STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
www.ct.gov/csc

March 8, 2013

Kevin Savage Crown Castle 3530 Torrington Way, Suite 300 Charlotte, NC 28277

RE: **EM-SPRINT-NEXTEL-042-130222** – Sprint Nextel Corporation notice of intent to modify an existing telecommunications facility located at 94 East High Street, East Hampton, Connecticut.

Dear Mr. Savage:

The Connecticut Siting Council (Council) hereby acknowledges your notice to modify this existing telecommunications facility, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies with the following conditions:

- Any deviation from the proposed modification as specified in this notice and supporting materials with Council shall render this acknowledgement invalid;
- Any material changes to this modification as proposed shall require the filing of a new notice with the Council;
- Within 45 days after completion of construction, the Council shall be notified in writing that construction has been completed;
- The validity of this action shall expire one year from the date of this letter; and
- The applicant may file a request for an extension of time beyond the one year deadline provided that such request is submitted to the Council not less than 60 days prior to the expiration;

The proposed modifications including the placement of all necessary equipment and shelters within the tower compound are to be implemented as specified here and in your notice dated February 8, 2013. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to an existing facility site that would not increase tower height, extend the boundaries of the tower site, increase noise levels at the tower site boundary by six decibels, and increase the total radio frequencies electromagnetic radiation power density measured at the tower site boundary to or above the standard adopted by the State Department of Environmental Protection pursuant to General Statutes § 22a-162. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Please be advised that the validity of this action shall expire one year from the date of this letter. Any additional change to this facility will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding

the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Thank you for your attention and cooperation.

Very truly yours,

Linda Roberts
Executive Director

LR/CDM/cm

c: The Honorable Susan Weintraub, Chairman Town Council, Town of East Hampton James Carey, Zoning Enforcement Officer, Town of East Hampton

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov www.ct.gov/csc

February 25, 2013

The Honorable Susan Weintraub Chairman Town Council Town of East Hampton 20 East High Street East Hampton, CT 06424

RE: **EM-SPRINT-NEXTEL-042-130222** – Sprint Nextel Corporation notice of intent to modify an existing telecommunications facility located at 94 East High Street, East Hampton, Connecticut.

Dear Chairman Town Council Weintraub:

The Connecticut Siting Council (Council) received a request to modify an existing telecommunications facility, pursuant to Regulations of Connecticut State Agencies Section 16-50j-72, a copy of which has already been provided to you.

If you have any questions or comments regarding the proposal, please call me or inform the Council by March 11, 2013.

Thank you for your cooperation and consideration.

Very truly yours,

Linda Roberts
Executive Director

LR/cm

c: James Carey, Zoning Enforcement Officer, Town of East Hampton

CROWN

February 8, 2013

Ms. Linda Roberts
Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, Connecticut 06051

Crown Castle

3530 Torrington Way Suite

Charlotte NC 28277

www.crowncastle.com

RE: Sprint Nextel-Exempt Modification Request- Crown Site BU 876352 Sprint Nextel Site CT03XC335 – Located at –94 East High Street, East Hampton, CT 06424

Dear Ms. Roberts:

This letter and attachments are submitted on behalf of Sprint Nextel (Sprint). Sprint is making modifications to certain existing sites in its Connecticut system in order to implement their network vision technology. Please accept this letter and attachments as notification, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies ("R.C.S.A."), of construction that constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2). In compliance with R.C.S.A. Section 16-50j-73, a copy of this letter and attachments is being sent to the Town Manager, Michael Maniscalco for the Town of East Hampton.

Sprint plans to modify the existing wireless communications facility owned by Crown Castle and located at 94 East High Street East Hampton CT. Attached are a compound plan and elevation depicting the planned changes, and documentation of the structural sufficiency of the structure to accommodate the revised antenna configuration. Also included is a power density report reflecting the modification to Sprints operations at the site.

The changes to the facility do not constitute a modification as defined in Connecticut General Statutes ("C.G.S.") Section 16-50i(d) because the general physical characteristics of the facility will not be significantly changed. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for in R.C.S.A. Section 16-50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing tower. Sprints replacement antennas will be located at the same elevation on the existing tower.
- 2. Although the proposed modifications will involve replacing the ground-mounted equipment the proposed change will not require the extension of the site boundaries.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more.
- 4. The operation of the replacement antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications

Commission (FCC) adopted safety standard. A cumulative General Power Density table for Sprint modified facility is included behind <u>Tab 2</u>.

Also attached is a Structural Report confirming that the tower and foundation can support Sprints proposed modifications. (See <u>Tab 3</u>).

For the foregoing reasons, Sprint respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b) (2).

Sincerely,

Kevin Savage

15in Sauge

Enclosures

Copy to: Town of East Hampton, Town Manager Michael Maniscalco

SHEET INDEX DESCRIPTION NO. T1 TITLE SHEET C1 GENERAL NOTES COMPOUND SITE PLAN & ELEVATION EQUIPMENT SITE PLANS EQUIPMENT DETAILS C5 ANTENNA PLANS C6 ANTENNA CABLE RISER & GPS DETAILS C7 EQUIPMENT DETAILS RF AND CABLE DETAILS FIBER DISTRIBUTION BOX DETAILS C9 E1 UTILITY SITE PLAN E2 DETAILS E3 GROUNDING PLAN AND DETAILS

DRIVING DIRECTIONS

DEPART FROM SPRINT: 1 INTERNATIONAL BLVD MAHWAH, NJ 07430

- 1. HEAD NORTH ON INTERNATIONAL BLVD/PARK ST TOWARD QUEENSLAND RD. CONTINUE TO FOLLOW INTERNATIONAL BLVD. 2. TAKE THE 3RD RIGHT ONTO PARK LN.
- 3. CONTINUE STRAIGHT ONTO LEISURE LN.
- 5. TAKE THE NEW JERSEY 17 N/INTERSTATE 287 N EXIT TOWARD INTERSTATE 87/NORTH Y. THRUWAY. 6. KEEP LEFT AT THE FORK, FOLLOW SIGNS FOR I-287 N/I-87/NJ-17 N/N Y.
- THRUWAY AND MERGE ONTO I-287 N/NJ-17 N.
- 7. KEEP RIGHT AT THE FORK, FOLLOW SIGNS FOR I-87 S/I-287/TAPPAN ZEE BR/NEW YORK CITY/NEW YORK THRUWAY AND MERGE ONTO 1-287 E/1-87 S.
 CONTINUE TO FOLLOW 1-287 E.
- ENTERING CONNECTICUT.
- 9. Take exit 48 on the left to merge onto I-91 N toward Hartford.
 10. Take exit 22-22 North-22 South to merge onto CT-9 S toward
- 11. TURN RIGHT ONTO HARTFORD AVE. 12. TAKE THE 2ND RIGHT ONTO MAIN ST.
- 13. TURN RIGHT ONTO CT-66 E/MARLBOROUGH ST.
- CONTINUE TO FOLLOW CT-66 E.

 14. TURN RIGHT ONTO LAKE VISTA DR.

NETWORK VISION MMBTS LAUNCH NORTHERN CONNECTICUT MARKET

SITE NAME

(R2E) CT3674 TO CT03XC335 RICHARD WALL

CROWN CASTLE SITE NAME

RICHARD WALL

SITE NUMBER

CT03XC335

CROWN CASTLE SITE ID

876352

SITE ADDRESS

1000 LAKE VISTA DRIVE EAST HAMPTON, CT 06424

> STRUCTURE TYPE MONOPOLE

PROJECT TEAM

UNDERGROUND SERVICE ALERT **CALL TOLL FREE** 1-800-922-4455

PROJECT SUMMARY

(R2E) CT3674 TO CT03XC335 RICHARD WALL SITE NAME:

SITE NO .: CT03XC335

1000 LAKE VISTA DRIVE SITE ADDRESS: EAST HAMPTON, CT 06424

COUNTY:

SITE COORDINATES: LATITUDE:

(NAD 83) 41° 35' 14.2" N (NAD 83) 72' 29' 19.6" W LUNGITUDE: (AMSL) GROUND ELEV .: ±667'

MIDDLESEX

CONNECTICUT SITING COUNCIL JURISDICTION:

RESIDENTIAL ZONING CLASSIFICATION:

LANDLORD: CROWN ATLANTIC COMPANY LLC 2000 CORPORATE DRIVE

CANONSBURG, PA 15317 (704) 405-6555

APPLICANT: 1 INTERNATIONAL BLVD. MAHWAH, NJ 07495

ALCATEL LUCENT PROJECT MANAGER: 1 ROBBINS ROAD WESTFORD, MA 01886

ISAM ELHALWANI CONTACT: (617) 851-6133

MIKE NEGRETE CONSTRUCTION MANAGER (315) 439-4819 CROWN CASTLE MIKE CALLAHAN CONSTRUCTION MANAGERS (860) 919-7278

CONNECTICUT LIGHT & POWER (860) 947-2000 POWER PROVIDER:

VERIZON (855) 277-5195 FIBER PROVIDER: INFINIGY ENGINEER: 11 HERBERT DRIVE LATHAM, NY 12110

PAUL FANOS CONTACT: (518) 690-0790

2003 INTERNATIONAL BUILDING CODE 2005 CONNECTICUT BUILDING CODE BUILDING CODE: W/ 2009 AMENDMENT UNIFORM MECHANICAL CODE UNIFORM PLUMBING CODE

LOCAL BUILDING CODE CITY/COUNTY ORDINANCES

2005 NATIONAL ELECTRICAL CODE ELECTRICAL CODE:

VICINITY MAP

1 ROBBINS ROAD WESTFORD, MA 01886

INFINIGY Build. Deliver.

Latham, NY 12110 OFFICE #: (518) 690-0790 FAX #: (518) 690-0793

PROJECT MANAGER

SCOPE OF WORK:

- HANDICAP ACCESS REQUIREMENTS ARE NOT REQUIRED
- FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION
- FACILITY HAS NO PLUMBING OR REFRIGERANTS

OWNER AND TENANT MAY, FROM TIME TO TIME AT

TENANT'S OPTION, REPLACE THIS EXHIBIT WITH AND

EXHIBIT SETTING FORTH THE LEGAL DESCRIPTION OF THE SITE, OR WITH ENGINEERED OR AS-BUILT DRAWING
DEPICTING THE SITE OR ILLUSTRATING STRUCTURAL

MODIFICATIONS OR CONSTRUCTION PLANS OF THE SITE.

EQUIPMENT LOCATED WITHIN THE SITE CONTAINED IN THESE OTHER DOCUMENTS IS ILLUSTRATIVE ONLY, AND

DOES NOT LIMIT THE RIGHTS OF SPRINT AS PROVIDED

FOR IN THE AGREEMENT. THE LOCATIONS OF ANY

ACCESS AND UTILITY EASEMENTS ARE ILLUSTRATIVE

ONLY. ACTUAL LOCATIONS MAY BE DETERMINED BY

COMPLIANCE WITH LOCAL LAWS AND REGULATIONS.

TENANT AND/ OR THE SERVICING UTILITY COMPANY IN

ANY VISUAL OR TEXTUAL REPRESENTATION OF THE

- THIS FACILITY SHALL MEET OR EXCEED ALL FAA AND FCC REGULATORY REQUIREMENTS
- ALL NEW MATERIAL SHALL BE FURNISHED AND INSTALLED BY CONTRACTOR UNLESS NOTED OTHERWISE. CABINETS, ANTENNAS/RRU AND CABLES FURNISHED BY OWNER AND INSTALLED BY CONTRACTOR

ENGINEER

- INSTALL NEW ANTENNAS/RRH'S ON EXISTING TOWER
- INSTALL NEW BTS OR RETROFIT EXISTING BTS IN EXISTING
- REMOVE EXISTING COMA ANTENNAS AND COAX CABLES
- REPLACE EXISTING BATTERY CABINET WITH NEW BATTERY
- REPLACE EXISTING GPS IF REQUIRED

ENGINEER'S LICENSE

CERTIFICATION STATEMENT:

I HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR APPROVED BY ME, AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF CONNECTICUT.

LICENSED ENGINEER - STATE OF CONNECTICUT

APPROVALS

	DATE
	DATE
	DATE
	DATE
NAME/COMPANY: TITLE:	DATE
	NAME/COMPANY:

FINGY CANADA <u>Z</u> 0. ISSUED FOR REVIEW AHS 11/20/ rawn: AHS Date: 11/29/12 Designed: AJD Date: 11/29/12 294-066

00

Sprint

(R2E) CT3674

TO CT03XC335

RICHARD WALL

1000 LAKE VISTA DRIVE EAST HAMPTON, CT 06424

Drawing Scale: AS NOTED

TITLE SHEET

TI

GENERAL NOTES

PART 1 - GENERAL REQUIREMENTS

- 1.1 THE WORK SHALL COMPLY WITH APPLICABLE NATIONAL CODES AND STANDARDS, LATEST EDITION, AND PORTIONS THEREOF, INCLUDED BUT NOT LIMITED TO THE FOLLOWING:
 - A. GR-63-CORE NEBS REQUIREMENTS: PHYSICAL PROTECTION
 B. GR-78-CORE GENERIC REQUIREMENTS FOR THE PHYSICAL DESIGN
 - AND MANUFACTURE OF TELECOMMUNICATIONS EQUIPMENT.

 C. NATIONAL FIRE PROTECTION ASSOCIATION CODES AND STANDARDS
 (NFPA) INCLUDING NFPA 70 (NATIONAL ELECTRICAL CODE "NEC").
 - D. AND NFPA 101 (LIFE SAFETY CODE).
 E. AMERICAN SOCIETY FOR TESTING OF MATERIALS (ASTM).
 - F. INSTITUTE OF ELECTRONIC AND ELECTRICAL ENGINEERS (IEEE).

1.2 DEFINITIONS:

- A: WORK: THE SUM OF TASKS AND RESPONSIBILITIES IDENTIFIED IN THE CONTRACT DOCUMENTS.
- B: COMPANY: SPRINT NEXTEL CORPORATION
- C. ENGINEER: SYNONYMOUS WITH ARCHITECT & ENGINEER AND "A&E".
 THE DESIGN PROFESSIONAL HAVING PROFESSIONAL RESPONSIBILITY FOR DESIGN OF THE PROJECT
- D: CONTRACTOR: CONSTRUCTION CONTRACTOR; CONSTRUCTION VENDOR; INDIVIDUAL OR ENTITY WHO AFTER EXECUTION OF A CONTRACT IS BOUND TO ACCOMPLISH THE WORK.
- E: THIRD PARTY VENDOR OR AGENCY: A VENDOR OR AGENCY ENGAGED SEPARATELY BY THE COMPANY, A&E, OR CONTRACTOR TO PROVIDE MATERIALS OR TO ACCOMPLISH SPECIFIC TASKS RELATED TO BUT NOT INCLUDED IN THE WORK.
- 1.3 POINT OF CONTACT: COMMUNICATION BETWEEN THE COMPANY AND THE CONTRACTOR SHALL FLOW THROUGH THE SINGLE COMPANY SITE DEVELOPMENT SPECIALIST OR OTHER PROJECT COORDINATOR APPOINTED TO MANAGE THE PROJECT FOR THE COMPANY.
- 1.4 ON-SITE SUPERVISION: THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE RESPONSIBLE FOR CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES IN ACCORDANCE WITH THE CONTRACT DOCUMENTS. THE CONTRACTOR SHALL EMPLOY A COMPETENT SUPERINTENDENT WHO SHALL BE IN ATTENDANCE AT THE SITE AT ALL TIMES DURING PERFORMANCE OF THE WORK.
- DRAWINGS, SPECIFICATIONS AND DETAILS REQUIRED AT JOBSITE: THE CONSTRUCTION CONTRACTOR SHALL MAINTAIN A FULL SET OF THE CONSTRUCTION DETAILS FOR WIRELESS SITES, AND THE STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES AT THE JOBSITE FROM MOBILIZATION THROUGH CONSTRUCTION COMPLETION.

 A. THE JOBSITE DRAWINGS, SPECIFICATIONS AND DETAILS SHALL BE
 - CLEARLY MARKED DAILY IN PENCIL WITH ANY CHANGES IN CONSTRUCTION OVER WHAT IS DEPICTED IN THE DOCUMENTS. AT CONSTRUCTION COMPLETION, THIS JOBSITE MARKUP SET SHALL BE DELIVERED TO THE COMPANY OR COMPANY'S DESIGNATED REPRESENTATIVE TO BE FORWARDED TO THE COMPANY'S A&E VENDOR FOR PRODUCTION OF "AS-BUILT" DRAWINGS.
- 1.6 USE OF JOB SITE: THE CONTRACTOR SHALL CONFINE ALL CONSTRUCTION AND RELATED OPERATIONS INCLUDING STAGING AND STORAGE OF MATERIALS AND EQUIPMENT, PARKING, TEMPORARY FACILITIES, AND WASTE STORAGE TO THE LEASE PARCEL UNLESS OTHERWISE PERMITTED BY THE CONTRACT DOCUMENTS.

1.7 NOTICE TO PROCEED:

- A. NO WORK SHALL COMMENCE PRIOR TO COMPANY'S WRITTEN NOTICE TO PROCEED.
- B. UPON RECEIVING NOTICE TO PROCEED, CONTRACTOR SHALL FULLY PERFORM ALL WORK NECESSARY TO PROVIDE SPRINT NEXTEL WITH AN OPFRATIONAL WIRELESS FACILITY.

PART 2 - EXECUTION

- 2.1 TEMPORARY UTILITIES AND FACILITIES: THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL TEMPORARY UTILITIES AND FACILITIES NECESSARY EXCEPT AS OTHERWISE INDICATED IN THE CONSTRUCTION DOCUMENTS. TEMPORARY UTILITIES AND FACILITIES INCLUDE, POTABLE WATER, HEAT, HVAC, ELECTRICITY, SANITARY FACILITIES, WASTE DISPOSAL FACILITIES, AND TELEPHONE/COMMUNICATION SERVICES. PROVIDE TEMPORARY UTILITIES AND FACILITIES IN ACCORDANCE WITH OSHA AND THE AUTHORITY HAVING JURISDICTION. CONTRACTOR MAY UTILIZE THE COMPANY ELECTRICAL SERVICE IN THE COMPLETION OF THE WORK WHEN IT BECOMES AVAILABLE. USE OF THE LESSORS OR SITE OWNER'S UTILITIES OR FACILITIES IS EXPRESSLY FORBIDDEN EXCEPT AS OTHERWISE ALLOWED IN THE CONTRACT DOCUMENTS.
- 2.2 ACCESS TO WORK: THE CONTRACTOR SHALL PROVIDE ACCESS TO THE JOB SITE FOR AUTHORIZED COMPANY PERSONNEL AND AUTHORIZED REPRESENTATIVES OF THE ARCHITECT/ENGINEER DURING ALL PHASES OF THE WORK.
- 2.3 TESTING: REQUIREMENTS FOR TESTING BY THIS CONTRACTOR SHALL BE AS INDICATED HEREWITH, ON THE CONSTRUCTION DRAWINGS, AND IN THE INDIVIDUAL SECTIONS OF THESE SPECIFICATIONS. SHOULD COMPANY CHOOSE TO ENGAGE ANY THIRD-PARTY TO CONDUCT ADDITIONAL TESTING, THE CONTRACTOR SHALL COOPERATE WITH AND PROVIDE A WORK AREA FOR COMPANY'S TEST AGENCY.

- 2.4 COMPANY FURNISHED MATERIAL AND EQUIPMENT: ALL HANDLING, STORAGE AND INSTALLATION OF COMPANY FURNISHED MATERIAL AND EQUIPMENT SHALL BE IN ACCORDANCE WITH THE REQUIREMENTS OF THE CONTRACT DOCUMENTS AND WITH THE MANUFACTURER'S INSTRUCTIONS AND RECOMMENDATIONS
- A. CONTRACTOR SHALL PROCURE ALL OTHER REQUIRED WORK RELATED MATERIALS NOT PROVIDED BY SPRINT NEXTEL TO SUCCESSFULLY CONSTRUCT A WIRELESS FACILITY.
- 2.5 DIMENSIONS: VERIFY DIMENSIONS INDICATED ON DRAWINGS WITH FIELD DIMENSIONS BEFORE FABRICATION OR ORDERING OF MATERIALS. DO NOT SCALF DRAWINGS.
- 2.6 EXISTING CONDITIONS: NOTIFY THE COMPANY REPRESENTATIVE OF EXISTING CONDITIONS DIFFERING FROM THOSE INDICATED ON THE DRAWINGS DO NOT REMOVE OR ALTER STRUCTURAL COMPONENTS WITHOUT PRIOR WRITTEN APPROVAL FROM THE ARCHITECT AND ENGINEER.

<u> PART 3 — RECEIPT OF MATERIAL & EQUIPMENT</u>

- 3.1 RECEIPT OF MATERIAL AND EQUIPMENT: CONTRACTOR IS RESPONSIBLE FOR SPRINT NEXTEL PROVIDED MATERIAL AND EQUIPMENT AND UPON RECEIPT SHALL:
 - A. ACCEPT DELIVERIES AS SHIPPED AND TAKE RECEIPT.

