

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

October 27, 2021

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application 60 South Main Street, East Granby CT 06026 Latitude: 41.94155278 Longitude: -72.73861111 Site# 876399_Crown_Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 60 South Main Street in East Granby, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 5G MHz antenna and six (6) RRUs, at the 48-foot level of the existing 98-foot monopole tower, one (1) Fiber cables will also be installed. Dish Wireless LLC equipment cabinets will be placed within 7x5 lease area. Included are plans by NB+C, dated October 8, 2021 Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated September 2, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was approved by the Town of East Granby on November 29, 2000. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to James Hayden, First Selectman, and Gary Haynes, Zoning Enforcement Officer for the Town of East Granby, as well as the tower owner (Crown Castle) and property owner (Galasso Holding LLC)

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

- 1. The proposed modification will not result in an increase in the height of the existing structure. The top of the tower is 98-feet; Dish Wireless LLC proposed antennas will be located at a center line height of 48-feet.
- 2. The proposed modifications will not result in the increase of the site boundary as depicted on the attached site plan.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.

4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total power density of 50.99% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully indicates that the shared use of this facility satisfies these criteria.

A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.

B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this monopole in East Granby. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.

C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 48-foot level of the existing 98-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.

D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.

E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing guyed tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through East Granby.

Sincerely,

Denise Sabo

Denise Sabo

Mobile: 203-435-3640 Fax: 413-521-0558

Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments cc:

James Hayden, First Selectman Town of East Granby 9 Center Street, East Granby CT 06026

Gary Haynes, Zoning Enforcement Officer Town of East Granby 9 Center Street, East Granby CT 06026

Galasso Holding LLC, Property Owner PO Box 1776, East Granby CT 06026

Crown Castle, Tower Owner

Exhibit A

Original Facility Approval

TOWN OF EAST GRANBY PLANNING & ZONING COMMISSION 9 CENTER STREET P.O. BOX 1858 FAST GRANBY CT 06026

P.O. BUX 1858 EAST GRANBY, CT 06026 653-3444

November 29, 2000

Sprint Spectrum L.P. dba Sprint PCS 9 Barnes Industrial Road Wallingford, CT 06492

CERTIFIED MAIL

Dear Sirs,

At its meeting on November 28, 2000, the East Granby Planning & Zoning Commission voted to approve your Application #00-20 for a communication tower on the Galasso Holdings property subject to the following conditions:

1. A letter of approval be provided from the FAA that the proposed tower meets their requirements (ref. section IX, G3d of the Zoning Regulations).

2. A \$50,000 bond shall be posted prior to construction to be used to remove the tower if abandoned per section IX, G7 of the Zoning Regulations.

Sincerely,

Frederick O'Brien (MICHO)

Chairman

Cc: Town Clerk

Building Official Town Engineer

Assessor

Attorney Thomas Regan

Sprint PCS" Sprint Personal Communication Services^{ast}

Site Development Northeast
Crossroads Corporate Center

1 International Boulevard, Suite 800
Mahwah, New Jersey 07495
Mailston: N.IMAHA0101

Mailstop: NJMAHA0101 Telephone: 201-684-4000

Wayne Medlin, Property Specialist

Office: (201) 684-4063 Cell: (516) 850-5897 Fax: (201) 684-4070

December 26, 2000

VIA FEDEX

Rosalie McKenney Town of East Granby 9 Center Street P.O. Box 1858 East Granby, Connecticut 06026

Re: Tower removal bond for property located at 60 South Main Street, East Granby, CT 06026

Dear Rosalie:

Enclosed please a Tower removal bond, in the amount of (\$50,000) fifty thousand dollars, prepared and executed in accordance with the conditions of zoning approved for Sprint's proposed site located at the above referenced location. Should you have any questions, or require something further, please do not hesitate to contact me.

Very truly yours,

Wayne Medlin Property Specialist

Enclosures

MEMORANDUM

To:

East Granby Planning & Zoning Commission

From:

Glenn Chalder, AICP // //

Date:

October 8, 1997

Subject:

Adopted Zoning Regulation Changes

Personal Communication Service (PCS) Towers

I am enclosing a copy of the PCS regulation as adopted by the Planning and Zoning Commission at their meeting on October 7, 1997.

It has been a pleasure working with the Commission on this. If we can be of additional service, please let us know.

The East Granby Planning & Zoning Commission approved the attached Zoning Regulation changes on 10/7/97 to be effective 10/17/97.

Frederick O'Brien, Chairman

Date

ZONING REGULATION AMENDMENT

Personal Communication Service (PCS) Towers

(add the following)

INTERPRETATION **DEFINITIONS**

Antenna - A device used to transmit or receive telecommunications or radio signals.

Concealed Antenna - A communication facility and associated antenna(s) that are designed to blend into the surrounding environment by being mounted and screened on buildings or being similarly disguised in the natural environment.

Communications Tower - A structure (including monopoles, guyed towers, or lattice structures) that is used to support one or more antenna as part of a communication facility.

Communication Facility - towers or antennas and accessory structures used in connection with the provision of telecommunication services such as cellular telephone service, personal communication services, paging services, radio or television broadcasting services, and similar broadcast services.

(modify the following)

GENERAL REGULATIONS III.

GENERAL PROVISIONS B.

Height Exceptions

The provisions of these Regulations limiting the maximum height of buildings shall not restrict the height of a spire, flagpole, (antenna), chimney, water tank, elevator bulkhead, solar panel or similar uses provided such uses shall not interfere with an airport approach surface.

(add the following)

GENERAL REGULATIONS III.

GENERAL PROVISIONS

The provisions of these Regulations limiting the maximum height of buildings shall not restrict the height of an antenna that is erected solely for municipal purposes or that is clearly accessory to a permitted principal use in a residential zone, provided such antennae shall not interfere with an airport approach surface. The Commission may allow other proposed antennae in accordance with the requirements of Section IX. G. of these Regulations.

(add the following)

IX. SPECIAL REGULATIONS G. ANTENNAE

1. Purpose

PI

This section is intended to provide for telecommunications facilities within East Granby while protecting the public health, safety, and welfare and minimizing adverse visual and environmental impacts.

2. Application Process

a) An application for a new tower or a new antenna shall be processed as follows:

Zone Type	Communication	Tower/Antenna Type	Application Type
	Tower Type	Concealed antenna on a non-residential building	Special Permit
Residential, Agricultural, and	No tower proposed	On an existing non-residential building or structure (such as a water tower or utility pole)	Special Permit
Quarry zones	97 1 4° - A	New Antenna	Special Permit
	Existing tower	Concealed Antenna	Special Permit
	Concealed tower	Monopole (lower than or equal to 100 feet)	Special Permit
	New tower	Monopole (lower than 100 feet)	Special Permit
		Monopole (more than 100 feet)	Special Permit
		Lattice or Guyed	Site Plan
All other zones	No tower proposed	Concealed antenna	
But her		On an existing non-residential building or structure (such as a water tower or utility pole)	Site Plan
		New Antenna	Site Plan
frot or	Existing tower		Site Plan
Professional Industrial	Concealed tower	Concealed Antenna	Site Plan
Thans	New tower	Monopole (lower than or equal to 100 feet)	Special Permit
l	İ	Monopole (more than 100 feet)	Special Permit
	}	Lattice or Guyed	Special I clinic

- b) The proposed height of an antenna shall be measured from the prevailing ground elevation at the base of the tower, antenna, or any other supporting structure (including existing buildings) to the top of any antenna or other appurtenances attached to the tower or antenna.
- c) The Commission may retain its own experts, at the applicant's expense, to verify any information submitted in conjunction with any application.
- d) The application fee for a tower or antenna proposed under this section as part of a communications facility shall be \$250 plus the cost of any outside experts retained by the Commission. To cover these potential costs, the applicant shall submit a certified check for \$250 plus \$100 per foot of proposed tower/antenna height with the application. Any fees not utilized by the Commission shall be returned to the applicant following disposition of the application.

3. Required Information

- a) The applicant shall submit documentation to demonstrate that it is a licensed provider authorized by the Federal Communications Commission to operate the proposed type of facility.
- b) Any application under this section shall include the following site selection information:

a map showing:

- the extent of planned coverage in East Granby and in adjacent communities,
- the location and service area of the proposed antenna and/or tower.

• a written statement describing:

the need for the proposed facility (coverage, signal strength, other),

the siting and design criteria used for the proposed facility,

- the location of the site search area and sites identified (alternatives),
- the process by which other possible sites in the search area were considered and/or eliminated for legal, technological, economic, or other reasons,
- technological alternatives to the proposed facility and the economic or other implications associated with those alternatives, and
- reasons for the selection of the proposed site and design (tower, antenna).
- c) Any application under this section shall include the following design information:
 - a description of the proposed tower, antennae and any associated equipment (transformer, generator),
 - a site plan clearly locating the proposed facilities, proposed access, and any other activities on the proposed site,
 - plan and elevation drawings showing the proposed tower, antenna, mounting locations (proposed and future), associated equipment, and other structures on the site,
 - topographic profiles (running up/down slope and cross slope, at a minimum) showing the location of the proposed facilities in relation to surrounding areas and structures,
 - architectural or photographic rendering of the proposed facility from a location designated by the Zoning Enforcement Officer, and
 - a colored plan or plans clearly indicating the proposed color of any existing features or proposed facilities or equipment.
- d) Any application under this section shall include the following additional information:
 - a copy of any proposed lease(s) or agreements for the proposed facilities and required
 appurtenances,
 - a written statement describing how the proposed facility complies with the concept of multiple use and/or concealment,
 - written statements by competent professional describing the impact on public health and safety
 associated with the proposed activity with particular emphasis on radio emissions (signal
 frequency, intensity, and power density) and structural integrity, and
 - a written statement describing any requirements of other government agencies regarding illumination, colors, airport approach surfaces, or other requirements.

Site & Building Design 6.

- a) Any facility shall be surrounded by a fence of appropriate design at least eight feet in height. Landscaping around the facility may be required by the Commission depending on site location and characteristics.
- b) All utilities shall be located underground unless otherwise approved by the Commission.
- c) Unless waived by the Commission, any accessory equipment building shall:
 - shall not exceed 750 square feet of gross floor area,
 - shall not exceed 12 feet in height, and
 - shall have a gable roof and be architecturally finished to look like a residential or agricultural
- d) If located on the roof of a building, equipment building shall be screened or concealed.

Maintenance and Abandonment 7.

- a) The improvements associated with any facility shall be regularly inspected and maintained. Any facility that is not being maintained will be considered abandoned.
- b) The facility owner shall submit an annual report (by the anniversary date of the approval of the application) to the Commission or its designee indicating:
 - whether the facility is in use,
 - that the facility has been inspected on a regular basis and the inspection dates of the facility during the past year,
 - whether the facility is in compliance with governmental standards for radio frequency emissions at the designated frequencies and power levels,
 - whether the facility is in compliance with the conditions of any approval, and
 - that contact was made with the Building Department at Town Hall to identify any issues with regard to the tower, who was contacted, what the issues are, and detailing the proposed responses to any issues.
- c) In the event that the Building Official shall determine that any component of a facility is unsafe, the applicant shall, within 30 days, repair or replace or remove the facility or the unsafe condition.
- d) Any facility not in use for twelve months shall be considered abandoned. Any facility that fails to file an annual report shall be considered abandoned. An abandoned facility shall be removed within ninety days and the site restored.
- e) A bond shall be required prior to the construction of any facility to ensure that any required repair, replacement, or removal shall be accomplished. Prior to using the bond to remove or repair the facility, the Commission shall notify the applicant that the bond will be utilized. Such bond or any remaining bond amount shall be returned to the applicant upon removal of the facility and restoration of the site.

October 7, 1997 Adopted: Effective Date: October 17, 1997 e) Any application for a new tower shall also include the following information:

 a description of the proposed tower and any associated equipment (including height, construction type, purpose, design features, means of power supply),

 a written statement describing the extent to which the proposed tower has been designed to be extended and/or accommodate additional service providers in the future,

 a plan showing the number and type of antennas that can be accommodated (proposed and future) as well as the proposed location of all mounting positions for co-located antennas and the minimum separating distances for antennas,

 a written statement that indicates how additional service providers will be accommodated on the proposed tower in the future, and

 a written statement indicating that local municipal and public safety departments were offered the opportunity to locate their facilities on the proposed tower.

4. Tower Location & Design

- a) To maintain the natural state surrounding the public trail system and to avoid a negative visual impact on a large area of the town, no tower shall, unless modified by the Commission, be located within:
 - 500 feet of the Metacomet Ridge if it extends above the existing tree line,
 - one mile of the Metacomet Ridge if it extends above the top of the ridge,
 - three miles of another tower.
- b) In reviewing an application, the Commission may require the applicant to:
 - simulate the tower height by balloon or other method that will evaluate scenic impact,
 - investigate alternative locations and report back to the Commission on their feasibility.
- c) Any proposed tower shall be located on a conforming lot. A tower shall be set back from property lines 125 percent of the height of the tower and all appendages unless the applicant has submitted, and the Commission has accepted, engineering data to show that the tower is collapsible and will fall within the property lines of the lot on which it is located.
- d) Unless waived by the Commission, each tower shall be designed and built to accommodate the equipment of at least two other service providers:
 - when initially built, or
 - by vertically extension in the future.
- e) No illumination of any tower shall be permitted unless specifically requested by the applicant and specifically approved by the Commission. Limitations on illumination shall be made a condition of any approval.

5. Antenna Limitations

- a) Unless waived by the Commission:
 - no more than two dish antennas shall be placed on any tower,
 - all dish antenna be mesh design,
 - no dish antenna shall be more than:
 - two feet in diameter in residential zones, or
 - six feet in diameter in non-residential zones.

Exhibit B

Property Card

60 SOUTH MAIN STREET

Location 60 SOUTH MAIN STREET

Mblu 11/11///

Acct# 100819

Owner GALASSO HOLDINGS LLC

Assessment \$1,365,600

Appraisal \$1,950,700

PID 341

Building Count 3

Current Value

Appraisal					
Valuation Year Improvements Land Total					
2018	\$1,410,600	\$540,100	\$1,950,700		
Assessment					
Valuation Year	Improvements	Land	Total		
2018	\$987,500	\$378,100	\$1,365,600		

Owner of Record

Owner

GALASSO HOLDINGS LLC

•

Co-Owner Address

PO BOX 1776

EAST GRANBY, CT 06026

Sale Price

Certificate

Book & Page 0112/0814

Sale Date

03/06/1997

\$0

Ownership History

Ownership History					
Owner Sale Price Certificate Book & Page Sale Date					
GALASSO HOLDINGS LLC	\$0		0112/0814	03/06/1997	

Building Information

Building 1: Section 1

Year Built:

1969

Living Area:

40.000

Replacement Cost:

43,230

Building Percent Good:

\$1,509,592

Building Fercent 300

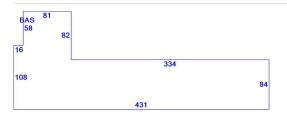
61

Replacement Cost

Less Depreciation:

\$920,900

Building Attributes


Field	Description
Style:	Garage
Model	Industrial
Grade	Average
Stories:	1
Occupancy	1.00
Exterior Wall A	Concr/Cinder
Exterior Wall B	
Roof Structure	Gable/Hip
Roof Cover	Tar & Gravel
Interior Wall A	Unfin/Minimum
Interior Wall B	
Interior Floor A	Concr-Finished
Interior Floor B	
Heating Fuel	Oil
Heating Type	Steam
AC Type	None
Struct Class	
Bldg Use	Industrial C
Total Rooms	
Total Bedrms	00
Total Baths	0
1st Floor Use:	3-1C
Heat/AC	NONE
Frame Type	MASONRY
Baths/Plumbing	AVERAGE
Ceiling/Wall	NONE
Rooms/Prtns	AVERAGE
Wall Height	16.00
% Comn Wall	0.00

Building Photo

(http://images.vgsi.com/photos/EastGranbyCTPhotos/\00\01\17\92.jpg)

Building Layout

(ParcelSketch.ashx?pid=341&bid=341)

Building Sub-Areas (sq ft)			Legend
Code	Description	Gross Area	Living Area
BAS	First Floor	43,230	43,230
		43,230	43,230

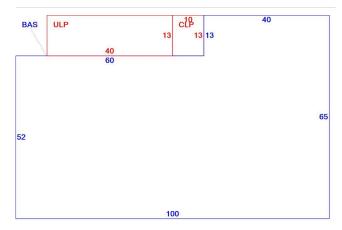
Building 2 : Section 1

Year Built: 1969
Living Area: 5,720
Replacement Cost: \$273,597
Building Percent Good: 61

Replacement Cost

Less Depreciation: \$166,900

Building Attributes : Bldg 2 of 3			
Field Description			
Style:	Service Shop		
Model	Industrial		


Grade	Below Average
Stories:	1
Occupancy	1.00
Exterior Wall A	Concr/Cinder
Exterior Wall B	
Roof Structure	Gable/Hip
Roof Cover	Asphalt
Interior Wall A	Unfin/Minimum
Interior Wall B	
Interior Floor A	Concr-Finished
Interior Floor B	Minimum/Plywd
Heating Fuel	Oil
Heating Type	Forced Air-Duc
AC Type	None
Struct Class	
Bldg Use	Industrial C
Total Rooms	
Total Bedrms	00
Total Baths	0
1st Floor Use:	3-1
Heat/AC	NONE
Frame Type	MASONRY
Baths/Plumbing	AVERAGE
Ceiling/Wall	-DESCRIPTION-
Rooms/Prtns	AVERAGE
Wall Height	10.00
% Comn Wall	0.00

Building Photo

(http://images.vgsi.com/photos/EastGranbyCTPhotos/\00\01\17\94.jpg)

Building Layout

(ParcelSketch.ashx?pid=341&bid=2485)

	Building Sub-Areas (sq ft)		Legend
Code	Description	Gross Area	Living Area
BAS	First Floor	5,720	5,720
CLP	Loading Platform, Finished	130	0
ULP	Loading Platform, Unfinished	520	0
		6,370	5,720

Building 3: Section 1

 Year Built:
 1972

 Living Area:
 8,000

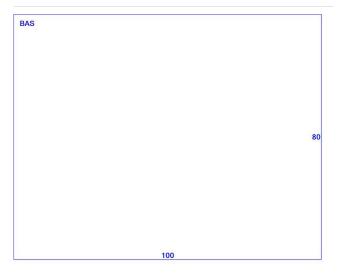
 Replacement Cost:
 \$404,000

Building Percent Good: 61

Replacement Cost

Less Depreciation: \$246,400

Building Attributes : Bldg 3 of 3			
Field Description			
Style:	Light Indust		
Model	Industrial		


Grade	Average
Stories:	1
Occupancy	1.00
Exterior Wall A	Concr/Cinder
Exterior Wall B	
Roof Structure	Flat
Roof Cover	Rolled Compos
Interior Wall A	Unfin/Minimum
Interior Wall B	
Interior Floor A	Concr-Finished
Interior Floor B	
Heating Fuel	Oil
Heating Type	Steam
AC Type	None
Struct Class	
Bldg Use	Industrial C
Total Rooms	0
Total Bedrms	0
Total Baths	0
1st Floor Use:	
Heat/AC	NONE
Frame Type	MASONRY
Baths/Plumbing	AVERAGE
Ceiling/Wall	NONE
Rooms/Prtns	AVERAGE
Wall Height	16.00
% Comn Wall	0.00

Building Photo

(http://images.vgsi.com/photos/EastGranbyCTPhotos/\00\01\17\93.jpg)

Building Layout

(ParcelSketch.ashx?pid=341&bid=103821)

Building Sub-Areas (sq ft)			<u>Legend</u>
Code Description		Gross Area	Living Area
BAS	First Floor	8,000	8,000
		8,000	8,000

Extra Features

Extra Features <u>Le</u>				<u>Legend</u>
Code	Description	Size	Value	Bldg #
MEZ	Mezzanine	960.00 S.F.	\$8,800	3

Land

Land Use		Land Line Valuation	
Use Code	3-1	Size (Acres)	89.97
Description	Industrial C	Frontage	0
Zone	I	Depth	0

Assessed Value \$378,100 **Appraised Value** \$540,100

Outbuildings

	Outbuildings <u>Lege</u>					
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
SHED	Shed	A	Average	180.00 S.F.	\$1,300	1
SHED	Shed	A	Average	640.00 S.F.	\$3,500	2
LNT	Lean-To			350.00 S.F.	\$1,400	1
SHED	Shed	A	Average	100.00 S.F.	\$500	2
SHED	Shed	A	Average	200.00 S.F.	\$2,200	3
LNT	Lean-To			240.00 S.F.	\$1,000	2
SHED	Shed	A	Average	1250.00 S.F.	\$11,300	1
GAR1	Garage	A	Average	1280.00 S.F.	\$19,200	2
LNT	Lean-To			1472.00 S.F.	\$8,800	1
SHED	Shed	A	Average	160.00 S.F.	\$1,700	1
SHED	Shed	A	Average	252.00 S.F.	\$1,400	2
SHED	Shed	A	Average	140.00 S.F.	\$1,000	2
SHED	Shed	G	Good	360.00 S.F.	\$5,200	1
SHED	Shed	A	Average	360.00 S.F.	\$4,500	1
FNC	Chain Link Fence	06	6 Ft. Height	600.00 L.F.	\$4,600	1

Valuation History

Appraisal					
Valuation Year	Improvements	Land	Total		
2017	\$1,293,500	\$536,600	\$1,830,100		
2012	\$1,409,400	\$359,400	\$1,768,800		
2007	\$818,700	\$429,800	\$1,248,500		

Assessment						
Valuation Year	Improvements	Land	Total			
2017	\$905,600	\$375,600	\$1,281,200			
2012	\$986,700	\$251,600	\$1,238,300			
2007	\$573,100	\$300,900	\$874,000			

Exhibit C

Construction Drawings

wireless

DISH Wireless L.L.C. SITE ID:

BOBDL00100A

DISH Wireless L.L.C. SITE ADDRESS:

60 SOUTH MAIN ST. EAST GRANBY, CT 06026

CONNECTICUT CODE COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:

2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS MECHANICAL 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS ELECTRICAL

	SHEET INDEX				
SHEET NO.	SHEET TITLE				
T-1	TITLE SHEET				
A-1	OVERALL AND ENLARGED SITE PLAN				
A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE				
A-3	A-3 EQUIPMENT PLATFORM AND H-FRAME DETAILS				
A-4	EQUIPMENT DETAILS				
A-5	EQUIPMENT DETAILS				
A-6 EQUIPMENT DETAILS					
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES				
E-2	ELECTRICAL DETAILS				
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE				
G-1	GROUNDING PLANS AND NOTES				
G-2	GROUNDING DETAILS				
G-3	GROUNDING DETAILS				
RF-1	RF CABLE COLOR CODE				
GN-1	LEGEND AND ABBREVIATIONS				
GN-2	GENERAL NOTES				
GN-3	GENERAL NOTES				
GN-4	GENERAL NOTES				

SCOPE OF WORK

THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIVALENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:

TOWER SCOPE OF WORK:

- INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR)
- INSTALL (1) PROPOSED ANTENNA PLATFORM MOUNT
- INSTALL PROPOSED JUMPERS
- INSTALL (6) PROPOSED RRUS (2 PER SECTOR)
- INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP)
- INSTALL (1) PROPOSED HYBRID CABLE
- INSTALL (3) BACK TO BACK RRU MOUNTS (1 PER SECTOR)

GROUND SCOPE OF WORK:

- INSTALL (1) PROPOSED METAL PLATFORM
- INSTALL (1) PROPOSED CABLE TRAY
- INSTALL (1) PROPOSED PPC CABINET
- INSTALL (1) PROPOSED EQUIPMENT CABINET
- INSTALL (1) PROPOSED POWER CONDUIT
- INSTALL (1) PROPOSED TELCO CONDUIT • INSTALL (1) PROPOSED TELCO-FIBER BOX
- INSTALL (1) PROPOSED GPS UNIT
- INSTALL (1) PROPOSED FIBER NID (IF REQUIRED)

SITE PHOTO

UNDERGROUND SERVICE ALERT CBYD 811 UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455 WWW.CBYD.COM

CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION

NO SCALE

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.

11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

TOWER CO SITE ID: 876399 TOWER APP NUMBER: 556577 HARTFORD

LATITUDE (NAD 83): 41° 56' 29.59" N

SITE INFORMATION

GALASSO HOLDINGS LLC

EAST GRANBY, CT 06026

PO BOX 1776

MONOPOLE

41.94155278 N LONGITUDE (NAD 83): -72° 44' 19.25" W -72.73861111 W

ZONING JURISDICTION: TOWN OF EAST GRANBY

ZONING DISTRICT:

PROPERTY OWNER:

ADDRESS:

TOWER TYPE:

COUNTY:

PARCEL NUMBER: 100819

OCCUPANCY GROUP: U

CONSTRUCTION TYPE: V-B

POWER COMPANY: NORTHEAST UTILITIES

TELEPHONE COMPANY: LIGHTOWER

PROJECT DIRECTORY

DISH WIRELESS, LLC.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

TOWER OWNER: CROWN CASTLE USA INC.

APPLICANT:

DIRECTIONS

Google

2000 CORPORATE DR. CANONSBURG, PA 15317

(877) 486-9377

SITE DESIGNER: NB+C ENGINEERING SERVICES 8601 SIX FORKS RD, SUITE 540

> RALEIGH, NC 27615 (919) 657-9131

SITE ACQUISITION: JEAN COTTRELL

JEAN.COTTRELL@CROWNCASTLE.COM

CONSTRUCTION MANAGER: JAVIER SOTO

JAVIER.SOTO@DISH.COM

BOSSENER CHARLES RF ENGINEER:

BOSSENER.CHARLES@DISH.COM

NB+C ENGINEERING SERVICES, LLC.

8601 SIX FORKS ROAD, SUITE 540

RALEIGH, NC 27615

wireless.

5701 SOUTH SANTA FE DRIVE

LITTLETON, CO 80120

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

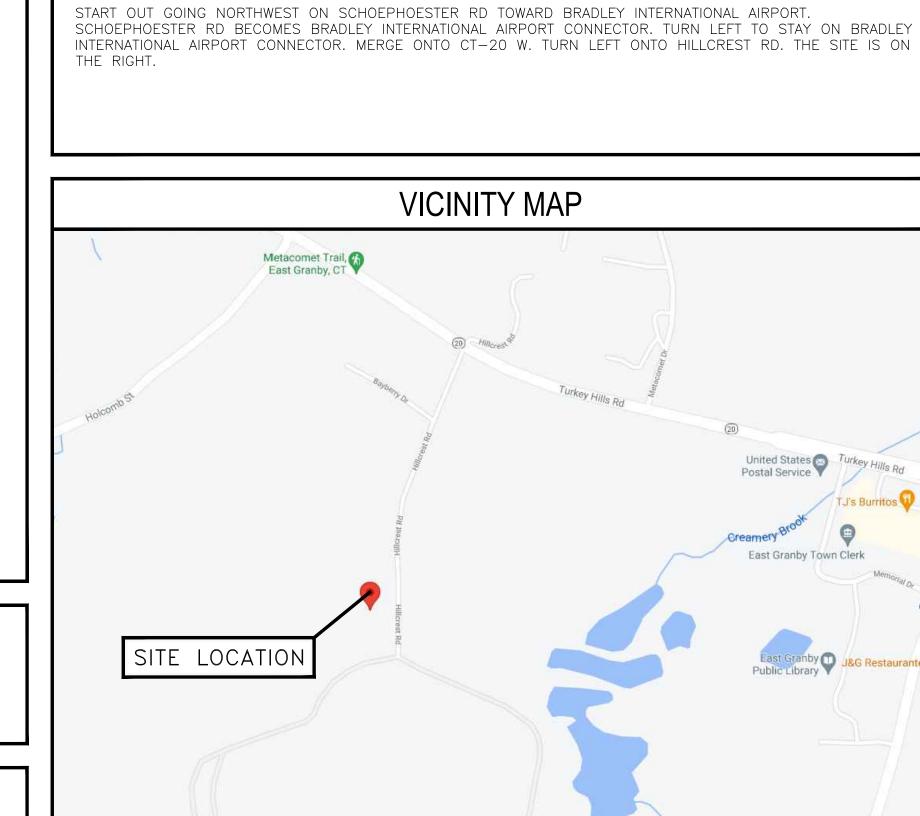
IT IS A VIOLATION OF LAW FOR ANY PERSON. UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

1	DRAWN BY:	CHECKED	BY:	APPROVED	BY:
	BPC	BRN		TA	
	RFDS REV	#:			

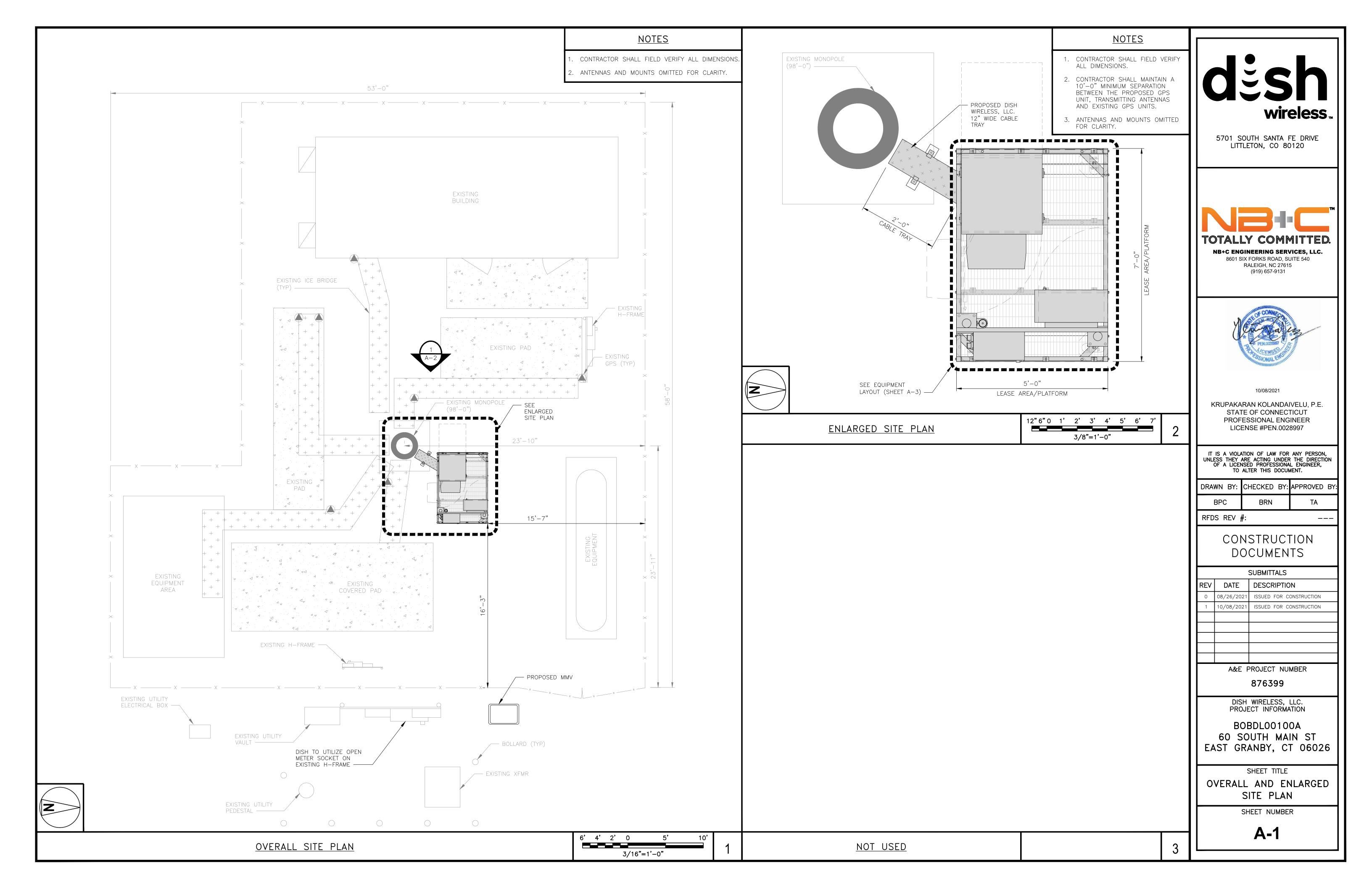
CONSTRUCTION DOCUMENTS

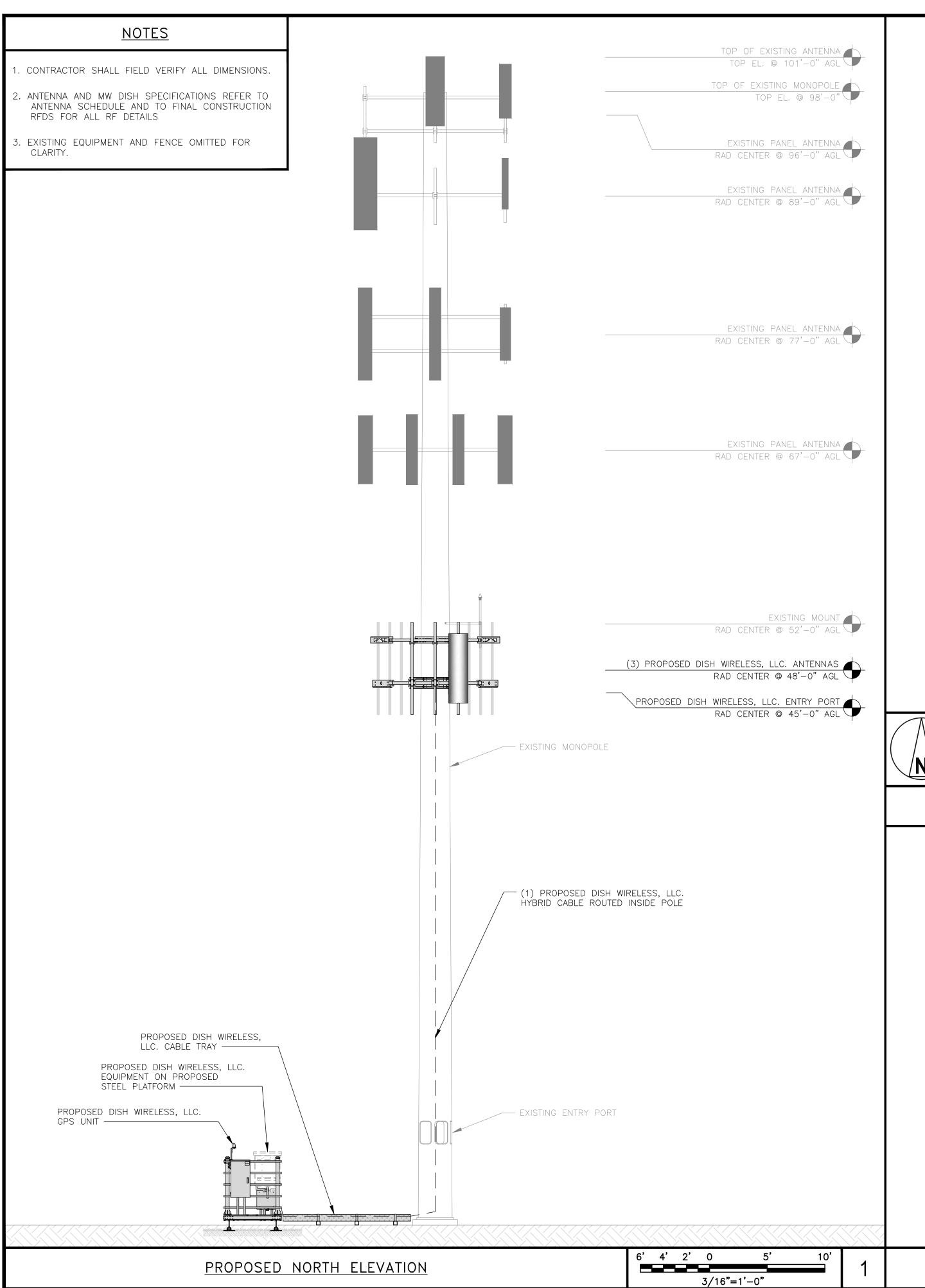
SUBMITTALS					
REV	DATE	DESCRIPTION			
0	08/26/2021	ISSUED FOR CONSTRUCTION			
1	10/08/2021	ISSUED FOR CONSTRUCTION			
A&E PROJECT NUMBER					
1					

876399


DISH WIRELESS, LLC. PROJECT INFORMATION

BOBDL00100A 60 SOUTH MAIN ST EAST GRANBY, CT 06026


> SHEET TITLE TITLE SHEET


SHEET NUMBER

T-1

DIRECTIONS FROM BRADLEY INTERNATIONAL AIRPORT:

ANTENNA TRANSMISSION CABLE SECTOR POSITION EXISTING OR MANUFACTURER - MODEL RAD CENTER FEED LINE TYPE TECHNOLOGY | SIZE (HxW) | AZIMUTH | AND LENGTH PROPOSED NUMBER ALPHA JMA - MX08FR0665-21 72.0" x 20.0" 48'-0" PROPOSED (1) HIGH-CAPACITY HYBRID CABLE 72.0" x 20.0" 48'-0" BETA JMA - MX08FR0665-21 5G 120° PROPOSED (73' LONG) GAMMA C1 PROPOSED JMA - MX08FR0665-21 72.0" x 20.0" 240° 48'-0"

		RRH		<u>NOTES</u>
SECTOR	POSITION	MANUFACTURER — MODEL NUMBER	TECHNOLOGY	1. CONTRACTOR TO REFER TO FINAL CONSTRUCTION RFDS FOR ALL RF
	A1	FUJITSU - TA08025-B604	5G	DETAILS.
ALPHA	A1	FUJITSU – TA08025-B605	5G	2. ANTENNA AND RRH MODELS MAY CHANGE DUE TO EQUIPMENT AVAILABILITY. ALL EQUIPMENT CHANGES MUST BE APPROVED AND REMAIN IN COMPLIANCE WITH THE PROPOSED DESIGN AND
ВЕТА	B1	FUJITSU — TA08025—B604	5G	STRUCTURAL ANALYSES.
	FUJITSU — TA08025—B605	5G		
$\bigcirc \land \land \land \land \land$	C1	FUJITSU — TA08025—B604	5G	
GAMMA -	C1	FUJITSU - TA08025-B605	5G	

wireless...

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED BY:
BPC	BRN	TA
RFDS REV ;	#:	

CONSTRUCTION DOCUMENTS

SUBMITTALS				
REV	DATE	DESCRIPTION		
0	08/26/2021	ISSUED FOR CONSTRUCTION		
1	10/08/2021	ISSUED FOR CONSTRUCTION		
	Δ&F F	PROJECT NUMBER		

A&E PROJECT NUMBER

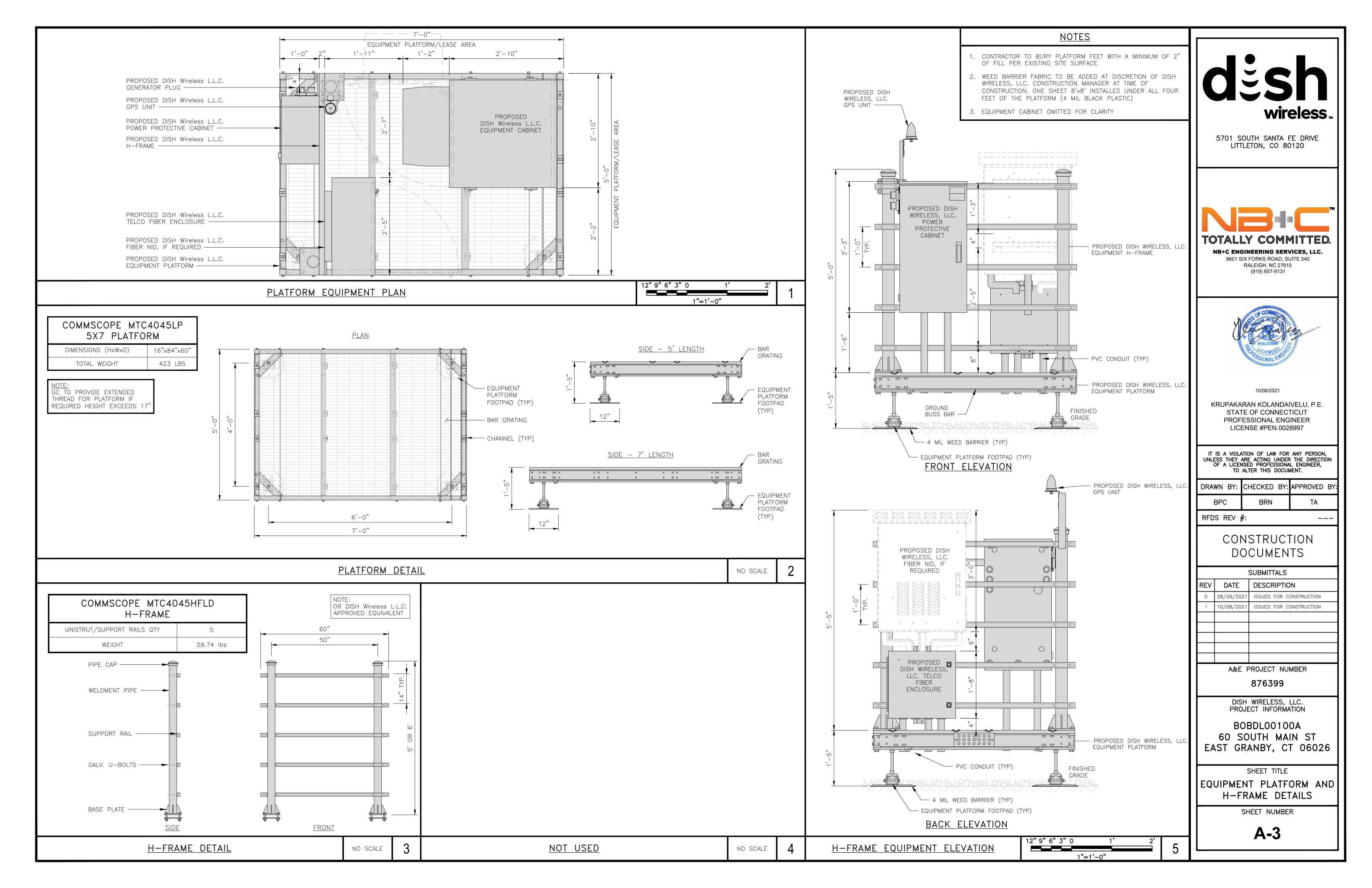
876399

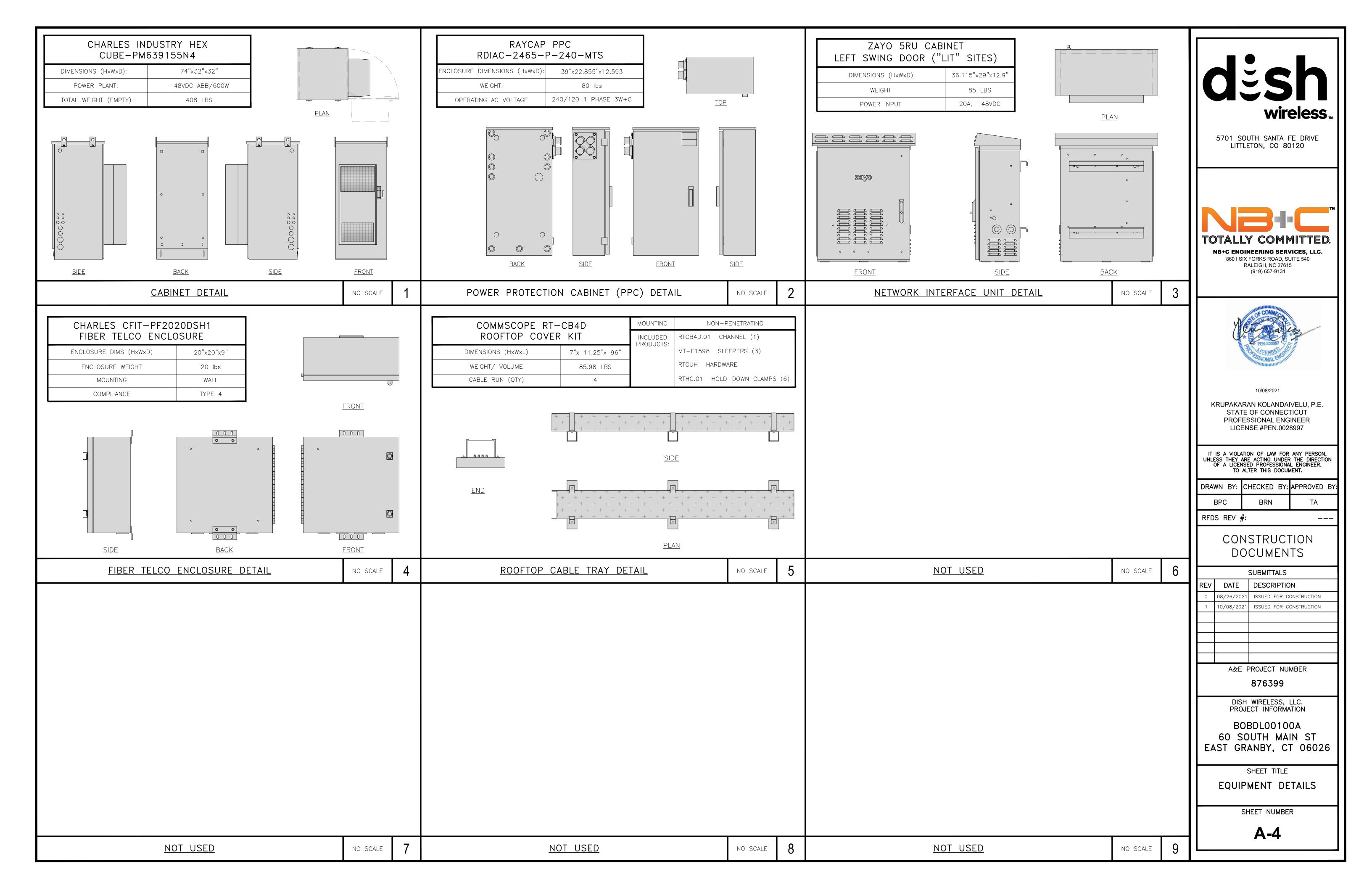
DISH WIRELESS, LLC. PROJECT INFORMATION

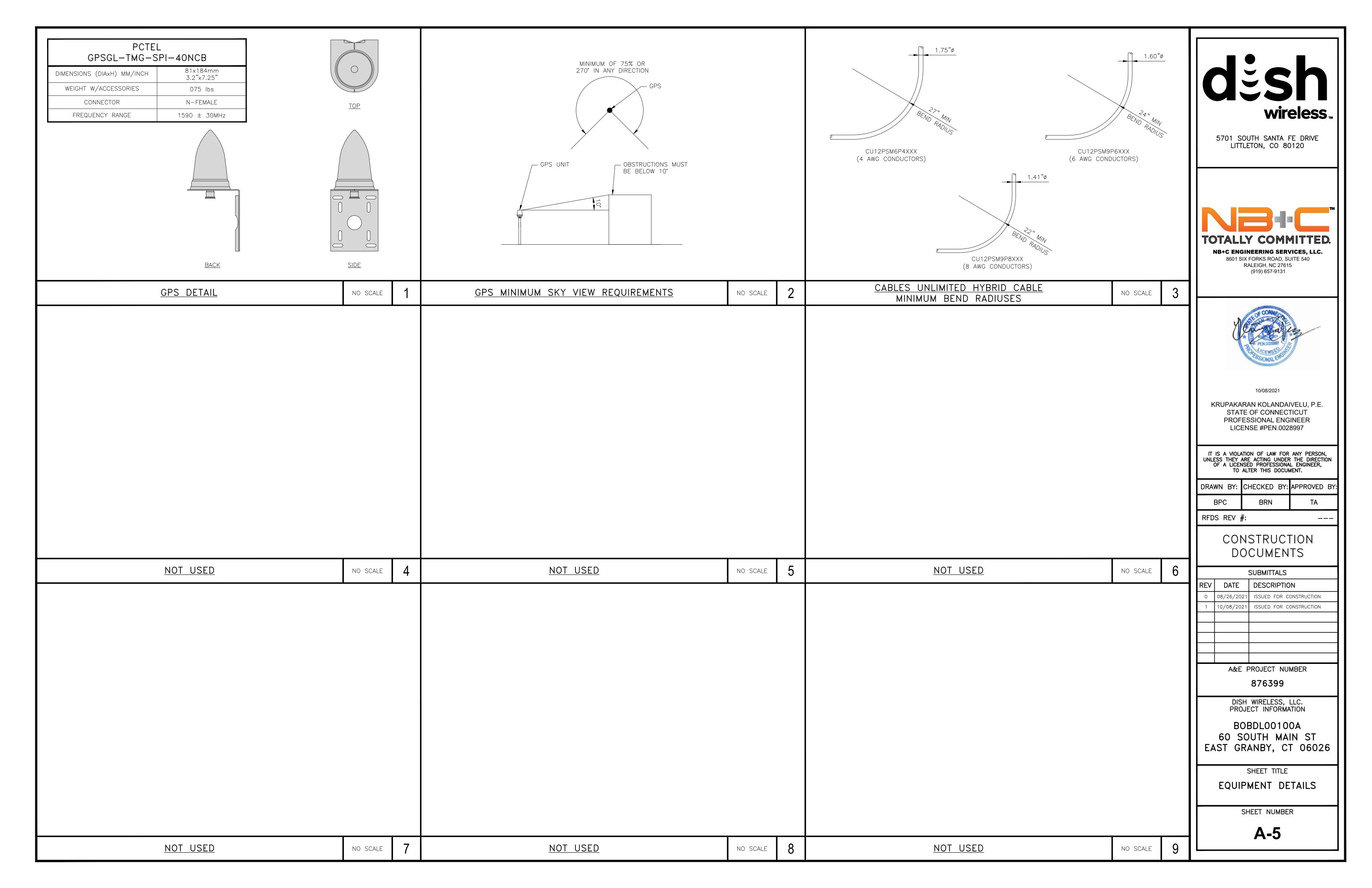
BOBDL00100A 60 SOUTH MAIN ST EAST GRANBY, CT 06026

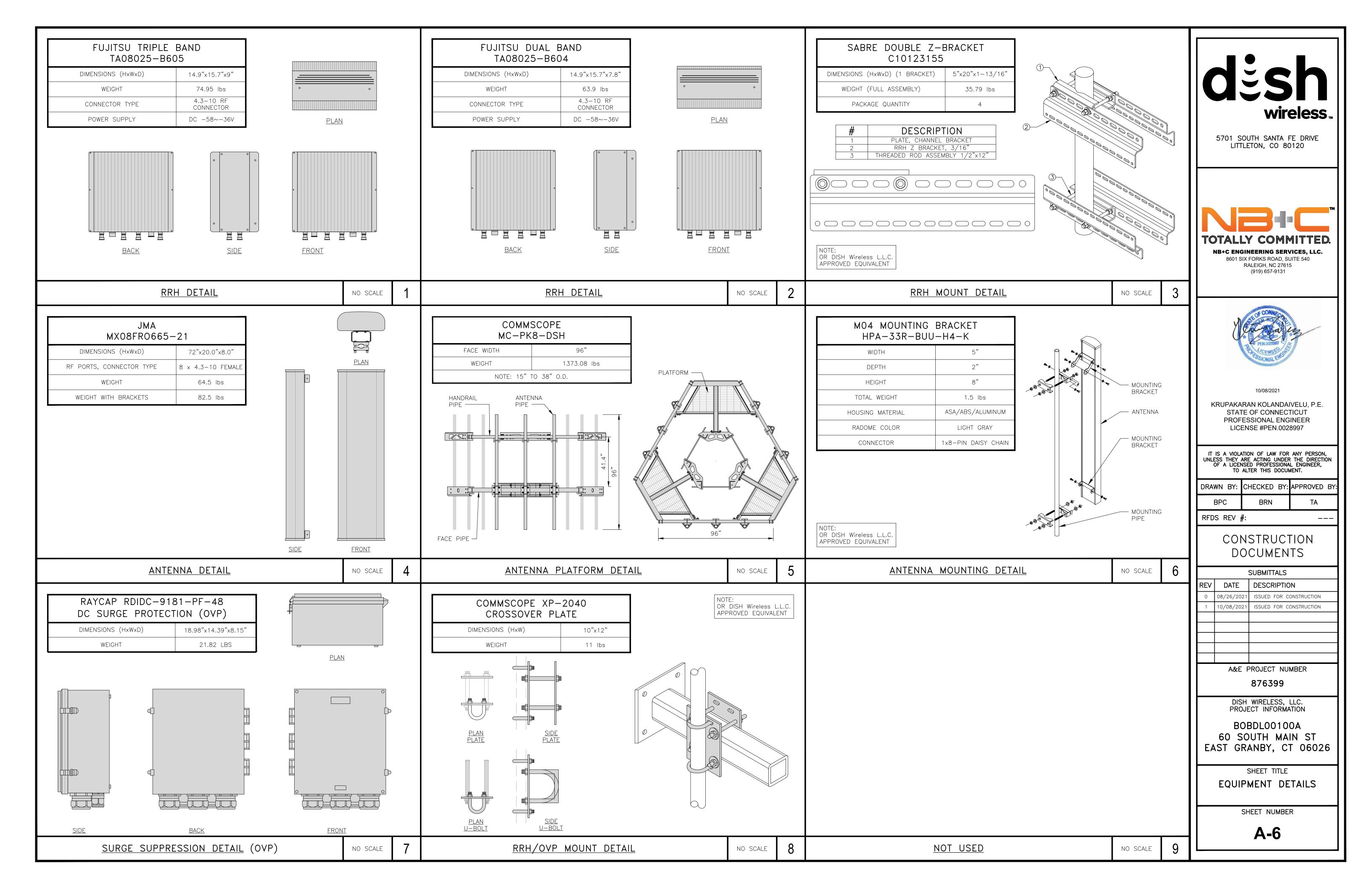
SHEET TITLE

ELEVATION, ANTENNA LAYOUT AND SCHEDULE


SHEET NUMBER


A-2


ANTENNA SCHEDULE


NO SCALE

3/4"=1'-0"

EASEMENT RIGHTS

CONTRACTOR SHALL FIELD VERIFY ALL PROPOSED UNDERGROUND UTILITY CONDUIT ROUTE.

