& 0.14

\hline \& \& A \& 1.751 \& 0.000 \& 0.000 \& 1.418 \& 0.000 \& 0.02

\hline \& \& B \& \& 0.000 \& 0.000 \& 2.213 \& 0.000 \& 0.04

\hline \multirow{3}{*}{L34} \& \multirow{3}{*}{44.3300-41.9200} \& C \& \& 0.000 \& 0.000 \& 1.184 \& 0.000 \& 0.01

\hline \& \& A \& 1.746 \& 0.000 \& 0.000 \& 12.306 \& 0.000 \& 0.14

\hline \& \& B \& \& 0.000 \& 0.000 \& 21.198 \& 0.000 \& 0.38

\hline \multirow{4}{*}{L35} \& \multirow{3}{*}{41.9200-41.6700} \& C \& \& 0.000 \& 0.000 \& 10.049 \& 0.000 \& 0.12

\hline \& \& A \& 1.741 \& 0.000 \& 0.000 \& 1.162 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 2.083 \& 0.000 \& 0.04

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.928 \& 0.000 \& 0.01

\hline L36 \& 41.6700-34.0800 \& A \& 1.723 \& 0.000 \& 0.000 \& 35.154 \& 0.000 \& 0.38

\hline
\end{tabular}

tnxTower Report - version 8.1.1.0

130 Ft Monopole Tower Structural Analysis
Project Number 1963271, Order 556638, Revision 1

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tower Sectio \\
\(n\)
\end{tabular} \& Tower Elevation ft \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Ice Thickness in \& \(A_{R}\)

$f t^{2}$ \& A_{F}

$f t^{2}$ \& $C_{A} A_{A}$ In Face $f t^{2}$ \& $$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
{f t^{2}}^{2}
\end{gathered}
$$ \& Weight

K

\hline \multirow{4}{*}{L37} \& \multirow{4}{*}{34.0800-34.0000} \& B \& \multirow{4}{*}{1.705} \& 0.000 \& 0.000 \& 63.037 \& 0.000 \& 1.16

\hline \& \& C \& \& 0.000 \& 0.000 \& 28.088 \& 0.000 \& 0.35

\hline \& \& A \& \& 0.000 \& 0.000 \& 0.371 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.664 \& 0.000 \& 0.01

\hline \multirow{3}{*}{L38} \& \multirow{3}{*}{34.0000-29.0000} \& C \& \multirow{3}{*}{1.692} \& 0.000 \& 0.000 \& 0.296 \& 0.000 \& 0.00

\hline \& \& A \& \& 0.000 \& 0.000 \& 23.465 \& 0.000 \& 0.25

\hline \& \& B \& \& 0.000 \& 0.000 \& 41.283 \& 0.000 \& 0.75

\hline \multirow{3}{*}{L39} \& \multirow{3}{*}{29.0000-26.9200} \& C \& \multirow{3}{*}{1.672} \& 0.000 \& 0.000 \& 18.850 \& 0.000 \& 0.23

\hline \& \& A \& \& 0.000 \& 0.000 \& 11.720 \& 0.000 \& 0.13

\hline \& \& B \& \& 0.000 \& 0.000 \& 17.109 \& 0.000 \& 0.31

\hline \multirow{3}{*}{L40} \& \multirow{3}{*}{26.9200-26.6700} \& C \& \multirow{3}{*}{1.665} \& 0.000 \& 0.000 \& 9.810 \& 0.000 \& 0.12

\hline \& \& A \& \& 0.000 \& 0.000 \& 1.407 \& 0.000 \& 0.02

\hline \& \& B \& \& 0.000 \& 0.000 \& 2.054 \& 0.000 \& 0.04

\hline \multirow{3}{*}{L41} \& \multirow{3}{*}{26.6700-21.6700} \& C \& \multirow{3}{*}{1.648} \& 0.000 \& 0.000 \& 1.178 \& 0.000 \& 0.01

\hline \& \& A \& \& 0.000 \& 0.000 \& 28.056 \& 0.000 \& 0.30

\hline \& \& B \& \& 0.000 \& 0.000 \& 40.940 \& 0.000 \& 0.74

\hline \multirow{3}{*}{L42} \& \multirow{3}{*}{21.6700-18.0000} \& C \& \multirow{3}{*}{1.616} \& 0.000 \& 0.000 \& 23.497 \& 0.000 \& 0.28

\hline \& \& A \& \& 0.000 \& 0.000 \& 20.613 \& 0.000 \& 0.22

\hline \& \& B \& \& 0.000 \& 0.000 \& 33.192 \& 0.000 \& 0.57

\hline \multirow{3}{*}{L43} \& \multirow{3}{*}{18.0000-17.7500} \& C \& \multirow{3}{*}{1.599} \& 0.000 \& 0.000 \& 17.296 \& 0.000 \& 0.20

\hline \& \& A \& \& 0.000 \& 0.000 \& 1.433 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 2.330 \& 0.000 \& 0.04

\hline \multirow{3}{*}{L44} \& \multirow{3}{*}{17.7500-17.5000} \& C \& \multirow{3}{*}{1.597} \& 0.000 \& 0.000 \& 1.208 \& 0.000 \& 0.01

\hline \& \& A \& \& 0.000 \& 0.000 \& 1.433 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 2.329 \& 0.000 \& 0.04

\hline \multirow{3}{*}{L45} \& \multirow{3}{*}{17.5000-17.2500} \& C \& \multirow{3}{*}{1.594} \& 0.000 \& 0.000 \& 1.208 \& 0.000 \& 0.01

\hline \& \& A \& \& 0.000 \& 0.000 \& 1.432 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 2.328 \& 0.000 \& 0.04

\hline \multirow{3}{*}{L46} \& \multirow{3}{*}{17.2500-17.0800} \& C \& \multirow{3}{*}{1.592} \& 0.000 \& 0.000 \& 1.208 \& 0.000 \& 0.01

\hline \& \& A \& \& 0.000 \& 0.000 \& 0.974 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 1.583 \& 0.000 \& 0.03

\hline \multirow{3}{*}{L47} \& \multirow{3}{*}{17.0800-16.8300} \& C \& \multirow{3}{*}{1.590} \& 0.000 \& 0.000 \& 0.821 \& 0.000 \& 0.01

\hline \& \& A \& \& 0.000 \& 0.000 \& 1.431 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 2.326 \& 0.000 \& 0.04

\hline \multirow{3}{*}{L48} \& \multirow{3}{*}{16.8300-13.0000} \& C \& \multirow{3}{*}{1.570} \& 0.000 \& 0.000 \& 1.207 \& 0.000 \& 0.01

\hline \& \& A \& \& 0.000 \& 0.000 \& 22.214 \& 0.000 \& 0.23

\hline \& \& B \& \& 0.000 \& 0.000 \& 35.874 \& 0.000 \& 0.60

\hline \multirow{3}{*}{L49} \& \multirow{3}{*}{13.0000-12.7500} \& C \& \multirow{3}{*}{1.547} \& 0.000 \& 0.000 \& 18.796 \& 0.000 \& 0.21

\hline \& \& A \& \& 0.000 \& 0.000 \& 1.490 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 2.378 \& 0.000 \& 0.04

\hline \multirow{3}{*}{L50} \& \multirow{3}{*}{12.7500-11.9200} \& C \& \multirow{3}{*}{1.541} \& 0.000 \& 0.000 \& 1.268 \& 0.000 \& 0.01

\hline \& \& A \& \& 0.000 \& 0.000 \& 4.942 \& 0.000 \& 0.05

\hline \& \& B \& \& 0.000 \& 0.000 \& 7.885 \& 0.000 \& 0.13

\hline \multirow{3}{*}{L51} \& \multirow{3}{*}{11.9200-11.6700} \& C \& \multirow{3}{*}{1.534} \& 0.000 \& 0.000 \& 4.208 \& 0.000 \& 0.05

\hline \& \& A \& \& 0.000 \& 0.000 \& 1.487 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 2.372 \& 0.000 \& 0.04

\hline \multirow{3}{*}{L52} \& \multirow{3}{*}{11.6700-6.6700} \& C \& \multirow{3}{*}{1.495} \& 0.000 \& 0.000 \& 1.266 \& 0.000 \& 0.01

\hline \& \& A \& \& 0.000 \& 0.000 \& 29.344 \& 0.000 \& 0.29

\hline \& \& B \& \& 0.000 \& 0.000 \& 44.089 \& 0.000 \& 0.73

\hline \multirow{3}{*}{L53} \& \multirow{3}{*}{6.6700-6.5000} \& C \& \multirow{3}{*}{1.447} \& 0.000 \& 0.000 \& 22.149 \& 0.000 \& 0.24

\hline \& \& A \& \& 0.000 \& 0.000 \& 0.996 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 1.402 \& 0.000 \& 0.02

\hline \multirow{3}{*}{L54} \& \multirow{3}{*}{6.5000-6.2500} \& C \& \multirow{3}{*}{1.442} \& 0.000 \& 0.000 \& 0.664 \& 0.000 \& 0.01

\hline \& \& A \& \& 0.000 \& 0.000 \& 1.463 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 2.060 \& 0.000 \& 0.03

\hline \multirow{3}{*}{L55} \& \multirow{3}{*}{6.2500-3.7500} \& C \& \multirow{3}{*}{1.408} \& 0.000 \& 0.000 \& 0.976 \& 0.000 \& 0.01

\hline \& \& A \& \& 0.000 \& 0.000 \& 14.557 \& 0.000 \& 0.13

\hline \& \& B \& \& 0.000 \& 0.000 \& 20.474 \& 0.000 \& 0.34

\hline \multirow{3}{*}{L56} \& \multirow{3}{*}{3.7500-3.5000} \& C \& \multirow{3}{*}{1.363} \& 0.000 \& 0.000 \& 9.712 \& 0.000 \& 0.10

\hline \& \& A \& \& 0.000 \& 0.000 \& 1.446 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 2.031 \& 0.000 \& 0.03

\hline \multirow{3}{*}{L57} \& \multirow{3}{*}{3.5000-3.0000} \& C \& \multirow{3}{*}{1.348} \& 0.000 \& 0.000 \& 0.966 \& 0.000 \& 0.01

\hline \& \& A \& \& 0.000 \& 0.000 \& 2.886 \& 0.000 \& 0.03

\hline \& \& B \& \& 0.000 \& 0.000 \& 4.052 \& 0.000 \& 0.06

\hline \multirow{3}{*}{L58} \& \multirow{3}{*}{3.0000-2.7500} \& C \& \multirow{3}{*}{1.332} \& 0.000 \& 0.000 \& 1.928 \& 0.000 \& 0.02

\hline \& \& A \& \& 0.000 \& 0.000 \& 1.440 \& 0.000 \& 0.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 2.020 \& 0.000 \& 0.03

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.962 \& 0.000 \& 0.01

\hline L59 \& 2.7500-0.0000 \& A \& 1.237 \& 0.000 \& 0.000 \& 15.611 \& 0.000 \& 0.13

\hline
\end{tabular}

tnxTower Report - version 8.1.1.0

130 Ft Monopole Tower Structural Analysis

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Tower Sectio n \& Tower Elevation ft \& $$
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
$$ \& Ice
Thickness
in \& AR

$f t^{2}$ \& A_{F}

$f t^{2}$ \& $C_{A} A_{A}$ In Face ft^{2} \& $$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
{f t^{2}}^{2}
\end{gathered}
$$ \& Weight

K

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \& B \& \& 0.000 \& 0.000 \& 21.840 \& 0.000 \& 0.34

\hline \& \& C \& \& 0.000 \& 0.000 \& 10.449 \& 0.000 \& 0.10

\hline
\end{tabular}

Feed Line Center of Pressure

Section	Elevation ft	$C P_{X}$ in	$C P_{z}$ in	$\begin{gathered} C P_{x} \\ \text { Ice } \\ \text { in } \end{gathered}$	$\begin{gathered} C P_{z} \\ \text { Ice } \\ \text { in } \end{gathered}$
L1	$\begin{aligned} & 130.0000- \\ & 125.0000 \end{aligned}$	0.0000	0.0000	0.0000	0.0000
L2	$\begin{aligned} & 125.0000- \\ & 120.0000 \end{aligned}$	1.1072	-1.0467	1.1637	-1.0768
L3	$\begin{aligned} & 120.0000- \\ & 115.0000 \end{aligned}$	3.0857	-2.9183	2.6045	-2.4110
L4	$\begin{aligned} & 115.0000- \\ & 110.0000 \end{aligned}$	3.1879	-3.0164	2.7443	-2.5418
L5	$\begin{aligned} & 110.0000- \\ & 105.0000 \end{aligned}$	3.2842	-3.1089	2.8789	-2.6678
L6	$\begin{aligned} & 105.0000- \\ & 100.0000 \end{aligned}$	3.3712	-3.1923	3.0067	-2.7875
L7	100.0000-95.0000	2.8025	-3.4276	2.3409	-2.9652
L8	95.0000-90.0000	1.6763	-3.0849	1.3459	-2.8494
L9	90.0000-89.7500	1.2241	-2.2540	1.1232	-2.3791
L10	89.7500-84.7500	1.1866	-2.8061	1.0914	-2.8275
L11	84.7500-84.5800	0.8513	-2.4236	0.8302	-2.5157
L12	84.5800-84.3300	0.8531	-2.4286	0.8319	-2.5209
L13	84.3300-83.4200	0.8570	-2.4398	0.8361	-2.5334
L14	83.4200-83.1700	0.8617	-2.4529	0.8407	-2.5474
L15	83.1700-83.0000	0.8632	-2.4570	0.8423	-2.5519
L16	83.0000-82.7500	0.8641	-2.4594	0.8434	-2.5553
L17	82.7500-77.7500	1.0413	-2.9629	0.9659	-2.9256
L18	77.7500-70.0000	1.3031	-3.3353	1.3269	-3.2817
L19	70.0000-69.0000	1.3392	-3.3924	1.3786	-3.3486
L20	69.0000-67.0800	1.1928	-3.0208	1.2597	-3.0601
L21	67.0800-66.8300	1.1126	-2.8171	1.1965	-2.9064
L22	66.8300-64.0800	0.9296	-3.5664	1.1007	-3.4596
L23	64.0800-63.8300	1.1126	-2.8159	1.2678	-2.8401
L24	63.8300-62.5000	1.1190	-2.8316	1.2749	-2.8561
L25	62.5000-62.2500	1.1256	-2.8479	1.2824	-2.8726
L26	62.2500-57.2500	1.1465	-2.8998	1.3060	-2.9254
L27	57.2500-53.5000	1.0390	-3.0931	1.2212	-3.1418
L28	53.5000-53.2500	0.9662	-3.1146	1.1645	-3.2042
L29	53.2500-52.5800	0.9690	-3.1233	1.1679	-3.2139
L30	52.5800-52.3300	0.9718	-3.1324	1.1715	-3.2238
L31	52.3300-47.3300	0.9873	-3.1823	1.1912	-3.2790
L32	47.3300-44.5800	0.9443	-3.0437	1.1496	-3.1661
L33	44.5800-44.3300	0.8307	-3.0949	1.0328	-3.2431
L34	44.3300-41.9200	1.0534	-2.6585	1.2225	-2.9659
L35	41.9200-41.6700	1.1324	-2.8576	1.3055	-3.1671
L36	41.6700-34.0800	1.1571	-2.9187	1.3353	-3.2395
L37	34.0800-34.0000	1.1655	-2.9395	1.3459	-3.2648
L38	34.0000-29.0000	1.0740	-2.9928	1.2855	-3.3170
L39	29.0000-26.9200	0.0532	-3.1829	0.5239	-3.4557
L40	26.9200-26.6700	0.0531	-3.2030	0.5263	-3.4782
L41	26.6700-21.6700	0.0529	-3.2466	0.5311	-3.5273
L42	21.6700-18.0000	0.9019	-2.7631	1.2097	-3.2407
L43	18.0000-17.7500	1.1229	-2.7268	1.3883	-3.2422
L44	17.7500-17.5000	1.1243	-2.7302	1.3899	-3.2461
L45	17.5000-17.2500	1.1257	-2.7335	1.3915	-3.2500
L46	17.2500-17.0800	1.1269	-2.7363	1.3929	-3.2532
L47	17.0800-16.8300	1.1279	-2.7387	1.3940	-3.2560
L48	16.8300-13.0000	1.1080	-2.6899	1.3920	-3.2524
L49	13.0000-12.7500	1.0872	-2.6390	1.3764	-3.2175
L50	12.7500-11.9200	1.0901	-2.6457	1.3794	-3.2249
L51	11.9200-11.6700	1.0926	-2.6516	1.3819	-3.2313

tnxTower Report - version 8.1.1.0

Section	Elevation	$C P_{x}$	$C P_{z}$	$C P_{x}$ Ice in	$C P_{z}$ Ice in
Lt	in	in	-4.3385		
L53	$11.6700-6.6700$	1.5228	-4.0427	1.7287	-4.3 .0345
L54	$6.6700-6.5000$	1.9116	-5.4011	-5.3963	
L55	$6.5000-6.2500$	1.9139	-5.4075	2.0365	-5.4023
L56	$6.2500-3.7500$	1.9263	-5.4417	2.0467	-5.4347
L57	$3.7500-3.5000$	1.9390	-5.4767	2.0561	-5.4668
L58	$3.5000-3.0000$	1.9423	-5.4859	2.0582	-5.4749
L59	$3.0000-2.7500$	1.9456	-5.4952	2.0602	-5.4830

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No Ice	$\begin{aligned} & K_{a} \\ & I c e \end{aligned}$
L2	3	2" Flexible Conduit	$\begin{array}{r} \hline 120.00- \\ 121.00 \end{array}$	1.0000	1.0000
L2	4	LDF6-50A(1-1/4)	$\begin{array}{r} 120.00- \\ 121.00 \end{array}$	1.0000	1.0000
L3	3	2" Flexible Conduit	$\begin{array}{r} 115.00- \\ 120.00 \end{array}$	1.0000	1.0000
L3	4	LDF6-50A(1-1/4)	$\begin{array}{r} 115.00- \\ 120.00 \end{array}$	1.0000	1.0000
L4	3	2" Flexible Conduit	$\begin{array}{r} 110.00- \\ 115.00 \end{array}$	1.0000	1.0000
L4	4	LDF6-50A(1-1/4)	$\begin{array}{r} 110.00- \\ 115.00 \end{array}$	1.0000	1.0000
L5	3	2" Flexible Conduit	$\begin{array}{r} 105.00- \\ 110.00 \end{array}$	1.0000	1.0000
L5	4	LDF6-50A(1-1/4)	$\begin{array}{r} 105.00- \\ 110.00 \end{array}$	1.0000	1.0000
L6	3	2" Flexible Conduit	$\begin{array}{r} 100.00- \\ 105.00 \end{array}$	1.0000	1.0000
L6	4	LDF6-50A(1-1/4)	$\begin{array}{r} 100.00- \\ 105.00 \end{array}$	1.0000	1.0000
L7	3	2" Flexible Conduit	$\begin{aligned} & 95.00- \\ & 100.00 \end{aligned}$	1.0000	1.0000
L7	4	LDF6-50A(1-1/4)	$\begin{aligned} & 95.00- \\ & 100.00 \end{aligned}$	1.0000	1.0000
L7	10	2" Flexible Conduit	$\begin{array}{r} 95.00- \\ 97.00 \end{array}$	1.0000	1.0000
L8	3	2" Flexible Conduit	$\begin{array}{r} 90.00- \\ 95.00 \end{array}$	1.0000	1.0000
L8	4	LDF6-50A(1-1/4)	$\begin{array}{r} 90.00- \\ 95.00 \end{array}$	1.0000	1.0000
L8	10	2" Flexible Conduit	$\begin{array}{r} 90.00- \\ 95.00 \end{array}$	1.0000	1.0000
L8	47	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 90.00- \\ 91.50 \end{array}$	1.0000	1.0000
L8	48	(Area) CCI-65FP-045100	$\begin{array}{r} 90.00- \\ 91.50 \end{array}$	1.0000	1.0000
L8	49	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 90.00- \\ 91.50 \end{array}$	1.0000	1.0000
L9	3	2" Flexible Conduit	$\begin{array}{r} 89.75- \\ 90.00 \end{array}$	1.0000	1.0000
L9	4	LDF6-50A(1-1/4)	$\begin{array}{r} 89.75- \\ 90.00 \end{array}$	1.0000	1.0000
L9	10	2" Flexible Conduit	$\begin{array}{r} 89.75- \\ 90.00 \end{array}$	1.0000	1.0000
L9	47	(Area) CCI-65FP-045100	$\begin{array}{r} 89.75- \\ 90.00 \end{array}$	1.0000	1.0000

tnxTower Report - version 8.1.1.0

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No lce	$\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$
L9	48	(Area) CCI-65FP-045100	$\begin{array}{r} 89.75- \\ 90.00 \end{array}$	1.0000	1.0000
L9	49	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 89.75- \\ 90.00 \end{array}$	1.0000	1.0000
L10	3	2" Flexible Conduit	$\begin{array}{r} 84.75- \\ 89.75 \end{array}$	1.0000	1.0000
L10	4	LDF6-50A(1-1/4)	84.75 89.75	1.0000	1.0000
L10	10	2" Flexible Conduit	$\begin{array}{r} 84.75- \\ 89.75 \end{array}$	1.0000	1.0000
L10	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 84.75- \\ 87.00 \end{array}$	1.0000	1.0000
L10	25	PL 0.75x4	$\begin{array}{r} 84.75- \\ 85.83 \end{array}$	1.0000	1.0000
L10	26	PL 0.75x4	$\begin{array}{r} 84.75- \\ 85.83 \end{array}$	1.0000	1.0000
L10	27	PL 0.75x4	$\begin{array}{r} 84.75- \\ 85.83 \end{array}$	1.0000	1.0000
L10	47	(Area) CCl -65FP-045100	$\begin{array}{r} 84.75- \\ 89.75 \end{array}$	1.0000	1.0000
L10	48	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 84.75- \\ 89.75 \end{array}$	1.0000	1.0000
L10	49	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 84.75- \\ 89.75 \end{array}$	1.0000	1.0000
L10	62	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 84.75- \\ 85.17 \end{array}$	1.0000	1.0000
L10	63	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 84.75- \\ 85.17 \end{array}$	1.0000	1.0000
L10	64	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 84.75- \\ 85.17 \end{array}$	1.0000	1.0000
L11	3	2" Flexible Conduit	$\begin{array}{r} 84.58- \\ 84.75 \end{array}$	1.0000	1.0000
L11	4	LDF6-50A(1-1/4)	$\begin{array}{r} 84.58- \\ 84.75 \end{array}$	1.0000	1.0000
L11	10	2" Flexible Conduit	$\begin{array}{r} 84.58- \\ 84.75 \end{array}$	1.0000	1.0000
L11	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 84.58- \\ 84.75 \end{array}$	1.0000	1.0000
L11	25	PL 0.75x4	$\begin{array}{r} 84.58- \\ 84.75 \end{array}$	1.0000	1.0000
L11	26	PL 0.75x4	$\begin{array}{r} 84.58- \\ 84.75 \end{array}$	1.0000	1.0000
L11	27	PL 0.75x4	$\begin{array}{r} 84.58- \\ 84.75 \end{array}$	1.0000	1.0000
L11	47	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 84.58- \\ 84.75 \end{array}$	1.0000	1.0000
L11	48	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 84.58- \\ 84.75 \end{array}$	1.0000	1.0000
L11	49	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 84.58- \\ 84.75 \end{array}$	1.0000	1.0000
L11	62	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 84.58- \\ 84.75 \end{array}$	1.0000	1.0000
L11	63	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 84.58- \\ 84.75 \end{array}$	1.0000	1.0000
L11	64	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 84.58- \\ 84.75 \end{array}$	1.0000	1.0000
L12	3	2" Flexible Conduit	$\begin{array}{r} 84.33- \\ 84.58 \end{array}$	1.0000	1.0000
L12	4	LDF6-50A(1-1/4)	$\begin{array}{r} 84.33- \\ 84.58 \end{array}$	1.0000	1.0000
L12	10	2" Flexible Conduit	$\begin{array}{r} 84.33- \\ 84.58 \end{array}$	1.0000	1.0000
L12	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 84.33- \\ 84.58 \end{array}$	1.0000	1.0000
L12	25	PL 0.75x4	$\begin{array}{r} 84.33- \\ 84.58 \end{array}$	1.0000	1.0000
L12	26	PL 0.75x4	$\begin{array}{r} 84.33- \\ 84.58 \end{array}$	1.0000	1.0000
L12	27	PL 0.75x4	$84.33-$	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No lce	$\begin{aligned} & K_{a} \\ & I c e \end{aligned}$
L12	47	(Area) CCl-65FP-045100	84.58	1.0000	1.0000
			84.33 -		
L12	48	(Area) CCl-65FP-045100	84.58 $84.33-$	1.0000	1.0000
		(H)	84.58		
L12	49	(Area) CCl-65FP-045100	84.33 -	1.0000	1.0000
			84.58		
L12	62	(Area) CCl -65FP-045125	$84.33-$ 84.58	1.0000	1.0000
			84.58 $84.33-$		
L12	63	(Area) $\mathrm{CCl}-65 \mathrm{FP}-045125$	84.58	1.0000	1.0000
L12	64	(Area) $\mathrm{CCl}-65 \mathrm{FP}-045125$	84.33 -	1.0000	1.0000
			84.58		
L13	3	2" Flexible Conduit	83.42 -	1.0000	1.0000
			84.33 $83.42-$		
L13	4	LDF6-50A(1-1/4)	$83.42-$ 84.33	1.0000	1.0000
L13	10	2" Flexible Conduit	83.42 -	1.0000	1.0000
			84.33		
L13	16	HCS 6X12 4AWG(1-5/8)	83.42 -	1.0000	1.0000
			84.33		
L13	25	PL 0.75x4	$83.42-$ 84.33	1.0000	1.0000
L13	26	PL 0.75x4	83.42 -	1.0000	1.0000
			84.33		
L13	27	PL 0.75x4	83.42 -	1.0000	1.0000
			84.33		
L13	47	(Area) CCl-65FP-045100	83.42 -	1.0000	1.0000
		(H)	84.33		
L13	48	(Area) CCl -65FP-045100	83.42 -	1.0000	1.0000
			84.33		
L13	49	(Area) CCl-65FP-045100	83.42 -	1.0000	1.0000
		(H)	84.33 $83.42-$		
L13	62	(Area) CCI-65FP-045125	83.42 -	1.0000	1.0000
L13	63	(Area) CCl -65FP-045125	83.42 -	1.0000	1.0000
			84.33		
L13	64	(Area) CCI-65FP-045125	83.42 -	1.0000	1.0000
	3		84.33		
L14		2" Flexible Conduit	83.17 -	1.0000	1.0000
L14	4	LDF6-50A(1-1/4)	83.42 $83.17-$		1.0000
			83.42	1.0000	
L14	10	2" Flexible Conduit	83.17 -	1.0000	1.0000
			83.42		
L14	16	HCS 6X12 4AWG(1-5/8)	83.17 -	1.0000	1.0000
			83.42		
L14	25	PL 0.75x4	83.17 -	1.0000	1.0000
	26		83.42		
L14		PL 0.75x4	83.17 -	1.0000	1.0000
			83.42		
L14	27	PL 0.75x4	83.17 -	1.0000	1.0000
	47		83.42		
L14		(Area) CCI-65FP-045100	83.17 -	1.0000	1.0000
		(H)	83.42		
L14	48	(Area) CCl-65FP-045100	83.17 -	1.0000	1.0000
			83.42		
L14	49	(Area) CCl-65FP-045100	83.17 -	1.0000	1.0000
		(H)	83.42		
L14	62	(Area) CCI-65FP-045125	83.17 -	1.0000	1.0000
		(H)	83.42		
L14	63	(Area) CCl-65FP-045125	83.17 -	1.0000	1.0000
L14			83.42		
	64	(Area) CCl -65FP-045125	83.17 -	1.0000	1.0000
L15			83.42		
	3	2" Flexible Conduit	$83.00-17$	1.0000	1.0000
L15	4	LDF6-50A(1-1/4)	83.17	1.0000	1.0000
			83.17		

tnxTower Report - version 8.1.1.0

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No lce	$\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$
L15	10	2" Flexible Conduit	$\begin{array}{r} 83.00- \\ 83.17 \end{array}$	1.0000	1.0000
L15	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 83.00- \\ 83.17 \end{array}$	1.0000	1.0000
L15	25	PL 0.75×4	$\begin{array}{r} 83.00- \\ 83.17 \end{array}$	1.0000	1.0000
L15	26	PL 0.75x4	$\begin{array}{r} 83.00- \\ 83.17 \end{array}$	1.0000	1.0000
L15	27	PL 0.75x4	$\begin{array}{r} 83.00- \\ 83.17 \end{array}$	1.0000	1.0000
L15	47	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 83.00- \\ 83.17 \end{array}$	1.0000	1.0000
L15	48	(Area) CCl-65FP-045100	$\begin{array}{r} 83.00- \\ 83.17 \end{array}$	1.0000	1.0000
L15	49	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 83.00- \\ 83.17 \end{array}$	1.0000	1.0000
L15	62	(Area) CCl-65FP-045125	$\begin{array}{r} 83.00- \\ 83.17 \end{array}$	1.0000	1.0000
L15	63	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 83.00- \\ 83.17 \end{array}$	1.0000	1.0000
L15	64	(Area) CCl-65FP-045125	$\begin{array}{r} 83.00- \\ 83.17 \end{array}$	1.0000	1.0000
L16	3	2" Flexible Conduit	$\begin{array}{r} 82.75- \\ 83.00 \end{array}$	1.0000	1.0000
L16	4	LDF6-50A(1-1/4)	$\begin{array}{r} 82.75- \\ 83.00 \end{array}$	1.0000	1.0000
L16	10	2" Flexible Conduit	$\begin{array}{r} 82.75- \\ 83.00 \end{array}$	1.0000	1.0000
L16	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 82.75- \\ 83.00 \end{array}$	1.0000	1.0000
L16	25	PL 0.75x4	$\begin{array}{r} 82.75- \\ 83.00 \end{array}$	1.0000	1.0000
L16	26	PL 0.75x4	$\begin{array}{r} 82.75- \\ 83.00 \end{array}$	1.0000	1.0000
L16	27	PL 0.75x4	$82.75-$ 83.00	1.0000	1.0000
L16	47	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 82.75- \\ 83.00 \end{array}$	1.0000	1.0000
L16	48	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 82.75- \\ 83.00 \end{array}$	1.0000	1.0000
L16	49	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 82.75- \\ 83.00 \end{array}$	1.0000	1.0000
L16	62	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 82.75- \\ 83.00 \end{array}$	1.0000	1.0000
L16	63	(Area) CCl-65FP-045125 (H)	$82.75-$ 83.00	1.0000	1.0000
L16	64	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 82.75- \\ 83.00 \end{array}$	1.0000	1.0000
L17	3	2" Flexible Conduit	$\begin{array}{r} 77.75- \\ 82.75 \end{array}$	1.0000	1.0000
L17	4	LDF6-50A(1-1/4)	$\begin{array}{r} 77.75- \\ 82.75 \end{array}$	1.0000	1.0000
L17	10	2" Flexible Conduit	$\begin{array}{r} 77.75- \\ 82.75 \end{array}$	1.0000	1.0000
L17	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 77.75- \\ 82.75 \end{array}$	1.0000	1.0000
L17	25	PL 0.75x4	$\begin{array}{r} 77.75- \\ 82.75 \end{array}$	1.0000	1.0000
L17	26	PL 0.75x4	$\begin{array}{r} 77.75- \\ 82.75 \end{array}$	1.0000	1.0000
L17	27	PL 0.75x4	$77.75-$ 82.75	1.0000	1.0000
L17	47	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 81.50- \\ 82.75 \end{array}$	1.0000	1.0000
L17	48	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 81.50- \\ 82.75 \end{array}$	1.0000	1.0000
L17	49	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 81.50- \\ 82.75 \end{array}$	1.0000	1.0000
L17	62	(Area) CCl-65FP-045125	$77.75-$	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No lce	$\begin{aligned} & K_{a} \\ & I c e \end{aligned}$
		(H)	82.75		
L17	63	(Area) CCI-65FP-045125	$77.75-$	1.0000	1.0000
		(H)	82.75		
L17	64	(Area) CCI-65FP-045125	$77.75-$	1.0000	1.0000
		(H)	82.75		
L18	1	CU12PSM9P8XXX(1-3/8)	$70.00-1$	1.0000	1.0000
L18	3	2" Flexible Conduit	$70.00-$	1.0000	1.0000
			77.75		
L18	4	LDF6-50A(1-1/4)	$\begin{array}{r} 70.00- \\ 7775 \end{array}$	1.0000	1.0000
L18	10	2" Flexible Conduit	77.75 $70.00-$	1.0000	1.0000
		2 Flexible Condur	77.75		
L18	16	HCS 6X12 4AWG(1-5/8)	$70.00-$	1.0000	1.0000
			77.75		
L18	25	PL 0.75x4	$\begin{array}{r} 70.00- \\ 7775 \end{array}$	1.0000	1.0000
L18	26	PL 0.75x4	70.00-	1.0000	1.0000
			77.75		
L18	27	PL 0.75x4	70.00-	1.0000	1.0000
			77.75		
L18	62	(Area) CCI-65FP-045125	$70.00-$	1.0000	1.0000
		(H)	77.75		
L18	63	(Area) CCI-65FP-045125	$70.00-$	1.0000	1.0000
		(H)	77.75		
L18	64	(Area) CCI-65FP-045125	$70.00-$	1.0000	1.0000
		(H)	77.75		
L19	1	CU12PSM9P8XXX(1-3/8)	$69.00-$	1.0000	1.0000
			70.00		
L19	3	2" Flexible Conduit	$69.00-$	1.0000	1.0000
			70.00		
L19	4	LDF6-50A(1-1/4)	$69.00-1$	1.0000	1.0000
L19	10	2" Flexible Conduit	69.00 -	1.0000	1.0000
			70.00		
L19	16	HCS 6X12 4AWG(1-5/8)	$69.00-$	1.0000	1.0000
			70.00		
L19	25	PL 0.75x4	$69.00-$	1.0000	1.0000
			70.00		
L19	26	PL 0.75×4	$69.00-$	1.0000	1.0000
			70.00		
L19	27	PL 0.75x4	$69.00-$	1.0000	1.0000
			70.00		
L19	62	(Area) CCI-65FP-045125	$69.00-$ 70.00	1.0000	1.0000
L19	63	(Area) CCI-65FP-045125	70.00 $69.00-$		
L19	63	(Area) CCl-65FP-045125	$69.00-$ 70.00	1.0000	1.0000
L19	64	(Area) CCI-65FP-045125	$69.00-$	1.0000	1.0000
		(H)	70.00		
L20	1	CU12PSM9P8XXX(1-3/8)	67.08 -	1.0000	1.0000
			69.00		
L20	3	2" Flexible Conduit	67.08 -	1.0000	1.0000
		LDF6-50A(1-1/4)	69.00		
L20	4	LDF6-50A(1-1/4)	67.08 -	1.0000	1.0000
L20	10	2" Flexible Conduit	67.08 -	1.0000	1.0000
			69.00		
L20	16	HCS 6X12 4AWG(1-5/8)	67.08 -	1.0000	1.0000
			69.00		
L20	22	PL 0.75x4	67.08	1.0000	1.0000
L20	23	PL 0.75x4	68.25 $67.08-$	1.0000	1.0000
L20	23	PL 0.75×4	68.25	1.0000	1.0000
L20	24	PL 0.75x4	67.08 -	1.0000	1.0000
			68.25		
L20	25	PL 0.75x4	$67.08-$	1.0000	1.0000
L20	26	PL 0.75x4	69.00	1.0000	1.0000
			69.00		

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No lce	$\begin{aligned} & K_{a} \\ & I c e \end{aligned}$
L20	27	PL 0.75x4	$\begin{array}{r} 67.08- \\ 69.00 \end{array}$	1.0000	1.0000
L20	62	(Area) CCl-65FP-045125	$\begin{array}{r} 67.08- \\ 69.00 \end{array}$	1.0000	1.0000
L20	63	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 67.08- \\ 69.00 \end{array}$	1.0000	1.0000
L20	64	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 67.08- \\ 69.00 \end{array}$	1.0000	1.0000
L21	1	CU12PSM9P8XXX(1-3/8)	$\begin{array}{r} 66.83- \\ 67.08 \end{array}$	1.0000	1.0000
L21	3	2" Flexible Conduit	$\begin{array}{r} 66.83- \\ 67.08 \end{array}$	1.0000	1.0000
L21	4	LDF6-50A(1-1/4)	$\begin{array}{r} 66.83- \\ 67.08 \end{array}$	1.0000	1.0000
L21	10	2" Flexible Conduit	$\begin{array}{r} 66.83- \\ 67.08 \end{array}$	1.0000	1.0000
L21	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 66.83- \\ 67.08 \end{array}$	1.0000	1.0000
L21	22	PL 0.75x4	$\begin{array}{r} 66.83- \\ 67.08 \end{array}$	1.0000	1.0000
L21	23	PL 0.75x4	$\begin{array}{r} 66.83- \\ 67.08 \end{array}$	1.0000	1.0000
L21	24	PL 0.75x4	$\begin{array}{r} 66.83- \\ 67.08 \end{array}$	1.0000	1.0000
L21	25	PL 0.75x4	$\begin{array}{r} 66.83- \\ 67.08 \end{array}$	1.0000	1.0000
L21	26	PL 0.75×4	$\begin{array}{r} 66.83- \\ 67.08 \end{array}$	1.0000	1.0000
L21	27	PL 0.75x4	$\begin{array}{r} 66.83- \\ 67.08 \end{array}$	1.0000	1.0000
L21	62	(Area) CCl-65FP-045125	$\begin{array}{r} 66.83- \\ 67.08 \end{array}$	1.0000	1.0000
L21	63	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 66.83- \\ 67.08 \end{array}$	1.0000	1.0000
L21	64	(Area) CCI-65FP-045125	$\begin{array}{r} 66.83- \\ 67.08 \end{array}$	1.0000	1.0000
L22	1	CU12PSM9P8XXX(1-3/8)	$\begin{array}{r} 64.08- \\ 66.83 \end{array}$	1.0000	1.0000
L22	3	2" Flexible Conduit	$\begin{array}{r} 64.08- \\ 66.83 \end{array}$	1.0000	1.0000
L22	4	LDF6-50A(1-1/4)	$\begin{array}{r} 64.08- \\ 66.83 \end{array}$	1.0000	1.0000
L22	10	2" Flexible Conduit	$\begin{array}{r} 64.08- \\ 66.83 \end{array}$	1.0000	1.0000
L22	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 64.08- \\ 66.83 \end{array}$	1.0000	1.0000
L22	22	PL 0.75x4	$\begin{array}{r} 64.08-1 \\ 66.83 \end{array}$	1.0000	1.0000
L22	23	PL 0.75x4	$\begin{array}{r} 64.08- \\ 66.83 \end{array}$	1.0000	1.0000
L22	24	PL 0.75x4	$\begin{array}{r} 64.08- \\ 66.83 \end{array}$	1.0000	1.0000
L22	25	PL 0.75x4	$\begin{array}{r} 65.83- \\ 66.83 \end{array}$	1.0000	1.0000
L22	26	PL 0.75x4	$\begin{array}{r} 65.83- \\ 66.83 \end{array}$	1.0000	1.0000
L22	27	PL 0.75x4	$\begin{array}{r} 65.83- \\ 66.83 \end{array}$	1.0000	1.0000
L22	43	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 64.08- \\ 66.08 \end{array}$	1.0000	1.0000
L22	44	(Area) CCl-65FP-045100 (H)	$\begin{array}{r} 64.08- \\ 66.08 \end{array}$	1.0000	1.0000
L22	45	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 64.08- \\ 64.50 \end{array}$	1.0000	1.0000
L22	62	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 64.08- \\ 66.83 \end{array}$	1.0000	1.0000
L22	63	(Area) CCI-65FP-045125	$\begin{array}{r} 64.08- \\ 66.83 \end{array}$	1.0000	1.0000
L22	64	(Area) CCI-65FP-045125	64.08-1	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	Ka No lce	$\begin{aligned} & K_{a} \\ & I c e \end{aligned}$
L23	1	CU12PSM9P8XXX(1-3/8)	66.83 63.83 64.08	1.0000	1.0000
L23	3	2" Flexible Conduit	$\begin{array}{r} 63.83- \\ 64.08 \end{array}$	1.0000	1.0000
L23	4	LDF6-50A(1-1/4)	$\begin{array}{r} 63.83 \\ 64.08 \end{array}$	1.0000	1.0000
L23	10	2" Flexible Conduit	$\begin{array}{r} 63.83- \\ 64.08 \end{array}$	1.0000	1.0000
L23	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 63.83 \\ 64.08 \end{array}$	1.0000	1.0000
L23	22	PL 0.75x4	$\begin{array}{r} 63.83- \\ 64.08 \end{array}$	1.0000	1.0000
L23	23	PL 0.75x4	$\begin{array}{r} 63.83 \\ 64.08 \end{array}$	1.0000	1.0000
L23	24	PL 0.75x4	$\begin{array}{r} 63.83 \\ 64.08 \end{array}$	1.0000	1.0000
L23	43	(Area) CCl-65FP-045100	$\begin{array}{r} 63.83 \\ 64.08 \end{array}$	1.0000	1.0000
L23	44	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 63.83- \\ 64.08 \end{array}$	1.0000	1.0000
L23	45	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 63.83- \\ 64.08 \end{array}$	1.0000	1.0000
L23	62	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 63.83- \\ 64.08 \end{array}$	1.0000	1.0000
L23	63	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 63.83- \\ 64.08 \end{array}$	1.0000	1.0000
L23	64	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 63.83- \\ 64.08 \end{array}$	1.0000	1.0000
L24	1	CU12PSM9P8XXX(1-3/8)	$\begin{array}{r} 62.50- \\ 63.83 \end{array}$	1.0000	1.0000
L24	3	2" Flexible Conduit	$\begin{array}{r} 62.50- \\ 63.83 \end{array}$	1.0000	1.0000
L24	4	LDF6-50A(1-1/4)	$\begin{array}{r} 62.50- \\ 63.83 \end{array}$	1.0000	1.0000
L24	10	2" Flexible Conduit	$\begin{array}{r} 62.50- \\ 63.83 \end{array}$	1.0000	1.0000
L24	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 62.50- \\ 63.83 \end{array}$	1.0000	1.0000
L24	22	PL 0.75x4	$\begin{array}{r} 62.50- \\ 63.83 \end{array}$	1.0000	1.0000
L24	23	PL 0.75x4	$\begin{array}{r} 62.50- \\ 63.83 \end{array}$	1.0000	1.0000
L24	24	PL 0.75x4	$\begin{array}{r} 62.50- \\ 63.83 \end{array}$	1.0000	1.0000
L24	43	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 62.50- \\ 63.83 \end{array}$	1.0000	1.0000
L24	44	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 62.50- \\ 63.83 \end{array}$	1.0000	1.0000
L24	45	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 62.50- \\ 63.83 \end{array}$	1.0000	1.0000
L24	62	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 62.50- \\ 63.83 \end{array}$	1.0000	1.0000
L24	63	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 62.50- \\ 63.83 \end{array}$	1.0000	1.0000
L24	64	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 62.50- \\ 63.83 \end{array}$	1.0000	1.0000
L25	1	CU12PSM9P8XXX(1-3/8)	$\begin{array}{r} 62.25- \\ 62.50 \end{array}$	1.0000	1.0000
L25	3	2" Flexible Conduit	$\begin{array}{r} 62.25- \\ 62.50 \end{array}$	1.0000	1.0000
L25	4	LDF6-50A(1-1/4)	$\begin{array}{r} 62.25- \\ 62.50 \end{array}$	1.0000	1.0000
L25	10	2" Flexible Conduit	$\begin{array}{r} 62.25- \\ 62.50 \end{array}$	1.0000	1.0000
L25	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 62.25- \\ 62.50 \end{array}$	1.0000	1.0000
L25	22	PL 0.75x4	$\begin{array}{r} 62.25- \\ 62.50 \end{array}$	1.0000	1.0000

tnxTower Report - version 8.1.1.0

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{a} \\ \text { No Ice } \end{gathered}$	$\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$
L25	23	PL 0.75x4	$\begin{array}{r} 62.25- \\ 62.50 \end{array}$	1.0000	1.0000
L25	24	PL 0.75×4	$\begin{array}{r} 62.25- \\ 62.50 \end{array}$	1.0000	1.0000
L25	43	(Area) CCl -65FP-045100	$\begin{array}{r} 62.25- \\ 62.50 \end{array}$	1.0000	1.0000
L25	44	(Area) CCl-65FP-045100	$\begin{array}{r} 62.25- \\ 62.50 \end{array}$	1.0000	1.0000
L25	45	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 62.25 \\ 62.50 \end{array}$	1.0000	1.0000
L25	62	(Area) CCl-65FP-045125	$\begin{array}{r} 62.25- \\ 62.50 \end{array}$	1.0000	1.0000
L25	63	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 62.25- \\ 62.50 \end{array}$	1.0000	1.0000
L25	64	(Area) CCI-65FP-045125	$\begin{array}{r} 62.25- \\ 62.50 \end{array}$	1.0000	1.0000
L26	1	CU12PSM9P8XXX(1-3/8)	$\begin{array}{r} 57.25- \\ 62.25 \end{array}$	1.0000	1.0000
L26	3	2" Flexible Conduit	$\begin{array}{r} 57.25- \\ 62.25 \end{array}$	1.0000	1.0000
L26	4	LDF6-50A(1-1/4)	$\begin{array}{r} 57.25- \\ 62.25 \end{array}$	1.0000	1.0000
L26	10	2" Flexible Conduit	$\begin{array}{r} 57.25- \\ 62.25 \end{array}$	1.0000	1.0000
L26	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 57.25- \\ 62.25 \end{array}$	1.0000	1.0000
L26	22	PL 0.75x4	$\begin{array}{r} 57.25- \\ 62.25 \end{array}$	1.0000	1.0000
L26	23	PL 0.75x4	$\begin{array}{r} 57.25- \\ 62.25 \end{array}$	1.0000	1.0000
L26	24	PL 0.75x4	$\begin{array}{r} 57.25- \\ 62.25 \end{array}$	1.0000	1.0000
L26	43	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 57.25- \\ 62.25 \end{array}$	1.0000	1.0000
L26	44	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 57.25- \\ 62.25 \end{array}$	1.0000	1.0000
L26	45	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 57.25- \\ 62.25 \end{array}$	1.0000	1.0000
L26	62	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 57.25- \\ 62.25 \end{array}$	1.0000	1.0000
L26	63	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 57.25- \\ 62.25 \end{array}$	1.0000	1.0000
L26	64	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 57.25- \\ 62.25 \end{array}$	1.0000	1.0000
L27	1	CU12PSM9P8XXX(1-3/8)	$\begin{array}{r} 53.50- \\ 57.25 \end{array}$	1.0000	1.0000
L27	3	2" Flexible Conduit	$\begin{array}{r} 53.50- \\ 57.25 \end{array}$	1.0000	1.0000
L27	4	LDF6-50A(1-1/4)	$\begin{array}{r} 53.50- \\ 57.25 \end{array}$	1.0000	1.0000
L27	10	2" Flexible Conduit	$\begin{array}{r} 53.50- \\ 57.25 \end{array}$	1.0000	1.0000
L27	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 53.50- \\ 57.25 \end{array}$	1.0000	1.0000
L27	22	PL 0.75x4	$\begin{array}{r} 53.50- \\ 57.25 \end{array}$	1.0000	1.0000
L27	23	PL 0.75x4	$\begin{array}{r} 53.50- \\ 57.25 \end{array}$	1.0000	1.0000
L27	24	PL 0.75x4	$\begin{array}{r} 53.50- \\ 57.25 \end{array}$	1.0000	1.0000
L27	40	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 53.50- \\ 56.00 \end{array}$	1.0000	1.0000
L27	41	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 53.50- \\ 56.00 \end{array}$	1.0000	1.0000
L27	43	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 56.00- \\ 57.25 \end{array}$	1.0000	1.0000
L27	44	(Area) CCI-65FP-045100	$\begin{array}{r} 56.00- \\ 57.25 \end{array}$	1.0000	1.0000
L27	45	(Area) CCI-65FP-045100	53.50-1	1.0000	1.0000

