

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

October 7, 2021

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application 1455 Forbes Street, East Hartford CT 06118 Latitude: 41.731472 Longitude: -72.607778 Site# 806376_Crown_Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 1455 Forbes Street in East Hartford, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 5G MHz antenna and six (6) RRUs, at the 77-foot level of the existing 130-foot monopole tower, one (1) Fiber cables will also be installed. Dish Wireless LLC equipment cabinets will be placed within 7x5 lease area. Included are plans by Infinigy, dated August 09, 2021 Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated June 15, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was approved by the Connecticut Siting Council in Docket No. 139 on September 18, 1991. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Mayor Marcia A. Leclerc, Elected Official for the Town of East Hartford, Eileen Buckheit, Development Director, as well as the tower owner (Crown Castle) and property owner (Rebecca Handel-Jack)

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modification will not result in an increase in the height of the existing structure. The top of the tower is 130-feet; Dish Wireless LLC proposed antennas will be located at a center line height of 77-feet.

2. The proposed modifications will not result in the increase of the site boundary as depicted on the attached site plan.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.

4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total power density of 59.24% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully indicates that the shared use of this facility satisfies these criteria.

A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.

B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this support tower in East Hartford. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.

C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 77-foot level of the existing 130-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.

D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.

E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing guyed tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through East Hartford.

Sincerely,

Deníse Sabo

Denise Sabo Mobile: 203-435-3640 Fax: 413-521-0558 Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments cc:

Marcia A. Leclerc, Mayor Town of East Hartford 740 Main Street East Hartford, CT 06108 860-291-7200

Eileen Buckheit, Development Director Town of East Hartford 740 Main Street East Hartford, CT 06108

Rebecca Handel-Jack – Property Owner 1455 Forbes Street East Hartford, CT 06118

Crown Castle, Tower Owner

Exhibit A

Original Facility Approval

DOCKET NO. 139 - An application of Metro Mobile CTS of Hartford, Inc.,	•	Connecticut
for a Certificate of Environmental	•	0011100021000
		Siting
Compatibility and Public Need for	:	SICING
the construction, maintenance, and		
operation of cellular facilities in	:	Council
the Towns of Enfield, East Hartford,		
and Wethersfield, Connecticut.		September 18, 1991
-		

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a cellular telecommunications towers and equipment buildings at the proposed Enfield, Connecticut, alternate site and the proposed East Hartford, Connecticut, prime site including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application and therefore directs that a Certificate of Environmental Compatibility and Public Need as provided by section 16-50k of the Connecticut General Statutes (CGS), be issued to Metro Mobile CTS of Hartford, Inc., for the construction, operation, and maintenance of a cellular telecommunications tower, associated equipment, and building at the proposed alternate site in Enfield, Connecticut, and the proposed prime site in East Hartford, Connecticut.

The facilities shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter and subject to the following conditions:

- 1. The self-supporting monopole towers shall be no taller than necessary to provide the proposed communication service and in no event shall the towers exceed a total height of 163 feet above ground level (AGL) at the proposed Enfield alternate site and 123 feet AGL at the proposed East Hartford prime site, with antennas and appurtenances.
- 2. The Certificate holder shall prepare a Development and Management (D&M) Plan, for approval by the Council, for these sites in compliance with sections 16-50j-75 through 16-50j-77 of the Regulations of State Agencies. This D&M plan

Docket No. 139 Decision and Order Page 2

> shall include detailed plans of the towers, tower foundations, soil boring reports, equipment buildings, access roads, security fences, landscaping plans, detailed erosion and sedimentation control plans, and a final schedule. In addition, the D&M plan shall include for Council consideration, detailed plans and itemized costs for the placement of service utilities underground in order to further mitigate the visual effect of the facilities.

- 3. The Certificate holder shall comply with any existing and future radio frequency (RF) standards promulgated by State or federal regulatory agencies. Upon the establishment of any new governmental RF standards, the facilities granted herein shall be brought into compliance with such standards.
- 4. The Certificate holder shall provide the Council with a recalculated report of electromagnetic radio frequency power density if and when circumstances in operation cause a change in power density above the levels originally calculated and provided in the application.
- 5. The Certificate holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 6. If the facility does not initially provide or permanently ceases to provide cellular service following completion of construction, this Decision and Order shall be void, and the tower and all associated equipment shall be dismantled and removed or reapplication for any new use shall be made to the Council as soon as practicable before any such new use is made.
- 7. Unless otherwise approved by the Council, this Decision and Order shall be void if all construction authorized herein is not completed within three years of the effective date of this Decision and Order or within three years after all appeals to this Decision and Order have been resolved.

Pursuant to CGS section 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of this issuance shall be published in the <u>Hartford</u> Courant and the <u>Journal Inquirer</u>.

Docket No. 139 Decision and Order Page 3

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with section 16-50j-17 of the Regulations of State Agencies.

The parties to this proceeding are:

PARTIES	ITS REPRESENTATIVE
Metro Mobile CTS of Hartford, Inc. 20 Alexander Drive P.O. Box 5029 Wallingford, CT 06492 Attn: Gary Schulman	Robinson and Cole One Commercial Plaza Hartford, CT 06103-3597 Attn: Earl Phillips, Jr. (203) 275-8200
The Town of East Hartford	G. Barry Goodberg Assistant Corporation Counsel Town of East Hartford 740 Main Street East Hartford, CT 06108 (203) 289-2781
The Town of Enfield	Christopher W. Bromson Enfield Town Attorney 47 No. Main Street Enfield, CT 06082 (203) 745-0371 Ext. 290

SMH:bw

5534E

•

CERTIFICATION

The undersigned members of the Connecticut Siting Council hereby certify that they have heard this case in DOCKET NO. 139 - An application of Metro Mobile CTS of Hartford, Inc., for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance, and operation of cellular facilities in the Towns of Enfield, East Hartford, and Wethersfield, Connecticut, or read the record thereof, and that we voted as follows:

Dated at New Britain, Connecticut the 18th day of September, 1991.

Council Members

Mortiner A. Gelston

Chairman

YES

Vote Cast

Commissioner Clifton A. Leonhardt Designee:

Commissioner Richard G. Patterson

Commissioner Timothy R.E. Keeney

ABSTAIN

ABSENT

Designee: Brian Emerick Harry E. Covey

L∜nch, Daniel P. Jr.

Gloria Dibble Pond

YES Sheets Paulann н.

YES William H. Smi

YES Colin C. Tait

NO

NO

YES

PETITION NO. 535 - AT&T Wireless PCS, LLC and Crown	}	Connecticut
Atlantic Company LLC petition for a declaratory ruling that no		
Certificate of Environmental Compatibility and Public Need is	}	Siting
required for proposed modification of an existing		-
telecommunications tower located at 1455 Forbes Street, East	}	Council
Hartford, Connecticut.	,	
	}	May 21, 2002

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the extension of an existing telecommunications tower and installation of associated equipment at an existing facility located at 1455 Forbes Street in East Hartford, Connecticut, are not significant, are not disproportionate either alone or cumulatively with other effects, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny this petition.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower extension shall be compatible with and installed on the existing monopole, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of AT&T Wireless PCS, LLC (AT&T) and XM Satellite Radio, but such extension shall not exceed a height of 133 feet above ground level, including antennas and appurtenances.
- 2. The Certificate Holder shall provide a recalculated report of electromagnetic radio frequency power density if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.
- 3. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 4. The Certificate Holder shall permit public or private entities to share space on the tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 5. If the facility does not initially provide, or permanently ceases to provide cellular services following completion of construction, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
- 6. Any antenna that becomes obsolete and ceases to function shall be removed within 60 days after such antennas become obsolete and ceases to function.
- 7. Unless otherwise approved by the Council, this Decision and Order shall be void if the facility authorized herein is not completed within one year of the effective date of this Decision and Order or within one year after all appeals to this Decision and Order have been resolved.

8. All other applicable provisions of the Council's September 18, 1991 Decision and Order in Docket No. 139 remain in effect.

Pursuant to General Statutes § 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in <u>The Hartford Courant</u>, and The <u>East Hartford Gazette</u>.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

Crown Atlantic Company LLC and AT&T Wireless PCS, LLC

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597

Exhibit B

Property Card

Town of East Hartford Property Summary Report

1455 FORBES ST

MAP LOT:	41-233	CAMA PID:	4723
LOCATION:	1455 FORBES ST		
OWNER NAME:	HANDEL-JACK REBECCA		

OWNER OF RECORD

HANDEL-JACK REBECCA

1455 FORBES ST

EAST HARTFORD, CT 06118

LIVING AREA: 7	720	ZONING:	R2	ACREAGE:	25.01
----------------	-----	---------	----	----------	-------

SALES HISTORY				
OWNER	BOOK / PAGE	SALE DATE	SALE PRICE	
HANDEL-JACK REBECCA	3909/186	07-Jul-2020	\$0.00	
HANDEL ROBERT D	3582/0113	23-Jan-2016	\$0.00	
HANDEL JESSIE K EST OF C/O ROBERT D HANDEL EXECUTOR	3534/0329	19-May-2015	\$0.00	
HANDEL JESSIE K	1874/0345	01-Jan-2000	\$0.00	
HANDEL ALBERT P JR EST OF HANDEL JESSIE K EXEC	0000/0000	30-Dec-1999	\$0.00	

CURRENT PARCEL ASSESSMENT					
TOTAL:	\$332,190.00	IMPROVEMENTS:	\$291,500.00	LAND:	\$40,690.00

ASSESSING HISTORY			
FISCAL YEAR	TOTAL VALUE	IMPROVEMENT VALUE	LAND VALUE
2019	\$332,880.00	\$291,500.00	\$41,380.00
2018	\$332,880.00	\$291,500.00	\$41,380.00
2017	\$332,880.00	\$291,500.00	\$41,380.00
2016	\$332,880.00	\$291,500.00	\$41,380.00
2015	\$346,650.00	\$302,420.00	\$44,230.00

Town of East Hartford Property Summary Report

1455 FORBES ST

MAP LOT:	41-233	CAMA PID:	4723
LOCATION:	1455 FORBES ST		
OWNER NAME:	HANDEL-JACK REBECCA		

BUILDING #1

EXTRA FEATURES			
DESCRIPTION CODE UNITS		UNITS	
1 Story Barn	BRN1	1x5112 (5112.00 SF)	
Shed	SHD1	1x64 (64.00 S.F.)	
1 Story Barn	BRN1	1x3072 (3072.00 SF)	
Shed	SHD1	1x300 (300.00 S.F.)	
Shed	SHD1	1x561 (561.00 S.F.)	
1 Story Barn	BRN1	1x4928 (4928.00 SF)	
Shed	SHD1	1x600 (600.00 S.F.)	

Town of East Hartford Property Summary Report

1455 FORBES ST

MAP LOT:	41-233	CAMA PID:	4723
LOCATION:	1455 FORBES ST		
OWNER NAME:	HANDEL-JACK REBECCA		

BUILDING # 2

YEAR BUILT	1934	EXT WALL 1	Vinyl Siding
STYLE	Single Family	INT WALLS 1	Plaster
MODEL	Residential	HEAT FUEL	Other
STORIES	1.0	ΗΕΑΤ ΤΥΡΕ	Other
OCCUPANCY	One Family	AC TYPE	None
ROOF	Gable	BEDROOMS	1
ROOF COVER	Asphalt	FULL BATHS	1
FLOOR COVER 1	Hardwood	HALF BATHS	0
% BSMT	0	TOTAL ROOMS	4
% FIN BSMT	0	% REC RM	0
% SEMI FIN	0	% ATTIC FINISH	0
BSMT GARAGE		FIREPLACES	0

EXTRA FEATURES			
DESCRIPTION CODE		UNITS	
Shed	SHD1	1x105 (105.00 S.F.)	
FR/SHED	MSC55	30.00 UNIT	
1 Story Barn	BRN1	1x840 (840.00 SF)	
Shed	SHD1	1x144 (144.00 S.F.)	
Shed	SHD1	1x308 (308.00 S.F.)	
1 Story Barn	BRN1	1x3840 (3840.00 SF)	

Exhibit C

Construction Drawings

DISH Wireless L.L.C. SITE ID:

BOBDL00047A

DISH Wireless L.L.C. SITE ADDRESS:

1455 FORBES STREET EAST HARTFORD, CT 06118

CONNECTICUT CODE COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:

CODE TYPE BUILDING MECHANICAL ELECTRICAL

CODE

DISH Wireless L.L.C. TEMPLATE VERSION 38 - 07/23/2021

2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS

	SHEET INDEX	
SHEET NO.	SHEET TITLE	
T-1	TITLE SHEET	
A-1	OVERALL AND ENLARGED SITE PLAN	The second se
A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE	A Minut
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS	
A-4	EQUIPMENT DETAILS	T. Market
A-5	EQUIPMENT DETAILS	the at 14 the
A-6	EQUIPMENT DETAILS	CAR STOR
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES	Alter Alter
E-2	ELECTRICAL DETAILS	A Provide State
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE	
G-1	GROUNDING PLANS AND NOTES	
G-2	GROUNDING DETAILS	
G-3	GROUNDING DETAILS	
RF-1	RF CABLE COLOR CODE	
GN-1	LEGEND AND ABBREVIATIONS	
GN-2	GENERAL NOTES	
GN-3	GENERAL NOTES	THE FACILITY IS UNMANI
GN-4	GENERAL NOTES	FOR ROUTINE MAINTENAN DRAINAGE. NO SANITARY SIGNAGE IS PROPOSED.
		11"x17" PL
		CONTRAC THE JOB SITE, AND

APF	s is no ⁻ Proved i E projec	EQUI	VALENT
• • •	VER SCO INSTALL INSTALL INSTALL INSTALL INSTALL INSTALL	(3) (1) PRO (6) (1)	PROPC PROPC POSED PROPC PROPC
• • • •	DUND SC INSTALL UTILIZED INSTALL INSTALL INSTALL INSTALL INSTALL INSTALL INSTALL INSTALL EXISTING	(1) EXI (1) (1) (1) (1) (1) (1) (1) (1)	PROPO STING PROPO PROPO PROPO PROPO PROPO PROPO PROPO

SCOPE	OF	WORK
-------	----	------

INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER I. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. LLY CONSISTS OF THE FOLLOWING:

OSED PANEL ANTENNAS (1 PER SECTOR) POSED PLATFORM MOUNT JUMPERS OSED RRUS (2 PER SECTOR) OSED OVER VOLTAGE PROTECTION DEVICE (OVP) OSED HYBRID CABLE ORK: OSED METAL PLATFORM ICE BRIDGE OSED PPC CABINET OSED EQUIPMENT CABINET

OSED POWER CONDUIT OSED TELCO CONDUIT

OSED TELCO-FIBER BOX

OSED GPS UNIT

OSED SAFETY SWITCH (IF REQUIRED) OSED FIBER NID (IF REQUIRED)

OCKET ON EXISTING H-FRAME TO BE UTILIZED

SITE PHOTO

UNDERGROUND SERVICE ALERT CBYD 811
TILITY NOTIFICATION CENTER OF CONNECTICUT
(800) 922-4455
WWW.CBYD.COM

CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION

GENERAL NOTES

S UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL

17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

SITE INFORMATION		PROJECT DIRECTORY		
PROPERTY OWNER: ADDRESS:	HANDEL-JACK REBECCA 1455 FORBES ST EAST HARTFORD, CT 06118	APPLICANT:	5701 S	reless L.L.C. OUTH SANTA FE DRIVE ON, CO 80120
TOWER TYPE:	MONOPOLE	TOWER OWNER:	CROWN	CASTLE
TOWER CO SITE ID:	806376		2000 C	ORPORATE DRIVE
TOWER APP NUMBER:	556638			86–9377
COUNTY:	HARTFORD	SITE DESIGNER:	INFINIGY 2500 W	, . Higgins RD. Ste. 500
LATITUDE (NAD 83):	41° 43' 53.30" N 41.731472 N			N ESTATES, IL 60169 648–4068
LONGITUDE (NAD 83):	72° 36' 28.00" W 72.607778 W			
ZONING JURISDICTION:	CONNECTICUT SITING COUNCIL EAST HARTFORD	SITE ACQUISITION:		NICHOLAS CURRY NICHOLAS.CURRY@CROWNCASTLE.COI
ZONING DISTRICT:	R-2 SINGLE FAMILY			
PARCEL NUMBER:	TBD	CONSTRUCTION M	ANAGER:	JAVIER.SOTOODISH.COM
OCCUPANCY GROUP:	U	RF ENGINEER:		(617) 839-6514 BOSSENER CHARLES BOSSENER.CHARLES@DISH.COM
CONSTRUCTION TYPE:	∥−В			DOGGENER. OF PARESUDISF 1.000
POWER COMPANY:	CONNECTICUT LIGHT & POWER			
TELEPHONE COMPANY:	AT&T			

DIRECTIONS

DIRECTIONS FROM TOURS OF DISTINCTION AIRPORT:

DEPART AND HEAD TOWARD MASSACO ST, TURN RIGHT ONTO MASSACO ST, TURN LEFT ONTO US-202 E / CT-10 / HOPMEADOW ST, MINOR CONGESTION, TURN RIGHT ONTO CT-315 / TARIFFVILLE RD, KEEP RIGHT CI-10 / HOPMEADOW ST, MINOR CONGESTION, TURN RIGHT ONTO CI-315 / TARIFFVILLE RD, KEEP RIGHT TO STAY ON CT-315 / ELM ST, TURN RIGHT ONTO CT-189 / STATE HIGHWAY 189, TAKE THE RAMP ON THE RIGHT FOR CT-187 SOUTH AND HEAD TOWARD BLOOMFIELD / HARTFORD, BEAR LEFT ONTO DAY HILL RD, TAKE THE RAMP ON THE RIGHT FOR I-91 SOUTH AND HEAD TOWARD HARTFORD, AT EXIT 30, HEAD LEFT ON THE RAMP FOR I-84 EAST TOWARD E HARTFORD / NEW LONDON, AT EXIT 55, HEAD RIGHT ON THE RAMP FOR CT-2 EAST TOWARD NEW LONDON / NORWICH, AT EXIT 5C, HEAD ON THE RAMP RIGHT AND FOLLOW SIGNS FOR MAPLE STREET, TURN LEFT ONTO MAPLE ST TOWARD MAPLE STREET, TURN RIGHT ONTO FORBES ST, TURN RIGHT, TURN RIGHT, ARRIVE AT 1455 FORBES STREET EAST HARTFORD, CT 06118

DISH Wireless L.L.C. TEMPLATE VERSION 38 - 07/23/2021

<u>NOTES</u>			
1. CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS.			
2. CONTRACTOR SHALL MAINTAIN A 10'-0" MINIMUM SEPARATION BETWEEN THE PROPOSED GPS UNIT, TRANSMITTING ANTENNAS AND EXISTING GPS UNITS.	džsn		
3. ANTENNAS AND MOUNTS OMITTED FOR CLARITY.			
	wireless.		
	5701 SOUTH SANTA FE DRIVE		
	LITTLETON, CO 80120		
	CROWN		
	CASTLE		
	2000 CORPORATE DRIVE CANONSBURG, PA 15317		
	INFINIGY		
	FROM ZERO TO INFINIGY		
	the solutions are endless 2500 W. HIGGINS RD. SUITE 500 J HOFFMAN ESTATES, IL 60169		
	PHONE: 847-648-4068 FAX: 518-690-0793 WWW.INFINIGY.COM		
	OF CONNECTION		
	SAT THE SAKAN CET		
	- P. 34016		
	CENSED		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8/13/2021		
3/8"=1'−0" ∠			
	IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.		
Sign in	DRAWN BY: CHECKED BY: APPROVED BY:		
PROPOSED HANDHOLE (TYP)	RCD SS CJW		
EXISTING ACCESS DRIVEWAY	RFDS REV #: N/A		
FBR FBR	CONSTRUCTION DOCUMENTS		
	SUBMITTALS		
AN FOR	REV DATE DESCRIPTION		
ROXIMATE LOCATION OF	A 06/17/2021 ISSUED FOR REVIEW 0 08/09/2021 ISSUED FOR CONSTRUCTION		
ESS/UTILITY EASEMENT			
TING SITE ACCESS PATH			
	A&E PROJECT NUMBER		
	2039-Z5555C		
	DISH Wireless L.L.C.		
	PROJECT INFORMATION BOBDL00047A 1455 FORBES STREET		
and the second of the second of the	EAST HARTFORD, CT 06118		
	SHEET TITLE OVERALL AND ENLARGED		
	SITE PLAN		
	SHEET NUMBER		
100' 50' 0 100' 200'	A-1		
1 ["] =100' 3			

PROPOSED WEST ELEVATION

<u>NOTES</u>

- . CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS.
- 2. ANTENNA AND MW DISH SPECIFICATIONS REFER TO ANTENNA SCHEDULE AND TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS
- EXISTING EQUIPMENT AND FENCE OMITTED FOR CLARITY.

DISH Wireless L.L.C. TEMPLATE VERSION 38 - 07/23/2021

DISH Wireless L.L.C. TEMPLATE VERSION 38 - 07/23/2021

MINIMUM OF 75% OR 270" IN ANY DIRECTION GPS GPS <td></td> <td></td> <td>CU12PSM6P4XXX (4 AWG CONDUCTORS)</td>			CU12PSM6P4XXX (4 AWG CONDUCTORS)
MINIMUM SKY VIEW REQUIREMENTS	NO SCALE	2	CABLES UNLIMITED HYBRID MINIMUM BEND RADIUSE
<u>NOT USED</u>	NO SCALE	5	<u>NOT USED</u>
NOT USED	NO SCALE	8	<u>NOT USED</u>

DISH Wireless L.L.C. TEMPLATE VERSION 38 - 07/23/2021

		2

		UseOstStateStateStateStateConcenteDurationStateStat
NO SCALE	3	FROM ZERO TO INFINIGY the solutions are endless 2500 W. HIGGINS RD. SUITE 500 HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4068 FAX: 518-690-0793 WWW.INFINIGY.COM
		In the conversion of conversion of a licensed professional engineer, to alter this document. It is a violation of Law for any person, unless they are acting under the direction of a licensed professional engineer, to alter this document. Drawn BY: CHECKED BY: RFDS REV #: N/A CONSTRUCTION DOCUMENTS
NO SCALE	6	SUBMITTALS
		REV DATE DESCRIPTION A 06/17/2021 ISSUED FOR REVIEW 0 08/09/2021 ISSUED FOR CONSTRUCTION A A A A Disk For construction A A A A A O O8/09/2021 ISSUED FOR CONSTRUCTION A Disk Disk Disk A&E PROJECT NUMBER Disk Quadration DISH Wireless L.L.C. PROJECT INFORMATION BOBDL00047A 1455 FORBES STREET EAST HARTFORD, CT O6118 SHEET TITLE ELECTRICAL DETAILS SHEET NUMBER SHEET SHEET
NO SCALE	9	E-2

	NOTES	
	<u>NOTES</u> THE (2) CONDUITS WITH (4) CURRENT CARRYING CONDUCTORS EACH, SHALL APPLY	
PROPOSED POWER PROTECTIVE CABINET CHARLES NETWORK CABINET SERVICE ENTRANCE 120/240V, 1 PH, SERVICE RATED, CHARLES NETWORK CABINET 0 VAC 1PH OVERALL UL LISTED POWER CENTER, N3P, 65K (10K, AIC)	THE ADJUSTMENT FACTOR OF 80% PER 2014/17 NEC TABLE 310.15(B)(3)(a) OR 2020 NEC TABLE 310.15(C)(1) FOR UL1015 WIRE.	
MAIN BREAKER WITH	#12 FOR 15A-20A/1P BREAKER: $0.8 \times 30A = 24.0A$ #10 FOR 25A-30A/2P BREAKER: $0.8 \times 40A = 32.0A$ #8 FOR 35A-40A/2P BREAKER: $0.8 \times 55A = 44.0A$	džsn
TOR 200A 200A INTERLOCKED GENERATOR K FEED, 200A 65K AIC (2) PROPOSED 0.75" EMT CONDUITS	#6 FOR 45A-60A/2P BREAKER: 0.8 x 75A = 60.0A	wireless.
	CONDUIT SIZING: AT 40% FILL PER NEC CHAPTER 9, TABLE 4, ARTICLE 358. 0.5" CONDUIT – 0.122 SQ. IN AREA 0.75" CONDUIT – 0.213 SQ. IN AREA	
100KA SAD/MOV FCI 01 02 15A 03 04 30A PROPOSED 2 #10, 1 #10 CU GND. FOR RECTIFIER 1	2.0" CONDUIT - 1.316 SQ. IN AREA 3.0" CONDUIT - 2.907 SQ. IN AREA	5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120
	CABINET CONVENIENCE OUTLET CONDUCTORS (1 CONDUIT): USING THWN-2, CU. #10 - 0.0211 SQ. IN X 2 = 0.0422 SQ. IN	
	$\frac{1}{10} - 0.0211 \text{ SQ. IN } \times 1 = 0.0211 \text{ SQ. IN } < \text{GROUND}$ $\overline{\text{TOTAL}} = 0.0633 \text{ SQ. IN}$	CROWN
SPACE 30A PROPOSED 2 #10, 1 #10 CU GND. FOR RECTIFIER 3	0.5" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (3) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.	
SPACE 15 16 30A PROPOSED 2 #10	RECTIFIER CONDUCTORS (2 CONDUITS): USING UL1015, CU.	2000 CORPORATE DRIVE CANONSBURG, PA 15317
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	#10 - 0.0266 SQ. IN X 4 = 0.1064 SQ. IN #10 - 0.0082 SQ. IN X 1 = 0.0082 SQ. IN <bare ground<="" td=""><td>INFINIGY8</td></bare>	INFINIGY8
SPACE SPACE 0.5" EMT CONDUIT	$\overline{\text{TOTAL}} = 0.1146 \text{ SQ. IN}$	FROM ZERO TO INFINIGY
SPACE SPACE PROPOSED 2 #10, 1 #10 CU GND.	0.75" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (5) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.	the solutions are endless 2500 W. HIGGINS RD. SUITE 500 HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4068 FAX: 518-690-0793
FOR CONVENIENCE OUTLET	PPC FEED CONDUCTORS (1 CONDUIT): USING THWN, CU. 3/0 - 0.2679 SQ. IN X 3 = 0.8037 SQ. IN	WWW.INFINIGY.COM
CIRCUIT WIRING SUPPLYING RECTIFIERS ARE TO BE RATED UL1015, 105°C, 600V, AND PVC INSULATED, IN THE SIZES SHOWN DNE-LINE DIAGRAM. CONTRACTOR MAY SUBSTITUTE UL1015 WIRE FOR THWN-2 FOR CONVENIENCE OUTLET BRANCH CIRCUIT.	$\frac{\#6}{\text{TOTAL}} = 0.0507 \text{ SQ. IN } \times 1 = 0.0507 \text{ SQ. IN } <\text{GROUND}$	NIN OF CONNECTION
S REQUIRED:	3.0" SCH 40 PVC CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (4) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.	PUTE DATA OFF
2P BREAKER - SQUARE D P/N:Q0230 1P BREAKER - SQUARE D P/N:Q0115		This States III *
		= PD: 34916
		8/13/2021
		8/13/2021
PPC ONE-LINE DIAGRAM	NO SCALE 1	IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER,
		TO ALTER THIS DOCUMENT.
		DRAWN BY: CHECKED BY: APPROVED BY: RCD SS CJW
		RFDS REV #: N/A
		CONSTRUCTION
		DOCUMENTS
		SUBMITTALS REV DATE DESCRIPTION
		A 06/17/2021 ISSUED FOR REVIEW 0 08/09/2021 ISSUED FOR CONSTRUCTION
		A&E PROJECT NUMBER 2039-Z5555C
		DISH Wireless L.L.C. PROJECT INFORMATION
		BOBDL00047A
		1455 FORBES STREET EAST HARTFORD, CT 06118
		SHEET TITLE ELECTRICAL ONE-LINE, FAULT
		CALCS & PANEL SCHEDULE
		SHEET NUMBER
NO SCALE 2 <u>NOT USED</u>	NO SCALE 3	E-3

PPC ONE-	LINE DIAGRAM
NO SCALE 2	<u>NOT USED</u>
-	

CE BRIDGE T POSTS TO RING BOND(s) L POSTS) EXISTING MONOPOLE			 EXOTHERMIC CONNECTION MECHANICAL CONNECTION MECHANICAL CONNECTION GROUND BUS BAR GROUND BUS BAR GROUND ROD GROUND ROD BUSS BAR INSULATOR BUSS BAR INSULATOR 1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY. 2. CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM, GROUNDING S COMPLIANCE WITH NEC SECTION 250 AND DISH Wireless LLC, GROUNDING AND BON REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS. 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE	INSULATED R TINNED	
			GROUNDING KEY NOTES <u>EXTERIOR GROUND RING:</u> #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 GRADE, OR 6 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM TH	INCHES BELOW E EXTERIOR WAI	
			OR FOOTING. B <u>TOWER GROUND RING:</u> THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTI AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOW BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SY BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS.	ENNA TOWER'S L ER AND THE	legs,
			© INTERIOR GROUND RING: #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTOR EXTER PERIMETER OF THE EQUIPMENT AREA. ALL NON-TELECOMMUNICATIONS RELATED METALLIC WITHIN A SITE SHALL BE GROUNDED TO THE INTERIOR GROUND RING WITH #6 AWG STRA INSULATED CONDUCTOR.	OBJECTS FOUND	
			D BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE BUILDING.	SHALL BE CORNERS OF TI	ΉE
	NO SCALE	1	E <u>GROUND ROD:</u> UL LISTED COPPER CLAD STEEL. MINIMUM 1/2" DIAMETER BY EIGHT FEET RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. GROUND RODS SHALL BE DRIVEN GROUND RING CONDUCTOR.		
<u>NOT</u>			F <u>CELL REFERENCE GROUND BAR:</u> POINT OF GROUND REFERENCE FOR ALL COMMUNICATION FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GRE COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CON	EN INSULATED	
- PROPOSED UPPER TOWER GROUND BAR	SPECIFIC		G HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG S INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROU PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH.	ND BAR ARE BO	I)TH
PROPOSED BUSS BAR INSULATORS (TYP)			H EXTERIOR CABLE ENTRY PORT GROUND BARS: LOCATED AT THE ENTRANCE TO THE CELL TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTORS WITH AN EXOTHE INSPECTION SLEEVE.	SITE BUILDING. (RMIC WELD AND	BOND)
PROPOSED 4"x6"x1/4" TINNED COPPER SECTOR GROUND BUSSBAR (TYP OF 3)			I TELCO GROUND BAR: BOND TO BOTH CELL REFERENCE GROUND BAR OR EXTERIOR GROU	ND RING.	
			U <u>FRAME BONDING:</u> THE BONDING POINT FOR TELECOM EQUIPMENT FRAMES SHALL BE THE IS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEWORK.	GROUND BUS T	HAT
			K <u>INTERIOR UNIT BONDS:</u> METAL FRAMES, CABINETS AND INDIVIDUAL METALLIC UNITS LOCATE OF THE INTERIOR GROUND RING REQUIRE A #6 AWG STRANDED GREEN INSULATED COPPE INTERIOR GROUND RING.		
			L <u>FENCE AND GATE GROUNDING:</u> METAL FENCES WITHIN 7 FEET OF THE EXTERIOR GROUND BONDED TO THE EXTERIOR GROUND RING SHALL BE BONDED TO THE GROUND RING WITH TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEEDING 25 FEET. BONDS SHALL B GATE POST AND ACROSS GATE OPENINGS.	A #2 AWG SOI	DLID
			\bigcirc <u>Exterior Unit Bonds</u> : Metallic objects, external to or mounted to the building to the exterior ground ring. Using #2 tinned solid copper wire	, shall be bot	NDED
			N <u>ICE BRIDGE SUPPORTS:</u> EACH ICE BRIDGE LEG SHALL BE BONDED TO THE GROUND RING TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRIDGE LEG GROUND RING.		BARE
			O DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIE OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEM INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS IT SHALL BE REQUIRED THAT S CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPPED WITH A MASTER DC SYSTE CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED REFERENCE GROUND BAR	ENTS AND ERVICE M RETURN GRO	DUND
			P TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICALLY BONDED TO PROPOSED ANT	INNA MOUNT CC	JLLAR.
			REFER TO DISH Wireless L.L.C. GROUNDING NOTES.		
	NO SCALE	2	<u>GROUNDING KEY NOTES</u>	NO SCALE	3

DISH Wireless L.L.C. TEMPLATE VERSION 38 - 07/23/2021

 EXOTHERMIC WELD (2) TWO, #2 AWG BARE TINNED SOLID COPPER CONDUCTORS TO GA BAR. ROUTE CONDUCTORS TO BURIED GROUND RING AND PROVIDE PARALLEL EXOTHERN WELD. ALL EXTERIOR GROUNDING HARDWARE SHALL BE STAINLESS STEEL 3/8" DIAMETER OR I ALL HARDWARE 18-8 STAINLESS STEEL INCLUDING LOCK WASHERS, COAT ALL SURFACE AN ANTI-OXIDANT COMPOUND BEFORE MATING. FOR GROUND BOND TO STEEL ONLY: COAT ALL SURFACES WITH AN ANTI-OXIDANT COM BEFORE MATING. DO NOT INSTALL CABLE GROUNDING KIT AT A BEND AND ALWAYS DIRECT GROUND CON DOWN TO GROUNDING BUS. NUT & WASHER SHALL BE PLACED ON THE FRONT SIDE OF THE GROUND BAR AND BO THE BACK SIDE. ALL GROUNDING PARTS AND EQUIPMENT TO BE SUPPLIED AND INSTALLED BY CONTRACT THE CONTRACTOR SHALL BE RESPONSIBLE FOR INSTALLING ADDITIONAL GROUND BAR AS REQUIRED. ENSURE THE WIRE INSULATION TERMINATION IS WITHIN 1/8" OF THE BARREL (NO SHINI 	LARGER. ES WITH IPOUND IDUCTOR DLTED ON TOR. S		3/8" DIA x1 1/2" S/S NUT S/S LOCK WASHER S/S FLAT WASHER S/S FLAT WASHER S/S FLAT WASHER S/S FLAT WASHER S/S FLAT S/S FLAT	CTOR INSULATION PAGAINST THE CTOR BARREL		TOOTHED BARREL, REQUIRED FOR SHRINK BUTT ALL INTERIOR TWO-HOLE 3/8" DIA ×1 1/2" S/S NUT S/S LOCK WASHER	JCTOR INSULATION UP AGAINST THE ECTOR BARREL		<section-header><section-header><text><text><text><text></text></text></text></text></section-header></section-header>
TYPICAL GROUNDING NOTES	NO SCALE	1	TYPICAL EXTERIOR TWO HOLE LUG	NO SCALE	2	TYPICAL INTERIOR TWO HOLE LUG	NO SCALE	3	the solutions are endless 2500 W. HIGGINS RD. SUITE 500 HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4068 FAX: 518-690-0793
NOTE: MINIMUM OF 3 THREADS TO BE VISIBLE (TYP) 2 HOLE LONG BARREL TINNED SOLID COPPER UUG (TYP) TIN COATED SOLID COPPER BUS BAR COPPER BUS BAR COPPER BUS BAR CHERRY INSULATOR INSTALLED IF REQUIRED	WASHER (TYP) ASHER (TYP) ASHER (TYP)								WWW.INFINIGY.COM
<u>LUG DETAIL</u>	NO SCALE	4	<u>NOT USED</u>	NO SCALE	5	<u>NOT USED</u>	NO SCALE	6	SUBMITTALS
									REV DATE DESCRIPTION A 06/17/2021 ISSUED FOR REVIEW 0 08/09/2021 ISSUED FOR CONSTRUCTION
<u>NOT USED</u> DISH Wireless L.L.C. TEMPLATE VERSION 38 - 07/23/2021	NO SCALE	7	<u>NOT_USED</u>	NO SCALE	8	<u>NOT USED</u>	NO SCALE	9	

DISH WIREless L.L.C. TEMPLATE VERSION 38 - 07/23/2021

	AWS						
	(N66+N70+H-BLOCK)		dish				
	PURPLE						
			wireless.				
	NEGATIVE SLANT PORT ON ANT/RRH		5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120				
	WHITE						
			CROWN				
		-	CASTLE				
TOR	GAMMA SECTOR		2000 CORPORATE DRIVE CANONSBURG, PA 15317				
	GREEN		INFINIGY &				
			FROM ZERO TO INFINIGY				
	NO SCALE	2	the solutions are endless 2500 W. HIGGINS RD. SUITE 500 J HOFFMAN ESTATES, IL 60169				
			PHONE: 847-648-4068 FAX: 518-690-0793 WWW.INFINIGY.COM				
			NIN OF CONNEC				
			S STATES SAKALOG				
			This share in the				
			= P. 34916				
			8/13/2021				
			8/13/2021				
			IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.				
			DRAWN BY: CHECKED BY: APPROVED BY:				
			RCD SS CJW RFDS REV #: N/A				
			CONSTRUCTION				
			DOCUMENTS				
	NO SCALE	3	SUBMITTALS				
			REVDATEDESCRIPTIONA06/17/2021ISSUED FOR REVIEW				
			0 08/09/2021 ISSUED FOR CONSTRUCTION				
			A&E PROJECT NUMBER 2039-Z5555C				
			DISH Wireless L.L.C. PROJECT INFORMATION				
			BOBDL00047A				
			1455 FORBES STREET EAST HARTFORD, CT 06118				
			SHEET TITLE				
			RF CABLE COLOR CODES				
			SHEET NUMBER				
		Λ	RF-1				
	NO SCALE	4					

	AB
	ABV AC
BUSS BAR INSULATOR	ADDL
CHEMICAL ELECTROLYTIC GROUNDING SYSTEM	AFF AFG
TEST CHEMICAL ELECTROLYTIC GROUNDING SYSTEM	AGL
EXOTHERMIC WITH INSPECTION SLEEVE	AIC
GROUNDING BAR	ALUM ALT
	ANT
TEST GROUND ROD WITH INSPECTION SLEEVE	APPROX ARCH
SINGLE POLE SWITCH	ATS
	AWG BATT BLDG
DUPLEX GFCI RECEPTACLE	BLK BLKG
FLUORESCENT LIGHTING FIXTURE (2) TWO LAMPS 48-T8	BM BTC
SMOKE DETECTION (DC)	BOF CAB
EMERGENCY LIGHTING (DC)	CANT CHG
SECURITY LIGHT W/PHOTOCELL LITHONIA ALXW LED-1-25A400/51K-SR4-120-PE-DDBTXD	CLG CLR
CHAIN LINK FENCE X X X	COL COMM
WOOD/WROUGHT IRON FENCE	CONC
WALL STRUCTURE	CONSTR
LEASE AREA	DBL DC
PROPERTY LINE (PL)	DEPT
SETBACKS	DF DIA
	DIAG
CABLE TRAY	DIM DWG
WATER LINE W	DWG
UNDERGROUND POWER UGP UGP UGP UGP UGP	EA
UNDERGROUND TELCO UGT UGT UGT UGT UGT UGT	EC EL.
OVERHEAD POWER OHP	ELEC
OVERHEAD TELCO OHT OHT OHT OHT OHT OHT	EMT
UNDERGROUND TELCO/POWER UGT/P UGT/P UGT/P UGT/P UGT/P	ENG EQ
ABOVE GROUND POWER AGP	EXP
ABOVE GROUND TELCO — AGT — AGT — AGT — AGT — AGT — AGT —	EXT EW
ABOVE GROUND TELCO/POWER AGT/P AGT/P AGT/P AGT/P	FAB
WORKPOINT W.P.	FF
SECTION REFERENCE $\begin{pmatrix} XX \\ X-X \end{pmatrix}$	FG FIF
	FIN
	FLR
DETAIL REFERENCE $\begin{pmatrix} XX \\ X-X \end{pmatrix}$	FDN FOC
	FOM
	FOS
	FOW
	FS FT
	FTG
	GA
	GEN GFCI
	GFCI
	GLV
	GPS
	GND
	GSM HDG
	HDG
	HGR
	HVAC
	HT
	IGR
LEGEND	

DISH Wireless L.L.C. TEMPLATE VERSION 38 - 07/23/2021

ABBREVIATIONS

ANCHOR BOLT	IN	INCH
ABOVE	INT	INTERIOR
ALTERNATING CURRENT	LB(S)	POUND(S)
ADDITIONAL	LF	LINEAR FEET
ABOVE FINISHED FLOOR	LTE	LONG TERM E
ABOVE FINISHED GRADE	MAS	MASONRY
ABOVE GROUND LEVEL	MAX	MAXIMUM
AMPERAGE INTERRUPTION CAPACITY ALUMINUM	MB	MACHINE BOL
ALTERNATE	MECH	
ANTENNA	MFR MGB	MANUFACTURE MASTER GROU
APPROXIMATE	MIN	MINIMUM
ARCHITECTURAL	MISC	MISCELLANEOL
AUTOMATIC TRANSFER SWITCH	MTL	METAL
AMERICAN WIRE GAUGE	MTS	MANUAL TRAN
BATTERY	WW	MICROWAVE
BUILDING	NEC	NATIONAL ELE
BLOCK	NM	NEWTON METE
BLOCKING	NO.	NUMBER
BEAM BARE TINNED COPPER CONDUCTOR	#	NUMBER
BOTTOM OF FOOTING	NTS	NOT TO SCAL
CABINET	00	ON-CENTER
CANTILEVERED	OSHA	OCCUPATIONAL
CHARGING	OPNG	OPENING
CEILING	P/C	PRECAST CON PERSONAL CO
CLEAR	PCS PCU	PERSONAL CO
COLUMN	PCO	PRIMARY RADI
COMMON	PP	POLARIZING P
CONCRETE	PSF	POUNDS PER
CONSTRUCTION	PSI	POUNDS PER
DOUBLE	PT	PRESSURE TR
DIRECT CURRENT	PWR	POWER CABIN
DEPARTMENT DOUGLAS FIR	QTY	QUANTITY
DIAMETER	RAD	RADIUS
DIAGONAL	RECT	RECTIFIER
DIMENSION	REF	REFERENCE
DRAWING	REINF	REINFORCEME
DOWEL	REQ'D	REQUIRED
EACH	ret Rf	REMOTE ELEC RADIO FREQUI
ELECTRICAL CONDUCTOR	RMC	RIGID METALLI
ELEVATION	RRH	REMOTE RADIO
	RRU	REMOTE RADIO
ELECTRICAL METALLIC TUBING	RWY	RACEWAY
ENGINEER EQUAL	SCH	SCHEDULE
EXPANSION	SHT	SHEET
EXTERIOR	SIAD	SMART INTEGR
EACH WAY	SIM	SIMILAR
FABRICATION	SPEC	SPECIFICATION
FINISH FLOOR	SQ	SQUARE
FINISH GRADE	SS STD	STAINLESS ST
FACILITY INTERFACE FRAME	STL	STEEL
FINISH(ED)	TEMP	TEMPORARY
FLOOR	ТНК	THICKNESS
FOUNDATION	TMA	TOWER MOUN
FACE OF CONCRETE FACE OF MASONRY	TN	TOE NAIL
FACE OF STUD	TOA	TOP OF ANTE
FACE OF WALL	TOC	TOP OF CURE
FINISH SURFACE	TOF	TOP OF FOUN
FOOT	TOP	TOP OF PLAT
FOOTING	TOS	TOP OF STEE
GAUGE	tow TVSS	TOP OF WALL
GENERATOR	TYP	TYPICAL
GROUND FAULT CIRCUIT INTERRUPTER	UG	UNDERGROUN
GLUE LAMINATED BEAM	UL	UNDERWRITER
GALVANIZED	UNO	UNLESS NOTE
GLOBAL POSITIONING SYSTEM	UMTS	UNIVERSAL MO
GROUND	UPS	UNITERRUPTIB
GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED	VIF	VERIFIED IN F
HEADER	W	WIDE
HANGER	W/	WITH
HEAT/VENTILATION/AIR CONDITIONING	WD	WOOD
HEIGHT	WP	WEATHERPROC
INTERIOR GROUND RING	WT	WEIGHT

EVOLUTION DLT RER DUND BAR OUS NSFER SWITCH LECTRIC CODE TERS ALE IAL SAFETY AND HEALTH ADMINISTRATION **NCRETE** COMMUNICATION SERVICES NTROL UNIT DIO CABINET PRESERVING ER SQUARE FOOT ER SQUARE INCH TREATED INET IENT CTRIC TILT UENCY LIC CONDUIT DIO HEAD DIO UNIT GRATED ACCESS DEVICE)N STEEL UNTED AMPLIFIER TENNA RB UNDATION ATE (PARAPET) EEL VOLTAGE SURGE SUPPRESSION ND ERS LABORATORY TED OTHERWISE MOBILE TELECOMMUNICATIONS SYSTEM TIBLE POWER SYSTEM (DC POWER PLANT) I FIELD OOF

SITE ACTIVITY REQUIREMENTS:

1. NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTION MANAGER.

2. "LOOK UP" - DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH Wireless L.L.C. AND DISH Wireless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.

4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH Wireless L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).

5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."

6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.

10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.

11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.

12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.

13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH Wireless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.

14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.

15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.

16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.

17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.

 CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
 THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES, ANY

19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUC DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.

20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER: TOWER OWNER

2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.

3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.

4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.

5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.

6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.

12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER

13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL: ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS. 16. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE 17. AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE. GRADE PVC CONDUIT. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 2. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION psf. OCCURS OR FLEXIBILITY IS NEEDED. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. SCREW FITTINGS ARE NOT ACCEPTABLE. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°F AT TIME OF PLACEMENT. 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE NEC. BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER. DESIGNED TO SWING OPEN DOWNWARDS 21. MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45. (WIREMOLD SPECMATE WIREWAY). ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL). 22. SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS: CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE 23. DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF #4 BARS AND SMALLER 40 ksi THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE #5 BARS AND LARGER 60 ksi MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT DRAWINGS: FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE. • CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3" EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET • CONCRETE EXPOSED TO EARTH OR WEATHER: STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS. • #6 BARS AND LARGER 2" METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR • #5 BARS AND SMALLER 1-1/2" EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR • CONCRETE NOT EXPOSED TO EARTH OR WEATHER: BETTER) FOR EXTERIOR LOCATIONS. SLAB AND WALLS 3/4" NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED 26. NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS. BEAMS AND COLUMNS 1-1/2" THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, 27. IN ACCORDANCE WITH ACI 301 SECTION 4.2.4. TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY. **ELECTRICAL INSTALLATION NOTES:** INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.". 29. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED. 30. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC. 3. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE. 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE 5. LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE. PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S). PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS. TIE WRAPS ARE NOT ALLOWED. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) 9 WITH TYPE THHW. THWN. THWN-2. XHHW. XHHW-2. THW. THW-2. RHW. OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH 10. TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS 11. OTHERWISE SPECIFIED. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75° C (90° C IF AVAILABLE). RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND 14. NEC.

ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

GROUNDING NOTES:

ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.

THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.

THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.

METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.

METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.

EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.

CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.

ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.

ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS. 9 USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY 10. SUPPORTED.

EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE. 11.

ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS. 12. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS. 13.

ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND 14. BAR.

APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.

ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.

MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND 17. RING, IN ACCORDANCE WITH THE NEC.

18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.

GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.

20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).

21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/0 COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

Exhibit D

Structural Analysis Report

Date: June 15, 2021

Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 (724) 416-2000

Subject:	Structural Analysis Report	
Carrier Designation:	<i>DISH Network</i> Co-Locate Site Number: Site Name:	BOBDL00047A CT-CCI-T-806376
Crown Castle Designation:	BU Number: Site Name: JDE Job Number: Work Order Number: Order Number:	806376 HRT 100 943239 650042 1963271 556638 Rev. 1
Engineering Firm Designation:	Crown Castle Project Number:	1963271
Site Data: 14	455 FORBES STREET, EAST HARTF Latitude <i>41° 43' 53.3"</i> , Longitude 130 Foot - Monopole Tower	

Crown Castle is pleased to submit this "**Structural Analysis Report**" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity – 88.5%

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - "Analysis Criteria".

Structural analysis prepared by: Daniel Chen

Respectfully submitted by:

Jamal A. Huwel, P.E. Director Engineering

Digitally signed by Jamal A Huwel Date: 2021.06.16 08:58:14 -04'00'

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) Table 5 - Tower Component Stresses vs. Capacity - LC7 4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 130 ft Monopole tower designed by Valmont.

The tower has been modified multiple times to accommodate additional loading.

2) ANALYSIS CRITERIA

TIA-222 Revision: Risk Category: Wind Speed: Exposure Category:	TIA-222-H II 125 mph C
Exposure Category: Topographic Factor: Ice Thickness:	C 1 2 in 50 mph
Wind Speed with Ice: Seismic Ss: Seismic S1: Service Wind Speed:	0.18 0.064 60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Elovation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	fujitsu	TA08025-B604		
		3	fujitsu	TA08025-B605		
77.0	77.0	3	jma wireless	MX08FRO665-21 w/ Mount Pipe	1	1-3/8
		1	raycap	RDIDC-9181-PF-48		
		1	tower mounts	Commscope MC-PK8-DSH		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model		Feed Line Size (in)	
	121.0	1	tower mounts	Platform Mount [LP 602-1]			
	121.0	1	tower mounts	Side Arm Mount [SO 102-3]			
		3	ericsson	RRUS 32 B30			
		3	ericsson	RRUS 4449 B5/B12			
		3	ericsson	RRUS 4478 B14			
			3	ericsson	RRUS 8843 B2/B66A	2	3/8
121.0		3	ericsson	RRUS E2 B29	8 6	3/4 1-1/4	
	120.0	3	kathrein	800 10121 w/ Mount Pipe			
		3	kathrein	80010798 w/ Mount Pipe			
		6	kathrein	80010965 w/ Mount Pipe			
			powerwave technologies	LGP21401			
			raycap	DC6-48-60-18-8F			
100.0	113.0	3	samsung telecommunications	MT6407-77A w/ Mount Pipe	0	7/0	
109.0	111.0	6	andrew	SBNHH-1D65B w/ Mount Pipe	2	7/8	
	111.0	3	antel	BXA-80063/4CF w/ Mount Pipe			

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)		
		1	raycap	RUSDC-6267-PF-48				
			samsung telecommunications	CBRS w/ Mount Pipe				
	109.0	3	samsung telecommunications	RFV01U-D1A				
		3	samsung telecommunications	RFV01U-D2A				
		1	tower mounts	Site Pro 1 F3P-12[W]				
		1	tower mounts	Site Pro 1 F3P-HRK12	-			
		3	alcatel lucent	800MHz 2X50W RRH W/FILTER				
99.0	99.0 99.0		99.0	3	alcatel lucent	PCS 1900MHz 4x45W-65MHz w/ Mount Pipe	-	-
		1	tower mounts	Side Arm Mount [SO 101-3]				
	103.0	1	andrew	VHLP2-18				
97.0	103.0	1	andrew	VHLP2.5-18	1			
	98.0	3	argus technologies	LLPX310R-V1 w/ Mount Pipe	-			
		3	rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe	-	1-1/4 5/16		
		3	rfs celwave	APXVTM14-ALU-I20 w/ Mount Pipe	4 3 3			
		3	alcatel lucent	TD-RRH8X20-25	3	1/2		
		2	dragonwave	HORIZON COMPACT	-			
	97.0	1	motorola	TIMING 2000	-			
	37.0	3	samsung telecommunications	RRH-2WB				
		1	tower mounts	Platform Mount [LP 713-1]				
		3	ericsson	AIR -32 B2A/B66AA w/ Mount Pipe				
		3	ericsson	ERICSSON AIR 21 B2A B4P w/ Mount Pipe	11	1-1/4		
87.0	87.0	3	ericsson	KRY 112 144/1		1-5/8		
		3	ericsson	RADIO 4449 B12/B71	1	7/8 1-3/8		
		3	rfs celwave	APXVAARR24_43-U-NA20 w/ Mount Pipe				
		1	tower mounts	T-Arm Mount [TA 602-3]	1			

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	262381	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	262389	CCISITES
4-TOWER MANUFACTURER DRAWINGS	262386	CCISITES

Document	Reference	Source
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	7890057	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	6515906	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	5681337	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	3842355	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	3749907	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	3635976	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	3448150	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	3249954	CCISITES
4-POST-MODIFICATION INSPECTION	8418504	CCISITES
4-POST-MODIFICATION INSPECTION	7030743	CCISITES
4-POST-MODIFICATION INSPECTION	5921968	CCISITES
4-POST-MODIFICATION INSPECTION	5099148	CCISITES
4-POST-MODIFICATION INSPECTION	3675451	CCISITES

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

tnxTower was used to determine the loads on the modified structure. Additional calculations were performed to determine the stresses in the pole and in the reinforcing elements. These calculations are included in Appendix C.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fail
130 - 125	Pole	TP11.775x10.525x0.1875	Pole	0.5%	Pass
125 - 120	Pole	TP13.025x11.775x0.1875	Pole	4.6%	Pass
120 - 115	Pole	TP14.275x13.025x0.1875	Pole	26.0%	Pass
115 - 110	Pole	TP15.525x14.275x0.1875	Pole	41.8%	Pass
110 - 105	Pole	TP16.776x15.525x0.25	Pole	48.3%	Pass
105 - 100	Pole	TP18.027x16.776x0.25	Pole	60.6%	Pass
100 - 95	Pole	TP19.277x18.027x0.25	Pole	73.4%	Pass
95 - 90	Pole	TP20.528x19.277x0.25	Pole	84.8%	Pass

Table 4 - Section Capacity (Summary)

Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fail
90 - 89.75	Pole + Reinf.	TP20.591x20.528x0.5	Reinf. 12 Tension Rupture	75.7%	Pass
89.75 - 84.75	Pole + Reinf.	TP21.841x20.591x0.4813	Reinf. 12 Tension Rupture	87.3%	Pass
84.75 - 84.58	Pole + Reinf.	TP21.884x21.841x0.475	Reinf. 12 Tension Rupture	87.7%	Pass
84.58 - 84.33	Pole + Reinf.	TP21.946x21.884x0.6375	Reinf. 12 Tension Rupture	67.8%	Pass
84.33 - 83.42	Pole + Reinf.	TP22.174x21.946x0.625	Reinf. 12 Tension Rupture	69.6%	Pass
83.42 - 83.17	Pole + Reinf.	TP22.237x22.174x0.95	Reinf. 17 Tension Rupture	48.8%	Pass
83.17 - 83	Pole + Reinf.	TP22.279x22.237x0.95	Reinf. 17 Tension Rupture	49.1%	Pass
83 - 82.75	Pole + Reinf.	TP22.342x22.279x0.7	Reinf. 17 Tension Rupture	65.2%	Pass
82.75 - 77.75	Pole + Reinf.	TP23.592x22.342x0.6625	Reinf. 17 Tension Rupture	73.3%	Pass
77.75 - 74	Pole + Reinf.	TP25.531x23.592x0.65	Reinf. 17 Tension Rupture	79.9%	Pass
74 - 69	Pole + Reinf.	TP25.281x24.03x0.7	Reinf. 17 Tension Rupture	82.2%	Pass
69 - 67.08	Pole + Reinf.	TP25.761x25.281x0.6875	Reinf. 17 Tension Rupture	84.8%	Pass
67.08 - 66.83	Pole + Reinf.	TP25.824x25.761x0.6875	Reinf. 17 Tension Rupture	85.1%	Pass
66.83 - 64.08	Pole + Reinf.	TP26.512x25.824x0.675	Reinf. 17 Tension Rupture	88.5%	Pass
64.08 - 63.83	Pole + Reinf.	TP26.574x26.512x0.7375	Reinf. 17 Tension Rupture	85.0%	Pass
63.83 - 62.5	Pole + Reinf.	TP26.907x26.574x0.7375	Reinf. 17 Tension Rupture	86.5%	Pass
62.5 - 62.25	Pole + Reinf.	TP26.969x26.907x0.8625	Reinf. 17 Tension Rupture	71.7%	Pass
62.25 - 57.25	Pole + Reinf.	TP28.22x26.969x0.8375	Reinf. 17 Tension Rupture	76.4%	Pass
57.25 - 53.5	Pole + Reinf.	TP29.158x28.22x0.8125	Reinf. 17 Tension Rupture	79.6%	Pass
53.5 - 53.25	Pole + Reinf.	TP29.22x29.158x0.8375	Reinf. 10 Tension Rupture	78.9%	Pass
53.25 - 52.58	Pole + Reinf.	TP29.388x29.22x0.825	Reinf. 10 Tension Rupture	79.5%	Pass
52.58 - 52.33	Pole + Reinf.	TP29.45x29.388x0.8625	Reinf. 10 Tension Rupture	76.6%	Pass
52.33 - 47.33	Pole + Reinf.	TP30.701x29.45x0.8375	Reinf. 10 Tension Rupture	80.5%	Pass
47.33 - 44.58	Pole + Reinf.	TP31.389x30.701x0.8125	Reinf. 10 Tension Rupture	82.4%	Pass
44.58 - 44.33	Pole + Reinf.	TP31.451x31.389x0.8125	Reinf. 10 Tension Rupture	82.6%	Pass
44.33 - 41.92	Pole + Reinf.	TP32.054x31.451x0.8	Reinf. 10 Tension Rupture	84.3%	Pass
41.92 - 41.67	Pole + Reinf.	TP32.117x32.054x0.8125	Reinf. 9 Tension Rupture	75.1%	Pass
41.67 - 39	Pole + Reinf.	TP34.015x32.117x0.7875	Reinf. 9 Tension Rupture	76.6%	Pass
39 - 34	Pole + Reinf.	TP33.408x32.159x0.8188	Reinf. 9 Tension Rupture	78.3%	Pass
34 - 29	Pole + Reinf.	TP34.657x33.408x0.7938	Reinf. 9 Tension Rupture	80.6%	Pass
29 - 26.92	Pole + Reinf.	TP35.177x34.657x0.7938	Reinf. 9 Tension Rupture	81.5%	Pass
26.92 - 26.67	Pole + Reinf.	TP35.239x35.177x0.8938	Reinf. 7 Tension Rupture	76.3%	Pass
26.67 - 21.67	Pole + Reinf.	TP36.488x35.239x0.8688	Reinf. 7 Tension Rupture	78.4%	Pass
21.67 - 18	Pole + Reinf.	TP37.404x36.488x0.8563	Reinf. 7 Tension Rupture	79.8%	Pass
18 - 17.75	Pole + Reinf.	TP37.467x37.404x0.9938	Reinf. 16 Tension Rupture	67.1%	Pass
17.75 - 17.5	Pole + Reinf.	TP37.529x37.467x0.9938	Reinf. 16 Tension Rupture	67.2%	Pass
17.5 - 17.25	Pole + Reinf.	TP37.592x37.529x0.9938	Reinf. 15 Tension Rupture	67.3%	Pass
17.25 - 17.08	Pole + Reinf.	TP37.634x37.592x0.9938	Reinf. 15 Tension Rupture	67.3%	Pass
17.08 - 16.83	Pole + Reinf.	TP37.697x37.634x0.8938	Reinf. 15 Tension Rupture	73.5%	Pass
16.83 - 13	Pole + Reinf.	TP38.653x37.697x0.8813	Reinf. 15 Tension Rupture	74.8%	Pass
13 - 12.75	Pole + Reinf.	TP38.716x38.653x1.0563	Reinf. 5 Tension Rupture	63.5%	Pass
12.75 - 11.92	Pole + Reinf.	TP38.923x38.716x1.0438	Reinf. 5 Tension Rupture	63.8%	Pass
11.92 - 11.67	Pole + Reinf.	TP38.985x38.923x0.8188	Reinf. 15 Tension Rupture	81.7%	Pass
11.67 - 6.67	Pole + Reinf.	TP40.234x38.985x0.7938	Reinf. 15 Tension Rupture	83.3%	Pass

Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fail
6.67 - 6.5	Pole + Reinf.	TP40.277x40.234x0.7938	Reinf. 15 Tension Rupture	83.4%	Pass
6.5 - 6.25	Pole + Reinf.	TP40.339x40.277x0.9188	Reinf. 5 Tension Rupture	77.9%	Pass
6.25 - 3.75	Pole + Reinf.	TP40.963x40.339x0.9063	Reinf. 5 Tension Rupture	78.6%	Pass
3.75 - 3.5	Pole + Reinf.	TP41.026x40.963x1.0063	Reinf. 14 Tension Rupture	68.1%	Pass
3.5 - 3	Pole + Reinf.	TP41.151x41.026x0.9938	Reinf. 14 Tension Rupture	68.3%	Pass
3 - 2.75	Pole + Reinf.	TP41.213x41.151x0.9938	Reinf. 15 Tension Rupture 73.29		Pass
2.75 - 0	Pole + Reinf.	TP41.9x41.213x1.0188	Reinf. 4 Weldment	86.8%	Pass
				Summary	
			Pole	84.8%	Pass
			Reinforcement	88.5%	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	84.7	Pass
1	Base Plate	0	57.1	Pass
1	Base Foundation (Structure)	0	62.2	Pass
1	Base Foundation (Soil Interaction)	0	72.7	Pass
1	Flange Bolts	110	38.4	Pass
1	Flange Plate	110	20.6	Pass

Structure Rating (max from all components) =	88.5%

Notes:

1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

	MATERIAL STRENGTH										
GRADE	Fy	Fu	GRADE	Fy	Fu						
A572-65	65 ksi	80 ksi									

TOWER DESIGN NOTES

- 1. Tower designed for Exposure C to the TIA-222-H Standard.
- Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard. 2.
- 3. Tower is also designed for a 50 mph basic wind with 2.00 in ice. Ice is considered to increase in thickness with height.
- 4. Deflections are based upon a 60 mph wind.
- Tower Risk Category II. 5.
- Topographic Category 1 with Crest Height of 0.0000 ft
 TOWER RATING: 88.5%

ALL REACTIONS

ARE FACTORED

AXIAL

116 K

TORQUE 1 kip-ft

AXIAL

58 K

TORQUE 2 kip-ft

MOMENT

MOMENT

3540 kip-ft

🖌 944 kip-ft

CROWN	Crown Castle	^{Job:} B	U# 806376			
CROWN		Project		1		
CASILE	Canonsburg, PA 15317	Client:	Crown Castle	^{Drawn by:} Daniel Chen	App'd:	
The Pathway to Possible	Phone: (724) 416-2000	Code:	TIA-222-H	Date: 06/15/21	Scale:	NTS
		Path: c	:\Users\dchen\Documents\Work Area - E	Chen\806376\WO 1963271 - SA\Prod\806376 Mod.er	Dwg No	^{э.} E-1

Tower Input Data

The tower is a monopole. This tower is designed using the TIA-222-H standard. The following design criteria apply:

- Tower base elevation above sea level: 41.0000 ft.
- Basic wind speed of 125 mph.
- Risk Category II.
- Exposure Category C.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.0000 ft.
- Nominal ice thickness of 2.0000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56.00 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60 mph.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: K_{es}(F_w) = 0.95, K_{es}(t_i) = 0.85.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