 B. VERIFY COMPLETENESS AND CONDITION OF ALL DELIVERIES.

 C. TAKE RESPONSIBILITY FOR EQUIPMENT AND PROVIDE INSURANCE PROTECTION AS REQUIRED IN AGREEMENT.
- D. RECORD ANY DEFECTS OR DAMAGES AND WITHIN TWENTY—FOUR HOURS
 AFTER RECEIPT, REPORT TO SPRINT NEXTEL OR ITS DESIGNATED
 PROJECT REPRESENTATIVE OF SUCH.
- E. PROVIDE SECURE AND NECESSARY WEATHER PROTECTED WAREHOUSING. F. COORDINATE SAFE AND SECURE TRANSPORTATION OF MATERIAL AND EQUIPMENT, DELIVERING AND OFF-LOADING FROM CONTRACTOR'S WAREHOUSE TO SITE

PART 4 — GENERAL REQUIREMENTS FOR CONSTRUCTION

- 4.1 CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH. AT THE COMPLETION OF THE WORK, CONTRACTOR SHALL REMOVE FROM THE SITE ALL REMAINING RUBBISH, IMPLEMENTS, TEMPORARY FACILITIES, AND SURPLUS MATERIALS.
- 4.2 EQUIPMENT ROOMS SHALL AT ALL TIMES BE MAINTAINED "BROOM CLEAN" AND CLEAR OF DEBRIS.
- I.3 CONTRACTOR SHALL TAKE ALL REASONABLE PRECAUTIONS TO DISCOVER AND LOCATE ANY HAZARDOUS CONDITION.
 A. IN THE EVENT CONTRACTOR ENCOUNTERS ANY HAZARDOUS CONDITION WHICH HAS NOT BEEN ABATED OR OTHERWISE MITIGATED, CONTRACTOR AND ALL OTHER PERSONS SHALL IMMEDIATELY STOP WORK IN THE AFFECTED AREA AND NOTIFY COMPANY IN WRITING. THE WORK IN THE AFFECTED AREA SHALL NOT BE RESUMED EXCEPT BY WRITTEN NOTIFICATION
- B. CONTRACTOR AGREES TO USE CARE WHILE ON THE SITE AND SHALL NOT TAKE ANY ACTION THAT WILL OR MAY RESULT IN OR CAUSE THE HAZARDOUS CONDITION TO BE FURTHER RELEASED IN THE ENVIRONMENT, OR TO FURTHER REPOSE INDIVIDUALS TO THE HAZARD.
- 4.4 CONTRACTOR'S ACTIVITIES SHALL BE RESTRICTED TO THE PROJECT UMITS. SHOULD AREAS OUTSIDE THE PROJECT LIMITS BE AFFECTED BY CONTRACTOR'S ACTIVITIES, CONTRACTOR SHALL IMMEDIATELY RETURN THEM TO ORIGINAL CONDITION.
- 4.5 CONDUCT TESTING AS REQUIRED HEREIN.

PART 5 - TESTS AND INSPECTIONS

- 5.1 TESTS AND INSPECTIONS:
- A. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL CONSTRUCTION TESTS, INSPECTIONS AND PROJECT DOCUMENTATION.
- B. CONTRACTOR SHALL COORDINATE TEST AND INSPECTION SCHEDULES WITH COMPANY'S REPRESENTATIVE WHO MUST BE ON SITE TO WITNESS SUCH TESTS AND INSPECTIONS.
- C. WHEN THE USE OF A THIRD PARTY INDEPENDENT TESTING AGENCY IS REQUIRED, THE AGENCY THAT IS SELECTED MUCT PERFORM SUCH WORK ON A RECULAR BASIS IN THE STATE WHERE THE PROJECT IS LOCATED AND HAVE A THOROUGH UNDERSTANDING OF LOCAL AVAILABLE MATERIALS, INCLUDING THE SOIL, ROCK, AND GROUNDWATER CONDITIONS
- D. THE THIRD PARTY TESTING AGENCY IS TO BE FAMILIAR WITH THE APPLICABLE REQUIREMENTS FOR THE TESTS TO BE DONE, EQUIPMENT TO BE USED, AND ASSOCIATED HEALTH AND SAFETY ISSUES.

 E. SITE RESISTANCE TO EARTH TESTING PER EXHIBIT. CELL SITE GROUNDING SYSTEM DESIGN.
- F. ANTENNA AND COAX SWEEP TESTS PER EXHIBIT: ANTENNA TRANSMISSION LINE ACCEPTANCE STANDARDS. HYBERFLEX TESTING NOT LIMITED TO COAX SWEEPS.
- G. ALL OTHER TESTS REQUIRED BY COMPANY OR JURISDICTION.

PART 6 - TRENCHING AND BACKFILLING

- 6.1 TRENCHING AND BACKFILLING: THE CONTRACTOR SHALL PERFORM ALL EXCAVATION OF EVERY DESCRIPTION AND OF WHATEVER SUBSTANCES ENCOUNTERED, TO THE DEPTHS INDICATED ON THE CONSTRUCTION DRAWINGS OR AS OTHERWISE SPECIFIED.
- A. PROTECTION OF EXISTING UTILITIES: THE CONTRACTOR SHALL CHECK WITH THE LOCAL UTILITIES AND THE RESPECTIVE UTILITY LOCATOR COMPANIES PRIOR TO STARTING EXCAVATION OPERATIONS IN EACH RESPECTIVE AREA TO ASCERTAIN THE LOCATIONS OF KNOWN UTILITY LINES. THE LOCATIONS, NUMBER AND TYPES OF EXISTING UTILITY LINES DETAILED ON THE CONSTRUCTION DRAWINGS ARE APPROXIMATE AND DO NOT REPRESENT EXACT INFORMATION. THE CONTRACTOR SHALL BE RESPONSIBLE FOR REPAIRING ALL LINES DAMAGED DURING EXCAVATION AND ALL ASSOCIATED OPERATIONS. ALL UTILITY LINES UNCOVERED DURING THE EXCAVATION OPERATIONS, SHALL BE PROTECTED FROM DAMAGE DURING EXCAVATION AND ASSOCIATED OPERATIONS. ALL UTILITY COMPANY.
- B. HAND DIGGING: UNLESS APPROVED IN WRITING OTHERWISE, ALL DIGGING WITHIN AN EXISTING CELL SITE COMPOUND IS TO BE DONE BY HAND.
- C. DURING EXCAVATION, MATERIAL SUITABLE FOR BACKFILLING SHALL BE STOCKPILED IN AN ORDERLY MANNER A SUFFICIENT DISTANCE FROM THE BANKS OF THE TRENCH TO AVOID OVERLOADING AND TO PREVENT SLIDES OR CAVE—INS. ALL EXCAVATED MATERIALS NOT REQUIRED OR SUITABLE FOR BACKFILL SHALL BE REMOVED AND DISPOSED OF AT THE CONTRACTOR'S EXPENSE.
- D. GRADING SHALL BE DONE AS MAY BE NECESSARY TO PREVENT SURFACE WATER FROM FLOWING INTO TRENCHES OR OTHER EXCAVATIONS, AND ANY WATER ACCUMULATING THEREIN SHALL BE REMOVED BY PUMPING OR BY OTHER APPROVED METHOD.
- E. SHEETING AND SHORING SHALL BE DONE AS NECESSARY FOR THE PROTECTION OF THE WORK AND FOR THE SAFETY OF PERSONNEL, UNLESS OTHERWISE INDICATED, EXCAVATION SHALL BE BY OPEN CUT, EXCEPT THAT SHORT SECTIONS OF A TRENCH MAY BE TUNNELED IF, THE CONDUIT CAN BE SAFELY AND PROPERLY INSTALLED AND BACKFILL CAN BE PROPERLY TAMPED IN SUCH TUNNEL SECTIONS. EARTH EXCAVATION SHALL COMPRISE ALL MATERIALS AND SHALL INCLUDE CLAY, SILT, SAND, MUCK, GRAVEL, HARDPAN, LOOSE SHALE, AND LOOSE STONE.
- TRENCHES SHALL BE OF NECESSARY WIDTH FOR THE PROPER LAYING OF THE CONDUIT OR CABLE, AND THE BANKS SHALL BE AS NEARLY VERTICAL AS PRACTICABLE. THE BOTTOM OF THE TRENCHES SHALL BE ACCURATELY GRADED TO PROVIDE UNIFORM BEARING AND SUPPORT FOR EACH SECTION OF THE CONDUIT OF CABLE ON UNDISTURBED SOIL AT EVERY POINT ALONG ITS ENTIRE LENGTH, EXCEPT WHERE ROCK IS ENCOUNTERED, CARE SHALL BE TAKEN NOT TO EXCAVATE BELOW THE DEPTHS INDICATED. WHERE ROCK EXCAVATIONS ARE NECESSARY. THE ROCK SHALL BE EXCAVATED TO A MINIMUM OVER DEPTH OF 6 INCHES BELOW THE TRENCH DEPTHS INDICATED ON THE CONSTRUCTION DRAWINGS OR SPECIFIED. OVER DEPTHS IN THE ROCK EXCAVATION AND UNAUTHORIZED OVER DEPTHS SHALL BE THOROUGHLY BACK FILLED AND TAMPED TO THE APPROPRIATE GRADE, WHENEVER WET OR OTHERWISE UNSTABLE SOIL THAT IS INCAPABLE OF PROPERLY SUPPORTING THE CONDUIT OR CABLE IS ENCOUNTERED IN THE BOTTOM OF THE TRENCH, SUCH SOLID SHALL BE REMOVED TO A MINIMUM OVER DEPTH OF 6 INCHES AND THE TRENCH BACKFILLED TO THE PROPER GRADE WITH EARTH OF OTHER SUITABLE MATERIAL, AS HEREINAFTER
- G. BACKFILLING OF TRENCHES. TRENCHES SHALL NOT BE BACKFILLED UNTIL ALL SPECIFIED TESTS HAVE BEEN PERFORMED AND ACCEPTED. WHERE COMPACTED BACKFILLED WITH SELECT TRENCHES SHALL BE CAREFULLY BACKFILLED WITH SELECT MATERIAL SUCH AS EXCAVATED SOILS THAT ARE FREE OF ICE, SNOW, ROOTS, SOD, RUBBISH OR STONES, DEPOSITED IN 6 INCH LAYERS AND THOROUGHLY AND CAREFULLY RAMMED UNTIL THE CONDUIT OR CABLE HAS A COVER OF NOT LESS THAN 1 FOOT. THE REMAINDER OF THE BACKFILL MATERIAL SHALL BE GRANULAR IN NATURE AND SHALL NOT CONTAIN ICE, SNOW ROOTS, SOD, RUBBISH, OR STONES OF 2-1/2 INCH MAXIMUM DIMENSION. BACKFILL SHALL BE CAREFULLY PLACED IN THE TRENCH AND IN 1 FOOT LAYERS AND EACH LAYER TAMPED. SETTLING THE BACKFILL WITH WATER WILL BE PERMITTED. THE SURFACE SHALL BE GRADED TO A REASONABLE UNIFORMITY AND THE MOUNDING OVER THE TRENCHES LEFT IN A UNIFORM AND NEAT CONDITION.

PROJECT INFORMATION

THIS IS AN UNMANNED AND RESTRICTED ACCESS EQUIPMENT FACILITY AND WILL BE USED FOR THE TRANSMISSION OF RADIO SIGNALS FOR THE PURPOSE OF PROVIDING PUBLIC WIRELESS COMMUNICATIONS SERVICE.

- NO POTABLE WATER SUPPLY IS TO BE PROVIDED AT THIS LOCATION.
- NO WASTE WATER WILL BE GENERATED AT THIS LOCATION.
- NO SOLID WASTE WILL BE GENERATED AT THIS LOCATION.

SPRINT MAINTENANCE CREW (TYPICALLY ONE PERSON) WILL MAKE AN AVERAGE OF ONE TRIP PER MONTH AT ONE HOUR PER VISIT.

LEGEND

SYMBOL	DESCRIPTION
\sim	CIRCUIT BREAKER
마	NON-FUSIBLE DISCONNECT SWITCH
E	FUSIBLE DISCONNECT SWITCH
	SURFACE MOUNTED PANEL BOARD
I	TRANSFORMER
	KILOWATT HOUR METER
JB	JUNCTION BOX
PB	PULL BOX TO NEC/TELCO STANDARDS
	UNDERGROUND UTILITIES
(\hat{H})	DENOTES REFERENCE NOTE
	EXOTHERMIC WELD CONNECTION
•	MECHANICAL CONNECTION
□ OR ⊗	GROUND ROD
ıl—⊙ or 🄯	GROUND ROD WITH INSPECTION SLEEVE
тт	GROUND BAR
-81	PIN AND SLEEVE RECEPTACLE
₽	120AC DUPLEX RECEPTACLE
G	GROUND CONDUCTOR
(_ n →	EPRESENTS DETAIL NUMBER EF. DRAWING NUMBER

ABBREVIATIONS

CIGBE	COAX ISOLATED GROUND BAR EXTERNA
MIGB	MASTER ISOLATED GROUND BAR
SST	SELF SUPPORTING TOWER
GPS	GLOBAL POSITIONING SYSTEM
TYP.	TYPICAL
DWG	DRAWING
BCW	BARE COPPER WIRE
BFG	BELOW FINISH GRADE
PVC	POLYVINYL CHLORIDE
CAB	CABINET
C	CONDUIT
SS	STAINLESS STEEL
G	GROUND
AWG	AMERICAN WIRE GAUGE
RGS	RIGID GALVANIZED STEEL
AHJ	AUTHORITY HAVING JURISDICTION
TTLNA	TOWER TOP LOW NOISE AMPLIFIER
UNO	UNLESS NOTED OTHERWISE
EMT	ELECTRICAL METALLIC TUBING
AGL	ABOVE GROUND LEVEL

TINGY STATE Lettram, NY 12110 Office # (510) 580-0790

Design Bulld. Delives

No. 24705

CENSE

Transport Mobilion S. 24

1 REMISONS PER COMMENTS ANS 1/30/13
0 ISSUED FOR REMEW ANS 11/20/13
10 Submitsi / Revision Appré Dele
Drawn: ANS 10/26/21 11/28/12

Drawn: AIS Date: 11/28/12

Designed: AID Date: 11/29/12

Checked: AGF Date: 11/28/12

Project Number 294-066

Project Title

(R2E) CT3674 TO CT03XC335 RICHARD WALL

1000 LAKE VISTA DRIVE EAST HAMPTON, CT 06424

Prepared Fo

rint

Sprint

Orawing Scale
AS NOTED

i/á0/13 Drawino Tille

> GENERAL NOTES

FOR ADDITIONAL STRUCTURAL INFORMATION SEE STRUCTURAL ANALYSIS COMPLETED BY FDH ENGINEERING, INC DATED: 10/29/12. THE
EXISTING MONOPOLE HAS INSUFFICIENT CAPACITY TO ACCOMMODATE THE PROPOSED EQUIPMENT.

SCALE (11x17): 1'' = 4'-0''SCALE (22x34): 1'' = 2'-0''

NOTE: CONTRACTOR SHALL NOT STACK THE HYBRIFLEX CABLES ON TOP OF THE EXISTING COAXIAL CABLES AS TO PREVENT THE COAXIAL CABLES FROM BEING REMOVED.

REFER TO: CONSTRUCTION STANDARDS-SPRINT DOCUMENT: "EXHIBIT A - STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES REV 4.0 - 02.15.2011.DOCM"

REFER TO: "WEATHERPROOFING SPECS: EXCERPT EXH A -WIHRPRF - STD CONSTR SPECS._157201110421855429.DOCM" REFER TO: "COLOR CODING-SPRINT NEXTEL ANT AND LINE COLOR CODING (DRAFT) V3 09-08-11.PDF"

CONTRACTOR TO VERIFY LATEST REV AND DATE PRIOR TO

SCALE (22x34): 1" = 2'-0"

Drawing Scale AS NOTED

Sprint

00

Date: 1/30/13

wing Title

EQUIPMENT SITE PLANS

0 ISSUED FOR REVIEW AHS 11/29/1

AHS Date: 11/28/12

gned: AID Dale: 11/29/12 ked: AGF Dale: 11/29/12

(R2E) CT3674 TO CT03XC335 RICHARD WALL

1000 LAKE VISTA DRIVE EAST HAMPTON, CT 08424

SCENARIO 124 v2.0

ANTENNA CABLE RISER DIAGRAM NOT TO SCALE

INSTALLER VERIFY LATEST PLUMBING/WIRING DIAGRAMS, PRIOR TO INSTALLATION.

<u>Weatherproofing connectors and cround kit notes:</u>
1. All connectors and ground kits shall be weatherproofed using butyl RUBBER WEATHERPROOFING AND TAPE, THIS INSTALLATION MUST BE DONE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATION OR PER THE FOLLOWING INSTRUCTIONS (WHICHEVER IS GREATER).

2. THE COAXIAL CAPILE CONNECTION OR GROUND KIT CAN BE ENCOMPASSED INTO COLD SHRINK AND COMPLETELY WRAPPED WITH 2 IN. WIDE ELECTRICAL TAPE OVERLAPPING EACH ROW BY APPROXIMATELY 1/2" AND EXTENDING PAST THE CONNECTION BY TWO INCHES AND DISCUSSED BELOW; OR

3. THE COAXIAL ABLE CONNECTION OR GROUND KIT CAN BE WRAPPED WITH LAYERS OR

ELECTRICAL/BUTTL RUBBER/ELECTRICAL TAPE AS DISCUSSED BELOW OR;

4. THE COAXIAL CABLE CONNECTION OR GROUND KIT CAN BE WRAPPED WITH TWO LAYERS

OF 1.5 INCH WIDE SELF-AMALGAMATING TAPE COVERED WITH TWO LAYERS OF

RRH JUMPER NOTES:

1. FOR DISTANCES BETWEEN RRH'S AND ANTENNAS LESS THAN 10'-0" USE A 1/2" JUMPER. 2. FOR DISTANCES BETWEEN RRH'S AND ANTENNAS GREATER THAN 10'-0" USE A 7/8" JUMPER.

esigned: AD Date: 11/29/12 ecked: AGF Date: 11/29/12

ISSUED FOR REVIEW AHS 11/29/1

roject Number 294-066

roject Titla

(R2E) CT3674 TO CT03XC335 RICHARD WALL

1000 LAKE VISTA ORIVE EAST HAMPTON, CT 06424

Sprint

Drawing Scale: AS NOTED

1/30/13

ANTENNA CABLE RISER AND GPS DETAILS

Design. Bulld. Deliver. \mathbb{C} NFINIGY (1) Herbert 7 1 REWISON'S PER COMMENTS AHS 1/30/13 0 ISSUED FOR REWIEW AHS 11/29/12 isigned: AID Dale: 11/28/12 294-066 (R2E) CT3674 TO CT03XC335 RICHARD WALL 1000 LAKE VISTA DRIVE EAST HAMPTON, CT 08424 Sprint Drawing Scale: AS NOTED 1/30/13_ EQUIPMENT DETAILS

		Northern Connecticut		
_	Cascade iD	CT03XC335		
_		SECTOR 1	SECTOR 2	SECTOR 3
<u> </u>	Split sector present	No	No	No
1	1900MHz_Azimuth	0	120	220
	1900MHz_No_of_Antennas	1	1	1
	1900MHz_RADCenter(ft)	120	120	120
ļ	1900MHz_Antenna Make	RFS	RFS	RFS
1	1900MHz_Antenna Model	APXVSPP18-C-AZ0	APXVSPP18-C-A20	APXVSPP18-C-AZG
	1900MHz_Horizontal_Beamwidth	65	65	65
	1900MHz_Vertical_Beamwidth	5.5	5.5	5.5
	1900MHz_AntennaHeight (ft)	6	6 15.9	6
	1900MHz_AntennaGain(dBd)	15.9	-1	15.9
	1900MHz_E_Tilt	0	0	0
	1900MHz _M_Tilt	2	2	2
1	1900MHz_Carrier_Forecast_Year_2013 1900MHz_RRH Manufacturer	ALU	ALU	ALU
اما	1900MHz_RRH Model	RRH 1900 4X45 65MHz	RRH 1900 4X45 65MHz	RRH 1900 4X45 65MHz
98	1900MHz_RRH Count	1	1	1
-	1900MHz_RRH Location	Top of the Pole/Tower	Top of the Pole/Tower	Top of the Pole/Tower
1	1700MHZ_NIVI COCATION	Top of the role rowe.	Top of the rate force	Top of the Toler Tower
	1900MHz Combiner Model	No Combiner Required	No Combiner Required	No Combiner Required
	1900MHz_Top_Jumper #1_Length (RRH or Combiner-to-Antenna for TT or Main Coax to	10	10	10
	1900MHz_Top_Jumper #1_Cable_Model (RRH or Combiner-to-Antenna for TT or Main Coax	LCF12-50J	LCF12-50J	LCF12-50J
	1900MHz_Top_Jumper #2_Length (RRH to Combiner for TT if applicable, ft)	N/A	N/A	N/A
1	1900MHz_Top_Jumper #2_Cable_Model (RRH to Combiner for TT if applicable)	N/A	N/A	N/A
ļ	1900MHz_Main_Coax_Cable_Length (ft)	N/A	N/A	N/A
i	1900MHz_Main_Coax_Cable_Model	N/A	N/A	N/A
1	1900MHz_Bottom_Jumper #1_Length (Ground based RRH to Combiner-OR-Main Coax, ft)	N/A	N/A	N/A
1	1900MHz_Bottom_Jumper #1_Cable_Model (Ground based RRH to Combiner-OR-Main Coax)	N/A	N/A	N/A
	1900MHz_Bottom_Jumper #2_Length (Ground based-Combiner to Main Coax, ft)	N/A	N/A	N/A
	1900MHz_Bottom_Jumper #2_Cable_Model (Ground based-Combiner to Main Coax)	N/A	N/A	N/A
\vdash	800MHz_Azimuth	0	120	220
1	800MHz_No_of_Antennas	0	0	0
1	800MHz_RADCenter(ft)	120	120	120
1	800MHz_AntennaMake	RFS	RFS	RFS
		APXVSPP18-C-A20 (Shared	APXVSPP18-C-A20 (Shared	APXVSPP18-C-A20 (Shared
	800MHz_AntennaModel	w/1900)	w/1900)	w/1900)
-	800MHz_Horizontal_Beamwidth	65	65	65
	800MHz_Vertical_Beamwidth	11.5	11.5	11.5
	800MHz_AntennaHeight (ft)	6	6	6
	800MHz_AntennaGain (dBd)	13.4	13.4	13.4
	800MHz_E_Tilt	0	·1	-1
×	800MHz_M_TIIt	0	0	0
	800MHz_RRH Manufacturer	ALU	ALU	ALU
	800MHz_RRH Model	800 MHz RRH 2x50W	800 MHz RRH 2x50W	800 MHz RRH 2×50W
	800MHz_RRH Count	11	1	1
	800MHz_RRH Location	Top of the Pole/Tower	Top of the Pole/Tower	Top of the Pole/Tower
	800_Top_Jumper #1_Length (RRH to Antenna for TT or Main Coax to Antenna for GM)	10	10	10
	800_Top_Jumper_Cable_Model (RRH to Antenna for TT or Main Coax to Antenna for GM)	LCF12-50J	LCF12-50J	LCF12-50J
	800MHz_Main_Coax_Cable_Lengti (ft)	N/A	N/A	N/A
	800MHz_Main_Coax_Cable_Model	N/A	N/A	N/A
	800_Bottom_Jumper #1_Length (Ground based RRH to Main Coax)	N/A	N/A	N/A
-	800_Bottom_Jumper #1_Cable_Model (Ground based RRH to Main Coax)	N/A 124	N/A 124	N/A 124
-	Plumbing Scenario *	L	144	124
Cornments	* If plumbing scenario does not match the material received, please contact your Construction	on manager		
E E	11/9/2012			
18				
ان				

TRAYS. THIS CAN CAUSE THE HOISTING GRIP TO BREAK OR THE CABLES OR WAVE- GUIDES TO FALL.
2. DO NOT USE THE HOISTING GRIP FOR LOWERING CABLE OR CABLE TRAY, SNAGGING OF THE CABLE OR CABLE TRAY MAY LOOSEN

DO NOT USE ONE HOISTING GRIP FOR HOISTING TWO OR MORE CABLES OR CABLE

THE GRIP AND POSSIBLY CAUSE THE CABLE TO CABLE TRAY TO SWAY OR FALL. DO NOT REUSE HOISTING GRIPS. USED GRIPS MAY HAVE LOST ELASTICITY, STRETCHED, OR BECOME WEAKENED. REUSING A GRIP CAN CAUSE THE CABLE OR CABLE TRAY TO SLIP,

BREAK, OR FALL. USE HOISTING GRIPS AT INTERVALS OF NO

MORE THAN 200 FT (60 M).
MAKE SURE THAT THE PROPER HOISTING GRIP IS USED FOR THE CABLE OR CABLE TRAY BEING INSTALLED, SLIPPAGE OR INSUFFICIENT GRIPPING STRENGTH WILL RESULT IF YOU ARE USING THE WRONG HOISTING GRIP.