tnxTower Report - version 8.1.1.0

Tower Section	Feed Line Record No.	Description	Segment Elev.	No Ice	$\begin{aligned} & K_{a} \\ & I c e \end{aligned}$
L27	59		57.25	1.0000	1.0000
		(Area) CCI-65FP-060100	$53.50-$		
L27	60	(H)	55.08		
		(Area) CCl-65FP-060100	53.50-1	1.0000	1.0000
L27	61	(Area) CCl-65FP-060100	$53.50-$	1.0000	1.0000
		(H)	55.08		
L27	62	(Area) CCl-65FP-045125	$\begin{array}{r} 55.08- \\ 57.25 \end{array}$	1.0000	1.0000
L27	63	(Area) CCI-65FP-045125	55.08 -	1.0000	1.0000
		(H)	57.25		
L27	64	(Area) CCl-65FP-045125	55.08 -	1.0000	1.0000
		CU12PSM9P8XXX(1-3/8)	57.25		
L28	1	CU12PSM9P8XXX(1-3/8)	53.25-	1.0000	1.0000
L28	3	2" Flexible Conduit	$53.25-$	1.0000	1.0000
	4	LDF6-50A(1-1/4)	53.50		
L28			$\begin{array}{r} 53.25- \\ 53.50 \end{array}$	1.0000	1.0000
L28	10	2" Flexible Conduit	53.25 -	1.0000	1.0000
			53.50		
L28	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 53.25- \\ 53.50 \end{array}$	1.0000	1.0000
L28	22	PL 0.75x4	53.25 -	1.0000	1.0000
			53.50		
L28	2324	PL 0.75x4	$53.25-$	1.0000	1.0000
			53.50		
L28	24	PL 0.75x4	$\begin{array}{r} 53.25- \\ 53.50 \end{array}$	1.0000	1.0000
L28	40	(Area) CCl -65FP-060100	53.25 -	1.0000	1.0000
			53.50		
L28	41	(Area) CCl -65FP-060100	$53.25-$	1.0000	1.0000
	45	(H)	53.50 $53.25-$		
L28		(Area) CCI-65FP-045100	53.25-	1.0000	1.0000
L28	59	(Area) CCl -65FP-060100	$53.25-$	1.0000	1.0000
			53.50		
L28	60	(Area) CCI-65FP-060100	53.25-	1.0000	1.0000
L28	61	(Area) CCI-65FP-060100	53.50 $53.25-$	1.0000	1.0000
			53.50		
L29	1	CU12PSM9P8XXX(1-3/8)	52.58 -	1.0000	1.0000
			53.25		
L29	3	2" Flexible Conduit	$\begin{array}{r} 52.58 \\ 53.25 \end{array}$	1.0000	1.0000
L29	4	LDF6-50A(1-1/4)	52.58 -	1.0000	1.0000
L29			53.25		
	10	2" Flexible Conduit	52.58-	1.0000	1.0000
L29	16	HCS 6X12 4AWG(1-5/8)	52.58 -	1.0000	1.0000
			53.25		
L29	22	PL 0.75x4	$\begin{array}{r} 52.58- \\ 53.25 \end{array}$	1.0000	1.0000
L29	23	PL 0.75x4	52.58 -	1.0000	1.0000
			53.25		
L29	24	PL 0.75x4	$\begin{array}{r} 52.58- \\ 53.25 \end{array}$	1.0000	1.0000
L29	40	(Area) CCl-65FP-060100	52.58-	1.0000	1.0000
		(H)	53.25		
L29	41	(Area) $\mathrm{CCl}-65 \mathrm{FP}-060100$	52.58 -	1.0000	1.0000
L29			53.25		
	45	(Area) CCI-65FP-045100	52.58 -	1.0000	1.0000
L29			53.25 52.58		
	59	(Area) CCl-65FP-060100	$\begin{array}{r} 52.58- \\ 53.25 \end{array}$	1.0000	1.0000
L29	60	(Area) CCI-65FP-060100 (H)	52.58 -	1.0000	1.0000
			53.25		
L29	61	(Area) CCI-65FP-060100	52.58 -	1.0000	1.0000
			53.25		

tnxTower Report - version 8.1.1.0

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{a} \\ \text { No Ice } \end{gathered}$	$\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$
L30	1	CU12PSM9P8XXX(1-3/8)	$\begin{array}{r} 52.33 \\ 52.58 \end{array}$	1.0000	1.0000
L30	3	2" Flexible Conduit	$\begin{array}{r} 52.33- \\ 52.58 \end{array}$	1.0000	1.0000
L30	4	LDF6-50A(1-1/4)	$\begin{array}{r} 52.33- \\ 52.58 \end{array}$	1.0000	1.0000
L30	10	2" Flexible Conduit	$\begin{array}{r} 52.33- \\ 52.58 \end{array}$	1.0000	1.0000
L30	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 52.33- \\ 52.58 \end{array}$	1.0000	1.0000
L30	22	PL 0.75x4	$\begin{array}{r} 52.33- \\ 52.58 \end{array}$	1.0000	1.0000
L30	23	PL 0.75x4	$\begin{array}{r} 52.33- \\ 52.58 \end{array}$	1.0000	1.0000
L30	24	PL 0.75x4	$\begin{array}{r} 52.33- \\ 52.58 \end{array}$	1.0000	1.0000
L30	40	(Area) CCl-65FP-060100	$\begin{array}{r} 52.33- \\ 52.58 \end{array}$	1.0000	1.0000
L30	41	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 52.33- \\ 52.58 \end{array}$	1.0000	1.0000
L30	45	(Area) CCl-65FP-045100	$\begin{array}{r} 52.33- \\ 52.58 \end{array}$	1.0000	1.0000
L30	59	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 52.33- \\ 52.58 \end{array}$	1.0000	1.0000
L30	60	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 52.33- \\ 52.58 \end{array}$	1.0000	1.0000
L30	61	(Area) CCl-65FP-060100	$\begin{array}{r} 52.33- \\ 52.58 \end{array}$	1.0000	1.0000
L31	1	CU12PSM9P8XXX(1-3/8)	$\begin{array}{r} 47.33- \\ 52.33 \end{array}$	1.0000	1.0000
L31	3	2" Flexible Conduit	$\begin{array}{r} 47.33- \\ 52.33 \end{array}$	1.0000	1.0000
L31	4	LDF6-50A(1-1/4)	$\begin{array}{r} 47.33- \\ 52.33 \end{array}$	1.0000	1.0000
L31	10	2" Flexible Conduit	$\begin{array}{r} 47.33- \\ 52.33 \end{array}$	1.0000	1.0000
L31	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 47.33- \\ 52.33 \end{array}$	1.0000	1.0000
L31	22	PL 0.75x4	$\begin{array}{r} 47.33- \\ 52.33 \end{array}$	1.0000	1.0000
L31	23	PL 0.75x4	$\begin{array}{r} 47.33- \\ 52.33 \end{array}$	1.0000	1.0000
L31	24	PL 0.75x4	$\begin{array}{r} 47.33- \\ 52.33 \end{array}$	1.0000	1.0000
L31	40	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 47.33- \\ 52.33 \end{array}$	1.0000	1.0000
L31	41	(Area) CCl-65FP-060100	$\begin{array}{r} 47.33- \\ 52.33 \end{array}$	1.0000	1.0000
L31	45	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 47.33- \\ 52.33 \end{array}$	1.0000	1.0000
L31	59	(Area) CCl-65FP-060100	$\begin{array}{r} 47.33- \\ 52.33 \end{array}$	1.0000	1.0000
L31	60	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 47.33- \\ 52.33 \end{array}$	1.0000	1.0000
L31	61	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 47.33- \\ 52.33 \end{array}$	1.0000	1.0000
L32	1	CU12PSM9P8XXX(1-3/8)	$\begin{array}{r} 44.58- \\ 47.33 \end{array}$	1.0000	1.0000
L32	3	2" Flexible Conduit	$\begin{array}{r} 44.58- \\ 47.33 \end{array}$	1.0000	1.0000
L32	4	LDF6-50A(1-1/4)	$\begin{array}{r} 44.58- \\ 47.33 \end{array}$	1.0000	1.0000
L32	10	2" Flexible Conduit	$\begin{array}{r} 44.58- \\ 47.33 \end{array}$	1.0000	1.0000
L32	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 44.58- \\ 47.33 \end{array}$	1.0000	1.0000
L32	19	PL 0.75x4	$\begin{array}{r} 44.58- \\ 45.83 \end{array}$	1.0000	1.0000
L32	20	PL 0.75x4	44.58-1	1.0000	1.0000

tnxTower Report - version 8.1.1.0

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No Ice	$\begin{aligned} & K_{a} \\ & I c e \end{aligned}$
L32	21	PL 0.75x4	$\begin{array}{r} 45.83 \\ 44.58- \\ 45.83 \end{array}$	1.0000	1.0000
L32	22	PL 0.75x4	$\begin{array}{r} 44.58- \\ 47.33 \end{array}$	1.0000	1.0000
L32	23	PL 0.75x4	$\begin{array}{r} 44.58- \\ 47.33 \end{array}$	1.0000	1.0000
L32	24	PL 0.75x4	$\begin{array}{r} 44.58- \\ 47.33 \end{array}$	1.0000	1.0000
L32	40	(Area) CCl-65FP-060100	$\begin{array}{r} 44.58- \\ 47.33 \end{array}$	1.0000	1.0000
L32	41	(Area) $\mathrm{CCl}-65 \mathrm{FP}-060100$	$\begin{array}{r} 44.58- \\ 47.33 \end{array}$	1.0000	1.0000
L32	45	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 44.58- \\ 47.33 \end{array}$	1.0000	1.0000
L32	59	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 44.58- \\ 47.33 \end{array}$	1.0000	1.0000
L32	60	(Area) CCl -65FP-060100	$\begin{array}{r} 44.58- \\ 47.33 \end{array}$	1.0000	1.0000
L32	61	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 44.58- \\ 47.33 \end{array}$	1.0000	1.0000
L33	1	CU12PSM9P8XXX(1-3/8)	$\begin{array}{r} 44.33- \\ 44.58 \end{array}$	1.0000	1.0000
L33	3	2" Flexible Conduit	$\begin{array}{r} 44.33- \\ 44.58 \end{array}$	1.0000	1.0000
L33	4	LDF6-50A(1-1/4)	$\begin{array}{r} 44.33- \\ 44.58 \end{array}$	1.0000	1.0000
L33	10	2" Flexible Conduit	$\begin{array}{r} 44.33- \\ 44.58 \end{array}$	1.0000	1.0000
L33	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 44.33- \\ 44.58 \end{array}$	1.0000	1.0000
L33	19	PL 0.75x4	$\begin{array}{r} 44.33 \\ 44.58 \end{array}$	1.0000	1.0000
L33	20	PL 0.75x4	$\begin{array}{r} 44.33 \\ 44.58 \end{array}$	1.0000	1.0000
L33	21	PL 0.75x4	$\begin{array}{r} 44.33- \\ 44.58 \end{array}$	1.0000	1.0000
L33	22	PL 0.75x4	$\begin{array}{r} 44.33- \\ 44.58 \end{array}$	1.0000	1.0000
L33	23	PL 0.75x4	$\begin{array}{r} 44.33- \\ 44.58 \end{array}$	1.0000	1.0000
L33	24	PL 0.75x4	$\begin{array}{r} 44.33- \\ 44.58 \end{array}$	1.0000	1.0000
L33	36	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 44.33- \\ 44.42 \end{array}$	1.0000	1.0000
L33	40	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 44.33- \\ 44.58 \end{array}$	1.0000	1.0000
L33	41	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 44.33- \\ 44.58 \end{array}$	1.0000	1.0000
L33	45	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 44.50- \\ 44.58 \end{array}$	1.0000	1.0000
L33	59	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 44.33 \\ 44.58 \end{array}$	1.0000	1.0000
L33	60	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 44.33- \\ 44.58 \end{array}$	1.0000	1.0000
L33	61	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 44.33- \\ 44.58 \end{array}$	1.0000	1.0000
L34	1	CU12PSM9P8XXX(1-3/8)	$\begin{array}{r} 41.92- \\ 44.33 \end{array}$	1.0000	1.0000
L34	3	2" Flexible Conduit	$\begin{array}{r} 41.92- \\ 44.33 \end{array}$	1.0000	1.0000
L34	4	LDF6-50A(1-1/4)	$\begin{array}{r} 41.92- \\ 44.33 \end{array}$	1.0000	1.0000
L34	10	2" Flexible Conduit	$\begin{array}{r} 41.92- \\ 44.33 \end{array}$	1.0000	1.0000
L34	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 41.92- \\ 44.33 \end{array}$	1.0000	1.0000
L34	19	PL 0.75x4	$\begin{array}{r} 41.92- \\ 44.33 \end{array}$	1.0000	1.0000

tnxTower Report - version 8.1.1.0

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No lce	$\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$
L34	20	PL 0.75x4	$\begin{array}{r} 41.92- \\ 44.33 \end{array}$	1.0000	1.0000
L34	21	PL 0.75x4	$\begin{array}{r} 41.92- \\ 44.33 \end{array}$	1.0000	1.0000
L34	22	PL 0.75x4	$\begin{array}{r} 43.25- \\ 44.33 \end{array}$	1.0000	1.0000
L34	23	PL 0.75x4	$\begin{array}{r} 43.25- \\ 44.33 \end{array}$	1.0000	1.0000
L34	24	PL 0.75x4	$\begin{array}{r} 43.25- \\ 44.33 \end{array}$	1.0000	1.0000
L34	36	(Area) CCI-65FP-060100	$\begin{array}{r} 41.92- \\ 44.33 \end{array}$	1.0000	1.0000
L34	40	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 41.92- \\ 4433 \end{array}$	1.0000	1.0000
L34	41	(Area) CCI-65FP-060100	$\begin{array}{r} 41.92- \\ 44.33 \end{array}$	1.0000	1.0000
L34	59	(Area) CCl-65FP-060100	$\begin{array}{r} 41.92- \\ 44.33 \end{array}$	1.0000	1.0000
L34	60	(Area) CCl -65FP-060100	$\begin{array}{r} 41.92- \\ 44.33 \end{array}$	1.0000	1.0000
L34	61	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 41.92- \\ 44.33 \end{array}$	1.0000	1.0000
L35	1	CU12PSM9P8XXX (1-3/8)	$\begin{array}{r} 41.67- \\ 41.92 \end{array}$	1.0000	1.0000
L35	3	2" Flexible Conduit	$\begin{array}{r} 41.67- \\ 41.92 \end{array}$	1.0000	1.0000
L35	4	LDF6-50A(1-1/4)	$\begin{array}{r} 41.67- \\ 41.92 \end{array}$	1.0000	1.0000
L35	10	2" Flexible Conduit	$\begin{array}{r} 41.67- \\ 41.92 \end{array}$	1.0000	1.0000
L35	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 41.67- \\ 41.92 \end{array}$	1.0000	1.0000
L35	19	PL 0.75x4	$\begin{array}{r} 41.67- \\ 41.92 \end{array}$	1.0000	1.0000
L35	20	PL 0.75x4	$\begin{array}{r} 41.67- \\ 41.92 \end{array}$	1.0000	1.0000
L35	21	PL 0.75x4	$41.67-$ 41.92	1.0000	1.0000
L35	36	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 41.67- \\ 41.92 \end{array}$	1.0000	1.0000
L35	40	(Area) CCI-65FP-060100 (H)	$41.67-9$ 41.92	1.0000	1.0000
L35	41	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 41.67- \\ 41.92 \end{array}$	1.0000	1.0000
L35	59	(Area) CCl-65FP-060100	$\begin{array}{r} 41.67- \\ 41.92 \end{array}$	1.0000	1.0000
L35	60	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 41.67- \\ 41.92 \end{array}$	1.0000	1.0000
L35	61	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 41.67- \\ 41.92 \end{array}$	1.0000	1.0000
L36	1	CU12PSM9P8XXX(1-3/8)	34.08-1 41.67	1.0000	1.0000
L36	3	2" Flexible Conduit	$\begin{array}{r} 34.08- \\ 41.67 \end{array}$	1.0000	1.0000
L36	4	LDF6-50A(1-1/4)	$\begin{array}{r} 34.08- \\ 41.67 \end{array}$	1.0000	1.0000
L36	10	2" Flexible Conduit	$\begin{array}{r} 34.08- \\ 41.67 \end{array}$	1.0000	1.0000
L36	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 34.08- \\ 41.67 \end{array}$	1.0000	1.0000
L36	19	PL 0.75x4	$\begin{array}{r} 34.08- \\ 41.67 \end{array}$	1.0000	1.0000
L36	20	PL 0.75x4	$\begin{array}{r} 34.08- \\ 41.67 \end{array}$	1.0000	1.0000
L36	21	PL 0.75x4	$\begin{array}{r} 34.08- \\ 41.67 \end{array}$	1.0000	1.0000
L36	36	(Area) CCI-65FP-060100	$34.08 \text { - }$	1.0000	1.0000
L36	40	(Area) CCI-65FP-060100	41.67	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No Ice	$\begin{aligned} & K_{a} \\ & I c e \end{aligned}$
L36	41	(H)	41.67	1.0000	1.0000
		(Area) CCI-65FP-060100	34.08 -		
		(H)	41.67		
L36	59	(Area) CCI-65FP-060100	34.08 -	1.0000	1.0000
		(H)	41.67		
L36	60	(Area) CCI-65FP-060100	$34.08-$ 41.67	1.0000	1.0000
L36	61	(Area) CCl-65FP-060100	41.67 $34.08-$	1.0000	1.0000
		(H)	41.67		
L37	1	CU12PSM9P8XXX(1-3/8)	$34.00-$	1.0000	1.0000
			34.08		
L37	3	2" Flexible Conduit	34.00 -	1.0000	1.0000
			34.08		
L37	4	LDF6-50A(1-1/4)	$34.00-$	1.0000	1.0000
			34.08		
L37	10	2" Flexible Conduit	$34.00-$ 34.08	1.0000	1.0000
L37	16	HCS 6X12 4AWG(1-5/8)	34.00 -	1.0000	1.0000
			34.08		
L37	19	PL 0.75x4	34.00 -	1.0000	1.0000
			34.08		
L37	20	PL 0.75x4	34.00 -	1.0000	1.0000
			34.08		
L37	21	PL 0.75x4	34.00 -	1.0000	1.0000
			34.08		
L37	36	(Area) CCl-65FP-060100	$34.00-$	1.0000	1.0000
			34.08 34.00		
L37	40	(Area) CCl -65FP-060100	$34.00-$ 34.08	1.0000	1.0000
L37	41	(Area) CCI-65FP-060100	34.00 -	1.0000	1.0000
			34.08		
L37	59	(Area) CCI-65FP-060100	34.00 -	1.0000	1.0000
		(H)	34.08		
L37	60	(Area) CCI-65FP-060100	34.00 -	1.0000	1.0000
			34.08		
L37	61	(Area) CCl-65FP-060100	$34.00-$ 34.08	1.0000	1.0000
L38	1	CU12PSM9P8XXX(1-3/8)	$\begin{array}{r}34.08 \\ 29.00- \\ \hline\end{array}$		
			$29.00-$ 34.00	1.0000	1.0000
L38	3	2" Flexible Conduit	29.00 -	1.0000	1.0000
	4		34.00		
L38		LDF6-50A(1-1/4)	$29.00-$ 34.00	1.0000	1.0000
L38	10	2" Flexible Conduit	29.00 -	1.0000	1.0000
			34.00		
L38	16	HCS 6X12 4AWG(1-5/8)	29.00 -	1.0000	1.0000
			34.00		
L38	19	PL 0.75x4	29.00 -	1.0000	1.0000
			34.00		
L38	20	PL 0.75x4	29.00 -	1.0000	1.0000
	21		34.00		
L38		PL 0.75x4	$29.00-$ 34.00	1.0000	1.0000
L38	36	(Area) CCI-65FP-060100	29.00 -	1.0000	1.0000
		(H)	34.00		
L38	37	(Area) CCl-65FP-060100	29.00 -	1.0000	1.0000
L38	38	(H)	29.42		
		(Area) CCI-65FP-060100	$29.00-$ 29.42	1.0000	1.0000
L38	40	(Area) CCl-65FP-060100	29.00 -	1.0000	1.0000
			34.00		
L38	41	(Area) CCI-65FP-060100	29.00 -	1.0000	1.0000
		(H)	34.00		
L38	59	(Area) CCI-65FP-060100	29.00 -	1.0000	1.0000
L38		(H)	34.00		
	60	(Area) CCI-65FP-060100	29.00 -	1.0000	1.0000
	61		34.00	1.0000	
L38		(Area) CCI-65FP-060100 (H)	29.00 -		1.0000
			34.00		

tnxTower Report - version 8.1.1.0

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No lce	$\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$
L39	1	CU12PSM9P8XXX(1-3/8)	$\begin{array}{r} 26.92- \\ 29.00 \end{array}$	1.0000	1.0000
L39	3	2" Flexible Conduit	$\begin{array}{r} 26.92- \\ 29.00 \end{array}$	1.0000	1.0000
L39	4	LDF6-50A(1-1/4)	$\begin{array}{r} 26.92- \\ 29.00 \end{array}$	1.0000	1.0000
L39	10	2" Flexible Conduit	$\begin{array}{r} 26.92- \\ 29.00 \end{array}$	1.0000	1.0000
L39	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 26.92- \\ 29.00 \end{array}$	1.0000	1.0000
L39	19	PL 0.75x4	$\begin{array}{r} 26.92- \\ 29.00 \end{array}$	1.0000	1.0000
L39	20	PL 0.75x4	$\begin{array}{r} 26.92- \\ 29.00 \end{array}$	1.0000	1.0000
L39	21	PL 0.75x4	$26.92-1$	1.0000	1.0000
L39	36	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 26.92- \\ 29.00 \end{array}$	1.0000	1.0000
L39	37	(Area) $\mathrm{CCl}-65 \mathrm{FP}-060100$	$\begin{array}{r} 26.92- \\ 29.00 \end{array}$	1.0000	1.0000
L39	38	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 26.92- \\ 29.00 \end{array}$	1.0000	1.0000
L39	40	(Area) CCl-65FP-060100	$\begin{array}{r} 26.92- \\ 29.00 \end{array}$	1.0000	1.0000
L39	41	(Area) CCI-65FP-060100 (H)	$26.92-$ 29.00	1.0000	1.0000
L39	59	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 26.92- \\ 29.00 \end{array}$	1.0000	1.0000
L39	60	(Area) CCl -65FP-060100	$\begin{array}{r} 26.92- \\ 29.00 \end{array}$	1.0000	1.0000
L39	61	(Area) CCI-65FP-060100	$\begin{array}{r} 26.92- \\ 29.00 \end{array}$	1.0000	1.0000
L40	1	CU12PSM9P8XXX(1-3/8)	$\begin{array}{r} 26.67- \\ 26.92 \end{array}$	1.0000	1.0000
L40	3	2" Flexible Conduit	$\begin{array}{r} 26.67- \\ 26.92 \end{array}$	1.0000	1.0000
L40	4	LDF6-50A(1-1/4)	$\begin{array}{r} 26.67- \\ 26.92 \end{array}$	1.0000	1.0000
L40	10	2" Flexible Conduit	$\begin{array}{r} 26.67- \\ 26.92 \end{array}$	1.0000	1.0000
L40	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 26.67- \\ 26.92 \end{array}$	1.0000	1.0000
L40	19	PL 0.75x4	$\begin{array}{r} 26.67- \\ 26.92 \end{array}$	1.0000	1.0000
L40	20	PL 0.75x4	$26.67-1$ 26.92	1.0000	1.0000
L40	21	PL 0.75x4	$\begin{array}{r} 26.67- \\ 26.92 \end{array}$	1.0000	1.0000
L40	36	(Area) CCl -65FP-060100	$\begin{array}{r} 26.67- \\ 26.92 \end{array}$	1.0000	1.0000
L40	37	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 26.67- \\ 26.92 \end{array}$	1.0000	1.0000
L40	38	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 26.67- \\ 26.92 \end{array}$	1.0000	1.0000
L40	40	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 26.67- \\ 26.92 \end{array}$	1.0000	1.0000
L40	41	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 26.67- \\ 26.92 \end{array}$	1.0000	1.0000
L40	59	(Area) $\mathrm{CCl}-65 \mathrm{FP}-060100$	$\begin{array}{r} 26.67- \\ 26.92 \end{array}$	1.0000	1.0000
L40	60	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 26.67- \\ 26.92 \end{array}$	1.0000	1.0000
L40	61	(Area) CCI-65FP-060100	$\begin{array}{r} 26.67- \\ 26.92 \end{array}$	1.0000	1.0000
L41	1	CU12PSM9P8XXX(1-3/8)	$\begin{array}{r} 21.67- \\ 26.67 \end{array}$	1.0000	1.0000
L41	3	2" Flexible Conduit	$\begin{array}{r} 21.67- \\ 26.67 \end{array}$	1.0000	1.0000
L41	4	LDF6-50A(1-1/4)	21.67-1	1.0000	1.0000

tnxTower Report - version 8.1.1.0

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No Ice	$\begin{aligned} & K_{a} \\ & I c e \end{aligned}$
			26.67		
L41	10	2" Flexible Conduit	$21.67-$ 26.67	1.0000	1.0000
L41	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 21.67- \\ 26.67 \end{array}$	1.0000	1.0000
L41	19	PL 0.75x4	$\begin{array}{r} 21.67- \\ 26.67 \end{array}$	1.0000	1.0000
L41	20	PL 0.75x4	$\begin{array}{r} 21.67- \\ 26.67 \end{array}$	1.0000	1.0000
L41	21	PL 0.75x4	$\begin{array}{r} 21.67- \\ 26.67 \end{array}$	1.0000	1.0000
L41	36	(Area) CCI-65FP-060100	$\begin{array}{r} 21.67- \\ 26.67 \end{array}$	1.0000	1.0000
L41	37	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 21.67- \\ 26.67 \end{array}$	1.0000	1.0000
L41	38	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 21.67- \\ 26.67 \end{array}$	1.0000	1.0000
L41	40	(Area) CCI-65FP-060100	$\begin{array}{r} 21.67- \\ 26.67 \end{array}$	1.0000	1.0000
L41	41	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 21.67- \\ 26.67 \end{array}$	1.0000	1.0000
L41	59	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 21.67- \\ 26.67 \end{array}$	1.0000	1.0000
L41	60	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 21.67- \\ 26.67 \end{array}$	1.0000	1.0000
L41	61	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 21.67- \\ 2667 \end{array}$	1.0000	1.0000
L42	1	CU12PSM9P8XXX(1-3/8)	$\begin{array}{r} 18.00- \\ 21.67 \end{array}$	1.0000	1.0000
L42	3	2" Flexible Conduit	$\begin{array}{r} 18.00- \\ 21.67 \end{array}$	1.0000	1.0000
L42	4	LDF6-50A(1-1/4)	$\begin{array}{r} 18.00- \\ 21.67 \end{array}$	1.0000	1.0000
L42	10	2" Flexible Conduit	$\begin{array}{r} 18.00- \\ 21.67 \end{array}$	1.0000	1.0000
L42	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 18.00- \\ 21.67 \end{array}$	1.0000	1.0000
L42	19	PL 0.75x4	$\begin{array}{r} 18.00- \\ 21.67 \end{array}$	1.0000	1.0000
L42	20	PL 0.75x4	$\begin{array}{r} 18.00- \\ 21.67 \end{array}$	1.0000	1.0000
L42	21	PL 0.75x4	$\begin{array}{r} 18.00- \\ 21.67 \end{array}$	1.0000	1.0000
L42	33	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 18.00- \\ 20.75 \end{array}$	1.0000	1.0000
L42	34	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 18.00- \\ 20.75 \end{array}$	1.0000	1.0000
L42	35	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 18.00- \\ 20.75 \end{array}$	1.0000	1.0000
L42	36	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 20.75- \\ 21.67 \end{array}$	1.0000	1.0000
L42	37	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 20.75- \\ 21.67 \end{array}$	1.0000	1.0000
L42	38	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 20.75- \\ 21.67 \end{array}$	1.0000	1.0000
L42	40	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 21.00- \\ 21.67 \end{array}$	1.0000	1.0000
L42	41	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 21.00- \\ 21.67 \end{array}$	1.0000	1.0000
L42	52	(Area) CCI-65FP-065125 (H)	$\begin{array}{r} 18.00- \\ 20.75 \end{array}$	1.0000	1.0000
L42	53	(Area) CCI-65FP-065125 (H)	$\begin{array}{r} 18.00- \\ 20.75 \end{array}$	1.0000	1.0000
L42	54	(Area) CCI-65FP-065125 (H)	$\begin{array}{r} 18.00- \\ 20.75 \end{array}$	1.0000	1.0000
L42	56	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 18.00- \\ 20.00 \end{array}$	1.0000	1.0000
L42	57	(Area) CCI-65FP-060100	$\begin{array}{r} 18.00- \\ 20.00 \end{array}$	1.0000	1.0000

tnxTower Report - version 8.1.1.0

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{a} \\ \text { No Ice } \end{gathered}$	$\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$
L42	58	(Area) CCl-65FP-060100	$\begin{array}{r} 18.00- \\ 20.00 \end{array}$	1.0000	1.0000
L42	59	(Area) CCl-65FP-060100	$\begin{array}{r} 20.00- \\ 21.67 \end{array}$	1.0000	1.0000
L42	60	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 20.00- \\ 21.67 \end{array}$	1.0000	1.0000
L42	61	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 20.00- \\ 21.67 \end{array}$	1.0000	1.0000
L43	1	CU12PSM9P8XXX(1-3/8)	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	1.0000	1.0000
L43	3	2" Flexible Conduit	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	1.0000	1.0000
L43	4	LDF6-50A(1-1/4)	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	1.0000	1.0000
L43	10	2" Flexible Conduit	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	1.0000	1.0000
L43	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	1.0000	1.0000
L43	19	PL 0.75x4	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	1.0000	1.0000
L43	20	PL 0.75x4	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	1.0000	1.0000
L43	21	PL 0.75x4	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	1.0000	1.0000
L43	33	(Area) CCl -65FP-060100	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	1.0000	1.0000
L43	34	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	1.0000	1.0000
L43	35	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	1.0000	1.0000
L43	52	(Area) CCI-65FP-065125 (H)	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	1.0000	1.0000
L43	53	(Area) CCI-65FP-065125 (H)	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	1.0000	1.0000
L43	54	(Area) CCI-65FP-065125 (H)	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	1.0000	1.0000
L43	56	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	1.0000	1.0000
L43	57	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	1.0000	1.0000
L43	58	(Area) CCI-65FP-060100	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	1.0000	1.0000
L44	1	CU12PSM9P8XXX(1-3/8)	$\begin{array}{r} 17.50- \\ 17.75 \end{array}$	1.0000	1.0000
L44	3	2" Flexible Conduit	$\begin{array}{r} 17.50- \\ 17.75 \end{array}$	1.0000	1.0000
L44	4	LDF6-50A(1-1/4)	$\begin{array}{r} 17.50- \\ 17.75 \end{array}$	1.0000	1.0000
L44	10	2" Flexible Conduit	$\begin{array}{r} 17.50- \\ 17.75 \end{array}$	1.0000	1.0000
L44	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 17.50- \\ 17.75 \end{array}$	1.0000	1.0000
L44	19	PL 0.75x4	$\begin{array}{r} 17.50- \\ 17.75 \end{array}$	1.0000	1.0000
L44	20	PL 0.75x4	$\begin{array}{r} 17.50- \\ 17.75 \end{array}$	1.0000	1.0000
L44	21	PL 0.75x4	$\begin{array}{r} 17.50- \\ 17.75 \end{array}$	1.0000	1.0000
L44	33	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 17.50- \\ 17.75 \end{array}$	1.0000	1.0000
L44	34	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 17.50- \\ 17.75 \end{array}$	1.0000	1.0000
L44	35	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 17.50- \\ 17.75 \end{array}$	1.0000	1.0000
L44	52	(Area) CCI-65FP-065125 (H)	$\begin{array}{r} 17.50- \\ 17.75 \end{array}$	1.0000	1.0000
L44	53	(Area) CCI-65FP-065125	$17.50-$	1.0000	1.0000
L44	54	(Area) CCI-65FP-065125	$\begin{array}{r} 17.75 \\ 17.50- \end{array}$	1.0000	1.0000

tnxTower Report - version 8.1.1.0

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No lce	$\begin{aligned} & K_{a} \\ & I c e \end{aligned}$
	56	(H)	17.75		
L44		(Area) CCI-65FP-060100	17.50 -	1.0000	1.0000
		(H)	17.75		
L44	57	(Area) CCI-65FP-060100	$17.50-$	1.0000	1.0000
		(H)	17.75		
L44	58	(Area) CCI-65FP-060100	17.50 -	1.0000	1.0000
		(H)	17.75		
L45	1	CU12PSM9P8XXX(1-3/8)	$\begin{array}{r} 17.25- \\ 17.50 \end{array}$	1.0000	1.0000
L45	3	2" Flexible Conduit	$17.25-$	1.0000	1.0000
			17.50		
L45	4	LDF6-50A(1-1/4)	$17.25-$	1.0000	1.0000
L45		2" Flexible Conduit	17.50 $17.25-$	1.0000	1.0000
	10	dut	17.50	1.0000	1.0000
L45	16	HCS 6X12 4AWG(1-5/8)	$17.25-$	1.0000	1.0000
			17.50		
L45	19	PL 0.75x4	17.25 -	1.0000	1.0000
			17.50		
L45	20	PL 0.75x4	$17.25-$	1.0000	1.0000
			17.50		
L45	21	PL 0.75x4	$17.25-$	1.0000	1.0000
			17.50		
L45	33	(Area) CCI-65FP-060100	$17.25-$	1.0000	1.0000
		(H)	17.50		
L45	34	(Area) CCl-65FP-060100	17.25 -	1.0000	1.0000
		(H)	17.50		
L45	35	(Area) CCI-65FP-060100	$\begin{array}{r} 17.25- \\ 17.50 \end{array}$	1.0000	1.0000
L45	52	(Area) CCl-65FP-065125	17.25-	1.0000	1.0000
		(H)	17.50		
L45	53	(Area) CCl-65FP-065125	17.25 -	1.0000	1.0000
		(H)	17.50		
L45	54	(Area) CCI-65FP-065125	$17.25-$	1.0000	1.0000
		(H)	17.50		
L45	56	(Area) CCl-65FP-060100	17.25-	1.0000	1.0000
		(H)	17.50		
L45	57	(Area) CCI-65FP-060100	$\begin{array}{r} 17.25- \\ 17.50 \end{array}$	1.0000	1.0000
L45	58	(Area) CCl-65FP-060100	17.50 $17.25-$	1.0000	1.0000
		(H)	17.50		
L46	1	CU12PSM9P8XXX(1-3/8)	17.08	1.0000	1.0000
L46	3		$\begin{array}{r} 17.25 \\ 17.08 \end{array}$		
		2 " Flexible Conduit	$\begin{array}{r} 17.08 \\ 17.25 \end{array}$	1.0000	1.0000
L46	4	LDF6-50A(1-1/4)	17.08 -	1.0000	1.0000
			17.25		
L46	10	2" Flexible Conduit	17.08-	1.0000	1.0000
L46	16	HCS 6X12 4AWG(1-5/8)	17.25 $17.08-$	1.0000	1.0000
		HCS 6X12 4AWG(1-5/8)	17.25	1.0000	1.0000
L46	19	PL 0.75x4	17.08 -	1.0000	1.0000
			17.25		
L46	20	PL 0.75x4	$\begin{array}{r} 17.08- \\ 1705 \end{array}$	1.0000	1.0000
L46	21	PL 0.75x4	17.25 $17.08-$	1.0000	1.0000
			17.25		
L46	33	(Area) CCI-65FP-060100	17.08 -	1.0000	1.0000
		(H)	17.25		
L46	34	(Area) CCl-65FP-060100	17.08 -	1.0000	1.0000
		(H)	17.25		
L46	35	(Area) CCI-65FP-060100	17.08 -	1.0000	1.0000
		(H)	17.25		
L46	52	(Area) CCl-65FP-065125	17.08 -	1.0000	1.0000
		(H)	17.25		
L46	53	(Area) CCI-65FP-065125	17.08 -	1.0000	1.0000
		(H)	17.25		
L46	54	(Area) CCl-65FP-065125	17.08 -	1.0000	1.0000
			17.25		

tnxTower Report - version 8.1.1.0

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	Ka No lce	$\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$
L46	56	(Area) CCI-65FP-060100	$\begin{array}{r} 17.08- \\ 17.25 \end{array}$	1.0000	1.0000
L46	57	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 17.08- \\ 17.25 \end{array}$	1.0000	1.0000
L46	58	(Area) CCI-65FP-060100	$\begin{array}{r} 17.08- \\ 17.25 \end{array}$	1.0000	1.0000
$\llcorner 47$	1	CU12PSM9P8XXX(1-3/8)	$\begin{array}{r} 16.83- \\ 17.08 \end{array}$	1.0000	1.0000
L47	3	2" Flexible Conduit	$\begin{array}{r} 16.83- \\ 17.08 \end{array}$	1.0000	1.0000
L47	4	LDF6-50A(1-1/4)	$\begin{array}{r} 16.83- \\ 17.08 \end{array}$	1.0000	1.0000
L47	10	2" Flexible Conduit	$\begin{array}{r} 16.83- \\ 17.08 \end{array}$	1.0000	1.0000
L47	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 16.83- \\ 17.08 \end{array}$	1.0000	1.0000
$\llcorner 47$	19	PL 0.75x4	$\begin{array}{r} 16.83- \\ 17.08 \end{array}$	1.0000	1.0000
L47	20	PL 0.75x4	$\begin{array}{r} 16.83- \\ 17.08 \end{array}$	1.0000	1.0000
L47	21	PL 0.75x4	$\begin{array}{r} 16.83- \\ 17.08 \end{array}$	1.0000	1.0000
$\llcorner 47$	33	(Area) CCl-65FP-060100	$\begin{array}{r} 16.83- \\ 17.08 \end{array}$	1.0000	1.0000
$\llcorner 47$	34	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 16.83- \\ 17.08 \end{array}$	1.0000	1.0000
L47	35	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 16.83- \\ 17.08 \end{array}$	1.0000	1.0000
L47	52	(Area) CCI-65FP-065125 (H)	$\begin{array}{r} 16.83- \\ 17.08 \end{array}$	1.0000	1.0000
L47	53	(Area) CCI-65FP-065125 (H)	$\begin{array}{r} 16.83- \\ 17.08 \end{array}$	1.0000	1.0000
L47	54	(Area) CCI-65FP-065125 (H)	$\begin{array}{r} 16.83- \\ 17.08 \end{array}$	1.0000	1.0000
$\llcorner 47$	56	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 16.83- \\ 17.08 \end{array}$	1.0000	1.0000
$\llcorner 47$	57	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 16.83- \\ 17.08 \end{array}$	1.0000	1.0000
L47	58	(Area) CCl -65FP-060100	$\begin{array}{r} 16.83- \\ 17.08 \end{array}$	1.0000	1.0000
L48	1	CU12PSM9P8XXX(1-3/8)	$\begin{array}{r} 13.00- \\ 16.83 \end{array}$	1.0000	1.0000
L48	3	2" Flexible Conduit	$\begin{array}{r} 13.00- \\ 16.83 \end{array}$	1.0000	1.0000
L48	4	LDF6-50A(1-1/4)	$\begin{array}{r} 13.00- \\ 16.83 \end{array}$	1.0000	1.0000
L48	10	2" Flexible Conduit	$\begin{array}{r} 13.00- \\ 16.83 \end{array}$	1.0000	1.0000
L48	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 13.00- \\ 16.83 \end{array}$	1.0000	1.0000
L48	19	PL 0.75x4	$\begin{array}{r} 15.83- \\ 16.83 \end{array}$	1.0000	1.0000
L48	20	PL 0.75x4	$\begin{array}{r} 15.83- \\ 16.83 \end{array}$	1.0000	1.0000
L48	21	PL 0.75x4	$15.83-$ 16.83	1.0000	1.0000
L48	29	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 13.00- \\ 15.50 \end{array}$	1.0000	1.0000
L48	30	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 13.00- \\ 15.50 \end{array}$	1.0000	1.0000
L48	31	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 13.00- \\ 15.50 \end{array}$	1.0000	1.0000
L48	33	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 13.00- \\ 16.83 \end{array}$	1.0000	1.0000
L48	34	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 13.00- \\ 16.83 \end{array}$	1.0000	1.0000
L48	35	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 13.00- \\ 16.83 \end{array}$	1.0000	1.0000
L48	52	(Area) $\mathrm{CCl}-65 \mathrm{FP}-065125$	$13.00-$	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No Ice	$\begin{aligned} & K_{a} \\ & I c e \end{aligned}$
	53	(H)	16.83		
L48		(Area) CCI-65FP-065125	13.00 -	1.0000	1.0000
		(H)	16.83		
L48	54	(Area) CCI-65FP-065125	13.00 16.83	1.0000	1.0000
L48	56	(Area) CCI-65FP-060100	16.83 $13.00-$	1.0000	1.0000
		(H)	16.83		
L48	57	(Area) CCI-65FP-060100	13.00 -	1.0000	1.0000
		(H)	16.83		
L48	58	(Area) CCl-65FP-060100	$13.00-$	1.0000	1.0000
		(H)	16.83		
L49	1	CU12PSM9P8XXX(1-3/8)	$\begin{array}{r} 12.75- \\ 13.00 \end{array}$	1.0000	1.0000
L49	3	2" Flexible Conduit	12.75-	1.0000	1.0000
			13.00		
L49	4	LDF6-50A(1-1/4)	12.75 -	1.0000	1.0000
			13.00		
L49	10	2" Flexible Conduit	$\begin{array}{r} 12.75- \\ 13.00 \end{array}$	1.0000	1.0000
L49	16	HCS 6X12 4AWG(1-5/8)	12.75 -	1.0000	1.0000
			13.00		
L49	29	(Area) CCl-65FP-060100	12.75	1.0000	1.0000
	30	(Area) (H)	13.00		
L49		(Area) CCI-65FP-060100	$\begin{array}{r} 12.75- \\ 13.00 \end{array}$	1.0000	1.0000
L49	31	(Area) CCl-65FP-060100	12.75-	1.0000	1.0000
		(H)	13.00		
L49	33	(Area) CCI-65FP-060100	12.75 -	1.0000	1.0000
		(H)	13.00		
L49	34	(Area) CCI-65FP-060100	12.75 -	1.0000	1.0000
		(H)	13.00		
L49	35	(Area) CCl-65FP-060100	$12.75-$	1.0000	1.0000
L49	52	(${ }^{(\mathrm{H})}$	$\begin{array}{r} 13.00 \\ 12.75- \end{array}$		
		(Area) CCI-65FP-065125	$12.75-$ 13.00	1.0000	1.0000
L49	53	(Area) CCl-65FP-065125	12.75 -	1.0000	1.0000
	54	(H)	13.00		
L49		(Area) CCI-65FP-065125	$\begin{array}{r} 12.75- \\ 130 \end{array}$	1.0000	1.0000
L49	56	(Area) CCI-65FP-060100	13.00	1.0000	1.0000
		(H)	13.00		
L49	57	(Area) CCI-65FP-060100	12.75 -	1.0000	1.0000
		(H)	13.00		
L49	58	(Area) CCI-65FP-060100	12.75 -	1.0000	1.0000
		(H)	13.00		
L50	1	CU12PSM9P8XXX(1-3/8)	$\begin{array}{r} 11.92- \\ 12.75 \end{array}$	1.0000	1.0000
L50	3	2" Flexible Conduit	11.92-	1.0000	1.0000
			12.75		
L50	4	LDF6-50A(1-1/4)	11.92 -	1.0000	1.0000
			12.75		
L50	10	2" Flexible Conduit	11.92 -	1.0000	1.0000
			12.75		
L50	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 11.92- \\ 1075 \end{array}$	1.0000	1.0000
L50	29	(Area) CCl-65FP-060100	12.75 $11.92-$	1.0000	1.0000
		(H)	12.75		
L50	30	(Area) CCI-65FP-060100	11.92 -	1.0000	1.0000
		(H)	12.75		
L50	31	(Area) CCl-65FP-060100	11.92 -	1.0000	1.0000
L50		(H)	12.75		
	33	(Area) CCI-65FP-060100	11.92 -	1.0000	1.0000
L50	34	(H)	12.75		
		(Area) CCI-65FP-060100	$\begin{array}{r} 11.92- \\ 1275 \end{array}$	1.0000	1.0000
L50	35	(Area) CCI-65FP-060100	12.75	1.0000	1.0000
		(H)	12.75		
L50	52	(Area) CCI-65FP-065125	11.92-	1.0000	1.0000
			12.75		

tnxTower Report - version 8.1.1.0

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No lce	$\begin{aligned} & K_{a} \\ & I c e \end{aligned}$
L50	53	(Area) CCI-65FP-065125 (H)	$\begin{array}{r} 11.92-75 \\ 12.75 \end{array}$	1.0000	1.0000
L50	54	(Area) CCI-65FP-065125	$\begin{array}{r} 11.92- \\ 12.75 \end{array}$	1.0000	1.0000
L50	56	(Area) CCl -65FP-060100	$\begin{array}{r} 11.92- \\ 12.75 \end{array}$	1.0000	1.0000
L50	57	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 11.92- \\ 12.75 \end{array}$	1.0000	1.0000
L50	58	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 11.92- \\ 12.75 \end{array}$	1.0000	1.0000
L51	1	CU12PSM9P8XXX(1-3/8)	$\begin{array}{r} 11.67- \\ 11.92 \end{array}$	1.0000	1.0000
L51	3	2" Flexible Conduit	$\begin{array}{r} 11.67- \\ 11.92 \end{array}$	1.0000	1.0000
L51	4	LDF6-50A(1-1/4)	$\begin{array}{r} 11.67- \\ 11.92 \end{array}$	1.0000	1.0000
L51	10	2" Flexible Conduit	$\begin{array}{r} 11.67- \\ 11.92 \end{array}$	1.0000	1.0000
L51	16	HCS 6X12 4AWG(1-5/8)	$\begin{array}{r} 11.67- \\ 11.92 \end{array}$	1.0000	1.0000
L51	29	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 11.67- \\ 11.92 \end{array}$	1.0000	1.0000
L51	30	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 11.67- \\ 11.92 \end{array}$	1.0000	1.0000
L51	31	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 11.67- \\ 11.92 \end{array}$	1.0000	1.0000
L51	33	(Area) CCI-65FP-060100 (H)	$11.67-9$ 11.92	1.0000	1.0000
L51	34	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 11.67- \\ 11.92 \end{array}$	1.0000	1.0000
L51	35	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 11.67- \\ 11.92 \end{array}$	1.0000	1.0000
L51	52	(Area) CCI-65FP-065125 (H)	$11.67-9$ 11.92	1.0000	1.0000
L51	53	(Area) CCI-65FP-065125 (H)	$\begin{array}{r} 11.67 \\ 11.92 \end{array}$	1.0000	1.0000
L51	54	(Area) CCI-65FP-065125 (H)	11.67-1 11.92	1.0000	1.0000
L51	56	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 11.67- \\ 11.92 \end{array}$	1.0000	1.0000
L51	57	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 11.67- \\ 11.92 \end{array}$	1.0000	1.0000
L51	58	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 11.67- \\ 11.92 \end{array}$	1.0000	1.0000
L52	1	CU12PSM9P8XXX(1-3/8)	6.67-11.67	1.0000	1.0000
L52	3	2" Flexible Conduit	6.67-11.67	1.0000	1.0000
L52	4	LDF6-50A(1-1/4)	6.67-11.67	1.0000	1.0000
L52	10	2" Flexible Conduit	6.67-11.67	1.0000	1.0000
L52	16	HCS 6X12 4AWG(1-5/8)	6.67-11.67	1.0000	1.0000
L52	29	(Area) CCI-65FP-060100 (H)	$6.67-11.67$ $6.67-11.67$	1.0000	1.0000 1.0000
L52	30	(Area) CCI-65FP-060100 (H)	6.67-11.67	1.0000	1.0000
L52	31 33	(Area) CCI-65FP-060100 (H)	6.67-11.67	1.0000	1.0000
L52	33	(Area) CCI-65FP-060100 (H)	9.42-11.67	1.0000	1.0000
L52	34	(Area) CCI-65FP-060100 (H)	9.42-11.67	1.0000	1.0000
L52	35	(Area) CCI-65FP-060100 (H)	9.42-11.67	1.0000	1.0000
L52	51	(Area) CCI-65FP-065125	6.67-9.25	1.0000	1.0000
L52	52	(Area) CCl-65FP-065125	6.67-11.67	1.0000	1.0000
L52	53	(Area) CCI-65FP-065125	6.67-11.67	1.0000	1.0000
		(H)			
L52	54	(Area) CCl -65FP-065125	6.67-11.67	1.0000	1.0000