$\sqrt{1}$	Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity	$\begin{array}{c} \checkmark \checkmark \\ \checkmark \checkmark \checkmark \\ \checkmark \checkmark \checkmark \end{array}$	Distribute Leg Loads As Uniform Assume Legs Pinned Assume Rigid Index Plate Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension Bypass Mast Stability Checks Use Azimuth Dish Coefficients Project Wind Area of Appurt. Autocalc Torque Arm Areas	\checkmark	Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice
	Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric	\checkmark	Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs	\checkmark	Exemption Poles Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	130.0000-	5.0000	0.00	12	10.5250	11.7750	0.1875	0.7500	A572-65
L2	125.0000 125.0000-	5.0000	0.00	12	11.7750	13.0250	0.1875	0.7500	(65 ksi) A572-65
L3	120.0000 120.0000-	5.0000	0.00	12	13.0250	14.2750	0.1875	0.7500	(65 ksi) A572-65
	115.0000								(65 ksi)
L4	115.0000- 110.0000	5.0000	0.00	12	14.2750	15.5250	0.1875	0.7500	A572-65 (65 ksi)
L5	110.0000- 105.0000	5.0000	0.00	12	15.5250	16.7757	0.2500	1.0000	A572-65 (65 ksi)
L6	105.0000-	5.0000	0.00	12	16.7757	18.0265	0.2500	1.0000	A572-65
L7	100.0000 100.0000-	5.0000	0.00	12	18.0265	19.2772	0.2500	1.0000	(65 ksi) A572-65
L8	95.0000 95.0000-	5.0000	0.00	12	19.2772	20.5280	0.2500	1.0000	(65 ksi) A572-65
	90.0000								(65 ksi)
L9	90.0000- 89.7500	0.2500	0.00	12	20.5280	20.5905	0.5000	2.0000	A572-65 (65 ksi)
L10	89.7500- 84.7500	5.0000	0.00	12	20.5905	21.8413	0.4813	1.9250	A572-65 (65 ksi)
L11	84.7500-	0.1700	0.00	12	21.8413	21.8838	0.4750	1.9000	À572-65
L12	84.5800 84.5800-	0.2500	0.00	12	21.8838	21.9464	0.6375	2.5500	(65 ksi) A572-65
L13	84.3300 84.3300-	0.9100	0.00	12	21.9464	22.1740	0.6250	2.5000	(65 ksi) A572-65
	83.4200 83.4200-	0.2500	0.00		22.1740	22.2365	0.9500	3.8000	(65 ksi) A572-65
L14	83.1700			12					(65 ksi)
L15	83.1700- 83.0000	0.1700	0.00	12	22.2365	22.2791	0.9500	3.8000	A572-65 (65 ksi)
L16	83.0000-	0.2500	0.00	12	22.2791	22.3416	0.7000	2.8000	A572-65
L17	82.7500 82.7500-	5.0000	0.00	12	22.3416	23.5923	0.6625	2.6500	(65 ksi) A572-65
L18	77.7500 77.7500-	7.7500	4.00	12	23.5923	25.5310	0.6500	2.6000	(65 ksi) A572-65
L19	70.0000 70.0000-	5.0000	0.00	12	24.0304	25.2810	0.7000	2.8000	(65 ksi) A572-65
	69.0000								(65 ksi)
L20	69.0000- 67.0800	1.9200	0.00	12	25.2810	25.7612	0.6875	2.7500	A572-65 (65 ksi)
L21	67.0800- 66.8300	0.2500	0.00	12	25.7612	25.8237	0.6875	2.7500	A572-65 (65 ksi)
L22	66.8300- 64.0800	2.7500	0.00	12	25.8237	26.5115	0.6750	2.7000	A572-65 (65 ksi)
L23	64.0800-	0.2500	0.00	12	26.5115	26.5741	0.7375	2.9500	À572-65
L24	63.8300 63.8300-	1.3300	0.00	12	26.5741	26.9067	0.7375	2.9500	(65 ksi) A572-65
L25	62.5000 62.5000-	0.2500	0.00	12	26.9067	26.9693	0.8625	3.4500	(65 ksi) A572-65
	62.2500								(65 ksi)
L26	62.2500- 57.2500	5.0000	0.00	12	26.9693	28.2198	0.8375	3.3500	A572-65 (65 ksi)
L27	57.2500- 53.5000	3.7500	0.00	12	28.2198	29.1578	0.8125	3.2500	A572-65 (65 ksi)
L28	53.5000-	0.2500	0.00	12	29.1578	29.2203	0.8375	3.3500	À572-65
L29	53.2500 53.2500-	0.6700	0.00	12	29.2203	29.3879	0.8250	3.3000	(65 ksi) A572-65
L30	52.5800 52.5800-	0.2500	0.00	12	29.3879	29.4504	0.8625	3.4500	(65 ksi) A572-65
L31	52.3300 52.3300-	5.0000	0.00	12	29.4504	30.7010	0.8375	3.3500	(65 ksi) A572-65
	47.3300								(65 ksi)
L32	47.3300- 44.5800	2.7500	0.00	12	30.7010	31.3888	0.8125	3.2500	A572-65 (65 ksi)
L33	44.5800-	0.2500	0.00	12	31.3888	31.4513	0.8125	3.2500	A572-65
L34	44.3300 44.3300-	2.4100	0.00	12	31.4513	32.0541	0.8000	3.2000	(65 ksi) A572-65
	41.9200 41.9200-	0.2500	0.00	12	32.0541	32.1166	0.8125	3.2500	(65 ksi) A572-65

tnxTower Report - version 8.1.1.0

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
	41.6700								(65 ksi)
L36	41.6700	7.5900	4.92	12	32.1166	34.0150	0.7875	3.1500	A572-65
200	34.0800	1.0000	4.52	12	02.1100	04.0100	0.1010	0.1000	(65 ksi)
L37	34.0800-	5.0000	0.00	12	32.1594	33.4082	0.8187	3.2750	A572-65
L37	34.0000	5.0000	0.00	12	52.1554	33.4002	0.0107	5.2750	(65 ksi)
L38	34.0000	5.0000	0.00	12	33.4082	34.6570	0.7937	3.1750	
L30	29,0000	5.0000	0.00	12	33.4002	34.0370	0.7937	3.1750	A572-65
1.00		0.0000	0.00	10	04 0570	05 4705	0 7007	0 4750	(65 ksi)
L39	29.0000-	2.0800	0.00	12	34.6570	35.1765	0.7937	3.1750	A572-65
1.40	26.9200	0.0500	0.00	10	05 4705	05 0000	0.0000	0.5750	(65 ksi)
L40	26.9200-	0.2500	0.00	12	35.1765	35.2390	0.8938	3.5750	A572-65
	26.6700					~~ ~~~~			(65 ksi)
L41	26.6700-	5.0000	0.00	12	35.2390	36.4877	0.8688	3.4750	A572-65
	21.6700				~~ ~~~				(65 ksi)
L42	21.6700-	3.6700	0.00	12	36.4877	37.4044	0.8562	3.4250	A572-65
	18.0000								(65 ksi)
L43	18.0000-	0.2500	0.00	12	37.4044	37.4668	0.9938	3.9750	A572-65
	17.7500								(65 ksi)
L44	17.7500-	0.2500	0.00	12	37.4668	37.5292	0.9938	3.9750	A572-65
	17.5000								(65 ksi)
L45	17.5000-	0.2500	0.00	12	37.5292	37.5917	0.9938	3.9750	A572-65
	17.2500								(65 ksi)
L46	17.2500-	0.1700	0.00	12	37.5917	37.6341	0.9938	3.9750	A572-65
	17.0800								(65 ksi)
L47	17.0800-	0.2500	0.00	12	37.6341	37.6966	0.8938	3.5750	A572-65
	16.8300								(65 ksi)
L48	16.8300-	3.8300	0.00	12	37.6966	38.6531	0.8812	3.5250	À572-65
	13.0000								(65 ksi)
L49	13.0000-	0.2500	0.00	12	38.6531	38.7156	1.0562	4.2250	À572-65
	12.7500								(65 ksi)
L50	12,7500-	0.8300	0.00	12	38.7156	38.9229	1.0438	4.1750	A572-65
	11.9200								(65 ksi)
L51	11,9200-	0.2500	0.00	12	38.9229	38.9853	0.8187	3.2750	A572-65
	11.6700								(65 ksi)
L52	11.6700-	5.0000	0.00	12	38.9853	40.2341	0.7937	3.1750	A572-65
LUL	6.6700	0.0000	0.00	12	00.0000	10.2011	0.1001	0.1700	(65 ksi)
L53	6.6700-6.5000	0.1700	0.00	12	40.2341	40.2766	0.7937	3.1750	A572-65
LUU	0.0700 0.0000	0.1700	0.00	12	40.2041	40.2700	0.7507	0.1700	(65 ksi)
L54	6,5000-6,2500	0.2500	0.00	12	40,2766	40,3390	0.9187	3,6750	A572-65
LJ4	0.000-0.2000	0.2300	0.00	12	40.2700	40.3330	0.9107	5.0750	(65 ksi)
L55	6 2500 2 7500	2.5000	0.00	12	40.3390	40.0624	0.9063	3.6250	
L00	6.2500-3.7500	2.5000	0.00	12	40.3390	40.9634	0.9003	3.0250	A572-65
1.50	2 7500 2 5000	0.0500	0.00	10	40.0004	44.0050	4 0000	4 0050	(65 ksi)
L56	3.7500-3.5000	0.2500	0.00	12	40.9634	41.0258	1.0063	4.0250	A572-65
1.57	0 5000 0 0000	0 5000	0.00	10	44.0050	44 4507	0.0000	0.0750	(65 ksi)
L57	3.5000-3.0000	0.5000	0.00	12	41.0258	41.1507	0.9938	3.9750	A572-65
	0 0000 0 7500	0.0500	0.00	40	44 4505	44 0 100	0.0000	0.0750	(65 ksi)
L58	3.0000-2.7500	0.2500	0.00	12	41.1507	41.2132	0.9938	3.9750	A572-65
									(65 ksi)
L59	2.7500-0.0000	2.7500		12	41.2132	41.9000	1.0188	4.0750	A572-65
									(65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	1	r	С	I/C	J	lt/Q	w	w/t
	in	in²	in⁴	in	in	in³	in⁴	in²	in	
L1	10.8301	6.2413	85.1314	3.7008	5.4520	15.6148	172.4993	3.0718	2.3182	12.364
	12.1242	6.9960	119.8981	4.1483	6.0995	19.6572	242.9461	3.4432	2.6532	14.15
L2	12.1242	6.9960	119.8981	4.1483	6.0995	19.6572	242.9461	3.4432	2.6532	14.15
	13.4183	7.7506	163.0364	4.5958	6.7470	24.1645	330.3559	3.8146	2,9882	15.937
L3	13.4183	7.7506	163.0364	4.5958	6.7470	24.1645	330.3559	3.8146	2,9882	15.937
	14.7124	8.5053	215.4492	5.0433	7.3945	29.1366	436.5585	4.1861	3.3232	17.724
L4	14.7124	8.5053	215.4492	5.0433	7.3945	29,1366	436.5585	4.1861	3.3232	17.724
	16.0065	9.2600	278.0397	5.4908	8.0419	34.5737	563.3838	4.5575	3.6582	19.51
L5	15.9845	12.2964	366.2060	5.4684	8.0419	45.5370	742.0327	6.0519	3.4907	13.963
	17.2793	13.3032	463.7302	5.9162	8.6898	53.3646	939.6431	6.5474	3.8259	15.304
L6	17.2793	13.3032	463.7302	5.9162	8.6898	53.3646	939.6431	6.5474	3.8259	15.304

tnxTower Report - version 8.1.1.0

Section	Tip Dia.	Area	1	r	С	I/C	J	lt/Q	W	w/t
	in 10 5740	in ²	in ⁴	in	in 0.0077	in ³	in ⁴	$\frac{in^2}{7.0420}$	in	40.044
. –	18.5742	14.3101	577.1924	6.3640	9.3377	61.8129	1169.5483	7.0430	4.1611	16.644
L7	18.5742 19.8691	14.3101 15.3169	577.1924 707.7989	6.3640 6.8118	9.3377 9.9856	61.8129 70.8819	1169.5483 1434.1925	7.0430 7.5385	4.1611 4.4963	16.644 17.985
L8	19.8691	15.3169	707.7989	6.8118	9.9856	70.8819	1434.1925	7.5385	4.4963	17.985
LO	21.1640	16.3238	856.7561	7.2595	10.6335	80.5714	1736.0201	8.0341	4.4903	19.326
L9	21.0758	32.2451	1650.9145	7.1700	10.6335	155.2559	3345.2003	15.8700	4.1615	8.323
20	21.1405	32.3458	1666.4278	7.1924	10.6659	156.2389	3376.6345	15.9196	4.1783	8.357
L10	21.1471	31.1619	1608.4317	7.1991	10.6659	150.8013	3259.1186	15.3369	4.2285	8,787
	22.4420	33.1000	1927.6075	7.6469	11.3138	170.3769	3905.8553	16.2908	4.5637	9.483
L11	22.4442	32.6797	1904.2442	7.6491	11.3138	168.3118	3858.5150	16.0840	4.5805	9.643
	22.4882	32.7448	1915.6369	7.6644	11.3358	168.9898	3881.5997	16.1160	4.5919	9.667
L12	22.4309	43.6134	2512.8857	7.6062	11.3358	221.6767	5091.7877	21.4652	4.1564	6.52
L13	22.4956 22.5001	43.7417 42.9092	2535.1408 2489.8086	7.6286 7.6330	11.3682 11.3682	223.0026 219.0150	5136.8825 5045.0273	21.5284 21.1186	4.1731 4.2066	6.546 6.731
LIJ	22.3001	42.9092	2489.8080	7.7145	11.4861	223.7839	5208.3477	21.3441	4.2000	6.828
L14	22.6211	64.9242	3732.8999	7.5982	11.4861	324.9921	7563.8672	31.9537	3.3966	3.575
	22.6858	65.1155	3765,9947	7.6206	11,5185	326.9513	7630,9263	32,0479	3.4134	3.593
L15	22.6858	65.1155	3765.9947	7.6206	11.5185	326.9513	7630.9263	32.0479	3.4134	3.593
	22.7298	65.2456	3788.6105	7.6358	11.5405	328.2869	7676.7521	32.1119	3.4248	3.605
L16	22.8180	48.6392	2890.9250	7.7253	11.5405	250.5015	5857.7978	23.9387	4.0948	5.85
	22.8828	48.7801	2916.1322	7.7477	11.5729	251.9785	5908.8744	24.0081	4.1115	5.874
L17	22.8960	46.2469	2774.2826	7.7611	11.5729	239.7215	5621.4487	22.7613	4.2120	6.358
1.40	24.1909	48.9151	3282.6958	8.2089	12.2208	268.6148	6651.6316	24.0745	4.5472	6.864
L18	24.1953 26.2023	48.0183 52.0759	3226.0283 4114.8942	8.2134 8.9074	12.2208 13.2251	263.9778 311.1438	6536.8079 8337.8912	23.6332 25.6302	4.5807 5.1003	7.047 7.847
L19	25.6669	52.5867	3653.4773	8.3523	12.4477	293.5051	7402.9356	25.8816	4.5641	6.52
LIJ	25.9259	55.4055	4273.0428	8.8000	13.0955	326.2974	8658.3431	27.2689	4.8993	6.999
L20	25.9303	54.4438	4203.1441	8.8045	13.0955	320.9598	8516,7095	26,7956	4.9328	7.175
	26.4274	55.5069	4454.1995	8.9764	13.3443	333.7904	9025.4158	27.3188	5.0615	7.362
L21	26.4274	55.5069	4454.1995	8.9764	13.3443	333.7904	9025.4158	27.3188	5.0615	7.362
	26.4922	55.6453	4487.6063	8.9988	13.3767	335.4796	9093.1071	27.3869	5.0783	7.387
L22	26.4966	54.6608	4412.5900	9.0032	13.3767	329.8716	8941.1036	26.9024	5.1118	7.573
L23	27.2087 27.1866	56.1557 61.2069	4784.6350 5189.8105	9.2495 9.2271	13.7330 13.7330	348.4047 377.9086	9694.9676 10515.963	27.6381 30.1242	5.2961 5.1286	7.846 6.954
LZJ	27.1000	01.2009	5169.6105	9.2271	13.7330	377.9000	0	30.1242	5.1200	0.954
	27.2513	61.3554	5227.6742	9.2495	13.7654	379.7700	10592.685	30.1973	5.1454	6.977
							2			
L24	27.2513	61.3554	5227.6742	9.2495	13.7654	379.7700	10592.685	30.1973	5.1454	6.977
							2			
	27.5957	62.1454	5432.2086	9.3686	13.9377	389.7497	11007.127	30.5861	5.2345	7.098
L25	07 EE16	72.3313	6262 2100	0 2220	13.9377	449.3085	3 12689.157	35.5993	4 9005	5.681
LZO	27.5516	12.0010	6262.3199	9.3238	13.9377	449.3065	12009.157 9	30.0993	4.8995	5.001
	27.6164	72.5050	6307.5333	9.3462	13.9701	451.5032	12780.772	35.6847	4.9163	5.7
	2110101	/ 210000	000710000	010102		10110002	6	0010011	10100	011
L26	27.6252	70.4708	6142.3183	9.3552	13.9701	439.6769	12446.002	34.6836	4.9833	5.95
							2			
	28.9199	73.8433	7067.0448	9.8029	14.6179	483.4524	14319.748	36.3434	5.3184	6.35
1.07	00 0007	74 7044	0074 0044	0.0440	44.0470	470 0000	7	05 0007	5 0054	0.000
L27	28.9287	71.7044	6874.8841	9.8118	14.6179	470.3068	13930.379	35.2907	5.3854	6.628
	29,8997	74,1583	7605.1298	10.1476	15.1037	503.5269	15410.054	36.4985	5.6368	6.938
	23.0331	74.1505	1003.1230	10.1470	10.1007	303.3203	8	30.4303	5.0000	0.350
L28	29.8909	76.3727	7818,4101	10.1387	15.1037	517.6480	15842.218	37,5883	5.5698	6.65
							6			
	29.9556	76.5413	7870.3118	10.1610	15.1361	519.9692	15947.385	37.6713	5.5865	6.67
							4			
L29	29.9600	75.4321	7763.0922	10.1655	15.1361	512.8855	15730.129	37.1254	5.6200	6.812
	00 4005	75 0770	7004 0405	40.0055	45 0000	540 0400	4	07.0445	5 00 10	0.007
	30.1335	75.8773	7901.3485	10.2255	15.2229	519.0430	16010.274	37.3445	5.6649	6.867
L30	30.1203	79 <u>.</u> 2221	8228.0080	10.2121	15.2229	540.5014	3 16672.174	38.9907	5.5644	6.452
LUU	30.1203	13.2221	0220.0000	10.2121	10.2223	340.3014	9	30.3307	3.3044	0.402
	30.1850	79.3957	8282.2351	10.2345	15.2553	542.9085	16782.053	39.0762	5.5812	6.471
							7			
L31	30.1939	77.1618	8063.2873	10.2434	15.2553	528.5563	16338.406	37.9767	5.6482	6.744
		ac =: ···					1			
	31.4885	80.5343	9167.4296	10.6911	15.9031	576.4554	18575.697	39.6365	5.9834	7.144
L32	31.4974	78.1957	8916.1298	10.7001	15.9031	560.6534	9 18066.496	38.4856	6.0504	7.447
LJZ	51.4914	10.1907	0910.1290	10.7001	10.9031	300.0334	10000.490	50.4000	0.0304	1.441

Section	Tip Dia. in	Area in²	I in⁴	r in	C in	I/C in³	J in⁴	lt/Q in²	w in	w/t
	32.2094	79.9952	9545.9589	10.9463	16.2594	587.1043	3 19342.700	39.3712	6.2347	7.673
L33	32.2094	79.9952	9545.9589	10.9463	16 <u>.</u> 2594	587.1043	8 19342.700	39.3712	6.2347	7.673
	32.2742	80.1588	9604.6435	10.9687	16.2918	589.5391	o 19461.611	39.4517	6.2515	7.694
L34	32.2786	78.9578	9468.4591	10.9732	16.2918	581.1800	7 19185.665	38.8606	6.2850	7.856
	32.9026	80.5106	10038.126	11.1890	16.6040	604.5599	2033 <u>9</u> .965	39.6248	6.4465	8.058
L35	32.8982	81.7358	4 10182.744	11.1845	16.6040	613.2698	20633.001	40.2279	6.4130	7.893
	32.9630	81.8994	10244.008	11.2069	16.6364	615.7583	20757.137	40.3084	6.4298	7.914
L36	32.9718	79.4428	2 9952.6148	11.2158	16.6364	598.2429	20166.696	39.0993	6.4968	8.25
	34.9371	84.2566	11873.681	11.8954	17.6198	673.8840	24059.297	41.4686	7.0055	8.896
L37	34.2772	82.6258	10359.016	11.2200	16.6586	621.8424	20990.175	40.6659	6.4245	7.847
	34.2979	85.9181	1 11647.297	11.6670	17.3055	673.0418	1 23600.582	42.2863	6.7592	8.255
L38	34.3067	83.3585	/ 11317.661	11.6760	17.3055	653.9937	9 2293 <u>2</u> .649	41.0265	6.8262	8.6
	35.5996	86.5503	1 1266 <u>8</u> .115	12.1230	17.9523	705.6529	7 25669.037	42.5974	7.1608	9.022
L39	35.5996	86.5503	7 1266 <u>8</u> .115	12.1230	17.9523	705.6529	25669.037	42.5974	7.1608	9.022
	36.1374	87.8780	7 13260.131	12.3090	18.2214	727.7216	26868.620	43.2509	7.3001	9.197
L40	36.1021	98.6615	0 14800.802	12.2732	18.2214	812.2743	4 29990.438	48.5582	7.0321	7.868
	36.1668	98.8412	3 14881.820	12.2956	18.2538	815.2735	30154.602	48.6466	7.0488	7.887
L41	36.1756	96.1463	3 14497.157	12.3045	18.2538	794.2004	5 29375.170	47.3203	7.1158	8.191
	37.4684	99.6397	1 16135.465	12.7516	18.9007	853.6990	7 32694.827	49.0396	7.4505	8.576
L42	37.4728	98.2405	3 15920.049	12.7561	18.9007	842.3017	1 32258.336	48.3510	7.4840	8.74
	38.4218	100.7677	3 17180.545	13.0842	19.3755	886.7170	0 34812.443	49.5948	7.7296	9.027
L43	38.3733	116.5094	6 19715.264	13.0350	19.3755	1017.5381	4 39948.470	57.3424	7.3611	7.407
	38.4379	116.7092	3 19816.865	13.0573	19.4078	1021.0774	6 40154.342	57.4407	7.3779	7.424
L44	38.4379	116.7092	8 19816.865	13.0573	19.4078	1021.0774	8 40154.342	57.4407	7.3779	7.424
	38.5026	116 <u>.</u> 9090	8 19918 <u>.</u> 815	13.0797	19.4401	1024.6229	8 40360 <u>.</u> 921	57.5390	7.3946	7 <u>.</u> 441
L45	38.5026	116.9090	8 19918.815	13.0797	19.4401	1024.6229	0 40360 <u>.</u> 921	57.5390	7.3946	7 <u>.</u> 441
	38.5672	117.1088	8 20021.114	13.1021	19.4725	1028.1746	0 40568.206	57.6374	7.4113	7.458
L46	38.5672	117 <u>.</u> 1088	8 20021.114	13.1021	19.4725	1028.1746	6 40568.206	57.6374	7.4113	7.458
	38.6112	117.2446	8 20090.877	13.1173	19.4945	1030.5932	6 4070 <u>9</u> .565	57.7042	7.4227	7.469
L47	38.6464	105.7342	9 18217.503	13.1531	19.4945	934.4955	5 36913.600	52.0392	7.6907	8.605
	38.7111	105.9139	0 18310.541	13.1754	19.5268	937.7123	2 37102.121	52.1276	7.7074	8.624
L48	38.7155	104.4681	8 18072.853	13.1799	19.5268	925.5398	9 36620.500	51.4160	7.7409	8.784
	39.7058	107.1825	_	13.5223	20.0223	974.8385	0 3954 <u>9.</u> 846	52.7520	7.9973	9.075
L49	39.6441	127.8717	5 23070.895	13.4597	20.0223	1152.2584	7 46747 <u>.</u> 890	62.9346	7.5283	7.127
	39.7087	128.0841	9 23186.032	13.4820	20.0547	1156.1412	0 46981.188	63.0391	7.5450	7.143

Section	Tip Dia.	Area	I	r	С	I/C	J	lt/Q	w	w/t
	in	in²	in⁴8	in	in	in³	in⁴5	in ²	in	
L50	39.7131	126.6103	o 22934.464 2	13.4865	20.0547	1143.5970	46471.442 2	62.3138	7.5785	7.261
	39.9277	127.3070	23315.160 3	13.5607	20.1621	1156.3882	47242.835	62.6566	7.6341	7.314
L51	40.0071	100.4568	18616.986 9	13.6413	20.1621	923.3676	37723.062 7	49.4418	8.2371	10.06
	40.0718	100.6214	18708.657 4	13.6636	20.1944	926.4281	37908.812 0	49.5228	8.2538	10.08 ⁻
L52	40.0806	97.6129	18173.065 3	13.6726	20.1944	899.9063	36823.557 2	48.0421	8.3208	10.483
	41.3734	100.8046	20014.662 9	14.1197	20.8413	960.3379	40555.133 3	49.6130	8.6555	10.905
L53	41.3734	100.8046	20014.662 9	14.1197	20.8413	960.3379	40555.133 3	49.6130	8.6555	10.90
	41.4174	100.9132	20079.371 9	14.1349	20.8633	962.4271	40686.251 3	49.6664	8.6669	10.91
L54	41.3733	116.4352	9	14.0901	20.8633		46647.664 5	57.3059	8.3319	9.069
	41.4379	116.6199	23131.174 4	14.1125	20.8956		46870.030 6	57.3968	8.3486	9.087
L55	41.4423	115.0697	22838.176 5	14.1169	20.8956	1092.9654	3	56.6338	8.3821	9.249
	42.0887	116.8918	23940.334 3	14.3405	21.2190		48509.607 8	57.5306	8.5494	9.434
L56	42.0535	129.4662	26383.442 2	14.3047	21.2190		53460.006 8	63.7193	8.2814	8.23
	42.1181	129.6685	26507.320 8	14.3270	21.2514		53711.018	63.8189	8.2982	8.247
L57	42.1225	128.0977	26202.574 8	14.3315	21.2514		53093.520 5	63.0458	8.3317	8.384
. 50	42.2518	128.4973	26448.555 3	14.3762	21.3161		53591.943 6	63.2425	8.3651	8.418
L58	42.2518	128.4973	26448.555 3	14.3762	21.3161		53591.943 6	63.2425	8.3651	8.418
. 50	42.3165	128.6971	26572.120 7	14.3986	21.3484		53842.320	63.3408	8.3819	8.435
L59	42.3076	131.8528	27189.835 8	14.3896	21.3484		55093.978 9	64.8939	8.3149	8.162
	43.0187	134.1058	28607.634 1	14.6355	21.7042	1318.0690	57966.822 7	66.0028	8.4990	8.343

Tower	Gusset	Gusset	Gusset Grade Adjust. Factor	Adjust.	Weight Mult.		Double Angle	
Elevation	Area	Thickness	A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)			A_r		Spacing	Spacing	Spacing
	e 2	<i>i</i>				Diagonals	Horizontals	Redundants
ft	ft ²	in				in	in	in
L1 130.0000-			1	1	1			
125.0000								
L2 125.0000-			1	1	1			
120.0000								
L3 120.0000-			1	1	1			
115.0000								
L4 115.0000-			1	1	1			
110.0000								
L5 110.0000-			1	1	1			
105.0000								
L6 105.0000-			1	1	1			
100.0000								
L7 100.0000-			1	1	1			
95.0000								
L8 95.0000-			1	1	1			
90.0000								
L9 90.0000-			1	1	0.924185			
89.7500								
L10 89.7500-			1	1	0.933544			
84.7500								
L11 84.7500-			1	1	0.944718			
84.5800								

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset	Grade Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft L12 84.5800-	ft²	in		1	1	0.914408	in	in	in
84.3300 L13 84.3300-				1	1	0.926528			
83.4200									
L14 83.4200- 83.1700				1	1	0.877374			
L15 83 1700- 83 0000				1	1	0.876149			
L16 83.0000-				1	1	0.895771			
82.7500 L17 82.7500-				1	1	0.913883			
77.7500 L18 77.7500-				1	1	0.90949			
70.0000 L19 70.0000-				1	1	0.921147			
69.0000 L20 69.0000-				1	1	0.92817			
67.0800									
L21 67.0800- 66.8300				1	1	0.926992			
L22 66 8300- 64 0800				1	1	0.930891			
L23 64.0800- 63.8300				1	1	0.999923			
L24 63.8300-				1	1	0.992599			
62.5000 L25 62.5000-				1	1	0.913797			
62.2500 L26 62.2500-				1	1	0.914277			
57.2500 L27 57.2500-				1	1	0.92312			
53.5000									
L28 53.5000- 53.2500				1	1	0.934453			
L29 53 2500- 52 5800				1	1	0.944853			
L30 52 5800- 52 3300				1	1	0.917963			
L31 52.3300-				1	1	0.920611			
47.3300 L32 47.3300-				1	1	0.935467			
44.5800 L33 44.5800-				1	1	0.934343			
44.3300 L34 44.3300-				1	1	0.937794			
41.9200 L35 41.9200-				1	1	0.941001			
41.6700									
L36 41.6700- 34.0800				1	1	0.958134			
L37 34.0800- 34.0000				1	1	0.950472			
L38 34.0000-				1	1	0.9595			
29.0000 L39 29.0000-				1	1	0.951546			
26.9200 L40 26.9200-				1	1	0.968284			
26.6700 L41 26.6700-				1	1	0.974397			
21.6700									
L42 21.6700- 18.0000				1	1	0.973558			
L43 18 0000- 17 7500				1	1	0.947355			
L44 17 7500- 17 5000				1	1	0.946327			
L45 17 5000-				1	1	0.945303			

Tower Elevation	Gusset Area	Gusset Thickness	Gusset Grade Adjust. Factor A _f	Adjust. Factor	Weight Mult.	Double Angle Stitch Bolt	Double Angle Stitch Bolt	Double Angle Stitch Bolt
	(per face)		2.1	Ar		Spacing	Spacing	Spacing
	u /					Diagonals	Horizontals	Redundants
ft	ft²	in				in	in	in
17.2500								
L46 17.2500-			1	1	0.944608			
17.0800								
L47 17.0800-			1	1	0.961219			
16.8300								
L48 16.8300-			1	1	0.959721			
13.0000								
L49 13.0000-			1	1	0.944381			
12.7500								
L50 12.7500-			1	1	0.951948			
11.9200								
L51 11.9200-			1	1	1.02595			
11.6700								
L52 11.6700-			1	1	1.0378			
6.6700								
L53 6.6700-			1	1	1.03715			
6.5000								
L54 6.5000-			1	1	0.967827			
6.2500								
L55 6.2500-			1	1	0.971489			
3.7500								
L56 3.7500-			1	1	0.93422			
3.5000								
L57 3.5000-			1	1	0.943811			
3.0000								
L58 3.0000-			1	1	0.91273			
2.7500								
L59 2.7500-			1	1	0.881587			
0.0000								

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude	Componen	Placement	Total	Number	Start/En	Width or	Perimete	Weight
		From	t		Number	Per Row	d	Diamete	r	
		Torque	Type	ft			Position	r		plf
		Calculation						in	in	
CU12PSM9P8XXX(1- 3/8)	В	No	Surface Ar (CaAa)	77.0000 - 0.0000	1	1	0.000 0.020	1.4110		1.66
	_									
2" Flexible Conduit	В	No	Surface Ar (CaAa)	121.0000 - 0.0000	4	4	-0.200 -0.100	2.0000		0.34
LDF6-50A(1-1/4)	В	No	Surface Ar (CaAa)	121.0000 - 0.0000	6	3	-0.100 0.000	1.5500		0.60
***			(CaAa)	0.0000			0.000			
2" Flexible Conduit	А	No	Surface Ar (CaAa)	97.0000 - 0.0000	2	2	0.000 0.100	2.0000		0.34
***			(00/10)	0.0000			0.100			
HCS 6X12 4AWG(1- 5/8) ***	В	No	Surface Ar (CaAa)	87.0000 - 0.0000	14	6	-0.500 -0.350	1.6600		2.40
PL 0.75x4	А	No	Surface Af	45.8300 -	1	1	0.000	4.0000	9,5000	0.00
T L 0.7 3X4	~	NO	(CaAa)	15.8300	I		0.000	4.0000	3.3000	0.00
PL 0.75x4	В	No	Surface Af	45.8300 -	1	1	0.000	4.0000	9,5000	0.00
			(CaAa)	15.8300			0.000			
PL 0.75x4	С	No	Surface Af	45.8300 -	1	1	0.000	4.0000	9.5000	0.00
			(CaAa)	15.8300			0.000			
PL 0.75x4	А	No	Surface Af		1	1	0.250	4.0000	9.5000	0.00
			(CaAa)	43.2500			0.250			
PL 0.75x4	В	No	Surface Af	68.2500 -	1	1	0.250	4.0000	9.5000	0.00
	~		(CaAa)	43.2500			0.250	4 0000	0 5000	0.00
PL 0.75x4	С	No	Surface Af	68.2500 -	1	1	0.250	4.0000	9.5000	0.00
PL 0.75x4	А	No	(CaAa) Surface Af	43.2500 85.8300 -	1	1	0.250 0.000	4.0000	9.5000	0.00
FL 0.73X4	A	NU	Sunace Al	05.0300 -	I	I	0.000	4.0000	9.0000	0.00

Description	Sector	Exclude From	Componen t	Placement	Total Number	Number Per Row	Start/En d	Width or Diamete	Perimete r	Weight
		Torque Calculation	Туре	ft			Position	r in	in	plf
		ouloululon	(CaAa)	65.8300			0.000			
PL 0.75x4	В	No	Surface Af	85.8300 -	1	1	0.000	4.0000	9.5000	0.00
PL 0.75x4	С	No	(CaAa) Surface Af	65.8300 85.8300 -	1	1	0.000 0.000	4.0000	9.5000	0.00
**			(CaAa)	65.8300			0.000			
(Area) CCI-65FP-	А	No	Surface Af	15.5000 -	1	1	0.000	6.0000	14.0000	0.00
060100 (H)	~	NO	(CaAa)	0.0000	1	1	0.000	0.0000	14.0000	0.00
(Area) CCI-65FP-	В	No	Surface Af		1	1	0.000	6.0000	14.0000	0.00
060100 (H)	D		(CaAa)	0.0000	•		0.000	0.0000	11.0000	0.00
(Area) CCI-65FP-	С	No	Surface Af	15.5000 -	1	1	0.000	6.0000	14.0000	0.00
06́0100 (H)			(CaAa)	0.0000			0.000			
(Area) CCI-65FP-	D	No	Surface Af	20.7500 -	1	1	0.500	6.0000	14.0000	0.00
060100 (H)	В	No	Surface Af (CaAa)	9.4200	1	1	0.500	0.0000	14.0000	0.00
(Area) CCI-65FP-	А	No	Surface Af		1	1	0.250	6.0000	14.0000	0.00
060100 (H)	A	NO	(CaAa)	9.4200	I	I	0.250	0.0000	14.0000	0.00
(Area) CCI-65FP-	С	No	Surface Af		1	1	0.250	6.0000	14.0000	0.00
060100 (H)	0	NO	(CaAa)	9.4200	1		0.250	0.0000	14.0000	0.00
(Area) CCI-65FP-	В	No	Surface Af		1	1	0.500	6.0000	14.0000	0.00
060100 (H)	D	NO	(CaAa)	20.7500	•		0.500	0.0000	14.0000	0.00
(Area) CCI-65FP-	А	No	Surface Af		1	1	0.250	6.0000	14.0000	0.00
060100 (H)			(CaAa)	20,7500	•	•	0,250	010000		0100
(Area) CCI-65FP-	С	No	Surface Af		1	1	0.250	6.0000	14.0000	0.00
060100 (H)			(CaAa)	20.7500			0.250			
(Area) CCI-65FP-	А	No	Surface Af	56.0000 -	1	1	0.500	6.0000	14.0000	0.00
060100 (H)			(CaAa)	21.0000	•		0.500	010000		0.00
(Area) CCI-65FP-	С	No	Surface Af	56.0000	1	1	0,500	6.0000	14.0000	0.00
060100 (H)	-		(CaAa)	21.0000			0.500			
** (Area) CCI-65FP-	А	No	Surface Af	66.0800 -	1	1	0.500	4.5000	11.0000	0.00
045100 (H)			(CaAa)	56.0000	•		0.500			0.00
(Area) CCI-65FP-	С	No	Surface Af		1	1	0.500	4.5000	11.0000	0.00
045100 (H)	Ũ		(CaAa)	56.0000	•	•	0.500			0100
(Area) CCI-65FP-	В	No	Surface Af		1	1	0.500	4.5000	11.0000	0.00
04́5100 (H)			(CaAa)	44.5000			0.500			
(Area) CCI-65FP-	А	No	Surface Af	91.5000 -	1	1	0.500	4.5000	11.0000	0.00
045100 (H)			(CaAa)	81.5000			0.500			
(Area) CCI-65FP-	В	No	Surface Af	91.5000 -	1	1	0.500	4.5000	11.0000	0.00
045100 (H)			(CaAa)	81.5000			0.500			
(Area) CCI-65FP-	С	No	Surface Af	91.5000 -	1	1	0.500	4.5000	11.0000	0.00
045100 (H)			(CaAa)	81.5000			0.500			
(Area) CCI-65FP-	А	No	Surface Af	9.2500 -	1	1	0.250	6.5000	15.5000	0.00
065125 (H)			(CaAa)	0.0000			0.250			
(Area) CCI-65FP-	В	No	Surface Af	20.7500 -	1	1	0.250	6.5000	15.5000	0.00
065125 (H)			(CaAa)	0.0000			0.250			
(Area) CCI-65FP-	А	No	Surface Af	20.7500 -	1	1	0.500	6.5000	15.5000	0.00
065125 (H)			(CaAa)	0.0000			0.500			
(Area) CCI-65FP-	С	No	Surface Af	20.7500 -	1	1	0.500	6.5000	15.5000	0.00
065125 (H) **			(CaAa)	0.0000			0.500			
(Area) CCI-65FP-	А	No	Surface Af	20.0000 -	1	1	-0.250	6.0000	14.0000	0.00
060100 (H)			(CaAa)	0.0000			-0.250			
(Area) CCI-65FP-	В	No	Surface Af	20.0000 -	1	1	-0.250	6.0000	14.0000	0.00
060100 (H)			(CaAa)	0.0000			-0.250			
(Area) CCI-65FP-	С	No	Surface Af		1	1	-0.250	6.0000	14.0000	0.00
060100 (H)			(CaAa)	0.0000			-0.250			
(Area) CCI-65FP-	А	No	Surface Af	55.0800 -	1	1	-0.250	6.0000	14.0000	0.00
060100 (H)			(CaAa)	20.0000			-0.250			
(Area) CCI-65FP-	В	No	Surface Af		1	1	-0.250	6.0000	14.0000	0.00
060100 (H)			(CaAa)	20.0000			-0.250			
(Area) CCI-65FP-	С	No	Surface Af		1	1	-0.250	6.0000	14.0000	0.00
000400 (11)			(CaAa)	20.0000			-0.250			
060100 (H)										
060100 (H) (Area) CCI-65FP- 045125 (H)	А	No	Surface Af (CaAa)	85.1700 - 55.0800	1	1	-0.250 -0.250	4.5000	11.5000	0.00

Description	Sector	Exclude	Componen	Placement	Total	Number	Start/En	Width or	Perimete	Weight
		From	t		Number	Per Row	d	Diamete	r	
		Torque	Туре	ft			Position	r		plf
		Calculation						in	in	
(Area) CCI-65FP-	В	No	Surface Af	85.1700 -	1	1	-0.250	4.5000	11.5000	0.00
045125 (H)			(CaAa)	55.0800			-0.250			
(Area) CCI-65FP-	С	No	Surface Af	85.1700 -	1	1	-0.250	4.5000	11.5000	0.00
045125 (H)			(CaAa)	55.0800			-0.250			

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculatior	Туре	ft			ft²/ft	plf
FB-L98B-002-	В	No	No	Inside Pole	121.0000 -	2	No Ice	0.0000	0.06
75000(3/8)					0.0000		1/2" Ice	0.0000	0.06
							1" Ice	0.0000	0.06
							2" Ice	0.0000	0.06
WR-VG86ST-	В	No	No	Inside Pole	121.0000 -	8	No Ice	0.0000	0.58
BRD(3/4)					0.0000		1/2" Ice	0.0000	0.58
							1" Ice	0.0000	0.58
***							2" Ice	0.0000	0.58
HB158-U12S24-	В	No	No	Inside Pole	109.0000 -	2	No Ice	0.0000	3.20
160-L l (1-7/8)					0.0000		1/2" Ice	0.0000	3.20
							1" Ice	0.0000	3.20
							2" Ice	0.0000	3.20
ATCB-B01-	Α	No	No	Inside Pole	97.0000 -	3	No Ice	0.0000	0.07
005(5/16)					0.0000		1/2" Ice	0.0000	0.07
							1" Ice	0.0000	0.07
							2" Ice	0.0000	0.07
FSJ4-50B(1/2)	А	No	No	Inside Pole	97.0000 -	3	No Ice	0.0000	0.14
. /					0.0000		1/2" Ice	0.0000	0.14
							1" Ice	0.0000	0.14
							2" Ice	0.0000	0.14
HB158-21U6S24-	С	No	No	Inside Pole	97.0000 -	3	No Ice	0.0000	2.50
xxM TMO(1-5/8)					0.0000		1/2" Ice	0.0000	2.50
_ 、 /							1" Ice	0.0000	2.50
****							2" Ice	0.0000	2.50

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A _R	AF	C _A A _A	C _A A _A	Weight
Sectio	Elevation				In Face	Out Face	
n	ft		ft²	ft²	ft ²	ft ²	K
L1	130.0000-	А	0.000	0.000	0.000	0.000	0.00
	125.0000	В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.00
L2	125.0000-	А	0.000	0.000	0.000	0.000	0.00
	120.0000	В	0.000	0.000	1.265	0.000	0.01
		С	0.000	0.000	0.000	0.000	0.00
L3	120.0000-	А	0.000	0.000	0.000	0.000	0.00
	115.0000	В	0.000	0.000	6.325	0.000	0.05
		С	0.000	0.000	0.000	0.000	0.00
L4	115.0000-	А	0.000	0.000	0.000	0.000	0.00
	110.0000	В	0.000	0.000	6.325	0.000	0.05
		С	0.000	0.000	0.000	0.000	0.00
L5	110.0000-	А	0.000	0.000	0.000	0.000	0.00
	105.0000	В	0.000	0.000	6.325	0.000	0.07
		С	0.000	0.000	0.000	0.000	0.00
L6	105.0000-	А	0.000	0.000	0.000	0.000	0.00

