CCROWN

Crown Castle 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065

September 11, 2020

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification for AT&T: 806364 143 R Old Blue Hill Road, Durham, CT 06422 Latitude: 41° 27' 33.67" / Longitude: -72° 39' 45.83"

Dear Ms. Bachman:

AT&T currently maintains twelve (12) antennas at the 116-foot mount on the existing 120-foot Monopole Tower, located at 143 R. Old Blue Hill Road in Durham, CT. The tower is owned by Crown Castle and the property is owned by Francis E. Behrens. AT&T now intends to add three (3) new remote radio units to their existing configuration. AT&T is also proposing tower mount modifications and a tower mount replacement, as shown on the enclosed mount analysis.

The facility was approved by the Connecticut Siting Council on March 11, 1994 in Docket No. 161. The Council subsequently allowed an increase in tower height to 120' in Petition No. 697 on May 11, 2005. AT&T's proposed exempt modification complies with the original siting conditions.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Laura Francis, First Selectwoman for the Town of Durham, Robin Newton, Town Planner, Crown Castle as the tower owner, and Francis Behrens, the property owner.

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

The Foundation for a Wireless World. CrownCastle.com

Melanie A. Bachman

Page 2

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the abovereference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Anne Marie Zsamba.

Sincerely,

Anne Marie Zsamba Site Acquisition Specialist 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 (201) 236-9224 AnneMarie.Zsamba@crowncastle.com

Attachments

cc:

Laura Francis, First Selectwoman (via email only to lfrancis@townofdurhamct.org) Town of Durham Town Hall – Selectman's Office 30 Townhouse Road Durham, CT 06422

Robin Newton, Town Planner (*via email only to rnewton@townofdurhamct.org*) Town of Durham 30 Townhouse Road Durham, CT 06422

Francis E. Behrens, Property Owner 109 Old Blue Hills Road Durham, CT 06422-3005

Crown Castle, Tower Owner

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

Dear Town Planner Newton:

Attached please find AT&T's exempt modification application that is being submitted to the Connecticut Siting Council today, September 11, 2020.

In light of the present circumstances with Covid-19, The Council has advised that electronic notification of this filing is acceptable. If you could kindly confirm receipt. Thank you.

Best, Anne Marie Zsamba

ANNE MARIE ZSAMBA

Site Acquisition Specialist T: (201) 236-9224 M: (518) 350-3639 F: (724) 416-6112

CROWN CASTLE 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 CrownCastle.com Dear First Selectwoman Francis:

Attached please find AT&T's exempt modification application that is being submitted to the Connecticut Siting Council today, September 11, 2020.

In light of the present circumstances with Covid-19, The Council has advised that electronic notification of this filing is acceptable. If you could kindly confirm receipt. Thank you.

Best, Anne Marie Zsamba

ANNE MARIE ZSAMBA

Site Acquisition Specialist T: (201) 236-9224 M: (518) 350-3639 F: (724) 416-6112

CROWN CASTLE 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 CrownCastle.com

Exhibit A

Original Facility Approval

Siting

Council

March 11, 1994

Decision and Order

The

DOCKET NO. 161 - An application of Metro Mobile CTS of Hartford Inc., for a Certificate of Environmental Compatibility and Public Need for the

construction, maintenance, and operation of a cellular telecommunications facility. The proposed prime site is located off of

Old Blue Hills Road approximately 2,000 feet from the end of the improved portion

proposed alternate sites are located at 199R Cherry Lane and 100 New Haven Road,

of the road in Durham, Connecticut.

Durham, Connecticut.

Pursuant to the foregoing Findings of Fact, and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a cellular telecommunications tower and equipment building at the proposed prime site in Durham, Connecticut, including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application and therefore directs that a Certificate of Environmental Compatibility and Public Need as provided by section 16-50k of the Connecticut General Statutes (CGS), be issued to Metro Mobile CTS of Hartford, Inc. (Metro Mobile), for the construction, operation, and maintenance of a cellular telecommunications tower, associated equipment, and building at the proposed prime site located off of Old Blue Hills Road, Durham, Connecticut. We find the effects on scenic resources and adjacent land uses of the alternative sites to be significant, and therefore deny certification of these sites.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The self-supporting monopole tower shall be no taller than necessary to provide the proposed communications service and the tower shall not exceed a total height of 113 feet above ground level (AGL), with antennas and appurtenances.
- The road design and drainage system for improvements on approximately 1,600 feet of the Old Blue Hills Road right-of-way shall be subject to approval by the Town of Durham.

Docket No. 161 Decision and Order Page 2

- 3. The Certificate Holder shall prepare a Development and Management (D&M) plan for this site in compliance with sections 16-50j-75 through 16-50j-77 of the Regulations of State Agencies. The D&M plan shall include detailed plans of the tower, antenna placement on the tower including entities sharing tower space, tower foundation, equipment building, access road, utility connection, security fence, and erosion and sedimentation controls consistent with the <u>Connecticut Guidelines for Soil Erosion and Sedimentation</u> <u>Control</u> (as amended).
- 4. The Certificate Holder shall make provision for a Phase I archaeological reconnaissance survey, subject to the consent of the landowner, at the Merwin Cave site, due within six months after the commencement of construction. A final report of this survey shall be provided to the Council upon completion. The Certificate Holder shall not be liable for any site protection, collection and exhibition of artifacts, or other actions beyond a Phase I reconnaissance survey.
- 5. The Certificate Holder shall comply with any existing and future radio frequency (RF) standard promulgated by State or federal regulatory agencies. Upon the establishment of any new governmental RF standards, the facility granted herein shall be brought into compliance with such standards.
- 6. The Certificate Holder shall provide the Council a recalculated report of electromagnetic radio frequency power density if and when circumstances in operation cause a change in power density above the levels originally calculated and provided in the application.
- 7. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 8. If the facility does not initially provide, or permanently ceases to provide cellular or other services following completion of construction, this Decision and Order shall be void, and the Certificate holder shall dismantle the tower and remove all associated equipment or reapplication for any continued or new use shall be made to the Council before any such use is made.
- 9. Unless otherwise approved by the Council, this Decision and Order shall be void if all construction authorized herein is not completed within three years of the effective date of this Decision and Order or within three years after all appeals to this Decision and Order have been resolved.

Docket No. 161 Decision and Order Page 3 Pursuant to CGS section 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in the Hartford Courant and Middletown Press. By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with section 16-50j-17 of the Regulations of State Agencies. The parties and intervenors to this proceeding are: ITS REPRESENTATIVES APPLICANT Metro Mobile CTS of Metro Mobile CTS of Hartford, Inc. Hartford, Inc. 20 Alexander Drive Wallingford, CT 06492 Attn: David S. Malko, P.E. Manager, Engineering and **Regulatory Services** Robinson & Cole One Commercial Plaza Hartford, CT 06103-3597 Attn: Brian C. S. Freeman, Esq. ITS REPRESENTATIVE PARTY Henry A. Robinson Town of Durham First Selectman 30 Town House Road P.O. Box 428 Durham, CT 06422 ITS REPRESENTATIVE INTERVENOR Springwich Cellular Peter J. Tyrrell Senior Attorney Limited Partnership Springwich Cellular Limited Partnership 227 Church Street New Haven, CT 06506 7695E

CERTIFICATION

The undersigned members of the Connecticut Siting Council (Council) hereby certify that they have heard this case, or read the record thereof, in Docket No. 161 - Certificate of Environmental Compatibility and Public Need for the construction, maintenance, and operation of a cellular telecommunications facility, in Durham, Connecticut, and voted as follows to approve the proposed prime site located off of Old Blue Hills Road:

Council Members

Vote Cast

Mortimer Ά Gelston

Chairman

Commissioner Reginald J. Smith Designée: Gerald J. Heffernan

Commissioner Timothy R.E. Keeney

Designee: Brian Emerick

Harry E. Covey Lynch. Daniel Р`.

YES

William H.

YES

ABSENT

Colin C. Tait

Dana J. Wright

Dated at New Britain, Connecticut, March 11, 1994. 7697E

YES

YES

YES

ABSENT

YES

YES

STATE OF CONNECTICUT) : ss. New Britain, Connecticut COUNTY OF HARTFORD)

I hereby certify that the foregoing is a true and correct copy of the Findings of Fact, Opinion, and Decision and Order issued by the Connecticut Siting Council, State of Connecticut.

ATTEST:

Joel M. Rinebold Executive Director Connecticut Siting Council

I certify that a copy of the Findings of Fact, Opinion, and Decision and Order in Docket 161 have been forwarded by Certified First Class Return Receipt Requested mail on March 11, 1994, to all parties and intervenors of record as listed on the attached service list, dated December 7, 1993.

ATTEST:

Stanley J. Modzelesky Executive Assistant Connecticut Siting Council

7697E-1

CONNECTICUT SITING COUNCIL

lome About Us

Pending Matters

Decisions

Governor Ned Lamont

Contact Us

Forms

Filing Guides Meetings & Minutes

Public Participation

Audio Link to New Britain Hearing Rooms

Programs & Services

Telecommunications Database

Maps

Publications

Other Resources Statutes & Regulations

Frequently Asked

Melanie Bachman, Executive Director

NOTICE TO USERS

The Connecticut Siting Council posts filed documents to this site as a public service. The Council disclaims any liability for the content of submissions made by parties, intervenors, public officials, and the general public. Further, while the Council seeks to be complete in its postings, the Council urges users of this site to confirm with the submitter the completeness of the postings made. The posting of any document does not constitute or imply endorsement by the Connecticut Siting Council. Finally, the Connecticut Siting Council. Finally, the Connecticut Siting Council assumes no responsibility for the use of documents posted on this site.

please see the State of Connecticut disclaimer. Petition Staff Reports Printable Version

> Petition No. 697 Nextel Communications Durham, Connecticut May 11, 2005 Updated Staff Report

On November 4, 2004, the Connecticut Siting Council (Council) received a petition (Petition) from Nextel Communications of the Mid-Atlantic, Inc. d/b/a Nextel Communications (Nextel) for a declaratory ruling that no Certificate of Environmental Compatibility and Public Need is required for its proposed modifications to an existing monopole located at 143 Old Blue Hills Road, Durham. The existing monopole is 100' feet tall (without appurtenances). Nextel seeks to extend the monopole to 120' in order to remove their omni-directional whip antennas and install a platform of 12 panel antennas at the 115' level of the tower. This would require the relocation of certain town antennas. Nextel states that the proposed modification would improve frequency reuse, provide more control over the coverage footprint, provide greater localized coverage within the intended coverage area, and reduce interference to neighboring sites.

In the Petition, Nextel also originally sought to remove the Town of Durham's (Town) existing 30' whip antenna and replace it with a 14' whip antenna to be located on a 4' standoff arm at a height of 118'. (By letter dated November 18, 2004 (Town Letter), the Communications Coordinator for the Town stated that the 30' whip antenna does not exist.) Nextel also seeks to remove the Town's cellwave antenna and relocate it to a 4' standoff arm at a height of 118'. In addition, Nextel seeks to remove its existing equipment shelter and ice bridge located in the southwestern portion of the compound. Nextel would install a 10' x 20' equipment shelter, an ice bridge, and a concrete retaining wall within the fenced area in the northeastern side of the compound. Lastly, Nextel would remove three coaxial cables and install 12 coaxial cables within the proposed ice bridge to connect to the proposed panel antennas.

In the Town Letter, some possible discrepancies in the Petition were brought to the Council's attention. First, it was argued that the 30' whip antenna does not exist. Next, Verizon Wireless is not listed as an existing carrier. In addition, the Town's cellwave antenna is listed in the Petition as being located at the 122' level, whereas the Town Letter asserts that the height is 112'7". The Airspace Obstruction report lists the structure height at 500', in apparent conflict with the height in the Petition. The Town Letter also argues that total height with appurtenances is currently 124' and would reach 132' with the proposed modifications.

The Town Letter also included some additional concerns about the proposed project. It is recommended that at least one spare underground conduit be installed prior to the installation of the equipment building, as it would not be possible to access the area underneath the building later. Concerns were expressed regarding access to the emergency generator. Also, some structural concerns were expressed such whether the side arm mounting was taken into account, as well as weight and wind load of the Model 101-68-10-3-03N antenna. Additional structural concerns include the possibility of having to mount the antenna cables on the outside of the monopole, the possible cutting of cable ports into the tower, and a possible redundant dish listing in the tower inventory. Visibility concerns related to the appurtenances were also expressed. Also, a list of recommended conditions was included.

On December 16, 2004, staff issued a first set of interrogatories to investigate the issues brought to light in the Town Letter. On December 21, 2004, the Council received a request for a hearing from the Town. The petition was field reviewed on January 4, 2005 by Council member Daniel P. Lynch, Jr. and Mike Perrone of the Council staff.

On February 23, 2005, the Council received the responses to the interrogatories and a filing correcting the errors in the original application. (Originally, the petition had incorrectly stated that there is an existing 30' town whip antenna which extends to a maximum height of 132'.) The whip is actually 14' tall and makes the existing total height with appurtenances 122'.

The applicant has originally stated in the petition that the total height with appurtenances would remain unchanged with the proposed modifications (i.e. the total height with appurtenances would remain at 132', despite the 20' increase in the monopole height). This has since been corrected. The total height with appurtenances would in fact increase from 122' to 132' with the proposed modifications.

A revised abutters notice was sent on February 17, 2005 to correct the original notice. (The original notice had indicated that there would be no increase in the total height with appurtenances.) The revised notice properly informed the abutters that the total height would in fact increase.

There are 19 homes within a 1000' radius of the tower. The closest home is 350' away and is located on 40 Stephen Woods Lane. The tower is and would still be visible from this home with the proposed modifications.

Search

The incremental visual impact would be largely due to the additional platform, as seen in the photo simulation. The viewshed analysis indicates that the tower is visible both seasonally, as well as year round from portions of Old Blue Hills Road adjacent to the site. During the field review, staff observed that the tower is indeed visible from the home on the opposite side of Old Blue Hills Road.

The worst-case power density at the base of the tower would be 23.28% of the maximum permissible exposure. No antenna transmission cables would be located on the outside of the monopole. In response to the structural concerns in the Town Letter, Nextel has indicated that the 4' standoff arm, as well as the cellwave antenna have been taken into account structurally. Nextel also noted that a 5' walkway to be located between the existing shelter and the proposed Nextel shelter would not affect access to the emergency generator. Nextel also notes that the existing Verizon antennas are taken into account in the structural analysis. Lastly, Nextel would work with the Town to maintain the continuity of the Town's emergency services while the construction is taking place.

On April 26, 2005, Nextel held a public meeting to address any outstanding concerns that neighbors or the Town had regarding its proposal. The residents' concerns were singularly related to RF emissions. Nextel explained the dynamics of RF emissions and reiterated that the site total would be approximately 23 % of the allowable total. Nextel then met with First Selectwoman Maryann Boord and the Town's technical expert Scott Wright.

By letter dated April 27, 2005, Nextel listed and responded to all of the concerns of the Town and agreed to meet all conditions, including not limited to: installing a spare 3" and 4" conduit; locating all cables within the tower; minimizing the Town's off-air time during construction; providing sufficient headroom under the antennas; replacement of the Town's dipole antenna; including a jumper at the antenna end to allow for cable movement; and temporary bracing of Town microwave antenna.

Content Last Modified on 5/18/2005 10:48:36 AM

Ten Franklin Square New Britain, CT 06051 / 860- 827-2935

Home | CT.gov Home | Send Feedback | Login | Register State of Connecticut <u>Disclaimer</u>, <u>Privacy Policy</u>, and <u>Web Site Accessibility Policy</u>. Copyright © 2002-2019 State of Connecticut.

Exhibit B

Property Card

Property Card: OLD BLUE HILLS RD Town of Durham, CT

	Parcel ID: 69-12 Account #: B0016900 Owner: BEHRENS FRANCIS E JR Mailing Address: 109 OLD BLUE HILLS RD DURHAM, CT 06422-3005
General Information	Assessed Value
State Class: 130	Land: \$126,400
	Buildings: \$0
District No.: M	Total: \$2.030
Neighborhood: 80	· · · · · · · · · · · · · · · · · · ·
Zone: FR	
I otal Acres: 6.31	
Sale History	
Book/Page: 100-255	
Deed Date: 19840824	
Sale Type: 0	
Sale Price: 0	
Building Details	
Living Units: 0	Basement: 0
Style: 0	FBLA Size: 0
Year Built: 0	Attic: 0
Ture TLA: 0	Basement / Garage: 0
Stories: 0	
Total Rooms: 0	
I otal Bedrooms: 0 Number Full Baths: 0	
Number Half Baths: 0	
WB/FP Openings: 0	
Heating Type: 0	

www.cai-tech.com Data shown on this report is provided for planning and informational purposes only. The municipality and CAI Technologies are not responsible for any use for other purposes or misuse or misrepresentation of this report.

Descriptor/Area

www.cai-tech.com Data shown on this report is provided for planning and informational purposes only. The municipality and CAI Technologies are not responsible for any use for other purposes or misuse or misrepresentation of this report.

Exhibit C

Construction Drawings

DocuSign Envelope ID: 5C08D4FC-0D43-4D94-8E38-C5E5222599E9

DocuSign Envelope ID: 5C08D4FC-0D43-4D94-8E38-C5E5222599E9

CROWN CASTLE USA INC. SITE ACTIVITY REQUIREMENTS:

- NOTICE TO PROCEED NO WORK SHALL COMMENCE PRORE TO GROWN CASTLE LISA INC. WINTEN NOTICE TO PROCEED (WTD AND THE EXISTANCE OF A PURCHASE GROBER, PRORE TO ACCESSIME/ATTERING THE STE YOU MUST CONTACT THE GROWN CASTLE LISA INC. NOC AT 800-788-7011 & THE GROWN CASTLE USA INC. CONSTRUCTION MANAGER.
- "LOOK UP" - CROWN CASTLE USA INC. SAFETY CLIMB REQUIREMENT-"LOOK UP" - CROWN CASTLE USA INC. SAFETY CLIMB REQUIREMENT: THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT RENTROPECUENCY, MAC/ORE CUIVING SHALL NOT COMPONENT THE INTEGRATION OF STRUCTURE, THIS SHALL INCLUDE, BUT NOT BE LIMITED TO PRICHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE KOM ITS SUPPORTS, DIRECT CONTACT OF CLUGS WHIRE ROPE WHICH INTEGRATE SHALL INCLUDE, BUT NOT BE LIMITED TO PRICHING OF THE WIRE ROPE, BENDING SUPPORT THE WIRE ROPE WHICH SUPPORTS, DIRECT CONTACT OF CLUGS ERRORE WHICH ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE PONTS IN ANY WAY, GR TO INFEDE/BLOCK ITS INTERDED USS. ANY COMPRISINGES SHEFTY CLIMB, INCLUDING EXISTING CONTIONS MUST BE TAGED OUT AND REPORTED TO YOUR COMPACT AND SHEFTY CLIMB, INCLUDING EXISTING CONTIONS MUST BE TAGED OUT AND REPORTED TO YOUR COMPACT CONSED. SHEFTY CLIMB, MONTENNCE AND CONTROLS WATE A SAFETY CLIMB MANTENNCE. AND CONTINUES CONTROL TO THE MACTORE THE ROPE WHICH ONE CONTING THE THE AND CONTROL OF CONTROL AND RETAGED OUT AND REPORTED TO YOUR COMPACT TO THE AND CONTROL AND RETAGED OUT OF CONTROL AND RETAGED OUT OF CONTROL TO THE AND CONTROL THE AND CONTROL TO CONTROL AND RETAGED OUT ON CONTROL AND RETAGED OUT ON CONTROL AND RETAGED OUT OF CONTROL AND
- MINITURINAL AND CONTINUEUR NOTICE INCELL. PRORTO THE STATO FC CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LUMITED TO, BULDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVROMMENTAL, MO ZONIG, ATTRE ONSTE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL PROJUBERUNTS.
- ALCOUNTRAMENTS. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTRINCE HEREIN, AND SHALL MEET CONTRACTOR RESPONSIBLE FOR THE DESCUTION OF THE WORK CONTAINED HERDIN, AND SHALL MEET ANS/ASSE AT 0.4 (ATISTE DITIONING), FEDERAL STATE, AND LOCK REDULTIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING FERFORMED. ALL REGINE PLAKS SHALL ABHERE TO ANS/ASSE AND AGL (ATLST EDITION), AND CROWI OSLE USA INC. STANDARD CED-STD-10253, INCLUDING THE REQUIRED INVOLVENTI OF A QUALIFED ENGINEER FOR LOSS IN CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURES (DI ACCORDANCE WITH ANS/TIN-322 (LATEST EDITION).
- ALL SITE WORK TO COMPLY WITH QAS-STD-10068 INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON CROWN CASTLE USA INC. TOWER SITE" AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS.
- ANTENNS." IF THE SPECIFIE EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SPECIFIC SPECIFIE EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SPECIFIC DIVE STATE AND ADDRESS OF THE STALLATOR." CAN BE CONTRACTOR TO ALL MATERIAS FURSHED AND INSTALLED SHALL BS. ISTRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS MID DRIMANCES, CONTRACTOR SHALL SSUE ALL APPROPRIATE NOTICES MID UNITOHIT REGIONATIONS THE DEFORMANCE OF THE WORK ALL WORK CORRED OUT SHALL CORFLY WITH ALL APPLICABLE MUNICIPAL, AND UTILITY COMPANY SPECIFICATIONS AND LOCAL UNESDITIONAL CODES, MONANCES AND APPLICABLE REGULATIONS.
- DEDMANSES TARGET BELT CONTINUES AND STELLINGTHONE AND LOCAL JURESUCTIONAL CODES, THE CONTRACTOR SHALL BOSTAL LA BOUNDART AND WATERNALS IN ACCORDANCE WITH MANUFACTURER'S THE CONTRACTOR SHALL BOSTAL LA BOUNDART AND WATERNALS IN ACCORDANCE WITH MANUFACTURER'S THE CONTRACTOR SHALL CONTACT UTUTI LOCATING SERVICES PROVE TO THE START OF CONSTRUCTION. ALL EXEMING ACTIVE SERVER, WATER, GAS, ELECTRIC AND OTHER UTUTIES WHERE ENCOUNTERED IN THE CONTRACTOR SHALL CONTACT UTUTI LOCATING SERVICES PROVE DUTOR SHALL DEVISION OF THE CONTRACTOR WHEN EXCANTING OF DIRELING PROVE ADDRESS CONTRACTOR SHALL DEVISION OF THE CONTRACTOR WHEN EXCANTING OF DIRELING PROVE ADDRESS CONTRACTOR SHALL CONTRACTOR WHEN EXCANTING OF DIRELING PROVE ADDRESS CONTRACTOR SHALL CONTRACTOR WHEN EXCANTING OF DIRELING PROVE ADDRESS ON THE OTA I ADDLESS FOR THE ONE OFFICIAL START OF THE SHALL PROVE ADDRESS ON THE OTAGET ADDRESS CONTRACTOR WHEN EXCANTING OF DIRELING PROVEMENT OF THE TOTA / A THE CONTRACTOR WHEN EXCANTING OF DIRELING PROVEMENT OF THE TOTA / A THE CONTRACTOR WHEN EXCANTING OF DIRELING PROVEMENT OF THE TOTA / A THE CONTRACTOR WHEN EXCANTING OF DIRELING PROVEMENT OF THE TOTA / A THE CONTRACTOR WHEN EXCANTING OF DIRELING PROVEMENT OF THE TOTA / A THE CONTRACTOR WHEN EXCANTING OF DIRELING PROVEMENT OF THE TOTA / A THE CONTRACTOR WHEN EXCANTING OF DIRELING PROVEMENT OF THE TOTA / A THE CONTRACTOR WHEN EXCANTING OF DIRELING PROVEMENT OF THE ONE OFFICE ALL STRUCTURES WHEN EXCANTING OF DIRELING PROVEMENT OF THE PROVEMENT OF THE OTA/ A LL STRUCTOR WHEN EXCANTING ON THE STRUCTURE OFFICE OFFICE
- ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
- SPECIFICATIONS, LATEST APPROVED REVSION, THE STANTED CURSTANLING DAMINGS AND FROMED FORCED CONTRACTOR STALL KEEP THE STE FREE FORM ACCUMULATING WASTE MATERNAL DEBRS, AND TRASH AT THE COMPLETION OF THE WORK, IF INCESSARY, RUBBISH, STUMPS, DEBRS, STICKS, STOKES AND OTHER REFUSE SHALL BE REMVED FORM THE STE AND DISPOSED OF LEGALLY.
- REFUGE SHALL BE REMOVED FROM THE SHE AND DISFOSED OF LEGALT. ALL EXISTING INCITIVE SEVERY, WATER, GAS, ELECTRIC AND OTHER UTLIFIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT OT THE APPROVAL 1.3
- OF CONTRACTOR, TOWER, OWNER, CROWN CASTLE USA, INC., MAYOR, LOCA, UTLITES. THE CONTRACTOR, SHALL PROVIDE SITE SIGNAGE IN ACCORTANCE WITH THE TECHNICAL SPECIFICITION FOR SITE SIGNAGE REQUIRED BY LOCA, JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PRECES OF EQUIPMENT, ROOK, AND SHELTERS.
- THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS. 15
- AND TOWER AREAS. THE SUB GROUPS SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SUPPACE APPLICATION. THE SUB GROUP SHALL BE COMPACTED AND THE MORE AND NOT COVERED BY THE WORE, DURAGENT OR TROPKING, SHALL BE GROUP TO A UNIFORM SOLF AND STABLIZED TO PREVAIT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAMINGS AND/OR PROJECT SPECIFICATIONS. CONTRACTOR SPECIFIC ON THE CONSTRUCTION, SHALL BE IN CONTORMANCE WITH THE LOCAL GUIDELINES FOR EROSION DESTINGTIC
- TUE DIVISION AND SEDMENT CONTROL. 10 THE CONTROL STALL REPARED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION STRUCTURES. AND DAVAGED PART SHALL BE REPARED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DWARD.
- OF OWNER. O, CONTRACTOR SHALL LEGALLY AND PROPERTY DISPOSE OF ALL SOME MATERIALS SUICH AS CONVAL CARLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOGATION. 21. CONTRACTOR SHALL LEVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM STRE ON A DULY BASE.
- 22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GREENFIELD GROUNDING NOTES:

- ALL GROWNO ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTINIG PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDENCE WITH THE REG.
- ACCORDANCE WITH THE NC. THE CONTRACTOR SHALL EXPROVE LEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER EEE 1100 AND B1) FOR GRUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FUNNISH AND INSTALL SUPPORT ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHNS OR LESS. THE CONTRACTOR SHALL EXPROVE A TEST RESULT OF 5 OHNS OR LESS. THE CONTRACTOR SHALL EXPROVED TESTING RESULTS. TESTING RESULTS. TESTING RESULTS. з.
- 4.
- 5
- METAL CONDUT NO THAY SHALL BE GROUNDED AND MADE LECTRICALLY CONTINUOUS WITH LISTED BONDING THING OR BY BONDING ACROSS THE DISCONTINUTY WITH #6 COPPER VINE UL APPROVED GROUNDED NOT MADE THE CONDUCTION STATUS IN THE CONDUCTION STALL DE STATUS DE COUPERT COULDED AND INSTALLED AND INSTALLED AND INSTALLED AND INSTALLED SUPPLIEVENT, SUPPORT CRUINES, #5 STANCED COPPER CRUINES, #5 STANCED COPPER CRUINES, #5 STANCED COPPER CRUINES, #5 BARE SOLID TINED CONDUCTORS WITH GREEN INSULATORS WITH GREEN INFORMANT GRUING WITH GREEN INFORMATION WITH GREEN INFORMAT

- 20
- MISCELLINEOUS ELECTRICUL AND NON-ELECTRICUL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GRUND CONDUCTOR, IN ACCORDANCE WITH THE NCC. BOID ALL BELLETRICUL AND NON-ELECTRICUL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GRUND CONDUCTOR, METAL SUPPORT CLPS OR SUPPORT CLPS OR SUPPORTS STRUCTURE CONDUCTOR SUPPORTS THE CONDUCTOR SUPPORT TO THE TO ALL PROLECT THE TOBUL A CONDUCTOR, SUCH AS METALLO CONDUCTOR, METAL SUPPORT CLPS OR SLEEVES THROUGH WALLS OR FLOORS, WHEN IT IS REQUIRED TO BE HOUSED IN CONDUCTOR WITH THE REQUIRED TO ALL PROLINCTOR SHALL BE BONDED TO EXCLOSING THAT TOWERS METAL SUPPORT CLPS OR SLEEVES THROUGH WALLS OR FLOORS, WHEN IT IS REQUIRED TO BE HOUSED IN CONDUCT WHET COOR FEGUREMENTS OR LOCAL CONDITIONS, NON-METALL CONDUCT RANLA BLE DESC. WHERE USE OF METAL CONDUCT IS UNNORDERED (C.R., DOWERT LUC CONDUCT FROM THE GRUND CONDUCTOR SHALL BE BONDED TO EXCL ORD OT THE METAL CONDUCT ALL GROUNDS THAT TOWERSTON FROM EDUD GRADE TO ABOVE GRUE SULS THE 20 BRE SOLD THE COORT THE GRUND CONDUCTOR SHALL BE BONDED TO EXCL OND IT FROM 75' TO G' CAD-WELD TERMINATION BUILDINGS WHEET HE MAN GROUNDE CONDUCTORS SHALL ROLLE THAT 2/0 COPPER IN 3/41 ROM-METALLS. FLEXIBLE CONDUCT REPORTS IN THE CONDUCTORS, NON-METAL CONDUCT THE DISTING GROUNDING SCHOLTORS SHALL NOT BE ROUTED TO GRADE, THE CONTROL FRONT FROM 74' BELOW GROUND GROE TO WITHIN 3'TO G' G' CAD-WELD TERMINATION THE DISTING GROUNDING SCHOLTORS SHALL NOT BE ROUTED TO GRADE, THE CONTROL FRONT FROM THE ROOTED, TOWERS, NOW METAL TOWERS GROUNDER RING, TO THE DISTING GROUNDING SCHOLTORS SHALL NOT BE ROUTED TO GRADE, THE CONDUCTOR SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLLINAS, LIGHTING FOR CONTON GRUND, STATEM, THE BUILDING STEEL COLLINAS, LIGHTING CONDUCTORS SHALL AND THE LUCES SHALL BE THAT 2/0 COPPER. ROOTYD THE DISTING GROUNDING SYSTEM, THE BUILDING STEEL COLLINAS, LIGHTING FOR CONTON GRUND STEM, THE BUILDING STEEL COLLINAS, LIGHTING FOR CONTON GROUND STEM, THE BUILDING STEEL COLINAS, LIGHTING FOR CONTON GROUND STEM, 21.

GENERAL NOTES:

- FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: CONTINUETOR: GENERAL CONTINUETOR RESPONSIBLE FOR CONSTRUCTION TOWER 'OWNER: CROWIN CASTLE USA INC. THESE GRAWINGS HWZ BEEN PREFARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CRECINSTANCES BY REPUTALE LEXANDERS IN THIS OR SIMILAR LOCALITES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE FERTORIED BY AN EXPERIENCED CONTRACTOR AMO/OR WORK/PEOPLE WICH THE WORKING KONDELECTO F THE APPLICALE LCOOL STANDARDS AND RECOMPLETENTS AND ON MOUSTRY.

- SUBSTAINLE FFORT HAS BEEN MORE TO PROVEE ACCURATE DIMENSIONS AND MESUREMENTS ON THE DRAWINGS TO SUBSTAINLE FFORT HAS BEEN MORE TO PROVEE ACCURATE DIMENSIONS AND MESUREMENTS ON THE SUBLERSHORED HIT SUBSTAINLE FFORT HAS BEEN MORE TO FABRICATION OR CUTTING OF ANY NEW OR DUSTING CONSTRUCTION ELEMENTS. IT IS DETERMENT TO THE REAL RESIDENCE AND/RE CONTRUCTION ELEMENTS OF THE DRAWINGS TO FERCIDE SUBJECT TO THE DRAWINGS THE DRAWINGS THE DRAWINGS THE DRAWINGS AND TO CONTINUE BE BRUGHT TO THE ATTENTION OF CROWN CASELE CONSTRUCTION DRAWINGS PROVE TO THE DRAWINGS THE DRAWINGS THE DRAWINGS THE DRAWINGS THE DRAWINGS THE DRAWINGS AND TO CONTINUE BE BRUGHT TO THE ATTENTION OF CROWN CASELE CONSTRUCTION SAND TO CONTINUE BE BRUGHT TO THE ATTENTION OF CROWN CASELE CONSTRUCTION RAW TO CONTRACTOR SHALL INST THE COLL SHIT THE CONTRACTOR THE ALL WAS THE COLLINGS AND TO CONTRACTOR SHALL INST THE COLL SHOT THE ATTENTION OF CROWN CASELE COULD TO A THE DRAWING THE THIT THE WORK CASE DE ACCOMPLISED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DSCREPARA, FOUND SHALL BE BRUGHT TO THE ATTENTION OF CROWN CASELE COULD THE OWNER, ALL WORK CARREN LA COLLOR THE ATTENTION OF CROWN CASELE COULD THE ALL WORK CARREN LA WORK CARREN LA COLLOR THE ATTENTION OF CROWN CASELE COULD THE ALL WORK CARREN LA WORK CARREN LA COULD FUNDAMENTE MONTCASE AND UTILLY CONTRACTOR SHALL WORK CARREN LA COLLOR FUNDAMENTE MONTCASE AND COMPANY THE ALL WAS, ORDINANCES, RULES, RECULITIONS AND LWAYLL ORDERS OF ANY PUBLIC ALL PROVIDER WITH ALL LAWS, ORDINANCES, RULES, RECULITIONS AND LWAYLL ORDERS OF ANY PUBLIC ALL PROVIDER WITH ALL AND UTILLY CONTRACTOR SHALL INSTALLATION ON A BEN'S INDICATED ON THE DRAWINGS. THE CONTRACTOR SHALL INSTALLATION ON A SHOULD COULD THE DRAWINGS. THE CONTRACTOR SHALL INSTALLATION AS SHOULD AND THE DRAWINGS. THE CONTRACTOR SHALL INSTALLATION AS SHOULD AND THE DRAWINGS. THE DRAWING SHALL DRAWING MALL BE ALL PROVIDER WITH MALKACTURER'S THE DRAWING TO DURING THE INSTA

- DRAWINGS." LECEVITION STUDIESTIC DESCRIPTION OF CONTRACTORS AND ADDRESS OF CONTRACTORS AND ADDRESS OF CONTRACTORS AND ADDRESS OF ADD
- DESIGNATED LOCATION. 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DALLY BASIS.

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

- PLACEMEN "LACEMENT. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR
- SUMMENTE LEVISUELI DI PREZEZETIMI UTULES SIMUL LUMIARI ARI ENMONING ADMITURES. AMOUNT OF AR ENTRAIMENT DI DE BASED DI SIZE OF AGORGANE AND F3 CLASS ENFOSUER (CHEN SUPER), CENERU I USET DI BE TIFE II PORTUNO ECHONO SIMUL CONFORTI DI ASTM ALI STELE RENORCINO SIMUL CONFORTI DI ASTM ATBS. ALI SPUESS SIMUL BE CLASS "B' TIDISION SPUES, MULSS NOTED OTHEMISE, ALI MOUS SIMUL BE SIMUL SI DEL RENORCINO SIMUL CONFORTI DI ASTM ATBS. ALI SPUESS SIMUL BE CLASS "B' TIDISION SPUES, MULSS NOTED OTHEMISE ALI MOUS SIMUL BE SIMUL SI DEL RENORCINO SIMUL CONFORMI DI ASTM
- AF FOLLOWS SHALLER 40 ksi 44 BARS AND SHALLER 60 ksi 56 BARS AND LARGER 146 POLLOWNO MINIMUM, CONCRETE COVER, SHALL, BE, PROVIDED, FOR REMPTOROND, STELL UNLESS SHOWN OTHERWISE THE FOLLOWNO MINIMUM, CONCRETE COVER, SHALL, BE, PROVIDED, FOR REMPTOROND, STELL UNLESS SHOWN OTHERWISE
- ON DRAWINGS: CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH CONCRETE EXPOSED TO EARTH OR WEATHER: 3"
- 1-1/2"
- CONCRETE LEPOSED TO EARTH OR WEATHER:
 2.

 #6 Bars AND SMALLER
 1-1/2*

 CONCRETE NOT EVROSED TO LARTH OR WEATHER:
 1-1/2*

 CONCRETE NOT EVROSED TO LARTH OR WEATHER:
 3/4*

 BEARS AND SMALLER
 1-1/2*

 A TOULD EDGE OF A 3/A* CHAMPER SHALL BE PROVIDED AT ALL EMPOSED. EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH, ACJ 301 SECTION, 4.2.4.
- NEUTRAL WHITE GROUND GREEN A PHASE BROWN B PHASE 277/480V 30 C PHASE NEUTRAL GREY

SYSTEM

120/2400/ 10

120/208V. 3Ø

ORANGE OR PURPLE YELLOW GROUND GREEN DC VOLTAGE POS (+) NEG (-) RED** BLACK**

COLOR

BI ACK

RED

WHITE

GREEN

BI ACK

RED

BLUE

* SEE NEC 210.5(C)(1) AND (2) ** POLARITY MARKED AT TERMINA

CONDUCTOR COLOR CODE

CONDUCTOR

A PHASE

B PHASE

NEUTRAL

GROUND

A PHASE

B PHASE

C PHASE

ELECTRICAL INSTALLATION NOTES:

4.1

4.2.

10.

12. 1.3.

15.

16.

18.

20.

ABBREVIATIONS:

ANT	ANTENNA
(E)	EXISTING
ÈĨÉ	FACILITY INTERFACE FRAME
GEN	GENERATOR
GPS	GLOBAL POSITIONING SYSTEM
GSM	GLOBAL SYSTEM FOR MOBILE
LTE	LONG TERM EVOLUTION
MGB	MASTER GROUND BAR
MW	MICROWAVE
(N)	NEW
NEC	NATIONAL ELECTRIC CODE
(P)	PROPOSED
Ρ́Ρ́	POWER PLANT
QTY	QUANTITY
RECT	RECTIFIER
RBS	RADIO BASE STATION
RET	REMOTE ELECTRIC TILT
RFDS	RADIO FREQUENCY DATA SHEET
RRH	REMOTE RADIO HEAD
RRU	REMOTE RADIO UNIT
SIAD	SMART INTEGRATED DEVICE
TMA	TOWER MOUNTED AMPLIFIER
TYP	TYPICAL
UMTS	UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM
WP	WORK POINT

- ALL ELECTRICAL WORK SYALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEBERAL STAFL AND LOCAL CODEX/ROBINNESS. CONDUT ROUTINGS ARE SOFWARTS. CONTRACTOR SHALL INSTALL CONDUTS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED WIRKING, RACKWAY NON SUPPORT WITHONS AND WARRAN MINIMA CABLE SEPARATION AS REQUIRED BY THE NEC. ALL CRUTIS SHALL BE SCREGATED AND MANTAIN MINIMA CABLE SEPARATION AS REQUIRED BY THE NEC. ALL CRUTIS SHALL BE SCREGATED AND MANTAIN MINIMA CABLE SEPARATION AS REQUIRED BY THE NEC. ALL CARCUTS SHALL BE SCREGATED AND MANTAIN MINIMA CABLE SEPARATION AS REQUIRED BY THE NEC. ALL CARCUTS SHALL BE SCREGATED AND MANTAIN MINIMA CABLE SEPARATION AS REQUIRED BY THE NEC. ALL CARCUTS SHALL BE SCREGATED AND MANTAIN MINIMA CABLE SEPARATION AND SHALL CONFORM TO CIRCUT CURRENT TO WICH THE UNDERWITTED ZADOA AND MANUAL VERTIFY AWARABE SWORT CRUTCH CURRENT ONOTED CODE PRE TO WICH THE ARE SUBJECTED ZADOA AND MANUAL MARKET MANABLE SHALT CRUTT CURRENT TO WICH THE ARE SUBJECTION. ACCORDINATE TO WICH SHALL BURK SCRUTCH AT ACCORDANCE WITH ARTICLE 10.24 NEC ON THE WOST CONFIDENCES MADDITED CODE PRE THE EDUCEMENT AND MENDAL THE WART MANDALE SHALT ARE CONFIDENT AND THE CODE PRE TO WICH THE ACCESSION CONCUTOR, AND TELCO CONDUCTOR AND TELCO CONTO CONDUCTOR AND TELCO CONDUCTOR AND TELCO CONDUCTOR AND TELCO CONTOCIDANTA AND MANTANA TELCO AND TARANA AND AND AND TELCO TELCO AND TELCO CONTOCIDA AND TELCO AND TARA AND AND AND TARANA AND AND AND AND AND ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE 575 MOROSGO DRIVE ATLANTA, GA 30324-3300 CROWN CASTLE CIRCUIT 10'5). PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS. ALL TRUE WAAPS SHALL BE CUT FLUSH WITH APPROVED CUTTING TOOL TO REMOVE SHAPP EDGES. ALL POWER AND EDUFANCT GROUND WIRKS IN THOME OR CONDUCT SHALL BE SNOLE COPPER CONDUCTOR (#14 OR LARGER) WIGHT THIME CUMMIN, THIME-2, XHM, ANHA-2, THM, THH-2, RHW, OR HIM-2 ARCHATON UNLESS OFFICIARIES SPECIFIED. WIGHT THIME CUMMIN, THIME-2, XHM, ANHA-2, THM, THH-2, RHW, OR HIM-2 ARCHATON UNLESS OFFICIARIES SPECIFIED. THYRE THIME THIME, THIME-2, XHM, XHM-2, THM, THH-2, RHW, OR HIM-2 ARCHATON UNLESS OFFICIARIES SPECIFIED. THYRE THIME, THIME, THIME-2, XHM, XHM-2, THM, THH-2, RHW, OR HIM-2 ARCHATON UNLESS OFFICIARIES SPECIFIED. POWER AND CONTROL WIRKS IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS 3 CORPORATE PARK DRIVE, SUITE 101 CLIFTON PARK, NY 12065 DHERWIS SPECIFIED. WHING FOR USE IN CABLE TRAV SHALL BE MUTT-CONDUCTOR, THE TO CABLE (#14 OR LABORT), WITT TOPET THOU THINGT THING CAR USE IN CABLE TRAV SHALL BE MUTT-CONDUCTOR, THE TO CABLE (#14 OR LABORT), WITT PARE THOUSE THINGT THINGT, SHAW, SHAW, 2 THING OR HERW-2 INSIGNTATION UNLESS OTHERWISE SPECIFIC) ALL POWER AND GROUNDING CONVECTIONS SHALL BE CARD'RO TO REPRAZI NISILATION UNLESS OTHERWISE SPECIFIC) BETS (OR EQUAL), LUGS AND WIRE TUTS SHALL BE CARD'RO TO REPRAZI NISILATION TO LISES THAN 75 (OR CO'L F AVALABLE). RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AT&T SITE NUMBER: CT5841 BU #: 806364 HRT 106(B) 943202 143 R OLD BLUE HILL ROAD DURHAM, CT 06422 EXISTING 120'-0" MONOPOLE ISSUED FOR: REV DATE DRWN DESCRIPTION DES./G A 05/08/20 -31 PRELIMINARY LR 05/21/20 Al PRELIMINARY 1.R 07/30/20 AJ PRELIMINARY 1.R 08/11/20 A) CONSTRUCTION MD APWA UNIFORM COLOR CODE: -Discrete DVNAC CALL DIA ANALO CALL WHITE PROPOSED EXCAVATION PINK_____TEMPORARY SURVEY MARKINGS RED ELECTRIC POWER LINES, CABLES, CONDUIT, AND LIGHTING CABLES YELLOW GAS, OIL, STEAM, PETROLEUM, OR GASEOUS MATERIALS ORANGE COMMUNICATION, ALARM OR SIGNAL LINES, CABLES, OR CONDUIT AND TRAFFIC LOOPS MEER BILLE POTABLE WATER PROF PURPLE RECLAIMED WATER, IRRIGATION, AND SLURRY LINES 8/11/103/0NAL ENGINE PM EL GREEN SEWERS AND DRAIN LINES "minimum Crown Castle USA Inc Certificate of Registration #PEC.000110 A VIOLATION OF LAW FOR ANY PERSON
 - UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. SHEET NUMBER: REVISION エっ 0 I - Z

- THE NEC. 21
- THE NICE SHALL BE WETTAL WITH AN EXAMPLE FINISH AND INCLUDE A HINKED COVER, DESIGNED TO SWING OPEN DOWNNARDS WIRENOUS DEVOLATE WIRENWY. SLOTED WIRING DUCT SHALL BE P/G AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL). CONDUITS SHALL BE FASTENDE SCUERTY IN PLACEMENT TO STRUCTURE WILL NOT BE PERMITTED, CLOESLY FOLOW THREES DEVOLES (G. P. DWIER-K-CLUTED) FOR ATLACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED, CLOESLY TAUDON THREES IN DRECTION TO NOTE ANOUND OBSTACLES SHALL BE MADE WIN FOR NOUTO UTTER DUDIES. CONDUT SHALL BE INSTALLED IN A NEAL NO WORKMALUGE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WILL AND CELING LINES. ALL DONOUT MALESLAW WORKMALUGE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WILL AND CELING LINES. ALL DONOUT MALESLAW WORKMALUGE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WILL AND CELING LINES. ALL DONOUT MALESLAW WORKMALUGE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WILL AND CELING LINES. ALL DONOUT MALESLAW WORKMALUGE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WILL AND CELING LINES. ALL DONOUT MALESLAW WORKMALUGE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND NORE. DEVOLVED STRUCTURE WALL DE VORS. JUNCTOR DONOUTS MORT BOLTS DE MONT MALESLAW WORKMALLEL MANDER. PARALLEL MOD DER NEU DEVOLUTION TO STRUCTURE WALL BE NORTHON MALESLAW WORKMALUGE MANNER. PARALLEL MOD PERPENDICULAR TO STRUCTURE WALL AND CELING LINES. ALL DE NORTHON MALESLAW WORKMALLEL MANDER AND DE RATED MEM I LONG STALL DE RODON CONTONS FOR MALL DE RODON DE TRUCTURE WALL BE RODON ON THE PERPENDICULAR TO DEVOLUTION OUTSTALL DE NOT CONTONS FOR AND PERPENDICULAR TO DE NOT CONTONS FOR AND PERPENDICULAR TOR NUT TO DEVONCTONTES AND NEMES SAND LE RODON OF NON TERROR LOCATIONS AND NEMES AND OF LINES AND LINES AND LINES AND LINES AND NEMES SAND LINES AND CONTONS SAND NEMES AND ALL DE CONTONS FOR NUT PEROV-CONTED SHELT STELL SAVEL MEET OR DECEDENCE SAULES BOLTON DE NITEROR LOCATIONS AND NEMES AND REAL SALL BE CONTONS CONTONS SAND NEMES AND ALL DE TOR TOWNOR ON NOTATION AND NEMESTRUCTURE WILL REAL TOR TOWNON, SHA 22. 23.

- (MP OR BELIER) FOR EXTERIOR LOCATIONS. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED 27.
- 28. 29

DocuSign Envelope ID: 5C08D4FC-0D43-4D94-8E38-C5E5222599E9

FINAL EQUIPMENT SCHEDULE (VERIFY WITH CURRENT RFDS)																				
mar nes		ANTENNA RADIO DIPLEXE			DIPLEXER	ER TMA				SURGE PROTECTION		CABLES								
POSITION	TECH.	STATUS/MANUFACTURER MODEL	AZIMUTH	RAD CENTER	ΩТΥ.	STATUS/MODEL	LOCATION	QTY.	STATUS	LOCATION	ατγ.	STATUS	QTY.	STATUS/MODEL	QTY.	STATUS/TYPE	SIZE	LENGTH		
A1	UMTS LTE	(E) ANDREW SBNHH-1D65A	30'	116'-0*	1	(E) 4415 B25	TOWER	-	-	-	-	-	-	-	2	(E) COAX	1-5/8"	116'-0"		
A2	LTE	(E) ANDREW SBNHH-1D65A	30'	116'-0"	1	(E) RRUS-32 B30	TOWER	-	-	-	-	-	1	(E) DC6-48-60-18-8F	2	(E) DC	3/4"	116'-0"		
43	ITE	(E) KATHREIN	207	110' 0"	1	(E) 4426 B66	TOWER						_	(5) 006-49-60-18-90	4	(E) DC	3/4"	116'-0"		
15		800-10964	50	116 -0	1	(N) 4478 B14	TOWER		_			_	2	(2) 000-48-80-18-80	2	(E) FIBER	3/8"	116'-0"		
A4	LTE	(E) KATHREIN	30'	116'-0*	1	(E) RRUS-32 B2	TOWER	_	_	-	_	_	1	(N)	2	(N) DC	7/8"	116'-0"		
	56	800-10964			1	(E) 4449 B5/B12	TOWER							DC6-48-60-18-8C-EV						
ΒΕΤΑ																				
B1	UMITS LTE	(E) ANDREW SBNHH-1D65A	160*	116'-0"	1	(E) 4415 B25	TOWER	-	-	-	-	-	-	-	2	(E) COAX	1-5/8"	116'-0"		
B2	LTE	(E) ANDREW SBNHH-1D65A	160'	116'-0*	1	(E) RRUS-32 B30	TOWER	-	-	-	-	-	-	-	-	-	-	-		
		(F) KATHREIN		116'-0"	160' 116'-0"	60" 116'-0"	1	(E) 4426 B66	TOWER											
83	LIE	800-10964	160	116-0"	1	(N) 4478 B14	TOWER	-	-	-	-	-	-	-	-	-	-	-		
84	LTE	(E) KATHREIN	1607	110' 0"	1	(E) RRUS-32 B2	TOWER													
D4	5G	800-10964	100	116 -0	1	(E) 4449 B5/B12	TOWER		_		-	_	_	_	_	_		_		
CAMMA																				
C1	umts Lte	(E) ANDREW SBNHH-1D65A	280'	116'-0"	1	(E) 4415 B25	TOWER	-	-	-	-	-	-	-	2	(E) COAX	1-5/8"	116'-0"		
C2	LTE	(E) ANDREW SBNHH-1D65A	280'	116'-0"	1	(E) RRUS-32 B30	TOWER	-	-	-	-	-	-	-	-	-	-	-		
C 1	ITE	(E) KATHREIN	280	116' 0"	1	(E) 4426 B66	TOWER		_	_		_		_		_	_			
63	LIE	800-10964	280	116'-0"	1	(N) 4478 B14	TOWER	-	-	-	-	-	-	-	-	_	-	-		
	LTE	(E) KATHREIN	280	116' 0"	1	(E) RRUS-32 B2	TOWER		_	_		_					_			
U 4	5G	800-10964	200	110-0	1	(E) 4449 B5/B12	TOWER	1		-	-	-	-	_	-	_	-			

AT&T

CCROWN CASTLE 3 CORPORATE PARK DRIVE, SUITE 101 CLEFTON PARK, NY 12065

575 MOROSGO DRIVE ATLANTA, GA 30324-3300

AT&T SITE NUMBER: **CT5841** BU #: **806364 HRT 106(B) 943202** 143 R OLD BLUE HILL ROAD DURHAM, CT 06422 EXISTING 120'-0" MONOPOLE

ISSUED FOR:

 C
 07/30/20
 AJ
 PRELIMINARY
 LR

 0
 08/11/20
 AJ
 CONSTRUCTION
 MD

Periodiane DANNE

23524 8/11/2039/00AL

Crown Castle USA Inc. Certificate of Registration #PEC.0001101

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:

C-3

B 05/21/20 AJ PRELIMINARY

PRELIMINARY

A 05/08/20 A)

DES./Q.

LR

LR

50 PM E

REVISION:

0

NOTE: (E) – EXISTING (N) – NEW

THE SCALE: NOT TO SCALE

)iagram - Sector		Diagram File Name - CT584*	I_A_B_C_LTE_Rev2.vsd				
toll Site Name -	CTL05841	Location Name -	DURHAM CENTRAL	Market -	CONNECTICUT	Market Cluster -	NEW ENGLAND
omments: Important Note:	For detailed radio to antenna	wiring refer to the latest field	notice - Antenna_Radio Connection Dra-	wings Playbook v6	.0_Ericsson		

liagram - Sector		Diagram File Name - CT584	I_A_B_C_LTE_Rev2.vsd				
toli Site Name -	CTL05841	Location Name -	DURHAM CENTRAL	Market -	CONNECTICUT	Market Cluster -	NEW ENGLAND
omments: Important Note:	For detailed radio to antenna	wiring refer to the latest field	notice - Antenna_Radio Connection Dra	wings Playbook v6	.0_Ericsson		

liagram - Sector		Diagram File Name - CT584	I_A_B_C_LTE_Rev2.vsd				
toli Site Name -	CTL05841	Location Name -	DURHAM CENTRAL	Market -	CONNECTICUT	Market Cluster -	NEW ENGLAND
omments: Important Note:	For detailed radio to antenna	wiring refer to the latest field	notice - Antenna_Radio Connection Dra	wings Playbook v6	.0_Ericsson		

Certificate Of Completion

Subject: Please DocuSign: 10071003_806364_HRT 106_B_ 943202_AT&T LTE 6C FCD_REV 0_08.11.2020.pdf Certificate Pages: 3 Document Pages: 15 Source Envelope: Envelope Id: 5C08D4FC0D434D948E38C5E5222599E9 Initials: 0 Signatures: 9 Whitney Sealover Status: Completed 2000 Corporate Drive Envelope Originator:

Envelopeld Stamping: Enabled AutoNav: Enabled

Time Zone: (UTC-05:00) Eastern Time (US & Canada)

Whitney.Sealover@crowncastle.com

Canonsburg, PA 15317

IP Address: 8.20.92.226

Record Tracking

Status: Original 8/11/2020 5:00:51 PM

Signer Events

Signature

Timestamp

Location: DocuSign

Maribel Denting~_______ DocuSigned by:

Signed: 8/11/2020 5:31:50 PM Viewed: 8/11/2020 5:31:34 PM Sent: 8/11/2020 5:03:23 PM Holder: Whitney Sealover

Whitney.Sealover@crowncastle.com

maribel.dentinger@crowncastle.com Maribel Dentinger

Security Level: Email, Account Authentication (None) Crown Castle International Corp.

Using IP Address: 64.213.130.12 Signature Adoption: Drawn on Device

Electronic Record and Signature Disclosure: Accepted: 9/20/2018 8:56:27 AM ID: 50d48a2f-ee52-4b02-9a1f-3c3a14f58c3b

Envel Witr In Po Certif Env Nota Cart Cert Edit Inter Age

Payı **Electronic Record and Signature Disclosure**

In Person Signer Events	Signature	Timestamp
Editor Delivery Events	Status	Timestamp
Agent Delivery Events	Status	Timestamp
Intermediary Delivery Events	Status	Timestamp
Certified Delivery Events	Status	Timestamp
Carbon Copy Events	Status	Timestamp
Witness Events	Signature	Timestamp
Notary Events	Signature	Timestamp
Envelope Summary Events	Status	Timestamps
Envelope Sent Certified Delivered Signing Complete Completed	Hashed/Encrypted Security Checked Security Checked Security Checked	8/11/2020 5:03:23 PM 8/11/2020 5:31:34 PM 8/11/2020 5:31:50 PM 8/11/2020 5:31:50 PM
Payment Events	Status	Timestamps

ELECTRONIC RECORD AND SIGNATURE DISCLOSURE

In order to provide more efficient and faster service, Crown Castle ("we", "us" or "company") is pleased to announce the use of DocuSign, Inc. ("DocuSign") electronic signing system. The terms for providing such documents for agree to these terms, please confirm your agreement by clicking the "I agree" button at the bottom of this document. Please read the information below carefully and if you can satisfactorily access this information electronically and execution and various other documents and records to you electronically through DocuSign are set forth below Getting paper copies

documents previously provided by us to you electronically, send an e-mail to <u>esignature@CrownCastle.com</u>, requesting the subject paper copies and stating your e-mail address, name, US Postal address and telephone At any time, you may request from us a paper copy of any document for execution or other document or record provided or made available electronically to you by us. You will be able to download and print documents we send to number you through the DocuSign system during and immediately after each signing session and, if you elect to create DocuSign signer account, you may access them for a limited period of time thereafter. To request paper copies of a)

Withdrawing your consent to receive and/or execute documents electronically

able to use the DocuSign system to electronically receive and execute documents or other records from us. You also send an e-mail to esignature@CrownCastle.com stating that you are withdrawing your consent to electronic delivery and execution of documents through the DocuSign system and stating your e-mail address, name, US Postal Address, and telephone number format. To withdraw your consent to electronic delivery and execution of documents, use the DocuSign 'Withdraw Consent' form on the signing page of a DocuSign envelope, instead of signing it. Thereafter, you will no longer be may at any time change your mind and tell us that thereafter you want to receive such documents only in paper If you elect to receive documents for execution and various other documents and records from us electronically, you You may

our relationship with you. To reduce the chance of you inadvertently not receiving any document for execution or other document or record, we prefer to provide all documents for execution, and other documents and records by the same method and to the same address that you have given us. If you do not agree with this process, please let us execution, and other documents and records electronically to you through the DocuSign system during the course of Unless you tell us otherwise in accordance with the procedures described herein, we may provide documents for If you elect to receive documents for execution and various other documents and other records only in paper format it will slow the speed at which we can complete the subject transactions because of the increased delivery time. Consequences of withdrawing consent to receive and/or execute documents electronically Documents for execution, and other documents and records may be sent to you electronically

know as described below. How to contact Crown Castle

documents for execution and other documents and records electronically as follows: documents for execution and other documents and records from us, and to withdraw your prior consent to receive You may contact us to let us know of any changes related to contacting you electronically, to request paper copies of

To contact us by phone call: 724-416-2000

To contact us by email, send messages to: esignature@CrownCastle.com To contact us by paper mail, send correspondence to

Crown Castle

2000 Corporate Drive

To advise Crown Castle and DocuSign of your new e-mail address Canonsburg, PA 15317

To let us know of a change to the e-mail address where we should send documents for execution and other documents and records to you, you must send an email message to <u>esignature@CrownCastle.com</u> and state your previous e-mail address and your new e-mail address

account by following the process for changing e-mail in the DocuSign system In addition, you must notify DocuSign, Inc. to arrange for your new email address to be reflected in your DocuSign

Required hardware and software

Indanca Ilai a	
Browsers:	Internet Explorer® 11 (Windows only); Windows Edge Current Version; Mozilla Firefox Current Version; Safari [™] (Mac OS only) 6.2 or above; Google Chrome Current Version; Note : Pre- release (e.g., beta) versions of operating systems and browsers are not supported.
Mobile Signing:	Apple iOS 7.0 or above; Android 4.0 or above
PDF Reader:	Acrobat® Reader or similar software may be required to view and print PDF files
Screen Resolution:	1024 x 768

These minimum re	Enabled Security Settings:
5	Þ
Ē.	l
B	~
	Der
t	Se.
מ	SS
0 0	ion
5	S
P	<u>Ř</u>
5	es
3	
ומ	
D	
F ‡	
D D D	
Ď	
Fi	
ž	
ř	
2	
ויכ	

Inese minimum requirements are subject to change. If these requirements change, you will be asked to re-accept the disclosure. Pre-release (e.g. beta) versions of operating systems and browsers are not supported.

Acknowledging your access and consent to receive documents electronically

described above, please let us know by clicking the "I agree" button below. By checking the 'I agree' box, I confirm that: will deliver documents for execution and other documents and records) and that you were able to print this disclosure consent to receiving documents for execution and other documents and records in electronic format on the terms to an address where you will be able to print it on paper or save it for your future reference and access. Further, if you on paper or electronically save it for your future reference and access or that you were able to e-mail this disclosure Please confirm that you were able to access this disclosure electronically (which is similar to the manner in which we

- . You can access and read this Electronic Record and Signature Disclosure; and
- DocuSign communication, you must make a request to the e-mail originator. As a recipient, you can read, electronically sign and act upon this message, and you agree not to forward it or any other DocuSign e-mail communications. In the event another party needs to be added to the
Exhibit D

Structural Analysis Report

Date: September 09, 2020

Amanda D Brown Crown Castle 6325 Ardrey Kell RddSuite 600 Charlotte, NC 28277	Crown Ca 2000 Corp Canonsbu (724) 416-	stle oorate Drive ırg, PA 15317 -2000
Subject:	Structural Analysis Report	
Carrier Designation:	<i>AT&T Mobility</i> Co-Locate Carrier Site Number: Carrier Site Name:	10071003 DURHAM CENTRAL
Crown Castle Designation:	Crown Castle BU Number: Crown Castle Site Name: Crown Castle JDE Job Number: Crown Castle Work Order Number: Crown Castle Order Number:	806364 HRT 106(B) 943202 605361 1884618 517085 Rev. 0
Engineering Firm Designation:	Crown Castle Project Number:	1884618
Site Data:	143 R Old Blue Hill Road, DURHAM, Mic Latitude <i>41° 27' 33.67''</i> , Longitude -72° 3 120 Foot - Monopole Tower	Idlesex County, CT 89' 45.83''

Dear Amanda D Brown,

Crown Castle is pleased to submit this "**Structural Analysis Report**" to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity

This analysis utilizes an ultimate 3-second gust wind speed of 130 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Emma McCarty

Respectfully submitted by:

Maham Barimani, P.E. Senior Project Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) Table 5 - Tower Component Stresses vs. Capacity - LC7

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 120 ft Monopole tower designed by Valmont.