Steel cable or rope hotal line 5 ft (1,5-m) dyb

> Cable or waveguide

REFER TO: CONSTRUCTION STANDARDS—SPRINT DOCUMENT: "EXHIBIT A - STANDARD CONSTRUCTION SPECIFICATIONS FOR

REFER TO: "WEATHERPROOFING SPECS: EXCERPT EXII A -WTHRPRF - STD CONSTR SPECS._157201110421855429.DOCM"

REFER TO: "COLOR CODING-SPRINT NEXTEL ANT AND LINE COLOR CODING (DRAFT) V3 09-08-11.PDF"
CONTRACTOR TO VERIFY LATEST REV AND DATE PRIOR TO

WIRELESS SITES REV 4.0 - 02.15.2011.DOCM"

CONSTRUCTION.

\HOIST GRIP DETAIL NOT TO SCALE

 \bigcirc

11 Herbert Drive Latham, NY 12110 Office# (516) 690-0793

ISSUED FOR REVIEW ARS 11/29/12

awn: AHS Date: 11/29/12 Designed: A.0 Date: 11/28/12 Checked: AGE Date: 11/28/12

294-066

Project Title

(R2E) CT3674 TO CT03XC335 RICHARD WALL

1000 LAKE VISTA DRIVE EAST HAMPTON, CT 06424

Drawing Scale: AS NOTED

1/30/13

ving Tille

rf and CABLE DETAILS

Drawing Number

C8

SPRINT RFDS NOT TO SCALE

CHECK FST FOR LATEST VERSION OF RFDS

NOTE: RFDS SHOWN PROVIDED BY SPRINT DATED 11/9/12.

NOTE: COORDINATE RF ANTENNA INSTALLATION WITH FINAL SPRINT RFDS. COORDINATE RF MW DISH (IF APPLICABLE) INSTALLATION WITH FINAL

NOT TO SCALE

* SPLIT IN HALF,

CABINET TO DISTRIBUTION BOX.

HAVE HOT-DIPPED GALVANIZED FINISH. 2. MOUNT FIBER AND POWER DISTRIBUTION BOX WITH FOUR (4) 1/4" WINISTRUT BOLTING HARDWARE AND SPRING NUTS. TYPICAL DISTRIBUTION BOX ON H-FRAME DETAIL

SCENARIO 124 v2.0

FIBER & DC CONNECTION DETAILS NOT TO SCALE

00 NEINIGY COMPANIA CONTRACTOR UNAUTROWNER AT STATEM OF A BOU TO THIS BOOM IN STATEM OF A BOOK FOR APPLICASEE STATE AND/OR LOCAL 1 REVISIONS PER COMMENTS AHS 1/30/13 0 ISSUED FOR REVIEW AHS 11/20/13 AHS Date: 11/28/12 esigned: All Date: 11/29/12 id: AGF Date: 11/29/12 294-066 (R2E) CT3674 TO CT03XC335 RICHARD WALL 1000 LAKE VISTA DRIVE EAST HAMPTON, CT 06424 Sprint Orawing Scale AS NOTED Date: 1/30/13 FIBER DISTRIBUTION

BOX DETAILS

CODED NOTES:

- PROPOSED SPRINT FIBER/POWER JUNCTION BOX Mounted to New H-Frame
- PROPOSED H-FRAME FURNISHED AND INSTALLED BY CONTRACTOR
- PROPOSED 1-1/2" LIQUID TIGHT CONDUIT WITH PULL-STRING FOR TELCO FROM FIBER JUNCTION BOX TO RADIO EQUIPMENT CABINET, 5'
- PROPOSED 1-1/2" LIQUID TIGHT CONDUIT WITH PULL-STRING FOR DC POWER FROM FIBER JUNCTION BOX TO RADIO EQUIPMENT CABINET, 5'
- PROPOSED MULTIMODAL RTS CABINET
- PROPOSED BATTERY BACKUP CABINET
- PROPOSED HYBRIFLEX CABLES ROUTED FROM PROPOSED FIBER JUNCTION BOX TO PROPOSED RRH TO FOLLOW EXISTING CABLES (CONTRACTOR TO VERIFY) (TYP. OF (1) PER SECTOR)
- PROPOSED 2" LIQUID TIGHT CONDUIT ROUTED FROM BTS TO EXISTING PPC CABINET

CONTRACTOR SHALL NOT STACK THE TYBRIFLEX CABLES ON TOP OF THE EXISTING COAYIAL CARLES AS TO PREVENT THE COAXIAL CABLES FROM BEING REMOVED.

UNDERGROUND SERVICE ALERT **CALL TOLL FREE** 1-800-922-4455

THREE WORKING DAYS BEFORE YOU DIG

CONTRACTOR TO USE EXISTING SPARE CONDUITS, IF AVAILABLE. CONDUIT SIZES MUST BE EQUAL TO OR GREATER THAN THAT ALLOWED

EXISTING ALARMS NEED TO BE RE-ROUTED AND VERIFIED IN PROPER WORKING CONDITION WHEN NEW MMBTS EQUIPMENT IS INSTALLED.

REMAINING GROUND LEADS FROM REMOVED CABINETS 10 BE COILED (NOT ON WALKING SURFACE).

REMAINING UNUSED CONDUITS FROM EXISTING CABINETS TO BE COVERED WITH WATERPROOF CAPS (NOT DUCT TAPE).

NOTE: CONTRACTOR IS TO ENSURE THE INSTALLATION INSTRUCTIONS FOR EACH CABINET ARE FOLLOWED AND THAT THE MANUFACTURER'S REQUIREMENTS ARE MET.

NOTE: There are no existing dual pole breaker positions AVAILABLE FOR THE MM BTS BREAKER. CONTRACTOR TO VERIFY IF THERE ARE EXISTING SPARE OR UNUSED BREAKERS INSIDE THE PANEL AND REPLACE WITH THE NEW 2P 60A BREAKER FOR THE MM BTS CABINET.

ELECTRICAL NOTES:

- 1. ALL FLECTRICAL WORK SHALL CONFORM TO THE LATEST EDITION OF THE NATIONAL ELECTRICAL CODE (N.E.C.), AND APPLICABLE
- 2. GROUNDING SHALL COMPLY WITH THE ARTICLE 250 OF NATIONAL
- ELECTRICAL CODE.

 3. ALL ELECTRICAL ITEMS SHALL BE U.L. APPROVED OR LISTED.

 4. ALL WIRES SHALL BE AWG MIN #12 THHN COPPER UNLESS NOTED.

 5. CONDUCTORS SHALL BE INSTALLED IN SCHEDULE 40 PVC CONDUIT UNLESS NOTED OTHERWISE.
- 6. LABEL SPRINT SERVICE DISCONNECTS WITH SWITCH AND PPC CABINET WITH ENGRAVED LAMACOID LABELS, LETTERS 1" IN
- 7. ROUTE GROUNDING CONDUCTORS ALONG THE SHORTEST AND STRAIGHTEST PATH POSSIBLE, BEND GROUNDING LEADS WITH A MINIMUM 8" RADIUS.
- 8. ENGAGE AN INDEPENDENT TESTING FIRM TO TEST AND VERIFY THAT RESISTANCE DOES NOT EXCEED 10 OHMS TO GROUND. TEST GROUND RING RESISTANCE PRIOR TO MAKING FINAL GROUND CONNECTIONS TO INFRASTRUCTURE AND EQUIPMENT. GROUNDING AND OTHER OPERATIONAL TESTING SHALL BE WITNESSED BY SPRINTS REPRESENTATIVE.
- 5 PRIVID REPRESENTATIVE.

 9. PROVIDE PULL BOXES AND JUNCTION BOXES WHERE REQUIRED SO THAT CONDUIT BENDS DO NOT EXCEED 360 DEGREES.
- 10. OBTAIN PERMITS AND PAY FEES RELATED TO ELECTRICAL WORK PERFORMED ON THIS PROJECT. DELIVER COPIES OF ALL PERMITS TO SPRINT REPRESENTATIVE.
- 11. SCHEDULE AND ATTEND INSPECTIONS RELATED TO ELECTRICAL WORK REQUIRED BY JURISDICTION HAVING AUTHORITY. CORRECT AND PAY FOR ANY WORK REQUIRED TO PASS ANY FAILED
- 12. REDLINED AS-BUILTS ARE TO BE DELIVERED TO A SPRINT REPRESENTATIVE.
- 13. PROVIDE TWO COPIES OF OPERATION AND MAINTENANCE MANUALS IN THREE-RING BINDER.
- 14. FURNISH AND INSTALL THE COMPLETE ELECTRICAL SERVICE, TELCO CONDUIT, AND THE COMPLETE GROUNDING SYSTEM. 15. ALL WORK SHALL BE PERFORMED IN STRICT ACCORDANCE WITH
- ALL APPLICABLE BUILDING CODES AND LOCAL ORDINANCES, INSTALLED IN A NEAT MANNER AND SHALL BE SUBJECT TO APPROVAL BY A SPRINT REPRESENTATIVE.
- 16. CONDUCT A PRE-CONSTRUCTION SITE VISIT AND VERIFY EXISTING SITE CONDITIONS AFFECTING THIS WORK. REPORT ANY OMISSIONS OR DISCREPANCIES FOR CLARIFICATION PRIOR TO THE START OF CONSTRUCTION.
- 17. PROTECT ADJACENT STRUCTURES AND FINISHES FROM DAMAGE, REPAIR TO ORIGINAL CONDITION ANY DAMAGED AREA.
- 18. REMOVE DEBRIS ON A DAILY BASIS. DEBRIS NOT REMOVED IN A TIMELY FASHION WILL BE REMOVED BY OTHERS AND THE RESPONSIBLE SUBCONTRACTOR SHALL BE CHARGED ACCORDINGLY. REMOVAL OF DEBRIS SHALL BE COORDINATED WITH THE OWNER'S REPRESENTATIVE, DEBRIS SHALL BE REMOVED FROM THE PROPERTY AND DISPOSED OF LEGALLY.
- 19. UPON COMPLETION OF WORK, THE SITE SHALL BE CLEAN AND FREE OF DUST AND FINGERPRINTS
- 20. PRIOR TO ANY TRENCHING, CONTACT LOCAL UTILITY TO VERIFY LOCATION OF ANY EXISTING BURIED SERVICE CONDUITS.
- 21. DOCUMENT GROUND RING INSTALLATION AND CONNECTIONS TO IT WITH PHOTOGRAPHS PRIOR TO BACKFILLING SITE. PRESENT PHOTO ARCHIVE A SITE "PUNCH LIST" WALK TO SPRINT'S REPRESENTATIVE.

INFINIGY ENGINEERING HAS NOT CONDUCTED AN ELECTRICAL LOAD STUDY FOR THIS SITE. CONTRACTOR IS TO VERIFY EXISTING ELECTRICAL LOADS PRIOR TO CONSTRUCTION TO ENSURE THERE IS AMPLE SERVICE AVAILABLE TO ACCOMMODATE THE EXISTING AND PROPOSED EQUIPMENT.

C/O Thin hall have SICENCED !

LIP T	MULTAPEN VAY (COMPANIA)	יגטטי	DOTTON TON OF
_			
_			
			L
ı	REVISIONS FER COUNTRYS		1/30/1
٥	ISSUED FOR REVIEW	AHS	11/29/

Submittal / Revision Appid Claim

_____AHS __ Date:__11/29/12 esigned: A.0 Date: 11/29/12 ked: ACE Date: 11/29/12

294-086

lect Tille

(R2E) CT3674 **TO CT03XC335** RICHARD WALL

1000 LAKE VISTA DRIVE EAST HAMPTON, CT 06424

S

Drawing Scale AS NOTED

1/30/13

UTILITY SITE PLAN

E1

GROUNDING NOTES:
IN ADDITION TO POWER SERVICE GROUNDING AS REQUIRED BY NEC. CONTRACTOR SHALL BE RESPONSIBLE TO COORD AND INSTALL ALL SURGE AND LIGHTING PROTECTION GROUNDING AS REQUIRED AND SPECIFIED BY SPRINT.

- SEPARATION DIMENSIONS MUST BE VERIFIED WITH LOCAL UTILITY CO. REQUIREMENTS. *HAND DIG INSIDE COMPOUND

TINNED COPPER GROUND BAR, 1/4"x4"x20", NEWTON INSTRUMENT CO., HARGER TGB14420M, OR EQUIVALENT. HOLE CENTERS TO MATCH

NEMA DOUBLE LUG CONFIGURATION.

- INSULATORS, NEWTON INSTRUMENT CO. CAT. NO. 3061-4 OR HARGER EQUIVALENT.
- 5/8" LOCKWASHERS, NEWTON INSTRUMENT CO. CAT. NO. 3015-8 OR EQUIVALENT. WALL MOUNTING BRACKET, NEWTON INSTRUMENT CO. CAT. NO. A-6056 OR HARGER
- 5/8-11"x1" H.H.C.S. BOLTS, NEWTON INSTRUMENT CO. CAT. NO. 3012-1 OR HARGER FOUIVALENT. EQUIVALENT.

ALL MOUNTING HARDWARE CAN ALSO BE USED ON 6", 12", 18", ETC. GROUND BARS.

ENTIRE ESSEMBLY AVAILABLE FROM NEWTON INSTRUMENT CO. CAT. NO. 2106060010

- ALL HARDWARE 18-8 STAINLESS STEEL INCLUDING SPLIT WASHERS.
 COAT WIRE END WITH ANTI-OXIDATION COMPOUND PRIOR TO INSERTION.
- INTO LUG BARREL AND CRIMPING.
- 3) APPLY ANTI-OXIDATION COMPOUND BETWEEN ALL LUGS AND BUSS BARS PRIOR TO MATING AND BOLTING.

GROUND LUG

E2

- PROPOSED SPRINT FIBER/POWER JUNCTION BOX MOUNTED TO NEW H-FRAME PROPOSED H-FRAME FURNISHED
- PROPOSED ICE BRIDGE EXTENSION FURNISHED AND INSTALLED BY CONTRACTOR

GROUNDING NOTES:

1. ALL DOWN CONDUCTORS AND CROUND RING AND CONDUCTOR SHALL BE #2 AWG, SOLID, BARE, TINNED COPPER, UNO. ALL CONNECTIONS TO GROUND RING SHALL BE EXOTHERMICALLY WELDED. CONDUCTOR SHALL BE A MINIMUM DEPTH BELOW GRADE OF 30 INCHES OR TO THE LEDGE, MINIMUM BEND RADIUS SHALL BE 8 INCHES. CONDUCTOR SHALL BF AT LEAST 24 INCHES FROM ANY FOUNDATION, UNO.

Design Bulld. Celive

0

FINIGY FINITE

aniiniiniiniini

No. 24705

CENSED

NAME OF STATE AND ASSESSED OF THE PROPERTY OF THE PROPERTY IS A WOLATION OF PRICABLE STATE AND/OR LOCAL LAW

REVISIONS FOR COMMENTS AHS 1/30/13

ISSUED FOR REVIEW AHS 11/28/1

Submitted Register Appid Date AHS Dale: 11/28/12 signed:___A.0__ Date:__11/28/12_ cked: AGF Date: 11/29/12

294-068

(R2E) CT3674 **TO CT03XC335** RICHARD WALL

1000 LAKE VISTA DRIVE EAST HAMPTON, CT 06424

Sprint

2. WHERE MECHANICAL CONDUCTOR CONNECTIONS ARE SPECIFIED, BOLTED, COMPRESSION—TYPE CLAMPS OR SPLIT-BOLT TYPE CONNECTORS SHALL BE USED.

3. GRIND OFF GALVANIZING IN AFFECTED AREA. EXOTHERMICALLY WELD #2 CONDUCTOR AT 6 INCHES ABOVE GRADE R FOUNDATION, WHICHEVER IS HIGHER. COLD-GALV AFTER. EXOTHERMICALLY WELD OTHER END TO THE GROUND.

14. GROUND.

4. GROUND CONDUCTORS ON EXTERIOR WALL OF SHELTER SHALL BE ENCASED IN PVC CONDUIT TO GRADE. MOUNT PVC WITH GALVANIZED "C" CLAMPS. SEAL TOP ENDS.

5. FOLLOWING COMPLETION OF WORK, CONDUCT GROUND TEST.

SUBMIT WRITTEN TEST TO CONSTRUCTION MANAGER AND PROJECT MANAGER.

6. ALL GROUNDING WORK SHALL COMPLY WITH CARRIER(S) STANDARDS.

7. GROUNDING REQUIREMENTS SHOWN ON THIS PLAN ARE THE HITEMS THAT ARE LOCATED NEAR GRADE LEVEL AND THAT NEED TO BE TIED TO THE BELOW GRADE GROUND RING. B. UNLESS NOTED OTHERWISE, ALL GROUNDING SHALL BE IN

ACCORDANCE WITH SPRINT'S SSEQ DOCUMENTS 3.01B.02.004 "BONDING, GROUNDING AND TRANSIENT PROTECTION FOR CELL SITES", AND 3.018.10.002 "SITE RESISTANCE TO EARTH TESTING". ALL GROUNDING SHALL ALSO COMPLY WITH ALL STATE AND LOCAL CODES, AND THE NATIONAL ELECTRICAL CODE (NEC).

9. UNLESS NOTED OTHERWISE, ALL GROUNDING CONNECTIONS SHALL BE MADE BY AN EXOTHERMIC WELD.

10. RESISTANCE TO EARTH TESTING IS REQUIRED PER SPRINT STANDARDS ON ALL NEW SITES.

11. REFER TO "ANTI-THEFT UPDATE TO SPRINT GROUNDING 082412.PDF" FOR GUIDELINE TO SUSPECTED OR ACTUAL THEFT OF GROUND RING.

1) DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO GROUND BAR. 2) GROUNDING KIT SHALL BE TYPE AND PART NUMBER AS SUPPLIED OR RECOMMENDED BY CABLE MANUFACTURER. 3) WEATHERPROOFING SHALL BE TYPE AND PART NUMBER AS SUPPLIED OR RECOMMENDED BY CABLE MANUFACTURER.

Drawing Scale AS NOTED 1/30/13 **GROUNDING** PLAN AND **DETAILS** NOTES:
1. CONTRACTOR TO VERIFY EXISTING LUG SPACES
ARE AVAILABLE ON GROUND BAR. ADD ADDITIONAL

E3

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Sprint Existing Facility

Site ID: CT03XC335

(R2E) CT3674 to CT03XC335 1000 Lake Vista Drive East Hampton, CT 06424

December 28, 2012

December 28, 2012

Sprint Attn: RF Engineering Manager 1 International Boulevard, Suite 800 Mahwah, NJ 07495

Re: Emissions Values for Site: CT03XC335 - (R2E) CT3674 to CT03XC335

EBI Consulting was directed to analyze the proposed upgrades to the existing Sprint facility located at 1000 Lake Vista Drive, East Hampton, CT, for the purpose of determining whether the emissions from the proposed Sprint equipment upgrades on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm2 calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) – (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limit for the cellular band is approximately 567 μ W/cm², and the general population exposure limit for the PCS band is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

21 B Street Burlington, MA 01803 Tel: (781) 273.2500 Fax: (781) 273.3311

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed upgrades to the existing Sprint Wireless antenna facility located at 1000 Lake Vista Drive, East Hampton, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. All calculations were performed assuming the main lobe of the antenna was focused at the base of the tower to present a worst case scenario. Actual values seen from this site will be dramatically less than those shown in this report. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all emissions were calculated using the following assumptions:

- 1) 2 CDMA Carriers (1900 MHz) were considered for each sector of the proposed installation.
- 2) 1 CDMA Carrier (850 MHz) was considered for each sector of the proposed installation
- 3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 4) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The actual gain in this direction was used per the manufactures supplied specifications.
- 5) The antenna used in this modeling is the APXVSPP18-C-A20. This is based on feedback from the carrier with regards to anticipated antenna selection. This antenna has a 15.9 dBd gain value at its main lobe at 1900 MHz and 13.4 dBd at its main lobe for 850 MHz. All calculations were performed assuming the main lobe of the antenna was focused at the base of the tower to present a worst case scenario.