COORDINATION MAY BE NEEDED.

ANTENNAS AND MOUNTS OMITTED FOR CLARITY. DUE TO UTILITY EASEMENT RIGHTS SPECIFIED IN THE GROUND LEASE, CUSTOMER MAY INSTALL EQUIPMENT WITHIN SPECIFIED UTILITY EASEMENT AREA. "PWR" AND "FBR" PATH DEPICTED ON A-1 AND E-1 REPRESENT PLANNED ROUTING BASED ON BEST AVAILABLE INFORMATION INCLUDING BUT NOT LIMITED TO A SURVEY, EXHIBITS, METES AND BOUNDS OF THE UTILITY EASEMENT, FIELD VERIFICATION, PRIOR PROJECT DOCUMENTATION AND OTHER REAL PROPERTY RIGHTS DOCUMENTS. WHEN INSTALLING THE UTILITIES PLEASE LOCATE AND FOLLOW EXISTING PATH. IF EXISTING PATH IS MATERIALLY INCONSISTENT WITH THE "PWR" AND "FBR" PATH DEPICTED ON A-1 AND E-1 AND SAID VARIANCE IS NOT NOTED ON CDS, PLEASE NOTIFY CROWN CASTLE REAL ESTATE AS FURTHER

> EXISTING BUILDING EXISTING ICE BRIDGE + EXISTING H-FRAME EXISTING PAD 4. EXISTING GPS (TYP) + + + + + + + + + + + ___ EXISTING MONOPOLE (98'-0")EXISTING . PAD EQUIPMENT AREA EXISTING H-FRAME -ELECTRICAL BOX — PROPOSED 2" SCH 40 CONDUIT FROM PROPOSED MMV TO PROPOSED DISH EQUIPMENT AREA (DISH TO INSTALL CONDUIT) DISH TO TAKE OVER (LENGTH: $20'\pm$) EXISTING METER PROPOSED MMV -#89248708 ON "XISTING H-FRAME -PROPOSED 3" SCH 40 CONDUIT FROM PROPOSED METER ON EXISTING H-FRAME TO PROPOSED DISH EQUIPMENT AREA (DISH TO INSTALL CONDUIT) (LENGTH: $25'\pm$) EXISTING UTILITY EXISTING XFMR —

DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING +24V AND -48V CONDUCTORS. RED MARKINGS SHALL IDENTIFY +24V AND BLUE MARKINGS SHALL IDENTIFY -48V.

- 1. CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
- 2. ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS.
- 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
- 4. CONDUIT ROUGH-IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS. VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
- 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
- 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
- 7. CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
- 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
- 9. INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250. THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL DISCONNECT SWITCHES, AND EQUIPMENT CABINETS.
- 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.
- 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT.
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS.
- 13. ALL TRENCHES IN COMPOUND TO BE HAND DUG

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

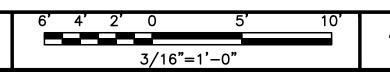
		OFFICINED	טו.	APPROVED	BT:
BPC		BRN		TA	

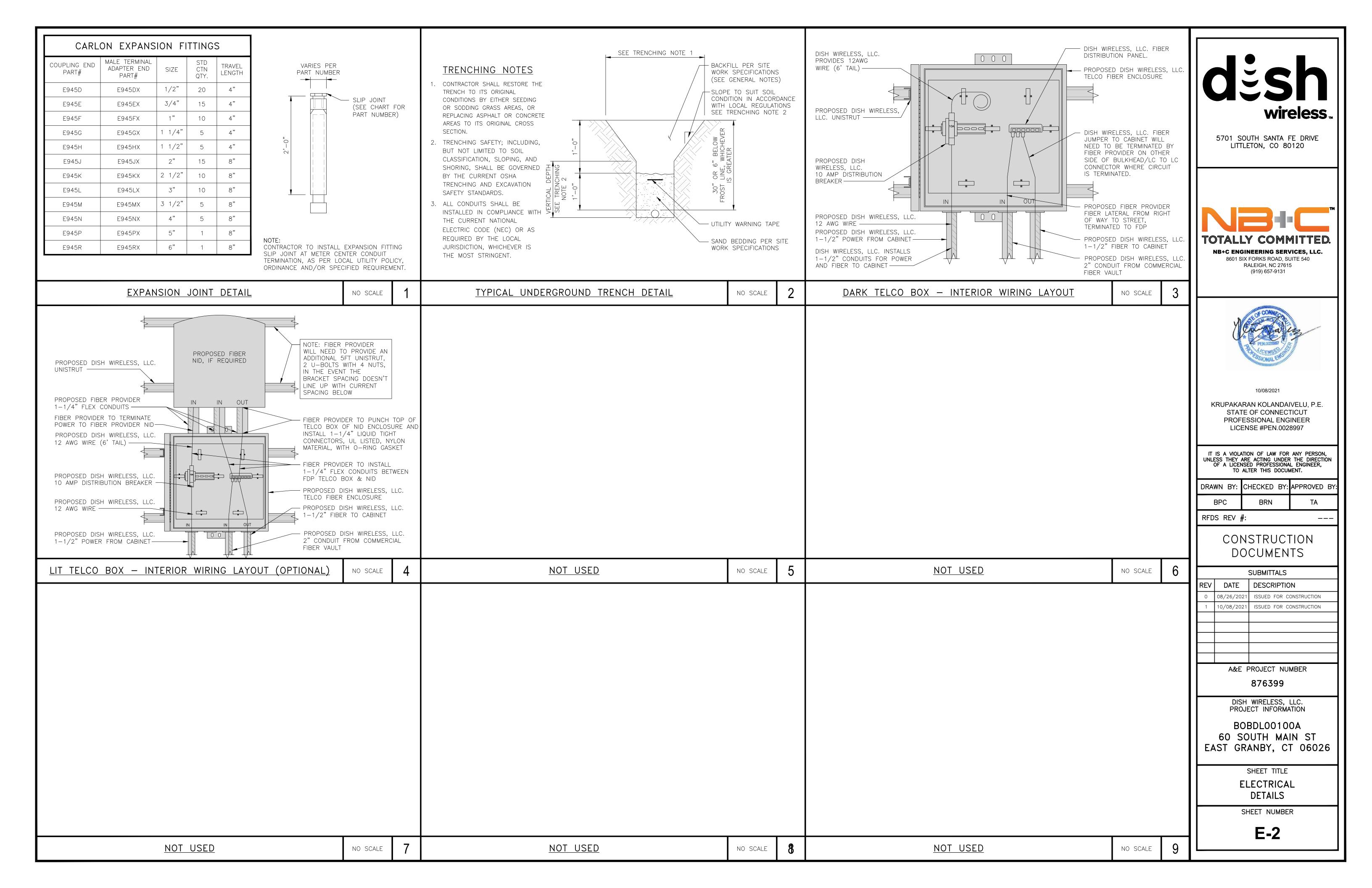
RFDS REV #:

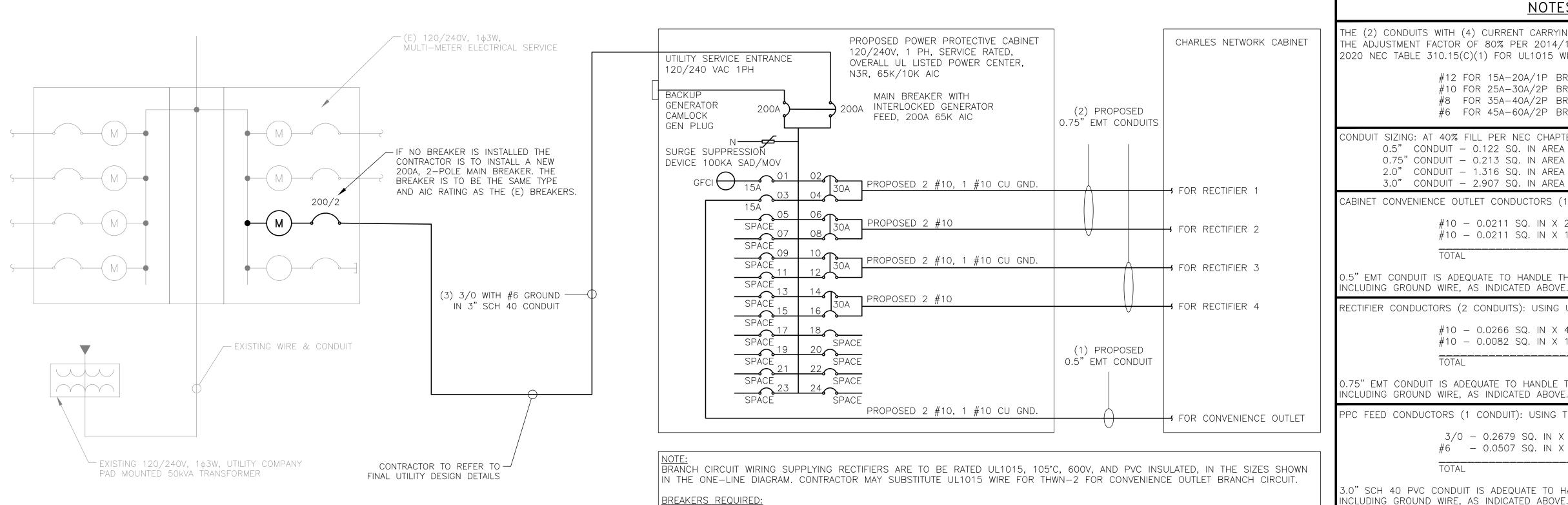
CONSTRUCTION DOCUMENTS

	SUBMITTALS				
REV	DATE	DESCRIPTION			
0	08/26/2021	ISSUED FOR CONSTRUCTION			
1	10/08/2021	ISSUED FOR CONSTRUCTION			
	A&E PROJECT NUMBER				

876399


DISH WIRELESS, LLC. PROJECT INFORMATION


BOBDL00100A 60 SOUTH MAIN ST EAST GRANBY, CT 06026


SHEET TITLE

ELECTRICAL/FIBER ROUTE PLAN AND NOTES

SHEET NUMBER

NOTES

THE (2) CONDUITS WITH (4) CURRENT CARRYING CONDUCTORS EACH, SHALL APPLY THE ADJUSTMENT FACTOR OF 80% PER 2014/17 NEC TABLE 310.15(B)(3)(a) OR 2020 NEC TABLE 310.15(C)(1) FOR UL1015 WIRE.

> #12 FOR 15A-20A/1P BREAKER: $0.8 \times 30A = 24.0A$ #10 FOR 25A-30A/2P BREAKER: 0.8 x 40A = 32.0A #8 FOR 35A-40A/2P BREAKER: 0.8 x 55A = 44.0A #6 FOR 45A-60A/2P BREAKER: 0.8 x 75A = 60.0A

CONDUIT SIZING: AT 40% FILL PER NEC CHAPTER 9, TABLE 4, ARTICLE 358.

0.5" CONDUIT - 0.122 SQ. IN AREA 0.75" CONDUIT - 0.213 SQ. IN AREA

2.0" CONDUIT - 1.316 SQ. IN AREA 3.0" CONDUIT - 2.907 SQ. IN AREA

CABINET CONVENIENCE OUTLET CONDUCTORS (1 CONDUIT): USING THWN-2, CU.

#10 - 0.0211 SQ. IN X 2 = 0.0422 SQ. IN #10 - 0.0211 SQ. IN X 1 = 0.0211 SQ. IN <GROUND

= 0.0633 SQ. IN

D.5" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (3) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

RECTIFIER CONDUCTORS (2 CONDUITS): USING UL1015, CU.

#10 - 0.0266 SQ. IN X 4 = 0.1064 SQ. IN #10 - 0.0082 SQ. IN X 1 = 0.0082 SQ. IN <BARE GROUND

= 0.1146 SQ. IN

0.75" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (5) WIRES,

PPC FEED CONDUCTORS (1 CONDUIT): USING THWN, CU.

3/0 - 0.2679 SQ. IN X 3 = 0.8037 SQ. IN #6 - 0.0507 SQ. IN X 1 = 0.0507 SQ. IN <GROUND

= 0.8544 SQ. IN

3.0" SCH 40 PVC CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (4) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC ONE-LINE DIAGRAM

(4) 30A, 2P BREAKER - SQUARE D P/N:Q0230 (1) 15A, 1P BREAKER – SQUARE D P/N:QO115

NO SCALE

wireless...

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:

RFDS REV #:

CONSTRUCTION DOCUMENTS

	SUBMITTALS					
REV	DATE	DESCRIPTION				
0	08/26/2021	ISSUED FOR CONSTRUCTION				
1	10/08/2021	ISSUED FOR CONSTRUCTION				
	A&F DDO IFCT NUMBED					

A&E PROJECT NUMBER 876399

DISH WIRELESS, LLC. PROJECT INFORMATION

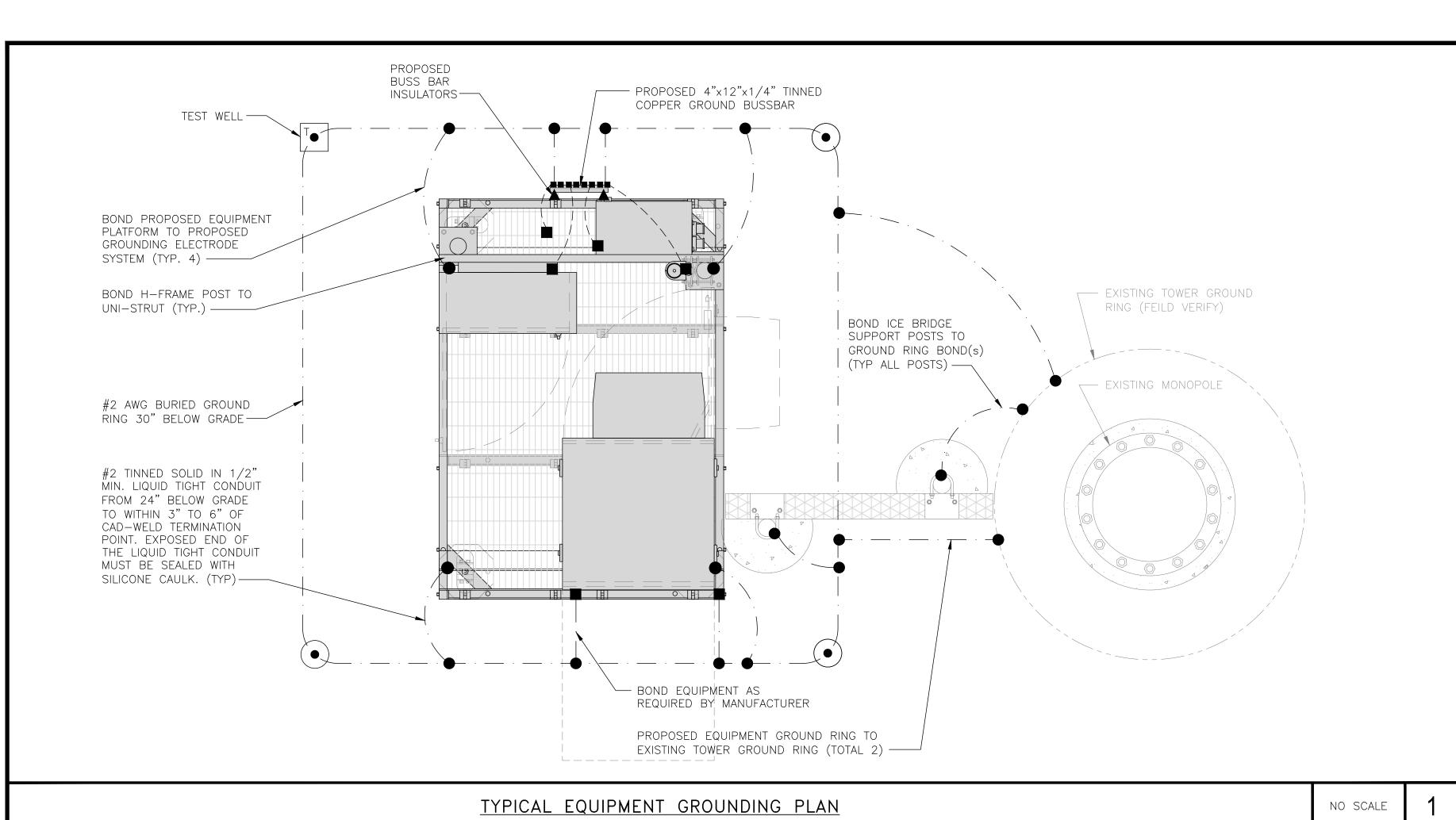
BOBDL00100A 60 SOUTH MAIN ST EAST GRANBY, CT 06026

SHEET TITLE

ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE

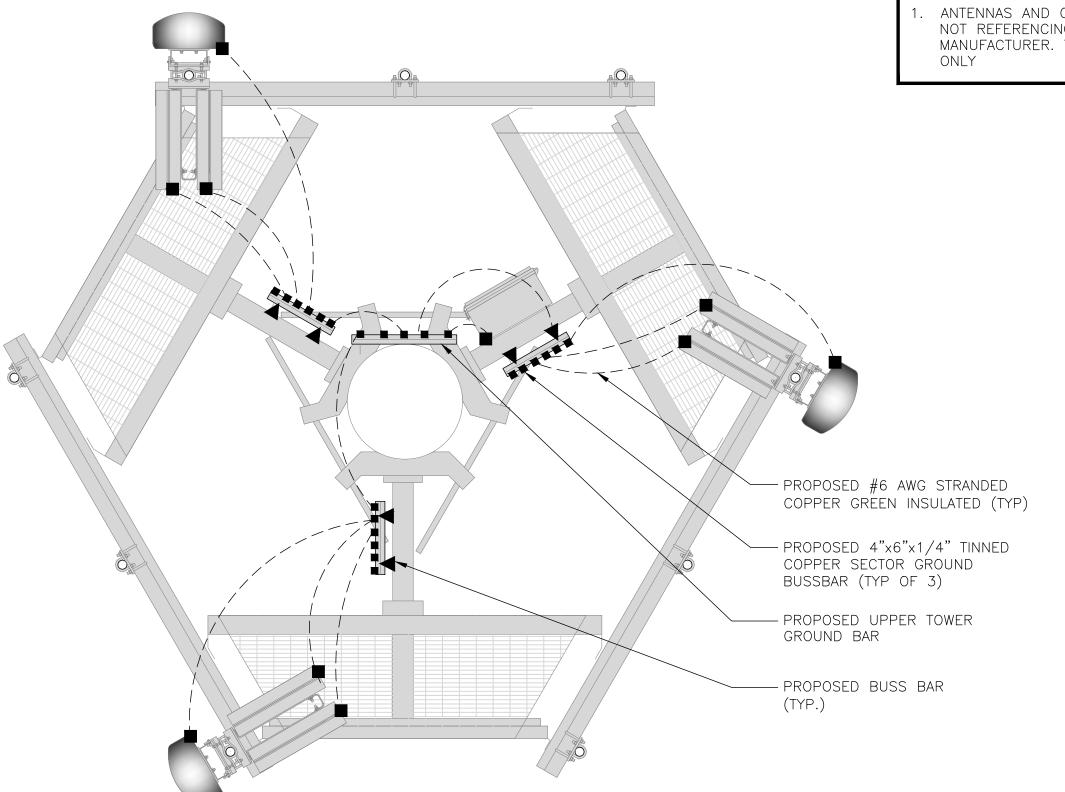
SHEET NUMBER

E-3


PROPOSED CHARLES PANEL SCHEDULE												
LOAD SERVED	VOLT AMPS (WATTS)			CKT PHASE		CKT TRIP		VOLT AMPS (WATTS)		LOAD SERVED		
	L1	L2	-	#		#	L1	L2				
PPC GFCI OUTLET CHARLES GFCI OUTLET	180	180	15A 15A	1 3	7	A B		2	30A	2880	2880	ABB/GE INFINITY RECTIFIER 1
-SPACE-				5	<u> </u>	A	1	6	30A	2880	2880	ABB/GE INFINITY RECTIFIER 2
-SPACE- -SPACE-				9		A B		10	30A	2880	2880	ABB/GE INFINITY RECTIFIER 3
-SPACE- -SPACE-				13	2 \	A		14	30A	2880	2880	ABB/GE INFINITY RECTIFIER 4
-SPACE-				17		A		18			2000	-SPACE-
-SPACE-				19	\sim	В		20				-SPACE-
-SPACE- -SPACE-				21		A B		22 24				-SPACE- -SPACE-
VOLTAGE AMPS	180	180								11520	11520	
200A MCB, 1φ, 24 SPACE, 120/240V			L1			L2				•		
MB RATING: 65,000 AIC		1170	0	1	170	0	VOL	TAGE AM	PS			
			98			98		AMPS				
				8				(AMPS				
		12	23			(AM	(125%					

PANEL SCHEDULE

NO SCALE


NOT USED

NO SCALE

ANTENNAS AND OVP SHOWN ARE GENERIC AND NOT REFERENCING TO A SPECIFIC MANUFACTURER. THIS LAYOUT IS FOR REFERENCE

EXOTHERMIC CONNECTION

MECHANICAL CONNECTION

GROUND BUS BAR

GROUND ROD

TEST GROUND ROD WITH INSPECTION SLEEVE

---- #6 AWG STRANDED & INSULATED

— · — · — #2 AWG SOLID COPPER TINNED

A BUSS BAR INSULATOR

GROUNDING LEGEND

- 1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.
- 2. CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM. GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH WIRELESS, LLC. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS.
- 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED.

GROUNDING KEY NOTES

- EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW GRADE, OR 6 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM THE EXTERIOR WALL OR FOOTING.
- TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS, AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS.
- (C) INTERIOR GROUND RING: #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTOR EXTENDED AROUND THE PERIMETER OF THE EQUIPMENT AREA. ALL NON-TELECOMMUNICATIONS RELATED METALLIC OBJECTS FOUND WITHIN A SITE SHALL BE GROUNDED TO THE INTERIOR GROUND RING WITH #6 AWG STRANDED GREEN INSULATED CONDUCTOR.
- (D) BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS SHALL BE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE CORNERS OF THE
- GROUND ROD: UL LISTED COPPER CLAD STEEL. MINIMUM 1/2" DIAMETER BY EIGHT FEET LONG. GROUND E GROUND ROD: UL LISTED COPPER CLAD STEEL, MINIMINION 1/2 DIGINETED BY LISTED COPPER CLAD STEEL BY L GROUND RING CONDUCTOR.
- (F) CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GREEN INSULATED COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUCTORS.
- (G) HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH.
- (H) EXTERIOR CABLE ENTRY PORT GROUND BARS: LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING. BOND $\overset{\square}{}$ to ground ring with a #2 awg solid tinned copper conductors with an exothermic weld and INSPECTION SLEEVE.
- (|) <u>Telco ground bar:</u> bond to both cell reference ground bar or exterior ground ring.
- J FRAME BONDING: THE BONDING POINT FOR TELECOM EQUIPMENT FRAMES SHALL BE THE GROUND BUS THAT IS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEWORK.
- (K) <u>Interior unit bonds:</u> metal frames, cabinets and individual metallic units located with the area OF THE INTERIOR GROUND RING REQUIRE A #6 AWG STRANDED GREEN INSULATED COPPER BOND TO THE INTERIOR GROUND RING.
- (L) <u>fence and gate grounding:</u> metal fences within 7 feet of the exterior ground ring or objects BONDED TO THE EXTERIOR GROUND RING SHALL BE BONDED TO THE GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEEDING 25 FEET. BONDS SHALL BE MADE AT EACH GATE POST AND ACROSS GATE OPENINGS.
- (M) <u>Exterior unit bonds:</u> Metallic objects, external to or mounted to the building, shall be bonded TO THE EXTERIOR GROUND RING. USING #2 TINNED SOLID COPPER WIRE
- (N) ICE BRIDGE SUPPORTS: EACH ICE BRIDGE LEG SHALL BE BONDED TO THE GROUND RING WITH #2 AWG BARE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRIDGE LEG AND BURIED GROUND RING.
- DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEMENTS AND INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICE CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPPED WITH A MASTER DC SYSTEM RETURN GROUND CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED TO THE CELL SITE REFERENCE GROUND BAR
- $\left(\mathbf{P} \right)$ tower top collector buss bar is to be mechanically bonded to proposed antenna mount collar.

REFER TO DISH WIRELESS, LLC. GROUNDING NOTES.

wireless.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN B	: CHECKED BY:	APPROVED BY:
BPC	BRN	TA

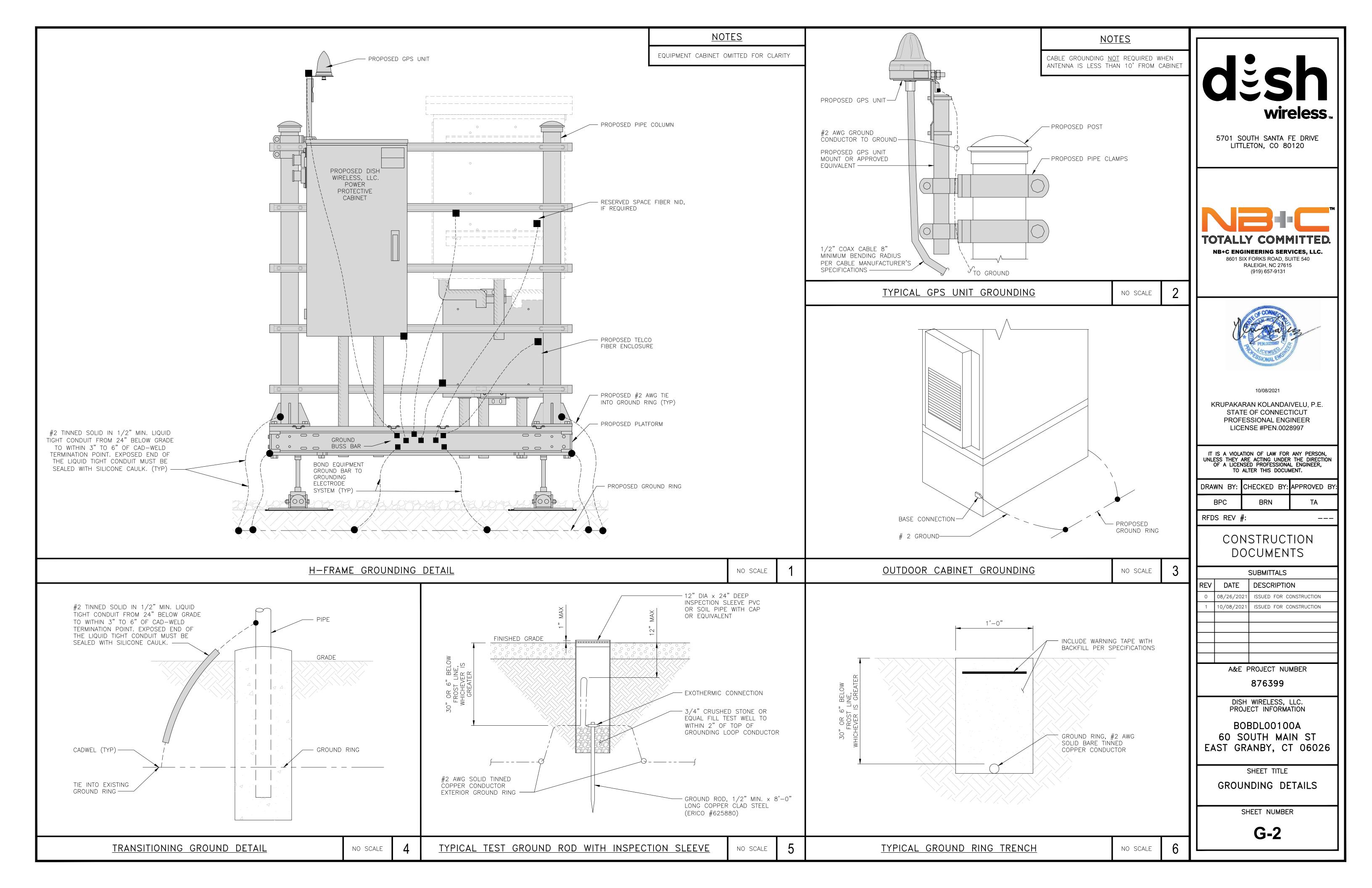
RFDS REV #:

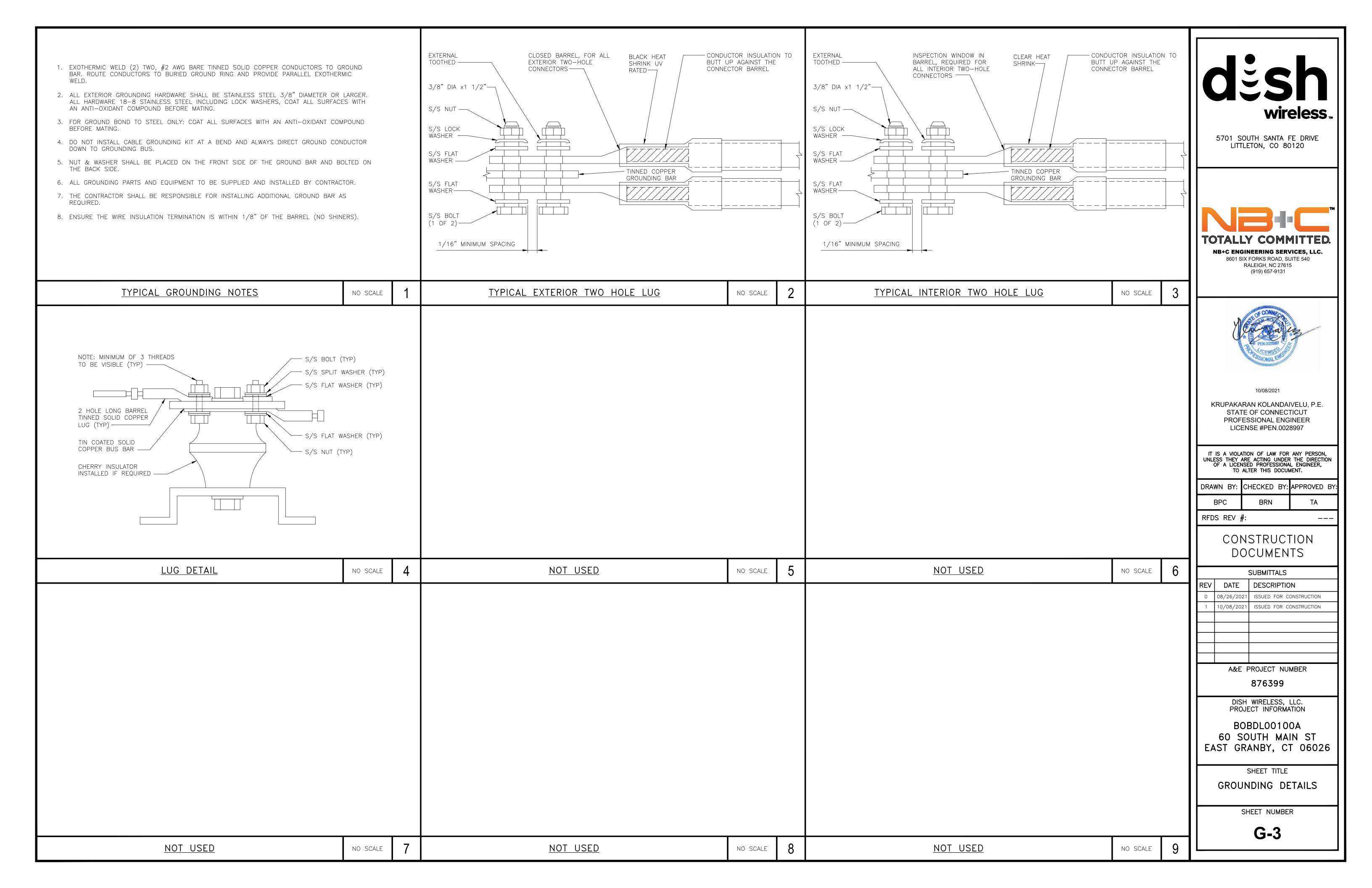
CONSTRUCTION DOCUMENTS

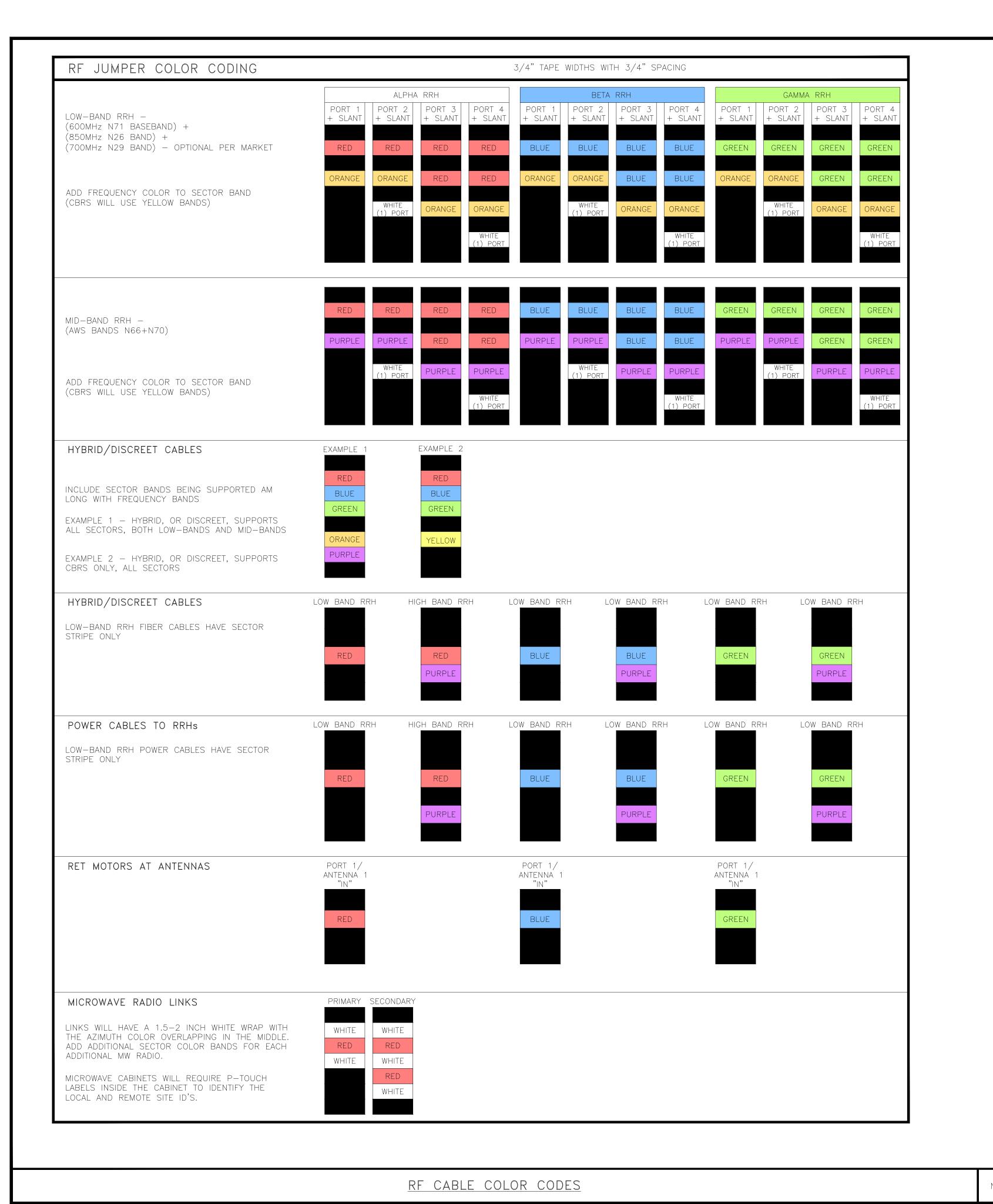
	SUBMITTALS					
REV	DATE	DESCRIPTION				
0	08/26/2021	ISSUED FOR CONSTRUCTION				
1	10/08/2021	ISSUED FOR CONSTRUCTION				
	A&E PROJECT NUMBER					

876399

DISH WIRELESS, LLC. PROJECT INFORMATION


BOBDL00100A 60 SOUTH MAIN ST EAST GRANBY, CT 06026


SHEET TITLE


GROUNDING PLANS AND NOTES

SHEET NUMBER

GROUNDING KEY NOTES

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

10/08/2021

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

ı	DRAWN BY:	CHECKED BY:	APPROVED BY:
l	BPC	BRN	TA
ı	RFDS REV ;	#:	

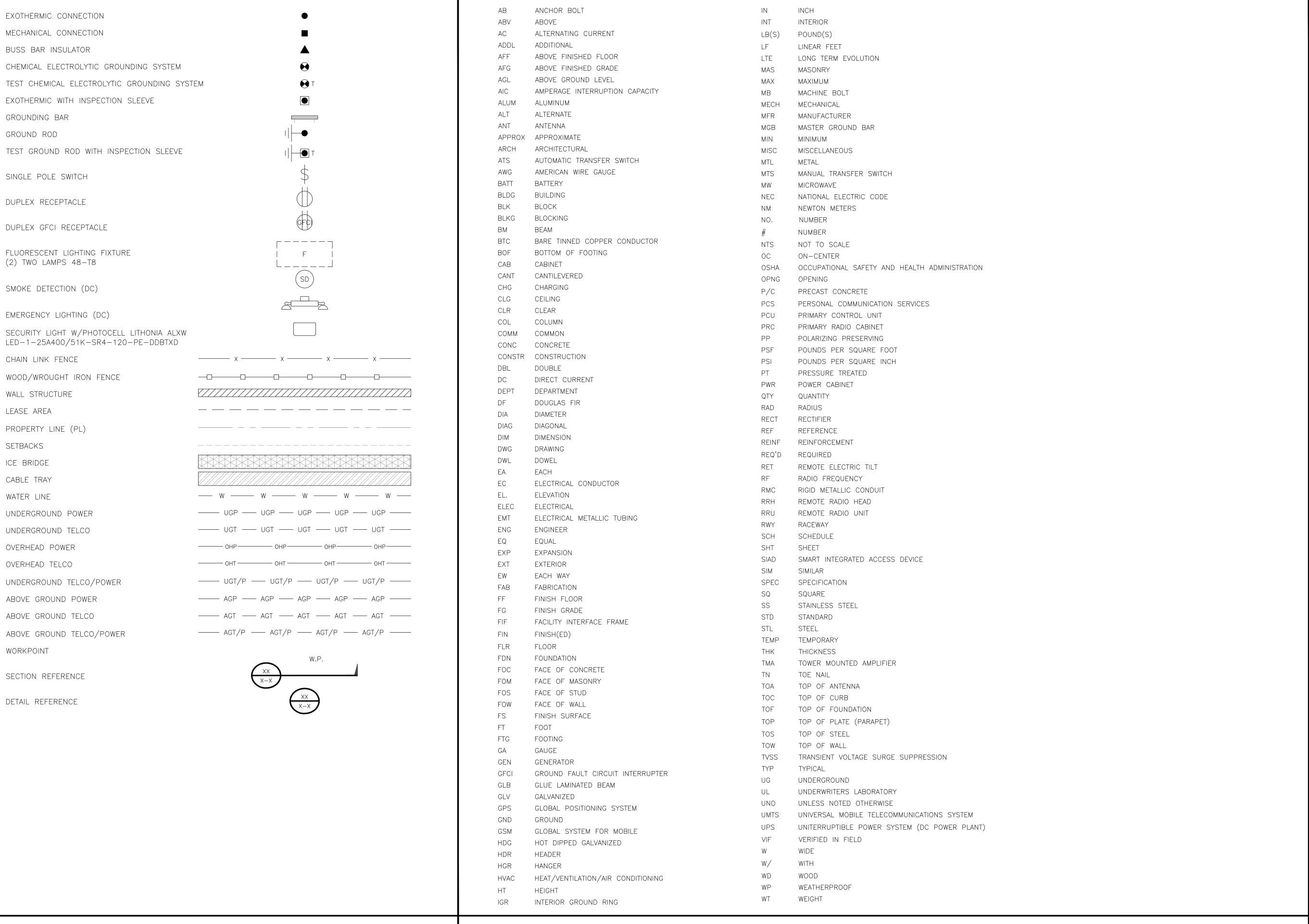
CONSTRUCTION DOCUMENTS

SUBMITTALS

REV	DATE	DESCRIPTION					
0	08/26/2021	ISSUED FOR CONSTRUCTION					
1	10/08/2021	ISSUED FOR CONSTRUCTION					
A&E PROJECT NUMBER							
876399							

DISH WIRELESS, LLC. PROJECT INFORMATION

BOBDL00100A 60 SOUTH MAIN ST EAST GRANBY, CT 06026


SHEET TITLE

RF CABLE COLOR CODES

SHEET NUMBER

RF-1

NO SCALE NO SCALE

ABBREVIATIONS

<u>LEGEND</u>

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC.

8601 SIX FORKS ROAD, SUITE 540

RALEIGH, NC 27615 (919) 657-9131

10/08/2

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
BPC		BRN		TA	

RFDS REV #:

CONSTRUCTION DOCUMENTS

	SUBMITTALS						
REV	DATE	DESCRIPTION					
0	08/26/2021	ISSUED FOR CONSTRUCTION					
1	10/08/2021	ISSUED FOR CONSTRUCTION					
	A&E F	PROJECT NUMBER					

A&E PROJECT NUMBER

876399

DISH WIRELESS, LLC. PROJECT INFORMATION

BOBDLO0100A 60 SOUTH MAIN ST EAST GRANBY, CT 06026

SHEET TITLE

LEGEND AND ABBREVIATIONS

SHEET NUMBER

GN-1

SITE ACTIVITY REQUIREMENTS:

- 1. NOTICE TO PROCEED NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH WIRELESS, LLC. AND TOWER OWNER OWNER NOC & THE DISH WIRELESS, LLC. AND TOWER CONSTRUCTION MANAGER.
- 2. "LOOK UP" DISH WIRELESS, LLC. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH WIRELESS, LLC. AND DISH WIRELESS, LLC. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

- 3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
- 4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELESS, LLC. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA—322 (LATEST EDITION).
- 5. ALL SITE WORK TO COMPLY WITH DISH WIRELESS, LLC. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH WIRELESS, LLC. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
- 6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH WIRELESS, LLC. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.
- 11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
- 12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIRELESS, LLC. AND TOWER OWNER, AND/OR LOCAL UTILITIES.
- 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
- 15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
- 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.
- 18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.
- 22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR: GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER: DISH WIRELESS, LLC.

TOWER OWNER: TOWER OWNER

- 2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
- THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.
- 4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.
- 5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.
- 6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.
- 12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH WIRELESS, LLC. AND TOWER OWNER
- 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

8601 SIX FORKS ROAD, SUITE 540

RALEIGH, NC 27615

10/08/20

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY	APPROVED BY:
BPC	BRN	TA

RFDS REV #:

CONSTRUCTION DOCUMENTS

	SUBMITTALS					
RE	REV DATE		DESCRIPTION			
С)	08/26/2021	ISSUED FOR CONSTRUCTION			
1	I	10/08/2021	ISSUED FOR CONSTRUCTION			
	A&E PROJECT NUMBER					
	876399					

DISH WIRELESS, LLC. PROJECT INFORMATION

BOBDL00100A 60 SOUTH MAIN ST EAST GRANBY, CT 06026

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GN-2

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

- 1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST—IN—PLACE CONCRETE.
- 2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.
- 3. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°f AT TIME OF PLACEMENT.
- 4. CONCRETE EXPOSED TO FREEZE—THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER—TO—CEMENT RATIO (W/C) OF 0.45.
- 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

- 6. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:
- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2"
- 7. A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

- 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.
- 2. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
- 3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
- 4. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.
- 4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.
- 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.
- 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR—CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
- 6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).
- 7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.
- 8. TIE WRAPS ARE NOT ALLOWED.
- 9. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.
- 12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP—STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75°C (90°C IF AVAILABLE).
- 14. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.
- 15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

- . ELECTRICAL METALLIC TUBING (EMT) OR METAL—CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.
- 18. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- 19. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.
- 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE NFC.
- 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).
- 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).
- 23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.
- 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY—COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS.
- 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY—COATED OR NON—CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH WIRELESS, LLC. AND TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- 28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH WIRELESS, LLC.".
- 30. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

RALEIGH, NC 27615

10/08/202

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
BPC	BPC		BRN		
RFDS F	REV ;	#:			

CONSTRUCTION DOCUMENTS

	SUBMITTALS					
REV DATE DESCRIPTION						
0	08/26/2021	ISSUED FOR CONSTRUCTION				
1	10/08/2021	ISSUED FOR CONSTRUCTION				
A&E PROJECT NUMBER						

876399

DISH WIRELESS, LLC. PROJECT INFORMATION

BOBDL00100A 60 SOUTH MAIN ST EAST GRANBY, CT 06026

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GN-3

GROUNDING NOTES:

- 1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 2. THE CONTRACTOR SHALL PERFORM IEEE FALL—OF—POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
- 4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
- 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
- 8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.
- 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
- 13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.
- 15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.
- 19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDUITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4"
 NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END
 OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
- 21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/O COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

10/08/2

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN.0028997

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED	BY:
BPC	BRN	TA	
RFDS REV ;	#:		

CONSTRUCTION DOCUMENTS

	SUBMITTALS					
REV	DATE	DESCRIPTION				
0	08/26/2021	ISSUED FOR CONSTRUCTION				
1	10/08/2021	ISSUED FOR CONSTRUCTION				
	A&E F	PROJECT NUMBER				

876399

DISH WIRELESS, LLC. PROJECT INFORMATION

BOBDL00100A 60 SOUTH MAIN ST EAST GRANBY, CT 06026

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GN-4

Exhibit D

Structural Analysis Report

Date: September 02, 2021

Crown Castle 2000 Corporate Drive Canonsburg. PA 15317 (724) 416-2000

Subject: Structural Analysis Report

Carrier Designation: DISH Network Co-Locate

Site Number: BOBDL00100A Site Name: CT-CCI-T-876399

Crown Castle Designation: BU Number: 876399

Site Name: (F) E. GRANBY 4Q2000 / GALASSO

 JDE Job Number:
 650083

 Work Order Number:
 1987173

 Order Number:
 556577 Rev. 3

Engineering Firm Designation: Crown Castle Project Number: 1987173

Site Data: 60 South Main St., EAST GRANBY, HARTFORD County, CT

Latitude 41° 56′ 29.59″, Longitude -72° 44′ 19.248″

98 Foot - Monopole Tower

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Proposed Equipment Configuration

Sufficient Capacity - 93.5%

This analysis has been performed in accordance with the 2018 Connecticut State Building Code based upon an ultimate 3-second gust wind speed of 115 mph. Applicable Standard references and design criteria are listed in Section 2 - "Analysis Criteria".

Structural analysis prepared by: Kibreab Gebremariam

Respectfully submitted by:

Maribel Dentinger, P.E. Senior Project Engineer Maribel Dentinger

Digitally signed by Maribel Dentinger Date: 2021.09.03 12:49:52 -04'00'

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity - LC5
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 98 ft Monopole tower designed by ENGINEERED ENDEAVORS, INC.. The tower has been modified multiple times to accommodate additional loading.