tnxTower Report - version 8.1.1.0

130 Ft Monopole Tower Structural Analysis Project Number 1963271, Order 556638, Revision 1

Tower	Tower	Face	A _R	AF	C _A A _A	C _A A _A	Weight
Sectio	Elevation		- 0	- 0	In Face	Out Face	
n	ft		ft ²	ft ²	ft ²	<u>ft²</u>	<u> </u>
	100.0000	В	0.000	0.000	6.325	0.000	0.08
	400.0000	C	0.000	0.000	0.000	0.000	0.00
L7	100.0000-	A	0.000	0.000	0.800	0.000	0.00
	95.0000	В	0.000	0.000	6.325	0.000	0.08
	05 0000 00 0000	С	0.000	0.000	0.000	0.000	0.01
L8	95.0000-90.0000	A	0.000	0.000	3.125	0.000	0.01
		В	0.000	0.000	7.450	0.000	0.08
		С	0.000	0.000	1.125	0.000	0.04
L9	90.0000-89.7500	A	0.000	0.000	0.287	0.000	0.00
		В	0.000	0.000	0.504	0.000	0.00
		С	0.000	0.000	0.188	0.000	0.00
L10	89 7500 84 7500	A	0.000	0.000	6.785	0.000	0.01
		В	0.000	0.000	13.351	0.000	0.16
		С	0.000	0.000	4.785	0.000	0.04
L11	84 7500 84 5800	А	0.000	0.000	0.436	0.000	0.00
		В	0.000	0.000	0.753	0.000	0.01
		С	0.000	0.000	0.368	0.000	0.00
L12	84 5800 84 3300	А	0.000	0.000	0.642	0.000	0.00
		В	0.000	0.000	1.107	0.000	0.01
		č	0.000	0.000	0.542	0.000	0.00
L13	84.3300-83.4200	Ă	0.000	0.000	2,336	0.000	0.00
2.0	10000 0011200	В	0.000	0.000	4.029	0.000	0.05
		C	0.000	0.000	1.972	0.000	0.03
L14	83.4200-83.1700	A	0.000	0.000	0.642	0.000	0.01
L 14	55.7200-05.1700	B	0.000	0.000	1.107	0.000	0.00
		C	0.000	0.000	0.542	0.000	0.00
115	92 1700 92 0000			0.000		0.000	
L15	83.1700-83.0000	A	0.000		0.436		0.00
		В	0.000	0.000	0.753	0.000	0.01
	~~~~~~~~~~	С	0.000	0.000	0.368	0.000	0.00
L16	83.0000-82.7500	A	0.000	0.000	0.642	0.000	0.00
		В	0.000	0.000	1.107	0.000	0.01
		С	0.000	0.000	0.542	0.000	0.00
L17	82.7500-77.7500	А	0.000	0.000	10.021	0.000	0.01
		В	0.000	0.000	19.326	0.000	0.25
		С	0.000	0.000	8.021	0.000	0.04
L18	77.7500-70.0000	А	0.000	0.000	14.079	0.000	0.01
		В	0.000	0.000	29.490	0.000	0.40
		С	0.000	0.000	10.979	0.000	0.06
L19	70.0000-69.0000	А	0.000	0.000	1.817	0.000	0.00
		В	0.000	0.000	3.819	0.000	0.05
		Ċ	0.000	0.000	1.417	0.000	0.01
L20	69.0000-67.0800	Ă	0.000	0.000	4.268	0.000	0.00
	2010000 0110000	В	0.000	0.000	8.112	0.000	0.10
		C	0.000	0.000	3.500	0.000	0.01
L21	67.0800-66.8300	A	0.000	0.000	0.621	0.000	0.00
	01.0000-00.0000	B	0.000	0.000	1.121	0.000	0.00
		ь С	0.000	0.000	0.521	0.000	0.01
L22	66 9300 64 0900		0.000	0.000	7.163	0.000	0.00
LZZ	66.8300-64.0800	A					
		В	0.000	0.000	11.483	0.000	0.14
1.00	C4 0000 00 0000	C	0.000	0.000	6.063	0.000	0.02
L23	64.0800-63.8300	A	0.000	0.000	0.642	0.000	0.00
		В	0.000	0.000	1.142	0.000	0.01
		С	0.000	0.000	0.542	0.000	0.00
L24	63.8300-62.5000	А	0.000	0.000	3.414	0.000	0.00
		В	0.000	0.000	6.076	0.000	0.07
		С	0.000	0.000	2.882	0.000	0.01
L25	62.5000-62.2500	А	0.000	0.000	0.642	0.000	0.00
		В	0.000	0.000	1.142	0.000	0.01
		С	0.000	0.000	0.542	0.000	0.00
L26	62.2500-57.2500	Ā	0.000	0.000	12.833	0.000	0.01
		В	0.000	0.000	22.844	0.000	0.26
		č	0.000	0.000	10.833	0.000	0.04
L27	57.2500-53.5000	Ă	0.000	0.000	10.645	0.000	0.00
		В	0.000	0.000	17.528	0.000	0.00
		C	0.000	0.000	9.145	0.000	0.03
L28	53 5000 52 2500						0.03
1.20	53 5000 53 2500	A	0.000	0.000	0.767	0.000	
220		<b>–</b>					
LLO		B	0.000	0.000	1.205	0.000	0.01
L29	53.2500-52.5800	B C A	0.000 0.000 0.000	0.000 0.000 0.000	1.205 0.667 2.055	0.000 0.000 0.000	0.01 0.00 0.00

Tower	Tower	Face	<b>A</b> _R	A _F	C _A A _A	C _A A _A	Weight
Sectio	Elevation #		ft²	ft²	In Face ft²	Out Face ft²	к
n	ft	В	0.000	0.000	3.229	0.000	0.03
		C	0.000	0.000	1.787	0.000	0.03
L30	52.5800-52.3300	Ă	0.000	0.000	0.767	0.000	0.00
LOU	02.0000 02.0000	В	0.000	0.000	1.205	0.000	0.00
		č	0.000	0.000	0.667	0.000	0.00
L31	52.3300-47.3300	Ă	0.000	0.000	15.333	0.000	0.01
		В	0.000	0.000	24.094	0.000	0.26
		С	0.000	0.000	13.333	0.000	0.04
L32	47.3300-44.5800	А	0.000	0.000	9.267	0.000	0.00
		В	0.000	0.000	14.085	0.000	0.14
		С	0.000	0.000	8.167	0.000	0.02
L33	44.5800-44.3300	A	0.000	0.000	0.933	0.000	0.00
		В	0.000	0.000	1.334	0.000	0.01
		С	0.000	0.000	0.833	0.000	0.00
L34	44.3300-41.9200	A	0.000	0.000	8.111	0.000	0.00
		В	0.000	0.000	12.936	0.000	0.12
		С	0.000	0.000	7.147	0.000	0.02
L35	41.9200-41.6700	A	0.000	0.000	0.767	0.000	0.00
		В	0.000	0.000	1.267	0.000	0.01
1.00	44 0700 04 0000	C	0.000	0.000	0.667	0.000	0.00
L36	41.6700-34.0800	A B	0.000 0.000	0.000 0.000	23.276 38.472	0.000	0.01 0.39
		Б С	0.000	0.000	20.240	0.000 0.000	0.39
L37	34.0800-34.0000	A	0.000	0.000	0.245	0.000	0.00
L07	34.0000-34.0000	В	0.000	0.000	0.406	0.000	0.00
		C	0.000	0.000	0.213	0.000	0.00
L38	34.0000-29.0000	Ă	0.000	0.000	15.698	0.000	0.00
200		В	0.000	0.000	25.344	0.000	0.26
		Ċ	0.000	0.000	13.698	0.000	0.04
L39	29.0000-26.9200	Ā	0.000	0.000	8.185	0.000	0.00
		В	0.000	0.000	10.543	0.000	0.11
		С	0.000	0.000	7.353	0.000	0.02
L40	26.9200-26.6700	А	0.000	0.000	0.984	0.000	0.00
		В	0.000	0.000	1.267	0.000	0.01
		С	0.000	0.000	0.884	0.000	0.00
L41	26.6700-21.6700	A	0.000	0.000	19.675	0.000	0.01
		В	0.000	0.000	25.344	0.000	0.26
		С	0.000	0.000	17.675	0.000	0.04
L42	21.6700-18.0000	A	0.000	0.000	14.661	0.000	0.00
		В	0.000	0.000	21.460	0.000	0.19
1.40	40 0000 47 7500	C	0.000	0.000	13.193	0.000	0.03
L43	18.0000-17.7500	A	0.000	0.000	1.026	0.000	0.00
		B C	0.000 0.000	0.000 0.000	1.527 0.926	0.000 0.000	0.01 0.00
L44	17.7500-17.5000	A	0.000	0.000	1.026	0.000	0.00
L44	11.1500-11.5000	B	0.000	0.000	1.527	0.000	0.00
		C	0.000	0.000	0.926	0.000	0.00
L45	17.5000-17.2500	Ă	0.000	0.000	1.026	0.000	0.00
2.0		В	0.000	0.000	1.527	0.000	0.01
		č	0.000	0.000	0.926	0.000	0.00
L46	17.2500-17.0800	Ă	0.000	0.000	0.698	0.000	0.00
		В	0.000	0.000	1.038	0.000	0.01
		С	0.000	0.000	0.630	0.000	0.00
L47	17.0800-16.8300	А	0.000	0.000	1.026	0.000	0.00
		В	0.000	0.000	1.527	0.000	0.01
		С	0.000	0.000	0.926	0.000	0.00
L48	16.8300-13.0000	А	0.000	0.000	16.339	0.000	0.01
		В	0.000	0.000	24.007	0.000	0.20
		С	0.000	0.000	14.807	0.000	0.03
L49	13.0000-12.7500	A	0.000	0.000	1.110	0.000	0.00
		B	0.000	0.000	1.610	0.000	0.01
1.50	40 7500 44 0000	С	0.000	0.000	1.010	0.000	0.00
L50	12.7500-11.9200	A	0.000	0.000	3.685	0.000	0.00
		В	0.000	0.000	5.346	0.000	0.04
1 6 1	11 0200 11 6700	C	0.000	0.000	3.353	0.000	0.01
L51	11.9200-11.6700	A	0.000	0.000	1.110	0.000	0.00
		B C	0.000 0.000	0.000 0.000	1.610 1.010	0.000 0.000	0.01 0.00
L52	11.6700-6.6700	A	0.000	0.000	21.979	0.000	0.00
LUZ	11.0700-0.0700	~	0.000	0.000	21.313	0.000	0.01

130 Ft Monopole Tower Structural Analysis Project Number 1963271, Order 556638, Revision 1

Tower	Tower	Face	<b>A</b> _R	AF	C _A A _A	$C_A A_A$	Weight
Sectio	Elevation		- 0	- 0	In Face	Out Face	
n	ft		ft ²	ft ²	ft ²	ft²	ĸ
		В	0.000	0.000	29.578	0.000	0.26
		С	0.000	0.000	17.567	0.000	0.04
L53	6.6700-6.5000	А	0.000	0.000	0.751	0.000	0.00
		В	0.000	0.000	0.933	0.000	0.01
		С	0.000	0.000	0.524	0.000	0.00
L54	6.5000-6.2500	А	0.000	0.000	1.105	0.000	0.00
		В	0.000	0.000	1.371	0.000	0.01
		С	0.000	0.000	0.771	0.000	0.00
L55	6.2500-3.7500	А	0.000	0.000	11.045	0.000	0.00
		В	0.000	0.000	13.714	0.000	0.13
		С	0.000	0.000	7.708	0.000	0.02
L56	3,7500-3,5000	А	0.000	0.000	1.105	0.000	0.00
		В	0.000	0.000	1.371	0.000	0.01
		С	0.000	0.000	0.771	0.000	0.00
L57	3.5000-3.0000	А	0.000	0.000	2.209	0.000	0.00
		В	0.000	0.000	2.743	0.000	0.03
		С	0.000	0.000	1.542	0.000	0.00
L58	3.0000-2.7500	А	0.000	0.000	1.105	0.000	0.00
		В	0.000	0.000	1.371	0.000	0.01
		С	0.000	0.000	0.771	0.000	0.00
L59	2.7500-0.0000	А	0.000	0.000	12.150	0.000	0.00
		В	0.000	0.000	15.085	0.000	0.14
		С	0.000	0.000	8.479	0.000	0.02

# Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	<b>A</b> _R	AF	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	
n	ft	Leg	in	ft²	ft²	ft²	ft²	K
L1	130.0000-	А	1.946	0.000	0.000	0.000	0.000	0.00
	125.0000	В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.00
L2	125.0000-	А	1.938	0.000	0.000	0.000	0.000	0.00
	120.0000	В		0.000	0.000	2.550	0.000	0.05
		С		0.000	0.000	0.000	0.000	0.00
L3	120.0000-	А	1.930	0.000	0.000	0.000	0.000	0.00
	115.0000	В		0.000	0.000	12.732	0.000	0.23
		С		0.000	0.000	0.000	0.000	0.00
L4	115.0000-	А	1.922	0.000	0.000	0.000	0.000	0.00
	110.0000	B C		0.000	0.000	12.711	0.000	0.23
		С		0.000	0.000	0.000	0.000	0.00
L5	110.0000-	А	1.913	0.000	0.000	0.000	0.000	0.00
	105.0000	В		0.000	0.000	12.689	0.000	0.25
		С		0.000	0.000	0.000	0.000	0.00
L6	105.0000-	А	1.904	0.000	0.000	0.000	0.000	0.00
	100.0000	В		0.000	0.000	12.666	0.000	0.26
		С		0.000	0.000	0.000	0.000	0.00
L7	100.0000-	А	1.894	0.000	0.000	1.947	0.000	0.03
	95.0000	В		0.000	0.000	12.642	0.000	0.25
		С		0.000	0.000	0.000	0.000	0.01
L8	95.0000-90.0000	А	1.885	0.000	0.000	6.293	0.000	0.09
		В		0.000	0.000	14.055	0.000	0.27
		С		0.000	0.000	1.437	0.000	0.06
L9	90 0000 89 7500	А	1.879	0.000	0.000	0.482	0.000	0.01
		В		0.000	0.000	0.870	0.000	0.02
		С		0.000	0.000	0.239	0.000	0.01
L10	89 7500 84 7500	А	1.874	0.000	0.000	11.224	0.000	0.15
		В		0.000	0.000	22.827	0.000	0.47
		С		0.000	0.000	6.382	0.000	0.12
L11	84,7500-84,5800	А	1.868	0.000	0.000	0.695	0.000	0.01
		В		0.000	0.000	1.249	0.000	0.03
		ċ		0.000	0.000	0.530	0.000	0.01
L12	84,5800-84,3300	Ă	1.867	0.000	0.000	1.022	0.000	0.01
		В		0.000	0.000	1.837	0.000	0.04
		č		0.000	0.000	0.780	0.000	0.01
L13	84.3300-83.4200	Ă	1.866	0.000	0.000	3,718	0.000	0.05

ower Sectio	Tower Elevation	Face or	lce Thickness	$A_R$	AF	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft	Leg	in	ft²	ft²	ft ²	ft ²	К
		 B		0.000	0.000	6.684	0.000	0.14
		č		0.000	0.000	2.839	0.000	0.04
1 4 4	02 4000 02 4700		1 965					
L14	83.4200-83.1700	A	1.865	0.000	0.000	1.021	0.000	0.01
		В		0.000	0.000	1.836	0.000	0.04
		С		0.000	0.000	0.780	0.000	0.01
L15	83 1700-83 0000	А	1.864	0.000	0.000	0.694	0.000	0.01
		В		0.000	0.000	1.248	0.000	0.03
		С		0.000	0.000	0.530	0.000	0.01
L16	83.0000-82.7500	Ă	1.864	0.000	0.000	1.021	0.000	0.01
	05.0000-02.7500		1.004					
		В		0.000	0.000	1.836	0.000	0.04
		С		0.000	0.000	0.780	0.000	0.01
L17	82 7500 77 7500	A	1.858	0.000	0.000	16.816	0.000	0.21
		В		0.000	0.000	33.092	0.000	0.70
		С		0.000	0.000	11.993	0.000	0.18
L18	77.7500-70.0000	Ă	1.843	0.000	0.000	24.136	0.000	0.30
	77.7500-70.0000		1.045					
		В		0.000	0.000	52.872	0.000	1.11
		С		0.000	0.000	16.691	0.000	0.25
L19	70.0000-69.0000	А	1.831	0.000	0.000	3.114	0.000	0.04
		В		0.000	0.000	6.871	0.000	0.14
		C		0.000	0.000	2.154	0.000	0.03
	00 0000 07 0000		4 000					
L20	69.0000-67.0800	A	1.828	0.000	0.000	7.168	0.000	0.09
		В		0.000	0.000	14.362	0.000	0.29
		С		0.000	0.000	5.331	0.000	0.08
L21	67.0800-66.8300	Ā	1.825	0.000	0.000	1.034	0.000	0.01
•	2. 2200 00.0000	В		0.000	0.000	1.970	0.000	0.04
		C		0.000	0.000	0.795	0.000	0.01
L22	66.8300-64.0800	А	1.820	0.000	0.000	11.464	0.000	0.14
		В		0.000	0.000	20.313	0.000	0.41
		С		0.000	0.000	8.837	0.000	0.13
L23	64.0800-63.8300	Ă	1.816	0.000	0.000	1.013	0.000	0.01
-20	54.0000-00.0000	В	1.010	0.000				0.01
					0.000	1.987	0.000	
_ ·		С		0.000	0.000	0.774	0.000	0.01
L24	63.8300-62.5000	Α	1.814	0.000	0.000	5.385	0.000	0.07
		В		0.000	0.000	10.568	0.000	0.21
		č		0.000	0.000	4,117	0.000	0.06
25	62 5000 63 3500		1 010			1.012	0.000	0.00
L25	62.5000-62.2500	A	1.812	0.000	0.000			
		В		0.000	0.000	1.986	0.000	0.04
		С		0.000	0.000	0.774	0.000	0.01
_26	62 2500 57 2500	А	1.804	0.000	0.000	20.208	0.000	0.25
		В		0.000	0.000	39.650	0.000	0.77
				0.000	0.000	15.453		0.22
		C	4 700				0.000	
L27	57.2500-53.5000	A	1.790	0.000	0.000	16.530	0.000	0.19
		В		0.000	0.000	30.054	0.000	0.58
		С		0.000	0.000	12.977	0.000	0.17
L28	53.5000-53.2500	Ă	1.784	0.000	0.000	1.171	0.000	0.01
		В		0.000	0.000	2.037	0.000	0.04
		С	4	0.000	0.000	0.934	0.000	0.01
L29	53.2500-52.5800	A	1.782	0.000	0.000	3.137	0.000	0.04
		В		0.000	0.000	5.458	0.000	0.10
		С		0.000	0.000	2.503	0.000	0.03
L30	52,5800-52,3300	Ă	1.781	0.000	0.000	1.170	0.000	0.00
_00	52.0000-02.0000		1.701	0.000	0.000	2.036		0.01
		В					0.000	
		С		0.000	0.000	0.934	0.000	0.01
.31	52.3300-47.3300	А	1.771	0.000	0.000	23.362	0.000	0.26
		В		0.000	0.000	40.649	0.000	0.77
		č		0.000	0.000	18.648	0.000	0.24
20	47 0000 44 5000		4 757					
_32	47.3300-44.5800	A	1.757	0.000	0.000	14.088	0.000	0.16
		В		0.000	0.000	23.569	0.000	0.43
		С		0.000	0.000	11.505	0.000	0.14
L33	44.5800-44.3300	Ă	1.751	0.000	0.000	1.418	0.000	0.02
200			1.751					
		В		0.000	0.000	2.213	0.000	0.04
		С		0.000	0.000	1.184	0.000	0.01
L34	44.3300-41.9200	А	1.746	0.000	0.000	12.306	0.000	0.14
		В		0.000	0.000	21.198	0.000	0.38
		č		0.000	0.000	10.049	0.000	0.12
125	41 0200 44 6700		1 711					
L35	41.9200-41.6700	A	1.741	0.000	0.000	1.162	0.000	0.01
		В		0.000	0.000	2.083	0.000	0.04
		С		0.000	0.000	0.928	0.000	0.01
			1.723	0.000	0.000	35.154	0.000	0.38

Tower Sectio	Tower Elevation	Face or	lce Thickness	<b>A</b> _R	A _F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft	Leg	in	ft²	ft²	ft ²	ft ²	К
		В		0.000	0.000	63.037	0.000	1.16
		С		0.000	0.000	28.088	0.000	0.35
L37	34.0800-34.0000	А	1.705	0.000	0.000	0.371	0.000	0.00
		В		0.000	0.000	0.664	0.000	0.01
		С		0.000	0.000	0.296	0.000	0.00
L38	34.0000-29.0000	А	1.692	0.000	0.000	23.465	0.000	0.25
		В		0.000	0.000	41.283	0.000	0.75
		С		0.000	0.000	18.850	0.000	0.23
L39	29.0000-26.9200	A	1.672	0.000	0.000	11.720	0.000	0.13
		В		0.000	0.000	17.109	0.000	0.31
1.40	00 0000 00 0700	С	4 005	0.000	0.000	9.810 1.407	0.000	0.12
L40	26.9200-26.6700	A B	1.665	0.000 0.000	0.000 0.000	2.054	0.000 0.000	0.02 0.04
		Б С		0.000	0.000	2.054	0.000	0.04
L41	26.6700-21.6700	A	1.648	0.000	0.000	28.056	0.000	0.30
L-+ 1	20.0700-21.0700	В	1.040	0.000	0.000	40.940	0.000	0.74
		C		0.000	0.000	23.497	0.000	0.28
L42	21.6700-18.0000	Ă	1.616	0.000	0.000	20.613	0.000	0.22
		В		0.000	0.000	33.192	0.000	0.57
		č		0.000	0.000	17.296	0.000	0.20
L43	18.0000-17.7500	Ă	1.599	0.000	0.000	1.433	0.000	0.01
		В		0.000	0.000	2.330	0.000	0.04
		С		0.000	0.000	1.208	0.000	0.01
L44	17 7500 17 5000	А	1.597	0.000	0.000	1.433	0.000	0.01
		В		0.000	0.000	2.329	0.000	0.04
		С		0.000	0.000	1.208	0.000	0.01
L45	17.5000-17.2500	А	1.594	0.000	0.000	1.432	0.000	0.01
		В		0.000	0.000	2.328	0.000	0.04
		С		0.000	0.000	1.208	0.000	0.01
L46	17.2500-17.0800	A	1.592	0.000	0.000	0.974	0.000	0.01
		В		0.000	0.000	1.583	0.000	0.03
	17 0000 10 0000	C	4 500	0.000	0.000	0.821	0.000	0.01
L47	17.0800-16.8300	A	1.590	0.000	0.000	1.431	0.000	0.01
		В		0.000	0.000	2.326	0.000	0.04
1.40	16 9200 12 0000	C	1.570	0.000 0.000	0.000 0.000	1.207 22.214	0.000 0.000	0.01 0.23
L48	16.8300-13.0000	A B	1.570	0.000	0.000	35.874	0.000	0.23
		Б С		0.000	0.000	18,796	0.000	0.80
L49	13.0000-12.7500	Ă	1.547	0.000	0.000	1.490	0.000	0.21
L-13	10.0000-12.7000	В	1.047	0.000	0.000	2.378	0.000	0.04
		č		0.000	0.000	1.268	0.000	0.01
L50	12.7500-11.9200	Ă	1.541	0.000	0.000	4.942	0.000	0.05
200		В		0.000	0.000	7.885	0.000	0.13
		ē		0.000	0.000	4,208	0.000	0.05
L51	11.9200-11.6700	A	1.534	0.000	0.000	1.487	0.000	0.01
		В		0.000	0.000	2.372	0.000	0.04
		С		0.000	0.000	1.266	0.000	0.01
L52	11.6700-6.6700	А	1.495	0.000	0.000	29.344	0.000	0.29
		В		0.000	0.000	44.089	0.000	0.73
		С		0.000	0.000	22.149	0.000	0.24
L53	6.6700-6.5000	A	1.447	0.000	0.000	0.996	0.000	0.01
		В		0.000	0.000	1.402	0.000	0.02
	0 5000 0 5555	С	4	0.000	0.000	0.664	0.000	0.01
L54	6.5000-6.2500	A	1.442	0.000	0.000	1.463	0.000	0.01
		В		0.000	0.000	2.060	0.000	0.03
	6 2500 2 7500	C	1 400	0.000	0.000	0.976	0.000	0.01
L55	6.2500-3.7500	A	1.408	0.000	0.000	14.557	0.000	0.13
		B C		0.000 0.000	0.000 0.000	20.474 9.712	0.000 0.000	0.34 0.10
L56	3.7500-3.5000	A	1.363	0.000	0.000	9.712 1.446	0.000	0.10
L00	5.7500-5.5000	B	1.505	0.000	0.000	2.031	0.000	0.01
		Б С		0.000	0.000	0.966	0.000	0.03
L57	3.5000-3.0000	A	1.348	0.000	0.000	2.886	0.000	0.01
201	0.0000-0.0000	B	1.0+0	0.000	0.000	4.052	0.000	0.03
		C		0.000	0.000	1.928	0.000	0.00
L58	3.0000-2.7500	A	1.332	0.000	0.000	1.440	0.000	0.02
200	0.0000 2.1000	В	1.002	0.000	0.000	2.020	0.000	0.03
		C		0.000	0.000	0.962	0.000	0.03
L59	2.7500-0.0000	Ă	1.237	0.000	0.000	15.611	0.000	0.13

Tower Sectio	Tower Elevation	Face or	lce Thickness	<b>A</b> _R	A _F	C _A A _A In Face	C _A A _A Out Face	Weight
п	ft	Leg	in	ft²	ft²	ft²	ft²	K
		В		0.000	0.000	21.840	0.000	0.34
		С		0.000	0.000	10.449	0.000	0.10

	Feed Line Center of Pressu				ressure
Section	Elevation ft	CPx	CPz	CP _x Ice	CPz Ice
L1	130.0000-	<i>in</i> 0.0000	<i>in</i> 0.0000	<i>in</i> 0.0000	<i>in</i> 0.0000
LI	125.0000	0.0000	0.0000	0.0000	0.0000
L2	125.0000-	1.1072	-1.0467	1.1637	-1.0768
	120.0000				
L3	120.0000-	3.0857	2.9183	2.6045	-2.4110
	115.0000				
L4	115.0000-	3.1879	-3.0164	2.7443	-2.5418
	110.0000				
L5	110.0000-	3.2842	-3.1089	2.8789	-2.6678
	105.0000	2 2740	2 4000	2 0067	0 7075
L6	105.0000- 100.0000	3.3712	-3.1923	3.0067	-2.7875
L7	100.0000-95.0000	2.8025	-3.4276	2.3409	-2.9652
L8	95,0000-90,0000	1.6763	-3.0849	1.3459	-2.8494
L9	90.0000-89.7500	1.2241	-2.2540	1.1232	-2.3791
L10	89,7500-84,7500	1.1866	-2.8061	1.0914	-2.8275
L11	84,7500-84,5800	0.8513	-2.4236	0.8302	-2.5157
L12	84.5800-84.3300	0.8531	-2.4286	0.8319	-2.5209
L13	84.3300-83.4200	0.8570	-2.4398	0.8361	-2.5334
L14	83.4200-83.1700	0.8617	-2.4529	0.8407	-2.5474
L15	83.1700-83.0000	0.8632	-2.4570	0.8423	-2.5519
L16	83.0000-82.7500	0.8641	-2.4594	0.8434	-2.5553
L17	82.7500-77.7500	1.0413	-2.9629	0.9659	-2.9256
L18	77.7500-70.0000	1.3031	-3.3353	1.3269	-3.2817
L19	70,0000-69,0000	1.3392	3.3924	1.3786	-3.3486
L20	69.0000-67.0800	1.1928	-3.0208	1.2597	-3.0601
L21	67 0800 66 8300	1.1126	-2.8171	1.1965	-2.9064
L22	66.8300-64.0800	0.9296	-3.5664	1.1007	-3.4596
L23	64.0800-63.8300	1.1126	-2.8159	1.2678	-2.8401
L24	63.8300-62.5000	1.1190	-2.8316	1.2749	-2.8561
L25	62.5000-62.2500	1.1256	-2.8479	1.2824	-2.8726
L26	62 2500 57 2500	1.1465	-2.8998	1.3060	-2.9254
L27	57.2500-53.5000	1.0390	-3.0931	1.2212	-3.1418
L28	53.5000-53.2500	0.9662	-3.1146	1.1645	-3.2042
L29	53.2500-52.5800	0.9690	-3.1233	1.1679	-3.2139
L30	52.5800-52.3300	0.9718	-3.1324	1.1715	-3.2238
L31	52.3300-47.3300	0.9873	-3.1823	1.1912	-3.2790
L32	47.3300-44.5800	0.9443	-3.0437	1.1496	-3.1661
L33	44.5800-44.3300	0.8307	-3.0949	1.0328	-3.2431
L34	44.3300-41.9200	1.0534	-2.6585	1.2225	-2.9659
L35	41.9200-41.6700	1.1324	-2.8576	1.3055	-3.1671
L36	41.6700-34.0800	1.1571	-2.9187	1.3353	-3.2395
L37	34.0800-34.0000	1.1655	-2.9395	1.3459	-3.2648
L38	34.0000-29.0000	1.0740	-2.9928	1.2855	-3.3170
L39	29.0000-26.9200	0.0532	-3.1829	0.5239	-3.4557
L40	26.9200-26.6700	0.0531	-3.2030	0.5263	-3.4782
L41	26.6700-21.6700	0.0529	-3.2466	0.5311	-3.5273
L42 L43	21.6700-18.0000	0.9019	-2.7631	1.2097 1.3883	-3.2407 -3.2422
L43 L44	18.0000-17.7500 17.7500-17.5000	1.1229 1.1243	-2.7268	1.3883	-3.2422 -3.2461
L44 L45	17.5000-17.5000	1.1243	-2.7302 -2.7335	1.3899	-3.2461
L45 L46	17.2500-17.2500	1.1257	-2.7363	1.3915	-3.2500
L40 L47	17.0800-16.8300	1.1269	-2.7387	1.3929	-3.2552
L47 L48	16.8300-13.0000	1.1080	-2.6899	1.3940	-3.2524
L40 L49	13.0000-12.7500	1.0872	-2.6390	1.3764	-3.2175
L49 L50	12.7500-11.9200	1.0901	-2.6457	1.3794	-3.2249
L51	11.9200-11.6700	1.0926	-2.6516	1.3819	-3,2313
201	110200 110700	1.0020	2.0010	1.0010	0.2010

Section	Elevation	CPx	CPz	CPx	CPz
				lce	lce
	ft	in	in	in	in
L52	11.6700-6.6700	1.5228	-4.0427	1.7287	-4.3385
L53	6.6700-6.5000	1.9116	-5.4011	2.0345	-5.3963
L54	6.5000-6.2500	1.9139	-5.4075	2.0365	-5.4023
L55	6.2500-3.7500	1.9263	-5.4417	2.0467	-5.4347
L56	3.7500-3.5000	1.9390	-5.4767	2.0561	-5.4668
L57	3.5000-3.0000	1.9423	-5.4859	2.0582	-5.4749
L58	3.0000-2.7500	1.9456	-5.4952	2.0602	-5.4830
L59	2.7500-0.0000	1.9592	-5.5325	2.0647	-5.5121

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

#### Tower Feed Line Description Feed Line Ka Ka Segment No Ice Section Record No. Ice Elev. 2" Flexible Conduit 3 1.0000 1.0000 L2 120.00 -121.00 LDF6-50A(1-1/4) 1.0000 1.0000 L2 4 120.00 -121.00 L3 3 2" Flexible Conduit 1.0000 115.00 1.0000 120.00 L3 LDF6-50A(1-1/4) 1.0000 1.0000 4 115.00 120.00 L4 3 2" Flexible Conduit 110.00 1.0000 1.0000 115.00 LDF6-50A(1-1/4) 1.0000 L4 4 110.00 1.0000 115.00 105.00 -L5 3 2" Flexible Conduit 1.0000 1.0000 110.00 LDF6-50A(1-1/4) 1.0000 L5 1.0000 4 105.00 -110.00 1.0000 3 2" Flexible Conduit 1.0000 L6 100.00 105.00 1.0000 LDF6-50A(1-1/4) 1.0000 L6 4 100.00 -105.00 L7 3 2" Flexible Conduit 1.0000 1.0000 95.00 100.00 1.0000 LDF6-50A(1-1/4) 1.0000 L7 4 95.00 -100.00 1.0000 10 2" Flexible Conduit 1.0000 L7 95.00 -97.00 3 2" Flexible Conduit 1.0000 1.0000 L8 90.00 -95.00 L8 LDF6-50A(1-1/4) 90.00 -1.0000 1.0000 4 95.00 L8 10 2" Flexible Conduit 90.00 -1.0000 1.0000 95.00 47 (Area) CCI-65FP-045100 1.0000 L8 90.00 -1.0000 91.50 (H) 48 (Area) CCI-65FP-045100 1.0000 1.0000 L8 90.00 -91.50 (H) L8 49 (Area) CCI-65FP-045100 90.00 -1.0000 1.0000 91.50 (H) 2" Flexible Conduit 1.0000 1.0000 L9 3 89.75 90.00 L9 4 LDF6-50A(1-1/4) 1.0000 1.0000 89.75 -90.00 2" Flexible Conduit L9 10 89.75 -1.0000 1.0000 90.00 L9 47 (Area) CCI-65FP-045100 1.0000 1.0000 89.75 -(H) 90.00

# **Shielding Factor Ka**

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L9	48	(Area) CCI-65FP-045100	89.75 -	1.0000	1.0000
L9	49	(H) (Area) CCI-65FP-045100 (H)	90.00 - 89.75 - 90.00	1.0000	1.0000
L10	3	2" Flexible Conduit	84.75 -	1.0000	1.0000
L10	4	LDF6-50A(1-1/4)	89.75 84.75 - 89.75	1.0000	1.0000
L10	10	2" Flexible Conduit	84.75 89.75	1.0000	1.0000
L10	16	HCS 6X12 4AWG(1-5/8)	84.75 - 87.00	1.0000	1.0000
L10	25	PL 0.75x4	84.75 85.83	1.0000	1.0000
L10	26	PL 0.75x4	84.75 85.83	1.0000	1.0000
L10	27	PL 0.75x4	84.75 - 85.83	1.0000	1.0000
L10	47	(Area) CCI-65FP-045100 (H)	84.75 - 89.75	1.0000	1.0000
L10	48	(Area) CCI-65FP-045100 (H)	84.75 - 89.75	1.0000	1.0000
L10	49	(Area) CCI-65FP-045100 (H)	84.75 89.75	1.0000	1.0000
L10	62	(Area) CCI-65FP-045125 (H)	84.75 85.17	1.0000	1.0000
L10	63	(Area) CCI-65FP-045125 (H)	84.75 85.17	1.0000	1.0000
L10	64	(Area) CCI-65FP-045125 (H)	84.75 - 85.17	1.0000	1.0000
L11	3	2" Flexible Conduit	84.58 - 84.75	1.0000	1.0000
L11	4	LDF6-50A(1-1/4)	84.58 84.75	1.0000	1.0000
L11	10	2" Flexible Conduit	84.58 - 84.75	1.0000	1.0000
L11	16	HCS 6X12 4AWG(1-5/8)	84.58 84.75	1.0000	1.0000
L11	25	PL 0.75x4	84.58 84.75	1.0000	1.0000
L11	26	PL 0.75x4	84.58 84.75	1.0000	1.0000
L11	27	PL 0.75x4	84.58 - 84.75	1.0000	1.0000
L11	47	(Area) CCI-65FP-045100 (H)	84.58 84.75	1.0000	1.0000
L11	48	(Area) CCI-65FP-045100 (H)	84.58 84.75	1.0000	1.0000
L11	49	(Area) CCI-65FP-045100 (H)	84.58 - 84.75	1.0000	1.0000
L11	62	(Area) CCI-65FP-045125 (H)	84.58 84.75	1.0000	1.0000
L11	63	(Area) CCI-65FP-045125 (H)	84.58 - 84.75	1.0000	1.0000
L11	64	(Area) CCI-65FP-045125 (H)	84.58 - 84.75	1.0000	1.0000
L12	3	2" Flexible Conduit	84.33 - 84.58	1.0000	1.0000
L12	4	LDF6-50A(1-1/4)	84.33 - 84.58	1.0000	1.0000
L12	10	2" Flexible Conduit	84.33 - 84.58	1.0000	1.0000
L12	16	HCS 6X12 4AWG(1-5/8)	84.33 - 84.58	1.0000	1.0000
L12	25	PL 0.75x4	84.33 84.58	1.0000	1.0000
L12	26	PL 0.75x4	84.33 84.58	1.0000	1.0000
L12	27	PL 0.75x4	84.33 -	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L12	47	(Area) CCI-65FP-045100	84.58 84.33 -	1.0000	1.0000
L12	48	(H) (Area) CCI-65FP-045100	84.58 84.33 -	1.0000	1.0000
L12	49	(H) (Area) CCI-65FP-045100	84.58 84.33 -	1.0000	1.0000
L12	62	(H) (Area) CCI-65FP-045125	84.58 84.33 -	1.0000	1.0000
L12	63	(H) (Area) CCI-65FP-045125	84.58 84.33 -	1.0000	1.0000
L12	64	(H) (Area) CCI-65FP-045125 (H)	84.58 84.33 - 84.58	1.0000	1.0000
L13	3	2" Flexible Conduit	83.42 - 84.33	1.0000	1.0000
L13	4	LDF6-50A(1-1/4)	83.42 - 84.33	1.0000	1.0000
L13	10	2" Flexible Conduit	83.42 - 84.33	1.0000	1.0000
L13	16	HCS 6X12 4AWG(1-5/8)	83.42 - 84.33	1.0000	1.0000
L13	25	PL 0.75x4	83.42 - 84.33	1.0000	1.0000
L13	26	PL 0.75x4	83.42 - 84.33	1.0000	1.0000
L13	27	PL 0.75x4	83.42 - 84.33	1.0000	1.0000
L13	47	(Area) CCI-65FP-045100 (H)	83.42 - 84.33	1.0000	1.0000
L13	48	(Area) CCI-65FP-045100 (H)	83.42 - 84.33	1.0000	1.0000
L13	49	(Area) CCI-65FP-045100 (H)	83.42 - 84.33	1.0000	1.0000
L13	62	(Area) CCI-65FP-045125 (H)	83.42 - 84.33	1.0000	1.0000
L13	63	(Area) CCI-65FP-045125 (H)	83.42 - 84.33	1.0000	1.0000
L13	64	(Area) CCI-65FP-045125 (H)	83.42 - 84.33	1.0000	1.0000
L14	3	2" Flexible Conduit	83.17 83.42	1.0000	1.0000
L14	4	LDF6-50A(1-1/4)	83.17 83.42	1.0000	1.0000
L14	10	2" Flexible Conduit	83.17 83.42	1.0000	1.0000
L14	16	HCS 6X12 4AWG(1-5/8)	83.17 83.42	1.0000	1.0000
L14	25	PL 0.75x4	83.17 83.42	1.0000	1.0000
L14	26	PL 0.75x4	83.17 - 83.42	1.0000	1.0000
L14	27	PL 0.75x4	83.17 - 83.42	1.0000	1.0000
L14	47	(Area) CCI-65FP-045100 (H)	83.17 - 83.42	1.0000	1.0000
L14	48	(Area) CCI-65FP-045100 (H)	83.17 - 83.42	1.0000	1.0000
L14	49	(Area) CCI-65FP-045100 (H)	83.17 - 83.42	1.0000	1.0000
L14	62	(Area) CCI-65FP-045125 (H)	83.17 - 83.42	1.0000	1.0000
L14	63	(Area) CCI-65FP-045125 (H)	83.17 83.42	1.0000	1.0000
L14	64	(Area) CCI-65FP-045125 (H)	83.17 83.42	1.0000	1.0000
L15	3	2" Flexible Conduit	83.00 83.17	1.0000	1.0000
L15	4	LDF6-50A(1-1/4)	83.00 - 83.17	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L15	10	2" Flexible Conduit	83.00 - 83.17	1.0000	1.0000
L15	16	HCS 6X12 4AWG(1-5/8)	83.00 - 83.17	1.0000	1.0000
L15	25	PL 0.75x4	83.00 - 83.17	1.0000	1.0000
L15	26	PL 0.75x4	83.00 - 83.17	1.0000	1.0000
L15	27	PL 0.75x4	83.00 - 83.17	1.0000	1.0000
L15	47	(Area) CCI-65FP-045100 (H)	83.00 - 83.17	1.0000	1.0000
L15	48	(Area) CCI-65FP-045100 (H)	83.00 - 83.17	1.0000	1.0000
L15	49	(Area) CCI-65FP-045100 (H)	83.00 - 83.17	1.0000	1.0000
L15	62	(Area) CCI-65FP-045125 (H)	83.00 - 83.17	1.0000	1.0000
L15	63	(Area) CCI-65FP-045125 (H)	83.00 - 83.17	1.0000	1.0000
L15	64	(Area) CCI-65FP-045125 (H)	83.00 - 83.17	1.0000	1.0000
L16	3	2" Flexible Conduit	82.75 - 83.00	1.0000	1.0000
L16	4	LDF6-50A(1-1/4)	82.75 - 83.00	1.0000	1.0000
L16	10	2" Flexible Conduit	82.75 - 83.00	1.0000	1.0000
L16	16	HCS 6X12 4AWG(1-5/8)	82.75 - 83.00	1.0000	1.0000
L16	25	PL 0.75x4	82.75 - 83.00	1.0000	1.0000
L16	26	PL 0.75x4	82.75 - 83.00	1.0000	1.0000
L16	27	PL 0.75x4	82.75 - 83.00	1.0000	1.0000
L16	47	(Area) CCI-65FP-045100 (H)	82.75 - 83.00	1.0000	1.0000
L16	48	(Area) CCI-65FP-045100 (H)	82.75 - 83.00	1.0000	1.0000
L16	49	(Area) CCI-65FP-045100 (H)	82.75 - 83.00	1.0000	1.0000
L16	62	(Area) CCI-65FP-045125 (H)	82.75 - 83.00	1.0000	1.0000
L16	63	(Area) CCI-65FP-045125 (H)	82.75 83.00	1.0000	1.0000
L16	64	(Area) CCI-65FP-045125 (H)	82.75 - 83.00	1.0000	1.0000
L17	3	2" Flexible Conduit	77.75 82.75	1.0000	1.0000
L17	4	LDF6-50A(1-1/4)	77.75 82.75	1.0000	1.0000
L17	10	2" Flexible Conduit	77.75 - 82.75	1.0000	1.0000
L17	16	HCS 6X12 4AWG(1-5/8)	77.75 - 82.75	1.0000	1.0000
L17	25	PL 0.75x4	77.75 82.75	1.0000	1.0000
L17	26	PL 0.75x4	77.75 82.75	1.0000	1.0000
L17	27	PL 0.75x4	77.75 82.75	1.0000	1.0000
L17	47	(Area) CCI-65FP-045100 (H)	81.50 82.75	1.0000	1.0000
L17	48	(Area) CCI-65FP-045100 (H)	81.50 82.75	1.0000	1.0000
L17	49	(Area) CCI-65FP-045100 (H)	81.50 82.75	1.0000	1.0000
L17	62	(Area) CCI-65FP-045125		1.0000	1.0000

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	lce
L17	63	(H) (Area) CCI-65FP-045125	82.75 77.75 -	1.0000	1.0000
L17	64	(Area) CCI-65FP-045125	82.75 77.75	1.0000	1.0000
	1	(Area) CCI-65FF-045125 (H) CU12PSM9P8XXX(1-3/8)	82.75	1.0000	
L18			70.00 - 77.00		1.0000
L18	3	2" Flexible Conduit	70.00 77.75	1.0000	1.0000
L18	4	LDF6-50A(1-1/4)	70.00 - 77.75	1.0000	1.0000
L18	10	2" Flexible Conduit	70.00 - 77.75	1.0000	1.0000
L18	16	HCS 6X12 4AWG(1-5/8)	70.00 - 77.75	1.0000	1.0000
L18	25	PL 0.75x4	70.00 - 77.75	1.0000	1.0000
L18	26	PL 0.75x4	70.00 - 77.75	1.0000	1.0000
L18	27	PL 0.75x4	70.00 77.75	1.0000	1.0000
L18	62	(Area) CCI-65FP-045125 (H)	70.00 - 77.75	1.0000	1.0000
L18	63	(Area) CCI-65FP-045125	70.00 - 77.75	1.0000	1.0000
L18	64	(H) Area) CCI-65FP-045125((Area)	70.00 -	1.0000	1.0000
L19	1	(H) CU12PSM9P8XXX(1-3/8)	77.75 69.00 - 70.00	1.0000	1.0000
L19	3	2" Flexible Conduit	70.00 69.00 -	1.0000	1.0000
L19	4	LDF6-50A(1-1/4)	70.00 69.00 -	1.0000	1.0000
L19	10	2" Flexible Conduit	70.00 69.00 -	1.0000	1.0000
L19	16	HCS 6X12 4AWG(1-5/8)	70.00 69.00 -	1.0000	1.0000
L19	25	PL 0.75x4	70.00 69.00 -	1.0000	1.0000
L19	26	PL 0.75x4	70.00 69.00 -	1.0000	1.0000
L19	27	PL 0.75x4	70.00 69.00 -	1.0000	1.0000
L19	62	(Area) CCI-65FP-045125	70.00 69.00 -	1.0000	1.0000
L19	63	(H) (Area) CCI-65FP-045125	70.00 69.00 -	1.0000	1.0000
L19	64	(H) (Area) CCI-65FP-045125	70.00 69.00 -	1.0000	1.0000
L20	1	(H) CU12PSM9P8XXX(1-3/8)	70.00 67.08 -	1.0000	1.0000
L20	3	2" Flexible Conduit	69.00 67.08 -	1.0000	1.0000
L20	4	LDF6-50A(1-1/4)	69.00 67.08 -	1.0000	1.0000
L20	10	2" Flexible Conduit	69.00 67.08 -	1.0000	1.0000
L20	16	HCS 6X12 4AWG(1-5/8)	69.00 67.08 -	1.0000	1.0000
L20	22	PL 0.75x4	69.00 67.08 -	1.0000	1.0000
L20	22	PL 0.75x4	68.25 67.08 -	1.0000	1.0000
			68.25		
L20	24	PL 0.75x4	67.08 - 68.25	1.0000	1.0000
L20	25	PL 0.75x4	67.08 - 69.00	1.0000	1.0000
L20	26	PL 0.75x4	67.08 - 69.00	1.0000	1.0000
		I	50100		

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
L20	27	PL 0.75x4	67.08 - 69.00	1.0000	1.0000
L20	62	(Area) CCI-65FP-045125 (H)	67.08 - 69.00	1.0000	1.0000
L20	63	(Area) CCI-65FP-045125	67.08 -	1.0000	1.0000
L20	64	(H) (Area) CCI-65FP-045125	69.00 67.08 -	1.0000	1.0000
L21	1	(H) CU12PSM9P8XXX(1-3/8)	69.00 66.83 - 67.08	1.0000	1.0000
L21	3	2" Flexible Conduit	66.83 - 67.08	1.0000	1.0000
L21	4	LDF6-50A(1-1/4)	66.83 - 67.08	1.0000	1.0000
L21	10	2" Flexible Conduit	66.83 - 67.08	1.0000	1.0000
L21	16	HCS 6X12 4AWG(1-5/8)	66.83 - 67.08	1.0000	1.0000
L21	22	PL 0.75x4	66.83 - 67.08	1.0000	1.0000
L21	23	PL 0.75x4	66.83 - 67.08	1.0000	1.0000
L21	24	PL 0.75x4	66.83 - 67.08	1.0000	1.0000
L21	25	PL 0.75x4	66.83 - 67.08	1.0000	1.0000
L21	26	PL 0.75x4	66.83 - 67.08	1.0000	1.0000
L21	27	PL 0.75x4	66.83 - 67.08	1.0000	1.0000
L21	62	(Area) CCI-65FP-045125 (H)	66.83 - 67.08	1.0000	1.0000
L21	63	(Area) CCI-65FP-045125 (H)	66.83 - 67.08	1.0000	1.0000
L21	64	(Area) CCI-65FP-045125 (H)	66.83 - 67.08	1.0000	1.0000
L22	1	CU12PSM9P8XXX(1-3/8)	64.08 - 66.83	1.0000	1.0000
L22	3	2" Flexible Conduit	64.08 - 66.83	1.0000	1.0000
L22	4	LDF6-50A(1-1/4)	64.08 - 66.83	1.0000	1.0000
L22	10	2" Flexible Conduit	64.08 - 66.83	1.0000	1.0000
L22	16	HCS 6X12 4AWG(1-5/8)	64.08 - 66.83	1.0000	1.0000
L22	22	PL 0.75x4	64.08 - 66.83	1.0000	1.0000
L22	23	PL 0.75x4	64.08 - 66.83	1.0000	1.0000
L22	24	PL 0.75x4	64.08 - 66.83	1.0000	1.0000
L22	25	PL 0.75x4	65.83 - 66.83	1.0000	1.0000
L22	26	PL 0.75x4	65.83 - 66.83	1.0000	1.0000
L22	27	PL 0.75x4	65.83 - 66.83	1.0000	1.0000
L22	43	(Area) CCI-65FP-045100 (H)	64.08 - 66.08	1.0000	1.0000
L22	44	(Area) CCI-65FP-045100 (H)	64.08 - 66.08	1.0000	1.0000
L22	45	(Area) CCI-65FP-045100 (H)	64.08 - 64.50	1.0000	1.0000
L22	62	(Area) CCI-65FP-045125 (H)	64.08 - 66.83	1.0000	1.0000
L22	63	(Area) CCI-65FP-045125 (H)	64.08 - 66.83	1.0000	1.0000
L22	64	(Area) CCI-65FP-045125	64.08 -	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L23	1	(H) CU12PSM9P8XXX(1-3/8)	66.83 63.83 -	1.0000	1.0000
L23	3	2" Flexible Conduit	64.08 63.83 -	1.0000	1.0000
L23	4	LDF6-50A(1-1/4)	64.08 63.83 - 64.08	1.0000	1.0000
L23	10	2" Flexible Conduit	63.83 -	1.0000	1.0000
L23	16	HCS 6X12 4AWG(1-5/8)	64.08 63.83 -	1.0000	1.0000
L23	22	PL 0.75x4	64.08 63.83 - 64.08	1.0000	1.0000
L23	23	PL 0.75x4	63.83 - 64.08	1.0000	1.0000
L23	24	PL 0.75x4	63.83 - 64.08	1.0000	1.0000
L23	43	(Area) CCI-65FP-045100 (H)	63.83 - 64.08	1.0000	1.0000
L23	44	(Area) CCI-65FP-045100 (H)	63.83 - 64.08	1.0000	1.0000
L23	45	(Area) CCI-65FP-045100 (H)	63.83 64.08	1.0000	1.0000
L23	62	(Area) CCI-65FP-045125 (H)	63.83 - 64.08	1.0000	1.0000
L23	63	(Area) CCI-65FP-045125 (H)	63.83 - 64.08	1.0000	1.0000
L23	64	(Area) CCI-65FP-045125 (H)	63.83 - 64.08	1.0000	1.0000
L24	1	CU12PSM9P8XXX(1-3/8)	62.50 - 63.83	1.0000	1.0000
L24	3	2" Flexible Conduit	62.50 - 63.83	1.0000	1.0000
L24	4	LDF6-50A(1-1/4)	62.50 - 63.83	1.0000	1.0000
L24	10	2" Flexible Conduit	62.50 - 63.83	1.0000	1.0000
L24	16	HCS 6X12 4AWG(1-5/8)	62.50 63.83	1.0000	1.0000
L24	22	PL 0.75x4	62.50 - 63.83	1.0000	1.0000
L24	23	PL 0.75x4	62.50 - 63.83	1.0000	1.0000
L24	24	PL 0.75x4	62.50 - 63.83	1.0000	1.0000
L24	43	(Area) CCI-65FP-045100 (H)	62.50 - 63.83	1.0000	1.0000
L24	44	(Area) CCI-65FP-045100 (H)	62.50 63.83	1.0000	1.0000
L24	45	(Area) CCI-65FP-045100 (H)	62.50 - 63.83	1.0000	1.0000
L24	62	(Area) CCI-65FP-045125 (H)	62.50 - 63.83	1.0000	1.0000
L24	63	(Area) CCI-65FP-045125 (H)	62.50 - 63.83	1.0000	1.0000
L24	64	(Area) CCI-65FP-045125 (H)	62.50 - 63.83	1.0000	1.0000
L25	1	CU12PSM9P8XXX(1-3/8)	62.25 - 62.50	1.0000	1.0000
L25 L25	3	2" Flexible Conduit LDF6-50A(1-1/4)	62.25 - 62.50 62.25 -	1.0000 1.0000	1.0000 1.0000
L25	4 10	2" Flexible Conduit	62.25 62.50 62.25 -	1.0000	1.0000
L25	16	HCS 6X12 4AWG(1-5/8)	62.25 - 62.50 62.25 -	1.0000	1.0000
L25	22	PL 0.75x4	62.25 - 62.50 62.25 -	1.0000	1.0000
	22	1 2 0.7 324	62.50	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L25	23	PL 0.75x4	62.25 -	1.0000	1.0000
L25	24	PL 0.75x4	62.50 62.25 - 62.50	1.0000	1.0000
L25	43	(Area) CCI-65FP-045100	62.25 -	1.0000	1.0000
L25	44	(H) (Area) CCI-65FP-045100 (H)	62.50 62.25 - 62.50	1.0000	1.0000
L25	45	(Area) CCI-65FP-045100 (H)	62.25 - 62.50	1.0000	1.0000
L25	62	(Area) CCI-65FP-045125 (H)	62.25 - 62.50	1.0000	1.0000
L25	63	(Area) CCI-65FP-045125 (H)	62.25 - 62.50	1.0000	1.0000
L25	64	(Area) CCI-65FP-045125 (H)	62.25 - 62.50	1.0000	1.0000
L26	1	CU12PSM9P8XXX(1-3)8)	57.25 - 62.25	1.0000	1.0000
L26	3	2" Flexible Conduit	57.25 - 62.25	1.0000	1.0000
L26	4	LDF6-50A(1-1/4)	57.25 - 62.25	1.0000	1.0000
L26	10	2" Flexible Conduit	57.25 - 62.25	1.0000	1.0000
L26	16	HCS 6X12 4AWG(1-5/8)	57.25 - 62.25	1.0000	1.0000
L26	22	PL 0.75x4	57.25 - 62.25	1.0000	1.0000
L26	23	PL 0.75x4	57.25 - 62.25	1.0000	1.0000
L26	24	PL 0.75x4	57.25 - 62.25	1.0000	1.0000
L26	43	(Area) CCI-65FP-045100 (H)	57.25 - 62.25	1.0000	1.0000
L26	44	(Area) CCI-65FP-045100 (H)	57.25 - 62.25	1.0000	1.0000
L26	45	(Area) CCI-65FP-045100 (H)	57.25 - 62.25	1.0000	1.0000
L26	62	(Area) CCI-65FP-045125 (H)	57.25 - 62.25	1.0000	1.0000
L26	63	(Area) CCI-65FP-045125 (H)	57.25 - 62.25	1.0000	1.0000
L26	64	(Area) CCI-65FP-045125 (H)	57.25 - 62.25	1.0000	1.0000
L27	1	CU12PSM9P8XXX(1-3/8)	53.50 - 57.25	1.0000	1.0000
L27	3	2" Flexible Conduit	53.50 - 57.25	1.0000	1.0000
L27	4	LDF6-50A(1-1/4)	53.50 - 57.25	1.0000	1.0000
L27	10	2" Flexible Conduit	53.50 - 57.25	1.0000	1.0000
L27	16	HCS 6X12 4AWG(1-5/8)	53.50 - 57.25	1.0000	1.0000
L27	22	PL 0.75x4	53.50 - 57.25	1.0000	1.0000
L27	23	PL 0.75x4	53.50 - 57.25	1.0000	1.0000
L27	24	PL 0.75x4	53.50 - 57.25	1.0000	1.0000
L27	40	(Area) CCI-65FP-060100 (H)	53.50 - 56.00	1.0000	1.0000
L27	41	(Area) CCI-65FP-060100 (H)	53.50 - 56.00	1.0000	1.0000
L27	43	(Area) CCI-65FP-045100 (H)	56.00 - 57.25	1.0000	1.0000
L27	44	(Area) CCI-65FP-045100 (H)	56.00 - 57.25	1.0000	1.0000
L27	45			1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	Ka No Ice	K _a Ice
L27	59	(H) (Area) CCI-65FP-060100	57.25 53.50 -	1.0000	1.0000
L27	60	(H) (Area) CCI-65FP-060100	55.08 53.50 -	1.0000	1.0000
L27	61	(H) (Area) CCI-65FP-060100	55.08 53.50 -	1.0000	1.0000
L27	62	(H) (Area) CCI-65FP-045125 (H)	55.08 - 55.08 57.25	1.0000	1.0000
L27	63	(F1) (Area) CCI-65FP-045125 (H)	55.08 - 57.25	1.0000	1.0000
L27	64	(Area) CCI-65FP-045125 (H)	55.08 - 57.25	1.0000	1.0000
L28	1	CU12PSM9P8XXX(1-3/8)	53.25 - 53.50	1.0000	1.0000
L28	3	2" Flexible Conduit	53.25 - 53.50	1.0000	1.0000
L28	4	LDF6-50A(1-1/4)	53.25 - 53.50	1.0000	1.0000
L28	10	2" Flexible Conduit	53.25 - 53.50	1.0000	1.0000
L28	16	HCS 6X12 4AWG(1-5/8)	53.25 - 53.50	1.0000	1.0000
L28	22	PL 0.75x4	53.25 - 53.50	1.0000	1.0000
L28	23	PL 0.75x4	53.25 - 53.50	1.0000	1.0000
L28	24	PL 0.75x4	53.25 - 53.50	1.0000	1.0000
L28	40	(Area) CCI-65FP-060100 (H)	53.25 - 53.50	1.0000	1.0000
L28	41	(Area) CCI-65FP-060100 (H)	53.25 - 53.50	1.0000	1.0000
L28	45	(Area) CCI-65FP-045100 (H)	53.25 - 53.50	1.0000	1.0000
L28	59	(Area) CCI-65FP-060100 (H)	53.25 - 53.50	1.0000	1.0000
L28	60	(Area) CCI-65FP-060100 (H)	53.25 - 53.50	1.0000	1.0000
L28	61	(Area) CCI-65FP-060100 (H)	53.25 - 53.50	1.0000	1.0000
L29	1	CU12PSM9P8XXX(1-3/8)	52.58 - 53.25	1.0000	1.0000
L29	3	2" Flexible Conduit	52.58 - 53.25	1.0000	1.0000
L29	4	LDF6-50A(1-1/4)	52.58 - 53.25	1.0000	1.0000
L29	10	2" Flexible Conduit	52.58 - 53.25	1.0000	1.0000
L29	16	HCS 6X12 4AWG(1-5/8)	52.58 - 53.25	1.0000	1.0000
L29	22	PL 0.75x4	52.58 - 53.25	1.0000	1.0000
L29	23 24	PL 0.75x4	52.58 - 53.25 52.58	1.0000	1.0000
L29 L29	24 40	PL 0.75x4 (Area) CCI-65FP-060100	52.58 - 53.25 52.58 -	1.0000 1.0000	1.0000 1.0000
L29 L29	40	(Area) CCI-65FP-060100 (H) (Area) CCI-65FP-060100	52.58 - 53.25 52.58 -	1.0000	1.0000
L29	41	(Area) CCI-65FP-045100 (Area) CCI-65FP-045100	53.25 52.58 -	1.0000	1.0000
L29	59	(Area) CCI-65FP-060100 (Area) CCI-65FP-060100	53.25 52.58 -	1.0000	1.0000
L29	60	(Area) CCI-65FP-060100	53.25 52.58 -	1.0000	1.0000
L29	61	(Area) CCI-65FP-060100	53.25 52.58 -	1.0000	1.0000
		(H)			

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L30	1	CU12PSM9P8XXX(1-3/8)	52.33 -	1.0000	1.0000
L30	3	2" Flexible Conduit	52.58 52.33 - 52.58	1.0000	1.0000
L30	4	LDF6-50A(1-1/4)	52.33 - 52.58	1.0000	1.0000
L30	10	2" Flexible Conduit	52.33 - 52.58	1.0000	1.0000
L30	16	HCS 6X12 4AWG(1-5/8)	52.33 - 52.58	1.0000	1.0000
L30	22	PL 0.75x4	52.33 - 52.58	1.0000	1.0000
L30	23	PL 0.75x4	52.33 - 52.58	1.0000	1.0000
L30	24	PL 0.75x4	52.33 - 52.58	1.0000	1.0000
L30	40	(Area) CCI-65FP-060100 (H)	52.33 - 52.58	1.0000	1.0000
L30	41	(Area) CCI-65FP-060100 (H)	52.33 - 52.58	1.0000	1.0000
L30	45	(Area) CCI-65FP-045100 (H)	52.33 - 52.58	1.0000	1.0000
L30	59	(Area) CCI-65FP-060100 (H)	52.33 - 52.58	1.0000	1.0000
L30	60	(Area) CCI-65FP-060100 (H)	52.33 - 52.58	1.0000	1.0000
L30	61	(Area) CCI-65FP-060100 (H)	52.33 - 52.58	1.0000	1.0000
L31	1	CU12PSM9P8XXX(1-3/8)	47.33 - 52.33	1.0000	1.0000
L31	3	2" Flexible Conduit	47.33 - 52.33	1.0000	1.0000
L31	4	LDF6-50A(1-1/4)	47.33 - 52.33	1.0000	1.0000
L31	10	2" Flexible Conduit	47.33 - 52.33	1.0000	1.0000
L31	16	HCS 6X12 4AWG(1-5/8)	47.33 - 52.33	1.0000	1.0000
L31	22	PL 0.75x4	47.33 - 52.33	1.0000	1.0000
L31	23	PL 0.75x4	47.33 - 52.33	1.0000	1.0000
L31	24	PL 0.75x4	47.33 - 52.33	1.0000	1.0000
L31	40	(Area) CCI-65FP-060100 (H)	47.33 - 52.33	1.0000	1.0000
L31	41	(Area) CCI-65FP-060100 (H)	47.33 - 52.33	1.0000	1.0000
L31	45	(Area) CCI-65FP-045100 (H)	47.33 - 52.33	1.0000	1.0000
L31	59	(Area) CCI-65FP-060100 (H)	47.33 - 52.33	1.0000	1.0000
L31	60	(Area) CCI-65FP-060100 (H)	47.33 - 52.33	1.0000	1.0000
L31	61	(Area) CCI-65FP-060100 (H)	47.33 - 52.33	1.0000	1.0000
L32	1	CU12PSM9P8XXX(1-3/8)	44.58 - 47.33	1.0000	1.0000
L32	3	2" Flexible Conduit	44.58 - 47.33	1.0000	1.0000
L32	4	LDF6-50A(1-1/4)	44.58 - 47.33	1.0000	1.0000
L32	10	2" Flexible Conduit	44.58 - 47.33	1.0000	1.0000
L32	16	HCS 6X12 4AWG(1-5/8)	44.58 - 47.33	1.0000	1.0000
L32	19	PL 0.75x4	44.58 - 45.83	1.0000	1.0000
L32	20	PL 0.75x4	44.58 -	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment	K _a No Ice	K _a Ice
			<i>Elev.</i> 45.83		
L32	21	PL 0.75x4	44.58 - 45.83	1.0000	1.0000
L32	22	PL 0.75x4	44.58 - 47.33	1.0000	1.0000
L32	23	PL 0.75x4	44.58 -	1.0000	1.0000
L32	24	PL 0.75x4	47.33 44.58 - 47.33	1.0000	1.0000
L32	40	(Area) CCI-65FP-060100 (H)	44.58 - 47.33	1.0000	1.0000
L32	41	(Area) CCI-65FP-060100 (H)	44.58 - 47.33	1.0000	1.0000
L32	45	(Area) CCI-65FP-045100 (H)	44.58 - 47.33	1.0000	1.0000
L32	59	(Area) CCI-65FP-060100 (H)	44.58 - 47.33	1.0000	1.0000
L32	60	(II) (Area) CCI-65FP-060100 (H)	44.58 - 47.33	1.0000	1.0000
L32	61	(Area) CCI-65FP-060100	44.58 -	1.0000	1.0000
L33	1	(H) CU12PSM9P8XXX(1-3/8)	47.33 44.33 - 44.58	1.0000	1.0000
L33	3	2" Flexible Conduit	44.58 44.33 - 44.58	1.0000	1.0000
L33	4	LDF6-50A(1-1/4)	44.38 44.33 - 44.58	1.0000	1.0000
L33	10	2" Flexible Conduit	44.38 44.33 - 44.58	1.0000	1.0000
L33	16	HCS 6X12 4AWG(1-5/8)	44.33 -	1.0000	1.0000
L33	19	PL 0.75x4	44.58 44.33 - 44.58	1.0000	1.0000
L33	20	PL 0.75x4	44.38 44.33 - 44.58	1.0000	1.0000
L33	21	PL 0.75x4	44.33 -	1.0000	1.0000
L33	22	PL 0.75x4	44.58 44.33 -	1.0000	1.0000
L33	23	PL 0.75x4	44.58 44.33 - 44.58	1.0000	1.0000
L33	24	PL 0.75x4	44.33 -	1.0000	1.0000
L33	36	(Area) CCI-65FP-060100	44.58 44.33 -	1.0000	1.0000
L33	40	(H) (Area) CCI-65FP-060100	44.42 44.33 -	1.0000	1.0000
L33	41	(H) (Area) CCI-65FP-060100 (H)	44.58 44.33 - 44.58	1.0000	1.0000
L33	45	(H) (Area) CCI-65FP-045100 (H)	44.58 44.50 - 44.58	1.0000	1.0000
L33	59	(H) (Area) CCI-65FP-060100 (H)	44.58 44.33 - 44.58	1.0000	1.0000
L33	60	(H) (Area) CCI-65FP-060100 (H)	44.58 44.33 -	1.0000	1.0000
L33	61	(H) (Area) CCI-65FP-060100 (ایا)	44.58 44.33 -	1.0000	1.0000
L34	1	(H) CU12PSM9P8XXX(1-3/8)	44.58 41.92 - 44.33	1.0000	1.0000
L34	3	2" Flexible Conduit	44.33 41.92 - 44.33	1.0000	1.0000
L34	4	LDF6-50A(1-1/4)	44.33 41.92 - 44.33	1.0000	1.0000
L34	10	2" Flexible Conduit	44.33 41.92 - 44.33	1.0000	1.0000
L34	16	HCS 6X12 4AWG(1-5/8)	44.33 41.92 - 44.33	1.0000	1.0000
L34	19	PL 0.75x4	44.33 41.92 44.33	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment	K _a No Ice	K _a Ice
			Ĕlev.		
L34	20	PL 0.75x4	41.92 - 44.33	1.0000	1.0000
L34	21	PL 0.75x4	41.92 - 44.33	1.0000	1.0000
L34	22	PL 0.75x4	43.25 - 44.33	1.0000	1.0000
L34	23	PL 0.75x4	43.25 - 44.33	1.0000	1.0000
L34	24	PL 0.75x4	43.25 - 44.33	1.0000	1.0000
L34 L34	36 40	(Area) CCI-65FP-060100 (H) (Area) CCI-65FP-060100	41.92 - 44.33 41.92 -	1.0000 1.0000	1.0000 1.0000
L34	40	(Area) CCI-65FP-060100 (Area) CCI-65FP-060100	41.92 44.33 41.92 -	1.0000	1.0000
L34	59	(Area) CCI-65FP-060100 (Area) CCI-65FP-060100	44.33 41.92 -	1.0000	1.0000
L34	60	(Area) CCI-65FP-060100	44.33 41.92 -	1.0000	1.0000
L34	61	(Area) CCI-65FP-060100	44.33 41.92 -	1.0000	1.0000
L35		(H) CU12PSM9P8XXX(1-3/8)	44.33 41.67	1.0000	1.0000
L35	3	2" Flexible Conduit	41.92 41.67 -	1.0000	1.0000
L35	4	LDF6-50A(1-1/4)	41.92 41.67 -	1.0000	1.0000
L35	10	2" Flexible Conduit	41.92 41.67 -	1.0000	1.0000
L35	16	HCS 6X12 4AWG(1-5/8)	41.92 41.67 -	1.0000	1.0000
L35	19	PL 0.75x4	41.92 41.67 -	1.0000	1.0000
L35	20	PL 0.75x4	41.92 41.67 -	1.0000	1.0000
L35	21	PL 0.75x4	41.92 41.67 -	1.0000	1.0000
L35	36	(Area) CCI-65FP-060100	41.92 41.67	1.0000	1.0000
L35	40	(H) (Area) CCI-65FP-060100	41.92 41.67 -	1.0000	1.0000
L35	41	(H) (Area) CCI-65FP-060100	41.92 41.67 41.92	1.0000	1.0000
L35	59	(H) (Area) CCI-65FP-060100 (H)	41.92 41.67 - 41.92	1.0000	1.0000
L35	60	(II) (Area) CCI-65FP-060100 (H)	41.67 41.67 41.92	1.0000	1.0000
L35	61	(17) (Area) CCI-65FP-060100 (H)	41.67 41.67 41.92	1.0000	1.0000
L36	1	CU12PSM9P8XXX(1-3/8)	34.08 41.67	1.0000	1.0000
L36	3	2" Flexible Conduit	34.08 - 41.67	1.0000	1.0000
L36	4	LDF6-50A(1-1/4)	34.08 - 41.67	1.0000	1.0000
L36	10	2" Flexible Conduit	34.08 - 41.67	1.0000	1.0000
L36	16	HCS 6X12 4AWG(1-5/8)	34.08 - 41.67	1.0000	1.0000
L36		PL 0.75x4	34.08 - 41.67	1.0000	1.0000
L36		PL 0.75x4	34.08 - 41.67	1.0000	1.0000
L36		PL 0.75x4	34.08 - 41.67	1.0000	1.0000
L36		(Area) CCI-65FP-060100 (H)	34.08 - 41.67	1.0000	1.0000
L36	40	(Area) CCI-65FP-060100	34.08 -	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment	K₂ No Ice	K _a Ice
		(H)	<i>Elev.</i> 41.67		
L36	41	(H) (Area) CCI-65FP-060100 (H)	41.67 34.08 41.67	1.0000	1.0000
L36	59	(IT) (Area) CCI-65FP-060100 (H)	34.08 - 41.67	1.0000	1.0000
L36	60	(Area) CCI-65FP-060100 (H)	34.08 - 41.67	1.0000	1.0000
L36	61	(Area) CCI-65FP-060100 (H)	34.08 - 41.67	1.0000	1.0000
L37	1	CU12PSM9P8XXX(1-3)8)	34.00 - 34.08	1.0000	1.0000
L37	3	2" Flexible Conduit	34.00 - 34.08	1.0000	1.0000
L37	4	LDF6-50A(1-1/4)	34.00 - 34.08	1.0000	1.0000
L37	10	2" Flexible Conduit	34.00 - 34.08	1.0000	1.0000
L37	16	HCS 6X12 4AWG(1-5/8)	34.00 - 34.08	1.0000	1.0000
L37	19	PL 0.75x4	34.00 - 34.08	1.0000	1.0000
L37	20	PL 0.75x4	34.00 - 34.08	1.0000	1.0000
L37	21	PL 0.75x4	34.00 - 34.08	1.0000	1.0000
L37	36	(Area) CCI-65FP-060100 (H)	34.00 - 34.08	1.0000	1.0000
L37	40	(Area) CCI-65FP-060100 (H)	34.00 - 34.08	1.0000	1.0000
L37	41	(Area) CCI-65FP-060100 (H)	34.00 - 34.08	1.0000	1.0000
L37	59	(Area) CCI-65FP-060100 (H)	34.00 - 34.08	1.0000	1.0000
L37	60	(Area) CCI-65FP-060100 (H)	34.00 - 34.08	1.0000	1.0000
L37	61	(Area) CCI-65FP-060100 (H)	34.00 - 34.08	1.0000	1.0000
L38	1	CU12PSM9P8XXX(1-3/8)	29.00 - 34.00	1.0000	1.0000
L38	3	2" Flexible Conduit	29.00 - 34.00	1.0000	1.0000
L38 L38	4 10	LDF6-50A(1-1/4) 2" Flexible Conduit	29.00 - 34.00 29.00 -	1.0000 1.0000	1.0000 1.0000
L38	16	HCS 6X12 4AWG(1-5/8)	29.00 - 34.00 29.00 -	1.0000	1.0000
L38	10	PL 0.75x4	29.00 - 34.00 29.00 -	1.0000	1.0000
L38	20	PL 0.75x4	29.00 - 34.00 29.00 -	1.0000	1.0000
L38	20	PL 0.75x4	34.00 29.00 -	1.0000	1.0000
L38	36	(Area) CCI-65FP-060100	34.00 29.00 -	1.0000	1.0000
L38	37	(Area) CCI-65FP-060100	34.00 29.00 -	1.0000	1.0000
L38	38	(Area) CCI-65FP-060100	29.42 29.00 -	1.0000	1.0000
L38	40	(Area) CCI-65FP-060100	29.42 29.00 -	1.0000	1.0000
L38	41	(H) (Area) CCI-65FP-060100	34.00 29.00 -	1.0000	1.0000
L38	59	(H) (Area) CCI-65FP-060100	34.00 29.00 -	1.0000	1.0000
L38	60	(H) (Area) CCI-65FP-060100	34.00 29.00 -	1.0000	1.0000
L38	61	(H) (Area) CCI-65FP-060100	34.00 29.00 -	1.0000	1.0000
1		(H)	34.00	l	

Tower Section	Feed Line Record No.	Description	Feed Line Segment	K₂ No Ice	K _a Ice
		0111050110501/0//// 0/0	Ĕlev.		
L39 L39	1	CU12PSM9P8XXX(1-3/8) 2" Flexible Conduit	26.92 - 29.00 26.92 -	1.0000 1.0000	1.0000 1.0000
L39	4	LDF6-50A(1-1/4)	20.92 - 29.00 26.92 -	1.0000	1.0000
L39	10	2" Flexible Conduit	29.00 26.92 -	1.0000	1.0000
L39	16	HCS 6X12 4AWG(1-5/8)	29.00 26.92 -	1.0000	1.0000
L39	19	PL 0.75x4	29.00 26.92 -	1.0000	1.0000
L39	20	PL 0.75x4	29.00 26.92 -	1.0000	1.0000
L39	21	PL 0.75x4	29.00 26.92 - 29.00	1.0000	1.0000
L39	36	(Area) CCI-65FP-060100 (H)	26.92 - 29.00	1.0000	1.0000
L39	37	(Area) CCI-65FP-060100 (H)	26.92 - 29.00	1.0000	1.0000
L39	38	(Area) CCI-65FP-060100 (H)	26.92 - 29.00	1.0000	1.0000
L39	40	(Area) CCI-65FP-060100 (H)	26.92 - 29.00	1.0000	1.0000
L39	41	(Area) CCI-65FP-060100 (H)	26.92 - 29.00	1.0000	1.0000
L39	59	(Area) CCI-65FP-060100 (H)	26.92 - 29.00	1.0000	1.0000
L39	60	(Area) CCI-65FP-060100 (H)	26.92 - 29.00	1.0000	1.0000
L39 L40	61	(Area) CCI-65FP-060100 (H)	26.92 - 29.00	1.0000 1.0000	1.0000
L40 L40	1	CU12PSM9P8XXX(1-3/8) 2" Flexible Conduit	26.67 - 26.92 26.67 -	1.0000	1.0000 1.0000
L40	4	LDF6-50A(1-1/4)	26.92 26.92 26.67 -	1.0000	1.0000
L40	10	2" Flexible Conduit	26.92 26.67 -	1.0000	1.0000
L40	16	HCS 6X12 4AWG(1-5/8)	26.92 26.67 -	1.0000	1.0000
L40	19	PL 0.75x4	26.92 26.67 -	1.0000	1.0000
L40	20	PL 0.75x4	26.92 26.67 -	1.0000	1.0000
L40	21	PL 0.75x4	26.92 26.67 -	1.0000	1.0000
L40	36	(Area) CCI-65FP-060100	26.92 26.67 - 26.92	1.0000	1.0000
L40	37	(H) (Area) CCI-65FP-060100 (H)	26.67 26.92	1.0000	1.0000
L40	38	(H) (Area) CCI-65FP-060100 (H)	26.67 26.67 26.92	1.0000	1.0000
L40	40	(Area) CCI-65FP-060100 (H)	26.67 - 26.92	1.0000	1.0000
L40	41	(Area) CCI-65FP-060100 (H)	26.67 - 26.92	1.0000	1.0000
L40	59	(Area) CCI-65FP-060100 (H)	26.67 - 26.92	1.0000	1.0000
L40	60	(Area) CCI-65FP-060100 (H)	26.67 - 26.92	1.0000	1.0000
L40	61	(Area) CCI-65FP-060100 (H)	26.67 - 26.92	1.0000	1.0000
L41	1	CU12PSM9P8XXX(1-3/8)	21.67 - 26.67	1.0000	1.0000
L41	3	2" Flexible Conduit	21.67 - 26.67	1.0000	1.0000
L41	4	LDF6-50A(1-1/4)	21.67 -	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L41	10	2" Flexible Conduit	26.67 21.67 -	1.0000	1.0000
L41	16	HCS 6X12 4AWG(1-5/8)	26.67 21.67 -	1.0000	1.0000
L41	19	PL 0.75x4	26.67 21.67 -	1.0000	1.0000
L41	20	PL 0.75x4	26.67 21.67 -	1.0000	1.0000
L41	21	PL 0.75x4	26.67 21.67 -	1.0000	1.0000
L41	36	(Area) CCI-65FP-060100 (H)	26.67 21.67 - 26.67	1.0000	1.0000
L41	37	(II) (Area) CCI-65FP-060100 (H)	20.07 21.67 - 26.67	1.0000	1.0000
L41	38	(Area) CCI-65FP-060100 (H)	20.07 21.67 - 26.67	1.0000	1.0000
L41	40	(Area) CCI-65FP-060100 (H)	20.07 21.67 - 26.67	1.0000	1.0000
L41	41	(Area) CCI-65FP-060100 (H)	21.67 - 26.67	1.0000	1.0000
L41	59	(Area) CCI-65FP-060100 (H)	20.07 21.67 - 26.67	1.0000	1.0000
L41	60	(Area) CCI-65FP-060100 (H)	21.67 - 26.67	1.0000	1.0000
L41	61	(Area) CCI-65FP-060100 (H)	21.67 - 26.67	1.0000	1.0000
L42	1	CU12PSM9P8XXX(1-3)8)	18.00 - 21.67	1.0000	1.0000
L42	3	2" Flexible Conduit	18.00 - 21.67	1.0000	1.0000
L42	4	LDF6-50A(1-1/4)	18.00 - 21.67	1.0000	1.0000
L42	10	2" Flexible Conduit	18.00 - 21.67	1.0000	1.0000
L42	16	HCS 6X12 4AWG(1-5/8)	18.00 - 21.67	1.0000	1.0000
L42	19	PL 0.75x4	18.00 - 21.67	1.0000	1.0000
L42	20	PL 0.75x4	18.00 - 21.67	1.0000	1.0000
L42	21	PL 0.75x4	18.00 - 21.67	1.0000	1.0000
L42	33	(Area) CCI-65FP-060100 (H)	18.00 - 20.75	1.0000	1.0000
L42	34	(Area) CCI-65FP-060100 (H)	18.00 - 20.75	1.0000	1.0000
L42	35	(Area) CCI-65FP-060100 (H)	18.00 - 20.75	1.0000	1.0000
L42	36	(Area) CCI-65FP-060100 (H)	20.75 - 21.67	1.0000	1.0000
L42	37	(Area) CCI-65FP-060100 (H)	20.75 - 21.67	1.0000	1.0000
L42	38	(Area) CCI-65FP-060100 (H)	20.75 - 21.67	1.0000	1.0000
L42	40	(Area) CCI-65FP-060100 (H)	21.00 - 21.67	1.0000	1.0000
L42	41	(Area) CCI-65FP-060100 (H)	21.00 - 21.67	1.0000	1.0000
L42	52	(Area) CCI-65FP-065125 (H)	18.00 - 20.75	1.0000	1.0000
L42	53	(Area) CCI-65FP-065125 (H)	18.00 20.75	1.0000	1.0000
L42	54	(Area) CCI-65FP-065125 (H)	18.00 20.75	1.0000	1.0000
L42	56	(Area) CCI-65FP-060100 (H)	18.00 - 20.00	1.0000	1.0000
L42	57	(Area) CCI-65FP-060100 (H)	18.00 - 20.00	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K₂ No Ice	K _a Ice
L42	58	(Area) CCI-65FP-060100	18.00 -	1.0000	1.0000
L42	59	(H) (Area) CCI-65FP-060100 (H)	20.00 20.00 - 21.67	1.0000	1.0000
L42	60	(Area) CCI-65FP-060100	20.00 -	1.0000	1.0000
L42	61	(H) (Area) CCI-65FP-060100 (H)	21.67 20.00 - 21.67	1.0000	1.0000
L43	1	CU12PSM9P8XXX(1-3/8)	17.75 - 18.00	1.0000	1.0000
L43	3	2" Flexible Conduit	17.75 - 18.00	1.0000	1.0000
L43	4	LDF6-50A(1-1/4)	17.75 - 18.00	1.0000	1.0000
L43	10	2" Flexible Conduit	17.75 - 18.00	1.0000	1.0000
L43	16	HCS 6X12 4AWG(1-5/8)	17.75 - 18.00	1.0000	1.0000
L43 L43	19 20	PL 0.75x4 PL 0.75x4	17.75 - 18.00 17.75 -	1.0000 1.0000	1.0000 1.0000
L43 L43	20	PL 0.75x4 PL 0.75x4	17.75 18.00 17.75	1.0000	1.0000
L43	33	(Area) CCI-65FP-060100	18.00 17.75	1.0000	1.0000
L43	34	(Area) CCI-65FP-060100	18.00 17.75	1.0000	1.0000
L43	35	(H) (Area) CCI-65FP-060100	18.00 17.75	1.0000	1.0000
L43	52	(H) (Area) CCI-65FP-065125	18.00 17.75 -	1.0000	1.0000
L43	53	(H) (Area) CCI-65FP-065125	18.00 17.75 -	1.0000	1.0000
L43	54	(H) (Area) CCI-65FP-065125	18.00 17.75 -	1.0000	1.0000
L43	56	(H) (Area) CCI-65FP-060100	18.00 17.75 -	1.0000	1.0000
L43	57	(H) (Area) CCI-65FP-060100	18.00 17.75 - 18.00	1.0000	1.0000
L43	58	(H) (Area) CCI-65FP-060100 (H)	17.75 - 18.00	1.0000	1.0000
L44	1	CU12PSM9P8XXX(1-3/8)	17.50 - 17.75	1.0000	1.0000
L44	3	2" Flexible Conduit	17.50 17.75	1.0000	1.0000
L44	4	LDF6-50A(1-1/4)	17.50 17.75	1.0000	1.0000
L44	10	2" Flexible Conduit	17.50 17.75	1.0000	1.0000
L44	16	HCS 6X12 4AWG(1-5/8)	17.50 - 17.75	1.0000	1.0000
L44	19	PL 0.75x4	17.50 - 17.75	1.0000	1.0000
L44	20	PL 0.75x4	17.50 - 17.75	1.0000	1.0000
L44	21	PL 0.75x4	17.50 - 17.75 17.50	1.0000	1.0000
L44 L44	33 34	(Area) CCI-65FP-060100 (H) (Area) CCI-65FP-060100	17.50 - 17.75 17.50 -	1.0000 1.0000	1.0000 1.0000
L44	35	(Area) CCI-65FP-060100 (H) (Area) CCI-65FP-060100	17.50 - 17.75 17.50 -	1.0000	1.0000
L44	52	(Area) CCI-65FP-065125	17.50 17.75 17.50	1.0000	1.0000
L44	53	(H) (Area) CCI-65FP-065125	17.75 17.50 -	1.0000	1.0000
L44		(H) (Area) CCI-65FP-065125	17.75 17.50 -		1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L44	56	(H) (Area) CCI-65FP-060100	17.75 17.50 -	1.0000	1.0000
L44	57	(H) (Area) CCI-65FP-060100	17.75 17.50 -	1.0000	1.0000
L44	58	(H) (Area) CCI-65FP-060100	17.75 17.50 -	1.0000	1.0000