2) ANALYSIS CRITERIA

TIA-222-H
II
130 mph
В
1
1.5 in
50 mph
60 mph

Table 1 - P	roposed E	quipment C	onfiguration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		6	andrew	SBNHH-1D65A w/ Mount Pipe		
		3	ericsson	RRUS 32 B2		
		3	ericsson	RRUS 4415 B25		1-5/8 3/4 7/8 3/8 Conduit
116.0 116.		3	ericsson	RRUS 4426 B66		
		3	ericsson	RRUS 4449 B5/B12	6 6 2 2	
	116.0	3	ericsson	RRUS 4478 B14_CCIV2		
		3	ericsson	RRUS-32 B30		
		6	kathrein	80010964 w/ Mount Pipe	3	
		2	raycap	DC6-48-60-18-8C		
		1	raycap	DC6-48-60-18-8C-EV		
		1	raycap	DC6-48-60-18-8F		
		1	Site Pro 1	RMQLP-496-HK		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)		
	125.0	1	decibel	DB809MT3-XT				
110.0	123.0	1	decibel	DB201-A	2	7/0		
119.0	110.0	1	tower mounts	Side Arm Mount [SO 102-3]	2	110		
	119.0	2	tower mounts	Side Arm Mount [SO 701-1]				
107.0	107.0	1	gabriel electronics	GLF6-450	1	7/8		
				1	tower mounts	Pipe Mount [PM 601-1]		
		6	andrew	SBNHH-1D65B w/ Mount Pipe				
100.0		6	antel	LPA-80080/6CF w/ Mount Pipe	10	7/0		
	101.0	3	nokia	AIRSCALE RRH 4T4R B5 160W	2	1-5/8		
		3	rfs celwave	FDJ85020Q4-S1				

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	alcatel lucent	B13 RRH4X30-4R		
		3	alcatel lucent	B25 RRH4X30		
	100.0	3	alcatel lucent	B66A RRH4X45		
	2 raycap RXXDC-3315-PF		RXXDC-3315-PF-48			
		1	tower mounts	Platform Mount [LP 713-1]		
		3	alcatel lucent	PCS 1900MHZ 4X45W -65MHZ		
		6	alcatel lucent	RRH2X50-800		
	89.0	3	commscope	NNVV-65B-R4 w/ Mount Pipe	2	1 1/1
87.0	00.0	3	nokia	FZHN	1	7/8
		3	rfs celwave	APXVTM14-ALU-I20 w/ Mount Pipe		
	87.0	1	tower mounts	Platform Mount [LP 713-1]		
	75.0	1	commscope	SHP2-13		
		3	ericsson	AIR 32 B2a/B66Aa		
	73.0	3	ericsson	AIR21 B4A B2P_T-MOBILE		
		3	ericsson	AIR6449 B41		
71.0		3	ericsson	RADIO 4449 B71 B85A_T- MOBILE	6 2	1-5/8 3/8
		3	ericsson	RRUS 4415 B25		
		3	rfs celwave	APXVAARR24_43-U-NA20_T- MOBILE		
	71.0	1	tower mounts	Platform Mount [LP 1301-1]		
	57.0	1	rfs celwave	PD1142-1		
	54.0	1	decibel	ASP-655		= 10
50.0	53.0	1	rfs celwave	PD1121-6	3	//8 1/2
	50.0	2	tower mounts	Side Arm Mount [SO 702-1]		1/2
	50.0	1	decibel	DB492A		
40.0	41.0	1	tekelec systems.	EPSILON GPS ANTENNA 35 DB	1	1/2 Conduit
	40.0	1	tower mounts	Side Arm Mount [SO 701-1]		Conduit

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
4-GEOTECHNICAL REPORTS	Clarence Welti Assoc., Inc.	262150	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	SAC Engineering, Inc.	297341	CCISITES
4-TOWER MANUFACTURER DRAWINGS	Valmont	262153	CCISITES

3.1) Analysis Method

tnxTower (version 8.0.7.5), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 Standard.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	120 - 100	Pole	TP20.263x15.403x0.1875	1	-5.93	744.51	33.5	Pass
L2	100 - 47.0833	Pole	TP33.13x20.263x0.2813	2	-24.36	1760.81	85.5	Pass
L3	47.0833-0	Pole	TP44x31.372x0.375	3	-39.00	3235.70	79.8	Pass
							Summary	
						Pole (L2)	85.5	Pass
						Rating =	85.5	Pass

Table 5 - Tower Component Stresses vs. Capacity – LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Flange Bolts	100	47.6	Pass
1	Flange Plates	100	14.5	Pass
1	Anchor Rods	0	69.1	Pass
1	Base Plate	0	39.6	Pass
1	Base Foundation Structure	0	9.2	Pass
1	Base Foundation Soil Interaction	0	37.1	Pass

Structure Rating (max from all components) =	85.5%

Notes:

1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

MATERIAL STRENGTH					
GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

- Tower is located in Middlesex County, Connecticut.
 Tower designed for Exposure B to the TIA-222-H Standard.
- 3. Tower designed for a 130 mph basic wind in accordance with the TIA-222-H Standard. 4. Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase

ALL REACTIONS ARE FACTORED

AXIAL

68 K

Ĵ

AXIAL 39 K

TORQUE 2 kip-ft

MOMENT

MOMENT

2493 kip-ft

575 kip-ft

SHEAR

6 K |

- Tower is also designed for a 50 mph basic wind with in thickness with height.
 Deflections are based upon a 60 mph wind.
 Tower Risk Category II.
 Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 85.5%

	CDOWN	Crown Castle	^{Job:} BU# 806364		
	CROWN	2000 Corporate Drive	Project:		
	CASTLE	Canonsburg PA 15317	Client: Crown Castle	Drawn by: emccarty	App'd:
The Path	way to Possible	Phone: (724) 416-2000	^{Code:} TIA-222-H	Date: 09/09/20	Scale: NTS
	,	FAX:	Path: C:\Users\emccarty\Desktop\WORK AREA\	806364\WO 1884618 - SA\Prod\806364_RPA.er	Dwg No. E-1

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- 3) Tower is located in Middlesex County, Connecticut.
- 4) Tower base elevation above sea level: 511.00 ft.
- 5) Basic wind speed of 130 mph.
- 6) Risk Category II.
- 7) Exposure Category B.
- 8) Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- 9) Topographic Category: 1.
- 10) Crest Height: 0.00 ft.
- 11) Nominal ice thickness of 1.5000 in.
- 12) Ice thickness is considered to increase with height.
- 13) Ice density of 56.00 pcf.
- 14) A wind speed of 50 mph is used in combination with ice.
- 15) Temperature drop of 50 °F.
- 16) Deflections calculated using a wind speed of 60 mph.
- 17) A non-linear (P-delta) analysis was used.
- 18) Pressures are calculated at each section.
- 19) Stress ratio used in pole design is 1.05.
- 20) Tower analysis based on target reliabilities in accordance with Annex S.
- 21) Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.
- 22) Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options Consider Moments - Legs Distribute Leg Loads As Uniform Use ASCE 10 X-Brace Ly Rules Consider Moments - Horizontals Assume Legs Pinned Calculate Redundant Bracing Forces Consider Moments - Diagonals Assume Rigid Index Plate Ignore Redundant Membersin FEA Use Moment Magnification Use Clear Spans For Wind Area SR Leg Bolts Resist Compression Use Code Stress Ratios Use Clear Spans For KL/r All Leg Panels Have Same Allowable Use Code Safety Factors - Guys Retension GuysTo Initial Tension Offset Girt At Foundation Escalate Ice Bypass Mast Stability Checks Consider Feed Line Torque Use Azimuth Dish Coefficients Include Angle Block Shear Check Always Use Max Kz $\sqrt{}$ Use Special Wind Profile Project Wind Area of Appurt. Use TIA-222-H Bracing Resist. Exemption Include Bolts In Member Capacity Autocalc Torque Arm Areas Use TIA-222-H Tension Splice Exemption Leg Bolts Are At Top Of Section Add IBC .6D+W Combination Poles Secondary Horizontal Braces Leg $\sqrt{}$ Sort Capacity Reports By Component $\sqrt{}$ Include Shear-Torsion Interaction Use Diamond Inner Bracing (4 Sided) Triangulate Diamond Inner Bracing Always Use Sub-Critical Flow SR Members Have Cut Ends Treat Feed Line Bundles As Cylinder Use Top Mounted Sockets SR Members Are Concentric Ignore KL/ry For 60 Deg. Angle Legs Pole Without Linear Attachments Pole With Shroud Or No Appurtenances

Tapered Pole Section Geometry

Outside and Inside Corner Radii Are

Known

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
L1	120.00-100.00	20.00	0.00	12	15.4030	20.2630	0.1875	0.7500	A572-65 (65 ksi)

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
L2	100.00-47.08	52.92	4.92	12	20.2630	33.1300	0.2813	1.1250	A572-65 (65 ksi)
L3	47.08-0.00	52.00		12	31.3720	44.0000	0.3750	1.5000	À572-65 (65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	1		r	С	I/C	J	lt/Q	W	w/t	
	in	in²	in⁴		in	in	in³	in⁴	in²	in		
L1	15.8802	9.1864	271.45	75	5.4471	7.9788	34.0225	550.0464	4.5212	3.625	55 19.33	36
	20.9117	12.1206	623.50	83	7.1870	10.4962	59.4030	1263.3968	5.9654	4.928	30 26.28	33
L2	20.8786	18.0960	922.22	08	7.1535	10.4962	87.8621	1868.6694	8.9063	4.676	67 16.62	28
	34.1995	29.7486	4097.23	352	11.7599	17.1613	238.7480	8302.1094	14.6414	8.125	51 28.88	39
L3	33.5825	37.4288	4590.19	943	11.0969	16.2507	282.4616	9300.9781	18.4213	7.402	27 19.74	11
	45.4199	52.6772	12796.1	52	15.6177	22.7920	561.4318	25928.474	25.9261	10.78	70 28.76	35
			6					3				
Towe	r Gu	sset (Gusset	Gus	set Grade	diust. Facto	r Adiust.	Weight M	ult. Double	e Anale [Double Anal	eDouble Anale
Elevati	ion Ar	rea Th	ickness			Af	Factor		Stitcl	h Bolt	Stitch Bolt	Stitch Bolt
	(per	face)					A		Spa	cing	Spacing	Spacing
	ŭ	,							, Diag	onals	Horizontals	Redundants
ft	f	ť	in						i	n	in	in
L1 120.0	00-					1	1	1				
100.0	0											

Feed Line/Linear Appurtenances - Entered As Round Or Flat

1

1

1

1

Description	Sector	Exclude	Componen	Placement	Total	Number	Start/En	Width or	Perimete	Weight
		From	t		Number	Per Row	d	Diamete	r	
		Torque	Туре	ft			Position	r		plf
		Calculation						in	in	
**										
2" Rigid Conduit	С	No	Surface Ar	40.00 -	1	1	0.170	2.0000		2.80
-			(CaAa)	0.00			0.180			
****			. ,							

1

1

Feed Line/Linear Appurtenances - Entered As Area

Description	Face	Allow	Exclude	Componen	Placement	Total		$C_A A_A$	Weight
	or	Shield	From	t		Number		_	
	Leg		Torque	Туре	ft			ft²/ft	plf
			Calculation	ו					
LDF5-50A(7/8)	С	No	No	Inside Pole	119.00 - 0.00	2	No Ice	0.00	0.33
							1/2" Ice	0.00	0.33
							1" Ice	0.00	0.33
							2" Ice	0.00	0.33
**									
2" Rigid Conduit	Α	No	No	Inside Pole	116.00 - 0.00	3	No Ice	0.00	2.80
•							1/2" Ice	0.00	2.80
							1" Ice	0.00	2.80
							2" Ice	0.00	2.80
WR-VG66ST-	Α	No	No	Inside Pole	116.00 - 0.00	2	No Ice	0.00	0.88
BRD_CCIV2(7/8)							1/2" Ice	0.00	0.88
							1" Ice	0.00	0.88

L2 100.00-

47.08 L3 47.08-0.00

Description	Face	Allow	Exclude	Componen	Placement	Total		$C_A A_A$	Weight
	Leg	Silieiu	Torque Calculation	Туре	ft	number		ft²/ft	plf
LDF7-50A(1-5/8)	A	No	No	Inside Pole	116.00 - 0.00	6	2" Ice No Ice 1/2" Ice 1" Ice	0.00 0.00 0.00 0.00	0.88 0.82 0.82 0.82
WR-VG86ST- BRD(3/4)	A	No	No	Inside Pole	116.00 - 0.00	4	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	0.00 0.00 0.00 0.00	0.82 0.58 0.58 0.58 0.58
FB-L98B-034- XXX(3/8)	A	No	No	Inside Pole	116.00 - 0.00	2	No Ice 1/2" Ice 1" Ice	0.00 0.00 0.00 0.00	0.06 0.06 0.06
WR-VG86ST- BRD(3/4)	A	No	No	Inside Pole	116.00 - 0.00	2	No Ice 1/2" Ice 1" Ice 2" Ice	0.00 0.00 0.00 0.00 0.00	0.58 0.58 0.58 0.58 0.58
LDF5-50A(7/8)	С	No	No	Inside Pole	107.00 - 0.00	1	No Ice 1/2" Ice 1" Ice 2" Ice	0.00 0.00 0.00 0.00	0.33 0.33 0.33 0.33
LDF5-50A(7/8)	С	No	No	Inside Pole	100.00 - 0.00	12	No Ice 1/2" Ice 1" Ice 2" Ice	0.00 0.00 0.00	0.33 0.33 0.33 0.33
HB158-1-08U8- S8J18(1-5/8) **	С	No	No	Inside Pole	100.00 - 0.00	2	No Ice 1/2" Ice 1" Ice 2" Ice	0.00 0.00 0.00 0.00	1.30 1.30 1.30 1.30
HB114-1-08U4- M5F(1-1/4)	С	No	No	Inside Pole	87.00 - 0.00	3	No Ice 1/2" Ice 1" Ice 2" Ice	0.00 0.00 0.00 0.00	1.30 1.30 1.30 1.30
HB114-08U3M12- XXXF(7/8)	С	No	No	Inside Pole	87.00 - 0.00	1	No Ice 1/2" Ice 1" Ice 2" Ice	0.00 0.00 0.00 0.00	0.68 0.68 0.68 0.68
HCS 6X12 4AWG(1-5/8)	A	No	No	Inside Pole	71.00-0.00	3	No Ice 1/2" Ice 1" Ice 2" Ice	0.00 0.00 0.00	2.40 2.40 2.40 2.40
HCS 6X12 4AWG(1-5/8)	A	No	No	Inside Pole	71.00 - 0.00	3	No Ice 1/2" Ice 1" Ice 2" Ice	0.00 0.00 0.00 0.00	2.40 2.40 2.40 2.40 2.40
LDF2-50(3/8)	A	No	No	Inside Pole	71.00 - 0.00	2	No Ice 1/2" Ice 1" Ice 2" Ice	0.00 0.00 0.00 0.00	0.08 0.08 0.08 0.08 0.08
LDF5-50A(7/8)	С	No	No	Inside Pole	50.00 - 0.00	3	No Ice 1/2" Ice 1" Ice 2" Ice	0.00 0.00 0.00	0.33 0.33 0.33 0.33
LDF4-50A(1/2)	С	No	No	Inside Pole	50.00 - 0.00	1	No Ice 1/2" Ice 1" Ice 2" Ice	0.00 0.00 0.00 0.00	0.15 0.15 0.15 0.15
LDF4-50A(1/2)	С	No	No	Inside Pole	40.00 - 0.00	1	No Ice 1/2" Ice 1" Ice 2" Ice	0.00 0.00 0.00 0.00	0.15 0.15 0.15 0.15 0.15

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A _R	A _F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation		- 2	- 2	In Face	Out Face	
n	ft		fť	fť	fť	fť	K
L1	120.00-100.00	Α	0.000	0.000	0.000	0.000	0.30
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.01
L2	100.00-47.08	Α	0.000	0.000	0.000	0.000	1.34
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.59
L3	47.08-0.00	Α	0.000	0.000	0.000	0.000	1.57
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	8.000	0.000	0.74

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	lce	A _R	A _F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness		_	In Face	Out Face	
n	ft	Leg	in	ft^2	ft^2	ft^2	fť ²	K
L1	120.00-100.00	А	1.438	0.000	0.000	0.000	0.000	0.30
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.01
L2	100.00-47.08	Α	1.379	0.000	0.000	0.000	0.000	1.34
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.59
L3	47.08-0.00	Α	1.228	0.000	0.000	0.000	0.000	1.57
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	19.029	0.000	0.97

Feed Line Center of Pressure

Section	Elevation	CP _x	CPz	CP _X	CPz
				lce	lce
	ft	in	in	in	in
L1	120.00-100.00	0.0000	0.0000	0.0000	0.0000
L2	100.00-47.08	0.0000	0.0000	0.0000	0.0000
L3	47.08-0.00	-0.3799	0.9897	-0.6477	1.6874

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	FeedLine Segment Elev.	K _a No Ice	Ka Ice
L3	25	2" Rigid Conduit	0.00 - 40.00	1.0000	1.0000

Discrete Tower Loads													
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight				
			ft ft ft	٥	ft		fť	fť²	K				
DB809MT3-XT	A	From Leg	3.00	0.00	119.00	No Ice	2.84	2.84	0.03				
			0.00			1/2"	4.29	4.29	0.05				
			6.00			ICE 1"Ice	5.75 8.72	5.75 8.72	0.08				
						2" Ice	0.72	0.72	0.17				
DB201-A	С	From Face	3.00	0.00	119.00	No Ice	1.10	1.10	0.03				
			0.00			1/2"	1.98	1.98	0.03				
			4.00			Ice	2.86	2.86	0.04				
						1" Ice 2" Ico	4.62	4.62	0.06				
Side Arm Mount ISO 102-	C	None		0.00	119.00		3 60	3 60	0.07				
3]	0	None		0.00	115.00	1/2"	4.18	4.18	0.11				
-1						Ice	4.75	4.75	0.14				
						1" Ice	5.90	5.90	0.20				
01 A M 100		- .		0.00		2" Ice							
Side Arm Mount [SO 701-	A	From Leg	1.50	0.00	119.00	No Ice	0.85	1.67	0.07				
1]			0.00				1.14	2.34	0.08				
			0.00			1" Ice	2 01	4.35	0.09				
						2" Ice	2.01	1.00	0.12				
Side Arm Mount [SO 701-	С	From Face	1.50	0.00	119.00	No Ice	0.85	1.67	0.07				
1]			0.00			1/2"	1.14	2.34	0.08				
			0.00			Ice	1.43	3.01	0.09				
						1" ICe	2.01	4.35	0.12				
4' x 2" Pine Mount	А	From Lea	3 00	0.00	119 00	Z ICe No Ice	0 79	0 79	0.03				
r x 2 r ipo mount		1 ioni Log	0.00	0.00	110.00	1/2"	1.03	1.03	0.04				
			0.00			Ice	1.28	1.28	0.04				
						1" Ice	1.81	1.81	0.07				
	~					2" Ice			0.00				
4" x 2" Pipe Mount	C	From Face	3.00	0.00	119.00	No Ice	0.79	0.79	0.03				
			0.00			lce	1.03	1.03	0.04				
			0.00			1" Ice	1.81	1.81	0.07				
						2" Ice							
**													
(2) SBNHH-1D65A w/	A	From Leg	4.00	0.00	116.00	No Ice	3.04	2.45	0.05				
Mount Fipe			0.00				3.54	2.75	0.10				
			0.00			1" Ice	4.31	3.68	0.31				
						2" Ice							
(2) SBNHH-1D65A w/	В	From Leg	4.00	0.00	116.00	No Ice	3.04	2.45	0.05				
Mount Pipe			0.00			1/2"	3.34	2.75	0.10				
			0.00				3.05 1 21	3.05 3.69	U.16 0.21				
						2" Ice	4.31	5.00	0.31				
(2) SBNHH-1D65A w/	С	From Leg	4.00	0.00	116.00	No Ice	3.04	2.45	0.05				
Mount Pipe		5	0.00			1/2"	3.34	2.75	0.10				
			0.00			Ice	3.65	3.05	0.16				
						1" Ice	4.31	3.68	0.31				
RRUS 32 R2	Δ	From Lea	4 00	0.00	116.00	∠ ice No lce	2 73	1 67	0.05				
	~	1 Ioni Log	0.00	0.00	110.00	1/2"	2.95	1.86	0.07				
			0.00			lce	3.18	2.05	0.10				
						1" Ice	3.66	2.46	0.16				
	-	_ .				2" Ice							
RRUS 32 B2	В	From Leg	4.00	0.00	116.00	No Ice	2.73	1.67	0.05				
			0.00				∠.90 3.19	1.00	0.07				
			0.00			1" Ice	3.66	2.05	0.10				
						2" Ice							

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	o	ft		fť	ft ²	К
RRUS 32 B2	С	From Leg	4.00 0.00 0.00	0.00	116.00	No Ice 1/2'' Ice	2.73 2.95 3.18	1.67 1.86 2.05	0.05 0.07 0.10
						1" lce 2" lce	3.66	2.46	0.16
DC6-48-60-18-8C	В	From Leg	4.00 0.00 0.00	0.00	116.00	No Ice 1/2" Ice 1" Ice	1.14 1.79 2.00 2.45	1.14 1.79 2.00 2.45	0.03 0.05 0.07 0.13
DC6-48-60-18-8F	В	From Leg	4.00 0.00	0.00	116.00	2" Ice No Ice 1/2"	1.21 1.89	1.21 1.89	0.02
			0.00			Ice 1" Ice 2" Ice	2.11 2.57	2.11 2.57	0.07 0.13
(2) 80010964 w/ Mount Pipe	А	From Leg	4.00 0.00	0.00	116.00	No Ice 1/2"	8.61 9.18	4.10 4.59	0.12 0.19
			0.00			lce 1" lce 2" lce	9.77 10.98	5.10 6.16	0.26 0.45
(2) 80010964 w/ Mount Pipe	В	From Leg	4.00 0.00	0.00	116.00	No Ice 1/2"	8.61 9.18	4.10 4.59	0.12 0.19
			0.00			lce 1" lce	9.77 10.98	5.10 6.16	0.26 0.45
(2) 80010964 w/ Mount	С	From Leg	4.00	0.00	116.00	2" Ice No Ice	8.61	4.10	0.12
Ріре			0.00 0.00			1/2" Ice 1" Ice	9.18 9.77 10.98	4.59 5.10 6.16	0.19 0.26 0.45
DC6-48-60-18-8C	A	From Leg	4.00 0.00 0.00	0.00	116.00	No Ice 1/2" Ice	1.14 1.79 2.00	1.14 1.79 2.00 2.45	0.03 0.05 0.07
RRUS-32 B30	Δ	From Lea	4 00	0.00	116.00	2" Ice	2.40	2.45	0.13
11100 32 230	~	i ioin Log	0.00	0.00	110.00	1/2" Ice	3.56 3.81	2.64 2.86 2.22	0.10 0.14
RRUS-32 B30	В	From Lea	4.00	0.00	116.00	2" Ice No Ice	4.33	2.42	0.21
		Ū	0.00 0.00			1/2'' Ice 1'' Ice	3.56 3.81 4.33	2.64 2.86 3.32	0.10 0.14 0.21
RRUS-32 B30	С	From Leg	4.00	0.00	116.00	2" Ice No Ice	3.31	2.42	0.08
			0.00			1/2 Ice 1" Ice	3.80 3.81 4.33	2.86 3.32	0.10 0.14 0.21
RRUS 4415 B25	A	From Leg	4.00 0.00 0.00	0.00	116.00	No Ice 1/2" Ice 1"Ice	1.64 1.80 1.97 2.33	0.68 0.79 0.91 1.18	0.04 0.06 0.07 0.11
RRUS 4415 B25	В	From Leg	4.00 0.00 0.00	0.00	116.00	No Ice 1/2" Ice 1"Ice	1.64 1.80 1.97 2.33	0.68 0.79 0.91 1.18	0.04 0.06 0.07 0.11
RRUS 4415 B25	С	From Leg	4.00 0.00 0.00	0.00	116.00	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	1.64 1.80 1.97 2.33	0.68 0.79 0.91 1.18	0.04 0.06 0.07 0.11

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
DC6-8-80-18-8C-EV A From Leg 4.00 0.00 116.00 No loc 1.14 1.00 0.05 RRUS 4426 B66 A From Leg 4.00 0.00 116.00 No loc 1.42 1.79 1.79 1.79 1.79 1.79 0.05 RRUS 4426 B66 A From Leg 4.00 0.00 116.00 No loc 1.44 0.73 0.05 0.00 116.00 No loc 1.64 0.73 0.05 1.22 1.80 0.84 0.06 0.00 116.00 No loc 1.64 0.73 0.05 1.22 1.80 0.84 0.06 0.00 116.00 No loc 1.64 0.73 0.05 1.22 1.64 0.73 0.05 1.22 0.16 1.24 0.11 1.24 0.11 1.24 0.11 1.24 0.11 1.24 0.11 1.24 0.11 1.24 0.15 1.24 0.15 1.24 0.15 1.24				Vert ft ft ft	o	ft		fť	ft ²	К
RRUS 4426 B66 A From Leg 4.00 0.00 116.00 No log 1.79 0.03 RRUS 4426 B66 A From Leg 4.00 0.00 116.00 No log 1.60 0.71 0.73 0.03 RRUS 4426 B66 B From Leg 4.00 0.00 116.00 No log 1.64 0.73 0.05 RRUS 4426 B66 C From Leg 4.00 0.00 116.00 No log 1.64 0.73 0.05 RRUS 4426 B66 C From Leg 4.00 0.00 116.00 No log 1.64 0.73 0.05 1/2" 1.80 0.84 0.60 0.00 116.00 No log 1.64 0.73 0.05 1/2" 1.80 0.44 0.60 0.00 116.00 No log 1.65 0.10 1/2" 2.00 1.60 No log 1.65 0.10 1.72 2.20 1.40 0.08 0.00 0.00 0.00	DC6-48-60-18-8C-EV	Α	From Leg	4.00	0.00	116.00	No Ice	1.14	1.14	0.03
RRUS 4426 B66 A From Leg 4.00 0.00 11 bits bits 2.45 2.45 0.13 RRUS 4426 B66 A From Leg 4.00 0.00 116.00 No loss 1.84 0.73 0.05 RRUS 4426 B66 B From Leg 4.00 0.00 116.00 No loss 1.84 0.73 0.05 1''Ice 2.33 1.24 0.11 2''Ice 1.84 0.73 0.05 1''Ice 2.33 1.24 0.11 2''Ice 1.80 0.84 0.06 0.00 0.00 116.00 No loss 1.64 0.73 0.05 1''I'I'e 2.33 1.24 0.11 2''I'e 1.24 0.11 RRUS 4478 B14_CCIV2 A From Leg 4.00 0.00 116.00 No loss 1.22 1.24 0.15 RRUS 4478 B14_CCIV2 B From Leg 4.00 0.00 116.00 No loss 1.22 1.25 0.06 0.00<				0.00			1/2"	1.79	1.79	0.05
RRUS 4426 B66 A From Leg 0.00 0.00 0.00 0.00 16.00 16.00 164 172" 0.44 1.80 0.05 0.84 RRUS 4426 B66 B From Leg 4.00 0.00 0.00 116.00 No Ice 1.64 0.73 0.05 0.77 RRUS 4426 B66 B From Leg 4.00 0.00 116.00 No Ice 1.64 0.73 0.05 0.04 RRUS 4426 B66 C From Leg 4.00 0.00 116.00 No Ice 1.64 0.73 0.05 0.04 RRUS 4426 B66 C From Leg 4.00 0.00 116.00 No Ice 1.64 0.73 0.05 0.07 0.05 12" Ice 1.80 0.73 0.05 0.07 0.05 12" Ice 0.77 0.06 0.07 0.06 0.07 1.60 No Ice 1.07 1.03 0.05 0.07 0.05 12" Ice 0.07 0.05 12" Ice 0.07 0.05 12" Ice 0.06 0.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.02 2.02 1.25 0.06 <td></td> <td></td> <td></td> <td>0.00</td> <td></td> <td></td> <td>ICE</td> <td>2.00</td> <td>2.00</td> <td>0.07</td>				0.00			ICE	2.00	2.00	0.07
RRUS 4426 B66 A From Leg 4.00 0.00 116.00 No Ice 1.60 0.73 0.05 RRUS 4426 B66 B From Leg 4.00 0.00 116.00 No Ice 1.64 0.73 0.05 RRUS 4426 B66 B From Leg 4.00 0.00 116.00 No Ice 1.64 0.73 0.05 RRUS 4426 B66 C From Leg 4.00 0.00 116.00 No Ice 1.64 0.73 0.05 RRUS 4478 B14_CCIV2 A From Leg 4.00 0.00 116.00 No Ice 1.64 0.73 0.05 RRUS 4478 B14_CCIV2 A From Leg 4.00 0.00 116.00 No Ice 2.02 1.24 0.01 RRUS 4478 B14_CCIV2 A From Leg 4.00 0.00 116.00 No Ice 2.02 1.25 0.06 0.00 0.00 116.00 No Ice 2.02 1.25 0.06 0.00 0.00 0.00							2" Ice	2.45	2.45	0.13
RRUS 4426 B66 B From Leg 4.00 0.00 116.00 1/2" 1.80 0.44 0.06 RRUS 4426 B66 B From Leg 4.00 0.00 116.00 No Ice 1.84 0.73 0.05 RRUS 4426 B66 C From Leg 4.00 0.00 116.00 No Ice 1.64 0.73 0.05 RRUS 4426 B66 C From Leg 4.00 0.00 116.00 No Ice 1.64 0.73 0.05 11'lep 2.33 1.24 0.11 2.02 1.26 0.06 0.00 116.00 No Ice 1.64 0.73 0.05 12'lep 2.33 1.24 0.11 2.02 1.40 0.08 0.06 1.97 0.97 0.08 0.06 1.97 0.97 0.08 0.06 1.97 0.97 0.08 0.06 1.97 0.97 0.08 0.06 0.06 1.97 0.15 0.16 1.97 0.15 0.16 0.16	RRUS 4426 B66	А	From Leg	4.00	0.00	116.00	No Ice	1.64	0.73	0.05
RRUS 4426 B66 B From Leg 4.00 0.00 116.00 No Ice 1.64 0.73 0.03 RRUS 4426 B66 B From Leg 4.00 0.00 116.00 No Ice 1.64 0.73 0.05 RRUS 4426 B66 C From Leg 4.00 0.00 116.00 No Ice 1.64 0.73 0.05 11''Ice 2.33 1.24 0.11 2''Ice 1.80 0.84 0.06 0.00 0.00 116.00 No Ice 1.64 0.73 0.05 12'''Ice 2.33 1.24 0.11 2''Ice 1.80 0.84 0.06 0.00 0.00 116.00 No Ice 1.60 No Ice 1.80 0.05 1'''Ice 2.33 1.24 0.11 1.2'''Ice 2.33 1.24 0.11 RRUS 4478 B14_CCIV2 A From Leg 4.00 0.00 116.00 No Ice 2.02 1.40 0.08 11''Ice 2.78			-	0.00			1/2''	1.80	0.84	0.06
RRUS 4426 B66 B From Leg 4.00 0.00 116.00 No Ice 1.24 0.11 RRUS 4426 B66 C From Leg 4.00 0.00 116.00 No Ice 1.64 0.03 RRUS 4426 B66 C From Leg 4.00 0.00 116.00 No Ice 1.64 0.73 0.05 RRUS 4478 B14_CCIV2 A From Leg 4.00 0.00 116.00 No Ice 1.64 0.73 0.05 RRUS 4478 B14_CCIV2 A From Leg 4.00 0.00 116.00 No Ice 2.02 1.25 0.06 0.00 0.00 116.00 No Ice 2.02 1.26 0.06 0.00 0.00 116.00 No Ice				0.00			lce	1.97	0.97	0.08
RRUS 4426 B66 B From Leg 4.00 0.00 116.00 No.100 116.00 No.100 12" 1.84 0.73 0.06 RRUS 4426 B66 C From Leg 4.00 0.00 116.00 No.100 1.64 0.73 0.06 RRUS 4426 B66 C From Leg 4.00 0.00 116.00 No.100 1.64 0.73 0.06 12" lose 1.37 0.97 0.08 1.2" 1.24 0.11 RRUS 4478 B14_CCIV2 A From Leg 4.00 0.00 116.00 No lose 1.24 0.11 RRUS 4478 B14_CCIV2 B From Leg 4.00 0.00 116.00 No lose 2.02 1.25 0.06 0.00 0.00 116.00 No lose 2.02 1.40 0.08 1"lose 2.78 1.89 0.15 2"lose 1.41 0.06 RRUS 4478 B14_CCIV2 C From Leg 4.00 0.00 116.00 No lose							1 ICe 2" Ice	2.33	1.24	0.11
RRUS 4426 B66 C From Leg 4.00 0.00 0.00 0.00 116.00 116.00 No Ice No Ice Ice 1.44 1.22" 0.08 0.00 1.23 RRUS 4426 B66 C From Leg 4.00 0.00 0.00 116.00 No Ice 1.44 0.11 2"loc Image: Image	RRUS 4426 B66	В	From Leg	4.00	0.00	116.00	No Ice	1.64	0.73	0.05
RRUS 4426 B66 C From Leg 4.00 0.00 0.00 0.00 116.00 No lee 1.64 1/2" loe 0.03 2"loe RRUS 4478 B14_CCIV2 A From Leg 4.00 0.00 0.00 116.00 No lee 1.64 1/2" 0.03 0.00 1"loe 1.80 0.84 0.06 0.00 1"loe 1.80 0.84 0.06 0.00 1"loe 1.80 0.84 0.06 0.00 1"loe 1.27 0.07 0.00 0.00 RRUS 4478 B14_CCIV2 A From Leg 4.00 0.00 0.00 116.00 No lee 2.02 1.25 0.06 0.00 RRUS 4478 B14_CCIV2 B From Leg 4.00 0.00 0.00 116.00 No lee 2.02 1.25 0.06 0.16 RRUS 4478 B14_CCIV2 C From Leg 4.00 0.00 0.00 116.00 No lee 1.27 2.20 1.40 0.08 RRUS 4478 B14_CCIV2 C From Leg 4.00 0.00 0.00 116.00 No lee 1.97 1.41 0.07 RRUS 4448 B5/B12 A From Leg 4.00 0			0	0.00			1/2"	1.80	0.84	0.06
RRUS 4426 B66 C From Leg 4.00 0.00 0.00 116.00 No Ice Ice 1.64 0.73 0.05 RRUS 4478 B14_CCIV2 A From Leg 4.00 0.00 116.00 No Ice 2.02 1.24 0.01 RRUS 4478 B14_CCIV2 A From Leg 4.00 0.00 116.00 No Ice 2.02 1.25 0.06 0.00 0.00 116.00 No Ice 2.02 1.40 0.08 RRUS 4478 B14_CCIV2 B From Leg 4.00 0.00 116.00 No Ice 2.02 1.25 0.06 0.00 0.00 116.00 No Ice 2.02 1.40 0.08 0.00 0.00 116.00 No Ice 2.02 1.40 0.08 0.00 0.00 116.00 No Ice 2.02 1.40 0.08 0.00 0.00 116.00 No Ice 1.97 1.41 0.07 0.00 0.00 116.00 No Ice 1.97 <td></td> <td></td> <td></td> <td>0.00</td> <td></td> <td></td> <td>Ice</td> <td>1.97</td> <td>0.97</td> <td>0.08</td>				0.00			Ice	1.97	0.97	0.08
RRUS 4426 B66 C From Leg 4.00 0.00 0.00 0.00 116.00 12" No Ice 1.97 1.80 1.90 0.73 0.97 0.05 0.00 RRUS 4478 B14_CCIV2 A From Leg 4.00 0.00 0.00 116.00 No Ice 1.97 1.80 0.84 0.00 RRUS 4478 B14_CCIV2 A From Leg 4.00 0.00 116.00 No Ice 12" 2.02 1.25 0.06 RRUS 4478 B14_CCIV2 B From Leg 4.00 0.00 116.00 No Ice 2.78 2.02 1.25 0.06 RRUS 4478 B14_CCIV2 B From Leg 4.00 0.00 116.00 No Ice 2.20 1.40 0.08 RRUS 4478 B14_CCIV2 C From Leg 4.00 0.00 116.00 No Ice 2.02 1.25 0.06 RRUS 4449 B5/B12 A From Leg 4.00 0.00 116.00 No Ice 1.97 1.41 0.07 1/2" 2.01 1.40 0.07 1.72" 2.14 1.56 0.09 RRUS 4449 B5/B12							1" Ice	2.33	1.24	0.11
RRUS 4478 B14_CCIV2 A From Leg 0.00 116.00 102" 180 0.84 0.00 RRUS 4478 B14_CCIV2 A From Leg 4.00 0.00 116.00 No Ice 2.02 1.25 0.06 RRUS 4478 B14_CCIV2 A From Leg 4.00 0.00 116.00 No Ice 2.02 1.40 0.08 RRUS 4478 B14_CCIV2 B From Leg 4.00 0.00 116.00 No Ice 2.02 1.40 0.08 0.00 116.00 No Ice 1.97 1.41 0.07 1.72" 2.14 1.56 0.10 1''Ice 2.72 2.07	RRUS 4426 B66	С	From Lea	4.00	0.00	116.00	No Ice	1.64	0.73	0.05
RRUS 4478 B14_CCIV2 A From Leg 4.00 0.00 116.00 No Ice 2.02 1.24 0.11 RRUS 4478 B14_CCIV2 A From Leg 4.00 0.00 116.00 No Ice 2.02 1.25 0.06 RRUS 4478 B14_CCIV2 B From Leg 4.00 0.00 116.00 No Ice 2.02 1.25 0.06 RRUS 4478 B14_CCIV2 B From Leg 4.00 0.00 116.00 No Ice 2.02 1.25 0.06 RRUS 4478 B14_CCIV2 C From Leg 4.00 0.00 116.00 No Ice 2.02 1.25 0.06 RRUS 4478 B14_CCIV2 C From Leg 4.00 0.00 116.00 No Ice 2.02 1.40 0.08 RRUS 4449 B5/B12 A From Leg 4.00 0.00 116.00 No Ice 1.97 1.41 0.07 0.00 0.00 116.00 No Ice 1.97 1.41 0.07 1.102 2.72		-		0.00			1/2"	1.80	0.84	0.06
RRUS 4478 B14_CCIV2 A From Leg 4.00 0.00 116.00 No Ice 2.20 1.24 0.11 RRUS 4478 B14_CCIV2 A From Leg 4.00 0.00 116.00 No Ice 2.02 1.25 0.06 RRUS 4478 B14_CCIV2 B From Leg 4.00 0.00 116.00 No Ice 2.02 1.40 0.08 RRUS 4478 B14_CCIV2 B From Leg 4.00 0.00 116.00 No Ice 2.02 1.40 0.08 0.00 0.00 116.00 No Ice 2.02 1.40 0.08 0.00 0.00 116.00 No Ice 2.02 1.40 0.08 1.122 2.01 1.40 0.08 0.00 116.00 No Ice 1.23 0.15 RRUS 4449 B5/B12 A From Leg 4.00 0.00 116.00 No Ice 1.97 1.41 0.07 0.00 0.00 116.00 No Ice 1.97 1.41 0.07				0.00			Ice	1.97	0.97	0.08
RRUS 4478 B14_CCIV2 A From Leg 4.00 0.00 116.00 No lce 2.02 1.25 0.06 0.00 0.00 116.00 No lce 2.02 1.40 0.08 RRUS 4478 B14_CCIV2 B From Leg 4.00 0.00 116.00 No lce 2.02 1.25 0.06 RRUS 4478 B14_CCIV2 B From Leg 4.00 0.00 116.00 No lce 2.02 1.40 0.08 RRUS 4478 B14_CCIV2 C From Leg 4.00 0.00 116.00 No lce 2.02 1.40 0.08 RRUS 4478 B14_CCIV2 C From Leg 4.00 0.00 116.00 No lce 2.02 1.40 0.08 RRUS 4478 B14_CCIV2 C From Leg 4.00 0.00 116.00 No lce 1.02 1.25 0.06 10.00 1.00 No lce 1.97 1.41 0.07 0.08 1.07 1.41 0.07 1.00 0.00 0.00 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1" Ice</td> <td>2.33</td> <td>1.24</td> <td>0.11</td>							1" Ice	2.33	1.24	0.11
RRUS 1478 B14_CCIV2 B From Leg 4.00 0.00 110.00 110.00 12.20 1.40 0.00 RRUS 4478 B14_CCIV2 B From Leg 4.00 0.00 116.00 No Ice 2.20 1.40 0.08 RRUS 4478 B14_CCIV2 B From Leg 4.00 0.00 116.00 No Ice 2.02 1.25 0.06 RRUS 4478 B14_CCIV2 C From Leg 4.00 0.00 116.00 No Ice 2.02 1.25 0.06 RRUS 4478 B14_CCIV2 C From Leg 4.00 0.00 116.00 No Ice 2.02 1.25 0.16 RRUS 4449 B5/B12 A From Leg 4.00 0.00 116.00 No Ice 1.97 1.41 0.07 0.00 116.00 No Ice 1.97 1.41 0.07 0.00 116.00 No Ice 1.97 1.41 0.07 0.00 0.00 116.00 No Ice 1.97 1.41 0.07 0.00 0.00 116.00 No Ice 1.97 1.41 0.07	RRUS 4478 B14 CCIV2	Δ	From Lea	4 00	0.00	116.00	2° ICe No Ice	2 02	1 25	0.06
RRUS 4478 B14_CCIV2 B From Leg 4.00 0.00 0.00 116.00 116.00 No lee No 2.39 2"log 1.55 2.78 0.10 1.89 RRUS 4478 B14_CCIV2 B From Leg 4.00 0.00 0.00 116.00 No lee 2.02 1.40 0.08 RRUS 4478 B14_CCIV2 C From Leg 4.00 0.00 116.00 No lee 2.02 1.40 0.08 RRUS 4478 B14_CCIV2 C From Leg 4.00 0.00 116.00 No lee 2.02 1.40 0.08 RRUS 4449 B5/B12 A From Leg 4.00 0.00 116.00 No lee 1.97 1.41 0.07 RRUS 4449 B5/B12 B From Leg 4.00 0.00 116.00 No lee 1.97 1.41 0.07 0.00 116.00 No lee 1.97 1.41 0.07 1.2" 2.4 1.56 0.09 0.00 116.00 No lee 1.97 1.41 0.07 1.2" 2.4 1.56		7.	r tom Log	0.00	0.00	110.00	1/2"	2.20	1.40	0.08
RRUS 4478 B14_CCIV2 B From Leg 4.00 0.00 0.00 116.00 100 No Ice Ice 2.78 2.02 1.89 0.15 RRUS 4478 B14_CCIV2 B From Leg 4.00 0.00 0.00 116.00 No Ice 2.02 1.25 0.06 RRUS 4478 B14_CCIV2 C From Leg 4.00 0.00 0.00 116.00 No Ice 2.02 1.40 0.08 RRUS 44478 B14_CCIV2 C From Leg 4.00 0.00 0.00 116.00 No Ice 2.02 1.40 0.08 RRUS 4449 B5/B12 A From Leg 4.00 0.00 116.00 No Ice 1.97 1.41 0.07 RRUS 4449 B5/B12 B From Leg 4.00 0.00 116.00 No Ice 1.97 1.41 0.07 RRUS 4449 B5/B12 B From Leg 4.00 0.00 116.00 No Ice 1.97 1.41 0.07 RRUS 4449 B5/B12 C From Leg 4.00 0.00 116.00 No Ice 1.97				0.00			Ice	2.39	1.55	0.10
RRUS 4478 B14_CCIV2 B From Leg 4.00 0.00 0.00 0.00 0.00 116.00 16.00 172" No Ice 2.39 2"Ice 1.25 0.06 0.06 0.00 RRUS 4478 B14_CCIV2 C From Leg 4.00 0.00 0.00 116.00 No Ice 2.39 1.55 0.10 RRUS 4478 B14_CCIV2 C From Leg 4.00 0.00 0.00 116.00 No Ice 2.33 1.55 0.10 RRUS 4449 B5/B12 A From Leg 4.00 0.00 0.00 116.00 No Ice 2.33 1.73 0.11 RRUS 4449 B5/B12 A From Leg 4.00 0.00 116.00 No Ice 2.33 1.73 0.11 RRUS 4449 B5/B12 B From Leg 4.00 0.00 116.00 No Ice 1.97 1.41 0.07 RRUS 4449 B5/B12 B From Leg 4.00 0.00 116.00 No Ice 1.97 1.41 0.07 RRUS 4449 B5/B12 C From Leg 4.00 0.00 116.00 No Ice 1.97 1.41 0.07 RRUS 4449 B5/B12 A							1" Ice	2.78	1.89	0.15
RRUS 4476 B14_CCIV2 B From Leg 4.00 0.00 116.00 10/2 2.02 1.40 0.08 0.00 0.00 1/2" 2.20 1.40 0.08 116.00 112" 2.20 1.40 0.08 0.00 1"lce 2.39 1.55 0.10 1"lce 2.39 1.55 0.10 1"lce 2.78 1.89 0.15 2"lce 1.40 0.08 0.00 100 116.00 No lce 2.02 1.25 0.06 12" lce 2.33 1.55 0.10 112" 2.20 1.40 0.08 0.00 100 116.00 No lce 1.97 1.41 0.07 0.08 0.09 1/2" 2.14 1.56 0.09 0.00 1/2" 2.14 1.56 0.09 0.00 1/2" 2.14 1.56 0.09 0.00 1/2" 2.14 1.56 0.09 0.00 1/2" 2.14 1.56 0.09 0.00 1/2" 2.14 1.56 0.09 0.00 1/2" 2.14 1.56 <td></td> <td>Р</td> <td>From Log</td> <td>4.00</td> <td>0.00</td> <td>116.00</td> <td>2" Ice</td> <td>2.02</td> <td>1.05</td> <td>0.06</td>		Р	From Log	4.00	0.00	116.00	2" Ice	2.02	1.05	0.06
RRUS 4478 B14_CCIV2 C From Leg 4.00 0.00 116.00 No Ice 2.02 1.25 0.10 RRUS 4478 B14_CCIV2 C From Leg 4.00 0.00 116.00 No Ice 2.02 1.25 0.06 116.00 No Ice 2.02 1.25 0.06 0.00 116.00 No Ice 2.02 1.25 0.06 116.00 No Ice 2.02 1.25 0.06 0.00 116.00 No Ice 2.02 1.25 0.06 116.00 No Ice 2.07 0.15 0.10 116.00 No Ice 1.97 1.41 0.07 116.00 No Ice 1.97 1.41 0.07 116.00 No Ice 1.97 1.41 0.07 116.00 No Ice 1.97 1.41 0.07 116.00 No Ice 1.97 1.41 0.07 116.00 No Ice 1.97 1.41 0.07 122 2.07 0.16 116.00 No I	RRUS 4478 B14_CCIV2	D	FIOIDLeg	4.00	0.00	116.00	1/2"	2.02	1.25	0.06
RRUS 4478 B14_CCIV2 C From Leg 4.00 0.00 116.00 No loce 2.02 1.25 0.06 0.00 0.00 116.00 No loce 2.02 1.40 0.08 0.00 0.00 116.00 No loce 2.02 1.40 0.08 0.00 0.00 116.00 No loce 2.03 1.55 0.10 1" loce 2.78 1.89 0.15 0.15 0.10 1"loce 2.33 1.73 0.11 1" loce 2.78 1.89 0.15 0.10 1"loce 2.78 1.89 0.15 RRUS 4449 B5/B12 A From Leg 4.00 0.00 116.00 No loce 1.97 1.41 0.07 0.00 0.00 116.00 No loce 1.97 1.41 0.07 0.00 116.00 No loce 1.97 1.41 0.07 0.00 0.00 116.00 No loce 1.97 1.41 0.07				0.00			lce	2.39	1.55	0.10
RRUS 4478 B14_CCIV2 C From Leg 4.00 0.00 0.00 0.00 116.00 1/2" No Ice 2.02 2.02 1.25 1.55 0.06 0.08 RRUS 4449 B5/B12 A From Leg 4.00 0.00 0.00 116.00 No Ice 2.02 1.40 0.08 RRUS 4449 B5/B12 A From Leg 4.00 0.00 116.00 No Ice 1.97 1.41 0.07 0.00 116.00 No Ice 1.97 1.41 0.07 1.12" 2.14 1.56 0.09 0.00 116.00 No Ice 1.97 1.41 0.07 1.1" 1.2" 1.41 0.07 0.00 0.00 116.00 No Ice 1.97 1.41 0.07 8'x 2" Mount Pipe							1" Ice	2.78	1.89	0.15
RRUS 44/8 B14_CCUV2 C From Leg 4.00 0.00 116.00 No ice 2.02 1.25 0.06 0.00 0.00 1/2" 2.20 1.40 0.08 0.00 1/2" 2.20 1.40 0.08 0.00 116.00 No ice 2.33 1.55 0.10 1"ice 2.78 1.89 0.15 2"ice 1.41 0.07 RRUS 4449 B5/B12 A From Leg 4.00 0.00 116.00 No ice 1.97 1.41 0.07 0.00 0.00 116.00 No ice 1.97 1.41 0.07 0.00 1/2" 2.14 1.56 0.09 0.00 1/2" 2.14 1.56 0.09 0.00 16e 2.33 1.73 0.11 1"ice 2.72 2.07 0.16 2"ice 0.00 116.00 No ice 1.97 1.41 0.07 0.00 1/2" 2.14 1.56 <td< td=""><td></td><td>0</td><td>F</td><td>4.00</td><td>0.00</td><td>110.00</td><td>2" Ice</td><td>0.00</td><td>4.05</td><td>0.00</td></td<>		0	F	4.00	0.00	110.00	2" Ice	0.00	4.05	0.00
RRUS 4449 B5/B12 A From Leg 4.00 0.00 0.00 116.00 1"Ice 2.39 2.78 2.78 1.39 1.97 0.10 0.15 RRUS 4449 B5/B12 A From Leg 4.00 0.00 0.00 116.00 No Ice 1.97 1.41 0.07 RRUS 4449 B5/B12 B From Leg 4.00 0.00 116.00 No Ice 1.97 1.41 0.07 RRUS 4449 B5/B12 B From Leg 4.00 0.00 116.00 No Ice 1.97 1.41 0.07 0.00 0.00 116.00 No Ice 1.97 1.41 0.07 0.00 0.00 116.00 No Ice 1.97 1.41 0.07 1.12" Ice 2.07 0.16 2.72 2.07 0.16 2"Ice	RRUS 4478 B14_CCIV2	C	From Leg	4.00	0.00	116.00	1/2"	2.02	1.25	0.06
RRUS 4449 B5/B12 A From Leg 4.00 0.00 116.00 No Ice 1.97 1.41 0.07 0.00 0.00 116.00 No Ice 1.97 1.41 0.07 1/2" 2.14 1.56 0.09 1ce 2.33 1.73 0.11 1" Ice 2.72 2.07 0.16 2" Ice - - - RRUS 4449 B5/B12 B From Leg 4.00 0.00 116.00 No Ice 1.97 1.41 0.07 0.00 0.00 116.00 No Ice 1.97 1.41 0.07 2" Ice - - - - - - - RRUS 4449 B5/B12 C From Leg 4.00 0.00 116.00 No Ice 1.97 1.41 0.07 1/2" 2.14 1.56 0.09 - <t< td=""><td></td><td></td><td></td><td>0.00</td><td></td><td></td><td>lce</td><td>2.39</td><td>1.55</td><td>0.10</td></t<>				0.00			lce	2.39	1.55	0.10
RRUS 4449 B5/B12 A From Leg 4.00 0.00 116.00 No Ice 1.97 1.41 0.07 0.00 0.00 116.00 No Ice 1.97 1.41 0.09 1/2" 2.14 1.56 0.09 1/2" 2.14 1.56 0.09 1" Ice 2.72 2.07 0.16 2"Ice 2.33 1.73 0.11 1" Ice 2.72 2.07 1.41 0.07 0.00 116.00 No Ice 1.97 1.41 0.07 0.00 0.00 116.00 No Ice 1.97 1.41 0.07 0.00 0.00 116.00 No Ice 1.97 1.41 0.07 2"Ice 2.07 0.16 2"Ice 2.07 0.16 8' x 2" Mount Pipe A From Leg 4.00 0.00 116.00 No Ice 1.97 1.41 0.07 0.00 0.00 116.00 No Ice 1.90 0.03 1.73 0.11 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1" Ice</td> <td>2.78</td> <td>1.89</td> <td>0.15</td>							1" Ice	2.78	1.89	0.15
RRUS 4449 B5/B12 A From Leg 4.00 0.00 110.00 10/12" 2.14 1.56 0.09 0.00 1/2" 2.14 1.56 0.09 1/2" 2.14 1.56 0.09 RRUS 4449 B5/B12 B From Leg 4.00 0.00 116.00 No Ice 1.97 1.41 0.07 0.00 116.00 No Ice 1.97 1.41 0.07 2.14 1.56 0.09 2" Ice 2"I ce 2"I ce 1.16.00 No Ice 1.97 1.41 0.07 RRUS 4449 B5/B12 C From Leg 4.00 0.00 116.00 No Ice 1.97 1.41 0.07 0.00 116.00 No Ice 1.97 1.41 0.07 1/2" 2.14 1.56 0.09 0.00 116.00 No Ice 1.97 1.41 0.07 1/2" 2.14 1.56 0.09 0.00 116.00 No Ice 1.97 1.41 0.07 1/2" 2.12 1.92 0.03 0.00 0.00 0.00 </td <td></td> <td>^</td> <td>From Log</td> <td>4.00</td> <td>0.00</td> <td>116.00</td> <td>2" Ice</td> <td>1 07</td> <td>1 1 1</td> <td>0.07</td>		^	From Log	4.00	0.00	116.00	2" Ice	1 07	1 1 1	0.07
RRUS 4449 B5/B12 B From Leg 4.00 0.00 116.00 116.2 2.13 1.13 0.11 RRUS 4449 B5/B12 B From Leg 4.00 0.00 116.00 No loe 1.97 1.41 0.07 0.00 0.00 116.00 No loe 1.97 1.41 0.07 1/2" 2.14 1.56 0.09 1/2" 2.14 1.56 0.09 0.00 0.00 116.00 No loe 1.97 1.41 0.07 1"loe 2.72 2.07 0.16 2"loe 2.14 1.56 0.09 0.00 0.00 116.00 No loe 1.97 1.41 0.07 1/2" 2.14 1.56 0.09 10e 2.192 0.03 0.00 0.00 116.00 No loe 1.90 1.90 0.03 1/2" 2.72 2.07 0.16 2"loe 2"loe 1"loe 3.04 0.06 6'x 2" Mount Pipe </td <td>RR03 4449 B5/B12</td> <td>A</td> <td>FIOIIILeg</td> <td>4.00</td> <td>0.00</td> <td>110.00</td> <td>1/2"</td> <td>2 14</td> <td>1.41</td> <td>0.07</td>	RR03 4449 B5/B12	A	FIOIIILeg	4.00	0.00	110.00	1/2"	2 14	1.41	0.07
RRUS 4449 B5/B12 B From Leg 4.00 0.00 116.00 No lce 1.97 1.41 0.07 0.00 0.00 116.00 No lce 1.97 1.41 0.07 1" lce 2.33 1.73 0.11 1"lce 2.72 2.07 0.16 RRUS 4449 B5/B12 C From Leg 4.00 0.00 116.00 No lce 1.97 1.41 0.07 0.00 0.00 116.00 No lce 1.97 1.41 0.07 1" lce 2.72 2.07 0.16 2" lce 2.07 0.16 8'x 2" Mount Pipe A From Leg 4.00 0.00 116.00 No lce 1.90 0.03 1" lce 3.40 3.40 0.06 11" lce 3.06 0.00 0.				0.00			lce	2.33	1.73	0.11
RRUS 4449 B5/B12 B From Leg 4.00 0.00 116.00 No lce 1.97 1.41 0.07 0.00 0.00 10ce 2.33 1.73 0.11 1"lce 2.72 2.07 0.16 2"lce 2"lce 2"lce RRUS 4449 B5/B12 C From Leg 4.00 0.00 116.00 No lce 1.97 1.41 0.07 0.00 0.00 0.00 116.00 No lce 1.97 1.41 0.07 0.00 0.00 116.00 No lce 1.97 1.41 0.07 0.00 0.00 116.00 No lce 1.97 1.41 0.07 1"lce 2.72 2.07 0.16 2" 2.73 1.73 0.11 1"lce 2.72 2.07 0.16 2" 2.73 2.03 0.04 0.00 0.00 116.00 No lce 1.90 0.03 0.04 0.00 0.00 116.00 No lce 1.43 1.43 0.02 6' x 2" Mount Pipe <							1" Ice	2.72	2.07	0.16
RR03 4449 B5/B12 B From Leg 4.00 0.00 118.00 118.00 1.97 1.41 0.07 0.00 1/2" 2.14 1.56 0.09 12" 2.14 1.56 0.09 1"loc 2.33 1.73 0.11 1"loc 2.72 2.07 0.16 2"loc 0.00 116.00 No loc 1.97 1.41 0.07 0.00 0.00 116.00 No loc 1.97 1.41 0.07 2"loc 0.00 0.00 116.00 No loc 1.97 1.41 0.07 8'x 2" Mount Pipe A From Leg 4.00 0.00 116.00 No loc 1.90 0.03 0.00 116.00 No loc 1.90 1.90 0.03 0.00 116.00 No loc 1.90 1.90 0.03 0.00 116.00 No loc 1.40 4.40 0.12 2" loc 1"loc 4.40 0.00 11/2" 1.92 0.92 6'x 2" Mount Pipe B From Leg 4.00 </td <td></td> <td>Р</td> <td>From Log</td> <td>4.00</td> <td>0.00</td> <td>116.00</td> <td>2" Ice</td> <td>1 07</td> <td>1 1 1</td> <td>0.07</td>		Р	From Log	4.00	0.00	116.00	2" Ice	1 07	1 1 1	0.07
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	RR03 4449 B5/B12	Б	FIOIIILeg	4.00	0.00	110.00	1/2"	2 14	1.41	0.07
RRUS 4449 B5/B12 C From Leg 4.00 0.00 116.00 No lce 1.97 1.41 0.07 0.00 116.00 No lce 1.97 1.41 0.09 1/2" 2.14 1.56 0.09 0.00 0.00 116.00 No lce 1.97 1.41 0.07 1/2" 2.14 1.56 0.09 1/2" 2.14 1.56 0.09 1" lce 2.33 1.73 0.11 1"lce 2.72 2.07 0.16 2" lce 0.00 116.00 No lce 1.90 1.90 0.03 1" lce 3.40 0.00 116.00 No lce 1.90 1.90 0.03 0.00 116.00 No lce 1.90 1.90 0.04 0.04 0.00 0.00 116.00 No lce 1.43 0.02 6'x 2" Mount Pipe B From Leg 4.00 0.00 116.00 No lce 1.43 0.02 6'x 2" Mount Pipe C From Leg 4.00 0.00 116.00 No lce 1				0.00			lce	2.33	1.73	0.11
RRUS 4449 B5/B12 C From Leg 4.00 0.00 116.00 No lce 1.97 1.41 0.07 0.00 0.00 1/2" 2.14 1.56 0.09 0.00 0.00 lce 2.33 0.11 1" lce 2.72 2.07 0.16 2" lce 2" lce 2" lce 2" lce 8'x 2" Mount Pipe A From Leg 4.00 0.00 116.00 No lce 1.90 1.90 0.03 0.00 0.00 116.00 No lce 1.90 1.90 0.03 0.00 116.00 No lce 1.90 1.90 0.03 1/2" 2.73 2.73 0.04 0.00 116.00 No lce 1.40 0.12 2" lce 2" lce 2" lce 2" lce 1.92 0.03 6' x 2" Mount Pipe B From Leg 4.00 0.00 116.00 No lce 1.43 1.43 0.02 6' x 2" Mount Pipe C From Leg 4.00 0.00 116.00 No lce 1.43<							1" Ice	2.72	2.07	0.16
RK05 4449 B5/B12 C Floir Leg 4.00 0.00 118.00 No ite 1.97 1.41 0.07 0.00 1/2" 2.14 1.56 0.09 0.01 12" 2.14 1.56 0.09 0.00 1ce 2.33 1.73 0.11 1"ice 2.72 2.07 0.16 2"ice 2"ice 2"ice 0.00 116.00 No ice 1.90 1.90 0.03 0.00 0.00 116.00 No ice 1.90 1.90 0.03 0.00 0.00 116.00 No ice 1.90 1.90 0.03 0.00 116.00 No ice 1.90 1.90 0.03 0.00 116.00 No ice 1.90 0.03 1"lice 3.40 0.06 1"lice 3.40 0.02 6'x 2" Mount Pipe B From Leg 4.00 0.00 116.00 No ice 1.43 1.43 0.02 6'x 2" Mount Pipe C From Leg 4.00 0.00 116.00 No ice 1.43 1.43<		<u> </u>	From Log	4.00	0.00	116.00	2" Ice	1 07	4 4 4	0.07
8'x 2" Mount Pipe A From Leg 4.00 0.00 116.00 No Ice 1.73 0.11 8'x 2" Mount Pipe A From Leg 4.00 0.00 116.00 No Ice 1.90 1.90 0.03 0.00 116.00 No Ice 1.90 1.90 0.03 0.04 0.00 116.00 No Ice 1.90 0.03 0.00 116.00 No Ice 1.90 1.90 0.03 0.04 0.06 1"Ice 3.40 0.06 1" Ice 3.40 3.40 0.06 1"Ice 4.40 4.40 0.12 2" Ice 0.00 116.00 No Ice 1.43 1.43 0.02 0.00 116.00 No Ice 1.43 1.43 0.02 <tr< td=""><td>KKUS 4449 DO/D12</td><td>C</td><td>FIOIDLeg</td><td>4.00</td><td>0.00</td><td>116.00</td><td>1/2"</td><td>2.14</td><td>1.41</td><td>0.07</td></tr<>	KKUS 4449 DO/D12	C	FIOIDLeg	4.00	0.00	116.00	1/2"	2.14	1.41	0.07
8'x 2" Mount Pipe A From Leg 4.00 0.00 116.00 No Ice 1.90 1.90 0.03 0.00 0.00 116.00 No Ice 1.90 1.90 0.03 1" Ice 3.40 3.40 0.06 1" Ice 3.40 0.06 1" Ice 4.40 4.40 0.12 2" Ice 2" Ice 2" Ice 6'x 2" Mount Pipe B From Leg 4.00 0.00 116.00 No Ice 1.43 1.43 0.02 0.00 116.00 No Ice 1.43 1.43 0.02 0.03 0.00 116.00 No Ice 1.43 1.43 0.02 1"Ice 3.06 3.06 0.09 2" Ice 0.03 0.00 0.00 <td></td> <td></td> <td></td> <td>0.00</td> <td></td> <td></td> <td>lce</td> <td>2.33</td> <td>1.73</td> <td>0.11</td>				0.00			lce	2.33	1.73	0.11
8'x 2" Mount Pipe A From Leg 4.00 0.00 116.00 No Ice 1.90 1.90 0.03 0.00 1/2" 2.73 2.73 0.04 0.00 Ice 3.40 3.40 0.06 1" Ice 4.40 4.40 0.12 2" Ice 2" Ice 2" Ice 2" Ice 6'x 2" Mount Pipe B From Leg 4.00 0.00 116.00 No Ice 1.43 1.43 0.02 0.00 116.00 No Ice 1.43 1.43 0.02 0.03 0.00 116.00 No Ice 1.43 1.43 0.02 0.00 1/2" 1.92 1.92 0.03 0.00 1/2" 1.92 1.92 0.03 0.00 116.00 No Ice 1.43 1.43 0.02 0.01 116.00 No Ice 1.43 1.43 0.02 0.00 116.00 No Ice 1.43 1.43 0.02 0.00 1/2" 1.92 1.92 0.03 0.03							1" Ice	2.72	2.07	0.16
6 x 2 Mount Pipe A From Leg 4.00 0.00 116.00 No rice 1.90 1.90 0.03 0.00 1/2" 2.73 2.73 0.04 0.00 lce 3.40 0.06 1"lce 4.40 4.40 0.12 2"lce 2"lce 2"lce 0.00 6'x 2" Mount Pipe B From Leg 4.00 0.00 116.00 No lce 1.43 1.43 0.02 0.00 0.00 116.00 No lce 1.43 1.43 0.02 0.00 1/2" 1.92 1.92 0.03 0.00 1/2" 1.92 0.03 0.00 1/2" 1.92 1.92 0.03 0.09 2"lce 2"lce 6'x 2" Mount Pipe C From Leg 4.00 0.00 116.00 No lce 1.43 1.43 0.02 0.00 1/2" 1.92 1.92 0.03 0.00 1/2" 1.92 0.03 0.00 0.00 116.00 No lce 1.43 1.43 0.02 <td< td=""><td>9' x 2" Mount Dino</td><td>^</td><td>From Log</td><td>4.00</td><td>0.00</td><td>116.00</td><td>2" Ice</td><td>1 00</td><td>1 00</td><td>0.02</td></td<>	9' x 2" Mount Dino	^	From Log	4.00	0.00	116.00	2" Ice	1 00	1 00	0.02
6'x 2" Mount Pipe B From Leg 4.00 0.00 116.00 No Ice 1.43 1.43 0.02 0.00 1/2" 1.92 1.92 0.03 0.00 Ice 2.29 2.29 0.05 1" Ice 3.06 3.06 0.09 2" Ice 6'x 2" Mount Pipe C From Leg 4.00 0.00 116.00 No Ice 1.43 1.43 0.02 0.00 Ice 2.29 2.29 0.05 1" Ice 3.06 3.06 0.09 2" Ice 6'x 2" Mount Pipe C From Leg 4.00 0.00 116.00 No Ice 1.43 1.43 0.02 0.00 Ice 2.29 2.29 0.05 1" Ice 3.06 3.06 0.09 2" Ice 0.00 Ice 2.29 2.29 0.05 1" Ice 3.06 3.06 0.09	o x z mount ripe	A	FIOIIILeg	4.00	0.00	110.00	1/2"	2.73	2.73	0.03
6'x 2" Mount Pipe B From Leg 4.00 0.00 116.00 No Ice 1.43 1.43 0.02 6'x 2" Mount Pipe B From Leg 4.00 0.00 116.00 No Ice 1.43 1.43 0.02 0.00 1/2" 1.92 1.92 0.03 1/2" 1.92 0.03 0.00 1/2" 1.92 2.29 0.05 1"Ice 3.06 3.06 0.09 2" Ice				0.00			lce	3.40	3.40	0.06
6'x 2" Mount Pipe B From Leg 4.00 0.00 116.00 No Ice 1.43 1.43 0.02 0.00 1/2" 1.92 1.92 0.03 0.00 Ice 2.29 2.29 0.05 1" Ice 3.06 3.06 0.09 2" Ice 6'x 2" Mount Pipe C From Leg 4.00 0.00 116.00 No Ice 1.43 1.43 0.02 0.00 116.00 No Ice 1.43 1.43 0.02 0.00 1/2" 1.92 1.92 0.03 0.00 Ice 2.29 2.29 0.05 1" Ice 3.06 3.06 0.09 0.00 Ice 3.06 3.06 0.09							1" Ice	4.40	4.40	0.12
6 x 2 mount Pipe B From Leg 4.00 0.00 116.00 No rece 1.43 1.43 0.02 0.00 1/2" 1.92 1.92 0.03 0.00 lce 2.29 2.29 0.05 1" lce 3.06 3.06 0.09 2" lce 0.00 116.00 No lce 1.43 1.43 0.02 6'x 2" Mount Pipe C From Leg 4.00 0.00 116.00 No lce 1.43 1.43 0.02 0.00 1/2" 1.92 1.92 0.03 0.00 lce 2.29 2.29 0.05 1" lce 3.06 3.06 0.09 0"lce 0.00 0.09 0"lce 0.09	6' x 2" Mount Dino	P	From Loc	4.00	0.00	116.00	2" Ice	1 40	1 10	0.02
6'x 2" Mount Pipe C From Leg 4.00 0.00 116.00 No Ice 2.29 2.29 0.05 0.00 1"Ice 3.06 3.06 0.09 2"Ice 2"Ice 1.43 1.43 0.02 0.00 1/2" 1.92 1.92 0.03 0.00 Ice 2.29 2.29 0.05 1"Ice 3.06 3.06 0.09 0.00 Ice 2.29 2.29 0.05 1"Ice 3.06 3.06 0.09	o x z mount Pipe	D	FIGHT Leg	4.00	0.00	110.00	1/2"	1.43	1.43	0.02
6'x 2" Mount Pipe C From Leg 4.00 0.00 116.00 No Ice 1.43 0.02 0.00 1/2" 1.92 1.92 0.03 0.00 Ice 2.29 2.29 0.05 1" Ice 3.06 3.06 0.09				0.00			Ice	2.29	2.29	0.05
2" Ice 6'x 2" Mount Pipe C From Leg 4.00 0.00 116.00 No Ice 1.43 1.43 0.02 0.00 1/2" 1.92 1.92 0.03 0.00 Ice 2.29 2.29 0.05 1" Ice 3.06 3.06 0.09							1" Ice	3.06	3.06	0.09
0.00 1/2" 1.92 1.92 0.03 0.00 1/2" 1.92 1.92 0.03 0.00 1ce 2.29 2.29 0.05 1"1ce 3.06 3.06 0.09	6' x 2" Mount Pino	C	FromLog	4 00	0.00	116.00	2" Ice	1 / 2	1 /2	0.02
0.00 lce 2.29 2.29 0.05 1"lce 3.06 3.06 0.09	0 XZ WOUNT IPE	0	. ioni Leg	0.00	0.00	110.00	1/2"	1.92	1.92	0.02
1"lce 3.06 3.06 0.09				0.00			Ice	2.29	2.29	0.05
							1" Ice	3.06	3.06	0.09

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		fť²	fť²	К
Platform Mount [LP 303- 1_KCKR-HR-1]	С	None	<u> </u>	0.00	116.00	No Ice 1/2" Ice 1" Ice 2" Ice	28.31 35.69 43.11 58.21	28.31 35.69 43.11 58.21	1.77 2.30 2.94 4.60
Pipe Mount [PM 601 - 1]	В	From Leg	0.50 0.00 0.00	0.00	107.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.32 1.58 1.84 2.40	1.32 1.58 1.84 2.40	0.07 0.08 0.09 0.13
(2) LPA-80080/6CF w/ Mount Pipe	A	From Leg	4.00 0.00 1.00	0.00	100.00	No Ice 1/2" Ice 1"Ice 2"Ice	4.56 5.11 5.61 6.65	10.26 11.43 12.31 14.13	0.05 0.11 0.19 0.36
(2) LPA-80080/6CF w/ Mount Pipe	В	From Leg	4.00 0.00 1.00	0.00	100.00	No Ice 1/2" Ice 1"Ice 2"Ice	4.56 5.11 5.61 6.65	10.26 11.43 12.31 14.13	0.05 0.11 0.19 0.36
(2) LPA-80080/6CF w/ Mount Pipe	С	From Leg	4.00 0.00 1.00	0.00	100.00	No Ice 1/2" Ice 1" Ice	4.56 5.11 5.61 6.65	10.26 11.43 12.31 14.13	0.05 0.11 0.19 0.36
(2) SBNHH-1D65B w/ Mount Pipe	A	From Leg	4.00 0.00 1.00	0.00	100.00	No Ice 1/2" Ice 1" Ice	4.09 4.49 4.89 5.72	3.30 3.68 4.07 4.87	0.07 0.13 0.20 0.39
(2) SBNHH-1D65B w/ Mount Pipe	В	From Leg	4.00 0.00 1.00	0.00	100.00	2" Ice No Ice 1/2" Ice 1" Ice	4.09 4.49 4.89 5.72	3.30 3.68 4.07 4.87	0.07 0.13 0.20 0.39
(2) SBNHH-1D65B w/ Mount Pipe	С	From Leg	4.00 0.00 1.00	0.00	100.00	2" Ice No Ice 1/2" Ice 1" Ice	4.09 4.49 4.89 5.72	3.30 3.68 4.07 4.87	0.07 0.13 0.20 0.39
AIRSCALE RRH 4T4R B5 160W	A	From Leg	4.00 0.00 1.00	0.00	100.00	2" Ice No Ice 1/2" Ice 1" Ice	1.29 1.43 1.58 1.90	0.72 0.83 0.96 1.22	0.04 0.05 0.06 0.09
AIRSCALE RRH 4T4R B5 160W	В	From Leg	4.00 0.00 1.00	0.00	100.00	2" Ice No Ice 1/2" Ice 1" Ice	1.29 1.43 1.58 1.90	0.72 0.83 0.96 1.22	0.04 0.05 0.06 0.09
AIRSCALE RRH 4T4R B5 160W	С	From Leg	4.00 0.00 1.00	0.00	100.00	2" Ice No Ice 1/2" Ice 1" Ice	1.29 1.43 1.58 1.90	0.72 0.83 0.96 1.22	0.04 0.05 0.06 0.09
B25 RRH4X30	A	From Leg	4.00 0.00 0.00	0.00	100.00	No Ice 1/2" Ice 1"Ice	2.20 2.39 2.59 3.01	1.74 1.92 2.11 2.50	0.06 0.08 0.10 0.16
B25 RRH4X30	В	From Leg	4.00 0.00 0.00	0.00	100.00	2" Ice No Ice 1/2" Ice	2.20 2.39 2.59	1.74 1.92 2.11	0.06 0.08 0.10