2) ANALYSIS CRITERIA

TIA-222 Revision:

Risk Category:

Wind Speed: 115 mph

Exposure Category: C
Topographic Factor: 1
Ice Thickness: 1.5 in
Wind Speed with Ice: 50 mph
Service Wind Speed: 60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Elevetion	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	fujitsu	TA08025-B604		
		3	fujitsu	TA08025-B605		
48.0	48.0	3	jma wireless	MX08FRO665-21 w/ Mount Pipe	1	1-3/8
		1	raycap	RDIDC-9181-PF-48		
		1	tower mounts	Commscope MC-PK8-DSH		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)		
		3	alcatel lucent	PCS 1900MHz 4x45W-65MHz				
		6	alcatel lucent	RRH2X50-800				
	98.0	3	commscope	NNVV-65B-R4 w/ Mount Pipe				
96.0	30.0	3	nokia	FZHN	3	1-1/4		
30.0			3	rfs celwave	APXVTM14-ALU-I20 w/ Mount Pipe	1	7/8	
	96.0	1	tower mounts	Platform Mount [LP 714-1]				
		1	1 tower mounts Miscellaneous [NA 510-1]					
	00.0	90.0		3	ericsson	RADIO 4449 B12/B71		
			3	rfs celwave	APXV18-209014-C w/ Mount Pipe		7/0	
89.0	90.0	3	rfs celwave	APXVAARR24_43-U-NA20 w/ Mount Pipe	11 1	7/8 1-3/8		
		3	rfs celwave	ATMPP1412D-1CWA				
	89.0	1 tower mounts Platform Mount [LP 305-1]		Platform Mount [LP 305-1]				
		1	andrew	SBNH-1D6565C w/ Mount Pipe	10	7/0		
74.0	77.0	77.0	3	cci antennas	TPA-65R-LCUUUU-H8 w/ Mount Pipe	12 4 2	7/8 3/4 3/8	
		3	ericsson	RRUS 32 B2		0,0		

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	ericsson	RRUS 32 B30		
		3	kaelus	DBC0061F1V51-2		
		3	powerwave technologies	7770.00 w/ Mount Pipe		
		2	powerwave technologies	P65-17-XLH-RR w/ Mount Pipe		
		3	powerwave technologies	TT19-08BP111-001		
		2	raycap	DC6-48-60-18-8F		
	74.0	1	tower mounts	Platform Mount [LP 303-1_HR-1]		
		3	alcatel lucent	B13 RRH 4X30		
		3	alcatel lucent	B66A RRH4X45		
67.0	67.0	6	antel	LPA-80063/6CFX2 w/ Mount Pipe	2 12	1-3/8 1-5/8
		2	commscope	RC2DC-3315-PF-48		
		6	commscope	SBNHH-1D65B w/ Mount Pipe	1	
E2.0	54.0	1	lucent	KS24019-L112A	1	7/8
52.0	52.0	1	tower mounts	Side Arm Mount [SO 701-1]	'	1/8

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	1531971	CCISITES
4-POST-MODIFICATION INSPECTION	9024342	CCISITES
4-POST-MODIFICATION INSPECTION	6139057	CCISITES
4-POST-MODIFICATION INSPECTION	3713020	CCISITES
4-POST-MODIFICATION INSPECTION	2682749	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	2066334	CCISITES
4-TOWER MANUFACTURER DRAWINGS	1613691	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	8420875	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	5803194	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	3713021	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	2529017	CCISITES

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

tnxTower was used to determine the loads on the modified structure. Additional calculations were performed to determine the stresses in the pole and in the reinforcing elements. These calculations are included in Appendix C.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fail
98 - 93	Pole	TP13.078x12x0.1875	Pole	10.7%	Pass
93 - 88	Pole	TP14.156x13.078x0.1875	Pole	23.4%	Pass
88 - 85.21	Pole	TP15.28x14.156x0.1875	Pole	31.2%	Pass
85.21 -80.21	Pole	TP15.445x14.384x0.25	Pole	33.9%	Pass
80.21 - 75.21	Pole	TP16.507x15.445x0.25	Pole	40.7%	Pass
75.21 - 70.21	Pole	TP17.569x16.507x0.25	Pole	52.0%	Pass
70.21 -65.21	Pole	TP18.63x17.569x0.25	Pole	61.9%	Pass
65.21 -60.21	Pole	TP19.692x18.63x0.25	Pole	72.2%	Pass
60.21 - 59.17	Pole	TP19.912x19.692x0.25	Pole	74.1%	Pass
59.17 - 58.9	Pole + Reinf.	TP19.97x19.912x0.5125	Reinf. 10 Compression	66.8%	Pass
58.9 - 58.75	Pole + Reinf.	TP20.001x19.97x0.5125	Reinf. 10 Compression	67.1%	Pass
58.75 - 54	Pole + Reinf.	TP21.01x20.001x0.5	Reinf. 10 Compression	75.7%	Pass
54 - 53.75	Pole + Reinf.	TP21.063x21.01x0.5125	Reinf. 10 Compression	67.9%	Pass
53.75 - 52.91	Pole + Reinf.	TP21.241x21.063x0.5	Reinf. 10 Compression	69.2%	Pass
52.91 - 52.66	Pole + Reinf.	TP21.294x21.241x0.675	Reinf. 8 Compression	66.8%	Pass
52.66 - 52.17	Pole + Reinf.	TP21.399x21.294x0.675	Reinf. 8 Compression	67.6%	Pass
52.17 - 51.92	Pole + Reinf.	TP21.452x21.399x0.525	Reinf, 9 Compression	72.3%	Pass
51.92 - 48.7	Pole + Reinf.	TP22.86x21.452x0.5125	Reinf. 9 Compression	77.1%	Pass
48.7 - 44.29	Pole + Reinf.	TP22.575x21.634x0.5625	Reinf. 7 Compression	76.2%	Pass
44.29 - 39.29	Pole + Reinf.	TP23.639x22.575x0.55	Reinf. 7 Compression	82.7%	Pass
39.29 - 34.29	Pole + Reinf.	TP24.703x23.639x0.5375	Reinf. 7 Compression	88.3%	Pass
34.29 - 33.5	Pole + Reinf.	TP24.87x24.703x0.525	Reinf. 7 Compression	89.2%	Pass
33.5 - 33.25	Pole + Reinf.	TP24.923x24.87x0.8375	Reinf. 7 Compression	60.4%	Pass
33.25 - 33	Pole + Reinf.	TP24.977x24.923x0.8375	Reinf. 7 Compression	60.6%	Pass
33 - 32.75	Pole + Reinf.	TP25.03x24.977x0.8125	Reinf. 7 Compression	65.8%	Pass
32.75 - 32	Pole + Reinf.	TP25.19x25.03x0.8	Reinf. 7 Compression	66.4%	Pass

32 - 31.75	Pole + Reinf.	TP25.243x25.19x0.5875	Reinf. 6 Tension Rupture	80.3%	Pass
31.75 - 28.5	Pole + Reinf.	TP25.934x25.243x0.575	Reinf. 6 Tension Rupture	83.1%	Pass
28.5 - 28.25	Pole + Reinf.	TP25.988x25.934x0.8625	Reinf. 6 Tension Rupture	57.9%	Pass
28.25 - 27.5	Pole + Reinf.	TP26.147x25.988x0.85	Reinf. 6 Tension Rupture	58.4%	Pass
27.5 - 27.25	Pole + Reinf.	TP26.2x26.147x0.575	Reinf. 5 Tension Rupture	84.1%	Pass
27.25 - 22.25	Pole + Reinf.	TP27.265x26.2x0.5625	Reinf. 5 Tension Rupture	87.9%	Pass
22.25 - 18	Pole + Reinf.	TP28.169x27.265x0.55	Reinf. 5 Tension Rupture	90.6%	Pass
18 - 17.75	Pole + Reinf.	TP28.222x28.169x0.5625	Reinf. 5 Tension Rupture	83.2%	Pass
17.75 - 15.45	Pole + Reinf.	TP28.712x28.222x0.425	Pole	84.2%	Pass
15.45 - 15.2	Pole + Reinf.	TP28.765x28.712x0.6875	Reinf. 3 Tension Rupture	82.7%	Pass
15.2 - 13.41	Pole + Reinf.	TP29.146x28.765x0.675	Reinf. 3 Tension Rupture	83.7%	Pass
13.41 - 13.16	Pole + Reinf.	TP29.199x29.146x0.5625	Reinf. 4 Tension Rupture	87.3%	Pass
13.16 - 8.16	Pole + Reinf.	TP30.263x29.199x0.55	Reinf. 4 Tension Rupture	89.8%	Pass
8.16 - 6.5	Pole + Reinf.	TP30.617x30.263x0.55	Reinf. 4 Tension Rupture	90.6%	Pass
6.5 - 6.25	Pole + Reinf.	TP30.67x30.617x0.6625	Reinf. 3 Tension Rupture	87.2%	Pass
6.25 - 4.45	Pole + Reinf.	TP31.053x30.67x0.65	Reinf. 3 Tension Rupture	88.0%	Pass
4.45-4.2	Pole + Reinf.	TP31.106x31.053x0.5125	Reinf. 1 Tension Rupture	89.3%	Pass
4.2 - 0	Pole + Reinf.	TP32x31.106x0.5	Reinf. 2 Tension Rupture	91.0%	Pass
				Summary	
			Pole	84.2%	Pass
			Reinforcement	91.0%	Pass
			Overall	91.0%	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC5

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	57.6	Pass
1	Base Plate	0	93.5	Pass
1	Base Foundation (Structure)	0	57.7	Pass
1	Base Foundation (Soil Interaction)	0	76.7	Pass

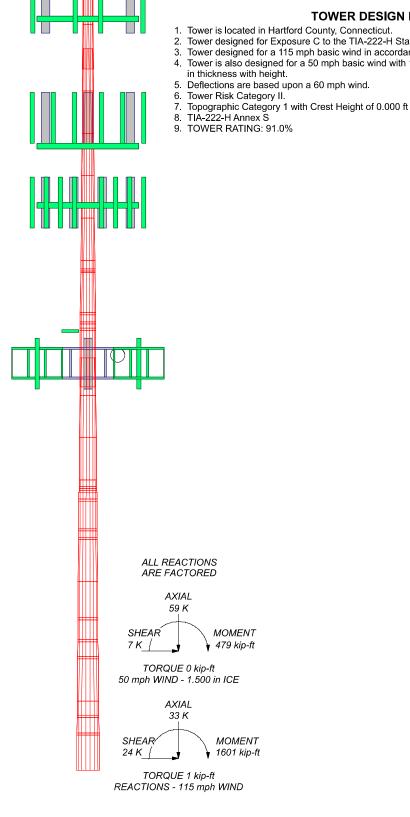
Structure Rating (max from all components) =	93.5%
lotes:	

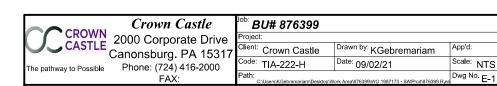
4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

 $See \ additional \ documentation \ in \ "Appendix \ C-Additional \ Calculations" for \ calculations \ supporting \ the \ \% \ capacity$ consumed.

APPENDIX A TNXTOWER OUTPUT


4		43 424 140	36	383736	383736 35 34	33	32 3	3809 28	24	888 8	21	20	19	18 1	176543	12	60	80	7	9	2	4	ო	2	-
	4.2000.258006660	100566	5.000 0.25000 503000 504.250	250000	200900E	104.250	5.000 00	0000000 250		XHEEDERB 7	. 5.000	5.000	4.	4476.633 000	00000000	4.750	0.050087	5.000	5.000	5.000	5.000	5.00	5.000 5.210	5.000	5.000
∞ —	18 18	8 18 18 18	18	181818	81818 18 18	18	18 1	1888 18	=======================================	8	18	18 1	18	18 1	18888	18	88	18	18	18	18	18	18	18	18
Ιĕ	0.5000.50.20.00.00	3666850	0.550 0.5887.6884256630.550	36.87.68	884256	3 0.550	0.563 0000000	100 S S S S S S S S S S S S S S S S S S	.90	57 5 00000000000000000000000000000000000	0.537	0.550 0.5	0.563	0.512 006	2000	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0	0.250	0.250	0.250	0.250	0.250	0.188	0.188	0.188
														3.417									2.417		
10	31.10 61.853078 01263	80XB01Z6	3 29.19929293888888882282828282	3 28 28 E	282384	697.265	26.2002@@@@&	339825.2.	2433	322200 3	3 23.639	22.575 21.	634	21.452 2282		222 229 1 (3 0 0 0 0 0 0 1 1 CB (1 1 CB) 2	300 KBB2	18.630	17.569	16.507	15.445	14.384	14.156	13.078	12.000
2.00	32.00 G1.30EEEE 017	15,000,001	7 30 263 29 20 20 20 20 20 169	329286162	2825.E	228.169	27.2652 6839985	620 622 9:	934322EB66	0 28883	0 24 703	23.639 22.	275	22.860 222	222 222 22 1	321.01020	1.01@@@@@012	19,692	18.630	17.569	16.507	15.445	15.280	14.156	13.078
														A572-65											
7.0	0.7 0.00.40.10.3	40.10.3	0.9	0.00.40.00.40.0	00.400	9.0	0.7.0	00021 0.5	, OBB	Ĭ	0.7	0.7 0	9.6	0.8 α	00000	0.5	90.1	0.3	0.2	0.2	0.2	0.2	0.2	0.1	0.1
	<u>4.5 ft</u>	6.5 ft	<u>8.2 ft</u>	13.4 ft	15.5 ft	22.3 ft 18.0 ft	00.5	28.5 ft 27.5 ft	32.0 ft	34.3 ft 33.3 ft	39.3 ft		45.3 ft 44.3 ft		54.0 ft 52.9 ft 51.9 ft	E4 0 #	60.2 ft 59.2 ft		65.2 ft	70.2 ft	<u>75.2 ft</u>	80.2 ft	82.8 ft	88.0 ft	93.0 ft



		1017 (1 - 1 (1) (-	01112110	• • • •	
GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

- 1. Tower is located in Hartford County, Connecticut.
- Tower designed for Exposure C to the TIA-222-H Standard.
- Tower designed for a 115 mph basic wind in accordance with the TIA-222-H Standard.
 Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower is located in Hartford County, Connecticut.
- Tower base elevation above sea level: 256.000 ft.
- Basic wind speed of 115 mph.
- Risk Category II.
- Exposure Category C.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.000 ft.
- Nominal ice thickness of 1.500 in.
- Ice thickness is considered to increase with height.
- Ice density of 56.000 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50.000 °F.
- Deflections calculated using a wind speed of 60 mph.
- TIA-222-H Annex S.
- TOWER RATING: 91.0%.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: K_{es}(F_w) = 0.95, K_{es}(t_i) = 0.85.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- ✓ Use Code Safety Factors Guys Escalate Ice Always Use Max Kz Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Špans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

√ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption

Use TIA-222-H Tension Splice

Exemption

Poles

✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	98.000-93.000	5.000	0.000	18	12.000	13.078	0.188	0.750	A572-65
L2	93.000-88.000	5.000	0.000	18	13.078	14.156	0.188	0.750	(65 ksi) A572-65
L3	88.000-82.790	5.210	2.417	18	14.156	15.280	0.188	0.750	(65 ksi) A572 - 65
L4	82.790-80.207	5.000	0.000	18	14.384	15.445	0.250	1.000	(65 ksi) A572-65
L5		5.000	0.000	18	15.445	16.507	0.250	1.000	(65 ksi) A572-65
	80.207-75.207								(65 ksi)
L6	75.207-70.207	5.000	0.000	18	16.507	17.569	0.250	1.000	A572-65 (65 ksi)
L7	70.207-65.207	5.000	0.000	18	17.569	18.630	0.250	1.000	A572-65 (65 ksi)
L8	65.207-60.207	5.000	0.000	18	18.630	19.692	0.250	1.000	A572-65 (65 ksi)
L9	60.207-59.170	1.037	0.000	18	19.692	19.912	0.250	1.000	A572-65 (65 ksi)
L10	59.170-58.900	0.270	0.000	18	19.912	19.970	0.512	2.050	A572-65 (65 ksi)
L11	58.900-58.750	0.150	0.000	18	19.970	20.001	0.512	2.050	A572-65
L12	58.750-54.000	4.750	0.000	18	20.001	21.010	0.500	2.000	(65 ksi) A572-65
L13	54.000-53.750	0.250	0.000	18	21.010	21.063	0.512	2.050	(65 ksi) A572-65
L14	53.750-52.910	0.840	0.000	18	21.063	21.241	0.500	2.000	(65 ksi) A572-65
L15	52.910-52.660	0.250	0.000	18	21.241	21.294	0.675	2.700	(65 ksi) A572-65
L16	52.660-52.170	0.490	0.000	18	21.294	21.399	0.675	2.700	(65 ksi) A572-65
L17		0.250	0.000	18	21.399	21.452	0.525	2.100	(65 ksi) A572-65
	52.170-51.920								(65 ksi)
L18	51.920-45.287	6.633	3.417	18	21.452	22.860	0.512	2.050	A572-65 (65 ksi)
L19	45.287-44.287	4.417	0.000	18	21.634	22.575	0.563	2.250	A572-65 (65 ksi)
L20	44.287-39.287	5.000	0.000	18	22.575	23.639	0.550	2.200	A572-65 (65 ksi)
L21	39.287-34.287	5.000	0.000	18	23.639	24.703	0.537	2.150	A572-65 (65 ksi)
L22	34.287-33.500	0.787	0.000	18	24.703	24.870	0.525	2.100	A572-65 (65 ksi)
L23	33.500-33.250	0.250	0.000	18	24.870	24.923	0.838	3.350	A572-65 (65 ksi)
L24	33.250-33.000	0.250	0.000	18	24.923	24.977	0.838	3.350	A572-65
L25	33.000-32.750	0.250	0.000	18	24.977	25.030	0.813	3.250	(65 ksi) A572-65
L26	32.750-32.000	0.750	0.000	18	25.030	25.190	0.800	3.200	(65 ksi) A572-65
L27	32.000-31.750	0.250	0.000	18	25.190	25.243	0.588	2.350	(65 ksi) A572-65
L28	31.750-28.500	3.250	0.000	18	25.243	25.934	0.575	2.300	(65 ksi) A572-65
L29	28.500-28.250	0.250	0.000	18	25.934	25.988	0.863	3.450	(65 ksi) A572-65
									(65 ksi)
L30	28.250-27.500	0.750	0.000	18	25.988	26.147	0.850	3.400	A572-65 (65 ksi)
L31	27.500-27.250	0.250	0.000	18	26.147	26.200	0.575	2.300	A572-65 (65 ksi)
L32	27.250-22.250	5.000	0.000	18	26.200	27.265	0.563	2.250	A572-65 (65 ksi)
L33	22.250-18.000	4.250	0.000	18	27.265	28.169	0.550	2.200	A572-65 (65 ksi)
L34	18.000-17.750	0.250	0.000	18	28.169	28.222	0.563	2.250	A572-65 (65 ksi)

Section		Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
L35	17.750-15.450	2.300	0.000	18	28.222	28.712	0.425	1.700	A572-65
									(65 ksi)
L36	15.450-15.200	0.250	0.000	18	28.712	28.765	0.688	2.750	A572-65
									(65 ksi)
L37	15,200-13,410	1.790	0.000	18	28.765	29,146	0.675	2,700	A572-65
									(65 ksi)
L38	13.410-13.160	0.250	0.000	18	29.146	29,199	0.563	2,250	A572-65
									(65 ksi)
L39	13.160-8.160	5.000	0.000	18	29.199	30.263	0.550	2,200	A572-65
									(65 ksi)
L40	8.160-6.500	1.660	0.000	18	30.263	30.617	0.550	2.200	A572-65
									(65 ksi)
L41	6.500-6.250	0.250	0.000	18	30.617	30.670	0.662	2.650	A572-65
									(65 ksi)
L42	6.250-4.450	1.800	0.000	18	30.670	31.053	0.650	2.600	À572-65
									(65 ksi)
L43	4.450-4.200	0.250	0.000	18	31.053	31.106	0.512	2.050	A572-65
									(65 ksi)
L44	4.200-0.000	4.200		18	31.106	32.000	0.500	2.000	A572-65
									(65 ksi)

				Tape	red Pol	le Prop	erties			
Section	Tip Dia.	Area in²	I in⁴	r	C	I/C in³	J in⁴	It/Q in²	W	w/t
	<u>in</u> 12.156			<i>in</i> 4.193	in			3.516	<u>in</u>	9,504
L1		7.030	123.928 161.057		6.096 6.644	20.329 24.242	248.020		1.782	
L2	13.251 13.251	7.672 7.672	161.057	4.576 4.576	6.644	24.242 24.242	322.325 322.325	3.837 3.837	1.972 1.972	10.516 10.516
LZ	14.346	8.313	204.946	4.959	7,191	28,498	410.162	3.63 <i>1</i> 4.157	2.162	11,528
L3	14.346	8.313	204.946	4.959 4.959	7.191	28.498 28.498	410.162	4.157 4.157	2.162	11.528
LJ	15.487	8.982	258.481	5.358	7.762	33.300	517.303	4.492	2.102	12.583
L4	15.487	11.215	283.048	5.017	7.702	38.737	566.467	5.609	2.092	8.366
LT	15.645	12.058	351.741	5.394	7.846	44.829	703.946	6.030	2.278	9.114
L5	15.645	12.058	351.741	5.394	7.846	44.829	703.946	6.030	2.278	9.114
LO	16.723	12.900	430.737	5.771	8.386	51.366	862.041	6.451	2.465	9.861
L6	16.723	12.900	430.737	5.771	8.386	51.366	862.041	6.451	2.465	9.861
	17.801	13.742	520.754	6.148	8.925	58.348	1042.193	6.873	2.652	10.608
L7	17.801	13.742	520.754	6.148	8.925	58.348	1042.193	6.873	2.652	10.608
	18.879	14.585	622.512	6.525	9.464	65.775	1245.844	7.294	2.839	11.356
L8	18.879	14.585	622,512	6.525	9.464	65.775	1245.844	7.294	2.839	11.356
	19.957	15.427	736.732	6.902	10.004	73.647	1474.433	7.715	3.026	12.103
L9	19.957	15.427	736.732	6.902	10.004	73.647	1474.433	7.715	3.026	12.103
	20.181	15.602	762.048	6.980	10.115	75.335	1525.098	7.802	3.065	12.258
L10	20.140	31.557	1500.461	6.887	10.115	148.334	3002.896	15.782	2.603	5.078
	20.199	31.650	1513.802	6.907	10.145	149.223	3029.597	15.828	2.613	5.098
L11	20.199	31.650	1513.802	6.907	10.145	149.223	3029.597	15.828	2.613	5.098
	20.231	31.702	1521.248	6.919	10.161	149.719	3044.499	15.854	2.618	5.109
L12	20.233	30.949	1487.002	6.923	10.161	146.348	2975.962	15.477	2.640	5.28
	21.257	32.549	1729.853	7.281	10.673	162.077	3461.983	16.278	2.818	5.636
L13	21.255	33.343	1769.860	7.277	10.673	165.825	3542.048	16.675	2.796	5.455
	21.309	33.429	1783.646	7.295	10.700	166.695	3569.638	16.718	2.805	5.473
L14	21.311	32.634	1743.319	7.300	10.700	162.927	3488.933	16.320	2.827	5.654
1.45	21.492	32.917	1789.077	7.363	10.791	165.799	3580.508	16.461	2.858	5.717
L15	21.465	44.062	2354.634	7.301	10.791	218.211	4712.367	22.035	2.550	3.779
1.40	21.519	44.176 44.176	2372.913	7.320 7.320	10.818	219.357	4748.949	22.092	2.560	3.792
L16	21.519		2372.913		10.818	219.357	4748.949	22.092	2.560	3.792
L17	21.625 21.648	44.399 34.783	2409.015 1914.659	7.357 7.410	10.870 10.870	221.611 176.134	4821.199 3831.838	22.204 17.395	2.578 2.842	3.819 5.414
LII	21.702	34.763 34.871	1914.659	7.410 7.429	10.870	176.134	3861.146	17.395	2.851	5.431
L18	21.702	34.061	1886.745	7.429	10.897	177.042	3775.972	17.439	2.873	5.607
L10	23.134	36.352	2293.639	7.433	11.613	197.508	4590.296	18.180	3.121	6.09
L19	22.620	37.621	2110.485	7.481	10.990	192.031	4223.746	18.814	2.818	5.009
_10	22.836	39.300	2405.730	7.814	11.468	209.780	4814.626	19.654	2.983	5.303
L20	22.838	38.448	2356.279	7.819	11.468	205.468	4715.659	19.228	3.005	5.464
	23.918	40.306	2714.584	8.196	12.008	226.056	5432.740	20.157	3.192	5.804
	_0.0.0	.0.000		33					0	0,00

Section	Tip Dia. in	Area in²	I in⁴	r in	C in	I/C in³	J in⁴	It/Q in²	w in	w/t
L21	23.920	39,411	2657,200	8.201	12.008	221,278	5317.897	19.709	3.214	5.98
LZI	25.001	41.227	3041.580	8.579	12.549	242.376	6087.162	20.617	3.402	6.329
L22	25.003	40.289	2975.458	8.583	12.549	237.107	5954.831	20.148	3.424	6.521
	25.173	40.568	3037.726	8.643	12.634	240.439	6079.449	20.288	3.453	6.577
L23	25.125	63.885	4661.673	8.532	12.634	368.975	9329.481	31.948	2.903	3.466
220	25.179	64.026	4692.704	8.551	12.661	370.638	9391.582	32.019	2.913	3.478
L24	25.179	64.026	4692.704	8.551	12.661	370.638	9391.582	32.019	2.913	3.478
	25.233	64.167	4723.871	8.569	12.688	372.305	9453.959	32.090	2.922	3.489
L25	25.237	62.316	4597.114	8.578	12.688	362.315	9200.277	31.164	2.966	3.65
	25.291	62.454	4627.548	8.597	12.715	363.938	9261.185	31.233	2.975	3.662
L26	25,293	61.525	4563.414	8.602	12.715	358,895	9132.832	30.768	2.997	3.747
	25.455	61.930	4654.197	8.658	12.796	363.715	9314.518	30.971	3.025	3.782
L27	25.487	45.876	3508.045	8.734	12.796	274.146	7020.706	22.942	3.399	5.786
	25.542	45.975	3530.855	8.753	12.823	275.347	7066.356	22.992	3.409	5.802
L28	25.543	45.020	3460.989	8.757	12.823	269.898	6926.532	22.514	3.431	5.966
	26.246	46.282	3760.370	9.003	13.175	285.424	7525.687	23.146	3.552	6.178
L29	26.201	68.636	5450.880	8.901	13.175	413.739	10908.932	34.325	3.046	3.532
	26.255	68.782	5485.657	8.919	13.202	415.526	10978.532	34.398	3.056	3.543
L30	26.257	67.819	5414.227	8.924	13.202	410.115	10835.579	33.916	3.078	3.621
	26.419	68.249	5518.022	8.981	13.283	415.426	11043.305	34.131	3.106	3.654
L31	26.462	46.671	3855.842	9.078	13.283	290.288	7716.758	23.340	3.590	6.243
	26.516	46.768	3879.960	9.097	13.310	291.511	7765.026	23.388	3.599	6.26
L32	26.518	45.773	3801.170	9.101	13.310	285.591	7607.343	22.891	3.621	6.438
	27.598	47.673	4294.405	9.479	13.850	310.056	8594.460	23.841	3.809	6.771
L33	27.600	46.636	4204.873	9.484	13.850	303.592	8415.280	23.322	3.831	6.965
	28.519	48.215	4646.610	9.805	14.310	324.713	9299.333	24.112	3.990	7.254
L34	28.517	49.288	4745.765	9.800	14.310	331.642	9497.774	24.649	3.968	7.054
	28.571	49.383	4773.258	9.819	14.337	332.934	9552.796	24.696	3.977	7.07
L35	28.592	37.497	3660.514	9.868	14.337	255.320	7325.844	18.752	4.219	9.927
	29.089	38.158	3857.321	10.042	14.586	264.461	7719.717	19.082	4.305	10.13
L36	29.049	61.153	6067.676	9.949	14.586	416.004	12143.336	30.582	3.843	5.59
	29.103	61.269	6102.302	9.968	14.613	417.604	12212.633	30.640	3.853	5.604
L37	29.105	60.181	5999.356	9.972	14.613	410.560	12006.607	30.096	3.875	5.74
	29.491	60.998	6246.774	10.107	14.806	421.904	12501.767	30.505	3.942	5.84
L38	29.509	51.032	5267.598	10.147	14.806	355.771	10542.126	25.521	4.140	7.359
1.00	29.563	51.127	5297.068	10.166	14.833	357.109	10601.107	25.568	4.149	7.376
L39	29.565	50.013	5186.141	10.170	14.833	349.631	10379.106	25.011	4.171	7.584
1.40	30.645	51.871	5785.769	10.548	15.374	376.340	11579.151	25.940	4.358	7.924
L40	30.645	51.871	5785.769	10.548	15.374	376.340	11579.151	25.940	4.358	7.924
1.44	31.004	52.487	5994.612	10.674	15.553	385.425	11997.111	26.249	4.421	8.037
L41	30.987 31.041	62.987 63.099	7140.031 7178.147	10.634 10.653	15.553 15.580	459.070 460.720	14289.458	31.499 31.555	4.223 4.232	6.374
1.42		61.934	7178.147	10.653	15.580		14365.739	30.973	4.232 4.254	6.388 6.544
L42	31.043 31.432	62.724	7051.515	10.657	15.580	452.592 464.341	14112.309 14659.502	30.973	4.254 4.321	6.648
L43	31.432	49.679	7324.932 5854.142	10.793	15.775	371.105	14659.502	24.844	4.563	8.904
L43	31.453	49.679	5854.142	10.842	15.775	371.105	11775.986	24.844	4.563 4.573	8.904 8.922
L44	31.507	48.572	5748.301	10.865	15.802	363.772	11504.165	24.888	4.575	9.189
L+4	32.417	49.990	6266.803	11.182	16.256	385.507	12541.852	25.000	4.752	9.504

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset GradeAdjust. Factor A _f	Adjust. Factor A,	Weight Mult.	Stitch Bolt Spacing	Stitch Bolt Spacing	Double Angle Stitch Bolt Spacing
ft	ft ²	in				Diagonals in	Horizontals in	Redundants in
L1 98.000-			1	1	1			
93.000								
L2 93.000-			1	1	1			
88.000								
L3 88.000-			1	1	1			
82.790								
L4 82.790-			1	1	1			
80.207								
L5 80.207-			1	1	1			
75.207								
L6 75.207-			1	1	1			
70.207								
L7 70.207-			1	1	1			
65.207								
L8 65.207-			1	1	1			

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset GradeAdjust. Factor A _f	Adjust. Factor A _r	Weight Mult. Double Angle Double Angle Stitch Bolt Stitch Bolt Stitch Bolt Spacing Spacing Spacing Diagonals Horizontals Redundants
ft	ft ²	in			in in in
60.207 L9 60.207-			1	1	1
59.170 L10 59.170-			1	1	0.920938
58.900 L11 58.900-			1	1	0.92023
58.750 L12 58.750-			1	1	0.920865
54.000 L13.54.000-			1	1	1.08486
53.750 L14 53.750-			1	1	1.10605
52.910 L15 52.910-			1	1	0.926962
52.660 L16 52.660-			1	1	0.924168
52.170 L17 52.170-			1	1	1.04884
51.920 L18 51.920-			1	1	1.05527
45.287 L19 45.287-			1	1	1.06443
44.287 L20 44.287-			1	1	1.06405
39.287 L21 39.287-			1	1	1.06589
34.287 L22 34.287-			1	1	1.08729
33.500 L23 33.500-			1	1	0.970893
33.250 L24 33.250- 33.000			1	1	0.969575
L25 33.000- 32.750			1	1	0.896948
L26 32.750- 32.000			1	1	0.907091
L27 32.000- 31.750			1	1	0.929377
L28 31.750- 28.500			1	1	0.938036
L29 28.500- 28.250			1	1	0.893662
L30 28.250- 27.500			1	1	0.902954
L31 27.500- 27.250			1	1	0.93394
L32 27.250- 22,250			1	1	0.938341
L33 22.250- 18.000			1	1	0.946411
L34 18.000- 17.750			1	1	1.05165
L35 17.750- 15.450			1	1	1.21652
L36 15.450- 15.200			1	1	0.954361
L37 15.200- 13.410			1	1	0.964796
L38 13.410- 13.160			1	1	1.03473
L39 13.160- 8.160			1	1	1.04025
L40 8.160- 6.500			1	1	1.0347
L41 6.500- 6.250			1	1	0.956625

Tower	Gusset	Gusset	Gusset GradeAdjust. Factor	Adjust.	Weight Mult.			Double Angle
Elevation	<i>Area</i>	Thickness	A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)			A_r		Spacing	Spacing	Spacing
						Diagonals	Horizontals	Redundants
ft	ft ²	in				in	in	in
L42 6.250-			1	1	0.968393			
4.450								
L43 4.450-			1	1	0.980473			
4.200								
L44 4.200-			1	1	0.993803			
0.000								

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From Torque	Componen t Type	Placement ft	Total Number	Number PerRow	Start/En d Position	Width or Diamete r	Perimete r	Weight klf
		Calculation		,,			1 Odition	in	in	Mi
_										
AVA7-50(1-5/8) **_**	В	No	Surface Ar (CaAa)	67.000 - 0.000	14	7	-0.100 0.200	2.010		0.001
Safety Line 3/8	С	No	Surface Ar (CaAa)	98.000 - 0.000	1	1	0.100 0.100	0.375		0.000
_			,							

Sabre MS-600 (6" x 1" Plate)	Α	No	Surface Af (CaAa)	30.500 - 0.000	1	1	-0.500 -0.500	6.000	14.000	0.000
Sabre MS-600 (6" x 1" Plate)	В	No	Surface Af (CaAa)	30.500 - 0.000	1	1	-0.500 -0.500	6.000	14.000	0.000
Sabre MS-600 (6" x 1" Plate)	С	No	Surface Af (CaAa)	8.500 - 0.500	1	1	-0.500 -0.500	6.000	14.000	0.000
Sabre MS-600 (6" x 1" Plate)	С	No	Surface Af (CaAa)	17.450 - 2.450	1	1	-0.300 -0.300	6.000	14.000	0.000
Sabre MS-600 (6" x 1" Plate)	С	No	Surface Af (CaAa)	30.500 - 11.410	1	1	-0.500 -0.500	6.000	14.000	0.000
Sabre MS-600 (6" x 1" Plate)	Α	No	Surface Af (CaAa)	35.500 - 25.500	1	1	-0.300 -0.300	6.000	14.000	0.000
Sabre MS-600 (6" x 1" Plate)	В	No	Surface Af (CaAa)	35.500 - 25.500	1	1	-0.300 -0.300	6.000	14.000	0.000
Sabre MS-600 (6" x 1" Plate)	С	No	Surface Af (CaAa)	35.500 - 25.500	1	1	-0.300 -0.300	6.000	14.000	0.000
Sabre MS-450 (4.5" x 1" Plate)	С	No	Surface Af (CaAa)	49.750 - 30.500	1	1	-0.500 -0.500	4.500	11.000	0.000
Sabre MS-450 (4.5" x 1" Plate)	Α	No	Surface Af	60.500 - 30.500	1	1	-0.500 -0.500 -0.500	4.500	11.000	0.000
Sabre MS-450 (4.5" x 1" Plate)	В	No	(CaAa) Surface Af	60.500 - 30.500	1	1	-0.500 -0.500 -0.500	4.500	11.000	0.000
Sabre MS-450 (4.5" x 1" Plate)	С	No	(CaAa) Surface Af	60.670 - 50.670	1	1	-0.500 -0.500 -0.500	4.500	11.000	0.000
Sabre MS-450 (4.5" x 1" Plate)	С	No	(CaAa) Surface Af (CaAa)	54.417 - 45.917	1	1	-0.300 -0.300 -0.300	4.500	11.000	0.000
- CCI-5x1.25	В	No	Surface Af (CaAa)	20.000 - 0.000	1	1	0.000	5.000	12.500	0.000
_			(Cana)	0.000			0.000			
CCI-5x1.25	В	No	Surface Af (CaAa)	56.000 - 31.000	1	1	0.000 0.000	5.000	12.500	0.000
_*			(Cara)	31.000			0.000			

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation	Type	ft			ft²/ft	klf
HB114-08U3M12-	В	No	No	Inside Pole	96.000 - 0.000	1	No Ice	0.000	0.001
XXXF(7/8)							1/2" Ice	0.000	0.001
							1" Ice	0.000	0.001
							2" Ice	0.000	0.001
HB114-1-08U4-	В	No	No	Inside Pole	96.000 - 0.000	3	No Ice	0.000	0.001
M5F(1-1/4)							1/2" Ice	0.000	0.001
, ,							1" Ice	0.000	0.001
_							2" Ice	0.000	0.001
AVA5-50(7/8)	С	No	No	Inside Pole	89.000 - 0.000	6	No Ice	0.000	0.000
,							1/2" Ice	0.000	0.000
							1" Ice	0.000	0.000
							2" Ice	0.000	0.000
LDF5-50A(7/8)	С	No	No	Inside Pole	89.000 - 0.000	5	No Ice	0.000	0.000
	•				00.000	·	1/2" Ice	0.000	0.000
							1" Ice	0.000	0.000
							2" Ice	0.000	0.000
HCS 6X12	С	No	No	Inside Pole	89.000 - 0.000	1	No Ice	0.000	0.000
6AWG(1-3/8)	O	110	140	made i die	03.000-0.000	'	1/2" Ice	0.000	0.002
0AWG(1-3/0)							1/2 ICe 1" I ce	0.000	0.002
_							2" Ice	0.000	0.002
LDF5-50A(7/8)	Α	No	No	Inside Pole	74.000 - 0.000	12	No Ice	0.000	0.000
, ,							1/2" Ice	0.000	0.000
							1" Ice	0.000	0.000
							2" Ice	0.000	0.000
FB-L98B-002-	Α	No	No	Inside Pole	74.000 - 0.000	2	No Ice	0.000	0.000
75000(3/8)						_	1/2" Ice	0.000	0.000
(,							1" Ice	0.000	0.000
							2" Ice	0.000	0.000
WR-VG86ST-	Α	No	No	Inside Pole	74.000 - 0.000	4	No Ice	0.000	0.001
BRD(3/4)		110	140	made i dic	74.000-0.000	7	1/2" I ce	0.000	0.001
DIND(O/+)							1" Ice	0.000	0.001
							2" Ice	0.000	0.001
2" Rigid Conduit	Α	No	No	Incido Bolo	74.000 - 0.000	1	No Ice	0.000	0.001
Z Rigid Coriduit	^	INO	NO	IIIside Fole	74.000-0.000	'	1/2" Ice	0.000	0.003
							1" Ice	0.000	0.003
							2" Ice		
Oll Digid Complete	^	NJ-	NI-	Incide Dal-	74.000 0.000	4		0.000	0.003
2" Rigid Conduit	Α	No	No	inside Pole	74.000 - 0.000	1	No Ice	0.000	0.003
							1/2" Ice	0.000	0.003
							1" Ice 2" Ice	0.000 0.000	0.003 0.003
_							2 100	0.000	0.000
LDF5-50A(7/8)	В	No	No	Inside Pole	52.000 - 0.000	1	No Ice	0.000	0.000
: : : : : : : : : : : : : : : : : :	_				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	1/2" Ice	0.000	0.000
							1" Ice	0.000	0.000
							2" Ice	0.000	0.000
_ **_***							2 100	0.000	3.000

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	C_AA_A	$C_A A_A$	Weight
Sectio	Elevation				In Face	Out Face	
n	ft		ft ²	ft ²	ft ²	ft ²	K
L1	98.000-93.000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.014
		С	0.000	0.000	0.188	0.000	0.001
L2	93.000-88.000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.023
		С	0.000	0.000	0.188	0.000	0.006
L3	88.000-82.790	Α	0.000	0.000	0.000	0.000	0.000

Tower Sectio	Tower Elevation	Face	A_R	A_F	C₄A₄ In Face	$C_A A_A$ Out Face	Weight
n	ft		ft ²	ft ²	ft ²	ft ²	K
		В	0.000	0.000	0.000	0.000	0.024
		С	0.000	0.000	0.195	0.000	0.028
L4	82.790-80.207	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.012
		С	0.000	0.000	0.097	0.000	0.014
L5	80.207-75.207	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.023
		С	0.000	0.000	0.188	0.000	0.027
L6	75.207-70.207	Α	0.000	0.000	0.000	0.000	0.046
		В	0.000	0.000	0.000	0.000	0.023
		C	0.000	0.000	0.188	0.000	0.027
L7	70.207-65.207	A	0.000	0.000	0.000	0.000	0.060
		В	0.000	0.000	2.523	0.000	0.040
	CE 007 CO 007	C	0.000	0.000	0.188	0.000	0.027
L8	65.207-60.207	A	0.000	0.000	0.220	0.000	0.060
		B C	0.000	0.000	7.255	0.000	0.072
	00 007 50 470		0.000	0.000	0.535	0.000	0.027
L9	60.207-59.170	A	0.000	0.000	0.778	0.000	0.012
		B C	0.000	0.000	2.237	0.000	0.015
L10	59.170-58.900	A	0.000	0.000	0.817	0.000	0.006 0.003
LIU	39.170-36.900		0.000	0.000	0.203	0.000 0.000	
		B C	0.000 0.000	0.000 0.000	0.582 0.213	0.000	0.004 0.001
1 1 1	E0 000 E0 7E0	^					
L11	58.900-58.750	A B	0.000 0.000	0.000 0.000	0.113 0.324	0.000 0.000	0.002 0.002
		C	0.000	0.000	0.324	0.000	0.002
L12	58.750-54.000	A	0.000	0.000	3.563	0.000	0.057
LIZ	30.730-34.000	В	0.000	0.000	11.912	0.000	0.037
		Č	0.000	0.000	4.038	0.000	0.008
L13	54.000-53.750	A	0.000	0.000	0.188	0.000	0.020
LIJ	34.000-33.730	В	0.000	0.000	0.748	0.000	0.003
		C	0.000	0.000	0.375	0.000	0.001
L14	53.750-52.910	Ä	0.000	0.000	0.630	0.000	0.010
L 14	33.730-32.310	В	0.000	0.000	2.512	0.000	0.010
		C	0.000	0.000	1.261	0.000	0.012
L15	52.910-52.660	Ä	0.000	0.000	0.188	0.000	0.003
L10	02.010 02.000	В	0.000	0.000	0.748	0.000	0.004
		Č	0.000	0.000	0.375	0.000	0.001
L16	52.660-52.170	Ä	0.000	0.000	0.367	0.000	0.006
		В	0.000	0.000	1.465	0.000	0.007
		č	0.000	0.000	0.736	0.000	0.003
L17	52.170-51.920	A	0.000	0.000	0.188	0.000	0.003
		В	0.000	0.000	0.748	0.000	0.004
		С	0.000	0.000	0.375	0.000	0.001
L18	51.920-45.287	A	0.000	0.000	4.975	0.000	0.080
		В	0.000	0.000	19.835	0.000	0.098
		С	0.000	0.000	8.820	0.000	0.036
L19	45.287-44.287	Α	0.000	0.000	0.750	0.000	0.012
		В	0.000	0.000	2.990	0.000	0.015
		С	0.000	0.000	0.787	0.000	0.005
L20	44.287-39.287	Α	0.000	0.000	3.750	0.000	0.060
		В	0.000	0.000	14.952	0.000	0.074
		С	0.000	0.000	3.938	0.000	0.027
L21	39.287-34.287	Α	0.000	0.000	4.856	0.000	0.060
		В	0.000	0.000	16.058	0.000	0.074
		С	0.000	0.000	5.044	0.000	0.027
L22	34.287-33.500	Α	0.000	0.000	1.308	0.000	0.009
		В	0.000	0.000	3.071	0.000	0.012
		С	0.000	0.000	1.338	0.000	0.004
L23	33.500-33.250	Α	0.000	0.000	0.416	0.000	0.003
		В	0.000	0.000	0.976	0.000	0.004
		С	0.000	0.000	0.425	0.000	0.001
L24	33.250-33.000	Α	0.000	0.000	0.416	0.000	0.003
		В	0.000	0.000	0.976	0.000	0.004
		С	0.000	0.000	0.425	0.000	0.001
L25	33.000-32.750	Α	0.000	0.000	0.416	0.000	0.003
		В	0.000	0.000	0.976	0.000	0.004
		С	0.000	0.000	0.425	0.000	0.001
L26	32.750-32.000	A	0.000	0.000	1.247	0.000	0.009

Tower Sectio	Tower Elevation	Face	A_R	A_F	C₄A₄ In Face	C₄A₄ Out Face	Weight
n	ft		ft ²	ft ²	ft ²	ft ²	K
		В	0.000	0.000	2.927	0.000	0.011
		С	0.000	0.000	1.275	0.000	0.004
L27	32.000-31.750	Α	0.000	0.000	0.416	0.000	0.003
		В	0.000	0.000	0.976	0.000	0.004
		С	0.000	0.000	0.425	0.000	0.001
L28	31.750-28.500	Α	0.000	0.000	5.902	0.000	0.039
		В	0.000	0.000	11.100	0.000	0.048
		С	0.000	0.000	6.024	0.000	0.017
L29	28.500-28.250	Α	0.000	0.000	0.478	0.000	0.003
		В	0.000	0.000	0.830	0.000	0.004
		С	0.000	0.000	0.487	0.000	0.001
L30	28.250-27.500	A	0.000	0.000	1.434	0.000	0.009
		В	0.000	0.000	2.489	0.000	0.011
		Ç	0.000	0.000	1.462	0.000	0.004
L31	27.500-27.250	A	0.000	0.000	0.478	0.000	0.003
		В	0.000	0.000	0.830	0.000	0.004
		C	0.000	0.000	0.487	0.000	0.001
L32	27.250-22.250	A	0.000	0.000	6.596	0.000	0.060
		В	0.000	0.000	13.631	0.000	0.074
1.00	22 250 40 000	C	0.000	0.000	6.784	0.000	0.027
L33	22.250-18.000	A	0.000	0.000	4.250	0.000	0.051
		В	0.000	0.000	11.896	0.000	0.063
104	10 000 17 750	C	0.000	0.000	4.409 0.250	0.000	0.023
L34	18.000-17.750	A B	0.000	0.000		0.000 0.000	0.003 0.004
		C	0.000 0.000	0.000	0.810 0.259	0.000	0.004
L35	17.750-15.450	A	0.000	0.000 0.000	2.300	0.000	0.001
LJJ	17.730-13.430	В	0.000	0.000	7.453	0.000	0.028
		C	0.000	0.000	4.386	0.000	0.034
L36	15.450-15.200	A	0.000	0.000	0.250	0.000	0.003
LUU	10.400 10.200	В	0.000	0.000	0.810	0.000	0.004
		Č	0.000	0.000	0.509	0.000	0.001
L37	15.200-13.410	Ä	0.000	0.000	1.790	0.000	0.022
		В	0.000	0.000	5.800	0.000	0.026
		Č	0.000	0.000	3.647	0.000	0.010
L38	13.410-13.160	Α	0.000	0.000	0.250	0.000	0.003
		В	0.000	0.000	0.810	0.000	0.004
		С	0.000	0.000	0.509	0.000	0.001
L39	13.160-8.160	Α	0.000	0.000	5.000	0.000	0.060
		В	0.000	0.000	16.202	0.000	0.074
		С	0.000	0.000	7.225	0.000	0.027
L40	8.160-6.500	Α	0.000	0.000	1.660	0.000	0.020
		В	0.000	0.000	5.379	0.000	0.024
		С	0.000	0.000	3.127	0.000	0.009
L41	6.500-6.250	Α	0.000	0.000	0.250	0.000	0.003
		В	0.000	0.000	0.810	0.000	0.004
		С	0.000	0.000	0.471	0.000	0.001
L42	6.250-4.450	Α	0.000	0.000	1.800	0.000	0.022
		В	0.000	0.000	5.833	0.000	0.026
		Ċ	0.000	0.000	3.391	0.000	0.010
L43	4.450-4.200	A	0.000	0.000	0.250	0.000	0.003
		В	0.000	0.000	0.810	0.000	0.004
		C	0.000	0.000	0.471	0.000	0.001
L44	4.200-0.000	A	0.000	0.000	4.200	0.000	0.050
		В	0.000	0.000	13.609	0.000	0.062
		С	0.000	0.000	5.039	0.000	0.023

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Sectio	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft	Leg	in	ft ²	ft ²	ft ²	ft ²	K
L1	98.000-93.000	Α	1.418	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.014
		С		0.000	0.000	1.605	0.000	0.017
L2	93.000-88.000	Α	1.410	0.000	0.000	0.000	0.000	0.000