L45	1	(H) CU12PSM9P8XXX(1-3/8)	17.75 17.25 -	1.0000	1.0000
L45	3	2" Flexible Conduit	17.50 17.25 -	1.0000	1.0000
L45	4	LDF6-50A(1-1/4)	17.50 17.25 -	1.0000	1.0000
L45	10	2" Flexible Conduit	17.50 17.25 -	1.0000	1.0000
L45	16	HCS 6X12 4AWG(1-5/8)	17.50 17.25 - 17.50	1.0000	1.0000
L45	19	PL 0.75x4	17.50 17.25 - 17.50	1.0000	1.0000
L45	20	PL 0.75x4	17.30 17.25 - 17.50	1.0000	1.0000
L45	21	PL 0.75x4	17.25 - 17.50	1.0000	1.0000
L45	33	(Area) CCI-65FP-060100 (H)	17.25 - 17.50	1.0000	1.0000
L45	34	(Area) CCI-65FP-060100 (H)	17.25 - 17.50	1.0000	1.0000
L45	35	(Area) CCI-65FP-060100 (H)	17.25 - 17.50	1.0000	1.0000
L45	52	(Area) CCI-65FP-065125 (H)	17.25 - 17.50	1.0000	1.0000
L45	53	(Area) CCI-65FP-065125 (H)	17.25 - 17.50	1.0000	1.0000
L45	54	(Area) CCI-65FP-065125 (H)	17.25 - 17.50	1.0000	1.0000
L45	56	(Area) CCI-65FP-060100 (H)	17.25 - 17.50	1.0000	1.0000
L45	57	(Area) CCI-65FP-060100 (H)	17.25 - 17.50	1.0000	1.0000
L45	58	(Area) CCI-65FP-060100 (H)	17.25 - 17.50	1.0000	1.0000
L46	1	CU12PSM9P8XXX(1-3/8)	17.08 - 17.25	1.0000	1.0000
L46	3	2" Flexible Conduit	17.08 - 17.25	1.0000	1.0000
L46	4	LDF6-50A(1-1/4)	17.08 - 17.25	1.0000	1.0000
L46	10	2" Flexible Conduit	17.08 17.25	1.0000	1.0000
L46	16	HCS 6X12 4AWG(1-5/8)	17.08 17.25	1.0000	1.0000
L46	19	PL 0.75x4	17.08 - 17.25	1.0000	1.0000
L46	20	PL 0.75x4	17.08 - 17.25	1.0000	1.0000
L46	21	PL 0.75x4	17.08 - 17.25	1.0000	1.0000
L46	33	(Area) CCI-65FP-060100 (H)	17.08 - 17.25	1.0000	1.0000
L46	34	(Area) CCI-65FP-060100 (H)	17.08 17.25	1.0000	1.0000
L46	35	(Area) CCI-65FP-060100 (H)	17.08 - 17.25	1.0000	1.0000
L46	52	(Area) CCI-65FP-065125 (H)	17.08 - 17.25	1.0000	1.0000
L46	53	(Area) CCI-65FP-065125 (H)	17.08 - 17.25	1.0000	1.0000
L46	54	(Area) CCI-65FP-065125 (H)	17.08 -	1.0000	1.0000

Tower	Feed Line Record No.	Description	Feed Line	Ka No loo	K _a
Section			Segment Elev.	No Ice	lce
L46	56	(Area) CCI-65FP-060100 (H)	17.08 - 17.25	1.0000	1.0000
L46	57	(Area) CCI-65FP-060100 (H)	17.08 17.25	1.0000	1.0000
L46	58	(Area) CCI-65FP-060100 (H)	17.08 - 17.25	1.0000	1.0000
L47	1	CU12PSM9P8XXX(1-3/8)	16.83 -	1.0000	1.0000
L47	3	2" Flexible Conduit	17.08 16.83 - 17.08	1.0000	1.0000
L47	4	LDF6-50A(1-1/4)	16.83 - 17.08	1.0000	1.0000
L47	10	2" Flexible Conduit	16.83 - 17.08	1.0000	1.0000
L47	16	HCS 6X12 4AWG(1-5/8)	16.83 - 17.08	1.0000	1.0000
L47	19	PL 0.75x4	16.83 17.08	1.0000	1.0000
L47	20	PL 0.75x4	16.83 - 17.08	1.0000	1.0000
L47	21	PL 0.75x4	16.83 - 17.08	1.0000	1.0000
L47	33	(Area) CCI-65FP-060100 (H)	16.83 - 17.08	1.0000	1.0000
L47	34	(Area) CCI-65FP-060100 (H)	16.83 - 17.08	1.0000	1.0000
L47	35	(Area) CCI-65FP-060100	16.83 -	1.0000	1.0000
L47	52	(H) (Area) CCI-65FP-065125 (H)	17.08 16.83 - 17.08	1.0000	1.0000
L47	53	(Area) CCI-65FP-065125	16.83 - 17.08	1.0000	1.0000
L47	54	(H) Area) CCI-65FP-065125( (H)	16.83 - 17.08	1.0000	1.0000
L47	56	(Fr) (Area) CCI-65FP-060100 (H)	16.83 - 17.08	1.0000	1.0000
L47	57	(Area) CCI-65FP-060100 (H)	16.83 - 17.08	1.0000	1.0000
L47	58	(Area) CCI-65FP-060100 (H)	16.83 - 17.08	1.0000	1.0000
L48	1	CU12PSM9P8XXX(1-3/8)	13.00 - 16.83	1.0000	1.0000
L48	3	2" Flexible Conduit	13.00 - 16.83	1.0000	1.0000
L48	4	LDF6-50A(1-1/4)	13.00 - 16.83	1.0000	1.0000
L48	10	2" Flexible Conduit	13.00 - 16.83	1.0000	1.0000
L48	16	HCS 6X12 4AWG(1-5/8)	13.00 - 16.83	1.0000	1.0000
L48	19	PL 0.75x4	15.83 - 16.83	1.0000	1.0000
L48	20	PL 0.75x4	15.83 - 16.83	1.0000	1.0000
L48	21	PL 0.75x4	15.83 - 16.83	1.0000	1.0000
L48	29	(Area) CCI-65FP-060100 (H)	13.00 - 15.50	1.0000	1.0000
L48	30	(H) (Area) CCI-65FP-060100 (H)	13.00 - 15.50	1.0000	1.0000
L48	31	(IT) (Area) CCI-65FP-060100 (H)	13.00 - 15.50	1.0000	1.0000
L48	33	(II) (Area) CCI-65FP-060100 (H)	13.00 - 16.83	1.0000	1.0000
L48	34	(Area) CCI-65FP-060100 (H)	13.00 - 16.83	1.0000	1.0000
L48	35	(Area) CCI-65FP-060100 (H)	13.00 - 16.83	1.0000	1.0000
L48	52	(Area) CCI-65FP-065125	13.00 -	1.0000	1.0000

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	lce
		(H)	16.83		
L48	53	(Area) CCI-65FP-065125 (H)	13.00 - 16.83	1.0000	1.0000
L48	54	(Area) CCI-65FP-065125	13.00 -	1.0000	1.0000
L48	56	(H) (Area) CCI-65FP-060100	16.83 13.00 -	1.0000	1.0000
L48	57	(H) (Area) CCI-65FP-060100	16.83 13.00 -	1.0000	1.0000
L48	58	(H) (Area) CCI-65FP-060100	16.83 13.00 -	1.0000	1.0000
L49	1	(H) CU12PSM9P8XXX(1-3/8)	16.83 12.75	1.0000	1.0000
L49	3	2" Flexible Conduit	13.00 12.75	1.0000	1.0000
L49	4	LDF6-50A(1-1/4)	13.00 12.75	1.0000	1.0000
L49	10	2" Flexible Conduit	13.00 12.75	1.0000	1.0000
L49	16	HCS 6X12 4AWG(1-5/8)	13.00 12.75	1.0000	1.0000
		, , , , , , , , , , , , , , , , , , ,	13.00		
L49	29	(Area) CCI-65FP-060100 (H)	12.75 - 13.00	1.0000	1.0000
L49	30	(Area) CCI-65FP-060100 (H)	12.75 - 13.00	1.0000	1.0000
L49	31	(Area) CCI-65FP-060100 (H)	12.75 - 13.00	1.0000	1.0000
L49	33	(Area) CCI-65FP-060100 (H)	12.75 - 13.00	1.0000	1.0000
L49	34	(Area) CCI-65FP-060100	12.75 -	1.0000	1.0000
L49	35	(H) (Area) CCI-65FP-060100	13.00 12.75 -	1.0000	1.0000
L49	52	(H) (Area) CCI-65FP-065125	13.00 12.75 -	1.0000	1.0000
L49	53	(H) (Area) CCI-65FP-065125	13.00 12.75 -	1.0000	1.0000
L49	54	(H) (Area) CCI-65FP-065125	13.00 12.75 -	1.0000	1.0000
L49	56	(H) (Area) CCI-65FP-060100	13.00 12.75 -	1.0000	1.0000
L49	57	(H) (Area) CCI-65FP-060100	13.00 12.75 -	1.0000	1.0000
L49	58	(H) (Area) CCI-65FP-060100	13.00 12.75 -	1.0000	1.0000
L50	1	(H) CU12PSM9P8XXX(1-3/8)	13.00 11.92 -	1.0000	1.0000
L50	3	2" Flexible Conduit	12.75 11.92 -	1.0000	1.0000
L50	4	LDF6-50A(1-1/4)	12.75 11.92 -	1.0000	1.0000
L50	10	2" Flexible Conduit	12.75 11.92 -	1.0000	1.0000
L50	16	HCS 6X12 4AWG(1-5/8)	12.75 11.92	1.0000	1.0000
L50	29	(Area) CCI-65FP-060100	12.75 11.92 -	1.0000	1.0000
L50	30	(H) (Area) CCI-65FP-060100	12.75 11.92 -	1.0000	1.0000
L50	31	(H) (Area) CCI-65FP-060100	12.75 11.92 -	1.0000	1.0000
L50	33	(H) (Area) CCI-65FP-060100	12.75 11.92 -	1.0000	1.0000
L50	34	(H) (Area) CCI-65FP-060100	12.75 11.92 -	1.0000	1.0000
L50	35	(H) (Area) CCI-65FP-060100	12.75 11.92 -	1.0000	1.0000
L50	52	(H) (Area) CCI-65FP-065125	12.75 11.92 -	1.0000	1.0000
I		(H)	12.75		

Tower Section	Feed Line Record No.	Description	Feed Line Segment	K _a No Ice	K _a Ice
			Ēlev.		
L50	53	(Area) CCI-65FP-065125 (H)	11.92 - 12.75	1.0000	1.0000
L50	54	(Area) CCI-65FP-065125 (H)	11.92 12.75	1.0000	1.0000
L50	56	(Area) CCI-65FP-060100 (H)	11.92 12.75	1.0000	1.0000
L50	57	(Area) CCI-65FP-060100 (H)	11.92 12.75	1.0000	1.0000
L50	58	(Area) CCI-65FP-060100 (H)	11.92 12.75	1.0000	1.0000
L51	1	CU12PSM9P8XXX(1-3/8)	11.67 11.92	1.0000	1.0000
L51	3	2" Flexible Conduit	11.67 11.92	1.0000	1.0000
L51	4	LDF6-50A(1-1/4)	11.67 11.92	1.0000	1.0000
L51	10	2" Flexible Conduit	11.67 11.92	1.0000	1.0000
L51	16	HCS 6X12 4AWG(1-5/8)	11.67 11.92	1.0000	1.0000
L51	29	(Area) CCI-65FP-060100 (H)	11.67 11.92	1.0000	1.0000
L51	30	(Area) CCI-65FP-060100 (H)	11.67 11.92	1.0000	1.0000
L51	31	(Area) CCI-65FP-060100 (H)	11.67 11.92	1.0000	1.0000
L51	33	(Area) CCI-65FP-060100 (H)	11.67 11.92	1.0000	1.0000
L51	34	(Area) CCI-65FP-060100 (H)	11.67 11.92	1.0000	1.0000
L51	35	(Area) CCI-65FP-060100 (H)	11.67 11.92	1.0000	1.0000
L51	52	(Area) CCI-65FP-065125 (H)	11.67 11.92	1.0000	1.0000
L51	53	(Area) CCI-65FP-065125 (H)	11.67 11.92	1.0000	1.0000
L51	54	(Area) CCI-65FP-065125 (H)	11.67 11.92	1.0000	1.0000
L51	56	(Area) CCI-65FP-060100 (H)	11.67 11.92	1.0000	1.0000
L51	57	(Area) CCI-65FP-060100 (H)	11.67 11.92	1.0000	1.0000
L51	58	(Area) CCI-65FP-060100 (H)	11.67 11.92	1.0000	1.0000
L52	1	CU12PSM9P8XXX(1-3/8)	6.67 11.67	1.0000	1.0000
L52	3	2" Flexible Conduit	6.67 - 11.67	1.0000	1.0000
L52	4	LDF6-50A(1-1/4)	6.67 11.67	1.0000	1.0000
L52	10	2" Flexible Conduit	6.67 11.67	1.0000	1.0000
L52	16	HCS 6X12 4AWG(1-5/8)	6.67 - 11.67	1.0000	1.0000
L52	29	(Area) CCI-65FP-060100	6.67 11.67	1.0000	1.0000
L52	30	(H) (Area) CCI-65FP-060100	6.67 - 11.67	1.0000	1.0000
L52	31	(H) (Area) CCI-65FP-060100	6.67 - 11.67	1.0000	1.0000
L52	33	(H) (Area) CCI-65FP-060100	9.42 - 11.67	1.0000	1.0000
L52	34	(H) (Area) CCI-65FP-060100	9.42 - 11.67	1.0000	1.0000
L52	35	(H) (Area) CCI-65FP-060100	9.42 - 11.67	1.0000	1.0000
L52	51	(H) (Area) CCI-65FP-065125 (ایا)	6.67 - 9.25	1.0000	1.0000
L52	52	(H) Area) CCI-65FP-065125(H)	6.67 - 11.67	1.0000	1.0000
L52	53	(H) Area) CCI-65FP-065125(H) (H)	6.67 - 11.67	1.0000	1.0000
L52	54	(ח) (Area) CCI-65FP-065125 (H)	6.67 - 11.67	1.0000	1.0000
•	I		I		

Section         Record No.         Lossippion         Segment Edv.         No Tee         Ice           L52         56         (Area) CCI-65FP-060100         6.67 - 11.67         1.0000         1.0000           L52         57         (Area) CCI-65FP-060100         6.67 - 11.67         1.0000         1.0000           L53         1         CU12PSM9P8XX(1-378)         6.50 - 6.67         1.0000         1.0000           L53         4         LDF6-50A(1-14)         6.50 - 6.67         1.0000         1.0000           L53         10         2° Flexible Conduit         6.50 - 6.67         1.0000         1.0000           L53         10         4° Flexible Conduit         6.50 - 6.67         1.0000         1.0000           L53         30         (Area) CCI-65FP-06100         6.50 - 6.67         1.0000         1.0000           L53         31         (Area) CCI-65FP-06100         6.50 - 6.67         1.0000         1.0000           L53         51         (Area) CCI-65FP-06125         6.50 - 6.67         1.0000         1.0000           L53         52         (Area) CCI-65FP-06126         6.50 - 6.67         1.0000         1.0000           L53         53         (Area) CCI-65FP-06100         6.50 - 6.67	Tower	Feed Line	Description	Feed Line	Ka	Ka
Eev. $Eev.$ $exc.$ L52         56         (Area) CCI-65FP-060100         6.67 - 11.67         1.0000         1.0000           L52         58         (Area) CCI-65FP-060100         6.67 - 11.67         1.0000         1.0000           L53         1         CU12PSM9P8XX(1-38)         6.50 - 6.67         1.0000         1.0000           L53         3         2° Flexible Conduit         6.50 - 6.67         1.0000         1.0000           L53         10         2° Flexible Conduit         6.50 - 6.67         1.0000         1.0000           L53         16         HCS 6X12 4AWG(1-58)         6.50 - 6.67         1.0000         1.0000           L53         30         (Area) CCI-65FP-060100         6.50 - 6.67         1.0000         1.0000           L53         31         (Area) CCI-65FP-065125         6.50 - 6.67         1.0000         1.0000           L53         51         (Area) CCI-65FP-065125         6.50 - 6.67         1.0000         1.0000           L53         52         (Area) CCI-65FP-065125         6.50 - 6.67         1.0000         1.0000           L53         53         (Area) CCI-65FP-065125         6.50 - 6.67         1.0000         1.0000           <			Decemption			
L52         57         (Area) CCI-65FP-060100 (Area) CCI-65FP-060122 (Area) CCI-65FP-060122 (Area) CCI-65FP-060122 (Area) CCI-65FP-060122 (Area) CCI-65FP-060120 (Area) CCI-65FP-060120 (Area) CCI-65FP-060120 (Area) CCI-65FP-060122 (Area) CCI-65FP-060120 (Area) CCI-65FP-060120 (Area) CCI-65FP-060100 (Area) CCI-65FP-060100 (Are						
L52         57         (Area) CC1-65FP-06100         6.67 - 11.67         1.0000         1.0000           L52         58         (Area) CC1-65FP-06100         6.67 - 11.67         1.0000         1.0000           L53         1         CU12PSM9P8XXX[1-3/8)         6.50 - 6.67         1.0000         1.0000           L53         3         2*Flexible Conduit         6.50 - 6.67         1.0000         1.0000           L53         10         2*Flexible Conduit         6.50 - 6.67         1.0000         1.0000           L53         29         (Area) CC1-65FP-06100         6.50 - 6.67         1.0000         1.0000           L53         30         (Area) CC1-65FP-06100         6.50 - 6.67         1.0000         1.0000           L53         51         (Area) CC1-65FP-06125         6.50 - 6.67         1.0000         1.0000           L53         52         (Area) CC1-65FP-06125         6.50 - 6.67         1.0000         1.0000           L53         53         (Area) CC1-65FP-06125         6.50 - 6.67         1.0000         1.0000           L53         54         (Area) CC1-65FP-06126         6.50 - 6.67         1.0000         1.0000           L53         57         (Area) CC1-65FP-060100         6.50 - 6.67 </td <td>L52</td> <td>56</td> <td>(Area) CCI-65FP-060100</td> <td>6.67 - 11.67</td> <td>1.0000</td> <td>1.0000</td>	L52	56	(Area) CCI-65FP-060100	6.67 - 11.67	1.0000	1.0000
L52         58         (Area) CCI-65FP-060100 (H)         6.67 - 11.67 (Area) CCI-65FP-060100 (Area) CCI-65FP-						
L52         58         (Area) CCI-65FP-060100         6.67 - 11.67         1.0000         1.0000           L53         1         CU12PSM0P8XX(1-3/6)         6.50 - 6.67         1.0000         1.0000           L53         4         LDF-50A(1-1/4)         6.50 - 6.67         1.0000         1.0000           L53         10         2" Flexible Conduit         6.50 - 6.67         1.0000         1.0000           L53         16         HCS 6X12 4AWG(1-3/6)         6.50 - 6.67         1.0000         1.0000           L53         30         (Area) CCI-65FP-060100         6.50 - 6.67         1.0000         1.0000           L53         51         (Area) CCI-65FP-065125         6.50 - 6.67         1.0000         1.0000           L53         52         (Area) CCI-65FP-065125         6.50 - 6.67         1.0000         1.0000           L53         53         (Area) CCI-65FP-065125         6.50 - 6.67         1.0000         1.0000           L53         54         (Area) CCI-65FP-06100         6.50 - 6.67         1.0000         1.0000           L53         56         (Area) CCI-65FP-060100         6.50 - 6.67         1.0000         1.0000           L53         56         (Area) CCI-65FP-060100         6.50 - 6.67<	L52	57	(Area) CCI-65FP-060100	6.67 - 11.67	1.0000	1.0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
	L52	58	· · · · · · · · · · · · · · · · · · ·	6.67 - 11.67	1.0000	1.0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			HCS 6X12 4AWG(1-5/8)			
	L53	29	(Area) CCI-65FP-060100	6.50 - 6.67	1.0000	1.0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
	L53	30	· · · · · · · · · · · · · · · · · · ·	6.50 - 6.67	1.0000	1.0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
	L53	31	· · · ·	6.50 - 6.67	1.0000	1.0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		_ /				
	L53	51		6.50 - 6.67	1.0000	1.0000
	L53	52		6.50 - 6.67	1.0000	1.0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		50		0.50 0.07	4 0000	4 0000
	L53	53		6.50 - 6.67	1.0000	1.0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		- 4		0.50 0.07	1 0000	4 0000
	L53	54		6.50 - 6.67	1.0000	1.0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		50		0.50 0.07	4 0000	4 0000
	L53	56		6.50 - 6.67	1.0000	1.0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.50			0.50 0.07	4 0000	4 0000
	L53	57		6.50 - 6.67	1.0000	1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.50	50		0.50 0.07	4 0000	1 0000
	L53	58		0.50 - 0.67	1.0000	1.0000
			. ,	0.05 0.50	4 0000	4 0000
			· · · · · · · · · · · · · · · · · · ·			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		4			1.0000	1.0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L54	10			1.0000	1.0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L54	16	HCS 6X12 4AWG(1-5/8)	6.25 - 6.50	1.0000	1.0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L54	29	(Area) CCI-65FP-060100	6.25 - 6.50	1.0000	1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(H)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L54	30	(Area) CCI-65FP-060100	6.25 - 6.50	1.0000	1.0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L54	31	. ,	6.25 - 6.50	1.0000	1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L54	51		6.25 - 6.50	1.0000	1.0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L54	52		6.25 - 6.50	1.0000	1.0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L54	53		6.25 - 6.50	1.0000	1.0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L54	54		6.25 - 6.50	1.0000	1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L54	56	( )	6.25 - 6.50	1.0000	1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L54	57	( )	6.25 - 6.50	1.0000	1.0000
L55         1         CU12PSM9P8XXX(1-3/8)         3.75 - 6.25         1.0000         1.0000           L55         3         2" Flexible Conduit         3.75 - 6.25         1.0000         1.0000           L55         4         LDF6-50A(1-1/4)         3.75 - 6.25         1.0000         1.0000           L55         10         2" Flexible Conduit         3.75 - 6.25         1.0000         1.0000           L55         10         2" Flexible Conduit         3.75 - 6.25         1.0000         1.0000           L55         16         HCS 6X12 4AWG(1-5/8)         3.75 - 6.25         1.0000         1.0000           L55         29         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L55         30         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L55         31         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L55         51         (Area) CCI-65FP-065100         3.75 - 6.25         1.0000         1.0000           L55         51         (Area) CCI-65FP-065125         3.75 - 6.25         1.0000         1.0000						
L55         1         CU12PSM9P8XXX(1-3/8)         3.75 - 6.25         1.0000         1.0000           L55         3         2" Flexible Conduit         3.75 - 6.25         1.0000         1.0000           L55         4         LDF6-50A(1-1/4)         3.75 - 6.25         1.0000         1.0000           L55         10         2" Flexible Conduit         3.75 - 6.25         1.0000         1.0000           L55         10         2" Flexible Conduit         3.75 - 6.25         1.0000         1.0000           L55         16         HCS 6X12 4AWG(1-5/8)         3.75 - 6.25         1.0000         1.0000           L55         29         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L55         30         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L55         31         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L55         51         (Area) CCI-65FP-065100         3.75 - 6.25         1.0000         1.0000           L55         51         (Area) CCI-65FP-065125         3.75 - 6.25         1.0000         1.0000	L54	58	· · · ·	6.25 - 6.50	1.0000	1.0000
L55         3         2" Flexible Conduit         3.75 - 6.25         1.0000         1.0000           L55         4         LDF6-50A(1-1/4)         3.75 - 6.25         1.0000         1.0000           L55         10         2" Flexible Conduit         3.75 - 6.25         1.0000         1.0000           L55         10         2" Flexible Conduit         3.75 - 6.25         1.0000         1.0000           L55         16         HCS 6X12 4AWG(1-5/8)         3.75 - 6.25         1.0000         1.0000           L55         29         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L55         30         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L55         31         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L55         51         (Area) CCI-65FP-065100         3.75 - 6.25         1.0000         1.0000           L55         51         (Area) CCI-65FP-065125         3.75 - 6.25         1.0000         1.0000				0.75 0.6-	4 0000	4 0000
L55         4         LDF6-50A(1-1/4)         3.75 - 6.25         1.0000         1.0000           L55         10         2" Flexible Conduit         3.75 - 6.25         1.0000         1.0000           L55         16         HCS 6X12 4AWG(1-5/8)         3.75 - 6.25         1.0000         1.0000           L55         29         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L55         30         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L55         31         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L55         51         (Area) CCI-65FP-065100         3.75 - 6.25         1.0000         1.0000           L55         51         (Area) CCI-65FP-065125         3.75 - 6.25         1.0000         1.0000						
L55         10         2" Flexible Conduit         3.75 - 6.25         1.0000         1.0000           L55         16         HCS 6X12 4AWG(1-5/8)         3.75 - 6.25         1.0000         1.0000           L55         29         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L55         30         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L55         31         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L55         51         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L55         51         (Area) CCI-65FP-065125         3.75 - 6.25         1.0000         1.0000						
L55         16         HCS 6X12 4AWG(1-5/8)         3.75 - 6.25         1.0000         1.0000           L55         29         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L55         30         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L55         30         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L55         31         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L55         51         (Area) CCI-65FP-065125         3.75 - 6.25         1.0000         1.0000						
L55         29         (Area) CCI-65FP-060100 (H)         3.75 - 6.25         1.0000         1.0000           L55         30         (Area) CCI-65FP-060100 (H)         3.75 - 6.25         1.0000         1.0000           L55         31         (Area) CCI-65FP-060100 (H)         3.75 - 6.25         1.0000         1.0000           L55         31         (Area) CCI-65FP-060100 (H)         3.75 - 6.25         1.0000         1.0000           L55         51         (Area) CCI-65FP-065125         3.75 - 6.25         1.0000         1.0000						
L55         30         (Area) CCI-65FP-060100 (H)         3.75 - 6.25         1.0000         1.0000           L55         31         (Area) CCI-65FP-060100 (H)         3.75 - 6.25         1.0000         1.0000           L55         51         (Area) CCI-65FP-065125         3.75 - 6.25         1.0000         1.0000			· · · · · · · · · · · · · · · · · · ·			
L55         30         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L55         31         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L55         31         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L55         51         (Area) CCI-65FP-065125         3.75 - 6.25         1.0000         1.0000	L55	29	· · · · · · · · · · · · · · · · · · ·	3.75 - 6.25	1.0000	1.0000
L55         31         (Area) CCI-65FP-060100 (H)         3.75 - 6.25         1.0000         1.0000           L55         51         (Area) CCI-65FP-065125         3.75 - 6.25         1.0000         1.0000						
L55 31 (Area) CCI-65FP-060100 3.75 - 6.25 1.0000 1.0000 (H) L55 51 (Area) CCI-65FP-065125 3.75 - 6.25 1.0000 1.0000	L55	30	· · · · · · · · · · · · · · · · · · ·	3.75 - 6.25	1.0000	1.0000
L55 51 (Area) CCI-65FP-065125 3.75 - 6.25 1.0000 1.0000		_	· · ·			
L55 51 (Area) CCI-65FP-065125 3.75 - 6.25 1.0000 1.0000	L55	31		3.75 - 6.25	1.0000	1.0000
				0.75 0.65	4 0000	4 0000
(H)	L55	51			1.0000	1.0000
		I I	(H)			

Section         Recard No.         Segment Elev.         No Ice         Ice           L55         52         (Area) CCI-65FP-065125         3.75 - 6.25         1.0000         1.0000           L55         53         (Area) CCI-65FP-065125         3.75 - 6.25         1.0000         1.0000           L55         54         (Area) CCI-65FP-065125         3.75 - 6.25         1.0000         1.0000           L55         56         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L55         57         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L56         1         CU12PSM9P8XX(1-38)         3.50 - 3.75         1.0000         1.0000           L56         1         CU12PSM9P8XX(1-38)         3.50 - 3.75         1.0000         1.0000           L56         1         CU12PSM9P8XX(1-58)         3.50 - 3.75         1.0000         1.0000           L56         1         CHea) CCI-65FP-060100         3.50 - 3.75         1.0000         1.0000           L56         1         (Area) CCI-65FP-060100         3.50 - 3.75         1.0000         1.0000           L56         1         (Area) CCI-65FP-065125         3.50 - 3.75         1.0000	Tower	Feed Line	Description	Feed Line	Ka	Ka
L55         52         (Area) CCI-65FP-065125 $3.75 - 6.25$ $1.0000$ $1.0000$ L55         53         (Area) CCI-65FP-065125 $3.75 - 6.25$ $1.0000$ $1.0000$ L55         54         (Area) CCI-65FP-065125 $3.75 - 6.25$ $1.0000$ $1.0000$ L55         56         (Area) CCI-65FP-060100 $3.75 - 6.25$ $1.0000$ $1.0000$ L55         57         (Area) CCI-65FP-060100 $3.75 - 6.25$ $1.0000$ $1.0000$ L56         1         CU12PSM9P8XXX(1-38) $3.50 - 3.75$ $1.0000$ $1.0000$ L56         1         CU12PSM9P8XXX(1-5/8) $3.50 - 3.75$ $1.0000$ $1.0000$ L56         1         CU12PSM9P8XXX(1-5/8) $3.50 - 3.75$ $1.0000$ $1.0000$ L56         1         CH265P-060100 $3.50 - 3.75$ $1.0000$ $1.0000$ L56         1         (Area) CCI-65FP-060100 $3.50 - 3.75$ $1.0000$ $1.0000$ L56         1         (Area) CCI-65FP-065125 $3.50 - 3.75$ $1.0000$ $1.0000$ L56         1	Section	Record No.			No Ice	lce
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.55	50			1 0000	4 0000
L55         53         (Area) CCI-65FP-065125         3.75 - 6.25         1.0000         1.0000           L55         54         (Area) CCI-65FP-065125         3.75 - 6.25         1.0000         1.0000           L55         56         (Area) CCI-65FP-06100         3.75 - 6.25         1.0000         1.0000           L55         57         (Area) CCI-65FP-06100         3.75 - 6.25         1.0000         1.0000           L56         1         CU12PSM9P8XX(1-3/8)         3.50 - 3.75         1.0000         1.0000           L56         1         (Area) CCI-65FP-06100         3.50 - 3.75         1.0000         1.0000           L56         31         (Area) CCI-65FP-065125         3.50 - 3.75         1.0000         1.0000           L56         51         (Area) CCI-65FP-065125         3.50 - 3.75         1.0000         1.0000           L56         54         (Area) CCI-65FP-06100         3.50 - 3.75	L55	52	, , , , , , , , , , , , , , , , , , ,	3.75 - 6.25	1.0000	1.0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 55	53		3 75 - 6 25	1 0000	1 0000
L55         54         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L55         56         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L55         57         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L56         58         (Area) CCI-65FP-060100         3.75 - 6.25         1.0000         1.0000           L56         3         2" Flexible Conduit         3.50 - 3.75         1.0000         1.0000           L56         1         CU12PSM9P3XX(1-3/8)         3.50 - 3.75         1.0000         1.0000           L56         1         CU12PSM0P6XX(1-5/8)         3.50 - 3.75         1.0000         1.0000           L56         1         HCS 6X12 4AWG(1-5/8)         3.50 - 3.75         1.0000         1.0000           L56         1         (Area) CCI-65FP-060100         3.50 - 3.75         1.0000         1.0000           L56         1         (Area) CCI-65FP-065125         3.50 - 3.75         1.0000         1.0000           L56         52         (Area) CCI-65FP-065125         3.50 - 3.75         1.0000         1.0000           L56         54         (Area) CCI-65FP-060100         3.50 - 3.75<	200		,	0.70-0.20	1.0000	1.0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L55	54		3.75 - 6.25	1.0000	1.0000
L55         56         (Area) CCI-65FP-060100 $3.75 - 6.25$ 1.0000         1.0000           L55         57         (Area) CCI-65FP-060100 $3.75 - 6.25$ 1.0000         1.0000           L56         1         CU12PSM9P8XX(1-3/8) $3.50 - 3.75$ 1.0000         1.0000           L56         16         HCS 6X12 4AWG(1-5/8) $3.50 - 3.75$ 1.0000         1.0000           L56         30         (Area) CCI-65FP-060100 $3.50 - 3.75$ 1.0000         1.0000           L56         51         (Area) CCI-65FP-065125 $3.50 - 3.75$ 1.0000         1.0000           L56         52         (Area) CCI-65FP-065125 $3.50 - 3.75$ 1.0000         1.0000           L56         53         (Area) CCI-65FP-065125 $3.50 - 3.75$ 1.0000         1.0000           L56         54         (Area) CCI-65FP-060100						
	L55	56		3.75 - 6.25	1.0000	1.0000
L55         58         (Area) CCL65FP-060100         3.75 - 6.25         1.0000         1.0000           L56         1         CU12PSM9P8XX(1-3/8)         3.50 - 3.75         1.0000         1.0000           L56         3         2" Flexible Conduit         3.50 - 3.75         1.0000         1.0000           L56         1         CU12PSM9P8XX(1-3/8)         3.50 - 3.75         1.0000         1.0000           L56         10         2" Flexible Conduit         3.50 - 3.75         1.0000         1.0000           L56         10         1.0207         1.0000         1.0000         1.0000           L56         10         (Area) CCI-65FP-060100         3.50 - 3.75         1.0000         1.0000           L56         31         (Area) CCI-65FP-065125         3.50 - 3.75         1.0000         1.0000           L56         51         (Area) CCI-65FP-065125         3.50 - 3.75         1.0000         1.0000           L56         53         (Area) CCI-65FP-065125         3.50 - 3.75         1.0000         1.0000           L56         53         (Area) CCI-65FP-065125         3.50 - 3.75         1.0000         1.0000           L56         54         (Area) CCI-65FP-060100         3.50 - 3.75         1.0						
	L55	57	<b>\</b>	3.75 - 6.25	1.0000	1.0000
Line         Line <thline< th="">         Line         Line         <thl< td=""><td></td><td>50</td><td></td><td>0.75 0.05</td><td>4 0000</td><td>4 0000</td></thl<></thline<>		50		0.75 0.05	4 0000	4 0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L55	58	( )	3.75 - 6.25	1.0000	1.0000
L56         3         2" Flexible Conduit         3.50 - 3.75         1.0000         1.0000           L56         10         2" Flexible Conduit         3.50 - 3.75         1.0000         1.0000           L56         10         2" Flexible Conduit         3.50 - 3.75         1.0000         1.0000           L56         29         (Area) CCI-65FP-060100         3.50 - 3.75         1.0000         1.0000           L56         30         (Area) CCI-65FP-060100         3.50 - 3.75         1.0000         1.0000           L56         31         (Area) CCI-65FP-065125         3.50 - 3.75         1.0000         1.0000           L56         51         (Area) CCI-65FP-065125         3.50 - 3.75         1.0000         1.0000           L56         52         (Area) CCI-65FP-065125         3.50 - 3.75         1.0000         1.0000           L56         53         (Area) CCI-65FP-065125         3.50 - 3.75         1.0000         1.0000           L56         54         (Area) CCI-65FP-060100         3.50 - 3.75         1.0000         1.0000           L56         57         (Area) CCI-65FP-060100         3.50 - 3.75         1.0000         1.0000           L56         58         (Area) CCI-65FP-060100         3.50	1.56	1		3 50 - 3 75	1 0000	1 0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			, , ,			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
Life         Herican         Herican         Herican         Herican         Herican           Life         30         (Area) CCI-65FP-060100         3.50 - 3.75         1.0000         1.0000           Life         31         (Area) CCI-65FP-060100         3.50 - 3.75         1.0000         1.0000           Life         51         (Area) CCI-65FP-065125         3.50 - 3.75         1.0000         1.0000           Life         52         (Area) CCI-65FP-065125         3.50 - 3.75         1.0000         1.0000           Life         53         (Area) CCI-65FP-065125         3.50 - 3.75         1.0000         1.0000           Life         54         (Area) CCI-65FP-060120         3.50 - 3.75         1.0000         1.0000           Life         56         (Area) CCI-65FP-060100         3.50 - 3.75         1.0000         1.0000           Life         58         (Area) CCI-65FP-060100         3.50 - 3.75         1.0000         1.0000           Life         58         (Area) CCI-65FP-060100         3.50 - 3.75         1.0000         1.0000           Life         58         (Area) CCI-65FP-060100         3.00 - 3.50         1.0000         1.0000           Life         58         (Area) CCI-65FP-060100						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	200	23		0.00 - 0.70	1.0000	1.0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.56	30		3 50 - 3 75	1 0000	1 0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	200	00		0.00 0.70	1.0000	1.0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.56	31		3.50 - 3.75	1.0000	1.0000
L56         51         (Area) CCI-65FP-065125         3.50 - 3.75         1.0000         1.0000           L56         52         (Area) CCI-65FP-065125         3.50 - 3.75         1.0000         1.0000           L56         53         (Area) CCI-65FP-065125         3.50 - 3.75         1.0000         1.0000           L56         54         (Area) CCI-65FP-065125         3.50 - 3.75         1.0000         1.0000           L56         54         (Area) CCI-65FP-060100         3.50 - 3.75         1.0000         1.0000           L56         57         (Area) CCI-65FP-060100         3.50 - 3.75         1.0000         1.0000           L56         57         (Area) CCI-65FP-060100         3.50 - 3.75         1.0000         1.0000           L56         58         (Area) CCI-65FP-060100         3.50 - 3.75         1.0000         1.0000           L57         1         CU12PSM9P8XXX(1-3/8)         3.00 - 3.50         1.0000         1.0000           L57         4         LDF6-50A(1-1/4)         3.00 - 3.50         1.0000         1.0000           L57         4         LDF6-50A(1-1/4)         3.00 - 3.50         1.0000         1.0000           L57         10         2" Flexible Conduit         3.00 - 3.50		•		0.000 0.00		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	L56	51		3.50 - 3.75	1.0000	1.0000
L56         52         (Area) CCI-65FP-065125         3.50 - 3.75         1.0000         1.0000           L56         53         (Area) CCI-65FP-065125         3.50 - 3.75         1.0000         1.0000           L56         54         (Area) CCI-65FP-065125         3.50 - 3.75         1.0000         1.0000           L56         54         (Area) CCI-65FP-060100         3.50 - 3.75         1.0000         1.0000           L56         56         (Area) CCI-65FP-060100         3.50 - 3.75         1.0000         1.0000           L56         57         (Area) CCI-65FP-060100         3.50 - 3.75         1.0000         1.0000           L57         1         CU12PSM9P8XX(1-3/8)         3.00 - 3.50         1.0000         1.0000           L57         1         CU12PSM9P8XX(1-3/8)         3.00 - 3.50         1.0000         1.0000           L57         3         2" Flexible Conduit         3.00 - 3.50         1.0000         1.0000           L57         4         LDF6-50A(1-1/4)         3.00 - 3.50         1.0000         1.0000           L57         7         16         HCS 6X12 4AWG(1-5/8)         3.00 - 3.50         1.0000         1.0000           L57         50         (Area) CCI-65FP-065125 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L56	52		3.50 - 3.75	1.0000	1.0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
L5654(Area) CCI-65FP-065125 $3.50 - 3.75$ $1.0000$ $1.0000$ L5656(Area) CCI-65FP-060100 $3.50 - 3.75$ $1.0000$ $1.0000$ L5657(Area) CCI-65FP-060100 $3.50 - 3.75$ $1.0000$ $1.0000$ L5658(Area) CCI-65FP-060100 $3.50 - 3.75$ $1.0000$ $1.0000$ L571CU12PSM9P8XX(1-3/8) $3.00 - 3.50$ $1.0000$ $1.0000$ L571CU12PSM9P8XX(1-3/8) $3.00 - 3.50$ $1.0000$ $1.0000$ L571CU12PSM9P8XX(1-3/8) $3.00 - 3.50$ $1.0000$ $1.0000$ L57102" Flexible Conduit $3.00 - 3.50$ $1.0000$ $1.0000$ L5716HCS 6X12 4AWG(1-5/8) $3.00 - 3.50$ $1.0000$ $1.0000$ L5716HCS 6X12 4AWG(1-5/8) $3.00 - 3.50$ $1.0000$ $1.0000$ L5710(Area) CCI-65FP-060100 $3.00 - 3.50$ $1.0000$ $1.0000$ L5731(Area) CCI-65FP-060100 $3.00 - 3.50$ $1.0000$ $1.0000$ L5751(Area) CCI-65FP-065125 $3.00 - 3.50$ $1.0000$ $1.0000$ L5752(Area) CCI-65FP-065125 $3.00 - 3.50$ $1.0000$ $1.0000$ L5754(Area) CCI-65FP-065125 $3.00 - 3.50$ $1.0000$ $1.0000$ L5756(Area) CCI-65FP-060100 $3.00 - 3.50$ $1.0000$ $1.0000$ L5758(Area) CCI-65FP-060100 $3.00 - 3.50$ $1.0000$ $1.0000$ L5758(A	L56	53		3.50 - 3.75	1.0000	1.0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			(H)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L56	54	(Area) CCI-65FP-065125	3.50 - 3.75	1.0000	1.0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L56	56	(Area) CCI-65FP-060100	3.50 - 3.75	1.0000	1.0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L56	57		3.50 - 3.75	1.0000	1.0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L56	58		3.50 - 3.75	1.0000	1.0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.00 0.50	1 0000	4 0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			, , ,			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1.0000	1.0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L57	16		3.00 - 3.50	1.0000	1.0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L57	29	(Area) CCI-65FP-060100	3.00 - 3.50	1.0000	1.0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
L57 31 (Area) CCI-65FP-060100 3.00 - 3.50 1.0000 1.0000 (H) 3	L57	30		3.00 - 3.50	1.0000	1.0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L57	31		3.00 - 3.50	1.0000	1.0000
L57       52       (Area) CCI-65FP-065125 (Area) CCI-65FP-065125 3.00 - 3.50       1.0000       1.0000         L57       53       (Area) CCI-65FP-065125 (Area) CCI-65FP-065125 3.00 - 3.50       3.00 - 3.50       1.0000       1.0000         L57       54       (Area) CCI-65FP-065125 (Area) CCI-65FP-060100       3.00 - 3.50       1.0000       1.0000         L57       56       (Area) CCI-65FP-060100 (H)       3.00 - 3.50       1.0000       1.0000         L57       57       (Area) CCI-65FP-060100 (H)       3.00 - 3.50       1.0000       1.0000         L57       58       (Area) CCI-65FP-060100 (H)       3.00 - 3.50       1.0000       1.0000         L57       58       (Area) CCI-65FP-060100 (H)       3.00 - 3.50       1.0000       1.0000         L58       1       CU12PSM9P8XXX(1-3/8)       2.75 - 3.00       1.0000       1.0000			(H)		4 9 9 9 9	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L57	51		3.00 - 3.50	1.0000	1.0000
L57       53       (Area) CCI-65FP-065125       3.00 - 3.50       1.0000       1.0000         L57       54       (Area) CCI-65FP-065125       3.00 - 3.50       1.0000       1.0000         L57       54       (Area) CCI-65FP-065125       3.00 - 3.50       1.0000       1.0000         L57       56       (Area) CCI-65FP-060100       3.00 - 3.50       1.0000       1.0000         L57       57       (Area) CCI-65FP-060100       3.00 - 3.50       1.0000       1.0000         L57       58       (Area) CCI-65FP-060100       3.00 - 3.50       1.0000       1.0000         L57       58       (Area) CCI-65FP-060100       3.00 - 3.50       1.0000       1.0000         L58       1       CU12PSM9P8XXX(1-3/8)       2.75 - 3.00       1.0000       1.0000				2 00 0 50	4 0000	4 0000
L57 53 (Area) CCI-65FP-065125 3.00 - 3.50 1.0000 (H) L57 54 (Area) CCI-65FP-065125 3.00 - 3.50 1.0000 1.0000 (H) 3.00 - 3.50 1.0000 1.0000 L57 58 (Area) CCI-65FP-060100 3.00 - 3.50 1.0000 1.0000 (H) 1.0000 (H) 1.0000 1.0000 (H) 1.0000 1.0000 (H) 1.0000 1.0000 (H) 1.0000 1.0000 1.0000 1.0000 1.0000	L5/	52	, , , , , , , , , , , , , , , , , , ,	3.00 - 3.50	1.0000	1.0000
L57       54       (Area) CCI-65FP-065125 (Area) CCI-65FP-060100 (H)       3.00 - 3.50 (Area) CCI-65FP-060100 (H)       1.0000 (H)         L57       56       (Area) CCI-65FP-060100 (H)       3.00 - 3.50 (Area) CCI-65FP-060100 (H)       1.0000         L57       58       (Area) CCI-65FP-060100 (H)       3.00 - 3.50 (Area) CCI-65FP-060100 (H)       1.0000         L57       58       (Area) CCI-65FP-060100 (H)       3.00 - 3.50 (Area) CCI-65FP-060100 (H)       1.0000         L58       1       CU12PSM9P8XXX(1-3/8)       2.75 - 3.00       1.0000       1.0000	1.57	52	. ,	200 250	1 0000	1 0000
L57 54 (Area) CCI-65FP-065125 3.00 - 3.50 1.0000 (H) L57 56 (Area) CCI-65FP-060100 3.00 - 3.50 1.0000 1.0000 (H) L57 57 (Area) CCI-65FP-060100 3.00 - 3.50 1.0000 1.0000 (H) L57 58 (Area) CCI-65FP-060100 3.00 - 3.50 1.0000 1.0000 (H) L58 1 CU12PSM9P8XXX(1-3/8) 2.75 - 3.00 1.0000 1.0000	L97	53	· · · ·	3.00 - 3.50	1.0000	1.0000
L57       56       (Area) CCI-65FP-060100 (H)       3.00 - 3.50       1.0000       1.0000         L57       57       (Area) CCI-65FP-060100 (H)       3.00 - 3.50       1.0000       1.0000         L57       58       (Area) CCI-65FP-060100 (H)       3.00 - 3.50       1.0000       1.0000         L58       1       CU12PSM9P8XXX(1-3/8)       2.75 - 3.00       1.0000       1.0000	1.57	54		200 250	1 0000	1 0000
L57 56 (Area) CCI-65FP-060100 3.00 - 3.50 1.0000 1.0000 (H) 3.00 - 3.50 1.0000 1.0000 1.0000 (H) 3.00 - 3.50 1.0000 1.0000 (H) 3.00 - 3.50 1.0000 1.0000 1.0000 (H) 3.00 - 3.50 1.0000 1.0000 1.0000	L37	54	· · · ·	3.00 - 3.50	1.0000	1.0000
L57         57         (Area) CCI-65FP-060100 (H)         3.00 - 3.50         1.0000         1.0000           L57         58         (Area) CCI-65FP-060100 (H)         3.00 - 3.50         1.0000         1.0000           L58         1         CU12PSM9P8XXX(1-3/8)         2.75 - 3.00         1.0000         1.0000	157	56		3 00 - 3 50	1 0000	1 0000
L57 57 (Area) CCI-65FP-060100 3.00 - 3.50 1.0000 1.0000 (H) 3.00 - 3.50 1.0000 1.0000 (H) 3.00 - 3.50 1.0000 1.0000 (H) 3.00 - 3.50 1.0000 1.0000 1.0000	207	00	,	0.00 0.00	1.0000	1.0000
L57 58 (Area) CCI-65FP-060100 3.00 - 3.50 1.0000 1.0000 (H) L58 1 CU12PSM9P8XXX(1-3/8) 2.75 - 3.00 1.0000 1.0000	1.57	57	· · ·	3 00 - 3 50	1 0000	1 0000
L57 58 (Area) CCI-65FP-060100 3.00 - 3.50 1.0000 1.0000 (H) L58 1 CU12PSM9P8XXX(1-3/8) 2.75 - 3.00 1.0000 1.0000	201		· · · ·	0.00		
L58 1 CU12PSM9P8XXX(1-3/8) 2.75 - 3.00 1.0000 1.0000	L57	58		3.00 - 3.50	1.0000	1.0000
L58 1 CU12PSM9P8XXX(1-3/8) 2.75 - 3.00 1.0000 1.0000		50				
	L58	1		2.75 - 3.00	1.0000	1.0000
L58 3 2" Flexible Conduit 2.75 - 3.00 1.0000 1.0000	L58	3	2" Flexible Conduit			
L58 4 LDF6-50A(1-1/4) 2.75 - 3.00 1.0000 1.0000						
L58 10 2" Flexible Conduit 2.75 - 3.00 1.0000 1.0000						
L58 16 HCS 6X12 4AWG(1-5/8) 2.75 - 3.00 1.0000 1.0000						
L58 29 (Area) CCI-65FP-060100 2.75 - 3.00 1.0000 1.0000						
(H)	200		. ,			
	I	· ·	(ייז)	I	1	

Section         Record No.         Segment Elev.           L58         30         (Area) CCI-65FP-060100 (H)         2.75 - 3.00 (H)           L58         31         (Area) CCI-65FP-060100         2.75 - 3.00	No Ice 1.0000 1.0000	<i>Ice</i> 1.0000
L58 30 (Area) CCI-65FP-060100 2.75 - 3.00 (H)		1.0000
(H)		1.0000
(H)		
	1.0000	
		1.0000
		10000
L58 51 (Area) CCI-65FP-065125 2.75 - 3.00	1.0000	1.0000
		1.0000
L58 52 (Area) CCI-65FP-065125 2.75 - 3.00	1.0000	1.0000
	1.0000	1.0000
L58 53 (Area) CCI-65FP-065125 2.75 - 3.00	1.0000	1.0000
	1.0000	1.0000
L58 54 (Area) CCI-65FP-065125 2.75 - 3.00	1.0000	1.0000
	1.0000	1.0000
L58 56 (Area) CCI-65FP-060100 2.75 - 3.00	1.0000	1.0000
(H)	1.0000	1.0000
L58 57 (Area) CCI-65FP-060100 2.75 - 3.00	1.0000	1.0000
(H)	1.0000	1.0000
L58 58 (Area) CCI-65FP-060100 2.75 - 3.00	1.0000	1.0000
	1.0000	1.0000
(H) L59 1 CU12PSM9P8XXX(1-3/8) 0.00 - 2.75	1.0000	1.0000
	1.0000	1.0000
	1.0000	
	1.0000	1.0000
L59 10 2" Flexible Conduit 0.00 - 2.75		1.0000
L59 16 HCS 6X12 4AWG(1-5/8) 0.00 - 2.75	1.0000	1.0000
L59 29 (Area) CCI-65FP-060100 0.00 - 2.75	1.0000	1.0000
	4 0000	4 0000
L59 30 (Area) CCI-65FP-060100 0.00 - 2.75	1.0000	1.0000
	4 0000	4 0000
L59 31 (Area) CCI-65FP-060100 0.00 - 2.75	1.0000	1.0000
(H)		
L59 51 (Area) CCI-65FP-065125 0.00 - 2.75	1.0000	1.0000
L59 52 (Area) CCI-65FP-065125 0.00 - 2.75	1.0000	1.0000
(H)		
L59 53 (Area) CCI-65FP-065125 0.00 - 2.75	1.0000	1.0000
(H)		
L59 54 (Area) CCI-65FP-065125 0.00 - 2.75	1.0000	1.0000
(H)		
L59 56 (Area) CCI-65FP-060100 0.00 - 2.75	1.0000	1.0000
(H)		
L59 57 (Area) CCI-65FP-060100 0.00 - 2.75	1.0000	1.0000
(H)		
L59 58 (Area) CCI-65FP-060100 0.00 - 2.75	1.0000	1.0000
(H)		

### Effective Width of Flat Linear Attachments / Feed Lines

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.		Segment	Calculatio	Width
			Elev.	n	Ratio
				Method	
L8	47	(Area) CCI-65FP-045100	90.00 -	Auto	0.0000
		(H)	91.50		
L8	48	(Area) CCI-65FP-045100	90.00 -	Auto	0.0000
		(H)	91.50		
L8	49	(Area) CCI-65FP-045100	90.00 -	Auto	0.0000
		(H)	91.50		
L9	47	(Area) CCI-65FP-045100	89.75 -	Auto	0.0734
		(H)	90.00		
L9	48	(Area) CCI-65FP-045100	89.75 -	Auto	0.0734
		(H)	90.00		
L9	49	(Area) CCI-65FP-045100	89.75 -	Auto	0.0734

Tower Section	Attachment Record No.	Description	Attachment Segment	Ratio Calculatio	Effective Width
			Ĕlev.	n Method	Ratio
		(H)	90.00	Methou	
L10	25	PL 0.75x4	84.75 85.83	Auto	0.0000
L10	26	PL 0.75x4	84.75 85.83	Auto	0.0000
L10	27	PL 0.75x4	84.75 - 85.83	Auto	0.0000
L10	47	(Area) CCI-65FP-045100 (H)	84.75 - 89.75	Auto	0.0244
L10	48	(17) (Area) CCI-65FP-045100 (H)	84.75 89.75	Auto	0.0244
L10	49	(Area) CCI-65FP-045100 (H)	84.75 89.75	Auto	0.0244
L10	62	(Area) CCI-65FP-045125 (H)	84.75 85.17	Auto	0.0000
L10	63	(Area) CCI-65FP-045125 (H)	84.75 85.17	Auto	0.0000
L10	64	(Area) CCI-65FP-045125 (H)	84.75 85.17	Auto	0.0000
L11	25	PL 0.75x4	84.58 84.75	Auto	0.0000
L11	26	PL 0.75x4	84.58 84.75	Auto	0.0000
L11	27	PL 0.75x4	84.58 84.75	Auto	0.0000
L11	47	(Area) CCI-65FP-045100 (H)	84.58 - 84.75	Auto	0.0000
L11	48	(Area) CCI-65FP-045100 (H)	84.58 84.75	Auto	0.0000
L11	49	(Area) CCI-65FP-045100 (H)	84.58 84.75	Auto	0.0000
L11	62	(17) (Area) CCI-65FP-045125 (H)	84.58 84.75	Auto	0.0000
L11	63	(17) (Area) CCI-65FP-045125 (H)	84.58 84.75	Auto	0.0000
L11	64	(Area) CCI-65FP-045125 (H)	84.58 84.75	Auto	0.0000
L12	25	PL 0.75x4	84.33 84.58	Auto	0.0000
L12	26	PL 0.75x4	84.33 - 84.58	Auto	0.0000
L12	27	PL 0.75x4	84.33 - 84.58	Auto	0.0000
L12	47	(Area) CCI-65FP-045100 (H)	84.33 84.58	Auto	0.0745
L12	48	(Area) CCI-65FP-045100 (H)	84.33 84.58	Auto	0.0745
L12	49	(Area) CCI-65FP-045100 (H)	84.33 84.58	Auto	0.0745
L12	62	(Area) CCI-65FP-045125 (H)	84.33 84.58	Auto	0.0745
L12	63	(Area) CCI-65FP-045125 (H)	84.33 - 84.58	Auto	0.0745
L12	64	(Area) CCI-65FP-045125 (H)	84.33 84.58	Auto	0.0745
L13	25	PL 0.75x4	83.42 - 84.33	Auto	0.0000
L13	26	PL 0.75x4	83.42 - 84.33	Auto	0.0000
L13	27	PL 0.75x4	83.42 84.33	Auto	0.0000
L13	47	(Area) CCI-65FP-045100 (H)	83.42 84.33	Auto	0.0584
L13	48	(17) (Area) CCI-65FP-045100 (H)	83.42 - 84.33	Auto	0.0584
L13	49	(IT) (Area) CCI-65FP-045100 (H)	83.42 - 84.33	Auto	0.0584
L13	62	(17) (Area) CCI-65FP-045125		Auto	0.0584

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.		Segment	Calculatio	Width
			Elev.	n Method	Ratio
		(H)	84.33		
L13	63	(Area) CCI-65FP-045125	83.42 -	Auto	0.0584
L13	64	(H) (Area) CCI-65FP-045125	84.33 83.42 -	Auto	0.0584
		(H)	84.33		
L14	25	PL 0.75x4	83.17 - 83.42	Auto	0.1487
L14	26	PL 0.75x4	83.17	Auto	0.1487
L14	27	PL 0.75x4	83.42 83.17	Auto	0.1487
L14	21	FL 0.73X4	83.42	Auto	0.1407
L14	47	(Area) CCI-65FP-045100	83.17 -	Auto	0.2433
L14	48	(H) (Area) CCI-65FP-045100	83.42 83.17 -	Auto	0.2433
		(H)	83.42		
L14	49	(Area) CCI-65FP-045100 (H)	- 83.17 83.42	Auto	0.2433
L14	62	(Area) CCI-65FP-045125	83.17	Auto	0.2433
L14	63	(H) (Area) CCI-65FP-045125	83.42 83.17	Auto	0.2433
L14	03	(Area) CCI-05FF-045125 (H)	83.42	Auto	0.2433
L14	64	(Area) CCI-65FP-045125	83.17 -	Auto	0.2433
L15	25	(H) PL 0.75x4	83.42 83.00 -	Auto	0.1452
			83.17		
L15	26	PL 0.75x4	83.00 - 83.17	Auto	0.1452
L15	27	PL 0.75x4	83.00 -	Auto	0.1452
	47		83.17	<b>.</b> .	0.0400
L15	47	(Area) CCI-65FP-045100 (H)	83.00 - 83.17	Auto	0.2402
L15	48	(Area) CCI-65FP-045100	83.00 -	Auto	0.2402
L15	49	(H) (Area) CCI-65FP-045100	83.17 83.00 -	Auto	0.2402
		(H)	83.17	7.010	
L15	62	(Area) CCI-65FP-045125	83.00 83.17	Auto	0.2402
L15	63	(H) (Area) CCI-65FP-045125	83.00	Auto	0.2402
		(H)	83.17		0.0400
L15	64	(Area) CCI-65FP-045125 (H)	83.00 - 83.17	Auto	0.2402
L16	25	PL 0.75x4	82.75 -	Auto	0.0000
L16	26	PL 0.75x4	83.00 82.75 -	Auto	0.0000
	20	T E 0.7 3X4	83.00	Auto	0.0000
L16	27	PL 0.75x4	82.75 -	Auto	0.0000
L16	47	(Area) CCI-65FP-045100	83.00 82.75 -	Auto	0.0882
1.10	10	(H)	83.00	<b>A t</b> .	0.0000
L16	48	(Area) CCI-65FP-045100 (H)	82.75 - 83.00	Auto	0.0882
L16	49	(Area) CCI-65FP-045100	82.75 -	Auto	0.0882
L16	62	(H) (Area) CCI-65FP-045125	83.00 82.75 -	Auto	0.0882
	02	(Alea) COI-0311 -043123 (H)	83.00	71010	5.0002
L16	63	(Area) CCI-65FP-045125	82.75 - 83.00	Auto	0.0882
L16	64	(H) (Area) CCI-65FP-045125	82.75 -	Auto	0.0882
		(H)	83.00		0.0000
L17	25	PL 0.75x4	77.75 - 82.75	Auto	0.0000
L17	26	PL 0.75x4	77.75 -	Auto	0.0000
L17	27	PL 0.75x4	82.75 77.75	Auto	0.0000
	21		82.75		
L17	47	(Area) CCI-65FP-045100	81.50 -	Auto	0.0547
L17	48	(H) (Area) CCI-65FP-045100	82.75 81.50 -	Auto	0.0547
		, ,			

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.		Segment	Calculatio	Width
			Elev.	n Method	Ratio
L17	49	(H) (Area) CCI-65FP-045100 (H)	82.75 81.50 - 82.75	Auto	0 <u>.</u> 0547
L17	62	(Area) CCI-65FP-045125	77.75 82.75	Auto	0.0275
L17	63	(H) (Area) CCI-65FP-045125	77.75 -	Auto	0.0275
L17	64	(H) (Area) CCI-65FP-045125	82.75 77.75 -	Auto	0.0275
L18	25	(H) PL 0.75x4	82.75 70.00 - 77.75	Auto	0.0000
L18	26	PL 0.75x4	77.75 70.00 77.75	Auto	0.0000
L18	27	PL 0.75x4	70.00 - 77.75	Auto	0.0000
L18	62	(Area) CCI-65FP-045125	70.00 - 77.75	Auto	0.0000
L18	63	(H) (Area) CCI-65FP-045125 (بار)	70.00 - 77.75	Auto	0.0000
L18	64	(H) Area) CCI-65FP-045125(H) (H)	70.00 - 77.75	Auto	0.0000
L19	25	PL 0.75x4	69.00 - 70.00	Auto	0.0000
L19	26	PL 0.75x4	69.00 - 70.00	Auto	0.0000
L19	27	PL 0.75x4	69.00 - 70.00	Auto	0.0000
L19	62	(Area) CCI-65FP-045125 (H)	69.00 - 70.00	Auto	0.0000
L19	63	(IT) (Area) CCI-65FP-045125 (H)	69.00 - 70.00	Auto	0.0000
L19	64	(17) (Area) CCI-65FP-045125 (H)	69.00 - 70.00	Auto	0.0000
L20	22	PL 0.75x4	67.08 - 68.25	Auto	0.0000
L20	23	PL 0.75x4	67.08 - 68.25	Auto	0.0000
L20	24	PL 0.75x4	67.08 68.25	Auto	0.0000
L20	25	PL 0.75x4	67.08 - 69.00	Auto	0.0000
L20	26	PL 0.75x4	67.08 - 69.00	Auto	0.0000
L20	27	PL 0.75x4	67.08 - 69.00	Auto	0.0000
L20	62	(Area) CCI-65FP-045125 (H)	67.08 - 69.00	Auto	0.0000
L20	63	(Area) CCI-65FP-045125 (H)	67.08 - 69.00	Auto	0.0000
L20	64	(11) (Area) CCI-65FP-045125 (H)	67.08 - 69.00	Auto	0.0000
L21	22	PL 0.75x4	66.83 - 67.08	Auto	0.0000
L21	23	PL 0.75x4	66.83 67.08	Auto	0.0000
L21	24	PL 0.75x4	66.83 67.08	Auto	0.0000
L21	25	PL 0.75x4	66.83 - 67.08	Auto	0.0000
L21	26	PL 0.75x4	66.83 67.08	Auto	0.0000
L21	27	PL 0.75x4	66.83 67.08	Auto	0.0000
L21	62	(Area) CCI-65FP-045125 (H)	66.83 67.08	Auto	0.0000
L21	63	(IT) (Area) CCI-65FP-045125 (H)	66.83 - 67.08	Auto	0.0000