tnxTower Report - version 8.1.1.0

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No lce	$\begin{aligned} & K_{a} \\ & I c e \end{aligned}$
L52	56	(Area) CCI-65FP-060100	6.67-11.67	1.0000	1.0000
		(H)			
L52	57	(Area) CCI-65FP-060100 (H)	6.67-11.67	1.0000	1.0000
L52	58	(Area) CCI-65FP-060100	6.67-11.67	1.0000	1.0000
L53	1	CU12PSM9P8XXX(1-3/8)	6.50-6.67	1.0000	1.0000
L53	3	2" Flexible Conduit	6.50-6.67	1.0000	1.0000
L53	4	LDF6-50A(1-1/4)	6.50-6.67	1.0000	1.0000
L53	10	2" Flexible Conduit	6.50-6.67	1.0000	1.0000
L53	16	HCS 6X12 4AWG(1-5/8)	6.50-6.67	1.0000	1.0000
L53	29	(Area) CCI-65FP-060100	6.50-6.67	1.0000	1.0000
L53	30	(Area) CCI-65FP-060100	6.50-6.67	1.0000	1.0000
L53	31	(H)	6.50-6.67	1.0000	1.0000
L53	31	(H)	6.50-6.67	1.0000	1.0000
L53	51	(Area) CCl-65FP-065125	6.50-6.67	1.0000	1.0000
L53	52	(Area) CCI-65FP-065125	6.50-6.67	1.0000	1.0000
		(H)			
L53	53	(Area) CCI-65FP-065125	6.50-6.67	1.0000	1.0000
L53	54	$\begin{array}{r} (\mathrm{H}) \\ \text { (Area) CCI-65FP-065125 } \end{array}$	6.50-6.67	1.0000	1.0000
L53	54	(H)	6.50-6.67	1.0000	1.0000
L53	56	(Area) CCI-65FP-060100	6.50-6.67	1.0000	1.0000
		(H)			
L53	57	(Area) CCI-65FP-060100	6.50-6.67	1.0000	1.0000
		(H)			
L53	58	(Area) CCI-65FP-060100 (H)	6.50-6.67	1.0000	1.0000
L54	1	CU12PSM9P8XXX(1-3/8)	6.25-6.50	1.0000	1.0000
L54	3	2" Flexible Conduit	6.25-6.50	1.0000	1.0000
L54	4	LDF6-50A(1-1/4)	6.25-6.50	1.0000	1.0000
L54	10	2" Flexible Conduit	6.25-6.50	1.0000	1.0000
L54	16	HCS 6X12 4AWG(1-5/8)	6.25-6.50	1.0000	1.0000
L54	29	(Area) CCI-65FP-060100	6.25-6.50	1.0000	1.0000
L54	30	(Area) CCI-65FP-060100	6.25-6.50	1.0000	1.0000
L54	31	(H)			
L54	31	(Area) CCl-65FP-060100	6.25-6.50	1.0000	1.0000
L54	51	(Area) CCI-65FP-065125	6.25-6.50	1.0000	1.0000
		(H)			
L54	52	(Area) CCI-65FP-065125	6.25-6.50	1.0000	1.0000
L54	53	(Area) CCI-65FP-065125	6.25-6.50	1.0000	1.0000
L54	54	(Area) CCI-65FP-065125	6.25-6.50	1.0000	1.0000
		(H)			
L54	56	(Area) CCI-65FP-060100	6.25-6.50	1.0000	1.0000
		(H)			
L54	57	(Area) CCI-65FP-060100	6.25-6.50	1.0000	1.0000
		(Area) CCI-65FP-060100			
L54	58	(Area) CCI-65FP-060100 (H)	6.25-6.50	1.0000	1.0000
L55	1	CU12PSM9P8XXX(1-3/8)	3.75-6.25	1.0000	1.0000
L55	3	2" Flexible Conduit	3.75-6.25	1.0000	1.0000
L55	4	LDF6-50A(1-1/4)	3.75-6.25	1.0000	1.0000
L55	10	2" Flexible Conduit	3.75-6.25	1.0000	1.0000
L55	16	HCS 6X12 4AWG(1-5/8)	3.75-6.25	1.0000	1.0000
L55	29	(Area) CCI-65FP-060100	3.75-6.25	1.0000	1.0000
L55	30	(Area) CCI-65FP-060100	3.75-6.25	1.0000	1.0000
		(H)			
L55	31	(Area) CCI-65FP-060100	3.75-6.25	1.0000	1.0000
L55	51	(Area) CCI-65FP-065125	3.75-6.25	1.0000	1.0000

tnxTower Report - version 8.1.1.0

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{a} \\ \text { No Ice } \end{gathered}$	$\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$
L55	52	(Area) CCI-65FP-065125 (H)	3.75-6.25	1.0000	1.0000
L55	53	(Area) CCI-65FP-065125 (H)	3.75-6.25	1.0000	1.0000
L55	54	(Area) CCI-65FP-065125 (H)	3.75-6.25	1.0000	1.0000
L55	56	(Area) CCI-65FP-060100 (H)	3.75-6.25	1.0000	1.0000
L55	57	(Area) CCI-65FP-060100 (H)	3.75-6.25	1.0000	1.0000
L55	58	(Area) CCI-65FP-060100 (H)	3.75-6.25	1.0000	1.0000
L56	1	CU12PSM9P8XXX(1-3/8)	3.50-3.75	1.0000	1.0000
L56	3	2" Flexible Conduit	3.50-3.75	1.0000	1.0000
L56	4	LDF6-50A(1-1/4)	3.50-3.75	1.0000	1.0000
L56	10	2" Flexible Conduit	3.50-3.75	1.0000	1.0000
L56	16	HCS 6X12 4AWG(1-5/8)	3.50-3.75	1.0000	1.0000
L56	29	(Area) CCI-65FP-060100 (H)	3.50-3.75	1.0000	1.0000
L56	30	(Area) CCI-65FP-060100 (H)	3.50-3.75	1.0000	1.0000
L56	31	(Area) CCI-65FP-060100	3.50-3.75	1.0000	1.0000
L56	51	(Area) CCI-65FP-065125 (H)	3.50-3.75	1.0000	1.0000
L56	52	(Area) CCI-65FP-065125	3.50-3.75	1.0000	1.0000
L56	53	(Area) CCI-65FP-065125	3.50-3.75	1.0000	1.0000
L56	54	(Area) CCI-65FP-065125 (H)	3.50-3.75	1.0000	1.0000
L56	56	(Area) CCI-65FP-060100	3.50-3.75	1.0000	1.0000
L56	57	(Area) CCI-65FP-060100 (H)	3.50-3.75	1.0000	1.0000
L56	58	(Area) CCI-65FP-060100 (H)	3.50-3.75	1.0000	1.0000
L57	1	CU12PSM9P8XXX(1-3/8)	3.00-3.50	1.0000	1.0000
L57	3	2" Flexible Conduit	3.00-3.50	1.0000	1.0000
L57	4	LDF6-50A(1-1/4)	3.00-3.50	1.0000	1.0000
L57	10	2" Flexible Conduit	3.00-3.50	1.0000	1.0000
L57	16	HCS 6X12 4AWG(1-5/8)	3.00-3.50	1.0000	1.0000
L57	29	(Area) CCI-65FP-060100	3.00-3.50	1.0000	1.0000
L57	30	(Area) CCI-65FP-060100 (H)	3.00-3.50	1.0000	1.0000
L57	31	(Area) CCI-65FP-060100	3.00-3.50	1.0000	1.0000
L57	51	(Area) CCI-65FP-065125	3.00-3.50	1.0000	1.0000
L57	52	(Area) CCI-65FP-065125	3.00-3.50	1.0000	1.0000
L57	53	(Area) CCI-65FP-065125 (H)	3.00-3.50	1.0000	1.0000
L57	54	(Area) CCI-65FP-065125 (H)	3.00-3.50	1.0000	1.0000
L57	56	(Area) CCI-65FP-060100 (H)	3.00-3.50	1.0000	1.0000
L57	57	(Area) CCI-65FP-060100	3.00-3.50	1.0000	1.0000
L57	58	(Area) CCI-65FP-060100 (H)	3.00-3.50	1.0000	1.0000
L58	1	CU12PSM9P8XXX(1-3/8)	2.75-3.00	1.0000	1.0000
L58	3	2" Flexible Conduit	2.75-3.00	1.0000	1.0000
L58	4	LDF6-50A(1-1/4)	2.75-3.00	1.0000	1.0000
L58	10	2" Flexible Conduit	2.75-3.00	1.0000	1.0000
L58	16	HCS 6X12 4AWG(1-5/8)	2.75-3.00	1.0000	1.0000
L58	29	(Area) $\mathrm{CCl}-65 \mathrm{FP}-060100$	2.75-3.00	1.0000	1.0000

tnxTower Report - version 8.1.1.0

130 Ft Monopole Tower Structural Analysis

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{a} \\ \text { No Ice } \end{gathered}$	$\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$
L58	30	(Area) CCI-65FP-060100	2.75-3.00	1.0000	1.0000
		(H)			
L58	31	(Area) CCI-65FP-060100 (H)	2.75-3.00	1.0000	1.0000
L58	51	(Area) CCI-65FP-065125	2.75-3.00	1.0000	1.0000
L58	52	(Area) CCI-65FP-065125	2.75-3.00	1.0000	1.0000
L58	52	(H)	2.75-3.00	1.0000	1.0000
L58	53	(Area) CCI-65FP-065125	2.75-3.00	1.0000	1.0000
L58	54	(Area) CCI-65FP-065125	2.75-3.00	1.0000	1.0000
		(H)			
L58	56	(Area) CCI-65FP-060100	2.75-3.00	1.0000	1.0000
		(H)			
L58	57	(Area) CCI-65FP-060100	2.75-3.00	1.0000	1.0000
L58	58	(Area) CCl (H) ${ }^{\text {(H) }}$	2.75-3.00	1.0000	1.0000
L58	5	(H)			
L59	1	CU12PSM9P8XXX(1-3/8)	0.00-2.75	1.0000	1.0000
L59	3	2" Flexible Conduit	0.00-2.75	1.0000	1.0000
L59	4	LDF6-50A(1-1/4)	0.00-2.75	1.0000	1.0000
L59	10	2" Flexible Conduit	0.00-2.75	1.0000	1.0000
L59	16	HCS 6X12 4AWG(1-5/8)	0.00-2.75	1.0000	1.0000
L59	29	(Area) CCI-65FP-060100	0.00-2.75	1.0000	1.0000
L59	30	(Area) CCI-65FP-060100	0.00-2.75	1.0000	1.0000
L59	31	(Area) CCI-65FP-060100	0.00-2.75	1.0000	1.0000
		(H)			
L59	51	(Area) CCI-65FP-065125	0.00-2.75	1.0000	1.0000
L59	52	(Area) CCl-65FP-065125	0.00-2.75	1.0000	1.0000
		(H)			
L59	53	(Area) CCI-65FP-065125	0.00-2.75	1.0000	1.0000
		(H)			
L59	54	(Area) CCl-65FP-065125	0.00-2.75	1.0000	1.0000
L59	56	(Area) CCI-65FP-060100	0.00-2.75	1.0000	1.0000
		(H)			
L59	57	(Area) CCl-65FP-060100	0.00-2.75	1.0000	1.0000
L59	58	(Area) CCl-65FP-060100	0.00-2.75	1.0000	1.0000
		(H)			

Effective Width of Flat Linear Attachments / Feed Lines

Tower Section	Attachment Record No.	Description	Attachment Segment Elev.	Ratio Calculatio n Method	Effective Width Ratio
L8	47	(Area) CCI-65FP-045100	$\begin{array}{r} 90.00- \\ 91.50 \end{array}$	Auto	0.0000
L8	48	(Area) CCI-65FP-045100	$90.00-$ 91.50	Auto	0.0000
L8	49	(Area) CCI-65FP-045100	$\begin{array}{r} 90.00- \\ 91.50 \end{array}$	Auto	0.0000
L9	47	(Area) CCI-65FP-045100	$\begin{array}{r} 89.75- \\ 90.00 \end{array}$	Auto	0.0734
L9	48	(Area) CCI-65FP-045100	$\begin{array}{r} 89.75- \\ 90.00 \end{array}$	Auto	0.0734
L9	49	(Area) CCI-65FP-045100	89.75-1	Auto	0.0734

tnxTower Report - version 8.1.1.0

Tower Section	Attachment Record No.	Description	Attachment Segment Elev.	Ratio Calculatio n Method	Effective Width Ratio
L10	25	(H) PL 0.75x4	$\begin{array}{r} 90.00 \\ 84.75- \\ 85.83 \end{array}$	Auto	0.0000
L10	26	PL 0.75x4	$\begin{array}{r} 84.75- \\ 85.83 \end{array}$	Auto	0.0000
L10	27	PL 0.75x4	$\begin{array}{r} 84.75- \\ 85.83 \end{array}$	Auto	0.0000
L10	47	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 84.75- \\ 89.75 \end{array}$	Auto	0.0244
L10	48	(Area) CCl-65FP-045100	$\begin{array}{r} 84.75- \\ 89.75 \end{array}$	Auto	0.0244
L10	49	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 84.75- \\ 89.75 \end{array}$	Auto	0.0244
L10	62	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 84.75- \\ 85.17 \end{array}$	Auto	0.0000
L10	63	(Area) CCI-65FP-045125	$\begin{array}{r} 84.75- \\ 85.17 \end{array}$	Auto	0.0000
L10	64	(Area) CCl -65FP-045125	$\begin{array}{r} 84.75- \\ 85.17 \end{array}$	Auto	0.0000
L11	25	PL 0.75×4	$\begin{array}{r} 84.58- \\ 84.75 \end{array}$	Auto	0.0000
L11	26	PL 0.75x4	$\begin{array}{r} 84.58- \\ 84.75 \end{array}$	Auto	0.0000
L11	27	PL 0.75x4	$\begin{array}{r} 84.58- \\ 84.75 \end{array}$	Auto	0.0000
L11	47	(Area) CCl -65FP-045100	$\begin{array}{r} 84.58- \\ 84.75 \end{array}$	Auto	0.0000
L11	48	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 84.58- \\ 84.75 \end{array}$	Auto	0.0000
L11	49	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 84.58- \\ 84.75 \end{array}$	Auto	0.0000
L11	62	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 84.58- \\ 84.75 \end{array}$	Auto	0.0000
L11	63	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 84.58- \\ 84.75 \end{array}$	Auto	0.0000
L11	64	(Area) CCI -65FP-045125	$\begin{array}{r} 84.58- \\ 84.75 \end{array}$	Auto	0.0000
L12	25	PL 0.75×4	$\begin{array}{r} 84.33- \\ 84.58 \end{array}$	Auto	0.0000
L12	26	PL 0.75x4	$\begin{array}{r} 84.33- \\ 84.58 \end{array}$	Auto	0.0000
L12	27	PL 0.75×4	$\begin{array}{r} 84.33- \\ 84.58 \end{array}$	Auto	0.0000
L12	47	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 84.33- \\ 84.58 \end{array}$	Auto	0.0745
L12	48	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 84.33- \\ 84.58 \end{array}$	Auto	0.0745
L12	49	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 84.33- \\ 84.58 \end{array}$	Auto	0.0745
L12	62	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 84.33 \\ 84.58 \end{array}$	Auto	0.0745
L12	63	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 84.33- \\ 84.58 \end{array}$	Auto	0.0745
L12	64	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 84.33- \\ 84.58 \end{array}$	Auto	0.0745
L13	25	$\text { PL } 0.75 \times 4$	$\begin{array}{r} 83.42- \\ 84.33 \end{array}$	Auto	0.0000
L13	26	PL 0.75x4	$\begin{array}{r} 83.42- \\ 84.33 \end{array}$	Auto	0.0000
L13	27	PL 0.75x4	$\begin{array}{r} 83.42- \\ 84.33 \end{array}$	Auto	0.0000
L13	47	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 83.42- \\ 84.33 \end{array}$	Auto	0.0584
L13	48	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 83.42- \\ 84.33 \end{array}$	Auto	0.0584
L13	49	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 83.42- \\ 84.33 \end{array}$	Auto	0.0584
L13	62	(Area) CCI-65FP-045125	83.42 -	Auto	0.0584

tnxTower Report - version 8.1.1.0

Tower Section	Attachment Record No.	Description	Attachment Segment Elev.	Ratio Calculatio n Method	Effective Width Ratio
L13	63	(Area) CCI-65FP-045125	$\begin{array}{r} 84.33 \\ 83.42- \\ 84.33 \end{array}$	Auto	0.0584
L13	64	(Area) CCI-65FP-045125	$83.42-3$	Auto	0.0584
L14	25	PL 0.75x4	$\begin{array}{r} 83.17- \\ 83.42 \end{array}$	Auto	0.1487
L14	26	PL 0.75x4	$83.17-1$ 83.42	Auto	0.1487
L14	27	PL 0.75x4	$\begin{array}{r} 83.17- \\ 83.42 \end{array}$	Auto	0.1487
L14	47	(Area) CCI-65FP-045100 (H)	$83.17-1$ 83.42	Auto	0.2433
L14	48	(Area) CCI-65FP-045100 (H)	$83.17-1$ 83.42	Auto	0.2433
L14	49	(Area) CCI-65FP-045100 (H)	$83.17-1$ 83.42	Auto	0.2433
L14	62	(Area) CCI-65FP-045125 (H)	$83.17-1$ 83.42	Auto	0.2433
L14	63	(Area) CCI-65FP-045125 (H)	$83.17-1$	Auto	0.2433
L14	64	(Area) CCl-65FP-045125	83.17-1 83.42	Auto	0.2433
L15	25	PL 0.75x4	$\begin{array}{r} 83.00- \\ 83.17 \end{array}$	Auto	0.1452
L15	26	PL 0.75x4	$\begin{array}{r} 83.00- \\ 83.17 \end{array}$	Auto	0.1452
L15	27	PL 0.75x4	$83.00-17$	Auto	0.1452
L15	47	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 83.00- \\ 83.17 \end{array}$	Auto	0.2402
L15	48	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 83.00- \\ 83.17 \end{array}$	Auto	0.2402
L15	49	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 83.00- \\ 83.17 \end{array}$	Auto	0.2402
L15	62	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 83.00- \\ 83.17 \end{array}$	Auto	0.2402
L15	63	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 83.00- \\ 83.17 \end{array}$	Auto	0.2402
L15	64	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 83.00- \\ 83.17 \end{array}$	Auto	0.2402
L16	25	PL 0.75x4	$82.75-$ 83.00	Auto	0.0000
L16	26	PL 0.75x4	$\begin{array}{r} 82.75- \\ 83.00 \end{array}$	Auto	0.0000
L16	27	PL 0.75x4	$82.75-$ 83.00	Auto	0.0000
L16	47	(Area) CCI-65FP-045100 (H)	$82.75-$ 83.00	Auto	0.0882
L16	48	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 82.75- \\ 83.00 \end{array}$	Auto	0.0882
L16	49	(Area) CCI-65FP-045100 (H)	$82.75-$ 83.00	Auto	0.0882
L16	62	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 82.75- \\ 83.00 \end{array}$	Auto	0.0882
L16	63	(Area) CCI-65FP-045125 (H)	$82.75-$ 83.00	Auto	0.0882
L16	64	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 82.75- \\ 83.00 \end{array}$	Auto	0.0882
L17	25	PL 0.75x4	$\begin{array}{r} 77.75- \\ 82.75 \end{array}$	Auto	0.0000
L17	26	PL 0.75x4	$\begin{array}{r} 77.75- \\ 82.75 \end{array}$	Auto	0.0000
L17	27	PL 0.75x4	$\begin{array}{r} 77.75- \\ 82.75 \end{array}$	Auto	0.0000
L17	47	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 81.50- \\ 82.75 \end{array}$	Auto	0.0547
L17	48	(Area) CCI-65FP-045100	$81.50-$	Auto	0.0547

tnxTower Report - version 8.1.1.0

Tower Section	Attachment Record No.	Description	Attachment Segment Elev.	Ratio Calculatio n Method	Effective Width Ratio
L17	49	(H) (Area) CCI-65FP-045100 (H)	82.75 81.50 82.75	Auto	0.0547
L17	62	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 77.75- \\ 82.75 \end{array}$	Auto	0.0275
L17	63	(Area) CCl-65FP-045125	$\begin{array}{r} 77.75- \\ 82.75 \end{array}$	Auto	0.0275
L17	64	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 77.75- \\ 82.75 \end{array}$	Auto	0.0275
L18	25	$\text { PL } 0.75 \times 4$	$\begin{array}{r} 70.00- \\ 77.75 \end{array}$	Auto	0.0000
L18	26	PL 0.75x4	$\begin{array}{r} 70.00- \\ 77.75 \end{array}$	Auto	0.0000
L18	27	PL 0.75x4	$\begin{array}{r} 70.00- \\ 77.75 \end{array}$	Auto	0.0000
L18	62	(Area) CCl-65FP-045125	$\begin{array}{r} 70.00- \\ 77.75 \end{array}$	Auto	0.0000
L18	63	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 70.00- \\ 77.75 \end{array}$	Auto	0.0000
L18	64	(Area) CCl-65FP-045125	$\begin{array}{r} 70.00- \\ 77.75 \end{array}$	Auto	0.0000
L19	25	PL 0.75x4	$\begin{array}{r} 69.00- \\ 70.00 \end{array}$	Auto	0.0000
L19	26	PL 0.75x4	$\begin{array}{r} 69.00- \\ 70.00 \end{array}$	Auto	0.0000
L19	27	PL 0.75x4	$69.00-$ 70.00	Auto	0.0000
L19	62	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 69.00- \\ 70.00 \end{array}$	Auto	0.0000
L19	63	(Area) CCl-65FP-045125	$\begin{array}{r} 69.00- \\ 70.00 \end{array}$	Auto	0.0000
L19	64	(Area) CCl-65FP-045125	$\begin{array}{r} 69.00- \\ 70.00 \end{array}$	Auto	0.0000
L20	22	PL 0.75x4	$\begin{array}{r} 67.08- \\ 68.25 \end{array}$	Auto	0.0000
L20	23	PL 0.75x4	$\begin{array}{r} 67.08- \\ 68.25 \end{array}$	Auto	0.0000
L20	24	PL 0.75x4	$\begin{array}{r} 67.08- \\ 68.25 \end{array}$	Auto	0.0000
L20	25	PL 0.75x4	$\begin{array}{r} 67.08- \\ 69.00 \end{array}$	Auto	0.0000
L20	26	PL 0.75x4	$\begin{array}{r} 67.08- \\ 69.00 \end{array}$	Auto	0.0000
L20	27	PL 0.75x4	$\begin{array}{r} 67.08- \\ 69.00 \end{array}$	Auto	0.0000
L20	62	(Area) CCl-65FP-045125	$\begin{array}{r} 67.08- \\ 69.00 \end{array}$	Auto	0.0000
L20	63	(Area) CCl-65FP-045125 (H)	$\begin{array}{r} 67.08- \\ 69.00 \end{array}$	Auto	0.0000
L20	64	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 67.08- \\ 69.00 \end{array}$	Auto	0.0000
L21	22	PL 0.75x4	$\begin{array}{r} 66.83- \\ 67.08 \end{array}$	Auto	0.0000
L21	23	PL 0.75x4	$\begin{array}{r} 66.83- \\ 67.08 \end{array}$	Auto	0.0000
L21	24	PL 0.75x4	$\begin{array}{r} 66.83- \\ 67.08 \end{array}$	Auto	0.0000
L21	25	PL 0.75x4	$\begin{array}{r} 66.83- \\ 67.08 \end{array}$	Auto	0.0000
L21	26	PL 0.75x4	$\begin{array}{r} 66.83- \\ 67.08 \end{array}$	Auto	0.0000
L21	27	PL 0.75x4	$\begin{array}{r} 66.83- \\ 67.08 \end{array}$	Auto	0.0000
L21	62	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 66.83- \\ 67.08 \end{array}$	Auto	0.0000
L21	63	(Area) CCl-65FP-045125	$\begin{array}{r} 66.83- \\ 67.08 \end{array}$	Auto	0.0000
L21	64	(Area) CCl-65FP-045125	66.83 -	Auto	0.0000

tnxTower Report - version 8.1.1.0

Tower Section	Attachment Record No.	Description	Attachment Segment Elev.	Ratio Calculatio n Method	Effective Width Ratio
L22	22	(H) PL 0.75x4	$\begin{array}{r} 67.08 \\ 64.08- \\ 66.83 \end{array}$	Auto	0.0000
L22	23	PL 0.75x4	$\begin{array}{r} 64.08- \\ 66.83 \end{array}$	Auto	0.0000
L22	24	PL 0.75x4	$\begin{array}{r} 64.08- \\ 66.83 \end{array}$	Auto	0.0000
L22	25	PL 0.75x4	$\begin{array}{r} 65.83- \\ 66.83 \end{array}$	Auto	0.0000
L22	26	PL 0.75x4	$\begin{array}{r} 65.83- \\ 66.83 \end{array}$	Auto	0.0000
L22	27	PL 0.75x4	$\begin{array}{r} 65.83- \\ 66.83 \end{array}$	Auto	0.0000
L22	43	(Area) CCl-65FP-045100	$\begin{array}{r} 64.08- \\ 66.08 \end{array}$	Auto	0.0000
L22	44	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 64.08- \\ 66.08 \end{array}$	Auto	0.0000
L22	45	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 64.08- \\ 64.50 \end{array}$	Auto	0.0000
L22	62	(Area) CCl -65FP-045125	$\begin{array}{r} 64.08- \\ 66.83 \end{array}$	Auto	0.0000
L22	63	(Area) CCl-65FP-045125 (H)	$\begin{array}{r} 64.08- \\ 66.83 \end{array}$	Auto	0.0000
L22	64	(Area) CCl -65FP-045125	$\begin{array}{r} 64.08- \\ 66.83 \end{array}$	Auto	0.0000
L23	22	PL 0.75x4	$\begin{array}{r} 63.83- \\ 64.08 \end{array}$	Auto	0.0000
L23	23	PL 0.75x4	$\begin{array}{r} 63.83- \\ 64.08 \end{array}$	Auto	0.0000
L23	24	PL 0.75x4	$\begin{array}{r} 63.83- \\ 64.08 \end{array}$	Auto	0.0000
L23	43	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 63.83- \\ 64.08 \end{array}$	Auto	0.0000
L23	44	(Area) CCl -65FP-045100	$\begin{array}{r} 63.83- \\ 64.08 \end{array}$	Auto	0.0000
L23	45	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 63.83- \\ 64.08 \end{array}$	Auto	0.0000
L23	62	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 63.83 \\ 64.08 \end{array}$	Auto	0.0000
L23	63	(Area) CCl -65FP-045125	$\begin{array}{r} 63.83- \\ 64.08 \end{array}$	Auto	0.0000
L23	64	(Area) CCl-65FP-045125	$\begin{array}{r} 63.83- \\ 64.08 \end{array}$	Auto	0.0000
L24	22	PL 0.75×4	$\begin{array}{r} 62.50- \\ 63.83 \end{array}$	Auto	0.0000
L24	23	PL 0.75x4	$\begin{array}{r} 62.50- \\ 63.83 \end{array}$	Auto	0.0000
L24	24	PL 0.75x4	$\begin{array}{r} 62.50- \\ 63.83 \end{array}$	Auto	0.0000
L24	43	(Area) CCl-65FP-045100	$\begin{array}{r} 62.50- \\ 63.83 \end{array}$	Auto	0.0000
L24	44	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 62.50- \\ 63.83 \end{array}$	Auto	0.0000
L24	45	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 62.50- \\ 63.83 \end{array}$	Auto	0.0000
L24	62	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 62.50- \\ 63.83 \end{array}$	Auto	0.0000
L24	63	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 62.50- \\ 63.83 \end{array}$	Auto	0.0000
L24	64	(Area) CCl -65FP-045125	$\begin{array}{r} 62.50- \\ 63.83 \end{array}$	Auto	0.0000
L25	22	PL 0.75x4	$\begin{array}{r} 62.25- \\ 62.50 \end{array}$	Auto	0.0000
L25	23	PL 0.75x4	$\begin{array}{r} 62.25- \\ 62.50 \end{array}$	Auto	0.0000
L25	24	PL 0.75x4	$62.25-$ 62.50	Auto	0.0000
L25	43	(Area) $\mathrm{CCl}-65 \mathrm{FP}-045100$	62.25 -	Auto	0.0000

tnxTower Report - version 8.1.1.0

Tower Section	Attachment Record No.	Description	Attachment Segment Elev.	Ratio Calculatio n Method	Effective Width Ratio
L25	44	(H) (Area) CCI-65FP-045100 (H)	62.50 62.25 62.50	Auto	0.0000
L25	45	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 62.25- \\ 62.50 \end{array}$	Auto	0.0000
L25	62	(Area) CCI-65FP-045125 (H)	$62.25-$ 62.50	Auto	0.0000
L25	63	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 62.25- \\ 62.50 \end{array}$	Auto	0.0000
L25	64	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 62.25- \\ 62.50 \end{array}$	Auto	0.0000
L26	22	PL 0.75x4	$\begin{array}{r} 57.25- \\ 62.25 \end{array}$	Auto	0.0000
L26	23	PL 0.75x4	$\begin{array}{r} 57.25- \\ 62.25 \end{array}$	Auto	0.0000
L26	24	PL 0.75x4	$\begin{array}{r} 57.25- \\ 62.25 \end{array}$	Auto	0.0000
L26	43	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 57.25- \\ 62.25 \end{array}$	Auto	0.0000
L26	44	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 57.25- \\ 62.25 \end{array}$	Auto	0.0000
L26	45	(Area) CCl-65FP-045100 (H)	$\begin{array}{r} 57.25- \\ 62.25 \end{array}$	Auto	0.0000
L26	62	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 57.25- \\ 62.25 \end{array}$	Auto	0.0000
L26	63	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 57.25- \\ 62.25 \end{array}$	Auto	0.0000
L26	64	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 57.25- \\ 62.25 \end{array}$	Auto	0.0000
L27	22	$\text { PL } 0.75 \times 4$	$\begin{array}{r} 53.50- \\ 57.25 \end{array}$	Auto	0.0000
L27	23	PL 0.75x4	$\begin{array}{r} 53.50- \\ 57.25 \end{array}$	Auto	0.0000
L27	24	PL 0.75x4	$\begin{array}{r} 53.50- \\ 57.25 \end{array}$	Auto	0.0000
L27	40	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 53.50- \\ 56.00 \end{array}$	Auto	0.0745
L27	41	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 53.50- \\ 56.00 \end{array}$	Auto	0.0745
L27	43	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 56.00- \\ 57.25 \end{array}$	Auto	0.0000
L27	44	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 56.00- \\ 57.25 \end{array}$	Auto	0.0000
L27	45	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 53.50- \\ 57.25 \end{array}$	Auto	0.0000
L27	59	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 53.50- \\ 55.08 \end{array}$	Auto	0.0694
L27	60	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 53.50- \\ 55.08 \end{array}$	Auto	0.0694
L27	61	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 53.50- \\ 55.08 \end{array}$	Auto	0.0694
L27	62	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 55.08- \\ 57.25 \end{array}$	Auto	0.0000
L27	63	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 55.08- \\ 57.25 \end{array}$	Auto	0.0000
L27	64	(Area) CCI-65FP-045125 (H)	$\begin{array}{r} 55.08- \\ 57.25 \end{array}$	Auto	0.0000
L28	22	PL 0.75×4	$\begin{array}{r} 53.25- \\ 53.50 \end{array}$	Auto	0.0000
L28	23	PL 0.75x4	$\begin{array}{r} 53.25- \\ 53.50 \end{array}$	Auto	0.0000
L28	24	PL 0.75x4	$\begin{array}{r} 53.25- \\ 53.50 \end{array}$	Auto	0.0000
L28	40	(Area) CCI-65FP-060100	$\begin{array}{r} 53.25- \\ 53.50 \end{array}$	Auto	0.0703
L28	41	(Area) CCl-65FP-060100	$53.25-$	Auto	0.0703
L28	45	(Area) CCl-65FP-045100	$\begin{array}{r} 53.50 \\ 53.25- \end{array}$	Auto	0.0000

tnxTower Report - version 8.1.1.0

Tower Section	Attachment Record No.	Description	Attachment Segment Elev.	Ratio Calculatio n Method	Effective Width Ratio
L28	59	(H) (Area) CCI-65FP-060100 (H)	53.50 53.25 53.50	Auto	0.0703
L28	60	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 53.25- \\ 53.50 \end{array}$	Auto	0.0703
L28	61	(Area) CCl-65FP-060100	$\begin{array}{r} 53.25- \\ 53.50 \end{array}$	Auto	0.0703
L29	22	PL 0.75×4	$\begin{array}{r} 52.58- \\ 53.25 \end{array}$	Auto	0.0000
L29	23	PL 0.75x4	$\begin{array}{r} 52.58- \\ 53.25 \end{array}$	Auto	0.0000
L29	24	PL 0.75x4	52.58-1	Auto	0.0000
L29	40	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 52.58- \\ 53.25 \end{array}$	Auto	0.0596
L29	41	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 52.58- \\ 53.25 \end{array}$	Auto	0.0596
L29	45	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 52.58- \\ 53.25 \end{array}$	Auto	0.0000
L29	59	(Area) CCl-65FP-060100	$\begin{array}{r} 52.58- \\ 53.25 \end{array}$	Auto	0.0596
L29	60	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 52.58- \\ 53.25 \end{array}$	Auto	0.0596
L29	61	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 52.58- \\ 53.25 \end{array}$	Auto	0.0596
L30	22	PL 0.75x4	$\begin{array}{r} 52.33- \\ 52.58 \end{array}$	Auto	0.0000
L30	23	PL 0.75x4	$\begin{array}{r} 52.33- \\ 52.58 \end{array}$	Auto	0.0000
L30	24	PL 0.75x4	$\begin{array}{r} 52.33- \\ 52.58 \end{array}$	Auto	0.0000
L30	40	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 52.33- \\ 52.58 \end{array}$	Auto	0.0712
L30	41	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 52.33- \\ 52.58 \end{array}$	Auto	0.0712
L30	45	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 52.33- \\ 52.58 \end{array}$	Auto	0.0000
L30	59	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 52.33- \\ 52.58 \end{array}$	Auto	0.0712
L30	60	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 52.33- \\ 52.58 \end{array}$	Auto	0.0712
L30	61	(Area) CCl-65FP-060100	$\begin{array}{r} 52.33- \\ 52.58 \end{array}$	Auto	0.0712
L31	22	PL 0.75x4	$\begin{array}{r} 47.33- \\ 52.33 \end{array}$	Auto	0.0000
L31	23	PL 0.75x4	$\begin{array}{r} 47.33- \\ 52.33 \end{array}$	Auto	0.0000
L31	24	PL 0.75x4	$\begin{array}{r} 47.33- \\ 52.33 \end{array}$	Auto	0.0000
L31	40	(Area) CCl-65FP-060100	$\begin{array}{r} 47.33- \\ 52.33 \end{array}$	Auto	0.0307
L31	41	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 47.33- \\ 52.33 \end{array}$	Auto	0.0307
L31	45	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 47.33- \\ 52.33 \end{array}$	Auto	0.0000
L31	59	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 47.33- \\ 52.33 \end{array}$	Auto	0.0307
L31	60	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 47.33- \\ 52.33 \end{array}$	Auto	0.0307
L31	61	(Area) CCl-65FP-060100	$\begin{array}{r} 47.33- \\ 52.33 \end{array}$	Auto	0.0307
L32	19	PL 0.75x4	$\begin{array}{r} 44.58- \\ 45.83 \end{array}$	Auto	0.0000
L32	20	PL 0.75x4	$\begin{array}{r} 44.58- \\ 45.83 \end{array}$	Auto	0.0000
L32	21	PL 0.75x4	$\begin{array}{r} 44.58- \\ 45.83 \end{array}$	Auto	0.0000
L32	22	PL 0.75x4	44.58-1	Auto	0.0000

Tower Section	Attachment Record No.	Description	Attachment Segment Elev.	Ratio Calculatio n Method	Effective Width Ratio
L32	23	PL 0.75x4	$\begin{array}{r} \hline 47.33 \\ 44.58- \\ 47.33 \end{array}$	Auto	0.0000
L32	24	PL 0.75×4	$\begin{array}{r} 44.58- \\ 47.33 \end{array}$	Auto	0.0000
L32	40	(Area) CCI-65FP-060100	$\begin{array}{r} 44.58- \\ 47.33 \end{array}$	Auto	0.0000
L32	41	(Area) CCl -65FP-060100	$\begin{array}{r} 44.58- \\ 47.33 \end{array}$	Auto	0.0000
L32	45	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 44.58- \\ 47.33 \end{array}$	Auto	0.0000
L32	59	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 44.58- \\ 47.33 \end{array}$	Auto	0.0000
L32	60	(Area) CCl-65FP-060100	$\begin{array}{r} 44.58- \\ 47.33 \end{array}$	Auto	0.0000
L32	61	(Area) CCl-65FP-060100	$\begin{array}{r} 44.58- \\ 47.33 \end{array}$	Auto	0.0000
L33	19	PL 0.75x4	$\begin{array}{r} 44.33- \\ 44.58 \end{array}$	Auto	0.0000
L33	20	PL 0.75x4	$\begin{array}{r} 44.33- \\ 44.58 \end{array}$	Auto	0.0000
L33	21	PL 0.75×4	$\begin{array}{r} 44.33- \\ 44.58 \end{array}$	Auto	0.0000
L33	22	PL 0.75x4	$\begin{array}{r} 44.33- \\ 44.58 \end{array}$	Auto	0.0000
L33	23	PL 0.75x4	$\begin{array}{r} 44.33- \\ 44.58 \end{array}$	Auto	0.0000
L33	24	PL 0.75x4	$\begin{array}{r} 44.33- \\ 44.58 \end{array}$	Auto	0.0000
L33	36	(Area) CCI-65FP-060100	$\begin{array}{r} 44.33- \\ 44.42 \end{array}$	Auto	0.0000
L33	40	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 44.33- \\ 44.58 \end{array}$	Auto	0.0000
L33	41	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 44.33- \\ 44.58 \end{array}$	Auto	0.0000
L33	45	(Area) CCI-65FP-045100 (H)	$\begin{array}{r} 44.50- \\ 44.58 \end{array}$	Auto	0.0000
L33	59	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 44.33- \\ 44.58 \end{array}$	Auto	0.0000
L33	60	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 44.33- \\ 44.58 \end{array}$	Auto	0.0000
L33	61	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 44.33- \\ 44.58 \end{array}$	Auto	0.0000
L34	19	PL 0.75x4	$\begin{array}{r} 41.92- \\ 44.33 \end{array}$	Auto	0.0000
L34	20	PL 0.75x4	$\begin{array}{r} 41.92- \\ 44.33 \end{array}$	Auto	0.0000
L34	21	PL 0.75x4	$41.92-$ 44.33	Auto	0.0000
L34	22	PL 0.75x4	$\begin{array}{r} 43.25- \\ 44.33 \end{array}$	Auto	0.0000
L34	23	PL 0.75x4	$\begin{array}{r} 43.25- \\ 44.33 \end{array}$	Auto	0.0000
L34	24	PL 0.75x4	$43.25-$ 44.33	Auto	0.0000
L34	36	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 41.92- \\ 44.33 \end{array}$	Auto	0.0000
L34	40	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 41.92- \\ 44.33 \end{array}$	Auto	0.0000
L34	41	(Area) CCl-65FP-060100 (H)	$\begin{array}{r} 41.92- \\ 44.33 \end{array}$	Auto	0.0000
L34	59	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 41.92- \\ 44.33 \end{array}$	Auto	0.0000
L34	60	(Area) CCI-65FP-060100	$\begin{array}{r} 41.92- \\ 44.33 \end{array}$	Auto	0.0000
L34	61	(Area) CCl-65FP-060100	41.92-	Auto	0.0000
L35	19	PL 0.75×4	44.33	Auto	0.0000

tnxTower Report - version 8.1.1.0

Tower Section	Attachment Record No.	Description	Attachment Segment Elev.	Ratio Calculatio n Method	Effective Width Ratio
L35	20	PL 0.75x4	41.92 41.67 41.92	Auto	0.0000
L35	21	PL 0.75x4	$\begin{array}{r} 41.67- \\ 41.92 \end{array}$	Auto	0.0000
L35	36	(Area) CCl -65FP-060100	$\begin{array}{r} 41.67- \\ 41.92 \end{array}$	Auto	0.0000
L35	40	(Area) CCl-65FP-060100	$\begin{array}{r} 41.67- \\ 41.92 \end{array}$	Auto	0.0000
L35	41	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 41.67- \\ 41.92 \end{array}$	Auto	0.0000
L35	59	(Area) $\mathrm{CCl}-65 \mathrm{FP}-060100$	$\begin{array}{r} 41.67- \\ 41.92 \end{array}$	Auto	0.0000
L35	60	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 41.67- \\ 41.92 \end{array}$	Auto	0.0000
L35	61	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 41.67- \\ 41.92 \end{array}$	Auto	0.0000
L36	19	PL 0.75x4	$\begin{array}{r} 34.08- \\ 41.67 \end{array}$	Auto	0.0000
L36	20	PL 0.75x4	$\begin{array}{r} 34.08- \\ 41.67 \end{array}$	Auto	0.0000
L36	21	PL 0.75x4	$\begin{array}{r} 34.08- \\ 41.67 \end{array}$	Auto	0.0000
L36	36	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 34.08- \\ 41.67 \end{array}$	Auto	0.0000
L36	40	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 34.08- \\ 41.67 \end{array}$	Auto	0.0000
L36	41	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 34.08- \\ 41.67 \end{array}$	Auto	0.0000
L36	59	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 34.08- \\ 41.67 \end{array}$	Auto	0.0000
L36	60	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 34.08- \\ 41.67 \end{array}$	Auto	0.0000
L36	61	(Area) CCl-65FP-060100	$\begin{array}{r} 34.08- \\ 41.67 \end{array}$	Auto	0.0000
L37	19	PL 0.75x4	$\begin{array}{r} 34.00- \\ 34.08 \end{array}$	Auto	0.0000
L37	20	PL 0.75x4	$\begin{array}{r} 34.00- \\ 34.08 \end{array}$	Auto	0.0000
L37	21	PL 0.75x4	$\begin{array}{r} 34.00- \\ 34.08 \end{array}$	Auto	0.0000
L37	36	(Area) CCl-65FP-060100	$\begin{array}{r} 34.00- \\ 34.08 \end{array}$	Auto	0.0000
L37	40	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 34.00- \\ 34.08 \end{array}$	Auto	0.0000
L37	41	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 34.00- \\ 34.08 \end{array}$	Auto	0.0000
L37	59	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 34.00- \\ 34.08 \end{array}$	Auto	0.0000
L37	60	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 34.00- \\ 34.08 \end{array}$	Auto	0.0000
L37	61	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 34.00- \\ 34.08 \end{array}$	Auto	0.0000
L38	19	PL 0.75x4	$\begin{array}{r} 29.00- \\ 34.00 \end{array}$	Auto	0.0000
L38	20	PL 0.75x4	$\begin{array}{r} 29.00- \\ 34.00 \end{array}$	Auto	0.0000
L38	21	PL 0.75x4	29.00-	Auto	0.0000
L38	36	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 29.00- \\ 34.00 \end{array}$	Auto	0.0000
L38	37	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 29.00- \\ 29.42 \end{array}$	Auto	0.0000
L38	38	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 29.00- \\ 29.42 \end{array}$	Auto	0.0000
L38	40	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 29.00- \\ 34.00 \end{array}$	Auto	0.0000
L38	41	(Area) CCI-65FP-060100	29.00-1	Auto	0.0000

Tower Section	Attachment Record No.	Description	Attachment Segment Elev.	Ratio Calculatio n Method	Effective Width Ratio
L38	59	(H) (Area) CCI-65FP-060100 (H)	$\begin{array}{r} 34.00 \\ 29.00- \\ 34.00 \end{array}$	Auto	0.0000
L38	60	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 29.00- \\ 34.00 \end{array}$	Auto	0.0000
L38	61	(Area) CCI-65FP-060100 (H)	29.00-	Auto	0.0000
L39	19	PL 0.75x4	$\begin{array}{r} 26.92- \\ 29.00 \end{array}$	Auto	0.0000
L39	20	PL 0.75x4	$\begin{array}{r} 26.92- \\ 29.00 \end{array}$	Auto	0.0000
L39	21	PL 0.75x4	$26.92-$ 29.00	Auto	0.0000
L39	36	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 26.92- \\ 29.00 \end{array}$	Auto	0.0000
L39	37	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 26.92- \\ 29.00 \end{array}$	Auto	0.0000
L39	38	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 26.92- \\ 29.00 \end{array}$	Auto	0.0000
L39	40	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 26.92- \\ 29.00 \end{array}$	Auto	0.0000
L39	41	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 26.92- \\ 29.00 \end{array}$	Auto	0.0000
L39	59	(Area) CCI-65FP-060100 (H)	$26.92-1$ 29.00	Auto	0.0000
L39	60	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 26.92- \\ 29.00 \end{array}$	Auto	0.0000
L39	61	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 26.92- \\ 29.00 \end{array}$	Auto	0.0000
L40	19	PL 0.75x4	$\begin{array}{r} 26.67- \\ 26.92 \end{array}$	Auto	0.0000
L40	20	PL 0.75x4	$\begin{array}{r} 26.67- \\ 26.92 \end{array}$	Auto	0.0000
L40	21	PL 0.75x4	$\begin{array}{r} 26.67- \\ 26.92 \end{array}$	Auto	0.0000
L40	36	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 26.67- \\ 26.92 \end{array}$	Auto	0.0000
L40	37	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 26.67- \\ 26.92 \end{array}$	Auto	0.0000
L40	38	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 26.67 \\ 26.92 \end{array}$	Auto	0.0000
L40	40	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 26.67- \\ 26.92 \end{array}$	Auto	0.0000
L40	41	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 26.67 \\ 26.92 \end{array}$	Auto	0.0000
L40	59	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 26.67- \\ 26.92 \end{array}$	Auto	0.0000
L40	60	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 26.67- \\ 26.92 \end{array}$	Auto	0.0000
L40	61	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 26.67 \\ 26.92 \end{array}$	Auto	0.0000
L41	19	PL 0.75x4	$\begin{array}{r} 21.67- \\ 26.67 \end{array}$	Auto	0.0000
L41	20	PL 0.75x4	$\begin{array}{r} 21.67- \\ 26.67 \end{array}$	Auto	0.0000
L41	21	PL 0.75x4	$\begin{array}{r} 21.67- \\ 26.67 \end{array}$	Auto	0.0000
L41	36	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 21.67- \\ 26.67 \end{array}$	Auto	0.0000
L41	37	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 21.67- \\ 26.67 \end{array}$	Auto	0.0000
L41	38	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 21.67- \\ 26.67 \end{array}$	Auto	0.0000
L41	40	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 21.67- \\ 26.67 \end{array}$	Auto	0.0000
L41	41	(Area) CCI-65FP-060100 (H)	21.67-67	Auto	0.0000
L41	59	(Area) CCI-65FP-060100	21.67-1	Auto	0.0000