Tower	Tower	Face	Ice	A_R	A _F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	_
n	ft	Leg	in	ft ²	ft²	ft²	ft ²	K
		B C		0.000 0.000	0.000 0.000	0.000 1.598	0.000 0.000	0.023 0.022
L3	88.000-82.790	Ä	1.402	0.000	0.000	0.000	0.000	0.022
		В		0.000	0.000	0.000	0.000	0.024
		C	4 000	0.000	0.000	1.656	0.000	0.044
L4	82.790-80.207	A B	1.396	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.012
		C		0.000	0.000	0.821	0.000	0.012
L5	80.207-75.207	Α	1.389	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.023
L6	75.207-70.207	C A	1.380	0.000 0.000	0.000 0.000	1.576 0.000	0.000 0.000	0.042 0.046
LO	70.207 70.207	В	1.000	0.000	0.000	0.000	0.000	0.023
		Ç		0.000	0.000	1.567	0.000	0.042
L7	70.207-65.207	A	1.370	0.000	0.000	0.000	0.000	0.060
		B C		0.000 0.000	0.000 0.000	3.768 1.557	0.000 0.000	0.085 0.041
L8	65.207-60.207	Ä	1.359	0.000	0.000	0.299	0.000	0.063
		В		0.000	0.000	10.793	0.000	0.199
1.0	60.207-59.170	C	1 252	0.000	0.000 0.000	1.966 1.058	0.000	0.045
L9	60.207-59.170	A B	1.353	0.000 0.000	0.000	3.233	0.000 0.000	0.021 0.049
		С		0.000	0.000	1.257	0.000	0.017
L10	59.170-58.900	A	1.351	0.000	0.000	0.275	0.000	0.006
		B C		0.000 0.000	0.000 0.000	0.842 0.327	0.000 0.000	0.013 0.005
L11	58.900-58.750	A	1.351	0.000	0.000	0.327	0.000	0.003
		В		0.000	0.000	0.467	0.000	0.007
	50 750 54 000	C		0.000	0.000	0.182	0.000	0.003
L12	58.750-54.000	A B	1.345	0.000 0.000	0.000 0.000	4.840 16.996	0.000 0.000	0.097 0.244
		C		0.000	0.000	6.104	0.000	0.082
L13	54.000-53.750	Α	1.339	0.000	0.000	0.254	0.000	0.005
		В		0.000	0.000	1.053	0.000	0.014
L14	53.750-52.910	C A	1.338	0.000 0.000	0.000 0.000	0.516 0.855	0.000 0.000	0.006 0.017
L17	33.730-32.310	В	1.550	0.000	0.000	3.538	0.000	0.047
		С		0.000	0.000	1.733	0.000	0.021
L15	52.910-52.660	A	1.336	0.000	0.000	0.254	0.000	0.005
		B C		0.000 0.000	0.000 0.000	1.053 0.516	0.000 0.000	0.014 0.006
L16	52.660-52.170	Ā	1.335	0.000	0.000	0.498	0.000	0.010
		В		0.000	0.000	2.063	0.000	0.028
L17	52.170-51.920	C A	1.334	0.000 0.000	0.000 0.000	1.010 0.254	0.000 0.000	0.012 0.005
LII	32.170-31.920	В	1.554	0.000	0.000	1.052	0.000	0.003
		Ċ		0.000	0.000	0.515	0.000	0.006
L18	51.920-45.287	A	1.325	0.000	0.000	6.733	0.000	0.134
		B C		0.000 0.000	0.000 0.000	27.882 12.790	0.000 0.000	0.373 0.151
L19	45.287-44.287	Ä	1.315	0.000	0.000	1.015	0.000	0.020
		В		0.000	0.000	4.203	0.000	0.056
1.00	44 007 00 007	C	4 205	0.000	0.000	1.318	0.000	0.016
L20	44.287-39.287	A B	1.305	0.000 0.000	0.000 0.000	5.055 20.953	0.000 0.000	0.101 0.278
		Č		0.000	0.000	6.548	0.000	0.081
L21	39.287-34.287	Α	1.289	0.000	0.000	6.312	0.000	0.111
		B C		0.000 0.000	0.000 0.000	22.172 7.788	0.000 0.000	0.287 0.091
L22	34.287-33.500	A	1.278	0.000	0.000	1.616	0.000	0.031
		В		0.000	0.000	4.109	0.000	0.050
1.00	22 500 00 050	C	4.070	0.000	0.000	1.847	0.000	0.020
L23	33.500-33.250	A B	1.276	0.000 0.000	0.000 0.000	0.513 1.305	0.000 0.000	0.007 0.016
		C		0.000	0.000	0.587	0.000	0.016
L24	33.250-33.000	Α	1.275	0.000	0.000	0.513	0.000	0.007
		В		0.000	0.000	1.305	0.000	0.016
L25	33.000-32.750	C A	1.275	0.000 0.000	0.000 0.000	0.586 0.513	0.000 0.000	0.006 0.007
220	33,300 02,700	, (1.270	0.000	3.550	3.010	0.000	0.007

Tower Sectio	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C₄A₄ In Face	C₄A₄ Out Face	Weight
n	ft	Leg	in	ft ²	ft ²	ft ²	ft ²	Κ
		В		0.000	0.000	1.305	0.000	0.016
		С		0.000	0.000	0.586	0.000	0.006
L26	32.750-32.000	Α	1.273	0.000	0.000	1.539	0.000	0.022
		В		0.000	0.000	3.913	0.000	0.048
		С		0.000	0.000	1.758	0.000	0.019
L27	32.000-31.750	Α	1.271	0.000	0.000	0.513	0.000	0.007
		В		0.000	0.000	1.304	0.000	0.016
		С		0.000	0.000	0.586	0.000	0.006
L28	31.750-28.500	Α	1.263	0.000	0.000	7.161	0.000	0.097
		В		0.000	0.000	14.718	0.000	0.188
		С		0.000	0.000	8.104	0.000	0.084
L29	28.500-28.250	Α	1.256	0.000	0.000	0.574	0.000	0.008
		В		0.000	0.000	1.092	0.000	0.014
		С		0.000	0.000	0.646	0.000	0.007
L30	28.250-27.500	Α	1.254	0.000	0.000	1.722	0.000	0.023
		В		0.000	0.000	3.276	0.000	0.042
		С		0.000	0.000	1.939	0.000	0.020
L31	27.500-27.250	Α	1.251	0.000	0.000	0.574	0.000	0.008
		В		0.000	0.000	1.092	0.000	0.014
		С		0.000	0.000	0.646	0.000	0.007
L32	27.250-22.250	Α	1.239	0.000	0.000	8.066	0.000	0.121
		В		0.000	0.000	18.408	0.000	0.249
		С		0.000	0.000	9.492	0.000	0.100
L33	22.250-18.000	Α	1.213	0.000	0.000	5.281	0.000	0.088
		В		0.000	0.000	16.197	0.000	0.211
		С		0.000	0.000	6.472	0.000	0.070
L34	18.000-17.750	Α	1.199	0.000	0.000	0.310	0.000	0.005
		В		0.000	0.000	1.093	0.000	0.013
		С		0.000	0.000	0.379	0.000	0.004
L35	17.750-15.450	Α	1.190	0.000	0.000	2.848	0.000	0.047
		В		0.000	0.000	10.041	0.000	0.122
		С		0.000	0.000	5.883	0.000	0.054
L36	15.450-15.200	Α	1.181	0.000	0.000	0.309	0.000	0.005
		В		0.000	0.000	1.090	0.000	0.013
		С		0.000	0.000	0.677	0.000	0.006
L37	15.200-13.410	Α	1.173	0.000	0.000	2.210	0.000	0.037
		В		0.000	0.000	7.794	0.000	0.094
		С		0.000	0.000	4.843	0.000	0.044
L38	13.410-13.160	Α	1.164	0.000	0.000	0.308	0.000	0.005
		В		0.000	0.000	1.087	0.000	0.013
		С		0.000	0.000	0.675	0.000	0.006
L39	13.160-8.160	Α	1.139	0.000	0.000	6.139	0.000	0.101
		В		0.000	0.000	21.661	0.000	0.257
		С		0.000	0.000	9.782	0.000	0.095
L40	8.160-6.500	Α	1.097	0.000	0.000	2.024	0.000	0.033
		В		0.000	0.000	7.146	0.000	0.083
		С		0.000	0.000	4.005	0.000	0.038
L41	6.500-6.250	Α	1.082	0.000	0.000	0.304	0.000	0.005
		В		0.000	0.000	1.074	0.000	0.012
		Ç		0.000	0.000	0.602	0.000	0.006
L42	6.250-4.450	Α	1.063	0.000	0.000	2.183	0.000	0.035
		В		0.000	0.000	7.709	0.000	0.088
		С		0.000	0.000	4.318	0.000	0.040
L43	4.450-4.200	Α	1.041	0.000	0.000	0.302	0.000	0.005
		В		0.000	0.000	1.067	0.000	0.012
		С		0.000	0.000	0.598	0.000	0.005
L44	4.200-0.000	Α	0.968	0.000	0.000	5.013	0.000	0.078
		В		0.000	0.000	17.728	0.000	0.193
		С		0.000	0.000	6.551	0.000	0.065

Feed Line Center of Pressure

Section	Elevation	CP_X	CPz	CP _X Ice	CP _z Ice
	ft	in	in	in	in

Section	Elevation	CP _X	CPz	CP _X	CPz
				Ice	Ice
	ft	in	in	in	in
L1	98.000-93.000	-0.062	0.292	-0.230	1.082
L2	93.000-88.000	-0.062	0.293	-0.235	1.104
L3	88.000-82.790	-0.062	0.293	-0.239	1.123
L4	82.790-80.207	-0.062	0.293	-0.241	1.133
L 5	80.207-75.207	-0.062	0.293	-0.242	1.140
L6	75.207-70.207	-0.062	0.294	-0.245	1.153
L7	70.207-65.207	3.079	-1.186	2.106	-0.185
L8	65.207-60.207	4.282	-1.795	4.048	-1.296
L9	60.207-59.170	2.892	-1.224	2.501	-0.819
L10	59.170-58.900	2.907	-1.230	2.512	-0.822
L11	58.900-58.750	2.911	-1.232	2.516	-0.823
L12	58.750-54.000	3.460	-1.444	2.999	-1.031
L13	54.000-53.750	4.709	-1.122	4.098	-0.851
L14	53.750-52.910	4.729	-1.127	4.114	-0.854
L15	52.910-52.660	4.414	-1.051	4.128	-0.856
L16 L17	52.660-52.170 52.170-51.920	4.424	-1.053 -1.137	4.139 4.151	-0.858 -0.861
L17 L18		4.776		4.131	-0.861 -0.919
L18 L19	51.920-45.287 45.287-44.287	4.663 4.103	-1.193 -1.948	4.134 3.713	-0.919 -1.491
L20	44.287-39.287	4.103	-1.946 -1.988	3.783	-1.491 -1.521
L20 L21	39.287-34.287	3.890	-1.966 -1.847	3.763 3.613	-1.521 -1.455
L21	34.287-33.500	3.017	-1.432	2,999	-1.208
L23	33.500-33.250	2.848	-1.352	3.003	-1.210
L24	33.250-33.000	2.852	-1.354	3.008	-1,212
L25	33.000-32.750	2,857	-1.357	3.013	-1,214
L26	32.750-32.000	2.866	-1.361	3.023	-1.219
L27	32.000-31.750	3.057	-1.452	3.036	1.224
L28	31.750-28.500	2.183	-0.958	2.385	-0.828
L29	28.500-28.250	1,942	-0.820	2,162	-0.699
L30	28.250-27.500	1.948	-0.823	2.169	-0.701
L31	27.500-27.250	1.960	-0.828	2.182	-0.706
L32	27.250-22.250	2.682	-1.133	2.638	-0.855
L33	22.250-18.000	3.741	-1.694	3.485	-1.292
L34	18.000-17.750	4.330	-2.057	4.005	-1.625
L35	17.750-15.450	5.566	-1.106	5.050	-0.883
L36	15.450-15.200	5.766	-0.987	5.223	-0.788
L37	15.200-13.410	5.800	-0.992	5.251	-0.793
L38	13.410-13.160	5.834	-0.998	5.278	-0.797
L39	13.160-8.160	4.769	-0.687	4.346	-0.525
L40	8.160-6.500	5.743	-0.948	5.102	-0.731
L41	6.500-6.250	5.773	-0.953	5.129	-0.737
L42	6.250-4.450	5.805	-0.957	5.158	-0.743
L43	4.450-4.200	5.835	-0.962	5.187	-0.750
L44	4.200-0.000	4.798	-1.579	4.316	-1.253

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment	No Ice	Ice
			Elev.		
L1	19	Safety Line 3/8	93.00 -	1.0000	1.0000
			98.00		ĺ
L2	19	Safety Line 3/8	88.00-	1.0000	1.0000
		-	93.00		i l
L3	19	Safety Line 3/8	82.79 -	1.0000	1.0000
		•	88.00		i l
L4	19	Safety Line 3/8	80.21 -	1.0000	1.0000
		•	82.79		
L5	19	Safety Line 3/8	75.21 -	1.0000	1.0000
		•	80.21		i I

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	Becomplien	Segment Elev.	No Îce	Ice
L6	19	Safety Line 3/8	70.21 -	1.0000	1.0000
L7	14	AVA7-50(1-5/8)	75.21 65.21 - 67.00	1.0000	1.0000
L7	19	Safety Line 3/8	65.21 - 70.21	1.0000	1.0000
L8	14	AVA7-50(1-5/8)	60.21 - 65.21	1.0000	1.0000
L8	19	Safety Line 3/8	60.21 - 65.21	1.0000	1.0000
L8	33	Sabre MS-450 (4.5" x 1" Plate)	60.21 - 60.50	1.0000	1.0000
L8	34	Sabre MS-450 (4.5" x 1" Plate)	60.21 - 60.50	1.0000	1.0000
L8	35	Sabre MS-450 (4.5" x 1 ["] Plate)	60.21 - 60.67	1.0000	1.0000
L9	14	AVA7-50(1-5/8)	59.17 - 60.21	1.0000	1.0000
L9	19	Safety Line 3/8	59.17 - 60.21	1.0000	1.0000
L9	33	Sabre MS-450 (4.5" x 1" Plate)	59.17 - 60.21	1.0000	1.0000
L9	34	Sabre MS-450 (4.5" x 1" Plate)	59.17 - 60.21	1.0000	1.0000
L9	35	Sabre MS-450 (4.5" x 1 [°] Plate)	59.17 - 60.21	1.0000	1.0000
L10	14	AVA7-50(1-5/8)	58.90 - 59.17	1.0000	1.0000
L10	19	Safety Line 3/8	58.90 - 59.17	1.0000	1.0000
L10	33	Sabre MS-450 (4.5" x 1" Plate)	58.90 - 59.17	1.0000	1.0000
L10	34	Sabre MS-450 (4.5" x 1" Plate)	58.90 - 59.17	1.0000	1.0000
L10	35	Sabre MS-450 (4.5" x 1" Plate)	58.90 - 59.17	1.0000	1.0000
L11	14	AVA7-50(1-5/8)	58.75 - 58.90	1.0000	1.0000
L11	19	Safety Line 3/8	58.75 - 58.90	1.0000	1.0000
L11	33	Sabre MS-450 (4.5" x 1" Plate)	58.75 - 58.90	1.0000	1.0000
L11	34	Sabre MS-450 (4.5" x 1" Plate)	58.75 - 58.90	1.0000	1.0000
L11	35	Plate)	58.75 - 58.90	1.0000	1.0000
L12	14	AVA7-50(1-5/8)	54.00 - 58.75	1.0000	1.0000
L12	19	Safety Line 3/8 Sabre MS-450 (4,5" x 1"	54.00 - 58.75	1.0000	1.0000 1.0000
L12	33 34	Sabre MS-450 (4.5 X 1 Plate) Sabre MS-450 (4.5" x 1"	54.00 - 58.75 54.00 -	1.0000 1.0000	1.0000
L12	35	Plate) Sabre MS-450 (4.5" x 1"	54.00 - 58.75 54.00 -	1.0000	1.0000
L12	36	Plate) Sabre MS-450 (4.5" x 1"	54.00 - 58.75 54.00 -	1.0000	1.0000
L12	40	Plate) CCI-5x1.25	54.00 - 54.42 54.00 -	1.0000	1.0000
L13	14	AVA7-50(1-5/8)	56.00 53.75 -	1.0000	1.0000
L13	19	Safety Line 3/8	54.00 53.75 -	1.0000	1.0000
L13	33	Sabre MS-450 (4.5" x 1"	54.00 53.75 -	1.0000	1.0000
L13	34	Plate) Sabre MS-450 (4.5" x 1"	54.00 53.75 -	1.0000	1.0000
L13		` Plate)	54.00	1.0000	

Tower	Feed Line	Description	Feed Line	K	K
Section	Record No.	Description	Segment	K _a No Ice	K _a Ice
		Plate)	<i>Elev.</i> 54.00		
L13	36	Sabre MS-450 (4.5" x 1" Plate)	53.75 - 54.00	1.0000	1.0000
L13	40	CCI-5x1.25	53.75 - 54.00	1.0000	1.0000
L14	14	AVA7-50(1-5/8)	52.91 - 53.75	1.0000	1.0000
L14	19	Safety Line 3/8	52.91 - 53.75	1.0000	1.0000
L14	33	Sabre MS-450 (4.5" x 1" Plate)	52.91 - 53.75	1.0000	1.0000
L14	34	Sabre MS-450 (4.5" x 1" Plate)	52.91 - 53.75	1.0000	1.0000
L14	35	Sabre MS-450 (4.5" x 1 [°] Plate)	52.91 - 53.75	1.0000	1.0000
L14	36	Sabre MS-450 (4.5" x 1" Plate)	52.91 - 53.75	1.0000	1.0000
L14	40	CCI-5x1.25	52.91 - 53.75	1.0000	1.0000
L15	14	AVA7-50(1-5/8)	52.66 - 52.91	1.0000	1.0000
L15	19	Safety Line 3/8	52.66 - 52.91	1.0000	1.0000
L15	33	Sabre MS-450 (4.5" x 1" Plate)	52.66 - 52.91	1.0000	1.0000
L15	34	Sabre MS-450 (4.5" x 1 [°] Plate)	52.66 - 52.91	1.0000	1.0000
L15	35	Sabre MS-450 (4.5" x 1" Plate)	52.66 - 52.91	1.0000	1.0000
L15	36	Sabre MS-450 (4.5" x 1" Plate)	52.66 - 52.91	1.0000	1.0000
L15	40	CCI-5x1.25	52.66 - 52.91	1.0000	1.0000
L16	14	AVA7-50(1-5/8)	52.17 - 52.66	1.0000	1.0000
L16	19	Safety Line 3/8	52.17 - 52.66	1.0000	1.0000
L16	33	Sabre MS-450 (4.5" x 1" Plate)	52.17 - 52.66	1.0000	1.0000
L16	34	Sabre MS-450 (4.5" x 1" Plate)	52.17 - 52.66	1.0000	1.0000
L16	35	Sabre MS-450 (4.5" x 1" Plate)	52.17 - 52.66	1.0000	1.0000
L16	36	Sabre MS-450 (4.5" x 1" Plate)	52.17 - 52.66	1.0000	1.0000
L16	40	CCI-5x1.25	52.17 - 52.66	1.0000	1.0000
L17	14	AVA7-50(1-5/8)	51.92 - 52.17	1.0000	1.0000
L17	19	Safety Line 3/8	51.92 - 52.17	1.0000	1.0000
L17	33	Sabre MS-450 (4.5" x 1" Plate)	51.92 - 52.17	1.0000	1.0000
L17	34	Sabre MS-450 (4.5" x 1" Plate)	51.92 - 52.17	1.0000	1.0000
L17	35	Sabre MS-450 (4.5" x 1" Plate)	51.92 - 52.17	1.0000	1.0000
L17	36	Sabre MS-450 (4.5" x 1" Plate)	51.92 - 52.17	1.0000	1.0000
L17	40	CCI-5x1.25	51.92 - 52.17	1.0000	1.0000
L18	14	AVA7-50(1-5/8)	45.29 - 51.92	1.0000	1.0000
L18	19	Safety Line 3/8	45.29 - 51.92	1.0000	1.0000
L18	32	Sabre MS-450 (4.5" x 1" Plate)	45.29 - 49.75	1.0000	1.0000
L18	33	Sabre MS-450 (4.5" x 1" Plate)	45.29 - 51.92	1.0000	1.0000

Tower	Foodling	Description	Foodling	K	Γ _V
Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L18	34	Sabre MS-450 (4.5" x 1"	45.29 -	1.0000	1.0000
L18	35	Plate) Sabre MS-450 (4.5" x 1" Plate)	51.92 50.67 - 51.92	1.0000	1.0000
L18	36	Sabre MS-450 (4.5" x 1" Plate)	45.92 - 51.92	1.0000	1.0000
L18	40	CCI-5x1.25	45.29 - 51.92	1.0000	1.0000
L19	14	AVA7-50(1-5/8)	44.29 - 45.29	1.0000	1.0000
L19	19	Safety Line 3/8	44.29 - 45.29	1.0000	1.0000
L19	32	Sabre MS-450 (4.5" x 1" Plate)	44.29 - 45.29	1.0000	1.0000
L19	33	Sabre MS-450 (4.5" x 1" Plate)	44.29 - 45.29	1.0000	1.0000
L19	34	Sabre MS-450 (4.5" x 1" Plate)	44.29 - 45.29	1.0000	1.0000
L19	40	CCI-5x1.25	44.29 - 45.29	1.0000	1.0000
L20	14	AVA7-50(1-5/8)	39.29 - 44.29	1.0000	1.0000
L20	19	Safety Line 3/8	39.29 - 44.29	1.0000	1.0000
L20	32	Sabre MS-450 (4.5" x 1" Plate)	39.29 - 44.29	1.0000	1.0000
L20	33	Sabre MS-450 (4.5" x 1 ^e Plate)	39.29 - 44.29	1.0000	1.0000
L20	34	Sabre MS-450 (4.5" x 1 [°] Plate)	39.29 - 44.29	1.0000	1.0000
L20	40	CCI-5x1.25	39.29 - 44.29	1.0000	1.0000
L21	14	AVA7-50(1-5/8)	34.29 - 39.29	1.0000	1.0000
L21	19	Safety Line 3/8	34.29 - 39.29	1.0000	1.0000
L21	28	Sabre MS-600 (6" x 1" Plate)	34.29 - 35.50	1.0000	1.0000
L21	29	Sabre MS-600 (6" x 1" Plate)	34.29 - 35.50	1.0000	1.0000
L21	30	Sabre MS-600 (6" x 1" Plate)	34.29 - 35.50	1.0000	1.0000
L21	32	Sabre MS-450 (4.5" x 1" Plate)	34.29 - 39.29	1.0000	1.0000
L21	33	Sabre MS-450 (4.5" x 1" Plate)	39.29	1.0000 1.0000	
L21 L21	34 40	Sabre MS-450 (4.5" x 1" Plate) CCI-5x1.25	34.29 - 39.29	1.0000	1.0000
L21	14	AVA7-50(1-5/8)	34.29 - 39.29 33.50 -	1.0000	1.0000
L22	19	Safety Line 3/8	34.29 33.50 -	1.0000	1.0000
L22	28	Sabre MS-600 (6" x 1"	34.29 33.50 -	1.0000	1.0000
L22	29	Plate) Sabre MS-600 (6" x 1"	34.29 33.50 -	1,0000	1.0000
L22	30	Plate) Sabre MS-600 (6" x 1"	34.29 33.50 -	1.0000	1.0000
L22	32	Plate) Sabre MS-450 (4.5" x 1"	34.29 33.50 -	1.0000	1.0000
L22	33	Plate) Sabre MS-450 (4.5" x 1"	34.29 33.50 -	1.0000	1.0000
L22	34	Plate) Sabre MS-450 (4.5" x 1"	34.29 33.50 -	1.0000	1.0000
L22	40	Plate) CCI-5x1.25	34.29 33.50 -	1.0000	1.0000
L23	14	AVA7-50(1-5/8)	34.29	1.0000	1.0000
•	. '	, /1	. '	ļ	. '

Touran	Feed Line	Description	Feed Line	V	l v
Tower Section	Record No.	Description	Feea Line Segment	K _a No Ice	K _a Ice
	, 10 00 1 0 1		Ĕlev.	7.10 7.00	.55
L23	19	Safety Line 3/8	33.50 33.25 - 33.50	1.0000	1.0000
L23	28	Sabre MS-600 (6" x 1" Plate)	33.25 - 33.50	1.0000	1.0000
L23	29	Sabre MS-600 (6" x 1" Plate)	33.25 - 33.50	1.0000	1.0000
L23	30	Sabre MS-600 (6" x 1" Plate)	33.25 - 33.50	1.0000	1.0000
L23	32	Sabre MS-450 (4.5" x 1" Plate)	33.25 - 33.50	1.0000	1.0000
L23	33	Sabre MS-450 (4.5" x 1" Plate)	33.25 - 33.50	1.0000	1.0000
L23	34	Sabre MS-450 (4.5" x 1" Plate)	33.25 - 33.50	1.0000	1.0000
L23	40	CCI-5x1.25	33.25 - 33.50	1.0000	1.0000
L24	14	AVA7-50(1-5/8)	33.00 - 33.25	1.0000	1.0000
L24	19	Safety Line 3/8	33.00 - 33.25	1.0000	1.0000
L24	28	Sabre MS-600 (6" x 1" Plate)	33.00 - 33.25	1.0000	1.0000
L24	29	Sabre MS-600 (6" x 1" Plate)	33.00 - 33.25	1.0000	1.0000
L24	30	Sabre MS-600 (6" x 1" Plate)	33.00 - 33.25	1.0000	1.0000
L24	32	Sabre MS-450 (4.5" x 1" Plate)	33.00 - 33.25	1.0000	1.0000
L24	33	Sabre MS-450 (4.5" x 1" Plate)	33.00 - 33.25	1.0000	1.0000
L24	34	Sabre MS-450 (4.5" x 1" Plate)	33.00 - 33.25	1.0000	1.0000
L24	40	CCI-5x1.25	33.00 - 33.25	1.0000	1.0000
L25	14	AVA7-50(1-5/8)	32.75 - 33.00	1.0000	1.0000
L25	19	Safety Line 3/8	32.75 - 33.00	1.0000	1.0000
L25	28	Sabre MS-600 (6" x 1" Plate)	32.75 - 33.00	1.0000	1.0000
L25	29	Sabre MS-600 (6" x 1" Plate)	32.75 - 33.00	1.0000	1.0000
L25	30	Sabre MS-600 (6" x 1" Plate)	32.75 - 33.00	1.0000	1.0000
L25	32	Sabre MS-450 (4.5" x 1" Plate)	32.75 - 33.00	1.0000	1.0000
L25	33	Sabre MS-450 (4.5" x 1" Plate)	32.75 - 33.00	1.0000	1.0000
L25	34	Sabre MS-450 (4.5" x 1 [°] Plate)	32.75 - 33.00	1.0000	1.0000
L25	40	CCI-5x1.25	32.75 - 33.00	1.0000	1.0000
L26	14	AVA7-50(1-5/8)	32.00 - 32.75	1.0000	1.0000
L26	19	Safety Line 3/8	32.00 - 32.75	1.0000	1.0000
L26	28	Sabre MS-600 (6" x 1" Plate)	32.00 - 32.75	1.0000	1.0000
L26	29	Sabre MS-600 (6" x 1 [°] Plate)	32.00 - 32.75	1.0000	1.0000
L26	30	Sabre MS-600 (6" x 1" Plate)	32.00 - 32.75	1.0000	1.0000
L26	32	Sabre MS-450 (4.5" x 1" Plate)	32.00 - 32.75	1.0000	1.0000
L26	33	Sabre MS-450 (4.5" x 1" Plate)	32.00 - 32.75	1.0000	1.0000
L26	34	Sabre MS-450 (4.5" x 1" Plate)	32.00-	1.0000	1.0000

T :	F-1111	D 2-11		17	1/
Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L26	40	CCI-5x1.25	32.00-	1.0000	1.0000
L27	14	AVA7-50(1-5/8)	32.75 31.75 - 32.00	1.0000	1.0000
L27	19	Safety Line 3/8	31.75 - 32.00	1.0000	1.0000
L27	28	Sabre MS-600 (6" x 1" Plate)	31.75 - 32.00	1.0000	1.0000
L27	29	Sabre MS-600 (6" x 1" Plate)	31.75 - 32.00	1.0000	1.0000
L27	30	Sabre MS-600 (6" x 1" Plate)	31.75 - 32.00	1.0000	1.0000
L27	32	Sabre MS-450 (4.5" x 1" Plate)	31.75 - 32.00	1.0000	1.0000
L27	33	Sabre MS-450 (4.5" x 1" Plate)	31.75 - 32.00	1.0000	1.0000
L27	34	Sabre MS-450 (4.5" x 1" Plate)	31.75 - 32.00	1.0000	1.0000
L27	40	CCI-5x1.25	31.75 - 32.00	1.0000	1.0000
L28	14	AVA7-50(1-5/8)	28.50 - 31.75	1.0000	1.0000
L28	19	Safety Line 3/8	28.50 - 31.75	1.0000	1.0000
L28	22	Sabre MS-600 (6" x 1" Plate)	28.50 - 30.50	1.0000	1.0000
L28	23	Sabre MS-600 (6" x 1" Plate)	28.50 - 30.50	1.0000	1.0000
L28	26	Sabre MS-600 (6" x 1" Plate)	28.50 - 30.50	1.0000	1.0000
L28	28	Sabre MS-600 (6" x 1" Plate)	28.50 - 31.75	1.0000	1.0000
L28	29	Sabre MS-600 (6" x 1" Plate)	28.50 - 31.75	1.0000	1.0000
L28	30	Sabre MS-600 (6" x 1" Plate)	28.50 - 31.75	1.0000	1.0000
L28	32	Sabre MS-450 (4.5" x 1" Plate)	30.50 - 31.75	1.0000	1.0000
L28	33	Sabre MS-450 (4.5" x 1" Plate)	30.50 - 31.75	1.0000	1.0000
L28	34	Sabre MS-450 (4.5" x 1" Plate)	30.50 - 31.75	1.0000	1.0000
L28	40	CCI-5x1.25	31.00 - 31.75	1.0000	1.0000
L29	14	AVA7-50(1-5/8)	28.25 - 28.50	1.0000	1.0000
L29	19	Safety Line 3/8	28.25 - 28.50	1.0000	1.0000
L29	22	Sabre MS-600 (6" x 1" Plate)	28.25 - 28.50	1.0000	1.0000
L29	23	Sabre MS-600 (6" x 1" Plate)	28.25 - 28.50	1.0000	1.0000
L29	26	Sabre MS-600 (6" x 1" Plate)	28.25 - 28.50	1.0000	1.0000
L29	28	Sabre MS-600 (6" x 1" Plate)	28.25 - 28.50	1.0000	1.0000
L29	29	Sabre MS-600 (6" x 1" Plate)	28.25 - 28.50	1.0000	1.0000
L29	30	Sabre MS-600 (6" x 1" Plate)	28.25 - 28.50	1.0000	1.0000
L30	14	AVA7-50(1-5/8)	27.50 - 28.25	1.0000	1.0000
L30	19	Safety Line 3/8	27.50 - 28.25	1.0000	1.0000
L30	22	Sabre MS-600 (6" x 1" Plate)	27.50 - 28.25	1.0000	1.0000
L30	23	Sabre MS-600 (6" x 1" Plate)	27.50 - 28.25	1.0000	1.0000
L30	26	Sabre MS-600 (6" x 1"		1.0000	1.0000

Ta	Food!:	Dogori-ti	Food!:	V	
Tower Section	Feed Line Record No.	Description	Feed Line Segment	K _a No Ice	K _a Ice
		Dista	Elev.		
L30	28	Plate) Sabre MS-600 (6" x 1" Plate)	28.25 27.50 - 28.25	1.0000	1.0000
L30	29	Sabre MS-600 (6" x 1" Plate)	27.50 - 28.25	1.0000	1.0000
L30	30	Sabre MS-600 (6" x 1" Plate)	27.50 - 28.25	1.0000	1.0000
L31	14	AVA7-50(1-5/8)	27.25 - 27.50	1.0000	1.0000
L31	19	Safety Line 3/8	27.25 - 27.50	1.0000	1.0000
L31	22	Sabre MS-600 (6" x 1" Plate)	27.25 - 27.50	1.0000	1.0000
L31	23	Sabre MS-600 (6" x 1" Plate)	27.25 - 27.50	1.0000	1.0000
L31	26	Sabre MS-600 (6" x 1" Plate)	27.25 - 27.50	1.0000	1.0000
L31	28	Sabre MS-600 (6" x 1" Plate)	27.25 - 27.50	1.0000	1.0000
L31	29	Sabre MS-600 (6" x 1" Plate)	27.25 - 27.50	1.0000	1.0000
L31	30	Sabre MS-600 (6" x 1 [°] Plate)	27.25 - 27.50	1.0000	1.0000
L32	14	AVA7-50(1-5/8)	22.25 - 27.25	1.0000	1.0000
L32	19	Safety Line 3/8	22.25 - 27.25	1.0000	1.0000
L32	22	Sabre MS-600 (6" x 1" Plate)	22.25 - 27.25	1.0000	1.0000
L32	23	Sabre MS-600 (6" x 1" Plate)	22.25 - 27.25	1.0000	1.0000
L32	26	Sabre MS-600 (6" x 1" Plate)	22.25 - 27.25	1.0000	1.0000
L32	28	Sabre MS-600 (6" x 1" Plate)	25.50 - 27.25	1.0000	1.0000
L32	29	Sabre MS-600 (6" x 1" Plate)	25.50 - 27.25	1.0000	1.0000
L32	30	Sabre MS-600 (6" x 1" Plate)	25.50 - 27.25	1.0000	1.0000
L33	14	AVA7-50(1-5/8)	18.00 - 22.25	1.0000	1.0000
L33	19	Safety Line 3/8	18.00 - 22.25	1.0000	1.0000
L33	22	Sabre MS-600 (6" x 1" Plate)	18.00 - 22.25	1.0000	1.0000
L33	23	Sabre MS-600 (6" x 1" Plate)	18.00 - 22.25	1.0000	1.0000
L33	26	Sabre MS-600 (6" x 1" Plate)	18.00 - 22.25	1.0000	1.0000
L33	38	CCI-5x1.25	18.00 - 20.00	1.0000	1.0000
L34	14	AVA7-50(1-5/8)	17.75 - 18.00	1.0000	1.0000
L34	19	Safety Line 3/8	17.75 - 18.00	1.0000	1.0000
L34	22	Sabre MS-600 (6" x 1" Plate)	17.75 - 18.00	1.0000	1.0000
L34	23	Sabre MS-600 (6" x 1" Plate)	17.75 - 18.00	1.0000	1.0000
L34	26 38	Sabre MS-600 (6" x 1" Plate)	17.75 - 18.00 17.75	1.0000	1.0000
L34	38 14	CCI-5x1.25 AVA7-50(1-5/8)	17.75 - 18.00	1.0000	1.0000 1.0000
L35	19	AVA7-50(1-5/8) Safety Line 3/8	15.45 - 17.75 15.45 -	1.0000	1.0000
L35	22	Salety Line 3/8	15.45 - 17.75 15.45 -	1.0000	1.0000
135	22	Plate)		1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment	K _a No Ice	K _a Ice
			Ēlev.		
L35	23	Sabre MS-600 (6" x 1" Plate)	15.45 - 17.75	1.0000	1.0000
L35	25	Sabre MS-600 (6" x 1" Plate)	15.45 - 17.45	1.0000	1.0000
L35	26	Sabre MS-600 (6" x 1 [°] Plate)	15.45 - 17.75	1.0000	1.0000
L35	38	CCI-5x1.25	15.45 - 17.75	1.0000	1.0000
L36	14	AVA7-50(1-5/8)	15.20 - 15.45	1.0000	1.0000
L36	19	Safety Line 3/8	15.20 - 15.45	1.0000	1.0000
L36	22	Sabre MS-600 (6" x 1" Plate)	15.20 - 15.45	1.0000	1.0000
L36	23	Sabre MS-600 (6" x 1" Plate)	15.20 - 15.45	1.0000	1.0000
L36	25	Sabre MS-600 (6" x 1" Plate)	15.20 - 15.45	1.0000	1.0000
L36	26 38	Sabre MS-600 (6" x 1" Plate)	15.20 - 15.45 15.20 -	1.0000	1.0000 1.0000
L36	14	CCI-5x1.25 AVA7-50(1-5/8)	15.20 - 15.45 13.41 -	1.0000	1.0000
L37	19	Safety Line 3/8	15.41 - 15.20 13.41 -	1,0000	1,0000
L37	22	Sabre MS-600 (6" x 1"	15.20 13.41 -	1.0000	1.0000
L37	23	`Plate) Sabre MS-600 (6" x 1"	15.20 13.41 -	1.0000	1.0000
L37	25	Plate) Sabre MS-600 (6" x 1"	15.20 13.41 -	1.0000	1.0000
L37	26	Plate) Sabre MS-600 (6" x 1"	15.20 13.41 -	1.0000	1.0000
L37	38	Plate) CCI-5x1.25	15.20 13.41 -	1.0000	1.0000
L38	14	AVA7-50(1-5/8)	15.20 13.16 - 13.41	1.0000	1.0000
L38	19	Safety Line 3/8	13.41 13.16 - 13.41	1.0000	1.0000
L38	22	Sabre MS-600 (6" x 1" Plate)	13.16 - 13.41	1.0000	1.0000
L38	23	Sabre MS-600 (6" x 1" Plate)	13.16 - 13.41	1.0000	1.0000
L38	25	Sabre MS-600 (6" x 1" Plate)	13.16 - 13.41	1.0000	1.0000
L38	26	Sabre MS-600 (6" x 1 ["] Plate)	13.16 - 13.41	1.0000	1.0000
L38	38	CCI-5x1.25	13.16 - 13.41	1.0000	1.0000
L39 L39	14 19	AVA7-50(1-5/8) Safety Line 3/8	8.16 - 13.16 8.16 - 13.16	1.0000 1.0000	1.0000 1.0000
L39	22	Sabre MS-6Ó0 (6" x 1" Plate)	8.16 - 13.16	1.0000	1.0000
L39	23	Sabre MS-600 (6" x 1" Plate)	8.16 - 13.16	1.0000	1.0000
L39	24	Sabre MS-600 (6" x 1" Plate)	8.16 - 8.50	1.0000	1.0000
L39	25	Sabre MS-600 (6" x 1" Plate)	8.16 - 13.16	1.0000	1.0000
L39 L39	26 38	Sabre MS-600 (6" x 1" Plate)	11.41 - 13.16	1.0000	1.0000
L39 L40	14	CCI-5x1.25 AVA7-50(1-5/8)	8.16 - 13.16 6.50 - 8.16	1.0000 1.0000	1.0000 1.0000
L40	19	Safety Line 3/8	6.50 - 8.16	1.0000	1.0000
L40	22	Sabre MS-600 (6" x 1" Plate)	6.50-8.16	1.0000	1.0000
L40	23	Sabre MS-600 (6" x 1" Plate)	6.50 - 8.16	1.0000	1.0000

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	Description	Segment	No Ice	Ice
Section	Record No.			NO ICE	ice.
			Elev.		
L40	24	Sabre MS-600 (6" x 1"	6.50 - 8.16	1.0000	1.0000
		Plate)			
L40	25	Sabre MS-600 (6" x 1"	6.50 - 8.16	1.0000	1.0000
		`Plate)			
L40	38	CCI-5x1.25	6.50 - 8.16	1.0000	1.0000
L41	14	AVA7-50(1-5/8)	6.25 - 6.50	1.0000	1.0000
L41	19		6.25 - 6.50	1.0000	1.0000
1		Safety Line 3/8			
L41	22	Sabre MS-600 (6" x 1" Plate)	6.25 - 6.50	1.0000	1.0000
L41	23	Sabre MS-600 (6" x 1"	6.25-6.50	1.0000	1.0000
"	23		0.23-0.30	1.0000	1.0000
		Plate)	0.05.050	4 0000	4 0000
L41	24	Sabre MS-600 (6" x 1"	6.25 - 6.50	1.0000	1.0000
		Plate)			
L41	25	Sabre MS-600 (6" x 1"	6.25 - 6.50	1.0000	1.0000
		Plate)			
l L41	38	CCI-5x1.25	6.25 - 6.50	1.0000	1.0000
L42	14	AVA7-50(1-5/8)	4.45 - 6.25	1.0000	1.0000
L42	19	Safety Line 3/8	4.45 - 6.25	1.0000	1.0000
L42	22	Sabre MS-600 (6" x 1"	4.45 - 6.25	1.0000	1.0000
		Plate)			
L42	23	Sabre MS-600 (6" x 1"	4.45 - 6.25	1.0000	1.0000
		Plate)			
L42	24	Sabre MS-600 (6" x 1"	4.45 - 6.25	1.0000	1.0000
		Plate)			
L42	25	Sabre MS-600 (6" x 1"	4.45 - 6.25	1.0000	1,0000
		Plate)	., 0,20	.,,,,,,	.,0000
L42	38	CCI-5x1.25	4.45 - 6.25	1.0000	1.0000
			4.20 - 4.45	1.0000	
L43	14	AVA7-50(1-5/8)			1.0000
L43	19	Safety Line 3/8	4.20 - 4.45	1.0000	1.0000
L43	22	Sabre MS-600 (6" x 1"	4.20 - 4.45	1.0000	1.0000
		Plate)			
L43	23	Sabre MS-600 (6" x 1"	4.20 - 4.45	1.0000	1.0000
		`Plate)			
L43	24	Sabre MS-600 (6" x 1"	4.20 - 4.45	1.0000	1.0000
	27	Plate	7.20 7.70	1.0000	1.0000
149	25	Sabre MS-600 (6" x 1"	4 20 4 45	1 0000	1 0000
L43	25	`	4.20 - 4.45	1.0000	1.0000
l		Plate)	4.00 =		
L43	38	CCI-5x1.25	4.20 - 4.45	1.0000	1.0000
L44	14	AVA7-50(1-5/8)	0.00 - 4.20	1.0000	1.0000
L44	19	Safety Line 3/8	0.00 - 4.20	1.0000	1.0000
L44	22	Sabre MS-600 (6" x 1"	0.00-4.20	1.0000	1.0000
		`Plate)			
L44	23	Sabre MS-600 (6" x 1"	0.00 - 4.20	1.0000	1.0000
l		Plate)			
L44	24	Sabre MS-600 (6" x 1"	0.50-4.20	1.0000	1.0000
	24	`	0.50-4.20	1.0000	1.0000
ا میں	0.5	Plate)	0.45.4.00	4 0000	4 0000
L44	25	Sabre MS-600 (6" x 1"	2.45 - 4.20	1.0000	1.0000
		Plate)			
L44	38	CCI-5x1.25	0.00-4.20	1.0000	1.0000

Effective Width of Flat Linear Attachments / Feed Lines

	Tower Section	Attachment Record No.	Description	Attachment Segment Elev.	Ratio Calculatio n Method	Effective Width Ratio
İ	L8	33	Sabre MS-450 (4.5" x 1"			0.3288
١			Plate)	60.50		
١	L8	34	Sabre MS-450 (4.5" x 1"	60.21 -	Auto	0.3288
١			Plate)	60.50		
١	L8	35	Sabre MS-450 (4.5" x 1"	60.21-	Auto	0.3295

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.	,	Segment Elev.	Calculatio	Width Ratio
				n Method	Rallo
L9	33	Plate) "Sabre MS-450 (4.5" x 1	60.67 59.17 -	Auto	0.3233
L9	34	Plate) "Sabre MS-450 (4.5" x	60.21 59.17 -	Auto	0.3233
L9	35	Plate) Sabre MS-450 (4.5" x 1"	60.21 59.17 -	Auto	0.3233
L10	33	Plate) Sabre MS-450 (4.5" x 1"	60.21 58.90 -	Auto	0.4205
L10	34	Plate) Sabre MS-450 (4.5" x 1"	59.17 58.90 -	Auto	0.4205
L10	35	Plate) Sabre MS-450 (4.5" x 1"	59.17 58.90 -	Auto	0.4205
L11	33	Plate) Sabre MS-450 (4.5" x 1"	59.17 58.75 -	Auto	0.4203
		Plate)	58.90		
L11	34	Sabre MS-450 (4.5" x 1" Plate)	58.75 - 58.90	Auto	0.4188
L11	35	Sabre MS-450 (4.5" x 1" Plate)	58.75 - 58.90	Auto	0.4188
L12	33	Sabre MS-450 (4.5" x 1" Plate)	54.00 - 58.75	Auto	0.3936
L12	34	Sabre MS-450 (4.5" x 1" Plate)	54.00 - 58.75	Auto	0.3936
L12	35	Sabre MS-450 (4.5" x 1" Plate)	54.00 - 58.75	Auto	0.3936
L12	36	Sabre MS-450 (4.5" x 1 [°] Plate)	54.00 - 54.42	Auto	0.3756
L12	40	CCI-5x1.25	54.00 - 56.00	Auto	0.4439
L13	33	Sabre MS-450 (4.5" x 1" Plate)	53.75 - 54.00	Auto	0.3777
L13	34	Sabre MS-450 (4.5" x 1 ^e	53.75 - 54.00	Auto	0.3777
L13	35	Plate) Sabre MS-450 (4.5" x 1"	53.75 -	Auto	0.3777
L13	36	Plate) "Sabre MS-450 (4.5" x 1	54.00 53.75 -	Auto	0.3777
L13	40	Plate) CCI-5x1.25	54.00 53.75 -	Auto	0.4399
L14	33	Sabre MS-450 (4.5" x 1"	54.00 52.91 -	Auto	0.3683
L14	34	Plate) Sabre MS-450 (4.5" x 1	53.75 52.91 -	Auto	0.3683
L14	35		53.75 52.91 -	Auto	0.3683
L14	36	Plate) Sabre MS-450 (4.5" x 1"	53.75 52.91 -	Auto	0.3683
L14	40	Plate) CCI-5x1.25	53.75 52.91 -	Auto	0.4314
L15	33	Sabre MS-450 (4.5" x 1"	53.75 52.66 -	Auto	0.4322
L15	34	Plate) Sabre MS-450 (4.5" x 1	52.91 52.66 -	Auto	0.4322
L15	35	Plate) Sabre MS-450 (4.5" x 1"	52.91 52.66 -	Auto	0.4322
L15	36	Plate) Sabre MS-450 (4.5" x 1"	52.91 52.66 -	Auto	0.4322
L15	40	Plate) CCI-5x1.25	52.91 52.66 -	Auto	0.4890
L16	33	Sabre MS-450 (4.5" x 1"	52.91 52.17 -	Auto	0.4291
L16	34	Plate) Sabre MS-450 (4.5" x 1"	52.66 52.17 -	Auto	0.4291
L16	35	Plate) Sabre MS-450 (4.5" x 1"	52.17 - 52.66 52.17 -	Auto	0.4291
L16	36	Plate) Sabre MS-450 (4.5" x 1"	52.66		
		` Plate)	52.17 - 52.66	Auto	0.4291
L16	40	CCI-5x1.25	52.17 -	Auto	0.4862

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.	Description	Segment	Calculatio	Width
			Elev.	n Method	Ratio
			52.66	Motriou	
L17	33	Sabre MS-450 (4.5" x 1" Plate)	51.92 - 52.17	Auto	0.3674
L17	34	Sabre MS-450 (4.5" x 1" Plate)	52.17 51.92 - 52.17	Auto	0.3674
L17	35	Sabre MS-450 (4.5" x 1" Plate)	51.92 - 52.17	Auto	0.3674
L17	36	Sabre MS-450 (4.5" x 1" Plate)	51.92 - 52.17	Auto	0.3674
L17	40	CCI-5x1.25	51.92 - 52.17	Auto	0.4306
L18	32	Sabre MS-450 (4.5" x 1" Plate)	45.29 - 49.75	Auto	0.3249
L18	33	Sabre MS-450 (4.5" x 1" Plate)	45.29 - 51.92	Auto	0.3339
L18	34	Sabre MS-450 (4.5" x 1" Plate)	45.29 - 51.92	Auto	0.3339
L18	35	Sabre MS-450 (4.5" x 1" Plate)	50.67 - 51.92	Auto	0.3563
L18	36	Sabre MS-450 (4.5" x 1" Plate)	45.92 - 51.92	Auto	0.3365
L18	40	CCI-5x1.25	45.29 - 51.92	Auto	0.4005
L19	32	Sabre MS-450 (4.5" x 1" Plate)	44.29 - 45.29	Auto	0.3412
L19	33	Sabre MS-450 (4.5" x 1" Plate)	44.29 - 45.29	Auto	0.3412
L19	34	Sabre MS-450 (4.5" x 1" Plate)	44.29 - 45.29	Auto	0.3412
L19	40	CCI-5x1.25	44.29 - 45.29	Auto	0.4071
L20	32	Sabre MS-450 (4.5" x 1" Plate)	39.29 - 44.29	Auto	0.3114
L20	33	Sabre MS-450 (4.5" x 1" Plate)	39.29 - 44.29	Auto	0.3114
L20	34	Sabre MS-450 (4.5" x 1" Plate)	39.29 - 44.29	Auto	0.3114
L20	40	CCI-5x1.25	39.29 - 44.29	Auto	0.3802
L21	28	Sabre MS-600 (6" x 1" Plate)	34.29 - 35.50	Auto	0.4368
L21	29	Sabre MS-600 (6" x 1" Plate)	34.29 - 35.50	Auto	0.4368
L21	30	Sabre MS-600 (6" x 1" Plate)	34.29 - 35.50	Auto	0.4368
L21	32	Sabre MS-450 (4.5" x 1" Plate)	34.29 - 39.29	Auto	0.2649
L21	33	Sabre MS-450 (4.5" x 1" Plate)	34.29 - 39.29	Auto	0.2649
L21	34	Sabre MS-450 (4.5" x 1" Plate)	34.29 - 39.29	Auto	0.2649
L21	40	CCI-5x1.25	34.29 - 39.29	Auto	0.3384
L22	28	Sabre MS-600 (6" x 1" Plate)	33.50 - 34.29	Auto	0.4269
L22	29	Sabre MS-600 (6" x 1" Plate)	33.50 - 34.29	Auto	0.4269
L22	30	Sabre MS-600 (6" x 1" Plate)	33.50 - 34.29	Auto	0.4269
L22	32	Sabre MS-450 (4.5" x 1" Plate)	33.50 - 34.29	Auto	0.2359
L22	33	Sabre MS-450 (4.5" x 1" Plate)	33.50 - 34.29	Auto	0.2359
L22	34	Sabre MS-450 (4.5" x 1" Plate)	33.50 - 34.29	Auto	0.2359
L22	40	CCI-5x1.25	33.50 - 34.29	Auto	0.3123
L23	28	Sabre MS-600 (6" x 1"		Auto	0.5154

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.	резоприон	Segment	Calculatio	Width
			Ēlev.	n Method	Ratio
-		Plate)	33.50	IVIGUIOU	
L23	29	Sabre MS-600 (6" x 1"	33.25 - 33.50	Auto	0.5154
L23	30	Plate) Sabre MS-600 (6" x 1" Plate)	33.50 33.25 - 33.50	Auto	0.5154
L23	32	Sabre MS-450 (4.5" x 1" Plate)	33.25 - 33.50	Auto	0.3538
L23	33	Sabre MS-450 (4.5" x 1" Plate)	33.25 - 33.50	Auto	0.3538
L23	34	Sabre MS-450 (4.5" x 1" Plate)	33.25 - 33.50	Auto	0.3538
L23	40	CCI-5x1.25	33.25 - 33.50	Auto	0.4184
L24	28	Sabre MS-600 (6" x 1" Plate)	33.00 - 33.25	Auto	0.5138
L24	29	Sabre MS-600 (6" x 1" Plate)	33.00 - 33.25	Auto	0.5138
L24	30	Sabre MS-600 (6" x 1 ["] Plate)	33.00 - 33.25	Auto	0.5138
L24	32	Sabre MS-450 (4.5" x 1 ["] Plate)	33.00 - 33.25	Auto	0.3517
L24	33	Sabre MS-450 (4.5" x 1" Plate)	33.00 - 33.25	Auto	0.3517
L24	34	Sabre MS-450 (4.5" x 1" Plate)	33.00 - 33.25	Auto	0.3517
L24	40	CCI-5x1.25	33.00 - 33.25	Auto	0.4166
L25	28	Sabre MS-600 (6" x 1" Plate)	32.75 - 33.00	Auto	0.5049
L25	29	Sabre MS-600 (6" x 1" Plate)	32.75 - 33.00	Auto	0.5049
L25	30	Sabre MS-600 (6" x 1" Plate)	32.75 - 33.00	Auto	0.5049
L25	32	Sabre MS-450 (4.5" x 1" Plate)	32.75 - 33.00	Auto	0.3399
L25	33	Sabre MS-450 (4.5" x 1" Plate)	32.75 - 33.00	Auto	0.3399
L25	34	Sabre MS-450 (4.5" x 1" Plate)	32.75 - 33.00	Auto	0.3399
L25	40	CCI-5x1.25	32.75 - 33.00	Auto	0.4059
L26	28	Sabre MS-600 (6" x 1" Plate)	32.00 - 32.75	Auto	0.4981
L26	29	Sabre MS-600 (6" x 1" Plate)	32.00 - 32.75	Auto	0.4981
L26	30	Sabre MS-600 (6" x 1" Plate)	32.00 - 32.75	Auto	0.4981
L26	32	Sabre MS-450 (4.5" x 1" Plate)	32.00 - 32.75	Auto	0.3308
L26	33	Sabre MS-450 (4.5" x 1" Plate)	32.00 - 32.75	Auto	0.3308
L26	34	Sabre MS-450 (4.5" x 1" Plate)	32.00 - 32.75	Auto	0.3308
L26	40	CCI-5x1.25 Sabre MS-600 (6" x 1"	32.00 - 32.75 31.75	Auto	0.3977 0.4327
L27	28 29	Sabre MS-600 (6 - x 1 Plate) Sabre MS-600 (6" x 1"	31.75 - 32.00 31.75 -	Auto Auto	0.4327
L27	30	Sabre MS-600 (6 - x 1 Plate) Sabre MS-600 (6" x 1"	31.75 - 32.00 31.75 -	Auto	0.4327
L27	30	Plate) Sabre MS-450 (4.5" x 1"	31.75 - 32.00 31.75 -	Auto	0.4327
L27	32	Plate) Sabre MS-450 (4.5" x 1"	31.75 - 32.00 31.75 -	Auto	0.2435
L27	34	Plate) Sabre MS-450 (4.5" x 1"	31.75 - 32.00 31.75 -	Auto	0.2435
L27	40	` Plate)	32.00	Auto	
I L21	·	JOI-JX1.23	01.70-	, (010	0.0102