L21	64			Auto	0.0000

Tower Section	Attachment Record No.	Description	Attachment Segment	Ratio Calculatio	Effective Width
			Ĕlev.	n Method	Ratio
		(H)	67.08	wethou	
L22	22	PL 0.75x4	64.08 66.83	Auto	0.0000
L22	23	PL 0.75x4	64.08 66.83	Auto	0.0000
L22	24	PL 0.75x4	64.08 66.83	Auto	0.0000
L22	25	PL 0.75x4	65.83 66.83	Auto	0.0000
L22	26	PL 0.75x4	65.83 -	Auto	0.0000
L22	27	PL 0.75x4	66.83 65.83 -	Auto	0.0000
L22	43	(Area) CCI-65FP-045100	66.83 64.08 -	Auto	0.0000
L22	44	(H) (Area) CCI-65FP-045100	66.08 64.08 -	Auto	0.0000
L22	45	(H) (Area) CCI-65FP-045100	66.08 64.08 -	Auto	0.0000
L22	62	(H) (Area) CCI-65FP-045125	64.50 64.08 -	Auto	0.0000
L22	63	(H) (Area) CCI-65FP-045125	66.83 64.08 -	Auto	0.0000
L22	64	(H) (Area) CCI-65FP-045125	66.83 64.08 -	Auto	0.0000
L23	22	(H) PL 0.75x4	66.83 63.83 -	Auto	0.0000
L23	23	PL 0.75x4	64.08 63.83 -	Auto	0.0000
L23	24	PL 0.75x4	64.08 63.83 -	Auto	0.0000
L23	43	(Area) CCI-65FP-045100	64.08 63.83 -	Auto	0.0000
L23	44	(H) (Area) CCI-65FP-045100	64.08 63.83 -	Auto	0.0000
L23	45	(H) (Area) CCI-65FP-045100	64.08 63.83 -	Auto	0.0000
L23	62	(H) (Area) CCI-65FP-045125	64.08 63.83	Auto	0.0000
L23	63	(H) (Area) CCI-65FP-045125	64.08 63.83 -	Auto	0.0000
L23	64	(H) (Area) CCI-65FP-045125	64.08 63.83 -	Auto	0.0000
L24	22	(H) PL 0.75x4	64.08 62.50 -	Auto	0.0000
L24	23	PL 0.75x4	63.83 62.50 -	Auto	0.0000
L24	24	PL 0.75x4	63.83 62.50 -	Auto	0.0000
L24	43	(Area) CCI-65FP-045100	63.83 62.50 -	Auto	0.0000
L24	44	(H) (Area) CCI-65FP-045100	63.83 62.50 -	Auto	0.0000
L24	45	(H) (Area) CCI-65FP-045100	63.83 62.50 -	Auto	0.0000
L24	62	(H) (Area) CCI-65FP-045125	63.83 62.50 -	Auto	0.0000
L24	63	(H) (Area) CCI-65FP-045125	63.83 62.50 -	Auto	0.0000
L24	64	(H) (Area) CCI-65FP-045125	63.83 62.50 -	Auto	0.0000
L25	22	(H) PL 0.75x4	63.83 62.25 -	Auto	0.0000
L25	23	PL 0.75x4	62.50 62.25 -	Auto	0.0000
L25	24	PL 0.75x4	62.50 62.25 -	Auto	0.0000
L25	43	(Area) CCI-65FP-045100	62.50 62.25 -	Auto	0.0000

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.		Segment Elev.	Calculatio n	Width Ratio
				Method	rano
L25	44	(H) (Area) CCI-65FP-045100 (H)	62.50 62.25 - 62.50	Auto	0.0000
L25	45	(Area) CCI-65FP-045100 (H)	62.25 - 62.50	Auto	0.0000
L25	62	(17) (Area) CCI-65FP-045125 (H)	62.25 - 62.50	Auto	0.0000
L25	63	(Area) CCI-65FP-045125 (H)	62.25 - 62.50	Auto	0.0000
L25	64	(Area) CCI-65FP-045125 (H)	62.25 - 62.50	Auto	0.0000
L26	22	PL 0.75x4	57.25 62.25	Auto	0.0000
L26	23	PL 0.75x4	57.25 - 62.25	Auto	0.0000
L26	24	PL 0.75x4	57.25 - 62.25	Auto	0.0000
L26	43	(Area) CCI-65FP-045100 (H)	57.25 62.25	Auto	0.0000
L26	44	(Area) CCI-65FP-045100 (H)	57.25 62.25	Auto	0.0000
L26	45	(Area) CCI-65FP-045100 (H)	57.25 62.25	Auto	0.0000
L26	62	(Area) CCI-65FP-045125 (H)	57.25 62.25	Auto	0.0000
L26	63	(Area) CCI-65FP-045125 (H)	57.25 - 62.25	Auto	0.0000
L26	64	(Area) CCI-65FP-045125 (H)	57.25 62.25	Auto	0.0000
L27	22	PL 0.75x4	53.50 - 57.25	Auto	0.0000
L27	23	PL 0.75x4	53.50 57.25	Auto	0.0000
L27	24	PL 0.75x4	53.50 - 57.25	Auto	0.0000
L27	40	(Area) CCI-65FP-060100 (H)	53.50 - 56.00	Auto	0.0745
L27	41	(Area) CCI-65FP-060100 (H)	53.50 - 56.00	Auto	0.0745
L27	43	(Area) CCI-65FP-045100 (H)	56.00 - 57.25	Auto	0.0000
L27	44	(Area) CCI-65FP-045100 (H)	56.00 - 57.25	Auto	0.0000
L27	45	(Area) CCI-65FP-045100 (H)	53.50 - 57.25	Auto	0.0000
L27	59	(Area) CCI-65FP-060100 (H)	53.50 - 55.08	Auto	0.0694
L27	60	(Area) CCI-65FP-060100 (H)	53.50 - 55.08	Auto	0.0694
L27	61	(Area) CCI-65FP-060100 (H)	53.50 - 55.08	Auto	0.0694
L27	62	(Area) CCI-65FP-045125 (H)	55.08 - 57.25	Auto	0.0000
L27	63	(Area) CCI-65FP-045125 (H)	55.08 - 57.25	Auto	0.0000
L27	64	(Area) CCI-65FP-045125 (H)	55.08 - 57.25	Auto	0.0000
L28	22	PL 0.75x4	53.25 - 53.50	Auto	0.0000
L28	23	PL 0.75x4	53.25 - 53.50	Auto	0.0000
L28	24	PL 0.75x4	53.25 - 53.50	Auto	0.0000
L28	40	(Area) CCI-65FP-060100 (H)	53.25 - 53.50	Auto	0.0703
L28	41	(II) (Area) CCI-65FP-060100 (H)	53.50 53.25 - 53.50	Auto	0.0703
L28	45			Auto	0.0000

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.		Segment Elev.	Calculatio	Width Datia
			Elev.	n Method	Ratio
L28	59	(H) (Area) CCI-65FP-060100	53.50 53.25 -	Auto	0.0703
		(H)	53.50	7010	
L28	60	(Area) CCI-65FP-060100 (H)	53.25 - 53.50	Auto	0.0703
L28	61	(Area) CCI-65FP-060100	53.25 -	Auto	0.0703
L29	22	(H) PL 0.75x4	53.50 52.58 -	Auto	0.0000
L29	23	PL 0.75x4	53.25 - 52.58	Auto	0.0000
L29	24	PL 0.75x4	53.25 52.58 -	Auto	0.0000
L29	40	(Area) CCI-65FP-060100	53.25 52.58 -	Auto	0.0596
L29	41	(H) (Area) CCI-65FP-060100	53.25 52.58 -	Auto	0.0596
L29	45	(H) (Area) CCI-65FP-045100	53.25 52.58 -	Auto	0.0000
L29	59	(H) (Area) CCI-65FP-060100	53.25 52.58 -	Auto	0.0596
L29	60	(H) (Area) CCI-65FP-060100 (ایا)	53.25 52.58	Auto	0.0596
L29	61	(H) (Area) CCI-65FP-060100 (ایا)	53.25 52.58 -	Auto	0.0596
L30	22	(H) PL 0.75x4	53.25 52.33 - 52.58	Auto	0.0000
L30	23	PL 0.75x4	52.38 52.33 - 52.58	Auto	0.0000
L30	24	PL 0.75x4	52.38 52.33 - 52.58	Auto	0.0000
L30	40	(Area) CCI-65FP-060100 (H)	52.38 52.33 - 52.58	Auto	0.0712
L30	41	(H) (Area) CCI-65FP-060100 (H)	52.38 52.33 - 52.58	Auto	0.0712
L30	45	(Area) CCI-65FP-045100 (H)	52.33 - 52.58	Auto	0.0000
L30	59	(Area) CCI-65FP-060100 (H)	52.33 - 52.58	Auto	0.0712
L30	60	(Area) CCI-65FP-060100 (H)	52.33 - 52.58	Auto	0.0712
L30	61	(Area) CCI-65FP-060100	52.33 -	Auto	0.0712
L31	22	(H) PL 0.75x4	52.58 47.33 -	Auto	0.0000
L31	23	PL 0.75x4	52.33 47.33 -	Auto	0.0000
L31	24	PL 0.75x4	52.33 - 47.33 52.33	Auto	0.0000
L31	40	(Area) CCI-65FP-060100 (H)	47.33 - 52.33	Auto	0.0307
L31	41	(ח) (Area) CCI-65FP-060100 (H)	47.33 - 52.33	Auto	0.0307
L31	45	(ח) (Area) CCI-65FP-045100 (H)	47.33 - 52.33	Auto	0.0000
L31	59	(ח) (Area) CCI-65FP-060100 (H)	47.33 - 52.33	Auto	0.0307
L31	60	(H) (Area) CCI-65FP-060100 (H)	47.33 - 52.33	Auto	0.0307
L31	61	(H) (Area) CCI-65FP-060100 (H)	47.33 - 52.33	Auto	0.0307
L32	19	PL 0.75x4	44.58 - 45.83	Auto	0.0000
L32	20	PL 0.75x4	44.58 44.58 45.83	Auto	0.0000
L32	21	PL 0.75x4	44.58 - 45.83	Auto	0.0000
L32	22	PL 0.75x4		Auto	0.0000

Tower Section	Attachment Record No.	Description	Attachment Segment	Ratio Calculatio	Effective Width
			Ēlev.	n Method	Ratio
			47.33	wethou	
L32	23	PL 0.75x4	44.58 - 47.33	Auto	0.0000
L32	24	PL 0.75x4	44.58 -	Auto	0.0000
L32	40	(Area) CCI-65FP-060100	47.33 44.58 -	Auto	0.0000
L32	41	(H) (Area) CCI-65FP-060100	47.33 44.58 -	Auto	0.0000
L32	45	(H) (Area) CCI-65FP-045100	47.33 44.58 -	Auto	0.0000
L32	59	(H) (Area) CCI-65FP-060100	47.33 - 44.58 - 47.33	Auto	0.0000
L32	60	(H) (Area) CCI-65FP-060100 (H)	47.33 44.58 - 47.33	Auto	0.0000
L32	61	(H) (Area) CCI-65FP-060100 (H)	47.33 44.58 47.33	Auto	0.0000
L33	19	PL 0.75x4	44.33 44.58	Auto	0.0000
L33	20	PL 0.75x4	44.33 44.58	Auto	0.0000
L33	21	PL 0.75x4	44.33 44.58	Auto	0.0000
L33	22	PL 0.75x4	44.33 44.58	Auto	0.0000
L33	23	PL 0.75x4	44.33 44.58	Auto	0.0000
L33	24	PL 0.75x4	44.33 44.58	Auto	0.0000
L33	36	(Area) CCI-65FP-060100 (H)	44.33 44.42	Auto	0.0000
L33	40	(Area) CCI-65FP-060100 (H)	44.33 44.58	Auto	0.0000
L33	41	(Area) CCI-65FP-060100 (H)	44.33 44.58	Auto	0.0000
L33	45	(Area) CCI-65FP-045100 (H)	44.50 44.58	Auto	0.0000
L33	59	(Area) CCI-65FP-060100 (H)	44.33 44.58	Auto	0.0000
L33	60	(Area) CCI-65FP-060100 (H)	44.33 44.58	Auto	0.0000
L33	61	(Area) CCI-65FP-060100 (H)	44.33 44.58	Auto	0.0000
L34	19	PL 0.75x4	41.92 44.33	Auto	0.0000
L34	20	PL 0.75x4	41.92 44.33	Auto	0.0000
L34	21	PL 0.75x4	41.92 44.33	Auto	0.0000
L34	22	PL 0.75x4	43.25 44.33	Auto	0.0000
L34	23	PL 0.75x4	43.25 44.33	Auto	0.0000
L34	24	PL 0.75x4	43.25 - 44.33	Auto	0.0000
L34	36	(Area) CCI-65FP-060100 (H)	41.92 - 44.33	Auto	0.0000
L34	40	(Area) CCI-65FP-060100 (H)	41.92 - 44.33	Auto	0.0000
L34	41	(Area) CCI-65FP-060100 (H)	41.92 - 44.33	Auto	0.0000
L34	59	(Area) CCI-65FP-060100 (H)	41.92 - 44.33	Auto	0.0000
L34	60	(Area) CCI-65FP-060100 (H)	41.92 - 44.33	Auto	0.0000
L34	61	(Area) CCI-65FP-060100 (H)	41.92 44.33	Auto	0.0000
L35	19	PL 0.75x4	41.67 -	Auto	0.0000

ſ	Tower Section	Attachment Record No.	Description	Attachment Segment	Ratio Calculatio	Effective Width
				Ĕlev.	n Method	Ratio
t	1.05	20	DL 0.75.4	41.92		0.0000
	L35	20	PL 0.75x4	41.67 41.92	Auto	0.0000
	L35	21	PL 0.75x4	41.67 41.92	Auto	0.0000
	L35	36	(Area) CCI-65FP-060100 (H)	41.67 41.92	Auto	0.0000
I	L35	40	(Area) CCI-65FP-060100	41.67 -	Auto	0.0000
	L35	41	(H) (Area) CCI-65FP-060100	41.92 41.67	Auto	0.0000
	L35	59	(H) (Area) CCI-65FP-060100	41.92 41.67	Auto	0.0000
	L35	60	(H) (Area) CCI-65FP-060100	41.92 41.67	Auto	0.0000
	L35	61	(H) (Area) CCI-65FP-060100	41.92 41.67 -	Auto	0.0000
	L36	19	(H)	41.92		
			PL 0.75x4	34.08 - 41.67	Auto	0.0000
	L36	20	PL 0.75x4	34.08 - 41.67	Auto	0.0000
	L36	21	PL 0.75x4	34.08 - 41.67	Auto	0.0000
	L36	36	(Area) CCI-65FP-060100 (H)	34.08 41.67	Auto	0.0000
	L36	40	(Area) CCI-65FP-060100	34.08 -	Auto	0.0000
	L36	41	(H) (Area) CCI-65FP-060100	41.67 34.08 -	Auto	0.0000
	L36	59	(H) (Area) CCI-65FP-060100	41.67 34.08	Auto	0.0000
	L36	60	(H) (Area) CCI-65FP-060100	41.67 34.08 -	Auto	0.0000
			(H)	41.67		
	L36	61	(Area) CCI-65FP-060100 (H)	34.08 41.67	Auto	0.0000
	L37	19	PL 0.75x4	34.00 - 34.08	Auto	0.0000
	L37	20	PL 0.75x4	34.00 - 34.08	Auto	0.0000
	L37	21	PL 0.75x4	34.00 34.08	Auto	0.0000
	L37	36	(Area) CCI-65FP-060100	34.00 -	Auto	0.0000
	L37	40	(H) (Area) CCI-65FP-060100	34.08 34.00 -	Auto	0.0000
	L37	41	(H) (Area) CCI-65FP-060100	34.08 34.00 -	Auto	0.0000
	L37	59	(H) (Area) CCI-65FP-060100	34.08 34.00 -	Auto	0.0000
	L37	60	(H) (Area) CCI-65FP-060100	34.08 34.00	Auto	0.0000
			(H)	34.08		
	L37	61	(Area) CCI-65FP-060100 (H)	34.00 - 34.08	Auto	0.0000
	L38	19	PL 0.75x4	29.00 - 34.00	Auto	0.0000
	L38	20	PL 0.75x4	29.00 - 34.00	Auto	0.0000
	L38	21	PL 0.75x4	29.00 - 34.00	Auto	0.0000
	L38	36	(Area) CCI-65FP-060100	29.00 -	Auto	0.0000
	L38	37	(H) (Area) CCI-65FP-060100	34.00 - 29.00	Auto	0.0000
	L38	38	(H) (Area) CCI-65FP-060100	29.42 29.00 -	Auto	0.0000
	L38	40	(H) (Area) CCI-65FP-060100	29.42 29.00	Auto	0.0000
			(H)	34.00		
I	L38	41	(Area) CCI-65FP-060100	29.00 -	Auto	0.0000

Tower Section	Attachment Record No.	Description	Attachment Segment	Ratio Calculatio	Effective Width
			Ēlev.	n Method	Ratio
L38	59	(H) (Area) CCI-65FP-060100 (H)	34.00 29.00 - 34.00	Auto	0.0000
L38	60	(Area) CCI-65FP-060100	29.00 -	Auto	0.0000
L38	61	(H) (Area) CCI-65FP-060100 (ایا)	34.00 - 29.00 34.00	Auto	0.0000
L39	19	(H) PL 0.75x4	26.92 - 29.00	Auto	0.0000
L39	20	PL 0.75x4	26.92 - 29.00	Auto	0.0000
L39	21	PL 0.75x4	26.92 - 29.00	Auto	0.0000
L39	36	(Area) CCI-65FP-060100 (H)	26.92 29.00	Auto	0.0000
L39	37	(Area) CCI-65FP-060100 (H)	26.92 - 29.00	Auto	0.0000
L39	38	(Area) CCI-65FP-060100 (H)	- 26.92 29.00	Auto	0.0000
L39	40	(Area) CCI-65FP-060100 (H)	26.92 - 29.00	Auto	0.0000
L39	41	(Area) CCI-65FP-060100 (H)	26.92 - 29.00	Auto	0.0000
L39	59	(Area) CCI-65FP-060100 (H)	26.92 - 29.00	Auto	0.0000
L39	60	(Area) CCI-65FP-060100 (H)	26.92 - 29.00	Auto	0.0000
L39	61	(Area) CCI-65FP-060100 (H)	26.92 - 29.00	Auto	0.0000
L40	19	PL 0.75x4	26.67 - 26.92	Auto	0.0000
L40	20	PL 0.75x4	26.67 26.92	Auto	0.0000
L40	21	PL 0.75x4	26.67 26.92	Auto	0.0000
L40	36	(Area) CCI-65FP-060100 (H)	26.67 26.92	Auto	0.0000
L40	37	(Area) CCI-65FP-060100 (H)	26.67 26.92	Auto	0.0000
L40	38	(Area) CCI-65FP-060100 (H)	26.67 - 26.92	Auto	0.0000
L40	40	(Area) CCI-65FP-060100 (H)	26.67 26.92	Auto	0.0000
L40		(Area) CCI-65FP-060100 (H)	26.67 26.92	Auto	0.0000
L40	59	(Area) CCI-65FP-060100 (H)	26.67 - 26.92	Auto	0.0000
L40	60	(Area) CCI-65FP-060100 (H)	26.67 26.92	Auto	0.0000
L40	61	(Area) CCI-65FP-060100 (H)	26.67 - 26.92	Auto	0.0000
L41	19	PL 0.75x4	21.67 - 26.67	Auto	0.0000
L41	20	PL 0.75x4	21.67 - 26.67	Auto	0.0000
L41	21	PL 0.75x4	21.67 - 26.67 21.67	Auto	0.0000
L41	36	(Area) CCI-65FP-060100 (H)	21.67 - 26.67 21.67	Auto	0.0000
L41 L41	37	(Area) CCI-65FP-060100 (H)	21.67 26.67 21.67	Auto	0.0000
	38	(Area) CCI-65FP-060100 (H)	21.67 - 26.67 21.67	Auto	0.0000
L41	40	(Area) CCI-65FP-060100 (H)	21.67 - 26.67 21.67 -	Auto	0.0000
L41	41	(Area) CCI-65FP-060100 (H)	21.67 - 26.67 21.67	Auto	0.0000
L41	59	(Area) CCI-65FP-060100	21.67 -	Auto	0.0000

Tower Section	Attachment Record No.	Description	Attachment Segment	Ratio Calculatio	Effective Width
			Elev.	n Method	Ratio
L41	60	(H) (Area) CCI-65FP-060100 (H)	26.67 21.67 - 26.67	Auto	0.0000
L41	61	(Area) CCI-65FP-060100	21.67 -	Auto	0.0000
L42	19	(H) PL 0.75x4	26.67 - 18.00 21.67	Auto	0.0000
L42	20	PL 0.75x4	18.00 -	Auto	0.0000
L42	21	PL 0.75x4	21.67 18.00 - 21.67	Auto	0.0000
L42	33	(Area) CCI-65FP-060100 (H)	21.67 - 18.00 20.75	Auto	0.0000
L42	34	(17) (Area) CCI-65FP-060100 (H)	18.00 - 20.75	Auto	0.0000
L42	35	(11) (Area) CCI-65FP-060100 (H)	18.00 20.75	Auto	0.0000
L42	36	(Area) CCI-65FP-060100 (H)	20.75 21.67	Auto	0.0000
L42	37	(Area) CCI-65FP-060100 (H)	20.75 21.67	Auto	0.0000
L42	38	(Area) CCI-65FP-060100 (H)	20.75 21.67	Auto	0.0000
L42	40	(Area) CCI-65FP-060100 (H)	21.00 21.67	Auto	0.0000
L42	41	(Area) CCI-65FP-060100 (H)	21.00 - 21.67	Auto	0.0000
L42	52	(Area) CCI-65FP-065125 (H)	18.00 20.75	Auto	0.0000
L42	53	(Area) CCI-65FP-065125 (H)	18.00 20.75	Auto	0.0000
L42	54	(Area) CCI-65FP-065125 (H)	18.00 20.75	Auto	0.0000
L42	56	(Area) CCI-65FP-060100 (H)	18.00 - 20.00	Auto	0.0000
L42	57	(Area) CCI-65FP-060100 (H)	18.00 20.00	Auto	0.0000
L42	58	(Area) CCI-65FP-060100 (H)	- 18.00 20.00	Auto	0.0000
L42	59	(Area) CCI-65FP-060100 (H)	20.00 - 21.67	Auto	0.0000
L42	60	(Area) CCI-65FP-060100 (H)	20.00 - 21.67	Auto	0.0000
L42	61	(Area) CCI-65FP-060100 (H)	20.00 - 21.67	Auto	0.0000
L43	19	PL 0.75x4	17.75 18.00	Auto	0.0000
L43	20	PL 0.75x4	17.75 18.00	Auto	0.0000
L43	21	PL 0.75x4	17.75 18.00	Auto	0.0000
L43	33	(Area) CCI-65FP-060100 (H)	17.75 - 18.00	Auto	0.0000
L43	34	(Area) CCI-65FP-060100 (H)	17.75 18.00	Auto	0.0000
L43	35	(Area) CCI-65FP-060100 (H)	17.75 18.00	Auto	0.0000
L43	52	(Area) CCI-65FP-065125 (H)	17.75 18.00	Auto	0.0000
L43	53	(Area) CCI-65FP-065125 (H)	17.75 18.00	Auto	0.0000
L43	54	(Area) CCI-65FP-065125 (H)	17.75 - 18.00	Auto	0.0000
L43	56	(Area) CCI-65FP-060100 (H)	17.75 - 18.00	Auto	0.0000
L43	57	(Area) CCI-65FP-060100 (H)	17.75 - 18.00	Auto	0.0000
L43	58	(Area) CCI-65FP-060100	17.75 -	Auto	0.0000

Tower Section	Attachment Record No.	Description	Attachment Segment	Ratio Calculatio	Effective Width
			Elev.	n Method	Ratio
L44	19	(H) PL 0.75x4	18.00 - 17.50 17.75	Auto	0.0000
L44	20	PL 0.75x4	17.50 -	Auto	0.0000
L44	21	PL 0.75x4	17.75 - 17.50 17.75	Auto	0.0000
L44	33	(Area) CCI-65FP-060100	17.50 -	Auto	0.0000
L44	34	(H) (Area) CCI-65FP-060100	17.75 - 17.50 17.75	Auto	0.0000
L44	35	(H) (Area) CCI-65FP-060100 (H)	17.50 17.50 17.75	Auto	0.0000
L44	52	(17) (Area) CCI-65FP-065125 (H)	17.50 17.50 17.75	Auto	0.0000
L44	53	(Area) CCI-65FP-065125 (H)	17.50 17.50 17.75	Auto	0.0000
L44	54	(Area) CCI-65FP-065125 (H)	17.50 17.50 17.75	Auto	0.0000
L44	56	(Area) CCI-65FP-060100 (H)	17.50 17.50 17.75	Auto	0.0000
L44	57	(Area) CCI-65FP-060100 (H)	17.50 17.75	Auto	0.0000
L44	58	(Area) CCI-65FP-060100 (H)	17.50 17.75	Auto	0.0000
L45	19	PL 0.75x4	17.25 17.50	Auto	0.0000
L45	20	PL 0.75x4	17.25 17.50	Auto	0.0000
L45	21	PL 0.75x4	17.25 17.50	Auto	0.0000
L45	33	(Area) CCI-65FP-060100 (H)	17.25 17.50	Auto	0.0000
L45	34	(Area) CCI-65FP-060100 (H)	17.25 17.50	Auto	0.0000
L45	35	(Area) CCI-65FP-060100 (H)	17.25 17.50	Auto	0.0000
L45	52	(Area) CCI-65FP-065125 (H)	17.25 17.50	Auto	0.0000
L45	53	(Area) CCI-65FP-065125 (H)	17.25 17.50	Auto	0.0000
L45	54	(Area) CCI-65FP-065125 (H)	17.25 17.50	Auto	0.0000
L45	56		17.25 17.50	Auto	0.0000
L45	57	(Area) CCI-65FP-060100 (H)	17.25 17.50	Auto	0.0000
L45	58	(Area) CCI-65FP-060100 (H)	17.25 17.50	Auto	0.0000
L46	19	PL 0.75x4	17.08 17.25	Auto	0.0000
L46	20	PL 0.75x4	17.08 17.25	Auto	0.0000
L46	21	PL 0.75x4	17.08 17.25	Auto	0.0000
L46	33	(Area) CCI-65FP-060100 (H)	17.08 17.25	Auto	0.0000
L46	34	(Area) CCI-65FP-060100 (H)	17.08 17.25	Auto	0.0000
L46	35	(Area) CCI-65FP-060100 (H)	17.08 17.25	Auto	0.0000
L46	52	(Area) CCI-65FP-065125 (H)	17.08 17.25	Auto	0.0000
L46	53	(Area) CCI-65FP-065125 (H)	17.08 17.25	Auto	0.0000
L46	54	(17) (Area) CCI-65FP-065125 (H)	17.08 17.25	Auto	0.0000
L46	56		17.08 -	Auto	0.0000

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.		Segment Elev.	Calculatio n	Width Ratio
		(11)	17.25	Method	
L46	57	(H) (Area) CCI-65FP-060100 (H)	17.25 17.08 - 17.25	Auto	0.0000
L46	58	(II) (Area) CCI-65FP-060100 (H)	17.08 - 17.25	Auto	0.0000
L47	19	PL 0.75x4	16.83 - 17.08	Auto	0.0000
L47	20	PL 0.75x4	16.83 17.08	Auto	0.0000
L47	21	PL 0.75x4	16.83 17.08	Auto	0.0000
L47	33	(Area) CCI-65FP-060100 (H)	16.83 17.08	Auto	0.0000
L47	34	(Area) CCI-65FP-060100 (H)	16.83 - 17.08	Auto	0.0000
L47	35	(Area) CCI-65FP-060100 (H)	16.83 17.08	Auto	0.0000
L47	52	(Area) CCI-65FP-065125 (H)	- 16.83 17.08	Auto	0.0000
L47	53	(Area) CCI-65FP-065125 (H)	16.83 - 17.08	Auto	0.0000
L47	54	(Area) CCI-65FP-065125 (H)	16.83 - 17.08	Auto	0.0000
L47	56	(Area) CCI-65FP-060100 (H)	16.83 - 17.08	Auto	0.0000
L47	57	(Area) CCI-65FP-060100 (H)	16.83 - 17.08	Auto	0.0000
L47	58	(Area) CCI-65FP-060100 (H)	16.83 - 17.08	Auto	0.0000
L48	19	PL 0.75x4	15.83 - 16.83	Auto	0.0000
L48	20	PL 0.75x4	15.83 - 16.83	Auto	0.0000
L48	21	PL 0.75x4	15.83 16.83	Auto	0.0000
L48	29	(Area) CCI-65FP-060100 (H)	13.00 15.50	Auto	0.0000
L48	30	(Area) CCI-65FP-060100 (H)	13.00 - 15.50	Auto	0.0000
L48	31	(Area) CCI-65FP-060100 (H)	13.00 - 15.50	Auto	0.0000
L48	33	(Area) CCI-65FP-060100 (H)	13.00 16.83	Auto	0.0000
L48		(Area) CCI-65FP-060100 (H)	13.00 16.83	Auto	0.0000
L48		(Area) CCI-65FP-060100 (H)	13.00 16.83	Auto	0.0000
L48	52	(Area) CCI-65FP-065125 (H)	13.00 16.83	Auto	0.0000
L48	53	(Area) CCI-65FP-065125 (H)	13.00 16.83	Auto	0.0000
L48	54	(Area) CCI-65FP-065125 (H)	13.00 16.83	Auto	0.0000
L48	56	(Area) CCI-65FP-060100 (H)	13.00 16.83	Auto	0.0000
L48	57	(Area) CCI-65FP-060100 (H)	13.00 16.83	Auto	0.0000
L48	58	(Area) CCI-65FP-060100 (H)	13.00 16.83	Auto	0.0000
L49	29	(Area) CCI-65FP-060100 (H)	12.75 - 13.00	Auto	0.0000
L49	30	(Area) CCI-65FP-060100 (H)	12.75 - 13.00	Auto	0.0000
L49	31	(Area) CCI-65FP-060100 (H)	12.75 - 13.00	Auto	0.0000
L49	33	(Area) CCI-65FP-060100 (H)	12.75 - 13.00	Auto	0.0000
L49	34	(Area) CCI-65FP-060100	12.75 -	Auto	0.0000

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.		Segment Elev.	Calculatio n	Width Ratio
		(H)	13.00	Method	
L49	35	(Area) CCI-65FP-060100	12.75 -	Auto	0.0000
L49	52	(H) (Area) CCI-65FP-065125	13.00 12.75	Auto	0.0000
L49	53	(H) (Area) CCI-65FP-065125	13.00 - 12.75 13.00	Auto	0.0000
L49	54	(H) Area) CCI-65FP-065125((H)	12.75 - 13.00	Auto	0.0000
L49	56	(H) (Area) CCI-65FP-060100 (H)	12.75 - 13.00	Auto	0.0000
L49	57	(IT) (Area) CCI-65FP-060100 (H)	12.75 13.00	Auto	0.0000
L49	58	(H) (Area) CCI-65FP-060100 (H)	12.75 - 13.00	Auto	0.0000
L50	29	(H) (Area) CCI-65FP-060100 (H)	11.92 12.75	Auto	0.0000
L50	30	(ח) (Area) CCI-65FP-060100 (H)	12.75 11.92 12.75	Auto	0.0000
L50	31	(ח) (Area) CCI-65FP-060100 (H)	12.75 11.92 12.75	Auto	0.0000
L50	33	(IT) (Area) CCI-65FP-060100 (H)	11.92 - 12.75	Auto	0.0000
L50	34	(IT) (Area) CCI-65FP-060100 (H)	11.92 - 12.75	Auto	0.0000
L50	35	(IT) (Area) CCI-65FP-060100 (H)	11.92 - 12.75	Auto	0.0000
L50	52	(IT) (Area) CCI-65FP-065125 (H)	11.92 - 12.75	Auto	0.0000
L50	53	(IT) (Area) CCI-65FP-065125 (H)	12.75 11.92 12.75	Auto	0.0000
L50	54	(IT) (Area) CCI-65FP-065125 (H)	11.92 12.75	Auto	0.0000
L50	56	(H) (Area) CCI-65FP-060100 (H)	12.75 11.92 12.75	Auto	0.0000
L50	57	(IT) (Area) CCI-65FP-060100 (H)	11.92 12.75	Auto	0.0000
L50	58	(IT) (Area) CCI-65FP-060100 (H)	11.92 12.75	Auto	0.0000
L51	29	(IT) (Area) CCI-65FP-060100 (H)	11.67 11.92	Auto	0.0000
L51	30	(IT) (Area) CCI-65FP-060100 (H)	11.92 11.67 11.92	Auto	0.0000
L51	31	(IT) (Area) CCI-65FP-060100 (H)	11.67 -	Auto	0.0000
L51	33	(17) (Area) CCI-65FP-060100 (H)	11.92 - 11.67 - 11.92	Auto	0.0000
L51	34	(IT) (Area) CCI-65FP-060100 (H)	11.67 11.92	Auto	0.0000
L51	35	(H) (Area) CCI-65FP-060100 (H)	11.92 11.67 11.92	Auto	0.0000
L51	52	(17) (Area) CCI-65FP-065125 (H)	11.92 11.67 11.92	Auto	0.0000
L51	53	(Area) CCI-65FP-065125	11.67 -	Auto	0.0000
L51	54	(H) Area) CCI-65FP-065125(H)	11.92 11.67 11.92	Auto	0.0000
L51	56	(H) Area) CCI-65FP-060100((H)	11.92 11.67 11.92	Auto	0.0000
L51	57	(H) Area) CCI-65FP-060100(بار)	11.92 11.67 11.92	Auto	0.0000
L51	58	(H) (Area) CCI-65FP-060100 (ایا)	11.92 11.67 11.92	Auto	0.0000
L52	29	(H) (Area) CCI-65FP-060100	11.92 6.67 - 11.67	Auto	0.0000
L52	30	(H) (Area) CCI-65FP-060100 (ایا)	6.67 - 11.67	Auto	0.0000
L52	31	(H) (Area) CCI-65FP-060100	6.67 - 11.67	Auto	0.0000

Tower Section	Attachment Record No.	Description	Attachment Segment	Ratio Calculatio	Effective Width
			Ĕlev.	n Method	Ratio
L52	33	(H) (Area) CCI-65FP-060100	9.42 - 11.67	Auto	0.0000
L52	34	(H) (Area) CCI-65FP-060100	9.42 - 11.67	Auto	0.0000
L52	35	(H) (Area) CCI-65FP-060100	9.42 - 11.67	Auto	0.0000
L52	51	(H) (Area) CCI-65FP-065125	6.67 - 9.25	Auto	0.0000
L52	52	(H) (Area) CCI-65FP-065125	6.67 - 11.67	Auto	0.0000
L52	53	(H) (Area) CCI-65FP-065125 (ایا)	6.67 - 11.67	Auto	0.0000
L52	54	(H) Area) CCI-65FP-065125((H))	6.67 - 11.67	Auto	0.0000
L52	56	(H) (Area) CCI-65FP-060100 (H)	6.67 - 11.67	Auto	0.0000
L52	57	(H) (Area) CCI-65FP-060100 (H)	6.67 - 11.67	Auto	0.0000
L52	58	(17) (Area) CCI-65FP-060100 (H)	6.67 - 11.67	Auto	0.0000
L53	29	(Area) CCI-65FP-060100 (H)	6.50 - 6.67	Auto	0.0000
L53	30	(Area) CCI-65FP-060100 (H)	6.50 - 6.67	Auto	0.0000
L53	31	(Area) CCI-65FP-060100 (H)	6.50 - 6.67	Auto	0.0000
L53	51	(Area) CCI-65FP-065125 (H)	6.50 - 6.67	Auto	0.0000
L53	52	(Area) CCI-65FP-065125 (H)	6.50 - 6.67	Auto	0.0000
L53	53	(Area) CCI-65FP-065125 (H)	6.50 - 6.67	Auto	0.0000
L53	54	(Area) CCI-65FP-065125 (H)	6.50 - 6.67	Auto	0.0000
L53	56	(Area) CCI-65FP-060100 (H)	6.50 - 6.67	Auto	0.0000
L53	57	(Area) CCI-65FP-060100 (H)	6.50 - 6.67	Auto	0.0000
L53	58	(Area) CCI-65FP-060100 (H)	6.50 - 6.67	Auto	0.0000
L54	29	(Area) CCI-65FP-060100 (H)	6.25 - 6.50	Auto	0.0000
L54	30	(Area) CCI-65FP-060100 (H)	6.25 - 6.50	Auto	0.0000
L54	31	(Area) CCI-65FP-060100 (H)	6.25 - 6.50	Auto	0.0000
L54	51	(Area) CCI-65FP-065125 (H)	6.25 - 6.50	Auto	0.0000
L54	52	(Area) CCI-65FP-065125 (H)	6.25 - 6.50	Auto	0.0000
L54	53	(Area) CCI-65FP-065125 (H)	6.25 - 6.50	Auto	0.0000
L54	54	(Area) CCI-65FP-065125 (H)	6.25 - 6.50	Auto	0.0000
L54	56	(Area) CCI-65FP-060100 (H)	6.25 - 6.50	Auto	0.0000
L54	57	(Area) CCI-65FP-060100 (H)	6.25 - 6.50	Auto	0.0000
L54	58	(Area) CCI-65FP-060100 (H)	6.25 - 6.50	Auto	0.0000
L55	29	(Area) CCI-65FP-060100 (H)	3.75 - 6.25	Auto	0.0000
L55	30	(Area) CCI-65FP-060100 (H)	3.75 - 6.25	Auto	0.0000
L55	31	(Area) CCI-65FP-060100 (H)	3.75 - 6.25	Auto	0.0000
L55	51	(Area) CCI-65FP-065125	3.75 - 6.25	Auto	0.0000

Tower Section	Attachment Record No.	Description	Attachment Segment	Ratio Calculatio	Effective Width
			Elev.	n Method	Ratio
L55	52	(H) (Area) CCI-65FP-065125	3.75 - 6.25	Auto	0.0000
L55	53	(H) (Area) CCI-65FP-065125	3.75 - 6.25	Auto	0.0000
L55	54	(H) (Area) CCI-65FP-065125	3.75 - 6.25	Auto	0.0000
L55	56	(H) (Area) CCI-65FP-060100	3.75 - 6.25	Auto	0.0000
L55	57	(H) (Area) CCI-65FP-060100	3.75 - 6.25	Auto	0.0000
L55	58	(H) (Area) CCI-65FP-060100 (ایا)	3.75 - 6.25	Auto	0.0000
L56	29	(H) Area) CCI-65FP-060100((H)	3.50 - 3.75	Auto	0.0000
L56	30	(ח) (Area) CCI-65FP-060100 (H)	3.50 - 3.75	Auto	0.0000
L56	31	(ח) (Area) CCI-65FP-060100 (H)	3.50 - 3.75	Auto	0.0000
L56	51	(H) (Area) CCI-65FP-065125 (H)	3.50 - 3.75	Auto	0.0000
L56	52	(17) (Area) CCI-65FP-065125 (H)	3.50 - 3.75	Auto	0.0000
L56	53	(Area) CCI-65FP-065125 (H)	3.50 - 3.75	Auto	0.0000
L56	54	(Area) CCI-65FP-065125 (H)	3.50 - 3.75	Auto	0.0000
L56	56	(Area) CCI-65FP-060100 (H)	3.50 - 3.75	Auto	0.0000
L56	57	(Area) CCI-65FP-060100 (H)	3.50 - 3.75	Auto	0.0000
L56	58	(Area) CCI-65FP-060100 (H)	3.50 - 3.75	Auto	0.0000
L57	29	(Area) CCI-65FP-060100 (H)	3.00 - 3.50	Auto	0.0000
L57	30	(Area) CCI-65FP-060100 (H)	3.00 - 3.50	Auto	0.0000
L57	31	(Area) CCI-65FP-060100 (H)	3.00 - 3.50	Auto	0.0000
L57	51	(Area) CCI-65FP-065125 (H)	3.00 - 3.50	Auto	0.0000
L57	52	(Area) CCI-65FP-065125 (H)	3.00 - 3.50	Auto	0.0000
L57	53	(Area) CCI-65FP-065125 (H)	3.00 - 3.50	Auto	0.0000
L57	54	(Area) CCI-65FP-065125 (H)	3.00 - 3.50	Auto	0.0000
L57	56	(Area) CCI-65FP-060100 (H)	3.00 - 3.50	Auto	0.0000
L57	57	(Area) CCI-65FP-060100 (H)	3.00 - 3.50	Auto	0.0000
L57	58	(Area) CCI-65FP-060100 (H)	3.00 - 3.50	Auto	0.0000
L58	29	(Area) CCI-65FP-060100 (H)	2.75 - 3.00	Auto	0.0000
L58	30	(Area) CCI-65FP-060100 (H)	2.75 - 3.00	Auto	0.0000
L58	31	(Area) CCI-65FP-060100 (H)	2.75 - 3.00	Auto	0.0000
L58	51	(Area) CCI-65FP-065125 (H)	2.75 - 3.00	Auto	0.0000
L58	52	(Area) CCI-65FP-065125 (H)	2.75 - 3.00	Auto	0.0000
L58	53	(Area) CCI-65FP-065125 (H)	2.75 - 3.00	Auto	0.0000
L58	54	(Area) CCI-65FP-065125 (H)	2.75 - 3.00	Auto	0.0000
L58	56		2.75 - 3.00	Auto	0.0000

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.		Segment	Calculatio	Width
			Elev.	n	Ratio
				Method	
		(H)			
L58	57	(Area) CCI-65FP-060100	2.75 - 3.00	Auto	0.0000
		(H)			
L58	58	(Area) CCI-65FP-060100	2.75 - 3.00	Auto	0.0000
		(H)			
L59	29	(Area) CCI-65FP-060100	0.00 - 2.75	Auto	0.0000
		(H)			
L59	30	(Area) CCI-65FP-060100	0.00 - 2.75	Auto	0.0000
		(H)			
L59	31	(Area) CCI-65FP-060100	0.00 - 2.75	Auto	0.0000
		(H)			
L59	51	(Area) CCI-65FP-065125	0.00 - 2.75	Auto	0.0000
		(H)			
L59	52	(Area) CCI-65FP-065125	0.00 - 2.75	Auto	0.0000
		(H)			
L59	53	(Area) CCI-65FP-065125	0.00 - 2.75	Auto	0.0000
		(H)			
L59	54	(Area) CCI-65FP-065125	0.00 - 2.75	Auto	0.0000
		(H)			
L59	56	(Area) CCI-65FP-060100	0.00 - 2.75	Auto	0.0000
		(H)			
L59	57	(Area) CCI-65FP-060100	0.00 - 2.75	Auto	0.0000
	•	(H)			
L59	58	(Area) CCI-65FP-060100	0.00 - 2.75	Auto	0.0000
_00		(H)			
		(***)		1	

	Discrete Tower Loads					
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement	
			ft ft ft	٥	ft	
80010798 w/ Mount Pipe	A	From Leg	4.0000 0.00 -1.00	0.00	121.0000	
80010798 w/ Mount Pipe	В	From Leg	4.0000 0.00 -1.00	0.00	121.0000	
80010798 w/ Mount Pipe	С	From Leg	4.0000 0.00 -1.00	0.00	121.0000	
(2) 80010965 w/ Mount Pipe	A	From Leg	4.0000 0.00 -1.00	0.00	121.0000	
(2) 80010965 w/ Mount Pipe	В	From Leg	4.0000 0.00 -1.00	0.00	121.0000	
(2) 80010965 w/ Mount Pipe	С	From Leg	4.0000 0.00 -1.00	0.00	121.0000	
800 10121 w/ Mount Pipe	A	From Leg	4.0000 0.00 -1.00	0.00	121.0000	
800 10121 w/ Mount Pipe	В	From Leg	4.0000 0.00 -1.00	0.00	121.0000	
800 10121 w/ Mount Pipe	С	From Leg	4.0000 0.00	0.00	121.0000	

#### 130 Ft Monopole Tower Structural Analysis Project Number 1963271, Order 556638, Revision 1

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement
	Leg		Vert ft ft ft	٥	ft
RRUS E2 B29	A	From Leg	-1.00 4.0000 0.00	0.00	121.0000
RRUS E2 B29	В	From Leg	-1.00 4.0000 0.00	0.00	121.0000
RRUS E2 B29	С	From Leg	-1.00 4.0000 0.00	0.00	121.0000
RRUS 8843 B2/B66A	А	From Leg	-1.00 4.0000 0.00	0.00	121.0000
RRUS 8843 B2/B66A	В	From Leg	-1.00 4.0000 0.00	0.00	121.0000
RRUS 8843 B2/B66A	С	From Leg	-1.00 4.0000 0.00	0.00	121.0000
DC6-48-60-18-8F	А	From Leg	-1.00 4.0000 0.00	0.00	121.0000
DC6-48-60-18-8F	В	From Leg	-1.00 4.0000 0.00	0.00	121.0000
(2) DC6-48-60-18-8F	С	From Leg	-1.00 4.0000 0.00	0.00	121.0000
RRUS 32 B30	A	From Leg	-1.00 4.0000 0.00	0.00	121.0000
RRUS 32 B30	В	From Leg	-1.00 4.0000 0.00	0.00	121.0000
RRUS 32 B30	С	From Leg	-1.00 4.0000 0.00	0.00	121.0000
RRUS 4478 B14	А	From Leg	-1.00 4.0000 0.00	0.00	121.0000
RRUS 4478 B14	В	From Leg	-1.00 4.0000 0.00	0.00	121.0000
RRUS 4478 B14	С	From Leg	-1.00 4.0000 0.00	0.00	121.0000
RRUS 4449 B5/B12	A	From Leg	-1.00 4.0000 0.00	0.00	121.0000
RRUS 4449 B5/B12	В	From Leg	-1.00 4.0000 0.00	0.00	121.0000
RRUS 4449 B5/B12	С	From Leg	-1.00 4.0000 0.00	0.00	121.0000
(2) LGP21401	А	From Leg	-1.00 4.0000 0.00	0.00	121.0000
(2) LGP21401	В	From Leg	-1.00 4.0000 0.00	0.00	121.0000
(2) LGP21401	С	From Leg	-1.00 4.0000 0.00	0.00	121.0000
(2) 2.4" Dia x 6-ft Pipe (Horizontal)	A	From Leg	-1.00 4.0000	0.00	121.0000

### 130 Ft Monopole Tower Structural Analysis Project Number 1963271, Order 556638, Revision 1

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placeme
	Leg		Lateral Vert ft ft ft	٥	ft
			0.00		
(2) 2.4" Dia x 6-ft Pipe (Horizontal)	В	From Leg	0.00 4.0000 0.00 0.00	0.00	121.000
(2) 2.4" Dia x 6-ft Pipe (Horizontal)	С	From Leg	4.0000 0.00 0.00	0.00	121.000
Side Arm Mount [SO 102-3] Platform Mount [LP 602-1]	C C	None None	0.00	0.00 0.00	121.000 121.000
(2) SBNHH-1D65B w/ Mount Pipe	А	From Leg	4.0000 0.00	0.00	109.000
(2) SBNHH-1D65B w/ Mount Pipe	В	From Leg	2.00 4.0000 0.00 2.00	0.00	109.000
(2) SBNHH-1D65B w/ Mount Pipe	С	From Leg	4.0000 0.00	0.00	109.000
BXA-80063/4CF w/ Mount Pipe	A	From Leg	2.00 4.0000 0.00	0.00	109.000
BXA-80063/4CF w/ Mount Pipe	В	From Leg	2.00 4.0000 0.00	0.00	109.000
BXA-80063/4CF w/ Mount Pipe	С	From Leg	2.00 4.0000 0.00	0.00	109.000
CBRS w/ Mount Pipe	А	From Leg	2.00 4.0000 0.00	0.00	109.000
CBRS w/ Mount Pipe	В	From Leg	0.00 4.0000 0.00	0.00	109.000
CBRS w/ Mount Pipe	С	From Leg	0.00 4.0000 0.00	0.00	109.000
MT6407-77A w/ Mount Pipe	А	From Leg	0.00 4.0000 0.00	0.00	109.000
MT6407-77A w/ Mount Pipe	В	From Leg	4.00 4.0000 0.00	0.00	109.000
MT6407-77A w/ Mount Pipe	С	From Leg	4.00 4.0000 0.00	0.00	109.000
RFV01U-D1A	A	From Leg	4.00 4.0000 0.00	0.00	109.000
RFV01U-D1A	A	From Leg	0.00 4.0000 0.00	0.00	109.000
RFV01U-D1A	В	From Leg	0.00 4.0000 0.00	0.00	109.000
RFV01U-D2A	A	From Leg	0.00 4.0000 0.00	0.00	109.000
RFV01U-D2A	В	From Leg	0.00 4.0000 0.00	0.00	109.000
RFV01U-D2A	В	From Leg	0.00 4.0000 0.00	0.00	109.000

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement
	209		Vert ft ft ft	0	ft
RUSDC-6267-PF-48	В	From Leg	4.0000 0.00 0.00	0.00	109.0000
Site Pro 1 F3P-HRK12 Site Pro 1 F3P-12[W]	C C	None None	0.00	0.00 0.00	109.0000 109.0000
800MHz 2X50W RRH W/FILTER	A	From Leg	2.0000 0.00 0.00	0.00	99.0000
800MHz 2X50W RRH W/FILTER	В	From Leg	2.0000 0.00 0.00	0.00	99.0000
800MHz 2X50W RRH W/FILTER	С	From Leg	2.0000 0.00 0.00	0.00	99.0000
PCS 1900MHz 4x45W-65MHz w/ Mount Pipe	А	From Leg	2.0000 0.00 0.00	0.00	99.0000
PCS 1900MHz 4x45W-65MHz w/ Mount Pipe	В	From Leg	2.0000 0.00 0.00	0.00	99.0000
PCS 1900MHz 4x45W-65MHz w/ Mount Pipe	С	From Leg	2.0000 0.00 0.00	0.00	99.0000
Side Arm Mount [SO 101-3]	С	None	0.00	0.00	99.0000
LLPX310R-V1 w/ Mount Pipe	A	From Leg	4.0000 0.00	0.00	97.0000
LLPX310R-V1 w/ Mount Pipe	В	From Leg	1.00 4.0000 0.00	0.00	97.0000
LLPX310R-V1 w/ Mount Pipe	С	From Leg	1.00 4.0000 0.00	0.00	97.0000
TIMING 2000	А	From Leg	1.00 4.0000 0.00	0.00	97.0000
RRH-2WB	А	From Leg	0.00 4.0000 0.00	0.00	97.0000
RRH-2WB	В	From Leg	0.00 4.0000 0.00	0.00	97.0000
RRH-2WB	С	From Leg	0.00 4.0000 0.00	0.00	97.0000
HORIZON COMPACT	В	From Leg	0.00 4.0000 0.00 0.00	0.00	97.0000
HORIZON COMPACT	С	From Leg	4.0000 0.00 0.00	0.00	97.0000
APXVSPP18-C-A20 w/ Mount Pipe	A	From Leg	4.0000 0.00	0.00	97.0000
APXVSPP18-C-A20 w/ Mount Pipe	В	From Leg	1.00 4.0000 0.00	0.00	97.0000
APXVSPP18-C-A20 w/ Mount Pipe	С	From Leg	1.00 4.0000 0.00	0.00	97.0000
APXVTM14-ALU-I20 w/ Mount Pipe	А	From Leg	1.00 4.0000 0.00	0.00	97.0000

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement
	Leg		Lateral Vert	-	
			ft	۰	ft
			ft ft		
APXVTM14-ALU-I20 w/ Mount Pipe	В	From Leg	1.00 4.0000	0.00	97.0000
	D	Tioni Leg	0.00	0.00	37.0000
APXVTM14-ALU-I20 w/ Mount Pipe	С	From Leg	1.00 4.0000	0.00	97.0000
		Ũ	0.00 1.00		
TD-RRH8X20-25	А	From Leg	4.0000	0.00	97.0000
			0.00 0.00		
TD-RRH8X20-25	В	From Leg	4.0000	0.00	97.0000
			0.00 0.00		
TD-RRH8X20-25	С	From Leg	4.0000 0.00	0.00	97.0000
	0	Nieles	0.00	0.00	07 0000
Platform Mount [LP 713-1]	С	None		0.00	97.0000
ERICSSON AIR 21 B2A B4P w/ Mount Pipe	А	From Face	4.0000 0.00	0.00	87.0000
	_		0.00		
ERICSSON AIR 21 B2A B4P w/ Mount Pipe	В	From Face	4.0000 0.00	0.00	87.0000
ERICSSON AIR 21 B2A B4P w/ Mount Pipe	С	From Face	0.00 4.0000	0.00	87.0000
ERICOSON AIR 21 BZA B4F w/ Mount Fipe	C	FIOIIIFACE	0.00	0.00	87.0000
APXVAARR24_43-U-NA20 w/ Mount Pipe	А	From Face	0.00 4.0000	0.00	87.0000
· · · · · · · · · · · · · · · · · · ·			0.00 0.00		
APXVAARR24_43-U-NA20 w/ Mount Pipe	В	From Face	4.0000	0.00	87.0000
			0.00 0.00		
APXVAARR24_43-U-NA20 w/ Mount Pipe	С	From Face	4.0000	0.00	87.0000
			0.00 0.00		
AIR -32 B2A/B66AA w/ Mount Pipe	A	From Face	4.0000 0.00	0.00	87.0000
			0.00	0.00	07 0000
AIR -32 B2A/B66AA w/ Mount Pipe	В	From Face	4.0000 0.00	0.00	87.0000
AIR -32 B2A/B66AA w/ Mount Pipe	С	From Face	0.00 4.0000	0.00	87.0000
	U		0.00	0100	0110000
KRY 112 144/1	А	From Face	0.00 4.0000	0.00	87.0000
			0.00 0.00		
KRY 112 144/1	А	From Face	4.0000	0.00	87.0000
			0.00 0.00		
KRY 112 144/1	В	From Face	4.0000 0.00	0.00	87.0000
	•	Energy 1	0.00	0.00	07 0000
RADIO 4449 B12/B71	А	From Leg	4.0000 0.00	0.00	87.0000
(2) RADIO 4449 B12/B71	С	From Leg	0.00 4.0000	0.00	87.0000
	0	. Tom Log	0.00	0.00	57.0000
T-Arm Mount [TA 602-3]	С	None	0.00	0.00	87.0000
** - MX08FRO665-21 w/ Mount Pipe	А	From Leg	4.0000	0.00	77.0000
W/Controduction	~	r tom Leg	0.00	0.00	11.0000
			0.00		

Description	Face	Offset	Offsets:	Azimuth	Placemer
	or	Туре	Horz	Adjustment	
	Leg		Lateral		
			Vert		
			ft	٥	ft
			ft		
			ft		
MX08FRO665-21 w/ Mount Pipe	В	From Leg	4.0000	0.00	77.0000
			0.00		
			0.00		
MX08FRO665-21 w/ Mount Pipe	С	From Leg	4.0000	0.00	77.0000
			0.00		
			0.00		
TA08025-B604	А	From Leg	4.0000	0.00	77.0000
			0.00		
	_		0.00		
TA08025-B604	В	From Leg	4.0000	0.00	77.0000
			0.00		
	0	<b>F</b>	0.00	0.00	77 0000
TA08025-B604	С	From Leg	4.0000	0.00	77.0000
			0.00 0.00		
TA08025-B605	А	From Log	4.0000	0.00	77.0000
TAU6025-B605	А	From Leg	4.0000	0.00	77.0000
			0.00		
TA08025-B605	В	From Leg	4.0000	0.00	77.0000
17/00020 2000	D	T TOIN LOg	0.00	0.00	11.0000
			0.00		
TA08025-B605	С	From Leg	4.0000	0.00	77.0000
	-		0.00		
			0.00		
RDIDC-9181-PF-48	В	From Leg	4.0000	0.00	77.0000
		Ŭ	0.00		
			0.00		
(2) 8' x 2" Mount Pipe	А	From Leg	4.0000	0.00	77.0000
			0.00		
			0.00		
(2) 8' x 2" Mount Pipe	В	From Leg	4.0000	0.00	77.0000
			0.00		
			0.00		
(2) 8' x 2" Mount Pipe	С	From Leg	4.0000	0.00	77.0000
			0.00		
	0		0.00	0.00	
Commscope MC-PK8-DSH	С	None		0.00	77.0000

	Dishes											
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter				
				ft	٥	٥	ft	ft				
VHLP2.5-18	В	Paraboloid w/Shroud (HP)	From Leg	4.0000 0.00 6.00	0.00		97.0000	2.5000				
VHLP2-18	С	Paraboloid w/o Radome	From Leg	4.0000 0.00 6.00	0.00		97.0000	2.1750				

## Load Combinations

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

# **Maximum Member Forces**

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	K	kip-ft	kip-ft
L1	130 - 125	Pole	Max Tension	8	0.00	0.00	0.00
			Max. Compression	26	-0.29	-0.00	0.00
			Max. Mx	8	-0.10	-0.63	-0.00
			Max. My	2	-0.10	-0.00	0.62
			Max. Vy	8	0.25	-0.63	-0.00
			Max Vx	2	-0.25	-0.00	0.62
			Max. Torque	10			-0.00
L2	125 - 120	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-15.13	0.46	-0.27
			Max. Mx	20	-4.15	5.22	-0.03
			Max. My	14	-4.17	0.06	-5.17

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment	
No.		-		Comb.	K	kip-ft	kip-ft	
			Max. Vy	8	8.03	-5.04	-0.04	
	120 - 115		Max. Vx	2	-8.02	0.06	5.07	
		Pole	Max, Torque	24			0.24	
L3			Max Tension	1	0.00	0.00	0.00	
			Max. Compression	26	-15.72	0.27	-0.17	
			Max. Mx	20	-4.36	46.10	-0.00	
			Max. My	14	-4.38	0.01	-46.00	
			Max. Wy	8	8.33	-45.97	-40.00	
	115 - 110			2				
			Max. Vx		-8.32	0.04	45.93	
		<b>-</b> .	Max. Torque	24			0.24	
L4		Pole	Max Tension	1	0.00	0.00	0.00	
			Max. Compression	26	-16.34	0.08	-0.07	
			Max. Mx	20	-4.62	88.49	0.03	
			Max. My	14	-4.64	-0.05	-88.34	
			Max. Vy	8	8.64	-88.42	-0.02	
			Max. Vx	2	-8.63	0.01	88.31	
			Max. Torque	2			0.21	
L5	110 - 105	Pole	Max Tension	1	0.00	0.00	0.00	
20		1 016	Max. Compression	26	-28.05	-2.73	1.07	
			•					
			Max. Mx	8	-9.02	-156.62	0.25	
			Max. My	2	-9.06	-0.78	155.83	
	105 - 100		Max. Vy	8	13.53	-156.62	0.25	
			Max. Vx	2	-13.50	-0.78	155.83	
			Max. Torque	24			-0.97	
L6		Pole	Max Tension	1	0.00	0.00	0.00	
			Max. Compression	26	-29.05	-2.95	0.67	
			Max. Mx	8	-9.52	-226.84	-0.22	
			Max. My	2	-9.57	-0.56	225.27	
	100 - 95	0 - 95 Pole	Max. Vy	8	14.41	-226.84	-0.22	
				0				
			Max. Vx	2	-14.28	-0.56	225.27	
			Max. Torque	4			-1.58	
L7			Max Tension	1	0.00	0.00	0.00	
			Max. Compression	26	-40.97	-3.17	0.65	
			Max. Mx	8	-13.48	-312.22	-0.46	
			Max. My	2	-13.54	-0.35	309.89	
			Max. Vý	8	19.43	-312.22	-0.46	
			Max. Vx	2	-19.27	-0.35	309.89	
			Max. Torque	4		0100	-1.60	
L8	95 - 90	Pole	Max Tension	1	0.00	0.00	0.00	
LU	95 - 90		Max. Compression	26	-41.99	-3.37	0.82	
			•					
			Max. Mx	8	-14.14	-410.00	-0.65	
			Max. My	2	-14.19	-0.12	406.90	
			Max. Vy	8	19.71	-410.00	-0.65	
			Max. Vx	2	-19.56	-0.12	406.90	
			Max. Torque	4			-1.60	
L9	90 - 89.75	Pole	Max Tension	1	0.00	0.00	0.00	
				Max. Compression	26	-42.07	-3.38	0.83
			Max. Mx	8	-14.20	-414.93	-0.65	
				Max. My	2	-14.26	-0.11	411.79
				Max. Vy	8	19.71	-414.93	-0.65
			Max. Vy Max. Vx	2	-19.56	-0.11	411.79	
					-19.00	-0.11		
1.40	00 75	D.L.	Max. Torque	4	0.00	0.00	-1.60	
L10	89.75 - 84.75	Pole	Max Tension	1	0.00	0.00	0.00	
			Max. Compression	26	-51.43	-2.20	1.32	
			Max. Mx	8	-17.92	-520.85	-0.67	
L11			Max. My	2	-17.98	0.72	517.53	
	84.75 -		Max. Vy	8	23.23	-520.85	-0.67	
			Max. Vy Max. Vx	2	-22.99	0.72	517.53	
			Max. Torque	4	22.00	0.12	-1.60	
			Max Tension	4	0.00	0.00	0.00	
	84.58		Max. Compression	26	-51.50	-2.22	1.34	
			Max. Mx	8	-17.97	-524.81	-0.67	
			Max. My	2	-18.03	0.72	521.44	
			Max. Vy	8	23.25	-524.81	-0.67	
			Max. Vx	2	-23.00	0.72	521.44	
			Max. Torque	4			-1.22	
L12	84.58 -	Pole	Max Tension	1	0.00	0.00	0.00	

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	K	kip-ft	kip-ft
	84.33				= 4 00	0.05	4.00
			Max. Compression	26	-51.62	-2.25	1.36
			Max. Mx	8	-18.03	-530.63	-0.67
			Max. My	2	-18.10	0.72	527.20
			Max. Vy	8	23.29	-530.63	-0.67
			Max. Vx	2	-23.02	0.72	527.20
			Max. Torque	4			-1.22
L13	84.33 - 83.42	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-52.06	-2.34	1.42
			Max. Mx	8	-18.24	551.92	-0.68
			Max. My	2	-18.32	0.71	548.20
			Max. Vý	8	23.42	-551.92	-0.68
			Max, Vx	2	-23.10	0.71	548.20
			Max. Torque	4			-1.22
L14	83.42 -	Pole	Max Tension	1	0.00	0.00	0.00
	83.17						
			Max. Compression	26	-52.20	-2.37	1.44
			Max. Mx	8	-18.33	-557.79	-0.68
			Max. My	2	-18.41	0.71	553.98
			Max. Vy	8	23.46	-557.79	-0.68
			Max. Vx	2	-23.11	0.71	553.98
			Max. Torque	4			-1.22
L15	83.17 - 83	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-52.29	-2.39	1.45
			Max. Mx	8	-18.38	-561.79	-0.68
			Max. My	2	-18.46	0.71	557.92
			Max. Vy	8	23.48	-561.79	-0.68
			Max. Vx	2	-23.13	0.71	557.92
			Max. Torque	4			-1.22
L16	83 - 82.75	Pole	Max Tension	1	0.00	0.00	0.00
	00 0110		Max. Compression	26	-52.41	-2.42	1.47
			Max. Mx	8	-18.45	-567.67	-0.68
			Max. My	2	-18.52	0.71	563.71
			Max. Vy	8	23.52	-567.67	-0.68
			Max. Vy Max. Vx	2	-23.15	0.71	563.71
					-23.15	0.71	
L17	82.75 -	Pole	Max. Torque Max Tension	4 1	0.00	0.00	-1.22 0.00
	77.75		May Companyation	00	F 4 70	2.00	1.00
			Max. Compression	26	-54.73	-2.96	1.86
			Max. Mx	8	-19.75	-687.29	-0.68
			Max. My	2	-19.84	0.66	680.65
			Max. Vy	8	24.25	-687.29	-0.68
			Max. Vx	2	-23.58	0.66	680.65
			Max. Torque	4			-1.22
L18	77.75 - 70	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-63.21	-3.91	1.89
			Max. Mx	8	-23.80	-789.60	-0.77
			Max. My	2	-23.91	0.56	779.73
			Max. Vy	8	28.16	-789.60	-0.77
			Max. Vx	2	-27.25	0.56	779.73
			Max. Torque	4			-1.46
L19	70 - 69	Pole	Max Tension	1	0.00	0.00	0.00
-			Max. Compression	26	66.67	-4.53	2.32
			Max. Compression Max. Mx	8	-25.98	-932.64	-0.84
			Max. My	2	-26.11	0.57	917.37
			Max. Wy	8	28.97	-932.64	-0.84
			Max. Vy Max. Vx	2	-27.76	0.57	917.37
				2 4	-21.10	0.57	-1.46
L20	60 67 00	Dela	Max. Torque		0.00	0.00	
LZU	69 - 67.08	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-67.66	-4.77	2.49
			Max. Mx	8	-26.55	-988.59	-0.87
			Max. My	2	-26.68	0.57	970.85
			Max. Vy	8	29.25	-988.59	-0.87
			Max, Vx	2	-27.93	0.57	970.85
			NA	4			-1.46
			Max. Torque	4			
L21	67.08 - 66.83	Pole	Max. Torque Max Tension	4	0.00	0.00	0.00

L23 ( L24 63. L25 62. L26 ( L27 57.	66.83 - 64.08 64.08 - 63.83 3.83 - 62.5	Pole Pole Pole Pole	Max. Mx Max. My Max. Vy Max. Vy Max. Torque Max Tension Max. Compression Max. My Max. My Max. Vy Max. Vy Max. Torque Max Tension Max. Compression Max. My Max. Vy Max. Vy Max. Vy Max. Vy Max. Torque Max Tension Max. Compression Max. Compression Max. Compression Max. Compression Max. Compression Max. Compression Max. Compression Max. Compression Max. Compression Max. Ny Max. Vy Max. Vy Max. Vx	Comb. 8 2 8 2 4 1 26 8 2 8 2 4 1 26 8 2 8 2 4 1 26 8 2 4 1 26 8 2 4 1 26 8 2 4 1 26 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 8 2 8 8 2 8 8 2 8 8 2 8 8 2 8 8 8 2 8 8 8 2 8 8 8 8 2 8 8 8 8 8 8 8 8 8 8 8 8 8	К           -26.65           -26.78           29.27           -27.93           0.00           -69.26           -27.48           -27.61           29.67           -28.17           0.00           -69.40           -27.58           -27.71           29.69           -28.18           0.00           -70.17           -28.02           -28.16           29.90	kip-ft -995.92 0.57 -995.92 0.57 0.00 -5.13 -1077.06 0.57 -1077.06 0.57 -1077.06 0.57 -1084.49 0.57 -1084.49 0.57 -1084.49 0.57 -1084.49 0.57 -1124.18	kip-ft -0.87 977.84 -0.87 977.84 -1.46 0.00 2.77 -0.91 1055.03 -0.91 1055.03 -1.46 0.00 2.79 -0.91 1062.08 -0.91 1062.08 -0.91 1062.08 -1.46 0.00 2.91 -0.93 1099.67
L23 ( L24 63. L25 62. L26 ( L27 57.	64.08 64.08 - 63.83 9.83 - 62.5	Pole Pole	Max. My Max. Vy Max. Vx Max. Torque Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vy Max. Vx Max. Torque Max Tension Max. Compression Max. Wy Max. Vy Max. Vy Max. Vy Max. Torque Max Tension Max. Compression Max. Compression Max. Compression Max. My Max. My Max. Vy Max. Vy Max. Vy Max. Vy Max. Vy Max. Vy Max. Vy Max. Vy	2 8 2 4 1 26 8 2 8 2 4 1 26 8 2 4 1 26 8 2 4 1 26 8 2 4 2 8 2 4 2 8 2 4 2 8 2 4 1 2 6 8 2 8 2 4 1 2 6 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2	-26.78 29.27 -27.93 0.00 -69.26 -27.48 -27.48 -27.61 29.67 -28.17 0.00 -69.40 -27.58 -27.71 29.69 -28.18 0.00 -70.17 -28.02 -28.16	0.57 -995.92 0.57 0.00 -5.13 -1077.06 0.57 -1077.06 0.57 0.00 -5.16 -1084.49 0.57 -1084.49 0.57 0.00 -5.33 -1124.18 0.57	977.84 -0.87 977.84 -1.46 0.00 2.77 -0.91 1055.03 -0.91 1055.03 -1.46 0.00 2.79 -0.91 1062.08 -0.91 1062.08 -1.46 0.00 2.91 -0.93
L23 ( L24 63. L25 62. L26 ( L27 57.	64.08 64.08 - 63.83 9.83 - 62.5	Pole Pole	Max. Vý Max. Vx Max. Torque Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vy Max. Torque Max Tension Max. Compression Max. My Max. Vy Max. Vy Max. Vy Max. Vy Max. Torque Max Tension Max. Compression Max. Compression Max. Compression Max. My Max. My Max. Vy Max. Vy Max. Vy Max. Vy Max. Vy Max. Vy Max. Vy	8 2 4 1 26 8 2 8 2 4 1 26 8 2 4 1 26 8 2 4 1 26 8 2 4 2 8 2 4 2 8 2 4 2 8 2 4 1 2 6 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2	29.27 -27.93 0.00 -69.26 -27.48 -27.61 29.67 -28.17 0.00 -69.40 -27.58 -27.71 29.69 -28.18 0.00 -70.17 -28.02 -28.16	-995.92 0.57 0.00 -5.13 -1077.06 0.57 -1077.06 0.57 0.00 -5.16 -1084.49 0.57 -1084.49 0.57 -1084.49 0.57 0.00 -5.33 -1124.18 0.57	$\begin{array}{c} -0.87\\ 977.84\\ -1.46\\ 0.00\\ \hline 2.77\\ -0.91\\ 1055.03\\ -0.91\\ 1055.03\\ -1.46\\ 0.00\\ \hline 2.79\\ -0.91\\ 1062.08\\ -0.91\\ 1062.08\\ -0.91\\ 1062.08\\ -1.46\\ 0.00\\ 2.91\\ -0.93\\ \end{array}$
L23 ( L24 63. L25 62. L26 ( L27 57.	64.08 64.08 - 63.83 9.83 - 62.5	Pole Pole	Max. Vx Max. Torque Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max. Torque Max Tension Max. Compression Max. My Max. Vy Max. Vy Max. Vy Max. Vy Max. Torque Max Tension Max. Torque Max Tension Max. Compression Max. Compression Max. My Max. My Max. Vy Max. Vy Max. Vy Max. Vy Max. Vy Max. Vy	2 4 1 26 8 2 8 2 4 1 26 8 2 4 1 26 8 2 4 1 26 8 2 4 2 8 2 4 2 8 2 4 2 8 2 4 2 8 2 8 2	-27.93 0.00 -69.26 -27.48 -27.61 29.67 -28.17 0.00 -69.40 -27.58 -27.71 29.69 -28.18 0.00 -70.17 -28.02 -28.16	0.57 0.00 -5.13 -1077.06 0.57 -1077.06 0.57 0.00 -5.16 -1084.49 0.57 -1084.49 0.57 -1084.49 0.57 0.00 -5.33 -1124.18 0.57	977.84 -1.46 0.00 2.77 -0.91 1055.03 -0.91 1055.03 -1.46 0.00 2.79 -0.91 1062.08 -0.91 1062.08 -1.46 0.00 2.91 -0.93
L23 ( L24 63. L25 62. L26 ( L27 57.	64.08 64.08 - 63.83 9.83 - 62.5	Pole Pole	Max. Torque Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vy Max. Torque Max Tension Max. Compression Max. My Max. Vy Max. Vy Max. Vy Max. Torque Max Tension Max. Torque Max Tension Max. Compression Max. Compression Max. My Max. My Max. Vy Max. Vy Max. Vy Max. Vy	4 1 26 8 2 8 2 4 1 26 8 2 4 1 26 8 2 4 1 26 8 2 4 2 8 2 4 2 8 2 4 2 8 2 4 2 8 2 8 2	0.00 -69.26 -27.48 -27.61 29.67 -28.17 0.00 -69.40 -27.58 -27.71 29.69 -28.18 0.00 -70.17 -28.02 -28.16	0.00 -5.13 -1077.06 0.57 -1077.06 0.57 0.00 -5.16 -1084.49 0.57 -1084.49 0.57 0.00 -5.33 -1124.18 0.57	$\begin{array}{c} -1.46\\ 0.00\\ 2.77\\ -0.91\\ 1055.03\\ -0.91\\ 1055.03\\ -1.46\\ 0.00\\ 2.79\\ -0.91\\ 1062.08\\ -0.91\\ 1062.08\\ -1.46\\ 0.00\\ 2.91\\ -0.93\\ \end{array}$
L23 ( L24 63. L25 62. L26 ( L27 57.	64.08 64.08 - 63.83 9.83 - 62.5	Pole Pole	Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vy Max. Torque Max Tension Max. Compression Max. My Max. Vy Max. Vy Max. Vx Max. Torque Max Tension Max. Compression Max. Compression Max. Compression Max. My Max. My Max. Vy Max. Vy Max. Vy Max. Vy Max. Vy	1 26 8 2 4 1 26 8 2 4 1 26 8 2 4 1 26 8 2 4 2 8 2 4 2 8 2 4 2 8 2 4 2 8 2 4 2 8 2 8	-69.26 -27.48 -27.61 29.67 -28.17 0.00 -69.40 -27.58 -27.71 29.69 -28.18 0.00 -70.17 -28.02 -28.16	-5.13 -1077.06 0.57 -1077.06 0.57 0.00 -5.16 -1084.49 0.57 -1084.49 0.57 0.00 -5.33 -1124.18 0.57	0.00 2.77 -0.91 1055.03 -0.91 1055.03 -1.46 0.00 2.79 -0.91 1062.08 -0.91 1062.08 -1.46 0.00 2.91 -0.93
L23 ( L24 63. L25 62. L26 ( L27 57.	64.08 64.08 - 63.83 9.83 - 62.5	Pole Pole	Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max. Torque Max Tension Max. Compression Max. Compression Max. My Max. Vy Max. Vy Max. Torque Max Tension Max. Compression Max. Compression Max. Mx Max. My Max. Vy Max. Vy Max. Vy Max. Vy	26 8 2 8 2 4 1 26 8 2 8 2 8 2 4 1 26 8 2 4 2 8 2 4 2 8 2 4 2 8 2 4 2 8 2 8 2	-69.26 -27.48 -27.61 29.67 -28.17 0.00 -69.40 -27.58 -27.71 29.69 -28.18 0.00 -70.17 -28.02 -28.16	-5.13 -1077.06 0.57 -1077.06 0.57 0.00 -5.16 -1084.49 0.57 -1084.49 0.57 0.00 -5.33 -1124.18 0.57	$\begin{array}{c} 2.77 \\ -0.91 \\ 1055.03 \\ -0.91 \\ 1055.03 \\ -1.46 \\ 0.00 \\ \hline 2.79 \\ -0.91 \\ 1062.08 \\ -0.91 \\ 1062.08 \\ -1.46 \\ 0.00 \\ 2.91 \\ -0.93 \\ \end{array}$
L23 ( L24 63. L25 62. L26 ( L27 57.	64.08 - 63.83 9.83 - 62.5	Pole	Max. Mx Max. My Max. Vy Max. Vx Max. Torque Max Tension Max. Compression Max. Compression Max. My Max. Vy Max. Vy Max. Torque Max Tension Max. Compression Max. Compression Max. My Max. My Max. Vy Max. Vy Max. Vy Max. Vy	8 2 4 1 26 8 2 8 2 4 1 26 8 2 4 2 8 2	-27.48 -27.61 29.67 -28.17 0.00 -69.40 -27.58 -27.71 29.69 -28.18 0.00 -70.17 -28.02 -28.16	-1077.06 0.57 -1077.06 0.57 0.00 -5.16 -1084.49 0.57 -1084.49 0.57 0.00 -5.33 -1124.18 0.57	$\begin{array}{c} -0.91\\ 1055.03\\ -0.91\\ 1055.03\\ -1.46\\ 0.00\\ \hline 2.79\\ -0.91\\ 1062.08\\ -0.91\\ 1062.08\\ -1.46\\ 0.00\\ 2.91\\ -0.93\\ \end{array}$
L24 63. L25 62. L26 6 L27 57.	63.83 9.83 - 62.5	Pole	Max. Mx Max. My Max. Vy Max. Vx Max. Torque Max Tension Max. Compression Max. Compression Max. My Max. Vy Max. Vy Max. Torque Max Tension Max. Compression Max. Compression Max. My Max. My Max. Vy Max. Vy Max. Vy Max. Vy	8 2 4 1 26 8 2 8 2 4 1 26 8 2 4 2 8 2	-27.48 -27.61 29.67 -28.17 0.00 -69.40 -27.58 -27.71 29.69 -28.18 0.00 -70.17 -28.02 -28.16	-1077.06 0.57 -1077.06 0.57 0.00 -5.16 -1084.49 0.57 -1084.49 0.57 0.00 -5.33 -1124.18 0.57	$\begin{array}{c} -0.91\\ 1055.03\\ -0.91\\ 1055.03\\ -1.46\\ 0.00\\ \hline 2.79\\ -0.91\\ 1062.08\\ -0.91\\ 1062.08\\ -1.46\\ 0.00\\ 2.91\\ -0.93\\ \end{array}$
L24 63. L25 62. L26 6 L27 57.	63.83 9.83 - 62.5	Pole	Max. My Max. Vy Max. Vx Max. Torque Max Tension Max. Compression Max. Mx Max. My Max. My Max. Vy Max. Torque Max Tension Max. Compression Max. Compression Max. My Max. My Max. Vy Max. Vy Max. Vy	2 8 2 4 1 26 8 2 8 2 4 1 26 8 2 4 2 6 8 2	-27.61 29.67 -28.17 0.00 -69.40 -27.58 -27.71 29.69 -28.18 0.00 -70.17 -28.02 -28.16	0.57 -1077.06 0.57 0.00 -5.16 -1084.49 0.57 -1084.49 0.57 0.00 -5.33 -1124.18 0.57	$\begin{array}{c} 1055.03 \\ -0.91 \\ 1055.03 \\ -1.46 \\ 0.00 \\ \hline 2.79 \\ -0.91 \\ 1062.08 \\ -0.91 \\ 1062.08 \\ -1.46 \\ 0.00 \\ 2.91 \\ -0.93 \end{array}$
L24 63. L25 62. L26 6 L27 57.	63.83 9.83 - 62.5	Pole	Max. Vý Max. Vx Max. Torque Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vy Max. Torque Max Tension Max. Compression Max. Compression Max. My Max. My Max. Vy Max. Vy Max. Vy	8 2 4 1 26 8 2 8 2 4 1 26 8 2 4 2 6 8 2	29.67 -28.17 0.00 -69.40 -27.58 -27.71 29.69 -28.18 0.00 -70.17 -28.02 -28.16	-1077.06 0.57 0.00 -5.16 -1084.49 0.57 -1084.49 0.57 0.00 -5.33 -1124.18 0.57	-0.91 1055.03 -1.46 0.00 2.79 -0.91 1062.08 -0.91 1062.08 -1.46 0.00 2.91 -0.93
L24 63. L25 62. L26 6 L27 57.	63.83 9.83 - 62.5	Pole	Max. Vx Max. Torque Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vy Max. Torque Max Tension Max. Compression Max. Compression Max. My Max. My Max. Vy Max. Vy	2 4 1 26 8 2 8 2 4 1 26 8 2	-28.17 0.00 -69.40 -27.58 -27.71 29.69 -28.18 0.00 -70.17 -28.02 -28.16	0.57 0.00 -5.16 -1084.49 0.57 -1084.49 0.57 0.00 -5.33 -1124.18 0.57	1055.03 -1.46 0.00 2.79 -0.91 1062.08 -0.91 1062.08 -1.46 0.00 2.91 -0.93
L24 63. L25 62. L26 6 L27 57.	63.83 9.83 - 62.5	Pole	Max. Torque Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vy Max. Torque Max Tension Max. Compression Max. Compression Max. My Max. My Max. Vy Max. Vy Max. Vy	4 1 26 8 2 8 2 4 1 26 8 2	0.00 -69.40 -27.58 -27.71 29.69 -28.18 0.00 -70.17 -28.02 -28.16	0.00 -5.16 -1084.49 0.57 -1084.49 0.57 0.00 -5.33 -1124.18 0.57	-1.46 0.00 2.79 -0.91 1062.08 -0.91 1062.08 -1.46 0.00 2.91 -0.93
L24 63. L25 62. L26 6 L27 57.	63.83 9.83 - 62.5	Pole	Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max. Torque Max Tension Max. Compression Max. Compression Max. My Max. My Max. Vy Max. Vy	1 26 8 2 8 2 4 1 26 8 2	-69.40 -27.58 -27.71 29.69 -28.18 0.00 -70.17 -28.02 -28.16	-5.16 -1084.49 0.57 -1084.49 0.57 0.00 -5.33 -1124.18 0.57	0.00 2.79 -0.91 1062.08 -0.91 1062.08 -1.46 0.00 2.91 -0.93
L24 63. L25 62. L26 6 L27 57.	63.83 9.83 - 62.5	Pole	Max. Compression Max. Mx Max. My Max. Vy Max. Vx Max. Torque Max Tension Max. Compression Max. Compression Max. My Max. My Max. Vy Max. Vy	26 8 2 8 2 4 1 26 8 2	-69.40 -27.58 -27.71 29.69 -28.18 0.00 -70.17 -28.02 -28.16	-5.16 -1084.49 0.57 -1084.49 0.57 0.00 -5.33 -1124.18 0.57	2.79 -0.91 1062.08 -0.91 1062.08 -1.46 0.00 2.91 -0.93
L25 62. L26 6			Max. Mx Max. My Max. Vy Max. Vx Max. Torque Max Tension Max. Compression Max. Compression Max. My Max. My Max. Vy Max. Vy Max. Vx	8 2 8 2 4 1 26 8 2	-27.58 -27.71 29.69 -28.18 0.00 -70.17 -28.02 -28.16	-1084.49 0.57 -1084.49 0.57 0.00 -5.33 -1124.18 0.57	-0.91 1062.08 -0.91 1062.08 -1.46 0.00 2.91 -0.93
L25 62. L26 6			Max. Mx Max. My Max. Vy Max. Vx Max. Torque Max Tension Max. Compression Max. Compression Max. My Max. My Max. Vy Max. Vy Max. Vx	2 8 2 4 1 26 8 2	-27.71 29.69 -28.18 0.00 -70.17 -28.02 -28.16	0.57 -1084.49 0.57 0.00 -5.33 -1124.18 0.57	1062.08 -0.91 1062.08 -1.46 0.00 2.91 -0.93