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	C _A A _A Sido	Weight
	Leg	туре	Lateral	t			HOM	Side	
			Vert		ft		f# ²	f# ²	к
			ft ft	o	70		п	п	K
						1" Ice	3.01	2.50	0.16
B25 RRH4X30	С	From Leg	4.00	0.00	100.00	No Ice	2.20	1.74	0.06
		•	0.00			1/2"	2.39	1.92	0.08
			0.00			lce	2.59	2.11	0.10
						1" Ice 2" Ice	3.01	2.50	0.16
B13 RRH4X30-4R	А	From Leg	4.00	0.00	100.00	No Ice	2.16	1.62	0.06
			0.00			1/2"	2.35	1.79	0.08
			0.00			1" Ice	2.55	2.36	0.10
						2" Ice	2.07	2.00	0110
B13 RRH4X30-4R	В	From Leg	4.00	0.00	100.00	No Ice	2.16	1.62	0.06
			0.00			1/2"	2.35	1.79	0.08
			0.00			Ice	2.55	1.97	0.10
						2" Ice	2.97	2.30	0.15
B13 RRH4X30-4R	С	From Leg	4.00	0.00	100.00	No Ice	2.16	1.62	0.06
			0.00			1/2"	2.35	1.79	0.08
			0.00			ICE 1"Ice	2.55	1.97	0.10
						2" Ice	2.07	2.00	0.10
B66A RRH4X45	А	From Leg	4.00	0.00	100.00	No Ice	2.58	1.63	0.07
			0.00			1/2"	2.79	1.81	0.09
			0.00			ICe	3.01	2.00	0.11
						2" Ice	3.40	2.40	0.17
B66A RRH4X45	В	From Leg	4.00	0.00	100.00	No Ice	2.58	1.63	0.07
		•	0.00			1/2"	2.79	1.81	0.09
			0.00			lce	3.01	2.00	0.11
						2" Ice	3.40	2.40	0.17
B66A RRH4X45	С	From Leg	4.00	0.00	100.00	No Ice	2.58	1.63	0.07
		-	0.00			1/2"	2.79	1.81	0.09
			0.00			lce	3.01	2.00	0.11
						2" Ice	3.40	2.40	0.17
FDJ85020Q4-S1	А	From Leg	4.00	0.00	100.00	No Ice	0.96	0.36	0.02
		0	0.00			1/2"	1.09	0.43	0.03
			1.00			lce	1.24	0.52	0.04
						1 ICE 2" Ice	1.54	0.71	0.08
FDJ85020Q4-S1	В	From Leg	4.00	0.00	100.00	No Ice	0.96	0.36	0.02
		0	0.00			1/2"	1.09	0.43	0.03
			1.00			Ice	1.24	0.52	0.04
						1" ICE 2" ICE	1.54	0.71	0.08
FDJ85020Q4-S1	С	From Lea	4.00	0.00	100.00	No Ice	0.96	0.36	0.02
	-	5	0.00			1/2"	1.09	0.43	0.03
			1.00			Ice	1.24	0.52	0.04
						1" Ice 2" Ico	1.54	0.71	0.08
(2) RXXDC-3315-PF-48	А	From Lea	4.00	0.00	100.00	No Ice	3.01	1.96	0.02
(_)			0.00			1/2"	3.23	2.15	0.05
			0.00			Ice	3.46	2.35	0.08
						1" Ice 2" Ice	3.93	2.76	0.15
Platform Mount [LP 713-1]	С	None		0.00	100.00	No Ice	32.89	32.89	1.51
						1/2"	35.76	35.76	2.23
						lce	38.76	38.76	3.03
						2" Ice	40.20	40.20	4.00
(4) 6' x 2" Mount Pipe	А	From Leg	4.00	0.00	100.00	No Ice	1.43	1.43	0.02
			0.00			1/2"	1.92	1.92	0.03
			0.00			Ice	2.29	2.29	0.05

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	o	ft		fť	ft ²	К
						1" Ice	3.06	3.06	0.09
(4) 6' x 2" Mount Pipe	в	From Lea	4.00	0.00	100.00	No Ice	1.43	1.43	0.02
		5	0.00			1/2"	1.92	1.92	0.03
			0.00			Ice	2.29	2.29	0.05
						1" Ice	3.06	3.06	0.09
(4) Cly 2" Mount Ding	0	From Log	4.00	0.00	100.00	2" Ice	1 10	1 10	0.02
(4) 6 X 2 Mount Fipe	C	FIOIIILeg	4.00	0.00	100.00	1/2"	1.43	1.43	0.02
			0.00			lce	2.29	2.29	0.05
						1" Ice 2" Ice	3.06	3.06	0.09
APXVTM14-ALU-I20w/	А	From Lea	4.00	0.00	87.00	No Ice	4.09	2.86	0.08
Mount Pipe			0.00			1/2"	4.48	3.23	0.13
			2.00			Ice	4.88	3.61	0.19
						1" Ice	5.71	4.40	0.33
	Р	From Log	4.00	0.00	97.00	2" Ice	4.00	2.96	0.00
APXVTMT4-ALU-I20W/ Mount Pipo	D	FIOIDLeg	4.00	0.00	87.00	1/2"	4.09	2.00	0.08
Mount Fipe			2.00			lce	4.40	3.61	0.19
			2.00			1" Ice	5.71	4.40	0.33
						2" Ice	-	-	
APXVTM14-ALU-I20 w/	С	From Leg	4.00	0.00	87.00	No Ice	4.09	2.86	0.08
Mount Pipe			0.00			1/2"	4.48	3.23	0.13
			2.00			ICE	4.88	3.61	0.19
						2" Ice	5.71	4.40	0.55
NNVV-65B-R4 w/ Mount	А	From Leg	4.00	0.00	87.00	No Ice	7.55	4.23	0.11
Pipe		0	0.00			1/2''	8.04	4.67	0.20
			2.00			Ice	8.53	5.12	0.30
						1" Ice	9.56	6.05	0.53
NNV/V 658 P4 w/ Mount	P	From Log	4.00	0.00	87.00	2º Ice	7 55	1 22	0.11
Pipe	D	FIOIIILeg	4.00	0.00	87.00	1/2"	7.55 8.04	4.23	0.11
1100			2.00			lce	8.53	5.12	0.30
						1" Ice	9.56	6.05	0.53
		_				2" Ice			
NNVV-65B-R4 w/ Mount	С	From Leg	4.00	0.00	87.00	No Ice	7.55	4.23	0.11
Pipe			0.00			1/2"	8.04	4.67	0.20
			2.00			1" Ice	9.56	6.05	0.50
						2" Ice	0.00	0.00	0.00
(2) RRH2X50-800	А	From Leg	4.00	0.00	87.00	No Ice	1.70	1.28	0.05
			0.00			1/2"	1.86	1.43	0.07
			2.00			Ice	2.03	1.58	0.09
						2" Ice	2.40	1.91	0.14
(2) RRH2X50-800	В	From Lea	4.00	0.00	87.00	No Ice	1.70	1.28	0.05
(_)			0.00			1/2"	1.86	1.43	0.07
			2.00			Ice	2.03	1.58	0.09
						1" Ice	2.40	1.91	0.14
(2) RRH2X50-800	C	From Log	4 00	0.00	87.00		1 70	1 28	0.05
	0	. ioni Ley	0.00	0.00	07.00	1/2"	1.86	1.43	0.07
			2.00			Ice	2.03	1.58	0.09
						1" Ice	2.40	1.91	0.14
	^	Cross I	4.00	0.00	07.00	2" Ice	0.00	0.04	0.04
FZHN	А	From Leg	4.00	0.00	87.00		2.02	U.61	0.04
			2.00			lce	2.20	0.83	0.00
			2.00			1" Ice	2.77	1.09	0.12
						2" Ice			-
FZHN	В	From Leg	4.00	0.00	87.00	No Ice	2.02	0.61	0.04
			0.00			1/2"	2.20	0.71	0.06

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	$C_A A_A$	Weight
	Leg	туре	Lateral	t			FIOIN	Side	
			Vert ft		ft		ft ²	ft ²	к
			ft ft	o					
			2.00			Ice	2.38	0.83	0.07
						1" Ice 2" Ice	2.77	1.09	0.12
FZHN	С	From Leg	4.00	0.00	87.00	No Ice	2.02	0.61	0.04
			0.00			1/2"	2.20	0.71	0.06
			2.00			1" Ice	2.36	1.09	0.12
PCS 1900MHZ 4X45W-	А	From Lea	4.00	0.00	87.00	2" Ice No Ice	2.32	2.24	0.06
65MHZ		5	0.00			1/2"	2.53	2.44	0.08
			2.00			Ice	2.74	2.65	0.11
						2" Ice	5.19	3.09	0.17
PCS 1900MHZ 4X45W-	В	From Leg	4.00	0.00	87.00	No Ice	2.32	2.24	0.06
			2.00			I/Z	2.53	2.44	0.08
			2.00			1" Ice	3.19	3.09	0.17
	~		4.00		07.00	2" Ice			
PCS 1900MHZ 4X45W-	C	From Leg	4.00	0.00	87.00	No Ice	2.32	2.24	0.06
0311112			2.00			lce	2.33	2.44	0.00
						1" Ice	3.19	3.09	0.17
Platform Mount [P 712 1]	C	Nono		0.00	87.00	2" Ice	32.80	32.80	1 5 1
	U	None		0.00	87.00	1/2"	32.89	35.76	2.23
						Ice	38.76	38.76	3.03
						1" Ice 2" Ice	45.26	45.26	4.86
(2) 6' x 2" Mount Pipe	А	From Leg	4.00	0.00	87.00	No Ice	1.43	1.43	0.02
			0.00			1/2"	1.92	1.92	0.03
			0.00			ICE 1"Ice	2.29	2.29	0.05
						2" Ice	0.00	0.00	0.00
(2) 6' x 2" Mount Pipe	В	From Leg	4.00	0.00	87.00	No Ice	1.43	1.43	0.02
			0.00			Ice	1.92	1.92	0.03
			0.00			1" Ice	3.06	3.06	0.09
(2) 6' x 2" Mount Dino	C	From Log	4.00	0.00	97.00	2" Ice	1 1 2	1 1 2	0.02
	C	FIGHTLeg	4.00	0.00	87.00	1/2"	1.43	1.43	0.02
			0.00			lce	2.29	2.29	0.05
						1" Ice	3.06	3.06	0.09
**						2 100			
AIR21 B4A B2P_T-	А	From Leg	4.00	0.00	71.00	No Ice	6.11	4.31	0.11
MOBILE			0.00			1/2''	6.48 6.86	4.67 5.02	0.16
			2.00			1" Ice	7.64	5.76	0.20
	-	F	4.00	0.00	74.00	2" Ice	0.44	4.04	0.44
MOBILE	В	From Leg	4.00	0.00	71.00	NO ICE 1/2"	6.11 6.48	4.31	0.11
MODILL			2.00			lce	6.86	5.02	0.20
						1" Ice	7.64	5.76	0.31
AIR21 B4A B2P T-	С	From Lea	4.00	0.00	71.00	2 [°] Ice No Ice	6.11	4.31	0.11
MOBILE	•		0.00			1/2"	6.48	4.67	0.16
			2.00			lce	6.86	5.02	0.20
						2" Ice	1.04	5./6	0.31
AIR 32 B2a/B66Aa	А	From Leg	4.00	0.00	71.00	No Ice	6.51	4.71	0.13
			0.00			1/2"	6.89 7 27	5.07	0.18
			2.00			1" Ice	8.06	6.18	0.25
	D	From Law	4.00	0.00	74.00	2" Ice	6 54	A 74	0.40
AIK 32 B28/B66A8	в	From Leg	4.00	0.00	71.00	INO ICE	0.51	4.71	0.13

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	٥	ft		ft ²	fť²	К
			0.00			1/2''	6.89	5.07	0.18
			2.00			lce 1"lce	7.27	5.43 6.18	0.23
						2" Ice	0.00	0.10	0.55
AIR 32 B2a/B66Aa	С	From Leg	4.00	0.00	71.00	No Ice	6.51	4.71	0.13
			0.00			1/2"	6.89 7.27	5.07	0.18
			2.00			1" Ice 2" Ice	8.06	6.18	0.25
APXVAARR24_43-U-	А	From Leg	4.00	0.00	71.00	No Ice	14.67	5.32	0.15
NA20_T-MOBILE			0.00			1/2"	15.43	5.99	0.27
			2.00			ICE 1'' ICE	16.21 17.81	6.68 8.08	0.39
						2" Ice	17.01	0.00	0.00
APXVAARR24_43-U-	В	From Leg	4.00	0.00	71.00	No Ice	14.67	5.32	0.15
NA20_T-MOBILE			0.00			1/2" Ice	15.43	5.99	0.27
			2.00			1" Ice	17.81	8.08	0.66
						2" Ice			
APXVAARR24_43-U-	С	From Leg	4.00	0.00	71.00	No Ice	14.67	5.32	0.15
NAZU_1-MOBILE			2.00			1/2 Ice	15.43	5.99	0.27
			2.00			1" Ice	17.81	8.08	0.66
		_ .				2" Ice			
AIR6449 B41	A	From Leg	4.00	0.00	71.00	No Ice	5.68	2.49	0.10
			2.00			lce	6.29	2.72	0.14
						1" lce 2" lce	6.93	3.44	0.29
AIR6449 B41	В	From Leg	4.00	0.00	71.00	No Ice	5.68	2.49	0.10
			0.00			1/2"	5.98	2.72	0.14
			2.00			1" Ice	6.29 6.93	2.95	0.19
						2" Ice	0100	0	0.20
AIR6449 B41	С	From Leg	4.00	0.00	71.00	No Ice	5.68	2.49	0.10
			0.00			1/2" Ice	5.98 6.29	2.72	0.14
			2.00			1" Ice	6.93	3.44	0.29
						2" Ice			
RADIO 4449 B71 B85A_T-	A	From Leg	4.00	0.00	71.00	No Ice 1/2"	1.97 2.15	1.59	0.07
WODILL			2.00			lce	2.13	1.92	0.03
						1" Ice	2.72	2.28	0.17
	D	From Log	4.00	0.00	71.00	2" Ice	1.07	1 50	0.07
MOBIL F	D	FIOIIILeg	4.00	0.00	71.00	1/2"	2.15	1.75	0.07
			2.00			lce	2.33	1.92	0.12
						1" lce 2" lce	2.72	2.28	0.17
RADIO 4449 B71 B85A_T-	С	From Leg	4.00	0.00	71.00	No Ice	1.97	1.59	0.07
MOBILE			0.00			1/2" Ice	2.15	1.75	0.09
			2.00			1" Ice	2.72	2.28	0.12
						2" Ice			
RRUS 4415 B25	A	From Leg	4.00	0.00	71.00	No Ice	1.64	0.68	0.04
			2.00			lce	1.80	0.79	0.06
						1" lce 2" lce	2.33	1.18	0.11
RRUS 4415 B25	В	From Leg	4.00	0.00	71.00	No Ice	1.64	0.68	0.04
			0.00			1/2"	1.80	0.79	0.06
			2.00			ICe 1" Ice	1.97 2.33	0.91	0.07 0.11
RRUS 4415 B25	С	From Leg	4.00	0.00	71.00	No Ice	1.64	0.68	0.04

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft ²	ft ²	К
			0.00			1/2"	1.80	0.79	0.06
			2.00			lce 1" lce 2" lce	1.97 2.33	0.91 1.18	0.07 0.11
Platform Mount [LP 1301- 1]	С	None		0.00	71.00	No Ice 1/2'' Ice	51.70 62.70 73.70	51.70 62.70 73.70	2.26 2.94 3.61
						1" lce 2" lce	95.70	95.70	4.95
8' x 2" Mount Pipe	С	From Leg	4.00 0.00	0.00	71.00	No Ice 1/2"	1.90 2.73	1.90 2.73	0.03 0.04
**			0.00			1" Ice 1" Ice 2" Ice	3.40 4.40	3.40 4.40	0.06 0.12
PD1142-1	А	From Leg	6.00 0.00	0.00	50.00	No Ice 1/2"	1.32 3.21	1.32 3.21	0.01
			7.00			Ice	5.12	5.12	0.05
						1" Ice 2" Ice	8.99	8.99	0.14
DB492A	А	From Leg	6.00	0.00	50.00	No Ice	1.10	1.10	0.01
			0.00			1/2"	1.98	1.98	0.01
			0.00			1" Ice 1" Ice 2" Ice	2.86 4.62	2.86 4.62	0.01
ASP-655	А	From Leg	6.00	0.00	50.00	No Ice	0.56	0.56	0.00
			0.00			1/2" Ice	1.02	1.02	0.01
			4.00			1" Ice 2" Ice	1.88	1.88	0.04
PD1121-6	В	From Leg	6.00	0.00	50.00	No Ice	0.23	0.23	0.00
			0.00			1/2" Ice	0.41	0.41	0.00
			0.00			1" Ice 2" Ice	0.97	0.97	0.01
Side Arm Mount [SO 702-	A	From Leg	3.00	0.00	50.00	No Ice	1.00	1.43	0.03
1]			0.00			lce	1.00	2.05	0.04
	_					1" Ice 2" Ice	1.00	3.91	0.07
Side Arm Mount [SO 702-	В	From Leg	3.00	0.00	50.00	No Ice	1.00	1.43	0.03
1]			0.00			lce	1.00	2.05	0.04
**						1" Ice 2" Ice	1.00	3.91	0.07
EPSILON GPS ANTENNA	А	From Leg	4.00	0.00	40.00	No Ice	0.11	0.11	0.00
35 DB			0.00			1/2"	0.16	0.16	0.00
			1.00			ice 1" lce	0.21	0.21	0.00
0.1 1 10.0		_ .	0.00	0.65	40.55	2" Ice	0.01		0.07
Side Arm Mount [SO 701-	A	From Leg	2.00	0.00	40.00	No Ice 1/2"	0.85 1 14	1.67 2 34	0.07 0.08
1			0.00			lce	1.43	3.01	0.09
						1" Ice	2.01	4.35	0.12
****						2 100			

Dishes

Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	o	ft	ft		ft^2	ĸ
GLF6-450	В	Grid	From Leg	1.00 0.00 0.00	0.00		107.00	6.40	No Ice 1/2" Ice 1" Ice 2" Ice	32.17 33.01 33.86 35.54	0.20 0.37 0.54 0.88
**											
SHP2-13	A	Paraboloid w/Shroud (HP)	From Leg	4.00 0.00 4.00	0.00		71.00	2.00	No Ice 1/2" Ice 1" Ice 2" Ice	3.14 3.41 3.68 4.21	0.10 0.13 0.17 0.23

Load Combinations

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg-No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 lce+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 lce+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 lce+1.0 lemp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+wind 30 deg - Service
41	Dead+wind builded - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg-Service
44	Dead+Wind 150 deg-Service
45	Dead+wind 180 deg-Service
46	Dead+wind 210 deg-Service
47	Dead+wind 240 deg-Service
48	Deaa+wina 270 deg - Service

tnxTow er Report - version 8.0.7.5

Comb. No.

ο.

Description

49 Dead+Wind 300 deg - Service 50 Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio	Flevation	Component	Condition	Gov	Avial	Maior Axis	MinorAxis
n 00000	ft	Type	Condition	Load	ANUI	Moment	Moment
No	11	rype		Comb	к	kin-ft	kin-ft
1 1	120 - 100	Polo	MaxTension	0	0.00	0.00	-0.00
	120-100	I UIE	Max Compression	26	-1/ 23	-2.16	0.00
			Max. Complession	20	5.05	112 10	0.21
			Max. Mx	14	-5.95	1 52	-0.50
			Max. Wy	0	-0.99	-1.52	-109.03
			Max Vy	0	7.03	-113.19	-0.00
				14	7.50	-1.52	-109.03
1.0	100	Dele	Max. Torque	2	0.00	0.00	-1.01
LZ	100 -	Pole	Max Tension	.I	0.00	0.00	0.00
	47.0833		M 0		- 4 0 -		0.54
			Max. Compression	26	-51.05	-2.06	2.51
			Max. Mx	8	-24.37	-1062.67	-3.86
			Max. My	14	-24.39	-7.96	-1050.23
			Max. Vy	8	25.24	-1062.67	-3.86
			Max. Vx	14	25.11	-7.96	-1050.23
			Max. Torque	24			-2.01
L3	47.0833 - 0	Pole	MaxTension	1	0.00	0.00	0.00
			Max. Compression	26	-68.18	-2.38	3.36
			Max. Mx	8	-39.00	-2481.14	-7.21
			Max. Mv	14	-39.00	-14.55	-2460.37
			Max. Vv	20	-29.06	2479.66	6.57
			Max. Vx	14	28.91	-14.55	-2460.37
			Max. Torque	24			-2.36
				-			

Maximum Reactions

Location	Condition	Gov. Load	Vertical K	Horizontal, X K	Horizontal, Z K
		Comb.			
Pole	Max. Vert	37	68.18	5.38	3.10
	Max. H _x	20	39.04	29.01	0.05
	Max. H _z	2	39.04	0.08	28.82
	Max. M _x	2	2458.36	0.08	28.82
	Max. Mz	8	2481.14	-29.01	-0.07
	Max. Torsion	12	2.28	-14.57	-25.13
	Min. Vert	5	29.28	-14.37	24.79
	Min. H _x	9	29.28	-29.01	-0.07
	Min. H _z	14	39.04	-0.12	-28.86
	Min. M _x	14	-2460.37	-0.12	-28.86
	Min. Mz	20	-2479.66	29.01	0.05
	Min. Torsion	24	-2.35	14.52	25.12

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	32.53	0.00	0.00	-0.86	-0.59	0.00
1.2 Dead+1.0 Wind 0 deg - No Ice	39.04	-0.08	-28.82	-2458.36	8.58	1.51
0.9 Dead+1.0 Wind 0 deg - No Ice	29.28	-0.08	-28.82	-2425.99	8.64	1.49

Load	Vertical	Shear _x	Shearz	Overturning	Overturning	Torque
Combination	ĸ	К	К	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 30 deg-	39.04	14.37	-24.79	-2110.30	-1225.79	0.15
No Ice 0.9 Dead+1.0 Wind 30 deg - No Ice	29.28	14.37	-24.79	-2082.50	-1209.59	0.14
1.2 Dead+1.0 Wind 60 deg-	39.04	25.01	-14.34	-1220.62	-2136.25	-0.75
0.9 Dead+1.0 Wind 60 deg-	29.28	25.01	-14.34	-1204.43	-2108.12	-0.75
1.2 Dead+1.0 Wind 90 deg-	39.04	29.01	0.07	7.21	-2481.14	-1.63
0.9 Dead+1.0 Wind 90 deg- No Ice	29.28	29.01	0.07	7.36	-2448.49	-1.62
1.2 Dead+1.0 Wind 120 deg - No Ice	39.04	25.20	14.61	1249.32	-2157.62	-2.17
0.9 Dead+1.0 Wind 120 deg - No Ice	29.28	25.20	14.61	1233.26	-2129.19	-2.15
1.2 Dead+1.0 Wind 150 deg - No Ice	39.04	14.57	25.13	2145.57	-1248.27	-2.28
0.9 Dead+1.0 Wind 150 deg - No Ice	29.28	14.57	25.13	2117.81	-1231.73	-2.26
1.2 Dead+1.0 Wind 180 deg - No Ice	39.04	0.12	28.86	2460.37	-14.55	-1.49
0.9 Dead+1.0 Wind 180 deg - No Ice	29.28	0.12	28.86	2428.52	-14.14	-1.47
1.2 Dead+1.0 Wind 210 deg - No Ice	39.04	-14.26	24.89	2118.34	1211.24	-0.14
0.9 Dead+1.0 Wind 210 deg - No Ice	29.28	-14.26	24.89	2090.99	1195.63	-0.13
1.2 Dead+1.0 Wind 240 deg - No Ice	39.04	-24.97	14.39	1223.58	2130.20	0.66
0.9 Dead+1.0 Wind 240 deg - No Ice	29.28	-24.97	14.39	1207.91	2102.55	0.66
1.2 Dead+1.0 Wind 270 deg - No Ice	39.04	-29.01	-0.05	-6.57	2479.66	1.55
0.9 Dead+1.0 Wind 270 deg - No Ice	29.28	-29.01	-0.05	-6.20	2447.42	1.54
1.2 Dead+1.0 Wind 300 deg - No Ice	39.04	-25.14	-14.55	-1244.77	2148.98	2.24
0.9 Dead+1.0 Wind 300 deg - No Ice	29.28	-25.14	-14.55	-1228.22	2121.06	2.22
1.2 Dead+1.0 Wind 330 deg - No Ice	39.04	-14.52	-25.12	-2147.81	1242.04	2.35
0.9 Dead+1.0 Wind 330 deg - No Ice	29.28	-14.52	-25.12	-2119.46	1225.97	2.33
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0	68.18 68.18	0.00 -0.28	-0.00 -6.09	-3.36 -563.65	-2.38 31.82	0.00 0.13
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 30	68.18	2.98	-5.15	-472.93	-274.70	0.04
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 60	68.18	5.23	-2.98	-274.89	-482.16	-0.27
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 90	68.18	6.07	0.00	-2.61	-560.26	-0.55
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 120	68.18	5.29	3.05	277.51	-489.42	-0.79
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 150	68.18	3.04	5.24	477.69	-282.10	-0.85
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 180	68.18	0.03	6.01	546.39	-6.61	-0.53
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 210	68.18	-2.98	5.16	466.80	269.40	-0.04
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 240	68.18	-5.43	2.81	247.78	501.57	0.67
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 270	68.18	-6.17	-0.17	-24.64	567.68	0.93
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 300	68.18	-5.38	-3.10	-290.53	496.02	0.81
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	68.18	-3.23	-5.24	-484.78	300.56	0.48

Load	Vertical	Shear _x	Shearz	Overturning Moment M	Overturning Moment M	Torque
Commutation	К	K	К	kip-ft	kip-ft	kip-ft
Dead+Wind 0 deg - Service	32.53	-0.02	-5.78	-490.44	1.23	0.31
Dead+Wind 30 deg - Service	32.53	2.88	-4.97	-421.09	-244.66	0.03
Dead+Wind 60 deg - Service	32.53	5.02	-2.88	-243.86	-426.05	-0.15
Dead+Wind 90 deg - Service	32.53	5.82	0.01	0.74	-494.77	-0.33
Dead+Wind 120 deg-	32.53	5.06	2.93	248.21	-430.33	-0.44
Service						
Dead+Wind 150 deg-	32.53	2.92	5.04	426.76	-249.16	-0.46
Service						
Dead+Wind 180 deg-	32.53	0.02	5.79	489.46	-3.37	-0.30
Service						
Dead+Wind 210 deg-	32.53	-2.86	4.99	421.31	240.82	-0.03
Service						
Dead+Wind 240 deg-	32.53	-5.01	2.89	243.07	423.90	0.13
Service						
Dead+Wind 270 deg-	32.53	-5.82	-0.01	-2.00	493.54	0.31
Service						
Dead+Wind 300 deg-	32.53	-5.04	-2.92	-248.68	427.66	0.45
Service						
Dead+Wind 330 deg-	32.53	-2.91	-5.04	-428.59	246.97	0.47
Service						

Solution Summary

	Sun	n of Applied Forc	es		Sum of Reactio	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-32.53	0.00	0.00	32.53	0.00	0.000%
2	-0.08	-39.04	-28.82	0.08	39.04	28.82	0.000%
3	-0.08	-29.28	-28.82	0.08	29.28	28.82	0.000%
4	14.37	-39.04	-24.79	-14.37	39.04	24.79	0.000%
5	14.37	-29.28	-24.79	-14.37	29.28	24.79	0.000%
6	25.01	-39.04	-14.34	-25.01	39.04	14.34	0.000%
7	25.01	-29.28	-14.34	-25.01	29.28	14.34	0.000%
8	29.01	-39.04	0.07	-29.01	39.04	-0.07	0.000%
9	29.01	-29.28	0.07	-29.01	29.28	-0.07	0.000%
10	25.20	-39.04	14.61	-25.20	39.04	-14.61	0.000%
11	25.20	-29.28	14.61	-25.20	29.28	-14.61	0.000%
12	14.57	-39.04	25.13	-14.57	39.04	-25.13	0.000%
13	14.57	-29.28	25.13	-14.57	29.28	-25.13	0.000%
14	0.12	-39.04	28.86	-0.12	39.04	-28.86	0.000%
15	0.12	-29.28	28.86	-0.12	29.28	-28.86	0.000%
16	-14.26	-39.04	24.89	14.26	39.04	-24.89	0.000%
17	-14.26	-29.28	24.89	14.26	29.28	-24.89	0.000%
18	-24.97	-39.04	14.39	24.97	39.04	-14.39	0.000%
19	-24.97	-29.28	14.39	24.97	29.28	-14.39	0.000%
20	-29.01	-39.04	-0.05	29.01	39.04	0.05	0.000%
21	-29.01	-29.28	-0.05	29.01	29.28	0.05	0.000%
22	-25.14	-39.04	-14.55	25.14	39.04	14.55	0.000%
23	-25.14	-29.28	-14.55	25.14	29.28	14.55	0.000%
24	-14.52	-39.04	-25.12	14.52	39.04	25.12	0.000%
25	-14.52	-29.28	-25.12	14.52	29.28	25.12	0.000%
26	0.00	-68.18	0.00	-0.00	68.18	0.00	0.000%
27	-0.28	-68.18	-6.09	0.28	68.18	6.09	0.000%
28	2.98	-68.18	-5.15	-2.98	68.18	5.15	0.000%
29	5.23	-68.18	-2.98	-5.23	68.18	2.98	0.000%
30	6.07	-68.18	0.00	-6.07	68.18	-0.00	0.000%
31	5.29	-68.18	3.05	-5.29	68.18	-3.05	0.000%
32	3.04	-68.18	5.24	-3.04	68.18	-5.24	0.000%
33	0.03	-68.18	6.01	-0.03	68.18	-6.01	0.000%
34	-2.98	-68.18	5.16	2.98	68.18	-5.16	0.000%
35	-5.43	-68.18	2.81	5.43	68.18	-2.81	0.000%
36	-6.17	-68.18	-0.17	6.17	68.18	0.17	0.000%
37	-5.38	-68.18	-3.10	5.38	68.18	3.10	0.000%
38	-3.23	-68.18	-5.24	3.23	68.18	5.24	0.000%
39	-0.02	-32.53	-5.78	0.02	32.53	5.78	0.000%
40	2.88	-32.53	-4.97	-2.88	32.53	4.97	0.000%

	Sur	n of Applied Force	es		Sum of Reaction	าร	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
41	5.02	-32.53	-2.88	-5.02	32.53	2.88	0.000%
42	5.82	-32.53	0.01	-5.82	32.53	-0.01	0.000%
43	5.06	-32.53	2.93	-5.06	32.53	-2.93	0.000%
44	2.92	-32.53	5.04	-2.92	32.53	-5.04	0.000%
45	0.02	-32.53	5.79	-0.02	32.53	-5.79	0.000%
46	-2.86	-32.53	4.99	2.86	32.53	-4.99	0.000%
47	-5.01	-32.53	2.89	5.01	32.53	-2.89	0.000%
48	-5.82	-32.53	-0.01	5.82	32.53	0.01	0.000%
49	-5.04	-32.53	-2.92	5.04	32.53	2.92	0.000%
50	-2.91	-32.53	-5.04	2.91	32.53	5.04	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	5	0.00000001	0.00026102
3	Yes	5	0.00000001	0.00011966
4	Yes	6	0.00000001	0.00021525
5	Yes	6	0.00000001	0.00006693
6	Yes	6	0.0000001	0.00021190
7	Yes	õ	0.00000001	0.00006548
8	Yes	5	0.00000001	0.00007258
9	Yes	4	0.00000001	0.00078930
10	Yes	6	0.00000001	0.00021050
11	Yes	6	0.00000001	0.0000210000
12	Voc	6	0.00000001	0.00000410
12	Voc	6	0.00000001	0.00023110
13	Vee	5	0.00000001	0.00007171
14	Yes	5 F	0.0000001	0.00035492
15	res	5	0.0000001	0.00016154
10	Yes	6	0.0000001	0.00020323
17	Yes	6	0.0000001	0.00006299
18	Yes	6	0.00000001	0.00021339
19	Yes	6	0.00000001	0.00006620
20	Yes	5	0.00000001	0.00011787
21	Yes	5	0.00000001	0.00005264
22	Yes	6	0.00000001	0.00022784
23	Yes	6	0.00000001	0.00007059
24	Yes	6	0.00000001	0.00020432
25	Yes	6	0.00000001	0.00006225
26	Yes	4	0.00000001	0.00004348
27	Yes	5	0.00000001	0.00044342
28	Yes	5	0.00000001	0.00074610
29	Yes	5	0.00000001	0.00073607
30	Yes	5	0.0000001	0.00043664
31	Yes	5	0.0000001	0.00073139
32	Yes	5	0.00000001	0.00080314
33	Yes	5	0.00000001	0.00045087
34	Yes	5	0.0000001	0.00066067
35	Yes	5	0.00000001	0.00066635
36	Yes	5	0.00000001	0.00047896
37	Yes	5	0.00000001	0.00083374
38	Yes	5	0.00000001	0.00078247
39	Yes	4	0.00000001	0.00022598
40	Yes	4	0.00000001	0.00064189
41	Yes	4	0.00000001	0.00059148
42	Yes	4	0.0000001	0.00009187
43	Yes	4	0.00000001	0.00055997
44	Yes	4	0.00000001	0.00077516
45	Yes	4	0.00000001	0.00023574
46	Yes	4	0.00000001	0 00052627
47	Yes	4	0.00000001	0 00059858
48	Yee	4	0.00000001	0 000000000
40 20	Yee	4	0.00000001	0 00072038
50	Vee	-	0.00000001	0 00053760
	103		0.0000001	0.000000100

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	120 - 100	18.72	43	1.36	0.01
L2	100 - 47.0833	13.14	43	1.26	0.00
L3	52 - 0	3.37	43	0.61	0.00

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	8	ft
119.00	DB809MT3-XT	43	18.43	1.36	0.01	23546
116.00	(2) SBNHH-1D65A w/ Mount	43	17.57	1.35	0.01	23546
	Pipe					
107.00	GLF6-450	43	15.04	1.31	0.01	9056
100.00	(2) LPA-80080/6CF w/ Mount	43	13.14	1.26	0.00	6055
	Pipe					
87.00	APXVTM14-ALU-I20 w/ Mount	43	9.87	1.13	0.00	4844
	Pipe					
75.00	SHP2-13	43	7.23	0.96	0.00	4157
71.00	AIR21 B4A B2P T-MOBILE	43	6.43	0.90	0.00	3970
50.00	PD1142-1	43	3.12	0.58	0.00	3418
40.00	EPSILON GPS ANTENNA 35 DB	43	2.07	0.45	0.00	4249

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz. Deflection	Gov.	Tilt	Twist
110.	ft	in	Comb.	o	0
L1	120 - 100	93.83	10	6.84	0.04
L2	100 - 47.0833	65.92	10	6.34	0.02
L3	52 - 0	16.92	10	3.08	0.01

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
119.00	DB809MT3-XT	10	92.40	6.83	0.04	4877
116.00	(2) SBNHH-1D65A w/ Mount	10	88.12	6.77	0.03	4877
	Pipe					
107.00	GLF6-450	10	75.44	6.57	0.03	1874
100.00	(2) LPA-80080/6CF w/ Mount Pipe	10	65.92	6.34	0.02	1250
87.00	APXVTM14-ALU-I20 w/ Mount Pipe	10	49.56	5.66	0.02	989
75.00	SHP2-13	10	36.29	4.83	0.01	842
71.00	AIR21 B4A B2P_T-MOBILE	10	32.32	4.53	0.01	802
50.00	PD1142-1	10	15.67	2.93	0.00	683
40.00	EPSILON GPS ANTENNA 35 DB	10	10.41	2.26	0.00	847

Compression Checks

	Pole Design Data											
Section No.	Elevation	Size	L	Lu	KI/r	A	P _u	φP _n	Ratio P.,			
	ft		ft	ft		in²	К	К	ϕP_n			
L1	120 - 100 (1)	TP20.263x15.403x0.1875	20.00	0.00	0.0	12.120 6	-5.93	709.05	0.008			
L2	100 - 47.0833 (2)	TP33.13x20.263x0.2813	52.92	0.00	0.0	28.666 0	-24.36	1676.96	0.015			
L3	47.0833-0 (3)	TP44x31.372x0.375	52.00	0.00	0.0	52.677 2	-39.00	3081.62	0.013			

Pole Bending Design Data

Section No.	Elevation	Size	Mux	φ <i>M</i> _{nx}	Ratio Mux	Muy	φ <i>M_{ny}</i>	Ratio M _{uv}
	ft		kip-ft	kip-ft	φ <i>M</i> _{nx}	kip-ft	kip-ft	φ <i>M</i> _{ny}
L1	120 - 100 (1)	TP20.263x15.403x0.1875	113.56	332.31	0.342	0.00	332.31	0.000
L2	100 - 47.0833 (2)	TP33.13x20.263x0.2813	1068.66	1213.13	0.881	0.00	1213.13	0.000
L3	47.0833-0 (3)	TP44x31.372x0.375	2493.22	3026.69	0.824	0.00	3026.69	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V _u	ϕV_n	Ratio V.,	Actual T _u	ϕT_n	Ratio T _u
	ft		ĸ	K	$\frac{1}{\phi V_n}$	kip-ft	kip-ft	ϕT_n
L1	120 - 100 (1)	TP20.263x15.403x0.1875	7.93	212.72	0.037	0.67	375.64	0.002
L2	100 - 47.0833 (2)	TP33.13x20.263x0.2813	25.38	503.09	0.050	1.16	1400.75	0.001
L3	47.0833-0 (3)	TP44x31.372x0.375	29.18	924.49	0.032	2.17	3547.60	0.001

Pole Interaction Design Data

Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio Muy	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	φ <i>M</i> _{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	120 - 100 (1)	0.008	0.342	0.000	0.037	0.002	0.352	1.050	4.8.2
L2	100 - 47.0833 (2)	0.015	0.881	0.000	0.050	0.001	0.898	1.050	4.8.2
L3	47.0833 - 0 (3)	0.013	0.824	0.000	0.032	0.001	0.837	1.050	4.8.2

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L1	120 - 100	Pole	TP20.263x15.403x0.1875	1	-5.93	744.51	33.5	Pass
L2	100 - 47.0833	Pole	TP33.13x20.263x0.2813	2	-24.36	1760.81	85.5	Pass
L3	47.0833-0	Pole	TP44x31.372x0.375	3	-39.00	3235.70	79.8	Pass
							Summary	
						Pole (L2)	85.5	Pass
						RATING =	85.5	Pass

APPENDIX B

BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS

Monopole Flange Plate Connection CROWN Elevation = 100 ft. CASTLE BU # 806364 **Applied Loads** Site Name HRT 106(B) 943202 Moment (kip-ft) 115.84 Order # 517085 Rev. 0 9.83 Axial Force (kips) Shear Force (kips) 13.00 TIA-222 Revision Н *TIA-222-H Section 15.5 Applied **Top Plate - External Bottom Plate - External** \bigcirc \bigcirc 0 0 0 6 Ô Ô Ô Ø O O \bigcirc \bigcirc **Connection Properties** Bolt Data (8) 1" ø bolts (A325 N; Fy=92 ksi, Fu=120 ksi) on 24.41" BC **Bottom Plate Data Top Plate Data** 26.91" OD x 1.5" Plate (A572-60; Fy=60 ksi, Fu=75 ksi) 26.91" OD x 1.5" Plate (A572-60; Fy=60 ksi, Fu=75 ksi) Top Stiffener Data **Bottom Stiffener Data** N/A N/A **Top Pole Data Bottom Pole Data** 20.263" x 0.1875" 12-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi) 20.263" x 0.28125" 12-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi) Analysis Results **Bolt Capacity** Max Load (kips) 27.23 Allowable (kips) 54.48 47.6% Stress Rating: Pass **Bottom Plate Capacity Top Plate Capacity** Max Stress (ksi): 8.23 (Flexural) Max Stress (ksi): 8.23 (Flexural) Allowable Stress (ksi): 54.00 Allowable Stress (ksi): 54.00 Stress Rating: 14.5% Stress Rating: 14.5% Pass Pass Tension Side Stress Rating: 7.2% Pass Tension Side Stress Rating: 7.2% Pass

Monopole Base Plate Connection

Site Info	
BU #	806364
Site Name	HRT 106(B) 943202
Order #	517085 Rev. 0

Analysis Considerations				
TIA-222 Revision	Н			
Grout Considered:	No			
I _{ar} (in)	0.5			

Applied Loads				
Moment (kip-ft)	2493.22			
Axial Force (kips)	39.00			
Shear Force (kips)	29.18			

*TIA-222-H Section 15.5 Applied

Connection Properties	Analysis Results			
Anchor Rod Data	Anchor Rod Summary		(units of kips, kip-in)	
(12) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 52.05" BC	Pu_c = 194.71	φPn_c = 268.39	Stress Rating	
	Vu = 2.43	φVn = 120.77	69.1%	
Base Plate Data	Mu = n/a	φMn = n/a	Pass	
58.05" OD x 2.75" Plate (S-128; Fy=60 ksi, Fu=80 ksi)				
	Base Plate Summary			
Stiffener Data	Max Stress (ksi):	22.47	(Flexural)	
N/A	Allowable Stress (ksi):	54		
	Stress Rating:	39.6%	Pass	
Pole Data				
44" x 0.375" 12-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)				

Pier and Pad Foundation

BU # :	806364
Site Name:	HRT 106(B) 94320
App. Number:	517085 Rev. 0

TIA-222 Revision: H Tower Type: Monopole Top & Bot. Pad Rein. Different?: Block Foundation?:

Superstructure Analysis Reactions					
Compression, P _{comp} :	39	kips			
Base Shear, Vu_comp:	29	kips			
Moment, M _u :	2493	ft-kips			
Tower Height, H:	120	ft			
BP Dist. Above Fdn, bp_{dist}:	2.25	in			
Bolt Circle / Bearing Plate Width, BC:	52.02	in			

Foundation Analysis Checks				
	Capacity	Demand	Rating*	Check
Lateral (Sliding) (kips)	305.63	29.00	9.0%	Pass
Bearing Pressure (ksf)	6.00	1.70	27.0%	Pass
Overturning (kip*ft)	7207.33	2672.44	37.1%	Pass
Pad Flexure (kip*ft)	11458.68	1109.93	9.2%	Pass
Pad Shear - 1-way (kips)	1963.65	111.43	5.4%	Pass
Pad Shear - 2-way (Comp) (ksi)	0.190	0.001	0.6%	Pass
Flexural 2-way (Comp) (kip*ft)	15324.08	0.00	0.0%	Pass

 \checkmark

*Rating per TIA-222-H Section 15.5

Soil Rating*:	37.1%
Structural Rating*:	9.2%

Pad Properties				
Depth, D:	6	ft		
Pad Width, W :	27	ft		
Pad Thickness, T :	6	ft		
Pad Rebar Size (Bottom), Sp :	11			
Pad Rebar Quantity (Bottom), mp:	26			
Pad Clear Cover, cc _{pad} :	6	in		

Material Properties				
Rebar Grade, Fy :	60	ksi		
Concrete Compressive Strength, F'c:	4	ksi		
Dry Concrete Density, δ c :	150	pcf		

Soil Properties		
Total Soil Unit Weight, $m{\gamma}$:	125	pcf
Ultimate Gross Bearing, Qult:	8.000	ksf
Cohesion, Cu :	0.000	ksf
Friction Angle, $oldsymbol{arphi}$:	34	degrees
SPT Blow Count, N _{blows} :	24	
Base Friction, μ :		
Neglected Depth, N:	3.33	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw:	N/A	ft

<--Toggle between Gross and Net

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

 Elevation:
 511.24 ft (NAVD 88)

 Latitude:
 41.459353

 Longitude:
 -72.662731

Wind

Results:

Wind Speed:	126 Vmph
10-year MRI	78 Vmph
25-year MRI	87 Vmph
50-year MRI	95 Vmph
100-year MRI	103 Vmph
Data Source:	ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, incorporating errata of March 12, 2014
Date Accessed:	Tue Sep 08 2020

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Site Soil Class: Results:	D - Stiff Soil			
S _S :	0.179	S _{DS} :	0.191	
S ₁ :	0.062	S _{D1} :	0.099	
F _a :	1.6	T∟ :	6	
F _v :	2.4	PGA :	0.091	
S _{MS} :	0.286	PGA M:	0.146	
S _{M1} :	0.148	F _{PGA} :	1.6	
		l _e :	1	

Seismic Design Category B

Data Accessed: Date Source:

Tue Sep 08 2020

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:	0.75 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Tue Sep 08 2020

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Kimley»Horn

Darcy Tarr Crown Castle 3530 Toringdon Way, Suite 300 Charlotte, NC 28277 (704) 405-6589		Kimley-Horn and Associates, Inc. 421 Fayetteville Street, Suite 600 Raleigh, NC 27601 (919) 677-2000 CrownMounts@kimley-horn.com
Subject:	Mount Replacement Analysis Rep	port
Carrier Designation:	AT&T Mobility Equipment Change Carrier Site Number: Carrier Site Name:	-Out 10071003 DURHAM CENTRAL
Crown Castle Designation:	Crown Castle BU Number: Crown Castle Site Name: Crown Castle JDE Job Number: Crown Castle Order Number:	806364 HRT 106(B) 943202 605361 517085, Rev. 0
Engineering Firm Designation:	Kimley-Horn Report Designation:	019558049
Site Data:	143 R Old Blue Hill Rd., Durham, M Latitude 41° 27′ 33.67″ Longitude	iddlesex County, CT 06422 -72° 39′ 45.83″
Structure Information:	Tower Height & Type: 120 ft Mone Mount Elevation: 116 ft Mount Type: 14.5 ft Platt	opole form w/ Support Rails

Dear Darcy Tarr,

Kimley-Horn is pleased to submit this **"Mount Replacement Analysis Report"** to determine the structural integrity of AT&T Mobility's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform w/ Support Rails

Sufficient

This analysis has been performed in accordance with the 2018 International Building Code based upon an ultimate 3-second gust wind speed of 120 mph. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Rich Lam, E.I.

Respectfully Submitted by:

Thomas M. Groves, P.E.

Lic. #PEN.0031433, Exp. 01/31/2021 Kimley-Horn and Associates, Inc. COA #PEC.0000738

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

1) INTRODUCTION

The mounting configuration consists of a proposed 14.5 ft Platform w/ Support Rails and Kickers designed by Site Pro 1.

2) ANALYSIS CRITERIA

Building Code:	2018 IBC
TIA-222 Revision:	TIA-222-H
Risk Category:	II
Ultimate Wind Speed:	120 mph
Exposure Category:	В
Topographic Factor at Base:	1.0
Topographic Factor at Mount:	1.0
Ice Thickness:	1 in
Wind Speed with Ice:	50 mph
Live Loading Wind Speed:	30 mph
Man Live Load at Mount Pipes:	500 lb

Table 1 – Proposed Equipment Configuration

Elev	ation (ft)		Antennas
Mount	Centerline	#	Name
		6	Kathrein 80010964
		6	Andrew SBNHH-1D65A
		3	Ericsson RRUS-32 B30
		3	Ericsson RRUS 32 B2
		3	Ericsson RRUS 4478 B14
116	116	3	Ericsson RRUS 4449 B5/B12
		3	Ericsson RRUS 4415 B25
		3	Ericsson RRUS 4426 B66
		2	Raycap DC6-48-60-18-8C
		1	Raycap DC6-48-60-8C-EV
		1	Raycap DC6-48-60-18-8F

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Mount Analysis	Kimley-Horn	9055883	CCISites
Supplemental Loading	AT&T RFDS	04/20/2020	TSA
Mount Design Drawings	Site Pro 1	RMQLP-496-HK	On File

3.1) Analysis Method

RISA-3D (version 17.02.00), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A proprietary tool internally developed by Kimley-Horn was used to calculate wind loading on all appurtenances, dishes and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate	ASTM A36 (Gr. 36)
HSS (Rectangular)	ASTM A36 (Gr. 36)
Pipe	ASTM A53 (Gr. B-35)
Threaded Rods	ASTM A36 (Gr. 36)
Connection Bolts	ASTM A325
Threaded Rods Connection Bolts	ASTM AS3 (Gr. B-35) ASTM A36 (Gr. 36) ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Kimley-Horn should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

Component	% Capacity	Pass / Fail
Corner Plates	62%	Pass
Mount Pipes	32%	Pass
Stand Off Horizontals	20%	Pass
Connections	18%	Pass
Support Rails	18%	Pass
Platform Base	12%	Pass

Structure Rating (max from all com	ponents) =	62%

Notes:

1) See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.

4.1) Recommendations

According to our structural analysis, the mounting configuration has been found to **PASS PENDING REPLACEMENT**. The mounting configuration considered in this analysis will be capable of supporting the referenced loading pursuant to referenced standards once the following scope is executed:

 Replace existing mount with a new Site Pro 1 RMQLP-496-HK platform with support rails and kickers. Install panels vertically centered between the base and the support rail.

FIGHT Provide a figure of the	DESCRIPTION 14. 6" LOW PROFILE PLATFORM WITH TWELVE 2-3/8" ANTENNA MOUTING PIPES, AND HANDRAIL A valmont \forall commution A valmont do	ро No. 0 ражи в К. 2/15/2014 ENG. АРРКОVAL РАКТ NO. RMQLP-496-HK 0 4448 CEK 7/15/2014 СНЕСКЕРВУ 2014 2014 2014 2014 2014 2014 2014 2014	
	TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (# 0.0307) DIRILED AND GAS CUT EDGES (# 0.0307) DIRILED AND GAS CUT HOLES (# 0.0307) DIRILED AND GAS CUT HOLES (# 0.0307) DIRILED AND GAS CUT HOLES (# 0.0407)	A CHANGED X-253992 TO X-TBW 4488 CEK 9/20/2018 ALL OTHER ABCHINING <i>f 2.0.007</i> C C 1 A CHANGED X-253992 TO X-TBW 4488 CEK 9/20/2018 ALL OTHER ASSEMBLY <i>f 2.0.007</i> C C 1 TO X DESCRIPTION OF REVISIONS CPD BY DATE TREMAXANDER TRAVERSEMENTARY NAME ARE REMARKING WITH MORPHATING WITH MORPHATING WITHOUT THE COMBINET OF TREMARKING CONTRACT TO COMPACE THE DATA OF TRAVERSEMENTARY NAME ARE REMARKING WITH MORPHATING WITHOUT THE COMBINITION OF WILL THE DATA OF TRAVERSEMENTARY NAME ARE REMARKING WITH MORPHATING WITH THE COMBINET OF TRAVERSEMENTARY NAME ARE REMARKING WITH MORPHATING WITH WITH MORPHATING WITH MORPHATING WITH WITH MORPHATING WITH WITH MORPHATING WITH MORPHATING WITH MORPHATING WITH WITH MORPHATING WITH WITH WITH WITH WITH WITH WITH WITH	

<image/>

	3	РА 5 О	GE F	3
STTE Locations: New York, IN Support Team Locations: New York, IN A valmont ♥ county. IN A valmont ♥ county 1-888-753-7446 Salm, OR Salm, OR Datas, TK	PART NO.	RMQLP-496-HK	DWG. NO.	RMQLP-496-HK
	•		0	3/2014
PLATFORM ENNA MOUTIN DRAIL	ENG. APPROVAL		CHECKED BY	BMC 7/23
PIPES, AND HAOFILE	DRAWN BY	CEK 7/15/2014	DRAWING USAGE	CUSTOMER
DESCRIPTION 14 WITH T	D NO.	4488	ASS SUB 1	1 02
<u> </u>	0		ਹ ਸ	
			. 5	
TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NO TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NO TOLERANCES ON DIMENSIONS, UNLESS # 0.007 DIRULED AND GAS OUT HOLES # 0.007 - NO CONING LASIE OUT EDESE AND HOLES # 0.007 - NO CONING LASIE OUT EDESE AND HOLES # 0.007 - NO CONING REVIES ME # 4.0 PACEPEE	ALL OTHER MACHINING (± 0.030")	3 ALL OTHER ASSEMBLY (± 0.060")	PROPRIETARY NOTE: The data and techniques contained in this drawing are proprietary informat	INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT T VALMONT INDUSTRIES IS STRUCTLY PROHIBITED.
TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE N TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE N SAMED, SHARED AND GAS CUT POLES (# 0.807) - NO CONING DISTLED AND GAS CUT HOLES (# 0.807) - NO CONING LASTE CUT EDES AND HOLES (# 0.907) - NO CONING BENNE AND F + 01 PACERE	ALL OTHER MACHINING (# 0.030")	9/20/2018 ALL OTHER ASSEMBLY (# 0.060")	DATE PROPRIETARY NOTE: THE DATA AND TECHNICULES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMAT	NOUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOBURE WITHOUT T VALMONT INDUSTRIES IS STRUCTLY PROMIBITED.
TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE N TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE N SAME, SHEREN DAD GAS CUT HOLES (# 0.007) - NO CONING DAILLED AND GAS UT HOLES (# 0.007) - NO CONING LASER CUT EDES AND HOLES (# 0.007) - NO CONING BENNE # 4.00 PROLES	ALL OTHER MACHINING (2 0.030")	1 CEK 9/20/2018 ALL OTHER ASSEMBLY (± 0.0607)	BY DATE PROPRIETARY NOTE: THE DATA AND TECHNICULES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMAT	INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOBURE WITHOUT T VALMONT INDUSTRIES IS STRUCTLY PROHIBITED.
TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE A SAMED, SHEARED AND GAS CUT FIOLES (# 0.087) - NO CONING DRILLED AND GAS CUT FIOLES (# 0.087) - NO CONING LASER CUT FORSE AND HOLES (# 0.077) - NO CONING ENDER ENDE AND AND FOREE	ALL OTHER MACHINING (± 0.030")	4488 CEK 9/20/2018 ALL OTHER ASSEMBLY (± 0.060")	CPD BY DATE PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMAT	NOUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOBURE WITHOUT T VALMONT INDUSTRIES IS STRUCTLY PROHIBITED.
TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE N EVALUED AND GAS CUT FOLES (# 0.307) - NO CONING DISILLED AND GAS CUT HOLES (# 0.307) - NO CONING LASE CUT EDESE AND HOLES (# 0.407) - NO CONING BENNE AF + 40 DECERE	ALL OTHER MACHINING (± 0.0207)	CHANGED X-253992 TO X-TBW 4488 CEK 9/20/2018 ALL OTHER ASSEMBLY (<i>2 0.007</i>)	V DATE TREVISIONS CPD BY DATE TREVISIONS CPD BY DATE TREVISIONS	REVISION HISTORY MALLOOKTINAKON CANADARIA FANGUTINAKANA PANANTARIA SERVENZI-KANANA PANANTAN TA NALIKONTINAKANTANA PANANTANA

APPENDIX A

WIRE FRAME AND RENDERED MODELS

APPENDIX B

SOFTWARE INPUT CALCULATIONS

General Criteria	
TIA Standard	Н
IBC Edition	2018
Structure Class	-
Risk Category	Ш

Site-Specific Criteria	
Exposure Category	В
Topographic Factor, K _{zt}	1.00
Structure Base Elev. (AMSL), z _s (ft)	511.00
Ground Effect Factor, Ke	0.98

Mount & Structure Criteria								
Mount Elevation (A	116.00							
Structure Height (120.00							
Structure Type	Monopole							

Constants	
Wind Direction Probability Factor, \mathbf{K}_{d}	0.95
Gust Effect Factor, Gh	1
Shielding Factor, Ka (antenna)	0.9
Shielding Factor, K _a (mount)	0.9

Wind Summary	
Basic Wind Speed w/o Ice, V (mph)	120,00
Velocity Pressure Coeff., Kz	1.03
Velocity Pressure, qz (w/o Ice) (psf)	35.45

,,	
Ice Load Summary	
Basic Wind Speed w/ Ice, V _i (mph)	50.00
Design Ice Thick. (ASCE 7-16) , ti (in)	1

Design Ice Thick. (ASCE 7-16) $, t_i$ (in)	1
Velocity Pressure, qz (w/ Ice) (psf)	6.15
Escalated Ice Thick. @ Mount, $t_{iz}\left(\text{in}\right)$	1,13
Seismic Load Summary	
Spectral Response (Short Periods), \mathbf{S}_{s}	

Spectral Response (1-Sec. Period), S1	-
Site Class	-
Seismic Design Category	-
Seismic Risk Category	-

Snow Load Summary	
Ground Snow Load, pg (psf)	
Snow Load on Flat Roofs, \mathbf{p}_{f} (psf)	

Date	July 20, 2020
Client	Crown Castle
Site #	806364
Site Name	HRT 106(B) 943202
Project #	19558049

		Dimensions (in) Weight						Joint Labels								Wind Force, F _A (lb)				
Antenna Name	Qty	Shape		ensions	(11)	(Ib)	Joint Labers									No Ice W		With	ı Ice	
			н	w	D	(u)	Alp	oha	Be	eta	Gar	nma	De	lta	Front	Side	Front	Side	Front	Side
SBNHH-1D65A	3	Flat	55.6	11.9	7.1	33.5	A1B	A1T	B1B	B1T	G1B	G1T			3.1	1.84	98,82	58.68	20.83	13.36
SBNHH-1D65A	3	Flat	55.6	11.9	7.1	33.5	A2B	A2T	B2B	B2T	G2B	G2T			3.1	1.84	98,82	58.68	20.83	13.36
80010964	3	Flat	59	20	6.9	83.8	A3B	A3T	B3B	B3T	G3B	G3T			8.6	2,95	274,28	94,27	54.66	21,56
80010964	3	Flat	59	20	6.9	83.8	A4B	A4T	B4B	B4T	G4B	G4T			8,6	2,95	274,28	94,27	54.66	21,56
RRUS 32 B2	3	Flat	27.2	12.1	7	52.9	A4R		B4R		G4R				1.37	1.67	43.57	53,21	9,74	12,92
RRUS 4415 B25	3	Flat	15	13.2	5.4	44	A1R		B1R		G1R				0.82	0.68	26,23	21,66	6.15	6.09
RRUS 4426 B66	3	Flat	15	13.2	5.8	48.4	A3R		B3R		G3R				0.82	0.73	26,23	23,13	6,15	6.42
RRUS 4449 B5/B12	3	Flat	17.9	13.2	9.4	71	A4R		B4R		G4R				0.98	1.41	31,38	44.92	7.19	10,9
RRUS 4478 B14	3	Flat	18.1	13.4	8.3	59.4	A3R		B3R		G3R				1.01	1.25	32.24	39,75	7.36	9,9
RRUS-32 B30	3	Flat	29.9	13.3	9.5	77	A2R		B2R		G2R				1.66	2.42	52.86	77.32	11.56	17.62
DC6-48-60-18-8C	2	Round	31.4	10.2	10.2	26.2	ARC		BRC						1.14	1.14	36,53	36,53	9,9	9,9
DC6-48-60-8C-EV	1	Round	31.4	10.2	10.2	26.2	ARC								1.14	1.14	36,51	36,51	9,9	9,9
DC6-48-60-18-8F	1	Round	31.3	11	11	32.8					GRC				1.21	1.21	38.65	38.65	10.1	10.1

Kimley Worn

APPENDIX C

SOFTWARE ANALYSIS OUTPUT

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\	Density[lb/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	490	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	490	50	1.1	65	1.1
3	A992	29000	11154	.3	.65	490	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	490	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	490	50	1.4	65	1.3
8	Q235	29000	11154	.3	.65	490	35	1.5	58	1.2

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	Face Horiz	PIPE 3.0	Beam	None	A53 Gr.B	Typical	2.07	2.85	2.85	5.69
2	Stand-Off Horiz	HSS4X4X4	Beam	None	Q235	Typical	3.37	7.8	7.8	12.8
3	Offset Horiz	HSS4X4X4	Beam	None	Q235	Typical	3.37	7.8	7.8	12.8
4	Offset Side Plate	PL6x3/8	Beam	None	Q235	Typical	2.25	.026	6.75	.101
5	Grating Angle	L2x2x3	Beam	None	Q235	Typical	.722	.271	.271	.009
6	Mount Pipe	PIPE 2.0	Column	None	A53 Gr.B	Typical	1.02	.627	.627	1.25
7	Offset End Plate	PL6x0.5	Beam	None	Q235	Typical	4.5	.094	30.375	.362
8	HRK14 Pipe	PIPE 2.0	Beam	None	A53 Gr.B	Typical	1.02	.627	.627	1.25
9	HRK14 Plate	PL6x3/8	Beam	None	Q235	Typical	2.25	.026	6.75	.101
10	HRK14 Angle	L2.5x2.5x4	Beam	None	Q235	Typical	1.19	.692	.692	.026
11	PRK-1245 Angle	L2.5x2.5x3	Beam	None	A36 Gr.36	Typical	.901	.535	.535	.011

Joint Coordinates and Temperatures

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Di
1	N16	57.654187	-84.	-27	0	
2	N35	7.5155	-13.017228	0	0	
3	N36	40.7585	-83.970905	0	0	
4	N37	52.341687	-77.283349	0	0	
5	N39	-0.747815	-60.078992	0	0	
6	N42	52.404187	-32.39167	0	0	
7	N43	52.404187	-29.39167	0	0	
8	N48	47.779713	-79.283664	0	0	
9	N49	24.390513	-42.245608	0	0	
10	N50	47.779713	-28.741846	0	0	
11	N51	1.001659	-55.749169	0	0	
12	N52	46.275762	-80.151971	0	0	
13	N53	54.341687	-75.754049	0	0	
14	N60	44.771811	-81.020277	0	0	
15	N61	7.5155	13.017228	0	0	
16	N62	52.341687	77.283349	0	0	
17	N63	40.7585	83.970905	0	0	
18	N66	52.40384	29.39187	0	0	
19	N70	-0.748161	60.079192	0	0	
20	N75	44.771811	81.020277	0	0	
21	N76	24.390513	42.245608	0	0	
22	N77	1.001313	55.749369	0	0	
23	N78	47.779367	28.742046	0	0	
24	N79	46.275762	80.151971	0	0	
25	N87	47.779713	79.283664	0	0	
26	N88	-15.031	-0.	0	0	
27	N89	-93.100187	6.687556	0	0	
28	N90	-93.100187	-6.687556	0	0	

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Di
29	N93	-51.656026	30.687122	Ō	0	
30	N97	-51.656026	-30.687522	0	0	
31	N98	-48.781026	-30.437522	0	0	
32	N99	-48.781026	30.437122	0	0	
33	N100	-92.850187	-0.	0	0	
34	N102	-92.551524	-1 736613	0	0	
35	N102	-48 781026	-0	0	0	
36	N104	-48 781026	-27 007522	0	0	
37	N105	-48 781026	27.007022	0	0	
20	N106	02 551524	0	0	0	
20	N114	-92.001024	-0.	0	0	
39	IN 1 14	-92.551524	1.730013	0	0	
40		54.341087	-87.00002	0	0	
41	N116	54.341687	87.00002	0	0	
42	M4	54.341687	-84.	0	0	
43	N122	57.654187	-84.	0	0	
44	N123	48.173384	90.561292	0	0	
45	N124	-102.515071	3.561271	0	0	
46	N131	-102.515071	-3.561271	0	0	
47	N132	48.173384	-90.561292	0	0	
48	N140	54.341687	-30.89167	0	0	
49	N158	47,779713	-28,741846	2,561	0	
50	N159	1.001659	-55,749169	2.561	0	
51	N160	47 779713	-79 283664	2 561	0	
52	N161	44 771811	-81 020277	2 561	Ő	
53	N162	1 001313	55 7/0360	2 561	0	
54	N163	47 779367	28 742046	2.561	0	
55	N164	47.779307	<u>20.742040</u> 91.020277	2.501	0	
55		44.771011		2.501	0	
50	N103	47.779713	19.203004	2.301	0	
57	IN 100	-48.781026	-27.007522	2.501	0	
58	N167	-48.781026	27.00/122	2.561	0	
59	N168	-92.551524	-1.736613	2.561	0	
60	<u>N169</u>	-92.551524	1.736613	2.561	0	
61	N170	53.529187	-77.813521	41.289	0	
62	N171	53.529187	77.813521	41.289	0	
63	N172	40.623893	85.264396	41.289	0	
64	N173	-94.153079	7.450875	41.289	0	
65	N174	-94.153079	-7.450875	41.289	0	
66	N175	40.623893	-85.264396	41.289	0	
67	N179	57.654187	-84.	42	0	
68	N183	54.904187	-84.	42	0	
69	N184	54.904187	87.00002	42	0	
70	N185	54,904187	-87,00002	42	0	
71	N194	-102 796321	4.048411	42	0	
72	N195	47 892134	91 048431	42	<u> </u>	
73	N204	47 892134	-91 048431	42	0	
74	N205	-102 796321	_4 0/8/11	<u>⊿</u> 2	0	
75	N206	5/ 00/197	_75 282771	12	0	
76	N200	54 00/197	_78 821271	42	0	
70		52 520197	75 202771	42	0	
70		52 520197	79 001071	42	0	
70		52 500407	-/0.0212/1	42	0	
19		53.529187	-80.102521	42	0	
80	NZ11	53.529187	-74.102521	42	0	
81	N218	53.529187	-//.813521	42	0	
82	N219	54.904187	/5.383//1	42	0	
83	N220	54.904187	/8.821271	42	0	
84	N221	53.529187	75.383771	42	0	
85	N222	53.529187	78.821271	42	0	

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Di
86	N223	53.529187	80.102521	42	0	
87	N224	53.529187	74.102521	42	0	
88	N225	53.529187	77.813521	42	0	
89	N226	37.832167	85.240306	42	0	
90	N227	40.809129	86.959056	42	0	
91	N228	38.519667	84.049521	42	0	
92	N229	41,49663	85.768271	42	0	
93	N230	42 606225	86 408896	42	0	
94	N231	37 410072	83 408896	42	0	
95	N232	40.623893	85 264396	42	0	
96	N233	-92 736354	9.856535	42	0	
97	N234	_95 713317	8 137785	12	0	
98	N235	-92 0/885/	8 66575	12	0	
90	N236	-95.025816	6 9/17	42	0	
100	N227	-95.025010	6 206275	42	0	
100	<u> </u>	-90.133412	0.300375	42	0	
101	<u> </u>	-90.939259	9.300375	42	0	
102	<u>N239</u>	-94.153079	1.450875	42	0	
103	<u>N240</u>	-92.736354	-9.856535	42	0	
104	<u>N241</u>	-95.713317	-8.137785	42	0	
105	<u>N242</u>	-92.048854	-8.66575	42	0	
106	<u>N243</u>	-95.025816	-6.947	42	0	
107	<u>N244</u>	-96.135412	-6.306375	42	0	
108	N245	-90.939259	-9.306375	42	0	
109	N246	-94.153079	-7.450875	42	0	
110	N247	37.832167	-85.240306	42	0	
111	N248	40.809129	-86.959056	42	0	
112	N249	38.519667	-84.049521	42	0	
113	N250	41.49663	-85.768271	42	0	
114	N251	42.606225	-86.408896	42	0	
115	N252	37.410072	-83.408896	42	0	
116	N253	40.623893	-85.264396	42	0	
117	N263	57.654187	-84.	69	0	
118	N272	52.341687	-77.283349	3	0	
119	N274	52.341687	-77.283349	-3	0	
120	N276	54.341687	-75.754049	2	0	
121	N277	52.341687	-75.754049	2	0	
122	N278	54.341687	-75.754049	-2	0	
123	N279	52.341687	-75.754049	-2	0	
124	N275A	52.341687	-77.283349	-2	0	
125	N276A	52 341687	-77 283349	-1	0	
126	N277A	52 341687	-77 283349	1	0	
127	N278A	52 341687	77 283349	2	0	
128	N319	52 341687	77 283349	3	0	
120	N321	52 341687	77 283349	_3	0	
120	N327	52 341687	77 283349	_2	0	
121	N328	52.341697	77 283340	-2	0	
122	N220	52.341007	77 202240	-1	0	
102	<u> </u>	52.341007	77 202240	2	0	
133		52.341007	20 90167	2	0	
134	N305A	52.404167	-30.09107	2	0	
130		59.404407	-30.69107	2	0	
130		52.404187	-30.89167	-2	0	
137	N368A	54.341687	-30.89167	-2	0	
138	N368B	52.404187	-32.39167	3	0	
139	N369	52.404187	-29.39167	3	0	
140	N370	52.404187	-32.39167	-3	0	
141	<u>N371</u>	52.404187	-29.39167	-3	0	
142	N372	52.404187	-32.39167	-2	0	