- 6) The antenna mounting height centerline of the proposed antennas is 119 feet above ground level (AGL)
- 7) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculation were done with respect to uncontrolled / general public threshold limits

	Site Addresss Site Type	1000 Lake Vista	a Drive, East Har Monopole	00 Lake Vista Drive, East Hampton, CT, 06424 Monopole) }		
							Sector 1	r.1									
Antenna	Antenna Make	Antenna Model	oor T	Free Property	Tacking	Power Out Per Channel	Our Per Channel Number of Composite Waters Channel	Composite	Artenna Gain in direction in direction analysis or analysis desired for brainfysts	Antenna Hainh (49)	analysis	Cabe Co	Cable Loss Additional	Additional	0.63	Power Density	Power Density
12	RFS	1	Haa	1900 84114	COMA / LTE	5,00	Climiters	200	15 0	011	1112	# C/ C	200	1	1396-0474 39-04803 3-004804	30 04803	2 00/1804
13	RFS	APXVSPP18-C-A20	RRH	850 MHz	CDMA / LTE	L	-	20	13.4	119	113	1/2	50		389.96892 10.97941	10,97941	1.93640%
												Sector tota	Power Den	Sector total Power Density Value: 5.841%	5.841%		
							Sector 2	1.2									
Antenna	Antenna Number Attenna Make	Antenna Model	Padio Tone	Prest, Carry	Tonhadian	Power Out Per Channel	Number of Composite	Composite	Antenna Gain In direction of sample Antenna analysis	Arrienna	analysis	Cable Cable	Cable Lass Additional	Additional	8	Power Density	Power Density
29	RFS	APXVSPP1	RRH	1900 MHz	CDMA / LTE	20	2	40	15.9	119	113	1/2 "	(ap)		1386,9474 39,04893 3,90489%	39.04893	3.904899
2a	RFS	APXVSPP18-C-A20	RRH	2HW 058	CDMA / LTE	20		20	13.4	119	113	1/2 "	0.5		389.96892 10.97941	10.97941	1.93640%
												Sector tota	Power Den	Sector total Power Density Value: 5.841%	5.841%		
							Sector 3	Ę									
Antenna Number	Antenna Number Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology	Power Out Per Channel (Watts)	Number of Channels	Composite Power	Antenna Gain in direction of sample Antenna point (d8d) Height (f1)	Antenna Height (ft)	analysis height	Cable Size	Cable Loss Additional (dB) Loss	Additional	ERP	Power Density Value	Power Density Percentage
33	RFS	APXVSPP18-C-A20	RRH	1900 MHz	CDMA / LTE	-		04	15.9	119	113	1/2 "	0.5		1386.9474 39.04893	39.04893	3.90489%
3a	RFS	APXVSPP18-C-A20	ККН	850 MHz	CDMA / LTE	20	-	20	13.4	119	113	(/1	0.5	0	389 96892 10.97941 1 93640%	10.97941	1.93640%

Composite MPE %	% 3dW	17.524%	%079°91	%050°17	3.700%	%096'S	84.874%
Site C	Carrier	Sprint	Town	Verizon Wireless	AT&T	Nextel	Total Site MPE %

Summary

All calculations performed for this analysis yielded results that were well within the allowable limits for general public exposure to RF Emissions.

The anticipated Maximum Composite contributions from the Sprint facility are 17.524% (5.841% from each sector) of the allowable FCC established general public limit considering all three sectors simultaneously sampled at the ground level.

The anticipated composite MPE value for this site assuming all carriers present is **84.874**% of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government

Tel: (781) 273.2500 Fax: (781) 273.3311

Scott Heffernan

RF Engineering Director

EBI Consulting

21 B Street

Burlington, MA 01803

Date: October 29, 2012

Cheryl Schultz Crown Castle 3530 Toringdon Way Suite 300

Charlotte, NC 28277

FDH Engineering, Inc. 6521 Meridien Drive Raleigh, NC 27616 (919) 755-1012

Subject:

Structural Analysis Report

Carrier Designation:

Sprint PCS Co-Locate Carrier Site Number: Carrier Site Name:

CT03XC335 CT03XC335

Crown Castle Designation:

Crown Castle BU Number: Crown Castle Site Name:

876352 RICHARD WALL

Crown Castle JDE Job Number: Crown Castle Work Order Number:

190539 540814

Crown Castle Application Number:

165585 Rev. 1

Engineering Firm Designation:

FDH Engineering, Inc. Project Number:

12-10734E S2

Site Data:

94 East Hight Street, EAST HAMPTON, Middlesex County, CT

Latitude 41° 35' 14.2", Longitude -72° 29' 19.6"

117.5 Foot - Monopole Tower

Dear Cheryl Schultz,

FDH Engineering, Inc. is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 497567, in accordance with application 165585, revision 1.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC4.7: Existing + Reserved + Proposed Equipment

Sufficient Capacity

Note: See Table I and Table II for the proposed and existing/reserved loading, respectively.

The analysis has been performed in accordance with the TIA/EIA-222-F standard and 2005 CT State Building Code based upon a wind speed of 85 mph fastest mile.

All modifications and equipment proposed in this report shall be installed in accordance with the attached drawings for the determined available structural capacity to be effective.

We at *FDH Engineering*, *Inc.* appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully submitted by:

Reviewed by:

Christopher M. Murphe

Will Hammond, El

Project Engineer

Christopher M. Murphy, PE

President

CT PE License No. 25842

No. 25842

No. 25842

OCENSED

SIONAL

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable Information

Table 2 - Existing and Reserved Antenna and Cable Information

Table 3 - Design Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

3.1) Analysis Method

3.2) Assumptions

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Table 6 - Tower Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 117.5 ft Monopole tower designed by ENGINEERED ENDEAVORS, INC. in May of 1999. The tower was originally designed for a wind speed of 89.25 mph per TIA/EIA-222-F.The tower has been modified per reinforcement drawings prepared by Semaan Engineering Solutions, in April of 2005. Reinforcement consists of addition of base plate stiffeners. This tower has had modification drawings prepared by B+T Group in June of 2012. Reinforcement consists of addition of channel reinforcement to monopole shaft and replacement of base plate stiffeners.

2) ANALYSIS CRITERIA

The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 85 mph with no ice, 37.6 mph with 0.75 inch ice thickness and 50 mph under service loads.

Table 1 - Proposed Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
117.0	119.0	3	rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe	3	1-1/4	-
		3	alcatel lucent	800MHz 2X50W RRH W/FILTER			
115.0	115.0	3	alcatel lucent	PCS 1900MHz 4x45W- 65MHz	-	-	-
		1	crown mounts	Side Arm Mount [SO 102-3]			

Table 2 - Existing and Reserved Antenna and Cable Information

Mounting Level (ft)	Elevation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
	130.0	1	decibel	DB264-A			
	100.0	1 1	decibel	DB420-A	·i	1	
	126.0	1	decibel	ASP-2011	18	1-5/8	
117.0	119.0	6	ems wireless	RR65-12-05DBL w/ Mount Pipe	2 1	7/8 1/2	3
	119.0	3	ems wireless	RR90-17-02DP w/ Mount Pipe			
	117.0	1	crown mounts	Platform Mount [LP 712-1]	÷ _	-	1

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
		2	antel	BXA-171063-12BF w/ Mount Pipe			
		1	antel	BXA-171063-8BF-2 w/ Mount Pipe			
		1	antel	BXA-70063/6CF-2 w/ Mount Pipe			
105.0	108.0	2	antel	BXA-70063/6CFx4 w/ Mount Pipe	12	1-1/4	1
		4	decibel	DB846F65ZAXY w/ Mount Pipe			
		2	rfs celwave	APL866513-42T0 w/ Mount Pipe			AND THE RESIDENCE OF THE PARTY
		6	rfs celwave	FD9R6004/2C-3L			
	105.0	1	crown mounts	Platform Mount [LP 714-1]			
93.0	93.0	6	ericsson	RRUS-11	7	ALTERNATION IN CONTRACTOR SEASON SEAS	2
33.0	33.0	1	crown mounts	Side Arm Mount [SO 102-3]	-	-	-
		3	kmw communications	AM-X-CD-16-65-00T-RET w/ Mount Pipe	2 1	3/4 3/8	2
	93.0	1	raycap	DC6-48-60-18-8F	1	3/0	
91.0		6	powerwave technologies	7770.00 w/ Mount Pipe		gg 1	
91.0		1	crown mounts	Platform Mount [LP 714-1]	40	1-5/8	1
	91.0	6	powerwave technologies	LGP 17201	12 3	1-5/6	1
		6	powerwave technologies	LGP21903			
75.0	76.0	1	lucent	KS24019-L112A	1	1/2	1
, 0.0	75.0	1	crown mounts	Side Arm Mount [SO 701-1]	J	112	'

Notes:

Existing Equipment
Reserved Equipment
Existing Equipment to be removed, not considered in this analysis 1) 2) 3)

Table 3 - Design Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
117.5	117.5	12	decibel	DB 980	-	-
105	105	12	swedcom	ALP 9212	-	-
95	95	12	swedcom	ALP 9212	-	-

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Remarks	Reference	Source
4-GEOTECHNICAL REPORTS	Clough, Harbour, & Associates LLP	1532964	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	Engineering Endeavors, Inc.	2122776	CCISITES
4-TOWER MANUFACTURER DRAWINGS	Engineering Endeavors, Inc.	2122777	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	Semaan Engineering Solutions	2055770	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	B+T Group	3250765	CCISITES

3.1) Analysis Method

tnxTower (version 6.0.4.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- Tower and structures were built in accordance with the manufacturer's specifications.
- 2) The tower and structures have been maintained in accordance with the manufacturer's specification.
- 3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 4) When applicable, transmission cables are considered as structural components for calculating wind loads as allowed by TIA/EIA-222-F.

This analysis may be affected if any assumptions are not valid or have been made in error. FDH Engineering, Inc. should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	117.5 - 86.29	Pole	TP22.9x15x0.188	1	-7.055	675.940	71.5	Pass
L2	86.29 – 45.5	Pole	TP33.46x21.66x0.313	2	-12.681	1647.855	86.5	Pass
L2	45.5-42.6267	Modified Pole	TP33.46x21.66x0.313 w/ 3 Reinforcing Channels				30.4	Pass
L3	42.6267 - 0	Modified Pole	TP43.5x31.644x0.313 w/ 3 Reinforcing Channels	-	-	-	80.2	Pass
			1	!	 	:	Summary	
						Pole (L3)	86.5	Pass
			<u> </u>	r		Rating =	86.5	Pass

Table 6 - Tower Component Stresses vs. Capacity - LC4.7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	73.0	Pass
1	Base Plate	0	83.7	Pass
1	Base Foundation	0	93.0	Fail
1	Base Foundation Soil Interaction	0	66.7	Pass

	1997年,1998年,1997年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,19	
1	Structure Rating (max from all components) =	1 03.0%
1	offacture rating (max from all components) -	30.070
L		

Notes:

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the existing, reserved, and proposed loads. No modifications are required at this time.

¹⁾ See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

²⁾ Base plate stiffener capacity was calculated for both stiffener sizes; worst case capacity % is shown.

APPENDIX A TNXTOWER OUTPUT

15.000 18 0.188 3.417 7 86.3 ft 47.080 21.660 0.313 33.460 8 4.3 A572-65 42.6 ft AXIAL 43.500 0.313 9 6.0 34 K SHEAR TORQUE 0 kip-ft 38 mph WIND - 0.750 in ICE AXIAL 23 K SHEAR 0.0 ft TORQUE 2 kip-ft REACTIONS - 85 mph WIND 1.5 Number of Sides Socket Length Top Dia (in) Bot Dia (in) Length (ft) Neight (K)

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION		
APXVSPP18-C-A20 w/ Mount Pipe	117	(2) RRUS-11	93		
APXVSPP18-C-A20 w/ Mount Pipe	117	(2) RRUS-11	93		
APXVSPP18-C-A20 w/ Mount Pipe	117	(2) RRUS-11	93		
Empty Mount Pipe	117	Side Arm Mount [SO 102-3]	93		
Empty Mount Pipe	117	(2) 7770.00 w/ Mount Pipe	91		
Empty Mount Pipe	117	(2) 7770.00 w/ Mount Pipe	91		
Platform Mount [LP 712-1]	117	(2) 7770.00 w/ Mount Pipe	91		
800MHz 2X50W RRH W/FILTER	115	(2) LGP 17201	91		
PCS 1900MHz 4x45W-65MHz	115	(2) LGP 17201	91		
800MHz 2X50W RRH W/FILTER	115	(2) LGP 17201	91		
PCS 1900MHz 4x45W-65MHz	115	(2) LGP21903	91		
800MHz 2X50W RRH W/FILTER	115	(2) LGP21903	91		
PCS 1900MHz 4x45W-65MHz	115	(2) LGP21903	91		
Side Arm Mount [SO 102-3]	115	AM-X-CD-16-65-00T-RET w/ Mount	91		
(2) DB846F65ZAXY w/ Mount Pipe	105	Pipe			
(2) APL866513-42T0 w/ Mount Pipe	105	AM-X-CD-16-65-00T-RET w/ Mount	91		
(2) DB846F65ZAXY w/ Mount Pipe	105	Pipe			
BXA-70063/6CFx4 w/ Mount Pipe	105	AM-X-CD-16-65-00T-RET w/ Mount Pipe	91		
BXA-70063/6CFx4 w/ Mount Pipe	105	DC6-48-60-18-8F	91		
BXA-70063/6CF-2 w/ Mount Pipe	105	Empty Mount Pipe	91		
BXA-171063-12BF w/ Mount Pipe	105	Empty Mount Pipe	91		
BXA-171063-8BF-2 w/ Mount Pipe	105	Empty Mount Pipe	91		
BXA-171063-12BF w/ Mount Pipe	105	Platform Mount [LP 714-1]	91		
(2) FD9R6004/2C-3L	105	KS24019-L112A	75		
(2) FD9R6004/2C-3L	105	Side Arm Mount ISO 701-1]	75		
(2) FD9R6004/2C-3L	105	Side Alli Modik [30 701-1]	1'2 .		
Platform Mount [LP 714-1]	105	1			

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
	65 kei	80 kei			

TOWER DESIGN NOTES

- 1. Tower is located in Middlesex County, Connecticut.
- 2. Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F Standard.
- 3. Tower is also designed for a 38 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
- 4. Deflections are based upon a 50 mph wind.

FDH Engineering, Inc. 6521 Meridien Drive Raleigh, NC 27616

Drawn by: Will Hammond

Scale: NTS Date: 10/29/12 Dwg No. E-1

App'd:

lob: BU #876352 Richard Wail ^{nject} 12-10734E S2 Client: Crown Castle Code: TIA/EIA-222-F Phone: (919) 755-1012 FAX: (919) 755-1031

FDH Engineering, Inc. 6521 Meridien Drive Raleigh, NC 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

Job		Page
	BU #876352 Richard Wall	1 of 20
Project		Date
	12-10734E S2	14:13:11 10/29/12
Client		Designed by
	Crown Castle	Will Hammond

Tower Input Data

There is a pole section.

This tower is designed using the TIA/EIA-222-F standard.

The following design criteria apply:

Tower is located in Middlesex County, Connecticut.

Basic wind speed of 85 mph.

Nominal ice thickness of 0.750 in.

Ice thickness is considered to increase with height.

Ice density of 56.000 pcf.

A wind speed of 38 mph is used in combination with ice.

Temperature drop of 50.000 °F.

Deflections calculated using a wind speed of 50 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.333.

Local bending stresses due to climbing loads, feedline supports, and appurtenance mounts are not considered.

Tapered Pole Section Geometry

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
Ll	117.500-86.290	31.210	3.417	18	15.000	22.900	0.188	0.750	A572-65 (65 ksi)
L2	86.290-42.627	47.080	4.750	18	21.660	33.460	0.313	1.250	À572-65 (65 ksi)
L3	42.627-0.000	47.377		18	31.644	43.500	0.313	1.250	À572-65 (65 ksi)

Tapered Pole Properties

Section	Tip Dia. in	Area in²	I in⁴	r in	C in	I/C in³	J in ¹	It/Q in²	w in	w/t
Ll	15.231	8.815	244.360	5.258	7.620	32.068	489.042	4.408	2.310	12.32
	23.253	13.517	880.928	8.063	11.633	75.725	1763.015	6.760	3.700	19.735
L2	22.864	21.174	1219.117	7.578	11.003	110.795	2439.338	10.589	3.262	10.439
	33.976	32.878	4564.012	11.767	16.998	268.508	9134.028	16.442	5.339	17.085
L3	33.340	31.077	3854.413	11.123	16.075	239.771	7713.899	15.542	5.019	16.062
14/1-1-1-1-1	44.171	42.837	10094.123	15.332	22.098	456.789	20201.528	21.422	7.106	22.739

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt
	(per face)			•	A_r		Spacing	Spacing
							Diagonals	Horizontals
ft	ft²	in					in	in
L1				1	1	1		
117 500 06 00								

117.500-86.29

FDH Engineering, Inc. 6521 Meridien Drive Raleigh, NC 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

Job		Page
	BU #876352 Richard Wall	2 of 20
Project		Date
	12-10734E \$2	14:13:11 10/29/12
Client		Designed by
	Crown Castle	Will Hammond

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Stitch Bolt Spacing	Stitch Bolt Spacing
ft	ft²	in					Diagonals in	Horizontals in
L2 86.290-42.627				l	1	1		
L3 42.627-0.000				1	1	1		

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Component Type	Placement	Total Number		C_AA_A	Weight
	Leg			fi	*****		ft²/fi	klf
*								
· ·		NI.	T 1.4. D. 1	105 000 0 000			0.000	0.004
LDF6-50A(1-1/4")	Α	No	Inside Pole	105.000 - 0.000	12	No Ice	0.000	0.001
						1/2" Ice	0.000	0.001
						1" Ice	0.000	0.001
						2" Ice	0.000	0.001
*						4" Ice	0.000	0.001
LDF6-50A(1-1/4")	В	No	CaAa (Out Of	91.000 - 0.000	1	N. I.	0.166	0.001
EDI 0-30A(1-1/4)	ь	NO	Face)	91.000 - 0.000	1	No Ice 1/2" Ice	0.155	0.001 0.002
			race)			1/2" Ice	0.255	
							0.355	0.004
						2" Ice	0.555	0.009
LDF6-50A(1-1/4")	В	NI.	C-A- (O-+ O6	01 000 0 000	2	4" Ice	0.955	0.028
LDro-30A(1-1/4)	В	No	CaAa (Out Of	91.000 - 0.000	2	No Ice	0.000	0.001
			Face)			1/2" Ice	0.255	0.002
						l" Ice	0.355	0.004
						2" Ice	0.555	0.009
I CE150 50A/1 5/00	D	NI.	I '1 D 1	01 000 0 000	10	4" Ice	0.955	0.028
LCF158-50A(1-5/8")	В	No	Inside Pole	91.000 - 0.000	12	No Ice	0.000	0.001
						1/2" Ice	0.000	0.001
						l" Ice	0.000	0.001
						2" Ice	0.000	0.001
ED 1.00D 002 75000/	-		0 1 10 101			4" Ice	0.000	0.001
FB-L98B-002-75000(В	No	CaAa (Out Of	91.000 - 0.000	1	No Ice	0.000	0.000
3/8")			Face)			1/2" Ice	0.000	0.001
						1" Ice	0.000	0.002
						2" Ice	0.000	0.006
WD VCOCCT DDD(24)	_		0 4 40 400	0.000 0.000	_	4" Ice	0.000	0.022
WR-VG86ST-BRD(3/4)	В	No	CaAa (Out Of	91.000 - 0.000	2	No Ice	0.000	0.001
			Face)			1/2" Ice	0.000	0.001
						1" Ice	0.000	0.003
						2" Ice	0.000	0.007
1.054.501/1/00						4" Ice	0.000	0.024
LDF4-50A(1/2")	Α	No	CaAa (Out Of	75.000 - 0.000	1	No Ice	0.063	0.000
			Face)			1/2" Ice	0.163	0.001
						1" lee	0.263	0.002
						2" Ice	0.463	0.007
**						4" Ice	0.863	0.023
	C	NI-	0-4-(0-400	45 500 20 500	•		0.004	0.010
Aero MP303	C	No	CaAa (Out Of	45.500 - 30.500	1	No Ice	0.094	0.010
			Face)			1/2" Ice	0.205	0.011
						1" Ice	0.316	0.012
						2" Ice	0.538	0.016
A area MD202		NI.	0.4.00.400	45 500 20 500	•	4" Ice	0.983	0.027
Aero MP303	Λ	No	CaAa (Out Of	15.500 - 30.500	2	No Ice	0.000	0.010

FDH Engineering, Inc. 6521 Meridien Drive Raleigh, NC 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