L25 62. L26 6			Max. My Max. Vy Max. Vx Max. Torque Max Tension Max. Compression Max. Mx Max. My Max. My Max. Vy Max. Vy	2 8 2 4 1 26 8 2	-27.71 29.69 -28.18 0.00 -70.17 -28.02 -28.16	0.57 -1084.49 0.57 0.00 -5.33 -1124.18 0.57	1062.08 -0.91 1062.08 -1.46 0.00 2.91 -0.93
L25 62. L26 6			Max. Vý Max. Vx Max. Torque Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vy Max. Vx	8 2 4 1 26 8 2	29.69 -28.18 0.00 -70.17 -28.02 -28.16	-1084.49 0.57 0.00 -5.33 -1124.18 0.57	-0.91 1062.08 -1.46 0.00 2.91 -0.93
L25 62. L26 6			Max. Vx Max. Torque Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vy Max. Vx	2 4 1 26 8 2	-28.18 0.00 -70.17 -28.02 -28.16	0.57 0.00 -5.33 -1124.18 0.57	1062.08 -1.46 0.00 2.91 -0.93
L25 62. L26 6			Max. Torque Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vy Max. Vx	4 1 26 8 2	0.00 -70.17 -28.02 -28.16	0.00 -5.33 -1124.18 0.57	-1.46 0.00 2.91 -0.93
L25 62. L26 6			Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vy Max. Vx	1 26 8 2	-70.17 -28.02 -28.16	-5.33 -1124.18 0.57	0.00 2.91 -0.93
L25 62. L26 6			Max. Compression Max. Mx Max. My Max. Vy Max. Vx	26 8 2	-70.17 -28.02 -28.16	-5.33 -1124.18 0.57	2.91 -0.93
L26 6 L27 57.	2.5 - 62.25	Pole	Max, Mx Max, My Max, Vy Max, Vx	8 2	-28.02 -28.16	-1124_18 0.57	-0.93
L26 6 L27 57.	2.5 - 62.25	Pole	Max. My Max. Vy Max. Vx	2	-28.16	0.57	
L26 6 L27 57.	2.5 - 62.25	Pole	Max. Vý Max. Vx				1099.67
L26 6 L27 57.	2.5 - 62.25	Pole	Max. Vx	Q	20 00	-1124.18	
L26 6 L27 57.	2.5 - 62.25	Pole		0	23.30		-0.93
L26 6 L27 57.	2.5 - 62.25	Pole	Max. Torque	2	-28.31	0.57	1099.67
L26 6 L27 57.	2.5 - 62.25	Pole		4			-1.46
L26 6 L27 57.			Max Tension	1	0.00	0.00	0.00
L27 57.			Max. Compression	26	-70.32	-5.36	2.93
L27 57.			Max. Oompression Max. Mx	8	-28.13	-1131.67	-0.93
L27 57.							
L27 57.			Max. My	2	-28.26	0.57	1106.75
L27 57.			Max. Vy	8	29.92	-1131.67	-0.93
L27 57.			Max. Vx	2	-28.32	0.57	1106.75
L27 57.			Max. Torque	4			-1.46
L27 57.	62.25 - 57.25	Pole	Max Tension	1	0.00	0.00	0.00
	57.25		Max. Compression	26	-73,30	-6.02	3.39
			Max. Mx	8	-29.93	1283.40	0.98
			Max. My	2	-30.07	0.55	1249.61
			Max. Vy	8	30.68	-1283.40	-0.98
			Max. Vy Max. Vx	2			
					-28.78	0.55	1249.61
			Max. Torque	4			-1.46
L28 53.	25 - 53.5	Pole	Max Tension	1	0.00	0.00	0.00
L28 53.			Max. Compression	26	-75.57	-6.51	3.74
L28 53.			Max. Mx	8	-31.31	-1399.68	-1.02
L28 53.			Max. My	2	-31.44	0.54	1358.23
L28 53.			Max. Vy	8	31.25	-1399.68	-1.02
L28 53.			Max, Vx	2	-29,12	0.54	1358.23
L28 53.			Max. Torque	4			-1.46
220 00.	5 - 53 25	Pole	Max Tension	1	0.00	0.00	0.00
		1 010	Max. Compression	26	75 73	-6.55	3.77
			Max. Compression Max, Mx	8	-31.42	-1407.50	-1.02
					-31.42		
			Max. My	2		0.54	1365.52
			Max. Vy	8	31.26	-1407.50	-1.02
			Max. Vx	2	-29.13	0.54	1365.52
	= 0 -		Max. Torque	4			-1.46
	53.25 - 52.58	Pole	Max Tension	1	0.00	0.00	0.00
	52.00		Max. Compression	26	-76.15	-6.64	3.83
			Max. Mx	8	-31.67	-1428.51	-1.03
			Max. My	2	-31.81	0.53	1385.07
			Max. Wy Max. Vy	8	31.35	-1428.51	-1.03
			Max. Vx	2	-29.19	0.53	1385.07
1.20		_	Max. Torque	4	0.00	0.00	-1.46
	50.50	Dala	Max Tension	1	0.00	0.00	0.00
	52.58 - 52.33	Pole	Max. Compression	26 8	-76.31 -31.77	-6.67 -1436.37	3.86 -1.03

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	K	kip-ft	kip-ft
			Max. My	2	-31.91	0.53	1392.38
			Max. Vy	8	31.37	-1436.37	-1.03
			Max. Vx	2	-29.21	0.53	1392.38
			Max. Torque	4			-1.46
L31	52.33 -	Pole	Max Tension	1	0.00	0.00	0.00
	47.33		May Compression	26	70.47	7.04	4.24
			Max. Compression Max. Mx	26 8	-79.47 -33.72	-7.34 -1594.98	4.34 -1.07
				8 2	-33.85	0.50	1539 72
			Max. My Max. Vy	2 8	31.98	-1594.98	-1.07
			Max. Vy Max. Vx	2	-29.67	0.50	1539.72
			Max. VX Max. Torque	4	-29.07	0.50	-1.46
L32	47.33 -	Pole	Max Tension	4	0.00	0.00	0.00
LJZ	44.58	FUIE		1	0.00	0.00	0.00
	44.00		Max. Compression	26	-81.27	-7.71	4.61
			Max. Mx	8	-34.81	-1683.49	-1.09
			Max. My	2	-34.93	0.47	1621.73
			Max. Vy	8	32.31	-1683 49	-1.09
			Max. Vx	2	-29.93	0.47	1621.73
			Max. Torque	10	20100	0111	1.49
L33	44.58 -	Pole	Max Tension	1	0.00	0.00	0.00
200	44.33	1 010	Max Follololl	•	0.00	0.00	0.00
			Max. Compression	26	-81.43	-7.74	4.64
			Max. Mx	8	-34.92	-1691.58	-1.09
			Max. My	2	-35.05	0.47	1629.21
			Max. Vy	8	32.33	-1691.58	-1.09
			Max. Vx	2	-29.94	0.47	1629.21
			Max. Torque	10			1.49
L34	44.33 -	Pole	Max Tension	1	0.00	0.00	0.00
	41.92		Max. Compression	26	-83.02	-8.08	4.87
			Max. Mx	8	-35.88	-1770.08	1.11
			Max. My	2	-36.00	0.45	1701.70
			Max. Vy	8	32.71	1770.08	1.11
			Max, Vx	2	-30.16	0.45	1701.70
			Max Torque	10	001.0	01.0	1.53
L35	41.92 -	Pole	Max Tension	1	0.00	0.00	0.00
	41 <u>.</u> 67		Max. Compression	26	-83.18	-8.12	4.90
			Max. Max. Mx	8	-35.99	-1778.27	-1.11
			Max. My	2	-36.11	0.44	1709 25
			Max. Vy	8	32.74	-1778.27	-1.11
			Max. Vx	2	-30.17	0.44	1709 25
			Max. Torque	10	-50.17	0.44	1.53
L36	41.67 -	Pole	Max. Tension	1	0.00	0.00	0.00
200	34.08	1 010	Max Tonolon	•	0.00	0.00	0.00
			Max. Compression	26	-84.92	-8.50	5.17
			Max. Mx	8	-37.07	-1866.25	-1.12
			Max. My	2	-37.19	0.41	1790.21
			Max. Vy	8	33.06	-1866.25	-1.12
			Max. Vx	24	-30.54	997.91	1709.62
			Max. Torque	10			1.57
L37	34.08 - 34	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-90.19	-9.22	5.67
			Max. Mx	8	-40.73	-2033.54	-1.14
			Max. My	2	-40.85	0.35	1943.82
			Max. Vy	8	33.76	-2033.54	-1.14
			Max. Vx	24	-31.31	1088.01	1864.37
	04.05	<b>-</b> .	Max. Torque	10	<b>.</b>		1.65
L38	34 - 29	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-93.53	-9.93	6.18
			Max. Mx	8	-42.88	-2203.98	-1.16
			Max. My	2	-42.98	0.28	2099.86
			Max. Vy	8	34.32	-2203.98	-1.16
			Max. Vx	24	-31.96	1180.16	2022.69
				10			1 70
	00 00 55	<b>_</b> .	Max. Torque	10	0.05		1.73
L39	29 - 26.92	Pole	Max Tension	1	0.00	0.00	0.00
L39	29 - 26.92	Pole			0.00 -94.97 -43.79	0.00 -10.19 -2275.69	

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	K	kip-ft	kip-ft
			Max. My	2	-43.88	0.25	2165.38
			Max. Vy	8	34.54	-2275.69	-1.17
			Max. Vx	24	-32.23	1219.04	2089.49
			Max. Torque	10			1.76
L40	26.92 -	Pole	Max Tension	1	0.00	0.00	0.00
L40		FUIE	Max rension	1	0.00	0.00	0.00
	26.67		Mary Ormania	00	05.40	40.00	0.44
			Max. Compression	26	-95.16	-10.22	6.41
			Max. Mx	8	-43.92	-2284.35	-1.17
			Max. My	2	-44.01	0.25	2173.28
			Max. Vy	8	34.56	-2284.35	-1.17
			Max. Vx	24	-32.24	1223.73	2097.56
			Max. Torque	10			1.77
L41	26.67 -	Pole	Max Tension	1	0.00	0.00	0.00
	21.67	1 010	max renelent	•	0100	0100	0100
	21.07		Max. Compression	26	-98.87	-10.81	6.89
			Max. Mx	8	-46.34	-2458.80	-1.18
			Max. My	2	-46.42	0.16	2332.35
			Max. Vy	8	35.11	-2458.80	-1.18
			Max. Vx	24	-32.88	1318.54	2260.53
			Max. Torque	10			1.84
L42	21.67 - 18	Pole	Max Tension	1	0.00	0.00	0.00
L72	21.07 10	1 010	Max. Compression	26	-101.64	-11.32	7.25
			Max. Mx	8	-48.15	-2588.56	-1.18
			Max. My	2	-48.21	0.09	2450.41
			Max. Vy	8	35.50	-2588.56	-1.18
			Max. Vx	24	-33.33	1389.26	2382.13
			Max. Torque	10			1.89
L43	18 - 17.75	Pole	Max Tension	1	0.00	0.00	0.00
210		1 010	Max. Compression	26	101.85	-11.35	7.28
			Max. Mx	8	-48.30	-2597.45	-1.18
			Max. My	2	-48.36	0.09	2458.49
			Max. Vy	8	35.51	-2597.45	-1.18
			Max. Vx	24	-33.35	1394.11	2390.47
			Max. Torque	10			1.89
L44	17.75 - 17.5	Pole	Max Tension	1	0.00	0.00	0.00
	11.10 11.0	1 010	Max. Compression	26	-102.05	-11.39	7.31
			Max. Max. Mx	8	-48.44	-2606.34	-1.18
			Max. My	2	-48.50	0.08	2466.57
			Max. Vy	8	35.53	-2606.34	-1.18
			Max. Vx	24	-33.38	1398.97	2398.82
			Max. Torque	10			1.90
L45	17.5 - 17.25	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-102.25	-11.42	7.33
			Max, Mx	8	-48.57	-2615.25	-1.18
				_			
			Max. My	2	-48.63	80.0	2474.66
			Max. Vy	8	35.56	-2615.25	-1.18
			Max. Vx	24	-33.41	1403.83	2407.18
			Max. Torque	10			1.90
L46	17.25 -	Pole	Max Tension	1	0.00	0.00	0.00
	17.08						
			Max. Compression	26	-102.39	-11,45	7.35
			Max. Compression Max. Mx	8	-48.67	-2621.30	1.18
			Max. My	2	-48.72	0.07	2480.17
			Max. Vy	8	35.58	-2621.30	-1.18
			Max. Vx	24	-33.43	1407.14	2412.87
			Max. Torque	10			1.90
L47	17.08 -	Pole	Max Tension	1	0.00	0.00	0.00
	16.83						
	10100		Max. Compression	26	-102.59	-11.48	7.37
			Max. Mx	8	-48.79	-2630.22	-1.18
			Max. My	2	-48.85	0.07	2488.27
			Max. Vy	8	35.60	-2630.22	-1.18
			Max. Vx	24	-33.46	1412.00	2421.24
			Max. Torque	10			1.90
L48	16.83 - 13	Pole	Max Tension	1	0.00	0.00	0.00
<b>L</b> 70	10.00 - 10				-105.55		7.76
			Max. Compression	26		-12.03	
			Max. Mx	8	-50.74	-2767.57	-1.17
			Max. My	2	-50.78	-0.01	2612.95
			Max. Vy	8	36.00	-2767.57	-1.17

130 Ft Monopole Tower Structural Analysis Project Number 1963271, Order 556638, Revision 1

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	K	kip-ft	kip-ft
			Max. Vx	24	-33.92	1487.10	2550.40
			Max. Torque	10			1.96
L49	13 - 12.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-105.77	-12.07	7.79
			Max. Mx	8	-50.90	-2776.58	1 17
			Max. My	2	-50.94	-0.01	2621.13
			Max. Vy	8	36.01	-2776.58	-1.17
			Max. Vx	24	-33.94	1492.03	2558.89
			Max. Torque	10			1.96
L50	12.75 - 11.92	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-106,48	-12,19	7.87
			Max. Mx	8	51.38	-2806.57	1 17
			Max. My	2	-51.42	-0.03	2648.32
				8	36.11		
			Max. Vy			-2806.57	-1.17
			Max. Vx	24	-34.05	1508.45	2587.13
			Max. Torque	10			1.97
L51	11.92 - 11.67	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-106.67	-12.23	7.90
			Max. Mx	8	-51.51	-2815.61	-1.17
			Max. My	2	-51.55	-0.04	2656.52
			Max. Vy	8	36.12	-2815.61	1.17
			Max. Vy Max. Vx	24	-34.07	1513.41	2595.66
			Max. Torque	10	04.07	1010.41	1.97
1.50	44.07 0.07	Dela			0.00	0.00	
L52	11.67 - 6.67	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-110.47	-12.90	8.48
			Max. Mx	8	-54.10	-2997.79	-1.16
			Max. My	2	-54.12	-0.15	2821.47
			Max. Vy	8	36.62	-2997.79	-1.16
			Max, Vx	24	-34.66	1613.37	2767.65
			Max. Torque	10	0 1100	1010101	2.07
L53	6.67 - 6.5	Pole	Max. Tension	1	0.00	0.00	0.00
L03	0.07 - 0.5	Fole					
			Max. Compression	26	-110.60	-12.92	8.50
			Max. Mx	8	-54.20	-3004.03	-1.16
			Max. My	2	-54.22	-0.16	2827.11
			Max. Vy	8	36.62	-3004.03	-1.16
			Max, Vx	24	-34,67	1616,80	2773.55
			Max. Torque	10			2.07
L54	6.5 - 6.25	Pole	Max Tension	1	0.00	0.00	0.00
L04	0.0 0.20		Max. Compression	26	-110.79	-12.96	8.53
			Max. Mx	8	-54.34	-3013.20	-1.16
			Max. My	2	-54.36	-0.16	2835.41
			Max. Vy	8	36.65	-3013.20	-1.16
			Max. Vx	24	-34.70	1621.84	2782.23
			Max. Torque	10			2.08
L55	6.25 - 3.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-112.73	-13.27	8.85
			Max. Compression Max. Mx	8	-55 72	-3105.33	1.15
			Max. My	2	-55.72	-0.23	2918.69
			Max. Vy	8	36.92	3105.33	-1.15
			Max. Vx	24	-35.02	1672.53	2869.45
		_	Max. Torque	10			2.14
L56	3.75 - 3.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-112.93	-13.30	8.88
			Max. Mx	8	-55.88	-3114.57	-1.15
			Max. My	2	-55.89	-0.23	2927.04
			Max. Vy	8	36.93	-3114.57	-1.15
			Max. Vy Max. Vx	24	-35.03	1677.62	2878.22
					-33.03	1077.02	
	05 0	<b>D</b> 1	Max. Torque	10	0.00	0.00	2.14
L57	3.5 - 3	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-113.32	-13.37	8.94
			Max. Mx	8	-56.17	-3133.09	-1.15
			Max. My	2	-56.18	-0.25	2943.77
			Max. Vy	8	36.99	-3133.09	-1.15
			Max. Vy Max. Vx	24	-35.08	1687.82	2895 77
					-55.00	1007.02	
	0 0 75	D - I -	Max. Torque Max Tension	10	0.00	0.00	2.16
1 60				1	0.00	0.00	0.00
L58	3 - 2.75	Pole	Max. Compression	26	-113.52	-13.40	8.97

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Туре		Load		Moment	Moment
No.				Comb.	K	kip-ft	kip-ft
			Max. Mx	8	-56.31	-3142.36	-1.15
			Max. My	2	-56.32	-0.25	2952.14
			Max. Vy	8	37.01	-3142.36	-1.15
			Max. Vx	24	-35.10	1692.92	2904.55
			Max. Torque	10			2.16
L59	2.75 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-115.61	-13.74	9.29
			Max. Mx	8	-57.87	-3244.73	-1.14
			Max. My	2	-57.88	-0.32	3044.56
			Max. Vy	8	37.32	-3244.73	-1.14
			Max. Vx	24	-35.38	1749.27	3001.55
			Max. Torque	10			2.23

### **Maximum Reactions**

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Pole	Max. Vert	31	115.61	-8.95	-5.11
	Max. H _x	20	57.89	37.29	0.21
	Max. H _z	24	57.89	20.65	35.36
	Max. M _x	2	3044.56	0.05	33.68
	Max. M _z	8	3244.73	-37.29	-0.04
	Max. Torsion	10	2.23	-36.73	-20.95
	Min. Vert	17	43.42	16.84	-29.27
	Min. H _x	8	57.89	-37.29	-0.04
	Min. H _z	12	57.89	-20.58	-35.30
	Min. M _x	14	-3026.87	-0.19	-33.58
	Min. M _z	20	-3231.90	37.29	0.21
	Min. Torsion	22	-1.95	36.63	21.13

# **Tower Mast Reaction Summary**

Load Combination	Vertical	Shearx	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	48.24	0.00	0.00	-3.03	-5.08	0.00
1.2 Dead+1.0 Wind 0 deg - No Ice	57.89	-0.05	-33.68	-3044.56	-0.32	0.83
0.9 Dead+1.0 Wind 0 deg - No Ice	43.42	-0.05	-33.68	-3013.21	1.22	0.80
1.2 Dead+1.0 Wind 30 deg - No Ice	57.89	17.07	-29.24	-2637.53	-1547.07	1.46
0.9 Dead+1.0 Wind 30 deg - No Ice	43.42	17.07	-29.24	-2610.30	-1530.10	1.43
1.2 Dead+1.0 Wind 60 deg - No Ice	57.89	30.62	-17.45	-1547.67	-2722.35	0.93
0.9 Dead+1.0 Wind 60 deg - No Ice	43.42	30.62	-17.45	-1531.45	-2693.88	0.92
1.2 Dead+1.0 Wind 90 deg - No Ice	57.89	37.29	0.04	1.14	-3244.73	-0.14
0.9 Dead+1.0 Wind 90 deg - No Ice	43.42	37.29	0.04	2.04	-3211.50	-0.14
1.2 Dead+1.0 Wind 120 deg - No Ice	57.89	36.73	20.95	1743.96	-3080.61	-2.23
0.9 Dead+1.0 Wind 120 deg - No Ice	43.42	36.73	20.95	1728.13	-3049.44	-2.20
1.2 Dead+1.0 Wind 150 deg - No Ice	57.89	20.58	35.30	2987.96	-1754.47	-1.84
0.9 Dead+1.0 Wind 150 deg - No Ice	43.42	20.58	35.30	2959.95	-1735.92	-1.81

Load Combination	Vertical K	Shear _x K	Shear _z K	Overturning Moment, M _x kip-ft	Overturning Moment, Mz kip-ft	Torque kip-ft
1.2 Dead+1.0 Wind 180 deg	57.89	0.19	33.58	3026.87	-26.48	-0.75
- No Ice						
0.9 Dead+1.0 Wind 180 deg - No Ice	43.42	0.19	33.58	2997.54	-24.66	-0.72
1.2 Dead+1.0 Wind 210 deg	57.89	-16.84	29.27	2633.56	1509.92	-1.03
- No Ice	40.40	40.04	00.07	0000.00	1100 11	4.00
0.9 Dead+1.0 Wind 210 deg	43.42	-16.84	29.27	2608.20	1496.41	-1.00
1.2 Dead+1.0 Wind 240 deg	57.89	-30.59	17.34	1528.80	2707.33	-0.73
- No Ice 0.9 Dead+1.0 Wind 240 deg	43.42	-30.59	17.34	1514.62	2682.10	-0.72
- No Ice	43.42	-30.55	17.54	1014.02	2002.10	-0.72
1.2 Dead+1.0 Wind 270 deg	57.89	-37.29	-0.21	-26.56	3231.90	-0.28
- No Ice 0.9 Dead+1.0 Wind 270 deg - No Ice	43.42	-37.29	-0.21	-25.36	3201.88	-0.29
1.2 Dead+1.0 Wind 300 deg	57.89	-36.63	-21.13	-1771.58	3057.24	1.95
- No Ice	40.40	00.00	01.10	4750.00	0000 40	4.00
0.9 Dead+1.0 Wind 300 deg - No Ice	43.42	-36.63	-21.13	-1753.62	3029.40	1.93
1.2 Dead+1.0 Wind 330 deg	57.89	-20.65	-35.36	-3001.55	1749.27	1.84
- No Ice 0.9 Dead+1.0 Wind 330 deg	43.42	-20.65	-35.36	-2971.57	1733.87	1.81
- No Ice	40.42	-20.00	-33.50	-2371.37	1755.07	1.01
1.2 Dead+1.0 Ice+1.0 Temp	115.61	0.00	-0.00	-9.29	-13.74	0.00
1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	115.61	-0.01	-8.63	-841.30	-13.02	0.19
1.2 Dead+1.0 Wind 30	115.61	4.34	-7.45	-726.77	-432.54	0.32
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 60	115.61	7.53	-4.30	-423.35	-739.55	0.20
deg+1.0 Ice+1.0 Temp	115.01	7.55	-4.50	-420.00	-759.55	0.20
1.2 Dead+1.0 Wind 90	115.61	9.06	0.01	-8.64	-877.20	-0.07
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 120	115.61	8.95	5.11	454.04	-827.10	-0.62
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	115.61	5.08	8.73	789.71	-479.51	-0.53
1.2 Dead+1.0 Wind 180	115 <u>.</u> 61	0.04	8.61	820.30	-17.95	-0.17
deg+1.0 Ice+1.0 Temp	115.61	-4.30	7.46	708.75	399.45	0.00
1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	113.01	-4.30	7.40	700.75	399.45	-0.23
1.2 Dead+1.0 Wind 240	115.61	-7.53	4.28	402.16	711.20	-0.16
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 270	115.61	-9.05	-0.04	-14.04	849.33	-0.02
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	115.61	-8.93	-5.15	-477.19	796.91	0.56
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330	115.61	-5.09	-8.74	-809.73	453.36	0.53
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	48.24	-0.01	-7.32	-660.43	-3.90	0.17
Dead+Wind 30 deg - Service	48.24	3.71	-6.35	-572.45	-338.26	0.31
Dead+Wind 60 deg - Service	48.24	6.65	-3.79	-336.86	-592.34	0.20
Dead+Wind 90 deg - Service	48.24 48.24	8.10 7.98	0.01 4.55	-2.04 374.79	-705.30 -669.89	-0.03 -0.48
Dead+Wind 120 deg - Service	40.24	7.90	4.55	574.79	-009.09	-0.40
Dead+Wind 150 deg -	48.24	4.47	7.67	643.73	-383.15	-0.39
Service Dead+Wind 180 deg - Service	48.24	0.04	7.30	652.04	-9.54	-0.16
Dead+Wind 210 deg - Service	48.24	-3.66	6.36	567.02	322.58	-0.22
Dead+Wind 240 deg - Service	48.24	-6.65	3.77	328.22	581.43	-0.16
Dead+Wind 270 deg - Service	48.24	-8.10	-0.05	-8.01	694.87	-0.07
Dead+Wind 300 deg - Service	48.24	-7.96	-4.59	-385.32	657.19	0.42
Dead+Wind 330 deg - Service	48.24	-4.48	-7.68	-651.24	374.37	0.39

Solution Summary									
	-								
11		n of Applied Force			Sum of Reaction	ns	0/		
Load	PX	PY K	PZ K	PX	PY K	PZ K	% Error		
Comb.	<u></u>			<u>K</u>		<u> </u>	0.000%		
1	0.00	-48.24	0.00	0.00	48.24	0.00	0.000%		
2	-0.05	-57.89	-33.68	0.05	57.89	33.68	0.000%		
3	-0.05	-43.42	-33.68	0.05	43.42	33.68	0.000%		
4	17.07	-57.89	-29.24	-17.07	57.89	29.24	0.000%		
5	17.07	-43.42	-29.24	-17.07	43.42	29.24	0.000%		
6	30.62	-57.89	-17.45	-30.62	57.89	17.45	0.000%		
7	30.62	-43.42	-17.45	-30.62	43.42	17.45	0.000%		
8	37.29	-57.89	0.04	-37.29	57.89	-0.04	0.000%		
9	37.29	-43.42	0.04	-37.29	43.42	-0.04	0.000%		
10	36.73	-57.89	20.95	-36.73	57.89	-20.95	0.000%		
11	36.73	-43.42	20.95	-36.73	43.42	-20.95	0.000%		
12	20.58	-57.89	35.30	-20.58	57.89	-35.30	0.000%		
13	20.58	-43.42	35.30	-20.58	43.42	-35.30	0.000%		
14	0.19	-57.89	33.58	-0.19	57.89	-33.58	0.000%		
15	0.19	-43.42	33.58	-0.19	43.42	-33.58	0.000%		
16	-16.84	-57.89	29.27	16.84	57.89	-29.27	0.000%		
17	-16.84	-43.42	29.27	16.84	43.42	-29.27	0.000%		
18	-30.59	-57.89	17.34	30.59	57.89	-17.34	0.000%		
19	-30.59	-43.42	17.34	30.59	43.42	-17.34	0.000%		
20	-37.29	-57.89	-0.21	37.29	57.89	0.21	0.000%		
21	-37.29	-43.42	-0.21	37.29	43.42	0.21	0.000%		
22	-36.63	-57.89	-21.13	36.63	57.89	21.13	0.000%		
23	-36.63	-43.42	21.13	36.63	43.42	21.13	0.000%		
24	-20.65	-57.89	-35.36	20.65	57.89	35.36	0.000%		
25	-20.65	-43.42	-35.36	20.65	43.42	35.36	0.000%		
26	0.00	-115.61	0.00	-0.00	115.61	0.00	0.000%		
27	-0.01	-115.61	-8.63	0.01	115.61	8.63	0.000%		
28	4.34	-115.61	-7.45	-4.34	115.61	7.45	0.000%		
29	7.53	-115.61	-4.30	-7.53	115.61	4.30	0.000%		
30	9.06	-115.61	0.01	-9.06	115.61	-0.01	0.000%		
30 31	8.95	-115.61	5.11	-9.00	115.61	-5.11	0.000%		
31	5.08	-115.61	8.73	-6.95 -5.08	115.61	-8.73	0.000%		
32 33						-8.61			
	0.04	-115.61	8.61	-0.04	115.61		0.000%		
34 25	-4.30	-115.61	7.46	4.30	115.61	-7.46	0.000%		
35	-7.53	-115.61	4.28	7.53	115.61	-4.28	0.000%		
36	-9.05	-115.61	-0.04	9.05	115.61	0.04	0.000%		
37	-8.93	-115.61	-5.15	8.93	115.61	5.15	0.000%		
38	-5.09	-115.61	-8.74	5.09	115.61	8.74	0.000%		
39	-0.01	-48.24	-7.32	0.01	48.24	7.32	0.000%		
40	3.71	-48.24	-6.35	-3.71	48.24	6.35	0.000%		
41	6.65	-48.24	-3.79	-6.65	48.24	3.79	0.000%		
42	8.10	-48.24	0.01	-8.10	48.24	-0.01	0.000%		
43	7.98	-48.24	4.55	-7.98	48.24	-4.55	0.000%		
44	4.47	-48.24	7.67	-4.47	48.24	-7.67	0.000%		
45	0.04	-48.24	7.30	-0.04	48.24	-7.30	0.000%		
46	-3.66	-48.24	6.36	3.66	48.24	-6.36	0.000%		
47	-6.65	-48.24	3.77	6.65	48.24	-3.77	0.000%		
48	-8.10	-48.24	-0.05	8.10	48.24	0.05	0.000%		
49	-7.96	-48.24	-4.59	7.96	48.24	4.59	0.000%		
50	-4.48	-48.24	7.68	4.48	48.24	7.68	0.000%		

### **Non-Linear Convergence Results**

Load	Converged?	Number	Displacement	Force
Combination	•	of Cycles	Tolerance	Tolerance
1	Yes	4	0.0000001	0.00001188
2	Yes	5	0.0000001	0.00060782
3	Yes	5	0.0000001	0.00024556
4	Yes	6	0.0000001	0.00075608

-				0 0000 4045
5	Yes	6	0.0000001	0.00024215
6	Yes	6	0.0000001	0.00072486
7	Yes	6	0.0000001	0.00022958
8	Yes	5	0.0000001	0.00039397
9	Yes	5	0.0000001	0.00013813
10	Yes	6	0.0000001	0.00083181
11	Yes	6	0.00000001	0.00025252
12	Yes	6	0.0000001	0.00087223
13	Yes	6	0.00000001	0.00026763
14	Yes	5	0.0000001	0.00083910
15	Yes	5	0.0000001	0.00035795
16	Yes	6	0.00000001	0.00069845
17	Yes	6	0.0000001	0.00022355
18	Yes	6	0.00000001	0.00073864
19	Yes	6	0.00000001	0.00023617
20	Yes	5	0.00000001	0.00041322
21	Yes	5	0.0000001	0.00014581
22	Yes	6	0.0000001	0.00087700
23	Yes	6	0.00000001	0.00026776
24	Yes	6	0.00000001	0.00082836
25	Yes	6	0.00000001	0.00025233
26	Yes	5	0.00000001	0.00064639
27	Yes	7	0.00000001	0.00052425
28	Yes	7	0.00000001	0.00057550
29	Yes	7	0.00000001	0.00057759
30	Yes	7	0.00000001	0.00054038
31	Yes	7	0.00000001	0.00062174
32	Yes	7	0.00000001	0.00061698
33	Yes	7	0.00000001	0.00051279
33 34	Yes	7	0.00000001	0.00054591
34 35	Yes	7	0.00000001	0.00054808
36		7	0.00000001	0.00051948
	Yes			
37	Yes	7	0.0000001	0.00061213
38	Yes	7	0.0000001	0.00061018
39	Yes	5	0.0000001	0.00007799
40	Yes	5	0.0000001	0.00023649
41	Yes	5	0.0000001	0.00021324
42	Yes	5	0.0000001	0.00007679
43	Yes	5	0.0000001	0.00025900
44	Yes	5	0.00000001	0.00028933
45	Yes	5	0.0000001	0.00007749
46	Yes	5	0.00000001	0.00019608
47	Yes	5	0.0000001	0.00021940
48	Yes	5	0.0000001	0.00007583
49	Yes	5	0.0000001	0.00028896
50	Yes	5	0.0000001	0.00025450

### **Maximum Tower Deflections - Service Wind**

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	130 - 125	20.91	43	1.64	0.00
L2	125 - 120	19.19	43	1.64	0.00
L3	120 - 115	17 <u>.</u> 47	43	1.64	0.00
L4	115 - 110	15.77	43	1.60	0.00
L5	110 - 105	14.13	43	1.52	0.00
L6	105 - 100	12.59	43	1.42	0.00
L7	100 - 95	11.16	43	1.30	0.00
L8	95 - 90	9.87	43	1.17	0.00
L9	90 - 89.75	8.72	43	1.02	0.00
L10	89.75 - 84.75	8.67	43	1.01	0.00
L11	84.75 - 84.58	7.65	43	0.93	0.00
L12	84.58 - 84.33	7.62	43	0.92	0.00
L13	84.33 - 83.42	7.57	43	0.92	0.00
L14	83.42 - 83.17	7.40	43	0.91	0.00
L15	83.17 - 83	7.35	43	0.91	0.00
L16	83 - 82.75	7.32	43	0.90	0.00

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L17	82.75 - 77.75	7.27	43	0.90	0.00
L18	77.75 - 70	6.36	43	0.83	0.00
L19	74 - 69	5.73	43	0.78	0.00
L20	69 - 67.08	4.93	43	0.74	0.00
L21	67.08 - 66.83	4.64	43	0.71	0.00
L22	66.83 - 64.08	4.60	43	0.71	0.00
L23	64.08 - 63.83	4.21	43	0.67	0.00
L24	63.83 - 62.5	4.17	43	0.66	0.00
L25	62.5 - 62.25	3.99	43	0.65	0.00
L26	62.25 - 57.25	3.96	43	0.64	0.00
L27	57.25 - 53.5	3.31	43	0.58	0.00
L28	53.5 - 53.25	2.88	43	0.54	0.00
L29	53.25 - 52.58	2.85	43	0.53	0.00
L30	52.58 - 52.33	2.77	43	0.53	0.00
L31	52.33 - 47.33	2.75	43	0.52	0.00
L32	47.33 - 44.58	2.23	43	0.47	0.00
L33	44.58 - 44.33	1.97	43	0.43	0.00
L34	44.33 - 41.92	1.95	43	0.43	0.00
L35	41.92 - 41.67	1.74	43	0.40	0.00
L36	41.67 - 34.08	1.72	43	0.40	0.00
L37	39 - 34	1.50	43	0.37	0.00
L38	34 - 29	1.13	43	0.34	0.00
L39	29 - 26.92	0.81	43	0.28	0.00
L40	26.92 - 26.67	0.69	43	0.26	0.00
L41	26.67 21.67	0.68	43	0.25	0.00
L42	21.67 - 18	0.44	43	0.20	0.00
L43	18 - 17.75	0.30	43	0.16	0.00
L44	17.75 - 17.5	0.29	43	0.16	0.00
L45	17.5 - 17.25	0.28	43	0.16	0.00
L46	17.25 - 17.08	0.27	43	0.16	0.00
L47	17.08 - 16.83	0.27	43	0.16	0.00
L48	16.83 - 13	0.26	43	0.15	0.00
L49	13 - 12.75	0.15	43	0.12	0.00
L50	12.75 - 11.92	0.15	43	0.12	0.00
L51	11.92 - 11.67	0.13	43	0.11	0.00
L52	11.67 - 6.67	0.12	43	0.11	0.00
L53	6.67 - 6.5	0.04	43	0.05	0.00
L54	6.5 - 6.25	0.04	43	0.05	0.00
L55	6.25 - 3.75	0.03	43	0.05	0.00
L56	3.75 - 3.5	0.01	43	0.03	0.00
L57	3.5 - 3	0.01	43	0.03	0.00
L58	3 - 2.75	0.01	43	0.02	0.00
L59	2.75 - 0	0.01	43	0.02	0.00

### Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
121.0000	80010798 w/ Mount Pipe	43	17.81	1.64	0.00	25121
109.0000	(2) SBNHH-1D65B w/ Mount	43	13.82	1.50	0.00	3077
	Pipe					
103.0000	VHLP2.5-18	43	12.01	1.38	0.00	2482
99.0000	800MHz 2X50W RRH W/FILTER	43	10.89	1.28	0.00	2195
97.0000	LLPX310R-V1 w/ Mount Pipe	43	10.37	1.23	0.00	2089
87.0000	ERICSSON AIR 21 B2A B4P w/	43	8.10	0.97	0.00	3231
	Mount Pipe					
77.0000	MX08FRO665-21 w/ Mount Pipe	43	6.23	0.82	0.00	4443

### Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.	#	Deflection	Load	0	0
L1	<u>ft</u> 130 - 125	<u>in</u> 96.17	<u>Comb.</u> 10	7.58	0.02
L2	125 - 120	88.28	10	7.57	0.02
L2 L3	120 - 115	80.40	10	7.56	0.02
L4	115 - 110	72.59	10	7.37	0.02
L5	110 - 105	65.10	10	6.98	0.02
L6	105 - 100	58.03	10	6.55	0.02
L7	100 - 95	51.47	10	6.01	0.02
L8	95 - 90	45.52	10	5.39	0.01
L9	90 - 89.75	40.25	10	4.70	0.01
L10	89.75 - 84.75	40.00	10	4.68	0.01
L11	84.75 - 84.58	35.31	10	4.28	0.01
L12	84.58 - 84.33	35.16	10	4.27	0.01
L13	84.33 - 83.42	34.94	10	4.25	0.01
L14	83.42 - 83.17	34.14	10	4.20	0.01
L15 L16	83.17 - 83 83 - 82.75	33.92 33.77	10 10	4.18 4.18	0.01 0.01
L10 L17	82.75 - 77.75	33.55	10	4.18	0.01
L18	77 75 - 70	29.36	10	3.85	0.00
L19	74 - 69	26.44	10	3.61	0.00
L20	69 - 67.08	22.75	10	3.41	0.00
L21	67.08 - 66.83	21.41	10	3.28	0.00
L22	66.83 - 64.08	21.24	10	3.27	0.00
L23	64.08 - 63.83	19.41	10	3.08	0.00
L24	63.83 - 62.5	19.25	10	3.06	0.00
L25	62.5 - 62.25	18.41	10	2.98	0.00
L26	62.25 - 57.25	18.25	10	2.97	0.00
L27	57.25 - 53.5	15.30	10	2.69	0.00
L28	53.5 - 53.25	13.27	10	2.48	0.00
L29	53.25 - 52.58	13.14	10 10	2.46 2.43	0.00 0.00
L30 L31	52.58 - 52.33 52.33 - 47.33	12.80 12.67	10	2.43	0.00
L32	47.33 - 44.58	10.28	10	2.15	0.00
L33	44.58 - 44.33	9.09	10	2.00	0.00
L34	44.33 - 41.92	8.98	10	1.98	0.00
L35	41.92 - 41.67	8.02	10	1.85	0.00
L36	41.67 - 34.08	7.92	10	1.84	0.00
L37	39 - 34	6.93	10	1.70	0.00
L38	34 - 29	5.22	10	1.56	0.00
L39	29 - 26.92	3.73	10	1.29	0.00
L40	26.92 - 26.67	3.19	10	1.18	0.00
L41	26.67 - 21.67	3.13	10	1.17	0.00
L42	21.67 - 18	2.03	10	0.93	0.00
L43 L44	18 - 17.75 17.75 - 17.5	1.38 1.34	10 10	0.76 0.75	0.00 0.00
L44 L45	17.5 17.25	1.34	10	0.74	0.00
L40 L46	17.25 - 17.08	1.27	10	0.73	0.00
L40 L47	17.08 - 16.83	1.24	10	0.72	0.00
L48	16.83 - 13	1.20	10	0.71	0.00
L49	13 - 12.75	0.70	10	0.54	0.00
L50	12.75 11.92	0.67	10	0.53	0.00
L51	11.92 - 11.67	0.58	10	0.50	0.00
L52	11.67 - 6.67	0.56	10	0.49	0.00
L53	6.67 - 6.5	0.17	10	0.25	0.00
L54	6.5 - 6.25	0.16	10	0.25	0.00
L55	6.25 - 3.75	0.15	10	0.24	0.00
L56	3.75 - 3.5	0.05	10	0.13	0.00
L57	3.5 - 3	0.05	10	0.13	0.00
L58 L59	3 - 2.75	0.03	10 10	0.11 0.10	0.00 0.00
L09	2.75 - 0	0.03	10	0.10	0.00

### **Critical Deflections and Radius of Curvature - Design Wind**

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
121.0000	80010798 w/ Mount Pipe	10	81.97	7.57	0.02	5796
109.0000	(2) SBNHH-1D65B w/ Mount	10	63.65	6.90	0.02	693
	Pipe					
103.0000	VHLP2.5-18	10	55.34	6.34	0.02	559
99.0000	800MHz 2X50W RRH W/FILTER	10	50.23	5.89	0.01	491
97.0000	LLPX310R-V1 w/ Mount Pipe	10	47.82	5.66	0.01	466
87.0000	ERICSSON AIR 21 B2A B4P w/	10	37.37	4.47	0.01	711
	Mount Pipe					
77.0000	MX08FRO665-21 w/ Mount Pipe	10	28,76	3.80	0.00	971

### **Compression Checks**

### Pole Design Data

Section No.	Elevation	Size	L	Lu	Kl/r	A	$P_u$	$\phi P_n$	Ratio Pu
	ft		ft	ft		in²	K	K	$\phi P_n$
L1	130 - 125 (1)	TP11.775x10.525x0.1875	5.0000	0.0000	0.0	6.9960	-0.10	409.26	0.000
L2	125 - 120 (2)	TP13.025x11.775x0.1875	5.0000	0.0000	0.0	7.7506	-15.07	453.41	0.033
L3	120 - 115 (3)	TP14.275x13.025x0.1875	5.0000	0.0000	0.0	8.5053	-4.27	497.56	0.009
L4	115 - 110 (4)	TP15.525x14.275x0.1875	5.0000	0.0000	0.0	9.2600	-4.50	541.71	0.008
L5	110 - 105 (5)	TP16.7758x15.525x0.25	5.0000	0.0000	0.0	13.303 2	-8.84	778.24	0.011
L6	105 - 100 (6)	TP18.0265x16.7758x0.25	5.0000	0.0000	0.0	14 <u>.</u> 310 1	-9.33	837.14	0.011
L7	100 - 95 (7)	TP19.2773x18.0265x0.25	5.0000	0.0000	0.0	15.316 9	-13.25	896.04	0.015
L8	95 - 90 (8)	TP20.528x19.2773x0.25	5.0000	0.0000	0.0	16.323 8	-13.91	954.94	0.015
L9	90 - 89.75 (9)	TP20.5905x20.528x0.5	0.2500	0.0000	0.0	32.345 8	-13.98	1892.23	0.007
L10	89.75 - 84.75 (10)	TP21.8413x20.5905x0.48 13	5.0000	0.0000	0.0	33.100 0	-17.69	1936.35	0.009
L11	84.75 - 84.58 (11)	TP21.8838x21.8413x0.47 5	0.1700	0.0000	0.0	32.744 8	-17.74	1915.57	0.009
L12	84.58 - 84.33 (12)	TP21.9464x21.8838x0.63 75	0.2500	0.0000	0.0	43.741 7	-17.81	2558.89	0.007
L13	84.33 - 83.42 (13)	TP22.174x21.9464x0.625	0.9100	0.0000	0.0	43.367 3	-18.02	2536.99	0.007
L14	83.42 - 83.17 (14)	TP22.2365x22.174x0.95	0.2500	0.0000	0.0	65.115 5	-18.11	3809.26	0.005
L15	83.17 - 83 (15)	TP22.2791x22.2365x0.95	0.1700	0.0000	0.0	65.245 6	-18.17	3816.87	0.005
L16	83 - 82.75 (16)	TP22.3416x22.2791x0.7	0.2500	0.0000	0.0	48.780 1	-18.23	2853.64	0.006
L17	82.75 - 77.75 (17)	TP23.5923x22.3416x0.66 25	5.0000	0.0000	0.0	48.915 1	-19.52	2861.53	0.007
L18	77.75 ⁻ 70 (18)	TP25.531x23.5923x0.65	7.7500	0.0000	0.0	49.981 7	-23.55	2923.93	0.008
L19	70 - 69 (19)	TP25.281x24.0304x0.7	5.0000	0.0000	0.0	55.405 5	-25.74	3241.22	0.008
L20	69 - 67.08 (20)	TP25.7612x25.281x0.687 5	1.9200	0.0000	0.0	55.506 9	-26.31	3247.15	0.008
L21	67.08 - 66.83 (21)	TP25.8237x25.7612x0.68 75	0.2500	0.0000	0.0	55.645 3	-26.42	3255.25	0.008
L22	66.83 - 64.08 (22)	TP26.5115x25.8237x0.67 5	2.7500	0.0000	0.0	56.155 7	-27.25	3285.11	0.008
L23	64.08 - 63.83 (23)	TP26.5741x26.5115x0.73 75	0.2500	0.0000	0.0	61.355 4	-27.35	3589.29	0.008
L24	63.83 - 62.5 (24)	TP26.9067x26.5741x0.73 75	1.3300	0.0000	0.0	62.145 4	-27.80	3635.50	0.008
L25	62.5 - 62.25	TP26.9693x26.9067x0.86	0.2500	0.0000	0.0	72.505	-27.91	4241.54	0.007

Section No.	Elevation	Size	L	$L_u$	Kl/r	А	$P_u$	$\phi P_n$	Ratio Pu
	ft		ft	ft		in ²	К	К	φ <b>P</b> _n
L26	(25) 62.25 - 57.25 (26)	25 TP28.2198x26.9693x0.83 75	5.0000	0.0000	0.0	0 73.843 3	-29.71	4319.83	0.007
L27	(26) 57.25 - 53.5 (27)	75 TP29.1578x28.2198x0.81 25	3.7500	0.0000	0.0	74.158 3	-31.10	4338.26	0.007
L28	53.5 - 53.25 (28)	TP29.2203x29.1578x0.83 75	0.2500	0.0000	0.0	76.541 3	-31.21	4477.67	0.007
L29	53.25 - 52.58 (29)	TP29.3879x29.2203x0.82 5	0.6700	0.0000	0.0	75.877 3	-31.47	4438.82	0.007
L30	52.58 - 52.33 (30)	TP29.4504x29.3879x0.86 25	0.2500	0.0000	0.0	79.395 7	-31.57	4644.65	0.007
L31	52.33 - 47.33 (31)	TP30.701x29.4504x0.837 5	5.0000	0.0000	0.0	80.534 3	-33.52	4711.26	0.007
L32	47.33 - 44.58 (32)	TP31.3888x30.701x0.812 5	2.7500	0.0000	0.0	79.995 2	-34.62	4679.72	0.007
L33	(32) 44.58 - 44.33 (33)	TP31.4513x31.3888x0.81 25	0.2500	0.0000	0.0	80.158 8	-34.74	4689.29	0.007
L34	(33) 44.33 - 41.92 (34)	TP32.0541x31.4513x0.8	2.4100	0.0000	0.0	80.510 6	-35.70	4709.87	0.008
L35	(3 <del>4</del> ) 41.92 - 41.67 (35)	TP32.1166x32.0541x0.81 25	0.2500	0.0000	0.0	81.899 4	-35.82	4791.12	0.007
L36	(33) 41.67 - 34.08 (36)	TP34.015x32.1166x0.787 5	7.5900	0.0000	0.0	81.136 2	-36.90	4746.47	0.008
L37	(30) 34.08 - 34 (37)	TP33.4082x32.1594x0.81 88	5.0000	0.0000	0.0	85.918 1	-40.57	5026.21	0.008
L38	34 - 29 (38)	TP34.657x33.4082x0.793 8	5.0000	0.0000	0.0	86.550 3	-42.74	5063.19	0.008
L39	29 - 26.92 (39)	TP35.1765x34.657x0.793 8	2.0800	0.0000	0.0	87.878 0	-43.66	5140.87	0.008
L40	(33) 26.92 - 26.67 (40)	TP35.239x35.1765x0.893 8	0.2500	0.0000	0.0	98.841 2	-43.79	5782.21	0.008
L41	(40) 26.67 - 21.67 (41)	TP36.4877x35.239x0.868 8	5.0000	0.0000	0.0	99.639 7	-46.23	5828.92	0.008
L42	(41) 21.67 - 18 (42)	TP37.4044x36.4877x0.85 63	3.6700	0.0000	0.0	, 100.76 80	-48.05	5894.91	0.008
L43	(42) 18 - 17.75 (43)	TP37.4668x37.4044x0.99 38	0.2500	0.0000	0.0	116.70 90	-48.21	6827.49	0.007
L44	(+3) 17.75 - 17.5 (44)	TP37.5292x37.4668x0.99 38	0.2500	0.0000	0.0	116.90 90	-48.35	6839.18	0.007
L45	(44) 17.5 - 17.25 (45)	TP37.5917x37.5292x0.99 38	0.2500	0.0000	0.0	117.10 90	-48.48	6850.86	0.007
L46	(43) 17.25 - 17.08 (46)	TP37.6341x37.5917x0.99 38	0.1700	0.0000	0.0	117.24 50	-48.58	6858.81	0.007
L47	17.08 - 16.83	TP37.6966x37.6341x0.89	0.2500	0.0000	0.0	105.91	-48.70	6195.96	0.008
L48	(47) 16.83 - 13 (48)	38 TP38.6531x37.6966x0.88 13	3.8300	0.0000	0.0	40 107.18 20	-50.67	6270.17	0.008
L49	(48) 13 - 12.75 (49)	TP38.7156x38.6531x1.05 63	0.2500	0.0000	0.0	128.08 40	-50.83	7492.92	0.007
L50	(49) 12.75 - 11.92 (50)	TP38.9229x38.7156x1.04 38	0.8300	0.0000	0.0	40 127.30 70	-51.31	7447.46	0.007
L51	(50) 11.92 - 11.67 (51)	TP38.9853x38.9229x0.81 88	0.2500	0.0000	0.0	100 <u>.</u> 62 10	-51.45	5886.35	0.009
L52	11.67 - 6.67	TP40.2341x38.9853x0.79	5.0000	0.0000	0.0	99.527	-53.04	5822.38	0.009
L53	(52) 6.67 - 6.5 (53)	38 TP40.2766x40.2341x0.79 38	0.1700	0.0000	0.0	9 100.80 50	-54.08	5897.07	0.009
L54	6.5 - 6.25 (54)	TP40.339x40.2766x0.918	0.2500	0.0000	0.0	116.43	-54.17	6811.46	0.008
L55	6.25 - 3.75	8 TP40.9634x40.339x0.906	2.5000	0.0000	0.0	50 115.07	-54.33	6731.58	0.008
L56	(55) 3.75 - 3.5 (56)	3 TP41.0258x40.9634x1.00	0.2500	0.0000	0.0	00 129.46	-55.72	7573.77	0.007
L57	3.5 - 3 (57)	63 TP41.1507x41.0258x0.99	0.5000	0.0000	0.0	60 128.09	-55.87	7493.72	0.007
L58	3 - 2.75 (58)	38 TP41.2132x41.1507x0.99	0.2500	0.0000	0.0	80 128.49 70	-56.16	7517.09	0.007
L59	2.75 - 0 (59)	38 TP41.9x41.2132x1.0188	2.7500	0.0000	0.0	70 131.85	-56.32	7713.39	0.007

130 Ft Monopole Tower Structural Analysis Project Number 1963271, Order 556638, Revision 1

Section No.	Elevation	Size	L	Lu	Kl/r	A	$P_u$	$\phi P_n$	Ratio P _u
	ft		ft	ft		in²	K	K	$\phi P_n$

#### **Pole Bending Design Data** Section Elevation Size Mux φ*M*_{nx} Ratio Muy $\phi M_{ny}$ Ratio Mux No. Muy ft kip-ft kip-ft kip-ft kip-ft φM_{nx} φM_{ny} L1 130 - 125 (1) TP11.775x10.525x0.1875 0.63 120.74 0.005 0.00 120.74 0.000 L2 125 - 120 (2) TP13.025x11.775x0.1875 2.28 148.43 0.015 0.00 148.43 0.000 120 - 115 (3) L3 TP14.275x13.025x0.1875 46.78 178.97 0.00 178.97 0.000 0.261 L4 115 - 110 (4) TP15.525x14.275x0.1875 91.06 212.37 0.429 0.00 212.37 0.000 110 - 105 (5) L5 TP16.7758x15.525x0.25 327.79 327.79 161.84 0 4 9 4 0.00 0.000 L6 105 - 100 (6) TP18.0265x16.7758x0.25 236.53 379.69 0.623 0.00 379.69 0.000 100 - 95 (7) 327.43 435.39 0.00 435.39 L7TP19.2773x18.0265x0.25 0.752 0.000 L8 95 - 90 (8) TP20.528x19.2773x0.25 431.90 494.91 0.873 0.00 494.91 0.000 90 - 89.75 (9) TP20.5905x20.528x0.5 437.20 959.70 0.456 0.00 959.70 0.000 L9 L10 89.75 - 84.75 TP21.8413x20.5905x0.48 551.23 1046.54 0.527 0.00 1046.54 0.000 (10) 13 0.535 0.00 0.000 L11 84.75 - 84.58 TP21 8838x21 8413x0 47 555.47 1038.02 1038.02 (11)5 L12 84.58 - 84.33 TP21.9464x21.8838x0.63 561.71 1369.79 0.410 0.00 1369.79 0.000 (12) 75 L13 84.33 - 83.42 TP22.174x21.9464x0.625 584.50 1374.59 0.425 0.00 1374.59 0.000 (13) L14 83.42 - 83.17 TP22.2365x22.174x0.95 590.79 2008.30 0.294 0.00 2008.30 0.000 (14) L15 83.17 - 83 TP22.2791x22.2365x0.95 595.07 0.295 0.00 0.000 2016.50 2016.50 (15) 83 - 82.75 L16 TP22.3416x22.2791x0.7 601.37 1547.78 0.389 0.00 0.000 1547.78 (16) L17 82.75 - 77.75 TP23 5923x22 3416x0 66 729.73 1649.97 0.442 0.00 1649.97 0.000 (17) 25 77.75 70 TP25.531x23.5923x0.65 839.17 0.00 1758.70 0.000 L18 1758.70 0.477 (18)70 - 69 (19) 0.495 0.00 0.000 L19 TP25.281x24.0304x0.7 992.27 2004.28 2004.28 69 - 67 08 2050.31 0.00 2050.31 0.000 L20 TP25.7612x25.281x0.687 1052.27 0.513 (20) 5 L21 2060.68 0.514 0.00 0.000 67.08 - 66.83 TP25.8237x25.7612x0.68 1060.13 2060.68 (21) 75 L22 66.83 64.08 TP26.5115x25.8237x0.67 1147.24 2140.07 0.536 0.00 2140.07 0.000 (22)5 L23 64.08 63.83 TP26.5741x26.5115x0.73 1155.22 2332.73 0.495 0.00 2332.73 0.000 (23) 75 L24 63.83 - 62.5 TP26.9067x26.5741x0.73 1197.88 2394.04 0.500 0.00 2394.04 0.000 (24) 75 L25 62.5 - 62.25 TP26.9693x26.9067x0.86 1205.93 2773.36 0.435 0.00 2773.36 0.000 (25)25 L26 62.25 - 57.25 TP28.2198x26.9693x0.83 1369.28 2969.61 0.461 0.00 2969.61 0.000 (26) 75 L27 57.25 - 53.5 TP29.1578x28.2198x0.81 1494.67 3092.92 0.483 0.00 3092.92 0.000 (27) 25 L28 53.5 - 53.25 TP29.2203x29.1578x0.83 1503.12 3193.91 0.471 0.00 3193.91 0.000 (28) 75 L29 53.25 - 52.58 TP29.3879x29.2203x0.82 1525.81 3188.22 0.479 0.00 3188.22 0.000 (29)5 L30 52.58 - 52.33 TP29.4504x29.3879x0.86 1534.30 3334.82 0.460 0.00 3334.82 0.000 25 (30)L31 52 33 - 47 33 TP30.701x29.4504x0.837 1706.34 3540.88 0.482 0.00 3540.88 0.000 (31)5 L32 47.33 - 44.58 TP31.3888x30.701x0.812 1802.83 3606.29 0.500 0.00 3606.29 0.000 (32) 5 L33 44.58 - 44.33 TP31 4513x31 3888x0 81 1811.66 3621.24 0.500 0.00 3621.24 0.000 (33) 25 L34 44.33 41.92 TP32.0541x31.4513x0.8 1897.38 3713.51 0.511 0.00 3713.51 0.000 (34)

0.504

3782.29

0.00

0.000

3782.29

41.92 - 41.67 tnxTower Report - version 8.1.1.0

TP32.1166x32.0541x0.81

1906.33

L35

Section No.	Elevation	Size	M _{ux}	φ <b>M</b> nx	Ratio M _{ux}	M _{uy}	φ <b>M</b> ny	Ratio M _{uy}
	ft		kip-ft	kip-ft	φ <i>M_{nx}</i>	kip-ft	kip-ft	φ <i>M_{ny}</i>
L36	(35) 41.67 - 34.08 (36)	25 TP34.015x32.1166x0.787 5	2002.53	3835.00	0.522	0.00	3835.00	0.000
L37	(38) 34.08 - 34 (37)	7 TP33.4082x32.1594x0.81 88	2186.20	4134.16	0.529	0.00	4134.16	0.000
L38	34 - 29 (38)	TP34.657x33.4082x0.793 8	2374.21	4334.48	0.548	0.00	4334.48	0.000
L39	29 - 26.92 (39)	TP35.1765x34.657x0.793 8	2453.58	4470.03	0.549	0.00	4470.03	0.000
L40	26.92 - 26.67 (40)	TP35.239x35.1765x0.893 8	2463.17	5007.82	0.492	0.00	5007.82	0.000
L41	26.67 - 21.67 (41)	TP36.4877x35.239x0.868 8	2656.96	5243.85	0.507	0.00	5243.85	0.000
L42	21.67 - 18 (42)	TP37.4044x36.4877x0.85 63	2801.68	5446.66	0.514	0.00	5446.66	0.000
L43	18 - 17.75 (43)	TP37.4668x37.4044x0.99 38	2811.62	6271.97	0.448	0.00	6271.97	0.000
L44	17.75 - 17.5 (44)	TP37.5292x37.4668x0.99 38	2821.56	6293.75	0.448	0.00	6293.75	0.000
L45	17.5 - 17.25 (45)	TP37.5917x37.5292x0.99 38	2831.51	6315.56	0.448	0.00	6315.56	0.000
L46	17.25 - 17.08 (46)	TP37.6341x37.5917x0.99 38	2838.28	6330.42	0.448	0.00	6330.42	0.000
L47	17.08 - 16.83 (47)	TP37.6966x37.6341x0.89 38	2848.25	5759.90	0.494	0.00	5759.90	0.000
L48	16.83 - 13 (48)	TP38.6531x37.6966x0.88 13	3002.09	5987.94	0.501	0.00	5987.94	0.000
L49	13 - 12.75 (49)	TP38.7156x38.6531x1.05 63	3012.21	7101.60	0.424	0.00	7101.60	0.000
L50	12.75 - 11.92 (50)	TP38.9229x38.7156x1.04 38	3045.86	7103.12	0.429	0.00	7103.12	0.000
L51	11.92 - 11.67 (51)	TP38.9853x38.9229x0.81 88	3056.02	5690.58	0.537	0.00	5690.58	0.000
L52	11.67 - 6.67 (52)	TP40.2341x38.9853x0.79 38	3178.57	5748.95	0.553	0.00	5748.95	0.000
L53	6.67 - 6.5 (53)	TP40.2766x40.2341x0.79 38	3260.98	5898.87	0.553	0.00	5898.87	0.000
L54	6.5 - 6.25 (54)	TP40.339x40.2766x0.918 8	3268.01	6777.90	0.482	0.00	6777.90	0.000
L55	6.25 - 3.75 (55)	TP40.9634x40.339x0.906 3	3278.36	6713.54	0.488	0.00	6713.54	0.000
L56	3.75 - 3.5 (56)	TP41.0258x40.9634x1.00 63	3382.32	7637.49	0.443	0.00	7637.49	0.000
L57	3.5 - 3 (57)	TP41.1507x41.0258x0.99 38	3392.77	7573.59	0.448	0.00	7573.59	0.000
L58	3 - 2.75 (58)	TP41.2132x41.1507x0.99 38	3413.68	7621.49	0.448	0.00	7621.49	0.000
L59	2.75 - 0 (59)	TP41.9x41.2132x1.0188	3424.16	7823.22	0.438	0.00	7823.22	0.000

# Pole Shear Design Data

Section No.	Elevation	Size	Actual V _u	φVn	Ratio V _u	Actual Tu	$\phi T_n$	Ratio T _u
	ft		ĸ	К	$\frac{V_u}{\phi V_n}$	kip-ft	kip-ft	$\frac{T_n}{\phi T_n}$
L1	130 - 125 (1)	TP11.775x10.525x0.1875	0.26	122.78	0.002	0.00	125.15	0.000
L2	125 - 120 (2)	TP13.025x11.775x0.1875	2.24	136.02	0.016	0.00	153.60	0.000
L3	120 - 115 (3)	TP14.275x13.025x0.1875	8.57	149.27	0.057	0.14	184.97	0.001
L4	115 - 110 (4)	TP15.525x14.275x0.1875	9.14	162.51	0.056	0.06	219.25	0.000
L5	110 - 105 (5)	TP16.7758x15.525x0.25	14.31	233.47	0.061	0.77	339.39	0.002
L6	105 - 100 (6)	TP18.0265x16.7758x0.25	15.39	251.14	0.061	0.68	392.70	0.002
L7	100 - 95 (7)	TP19.2773x18.0265x0.25	20.65	268.81	0.077	0.73	449.91	0.002
L8	95 - 90 (8)	TP20.528x19.2773x0.25	21.17	286.48	0.074	0.79	511.00	0.002
L9	90 - 89.75 (9)	TP20.5905x20.528x0.5	21.18	567.67	0.037	0.79	1003.20	0.001
L10	89.75 - 84.75	TP21.8413x20.5905x0.48	24.94	580.91	0.043	0.92	1091.46	0.001
	(10)	13						

tnxTower Report - version 8.1.1.0

Section No.	Elevation	Size	Actual V _u	φVn	Ratio Vu	Actual T _u	<b>φ</b> <i>T</i> _n	Ratio T _u
	ft		ĸ	K	φV _n	kip-ft	kip-ft	φ <b>T</b> _n
L11	84.75 - 84.58 (11)	TP21.8838x21.8413x0.47 5	24.95	574.67	0.043	0.93	1082.21	0.001
L12	(11) 84.58 - 84.33 (12)	TP21.9464x21.8838x0.63 75	24.99	767.67	0.033	0.93	1438.91	0.001
L13	84.33 - 83.42 (13)	TP22.174x21.9464x0.625	25.12	761.10	0.033	0.93	1442.67	0.001
L14	(13) 83.42 - 83.17 (14)	TP22.2365x22.174x0.95	25.16	1142.78	0.022	0.94	2139.77	0.000
L15	83.17 - 83	TP22.2791x22.2365x0.95	25.19	1145.06	0.022	0.94	2148.32	0.000
L16	(15) 83 - 82.75 (16)	TP22.3416x22.2791x0.7	25.22	856.09	0.029	0.94	1629.71	0.001
L17	82.75 - 77.75 (17)	TP23.5923x22.3416x0.66 25	26.11	858.46	0.030	0.82	1731.49	0.000
L18	77.75 - 70 (18)	TP25.531x23.5923x0.65	30.13	877.18	0.034	0.90	1842.59	0.000
L19 L20	70 - 69 (19) 69 - 67.08	TP25.281x24.0304x0.7 TP25.7612x25.281x0.687	31.07 31.41	972.37 974.15	0.032 0.032	1.02 1.05	2102.47 2148.53	0.000 0.000
L21	(20) 67.08 - 66.83	5 TP25.8237x25.7612x0.68	31.43	976.58	0.032	1.06	2159.27	0.000
L22	(21) 66.83 - 64.08 (22)	75 TP26.5115x25.8237x0.67 5	31.90	985.53	0.032	1.12	2239.78	0.001
L23	(22) 64.08 - 63.83 (23)	75 TP26.5741x26.5115x0.73 75	31.93	1076.79	0.030	1.13	2447.18	0.000
L24	63.83 - 62.5	75 TP26.9067x26.5741x0.73 75	32.17	1090.65	0.030	1.15	2510.59	0.000
L25	(24) 62.5 - 62.25 (25)	75 TP26.9693x26.9067x0.86 25	32.20	1272.46	0.025	1.16	2922.12	0.000
L26	(23) 62.25 - 57.25 (26)	TP28.2198x26.9693x0.83 75	33.09	1295.95	0.026	1.25	3121.47	0.000
L27	(20) 57.25 - 53.5 (27)	TP29.1578x28.2198x0.81 25	33.75	1301.48	0.026	1.32	3245.02	0.000
L28	53.5 - 53.25 (28)	TP29.2203x29.1578x0.83 75	33.78	1343.30	0.025	1.33	3353.72	0.000
L29	53.25 - 52.58 (29)	TP29.3879x29.2203x0.82 5	33.91	1331.65	0.025	1.34	3345.72	0.000
L30	52.58 - 52.33 (30)	TP29.4504x29.3879x0.86 25	33.95	1393.40	0.024	1.34	3503.94	0.000
L31	52.33 - 47.33 (31)	TP30.701x29.4504x0.837 5	34.83	1413.38	0.025	1.44	3712.78	0.000
L32	47.33 - 44.58 (32)	TP31.3888x30.701x0.812 5	35.31	1403.92	0.025	1.49	3775.95	0.000
L33	44.58 - 44.33 (33)	TP31.4513x31.3888x0.81 25	35.34	1406.79	0.025	1.49	3791.41	0.000
L34	44.33 - 41.92 (34)	TP32.0541x31.4513x0.8	35.76	1412.96	0.025	1.53	3884.52	0.000
L35	(34) 41.92 - 41.67 (35)	TP32.1166x32.0541x0.81 25	35.78	1437.33	0.025	1.53	3957.85	0.000
L36	41.67 - 34.08 (36)	TP34.015x32.1166x0.787 5	36.24	1423.94	0.025	1.57	4007.74	0.000
L37	34.08 - 34 (37)	TP33.4082x32.1594x0.81 88	37.18	1507.86	0.025	1.65	4322.54	0.000
L38	34 - 29 (38)	TP34.657x33.4082x0.793 8	37.98	1518.96	0.025	1.73	4524.54	0.000
L39	29 - 26 <u>.</u> 92 (39)	TP35.1765x34.657x0.793 8	38.31	1542.26	0.025	1.76	4664.43	0.000
L40	(00) 26.92 - 26.67 (40)	TP35.239x35.1765x0.893 8	38.33	1734.66	0.022	1.77	5240.60	0.000
L41	26.67 - 21.67 (41)	TP36.4877x35.239x0.868 8	39.13	1748.68	0.022	1.84	5478.87	0.000
L42	21.67 - 18 (42)	TP37.4044x36.4877x0.85 63	39.70	1768.47	0.022	1.89	5685.42	0.000
L43	18 - 17.75 (43)	TP37.4668x37.4044x0.99 38	39.71	2048.25	0.019	1.89	6571.34	0.000
L44	(10) 17.75 - 17.5 (44)	TP37.5292x37.4668x0.99 38	39.75	2051.75	0.019	1.90	6593.86	0.000
L45	17.5 - 17.25 (45)	TP37.5917x37.5292x0.99 38	39.79	2055.26	0.019	1.90	6616.42	0.000

Section No.	Elevation	Size	Actual V _u	$\phi V_n$	Ratio Vu	Actual T _u	$\phi T_n$	Ratio T _u
110.	ft		K	К	$\frac{\mathbf{v}_{u}}{\mathbf{\phi}\mathbf{V}_{n}}$	kip-ft	kip-ft	$\frac{T_u}{\phi T_n}$
L46	17.25 - 17.08 (46)	TP37.6341x37.5917x0.99 38	39.82	2057.64	0.019	1.90	6631.77	0.000
L47	17.08 - 16.83 (47)	TP37.6966x37.6341x0.89 38	39.85	1858.79	0.021	1.90	6017.43	0.000
L48	16.83 - 13 (48)	TP38.6531x37.6966x0.88 13	40.43	1881.05	0.021	1.96	6249.85	0.000
L49	13 - 12.75 (49)	TP38.7156x38.6531x1.05 63	40.44	2247.88	0.018	1.96	7446.37	0.000
L50	12.75 - 11.92 (50)	TP38.9229x38.7156x1.04 38	40.58	2234.24	0.018	1.97	7444.39	0.000
L51	11.92 - 11.67 (51)	TP38.9853x38.9229x0.81 88	40.61	1765.91	0.023	1.97	5928.57	0.000
L52	11.67 - 6.67 (52)	TP40.2341x38.9853x0.79 38	41.18	1757.92	0.023	2.05	5983.12	0.000
L53	6.67 - 6.5 (53)	TP40.2766x40.2341x0.79 38	41.33	1771.03	0.023	2.07	6137.60	0.000
L54	6.5 - 6.25 (54)	TP40.339x40.2766x0.918 8	41.37	2046.68	0.020	2.08	7074.44	0.000
L55	6.25 - 3.75 (55)	TP40.9634x40.339x0.906 3	41.56	2035.46	0.020	2.11	7004.79	0.000
L56	3.75 - 3.5 (56)	TP41.0258x40.9634x1.00 63	41.76	2275.68	0.018	2.14	7985.97	0.000
L57	3.5 - 3 (57)	TP41.1507x41.0258x0.99 38	41.84	2255.13	0.019	2.16	7916.38	0.000
L58	3 - 2.75 (58)	TP41.2132x41.1507x0.99 38	41.87	2258.63	0.019	2.16	7965.85	0.000
L59	2.75 - 0 (59)	TP41.9x41.2132x1.0188	42.10	2333.79	0.018	2.20	8181.48	0.000

# Pole Interaction Design Data

Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	$\phi P_n$	$\phi M_{nx}$	φ <i>M</i> _{nv}	$\phi V_n$	$\phi T_n$	Ratio	Ratio	
L1	130 - 125 (1)	0.000	0.005	0.000	0.002	0.000	0.005	1.050	4.8.2
L2	125 - 120 (2)	0.033	0.015	0.000	0.016	0.000	0.049	1.050	4.8.2
L3	120 - 115 (3)	0.009	0.261	0.000	0.057	0.001	0.273	1.050	4.8.2
L4	115 - 110 (4)	0.008	0.429	0.000	0.056	0.000	0.440	1.050	4.8.2
L5	110 - 105 (5)	0.011	0.494	0.000	0.061	0.002	0.509	1.050	4.8.2
L6	105 - 100 (6)	0.011	0.623	0.000	0.061	0.002	0.638	1.050	4.8.2
L7	100 - 95 (7)	0.015	0.752	0.000	0.077	0.002	0.773	1.050	4.8.2
L8	95 - 90 (8)	0.015	0.873	0.000	0.074	0.002	0.893	1.050	4.8.2
L9	90 - 89.75 (9)	0.007	0.456	0.000	0.037	0.001	0.464	1.050	4.8.2
L10	89.75 - 84.75 (10)	0.009	0.527	0.000	0.043	0.001	0.538	1.050	4.8.2
L11	84.75 - 84.58 (11)	0.009	0.535	0.000	0.043	0.001	0.546	1.050	4.8.2
L12	84.58 - 84.33 (12)	0.007	0.410	0.000	0.033	0.001	0.418	1.050	4.8.2
L13	84.33 - 83.42 (13)	0.007	0.425	0.000	0.033	0.001	0.433	1.050	4.8.2
L14	83.42 - 83.17 (14)	0.005	0.294	0.000	0.022	0.000	0.299	1.050	4.8.2
L15	83.17 - 83 (15)	0.005	0.295	0.000	0.022	0.000	0.300	1.050	4.8.2
L16	83 - 82.75 (16)	0.006	0.389	0.000	0.029	0.001	0.396	1.050	4.8.2
L17	82.75 - 77.75 (17)	0.007	0.442	0.000	0.030	0.000	0.450	1.050	4.8.2
L18	77.75 - 70 (18)	0.008	0.477	0.000	0.034	0.000	0.486	1.050	4.8.2
L19	70 - 69 (19)	0.008	0.495	0.000	0.032	0.000	0.504	1.050	4.8.2
L20	69 - 67.08 [°] (20)	0.008	0.513	0.000	0.032	0.000	0.522	1.050	4.8.2

No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio Muy	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	$\phi P_n$	φ <b>Μ</b> _{nx}	φM _{ny}	φVn	$\phi T_n$	Ratio	Ratio	
L21	67.08 - 66.83 (21)	0.008	0.514	0.000	0.032	0.000	0.524	1.050	4.8.2
L22	(21) 66.83 - 64.08 (22)	0.008	0.536	0.000	0.032	0.001	0.545	1.050	4.8.2
L23	64.08 - 63.83	0.008	0.495	0.000	0.030	0.000	0.504	1.050	4.8.2
L24	(23) 63.83 - 62.5 (24)	0.008	0.500	0.000	0.030	0.000	0.509	1.050	4.8.2
L25	62.5 - 62.25	0.007	0.435	0.000	0.025	0.000	0.442	1.050	4.8.2
L26	(25) 62.25 - 57.25 (26)	0.007	0.461	0.000	0.026	0.000	0.469	1.050	4.8.2
L27	(20) 57.25 - 53.5 (27)	0.007	0.483	0.000	0.026	0.000	0.491	1.050	4.8.2
L28	(27) 53.5 - 53.25 (28)	0.007	0.471	0.000	0.025	0.000	0.478	1.050	4.8.2
L29	53.25 - 52.58	0.007	0.479	0.000	0.025	0.000	0.486	1.050	4.8.2
L30	(29) 52.58 - 52.33 (30)	0.007	0.460	0.000	0.024	0.000	0.467	1.050	4.8.2
L31	(30) 52.33 - 47.33 (31)	0.007	0.482	0.000	0.025	0.000	0.490	1.050	4.8.2
L32	(31) 47.33 - 44.58 (32)	0.007	0.500	0.000	0.025	0.000	0.508	1.050	4.8.2
L33	(32) 44.58 - 44.33 (33)	0.007	0.500	0.000	0.025	0.000	0.508	1.050	4.8.2
L34	44.33 - 41.92	0.008	0.511	0.000	0.025	0.000	0.519	1.050	4.8.2
L35	(34) 41.92 - 41.67 (35)	0.007	0.504	0.000	0.025	0.000	0.512	1.050	4.8.2
L36	(33) 41.67 - 34.08 (36)	0.008	0.522	0.000	0.025	0.000	0.531	1.050	4.8.2
L37	(30) 34.08 - 34 (37)	0.008	0.529	0.000	0.025	0.000	0.538	1.050	4.8.2
L38 L39	34 - 29 (38) 29 - 26.92 (39)	0.008 0.008	0.548 0.549	0.000 0.000	0.025 0.025	0.000 0.000	0.557 0.558	1.050 1.050	4.8.2 4.8.2
L40	26.92 - 26.67 (40)	0.008	0.492	0.000	0.022	0.000	0.500	1.050	4.8.2
L41	26.67 - 21.67 (41)	0.008	0.507	0.000	0.022	0.000	0.515	1.050	4.8.2
L42	21 <u>.</u> 67 - 18 (42)	0.008	0.514	0.000	0.022	0.000	0.523	1.050	4.8.2
L43	18 - 17.75 (43)	0.007	0.448	0.000	0.019	0.000	0.456	1.050	4.8.2
L44	(43) 17.75 - 17.5 (44)	0.007	0.448	0.000	0.019	0.000	0.456	1.050	4.8.2
L45	(45) 17.5 - 17.25 (45)	0.007	0.448	0.000	0.019	0.000	0.456	1.050	4.8.2
L46	(40) 17.25 - 17.08 (46)	0.007	0.448	0.000	0.019	0.000	0.456	1.050	4.8.2
L47	17.08 - 16.83 (47)	0.008	0.494	0.000	0.021	0.000	0.503	1.050	4.8.2
L48	(47) 16.83 - 13 (48)	0.008	0.501	0.000	0.021	0.000	0.510	1.050	4.8.2
L49	(40) 13 - 12.75 (49)	0.007	0.424	0.000	0.018	0.000	0.431	1.050	4.8.2
L50	(+3) 12.75 - 11.92 (50)	0.007	0.429	0.000	0.018	0.000	0.436	1.050	4.8.2
L51	(50) 11.92 - 11.67 (51)	0.009	0.537	0.000	0.023	0.000	0.546	1.050	4.8.2
L52	(31) 11.67 - 6.67 (52)	0.009	0.553	0.000	0.023	0.000	0.563	1.050	4.8.2
L53	6.67 - 6.5 (53)	0.009	0.553	0.000	0.023	0.000	0.563	1.050	4.8.2
L54 L55	6.5 - 6.25 (54) 6.25 - 3.75	0.008 0.008	0.482 0.488	0.000 0.000	0.020 0.020	0.000 0.000	0.491 0.497	1.050 1.050	4.8.2 4.8.2
	(55)	0.000	0.400		0.020		0.437	1.000	
L56 L57	3.75 - 3.5 (56) 3.5 - 3 (57)	0.007 0.007	0.443 0.448	0.000 0.000	0.018 0.019	0.000 0.000	0.451 0.456	1.050 1.050	4.8.2 4.8.2

tnxTower Report - version 8.1.1.0

Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio Vu	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	$\phi P_n$	φMnx	φM _{ny}	φVn	$\phi T_n$	Ratio	Ratio	
L58	3 - 2.75 (58)	0.007	0.448	0.000	0.019	0.000	0.456	1.050	4.8.2
L59	2.75 - 0 (59)	0.007	0.438	0.000	0.018	0.000	0.445	1.050	4.8.2

### Section Capacity Table

Section	Elevation	Component	Size	Critical	Р		%	Pass
No.	ft	Туре		Element	K	ĸ	Capacity	Fail
L1	130 - 125	Pole	TP11.775x10.525x0.1875	1	-0.10	429.73	0.5	Pass
L2	125 - 120	Pole	TP13.025x11.775x0.1875	2	-15.07	476.08	5.8	Pass
L3	120 - 115	Pole	TP14.275x13.025x0.1875	3	-4.27	522.44	26.0	Pass
L4	115 - 110	Pole	TP15.525x14.275x0.1875	4	-4.50	568.80	41.9	Pass
L5	110 - 105	Pole	TP16.7758x15.525x0.25	5	-8.84	817.15	48.5	Pass
L6	105 - 100	Pole	TP18.0265x16.7758x0.25	6	-9.33	879.00	60.8	Pass
L7	100 - 95	Pole	TP19.2773x18.0265x0.25	7	-13.25	940.84	73.6	Pass
L8	95 - 90	Pole	TP20.528x19.2773x0.25	8	-13.91	1002.69	85.0	Pass
L9	90 - 89.75	Pole	TP20.5905x20.528x0.5	9	-13.98	1986.84	44.2	Pass
L10	89 75 - 84 75	Pole	TP21.8413x20.5905x0.4813	10	-17.69	2033.17	51.2	Pass
L11	84.75 - 84.58	Pole	TP21.8838x21.8413x0.475	11	-17.74	2011.35	52.0	Pass
L12	84.58 - 84.33	Pole	TP21.9464x21.8838x0.6375	12	17.81	2686.83	39.8	Pass
L13	84.33 - 83.42	Pole	TP22.174x21.9464x0.625	13	-18.02	2663.84	41.3	Pass
L14	83.42 - 83.17	Pole	TP22.2365x22.174x0.95	14	-18.11	3999.72	28.5	Pass
L15	83 17 83	Pole	TP22.2791x22.2365x0.95	15	-18.17	4007.71	28.6	Pass
L16	83 - 82.75	Pole	TP22.3416x22.2791x0.7	16	-18.23	2996.32	37.7	Pass
L17	82 75 - 77 75	Pole	TP23.5923x22.3416x0.6625	17	-19.52	3004.61	42.9	Pass
L18	77 75 70	Pole	TP25.531x23.5923x0.65	18	23.55	3070.13	46.3	Pass
L19	70 - 69	Pole	TP25.281x24.0304x0.7	19	-25.74	3403.28	48.0	Pass
L20	69 - 67.08	Pole	TP25.7612x25.281x0.6875	20	-26.31	3409.51	49.8	Pass
L21	67.08 - 66.83	Pole	TP25.8237x25.7612x0.6875	21	-26.42	3418.01	49.9	Pass
L22	66.83 64.08	Pole	TP26,5115x25,8237x0,675	22	-27.25	3449.37	51.9	Pass
L22	64.08 - 63.83	Pole	TP26.5741x26.5115x0.7375	23	-27.35	3768.75	48.0	Pass
L23	63.83 62.5	Pole	TP26.9067x26.5741x0.7375	23	-27.80	3817.27	48.5	Pass
L24 L25	62.5 - 62.25	Pole	TP26.9693x26.9067x0.8625	25	-27.91	4453.62	42.1	Pass
L26	62.25 - 57.25	Pole	TP28.2198x26.9693x0.8375	26	-29.71	4535.82	44.6	Pass
L20 L27	57.25 - 53.5	Pole	TP29.1578x28.2198x0.8125	20	-31.10	4555.17	46.8	Pass
L27 L28	53.5 - 53.25	Pole	TP29.2203x29.1578x0.8375	28	-31.21	4701.55	45.5	Pass
L20 L29	53.25 - 52.58	Pole	TP29.3879x29.2203x0.825	20	-31.47	4660.76	46.3	Pass
L29 L30	53.25 - 52.56 52.58 - 52.33	Pole		29 30	-31.47	4876.88	46.3 44 <u>.</u> 5	Pass Pass
		Pole	TP29.4504x29.3879x0.8625		-31.57			
L31 L32	52.33 - 47.33	Pole	TP30.701x29.4504x0.8375	31 32	-33.52	4946.82 4913.71	46.6 48.4	Pass Pass
	47.33 - 44.58		TP31.3888x30.701x0.8125					
L33	44.58 - 44.33	Pole	TP31.4513x31.3888x0.8125	33	-34.74	4923.75	48.4	Pass