Tower Section	Attachment Record No.	Description	Attachment Segment Elev.	Ratio Calculatio n Method	Effective Width Ratio
L41	60	(H) (Area) $\mathrm{CCl}-65 \mathrm{FP}-060100$ (H)	$\begin{array}{r} 26.67 \\ 21.67- \\ 26.67 \end{array}$	Auto	0.0000
L41	61	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 21.67- \\ 26.67 \end{array}$	Auto	0.0000
L42	19	PL 0.75x4	$\begin{array}{r} 18.00- \\ 21.67 \end{array}$	Auto	0.0000
L42	20	PL 0.75x4	$\begin{array}{r} 18.00- \\ 21.67 \end{array}$	Auto	0.0000
L42	21	PL 0.75x4	$\begin{array}{r} 18.00- \\ 21.67 \end{array}$	Auto	0.0000
L42	33	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 18.00- \\ 20.75 \end{array}$	Auto	0.0000
L42	34	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 18.00- \\ 20.75 \end{array}$	Auto	0.0000
L42	35	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 18.00- \\ 20.75 \end{array}$	Auto	0.0000
L42	36	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 20.75- \\ 21.67 \end{array}$	Auto	0.0000
L42	37	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 20.75- \\ 21.67 \end{array}$	Auto	0.0000
L42	38	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 20.75- \\ 21.67 \end{array}$	Auto	0.0000
L42	40	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 21.00- \\ 21.67 \end{array}$	Auto	0.0000
L42	41	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 21.00- \\ 21.67 \end{array}$	Auto	0.0000
L42	52	(Area) CCI-65FP-065125 (H)	$\begin{array}{r} 18.00- \\ 20.75 \end{array}$	Auto	0.0000
L42	53	(Area) CCI-65FP-065125 (H)	$\begin{array}{r} 18.00- \\ 20.75 \end{array}$	Auto	0.0000
L42	54	(Area) CCI-65FP-065125 (H)	$\begin{array}{r} 18.00- \\ 20.75 \end{array}$	Auto	0.0000
L42	56	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 18.00- \\ 20.00 \end{array}$	Auto	0.0000
L42	57	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 18.00- \\ 20.00 \end{array}$	Auto	0.0000
L42	58	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 18.00- \\ 20.00 \end{array}$	Auto	0.0000
L42	59	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 20.00- \\ 21.67 \end{array}$	Auto	0.0000
L42	60	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 20.00- \\ 21.67 \end{array}$	Auto	0.0000
L42	61	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 20.00- \\ 21.67 \end{array}$	Auto	0.0000
L43	19	$\text { PL } 0.75 \times 4$	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	Auto	0.0000
L43	20	PL 0.75x4	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	Auto	0.0000
L43	21	PL 0.75x4	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	Auto	0.0000
L43	33	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	Auto	0.0000
L43	34	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	Auto	0.0000
L43	35	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	Auto	0.0000
L43	52	(Area) CCI-65FP-065125 (H)	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	Auto	0.0000
L43	53	(Area) CCI-65FP-065125 (H)	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	Auto	0.0000
L43	54	(Area) CCI-65FP-065125 (H)	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	Auto	0.0000
L43	56	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	Auto	0.0000
L43	57	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 17.75- \\ 18.00 \end{array}$	Auto	0.0000
L43	58	(Area) CCI-65FP-060100	$17.75-$	Auto	0.0000

tnxTower Report - version 8.1.1.0

Tower Section	Attachment Record No.	Description	Attachment Segment Elev.	Ratio Calculatio n Method	Effective Width Ratio
L44	19	(H) PL 0.75×4	$\begin{array}{r} 18.00 \\ 17.50- \\ 17.75 \end{array}$	Auto	0.0000
L44	20	PL 0.75x4	$\begin{array}{r} 17.50- \\ 17.75 \end{array}$	Auto	0.0000
L44	21	PL 0.75x4	$\begin{array}{r} 17.50- \\ 17.75 \end{array}$	Auto	0.0000
L44	33	(Area) CCI-65FP-060100	$\begin{array}{r} 17.50- \\ 17.75 \end{array}$	Auto	0.0000
L44	34	(Area) $\mathrm{CCl}-65 \mathrm{FP}-060100$	$\begin{array}{r} 17.50- \\ 17.75 \end{array}$	Auto	0.0000
L44	35	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 17.50- \\ 17.75 \end{array}$	Auto	0.0000
L44	52	(Area) CCI-65FP-065125 (H)	$\begin{array}{r} 17.50- \\ 17.75 \end{array}$	Auto	0.0000
L44	53	(Area) CCI-65FP-065125 (H)	$\begin{array}{r} 17.50- \\ 17.75 \end{array}$	Auto	0.0000
L44	54	(Area) CCI-65FP-065125 (H)	$\begin{array}{r} 17.50- \\ 17.75 \end{array}$	Auto	0.0000
L44	56	(Area) CCl-65FP-060100	$\begin{array}{r} 17.50- \\ 17.75 \end{array}$	Auto	0.0000
L44	57	(Area) $\mathrm{CCl}-65 \mathrm{FP}-060100$	$\begin{array}{r} 17.50- \\ 17.75 \end{array}$	Auto	0.0000
L44	58	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 17.50- \\ 17.75 \end{array}$	Auto	0.0000
L45	19	PL 0.75x4	$\begin{array}{r} 17.25- \\ 17.50 \end{array}$	Auto	0.0000
L45	20	PL 0.75x4	$\begin{array}{r} 17.25- \\ 17.50 \end{array}$	Auto	0.0000
L45	21	PL 0.75x4	$\begin{array}{r} 17.25- \\ 17.50 \end{array}$	Auto	0.0000
L45	33	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 17.25- \\ 17.50 \end{array}$	Auto	0.0000
L45	34	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 17.25- \\ 17.50 \end{array}$	Auto	0.0000
L45	35	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 17.25- \\ 17.50 \end{array}$	Auto	0.0000
L45	52	(Area) CCI-65FP-065125 (H)	$\begin{array}{r} 17.25- \\ 17.50 \end{array}$	Auto	0.0000
L45	53	(Area) CCI-65FP-065125 (H)	$\begin{array}{r} 17.25- \\ 17.50 \end{array}$	Auto	0.0000
L45	54	(Area) CCI-65FP-065125 (H)	$\begin{array}{r} 17.25- \\ 17.50 \end{array}$	Auto	0.0000
L45	56	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 17.25- \\ 17.50 \end{array}$	Auto	0.0000
L45	57	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 17.25- \\ 17.50 \end{array}$	Auto	0.0000
L45	58	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 17.25- \\ 17.50 \end{array}$	Auto	0.0000
L46	19	$\text { PL } 0.75 \times 4$	$\begin{array}{r} 17.08- \\ 17.25 \end{array}$	Auto	0.0000
L46	20	PL 0.75x4	$\begin{array}{r} 17.08- \\ 17.25 \end{array}$	Auto	0.0000
L46	21	PL 0.75x4	$\begin{array}{r} 17.08- \\ 17.25 \end{array}$	Auto	0.0000
L46	33	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 17.08- \\ 17.25 \end{array}$	Auto	0.0000
L46	34	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 17.08- \\ 17.25 \end{array}$	Auto	0.0000
L46	35	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 17.08- \\ 17.25 \end{array}$	Auto	0.0000
L46	52	(Area) CCI-65FP-065125 (H)	$\begin{array}{r} 17.08- \\ 17.25 \end{array}$	Auto	0.0000
L46	53	(Area) CCI-65FP-065125 (H)	$\begin{array}{r} 17.08- \\ 17.25 \end{array}$	Auto	0.0000
L46	54	(Area) CCI-65FP-065125	$17.08-$	Auto	0.0000
L46	56	(Area) CCI-65FP-060100	$\begin{array}{r} 17.25 \\ 17.08- \end{array}$	Auto	0.0000

tnxTower Report - version 8.1.1.0

Tower Section	Attachment Record No.	Description	Attachment Segment Elev.	Ratio Calculatio n Method	Effective Width Ratio
L46	57	(H)	17.25		
		(Area) CCI-65FP-060100	17.08 -		0.0000
		(H)	17.25		
L46	58	(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 17.08- \\ 17.25 \end{array}$	Auto	0.0000
L47	19				
		PL 0.75x4	17.08	Auto	0.0000
L47	20	PL 0.75x4	17.08	Auto	0.0000
L47		PL 0.75x4		Auto	
	21		$\begin{array}{r} 17.08 \\ 1683 \end{array}$		0.0000
$\llcorner 47$	33	(Area) CCl -65FP-060100		Auto	0.0000
			17.08		
L47	34	(Area) CCI-65FP-060100	$16.83-$	Auto	0.0000
$\llcorner 47$			$\begin{array}{r} 17.08 \\ 16.83 \end{array}$		
	35	(Area) CCl-65FP-060100	$\begin{array}{r} 16.83- \\ 17.08 \end{array}$	Auto	0.0000
L47	52	(Area) CCl -65FP-065125	$16.83-$	Auto	0.0000
			17.08		
L47	53	(Area) CCl -65FP-065125	$\begin{array}{r} 16.83- \\ 17.08 \end{array}$	Auto	0.0000
L47	54	(Area) CCl-65FP-065125		Auto	0.0000
			$\begin{array}{r} 16.83 \\ 17.08 \end{array}$		
L47	56	(Area) CCl -65FP-060100	$\begin{array}{r} 16.83- \\ 17.08 \end{array}$	Auto	0.0000
L47					
	57	(Area) CCI-65FP-060100	$\begin{array}{r} 16.83 \\ 17.08 \end{array}$	Auto	0.0000
L47	58	(Area) CCl -65FP-060100	$\begin{array}{r} 16.83- \\ 17.08 \end{array}$	Auto	0.0000
L48	19	PL 0.75x4	16.83	Auto	0.0000
L48	20	PL 0.75x4	$\begin{array}{r} 16.83 \\ 15.83 \end{array}$	Auto	0.0000
	21		$\begin{array}{r} 15.83- \\ 16.83 \end{array}$		
L48		PL 0.75×4	$\begin{array}{r} 15.83- \\ 16.83 \end{array}$	Auto	0.0000
L48	29	(Area) CCI-65FP-060100	$13.00-$	Auto	0.0000
		(H)	15.50		
L48	30	(Area) CCl -65FP-060100	$\begin{array}{r} 13.00- \\ 15.50 \end{array}$	Auto	0.0000
	31				
L48		(Area) CCI-65FP-060100 (H)	$\begin{array}{r} 13.00- \\ 15.50 \end{array}$	Auto	0.0000
L48	33				0.0000
		(H)	$\begin{array}{r} 13.00- \\ 16.83 \end{array}$	Auto	
L48	34	(Area) CCI-65FP-060100	$\begin{array}{r} 13.00- \\ 16.83 \end{array}$	Auto	0.0000
L48	35				
		(Area) CCI-65FP-060100	$\begin{array}{r} 13.00- \\ 16.83 \end{array}$	Auto	0.0000
L48	52	(Area) CCl-65FP-065125	$\begin{array}{r} 13.00- \\ 16.83 \end{array}$	Auto	0.0000
L48	53	(Area) CCI-65FP-065125	$\begin{array}{r} 13.00- \\ 16.83 \end{array}$	Auto	0.0000
L48	54	(Area) CCI -65FP-065125	$\begin{array}{r} 13.00- \\ 16.83 \end{array}$	Auto	0.0000
L48					
	56	(Area) CCI-65FP-060100	$\begin{array}{r} 13.00- \\ 16.83 \end{array}$	Auto	0.0000
L48	57				
		(Area) CCI-65FP-060100	$\begin{array}{r} 13.00- \\ 16.83 \end{array}$	Auto	0.0000
L48	58	(Area) CCl-65FP-060100	13.00-	Auto	0.0000
		(H)	16.83		
L49	29	(Area) CCI-65FP-060100	$12.75-13$	Auto	0.0000
$\llcorner 49$	30	(H) (Area)	13.00 $12.75-$	Auto	0.0000
L49	30	(H)	12.75-00	Auto	0.0000
L49	31	(Area) CCI-65FP-060100	12.75 -	Auto	0.0000
		(H)	13.00		
L49	33	(Area) CCl-65FP-060100	12.75 -	Auto	0.0000
			13.00		
L49	34	(Area) CCI-65FP-060100	$12.75-$	Auto	0.0000

\begin{tabular}{|c|c|c|c|c|c|}
\hline Tower Section \& Attachment Record No. \& Description \& Attachment Segment Elev. \& Ratio Calculatio \(n\) Method \& \begin{tabular}{l}
Effective \\
Width \\
Ratio
\end{tabular} \\
\hline L49 \& 35 \& (H)
(Area) CCI-65FP-060100

(H) \& $$
\begin{array}{r}
13.00 \\
12.75- \\
13.00
\end{array}
$$ \& Auto \& 0.0000

\hline L49 \& 52 \& | (Area) CCI-65FP-065125 |
| :--- |
| (H) | \& \[

$$
\begin{array}{r}
12.75- \\
13.00
\end{array}
$$
\] \& Auto \& 0.0000

\hline L49 \& 53 \& | (Area) CCI-65FP-065125 |
| :--- |
| (H) | \& $12.75-$

13.00 \& Auto \& 0.0000

\hline L49 \& 54 \& | (Area) CCI-65FP-065125 |
| :--- |
| (H) | \& \[

$$
\begin{array}{r}
12.75- \\
13.00
\end{array}
$$
\] \& Auto \& 0.0000

\hline L49 \& 56 \& | (Area) CCI-65FP-060100 |
| :--- |
| (H) | \& \[

$$
\begin{array}{r}
12.75- \\
13.00
\end{array}
$$
\] \& Auto \& 0.0000

\hline L49 \& 57 \& | (Area) CCI-65FP-060100 |
| :--- |
| (H) | \& \[

$$
\begin{array}{r}
12.75- \\
13.00
\end{array}
$$
\] \& Auto \& 0.0000

\hline L49 \& 58 \& | (Area) CCI-65FP-060100 |
| :--- |
| (H) | \& \[

$$
\begin{array}{r}
12.75- \\
13.00
\end{array}
$$
\] \& Auto \& 0.0000

\hline L50 \& 29 \& | (Area) CCI-65FP-060100 |
| :--- |
| (H) | \& \[

$$
\begin{array}{r}
11.92- \\
12.75
\end{array}
$$
\] \& Auto \& 0.0000

\hline L50 \& 30 \& | (Area) CCI-65FP-060100 |
| :--- |
| (H) | \& \[

$$
\begin{array}{r}
11.92- \\
12.75
\end{array}
$$
\] \& Auto \& 0.0000

\hline L50 \& 31 \& | (Area) CCI-65FP-060100 |
| :--- |
| (H) | \& \[

$$
\begin{array}{r}
11.92- \\
12.75
\end{array}
$$
\] \& Auto \& 0.0000

\hline L50 \& 33 \& | (Area) CCI-65FP-060100 |
| :--- |
| (H) | \& 11.92- \& Auto \& 0.0000

\hline L50 \& 34 \& | (Area) CCI-65FP-060100 |
| :--- |
| (H) | \& \[

$$
\begin{array}{r}
11.92- \\
12.75
\end{array}
$$
\] \& Auto \& 0.0000

\hline L50 \& 35 \& | (Area) CCI-65FP-060100 |
| :--- |
| (H) | \& \[

$$
\begin{array}{r}
11.92- \\
12.75
\end{array}
$$
\] \& Auto \& 0.0000

\hline L50 \& 52 \& | (Area) CCI-65FP-065125 |
| :--- |
| (H) | \& \[

$$
\begin{array}{r}
11.92- \\
12.75
\end{array}
$$
\] \& Auto \& 0.0000

\hline L50 \& 53 \& | (Area) CCI-65FP-065125 |
| :--- |
| (H) | \& \[

$$
\begin{array}{r}
11.92- \\
12.75
\end{array}
$$
\] \& Auto \& 0.0000

\hline L50 \& 54 \& | (Area) CCI-65FP-065125 |
| :--- |
| (H) | \& \[

$$
\begin{array}{r}
11.92- \\
12.75
\end{array}
$$
\] \& Auto \& 0.0000

\hline L50 \& 56 \& | (Area) CCI-65FP-060100 |
| :--- |
| (H) | \& \[

$$
\begin{array}{r}
11.92- \\
12.75
\end{array}
$$
\] \& Auto \& 0.0000

\hline L50 \& 57 \& | (Area) CCI-65FP-060100 |
| :--- |
| (H) | \& \[

$$
\begin{array}{r}
11.92- \\
12.75
\end{array}
$$
\] \& Auto \& 0.0000

\hline L50 \& 58 \& | (Area) CCI-65FP-060100 |
| :--- |
| (H) | \& \[

$$
\begin{array}{r}
11.92- \\
12.75
\end{array}
$$
\] \& Auto \& 0.0000

\hline L51 \& 29 \& | (Area) CCI-65FP-060100 |
| :--- |
| (H) | \& \[

$$
\begin{array}{r}
11.67- \\
11.92
\end{array}
$$
\] \& Auto \& 0.0000

\hline L51 \& 30 \& | (Area) CCI-65FP-060100 |
| :--- |
| (H) | \& $11.67-1$

11.92 \& Auto \& 0.0000

\hline L51 \& 31 \& | (Area) CCI-65FP-060100 |
| :--- |
| (H) | \& \[

$$
\begin{array}{r}
11.67- \\
11.92
\end{array}
$$
\] \& Auto \& 0.0000

\hline L51 \& 33 \& | (Area) CCI-65FP-060100 |
| :--- |
| (H) | \& $11.67-1$

11.92 \& Auto \& 0.0000

\hline L51 \& 34 \& | (Area) CCI-65FP-060100 |
| :--- |
| (H) | \& \[

$$
\begin{array}{r}
11.67- \\
11.92
\end{array}
$$
\] \& Auto \& 0.0000

\hline L51 \& 35 \& | (Area) CCI-65FP-060100 |
| :--- |
| (H) | \& $11.67-$

11.92 \& Auto \& 0.0000

\hline L51 \& 52 \& | (Area) CCI-65FP-065125 |
| :--- |
| (H) | \& 11.67-1 \& Auto \& 0.0000

\hline L51 \& 53 \& | (Area) CCI-65FP-065125 |
| :--- |
| (H) | \& \[

$$
\begin{array}{r}
11.67- \\
11.92
\end{array}
$$
\] \& Auto \& 0.0000

\hline L51 \& 54 \& | (Area) CCI-65FP-065125 |
| :--- |
| (H) | \& 11.67-1 \& Auto \& 0.0000

\hline L51 \& 56 \& | (Area) CCI-65FP-060100 |
| :--- |
| (H) | \& \[

$$
\begin{array}{r}
11.67- \\
11.92
\end{array}
$$
\] \& Auto \& 0.0000

\hline L51 \& 57 \& | (Area) CCI-65FP-060100 |
| :--- |
| (H) | \& $11.67-$

11.92 \& Auto \& 0.0000

\hline L51 \& 58 \& | (Area) CCI-65FP-060100 |
| :--- |
| (H) | \& 11.67-1 \& Auto \& 0.0000

\hline L52 \& 29 \& (Area) CCI-65FP-060100 \& 6.67-11.67 \& Auto \& 0.0000

\hline L52 \& 30 \& (Area) CCl-65FP-060100 \& 6.67-11.67 \& Auto \& 0.0000

\hline L52 \& 31 \& (Area) CCl-65FP-060100 \& 6.67-11.67 \& Auto \& 0.0000

\hline
\end{tabular}

tnxTower Report - version 8.1.1.0

Tower Section	Attachment Record No.	Description	Attachment Segment Elev.	Ratio Calculatio n Method	Effective Width Ratio
L52	33	$\begin{array}{rr} (\mathrm{H}) \\ \text { (Area) CCI-65FP-060100 } \\ & (\mathrm{H}) \end{array}$	9.42-11.67	Auto	0.0000
L52	34	(Area) CCI-65FP-060100 (H)	9.42-11.67	Auto	0.0000
L52	35	(Area) CCI-65FP-060100 (H)	9.42-11.67	Auto	0.0000
L52	51	(Area) CCI-65FP-065125 (H)	6.67-9.25	Auto	0.0000
L52	52	(Area) CCI-65FP-065125	6.67-11.67	Auto	0.0000
L52	53	(Area) CCI-65FP-065125	6.67-11.67	Auto	0.0000
L52	54	(Area) CCI-65FP-065125 (H)	6.67-11.67	Auto	0.0000
L52	56	(Area) CCI-65FP-060100 (H)	6.67-11.67	Auto	0.0000
L52	57	(Area) CCl-65FP-060100 (H)	6.67-11.67	Auto	0.0000
L52	58	(Area) CCI-65FP-060100	6.67-11.67	Auto	0.0000
L53	29	(Area) CCl-65FP-060100	6.50-6.67	Auto	0.0000
L53	30	(Area) CCI-65FP-060100 (H)	6.50-6.67	Auto	0.0000
L53	31	(Area) CCI-65FP-060100 (H)	6.50-6.67	Auto	0.0000
L53	51	(Area) CCI-65FP-065125 (H)	6.50-6.67	Auto	0.0000
L53	52	(Area) CCI-65FP-065125	6.50-6.67	Auto	0.0000
L53	53	(Area) CCI-65FP-065125	6.50-6.67	Auto	0.0000
L53	54	(Area) CCI-65FP-065125 (H)	6.50-6.67	Auto	0.0000
L53	56	(Area) CCI-65FP-060100	6.50-6.67	Auto	0.0000
L53	57	(Area) CCI-65FP-060100	6.50-6.67	Auto	0.0000
L53	58	(Area) CCI-65FP-060100 (H)	6.50-6.67	Auto	0.0000
L54	29	(Area) CCI-65FP-060100 (H)	6.25-6.50	Auto	0.0000
L54	30	(Area) CCI-65FP-060100 (H)	6.25-6.50	Auto	0.0000
L54	31	(Area) CCI-65FP-060100	6.25-6.50	Auto	0.0000
L54	51	(Area) CCI-65FP-065125	6.25-6.50	Auto	0.0000
L54	52	(Area) CCI-65FP-065125 (H)	6.25-6.50	Auto	0.0000
L54	53	(Area) CCI-65FP-065125	6.25-6.50	Auto	0.0000
L54	54	(Area) CCI-65FP-065125 (H)	6.25-6.50	Auto	0.0000
L54	56	(Area) CCI-65FP-060100	6.25-6.50	Auto	0.0000
L54	57	(Area) CCI-65FP-060100	6.25-6.50	Auto	0.0000
L54	58	(Area) CCI-65FP-060100 (H)	6.25-6.50	Auto	0.0000
L55	29	(Area) CCI-65FP-060100 (H)	3.75-6.25	Auto	0.0000
L55	30	(Area) CCI-65FP-060100	3.75-6.25	Auto	0.0000
L55	31	(Area) CCI-65FP-060100 (H)	3.75-6.25	Auto	0.0000
L55	51	(Area) CCl-65FP-065125	3.75-6.25	Auto	0.0000

Tower Section	Attachment Record No.	Description	Attachment Segment Elev.	Ratio Calculatio n Method	Effective Width Ratio
L55	52	(Area) CCI-65FP-065125	3.75-6.25	Auto	0.0000
L55	53	(Area) CCI-65FP-065125	3.75-6.25	Auto	0.0000
L55	54	(Area) CCI-65FP-065125	3.75-6.25	Auto	0.0000
L55	56	(Area) CCI-65FP-060100	3.75-6.25	Auto	0.0000
L55	57	(Area) CCI-65FP-060100	3.75-6.25	Auto	0.0000
L55	58	(Area) CCI-65FP-060100	3.75-6.25	Auto	0.0000
L56	29	(Area) CCI-65FP-060100 (H)	3.50-3.75	Auto	0.0000
L56	30	(Area) CCI-65FP-060100	3.50-3.75	Auto	0.0000
L56	31	(Area) CCI-65FP-060100	3.50-3.75	Auto	0.0000
L56	51	(Area) CCI-65FP-065125	3.50-3.75	Auto	0.0000
L56	52	(Area) CCl-65FP-065125	3.50-3.75	Auto	0.0000
L56	53		3.50-3.75	Auto	0.0000
L56	5	(H)	3.50-3.75	Auto	0.0000
L56	54	(Area) CCI-65FP-065125	3.50-3.75	Auto	0.0000
L56	56	$\begin{array}{r} (\mathrm{H}) \\ \text { (Area) CCI-65FP-060100 } \end{array}$	3.50-3.75	Auto	0.0000
		(H)			
L56	57	(Area) CCI-65FP-060100	3.50-3.75	Auto	0.0000
L56	58	(Area) CCl-65FP-060100	3.50-3.75	Auto	0.0000
		(H)			
L57	29		3.00-3.50	Auto	0.0000
	30	(Area) CCI-65FP-060100			
L57	30	(Area) CCl-65FP-060100	3.00-3.50	Auto	0.0000
L57	31	(Area) CCl-65FP-060100	3.00-3.50	Auto	0.0000
L57	51	(Area) CCI-65FP-065125	3.00-3.50	Auto	0.0000
		(H)			
L57	52	(Area) CCl-65FP-065125	3.00-3.50	Auto	0.0000
L57	53	(Area) CCI-65FP-065125	3.00-3.50	Auto	0.0000
L57	53	(H)	3.00-3.50	Auto	0.0000
L57	54	(Area) CCI-65FP-065125	3.00-3.50	Auto	0.0000
		(H)			
L57	56	(Area) CCI-65FP-060100	3.00-3.50	Auto	0.0000
L57	57	(Area) CCI-65FP-060100	3.00-3.50	Auto	0.0000
L57	58	(Area) CCI-65FP-060100	3.00-3.50	Auto	0.0000
L58	29	(H)	2.75-3.00	Auto	0.0000
	29	(H)	2.75-3.00	Auto	0.0000
L58	30	(Area) CCl-65FP-060100	2.75-3.00	Auto	0.0000
		(H)			
L58	31	(Area) CCI-65FP-060100 (H)	2.75-3.00	Auto	0.0000
L58	51	(Area) CCI-65FP-065125	2.75-3.00	Auto	0.0000
L58	52	(Area) CCI-65FP-065125	2.75-3.00	Auto	0.0000
		(H)			
L58	53	(Area) CCI-65FP-065125	2.75-3.00	Auto	0.0000
L58	54	(Area) CCI-65FP-065125	2.75-3.00	Auto	0.0000
L58	56	(Area) CCI-65FP-060100	2.75-3.00	Auto	0.0000

tnxTower Report - version 8.1.1.0

130 Ft Monopole Tower Structural Analysis

Tower Section	Attachment Record No.	Description	Attachment Segment Elev.	Ratio Calculatio n Method	Effective Width Ratio
		(H)			
L58	57	(Area) CCI-65FP-060100	2.75-3.00	Auto	0.0000
L58	58	(H)	2.75-3.00	Auto	0.0000
L59	29	(Area) CCl-65FP-060100	0.00-2.75	Auto	0.0000
		(H)			
L59	30	(Area) CCI-65FP-060100	0.00-2.75	Auto	0.0000
		(Area) CCI-65FP-060100			
L59	31	(Area) CCI-65FP-060100 (H)	0.00-2.75	Auto	0.0000
L59	51	(Area) CCI-65FP-065125	0.00-2.75	Auto	0.0000
		(H)			
L59	52	(Area) CCI-65FP-065125	0.00-2.75	Auto	0.0000
L59	53	(Area) CCl-65FP-065125	0.00-2.75	Auto	0.0000
		(H)			
L59	54	(Area) CCl-65FP-065125	0.00-2.75	Auto	0.0000
		(H)			
L59	56	(Area) CCl-65FP-060100	0.00-2.75	Auto	0.0000
L59	57	(Area) CCl-65FP-060100	0.00-2.75	Auto	0.0000
		(H)			
L59	58	(Area) CCI-65FP-060100	0.00-2.75	Auto	0.0000

Discrete Tower Loads					
Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	$\begin{aligned} & \text { Offset } \\ & \text { Type } \end{aligned}$	Offsets:	Azimuth	Placement
			Horz	Adjustment	
			Lateral		
			Vert		
			ft ft	-	f
			ft		
80010798 w/ Mount Pipe	A	From Leg	4.0000	0.00	121.0000
			0.00		
			-1.00		
80010798 w/ Mount Pipe	B	From Leg	4.0000	0.00	121.0000
			0.00		
			-1.00		
80010798 w/ Mount Pipe	C	From Leg	4.0000	0.00	121.0000
			0.00		
			-1.00		
(2) $80010965 \mathrm{w} / \mathrm{Mount}$ Pipe	A	From Leg	4.0000	0.00	121.0000
			0.00		
			-1.00		
(2) $80010965 \mathrm{w} / \mathrm{Mount}$ Pipe	B	From Leg	4.0000	0.00	121.0000
			0.00		
			-1.00		
(2) $80010965 \mathrm{w} / \mathrm{Mount}$ Pipe	C	From Leg	4.0000	0.00	121.0000
			0.00		
			-1.00		
80010121 w/ Mount Pipe	A	From Leg	4.0000	0.00	121.0000
			0.00		
			-1.00		
80010121 w/ Mount Pipe	B	From Leg	4.0000	0.00	121.0000
			0.00		
			-1.00		
80010121 w/ Mount Pipe	C	From Leg	4.0000	0.00	121.0000
			0.00		

tnxTower Report - version 8.1.1.0

130 Ft Monopole Tower Structural Analysis

\begin{tabular}{|c|c|c|c|c|c|}
\hline Description \& \[
\begin{aligned}
\& \text { Face } \\
\& \text { or } \\
\& \text { Leg }
\end{aligned}
\] \& Offset Type \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral Vert \\
ft \\
\(f t\)
\end{tabular} \& Azimuth Adjustment \& Placement

ft

\hline RRUS E2 B29 \& A \& From Leg \& | -1.00 4.0000 0.00 |
| :--- |
| -1.00 | \& 0.00 \& 121.0000

\hline RRUS E2 B29 \& B \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
-1.00
\end{gathered}
$$ \& 0.00 \& 121.0000

\hline RRUS E2 B29 \& C \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
-1.00
\end{gathered}
$$ \& 0.00 \& 121.0000

\hline RRUS 8843 B2/B66A \& A \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
-1.00
\end{gathered}
$$ \& 0.00 \& 121.0000

\hline RRUS 8843 B2/B66A \& B \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
-1.00
\end{gathered}
$$ \& 0.00 \& 121.0000

\hline RRUS 8843 B2/B66A \& C \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
-1.00
\end{gathered}
$$ \& 0.00 \& 121.0000

\hline DC6-48-60-18-8F \& A \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
-1.00
\end{gathered}
$$ \& 0.00 \& 121.0000

\hline DC6-48-60-18-8F \& B \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
-1.00
\end{gathered}
$$ \& 0.00 \& 121.0000

\hline (2) DC6-48-60-18-8F \& C \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
-1.00
\end{gathered}
$$ \& 0.00 \& 121.0000

\hline RRUS 32 B30 \& A \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
-1.00
\end{gathered}
$$ \& 0.00 \& 121.0000

\hline RRUS 32 B30 \& B \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
-1.00
\end{gathered}
$$ \& 0.00 \& 121.0000

\hline RRUS 32 B30 \& C \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
-1.00
\end{gathered}
$$ \& 0.00 \& 121.0000

\hline RRUS 4478 B14 \& A \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
-1.00
\end{gathered}
$$ \& 0.00 \& 121.0000

\hline RRUS 4478 B14 \& B \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
-1.00
\end{gathered}
$$ \& 0.00 \& 121.0000

\hline RRUS 4478 B14 \& c \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
-1.00
\end{gathered}
$$ \& 0.00 \& 121.0000

\hline RRUS 4449 B5/B12 \& A \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
-1.00
\end{gathered}
$$ \& 0.00 \& 121.0000

\hline RRUS 4449 B5/B12 \& B \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
-1.00
\end{gathered}
$$ \& 0.00 \& 121.0000

\hline RRUS 4449 B5/B12 \& C \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
-1.00
\end{gathered}
$$ \& 0.00 \& 121.0000

\hline (2) LGP21401 \& A \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
-1.00
\end{gathered}
$$ \& 0.00 \& 121.0000

\hline (2) LGP21401 \& B \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
-1.00
\end{gathered}
$$ \& 0.00 \& 121.0000

\hline (2) LGP21401 \& C \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
-1.00
\end{gathered}
$$ \& 0.00 \& 121.0000

\hline (2) 2.4" Dia $\times 6$-ft Pipe (Horizontal) \& A \& From Leg \& 4.0000 \& 0.00 \& 121.0000

\hline
\end{tabular}

130 Ft Monopole Tower Structural Analysis

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert ft ft ft	Azimuth Adjustment	Placement ft
			$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$		
(2) 2.4" Dia $\times 6$-ft Pipe (Horizontal)	B	From Leg	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	121.0000
(2) 2.4" Dia x 6-ft Pipe (Horizontal)	C	From Leg	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	121.0000
Side Arm Mount [SO 102-3]	C	None		0.00	121.0000
Platform Mount [LP 602-1]	C	None		0.00	121.0000
(2) SBNHH-1D65B w/ Mount Pipe	A	From Leg	$\begin{gathered} 4.0000 \\ 0.00 \\ 2.00 \end{gathered}$	0.00	109.0000
(2) SBNHH-1D65B w/ Mount Pipe	B	From Leg	$\begin{gathered} 4.0000 \\ 0.00 \\ 2.00 \end{gathered}$	0.00	109.0000
(2) SBNHH-1D65B w/ Mount Pipe	C	From Leg	$\begin{gathered} 4.0000 \\ 0.00 \\ 2.00 \end{gathered}$	0.00	109.0000
BXA-80063/4CF w/ Mount Pipe	A	From Leg	$\begin{gathered} 4.0000 \\ 0.00 \\ 2.00 \end{gathered}$	0.00	109.0000
BXA-80063/4CF w/ Mount Pipe	B	From Leg	$\begin{gathered} 4.0000 \\ 0.00 \\ 2.00 \end{gathered}$	0.00	109.0000
BXA-80063/4CF w/ Mount Pipe	C	From Leg	$\begin{gathered} 4.0000 \\ 0.00 \\ 2.00 \end{gathered}$	0.00	109.0000
CBRS w/ Mount Pipe	A	From Leg	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	109.0000
CBRS w/ Mount Pipe	B	From Leg	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	109.0000
CBRS w/ Mount Pipe	C	From Leg	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	109.0000
MT6407-77A w/ Mount Pipe	A	From Leg	$\begin{gathered} 4.0000 \\ 0.00 \\ 4.00 \end{gathered}$	0.00	109.0000
MT6407-77A w/ Mount Pipe	B	From Leg	$\begin{gathered} 4.0000 \\ 0.00 \\ 4.00 \end{gathered}$	0.00	109.0000
MT6407-77A w/ Mount Pipe	C	From Leg	$\begin{gathered} 4.0000 \\ 0.00 \\ 4.00 \end{gathered}$	0.00	109.0000
RFV01U-D1A	A	From Leg	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	109.0000
RFV01U-D1A	A	From Leg	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	109.0000
RFV01U-D1A	B	From Leg	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	109.0000
RFV01U-D2A	A	From Leg	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	109.0000
RFV01U-D2A	B	From Leg	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	109.0000
RFV01U-D2A	B	From Leg	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	109.0000

\begin{tabular}{|c|c|c|c|c|c|}
\hline Description \& Face or Leg \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets: Horz Lateral Vert ft ft ft \& Azimuth Adjustment \& Placement

ft

\hline RUSDC-6267-PF-48 \& B \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
0.00
\end{gathered}
$$ \& 0.00 \& 109.0000

\hline | Site Pro 1 F3P-HRK12 |
| :--- |
| Site Pro 1 F3P-12[W] | \& \[

$$
\begin{aligned}
& C \\
& C
\end{aligned}
$$

\] \& None None \& \& \[

$$
\begin{aligned}
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 109.0000 \\
& 109.0000
\end{aligned}
$$
\]

\hline 800MHz 2X50W RRH W/FILTER \& A \& From Leg \& \& 0.00 \& 99.0000

\hline 800MHz 2X50W RRH W/FILTER \& B \& From Leg \& $$
\begin{gathered}
2.0000 \\
0.00 \\
0.00
\end{gathered}
$$ \& 0.00 \& 99.0000

\hline 800MHz 2X50W RRH W/FILTER \& C \& From Leg \& $$
\begin{gathered}
2.0000 \\
0.00 \\
0.00
\end{gathered}
$$ \& 0.00 \& 99.0000

\hline PCS 1900MHz 4x45W-65MHz w/ Mount Pipe \& A \& From Leg \& $$
\begin{gathered}
2.0000 \\
0.00 \\
0.00
\end{gathered}
$$ \& 0.00 \& 99.0000

\hline PCS 1900MHz 4x45W-65MHz w/ Mount Pipe \& B \& From Leg \& $$
\begin{gathered}
2.0000 \\
0.00 \\
0.00
\end{gathered}
$$ \& 0.00 \& 99.0000

\hline PCS 1900MHz 4x45W-65MHz w/ Mount Pipe \& C \& From Leg \& $$
\begin{gathered}
2.0000 \\
0.00 \\
0.00
\end{gathered}
$$ \& 0.00 \& 99.0000

\hline Side Arm Mount [SO 101-3] \& C \& None \& \& 0.00 \& 99.0000

\hline LLPX310R-V1 w/ Mount Pipe \& A \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
1.00
\end{gathered}
$$ \& 0.00 \& 97.0000

\hline LLPX310R-V1 w/ Mount Pipe \& B \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
1.00
\end{gathered}
$$ \& 0.00 \& 97.0000

\hline LLPX310R-V1 w/ Mount Pipe \& C \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
1.00
\end{gathered}
$$ \& 0.00 \& 97.0000

\hline TIMING 2000 \& A \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
0.00
\end{gathered}
$$ \& 0.00 \& 97.0000

\hline RRH-2WB \& A \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
0.00
\end{gathered}
$$ \& 0.00 \& 97.0000

\hline RRH-2WB \& B \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
0.00
\end{gathered}
$$ \& 0.00 \& 97.0000

\hline RRH-2WB \& C \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
0.00
\end{gathered}
$$ \& 0.00 \& 97.0000

\hline HORIZON COMPACT \& B \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
0.00
\end{gathered}
$$ \& 0.00 \& 97.0000

\hline HORIZON COMPACT

$* *$ \& C \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
0.00
\end{gathered}
$$ \& 0.00 \& 97.0000

\hline APXVSPP18-C-A20 w/ Mount Pipe \& A \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
1.00
\end{gathered}
$$ \& 0.00 \& 97.0000

\hline APXVSPP18-C-A20 w/ Mount Pipe \& B \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
1.00
\end{gathered}
$$ \& 0.00 \& 97.0000

\hline APXVSPP18-C-A20 w/ Mount Pipe \& C \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
1.00
\end{gathered}
$$ \& 0.00 \& 97.0000

\hline APXVTM14-ALU-I20 w/ Mount Pipe \& A \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00
\end{gathered}
$$ \& 0.00 \& 97.0000

\hline
\end{tabular}

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert ft ft ft	Azimuth Adjustment	Placement ft
APXVTM14-ALU-I20 w/ Mount Pipe	B	From Leg	$\begin{gathered} 1.00 \\ 4.0000 \\ 0.00 \\ 1.00 \end{gathered}$	0.00	97.0000
APXVTM14-ALU-I20 w/ Mount Pipe	C	From Leg	$\begin{gathered} 4.0000 \\ 0.00 \\ 1.00 \end{gathered}$	0.00	97.0000
TD-RRH8X20-25	A	From Leg	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	97.0000
TD-RRH8X20-25	B	From Leg	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	97.0000
TD-RRH8X20-25	C	From Leg	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	97.0000
Platform Mount [LP 713-1]	C	None		0.00	97.0000
ERICSSON AIR 21 B2A B4P w/ Mount Pipe	A	From Face	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	87.0000
ERICSSON AIR 21 B2A B4P w/ Mount Pipe	B	From Face	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	87.0000
ERICSSON AIR 21 B2A B4P w/ Mount Pipe	C	From Face	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	87.0000
APXVAARR24_43-U-NA20 w/ Mount Pipe	A	From Face	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	87.0000
APXVAARR24_43-U-NA20 w/ Mount Pipe	B	From Face	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	87.0000
APXVAARR24_43-U-NA20 w/ Mount Pipe	C	From Face	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	87.0000
AIR -32 B2A/B66AA w/ Mount Pipe	A	From Face	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	87.0000
AIR -32 B2A/B66AA w/ Mount Pipe	B	From Face	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	87.0000
AIR -32 B2A/B66AA w/ Mount Pipe	C	From Face	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	87.0000
KRY 112 144/1	A	From Face	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	87.0000
KRY 112 144/1	A	From Face	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	87.0000
KRY 112 144/1	B	From Face	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	87.0000
RADIO 4449 B12/B71	A	From Leg	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	87.0000
(2) RADIO 4449 B12/B71	C	From Leg	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	87.0000
T-Arm Mount [TA 602-3]	C	None		0.00	87.0000
MX08FRO665-21 w/ Mount Pipe	A	From Leg	$\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$	0.00	77.0000

130 Ft Monopole Tower Structural Analysis

\begin{tabular}{|c|c|c|c|c|c|}
\hline Description \& Face or Leg \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets: Horz Lateral Vert ft ft ft \& Azimuth Adjustment \& Placement

ft

\hline MX08FRO665-21 w/ Mount Pipe \& B \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
0.00
\end{gathered}
$$ \& 0.00 \& 77.0000

\hline MX08FRO665-21 w/ Mount Pipe \& C \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
0.00
\end{gathered}
$$ \& 0.00 \& 77.0000

\hline TA08025-B604 \& A \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
0.00
\end{gathered}
$$ \& 0.00 \& 77.0000

\hline TA08025-B604 \& B \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
0.00
\end{gathered}
$$ \& 0.00 \& 77.0000

\hline TA08025-B604 \& C \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
0.00
\end{gathered}
$$ \& 0.00 \& 77.0000

\hline TA08025-B605 \& A \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
0.00
\end{gathered}
$$ \& 0.00 \& 77.0000

\hline TA08025-B605 \& B \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
0.00
\end{gathered}
$$ \& 0.00 \& 77.0000

\hline TA08025-B605 \& C \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
0.00
\end{gathered}
$$ \& 0.00 \& 77.0000

\hline RDIDC-9181-PF-48 \& B \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
0.00
\end{gathered}
$$ \& 0.00 \& 77.0000

\hline (2) 8' x 2" Mount Pipe \& A \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
0.00
\end{gathered}
$$ \& 0.00 \& 77.0000

\hline (2) 8' x 2" Mount Pipe \& B \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
0.00
\end{gathered}
$$ \& 0.00 \& 77.0000

\hline (2) 8' x 2" Mount Pipe \& C \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
0.00
\end{gathered}
$$ \& 0.00 \& 77.0000

\hline Commscope MC-PK8-DSH \& C \& None \& \& 0.00 \& 77.0000

\hline
\end{tabular}

Dishes

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Dish Type \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets: Horz Lateral Vert ft \& Azimuth Adjustment \& \begin{tabular}{l}
\(3 d B\) \\
Beam \\
Width
\end{tabular} \& Elevation

ft \& | Outside Diameter |
| :--- |
| ft |

\hline VHLP2.5-18 \& B \& Paraboloid w/Shroud (HP) \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
6.00
\end{gathered}
$$ \& 0.00 \& \& 97.0000 \& 2.5000

\hline VHLP2-18

**** \& C \& Paraboloid w/o Radome \& From Leg \& $$
\begin{gathered}
4.0000 \\
0.00 \\
6.00
\end{gathered}
$$ \& 0.00 \& \& 97.0000 \& 2.1750

\hline
\end{tabular}

Load Combinations

Comb. No.	Description
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind $120 \mathrm{deg}+1.0$ Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind $300 \mathrm{deg}+1.0$ Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	K	kip-ft	

130 Ft Monopole Tower Structural Analysis
Project Number 1963271, Order 556638, Revision 1

Sectio n No.	Elevation $f t$	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L3	120-115	Pole	Max. Vy	8	8.03	-5.04	-0.04
			Max. Vx	2	-8.02	0.06	5.07
			Max. Torque	24			0.24
			Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-15.72	0.27	-0.17
			Max. Mx	20	-4.36	46.10	-0.00
			Max. My	14	-4.38	0.01	-46.00
			Max. Vy	8	8.33	-45.97	-0.03
			Max. Vx	2	-8.32	0.04	45.93
	115-110		Max. Torque	24			0.24
L4		Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-16.34	0.08	-0.07
			Max. Mx	20	-4.62	88.49	0.03
			Max. My	14	-4.64	-0.05	-88.34
			Max. Vy	8	8.64	-88.42	-0.02
			Max. Vx	2	-8.63	0.01	88.31
			Max. Torque	2			0.21
L5	110-105	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-28.05	-2.73	1.07
			Max. Mx	8	-9.02	-156.62	0.25
			Max. My	2	-9.06	-0.78	155.83
			Max. Vy	8	13.53	-156.62	0.25
			Max. Vx	2	-13.50	-0.78	155.83
			Max. Torque	24			-0.97
L6	105-100	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-29.05	-2.95	0.67
			Max. Mx	8	-9.52	-226.84	-0.22
			Max. My	2	-9.57	-0.56	225.27
			Max. Vy	8	14.41	-226.84	-0.22
			Max. Vx	2	-14.28	-0.56	225.27
			Max. Torque	4			-1.58
L7	100-95	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-40.97	-3.17	0.65
			Max. Mx	8	-13.48	-312.22	-0.46
			Max. My	2	-13.54	-0.35	309.89
			Max. Vy	8	19.43	-312.22	-0.46
			Max. Vx	2	-19.27	-0.35	309.89
			Max. Torque	4			-1.60
L8	95-90	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-41.99	-3.37	0.82
			Max. Mx	8	-14.14	-410.00	-0.65
			Max. My	2	-14.19	-0.12	406.90
			Max. Vy	8	19.71	-410.00	-0.65
			Max. Vx	2	-19.56	-0.12	406.90
			Max. Torque	4			-1.60
L9	90-89.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-42.07	-3.38	0.83
			Max. Mx	8	-14.20	-414.93	-0.65
			Max. My	2	-14.26	-0.11	411.79
			Max. Vy	8	19.71	-414.93	-0.65
			Max. Vx	2	-19.56	-0.11	411.79
			Max. Torque	4			-1.60
L10	$\begin{gathered} 89.75- \\ 84.75 \end{gathered}$	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-51.43	-2.20	1.32
			Max. Mx	8	-17.92	-520.85	-0.67
			Max. My	2	-17.98	0.72	517.53
			Max. Vy	8	23.23	-520.85	-0.67
			Max. Vx	2	-22.99	0.72	517.53
			Max. Torque	4			-1.60
L11	$\begin{gathered} 84.75- \\ 84.58 \end{gathered}$	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-51.50	-2.22	1.34
			Max. Mx	8	-17.97	-524.81	-0.67
			Max. My	2	-18.03	0.72	521.44
			Max. Vy	8	23.25	-524.81	-0.67
			Max. Vx	2	-23.00	0.72	521.44
			Max. Torque	4			-1.22
L12	84.58 -	Pole	Max Tension	1	0.00	0.00	0.00

tnxTower Report - version 8.1.1.0

130 Ft Monopole Tower Structural Analysis
Project Number 1963271, Order 556638, Revision 1

130 Ft Monopole Tower Structural Analysis
Project Number 1963271, Order 556638, Revision 1

130 Ft Monopole Tower Structural Analysis
Project Number 1963271, Order 556638, Revision 1

130 Ft Monopole Tower Structural Analysis
Project Number 1963271, Order 556638, Revision 1

tnxTower Report - version 8.1.1.0

130 Ft Monopole Tower Structural Analysis
Project Number 1963271, Order 556638, Revision 1

130 Ft Monopole Tower Structural Analysis

$\begin{gathered} \text { Sectio } \\ n \\ \text { No. } \\ \hline \end{gathered}$	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L59	2.75-0	Pole	Max. Mx	8	-56.31	-3142.36	-1.15
			Max. My	2	-56.32	-0.25	2952.14
			Max. Vy	8	37.01	-3142.36	-1.15
			Max. Vx	24	-35.10	1692.92	2904.55
			Max. Torque	10			2.16
			Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-115.61	-13.74	9.29
			Max. Mx	8	-57.87	-3244.73	-1.14
			Max. My	2	-57.88	-0.32	3044.56
			Max. Vy	8	37.32	-3244.73	-1.14
			Max. Vx	24	-35.38	1749.27	3001.55
			Max. Torque	10			2.23

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical K	$\begin{gathered} \text { Horizontal, } X \\ K \end{gathered}$	$\begin{gathered} \text { Horizontal, Z } \\ K \end{gathered}$
Pole	Max. Vert	31	115.61	-8.95	-5.11
	Max. H_{x}	20	57.89	37.29	0.21
	Max. Hz_{z}	24	57.89	20.65	35.36
	Max. M_{x}	2	3044.56	0.05	33.68
	Max. M_{z}	8	3244.73	-37.29	-0.04
	Max. Torsion	10	2.23	-36.73	-20.95
	Min. Vert	17	43.42	16.84	-29.27
	Min. H_{x}	8	57.89	-37.29	-0.04
	Min. H_{z}	12	57.89	-20.58	-35.30
	Min. M_{x}	14	-3026.87	-0.19	-33.58
	Min. Mz_{z}	20	-3231.90	37.29	0.21
	Min. Torsion	22	-1.95	36.63	21.13