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Di
143	N373	52.404187	-32.39167	-1	0	
144	N374	52.404187	-32.39167	1	0	
145	N375	52.404187	-32.39167	2	0	
146	N376	52.404187	-31.64167	-3	0	
147	N377	52.404187	-31.64167	-2	0	
148	N378	52.404187	-31.64167	-1	0	
149	N379	52.404187	-31.64167	0	0	
150	N380	52.404187	-31.64167	1	0	
151	N381	52.404187	-31.64167	2	0	
152	N382	52.404187	-31.64167	3	0	
153	N383	52.404187	-30.89167	-3	0	
154	N384	52.404187	-30.89167	-1	0	
155	N385	52.404187	-30.89167	0	0	
156	N386	52.404187	-30.89167	1	0	
157	N387	52,404187	-30.89167	3	0	
158	N388	52.404187	-30.14167	-3	0	
159	N389	52.404187	-30.14167	-2	0	
160	N390	52.404187	-30.14167	-1	0	
161	N391	52.404187	-30.14167	0	0	
162	N392	52.404187	-30.14167	1	0	
163	N393	52.404187	-30.14167	2	0	
164	N394	52,404187	-30,14167	3	0	
165	N395	52.404187	-29.39167	-2	0	
166	N396	52.404187	-29.39167	-1	0	
167	N397	52,404187	-29.39167	1	0	
168	N398	52 404187	-29 39167	2	0	
169	N399	52 404187	32 39167	0	0	
170	N401	54 341687	30 89167	0	0	
171	N402	52 404187	30 89167	2	0	
172	N403	54 341687	30 89167	2	0	
173	N404	52 404187	30 89167	-2	0	
174	N405	54 341687	30 89167	-2	0	
175	N406	52 404187	32 39167	3	0	
176	N407	52 404187	29 39167	3	0	
177	N408	52 404187	32 39167	-3	0	
178	N409	52 404187	29 39167	-3	0	
179	N410	52 404187	32 39167	-2	0	
180	N411	52 404187	32 39167	-1	0	
181	N412	52 404187	32 39167	1	0	
182	N413	52 404187	32 39167	2	0	
183	N414	52.404187	31.64167	-3	0	
184	N415	52,404187	31.64167	-2	0	
185	N416	52 404187	31 64167	-1	0	
186	N417	52 404187	31 64167	0	0	
187	N418	52 404187	31 64167	1	0	
188	N419	52 404187	31 64167	2	0	
189	N420	52 404187	31 64167	3	0	
190	N421	52 404187	30 89167	-3	0	
191	N422	52 404187	30 89167	-1	0	
192	N423	52,404187	30,89167	0	0 0	
193	N424	52,404187	30,89167	1	0	
194	N425	52,404187	30,89167	3	0	
195	N426	52 404187	30 14167	-3	0	
196	N427	52 404187	30 14167	-2	0	
197	N428	52 404187	30 14167	-1	0	
198	N429	52,404187	30,14167	0	0	
199	N430	52,404187	30,14167	1	0	
					- -	1

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Di
200	N431	52.404187	30.14167	2	0	
201	N432	52.404187	30.14167	3	0	
202	N433	52,404187	29.39167	-2	0	
203	N434	52.404187	29.39167	-1	0	
204	N435	52 404187	29 39167	1	0	
205	N436	52 404187	29.39167	2	Ő	
206	N413A	1 849915	61 579192	0	0	
207	N418A	-0.417873	62 507116	0	0	
207	N/19A	40 7585	83 970905	3	0	
200	N421A	40.7585	82.070005	2	0	
209	N427A	40.7585	03.970905	-5	0	
210	N427A	40.7565	03.970905	-2	0	
211	N428A	40.7585	83.970905	-1	0	
212	N429A	40.7585	83.970905	1	0	
213	N430A	40.7585	83.970905	2	0	
214	N470	-93.100187	6.687556	3	0	
215	N472	-93.100187	6.687556	-3	0	
216	N478	-93.100187	6.687556	-2	0	
217	N479	-93.100187	6.687556	-1	0	
218	N480	-93.100187	6.687556	1	0	
219	N481	-93.100187	6.687556	2	0	
220	N520	0.550877	60.829192	2	0	
221	N521	-0.417873	62.507116	2	0	
222	N522	0.550877	60.829192	-2	0	
223	N523	-0.417873	62 507116	-2	Ő	
224	N524	1 849915	61 579192	3	0	
225	N525	-0 7/8161	60 070102	3	0	
225	N526	1 8/0015	61 570102	_3	0	
220	N520	0 7/9161	60.070102	-5	0	
221	NE29	-0.740101	61 570102	-3	0	
220	N526	1.649915	61.579192	-2	0	
229	N529	1.849915	01.579192	-1	0	
230	N530	1.849915	61.579192	1	0	
231	N531	1.849915	61.579192	2	0	
232	N532	1.200396	61.204192	-3	0	
233	N533	1.200396	61.204192	-2	0	
234	N534	1.200396	61.204192	-1	0	
235	N535	1.200396	61.204192	0	0	
236	N536	1.200396	61.204192	1	0	
237	N537	1.200396	61.204192	2	0	
238	N538	1.200396	61.204192	3	0	
239	N539	0.550877	60.829192	-3	0	
240	N540	0.550877	60.829192	-1	0	
241	N541	0.550877	60.829192	0	0	
242	N542	0.550877	60.829192	1	0	
243	N543	0.550877	60.829192	3	0	
244	N544	-0.098642	60.454192	-3	0	
245	N545	-0.098642	60 454192	-2	0	
246	N546	-0.098642	60 454192	-1	0	
247	N547	-0.098642	60 454192	0	0	
248	N548	-0.030042	60 454192	1	0	
240	Ν540	_0.02642	60 454192	2	0	
243	N550	0.009642	60 454192	2	0	
250			60.070402	3	0	
201			60.079192	-2	0	
252		-0.748161	60.079192	=1	0	
253	N553	-0.748161	60.079192	1	0	
254	<u>N554</u>	-0.748161	60.079192	2	0	
255	N555	-54.254102	29.187522	0	0	
256	N556	-53.923814	31.615447	0	0	

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Di
257	N557	-52.955064	29.937522	2	0	
258	N558	-53.923814	31.615447	2	0	
259	N559	-52.955064	29.937522	-2	0	
260	N560	-53.923814	31.615447	-2	0	
261	N561	-54,254102	29,187522	3	0	
262	N562	-51 656026	30.687522	3	0	
263	N563	-54 254102	29 187522	_3	0	
264	N564	51 656026	20.687522	-5	0	
204	NEGE	<u> </u>	20 197522	-5	0	
205	N503	-54.254102	29.107522	-2	0	
200		-54.254102	29.10/522	-	0	
267	N567	-54.254102	29.187522	1	0	
268	<u>N568</u>	-54.254102	29.187522	2	0	
269	<u>N569</u>	-53.604583	29.562522	-3	0	
270	N570	-53.604583	29.562522	-2	0	
271	N571	-53.604583	29.562522	-1	0	
272	N572	-53.604583	29.562522	0	0	
273	N573	-53.604583	29.562522	1	0	
274	N574	-53.604583	29.562522	2	0	
275	N575	-53 604583	29 562522	3	0	
276	N576	-52 955064	29 937522	-3	0	
277	N577	-52 955064	20.007022	1	0	
278	N578	52,955064	20.037522	0	0	
270	N570	<u>-52.955004</u> 52.055064	29.937322	1	0	
2/9	<u>N579</u>	-52.955064	29.937522		0	
280	<u>N580</u>	-52.955064	29.937522	3	0	
281	<u>N581</u>	-52.305545	30.312522	-3	0	
282	<u>N582</u>	-52.305545	30.312522	-2	0	
283	N583	-52.305545	30.312522	-1	0	
284	N584	-52.305545	30.312522	0	0	
285	N585	-52.305545	30.312522	1	0	
286	N586	-52.305545	30.312522	2	0	
287	N587	-52.305545	30.312522	3	0	
288	N588	-51.656026	30.687522	-2	0	
289	N589	-51.656026	30.687522	-1	0	
290	N590	-51 656026	30 687522	1	0	
291	N591	-51 656026	30 687522	2	0	
292	N593	-54 254102	-29 187522	0	0	
202	N508	53 023814	31 615//7	0	0	
293	N500	02 100197	6 697556	2	0	
294	<u> </u>	-93.100187	-0.007550	<u> </u>	0	
295		-93.100187	-0.087550	-3	0	
296	N607	-93.100187	-0.087550	-2	0	
297	<u>N608</u>	-93.100187	-6.687556	-1	0	
298	<u>N609</u>	-93.100187	-6.687556	1	0	
299	<u>N610</u>	-93.100187	-6.687556	2	0	
300	N650	40.7585	-83.970905	3	0	
301	N652	40.7585	-83.970905	-3	0	
302	N658	40.7585	-83.970905	-2	0	
303	N659	40.7585	-83.970905	-1	0	
304	N660	40.7585	-83.970905	1	0	
305	N661	40.7585	-83.970905	2	0	
306	N700	-52,955064	-29,937522	2	Ō	
307	N701	-53 923814	-31 615447	2	0	
308	N702	-52 955064	_29 937522	_2	0	
300	N702	_53 02381/	_31 615//7	2	0	
310	N703	54 254102	20 107522	-2	0	
214		<u>-04.204102</u> 51.656006	20 607500	2	0	
311			-30.00/322	3	0	
312		-54.254102	-29.18/522	-3	0	
313	N/0/	-51.656026	-30.68/522	-3	0	

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Di
314	N708	-54.254102	-29.187522	-2	0	
315	N709	-54.254102	-29.187522	-1	0	
316	N710	-54.254102	-29.187522	1	0	
317	N711	-54.254102	-29.187522	2	0	
318	N712	-53.604583	-29.562522	-3	0	
319	N713	-53 604583	-29 562522	-2	0	
320	N714	-53 604583	-29 562522	-1	Ő	
321	N715	-53 604583	-29 562522	0	0	
322	N716	-53.604583	-20 562522	1	0	
222	N717	52 604593	20 562522	2	0	
223	N717	-53.004585	-29.502522	2	0	
324	<u>IN7 10</u>	-53.604565	-29.302322	<u> </u>	0	
325	<u>N7 19</u>	-52.955064	-29.937522	-3	0	
320	N720	-52.955064	-29.937522	-1	0	
327	N/21	-52.955064	-29.937522	0	0	
328	N/22	-52.955064	-29.937522	1	0	
329	N723	-52.955064	-29.937522	3	0	
330	N724	-52.305545	-30.312522	-3	0	
331	<u>N725</u>	-52.305545	-30.312522	-2	0	
332	N726	-52.305545	-30.312522	-1	0	
333	N727	-52.305545	-30.312522	0	0	
334	N728	-52.305545	-30.312522	1	0	
335	N729	-52,305545	-30.312522	2	0	
336	N730	-52.305545	-30.312522	3	0	
337	N731	-51.656026	-30.687522	-2	0	
338	N732	-51 656026	-30 687522	-1	Ő	
339	N733	-51 656026	-30 687522	1	0	
340	N734	-51 656026	-30 687522	2	0	
3/1	N735	1 8/0015	61 570102	0	0	
242	N735	0 417972	62 507116	0	0	
242	N730	-0.417873	60,920102	0	0	
343	<u> </u>	0.550677	-00.029192	2	0	
344	<u>N730</u>	-0.41/0/3	-02.307110	2	0	
345	<u>N739</u>	0.550877	-60.829192	-2	0	
346	N740	-0.417873	-62.50/116	-2	0	
347	<u>N/41</u>	1.849915	-61.579192	3	0	
348	N/42	-0.748161	-60.079192	3	0	
349	N743	1.849915	-61.579192	-3	0	
350	N744	-0.748161	-60.079192	-3	0	
351	<u>N745</u>	1.849915	-61.579192	-2	0	
352	N746	1.849915	-61.579192	-1	0	
353	N747	1.849915	-61.579192	1	0	
354	N748	1.849915	-61.579192	2	0	
355	N749	1.200396	-61.204192	-3	0	
356	N750	1.200396	-61.204192	-2	0	
357	N751	1.200396	-61.204192	-1	0	
358	N752	1.200396	-61.204192	0	0	
359	N753	1,200396	-61.204192	1	0	
360	N754	1 200396	-61 204192	2	0	
361	N755	1 200396	-61 204192	3	<u> </u>	
362	N756	0.550877	-60 829192	-3	Ő	
363	N757	0.550877	-60 829192	_1	0	
364	N758	0.550877	_60.820102	0	0	
365	N750	0.550877	-60.820102	1	0	
366	N760	0.550077	60,820102	2	0	
267		0.000640	-00.029192 60.454400	3	0	
307		-0.098642		-3	0	
368		-0.098642	-00.454192	-2	0	
369	N/63	-0.098642	-60.454192	-1	0	
370	N/64	-0.098642	-60.454192	0	0	

						Botaon Point
371	N765	-0.098642	-60.454192	1	0	
372	N766	-0.098642	-60.454192	2	0	
373	N767	-0.098642	-60.454192	3	0	
374	N768	-0.748161	-60.079192	-2	0	
375	N769	-0.748161	-60.079192	-1	0	
376	N770	-0.748161	-60.079192	1	0	
377	N771	-0.748161	-60.079192	2	0	
378	N762A	-93.100187	-5.851611	3	0	
379	N763A	-93.100187	-5.015667	3	0	
380	N764A	-93.100187	-4.179722	3	0	
381	N765A	-93.100187	-3.343778	3	0	
382	N766A	-93.100187	-2.507833	3	0	
383	N767A	-93.100187	-1.671889	3	0	
384	N768A	-93.100187	-0.835944	3	0	
385	N769A	-93.100187	0.	3	0	
386	N770A	-93.100187	0.835944	3	0	
387	N771A	-93.100187	1.671889	3	0	
388	N772	-93.100187	2.507833	3	0	
389	N773	-93.100187	3.343778	3	0	
390	N774	-93.100187	4.179722	3	0	
391	N775	-93.100187	5.015667	3	0	
392	N776	-93.100187	5.851611	3	0	
393	N777	-93.100187	-5.851611	2	0	
394	N778	-93.100187	-5.015667	2	0	
395	N779	-93.100187	-4.179722	2	0	
396	N780	-93.100187	-3.343778	2	0	
397	N781	-93.100187	-2.507833	2	0	
398	N782	-93.100187	-1.671889	2	0	
399	N783	-93.100187	-0.835944	2	0	
400	N784	-93.100187	-0.	2	0	
401	N785	-93.100187	0.835944	2	0	
402	N786	-93.100187	1.671889	2	0	
403	N787	-93.100187	2.507833	2	0	
404	N788	-93.100187	3.343778	2	0	
405	N789	-93.100187	4.179722	2	0	
406	N790	-93.100187	5.015667	2	0	
407	N791	-93.100187	5.851611	2	0	
408	N792	-93.100187	-5.851611	1	0	
409	N793	-93.100187	-5.015667	1	0	
410	N794	-93.100187	-4.179722	1	0	
411	N795	-93.100187	-3.343778	1	0	
412	N796	-93.100187	-2.507833	1	0	
413	N797	-93.100187	-1.671889	1	0	
414	N798	-93.100187	-0.835944	1	0	
415	N799	-93.100187	-0.	1	0	
416	N800	-93.100187	0.835944	1	0	
417	N801	-93.100187	1.671889	1	0	
418	N802	-93.100187	2.507833	1	0	
419	N803	-93.100187	3.343778	1	0	
420	N804	-93.100187	4.179722	1	0	
421	N805	-93.100187	5.015667	1	0	
422	N806	-93.100187	5.851611	1	0	
423	N807	-93.100187	-5.851611	0	0	
424	N808	-93.100187	-5.015667	0	0	
425	N809	-93.100187	-4.179722	0	0	
426	N810	-93.100187	-3.343778	0	0	
427	N811	-93.100187	-2.507833	0	0	

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Di
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	428	N812	-93.100187	-1.671889	0	0	
	429	N813	-93.100187	-0.835944	0	0	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	430	N814	-93.100187	-0.	0	0	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	431	N815	-93.100187	0.835944	0	0	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	432	N816	-93.100187	1.671889	0	0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	433	N817	-93.100187	2.507833	0	0	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	434	N818	-93.100187	3.343778	0	0	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	435	N819	-93.100187	4.179722	0	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	436	N820	-93.100187	5.015667	0	0	
438 N822 -93.100187 -5.851611 -1 0 440 N824 -93.100187 -5.055667 -1 0 441 N825 -93.100187 -2.30783 -1 0 441 N825 -93.100187 -2.507833 -1 0 443 N827 -93.100187 -0.83944 -1 0 444 N828 -93.100187 -0.83944 -1 0 444 N822 -93.100187 0.83944 -1 0 444 N831 -93.100187 1.671889 -1 0 444 N832 -93.100187 2.507833 -1 0 444 N833 -93.100187 5.015667 -1 0 449 N833 -93.100187 5.015667 -1 0 451 N835 -93.100187 5.015667 -2 0 452 N836 -93.100187 -5.015667 -2 0 -455 453 N837 -93.100187 -5.015667 -2 0 -455 <td>437</td> <td>N821</td> <td>-93.100187</td> <td>5.851611</td> <td>0</td> <td>0</td> <td></td>	437	N821	-93.100187	5.851611	0	0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	438	N822	-93.100187	-5.851611	-1	0	
	439	N823	-93.100187	-5.015667	-1	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	440	N824	-93.100187	-4.179722	-1	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	441	N825	-93.100187	-3.343778	-1	0	
	442	N826	-93.100187	-2.507833	-1	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	443	N827	-93.100187	-1.671889	-1	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	444	N828	-93.100187	-0.835944	-1	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	445	N829	-93.100187	-0.	-1	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	446	N830	-93.100187	0.835944	-1	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	447	N831	-93.100187	1.671889	-1	0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	448	N832	-93.100187	2.507833	-1	0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	449	N833	-93.100187	3.343778	-1	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	450	N834	-93.100187	4.179722	-1	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	451	N835	-93.100187	5.015667	-1	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	452	N836	-93.100187	5.851611	-1	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	453	N837	-93.100187	-5.851611	-2	0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	454	N838	-93.100187	-5.015667	-2	0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	455	N839	-93.100187	-4.179722	-2	0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	456	N840	-93.100187	-3.343778	-2	0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	457	N841	-93.100187	-2.507833	-2	0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	458	N842	-93.100187	-1.671889	-2	0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	459	N843	-93.100187	-0.835944	-2	0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	460	N844	-93.100187	-0.	-2	0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	461	N845	-93.100187	0.835944	-2	0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	462	N846	-93.100187	1.671889	-2	0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	463	N847	-93.100187	2.507833	-2	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	464	N848	-93.100187	3.343778	-2	0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	465	N849	-93.100187	4.179722	-2	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	466	N850	-93.100187	5.015667	-2	0	
468N852 -93.100187 -5.851611 -3 0 469 N853 -93.100187 -5.015667 -3 0 470 N854 -93.100187 -4.179722 -3 0 471 N855 -93.100187 -3.343778 -3 0 472 N856 -93.100187 -2.507833 -3 0 473 N857 -93.100187 -1.671889 -3 0 474 N858 -93.100187 -0.835944 -3 0 475 N859 -93.100187 $-0.$ -3 0 476 N860 -93.100187 0.835944 -3 0 477 N861 -93.100187 1.671889 -3 0 478 N862 -93.100187 2.507833 -3 0 478 N862 -93.100187 3.343778 -3 0 480 N864 -93.100187 3.343778 -3 0 481 N865 -93.100187 5.015667 -3 0 482 N866 -93.100187 5.851611 -3 0 483 N864A 46.425094 -80.410621 0 0 484 N882 51.617738 -77.701321 3 0	467	N851	-93.100187	5.851611	-2	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	468	N852	-93.100187	-5.851611	-3	0	
470 N854 -93.100187 -4.179722 -3 0 471 N855 -93.100187 -3.343778 -3 0 472 N856 -93.100187 -2.507833 -3 0 473 N857 -93.100187 -1.671889 -3 0 474 N858 -93.100187 -0.835944 -3 0 475 N859 -93.100187 -0. -3 0 476 N860 -93.100187 0.835944 -3 0 477 N861 -93.100187 1.671889 -3 0 478 N862 -93.100187 1.671889 -3 0 479 N863 -93.100187 2.507833 -3 0 479 N863 -93.100187 3.343778 -3 0 480 N864 -93.100187 4.179722 -3 0 481 N865 -93.100187 5.015667 -3 0 482 N866 -93.100187 5.851611 -3 0 483	469	N853	-93.100187	-5.015667	-3	0	
471 N855 -93.100187 -3.343778 -3 0 472 N856 -93.100187 -2.507833 -3 0 473 N857 -93.100187 -1.671889 -3 0 474 N858 -93.100187 -0.835944 -3 0 475 N859 -93.100187 -0. -3 0 476 N860 -93.100187 0.835944 -3 0 477 N861 -93.100187 0.835944 -3 0 478 N862 -93.100187 1.671889 -3 0 478 N862 -93.100187 2.507833 -3 0 479 N863 -93.100187 3.343778 -3 0 480 N864 -93.100187 4.179722 -3 0 481 N865 -93.100187 5.015667 -3 0 482 N866 -93.100187 5.851611 -3 0 483 N864A 46.425094 -80.410621 0 0 484	470	N854	-93.100187	-4.179722	-3	0	
472 N856 -93.100187 -2.507833 -3 0 473 N857 -93.100187 -1.671889 -3 0 474 N858 -93.100187 -0.835944 -3 0 475 N859 -93.100187 -0. -3 0 476 N860 -93.100187 0.835944 -3 0 477 N861 -93.100187 1.671889 -3 0 478 N862 -93.100187 2.507833 -3 0 479 N863 -93.100187 2.507833 -3 0 480 N864 -93.100187 3.343778 -3 0 481 N865 -93.100187 4.179722 -3 0 482 N866 -93.100187 5.015667 -3 0 483 N864A 46.425094 -80.410621 0 0 484 N882 51.617738 -77.701321 3 0	471	N855	-93.100187	-3.343778	-3	0	
473N857-93.100187-1.671889-30474N858-93.100187-0.835944-30475N859-93.100187-030476N860-93.1001870.835944-30477N861-93.1001871.671889-30478N862-93.1001872.507833-30479N863-93.1001873.343778-30480N864-93.1001875.015667-30481N865-93.1001875.851611-30483N864A46.425094-80.41062100484N88251.617738-77.70132130	472	N856	-93.100187	-2.507833	-3	0	
474N858-93.100187-0.835944-30475N859-93.100187-030476N860-93.1001870.835944-30477N861-93.1001871.671889-30478N862-93.1001872.507833-30479N863-93.1001873.343778-30480N864-93.1001875.015667-30481N865-93.1001875.851611-30482N866-93.1001875.851611-30483N864A46.425094-80.41062100484N88251.617738-77.70132130	473	N857	-93.100187	-1.671889	-3	0	
475 N859 -93.100187 -0. -3 0 476 N860 -93.100187 0.835944 -3 0 477 N861 -93.100187 1.671889 -3 0 478 N862 -93.100187 2.507833 -3 0 479 N863 -93.100187 3.343778 -3 0 480 N864 -93.100187 4.179722 -3 0 481 N865 -93.100187 5.015667 -3 0 482 N866 -93.100187 5.851611 -3 0 483 N864A 46.425094 -80.410621 0 0 484 N882 51.617738 -77.701321 3 0	474	N858	-93.100187	-0.835944	-3	0	
476 N860 -93.100187 0.835944 -3 0 477 N861 -93.100187 1.671889 -3 0 478 N862 -93.100187 2.507833 -3 0 479 N863 -93.100187 3.343778 -3 0 480 N864 -93.100187 4.179722 -3 0 481 N865 -93.100187 5.015667 -3 0 482 N866 -93.100187 5.851611 -3 0 483 N864A 46.425094 -80.410621 0 0 484 N882 51.617738 -77.701321 3 0	475	N859	-93.100187	-0.	-3	0	
477N861-93.1001871.671889-30478N862-93.1001872.507833-30479N863-93.1001873.343778-30480N864-93.1001874.179722-30481N865-93.1001875.015667-30482N866-93.1001875.851611-30483N864A46.425094-80.41062100484N88251.617738-77.70132130	476	N860	-93.100187	0.835944	-3	0	
478 N862 -93.100187 2.507833 -3 0 479 N863 -93.100187 3.343778 -3 0 480 N864 -93.100187 4.179722 -3 0 481 N865 -93.100187 5.015667 -3 0 482 N866 -93.100187 5.851611 -3 0 483 N864A 46.425094 -80.410621 0 0 484 N882 51.617738 -77.701321 3 0	477	N861	-93.100187	1.671889	-3	0	
479N863-93.1001873.343778-30480N864-93.1001874.179722-30481N865-93.1001875.015667-30482N866-93.1001875.851611-30483N864A46.425094-80.41062100484N88251.617738-77.70132130	478	N862	-93.100187	2.507833	-3	0	
480 N864 -93.100187 4.179722 -3 0 481 N865 -93.100187 5.015667 -3 0 482 N866 -93.100187 5.851611 -3 0 483 N864A 46.425094 -80.410621 0 0 484 N882 51.617738 -77.701321 3 0	479	N863	-93.100187	3.343778	-3	0	
481 N865 -93.100187 5.015667 -3 0 482 N866 -93.100187 5.851611 -3 0 483 N864A 46.425094 -80.410621 0 0 484 N882 51.617738 -77.701321 3 0	480	N864	-93.100187	4.179722	-3	0	
482 N866 -93.100187 5.851611 -3 0 483 N864A 46.425094 -80.410621 0 0 484 N882 51.617738 -77.701321 3 0	481	N865	-93.100187	5.015667	-3	0	
483 N864A 46.425094 -80.410621 0 0 484 N882 51.617738 -77.701321 3 0	482	N866	-93.100187	5.851611	-3	0	
484 N882 51.617738 -77.701321 3 0	483	N864A	46.425094	-80.410621	0	0	
	484	N882	51.617738	-77.701321	3	0	

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Di
485	N883	50.893789	-78.119294	3	0	
486	N884	50.169839	-78.537266	3	0	
487	N885	49.44589	-78.955238	3	0	
488	N886	48.721941	-79.37321	3	0	
489	N887	47.997992	-79.791183	3	0	
490	N888	47.274043	-80.209155	3	0	
491	N889	46.550094	-80.627127	3	0	
492	N890	45.826144	-81.045099	3	0	
493	N891	45.102195	-81.463072	3	0	
494	N892	44.378246	-81.881044	3	0	
495	N893	43.654297	-82.299016	3	0	
496	N894	42.930348	-82,716988	3	0	
497	N895	42.206399	-83,134961	3	0	
498	N896	41,482449	-83,552933	3	0	
499	N897	51 617738	-77 701321	2	0	
500	N898	50 893789	-78 119294	2	0	
501	N899	50 169839	-78 537266	2	0	
502	N900	49 44589	-78 955238	2	0	
503	N901	48 721941	-79 37321	2	0	
504	N902	47 997992	_79 791183	2	0	
505	N902	47.337332	_80 200155	2	0	
505	N903	46 550094	80.627127	2	0	
507	<u> </u>	40.00094	91.045000	2	0	
507	N006	45.020144	91 462072	2	0	
500	<u> </u>	45.102195	-01.403072	2	0	
509	<u> </u>	44.370240	-01.001044	2	0	
510	<u>N908</u>	43.034297	-82.299010	2	0	
511	N909	42.930348	-82.716988	2	0	
512	N910	42.206399	-83.134961	2	0	
513	<u>N911</u>	41.482449	-83.552933	2	0	
514	<u>N912</u>	51.61//38	-//./01321	1	0	
515	<u>N913</u>	50.893789	-78.119294	1	0	
516	<u>N914</u>	50.169839	-78.537266	1	0	
517	<u>N915</u>	49.44589	-78.955238	1	0	
518	<u>N916</u>	48./21941	-/9.3/321	1	0	
519	<u>N917</u>	47.997992	-79.791183	1	0	
520	N918	47.274043	-80.209155	1	0	
521	N919	46.550094	-80.627127	1	0	
522	N920	45.826144	-81.045099	1	0	
523	N921	45.102195	-81.463072	1	0	
524	N922	44.378246	-81.881044	1	0	
525	N923	43.654297	-82.299016	1	0	
526	N924	42.930348	-82.716988	1	0	
527	N925	42.206399	-83.134961	1	0	
528	N926	41.482449	-83.552933	1	0	
529	N927	51.617738	-77.701321	0	0	
530	N928	50.893789	-78.119294	0	0	
531	N929	50.169839	-78.537266	0	0	
532	N930	49.44589	-78.955238	0	0	
533	N931	48.721941	-79.37321	0	0	
534	N932	47.997992	-79.791183	0	0	
535	N933	47.274043	-80.209155	0	0	
536	N934	46.550094	-80.627127	0	0	
537	N935	45.826144	-81.045099	0	0	
538	N936	45.102195	-81.463072	0	0	
539	N937	44.378246	-81.881044	0	0	
540	N938	43.654297	-82,299016	0	0	
541	N939	42,930348	-82,716988	0	0	
				-		

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Di
542	N940	42.206399	-83.134961	0	0	
543	N941	41.482449	-83.552933	0	0	
544	N942	51.617738	-77.701321	-1	0	
545	N943	50.893789	-78.119294	-1	0	
546	N944	50.169839	-78.537266	-1	0	
547	N945	49.44589	-78.955238	-1	0	
548	N946	48.721941	-79.37321	-1	0	
549	N947	47.997992	-79.791183	-1	0	
550	N948	47.274043	-80.209155	-1	0	
551	N949	46.550094	-80.627127	-1	0	
552	N950	45.826144	-81.045099	-1	0	
553	N951	45.102195	-81.463072	-1	0	
554	N952	44.378246	-81.881044	-1	0	
555	N953	43.654297	-82,299016	-1	0	
556	N954	42,930348	-82,716988	-1	0	
557	N955	42.206399	-83.134961	-1	0	
558	N956	41,482449	-83.552933	-1	0	
559	N957	51.617738	-77.701321	-2	0	
560	N958	50.893789	-78.119294	-2	0	
561	N959	50,169839	-78.537266	-2	0	
562	N960	49 44589	-78 955238	-2	0	
563	N961	48 721941	-79 37321	-2	0	
564	N962	47 997992	-79 791183	-2	0	
565	N963	47 274043	-80 209155	-2	0	
566	N964	46 550094	-80 627127	-2	0	
567	N965	45.826144	-81 045099	-2	0	
568	N966	45 102195	-81 463072	-2	0	
569	N967	44 378246	-81 881044	-2	0	
570	N968	43 654297	-82 299016	-2	0	
571	N969	42 930348	-82 716988	-2	0	
572	N970	42 206399	-83 134961	-2	0	
573	N971	41 482449	-83 552933	-2	0	
574	N972	51 617738	-77 701321	-3	0	
575	N973	50 893789	-78 119294	-3	0	
576	N974	50 169839	-78 537266	_3	0	
577	N975	49 44 58 9	-78 955238	-3	0	
578	N976	48 721941	-79 37321	-3	0	
579	N977	47 997992	-79 791183	_3	0	
580	N978	47 274043	-80 209155	_3	0	
581	N979	46 550094	-80 627127	_3	0	
582	N980	45.826144	-81 045099	_3	0	
583	N981	45 102195	-81 463072	_3	0	
584	N982	44 378246	-81 881044	_3	0	
585	N983	43 654297	-82 200016	-3	0	
586	N984	42 9303/8	-82 716088	_3	0	
587	N985	42 206399	_83 13/061	_3	0	
588	N986	41 482440	_83 552033	_3	0	
580	NIGOO	46 425004	80 410621	0	0	
500	N1008	<u>40.420034</u> <u>A1 A82440</u>	83 552022	2	0	
501	N1000	42 206200	83 13/061	2	0	
502	N1009	42.200333	82 716088	2	0	
502	N1010	42.550540	82 200016	2	0	
504	N1017	<u>43.034287</u>	81 881044	2	0	
505	N1012	44.570240	81 /62072	2	0	
506	N1013	<u>45.102195</u> <u>45.206144</u>	81.045000	2	0	
507	N1014	40.020144	80 627127	2	0	
500	N1015	40.000094	80.200155	2	0	
290	01010	47.274043	00.209155	১	U	

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Di
599	N1017	47.997992	79.791183	3	0	
600	N1018	48.721941	79.37321	3	0	
601	N1019	49.44589	78.955238	3	0	
602	N1020	50.169839	78.537266	3	0	
603	N1021	50.893789	78.119294	3	0	
604	N1022	51.617738	77.701321	3	0	
605	N1023	41,482449	83,552933	2	0	
606	N1024	42 206399	83 134961	2	Ő	
607	N1025	42 930348	82 716988	2	0	
608	N1026	43 654297	82 299016	2	0	
600	N1020	44.378246	81 881044	2	0	
610	N1027	45 102105	91 462072	2	0	
611	N1028	45.102195	91.045000	2	0	
	N1029	45.620144	01.045099	2	0	
012	N1030	46.550094	80.627127	2	0	
613	<u>N1031</u>	47.274043	80.209155	2	0	
614	<u>N1032</u>	47.997992	/9./91183	2	0	
615	<u>N1033</u>	48.721941	79.37321	2	0	
616	N1034	49.44589	78.955238	2	0	
617	<u>N1035</u>	50.169839	78.537266	2	0	
618	N1036	50.893789	78.119294	2	0	
619	N1037	51.617738	77.701321	2	0	
620	N1038	41.482449	83.552933	1	0	
621	N1039	42.206399	83.134961	1	0	
622	N1040	42.930348	82.716988	1	0	
623	N1041	43.654297	82,299016	1	0	
624	N1042	44 378246	81 881044	1	Ő	
625	N1043	45 102195	81 463072	1	0	
626	N1044	45.826144	81 045099	1	0	
627	N1045	46 550094	80 627127	1	0	
629	N1045	47.274042	80.200155	1	0	
620	N1040	47.007002	70 701102	1	0	
629	<u>N1047</u>	47.997992	79.791103	1	0	
030	<u>N1048</u>	48.721941	79.37321	1	0	
631	<u>N1049</u>	49.44589	78.955238	1	0	
632	N1050	50.169839	/8.53/266	1	0	
633	<u>N1051</u>	50.893789	/8.119294	1	0	
634	N1052	51.617738	77.701321	1	0	
635	<u>N1053</u>	41.482449	83.552933	0	0	
636	N1054	42.206399	83.134961	0	0	
637	<u>N1055</u>	42.930348	82.716988	0	0	
638	N1056	43.654297	82.299016	0	0	
639	N1057	44.378246	81.881044	0	0	
640	N1058	45.102195	81.463072	0	0	
641	N1059	45.826144	81.045099	0	0	
642	N1060	46.550094	80.627127	0	0	
643	N1061	47.274043	80.209155	0	0	
644	N1062	47.997992	79.791183	0	0	
645	N1063	48.721941	79.37321	0	0	
646	N1064	49,44589	78,955238	0	Ő	
647	N1065	50 169839	78 537266	0	0	
648	N1066	50.893789	78 110204	0	0	
6/0	N1067	51 617739	77 701201	0	0	
650	N1069	<u> </u>	83 552022	1	0	
651	N1000	41.402443	82 12/061	-	0	
650	N1009	42.200399	03.134901	-	0	
652	N1070	42.930348	02.7 10908	-	0	
003	N1071	43.054297	82.299016	-1	0	
054	N1072	44.3/8246	01.001044	=1	0	
655	N1073	45.102195	81.463072	<u> </u>	0	

	Label	X [in]	Y [in]	<u>Z [in]</u>	Temp [F]	Detach From Di
656	N1074	45.826144	81.045099	-1	0	
657	N1075	46.550094	80.627127	-1	0	
658	N1076	47.274043	80.209155	-1	0	
659	N1077	47.997992	79.791183	-1	0	
660	N1078	48.721941	79.37321	-1	0	
661	N1079	49 44589	78 955238	-1	0	
662	N1080	50 169839	78 537266	-1	0	
663	N1081	50.893789	78 11020/	_1	0	
664	N1087	51 617738	77 701321	_1	0	
665	N1082	41 482440	83 552033	2	0	
666	N1003	42,206200	03.332933	-2	0	
667	<u>N1004</u>	42.200399	03.134901	-2	0	
007	<u>N1085</u>	42.930348	82.710988	-2	0	
668	N1086	43.654297	82.299016	-2	0	
669	N1087	44.378246	81.881044	-2	0	
670	<u>N1088</u>	45.102195	81.463072	-2	0	
671	N1089	45.826144	81.045099	-2	0	
672	N1090	46.550094	80.627127	-2	0	
673	<u>N1091</u>	47.274043	80.209155	-2	0	
674	N1092	47.997992	79.791183	-2	0	
675	N1093	48.721941	79.37321	-2	0	
676	N1094	49.44589	78.955238	-2	0	
677	N1095	50.169839	78.537266	-2	0	
678	N1096	50,893789	78,119294	-2	0	
679	N1097	51 617738	77 701321	-2	0	
680	N1098	41 482449	83 552933	-3	0	
681	N1099	42 206399	83 134961	-3	0	
682	N1100	42,200333	82 716088	_3	0	
602	N1101	42.550540	92,200016	-5	0	
604	N1101	43.034297	02.299010	-3	0	
004	<u>N1102</u>	44.378240	01.001044	-3	0	
085	<u>N1103</u>	45.102195	81.463072	-3	0	
080	<u>N1104</u>	45.826144	81.045099	-3	0	
687	<u>N1105</u>	46.550094	80.62/12/	-3	0	
688	<u>N1106</u>	47.274043	80.209155	-3	0	
689	<u>N1107</u>	47.997992	79.791183	-3	0	
690	N1108	48.721941	79.37321	-3	0	
691	N1109	49.44589	78.955238	-3	0	
692	N1110	50.169839	78.537266	-3	0	
693	N1111	50.893789	78.119294	-3	0	
694	N1112	51.617738	77.701321	-3	0	
695	N1073B	-45.906026	-30.687522	3	0	
696	N1074A	-45.906026	-30.687522	-3	0	
697	N1073A	-46.864359	-30.687522	3	0	
698	N1074B	-47.822693	-30.687522	3	0	
699	N1075A	-48.781026	-30.687522	3	0	
700	N1076A	-49,739359	-30.687522	3	0	
701	N1077A	-50 697693	-30 687522	3	0	
702	N1078A	-45 906026	-30 687522	2	0	
703	N1079A	-46 864359	-30 687522	2	0	
704	N1080A	-47 822693	-30 687522	2	0	
705	N1081A	_48 781026	-30 687522	2	0	
706	N1082A	-40.730350	-30 687522	2	0	
700	N1002A	50 607602	20.607522	2	0	
707		-50.097095	-30.007522	<u> </u>	0	
708	N1084A	-45.906026	-30.08/522		0	
709	N1085A	-40.864359	-30.68/522	1	0	
710	N1086A	-47.822693	-30.687522	1	0	
/11	N1087A	-48.781026	-30.68/522	1	0	
712	N1088A	-49.739359	30.687522	1	0	

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Di
713	N1089A	-50.697693	-30.687522	1	0	
714	N1090A	-45.906026	-30.687522	0	0	
715	N1091A	-46.864359	-30.687522	0	0	
716	N1092A	-47.822693	-30.687522	0	0	
717	N1093A	-48 781026	-30 687522	0	0	
718	N1094A	-49 739359	-30 687522	0	0	
719	N1095A	-50 697693	-30 687522	0	0	
720	N1096A	-45 906026	-30 687522	_1	0	
721	N1097A	-46.864359	-30.687522	_1	0	
722	N1097A	47 922602	20.697522	-1	0	
722	N1090A	49 791026	-30.007522	-1	0	
723	<u>N11099A</u>	-40.701020	-30.007522	-1	0	
724	NI 100A	-49.739359	-30.687522	-	0	
725	<u>N1101A</u>	-50.697693	-30.687522	-1	0	
726	N1102A	-45.906026	-30.687522	-2	0	
727	<u>N1103A</u>	-46.864359	-30.687522	-2	0	
728	N1104A	-47.822693	-30.687522	-2	0	
729	N1105A	-48.781026	-30.687522	-2	0	
730	N1106A	-49.739359	-30.687522	-2	0	
731	N1107A	-50.697693	-30.687522	-2	0	
732	N1108A	-46.864359	-30.687522	-3	0	
733	N1109A	-47.822693	-30.687522	-3	0	
734	N1110A	-48.781026	-30.687522	-3	0	
735	N1111A	-49 739359	-30 687522	-3	0	
736	N1112A	-50 697693	-30 687522	-3	0	
737	N1121	-45 906026	30 687522	3	0	
738	N1121	-45 906026	30.687522	_3	0	
720	N1122	-45.900020	20.697522	-5	0	
739	N1123	-40.804359	30.007522	3	0	
740	<u>INTI24</u>	-47.822093	30.007522	3	0	
741	<u>N1125</u>	-48.781026	30.687522	3	0	
742	<u>N1126</u>	-49.739359	30.687522	3	0	
743	N1127	-50.697693	30.687522	3	0	
/44	<u>N1128</u>	-45.906026	30.687522	2	0	
745	<u>N1129</u>	-46.864359	30.687522	2	0	
746	N1130	-47.822693	30.687522	2	0	
747	<u>N1131</u>	-48.781026	30.687522	2	0	
748	N1132	-49.739359	30.687522	2	0	
749	N1133	-50.697693	30.687522	2	0	
750	N1134	-45.906026	30.687522	1	0	
751	N1135	-46.864359	30.687522	1	0	
752	N1136	-47.822693	30.687522	1	0	
753	N1137	-48,781026	30,687522	1	0	
754	N1138	-49.739359	30.687522	1	0	
755	N1139	-50.697693	30.687522	1	0	
756	N1140	-45,906026	30.687522	0	0 0	
757	N1141	-46 864359	30 687522	0	0	
758	N11/2	_47 822603	30 687522	0	0	
750	N11/2	48 781026	30.687522	0	0	
760	N1143	_/0 730350	30.687522	0	0	
761	N1144	<u>-49.739339</u>	20.697522	0	0	
762	N1140	-50.097095	30.007522	1	0	
762	<u>INT 140</u>		20.697500	-	0	
103	<u>INT14/</u>	-40.804359	30.007522	-	0	
764	N1148	-47.822693	30.687522	-	0	
/65	N1149	-48.781026	30.687522	-1	0	
766	N1150	-49.739359	30.687522	-1	0	
/67	N1151	-50.697693	30.687522	-1	0	
768	N1152	-45.906026	30.687522	-2	0	
769	N1153	-46.864359	30.687522	-2	0	
	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Di
------------	----------------	-----------------------	-------------	--------	----------	----------------
770	N1154	-47.822693	30.687522	-2	0	
771	N1155	-48.781026	30.687522	-2	0	
772	N1156	-49.739359	30.687522	-2	0	
773	N1157	-50,697693	30.687522	-2	0	
774	N1158	-46 864359	30 687522	-3	Ő	
775	N1159	_17 822693	30 687522	_3	0	
776	N1160	49 791026	20.607522	-0	0	
777		40.701020		-3	0	
770	N1161	-49.739359	30.687522	-3	0	
778	N1162	-50.697693	30.687522	-3	0	
119	<u>N1149A</u>	50.75018	-27.026846	0	0	
780	N1150A	-1.968808	-57.464169	0	0	
781	N1164	49.529187	-24.412023	3	0	
782	N1165	49.529187	-24.412023	-3	0	
783	N1166	50.008353	-25.241964	3	0	
784	N1167	50.48752	-26.071905	3	0	
785	N1168	50.966687	-26.901846	3	0	
786	N1169	51,445853	-27.731788	3	0	
787	N1170	51 92502	-28 561729	3	0	
788	N1171	49 529187	-24 412023	2	0	
780	N1172	50 008353	25.241064	2	0	
709	N1172	50.008333	26.071005	2	0	
790	<u> </u>	50.46752	-20.07 1903	2	0	
791	<u>N1174</u>	50.966687	-26.901846	2	0	
792	<u>N1175</u>	51.445853	-27.731788	2	0	
793	<u>N1176</u>	51.92502	-28.561729	2	0	
794	N1177	49.529187	-24.412023	1	0	
795	N1178	50.008353	-25.241964	1	0	
796	N1179	50.48752	-26.071905	1	0	
797	N1180	50.966687	-26.901846	1	0	
798	N1181	51.445853	-27.731788	1	0	
799	N1182	51,92502	-28.561729	1	0	
800	N1183	49.529187	-24 412023	0	0	
801	N1184	50 008353	-25 241964	0	0	
802	N1185	50.48752	_26.071005	0	0	
002	N1196	50.40752	26.001946	0	0	
003	N1100	50.900087	-20.901040	0	0	
004	<u>INT 107</u>	51.445653	-21.131/00	0	0	
805	<u>N1188</u>	51.92502	-28.561729	0	0	
806	<u>N1189</u>	49.529187	-24.412023	-1	0	
807	<u>N1190</u>	50.008353	-25.241964	-1	0	
808	N1191	50.48752	-26.071905	-1	0	
809	N1192	50.966687	-26.901846	-1	0	
810	N1193	51.445853	-27.731788	-1	0	
811	N1194	51.92502	-28.561729	-1	0	
812	N1195	49.529187	-24.412023	-2	0	
813	N1196	50.008353	-25.241964	-2	0	
814	N1197	50,48752	-26.071905	-2	0	
815	N1198	50,966687	-26 901846	-2	0	
816	N1199	51 445853	-27 731788	-2	0	
817	N1200	51 92502	_28 561720	2	0	
818	N1200	50.008353	25.241064	3	0	
<u>810</u>	N1201	50.000000	26 071005	-5	0	
019	N1202	50.40752 E0.066607	-20.07 1903	-3	0	
020	IN 1203		-20.901840	-3	0	
821	N1204	51.445853	-27.731788	-3	0	
822	N1205	51.92502	-28.561/29	-3	0	
823	N1206	-3.623161	-55.099546	3	0	
824	N1207	-3.623161	-55.099546	-3	0	
825	N1208	-3.143994	-55.929487	3	0	
826	N1209	-2.664828	-56.759428	3	0	

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Di
827	N1210	-2.185661	-57.589369	3	0	
828	N1211	-1.706494	-58.41931	3	0	
829	N1212	-1.227328	-59.249251	3	0	
830	N1213	-3.623161	-55.099546	2	0	
831	N1214	-3.143994	-55.929487	2	0	
832	N1215	-2.664828	-56.759428	2	0	
833	N1216	-2.185661	-57.589369	2	0	
834	N1217	-1.706494	-58.41931	2	0	
835	N1218	-1.227328	-59.249251	2	0	
836	N1219	-3.623161	-55.099546	1	0	
837	N1220	-3.143994	-55,929487	1	0	
838	N1221	-2.664828	-56,759428	1	0	
839	N1222	-2.185661	-57.589369	1	0	
840	N1223	-1.706494	-58,41931	1	0	
841	N1224	-1 227328	-59 249251	1	0	
842	N1225	-3 623161	-55 099546	0	Ő	
843	N1226	-3 143994	-55 929487	0	0 0	
844	N1227	-2 664828	-56 759428	0	0 0	
845	N1228	-2 185661	-57 589369	0	0	
846	N1229	-1 706494	-58 41931	0	0	
847	N1220	-1 227328	_50 2/0251	0	0	
8/8	N1230	-3.623161	-55 099546	1	0	
8/0	N1232	3 1/300/	55 020/87	-	0	
850	N1232	-3.143994	56 750429	-1	0	
050	<u>N1233</u>	-2.004020	<u>-30.739420</u> 57.590260	-1	0	
001	N1234	-2.103001	-57.509309	-1	0	
052	N1235	-1.700494	-30.41931	-1	0	
053	N1230	-1.227328	-59.249251	-1	0	
854	N1237	-3.623161	-55.099546	-2	0	
855	<u>N1238</u>	-3.143994	-55.929487	-2	0	
000	N1239	-2.004828	-50.759428	-2	0	
857	<u>N1240</u>	-2.185661	-57.589369	-2	0	
858	N1241	-1.706494	-58.41931	-2	0	
859	<u>N1242</u>	-1.227328	-59.249251	-2	0	
860	<u>N1243</u>	-3.143994	-55.929487	-3	0	
861	<u>N1244</u>	-2.664828	-56.759428	-3	0	
862	<u>N1245</u>	-2.185661	-57.589369	-3	0	
863	<u>N1246</u>	-1.706494	-58.41931	-3	0	
864	<u>N1247</u>	-1.227328	-59.249251	-3	0	
865	<u>N1250</u>	-1.969155	57.464369	0	0	
866	<u>N1251</u>	50.749834	27.027046	0	0	
867	<u>N1265</u>	-3.623161	55.099546	3	0	
868	N1266	-3.623161	55.099546	-3	0	
869	N1267	-3.143994	55.929487	3	0	
870	N1268	-2.664828	56.759428	3	0	
871	N1269	-2.185661	57.589369	3	0	
872	N1270	-1.706494	58.41931	3	0	
873	N1271	-1.227328	59.249251	3	0	
874	N1272	-3.623161	55.099546	2	0	
875	N1273	-3.143994	55.929487	2	0	
876	N1274	-2.664828	56.759428	2	0	
877	N1275	-2.185661	57.589369	2	0	
878	N1276	-1.706494	58.41931	2	0	
879	N1277	-1.227328	59.249251	2	0	
880	N1278	-3.623161	55.099546	1	0	
881	N1279	-3.143994	55.929487	1	0	
882	N1280	-2.664828	56.759428	1	0	
883	N1281	-2.185661	57.589369	1	0	

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Di
884	N1282	-1.706494	58.41931	1	0	
885	N1283	-1.227328	59.249251	1	0	
886	N1284	-3.623161	55.099546	0	0	
887	N1285	-3.143994	55.929487	0	0	
888	N1286	-2.664828	56.759428	0	0	
889	N1287	-2.185661	57.589369	0	0	
890	N1288	-1.706494	58.41931	0	0	
891	N1289	-1.227328	59.249251	0	0	
892	N1290	-3.623161	55.099546	-1	0	
893	N1291	-3.143994	55.929487	-1	0	
894	N1292	-2.664828	56.759428	-1	0	
895	N1293	-2.185661	57.589369	-1	0	
896	N1294	-1.706494	58.41931	-1	0	
897	N1295	-1.227328	59.249251	-1	0	
898	N1296	-3.623161	55.099546	-2	0	
899	N1297	-3.143994	55.929487	-2	0	
900	N1298	-2.664828	56.759428	-2	0	
901	N1299	-2.185661	57.589369	-2	0	
902	N1300	-1.706494	58.41931	-2	0	
903	N1301	-1.227328	59.249251	-2	0	
904	N1302	-3.143994	55.929487	-3	0	
905	N1303	-2.664828	56.759428	-3	0	
906	N1304	-2.185661	57.589369	-3	0	
907	N1305	-1.706494	58.41931	-3	0	
908	N1306	-1.227328	59.249251	-3	0	
909	N1307	49.529187	24.412023	3	0	
910	N1308	49.529187	24.412023	-3	0	
911	N1309	50.008353	25.241964	3	0	
912	N1310	50.48752	26.071905	3	0	
913	N1311	50.966687	26.901846	3	0	
914	N1312	51.445853	27.731788	3	0	
915	N1313	51.92502	28.561729	3	0	
916	N1314	49.529187	24.412023	2	0	
917	N1315	50.008353	25.241964	2	0	
918	N1316	50.48752	26.071905	2	0	
919	N1317	50.966687	26.901846	2	0	
920	N1318	51.445853	27.731788	2	0	
921	N1319	51.92502	28.561729	2	0	
922	N1320	49.529187	24.412023	1	0	
923	N1321	50.008353	25.241964	1	0	
924	N1322	50.48752	26.071905	1	0	
925	N1323	50.966687	26.901846	11	0	
926	N1324	51.445853	27.731788	1	0	
927	N1325	51.92502	28.561729	1	0	
928	N1326	49.529187	24.412023	0	0	
929	N1327	50.008353	25.241964	0	0	
930	N1328	50.48752	26.071905	0	0	
931	N1329	50.966687	26.901846	0	0	
932	N1330	51.445853	27.731788	0	0	
933	N1331	51.92502	28.561729	0	0	
934	N1332	49.529187	24.412023	-1	0	
935	N1333	50.008353	25.241964	-1	0	
936	N1334	50.48752	26.071905	-1	0	
937	N1335	50.966687	26.901846	-1	0	
938	N1336	51.445853	27.731788	-1	0	
939	N1337	51.92502	28.561729	-1	0	
940	N1338	49.529187	24.412023	-2	0	

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Di
941	N1339	50.008353	25.241964	-2	0	
942	N1340	50.48752	26.071905	-2	0	
943	N1341	50.966687	26.901846	-2	0	
944	N1342	51.445853	27.731788	-2	0	
945	N1343	51.92502	28.561729	-2	0	
946	N1344	50.008353	25.241964	-3	0	
947	N1345	50.48752	26.071905	-3	0	
948	N1346	50,966687	26,901846	-3	0	
949	N1347	51 445853	27 731788	-3	0	
950	N1348	51 92502	28 561729	-3	0	
951	N1239A	52 341687	-75 754049	3	0	
952	N1240A	52 341687	-75 754049	-3	0	
952	N1240A	52 3/1687	-74 22475	3	0	
953	N1241A	52 3/1687	-74 22475	_3	0	
055	N1242A	52.341007	76 772502	-5	0	
955	N1243A	52.341007	76 262916	2	0	
950	<u>N1244A</u>	52.341067	-70.203010	<u> </u>	0	
957	N1245A	52.341087	-75.244283	3	0	
958	N1246A	52.341687	-/4./34516	3	0	
959	<u>N1247A</u>	52.341687	-/6.//3583	2	0	
960	<u>N1248</u>	52.341687	-/6.263816	2	0	
961	<u>N1249</u>	52.341687	-75.244283	2	0	
962	N1250A	52.341687	-74.734516	2	0	
963	N1251A	52.341687	-74.22475	2	0	
964	N1252	52.341687	-76.773583	1	0	
965	N1253	52.341687	-76.263816	1	0	
966	N1254	52.341687	-75.754049	1	0	
967	N1255	52.341687	-75.244283	1	0	
968	N1256	52,341687	-74.734516	1	0	
969	N1257	52.341687	-74.22475	1	0	
970	N1258	52,341687	-76,773583	0	0	
971	N1259	52 341687	-76 263816	0	0	
972	N1260	52 341687	-75 754049	0	0	
973	N1261	52 341687	-75 244283	0	0	
974	N1262	52 341687	-74 734516	0	0	
975	N1263	52 341687	-74 22475	0	0	
976	N1264	52 3/1687	-76 773583	_1	0	
970	N1265A	52 3/1687	76 263816	-1	0	
079	N1203A	52.341697	75 754040	-1	0	
070	N1200A	52.341007	75 2449	-	0	
9/9	N1207A	52.341007	74 7244203	-1	0	
900		52.341007	-74.734310	-	0	
901		52.341007	-14.22410	-1	0	
982		52.341687	-/0.//3583	-2	0	
983		52.341687		-2	0	
984	N12/2A	52.341687	-/5.244283	-2	0	
985	N12/3A	52.341687	-/4./34516	-2	0	
986	N12/4A	52.341687	-/4.22475	-2	0	
987	N1275A	52.341687	-/6.773583	-3	0	
988	N1276A	52.341687	-76.263816	-3	0	
989	N1277A	52.341687	-75.244283	-3	0	
990	N1278A	52.341687	-74.734516	-3	0	
991	N1095B	54.341687	75.754049	0	0	
992	N1098B	54.341687	75.754049	2	0	
993	N1099B	52.341687	75.754049	2	0	
994	N1100B	54.341687	75.754049	-2	0	
995	N1101B	52.341687	75.754049	-2	0	
996	N1106B	52,341687	75,754049	3	Ō	
997	N1107B	52.341687	75,754049	-3	0	
				~	~	

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Di
998	N1108B	52.341687	74.22475	3	0	
999	N1109B	52.341687	74.22475	-3	0	
1000	N1110B	52.341687	76.773583	3	0	
1001	N1111B	52 341687	76 263816	3	0	
1002	N1112B	52 341687	75 244283	3	0 0	
1002	N1113	52 3/1687	74 734516	3	0	
1003	N1114	52.341007	76 772502	3	0	
1004	<u>IN1114</u>	52.341007	70.773003	2	0	
1005	<u>N1115</u>	52.341687	76.263816	2	0	
1006	<u>N1116</u>	52.341687	75.244283	2	0	
1007	<u>N1117</u>	52.341687	/4./34516	2	0	
1008	N1118	52.341687	74.22475	2	0	
1009	<u>N1119</u>	52.341687	76.773583	1	0	
1010	N1120	52.341687	76.263816	1	0	
1011	N1121A	52.341687	75.754049	1	0	
1012	N1122A	52.341687	75.244283	1	0	
1013	N1123A	52.341687	74,734516	1	0	
1014	N1124A	52 341687	74 22475	1	0	
1015	N11254	52 341687	76 773583	0	0	
1016	N1126A	52 3/1687	76 263816	0	0	
1017		52.341007	75 754040	0	0	
1017		52.341007	75.754049	0	0	
1018	N1128A	52.341687	75.244283	0	0	
1019	<u>N1129A</u>	52.341687	/4./34516	0	0	
1020	N1130A	52.341687	74.22475	0	0	
1021	<u>N1131A</u>	52.341687	76.773583	-1	0	
1022	N1132A	52.341687	76.263816	-1	0	
1023	N1133A	52.341687	75.754049	-1	0	
1024	N1134A	52.341687	75.244283	-1	0	
1025	N1135A	52,341687	74,734516	-1	0	
1026	N1136A	52.341687	74,22475	-1	0	
1027	N1137A	52 341687	76 773583	_2	0	
1027	N1138A	52 3/1687	76 263816	_2	0	
1020	N1130A	52.341697	75 244283	2	0	
1029	N1140A	52.341007	74 724546	-2	0	
1030		52.341007	74.734310	-2	0	
1031	<u>N1141A</u>	52.341687	74.22475	-2	0	
1032	<u>N1142A</u>	52.341687	/6.//3583	-3	0	
1033	<u>N1143A</u>	52.341687	76.263816	-3	0	
1034	N1144A	52.341687	75.244283	-3	0	
1035	<u>N1145A</u>	52.341687	74.734516	-3	0	
1036	N1140B	38.434087	84.938306	0	0	
1037	N1144B	38.434087	84.938306	2	0	
1038	N1145B	39.434087	83.206255	2	0	
1039	N1146A	38.434087	84.938306	-2	0	
1040	N1147A	39,434087	83,206255	-2	0	
1041	N1158A	39,434087	83,206255	3	0	
1042	N1159A	39 434087	83 206255	_3	0	
1042	N1160A	38 109675	82 1/1605	3	0	
1043	N1161A	29 100675	92.441605	2	0	
1044		40.217020	02.441000	-3	0	
1040		40.317029	03.7 10022	3	0	
1040	INT 103	39.875559	83.461138	3	0	
1047	N1164A	38.992617	82.9513/2	3	0	
1048	<u>N1165A</u>	38.551146	82.696489	3	0	
1049	N1166A	40.317029	83.716022	2	0	
1050	N1167A	39.875559	83.461138	2	0	
1051	N1168A	38.992617	82.951372	2	0	
1052	N1169A	38.551146	82.696489	2	0	
1053	N1170A	38.109675	82.441605	2	0	
1054	N1171A	40.317029	83,716022	1	Ō	

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Di
1055	N1172A	39.875559	83.461138	1	0	
1056	N1173A	39,434088	83.206255	1	0	
1057	N1174A	38.992617	82.951372	1	0	
1058	N1175A	38,551146	82,696489	1	0	
1059	N1176A	38 109675	82 441605	1	0	
1060	N1177A	40.317029	83 716022	0	0	
1061	N1170A	20.975550	02.461120	0	0	
1001		39.075559	03.401130	0	0	
1062	N1179A	39.434088	83.206255	0	0	
1063	N1180A	38.992617	82.951372	0	0	
1064	<u>N1181A</u>	38.551146	82.696489	0	0	
1065	N1182A	38.109675	82.441605	0	0	
1066	N1183A	40.317029	83.716022	-1	0	
1067	N1184A	39.875559	83.461138	-1	0	
1068	N1185A	39.434088	83.206255	-1	0	
1069	N1186A	38.992617	82.951372	-1	0	
1070	N1187A	38,551146	82,696489	-1	0	
1071	N1188A	38 109675	82 441605	-1	0	
1072	N1189A	40.317029	83 716022	_2	0	
1072	N1100A	20.975550	02.461120	-2	0	
1073	N1101A	39.075559	03.401130	-2	0	
1074	<u>N1191A</u>	38.992617	82.951372	-2	0	
1075	<u>N1192A</u>	38.551146	82.696489	-2	0	
1076	N1193A	38.109675	82.441605	-2	0	
1077	N1194A	40.317029	83.716022	-3	0	
1078	N1195A	39.875559	83.461138	-3	0	
1079	N1196A	38.992617	82.951372	-3	0	
1080	N1197A	38.551146	82.696489	-3	0	
1081	N1198A	-92 775774	9 184257	0	0	
1082	N1199A	-92 775774	9 184257	2	0	
1083	N1200A		7.452206	2	0	
1003	N1200A	02 775774	0.194257	2	0	
1004	N1201A	-92.775774	9.104207	-2	0	
1065	N1202A	-91.775774	7.452200	-2	0	
1086	N1203A	-91.775774	7.452206	3	0	
1087	<u>N1204A</u>	-91.775774	7.452206	-3	0	
1088	N1205A	-90.451362	8.216856	3	0	
1089	N1206A	-90.451362	8.216856	-3	0	
1090	N1207A	-92.658716	6.942439	3	0	
1091	N1208A	-92.217245	7.197322	3	0	
1092	N1209A	-91.334304	7.707089	3	0	
1093	N1210A	-90.892833	7,961972	3	0	
1094	N1211A	-92 658716	6 942439	2	0	
1095	N1212A	_92 217245	7 197322	2	0	
1096	N1213A	_91 334304	7 707089	2	0	
1007	N1213A	_00.802833	7 061072	2	0	
1000	N1214A		9.216956	2	0	
1000		-90.431302	6.040400	<u> </u>	0	
1099	N1216A	-92.058/10	0.942439		0	
1100	N121/A	-92.21/245	7.197322	1	0	
1101	N1218A	-91.775775	7.452206	1	0	
1102	N1219A	-91.334304	7.707089	1	0	
1103	N1220A	-90.892833	7.961972	1	0	
1104	N1221A	-90.451362	8.216856	1	0	
1105	N1222A	-92.658716	6.942439	0	0	
1106	N1223A	-92.217245	7.197322	0	0	
1107	N1224A	-91,775775	7,452206	0	0	
1108	N1225A	-91 334304	7 707089	0 0	0	
1100	N1226A		7 961072	0	0	
1110	N1220A	_00.451262	8 216856	0	0	
1110			6.040400	1	0	
	IN IZZŐA	-92.000/10	0.942439	- 1	U	

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Di
1112	N1229A	-92.217245	7.197322	-1	0	
1113	N1230A	-91.775775	7.452206	-1	0	
1114	N1231A	-91.334304	7.707089	-1	0	
1115	N1232A	-90.892833	7.961972	-1	0	
1116	N1233A	-90.451362	8.216856	-1	0	
1117	N1234A	-92.658716	6.942439	-2	0	
1118	N1235A	-92.217245	7.197322	-2	0	
1119	N1236A	-91 334304	7 707089	-2	0	
1120	N1237A	-90 892833	7 961972	-2	Ő	
1121	N1238A	-90 451362	8 216856	-2	0	
1122	N1230B	-92 658716	6.942439	_3	0	
1122	N1233D	92.000710	7 107322	-5	0	
1123	N1240D	01 22/20/	7 707080	-3	0	
1124	N1241D	-91.004004	7.061072	-3	0	
1120	<u>N1242D</u>	-90.892833	0.19/257	-3	0	
1120	<u>N1244B</u>	-92.115114	-9.164257	0	0	
1127	<u>N1248A</u>	-92.775774	-9.184257	2	0	
1128	<u>N1249A</u>	-91.775774	-7.452206	2	0	
1129	<u>N1250B</u>	-92.775774	-9.184257	-2	0	
1130	N1251B	-91.775774	-7.452206	-2	0	
1131	N1262A	-91.775774	-7.452206	3	0	
1132	N1263A	-91.775774	-7.452206	-3	0	
1133	N1264A	-90.451362	-8.216856	3	0	
1134	N1265B	-90.451362	-8.216856	-3	0	
1135	N1266B	-92.658716	-6.942439	3	0	
1136	N1267B	-92.217245	-7.197322	3	0	
1137	N1268B	-91.334304	-7.707089	3	0	
1138	N1269B	-90.892833	-7.961972	3	0	
1139	N1270B	-92.658716	-6.942439	2	0	
1140	N1271B	-92.217245	-7.197322	2	0	
1141	N1272B	-91.334304	-7.707089	2	0	
1142	N1273B	-90.892833	-7.961972	2	0	
1143	N1274B	-90.451362	-8.216856	2	0	
1144	N1275B	-92.658716	-6.942439	1	0	
1145	N1276B	-92.217245	-7.197322	1	0	
1146	N1277B	-91.775775	-7.452206	1	0	
1147	N1278B	-91.334304	-7.707089	1	0	
1148	N1279A	-90.892833	-7.961972	1	0	
1149	N1280A	-90 451362	-8 216856	1	Ő	
1150	N1281A	-92 658716	-6.942439	0	Ő	
1151	N1282A	-92 217245	-7 197322	0	0	
1152	N1283A	-91 775775	-7 452206	0 0	Ő	
1153	N1284A	_91 334304	7 707089	0	0	
1154	N1285A	-90 892833	-7.961972	0	0	
1155	<u>Ν1286Δ</u>	-90.451362	-8 216856	0	0	
1156	N1287A		-6.042430	1	0	
1157	N1207A	02 217245	7 107322	-1	0	
1150	N1200A	-92.217245	7.452206	-1	0	
1150	N1209A	-91.775775	7 707090	-1	0	
1109	N1290A	-91.334304	7.061072	-1	0	
1161	<u>N1291A</u>	-90.692633	9.016956	-1	0	
1101	<u>N1292A</u>	-90.431302	-0.210000 6.040400	-1	0	
1162	N1293A	-92.000/10	-0.942439	-2	0	
1103	N1294A	-92.21/245	7 707000	-2	0	
1104	N1295A	-91.334304	-7.707089	-2	0	
1165	N1296A	-90.892833	-7.961972	-2	0	
1100	N129/A	-90.451362	-8.216856	-2	0	
1167	N1298A	-92.658/16	-6.942439	-3	0	
1168	N1299A	-92.217245	-7.197322	-3	0	