L34	44.33 - 41.92	Pole	TP32.0541x31.4513x0.8	34	-35.70	4945.36	49.4	Pass
L35	41.92 - 41.67	Pole	TP32.1166x32.0541x0.8125	35	-35.82	5030.68	48.8	Pass
L36	41.67 - 34.08	Pole	TP34.015x32.1166x0.7875	36	-36.90	4983.79	50.5	Pass
L37	34.08 - 34	Pole	TP33.4082x32.1594x0.8188	37	-40.57	5277.52	51.2	Pass
L38	34 - 29	Pole	TP34.657x33.4082x0.7938	38	-42.74	5316.35	53.0	Pass
L39	29 - 26.92	Pole	TP35.1765x34.657x0.7938	39	-43.66	5397.91	53.1	Pass
L40	26.92 - 26.67	Pole	TP35.239x35.1765x0.8938	40	-43.79	6071.32	47.6	Pass
L41	26.67 - 21.67	Pole	TP36.4877x35.239x0.8688	41	-46.23	6120.37	49.1	Pass
L42	21.67 - 18	Pole	TP37.4044x36.4877x0.8563	42	-48.05	6189.66	49.8	Pass
L43	18 - 17.75	Pole	TP37.4668x37.4044x0.9938	43	-48.21	7168.86	43.4	Pass
L44	17.75 - 17.5	Pole	TP37.5292x37.4668x0.9938	44	-48.35	7181.14	43.4	Pass
L45	17.5 - 17.25	Pole	TP37.5917x37.5292x0.9938	45	-48.48	7193.40	43.4	Pass
L46	17.25 - 17.08	Pole	TP37.6341x37.5917x0.9938	46	-48.58	7201.75	43.4	Pass
L47	17.08 - 16.83	Pole	TP37.6966x37.6341x0.8938	47	-48.70	6505.76	47.9	Pass
L48	16.83 - 13	Pole	TP38.6531x37.6966x0.8813	48	-50.67	6583.68	48.6	Pass
L49	13 - 12.75	Pole	TP38.7156x38.6531x1.0563	49	-50.83	7867.57	41.1	Pass
L50	12.75 - 11.92	Pole	TP38.9229x38.7156x1.0438	50	-51.31	7819.83	41.5	Pass
L51	11.92 - 11.67	Pole	TP38.9853x38.9229x0.8188	51	-51.45	6180.67	52.0	Pass
L52	11.67 - 6.67	Pole	TP40.2341x38.9853x0.7938	52	-53.04	6113.50	53.6	Pass
L53	6.67 - 6.5	Pole	TP40.2766x40.2341x0.7938	53	-54.08	6191.92	53.6	Pass
L54	6.5 - 6.25	Pole	TP40.339x40.2766x0.9188	54	-54.17	7152.03	46.7	Pass
L55	6.25 - 3.75	Pole	TP40.9634x40.339x0.9063	55	-54.33	7068.16	47.3	Pass

tnxTower Report - version 8.1.1.0

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L56	3.75 - 3.5	Pole	TP41.0258x40.9634x1.0063	56	-55.72	7952.46	42.9	Pass
L57	3.5 - 3	Pole	TP41.1507x41.0258x0.9938	57	-55.87	7868.41	43.4	Pass
L58	3 - 2.75	Pole	TP41.2132x41.1507x0.9938	58	-56.16	7892.94	43.4	Pass
L59	2.75 - 0	Pole	TP41.9x41.2132x1.0188	59	-56.32	8099.06	42.4	Pass
							Summary	
						Pole (L8)	85.0	Pass
						RATING =	85.0	Pass

*NOTE: Above stress ratios for reinforced sections are approximate. More exact calculations are presented in Appendix C.

### **APPENDIX B**

#### **BASE LEVEL DRAWING**



### **APPENDIX C**

### ADDITIONAL CALCULATIONS



Site BU: 806376 Work Order: 1963271



-									
PO	le Geometry							Copyright ©	2019 Crown Castle
	Pole Height Above Base (ft)	Section Length (ft)	Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)	Wall Thickness (in)	Bend Radius (in)	Pole Material
1	. 130	20	0	12	10.525	15.525	0.1875	Auto	A572-65
2	110	40	4	12	15.53	25.531	0.25	Auto	A572-65
3	74	39.92	4.92	12	24.03	34.015	0.3125	Auto	A572-65
4	39	39	0	12	32.16	41.9	0.34375	Auto	A572-65

#### **Reinforcement Configuration**

	Bottom Effective	Top Effective															
	Elevation (ft)	Elevation (ft)	Туре	Model	Number	1	2	3	4	5	6	7	8	9	10	11	12
1	17.08	44.58	plate	PL 0.75x4.00 (100ksi)	3	x				x				x			
2	44.58	67.08	plate	PL 0.75x4.00 (100ksi)	3				x				x				×
3	67.08	84.58	plate	PL 0.75x4.00 (100ksi)	3	x				x				x			
4	0	3.75	plate	S) 1.25x7.00 (65ksi) P.	2								с				с
5	3	13	plate	CCI-AFP-060100	2	×								x			
6	0	13	plate	CCI-AFP-060100	1					x							
7	11.92	41.92	plate	CCI-AFP-060100	1			x									
8	11.92	26.92	plate	CCI-AFP-060100	2								x				×
9	18	53.5	plate	CCI-AFP-060100	2							x				x	
10	41.92	62.5	plate	CCI-AFP-045100	1			x									
11	53.5	64.08	plate	CCI-AFP-045100	2							х				x	
12	83	90	plate	CCI-SFP-045100	3			х				х				х	
13	0	6.5	plate	CCI-WCFP-065125	1								1.5				
14	0	18	plate	CCI-WCFP-065125	3				x			х				x	
15	0	17.5	plate	CCI-WCFP-060100	3		-2				х				x		
16	17.5	52.58	plate	CCI-CFP-060100	3		-2				х				х		
17	52.58	83.42	plate	CCI-CFP-045125	3		х				х				х		
18																	

#### **Reinforcement Details**

	B (in)	H (in)	Gross Area (in ² )	Pole Face to Centroid (in)	Bottom Termination Type	Bottom Termination Length (in)	Top Termination Type	Top Termination Length (in)	Lu (in)	Net Area (in2)	Bolt Hole Size (in)	Reinforcement Material
1	4	0.75	3	0.375	PC 8.8 - M20 (100)	15	PC 8.8 - M20 (100)	15.000	15.000	2.063	1.1875	A514-GR100
2	4	0.75	3	0.375	PC 8.8 - M20 (100)	15	PC 8.8 - M20 (100)	15.000	15.000	2.063	1.1875	A514-GR100
3	4	0.75	3	0.375	PC 8.8 - M20 (100)	15	PC 8.8 - M20 (100)	15.000	15.000	2.063	1.1875	A514-GR100
4	1.25	6.25	7.8125	3.125	Welded	n/a	Capacity Input	n/a	0.750	7.813	0.0000	A572-65
5	6	1	6	0.5	PC 8.8 - M20 (100)	30	PC 8.8 - M20 (100)	30.000	16.000	4.750	1.1875	A572-65
6	6	1	6	0.5	PC 8.8 - M20 (100)	30	PC 8.8 - M20 (100)	30.000	16.000	4.750	1.1875	A572-65
7	6	1	6	0.5	PC 8.8 - M20 (100)	30	PC 8.8 - M20 (100)	30.000	16.000	4.750	1.1875	A572-65
8	6	1	6	0.5	PC 8.8 - M20 (100)	30	PC 8.8 - M20 (100)	30.000	16.000	4.750	1.1875	A572-65
9	6	1	6	0.5	PC 8.8 - M20 (100)	30	PC 8.8 - M20 (100)	30.000	16.000	4.750	1.1875	A572-65
10	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	20.000	3.250	1.1875	A572-65
11	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	20.000	3.250	1.1875	A572-65
12	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	18	PC 8.8 - M20 (100)	18.000	20.000	3.250	1.1875	A572-65
13	6.5	1.25	8.125	0.625	Welded	n/a	PC 8.8 - M20 (100)	33.000	19.000	6.563	1.1875	A572-65
14	6.5	1.25	8.125	0.625	Welded	n/a	PC 8.8 - M20 (100)	33.000	19.000	6.563	1.1875	A572-65
15	6	1	6	0.5	Welded	n/a	PC 8.8 - M20 (100)	30.000	16.000	4.750	1.1875	A572-65
16	6	1	6	0.5	PC 8.8 - M20 (100)	30	PC 8.8 - M20 (100)	30.000	16.000	4.750	1.1875	A572-65
17	4.5	1.25	5.625	0.625	PC 8.8 - M20 (100)	21	PC 8.8 - M20 (100)	21.000	24.000	4.063	1.1875	A572-65

#### **Connection Details for Custom Reinforcements**

Reinforcement	End	# Bolts	N or X	Bolt Spacing (in)	Edge Dist (in)	Weld Grade (ksi)	Transverse (Horiz.) Weld Type	Horiz. Weld Length (in)	Horiz. Groove Depth (in)	Horiz. Groove Angle (deg)	Horiz. Fillet Size (in)	Vertical Weld Length (in)	Vertical Fillet Size (in)	Rev H Connection Capacity (kip)
PL 0.75x4.00	Тор	5	N	3	3	-	-	-	-	-	-	-	-	-
(100ksi)	Bottom	5	N	3	3	-	-	-	-	-	-	-	-	-
(TS) 1.25x7.00	Тор	0	N	0	0	-	-	-	-	-	-	-	-	1000
(65ksi) PJP	Bottom	-	-	-		80	PJP Groove	12.5	0.5	45	0.625	-	-	-
CCI-WCFP-065125	Тор	11	Ν	3	3	-	-	-	-	-	-	-	-	-
CCI-WCFP-005125	Bottom	-	-	-	-	80	CJP Groove	6.5	1.25	45	0.5	-	-	-
CCI-WCFP-060100	Тор	10	N	3	3	-	-	-	-	-	-	-	-	-
CCI-WCFF-000100	Bottom	-	-	-	-	80	CJP Groove	6	1	45	0.375	-	-	-
CCI-CFP-060100	Тор	10	Ν	3	3	-	-	-	-	-	-	-	-	-
CCI-CFP-060100	Bottom	10	Ν	3	3	-	-	-	-	-	-	-	-	-
CCI-CFP-045125	Тор	7	N	3	3	-	-	-	-	-	-	-	-	-
CCI-CFF-045125	Bottom	7	N	3	3	-	-	-	-	-	-	-	-	-

# TNX Geometry Input

Inc	rement (ft): 5 Ex	port to TNX							
	Section Height (ft)	Section Length (ft)	Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)	Wall Thickness (in)	Tapered Pole Grade	Weight Multiplier
1	130 - 125	5		12	10.525	11.775	0.1875	A572-65	1.000
2	125 - 120	5		12	11.775	13.025	0.1875	A572-65	1.000
3	120 - 115	5		12	13.025	14.275	0.1875	A572-65	1.000
4	115 - 110	5	0	12	14.275	15.525	0.1875	A572-65	1.000
5	110 - 105	5		12	15.525	16.776	0.25	A572-65	1.000
6	105 - 100	5		12	16.776	18.027	0.25	A572-65	1.000
7	100 - 95	5		12	18.027	19.277	0.25	A572-65	1.000
8	95 - 90	5		12	19.277	20.528	0.25	A572-65	1.000
9	90 - 89.75	0.25		12	20.528	20.591	0.5	A572-65	0.924
10	89.75 - 84.75	5		12	20.591	21.841	0.48125	A572-65	0.934
11	84.75 - 84.58	0.17		12	21.841	21.884	0.475	A572-65	0.945
12	84.58 - 84.33	0.25		12	21.884	21.946	0.6375	A572-65	0.914
13	84.33 - 83.42	0.91		12	21.946	22.174	0.625	A572-65	0.927
14	83.42 - 83.17	0.25		12	22.174	22.237	0.95	A572-65	0.877
15	83.17 - 83	0.17		12	22.237	22.279	0.95	A572-65	0.876
16	83 - 82.75	0.25		12	22.279	22.342	0.7	A572-65	0.896
17	82.75 - 77.75	5		12	22.342	23.592	0.6625	A572-65	0.914
18	77.75 - 74	7.75	4	12	23.592	25.531	0.65	A572-65	0.909
19	74 - 69	5		12	24.030	25.281	0.7	A572-65	0.921
20	69 - 67.08	1.92		12	25.281	25.761	0.6875	A572-65	0.928
21	67.08 - 66.83	0.25		12	25.761	25.824	0.6875	A572-65	0.927
22	66.83 - 64.08	2.75		12	25.824	26.512	0.675	A572-65	0.931
23	64.08 - 63.83	0.25		12	26.512	26.574	0.7375	A572-65	1.000
24	63.83 - 62.5	1.33		12	26.574	26.907	0.7375	A572-65	0.993
25	62.5 - 62.25	0.25		12	26.907	26.969	0.8625	A572-65	0.914
26	62.25 - 57.25	5		12	26.969	28.220	0.8375	A572-65	0.914
27	57.25 - 53.5	3.75		12	28.220	29.158	0.8125	A572-65	0.923
28	53.5 - 53.25	0.25		12	29.158	29.220	0.8375	A572-65	0.934
29	53.25 - 52.58	0.67		12	29.220	29.388	0.825	A572-65	0.945
30	52.58 - 52.33	0.25		12	29.388	29.450	0.8625	A572-65	0.918
31	52.33 - 47.33	5		12	29.450	30.701	0.8375	A572-65	0.921
32	47.33 - 44.58	2.75		12	30.701	31.389	0.8125	A572-65	0.935
33	44.58 - 44.33	0.25		12	31.389	31.451	0.8125	A572-65	0.934
34	44.33 - 41.92	2.41		12	31.451	32.054	0.8	A572-65	0.938
35	41.92 - 41.67	0.25		12	32.054	32.117	0.8125	A572-65	0.941
36	41.67 - 39	7.59	4.92	12	32.117	34.015	0.7875	A572-65	0.958
37	39 - 34	5		12	32.159	33.408	0.81875	A572-65	0.950
38	34 - 29	5		12	33.408	34.657	0.79375	A572-65	0.960
39	29 - 26.92	2.08		12	34.657	35.177	0.79375	A572-65	0.952
40	26.92 - 26.67	0.25		12	35.177	35.239	0.89375	A572-65	0.968
41	26.67 - 21.67	5		12	35.239	36.488	0.86875	A572-65	0.974
42	21.67 - 18	3.67		12	36.488	37.404	0.85625	A572-65	0.974
43	18 - 17.75	0.25		12	37.404	37.467	0.99375	A572-65	0.947
44	17.75 - 17.5	0.25		12	37.467	37.529	0.99375	A572-65	0.946
45	17.5 - 17.25	0.25		12	37.529	37.592	0.99375	A572-65	0.945
46	17.25 - 17.08	0.17		12	37.592	37.634	0.99375	A572-65	0.945
47	17.08 - 16.83	0.25		12	37.634	37.697	0.89375	A572-65	0.961
48	16.83 - 13	3.83		12	37.697	38.653	0.88125	A572-65	0.960
49	13 - 12.75	0.25		12	38.653	38.716	1.05625	A572-65	0.944
50	12.75 - 11.92	0.83		12	38.716	38.923	1.04375	A572-65	0.952
51	11.92 - 11.67	0.25		12	38.923	38.985	0.81875	A572-65	1.026
52	11.67 - 6.67	5		12	38.985	40.234	0.79375	A572-65	1.038
53	6.67 - 6.5	0.17		12	40.234	40.277	0.79375	A572-65	1.037
54	6.5 - 6.25	0.25		12	40.277	40.339	0.91875	A572-65	0.968
55	6.25 - 3.75	2.5		12	40.339	40.963	0.90625	A572-65	0.971
56	3.75 - 3.5	0.25		12	40.963	41.026	1.00625	A572-65	0.934
57	3.5 - 3	0.5		12	41.026	41.151	0.99375	A572-65	0.944
58	3 - 2.75	0.25		12	41.151	41.213	0.99375	A572-65	0.913
59	2.75 - 0	2.75		12	41.213	41.900	1.01875	A572-65	0.882
	2.75 0	2.75			11.213	11.500	1.010/3	1372 03	0.002

# **TNX Section Forces**

In	crement (ft):	5	т	ັNX Outpເ	ıt
				M _{ux} (kip-	
	Section He		P _u (K)	ft)	V _u (K)
1	130 -	125	0.10	0.63	0.26
	125 -	120	4.16 4.27	5.23	8.02
3	120 -	115	4.27	46.78 91.06	8.57 9.14
4	115 -	110	8.84		9.14
5	110 -	105	9.33	161.84 236.53	14.31
7	105 - 100 -	100 95	13.25	327.43	20.65
8	95 -	90	13.91	431.90	20.03
9	90 -	89.75	13.98	437.20	21.17
10	89.75 -	84.75	17.69	551.23	24.94
11	84.75 -	84.58	17.74	555.47	24.95
12	84.58 -	84.33	17.81	561.71	24.99
13	84.33 -	83.42	18.02	584.50	25.12
14	83.42 -	83.17	18.11	590.79	25.16
15	83.17 -	83	18.17	595.07	25.19
16	83 -	82.75	18.23	601.37	25.22
17	82.75 -	77.75	19.52	729.73	26.11
18	77.75 -	74	23.55	839.17	30.13
19	74 -	69	25.74	992.28	31.07
20	69 -	67.08	26.31	1052.27	31.41
21	67.08 -	66.83	26.42	1060.12	31.43
22	66.83 -	64.08	27.25	1147.24	31.90
23	64.08 -	63.83	27.35	1155.23	31.93
24	63.83 -	62.5	27.80	1197.88	32.17
25	62.5 -	62.25	27.91	1205.93	32.20
26	62.25 -	57.25	29.71	1369.27	33.09
27	57.25 -	53.5	31.10	1494.67	33.75
28	53.5 -	53.25	31.21	1503.12	33.78
29	53.25 -	52.58	31.47	1525.81	33.91
30	52.58 -	52.33	31.57	1534.30	33.95
31	52.33 -	47.33	33.52	1706.34	34.83
32	47.33 -	44.58	34.62	1802.82	35.31
33	44.58 -	44.33	34.74	1811.66	35.34
34	44.33 -	41.92	35.70	1897.38	35.76
35	41.92 -	41.67	35.82	1906.33	35.78
36	41.67 -	39	36.90	2002.54	36.24
37	39 -	34	40.57	2186.20	37.18
38	34 -	29	42.74	2374.21	37.98
39	29 -	26.92	43.66	2453.58	
40	26.92 -	26.67	43.79	2463.17	38.33
41	26.67 -	21.67	46.23	2656.96	39.13
42 43	21.67 -	18	48.05	2801.68 2811.62	39.70
43	18 - 17.75 -	17.75 17.5	48.21 48.35	2811.62	39.71 39.75
44	17.75 -	17.25	48.48	2831.50	39.75
45	17.25 -	17.25	48.58	2838.28	
40	17.08 -	16.83	48.70	2848.25	39.85
48	16.83 -	13	50.67	3002.09	40.43
49	10.85	12.75	50.83	3012.21	40.44
50	12.75 -	11.92	51.31	3045.86	
51	11.92 -	11.67	51.45	3056.02	40.61
52	11.67 -	6.67	54.06	3260.98	41.32
53	6.67 -	6.5	54.17	3268.01	41.33
54	6.5 -	6.25	54.31	3278.36	
55	6.25 -	3.75	55.69	3382.32	
56	3.75 -	3.5	55.86	3392.77	41.76
57	3.5 -	3	56.15	3413.69	41.84
58	3 -	2.75	56.30	3424.16	41.87
59	2.75 -	0	57.87	3539.99	42.31
	-				

# **Analysis Results**

Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fa
130 <b>-</b> 125	Pole	TP11.775x10.525x0.1875	Pole	0.5%	Pass
125 - 120	Pole	TP13.025x11.775x0.1875	Pole	4.6%	Pass
120 - 115	Pole	TP14.275x13.025x0.1875	Pole	26.0%	Pass
115 - 110	Pole	TP15.525x14.275x0.1875	Pole	41.8%	Pass
110 - 105	Pole	TP16.776x15.525x0.25	Pole	48.3%	Pass
105 - 100	Pole	TP18.027x16.776x0.25	Pole	60.6%	Pass
100 - 95	Pole	TP19.277x18.027x0.25	Pole	73.4%	Pass
95 - 90	Pole	TP20.528x19.277x0.25	Pole	84.8%	Pass
90 - 89.75	Pole + Reinf.	TP20.591x20.528x0.5	Reinf. 12 Tension Rupture	75.7%	Pass
89.75 - 84.75	Pole + Reinf.	TP21.841x20.591x0.4813	Reinf. 12 Tension Rupture	87.3%	Pass
84.75 - 84.58	Pole + Reinf.	TP21.884x21.841x0.475	Reinf. 12 Tension Rupture	87.7%	Pass
84.58 - 84.33	Pole + Reinf.	TP21.946x21.884x0.6375	Reinf. 12 Tension Rupture	67.8%	Pass
84.33 - 83.42	Pole + Reinf.	TP22.174x21.946x0.625	Reinf. 12 Tension Rupture	69.6%	Pass
83.42 - 83.17	Pole + Reinf	TP22.237x22.174x0.95	Reinf. 17 Tension Rupture	48.8%	Pass
83.17 83	Pole + Reinf	TP22.279x22.237x0.95	Reinf. 17 Tension Rupture	49.1%	Pass
83 - 82.75	Pole + Reinf.	TP22.342x22.279x0.7	Reinf. 17 Tension Rupture	65.2%	Pass
82.75 - 77.75	Pole + Reinf.	TP23.592x22.342x0.6625	Reinf. 17 Tension Rupture	73.3%	Pass
77.75 74	Pole + Reinf.	TP25.531x23.592x0.65	Reinf. 17 Tension Rupture	79.9%	Pass
74 - 69	Pole + Reinf.	TP25.281x24.03x0.7		82.2%	Pass
			Reinf. 17 Tension Rupture		
69 - 67.08	Pole + Reinf.	TP25.761x25.281x0.6875	Reinf. 17 Tension Rupture	84.8%	Pass
67.08 - 66.83	Pole + Reinf.	TP25.824x25.761x0.6875	Reinf. 17 Tension Rupture	85.1%	Pass
66.83 - 64.08	Pole + Reinf.	TP26.512x25.824x0.675	Reinf. 17 Tension Rupture	88.5%	Pass
64.08 - 63.83	Pole + Reinf.	TP26.574x26.512x0.7375	Reinf. 17 Tension Rupture	85.0%	Pass
63.83 - 62.5	Pole + Reinf.	TP26.907x26.574x0.7375	Reinf. 17 Tension Rupture	86.5%	Pass
62.5 - 62.25	Pole + Reinf.	TP26.969x26.907x0.8625	Reinf. 17 Tension Rupture	71.7%	Pass
62.25 - 57.25	Pole + Reinf.	TP28.22x26.969x0.8375	Reinf. 17 Tension Rupture	76.4%	Pass
57.25 - 53.5	Pole + Reinf.	TP29.158x28.22x0.8125	Reinf. 17 Tension Rupture	79.6%	Pass
53.5 - 53.25	Pole + Reinf.	TP29.22x29.158x0.8375	Reinf. 10 Tension Rupture	78.9%	Pass
53.25 - 52.58	Pole + Reinf.	TP29.388x29.22x0.825	Reinf. 10 Tension Rupture	79.5%	Pass
52.58 - 52.33	Pole + Reinf.	TP29.45x29.388x0.8625	Reinf. 10 Tension Rupture	76.6%	Pass
52.33 - 47.33	Pole + Reinf.	TP30.701x29.45x0.8375	Reinf. 10 Tension Rupture	80.5%	Pass
47.33 - 44.58	Pole + Reinf.	TP31.389x30.701x0.8125	Reinf. 10 Tension Rupture	82.4%	Pass
44.58 - 44.33	Pole + Reinf.	TP31.451x31.389x0.8125	Reinf. 10 Tension Rupture	82.6%	Pass
44.33 - 41.92	Pole + Reinf.	TP32.054x31.451x0.8	Reinf. 10 Tension Rupture	84.3%	Pass
41.92 - 41.67	Pole + Reinf.	TP32.117x32.054x0.8125	Reinf. 9 Tension Rupture	75.1%	Pass
41.67 - 39	Pole + Reinf.	TP34.015x32.117x0.7875	Reinf. 9 Tension Rupture	76.6%	Pass
39 - 34	Pole + Reinf.	TP33.408x32.159x0.8188	Reinf. 9 Tension Rupture	78.3%	Pass
34 - 29	Pole + Reinf.	TP34.657x33.408x0.7938	Reinf. 9 Tension Rupture	80.6%	Pass
29 - 26.92	Pole + Reinf.	TP35.177x34.657x0.7938	Reinf. 9 Tension Rupture	81.5%	Pass
26.92 - 26.67	Pole + Reinf	TP35.239x35.177x0.8938	Reinf. 7 Tension Rupture	76.3%	Pass
26.67 - 21.67	Pole + Reinf.	TP36.488x35.239x0.8688	Reinf. 7 Tension Rupture	78.4%	Pass
21.67 - 18	Pole + Reinf.	TP37.404x36.488x0.8563	Reinf. 7 Tension Rupture	79.8%	Pass
18 - 17.75	Pole + Reinf.	TP37.467x37.404x0.9938	Reinf. 16 Tension Rupture	67.1%	Pass
	Pole + Reinf.				Pass
17.75 - 17.5		TP37.529x37.467x0.9938	Reinf. 16 Tension Rupture	67.2%	
17.5 17.25	Pole + Reinf	TP37.592x37.529x0.9938	Reinf. 15 Tension Rupture	67.3%	Pass
17.25 - 17.08	Pole + Reinf.	TP37.634x37.592x0.9938	Reinf. 15 Tension Rupture	67.3%	Pass
17.08 - 16.83	Pole + Reinf.	TP37.697x37.634x0.8938	Reinf. 15 Tension Rupture	73.5%	Pass
16.83 <b>-</b> 13	Pole + Reinf.	TP38.653x37.697x0.8813	Reinf. 15 Tension Rupture	74.8%	Pass
13 - 12.75	Pole + Reinf.	TP38.716x38.653x1.0563	Reinf. 5 Tension Rupture	63.5%	Pass
12.75 - 11.92	Pole + Reinf.	TP38.923x38.716x1.0438	Reinf. 5 Tension Rupture	63.8%	Pass
11.92 - 11.67	Pole + Reinf.	TP38.985x38.923x0.8188	Reinf. 15 Tension Rupture	81.7%	Pass
11.67 - 6.67	Pole + Reinf.	TP40.234x38.985x0.7938	Reinf. 15 Tension Rupture	83.3%	Pass
6.67 <b>-</b> 6.5	Pole + Reinf.	TP40.277x40.234x0.7938	Reinf. 15 Tension Rupture	83.4%	Pass
6.5 - 6.25	Pole + Reinf.	TP40.339x40.277x0.9188	Reinf. 5 Tension Rupture	77.9%	Pass
6.25 - 3.75	Pole + Reinf.	TP40.963x40.339x0.9063	Reinf. 5 Tension Rupture	78.6%	Pass
3.75 - 3.5	Pole + Reinf.	TP41.026x40.963x1.0063	Reinf. 14 Tension Rupture	68.1%	Pass
3.5 - 3	Pole + Reinf.	TP41.151x41.026x0.9938	Reinf. 14 Tension Rupture	68.3%	Pass
3 - 2.75	Pole + Reinf.	TP41.213x41.151x0.9938	Reinf. 15 Tension Rupture	73.2%	Pass
2.75 - 0	Pole + Reinf.	TP41.9x41.213x1.0188	Reinf. 4 Weldment	86.8%	Pass
				Summary	
			Pole	84.8%	Pass
			Reinforcement	88.5%	Pass
			Overall	88.5%	Pass

# Additional Calculations

Section	Mom	ent of Inerti	a (in ⁴ )		Area (in ² )									9	6 Capaci	ty*								
Elevation (ft)	Pole	Reinf.	Total	Pole	Reinf.	Total	Pole	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17
130 - 125	120	n/a	120	6.99	n/a	6.99	0.5%																	
125 - 120	163	n/a	163	7.74	n/a	7.74	4.6%																	
120 - 115	216	n/a	216	8.49	n/a	8.49	26.0%																	
115 - 110	278	n/a	278	9.25	n/a	9.25	41.8%																	
110 - 105	464	n/a	464	13.28	n/a	13.28	48.3%																	
105 - 100	578	n/a	578	14.29	n/a	14.29	60.6%																	
100 - 95	709	n/a	709	15.30	n/a	15.30	73.4%																	
95 - 90	858	n/a	858	16.30	n/a	16.30	84.8%																	
90 - 89.75	866	799	1664	16.35	13.50	29.85	42.9%												75.7%					
89.75 - 84.75	1036	892	1928	17.36	13.50	30.86	50.3%												87.3%					
84.75 - 84.58	1042	896	1937	17.39	13.50	30.89	50.6%												87.7%					
84.58 - 84.33	1051	1486	2537	17.44	22.50	39.94	39.2%			51.5%									67.8%					
84.33 - 83.42	1084	1516	2600	17.62	22.50	40.12	40.3%			52.8%									69.6%					
83.42 - 83.17	1094	2703	3796	17.67	39.38	57.05	28.0%			36.7%									48.3%					48.8%
83.17 - 83	1100	2712	3812	17.71	39.38	57.08	28.2%			36.8%									48.5%					49.1%
83 - 82.75	1109	1795	2905	17.76	25.88	43.63	37.5%			49.0%														65.2%
82.75 - 77.75	1309	1990	3299	18.76	25.88	44.64	43.0%			55.1%														73.3%
77.75 - 74	1473	2142	3615	19.52	25.88	45.39	47.6%			60.1%														79.9%
74 - 69	2002	2269	4271	25.09	25.88	50.96	46.5%			61.9%														82.2%
69 - 67.08	2120	2351	4471	25.57	25.88	51.45	48.0%			63.8%														84.8%
67.08 - 66.83	2135	2362	4498	25.63	25.88	51.51	48.1%		64.1%															85.1%
66.83 - 64.08	2313	2483	4796	26.33	25.88	52.20	50.4%		66.7%															88.5%
64.08 - 63.83	2353	2954	5307	26.39	34.88	61.26	50.6%		64.0%									69.8%						85.0%
63.83 - 62.5	2444	3025	5468	26.72	34.88	61.60	51.8%		65,2%									71,1%						86.5%
62.5 - 62.25	2436	3898	6334	26.78	39.38	66.16	41.1%		54.0%								71.0%	71.0%						71.79
62.25 - 57.25	2795	4250	7046	28.04	39.38	67.42	44.5%		57.6%								75.7%	75.7%						76.4%
57.25 - 53.5	3087	4525	7612	28.98	39.38	68.36	46.9%		60.0%								79.0%	79.0%						79.6%
53.5 - 53.25	3110	4720	7830	29.05	42.38	71.42	47.0%		59.2%							67.7%	78.9%							78.5%
53.25 - 52.58	3164	4772	7936	29.22	42.38	71.59	47.4%		59.6%							68.2%	79.5%							79.1%
52.58 - 52.33	3183	5071	8254	29.28	43.50	72.78	45.7%		57.6%							68.3%	76.6%						71.2%	
52.33 - 47.33	3611	5485	9095	30.53	43.50	74.03	48.8%		60.5%							71.7%	80.5%						74.7%	
47.33 - 44.58	3862	5719	9581	31.23	43.50	74.73	50.4%		61.9%							73.5%	82.4%						76.5%	
44.58 - 44.33	3885	5740	9625	31.29	43.50	74.79	50.6%	63,2%								73.6%	82.6%						76,7%	
44.33 - 41.92	4115	5950	10065	31.89	43.50	75.39	52.0%	64.4%								75.0%	84.3%						78.2%	
41.92 - 41.67	4138	6045	10183	31.96	45.00	76.96	51.2%	63.1%						72,7%		75.1%							74.7%	
41.67 - 39	4404	6293	10697	32.63	45.00	77.63	52.7%	64.4%						74.2%		76.6%							76.3%	
39 - 34	5114	6529	11643	36.55	45.00	81.55	52.3%	65.8%						76.0%		78.3%							78.0%	
34 - 29	5716	7014	12729	37.93	45.00	82.93	54.7%	67.7%						78.4%		80.6%							80.3%	
29 - 26.92	5979	7220	13200	38,50	45.00	83.50	55.6%	68.5%						79.3%		81.5%							81.2%	
26.92 - 26.67	6047	8878	14925	38.57	57.00	95.57	52.9%	64.1%						76.3%	67.4%	69.6%							72.8%	
26.67 - 21.67	6718	9488	16206	39.95	57.00	96.95	55.1%	65.8%						78.4%	69.3%	71.5%							74.7%	
21.67 - 18	7242	9949	17190	40.96	57.00	97.96	56.7%	67.0%						79.8%	70.6%	72.8%							76.0%	
18 - 17.75	7238	12612	19850	41.03	69.38	110.41	47.3%	56.1%						65.3%	66.1%						64.8%		67.1%	
17.75 - 17.5	7275	12652	19927	41.10	69.38	110.48	47.4%	56.2%						65.3%	66.2%						64.9%		67.2%	
17.5 - 17.25	7312	12693	20005	41.17	69.38	110.54	47.5%	56.3%						65.4%	66.3%						64.9%	67.3%		
17.25 - 17.08	7337	12721	20057	41.22	69.38	110.59	47.6%	56.3%						65.5%	66.3%						65.0%	67.3%		
17.08 - 16.83	7374	11092	18466	41.29	60.38	101.66	52.0%							71.4%	72.4%						70.9%	73.5%		
16.83 - 13	7955	11640	19595	42.34	60.38	102.72	53.5%							72.7%	73.7%						72.2%	74.8%		
13 - 12.75	7995	15215	23210	42.41	78.38	120.79	44.8%					63.5%	59.8%	61.8%	62.4%						61.2%	63.3%		
12.75 - 11.92	8125	15374	23499	42.64	78.38	121.02	45.1%					63.8%	60.1%	62.0%	62.7%						61.5%	63.6%		
11.92 - 11.67	8177	10548	18725	42.71	60.38	103.09	57.9%					80.8%	65.4%								73.5%	81.7%		
11.67 - 6.67	8995	11209	20204	44.09	60.38	104.47	59.9%					82.3%	66.9%								75.0%	83.3%		
6.67 - 6.5	9024	11232	20256	44.14	60.38	104.51	60.0%					82.4%	67.0%								75.0%	83.4%		
6.5 - 6.25	9256	14118	23374	44.21	68.50	112.71	56.2%					77.9%	67.0%							62.9%	71.2%	77.4%		
6.25 - 3.75	9693	14546	24240	44.90	68.50	113.40	57.2%					78.6%	67.7%							63.5%	71.9%	78.2%		
3.75 - 3.5	9595	17018	26613	44.97	76.00	120.97	50,2%				57.4%	62.1%	66.6%								68.1%	66.6%		
3.5 - 3	9683	17117	26800	45.10	76.00	121.10	50.4%				57.5%	62.3%	66.7%								68.3%	66.8%		
												/4												
3 - 2.75	9907	16832	26739	45.17	72.13	117.30	54.8%				64.1%		67.0%							56.8%	71.2%	73.2%		

Note: Section capacity checked using 5 degree increments. Rating per TIA-222-H Section 15.5.

Monopole Flan	ge Plate Connectio	<u>n</u>		Elevation = 110 ft.	CCROWN
BU #	806376		App	lied Loads	
Site Name	HRT 100 943239	Mo	ment (kip-ft)		
Order #	556638 Rev 1		Force (kips)		
ı			· Force (kips)		
TIA-222 Revision	Н	*TIA-222-	H Section 15.	5 Applied	
	Top Plate - External			Bottor	n Plate - External
000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0000	000000000000000000000000000000000000000
		Connecti	on Propertie	nc .	
			lt Data		
	(10) 1	" ø bolts (A325 N; Fy=	92 ksi, Fu=1	20 ksi) on 19.45" BC	
op Plate Data	A572-60; Fy=60 ksi, Fu=75 ksi)			Bottom Plate Data 21.95" OD x 1.375" Plate (A572	
1.95 OD X 1.575 Plate (	A372-00; Fy=00 KSI, Fu=73 KSI)			21.95 UD X 1.575 Pidle (A572	-00; ry=00 ksi, ru=73 ksi)
op Stiffener Data				Bottom Stiffener Data	
I/A				N/A	
op Pole Data				Bottom Pole Data	
5.525" x 0.1875" 12-side	d pole (A572-65; Fy=65 ksi, Fu=8	SU KSI)		15.525" x 0.25" 12-sided pole (	4572-65; Fy=65 ksi, Fu=80 ksi)
		Analy	sis Results		
			Capacity		
		Max Load (kips)	22.00		
		Allowable (kips)	54.52		
		Stress Rating:	38.4%	Pass	
		-			
op Plate Capacity				Bottom Plate Capacity	
1ax Stress (ksi):	11.70 (Flexural)			Max Stress (ksi):	11.70 (Flexural)
Mowable Stress (ksi)	54 00			Allowable Stress (ksi)	54.00

11.70	(Flexural)	
54.00		
20.6%	Pass	
11.0%	Pass	
	54.00 <b>20.6%</b>	54.00 <b>20.6% Pass</b>

i i			
Max Stress (ksi):	11.70	(Flexural)	
Allowable Stress (ksi):	54.00		
Stress Rating:	20.6%	Pass	
Tension Side Stress Rating:	11.0%	Pass	

#### **Monopole Base Plate Connection**



Site Info	
BU #	806376
Site Name	HRT 100 943239
Order #	556638 Rev 1

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	See Custom Sheet
l _{ar} (in)	See Custom Sheet

Applied Loads						
Moment (kip-ft)	3539.99					
Axial Force (kips)	57.87					
Shear Force (kips)	42.31					
*TIA 222 U.C. His a 15 5 Analised						

*TIA-222-H Section 15.5 Applied



#### **Connection Properties**

#### Anchor Rod Data

GROUP 1: (12) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 49.88" BC GROUP 2: (3) 2-1/4" ø bolts (A193 Gr. B7 N; Fy=105 ksi, Fu=125 ksi) on 53.38" BC

#### Base Plate Data

55.88" OD x 2.5" Plate (A572-60; Fy=60 ksi, Fu=75 ksi)

#### Stiffener Data

N/A

#### Pole Data

41.9" x 1.01875" 12-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

#### Analysis Results

Anchor Rod Summary	(ur	nits of kips, kip-in)
GROUP 1:		
Pu_c = 225.34	φPn_c = 268.39	Stress Rating
Vu = 3.53	φVn = 120.77	84.7%
Mu = 6.3	φMn = 128.14	Pass
GROUP 2:		
Pu_t = 235.99	φPn_t = 304.69	Stress Rating
Vu = 0	φVn = 186.38	73.8%
Mu = 0	φMn = 179.4	Pass
Base Plate Summary		
Max Stress (ksi):	32.35	(Flexural)
Allowable Stress (ksi):	54	
Stress Rating:	57.1%	Pass

# CCIplate

#### Elevation (ft) 0 (Base)

note: Bending interaction not considered when Grout Considered = "Yes"

Bolt Group	Resist Axial	Resist Shear	Induce Plate Bending	Grout Considered	Apply at BARB Elevation	BARB CL Elevation (ft)
1	Yes	Yes	Yes	No	No	
2	No	No	No	No	No	

Bolt	Bolt Group ID	Location (deg.)	Diameter (in)	<u>Material</u>	Bolt Circle (in)	<u>Eta Factor, η:</u>	I _{ar} (in):	Thread Type	Area Override, in^2	Tension Onl
1	1	0	2.25	A615 <b>-</b> 75	49.88	0.5	2.75	N-Included		No
2	1	30	2.25	A615-75	49.88	0.5	2.75	N-Included		No
3	1	60	2.25	A615 <b>-</b> 75	49.88	0.5	2.75	N-Included		No
4	1	90	2.25	A615-75	49.88	0.5	2.75	N-Included		No
5	1	120	2.25	A615-75	49.88	0.5	2.75	N-Included		No
6	1	150	2.25	A615 <b>-</b> 75	49.88	0.5	2.75	N-Included		No
7	1	180	2.25	A615 <b>-</b> 75	49.88	0.5	2.75	N-Included		No
8	1	210	2.25	A615 <b>-</b> 75	49.88	0.5	2.75	N-Included		No
9	1	240	2.25	A615-75	49.88	0.5	2.75	N-Included		No
10	1	270	2.25	A615 <b>-</b> 75	49.88	0.5	2.75	N-Included		No
11	1	300	2.25	A615 <b>-</b> 75	49.88	0.5	2.75	N-Included		No
12	1	330	2.25	A615 <b>-</b> 75	49.88	0.5	2.75	N-Included		No
13	2	15	2.25	A193 Gr. B7	53.38	0.5	8.5	N-Included		No
14	2	135	2.25	A193 Gr. B7	53.38	0.5	8.5	N-Included		No
15	2	255	2.25	A193 Gr. B7	53.38	0.5	8.5	N-Included		No

### **Plot Graphic**



### Pier and Pad Foundation



	806376
	HRT 100 943239
App. Number:	556638 Rev 1

TIA-222 Revision: Н nopole

Tower Type:	Mor

Top & Bot. Pad Rein. Different?: Block Foundation?:			_	
Rectangular Pad?:				
				-
Found	latio	n A	۱na	ysis Checks

Superstructure Analysis Reactions				
Compression, P _{comp} :	58	kips		
Base Shear, Vu_comp:	42	kips		
Moment, <b>M</b> _u :	3540	ft-kips		
Tower Height, <b>H</b> :	130	ft		
BP Dist. Above Fdn, <b>bp_{dist}:</b>	5	in		

Pier Properties		
Pier Shape:	Circular	
Pier Diameter, <b>dpier</b> :	6	ft
Ext. Above Grade, E:	0.5	ft
Pier Rebar Size, <b>Sc</b> :	10	
Pier Rebar Quantity, <b>mc</b> :	36	
Pier Tie/Spiral Size, <b>St</b> :	4	
Pier Tie/Spiral Quantity, <b>mt</b> :	3	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, <b>cc_{pier}:</b>	3	in

Pad Properties			
Depth, D:	8	ft	
Pad Width, <b>W</b> ₁ :	22	ft	
Pad Thickness, <b>T</b> :	3	ft	
Pad Rebar Size (Bottom dir. 2), Sp ₂ :	10		
Pad Rebar Quantity (Bottom dir. 2), mp ₂ :	17		
Pad Clear Cover, <b>cc_{pad}:</b>	3	in	

Material Properties		
Rebar Grade, <b>Fy</b> :	60	ksi
Concrete Compressive Strength, F'c:	3	ksi
Dry Concrete Density, $\delta c$ :	150	pcf

Soil Properties		
Total Soil Unit Weight, $\gamma$ :	115	pcf
Ultimate Gross Bearing, Qult:	10.000	ksf
Cohesion, <b>Cu</b> :	0.000	ksf
Friction Angle, $\varphi$ :	33	degrees
SPT Blow Count, N _{blows} :	33	
Base Friction, $\mu$ :		
Neglected Depth, N:	3.00	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw:	15	ft

<--Toggle between Gross and Net

	Capacity	Demand	Rating*	Check
Lateral (Sliding) (kips)	289.96	42.00	13.8%	Pass
Bearing Pressure (ksf)	7.50	3.40	45.3%	Pass
Overturning (kip*ft)	5386.50	3914.50	72.7%	Pass
Pier Flexure (Comp.) (kip*ft)	5778.60	3771.00	62.2%	Pass
Pier Compression (kip)	13497.04	85.99	0.6%	Pass
Pad Flexure (kip*ft)	2927.56	1780.57	57.9%	Pass
Pad Shear - 1-way (kips)	674.44	298.64	42.2%	Pass
Pad Shear - 2-way (Comp) (ksi)	0.164	0.000	0.0%	Pass
Flexural 2-way (Comp) (kip*ft)	3867.66	2262.60	55.7%	Pass

*Rating per	TIA-222-H	Section
15.5		

Structural Rating*:	
Soil Rating*:	72.7%



# ASCE 7 Hazards Report

Address: No Address at This Location Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

 Elevation:
 41.23 ft (NAVD 88)

 Latitude:
 41.731472

 Longitude:
 -72.607778





Site Soil Class:	D - Stiff Soil			
Results:				
S _s :	0.18	S _{DS} :	0.192	
<b>S</b> ₁ :	0.064	S _{D1} :	0.102	
F _a :	1.6	Τ∟ :	6	
F _v :	2.4	PGA :	0.091	
S _{MS} :	0.288	PGA M :	0.145	
S _{M1} :	0.152	F _{PGA} :	1.6	
		e :	1	

#### Seismic Design Category B



Data Accessed: Date Source:

#### Wed Apr 21 2021

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.



#### Ice

#### Results:

Ice Thickness:	1.00 in.
Concurrent Temperature:	5 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Wed Apr 21 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

# Exhibit E

**Mount Analysis** 

Darcy Tarr Crown Castle 3530 Toringdon Way, Suite 300 Trylon Charlotte, NC 28277 1825 W. Walnut Hill Lane. (704) 405-6589 Suite 302 Irving, TX 75038 214-930-1730 Subject: Mount Replacement Analysis Report Carrier Designation: **Dish Network Dish 5G** Carrier Site Number: BOBDL00047A Carrier Site Name: CT-CCI-T-806376 Crown Castle Designation: Crown Castle BU Number: 806376 Crown Castle Site Name: HRT 100 943239 Crown Castle JDE Job Number: 650042 Crown Castle Order Number: 556638 Rev. 1 Engineering Firm Designation: **Trylon Report Designation:** 189056 Site Data: 1455 Forbes Street, East Hartford, Hartford County, CT, 06118 Latitude 41°43'53.30" Longitude -72°36'28.00" Structure Information: Tower Height & Type: 130.0 ft Monopole Mount Elevation: 77.0 ft Mount Type: 8.0 ft Platform Dear Darcy Tarr,

Trylon is pleased to submit this "Mount Replacement Analysis Report" to determine the structural integrity of Dish Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

#### Platform Sufficient* *Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Aura Baltoiu

Respectfully Submitted by: Cliff Abernathy, P.E.





### TABLE OF CONTENTS

### 1) INTRODUCTION

### 2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

### 3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

### 4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity 4.1) Recommendations

### 5) APPENDIX A

Wire Frame and Rendered Models

# 6) APPENDIX B

Software Input Calculations

### 7) APPENDIX C

Software Analysis Output

### 8) APPENDIX D

Additional Calculations

### 9) APPENDIX E

Supplemental Drawings

### 1) INTRODUCTION

This is a proposed 3 sector 8.0 ft Platform, designed by Commscope.

### 2) ANALYSIS CRITERIA

Building Code:	2015 IBC
TIA-222 Revision:	TIA-222-H
Risk Category:	II
Ultimate Wind Speed:	125 mph
Exposure Category:	С
Topographic Factor at Base:	1.00
Topographic Factor at Mount:	1.00
Ice Thickness:	2.0 in
Wind Speed with Ice:	50 mph
Seismic S _s :	0.180
Seismic S ₁ :	0.064
Live Loading Wind Speed:	30 mph
Man Live Load at Mid/End-Points:	250 lb
Man Live Load at Mount Pipes:	500 lb

#### Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
		3	JMA WIRELESS	MX08FRO665-21	8.0 ft Diatform
77.0	77.0	3	FUJITSU	TA08025-B604	8.0 ft Platform [Commscope, MC-
//.0	77.0	3	FUJITSU	TA08025-B605	PK8-C]
		1	RAYCAP	RDIDC-9181-PF-48	

### 3) ANALYSIS PROCEDURE

#### Table 2 - Documents Provided

Document	Remarks	Reference	Source
Crown Application	Dish Network Application	556638, Rev.1	CCI Sites
Mount Manufacturer Drawings	Commscope	MC-PK8-C	Trylon

#### 3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a threedimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed, using Microsoft Excel, by Trylon was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

#### 3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.6) Steel grades have been assumed as follows, unless noted otherwise:

Steel grades have been assumed as follows, unless noted otherwise:			
Channel, Solid Round, Angle, Plate	ASTM A36 (GR 36)		
HSS (Rectangular)	ASTM A500 (GR B-46)		
Pipe	ASTM A53 (GR 35)		
Connection Bolts	ASTM A325		

This analysis may be affected if any assumptions are not valid or have been made in error. Trylon should be notified to determine the effect on the structural integrity of the antenna mounting system.

#### 4) ANALYSIS RESULTS

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
	Mount Pipe(s)	MP9		36.1	Pass
	Horizontal(s)	H1		10.1	Pass
	Standoff(s)	SA3	77.0	57.4	Pass
1.0	Bracing(s)	PB3		43.6	Pass
1,2	Handrail(s)	M19		14.7	Pass
	Corner Angle(s)	CP2		5.6	Pass
	Plate(s)	CP6		24.1	Pass
	Mount Connection(s)	-		23.0	Pass

### Table 3 - Mount Component Stresses vs. Capacity (Platform, All Sectors)

Structure Rating (max from all components) =	57.4%
----------------------------------------------	-------

Notes:

1) See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.

2) Rating per TIA-222-H, Section 15.5

### 4.1) Recommendations

The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed.

1. Commscope, MC-PK8-C.

No structural modifications are required at this time, provided that the above-listed changes are implemented.

**APPENDIX A** 

WIRE FRAME AND RENDERED MODELS

Envelope Only Solution		SK - 1
Envelope Only Solution Trylon AB	806376	SK - 1 July 28, 2021 at 8:21 AM



### **APPENDIX B**

### SOFTWARE INPUT CALCULATIONS



# ASCE 7 Hazards Report

Address: No Address at This Location Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

 Elevation:
 41.23 ft (NAVD 88)

 Latitude:
 41.731472

 Longitude:
 -72.607778





Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.18	S _{DS} :	0.192	
<b>S</b> ₁ :	0.064	<b>S</b> _{D1} :	0.102	
F _a :	1.6	Τ _L :	6	
F _v :	2.4	PGA :	0.091	
S _{MS} :	0.288	PGA M :	0.145	
S _{M1} :	0.152	F _{PGA} :	1.6	
		e :	1	

### Seismic Design Category B



Data Accessed: Date Source:

#### Wed Jul 28 2021

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.



#### Ice

#### Results:

Ice Thickness:	1.00 in.
Concurrent Temperature:	5 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Wed Jul 28 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.



### **TIA LOAD CALCULATOR 2.0**

PROJECT DATA				
Job Code:	189056			
Carrier Site ID:	BOBDL00047A			
Carrier Site Name:	CT-CCI-T-806376			

CODES AND STANDARDS				
Building Code:	2015 IBC			
Local Building Code:	2018 CSBC			
Design Standard:	TIA-222-H			

STRUCTURE DETAILS				
Mount Type:	Platform			
Mount Elevation:	77.0	ft.		
Number of Sectors:	3	-		
Structure Type:	Monopole			
Structure Height:	130.0	ft.		

ANALYSIS CRITERIA								
Structure Risk Category:	=							
Exposure Category:	С							
Site Class:	D - Stiff Soil							
Ground Elevation:	41.23	ft.						

TOPOGRAPHIC DATA							
Topographic Category:	1.00						
Topographic Feature:	N/A						
Crest Point Elevation:	0.00	ft.					
Base Point Elevation:	0.00	ft.					
Crest to Mid-Height (L/2):	0.00	ft.					
Distance from Crest (x):	0.00	ft.					
Base Topo Factor (K _{zt} ):	1.00						
Mount Topo Factor (K _{zt} ):	1.00						

WIND PARAMETERS							
Design Wind Speed:	125	mph					
Wind Escalation Factor (K _s ):	1.00						
Velocity Coefficient (K _z ):	1.20						
Directionality Factor (K _d ):	0.95						
Gust Effect Factor (Gh):	1.00						
Shielding Factor (K _a ):	0.90						
Velocity Pressure (q _z ):	45.45	psf					

ICE PARAMETERS							
Design Ice Wind Speed:	50	mph					
Design Ice Thickness (t _i ):	2.00	in					
Importance Factor (I _i ):	1.00						
Ice Velocity Pressure (q _{zi} ):	45.45	psf					
Mount Ice Thickness (t _{iz} ):	2.18	in					

WIND STRUCTURE CALCULATIONS							
Flat Member Pressure:	81.81	psf					
Round Member Pressure:	49.09	psf					
Ice Wind Pressure:	7.14	psf					

SEISMIC PARAMETERS						
Importance Factor (I _e ):	1.00					
Short Period Accel .(S _s ):	0.180	g				
1 Second Accel (S ₁ ):	0.064	g				
Short Period Des. (S _{DS} ):	0.19	g				
1 Second Des. (S _{D1} ):	0.10	g				
Short Period Coeff. (F _a ):	1.60					
1 Second Coeff. ( $F_v$ ):	2.40					
Response Coefficient (Cs):	0.10					
Amplification Factor (A _S ):	1.20					

# LOAD COMBINATIONS [LRFD]

#	Description
1	1.4DL
2	1.2DL + 1WL 0 AZI
3	1.2DL + 1WL 30 AZI
4	1.2DL + 1WL 45 AZI
5	1.2DL + 1WL 60 AZI
6	1.2DL + 1WL 90 AZI
7	1.2DL + 1WL 120 AZI
8	1.2DL + 1WL 135 AZI
9	1.2DL + 1WL 150 AZI
10	1.2DL + 1WL 180 AZI
11	1.2DL + 1WL 210 AZI
12	1.2DL + 1WL 225 AZI
13	1.2DL + 1WL 240 AZI
14	1.2DL + 1WL 270 AZI
15	1.2DL + 1WL 300 AZI
16	1.2DL + 1WL 315 AZI
17	1.2DL + 1WL 330 AZI
18	0.9DL + 1WL 0 AZI
19	0.9DL + 1WL 30 AZI
20	0.9DL + 1WL 45 AZI
21	0.9DL + 1WL 60 AZI
22	0.9DL + 1WL 90 AZI
23	0.9DL + 1WL 120 AZI
24	0.9DL + 1WL 135 AZI
25	0.9DL + 1WL 150 AZI
26	0.9DL + 1WL 180 AZI
27	0.9DL + 1WL 210 AZI
28 29	0.9DL + 1WL 225 AZI
29 30	0.9DL + 1WL 240 AZI 0.9DL + 1WL 270 AZI
30	0.9DL + 1WL 270 AZI
31	0.9DL + 1WL 300 AZI
32	0.9DL + 1WL 330 AZI
33	1.2DL + 1DLi + 1WLi 0 AZI
35	1.2DL + 1DLi + 1WLi 30 AZI
36	1.2DL + 1DLi + 1WLi 45 AZI
37	1.2DL + 1DLi + 1WLi 60 AZI
38	1.2DL + 1DLi + 1WLi 90 AZI
39	1.2DL + 1DLi + 1WLi 120 AZI
40	1.2DL + 1DLi + 1WLi 135 AZI
41	1.2DL + 1DLi + 1WLi 150 AZI

#	Description
	·
42	1.2DL + 1DLi + 1WLi 180 AZI
43	1.2DL + 1DLi + 1WLi 210 AZI
44	1.2DL + 1DLi + 1WLi 225 AZI
45	1.2DL + 1DLi + 1WLi 240 AZI
46 47	1.2DL + 1DLi + 1WLi 270 AZI 1.2DL + 1DLi + 1WLi 300 AZI
47	1.2DL + 1DLi + 1WLi 300 AZI
49	1.2DL + 1DLi + 1WLi 330 AZI
50	(1.2+0.2Sds) + 1.0E 0 AZI
51	(1.2+0.2Sds) + 1.0E 30 AZI
52	(1.2+0.2Sds) + 1.0E 45 AZI
53	(1.2+0.2Sds) + 1.0E 60 AZI
54	(1.2+0.2Sds) + 1.0E 90 AZI
55	(1.2+0.2Sds) + 1.0E 120 AZI
56	(1.2+0.2Sds) + 1.0E 135 AZI
57	(1.2+0.2Sds) + 1.0E 150 AZI
58	(1.2+0.2Sds) + 1.0E 180 AZI
59	(1.2+0.2Sds) + 1.0E 210 AZI
60	(1.2+0.2Sds) + 1.0E 225 AZI
61	(1.2+0.2Sds) + 1.0E 240 AZI
62	(1.2+0.2Sds) + 1.0E 270 AZI
63	(1.2+0.2Sds) + 1.0E 300 AZI
64	(1.2+0.2Sds) + 1.0E 315 AZI
65	(1.2+0.2Sds) + 1.0E 330 AZI
66	(0.9-0.2Sds) + 1.0E 0 AZI
67	(0.9-0.2Sds) + 1.0E 30 AZI
68	(0.9-0.2Sds) + 1.0E 45 AZI
69 70	(0.9-0.2Sds) + 1.0E 60 AZI
70	(0.9-0.2Sds) + 1.0E 90 AZI (0.9-0.2Sds) + 1.0E 120 AZI
72	(0.9-0.2Sds) + 1.0E 120 AZI (0.9-0.2Sds) + 1.0E 135 AZI
73	(0.9-0.2Sds) + 1.0E 150 AZI
74	(0.9-0.2Sds) + 1.0E 180 AZI
75	(0.9-0.2Sds) + 1.0E 210 AZI
76	(0.9-0.2Sds) + 1.0E 225 AZI
77	(0.9-0.2Sds) + 1.0E 240 AZI
78	(0.9-0.2Sds) + 1.0E 270 AZI
79	(0.9-0.2Sds) + 1.0E 300 AZI
80	
	(0.9-0.2Sds) + 1.0E 315 AZI
81	(0.9-0.2Sds) + 1.0E 330 AZI
82-88	1.2D + 1.5 Lv1

			5
#	Description	#	Description
89	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP1	121	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3
90	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP1	122	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3
91	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP1	123	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3
92	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP1	124	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3
93	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP1	125	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3
94	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP1	126	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3
95	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP1	127	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3
96	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP1	128	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3
97	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP1	129	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3
98	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP1	130	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3
99	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP1	131	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3
100	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP1	132	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3
101	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP1	133	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3
102	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1	134	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3
103	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1	135	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3
104	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP1	136	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP3
105	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2	137	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP4
106	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2	138	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP4
107	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2	139	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP4
108	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2	140	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP4
109	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2	141	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP4
110	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2	142	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP4
111	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2	143	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP4
112	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2	144	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP4
113	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP2	145	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP4
114	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2	146	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP4
115	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2	147	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP4
116	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2	148	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP4
117	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2	149	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP4
118	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2	150	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP4
119	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2	151	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP4
120	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2	152	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP4

*This page shows an example of maintenance loads for (4) pipes, the number of mount pipe LCs may vary per site

# EQUIPMENT LOADING

Appurtenance Name/Location	Qty.	Elevation [ft]		<b>EPA</b> _N (ft2)	<b>EPA</b> _T (ft2)	Weight (lbs)
MX08FRO665-21	3	77	No Ice	8.01	3.21	82.50
MP2/MP5/MP8, 0/100/220	-		w/ Ice	10.18	5.12	371.12
TA08025-B604	3	77	No Ice	1.96	0.98	63.90
MP2/MP5/MP8, 0/120/240	1		w/ Ice	2.51	1.41	93.72
TA08025-B605	3	77	No Ice	1.96	1.13	75.00
MP2/MP5/MP8, 0/120/240			w/ Ice	2.51	1.58	99.60
RDIDC-9181-PF-48	1	77	No Ice	2.01	1.17	21.85
MP2, 0			w/ Ice	2.57	1.63	98.23
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
	1		w/ Ice			
			No Ice			
	-		w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

# EQUIPMENT LOADING [CONT.]

Appurtenance Name/Location	Qty.	Elevation [ft]		<b>EPA</b> _N (ft2)	<b>EPA</b> ₇ (ft2)	Weight (lbs)
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

# **EQUIPMENT WIND CALCULATIONS**

Appurtenance Name	Qty.	Elevation [ft]	<b>K</b> _{zt}	Kz	$\kappa_{d}$	<b>t</b> _d	<b>q</b> _z [psf]	<b>q</b> _{zi} [psf]
MX08FRO665-21	3	77	1.00	1.20	0.95	2.18	45.45	7.27
TA08025-B604	3	77	1.00	1.20	0.95	2.18	45.45	7.27
TA08025-B605	3	77	1.00	1.20	0.95	2.18	45.45	7.27
RDIDC-9181-PF-48	1	77	1.00	1.20	0.95	2.18	45.45	7.27

# **EQUIPMENT LATERAL WIND FORCE CALCULATIONS**

Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
MX08FRO665-21	3	No Ice	327.65	180.39	278.57	131.31	278.57	180.39
MP2/MP5/MP8, 0/100/220		w/ Ice	66.65	41.79	58.36	33.50	58.36	41.79
TA08025-B604	3	No Ice	80.32	50.18	70.27	40.13	70.27	50.18
MP2/MP5/MP8, 0/120/240		w/ Ice	16.43	11.03	14.63	9.23	14.63	11.03
TA08025-B605	3	No Ice	80.32	54.73	71.79	46.20	71.79	54.73
MP2/MP5/MP8, 0/120/240		w/ Ice	16.43	11.84	14.90	10.31	14.90	11.84
RDIDC-9181-PF-48	1	No Ice	82.30	56.41	73.67	47.79	73.67	56.41
MP2, 0		w/ Ice	16.80	12.21	15.27	10.68	15.27	12.21
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						

# **EQUIPMENT LATERAL WIND FORCE CALCULATIONS [CONT.]**

Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						

# **EQUIPMENT SEISMIC FORCE CALCULATIONS**

Appurtenance Name	Qty.	Elevation [ft]	Weight [lbs]	<b>F</b> _p [lbs]
MX08FRO665-21	3	77	82.5	9.50
TA08025-B604	3	77	63.9	7.36
TA08025-B605	3	77	75	8.64
RDIDC-9181-PF-48	1	77	21.85	2.52

### APPENDIX C

# SOFTWARE ANALYSIS OUTPUT



# (Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include W arping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P -Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (in/sec [^] 2)	386.4
Wall Mesh Size (in)	24
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Ζ
Global Member Orientation Plane	XY
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 15th(360-16): LRFD
Adjust Stiffness?	Yes(Iterative)
R ISAC onnection Code	AISC 15th(360-16): LRFD
Cold Formed Steel Code	AISI S100-12: LRFD
Wood Code	AWC NDS-15: ASD
Wood Temperature	< 100F
Concrete Code	AC I 318-14
Masonry Code	ACI 530-13: Strength
Aluminum Code	AA ADM1-10: LRFD - Building
Stainless Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

# (Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (in)	Not Entered
Add Base Weight?	Yes
CtX	.02
CtZ	.02
T X (sec)	Not Entered
TZ (sec)	Not Entered
RX	3
R Z	3
CtExp. X	.75
CtExp.Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	lorll
Drift Cat	Other
OmZ	1
OmX	1
CdZ	1
CdX	1
R ho Z	1
R ho X	1

### Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5F)	Density[k/ft^3]	Yield[psi]	Ry	Fu[psi]	Rt
1	A992	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36000	1.5	58000	1.2
3	A572 G r.50	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42000	1.4	58000	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46000	1.4	58000	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35000	1.6	60000	1.2
7	A1085	29000	11154	.3	.65	.49	50000	1.4	65000	1.3

# **Cold Formed Steel Properties**

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5F)	Density[k/ft^3]	Yie <b>l</b> d[psi]	Fu[psi]
1	A653 S S G r33	29500	11346	.3	.65	.49	33000	45000
2	A653 S S G r50/1	29500	11346	.3	.65	.49	50000	65000

# Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Des ign	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Plates	6.5"x0.37" Plate	Beam	RECT	A53 Gr.B	Typical	2.405	.027	8.468	.106
2	Grating Bracing	L2x2x3	Beam	Single Angle	A36 Gr.36	Typical	.722	.271	.271	.009
3	Standoffs	PIPE 3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04
4	Standoff Bracing	C 3X 5	Beam	Channel	A36 Gr.36	Typical	1.47	.241	1.85	.043
5	Handrails	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
6	Handrail Corners	6.6x4.46x0.25	Beam	Single Angle	A36 Gr.36	Typical	2.702	4.759	12.473	.055
7	Horizontals	PIPE_3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04

### Hot Rolled Steel Section Sets (Continued)

	Label	Shape	Туре	Design List	Material	Design	A [in2]	lyy [in4]	lzz [in4]	J [in4]
8	Mount Pipes	PIPE_2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25

### Cold Formed Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design R	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	CF1A	8CU1.25X057	Beam	None	A653 S S G r33	Typical	.581	.057	4.41	.00063

# Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N25	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N 13	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

# **Basic Load Cases**

1Self We2Structure M3Structure M4Wind Load5Wind Load6Wind Load7Wind Load8Wind Load9Wind Load10Wind Load11Wind Load	Wind X         W           Wind Y         W           d 0 AZI         W           30 AZI         N           45 AZI         N           60 AZI         N           90 AZI         W           120 AZI         N           135 AZI         N           150 AZI         N	DL /LX /LY /LX one one /LY one one			-1	13 13 26 26 26	33 33	3	
3Structure M4Wind Load5Wind Load6Wind Load7Wind Load8Wind Load9Wind Load10Wind Load11Wind Load	Wind Y         W           d 0 AZI         W           30 AZI         N           45 AZI         N           60 AZI         N           90 AZI         W           120 AZI         N           135 AZI         N           150 AZI         N	/LY one one one /LY one one				26 26			
4Wind Load5Wind Load6Wind Load7Wind Load8Wind Load9Wind Load10Wind Load11Wind Load	10 AZI     W       30 AZI     N       45 AZI     N       60 AZI     N       90 AZI     W       120 AZI     N       135 AZI     N       150 AZI     N	/LX one one one /LY one one				26 26	33		
5Wind Load6Wind Load7Wind Load8Wind Load9Wind Load10Wind Load11Wind Load	30 AZI         N           45 AZI         N           60 AZI         N           90 AZI         W           120 AZI         N           135 AZI         N           150 AZI         N	one one one /LY one one				26 26			
6 Wind Load 7 Wind Load 8 Wind Load 9 Wind Load 10 Wind Load 11 Wind Load	45 AZI         N           60 AZI         N           90 AZI         W           120 AZI         N           135 AZI         N           150 AZI         N	one one /LY one one				26			
7 Wind Load 8 Wind Load 9 Wind Load 10 Wind Load 11 Wind Load	60 AZI         N           90 AZI         W           120 AZI         N           135 AZI         N           150 AZI         N	one /LY one one							
8 Wind Load 9 Wind Load 10 Wind Load 11 Wind Load	90 AZI W 120 AZI N 135 AZI N 150 AZI N	/LY one one				26			
9Wind Load10Wind Load11Wind Load	120 AZ I N 135 AZ I N 150 AZ I N	one one							
10Wind Load11Wind Load	135 AZ I N 150 AZ I N	one				13			
11 Wind Load	150 AZ I N					26			
						26			
	in ht	one				26			
12 Ice We	ignt C	)L1				13	33	3	
13 Structure Ice	e Wind X 🛛 🛛 C	)L2					33		
14 Structure Ice		)L3					33		
15 Ice Wind Lo	ad 0 AZI C	)L2				13			
16 Ice Wind Loa	ad 30 AZI N	one				26			
17 Ice Wind Loa	ad 45 AZI N	one				26			
18 Ice Wind Loa	ad 60 AZI N	one				26			
19 Ice Wind Loa	ad 90 AZI C	)L3				13			
20 Ice Wind Loa	d 120 AZI N	one				26			
21 Ice Wind Loa	d 135 AZI 🛛 🛛 N	one				26			
22 Ice Wind Loa	d 150 AZI 🛛 🛛 N	one				26			
23 Seismic L	oad X E	LX	115			13			
24 Seismic L	oad Y E	LY		115		13			