Tower Mast Reaction Summary

Load Combination	Vertical K	Shear $_{x}$ K	Shear ${ }_{z}$ K	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque kip-ft
Dead Only	48.24	0.00	0.00	-3.03	-5.08	0.00
1.2 Dead+1.0 Wind 0 deg -	57.89	-0.05	-33.68	-3044.56	-0.32	0.83
No Ice 0.9 Dead+1.0 Wind 0 deg No Ice	43.42	-0.05	-33.68	-3013.21	1.22	0.80
1.2 Dead+1.0 Wind 30 deg No Ice	57.89	17.07	-29.24	-2637.53	-1547.07	1.46
0.9 Dead+1.0 Wind 30 deg No Ice	43.42	17.07	-29.24	-2610.30	-1530.10	1.43
1.2 Dead+1.0 Wind 60 deg No Ice	57.89	30.62	-17.45	-1547.67	-2722.35	0.93
0.9 Dead+1.0 Wind 60 deg No Ice	43.42	30.62	-17.45	-1531.45	-2693.88	0.92
1.2 Dead+1.0 Wind 90 deg No Ice	57.89	37.29	0.04	1.14	-3244.73	-0.14
0.9 Dead+1.0 Wind 90 deg No Ice	43.42	37.29	0.04	2.04	-3211.50	-0.14
1.2 Dead+1.0 Wind 120 deg - No Ice	57.89	36.73	20.95	1743.96	-3080.61	-2.23
0.9 Dead+1.0 Wind 120 deg - No Ice	43.42	36.73	20.95	1728.13	-3049.44	-2.20
1.2 Dead+1.0 Wind 150 deg - No Ice	57.89	20.58	35.30	2987.96	-1754.47	-1.84
0.9 Dead+1.0 Wind 150 deg - No Ice	43.42	20.58	35.30	2959.95	-1735.92	-1.81

Load Combination	Vertical	Shear $_{x}$ K	Shear $_{z}$	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque kip-ft
1.2 Dead+1.0 Wind 180 deg - No Ice	57.89	0.19	33.58	3026.87	-26.48	-0.75
0.9 Dead+1.0 Wind 180 deg - No Ice	43.42	0.19	33.58	2997.54	-24.66	-0.72
1.2 Dead+1.0 Wind 210 deg - No Ice	57.89	-16.84	29.27	2633.56	1509.92	-1.03
0.9 Dead+1.0 Wind 210 deg - No Ice	43.42	-16.84	29.27	2608.20	1496.41	-1.00
1.2 Dead+1.0 Wind 240 deg - No Ice	57.89	-30.59	17.34	1528.80	2707.33	-0.73
0.9 Dead+1.0 Wind 240 deg - No Ice	43.42	-30.59	17.34	1514.62	2682.10	-0.72
1.2 Dead+1.0 Wind 270 deg - No Ice	57.89	-37.29	-0.21	-26.56	3231.90	-0.28
0.9 Dead+1.0 Wind 270 deg - No Ice	43.42	-37.29	-0.21	-25.36	3201.88	-0.29
1.2 Dead+1.0 Wind 300 deg - No Ice	57.89	-36.63	-21.13	-1771.58	3057.24	1.95
0.9 Dead+1.0 Wind 300 deg - No lce	43.42	-36.63	-21.13	-1753.62	3029.40	1.93
1.2 Dead+1.0 Wind 330 deg - No Ice	57.89	-20.65	-35.36	-3001.55	1749.27	1.84
0.9 Dead+1.0 Wind 330 deg - No Ice	43.42	-20.65	-35.36	-2971.57	1733.87	1.81
1.2 Dead+1.0 Ice+1.0 Temp	115.61	0.00	-0.00	-9.29	-13.74	0.00
1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	115.61	-0.01	-8.63	-841.30	-13.02	0.19
1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	115.61	4.34	-7.45	-726.77	-432.54	0.32
1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	115.61	7.53	-4.30	-423.35	-739.55	0.20
1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	115.61	9.06	0.01	-8.64	-877.20	-0.07
1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	115.61	8.95	5.11	454.04	-827.10	-0.62
1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	115.61	5.08	8.73	789.71	-479.51	-0.53
1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	115.61	0.04	8.61	820.30	-17.95	-0.17
1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	115.61	-4.30	7.46	708.75	399.45	-0.23
1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	115.61	-7.53	4.28	402.16	711.20	-0.16
1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	115.61	-9.05	-0.04	-14.04	849.33	-0.02
1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	115.61	-8.93	-5.15	-477.19	796.91	0.56
1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	115.61	-5.09	-8.74	-809.73	453.36	0.53
Dead+Wind 0 deg - Service	48.24	-0.01	-7.32	-660.43	-3.90	0.17
Dead+Wind 30 deg - Service	48.24	3.71	-6.35	-572.45	-338.26	0.31
Dead+Wind 60 deg - Service	48.24	6.65	-3.79	-336.86	-592.34	0.20
Dead+Wind 90 deg - Service	48.24	8.10	0.01	-2.04	-705.30	-0.03
Dead+Wind 120 deg Service	48.24	7.98	4.55	374.79	-669.89	-0.48
Dead+Wind 150 deg Service	48.24	4.47	7.67	643.73	-383.15	-0.39
Dead+Wind 180 deg Service	48.24	0.04	7.30	652.04	-9.54	-0.16
Dead+Wind 210 deg Service	48.24	-3.66	6.36	567.02	322.58	-0.22
Dead+Wind 240 deg Service	48.24	-6.65	3.77	328.22	581.43	-0.16
Dead+Wind 270 deg Service	48.24	-8.10	-0.05	-8.01	694.87	-0.07
Dead+Wind 300 deg Service	48.24	-7.96	-4.59	-385.32	657.19	0.42
Dead+Wind 330 deg Service	48.24	-4.48	-7.68	-651.24	374.37	0.39

Solution Summary

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	$P X$	PY	PZ	$P X$	PY	$P Z$	
Comb.	K	K	K	K	K	K	
1	0.00	-48.24	0.00	0.00	48.24	0.00	0.000\%
2	-0.05	-57.89	-33.68	0.05	57.89	33.68	0.000\%
3	-0.05	-43.42	-33.68	0.05	43.42	33.68	0.000\%
4	17.07	-57.89	-29.24	-17.07	57.89	29.24	0.000\%
5	17.07	-43.42	-29.24	-17.07	43.42	29.24	0.000\%
6	30.62	-57.89	-17.45	-30.62	57.89	17.45	0.000\%
7	30.62	-43.42	-17.45	-30.62	43.42	17.45	0.000\%
8	37.29	-57.89	0.04	-37.29	57.89	-0.04	0.000\%
9	37.29	-43.42	0.04	-37.29	43.42	-0.04	0.000\%
10	36.73	-57.89	20.95	-36.73	57.89	-20.95	0.000\%
11	36.73	-43.42	20.95	-36.73	43.42	-20.95	0.000\%
12	20.58	-57.89	35.30	-20.58	57.89	-35.30	0.000\%
13	20.58	-43.42	35.30	-20.58	43.42	-35.30	0.000\%
14	0.19	-57.89	33.58	-0.19	57.89	-33.58	0.000\%
15	0.19	-43.42	33.58	-0.19	43.42	-33.58	0.000\%
16	-16.84	-57.89	29.27	16.84	57.89	-29.27	0.000\%
17	-16.84	-43.42	29.27	16.84	43.42	-29.27	0.000\%
18	-30.59	-57.89	17.34	30.59	57.89	-17.34	0.000\%
19	-30.59	-43.42	17.34	30.59	43.42	-17.34	0.000\%
20	-37.29	-57.89	-0.21	37.29	57.89	0.21	0.000\%
21	-37.29	-43.42	-0.21	37.29	43.42	0.21	0.000\%
22	-36.63	-57.89	-21.13	36.63	57.89	21.13	0.000\%
23	-36.63	-43.42	-21.13	36.63	43.42	21.13	0.000\%
24	-20.65	-57.89	-35.36	20.65	57.89	35.36	0.000\%
25	-20.65	-43.42	-35.36	20.65	43.42	35.36	0.000\%
26	0.00	-115.61	0.00	-0.00	115.61	0.00	0.000\%
27	-0.01	-115.61	-8.63	0.01	115.61	8.63	0.000\%
28	4.34	-115.61	-7.45	-4.34	115.61	7.45	0.000\%
29	7.53	-115.61	-4.30	-7.53	115.61	4.30	0.000\%
30	9.06	-115.61	0.01	-9.06	115.61	-0.01	0.000\%
31	8.95	-115.61	5.11	-8.95	115.61	-5.11	0.000\%
32	5.08	-115.61	8.73	-5.08	115.61	-8.73	0.000\%
33	0.04	-115.61	8.61	-0.04	115.61	-8.61	0.000\%
34	-4.30	-115.61	7.46	4.30	115.61	-7.46	0.000\%
35	-7.53	-115.61	4.28	7.53	115.61	-4.28	0.000\%
36	-9.05	-115.61	-0.04	9.05	115.61	0.04	0.000\%
37	-8.93	-115.61	-5.15	8.93	115.61	5.15	0.000\%
38	-5.09	-115.61	-8.74	5.09	115.61	8.74	0.000\%
39	-0.01	-48.24	-7.32	0.01	48.24	7.32	0.000\%
40	3.71	-48.24	-6.35	-3.71	48.24	6.35	0.000\%
41	6.65	-48.24	-3.79	-6.65	48.24	3.79	0.000\%
42	8.10	-48.24	0.01	-8.10	48.24	-0.01	0.000\%
43	7.98	-48.24	4.55	-7.98	48.24	-4.55	0.000\%
44	4.47	-48.24	7.67	-4.47	48.24	-7.67	0.000\%
45	0.04	-48.24	7.30	-0.04	48.24	-7.30	0.000\%
46	-3.66	-48.24	6.36	3.66	48.24	-6.36	0.000\%
47	-6.65	-48.24	3.77	6.65	48.24	-3.77	0.000\%
48	-8.10	-48.24	-0.05	8.10	48.24	0.05	0.000\%
49	-7.96	-48.24	-4.59	7.96	48.24	4.59	0.000\%
50	-4.48	-48.24	-7.68	4.48	48.24	7.68	0.000\%

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	4	0.00000001	0.00001188
2	Yes	5	0.00000001	0.00060782
3	Yes	5	0.00000001	0.00024556
4	Yes	6	0.00000001	0.00075608

tnxTower Report - version 8.1.1.0

5	Yes	6	0.00000001	0.00024215
6	Yes	6	0.00000001	0.00072486
7	Yes	6	0.00000001	0.00022958
8	Yes	5	0.00000001	0.00039397
9	Yes	5	0.00000001	0.00013813
10	Yes	6	0.00000001	0.00083181
11	Yes	6	0.00000001	0.00025252
12	Yes	6	0.00000001	0.00087223
13	Yes	6	0.00000001	0.00026763
14	Yes	5	0.00000001	0.00083910
15	Yes	5	0.00000001	0.00035795
16	Yes	6	0.00000001	0.00069845
17	Yes	6	0.00000001	0.00022355
18	Yes	6	0.00000001	0.00073864
19	Yes	6	0.00000001	0.00023617
20	Yes	5	0.00000001	0.00041322
21	Yes	5	0.00000001	0.00014581
22	Yes	6	0.00000001	0.00087700
23	Yes	6	0.00000001	0.00026776
24	Yes	6	0.00000001	0.00082836
25	Yes	6	0.00000001	0.00025233
26	Yes	5	0.00000001	0.00064639
27	Yes	7	0.00000001	0.00052425
28	Yes	7	0.00000001	0.00057550
29	Yes	7	0.00000001	0.00057759
30	Yes	7	0.00000001	0.00054038
31	Yes	7	0.00000001	0.00062174
32	Yes	7	0.00000001	0.00061698
33	Yes	7	0.00000001	0.00051279
34	Yes	7	0.00000001	0.00054591
35	Yes	7	0.00000001	0.00054808
36	Yes	7	0.00000001	0.00051948
37	Yes	7	0.00000001	0.00061213
38	Yes	7	0.00000001	0.00061018
39	Yes	5	0.00000001	0.00007799
40	Yes	5	0.00000001	0.00023649
41	Yes	5	0.00000001	0.00021324
42	Yes	5	0.00000001	0.00007679
43	Yes	5	0.00000001	0.00025900
44	Yes	5	0.00000001	0.00028933
45	Yes	5	0.00000001	0.00007749
46	Yes	5	0.00000001	0.00019608
47	Yes	5	0.00000001	0.00021940
48	Yes	5	0.00000001	0.00007583
49	Yes	5	0.00000001	0.00028896
50	Yes	5	0.00000001	0.00025450

Maximum Tower Deflections - Service Wind

| Section
 No. | Elevation | Horz.
 Deflection
 in | Gov.
 Load
 Comb. | Tilt | o |
| :---: | :---: | :---: | :---: | :---: | :---: | | ft | 20.91 | 43 | 1.64 | 0.00 |
| :---: | :---: | :---: | :---: | :---: |
| L1 | $130-125$ | 19.19 | 43 | 1.64 |
| L2 | $125-120$ | 17.47 | 43 | 1.64 |
| L3 | $120-115$ | 15.77 | 43 | 1.60 |
| L4 | $115-110$ | 14.13 | 43 | 1.52 |
| L5 | $110-105$ | 12.59 | 43 | 1.42 |
| L6 | $105-100$ | $100-95$ | $95-90$ | 9.87 |
| L8 | $90-89.75$ | 8.72 | 43 | 1.30 |
| L9 | $89.75-84.75$ | 8.67 | 43 | 1.17 |
| L10 | $84.75-84.58$ | 7.65 | 43 | 1.02 |
| L11 | $84.58-84.33$ | 7.62 | 43 | 1.01 |
| L12 | $84.33-83.42$ | 7.57 | 43 | 0.93 |
| L13 | $83.42-83.17$ | 7.40 | 43 | 0.92 |
| L15 | $83.17-83$ | 7.35 | 43 | 0.92 |
| L16 | $83-82.75$ | 7.32 | 43 | 0.91 |

Section No.	Elevation ft	Horz. Deflection in	Gov. Load Comb.	Tilt	Twist
L17	82.75-77.75	7.27	43	0.90	0.00
L18	77.75-70	6.36	43	0.83	0.00
L19	74-69	5.73	43	0.78	0.00
L20	69-67.08	4.93	43	0.74	0.00
L21	67.08-66.83	4.64	43	0.71	0.00
L22	66.83-64.08	4.60	43	0.71	0.00
L23	64.08-63.83	4.21	43	0.67	0.00
L24	63.83-62.5	4.17	43	0.66	0.00
L25	62.5-62.25	3.99	43	0.65	0.00
L26	62.25-57.25	3.96	43	0.64	0.00
L27	57.25-53.5	3.31	43	0.58	0.00
L28	53.5-53.25	2.88	43	0.54	0.00
L29	53.25-52.58	2.85	43	0.53	0.00
L30	52.58-52.33	2.77	43	0.53	0.00
L31	52.33-47.33	2.75	43	0.52	0.00
L32	47.33-44.58	2.23	43	0.47	0.00
L33	44.58-44.33	1.97	43	0.43	0.00
L34	44.33-41.92	1.95	43	0.43	0.00
L35	41.92-41.67	1.74	43	0.40	0.00
L36	41.67-34.08	1.72	43	0.40	0.00
L37	39-34	1.50	43	0.37	0.00
L38	34-29	1.13	43	0.34	0.00
L39	29-26.92	0.81	43	0.28	0.00
L40	26.92-26.67	0.69	43	0.26	0.00
L41	26.67-21.67	0.68	43	0.25	0.00
L42	21.67-18	0.44	43	0.20	0.00
L43	18-17.75	0.30	43	0.16	0.00
L44	17.75-17.5	0.29	43	0.16	0.00
L45	17.5-17.25	0.28	43	0.16	0.00
L46	17.25-17.08	0.27	43	0.16	0.00
L47	17.08-16.83	0.27	43	0.16	0.00
L48	16.83-13	0.26	43	0.15	0.00
L49	13-12.75	0.15	43	0.12	0.00
L50	12.75-11.92	0.15	43	0.12	0.00
L51	11.92-11.67	0.13	43	0.11	0.00
L52	11.67-6.67	0.12	43	0.11	0.00
L53	6.67-6.5	0.04	43	0.05	0.00
L54	6.5-6.25	0.04	43	0.05	0.00
L55	6.25-3.75	0.03	43	0.05	0.00
L56	3.75-3.5	0.01	43	0.03	0.00
L57	3.5-3	0.01	43	0.03	0.00
L58	3-2.75	0.01	43	0.02	0.00
L59	2.75-0	0.01	43	0.02	0.00

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist	Radius of Curvature ft
121.0000	80010798 w/ Mount Pipe	43	17.81	1.64	0.00	25121
109.0000	(2) SBNHH-1D65B w/ Mount Pipe	43	13.82	1.50	0.00	3077
103.0000	VHLP2.5-18	43	12.01	1.38	0.00	2482
99.0000	800MHz 2X50W RRH W/FILTER	43	10.89	1.28	0.00	2195
97.0000	LLPX310R-V1 w/ Mount Pipe	43	10.37	1.23	0.00	2089
87.0000	ERICSSON AIR 21 B2A B4P w/ Mount Pipe	43	8.10	0.97	0.00	3231
77.0000	MX08FRO665-21 w/ Mount Pipe	43	6.23	0.82	0.00	4443

Maximum Tower Deflections - Design Wind

Section No.	Elevation ft	Horz. Deflection in	Gov. Load Comb.	Tilt	Twist
L1	130-125	96.17	10	7.58	0.02
L2	125-120	88.28	10	7.57	0.02
L3	120-115	80.40	10	7.56	0.02
L4	115-110	72.59	10	7.37	0.02
L5	110-105	65.10	10	6.98	0.02
L6	105-100	58.03	10	6.55	0.02
L7	100-95	51.47	10	6.01	0.02
L8	95-90	45.52	10	5.39	0.01
L9	90-89.75	40.25	10	4.70	0.01
L10	89.75-84.75	40.00	10	4.68	0.01
L11	84.75-84.58	35.31	10	4.28	0.01
L12	84.58-84.33	35.16	10	4.27	0.01
L13	84.33-83.42	34.94	10	4.25	0.01
L14	83.42-83.17	34.14	10	4.20	0.01
L15	83.17-83	33.92	10	4.18	0.01
L16	83-82.75	33.77	10	4.18	0.01
L17	82.75-77.75	33.55	10	4.16	0.01
L18	77.75-70	29.36	10	3.85	0.00
L19	74-69	26.44	10	3.61	0.00
L20	69-67.08	22.75	10	3.41	0.00
L21	67.08-66.83	21.41	10	3.28	0.00
L22	66.83-64.08	21.24	10	3.27	0.00
L23	64.08-63.83	19.41	10	3.08	0.00
L24	63.83-62.5	19.25	10	3.06	0.00
L25	62.5-62.25	18.41	10	2.98	0.00
L26	62.25-57.25	18.25	10	2.97	0.00
L27	57.25-53.5	15.30	10	2.69	0.00
L28	53.5-53.25	13.27	10	2.48	0.00
L29	53.25-52.58	13.14	10	2.46	0.00
L30	52.58-52.33	12.80	10	2.43	0.00
L31	52.33-47.33	12.67	10	2.41	0.00
L32	47.33-44.58	10.28	10	2.15	0.00
L33	44.58-44.33	9.09	10	2.00	0.00
L34	44.33-41.92	8.98	10	1.98	0.00
L35	41.92-41.67	8.02	10	1.85	0.00
L36	41.67-34.08	7.92	10	1.84	0.00
L37	39-34	6.93	10	1.70	0.00
L38	34-29	5.22	10	1.56	0.00
L39	29-26.92	3.73	10	1.29	0.00
L40	26.92-26.67	3.19	10	1.18	0.00
L41	26.67-21.67	3.13	10	1.17	0.00
L42	21.67-18	2.03	10	0.93	0.00
L43	18-17.75	1.38	10	0.76	0.00
L44	17.75-17.5	1.34	10	0.75	0.00
L45	17.5-17.25	1.31	10	0.74	0.00
L46	17.25-17.08	1.27	10	0.73	0.00
L47	17.08-16.83	1.24	10	0.72	0.00
L48	16.83-13	1.20	10	0.71	0.00
L49	13-12.75	0.70	10	0.54	0.00
L50	12.75-11.92	0.67	10	0.53	0.00
L51	11.92-11.67	0.58	10	0.50	0.00
L52	11.67-6.67	0.56	10	0.49	0.00
L53	6.67-6.5	0.17	10	0.25	0.00
L54	6.5-6.25	0.16	10	0.25	0.00
L55	6.25-3.75	0.15	10	0.24	0.00
L56	3.75-3.5	0.05	10	0.13	0.00
L57	3.5-3	0.05	10	0.13	0.00
L58	3-2.75	0.03	10	0.11	0.00
L59	2.75-0	0.03	10	0.10	0.00

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of Curvature
		Load				
ft	Comb.	in	\circ		0	$f t$

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist	Radius of Curvature ft
121.0000	80010798 w/ Mount Pipe	10	81.97	7.57	0.02	5796
109.0000	(2) SBNHH-1D65B w/ Mount Pipe	10	63.65	6.90	0.02	693
103.0000	VHLP2.5-18	10	55.34	6.34	0.02	559
99.0000	800MHz 2X50W RRH W/FILTER	10	50.23	5.89	0.01	491
97.0000	LLPX310R-V1 w/ Mount Pipe	10	47.82	5.66	0.01	466
87.0000	ERICSSON AIR 21 B2A B4P w/ Mount Pipe	10	37.37	4.47	0.01	711
77.0000	MX08FRO665-21 w/ Mount Pipe	10	28.76	3.80	0.00	971

Compression Checks

Pole Design Data

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \end{gathered}$
	$f t$		ft	$f t$		$i n^{2}$	K	K	ϕP_{n}
L1	130-125 (1)	TP11.775 $\times 10.525 \times 0.1875$	5.0000	0.0000	0.0	6.9960	-0.10	409.26	0.000
L2	125-120 (2)	TP13.025x11.775x0.1875	5.0000	0.0000	0.0	7.7506	-15.07	453.41	0.033
L3	120-115 (3)	TP14.275x13.025x0.1875	5.0000	0.0000	0.0	8.5053	-4.27	497.56	0.009
L4	115-110 (4)	TP15.525x14.275x0.1875	5.0000	0.0000	0.0	9.2600	-4.50	541.71	0.008
L5	110-105 (5)	TP16.7758×15.525x0.25	5.0000	0.0000	0.0	$\begin{gathered} 13.303 \\ 2 \end{gathered}$	-8.84	778.24	0.011
L6	105-100 (6)	TP18.0265x16.7758×0.25	5.0000	0.0000	0.0	14.310	-9.33	837.14	0.011
L7	100-95 (7)	TP19.2773x18.0265×0.25	5.0000	0.0000	0.0	$\begin{gathered} 15.316 \\ 9 \end{gathered}$	-13.25	896.04	0.015
L8	95-90 (8)	TP20.528×19.2773x0.25	5.0000	0.0000	0.0	$\begin{gathered} 16.323 \\ 8 \end{gathered}$	-13.91	954.94	0.015
L9	90-89.75 (9)	TP20.5905x20.528×0.5	0.2500	0.0000	0.0	$\begin{gathered} 32.345 \\ 8 \end{gathered}$	-13.98	1892.23	0.007
L10	$89.75-84.75$ (10)	TP21.8413×20.5905×0.48 13	5.0000	0.0000	0.0	$\begin{gathered} 33.100 \\ 0 \end{gathered}$	-17.69	1936.35	0.009
L11	$84.75-84.58$ (11)	$\underset{5}{\mathrm{TP} 21.8838 \times 21.8413 \times 0.47}$	0.1700	0.0000	0.0	$\begin{gathered} 32.744 \\ 8 \end{gathered}$	-17.74	1915.57	0.009
L12	$84.58-84.33$ (12)	$\begin{gathered} \text { TP21.9464×21.8838×0.63 } \\ 75 \end{gathered}$	0.2500	0.0000	0.0	$\begin{gathered} 43.741 \\ 7 \end{gathered}$	-17.81	2558.89	0.007
L13	$84.33-83.42$ (13)	TP22.174×21.9464x0.625	0.9100	0.0000	0.0	$\begin{gathered} 43.367 \\ 3 \end{gathered}$	-18.02	2536.99	0.007
L14	$83.42-83.17$ (14)	TP22.2365x22.174×0.95	0.2500	0.0000	0.0	$\begin{gathered} 65.115 \\ 5 \end{gathered}$	-18.11	3809.26	0.005
L15	$\begin{gathered} 83.17-83 \\ (15) \end{gathered}$	TP22.2791 $\times 22.2365 \times 0.95$	0.1700	0.0000	0.0	$\begin{gathered} 65.245 \\ 6 \end{gathered}$	-18.17	3816.87	0.005
L16	$\begin{gathered} 83-82.75 \\ (16) \end{gathered}$	TP22.3416x22.2791x0.7	0.2500	0.0000	0.0	48.780	-18.23	2853.64	0.006
L17	$82.75-77.75$ (17)	TP23.5923 $\times 22.3416 \times 0.66$ 25	5.0000	0.0000	0.0	$\begin{gathered} 48.915 \\ 1 \end{gathered}$	-19.52	2861.53	0.007
L18	$\begin{gathered} 77.75-70 \\ (18) \end{gathered}$	TP25.531x23.5923x0.65	7.7500	0.0000	0.0	$\begin{gathered} 49.981 \\ 7 \end{gathered}$	-23.55	2923.93	0.008
L19	70-69(19)	TP25.281×24.0304×0.7	5.0000	0.0000	0.0	$\begin{gathered} 55.405 \\ 5 \end{gathered}$	-25.74	3241.22	0.008
L20	$\begin{gathered} 69-67.08 \\ (20) \end{gathered}$	$\begin{gathered} \text { TP } 25.7612 \times 25.281 \times 0.687 \\ 5 \end{gathered}$	1.9200	0.0000	0.0	$\begin{gathered} 55.506 \\ 9 \end{gathered}$	-26.31	3247.15	0.008
L21	$67.08-66.83$ (21)	$\begin{gathered} \text { TP25.8237×25.7612x0.68 } \\ 75 \end{gathered}$	0.2500	0.0000	0.0	$\begin{gathered} 55.645 \\ 3 \end{gathered}$	-26.42	3255.25	0.008
L22	66.83-64.08 (22)	$\begin{gathered} \text { TP26.5115×25.8237×0.67 } \\ 5 \end{gathered}$	2.7500	0.0000	0.0	$\begin{gathered} 56.155 \\ 7 \end{gathered}$	-27.25	3285.11	0.008
L23	$\begin{gathered} 64.08-63.83 \\ \text { (23) } \end{gathered}$	$\begin{gathered} \text { TP26.5741×26.5115×0.73 } \\ 75 \end{gathered}$	0.2500	0.0000	0.0	$\begin{gathered} 61.355 \\ 4 \end{gathered}$	-27.35	3589.29	0.008
L24	$63.83-62.5$	$\begin{gathered} \text { TP26.9067×26.5741×0.73 } \\ 75 \end{gathered}$	1.3300	0.0000	0.0	62.145	-27.80	3635.50	0.008
L25	62.5-62.25	TP26.9693x26.9067×0.86	0.2500	0.0000	0.0	72.505	-27.91	4241.54	0.007

tnxTower Report - version 8.1.1.0

Section No.	Elevation ft	Size	L $f t$	L_{u} ft	Kl/r	A $i n^{2}$	P_{u} K	ϕP_{n} K	Ratio P_{u}
	(25)	25				0			
L26	$\begin{gathered} 62.25-57.25 \\ (26) \end{gathered}$	$\begin{gathered} \text { TP28.2198×26.9693×0.83 } \\ 75 \end{gathered}$	5.0000	0.0000	0.0	$\begin{gathered} 73.843 \\ 3 \end{gathered}$	-29.71	4319.83	0.007
L27	$\begin{gathered} 57.25-53.5 \\ (27) \end{gathered}$	25	3.7500	0.0000	0.0	$\begin{gathered} 74.158 \\ 3 \end{gathered}$	-31.10	4338.26	0.007
L28	$\begin{gathered} 53.5-53.25 \\ (28) \end{gathered}$	$\begin{gathered} \text { TP29.2203×29.1578×0.83 } \\ 75 \end{gathered}$	0.2500	0.0000	0.0	$\begin{gathered} 76.541 \\ 3 \end{gathered}$	-31.21	4477.67	0.007
L29	$\begin{gathered} 53.25-52.58 \\ (29) \end{gathered}$	TP29.3879×29.2203×0.82	0.6700	0.0000	0.0	$\begin{gathered} 75.877 \\ 3 \end{gathered}$	-31.47	4438.82	0.007
L30	$\begin{gathered} 52.58-52.33 \\ (30) \end{gathered}$	TP29.4504×29.3879×0.86 25	0.2500	0.0000	0.0	$\begin{gathered} 79.395 \\ 7 \end{gathered}$	-31.57	4644.65	0.007
L31	$\begin{gathered} 52.33-47.33 \\ (31) \end{gathered}$	TP30.701×29.4504×0.837 5	5.0000	0.0000	0.0	$\begin{gathered} 80.534 \\ 3 \end{gathered}$	-33.52	4711.26	0.007
L32	$\begin{gathered} 47.33-44.58 \\ (32) \end{gathered}$	TP31.3888×30.701×0.812 5	2.7500	0.0000	0.0	$\begin{gathered} 79.995 \\ 2 \end{gathered}$	-34.62	4679.72	0.007
L33	$\begin{gathered} 44.58-44.33 \\ (33) \end{gathered}$	$\begin{aligned} & \text { TP31.4513×31.3888×0.81 } \\ & 25 \end{aligned}$	0.2500	0.0000	0.0	$\begin{gathered} 80.158 \\ 8 \end{gathered}$	-34.74	4689.29	0.007
L34	$\begin{gathered} 44.33-41.92 \\ (34) \end{gathered}$	TP32.0541x31.4513x0.8	2.4100	0.0000	0.0	$\begin{gathered} 80.510 \\ 6 \end{gathered}$	-35.70	4709.87	0.008
L35	$\begin{gathered} 41.92-41.67 \\ (35) \end{gathered}$	$\begin{aligned} & \text { TP32.1166x32.0541×0.81 } \\ & 25 \end{aligned}$	0.2500	0.0000	0.0	$\begin{gathered} 81.899 \\ 4 \end{gathered}$	-35.82	4791.12	0.007
L36	$\begin{gathered} 41.67-34.08 \\ (36) \end{gathered}$	TP34.015x32.1166x0.787 5	7.5900	0.0000	0.0	$\begin{gathered} 81.136 \\ 2 \end{gathered}$	-36.90	4746.47	0.008
L37	$\begin{gathered} 34.08-34 \\ (37) \end{gathered}$	$\begin{aligned} & \text { TP33.4082×32.1594×0.81 } \\ & 88 \end{aligned}$	5.0000	0.0000	0.0	$\begin{gathered} 85.918 \\ 1 \end{gathered}$	-40.57	5026.21	0.008
L38	34-29(38)	$\begin{gathered} \text { TP34.657x33.4082x0.793 } \\ 8 \end{gathered}$	5.0000	0.0000	0.0	$\begin{gathered} 86.550 \\ 3 \end{gathered}$	-42.74	5063.19	0.008
L39	$\begin{gathered} 29-26.92 \\ (39) \end{gathered}$	TP35.1765x34.657×0.793 8	2.0800	0.0000	0.0	$\begin{gathered} 87.878 \\ 0 \end{gathered}$	-43.66	5140.87	0.008
L40	$\begin{gathered} 26.92-26.67 \\ (40) \end{gathered}$	TP35.239x35.1765x0.893 8	0.2500	0.0000	0.0	$\begin{gathered} 98.841 \\ 2 \end{gathered}$	-43.79	5782.21	0.008
L41	$\begin{gathered} 26.67-21.67 \\ (41) \end{gathered}$	TP36.4877x35.239×0.868 8	5.0000	0.0000	0.0	$\begin{gathered} 99.639 \\ 7 \end{gathered}$	-46.23	5828.92	0.008
L42	$\begin{gathered} 21.67-18 \\ (42) \end{gathered}$	TP37.4044×36.4877×0.85 63	3.6700	0.0000	0.0	$\begin{gathered} 100.76 \\ 80 \end{gathered}$	-48.05	5894.91	0.008
L43	$18-17.75$	TP37.4668×37.4044×0.99 38	0.2500	0.0000	0.0	$\begin{gathered} 116.70 \\ 90 \end{gathered}$	-48.21	6827.49	0.007
L44	$\begin{gathered} 17.75-17.5 \\ (44) \end{gathered}$	TP37.5292×37.4668×0.99 38	0.2500	0.0000	0.0	$\begin{gathered} 116.90 \\ 90 \end{gathered}$	-48.35	6839.18	0.007
L45	$\begin{gathered} 17.5-17.25 \\ (45) \end{gathered}$	TP37.5917×37.5292x0.99 38	0.2500	0.0000	0.0	$\begin{gathered} 117.10 \\ 90 \end{gathered}$	-48.48	6850.86	0.007
L46	$\begin{gathered} 17.25-17.08 \\ (46) \end{gathered}$	$\begin{gathered} \text { TP37.6341×37.5917×0.99 } \\ 38 \end{gathered}$	0.1700	0.0000	0.0	$\begin{gathered} 117.24 \\ 50 \end{gathered}$	-48.58	6858.81	0.007
L47	$\begin{gathered} 17.08-16.83 \\ (47) \end{gathered}$	TP37.6966x37.6341×0.89 38	0.2500	0.0000	0.0	$\begin{gathered} 105.91 \\ 40 \end{gathered}$	-48.70	6195.96	0.008
L48	$\begin{gathered} 16.83-13 \\ (48) \end{gathered}$	TP38.6531x37.6966x0.88 13	3.8300	0.0000	0.0	$\begin{gathered} 107.18 \\ 20 \end{gathered}$	-50.67	6270.17	0.008
L49	$\begin{aligned} & 13-12.75 \\ & (49) \end{aligned}$	TP38.7156x38.6531×1.05 63	0.2500	0.0000	0.0	$\begin{gathered} 128.08 \\ 40 \end{gathered}$	-50.83	7492.92	0.007
L50	$\begin{gathered} 12.75-11.92 \\ (50) \end{gathered}$	$\begin{aligned} & \text { TP38.9229×38.7156x1.04 } \\ & 38 \end{aligned}$	0.8300	0.0000	0.0	$\begin{gathered} 127.30 \\ 70 \end{gathered}$	-51.31	7447.46	0.007
L51	$\begin{gathered} 11.92-11.67 \\ (51) \end{gathered}$	TP38.9853×38.9229×0.81 88	0.2500	0.0000	0.0	$\begin{gathered} 100.62 \\ 10 \end{gathered}$	-51.45	5886.35	0.009
L52	$\begin{gathered} 11.67-6.67 \\ (52) \end{gathered}$	$\begin{gathered} \text { TP40.2341×38.9853×0.79 } \\ 38 \end{gathered}$	5.0000	0.0000	0.0	$\begin{gathered} 99.527 \\ 9 \end{gathered}$	-53.04	5822.38	0.009
L53	6.67-6.5 (53)	$\begin{gathered} \text { TP40.2766×40.2341×0.79 } \\ 38 \end{gathered}$	0.1700	0.0000	0.0	$\begin{gathered} 100.80 \\ 50 \end{gathered}$	-54.08	5897.07	0.009
L54	6.5-6.25 (54)	TP40.339x40.2766x0.918 8	0.2500	0.0000	0.0	$\begin{gathered} 116.43 \\ 50 \end{gathered}$	-54.17	6811.46	0.008
L55	$6.25-3.75$	TP40.9634×40.339×0.906 3	2.5000	0.0000	0.0	$\begin{gathered} 115.07 \\ 00 \end{gathered}$	-54.33	6731.58	0.008
L56	3.75-3.5 (56)	TP41.0258×40.9634×1.00 63	0.2500	0.0000	0.0	$\begin{gathered} 129.46 \\ 60 \end{gathered}$	-55.72	7573.77	0.007
L57	3.5-3 (57)	TP41.1507×41.0258×0.99 38	0.5000	0.0000	0.0	$\begin{gathered} 128.09 \\ 80 \end{gathered}$	-55.87	7493.72	0.007
L58	3-2.75 (58)	$\begin{aligned} & \text { TP41.2132×41.1507×0.99 } \\ & 38 \end{aligned}$	0.2500	0.0000	0.0	$\begin{gathered} 128.49 \\ 70 \end{gathered}$	-56.16	7517.09	0.007
L59	2.75-0 (59)	TP41.9x41.2132x1.0188	2.7500	0.0000	0.0	$\begin{gathered} 131.85 \\ 30 \end{gathered}$	-56.32	7713.39	0.007

Section No.	Elevation	Size	L	L_{u}	$K l / r$	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		$i n^{2}$	K	K	

Pole Bending Design Data

Section No.	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	Ratio Mux	$M_{u y}$	$\phi M_{n y}$	Ratio Muy
	$f t$		kip-ft	kip-ft	$\phi M_{n x}$	kip-ft	kip-ft	$\phi M_{n y}$
L1	130-125 (1)	TP11.775x10.525x0.1875	0.63	120.74	0.005	0.00	120.74	0.000
L2	125-120 (2)	TP13.025x11.775x0.1875	2.28	148.43	0.015	0.00	148.43	0.000
L3	120-115 (3)	TP14.275x13.025x0.1875	46.78	178.97	0.261	0.00	178.97	0.000
L4	115-110 (4)	TP15.525x14.275x0.1875	91.06	212.37	0.429	0.00	212.37	0.000
L5	110-105 (5)	TP16.7758x15.525x0.25	161.84	327.79	0.494	0.00	327.79	0.000
L6	105-100 (6)	TP18.0265x16.7758x0.25	236.53	379.69	0.623	0.00	379.69	0.000
L7	100-95 (7)	TP19.2773x18.0265x0.25	327.43	435.39	0.752	0.00	435.39	0.000
L8	95-90 (8)	TP20.528x19.2773x0.25	431.90	494.91	0.873	0.00	494.91	0.000
L9	90-89.75 (9)	TP20.5905x20.528x0.5	437.20	959.70	0.456	0.00	959.70	0.000
L10	$\begin{gathered} 89.75-84.75 \\ (10) \end{gathered}$	TP21.8413×20.5905x0.48 13	551.23	1046.54	0.527	0.00	1046.54	0.000
L11	$84.75-84.58$ (11)	$\begin{gathered} \text { TP21.8838×21.8413×0.47 } \\ 5 \end{gathered}$	555.47	1038.02	0.535	0.00	1038.02	0.000
L12	$84.58-84.33$ (12)	TP21.9464×21.8838×0.63 75	561.71	1369.79	0.410	0.00	1369.79	0.000
L13	$84.33-83.42$ (13)	TP22.174x21.9464x0.625	584.50	1374.59	0.425	0.00	1374.59	0.000
L14	$83.42-83.17$ (14)	TP22.2365x22.174×0.95	590.79	2008.30	0.294	0.00	2008.30	0.000
L15	$\begin{gathered} 83.17-83 \\ (15) \end{gathered}$	TP22.2791x22.2365x0.95	595.07	2016.50	0.295	0.00	2016.50	0.000
L16	$\begin{gathered} 83-82.75 \\ (16) \end{gathered}$	TP22.3416x22.2791x0.7	601.37	1547.78	0.389	0.00	1547.78	0.000
L17	$\begin{gathered} 82.75-77.75 \\ (17) \end{gathered}$	$\begin{aligned} & \text { TP23.5923×22.3416x0.66 } \\ & 25 \end{aligned}$	729.73 839.17	1649.97	0.442	0.00	1649.97 1758.70	0.000
L18	$\begin{gathered} 77.75-70 \\ (18) \end{gathered}$	TP25.531x23.5923x0.65	839.17	1758.70	0.477	0.00	1758.70	0.000
L19	70-69 (19)	TP25.281x24.0304x0.7	992.27	2004.28	0.495	0.00	2004.28	0.000
L20	$\begin{gathered} 69-67.08 \\ (20) \end{gathered}$	TP25.7612×25.281×0.687 5	1052.27	2050.31	0.513	0.00	2050.31	0.000
L21	$\begin{gathered} 67.08-66.83 \\ (21) \end{gathered}$	$\begin{gathered} \text { TP25.8237×25.7612×0.68 } \\ 75 \end{gathered}$	1060.13	2060.68	0.514	0.00	2060.68	0.000
L22	$\begin{gathered} 66.83-64.08 \\ (22) \end{gathered}$	TP26.5115×25.8237×0.67	1147.24	2140.07	0.536	0.00	2140.07	0.000
L23	$\begin{gathered} 64.08-63.83 \\ (23) \end{gathered}$	$\begin{gathered} \text { TP26.5741×26.5115×0.73 } \\ 75 \end{gathered}$	1155.22	2332.73	0.495	0.00	2332.73	0.000
L24	$\begin{gathered} 63.83-62.5 \\ (24) \end{gathered}$	$\begin{gathered} \text { TP26.9067×26.5741×0.73 } \\ 75 \end{gathered}$	1197.88	2394.04	0.500	0.00	2394.04	0.000
L25	$\begin{gathered} 62.5-62.25 \\ (25) \end{gathered}$	TP26.9693x26.9067x0.86 25	1205.93	2773.36	0.435	0.00	2773.36	0.000
L26	$\begin{gathered} 62.25-57.25 \\ (26) \end{gathered}$	TP28.2198×26.9693x0.83 75	1369.28	2969.61	0.461	0.00	2969.61	0.000
L27	$\begin{gathered} 57.25-53.5 \\ (27) \end{gathered}$	TP29.1578×28.2198×0.81 25	1494.67	3092.92	0.483	0.00	3092.92	0.000
L28	$\begin{gathered} 53.5-53.25 \\ (28) \end{gathered}$	$\begin{gathered} \text { TP29.2203×29.1578×0.83 } \\ 75 \end{gathered}$	1503.12	3193.91	0.471	0.00	3193.91	0.000
L29	$\begin{gathered} 53.25-52.58 \\ (29) \end{gathered}$	$\begin{gathered} \text { TP29.3879×29.2203×0.82 } \\ 5 \end{gathered}$	1525.81	3188.22	0.479	0.00	3188.22	0.000
L30	$\begin{gathered} 52.58-52.33 \\ (30) \end{gathered}$	TP29.4504×29.3879×0.86 25	1534.30	3334.82	0.460	0.00	3334.82	0.000
L31	$\begin{gathered} 52.33-47.33 \\ (31) \end{gathered}$	$\begin{gathered} \mathrm{TP} 30.701 \times 29.4504 \times 0.837 \\ 5 \end{gathered}$	1706.34	3540.88	0.482	0.00	3540.88	0.000
L32	$\begin{gathered} 47.33-44.58 \\ (32) \end{gathered}$	TP31.3888x30.701×0.812 5	1802.83	3606.29	0.500	0.00	3606.29	0.000
L33	$\begin{gathered} 44.58-44.33 \\ (33) \end{gathered}$	$\begin{aligned} & \text { TP31.4513×31.3888×0.81 } \\ & 25 \end{aligned}$	1811.66	3621.24	0.500	0.00	3621.24	0.000
L34	$\begin{gathered} 44.33-41.92 \\ (34) \end{gathered}$	TP32.0541x31.4513x0.8	1897.38	3713.51	0.511	0.00	3713.51	0.000
L35	41.92-41.67	TP32.1166x32.0541x0.81	1906.33	3782.29	0.504	0.00	3782.29	0.000

tnxTower Report - version 8.1.1.0

Section No.	Elevation ft	Size	$M_{u x}$ kip-ft	$\phi M_{n x}$	Ratio Mux $\phi M_{n x}$	Muy kip-ft	$\phi M_{n y}$	Ratio Muy $\phi M_{n y}$
					ϕM			$\phi M_{n y}$
	(35)	25						
L36	$\begin{gathered} 41.67-34.08 \\ (36) \end{gathered}$	TP34.015×32.1166x0.787	2002.53	3835.00	0.522	0.00	3835.00	0.000
L37	$\begin{gathered} 34.08-34 \\ (37) \end{gathered}$	$\begin{aligned} & \text { TP33.4082×32.1594×0.81 } \\ & 88 \end{aligned}$	2186.20	4134.16	0.529	0.00	4134.16	0.000
L38	34-29(38)	TP34.657×33.4082×0.793 8	2374.21	4334.48	0.548	0.00	4334.48	0.000
L39	$\begin{gathered} 29-26.92 \\ (39) \end{gathered}$	TP35.1765 34.657×0.793 8	2453.58	4470.03	0.549	0.00	4470.03	0.000
L40	$\begin{gathered} 26.92-26.67 \\ (40) \end{gathered}$	TP35.239×35.1765×0.893 8	2463.17	5007.82	0.492	0.00	5007.82	0.000
L41	$\begin{gathered} 26.67-21.67 \\ (41) \end{gathered}$	TP36.4877×35.239×0.868 8	2656.96	5243.85	0.507	0.00	5243.85	0.000
L42	$\begin{gathered} 21.67-18 \\ (42) \end{gathered}$	TP37.4044×36.4877×0.85 63	2801.68	5446.66	0.514	0.00	5446.66	0.000
L43	$\begin{gathered} 18-17.75 \\ (43) \end{gathered}$	TP37.4668×37.4044x0.99 38	2811.62	6271.97	0.448	0.00	6271.97	0.000
L44	$\begin{gathered} 17.75-17.5 \\ (44) \end{gathered}$	TP37.5292×37.4668×0.99 38	2821.56	6293.75	0.448	0.00	6293.75	0.000
L45	$17.5-17.25$ (45)	$\begin{gathered} \text { TP37.5917×37.5292×0.99 } \\ 38 \end{gathered}$	2831.51	6315.56	0.448	0.00	6315.56	0.000
L46	$\begin{gathered} 17.25-17.08 \\ (46) \end{gathered}$	TP37.6341×37.5917×0.99 38	2838.28	6330.42	0.448	0.00	6330.42	0.000
L47	$\begin{gathered} 17.08-16.83 \\ (47) \end{gathered}$	$\begin{gathered} \text { TP37.6966×37.6341×0.89 } \\ 38 \end{gathered}$	2848.25	5759.90	0.494	0.00	5759.90	0.000
L48	$\begin{gathered} 16.83-13 \\ (48) \end{gathered}$	TP38.6531×37.6966x0.88 13	3002.09	5987.94	0.501	0.00	5987.94	0.000
L49	$\begin{gathered} 13-12.75 \\ (49) \end{gathered}$	TP38.7156x38.6531×1.05 63	3012.21	7101.60	0.424	0.00	7101.60	0.000
L50	$\begin{gathered} 12.75-11.92 \\ (50) \end{gathered}$	TP38.9229×38.7156×1.04 38	3045.86	7103.12	0.429	0.00	7103.12	0.000
L51	$\begin{gathered} 11.92-11.67 \\ (51) \end{gathered}$	$\begin{aligned} & \text { TP38.9853×38.9229×0.81 } \\ & 88 \end{aligned}$	3056.02	5690.58	0.537	0.00	5690.58	0.000
L52	$\begin{gathered} 11.67-6.67 \\ (52) \end{gathered}$	$\begin{gathered} \text { TP40.2341×38.9853×0.79 } \\ 38 \end{gathered}$	3178.57	5748.95	0.553	0.00	5748.95	0.000
L53	6.67-6.5 (53)	$\begin{gathered} \text { TP40.2766x40.2341×0.79 } \\ 38 \end{gathered}$	3260.98	5898.87	0.553	0.00	5898.87	0.000
L54	6.5-6.25 (54)	TP40.339×40.2766x0.918 8	3268.01	6777.90	0.482	0.00	6777.90	0.000
L55	$\begin{aligned} & 6.25-3.75 \\ & (55) \end{aligned}$	TP40.9634×40.339×0.906 3	3278.36	6713.54	0.488	0.00	6713.54	0.000
L56	3.75-3.5 (56)	TP41.0258×40.9634×1.00 63	3382.32	7637.49	0.443	0.00	7637.49	0.000
L57	3.5-3 (57)	TP41.1507×41.0258×0.99 38	3392.77	7573.59	0.448	0.00	7573.59	0.000
L58	3-2.75 (58)	TP41.2132x41.1507x0.99 38	3413.68	7621.49	0.448	0.00	7621.49	0.000
L59	2.75-0 (59)	TP41.9x41.2132×1.0188	3424.16	7823.22	0.438	0.00	7823.22	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V_{u}	ϕV_{n}	Ratio V_{u}	Actual T_{u}	ϕT_{n}	Ratio T_{u}
ft			K	K	ϕV_{n}	kip-ft	kip-ft	ϕT_{n}
L1	130-125 (1)	TP11.775x10.525x0.1875	0.26	122.78	0.002	0.00	125.15	0.000
L2	125-120 (2)	TP13.025x11.775x0.1875	2.24	136.02	0.016	0.00	153.60	0.000
L3	120-115 (3)	TP14.275x13.025x0.1875	8.57	149.27	0.057	0.14	184.97	0.001
L4	115-110 (4)	TP15.525x14.275x0.1875	9.14	162.51	0.056	0.06	219.25	0.000
L5	110-105 (5)	TP16.7758x15.525x0.25	14.31	233.47	0.061	0.77	339.39	0.002
L6	105-100 (6)	TP18.0265x16.7758x0.25	15.39	251.14	0.061	0.68	392.70	0.002
L7	100-95 (7)	TP19.2773x18.0265x0.25	20.65	268.81	0.077	0.73	449.91	0.002
L8	95-90 (8)	TP20.528x19.2773x0.25	21.17	286.48	0.074	0.79	511.00	0.002
L9	90-89.75 (9)	TP20.5905x20.528x0.5	21.18	567.67	0.037	0.79	1003.20	0.001
L10	89.75-84.75	TP21.8413x20.5905x0.48	24.94	580.91	0.043	0.92	1091.46	0.001