Job		Page
	BU #876352 Richard Wall	3 of 20
Project		Date
:	12-10734E S2	14:13:11 10/29/12
Client	Crown Castle	Designed by Will Hammond

Description	Face or	Allow Shield	Component Type	Placement	Total Number		C_AA_A	Weight
	Leg		71	ft			ft²/ft	kļf
			Face)			1/2" Ice	0.205	0.011
						1" Ice	0.316	0.012
						2" Ice	0.538	0.016
						4" Ice	0.983	0.027
Aero MP304 Channel	C	No	CaAa (Out Of	30.500 - 0.000	1	No Ice	0.268	0.014
			Face)			1/2" Ice	0.379	0.015
						1" Ice	0.491	0.017
						2" Ice	0.713	0.021
						4" Ice	1.157	0.034
Aero MP304 Channel	C	No	CaAa (Out Of	30.500 - 0.000	2	No Ice	0.000	0.014
			Face)			1/2" Ice	0.379	0.015
						l" Ice	0.491	0.017
						2" Ice	0.713	0.021
*						4" Ice	1.157	0.034
Safety Line 3/8	С	No	CaAa (Out Of	117.500 - 0.000	1	No Ice	0.037	0.000
,			Face)		-	1/2" Ice	0.137	0.001
			,			1" Ice	0.238	0.001
						2" Ice	0.437	0.002
						4" Ice	0.838	0.004
* HB114-1-08U4-M5J(1	Α	No	CaAa (Out Of	117.000 - 0.000	2	No Ice	0.000	0.001
1/4")			Face)	117.000 0.000	-	1/2" Ice	0.000	0.002
,			1 400)			l" Ice	0.000	0.004
						2" Ice	0.000	0.010
						4" Ice	0.000	0.028
HB114-1-08U4-M5J(1	Α	No	CaAa (Out Of	117.000 - 0.000	1	No Ice	0.154	0.001
1/4")	• •		Face)	117.000 0.000		1/2" Ice	0.254	0.001
,			1 400,			1" Ice	0.354	0.002
						2" Ice	0.554	0.010
						4" Ice	0.954	0.028

Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Elevation	Face	A_R	A_F	C _{.1} A _{.1} In Face	C _A A _A Out Face	Weight
	ft		ft²	ft²	ft²	ft²	K
Ll	117.500-86.290	A	0.000	0.000	0.000	4.729	0.248
		В	0.000	0.000	0.000	0.730	0.060
		C	0.000	0.000	0.000	1.170	0.007
L2	86.290-42.627	Α	0.000	0.000	0.000	8.764	0.550
		В	0.000	0.000	0.000	6.768	0.560
		C	0.000	0.000	0.000	1.907	0.038
L3	42.627-0.000	Α	0.000	0.000	0.000	9.250	0.725
		В	0.000	0.000	0.000	6 607	0.546
		C	0.000	0.000	0.000	10.920	1.417

Feed Line/Linear Appurtenances Section Areas - With Ice

0.0/1.00								Constitution of the Consti
Tower	Tower	Face	Ice	A_R	A_F	C_AA_A	C_AA_A	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft²	ft²	ft²	ft²	K
Ll	117.500-86.290	A	0.858	0.000	0.000	0.000	9.998	0.485
		В		0.000	0.000	0.000	4.614	0.120
		С		0.000	0.000	0.000	6.524	0.035

FDH Engineering, Inc. 6521 Meridien Drive Raleigh, NC 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

Job		Page
	BU #876352 Richard Wall	4 of 20
Project		Date
	12-10734E S2	14:13:11 10/29/12
Client		Designed by
	Crown Castle	Will Hammond

Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
	ft	Leg	in	ft²	fî²	ft²	ft²	K
L2	86.290-42.627	A	0.811	0.000	0.000	0.000	23.442	0.950
		В		0.000	0.000	0.000	42.774	1.113
		C		0.000	0.000	0.000	9.945	0.083
L3	42.627-0.000	Α	0.750	0.000	0.000	0.000	29.732	1.138
		В		0.000	0.000	0.000	40.573	1.049
		С		0.000	0.000	0.000	52.890	1.682

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
L1	117.500-86.290	-0.011	-0.158	-0.030	-0.128
L2	86.290-42.627	0.122	-0.132	0.537	0.044
L3	42.627-0.000	-0.115	-0.011	-0.213	0.330

-	4	-	
1110	APATA	Tower	
		ILIVV	LUAUS

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	o	ft		ft²	ft²	K
APXVSPP18-C-A20 w/ Mount Pipe	A	From Leg	4.000 0.000 2.000	0.000	117.000	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	8.498 9.149 9.767 11.031 13.679	6.946 8.127 9.021 10.844 14.851	0.083 0.148 0.225 0.406 0.909
APXVSPP18-C-A20 w/ Mount Pipe	В	From Leg	4.000 0.000 2.000	0.000	117.000	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	8.498 9.149 9.767 11.031 13.679	6.946 8.127 9.021 10.844 14.851	0.083 0.148 0.225 0.406 0.909
APXVSPP18-C-A20 w/ Mount Pipe	С	From Leg	4.000 0.000 2.000	0.000	117.000	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	8.498 9.149 9.767 11.031 13.679	6.946 8.127 9.021 10.844 14.851	0.083 0.148 0.225 0.406 0.909
Empty Mount Pipe	A	From Leg	4.000 0.000 9.000	0.000	117.000	No Ice 1/2" Ice 1" Ice 2" Icc 4" Ice	1.400 2.125 2.681 3.558 5.423	1.400 2.125 2.681 3.558 5.423	0.030 0.041 0.056 0.102 0.256
Empty Mount Pipe	В	From Leg	4.000 0.000 0.000	0.000	117.000	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	1.400 2.125 2.681 3.558 5.423	1.400 2.125 2.681 3.558 5.423	0.030 0.041 0.056 0.102 0.256
Empty Mount Pipe	С	From Leg	4.000 0.000	0.000	117.000	No Ice 1/2" Ice	1.400	1.400 2.125	0.030 0.041

Job		Page
	BU #876352 Richard Wall	5 of 20
Project		Date
	12-10734E S2	14:13:11 10/29/12
Client		Designed by
	Crown Castle	Will Hammond

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement	Managari, pagja, iz i traper piakita	C _A A _A Front	C _A A _A Side	Weight
			Vert fi fi fi	٥	ft		ft²	ft²	K
			0.000			l" Ice	2.681	2.681	0.056
						2" Ice	3.558	3.558	0.102
DI C M (FIDZIO)				0.000		4" Ice	5.423	5.423	0.256
Platform Mount [LP 712-1]	С	None		0.000	117.000	No Ice 1/2" Ice	24.530 29.940	24.530 29.940	1.335 1.646
						l" Ice	35.350	35.350	1.956
						2" Ice	46.170	46.170	2.577
						4" Ice	67.810	67.810	3.820
/									
800MHz 2X50W RRH	Α	From Leg	1.000	0.000	115.000	No Ice	2.401	2.254	0.064
W/FILTER			0.000			1/2" Ice 1" Ice	2.613	2.460	0.086
			0.000			2" Ice	2.833 3.300	2.675 3.132	0.111 0.172
						4" Ice	4.337	3.132 4.148	0.172
PCS 1900MHz	Α	From Leg	1.000	0.000	115.000	No Ice	2.709	2.611	0.060
4x45W-65MHz	71	r rom Ecg	0.000	0.000	113.000	1/2" Ice	2.948	2.847	0.083
			0.000			l" Ice	3.195	3.092	0.110
			0.000			2" Ice	3.716	3.608	0.173
						4" Ice	4.862	4.744	0.347
800MHz 2X50W RRH	В	From Leg	1.000	0.000	115.000	No Ice	2.401	2.254	0.064
W/FILTER		-	0.000			1/2" Ice	2.613	2.460	0.086
			0.000			l" lce	2.833	2.675	0.111
						2" Ice	3.300	3.132	0.172
						4" Ice	4.337	4.148	0.338
PCS 1900MHz	В	From Leg	1.000	0.000	115.000	No Ice	2.709	2.611	0.060
4x45W-65MHz			0.000			1/2" Ice	2.948	2.847	0.083
			0.000			1" Ice	3.195	3.092	0.110
						2" Ice	3.716	3.608	0.173
900MI - 2V60W DDII	C	F I	1.000	0.000	115,000	4" Ice	4.862	4.744	0.347
800MHz 2X50W RRH W/FILTER	C	From Leg	1.000 0.000	0.000	115.000	No Ice 1/2" Ice	2.401 2.613	2.254 2.460	0.064 0.086
WITETER			0.000			l" Ice	2.833	2.675	0.080
			0.000			2" Ice	3.300	3.132	0.172
						4" Ice	4.337	4.148	0.338
PCS 1900MHz	C	From Leg	1.000	0.000	115.000	No Ice	2.709	2.611	0.060
4x45W-65MHz			0.000	5.000	110.000	1/2" Ice	2.948	2.847	0.083
			0.000			1" Ice	3.195	3.092	0.110
						2" Ice	3.716	3.608	0.173
						4" Ice	4.862	4.744	0.347
Side Arm Mount [SO 102-3]	C	None		0.000	115.000	No Ice	3.000	3.000	0.081
						1/2" Ice	3.480	3.480	0.111
						1" Ice	3.960	3.960	0.141
						2" Ice	4.920	4.920	0.201
**						4" Ice	6.840	6.840	0.321
(2) DB846F65ZAXY w/	Α	From Leg	4.000	0.000	105.000	No Ice	7.152	7.702	0.045
Mount Pipe	1-1	1 Tom Log	0.000	0.000	105.000	1/2" Ice	7.702	8.775	0.108
			3.000			I" Ice	8.277	9.641	0.183
			000			2" Ice	9.455	11.483	0.359
						4" Ice	11.923	15.535	0.849
(2) APL866513-42T0 w/	В	From Leg	4.000	0.000	105.000	No Ice	4.531	4.921	0.034
Mount Pipe		J	0.000			1/2" Ice	4.968	5.596	0.076
			3.000			1" Ice	5.414	6.284	0.128
						2" Ice	6.337	7.712	0.250
(A) B B 0 (/ B : : : : : :		_				4" lce	8.320	10.833	0.603
(2) DB846F65ZAXY w/	С	From Leg	4.000	0.000	105.000	No Ice	7.152	7.702	0.045
Mount Pipe			0.000			1/2" Ice	7.702	8.775	0.108

Job		Page
	BU #876352 Richard Wall	6 of 20
Project		Date
	12-10734E S2	14:13:11 10/29/12
Client		Designed by
	Crown Castle	Will Hammond

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
	Leg		Lateral Vert						
			fi fi	٥	fi		ft²	ft²	K
			ft						
			3.000			1" Ice	8.277	9.641	0.183
						2" Ice 4" Ice	9.455 11.923	11.483 15.535	0.359 0.849
BXA-70063/6CFx4 w/ Mount	Α	From Leg	4.000	0.000	105.000	No Ice	7.969	5.398	0.849
Pipe	А	I Ioni Leg	0.000	0.000	103.000	1/2" Ice	8.609	6.546	0.042
			3.000			1" Ice	9.216	7.409	0.166
						2" Ice	10.459	9.184	0.327
						4" Ice	13.066	12.933	0.787
BXA-70063/6CFx4 w/ Mount	В	From Leg	4.000	0.000	105.000	No Ice	7.969	5.398	0.042
Pipe			0.000			1/2" Ice	8.609	6.546	0.098
			3.000			l" lce	9.216	7.409	0.166
						2" Ice	10.459	9.184	0.327
BXA-70063/6CF-2 w/ Mount	С	Emany I am	4.000	0.000	105 000	4" Ice	13.066	12.933	0.787
Pipe	C	From Leg	4.000 0.000	0.000	105.000	No Ice 1/2" Ice	7.969 8.609	5.398 6.546	0.042 0.098
1 ipe			3.000			1" Ice	9.216	7.409	0.098
			3.000			2" Ice	10.459	9.184	0.100
						4" Ice	13.066	12.933	0.787
BXA-171063-12BF w/	Α	From Leg	4.000	0.000	105.000	No Ice	4.971	5.228	0.040
Mount Pipe		Č	0.000			1/2" Ice	5.521	6.389	0.083
			3.000			1" Ice	6.036	7.261	0.137
						2" Ice	7.091	9.046	0.271
						4" Ice	9.359	12.817	0.671
BXA-171063-8BF-2 w/	В	From Leg	4.000	0.000	105.000	No Ice	3.179	3.353	0.029
Mount Pipe			0.000			1/2" Ice	3.555	3.971	0.059
			3.000			l" Ice 2" Ice	3.964 4.853	4.595 5.893	0.098 0.193
						4" Ice	4.833 6.767	3.893 8.885	0.193
BXA-171063-12BF w/	С	From Leg	4.000	0.000	105.000	No Ice	4.971	5.228	0.040
Mount Pipe			0.000	0.000	100.000	1/2" Ice	5.521	6.389	0.083
			3.000			1" Ice	6.036	7.261	0.137
						2" Ice	7.091	9.046	0.271
						4" Ice	9.359	12.817	0.671
(2) FD9R6004/2C-3L	Α	From Leg	4.000	0.000	105.000	No Ice	0.367	0.085	0.003
			0.000			1/2" Ice	0.451	0.136	0.005
			3.000			l" Ice	0.543	0.196	0.009
						2" Ice	0.755	0.343	0.020
(2) FD9R6004/2C-3L	В	From Leg	4.000	0.000	105.000	4" Ice No Ice	1.281 0.367	0.740 0.085	0.063 0.003
(2) 1 D3R0004/2C-3L	ь	From Leg	0.000	0.000	103.000	1/2" Ice	0.367	0.085	0.003
			3.000			1" Ice	0.543	0.196	0.009
			0.000			2" Ice	0.755	0.343	0.020
						4" Ice	1.281	0.740	0.063
(2) FD9R6004/2C-3L	C	From Leg	4.000	0.000	105.000	No Ice	0.367	0.085	0.003
			0.000			1/2" Ice	0.451	0.136	0.005
			3.000			1" Ice	0.543	0.196	0.009
						2" Ice	0.755	0.343	0.020
Diotform Mount II D 714 13	C	Na		0.000	105 000	4" Ice	1.281	0.740	0.063
Platform Mount [LP 714-1]	С	None		0.000	105.000	No Ice 1/2" Ice	37.470 44.230	37.470 44.230	1.600 2.040
						1/2" Ice	50.990	50.990	2.480
						2" Ice	64.510	64.510	3.360
						4" Ice	91.550	91.550	5.119
/						. 100	71.000	71.500	5.117
(2) RRUS-11	Α	From Leg	2.000	0.000	93.000	No Ice	2.942	1.246	0.055
		.,	0.000			1/2" Ice	3.172	1.412	0.074
			0.000			l" Ice	3.410	1.587	0.097

Job		Page
	BU #876352 Richard Wall	7 of 20
Project		Date
	12-10734E S2	14:13:11 10/29/12
Client		Designed by
	Crown Castle	Will Hammond

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement	A CONTRACTOR OF THE PARTY OF TH	C _{:1} A _{:1} Front	C _{.i} A. _i Side	Weight
	0		Vert ft ft ft	o	ft		fi²	ft²	K
						2" Ice	3.913	1.963	0.151
(2) PPHO 11	, D	F .	• • • • •	0.000	02.000	4" Ice	5.023	2.819	0.302
(2) RRUS-11	В	From Leg	2.000	0.000	93.000	No Ice	2.942 3.172	1.246	0.055
			0.000			1/2" Ice 1" Ice	3.172	1.412 1.587	0.074 0.097
			0.000			2" Ice	3.913	1.963	0.057
						4" Ice	5.023	2.819	0.302
(2) RRUS-11	С	From Leg	2.000	0.000	93.000	No Ice	2.942	1.246	0.055
` ,		υ	0.000			1/2" Ice	3.172	1.412	0.074
			0.000			l" Ice	3.410	1.587	0.097
						2" Ice	3.913	1.963	0.151
						4" Ice	5.023	2.819	0.302
Side Arm Mount [SO 102-3]	С	None		0.000	93.000	No Ice	3.000	3.000	0.081
						1/2" Ice	3.480	3.480	0.111
						1" Ice	3.960	3.960 4.920	0.141
						2" Ice 4" Ice	4.920 6.840	6.840	0.201 0.321
/						4 100	0.040	0.040	0.521
/									
(2) 7770.00 w/ Mount Pipe	Α	From Leg	4.000	0.000	91.000	No Ice	6.119	4.254	0.055
•			0.000			1/2" Ice	6.626	5.014	0.101
			2.000			l" Ice	7.128	5.711	0.155
						2" Ice	8.164	7.155	0.287
(0) 5550 00 (1) ()	-					4" Ice	10.360	10.412	0.665
(2) 7770.00 w/ Mount Pipe	В	From Leg	4.000	0.000	91.000	No Ice	6.119	4.254	0.055
			0.000 2.000			1/2" Ice 1" Ice	6.626 7.128	5.014 5.711	0.101 0.155
			2.000			2" Ice	7.128 8.164	7.155	0.133
						4" Ice	10.360	10.412	0.665
(2) 7770.00 w/ Mount Pipe	С	From Leg	4.000	0.000	91.000	No Ice	6.119	4.254	0.055
(=)			0.000	0.000	,	1/2" Ice	6.626	5.014	0.101
			2.000			1" Ice	7.128	5.711	0.155
						2" Icc	8.164	7.155	0.287
						4" Ice	10.360	10.412	0.665
(2) LGP 17201	Α	From Leg	4.000	0.000	91.000	No Ice	1.946	0.518	0.031
			0.000			1/2" Ice	2.134	0.640	0.042
			0.000			1" Ice	2.330	0.770	0.055
						2" Ice	2.749	1.056	0.089
(2) LGP 17201	В	From Leg	4.000	0.000	91.000	4" Ice No Ice	3.690 1.946	1.733 0.518	0.193 0.031
(2) LOF 17201	ь	rion Leg	0.000	0.000	91.000	1/2" Ice	2.134	0.516	0.031
			0.000			l" Ice	2.330	0.770	0.055
			0.000			2" Ice	2.749	1.056	0.089
						4" Ice	3.690	1.733	0.193
(2) LGP 17201	C	From Leg	4.000	0.000	91.000	No Ice	1.946	0.518	0.031
			0.000			1/2" Ice	2.134	0.640	0.042
			0.000			i" Ice	2.330	0.770	0.055
						2" Ice	2.749	1.056	0.089
(2) 1 (2)21/222		F .	4.000	0.000	01.000	4" Ice	3.690	1.733	0.193
(2) LGP21903	Α	From Leg	4.000	0.000	91.000	No Ice	0.270	0.184	0.011
			0.000 0.000			1/2" Ice 1" Ice	0.343 0.425	0.248 0.322	0.013 0.017
			0.000			2" Ice	0.425 0.616	0.322	0.017
						4" Ice	1.101	0.494	0.028
(2) LGP21903	В	From Leg	4.000	0.000	91.000	No Ice	0.270	0.184	0.012
(=, ===================================	_		0.000	0.000	21.000	1/2" Ice	0.343	0.148	0.013
			0.000			l" ice	0.425	0.322	0.017

Job		Page
	BU #876352 Richard Wall	8 of 20
Project		Date
	12-10734E S2	14:13:11 10/29/12
Client		Designed by
	Crown Castle	Will Hammond

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _{:I} A _{:1} Side	Weight
	Leg		Vert ft ft	o	ft		ft²	ft²	K
			ft			2" Ice	0.616	0.494	0.028
						4" Ice	1.101	0.943	0.072
(2) LGP21903	C	From Leg	4.000	0.000	91.000	No Ice	0.270	0.184	0.011
			0.000			1/2" Ice	0.343	0.248	0.013
			0.000			l" Ice	0.425	0.322	0.017
						2" Ice	0.616	0.494	0.028
AM V CD 16 65 00T DET		F 1	4.000	0.000	01.000	4" Ice	1.101	0.943	0.072
AM-X-CD-16-65-00T-RET	Α	From Leg	4.000 0.000	0.000	91.000	No Ice 1/2" Ice	8.498 9.149	6.304 7.479	0.074 0.136
w/ Mount Pipe			2.000			i" Ice	9.149 9.767	8.368	0.130
			2.000			2" Ice	11.031	10.179	0.385
						4" Ice	13.679	14.024	0.874
AM-X-CD-16-65-00T-RET	В	From Leg	4.000	0.000	91.000	No Ice	8.498	6.304	0.074
w/ Mount Pipe			0.000			1/2" Ice	9.149	7.479	0.136
•			2.000			l" Ice	9.767	8.368	0.210
						2" Ice	11.031	10.179	0.385
						4" Ice	13.679	14.024	0.874
AM-X-CD-16-65-00T-RET	C	From Leg	4.000	0.000	91.000	No Ice	8.498	6.304	0.074
w/ Mount Pipe			0.000			1/2" Ice	9.149	7.479	0.136
			2.000			1" Ice 2" Ice	9.767	8.368 10.179	0.210
						4" Ice	11.031 13.679	10.179	0.385 0.874
DC6-48-60-18-8F	Α	From Leg	4.000	0.000	91.000	No Ice	2.567	4.317	0.019
De0-40-00-10-01	А	Trom Leg	0.000	0.000	91.000	1/2" Ice	2.798	4.596	0.019
			2.000			1" Ice	3.038	4.885	0.085
						2" Ice	3.543	5.488	0.167
						4" Ice	4.658	6.797	0.383
Empty Mount Pipe	Α	From Leg	4.000	0.000	91.000	No Ice	1.400	1.400	0.030
			0.000			1/2" Ice	2.125	2.125	0.041
			1.000			l" Ice	2.681	2.681	0.056
						2" Ice	3.558	3.558	0.102
Empty Mount Ding	D	Enous Law	4 000	0.000	01.000	4" Ice	5.423	5.423	0.256
Empty Mount Pipe	В	From Leg	4.000 0.000	9.000	91.000	No Ice 1/2" Ice	1.400 2.125	1.400 2.125	0.030 0.041
			1.000			1" Ice	2.123	2.681	0.041
			1.000			2" Ice	3.558	3.558	0.102
						4" Ice	5.423	5.423	0.256
Empty Mount Pipe	C	From Leg	4.000	0.000	91.000	No Ice	1.400	1.400	0.030
. ,		Ü	0.000			1/2" Ice	2.125	2.125	0.041
		•	1.000			l" Ice	2.681	2.681	0.056
						2" Ice	3.558	3.558	0.102
	_					4" Ice	5.423	5.423	0.256
Platform Mount [LP 714-1]	C	None		0.000	91.000	No Ice	37.470	37.470	1.600
						1/2" Ice	44.230	44.230	2.040
						1" Ice 2" Ice	50.990 64.510	50.990 64.510	2.480
						4" Ice	91.550	91.550	3.360 5.119
/						. 100	,	, 1.000	2.1.7
KS24019-L112A	C	From Leg	3.000	0.000	75.000	No Ice	0.156	0.156	0.005
		-	0.000			1/2" Ice	0.225	0.225	0.007
			1.000			l" Ice	0.302	0.302	0.009
						2" Ice	0.484	0.484	0.018
013 4 34 1000 =01 15	C			0.005	5 - 00 -	4" Ice	0.951	0.951	0.056
Side Arm Mount [SO 701-1]	C	None		0.000	75.000	No Ice	0.850	1.670	0.065
						1/2" Ice	1.140	2.340	0.079
						l" Ice	1.430	3.010	0.093