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.	,	Segment	Calculatio	Width
			Elev.	n Method	Ratio
		0 1 110 000 (011 111	32.00		0.4440
L28	22	Sabre MS-600 (6" x 1" Plate)	28.50 - 30.50	Auto	0.4142
L28	23	Sabre MS-600 (6" x 1 ["]	28.50 -	Auto	0.4142
L28	26	Plate) 	30.50 28.50 -	Auto	0,4142
		Plate)	30.50		
L28	28	Sabre MS-600 (6" x 1" Plate)	28.50 - 31.75	Auto	0.4181
L28	29	Sabre MS-600 (6" x 1 ["]	28.50 -	Auto	0.4181
L28	30	Plate) Sabre MS-600 (6" x 1"	31.75 28.50 -	Auto	0.4181
1.00	0.0	Plate)	31.75	Λ (-	0.0004
L28	32	Sabre MS-450 (4.5" x 1" Plate)	30.50 - 31.75	Auto	0.2324
L28	33	Sabre MS-450 (4.5" x 1 [°]	30.50 -	Auto	0.2324
L28	34	Plate) Sabre MS-450 (4.5" x 1	31.75 30.50 -	Auto	0.2324
1.00	40	Plate)	31.75		0.0440
L28	40	CCI-5x1.25	31.00 - 31.75	Auto	0.3110
L29	22	Sabre MS-600 (6" x 1"	28.25 -	Auto	0.4915
L29	23	Plate) Sabre MS-600 (6" x 1	28.50 28.25 -	Auto	0.4915
1 20	26	Plate)	28.50	Auto	0.4045
L29	26	Sabre MS-600 (6" x 1" Plate)	28.25 - 28.50	Auto	0.4915
L29	28	Sabre MS-600 (6" x 1"	28.25 -	Auto	0.4915
L29	29	Plate) Sabre MS-600 (6" x 1	28.50 28.25 -	Auto	0.4915
L29	30	Plate)	28.50	Auto	0.4045
LZ9	30	Sabre MS-600 (6" x 1" Plate)	28.25 - 28.50	Auto	0.4915
L30	22	Sabre MS-600 (6" x 1" Plate)	27.50 -	Auto	0.4847
L30	23	Sabre MS-600 (6" x 1"	28.25 27.50 -	Auto	0.4847
L30	26	Plate) Sabre MS-600 (6" x 1	28.25 27.50 -	Auto	0,4847
		Plate)	28.25	Auto	0.4047
L30	28	Sabre MS-600 (6" x 1" Plate)	27.50 - 28.25	Auto	0.4847
L30	29	Sabre MS-600 (6" x 1"	27.50 -	Auto	0.4847
L30	30	Plate) Sabre MS-600 (6" x 1"	28.25 27.50 -	Auto	0.4847
		Plate)	28.25		
L31	22	Sabre MS-600 (6" x 1" Plate)	27.25 - 27.50	Auto	0.4009
L31	23	Sabre MS-600 (6" x 1 [°]	27.25 -	Auto	0.4009
L31	26	Plate) 	27.50 27.25 -	Auto	0,4009
		Plate)	27.50		0.4000
L31	28	Sabre MS-600 (6" x 1" Plate)	27.25 - 27.50	Auto	0.4009
L31	29	Sabre MS-600 (6" x 1"	27.25 -	Auto	0.4009
L31	30	Plate) Sabre MS-600 (6" x 1	27.50 27.25 -	Auto	0.4009
L32	22	Plate) Sabre MS-600 (6" x 1"	27.50 22.25 -	Auto	0.3808
		Plate)	27.25		
L32	23	Sabre MS-600 (6" x 1" Plate)	22.25 - 27.25	Auto	0.3808
L32	26	Sabre MS-600 (6" x 1 [°]	22.25 -	Auto	0.3808
L32	28	Plate) 	27.25 25.50 -	Auto	0.3910
		Plate)	27.25		
L32	29	Sabre MS-600 (6" x 1" Plate)	25.50 - 27.25	Auto	0.3910
L32	30	Sabre MS-600 (6" x 1"	25.50 -	Auto	0.3910

Below Plate Color Retion Reti	Tower Section	Attachment Record No.	Description	Attachment Segment	Ratio Calculatio	Effective Width
L33				_	n	
L33			Diato)	27.25	Method	
L33	L33	22	Sabre MS-600 (6" x 1"	18.00 -	Auto	0.3483
L33	L33	23	Sabre MS-600 (6" x 1 ["]	18.00 -	Auto	0.3483
L34	L33	26	Sabre MS-600 (6" x 1 [°]	18.00 -	Auto	0.3483
Name				20.00	Auto	
Plate 18.00			Plate)	18.00	Auto	
Plate 18.00 17.75 Auto 0.2055 18.00 17.75 18.00 15.45 Auto 0.2896 17.75 18.00 15.45 Auto 0.2896 17.75 18.00 15.45 Auto 0.2896 17.75 17.7			Plate)	18.00		
L35			Plate)	18.00		
Plate 17.75				18.00		
Plate 17.75			Plate)	17.75		
Plate 17.45 15.45 Auto 0.2896			`Plate)	17.75		
Plate 17.75			Plate)	17.45		
L36			`Plate)	17.75		-
Rote 15.45				17.75		
Plate 15.45			Plate)	15.45		
L36			`Plate)	15.45		
L36	L36	26			Auto	0.3587
L37	L36	38		15.20 -	Auto	0.2304
L37	L37	22	`	13.41-	Auto	0.3486
L37	L37	23	Sabre MS-600 (6" x 1"	13.41-	Auto	0.3486
L37	L37	25	Sabre MS-600 (6" x 1"	13.41-	Auto	0.3486
L37 38 CCI-5x1.25 13.41 Auto 0.2184 L38 22 Sabre MS-600 (6" x 1" 13.16 Auto 0.3093 L38 23 Sabre MS-600 (6" x 1" 13.16 Auto 0.3093 L38 25 Sabre MS-600 (6" x 1" 13.16 Auto 0.3093 L38 25 Sabre MS-600 (6" x 1" 13.16 Auto 0.3093 Plate) 13.41 L38 26 Sabre MS-600 (6" x 1" 13.16 Auto 0.3093 Plate) 13.41 L38 38 CCI-5x1.25 13.16 Auto 0.3093 Plate) 13.41 L39 22 Sabre MS-600 (6" x 1" 13.41 L39 22 Sabre MS-600 (6" x 1" 13.41 L39 22 Sabre MS-600 (6" x 1" 13.41 L39 23 Sabre MS-600 (6" x 1" 13.41 L39 24 Sabre MS-600 (6" x 1" 8.16 - 13.16 Auto 0.2892 Plate) Sabre MS-600 (6" x 1" 8.16 - 13.16 Auto 0.2892 L39 24 Sabre MS-600 (6" x 1" 8.16 - 8.50 Auto 0.2747 Plate)	L37	26	Sabre MS-600 (6" x 1"	13.41-	Auto	0.3486
L38	L37	38		13.41-	Auto	0.2184
L38 23 Sabre MS-600 (6" x 1" 13.16 - Auto 0.3093 L38 25 Sabre MS-600 (6" x 1" 13.16 - Auto 0.3093 Plate) 13.41 L38 26 Sabre MS-600 (6" x 1" 13.16 - Auto 0.3093 Plate) 13.41 L38 38 CCI-5x1.25 13.16 - Auto 0.3093 CCI-5x1.25 13.16 - Auto 0.1711 L39 22 Sabre MS-600 (6" x 1" 13.41 L39 22 Sabre MS-600 (6" x 1" 13.41 L39 23 Sabre MS-600 (6" x 1" 13.41 Plate) L39 24 Sabre MS-600 (6" x 1" 8.16 - 13.16 Plate) L39 24 Sabre MS-600 (6" x 1" 8.16 - 13.16 Plate) L39 24 Sabre MS-600 (6" x 1" 8.16 - 8.50 Plate) L39 24 Sabre MS-600 (6" x 1" 8.16 - 8.50 Plate) L39 24 Sabre MS-600 (6" x 1" 8.16 - 8.50 Plate) L39 24 Sabre MS-600 (6" x 1" 8.16 - 8.50 Plate) L39 24 Sabre MS-600 (6" x 1" 8.16 - 8.50 Plate) L39 24 Sabre MS-600 (6" x 1" 8.16 - 8.50 Plate) L39 24 Sabre MS-600 (6" x 1" 8.16 - 8.50 Plate) L39 25 Sabre MS-600 (6" x 1" 8.16 - 8.50 Plate) L39 26 Sabre MS-600 (6" x 1" 8.16 - 8.50 Plate) L39 27 Sabre MS-600 (6" x 1" 8.16 - 8.50 Plate) L39 28 Sabre MS-600 (6" x 1" 8.16 - 8.50 Plate) L39 29 Sabre MS-600 (6" x 1" 8.16 - 8.50 Plate) L39 20 Sabre MS-600 (6" x 1" 8.16 - 8.50 Plate) L39 21 Sabre MS-600 (6" x 1" 8.16 - 8.50 Plate) L39 22 Sabre MS-600 (6" x 1" 8.16 - 8.50 Plate) L39 24 Sabre MS-600 (6" x 1" 8.16 - 8.50 Plate) L39 25 Sabre MS-600 (6" x 1" 8.16 - 8.50 Plate) L39 26 Sabre MS-600 (6" x 1" 8.16 - 8.50 Plate) L39 27 Sabre MS-600 (6" x 1" 8.16 - 8.50 Plate) L39 28 Sabre MS-600 (6" x 1" 8.16 - 8.50 Plate) L39 29 Sabre MS-600 (6" x 1" 8.16 - 8.50 Plate) L39 29 Sabre MS-600 (6" x 1" 8.16 - 8.50 Plate) L39 20 Sabre MS-600 (6" x 1" 8.16 - 8.50 Plate) L39 20 Sabre MS-600 (6" x 1" 8.16 - 8.50 Plate) L39 21 Sabre MS-600 (6" x 1" 8.16 - 8.50 Plate) L30 21 Sabre MS-600 (6" x 1" 8.16 - 8.50 Plate) L30 21 Sabre MS-600 (6" x 1" 8.16 - 8.50 Plate) L30 21 Sabre MS-600 (8" x 1" 8.16 - 8.50 Plate) L30 21 Sabre MS-600 (8" x 1" 8.16 - 8.50 Plate) L30 21 Sabre MS-600 (8" x 1" 8.16 - 8.50 Plate) L30	L38	22		13.16 -	Auto	0.3093
L38	L38	23	Sabre MS-600 (6" x 1"	13.16 -	Auto	0.3093
L38 38 CCI-5x1.25 13.41 Auto 0.1711			Sabre MS-600 (6" x 1 [°] Plate)	13.16 -	Auto	0.3093
L39 22 Sabre MS-600 (6" x 1" 8.16 - 13.16 Auto 0.2892 L39 23 Sabre MS-600 (6" x 1" 8.16 - 13.16 Auto 0.2892 Plate) L39 24 Sabre MS-600 (6" x 1" 8.16 - 8.50 Auto 0.2747 Plate)			`Plate)	13.41		
L39 23 Sabre MS-600 (6" x 1" 8.16 - 13.16 Auto 0.2892 Plate) L39 24 Sabre MS-600 (6" x 1" 8.16 - 8.50 Auto 0.2747 Plate)				13.41		
L39 24 Sabre MS-600 (6" x 1" 8.16 - 8.50 Auto 0.2747 Plate)			Plate)			
Plate)			Plate)			
LJJ ZJ JADIE WJ-000 (0 X I 0.10 - 13.101 AUI01 0.2092			Plate)			
Plate) L39 26 Sabre MS-600 (6" x 1" 11.41 - Auto 0.2994			Plate)			
Plate) 13.16			Plate)	13.16		

	Attachment	Description	Attachment	Ratio	Effective
Tower Section	Record No.	Description	Segment	Calculatio	Width
0000,077	7.000747107		Elev.	n	Ratio
			2.00.	 Method	7.01.70
L40	22	Sabre MS-600 (6" x 1"	6.50 - 8.16	Auto	0.2684
		`Plate)			
L40	23	Sabre MS-600 (6" x 1"	6.50 - 8.16	Auto	0.2684
		Plate)			
L40	24	Sabre MS-600 (6" x 1"	6.50 - 8.16	Auto	0.2684
		Plate)	0.50.0.40		0 0004
L40	25	Sabre MS-600 (6" x 1" Plate)	6.50 - 8.16	Auto	0.2684
L40	38	CCI-5x1.25	6.50 - 8.16	Auto	0.1221
L40	22	Sabre MS-600 (6" x 1"	6.25 - 6.50	Auto	0.1221
'	22	Plate)	0.25 0.50	Auto	0.2333
l L41	23	Sabre MS-600 (6" x 1"	6.25 - 6.50	Auto	0.2955
		Plate)			
L41	24	Sabre MS-600 (6" x 1"	6.25 - 6.50	Auto	0.2955
		Plate)			
L41	25	Sabre MS-600 (6" x 1"	6.25 - 6.50	Auto	0.2955
		Plate)			
L41	38	CCI-5x1.25	6.25 - 6.50	Auto	0.1546
L42	22	Sabre MS-600 (6" x 1"	4.45-6.25	Auto	0.2854
	20	Plate)	4.45.005	0	0.0054
L42	23	Sabre MS-600 (6" x 1" Plate)	4.45-6.25	Auto	0.2854
L42	24	Sabre MS-600 (6" x 1"	4.45-6.25	Auto	0.2854
- '-	- '	Plate)	1.10 0.20	, (410	0.2001
L42	25	Sabre MS-600 (6" x 1"	4.45 - 6.25	Auto	0.2854
		`Plate)			
L42	38	CCI-5x1.25	4.45 - 6.25	Auto	0.1425
L43	22	Sabre MS-600 (6" x 1"	4.20 - 4.45	Auto	0.2387
		Plate)	4.00 4.45		0.0007
L43	23	Sabre MS-600 (6" x 1"	4.20 - 4.45	Auto	0.2387
L43	24	Plate) Sabre MS-600 (6" x 1	4.20 - 4.45	Auto	0.2387
	2-1	Plate)	7.20 7.70	71410	0.2007
L43	25	Sabre MS-600 (6" x 1"	4.20 - 4.45	Auto	0.2387
		`Plate)			
L43	38	CCI-5x1.25	4.20 - 4.45	Auto	0.0864
L44	22	Sabre MS-600 (6" x 1"	0.00-4.20	Auto	0.2211
		Plate)			
L44	23	Sabre MS-600 (6" x 1"	0.00-4.20	Auto	0.2211
ا ا		Plate)	0.50 4.00		0 000-
L44	24	Sabre MS-600 (6" x 1" Plate)	0.50-4.20	Auto	0.2227
L44	25	Sabre MS-600 (6" x 1"	2.45-4.20	Auto	0.2288
"44	20	Plate)	2.43-4.20	Auto	0.2200
L44	38	CCI-5x1.25	0.00-4.20	Auto	0.0653

	Discrete Tower Loads						
Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		
			Vert ft ft ft	٥	ft		
APXVTM14-ALU-I20 w/ Mount Pipe	А	From Leg	4.000 0.000 2.000	0.000	96.000		
APXVTM14-ALU-I20 w/ Mount Pipe	В	From Leg	4.000 0.000 2.000	0.000	96.000		

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placemer
	3		Vert	۰	£4
			ft ft	-	ft
APXVTM14-ALU-I20 w/ Mount Pipe	С	From Leg		0.000	96.000
, a , a , a , a , a , a , a , a , a , a	J		0.000	0,000	00,000
NNVV-65B-R4 w/ Mount Pipe	Α	From Leg	2.000 4.000	0.000	96.000
NINV V-03B-R4 W/ Mount Fipe	^	r ioiii Leg	0.000	0.000	90.000
	_		2.000		
NNVV-65B-R4 w/ Mount Pipe	В	From Leg	4.000 0.000	0.000	96.000
			2.000		
NNVV-65B-R4 w/ Mount Pipe	С	From Leg	4.000	0.000	96.000
			0.000 2.000		
(2) RRH2X50-800	Α	From Leg	4.000	0.000	96.000
			0.000		
(2) RRH2X50-800	В	From Leg	2.000 4.000	0.000	96.000
(2) 111112700 000	5	1 Iom Log	0.000	0.000	00.000
(2) PDU2YE0 000	_	Frank Law	2.000	0.000	00.000
(2) RRH2X50-800	С	From Leg	4.000 0.000	0.000	96.000
			2.000		
PCS 1900MHz 4x45W-65MHz	Α	From Leg	4.000	0.000	96.000
			0.000 2.000		
PCS 1900MHz 4x45W-65MHz	В	From Leg	4.000	0.000	96.000
			0.000 2.000		
PCS 1900MHz 4x45W-65MHz	С	From Leg	4.000	0.000	96.000
	· ·		0.000	0.000	00.000
FZHN	Α	From Log	2.000	0.000	96.000
ΓΖΠΝ	A	From Leg	4.000 0.000	0.000	96.000
			2.000		
FZHN	В	From Leg	4.000 0.000	0.000	96.000
			2.000		
FZHN	С	From Leg	4.000	0.000	96.000
			0.000 2.000		
6' x 2" Mount Pipe	Α	From Leg	4.000	0.000	96.000
		-	0.000		
6' x 2" Mount Pipe	В	From Leg	0.000 4.000	0.000	96.000
o X2 Modili ipo		110111209	0.000	0.000	00.000
Clay Oll Mount Ding	0	Francia a	0.000	0.000	00.000
6' x 2" Mount Pipe	С	From Leg	4.000 0.000	0.000	96.000
			0.000		
4'x2" Horizontal Mount Pipe	Α	From Leg	2.000 0.000	0.000	96.000
			4.000		
4'x2" Horizontal Mount Pipe	В	From Leg	2.000	0.000	96.000
			0.000 4.000		
4'x2" Horizontal Mount Pipe	С	From Leg	2.000	0.000	96.000
			0.000		
Miscellaneous [NA 510-1]	С	None	4.000	0.000	96.000
Platform Mount [LP 714-1]	č	None		0.000	96.000
_ PXVAARR24_43-U-NA20 w/ Mount Pipe	Α	From Leg	4.000	0.000	89.000
AVAANNAZ4_45-0-NAZU W/ NOUNT FIPE	^	i ioiii Leg	0.000	0.000	09.000
			1.000		
PXVAARR24_43-U-NA20 w/ Mount Pipe	В	From Leg	4.000	0.000	89.000

Description	Face or	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement
	Leg		Vert ft ft	٥	ft
			ft		
APXVAARR24_43-U-NA20 w/ Mount Pipe	С	From Leg	1.000 4.000 0.000	0.000	89.000
RADIO 4449 B12/B71	Α	From Leg	1.000 4.000 0.000	0.000	89.000
RADIO 4449 B12/B71	В	From Leg	1.000 4.000 0.000	0.000	89.000
RADIO 4449 B12/B71	С	From Leg	1.000 4.000 0.000	0.000	89.000
APXV18-209014-C w/ Mount Pipe	Α	From Leg	1.000 4.000 0.000	0.000	89.000
APXV18-209014-C w/ Mount Pipe	В	From Leg	1.000 4.000 0.000	0.000	89.000
APXV18-209014-C w/ Mount Pipe	С	From Leg	1.000 4.000 0.000	0.000	89.000
ATMPP1412D-1CWA	Α	From Leg	1.000 4.000 0.000	0.000	89.000
ATMPP1412D-1CWA	В	From Leg	1.000 4.000 0.000	0.000	89.000
ATMPP1412D-1CWA	С	From Leg	1.000 4.000 0.000	0.000	89.000
6' x 2" Mount Pipe	Α	From Leg	1.000 4.000 0.000	0.000	89.000
6' x 2" Mount Pipe	В	From Leg	0.000 4.000 0.000	0.000	89.000
6' x 2" Mount Pipe	С	From Leg	0.000 4.000 0.000	0.000	89.000
Platform Mount [LP 305-1]	С	None	0.000	0.000	89.000
_* TPA-65R-LCUUUU-H8 w/ Mount Pipe	Α	From Leg	4.000 0.000	0.000	74.000
TPA-65R-LCUUUU-H8 w/ Mount Pipe	В	From Leg	3.000 4.000 0.000	0.000	74.000
TPA-65R-LCUUUU-H8 w/ Mount Pipe	С	From Leg	3.000 4.000 0.000	0.000	74.000
P65-17-XLH-RR w/ Mount Pipe	Α	From Leg	3.000 4.000 0.000	0.000	74.000
SBNH-1D6565C w/ Mount Pipe	В	From Leg	3.000 4.000 0.000	0.000	74.000
P65-17-XLH-RR w/ Mount Pipe	С	From Leg	3.000 4.000 0.000	0.000	74.000
7770.00 w/ Mount Pipe	Α	From Leg	3.000 4.000 0.000	0.000	74.000
7770.00 w/ Mount Pipe	В	From Leg	3.000 4.000 0.000	0.000	74.000

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement
	Leg		Lateral		
			Vert ft	۰	ft
			ft		,,
			ft		
7770.00 w/ Mount Pipe	С	From Leg	3.000 4.000	0.000	74.000
7770.00 W/ Mount1 ipe	O	r ioiii Leg	0.000	0.000	74.000
			3.000		
TT19-08BP111-001	Α	From Leg	4.000	0.000	74.000
			0.000 3.000		
TT19-08BP111-001	В	From Leg	4.000	0.000	74.000
			0.000		
TT19-08BP111-001	С	From Leg	3.000 4.000	0.000	74.000
1119-0001 111-001	C	r ioiii Leg	0.000	0.000	74.000
			3.000		
RRUS 32 B30	Α	From Leg	4.000	0.000	74.000
			0.000 3.000		
RRUS 32 B30	В	From Leg	4.000	0.000	74.000
			0.000		
RRUS 32 B30	С	From Leg	3.000 4.000	0.000	74.000
NNOS 32 B30	C	Fioliticeg	0.000	0.000	74.000
			3.000		
DBC0061F1V51-2	Α	From Leg	4.000	0.000	74.000
			0.000 3.000		
DBC0061F1V51-2	В	From Leg	4.000	0.000	74.000
		-	0.000		
DBC0061F1V51-2	С	From Leg	3.000 4.000	0.000	74.000
DDC00011 1 V 3 1-2	O	r ioni Leg	0,000	0.000	74.000
			3.000		
RRUS 32 B2	Α	From Leg	4.000 0.000	0.000	74.000
			3.000		
RRUS 32 B2	В	From Leg	4.000	0.000	74.000
			0.000		
RRUS 32 B2	С	From Leg	3.000 4.000	0.000	74.000
14100 02 D2	J	1 Ioni Log	0.000	0.000	14.000
	_		3.000		
DC6-48-60-18-8F	Α	From Leg	4.000 0.000	0.000	74.000
			3.000		
DC6-48-60-18-8F	В	From Leg	2.000	0.000	74.000
			0.000		
3' x 2" Pipe Mount	В	From Leg	3.000 1.000	0.000	74.000
			0.000		
Plotform Mount II D 202 4 LID 43	0	None	0.000	0.000	74.000
Platform Mount [LP 303-1_HR-1] **_**	С	None		0.000	74.000
6' x 2" Mount Pipe	Α	From Leg	4.000	0.000	67.000
			0.000		
6' x 2" Mount Pipe	В	From Leg	0.000 4.000	0.000	67.000
o ne mount ipo	_		0.000	3.330	3.1000
01 0111	-		0.000	0.000	
6' x 2" Mount Pipe	С	From Leg	4.000 0.000	0.000	67.000
			0.000		
(2) SBNHH-1D65B w/ Mount Pipe	Α	From Leg	4.000	0.000	67.000
			0.000		
(2) SBNHH-1D65B w/ Mount Pipe	В	From Leg	0.000 4.000	0.000	67.000
,_, == 12002 W WOUNT IPC	_	J J	0.000	0.000	3.1300

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placeme
	Leg		Lateral Vert		
			tt	۰	ft
			ft ft		
			0.000		
(2) SBNHH-1D65B w/ Mount Pipe	С	From Leg	4.000 0.000	0.000	67.000
			0.000		
(2) LPA-80063/6CFX2 w/ Mount Pipe	Α	From Leg	4.000	0.000	67.000
			0.000 0.000		
(2) LPA-80063/6CFX2 w/ Mount Pipe	В	From Leg	4.000	0.000	67.000
		•	0.000		
(2) LPA-80063/6CFX2 w/ Mount Pipe	С	From Leg	0.000 4.000	0.000	67.000
(2) El A-00003/001 X2 W/ Woultt1 ipc	Ü	1 Iom Log	0.000	0.000	07.000
			0.000		
B13 RRH 4X30	Α	From Leg	4.000 0.000	0.000	67.000
			0.000		
B13 RRH 4X30	В	From Leg	4.000	0.000	67.000
			0.000 0.000		
B13 RRH 4X30	С	From Leg	4.000	0.000	67.000
		•	0.000		
B66A RRH4X45	Α	From Leg	0.000 4.000	0.000	67.000
BOOKINHATO	~	1 Iom Log	0.000	0.000	07.000
	_		0.000		
B66A RRH4X45	В	From Leg	4.000 0.000	0.000	67.000
			0.000		
B66A RRH4X45	С	From Leg	4.000	0.000	67.000
			0.000 0.000		
RC2DC-3315-PF-48	Α	From Leg	4.000	0.000	67.000
		_	0.000		
RC2DC-3315-PF-48	В	From Leg	0.000 4.000	0.000	67.000
	_		0.000	0,000	0.100
Platform Mount [LP 303-1_KCKR]	С	None	0.000	0.000	67.000
_		None		0.000	07.00
KS24019-L112A	С	From Leg	3.000	0.000	52.000
			0.000 2.000		
Side Arm Mount [SO 701-1]	С	From Leg	1.500	0.000	52.000
			0.000		
_			0.000		
Commscope MC-PK8-DSH	С	None		0.000	48.000
(2) 8'x2" Mount Pipe	Α	From Leg	3.000 0.000	0.000	48.000
			0.000		
(2) 8'x2" Mount Pipe	В	From Leg	3.000	0.000	48.000
			0.000 0.000		
(2) 8'x2" Mount Pipe	С	From Leg	3.000	0.000	48.000
•		Ü	0.000		
MX08FRO665-21 w/ Mount Pipe	Α	From Leg	0.000 4.000	0.000	48.000
Wixtool 100003-21 w Mount ripe	^	i ioiii Leg	0.000	0.000	+0.000
	_		0.000		
MX08FRO665-21 w/ Mount Pipe	В	From Leg	4.000 0.000	0.000	48.000
WX001 X0003-21 W/ Woullt Fipe			0.000		
WX0011C0003-21 W Woulttripe			0.000		
MX08FRO665-21 w/ Mount Pipe	С	From Leg		0.000	48.000

Description	Face	Offset	Offsets:	Azimuth	Placement
	or	Туре	Horz	Adjustment	
	Leg		Lateral		
			Vert		
			ft	۰	ft
			ft		
			ft		
TA08025-B604	Α	From Leg	4.000	0.000	48.000
			0.000		
			0.000		
TA08025-B604	В	From Leg	4.000	0.000	48.000
			0.000		
			0.000		
TA08025-B604	С	From Leg	4.000	0.000	48.000
			0.000		
			0.000		
TA08025-B605	Α	From Leg	4.000	0.000	48.000
			0.000		
			0.000		
TA08025-B605	В	From Leg	4.000	0.000	48.000
			0.000		
			0.000		
TA08025-B605	С	From Leg	4.000	0.000	48.000
			0.000		
			0.000		
RDIDC-9181-PF-48	Α	From Leg	4.000	0.000	48.000
			0.000		
			0.000		

Load Combinations

Comb.	Description
No.	Sosiption
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg-No Ice
5	0.9 Dead+1.0 Wind 30 deg-No Ice
6	1.2 Dead+1.0 Wind 60 deg-No Ice
7	0.9 Dead+1.0 Wind 60 deg-No Ice
8	1.2 Dead+1.0 Wind 90 deg-No Ice
9	0.9 Dead+1.0 Wind 90 deg-No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16 17	1.2 Dead+1.0 Wind 210 deg - No Ice
	0.9 Dead+1.0 Wind 210 deg - No Ice
18 19	1.2 Dead+1.0 Wind 240 deg - No Ice 0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1,2 Dead+1,0 Wind 30 deg+1,0 Ice+1,0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1,2 Dead+1,0 Wind 90 deg+1,0 Ice+1,0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp

Comb. No.	Description
33	1,2 Dead+1,0 Wind 180 deg+1,0 Ice+1,0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg-Service
44	Dead+Wind 150 deg-Service
45	Dead+Wind 180 deg-Service
46	Dead+Wind 210 deg-Service
47	Dead+Wind 240 deg-Service
48	Dead+Wind 270 deg-Service
49	Dead+Wind 300 deg-Service
50	Dead+Wind 330 deg-Service

Maximum Member Forces

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n No.	ft	Type		Load Comb.	K	Moment kip-ft	Moment kip-ft
L1	98 - 93	Pole	Max Tension	2	0.000	0.000	-0.000
			Max. Compression	26	-7.925	-0.007	-0.005
			Max. Mx	20	-3.531	15.576	0.001
			Max. My	2	-3.526	-0.002	15.589
			Max. Vy	20	-4.089	15.576	0.001
			Max. Vx	2	-4.094	-0.002	15.589
			Max. Torque	22			0.001
L2	93 - 88	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-13.945	-0.020	-0.006
			Max. Mx	20	-6.019	40.648	0.004
			Max. My	2	-6.010	-0.004	40.686
			Max. Vý	20	-6.944	40.648	0.004
			Max. Vx	2	-6.952	-0.004	40.686
			Max. Torque	22			0.001
L3	88 - 82.79	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-14.161	-0.031	-0.004
			Max. Mx	20	-6.156	60.169	0.006
			Max. My	2	-6.147	-0.006	60.229
			Max. Vy	20	-7.043	60.169	0.006
			Max. Vx	2	-7.051	-0.006	60.229
			Max. Torque	22			0.001
L4	82.79 - 80.207	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-14.771	-0.052	-0.001
			Max. Mx	20	-6.552	95.878	0.009
			Max. My	2	-6.543	-0.010	95.978
			Max. Vy	20	-7,242	95.878	0.009
			Max. Vx	2	-7.250	-0.010	95.978
			Max. Torque	24			0.001
L5	80.207 - 75.207	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-15.249	-0.073	0.002
			Max, Mx	20	-6.899	132.505	0.013
			Max. My	2	-6.889	-0.014	132.648
			Max. Vv	20	-7.421	132,505	0.013
			Max. Vx	2	-7.430	-0.014	132.648
			Max. Torque	24			0.001
L6	75.207 - 70.207	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-23.297	-0.368	0.296
			Max. Mx	8	-10.356	-191.556	0.203
			Max. My	2	-10.339	-0.148	191 964
			Max. Vy	20	-11.209	191.522	-0.004
			111674 7				0.00

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
<u>No.</u>				Comb.	K	kip-ft	kip-ft
			Max. Vx	2	-11.240	-0.148	191.964
L7	70.207 -	Pole	Max. Torque Max Tension	21 1	0.000	0.000	-0.174 0.000
	65.207		Max. Compression	26	-32.352	-1.013	0.659
			Max. Mx	8	-13.806	-1.013 -256.146	0.340
			Max. My	2	-13.782	-0.347	256.681
			Max. Vy	20	-15.845	255.769	0.043
			Max. Vx	2	-15.900	-0.347	256.681
			Max. Torque	11	10.000	0.011	0.476
L8	65.207 - 60.207	Pole	Max Tension	1	0.000	0.000	0.000
	00.207		Max. Compression	26	-33.169	-1.203	0.758
			Max. Mx	8	-14.454	-335.625	0.363
			Max. My	2	-14.413	-0.385	337.008
			Max. Vy	20	-15.958	335.158	0.087
			Max. Vx	2	-16.251	-0.385	337.008
			Max. Torque	13			0.547
L9	60.207 - 59.17	Pole	Max Tension	1	0.000	0.000	0.000
	00111		Max. Compression	26	-33.366	-1.242	0.778
			Max. Mx	8	-14.592	-352,176	0.367
			Max. My	2	-14.551	-0.395	353.868
			Max. Vy	20	-15.980	351.690	0.096
			Max. Vx	2	-16.287	-0.395	353,868
			Max. Torque	13			0.556
L10	59.17 -58.9	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-33.432	-1.253	0.784
			Max. Mx	8	-14.655	-356.489	0.369
			Max. My	2	-14.613	-0.397	358.264
			Max. Vy	20	-15.977	355.998	0.098
			Max. Vx	2	-16.287	-0.397	358.264
			Max. Torque	13			0.558
L11	58.9 - 58.75	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-33.469	-1.260	0.788
			Max. Mx	8	-14.682	-358.887	0.370
			Max. My	2	-14.640	-0.399	360.708
			Max. Vy	20	-15.984	358.394	0.100
			Max. Vx	2	-16.297	-0.399	360.708
L12	58.75 - 54	Pole	Max. Torque Max Tension	13 1	0.000	0.000	0.560 0.000
LIZ	30.73-34	rule	Max. Compression	26	-34.661	-1.456	0.887
			Max. Mx	8	-34.001	-1.436 -435.268	0.391
			Max. My	2	-15.453	-0.441	438.702
			Max. Vy	20	-16.176	434.686	0.142
			Max. Vx	2	-16.548	-0.441	438.702
			Max. Torque	13	101010	01111	0.612
L13	54 - 53.75	Pole	Max Tension	1	0.000	0.000	0.000
		, 5.5	Max. Compression	26	-34.735	1 469	0.892
			Max. Mx	8	-15.557	-439.313	0.393
			Max. My	2	-15.514	0 444	442.840
			Max. Vý	20	-16.186	438.727	0.145
			Max. Vx	2	-16.554	-0.444	442.840
			Max. Torque	13			0.616
L14	53.75 - 52.91	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-34.981	-1.511	0.905
			Max, Mx	8	-15.721	-452.920	0.396
			Max. My	2	-15.678	-0.451	456.765
			Max. Vy	20	-16.251	452.336	0.152
			Max. Vx	2	-16.602	-0.451	456.765
			Max. Torque	13			0.628
L15	52.91 - 52.66	Pole	Max Tension	1	0.000	0.000	0.000
	02.00		Max. Compression	26	-35.059	-1.525	0.910
			Max. Mx	8	-15.782	-456.976	0.398
			Max. My	2	-15.738	-0.454	460.917
			Max. Vy	20	-16.265	456.396	0.155
			Max. Vx	2	-16.616	-0.454	460.917

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
770.			Max. Torque	13		κιρ π	0.632
L16	52.66 - 52.17	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-35.212	-1.549	0.918
			Max. Mx	8	-15.887	-464.933	0.400
			Max. My	2	-15.842	-0.458	469.070
			Max. Vy	20	-16.305	464.369	0.159
			Max. Vx	2	-16.655	-0.458	469.070
L17	52.17 - 51.92	Pole	Max. Torque Max Tension	13 1	0.000	0.000	0.639 0.000
	31.92		Max. Compression Max. Mx	26 8	-35.411 -16.020	-1.289 -468.826	0.765 0.300
			Max. My	2	-15.975	-0.286	473.143
			Max. Vy	20	-16.370	468.636	0.062
			Max. Vx	2	-16.730	-0.286	473.143
			Max. Torque	13		0.200	0.639
L18	51.92 - 45.287	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-36.354	-1.449	0.825
			Max. Mx	8	-16.671	-521.475	0.274
			Max. My	2	-16.625	-0.275	527.214
			Max. Vy	20	-16.503	521.436	0.134
			Max. Vx	2	-16.899	-0.275	527.214
			Max. Torque	12			0.531
L19	45.287 - 44.287	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-44.001	-1.671	1.336
			Max. Mx	20	-21.240	604.333	0.354
			Max. My	2	-21.195	-0.260	612.297
			Max. Vy	20	-19.307	604.333	0.354
			Max. Vx	2	-19.786	-0.260	612.297
L20	44.287 - 39.287	Pole	Max. Torque Max Tension	12 1	0.000	0.000	0.688 0.000
	00.201		Max. Compression	26	-45.544	-1.914	1.465
			Max. Mx	20	-22.398	701.150	0.467
			Max. My	2	-22.355	-0.245	711.720
			Max. Vy	20	-19.470	701.150	0.467
			Max. Vx	2	-19.999	-0.245	711 720
			Max. Torque	12			0.761
L21	39.287 - 34.287	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	47.146	-2.160	1.595
			Max. Mx	20	-23.583	798.741	0.581
			Max. My	2	-23.544	-0.231	812.175
			Max. Vy	20	-19.620	798.741	0.581
			Max. Vx	2	-20.201	-0.231	812.175
L22	34.287 - 33.5	Pole	Max. Torque Max Tension	12 1	0.000	0.000	0.824 0.000
	00.0		Max. Compression	26	-47.418	-2.199	1.615
			Max. Mx	20	-23.775	814.179	0.599
			Max. My	2	-23.737	-0.229	828.080
			Max. Vy	20	-19.666	814.179	0.599
			Max. Vx	2	-20.231	-0.229	828.080
			Max. Torque	12			0.832
L23	33.5 - 33.25	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-47.523	-2.213	1.623
			Max. Mx	20	-23.860	819.092	0.605
			Max. My	2	-23.822	-0.229	833.139
			Max. Vy	20	-19.677	819.092	0.605
			Max. Vx	2	-20.242	-0.229	833.139
			Max Torque	12			0.834
L24	33.25 - 33	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-47.627	-2.225	1.629
			Max. Mx	20	-23.936	824.010	0.611
			Max. My	2	-23.899 10.607	-0.228	838.202
			Max. Vy	20	-19.697	824.010	0.611

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	K	kip-ft	kip-ft
			Max. Vx	2	-20.261	-0.228	838.202
			Max. Torque	12			0.836
L25	33 - 32.75	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-47.726	-2.237	1.636
			Max. Mx	20	-24.006	828.932	0.616
			Max. My Max. Vy	2 20	-23.969 -19.716	-0.228 828.932	843.270 0.616
			Max. Vx	20	-19.710	-0.228	843.270
			Max. Torque	12	-20.213	-0.220	0.839
L26	32.75 - 32	Pole	Max Tension	1	0.000	0.000	0.000
	021.0 02	, 0.0	Max Compression	26	-48.022	2.273	1.655
			Max. Mx	20	-24.213	843.728	0.633
			Max. My	2	-24.176	-0.226	858.502
			Max. Vy	20	-19.776	843.728	0.633
			Max. Vx	2	-20.338	-0.226	858.502
	00 04 75	5 .	Max Torque	12	0.000	0.000	0.845
L27	32 - 31.75	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-48.107	-2.287	1.662
			Max. Mx Max. My	20	-24.275	848.669	0.639
			Max. Vy	2 20	-24.239 -19.789	-0.225 848.669	863.588 0.639
			Max. Vx	2	-20.346	-0.225	863.588
			Max. Torque	12	20.540	0.223	0.848
L28	31.75 - 28.5	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-49.201	2.428	1.734
			Max. Mx	20	-25.026	913.255	0.714
			Max. My	2	-24.993	-0.218	930.047
			Max. Vy	20	-20.004	913.255	0.714
			Max. Vx	2	-20.560	-0.218	930.047
1.00	00.5.00.05	D-I-	Max. Torque	12	0.000	0.000	0.867
L29	28.5 - 28.25	Pole	Max Tension Max. Compression	1 26	0.000 -49.304	0.000 -2.440	0.000 1.741
			Max. Mx	20	-49.304 -25.113	918.252	0.719
			Max. My	2	-25.081	-0.218	935 187
			Max. Vy	20	-20.010	918.252	0.719
			Max. Vx	2	-20.566	-0.218	935.187
			Max. Torque	12			0.866
L30	28.25 - 27.5	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	- 49.613	-2.467	1.754
			Max. Mx Max. My	20 2	-25.336 -25.304	933.267 -0.216	0.737 950.635
			Max. Vy	20	-20.070	933.267	0.737
			Max. Vx	2	-20.627	-0.216	950.635
			Max. Torque	12			0.866
L31	27.5 - 27.25	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-49.698	-2.477	1.759
			Max. Mx	20	-25.399	938.282	0.742
			Max. My	2	-25.367	-0.216	955.793
			Max. Vy	20	-20.083	938.282	0.742
			Max. Vx Max. Torque	2 12	-20.639	-0.216	955.793 0.866
L32	27.25 -	Pole	Max Tension	1	0.000	0.000	0.000
LUZ	22.25	1 010	Wax Tonsion	'	0.000	0.000	0.000
			Max. Compression	26	-51.308	-2.668	1.854
			Max. Mx	20	-26.592	1038.933	0.857
			Max. My	2	-26.564	-0.207	1059.435
			Max. Vy	20	-20.226	1038.933	0.857
			Max. Vx	2	-20.825	-0.207	1059.435
1.00	22.05.40	Dolo	Max. Torque	12	0.000	0.000	0.866
L33	22.25 - 18	Pole	Max Tension Max. Compression	1 26	0.000 -52.669	0.000 -2.851	0.000 1.947
			Max. Mx	20	-32.6632	1124.980	0.956
			Max. My	20	-27.632 -27.609	-0.201	1148.166
			Max. Vy	20	-20.328	1124.980	0.956
			Max. Vx	2	-20.951	-0.201	1148 166
			Max. Torque	12			0.866
L34	18 - 17.75	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-52.757	-2.864	1.954
			Max. Mx	20	-27.711	1130.055	0.961

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.		. 77		Comb.	K	kip-ft	kip-ft
			Max. My	2	-27.688	-0.200	1153.402
			Max. Vy	20	-20.321	1130.055	0.961
			Max. Vx	2	-20.945	-0.200	1153.402
			Max. Torque	12			0.869
L35	17.75 -	Pole	Max Tension	1	0.000	0.000	0.000
	15.45			00	50 500	0.000	4.000
			Max. Compression	26	-53.528	-2.986	1.989
			Max. Mx Max. My	20	-28.286 -28.266	1176.781	1.015
			Max. Wy	2 20	-20.266 -20.369	-0.198 1176.781	1201.626 1.015
			Max. Vx	20	-20.369 -21.004	-0.198	1201.626
			Max. Torque	12	21.004	0.150	0.899
L36	15.45 - 15.2	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-53.625	-3.001	1.993
			Max. Mx	20	-28.375	1181.865	1.020
			Max. My	2	-28.356	-0.197	1206.874
			Max. Vy	20	-20.355	1181.865	1.020
			Max. Vx	2	-20.991	-0.197	1206.874
			Max. Torque	12			0.903
L37	15.2 - 13.41	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-54.316	-3.097	2.018
			Max. Mx	20	-28.889	1218.312	1.062
			Max. My	2	-28.872	-0.196	1244.507
			Max. Vy	20	-20.425	1218.312	1.062
			Max. Vx Max. Torque	2 12	-21.070	-0.196	1244.507 0.927
L38	13.41 -	Pole	Max Tension	1	0.000	0.000	0.000
L30	13.16	i Ole	IVIAX TETISIOTI	!	0.000	0.000	0.000
	10.10		Max. Compression	26	-54.407	3.111	2,022
			Max. Mx	20	-28.973	1223.409	1.068
			Max. My	2	-28.957	-0.195	1249.771
			Max. Vy	20	-20.410	1223.409	1.068
			Max. Vx	2	-21.056	-0.195	1249.771
			Max. Torque	12			0.930
L39	13.16 - 8.16	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-56.190	-3.354	2.125
			Max. Mx	20	-30.354	1325,623	1.184
			Max. My Max. Vy	2 20	-30.343 -20.526	-0.192 1325.623	1355.376 1.184
			Max. Vx	2	-20.320 -21.193	-0.192	1355.376
			Max. Torque	12	-21.133	-0.132	0.986
L40	8.16 - 6.5	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-56.792	-3.444	2.150
			Max. Mx	20	-30.814	1359.673	1.223
			Max. My	2	-30.804	-0.191	1390.574
			Max. Vy	20	-20.572	1359.673	1.223
			Max. Vx	2	-21.245	-0.191	1390.574
	0.5.005	5.1	Max Torque	12	0.000	0.000	1.008
L41	6.5 - 6.25	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression Max. Mx	26 20	-56.888 -30.906	-3.458	2.154
			Max. My	20	-30.898	1364.806 -0.191	1.228 1395.881
			Max. Vy	20	-30.696 -20.554	1364.806	1.228
			Max. Vx	2	-21.228	-0.191	1395.881
			Max. Torque	12	211220	01.0	1.011
L42	6.25 - 4.45	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-57.582	-3.554	2.181
			Max. Mx	20	-31.438	1401.813	1.270
			Max. My	2	-31.431	-0.191	1434.147
			Max. Vy	20	-20.624	1401.813	1.270
			Max. Vx	2	-21.305	-0.191	1434.147
1.40	4 45 40	Dala	Max. Torque	12	0.000	0.000	1.036
L43	4.45 -4.2	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression Max. Mx	26 20	-57.666 -31.518	-3.567 1406.959	2.185 1.276
			Max. My	20	-31.516	-0.191	1439.469
			Max. Vy	20	-20.607	1406.959	1.276
			Max. Vx	2	-21.288	-0.191	1439 469
			Max. Torque	12			1.036
			-				

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.		. 77-		Comb.	K	kip-ft	kip-ft
L44	4.2-0	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-59.033	-3.765	2.275
			Max. Mx	20	-32.613	1493.576	1.374
			Max. My	2	-32.613	-0.191	1529.068
			Max. Vý	20	-20.695	1493.576	1.374
			Max. Vx	2	-21.388	-0.191	1529.068
			Max. Torque	12			1.036

	D 4:
Mavimiim	Reactions
IVIANIIIIUIII	Neactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Pole	Max. Vert	38	59.033	3.304	5.734
	Max. H _x	20	32.626	20.674	0.015
	$Max. H_z$	2	32.626	0.015	21.367
	Max. M _x	2	1529.068	0.015	21.367
	$Max. M_z$	8	1485.069	-20.401	-0.015
	Max. Torsion	12	1.036	-11.744	-20.397
	Min. Vert	7	24.470	-17.661	10.229
	Min. H _x	8	32.626	-20.401	-0.015
	Min. H _z	14	32,626	-0.015	-21.281
	Min. M _x	14	-1524.717	-0.015	-21.281
	Min. M _z	20	-1493.576	20.674	0.015
	Min, Torsion	24	-1.034	11,741	20.392

Tower Mast Reaction Summary

Load	Vertical	Shear _x	Shearz	Overturning	Overturning	Torque
Combination	К	К	K	Moment, M _x kip-ft	Moment, M _z	kin ft
<u> </u>					kip-ft	kip-ft
Dead Only	27.188	0.000	0.000	-0.556	-0.691	0.000
1.2 Dead+1.0 Wind 0 deg -	32.626	-0.015	-21.367	-1529.068	-0.191	0.266
No Ice 0.9 Dead+1.0 Wind 0 deg -	24.470	-0.015	-21.367	-1508.457	0.030	0.266
No Ice	24.470	-0.013	-21.307	-1300.437	0.030	0.200
1.2 Dead+1.0 Wind 30 deg-	32,626	10.217	-17.783	-1291.788	-743.345	-0.063
No Ice	32.020	10.217	-17.700	-1251.700	-/ 40.040	-0.003
0.9 Dead+1.0 Wind 30 deg-	24.470	10.217	-17.783	-1274.199	-733.101	-0.063
No Ice	2	.012		121 11100	7001701	0,000
1.2 Dead+1.0 Wind 60 deg-	32,626	17,661	-10.229	-744.760	-1285.888	-0.302
No Ice						
0.9 Dead+1.0 Wind 60 deg-	24.470	17.661	-10.229	-734.536	-1268.315	-0.302
No Ice						
1.2 Dead+1.0 Wind 90 deg-	32.626	20.401	0.015	-0.026	-1485.069	-0.461
No Ice						
0.9 Dead+1.0 Wind 90 deg-	24.470	20.401	0.015	0.153	-1464.811	-0.461
No Ice						
1.2 Dead+1.0 Wind 120 deg	32.626	18.061	10.477	753.553	-1302.194	-0.497
- No Ice						
0.9 Dead+1.0 Wind 120 deg	24.470	18.061	10.477	743.618	-1284.497	-0.496
- No Ice	00.000	44 744	00.007	4000 000	700 007	4 000
1.2 Dead+1.0 Wind 150 deg	32.626	11.744	20.397	1386.600	-799.667	-1.036
- No Ice	24.470	11.744	20,397	1368,615	700 000	1 025
0.9 Dead+1.0 Wind 150 deg	24.470	11.744	20.397	1300.013	-788.980	-1.035
- No Ice 1.2 Dead+1.0 Wind 180 deg	32,626	0.015	21,281	1524,717	-1.539	-0.266
- No Ice	32.020	0.015	۷۱،۷۵۱	1324.111	-1.009	-0.200
0.9 Dead+1.0 Wind 180 deg	24.470	0.015	21,281	1504.491	-1.311	-0.265
- No Ice	24.470	0.010	21.201	1004.401	1.011	0.200
1.2 Dead+1.0 Wind 210 deg	32.626	-10.235	17.813	1291.601	742.315	0.064