25 Live Load	1 (Lv)	LL				1			
26 Live Load	2 (Lv)	LL				1			
27 Live Load	3 (Lv)	LL				1			
28 Live Load	4 (Lv)	LL				1			
29 Live Load		LL				1			
30 Live Load	6 (Lv)	LL				1			
31 Maintenance L	oad 1 (Lm) N	one				1			
32 Maintenance L	oad 2 (Lm) N	one				1			
33 Maintenance L	oad 3 (Lm) N	one				1			

# Basic Load Cases (Continued)

	<b>BLC</b> Description	Category	X Gravity	Y Gravity Z Gravity	Joint	Point	Distribu	.Area(M	.Surface
34	Maintenance Load 4 (Lm)	None				1			
35	Maintenance Load 5 (Lm)	None				1			
36	Maintenance Load 6 (Lm)	None				1			
37	Maintenance Load 7 (Lm)	None				1			
38	Maintenance Load 8 (Lm)	None				1			
39	Maintenance Load 9 (Lm)	None				1			
40	Maintenance Load 7 (Lm)	None							
41	Maintenance Load 8 (Lm)	None							
42	Maintenance Load 9 (Lm)	None							
43	BLC 1 Transient Area Loads	None					9		
44	BLC 12 Transient Area Loads	None					9		

### Load Combinations

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Des cription	Solve	PD	SRB	Factor	BLC	Factor	В	.Fa	.B	.Fa	.BLC	Fa	В	.Fal	в	Fa	.B	.Fa	.B	.Fa	.B	.Fa
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1.4DL	Yes	Y	DL	1.4																		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	1.2DL + 1WL 0 AZI	Yes	Y	DL	1.2	2	1	3		4	1												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	1.2DL + 1WL 30 AZI	Yes	Y	DL	1.2	2	.866	3	.5	5	1												
6       1.2DL + 1WL 90 AZI       Yes       Y       DL       1.2       2       3       1       8       1         7       1.2DL + 1WL 120 AZI       Yes       Y       DL       1.2       2      5       3       8669       1         8       1.2DL + 1WL 136 AZI       Yes       Y       DL       1.2       2      707       3       70710       1         9       1.2DL + 1WL 136 AZI       Yes       Y       DL       1.2       2      866       3       5       11       1         10       1.2DL + 1WL 204 AZI       Yes       Y       DL       1.2       2      866       3      5      1       1         11       1.2DL + 1WL 204 AZI       Yes       Y       DL       1.2       2      5       3      87      1         13       1.2DL + 1WL 204 AZI       Yes       Y       DL       1.2       2       .5       3      5       1.1       1         14       1.2DL + 1WL 300 AZI       Yes       Y       DL       1.2       2       .707       3       .710       1       1         16       1.2DL + 1WL 300 AZI       Yes	4	1.2DL + 1WL 45 AZI	Yes	Y	DL	1.2	2	.707	3	.707	6	1												
7       1.2DL + 1WL 120 AZI       Yes       Y       DL       1.2       2      5       3       .866       9       1         8       1.2DL + 1WL 135 AZI       Yes       Y       DL       1.2       2      707       3       .70710       1         9       1.2DL + 1WL 180 AZI       Yes       Y       DL       1.2       2      866       3       .5       11       1         10       1.2DL + 1WL 140 AZI       Yes       Y       DL       1.2       2      866       3       .5       5       -1         11       1.2DL + 1WL 240 AZI       Yes       Y       DL       1.2       2      5       3       .87       -1         13       1.2DL + 1WL 200 AZI       Yes       Y       DL       1.2       2       .5       3       .89       -1         14       1.2DL + 1WL 300 AZI       Yes       Y       DL       1.2       2       .5       3       .5       5       1       -1         16       1.2DL + 1WL 300 AZI       Yes       Y       DL       1.2       2       .707       3       .7.10       -1       -1       -1       -1       -1 <td>5</td> <td>1.2DL + 1WL 60 AZI</td> <td>Yes</td> <td>Y</td> <td>DL</td> <td>1.2</td> <td>2</td> <td>.5</td> <td>3</td> <td>.866</td> <td>7</td> <td>1</td> <td></td>	5	1.2DL + 1WL 60 AZI	Yes	Y	DL	1.2	2	.5	3	.866	7	1												
8       1.2DL + 1WL 135 AZI       Yes       Y       DL       1.2       2 $707$ 3 $70710$ 1         9       1.2DL + 1WL 150 AZI       Yes       Y       DL       1.2       2 $866$ 3       5       5       1       1         10       1.2DL + 1WL 180 AZI       Yes       Y       DL       1.2       2 $866$ 3 $.55$ 5       1         11       1.2DL + 1WL 204 AZI       Yes       Y       DL       1.2       2 $707$ 3 $7.6$ $-1$ 11       1.2DL + 1WL 240 AZI       Yes       Y       DL       1.2       2 $707$ $3$ $-76$ $-1$ 13       1.2DL + 1WL 240 AZI       Yes       Y       DL       1.2       2 $707$ $3$ $-76$ $-1$ 14       1.2DL + 1WL 240 AZI       Yes       Y       DL       1.2       2 $.53$ $-87$ $-1$ 15       1.2DL + 1WL 300 AZI       Yes       Y       DL       1.2       2 $.506$ $-55$ $1$ $-1$ 19       0.9DL + 1WL 30 AZI </td <td>6</td> <td></td> <td>Yes</td> <td>Y</td> <td>DL</td> <td>1.2</td> <td>2</td> <td></td> <td>3</td> <td>1</td> <td>8</td> <td>1</td> <td></td>	6		Yes	Y	DL	1.2	2		3	1	8	1												
9       1.2DL + 1WL 150 AZI       Yes       Y       DL       1.2       2      866       3       5       11       1         10       1.2DL + 1WL 180 AZI       Yes       Y       DL       1.2       2       -1       3       4       -1         11       1.2DL + 1WL 210 AZI       Yes       Y       DL       1.2       2      866       3       -5       5       1       1         12       1.2DL + 1WL 226 AZI       Yes       Y       DL       1.2       2      707       3       .76       -1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td>7</td> <td>1.2DL + 1WL 120 AZI</td> <td>Yes</td> <td>Y</td> <td>DL</td> <td>1.2</td> <td>2</td> <td>5</td> <td>3</td> <td>.866</td> <td>9</td> <td>1</td> <td></td>	7	1.2DL + 1WL 120 AZI	Yes	Y	DL	1.2	2	5	3	.866	9	1												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8		Yes	Y	DL	1.2	2	707	3	.707	10	1												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	1.2DL + 1WL 150 AZI	Yes	Y	DL	1.2	2	866	3	.5	11	1												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	1.2DL + 1WL 180 AZI	Yes	Y	DL	1.2	2	-1	3		4	-1												
13       1.2DL + 1WL 240 AZ       Yes       Y       DL       1.2       2      5       3       -87       -1         14       1.2DL + 1WL 270 AZI       Yes       Y       DL       1.2       2       3       -1       8       -1         15       1.2DL + 1WL 300 AZI       Yes       Y       DL       1.2       2       .5       3       -89       -1       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td>11</td> <td>1.2DL + 1WL 210 AZI</td> <td>Yes</td> <td>Y</td> <td>DL</td> <td>1.2</td> <td>2</td> <td>866</td> <td>3</td> <td>5</td> <td>5</td> <td>-1</td> <td></td>	11	1.2DL + 1WL 210 AZI	Yes	Y	DL	1.2	2	866	3	5	5	-1												
14       1.2DL + 1WL 270 AZI       Yes       Y       DL       1.2       2       3       -1       8       -1       1         15       1.2DL + 1WL 300 AZI       Yes       Y       DL       1.2       2       .5       3       -89       -1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	12	1.2DL + 1WL 225 AZI	Yes	Y	DL	1.2	2	707	3	7	.6	-1												
15       1.2DL + 1WL 300 AZI       Yes       Y       DL       1.2       2       .5       3       -89       -1       -1       -1         16       1.2DL + 1WL 315 AZI       Yes       Y       DL       1.2       2       .707       3       -710       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1	1 10		Yes	Y	DL	1.2	2	5	3	8	.7	-1												
16       1.2DL + 1WL 315 AZI       Yes       Y       DL       1.2       2       .707       3       -7.       10       -1          1         17       1.2DL + 1WL 330 AZI       Yes       Y       DL       1.2       2       .866       3       -5       11       -1	14	1.2DL + 1WL 270 AZI	Yes	Y	DL	1.2	2		3	-1	8	-1												
17       1.2DL + 1WL 330 AZI       Yes       Y       DL       1.2       2       .866       3      5       11       -1	15	1.2DL + 1WL 300 AZI	Yes	Y	DL	1.2	2	.5	3	8.	.9	-1												
18       0.9DL + 1WL 0 AZI       Yes       Y       DL       9       2       1       3       4       1         19       0.9DL + 1WL 30 AZI       Yes       Y       DL       .9       2       .866       3       .5       5       1	16	1.2DL + 1WL 315 AZI	Yes	Y	DL	1.2	2	.707	3	7	.10	-1												
19       0.9DL + 1WL 30 AZI       Yes       Y       DL       9       2       .866       3       5       5       1	17	1.2DL + 1WL 330 AZI	Yes	Y	DL	1.2	2	.866	3	5	11	-1												
20       0.9DL + 1WL 45 AZI       Yes       Y       DL       9       2       7.07       3       7.07       6       1       1       1         21       0.9DL + 1WL 60 AZI       Yes       Y       DL       9       2       7.07       3       707       6       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td>18</td> <td>0.9DL + 1WL 0 AZI</td> <td>Yes</td> <td>Y</td> <td>DL</td> <td>.9</td> <td>2</td> <td>1</td> <td>3</td> <td></td> <td>4</td> <td>1</td> <td></td>	18	0.9DL + 1WL 0 AZI	Yes	Y	DL	.9	2	1	3		4	1												
21       0.9DL + 1WL 60 AZI       Yes       Y       DL       .9       2       .5       3       .866       7       1	19	0.9DL + 1WL 30 AZI	Yes	Y	DL	.9	2	.866	3	.5	5	1												
21       0.9DL + 1WL 90 AZI       Yes       Y       DL       .9       2       3       1       8       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td>20</td> <td>0.9DL + 1WL 45 AZI</td> <td>Yes</td> <td>Y</td> <td>DL</td> <td>.9</td> <td>2</td> <td>.707</td> <td>3</td> <td>.707</td> <td>6</td> <td>1</td> <td></td>	20	0.9DL + 1WL 45 AZI	Yes	Y	DL	.9	2	.707	3	.707	6	1												
23       0.9DL + 1WL 120 AZI       Yes       Y       DL       .9       2      5       3       866       9       1       Image: Constraint of the stress of	21		Yes	Y	DL	.9	2	.5	3	.866	7	1												
24       0.9DL + 1WL 135 AZI       Yes       Y       DL       .9       2      707       3       .707       10       1			Yes	Y	DL		2		3	1	8	1												
25       0.9DL + 1WL 150 AZI       Yes       Y       DL       .9       2      866       3       .5       11       1			Yes		DL			5	3	.866	9	1												
26       0.9DL + 1WL 180 AZI       Yes       Y       DL       .9       2       -1       3       4       -1       4       -1         27       0.9DL + 1WL 210 AZI       Yes       Y       DL       .9       2       -1       3       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       4       -1       <	24	0.9DL + 1WL 135 AZI	Yes	Y	DL	.9	2	707	3	.707	10	1												
27       0.9DL + 1WL 210 AZI       Yes       Y       DL       .9       2      866       3      5       5       -1			Yes	Y	DL	.9	2	866	3	.5	11	1												
28       0.9DL + 1WL 225 AZI       Yes       Y       DL       .9       2      707       3      76       -1            29       0.9DL + 1WL 240 AZI       Yes       Y       DL       .9       2      707       3      76       -1			Yes		DL		2	-1	_															
29       0.9DL + 1WL 240 AZI       Yes       Y       DL       .9       2      5       3       -87       -1			Yes		DL			866																
30       0.9DL + 1WL 270 AZI       Yes       Y       DL       .9       2       3       -1       8       -1       1         31       0.9DL + 1WL 300 AZI       Yes       Y       DL       .9       2       .5       3       -89       -1       1       1         32       0.9DL + 1WL 315 AZI       Yes       Y       DL       .9       2       .707       3       -710       -1       1       1         33       0.9DL + 1WL 330 AZI       Yes       Y       DL       .9       2       .707       3       -710       -1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1			Yes		DL		2	707	3			-1												
31       0.9DL + 1WL 300 AZI       Yes       Y       DL       .9       2       .5       3       -89       -1			Yes		DL	.9	2	5	3	8.	.7	-1												
32       0.9DL + 1WL 315 AZI       Yes       Y       DL       .9       2       .707       3       -710       -1 <td>30</td> <td>0.9DL + 1WL 270 AZI</td> <td>Yes</td> <td></td> <td>DL</td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td>-1</td> <td></td>	30	0.9DL + 1WL 270 AZI	Yes		DL				3			-1												
33       0.9DL + 1WL 330 AZI       Yes       Y       DL       .9       2       .866       3      5       11       -1         34       1.2DL + 1DLi + 1WL       Yes       Y       DL       1.2       OL1       1       13       1       14       15       1         35       1.2DL + 1DLi + 1WL       Yes       Y       DL       1.2       OL1       1       13.866       14       .5       16       1			Yes	Y	DL	.9	2	.5	3	8.	.9	-1												
34         1.2DL + 1DLi + 1W L         Yes         Y         DL         1.2         OL1         1         13         1         14         15         1           35         1.2DL + 1DLi + 1W L         Yes         Y         DL         1.2         OL1         1         13.86614         .5         16         1	32	0.9DL + 1WL 315 AZI	Yes		DL	.9		.707																
35         1.2DL + 1DLi + 1WL         Yes         Y         DL         1.2         OL1         1         13.86614         5         16         1	33	0.9DL + 1WL 330 AZI	Yes		DL	.9	2	.866	3	5	11	-1												
	34		Yes		DL		OL1	1					15	1										
	35	1.2DL + 1DLi + 1W L	Yes	Y	DL	1.2	OL1	1	13	.866	14	.5	16	1										
36 1.2DL + 1DLi + 1WL Yes Y DL 1.2 OL1 1 13.70714.707 17 1	36	1.2DL + 1DLi + 1W L	Yes	Y	DL	1.2	OL1	1	13	.707	14	.707	17	1										



# Load Combinations (Continued)

	Description	Salva	DD	<u>e</u>	Fastar	PLC	Faatar	D	Fo	D	Fa	PL C	Fo	D	Ea	D	Ea	D	Fo	Б	Fo	D	50
37	Description 1.2DL + 1DLi + 1WL	<u>Solve</u> Yes	<u>ΡD</u> Υ	SRB DL	1.2	OL1	Factor 1	_				.BLC 18		.в	га	.в	га	.в	.га	.в	га	ві	-a
	1.2DL + 1DLi + 1W L	Yes	Y	DL	1.2	OL1	1	13		14			1										_
	1.2DL + 1DLi + 1W L	Yes	Y	DL	1.2	OL1	1	_				19 20	1										_
	1.2DL + 1DLi + 1W L		Y	DL	1.2	OL1	1	-				20	1									_	
	1.2DL + 1DLi + 1W L	Yes		DL		OL1				_			· ·									_	
41		Yes	Y		1.2		1	-	8			22	1									_	_
	1.2DL + 1DLi + 1WL	Yes		DL	1.2	OL1	1	_	-1			15	-1									_	
43	1.2DL + 1DLi + 1W L	Yes	Y	DL	1.2	OL1	1				5		-1									_	_
	1.2DL + 1DLi + 1WL	Yes	Y	DL	1.2	OL1	1					. 17	-1										
45	1.2DL + 1DLi + 1W L	Yes	Y	DL	1.2	OL1	1	-				. 18	-1									_	_
	1.2DL + 1DLi + 1W L	Yes	Y	DL	1.2	OL1	1	13			-1	19	-1										
47	1.2DL + 1DLi + 1W L	Yes	Y	DL	1.2	OL1	1	_				. 20	-1									_	_
	1.2DL + 1DLi + 1W L	Yes	Y	DL	1.2	OL1	1	_		-		. 21	-1										
49	1.2DL + 1DLi + 1W L	Yes	Y	DL	1.2	OL1	1		.866	14	5	22	-1										_
	(1.2+0.2Sds) + 1.0E	Yes	Y	DL	1.238	ELX	1	Ε															
51	(1.2+0.2Sds) + 1.0E	Yes	Y	DL	1.238	ELX	.866	Ε															_
52	(1.2+0.2Sds) + 1.0E	Yes	Y	DL	1.238	ELX	.707		.707	-													
	(1.2+0.2Sds) + 1.0E	Yes	Y	DL	1.238	ELX	.5		.866	3													
	(1.2+0.2Sds) + 1.0E	Yes	Y	DL		ELX		Ε	1														
	(1.2+0.2Sds) + 1.0E	Yes	Y			ELX			.866														
	(1.2+0.2Sds) + 1.0E	Yes	Y	DL	1.238				.707	7													
	(1.2+0.2Sds) + 1.0E	Yes	Y	DL	1.238	ELX	866	Ε	.5														
	(1.2+0.2Sds) + 1.0E	Yes	Y	DL	1.238	ELX	-1	Ε															
59	(1.2+0.2Sds) + 1.0E	Yes	Y	DL	1.238	ELX			5														
60	(1.2+0.2Sds) + 1.0E	Yes	Y	DL	1.238	ELX	707		7														
61	(1.2+0.2Sds) + 1.0E	Yes	Y	DL	1.238	ELX	5		8.														
62	(1.2+0.2Sds) + 1.0E	Yes	Y	DL	1.238	ELX		Ε	-1														
63	(1.2+0.2Sds) + 1.0E	Yes	Y	DL	1.238	ELX	.5	Ε	8.														
64	(1.2+0.2Sds) + 1.0E	Yes	Y	DL	1.238	ELX	.707	Ε	7														
65	(1.2+0.2Sds) + 1.0E	Yes	Y	DL	1.238	ELX	.866	Ε	5														
66	(0.9-0.2Sds) + 1.0E	Yes	Y	DL	.862	ELX	1	Ε															
67	(0.9-0.2Sds) + 1.0E	Yes	Y	DL	.862	ELX	.866	Ε	.5														
68	(0.9-0.2Sds) + 1.0E	Yes	Y	DL	.862	ELX	.707	Ε	.707	7													
69	(0.9-0.2Sds) + 1.0E	Yes	Y	DL	.862	ELX	.5	Ε	.866	5													
70	(0.9-0.2Sds) + 1.0E	Yes	Y	DL	.862	ELX		Ε	1														
71	(0.9-0.2Sds) + 1.0E	Yes	Y	DL	.862	ELX	5	Ε	.866	3													
	(0.9-0.2Sds) + 1.0E	Yes	Y	DL	.862	ELX		Ε	.707	7													
	(0.9-0.2Sds) + 1.0E	Yes	Y	DL	.862	ELX		Ε	.5														
	(0.9-0.2Sds) + 1.0E	Yes	Y	DL		ELX		Ε															
	(0.9-0.2Sds) + 1.0E	Yes	Ý	DL	.862	ELX																	
	(0.9-0.2Sds) + 1.0E	Yes	Y	DL		ELX																	
	(0.9-0.2Sds) + 1.0E	Yes	Ý	DL	.862	ELX			8.														
	(0.9-0.2Sds) + 1.0E	Yes	Y	DL	.862	ELX	.0		-1														
	(0.9-0.2Sds) + 1.0E	Yes	Y	DL	.862	ELX	.5		8														
	(0.9-0.2Sds) + 1.0E	Yes	Y	DL	.862	ELX			7.														
81	(0.9-0.2Sds) + 1.0E	Yes	Y	DL	.862	ELX			5														
82	1.2D + 1.5 Lv1	Yes	Y	DL	1.2	25	1.5		5														
83	1.2D + 1.5 Lv2	Yes	Y	DL	1.2	26	1.5																
84	1.2D + 1.5 Lv3	Yes	Y	DL	1.2	20	1.5																
85	1.2D + 1.5 Lv3		Y	DL	1.2		1.5																
		Yes	Y	DL	1.2	28 29	1.5																
86	1.2D + 1.5 Lv5	Yes	Y	DL																			
87	1.2D + 1.5 Lv6 1.2D + 1.5Lm + 1.0	Yes Yes	Y	DL	<u>1.2</u> 1.2	30 31	1.5	1	05.9	20	.058	0											
00		res	ľ		1.2	51	1.5	4	.000	12	.000	3											



# Load Combinations (Continued)

	Des cription	Solve	РD	SRB	Factor	BLC	Factor	BFa.	в	Fa	BLC	Fa	B E	a B	Fa	в	Fa	в	Fa	R I	Fa
89 1.2D	+ 1.5Lm + 1.0	Yes	Υ   Υ	DL	1.2	31	1.5	5.058			3	.029			a.		a		1 a	<u> </u>	<u>a</u>
	+ 1.5Lm + 1.0	Yes	Ý	DL	1.2	31	1.5	6.058		.041	3	.041									
	+ 1.5Lm + 1.0	Yes	Ý	DL	1.2	31	1.5	-		.029		.05			-	-	1			_	
01	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	31	1.5	8 .058	_		3	.058									
	+ 1.5Lm + 1.0	Yes	Ý	DL	1.2	31	1.5	9.058		0	3	.05			-	1	1			_	_
	) + 1.5Lm + 1.0	Yes	Y	DL	1.2	31	1.5	10.058	-		3	.041				+					
	+ 1.5Lm + 1.0	Yes	Ý	DL	1.2	31	1.5	11.058	-	05	3	.029			-	-				_	_
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	31	1.5	4 .058	_	0	3	.020									
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	31	1.5	5.058		05		0			-	-				_	_
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	31	1.5	6.058		0	3	0	,								
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	31	1.5		-	0	3	05	-		-	-				_	_
00	) + 1.5Lm + 1.0	Yes	Y	DL	1.2	31	1.5	8.058	-		3	0				-					
	) + 1.5Lm + 1.0	Yes	Y	DL	1.2	31	1.5			.029	3	05	-		-	-				_	_
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	31	1.5	10.058		.023	3	0								_	
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	31	1.5	11.058	-	.05	3	0	-		-	+				_	_
100	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	32	1.5	4 .058	_	.058		.0			-	+					
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	32	1.5	5 .058		.050	<u> </u>	.029								_	
	) + 1.5Lm + 1.0	Yes	Y	DL	1.2	32	1.5	6.058		.05	3	.023									
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	32	1.5	-		.029		.05			-						_
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	32	1.5	8.058	_	.02.0	3	.058				-					
	+ 1.5Lm + 1.0		Y	DL	1.2	32	1.5	9.058		- 0	3	.050			-	-					_
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	32	1.5	10.058	_	0	3	.05				-				_	
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	32	1.5	11.058	_	05	3	.029			-	-				_	-
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	32		4 .058	-	0	3	.023			-	-				_	
	+ 1.5Lm + 1.0	Yes	Y	DL			1.5	5 .058		05		0	-	_	-	-				_	_
110	) + 1.5Lm + 1.0	Yes	Y	DL	1.2	32	1.5	6.058		0		0			-	-				_	
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	32	1.5	7 .058	-	0	3	05		_	-	-				_	
	) + 1.5Lm + 1.0	Yes		DL	1.2	32	1.5		_	0	3		_		_	-				_	_
	+ 1.5Lm + 1.0	Yes	Y		1.2	32	1.5	8.058	-	020	3	0 05				-					_
1.1.1	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	32	1.5		-	.029 .041	3		_		-	-				_	
	+ 1.5Lm + 1.0	Yes	Y	DL DL	1.2	32	1.5	10.058	-		3	0				-					
		Yes			1.2	32	1.5	11.058	-	.05	3	0			-	-				_	_
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	33	1.5	4 .058		.058	3	020	-		-	-					
	0 + 1.5Lm + 1.0	Yes	Y	DL	1.2	33	1.5	5.058	-	.05	3	.029	_		-	-				_	
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	33	1.5	6.058	_	.041	3	.041	-		-	-				_	
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	33	1.5	7 .058	-	.029	3	.05	_	_	-	_				_	_
	+ 1.5Lm + 1.0 + 1.5Lm + 1.0	Yes	Y	DL	1.2	33	1.5	8.058			3	.058	-		-	-				_	
		Yes	Y	DL	1.2	33	1.5		_	0	3	.05	_		-	-				_	_
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	33	1.5	10.058				.041			_	-					_
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	33	1.5	11.058	_			.029								_	
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	33	1.5	4 .058								-					
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	33	1.5	5.058	_			0				-				$ \rightarrow$	
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	33	1.5	6.058	_			0				-					
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	33	1.5	7 .058	_	0		05									
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	33	1.5	8.058	_	000	3	0				-					
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	33	1.5	9.058				05								_	
-	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	33	1.5	10.058	-			0				-					
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	33	1.5	11.058				0				-				$\rightarrow$	
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	34	1.5	4 .058				0000									
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	34	1.5	5.058			3	.029				-				$\rightarrow$	
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	34	1.5	6.058				.041									
	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	34	1.5		_	.029		.05									
140  1.2D	+ 1.5Lm + 1.0	Yes	Y	DL	1.2	34	1.5	8.058	12		3	.058									



# Load Combinations (Continued)

Des cription	Solve	PD	SRB	Factor	BLC	Factor	BFaBFaBLC FaBFaBFaBFaBFaBFa.
141 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	34	1.5	9.058 2 -0 3 .05
142 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	34	1.5	10.058 20 3 .041
143 1.2D + 1.5Lm + 1.0	Yes	Ý	DL	1.2	34	1.5	11.058 205 3 .029
144 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	34	1.5	4.058 20 3
145 1.2D + 1.5Lm + 1.0	Yes	Ý	DL	1.2	34	1.5	5.058 205 30
146 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	34	1.5	6 .058 20 30
147 1.2D + 1.5Lm + 1.0	Yes	Ý	DL	1.2	34	1.5	7.058 2 -0 305
148 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	34	1.5	8.05823
149 1.2D + 1.5Lm + 1.0	Yes	Ý	DL	1.2	34	1.5	9.058 2.029 305
150 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	34	1.5	10.058 2 .041 30
151 1.2D + 1.5Lm + 1.0	Yes	Ý	DL	1.2	34	1.5	11.058 2 .05 30
152 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	35	1.5	4 .058 2 .058 3
153 1.2D + 1.5Lm + 1.0	Yes	Ý	DL	1.2	35	1.5	5.058 2.05 3.029
154 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	35	1.5	6 .058 2 .041 3 .041
155 1.2D + 1.5Lm + 1.0	Yes	Ý	DL	1.2	35	1.5	7.058 2.029 3.05
156 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	35	1.5	8.058 2 3.058
157 1.2D + 1.5Lm + 1.0	Yes	Ý	DL	1.2	35	1.5	9.058 20 3 .05
158 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	35	1.5	10.058 20 3 .041
159 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	35	1.5	11.058 205 3 .029
160 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	35	1.5	4.058 20 3
161 1.2D + 1.5Lm + 1.0	Yes	Ý	DL	1.2	35	1.5	5 .058 205 30
162 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	35	1.5	6 .058 20 30
163 1.2D + 1.5Lm + 1.0	Yes	Ý	DL	1.2	35	1.5	7.058 2 -0 305
164 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	35	1.5	8.058 2 30
165 1.2D + 1.5Lm + 1.0	Yes	Ý	DL	1.2	35	1.5	9 .058 2 .029 305
166 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	35	1.5	10.058 2 .041 30
167 1.2D + 1.5Lm + 1.0	Yes	Ý	DL	1.2	35	1.5	11.058 2 .05 30
168 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5	4 .058 2 .058 3
169 1.2D + 1.5Lm + 1.0	Yes	Ý	DL	1.2	36	1.5	5 .058 2 .05 3 .029
170 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5	6 .058 2 .041 3 .041
171 1.2D + 1.5Lm + 1.0	Yes	Ý	DL	1.2	36	1.5	7.058 2.029 3.05
172 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5	8.058 2 3.058
173 1.2D + 1.5Lm + 1.0	Yes	Ý	DL	1.2	36	1.5	9.058 20 3 .05
174 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5	10.058 20 3 .041
175 1.2D + 1.5Lm + 1.0	Yes	Ý	DL	1.2	36	1.5	11.058 205 3 .029
176 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5	4.058.2
177 1.2D + 1.5Lm + 1.0	Yes	Ý	DL	1.2	36	1.5	5 .058 205 30
178 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5	6.058 20 30
179 1.2D + 1.5Lm + 1.0	Yes	Ý	DL	1.2	36	1.5	7.058 20 305
180 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5	8.05823
181 1.2D + 1.5Lm + 1.0	Yes	Ý	DL	1.2	36	1.5	9.058 2.029 305
182 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5	10.058 2 .041 30
183 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5	11.058 2 .05 30
184 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5	4 .058 2 .058 3
185 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5	5 .058 2 .05 3 .029
186 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5	6 .058 2 .041 3 .041
187 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5	7 .058 2 .029 3 .05
188 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5	8.058 2 3.058
189 1.2D + 1.5Lm + 1.0	Yes	Ý	DL	1.2	37	1.5	9 .058 20 3 .05
190 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5	10.058 20 3 .041
191 1.2D + 1.5Lm + 1.0	Yes	Ý	DL	1.2	37	1.5	11.058 205 3 .029
192 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5	4.058.2.0



# Load Combinations (Continued)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Des cription	Solve	PD	SRB	Factor	BLC	Factor	В	.FaB.	Fa	BLC	Fa	В	Fa	.B	Fa	.B	Fa	.B	Fa	.B	Fa
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	193	1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5	5	.058 2	05	3	0										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	194	1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5	6	.058 2	0	. 3	0										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	195	1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5	7	.058 2	0	. 3	05										
198       1.20       +1.5Lm       +10       Yes       Y       DL       1.2       37       1.5       11.068       2       041       3       -0         199       1.20       +1.5Lm       +10       Yes       Y       DL       1.2       38       1.5       4       058       2       05       3       -0         200       1.20       +1.5Lm       +10       Yes       Y       DL       1.2       38       1.5       5       058       2       05       3       029       2       2       2       2       2       2       2       2       3       0.5       2       3       0.5       2       3       0.5       2       3       0.5       2       3       0.5       2       2       3       0.5       2       2       3       0.5       2       2       3       0.5       2       2       3       0.5       2       2       2       2       2       3       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	196	1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5	8	.058 2		3	0										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	197	1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	37	1.5	9	.058 2	.029	3	05										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	198	1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5	10	.058 2	.041	3	0										
201       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       5       058       2       05       3       0.29          202       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       6       058       2       041       3       041          203       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       7       058       2       0.58           204       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       9       0.68       2       .0       3       0.05         206       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       1.068       2       .0       3       0.029         208       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       6       0.68       2       .0       3       .0         210       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       7       0.68       2 <t< td=""><td>199</td><td>1.2D + 1.5Lm + 1.0</td><td>Yes</td><td>Y</td><td>DL</td><td>1.2</td><td>37</td><td>1.5</td><td>11</td><td>.058 2</td><td>.05</td><td>3</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	199	1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5	11	.058 2	.05	3	0										
202       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       6       058       2       041       3       041           203       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       7       058       2       025       3       055            204       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       9       058       2       -0       3       055                205       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       1       058       2       -0       3       041              209       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       5       058       2       -0       3       -0.0.        201       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       1.068       2       0.5       3       -0 </td <td>200</td> <td>1.2D + 1.5Lm + 1.0</td> <td>Yes</td> <td>Y</td> <td>DL</td> <td>1.2</td> <td>38</td> <td>1.5</td> <td>4</td> <td>.058 2</td> <td>.058</td> <td>3</td> <td></td>	200	1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	38	1.5	4	.058 2	.058	3											
203       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       7       058       2       3       0.5         204       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       8       058       2       3       0.05         205       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       9       0.058       2       -0       3       0.05         206       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       1       0.058       2       -0       3       0.041         207       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       5       0.58       2       -0       3       -0         210       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       6       0.58       2       -0       3       -0         211       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       10.058       2       0.5       3       -0	201	1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	38	1.5	5	.058 2	.05	3	.029										
204       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       8       058       2       3       058         205       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       9       058       2       0.5       3       0.5         206       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       10       058       2       0.5       3       0.41         207       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       10.68       2       0.5       3       0.29         208       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       5       058       2       0.5       3       0.0         210       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       7       058       2       3       -0         211       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       10.058       2       0.41       3       -0         213       1	202	1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	38	1.5	6	.058 2	.041	3	.041										
205       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       9       058       2       -0       3       0.5       0.41         206       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       10.058       2       -0       3       041       0.41         207       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       10.058       2       -0       3       041       0.41         208       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       5       058       2       -0       3       -0         210       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       6       058       2       -0       3       -0         211       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       9       058       2       -0       -0       0.0         213       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       10.68       2 <t< td=""><td>203</td><td>1.2D + 1.5Lm + 1.0</td><td>Yes</td><td>Y</td><td>DL</td><td>1.2</td><td>38</td><td>1.5</td><td>7</td><td>.058 2</td><td>.029</td><td>3</td><td>.05</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	203	1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	38	1.5	7	.058 2	.029	3	.05										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	204	1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	38	1.5	8	.058 2		3	.058										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	205	1.2D + 1.5Lm + 1.0		Y	DL	1.2	38	1.5	9	.058 2	0	. 3	.05										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	206	1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	38	1.5	10	.058 2	0	. 3	.041										
209       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       5       0.58       2       -0.5       3       -0         210       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       6       058       2       -0       3       -0         211       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       7       058       2       -0       3       -0         213       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       10.058       2       0.0       3       -0         214       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       10.058       2       0.05       3       -0         214       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       11.058       2       0.5       3       -0       2       1.6       1.2       1.6       1.2       1.0       1.2       1.0       1.2       1.0       1.2       1.0       1.2       1.0       1.2       1.0	207	1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	38	1.5	11	.058 2	05	3	.029										
210       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       6       0.58       2       -0       3       -0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1<	208	1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	38	1.5	4	.058 2	0	. 3											
211       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       7       0.58       2       -0       3       -0.5	209	1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	38	1.5	5	.058 2	05	3	0										
212       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       8       056       2       3       -0       Image: Constraint of the const	210	1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	38	1.5	6	.058 2	0	. 3	0										
213       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       9       058       2       0.29       3      05	211	1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	38	1.5	7	.058 2	0	. 3	05										
213       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       9       058       2       0.29       3      05	212	1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	38		8	.058 2		3	0										
215       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       38       1.5       11.058       2.05       3       -0       1.2         216       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       39       1.5       4       058       2       05       3       -0       1.2         217       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       39       1.5       5       058       2       05       3       029       1.2         218       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       39       1.5       7       058       2       029       3       0.05       1.2         219       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       39       1.5       8       058       2       0.05       1.05       1.05       1.05       1.05       1.05       1.05       1.05       1.05       1.05       1.05       1.05       1.05       1.05       1.05       1.05       1.05       1.05       1.05       1.05       1.05       1.05       1.05       1.05       1.05       1.05       1.05       1.05       1.05	213	1.2D + 1.5Lm + 1.0	Yes	Y	DL						.029		05										
216       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       39       1.5       4       .058       2       .058       3            217       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       39       1.5       5       .058       2       .058       3 <td< td=""><td>214</td><td>1.2D + 1.5Lm + 1.0</td><td>Yes</td><td>Y</td><td>DL</td><td>1.2</td><td>38</td><td>1.5</td><td>10</td><td>.058 2</td><td>.041</td><td>3</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	214	1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	38	1.5	10	.058 2	.041	3	0										
216       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       39       1.5       4       .058       2       .058       3            217       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       39       1.5       5       .058       2       .05       3                                                                                  .	215	1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	38	1.5	11	.058 2	.05	3	0										
217       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       39       1.5       5       058       2       0.5       3       0.29            218       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       39       1.5       6       058       2       0.41       3       0.41                                                                                .	216	1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	39				.058												
218       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       39       1.5       6       058 2       0.41       3       0.41       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 </td <td>217</td> <td>1.2D + 1.5Lm + 1.0</td> <td>Yes</td> <td>Y</td> <td>DL</td> <td></td> <td></td> <td></td> <td>5</td> <td>.058 2</td> <td>.05</td> <td></td> <td>.029</td> <td></td>	217	1.2D + 1.5Lm + 1.0	Yes	Y	DL				5	.058 2	.05		.029										
219       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       39       1.5       7       058       2       0.29       3       .05 <td>218</td> <td>1.2D + 1.5Lm + 1.0</td> <td>Yes</td> <td>Y</td> <td>DL</td> <td>1.2</td> <td>39</td> <td></td> <td>6</td> <td>.058 2</td> <td>.041</td> <td>3</td> <td>.041</td> <td></td>	218	1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	39		6	.058 2	.041	3	.041										
220       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       39       1.5       8       .058       2       3       .058	219	1.2D + 1.5Lm + 1.0		Y	DL	1.2	39				_		.05										
221       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       39       1.5       9       0.58       2       -0       3       .05       Image: constraint of the state of t	220	1.2D + 1.5Lm + 1.0		Y	DL	1.2			8	.058 2		3											
222       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       39       1.5       10       058       2       -0       3       .041       Image: Constraint of the co	221	1.2D + 1.5Lm + 1.0		Y	DL	1.2	39			.058 2	0	. 3	.05										
223       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       39       1.5       11       0.58       2      05       3       .029	222	1.2D + 1.5Lm + 1.0		Y	DL																		
224       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       39       1.5       4       058       2       -0       3 <t< td=""><td>223</td><td>1.2D + 1.5Lm + 1.0</td><td>Yes</td><td>Y</td><td>DL</td><td>1.2</td><td>39</td><td>1.5</td><td>11</td><td>.058 2</td><td>05</td><td>3</td><td>.029</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	223	1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	39	1.5	11	.058 2	05	3	.029										
225       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       39       1.5       5       0.58       2      0       Image: Constraint of the co	224	1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	39	1.5	4	.058 2	0	. 3											
226       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       39       1.5       6       .058       2       .0       3       .0       Image: Constraint of the c	225	1.2D + 1.5Lm + 1.0		Y	DL				_		05		0										
227       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       39       1.5       7       .058       2       .0       3       .05       Image: Constraint of the con		1.2D + 1.5Lm + 1.0		_	DL						0		0										
228       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       39       1.5       8       .058       2       3      0       L       L       L       1.2       39       1.5       9       .058       2       .029       3      0       L       L       L       1.2       39       1.5       9       .058       2       .029       3      0.5       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L					DL				_		0	. 3	05										
229       1.2D + 1.5Lm + 1.0       Yes       Y       DL       1.2       39       1.5       9       .05       2       .02       3      05	228	1.2D + 1.5Lm + 1.0		Y	DL								0										
230 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 39 1.5 10 058 2 041 30		1.2D + 1.5Lm + 1.0		-	DL						.029		05										
		1.2D + 1.5Lm + 1.0		-	DL								0										
231 1.2D + 1.5Lm + 1.0 Yes Y DL 1.2 39 1.5 11 058 2 0.5 3 -0	231	1.2D + 1.5Lm + 1.0	Yes	Ý	DL	1.2	39	1.5				3	0										

### Envelope Joint Reactions

	Joint		X <b>[</b> b]	LC	Y <b>[</b> b]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N25	max	1580.52	3	961.27	20	2328.63	39	507.26	31	546.48	33	1827.37	3
2		min	-1576.74	27	-967.5	12	-104.71	31	4106.44	39	-2527.12	41	-1826.91	27
3	N1	max	1665.75	17	991.51	8	2324.86	45	4102.48	46	511.67	19	1920.9	25
4		min	-1661.94	25	-985.24	32	-82.5	21	-471.17	22	-2521.15	43	-1921.35	17
5	N13	max	352.14	18	1610.85	22	2235.66	34	732.02	14	4593.49	34	1551.54	14
6		min	-360.03	10	-1610.87	30	-135.37	26	-731.55	6	-657.99	26	-1551.56	6
7	Totals:	max	3188.37	18	2933.42	6	6594.78	36						
8		min	-3188.37	10	-2933.42	14	1367.67	76						



### Envelope A ISC 15th (360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[in]	LC	SheLophi*Pphi*Pphi*Mphi*MEqn
1	SA3	PIPE 3.5	.603	40	39	.190 40 11 6449178750 79537953H1-1b
2	SA2	PIPE_3.5	.602	40	45	.199 40 9 6449178750 79537953H1-1b
3	SA1	PIPE_3.5	.578	40	34	.176 40 14 6449178750 79537953H1-1b
4	PB3	C 3X 5	.458	34.86	39	.169 63y 35 3285847628 981.26 4104H1-1b
5	PB2	C 3X 5	.456	34.86	45	.169 6.54 y 49 3285847628 981.26 4104H1-1b
6	PB1	C 3X 5	.433	34.86	49	.158 6.54 y 38 3285847628 981.26 4104H1-1b
7	MP9	PIPE_2.0	.380	57	10	.045 57 15 2086632130 1871 1871 H1-1b
8	MP1	PIPE_2.0	.365	57	16	.046 57 10 2086632130 1871 1871 H1-1b
9	MP3	PIPE_2.0	.359	57	5	.053 57 10 2086632130 1871 1871 1 H1-1b
10	MP6	PIPE_2.0	.354	57	15	.048 57 5 20866. 32130 1871 1871 H1-1b
11	MP4	PIPE_2.0	.351	57	10	.043 57 6 20866. 32130 1871 1871 1 H1-1b
12	MP2	PIPE_2.0	.333	57	6	.049 57 5 2086632130 1871 1871 1 H1-1b
13	MP8	PIPE_2.0	.331	57	10	.044 57 10 2086632130 18711871H1-1b
14	MP7	PIPE_2.0	.328	57	3	.048 57 16 2086632130 187118711 H1-1b
15	MP5	PIPE_2.0	.323	57	9	.042 57 10 2086632130 1871 1871 1 H1-1b
16	CP6	6.5"x0.37" Plate	.254	21	8	.109 21 y 37 27548. 75757. 583.96 6395H1-1b
17	CP4	6.5"x0.37" Plate	.249	21	2	.101 21 y 47 2754875757583.96 6186H1-1b
18	CP5	6.5"x0.37" Plate	.244	21	13	.109 21 y 47 2754875757583.96 6219H1-1b
19	M19	PIPE_2.0	.147	72	10	.155 72 2 1491632130 1871 1871 H1-1b
20	M20	PIPE_2.0	.145	24	16	.154 72 8 1491632130 1871 1871 H1-1b
21	M21	PIPE_2.0	.140	72	5	.143 72 13 1491632130 1871 1871 H1-1b
22	IFH21	L2x2x3	.123	0	30	.035 0 z 43 1808423392557.72 11821 H2-1
23	IFH32	L2x2x3	.119	0	14	.035 0 y 41 1808423392557.72 11821 H2-1
24	IFH12	L2x2x3	.114	0	25	.034 0 y 35 1808423392557.72 1179 1 H2-1
25	IFH11	L2x2x3	.113	0	3	.035 0 z 49 1808423392557.72 11791 H2-1
26	H1	PIPE 3.5	.107	48	105	.102 72 10 6066678750 795379531 H1-1b
27	H3	PIPE_3.5	.104	48	207	.098 24 15 6066678750 795379531 H1-1b
28	<b>FH 31</b>	L2x2x3	.104	0	26	.034 0 z 38 1808423392557.72 11821 H2-1
29	H2	PIPE 3.5	.102	48	159	.095 72 5 6066678750 79537953 1 H1-1b
30	FH22	L2x2x3	.101	0	2	.034 0 y 46 18084. 23392. 557.72 1182 1 H2-1
31	CP2	6.6x4.46x0.25	.059	0	26	.045 42 y 17 51 17087561 246471251 H2-1
32	CP3	6.6x4.46x0.25	.058	0	22	.042 0 y 3 5117087561 246471251 H2-1
33	CP1	6.6x4.46x0.25	.054	18.81	18	.041 0 y 14 51 17087561 246471251 H2-1

# Envelope AISIS 100-12: LRFD Cold Formed Steel Code Checks

Member Shape Code Check Loc[in]LC Shea...Loc[i..DirLC phi*Pn[..phi*Tn[..phi*Mn...phi*Mn... Cb CmyyCmzz Eqn No Data to Print ... APPENDIX D

# ADDITIONAL CALCUATIONS



### BOLT TOOL 1.5.2

Projec	et Data
Job Code:	189056
Carrier Site ID:	BOBDL00047A
Carrier Site Name:	CT-CCI-T-806376

Co	de
Design Standard:	TIA-222-H
Slip Check:	No
Pretension Standard:	AISC

Bolt Properties						
Connection Type:	Bolt					
Diameter:	0.625	in				
Grade:	A325					
Yield Strength (Fy):	92	ksi				
Ultimate Strength (Fu):		ksi				
Number of Bolts:	4					
Threads Included:	No					
Double Shear:	No					
Connection Pipe Size:	-	in				



### **Connection Description**

Standoff to Monopole

Bolt Check*						
Tensile Capacity (φT _n ):		lbs				
Shear Capacity (φV _n ):		lbs				
Tension Force (T _u ):		lbs				
Shear Force (V _u ):	698.8	lbs				
Tension Usage:	23.0%					
Shear Usage:	3.9%					
Interaction:	23.0%	Pass				
Controlling Member:	SA2					
Controlling LC:	42					

*Rating per TIA-222-H Section 15.5

APPENDIX E

### SUPPLEMENTAL DRAWINGS

			$\leftarrow$	1	Ċ	Ļ	μ.		4		
1	BY DATE DRR 12/27/11	MSM 11/25/14 RJC 04/07/15				•				WESTCHESTER, IL. 60154 U.S.A.	
0.	REVISIONS DESCRIPTION INITIAL RELEASE	ANGE NOSE CORNER BRKT, ADD GUB-4240 NEW RINGMOUNT WELDMENT DESIGN							ME LURA MC-PK8-C	ASEABLY DRAWIG	
0		8000005579 CHANG 8000007579 NE							m sin	C/18/11 (4.26, A500) Relsone C (4.LV A123 C (4.LV A123 1410.14 LBS 3 (410.14 LBS	
4	REV.	20 Q							These drafting and gradifications are the pranticular property of Anebel Conference on any the used any for the specific proper advocated in windy by Anere Control and any by con- cut. DIMICING ARE M. INCHES U.O.S.	±27 ±1/32 ₹11/32	
	ΩΤΥ. -	I-C         1         464.27 LBS           C         1         543.22 LBS	ΓRΥ ΟΝLΥ							u:	
	A PART NO. MTC3006SB STE	MCPK8CSB PIPE STEEL BUNDLE FOR MC-PK8-C MCPK8CHWK HARDWARE KIT FOR MC-PK8-C	FOR BOM ENTRY ONLY						OTES.	1. CUSTOMER ASSEMBLY SHEETS 2-3.	
	ITEA 1	3 0			Ċ	<b>†</b>	<u>n:</u>	1	-1 -1		





# Exhibit F

**Power Density/RF Emissions Report** 



# RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

# Site ID: BOBDL00047A

806376 1455 Forbes Street East Hartford, Connecticut 06118

September 28, 2021

EBI Project Number: 6221005703

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of FCC general population allowable limit:	59.24%			



environmental | engineering | due diligence

September 28, 2021

Dish Wireless

Emissions Analysis for Site: BOBDL00047A - 806376

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **1455 Forbes Street** in **East Hartford, Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ( $\mu$ W/cm²). The number of  $\mu$ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ( $\mu$ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400  $\mu$ W/cm² and 467  $\mu$ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000  $\mu$ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.



Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

## CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 1455 Forbes Street in East Hartford, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 4) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.



environmental | engineering | due diligence

- 5) The antennas used in this modeling are the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector A, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector B, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 6) The antenna mounting height centerline of the proposed antennas is 77 feet above ground level (AGL).
- 7) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 8) All calculations were done with respect to uncontrolled / general population threshold limits.



# **Dish Wireless Site Inventory and Power Data**

Sector:	А	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21
Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz
Gain:	17.45 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd
Height (AGL):	77 feet	Height (AGL):	77 feet	Height (AGL):	77 feet
Channel Count:	8	Channel Count:	8	Channel Count:	8
Total TX Power (W):	280 Watts	Total TX Power (W):	280 Watts	Total TX Power (W):	280 Watts
ERP (W):	3,065.51	ERP (W):	3,065.51	ERP (VV):	3,065.51
Antenna AI MPE %:	3.14%	Antenna BI MPE %:	3.14%	Antenna CI MPE %:	3.14%



environmental | engineering | due diligence

Site Composite MPE %				
Carrier	MPE %			
Dish Wireless (Max at Sector A):	3.14%			
Sprint	6.41%			
Clearwire	0.22%			
AT&T	9.72%			
Verizon	9.8%			
T-Mobile	29.95%			
Site Total MPE % :	59.24%			

Dish Wireless MPE % Per Sector				
Dish Wireless Sector A Total:	3.14%			
Dish Wireless Sector B Total:	3.14%			
Dish Wireless Sector C Total:	3.14%			
Site Total MPE % :	59.24%			

Dish Wireless Maximum MPE Power Values (Sector A)							
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ² )	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
Dish Wireless 600 MHz n71	4	223.68	77.0	6.38	600 MHz n71	400	1.60%
Dish Wireless 1900 MHz n70	4	542.70	77.0	15.48	1900 MHz n70	1000	1.55%
						Total:	3.14%

• NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.



### Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)		
Sector A:	3.14%		
Sector B:	3.14%		
Sector C:	3.14%		
Dish Wireless Maximum MPE % (Sector A):	3.14%		
Site Total:	59.24%		
Site Compliance Status:	COMPLIANT		

The anticipated composite MPE value for this site assuming all carriers present is **59.24%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

# Exhibit G

Letter of Authorization



4545 E River Rd, Suite 320 West Henrietta, NY 14586 Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

### Crown Castle Letter of Authorization

**CT - CONNECTICUT SITING COUNCIL** 

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

#### Re: Tower Share Application Crown Castle telecommunications site at: 1455 FORBES STREET, EAST HARTFORD, CT 06118

CROWN ATLANTIC COMPANY LLC ("Crown Castle") hereby authorizes DISH Wireless, LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name: 806376/HRT 100 943239 Customer Site ID: BOBDL00047A/CT-CCI-T-806376 Site Address: 1455 FORBES STREET, EAST HARTFORD, CT 06118

Crown Castle

By:

Date: _____10/4/2021

Richard Zajac Real Estate Specialist

# Exhibit H

**Recipient Mailings** 



### Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

## Click-N-Ship® Label Record





### Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

# Click-N-Ship® Label Record





### Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

## Click-N-Ship® Label Record





### Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

## Click-N-Ship® Label Record



		OSTAL	<u>STATE</u> SERVI	-5 CE.	
	UNION\ 10/08/2021	UNIONVILL 24 MILL S /ILLE, CT 06 (800)275-8	1 085-9998 777	)1:43 PM	
	Product	Qty	Price	Price	
	Prepaid Mail West Henri Weight: O Acceptance Fri 1	1 etta, NY 14 lb 2.10 oz Date: )/08/2021	586	\$0.00	
~	Prepaid Mail East Hart Weight: 1 Acceptanc Fri 1	1 ford, CT 061 1b 2.40 of	108 z	\$0,00	
·	Prepaid Mail East Har Weight: Acceptan Fri	1 tford, CT 06 1 lb 2.50 c ce Date: 10/08/2021	5118 5 <b>2</b>	\$0.00	
	Acceptar Fri	1 1b 2.40 nce Date: 10/08/2021 g #: 5 5036 9930	0026 1548		
	Grand Total			\$0.00	