FDH Engineering, Inc. 6521 Meridien Drive Raleigh, NC 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

Job		Page
	BU #876352 Richard Wall	9 of 20
Project		Date
	12-10734E S2	14:13:11 10/29/12
Client	Crown Castle	Designed by Will Hammond

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement	marrier (mene), aut uzh mineuren	C _A A _A Front	C _A A _A Side	Weight
			fi fi fi	o	fi		fî²	ft²	K
/						4" Ice	3.170	7.030	0.177

Load Combinations

Comb.	Description
No.	·
1	Dead Only
2	Dead+Wind 0 deg - No Ice
3	Dead+Wind 30 deg - No Ice
4	Dead+Wind 60 deg - No Ice
5	Dead+Wind 90 deg - No Ice
6	Dead+Wind 120 deg - No Ice
7	Dead+Wind 150 deg - No Ice
8	Dead+Wind 180 deg - No Ice
9	Dead+Wind 210 deg - No Ice
10	Dead+Wind 240 deg - No Ice
11	Dead+Wind 270 deg - No Ice
12	Dead+Wind 300 deg - No Ice
13	Dead+Wind 330 deg - No Ice
14	Dead+Ice+Temp
15	Dead+Wind 0 deg+lce+Temp
16	Dead+Wind 30 deg+Ice+Temp
17	Dead+Wind 60 deg+lce+Temp
18	Dead+Wind 90 deg+lce+Temp
19	Dead+Wind 120 deg+Ice+Temp
20	Dead+Wind 150 deg+Ice+Temp
21	Dead+Wind 180 deg+Ice+Temp
22	Dead+Wind 210 deg+Ice+Temp
23	Dead+Wind 240 deg+Ice+Temp
24	Dead+Wind 270 deg+Ice+Temp
25	Dead+Wind 300 deg+Ice+Temp
26	Dead+Wind 330 deg+Ice+Temp
27	Dead+Wind 0 deg - Service
28	Dead+Wind 30 deg - Service
29	Dead+Wind 60 deg - Service
30	Dead+Wind 90 deg - Service
31	Dead+Wind 120 deg - Service
32	Dead+Wind 150 deg - Service
33	Dead+Wind 180 deg - Service
34	Dead+Wind 210 deg - Service
35	Dead+Wind 240 deg - Service
36	Dead+Wind 270 deg - Service
37	Dead+Wind 300 deg - Service
38	Dead+Wind 330 deg - Service

Maximum Member Forces

FDH Engineering, Inc. 6521 Meridien Drive Raleigh, NC 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

Job		Page
	BU #876352 Richard Wall	10 of 20
Project		Date
	12-10734E S2	14:13:11 10/29/12
Client	Crown Castle	Designed by Will Hammond

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Force K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L1	117.5 - 86.29	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	14	-14.690	0.534	0.908
			Max. Mx	11	-7.053	213.116	0.280
			Max. My	2	-7.067	0.198	212.781
			Max. Vy	11	-15.381	213.116	0.280
			Max. Vx	2	-15.296	0.198	212.781
			Max. Torque	10			-2.115
L2	86.29 - 42.6267	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	14	-22.024	0.023	1.173
			Max. Mx	11	-12.681	925.876	0.832
			Max. My	2	-12.689	0.546	922.129
			Max. Vy	11	-18.328	925.876	0.832
			Max. Vx	2	-18.243	0.546	922.129
			Max. Torque	10			-2.119
L3	42.6267 - 0	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	14	-34.450	1.454	0.548
			Max. Mx	11	-22.824	1874.337	0.536
			Max. My	8	-22.824	1.028	-1864.732
			Max. Vy	11	-21.686	1874.337	0.536
			Max. Vx	8	21.604	1.028	-1864.732
			Max. Torque	10			-2.135

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	٥	٥
Ll	117.5 - 86.29	29.532	36	2.233	0.012
L2	89.7067 - 42.6267	17.282	36	1.849	0.007
L3	47.3767 - 0	4.704	36	0.939	0.002

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
117.000	APXVSPP18-C-A20 w/ Mount Pipe	36	29.301	2.227	0.012	14961
115.000	800MHz 2X50W RRH W/FILTER	36	28.379	2.202	0.011	14961
105.000	(2) DB846F65ZAXY w/ Mount Pipe	36	23.816	2.077	0.009	5984
93.000	(2) RRUS-11	36	18.621	1.904	0.007	3056
91.000	(2) 7770.00 w/ Mount Pipe	36	17.802	1.871	0.007	2852
75.000	KS24019-L112A	36	11.905	1.561	0.005	2478

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	o	o

FDH Engineering, Inc. 6521 Meridien Drive Raleigh, NC 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

Job		Page
	BU #876352 Richard Wall	11 of 20
Project		Date
	12-10734E S2	14:13:11 10/29/12
Client	0 0 "	Designed by
	Crown Castle	Will Hammond

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	fi	in	Comb.	0	0
Ll	117.5 - 86.29	84.939	11	6.424	0.034
L2	89.7067 - 42.6267	49.741	11	5.323	0.020
L3	47.3767 - 0	13.546	11	2.706	0.006

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
117.000	APXVSPP18-C-A20 w/ Mount Pipe	11	84.276	6.407	0.034	5322
115.000	800MHz 2X50W RRH W/FILTER	11	81.626	6.338	0.032	5322
105.000	(2) DB846F65ZAXY w/ Mount Pipe	11	68.519	5.979	0.027	2127
93.000	(2) RRUS-11	11	53.589	5.481	0.021	1084
91.000	(2) 7770.00 w/ Mount Pipe	11	51.236	5.387	0.020	1011
75.000	KS24019-L112A	11	34.276	4.497	0.014	872

Compression Checks

Pole Design Data

Section No.	Elevation	Size	L	L_u	Kl/r	F_a	A	Actual P	Allow. Pa	Ratio P
710.	ft		ft	ft		ksi	in ²	K	K	$\frac{1}{P_a}$
LI	117.5 - 116.037	TP22.9x15x0.188	31.210	0.000	0.0	39.000	9.036	-1.455	352.390	0.004
	116.037 -		01,210	0,000	0.0	39.000	9.256	-1.869	360.984	0.005
	114.574									
	114.574 -					39.000	9.476	-1.923	369.578	0.005
	113.112									
	113.112 -					39.000	9.697	-1.979	378.172	0.005
	111.649									
	111.649 -					39.000	9.917	-2.036	386.766	0.005
	110.186									
	110.186 -					39.000	10.137	-2.094	395.360	0.005
	108.723									
	108.723 -					39.000	10.358	-2.154	403.954	0.005
	107.26					40.000	10.550	2215	110 510	0.005
	107.26 -					39.000	10.578	-2.215	412.548	0.005
	105.798 105.798 -					20,000	10.700	2 020	401 140	0.000
	104.335					39.000	10.799	-3.838	421.142	0.009
	104.335 -					39.000	11.019	-3.907	429.736	0.009
	102.872					39.000	11.015	-5.701	423.730	0.009
	102.872 -					39.000	11.239	-3.976	438.330	0.009
	101.409					37.000	11.23)	3.770	430.330	0.007
	101.409 -					39.000	11.460	-4.050	446.924	0.009
	99.9463					33.000	11.100	1.000	110.721	0.007
	99.9463 -					39.000	11.680	-4.127	455.518	0.009
	98.4835									-//
	98.4835 -					39.000	11.900	-4.205	464.112	0.009
	97.0207									

Job		Page
	BU #876352 Richard Wall	12 of 20
Project		Date
	12-10734E S2	14:13:11 10/29/12
Client		Designed by
	Crown Castle	Will Hammond

Section No.	Elevation	Size	L	L_{u}	KI/r	F_a	A	Actual P	Allow. P _a	Ratio P
	fi		ft	ft		ksi	in ²	K	K	P_a
	97.0207 -					39.000	12.121	-4.286	472.706	0.009
	95.5579 95.5579 -					39.000	12.341	-4.369	481.300	0.009
	94.0951					37.000	12.341	-4.309	461.300	0.009
	94.0951 -					39.000	12.561	-4.799	489.894	0.010
	92.6323 92.6323 -					20.000	10.700	4.007	100 100	0.010
	91.1695					39.000	12.782	-4.886	498.488	0.010
	91.1695 -					39.000	13.002	-7.055	507.082	0.014
	89.7067									
L2	89.7067 - 86.29 89.7067 - 86.29	TP33.46x21.66x0.313	47.080	0.000	0.0	39.000 39.000	13.517	-2.859	527.154	0.005
DZ	86.29 - 84.1281	11 33.40821.0080.313	47.000	0.000	0.0	39.000	22.024 22.561	-4.644 -7.742	858.920 879.880	0.005 0.009
	84.1281 -					39.000	23.098	-7.742	900.839	0.009
	81.9663									
	81.9663 - 79.8044					39.000	23.636	-8.238	921.799	0.009
	79.8044 -					39.000	24.173	-8.496	942.759	0.009
	77.6426					37.000	21.173	-0.470	742.137	0.007
	77.6426 -					39.000	24.711	-8.758	963.719	0.009
	75.4807 75.4807 -					20.000	25.240	0.001	004.670	0.000
	73.3189					39.000	25.248	-9.091	984.679	0.009
	73.3189 -					39.000	25.786	-9.364	1005.640	0.009
	71.157									
	71.157 - 68.9952					39.000	26.323	-9.642	1026.600	0.009
	68.9952 -					39.000	26.861	-9.925	1047.560	0.009
	66.8333					37.000	20.001	7.723	1047.500	0.007
	66.8333 -					39.000	27.398	-10.213	1068.520	0.010
	64.6715 64.6715 -	No.				39.000	27.025	10.500	1000 400	0.010
	62.5096					39.000	27.935	-10.506	1089.480	0.010
	62.5096 -					39.000	28.473	-10.803	1110.440	0.010
	60.3478									
	60.34 78 - 58.1859					39.000	29.010	-11.105	1131.400	0.010
	58.1859 -					39.000	29.548	-11.411	1152.360	0.010
	56.0241						_,,,,,,		1102.500	0.010
	56.0241 - 53.8622					39.000	30.085	-11.722	1173.320	0.010
	53.8622 -					39.000	30.622	-12.037	1194.280	0.010
	51.7004					39.000	30.022	-12.037	1194.200	0.010
	51.7004 -					39.000	31.160	-12.357	1215.240	0.010
	49.5385 49.5385 -					20.000	21.60	10 (01		
	47.3767					39.000	31.697	-12.681	1236.200	0.010
	47.3767 -					39.000	32.878	-7.028	1282.250	0.005
	42.6267	mp.10 - 10 - 11 - 11 - 11 - 11 - 11 - 11 -								
L3	47.3767 - 42.6267	TP43.5x31.644x0.313	47.377	0.000	0.0	39.000	32.256	-6.840	1258.000	0.005
	42.6267 -					39.000	32.813	-14.300	1279.720	0.011
	40.3832					37.000	52.015	14.500	1277.720	0.011
	40.3832 -					39.000	33.370	-14.736	1301.430	0.011
	38.1396 38.1396 -					20.000	22.027	15.176	1202 150	0.011
	35.8961					39.000	33.927	-15.176	1323.150	0.011
	35.8961 -					39.000	34.484	-15.621	1344.870	0.012
	33 6526									
	33.6526 -					39.000	35.041	-16.070	1366.590	0.012

Job		Page
	BU #876352 Richard Wall	13 of 20
Project		Date
	12-10734E S2	14:13:11 10/29/12
Client		Designed by
i i	Crown Castle	Will Hammond

Section No.	Elevation	Size	L	L_{u}	Kl/r	\overline{F}_a	А	Actual P	Allow. P _a	Ratio P
	fi		ft	ft		ksi	in ²	K	ĸ̈	P_a
	31.4091					***************************************				
	31.4091 -					39.000	35.597	-16.524	1388.300	0.012
	29.1656									
	29.1656 -					39.000	36.154	-16.982	1410.020	0.012
	26.9221									
	26.9221 -					39.000	36.711	-17.445	1431.740	0.012
	24.6786									
	24.6786 -					39.000	37.268	-17.911	1453.450	0.012
	22.4351 22.4351 -					20.000	27.025	10.202	1475 170	0.015
	20.1916					39.000	37.825	-18.383	1475.170	0.012
	20.1916 -					39.000	20 202	10 050	1406 900	0.013
	17.9481					39.000	38.382	-18.858	1496.890	0.013
	17.9481 -					39.000	38.939	-19.339	1518.610	0.013
	15.7046					37.000	30.737	-17.557	1310.010	0.01.
	15.7046 -					39.000	39.495	-19.823	1540.320	0.013
	13.4611					07.000		.,		
	13.4611 -					39.000	40.052	-20.312	1562.040	0.013
	11.2175									
	11.2175 -					39.000	40.609	-20.805	1583.760	0.013
	8.97403									
	8.97403 -					39.000	41.166	-21.303	1605.480	0.013
	6.73053									
	6.73053 -					39.000	41.723	-21.806	1627.190	0.013
	4.48702									
	4.48702 -					39.000	42.280	-22.312	1648.910	0.014
	2.24351					20.000	40.000			
	2.24351 - 0					39.000	42.280	-22.590	1648.910	0.014

Bending	

Section No.	Elevation	Size	Actual $M_{ m s}$	Actual f _{ex}	Allow. F_{ω}	Ratio fix	Actual M,	Actual Sign	Allow. F _{iş}	Ratio f _{ey}
	ft		kip-ft	ksi	ksi	$\frac{F_{bx}}{F_{bx}}$	kip-ft	ksi	ksi	$\frac{F_{bv}}{F_{bv}}$
LI	117.5 -	TP22.9x15x0.188	4.538	1.616	39.000	0.041	0.000	0.000	39.000	0.000
	116.037									
	116.037 -		8.725	2.959	39.000	0.076	0.000	0.000	39.000	0.000
	114.574									
	114.574 -		13.896	4.496	39.000	0.115	0.000	0.000	39.000	0.000
	113.112									
	113.112 -		19.176	5.924	39.000	0.152	0.000	0.000	39.000	0.000
	111.649									
	111.649 -		24.565	7.253	39.000	0.186	0.000	0.000	39.000	0.000
	110.186									
	110.186 -		30.066	8.493	39.000	0.218	0.000	0.000	39.000	0.000
	108.723									
	108.723 -		35.679	9.653	39.000	0.248	0.000	0.000	39.000	0.000
	107.26									
	107.26 -		41.408	10.738	39.000	0.275	0.000	0.000	39.000	0.000
	105.798									
	105.798 -		60.438	15.037	39.000	0.386	0.000	0.000	39.000	0.000
	104.335 104.335 -									
		73.830	17.638	39.000	0.452	0.000	0.000	39.000	0.000	
	102.872									
	102.872 -		87.381	20.061	39.000	0.514	0.000	0.000	39.000	0.000
	101.409									

Job		Page
	BU #876352 Richard Wall	14 of 20
Project		Date
	12-10734E S2	14:13:11 10/29/12
Client		Designed by
	Crown Castle	Will Hammond

Section No.	Elevation	Size	Actual M _x	Actual f _{bx}	Allow. F_{bx}	Ratio f _{bx}	Actual M _v	Actual f _{by}	Allow. F _{by}	Ratio f _{by}
	ft		kip-ft	ksi	ksi	$\overline{F_{bx}}$	kip-ft	ksi	ksi	$\overline{F_{bv}}$
	101.409 -		101.014	22.303	39.000	0.572	0.000	0.000	39.000	0.000
	99.9463 99.9463 -		114765	24 200	20.000	0.605	0.000	0.000	20.000	0.000
	99.9463 - 98.4835		114.765	24.388	39.000	0.625	0.000	0.000	39.000	0.000
	98.4835 -		128.636	26.328	39.000	0.675	0.000	0.000	39.000	0.000
	97.0207									
	97.0207 - 95.5579		142.628	28.135	39.000	0.721	0.000	0.000	39.000	0.000
	95.5579 -		156.743	29.820	39.000	0.765	0.000	0.000	39.000	0.000
	94.0951									
	94.0951 - 92.6323		171.235	31.439	39.000	0.806	0.000	0.000	39.000	0.000
	92.6323 -		186.607	33.086	39.000	0.848	0.000	0.000	39.000	0.000
	91.1695			22.000	37.000	0.010	0.000	0.000	37.000	0.000
	91.1695 -		213.232	36.530	39.000	0.937	0.000	0.000	39.000	0.000
	89.7067 89.7067 -		104.147	16.504	39.000	0.423	0.000	0.000	39.000	0.000
	86.29		101.117	10.504	37.000	0.423	0.000	0.000	37.000	0.000
L2	89.7067 - 86.29	TP33.46x21.66x0.313	161.969	16.207	39.000	0.416	0.000	0.000	39.000	0.000
	86.29 -		299.984	28.594	39.000	0.733	0.000	0.000	39.000	0.000
	84.1281			20.07	27.000	0.755	0.000	0.000	37.000	0.000
	84.1281 - 81.9663		334.137	30.375	39.000	0.779	0.000	0.000	39.000	0.000
	81.9663 -		368.639	31.995	39.000	0.820	0.000	0.000	39.000	0.000
	79.8044		500.057	31.773	37.000	0.020	0.000	0.000	37.000	0.000
	79.8044 -		403.447	33.467	39.000	0.858	0.000	0.000	39.000	0.000
	77.6426 77.6426 -		438.563	34.805	39.000	0.892	0.000	0.000	39.000	0.000
	75.4807		150.505	51.005	37.000	0.072	0.000	0.000	37.000	0.000
	75.4807 -		474.142	36.034	39.000	0.924	0.000	0.000	39.000	0.000
	73.3189 73.3189 -		510.043	37.154	39.000	0.953	0.000	0.000	39.000	0.000
	71.157		310.013	37.134	37.000	0.755	0.000	0.000	37.000	0.000
	71.157 -		546.256	38.175	39.000	0.979	0.000	0.000	39.000	0.000
	68.9952 68.9952 -		582.732	39.105	39.000	1.003	0.000	0.000	39.000	0.000
	66.8333		302.702	57.105	37.000	1.005	0.000	0.000	37.000	0.000
	66.8333 -		619.622	39.952	39.000	1.024	0.000	0.000	39.000	0.000
	64.6715 64.6715 -		656.779	40.726	39.000	1.044	0.000	0.000	39.000	0.000
	62.5096		555.777	10.720	37.000	1.044	0.000	0.000	37.000	0.000
	62.5096 -		694.254	41.431	39.000	1 062	0.000	0.000	39.000	0 000
	60.3478 60.3478 -		732.048	42.075	39.000	1.079	0.000	0.000	39.000	0.000
	58.1859									
	58.1859 - 56.0241		770.164	42.661	39.000	1.094	0.000	0.000	39.000	0.000
	56.0241 56.0241 -		808.603	43.197	39.000	1.108	0.000	0.000	39.000	0.000
	53.8622		000.003	13.171	37.000	1.100	0.000	0.000	37.000	0.000
	53.8622 -		847.367	43.685	39.000	1.120	0.000	0.000	39.000	0.000
	51.7004 51.7004 -		886.458	44.130	39.000	1.132	0.000	0.000	39.000	0.000
	49.5385		000.400		27,000		0.000	0,000	57.000	0.000
	49.5385 -		925.875	44.535	39.000	1.142	0.000	0.000	39.000	0.000
	47.3767 47.3767 -		521.717	23.316	39.000	0.598	0.000	0.000	39.000	0.000
	42.6267		341./1/	43.310	37.000	0.578	0.000	0.000	39.000	0.000
1.3	47.3767 -	TP43 5x31.644x0.313	492.072	22 852	39 000	0 586	0 000	0.000	39 000	0.000
	42.6267									

Job		Page
	BU #876352 Richard Wall	15 of 20
Project		Date
	12-10734E S2	14:13:11 10/29/12
Client		Designed by
	Crown Castle	Will Hammond