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M_x	Overturning Moment, M_z	Torque
- No Ice	K	K	K	kip-ft	kip-ft	kip-ft
0.9 Dead+1.0 Wind 210 deg - No Ice	24.470	-10.235	17.813	1274.370	732.515	0.065
1.2 Dead+1.0 Wind 240 deg - No Ice	32.626	-17.899	10.366	748.520	1293.094	0.304
0.9 Dead+1.0 Wind 240 deg - No Ice	24.470	-17.899	10.366	738.626	1275.908	0.304
1.2 Dead+1.0 Wind 270 deg - No Ice	32.626	-20.674	-0.015	-1.374	1493.576	0.461
0.9 Dead+1.0 Wind 270 deg - No Ice	24.470	-20.674	-0.015	-1.188	1473.696	0.461
1.2 Dead+1.0 Wind 300 deg - No Ice	32.626	-18.031	-10.460	-755.055	1300.640	0.495
0.9 Dead+1.0 Wind 300 deg - No Ice	24.470	-18.031	-10.460	-744.748	1283.380	0.495
1.2 Dead+1.0 Wind 330 deg - No Ice	32.626	-11.741	-20.392	-1387.848	797.858	1.034
0.9 Dead+1.0 Wind 330 deg - No Ice	24.470	-11.741	-20.392	-1369.499	787.618	1.033
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0	59.033 59.033	0.000 -0.006	-0.000 -6.269	-2.275 -468.038	-3.765 -3.516	0.000 0.044
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 30	59.033	3.107	-5.404	-404.032	-234.949	-0.033
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 60	59.033	5.387	-3.117	-234.062	-404.446	-0.086
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 90	59.033	6.224	0.006	-2.002	-466.603	-0.117
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 120	59.033	5.394	3.127	229.985	-404.780	-0.116
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150	59.033	3.304	5.735	412.802	-243.047	-0.250
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	59.033	0.006	6.268	463.392	-4.143	-0.044
1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	59.033	-3.107	5.405	399.411	227.294	0.033
1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	59.033	-5.389	3.118	229.477	396.866	0.086
1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	59.033	-6.226	-0.006	-2.629	459.017	0.117
1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	59.033	-5.394	-3.127	-234.623	397.132	0.116
1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	59.033	-3.304	-5.734	-417.426	235.385	0.250
Dead+Wind 0 deg - Service	27.188	-0.004	-5.484	-390.090	-0.546	0.072
Dead+Wind 30 deg - Service	27.188	2.623	-4.565	-329.598	-189.929	-0.016
Dead+Wind 60 deg - Service	27.188	4.533	-2.626	-190.194	-328.186	-0.081
Dead+Wind 90 deg - Service	27.188	5.237	0.004	-0.411	-378,945	-0.124
Dead+Wind 120 deg- Service	27.188	4.636	2.689	191.634	-332.354	-0.134
Dead+Wind 150 deg- Service	27.188	3.014	5.235	353.020	-204.323	-0.272
Dead+Wind 180 deg- Service	27.188	0.004	5.462	388.172	-0.891	-0.072
Dead+Wind 210 deg- Service	27.188	-2.627	4.572	328.744	188.671	0.016
Dead+Wind 240 deg- Service	27.188	-4.595	2.661	190.348	329.034	0.081
Dead+Wind 270 deg- Service	27.188	-5.307	-0.004	-0.755	380.125	0.124
Dead+Wind 300 deg- Service	27.188	-4.628	-2.685	-192.824	330.961	0.134
Dead+Wind 330 deg- Service	27.188	-3.013	-5.234	-354.146	202.864	0.272

Solution Summary

Load Comb.	PX						
Comb.		PY	PZ	PX	PY	PZ	% Error
	K	K	K	K	K	K	
1	0.000	-27.188	0.000	0.000	27.188	0.000	0.000%
2	-0.015	-32.626	-21.367	0.015	32.626	21.367	0.000%
3	-0.015	-24.470	-21.367	0.015	24.470	21.367	0.000%
4	10.217	-32.626	-17.783	-10.217	32.626	17.783	0.000%
5	10.217	-24.470	-17.783	-10.217	24.470	17.783	0.000%
6	17.661	-32.626	-10.229	-17.661	32.626	10.229	0.000%
7	17.661	-24.470	-10.229	-17.661	24.470	10.229	0.000%
8	20.401	-32.626	0.015	-20.401	32.626	-0.015	0.000%
9	20.401	-24.470	0.015	-20.401	24.470	-0.015	0.000%
10	18.061	-32.626	10.477	-18.061	32.626	-10.477	0.000%
11	18.061	-24.470	10.477	-18.061	24.470	-10.477	0.000%
12	11.744	-32.626	20.397	-11.744	32.626	-20.397	0.000%
13	11.744	-24.470	20.397	-11.744	24.470	-20.397	0.000%
14	0.015	-32.626	21.281	-0.015	32.626	-21.281	0.000%
15	0.015	-24.470	21,281	-0.015	24.470	-21,281	0.000%
16	-10.235	-32.626	17.813	10.235	32,626	-17.813	0.000%
17	-10.235	-24.470	17.813	10.235	24.470	-17.813	0.000%
18	-17.899	-32.626	10.366	17.899	32.626	-10.366	0.000%
19	-17.899	-24.470	10.366	17.899	24.470	-10.366	0.000%
20	-20 674	-32.626	-0.015	20.674	32.626	0.015	0.000%
21	-20.674	-24,470	-0.015	20.674	24.470	0.015	0.000%
22	-18.031	-32.626	-10.460	18.031	32.626	10.460	0.000%
23	-18.031	-24.470	-10.460	18.031	24,470	10.460	0.000%
24	-11 741	-32,626	-20.392	11.741	32,626	20.392	0.000%
25	11 741	-24.470	-20.392	11.741	24.470	20.392	0.000%
26	0.000	-59.033	0.000	0.000	59.033	0.000	0.000%
27	-0.006	-59.033	-6.269	0.006	59.033	6.269	0.000%
28	3.107	-59.033	-5.404	-3.107	59.033	5.404	0.000%
29	5.387	-59.033	-3.117	5.387	59.033	3.117	0.000%
30	6.224	-59.033	0.006	6.224	59.033	-0.006	0.000%
31	5.394	-59.033	3.127	5.394	59.033	-3.127	0.000%
32	3.304	-59.033	5.735	-3.304	59.033	-5.735	0.000%
33	0.006	-59.033	6.268	-0.006	59.033	-6.268	0.000%
34	-3.107	-59.033	5.405	3.107	59.033	-5.405	0.000%
35	-5.389	-59.033	3.118	5.389	59.033	-3.118	0.000%
36	6.226	-59.033	-0.006	6.226	59.033	0.006	0.000%
37	-5.394	-59.033	-3.127	5.394	59.033	3.127	0.000%
38	-3.304	-59.033	-5.734	3.304	59.033	5.734	0.000%
39	-0.004	-27.188	-5.484	0.004	27.188	5.484	0.000%
40	2.623	-27.188	-4.565	2.623	27.188	4.565	0.000%
41	4.533	-27.188	-2.626	-4.533	27.188	2.626	0.000%
42	5.237	-27.188	0.004	-5.237	27.188	-0.004	0.000%
43	4.636	-27.188 -27.188	2.689	-3.237 -4.636	27.188	-0.004 -2.689	0.000%
43 44	3.014	-27.188	5.235	-3.014	27.188	-2.009 -5.235	0.000%
44 45	0.004	-27.188 -27.188	5.462	-0.004	27.188	-5.235 -5.462	0.000%
45 46	-2.627	-27.188 -27.188	4.572	2.627	27.188	-5.462 -4.572	0.000%
46 47	-2.62 <i>1</i> -4.595		4.57 <i>2</i> 2.661	4.595	27.188	-4.57 <i>2</i> -2.661	0.000%
4 <i>1</i> 48	-4.595 -5.307	-27.188 -27.188	-0.004	4.595 5.307	27.188 27.188	-2.661 0.004	0.000%
46 49		-27.188	-0.004 -2.685		27.188		0.000%
49 50	-4.628 -3.013	-27.188 -27.188	-2.685 -5.234	4.628 3.013	27.188 27.188	2.685 5.234	0.000%

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	5	0.00000001	0.00058841
3	Yes	5	0.00000001	0.00025841
4	Yes	7	0.00000001	0.00011674
5	Yes	6	0.00000001	0.00058510
6	Yes	7	0.00000001	0.00011796
7	Yes	6	0.00000001	0.00059175
8	Yes	5	0.00000001	0.00079515
9	Yes	5	0.00000001	0.00036482

10	Yes	7	0.00000001	0.00011584
11	Yes	6	0.0000001	0.00057956
12	Yes	7	0.0000001	0.00012781
13	Yes	6	0.00000001	0.00063396
14	Yes	5	0.0000001	0.00062522
15	Yes	5	0.00000001	0.00027679
16	Yes	7	0.00000001	0.00011667
17	Yes	6	0.00000001	0.00058516
18	Yes	7	0.00000001	0.00011582
19	Yes	6	0.00000001	0.00058040
20	Yes	5	0.0000001	0.00083333
21	Yes	5	0.0000001	0.00038292
22	Yes	7	0.00000001	0.00012024
23	Yes	6	0.0000001	0.00060232
24	Yes	7	0.00000001	0.00012095
25	Yes	6	0.00000001	0.00059883
26	Yes	4	0.00000001	0.00093213
27	Yes	7	0.00000001	0.00027724
28	Yes	7	0.00000001	0.00036420
29	Yes	7	0.00000001	0.00036478
30	Yes	7	0.0000001	0.00027682
31	Yes	7	0.0000001	0.00035864
32	Yes	7	0.00000001	0.00037175
33	Yes	7	0.0000001	0.00027415
34	Yes	7	0.00000001	0.00035319
35	Yes	7	0.0000001	0.00035230
36	Yes	7	0.0000001	0.00027225
37	Yes	7	0.0000001	0.00035908
38	Yes	7	0.0000001	0.00036548
39	Yes	5	0.0000001	0.00007862
40	Yes	5	0.0000001	0.00053528
41	Yes	5	0.0000001	0.00054968
42	Yes	5	0.0000001	0.00008593
43	Yes	5	0.0000001	0.00051812
44	Yes	5	0.0000001	0.00063995
45	Yes	5	0.0000001	0.00007864
46	Yes	5	0.0000001	0.00053076
47	Yes	5	0.0000001	0.00051948
48	Yes	5	0.0000001	0.00008627
49	Yes	5	0.0000001	0.00056989
50	Yes	5	0.0000001	0.00055672

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	98 - 93	18.924	50	1.787	0.002
L2	93 - 88	17.056	50	1.774	0.002
L3	88 - 82.79	15.223	50	1.722	0.002
L4	85.207 -80.207	14.229	50	1.675	0.002
L5	80.207 - 75.207	12.505	50	1.605	0.002
L6	75.207 - 70.207	10.879	50	1.499	0.002
L7	70.207 -65.207	9.372	50	1.376	0.002
L8	65.207 - 60.207	8.003	50	1.236	0.002
L9	60.207 - 59.17	6.790	50	1.078	0.001
L10	59.17 - 58.9	6.560	50	1.044	0.001
L11	58.9 - 58.75	6.501	50	1.040	0.001
L12	58.75 - 54	6.468	50	1.037	0.001
L13	54 - 53.75	5.479	50	0.951	0.001
L14	53.75 - 52.91	5.429	50	0.947	0.001
L15	52.91 - 52.66	5.264	50	0.932	0.001
L16	52.66 - 52.17	5.215	50	0.928	0.001
L17	52.17 - 51.92	5.120	50	0.921	0.001
L18	51.92 - 45.287	5.072	50	0.917	0.001
L19	48.704 -44.287	4.474	50	0.858	0.001
L20	44.287 - 39.287	3.700	50	0.808	0.001
L21	39.287 - 34.287	2.904	50	0.712	0.001

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	۰	0
L22	34.287 - 33.5	2.210	50	0.614	0.001
L23	33.5 - 33.25	2.110	50	0.598	0.001
L24	33.25 - 33	2.079	50	0.595	0.001
L25	33 - 32.75	2.048	50	0.591	0.001
L26	32.75 - 32	2.017	50	0.588	0.001
L27	32 - 31.75	1.926	50	0.578	0.001
L28	31.75 - 28.5	1.895	50	0.573	0.001
L29	28.5 - 28.25	1.525	50	0.514	0.001
L30	28.25 - 27.5	1.499	50	0.510	0.001
L31	27.5 - 27.25	1.419	50	0.501	0.000
L32	27.25 - 22.25	1.393	50	0.496	0.000
L33	22.25 - 18	0.922	50	0.404	0.000
L34	18 - 17.75	0.598	50	0.324	0.000
L35	17.75 - 15.45	0.581	50	0.320	0.000
L36	15.45 - 15.2	0.440	50	0.266	0.000
L37	15.2 - 13.41	0.426	50	0.262	0.000
L38	13.41 - 13.16	0.333	50	0.236	0.000
L39	13.16 - 8.16	0.321	50	0.231	0.000
L40	8.16 - 6.5	0.125	50	0.142	0.000
L41	6.5 - 6.25	0.081	50	0.113	0.000
L42	6.25 - 4.45	0.075	50	0.110	0.000
L43	4.45 - 4.2	0.039	50	0.083	0.000
L44	4.2 - 0	0.035	50	0.079	0.000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	۰	۰	ft
96.000	APXVTM14-ALU-I20 w/ Mount Pipe	50	18.175	1.784	0.002	8590
89.000	APXVAARR24_43-U-NA20 w/ Mount Pipe	50	15.585	1.736	0.002	4667
74.000	TPA-65R-LCUUUU-H8 w/ Mount Pipe	50	10.504	1.471	0.002	2432
67.000	6' x 2" Mount Pipe	50	8.477	1.287	0.002	2004
52,000	KS24019-L112A	50	5.087	0.918	0.001	3407
48.000	Commscope MC-PK8-DSH	50	4.347	0.848	0.001	4115

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	o	0
L1	98 - 93	74.228	24	7.033	0.008
L2	93 - 88	66.909	24	6.979	0.008
L3	88 - 82.79	59.726	24	6.774	0.008
L4	85.207 - 80.207	55.830	24	6.591	0.008
L5	80.207 - 75.207	49.071	24	6.313	0.008
L6	75.207 - 70.207	42.695	24	5.897	0.008
L7	70.207 -65.207	36.783	24	5.411	0.007
L8	65.207 -60.207	31.413	24	4.859	0.007
L9	60.207 - 59.17	26.653	24	4.237	0.005
L10	59.17 - 58.9	25.749	24	4.104	0.005
L11	58.9 - 58.75	25.518	24	4.086	0.005
L12	58.75 - 54	25,390	24	4.076	0.005
L13	54 - 53.75	21.506	24	3.739	0.004
L14	53.75 - 52.91	21,311	24	3.722	0.004
L15	52.91 - 52.66	20.663	24	3.661	0.004
L16	52.66 - 52.17	20.471	24	3.647	0.004
L17	52.17 - 51.92	20.099	24	3.620	0.004

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	۰	Ö
L18	51.92 - 45.287	19.910	24	3.603	0.004
L19	48.704 - 44.287	17.564	24	3.371	0.004
L20	44.287 - 39.287	14.525	24	3.174	0.003
L21	39.287 - 34.287	11.401	24	2.798	0.003
L22	34.287 - 33.5	8.675	24	2.410	0.002
L23	33.5 - 33.25	8.283	24	2.349	0.002
L24	33.25 - 33	8.161	24	2.336	0.002
L25	33 - 32.75	8.039	24	2.323	0.002
L26	32.75 - 32	7.918	24	2.310	0.002
L27	32 - 31.75	7.558	24	2.270	0.002
L28	31.75 - 28.5	7.440	24	2.252	0.002
L29	28.5 - 28.25	5.987	24	2.017	0.002
L30	28.25 - 27.5	5.882	24	2.005	0.002
L31	27.5 - 27.25	5.570	24	1.967	0.002
L32	27.25 - 22.25	5.468	24	1.949	0.002
L33	22.25 - 18	3.618	24	1.585	0.001
L34	18 - 17.75	2.347	24	1.273	0.001
L35	17.75 - 15.45	2.281	24	1.256	0.001
L36	15.45 - 15.2	1.727	24	1.043	0.001
L37	15.2 - 13.41	1.673	24	1.029	0.001
L38	13.41 - 13.16	1.306	24	0.925	0.001
L39	13.16 - 8.16	1.258	24	0.908	0.001
L40	8.16 - 6.5	0.492	24	0.557	0.000
L41	6.5 - 6.25	0.318	24	0.444	0.000
L42	6.25 - 4.45	0.295	24	0.430	0.000
L43	4.45 - 4.2	0.152	24	0.327	0.000
L44	4.2 - 0	0.135	24	0.309	0.000

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
96.000	APXVTM14-ALU-I20 w/ Mount Pipe	24	71.293	7.021	0.008	2242
89.000	APXVAARR24_43-U-NA20 w/ Mount Pipe	24	61.143	6.831	0.008	1216
74.000	TPA-65R-LCUUUU-H8 w/ Mount Pipe	24	41.222	5.784	0.008	629
67.000	6' x 2" Mount Pipe	24	33.272	5.061	0.007	516
52.000 48.000	KS24019-L112A Commscope MC-PK8-DSH	24 24	19.970 17.066	3.609 3.334	0.004 0.004	873 1054

Compression Checks

Pole Design Data Section Elevation Size L Lu KI/r A Pu \$\phi P_n\$ Ratio

Section	Elevation	Size	L	L_u	KI/r	Α	P_u	ϕP_n	Ratio	
No.						•			P_u	
	ft		ft	ft		in ²	K	K	ΦP_n	
L1	98 - 93 (1)	TP13.078x12x0.188	5.000	0.000	0.0	7.672	-3.519	448.789	0.008	
L2	93 - 88 (2)	TP14.156x13.078x0.188	5.000	0.000	0.0	8.313	-5.999	486.327	0.012	
L3	88 - 82.79 (3)	TP15.28x14.156x0.188	5.210	0.000	0.0	8.672	-6.136	507.296	0.012	
L4	82.79 -	TP15.445x14.384x0.25	5.000	0.000	0.0	12.058	-6.531	705.368	0.009	
	80.207 (4)									
L5	80.207 -	TP16.507x15.445x0.25	5.000	0.000	0.0	12.900	-6.877	754.650	0.009	
	75.207 (5)									
L6	75.207 - ^	TP17.569x16.507x0.25	5.000	0.000	0.0	13.742	-10.323	803.931	0.013	

Section	Elevation	Size	L	Lu	Kl/r	Α	Pu	φ <i>P</i> _n	Ratio
No.	ft		ft	ft		in²	κ	κ	$\frac{P_u}{\phi P_n}$
	70.207 (6)						10.750		
L7	70.207 - 65.207 (7)	TP18.63x17.569x0.25	5.000	0.000	0.0	14.585	-13.756	853.213	0.016
L8	65.207 - 60.207 (8)	TP19.692x18.63x0.25	5.000	0.000	0.0	15.427	-14.387	902.494	0.016
L9	60.207 - 59.17 (9)	TP19.912x19.692x0.25	1.037	0.000	0.0	15.602	-14.521	912.715	0.016
L10	59.17 - 58.9	TP19.97x19.912x0.513	0.270	0.000	0.0	31.650	-14.583	1851.540	0.008
L11	(10) 58.9 - 58.75	TP20.001x19.97x0.513	0.150	0.000	0.0	31.702	-14.610	1854.570	0.008
L12	(11) 58.75 - 54	TP21.01x20.001x0.5	4.750	0.000	0.0	32.549	-15.409	1904.140	0.008
L13	(12) 54 - 53.75	TP21.063x21.01x0.513	0.250	0.000	0.0	33.429	-15.469	1955.600	0.008
L14	(13) 53.75 - 52.91 (14)	TP21.241x21.063x0.5	0.840	0.000	0.0	32.917	-15.631	1925.620	0.008
L15	52.91 - 52.66 (15)	TP21.294x21.241x0.675	0.250	0.000	0.0	44.176	-15.691	2584.310	0.006
L16	52.66 - 52.17	TP21.399x21.294x0.675	0.490	0.000	0.0	44.399	-15.794	2597.350	0.006
L17	(16) 52.17 - 51.92	TP21.452x21.399x0.525	0.250	0.000	0.0	34.871	-15.925	2039.960	0.008
L18	(17) 51.92 - 45.287 (18)	TP22.86x21.452x0.513	6.633	0.000	0.0	35.172	-16.567	2057.560	0.008
L19	45.287 - 45.287 - 44.287 (19)	TP22.575x21.634x0.563	4.417	0.000	0.0	39.300	-21.124	2299.030	0.009
L20	44.287 - 39.287 (20)	TP23.639x22.575x0.55	5.000	0.000	0.0	40.306	-22.277	2357.890	0.009
L21	39.287 - 34.287 (21)	TP24.703x23.639x0.538	5.000	0.000	0.0	41.227	-23.464	2411.760	0.010
L22	34.287 - 33.5 (22)	TP24.87x24.703x0.525	0.787	0.000	0.0	40.568	-23.658	2373.220	0.010
L23	33.5 - 33.25 (23)	TP24.923x24.87x0.838	0.250	0.000	0.0	64.026	-23.744	3745.520	0.006
L24	33.25 - 33 (24)	TP24.977x24.923x0.838	0.250	0.000	0.0	64.167	-23.820	3753.800	0.006
L25	33 - 32.75 (25)	TP25.03x24.977x0.813	0.250	0.000	0.0	62.454	-23.891	3653.540	0.007
L26	32.75 - 32 (26)	TP25.19x25.03x0.8	0.750	0.000	0.0	61.930	-24.098	3622.900	0.007
L27	32 - 31.75 (27)	TP25.243x25.19x0.588	0.250	0.000	0.0	45.975	-24.161	2689.550	0.009
L28	31.75 - 28.5 (28)	TP25.934x25.243x0.575	3.250	0.000	0.0	46.282	-24.919	2707.510	0.009
L29	28.5 - 28.25 (29)	TP25.988x25.934x0.863	0.250	0.000	0.0	68.782	-25.007	4023.740	0.006
L30	28.25 - 27.5 (30)	TP26.147x25.988x0.85	0.750	0.000	0.0	68.249	-25.232	3992.590	0.006
L31	27.5 - 27.25 (31)	TP26.2x26.147x0.575	0.250	0.000	0.0	46.768	-25.296	2735.910	0.009
L32	27.25 - 22.25 (32)	TP27.265x26.2x0.563	5.000	0.000	0.0	47.673	-26.503	2788.890	0.010
L33	22.25 - 18 (33)	TP28.169x27.265x0.55	4.250	0.000	0.0	48.215	-27.558	2820.560	0.010
L34	18 - 17.75 (34)	TP28.222x28.169x0.563	0.250	0.000	0.0	49.383	-27.639	2888.910	0.010
L35	17.75 - 15.45 (35)	TP28.712x28.222x0.425	2.300	0.000	0.0	38.158	-28.221	2232.210	0.013
L36	15.45 - 15.2 (36)	TP28.765x28.712x0.688	0.250	0.000	0.0	61.269	-28.313	3584.220	0.008
L37	15.2 - 13.41 (37)	TP29.146x28.765x0.675	1.790	0.000	0.0	60.998	-28.829	3568.360	0.008
L38	13.41 - 13.16 (38)	TP29.199x29.146x0.563	0.250	0.000	0.0	51.127	-28.916	2990.940	0.010
L39	13.16 - 8.16 (39)	TP30.263x29.199x0.55	5.000	0.000	0.0	51.871	-30.314	3034.430	0.010
L40 L41	8.16 - 6.5 (40) 6.5 - 6.25 (41)	TP30.617x30.263x0.55 TP30.67x30.617x0.663	1.660 0.250	0.000 0.000	0.0 0.0	52.487 63.099	-30.779 -30.876	3070.510 3691.270	0.010 0.008

Section No.	Elevation	Size	L	Lu	KI/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	K	K	ΦP_n
L42	6.25 - 4.45 (42)	TP31.053x30.67x0.65	1.800	0.000	0.0	62.724	-31.411	3669.370	0.009
L43	4.45 - 4.2 (43)	TP31.106x31.053x0.513	0.250	0.000	0.0	49.766	-31.495	2911.300	0.011
L44	4.2 - 0 (44)	TP32x31.106x0.5	4.200	0.000	0.0	49.991	-32.610	2924.440	0.011

Pole Bending Design Data

L2 93 L3 88- L4 8 80 L5 80 75 L6 79 L7 70 65 L8 69 L9 60 L9 60 L10 59 L11 58. L12 58 L13 54 L14 53.7 L15 52.9 L16 52.6 L17 52.1 L18 5 L19 44 L20 44 L20 44 L20 49 L21 39 L21 39	ft 6-93 (1) 8-88 (2) 82.79 (3) 82.79207 (4) 0.207207 (6) 0.207207 (7) 5.207207 (8) 0.207207 (8) 0.207207 (9) 17 -58.9 (10) 9 -58.75 (11)75 -54 (12) (13) 75 -52.91	TP13.078x12x0.188 TP14.156x13.078x0.188 TP15.28x14.156x0.188 TP15.28x14.364x0.25 TP16.507x15.445x0.25 TP17.569x16.507x0.25 TP18.63x17.569x0.25 TP19.692x18.63x0.25 TP19.912x19.692x0.25 TP19.97x19.912x0.513 TP20.001x19.97x0.513 TP21.01x20.001x0.5 TP21.063x21.01x0.513	kip-ft 15.607 40.739 60.310 96.113 132.838 192.083 256.726 337.112 354.007 358.420 360.874 439.702 443.911	kip-ft 150.088 176.441 192.089 277.548 318.022 361.249 407.231 455.967 466.420 923.883 926.950 1003.458	M_{tox} ϕM_{rox} 0.104 0.231 0.314 0.346 0.418 0.532 0.630 0.739 0.759 0.388 0.389 0.438	kip-ft 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	kip-ft 150.088 176.441 192.089 277.548 318.022 361.249 407.231 455.967 466.420 923.883 926.950	$\begin{array}{c} M_{uy} \\ \hline \phi M_{ny} \\ \hline 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ \end{array}$
L2 93 L3 88- L4 8 80 L5 80 C75 L6 79 L7 70 65 L8 69 L9 60 L9 59 L10 59. L11 58. L12 58 L13 54 L14 53.7 L15 52.9 L16 52.6 L17 52.1 L18 55 L19 49 L20 44. L20 44. L20 39. L21 39.	8 - 88 (2) 82.79 (3) 82.79 - 1.207 (4) 1.207 (5) 1.207 (6) 1.207 (6) 1.207 (7) 1.207 (8) 1.207 (8) 1.207 (8) 1.207 (9) 1.7 - 58.9 1.10) 1.7 - 58.75 1.11) 1.7 - 54 1.75 - 54	TP14.156x13.078x0.188 TP15.28x14.156x0.188 TP15.445x14.384x0.25 TP16.507x15.445x0.25 TP17.569x16.507x0.25 TP18.63x17.569x0.25 TP19.692x18.63x0.25 TP19.912x19.692x0.25 TP19.97x19.912x0.513 TP20.001x19.97x0.513 TP21.01x20.001x0.5	40.739 60.310 96.113 132.838 192.083 256.726 337.112 354.007 358.420 360.874 439.702	176.441 192.089 277.548 318.022 361.249 407.231 455.967 466.420 923.883 926.950	0.104 0.231 0.314 0.346 0.418 0.532 0.630 0.739 0.759 0.388 0.389	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	176.441 192.089 277.548 318.022 361.249 407.231 455.967 466.420 923.883 926.950	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L2 93 L3 88- L4 8 80 L5 80 C75 L6 79 L7 70 65 L8 69 L9 60 L9 60 L10 59 L11 58. L12 58 L13 54 L14 53.7 L15 52.9 L16 52.6 L17 52.1 L18 55 L19 49 L20 44 L20 44 L20 49 L21 39 L21 39 L21 39	8 - 88 (2) 82.79 (3) 82.79 - 1.207 (4) 1.207 (5) 1.207 (6) 1.207 (6) 1.207 (7) 1.207 (8) 1.207 (8) 1.207 (8) 1.207 (9) 1.7 - 58.9 1.10) 1.7 - 58.75 1.11) 1.7 - 54 1.75 - 54	TP14.156x13.078x0.188 TP15.28x14.156x0.188 TP15.445x14.384x0.25 TP16.507x15.445x0.25 TP17.569x16.507x0.25 TP18.63x17.569x0.25 TP19.692x18.63x0.25 TP19.912x19.692x0.25 TP19.97x19.912x0.513 TP20.001x19.97x0.513 TP21.01x20.001x0.5	40.739 60.310 96.113 132.838 192.083 256.726 337.112 354.007 358.420 360.874 439.702	176.441 192.089 277.548 318.022 361.249 407.231 455.967 466.420 923.883 926.950	0.231 0.314 0.346 0.418 0.532 0.630 0.739 0.759 0.388 0.389	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	176.441 192.089 277.548 318.022 361.249 407.231 455.967 466.420 923.883 926.950	0.000 0.000 0.000 0.000 0.000 0.000 0.000
L3 88- L4 8 80 L5 81 75 L6 75 L7 70 L7 70 L7 70 E8 69 L10 59. L11 58. L12 58 L12 58 L13 54 L14 53.7 L15 52.9 L16 52.6 L17 52.1 L18 5 L19 49 L19 44 L20 44 L20 39 L21 39 L21 39	82.79 (3) 32.79 - 1.207 (4) 0.207 - 1.207 (5) 5.207 - 1.207 (6) 0.207 - 1.207 (8) 0.207 - 1.207 (8) 0.207 - 1.207 (8) 0.207 - 1.207 (8) 0.207 - 1.207 (9) 17 - 58.9 (10) 9 - 58.75 (11) 1.75 - 54 (12) (13)	TP15.445x14.384x0.25 TP16.507x15.445x0.25 TP17.569x16.507x0.25 TP18.63x17.569x0.25 TP19.692x18.63x0.25 TP19.912x19.692x0.25 TP19.97x19.912x0.513 TP20.001x19.97x0.513 TP21.01x20.001x0.5	96.113 132.838 192.083 256.726 337.112 354.007 358.420 360.874 439.702	277.548 318.022 361.249 407.231 455.967 466.420 923.883 926.950	0.346 0.418 0.532 0.630 0.739 0.759 0.388 0.389	0.000 0.000 0.000 0.000 0.000 0.000 0.000	277.548 318.022 361.249 407.231 455.967 466.420 923.883 926.950	0.000 0.000 0.000 0.000 0.000 0.000 0.000
L4 8 80	32.79 - (1.207 (4)) 0.207 - (1.207 (5)) 5.207 - (1.207 (6)) 0.207 - (1.207 (7)) 5.207 - (1.207 (8)) 0.207	TP15.445x14.384x0.25 TP16.507x15.445x0.25 TP17.569x16.507x0.25 TP18.63x17.569x0.25 TP19.692x18.63x0.25 TP19.912x19.692x0.25 TP19.97x19.912x0.513 TP20.001x19.97x0.513 TP21.01x20.001x0.5	96.113 132.838 192.083 256.726 337.112 354.007 358.420 360.874 439.702	277.548 318.022 361.249 407.231 455.967 466.420 923.883 926.950	0.346 0.418 0.532 0.630 0.739 0.759 0.388 0.389	0.000 0.000 0.000 0.000 0.000 0.000	277.548 318.022 361.249 407.231 455.967 466.420 923.883 926.950	0.000 0.000 0.000 0.000 0.000 0.000
80 L5 80 75 L6 79 L7 70 L7 65 L8 66 L9 60 L9 59 L10 59. L11 58. L12 58 L13 54 L14 53.7 L15 52.9 L16 52.6 L17 52.1 L18 5 L19 49 L19 49 L20 44 L20 44 L20 44 L21 39 L21 39 L21 39 L21 39	0.207 (4) 0.207 - 5.207 (5) 5.207 - 0.207 (6) 0.207 - 0.207 - 0.207 - 0.207 (8) 0.207 - 0.207 (9) 17 - 58.9 (10) 9 - 58.75 (11) 0.75 - 54 (12) 0.75 - 54 (13)	TP16.507x15.445x0.25 TP17.569x16.507x0.25 TP18.63x17.569x0.25 TP19.692x18.63x0.25 TP19.912x19.692x0.25 TP19.97x19.912x0.513 TP20.001x19.97x0.513 TP21.01x20.001x0.5	132.838 192.083 256.726 337.112 354.007 358.420 360.874 439.702	318.022 361.249 407.231 455.967 466.420 923.883 926.950	0.418 0.532 0.630 0.739 0.759 0.388 0.389	0.000 0.000 0.000 0.000 0.000 0.000	318.022 361.249 407.231 455.967 466.420 923.883 926.950	0.000 0.000 0.000 0.000 0.000
L5 80 75 L6 75 L7 70 L7 70 L8 65 L8 60 L9 60 L9 59 L10 59. L11 58. L12 58 L13 54 L14 53.7 L15 52.9 L16 52.6 L17 52.1 L18 5 L19 44 L20 44 L20 44 L20 44 L21 39 L21 39 L21 39	0.207 - 5.207 (5) 5.207 - 5.207 (6) 0.207 (7) 5.207 - 5.207 - 5.207 (8) 0.207 - 9.17 (9) 17 - 58.9 (10) 9 - 58.75 (11) 6.75 - 54 (12) 6.75 (13)	TP17.569x16.507x0.25 TP18.63x17.569x0.25 TP19.692x18.63x0.25 TP19.912x19.692x0.25 TP19.97x19.912x0.513 TP20.001x19.97x0.513 TP21.01x20.001x0.5	192.083 256.726 337.112 354.007 358.420 360.874 439.702	361.249 407.231 455.967 466.420 923.883 926.950	0.532 0.630 0.739 0.759 0.388 0.389	0.000 0.000 0.000 0.000 0.000	361.249 407.231 455.967 466.420 923.883 926.950	0.000 0.000 0.000 0.000
L6 79 70 L7 70 65 L8 69 L9 60 L9 59 L10 59 L11 58 L12 58 L13 54 L14 53.7 L15 52.9 L16 52.6 L17 52.1 L18 55 L19 49 L20 44 L20 44 L20 49 L21 39 L21 39	5.207 - 0.207 (6) 0.207 - 0.207 (7) 5.207 - 0.207 (8) 0.207 - 0.207 (9) 17 - 58.9 (10) 9 - 58.75 (11) 6.75 - 54 (12) (- 53.75 (13)	TP18.63x17.569x0.25 TP19.692x18.63x0.25 TP19.912x19.692x0.25 TP19.97x19.912x0.513 TP20.001x19.97x0.513 TP21.01x20.001x0.5	256.726 337.112 354.007 358.420 360.874 439.702	407.231 455.967 466.420 923.883 926.950	0.630 0.739 0.759 0.388 0.389	0.000 0.000 0.000 0.000 0.000	407.231 455.967 466.420 923.883 926.950	0.000 0.000 0.000 0.000
L7 70 65 L8 69 60 L9 60 L9 59 L10 59 L11 58 L12 58 L13 54 L14 53.7 L15 52.9 L16 52.6 L17 52.1 L18 5 L19 49 L20 44 L20 49 L21 39 L21 39 34	0.207 - 6.207 (7) 5.207 - 6.207 (8) 0.207 - 9.17 (9) 17 -58.9 (10) 9 -58.75 (11) 6.75 - 54 (12)53.75 (13)	TP19.692x18.63x0.25 TP19.912x19.692x0.25 TP19.97x19.912x0.513 TP20.001x19.97x0.513 TP21.01x20.001x0.5	337.112 354.007 358.420 360.874 439.702	455.967 466.420 923.883 926.950	0.739 0.759 0.388 0.389	0.000 0.000 0.000 0.000	455.967 466.420 923.883 926.950	0.000 0.000 0.000
L8 69 60 L9 60 59 L10 59. L11 58. L12 58 L13 54 L14 53.7 L15 52.9 L16 52.6 L17 52.1 L18 5 L19 49 L20 44 L20 44 L20 39 L21 39 34.	5.207 - 0.207 (8) 0.207 - 9.17 (9) 17 - 58.9 (10) 9 - 58.75 (11) 6.75 - 54 (12) 53.75 (13)	TP19.912x19.692x0.25 TP19.97x19.912x0.513 TP20.001x19.97x0.513 TP21.01x20.001x0.5	354.007 358.420 360.874 439.702	466.420 923.883 926.950	0.759 0.388 0.389	0.000 0.000 0.000	466.420 923.883 926.950	0.000
L9 60 59 110 59. L10 59. L11 58. L12 58 L13 54 L14 53.7 L15 52.9 L16 52.6 L17 52.1 L18 5 45. L19 44 L20 4. 39. L21 39 34.	0.207 - 9.17 (9) 17 - 58.9 (10) 9 - 58.75 (11) 6.75 - 54 (12) - 53.75 (13)	TP19.97x19.912x0.513 TP20.001x19.97x0.513 TP21.01x20.001x0.5	358.420 360.874 439.702	923.883 926.950	0.388 0.389	0.000	923.883 926.950	0.000
L10 59. L11 58. L12 58 L13 54 L14 53.7 L15 52.9 L16 52.6 L17 52.1 L18 5 L19 44 L20 44 L20 49 L21 39 L21 39	17 - 58.9 (10) 9 - 58.75 (11) 3.75 - 54 (12) - 53.75 (13)	TP20.001x19.97x0.513 TP21.01x20.001x0.5	360.874 439.702	926.950	0.389	0.000	926.950	
L12 58 L13 54 L14 53.7 L15 52.9 L16 52.6 L17 52.1 L18 5 L19 44 L20 44 L20 39 L21 39 34.	9 - 58.75 (11) 3.75 - 54 (12) 53.75 (13)	TP21.01x20.001x0.5	439.702					0.000
L13 54 L14 53.7 L15 52.9 L16 52.6 L17 52.1 L18 5 45. L19 44 L20 44 L20 39 L21 39 34.	6.75 - 54 (12) 53.75 (13)			1003.458	0.438	0.000	4000 450	
L14 53.7 L15 52.9 L16 52.6 L17 52.1 L18 5 45. L19 44. L20 44. L20 49. Second Second	- 53.75 (13)	TP21.063x21.01x0.513	443.911			0.000	1003.458	0.000
L15 52.9 L16 52.6 L17 52.1 L18 5 45. L19 44. L20 44. L20 39. L21 39.	75-52.91			1032.050	0.430	0.000	1032.050	0.000
L16 52.6 L17 52.1 L18 5 45. L19 44 L20 44. L20 39. L21 39.	(14)	TP21.241x21.063x0.5	458.098	1026.500	0.446	0.000	1026.500	0.000
L17 52.1 L18 5 45. L19 44 L20 44. L20 39. L21 39.		TP21.294x21.241x0.675	462.334	1358.092	0.340	0.000	1358.092	0.000
L18 5 45. L19 49 44. L20 49 39. L21 39		TP21.399x21.294x0.675	470.657	1372.050	0.343	0.000	1372.050	0.000
45. L19 49 44. L20 49 39. L21 39		TP21.452x21.399x0.525	474.925	1096.117	0.433	0.000	1096.117	0.000
44. L20 44 39. L21 39.	51.92 - .287 (18)	TP22.86x21.452x0.513	530.445	1143.850	0.464	0.000	1143.850	0.000
39. L21 39 34.	5.287 - .287 (19)	TP22.575x21.634x0.563	618.325	1298.800	0.476	0.000	1298.800	0.000
34.	4.287 - .287 (20)	TP23.639x22.575x0.55	722.093	1399.575	0.516	0.000	1399.575	0.000
177 347	.287 (21)	TP24.703x23.639x0.538	828.120	1500.608	0.552	0.000	1500.608	0.000
	287 - 33.5 (22)	TP24.87x24.703x0.525	845.008	1488.617	0.568	0.000	1488.617	0.000
	5 - 33.25 (23)	TP24.923x24.87x0.838	850.392	2294.717	0.371	0.000	2294.717	0.000
	(24)	TP24.977x24.923x0.838 TP25.03x24.977x0.813	855.775	2305.033	0.371	0.000	2305.033	0.000
	3- 32.75 (25) 2.75-32	TP25.03x24.977x0.813	861.167 877.367	2253.233 2251.850	0.382	0.000	2253.233 2251.850	0.000
	(26)	TP25.19x25.03x0.8 TP25.243x25.19x0.588	882.783	1704.742	0.390	0.000	1704.742	0.000
		TP25.243x25.19x0.566	953.650	1767.133	0.540	0.000	1767.133	0.000
L29 28.	? - 31.75 (27)	11 20.004720.24070.070	959.133	2572.625	0.373	0.000	2572.625	0.000

Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M _{ux}	M_{uy}	ϕM_{ny}	Ratio M _{uy}
710.	ft		kip-ft	kip-ft	$\frac{M_{nx}}{\phi M_{nx}}$	kip-ft	kip-ft	$\frac{M_{ny}}{\Phi M_{ny}}$
L30	28.25 - 27.5 (30)	TP26.147x25.988x0.85	975.625	2572.008	0.379	0.000	2572.008	0.000
L31	27.5 - 27.25 (31)	TP26.2x26.147x0.575	981.125	1804.817	0.544	0.000	1804.817	0.000
L32	27.25 - 22.25 (32)	TP27.265x26.2x0.563	1091.725	1919.633	0.569	0.000	1919.633	0.000
L33	22.25 - 18 (33)	TP28.169x27.265x0.55	1186.492	2010.375	0.590	0.000	2010.375	0.000
L34	18 - 17.75 (34)	TP28.222x28.169x0.563	1192.083	2061.283	0.578	0.000	2061.283	0.000
L35	17.75 - 15.45 (35)	TP28.712x28.222x0.425	1243.767	1637.342	0.760	0.000	1637.342	0.000
L36	15.45 - 15.2 (36)	TP28.765x28.712x0.688	1249.408	2585.492	0.483	0.000	2585.492	0.000
L37	15.2 - 13.41 (37)	TP29.146x28.765x0.675	1289.933	2612.108	0.494	0.000	2612.108	0.000
L38	13.41 - 13.16 (38)	TP29.199x29.146x0.563	1295.617	2210.950	0.586	0.000	2210.950	0.000
L39	13.16 - 8.16 (39)	TP30.263x29.199x0.55	1410.192	2330.017	0.605	0.000	2330.017	0.000
L40	8.16 - 6.5 (40)	TP30.617x30.263x0.55	1448.650	2386.267	0.607	0.000	2386.267	0.000
L41	6.5 - 6.25 (41)	TP30.67x30.617x0.663	1454.458	2852.433	0.510	0.000	2852.433	0.000
L42	6.25 - 4.45 ´ (42)	TP31.053x30.67x0.65	1496.433	2874.850	0.521	0.000	2874.850	0.000
L43	4.45 - 4.2 (43)	TP31.106x31.053x0.513	1502.283	2305.683	0.652	0.000	2305.683	0.000
L44	4.2 - 0 (44)	TP32x31.106x0.5	1600.842	2386.767	0.671	0.000	2386.767	0.000

Pole Shear Design Data	3
------------------------	---

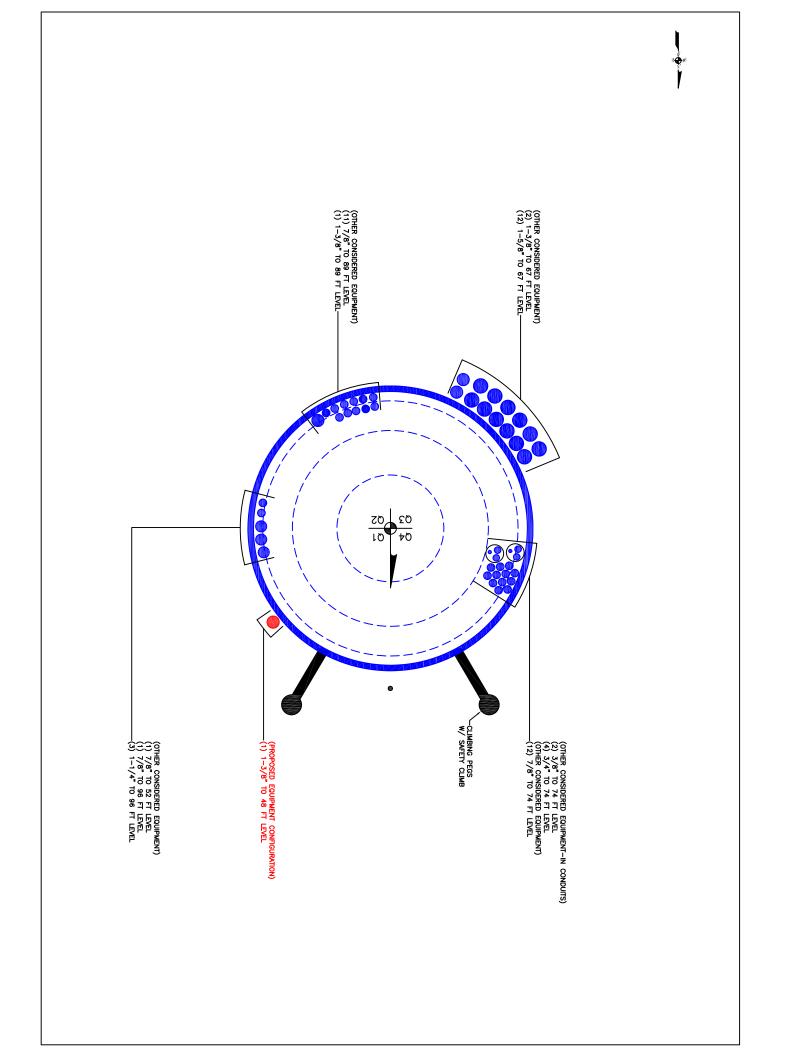
Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.			V_u	·	V_u	T_u	·	T_u
	ft		K	K	ϕV_n	kip-ft	kip-ft	ϕT_n
L1	98 - 93 (1)	TP13.078x12x0.188	4.099	134.637	0.030	0.000	151.992	0.000
L2	93 - 88 (2)	TP14.156x13.078x0.188	6.962	145.898	0.048	0.000	178.482	0.000
L3	88 - 82.79 (3)	TP15.28x14.156x0.188	7.061	152.189	0.046	0.000	194.205	0.000
L4	82.79 -	TP15.445x14.384x0.25	7.261	211.610	0.034	0.000	281.598	0.000
	80.207 (4)							
L5	80.207 -	TP16.507x15.445x0.25	7.441	226.395	0.033	0.000	322.322	0.000
	75.207 (5)	TD 17 500 10 507 005	44.000	044.470	0.047		005.704	
L6	75.207 -	TP17.569x16.507x0.25	11.239	241.179	0.047	0.095	365.794	0.000
	70.207 (6)	TD40 00 47 500 0 05	45.045	055.004	0.000	0.404	440.045	0.004
L7	70.207 -	TP18.63x17.569x0.25	15.915	255.964	0.062	0.464	412.015	0.001
L8	65.207 (7) 65.207 -	TP19.692x18.63x0.25	16.270	270.748	0.060	0.546	460.986	0.001
Lo		TP 19.692x16.63x0.25	16.270	270.746	0.060	0.346	400.900	0.001
L9	60.207 (8) 60.207 -	TP19.912x19.692x0.25	16.348	273.815	0.060	0.555	471.487	0.001
L9	59.17 (9)	17 19.912319.09230.23	10.540	273.013	0.000	0.555	471.407	0.001
L10	59.17 (9)	TP19.97x19.912x0.513	16.359	555,463	0.029	0.557	946.483	0.001
LIU	(10)	11 13.37 × 13.312×0.313	10.555	333.403	0.023	0.557	340.400	0.001
L11	58.9 - 58.75	TP20.001x19.97x0.513	16.373	556,372	0.029	0.559	949,583	0.001
	(11)	Zejes ix isle ixele i		0001012	0.020	0.000	0.101000	0.00
L12	58.75 - 54	TP21.01x20.001x0.5	16.834	571.241	0.029	0.611	1026.042	0.001
	(12)							
L13	54 - 53.75	TP21.063x21.01x0.513	16.851	586.680	0.029	0.615	1055.858	0.001
	(13)							
L14	53.75 - 52.91	TP21.241x21.063x0.5	16.941	577.687	0.029	0.627	1049.325	0.001
	(14)							
L15	52.91 - 52.66	TP21.294x21.241x0.675	16.961	775.293	0.022	0.631	1399.983	0.000
	(15)							
L16	52.66 - 52.17	TP21.399x21.294x0.675	17.014	779.205	0.022	0.638	1414.150	0.000
	(16)							
L17	52.17 - 51.92	TP21.452x21.399x0.525	17.109	611.987	0.028	0.638	1121.558	0.001
1.40	(17)	TD00 00-04 450-0 540	47.404	047.007	0.000	0.500	4400.005	0.000
L18	51.92 -	TP22.86x21.452x0.513	17.434	617.267	0.028	0.530	1168.825	0.000
	45.287 (18)							