tnxTower Report - version 8.1.1.0

Section No.	Elevation	Size	Actual V_{u}	ϕV_{n}	Ratio V_{u}	Actual T_{u}	ϕT_{n}	Ratio T_{u}
	$f t$		K	K	ϕV_{n}	kip-ft	kip-ft	ϕT_{n}
L11	84.75-84.58 (11)	$\begin{gathered} \text { TP21.8838x21.8413x0.47 } \\ 5 \end{gathered}$	24.95	574.67	0.043	0.93	1082.21	0.001
L12	$\begin{gathered} 84.58-84.33 \\ (12) \end{gathered}$	$\begin{gathered} \text { TP21.9464×21.8838×0.63 } \\ 75 \end{gathered}$	24.99	767.67	0.033	0.93	1438.91	0.001
L13	$\begin{gathered} 84.33-83.42 \\ (13) \end{gathered}$	TP22.174x21.9464x0.625	25.12	761.10	0.033	0.93	1442.67	0.001
L14	$83.42-83.17$ (14)	TP22.2365x22.174×0.95	25.16	1142.78	0.022	0.94	2139.77	0.000
L15	$\begin{gathered} 83.17-83 \\ (15) \end{gathered}$	TP22.2791x22.2365×0.95	25.19	1145.06	0.022	0.94	2148.32	0.000
L16	$\begin{gathered} 83-82.75 \\ (16) \end{gathered}$	TP22.3416x22.2791x0.7	25.22	856.09	0.029	0.94	1629.71	0.001
L17	$82.75-77.75$	TP23.5923x22.3416x0.66 25	26.11	858.46	0.030	0.82	1731.49	0.000
L18	$\begin{gathered} 77.75-70 \\ (18) \end{gathered}$	TP25.531x23.5923x0.65	30.13	877.18	0.034	0.90	1842.59	0.000
L19	70-69 (19)	TP25.281x24.0304x0.7	31.07	972.37	0.032	1.02	2102.47	0.000
L20	$\begin{gathered} 69-67.08 \\ (20) \end{gathered}$	TP25.7612×25.281×0.687 5	31.41	974.15	0.032	1.05	2148.53	0.000
L21	$\begin{gathered} 67.08-66.83 \\ (21) \end{gathered}$	$\begin{gathered} \text { TP25.8237×25.7612×0.68 } \\ 75 \end{gathered}$	31.43	976.58	0.032	1.06	2159.27	0.000
L22	$\begin{gathered} 66.83-64.08 \\ (22) \end{gathered}$	$\begin{aligned} & \text { TP26.5115×25.8237×0.67 } \\ & 5 \end{aligned}$	31.90	985.53	0.032	1.12	2239.78	0.001
L23	$\begin{gathered} 64.08-63.83 \\ (23) \end{gathered}$	$\begin{gathered} \text { TP26.5741×26.5115×0.73 } \\ 75 \end{gathered}$	31.93	1076.79	0.030	1.13	2447.18	0.000
L24	$\begin{gathered} 63.83-62.5 \\ (24) \end{gathered}$	$\begin{gathered} \text { TP26.9067×26.5741×0.73 } \\ 75 \end{gathered}$	32.17	1090.65	0.030	1.15	2510.59	0.000
L25	$\begin{gathered} 62.5-62.25 \\ (25) \end{gathered}$	TP26.9693x26.9067x0.86 25	32.20	1272.46	0.025	1.16	2922.12	0.000
L26	$\begin{gathered} 62.25-57.25 \\ (26) \end{gathered}$	TP28.2198×26.9693×0.83 75	33.09	1295.95	0.026	1.25	3121.47	0.000
L27	$\begin{gathered} 57.25-53.5 \\ (27) \end{gathered}$	$\begin{gathered} \text { TP29.1578×28.2198×0.81 } \\ 25 \end{gathered}$	33.75	1301.48	0.026	1.32	3245.02	0.000
L28	$53.5-53.25$ (28)	$\begin{gathered} \text { TP29.2203 } \times 29.1578 \times 0.83 \\ 75 \end{gathered}$	33.78	1343.30	0.025	1.33	3353.72	0.000
L29	$\begin{gathered} 53.25-52.58 \\ (29) \end{gathered}$	$\begin{gathered} \text { TP29.3879×29.2203×0.82 } \\ 5 \end{gathered}$	33.91	1331.65	0.025	1.34	3345.72	0.000
L30	$52.58-52.33$ (30)	$\begin{gathered} \text { TP29.4504×29.3879×0.86 } \\ 25 \end{gathered}$	33.95	1393.40	0.024	1.34	3503.94	0.000
L31	$\begin{gathered} 52.33-47.33 \\ (31) \end{gathered}$	$\begin{gathered} \mathrm{TP} 30.701 \times 29.4504 \times 0.837 \\ 5 \end{gathered}$	34.83	1413.38	0.025	1.44	3712.78	0.000
L32	$\begin{gathered} 47.33-44.58 \\ (32) \end{gathered}$	TP31.3888×30.701×0.812	35.31	1403.92	0.025	1.49	3775.95	0.000
L33	$\begin{gathered} 44.58-44.33 \\ (33) \end{gathered}$	TP31.4513x31.3888×0.81 25	35.34	1406.79	0.025	1.49	3791.41	0.000
L34	44.33-41.92 (34)	TP32.0541x31.4513x0.8	35.76	1412.96	0.025	1.53	3884.52	0.000
L35	$\begin{gathered} 41.92-41.67 \\ (35) \end{gathered}$	TP32.1166x32.0541×0.81 25	35.78	1437.33	0.025	1.53	3957.85	0.000
L36	$\begin{gathered} 41.67-34.08 \\ (36) \end{gathered}$	TP34.015×32.1166×0.787	36.24	1423.94	0.025	1.57	4007.74	0.000
L37	$\begin{gathered} 34.08-34 \\ (37) \end{gathered}$	$\begin{aligned} & \text { TP33.4082×32.1594×0.81 } \\ & 88 \end{aligned}$	37.18	1507.86	0.025	1.65	4322.54	0.000
L38	34-29 (38)	TP34.657×33.4082×0.793 8	37.98	1518.96	0.025	1.73	4524.54	0.000
L39	$\begin{gathered} 29-26.92 \\ (39) \end{gathered}$	TP35.1765x34.657x0.793 8	38.31	1542.26	0.025	1.76	4664.43	0.000
L40	$\begin{gathered} 26.92-26.67 \\ (40) \end{gathered}$	$\begin{gathered} \text { TP35.239×35.1765×0.893 } \\ 8 \end{gathered}$	38.33	1734.66	0.022	1.77	5240.60	0.000
L41	$\begin{gathered} 26.67-21.67 \\ (41) \end{gathered}$	TP36.4877×35.239×0.868 8	39.13	1748.68	0.022	1.84	5478.87	0.000
L42	$\begin{gathered} 21.67-18 \\ (42) \end{gathered}$	TP37.4044×36.4877×0.85 63	39.70	1768.47	0.022	1.89	5685.42	0.000
L43	$\begin{gathered} 18-17.75 \\ (43) \end{gathered}$	$\begin{aligned} & \text { TP37.4668×37.4044×0.99 } \\ & 38 \end{aligned}$	39.71	2048.25	0.019	1.89	6571.34	0.000
L44	$\begin{gathered} 17.75-17.5 \\ (44) \end{gathered}$	TP37.5292×37.4668×0.99 38	39.75	2051.75	0.019	1.90	6593.86	0.000
L45	$\begin{gathered} 17.5-17.25 \\ (45) \end{gathered}$	TP37.5917×37.5292×0.99 38	39.79	2055.26	0.019	1.90	6616.42	0.000

tnxTower Report - version 8.1.1.0

Section No.	Elevation	Size	Actual V_{u}	ϕV_{n}	Ratio V_{u}	Actual T_{u}	ϕT_{n}	Ratio T_{u}
ft			K	K	ϕV_{n}	kip-ft	kip-ft	ϕT_{n}
L46	17.25-17.08 (46)	$\begin{gathered} \text { TP37.6341×37.5917×0.99 } \\ 38 \end{gathered}$	39.82	2057.64	0.019	1.90	6631.77	0.000
L47	$17.08-16.83$ (47)	$\begin{gathered} \text { TP37.6966x37.6341×0.89 } \\ 38 \end{gathered}$	39.85	1858.79	0.021	1.90	6017.43	0.000
L48	$\begin{gathered} 16.83-13 \\ (48) \end{gathered}$	TP38.6531x37.6966x0.88 13	40.43	1881.05	0.021	1.96	6249.85	0.000
L49	$13-12.75$ (49)	TP38.7156x38.6531x1.05 63	40.44	2247.88	0.018	1.96	7446.37	0.000
L50	$12.75-11.92$ (50)	$\begin{gathered} \text { TP38.9229×38.7156×1.04 } \\ 38 \end{gathered}$	40.58	2234.24	0.018	1.97	7444.39	0.000
L51	$\begin{gathered} 11.92-11.67 \\ (51) \end{gathered}$	$\begin{aligned} & \mathrm{TP} 38.9853 \times 38.9229 \times 0.81 \\ & 88 \end{aligned}$	40.61	1765.91	0.023	1.97	5928.57	0.000
L52	$\begin{gathered} 11.67-6.67 \\ (52) \end{gathered}$	TP40.2341×38.9853x0.79 38	41.18	1757.92	0.023	2.05	5983.12	0.000
L53	6.67-6.5 (53)	$\begin{gathered} \text { TP40.2766x40.2341×0.79 } \\ 38 \end{gathered}$	41.33	1771.03	0.023	2.07	6137.60	0.000
L54	6.5-6.25 (54)	$\begin{gathered} \text { TP40.339×40.2766x0.918 } \\ 8 \end{gathered}$	41.37	2046.68	0.020	2.08	7074.44	0.000
L55	$6.25-3.75$ (55)	TP40.9634×40.339x0.906 3	41.56	2035.46	0.020	2.11	7004.79	0.000
L56	3.75-3.5 (56)	TP41.0258×40.9634×1.00 63	41.76	2275.68	0.018	2.14	7985.97	0.000
L57	3.5-3 (57)	TP41.1507x41.0258x0.99 38	41.84	2255.13	0.019	2.16	7916.38	0.000
L58	3-2.75 (58)	TP41.2132×41.1507×0.99 38	41.87	2258.63	0.019	2.16	7965.85	0.000
L59	2.75-0 (59)	TP41.9x41.2132x1.0188	42.10	2333.79	0.018	2.20	8181.48	0.000

Pole Interaction Design Data

Section No.	Elevation	Ratio P_{u}	Ratio Mux	Ratio Muy	Ratio V_{u}	Ratio T_{u}	Comb. Stress	Allow. Stress	Criteria
	$f t$	ϕP_{n}	$\phi M_{n x}$	$\phi M_{n y}$	ϕV_{n}	ϕT_{n}	Ratio	Ratio	
L1	130-125 (1)	0.000	0.005	0.000	0.002	0.000	0.005	1.050	4.8.2
L2	125-120 (2)	0.033	0.015	0.000	0.016	0.000	0.049	1.050	4.8.2
L3	120-115 (3)	0.009	0.261	0.000	0.057	0.001	0.273	1.050	4.8.2
L4	115-110 (4)	0.008	0.429	0.000	0.056	0.000	0.440	1.050	4.8.2
L5	110-105 (5)	0.011	0.494	0.000	0.061	0.002	0.509	1.050	4.8.2
L6	105-100 (6)	0.011	0.623	0.000	0.061	0.002	0.638	1.050	4.8.2
L7	100-95 (7)	0.015	0.752	0.000	0.077	0.002	0.773	1.050	4.8.2
L8	95-90 (8)	0.015	0.873	0.000	0.074	0.002	0.893	1.050	4.8.2
L9	90-89.75 (9)	0.007	0.456	0.000	0.037	0.001	0.464	1.050	4.8.2
L10	$\begin{gathered} 89.75-84.75 \\ (10) \end{gathered}$	0.009	0.527	0.000	0.043	0.001	0.538	1.050	4.8.2
L11	$84.75-84.58$ (11)	0.009	0.535	0.000	0.043	0.001	0.546	1.050	4.8.2
L12	$\begin{gathered} 84.58-84.33 \\ (12) \end{gathered}$	0.007	0.410	0.000	0.033	0.001	0.418	1.050	4.8.2
L13	$\begin{gathered} 84.33-83.42 \\ (13) \end{gathered}$	0.007	0.425	0.000	0.033	0.001	0.433	1.050	4.8.2
L14	$83.42-83.17$ (14)	0.005	0.294	0.000	0.022	0.000	0.299	1.050	4.8.2
L15	$83.17-83$ (15)	0.005	0.295	0.000	0.022	0.000	0.300	1.050	4.8.2
L16	$\begin{gathered} 83-82.75 \\ (16) \end{gathered}$	0.006	0.389	0.000	0.029	0.001	0.396	1.050	4.8.2
L17	$82.75-77.75$ (17)	0.007	0.442	0.000	0.030	0.000	0.450	1.050	4.8.2
L18	$\begin{gathered} 77.75-70 \\ (18) \end{gathered}$	0.008	0.477	0.000	0.034	0.000	0.486	1.050	4.8.2
L19	70-69 (19)	0.008	0.495	0.000	0.032	0.000	0.504	1.050	4.8.2
L20	$\begin{gathered} 69-67.08 \\ (20) \end{gathered}$	0.008	0.513	0.000	0.032	0.000	0.522	1.050	4.8.2

tnxTower Report - version 8.1.1.0

Section No.	Elevation	Ratio P_{u}	Ratio Mux	Ratio Muy	Ratio V_{u}	Ratio T_{u}	Comb. Stress	Allow. Stress	Criteria
	$f t$	ϕP_{n}	$\phi M_{n x}$	$\phi M_{n y}$	ϕV_{n}	ϕT_{n}	Ratio	Ratio	
L21	$\begin{gathered} 67.08-66.83 \\ (21) \end{gathered}$	0.008	0.514	0.000	0.032	0.000	0.524	1.050	4.8.2
L22	$\begin{gathered} 66.83-64.08 \\ (22) \end{gathered}$	0.008	0.536	0.000	0.032	0.001	0.545	1.050	4.8.2
L23	$\begin{aligned} & 64.08-63.83 \\ & (23) \end{aligned}$	0.008	0.495	0.000	0.030	0.000	0.504	1.050	4.8.2
L24	$\begin{gathered} 63.83-62.5 \\ (24) \end{gathered}$	0.008	0.500	0.000	0.030	0.000	0.509	1.050	4.8.2
L25	$\begin{gathered} 62.5-62.25 \\ (25) \end{gathered}$	0.007	0.435	0.000	0.025	0.000	0.442	1.050	4.8.2
L26	$\begin{gathered} 62.25-57.25 \\ (26) \end{gathered}$	0.007	0.461	0.000	0.026	0.000	0.469	1.050	4.8.2
L27	$\begin{gathered} 57.25-53.5 \\ (27) \end{gathered}$	0.007	0.483	0.000	0.026	0.000	0.491	1.050	4.8.2
L28	$\begin{gathered} 53.5-53.25 \\ (28) \end{gathered}$	0.007	0.471	0.000	0.025	0.000	0.478	1.050	4.8.2
L29	$\begin{gathered} 53.25-52.58 \\ (29) \end{gathered}$	0.007	0.479	0.000	0.025	0.000	0.486	1.050	4.8.2
L30	$\begin{gathered} 52.58-52.33 \\ (30) \end{gathered}$	0.007	0.460	0.000	0.024	0.000	0.467	1.050	4.8.2
L31	$\begin{gathered} 52.33-47.33 \\ (31) \end{gathered}$	0.007	0.482	0.000	0.025	0.000	0.490	1.050	4.8.2
L32	$\begin{gathered} 47.33-44.58 \\ (32) \end{gathered}$	0.007	0.500	0.000	0.025	0.000	0.508	1.050	4.8.2
L33	44.58-44.33 (33)	0.007	0.500	0.000	0.025	0.000	0.508	1.050	4.8.2
L34	$\begin{gathered} 44.33-41.92 \\ (34) \end{gathered}$	0.008	0.511	0.000	0.025	0.000	0.519	1.050	4.8.2
L35	$\begin{gathered} 41.92-41.67 \\ \text { (35) } \end{gathered}$	0.007	0.504	0.000	0.025	0.000	0.512	1.050	4.8.2
L36	$\begin{gathered} 41.67-34.08 \\ (36) \end{gathered}$	0.008	0.522	0.000	0.025	0.000	0.531	1.050	4.8.2
L37	$\begin{gathered} 34.08-34 \\ (37) \end{gathered}$	0.008	0.529	0.000	0.025	0.000	0.538	1.050	4.8.2
L38	34-29 (38)	0.008	0.548	0.000	0.025	0.000	0.557	1.050	4.8 .2
L39	$\begin{gathered} 29-26.92 \\ (39) \end{gathered}$	0.008	0.549	0.000	0.025	0.000	0.558	1.050	4.8.2
L40	$\begin{gathered} 26.92-26.67 \\ (40) \end{gathered}$	0.008	0.492	0.000	0.022	0.000	0.500	1.050	4.8.2
L41	$\begin{gathered} 26.67-21.67 \\ (41) \end{gathered}$	0.008	0.507	0.000	0.022	0.000	0.515	1.050	4.8.2
L42	$\begin{gathered} 21.67-18 \\ (42) \end{gathered}$	0.008	0.514	0.000	0.022	0.000	0.523	1.050	4.8.2
L43	$\begin{gathered} 18-17.75 \\ (43) \end{gathered}$	0.007	0.448	0.000	0.019	0.000	0.456	1.050	4.8.2
L44	$17.75-17.5$ (44)	0.007	0.448	0.000	0.019	0.000	0.456	1.050	4.8.2
L45	$\begin{gathered} 17.5-17.25 \\ (45) \end{gathered}$	0.007	0.448	0.000	0.019	0.000	0.456	1.050	4.8.2
L46	17.25-17.08 (46)	0.007	0.448	0.000	0.019	0.000	0.456	1.050	4.8.2
L47	$\begin{gathered} 17.08-16.83 \\ (47) \end{gathered}$	0.008	0.494	0.000	0.021	0.000	0.503	1.050	4.8.2
L48	$\begin{gathered} 16.83-13 \\ (48) \end{gathered}$	0.008	0.501	0.000	0.021	0.000	0.510	1.050	4.8.2
L49	$\begin{gathered} 13-12.75 \\ (49) \end{gathered}$	0.007	0.424	0.000	0.018	0.000	0.431	1.050	4.8.2
L50	$\begin{gathered} 12.75-11.92 \\ (50) \end{gathered}$	0.007	0.429	0.000	0.018	0.000	0.436	1.050	4.8.2
L51	$\begin{gathered} 11.92-11.67 \\ (51) \end{gathered}$	0.009	0.537	0.000	0.023	0.000	0.546	1.050	4.8.2
L52	$\begin{gathered} 11.67-6.67 \\ (52) \end{gathered}$	0.009	0.553	0.000	0.023	0.000	0.563	1.050	4.8.2
L53	$6.67-6.5$ (53)	0.009	0.553	0.000	0.023	0.000	0.563	1.050	4.8 .2
L54	6.5-6.25 (54)	0.008	0.482	0.000	0.020	0.000	0.491	1.050	4.8 .2
L55	$6.25-3.75$ (55)	0.008	0.488	0.000	0.020	0.000	0.497	1.050	4.8.2
L56	3.75-3.5 (56)	0.007	0.443	0.000	0.018	0.000	0.451	1.050	4.8 .2
L57	3.5-3 (57)	0.007	0.448	0.000	0.019	0.000	0.456	1.050	4.8 .2

tnxTower Report - version 8.1.1.0

Section No.	Elevation	Ratio P_{u}	Ratio $M_{u x}$	Ratio Muy	Ratio V_{u}	Ratio T_{u}	Comb. Stress	Allow. Stress	Criteria
ft		ϕP_{n}	$\phi M_{n x}$	$\phi M_{n y}$	ϕV_{n}	ϕT_{n}	Ratio	Ratio	
L58	3-2.75 (58)	0.007	0.448	0.000	0.019	0.000	0.456	1.050	4.8.2
L59	2.75-0 (59)	0.007	0.438	0.000	0.018	0.000	0.445	1.050	4.8.2

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$\begin{gathered} ø P_{\text {allow }} \\ K \end{gathered}$	\% Capacity	$\begin{aligned} & \text { Pass } \\ & \text { Fail } \end{aligned}$
L1	130-125	Pole	TP11.775x10.525x0.1875	1	-0.10	429.73	0.5	Pass
L2	125-120	Pole	TP13.025x11.775x0.1875	2	-15.07	476.08	5.8	Pass
L3	120-115	Pole	TP14.275×13.025x0.1875	3	-4.27	522.44	26.0	Pass
L4	115-110	Pole	TP15.525x14.275x0.1875	4	-4.50	568.80	41.9	Pass
L5	110-105	Pole	TP16.7758x15.525x0.25	5	-8.84	817.15	48.5	Pass
L6	105-100	Pole	TP18.0265x16.7758x0.25	6	-9.33	879.00	60.8	Pass
L7	100-95	Pole	TP19.2773x18.0265x0.25	7	-13.25	940.84	73.6	Pass
L8	95-90	Pole	TP20.528x19.2773x0.25	8	-13.91	1002.69	85.0	Pass
L9	90-89.75	Pole	TP20.5905x20.528x0.5	9	-13.98	1986.84	44.2	Pass
L10	89.75-84.75	Pole	TP21.8413x20.5905x0.4813	10	-17.69	2033.17	51.2	Pass
L11	84.75-84.58	Pole	TP21.8838x21.8413x0.475	11	-17.74	2011.35	52.0	Pass
L12	84.58-84.33	Pole	TP21.9464x21.8838x0.6375	12	-17.81	2686.83	39.8	Pass
L13	84.33-83.42	Pole	TP22.174x21.9464x0.625	13	-18.02	2663.84	41.3	Pass
L14	83.42-83.17	Pole	TP22.2365x22.174x0.95	14	-18.11	3999.72	28.5	Pass
L15	83.17-83	Pole	TP22.2791x22.2365x0.95	15	-18.17	4007.71	28.6	Pass
L16	83-82.75	Pole	TP22.3416x22.2791x0.7	16	-18.23	2996.32	37.7	Pass
L17	82.75-77.75	Pole	TP23.5923x22.3416x0.6625	17	-19.52	3004.61	42.9	Pass
L18	77.75-70	Pole	TP25.531x23.5923x0.65	18	-23.55	3070.13	46.3	Pass
L19	70-69	Pole	TP25.281x24.0304x0.7	19	-25.74	3403.28	48.0	Pass
L20	69-67.08	Pole	TP25.7612x25.281x0.6875	20	-26.31	3409.51	49.8	Pass
L21	67.08-66.83	Pole	TP25.8237x25.7612x0.6875	21	-26.42	3418.01	49.9	Pass
L22	66.83-64.08	Pole	TP26.5115x25.8237x0.675	22	-27.25	3449.37	51.9	Pass
L23	64.08-63.83	Pole	TP26.5741x26.5115x0.7375	23	-27.35	3768.75	48.0	Pass
L24	63.83-62.5	Pole	TP26.9067x26.5741x0.7375	24	-27.80	3817.27	48.5	Pass
L25	62.5-62.25	Pole	TP26.9693x26.9067x0.8625	25	-27.91	4453.62	42.1	Pass
L26	62.25-57.25	Pole	TP28.2198x26.9693x0.8375	26	-29.71	4535.82	44.6	Pass
L27	57.25-53.5	Pole	TP29.1578x28.2198x0.8125	27	-31.10	4555.17	46.8	Pass
L28	53.5-53.25	Pole	TP29.2203x29.1578x0.8375	28	-31.21	4701.55	45.5	Pass
L29	53.25-52.58	Pole	TP29.3879x29.2203x0.825	29	-31.47	4660.76	46.3	Pass
L30	52.58-52.33	Pole	TP29.4504x29.3879x0.8625	30	-31.57	4876.88	44.5	Pass
L31	52.33-47.33	Pole	TP30.701x29.4504x0.8375	31	-33.52	4946.82	46.6	Pass
L32	47.33-44.58	Pole	TP31.3888x30.701x0.8125	32	-34.62	4913.71	48.4	Pass
L33	44.58-44.33	Pole	TP31.4513x31.3888x0.8125	33	-34.74	4923.75	48.4	Pass
L34	44.33-41.92	Pole	TP32.0541×31.4513x0.8	34	-35.70	4945.36	49.4	Pass
L35	41.92-41.67	Pole	TP32.1166x32.0541x0.8125	35	-35.82	5030.68	48.8	Pass
L36	41.67-34.08	Pole	TP34.015x32.1166x0.7875	36	-36.90	4983.79	50.5	Pass
L37	34.08-34	Pole	TP33.4082x32.1594x0.8188	37	-40.57	5277.52	51.2	Pass
L38	34-29	Pole	TP34.657x33.4082x0.7938	38	-42.74	5316.35	53.0	Pass
L39	29-26.92	Pole	TP35.1765x34.657x0.7938	39	-43.66	5397.91	53.1	Pass
L40	26.92-26.67	Pole	TP35.239x35.1765x0.8938	40	-43.79	6071.32	47.6	Pass
L41	26.67-21.67	Pole	TP36.4877x35.239x0.8688	41	-46.23	6120.37	49.1	Pass
L42	21.67-18	Pole	TP37.4044x36.4877x0.8563	42	-48.05	6189.66	49.8	Pass
L43	18-17.75	Pole	TP37.4668x37.4044×0.9938	43	-48.21	7168.86	43.4	Pass
L44	17.75-17.5	Pole	TP37.5292x37.4668x0.9938	44	-48.35	7181.14	43.4	Pass
L45	17.5-17.25	Pole	TP37.5917x37.5292x0.9938	45	-48.48	7193.40	43.4	Pass
L46	17.25-17.08	Pole	TP37.6341x37.5917x0.9938	46	-48.58	7201.75	43.4	Pass
L47	17.08-16.83	Pole	TP37.6966x37.6341x0.8938	47	-48.70	6505.76	47.9	Pass
L48	16.83-13	Pole	TP38.6531x37.6966x0.8813	48	-50.67	6583.68	48.6	Pass
L49	13-12.75	Pole	TP38.7156x38.6531x1.0563	49	-50.83	7867.57	41.1	Pass
L50	12.75-11.92	Pole	TP38.9229x38.7156x1.0438	50	-51.31	7819.83	41.5	Pass
L51	11.92-11.67	Pole	TP38.9853x38.9229x0.8188	51	-51.45	6180.67	52.0	Pass
L52	11.67-6.67	Pole	TP40.2341x38.9853x0.7938	52	-53.04	6113.50	53.6	Pass
L53	6.67-6.5	Pole	TP40.2766x40.2341x0.7938	53	-54.08	6191.92	53.6	Pass
L54	6.5-6.25	Pole	TP40.339x40.2766x0.9188	54	-54.17	7152.03	46.7	Pass
L55	6.25-3.75	Pole	TP40.9634x40.339x0.9063	55	-54.33	7068.16	47.3	Pass

tnxTower Report - version 8.1.1.0

130 Ft Monopole Tower Structural Analysis

Section No.	Elevation ft	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$\emptyset P_{\text {allow }}$ K	\% Capacity	Pass Fail
L56	3.75-3.5	Pole	TP41.0258x40.9634x1.0063	56	-55.72	7952.46	42.9	Pass
L57	3.5-3	Pole	TP41.1507x41.0258x0.9938	57	-55.87	7868.41	43.4	Pass
L58	3-2.75	Pole	TP41.2132x41.1507x0.9938	58	-56.16	7892.94	43.4	Pass
L59	2.75-0	Pole	TP41.9x41.2132x1.0188	59	-56.32	8099.06	42.4	Pass
						Pole (L8) RATING =	$\begin{gathered} \text { Summary } \\ 85.0 \\ \mathbf{8 5 . 0} \\ \hline \end{gathered}$	Pass Pass

*NOTE: Above stress ratios for reinforced sections are approximate. More exact calculations are presented in Appendix C.

APPENDIX B

BASE LEVEL DRAWING

!

APPENDIX C

ADDITIONAL CALCULATIONS

$$
\begin{aligned}
& \text { Site BU: } 806376 \\
& \text { Work Order: } 1963271 \\
& \hline \text { CAROWN } \\
& \text { CASTLE }
\end{aligned}
$$

Pole Geometry
Copyright © 2019 Crown Castle

	Pole Height Above Base (ft)	Section Length (ft)	Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)	Wall Thickness (in)	Bend Radius (in)	Pole Material
1	130	20	0	12	10.525	15.525	0.1875	Auto	A572-65
2	110	40	4	12	15.53	25.531	0.25	Auto	A572-65
3	74	39.92	4.92	12	24.03	34.015	0.3125	Auto	A572-65
4	39	39	0	12	32.16	41.9	0.34375	Auto	A572-65

Reinforcement Configuration

	Bottom Effective Elevation (ft)	Top Effective Elevation (ft)	Type	Model	Number	1	2	3	4	5	6	7	8	9	10	11	12
1	17.08	44.58	plate	PL 0.75×4.00 (100ksi)	3	\times				\times				\times			
2	44.58	67.08	plate	PL 0.75×4.00 (100 ksi)	3				x				x				\times
3	67.08	84.58	plate	PL 0.75×4.00 (100 ksi)	3	\times				\times				\times			
4	0	3.75	plate	S) 1.25×7.00 (65 ksi) P.	2								c				c
5	3	13	plate	CCI-AFP-060100	2	\times								\times			
6	0	13	plate	CCI-AFP-060100	1					\times							
7	11.92	41.92	plate	CCI-AFP-060100	1			x									
8	11.92	26.92	plate	CCI-AFP-060100	2								\times				\times
9	18	53.5	plate	CCI-AFP-060100	2							\times				x	
10	41.92	62.5	plate	CCI-AFP-045100	1			\times									
11	53.5	64.08	plate	CCI-AFP-045100	2							x				x	
12	83	90	plate	CCI-SFP-045100	3			x				x				x	
13	0	6.5	plate	CCI-WCFP-065125	1								1.5				
14	0	18	plate	CCI-WCFP-065125	3				\times			x				x	
15	0	17.5	plate	CCI-WCFP-060100	3		-2				x				x		
16	17.5	52.58	plate	CCI-CFP-060100	3		-2				x				x		
17	52.58	83.42	plate	CCI-CFP-045125	3		x				x				x		
18																	

Reinforcement Details

	B (in)	H (in)	Gross Area (in ${ }^{2}$)	Pole Face to Centroid (in)	Bottom Termination Type	Bottom Termination Length (in)	Top Termination Type	Top Termination Length (in)	Lu (in)	Net Area (in2)	Bolt Hole Size (in)	Reinforcement Material
1	4	0.75	3	0.375	PC 8.8 - M20 (100)	15	PC 8.8 - M20 (100)	15.000	15.000	2.063	1.1875	A514-GR100
2	4	0.75	3	0.375	PC 8.8 - M20 (100)	15	PC 8.8 - M20 (100)	15.000	15.000	2.063	1.1875	A514-GR100
3	4	0.75	3	0.375	PC 8.8 - M20 (100)	15	PC 8.8 - M20 (100)	15.000	15.000	2.063	1.1875	A514-GR100
4	1.25	6.25	7.8125	3.125	Welded	n/a	Capacity Input	n/a	0.750	7.813	0.0000	A572-65
5	6	1	6	0.5	PC 8.8 - M20 (100)	30	PC 8.8 - M20 (100)	30.000	16.000	4.750	1.1875	A572-65
6	6	1	6	0.5	PC 8.8 - M20 (100)	30	PC 8.8 - M20 (100)	30.000	16.000	4.750	1.1875	A572-65
7	6	1	6	0.5	PC 8.8 - M20 (100)	30	PC 8.8 - M20 (100)	30.000	16.000	4.750	1.1875	A572-65
8	6	1	6	0.5	PC 8.8 - M20 (100)	30	PC 8.8 - M20 (100)	30.000	16.000	4.750	1.1875	A572-65
9	6	1	6	0.5	PC 8.8 - M20 (100)	30	PC 8.8 - M20 (100)	30.000	16.000	4.750	1.1875	A572-65
10	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	20.000	3.250	1.1875	A572-65
11	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	20.000	3.250	1.1875	A572-65
12	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	18	PC 8.8 - M20 (100)	18.000	20.000	3.250	1.1875	A572-65
13	6.5	1.25	8.125	0.625	Welded	n/a	PC 8.8 - M20 (100)	33.000	19.000	6.563	1.1875	A572-65
14	6.5	1.25	8.125	0.625	Welded	n/a	PC 8.8 - M20 (100)	33.000	19.000	6.563	1.1875	A572-65
15	6	1	6	0.5	Welded	n/a	PC 8.8 - M20 (100)	30.000	16.000	4.750	1.1875	A572-65
16	6	1	6	0.5	PC 8.8 - M20 (100)	30	PC 8.8 - M20 (100)	30.000	16.000	4.750	1.1875	A572-65
17	4.5	1.25	5.625	0.625	PC 8.8 - M20 (100)	21	PC 8.8 - M20 (100)	21.000	24.000	4.063	1.1875	A572-65

Connection Details for Custom Reinforcements

Reinforcement	End	\# Bolts	N or X	Bolt Spacing (in)	Edge Dist (in)	Weld Grade (ksi)	Transverse (Horiz.) Weld Type	Horiz. Weld Length (in)	Horiz. Groove Depth (in)	Horiz. Groove Angle (deg)		Vertical Weld Length (in)	Vertical Fillet Size (in)	Rev H Connection Capacity (kip)
$\begin{gathered} \hline \text { PL } 0.75 \times 4.00 \\ (100 \mathrm{ksi}) \\ \hline \end{gathered}$	Top Bottom	55	N	3	3	-	-	-	-	-	-	-	-	-
			N	3	3	-	-	-	-	-	-	-	-	-
$\begin{gathered} \text { (TS) } 1.25 \times 7.00 \\ (65 \mathrm{ksi}) \mathrm{PJP} \end{gathered}$	Top	0	N	0	0	-	-	-	-	-	-	-	-	1000
	Bottom	-	-	-	-	80	PJP Groove	12.5	0.5	45	0.625	-	-	-
CCI-WCFP-065125	Top Bottom	11	N	3	3	-	-	-	-	-	-	-	-	-
		-	-	-	-	80	CJP Groove	6.5	1.25	45	0.5	-	-	
CCI-WCFP-060100	Top 10		N	3	3	-	- ${ }^{-}$	6	-	-	-	-	-	-
	Bottom	-		-	-	80	CJP Groove		1	45	0.375	-	-	
CCI-CFP-060100	TopBottom	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	NN	3	3	-	--	-	-	-	-	-	-	-
				3	3	-		-	-	-	-	-	-	
CCI-CFP-045125	Top Bottom	7	NN	33	33	-	-	-	-	-	-	-	-	-
										-		-	-	-

TNX Geometry Input

Increment (ft):			5	Export to TNX							
	Section Height (ft)			Section Length (ft)	Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)	Wall Thickness (in)	Tapered Pole Grade	Weight Multiplier
1	130	-	125	5		12	10.525	11.775	0.1875	A572-65	1.000
2	125	-	120	5		12	11.775	13.025	0.1875	A572-65	1.000
3	120	-		5		12	13.025	14.275	0.1875	A572-65	1.000
4	115	-	110	5	0	12	14.275	15.525	0.1875	A572-65	1.000
5	110	-	105	5		12	15.525	16.776	0.25	A572-65	1.000
6	105	-	100	5		12	16.776	18.027	0.25	A572-65	1.000
7	100	-	95	5		12	18.027	19.277	0.25	A572-65	1.000
8	95	-	90	5		12	19.277	20.528	0.25	A572-65	1.000
9	90	-	89.75	0.25		12	20.528	20.591	0.5	A572-65	0.924
10	89.75	-	84.75	5		12	20.591	21.841	0.48125	A572-65	0.934
11	84.75	-	84.58	0.17		12	21.841	21.884	0.475	A572-65	0.945
12	84.58	-	84.33	0.25		12	21.884	21.946	0.6375	A572-65	0.914
13	84.33	-	83.42	0.91		12	21.946	22.174	0.625	A572-65	0.927
14	83.42	-	83.17	0.25		12	22.174	22.237	0.95	A572-65	0.877
15	83.17	-	83	0.17		12	22.237	22.279	0.95	A572-65	0.876
16	83	-	82.75	0.25		12	22.279	22.342	0.7	A572-65	0.896
17	82.75	-	77.75	5		12	22.342	23.592	0.6625	A572-65	0.914
18	77.75	-	74	7.75	4	12	23.592	25.531	0.65	A572-65	0.909
19	74	-	69	5		12	24.030	25.281	0.7	A572-65	0.921
20	69	-	67.08	1.92		12	25.281	25.761	0.6875	A572-65	0.928
21	67.08	-	66.83	0.25		12	25.761	25.824	0.6875	A572-65	0.927
22	66.83	-	64.08	2.75		12	25.824	26.512	0.675	A572-65	0.931
23	64.08	-	63.83	0.25		12	26.512	26.574	0.7375	A572-65	1.000
24	63.83	-	62.5	1.33		12	26.574	26.907	0.7375	A572-65	0.993
25	62.5	-	62.25	0.25		12	26.907	26.969	0.8625	A572-65	0.914
26	62.25	-	57.25	5		12	26.969	28.220	0.8375	A572-65	0.914
27	57.25	-	53.5	3.75		12	28.220	29.158	0.8125	A572-65	0.923
28	53.5	-	53.25	0.25		12	29.158	29.220	0.8375	A572-65	0.934
29	53.25	-	52.58	0.67		12	29.220	29.388	0.825	A572-65	0.945
30	52.58	-	52.33	0.25		12	29.388	29.450	0.8625	A572-65	0.918
31	52.33	-	47.33	5		12	29.450	30.701	0.8375	A572-65	0.921
32	47.33	-	44.58	2.75		12	30.701	31.389	0.8125	A572-65	0.935
33	44.58	-	44.33	0.25		12	31.389	31.451	0.8125	A572-65	0.934
34	44.33	-	41.92	2.41		12	31.451	32.054	0.8	A572-65	0.938
35	41.92	-	41.67	0.25		12	32.054	32.117	0.8125	A572-65	0.941
36	41.67	-	39	7.59	4.92	12	32.117	34.015	0.7875	A572-65	0.958
37	39	-	34	5		12	32.159	33.408	0.81875	A572-65	0.950
38	34	-	29	5		12	33.408	34.657	0.79375	A572-65	0.960
39	29	-	26.92	2.08		12	34.657	35.177	0.79375	A572-65	0.952
40	26.92	-	26.67	0.25		12	35.177	35.239	0.89375	A572-65	0.968
41	26.67	-	21.67	5		12	35.239	36.488	0.86875	A572-65	0.974
42	21.67	-	18	3.67		12	36.488	37.404	0.85625	A572-65	0.974
43	18	-	17.75	0.25		12	37.404	37.467	0.99375	A572-65	0.947
44	17.75	-	17.5	0.25		12	37.467	37.529	0.99375	A572-65	0.946
45	17.5	-	17.25	0.25		12	37.529	37.592	0.99375	A572-65	0.945
46	17.25	-	17.08	0.17		12	37.592	37.634	0.99375	A572-65	0.945
47	17.08	-	16.83	0.25		12	37.634	37.697	0.89375	A572-65	0.961
48	16.83	-	13	3.83		12	37.697	38.653	0.88125	A572-65	0.960
49	13	-	12.75	0.25		12	38.653	38.716	1.05625	A572-65	0.944
50	12.75	-	11.92	0.83		12	38.716	38.923	1.04375	A572-65	0.952
51	11.92	-	11.67	0.25		12	38.923	38.985	0.81875	A572-65	1.026
52	11.67	-	6.67	5		12	38.985	40.234	0.79375	A572-65	1.038
53	6.67	-		0.17		12	40.234	40.277	0.79375	A572-65	1.037
54	6.5	-	6.25	0.25		12	40.277	40.339	0.91875	A572-65	0.968
55	6.25	-	3.75	2.5		12	40.339	40.963	0.90625	A572-65	0.971
56	3.75	-		0.25		12	40.963	41.026	1.00625	A572-65	0.934
57	3.5	-		0.5		12	41.026	41.151	0.99375	A572-65	0.944
58	3	-	2.75	0.25		12	41.151	41.213	0.99375	A572-65	0.913
59	2.75	-	0	2.75		12	41.213	41.900	1.01875	A572-65	0.882

TNX Section Forces

Increment (ft):) 5	TNX Output		
	Section	Height (ft)	$\mathrm{P}_{\mathrm{u}} \quad$ (K)	$\mathrm{M}_{\mathrm{ux}} \quad \text { (kip- }$ ft)	$\mathrm{V}_{\mathrm{u}} \quad$ (K)
1	130	125	0.10	0.63	0.26
2	125	120	4.16	5.23	8.02
3	120	- 115	4.27	46.78	8.57
4	115	- 110	4.50	91.06	9.14
5	110	105	8.84	161.84	14.31
6	105	- 100	9.33	236.53	15.39
7	100	- 95	13.25	327.43	20.65
8	95	- 90	13.91	431.90	21.17
9	90	- 89.75	13.98	437.20	21.18
10	89.75	- 84.75	17.69	551.23	24.94
11	84.75	84.58	17.74	555.47	24.95
12	84.58	- 84.33	17.81	561.71	24.99
13	84.33	- 83.42	18.02	584.50	25.12
14	83.42	- 83.17	18.11	590.79	25.16
15	83.17	- 83	18.17	595.07	25.19
16	83	- 82.75	18.23	601.37	25.22
17	82.75	- 77.75	19.52	729.73	26.11
18	77.75	74	23.55	839.17	30.13
19	74	- 69	25.74	992.28	31.07
20	69	- 67.08	26.31	1052.27	31.41
21	67.08	- 66.83	26.42	1060.12	31.43
22	66.83	- 64.08	27.25	1147.24	31.90
23	64.08	- 63.83	27.35	1155.23	31.93
24	63.83	62.5	27.80	1197.88	32.17
25	62.5	- 62.25	27.91	1205.93	32.20
26	62.25	- 57.25	29.71	1369.27	33.09
27	57.25	- 53.5	31.10	1494.67	33.75
28	53.5	- 53.25	31.21	1503.12	33.78
29	53.25	- 52.58	31.47	1525.81	33.91
30	52.58	- 52.33	31.57	1534.30	33.95
31	52.33	- 47.33	33.52	1706.34	34.83
32	47.33	- 44.58	34.62	1802.82	35.31
33	44.58	- 44.33	34.74	1811.66	35.34
34	44.33	- 41.92	35.70	1897.38	35.76
35	41.92	- 41.67	35.82	1906.33	35.78
36	41.67	- 39	36.90	2002.54	36.24
37	39	- 34	40.57	2186.20	37.18
38	34	- 29	42.74	2374.21	37.98
39	29	- 26.92	43.66	2453.58	38.31
40	26.92	- 26.67	43.79	2463.17	38.33
41	26.67	- 21.67	46.23	2656.96	39.13
42	21.67	- 18	48.05	2801.68	39.70
43	18	- 17.75	48.21	2811.62	39.71
44	17.75	- 17.5	48.35	2821.56	39.75
45	17.5	- 17.25	48.48	2831.51	39.79
46	17.25	- 17.08	48.58	2838.28	39.82
47	17.08	- 16.83	48.70	2848.25	39.85
48	16.83	- 13	50.67	3002.09	40.43
49	13	- 12.75	50.83	3012.21	40.44
50	12.75	- 11.92	51.31	3045.86	40.58
51	11.92	- 11.67	51.45	3056.02	40.61
52	11.67	- 6.67	54.06	3260.98	41.32
53	6.67	- 6.5	54.17	3268.01	41.33
54	6.5	- 6.25	54.31	3278.36	41.37
55	6.25	- 3.75	55.69	3382.32	41.75
56	3.75	- 3.5	55.86	3392.77	41.76
57	3.5	- 3	56.15	3413.69	41.84
58	3	- 2.75	56.30	3424.16	41.87
59	2.75	- 0	57.87	3539.99	42.31