Section	Elevation	Size	Actual	Actual	Allow.	Ratio	Actual	Actual	Allow.	Ratio
No.			M_{x}	f_{bx}	F_{bx}	f_{bx}	M_{y}	f_{by}	F_{by}	f_{by}
	ft		kip-ft	ksi	ksi	$\overline{F_{bx}}$	kip-ft	ksi	ksi	$\overline{F_{bv}}$
	42.6267 -		1056.01	47.383	39.000	1.215	0.000	0.000	39.000	0.000
	40.3832		7							
	40.3832 -		1098.56	47.653	39.000	1.222	0.000	0.000	39.000	0.000
	38.1396		7							
	38.1396 -		1141.44	47.894	39.000	1.228	0.000	0.000	39.000	0.000
	35.8961		2							
	35.8961 -		1184.65	48.107	39.000	1.234	0.000	0.000	39.000	0.000
	33.6526		0							
	33.6526 -		1228.19	48.296	39.000	1.238	0.000	0.000	39.000	0.000
	31.4091		2							
	31.4091 -		1272.06	48.462	39.000	1.243	0.000	0.000	39.000	0.000
	29.1656		7							
	29.1656 -		1316.28	48.607	39.000	1.246	0.000	0.000	39.000	0.000
	26.9221		3							
	26.9221 -		1360.84	48.733	39.000	1.250	0.000	0.000	39.000	0.000
	24.6786		2	40.040	20.000	1.0.00	0.000	0.000	20.000	0.000
	24.6786 - 22.4351		1405.74	48.842	39.000	1.252	0.000	0.000	39.000	0.000
	22.4351 -		2 1450.99	48.935	20.000	1.255	0.000	0.000	20,000	0.000
	20.1916		1430.99	48.933	39.000	1.255	0.000	0.000	39.000	0.000
	20.1916 -		1496.59	49.013	39.000	1.257	0.000	0.000	39.000	0.000
	17.9481		2	49.013	39.000	1.237	0.000	0.000	39.000	0.000
	17.9481 -		1542.54	49.078	39.000	1.258	0.000	0.000	39.000	0.000
	15.7046		2	47.070	39.000	1.236	0.000	0.000	39.000	0.000
	15.7046 -		1588.85	49.130	39.000	1.260	0.000	0.000	39.000	0.000
	13.4611		0	17.150	37.000	1.200	0.000	0.000	37.000	0.000
	13.4611 -		1635.51	49.171	39.000	1.261	0.000	0.000	39.000	0.000
	11.2175		7	.,,,,,		1.201	0.000	0.000	571000	0.000
	11.2175 -		1682.54	49.202	39.000	1.262	0.000	0.000	39.000	0.000
	8.97403		2							
	8.97403 -		1729.93	49.224	39.000	1.262	0.000	0.000	39.000	0.000
	6.73053		3							
	6.73053 -		1777.70	49.237	39.000	1.262	0.000	0.000	39.000	0.000
	4.48702		0							
	4.48702 -		1825.83	49.242	39.000	1.263	0.000	0.000	39.000	0.000
	2.24351		3							
	2.24351 - 0		1825.83 3	49.242	39.000	1.263	0.000	0.000	39.000	0.000

Pole Shear Design Data	

Section	Elevation	Size	Actual	Actual	Allow.	Ratio	Actual	Actual	Allow.	Ratio
No.			V	f_{v}	F_v	f_v	T	f_{vt}	F_{vt}	f_{vt}
	ft		K	ksi	ksi	$\overline{F_{v}}$	kip-ft	ksi	ksi	$\overline{F_{vt}}$
L1	117.5 -	TP22.9x15x0.188	2.577	0.285	26.000	0.022	0.000	0.000	26.000	0.000
	116.037									
	116.037 -		3.497	0.378	26.000	0.029	0.000	0.000	26.000	0.000
	114 574									
	114.574 -		3.570	0.377	26.000	0.029	0.000	0.000	26.000	0.000
	113.112									
	113.112 -		3.645	0.376	26.000	0.029	0.000	0.000	26.000	0.000
	111.649									
	111.649 -		3.720	0.375	26.000	0.029	0.000	0.000	26.000	0.000
	110.186									
	110.186 -		3.797	0.375	26.000	0.029	0.000	0.000	26.000	0.000
	108.723									

Job		Page
	BU #876352 Richard Wall	16 of 20
Project		Date
	12-10734E S2	14:13:11 10/29/12
Client	Crown Castle	Designed by Will Hammond

Section No.	Elevation	Size	Actual V	Actual	Allow.	Ratio	Actual T	Actual	Allow.	Ratio
IVO.	ft		v K	f _v ksi	F _v ksi	$\frac{f_v}{F_v}$	ı kip-ft	f _{vi} ksi	F _{vi} ksi	$\frac{f_{vt}}{F_{vt}}$
	108.723 -		3.875	0.374	26.000	0.029	0.000	0.000	26.000	0.000
	107.26									
	107.26 - 105.798		3.955	0.374	26.000	0.029	0.001	0.000	26.000	0.000
	105.798 -		9.116	0.844	26.000	0.065	0.764	0.092	26.000	0.004
	104.335									
	104.335 - 102.872		9.196	0.835	26.000	0.064	0.763	0.089	26.000	0.003
	102.872 -		9.281	0.826	26.000	0.064	0.008	0.001	26.000	0.000
	101.409		0.040			0.060			2 (200	0.000
	101.409 - 99.9463		9.362	0.817	26.000	0.063	0.008	0.001	26.000	0.000
	99.9463 -		9.444	0.809	26.000	0.062	0.009	0.001	26.000	0.000
	98.4835		0.627	0.001	26,000	0.062	0.010	0.001	26,000	0.000
	98.4835 - 97.0207		9.527	0.801	26.000	0.062	0.010	0.001	26.000	0.000
	97.0207 -		9.610	0.793	26.000	0.061	0.011	0.001	26.000	0.000
	95.5579 95.5579 -		9.694	0.786	26.000	0.060	0.012	0.001	26.000	0.000
	94.0951		9.094	0.760	20.000	0.000	0.012	0.001	20.000	0.000
	94.0951 -		10.470	0.834	26.000	0.064	0.013	0.001	26.000	0.000
	92.6323 92.6323 -		10.555	0.826	26.000	0.064	0.014	0.001	26.000	0.000
	91.1695		10.555	0.020	20.000	0.004	0.014	0.001	20.000	0.000
	91.1695 -		15.368	1.182	26.000	0.091	0.783	0.065	26.000	0.003
	89.7067 89.7067 -		6.169	0.456	26.000	0.035	0.308	0.024	26.000	0.001
	86.29		0.107	0.150	20.000	0.055	0.500	0.021	20.000	0.001
L2	89.7067 - 86.29	TP33.46x21.66x0.313	9.435	0.428	26.000	0.033	0.477	0.023	26.000	0.001
	86.29 -		15.745	0.698	26.000	0.054	0.787	0.036	26.000	0.001
	84.1281									
	84.1281 - 81.9663		15.900	0.688	26.000	0.053	1.677	0.074	26.000	0.003
	81.9663 -		16.042	0.679	26.000	0.052	1.678	0.071	26.000	0.003
	79.8044		16.104	0.670	26,000	2 251	1.670	0.060	26.000	0.000
	79.8044 - 77.6426		16.184	0.670	26.000	0.051	1.679	0.068	25.000	0.003
	77.6426 -		16.327	0.661	26.000	0.051	1.681	0.065	26.000	0.002
	75.4807 75.4807 -		16.548	0.655	26.000	0.050	1.680	0.062	26.000	0.002
	73.3189		10.346	0.033	20.000	0.030	1.060	0.002	20.000	0.002
	73.3189 -		16.693	0.647	26.000	0.050	1.670	0.059	26.000	0.002
	71.157 71.157 -		16.837	0.640	26.000	0.049	1.671	0.057	26.000	0.002
	68.9952		10.037	0.010	20.000	0.017	1.071	0.007		0.002
	68.9952 - 66.8333		16.983	0.632	26.000	0.049	1.673	0.055	26.000	0.002
	66.8333 -		17.129	0.625	26.000	0.048	1.674	0.052	26.000	0.002
	64.6715									
	64.6715 - 62.5096		17.276	0.618	26.000	0.048	1.675	0.051	26.000	0.002
	62.5096 -		17.424	0.612	26.000	0.047	1.676	0.049	26.000	0.002
	60.3478		17 673	0.606	27,000	0.047	1.630	0.047	26.000	0.002
	60.3478 - 58.1859		17.573	0.606	26.000	0.047	1.678	0.047	26.000	0.002
	58.1859 -		17.722	0.600	26.000	0.046	1.679	0.045	26.000	0.002
	56.0241 56.0241 -		17 070	0.504	26 000	0.044	1 400	0.044	26.000	0.002
	53.8622		17.872	0.594	26.000	0.046	1.680	0.044	20.000	0.002

FDH Engineering, Inc. 6521 Meridien Drive Raleigh, NC 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

Job	BU #876352 Richard Wall	Page 17 of 20
Project	12-10734E S2	Date 14:13:11 10/29/12
Client	Crown Castle	Designed by Will Hammond

Section No.	Elevation	Size	Actual V	Actual f _v	Allow. F _v	Ratio f_v	Actual T	Actual fvi	Allow. F _{vt}	Ratio f _{vi}
710.	fi		K	ksi	ksi	$\frac{Jv}{F_v}$	kip-ft	ksi	ksi	$\frac{f_{vi}}{F_{vi}}$
	53.8622 -		18.023	0.589	26.000	0.045	1.682	0.042	26.000	0.002
	51.7004									
	51.7004 -		18.175	0.583	26.000	0.045	1.683	0.041	26.000	0.002
	49.5385									
	49.5385 -		18.328	0.578	26.000	0.044	1.684	0.039	26.000	0.002
	47.3767									
	47.3767 -		9.730	0.296	26.000	0.023	0.870	0.019	26.000	0.001
	42.6267	TD42.5.21.644.0.212	0.007	0.070	24.000	0.001	0.010	0.010	26,000	0.001
L3	47.3767 -	TP43.5x31.644x0.313	8.996	0.279	26.000	0.021	0.819	0.019	26.000	0.001
	42.6267 42.6267 -		18.870	0.575	26.000	0.044	1.688	0.037	26.000	0.001
	40.3832		10.070	0.575	20.000	0.044	1.000	0.037	20.000	0.001
	40.3832 -		19.015	0.570	26.000	0.044	1.688	0.036	26.000	0.001
	38.1396		17.013	0.010	20.000	0.011	1.000	0.050	20.000	0.001
	38.1396 -		19.162	0.565	26.000	0.043	1.688	0.035	26.000	0.001
	35.8961									
	35.8961 -		19.310	0.560	26.000	0.043	1.687	0.033	26.000	0.001
	33.6526									
	33.6526 -		19.459	0.555	26.000	0.043	1.687	0.032	26.000	0.001
	31.4091									
	31.4091 -		19.610	0.551	26.000	0.042	1.687	0.031	26.000	0.001
	29.1656		10.760	0.547	26.000	0.043	1.607	0.020	26,000	0.001
	29.1656 - 26.9221		19.762	0.547	26.000	0.042	1.687	0.030	26.000	0.001
	26.9221 -		19.915	0.542	26.000	0.042	1.687	0.029	26.000	0.001
	24.6786		19.913	0.342	20.000	0.042	1.007	0.027	20.000	0.001
	24.6786 -		20.069	0.539	26.000	0.041	1.687	0.029	26.000	0.001
	22.4351			*****						
	22.4351 -		20.225	0.535	26.000	0.041	1.687	0.028	26.000	0.001
	20.1916									
	20.1916 -		20.382	0.531	26.000	0.041	1.687	0.027	26.000	0.001
	17.9481									
	17.9481 -		20.540	0.528	26.000	0.041	1.687	0.026	26.000	0.001
	15.7046		20.700	0.524	26,000	0.040	1.607	0.025	26,000	0.001
	15.7046 - 13.4611		20.700	0.524	26.000	0.040	1.687	0.025	26.000	0.001
	13.4611 -		20.861	0.521	26.000	0.040	1.637	0.025	26.000	0.001
	11.2175		20.001	0.321	20.000	0.040	1.007	0.023	20.000	0.001
	11.2175 -		21.023	0.518	26.000	0.040	1.687	0.024	26.000	0.001
	8.97403		_10_3	0.010	_0.000	0.0.0	.,,,,			
	8.97403 -		21.187	0.515	26.000	0.040	1.687	0.023	26.000	0.001
	6.73053									
	6.73053 -		21.352	0.512	26.000	0.039	1.687	0.023	26 000	0.001
	4.48702									
	4.48702 -		21.518	0.509	26.000	0.039	1.687	0.022	26.000	0.001
	2.24351		. 21.000	0.613	26,000	0.030	1 (00	0.022	24.000	0.001
	2.24351 - 0		21.686	0.513	26.000	0.039	1.688	0.022	26.000	0.001

Pole Interaction Design Data

Section No.	Elevation	Ratio P	Ratio f _{bx}	Ratio f _{by}	Ratio f _v	Ratio f _{vt}	Comb. Stress	Allow. Stress	Criteria
	fi	P_a	$\overline{F_{bx}}$	$\overline{F_{bv}}$	$\overline{F_v}$	$\overline{F_{vt}}$	Ratio	Ratio	
LI	117.5 - 116.037	0.004	0.041	0.000	0.022	0.000	0.046	1.333	H1-3+VT 🖍

Job		Page
	BU #876352 Richard Wall	18 of 20
Project		Date
	12-10734E S2	14:13:11 10/29/12
Client		Designed by
	Crown Castle	Will Hammond

Section No.	Elevation	Ratio P	Ratio f _{bx}	Ratio f_{by}	Ratio f _v	Ratio f _{vi}	Comb. Stress	Allow. Stress	Criteria
	ft	P_a	F_{bx}	$\frac{F_{bv}}{F_{bv}}$	$\frac{f_v}{F_v}$	$\frac{f_{vi}}{F_{vi}}$	Ratio	Ratio	
	116.037 - 114.574	0.005	0.076	0.000	0.029	0.000	0.081	1.333	H1-3+VT 🗸
	114.574 - 113.112	0.005	0.115	0.000	0.029	0.000	0.121	1.333	H1-3+VT 🖊
	113.112 - 111.649	0.005	0.152	0.000	0.029	0.000	0.157	1.333	H1-3+VT 🗸
	111.649 - 110.186	0.005	0.186	0.000	0.029	0.000	0.191	1.333	H1-3+VT 🖊
	110.186 - 108.723	0.005	0.218	0.000	0.029	0.000	0.223	1.333	H1-3+VT 🗸
	108.723 - 107.26	0.005	0.248	0.000	0.029	0.000	0.253	1.333	HI-3+VT
	107.26 - 105.798	0.005	0.275	0.000	0.029	0.000	0.281	1.333	H1-3+VT 🗸
	105.798 - 104.335	0.009	0.386	0.000	0.065	0.004	0.396	1.333	H1-3+VT ✔
	104.335 - 102.872	0.009	0.452	0.000	0.064	0.003	0.463	1.333	H1-3+VT ✔
	102.872 - 101.409	0.009	0.514	0.000	0.064	0.000	0.524	1.333	H1-3+VT 🗸
	101.409 - 99.9463	0.009	0.572	0.000	0.063	0.000	0.582	1.333	H1-3+VT 🗸
	99.9463 - 98.4835	0.009	0.625	0.000	0.062	0.000	0.635	1.333	H1-3+VT 🗸
	98.4835 - 97.0207	0.009	0.675	0.000	0.062	0.000	0.685	1.333	H1-3+VT 🗸
	97.0207 - 95.5579	0.009	0.721	0.000	0.061	0.000	0.731	1.333	H1-3+VT 🗸
	95.5579 - 94.0951	0.009	0.765	0.000	0.060	0.000	0.775	1.333	H1-3+VT 🖊
	94.0951 - 92 6323	0.010	0.806	0.000	0.064	0.000	0.817	1.333	H1-3+VT 🗸
	92.6323 - 91.1695	0.010	0.848	0.000	0.064	0.000	0.859	1.333	H1-3+VT ✔
	91.1695 - 89.7067	0.014	0.937	0.000	0.091	0.003	0.953	1.333	H1-3+VT 🗸
	89.7067 - 86.29	0.005	0.423	0.000	0.035	0.001	0.429	1.333	H1-3+VT
L2	89.7067 - 86.29	0.005	0.416	0.000	0.033	0.001	0.421	1.333	H1-3+VT 🗸
	86.29 - 84.1281	0.009	0.733	0.000	0.054	0.001	0.743	1.333	H1-3+VT 🖊
	84.1281 - 81.9663	0.009	0.779	0.000	0.053	0.003	0.789	1.333	H1-3+VT 🗸
	81.9663 - 79.8044	0.009	0.820	0.000	0.052	0.003	0.830 مرو	1.333	H1-3+VT 🗸
	79.8044 - 77.6426	0.009	0.858	0.000	0.051	0.003	0.868	1.333	H1-3+VT 🗸
	77.6426 - 75.4807	0.009	0.892	0.000	0.051	0.002	0.902	1.333	H1-3+VT 🗸
	75.4807 - 73.3189	0.009	0.924	0.000	0.050	0.002	0.934	1.333	H1-3+VT

Job		Page
	BU #876352 Richard Wall	19 of 20
Project		Date
	12-10734E S2	14:13:11 10/29/12
Client		Designed by
	Crown Castle	Will Hammond

Criteria	Allow. Stress	Comb. Stress	Ratio f_{vi}	Ratio f _v	Ratio f_{by}	Ratio f _{bx}	Ratio P	Elevation	Section No.
	Ratio	Ratio	$\frac{f_{vt}}{F_{vt}}$	$\frac{f_{v}}{F_{v}}$	$\frac{-J_{by}}{F_{by}}$	$\frac{f_{bx}}{F_{by}}$	$\frac{1}{P_a}$	ft	
H1-3+VT 🗸	1.333	0.963	0.002	0.050	0.000	0.953	0.009	73.3189 - 71.157	
H1-3+VT 🖊	1.333	0.989	0.002	0.049	0.000	0.979	0.009	71.157 - 68.9952	
H1-3+VT ✔	1.333	1.013	0.002	0.049	0.000	1.003	0.009	68.9952 - 66.8333	
H1-3+VT ✔	1.333	1.035	0.002	0.048	0.000	1.024	0.010	66.8333 - 64.6715	
H1-3+VT 🗸	1.333	1.055	0.002	0.048	0.000	1.044	0.010	64.6715 - 62.5096	
H1-3+VT 🖊	1.333	1.073	0.002	0.047	0.000	1.062	0.010	62.5096 - 60.3478	
H1-3+VT ✔	1.333	1.089	0.002	0.047	0.000	1.079	0.010	60.3478 - 58.1859	
H1-3+VT ✓	1.333	1.104	0.002	0.046	0.000	1.094	0.010	58.1859 - 56.0241	
H1-3+VT 🗸	1.333	1.118	0.002	0.046	0.000	1.108	0.010	56.0241 - 53.8622	
H1-3+VT 🗸	1.333	1.131	0.002	0.045	0.000	1.120	0.010	53.8622 - 51.7004	
H1-3+VT ✔	1.333	1.142	0.002	0.045	0.000	1.132	0.010	51.7004 - 49.5385	
H1-3+VT 🗸	1.333	1.153	0.002	0.044	0.000	1.142	0.010	49.5385 - 47.3767	
H1-3+VT 🗸	1.333	0.603	0.001	0.023	0.000	0.598	0.005	47.3767 - 42.6267	
H1-3+VT ✔	1.333	0.592	0.001	0.021	0.000	0.586	0.005	47.3767 - 42.6267	L3
H1-3+VT ✓	1.333	1.227	0.001	0.044	0.000	1.215	0.011	42.6267 - 40.3832	
H1-3+VT ✔	1.333	1.234	0.001	0.044	0.000	1.222	0.011	40.3832 - 38.1396	
H1-3+VT ✓	1.333	1.240	0.001	0.043	0.000	1.228	0.011	38.1396 - 35.8961	
H1-3+VT ✔	1.333	1.246	0.001	0.043	0.000	1.234	0.012	35.8961 - 33.6526	
H1-3+VT ✓	1.333	1.251	0.001	0.043	0.000	1.238	0.012	33.6526 - 31.4091	
H1-3+VT ✔	1.333	1.255	0.001	0.042	0.000	1.243	0.012	31.4091 - 29.1656	
H1-3+VT ✓	1.333	1.259	0.001	0.042	0.000	1.246	0.012	29.1656 - 26.9221	
H1-3+VT ✓	1.333	1.262	0.001	0.042	0.000	1.250	0.012	26.9221 - 24.6786	
H1-3+VŢ ✓	1.333	1.265	0.001	0.041	0.000	1.252	0.012	24.6786 - 22.4351	
H1-3+VT 🗸	1.333	1.268	0.001	0.041	0.000	1.255	0.012	22.4351 - 20.1916	
H1-3+VT ✓	1.333	1.270	0.001	0.041	0.000	1.257	0.013	20.1916 - 17.9481	
H1-3+VT	1.333	1.272	0.001	0.041	0.000	1.258	0.013	. 17.9481 - 15.7046	

FDH Engineering, Inc. 6521 Meridien Drive Raleigh, NC 27616 Phone: (919) 755-1012 FAX: (919) 755-1031

Job		Page
	BU #876352 Richard Wall	20 of 20
Project		Date
	12-10734E S2	14:13:11 10/29/12
Client	Crown Castle	Designed by Will Hammond

Section No.	Elevation	Ratio P	Ratio f_{bx}	Ratio f_{by}	Ratio f _v	Ratio f _{vi}	Comb. Stress	Allow. Stress	Criteria
	fi	$\overline{P_a}$	F_{bx}	$\overline{F_{bv}}$	F_v	$\overline{F_{v'}}$	Ratio	Ratio	
	15.7046 - 13.4611	0.013	1.260	0.000	0.040	0.001	1.273	1.333	H1-3+VT 🖊
	13.4611 - 11.2175	0.013	1.261	0.000	0.040	0.001	1.274	1.333	H1-3+VT 🖊
	11.2175 - 8.97403	0.013	1.262	0.000	0.040	0.001	1.275	1.333	H1-3+VT 🖊
	8.97403 - 6.73053	0.013	1.262	0.000	0.040	0.001	1.276	1.333	H1-3+VT 🖊
	6.73053 - 4.48702	0.013	1.262	0.000	0.039	0.001	1.276	1.333	H1-3+VT 🗸
	4.48702 - 2.24351	0.014	1.263	0.000	0.039	0.001	1.277	1.333	H1-3+VT
	2.24351 - 0	0.014	1.263	0.000	0.039	0.001	1.277	1.333	HI-3+VT