Section No.	Elevation	Size	Actual V _u	ϕV_n	Ratio V _u	Actual T _u	ϕT_n	Ratio T _u
	ft		K	K	$\frac{V_n}{\Phi V_n}$	kip-ft	kip-ft	$\frac{T_n}{\phi T_n}$
L19	45.287 -	TP22.575x21.634x0.563	20.539	689.710	0.030	0.687	1329.558	0.001
	44.287 (19)							
L20	44.287 -	TP23.639x22.575x0.55	20.999	707.368	0.030	0.759	1430.292	0.001
L21	39.287 (20) 39.287 -	TP24.703x23.639x0.538	21.445	723.527	0.030	0.823	1531.183	0.001
LZ I	34 287 (21)	TF 24.7 03X23.039X0.330	21.445	123.321	0.030	0.023	1331.103	0.001
L22	34.287 - 33.5	TP24.87x24.703x0.525	21.510	711.965	0.030	0.830	1517.933	0.001
	(22)							
L23	33.5 - 33.25	TP24.923x24.87x0.838	21.526	1123.660	0.019	0.832	2370.167	0.000
1.04	(23)	TD24 077v24 022v0 929	04 554	1106 140	0.010	0.025	2200 650	0.000
L24	33.25 - 33 (24)	TP24.977x24.923x0.838	21.551	1126.140	0.019	0.835	2380.650	0.000
L25	33 - 32.75	TP25.03x24.977x0.813	21.576	1096,060	0.020	0.837	2324,575	0.000
	(25)							
L26	32.75 - 32	TP25.19x25.03x0.8	21.655	1086.870	0.020	0.844	2321.458	0.000
1.07	(26)	TD05 040 05 40 0 500	04.070	000 005	0.007	0.040	4740 407	0.000
L27	32 - 31.75 (27)	TP25.243x25.19x0.588	21.673	806.865	0.027	0.846	1742.167	0.000
L28	31.75 - 28.5	TP25.934x25.243x0.575	21.957	812.253	0.027	0.865	1803.892	0.000
	(28)	The Lord of the Lord Tox Clot of the Lord	211007	0121200	01021	01000	10001002	0.000
L29	28.5 ^{-28.25}	TP25.988x25.934x0.863	21.961	1207.120	0.018	0.865	2656.075	0.000
	(29)							
L30	28.25 - 27.5	TP26.147x25.988x0.85	22.022	1197.780	0.018	0.865	2653.567	0.000
L31	(30) 27.5-27.25	TP26.2x26.147x0.575	22.028	820,774	0.027	0.865	1841.942	0.000
LOT	(31)	11 20.2220.147.0.070	22.020	020.114	0.021	0.000	1041.042	0.000
L32	27.25 - 22.25	TP27.265x26.2x0.563	22.234	836.666	0.027	0.865	1956.492	0.000
	(32)							
L33	22.25 - 18	TP28.169x27.265x0.55	22.395	846.168	0.026	0.864	2046.658	0.000
L34	(33) 18 - 17.75	TP28.222x28.169x0.563	22.401	866.674	0.026	0.867	2099.350	0.000
LOT	(34)	11 20.222.20.100.00.000	22.401	000.074	0.020	0.007	2000.000	0.000
L35	17.75 - 15.45	TP28.712x28.222x0.425	22.573	669.664	0.034	0.898	1658.900	0.001
	(35)							
L36	15.45 - 15.2	TP28.765x28.712x0.688	22.571	1075.270	0.021	0.901	2643.958	0.000
L37	(36) 15.2 - 13.41	TP29,146x28,765x0,675	22.738	1070,510	0.021	0.925	2669.150	0.000
LOT	(37)	11 23.140.20.700.073	22.730	1070.510	0.021	0.020	2003.130	0.000
L38	13.41 - 13.16	TP29.199x29.146x0.563	22.735	897.283	0.025	0.928	2250.258	0.000
	(38)							
L39	13.16 - 8.16	TP30.263x29.199x0.55	23.121	910.328	0.025	0.984	2368.808	0.000
L40	(39)	TP30.617x30.263x0.55	23.258	921.152	0.025	1.006	2425 475	0.000
L40 L41	8.16 - 6.5 (40) 6.5 - 6.25 (41)	TP30.617x30.263x0.55	23.258	1107.380	0.025	1.006	2425.475 2910.075	0.000
L41 L42	6.25 - 4.45	TP31.053x30.67x0.65	23.423	1107.380	0.021	1.034	2930.950	0.000
- · -	(42)							
L43	4.45 - 4.2 (43)	TP31.106x31.053x0.513	23.408	873.391	0.027	1.034	2340.025	0.000
L44	4.2 - 0 (44)	TP32x31.106x0.5	23.552	877.333	0.027	1.034	2420.225	0.000

Pole Interaction Design	Data
-------------------------	------

Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio Vu	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	98 - 93 (1)	0.008	0.104	0.000	0.030	0.000	0.113	1.050	4.8.2
L2	93 - 88 (2)	0.012	0.231	0.000	0.048	0.000	0.246	1.050	4.8.2
L3	88 - 82.79 (3)	0.012	0.314	0.000	0.046	0.000	0.328	1.050	4.8.2
L4	82.79 - ` 80.207 (4)	0.009	0.346	0.000	0.034	0.000	0.357	1.050	4.8.2
L5	80.207`-´ 75.207 (5)	0.009	0.418	0.000	0.033	0.000	0.428	1.050	4.8.2
L6	75.207`- [′] 70.207 (6)	0.013	0.532	0.000	0.047	0.000	0.547	1.050	4.8.2

Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio Vu	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft 70.007	φ <i>P</i> _n	φ <i>M</i> _{nx}	φ <i>M</i> _{ny}	φV _n	φ <i>T</i> _n	Ratio	Ratio	4.0.0
L7	70.207 - 65.207 (7)	0.016	0.630	0.000	0.062	0.001	0.651	1.050	4.8.2
L8	65.207`-´ 60.207 (8)	0.016	0.739	0.000	0.060	0.001	0.759	1.050	4.8.2
L9	60.207`-´ 59.17 (9)	0.016	0.759	0.000	0.060	0.001	0.779	1.050	4.8.2
L10	59.17 - 5̀8́.9 (10)	0.008	0.388	0.000	0.029	0.001	0.397	1.050	4.8.2
L11	58.9 - 58.75 (11)	0.008	0.389	0.000	0.029	0.001	0.398	1.050	4.8.2
L12	58.75 -54 (12)	0.008	0.438	0.000	0.029	0.001	0.447	1.050	4.8.2
L13	54 - 53.75 (13)	0.008	0.430	0.000	0.029	0.001	0.439	1.050	4.8.2
L14	53.75 - 52.91 (14)	0.008	0.446	0.000	0.029	0.001	0.455	1.050	4.8.2
L15	52.91 - 52.66 (15)	0.006	0.340	0.000	0.022	0.000	0.347	1.050	4.8.2
L16	52.66 - 52.17 (16)	0.006	0.343	0.000	0.022	0.000	0.350	1.050	4.8.2
L17	52.17 - 51.92 (17)	0.008	0.433	0.000	0.028	0.001	0.442	1.050	4.8.2
L18	51.92 - 45.287 (18)	0.008	0.464	0.000	0.028	0.000	0.473	1.050	4.8.2
L19	45.287 - ´ 44.287 (19)	0.009	0.476	0.000	0.030	0.001	0.486	1.050	4.8.2
L20	44.287 - ´ 39.287 (20)	0.009	0.516	0.000	0.030	0.001	0.526	1.050	4.8.2
L21	39.287 - ´ 34.287 (21)	0.010	0.552	0.000	0.030	0.001	0.562	1.050	4.8.2
L22	34.287 - 33.5 (22)	0.010	0.568	0.000	0.030	0.001	0.579	1.050	4.8.2
L23	33.5 - 33.25 (23)	0.006	0.371	0.000	0.019	0.000	0.377	1.050	4.8.2
L24	33.25 - 33 (24)	0.006	0.371	0.000	0.019	0.000	0.378	1.050	4.8.2
L25	33 - 32.75 (25)	0.007	0.382	0.000	0.020	0.000	0.389	1.050	4.8.2
L26	32.75 - 32 (26)	0.007	0.390	0.000	0.020	0.000	0.397	1.050	4.8.2
L27	32 - 31.75 (27)	0.009	0.518	0.000	0.027	0.000	0.528	1.050	4.8.2
L28	31.75 - 28.5 (28)	0.009	0.540	0.000	0.027	0.000	0.550	1.050	4.8.2
L29	28.5 - 28.25 (29)	0.006	0.373	0.000	0.018	0.000	0.379	1.050	4.8.2
L30	28.25 - 27.5 (30)	0.006	0.379	0.000	0.018	0.000	0.386	1.050	4.8.2
L31	27.5 - 27.25 (31)	0.009	0.544	0.000	0.027	0.000	0.554	1.050	4.8.2
L32	27.25 - 22.25 (32)	0.010	0.569	0.000	0.027	0.000	0.579	1.050	4.8.2
L33	22.25 - 18 (33)	0.010	0.590	0.000	0.026	0.000	0.601	1.050	4.8.2
L34	18 - 17.75 (34)	0.010	0.578	0.000	0.026	0.000	0.589	1.050	4.8.2
L35	17.75 - 15.45 (35)	0.013	0.760	0.000	0.034	0.001	0.773	1.050	4.8.2
L36	15.45 - 15.2 (36)	0.008	0.483	0.000	0.021	0.000	0.492	1.050	4.8.2
L37	15.2 - 13.41 (37)	0.008	0.494	0.000	0.021	0.000	0.502	1.050	4.8.2
L38	13.41 - 13.16 (38)	0.010	0.586	0.000	0.025	0.000	0.596	1.050	4.8.2
L39	13.16 - 8.16 (39)	0.010	0.605	0.000	0.025	0.000	0.616	1.050	4.8.2
L40 L41	8.16 - 6.5 (40) 6.5 - 6.25 (41)	0.010 0.008	0.607 0.510	0.000 0.000	0.025 0.021	0.000 0.000	0.618 0.519	1.050 1.050	4.8.2 4.8.2
L42	6.25-4.45 ′	0.009	0.521	0.000	0.021	0.000	0.530	1.050	4.8.2


Section No.	Elevation #	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
	(42)	φ P _n	φ M _{nx}	ф <i>М_{пу}</i>	ϕV_n	φΤ,,	RallO	Ratio	
L43 L44	4.45 - 4.2 (43) 4.2 - 0 (44)	0.011 0.011	0.652 0.671	0.000 0.000	0.027 0.027	0.000 0.000	0.663 0.683	1.050 1.050	4.8.2 4.8.2

Section Capacity Table

Section	Elevation	Component	Size	Critical	P	$ \emptyset P_{allow} $	%	Pass
No.	ft	Туре		Element	K	K	Capacity	Fail
L1	98 - 93	Pole	TP13.078x12x0.188	1	-3.519	471.228	10.7	Pass
L2	93 - 88	Pole	TP14.156x13.078x0.188	2	-5.999	510.643	23.4	Pass
L3	88 - 82.79	Pole	TP15.28x14.156x0.188	3	-6.136	532.661	31.3	Pass
L4	82.79-80.207	Pole	TP15.445x14.384x0.25	4	-6.531	740.636	34.0	Pass
L5	80.207 - 75.207	Pole	TP16.507x15.445x0.25	5	-6.877	792.382	40.8	Pass
L6	75.207 - 70.207	Pole	TP17.569x16.507x0.25	6	-10.323	844.128	52.1	Pass
L7	70.207 - 65.207	Pole	TP18.63x17.569x0.25	7	-13.756	895.874	62.0	Pass
L8	65.207 - 60.207	Pole	TP19.692x18.63x0.25	8	-14.387	947.619	72.3	Pass
L9	60.207 - 59.17	Pole	TP19.912x19.692x0.25	9	-14.521	958.351	74.2	Pass
L10	59.17 - 58.9	Pole	TP19.97x19.912x0.513	10	-14.583	1944.117	37.8	Pass
L11	58.9 - 58.75	Pole	TP20.001x19.97x0.513	11	-14.610	1947.298	37.9	Pass
L12	58.75 - 54	Pole	TP21.01x20.001x0.5	12	-15.409	1999.347	42.6	Pass
L13	54 - 53.75	Pole	TP21.063x21.01x0.513	13	-15.469	2053.380	41.8	Pass
L14	53.75 - 52.91	Pole	TP21.241x21.063x0.5	14	-15.631	2021.901	43.4	Pass
L15	52.91 -52.66	Pole	TP21.294x21.241x0.675	15	-15.691	2713.525	33.0	Pass
L16	52.66 - 52.17	Pole	TP21.399x21.294x0.675	16	-15.794	2727.217	33.3	Pass
L17	52.17 -51.92	Pole	TP21.452x21.399x0.525	17	-15.925	2141.958	42.1	Pass
L18	51.92 - 45.287	Pole	TP22.86x21.452x0.513	18	-16.567	2160.438	45.0	Pass
L19	45.287 -44.287	Pole	TP22.575x21.634x0.563	19	-21.124	2413.981	46.3	Pass
L20	44.287 - 39.287	Pole	TP23.639x22.575x0.55	20	-22.277	2475.784	50.1	Pass
L21	39.287 - 34.287	Pole	TP24.703x23.639x0.538	21	-23.464	2532.348	53.6	Pass
L22	34 287 - 33 5	Pole	TP24.87x24.703x0.525	22	-23.658	2491.881	55.1	Pass
L23	33.5 - 33.25	Pole	TP24.923x24.87x0.838	23	-23.744	3932.796	35.9	Pass
L24	33.25 - 33	Pole	TP24.977x24.923x0.838	24	-23.820	3941.490	36.0	Pass
L25	33 - 32.75	Pole	TP25.03x24.977x0.813	25	-23.891	3836.217	37.1	Pass
L26	32.75 - 32	Pole	TP25.19x25.03x0.8	26	-24.098	3804.045	37.8	Pass
L27	32 - 31.75	Pole	TP25.243x25.19x0.588	27	-24.161	2824.027	50.2	Pass
L28	31.75 - 28.5	Pole	TP25.934x25.243x0.575	28	-24.919	2842.885	52.3	Pass
L29	28.5 - 28.25	Pole	TP25.988x25.934x0.863	29	-25.007	4224.927	36.1	Pass
L30	28.25 - 27.5	Pole	TP26.147x25.988x0.85	30	-25.232	4192.219	36.8	Pass
L31	27.5 - 27.25	Pole	TP26.2x26.147x0.575	31	-25.296	2872.705	52.7	Pass
L32	27.25 - 22.25	Pole	TP27.265x26.2x0.563	32	-26.503	2928.334	55.1	Pass
L33	22.25 - 18	Pole	TP28.169x27.265x0.55	33	-27.558	2961.588	57.2	Pass
L34	18 - 17.75	Pole	TP28.222x28.169x0.563	34	-27.639	3033.355	56.1	Pass
L35	17.75 - 15.45	Pole	TP28.712x28.222x0.425	35	-28.221	2343.820	73.7	Pass
L36	15.45 - 15.2	Pole	TP28.765x28.712x0.688	36	-28.313	3763.431	46.8	Pass
L37	15.2 - 13.41	Pole	TP29.146x28.765x0.675	37	-28.829	3746.778	47.8	Pass
L38	13.41 - 13.16	Pole	TP29.199x29.146x0.563	38	-28.916	3140.487	56.8	Pass
L39	13.16 - 8.16	Pole	TP30.263x29.199x0.55	39	-30.314	3186.151	58.7	Pass
L40	8.16 - 6.5	Pole	TP30.617x30.263x0.55	40	-30.779	3224.035	58.8	Pass
L41	6.5 - 6.25	Pole	TP30.67x30.617x0.663	41	-30.876	3875.833	49.4	Pass
L42	6.25 - 4.45	Pole	TP31.053x30.67x0.65	42	-31.411	3852.838	50.4	Pass
L43	4.45 - 4.2	Pole	TP31.106x31.053x0.513	43	31.495	3056.865	63.2	Pass
L44	4.2 - 0	Pole	TP32x31.106x0.5	44	-32.610	3070.662	65.0	Pass
							Summary	
						Pole (L9)	74.2	Pass
						RATING =	74.2	Pass

^{*}NOTE: Above stress ratios for reinforced sections are approximate. More exact calculations are presented in Appendix C.

APPENDIX B BASE LEVEL DRAWING

APPENDIX C ADDITIONAL CALCULATIONS

Site BU: 876399
Work Order: 1987173

Pole Geometry

Copyright © 2019 Crown Castle

	Pole Height Above Base (ft)	Section Length (ft)	Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)	Wall Thickness (in)	Bend Radius (in)	Pole Material
1	98	15.21	2.417	18	12	15.28	0.1875	Auto	A572-65
2	85.207	39.92	3.417	18	14.38	22.86	0.25	Auto	A572-65
3	48.704	48.704	0	18	21.63	32	0.3125	Auto	A572-65

Reinforcement Configuration

	moreement (oningai adon																					
	Bottom Effective Elevation (ft)	Top Effective Elevation (ft)	Туре	Model	Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	0	6.5	plate	MS-600 (1.1875")	1																		
2	0	28.5	plate	MS-600 (1.1875")	1																		
3	0	28.5	plate	MS-600 (1.1875")	1																		
4	4.45	15.45	plate	MS-600 (1.1875")	1																		
5	13.41	28.5	plate	MS-600 (1.1875")	1																		
6	27.5	33.5	plate	MS-600 (1.1875")	3																		
7	32	48.25	plate	MS-450 (1.1875")	1																		
8	32	59	plate	MS-450 (1.1875")	2																		
9	47.41	52.91	plate	MS-450 (1.1875")	1																П	\Box	П
10	52.17	59.17	plate	MS-450 (1.1875")	1																П	\Box	П
11	0	18	plate	CCI-WSFP-050125	1																П	\Box	П
12	33	54	plate	CCI-SFP-050125	1																		
13																							

Reinforcement Details

	B (in)	H (in)	Gross Area (in²)	Pole Face to Centroid (in)	Bottom Termination Type	Bottom Termination Length (in)	Top Termination Type	Top Termination Length (in)	Lu (in)	Net Area (in2)	Bolt Hole Size (in)	Reinforcement Material
1	6	1	6	0.5	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	16.375	4.750	1.1875	A572-65
2	6	1	6	0.5	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	16.375	4.750	1.1875	A572-65
3	6	1	6	0.5	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	16.375	4.750	1.1875	A572-65
4	6	1	6	0.5	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	16.375	4.750	1.1875	A572-65
5	6	1	6	0.5	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	16.375	4.750	1.1875	A572-65
6	6	1	6	0.5	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	16.375	4.750	1.1875	A572-65
7	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	18	PC 8.8 - M20 (100)	18.000	20.625	3.250	1.1875	A572-65
8	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	18	PC 8.8 - M20 (100)	18.000	20.625	3.250	1.1875	A572-65
9	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	18	PC 8.8 - M20 (100)	18.000	20.625	3.250	1.1875	A572-65
10	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	18	PC 8.8 - M20 (100)	18.000	20.625	3.250	1.1875	A572-65
11	5	1.25	6.25	0.625	Welded	n/a	PC 8.8 - M20 (100)	24.000	23.000	4.688	1.1875	A572-65
12	5	1.25	6.25	0.625	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	23.000	4.688	1.1875	A572-65

TNX Geometry Input

	Section Height (ft)	Section Length (ft)	Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)	Wall Thickness (in)	Tapered Pole Grade	Weight Multiplier
1	98 - 93	5	(,	18	12.000	13.078	0.1875	A572-65	1.000
2	93 - 88	5		18	13.078	14.156	0.1875	A572-65	1.000
3	88 - 85.207	5.21	2.417	18	14.156	15.280	0.1875	A572-65	1.000
4	85.207 - 80.207	5		18	14.384	15.445	0.25	A572-65	1.000
5	80.207 - 75.207	5		18	15.445	16.507	0.25	A572-65	1.000
6	75.207 - 70.207	5		18	16.507	17.569	0.25	A572-65	1.000
7	70.207 - 65.207	5		18	17.569	18.630	0.25	A572-65	1.000
8	65.207 - 60.207	5		18	18.630	19.692	0.25	A572-65	1.000
9	60.207 - 59.17	1.037		18	19.692	19.912	0.25	A572-65	1.000
10	59.17 - 58.9	0.27		18	19.912	19.970	0.5125	A572-65	0.921
11	58.9 - 58.75	0.15		18	19.970	20.001	0.5125	A572-65	0.920
12	58.75 - 54	4.75		18	20.001	21.010	0.5	A572-65	0.921
13	54 - 53.75	0.25		18	21.010	21.063	0.5125	A572-65	1.085
14	53.75 - 52.91	0.84		18	21.063	21.241	0.5	A572-65	1.106
15	52.91 - 52.66	0.25		18	21.241	21.294	0.675	A572-65	0.927
16	52.66 - 52.17	0.49		18	21.294	21.399	0.675	A572-65	0.924
17	52.17 - 51.92	0.25		18	21.399	21.452	0.525	A572-65	1.049
18	51.92 - 48.704	6.633	3.417	18	21.452	22.860	0.5125	A572-65	1.055
19	48.704 - 44.287	4.417		18	21.634	22.575	0.5625	A572-65	1.064
20	44.287 - 39.287	5		18	22.575	23.639	0.55	A572-65	1.064
21	39.287 - 34.287	5		18	23.639	24.703	0.5375	A572-65	1.066
22	34.287 - 33.5	0.787		18	24.703	24.870	0.525	A572-65	1.087
23	33.5 - 33.25	0.25		18	24.870	24.923	0.8375	A572-65	0.971
24	33.25 - 33	0.25		18	24.923	24.977	0.8375	A572-65	0.970
25	33 - 32.75	0.25		18	24.977	25.030	0.8125	A572-65	0.897
26	32.75 - 32	0.75		18	25.030	25.190	0.8	A572-65	0.907
27	32 - 31.75	0.25		18	25.190	25.243	0.5875	A572-65	0.929
28	31.75 - 28.5	3.25		18	25.243	25.934	0.575	A572-65	0.938
29	28.5 - 28.25	0.25		18	25.934	25.988	0.8625	A572-65	0.894
30	28.25 - 27.5	0.75		18	25.988	26.147	0.85	A572-65	0.903
31	27.5 - 27.25	0.25		18	26.147	26.200	0.575	A572-65	0.934
32	27.25 - 22.25	5		18	26.200	27.265	0.5625	A572-65	0.938
33	22.25 - 18	4.25		18	27.265	28.169	0.55	A572-65	0.946
34	18 - 17.75	0.25		18	28.169	28.222	0.5625	A572-65	1.052
35	17.75 - 15.45	2.3		18	28.222	28.712	0.425	A572-65	1.217
36	15.45 - 15.2	0.25		18	28.712	28.765	0.6875	A572-65	0.954
37	15.2 - 13.41	1.79		18	28.765	29.146	0.675	A572-65	0.965
38	13.41 - 13.16	0.25		18	29.146	29.199	0.5625	A572-65	1.035
39	13.16 - 8.16	5		18	29.199	30.263	0.55	A572-65	1.040
40	8.16 - 6.5	1.66		18	30.263	30.617	0.55	A572-65	1.040
41	6.5 - 6.25	0.25		18	30.617	30.670	0.6625	A572-65	0.957
41	6.25 - 6.25	1.8		18	30.617	30.670	0.65	A572-65 A572-65	0.957
42		0.25		18	31.053	31.106	0.5125	A572-65	0.980
44	4.45 - 4.2 4.2 - 0	4.2		18	31.053	32.000	0.5125	A572-65 A572-65	0.980

TNX Section Forces

				NX Outpu	IT
	Section H	eight (ft)	P _u (K)	M _{ux} (kip- ft)	V _u (K)
1	98 -	93	3.52	15.61	4.10
2	93 -	88	6.00	40.74	6.96
3	88 -	85.207	6.14	60.31	7.06
4	85.207 -	80.207	6.53	96.11	7.26
5	80.207 -	75.207	6.88	132.84	7.44
6	75.207 -	70.207	10.32	192.08	11.24
7	70.207 -	65.207	13.76	256.73	15.91
8	65.207 -		14.39	337.11	16.27
9	60.207 -		14.52	354.01	16.35
10	59.17 -		14.58	358.42	16.36
11	58.9 -	58.75	14.61	360.87	16.37
12	58.75 -		15.41	439.70	16.83
13	54 -		15.47	443.91	16.85
14	53.75 -	02.01	15.63	458.10	16.94
15	52.91 -		15.69	462.33	16.96
16	52.66 -	J2.11,	15.79	470.66	17.01
17	52.17 -		15.93	474.93	17.11
18	51.92 -	48.704	16.57	530.44	17.43
19	48.704 -	44.287	21.12	618.33	20.54
20	44.287 -	39.287	22.28	722.09	21.00
21	39.287 -	34.287	23.46	828.12	21.44
22	34.287 -	33.5	23.66	845.01	21.51
23	33.5 -	33.25	23.74	850.39	21.53
24	33.25 -	33	23.82	855.77	21.55
25	33 -	32.75	23.89	861.16	21.58
26	32.75 -	32	24.10	877.37	21.66
27	32 -	31.75	24.16	882.78	21.67
28	31.75 -	28.5	24.92	953.65	21.96
29	28.5 -	28.25	25.01	959.13	21.96
30	28.25 -	27.5	25.23	975.62	22.02
31	27.5 -	27.25	25.30	981.13	22.03
32	27.25 -	22.25	26.50	1091.73	22.23
33	22.25 -	18	27.56	1186.49	22.40
34	18 -	17.75	27.64	1192.08	22.40
35	17.75 -	15.45	28.22	1243.77	22.57
36	15.45 -	15.2	28.31	1249.41	22.57
37	15.2 -	13.41	28.83	1289.93	22.74
38	13.41 -	13.16	28.92	1295.61	22.74
39	13.16 -	8.16	30.31	1410.19	23.12
40	8.16 -	6.5	30.78	1448.65	23.26
41	6.5 -	6.25	30.88	1454.46	23.25
42	6.25 -	4.45	31.41	1496.44	23.42
43	4.45 -	4.2	31.50	1502.28	23.41
44	4.2 -	0	32.61	1600.84	23.55

Analysis Results

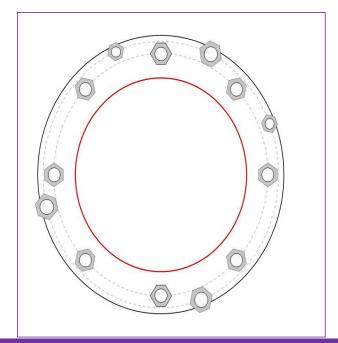
Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fa
98 - 93	Pole	TP13.078x12x0.1875	Pole	10.7%	Pass
93 - 88	Pole	TP14.156x13.078x0.1875	Pole	23.4%	Pass
88 - 85.21	Pole	TP15.28x14.156x0.1875	Pole	31.2%	Pass
85.21 - 80.21	Pole	TP15.445x14.384x0.25	Pole	33.9%	Pass
80.21 - 75.21	Pole	TP16.507x15.445x0.25	Pole	40.7%	Pass
75.21 - 70.21	Pole	TP17.569x16.507x0.25	Pole	52.0%	Pass
70.21 - 65.21	Pole	TP18.63x17.569x0.25	Pole	61.9%	Pass
65.21 - 60.21	Pole	TP19.692x18.63x0.25	Pole	72.2%	Pass
60.21 - 59.17	Pole	TP19.912x19.692x0.25	Pole	74.1%	Pass
59.17 - 58.9	Pole + Reinf.	TP19.97x19.912x0.5125	Reinf. 10 Compression	66.8%	Pass
58.9 - 58.75	Pole + Reinf.	TP20.001x19.97x0.5125	Reinf. 10 Compression	67.1%	Pass
58.75 - 54	Pole + Reinf.	TP21.01x20.001x0.5	Reinf. 10 Compression	75.7%	Pass
54 - 53.75	Pole + Reinf.	TP21.063x21.01x0.5125	Reinf. 10 Compression	67.9%	Pass
53.75 - 52.91	Pole + Reinf.	TP21.241x21.063x0.5	Reinf. 10 Compression	69.2%	Pass
52.91 - 52.66	Pole + Reinf.	TP21.294x21.241x0.675	Reinf. 8 Compression	66.8%	Pass
52.66 - 52.17	Pole + Reinf.	TP21.399x21.294x0.675	Reinf. 8 Compression	67.6%	Pass
52.17 - 51.92	Pole + Reinf.	TP21.452x21.399x0.525	Reinf. 9 Compression	72.3%	Pass
51.92 - 48.7	Pole + Reinf.	TP22.86x21.452x0.5125	Reinf 9 Compression	77.1%	Pass
48.7 - 44.29	Pole + Reinf.	TP22,575x21,634x0,5625	Reinf, 7 Compression	76,2%	Pass
44.29 - 39.29	Pole + Reinf.	TP23,639x22,575x0,55	Reinf, 7 Compression	82.7%	Pass
39.29 - 34.29	Pole + Reinf	TP24.703x23.639x0.5375	Reinf. 7 Compression	88.3%	Pass
34.29 - 33.5	Pole + Reinf.	TP24.87x24.703x0.525	Reinf. 7 Compression	89.2%	Pass
33.5 - 33.25	Pole + Reinf.	TP24.923x24.87x0.8375	Reinf. 7 Compression	60.4%	Pass
33.25 - 33	Pole + Reinf.	TP24.977x24.923x0.8375	Reinf. 7 Compression	60.6%	Pass
33 - 32.75	Pole + Reinf.	TP25.03x24.977x0.8125	Reinf. 7 Compression	65.8%	Pass
32.75 - 32	Pole + Reinf.	TP25.19x25.03x0.8	Reinf. 7 Compression	66.4%	Pass
32 - 31.75	Pole + Reinf.	TP25.243x25.19x0.5875	Reinf. 6 Tension Rupture	80.3%	Pass
31.75 - 28.5	Pole + Reinf.	TP25.934x25.243x0.575	Reinf. 6 Tension Rupture	83.1%	Pass
			· ·		_
28.5 - 28.25	Pole + Reinf	TP25.988x25.934x0.8625	Reinf, 6 Tension Rupture	57.9%	Pass
28.25 - 27.5	Pole + Reinf.	TP26.147x25.988x0.85	Reinf, 6 Tension Rupture	58.4%	Pass
27.5 - 27.25	Pole + Reinf	TP26.2x26.147x0.575	Reinf. 5 Tension Rupture	84.1%	Pass
27.25 - 22.25	Pole + Reinf	TP27.265x26.2x0.5625	Reinf. 5 Tension Rupture	87.9%	Pass
22.25 - 18	Pole + Reinf	TP28.169x27.265x0.55	Reinf. 5 Tension Rupture	90.6%	Pass
18 - 17.75	Pole + Reinf.	TP28.222x28.169x0.5625	Reinf. 5 Tension Rupture	83.2%	Pass
17.75 - 15.45	Pole + Reinf.	TP28.712x28.222x0.425	Pole	84.2%	Pass
15.45 - 15.2	Pole + Reinf.	TP28.765x28.712x0.6875	Reinf. 3 Tension Rupture	82.7%	Pass
15.2 - 13.41	Pole + Reinf.	TP29.146x28.765x0.675	Reinf. 3 Tension Rupture	83.7%	Pass
13.41 - 13.16	Pole + Reinf.	TP29.199x29.146x0.5625	Reinf. 4 Tension Rupture	87.3%	Pass
13.16 - 8.16	Pole + Reinf.	TP30.263x29.199x0.55	Reinf. 4 Tension Rupture	89.8%	Pass
8.16 - 6.5	Pole + Reinf.	TP30.617x30.263x0.55	Reinf. 4 Tension Rupture	90.6%	Pass
6.5 - 6.25	Pole + Reinf.	TP30.67x30.617x0.6625	Reinf. 3 Tension Rupture	87.2%	Pass
6.25 - 4.45	Pole + Reinf.	TP31.053x30.67x0.65	Reinf. 3 Tension Rupture	88.0%	Pass
4.45 - 4.2	Pole + Reinf.	TP31.106x31.053x0.5125	Reinf. 1 Tension Rupture	89.3%	Pass
4.2 - 0	Pole + Reinf.	TP32x31.106x0.5	Reinf. 2 Tension Rupture	91.0%	Pass
				Summary	
			Pole	84.2%	Pass
			Reinforcement	91.0%	Pass
			Overall	91.0%	Pass

Additional Calculations

Section	Mom	ent of Inerti	a (in ⁴)		Area (in²)							% Ca	pacity*						
Elevation (ft)	Pole	Reinf.	Total	Pole	Reinf.	Total	Pole	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12
98 - 93	161	n/a	161	7.67	n/a	7.67	10.7%												
93 - 88	205	n/a	205	8.31	n/a	8.31	23.4%												
88 - 85.21	233	n/a	233	8.67	n/a	8.67	31.2%												
85.21 - 80.21	352	n/a	352	12.06	n/a	12.06	33.9%												
80.21 - 75.21	431	n/a	431	12.90	n/a	12.90	40.7%												
75.21 - 70.21	521	n/a	521	13.74	n/a	13.74	52.0%												
70.21 - 65.21	622	n/a	622	14.58	n/a	14.58	61.9%												
65.21 - 60.21	736	n/a	736	15.43	n/a	15.43	72.2%												
60.21 - 59.17	762	n/a	762	15.60	n/a	15.60	74.1%												
59.17 - 58.9	768	754	1522	15.65	13.50	29.15	37.1%								66.8%		66.8%		
58.9 - 58.75	772	756	1528	15.67	13.50	29.17	37.3%								67.1%		67.1%		
58.75 - 54	897	829	1726	16.47	13.50	29.97	42.2%								75.7%		75.7%		
54 - 53.75	905	864	1769	16.51	19.75	36.26	42.8%								67.9%		67.9%		44.6%
53.75 - 52.91	929	877	1806	16.66	19.75	36.41	43.6%								69.2%		69.2%		45.5%
52.91 - 52.66	1003	1447	2449	16.70	24.25	40.95	37.9%								66.8%	53.5%	50.0%		45.9%
52.66 - 52.17	1018	1460	2478	16.78	24.25	41.03	38.3%								67.6%	54.1%	50.5%		46.4%
52.17 - 51.92	958	956	1914	16.82	19.75	36.57	43.4%								68.4%	72.3%			50.5%
51.92 - 48.7	1054	1013	2067	17.36	19.75	37.11	46.3%								72.9%	77.1%			54.0%
48.7 - 44.29	1387	1008	2395	22.08	19.75	41.83	48.1%							76.2%	76.2%				52.5%
44.29 - 39.29	1595	1099	2694	23.14	19.75	42.89	52.2%							82.7%	82.7%				57.4%
39.29 - 34.29	1823	1194	3017	24.19	19.75	43.94	55.8%							88.3%	88.3%				61.9%
34.29 - 33.5	1861	1209	3070	24.36	19.75	44.11	56.3%							89.2%	89.2%				62.5%
33.5 - 33.25	1872	2805	4677	24.41	37.75	62.16	37.4%						58.0%	60.4%	60.4%				46.8%
33.25 - 33	1885	2816	4701	24.46	37.75	62.21	37.5%						58.2%	60.6%	60.6%				47.0%
33 - 32.75	1892	2708	4599	24.52	31.50	56.02	36.9%						59.4%	65.8%	65.8%				
32.75 - 32	1929	2740	4669	24.67	31.50	56.17	37.2%						60.0%	66.4%	66.4%				
32 - 31.75	1941	1577	3518	24.73	18.00	42.73	49.8%						80.3%						
31.75 - 28.5	2107	1660	3767	25.41	18.00	43.41	51.6%						83.1%						
28.5 - 28.25	2120	3333	5453	25.47	36.00	61.47	35.9%		57.9%	57.9%		57.9%	57.9%						
28.25 - 27.5	2160	3372	5532	25.62	36.00	61.62	36.2%		58.4%	58.4%		58.4%	58.4%						
27.5 - 27.25	2173	1692	3866	25.68	18.00	43.68	52.2%		84.1%	84.1%		84.1%							
27.25 - 22.25	2453	1825	4278	26.73	18.00	44.73	54.6%		87.9%	87.9%		87.9%							
22.25 - 18	2708	1942	4650	27.63	18.00	45.63	56.4%		90.6%	90.6%		90.6%							
18 - 17.75	2729	2035	4765	27.68	24.25	51.93	57.7%		83.2%	81.1%		83.2%						67.9%	
17.75 - 15.45	3303	945	4247	28.17	18.25	46.42	84.2%		83.9%	J /6		83.9%						83.3%	
15.45 - 15.2	2998	3180	6178	28.22	30.25	58.47	52.4%		77.6%	82.7%	66.0%	62.9%						69.1%	
15.2 - 13.41	3118	3262	6380	28.60	30.25	58.85	53.0%		78.5%	83.7%	66.8%	63.8%						70.0%	
13.41 - 13.16	3024	2280	5304	28.65	24.25	52.90	57.4%		80.9%	84.5%	87.3%	30.0 /6						76.1%	
13.16 - 8.16	3371	2441	5812	29.71	24.25	53.96	59.2%		83.3%	87.0%	89.8%							78.5%	
8.16 - 6.5	3492	2496	5987	30.06	24.25	54.31	59.2 %		84.1%	87.7%	90.6%							79.3%	
6.5 - 6.25	3632	3601	7233	30.00	30.25	60.36	55.6%	66.9%	81.9%	87.2%	70.0%							73.3%	
6.25 - 4.45	3769	3689	7458	30.49	30.25	60.74	56,3%	67.6%	82.7%	88.0%	70.0%							74.1%	
4.45 - 4.2	3716	2201	5918	30.49	18.25	48.79	68,9%	89.3%	89.3%	00.0%	10.1%							88.6%	
4.45 - 4.2	4047	2326	6373	30.54	18.25	48.79	70.5%	91.0%											
4.2 - 0	4047	2326	63/3	31.43	18.25	49.68	∥ /U.5%	91.0%	91.0%	1				1	1	l l	1	90.2%	

Note: Section capacity checked using 5 degree increments.
Rating per TIA-222-H Section 15.5.

Monopole Base Plate Connection



Site Info	
BU#	876399
Site Name	
Order#	556577 rev#3

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	See Custom Sheet
I _{ar} (in)	See Custom Sheet

Applied Loads	
Moment (kip-ft)	1600.84
Axial Force (kips)	32.61
Shear Force (kips)	23.55

^{*}TIA-222-H Section 15.5 Applied

Connection Properties

Anchor Rod Data GROUP 1: (8) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 40" BC GROUP 2: (3) 2-1/2" ø bolts (Williams N; Fy=127.7 ksi, Fu=125 ksi) on 44" BC pos. (deg): 65, 194, 290

GROUP 3: (2) 1-3/4" ø bolts (A193 Gr. B7 N; Fy=105 ksi, Fu=125 ksi) on 44" BC

Base Plate Data

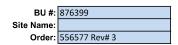
46" OD x 1.5" Plate (A572-60; Fy=60 ksi, Fu=75 ksi)

Stiffener Data

N/A

Pole Dat

32" x 0.3125" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)


Analysis Results

Anchor Rod Summary		(units of kips, kip-in)
GROUP 1:		
Pu_t = 147.31	φPn_t = 243.75	Stress Rating
Vu = 2.94	φVn = 149.1	57.6%
Mu = n/a	φMn = n/a	Pass
GROUP 2:		
Pu_t = 194.96	φPn_t = 375	Stress Rating
Vu = 0	φVn = 230.1	49.5%
Mu = n/a	φMn = n/a	Pass
GROUP 3:		
Pu_t = 88.62	φPn_t = 178.13	Stress Rating
Vu = 0	φVn = 112.75	47.4%
Mu = n/a	φMn = n/a	Pass
Base Plate Summary		
Max Stress (ksi):	53	(Flexural)
Allowable Stress (ksi):	54	
Stress Rating:	93.5%	Pass

CCIplate - Version 4.1.2 Analysis Date: 9/2/2021

Pile Foundation

Checks the capacity of pile foundation configurations for monopoles or self-support towers with individual foundations in Rev. F, G, and H.

Tower Type: Monopole
TIA Revision: H

Factored Design Reactions At Base		
Moment, M:	1601	ft-kips
Axial, Pu:	33	kips
Shear, Sc:	24	kips
Load Eccentricity, Ecc:	0	in
Bolt Circle / Bearing Plate Width, BC:	40	in

Pile Propertie	s	
Pile Shape:	Round	
Pile Material:	Steel	
Length of Pile, Lpile:	32	ft
Pile Diameter:	1.8	in
Pile (Soil) Capacity Given?	Yes	
Steel Grade, Fy:	150	ksi
Rebar Quantity, Pquan:		

Pile Group		
Group Configuration:	Rectangular	
Number of Columns, Nx:	2	
Number of Rows, Ny:	2	
Column Spacing, Dx:	120	in
Row Spacing, Dy:	120	in
Orientation of Neutral Axis, θ:	0	deg
Group Efficiency Given in Geotech?	No	

Program Calculated Group Efficiency, Eg: 1.00

1 Togram Galculated Group Emolency, Eg. 1.00		
Pile Cap		
Сар Туре:	Block	
Depth to Bottom of Block, D:	3.00	ft
Thickness of Block, T:	3.00	ft
Block Width, Wx:	14.00	ft
Block Length, Wy:	14.00	ft
Pad Rebar Size (Bot.), Spad:	8	
Pad Rebar Quantity (X-direction) (Bot.), Mpad:	15	
Pad Rebar Quantity (Y-direction) (Bot.), Mpad_y:	15	

Material Properties		
Rebar Grade, Fy:	60	ksi
Concrete Strength, Fc:	4	ksi
Clear Cover, cc:	3	in

Soil Properties		
Groundwater Depth, GW:	99.00	ft
Soil Unit Weight:	105	pcf
Cohesion, Co:	0	ksf
Friction Angle, φ:	0	deg
Neglected Depth, ND:	2	ft
Negative Friction Force (per pile), Sw:	0	kips
SPT Blow Count, Nblows:	10	

|--|

	sign Checks			
	Capacity	Demand	Rating*	Check
ILE CHECKS				
Soil Compression (kips per pile):	190.00	152.92	76.7%	Pass
Soil Uplift (kips per pile):	190.00	92.03	46.1%	Pass
Pile Tensile Strength (kips):	203.00	92.03	43.2%	Pass
AD CHECKS				
One-Way Shear (kips):	502.04	183.67	34.8%	Pass
Pad Shear - Comp Two-Way (ksi):	0.164	0.004	2.2%	Pass
Flexural Two-Way (Comp) (kip*ft):	2062.85	0.00	0.0%	Pass
Pad Flexure (kip*ft):	1646,55	997,74	57.7%	Pass

Structural Rating: 57.7%
Soil Rating: 76.7%

Ultimate Pile Capacities				
Ultimate Compression, Cn:	253.3333	kips		
Ultimate Tension, Tn:	253.3333	kips		

Per CCIsites Doc. # 8420875

Version 2.2.1 Modified

Address:

No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-16 Elevation: 255.76 ft (NAVD 88)

Risk Category: || Latitude: 41.941553

Soil Class: D - Stiff Soil Longitude: -72.73868

Wind

Results:

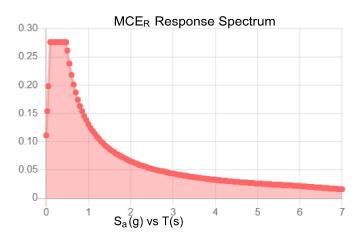
Wind Speed: 115 Vmph
10-year MRI 75 Vmph
25-year MRI 83 Vmph
50-year MRI 89 Vmph
100-year MRI 96 Vmph

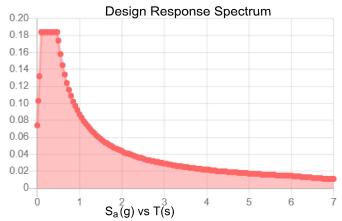
Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1—CC.2-4, and Section 26.5.2

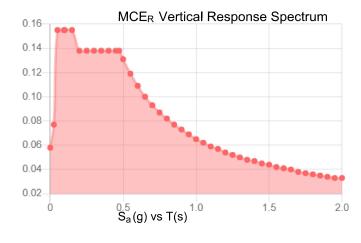
Date Accessed: Thu Sep 02 2021

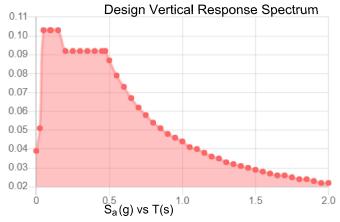
Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.


Seismic


Site Soil	Class:	D - Stiff Soil


Results:


S _s :	0.173	S_{D1} :	0.087
S_1 :	0.054	T _L :	6
F _a :	1.6	PGA :	0.091
F_{ν} :	2.4	PGA _M :	0.145
S _{MS} :	0.276	F _{PGA} :	1.6
S _{M1} :	0.131	l _e :	1
S _{DS} :	0.184	C _v :	0.7

Seismic Design Category B

Data Accessed:

Date Source:

Thu Sep 02 2021 USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness: 1.50 in.

Concurrent Temperature: 5 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed: Thu Sep 02 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Date: September 14, 2021

Jacob Montoya Crown Castle 2055 S. Stearman Drive Chandler, AZ 85286 (480) 298-9641 INFINIGY8

the solutions are endless Infinigy Engineering, PLLC 1033 Watervliet Shaker Road

Albany, NY 12205 518-690-0790 structural@infinigy.com

Subject: Mount Analysis Report

Carrier Designation: Dish Network 5G

Carrier Site Number: BOBDL00100A Carrier Site Name: CT-CCI-T-876399

Crown Castle Designation: Crown Castle BU Number: 876399

Crown Castle Site Name: (F) E. GRANBY 4Q2000 / GALASSO

Crown Castle JDE Job Number: 650083 **Crown Castle Order Number:** 556577 Rev. 3

Engineering Firm Designation: Infinigy Engineering, PLLC Report Designation: 1039-Z0001-B

Site Data: 60 South Main Street, East Granby, Hartford County, CT, 06026

Latitude 41°56'29.59", Longitude -72°44'19.25"

Structure Information: Tower Height & Type: 98.0 ft Monopole

Mount Elevation: 48.0 ft
Mount Type: 8.0 ft Platform

Dear Jacob Montoya,

Infinigy Engineering, PLLC is pleased to submit this "Mount Analysis Report" to determine the structural integrity of Dish Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform Sufficient - 33.6% *Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis has been performed in accordance with the 2015 International Building Code based upon an ultimate 3-second gust wind speed of 115 mph. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Andrew Gloriani, E.I.T.

Respectfully Submitted by: Emmanuel Poulin, P.E. 518-690-0790 structural@infinigy.com CT PE License No. 22947

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

1) INTRODUCTION

This is a proposed 3 sector 8.0 ft Platform, designed by Commscope.

2) ANALYSIS CRITERIA

Building Code: 2015 IBC TIA-222 Revision: TIA-222-H

Risk Category:

Ultimate Wind Speed: 115 mph

Exposure Category: Topographic Factor at Base: 1.0 **Topographic Factor at Mount:** 1.0 Ice Thickness: 2.0 in Wind Speed with Ice: 50 mph Seismic S_s: 0.177 Seismic S₁: 0.065 **Live Loading Wind Speed:** 30 mph Man Live Load at Mid/End-Points: 250 lb Man Live Load at Mount Pipes: 500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
		3	JMA Wireless	MX08FRO665-21	0.0 ft Diatform
48.0	48.0	3	Fujitsu	TA08025-B604	8.0 ft Platform
40.0	40.0	3	Fujitsu	TA08025-B605	[MC-PK8- DSH]
		1	Raycap	RDIDC-9181-PF-48	ן וחטט

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Crown Application	Dish Network Application	556577 Rev. 3	CCI Sites
Mount Manufacturer Drawings	Commscope	Document No. MC-PK8-DSH	Infinigy

3.1) Analysis Method

RISA-3D (Version 19.0.4), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

Infinigy Mount Analysis Tool V2.1.6, a tool internally developed by Infinigy, was used to calculate wind loading on all appurtenances, dishes and mount members for various loading cases. Selected output from the analysis is included in Appendix B "Software Input Calculations".

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 Tower Mount Analysis (Revision B).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate

HSS (Rectangular)

Pipe

ASTM A36 (GR 36)

ASTM A500 (GR B-46)

ASTM A53 (GR 35)

ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Infinigy Engineering, PLLC should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Platform, All Sectors)

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
	Mount Pipe(s)	MP1		32.9	Pass
1.2	Horizontal(s)	MH3		9.2	Pass
	Standoff(s)	MS3	48.0	26.3	Pass
1, 2	Handrail(s)	MR1	46.0	12.5	Pass
	Support Channel(s)	M53		33.6	Pass
	Mount Connection(s)	-		21.0	Pass

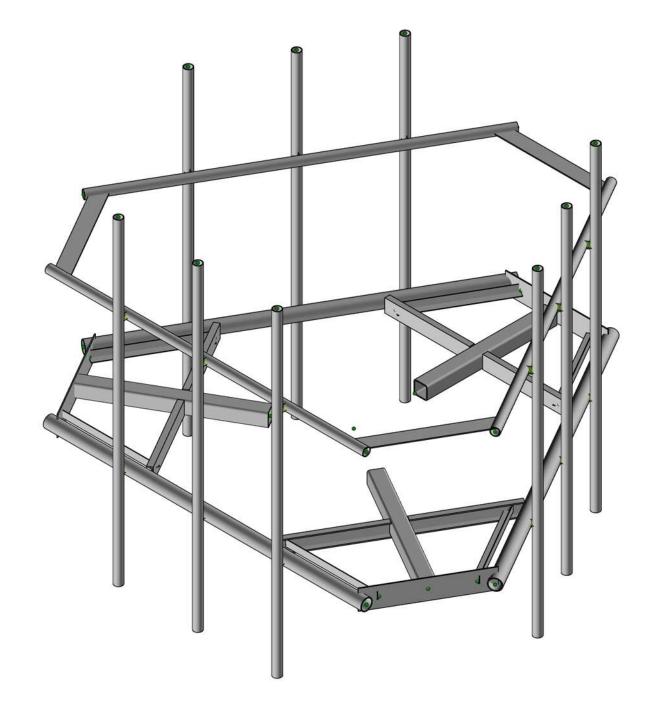
Structure Rating (max from all components) =	33.6%
--	-------

Notes:

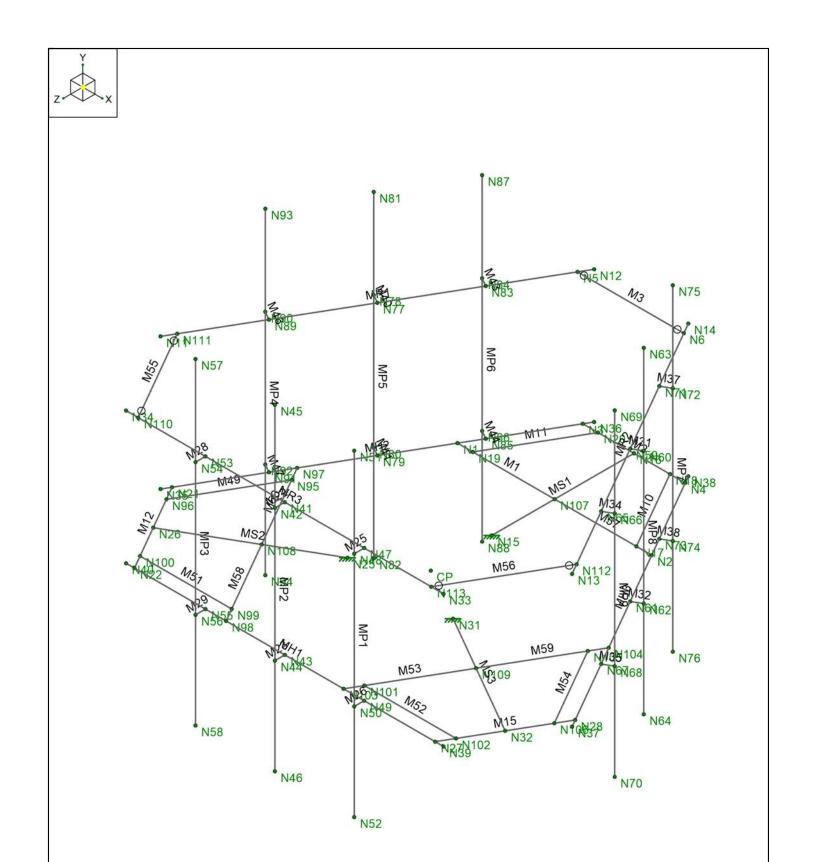
4.1) Recommendations

The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed.

1. Commscope MC-PK8-DSH.


No structural modifications are required at this time, provided that the above-listed changes are implemented.

¹⁾ See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.


²⁾ See additional documentation in "Appendix D - Additional Calculations" for detailed mount connection calculations.