Analysis Results

Elevation (ft)	Component Type	Size	Critical Element	\% Capacity	Pass / Fail
130-125	Pole	TP11.775×10.525×0.1875	Pole	0.5\%	Pass
125-120	Pole	TP13.025×11.775×0.1875	Pole	4.6\%	Pass
120-115	Pole	TP14.275x13.025×0.1875	Pole	26.0\%	Pass
115-110	Pole	TP15.525x14.275×0.1875	Pole	41.8\%	Pass
110-105	Pole	TP16.776x15.525×0.25	Pole	48.3\%	Pass
105-100	Pole	TP18.027×16.776×0.25	Pole	60.6\%	Pass
100-95	Pole	TP19.277x18.027×0.25	Pole	73.4\%	Pass
95-90	Pole	TP20.528x19.277×0.25	Pole	84.8\%	Pass
90-89.75	Pole + Reinf.	TP20.591×20.528×0.5	Reinf. 12 Tension Rupture	75.7\%	Pass
89.75-84.75	Pole + Reinf.	TP21.841×20.591×0.4813	Reinf. 12 Tension Rupture	87.3\%	Pass
84.75-84.58	Pole + Reinf.	TP21.884×21.841×0.475	Reinf. 12 Tension Rupture	87.7\%	Pass
84.58-84.33	Pole + Reinf.	TP21.946x21.884×0.6375	Reinf. 12 Tension Rupture	67.8\%	Pass
84.33-83.42	Pole + Reinf.	TP22.174x21.946x0.625	Reinf. 12 Tension Rupture	69.6\%	Pass
83.42-83.17	Pole + Reinf.	TP22.237x22.174×0.95	Reinf. 17 Tension Rupture	48.8\%	Pass
83.17-83	Pole + Reinf.	TP22.279x22.237×0.95	Reinf. 17 Tension Rupture	49.1\%	Pass
83-82.75	Pole + Reinf.	TP22.342×22.279x0.7	Reinf. 17 Tension Rupture	65.2\%	Pass
82.75-77.75	Pole + Reinf.	TP23.592×22.342×0.6625	Reinf. 17 Tension Rupture	73.3\%	Pass
77.75-74	Pole + Reinf.	TP25.531×23.592×0.65	Reinf. 17 Tension Rupture	79.9\%	Pass
74-69	Pole + Reinf.	TP25.281×24.03x0.7	Reinf. 17 Tension Rupture	82.2\%	Pass
69-67.08	Pole + Reinf.	TP25.761×25.281×0.6875	Reinf. 17 Tension Rupture	84.8\%	Pass
67.08-66.83	Pole + Reinf.	TP25.824×25.761×0.6875	Reinf. 17 Tension Rupture	85.1\%	Pass
66.83-64.08	Pole + Reinf.	TP26.512x25.824×0.675	Reinf. 17 Tension Rupture	88.5\%	Pass
64.08-63.83	Pole + Reinf.	TP26.574×26.512×0.7375	Reinf. 17 Tension Rupture	85.0\%	Pass
63.83-62.5	Pole + Reinf.	TP26.907×26.574×0.7375	Reinf. 17 Tension Rupture	86.5\%	Pass
62.5-62.25	Pole + Reinf.	TP26.969×26.907×0.8625	Reinf. 17 Tension Rupture	71.7\%	Pass
62.25-57.25	Pole + Reinf.	TP28.22x26.969x0.8375	Reinf. 17 Tension Rupture	76.4\%	Pass
57.25-53.5	Pole + Reinf.	TP29.158×28.22×0.8125	Reinf. 17 Tension Rupture	79.6\%	Pass
53.5-53.25	Pole + Reinf.	TP29.22x29.158x0.8375	Reinf. 10 Tension Rupture	78.9\%	Pass
53.25-52.58	Pole + Reinf.	TP29.388x29.22x0.825	Reinf. 10 Tension Rupture	79.5\%	Pass
52.58-52.33	Pole + Reinf.	TP29.45×29.388x0.8625	Reinf. 10 Tension Rupture	76.6\%	Pass
52.33-47.33	Pole + Reinf.	TP30.701×29.45x0.8375	Reinf. 10 Tension Rupture	80.5\%	Pass
47.33-44.58	Pole + Reinf.	TP31.389×30.701×0.8125	Reinf. 10 Tension Rupture	82.4\%	Pass
44.58-44.33	Pole + Reinf.	TP31.451×31.389×0.8125	Reinf. 10 Tension Rupture	82.6\%	Pass
44.33-41.92	Pole + Reinf.	TP32.054×31.451×0.8	Reinf. 10 Tension Rupture	84.3\%	Pass
41.92-41.67	Pole + Reinf.	TP32.117×32.054×0.8125	Reinf. 9 Tension Rupture	75.1\%	Pass
41.67-39	Pole + Reinf.	TP34.015 32.117×0.7875	Reinf. 9 Tension Rupture	76.6\%	Pass
39-34	Pole + Reinf.	TP33.408×32.159×0.8188	Reinf. 9 Tension Rupture	78.3\%	Pass
34-29	Pole + Reinf.	TP34.657×33.408×0.7938	Reinf. 9 Tension Rupture	80.6\%	Pass
29-26.92	Pole + Reinf.	TP35.177×34.657×0.7938	Reinf. 9 Tension Rupture	81.5\%	Pass
26.92-26.67	Pole + Reinf.	TP35.239×35.177×0.8938	Reinf. 7 Tension Rupture	76.3\%	Pass
26.67-21.67	Pole + Reinf.	TP36.488×35.239×0.8688	Reinf. 7 Tension Rupture	78.4\%	Pass
21.67-18	Pole + Reinf.	TP37.404×36.488×0.8563	Reinf. 7 Tension Rupture	79.8\%	Pass
18-17.75	Pole + Reinf.	TP37.467×37.404×0.9938	Reinf. 16 Tension Rupture	67.1\%	Pass
17.75-17.5	Pole + Reinf.	TP37.529x37.467×0.9938	Reinf. 16 Tension Rupture	67.2\%	Pass
17.5-17.25	Pole + Reinf.	TP37.592×37.529x0.9938	Reinf. 15 Tension Rupture	67.3\%	Pass
17.25-17.08	Pole + Reinf.	TP37.634×37.592×0.9938	Reinf. 15 Tension Rupture	67.3\%	Pass
17.08-16.83	Pole + Reinf.	TP37.697×37.634×0.8938	Reinf. 15 Tension Rupture	73.5\%	Pass
16.83-13	Pole + Reinf.	TP38.653×37.697×0.8813	Reinf. 15 Tension Rupture	74.8\%	Pass
13-12.75	Pole + Reinf.	TP38.716×38.653×1.0563	Reinf. 5 Tension Rupture	63.5\%	Pass
12.75-11.92	Pole + Reinf.	TP38.923×38.716×1.0438	Reinf. 5 Tension Rupture	63.8\%	Pass
11.92-11.67	Pole + Reinf.	TP38.985×38.923×0.8188	Reinf. 15 Tension Rupture	81.7\%	Pass
11.67-6.67	Pole + Reinf.	TP40.234×38.985×0.7938	Reinf. 15 Tension Rupture	83.3\%	Pass
$6.67-6.5$	Pole + Reinf.	TP40.277×40.234×0.7938	Reinf. 15 Tension Rupture	83.4\%	Pass
6.5-6.25	Pole + Reinf.	TP40.339x40.277×0.9188	Reinf. 5 Tension Rupture	77.9\%	Pass
6.25-3.75	Pole + Reinf.	TP40.963x40.339x0.9063	Reinf. 5 Tension Rupture	78.6\%	Pass
3.75-3.5	Pole + Reinf.	TP41.026x40.963×1.0063	Reinf. 14 Tension Rupture	68.1\%	Pass
3.5-3	Pole + Reinf.	TP41.151×41.026×0.9938	Reinf. 14 Tension Rupture	68.3\%	Pass
3-2.75	Pole + Reinf.	TP41.213x41.151×0.9938	Reinf. 15 Tension Rupture	73.2\%	Pass
2.75-0	Pole + Reinf.	TP41.9x41.213x1.0188	Reinf. 4 Weldment	86.8\%	Pass
				Summary	
			Pole	84.8\%	Pass
			Reinforcement	88.5\%	Pass
			Overall	88.5\%	Pass

Additional Calculations

Section	Moment of Inertia (in ${ }^{4}$)			Area (in ${ }^{2}$)			\% Capacity*																	
	Pole	Reinf.	Total	Pole	Reinf.	Total	Pole	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17
130-125	120	n/a	120	6.99	n/a	6.99	0.5\%																	
125-120	163	n/a	163	7.74	n/a	7.74	4.6\%																	
120-115	216	n/a	216	8.49	n/a	8.49	26.0\%																	
115-110	278	n/a	278	9.25	n/a	9.25	41.8\%																	
110-105	464	n/a	464	13.28	n/a	13.28	48.3\%																	
105-100	578	n/a	578	14.29	n/a	14.29	60.6\%																	
100-95	709	n/a	709	15.30	n/a	15.30	73.4\%																	
95-90	858	n/a	858	16.30	n/a	16.30	84.8\%																	
90-89.75	866	799	1664	16.35	13.50	29.85	42.9\%												75.7\%					
89.75-84.75	1036	892	1928	17.36	13.50	30.86	50.3\%												87.3\%					
84.75-84.58	1042	896	1937	17.39	13.50	30.89	50.6\%												87.7\%					
84.58-84.33	1051	1486	2537	17.44	22.50	39.94	39.2\%			51.5\%									67.8\%					
84.33-83.42	1084	1516	2600	17.62	22.50	40.12	40.3\%			52.8\%									69.6\%					
83.42-83.17	1094	2703	3796	17.67	39.38	57.05	28.0\%			36.7\%									48.3\%					48.8\%
83.17-83	1100	2712	3812	17.71	39.38	57.08	28.2\%			36.8\%									48.5\%					49.1\%
83-82.75	1109	1795	2905	17.76	25.88	43.63	37.5\%			49.0\%														65.2\%
82.75-77.75	1309	1990	3299	18.76	25.88	44.64	43.0\%			55.1\%														73.3\%
77.75-74	1473	2142	3615	19.52	25.88	45.39	47.6\%			60.1\%														79.9\%
74-69	2002	2269	4271	25.09	25.88	50.96	46.5\%			61.9\%														82.2\%
69-67.08	2120	2351	4471	25.57	25.88	51.45	48.0\%			63.8\%														84.8\%
67.08-66.83	2135	2362	4498	25.63	25.88	51.51	48.1\%		64.1\%															85.1\%
66.83-64.08	2313	2483	4796	26.33	25.88	52.20	50.4\%		66.7\%															88.5\%
64.08-63.83	2353	2954	5307	26.39	34.88	61.26	50.6\%		64.0\%									69.8\%						85.0\%
63.83-62.5	2444	3025	5468	26.72	34.88	61.60	51.8\%		65.2\%									71.1\%						86.5\%
62.5-62.25	2436	3898	6334	26.78	39.38	66.16	41.1\%		54.0\%								71.0\%	71.0\%						71.7\%
62.25-57.25	2795	4250	7046	28.04	39.38	67.42	44.5\%		57.6\%								75.7\%	75.7\%						76.4\%
57.25-53.5	3087	4525	7612	28.98	39.38	68.36	46.9\%		60.0\%								79.0\%	79.0\%						79.6\%
53.5-53.25	3110	4720	7830	29.05	42.38	71.42	47.0\%		59.2\%							67.7\%	78.9\%							78.5\%
53.25-52.58	3164	4772	7936	29.22	42.38	71.59	47.4\%		59.6\%							68.2\%	79.5\%							79.1\%
52.58-52.33	3183	5071	8254	29.28	43.50	72.78	45.7\%		57.6\%							68.3\%	76.6\%						71.2\%	
52.33-47.33	3611	5485	9095	30.53	43.50	74.03	48.8\%		60.5\%							71.7\%	80.5\%						74.7\%	
47.33-44.58	3862	5719	9581	31.23	43.50	74.73	50.4\%		61.9\%							73.5\%	82.4\%						76.5\%	
44.58-44.33	3885	5740	9625	31.29	43.50	74.79	50.6\%	63.2\%								73.6\%	82.6\%						76.7\%	
44.33-41.92	4115	5950	10065	31.89	43.50	75.39	52.0\%	64.4\%								75.0\%	84.3\%						78.2\%	
41.92-41.67	4138	6045	10183	31.96	45.00	76.96	51.2\%	63.1\%						72.7\%		75.1\%							74.7\%	
41.67-39	4404	6293	10697	32.63	45.00	77.63	52.7\%	64.4\%						74.2\%		76.6\%							76.3\%	
39-34	5114	6529	11643	36.55	45.00	81.55	52.3\%	65.8\%						76.0\%		78.3\%							78.0\%	
34-29	5716	7014	12729	37.93	45.00	82.93	54.7\%	67.7\%						78.4\%		80.6\%							80.3\%	
29-26.92	5979	7220	13200	38.50	45.00	83.50	55.6\%	68.5\%						79.3\%		81.5\%							81.2\%	
26.92-26.67	6047	8878	14925	38.57	57.00	95.57	52.9\%	64.1\%						76.3\%	67.4\%	69.6\%							72.8\%	
26.67-21.67	6718	9488	16206	39.95	57.00	96.95	55.1\%	65.8\%						78.4\%	69.3\%	71.5\%							74.7\%	
21.67-18	7242	9949	17190	40.96	57.00	97.96	56.7\%	67.0\%						79.8\%	70.6\%	72.8\%							76.0\%	
18-17.75	7238	12612	19850	41.03	69.38	110.41	47.3\%	56.1\%						65.3\%	66.1\%						64.8\%		67.1\%	
17.75-17.5	7275	12652	19927	41.10	69.38	110.48	47.4\%	56.2\%						65.3\%	66.2\%						64.9\%		67.2\%	
17.5-17.25	7312	12693	20005	41.17	69.38	110.54	47.5\%	56.3\%						65.4\%	66.3\%						64.9\%	67.3\%		
17.25-17.08	7337	12721	20057	41.22	69.38	110.59	47.6\%	56.3\%						65.5\%	66.3\%						65.0\%	67.3\%		
17.08-16.83	7374	11092	18466	41.29	60.38	101.66	52.0\%							71.4\%	72.4\%						70.9\%	73.5\%		
16.83-13	7955	11640	19595	42.34	60.38	102.72	53.5\%							72.7\%	73.7\%						72.2\%	74.8\%		
13-12.75	7995	15215	23210	42.41	78.38	120.79	44.8\%					63.5\%	59.8\%	61.8\%	62.4\%						61.2\%	63.3\%		
12.75-11.92	8125	15374	23499	42.64	78.38	121.02	45.1\%					63.8\%	60.1\%	62.0\%	62.7\%						61.5\%	63.6\%		
11.92-11.67	8177	10548	18725	42.71	60.38	103.09	57.9\%					80.8\%	65.4\%								73.5\%	81.7\%		
11.67-6.67	8995	11209	20204	44.09	60.38	104.47	59.9\%					82.3\%	66.9\%								75.0\%	83.3\%		
6.67-6.5	9024	11232	20256	44.14	60.38	104.51	60.0\%					82.4\%	67.0\%								75.0\%	83.4\%		
6.5-6.25	9256	14118	23374	44.21	68.50	112.71	56.2\%					77.9\%	67.0\%							62.9\%	71.2\%	77.4\%		
6.25-3.75	9693	14546	24240	44.90	68.50	113.40	57.2\%					78.6\%	67.7\%							63.5\%	71.9\%	78.2\%		
3.75-3.5	9595	17018	26613	44.97	76.00	120.97	50.2\%				57.4\%	62.1\%	66.6\%								68.1\%	66.6\%		
3.5-3	9683	17117	26800	45.10	76.00	121.10	50.4\%				57.5\%	62.3\%	66.7\%								68.3\%	66.8\%		
3-2.75	9907	16832	26739	45.17	72.13	117.30	54.8\%				64.1\%		67.0\%							56.8\%	71.2\%	73.2\%		
2.75-0	10321	18654	28974	45.93	72.13	118.06	52.8\%				86.8\%		67.8\%							57.5\%	72.0\%	74.0\%		

Rating per TIA-222-H Section 15.5.

BU \#	806376
Site Name	HRT 100 943239
Order \#	556638 Rev 1

TIA-222 Revision	H

Applied Loads	
Moment (kip-ft)	91.06
Axial Force (kips)	4.50
Shear Force (kips)	9.14

Site Info	
BU \#	806376
Site Name	HRT 100 943239
Order \#	556638 Rev 1

Analysis Considerations	
TIA-222 Revision	H
Grout Considered:	See Custom Sheet
l_{ar} (in)	See Custom Sheet

Applied Loads	
Moment (kip-ft)	3539.99
Axial Force (kips)	57.87
Shear Force (kips)	

*TIA-222-H Section 15.5 Applied

Connection Properties
Analysis Results

Anchor Rod Data
GROUP 1: (12) 2-1/4" \varnothing bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 49.88" BC GROUP 2: (3) 2-1/4" \varnothing bolts (A193 Gr. B7 N; Fy=105 ksi, Fu=125 ksi) on $53.38^{\prime \prime}$ BC

Base Plate Data
55.88" OD x 2.5" Plate (A572-60; Fy=60 ksi, Fu=75 ksi)

Stiffener Data
N/A

Pole Data
41.9 " x 1.01875" 12-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Anchor Rod Summary
(units of kips, kip-in) GROUP 1:

Pu_c = 225.34	$\phi P n _c=268.39$	Stress Rating
$V u=3.53$	$\phi V n=120.77$	$\mathbf{8 4 . 7 \%}$
$\mathrm{Mu}=6.3$	$\phi \mathrm{Mn}=128.14$	Pass

GROUP 2:

Pu_t = 235.99	$\phi P n _t=304.69$	Stress Rating
$\mathrm{Vu=0}$	$\phi V n=186.38$	$\mathbf{7 3 . 8 \%}$
$\mathrm{Mu}=0$	$\phi \mathrm{Mn}=179.4$	Pass

Base Plate Summary		
Max Stress (ksi):	32.35	(Flexural)
Allowable Stress (ksi):	54	
Stress Rating:	$\mathbf{5 7 . 1 \%}$	Pass

$\mathbb{C C}$ plalate

Elevation (ft)	0

note: Bending interaction not considered when Grout Considered = "Yes"

Bolt Group	Resist Axial	Resist Shear	Induce Plate Bending	Grout Considered	Apply at BARB Elevation	BARB CL Elevation (ft)
1	Yes	Yes	Yes	No	No	
2	No	No	No	No	No	

usto	Bolt Con	ection								
Bolt	Bolt Group ID	Location (deg.)	Diameter (in)	Material	Bolt Circle (in)	Eta Factor, n :	$\mathrm{l}_{\text {ar }}$ (in):	Thread Type	Area Override, in^2 $^{\wedge}$	Tension Only
1	1	0	2.25	A615-75	49.88	0.5	2.75	N -Included		No
2	1	30	2.25	A615-75	49.88	0.5	2.75	N -Included		No
3	1	60	2.25	A615-75	49.88	0.5	2.75	N-Included		No
4	1	90	2.25	A615-75	49.88	0.5	2.75	N -Included		No
5	1	120	2.25	A615-75	49.88	0.5	2.75	N -Included		No
6	1	150	2.25	A615-75	49.88	0.5	2.75	N-Included		No
7	1	180	2.25	A615-75	49.88	0.5	2.75	N-Included		No
8	1	210	2.25	A615-75	49.88	0.5	2.75	N -Included		No
9	1	240	2.25	A615-75	49.88	0.5	2.75	N-Included		No
10	1	270	2.25	A615-75	49.88	0.5	2.75	N-Included		No
11	1	300	2.25	A615-75	49.88	0.5	2.75	N-Included		No
12	1	330	2.25	A615-75	49.88	0.5	2.75	N-Included		No
13	2	15	2.25	A193 Gr. B7	53.38	0.5	8.5	N -Included		No
14	2	135	2.25	A193 Gr. B7	53.38	0.5	8.5	N-Included		No
15	2	255	2.25	A193 Gr. B7	53.38	0.5	8.5	N -Included		No

Plot Graphic

BU \# : 806376
Site Name: HRT 100943239
App. Number: 556638 Rev 1

\section*{| TIA-222 Revision: | H |
| ---: | :---: |
| Tower Type: | Monopole |}

Top \& Bot. Pad Rein. Different?:	\square
Block Foundation?:	\square
Rectangular Pad?:	\square

Superstructure Analysis Reactions			
Compression, $\mathbf{P}_{\text {comp }}:$		58	
kase Shear, Vu_comp:	42	kips	
Base			
Moment, $\mathbf{M}_{\mathbf{u}}:$	3540	ft -kips	
Tower Height, $\mathbf{H}:$	130	ft	
BP Dist. Above Fdn, $\mathbf{b p}_{\text {dist: }}:$	5	in	

Pier Properties			
Pier Shape:	Circular		
Pier Diameter, dpier:	6	ft	
Ext. Above Grade, E:	0.5	ft	
Pier Rebar Size, Sc:	10		
Pier Rebar Quantity, mc:	36		
Pier Tie/Spiral Size, St:	4		
Pier Tie/Spiral Quantity, mt:	3		
Pier Reinforcement Type:	Tie		
Pier Clear Cover, $\mathbf{c c}$ pier:	3	in	

Foundation Analysis Checks				
	Capacity	Demand	Rating *	Check
Lateral (Sliding) (kips)	289.96	42.00	$\mathbf{1 3 . 8 \%}$	Pass
Bearing Pressure (ksf)	7.50	3.40	$\mathbf{4 5 . 3} \%$	Pass
Overturning (kip*ft)	5386.50	3914.50	$\mathbf{7 2 . 7} \%$	Pass
Pier Flexure (Comp.) (kip*ft)	5778.60	3771.00	$\mathbf{6 2 . 2 \%}$	Pass
Pier Compression (kip)	13497.04	85.99	$\mathbf{0 . 6 \%}$	Pass
Pad Flexure (kip*ft)	2927.56	1780.57	$\mathbf{5 7 . 9 \%}$	Pass
Pad Shear - 1-way (kips)	674.44	298.64	$\mathbf{4 2 . 2 \%}$	Pass
Pad Shear - 2-way (Comp) (ksi)	0.164	0.000	$\mathbf{0 . 0 \%}$	Pass
Flexural 2-way (Comp) (kip*f)	3867.66	2262.60	$\mathbf{5 5 . 7} \%$	Pass

*Rating per TIA-222-H Section 15.5

Structural Rating*:	62.2%
Soil Rating*:	$\mathbf{7 2 . 7 \%}$

Pad Properties			
Depth, D:	8	ft	
Pad Width, $\mathbf{W}_{1}:$	22	ft	
Pad Thickness, T:	3	ft	
Pad Rebar Size (Bottom dir. 2), $\mathbf{S p}_{\mathbf{2}}:$	10		
Pad Rebar Quantity (Bottom dir. 2), $\mathbf{m p}_{\mathbf{2}}:$	17		
Pad Clear Cover, $\mathbf{c c}_{\text {pad }}:$	3	in	

Material Properties

Rebar Grade, Fy:	60	ksi
Concrete Compressive Strength, F'c:	3	ksi
Dry Concrete Density, $\delta \mathbf{c}:$	150	pcf

Soil Properties

Soil Properties			
Total Soil Unit Weight, $\gamma:$	115	pcf	
Ultimate Gross Bearing, Qult:	10.000	ksf	
Cohesion, $\mathbf{C u}:$	0.000	ksf	
Friction Angle, $\varphi:$	33	degrees	
SPT Blow Count, $\mathbf{N}_{\text {blows: }}:$	33		
Base Friction, $\mu:$			
Neglected Depth, $\mathbf{N}:$	3.00	ft	
Foundation Bearing on Rock?	No		
Groundwater Depth, $\mathbf{g w}:$	15	ft	

Address:
No Address at This Location

ASCE 7 Hazards Report

Standard:	ASCE/SEl 7-10	Elevation:
Risk Category:	II	ft (NAVD 88)
Soil Class:	D - Stiff Soil	Latitude: 41.731472
		Longitude: -72.607778

Seismic

Site Soil Class:

D - Stiff Soil
Results:

$\mathrm{S}_{\mathrm{S}}:$	0.18
$\mathrm{~S}_{1}:$	0.064
$\mathrm{~F}_{\mathrm{a}}:$	1.6
$\mathrm{~F}_{\mathrm{V}}:$	2.4
$\mathrm{~S}_{\mathrm{Ms}}:$	0.288
$\mathrm{~S}_{\mathrm{M} 1}:$	0.152

$\mathrm{S}_{\mathrm{DS}}:$	0.192
$\mathrm{~S}_{\mathrm{D} 1}:$	0.102
$\mathrm{~T}_{\mathrm{L}}:$	6
$\mathrm{PGA}:$	0.091
$\mathrm{PGA}_{\mathrm{M}}:$	0.145
$\mathrm{~F}_{\mathrm{PGA}}:$	1.6
$\mathrm{I}_{\mathrm{e}}:$	1

Seismic Design Category
 B

Data Accessed:

Date Source:

Wed Apr 212021
USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating
Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2.
Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

AMERICAN SOCIETY OF CIMIL ENGINEERS
Ice

Results:

Ice Thickness:
Concurrent Temperature: 1.00 in .

Gust Speed:
Data Source:
Date Accessed:

5 F
50 mph
Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Wed Apr 212021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Date: July 30, 2021

Darcy Tarr
Crown Castle
3530 Toringdon Way, Suite 300

Charlotte, NC 28277
(704) 405-6589

Subject:

Carrier Designation:

Crown Castle Designation:

Engineering Firm Designation:
Site Data:

Structure Information:

Trylon
1825 W. Walnut Hill Lane,
Suite 302
Irving, TX 75038
214-930-1730

Tower Height \& Type:
Mount Elevation:
Mount Type:
Trylon

Mount Replacement Analysis Report

Dish Network Dish 5G	
Carrier Site Number:	BOBDL00047A
Carrier Site Name:	CT-CCI-T-806376

Crown Castle BU Number: 806376
Crown Castle Site Name: HRT 100943239
Crown Castle JDE Job Number: 650042
Crown Castle Order Number: 556638 Rev. 1
Trylon Report Designation: 189056
1455 Forbes Street, East Hartford, Hartford County, CT, 06118
Latitude $41^{\circ} 43^{\prime} 53.30^{\prime \prime}$ Longitude $-72^{\circ} 36^{\prime} 28.00^{\prime \prime}$
130.0 ft Monopole
77.0 ft
8.0 ft Platform

Dear Darcy Tarr,
Trylon is pleased to submit this "Mount Replacement Analysis Report" to determine the structural integrity of Dish Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform
Sufficient*
*Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Aura Baltoiu
Respectfully Submitted by:
Cliff Abernathy, P.E.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided
3.1) Analysis Method
3.2) Assumptions
4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity
4.1) Recommendations
5) APPENDIX A

Wire Frame and Rendered Models
6) APPENDIX B

Software Input Calculations
7) APPENDIX C

Software Analysis Output
8) APPENDIX D

Additional Calculations
9) APPENDIX E

Supplemental Drawings

1) INTRODUCTION

This is a proposed 3 sector 8.0 ft Platform, designed by Commscope.

2) ANALYSIS CRITERIA

Building Code:	2015 IBC
TIA-222 Revision:	TIA-222-H
Risk Category:	II
Ultimate Wind Speed:	125 mph
Exposure Category:	C
Topographic Factor at Base:	1.00
Topographic Factor at Mount:	1.00
Ice Thickness:	2.0 in
Wind Speed with Ice:	50 mph
Seismic S:	0.180
Seismic S:	0.064
Live Loading Wind Speed:	30 mph
Man Live Load at Mid/End-Points: 250 lb	
Man Live Load at Mount Pipes:	500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	\qquad	Antenna Manufacturer	Antenna Model	Mount / Modification Details
77.0	77.0	3	JMA WIRELESS	MX08FRO665-21	8.0 ft Platform [Commscope, MC-PK8-C]
		3	FUJITSU	TA08025-B604	
		3	FUJITSU	TA08025-B605	
		1	RAYCAP	RDIDC-9181-PF-48	

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Crown Application	Dish Network Application	556638, Rev.1	CCI Sites
Mount Manufacturer Drawings	Commscope	MC-PK8-C	Trylon

3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a threedimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed, using Microsoft Excel, by Trylon was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 Tower Mount Analysis (Revision B).

3.2) Assumptions

1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.
6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate
HSS (Rectangular)
Pipe
Connection Bolts

ASTM A36 (GR 36)
ASTM A500 (GR B-46)
ASTM A53 (GR 35)
ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Trylon should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Platform, All Sectors)

Notes	Component	Critical Member	Centerline (ft)	\% Capacity	Pass / Fail
1,2	Mount Pipe(s)	MP9	77.0	36.1	Pass
	Horizontal(s)	H1		10.1	Pass
	Standoff(s)	SA3		57.4	Pass
	Bracing(s)	PB3		43.6	Pass
	Handrail(s)	M19		14.7	Pass
	Corner Angle(s)	CP2		5.6	Pass
	Plate(s)	CP6		24.1	Pass
	Mount Connection(s)	-		23.0	Pass

| Structure Rating (max from all components) $=$ | $\mathbf{5 7 . 4 \%}$ |
| :--- | :---: | :---: |
| Notes:
 1) | See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the \% capacity
 consumed.
 Rating per TIA-222-H, Section 15.5 |
| 2) | |

4.1) Recommendations

The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed.

1. Commscope, MC-PK8-C.

No structural modifications are required at this time, provided that the above-listed changes are implemented.

APPENDIX A

WIRE FRAME AND RENDERED MODELS

Envelope Only Solution

Trylon	806376	SK-1
AB		July 28, 2021 at 8:21 AM
189056		806376.r3d

Trylon	806376	SK - 2
AB		July 28, 2021 at 8:21 AM
189056		806376.r3d

APPENDIX B

SOFTWARE INPUT CALCULATIONS

Address:
No Address at This Location

ASCE 7 Hazards Report

Standard:	ASCE/SEI 7-10	Elevation: 41.23 ft (NAVD 88)
Risk Category:	II	Latitude: 41.731472
Soil Class:	D - Stiff Soil	Longitude: -72.607778

Seismic

Site Soil Class:
D - Stiff Soil
Results:

$\mathrm{S}_{\mathrm{S}}:$	0.18
$\mathrm{~S}_{1}:$	0.064
$\mathrm{~F}_{\mathrm{a}}:$	1.6
$\mathrm{~F}_{\mathrm{V}}:$	2.4
$\mathrm{~S}_{\mathrm{Ms}}:$	0.288
$\mathrm{~S}_{\mathrm{M} 1}:$	0.152

Seismic Design Category
 B

$\mathrm{S}_{\mathrm{DS}}:$	0.192
$\mathrm{~S}_{\mathrm{D} 1}:$	0.102
$\mathrm{~T}_{\mathrm{L}}:$	6
$\mathrm{PGA}:$	0.091
$\mathrm{PGA}_{\mathrm{M}}:$	0.145
$\mathrm{~F}_{\mathrm{PGA}}:$	1.6
$\mathrm{I}_{\mathrm{e}}:$	1

Data Accessed:

Date Source:

Wed Jul 282021
USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating
Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2.
Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

AMERICAN SOCIETY OF CIMIL ENGINEERS
Ice

Results:

Ice Thickness:
Concurrent Temperature: 1.00 in .

Gust Speed:

Data Source:

Date Accessed:

5 F
50 mph
Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Wed Jul 282021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

TIA LOAD CALCULATOR 2.0

PROJECT DATA	
Job Code:	189056
Carrier Site ID:	BOBDL00047A
Carrier Site Name:	CT-CCI-T-806376

WIND PARAMETERS	mph	
Design Wind Speed:	125	--
Wind Escalation Factor $\left(\mathrm{K}_{\mathrm{s}}\right):$	1.00	--
Velocity Coefficient $\left(\mathrm{K}_{\mathrm{z}}\right):$	1.20	--
Directionality Factor $\left(\mathrm{K}_{\mathrm{d}}\right):$	0.95	--
Gust Effect Factor $(\mathrm{Gh}):$	1.00	--
Shielding Factor $\left(\mathrm{K}_{\mathrm{a}}\right):$	0.90	psf
Velocity Pressure $\left(\mathrm{a}_{\mathrm{z}}\right):$	45.45	

STRUCTURE DETAlLS		
Mount Type:	Platform	--
Mount Elevation:	77.0	ft.
Number of Sectors:	3	--
Structure Type:	Monopole	--
Structure Height:	130.0	ft.

ICE PARAMETERS		
Design Ice Wind Speed:	50	mph
Design Ice Thickness $\left(\mathrm{t}_{\mathrm{i}}\right):$	2.00	in
Importance Factor $\left(\mathrm{l}_{\mathrm{i}}\right):$	1.00	--
Ice Velocity Pressure $\left(\mathrm{q}_{\mathrm{z}}\right):$	45.45	psf
Mount Ice Thickness $\left(\mathrm{t}_{\mathrm{i}}\right):$	2.18	in

ANALYSIS CRITERIA		
Structure Risk Category:	II	--
Exposure Category:	C	--
Site Class:	D - Stiff Soil	--
Ground Elevation:	41.23	ft.

WIND STRUCTURE CALCULATIONS		
Flat Member Pressure:	81.81	psf
Round Member Pressure:	49.09	psf
Ice Wind Pressure:	7.14	psf

TOPOGRAPHIC DATA		
Topographic Category:	1.00	--
Topographic Feature:	N/A	--
Crest Point Elevation:	0.00	ft.
Base Point Elevation:	0.00	ft.
Crest to Mid-Height (L/2):	0.00	ft.
Distance from Crest $(\mathrm{x}):$	0.00	ft
Base Topo Factor $\left(\mathrm{K}_{\mathrm{zt}}\right):$	1.00	--
Mount Topo Factor $\left(\mathrm{K}_{\mathrm{zt}}\right):$	1.00	--

SEISMIC PARAMETERS		
Importance Factor $\left(\mathrm{I}_{\mathrm{e}}\right):$	1.00	-
Short Period Accel $\left(\mathrm{S}_{\mathrm{s}}\right):$	0.180	g
1 Second Accel $\left(\mathrm{S}_{1}\right):$	0.064	g
Short Period Des. $\left(\mathrm{S}_{\mathrm{DS}}\right):$	0.19	g
1 Second Des. $\left(\mathrm{S}_{\mathrm{D} 1}\right):$	0.10	g
Short Period Coeff. $\left(\mathrm{F}_{\mathrm{a}}\right):$	1.60	--
1 Second Coeff. $\left(\mathrm{F}_{\mathrm{v}}\right):$	2.40	--
Response Coefficient $(\mathrm{Cs}):$	0.10	--
Amplification Factor $\left(\mathrm{A}_{\mathrm{S}}\right):$	1.20	--

LOAD COMBINATIONS [LRFD]

\#	Description
1	1.4DL
2	1.2DL + 1WL 0 AZI
3	1.2DL + 1WL 30 AZI
4	1.2DL + 1WL 45 AZI
5	1.2DL + 1WL 60 AZI
6	1.2DL + 1WL 90 AZI
7	1.2DL + 1WL 120 AZI
8	1.2DL + 1WL 135 AZI
9	1.2DL + 1WL 150 AZI
10	1.2DL + 1WL 180 AZI
11	1.2DL + 1WL 210 AZI
12	1.2DL + 1WL 225 AZI
13	1.2DL + 1WL 240 AZI
14	1.2DL + 1WL 270 AZI
15	1.2DL + 1WL 300 AZI
16	1.2DL + 1WL 315 AZI
17	1.2DL + 1WL 330 AZI
18	0.9DL + 1WL 0 AZI
19	0.9DL + 1WL 30 AZI
20	0.9DL + 1WL 45 AZI
21	0.9DL + 1WL 60 AZI
22	0.9DL + 1WL 90 AZI
23	$0.9 \mathrm{DL}+1 \mathrm{WL} 120 \mathrm{AZI}$
24	0.9DL + 1WL 135 AZI
25	$0.9 \mathrm{DL}+1 \mathrm{WL} 150 \mathrm{AZI}$
26	$0.9 \mathrm{DL}+1 \mathrm{WL} 180 \mathrm{AZI}$
27	0.9DL + 1WL 210 AZI
28	0.9DL + 1WL 225 AZI
29	$0.9 \mathrm{DL}+1 \mathrm{WL} 240 \mathrm{AZI}$
30	$0.9 \mathrm{DL}+1 \mathrm{WL} 270 \mathrm{AZI}$
31	$0.9 \mathrm{DL}+1 \mathrm{WL} 300 \mathrm{AZI}$
32	$0.9 \mathrm{DL}+1 \mathrm{WL} 315 \mathrm{AZI}$
33	0.9DL + 1WL 330 AZI
34	1.2DL + 1DLi + 1WLi 0 AZI
35	1.2DL + 1DLi + 1WLi 30 AZI
36	1.2DL + 1DLi + 1WLi 45 AZI
37	1.2DL + 1DLi + 1WLi 60 AZI
38	1.2DL + 1DLi + 1WLi 90 AZI
39	1.2DL + 1DLi + 1WLi 120 AZI
40	1.2DL + 1DLi + 1WLi 135 AZI
41	1.2DL + 1DLi + 1WLi 150 AZI

\#	Description
42	1.2DL + 1DLi + 1WLi 180 AZI
43	1.2DL + 1DLi + 1WLi 210 AZI
44	1.2DL + 1DLi + 1WLi 225 AZI
45	1.2DL + 1DLi + 1WLi 240 AZI
46	1.2DL + 1DLi + 1WLi 270 AZI
47	1.2DL + 1DLi + 1WLi 300 AZI
48	1.2DL + 1DLi + 1WLi 315 AZI
49	1.2DL + 1DLi + 1WLi 330 AZI
50	(1.2+0.2Sds) +1.0 E 0 AZI
51	(1.2+0.2Sds) + 1.0E 30 AZI
52	(1.2+0.2Sds) + 1.0E 45 AZI
53	(1.2+0.2Sds) + 1.0E 60 AZI
54	(1.2+0.2Sds) + 1.0E 90 AZI
55	(1.2+0.2Sds) +1.0 E 120 AZI
56	(1.2+0.2Sds) + 1.0E 135 AZI
57	(1.2+0.2Sds) + 1.0E 150 AZI
58	(1.2+0.2Sds) + 1.0E 180 AZI
59	(1.2+0.2Sds) + 1.0E 210 AZI
60	(1.2+0.2Sds) + 1.0E 225 AZI
61	(1.2+0.2Sds) + 1.0E 240 AZI
62	(1.2+0.2Sds) + 1.0E 270 AZI
63	(1.2+0.2Sds) + 1.0E 300 AZI
64	(1.2+0.2Sds) +1.0 E 315 AZI
65	(1.2+0.2Sds) + 1.0E 330 AZI
66	(0.9-0.2Sds) +1.0 E 0 AZI
67	(0.9-0.2Sds) + 1.0E 30 AZI
68	(0.9-0.2Sds) +1.0 E 45 AZI
69	(0.9-0.2Sds) +1.0 E 60 AZI
70	(0.9-0.2Sds) +1.0 E 90 AZI
71	(0.9-0.2Sds) + 1.0E 120 AZI
72	(0.9-0.2Sds) + 1.0E 135 AZI
73	(0.9-0.2Sds) + 1.0E 150 AZI
74	(0.9-0.2Sds) + 1.0E 180 AZI
75	(0.9-0.2Sds) + 1.0E 210 AZI
76	(0.9-0.2Sds) + 1.0E 225 AZI
77	(0.9-0.2Sds) + 1.0E 240 AZI
78	(0.9-0.2Sds) + 1.0E 270 AZI
79	(0.9-0.2Sds) + 1.0E 300 AZI
80	(0.9-0.2Sds) + 1.0E 315 AZI
81	(0.9-0.2Sds) + 1.0E 330 AZI
82-88	1.2D + 1.5 Lv1

\#	Description	\#	Description
89	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 0$ AZI - MP1	121	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 0$ AZI - MP3
90	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 30 \mathrm{AZI}-\mathrm{MP} 1$	122	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 30 \mathrm{AZI}-\mathrm{MP} 3$
91	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 45 \mathrm{AZI}-\mathrm{MP} 1$	123	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 45 \mathrm{AZI}-\mathrm{MP} 3$
92	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 60 \mathrm{AZI}-\mathrm{MP} 1$	124	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 60 \mathrm{AZI}-\mathrm{MP} 3$
93	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP1	125	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 90$ AZI - MP3
94	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 120 \mathrm{AZI}-\mathrm{MP} 1$	126	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 120 \mathrm{AZI}-\mathrm{MP} 3$
95	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 135 \mathrm{AZI}-\mathrm{MP} 1$	127	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 135 \mathrm{AZI}-\mathrm{MP} 3$
96	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 150 \mathrm{AZI}-\mathrm{MP} 1$	128	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 150 \mathrm{AZI}-\mathrm{MP} 3$
97	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 180 \mathrm{AZI}-\mathrm{MP} 1$	129	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 180 \mathrm{AZI}-\mathrm{MP} 3$
98	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 210 \mathrm{AZI}-\mathrm{MP} 1$	130	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 210 \mathrm{AZI}-\mathrm{MP} 3$
99	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 225 \mathrm{AZI}-\mathrm{MP} 1$	131	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 225 \mathrm{AZI}-\mathrm{MP} 3$
100	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 240 \mathrm{AZI}-\mathrm{MP} 1$	132	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 240 \mathrm{AZI}-\mathrm{MP} 3$
101	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 270 \mathrm{AZI}-\mathrm{MP} 1$	133	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 270 \mathrm{AZI}-\mathrm{MP} 3$
102	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 300 \mathrm{AZI}-\mathrm{MP} 1$	134	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 300 \mathrm{AZI}-\mathrm{MP} 3$
103	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 315 \mathrm{AZI}-\mathrm{MP} 1$	135	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 315 \mathrm{AZI}-\mathrm{MP} 3$
104	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 330 \mathrm{AZI}-\mathrm{MP} 1$	136	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 330 \mathrm{AZI}-\mathrm{MP} 3$
105	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 0 \mathrm{AZI}-\mathrm{MP} 2$	137	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 0$ AZI - MP4
106	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 30 \mathrm{AZI}-\mathrm{MP} 2$	138	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 30 \mathrm{AZI}-\mathrm{MP} 4$
107	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 45 \mathrm{AZI}-\mathrm{MP} 2$	139	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 45 \mathrm{AZI}-\mathrm{MP} 4$
108	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 60 \mathrm{AZI}-\mathrm{MP} 2$	140	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 60 \mathrm{AZI}-\mathrm{MP} 4$
109	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 90 \mathrm{AZI}-\mathrm{MP} 2$	141	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 90 \mathrm{AZI}-\mathrm{MP} 4$
110	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 120 \mathrm{AZI}-\mathrm{MP} 2$	142	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 120 \mathrm{AZI}-\mathrm{MP} 4$
111	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 135 \mathrm{AZI}-\mathrm{MP} 2$	143	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 135 \mathrm{AZI}-\mathrm{MP} 4$
112	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 150 \mathrm{AZI}-\mathrm{MP} 2$	144	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 150 \mathrm{AZI}-\mathrm{MP} 4$
113	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 180 \mathrm{AZI}-\mathrm{MP} 2$	145	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 180 \mathrm{AZI}-\mathrm{MP} 4$
114	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 210 \mathrm{AZI}-\mathrm{MP} 2$	146	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 210 \mathrm{AZI}-\mathrm{MP} 4$
115	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 225 \mathrm{AZI}-\mathrm{MP} 2$	147	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 225 \mathrm{AZI}-\mathrm{MP} 4$
116	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 240 \mathrm{AZI}-\mathrm{MP} 2$	148	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 240 \mathrm{AZI}-\mathrm{MP} 4$
117	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 270 \mathrm{AZI}-\mathrm{MP} 2$	149	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 270 \mathrm{AZI}-\mathrm{MP} 4$
118	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 300 \mathrm{AZI}-\mathrm{MP} 2$	150	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 300 \mathrm{AZI}-\mathrm{MP} 4$
119	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 315 \mathrm{AZI}-\mathrm{MP} 2$	151	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 315 \mathrm{AZI}-\mathrm{MP} 4$
120	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 330 \mathrm{AZI}-\mathrm{MP} 2$	152	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \mathrm{Wm} 330 \mathrm{AZI}-\mathrm{MP4}$

[^2]EQUIPMENT LOADING

Appurtenance Name/Location	Qty.	Elevation [ft]	--	$E P A_{N}(f t 2)$	$E P A_{T}(f t 2)$	Weight (los)
MX08FRO665-21	3	77	No Ice	8.01	3.21	82.50
MP2/MP5/MP8, 0/100/220	--	--	w/ Ice	10.18	5.12	371.12
TA08025-B604	3	77	No Ice	1.96	0.98	63.90
MP2/MP5/MP8, 0/120/240	--	--	w/ Ice	2.51	1.41	93.72
TA08025-B605	3	77	No Ice	1.96	1.13	75.00
MP2/MP5/MP8, 0/120/240	--	--	w/ Ice	2.51	1.58	99.60
RDIDC-9181-PF-48	1	77	No Ice	2.01	1.17	21.85
MP2, 0	--	--	w/ Ice	2.57	1.63	98.23
			No Ice			
--	--	--	w/ Ice			
			No Ice			
--	--	--	w/ Ice			
			No Ice			
--	--	--	w/ Ice			
			No Ice			
--	--	--	w/ Ice			
			No lce			
--	--	--	w/ Ice			
			No Ice			
--	--	--	w/ Ice			
			No Ice			
--	--	--	w/ Ice			
			No Ice			
--	--	--	w/ Ice			
			No Ice			
--	--	--	w/ Ice			
			No Ice			
--	--	--	w/ Ice			
			No Ice			
--	--	--	w/ Ice			
			No Ice			
--	--	--	w/ Ice			
			No Ice			
--	--	--	w/ Ice			
			No Ice			
--	--	--	w/ Ice			
			No lce			
--	--	--	w/ Ice			
			No lce			
--	--	--	w/ Ice			
			No Ice			
--	--	--	w/ Ice			
			No lce			
--	--	--	w/ Ice			

EQUIPMENT LOADING [CONT.]

Appurtenance Name/Location	Qty	Elevation [ft]	--	$E P A_{N}(f t 2)$	$E P A_{T}(f t 2)$	Weight (Ibs)
			No Ice			
--	--	--	w/ Ice			
			No Ice			
--	--	--	w/ Ice			
			No Ice			
--	--	--	w/ Ice			
			No Ice			
--	--	--	w/ Ice			
			No Ice			
--	--	--	w/ Ice			
			No Ice			
--	--	--	w/ Ice			
			No Ice			
--	--	--	w/ Ice			
			No Ice			
--	--	--	w/ Ice			
			No Ice			
--	--	--	w/ Ice			
			No Ice			
--	--	--	w/ Ice			
			No Ice			
--	--	--	w/ Ice			
			No Ice			
--	--	--	w/ Ice			

EQUIPMENT WIND CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	$K_{z t}$	K_{z}	K_{d}	t_{d}	$\begin{gathered} \mathbf{q}_{z} \\ {[p s f]} \end{gathered}$	$\begin{gathered} q_{z i} \\ {[p s f]} \\ \hline \end{gathered}$
MX08FRO665-21	3	77	1.00	1.20	0.95	2.18	45.45	7.27
TA08025-B604	3	77	1.00	1.20	0.95	2.18	45.45	7.27
TA08025-B605	3	77	1.00	1.20	0.95	2.18	45.45	7.27
RDIDC-9181-PF-48	1	77	1.00	1.20	0.95	2.18	45.45	7.27

EQUIPMENT LATERAL WIND FORCE CALCULATIONS

Appurtenance Name	Qty.	--	$\begin{gathered} 0^{\circ} \\ 180^{\circ} \end{gathered}$	$\begin{gathered} 30^{\circ} \\ 210^{\circ} \end{gathered}$	$\begin{gathered} 60^{\circ} \\ 240^{\circ} \end{gathered}$	$\begin{gathered} 90^{\circ} \\ 270^{\circ} \end{gathered}$	$\begin{aligned} & 120^{\circ} \\ & 300^{\circ} \end{aligned}$	$\begin{aligned} & 150^{\circ} \\ & 330^{\circ} \end{aligned}$
MX08FRO665-21	3	No Ice	327.65	180.39	278.57	131.31	278.57	180.39
MP2/MP5/MP8, 0/100/220	--	w/ Ice	66.65	41.79	58.36	33.50	58.36	41.79
TA08025-B604	3	No Ice	80.32	50.18	70.27	40.13	70.27	50.18
MP2/MP5/MP8, 0/120/240	--	w/ Ice	16.43	11.03	14.63	9.23	14.63	11.03
TA08025-B605	3	No Ice	80.32	54.73	71.79	46.20	71.79	54.73
MP2/MP5/MP8, 0/120/240	--	w/ Ice	16.43	11.84	14.90	10.31	14.90	11.84
RDIDC-9181-PF-48	1	No Ice	82.30	56.41	73.67	47.79	73.67	56.41
MP2, 0	--	w/ Ice	16.80	12.21	15.27	10.68	15.27	12.21
		No Ice						
--	--	w/ Ice						
		No Ice						
--	--	w/ Ice						
		No Ice						
--	--	w/ Ice						
		No Ice						
--	--	w/ Ice						
		No Ice						
--	--	w/ Ice						
		No Ice						
--	--	w/ Ice						
		No Ice						
--	--	w/ Ice						
		No Ice						
--	--	w/ Ice						
		No Ice						
--	--	w/ Ice						
		No Ice						
--	--	w/ Ice						
		No Ice						
--	--	w/ Ice						
		No Ice						
--	--	w/ Ice						
		No Ice						
--	--	w/ Ice						
		No Ice						
--	--	w/ Ice						
		No lce						
--	--	w/ Ice						
		No Ice						
--	--	w/ Ice						
		No Ice						
--	--	w/ Ice						
		No Ice						
--	--	w/ Ice						

EQUIPMENT LATERAL WIND FORCE CALCULATIONS [CONT.]