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	SF*P _{allow} K	% Capacity	Pass Fail
L1	117.5 - 86.29	Pole	TP22.9x15x0.188	1	-7.055	675.940	71.5	Pass
L2	86.29 - 42.6267	Pole	TP33.46x21.66x0.313	2	-12.681	1647.855	86.5	Pass
L3	42.6267 - 0	Pole	TP43.5x31.644x0.313	3	-22.590	2197.997	95.8	Pass
							Summary	
						Pole (L3)	95.8	Pass
						RATING =	95.8	Pass

 $Program\ Version\ 6.0.4.0-1/27/2012\ File://fdh-server/Projects/2012\ Projects/10-October/12-10734E/Richard\ Wall/S2-RRSA, SNV/Analysis/876352\ Richard\ Wall\ final.eri$

APPENDIX B BASE LEVEL DRAWING

BUSINESS UNIT: 876352 TOWER ID: C_BASELEVEL

APPENDIX C ADDITIONAL CALCULATIONS

		امعا	1 :1	Innnedeedd
		Splice Weld Length Reg's (each side)	#DIV/OI #DIV/OI #DIV/OI #DIV/OI #DIV/OI #DIV/OI #DIV/OI #DIV/OI	4.77 4.77 4.77 6.91 6.91 6.91 6.91 6.91
		S AJAX Bolts Le Required (#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
		, ,		
	ug			5.77 5.77 5.77 192 192 192 192 192
	Existing	Local Buckling Allowable % Tension (k)	000000000000000000000000000000000000000	130.72 130.72 130.72 192 192 192 192 192 192
		Local Buckling %	* * * * * * * * * *	
		Local Buckling Capacity E (k)	#DIV/O! #DIV/O! #DIV/O! #DIV/O! #DIV/O! #DIV/O! #DIV/O!	134.99 134.99 134.99 196.14 196.14 196.14
			# 10V/VGI ## 10V/VGI #	30.25 30.25 30.25 30.48 30.48 30.48 30.48
	١	P/P_(%) f_JF_(%) f_JF_{H}(%) Combined from RISA from RIS	***	
		f _u /F _v (%) f _{vu} /F _{vl} (%) Combined from RISA from RISA Stress Rate	222222	
		from RIS		
		JF, (%) om RISA		
		P/P, (%) f rom RISA fr		
	ا		W/01 W/01 W/01 W/01 W/01 W/01 W/01 S1.52	53.80 (111.77 (112.77 (151.54 (1153.37 (1153.45 (1153.56 (1153.56 (1153.56 (1153.56 (1153.56 (1153.56 (1153.56 (1153.56 (1153.56 (
	Existing		5 5 5 5 5 5 5	
		f _e /F _b (%)	#DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 0.00%	47.72% 99.42% 100.28% 92.68% 93.77% 94.14% 94.61%
		Allow F _{b pole} (ksi)		
		la poie (ksi)	#DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	18.17 38.77 39.11 36.14 36.57 36.57 36.90 36.90
		f√F _b mod %)	2222222	
	ting	Allow f _b /F _b F _{k,mod} (ksi) (mod %) f _{b,pos} (ksi)	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	85 85 85 85 85 85 85 85 85 85 85 85 85 8
	Existing		01V/01 01V/01 01V/01 01V/01 01V/01 01V/01 01V/01 01V/01 01V/01	68% 00% 82% 69% 51% 73% 78% 81%
		f _b (ksi)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2012.68% 4179.00% 4201.82% 3875.69% 3900.42% 3906.29% 3908.78% 3908.50%
		M (k*ft)	0,000 0,000 0,000 0,000 0,000 0,000 4161,59 8959,03}	
		(in ⁴)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	5100.32 5680.85 6303.85 7994.56 8775.89 9606.62 10488.08 11421.78 12409.20
	Existing	(in*) 4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1143.84 5100.32.8 1132.44 503.85 2141.75 7984.56 2287.70 986.66 2287.70 1088.08 2594.50 1088.08 2594.50 1088.08 2594.50 1088.08 2594.50 1088.08
27 0 0 0 7 7 17 17 17 17 17 17 17 17 17 17 17 17	"ا	(in) mode (in) M (k*ft)		
% Capacity 39.42 86.27 0.00 0.00 0.00 86.27		ı. I	0.00 0.00 0.00 0.00 0.00 0.00 4161.59	395648 4448.36 4979.40 5852.81 6488.19 7168.12 7893.97 8667.25 9489.44
5.7e		Center to Center Hole Spacing (in)		
Type Type Pole Pole Pole Pole Pole Pole Overall Working Percer		Sleeve Dia. (in)		
1.9 1 1 1				
		or g Boit Hole C-3. (in)		THE STATE STATE
Section No. 11 12 12 14 14 15 15	ties	Connector Spacing (in)		
	t Proper	# plates	in the second	
105.00%	rcemen	(in)		
1 1	Existing Reinforcement Properties	x bar (in) r, min (in) # plates		
Max Fercertage Mowed:	Existin			
dax ferce		Net Amod (in²)		
		A _{mod} (in ²)	ã.	
		E dren e Fiser (-1)		
Splice Web Splice Web Splice Web		th (in) E		
	-	(in) Widt	7.37 7.37 7.37 7.37 7.37 7.57 7.57 7.57	5.24 5.74 5.79 6.01 6.85 6.85
		w (c)		
8 H II	erties	e (in)	22.85 500 22.85	16.71 17.34 18.29 18.93 19.56 20.20 20.83 20.83
f pass of the pass	Pole Properties	Flat Imeter Cps	14.98 22 14.98 22 14.98 22 14.98 22 14.98 22 14.98 22 14.98 22 14.98 22 14.98 22	9.726 11 15 14 10 10 10 10 10 10 10 10 10 10 10 10 10
	-	Flat (America) Width (10) Pare (10) Width (10) Foot (10) America)	1 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		Elevatis		ARRESTORS AND
			13	2

Stiffened or Unstiffened, Ungrouted, Circular Base Plate - Any Rod Material

TIA Rev F

Site Data

Project No. 12-10734E S2 Site Name: Richard Wall Site ID: 876352

Pole M	lanufacturer:	Other

Anchor Rod Data								
Qty:	12							
Diam:	2.25	in						
Rod Material:	A615-J							
Strength (Fu):	100	ksi						
Yield (Fy):	75	ksi						
Bolt Circle:	52	in						

Plate Data								
Diam: 58 in								
Thick:	1.75	in						
Grade:	60	ksi						
Single-Rod B-eff:	11.51	in						

Stiffener Data (Welding at both sides)				
Config:	1	*		
Weld Type:	Fillet			
Groove Depth:	0.25	< Disregard		
Groove Angle:	45	< Disregard		
Fillet H. Weld:	0.625	in		
Fillet V. Weld:	0.375	in		
Width:	7	in		
Height:	20	in		
Thick:	0.75	in		
Notch:	0.5	in		
Grade:	36	ksi		
Weld str.:	70	ksi		

Pole Data			
Diam:	43.5	in	
Thick:	0.3125]in	
Grade:	65]ksi	
# of Sides:	18	"0" IF Round	
Fu	80	ksi	
Reinf. Fillet Weld	0	"0" if None	

 Stress	Increase F	actor
ASIF:	1.333	

Reactions		
Moment:	1874	ft-kips
Axial:	23	kips
Shear:	22	kips

If No stiffeners, Criteria:	AISC ASD	<-Only Applicable to Unstiffened Cases

Anchor Rod Results

Maximum Rod Tension: 142.2 Kips Allowable Tension: 195.0 Kips

Micwable Tellolott.	100.0	Npo
Anchor Rod Stress Ratio: 7	73.0%	Pass

Base Plate Results	Flexural Check
Base Plate Stress:	43.2 ksi
Allowable Plate Stress:	60.0 ks i
Base Plate Stress Ratio:	72.0% Pass

-	Stiffened	
	Service, ASD	
	0.75*Fy*ASIF	
	Y.L. Length:	
	N/A, Roark	

Stiffened

Service, ASD

Fty*ASIF

Stiffener Results

Horizontal Weld: 62.5% Pass Vertical Weld: 38.1% Pass Plate Flex+Shear, fb/Fb+(fv/Fv)^2: 24.5% Pass Plate Tension+Shear, ft/Ft+(fv/Fv)^2: 77.4% Pass Plate Comp. (AISC Bracket): 83.7% Pass

Pole Results

Pole Punching Shear Check: 12.6% Pass

Analysis Date: 10/29/2012

^{* 0 =} none, 1 = every bolt, 2 = every 2 bolts, 3 = 2 per bolt

^{**} Note: for complete joint penetration groove welds the groove depth must be exactly 1/2 the stiffener thickness for calculation purposes

Stiffened or Unstiffened, Ungrouted, Circular Base Plate - Any Rod Material

TIA Rev F

Site Data

Project No. 12-10734E S2 Site Name: Richard Wall Site ID: 876352

Pole Manufacturer:	Other

Anchor Rod Data		
Qty:	12	
Diam:	2.25	in
Rod Material:	A615-J	
Strength (Fu):	100	ksi
Yield (Fy):	75	ksi
Bolt Circle:	52	in

Plate Data			
Diam:	58	in	
Thick:	1.75	in	
Grade:	60	ksi	
Single-Rod B-eff:	11.51	in	

Stiffener Data (Welding at both sides)				
Config:	1	*		
Weld Type:	Both]		
Groove Depth:	0.5	in **		
Groove Angle:	45	degrees		
Fillet H. Weld:	0.5	in		
Fillet V. Weld:	0.375]in		
Width:	6	in		
Height:	30	in		
Thick:	1.25	in		
Notch:	0.5]in		
Grade:	36	ksi		
Weld str.:	70	ksi		

Pole Data			
Diam:	43.5	in	
Thick:	0.3125]in	
Grade:	65	ksi	
# of Sides:	18	"0" IF Round	
Fu	80	ksi	
Reinf. Fillet Weld	0	"0" if None	

Stress	Increase F	actor
ASIF:	1.333	

Reactions		
Moment:	1874	ft-kips
Axial:	23	kips
Shear:	22	kips

If No stiffeners, Criteria:	AISC ASD	<-Only Applcable to Unstiffened Cases

Anchor Rod Results

Maximum Rod Tension: 142.2 Kips
Allowable Tension: 195.0 Kips
Anchor Rod Stress Ratio: 73.0% Pass

Stiffened
Service, ASD
Fty*ASIF

Base Plate ResultsFlexural CheckBase Plate Stress:43.8 ksiAllowable Plate Stress:60.0 ksiBase Plate Stress Ratio:73.0% Pass

Stiffened
Service, ASD
0.75*Fy*ASIF
Y.L. Length:
N/A, Roark

Stiffener Results

Horizontal Weld: 67.4% Pass Vertical Weld: 26.1% Pass Plate Flex+Shear, fb/Fb+(fv/Fv)^2: 5.6% Pass Plate Tension+Shear, ft/Ft+(fv/Fv)^2: 56.7% Pass Plate Comp. (AISC Bracket): 50.4% Pass

Pole Results

Pole Punching Shear Check: 5.4% Pass

Analysis Date: 10/29/2012

^{* 0 =} none, 1 = every bolt, 2 = every 2 bolts, 3 = 2 per bolt

^{**} Note: for complete joint penetration groove welds the groove depth must be exactly 1/2 the stiffener thickness for calculation purposes

Moment Capacity of Drilled Concrete Shaft (Caisson) for TIA Rev F or G

Note: Shaft assumed to have ties, not spiral, transverse reinforcing

Site Data	
BU# 876352	
Site Name: Richard Wall	
Site ID:	

	oad Factors	Below:
For M (WL)	1.3	< Enter Factor
For P (DL)	1.3	< Enter Factor

Pier Properties			
Concrete:			
Pier Diameter =	6.0	ft	
Concrete Area =	Concrete Area = 4071.5 in ²		
Reinforcement:		_	
Clear Cover to Tie =	4.00]in	
Horiz. Tie Bar Size=	5		
Vert. Cage Diameter = _	5.11	ft	
Vert. Cage Diameter = _	61.34	in	
Vertical Bar Size = 11			
Bar Diameter =	1.41	in	
Bar Area =	1.56	in ²	
Number of Bars =	14	.]	
As Total=	21.84	in ²	
A s/ Aconc, Rho:	0.0054	0.54%	

ACI 10.5, ACI 21.10.4, and IBC 1810.

Min As for Flexural, Tension Controlled, Shafts:

(3)*(Sqrt(fc)/Fy: 0.0027
200 / Fy: 0.0033

Minimum Rho Check:

Actual Req'd Min. Rho:	0.33%	Flexural
Provided Rho:	0.54%	OK

Ref. Shaft Max Axial Capacities, φ Max(Pn or Tn):		
Max Pu = (φ=0.65) Pn.		
Pn per ACI 318 (10-2)	6051.26	kips
at Mu=(φ=0.65)Mn=	3126.24	ft-kips
Max Tu, (φ=0.9) Tn =	1179.36	kips
at Mu=φ=(0.90)Mn=	0.00	ft-kips

Maximum Shaft Superimposed Forces			
TIA Revision: F			
Max. Service Shaft M:		ft-kips (* Note)	
Max. Service Shaft P:	kips		
Max Axial Force Type: Comp.			

(*) Note: Max Shaft Superimposed Moment does not necessarily equal to the shaft top reaction moment

Load Factor	Sha	ft Factore	d Loads
1.30	Mu:	2735.85	ft-kips
1.30	Pu:	29.9	kips

Material Proper	ties	
Concrete Comp. strength, fc =	3000	psi
Reinforcement yield strength, Fy =	60	ksi
Reinforcing Modulus of Elasticity, E =	29000	ksi
Reinforcement yield strain =	0.00207	
Limiting compressive strain =	0.003	<u> </u>
ACI 318 Cod	е	
Select Analysis ACI Code=	2002	
Seismic Proper	rties	_
Seismic Design Category =	В	
Seismic Risk =	Low	

Solve	< Press Upon Completing All Input
(Run)	

Results:

Governing Orientation Case: 1

Dist. From Edge to Neutral Axis: Extreme Steel Strain, et: **11.64** in **0.0142**

ct > 0.0050, Tension Controlled

Reduction Factor,φ:

0.900

Output Note: Negative Pu=Tension

For Axial Compression, φ Pn = Pu: 29.90 kips Drilled Shaft Moment Capacity, φ Mn: 2940.29 ft-kips Drilled Shaft Superimposed Mu: 2735.85 ft-kips

/B.B J. B.B	Double of	Oback Flarence	CCD.	1 02 00/
i imilionan.	urwed	Shaft Flexure	LOK:	: 23.076 i
(ινια, φινιι,				V V 1 1 1 1

Analysis Date: 10/29/2012

CAISSON Version 10.61 2:26:48 PM Monday, October 29, 2012 FDH Engineering

 \star CAISSON - Pier Foundations Analysis and Design - Copyright Power Line Systems, Inc. 1993-2010 \star

Project Title: 876352 Richard Wall Project Notes: 12-10734E S2

Calculation Method: Full 8CD

***** I N P U T D A T A

Pier Properties

Diameter	Distance of Top of Pier	Concrete	Steel Yield
(ft)	above Ground (ft)	(ksi)	Strength (ksi)
6.00	1.00	3.00	60.00

Soil Properties

Layer	Туре	Thickness	Depth at Top of Layer	Density	CU	KP	PHI
		(ft)	(ft)	(1bs/ft^3)	(psf)		(deg)
1 2 3 4	Clay Sand Sand Sand	3.30 3.20 4.50 11.00	0.00 3.30 6.50 11.00	120.0 120.0 120.0 120.0		3.392 3.392 3.392	33.00 33.00 33.00

Design (Factored) Loads at Top of Pier

	Against Failure	Shear Load	Load	Moment
		(kips)	(kips)	(ft-k)
L CAPACITY = 2/3 = 66.7%	3.00	 22.00	23.0	1874.0

***** R E S U L T S

Page 1/2 FDH Engineering

Calculated Pier Properties

Total End-Bearing Pressure	Pressure Due To	Pressure Due To	Weight	Length
(psf)	Weight (psf)	Axial Load (psf)	(kips)	(ft)
4263.5	3450.0	813.5	97.546	23.000

Ultimate Resisting Forces Along Pier

Туре	Distance of Top of Layer	Thickness	Density	CÜ	KP	Force	Arm
	to Top of Pier (ft)	(ft)	(lbs/ft^3)	(psf)		(kips)	(ft)
Clay	1.00	3,30	120.0			0.00	2.65
Sand	4.30	3.20	120.0		3.392	114.88	6.07
Sand	7.50	4.50	120.0		3.392	288.49	9.94
Sand	12.00	5.02	120.0		3.392	496.48	14.66
Sand	17.02	5.98	120.0		3.392	-833.32	20.17

Shear and Moments Along Pier

Distance below Top of Pier (ft)	Shear (with Safety Factor) (kips)	Moment (with Safety Factor) (ft-k)	Shear (without Safety Factor) (kips)	Moment (without Safety Factor) (ft-k)
0.00	66.5	5957.8	22.2	1985.9
2.30	66.5	6110.8	22,2	2036.9
4.60	58.9	6262.7	19.6	2087.6
6.90	-21.1	6313.6	-7.0	2104.5
9.20	-139.9	6135.9	-46.6	2045.3
11.50	-297.5	5640.4	-99.2	1880.1
13.80	-493.8	4737,9	-164.6	1579.3
16.10	-728.9	3339.3	-243.0	1113.1
18.40	-663.9	1586.5	-221.3	528.8
20.70	-351.4	411.5	-117.1	137.2
23.00	0.0	-0.0	0.0	-0.0

500 West Cummings Park, Suite 3600 Woburn, Ma 01801 Telephone: 781-771-2255 Email jeff.barbadora@crowncastle.com

June 27, 2014

Melanie A. Bachman Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Sprint PCS-Exempt Modification - Crown Site BU: 876352

Sprint PCS Site ID: CT03XC335

Located at: 94 East High Street, East Hampton, Connecticut

Dear Ms. Bachman:

This letter is to confirm that all construction activity has been completed. Pursuant to the Connecticut Siting Council approval of **EM-Sprint-Nextel-042-130222**, this letter is to satisfy item number three of the approval letter that the CSC will be notified in writing within 45 days after completion of construction.

Please contact me if you have any questions.

Sincerely,

Jeffrey Barbadora 781-970-0053

July 9, 2014

CONNECTICUT SITING COUNCIL

State of Connecticut Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE:

Notification of Construction Completion on telecommunication facilities

To whom it may concern:

Alcatel Lucent hereby acknowledges that the list of attached sites have completed construction per the approval granted on the specified date. Please advise if further information is needed..

Very truly yours,

Martha Powers

Martha Powers Lead Development Manager Alcatel-Lucent Sprint Vision Project 1 Robbins Road Westford, MA 01886

Cc: FST, Siterra

EM-SPRINT-143-130604	218 Wheeler Road	Torrington	CT33XC592	6/28/2013
EM-SPRINT-140-130724	583 Chapel Street	Thomaston	CT33XC603	8/8/2013
EM-SPRINT-103-130920	Charles Marshall Drive	Norwalk	CT33XC802	10/4/2013
EM-SPRINT-NEXTEL-064-130214	439-455 Homestead Ave.	Hartford	CT43XC805	3/1/2013
EM-SPRINT-064-130311	99 Meadow Street	Hartford	CT43XC806	4/5/2013
EM-SPRINT-083-131127	290 Preston Ave.	Middletown	CT43XC816	12/16/2013
EM-SPRINT-128-130920	530 Bushy Hill Road	Simsbury	CT43XC825	10/4/2013
EM-SPRINT-164-130405A	340 Bloomfield Avenue	Windsor	CT43XC826	4/19/2013
EM-SPRINT-077-130109	239 Middle Turnpike	Manchester	CT43XC827	2/13/2013
EM-SPRINT-165-130118	2-4 Volunteer Drive	Windsor Locks	CT43XC828	2/14/2013
EM-SPRINT-NEXTEL-139-130214	44 Fyler Place	Suffield	CT43XC829	3/8/2013
EM-SPRINT-111-130712	171 Town Hill Road	Plymouth	CT54XC712	7/26/2013
EM-SPRINT-009-130322	38 Spring Hill Road	Bethel	CT54XC749	4/5/2013
EM-SPRINT-154-131011	315 Spencer Plains Road	Westbrook	CT54XC758	10/25/2013
EM-SPRINT-023-130405	14 Canton Springs Road	Canton .	CT54XC760	4/19/2013
EM-SPRINT-104-130606	153 Old Salem Road	Norwich	CT54XC775	6/28/2013
EM-SPRINT-164-130405B	99 Day Hill Road	Windsor	CT54XC787	4/19/2013
EM-SPRINT-132-130920	300 Governor's Highway	South Windsor	CT60XC014	10/4/2013
EM-SPRINT-094-130108	605 Willard Avenue	Newington	CT60XC018	1/25/2013
EM-SPRINT-146-130506	197 South Street	Vernon	CT60XC935	5/24/2013
EM-SPRINT-146-130311	777 Talcottville Road	Vernon	CT70XC147	4/5/2013
EM-SPRINT-126-130531	62 Birdseye Road	Shelton	CT73XC004	6/21/2013
,				