APPENDIX A WIRE FRAME AND RENDERED MODELS

Infinigy Engineering, PLLC	876399	Render
AG		Sep 14, 2021
1039-Z0001-B		876399_loaded.r3d

Infinigy Engineering, PLLC	876399	Wireframe
AG		Sep 14, 2021
1039-Z0001-B		876399_loaded.r3d

APPENDIX B SOFTWARE INPUT CALCULATIONS

Program Inputs

ORMATION	Crown Castle	DISH Network	Andrew Gloriani
PROJECT INFORMATION	Client:	Carrier:	Engineer:

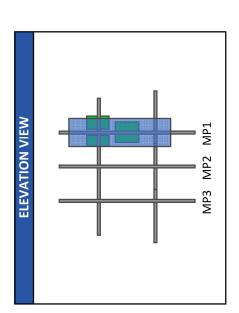
Ground Elevation: 255.76 ft *Rev H

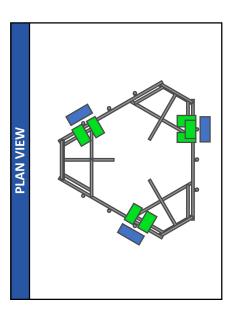
ı	Platform		ft	ft	
ORMATION	Plat	3	48.00	98.00	
MOUNT INFORMATION	Mount Type:	Num Sectors:	Centerline AGL:	Tower Height AGL:	

HIC DATA	N/A	N/A ft	N/A ft	N/A ft
TOPOGRAPHIC DATA	Topo Feature:	Slope Distance:	Crest Distance:	Crest Height:

FACT	FACTORS	
Directionality Fact. (K _a):	0.950	
Ground Ele. Factor (K _e):	0.991	*Rev H Only
Rooftop Speed-Up (K _s):	1.000	*Rev H Only
Topographic Factor (K _{zt}):	1.000	
Gust Effect Factor (G _h):	1.000	

ARDS	2015 IBC	ТІА-222-Н	ASCE 7-10
ANDA			
CODE STANDARDS	Building Code:	TIA Standard:	ASCE Standard:


WIND AND ICE DATA	ICE DATA	
Ultimate Wind (V_{ult}) :	115	ydw
Design Wind (V):	N/A	hdm
Ice Wind (V _{ice}):	50	ydw
Base Ice Thickness (t _i):	2.0	in
Flat Pressure:	69.114	psf
Round Pressure:	41.468	psf
Ice Wind Pressure:	7.839	psf


SEISMIC DATA	DATA	
Short-Period Accel. (S _s):	0.177	В
1-Second Accel. (S_1) :	0.065	В
Short-Period Design (S _{DS}):	0.189	
1-Second Design (S _{D1}):	0.104	
Short-Period Coeff. (F _a):	1.600	
1-Second Coeff. (F _v):	2.400	
Amplification Factor (A _s):	3.000	
Response Mod. Coeff. (R):	2.000	

Infinigy Load Calculator V2.1.6

Program Inputs

U	2
_	-
2	Ź
1	_
1	3
Ċ	σ 5
-	
_	2
ď	ō
7	<u> </u>
7	σ
(2
₹	_
έ	ú
۵	Ξ
7	=

	Member (g sector)	MP1	MP1	MP1	MP1										
	Weight Seismic F	23.36	18.10	21.24	6.19										
	Weight (Ibs)	82.50	63.90	75.00	21.85										
	Wind F _x	99.83	32.13	36.98	36.33										
	Wind F _z	249.12	61.07	61.07	62.57										
	$EPA_T(ft^2)$	3.21	1.03	1.19	1.17										
ORMATION	EPA _N (ft²)	8.01	1.96	1.96	2.01										
APPURTENANCE INFORMATION	d _z (psf)	34.56	34.56	34.56	34.56										
APPURT	K _a	0.90	0.90	0.90	06.0										
	Qty.	3	3	က	П										
	Elevation	48.0	48.0	48.0	48.0										
	Appurtenance Name	JMA WIRELESS MX08FRO665-21	FUJITSU TA08025-B604	FUJITSU TA08025-B605	RAYCAP RDIDC-9181-PF-48										

Address:

No Address at This Location

ASCE 7 Hazards Report

ASCE/SEI 7-10 Elevation: 255.76 ft (NAVD 88) Standard:

Risk Category: □ 41.941553 Latitude:

Soil Class: D - Stiff Soil Longitude: -72.738681

Wind

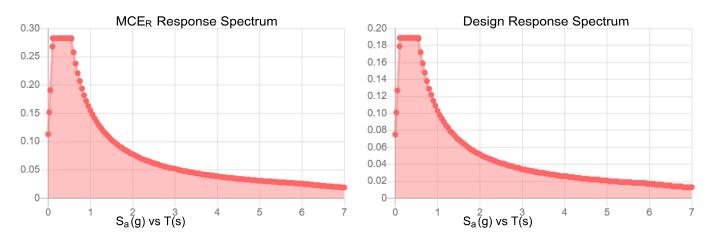
115 Vmph per the State of Connecticut Results:

allowing ASCE 7-16 wind speed values Wind Speed:

10-year MRI 76 Vmph 25-year MRI 86 Vmph 50-year MRI 91 Vmph 100-year MRI 98 Vmph

MS65/9E13-202 Fig. 26.5-1A and Figs. CC-1-CC-4, and Section 26.5.2, Date & ocessed: incorporating errata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _S :	0.177	S _{DS} :	0.189	
S_1 :	0.065	S _{D1} :	0.103	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA:	0.087	
S_{MS} :	0.283	PGA _M :	0.14	
S _{M1} :	0.155	F _{PGA} :	1.6	
		la ·	1	

Seismic Design Category B

Data Accessed: Mon Sep 13 2021

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating

Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with

ASCE/SEI 7-10 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness: 1.00 in.

Concurrent Temperature: 5 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Mon Sep 13 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Mon Sep 13 2021

APPENDIX C SOFTWARE ANALYSIS OUTPUT

Model Name: 876399

9/14/2021 10:29:38 AM

Checked By : _____

Member Primary Data

		minary Da							
	Label	I Node			Section/Shape	Type	Design List	Material	Design Rule
1	M1	N1	N107	180	Standoff Support		Channel	A36 Gr.36	Typical
2	M2	N3	N4		Corner Plate	Beam	RECT	A36 Gr.36	Typical
3	М3	N5	N6	90	Handrail Plate	Beam	RECT	A36 Gr.36	Typical
4	MR1	N11	N12		Handrail	Beam	Pipe	A53 Gr.B	Typical
5	MR2	N13	N14		Handrail	Beam	Pipe	A53 Gr.B	Typical
6	MS1	N15	N16		Standoff	Beam		A500 Gr.B RECT	Typical
7	M10	N17	N18	270	Grating Angle	Beam	Single Angle		Typical
8	M11	N19	N20		Grating Angle	Beam	Single Angle		Typical
9	M12	N21	N22		Corner Plate	Beam	RECT	A36 Gr.36	Typical
10	MS2	N25	N26		Standoff	Beam		A500 Gr.B RECT	
11	M15	N27	N28		Corner Plate	Beam	RECT	A36 Gr.36	Typical
12	MS3	N31	N32		Standoff	Beam		A500 Gr.B RECT	
13	MR3	N33	N34		Handrail	Beam	Pipe	A53 Gr.B	Typical
14	MH2	N35	N36		Horizontal	Beam	Pipe	A53 Gr.B	Typical
15	MH3	N37	N38		Horizontal	Beam	Pipe	A53 Gr.B	Typical
16	MH1	N39	N40		Horizontal	Beam	Pipe	A53 Gr.B	Typical
17	M22	N41	N42		RIGID	None	None	RIGID	Typical
18	M23	N43	N44		RIGID	None	None	RIGID	Typical
19	MP2	N45	N46		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
20	M25	N47	N48		RIGID	None	None	RIGID	Typical
21	M26	N49	N50		RIGID	None	None	RIGID	Typical
22	MP1	N51	N52		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
23	M28	N53	N54		RIGID	None	None	RIGID	Typical
24	M29	N55	N56		RIGID	None	None	RIGID	Typical
25	MP3	N57	N58		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
26	M31	N59	N60		RIGID	None	None	RIGID	Typical
27	M32	N61	N62		RIGID	None	None	RIGID	Typical
28	MP8	N63	N64		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
29	M34	N65	N66		RIGID	None	None	RIGID	Typical
30	M35	N67	N68		RIGID	None	None	RIGID	Typical
31	MP9	N69	N70		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
32	M37	N71	N72		RIGID	None	None	RIGID	Typical
33	M38	N73	N74		RIGID	None	None	RIGID	Typical
34	MP7	N75	N76		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
35	M40	N77	N78		RIGID	None	None	RIGID	Typical
36	M41	N79	N80		RIGID	None	None	RIGID	Typical
37	MP5	N81	N82		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
38	M43	N83	N84		RIGID	None	None	RIGID	Typical
39	M44	N85	N86		RIGID	None	None	RIGID	Typical
40	MP6	N87	N88		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
41	M46	N89	N90		RIGID	None	None	RIGID	Typical
42	M47	N91	N92		RIGID	None	None	RIGID	Typical
43	MP4	N93	N94		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
44	M49	N95	N96	270	Grating Angle	Beam	Single Angle		Typical
45	M50	N97	N108		Standoff Support		Channel	A36 Gr.36	Typical
46	M51	N99	N100		Grating Angle	Beam	Single Angle	A36 Gr.36	Typical

Model Name: 876399

9/14/2021 10:29:38 AM

Checked By : _____

Member Primary Data (Continued)

	Label	I Node	J Node	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rule
47	M52	N101	N102	270	Grating Angle	Beam	Single Angle	A36 Gr.36	Typical
48	M53	N103	N109		Standoff Support	Beam	Channel	A36 Gr.36	Typical
49	M54	N105	N106		Grating Angle	Beam	Single Angle	A36 Gr.36	Typical
50	M55	N110	N111	90	Handrail Plate	Beam	RECT	A36 Gr.36	Typical
51	M56	N112	N113	90	Handrail Plate	Beam	RECT	A36 Gr.36	Typical
52	M57	N107	N2	180	Standoff Support	Beam	Channel	A36 Gr.36	Typical
53	M58	N108	N98		Standoff Support	Beam	Channel	A36 Gr.36	Typical
54	M59	N109	N104		Standoff Support	Beam	Channel	A36 Gr.36	Typical

Material Take-Off

	Material	Size	Pieces	Length[in]	Weight[LB]
1	General Members				<u> </u>
2	RIGID		18	54	0
3	Total General		18	54	0
4					
5	Hot Rolled Steel				
6	A36 Gr.36	4x0.25	3	96.5	27.354
7	A36 Gr.36	6x0.25	3	93	39.557
8	A36 Gr.36	C4X4.5	6	153.6	58.379
9	A36 Gr.36	L2x2x2	6	166.3	23.151
10	A500 Gr.B RECT	HSS4X4X4	3	125.2	128.729
11	A53 Gr.B	PIPE_2.0	12	1152	333.2
12	A53 Gr.B	PIPE_3.0	3	288	169.05
13	Total HR Steel		36	2074.6	779.42

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Nodal	Point	Distributed	Area(Member)
1	Self Weight	DĽ		-1	_		20		3
2	Wind Load AZI 0	WLZ					40		
3	Wind Load AZI 30	None					40		
4	Wind Load AZI 60	None					40		
5	Wind Load AZI 90	WLX					40		
6	Wind Load AZI 120	None					40		
7	Wind Load AZI 150	None					40		
8	Wind Load AZI 180	None					40		
9	Wind Load AZI 210	None					40		
10	Wind Load AZI 240	None					40		
11	Wind Load AZI 270	None					40		
12	Wind Load AZI 300	None					40		
13	Wind Load AZI 330	None					40		
14	Distr. Wind Load Z	WLZ						54	
15	Distr. Wind Load X	WLX						54	
16	Ice Weight	OL1					20	54	3
17	Ice Wind Load AZI 0	OL2					40		

Model Name: 876399

9/14/2021 10:29:38 AM

Checked By : _____

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Nodal	Point	Distributed	Area(Member)
18	Ice Wind Load AZI 30	None					40		
19	Ice Wind Load AZI 60	None					40		
20	Ice Wind Load AZI 90	OL3					40		
21	Ice Wind Load AZI 120	None					40		
22	Ice Wind Load AZI 150	None					40		
23	Ice Wind Load AZI 180	None					40		
24	Ice Wind Load AZI 210	None					40		
25	Ice Wind Load AZI 240	None					40		
26	Ice Wind Load AZI 270	None					40		
27	Ice Wind Load AZI 300	None					40		
28	Ice Wind Load AZI 330	None					40		
29	Distr. Ice Wind Load Z	OL2						54	
30	Distr. Ice Wind Load X	OL3						54	
31	Seismic Load Z	ELZ			-0.283		20		
32	Seismic Load X	ELX	-0.283				20		
33	Service Live Loads	LL				1			
34	Maintenance Load 1	LL				1			
35	Maintenance Load 2	LL				1			
36	Maintenance Load 3	LL				1			
37	Maintenance Load 4	LL				1			
38	Maintenance Load 5	LL				1			
39	Maintenance Load 6	LL				1			
40	Maintenance Load 7	LL				1			
41	Maintenance Load 8	LL				1			
42	Maintenance Load 9	LL				1			
43	BLC 1 Transient Area Loads	None						18	
44	BLC 16 Transient Area Loads	None						18	

Load Combinations

	Description	Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
1	1.4DL	Yes	Υ	1	1.4								
2	1.2DL + 1WL AZI 0	Yes	Υ	1	1.2	2	1	14	1	15			
3	1.2DL + 1WL AZI 30	Yes	Υ	1	1.2	3	1	14	0.866	15	0.5		
4	1.2DL + 1WL AZI 60	Yes	Υ	1	1.2	4	1	14	0.5	15	0.866		
5	1.2DL + 1WL AZI 90	Yes	Υ	1	1.2	5	1	14		15	1		
6	1.2DL + 1WL AZI 120	Yes	Υ	1	1.2	6	1	14	-0.5	15	0.866		
7	1.2DL + 1WL AZI 150	Yes	Υ	1	1.2	7	1	14	-0.866	15	0.5		
8	1.2DL + 1WL AZI 180	Yes	Υ	1	1.2	8	1	14	-1	15			
9	1.2DL + 1WL AZI 210	Yes	Υ	1	1.2	9	1	14	-0.866	15	-0.5		
10	1.2DL + 1WL AZI 240	Yes	Υ	1	1.2	10	1	14	-0.5	15	-0.866		
11	1.2DL + 1WL AZI 270	Yes	Υ	1	1.2	11	1	14		15	-1		
12	1.2DL + 1WL AZI 300	Yes	Υ	1	1.2	12	1	14	0.5	15	-0.866		
13	1.2DL + 1WL AZI 330	Yes	Υ	1	1.2	13	1	14	0.866	15	-0.5		
14	0.9DL + 1WL AZI 0	Yes	Υ	1	0.9	2	1	14	1	15			
15	0.9DL + 1WL AZI 30	Yes	Υ	1	0.9	3	1	14	0.866	15	0.5		
16	0.9DL + 1WL AZI 60	Yes	Υ	1	0.9	4	1	14	0.5	15	0.866		

Model Name: 876399

9/14/2021 10:29:38 AM

Checked By : _____

Load Combinations (Continued)

	Description	Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
17	0.9DL + 1WL AZI 90	Yes	Υ	1	0.9	5	1	14		15	1		
18	0.9DL + 1WL AZI 120	Yes	Υ	1	0.9	6	1	14	-0.5	15	0.866		
19	0.9DL + 1WL AZI 150	Yes	Υ	1	0.9	7	1	14	-0.866	15	0.5		
20	0.9DL + 1WL AZI 180	Yes	Υ	1	0.9	8	1	14	-1	15			
21	0.9DL + 1WL AZI 210	Yes	Υ	1	0.9	9	1	14	-0.866		-0.5		
22	0.9DL + 1WL AZI 240	Yes	Υ	1	0.9	10	1	14	-0.5	15	-0.866		
23	0.9DL + 1WL AZI 270	Yes	Υ	1	0.9	11	1	14		15	-1		
24	0.9DL + 1WL AZI 300	Yes	Υ	1	0.9	12	1	14	0.5		-0.866		
25	0.9DL + 1WL AZI 330	Yes	Υ	1	0.9	13	1	14	0.866	15	-0.5		
26	1.2D + 1.0Di	Yes	Υ	1	1.2	_16	1						
27	1.2D + 1.0Di +1.0Wi AZI 0	Yes	Υ	1	1.2	16	1	17	1	29	1	30	
28	1.2D + 1.0Di +1.0Wi AZI 30	Yes	Υ	1	1.2	16	1	18	1		0.866		
29	1.2D + 1.0Di +1.0Wi AZI 60	Yes	Υ	1	1.2	16	1	19	1	29	0.5		0.866
30	1.2D + 1.0Di +1.0Wi AZI 90	Yes	Υ	1	1.2	16	1	20	1	29		30	1
31	1.2D + 1.0Di +1.0Wi AZI 120	Yes	Υ	1	1.2	16	1	21	1	29	-0.5		0.866
32	1.2D + 1.0Di +1.0Wi AZI 150	Yes	Υ	1	1.2	16	1	22	1		-0.866		0.5
33	1.2D + 1.0Di +1.0Wi AZI 180	Yes	Υ	1	1.2	16	1	23	1	29	-1	30	
34	1.2D + 1.0Di +1.0Wi AZI 210	Yes	Υ	1	1.2	16	1	24	1		-0.866		
35	1.2D + 1.0Di +1.0Wi AZI 240	Yes	Υ	1	1.2	16	1	25	1	29	-0.5		-0.866
36	1.2D + 1.0Di +1.0Wi AZI 270	Yes	Υ	1	1.2	16	1	26	1	29		30	-1
37	1.2D + 1.0Di +1.0Wi AZI 300	Yes	Υ	1	1.2	16	1	27	1	29	0.5		-0.866
38	1.2D + 1.0Di +1.0Wi AZI 330	Yes	Υ	1	1.2	16	1	28	1	29	0.866	30	-0.5
39	(1.2 + 0.2Sds)DL + 1.0E AZI 0	Yes	Υ	1	1.238	31	1	32					
40	(1.2 + 0.2Sds)DL + 1.0E AZI 30	Yes	Υ	1	1.238		0.866		0.5				
41	(1.2 + 0.2Sds)DL + 1.0E AZI 60	Yes	Υ	1	1.238	31	0.5		0.866				
42	(1.2 + 0.2Sds)DL + 1.0E AZI 90	Yes	Υ	1	1.238	31		32	1				
43	(1.2 + 0.2Sds)DL + 1.0E AZI 120	Yes	Υ	1	1.238	31	-0.5		0.866				
44	(1.2 + 0.2Sds)DL + 1.0E AZI 150	Yes	Υ	1	1.238		-0.866		0.5				
45	(1.2 + 0.2Sds)DL + 1.0E AZI 180	Yes	Υ	1	1.238	31	-1	32					
46	(1.2 + 0.2Sds)DL + 1.0E AZI 210	Yes	Υ	1	1.238		-0.866		-0.5				
47	(1.2 + 0.2Sds)DL + 1.0E AZI 240	Yes	Y	1	1.238	31	-0.5		-0.866				
48	(1.2 + 0.2Sds)DL + 1.0E AZI 270	Yes	Υ	1	1.238	31		32	-1				
49	(1.2 + 0.2Sds)DL + 1.0E AZI 300	Yes	Υ	1	1.238	31	0.5		-0.866				
50	(1.2 + 0.2Sds)DL + 1.0E AZI 330	Yes	Y	1	1.238		0.866		-0.5				
51	(0.9 - 0.2Sds)DL + 1.0E AZI 0	Yes	Y		0.862	31	1	32	0.5				
52	(0.9 - 0.2Sds)DL + 1.0E AZI 30	Yes	Y				0.866						
53	(0.9 - 0.2Sds)DL + 1.0E AZI 60	Yes	Y		0.862		0.5		0.866				
54	(0.9 - 0.2Sds)DL + 1.0E AZI 90	Yes	Y		0.862	_	0.5	32	1				
55	(0.9 - 0.2Sds)DL + 1.0E AZI 120	Yes	Υ		0.862		-0.5	_	0.866				
56	(0.9 - 0.2Sds)DL + 1.0E AZI 150	Yes	Y		0.862		-0.866	_	0.5				
57	(0.9 - 0.2Sds)DL + 1.0E AZI 180	Yes	Y		0.862		-1	32	0.5				
58	(0.9 - 0.2Sds)DL + 1.0E AZI 210	Yes	Y		0.862		-0.866						
59	(0.9 - 0.2Sds)DL + 1.0E AZI 240	Yes	Y		0.862		-0.5		-0.866				
60	(0.9 - 0.2Sds)DL + 1.0E AZI 270	Yes	Y		0.862		0.5	32	-1				
61	(0.9 - 0.2Sds)DL + 1.0E AZI 300	Yes	Y		0.862		0.5		-0.866				
62	(0.9 - 0.2Sds)DL + 1.0E AZI 330	Yes	Υ		U.862	31	0.866	32	-0.5				

Model Name: 876399

9/14/2021 10:29:38 AM

Checked By : _____

Load Combinations (Continued)

Description	Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	FactorBL	CFactor	BLC	Factor
63 1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 0	Yes	Υ	1	1				0.272 15	_	33	1.5
64 1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 30	Yes	Y	1	1		0.272		0.236 15			1.5
65 1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 60	Yes	Υ	1	1		0.272		0.136 15			1.5
66 1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 90	Yes	Υ	1	1		0.272	14		0.272		1.5
67 1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 120	Yes	Υ	1	1	_	0.272		-0.136 15			1.5
68 1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 150	Yes	Υ	1	1		0.272		-0.236 15			1.5
69 1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 180	Yes	Y	1	1		0.272		-0.272 15 -0.236 15		33	1.5
70 1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 210 71 1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 240	Yes	Y	1	1		0.272	_	-0.236 15 -0.136 15			1.5
72 1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 270	Yes	Y	1	1	_	0.272	14		-0.272		1.5
73 1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 300	Yes	Y	1	1		0.272	_	0.136 15		_	1.5
74 1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 330	Yes	Y	1	1		0.272			-0.136		1.5
75 1.2DL + 1.5LL	Yes	Y	1	1.2	33	1.5					
76 1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 0	Yes	Υ	1	1.2	34	1.5	2	0.068 14	0.068	15	
77 1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 30) Yes	Υ	1	1.2	34	1.5	3	0.068 14	0.059	15	0.034
78 1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 60		Υ	_ 1	1.2	34	1.5			0.034		0.059
79 1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 90		Υ	1	1.2	34	1.5		0.068 14			0.068
80 1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 120		Υ	1	1.2	34	1.5	_	0.068 14			
81 1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 150		Y	1	1.2	34	1.5		0.068 14			0.034
82 1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 180		Y	1	1.2	34	1.5		0.068 14			0.024
83 1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 210 84 1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 240		Y	1	1.2	34	1.5 1.5		0.068 14 0.068 14			
85 1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 270		Y	1	1.2	34	1.5	_	0.068 14			-0.039
86 1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 300		Y	1	1.2	34	1.5	_	0.068 14			
87 1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 330		Y	1	1.2	34	1.5	_	0.068 14		_	-0.034
88 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 0		Y	1	1.2	35	1.5			0.068		
89 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 30		Υ	1	1.2	35	1.5		0.068 14			0.034
90 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 60) Yes	Y	1	1.2	35	1.5	4	0.068 14	0.034	15	0.059
91 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 90		Υ	1	1.2	35	1.5		0.068 14			0.068
92 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 120		Υ	1	1.2	35	1.5		0.068 14			
93 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 150	_	Y	1	1.2	35	1.5	_	0.068 14		_	0.034
94 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 180		Υ	1	1.2	35	1.5		0.068 14			0.004
95 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 210 96 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 240		Y	1	1.2	35 35	1.5 1.5		0.068 14 0.068 14			
96 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 240 97 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 270		Y	1	1.2	35	1.5		0.068 14		_	-0.039
98 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 300		Y	1	1.2	35	1.5	_	0.068 14			
99 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 330		Y	1	1.2	35	1.5		0.068 14			
100 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 0		Y	1	1.2	36	1.5		0.068 14			
101 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 30		Y	1	1.2	36	1.5		0.068 14		_	0.034
102 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 60		Y	1	1.2	36	1.5		0.068 14			
103 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 90		Υ	1	1.2	36	1.5	5	0.068 14		15	0.068
104 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 120		Υ	1	1.2	36	1.5		0.068 14			
105 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 150		Υ	1	1.2	36	1.5		0.068 14			0.034
106 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 180		Y	1	1.2	36	1.5		0.068 14			0.00
107 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 210		Y	1	1.2	36	1.5		0.068 14			
108 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 240	Yes	Y	1	1.2	36	1.5	10	0.068 14	-0.034	15	<u>-0.059</u>

Model Name: 876399

9/14/2021 10:29:38 AM

Checked By : _____

Load Combinations (Continued)

Description	Solve	P-Delta	BLC	Factor	BLC	Factor	BLCFactorBLC	Factor	BLC	Factor
109 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 270		Υ	1	1.2	36	1.5	11 0.068 14		_	-0.068
110 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 300	Yes	Υ	1	1.2	36	1.5	12 0.068 14	0.034	15	-0.059
111 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 330	Yes	Υ	1	1.2	36	1.5	13 0.068 14	0.059	15	-0.034
112 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 0	Yes	Υ	1	1.2	37	1.5	2 0.068 14	0.068	15	
113 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 30	Yes	Υ	1	1.2	37	1.5	3 0.068 14	0.059	15	0.034
114 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 60		Υ	1	1.2	37	1.5	4 0.068 14	0.034	15	0.059
115 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 90	Yes	Υ	1	1.2	37	1.5	5 0.068 14			0.068
116 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 120	Yes	Υ	1	1.2	37	1.5		-0.034		
117 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 150	Yes	Υ	1	1.2	37	1.5	7 0.068 14			0.034
118 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 180	Yes	Υ	1	1.2	37	1.5		-0.068	_	
119 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 210	Yes	Υ	1	1.2	37	1.5	9 0.068 14			_
120 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 240	Yes	Υ	1	1.2	37	1.5		-0.034	_	
121 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 270	Yes	Υ	1	1.2	37	1.5	11 0.068 14		_	-0.068
122 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 300	Yes	Υ	1	1.2	37	1.5	12 0.068 14		_	-0.059
123 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 330		Υ	1	1.2	37	1.5	13 0.068 14			-0.034
124 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 0	Yes	< <	1	1.2	38	1.5	2 0.068 14		15	0.004
125 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 30		Y	1	1.2	38	1.5	3 0.068 14			
126 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 60		Υ	1	1.2	38	1.5	4 0.068 14	0.034		0.059
127 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 90		Y	1	1.2	38	1.5	5 0.068 14	0.024		0.068
128 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 120	Yes	Υ	1	1.2	38	1.5	6 0.068 14			
129 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 150	Yes	Y	1	1.2	38	1.5		-0.059		0.034
130 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 180	Yes	Y	1	1.2	38	1.5	8 0.068 14			0.024
131 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 210 132 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 240	Yes	Y	1	1.2	38 38	1.5	9 0.068 14	-0.039		
133 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 240	Yes	Y	1	1.2	38	1.5 1.5	10 0.068 14 11 0.068 14	-0.034	_	-0.039
133 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 270	Yes	Y	1	1.2	38	1.5	12 0.068 14	0.024		-0.059
135 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 330	Yes	Y	1	1.2	38	1.5				-0.039
136 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 0	Yes	Y	1	1.2	39	1.5		0.039	_	-0.034
137 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 30		Υ	1	1.2	39	1.5		0.059		0.034
138 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 60		Y	1	1.2	39	1.5				0.059
139 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 90		Y	1	1.2	39	1.5	5 0.068 14	0.004	_	0.068
140 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 120		Y	1	1.2	39	1.5		-0.034		
141 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 150		Y	1	1.2	39	1.5		-0.059		
142 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 180		Y	1	1.2	39	1.5		-0.068		0.00
143 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 210		Y	1	1.2	39	1.5		-0.059		-0.034
144 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 240		Y	1	1.2	39	1.5	10 0.068 14			
145 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 270		Υ	1	1.2	39	1.5	11 0.068 14			-0.068
146 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 300		Y	1	1.2	39	1.5	12 0.068 14			
147 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 330		Υ	1	1.2	39	1.5	13 0.068 14			
148 1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AZI 0		Υ	1	1.2	40	1.5	2 0.068 14			
149 1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AZI 30		Υ	1	1.2	40	1.5	3 0.068 14			0.034
150 1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AZI 60		Υ	1	1.2	40	1.5	4 0.068 14			
151 1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AZI 90		Υ	1	1.2	40	1.5	5 0.068 14			0.068
152 1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AZI 120		Υ	1	1.2	40	1.5	6 0.068 14			
153 1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AZI 150		Υ	1	1.2	40	1.5	7 0.068 14			0.034
154 1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AZI 180	Yes	Υ	1	1.2	40	1.5	8 0.068 14	-0.068	15	

Company : Infinigy Engineering, PLLC

Designer : AG Job Number : 1039-Z0001-B

Model Name: 876399

9/14/2021 10:29:38 AM

Checked By : _____

Load Combinations (Continued)

Description	Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
155 1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AZI 210	Yes	Υ	1	1.2	40	1.5	9	0.068	14	-0.059	15	-0.034
156 1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AZI 240	Yes	Υ	1	1.2	40	1.5	10	0.068	14	-0.034	15	-0.059
157 1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AZI 270	Yes	Υ	1	1.2	40	1.5	11	0.068	14		15	-0.068
158 1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AZI 300		Υ	1	1.2	40	1.5	12	0.068	14	0.034	15	-0.059
159 1.2DL + 1.5LM-MP7 + 1SWL (30 mph) AZI 330	Yes	Υ	1	1.2	40	1.5	13	0.068	14	0.059	15	-0.034
160 1.2DL + 1.5LM-MP8 + 1SWL (30 mph) AZI 0	Yes	Υ	1	1.2	41	1.5	2	0.068	14	0.068	15	
161 1.2DL + 1.5LM-MP8 + 1SWL (30 mph) AZI 30		Υ	1	1.2	41	1.5	3	0.068	14	0.059		0.034
162 1.2DL + 1.5LM-MP8 + 1SWL (30 mph) AZI 60		Υ	1	1.2	41	1.5	4	0.068	_	0.034	_	0.059
163 1.2DL + 1.5LM-MP8 + 1SWL (30 mph) AZI 90		Υ	1	1.2	41	1.5	5	0.068	_		_	0.068
164 1.2DL + 1.5LM-MP8 + 1SWL (30 mph) AZI 120		Υ	1	1.2	41	1.5	6	0.068		-0.034		0.059
165 1.2DL + 1.5LM-MP8 + 1SWL (30 mph) AZI 150		Y	1	1.2	41	1.5	7	0.068		-0.059		0.034
166 1.2DL + 1.5LM-MP8 + 1SWL (30 mph) AZI 180		Υ	1	1.2	41	1.5	8	0.068		-0.068		
167 1.2DL + 1.5LM-MP8 + 1SWL (30 mph) AZI 210		Υ	1	1.2	41	1.5	9	0.068				-0.034
168 1.2DL + 1.5LM-MP8 + 1SWL (30 mph) AZI 240		Υ	1	1.2	41	1.5		0.068		-0.034		-0.059
169 1.2DL + 1.5LM-MP8 + 1SWL (30 mph) AZI 270		Y	1	1.2	41	1.5		0.068				-0.068
170 1.2DL + 1.5LM-MP8 + 1SWL (30 mph) AZI 300		Υ	1	1.2	41	1.5		0.068	_	0.034	_	-0.059
171 1.2DL + 1.5LM-MP8 + 1SWL (30 mph) AZI 330	Yes	Υ	1	1.2	41	1.5	13	0.068	14	0.059	15	-0.034
172 1.2DL + 1.5LM-MP9 + 1SWL (30 mph) AZI 0	Yes	Υ	1	1.2	42	1.5		0.068	_	0.068		
173 1.2DL + 1.5LM-MP9 + 1SWL (30 mph) AZI 30		Υ	1	1.2	42	1.5	3	0.068		0.059		0.034
174 1.2DL + 1.5LM-MP9 + 1SWL (30 mph) AZI 60		Υ	1	1.2	42	1.5	4	0.068		0.034	15	0.059
175 1.2DL + 1.5LM-MP9 + 1SWL (30 mph) AZI 90		Υ	1	1.2	42	1.5	5	0.068				0.068
176 1.2DL + 1.5LM-MP9 + 1SWL (30 mph) AZI 120		Υ	1	1.2	42	1.5	6	0.068		-0.034	_	0.059
177 1.2DL + 1.5LM-MP9 + 1SWL (30 mph) AZI 150		Υ	1	1.2	42	1.5	7	0.068		-0.059		0.034
178 1.2DL + 1.5LM-MP9 + 1SWL (30 mph) AZI 180		Υ	1	1.2	42	1.5	8	0.068		-0.068		
179 1.2DL + 1.5LM-MP9 + 1SWL (30 mph) AZI 210		Υ	1	1.2	42	1.5	9	0.068				-0.034
180 1.2DL + 1.5LM-MP9 + 1SWL (30 mph) AZI 240		Υ	1	1.2	42	1.5	10	0.068		-0.034		-0.059
181 1.2DL + 1.5LM-MP9 + 1SWL (30 mph) AZI 270		Υ	1	1.2	42	1.5	11	0.068	14			-0.068
182 1.2DL + 1.5LM-MP9 + 1SWL (30 mph) AZI 300	Yes	Υ	1	1.2	42	1.5	12	0.068	14	0.034	15	-0.059

Envelope Node Reactions

	Node Label		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N15	max	1094.619	5	2034.309	27	338.378	14	3801.011	27	1457.856	11	879.293	146
2		min	-1094.569	23	-69.986	20	-341.427	8	-366.629	20	-1456.074	17	-664.773	164
3	N31	max	512.109	6	2179.695	35	1012.224	13	311.963	15	1433.277	7	3260.245	35
4		min	-510.08	24	-33.789	16	-1011.534	19	-2453.609	34	-1431.42	25	-254.306	16
5	N25	max	665.096	16	2098.96	31	917.57	3	238.637	25	1390.608	3	312.744	23
6		min	-667.443	10	-45.358	24	-916.995	9	-1824.444	105	-1389.148	21	-3465.885	31
7	Totals:	max	2047.032	17	5852.814	29	2128.222	14						
8	-	min	-2047.038	11	1290.458	59	-2128.222	20						

Envelope AISC 15TH (360-16): LRFD Member Steel Code Checks

	Membe	Shape	Code Check	Loc[in]Lo	C Shear Check	Loc[in]Dir	·LC	phi*Pnc [lb]	phi*Pnt [lb]	phi*Mn y-y [lb-ft]	phi*Mn z-z [lb-ft]	Cb	Eqn
1	M53	C4X4.5	0.336	25.6063	4 0.104	25.606 y	37	36462.434	43416	1093.41	5535	1.894	H1-1b
2	MP1	PIPE 2.0	0.329	65.684 2	0.048	65.684	11	14916.096	32130	1871.625	1871.625	3	H1-1b

Model Name: 876399

9/14/2021 10:29:38 AM

Checked By : _____

Envelope AISC 15TH (360-16): LRFD Member Steel Code Checks (Continued)

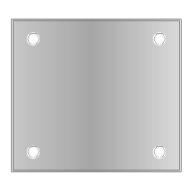
	Membe	Shape	Code Checl	k Loc[in]LCS	hear Chec	k Loc[in]	Dir	_C	phi*Pnc [lb]	phi*Pnt [I b]	phi*Mn y-y [lb-ft]	phi*Mn z-z [lb-fl] Cb Eqn
3	M50	C4X4.5	0.322	25.60631	0.102	2.695	у (34	36462.434	43416	1093.41	5535	1.964H1-1b
4	M58	C4X4.5	0.318	0 31	0.151	22.911	y 2	29	36462.434	43416	1093.41	5535	1.703H1-1b
5	M59	C4X4.5	0.314	0 35	0.153	22.911	у (33	36462.434	43416	1093.41	5535	1.744 H1-1b
6	M57	C4X4.5	0.312	0 27	0.095	22.911	y (30	36462.434	43416	1093.41	5535	1.905H1-1b
7	M1	C4X4.5	0.302	25.60627	0.139	2.695	у (37	36462.434	43416	1093.41	5535	1.762 H1-1b
8	MP4	PIPE_2.0	0.301	65.684 10	0.047	65.684		7	14916.096	32130	1871.625	1871.625	1.899H1-1b
9	MP7	PIPE_2.0	0.301	65.684 6	0.046	65.684		3	14916.096	32130	1871.625	1871.625	1.803 H1-1b
10	M15	6x0.25	0.29	15.5 9	0.043	15.5	у (34	1836.566	48600	253.125	2751.917	1.321H1-1b
11	M2	6x0.25	0.279	15.5 13	0.04	15.5	у (38	1836.566	48600	253.125	2723.567	1.308 H1-1b
12	M12	6x0.25	0.273	15.5 5	0.041	15.5	у (30	1836.566	48600	253.125	2744.478	1.318H1-1b
13	MS3	HSS4X4X4	0.263	0 33	0.099	0	y	94	132218.494	139518	16180.5	16180.5	2.587 H1-1b
14	MP9	PIPE_2.0	0.26	65.684 7	0.07	65.684		8	14916.096	32130	1871.625	1871.625	2.42 H1-1b
15	MP3	PIPE_2.0	0.258	65.684 3	0.068	65.684		5	14916.096	32130	1871.625	1871.625	3 H1-1b
16	MP6	PIPE_2.0	0.258	65.684 11	0.066	65.684		13	14916.096	32130	1871.625	1871.625	2.658H1 - 1b
17	MS2	HSS4X4X4	0.249	0 29	0.095	0	y 1	174	132218.494	139518	16180.5	16180.5	2.619 H1-1b
18	MP2	PIPE_2.0	0.248	65.684 2	0.056	65.684		7	14916.096	32130	1871.625	1871.625	3 H1-1b
19	MP8	PIPE_2.0	0.238	65.684 6	0.057	65.684		9	14916.096	32130	1871.625	1871.625	2.396 H1-1b
20	MP5	PIPE_2.0	0.238	65.684 10	0.055	65.684		13	14916.096	32130	1871.625	1871.625	2.515H1 - 1b
21	MS1	HSS4X4X4	0.229	0 37	0.099	0	y 1	146	133409.052	139518	16180.5	16180.5	2.515 H1-1b
22	MR1	PIPE_2.0	0.125	25.263 5	0.082	48		3	14916.096	32130	1871.625	1871.625	1.833H1-1b
23	MR3	PIPE_2.0	0.125	25.263 9	0.08	48		7	14916.096	32130	1871.625	1871.625	1.771 H1-1b
24	MR2	PIPE_2.0	0.122	70.737 2	0.082	48		11	14916.096	32130	1871.625	1871.625	1.596H1-1b
25	MH3	PIPE_3.0	0.092	27.78933	0.108	27.789	(32	46290.523	65205	5748.75	5748.75	1.926 H1-1b
26	MH1	PIPE_3.0	0.089	68.21129	0.106	68.211	2	28	46290.523	65205	5748.75	5748.75	1.823H1-1b
27	MH2	PIPE_3.0	0.082	68.21137	0.099	68.211			46290.523	65205	5748.75	5748.75	1.896 H1-1b
28	M52	L2x2x2	0.077	0 9	0.007	27.713	z í	35	11286.78	15908.4	402.563	821.791	1.5 H2-1
29	M49	L2x2x2	0.071	0 5	0.007	27.713	z í	31	11286.78	15908.4	402.563	821.791	1.5 H2-1
30	M10	L2x2x2	0.07	0 13	0.006	27.713	z	27	11286.78	15908.4	402.563	821.791	1.5 H2-1
31	M56	4x0.25	0.051	16.07734	0.038	32.155	у	8	32074.159	32400	168.75	2700	1 H1-1b
32	M55	4x0.25	0.051	16.07730	0.037	32.155	у	4	32074.159	32400	168.75	2700	1 H1-1b
33	М3	4x0.25	0.051	16.07738	0.036	32.155		_	32074.159	32400	168.75	2700	1 H1-1b
34	M51	L2x2x2	0.044	0 13	0.009	0	у (30	11286.78	15908.4	402.563	821.791	1.5 H2-1
35	M54	L2x2x2	0.044	0 5	0.009	0	y :	34	11286.78	15908.4	402.563	821.791	1.5 H2-1
36	M11	L2x2x2	0.043	0 15	0.009	27.713	y 2	27	11286.78	15908.4	402.563	821.791	1.5 H2-1

APPENDIX D ADDITIONAL CALCUATIONS

Bolt Calculation Tool, V1.5.1

PROJEC	PROJECT DATA
Site Name:	F) E. GRANBY 4Q2000 / GALASS
Site Number:	876399
Connection Description:	Standoff to Collar

MAXIMUM BOLT LOADS	3OLT LOADS	
Bolt Tension:	4272.83	lbs
Bolt Shear:	900.16	sql


WORST CASE	WORST CASE BOLT LOADS ¹	
Bolt Tension:	4272.83	lbs
Bolt Shear:	432.98	sql

BOLT PROPERTIES	PERTIES	
Bolt Type:	Bolt	-
Bolt Diameter:	0.625	in
Bolt Grade:	A325	-
# of Bolts:	4	-
Threads Excluded?	No	-

 $^{^{1}\,}$ Worst case bolt loads correspond to Load combination #33 on member MS3 in RISA-3D, which causes the maximum demand on the bolts.

Member Information	I nodes of MS1, MS2, MS3		

BOLT CHECK		
Tensile Strength	20340.15	
Shear Strength	13805.83	
Max Tensile Usage	21.0%	
Max Shear Usage	6.5%	
Interaction Check (Worst Case)	0.05	≤1.05
Result	Pass	

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOBDL00100A

876399

60 South Main Street
East Granby, Connecticut 06026

October 26, 2021

EBI Project Number: 6221006490

Site Compliance Summary			
Compliance Status:	COMPLIANT		
Site total MPE% of FCC general population allowable limit:	50.99%		

October 26, 2021

Dish Wireless

Emissions Analysis for Site: BOBDL00100A - 876399

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **60 South Main Street** in **East Granby, Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 60 South Main Street in East Granby, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 4) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 5) The antennas used in this modeling are the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector A, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector B, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 6) The antenna mounting height centerline of the proposed antennas is 48 feet above ground level (AGL).
- 7) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 8) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	Α	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21
Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz
Gain:	17.45 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd
Height (AGL):	48 feet	Height (AGL):	48 feet	Height (AGL):	48 feet
Channel Count:	8	Channel Count:	8	Channel Count:	8
Total TX Power (W):	280 Watts	Total TX Power (W):	280 Watts	Total TX Power (W):	280 Watts
ERP (W):	3,065.51	ERP (W):	3,065.51	ERP (W):	3,065.51
Antenna A1 MPE %:	8.98%	Antenna BI MPE %:	8.98%	Antenna C1 MPE %:	8.98%

environmental | engineering | due diligence

Site Composite MPE %			
Carrier	MPE %		
Dish Wireless (Max at Sector A):	8.98%		
AT&T	10.66%		
Metro PCS	1.36%		
Verizon	17.97%		
Sprint	8%		
T-Mobile	4.02%		
Site Total MPE %:	50.99%		

Dish Wireless MPE % Per Sector				
Dish Wireless Sector A Total:	8.98%			
Dish Wireless Sector B Total:	8.98%			
Dish Wireless Sector C Total:	8.98%			
Site Total MPE % :	50.99%			

Dish Wireless Maximum MPE Power Values (Sector A)							
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (μW/cm²)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE
Dish Wireless 600 MHz n71	4	223.68	48.0	18.23	600 MHz n71	400	4.56%
Dish Wireless 1900 MHz n70	4	542.70	48.0	44.24	1900 MHz n70	1000	4.42%
						Total:	8.98%

[•] NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)
Sector A:	8.98%
Sector B:	8.98%
Sector C:	8.98%
Dish Wireless Maximum MPE % (Sector A):	8.98%
Site Total:	50.99%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **50.99**% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320 West Henrietta, NY 14586

Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

Crown Castle Letter of Authorization

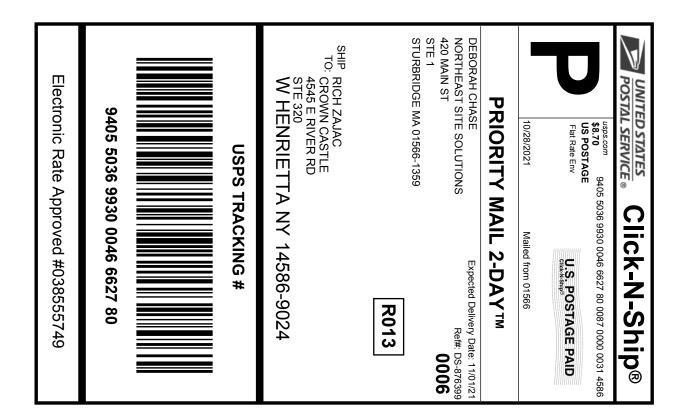
CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Tower Share Application

Crown Castle telecommunications site at: 60 SOUTH MAIN ST., EAST GRANBY, CT 06026

GLOBAL SIGNAL ACQUISITIONS II LLC ("Crown Castle") hereby authorizes DISH Wireless, LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:


Crown Site ID/Name: 876399/(F) E. GRANBY 4Q2000 / GALASSO Customer Site ID: BOBDL00100A/CT-CCI-T-876399

Site Address: 60 South Main St., EAST GRANBY, CT 06026

Crown Castle			
By: Richard Za Site Acquis	jac ition Specialist	Date:	10/26/2021

Exhibit H

Recipient Mailings

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0046 6627 80

547091810 10/28/2021 Trans. #: Print Date: Ship Date: 10/28/2021 11/01/2021 Delivery Date:

Priority Mail® Postage: \$8.70 \$8.70 Total:

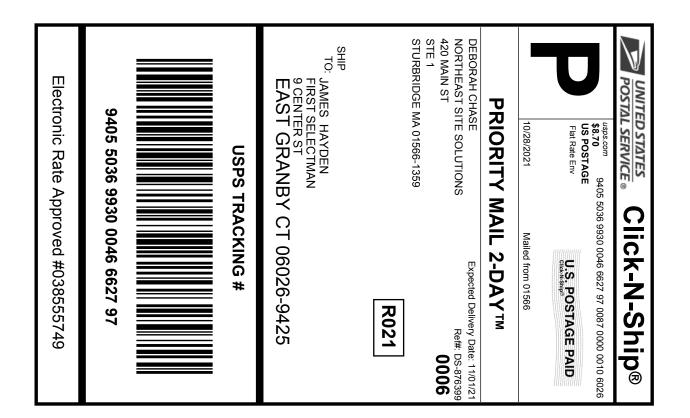
Ref#: DS-876399 From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


RICH ZAJAC

CROWN CASTLE 4545 E RIVER RD

STE 320

W HENRIETTA NY 14586-9024

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0046 6627 97

547091810 10/28/2021 Trans. #: Print Date: Ship Date: 10/28/2021 11/01/2021 Delivery Date:

Priority Mail® Postage: \$8.70 \$8.70 Total:

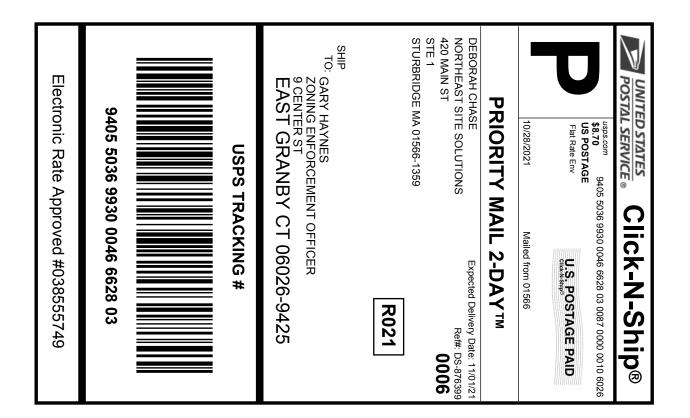
Ref#: DS-876399

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1


STURBRIDGE MA 01566-1359

JAMES HAYDEN

FIRST SELECTMAN 9 CENTER ST

EAST GRANBY CT 06026-9425

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0046 6628 03

547091810 10/28/2021 Trans. #: Print Date: Ship Date: 10/28/2021 11/01/2021 Delivery Date:

Priority Mail® Postage: \$8.70 \$8.70 Total:

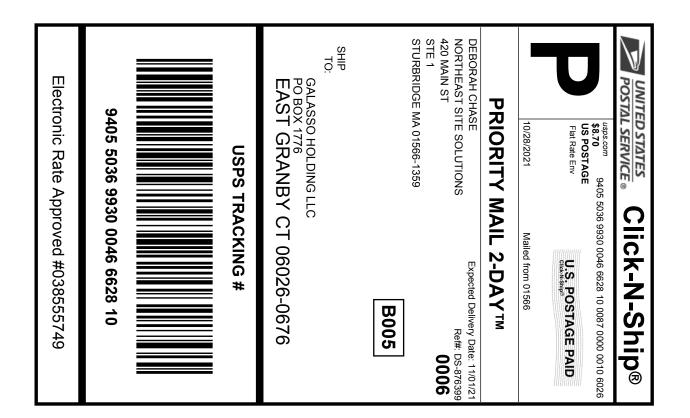
Ref#: DS-876399 From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


GARY HAYNES

ZONING ENFORCEMENT OFFICER

9 CENTER ST

EAST GRANBY CT 06026-9425

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0046 6628 10

547091810 10/28/2021 Trans. #: Print Date: Ship Date: 10/28/2021 11/01/2021 Delivery Date:

Priority Mail® Postage: \$8.70 \$8.70 Total:

Ref#: DS-876399 From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

GALASSO HOLDING LLC

PO BOX 1776

EAST GRANBY CT 06026-0676

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

UNIONVILLE 24 MILL ST UNIONVILLE, CT 06085-9998 (800)275-8777

(8)		711	02:28 PM
10/29/2021 Product	Qty	Unit Price	Price \$0.00
Prepaid Mail	1 NV 14	 1586	\$0.00
West Hemilica Weight: 0 lb Acceptance Da Fri 10/29 Tracking #: 9405 503 Prepaid Mail East Granby, Weight: 0 lb Acceptance	22:00 02:000	046 6627 26 oz	\$0.00
Tracking #: 9405 50	36 9930	0046 662	27 97 \$0.00
Prepaid Mail East Granby Weight: O Acceptance Fri 10 Tracking # 9405	V00 /2021		628 10
Prepaid Mail East Gran Weight: O Acceptand Fri 1	by, CT 0 1 1b 13. se Date: 10/29/202	1 6026 60 oz 21	\$0,00
9405	2030 22	30 0046	·
			\$0.00