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Di
1169	N1300A	-91.334304	-7.707089	-3	0	
1170	N1301A	-90.892833	-7.961972	-3	0	
1171	N1302A	38.434087	-84.938306	0	0	
1172	N1303A	38.434087	-84.938306	2	0	
1173	N1304A	39,434087	-83.206255	2	0	
1174	N1305A	38,434087	-84,938306	-2	0	
1175	N1306A	39.434087	-83,206255	-2	0	
1176	N1307A	39 434087	-83 206255	3	0	
1177	N1308A	39 434087	-83 206255	-3	0	
1178	N1309A	38 109675	-82 441605	3	0	
1170	N1310A	38 109675	-82 441605	_3	0	
1120	N1310A	40.317020	92 716022	-5	0	
1100	N1212A	20.975550	02 /61120	2	0	
1101	N1312A	39.070009	92.051272	3	0	
1102	<u>N1313A</u>	38.992617	-62.951372	3	0	
1183	N1314A	38.551146	-82.696489	3	0	
1184	<u>N1315A</u>	40.317029	-83.716022	2	0	
1185	<u>N1316A</u>	39.875559	-83.461138	2	0	
1186	<u>N1317A</u>	38.992617	-82.951372	2	0	
1187	N1318A	38.551146	-82.696489	2	0	
1188	N1319A	38.109675	-82.441605	2	0	
1189	N1320A	40.317029	-83.716022	1	0	
1190	N1321A	39.875559	-83.461138	1	0	
1191	N1322A	39.434088	-83.206255	1	0	
1192	N1323A	38.992617	-82.951372	1	0	
1193	N1324A	38.551146	-82.696489	1	0	
1194	N1325A	38.109675	-82.441605	1	0	
1195	N1326A	40.317029	-83,716022	0	0	
1196	N1327A	39 875559	-83 461138	0	0	
1197	N1328A	39 434088	-83 206255	<u> </u>	0	
1198	N1329A	38 992617	-82 951372	0	0	
1199	N1330A	38 551146	-82 696489	0	0	
1200	N1331A	38 109675	-82 441605	0	0	
1200	N1332A	40.317029		1	0	
1201	N1332A	30.875550	83 /61138	1	0	
1202	N1333A	20 424099	92 206255	-1	0	
1203	N1334A	29.002617	92 05 1 2 7 2	-1	0	
1204	N1333A	38.592017	92.606490	-1	0	
1205	N1330A	30.551140	-02.090409	-1	0	
1200	N1337A	38.109675	-82.441605	-1	0	
1207	N1338A	40.317029	-83.716022	-2	0	
1208	N1339A	39.875559	-83.461138	-2	0	
1209	N1340A	38.992617	-82.951372	-2	0	
1210	<u>N1341A</u>	38.551146	-82.696489	-2	0	
1211	N1342A	38.109675	-82.441605	-2	0	
1212	N1343A	40.317029	-83.716022	-3	0	
1213	N1344A	39.875559	-83.461138	-3	0	
1214	N1345A	38.992617	<u>-82.951372</u>	-3	0	
1215	N1346A	38.551146	-82.696489	-3	0	
1216	N1222B	57.654187	-84.	54	0	
1217	N1223B	57.654187	-84.	6	0	
1218	A4T	65.654187	-84.	54	0	
1219	A4B	65.654187	-84.	6	0	
1220	N1226B	57.654187	-84.	21	0	
1221	A4R	51.654187	-84.	21	0	
1222	N1228B	57.654187	-26.	-27	0	
1223	M3	54,341687	-26.	0	0	
1224	N1230B	57.654187	-26.	0	Ő	
1225	N1231B	57.654187	-26.	42	0	

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Di
1226	N1232B	54.904187	-26.	42	0	
1227	N1233B	57.654187	-26.	69	0	
1228	N1234B	57.654187	-26.	54	0	
1229	N1235B	57.654187	-26.	6	0	
1230	A3T	65.654187	-26.	54	0	
1231	A3B	65.654187	-26.	6	0	
1232	N1238B	57.654187	-26.	21	0	
1233	A3R	51 654187	-26	21	0	
1234	N1240C	57 654187	26	-27	Ő	
1235	M2	54 341687	26	0	0	
1236	N1242C	57 65/187	26	0	0	
1237	N12420	57 65/187	20.	12	0	
1237	N1243D	54 00/197	20.	42	0	
1230	N1244C	57.654107	20.	60	0	
1239	N1243D	57.034107	20.	<u> </u>	0	
1240	N1246B	57.054187	26.	54	0	
1241	<u>N1247B</u>	57.654187	26.	6	0	
1242	<u>A21</u>	65.654187	26.	54	0	
1243	A2B	65.654187	26.	6	0	
1244	N1250C	57.654187	26	21	0	
1245	A2R	51.654187	26	21	0	
1246	N1252A	57.654187	72.	-27	0	
1247	M1	54.341687	72.	0	0	
1248	N1254A	57.654187	72.	0	0	
1249	N1255A	57.654187	72.	42	0	
1250	N1256A	54.904187	72.	42	0	
1251	N1257A	57.654187	72.	69	0	
1252	N1258A	57.654187	72.	54	0	
1253	N1259A	57.654187	72.	6	0	
1254	A1T	65.654187	72.	54	0	
1255	A1B	65 654187	72	6	0	
1256	N1262B	57 654187	72	21	Ő	
1257	A1R	51 654187	72	21	0	
1258	N1264B	-101 573228	_7 929991	27	0	
1250	N1265C	-09 916978	-5.061281	0	0	
1260	N1266C	_101 573228	_7 020001	0	0	
1261	N1267C	101.573228	7 020001	12	0	
1262	N1267C	100 108228	5 548421	42	0	
1202	N1200C	101 572220	7.020001	60	0	
1203	N1209C	-101.573220	7.020001	<u> </u>	0	
1204	N1270C	-101.573220	7.020001	<u> </u>	0	
1200		-101.373220	-7.929991	<u> </u>	0	
1200	<u> </u>	-105.573228		04	0	
1207		-105.573228	-14.858194	0	0	
1268	<u>N1280B</u>	-101.5/3228	-7.929991	21	0	
1269	B4R	-98.573228	-2.733838	21	0	
1270	<u>N1282C</u>	-51.343754	-36.929991	-27	0	
12/1	N1283C	-49.687504	-34.061282	0	0	
1272	N1284C	-51.343754	-36.929991	0	0	
1273	N1285C	-51.343754		42	0	
1274	N1286C	-49.968754	-34.548421	42	0	
1275	N1287C	-51.343754	-36.929991	69	0	
1276	N1288B	-51.343754	-36.929991	54	0	
1277	N1289B	-51.343754	-36.929991	6	0	
1278	B3T	-55.343754	-43.858193	54	0	
1279	B3B	-55.343754	-43.858193	6	0	
1280	N1292B	-51.343754	-36.929991	21	0	
1281	B3R	-48.343754	-31.733839	21	0	
1282	N1294B	-6.310433	-62.929991	-27	0	

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Di
1283	N1295B	-4.654183	-60.061282	0	0	
1284	N1296B	-6.310433	-62.929991	0	0	
1285	N1297B	-6.310433	-62.929991	42	0	
1286	N1298B	-4.935433	-60.548421	42	0	
1287	N1299B	-6.310433	-62,929991	69	0	
1288	N1300B	-6.310433	-62 929991	54	Ő	
1289	N1301B	-6.310433	-62 929991	6	Ő	
1290	B2T	-10.310433	-69 858194	54	Ő	
1200	B2B	-10 310433	-69 858194	6	0	
1202	N1304B	-6 310433	_62 02000104	21	0	
1202	B2R	-3 310/33	-57 733830	21	0	
1201	NI306B	33 526736	85 020001	27	0	
1205	N1307B	35.120730	83 061282	-21	0	
1295	N1209D	22 526726	95.001202	0	0	
1290	N1300D	33.520730	-05.929991	42	0	
1297	N1309B	33.520730	-85.929991	42	0	
1298	NI310B	34.901736	-83.548421	42	0	
1299	<u>N1311B</u>	33.526736	-85.929991	69	0	
1300	<u>N1312B</u>	33.526736	-85.929991	54	0	
1301	<u>N1313B</u>	33.526736	-85.929991	6	0	
1302	B1T	29.526736	-92.858194	54	0	
1303	<u>B1B</u>	29.526736	-92.858194	6	0	
1304	N1316B	33.526736	-85.929991	21	0	
1305	B1R	36.526736	<u>-80.733838</u>	21	0	
1306	N1318B	43.919041	91.929991	-27	0	
1307	<u>N1319B</u>	45.575291	89.061282	0	0	
1308	N1320B	43.919041	91.929991	0	0	
1309	N1321B	43.919041	91.929991	42	0	
1310	N1322B	45.294041	89.548421	42	0	
1311	N1323B	43.919041	91.929991	69	0	
1312	N1330B	43.919041	91.929991	54	0	
1313	N1331B	43.919041	91.929991	6	0	
1314	G4T	39.919041	98.858194	54	0	
1315	G4B	39.919041	98.858194	6	0	
1316	N1334B	43.919041	91.929991	21	0	
1317	G4R	46,919041	86,733838	21	0	
1318	N1336B	-6.310433	62.929991	-27	0	
1319	N1337B	-4.654183	60.061282	0	0	
1320	N1338B	-6.310433	62.929991	0	0	
1321	N1339B	-6.310433	62.929991	42	0	
1322	N1340B	-4.935433	60.548421	42	0	
1323	N1341B	-6.310433	62,929991	69	0	
1324	N1342B	-6.310433	62 929991	54	Ő	
1325	N1343B	-6.310433	62 929991	6	Ő	
1326	G3T	-10.310433	69 858194	54	Ő	
1327	G3B	-10.310433	69 858194	6	0	
1328	N1346B	-6 310433	62 929991	21	0	
1329	G3R	-3 310433	57 733839	21	0	
1330	N1348A	-51 343754	36 929991	_27	0	
1331	N13/9	-49 687504	34.061282	0	0	
1332	N1350	51 3/375/	36 020001	0	0	
1333	N1351	-51 3/375/	36 020001	42	0	
1334	N1352	_/0 06975/	34 549421	42	0	
1335	N1352		36 020001	60	0	
1336	N1353	51 2/275/	36 020001	54	0	
1227	N1255	<u>-01.040704</u> 51.040754	26 020001	6	0	
1220	 C2T	-01.040704	12 959102	<u> </u>	0	
1220		-00.040704	43.000193	54	0	
1339	GZB	-55.343754	43.000193	0	U	

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Di
1340	N1358	-51.343754	36.929991	21	0	
1341	G2R	-48.343754	31.733839	21	0	
1342	N1360	-91.180923	13.929991	-27	0	
1343	N1361	-89.524673	11.061281	0	0	
1344	N1362	-91.180923	13.929991	0	0	
1345	N1363	-91 180923	13 929991	42	0	
1346	N1364	-89.805923	11 548421	42	0	
13/7	N1365	_01 180023	13 020001	69	0	
13/18	N1366	01 180023	13 020001	54	0	
1240	N1267	-91.100923	12 020001	6	0	
1349	N1307	-91.180923	20.959104	<u> </u>	0	
1330	GII	-95.160923	20.000194	54	0	
1351		-95.180923	20.858194	0	0	
1352	N1370	-91.180923	13.929991	21	0	
1353	G1R	-88.180923	8.733838	21	0	
1354	KN1	-77.845445	-0.	0	0	
1355	KN2	-77.845445	-0.	-5.375	0	
1356	KN3	-77.845445	0.937	-5.375	0	
1357	KN4	-77.845445	-0.937	-5.375	0	
1358	KN5	-15.031	-0.	-61.499993	0	
1359	KN6	-18,406	-0.	-61.499993	0	
1360	KN7	-18,406	0.937	-61,499993	0	
1361	KN8	-18 406	- 937	-61 499993	0	
1362	KN9	38 922723	-67 416133	0	0	
1363	KN10	38 922723	-67 416133	-5 375	0	
1364	KNI1	38 111257	67 884633	-5 375	0	
1365	KN12	39 73/188	-66 947633	-5 375	0	
1366		7 5155	12 017228	61 /00003	0	
1267		0.202	15.040064	61 400002	0	
1260		9.203	16 409564	61 400002	0	
1260		10.014466	15 474664	<u>-01.499993</u>	0	
1309		10.014400	-13.47 1304	-01.499993	0	
1370		38.922723	07.410133	<u> </u>	0	
13/1	<u> </u>	38.922723	67.416133	-5.375	0	
1372	<u>KN19</u>	39.734188	66.947633	-5.375	0	
1373	KN20	38.111257	67.884633	-5.375	0	
13/4	<u>KN21</u>	7.5155	13.01/228	-61.499993	0	
1375	<u>KN22</u>	9.203	15.940064	-61.499993	0	
1376	KN23	10.014466	15.471564	<u>-61.499993</u>	0	
1377	KN24	8.391534	16.408564	-61.499993	0	
1378	N1426	54.341687	-77.28335	0	0	
1379	N1427	54.341687	77.28335	0	0	
1380	N1428	39.758501	85.702957	0	0	
1381	N1429	-94.100188	8.419607	0	0	
1382	N1430	-94.100188	-8.419607	0	0	
1383	N1431	39.758501	-85.702957	0	0	
1384	N1432	54.341687	-29.39167	0	0	
1385	N1433	54.341687	29.39187	0	0	
1386	N1434	-1.716911	61.757117	0	0	
1387	N1435	-52.62495	32.365347	0	0	
1388	N1436	-52.624777	-32,365447	0	Ō	
1389	N1437	-1.716737	-61,757217	0	0	
1390	N1402	-27 031	-0	0 0	0	
1391	BRC	-27 031	0	12	0	
1392	N1392	13 5155	23 409533	0	0	
1303	GRC	13 5155	23 400533	12	0	
130/	N130/	13 5155	_23 400533	0	0	
1305		13 5155	23 400522	12	0	
1333		10.0100	-23.409000	12	U U	

Member Primary Data

1 M26 N48 N60 RIGID None None RIGID 2 M44 N75 N87 RIGID None None RIGID 3 M51 N88 N100 Offset Horiz Beam None Q235 4 M60 N98 N103 Offset Horiz Beam None Q235 5 M62 N102 N114 RIGID None None Q235 6 M63 N103 N99 Offset Horiz Beam None Q235 7 M69 N115 N116 Face Horiz Beam None A53 Gr. 8 M71 M4 N122 RIGID None None A53 Gr. 10 M75 N131 N132 Face Horiz Beam None A53 Gr. 11 M91 N158 N50 360 RIGID None None RIGIE 12 M92 N158 </th <th></th>	
2 M44 N75 N87 RIGID None None RIGII 3 M51 N88 N100 Offset Horiz Beam None Q235 4 M60 N98 N103 Offset Horiz Beam None Q235 5 M62 N102 N114 RIGID None None Q235 7 M69 N115 N116 Face Horiz Beam None AS3 Gr. 8 M71 M4 N122 RIGID None None AS3 Gr. 9 M72 N123 N124 Face Horiz Beam None AS3 Gr. 10 M75 N131 N132 Face Horiz Beam None AS3 Gr. 11 M91 N158 N50 360 RIGID None None RIGIE 12 M92 N158 N160 Grating Angle Beam None Q235 13 M93) Typical
3 M51 N88 N100 Offset Horiz Beam None Q235 4 M60 N98 N103 Offset Horiz Beam None Q235 5 M62 N102 N114 RIGID None None Q235 6 M63 N103 N99 Offset Horiz Beam None Q235 7 M69 N115 N116 Face Horiz Beam None Q235 8 M71 M4 N122 RIGID None None A53 Gr. 8 M71 M4 N122 RIGID None None A53 Gr. 10 M75 N131 N132 Face Horiz Beam None A53 Gr. 11 M91 N158 N50 360 RIGID None None A53 Gr. 12 M92 N158 N160 Grating Angle Beam None Q235 13 M93) Typical
4 M60 N98 N103 Offset Horiz Beam None Q235 5 M62 N102 N114 RIGID None None RIGIE 6 M63 N103 N99 Offset Horiz Beam None Q235 7 M69 N115 N116 Face Horiz Beam None A53 Gr. 8 M71 M4 N122 RIGID None None A53 Gr. 9 M72 N123 N124 Face Horiz Beam None A53 Gr. 10 M75 N131 N132 Face Horiz Beam None A53 Gr. 11 M91 N158 N50 360 RIGID None None Q235 13 M93 N159 N51 360 RIGID None None Q235 14 M94 N159 N161 270 Grating Angle Beam None Q235	Typical
5 M62 N102 N114 RIGID None None RIGIE 6 M63 N103 N99 Offset Horiz Beam None Q235 7 M69 N115 N116 Face Horiz Beam None A53 Gr. 8 M71 M4 N122 RIGID None None RIGIT 9 M72 N123 N124 Face Horiz Beam None A53 Gr. 10 M75 N131 N132 Face Horiz Beam None A53 Gr. 11 M91 N158 N50 360 RIGID None None A53 Gr. 12 M92 N158 N160 Grating Angle Beam None Q235 13 M93 N159 N51 360 RIGID None None RIGIE 14 M94 N159 N161 270 Grating Angle Beam None RIGIE <tr< td=""><td>Typical</td></tr<>	Typical
6 M63 N103 N99 Offset Horiz Beam None Q235 7 M69 N115 N116 Face Horiz Beam None A53 Gr. 8 M71 M4 N122 RIGID None None RIGII 9 M72 N123 N124 Face Horiz Beam None A53 Gr. 10 M75 N131 N132 Face Horiz Beam None A53 Gr. 11 M91 N158 N50 360 RIGID None None A53 Gr. 12 M92 N158 N160 Grating Angle Beam None Q235 13 M93 N159 N51 360 RIGID None None Q235 14 M94 N159 N161 270 Grating Angle Beam None Q235 15 M95 N160 N48 360 RIGID None None RIGIE <td>) Typical</td>) Typical
7M69N115N116Face HorizBeamNoneA53 Gr.8M71M4N122RIGIDNoneNoneRIGII9M72N123N124Face HorizBeamNoneA53 Gr.10M75N131N132Face HorizBeamNoneA53 Gr.11M91N158N50360RIGIDNoneNoneA53 Gr.11M91N158N50360RIGIDNoneNoneRIGIE12M92N158N160Grating AngleBeamNoneQ23513M93N159N51360RIGIDNoneNoneRIGIE14M94N159N161270Grating AngleBeamNoneQ23515M95N160N48360RIGIDNoneNoneRIGIE16M96N161N60360RIGIDNoneNoneRIGIE17M97N162N77360RIGIDNoneNoneRIGIE18M98N162N164Grating AngleBeamNoneQ23519M99N163N165270Grating AngleBeamNoneQ23521M100N163N165270Grating AngleBeamNoneQ23523M103N166N104360RIGIDNoneNoneRIGIE24M104N166N168Grating Angle<	Typical
8M71M4N122RIGIDNoneNoneRIGII9M72N123N124Face HorizBeamNoneA53 Gr.10M75N131N132Face HorizBeamNoneA53 Gr.11M91N158N50360RIGIDNoneNoneRIGIE12M92N158N160Grating AngleBeamNoneQ23513M93N159N51360RIGIDNoneNoneRIGIE14M94N159N161270Grating AngleBeamNoneQ23515M95N160N48360RIGIDNoneNoneRIGIE16M96N161N60360RIGIDNoneNoneRIGIE17M97N162N77360RIGIDNoneNoneRIGIE18M98N162N164Grating AngleBeamNoneQ23520M100N163N165270Grating AngleBeamNoneQ23521M101N164N75360RIGIDNoneNoneRIGIE23M103N166N104360RIGIDNoneNoneRIGIE24M104N166N168Grating AngleBeamNoneQ23525M105N167N105360RIGIDNoneNoneRIGIE24M104N166N168Grating AngleBe	B Typical
9 M72 N123 N124 Face Horiz Beam None A53 Gr. 10 M75 N131 N132 Face Horiz Beam None A53 Gr. 11 M91 N158 N50 360 RIGID None None RIGII 12 M92 N158 N160 Grating Angle Beam None Q235 13 M93 N159 N51 360 RIGID None None Q235 14 M94 N159 N161 270 Grating Angle Beam None Q235 15 M95 N160 N48 360 RIGID None None RIGII 16 M96 N161 N60 360 RIGID None None RIGII 17 M97 N162 N77 360 RIGID None None RIGII 18 M98 N162 N78 360 RIGID No) Typical
10 M75 N131 N132 Face Horiz Beam None A53 Gr. 11 M91 N158 N50 360 RIGID None None RIGII 12 M92 N158 N160 Grating Angle Beam None Q235 13 M93 N159 N51 360 RIGID None None Q235 14 M94 N159 N51 360 RIGID None None Q235 15 M95 N160 N48 360 RIGID None None Q235 16 M96 N161 N60 360 RIGID None None RIGIE 17 M97 N162 N77 360 RIGID None None RIGIE 18 M98 N162 N78 360 RIGID None None RIGIE 20 M100 N163 N765 270 Grating Angle	B Typical
11 M91 N158 N50 360 RIGID None None RIGIT 12 M92 N158 N160 Grating Angle Beam None Q235 13 M93 N159 N51 360 RIGID None None RIGIT 14 M94 N159 N161 270 Grating Angle Beam None Q235 15 M95 N160 N48 360 RIGID None None Q235 16 M96 N161 N60 360 RIGID None None RIGIT 17 M97 N162 N77 360 RIGID None None RIGIT 18 M98 N162 N164 Grating Angle Beam None Q235 20 M100 N163 N78 360 RIGID None None Q235 21 M101 N164 N75 360 RIGID	B Typical
12M92N158N160Grating AngleBeamNoneQ23513M93N159N51360RIGIDNoneNoneRIGIE14M94N159N161270Grating AngleBeamNoneQ23515M95N160N48360RIGIDNoneNoneRIGIE16M96N161N60360RIGIDNoneNoneRIGIE17M97N162N77360RIGIDNoneNoneRIGIE18M98N162N164Grating AngleBeamNoneQ23519M99N163N78360RIGIDNoneNoneRIGIE20M100N163N165270Grating AngleBeamNoneQ23521M101N164N75360RIGIDNoneNoneRIGIE23M103N166N104360RIGIDNoneNoneRIGIE24M104N166N168Grating AngleBeamNoneQ23525M105N167N105360RIGIDNoneNoneRIGIE25M105N167N105360RIGIDNoneNoneRIGIE) Typical
13 M93 N159 N51 360 RIGID None None RIGIE 14 M94 N159 N161 270 Grating Angle Beam None Q235 15 M95 N160 N48 360 RIGID None None RIGIE 16 M96 N161 N60 360 RIGID None None RIGIE 17 M97 N162 N77 360 RIGID None None RIGIE 18 M98 N162 N164 Grating Angle Beam None Q235 19 M99 N163 N78 360 RIGID None None RIGIE 20 M100 N163 N165 270 Grating Angle Beam None Q235 21 M101 N164 N75 360 RIGID None None RIGIE 22 M102 N165 N87 360 <td>Typical</td>	Typical
14 M94 N159 N161 270 Grating Angle Beam None Q235 15 M95 N160 N48 360 RIGID None None RIGIE 16 M96 N161 N60 360 RIGID None None RIGIE 17 M97 N162 N77 360 RIGID None None RIGIE 18 M98 N162 N74 360 RIGID None None Q235 19 M99 N163 N78 360 RIGID None None Q235 20 M100 N163 N165 270 Grating Angle Beam None Q235 21 M101 N164 N75 360 RIGID None None RIGIE 22 M102 N165 N87 360 RIGID None None RIGIE 23 M103 N166 N104) Typical
15 M95 N160 N48 360 RIGID None None RIGIE 16 M96 N161 N60 360 RIGID None None RIGIE 17 M97 N162 N77 360 RIGID None None RIGIE 18 M98 N162 N164 Grating Angle Beam None Q235 19 M99 N163 N78 360 RIGID None None Q235 20 M100 N163 N165 270 Grating Angle Beam None Q235 21 M101 N164 N75 360 RIGID None None RIGIE 22 M102 N165 N87 360 RIGID None None RIGIE 23 M103 N166 N104 360 RIGID None None RIGIE 24 M104 N166 N168 Grating Angl	Typical
16 M96 N161 N60 360 RIGID None None RIGIE 17 M97 N162 N77 360 RIGID None None RIGIE 18 M98 N162 N164 Grating Angle Beam None Q235 19 M99 N163 N78 360 RIGID None None RIGIE 20 M100 N163 N165 270 Grating Angle Beam None Q235 21 M101 N164 N75 360 RIGID None None RIGIE 22 M102 N165 N87 360 RIGID None None RIGIE 23 M103 N166 N104 360 RIGID None None RIGIE 24 M104 N166 N168 Grating Angle Beam None Q235 25 M105 N167 N105 360 RI) Typical
17 M97 N162 N77 360 RIGID None None RIGIE 18 M98 N162 N164 Grating Angle Beam None Q235 19 M99 N163 N78 360 RIGID None None Q235 20 M100 N163 N165 270 Grating Angle Beam None Q235 21 M101 N164 N75 360 RIGID None None Q235 21 M101 N164 N75 360 RIGID None None RIGIE 22 M102 N165 N87 360 RIGID None None RIGIE 23 M103 N166 N104 360 RIGID None None RIGIE 24 M104 N166 N168 Grating Angle Beam None Q235 25 M105 N167 N105 360 RIG) Typical
18M98N162N164Grating AngleBeamNoneQ23519M99N163N78360RIGIDNoneNoneRIGIE20M100N163N165270Grating AngleBeamNoneQ23521M101N164N75360RIGIDNoneNoneRIGIE22M102N165N87360RIGIDNoneNoneRIGIE23M103N166N104360RIGIDNoneNoneRIGIE24M104N166N168Grating AngleBeamNoneQ23525M105N167N105360RIGIDNoneNoneRIGIE) Typical
19 M99 N163 N78 360 RIGID None None RIGIE 20 M100 N163 N165 270 Grating Angle Beam None Q235 21 M101 N164 N75 360 RIGID None None RIGIE 22 M102 N165 N87 360 RIGID None None RIGIE 23 M103 N166 N104 360 RIGID None None RIGIE 24 M104 N166 N168 Grating Angle Beam None Q235 25 M105 N167 N105 360 RIGID None None RIGIE 25 M105 N167 N105 360 RIGID None None RIGIE	Typical
20 M100 N163 N165 270 Grating Angle Beam None Q235 21 M101 N164 N75 360 RIGID None None RIGIE 22 M102 N165 N87 360 RIGID None None RIGIE 23 M103 N166 N104 360 RIGID None None RIGIE 24 M104 N166 N168 Grating Angle Beam None Q235 25 M105 N167 N105 360 RIGID None None Q235 25 M105 N167 N105 360 RIGID None None RIGIE) Typical
21 M103 N164 N75 360 RIGID None None RIGIE 22 M102 N165 N87 360 RIGID None None RIGIE 23 M103 N166 N104 360 RIGID None None RIGIE 24 M104 N166 N168 Grating Angle Beam None Q235 25 M105 N167 N105 360 RIGID None None RIGIE	Typical
21 M101 M) Typical
23 M103 N166 N104 360 RIGID None None RIGIE 24 M104 N166 N168 Grating Angle Beam None Q235 25 M105 N167 N105 360 RIGID None None RIGIE) Typical
26M106M107000M101M010M01024M104N166N168Grating AngleBeamNoneQ23525M105N107N105360RIGIDNoneNoneRIGIE) Typical
25 M105 N167 N105 360 RIGID None None RIGIE	Typical
) Typical
26 M106 N167 N169 Z70 Grating Angle Beam None 0235	
27 M107 N168 N102 360 PICID None PICID	
28 M108 N160 N172 360 RIGID None None PIGE	
20 M100 N171 N172 90 HPK14 Angle Ream None O235	
29 M109 N171 N172 90 HRK14 Angle Deam None Q230 30 M110 N173 N174 90 HPK14 Angle Beam None Q235	Typical
21 M111 N175 N174 90 HPK14 Angle Beam None Q255	Typical
22 M115 N173 N170 30 HIKI4 Algie Bealt Note Q23	
22 M115 N165 N179 NIGH NOTE NOTE NOTE STATE	B Typical
33 MITO NIOS NIO4 RECEIPTION DE CONTRA DE CONT	B Typical
34 M121 N195 N194 HRK14 Pipe Beam None A53 Gr 25 M426 N205 N204 LIDK14 Dipe Deam None A53 Gr	B Typical
35 MIZO NZOS NZOS MZOS MZOS MZOS MZOS MZOS MZOS MZOS M	
30 M127 N208 N206 RIGIL None None RIGIL	
37 MI28 N209 N207 RIGID None None C226	
38 MI29 NZIU NZII HKKI4 Plate Beam None Q235	
39 IVI 30 IVZ 18 IVI 70 360 RIGID INONE NONE RIGIL	
40 IVIT31 IVZ21 IVZ19 KIGID IVONE NONE KIGIL	
41 IVIT3Z INZZZ INZZU RIGIU NONE NONE RIGIL	
42 IVI 133 IVZZ3 IVZZ4 HRK14 Plate Beam None Q235	
43 M134 N225 N171 360 RIGID None None RIGIL	
44 M135 N228 N226 RIGID None None RIGIL	
45 M136 N229 N227 RIGID None None RIGIE	
46 M137 N230 N231 HRK14 Plate Beam None Q235	
4/ M138 N232 N1/2 360 RIGID None None RIGIE	
48 M139 N235 N233 RIGID None None RIGIE	<u>Iypical</u>
49 M140 N236 N234 RIGID None None RIGIE	<u>Typical</u>
50 M141 N237 N238 HRK14 Plate Beam None Q235	Typical
51 M142 N239 N173 360 RIGID None None RIGIE	<u>Typical</u>
52 M143 N242 N240 RIGID None None RIGIE) Typical
53 M144 N243 N241 RIGID None None RIGIE	Typical
54 M145 N244 N245 HRK14 Plate Beam None Q235	Typical
55 M146 N246 N174 360 RIGID None None RIGIE) Typical
56 M147 N249 N247 RIGID None None RIGIE	

	Label	I Joint	J Joint	K Joint Rotate(Section/Shape	Туре	Design List	Material	Design R
57	M148	N250	N248		RIGID	None	None	RIGID	Typical
58	M149	N251	N252		HRK14 Plate	Beam	None	Q235	Typical
59	M150	N253	N175	360	RIGID	None	None	RIGID	Typical
60	M163	N263	N16	360	Mount Pipe	Column	None	A53 Gr.B	Typical
61	M171A	N277	N276		RIGID	None	None	RIGID	Typical
62	M172	N279	N278		RIGID	None	None	RIGID	Typical
63	M172A	N276	N278	360	RIGID	None	None	RIGID	Typical
64	M172C	N365A	N366A		RIGID	None	None	RIGID	Typical
65	M173A	N367A	N368A		RIGID	None	None	RIGID	Typical
66	M173B	N366A	N368A	360	RIGID	None	None	RIGID	Typical
67	M173C	N402	N403		RIGID	None	None	RIGID	Typical
68	M174	N404	N405		RIGID	None	None	RIGID	Typical
69	M175	N403	N405	360	RIGID	None	None	RIGID	Typical
70	M166A	N520	N521		RIGID	None	None	RIGID	Typical
71	M167A	N522	N523		RIGID	None	None	RIGID	Typical
72	M168A	N521	N523	360	RIGID	None	None	RIGID	Typical
73	M169A	N557	N558		RIGID	None	None	RIGID	Typical
74	M170A	N559	N560		RIGID	None	None	RIGID	Typical
75	M171C	N558	N560	360	RIGID	None	None	RIGID	Typical
76	M178	N700	N701		RIGID	None	None	RIGID	Typical
77	M179	N702	N703		RIGID	None	None	RIGID	Typical
78	M180	N701	N703	360	RIGID	None	None	RIGID	Typical
79	M181	N737	N738		RIGID	None	None	RIGID	Typical
80	M182	N739	N740		RIGID	None	None	RIGID	Typical
81	M183	N738	N740	360	RIGID	None	None	RIGID	Typical
82	M181A	N786	N100		RIGID	None	None	RIGID	Typical
83	M182A	N782	N100		RIGID	None	None	RIGID	Typical
84	M183A	N842	N100		RIGID	None	None	RIGID	Typical
85	M184	N846	N100		RIGID	None	None	RIGID	Typical
86	M185	N785	N100		RIGID	None	None	RIGID	Typical
87	M186	N784	N100	360	RIGID	None	None	RIGID	Typical
88	M187	N783	N100		RIGID	None	None	RIGID	Typical
89	M188	N801	N100		RIGID	None	None	RIGID	Typical
90	M189	N816	N100		RIGID	None	None	RIGID	Typical
91	M190	N831	N100		RIGID	None	None	RIGID	Typical
92	M191	N845	N100		RIGID	None	None	RIGID	Typical
93	M192	N844	N100	1e-6	RIGID	None	None	RIGID	Typical
94	M193	N843	N100		RIGID	None	None	RIGID	Typical
95	M194	N827	N100		RIGID	None	None	RIGID	Typical
96	M195	N812	N100		RIGID	None	None	RIGID	Typical
97	M196	N797	N100		RIGID	None	None	RIGID	Typical
98	M189A	N35	N864A		Offset Horiz	Beam	None	Q235	Typical
99	M193A	N906	N864A		RIGID	None	None	RIGID	Typical
100	M194A	N902	N864A		RIGID	None	None	RIGID	Typical
101	M195A	N962	N864A		RIGID	None	None	RIGID	Typical
102	M196A	N966	N864A		RIGID	None	None	RIGID	Typical
103	M197	N905	N864A		RIGID	None	None	RIGID	Typical
104	M198	N904	N864A	360	RIGID	None	None	RIGID	Typical
105	M199	N903	N864A		RIGID	None	None	RIGID	Typical
106	M200	N921	N864A		RIGID	None	None	RIGID	Typical
107	M201	N936	N864A		RIGID	None	None	RIGID	Typical
108	M202	N951	N864A		RIGID	None	None	RIGID	Typical
109	M203	N965	N864A		RIGID	None	None	RIGID	Typical
110	M204	N964	N864A	1e-6	RIGID	None	None	RIGID	Typical
111	M205	N963	N864A		RIGID	None	None	RIGID	Typical
112	M206	N947	N864A		RIGID	None	None	RIGID	Typical
113	M207	N932	N864A		RIGID	None	None	RIGID	Typical
				1	=				

	Label	I Joint	J Joint	K Joint	Rotate(Section/Shape	Type	Design List	Material	Design R
114	M208	N917	N864A			RIGID	None	None	RIGID	Typical
115	M209	N61	N990			Offset Horiz	Beam	None	Q235	Typical
116	M213	N1032	N990			RIGID	None	None	RIGID	Typical
117	M214	N1028	N990			RIGID	None	None	RIGID	Typical
118	M215	N1088	N990			RIGID	None	None	RIGID	Typical
119	M216	N1092	N990			RIGID	None	None	RIGID	Typical
120	M217	N1031	N990			RIGID	None	None	RIGID	Typical
121	M218	N1030	N990		360	RIGID	None	None	RIGID	Typical
122	M219	N1029	N990			RIGID	None	None	RIGID	Typical
123	M220	N1047	N990			RIGID	None	None	RIGID	Typical
124	M221	N1062	N990			RIGID	None	None	RIGID	Typical
125	M222	N1077	N990			RIGID	None	None	RIGID	Typical
126	M223	N1091	N990			RIGID	None	None	RIGID	Typical
127	M220	N1090	NIGGO		16-6	RIGID	None	None		Typical
128	M225	N1089	NIGGO		10.0	RIGID	None	None	RIGID	Typical
120	M226	N1073				RIGID	None	None		Typical
120	M220	N1058					None	None		Typical
121	N1221	N1030	N000				None	None		Typical
121		N1070A	N00				None	None		Typical
102	MODEA	N1083A	NOO				None	None		Typical
133	N1220A	N11003A	N98			RIGID	None	None		Typical
134	M222/A	N1103A	NOO			RIGID	None	None		Typical
135	<u>M228A</u>	N1107A	N98			RIGID	None	None	RIGID	Typical
130	<u>M229</u>	N1002A	N98			RIGID	None	None	RIGID	Typical
137	<u>M230</u>	N1081A	N98			RIGID	None	None	RIGID	Typical
138	<u>M231</u>	N1080A	N98			RIGID	None	None	RIGID	Typical
139	<u>M232</u>	N1085A	N98			RIGID	None	None	RIGID	Typical
140	M233	N1091A	N98			RIGID	None	None	RIGID	Typical
141	<u>M234</u>	N1097A	N98			RIGID	None	None	RIGID	Typical
142	M235	N1104A	N98			RIGID	None	None	RIGID	Iypical
143	M236	N1105A	N98			RIGID	None	None	RIGID	Typical
144	M237	N1106A	N98			RIGID	None	None	RIGID	Typical
145	<u>M238</u>	N1101A	N98			RIGID	None	None	RIGID	Typical
146	M239	N1095A	N98			RIGID	None	None	RIGID	Typical
147	M240	N1089A	N98			RIGID	None	None	RIGID	Typical
148	M241	N1129	N99			RIGID	None	None	RIGID	Typical
149	M242	N1133	N99			RIGID	None	None	RIGID	Typical
150	M243	N1153	N99			RIGID	None	None	RIGID	Typical
151	M244	N1157	N99			RIGID	None	None	RIGID	Typical
152	M245	N1132	N99			RIGID	None	None	RIGID	Typical
153	M246	N1131	N99			RIGID	None	None	RIGID	Typical
154	M247	N1130	N99			RIGID	None	None	RIGID	Typical
155	M248	N1135	N99			RIGID	None	None	RIGID	Typical
156	M249	N1141	N99			RIGID	None	None	RIGID	Typical
157	M250	N1147	N99			RIGID	None	None	RIGID	Typical
158	M251	N1154	N99			RIGID	None	None	RIGID	Typical
159	M252	N1155	N99			RIGID	None	None	RIGID	Typical
160	M253	N1156	N99			RIGID	None	None	RIGID	Typical
161	M254	N1151	N99			RIGID	None	None	RIGID	Typical
162	M255	N1145	N99			RIGID	None	None	RIGID	Typical
163	M256	N1139	N99			RIGID	None	None	RIGID	Typical
164	M245A	N1149A	N49			Offset Horiz	Beam	None	Q235	Typical
165	M246A	N49	N1150A			Offset Horiz	Beam	None	Q235	Typical
166	M247A	N1172	N1149A			RIGID	None	None	RIGID	Typical
167	M248A	N1176	N1149A			RIGID	None	None	RIGID	Typical
168	M249A	N1196	N1149A			RIGID	None	None	RIGID	Typical
169	M250A	N1200	N1149A			RIGID	None	None	RIGID	Typical
170	M251A	N1175	N1149A			RIGID	None	None	RIGID	Typical

171 M253A N1174 N1148A RiGiD None None RiGiD Typical 172 M253A N1178 N1148A RiGiD None None RiGiD Typical 173 M255A N1148 N1148A RiGiD None None RiGiD Typical 175 M255A N1148 N1148A RiGiD None None RiGiD Typical 176 M256A N1190 N1148A RiGiD None None RiGiD Typical 177 M256 N1191 N1148A RiGiD None None RiGiD Typical 178 M260 N1194 Ridid RiGiD None Ridid Typical 178 M262 N1124 N1196A Ridid Ridid Ridid Typical 180 M265 N124 N1196A Ridid Ridid Nine Ridid Typical 181 M265 N12		Label	I Joint	J Joint	K Joint	Rotate(Section/Shape	Туре	Design List	Material	Design R
172 M253A N1178 N1149A RGD None RGD Ypical 173 M254A N1184 N1149A RGD None None RGD Ypical 175 M256A N1190 N1149A RGD None None None RGD Ypical 176 M257 N1190 N1149A RGD None None RGD Ypical 177 M259 N1198 N1149A RGD None None RGD Ypical 178 M260 N1194 N1149A RGD None None RGD Ypical 181 M262 N1182 N1149A RGD None None RGD Ypical 182 M263 N1214 N1150A RGD None None RGD Ypical 183 M264 N1216 N1150A RGD None None RGD Ypical 184 M265 N1220<	171	M252A	N1174	N1149A			RIGID	None	None	RIGID	Typical
173 M254A N1178 N11484 N1149A R(GD None R(GD Typical 175 M255A N11490 R(GD None None R(GD Typical 176 M257 N1197 N1149A R(GD None None R(GD Typical 177 M258 N1198 N1149A R(GD None None R(GD Typical 178 M259 N1199 N1149A R(GD None None R(GD Typical 180 M261 N1188 N1149A R(GD None None R(GD Typical 181 M262 N1182 N1150A R(GD None None R(GD Typical 182 M263 N1214 N1150A R(GD None None R(GD Typical 183 M264 N1216 N1150A R(GD None R(GD Typical 184 M267 N1217	172	M253A	N1173	N1149A			RIGID	None	None	RIGID	Typical
174 M256A N1184 RIGD None RIGD Typical 175 M257 N1190 N1149A RIGD None None RIGD Typical 177 M258 N1198 N1149A RIGD None None RIGD Typical 178 M259 N1198 N1149A RIGD None None RIGD Typical 180 M260 N1194 N1149A RIGD None None RIGD Typical 181 M262 N1182 N1149A RIGD None None RIGD Typical 183 M264 N1218 N1159A RIGD None None RIGD Typical 185 M266 N1221 N1159A RIGD None None RIGD Typical 186 M266 N1221 N1159A RIGD None RIGD Typical 186 M267 N1221 N1160A RI	173	M254A	N1178	N1149A			RIGID	None	None	RIGID	Typical
175 M256A N1190 N1149A RIGID None RIGID Typical 177 M257 N1197 N1149A RIGID None None RIGID Typical 178 M259 N1199 N1149A RIGID None None RIGID Typical 178 M260 N1194 N1149A RIGID None None RIGID Typical 180 M261 N1184 N1149A RIGID None None RIGID Typical 181 M262 N1182 N1149A RIGID None None RIGID Typical 182 M263 N124 N1150A RIGID None None RIGID Typical 184 M265 N1242 N1190A RIGID None RIGID Typical 186 M267 N1216 N1150A RIGID None RIGID Typical 187 M268 N1216 N1150A<	174	M255A	N1184	N1149A			RIGID	None	None	RIGID	Typical
176 M257 N1197 N1149A RIGID None RIGID Typical 177 M258 N1198 N1149A RIGID None None RIGID Typical 178 M260 N1194 N1149A RIGID None None RIGID Typical 181 M261 N1182 N1149A RIGID None None RIGID Typical 183 M263 N1214 N1159A RIGID None None RIGID Typical 184 M265 N1228 N1159A RIGID None None RIGID Typical 184 M265 N1242 N1159A RIGID None RIGID Typical 185 M266 N1242 N1159A RIGID None RIGID Typical 187 M288 N1216 N1159A RIGID None RIGID Typical 187 M288 N1216 N1159A RIGID	175	M256A	N1190	N1149A			RIGID	None	None	RIGID	Typical
177 M258 N1198 N1149A RIGID None RIGID Typical 178 M250 N1194 N1149A RIGID None None RIGID Typical 180 M261 N1184 N1149A RIGID None None RIGID Typical 181 M262 N1182 N1184 N119A RIGID None None RIGID Typical 182 M263 N1214 N1150A RIGID None None RIGID Typical 184 M265 N1223 N1150A RIGID None RIGID Typical 186 M266 N1221 N1150A RIGID None None RIGID Typical 187 M268 N1216 N1150A RIGID None RIGID Typical 188 M269 N1220 N1150A RIGID None None RIGID Typical 199 M271 N1220 <td>176</td> <td>M257</td> <td>N1197</td> <td>N1149A</td> <td></td> <td></td> <td>RIGID</td> <td>None</td> <td>None</td> <td>RIGID</td> <td>Typical</td>	176	M257	N1197	N1149A			RIGID	None	None	RIGID	Typical
178 M259 N1139 N1149A RGD None RIGD Typical 180 M261 N1138 N1149A RIGD None RIGD Typical 181 M262 N1138 N1149A RIGD None RIGD Typical 182 M263 N1124 N1149A RIGD None RIGD Typical 183 M264 N1218 N1150A RIGD None None RIGD Typical 184 M265 N1238 N1150A RIGD None RIGD Typical 185 M266 N1247 N1150A RIGD None RIGD Typical 186 M267 N1220 N1150A RIGD None RIGD Typical 187 M268 N1226 N1150A RIGD None RIGD Typical 188 M270 N1220 N1150A RIGD None RIGD Typical 19	177	M258	N1198	N1149A			RIGID	None	None	RIGID	Typical
173 M260 N1134 N1149A RIGID None RIGID Typical 180 M261 N1138 N1149A RIGID None RIGID Typical 181 M262 N1148 N1149A RIGID None RIGID Typical 183 M264 N1214 N1150A RIGID None RIGID Typical 184 M265 N1223 N1150A RIGID None RIGID Typical 186 M266 N1242 N1150A RIGID None RIGID Typical 186 M267 N1220 N1150A RIGID None RIGID Typical 188 M269 N1220 N150A RIGID None RIGID Typical 190 M271 N1220 N150A RIGID None RIGID Typical 191 M272 N1232 N1150A RIGID None None RIGID Typical	178	M259	N1199	N1149A			RIGID	None	None	RIGID	Typical
180 M261 N1182 N1184 RIGID None None RIGID Typical 181 M262 N1182 N1182 N1184 N1180A RIGID None None RIGID Typical 183 M264 N1216 N1180A RIGID None None RIGID Typical 184 M265 N1248 N1150A RIGID None None RIGID Typical 185 M266 N1242 N1150A RIGID None None RIGID Typical 186 M267 N1215 N1150A RIGID None None RIGID Typical 189 M270 N1226 N1150A RIGID None None RIGID Typical 190 M271 N1226 N1150A RIGID None None RIGID Typical 191 M272 N1230 N1150A RIGID None None RIGID Typica	179	M260	N1194	N1149A			RIGID	None	None	RIGID	Typical
181 M262 N1182 IN190A RGD None None RIGD Typical 182 M263 N1214 N1150A RIGD None None RIGD Typical 183 M265 N1238 N1150A RIGD None None RIGD Typical 185 M265 N1242 N1150A RIGD None None RIGD Typical 186 M267 N1217 N1150A RIGD None None RIGD Typical 187 M268 N1220 N1150A RIGD None None RIGD Typical 189 M270 N1220 N1150A RIGD None None RIGD Typical 191 M272 N1230 N1150A RIGD None RIGD Typical 192 M274 N1230 N1150A RIGD None None RIGD Typical 193 M274 N1230	180	M261	N1188	N1149A			RIGID	None	None	RIGID	Typical
182 M264 N1214 N1150A RIGID None None RIGID Typical 183 M264 N1248 N1150A RIGID None RIGID Typical 184 M265 N1242 N1150A RIGID None None RIGID Typical 185 M266 N1217 N1150A RIGID None None RIGID Typical 187 M268 N1216 N1150A RIGID None None RIGID Typical 188 M270 N1220 N1150A RIGID None None RIGID Typical 190 M271 N1220 N1150A RIGID None None RIGID Typical 192 M273 N1239 N1150A RIGID None None RIGID Typical 193 M274 N1240 N150A RIGID None None RIGID Typical 196 M277	181	M262	N1182	N1149A			RIGID	None	None	RIGID	Typical
183 M264 N1218 N1150A RIGID None None RIGID Typical 185 M266 N1242 N1150A RIGID None None RIGID Typical 186 M267 N1217 N1150A RIGID None None RIGID Typical 187 M268 N1216 N1150A RIGID None None RIGID Typical 189 M270 N1220 N1150A RIGID None None RIGID Typical 191 M271 N1220 N1150A RIGID None None RIGID Typical 192 M273 N1230 N1150A RIGID None None RIGID Typical 193 M274 N1240 N1150A RIGID None None RIGID Typical 194 M275 N1241 N1150A RIGID None None RIGID Typical 195 <td>182</td> <td>M263</td> <td>N1214</td> <td>N1150A</td> <td></td> <td></td> <td>RIGID</td> <td>None</td> <td>None</td> <td>RIGID</td> <td>Typical</td>	182	M263	N1214	N1150A			RIGID	None	None	RIGID	Typical
184 M265 N1228 N1150A RIGID None RIGID None RIGID Typical 185 M266 N1242 N1150A RIGID None None RIGID Typical 187 M268 N1216 N1150A RIGID None None RIGID Typical 188 M269 N1215 N1150A RIGID None None RIGID Typical 190 M271 N1220 N1150A RIGID None None RIGID Typical 191 M272 N1232 N1150A RIGID None None RIGID Typical 192 M273 N1241 N1150A RIGID None None RIGID Typical 194 M275 N1241 N1150A RIGID None RIGID Typical 195 M276 N1236 N160A RIGID None RIGID Typical 194 M275 <td>183</td> <td>M264</td> <td>N1218</td> <td>N1150A</td> <td></td> <td></td> <td>RIGID</td> <td>None</td> <td>None</td> <td>RIGID</td> <td>Typical</td>	183	M264	N1218	N1150A			RIGID	None	None	RIGID	Typical
185 M266 N1242 N1150A RIGID None RIGID Typical 187 M268 N1216 N1150A RIGID None None RIGID Typical 188 M269 N1215 N1150A RIGID None None RIGID Typical 189 M270 N1220 N1150A RIGID None None RIGID Typical 191 M272 N1232 N1150A RIGID None None None RIGID Typical 193 M274 N1240 N1150A RIGID None None RIGID Typical 193 M274 N1240 N1150A RIGID None None RIGID Typical 194 M275 N1233 N150A RIGID None None RIGID Typical 197 M278 N1224 N150A RIGID None None RIGID Typical 198	184	M265	N1238	N1150A			RIGID	None	None	RIGID	Typical
186 M267 N1217 N1150A RIGID None RIGID Typical 187 M268 N1216 N1150A RIGID None None RIGID Typical 189 M270 N1220 N1150A RIGID None None RIGID Typical 190 M271 N1220 N1150A RIGID None None RIGID Typical 191 M272 N1232 N1150A RIGID None None RIGID Typical 192 M273 N1230 N1150A RIGID None None RIGID Typical 193 M274 N1240 N1150A RIGID None None RIGID Typical 194 M276 N1236 N1150A RIGID None None RIGID Typical 196 M276 N1230 N160A RIGID None RIGID None RIGID Typical 197 <td>185</td> <td>M266</td> <td>N1242</td> <td>N1150A</td> <td></td> <td></td> <td>RIGID</td> <td>None</td> <td>None</td> <td>RIGID</td> <td>Typical</td>	185	M266	N1242	N1150A			RIGID	None	None	RIGID	Typical
187 M268 N11160 RIGID None None RIGID Typical 188 M269 N11150A RIGID None None RIGID Typical 189 M270 N1220 N1150A RIGID None None RIGID Typical 190 M271 N1226 N1150A RIGID None None RIGID Typical 191 M272 N1239 N1150A RIGID None None None RIGID Typical 193 M274 N1240 RIGID None None RIGID Typical 194 M275 N1241 N1150A RIGID None None RIGID Typical 195 M276 N1236 N1150A RIGID None None RIGID Typical 197 M278 N1224 N1150A RIGID None None RIGID Typical 198 M279 N1250	186	M267	N1217	N1150A			RIGID	None	None	RIGID	Typical
188 M269 N1150A RIGID None None RIGID Typical 190 M270 N1220 N1150A RIGID None None RIGID Typical 191 M272 N1232 N1150A RIGID None None RIGID Typical 192 M273 N1230 N1150A RIGID None None RIGID Typical 193 M274 N1240 N1150A RIGID None None RIGID Typical 194 M275 N1241 N1150A RIGID None None RIGID Typical 195 M276 N1230 N1150A RIGID None None RIGID Typical 196 M277 N1230 N150A RIGID None None RIGID Typical 197 M280 N76 Offset Horiz Beam None Q235 Typical 200 M281 N1250 <td>187</td> <td>M268</td> <td>N1216</td> <td>N1150A</td> <td></td> <td></td> <td>RIGID</td> <td>None</td> <td>None</td> <td>RIGID</td> <td>Typical</td>	187	M268	N1216	N1150A			RIGID	None	None	RIGID	Typical
189 M270 N1150A RIGID None None RIGID Typical 190 M271 N1226 N1150A RIGID None None RIGID Typical 191 M272 N1232 N1150A RIGID None None RIGID Typical 192 M273 N1239 N1150A RIGID None None None RIGID Typical 193 M274 N1240 N1150A RIGID None None RIGID Typical 195 M276 N1241 N1150A RIGID None None RIGID Typical 196 M277 N1230 N160A RIGID None None RIGID Typical 197 M278 N1224 N1150A RIGID None None RIGID Typical 198 M279 N1250 RIGID None None RIGID Typical 201 M282	188	M269	N1215	N1150A			RIGID	None	None	RIGID	Typical
190 M271 N1226 N1150A RIGID None RIGID None RIGID Typical 191 M272 N1239 N1150A RIGID None None RIGID Typical 192 M274 N1240 N1150A RIGID None None RIGID Typical 193 M274 N1240 N1150A RIGID None None RIGID Typical 194 M276 N1236 N1150A RIGID None None RIGID Typical 196 M277 N1230 N150A RIGID None None RIGID Typical 197 M278 N1250 RIGID None None RIGID Typical 200 M281 N1273 N1250 RIGID None None RIGID Typical 201 M282 N1276 RIGID None None RIGID Typical 204 M283	189	M270	N1220	N1150A			RIGID	None	None	RIGID	Typical
191 M272 N1232 N1150A RIGID None RIGID Typical 192 M273 N1239 N1150A RIGID None RIGID None RIGID Typical 193 M274 N1244 N1150A RIGID None None RIGID Typical 194 M275 N1241 N1150A RIGID None None RIGID Typical 195 M276 N1230 N1150A RIGID None None RIGID Typical 196 M277 N1230 N1150A RIGID None None RIGID Typical 198 M279 N1224 N1250 RIGID None None Q235 Typical 200 M281 N1273 N1250 RIGID None None RIGID Typical 203 M284 N1301 N1250 RIGID None None RIGID Typical 204	190	M271	N1226	N1150A			RIGID	None	None	RIGID	Typical
192 M273 N1239 N1150A RIGID None None RIGID Typical 193 M274 N1240 N1150A RIGID None None RIGID Typical 194 M275 N1236 N1150A RIGID None None RIGID Typical 196 M277 N1230 N1150A RIGID None None RIGID Typical 197 M278 N1224 N1150A RIGID None None RIGID Typical 198 M279 N1250 N76 Offset Horiz Beam None Q235 Typical 200 M281 N1273 N1250 RIGID None None RIGID Typical 201 M282 N1277 N1250 RIGID None None RIGID Typical 202 M283 N1276 N1250 RIGID None None RIGID Typical 203 <td>191</td> <td>M272</td> <td>N1232</td> <td>N1150A</td> <td></td> <td></td> <td>RIGID</td> <td>None</td> <td>None</td> <td>RIGID</td> <td>Typical</td>	191	M272	N1232	N1150A			RIGID	None	None	RIGID	Typical
193 M274 N1240 N150A RIGID None None RIGID Typical 194 M275 N1241 N1150A RIGID None None RIGID Typical 195 M276 N1236 N1150A RIGID None None RIGID Typical 196 M277 N1230 N1150A RIGID None None RIGID Typical 197 M278 N1224 N150A RIGID None None RIGID Typical 198 M279 N1250 N76 Offset Horiz Beam None Q235 Typical 200 M281 N1277 N1250 RIGID None None RIGID Typical 201 M282 N1277 N1250 RIGID None None RIGID Typical 203 M284 N1301 N1250 RIGID None RIGID Typical 204 M285	192	M273	N1239	N1150A			RIGID	None	None	RIGID	Typical
194 M275 N1241 N1150A RIGID None None RIGID Typical 195 M276 N1236 N1150A RIGID None None RIGID Typical 196 M277 N1230 N1150A RIGID None None RIGID Typical 197 M278 N1224 N1150A RIGID None None RIGID Typical 198 M279 N1250 N76 Offset Horiz Beam None Q235 Typical 200 M281 N1273 N1250 RIGID None None RIGID Typical 201 M282 N1271 N1250 RIGID None None RIGID Typical 203 M284 N1301 N1250 RIGID None None RIGID Typical 204 M285 N1276 N1250 RIGID None RIGID Typical 205 M286	193	M274	N1240	N1150A			RIGID	None	None	RIGID	Typical
195 M276 N1236 N1150A RIGID None None RIGID Typical 196 M277 N1230 N1150A RIGID None None RIGID Typical 197 M278 N1224 N1150A RIGID None None C235 Typical 198 M279 N1250 N76 Offset Horiz Beam None Q235 Typical 200 M281 N1273 N1250 RIGID None None RIGID Typical 201 M282 N1277 N1250 RIGID None None RIGID Typical 203 M284 N1301 N1250 RIGID None None RIGID Typical 204 M285 N1276 N1250 RIGID None None RIGID Typical 205 M286 N1274 N1250 RIGID None None RIGID Typical 207	194	M275	N1241	N1150A			RIGID	None	None	RIGID	Typical
196 M277 N1230 N1150A RIGID None None RIGID Typical 197 M278 N1224 N1150A RIGID None None RIGID Typical 198 M279 N1250 N76 Offset Horiz Beam None Q235 Typical 200 M281 N1273 N1250 RIGID None None Q335 Typical 201 M282 N1277 N1250 RIGID None None RIGID Typical 203 M284 N1301 N1250 RIGID None None RIGID Typical 204 M285 N1276 N1250 RIGID None None RIGID Typical 206 M286 N1275 N1250 RIGID None None RIGID Typical 207 M288 N1250 RIGID None None RIGID Typical 210 M290	195	M276	N1236	N1150A			RIGID	None	None	RIGID	Typical
197 M278 N1224 N1150A RIGID None None RIGID Typical 198 M279 N1250 N76 Offset Horiz Beam None Q235 Typical 200 M281 N1273 N1250 RIGID None None RIGID Typical 201 M282 N1277 N1250 RIGID None None RIGID Typical 202 M283 N1297 N1250 RIGID None None RIGID Typical 203 M284 N1301 N1250 RIGID None None RIGID Typical 204 M285 N1276 N1250 RIGID None None RIGID Typical 205 M286 N1274 N1250 RIGID None None RIGID Typical 206 M287 N1244 N1250 RIGID None None RIGID Typical 208	196	M277	N1230	N1150A			RIGID	None	None	RIGID	Typical
198 M279 N1250 N76 Offset Horiz Beam None Q235 Typical 199 M280 N76 N1251 Offset Horiz Beam None Q235 Typical 200 M281 N1273 N1250 RIGID None None RIGID Typical 201 M282 N1277 N1250 RIGID None None RIGID Typical 203 M284 N1301 N1250 RIGID None None RIGID Typical 204 M285 N1276 N1250 RIGID None None RIGID Typical 205 M286 N1275 N1250 RIGID None None RIGID Typical 206 M287 N1274 N1250 RIGID None None RIGID Typical 207 M288 N1279 N1250 RIGID None None RIGID Typical 210	197	M278	N1224	N1150A			RIGID	None	None	RIGID	Typical
199 M280 N76 N1251 Offset Horiz Beam None Q235 Typical 200 M281 N1273 N1250 RIGID None None RIGID Typical 201 M282 N1277 N1250 RIGID None None RIGID Typical 202 M283 N1297 N1250 RIGID None None RIGID Typical 203 M284 N1301 N1250 RIGID None None RIGID Typical 204 M285 N1276 N1250 RIGID None None RIGID Typical 205 M286 N1271 N1250 RIGID None None RIGID Typical 206 M287 N1244 N1250 RIGID None None RIGID Typical 207 M288 N1250 RIGID None None RIGID Typical 208 M290	198	M279	N1250	N76			Offset Horiz	Beam	None	Q235	Typical
200 M281 N1273 N1250 RIGID None None RIGID Typical 201 M282 N1277 N1250 RIGID None None RIGID Typical 202 M283 N1297 N1250 RIGID None None RIGID Typical 203 M284 N1301 N1250 RIGID None None RIGID Typical 204 M285 N1276 N1250 RIGID None None RIGID Typical 206 M286 N1275 N1250 RIGID None None RIGID Typical 206 M287 N124 N1250 RIGID None None RIGID Typical 208 M289 N1250 RIGID None None RIGID Typical 210 M291 N1250 RIGID None None RIGID Typical 211 M292 N1290 <	199	M280	N76	N1251			Offset Horiz	Beam	None	Q235	Typical
201 M282 N1277 N1250 RIGID None None RIGID Typical 202 M283 N1297 N1250 RIGID None None RIGID Typical 203 M284 N1301 N1250 RIGID None None RIGID Typical 204 M285 N1276 N1250 RIGID None None None RIGID Typical 205 M286 N1275 N1250 RIGID None None RIGID Typical 206 M287 N1274 N1250 RIGID None None RIGID Typical 208 M289 N1285 N1250 RIGID None None RIGID Typical 210 M291 N1280 RIGID None None RIGID Typical 211 M292 N1298 N1250 RIGID None None RIGID Typical 212	200	M281	N1273	N1250			RIGID	None	None	RIGID	Typical
202 M283 N1297 N1250 RIGID None None RIGID Typical 203 M284 N1301 N1250 RIGID None None RIGID Typical 204 M285 N1276 N1250 RIGID None None RIGID Typical 205 M286 N1275 N1250 RIGID None None RIGID Typical 206 M287 N1274 N1250 RIGID None None RIGID Typical 208 M289 N1285 N1250 RIGID None None RIGID Typical 209 M290 N1291 N1250 RIGID None None RIGID Typical 210 M292 N1299 N1250 RIGID None None RIGID Typical 211 M292 N1295 N1250 RIGID None None RIGID Typical 214	201	M282	N1277	N1250			RIGID	None	None	RIGID	Typical
203M284N1301N1250RIGIDNoneNoneRIGIDTypical204M285N1276N1250RIGIDNoneNoneRIGIDTypical205M286N1275N1250RIGIDNoneNoneRIGIDTypical206M287N1274N1250RIGIDNoneNoneRIGIDTypical207M288N1279N1250RIGIDNoneNoneRIGIDTypical208M289N1285N1250RIGIDNoneNoneRIGIDTypical209M290N1291N1250RIGIDNoneNoneRIGIDTypical210M291N1298N1250RIGIDNoneNoneRIGIDTypical211M292N1299N1250RIGIDNoneNoneRIGIDTypical213M294N1295N1250RIGIDNoneNoneRIGIDTypical214M295N1289N1250RIGIDNoneNoneRIGIDTypical215M296N1283N1250RIGIDNoneNoneRIGIDTypical216M297N1315N1251RIGIDNoneNoneRIGIDTypical217M298N1319N1251RIGIDNoneNoneRIGIDTypical218M299N1339N1251RIGIDNoneNoneRIGIDTypical220M301N1348N1251<	202	M283	N1297	N1250			RIGID	None	None	RIGID	Typical
204M285N1276N1250RIGIDNoneNoneRIGIDTypical205M286N1275N1250RIGIDNoneNoneRIGIDTypical206M287N1274N1250RIGIDNoneNoneRIGIDTypical207M288N1279N1250RIGIDNoneNoneRIGIDTypical208M289N1285N1250RIGIDNoneNoneRIGIDTypical209M290N1291N1250RIGIDNoneNoneRIGIDTypical210M291N1298N1250RIGIDNoneNoneRIGIDTypical211M292N1299N1250RIGIDNoneNoneRIGIDTypical212M293N1300N1250RIGIDNoneNoneRIGIDTypical213M294N1295N1250RIGIDNoneNoneRIGIDTypical214M295N1289N1250RIGIDNoneNoneRIGIDTypical215M296N1283N1250RIGIDNoneNoneRIGIDTypical216M297N1315N1251RIGIDNoneNoneRIGIDTypical217M296N1281RIGIDNoneNoneRIGIDTypical218M299N1339N1251RIGIDNoneNoneRIGIDTypical220M300N1343N1251RIGID<	203	M284	N1301	N1250			RIGID	None	None	RIGID	Typical
205 M286 N1275 N1250 RIGID None None RIGID Typical 206 M287 N1274 N1250 RIGID None None RIGID Typical 207 M288 N1279 N1250 RIGID None None RIGID Typical 208 M289 N1250 RIGID None None RIGID Typical 209 M290 N1291 N1250 RIGID None None RIGID Typical 210 M291 N1298 N1250 RIGID None None RIGID Typical 211 M292 N1299 N1250 RIGID None None RIGID Typical 213 M294 N1250 RIGID None None RIGID Typical 214 M295 N1289 N1250 RIGID None None RIGID Typical 215 M296 N1283	204	M285	N1276	N1250			RIGID	None	None	RIGID	Typical
206M287N1274N1250RIGIDNoneNoneRIGIDTypical207M288N1279N1250RIGIDNoneNoneRIGIDTypical208M289N1285N1250RIGIDNoneNoneRIGIDTypical209M290N1291N1250RIGIDNoneNoneRIGIDTypical210M291N1298N1250RIGIDNoneNoneRIGIDTypical211M292N1299N1250RIGIDNoneNoneRIGIDTypical212M293N1300N1250RIGIDNoneNoneRIGIDTypical213M294N1295N1250RIGIDNoneNoneRIGIDTypical214M295N1289N1250RIGIDNoneNoneRIGIDTypical215M296N1283N1250RIGIDNoneNoneRIGIDTypical216M297N1315N1251RIGIDNoneNoneRIGIDTypical217M298N139N1251RIGIDNoneNoneRIGIDTypical218M299N1339N1251RIGIDNoneNoneRIGIDTypical220M301N138N1251RIGIDNoneNoneRIGIDTypical221M302N1317N1251RIGIDNoneNoneRIGIDTypical222M303N1316N1251 <td< td=""><td>205</td><td>M286</td><td>N1275</td><td>N1250</td><td></td><td></td><td>RIGID</td><td>None</td><td>None</td><td>RIGID</td><td>Typical</td></td<>	205	M286	N1275	N1250			RIGID	None	None	RIGID	Typical
207 M288 N1279 N1250 RIGID None None RIGID Typical 208 M289 N1285 N1250 RIGID None None RIGID Typical 209 M290 N1291 N1250 RIGID None None RIGID Typical 210 M291 N1298 N1250 RIGID None None RIGID Typical 211 M292 N1298 N1250 RIGID None None RIGID Typical 212 M293 N1300 N1250 RIGID None None RIGID Typical 213 M294 N1295 N1250 RIGID None None RIGID Typical 214 M295 N1283 N1250 RIGID None None RIGID Typical 216 M297 N1315 N1251 RIGID None None RIGID Typical 217	206	M287	N1274	N1250			RIGID	None	None	RIGID	Typical
208M289N1285N1250RIGIDNoneNoneRIGIDTypical209M290N1291N1250RIGIDNoneNoneRIGIDTypical210M291N1298N1250RIGIDNoneNoneRIGIDTypical211M292N1299N1250RIGIDNoneNoneRIGIDTypical212M293N1300N1250RIGIDNoneNoneRIGIDTypical213M294N1295N1250RIGIDNoneNoneRIGIDTypical214M295N1289N1250RIGIDNoneNoneRIGIDTypical215M296N1283N1250RIGIDNoneNoneRIGIDTypical216M297N1315N1251RIGIDNoneNoneRIGIDTypical217M298N139N1251RIGIDNoneNoneRIGIDTypical218M299N1339N1251RIGIDNoneNoneRIGIDTypical219M300N1343N1251RIGIDNoneNoneRIGIDTypical220M301N1316N1251RIGIDNoneNoneRIGIDTypical221M302N1317N1251RIGIDNoneNoneRIGIDTypical222M303N1316N1251RIGIDNoneNoneRIGIDTypical223M304N1321N1251 <t< td=""><td>207</td><td>M288</td><td>N1279</td><td>N1250</td><td></td><td></td><td>RIGID</td><td>None</td><td>None</td><td>RIGID</td><td>Typical</td></t<>	207	M288	N1279	N1250			RIGID	None	None	RIGID	Typical
209M290N1291N1250RIGIDNoneNoneRIGIDTypical210M291N1298N1250RIGIDNoneNoneRIGIDTypical211M292N1299N1250RIGIDNoneNoneRIGIDTypical212M293N1300N1250RIGIDNoneNoneRIGIDTypical213M294N1295N1280RIGIDNoneNoneRIGIDTypical214M295N1289N1250RIGIDNoneNoneRIGIDTypical215M296N1283N1250RIGIDNoneNoneRIGIDTypical216M297N1315N1251RIGIDNoneNoneRIGIDTypical217M298N1319N1251RIGIDNoneNoneRIGIDTypical218M299N1339N1251RIGIDNoneNoneRIGIDTypical220M301N1343N1251RIGIDNoneNoneRIGIDTypical221M302N1317N1251RIGIDNoneNoneRIGIDTypical222M303N1316N1251RIGIDNoneNoneRIGIDTypical224M305N1327N1251RIGIDNoneNoneRIGIDTypical225M306N1333N1251RIGIDNoneNoneRIGIDTypical226M307N1340N1251<	208	M289	N1285	N1250			RIGID	None	None	RIGID	Typical
210M291N1298N1250RIGIDNoneNoneRIGIDTypical211M292N1299N1250RIGIDNoneNoneRIGIDTypical212M293N1300N1250RIGIDNoneNoneRIGIDTypical213M294N1295N1250RIGIDNoneNoneRIGIDTypical214M295N1289N1250RIGIDNoneNoneRIGIDTypical215M296N1283N1250RIGIDNoneNoneRIGIDTypical216M297N1315N1251RIGIDNoneNoneRIGIDTypical217M298N1319N1251RIGIDNoneNoneRIGIDTypical218M299N1339N1251RIGIDNoneNoneRIGIDTypical220M301N1343N1251RIGIDNoneNoneRIGIDTypical221M302N1317N1251RIGIDNoneNoneRIGIDTypical222M303N1316N1251RIGIDNoneNoneRIGIDTypical223M304N1321N1251RIGIDNoneNoneRIGIDTypical225M306N1333N1251RIGIDNoneNoneRIGIDTypical226M307N1340N1251RIGIDNoneNoneRIGIDTypical227M308N1341N1251<	209	M290	N1291	N1250			RIGID	None	None	RIGID	Typical
211M292N1299N1250RIGIDNoneNoneRIGIDTypical212M293N1300N1250RIGIDNoneNoneRIGIDTypical213M294N1295N1250RIGIDNoneNoneRIGIDTypical214M295N1289N1250RIGIDNoneNoneRIGIDTypical215M296N1283N1250RIGIDNoneNoneRIGIDTypical216M297N1315N1251RIGIDNoneNoneRIGIDTypical217M298N1319N1251RIGIDNoneNoneRIGIDTypical218M299N1339N1251RIGIDNoneNoneRIGIDTypical219M300N1343N1251RIGIDNoneNoneRIGIDTypical220M301N1318N1251RIGIDNoneNoneRIGIDTypical221M302N1317N1251RIGIDNoneNoneRIGIDTypical222M303N1316N1251RIGIDNoneNoneRIGIDTypical223M304N1321N1251RIGIDNoneNoneRIGIDTypical224M305N1327N1251RIGIDNoneNoneRIGIDTypical225M306N1333N1251RIGIDNoneNoneRIGIDTypical226M307N1340N1251<	210	M291	N1298	N1250			RIGID	None	None	RIGID	Typical
212M293N1300N1250RIGIDNoneNoneRIGIDTypical213M294N1295N1250RIGIDNoneNoneRIGIDTypical214M295N1289N1250RIGIDNoneNoneRIGIDTypical215M296N1283N1250RIGIDNoneNoneRIGIDTypical216M297N1315N1251RIGIDNoneNoneRIGIDTypical217M298N1319N1251RIGIDNoneNoneRIGIDTypical218M299N1339N1251RIGIDNoneNoneRIGIDTypical219M300N1343N1251RIGIDNoneNoneRIGIDTypical220M301N1318N1251RIGIDNoneNoneRIGIDTypical221M302N1317N1251RIGIDNoneNoneRIGIDTypical222M303N1316N1251RIGIDNoneNoneRIGIDTypical223M304N1321N1251RIGIDNoneNoneRIGIDTypical224M305N1333N1251RIGIDNoneNoneRIGIDTypical225M306N1333N1251RIGIDNoneNoneRIGIDTypical226M307N1340N1251RIGIDNoneNoneRIGIDTypical227M308N1341N1251<	211	M292	N1299	N1250			RIGID	None	None	RIGID	Typical
213M294N1295N1250RIGIDNoneNoneRIGIDTypical214M295N1289N1250RIGIDNoneNoneNoneRIGIDTypical215M296N1283N1250RIGIDNoneNoneNoneRIGIDTypical216M297N1315N1251RIGIDNoneNoneNoneRIGIDTypical217M298N1319N1251RIGIDNoneNoneRIGIDTypical218M299N1339N1251RIGIDNoneNoneRIGIDTypical219M300N1343N1251RIGIDNoneNoneRIGIDTypical220M301N1318N1251RIGIDNoneNoneRIGIDTypical221M302N1317N1251RIGIDNoneNoneRIGIDTypical222M303N1316N1251RIGIDNoneNoneRIGIDTypical223M304N1321N1251RIGIDNoneNoneRIGIDTypical224M305N1327N1251RIGIDNoneNoneRIGIDTypical225M306N1333N1251RIGIDNoneNoneRIGIDTypical226M307N1340N1251RIGIDNoneNoneRIGIDTypical227M308N1341N1251RIGIDNoneNoneRIGIDTypical	212	M293	N1300	N1250			RIGID	None	None	RIGID	Typical
214M295N1289N1250RIGIDNoneNoneRIGIDTypical215M296N1283N1250RIGIDNoneNoneRIGIDTypical216M297N1315N1251RIGIDNoneNoneRIGIDTypical217M298N1319N1251RIGIDNoneNoneRIGIDTypical218M299N1339N1251RIGIDNoneNoneRIGIDTypical219M300N1343N1251RIGIDNoneNoneRIGIDTypical220M301N1318N1251RIGIDNoneNoneRIGIDTypical221M302N1317N1251RIGIDNoneNoneRIGIDTypical222M303N1316N1251RIGIDNoneNoneRIGIDTypical223M304N1321N1251RIGIDNoneNoneRIGIDTypical224M305N1327N1251RIGIDNoneNoneRIGIDTypical225M306N1333N1251RIGIDNoneNoneRIGIDTypical226M307N1340N1251RIGIDNoneNoneRIGIDTypical227M308N1341N1251RIGIDNoneRIGIDTypical	213	M294	N1295	N1250			RIGID	None	None	RIGID	Typical
215M296N1283N1250RIGIDNoneNoneRIGIDTypical216M297N1315N1251RIGIDNoneNoneRIGIDTypical217M298N1319N1251RIGIDNoneNoneRIGIDTypical218M299N1339N1251RIGIDNoneNoneRIGIDTypical219M300N1343N1251RIGIDNoneNoneRIGIDTypical220M301N1318N1251RIGIDNoneNoneRIGIDTypical221M302N1317N1251RIGIDNoneNoneRIGIDTypical222M303N1316N1251RIGIDNoneNoneRIGIDTypical223M304N1321N1251RIGIDNoneNoneRIGIDTypical224M305N1327N1251RIGIDNoneNoneRIGIDTypical225M306N1333N1251RIGIDNoneNoneRIGIDTypical226M307N1340N1251RIGIDNoneNoneRIGIDTypical227M308N1341N1251RIGIDNoneNoneRIGIDTypical	214	M295	N1289	N1250			RIGID	None	None	RIGID	Typical
216M297N1315N1251RIGIDNoneNoneRIGIDTypical217M298N1319N1251RIGIDNoneNoneRIGIDTypical218M299N1339N1251RIGIDNoneNoneRIGIDTypical219M300N1343N1251RIGIDNoneNoneRIGIDTypical220M301N1318N1251RIGIDNoneNoneRIGIDTypical221M302N1317N1251RIGIDNoneNoneRIGIDTypical222M303N1316N1251RIGIDNoneNoneRIGIDTypical223M304N1321N1251RIGIDNoneNoneRIGIDTypical224M305N1327N1251RIGIDNoneNoneRIGIDTypical225M306N1333N1251RIGIDNoneNoneRIGIDTypical226M307N1340N1251RIGIDNoneNoneRIGIDTypical227M308N1341N1251RIGIDNoneNoneRIGIDTypical	215	M296	N1283	N1250			RIGID	None	None	RIGID	Typical
217M298N1319N1251RIGIDNoneNoneRIGIDTypical218M299N1339N1251RIGIDNoneNoneRIGIDTypical219M300N1343N1251RIGIDNoneNoneRIGIDTypical220M301N1318N1251RIGIDNoneNoneRIGIDTypical221M302N1317N1251RIGIDNoneNoneRIGIDTypical222M303N1316N1251RIGIDNoneNoneRIGIDTypical223M304N1321N1251RIGIDNoneNoneRIGIDTypical224M305N1327N1251RIGIDNoneNoneRIGIDTypical225M306N1333N1251RIGIDNoneNoneRIGIDTypical226M307N1340N1251RIGIDNoneNoneRIGIDTypical227M308N1341N1251RIGIDNoneNoneRIGIDTypical	216	M297	N1315	N1251			RIGID	None	None	RIGID	Typical
218M299N1339N1251RIGIDNoneNoneRIGIDTypical219M300N1343N1251RIGIDNoneNoneRIGIDTypical220M301N1318N1251RIGIDNoneNoneRIGIDTypical221M302N1317N1251RIGIDNoneNoneRIGIDTypical222M303N1316N1251RIGIDNoneNoneRIGIDTypical223M304N1321N1251RIGIDNoneNoneRIGIDTypical224M305N1327N1251RIGIDNoneNoneRIGIDTypical225M306N1333N1251RIGIDNoneNoneRIGIDTypical226M307N1340N1251RIGIDNoneNoneRIGIDTypical227M308N1341N1251RIGIDNoneNoneRIGIDTypical	217	M298	N1319	N1251			RIGID	None	None	RIGID	Typical
219M300N1343N1251RIGIDNoneNoneRIGIDTypical220M301N1318N1251RIGIDNoneNoneRIGIDTypical221M302N1317N1251RIGIDNoneNoneRIGIDTypical222M303N1316N1251RIGIDNoneNoneRIGIDTypical223M304N1321N1251RIGIDNoneNoneRIGIDTypical224M305N1327N1251RIGIDNoneNoneRIGIDTypical225M306N1333N1251RIGIDNoneNoneRIGIDTypical226M307N1340N1251RIGIDNoneNoneRIGIDTypical227M308N1341N1251RIGIDNoneNoneRIGIDTypical	218	M299	N1339	N1251			RIGID	None	None	RIGID	Typical
220M301N1318N1251RIGIDNoneNoneRIGIDTypical221M302N1317N1251RIGIDNoneNoneRIGIDTypical222M303N1316N1251RIGIDNoneNoneRIGIDTypical223M304N1321N1251RIGIDNoneNoneRIGIDTypical224M305N1327N1251RIGIDNoneNoneRIGIDTypical225M306N1333N1251RIGIDNoneNoneRIGIDTypical226M307N1340N1251RIGIDNoneNoneRIGIDTypical227M308N1341N1251RIGIDNoneNoneRIGIDTypical	219	M300	N1343	N1251			RIGID	None	None	RIGID	Typical
221M302N1317N1251RIGIDNoneNoneRIGIDTypical222M303N1316N1251RIGIDNoneNoneRIGIDTypical223M304N1321N1251RIGIDNoneNoneRIGIDTypical224M305N1327N1251RIGIDNoneNoneRIGIDTypical225M306N1333N1251RIGIDNoneNoneRIGIDTypical226M307N1340N1251RIGIDNoneNoneRIGIDTypical227M308N1341N1251RIGIDNoneNoneRIGIDTypical	220	M301	N1318	N1251			RIGID	None	None	RIGID	Typical
222M303N1316N1251RIGIDNoneNoneRIGIDTypical223M304N1321N1251RIGIDNoneNoneRIGIDTypical224M305N1327N1251RIGIDNoneNoneRIGIDTypical225M306N1333N1251RIGIDNoneNoneRIGIDTypical226M307N1340N1251RIGIDNoneNoneRIGIDTypical227M308N1341N1251RIGIDNoneNoneRIGIDTypical	221	M302	N1317	N1251			RIGID	None	None	RIGID	Typical
223M304N1321N1251RIGIDNoneNoneRIGIDTypical224M305N1327N1251RIGIDNoneNoneRIGIDTypical225M306N1333N1251RIGIDNoneNoneRIGIDTypical226M307N1340N1251RIGIDNoneNoneRIGIDTypical227M308N1341N1251RIGIDNoneNoneRIGIDTypical	222	M303	N1316	N1251			RIGID	None	None	RIGID	Typical
224 M305 N1327 N1251 RIGID None None RIGID Typical 225 M306 N1333 N1251 RIGID None None RIGID Typical 226 M307 N1340 N1251 RIGID None None RIGID Typical 227 M308 N1341 N1251 RIGID None None RIGID Typical	223	M304	N1321	N1251			RIGID	None	None	RIGID	Typical
225 M306 N1333 N1251 RIGID None None RIGID Typical 226 M307 N1340 N1251 RIGID None None RIGID Typical 227 M308 N1341 N1251 RIGID None None RIGID Typical	224	M305	N1327	N1251			RIGID	None	None	RIGID	Typical
226M307N1340N1251RIGIDNoneNoneRIGIDTypical227M308N1341N1251RIGIDNoneNoneRIGIDTypical	225	M306	N1333	N1251			RIGID	None	None	RIGID	Typical
227 M308 N1341 N1251 RIGID None None RIGID Typical	226	M307	N1340	N1251			RIGID	None	None	RIGID	Typical
	227	M308	N1341	N1251			RIGID	None	None	RIGID	Typical