Appurtenance Name	Qty.	--	$\begin{gathered} 0^{\circ} \\ 180^{\circ} \end{gathered}$	$\begin{gathered} 30^{\circ} \\ 210^{\circ} \end{gathered}$	$\begin{gathered} 60^{\circ} \\ 240^{\circ} \end{gathered}$	$\begin{gathered} 90^{\circ} \\ 270^{\circ} \end{gathered}$	$\begin{aligned} & 120^{\circ} \\ & 300^{\circ} \end{aligned}$	$\begin{aligned} & 150^{\circ} \\ & 330^{\circ} \end{aligned}$
		No Ice						
--	--	w/ Ice						
		No Ice						
--	--	w/ Ice						
		No Ice						
--	--	w/ Ice						
		No Ice						
--	--	w/ Ice						
		No lce						
--	--	w/ Ice						
		No Ice						
--	--	w/ Ice						
		No Ice						
--	--	w/ Ice						
		No lce						
--	--	w/ Ice						
		No lce						
--	--	w/ Ice						
		No Ice						
--	--	w/ Ice						
		No lce						
--	--	w/ Ice						
		No Ice						
--	--	w/ Ice						

EQUIPMENT SEISMIC FORCE CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	Weight [lbs]	$\begin{gathered} F_{p} \\ {[\mathrm{lbs}]} \\ \hline \end{gathered}$
MX08FRO665-21	3	77	82.5	9.50
TA08025-B604	3	77	63.9	7.36
TA08025-B605	3	77	75	8.64
RDIDC-9181-PF-48	1	77	21.85	2.52

APPENDIX C

SOFTWARE ANALYSIS OUTPUT

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal S ections for Member Calcs	97
Include S hear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include W arping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	. 12
P-Delta Analysis Tolerance	0.50\%
Include P -Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
G ravity Acceleration (in/sec ${ }^{\text {2 } 2) ~}$	386.4
Wall Mesh Size (in)	24
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Z
G lobal Member Orientation Plane	XY
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver
Hot Rolled Steel Code	AISC 15th(360-16): LRFD
Adjust Stiffness?	Yes(Iterative)
R ISAC onnection Code	AISC 15th(360-16): LRFD
C old F ormed S teel C ode	AIS I S 100-12: LRFD
Wood Code	AWC NDS-15: ASD
Wood Temperature	< 100F
C oncrete Code	AC I 318-14
Masonry Code	AC I 530-13: S trength
Aluminum Code	AA ADM 1-10: LRFD - Building
Stainless Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)
Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	. 65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections S lab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
C oncrete Rebar Set	REBAR_SET_ASTMA615
Min \% S teel for Column	1
Max \% S teel for Column	8

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (in)	Not Entered
Add Base W eight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
R X	3
R Z	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	I or II
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	1
Cd X	1
Rho Z	1
Rho X	1

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5 F)	Density[k/ft^3]	Y ield[psi]	Ry	Fu[psi]	Rt
1	A992	29000	11154	. 3	. 65	. 49	50000	1.1	65000	1.1
2	A36 Gr. 36	29000	11154	. 3	. 65	. 49	36000	1.5	58000	1.2
3	A572 Gr. 50	29000	11154	. 3	. 65	. 49	50000	1.1	65000	1.1
4	A500 Gr.B RND	29000	11154	. 3	. 65	. 527	42000	1.4	58000	1.3
5	A500 Gr.B Rect	29000	11154	. 3	. 65	. 527	46000	1.4	58000	1.3
6	A53 Gr.B	29000	11154	. 3	. 65	. 49	35000	1.6	60000	1.2
7	A1085	29000	11154	. 3	. 65	. 49	50000	1.4	65000	1.3

Cold Formed Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5 F)	Density[k/ft^3]	Y ield[psi]	Fu[psi]
1	A653 S S Gr33	29500	11346	. 3	. 65	49	33000	45000
2	A653 S S Gr50/1	29500	11346	. 3	. 65	. 49	50000	65000

Hot Rolled Steel Section Sets

Label		Shape Type		Design List	Material	Design ... A [in2]		lyy [in4] Izz [in4]		[in4]
1	Plates	6.5 "x0.37" Plate	Beam	RECT	A53 Gr.B	Typical	2.405	. 027	8.468	. 106
2	G rating Bracing	L $2 \times 2 \times 3$	Beam	Single Angle	A36 Gr. 36	Typical	. 722	. 271	. 271	. 009
3	Standoffs	PIPE 3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04
4	Standoff Bracing	C3X5	Beam	Channel	A36 Gr. 36	Typical	1.47	. 241	1.85	. 043
5	Handrails	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	. 627	. 627	1.25
6	Handrail Corners	$6.6 \times 4.46 \times 0.25$	Beam	Single Angle	A36 Gr. 36	Typical	2.702	4.759	12.473	. 055
7	Horizontals	PIPE 3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04

Hot Rolled Steel Section Sets (Continued)

Label		Shape	Type	Des ign List	Material	Design ... A [in2]		lyy [in4] Izz [in4] J [in4]		
8	Mount Pipes	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	. 627	. 627	1.25

Cold Formed Steel Section Sets

Label		Shape	Type	Design List	Material	Design R... A [in2]		lyy [in4]	Izz [in4]	J [in4]
1	CF1A	8CU1.25X057	Beam	None	A653 S S Gr33	Typical	. 581	. 057	4.41	. 00063

Joint Boundary Conditions

Joint Label		X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N25	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N13	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Basic Load Cases

BLC Description		Category	X Gravity	Y Gravity Z Gravity		Joint	$\begin{gathered} \text { Point } \\ \hline 13 \\ \hline \end{gathered}$	Distribu...Area(M... Surface...		
1	Self Weight				-1				3	
2	Structure Wind X	WLX						33		
3	Structure Wind Y	WLY						33		
4	Wind Load 0 AZI	WLX					13			
5	Wind Load 30 AZI	None					26			
6	Wind Load 45 AZI	None					26			
7	Wind Load 60 AZI	None					26			
8	Wind Load 90 AZI	WLY					13			
9	Wind Load 120 AZI	None					26			
10	Wind Load 135 AZI	None					26			
11	Wind Load 150 AZI	None					26			
12	Ice Weight	OL1					13	33	3	
13	Structure Ice Wind X	OL2						33		
14	Structure Ice Wind Y	OL3						33		
15	Ice Wind Load 0 AZI	OL2					13			
16	Ice Wind Load 30 AZI	None					26			
17	Ice Wind Load 45 AZI	None					26			
18	Ice Wind Load 60 AZI	None					26			
19	Ice Wind Load 90 AZI	OL3					13			
20	Ice Wind Load 120 AZI	None					26			
21	Ice Wind Load 135 AZI	None					26			
22	Ice Wind Load 150 AZI	None					26			
23	Seismic Load X	ELX	-. 115				13			
24	Seismic Load Y	ELY		-. 115			13			
25	Live Load 1 (Lv)	LL					1			
26	Live Load 2 (Lv)	LL					1			
27	Live Load 3 (Lv)	LL					1			
28	Live Load 4 (Lv)	LL					1			
29	Live Load 5 (Lv)	LL					1			
30	Live Load 6 (Lv)	LL					1			
31	Maintenance Load 1 (Lm)	None					1			
32	Maintenance Load 2 (Lm)	None					1			
33	Maintenance Load 3 (Lm)	None					1			

Basic Load Cases (Continued)

BLC Description		Category	X Gravity	Y Gravity Z G ravity		Joint	Point	Distribu...Area(M... Surface...		
34	Maintenance Load 4 (Lm)	None					1			
35	Maintenance Load 5 (Lm)	None					1			
36	Maintenance Load 6 (Lm)	None					1			
37	Maintenance Load 7 (Lm)	None					1			
38	Maintenance Load 8 (Lm)	None					1			
39	Maintenance Load 9 (Lm)	None					1			
40	Maintenance Load 7 (Lm)	None								
41	Maintenance Load 8 (Lm)	None								
42	Maintenance Load 9 (Lm)	None								
43	BLC 1 Transient Area Loads	None						9		
44	BLC 12 Trans ient Area Loads	None						9		

Load Combinations

	Des cription	Solve	PD.	SR...B...	Factor	BLC	Factor	B...	...Fa... ${ }^{\text {B }}$	B ...F	Fa...	BLC	Fa...	B...	Fa... ${ }^{\text {B }}$...Fa..	..B...	..Fa... ${ }^{\text {B }}$...Fa.	B.	Fa..
1	1.4DL	Yes	Y	DL	1.4																
2	1.2DL + 1WL 0 AZI	Yes	Y	DL	1.2	2	1	3		4	1										
3	1.2DL + 1WL 30 AZI	Yes	Y	DL	1.2	2	. 866	3	. 5	5	1										
4	1.2DL + 1WL 45 AZI	Yes	Y	DL	1.2	2	. 707	3	. 7076	6	1										
5	1.2DL + 1WL 60 AZI	Yes	Y	DL	1.2	2	. 5	3	8667	7	1										
6	1.2DL + 1WL 90 AZI	Yes	Y	DL	1.2	2		3	1	8	1										
7	1.2DL + 1WL 120 AZI	Yes	Y	DL	1.2	2	-. 5	3	8669	9	1										
8	1.2DL + 1WL 135 AZI	Yes	Y	DL	1.2	2	-. 707	3	7071	10	1										
9	1.2DL + 1WL 150 AZI	Yes	Y	DL	1.2	2	-. 866	3	. 51	11	1										
10	1.2DL + 1WL 180 AZI	Yes	Y	DL	1.2	2	-1	3		4	-1										
11	1.2DL + 1WL 210 AZI	Yes	Y	DL	1.2	2	-. 866	3	-. 5	5	-1										
12	1.2DL + 1WL 225 AZI	Yes	Y	DL	1.2	2	-. 707	3	-.7... 6	6	-1										
13	1.2DL + 1WL 240 AZI	Yes	Y	DL	1.2	2	-. 5	3	-.8... 7	7	-1										
14	1.2DL + 1WL 270 AZI	Yes	Y	DL	1.2	2		3	-1	8	-1										
15	1.2DL + 1WL 300 AZI	Yes	Y	DL	1.2	2	. 5	3	-.8.	9	-1										
16	1.2DL + 1WL 315 AZI	Yes	Y	DL	1.2	2	. 707	3	-.7... 1	$10-1$	-1										
17	1.2DL + 1WL 330 AZI	Yes	Y	DL	1.2	2	. 866	3	-. 51	11	-1										
18	0.9DL + 1WL 0 AZI	Yes	Y	DL	. 9	2	1	3		4	1										
19	0.9DL + 1WL 30 AZI	Yes	Y	DL	. 9	2	. 866	3	. 5	5	1										
20	0.9DL + 1WL 45 AZI	Yes	Y	DL	. 9	2	. 707	3	. 7076	6	1										
21	0.9DL + 1WL 60 AZI	Yes	Y	DL	. 9	2	. 5	3	. 8667	7	1										
22	0.9DL + 1WL 90 AZI	Yes	Y	DL	. 9	2		3	1	8	1										
23	0.9DL + 1WL 120 AZI	Yes	Y	DL	. 9	2	-. 5	3	8669	9	1										
24	0.9DL + 1WL 135 AZI	Yes	Y	DL	. 9	2	-. 707	3	. 7071	10	1										
25	0.9DL + 1WL 150 AZI	Yes	Y	DL	. 9	2	-. 866	3	. 51	11	1										
26	0.9DL + 1WL 180 AZI	Yes	Y	DL	. 9	2	-1	3		4	-1										
27	0.9DL + 1WL 210 AZI	Yes	Y	DL	. 9	2	-. 866	3	-. 5	5	-1										
28	0.9DL + 1WL 225 AZI	Yes	Y	DL	. 9	2	-. 707	3	-.7... 6	6	-1										
29	0.9DL + 1WL 240 AZI	Yes	Y	DL	. 9	2	-. 5	3	-.8.	7	-1										
30	0.9DL + 1WL 270 AZI	Yes	Y	DL	. 9	2		3	-1	8	-1										
31	0.9DL + 1WL 300 AZI	Yes	Y	DL	. 9	2	. 5	3	-.8... 9	9	-1										
32	0.9DL + 1WL 315 AZI	Yes	Y	DL	. 9	2	. 707	3	-.7... 1	10	-1										
33	0.9DL + 1WL 330 AZI	Yes	Y	DL	. 9	2	. 866	3	-. 51	11 -	-1										
34	1.2DL + 1DLi + 1WL...	Yes	Y	DL	1.2	OL1	1	13	11	14		15	1								
35	1.2DL + 1DLi + 1WL...	Yes	Y	DL	1.2	OL1	1	13.	. 8661	14	. 5	16	1								
36	1.2DL + 1DLi + 1WL...	Yes	Y	DL	1.2	OL1	1	13.	. 7071	14.7	707	17	1								

Job Number : 189056
8:22 AM

Model Name : 806376

Load Combinations (Continued)

Des cription		Solve	PD..	R...B. ${ }_{\text {DL }}$.. Factor BLC		$\begin{gathered} \text { Factor } \\ \hline 1 \\ \hline \end{gathered}$	$\begin{aligned} & \text { B...Fa...B } \\ & \hline 12: 5] 1 \end{aligned}$		$\frac{B . . . F a . . . E ~}{14.866}$	BLC	1	B...Fa.	. ${ }^{\text {B...F }}$	${ }^{\text {a...B. }}$...Fa...В...Fa... ...Fa...				
37	1.2DL + 1DLi + 1WL...																			
38	1.2DL + 1DLi + 1WL...	Yes	Y	DL	1.2	OL1		1	13			141	19	1						
39	1.2DL + 1DLi + 1WL...	Yes	Y	DL	1.2	OL1	1		3-.514	14.866	20	1								
40	1.2DL + 1 DLi + 1WL...	Yes	Y	DL	1.2	OL1	1		3-7. 7.1	14.707	21	1								
41	1.2DL + 1DLi + 1WL...	Yes	Y	DL	1.2	OL1	1		3-8.8. 14	14.5	22	1								
42	$1.2 \mathrm{LL}+1 \mathrm{DLi}+1 \mathrm{WL}$...	Yes	Y	DL	1.2	OL1	1		3-114	14	15	-1								
43	1.2DL + 1DLi + 1WL...	Yes	Y	DL	1.2	OL1	1		3-8...14	14-. 5	16	-1								
44	1.2DL + 1 DLi + 1WL...	Yes	Y	DL	1.2	OL1	1		3-7. 71	14-7...	17	-1								
45	1.2DL + 1DLi + 1WL...	Yes	Y	DL	1.2	OL1	1		--. 51	14-8...	18	-1								
46	1.2DL + 1 DLi + 1WL...	Yes	Y	DL	1.2	OL1		13		14-1	19	-1								
47	1.2DL + 1DLi + 1WL...	Yes	Y	DL	1.2	OL1	1		3.51	14-8...	20	-1								
48	$1.2 \mathrm{DL}+1 \mathrm{DLi}+1 \mathrm{WL}$.	Yes	Y	DL	1.2	OL1	1		3.7071	14-7.	21	-1								
49	1.2DL + 1 LLi + 1WL...	Yes	Y	DL	1.2	OL1	1		3.8661	14-. 5	22	-1								
50	(1.2+0.2Sds) +1.0 E	Yes	Y	DL	1.238	ELX	1	E.												
51	(1.2+0.2Sds) +1.0 E	Yes	Y	DL	1.238	ELX	. 866	E.	. 5											
52	(1.2+0.2Sds) +1.0 E	Yes	Y	DL	1.238	ELX	. 707	E.	...707											
53	(1.2+0.2Sds) +1.0 E	Yes	Y	DL	1.238	ELX	. 5		... 866											
54	(1.2+0.2Sds) +1.0 E .	Yes	Y	DL	1.238	ELX		E.	1											
55	(1.2+0.2Sds) +1.0 E	Yes	Y	DL	1.238	ELX	-. 5		. 866											
56	(1.2+0.2Sds) +1.0 E	Yes	Y	DL	1.238	ELX	-. 707	E.	... 707											
57	(1.2+0.2Sds) +1.0 E	Yes	Y	DL	1.238	ELX	-. 866	E.												
58	(1.2+0.2Sds) +1.0 E	Yes	Y	DL	1.238	ELX	-1	E.												
59	(1.2+0.2sds) +1.0 E	Yes	Y	DL	1.238	ELX	-. 866	E.	..-. 5											
60	(1.2+0.2Sds) +1.0 E	Yes	Y	DL	1.238	ELX	-. 707		...-7...											
61	(1.2+0.2Sds) +1.0 E	Yes	Y	DL	1.238	ELX	-. 5	E.	...8.											
62	(1.2+0.2Sds) +1.0 E .	Yes	Y	DL	1.238	ELX			..-1											
63	(1.2+0.2Sds) +1.0 E .	Yes	Y	DL	1.238	ELX	. 5		..-8...											
64	($1.2+0.2 \mathrm{dss}$) +1.0 E .	Yes	Y	DL	1.238	ELX	. 707		...-7...											
65	(1.2+0.2Sds) +1.0 E .	Yes	Y	DL	1.238	ELX	. 866	E..												
66	(0.9-0.2Sds) +1.0 E	Yes	Y	DL	. 862	ELX	1	E..												
67	(0.9-0.2Sds) +1.0 E	Yes	Y	DL	. 862	ELX	. 866	E..	. 5											
68	(0.9-0.2Sds) +1.0 E	Yes	Y	DL	. 862	ELX	. 707	E.	. 707											
69	(0.9-0.2Sds) +1.0 E	Yes	Y	DL	. 862	ELX	. 5	E.	. 866											
70	(0.9-0.2Sds) +1.0 E	Yes	Y	DL	. 862	ELX			1											
71	(0.9-0.2Sds) + 1.0 E	Yes	Y	DL	. 862	ELX	-. 5	E.	. 866											
72	(0.9-0.2Sds) +1.0 E	Yes	Y	DL	. 862	ELX	-. 707	E.	...707											
73	(0.9-0.2Sds) +1.0 E	Yes	Y	DL	. 862	ELX	-. 866	E..	. 5											
74	(0.9-0.2Sds) +1.0 E	Yes	Y	DL	. 862	ELX	-1	E.												
75	(0.9-0.2Sds) + 1.0 E	Yes	Y	DL	. 862	ELX	-. 866	E..5											
76	(0.9-0.2sds) +1.0 E	Yes	Y	DL	. 862	ELX	-. 707	E..	... 7											
77	(0.9-0.2Sds) +1.0 E	Yes	Y	DL	. 862	ELX	-. 5		.-.8...											
78	(0.9-0.2Sds) +1.0 E	Yes	Y	DL	. 862	ELX		E..	-1											
79	(0.9-0.2Sds) +1.0 E	Yes	Y	DL	. 862	ELX	. 5		...8...											
80	(0.9-0.2Sds) +1.0 E	Yes	Y	DL	. 862	ELX	. 707	E.	... 7.											
81	(0.9-0.2Sds) +1.0 E	Yes	Y	DL	. 862	ELX	. 866	E..	... -5											
82	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 1$	Yes	Y	DL	1.2	25	1.5													
83	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 2$	Yes	Y	DL	1.2	26	1.5													
84	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 3$	Yes	Y	DL	1.2	27	1.5													
85	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 4$	Yes	Y	DL	1.2	28	1.5													
86	$1.2 \mathrm{D}+1.5$ Lv5	Yes	Y	DL	1.2	29	1.5													
87	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 6$	Yes	Y	DL	1.2	30	1.5													
88	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	31	1.5	4	. 0582	2.058	3									

Job Number : 189056
8:22 AM

Model Name : 806376

Load Combinations (Continued)

	Des cription	Solve		...B.	Fac		Factor		Fa...B.	Fa...	BLC	Fa...B	Fa.	..B...F	Fa...B.	Fa	...Fa..	. .B...Fa
89	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 . .$.	Yes	Y	DL	1.2	31	1.5	5.	. 0582	. 05	3	029						
90	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	31	1.5	6	. 0582	. 041	3	. 041						
91	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	31	1.5	7	. 0582	. 029	3	. 05						
92	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 .$.	Yes	Y	DL	1.2	31	1.5	8	. 0582		3	058						
93	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	31	1.5	9.0	. 0582	-0.	3	. 05						
94	1.2D + 1.5Lm + 1.0..	Yes	Y	DL	1.2	31	1.5	10.0	. 0582	-0.	3	. 041						
95	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	31	1.5		. 0582	-. 05	3	. 029						
96	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 .$.	Yes	Y	DL	1.2	31	1.5	4.0	. 0582	-0.	3							
97	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	31	1.5	5	. 0582	-. 05	3	-0.						
98	1.2D + 1.5Lm + 1.0..	Yes	Y	DL	1.2	31	1.5	6	. 0582	-0.	3	-0.						
99	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	31	1.5	7	. 0582	-0.	3	-05						
100	1.2D + 1.5Lm + 1.0..	Yes	Y	DL	1.2	31	1.5	8	. 0582		3	-0...						
101	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	31	1.5	9.0	. 0582	. 029	3	-05						
102	1.2D + 1.5Lm + 1.0..	Yes	Y	DL	1.2	31	1.5	10.0	. 0582	. 041	3	-0...						
103	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	31	1.5		. 0582	05	-	-0...						
104	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	32	1.5	4.0	. 0582	. 058	3							
105	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	32	1.5	5.	. 0582	. 05	3	029						
106	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	32	1.5	6	. 0582	. 041	3	. 041						
107	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	32	1.5	7	. 0582	. 029	3	. 05						
108	1.2D + 1.5Lm + 1.0..	Yes	Y	DL	1.2	32	1.5	8	. 0582		3	058						
109	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	32	1.5	9.0	. 0582	-0.	3	. 05						
110	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 .$.	Yes	Y	DL	1.2	32	1.5	10.	. 0582	-0.	3	. 041						
111	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	32	1.5	11.	. 0582	-. 05	3	029						
112	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 .$.	Yes	Y	DL	1.2	32	1.5	4.	. 0582	-0.	3							
113	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	32	1.5	5.	. 0582	-. 05	3	-0..						
114	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	32	1.5	6.0	. 0582	-0.		-0...						
115	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	32	1.5	7	. 0582	-0.	3	-.05						
116	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	32	1.5	8	. 0582		3	-0...						
117	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	32	1.5	9.0	. 0582	. 029	3	-05						
118	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	32	1.5	10.0	. 0582	. 041	3	-0...						
119	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	32	1.5	11.	. 0582	. 05	3	-0...						
120	1.2D + 1.5Lm + 1.0..	Yes	Y	DL	1.2	33	1.5	4.0	. 0582	. 058	3							
121	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	33	1.5	5.	. 0582	. 05	3	029						
122	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	33	1.5	6	. 0582	. 041	,	041						
123	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 .$.	Yes	Y	DL	1.2	33	1.5	7	. 0582	. 029	3	. 05						
124	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	33	1.5	8.	. 0582		3	058						
125	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 .$.	Yes	Y	DL	1.2	33	1.5	9.	. 0582	-0.	3	. 05						
126	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	33	1.5	10.0	. 0582	-0.	3	. 041						
127	1.2D + 1.5Lm + 1.0..	Yes	Y	DL	1.2	33	1.5	11.	. 0582	-05	3	029						
128	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	33	1.5	4.	. 0582	-0.	3							
129	1.2D + 1.5Lm + 1.0.	Yes	Y	DL	1.2	33	1.5	5.	. 0582	-. 05	3	-0.						
130	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	33	1.5	6.0	. 0582	-0.		-0...						
131	1.2D + 1.5Lm + 1.0..	Yes	Y	DL	1.2	33	1.5	7.0	. 0582	-0.	3	-05						
132	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	33	1.5	8.	. 0582		3	-0...						
133	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	33	1.5	9.0	. 0582	. 029	3	-05						
134	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	33	1.5	10.0	. 0582	. 041	3	-0...						
135	1.2D + 1.5Lm + 1.0..	Yes	Y	DL	1.2	33	1.5	11.	. 0582	. 05	3	-0..						
136	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	34	1.5	4.	. 0582	. 058	3							
137	1.2D + 1.5Lm + 1.0.	Yes	Y	DL	1.2	34	1.5	5.	. 0582	. 05	3	029						
138	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	34	1.5	6.	. 0582	. 041	-	. 041						
139	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	34	1.5	7.0	. 0582	029	3	. 05						
140	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	34	1.5	8.	. 0582		3	058						

Job Number : 189056
8:22 AM

Model Name : 806376

Load Combinations (Continued)

	Des cription	Solve			Factor		Factor	B...	Fa...B...	Fa.	BLC	Fa... ${ }^{\text {B }}$.Fa	.B...F	a...	Fa...	B...Fa	Fa...
141	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0$...	Yes	Y	DL	1.2	34	1.5	9.0	. 0582	-0.	3	. 05						
142	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0$.	Yes	Y	DL	1.2	34	1.5	10.0	. 0582	-0.	,	041						
143	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	34	1.5	11.0	. 0582	-05	3	029						
144	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0$	Yes	Y	DL	1.2	34	1.5	4	. 0582	-0.	3							
145	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	34	1.5	5	. 0582	-. 05	3	-.0...						
146	1.2D $+1.5 \mathrm{Lm}+1.0$	Yes	Y	DL	1.2	34	1.5	6	. 0582	-0.	3	-0..						
147	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	34	1.5	7	. 0582	-0..	3	-. 05						
148	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0$	Yes	Y	DL	1.2	34	1.5	8	. 0582		-	-.0.						
149	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 .$.	Yes	Y	DL	1.2	34	1.5	9	. 0582	. 029	3	-. 05						
150	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0$	Yes	Y	DL	1.2	34	1.5	10.0	. 0582	. 041	3	-.0.						
151	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	34	1.5	11.0	. 0582	. 05	3	-0..						
152	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0$	Yes	Y	DL	1.2	35	1.5	4	. 0582	. 058	3							
153	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	35	1.5	5	. 0582	. 05	,	029						
154	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0$	Yes	Y	DL	1.2	35	1.5	6	. 0582	. 041	3	041						
155	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	35	1.5	7	. 0582	. 029	3	05						
156	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0$	Yes	Y	DL	1.2	35	1.5	8	. 0582		3	058						
157	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	35	1.5	9	. 0582	-0.	3	. 05						
158	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0$	Yes	Y	DL	1.2	35	1.5	10.0	. 0582	-0.	3	041						
159	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	35	1.5		. 0582	-05	3	029						
160	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0$	Yes	Y	DL	1.2	35	1.5	4	. 0582	-0.	3							
161	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	35	1.5	5	. 0582	-. 05	-	-.0...						
162	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0$	Yes	Y	DL	1.2	35	1.5	6	. 0582	-0.	3	-0.						
163	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 .$.	Yes	Y	DL	1.2	35	1.5	7	. 0582	-0.	3	-. 05						
164	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0$	Yes	Y	DL	1.2	35	1.5	8	. 0582		3	-0..						
165	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0$	Yes	Y	DL	1.2	35	1.5	9	. 0582	. 029	-	-. 05						
166	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	35	1.5	10.0	. 0582	. 041	3	-0.1.						
167	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0$.	Yes	Y	DL	1.2	35	1.5	11.0	. 0582.	. 05	3	-0.						
168	1.2D + 1.5Lm + 1.0..	Yes	Y	DL	1.2	36	1.5	4	. 0582	. 058	3							
169	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 .$.	Yes	Y	DL	1.2	36	1.5	5	. 0582.	05	3	029						
170	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	36	1.5	6	. 0582	. 041	3	041						
171	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	36	1.5	7	. 0582	. 029	3	. 05						
172	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0$.	Yes	Y	DL	1.2	36	1.5	8	. 0582		3	. 058						
173	1.2D + 1.5Lm + 1.0.	Yes	Y	DL	1.2	36	1.5	9	. 0582	-0.	3	. 05						
174	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	36	1.5	10.0	. 0582	-0.	,	041						
175	1.2D + 1.5Lm + 1.0..	Yes	Y	DL	1.2	36	1.5	11.0	. 0582	-05	3	029						
176	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	36	1.5	4.0	. 0582	-0...	3							
177	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0$	Yes	Y	DL	1.2	36	1.5	5	. 0582	-. 05		-0.						
178	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	36	1.5	6	. 0582	-0..	3	-0...						
179	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0$	Yes	Y	DL	1.2	36	1.5	7	. 0582	-0.	3	-05						
180	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	36	1.5	8	. 0582		3	-0...						
181	1.2D + $1.5 \mathrm{Lm}+1.0$	Yes	Y	DL	1.2	36	1.5	9	. 0582	. 029	3	-05						
182	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	36	1.5	10.0	. 0582	. 041	3	-0.						
183	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0$	Yes	Y	DL	1.2	36	1.5	11.0	. 0582.	. 05		-0.						
184	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	37	1.5	4	. 0582	. 058	-							
185	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0$.	Yes	Y	DL	1.2	37	1.5	5	. 0582	. 05	,	. 029						
186	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	37	1.5	6	. 0582	. 041	3	041						
187	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0$.	Yes	Y	DL	1.2	37	1.5	7	. 0582	. 029		. 05						
188	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 .$.	Yes	Y	DL	1.2	37	1.5	8	. 0582		3	058						
189	1.2D + $1.5 \mathrm{Lm}+1.0$	Yes	Y	DL	1.2	37	1.5	9	. 0582	-0.		. 05						
190	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	37	1.5	10.0	. 0582	-0.	3	041						
191	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	37	1.5	11.0	. 0582	-05	3	029						
192	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	37	1.5	4	. 0582	-0..	3							

Load Combinations (Continued)

	Des cription	Solve		. B ..			Fac		a...B.				. Fa		a.Fa.	B.	a.	.Fa...
193	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	37	1.5	5	. 0582	-05	3	-.0...							
194	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	37	1.5	6	. 0582	-0.	3	-.0...							
195	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	37	1.5	7	. 0582	-0.	3	-. 05							
196	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	37	1.5	8	. 0582		3	-.0...							
197	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	37	1.5	9	. 0582	. 029	3	-. 05							
198	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	37	1.5	10	. 0582	. 041	3	-.0...							
199	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	37	1.5	11	. 0582	. 05	3	-.0...							
200	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	38	1.5	4	. 0582	. 058	3								
201	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	38	1.5	5	. 0582	. 05	3	. 029							
202	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	38	1.5	6	. 0582	. 041	3	. 041							
203	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	38	1.5	7	. 0582	. 029	3	. 05							
204	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	38	1.5	8	. 0582		3	. 058							
205	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	38	1.5	9	. 0582	-0.	3	. 05							
206	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	38	1.5	10	. 0582	-0.	3	. 041							
207	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	38	1.5	11	. 0582	-. 05	3	. 029							
208	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	38	1.5	4	. 0582	-.0.	3								
209	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	38	1.5	5	. 0582	-. 05	3	-.0...							
210	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	38	1.5	6	. 0582	-0.	3	-.0...							
211	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	38	1.5	7	. 0582	-0.	3	-. 05							
212	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	38	1.5	8	. 0582		3	-.0...							
213	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	38	1.5	9	. 0582	. 029	3	-. 05							
214	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	38	1.5	10	. 0582	. 041	3	-.0...							
215	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	38	1.5	11	. 0582	. 05	3	-.0...							
216	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	39	1.5	4	. 0582	. 058	3								
217	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	39	1.5	5	. 0582	. 05	3	. 029							
218	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	39	1.5	6	. 0582	. 041	3	. 041							
219	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	39	1.5	7	. 0582	. 029	3	. 05							
220	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	39	1.5	8	. 0582		3	. 058							
221	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	39	1.5	9	. 0582	-0.	3	. 05							
222	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	39	1.5	10	. 0582	-0.	3	. 041							
223	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	39	1.5	11.	. 0582	-. 05	3	. 029							
224	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	39	1.5	4	. 0582	-0.	3								
225	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	39	1.5	5	. 0582	-. 05	3	-.0...							
226	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	39	1.5	6	. 0582	-0.	3	-.0...							
227	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	39	1.5	7	. 0582	-0.	3	-. 05							
228	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	39	1.5	8	. 0582		3	-.0...							
229	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	39	1.5	9	. 0582	. 029	3	-. 05							
230	1.2D + 1.5Lm + 1.0...	Yes	Y	DL	1.2	39	1.5	10	. 0582	. 041	3	-.0...							
231	$1.2 \mathrm{D}+1.5 \mathrm{Lm}+1.0 \ldots$	Yes	Y	DL	1.2	39	1.5	11.	. 0582	. 05	3	-.0...							

Envelope Joint Reactions

Joint			X [b]	LC	Y [b]	LC	Z [lb]	LC	MX [lb-ft] LC		MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N25	max	1580.52	3	961.27	20	2328.63	39	507.26	31	546.48	33	1827.37	3
2		min	-1576.74	27	-967.5	12	-104.71	31	-4106.44	39	-2527.12	41	-1826.91	27
3	N1	max	1665.75	17	991.51	8	2324.86	45	4102.48	46	511.67	19	1920.9	25
4		min	-1661.94	25	-985.24	32	-82.5	21	-471.17	22	-2521.15	43	-1921.35	17
5	N13	max	352.14	18	1610.85	22	2235.66	34	732.02	14	4593.49	34	1551.54	14
6		min	-360.03	10	-1610.87	30	-135.37	26	-731.55	6	-657.99	26	-1551.56	6
7	Totals:	max	3188.37	18	2933.42	6	6594.78	36						
8		min	-3188.37	10	-2933.42	14	1367.67	76						

Company

Envelope A ISC 15th(360-16): LRFD Steel Code Checks

Member Shape			$\begin{gathered} \text { Code Check } \\ \hline .603 \\ \hline \end{gathered}$	Loc[in]	$\begin{array}{r} \text { LC } \\ \hline 39 \end{array}$	She...Lo.			phi*P ... phi*P		phi*M...phi*M.		Eqn
1	SA3	PIPE_3.5				. 190	40	116	64491..	78750	7953..	7953..	...H1-1b
2	SA2	PIPE 3.5	. 602	40	45	. 199	40	9	64491..	78750	7953.	7953	$\ldots \mathrm{H}$-1-1b
3	SA1	PIPE 3.5	. 578	40	34	. 176	40	146	64491..	78750	7953...	7953..	.. $\mathrm{H} 1-1 \mathrm{~b}$
4	PB3	C 3×5	. 458	34.86	39	. 169	63.	y 353	32858..	47628	981.26	4104	.. H 1 -1 b
5	PB2	C 3X5	. 456	34.86	45	. 169	6.54	y 493	32858.	47628	981.26	4104	... $\mathrm{H} 1-1 \mathrm{~b}$
6	PB1	C3X5	. 433	34.86	49	. 158	6.54	y 38	32858..	47628	981.26	4104	$\ldots \mathrm{H}$.-1b
7	MP9	PIPE 2.0	. 380	57	10	. 045	57	15	20866..	32130	1871...	1871...	$\ldots \mathrm{H}$-1-1b
8	MP1	PIPE 2.0	. 365	57	16	. 046	57	10	20866..	32130	1871...	1871...	.H1-1b
9	MP3	PIPE 2.0	. 359	57	5	. 053	57	10	20866..	32130	1871...	1871...	$1 \mathrm{H1-1b}$
10	MP6	PIPE_2.0	. 354	57	15	. 048	57	5	20866..	32130	1871...	1871..	$\ldots \mathrm{H} 1-1 \mathrm{~b}$
11	MP4	PIPE_2.0	. 351	57	10	. 043	57	6	20866..	32130	1871....	1871...	$1 \mathrm{H} 1-1 \mathrm{~b}$
12	MP2	PIPE 2.0	. 333	57	6	. 049	57	5	20866..	32130	1871...	1871..	$1 \mathrm{H} 1-1 \mathrm{~b}$
13	MP8	PIPE_2.0	. 331	57	10	. 044	57	10	20866..	32130	1871...	1871...	...H1-1b
14	MP7	PIPE 2.0	. 328	57	3	. 048	57	16	20866..	32130	1871....	1871...	$1 \mathrm{H1-1b}$
15	MP5	PIPE 2.0	. 323	57	9	. 042	57	10	20866..	32130	1871.	1871.	$1 \mathrm{H} 1-1 \mathrm{~b}$
16	CP6	6.5 "x0.37" Plate	. 254	21	8	. 109	21	y 372	27548.	75757.	. 583.96	6395.	\ldots... ${ }^{\text {1-1b }}$
17	CP4	6.5 "x0.37" Plate	. 249	21	2	. 101	21	y 472	27548...7	75757..	. 583.96	6186...	... $\mathrm{H} 1-1 \mathrm{~b}$
18	CP5	6.5"x0.37" Plate	. 244	21	13	. 109	21	y 47	27548.	75757.	. 583.96	6219.	$\ldots \mathrm{H} 1-1 \mathrm{~b}$
19	M19	PIPE 2.0	. 147	72	10	. 155	72	2	14916..	32130	1871.	1871.	...H1-1b
20	M20	PIPE_2.0	. 145	24	16	. 154	72	8	14916..	32130	1871..	1871.	$\ldots \mathrm{H}$.-1b
21	M21	PIPE 2.0	. 140	72	5	. 143	72	13	14916..	32130	1871..	1871...	. $\mathrm{H} 1-1 \mathrm{~b}$
22	IFH21	L2x2x3	. 123	0	30	. 035	0	z 43	18084.	23392.	. 557.72	1182.	$1 \mathrm{H} 2-1$
23	IFH32	L2x2x3	. 119	0	14	. 035	0	y 41	18084.	23392.	. 557.72	1182.	$1 \mathrm{H} 2-1$
24	IFH12	L2x2x3	. 114	0	25	. 034	0	y 351	18084..2	23392.	. 557.72	1179..	$1 \mathrm{H} 2-1$
25	IFH11	L2x2x 3	. 113	0	3	. 035	0	z 49	18084..2	23392.	. 557.72	1179..	$1 \mathrm{H} 2-1$
26	H1	PIPE 3.5	. 107	48	105	. 102	72	10	60666...	78750	7953...	7953..	$1 \mathrm{H} 1-1 \mathrm{~b}$
27	H3	PIPE 3.5	. 104	48	207	. 098	24	15	60666...	78750	7953.	7953	$1 \mathrm{H} 1-1 \mathrm{~b}$
28	IFH 31	L2x2x ${ }^{\text {2 }}$. 104	0	26	. 034	0	z 38	$18084 . .2$	23392.	. 557.72	1182.	$1 \mathrm{H} 2-1$
29	H2	PIPE 3.5	. 102	48	159	. 095	72	5	60666...	78750	7953..	7953...	1 H1-1b
30	IFH22	L2x 2×3	. 101	0	2	. 034	0	y 46	18084..2	23392.	. 557.72	1182.	$1 \mathrm{H} 2-1$
31	CP2	$6.6 \times 4.46 \times 0.25$. 059	0	26	. 045	42	y 175	$51170 .$.	87561	2464.	7125..	$1 \mathrm{H} 2-1$
32	CP3	$6.6 \times 4.46 \times 0.25$. 058	0	22	. 042	0	y 3	$51170 .$.	87561	2464...	7125...	$1 \mathrm{H} 2-1$
33	CP1	$6.6 \times 4.46 \times 0.25$. 054	18.81	18	. 041	0	y 145	$51170 .$.	87561	2464....	7125...	$1 \mathrm{H} 2-1$

Envelope A IS IS 100-12: LRFD Cold Formed S teel Code Checks

Member Shape Code Check Loc[in]LC Shea...Loc[i..DirLC phi*Pn[..phi*Tn[...phi*Mn...phi*Mn... Cb Cmyy Cmzz Eqn No Data to Print ...

APPENDIX D

ADDITIONAL CALCUATIONS

BOLT TOOL 1.5.2

Project Data	
Job Code:	189056
Carrier Site ID:	BOBDL00047A
Carrier Site Name:	CT-CCI-T-806376

Connection Description
Standoff to Monopole

Code	
Design Standard:	TIA-222-H
Slip Check:	No
Pretension Standard:	AISC

Bolt Properties		
Connection Type:	Bolt	
Diameter:	0.625	in
Grade:	A325	--
Yield Strength (Fy):	92	ksi
Ultimate Strength (Fu):	120	ksi
Number of Bolts:	4	--
Threads Included:	No	--
Double Shear:	No	--
Connection Pipe Size:	-	in

Bolt Check*		
Tensile Capacity $\left(\phi \mathrm{T}_{\mathrm{n}}\right):$	20340.1	lbs
Shear Capacity $\left(\phi \mathrm{V}_{\mathrm{n}}\right):$	17257.3	lbs
Tension Force $\left(\mathrm{T}_{\mathrm{u}}\right):$	4914.3	lbs
Shear Force $\left(\mathrm{V}_{\mathrm{u}}\right):$	698.8	lbs
Tension Usage:	23.0%	--
Shear Usage:	3.9%	--
Interaction:	23.0%	Pass
Controlling Member:	SA2	--
Controlling LC:	42	--

*Rating per TIA-222-H Section 15.5

APPENDIX E

SUPPLEMENTAL DRAWINGS

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOBDL00047A
806376
1455 Forbes Street
East Hartford, Connecticut 06II8
September 28, 202 I
EBI Project Number: 6221005703

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{5 9 . 2 4 \%}$

environmental | engineering | due diligence
September 28, 202 I
Dish Wireless

Emissions Analysis for Site: BOBDL00047A - 806376

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at 1455 Forbes Street in East Hartford, Connecticut for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-0 land ANSI/IEEE Std C95.I. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR I.I307(b)(I) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately $400 \mu \mathrm{~W} / \mathrm{cm}^{2}$ and $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$, respectively. The general population exposure limit for the $1900 \mathrm{MHz}(\mathrm{PCS}), 2100 \mathrm{MHz}(\mathrm{AWS})$ and II GHz frequency bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.
environmental | engineering | due diligence

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 1455 Forbes Street in East Hartford, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6 -foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 4 n 7 I channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
2) 4 n 70 channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-0I recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
4) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
environmental | engineering | due diligence
5) The antennas used in this modeling are the JMA MX08FRO665-2I for the $600 \mathrm{MHz} / 1900$ MHz channel(s) in Sector A, the JMA MX08FRO665-2I for the $600 \mathrm{MHz} / 1900 \mathrm{MHz}$ channel(s) in Sector B, the JMA MX08FRO665-2I for the $600 \mathrm{MHz} / 1900 \mathrm{MHz}$ channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
6) The antenna mounting height centerline of the proposed antennas is 77 feet above ground level (AGL).
7) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
8) All calculations were done with respect to uncontrolled / general population threshold limits.
environmental | engineering | due diligence

Dish Wireless Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	I	Antenna \#:	I	Antenna \#:	I
Make / Model:	$\begin{gathered} \text { JMA MX08FRO665- } \\ 21 \end{gathered}$	Make / Model:	$\begin{gathered} \text { JMA MX08FRO665- } \\ 21 \end{gathered}$	Make / Model:	$\begin{gathered} \text { JMA MX08FRO665- } \\ 21 \end{gathered}$
Frequency Bands:	$\begin{gathered} 600 \mathrm{MHz} / \mathrm{I} 900 \\ \mathrm{MHz} \end{gathered}$	Frequency Bands:	$\begin{gathered} 600 \mathrm{MHz} / \mathrm{I} 900 \\ \mathrm{MHz} \end{gathered}$	Frequency Bands:	$\begin{gathered} 600 \mathrm{MHz} / \mathrm{I} 900 \\ \mathrm{MHz} \end{gathered}$
Gain:	$\begin{gathered} 17.45 \mathrm{dBd} / 22.65 \\ \mathrm{dBd} \end{gathered}$	Gain:	$\begin{gathered} 17.45 \mathrm{dBd} / 22.65 \\ \mathrm{dBd} \end{gathered}$	Gain:	$\begin{gathered} 17.45 \mathrm{dBd} / 22.65 \\ \mathrm{dBd} \end{gathered}$
Height (AGL):	77 feet	Height (AGL):	77 feet	Height (AGL):	77 feet
Channel Count:	8	Channel Count:	8	Channel Count:	8
Total TX Power (W):	280 Watts	Total TX Power (W):	280 Watts	Total TX Power (W):	280 Watts
ERP (W):	3,065.5 I	ERP (W):	3,065.5 I	ERP (W):	3,065.5 I
Antenna AI MPE \%:	3.14\%	Antenna BI MPE \%:	3.14\%	Antenna CI MPE \%:	3.14\%

environmental | engineering | due diligence

Site Composite MPE \%	
Carrier	MPE \%
Dish Wireless (Max at Sector A):	3.14%
Sprint	6.41%
Clearwire	0.22%
AT\&T	9.72%
Verizon	9.8%
T-Mobile	29.95%
Site Total MPE \% :	59.24%

Dish Wireless MPE \% Per Sector		
Dish Wireless Sector A Total:	3.14%	
Dish Wireless Sector B Total:	3.14%	
Dish Wireless Sector C Total:	3.14%	
Site Total MPE \% :		
59.24%		

Dish Wireless Maximum MPE Power Values (Sector A)

Dish Wireless Frequency Band / Technology (Sector A)	\# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Frequency (MHz)	Allowable MPE ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Calculated \% MPE
Dish Wireless $600 \mathrm{MHz} \mathrm{n7I}$	4	223.68	77.0	6.38	$600 \mathrm{MHz} \mathrm{n7I}$	400	1.60\%
Dish Wireless $1900 \mathrm{MHz} \mathrm{n70}$	4	542.70	77.0	15.48	$1900 \mathrm{MHz} \mathrm{n70}$	1000	1.55\%
						Total:	3.14\%

- NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.
environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (\%)
Sector A:	3.14%
Sector B:	3.14%
Sector C:	3.14%
Dish Wireless Maximum MPE \% (Sector A):	3.14%
Site Total:	
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{5 9 . 2 4 \%}$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320
West Henrietta, NY 14586

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman
Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

Re: Tower Share Application

Crown Castle telecommunications site at:
1455 FORBES STREET, EAST HARTFORD, CT 06118
CROWN ATLANTIC COMPANY LLC ("Crown Castle") hereby authorizes DISH Wireless, LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name: 806376/HRT 100943239
Customer Site ID: BOBDLooo47A/CT-CCI-T-806376
Site Address: 1455 FORBES STREET, EAST HARTFORD, CT 06118

Crown Castle

Exhibit H

Recipient Mailings

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage $®$, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{\text {TM }}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship ${ }^{\circledR}$ Label Record

USPS TRACKING \# : 9405503699300026154793			
Trans. \#: 545423559		Priority Mail® Postage:	\$8.70
Print Date: 10/07/2021 Ship Date: $10 / 07 / 2021$			
ExpectedDelivery Date:10/12/2021			
From:	DEBORAH CHASE Ref\#: DS-806376NORTHEAST SITE SOLUTIONS		
	420 MAIN ST		
	STE 1		
	STURBRIDGE MA 01566-1359		
To:	RICH ZAJAC		
	CROWN CASTLE		
	4545 E RIVER RD		
	STE 320		
	W HENRIETTA NY 14586-9024		
* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.			

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage $®$, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{\text {TM }}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship ${ }^{\circledR}$ Label Record

USPS TRACKING \# : 9405503699300026154809				
		545423559	Priority Mail® Postage:	\$9.00
Print Date:		10/07/2021		
Ship Date: Expected		10/07/2021		
Delivery Date:		10/12/2021		
From:	DEBORAH CHASE Reff: DS-806376NORTHEAST SITE SOLUTIONS			
	420 MAIN ST			
	STE 1			
	STURBRIDGE MA 01566-1359			
то:	MARCIA A LECLERC			
	EATS HARTFORD TOWN HALL			
	740 MAIN ST			
	EAST HARTFORD CT 06108-3140			

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage $®$, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{\text {TM }}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship ${ }^{\circledR}$ Label Record

USPS TRACKING \# : 9405503699300026154823				
		545423559	Priority Mail® Postage:	\$9.00
Print Date:		10/07/2021		
Ship Date: Expected		10/07/2021		
Delivery Date:		10/12/2021		
From:	DEBORAH CHASE Reff: DS-806376NORTHEAST SITE SOLUTIONS			
	420 MAIN ST			
	STE 1			
	STURBRIDGE MA 01566-1359			
	EILEEN BUCKHEIT			
	DEVELOPMENT DIRECTOR			
	740 MAIN ST			
	EAST HARTFORD CT 06108-3140			

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage $®$, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{\text {TM }}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING \# : 9405503699300026154847				
Trans. \#:		545423559	Priority Mail® Postage:	\$22.65
Srint Date:		10/07/2021		
		10/07/2021		
Expected Delivery Date:		10/12/2021		
From:	DEBORAH CHASE Reff: DS-806376NORTHEAST SITE SOLUTIONS			
	420 MAIN ST			
	STE 1			
	STURBRIDGE MA 01566-1359			
	JACK-REBECCA HANDEL			
	1455 FORBES ST			
	EAST HARTFORD CT 06118-3300			

806376

UNIONVILLE
24 MILL ST
UNIONVILLE, CT 06085-9998 (800)275-8777

Prepaid Mail
1
$\$ 0.00$
West Henrietta, NY 14586
Weight: 01 b 2.10 oz
Acceptance Date:
Fri 10/08/2021
Tracking \#:
9405503699300026154793
$\begin{array}{ll}\text { Prepaid Mail } \\ \text { East Hartford, CT } \\ & 106108\end{array} \$ 0.00$
Weight: 1 ib 2.40 oz
Acceptance Date:
Fri 10/08/2021
Tracking \#:
9405503699300026154809
Prepaid Mall
East Hartford, CT $^{1} 06118$
Weight: 1 lb 2.50 oz
Acceptance Date:
Fri 10/08/2021
Tracking \#:
9405503699300026154847

Prepaid Mail 1 East Hartford, CT 06108 Weight: 1 lb 2.40 oz Acceptance Date: Fri 10/08/2021 Tracking \#: 9405503699300026154823	\$0.00
Grand Total:	\$0.00

[^0]: DISH Wiriless LLC. TEMPAATE VERSION $38-07 / 23 / 2021$

[^1]: tnxTower Report - version 8.1.1.0

[^2]: *This page shows an example of maintenance loads for (4) pipes, the number of mount pipe LCs may vary per site