	Label	I Joint	J Joint	K Joint	Rotate(Section/Shape	Туре	Design List	Material	Design R
228	M309	N1342	N1251			RIGID	None	None	RIGID	Typical
229	M310	N1337	N1251			RIGID	None	None	RIGID	Typical
230	M311	N1331	N1251			RIGID	None	None	RIGID	Typical
231	M312	N1325	N1251			RIGID	None	None	RIGID	Typical
232	M298A	N1099B	N1098B			RIGID	None	None	RIGID	Typical
233	M299A	N1101B	N1100B			RIGID	None	None	RIGID	Typical
234	M300A	N1098B	N1100B		360	RIGID	None	None	RIGID	Typical
235	M301A	N1145B	N1144B			RIGID	None	None	RIGID	Typical
236	M302A	N1147A	N1146A			RIGID	None	None	RIGID	Typical
237	M303A	N1144B	N1146A		240	RIGID	None	None	RIGID	Typical
238	M304A	N1200A	N1199A			RIGID	None	None	RIGID	Typical
239	M305A	N1202A	N1201A			RIGID	None	None	RIGID	Typical
240	M306A	N1199A	N1201A		240	RIGID	None	None	RIGID	Typical
241	M307A	N1249A	N1248A			RIGID	None	None	RIGID	Typical
242	M308A	N1251B	N1250B			RIGID	None	None	RIGID	Typical
243	M309A	N1248A	N1250B		120	RIGID	None	None	RIGID	Typical
244	M310A	N1304A	N1303A			RIGID	None	None	RIGID	Typical
245	M311A	N1306A	N1305A			RIGID	None	None	RIGID	Typical
246	M312A	N1303A	N1305A		120	RIGID	None	None	RIGID	Typical
247	M256B	N1223B	A4B			RIGID	None	None	RIGID	Typical
248	M257A	N1222B	A4T			RIGID	None	None	RIGID	Typical
249	M258A	N1226B	A4R			RIGID	None	None	RIGID	Typical
250	M259A	M3	N1230B			RIGID	None	None	RIGID	Typical
251	M260A	N1232B	N1231B			RIGID	None	None	RIGID	Typical
252	M261A	N1233B	N1228B		360	Mount Pipe	Column	None	A53 Gr.B	Typical
253	M262A	N1235B	A3B			RIGID	None	None	RIGID	Typical
254	M263A	N1234B	A3T			RIGID	None	None	RIGID	Typical
255	M264A	N1238B	A3R			RIGID	None	None	RIGID	Typical
256	M265A	M2	N1242C			RIGID	None	None	RIGID	Typical
257	M266A	N1244C	N1243B			RIGID	None	None	RIGID	Typical
258	M267A	N1245B	N1240C		360	Mount Pipe	Column	None	A53 Gr B	Typical
259	M268A	N1247B	A2B			RIGID	None	None	RIGID	Typical
260	M269A	N1246B	A2T			RIGID	None	None	RIGID	Typical
261	M270A	N1250C	A2R			RIGID	None	None	RIGID	Typical
262	M271A	M1	N1254A			RIGID	None	None	RIGID	Typical
263	M272A	N1256A	N1255A			RIGID	None	None	RIGID	Typical
264	M273A	N1257A	N1252A		360	Mount Pipe	Column	None	A53 Gr.B	Typical
265	M274A	N1259A	A1B			RIGID	None	None	RIGID	Typical
266	M275A	N1258A	A1T			RIGID	None	None	RIGID	Typical
267	M276A	N1262B	A1R			RIGID	None	None	RIGID	Typical
268	M277A	N1265C	N1266C			RIGID	None	None	RIGID	Typical
269	M278A	N1268C	N1267C			RIGID	None	None	RIGID	Typical
270	M279A	N1269C	N1264B		120	Mount Pipe	Column	None	A53 Gr.B	Typical
271	M283A	N1277C	B4B			RIGID	None	None	RIGID	Typical
272	M284A	N1276C	B4T			RIGID	None	None	RIGID	Typical
273	M285A	N1280B	B4R			RIGID	None	None	RIGID	Typical
274	M286B	N1283C	N1284C			RIGID	None	None	RIGID	Typical
275	M287B	N1286C	N1285C			RIGID	None	None	RIGID	Typical
276	M288B	N1287C	N1282C		120	Mount Pipe	Column	None	A53 Gr B	Typical
277	M289A	N1289B	B3B			RIGID	None	None	RIGID	Typical
278	M290A	N1288B	B3T			RIGID	None	None	RIGID	Typical
279	M291A	N1292B	B3R			RIGID	None	None	RIGID	Typical
280	M292A	N1295B	N1296B			RIGID	None	None	RIGID	Typical
281	M293A	N1298B	N1297B			RIGID	None	None	RIGID	Typical
282	M294A	N1299B	N1294B		120	Mount Pipe	Column	None	A53 Gr B	Typical
283	M295A	N1301B	B2B			RIGID	None	None	RIGID	Typical
284	M296A	N1300B	B2T			RIGID	None	None	RIGID	Typical

	Label	I Joint	J Joint	K Joint Rotate(. Section/Shape	Туре	Design List	Material I	Design R
285	M297A	N1304B	B2R		RIGID	None	None	RIGID	Typical
286	M298B	N1307B	N1308B		RIGID	None	None	RIGID	Typical
287	M299B	N1310B	N1309B		RIGID	None	None	RIGID	Typical
288	M300B	N1311B	N1306B	120	Mount Pipe	Column	None	A53 Gr.B	Typical
289	M301B	N1313B	B1B		RIGID	None	None	RIGID	Typical
290	M302B	N1312B	B1T		RIGID	None	None	RIGID	Typical
291	M303B	N1316B	B1R		RIGID	None	None	RIGID	Typical
292	M304B	N1319B	N1320B		RIGID	None	None	RIGID	Typical
293	M305B	N1322B	N1321B		RIGID	None	None	RIGID	Typical
294	M306B	N1323B	N1318B	240	Mount Pipe	Column	None	A53 Gr B	Typical
295	M310B	N1331B	G4B	210	RIGID	None	None	RIGID	Typical
296	M311B	N1330B	G4T		RIGID	None	None	RIGID	Typical
297	M312B	N1334B	G4R		BIGID	None	None	RIGID	Typical
298	M313	N1337B	N1338B		BIGID	None	None	RIGID	Typical
299	M314	N1340B	N1339B		RIGID	None	None	RIGID	Typical
300	M315	N1341B	N1336B	240	Mount Pine	Column	None	A53 Gr B	Typical
301	M316	N1343B	C3B	240		None	None		Typical
302	M317	N1342B	C3T		RIGID	None	None	RIGID	Typical
302	M318	N1346B	C3P		RIGID	None	None		Typical
303	M310	N1340	N1250		PICID	None	None		Typical
205	M220	N1252	N1251		RIGID	None	None		Typical
206	N320	N1252	N13/8A	240	Mount Ding	Column	None	A53 Gr B	Typical
207	M222	N1255		240		Nono	None		Typical
307	N322	N1333	G2B COT		RIGID	None	None		Typical
308	IVI323	N1354			RIGID	None	None		Typical
309	<u>M324</u>	N1358	GZR		RIGID	None	None	RIGID	Typical
310	<u>M325</u>	N1361	N1362		RIGID	None	None	RIGID	Typical
311	M326	N1364	N1363	0.10	RIGID	None	None	RIGID	Typical
312	<u>M327</u>	N1365	N1360	240	Mount Pipe	Column	None	A53 Gr.B	Typical
313	<u>M328</u>	N1367	G1B		RIGID	None	None	RIGID	Typical
314	<u>M329</u>	N1366	G11		RIGID	None	None	RIGID	Typical
315	<u>M330</u>	N1370	G1R		RIGID	None	None	RIGID	Typical
316	<u>KM1</u>	KN1	KN2	360	RIGID	None	None	RIGID	I ypical
317	<u>KM2</u>	KN3	KN4		RIGID	None	None	RIGID	Typical
318	KM3	KN5	KN6		RIGID	None	None	RIGID	Typical
319	<u>KM4</u>	KN7	KN8		RIGID	None	None	RIGID	Typical
320	KM5	KN3	KN7	180	PRK-1245 Angle	Beam	None	A36 Gr	Typical
321	KM6	KN4	KN8	90	PRK-1245 Angle	Beam	None	A36 Gr	Typical
322	KM7	KN9	KN10	360	RIGID	None	None	RIGID	Typical
323	KM8	KN11	KN12		RIGID	None	None	RIGID	Typical
324	KM9	KN13	KN14		RIGID	None	None	RIGID	Typical
325	KM10	KN15	KN16		RIGID	None	None	RIGID	Typical
326	KM11	KN11	KN15	180	PRK-1245 Angle	Beam	None	A36 Gr	Typical
327	KM12	KN12	KN16	90	PRK-1245 Angle	Beam	None	A36 Gr	Typical
328	KM13	KN17	KN18	360	RIGID	None	None	RIGID	Typical
329	KM14	KN19	KN20		RIGID	None	None	RIGID	Typical
330	KM15	KN21	KN22		RIGID	None	None	RIGID	Typical
331	KM16	KN23	KN24		RIGID	None	None	RIGID	Typical
332	KM17	<u>KN</u> 19	KN23	180	PRK-1245 Angle	Beam	None	A36 Gr	Typical
333	KM18	KN20	KN24	90	PRK-1245 Anale	Beam	None	A36 Gr	Typical
334	M358	N37	N1426		RIGID	None	None	RIGID	Typical
335	M359	N62	N1427		RIGID	None	None	RIGID	Typical
336	M360	N63	N1428		RIGID	None	None	RIGID	Typical
337	M361	N89	N1429		RIGID	None	None	RIGID	Typical
338	M362	N90	N1430		RIGID	None	None	RIGID	Typical
339	M363	N36	N1431		RIGID	None	None	RIGID	Typical
340	M364	N43	N1432		RIGID	None	None	RIGID	Typical
341	M365	Nee	N1433		RIGID	None	None	RIGID	Typical
	101000		ULTIN						rypical

	Label	I Joint	J Joint	K Joint	Rotate(Section/Shape	Type	Design List	Material	Design R
342	M366	N70	N1434			RIGID	None	None	RIGID	Typical
343	M367	N93	N1435			RIGID	None	None	RIGID	Typical
344	M368	N97	N1436			RIGID	None	None	RIGID	Typical
345	M369	N39	N1437			RIGID	None	None	RIGID	Typical
346	M346	N1402	BRC			RIGID	None	None	RIGID	Typical
347	M347	N1392	GRC		240	RIGID	None	None	RIGID	Typical
348	M348	N1394	ARC		120	RIGID	None	None	RIGID	Typical

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	Area(Member)	Surface(
1	Dead	DĽ			-1	46			. ,	
2	Dead of Ice	RL				46		48		
4	Structure Wind (0)	None						96		
5	Structure Wind (30)	None						96		
6	Structure Wind (45)	None						96		
7	Structure Wind (60)	None						96		
8	Structure Wind (90)	None						96		
9	Structure Wind (120)	None						96		
10	Structure Wind (135)	None						96		
11	Structure Wind (150)	None						96		
12	Structure Wind w/ Ice (0)	None						96		
13	Structure Wind w/ Ice (30)	None						96		
14	Structure Wind w/ Ice (45)	None						96		
15	Structure Wind w/ Ice (60)	None						96		
16	Structure Wind w/ Ice (90)	None						96		
17	Structure Wind w/ Ice (120)	None						96		
18	Structure Wind w/ Ice (135)	None						96		
19	Structure Wind w/ Ice (150)	None						96		
20	Antenna Wind (0)	None				92				
21	Antenna Wind (30)	None				92				
22	Antenna Wind (45)	None				92				
23	Antenna Wind (60)	None				92				
24	Antenna Wind (90)	None				92				
25	Antenna Wind (120)	None				92				
26	Antenna Wind (135)	None				92				
27	Antenna Wind (150)	None				92				
28	Antenna Wind w/ Ice (0)	None				92				
29	Antenna Wind w/ Ice (30)	None				92				
30	Antenna Wind w/ Ice (45)	None				92				
31	Antenna Wind w/ Ice (60)	None				92				
32	Antenna Wind w/ Ice (90)	None				92				
33	Antenna Wind w/ Ice (120)	None				92				
34	Antenna Wind w/ Ice (135)	None				92				
35	Antenna Wind w/ Ice (150)	None				92				
36	Maintenance Live Lm (1)	OL1				1				
37	Maintenance Live Lm (2)	OL2				1				
38	Maintenance Live Lm (3)	OL3				1				
39	Maintenance Live Lm (4)	014				1				

Load Combinations

	Description	S	PD	S	BF	Fa	BLC	Fact.	В	Fact	.B	Fa	.B	Fa	в	Fa	в	.Fa	.B	Fa	.В	Fa	В	Fa
1	Summary: 1.0D + 1.0W	Y	Υ		DL	1	20	1																
2	1.4D	Y	Υ		DL	1.4																		
3	1.2D + 1.0W(0)	Y	Υ		DL	1.2	4	1	20	1														

Load Combinations (Continued)

	Description	SPD	S BFaBLC	Fact	B F	=act	.BF	- al	3Fa	.В	FaB	Fa.	BFa	В	.Fa	B	Fa
4	1.2D + 1.0W(30)	Y Y	DL 1.2 5	1	21	1											
5	1.2D + 1.0W(45)	Y Y	DL 1.2 6	1	22	1											
6	1.2D + 1.0W(60)	Y Y	DL 1.2 7		23	1											
7	1.2D + 1.0W(90)	Y Y	DL 1.2 8		24	1											
8	1.2D + 1.0W(120)	Y Y	DL129	1	25	1											
ğ	1.2D + 1.0W(125)	YV	DI 1 2 10		26	1											
10	1.2D + 1.0W(100)	YV	DI 1 2 11		27	1											
11	1.2D + 1.0W(180)	Y V			20	_1		-				-		-			
12	1.2D + 1.000(100)				20	-1											
12	1.2D + 1.000(210)				$\frac{21}{22}$	-		-						-		-	
13	1.2D + 1.000(223)				22	-1		_								-	
14	1.2D + 1.000(240)	1 Y			23	-										_	
15	1.2D + 1.000(270)	Γ Υ ΥΥ	DL 1.2 8	-14	24	-1		_				_		_		_	
16	<u>1.2D + 1.0VV(300)</u>	Y Y	DL 1.2 9	-1	25	-1								_		_	
1/	<u>1.2D + 1.0VV(315)</u>	Y Y	DL 1.2 10	-1	26	-1		_				_		_		_	
18	<u>1.2D + 1.0W(330)</u>	Y Y	DL 1.2 11	-1 2	27	-1								_			
19	1.2D + 1.0Di + 1.0Wi(0)	Y Y	DL 1.2 RL	1	<u>12</u>	1	28	1				_		_			
20	1.2D + 1.0Di + 1.0Wi(30)	Y Y	DL 1.2 RL		13	1	29	1									
21	1.2D + 1.0Di + 1.0Wi(45)	Y Y	DL 1.2 RL	1	14	1	30	1				-		-			_
22	1.2D + 1.0Di + 1.0Wi(60)	Y Y	DL 1.2 RL	1	15	1	31	1									
23	1.2D + 1.0Di + 1.0Wi(90)	Y Y	DL 1.2 RL	1	16	1	32	1									
24	1.2D + 1.0Di + 1.0Wi(120)	Y Y	DL 1.2 RL	1	17	1	33	1									
25	1 2D + 1 0Di + 1 0Wi(135)	Y Y	DL 1.2 RL	1	18	1	34	1									
26	1.2D + 1.0Di + 1.0Wi(150)	Y Y	DL 1.2 RL	1	19	1	35	1									
27	1.2D + 1.0Di + 1.0Wi(180)	Y Y	DL 1.2 RL	1	12	-1	28	-1									
28	1.2D + 1.0Di + 1.0Wi(210)	Y Y	DL 1.2 RL	1	13	-1	39	-1									
29	1.2D + 1.0Di + 1.0Wi(225)	Y Y	DL 1.2 RL	1	14	-1	30	-1									
30	1.2D + 1.0Di + 1.0Wi(240)	Y Y	DL 1.2 RL	1	15	-1	31	-1									
31	1.2D + 1.0Di + 1.0Wi(270)	Y Y	DL12 RI		16	-1	32	-1									
32	1.2D + 1.0Di + 1.0Wi(300)	Y Y	DL12 RI	1	17	-1	33	-1									
33	1.2D + 1.0Di + 1.0Wi(315)	Y Y			18	-1	34	-1						-			
34	1.2D + 1.0Di + 1.0Wi(330)	Y Y	DL 1 2 RL		19	-1	35	-1									
35	1.2D + 1.5I m(1) + 1.0Wm(0)	Y. Y		063	20	063	0.7	15									
36	1.2D + 1.5I m(1) + 1.0Wm(3)		DI 1 2 5	063	21	063	0 /	1.5									
37	1.2D + 1.5Lm(1) + 1.0Wm(00)		DI 1 2 6	063	22	063	0 /	1.5						-			
30	1.2D + 1.5Lm(1) + 1.0Wm(4)			063	22	000	0 /	1.5									
20	1.2D + 1.5Lm(1) + 1.0Wm(00)			062	$\frac{23}{24}$	003	0	1.5									
40	1.2D + 1.5Lm(1) + 1.0VVm(90)			062	24	003	0	1.5						_		-	
40	1.2D + 1.5Lm(1) + 1.0Wm(125)	V V		.003	<u>23</u>	060	0	1.5						-		-	
41	1.2D + 1.5Lm(1) + 1.0Wm(153)	V V		.003	20	003	0	1.5						-		-	
42	$1.2D \pm 1.5Lm(1) \pm 1.0Wm(130)$	Γ Υ ΥΥ		.003	<u>21</u>	062	0	1.5						_	++	-	
43	$1.2D \pm 1.5Lm(1) \pm 1.0Wm(160)$	1 Y		003	20	003	0	1.0								\rightarrow	
44	1.2D + 1.5Lin(1) + 1.000in(210)	1 Y		003	21	003	0	1.0								-	
45	1.2D + 1.5Lm(1) + 1.000m(225)	Y Y		003	22	063	0'	1.5						-			
46	1.2D + 1.5Lm(1) + 1.0VVm(240)	Y Y		063	23	063	0'	1.5							\square	-	
47	1.2D + 1.5Lm(1) + 1.0VVm(270)	Y Y		063	24	063	0'	1.5								\rightarrow	
48	1.2D + 1.5Lm(1) + 1.0Wm(300)	Y Y	DL 1.2 9	063	25	063	0'	1.5						-	\square		
49	1.2D + 1.5Lm(1) + 1.0VVm(315)	Y Y		063	26	063	0'	1.5						-	$ \rightarrow $		
50	1.2D + 1.5Lm(1) + 1.0Wm(330)	Y Y	DL 1.2 11	063	<u>27</u>	063	01	1.5									
51	<u>1.2D + 1.5Lm(2) + 1.0Wm(0)</u>	Y Y	DL 1.2 4	.063	20	<u>.063</u>	0*	1.5								_	_
52	1.2D + 1.5Lm(2) + 1.0Wm(30)Y Y	DL 1.2 5	.063	21	.063	0*	1.5									
53	1.2D + 1.5Lm(2) + 1.0Wm(45)Y Y	DL 1.2 6	063	22	.063	0*	1.5						-			
54	1.2D + 1.5Lm(2) + 1.0Wm(60)Y Y	DL 1.2 7	.063	23	.063	0*	1.5									
55	1.2D + 1.5Lm(2) + 1.0Wm(90)Y Y	DL 1.2 8	.063	24	.063	0*	1.5									
56	1.2D + 1.5Lm(2) + 1.0Wm(120)	Y Y	DL 1.2 9	.063	25	.063	0*	1.5									
57	1.2D + 1.5Lm(2) + 1.0Wm(135)	Y Y	DL 1.2 10	063	26	063	0^	1.5									
58	1.2D + 1.5Lm(2) + 1.0Wm(150)	Y Y	DL 1.2 11	063	27	.063	0	1.5									
59	1.2D + 1.5Lm(2) + 1.0Wm(180)	Y Y	DL 1.2 4	063	20 ·	063	0*	1.5									
60	1.2D + 1.5Lm(2) + 1.0Wm(210)	Y Y	DL 1.2 5	063	21 ·	063	0^	1.5									
								_						_			_

Load Combinations (Continued)

	Description	SPD.	S	. BFa	BLC Fact	в	Fact	.BFa.	В	Fa	BF	aB	Fa.	B	.Fa	.В	.Fa	B	Fa
61	1.2D + 1.5Lm(2) + 1.0Wm(225)	Y Y		DL 1.2	6063	3 22	063	01.5	5										
62	1.2D + 1.5Lm(2) + 1.0Wm(240)	Y Y		DL 1.2	7063	23	063	01.5	5										
63	1.2D + 1.5Lm(2) + 1.0Wm(270)	Y Y		DL 1.2	8063	324	063	01.5	5										
64	1.2D + 1.5Lm(2) + 1.0Wm(300)	Y Y		DL 1.2	9063	25	063	01.5	5										
65	1.2D + 1.5Lm(2) + 1.0Wm(315)	Y Y		DL 1.2	10063	26	063	01.5	5										
66	1.2D + 1.5Lm(2) + 1.0Wm(330)	Y Y		DL 1.2	11063	27	063	01.5	5										
67	1.2D + 1.5Lm(3) + 1.0Wm(0)	Y Y		DL 1.2	4 .063	3 20	.063	01.5	5										
68	1.2D + 1.5Lm(3) + 1.0Wm(30)Y Y		DL 1.2	5 .063	3 21	.063	01.5	5										
69	1.2D + 1.5Lm(3) + 1.0Wm(45)Υ Υ		DL 1.2	6 .063	3 22	.063	01.5	5										
70	1.2D + 1.5Lm(3) + 1.0Wm(60)Y Y		DL 1.2	7 .063	323	.063	01.5	5										
71	1.2D + 1.5Lm(3) + 1.0Wm(90)Υ Υ		DL 1.2	8 .063	3 24	.063	01.5	5										
72	1.2D + 1.5Lm(3) + 1.0Wm(120)	Y Y		DL 1.2	9 .063	3 25	.063	01.5	5										
73	1.2D + 1.5Lm(3) + 1.0Wm(135)	Y Y		DL 1.2	10 .063	3 26	.063	01.5	5										
74	1.2D + 1.5Lm(3) + 1.0Wm(150)	Y Y		DL 1.2	11 .063	3 27	.063	01.5	5										
75	1.2D + 1.5Lm(3) + 1.0Wm(180)	Y Y		DL 1.2	4063	20	063	01.5	5										
76	1.2D + 1.5Lm(3) + 1.0Wm(210)	Y Y		DL 1.2	5063	21	063	01.5	5										
77	1.2D + 1.5Lm(3) + 1.0Wm(225)	Y Y		DL 1.2	6063	22	063	01.5	5										
78	1.2D + 1.5Lm(3) + 1.0Wm(240)	Y Y		DL 1.2	7063	3 23	063	01.5	5										
79	1.2D + 1.5Lm(3) + 1.0Wm(270)	Y Y		DL 1.2	8063	3 24	063	01.5	5										
80	1.2D + 1.5Lm(3) + 1.0Wm(300)	Y Y		DL 1.2	9063	25	063	01.5	5										
81	1.2D + 1.5Lm(3) + 1.0Wm(315)	Y Y		DL 1.2	10063	3 26	063	01.5	5										
82	1.2D + 1.5Lm(3) + 1.0Wm(330)	Y Y		DL 1.2	11063	3 27	063	01.5	5										
83	1.2D + 1.5Lm(4) + 1.0Wm(0)	Y Y		DL 1.2	4 .063	3 20	.063	01.5	5										
84	1.2D + 1.5Lm(4) + 1.0Wm(30)Y Y		DL 1.2	5 .063	3 21	.063	01.5	5										
85	1.2D + 1.5Lm(4) + 1.0Wm(45)Υ Υ		DL 1.2	6 .063	3 22	.063	01.5	5										
86	1.2D + 1.5Lm(4) + 1.0Wm(60)Y Y		DL 1.2	7 .063	3 23	.063	01.5	5										
87	1.2D + 1.5Lm(4) + 1.0Wm(90)Υ Υ		DL 1.2	8 .063	3 24	.063	01.5	5										
88	1.2D + 1.5Lm(4) + 1.0Wm(120)	Y Y		DL 1.2	9 .063	3 25	.063	01.5	5										
89	1.2D + 1.5Lm(4) + 1.0Wm(135)	Y Y		DL 1.2	10 .063	3 26	.063	01.5	5										
90	1.2D + 1.5Lm(4) + 1.0Wm(150)	Y Y		DL 1.2	11 063	3 27	.063	01.5	5										
91	1.2D + 1.5Lm(4) + 1.0Wm(180)	Y Y		DL 1.2	4063	3 20	063	01.5	5										
92	1.2D + 1.5Lm(4) + 1.0Wm(210)	Y Y		DL 1.2	5063	3 21	063	01.5	5										
93	1.2D + 1.5Lm(4) + 1.0Wm(225)	Y Y		DL 1.2	6063	22	063	01.5	;										
94	1.2D + 1.5Lm(4) + 1.0Wm(240)	Y Y		DL 1.2	7063	23	063	01.5	5										
95	1.2D + 1.5Lm(4) + 1.0Wm(270)	Y Y		DL 1.2	8063	3 24	063	01.5	5										
96	1.2D + 1.5Lm(4) + 1.0Wm(300)	Y Y		DL 1.2	9063	25	063	01.5	5										
97	1.2D + 1.5Lm(4) + 1.0Wm(315)	Y Y		DL 1.2	10063	26	063	01.5	5										
98	1.2D + 1.5Lm(4) + 1.0Wm(330)	Y Y		DL 1 2	11063	127	063	015	5										

Joint Loads and Enforced Displacements (BLC 1 : Dead)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	A1B	L	Z	-16.75
2	A1T	L	Z	-16.75
3	B1B	L	Z	-16.75
4	B1T	L	Z	-16.75
5	G1B	L	Z	-16.75
6	G1T	L	Z	-16.75
7	A2B	L	Z	-16.75
8	A2T	L	Z	-16.75
9	B2B	L	Z	-16.75
10	B2T	L	Z	-16.75
11	G2B	L	Z	-16.75
12	G2T	L	Z	-16.75
13	A3B	L	Z	-41.9
14	A3T	L	Z	-41.9

Joint Loads and Enforced Displacements (BLC 1 : Dead) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
15	B3B	L	Z	-41.9
16	B3T	L	Z	-41.9
17	G3B	L	Z	-41.9
18	G3T	L	Z	-41.9
19	A4B	L	Z	-41.9
20	A4T	L	Z	-41.9
21	B4B	L	Z	-41.9
22	B4T	L	Z	-41.9
23	G4B	L	Z	-41.9
24	G4T	L	Z	-41.9
25	A4R	L	Z	-52.9
26	B4R	L	Z	-52.9
27	G4R	L	Z	-52.9
28	A1R	L	Z	-44
29	B1R	L	Z	-44
30	G1R	L	Z	-44
31	A3R	L	Z	-48.4
32	B3R	L	Z	-48.4
33	G3R	L	Z	-48.4
34	A4R	L	Z	-71
35	B4R	L	Z	-71
36	G4R	L	Z	-71
37	A3R	L	Z	-59.4
38	B3R	L	Z	-59.4
39	G3R	L	Z	-59.4
40	A2R	L	Z	-77
41	B2R	L	Z	-77
42	G2R	L	Z	-77
43	ARC	L	Z	-26.2
44	BRC	L	Z	-26.2
45	ARC	L	Z	-26.2
46	GRC	L	Z	-32.8

Joint Loads and Enforced Displacements (BLC 2 : Dead of Ice)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	A1B	L	Z	-46.809
2	A1T	L	Z	-46.809
3	B1B	L	Z	-46.809
4	B1T	L	Z	-46.809
5	G1B	L	Z	-46.809
6	G1T	L	Z	-46.809
7	A2B	L	Z	-46.809
8	A2T	L	Z	-46.809
9	B2B	L	Z	-46.809
10	B2T	L	Z	-46.809
11	G2B	L	Z	-46.809
12	G2T	L	Z	-46.809
13	A3B	L	Z	-69.017
14	A3T	L	Z	-69.017
15	B3B	L	Z	-69.017
16	B3T	L	Z	-69.017
17	G3B	L	Z	-69.017
18	G3T	L	Z	-69.017
19	A4B	L	Z	-69.017
20	A4T	L	Z	-69.017
21	B4B	L	Z	-69.017

Joint Loads and Enforced Displacements (BLC 2 : Dead of Ice) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
22	B4T	L	Z	-69.017
23	G4B	L	Z	-69.017
24	G4T	L	Z	-69.017
25	A4R	L	Z	-50.337
26	B4R	L	Z	-50.337
27	G4R	L	Z	-50.337
28	A1R	L	Z	-30.045
29	B1R	L	Z	-30.045
30	G1R	L	Z	-30.045
31	A3R	L	Z	-30.947
32	B3R	L	Z	-30.947
33	G3R	L	Z	-30.947
34	A4R	L	Z	-44.229
35	B4R	L	Z	-44.229
36	G4R	L	Z	-44.229
37	A3R	L	Z	-42.154
38	B3R	L	Z	-42.154
39	G3R	L	Z	-42.154
40	A2R	L	Z	-66.29
41	B2R	L	Z	-66.29
42	G2R	L	Z	-66.29
43	ARC	L	Z	-48.031
44	BRC	L	Z	-48.031
45	ARC	L	Z	-48.018
46	GRC	L	Z	-51.544

Joint Loads and Enforced Displacements (BLC 20 : Antenna Wind (0))

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	A1B	L	X	-49.412
2	A1B	L	Y	0
3	A1T	L	Х	-49.412
4	A1T	L	Y	0
5	B1B	L	Х	-34.359
6	B1B	L	Y	0
7	B1T	L	Х	-34.359
8	B1T	L	Y	0
9	G1B	L	Х	-34.359
10	G1B	L	Y	0
11	G1T	L	Х	-34.359
12	G1T	L	Y	0
13	A2B	L	Х	-49.412
14	A2B	L	Y	0
15	A2T	L	X	-49.412
16	A2T	L	Y	0
17	B2B	L	Х	-34.359
18	B2B	L	Y	0
19	B2T	L	Х	-34.359
20	B2T	L	Y	0
21	G2B	L	X	-34.359
22	G2B	L	Y	0
23	G2T	L	Х	-34.359
24	G2T	L	Y	0
25	A3B	L	X	-137.138
26	A3B	L	Y	0
27	A3T	L	X	-137.138
28	A3T	L	Y	0

Joint Loads and Enforced Displacements (BLC 20 : Antenna Wind (0)) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
29	<u>B3B</u>	L	X	-69.634
30	B3B	L	Y	0
31	B3T	L	Х	-69.634
32	B3T	L	Y	0
33	G3B	L	Х	-69.634
34	G3B	L	Y	0
35	G3T	L	Х	-69.634
36	G3T	Ĺ	Y	0
37	A4B		X	-137,138
38	A4B	ī	Ŷ	0
39	A4T		X	-137 138
40	A4T		Y	0
41		<u>_</u>	X	-69 634
42	B4B		Y Y	0
43	<u> </u>		X	-69 634
44	B4T			0
44			Y	60.634
45	<u>G4B</u>			-09.034
40	<u> </u>		Y	60.634
47				0
40	<u>641</u>			42.567
49				-43.307
50				0
51				-50.605
52			T V	U
55				-50.805
54			ř V	0
55				-20.229
50			Ý V	00 700
57				-22.790
50			ř V	00 700
59				-22.790
60			ř V	0
62				-20.229
62			T V	0
64				-23.900
65			T V	0
66				-23.900
67			ř V	21.282
67				-31.383
60			Ý V	<u> </u>
09				-41.537
70	<u> </u>		Ý	0
	<u>G4R</u>	L	X	-41.537
72	G4R		Y	00,000
73	A3R		X	-32.239
74	AJR		Y	07,000
75	B3R	L	X	-37.869
76	B3R		Y	07,000
11	G3R		X	-37.869
78	G3R	L .	Y	U
79	<u>A2R</u>		X	-52.859
80	AZR	L	Y	U
81	B2R		X	-/1.208
82	BZK		Y	U
83	<u> </u>		X	-/1.208
84	G2R		Y	U 00.500
85	ARC		X	-36.526

Joint Loads and Enforced Displacements (BLC 20 : Antenna Wind (0)) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
86	ARC	L	Y	0
87	BRC	L	Х	-36.526
88	BRC	L	Y	0
89	ARC	L	Х	-36.513
90	ARC	L	Y	0
91	GRC	Ĺ	Х	-38.654
92	GRC	L	Y	0

Joint Loads and Enforced Displacements (BLC 21 : Antenna Wind (30))

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	A1B	L	X	-38.447
2	A1B	L	Y	22.197
3	A1T	L	Х	-38.447
4	A1T	L	Y	22.197
5	B1B	L	Х	-25.411
6	B1B	L	Y	14.671
7	B1T	L	Х	-25.411
8	B1T	L	Y	14.671
9	G1B	L	Х	-38.447
10	G1B	L	Y	22.197
11	G1T	L	X	-38.447
12	G1T	L	Y	22.197
13	A2B	L	Х	-38.447
14	A2B	L	Y	22.197
15	A2T	L	Х	-38.447
16	A2T	L	Y	22.197
17	B2B	L	Х	-25.411
18	B2B	L	Y	14.671
19	B2T	L	Х	-25.411
20	B2T	L	Y	14.671
21	G2B	L	Х	-38.447
22	G2B	L	Y	22.197
23	G2T	L	Х	-38.447
24	G2T	L	Y	22.197
25	A3B	L	Х	-99.278
26	A3B	Ē	Y	57.318
27	A3T	L	Х	-99.278
28	A3T	L	Y	57.318
29	B3B	L	X	-40.818
30	B3B	L	Y	23.567
31	B3T	L	Х	-40.818
32	B3T	L	Y	23.567
33	G3B	L	Х	-99.278
34	G3B	L	Y	57.318
35	G3T	L	Х	-99.278
36	G3T	L	Y	57.318
37	A4B	L	Х	-99.278
38	A4B	L	Y	57.318
39	A4T	L	X	-99.278
40	A4T	Ē	Y	57.318
41	B4B	L	X	-40,818
42	B4B		Y	23,567
43	B4T		X	-40.818
44	B4T	L	Ý	23.567
45	G4B		X	-99,278
46	G4B		Ý	57 318
	010			01.010

Joint Loads and Enforced Displacements (BLC 21 : Antenna Wind (30)) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
47	G4T	L	Х	-99.278
48	G4T	L	Y	57.318
49	A4R	L	Х	-39.819
50	A4R	L	Y	22.989
51	B4R	L	Х	-46.085
52	B4R	L	Y	26.607
53	G4R	L	Х	-39.819
54	G4R	L	Y	22,989
55	A1R	L	Х	-21.724
56	A1R	L	Y	12.543
57	B1R	L	Х	-18.754
58	B1R	L	Y	10.828
59	G1R	L	Х	-21.724
60	G1R	L	Y	12.543
61	A3R	L	Х	-22.045
62	A3R	L	Y	12.728
63	B3R	L	Х	-20.035
64	B3R	L	Y	11.567
65	G3R	L	Х	-22.045
66	G3R	L	Y	12.728
67	A4R	L	Х	-30.11
68	A4R	L	Y	17.384
69	B4R	L	Х	-38.903
70	B4R	L	Y	22.461
71	G4R	L	Х	-30.11
72	G4R	L	Y	17.384
73	A3R	L	Х	-29.545
74	A3R	L	Y	17.058
75	B3R	L	Х	-34.421
76	B3R	L	Y	19.873
77	G3R	L	Х	-29.545
78	G3R	L	Y	17.058
79	A2R	L	Х	-51.074
80	A2R	L	Y	29.488
81	B2R	L	Х	-66.964
82	B2R	L	Y	38.662
83	G2R	L	Х	-51.074
84	G2R	L	Y	29.488
85	ARC	L	Х	-31.632
86	ARC	L	Y	18.263
87	BRC	L	X	-31.632
88	BRC	L	Y	18.263
89	ARC	L	Х	-31.621
90	ARC	L	Y	18.256
91	GRC	L	Х	-33.475
92	GRC	L	Y	19.327

Joint Loads and Enforced Displacements (BLC 22 : Antenna Wind (45))

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	A1B	L	Х	-27.844
2	A1B	L	Y	27.844
3	A1T	L	Х	-27.844
4	A1T	L	Y	27.844
5	B1B	L	Х	-21.698
6	B1B	L	Y	21.698
7	B1T	L	Х	-21.698

Joint Loads and Enforced Displacements (BLC 22 : Antenna Wind (45)) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
8	B1T	L	Y	21.698
9	G1B	L	Х	-33.989
10	G1B	L	Y	33.989
11	G1T	L	Х	-33.989
12	G1T	L	Y	33.989
13	A2B	L	Х	-27.844
14	A2B	L	Y	27.844
15	A2T	L	Х	-27.844
16	A2T	L	Y	27.844
17	B2B	L	X	-21.698
18	 B2B	L	Y	21.698
19		L	X	-21.698
20	B2T		Y	21 698
21	G2B	<u>_</u>	X	-33,989
22	G2B		Y Y	33 989
23	G2T		X	-33 989
24	<u> </u>		X V	33 989
25	021		Y	-65 15
26	Δ3R			65.15
20	Δ3Τ		Y	_65.15
20				65.15
20	A31		Y	37 501
29				37 501
31	B3T		Y	37.591
22	D31			-57.591
32	B31		Y	02 708
34	G3B			-92.700
35	<u>G3B</u>		Y	92.700
26	<u>G31</u>			-92.700
27	<u>G31</u>		I V	92.700
20	<u> </u>			-05.15
20	<u> </u>		Y	65.15
40	<u>A41</u>			65.15
40	<u>A+1</u>		Y	37 501
41	<u>D+D</u>			37 501
12	<u> </u>		Y	37.591
40	D41 B4T			37 501
44			Y	
45	<u>G4B</u>			02 708
40	<u> </u>		Y	92.700
47	041			02 708
10			Y	_34 017
50				3/ 217
51			Y	
52	BAR			37 171
53	C4P		Y	
54	G4R			31 263
55	04N		Y	
56				16 020
57	B1D		Y	15.529
58	R1R			15 520
50			Y	
60				18.22
61			Y	
62				17 /52
63	B3D		Y	
64				-10.000
04	DJK		Í	10.303

Joint Loads and Enforced Displacements (BLC 22 : Antenna Wind (45)) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
65	G3R	L	X	-18.4
66	G3R	L	Y	18.4
67	A4R	L	Х	-26.978
68	A4R	L	Y	26.978
69	B4R	L	Х	-31.123
70	B4R	L	Y	31.123
71	G4R	L	Х	-22.833
72	G4R	L	Y	22.833
73	A3R	L	Х	-25.45
74	A3R	L	Y	25.45
75	B3R	L	Х	-27.749
76	B3R	L	Y	27.749
77	G3R	L	Х	-23.152
78	G3R	L	Y	23.152
79	A2R	L	Х	-46.027
80	A2R	L	Y	46.027
81	B2R	L	Х	-53.517
82	B2R	L	Y	53.517
83	G2R	L	Х	-38.536
84	G2R	L	Y	38.536
85	ARC	L	Х	-25.828
86	ARC	L	Y	25.828
87	BRC	L	Х	-25.828
88	BRC	L	Y	25.828
89	ARC	L	X	-25.818
90	ARC	L	Y	25.818
91	GRC	L	Х	-27.332
92	GRC	L	Y	27.332

Joint Loads and Enforced Displacements (BLC 23 : Antenna Wind (60))

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	A1B	L	Х	-17.18
2	A1B	L	Y	29.756
3	A1T	L	Х	-17.18
4	A1T	L	Y	29.756
5	B1B	L	Х	-17.18
6	B1B	L	Y	29.756
7	B1T	L	Х	-17.18
8	B1T	L	Y	29.756
9	G1B	L	Х	-24.706
10	G1B	L	Y	42.792
11	G1T	L	Х	-24.706
12	G1T	L	Y	42.792
13	A2B	L	Х	-17.18
14	A2B	L	Y	29.756
15	A2T	L	Х	-17.18
16	A2T	L	Y	29.756
17	B2B	L	Х	-17.18
18	B2B	L	Y	29.756
19	B2T	L	Х	-17.18
20	B2T	L	Y	29.756
21	G2B	L	Х	-24.706
22	G2B	L	Y	42.792
23	G2T	L	Х	-24.706
24	G2T	L	Y	42.792
25	A3B	L	X	-34.817

Joint Loads and Enforced Displacements (BLC 23 : Antenna Wind (60)) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
26	A3B	L	Y	60.305
27	A3T	L	Х	-34.817
28	A3T	L	Y	60.305
29	B3B	L	X	-34.817
30	B3B	L	Y	60.305
31	B3T	L	Х	-34.817
32	B3T	L	Y	60.305
33	G3B		X	-68 569
34	G3B	Ī	Ŷ	118.765
35	G3T		X	-68,569
36	G3T		Y	118 765
37	A4B	<u> </u>	X	-34 817
38	A4B		Y	60.305
39			X	-34 817
40	Δ4Τ		X Y	60 305
11			Y	_3/ 817
12	<u>B4B</u>			60 305
13	<u> </u>		Y	
43				-04.017 60.305
44			Y	_68 560
45				
40				69 560
47	G41			-00.309
40	<u>G41</u>		ř V	25 401
49	<u>A4R</u>			-23.401
50	A4R D4D		ľ V	43.990
51	D4R			-23.401
52	<u>D4R</u>		r V	
53	G4R			-21.703
54	<u>G4R</u>		ř V	37.73
55	A1R			-11.399
57	AIR		ř V	11.200
57				-11.399
50				19.744
60	GIR	L.		-13.114
61				22.715
62				-11.954
62	AJR D2D		ř V	20.705
64	BJR			-11.904
04	BJR		Ý V	20.705
00	<u>GJK</u>		A V	-13.114
00			ľ V	
0/			X	-20.708
60	A4K		Υ Υ	30.9/2
69	<u> </u>		X	-20.768
70	B4K		Y Y	35.972
/1	G4R	L .	X	-15.692
72	G4R	L	Y	27.179
/3	A3R	L L	X	-18.934
74	A3R	L .	Y	32.795
75	B3R	L	X	-18.934
76	B3R	L	Y	32.795
17	G3R	L	X	-16.12
/8	G3R	L	Y	27.92
79	A2R	L	X	-35.604
80	A2R	L	Y	61.668
81	<u> </u>	L	X	-35.604
82	B2R	L	Y	61.668

Joint Loads and Enforced Displacements (BLC 23 : Antenna Wind (60)) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
83	G2R	L	Х	-26.43
84	G2R	L	Y	45.778
85	ARC	L	Х	-18.263
86	ARC	L	Y	31.632
87	BRC	L	Х	-18.263
88	BRC	L	Y	31.632
89	ARC	L	Х	-18.256
90	ARC	L	Y	31.621
91	GRC	L	Х	-19.327
92	GRC	L	Y	33.475

Joint Loads and Enforced Displacements (BLC 24 : Antenna Wind (90))

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	A1B	L	Х	-6.655e-6
2	A1B	L	Y	29.342
3	A1T	L	Х	-6.655e-6
4	A1T	L	Y	29.342
5	B1B	L	Х	-1.007e-5
6	B1B	L	Y	44.394
7	B1T	L	Х	-1.007e-5
8	B1T	L	Y	44.394
9	G1B	L	Х	-1.007e-5
10	G1B	L	Y	44.394
11	G1T	L	Х	-1.007e-5
12	G1T	L	Y	44.394
13	A2B	L	Х	-6.655e-6
14	A2B	L	Y	29.342
15	A2T	L	Х	-6.655e-6
16	A2T	L	Y	29.342
17	B2B	L	Х	-1.007e-5
18	B2B	L	Y	44.394
19	B2T	L	Х	-1.007e-5
20	B2T	L	Y	44.394
21	G2B	L	Х	-1.007e-5
22	G2B	L	Y	44.394
23	G2T	L	Х	-1.007e-5
24	G2T	L	Y	44.394
25	A3B	L	Х	-1.069e-5
26	A3B	L	Y	47.133
27	A3T	L	Х	-1.069e-5
28	A3T	L	Y	47.133
29	B3B	L	Х	-2.6e-5
30	B3B	L	Y	114.637
31	B3T	L	Х	-2.6e-5
32	B3T	L	Y	114.637
33	G3B	L	Х	-2.6e-5
34	G3B	L	Y	114.637
35	G3T	L	Х	-2.6e-5
36	G3T	L	Y	114.637
37	A4B	L	Х	-1.069e-5
38	A4B	L	Y	47.133
39	A4T	L	Х	-1.069e-5
40	A4T	L	Y	47.133
41	B4B	L	Х	-2.6e-5
42	B4B	L	Y	114.637
43	B4T	L	Х	-2.6e-5

Joint Loads and Enforced Displacements (BLC 24 : Antenna Wind (90)) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
44	B4T	L	Y	114.637
45	G4B	L	Х	-2.6e-5
46	G4B	L	Y	114.637
47	G4T	L	Х	-2.6e-5
48	G4T	L	Y	114.637
49	A4R	L	Х	-1.207e-5
50	A4R	L	Y	53.215
51	B4R	L	Х	-1.043e-5
52	B4R	L	Y	45.979
53	G4R	L	Х	-1.043e-5
54	G4R	L	Y	45.979
55	A1R	L	Х	-4.911e-6
56	A1R	L	Y	21.655
57	B1R	L	Х	-5.689e-6
58	B1R	L	Y	25.085
59	G1R	L	Х	-5.689e-6
60	G1R	L	Y	25.085
61	A3R	L	Х	-5.247e-6
62	A3R	L	Y	23.135
63	B3R	L	Х	-5.773e-6
64	B3R	L	Y	25.455
65	G3R	L	Х	-5.773e-6
66	G3R	L	Y	25.455
67	A4R	L	Х	-1.019e-5
68	A4R	L	Y	44.921
69	B4R	L	Х	-7.885e-6
70	B4R	L	Y	34.768
71	G4R	L	Х	-7.885e-6
72	G4R	L	Y	34.768
73	A3R	L	Х	-9.014e-6
74	A3R	L	Y	39.745
75	<u>B3R</u>	L	Х	-7.737e-6
76	B3R	L	Y	34.116
77	<u> </u>	L	Х	-7.737e-6
78	G3R	L	Y	34.116
79	A2R	L	Х	-1.754e-5
80	A2R	L	Y	77.324
81	<u> </u>	L	Х	<u>-1.338e-5</u>
82	B2R	L	Y	58.975
83	G2R	L	X	-1.338e-5
84	G2R	L	Y	58.975
85	ARC	L	X	-8.284e-6
86	ARC	L	Y	36.526
87	BRC	L	X	-8.284e-6
88	BRC	L	Y	36.526
89	ARC	L	X	-8.281e-6
90	ARC	L	Y	36.513
91	GRC	L	X	-8.766e-6
92	GRC	L	Y	38.654

Joint Loads and Enforced Displacements (BLC 25 : Antenna Wind (120))

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	A1B	L	Х	17.18
2	A1B	L	Y	29.756
3	A1T	L	Х	17.18
4	A1T	L	Y	29.756

Joint Loads and Enforced Displacements (BLC 25 : Antenna Wind (120)) (Continued)

5 B1B L X 24706 6 B1B L Y 42.792 7 B1T L X 24.706 8 B1T L Y 42.792 9 G1B L Y 29.756 11 G1T L X 17.18 12 G1T L X 17.18 14 A28 L Y 42.792 19 B27 L X 42.792 19 B27 L Y 42.792 21 G28 L Y 42.792 22 G28 L Y 60.305 23 G27 L Y 60.305 24 G27 L Y 60		Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
6 B1B L Y 42.702 7 B1T L X 22.706 8 B1T L Y 42.702 9 G1B L X 17.18 10 G1B L X 17.18 11 G1T L X 17.18 12 G1T L X 17.18 13 A28 L X 17.18 14 A28 L Y 22.756 15 A2T L X 24.706 18 B28 L Y 42.792 19 B2T L X 24.706 20 B2T L X 17.18 22 G28 L Y 22.706 23 G2T L X 17.18 24 G2T L X 34.817 26 A38 L	5	B1B	L	Х	24.706
7 B1T L X 24.706 8 B1T L Y 42.792 9 G1B L Y 29.756 11 G1T L Y 29.756 12 G1T L Y 29.756 13 A2B L Y 29.756 14 A2B L Y 29.756 15 A2T L X 17.18 16 A2T L Y 29.756 17 B2B L Y 42.792 19 B2T L Y 42.792 21 G2B L Y 42.792 21 G2B L Y 24.706 22 G2B L Y 22.766 23 G2T L X 17.18 24 G3T L Y 20.866 23 G3T L X 30.817 24 G3T L Y 60.305 </td <td>6</td> <td>B1B</td> <td>L</td> <td>Y</td> <td>42.792</td>	6	B1B	L	Y	42.792
8 B1T L Y 42.792 9 G1B L X 17.18 10 G1B L Y 29.756 11 G1T L X 17.18 12 G1T L Y 29.756 13 A28 L X 17.18 14 A28 L Y 29.756 15 A2T L X 17.18 16 A2T L Y 24.706 18 B28 L Y 42.792 21 G28 L X 17.18 22 G28 L Y 42.706 23 G27 L X 17.18 24 G27 L X 34.817 26 A38 L Y 60.305 27 A3T L X 86.569 30 B38 L <t< td=""><td>7</td><td>B1T</td><td>L</td><td>Х</td><td>24.706</td></t<>	7	B1T	L	Х	24.706
9 GiB L X 17.18 10 GiB L Y 22.756 11 GiT L X 17.18 12 GiT L Y 22.756 13 A2B L Y 22.756 14 A2B L Y 22.756 15 A2T L X 17.18 16 A2T L Y 22.756 17 B2B L Y 42.792 18 B27 L X 24.706 20 B27 L X 24.706 21 G28 L Y 24.766 22 G28 L Y 20.756 23 G27 L X 17.18 24 G27 L X 34.817 25 A38 L Y 36.305 26 A31 L Y	8	B1T		Y	42,792
10 31B 1 Y 29,766 11 G1T L X 17,18 12 G1T L Y 12,756 13 A2B L Y 11,18 14 A2B L Y 17,18 15 A2T L X 17,18 16 A2T L Y 29,786 17 B2B L Y 29,786 18 B2B L Y 42,792 20 B2T L Y 42,792 21 G2B L Y 42,792 21 G2B L Y 29,766 23 G2T L Y 29,766 24 G2T L Y 29,766 25 A3B L X 34,817 26 A33 L Y 60,305 27 A3T L X	9	G1B		X	17.18
11 31 1 1 11 </td <td>10</td> <td>G1B</td> <td></td> <td>× V</td> <td>29.756</td>	10	G1B		× V	29.756
11 011 1 110 12 Giff L Y 17.18 13 $A2B$ L Y 17.18 14 $A2B$ L Y 29.756 15 $A2T$ L Y 29.756 16 $A2T$ L Y 29.756 17 $B2B$ L Y 29.756 18 $B2B$ L Y 42.792 19 $B2T$ L Y 24.706 20 $B2T$ L Y 29.756 21 $G2B$ L Y 29.756 22 $G2B$ L Y 29.756 23 $G2T$ L X 17.18 24 $G2T$ L X 34.817 25 $A3B$ L X 34.817 26 $A3B$ L X 68.569 30 $B3B$ L Y 60.305 29 $B35$ L X 68.569 <tr< td=""><td>11</td><td></td><td></td><td>Y</td><td>17.19</td></tr<>	11			Y	17.19
12 31 L 1 23,730 13 A2B L X 17,18 14 A2B L Y 29,756 15 A2T L Y 29,756 17 B2B L X 24,706 18 B2B L X 24,706 20 B2T L X 24,706 20 B2T L X 24,706 21 G2B L X 17,18 22 G2B L X 17,18 23 G2T L X 17,18 24 G2T L Y 29,756 25 A3B L X 34,817 26 A3B L Y 60,305 27 A3T L X 34,817 28 A3T L Y 68,569 31 B3T L Y 60,305 32 B3B L X 34,817 34<	12	G11			20.756
13 A2b L A 11.15 14 A2B L Y 23.756 15 A2T L X 17.18 16 A2T L Y 23.756 17 B2B L Y 24.706 18 B2B L Y 42.792 19 B2T L Y 24.702 20 B2T L Y 42.792 21 G2B L Y 29.756 23 G2T L X 17.18 24 G2T L Y 29.756 23 G2T L X 34.817 24 G2T L X 34.817 26 A3B L X 34.817 28 A3T L Y 60.305 29 B3B L X 36.569 32 B3T L Y	12			Y Y	29.750
14 A2b L Y 22/30 15 A2T L X 17/18 16 A2T L Y 22/36 17 B2B L X 24/36 18 B2B L Y 42.792 19 B2T L X 24.706 20 B2T L X 24.706 21 G2B L X 17.18 22 G2B L X 17.18 24 G2T L Y 29.756 25 A3B L Y 20.766 26 A3B L Y 60.305 27 A3T L X 34.817 26 A3B L Y 60.305 29 B3B L Y 118.765 31 B3T L X 34.817 36 G3T L Y	13	<u>A2D</u>			17.10
15 A21 L X 17.18 16 A2T L Y 22.756 17 B2B L Y 42.792 19 B2T L X 24.706 20 B2T L Y 42.792 21 G2B L Y 23.756 23 G2T L X 17.18 24 G2T L X 17.18 24 G2T L X 17.18 24 G2T L X 34.817 26 A3B L X 34.817 26 A3B L Y 60.305 27 A3T L Y 60.305 28 A3T L Y 118.765 30 B3B L Y 118.765 31 B3T L Y 60.305 32 B3T L Y	14	A2B	L	Ý	29.756
16 A2 L Y 22,766 17 B2B L X 24,706 18 B2B L Y 42,792 19 B2T L X 24,706 20 B2T L X 24,706 21 G2B L X 17,18 22 G2B L Y 29,756 23 G2T L Y 29,756 24 G2T L Y 29,756 25 A3B L Y 60,305 27 A3T L Y 60,305 29 B3B L Y 60,305 29 B3B L Y 118,765 31 B3T L X 36,869 32 B3T L X 34,817 34 G3B L Y 60,305 33 G3B L X	15	A21	L	X	17.18
17 B2B L X 24.706 18 B2B L Y 42.792 19 B2T L X 24.706 20 B2T L Y 42.792 21 G2B L Y 42.792 22 G2B L Y 29.756 23 G2T L X 17.18 24 G2T L X 17.18 24 G2T L X 17.18 25 A3B L X 34.817 26 A3B L Y 60.305 27 A3T L Y 60.305 28 A3T L Y 68.569 30 B3B L X 68.569 31 B3T L Y 118.765 32 B3T L Y 60.305 33 G3B L Y 60.305 34 G3T L Y 60.305	16	A21	L	Ŷ	29.756
18 B2B L Y 42.792 19 B2T L X 24.706 20 B2T L Y 42.792 21 G2B L Y 42.792 22 G2B L Y 17.18 23 G2T L X 17.18 24 G2T L Y 29.756 25 A33 L X 34.817 26 A35 L Y 60.305 27 A3T L X 34.817 28 B3B L Y 60.305 29 B3B L X 68.569 30 B3B L X 68.69 31 B3T L X 68.69 32 B3T L Y 60.305 33 G3B L X 34.817 34 G3B L Y	17	B2B	L	X	24.706
19 B2T L X 24.706 20 B2T L Y 42.792 21 G2B L Y 29.756 22 G2B L Y 29.756 23 G2T L X 17.18 24 G2T L Y 29.756 25 A3B L X 34.817 26 A3B L X 34.817 26 A3B L Y 60.305 27 A3T L Y 60.305 28 A3T L Y 118.765 31 B3T L Y 118.765 32 B3T L Y 60.305 33 G3B L X 34.817 34 G3B L Y 60.305 35 G3T L X 34.817 36 G3T L X	18	B2B	L	Y	42.792
20 B2T L Y 42.792 21 G2B L X 17.18 22 G2B L Y 29.756 23 G2T L X 17.18 24 G2T L X 17.18 24 G2T L X 34.817 26 A3B L X 34.817 26 A3T L X 34.817 28 A3T L Y 60.305 29 B3B L X 68.569 30 B3B L Y 118.765 31 B3T L Y 118.765 33 G3B L X 34.817 34 G3B L Y 60.305 33 G3T L Y 60.305 34 G3B L Y 34.817 36 G3T L Y	19	<u>B2T</u>	L	X	24.706
21 G2B L X 17.18 22 G2B L Y 29.756 23 G2T L X 17.18 24 G2T L Y 29.756 25 A3B L Y 29.756 25 A3B L Y 60.305 27 A3T L X 34.817 26 A3B L Y 60.305 27 A3T L X 34.817 28 A3T L Y 60.305 30 B3B L Y 118.765 31 B3T L X 34.817 34 G3B L Y 60.305 35 G3T L X 34.817 36 G3T L X 34.817 36 G3T L X 34.817 36 G3T L X	20	B2T	L	Y	42.792
22 G2B L Y 29.756 23 G2T L X 17.18 24 G2T L Y 29.756 25 A3B L X 34.817 26 A3B L X 34.817 26 A3T L X 34.817 28 A3T L X 34.817 28 A3T L Y 60.305 29 B3B L Y 60.305 30 B3B L Y 60.305 31 B3T L Y 60.305 32 B3T L Y 34.817 34 G3B L X 34.817 34 G3B L Y 60.305 37 A4B L Y 60.305 39 A4T L X 68.569 41 B4B L X	21	G2B	L	Х	17.18
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22	G2B	L	Y	29.756
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	23	G2T	L	Х	17.18
25 A3B L X 34.817 26 A3B L Y 60.305 27 A3T L X 34.817 28 A3T L Y 60.305 29 B3B L Y 60.305 30 B3B L Y 118.765 31 B3T L X 68.569 32 B3T L Y 118.765 33 G3B L X 34.817 34 G3B L Y 60.305 35 G3T L X 34.817 36 G3T L X 34.817 36 G3T L X 34.817 38 A4B L Y 60.305 39 A4T L X 68.569 41 B4B L Y 60.305 42 B4B L Y 60.305 42 B4B L Y 60	24	G2T	L	Y	29.756
26 A3B L Y 60.305 27 A3T L X 34.817 28 A3T L Y 60.305 29 B3B L Y 60.305 30 B3B L Y 118.765 31 B3T L Y 118.765 33 G3B L Y 118.765 33 G3B L Y 118.765 33 G3B L Y 118.765 34 G3B L Y 60.305 35 G3T L Y 60.305 36 G3T L Y 60.305 37 A4B L X 34.817 38 A4B L Y 60.305 39 A4T L X 68.569 41 B4B L Y 118.765 43 B4T L X <td>25</td> <td>A3B</td> <td></td> <td>X</td> <td>34 817</td>	25	A3B		X	34 817
27 A37 L X 34.817 28 A3T L Y 60.305 30 B38 L Y 118.765 31 B37 L X 68.569 32 B37 L X 68.569 33 G38 L Y 118.765 33 G37 L X 34.817 34 G38 L Y 60.305 35 G37 L X 34.817 36 G37 L X 34.817 36 G37 L Y 60.305 39 A4B L Y 60.305 39 A4T L Y 60.305 41 B4B L X 34.817 40 A4T L Y 60.305 41 B4B L X 68.569 42 B4B L Y	26	A3B		Ý	60.305
L No C No Strong 28 A3T L Y 60.305 29 B3B L Y 118.765 31 B3T L Y 118.765 32 B3T L Y 118.765 33 G3B L X 68.569 32 B3T L Y 118.765 33 G3B L X 34.817 34 G3B L Y 60.305 35 G3T L Y 60.305 36 G3T L Y 60.305 37 A4B L X 34.817 38 A4B L Y 60.305 39 A4T L X 68.569 41 B4B L X 68.569 42 B4B L Y 118.765 43 B4T L Y	27	A3T		X	34.817
Lo L X 68.569 30 B3B L Y 118.765 31 B3T L X 68.569 32 B3T L Y 118.765 33 G3B L X 34.817 34 G3B L X 34.817 35 G3T L X 34.817 36 G3T L Y 60.305 37 A4B L Y 60.305 38 A4B L Y 60.305 39 A4T L Y 60.305 41 B4B L Y 68.569 42 B4B L Y 118.765 43 B4T L X 34.817 44 B4T L Y 118.765 44 B4T L X 34.817 45 G4B L Y 60.305 </td <td>28</td> <td>Δ3Τ</td> <td></td> <td></td> <td>60.305</td>	28	Δ3Τ			60.305
23 030 033 110 110 00.303 31 $B3T$ L X 68.569 32 $B3T$ L Y 118.765 33 $G3B$ L X 34.817 34 $G3B$ L X 34.817 34 $G3B$ L X 34.817 36 $G3T$ L X 34.817 36 $G3T$ L Y 60.305 37 $A4B$ L X 34.817 38 $A4B$ L X 34.817 40 $A4T$ L X 66.569 42 $B4B$ L Y 118.765 43 $B4T$ L X 68.569 44 $B4T$ L X 68.569 44 $B4T$ L X 68.569 44	20			V I	68 560
30 B3B L 1 116.763 31 B3T L X 68.569 32 B3T L Y 118.765 33 G3B L X 34.817 34 G3B L Y 60.305 35 G3T L X 34.817 36 G3T L Y 60.305 37 A4B L X 34.817 38 A4B L Y 60.305 39 A4T L X 34.817 40 A4T L Y 60.305 41 B4B L Y 60.305 42 B4B L Y 118.765 43 B4T L X 68.569 44 B4T L X 34.817 45 G4B L X 34.817 46 G4B L Y	29				110 765
31 $B31$ L X $90, 90, 90, 90, 90, 90, 90, 90, 90, 90,$	30			T Y	69.560
32 $B31$ L Y 116.765 33 $G3B$ L X 34.817 34 $G3B$ L Y 60.305 35 $G3T$ L X 34.817 36 $G3T$ L X 34.817 36 $G3T$ L X 34.817 38 $A4B$ L X 34.817 40 $A4T$ L X 34.817 40 $A4T$ L X 34.817 40 $A4T$ L X 68.569 41 $B4B$ L Y 118.765 43 $B4T$ L X 68.569 44 $B4T$ L X 68.569 44 $B4T$ L X 34.817 46 $G4B$ L Y 60.305 44 $B4T$ L X <	31	<u> </u>	L	X	00.009
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	<u>B31</u>		Ý	118./65
34 $G3B$ L Y 60.305 35 $G3T$ L X 34.817 36 $G3T$ L Y 60.305 37 $A4B$ L X 34.817 38 $A4B$ L Y 60.305 39 $A4T$ L X 34.817 40 $A4T$ L X 34.817 40 $A4T$ L X 34.817 40 $A4T$ L X 68.569 41 $B4B$ L Y 118.765 42 $B4B$ L Y 118.765 43 $B4T$ L X 68.569 44 $B4T$ L X 34.817 46 $G4B$ L Y 60.305 47 $G4T$ L X 34.817 48 $G4T$ L Y 60.305 49 $A4R$ L Y 60.305 51 </td <td>33</td> <td>G3B</td> <td>L</td> <td>X</td> <td>34.817</td>	33	G3B	L	X	34.817
35 G3T L X 34.817 36 G3T L Y 60.305 37 A4B L X 34.817 38 A4B L Y 60.305 39 A4T L X 34.817 40 A4T L Y 60.305 41 B4B L X 34.817 42 B4B L Y 60.305 41 B4B L Y 66.569 42 B4B L Y 118.765 43 B4T L X 68.569 44 B4T L Y 118.765 45 G4B L Y 118.765 45 G4B L Y 34.817 46 G4B L Y 30.05 47 G4T L X 34.817 48 G4T L X 25.401 50 A4R L Y 43.996	34	G3B	L	Ŷ	60.305
36 $G3T$ L Y 60.305 37 $A4B$ L X 34.817 38 $A4B$ L Y 60.305 39 $A4T$ L X 34.817 40 $A4T$ L Y 60.305 41 $B4B$ L Y 60.305 41 $B4B$ L Y 60.305 41 $B4B$ L Y 60.305 42 $B4B$ L Y 118.765 43 $B4T$ L X 68.569 44 $B4T$ L X 34.817 46 $G4B$ L Y 60.305 47 $G4T$ L X 34.817 48 $G4T$ L Y 60.305 47 $G4R$ L Y 60.305 47 $G4R$ L Y 25.401	35	G3T	L	X	34.817
37 A4B L X 34.817 38 A4B L Y 60.305 39 A4T L X 34.817 40 A4T L Y 60.305 41 B4B L Y 60.305 41 B4B L X 68.569 42 B4B L Y 118.765 43 B4T L X 68.569 44 B4T L Y 118.765 45 G4B L X 34.817 46 G4B L Y 60.305 47 G4T L X 34.817 46 G4B L Y 60.305 47 G4T L X 34.817 48 G4T L Y 60.305 49 A4R L Y 60.305 50 A4R L Y 37.73 51 B4R L<	36	G3T	L	Y	60.305
38 A4B L Y 60.305 39 A4T L X 34.817 40 A4T L Y 60.305 41 B4B L Y 60.305 42 B4B L Y 60.305 42 B4B L Y 68.569 44 B4T L X 68.569 44 B4T L X 68.569 44 B4T L Y 118.765 45 G4B L Y 60.305 46 G4B L Y 60.305 47 G4T L X 34.817 48 G4T L Y 60.305 49 A4R L Y 60.305 49 A4R L Y 37.73 52 B4R L Y 37.73 53 G4R L Y	37	A4B	L	Х	34.817
39 A4T L X 34.817 40 A4T L Y 60.305 41 B4B L X 68.569 42 B4B L Y 118.765 43 B4T L X 68.569 44 B4T L Y 118.765 45 G4B L Y 118.765 45 G4B L Y 118.765 46 G4B L Y 34.817 46 G4B L Y 60.305 47 G4T L X 34.817 48 G4T L Y 60.305 49 A4R L X 25.401 50 A4R L Y 37.73 51 B4R L X 25.401 52 B4R L Y 37.73 53 G4R L Y	38	A4B	L	Y	60.305
40 A4T L Y 60.305 41 B4B L X 68.569 42 B4B L Y 118.765 43 B4T L X 68.569 44 B4T L Y 118.765 45 G4B L Y 34.817 46 G4B L Y 60.305 47 G4T L X 34.817 48 G4T L Y 60.305 47 G4T L X 34.817 48 G4T L Y 60.305 49 A4R L X 25.401 50 A4R L Y 43.996 51 B4R L Y 37.73 53 G4R L Y 43.996 55 A1R L X 11.399 56 A1R	39	A4T	L	Х	34.817
41B4BLX 68.569 42B4BLY 118.765 43B4TLX 68.569 44B4TLY 118.765 45G4BLX 34.817 46G4BLY 60.305 47G4TLY 60.305 48G4TLY 60.305 49A4RLX 25.401 50A4RLY 43.996 51B4RLX 21.783 52B4RLY 37.73 53G4RLY 43.996 55A1RLX 25.401 54G4RLY 43.996 55A1RLX 11.399 56A1RLY 19.744 57B1RLX 11.399 60G1RLY 19.744 61A3RLX 11.954	40	A4T	L	Y	60.305
42B4BLY118.76543B4TLX68.56944B4TLY118.76545G4BLY118.76546G4BLY60.30547G4TLX34.81748G4TLY60.30549A4RLY60.30550A4RLY25.40150A4RLY33.99651B4RLY37.7352B4RLY37.7353G4RLY43.99655A1RLY11.39956A1RLY19.74457B1RLX11.39958B1RLY19.74459G1RLX11.39960G1RLY19.74461A3RLX11.954	41	B4B	L	Х	68.569
43 B4T L X 68.569 44 B4T L Y 118.765 45 G4B L X 34.817 46 G4B L Y 60.305 47 G4T L X 34.817 48 G4T L Y 60.305 49 A4R L X 25.401 50 A4R L Y 43.996 51 B4R L Y 37.73 52 B4R L Y 39.996 55 A1R L X 11.399 56 A1R L Y 19.744 57 B1R L X 13.114 58 B1R L Y 19.744 58 B1R L X 11.399 60 G1R L X 11.954	42	B4B	L	Y	118.765
44B4TLY118.76545G4BLX34.81746G4BLY 60.305 47G4TLX34.81748G4TLY 60.305 49A4RLY 60.305 50A4RLY 25.401 50A4RLY 43.996 51B4RLY 37.73 52B4RLY 37.73 53G4RLY 43.996 55A1RLY 43.996 56A1RLY 11.399 56A1RLY 19.744 57B1RLY 11.399 58B1RLY 11.399 60G1RLX 11.999 61A3RLX 11.954	43	B4T	L	Х	68,569
45 G4B L X 34.817 46 G4B L Y 60.305 47 G4T L X 34.817 48 G4T L X 25.401 50 A4R L Y 37.73 53 G4R L X 25.401 54 G4R L Y 43.996 55 A1R L X 11.399 56 A1R L Y 12.715 59 G1R L X 11.39	44	B4T	L	Y	118,765
46 $G4B$ L Y 60.305 47 $G4T$ L X 34.817 48 $G4T$ L Y 60.305 49 $A4R$ L Y 60.305 49 $A4R$ L Y 25.401 50 $A4R$ L Y 43.996 51 $B4R$ L Y 37.73 52 $B4R$ L Y 37.73 53 $G4R$ L Y 43.996 54 $G4R$ L Y 43.996 55 $A1R$ L X 25.401 54 $G4R$ L Y 43.996 55 $A1R$ L X 11.399 56 $A1R$ L Y 19.744 57 $B1R$ L X 11.399 59 $G1R$ L X 11.399 60 $G1R$ L Y 19.744 61	45	G4B		X	34.817
47 $G4T$ L X 34.817 48 $G4T$ L Y 60.305 49 $A4R$ L Y 60.305 49 $A4R$ L X 25.401 50 $A4R$ L Y 43.996 51 $B4R$ L Y 37.73 52 $B4R$ L Y 37.73 53 $G4R$ L Y 37.73 53 $G4R$ L Y 43.996 54 $G4R$ L Y 37.73 53 $G4R$ L Y 43.996 55 $A1R$ L Y 13.996 56 $A1R$ L Y 19.744 57 $B1R$ L Y 22.715 59 $G1R$ L Y 19.744 61 $A3R$ L X 11.954	46	G4B	_	Ý	60.305
H $G4T$ L X $G1.017$ 48 $G4T$ L Y 60.305 49 $A4R$ L X 25.401 50 $A4R$ L Y 43.996 51 $B4R$ L Y 25.401 52 $B4R$ L Y 25.401 52 $B4R$ L Y 37.73 53 $G4R$ L Y 37.73 53 $G4R$ L X 25.401 54 $G4R$ L Y 43.996 55 $A1R$ L X 11.399 56 $A1R$ L Y 19.744 57 $B1R$ L Y 22.715 59 $G1R$ L Y 11.399 60 $G1R$ L Y 19.744 61 $A3R$ L X 11.954	47	G4T		×	34 817
10 10	48	G4T		Y	60.305
43 A4R L X 20.401 50 A4R L Y 43.996 51 B4R L X 21.783 52 B4R L Y 37.73 53 G4R L X 25.401 54 G4R L Y 37.73 53 G4R L Y 43.996 54 G4R L Y 43.996 55 A1R L X 11.399 56 A1R L Y 19.744 57 B1R L X 13.114 58 B1R L Y 22.715 59 G1R L X 11.399 60 G1R L Y 19.744 61 A3R L X 11.954	10	<u>041</u>		Y	25 /01
30 A4R L I 43.990 51 B4R L X 21.783 52 B4R L Y 37.73 53 G4R L X 25.401 54 G4R L Y 43.996 55 A1R L X 11.399 56 A1R L Y 19.744 57 B1R L X 13.114 58 B1R L Y 22.715 59 G1R L X 11.399 60 G1R L Y 19.744 61 A3R L X 11.954	4 3				42.006
31 $B4R$ L X 21.763 52 $B4R$ L Y 37.73 53 $G4R$ L X 25.401 54 $G4R$ L Y 43.996 55 $A1R$ L X 11.399 56 $A1R$ L Y 19.744 57 $B1R$ L X 13.114 58 $B1R$ L Y 22.715 59 $G1R$ L X 11.399 60 $G1R$ L Y 19.744 61 $A3R$ L X 11.954	50	A4R P4D		T V	43.990
52 $B4R$ L Y 37.73 53 $G4R$ L X 25.401 54 $G4R$ L Y 43.996 55 $A1R$ L X 11.399 56 $A1R$ L Y 19.744 57 $B1R$ L X 13.114 58 $B1R$ L Y 22.715 59 $G1R$ L X 11.399 60 $G1R$ L Y 19.744 61 $A3R$ L X 11.954	51	B4R	L		21.703
53 G4R L X 25.401 54 G4R L Y 43.996 55 A1R L X 11.399 56 A1R L Y 19.744 57 B1R L X 13.114 58 B1R L Y 22.715 59 G1R L X 11.399 60 G1R L Y 19.744 61 A3R L X 11.954	52	B4R	L	Y	37.73
54 G4R L Y 43.996 55 A1R L X 11.399 56 A1R L Y 19.744 57 B1R L X 13.114 58 B1R L Y 22.715 59 G1R L X 11.399 60 G1R L Y 19.744 61 A3R L X 11.954	53	G4R		X	25.401
55 A1R L X 11.399 56 A1R L Y 19.744 57 B1R L X 13.114 58 B1R L Y 22.715 59 G1R L X 11.399 60 G1R L Y 19.744 61 A3R L X 11.954	54	G4R	L	Y	43.996
56 A1R L Y 19.744 57 B1R L X 13.114 58 B1R L Y 22.715 59 G1R L X 11.399 60 G1R L Y 19.744 61 A3R L X 11.954	55	<u>A1R</u>	L	X	11.399
57 B1R L X 13.114 58 B1R L Y 22.715 59 G1R L X 11.399 60 G1R L Y 19.744 61 A3R L X 11.954	56	A1R	L	Y	19.744
58 B1R L Y 22.715 59 G1R L X 11.399 60 G1R L Y 19.744 61 A3R L X 11.954	57	B1R	L	Х	13.114
59 G1R L X 11.399 60 G1R L Y 19.744 61 A3R L X 11.954	58	B1R	L	Y	22.715
60 G1R L Y 19.744 61 A3R L X 11.954	59	G1R	L	X	11.399
61 A3R L X 11.954	60	G1R	L	Y	19.744
	61	A3R	L	Х	11.954

Joint Loads and Enforced Displacements (BLC 25 : Antenna Wind (120)) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
62	A3R	L	Y	20.705
63	B3R	L	X	13.114
64	B3R	L	Y	22.715
65	G3R	L	Х	11.954
66	G3R	L	Y	20.705
67	A4R	L	Х	20.768
68	A4R	L	Y	35.972
69	B4R	L	Х	15.692
70	B4R	L	Y	27.179
71	G4R	L	Х	20.768
72	G4R	L	Y	35.972
73	A3R	L	Х	18.934
74	A3R	L	Y	32.795
75	B3R	L	Х	16.12
76	B3R	L	Y	27.92
77	G3R	L	Х	18.934
78	G3R	L	Y	32.795
79	A2R	L	Х	35.604
80	A2R	L	Y	61.668
81	B2R	L	Х	26.43
82	B2R	L	Y	45.778
83	G2R	L	Х	35.604
84	G2R	L	Y	61.668
85	ARC	L	Х	18.263
86	ARC	L	Y	31.632
87	BRC	L	Х	18.263
88	BRC	L	Y	31.632
89	ARC	L	Х	18.256
90	ARC	L	Y	31.621
91	GRC	L	Х	19.327
92	GRC	L	Y	33.475

Joint Loads and Enforced Displacements (BLC 26 : Antenna Wind (135))

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	A1B	L	X	27.844
2	A1B	L	Y	27.844
3	A1T	L	Х	27.844
4	A1T	L	Y	27.844
5	B1B	L	Х	33.989
6	B1B	L	Y	33.989
7	B1T	L	X	33.989
8	B1T	L	Y	33.989
9	G1B	L	Х	21.698
10	G1B	L	Y	21.698
11	G1T	L	Х	21.698
12	G1T	L	Y	21.698
13	A2B	L	Х	27.844
14	A2B	L	Y	27.844
15	A2T	L	X	27.844
16	A2T	L	Y	27.844
17	B2B	L	Х	33.989
18	B2B	L	Y	33.989
19	B2T	L	Х	33.989
20	B2T	L	Y	33.989
21	G2B	L	X	21.698
22	G2B	L	Y	21.698

Joint Loads and Enforced Displacements (BLC 26 : Antenna Wind (135)) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
23	<u> </u>	L	Х	21.698
24	G2T	L	Y	21.698
25	A3B	L	Х	65.15
26	A3B	L	Y	65.15
27	A3T	L	Х	65.15
28	A3T	L	Y	65.15
29	B3B	L	Х	92.708
30	B3B	L	Y	92.708
31	B3T	L	Х	92.708
32	B3T	Ĺ	Ý	92.708
33	G3B	L	Х	37.591
34	G3B	L	Y	37.591
35	G3T	L	X	37.591
36	G3T		Y	37 591
37	A4B		X	65 15
38	A4B		Y	65.15
39	ΔΔΤ		X	65.15
40	ΔΔΤ		Y	65.15
<u></u>	B4B		Y	92 708
12	B/R			02.700 02.700
13	<u>B4B</u>		Y	92.708
43				02 708
44			Y	37 501
45	04B			27 501
40	<u> </u>		I V	27.591
47	<u>641</u>			27 501
40	<u>041</u>		V I	24.217
<u>49</u> 50				24.217
50			I V	21.262
51				21.200
52			V I	27 171
53				27 172
55			Y	16 020
56				16,020
57	B1D		Y	18.33
58	B1D			18.33
50			V I	15,50
60				15.529
61			T V	17.452
62	A3R			17.400
62	AJK D2D		ľ V	10 /
03			X	
65	BJK C2D		Y	10.4
60	<u> </u>		X	10.505
00	GJK		Ý	10.505
6/	A4R		X	20.978
68	A4K		Y	26.978
69	B4R		X	22.833
70	B4R	L	Y	22.833
71	G4R		X	31.123
72	<u>G4R</u>	L	Y	31.123
73	A3R	L	X	25.45
74	A3R	L	Y	25.45
75	B3R	L	X	23.152
76	B3R	L	Y	23.152
77	<u>G3R</u>	L	X	27.749
78	G3R	L	Y	27.749
79	A2R	<u> </u>	<u>X</u>	46.027

Joint Loads and Enforced Displacements (BLC 26 : Antenna Wind (135)) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
80	A2R	L	Y	46.027
81	B2R	L	Х	38.536
82	B2R	L	Y	38.536
83	G2R	L	Х	53.517
84	G2R	L	Y	53.517
85	ARC	L	Х	25.828
86	ARC	L	Y	25.828
87	BRC	L	Х	25.828
88	BRC	L	Y	25.828
89	ARC	L	Х	25.818
90	ARC	L	Y	25.818
91	GRC	L	X	27.332
92	GRC	L	Y	27.332

Joint Loads and Enforced Displacements (BLC 27 : Antenna Wind (150))

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	A1B	L	X	38.447
2	A1B	L	Y	22.197
3	A1T	L	Х	38.447
4	A1T	L	Y	22.197
5	B1B	L	Х	38.447
6	B1B	L	Y	22.197
7	B1T	L	X	38.447
8	B1T	L	Y	22.197
9	G1B	L	X	25.411
10	G1B	L	Y	14.671
11	G1T	L	Х	25.411
12	G1T	L	Y	14.671
13	A2B	L	Х	38.447
14	A2B	L	Y	22.197
15	A2T	L	Х	38.447
16	A2T	L	Y	22.197
17	B2B	L	Х	38.447
18	B2B	L	Y	22.197
19	B2T	L	Х	38.447
20	B2T	L	Y	22.197
21	G2B	L	Х	25.411
22	G2B	L	Y	14.671
23	G2T	L	X	25.411
24	G2T	L	Y	14.671
25	A3B	L	Х	99.278
26	A3B	L	Y	57.318
27	A3T	L	Х	99.278
28	A3T	L	Y	57.318
29	B3B	L	Х	99.278
30	B3B	L	Y	57.318
31	B3T	L	Х	99.278
32	B3T	L	Y	57.318
33	G3B	L	X	40.818
34	G3B	L	Y	23.567
35	G3T	L	X	40.818
36	G3T	L	Y	23.567
37	A4B	L	Х	99.278
38	A4B	L	Y	57.318
39	A4T	L	X	99.278
40	A4T	L	Y	57.318

Joint Loads and Enforced Displacements (BLC 27 : Antenna Wind (150)) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
41	B4B	L	Х	99.278
42	B4B	L	Y	57.318
43	B4T	L	X	99.278
44	B4T	L	Y	57.318
45	G4B	L	Х	40.818
46	G4B	L	Y	23.567
47	G4T	<u> </u>	X	40.818
48	G4T		Y	23.567
49	A4R	<u> </u>	X	39.819
50	A4R		Y	22 989
51	B4R		X	39,819
52	B4R		× V	22 989
53	G4R		X	46.085
54	<u> </u>			26.607
55	<u>04N</u>		Y I	20.007
55	A1R			12 5/2
57			T V	21 724
57				21.724
50			ř V	10.754
59	GIR	L	X	10.704
60	GIR		Ý	10.828
61	<u>A3R</u>	L	X	22.045
62	A3R	L	Ŷ	12./28
63	B3R	L	X	22.045
64	B3R	L	Y	12.728
65	G3R	L	X	20.035
66	G3R	L	Y	11.567
67	A4R	L	X	30.11
68	A4R	L	Y	17.384
69	B4R	L	X	30.11
70	B4R	L	Y	17.384
71	G4R	L	X	38.903
72	G4R	L	Y	22.461
73	A3R	L	Х	29.545
74	A3R	L	Y	17.058
75	B3R	L	X	29.545
76	B3R	L	Y	17.058
77	G3R	L	X	34.421
78	G3R	L	Y	19.873
79	A2R	L	Х	51.074
80	A2R	L	Y	29.488
81	B2R	L	Х	51,074
82	B2R	L	Y	29.488
83	G2R	L	X	66.964
84	G2R	Ĺ	Y	38,662
85	ARC	L	X	31.632
86	ARC		Y	18,263
87	BRC		X	31.632
88	BRC		Ŷ	18 263
89	ARC		×	31 621
90	ARC		Y	18 256
91	GRC		X	33 475
92	GPC		× ×	10 207
32		L		13.327

Joint Loads and Enforced Displacements (BLC 28 : Antenna Wind w/ Ice (0))

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	A1B	L	Х	-10.416
			•	

Joint Loads and Enforced Displacements (BLC 28 : Antenna Wind w/ Ice (0)) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
2	A1B	L	Y	0
3	A1T	L	Х	-10.416
4	A1T	L	Y	0
5	B1B	L	Х	-7.614
6	B1B	L	Y	0
7	B1T	L	X	-7.614
8	B1T	L	Y	0
9	G1B	L	Х	-7.614
10	G1B	L	Y	0
11	G1T		X	-7.614
12	G1T	Ē	Y	0
13	A2B		X	-10 416
14	A2B		Y	0
15	A2T		X	-10 416
16	Δ2Τ		Y Y	0
17			X	-7 614
18	<u>B2B</u>		× v	0
10	<u>B2B</u>		X	-7 61/
20	R9T		× v	<u> </u>
20	G2R		Y	_7 61/
21	<u>62B</u>			-7.014 0
22	<u> </u>		Y	7 614
23	<u>621</u>			-7.014
25	021		Y	27 328
20	<u>A3D</u>			-27.520
20	<u>A3B</u>		Y	U
21	<u>A31</u>			-27.520
20			Y	14.016
29				-14.910
30			T Y	14.016
20				-14.910
32			I V	14.016
24	<u>G3B</u>			-14.910
25	<u> </u>		I V	14.016
26	<u>031</u>			-14.910
27			I V	U
20				-27.520
30	<u> </u>		I V	U
39				-27.520
40	<u>A41</u>		I V	14.016
41				-14.910
42				1/ 016
43	B/T			-14.510 A
44	G/R		Y	
45	G4B			-14.910
40	GAT		Y	_1/ 016
47	041 G4T			-14.510
40	041		Y	0 737
50				
51	B/R		Y	
52	BAR		× V	Λ
52	G/P		Y	
53	GAR			-12.120 Λ
55			Y	0
56				-0.140 0
57	B1D		Y	0
50				<u>-0.105</u> Λ
00	DIK	L	Í	U
Joint Loads and Enforced Displacements (BLC 28 : Antenna Wind w/ Ice (0)) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
59	G1R	L	Х	-6.103
60	G1R	L	Y	0
61	A3R	L	Х	-6.146
62	A3R	L	Y	0
63	B3R	L	Х	-6.348
64	B3R	L	Y	0
65	G3R	L	Х	-6.348
66	G3R	L	Y	0
67	A4R	L	Х	-7.194
68	A4R	L	Y	0
69	B4R	L	Х	-9.972
70	B4R	L	Y	0
71	G4R	L	Х	-9.972
72	G4R	L	Y	0
73	A3R	L	Х	-7.364
74	A3R	L	Y	0
75	B3R	L	Х	-9.264
76	B3R	L	Y	0
77	G3R	L	Х	-9.264
78	G3R	L	Y	0
79	A2R	L	Х	-11.557
80	A2R	L	Y	0
81	B2R	L	Х	-16.106
82	B2R	L	Y	0
83	G2R	L	Х	-16.106
84	G2R	L	Y	0
85	ARC	L	Х	-9.9
86	ARC	L	Y	0
87	BRC	L	Х	-9.9
88	BRC	<u> </u>	Y	0
89	ARC	L	X	-9.897
90	ARC	L	Y	0
91	GRC	L	Х	-10.095
92	GRC	L	Y	0

Joint Loads and Enforced Displacements (BLC 29 : Antenna Wind w/ Ice (30))

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	A1B	L	Х	-8.212
2	A1B	L	Y	4.741
3	A1T	L	Х	-8.212
4	A1T	L	Y	4.741
5	B1B	L	Х	-5.785
6	B1B	L	Y	3.34
7	B1T	L	Х	-5.785
8	B1T	L	Y	3.34
9	G1B	L	Х	-8.212
10	G1B	L	Y	4.741
11	G1T	L	Х	-8.212
12	G1T	L	Y	4.741
13	A2B	L	Х	-8.212
14	A2B	L	Y	4.741
15	A2T	L	Х	-8.212
16	A2T	L	Y	4.741
17	B2B	L	Х	-5.785
18	B2B	L	Y	3.34
19	B2T	L	X	-5.785

Joint Loads and Enforced Displacements (BLC 29 : Antenna Wind w/ Ice (30)) (Continued)

20 B2T L Y 3.34 21 G2B L Y 4.741 22 G2B L Y 4.741 23 G2T L X -8.212 24 G2T L Y 4.741 25 A3B L Y 4.741 26 A3B L Y 4.741 26 A3B L Y 4.741 26 A3B L Y 4.741 27 A3.T L X -20.064 28 A3T L Y 5.369 31 B3T L X -20.064 34 G3B L Y 11.595 33 G3T L X -20.064 36 G3T L X -20.064 28 A4B L X -20.064 44 B4H L		Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
21 G2B L X -8.212 22 G2B L Y 4.741 23 G2T L X -9.212 24 G2T L Y 4.741 25 A3B L Y 4.741 26 A3B L Y 1.595 27 A3T L X -20.064 28 A3T L Y 1.595 29 B3B L Y 5.389 30 B3B L Y 5.389 31 B3T L X -9.335 32 B3T L Y 1.595 33 G3B L Y 1.595 34 G3T L X -20.064 36 G3T L X -20.064 36 G3T L X -20.064 37 A4B L Y 1.1595 39 A4T L X -20.064 40	20	B2T	L	Y	3.34
22 G2B L Y 4,741 23 G2T L X -6.212 24 G2T L Y 4,741 25 A3B L Y -11,595 26 A3B L Y -11,595 27 A3T L X -20,084 28 A3T L Y -5,389 29 B3B L X -9,335 30 B3B L Y -5,389 31 B3T L X -20,084 34 G3B L Y 11,595 35 G3T L X -20,084 36 G3T L X -20,084 36 G3T L Y 11,595 37 A4B L X -20,084 40 A4T L Y -13,595 41 B4B L Y -3,336 42 B4B L Y -20,084	21	G2B	L	Х	-8.212
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	G2B	L	Y	4.741
24 G2T L Y 4.741 25 A3B L X -20.084 26 A3B L Y 11.595 27 A3T L X -20.084 28 A3T L Y 11.595 29 B3B L X -9.335 30 B3B L X -9.335 31 B3T L X -9.335 32 B3T L X -9.335 33 G3B L X -20.084 34 G3B L Y 11.595 35 G3T L X -20.084 36 G3T L Y -13.595 37 A4B L Y -15.956 38 A4B L Y -20.084 40 A4T L Y -3.359 41 B4B L Y <td>23</td> <td>G2T</td> <td>L</td> <td>Х</td> <td>-8.212</td>	23	G2T	L	Х	-8.212
25 A38 L X -20.084 26 A37 L X -20.084 28 A37 L Y 11.595 29 B38 L Y 9.335 30 B38 L Y 9.335 31 B37 L X 9.335 32 B37 L Y 5.389 34 G38 L Y 1.9365 35 G37 L X -20.084 36 G37 L Y 1.1595 37 A48 L Y 11.595 38 A48 L Y 11.595 39 A47 L X -20.084 40 A47 L Y 11.595 41 B48 L Y 11.595 42 B48 L Y 5.389 44 B47 L X -20.084 45 G48 L Y 11.595 <t< td=""><td>24</td><td>G2T</td><td>L</td><td>Y</td><td>4.741</td></t<>	24	G2T	L	Y	4.741
26 A3B L Y 11.595 27 A3T L X -20.084 28 A3T L Y 11.595 30 B3B L X -9.335 30 B3B L Y -5.389 31 B3T L Y -20.084 32 B3T L Y -20.084 34 G3B L Y -11.595 35 G3T L Y -20.084 36 G3T L Y -11.595 36 G3T L Y -11.595 37 A4B L Y -11.595 38 A4T L X -20.084 40 A4T L Y 5.389 41 B4B L Y 5.389 42 B4B L Y 5.389 43 B4T L Y <td>25</td> <td>A3B</td> <td>L</td> <td>Х</td> <td>-20.084</td>	25	A3B	L	Х	-20.084
27 A3T L X -20.084 28 A3T L Y 11.595 29 B3B L X -9.335 30 B3B L Y 5.389 31 B3T L X -9.335 32 B3T L Y 5.389 34 G3B L Y -20.084 34 G3B L Y -20.084 36 G3T L Y -20.084 36 G3T L Y 11.595 37 A4B L X -20.084 38 A4B L Y 11.595 39 A4T L Y 11.595 41 B4B L X -9.335 42 B4B L Y 11.595 43 B4T L X -20.084 44 B4T L X	26	A3B	L	Y	11.595
28 A3T L Y 11.585 29 B3B L X -9.335 30 B3B L Y 5.389 31 B3T L X -9.335 33 G3B L Y -0.084 34 G3B L Y -0.084 35 G3T L Y -0.084 36 G3T L Y 11.595 37 A4B L Y -0.084 38 A4T L X -9.335 40 A4T L Y 11.595 41 B4B L Y 5.389 42 B4B L Y 11.595 44 B4T L Y	27	A3T	L	Х	-20.084
29 B38 L X -9.335 30 B38 L Y 5.389 31 B37 L X -9.335 32 B37 L Y 5.389 33 G38 L X -20.084 34 G38 L X -20.084 35 G37 L X -20.084 36 G37 L X -20.084 38 A48 L Y 11.595 39 A47 L X -20.084 40 A47 L X -9.335 42 B48 L X -9.335 43 B47 L X -9.335 44 B47 L X -9.335 45 G48 L Y 11.595 47 G41 L X -9.122 50 A48 L Y	28	A3T	L	Y	11,595
30 B3B L Y 5.389 31 B3T L X -9.335 33 G3B L Y 5.369 34 G3B L Y -9.0084 34 G3B L Y -11.595 35 G3T L X -20.084 36 G3T L Y -11.595 37 A4B L Y -11.595 38 A4T L X -20.084 40 A4T L Y -9.335 41 B4B L Y -9.335 42 B4B L Y -9.335 44 B4T L Y -9.335 44 B4T L Y -9.335 44 B4T L Y -9.122 50 A4R L Y -9.122 50 A4R L Y	29	B3B	Ĺ	X	-9.335
31 B3T L X -3336 32 B3T L Y 5389 34 G3B L Y 20.084 34 G3B L Y 11.595 35 G3T L X -20.084 36 G3T L Y 11.595 37 A4B L X -20.084 38 A4B L X -20.084 40 A4T L X -9.335 42 B4B L X -9.335 43 B4T L X -9.335 44 B4T L Y 5.389 43 B4T L X -9.335 44 B4T L Y 5.389 43 B4T L X -9.192 44 B4T L Y 11.595 43 G4R <td< td=""><td>30</td><td>B3B</td><td>L</td><td>Ŷ</td><td>5.389</td></td<>	30	B3B	L	Ŷ	5.389
32 33 $G38$ L Y $f339$ 34 $G38$ L X -20.084 35 $G31$ L X -20.084 36 $G31$ L Y 11.595 37 $A48$ L Y 11.595 37 $A48$ L X -20.084 38 $A4B$ L X -20.084 40 $A41$ L X -20.084 40 $A41$ L X -9.335 41 $B48$ L X -9.335 42 $B48$ L X -9.335 44 $B41^-$ L X -20.084 44 $B41^-$ L X -20.084 46 $G48$ L X -11.595 47 $G41^-$ L Y 5.266 51 $B4R$ L X <td>31</td> <td>B3T</td> <td></td> <td>X</td> <td>-9.335</td>	31	B3T		X	-9.335
33 $G3B$ L X -20.084 34 $G3B$ L Y 11.595 35 $G3T$ L X -20.084 36 $G3T$ L Y 11.595 37 A4B L Y 11.595 38 A4B L Y 11.595 39 A4T L X -20.084 40 A4T L Y 9.335 41 B4B L X -9.335 42 B4B L Y 5.389 43 B4T L Y 5.339 44 B4T L Y 11.595 47 G4B L X -20.084 46 G4B L X -210.984 47 G4T L X -9.122 50 A4R L X -9.122 50	32	B3T	L	Ŷ	5.389
34 G3B L Y 11,595 35 G3T L X -20,084 36 G3T L Y 11,595 37 A4B L X -20,084 38 A4B L Y 11,595 39 A4T L X -20,084 40 A4T L X -9,335 41 B4B L X -9,335 42 B4B L Y 5,389 43 B4T L X -9,335 44 B4T L Y 5,389 45 G4B L X -20,084 46 G4B L Y 11,595 47 G4T L X -20,084 48 G4T L Y 5,266 50 AAR L Y 6,461 53 G4R L X	33	G3B		X	-20.084
36 $G37$ L X -20.084 36 $G3T$ L Y 11.585 37 A4B L X -20.084 38 A4B L Y 11.595 39 A4T L X -20.084 40 A4T L Y 11.595 41 B4B L X -9.335 42 B4B L Y 5.389 43 B4T L X -9.335 44 B4T L X -9.335 47 G4T L X $-9.120.084$ 46 G4B L X $-9.122.084$ <t< td=""><td>34</td><td>G3B</td><td></td><td>Y</td><td>11 595</td></t<>	34	G3B		Y	11 595
36 G3T L Y 11.595 37 A4B L X -20.084 38 A4B L Y 11.595 39 A4T L X -20.084 40 AAT L Y 11.595 41 B4B L Y 5.389 42 B4B L Y 5.389 43 B4T L X -9.335 44 B4T L Y 5.389 45 G4B L X -20.084 46 G4B L Y 11.595 47 G4T L X -20.084 48 G4T L Y 5.266 51 B4R L Y 5.266 52 B4R L Y 5.266 53 G4R L Y 3.045 54 G4R L Y	35	G3T	L	X	-20.084
37 $A48$ L X -20.084 38 $A48$ L Y 11.595 39 $A47$ L X -20.084 40 $A47$ L X -20.084 40 $A47$ L Y -3.35 41 $B48$ L Y -3.35 42 $B48$ L Y -5.389 43 $B47$ L X -9.335 44 $B47$ L X -20.084 46 648 L X -20.084 46 648 L X -20.084 47 647 L X -20.084 48 $G47$ L X -9.122 50 $A4R$ L Y 5.266 51 $B4R$ L X -9.122 54 $G4R$ L Y 3.066	36	G3T	<u>L</u>	× ×	11 595
38 $A48$ L Y 11.595 39 $A47$ L X -20.084 40 $A47$ L Y 11.595 41 $B48$ L X -9.335 42 $B48$ L X -9.335 44 $B4T$ L X -9.335 45 $G4B$ L X -20.084 45 $G4B$ L X -20.084 46 $G48$ L Y 6.266 47 $G47$ L X -9.122 50 $A4R$ L X -9.122 54 $G4R$ L X -5.266 55 $A1R$	37	001		X	-20.084
39 $A4T$ L X -20.084 40 $A4T$ L Y 11.595 41 $B4B$ L Y 5.389 43 $B4T$ L Y 5.389 44 $B4T$ L Y 5.389 45 $G4B$ L X -9.335 46 $G4B$ L X -9.335 47 $G4T$ L X -20.084 46 $G4B$ L X -20.084 48 $G4T$ L X -9.122 50 $A4R$ L Y 5.266 51 $B4R$ L Y 6.461 53 $G4R$ L Y 6.461 53 $G4R$ L Y 6.266 55 $A1R$ L X -5.273 58 $B1R$ L Y 3.045 <td>38</td> <td>A/B</td> <td></td> <td>× ×</td> <td>11 595</td>	38	A/B		× ×	11 595
33 $A1$ L X 40.007 40 $A4T$ L X 40.007 41 $B4B$ L X 40.335 42 $B4B$ L X 40.335 43 $B4T$ L X 9.335 44 $B4T$ L X 9.335 44 $B4T$ L X -20.084 45 $G4B$ L X -20.084 46 $G4B$ L X -20.084 47 $G4T$ L X -20.084 48 $G4T$ L X -9.00044 48 $G4T$ L X -9.122 50 $A4R$ L X -9.122 51 $B4R$ L X -9.122 54 $G4R$ L Y 3.066 57 $B1R$ L X <	30			X	-20.084
41 $B41$ L X -9.335 42 $B4B$ L Y 5.389 43 $B4T$ L X -9.335 44 $B4T$ L Y 5.389 45 $G4B$ L X -20.084 46 $G4B$ L Y 11.595 47 $G4T$ L X -20.084 48 $G4T$ L X -9.122 50 $A4R$ L X -9.122 50 $A4R$ L Y 5.266 51 $B4R$ L Y 6.461 52 $B4R$ L Y 7.5266 55 $A1R$ L X -5.31 56 $A1R$ L Y 3.066 57 $B1R$ L X -5.31 59 $G1R$ L	40				-20.004
42 B4B L Y $5,389$ 43 B4T L X $-9,335$ 44 B4T L Y $5,389$ 45 G4B L Y $5,389$ 46 G4B L Y $11,595$ 47 G4T L X $-20,084$ 48 G4T L Y $11,595$ 49 A4R L Y $9,122$ 50 A4R L Y $6,461$ 51 B4R L Y $6,461$ 52 B4R L Y $6,461$ 53 G4R L Y $6,461$ 53 G4R L Y $3,066$ 55 A1R L X $-5,31$ 56 A1R L Y $3,066$ 57 B1R L X $-5,31$ 60 G1R L Y $3,066$ 61 A3R L Y $3,026$	40	A+1		Y	0.335
43 $B4T$ L I 3.36 44 $B4T$ L Y 5.389 45 $G4B$ L Y 11.595 47 $G4T$ L X -20.084 46 $G4B$ L Y 11.595 47 $G4T$ L X -20.084 48 $G4T$ L Y 11.595 49 $A4R$ L Y 5.266 51 $B4R$ L X -9.122 50 $A4R$ L X -11.191 52 $B4R$ L Y 5.266 51 $B4R$ L Y 5.266 54 $G4R$ L Y 5.266 55 $A1R$ L X -5.31 56 $A1R$ L Y 3.066 57 $B1R$ L X -5.31 60 $G1R$ L X -5.381 60	41				5 290
43 D41 L A -5.333 44 B4T L Y 5.389 45 G4B L X -20.084 46 G4B L Y 11.595 47 G4T L X -20.084 48 G4T L Y 11.595 49 A4R L Y -9.122 50 A4R L Y -5.266 51 B4R L X -9.122 54 G4R L Y 6.461 53 G4R L Y 5.266 55 A1R L X -9.122 54 G4R L Y 3.066 57 B1R L Y 3.066 59 G1R L X -5.31 60 G1R L Y 3.066 61 A3R L Y 3.066 62 A3R L Y 3.066 64 <td>42</td> <td>B4B D4T</td> <td></td> <td>I V</td> <td>0.225</td>	42	B4B D4T		I V	0.225
44 D41 L 1 3.369 45 G4B L X -20.084 46 G4B L Y 11.595 47 G4T L X -20.084 48 G4T L Y 11.595 49 A4R L X -9.122 50 A4R L X -9.122 51 B4R L X -11.191 52 B4R L Y 6.461 53 G4R L X -9.122 54 G4R L Y 3.066 55 A1R L Y 3.066 56 A1R L Y 3.066 57 B1R L X -5.31 60 G1R L Y 3.066 61 A3R L Y 3.066 62 A3R L Y 3.106 63 B3R L X -5.381 <td>43</td> <td></td> <td></td> <td></td> <td>-9.00</td>	43				-9.00
43 64b L A -20.084 46 64B L Y 11.595 47 64T L X -20.084 48 64T L Y 11.595 49 A4R L X -9.122 50 A4R L Y 5.266 51 B4R L Y 6.461 52 B4R L Y 6.461 53 G4R L Y 6.461 53 G4R L Y 6.461 53 G4R L Y 5.266 54 G4R L Y 3.066 55 A1R L X -5.31 56 A1R L Y 3.045 59 G1R L Y 3.045 59 G1R L X -5.31 62 A3R L Y 3.066 61 A3R L Y 3.208 65	44			T T	0.094
46 G4B L Y 11.595 47 G4T L X -20.084 48 G4T L Y 11.595 49 A4R L Y 11.595 50 A4R L Y 5.266 51 B4R L Y 5.266 51 B4R L Y 6.461 52 B4R L Y 5.266 53 G4R L Y 5.266 54 G4R L Y 5.266 55 A1R L Y 5.266 55 A1R L Y 3.066 57 B1R L X -5.31 58 B1R L Y 3.045 59 G1R L X -5.31 60 G1R L Y 3.066 61 A3R L X -5.381 62 A3R L Y 3.106 63	40				-20.004
47 G41 L X -20,084 48 G4T L Y 11.595 49 A4R L X -9,122 50 A4R L Y 5,266 51 B4R L X -11.191 52 B4R L Y 6,461 53 G4R L Y 5,266 55 A1R L X -9,122 56 A1R L X -5,31 56 A1R L Y 3,066 57 B1R L Y 3,045 59 G1R L Y 3,045 59 G1R L X -5,31 60 G1R L Y 3,066 61 A3R L X -5,381 62 A3R L Y 3,208 63 B3R L X -5,556 64 B3R L Y 3,106 67	40	G4B		Ý V	11.595
46 G41 L Y 11.395 49 A4R L X -9.122 50 A4R L Y 5.266 51 B4R L Y 6.461 53 G4R L Y 6.461 53 G4R L Y 6.461 53 G4R L Y 6.461 54 G4R L Y 3.066 55 A1R L X -9.122 56 A1R L Y 3.066 57 B1R L X -5.31 59 G1R L Y 3.066 61 A3R L Y 3.066 61 A3R L Y 3.066 62 A3R L Y 3.066 63 B3R L Y 3.208 65 G3R L X -5.56 64 B3R L Y 3.106 67	47	<u> </u>	L	X	-20.084
49 A4R L X -9.122 50 A4R L Y 52.266 51 B4R L X -11.191 52 B4R L Y 6.461 53 G4R L Y 6.461 53 G4R L Y 5.266 55 A1R L X -5.31 56 A1R L Y 3.066 57 B1R L X -5.273 58 B1R L Y 3.045 59 G1R L Y 3.045 59 G1R L Y 3.045 62 A3R L Y 3.106 63 B3R L Y 3.106 64 B3R L Y 3.208 65 G3R L Y 3.106 66 G3R L Y 4.06 67 A4R L Y 4.06 69	48	<u> </u>		Ý V	11.595
30 A4R L Y 5.266 51 B4R L X -11.191 52 B4R L Y 6.461 53 G4R L Y 6.461 53 G4R L Y 5.266 55 A1R L Y 5.266 55 A1R L Y 3.066 57 B1R L Y 3.045 59 G1R L Y 3.045 59 G1R L Y 3.066 61 A3R L Y 3.066 61 A3R L Y 3.066 61 A3R L Y 3.066 63 B3R L Y 3.106 64 B3R L Y 3.106 65 G3R L Y 4.06 69 B4R L	49	A4R	L	X	-9.122
31 $B4R$ L X -11.191 52 $B4R$ L Y 6.461 53 $G4R$ L X -9.122 54 $G4R$ L Y 5.266 55 $A1R$ L X -5.31 56 $A1R$ L Y 3.066 57 $B1R$ L X -5.273 58 $B1R$ L Y 3.045 59 $G1R$ L X -5.31 60 $G1R$ L Y 3.066 61 $A3R$ L Y 3.066 61 $A3R$ L Y 3.208 62 $A3R$ L Y 3.208 63 $B3R$ L Y 3.208 64 $B3R$ L Y 4.06 67 $A4R$ L Y 4.06	50	A4R		Y Y	5.266
52 $B4R$ L Y 6.461 53 $G4R$ L X -9.122 54 $G4R$ L Y 5.266 55 $A1R$ L X -5.31 56 $A1R$ L Y 3.066 57 $B1R$ L X -5.273 58 $B1R$ L X -5.31 60 $G1R$ L X -5.31 60 $G1R$ L Y 3.045 59 $G1R$ L Y 3.066 61 $A3R$ L Y 3.066 61 $A3R$ L Y 3.066 61 $A3R$ L Y 3.106 62 $A3R$ L Y 3.208 65 $G3R$ L X -5.381 66 $G3R$ L Y 4.06	51	B4R	L	X	-11.191
53 G4R L X $-9,122$ 54 G4R L Y $5,266$ 55 A1R L X $-5,31$ 56 A1R L Y 3.066 57 B1R L Y 3.045 59 G1R L Y 3.045 59 G1R L Y 3.066 61 A3R L Y 3.106 62 A3R L Y 3.208 64 B3R L Y 3.208 65 G3R L Y 3.208 66 G3R L Y 4.06 69 B4R L Y </td <td>52</td> <td>B4R</td> <td>L</td> <td>Y</td> <td>6.461</td>	52	B4R	L	Y	6.461
54 G4R L Y 5.266 55 A1R L X -5.31 56 A1R L Y 3.066 57 B1R L X -5.273 58 B1R L Y 3.045 59 G1R L X -5.31 60 G1R L Y 3.066 61 A3R L X -5.381 62 A3R L Y 3.106 63 B3R L Y 3.106 63 B3R L Y 3.106 64 B3R L Y 3.106 65 G3R L Y 3.106 66 G3R L Y 3.106 67 A4R L Y 3.106 68 A4R L Y 4.06 69 B4R L Y 4.06 69 B4R L Y 4.06 71 <td< td=""><td>53</td><td>G4R</td><td>L</td><td>X</td><td>-9.122</td></td<>	53	G4R	L	X	-9.122
55 A1R L X -5.31 56 A1R L Y 3.066 57 B1R L X -5.273 58 B1R L Y 3.045 59 G1R L Y 3.066 61 A3R L Y 3.066 61 A3R L Y 3.066 61 A3R L Y 3.066 62 A3R L Y 3.106 63 B3R L Y 3.208 64 B3R L Y 3.208 65 G3R L Y 3.106 66 G3R L Y 3.106 67 A4R L Y 4.06 69 B4R L Y 4.06 69 B4R L Y 4.06 70 B4R L Y 4.06 71 G4R L Y 4.06 73 A3	54	G4R	L	Y	5.266
36 AIR L Y 3.066 57 B1R L X -5.273 58 B1R L Y 3.045 59 G1R L X -5.31 60 G1R L Y 3.066 61 A3R L Y 3.106 62 A3R L Y 3.208 63 B3R L Y 3.208 65 G3R L Y 3.106 66 G3R L Y 3.106 67 A4R L Y 4.06 69 B4R L Y 4.06 71 G	55	A1R	L	X	-5.31
57 B1R L X $-5.2/3$ 58 B1R L Y 3.045 59 G1R L X -5.31 60 G1R L Y 3.066 61 A3R L X -5.381 62 A3R L Y 3.106 63 B3R L Y 3.208 64 B3R L Y 3.208 65 G3R L Y 3.208 66 G3R L Y 3.106 66 G3R L Y 3.208 66 G3R L Y 3.208 66 G3R L Y 3.406 67 A4R L Y 4.06 69 B4R L Y 4.06 69 B4R L Y 4.06 71 G4R L Y 4.06 73 A3R L Y <td>56</td> <td>A1R</td> <td>L</td> <td>Ý</td> <td>3.066</td>	56	A1R	L	Ý	3.066
58 B1R L Y 3.045 59 G1R L X -5.31 60 G1R L Y 3.066 61 A3R L X -5.381 62 A3R L Y 3.106 63 B3R L Y 3.208 64 B3R L Y 3.208 65 G3R L Y 3.208 66 G3R L Y 3.106 67 A4R L Y 3.106 68 A4R L Y 3.106 69 B4R L X -7.032 68 A4R L Y 4.06 70 B4R L Y 5.449 71 G4R L Y 4.06 73 A3R L X -6.926 73 A3R L Y 3.999 75 B3R L Y 4.948	5/	B1R	L	X	-5.273
59 G1R L X -5.31 60 G1R L Y 3.066 61 A3R L X -5.381 62 A3R L Y 3.106 63 B3R L X -5.556 64 B3R L Y 3.208 65 G3R L Y 3.106 66 G3R L Y 3.106 67 A4R L Y 3.106 67 A4R L Y 4.06 69 B4R L Y 4.06 69 B4R L Y 4.06 70 B4R L Y 4.06 71 G4R L Y 4.06 73 A3R L X -7.032 72 G4R L Y 4.06 73 A3R L X -6.926 74 A3R L Y 3.999 75	58	B1R	L	Ý	3.045
60 G1R L Y 3.066 61 A3R L X -5.381 62 A3R L Y 3.106 63 B3R L X -5.556 64 B3R L Y 3.208 65 G3R L Y 3.208 66 G3R L Y 3.106 67 A4R L Y 3.106 67 A4R L Y 3.106 68 A4R L Y 4.06 69 B4R L Y 4.06 69 B4R L Y 5.449 71 G4R L Y 4.06 73 A3R L X -6.926 74 A3R L Y 3.999 75 B3R L Y 4.948	59	G1R	L	X	-5.31
61 A3R L X -5.381 62 A3R L Y 3.106 63 B3R L X -5.556 64 B3R L Y 3.208 65 G3R L Y 3.208 66 G3R L Y 3.106 67 A4R L Y 3.106 67 A4R L Y 4.06 69 B4R L Y 4.06 69 B4R L Y 5.449 70 B4R L Y 5.449 71 G4R L Y 4.06 72 G4R L Y 4.06 73 A3R L X -6.926 74 A3R L Y 3.999 75 B3R L Y 4.948	60	G1R	L	Y	3.066
62 A3R L Y 3.106 63 B3R L X -5.556 64 B3R L Y 3.208 65 G3R L X -5.381 66 G3R L Y 3.106 67 A4R L Y 3.106 67 A4R L Y 3.106 67 A4R L Y 4.06 69 B4R L Y 4.06 69 B4R L Y 5.449 71 G4R L Y 4.06 73 A3R L Y 4.06 73 A3R L Y 3.999 75 B3R L Y 3.999 75 B3R L Y 4.948	61	A3R	L	X	-5.381
63 $B3R$ L X -5.556 64 $B3R$ L Y 3.208 65 $G3R$ L X -5.381 66 $G3R$ L Y 3.106 67 $A4R$ L Y 3.106 67 $A4R$ L Y 4.06 69 $B4R$ L Y 4.06 69 $B4R$ L Y 5.449 71 $G4R$ L Y 4.06 72 $G4R$ L Y 4.06 73 $A3R$ L Y 4.06 74 $A3R$ L Y 4.06 74 $A3R$ L Y 3.999 75 $B3R$ L Y 4.948	62	A3R	L	Y	3.106
64 B3R L Y 3.208 65 G3R L X -5.381 66 G3R L Y 3.106 67 A4R L Y 3.106 67 A4R L Y 3.106 67 A4R L Y -7.032 68 A4R L Y 4.06 69 B4R L X -9.438 70 B4R L Y 5.449 71 G4R L X -7.032 72 G4R L Y 4.06 73 A3R L X -6.926 74 A3R L Y 3.999 75 B3R L X -8.571 76 B3R L Y 4.948	63	B3R	L	X	-5.556
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	64	B3R	L	Y	3.208
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	65	G3R	L	X	-5.381
67 A4R L X -7.032 68 A4R L Y 4.06 69 B4R L X -9.438 70 B4R L Y 5.449 71 G4R L X -7.032 72 G4R L Y 5.449 73 A3R L Y 4.06 73 A3R L Y 4.06 74 A3R L Y 3.999 75 B3R L X -8.571 76 B3R L Y 4.948	66	G3R	L	Y	3.106
68 A4R L Y 4.06 69 B4R L X -9.438 70 B4R L Y 5.449 71 G4R L X -7.032 72 G4R L Y 4.06 73 A3R L X -6.926 74 A3R L Y 3.999 75 B3R L X -8.571 76 B3R L Y 4.948	67	A4R	L	X	-7.032
69 B4R L X -9.438 70 B4R L Y 5.449 71 G4R L X -7.032 72 G4R L Y 4.06 73 A3R L X -6.926 74 A3R L Y 3.999 75 B3R L X -8.571 76 B3R L Y 4.948	68	A4R	L	Y	4.06
70 B4R L Y 5.449 71 G4R L X -7.032 72 G4R L Y 4.06 73 A3R L X -6.926 74 A3R L Y 3.999 75 B3R L X -8.571 76 B3R L Y 4.948	69	B4R	L	X	-9.438
71 G4R L X -7.032 72 G4R L Y 4.06 73 A3R L X -6.926 74 A3R L Y 3.999 75 B3R L X -8.571 76 B3R L Y 4.948	70	B4R	L	Y	5.449
72 G4R L Y 4.06 73 A3R L X -6.926 74 A3R L Y 3.999 75 B3R L X -8.571 76 B3R L Y 4.948	71	G4R	L	X	-7.032
73 A3R L X -6.926 74 A3R L Y 3.999 75 B3R L X -8.571 76 B3R L Y 4.948	72	G4R	L	Y	4.06
74 A3R L Y 3.999 75 B3R L X -8.571 76 B3R L Y 4.948	73	A3R	L	X	-6.926
75 B3R L X -8.571 76 B3R L Y 4.948	74	A3R	L	Y	3.999
76 B3R L Y 4.948	75	B3R	L	X	-8.571
	76	B3R	L	Y	4.948

Joint Loads and Enforced Displacements (BLC 29 : Antenna Wind w/ Ice (30)) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
77	G3R	L	Х	-6.926
78	G3R	L	Y	3.999
79	A2R	L	Х	-11.322
80	A2R	L	Y	6.537
81	B2R	L	Х	-15.262
82	B2R	L	Y	8.811
83	G2R	L	Х	-11.322
84	G2R	L	Y	6.537
85	ARC	L	Х	-8.574
86	ARC	L	Y	4.95
87	BRC	L	Х	-8.574
88	BRC	L	Y	4.95
89	ARC	L	Х	-8.571
90	ARC	L	Y	4.948
91	GRC	L	Х	-8.743
92	GRC	L	Ý	5.048

Joint Loads and Enforced Displacements (BLC 30 : Antenna Wind w/ Ice (45))

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	A1B	L	X	-6.044
2	A1B	L	Y	6.044
3	A1T	L	Х	-6.044
4	A1T	L	Y	6.044
5	B1B	L	Х	-4.901
6	B1B	L	Y	4.901
7	B1T	L	Х	-4.901
8	B1T	L	Y	4.901
9	G1B	L	Х	-7.188
10	G1B	L	Y	7.188
11	G1T	L	Х	-7.188
12	G1T	L	Y	7.188
13	A2B	L	Х	-6.044
14	A2B	L	Y	6.044
15	A2T	L	Х	-6.044
16	A2T	L	Y	6.044
17	B2B	L	X	-4.901
18	B2B	L	Y	4.901
19	B2T	L	Х	-4.901
20	B2T	L	Y	4.901
21	G2B	L	Х	-7.188
22	G2B	L	Y	7.188
23	G2T	L	X	-7.188
24	G2T	L	Y	7.188
25	A3B	L	Х	-13.473
26	A3B	L	Y	13.473
27	A3T	L	Х	-13.473
28	A3T	L	Y	13.473
29	B3B	L	X	-8.406
30	B3B	L	Y	8.406
31	B3T	L	Х	-8.406
32	B3T	L	Y	8.406
33	G3B	L	Х	-18.54
34	G3B	L	Y	18.54
35	G3T	L	X	-18.54
36	G3T	L	Y	18.54
37	A4B	L	X	-13.473

Joint Loads and Enforced Displacements (BLC 30 : Antenna Wind w/ Ice (45)) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
38	A4B	L	Y	13.473
39	A4T	L	Х	-13.473
40	A4T	L	Y	13.473
41	B4B	L	Х	-8.406
42	B4B	L	Y	8.406
43	B4T	L	Х	-8.406
44	B4T	L	Y	8.406
45	G4B	L	Х	-18.54
46	G4B	L	Y	18.54
47	G4T	L	Х	-18.54
48	G4T	L	Y	18.54
49	A4R	L	Х	-8.011
50	A4R	L	Y	8.011
51	B4R	L	Х	-8.986
52	B4R	L	Y	8.986
53	G4R	L	Х	-7.036
54	G4R	L	Y	7.036
55	A1R	L	X	-4.326
56	<u>A1R</u>	L	Y	4.326
57	B1R	L	X	-4.308
58	<u>B1R</u>	L	Ŷ	4.308
59	<u> </u>	L	X	-4.343
60	G1R	L	Ŷ	4.343
61	A3R	L	X	-4.441
62	A3R		Y	4.441
63	B3R	L	X	-4.523
64	BJR		Ý	4.523
60	G3R	L	X	-4.308
67	<u> </u>		ř V	<u> </u>
60	<u>A4R</u>			-0.397
60	A4R B4D		T Y	7 521
70	B/P			7 531
70	<u> </u>		X	-5 263
72	G4R		X V	5 263
73	A3R		X	-6 103
74	A3R		Y	6 103
75	B3R		X	-6.878
76	B3R	Ĺ	Y	6.878
77	G3R	L	X	-5.327
78	G3R	L	Y	5.327
79	A2R	L	Х	-10.316
80	A2R	L	Y	10.316
81	B2R	L	Х	-12.174
82	B2R	L	Y	12.174
83	G2R	L	Х	-8.459
84	G2R	L	Y	8.459
85	ARC	L	Х	-7
86	ARC	L	Y	7
87	BRC	L	Х	-7
88	BRC	L	Y	7
89	ARC	L	X	-6.998
90	ARC	L	Y	6.998
91	GRC	L	X	-7.138
92	GRC	L	Y	7.138

Joint Loads and Enforced Displacements (BLC 31 : Antenna Wind w/ Ice (60))

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	A1B	L	X	-3.807
2	A1B	L	Y	6.594
3	A1T	L	Х	-3.807
4	A1T	<u> </u>	Y	6.594
5	B1B	L	Х	-3.807
6	B1B	L	Y	6.594
7	<u> </u>	L	Х	-3.807
8	B1T	L	Y	6.594
9	G1B	L	Х	-5.208
10	G1B	L	Y	9.02
11	<u> </u>	L	Х	-5.208
12	<u>G1T</u>	<u> </u>	Y	9.02
13	A2B	L	Х	-3.807
14	A2B	<u> </u>	Y	6.594
15	A2T	L	Х	-3.807
16	A2T	L	Y	6.594
17	B2B	<u> </u>	Х	-3.807
18	B2B	L	Y	6.594
19	B2T	L	X	-3.807
20	B2T	L	Y	6.594
21	G2B	L	Х	-5.208
22	G2B	L	Y	9.02
23	G2T	L	Х	-5.208
24	G2T	L	Y	9.02
25	A3B	L	Х	-7.458
26	A3B	L	Y	12.918
27	A3T	L	Х	-7.458
28	A3T	Ē	Y	12.918
29	B3B	Ĺ	X	-7.458
30	B3B	Ĺ	Y	12.918
31	B3T	<u> </u>	X	-7.458
32	B3T	L L	Y	12,918
33	G3B	<u> </u>	X	-13 664
34	G3B		Ŷ	23 667
35	G3T		X	-13 664
36	G3T		Ý	23 667
37	A4B		X	-7 458
38	A4B		Y	12 918
39	A4T		X	-7 458
40	A4T		Y	12 918
41	B4B	<u> </u>	X	-7.458
42	B4R		Ŷ	12 918
43	B4T		X	-7 458
44	R4T		Y	12 918
45	G4R		X	-13 664
46	G4R		Y I	23 667
40	G4T		X	_13 664
48	G4T		V V	23 667
40			X	-6 063
50				-0.005
51			Y	6 062
52				
52				10.301
53	<u> </u>			-4.000
54	G4K		ř V	0.432
55			A V	-3.052
56	AIR		Y Y	5.285
51	BIK	<u> </u>	X	-3.052

Joint Loads and Enforced Displacements (BLC 31 : Antenna Wind w/ Ice (60)) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
58	B1R	L	Y	5.285
59	G1R	L	Х	-3.073
60	G1R	L	Y	5.322
61	A3R	L	Х	-3.174
62	A3R	L	Y	5.497
63	B3R	L	Х	-3.174
64	B3R	L	Y	5.497
65	G3R	L	Х	-3.073
66	G3R	L	Y	5.322
67	A4R	L	Х	-4.986
68	A4R	L	Y	8.636
69	B4R	L	Х	-4.986
70	B4R	L	Y	8.636
71	G4R	L	Х	-3.597
72	G4R	L	Y	6.23
73	A3R	L	Х	-4.632
74	A3R	L	Y	8.023
75	B3R	L	Х	-4.632
76	B3R	L	Y	8.023
77	G3R	L	Х	-3.682
78	G3R	L	Y	6.378
79	A2R	L	Х	-8.053
80	A2R	L	Y	13.948
81	B2R	L	Х	-8.053
82	B2R	L	Y	13.948
83	G2R	L	Х	-5.778
84	G2R	L	Y	10.008
85	ARC	L	Х	-4.95
86	ARC	L	Y	8.574
87	BRC	L	Х	-4.95
88	BRC	L	Y	8.574
89	ARC	L	Х	-4.948
90	ARC	L	Y	8.571
91	GRC	L	Х	-5.048
92	GRC	L	Y	8.743

Joint Loads and Enforced Displacements (BLC 32 : Antenna Wind w/ Ice (90))

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	A1B	L	Х	-1.515e-6
2	A1B	L	Y	6.68
3	A1T	L	Х	-1.515e-6
4	A1T	L	Y	6.68
5	B1B	L	Х	-2.15e-6
6	B1B	L	Y	9.482
7	B1T	L	Х	-2.15e-6
8	B1T	L	Y	9.482
9	G1B	L	Х	-2.15e-6
10	G1B	L	Y	9.482
11	G1T	L	Х	-2.15e-6
12	G1T	L	Y	9.482
13	A2B	L	Х	-1.515e-6
14	A2B	L	Y	6.68
15	A2T	L	Х	-1.515e-6
16	A2T	L	Y	6.68
17	B2B	L	X	-2.15e-6
18	B2B	L	Y	9.482

Joint Loads and Enforced Displacements (BLC 32 : Antenna Wind w/ Ice (90)) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
19	B2T	L	Х	-2.15e-6
20	B2T	L	Y	9.482
21	G2B	L	Х	-2.15e-6
22	G2B	L	Y	9.482
23	G2T	L	Х	-2.15e-6
24	G2T	L	Y	9.482
25	A3B	L	X	-2.445e-6
26	A3B		Y	10 779
27	A3T		X	-2 445e-6
28	A3T	<u> </u>	Y	10 779
29	B3B		X	-5.26e-6
30	<u>B3B</u>		× ×	23 191
31	<u></u>		X	-5.266-6
32	<u></u>			23 101
32	<u></u>		Y	5 260 6
24	<u></u>			-0.206-0
25	<u> </u>			5 26 6
30	<u> </u>			-5.200-0
30	G31		Y Y	23.191
37	<u> </u>		X	-2.4450-0
38	<u>A4B</u>		Ý	10.779
39	A41	L	X	-2.4456-6
40	A41	L	Ý	10.779
41	<u> </u>	<u> </u>	X	-5.26e-6
42	<u> </u>	L	Ý	23.191
43	<u>B4T</u>	L	X	-5.26e-6
44	B4T	L	Y	23.191
45	G4B	L	X	-5.26e-6
46	G4B	L	Y	23.191
47	G4T	L	X	-5.26e-6
48	G4T	L	Y	23.191
49	A4R	L	X	-2.931e-6
50	A4R	L	Y	12.922
51	B4R	L	Х	-2.389e-6
52	B4R	L	Y	10.533
53	G4R	L	X	-2.389e-6
54	G4R	L	Y	10.533
55	A1R	L	Х	-1.381e-6
56	A1R	L	Y	6.089
57	B1R	L	Х	-1.391e-6
58	B1R	L	Y	6.131
59	G1R	L	Х	-1.391e-6
60	G1R	L	Y	6.131
61	A3R	L	Х	-1.455e-6
62	A3R	L	Y	6.415
63	B3R	L	Х	-1.409e-6
64	B3R	L	Y	6.213
65	G3R	L	X	-1.409e-6
66	G3R	L	Y	6.213
67	A4R		X	-2.472e-6
68	A4R		Y	10.898
69	B4R		X	-1 842e-6
70	R4R		Y	8 12
70	G4R		X	-1 8420-6
72	GAR			8 12
72	041\		V V	2 2450 6
73				0 207
74	ANK D2D		r V	3.03/
	BJK	<u> </u>	Ā	-1.0140-0

Joint Loads and Enforced Displacements (BLC 32 : Antenna Wind w/ Ice (90)) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
76	B3R	L	Y	7.997
77	G3R	L	Х	-1.814e-6
78	G3R	L	Y	7.997
79	A2R	L	Х	-3.997e-6
80	A2R	L	Y	17.623
81	B2R	L	Х	-2.965e-6
82	B2R	L	Y	13.073
83	G2R	L	Х	-2.965e-6
84	G2R	L	Y	13.073
85	ARC	L	Х	-2.245e-6
86	ARC	L	Y	9.9
87	BRC	L	Х	-2.245e-6
88	BRC	L	Y	9.9
89	ARC	L	Х	-2.245e-6
90	ARC	L	Y	9.897
91	GRC	L	X	-2.29e-6
92	GRC	L	Y	10.095

Joint Loads and Enforced Displacements (BLC 33 : Antenna Wind w/ Ice (120))

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	A1B	L	X	3.807
2	A1B	L	Y	6.594
3	A1T	L	X	3.807
4	A1T	L	Y	6.594
5	B1B	L	X	5.208
6	B1B	L	Y	9.02
7	B1T	L	X	5.208
8	B1T	L	Y	9.02
9	G1B	L	Х	3.807
10	G1B	L	Y	6.594
11	G1T	L	X	3.807
12	G1T	L	Y	6.594
13	A2B	L	Х	3.807
14	A2B	L	Y	6.594
15	A2T	L	Х	3.807
16	A2T	L	Y	6.594
17	B2B	L	Х	5.208
18	B2B	L	Y	9.02
19	B2T	L	Х	5.208
20	B2T	L	Y	9.02
21	G2B	L	Х	3.807
22	G2B	L	Y	6.594
23	G2T	L	Х	3.807
24	G2T	L	Y	6.594
25	A3B	L	Х	7.458
26	A3B	L	Y	12.918
27	A3T	L	Х	7.458
28	A3T	L	Y	12.918
29	B3B	L	Х	13.664
30	B3B	L	Y	23.667
31	B3T	L	Х	13.664
32	B3T	L	Y	23.667
33	G3B	L	Х	7.458
34	G3B	L	Y	12.918
35	G3T	L	Х	7.458
36	G3T	L	Y	12.918

Joint Loads and Enforced Displacements (BLC 33 : Antenna Wind w/ Ice (120)) (Continued)

37 A48 L X 7.458 39 A47 L X 7.458 39 A47 L X 7.458 40 A47 L Y 12.918 41 B48 L Y 13.664 42 B48 L Y 23.667 43 B47 L X 7.458 44 B47 L X 7.458 45 G48 L Y 12.918 47 G47 L X 7.458 48 G47 L Y 12.918 49 A4R L X 6.063 50 A4R L Y 10.501 51 B4R L X 4.868 52 B4R L Y 5.222 54 G4R L Y 5.225 55 A1R L X 3.052 56 A1R L Y 5.225 57		Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
38 A4B L Y 12,918 40 A4T L Y 12,918 40 A4T L Y 12,664 42 B4B L Y 23,667 43 B4T L Y 23,667 44 B4T L Y 13,664 44 B4T L Y 12,918 45 G4B L Y 12,918 46 G4B L Y 12,918 47 G4T L X 7,458 48 G4T L Y 10,501 51 B4R L Y 8,432 53 G4R L Y 8,432 54 G4R L Y 5,021 55 A1R L Y 5,022 56 A1R L Y 5,022 55 A1R L Y 5,022 56 A1R L Y 5,022 56 <td>37</td> <td>A4B</td> <td>L</td> <td>Х</td> <td>7.458</td>	37	A4B	L	Х	7.458
39 A4T L X 7.458 40 A4T L Y 12.918 41 B4B L X 13.664 42 B4B L Y 23.667 43 B4T L X 13.664 44 B4T L X 7.458 45 G4B L Y 12.918 46 G4B L Y 12.918 47 G4T L X 7.458 48 G4T L Y 10.501 51 B4R L X 4.663 52 B4R L Y 10.501 55 A1R L Y 3.052 56 A1R L Y 3.052 56 A1R L Y 3.052 56 A1R L Y 3.052 57 B1R L Y 3.052 56 G1R L Y 3.052 61	38	A4B	L	Y	12.918
40 A4T L Y 1298 41 B4B L X 13.664 42 B4B L Y 23.667 43 B4T L Y 23.667 44 B4T L Y 23.667 45 G4B L Y 12.918 46 G4B L Y 12.918 47 G4T L X 7.458 48 G4T L Y 12.918 49 A4R L Y 10.501 51 B4R L Y 8.432 52 B4R L Y 8.432 53 G4R L Y 8.052 56 A1R L Y 5.225 57 B1R L Y 5.302 58 B1R L Y 5.322 59 G1R L Y 5.322 59 G1R L Y 5.322 61	39	A4T	L	Х	7.458
41 B4B L X 13.664 42 B4F L Y 23.667 43 B4T L Y 23.667 44 B4T L Y 23.667 45 G4B L Y 12.918 47 G4T L Y 12.918 47 G4T L Y 12.918 48 G4T L Y 10.501 50 A4R L Y 8.063 51 B4R L Y 8.063 52 B4R L Y 8.063 53 G4R L Y 8.063 54 G4R L Y 3.052 55 A1R L Y 5.2285 56 A1R L Y 5.322 59 G1R L X 3.073 58 B1R L Y 5.322 61 A3R L Y 5.322 62	40	A4T	L	Y	12.918
42 B4B L Y 23,667 43 B4T L X 13,664 44 B4T L Y 23,667 45 G4B L X 7,458 46 G4B L Y 12,918 47 G4T L Y 6,063 49 A4R L Y 10,501 50 A4R L Y 6,063 51 B4R L Y 6,063 52 B4R L Y 10,501 53 G4R L Y 10,501 55 A1R L Y 5,285 56 A1R L Y 5,322 59 G1R L Y 5,322 50 G1R L Y 5,322 60 G1R L Y 5,285 61 A3R L Y 5,497 62 A3R L Y 6,322 64	41	B4B	L	Х	13.664
43 B4T L X 13.664 44 B4T L Y 23.667 45 G4B L Y 12.918 46 G4T L X 7.456 48 G4T L X 7.456 49 A4R L X 6.063 50 A4R L X 4.868 51 B4R L X 4.868 52 B4R L X 6.063 54 G4R L X 3.052 56 A1R L X 3.052 57 B1R L X 3.062 58 B1R L Y 5.285 57 B1R L Y 3.073 68 B1R L Y 3.285 61 A3R L Y 5.285 61 A3R L Y 5.322 62 A3R L Y 5.497 63	42	B4B	L	Y	23.667
44 B4T L Y 23.667 45 G4B L X 7.458 46 G4B L Y 12.918 47 G4T L X 7.458 48 G4T L Y 12.918 49 A4R L Y 10.501 50 A4R L Y 4.868 52 B4R L Y 8.432 53 G4R L Y 6.063 54 G4R L Y 10.501 55 A1R L Y 5.285 56 A1R L Y 5.322 56 G1R L Y 5.322 50 G1R L Y 5.285 61 A3R L Y 5.285 61 A3R L Y 5.497 62 A3R L Y 5.497 63 B3R L Y 6.322 64	43	B4T	L	Х	13.664
45 G4B L X 7.458 46 G4T L X 7.458 47 G4T L X 7.458 48 G4T L X 8.063 50 A4R L Y 10.501 51 B4R L X 4.668 52 B4R L X 6.063 54 G4R L X 6.063 55 A1R L X 3.052 56 A1R L X 3.052 57 B1R L X 3.052 58 B1R L Y 5.285 59 G1R L X 3.073 68 B3R L Y 5.497 61 A3R L Y 5.497 62 A3R L Y 5.497 64 B3R L Y 5.497 65 G3R L Y 6.497 66 <	44	B4T	L	Y	23.667
46 G4B L Y 12.918 47 G4T L X 7.458 48 G4T L Y 12.918 49 A4R L Y 10.501 50 A4R L Y 10.501 51 B4R L Y 8.432 53 G4R L Y 10.501 54 G4R L Y 10.501 55 A1R L Y 5.265 66 A1R L Y 5.222 57 B1R L Y 5.265 60 G1R L Y 5.225 61 A3R L X 3.052 62 A3R L Y 5.245 63 B3R L X 3.073 64 B3R L X 3.073 65 G3R L X 3.073 66 G3R L X 4.9466 69	45	G4B	L	Х	7.458
47 G4T L X 7.48 48 G4T L Y 12918 49 A4R L Y 10501 50 A4R L Y 10501 51 B4R L X 4.868 52 B4R L X 6.063 54 G4R L X 6.063 55 A1R L X 3.052 56 A1R L Y 5.285 57 B1R L Y 5.3222 59 G1R L Y 5.285 60 G1R L Y 5.285 61 A3R L Y 5.285 61 A3R L Y 5.285 61 A3R L Y 5.285 62 A3R L Y 5.497 63 B3R L X 3.073 64 B3R L Y 5.497 65 <t< td=""><td>46</td><td>G4B</td><td>L</td><td>Y</td><td>12.918</td></t<>	46	G4B	L	Y	12.918
48 G4T L Y 12.918 49 A4R L X 6.063 51 B4R L Y 10.501 51 B4R L Y 8.482 52 B4R L Y 8.432 53 G4R L Y 10.501 55 A1R L Y 10.501 56 A1R L Y 5.265 57 B1R L Y 5.265 58 B1R L Y 5.3022 59 G1R L Y 5.322 60 G1R L Y 5.322 61 A3R L X 3.073 63 B3R L X 3.073 64 B3R L Y 5.322 65 G3R L X 3.073 64 B3R L Y 5.322 65 G3R L X 4.966 68	47	G4T	L	Х	7.458
43 AaR L X 6.063 50 $A4R$ L Y 10.501 51 $B4R$ L X 4.868 52 $B4R$ L Y 6.063 53 $G4R$ L X 6.063 54 $G4R$ L X 6.063 55 $A1R$ L X 3.052 56 $A1R$ L Y 5.285 57 $B1R$ L Y 5.285 58 $B1R$ L Y 5.322 59 $G1R$ L Y 5.322 60 $G1R$ L Y 5.322 61 $A3R$ L Y 5.322 62 $A3R$ L Y 5.322 63 $B3R$ L Y 5.322 64 $B3R$ L Y 5.497 65 $G3R$ L Y 6.23 66 $G4R$ L Y	48	G4T	L	Y	12.918
50 \overrightarrow{AR} L Y 10.501 51 B4R L X 4.868 52 B4R L Y 8.432 53 G4R L Y 8.432 53 G4R L Y 10.501 55 A1R L Y 3.052 56 A1R L Y 5.322 57 B1R L X 3.073 58 B1R L Y 5.322 59 G1R L X 3.073 61 A3R L Y 5.322 61 A3R L Y 5.322 63 B3R L Y 5.322 64 B3R L Y 5.322 65 G3R L Y 5.322 66 G3R L Y 6.366 68 A4R L Y 8	49	A4R	L	X	6.063
51 BAR L X 4.668 52 $B4R$ L Y 8.432 53 $G4R$ L X 6.063 54 $G4R$ L Y 10.501 55 $A1R$ L X 3.052 56 $A1R$ L Y 5.285 57 $B1R$ L X 3.073 58 $B1R$ L Y 5.322 59 $G1R$ L Y 5.325 60 $G1R$ L Y 5.325 61 $A3R$ L Y 5.322 62 $A3R$ L Y 5.497 62 $A3R$ L Y 5.497 64 $B3R$ L Y 5.497 66 $G3R$ L Y 6.23 67 $A4R$ L Y 6.23	50	A4R	L	Ý	10.501
S2 B4R L Y 8.432 53 G4R L X 6.063 54 G4R L Y 10.501 55 A1R L X 3.052 56 A1R L Y 5.285 57 B1R L X 3.073 58 B1R L X 3.073 59 G1R L X 3.052 60 G1R L Y 5.285 61 A3R L X 3.073 64 B3R L Y 5.322 65 G3R L Y 5.497 63 B3R L Y 5.497 64 B3R L Y 5.497 67 A4R L X 3.597 66 G3R L Y 6.23 70 B4R L Y 6.23 71 G4R L Y 8.636	51	B4R	<u> </u>	X	4 868
53 $G4R$ L X 6.063 54 $G4R$ L Y 10.501 55 $A1R$ L X 3.052 56 $A1R$ L Y 5.285 57 $B1R$ L Y 5.225 59 $G1R$ L Y 5.322 58 $B1R$ L Y 5.285 60 $G1R$ L Y 5.497 61 $A3R$ L Y 5.497 62 $A3R$ L Y 5.497 63 $B3R$ L Y 5.322 64 $B3R$ L Y 5.322 65 $G3R$ L X 3.073 64 $B3R$ L Y 5.497 66 $G3R$ L X 4.986 67 $A4R$ L Y 6.23 71 $G4R$ L Y 6.23 71 $G4R$ L Y <td>52</td> <td>B4R</td> <td></td> <td>Y</td> <td>8 432</td>	52	B4R		Y	8 432
34 GAR L Y (0.501) 55 A1R L X 3.052 56 A1R L Y 5.285 57 B1R L Y 5.322 59 G1R L X 3.052 60 G1R L X 3.052 61 A3R L X 3.052 61 A3R L Y 5.285 61 A3R L Y 5.497 63 B3R L Y 5.322 64 B3R L Y 5.497 66 G3R L Y 4.986 68 A4R L Y 4.986 69 B4R L X 4.986 72 G4R L Y 8.636 73 A3R L Y 8.636 74 A3R L </td <td>53</td> <td>G4R</td> <td></td> <td>X</td> <td>6.063</td>	53	G4R		X	6.063
1 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>	54	G4R		Y	10,501
123 113 L X 5100 56 A1R L X 3073 58 B1R L Y 5.322 59 G1R L Y 5.322 60 G1R L Y 5.285 61 A3R L Y 5.285 61 A3R L Y 5.497 62 A3R L Y 5.322 63 B3R L Y 5.497 64 B3R L Y 5.322 66 G3R L Y 5.497 67 A4R L Y 6.2497 67 A4R L Y 8.636 68 A4R L Y 8.636 70 B4R L Y 8.636 73 A3R L Y 8.636 73	55	A1R		X	3 052
30 111 L X 3053 57 B1R L Y 5.322 59 G1R L X 3.052 60 G1R L Y 5.285 61 A3R L X 3.174 62 A3R L Y 5.497 63 B3R L Y 5.322 65 G3R L Y 5.497 66 G3R L Y 5.497 66 G3R L Y 5.497 67 A4R L Y 4.986 68 A4R L Y 8.636 69 B4R L Y 8.636 70 B4R L Y 8.636 72 G4R L Y 8.636 73 A3R L X 4.632 74	56			X Y	5 285
Display L Y 3.032 58 B1R L Y 5.322 59 G1R L X 3.052 60 G1R L Y 5.285 61 A3R L Y 5.497 62 A3R L Y 5.497 63 B3R L Y 5.322 64 B3R L Y 5.322 65 G3R L Y 5.322 66 G3R L Y 5.322 66 G3R L Y 5.322 66 G3R L Y 5.322 67 A4R L Y 3.073 66 G3R L Y 4.632 70 B4R L Y 4.632 71 G4R L Y 4.632 73 A3R L Y	57	B1R		X	3.073
30 D1R L X 3.052 60 G1R L Y 5.285 61 A3R L Y 5.497 62 A3R L Y 5.497 63 B3R L Y 3.073 64 B3R L Y 3.073 65 G3R L Y 3.073 66 G3R L Y 3.073 66 G3R L Y 5.322 65 G3R L Y 5.322 66 G3R L Y 5.322 67 A4R L Y 5.497 67 A4R L Y 8.636 69 B4R L X 3.957 70 B4R L Y 6.23 71 G4R L Y 8.636 73 A3R L X 4.632 74 A3R L Y <td>58</td> <td>B1R</td> <td></td> <td>X V</td> <td>5 322</td>	58	B1R		X V	5 322
30 GR L X 3.022 60 G1R L X 3.174 62 $A3R$ L X 3.174 62 $A3R$ L Y 5.497 63 $B3R$ L X 3.073 64 $B3R$ L Y 5.322 65 $G3R$ L Y 5.497 66 $G3R$ L Y 5.497 67 $A4R$ L Y 5.497 67 $A4R$ L X 4.986 68 $A4R$ L Y 8.636 69 $B4R$ L Y 6.23 71 $G4R$ L Y 4.986 72 $G4R$ L Y 8.636 73 $A3R$ L X 4.632 74 $A3R$ L Y 8.023 75 $B3R$ L Y 8.023	59	<u> </u>		X	3.052
30 317 1 3.203 61 A3R L X 3.174 62 A3R L Y 5.497 63 B3R L X 3.073 64 B3R L Y 5.322 65 G3R L Y 5.497 66 G3R L Y 5.497 67 A4R L X 4.986 68 A4R L Y 8.636 69 B4R L Y 8.636 69 B4R L Y 6.23 71 G4R L Y 8.636 72 G4R L Y 8.632 73 A3R L X 4.632 74 A3R L Y 8.636 76 B3R L Y 8.033 77 G3R L Y	60	G1R			5.002
OI AGR L A 3.14^{+} 62 A3R L Y 5.497 63 B3R L Y 5.322 64 B3R L Y 5.322 65 G3R L X 3.174 66 G3R L X 3.174 66 G3R L Y 5.497 67 A4R L Y 6.636 68 A4R L Y 8.636 69 B4R L Y 8.636 70 B4R L Y 8.636 71 G4R L Y 8.636 73 A3R L Y 8.632 74 A3R L Y 8.636 75 B3R L Y 8.023 76 B3R L Y 8.033 76 B3R L Y 8.053 78 G3R L Y 8.053 </td <td>61</td> <td>GIX</td> <td></td> <td>V I</td> <td>2 17/</td>	61	GIX		V I	2 17/
02 A3R L I 3.497 63 B3R L X 3.073 64 B3R L Y 5.322 65 G3R L Y 5.497 66 G3R L Y 5.497 67 A4R L Y 4.986 68 A4R L Y 8.636 69 B4R L X 3.597 70 B4R L Y 6.23 71 G4R L Y 6.23 72 G4R L Y 8.636 73 A3R L X 4.632 74 A3R L Y 8.636 73 A3R L Y 8.636 74 A3R L Y 8.632 74 A3R L Y 8.023 76 B3R L Y 8.053 76 B3R L Y <td>62</td> <td>A3N</td> <td></td> <td></td> <td>5.174</td>	62	A3N			5.174
03 D3R L A 3.073 64 B3R L Y 5.322 65 G3R L X 3.174 66 G3R L Y 5.497 67 AAR L Y 5.497 68 A4R L Y 4.986 68 A4R L Y 8.636 69 B4R L Y 8.636 70 B4R L Y 6.23 71 G4R L Y 8.636 72 G4R L Y 8.636 73 A3R L Y 8.636 74 A3R L Y 8.023 75 B3R L Y 8.023 76 B3R L Y 8.023 77 G3R L Y 8.023 79 A2R L Y 8.053 80 A2R L Y 13.948	62			I V	2.072
04 $03R$ L 1 3.322 65 $G3R$ L X 3.174 66 $G3R$ L Y 5.497 67 $A4R$ L X 4.986 68 $A4R$ L Y 8.636 69 $B4R$ L Y 8.636 69 $B4R$ L Y 8.636 70 $B4R$ L Y 8.636 72 $G4R$ L Y 8.636 72 $G4R$ L Y 8.636 73 $A3R$ L X 4.632 74 $A3R$ L X 3.682 76 $B3R$ L Y 8.023 77 $G3R$ L Y 8.023 79 $A2R$ L X 8.023 79 $A2R$ L Y 1	64				<u> </u>
30 30	65			T Y	2.174
00 $0.3R$ L Y 3.497 67 A4R L X 4.986 68 A4R L Y 8.636 69 B4R L Y 8.636 69 B4R L Y 6.23 70 B4R L Y 4.986 72 G4R L Y 8.636 73 A3R L Y 8.036 73 A3R L Y 8.023 74 A3R L Y 8.023 75 B3R L Y 3.682 76 B3R L Y 8.023 77 G3R L Y 8.023 79 A2R L Y 8.023 79 A2R L Y 13.948 81 B2R L Y 13.948 81 B2R L	60	GJR			5.174
0' A4R L X 4.960 68 A4R L Y 8.636 69 B4R L X 3.597 70 B4R L Y 6.23 71 G4R L Y 8.636 72 G4R L Y 8.636 73 A3R L X 4.632 74 A3R L Y 8.636 75 B3R L Y 8.023 76 B3R L Y 6.378 77 G3R L Y 8.023 78 G3R L Y 8.023 79 A2R L X 4.632 80 A2R L Y 8.053 81 B2R L X 8.053 82 B2R L Y 13.948 83 G2R L X 8.053 84 G2R L Y 8.053 85	60	GJR		Ý	5.497
68 A4R L Y 8.030 69 B4R L X 3.597 70 B4R L Y 6.23 71 G4R L X 4.986 72 G4R L Y 8.636 73 A3R L X 4.632 74 A3R L Y 8.023 75 B3R L Y 8.023 75 B3R L Y 8.023 76 B3R L Y 8.023 76 B3R L Y 8.023 77 G3R L Y 8.023 79 A2R L X 4.632 79 A2R L Y 8.023 80 A2R L Y 8.053 81 B2R L Y 13.948 81 B2R L Y 10.008 83 G2R L Y<	67	A4R	L	X	4.980
69 $B4R$ L X $3.39'$ 70 $B4R$ L Y 6.23 71 $G4R$ L X 4.986 72 $G4R$ L Y 8.636 73 $A3R$ L Y 8.636 74 $A3R$ L X 4.632 74 $A3R$ L Y 8.023 75 $B3R$ L X 3.682 76 $B3R$ L Y 6.378 77 $G3R$ L X 4.632 78 $G3R$ L Y 8.023 79 $A2R$ L X 8.023 80 $A2R$ L Y 8.023 81 $B2R$ L Y 8.023 82 $B2R$ L Y 13.948 83 $G2R$ L Y 10.008 84 $G2R$ L Y 13.948 85 ARC L <td< td=""><td>68</td><td>A4R</td><td></td><td>Ý</td><td>8.030</td></td<>	68	A4R		Ý	8.030
71 $G4R$ L Y 6.23 71 $G4R$ L X 4.986 72 $G4R$ L Y 8.636 73 $A3R$ L Y 8.636 73 $A3R$ L Y 8.636 74 $A3R$ L Y 8.023 74 $A3R$ L Y 8.023 76 $B3R$ L X 3.682 76 $B3R$ L Y 6.378 77 $G3R$ L Y 8.023 78 $G3R$ L Y 8.023 79 $A2R$ L X 8.053 80 $A2R$ L Y 13.948 81 $B2R$ L Y 10.008 83 $G2R$ L Y 13.948 84 $G2R$ L Y 8.053 84 $G2R$ L Y 8.053 84 $G2$	69	B4R	L	X	3.597
71 $G4R$ L X $4,986$ 72 $G4R$ L Y $8,636$ 73 $A3R$ L X $4,632$ 74 $A3R$ L Y $8,023$ 75 $B3R$ L X $3,682$ 76 $B3R$ L Y $6,378$ 77 $G3R$ L X $4,632$ 78 $G3R$ L Y $6,378$ 79 $A2R$ L X $4,632$ 79 $A2R$ L X $8,023$ 80 $A2R$ L Y $8,023$ 80 $A2R$ L X $8,053$ 80 $A2R$ L Y 13.948 81 $B2R$ L Y 10.008 83 $G2R$ L Y 13.948 84 $G2R$ L Y 8.574 85 ARC L X	70	<u> </u>		Ý	6.23
72 $G4R$ L Y 8.636 73 $A3R$ L X 4.632 74 $A3R$ L Y 8.023 75 $B3R$ L X 3.682 76 $B3R$ L Y 6.378 77 $G3R$ L X 4.632 78 $G3R$ L Y 8.023 79 $A2R$ L X 4.632 79 $A2R$ L Y 8.023 79 $A2R$ L Y 8.023 80 $A2R$ L Y 8.023 80 $A2R$ L Y 8.023 81 $B2R$ L Y 8.023 81 $B2R$ L Y 8.053 82 $B2R$ L Y 8.053 83 $G2R$ L Y 8.053 84 $G2R$ L Y 8.574 85 ARC	71	G4R	L	X	4.986
73 A3R L X 4.632 74 A3R L Y 8.023 75 B3R L X 3.682 76 B3R L Y 6.378 77 G3R L Y 6.378 78 G3R L Y 8.023 79 A2R L X 4.632 79 A2R L Y 8.053 80 A2R L Y 13.948 81 B2R L Y 10.008 83 G2R L Y 13.948 84 G2R L Y 10.008 83 G2R L Y 13.948 85 ARC L Y 13.948 85 ARC L Y 13.948 85 ARC L Y 8.053 86 ARC L Y 8.574 88 BRC L Y 8.574	72	<u> </u>	L	Ý	8.636
74A3RLY 8.023 75 B3RLX 3.682 76 B3RLY 6.378 77 G3RLX 4.632 78 G3RLY 8.023 79 A2RLX 8.053 80 A2RLY 8.053 81 B2RLY 13.948 81 B2RLY 10.008 83 G2RLY 13.948 84 G2RLY 4.95 86 ARCLY 4.95 86 ARCLY 8.574 87 BRCLY 8.574 89 ARCLY 8.574 90 ARCLY 8.571 91 GRCLY 8.571 92 GRCLY 8.743	73	A3R	L	X	4.632
75B3RLX 3.682 76 B3RLY 6.378 77 G3RLX 4.632 78 G3RLY 8.023 79 A2RLX 8.053 80 A2RLY 13.948 81 B2RLY 10.008 82 B2RLY 10.008 83 G2RLY 13.948 84 G2RLY 13.948 85 ARCLY 4.95 86 ARCLY 4.95 86 ARCLY 8.574 87 BRCLY 8.574 89 ARCLY 8.571 90 ARCLY 8.571 91 GRCLY 8.743	74	A3R	L	Ý	8.023
70 $B3K$ LY $6.3/8$ 77 $G3R$ LX 4.632 78 $G3R$ LY 8.023 79 $A2R$ LX 8.053 80 $A2R$ LY 13.948 81 $B2R$ LX 5.778 82 $B2R$ LY 10.008 83 $G2R$ LY 10.008 84 $G2R$ LY 13.948 85 ARC LY 13.948 85 ARC LY 4.95 86 ARC LY 8.574 87 BRC LY 8.574 89 ARC LY 8.574 90 ARC LY 8.571 91 GRC LY 8.743	/5	<u> </u>		X	3.082
11G3RLX4.63278G3RLY8.02379A2RLX8.05380A2RLY13.94881B2RLX5.77882B2RLY10.00883G2RLY13.94884G2RLY13.94885ARCLY13.94886ARCLY13.94887BRCLY4.9588BRCLY8.57489ARCLY8.57490ARCLY8.57191GRCLY8.743	76	B3R		Y	6.378
78G3RLY 8.023 79 A2RLX 8.053 80 A2RLY 13.948 81 B2RLX 5.778 82 B2RLY 10.008 83 G2RLY 8.053 84 G2RLY 13.948 85 ARCLY 13.948 86 ARCLY 4.95 86 ARCLY 8.574 87 BRCLY 8.574 88 BRCLY 8.574 89 ARCLY 8.574 90 ARCLY 8.571 91 GRCLY 8.743	11	G3R		X	4.632
Y9 A2R L X 8.053 80 A2R L Y 13.948 81 B2R L X 5.778 82 B2R L Y 10.008 83 G2R L Y 10.008 84 G2R L Y 13.948 85 ARC L Y 13.948 86 ARC L Y 13.948 87 BRC L Y 4.95 88 BRC L Y 8.574 89 ARC L Y 8.574 90 ARC L Y 8.571 91 GRC L Y 8.571 92 GRC L Y 8.743	78	G3R		Y	8.023
80A2RLY13.94881B2RLX5.77882B2RLY10.00883G2RLX8.05384G2RLY13.94885ARCLX4.9586ARCLY8.57487BRCLY8.57488BRCLY8.57490ARCLY8.57191GRCLY8.743	/9	A2R		X	8.053
81 B2R L X 5.778 82 B2R L Y 10.008 83 G2R L X 8.053 84 G2R L Y 13.948 85 ARC L Y 4.95 86 ARC L Y 8.574 87 BRC L X 4.95 88 BRC L Y 8.574 89 ARC L X 4.95 90 ARC L Y 8.571 91 GRC L X 5.048 92 GRC L Y 8.743	80	A2R	L	Y	13.948
B2 B2R L Y 10.008 83 G2R L X 8.053 84 G2R L Y 13.948 85 ARC L X 4.95 86 ARC L Y 8.574 87 BRC L Y 8.574 88 BRC L Y 8.574 90 ARC L X 4.95 90 ARC L Y 8.571 91 GRC L X 5.048 92 GRC L Y 8.743	81	B2R	L	X	5.778
83 G2R L X 8.053 84 G2R L Y 13.948 85 ARC L X 4.95 86 ARC L Y 8.574 87 BRC L X 4.95 88 BRC L Y 8.574 89 ARC L Y 8.574 90 ARC L Y 8.574 91 GRC L Y 8.571 92 GRC L Y 8.743	82	B2R	L	Y	10.008
84 G2R L Y 13.948 85 ARC L X 4.95 86 ARC L Y 8.574 87 BRC L X 4.95 88 BRC L Y 8.574 89 ARC L X 4.95 90 ARC L X 4.948 90 ARC L Y 8.571 91 GRC L X 5.048 92 GRC L Y 8.743	83	G2R	L	X	8.053
85 ARC L X 4.95 86 ARC L Y 8.574 87 BRC L X 4.95 88 BRC L Y 8.574 89 ARC L X 4.95 90 ARC L Y 8.571 91 GRC L X 5.048 92 GRC L Y 8.743	84	G2R	L	Y	13.948
86 ARC L Y 8.574 87 BRC L X 4.95 88 BRC L Y 8.574 89 ARC L X 4.948 90 ARC L Y 8.571 91 GRC L X 5.048 92 GRC L Y 8.743	85	ARC	L	Х	4.95
87 BRC L X 4.95 88 BRC L Y 8.574 89 ARC L X 4.948 90 ARC L Y 8.571 91 GRC L X 5.048 92 GRC L Y 8.743	86	ARC	L	Y	8.574
88 BRC L Y 8.574 89 ARC L X 4.948 90 ARC L Y 8.571 91 GRC L X 5.048 92 GRC L Y 8.743	87	BRC	L	Х	4.95
89 ARC L X 4.948 90 ARC L Y 8.571 91 GRC L X 5.048 92 GRC L Y 8.743	88	BRC	L	Y	8.574
90 ARC L Y 8.571 91 GRC L X 5.048 92 GRC L Y 8.743	89	ARC	L	X	4.948
91 GRC L X 5.048 92 GRC L Y 8.743	90	ARC	L	Y	8.571
92 GRC L Y 8.743	91	GRC	L	X	5.048
	92	GRC	L	Y	8.743

Joint Loads and Enforced Displacements (BLC 34 : Antenna Wind w/ Ice (135))

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	A1B	L	X	6.044
2	A1B	<u> </u>	Y	6.044
3	<u>A1T</u>	L	X	6.044
4	A1T	L	Y	6.044
5	B1B	L	Х	7.188
6	B1B	L	Y	7.188
7	B1T	L	Х	7.188
8	B1T	L	Y	7,188
9	G1B	L	Х	4.901
10	G1B	L	Y	4.901
11	G1T	L	Х	4.901
12	G1T	L	Y	4.901
13	A2B	L	X	6.044
14	A2B		Ý	6.044
15	A2T	<u>_</u>	x	6.044
16	A2T		Y	6.044
17	B2B	1	X	7 188
18	<u>B2B</u>		X V	7 188
10	<u>B2B</u>		X	7.188
20	B2T		× v	7.188
21	C2B		Y	/ 001
22	<u>C2B</u>			4.001
22	<u> </u>		V I	4.901
23	<u>621</u>			4.901
24	<u>G21</u>		V I	4.301
25	<u>A3B</u>			12.473
20			T V	10.470
27	A31			13.473
20			ř V	10.475
29				10.04
30			ř V	10.04
31				10.54
32			ř V	0.100
33	G3B		X	0.400
34	<u> </u>		ř V	0.400
35	<u> </u>		X	8.406
36	<u> </u>		Ý	8.406
37	<u>A4B</u>		X	13.473
38	A4B		Ŷ	13.473
39	A41	L	X	13.473
40	A41	L .	Y	13.4/3
41	<u>B4B</u>		X	18.54
42	B4B	L .	Y	18.54
43	<u>B4T</u>	L	X	18.54
44	B4T	L	Y	18.54
45	G4B	L	X	8.406
46	G4B	L	Y	8.406
47	G4T	L	Х	8.406
48	G4T	L	Y	8.406
49	A4R	L	Х	8.011
50	A4R	L	Y	8.011
51	B4R	L	Х	7.036
52	B4R	L	Y	7.036
53	G4R	L	Х	8.986
54	G4R	L	Y	8.986
55	A1R	L	X	4.326
56	A1R	L	Y	4.326
57	B1R	L	X	4.343

Joint Loads and Enforced Displacements (BLC 34 : Antenna Wind w/ Ice (135)) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
58	B1R	L	Y	4.343
59	G1R	L	Х	4.308
60	G1R	L	Y	4.308
61	A3R	L	Х	4.441
62	A3R	L	Y	4.441
63	B3R	L	Х	4.358
64	B3R	L	Y	4.358
65	G3R	L	Х	4.523
66	G3R	L	Y	4.523
67	A4R	L	Х	6.397
68	A4R	L	Y	6.397
69	B4R	L	Х	5.263
70	B4R	L	Y	5.263
71	G4R	L	Х	7.531
72	G4R	L	Y	7.531
73	A3R	L	Х	6.103
74	A3R	L	Y	6.103
75	B3R	L	Х	5.327
76	B3R	L	Y	5.327
77	G3R	L	Х	6.878
78	G3R	L	Y	6.878
79	A2R	L	Х	10.316
80	A2R	L	Y	10.316
81	B2R	L	Х	8.459
82	B2R	L	Y	8.459
83	G2R	L	Х	12.174
84	G2R	L	Y	12.174
85	ARC	L	Х	7
86	ARC	L	Y	7
87	BRC	L	Х	7
88	BRC	L	Y	7
89	ARC	L	X	6.998
90	ARC	L	Y	6.998
91	GRC	L	Х	7.138
92	GRC	L	Y	7.138

Joint Loads and Enforced Displacements (BLC 35 : Antenna Wind w/ Ice (150))

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	A1B	L	Х	8.212
2	A1B	L	Y	4.741
3	A1T	L	Х	8.212
4	A1T	L	Y	4.741
5	B1B	L	Х	8.212
6	B1B	L	Y	4.741
7	B1T	L	Х	8.212
8	B1T	L	Y	4.741
9	G1B	L	Х	5.785
10	G1B	L	Y	3.34
11	G1T	L	Х	5.785
12	G1T	L	Y	3.34
13	A2B	L	Х	8.212
14	A2B	L	Y	4.741
15	A2T	L	Х	8.212
16	A2T	L	Y	4.741
17	B2B	L	X	8.212
18	B2B	L	Y	4.741

Joint Loads and Enforced Displacements (BLC 35 : Antenna Wind w/ Ice (150)) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
19	<u> </u>	L	Х	8.212
20	B2T	L	Y	4.741
21	G2B	L	Х	5.785
22	G2B	L	Y	3.34
23	G2T	L	Х	5.785
24	G2T	L	Y	3.34
25	A3B	L	Х	20.084
26	A3B	L	Y	11.595
27	A3T	L	Х	20.084
28	A3T	L	Y	11.595
29	B3B	L	Х	20.084
30	B3B	Ĺ	Y	11.595
31	B3T	L	X	20.084
32	B3T	Ī	Ý	11 595
33	G3B	<u> </u>	X	9.335
34	G3B	<u> </u>	Y	5,389
35	G3T	1	X	9 335
36	G3T		Y	5.389
37			X	20.084
38	A/B		V	11 595
30			X	20.084
40	<u></u>			11 505
40	<u>A</u> 41 B4B		Y	20.084
41				11 505
42			V I	20.084
43				11 505
44			I V	0.225
45	G4B			5 200
40			Ť V	0.225
47	<u>G41</u>			<u> </u>
40	<u>G41</u>		T Y	0.100
49				5.122
50			I V	0.122
51				5.122
52			I V	<u> </u>
53				6 /61
55	<u>G4N</u>		I V	5.21
55	A1R			2.066
57			I V	5.000
57				2.066
50			Í V	5.000
60				2.045
61				5 201
62	<u> </u>			2.100
62			ľ V	5.100
64				2.100
04	DJK C2D		Ý V	J. 100 E EEC
00	GJK		X	0.000
66	GJK		Y	3.208
6/	<u>A4R</u>		X	1.032
68	A4K		Ý	4.06
69	<u> </u>		X	1.032
70			Ý	4.06
71			X	9.438
72			Ý	5.449
73	AJK		X	0.920
74	AJK		Y Y	3.999
	BJK	∣ <u> </u>	Ā	0.920

Joint Loads and Enforced Displacements (BLC 35 : Antenna Wind w/ Ice (150)) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
76	B3R	L	Y	3.999
77	G3R	L	Х	8.571
78	G3R	L	Y	4.948
79	A2R	L	Х	11.322
80	A2R	L	Y	6.537
81	B2R	L	Х	11.322
82	B2R	L	Y	6.537
83	G2R	L	Х	15.262
84	G2R	L	Y	8.811
85	ARC	L	Х	8.574
86	ARC	L	Y	4.95
87	BRC	L	Х	8.574
88	BRC	L	Y	4.95
89	ARC	L	Х	8.571
90	ARC	L	Ý	4.948
91	GRC	L	X	8.743
92	GRC	L	Y	5.048

Joint Loads and Enforced Displacements (BLC 36 : Maintenance Live Lm (1))

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	M1	L	Z	-500

Joint Loads and Enforced Displacements (BLC 37 : Maintenance Live Lm (2))

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1 M2		L	Z	-500

Joint Loads and Enforced Displacements (BLC 38 : Maintenance Live Lm (3))

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	M3	L	Z	-500

Joint Loads and Enforced Displacements (BLC 39 : Maintenance Live Lm (4))

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1 M4		L Z		-500

Member Distributed Loads (BLC 2 : Dead of Ice)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
1	M51	Z	-8.627	-8.627	0	0
2	M60	Z	-8.627	-8.627	0	0
3	M63	Z	-8.627	-8.627	0	0
4	M69	Z	-6.42	-6.42	0	0
5	M72	Z	-6.42	-6.42	0	0
6	M75	Z	-6.42	-6.42	0	0
7	M92	Z	-4.991	-4.991	0	0
8	M94	Z	-4.991	-4.991	0	0
9	M98	Z	-4.991	-4.991	0	0
10	M100	Z	-4.991	-4.991	0	0
11	M104	Z	-4.991	-4.991	0	0
12	M106	Z	-4.991	-4.991	0	0
13	M109	Z	-5.873	-5.873	0	0
14	M110	Z	-5.873	-5.873	0	0
15	M111	Z	-5.873	-5.873	0	0
16	M116	Z	-4.861	-4.861	0	0
17	M121	Z	-4.861	-4.861	0	0

Member Distributed Loads (BLC 2 : Dead of Ice) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
18	M126	Z	-4.861	-4.861	0	0
19	M129	Z	-7.193	-7.193	0	0
20	M133	Z	-7.193	-7.193	0	0
21	M137	Z	-7.193	-7.193	0	0
22	M141	Z	-7.193	-7.193	0	0
23	M145	Z	-7.193	-7.193	0	0
24	M149	Z	-7.193	-7.193	0	0
25	M163	Z	-4.861	-4.861	0	0
26	M189A	Z	-8.627	-8.627	0	0
27	M209	Z	-8.627	-8.627	0	0
28	M245A	Z	-8.627	-8.627	0	0
29	M246A	Z	-8.627	-8.627	0	0
30	M279	Z	-8.627	-8.627	0	0
31	M280	Z	-8.627	-8.627	0	0
32	M261A	Z	-4.861	-4.861	0	0
33	M267A	Z	-4.861	-4.861	0	0
34	M273A	Z	-4.861	-4.861	0	0
35	M279A	Z	-4.861	-4.861	0	0
36	M288B	Z	-4.861	-4.861	0	0
37	M294A	Z	-4.861	-4.861	0	0
38	M300B	Z	-4.861	-4.861	0	0
39	M306B	Z	-4.861	-4.861	0	0
40	M315	Z	-4.861	-4.861	0	0
41	M321	Z	-4.861	-4.861	0	0
42	M327	Z	-4.861	-4.861	0	0
43	KM5	Z	-5.873	-5.873	0	0
44	KM6	Z	-5.873	-5.873	0	0
45	KM11	Z	-5.873	-5.873	0	0
46	KM12	Z	-5.873	-5.873	0	0
47	KM17	Z	-5.873	-5.873	0	0
48	KM18	Z	-5.873	-5.873	0	0

Member Distributed Loads (BLC 4 : Structure Wind (0))

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
1	M51	Х	-7.344e-16	-7.344e-16	0	0
2	M51	Y	0	0	0	0
3	M60	Х	-21.268	-21.268	0	0
4	M60	Y	0	0	0	0
5	M63	Х	-21.268	-21.268	0	0
6	M63	Y	0	0	0	0
7	M69	Х	-11.165	-11.165	0	0
8	M69	Y	0	0	0	0
9	M72	Х	-2.791	-2.791	0	0
10	M72	Y	0	0	0	0
11	M75	Х	-2.791	-2.791	0	0
12	M75	Y	0	0	0	0
13	M92	Х	-10.634	-10.634	0	0
14	M92	Y	0	0	0	0
15	M94	Х	-2.659	-2.659	0	0
16	M94	Y	0	0	0	0
17	M98	Х	-2.658	-2.658	0	0
18	M98	Y	0	0	0	0
19	M100	Х	-10.634	-10.634	0	0
20	M100	Y	0	0	0	0
21	M104	Х	-2.658	-2.658	0	0
22	M104	Y	0	0	0	0

Member Distributed Loads (BLC 4 : Structure Wind (0)) (Continued)

	Member Label	Direction	Start Magnitude[Ib/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
23	M106	X	-2.658	-2.658	0	0
24	M106	Ý	0	0	0	0
25	<u>M109</u>	<u> </u>	-3.323	-3.323	0	0
26	<u>M109</u>	Ŷ	0	0	0	0
27	<u>M110</u>	X	-13.292	-13.292	0	0
28	M110	Y	0	0	0	0
29	<u>M111</u>	Χ	-3.323	-3.323	0	0
30	M111	Y	0	0	0	0
31	M116	X	-7.577	-7.577	0	0
32	M116	Y	0	0	0	0
33	M121	Х	-1.894	-1.894	0	0
34	M121	Y	0	0	0	0
35	M126	Х	-1.894	-1.894	0	0
36	M126	Y	0	0	0	0
37	M129	Х	-31.901	-31.901	0	0
38	M129	Y	0	0	0	0
39	M133	Х	-31.901	-31.901	0	0
40	M133	Y	0	0	0	0
41	M137	X	-7,975	-7.975	0	0
42	M137	Ý	0	0	0	Ő
43	M141	X	-7.975	-7.975	0	0
44	M141	Ý	0	0	0	0
45	M145	X	-7 975	-7 975	0	0
46	M145	Y	0	0	0	0 0
47	M149	X	-7 975	-7 975	0	0
48	M149	Y	0	0	0	0
49	M163	X	-7 577	-7 577	0	0
50	M163	× Y	0	0	0	0
51	M189A	×	-15 951	-15 951	0	0
52	M189A	Y	0	0	0	0
53	M209	×	-15 951	-15 951	0	0
54	M209	Y	0	0	0	0
55	M245A	×	-5 317	-5 317	0	0
56	M245A	× ×	0	0	0	0
57	M246A	X	-5 317	-5 317	0	0
58	M246A	× ×	-0.017	0	0	0
59	M279	Y	_5 317	-5 317	0	0
60	M279		-5.517	-5.517	0	0
61	M280	V I	5 3 1 7	5 317	0	0
62	M280		-5.517	-5.517	0	0
62	M261A	V	_7 577	_7 577	0	0
64	M261A		-1.311	-7.577	0	0
65	M267A	Y	_7 577	_7 577	0	0
66	M267A		-1.311	-7.577	0	0
67	M272A	Y	_7 577	_7 577	0	0
69	MOTOA		-1.511	-7.577	0	0
60	M270A	V	_7 577	_7 577	0	0
70	M270A		-1.311	-7.577	0	0
70	M288B	Y	_7 577	_7 577	0	0
72	M288R		-1.311	-7.577	0	0
72	M204A	V	_7 577	_7 577	0	0
74	M204A		-1.511	-7.577	0	0
75	M300P	V	_7 577	_7 577	0	0
76	M300B		-1.311	-1.511	0	0
77	M306B	I V	_7 577	_7 577	0	0
78	M306B		-1.311	-7.377	0	0
70	M315	Y	_7 577	_7 577	0	0
13	IND ID	^	-7.577	-1.511	U	U U

Member Distributed Loads (BLC 4 : Structure Wind (0)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
80	M315	Y	0	0	0	0
81	M321	Х	-7.577	-7.577	0	0
82	M321	Y	0	0	0	0
83	M327	Х	-7.577	-7.577	0	0
84	M327	Y	0	0	0	0
85	KM5	Х	-6.265	-6.265	0	0
86	KM5	Y	0	0	0	0
87	KM6	Х	-6.265	-6.265	0	0
88	KM6	Y	0	0	0	0
89	KM11	Х	-11.535	-11.535	0	0
90	KM11	Y	0	0	0	0
91	KM12	Х	-11.535	-11.535	0	0
92	KM12	Y	0	0	0	0
93	KM17	Х	-11.535	-11.535	0	0
94	KM17	Y	0	0	0	0
95	KM18	X	-11.535	-11.535	0	0
96	KM18	Ý	0	0	0	0

Member Distributed Loads (BLC 5 : Structure Wind (30))

	Member Label	Direction	Start Magnitude[Ib/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
1	M51	Х	-4.605	-4.605	0	0
2	M51	Y	2.658	2.658	0	0
3	M60	Х	-13.814	-13.814	0	0
4	M60	Y	7.975	7.975	0	0
5	M63	Х	-13.814	-13.814	0	0
6	M63	Y	7.975	7.975	0	0
7	M69	Х	-7.252	-7.252	0	0
8	M69	Y	4.187	4.187	0	0
9	M72	Х	-7.252	-7.252	0	0
10	M72	Y	4.187	4.187	0	0
11	M75	Х	-5.526e-14	-5.526e-14	0	0
12	M75	Y	3.191e-14	3.191e-14	0	0
13	M92	Х	-6.907	-6.907	0	0
14	M92	Y	3.988	3.988	0	0
15	M94	Х	-4.413e-10	-4.413e-10	0	0
16	M94	Y	2.548e-10	2.548e-10	0	0
17	M98	Х	-6.907	-6.907	0	0
18	M98	Y	3.988	3.988	0	0
19	M100	Х	-6.907	-6.907	0	0
20	M100	Y	3.988	3.988	0	0
21	M104	Х	-6.333e-14	-6.333e-14	0	0
22	M104	Y	3.656e-14	3.656e-14	0	0
23	M106	Х	-6.907	-6.907	0	0
24	M106	Y	3.988	3.988	0	0
25	M109	Х	-6.579e-14	-6.579e-14	0	0
26	M109	Y	3.798e-14	3.798e-14	0	0
27	M110	Х	-8.634	-8.634	0	0
28	M110	Y	4.985	4.985	0	0
29	M111	Х	-8.634	-8.634	0	0
30	M111	Y	4.985	4.985	0	0
31	M116	Х	-4.921	-4.921	0	0
32	M116	Y	2.841	2.841	0	0
33	M121	Х	-4.921	-4.921	0	0
34	M121	Y	2.841	2.841	0	0
35	M126	Х	-3.75e-14	-3.75e-14	0	0
36	M126	Y	2.165e-14	2.165e-14	0	0

Member Distributed Loads (BLC 5 : Structure Wind (30)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
37	M129	X	-20.721	-20.721	0	0
38	M129	Y	11.963	11.963	0	0
39	M133	X	-20.721	-20.721	0	0
40	M133	Y	11.963	11.963	0	0
41	M137	X	-20.721	-20.721	0	0
42	M137	Y	11.963	11.963	0	0
43	M141	Х	-20.721	-20.721	0	0
44	M141	Y	11,963	11,963	0	0
45	M145	X	-1.579e-13	-1.579e-13	0	0
46	M145	Y	9.116e-14	9.116e-14	0	0
47	M149	X	-1 579e-13	-1 579e-13	0	Ő
48	M149	Ý	9 116e-14	9 116e-14	Ő	Ő
49	M163	X	-6.562	-6.562	0	0
50	M163	Y	3 788	3 788	0	0
51	M189A	X	-4 605	-4 605	0	0
52	M189A		2 658	2 658	0	0
53	M209	Y	_18/18	_18/18	0	0
54	M209		10.634	10.634	0	0
55	M2/5/	Y	_13 81/	_13.81/	0	0
55	M045A	×	7 075	7.075	0	0
50	MO46A	T V	12 014	12 01 /	0	0
57	<u>M246A</u>		-13.014	-13.014	0	0
50	M270	Ý V	1.975	1.975	0	0
59	N279	<u> </u>	-1.0536-13	-1.053e-13	0	0
60	<u>M279</u>	Y Y	6.077e-14	<u>6.077e-14</u>	0	0
61	M280	X	-1.053e-13	-1.053e-13	0	0
62	<u>M280</u>	Ý	<u>6.077e-14</u>	6.077e-14	0	0
63	<u>M261A</u>	X	-6.562	-6.562	0	0
64	<u>M261A</u>	Y	3.788	3.788	0	0
65	<u>M267A</u>	X	-6.562	-6.562	0	0
66	<u>M267A</u>	Y	3.788	3.788	0	0
67	M273A	X	-6.562	-6.562	0	0
68	M273A	Y	3.788	3.788	0	0
69	M279A	X	-6.562	-6.562	0	0
70	M279A	Y	3.788	3.788	0	0
71	M288B	X	-6.562	-6.562	0	0
72	M288B	Y	3.788	3.788	0	0
73	M294A	X	-6.562	-6.562	0	0
74	M294A	Y	3.788	3.788	0	0
75	M300B	X	-6.562	-6.562	0	0
76	M300B	Y	3.788	3.788	0	0
77	M306B	X	-6.562	-6.562	0	0
78	M306B	Y	3.788	3.788	0	0
79	M315	X	-6.562	-6.562	0	0
80	M315	Y	3.788	3.788	0	0
81	M321	Х	-6.562	-6.562	0	0
82	M321	Y	3.788	3.788	0	0
83	M327	X	-6.562	-6.562	0	0
84	M327	Y	3,788	3,788	0	0
85	KM5	X	-6.947	-6.947	0	0
86	KM5	Ý	4.011	4.011	Ő	Ő
87	KM6	X	-6.947	-6.947	0	0
88	KM6	Ý	4 011	4 011	0 0	0 0
89	KM11	X	-6.947	-6.947	0	0
90	KM11	V V	4 011	4 011	0	0
91	KM12	X	_6 947	_6 947	0	0
92	KM12	V V	4 011	4 011	0	0
93	KM17	X	_11 511	-11 511	0	0
			-11.011			

Member Distributed Loads (BLC 5 : Structure Wind (30)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
94	KM17	Y	6.646	6.646	0	0
95	KM18	Х	-11.511	-11.511	0	0
96	KM18	Y	6.646	6.646	0	0

Member Distributed Loads (BLC 6 : Structure Wind (45))

	Member Label	Direction	Start Magnitude[Ib/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
1	M51	Х	-7.519	-7.519	0	0
2	M51	Y	7.519	7.519	0	0
3	M60	Х	-7.519	-7.519	0	0
4	M60	Y	7.519	7.519	0	0
5	M63	X	-7.519	-7.519	0	0
6	M63	Y	7.519	7.519	0	0
7	M69	Х	-3.948	-3.948	0	0
8	M69	Y	3.948	3.948	0	0
9	M72	Х	-7.366	-7.366	0	0
10	M72	Y	7.366	7.366	0	0
11	M75	X	529	529	0	0
12	M75	Y	.529	.529	0	0
13	M92	X	-3 76	-3 76	0	0
14	M92	Ŷ	3.76	3.76	0	0
15	M94	X	504	504	0	0
16	M94	Ŷ	504	504	Ő	0
17	M98	X	-7.016	-7 016	0	0
18	M98	Y	7 016	7 016	0	0
19	M100	X	-3.76	-3.76	0	0
20	M100	Y	3 76	3 76	0	0
21	M104	X	- 504	- 504	0 0	0
22	M104	Y	504	504	0	0
23	M106	X	-7 016	-7 016	0	0
24	M106	× ×	7.016	7.016	0	0
25	M109	X	- 63	- 63	0	0
26	M109	× v	63	63	0	0
27	M103	X	_4 7	_4 7	0	0
28	M110	X Y	4.7	4.7	0	0
20	M111	X	-8 769	-8 769	0	0
30	M111	× ×	8 769	8 769	0	0
31	M116	X	-2 679	-2 679	0	0
32	M116	× ×	2.679	2.679	0	0
33	M121	X	_4 999	_1 999	0	0
34	M121	× ×	4 999	4 999	0	0
35	M126	X	- 359	- 359	0	0
36	M126	× ×	359	350	0	0
37	M129	X		_11 270	0	0
38	M129	× v	11 279	11 279	0	0
30	M123	X	_11 279	_11 270	0	0
40	M133	× ×	11 279	11 270	0	0
11	M137	X	-21 0/7	_21 0/7	0	0
41	M137		21.047	21.047	0	0
13	M1/1	Y	-21 047	_21.047	0	0
43	M1/1		21.047	21.047	0	0
44	M145	Y	_1 511	_1 511	0	0
40	M145		1 511	1 511	0	0
40	M140	Y	_1 511	_1 511	0	0
47	M149		1 511	1 511	0	0
10	M163	Y	_5 357	-5 357	0	0
50	M163		5 357	5 357	0	0
- 50	INT IOS	I	0.007	0.007	0	0

Member Distributed Loads (BLC 6 : Structure Wind (45)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	. Start Location[in,%]	End Location[in,%]
51	M189A	Х	-1.007	-1.007	0	0
52	M189A	Y	1.007	1.007	0	0
53	M209	X	-14.031	-14.031	0	0
54	M209	Ý	14.031	14.031	0	0
55	M245A	Х	-14.031	-14.031	0	0
56	M245A	Y	14.031	14.031	0	0
57	M246A	X	-14.031	-14.031	0	0
58	M246A	Y	14.031	14.031	0	0
59	M279	Х	-1.007	-1.007	0	0
60	M279	Y	1.007	1.007	0	0
61	M280	Х	-1.007	-1.007	0	0
62	M280	Y	1.007	1.007	0	0
63	M261A	Х	-5.357	-5.357	0	0
64	M261A	Y	5.357	5.357	0	0
65	M267A	Х	-5.357	-5.357	0	0
66	M267A	Y	5.357	5.357	0	0
67	M273A	Х	-5.357	-5.357	0	0
68	M273A	Y	5.357	5.357	0	0
69	M279A	Х	-5.357	-5.357	0	0
70	M279A	Y	5.357	5.357	0	0
71	M288B	Х	-5.357	-5.357	0	0
72	M288B	Y	5.357	5.357	0	0
73	M294A	Х	-5.357	-5.357	0	0
74	M294A	Y	5.357	5.357	0	0
75	M300B	Х	-5.357	-5.357	0	0
76	M300B	Y	5.357	5.357	0	0
77	M306B	X	-5.357	-5.357	0	0
78	M306B	Y	5.357	5.357	0	0
79	M315	X	-5.357	-5.357	0	0
80	M315	Y	5.357	5.357	0	0
81	M321	X	-5.357	-5.357	0	0
82	M321	Y	5.357	5.357	0	0
83	M327	X	-5.357	-5.357	0	0
84	M327	Y	5.357	5.357	0	0
85	KM5	X	-6.915	-6.915	0	0
86	KM5	Y	6.915	6.915	0	0
87	KM6	X	-6.915	-6.915	0	0
88	KM6	Y	6.915	6.915	0	0
89	KM11	X	-4.763	-4.763	0	0
90	KM11	Y	4.763	4.763	0	0
91	KM12	X	-4.763	-4.763	0	0
92	KM12	Y	4.763	4.763	0	0
93	KM17	X	-9.066	-9.066	0	0
94	KM17	Y	9.066	9.066	0	0
95	KM18	X	-9.066	-9.066	0	0
96	KM18	Y	9.066	9.066	0	0

Member Distributed Loads (BLC 7 : Structure Wind (60))

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
1	M51	X	-7.975	-7.975	0	0
2	M51	Y	13.814	13.814	0	0
3	M60	Х	-2.658	-2.658	0	0
4	M60	Y	4.605	4.605	0	0
5	M63	Х	-2.658	-2.658	0	0
6	M63	Y	4.605	4.605	0	0
7	M69	X	-1.396	-1.396	0	0

Member Distributed Loads (BLC 7 : Structure Wind (60)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
8	M69	Y	2.417	2.417	0	0
9	M72	X	-5.583	-5.583	0	0
10	M72	Y	9.67	9.67	0	0
11	M75	X	-1.396	-1.396	0	0
12	M75	Y	2.417	2.417	0	0
13	M92	X	-1.329	-1.329	0	0
14	M92	Y	2.302	2.302	0	0
15	M94	X	-1.329	-1.329	0	0
16	M94	Y	2.302	2.302	0	0
17	M98	X	-5.317	-5.317	0	0
18	M98	Y	9.209	9.209	0	0
19	M100	X	-1.329	-1.329	0	0
20	M100	Y	2.302	2.302	0	0
21	M104	X	-1.329	-1.329	0	0
22	M104	Y	2.302	2.302	0	0
23	M106	X	-5.317	-5.317	0	0
24	M106	Y	9.209	9.209	0	0
25	M109	X	-1.662	-1.662	0	0
26	M109	Y	2.878	2.878	0	0
27	M110	X	-1.662	-1.662	0	0
28	M110	Y	2.878	2.878	0	0
29	<u>M111</u>	X	-6.646	-6.646	0	0
30	M111	Y	11.511	11.511	0	0
31	M116	X	947	947	0	0
32	M116	Y	1.64	1.64	0	0
33	M121	X	-3.788	-3.788	0	0
34	M121	Y	6.562	6.562	0	0
35	M126	X	947	947	0	0
36	M126	Y	1.64	1.64	0	0
37	M129	X	-3.988	-3.988	0	0
38	M129	Y	6.907	6.907	0	0
39	M133	X	-3.988	-3.988	0	0
40	M133	Y	6.907	6.907	0	0
41	M137	X	-15.951	-15.951	0	0
42	M137	Y	27.627	27.627	0	0
43	M141	X	-15.951	-15.951	0	0
44	M141	Y	27.627	27.627	0	0
45	M145	X	-3.988	-3.988	0	0
46	M145	Y	6.907	6.907	0	0
47	M149	X	-3.988	-3.988	0	0
48	M149	Y	6.907	6.907	0	0
49	M163	X	-3.788	-3.788	0	0
50	M163	Y	6.562	6.562	0	0
51	M189A	X	-2.624e-13	-2.624e-13	0	0
52	M189A	Y	4.544e-13	4.544e-13	0	0
53	M209	X	-7.975	-7.975	0	0
54	M209	Y	13.814	13.814	0	0
55	M245A	X	-10.634	-10.634	0	0
56	M245A	Y	18.418	18.418	0	0
57	M246A	X	-10.634	-10.634	0	0
58	M246A	Y	18.418	18.418	0	0
59	M279	X	-2.658	-2.658	0	0
60	M279	Y	4.605	4.605	0	0
61	M280	X	-2.658	-2.658	0	0
62	M280	Y	4.605	4.605	0	0
63	M261A	X	-3.788	-3.788	0	0
64	M261A	Υ	6.562	6.562	0	0

Member Distributed Loads (BLC 7 : Structure Wind (60)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
65	M267A	Х	-3.788	-3.788	0	0
66	M267A	Y	6.562	6.562	0	0
67	M273A	Х	-3.788	-3.788	0	0
68	M273A	Y	6.562	6.562	0	0
69	M279A	Х	-3.788	-3.788	0	0
70	M279A	Y	6.562	6.562	0	0
71	M288B	Х	-3.788	-3.788	0	0
72	M288B	Y	6.562	6.562	0	0
73	M294A	Х	-3.788	-3.788	0	0
74	M294A	Y	6.562	6.562	0	0
75	M300B	Х	-3.788	-3.788	0	0
76	M300B	Y	6.562	6.562	0	0
77	M306B	Х	-3.788	-3.788	0	0
78	M306B	Y	6.562	6.562	0	0
79	M315	Х	-3.788	-3.788	0	0
80	M315	Y	6.562	6.562	0	0
81	M321	Х	-3.788	-3.788	0	0
82	M321	Y	6.562	6.562	0	0
83	M327	Х	-3.788	-3.788	0	0
84	M327	Y	6.562	6.562	0	0
85	KM5	Х	-5.768	-5.768	0	0
86	KM5	Y	9.99	9.99	0	0
87	KM6	Х	-5.768	-5.768	0	0
88	KM6	Y	9.99	9.99	0	0
89	KM11	Х	-3.133	-3.133	0	0
90	KM11	Y	5.426	5.426	0	0
91	KM12	Х	-3.133	-3.133	0	0
92	KM12	Y	5.426	5.426	0	0
93	KM17	Х	-5.768	-5.768	0	0
94	KM17	Y	9.99	9.99	0	0
95	KM18	Х	-5.768	-5.768	0	0
96	KM18	Y	9,99	9,99	0	0

Member Distributed Loads (BLC 8 : Structure Wind (90))

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
1	M51	Х	-4.823e-6	-4.823e-6	0	0
2	M51	Y	21.268	21.268	0	0
3	M60	Х	-2.481e-19	-2.481e-19	0	0
4	M60	Y	1.094e-12	1.094e-12	0	0
5	M63	Х	-2.481e-19	-2.481e-19	0	0
6	M63	Y	1.094e-12	1.094e-12	0	0
7	M69	Х	-1.303e-19	-1.303e-19	0	0
8	M69	Y	5.743e-13	5.743e-13	0	0
9	M72	Х	-1.899e-6	-1.899e-6	0	0
10	M72	Y	8.374	8.374	0	0
11	M75	Х	-1.899e-6	-1.899e-6	0	0
12	M75	Y	8.374	8.374	0	0
13	M92	Х	-1.322e-19	-1.322e-19	0	0
14	M92	Y	5.829e-13	5.829e-13	0	0
15	M94	Х	-1.809e-6	-1.809e-6	0	0
16	M94	Y	7.975	7.975	0	0
17	M98	Х	-1.809e-6	-1.809e-6	0	0
18	M98	Y	7.975	7.975	0	0
19	M100	Х	-1.207e-16	-1.207e-16	0	0
20	M100	Y	5.32e-10	5.32e-10	0	0
21	M104	Х	-1.809e-6	-1.809e-6	0	0

Member Distributed Loads (BLC 8 : Structure Wind (90)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
22	M104	Y	7.975	7.975	0	0
23	M106	X X	-1.809e-6	-1.809e-6	0	0
24	M106	Y	7.975	7.975	0	0
25	M109	X	-2.261e-6	-2.261e-6	0	0
26	M109	Y	9.969	9.969	0	0
27	M110	X	-1.551e-19	-1.551e-19	0	0
28	M110	Y	6.837e-13	6.837e-13	0	0
29	M111	X	-2.261e-6	-2.261e-6	0	0
30	M111	Y	9.969	9.969	0	0
31	M116	Х	-8.838e-20	-8.838e-20	0	0
32	M116	Y	3.897e-13	3.897e-13	0	0
33	M121	Х	-1.289e-6	-1.289e-6	0	0
34	M121	Y	5.682	5.682	0	0
35	M126	X	-1.289e-6	-1.289e-6	0	0
36	M126	Ý	5 682	5 682	Ő	0
37	M129	X	-3 721e-19	-3 721e-19	0	0
38	M129	Y	1 641e-12	1.641e-12	0	0
39	M133	x	-3 721e-19	-3 721e-19	0	0
40	M133	Y Y	1 6410-12	1 641e-12	0	0
41	M137	X	-5 4260-6	-5 4260-6	0	0
42	M137	Ý V	23 926	23 926	0	0
43	M137	X	-5.4269-6	-5.4266-6	0	0
40	M141		23 926	23 926	0	0
45	M145	X	-5.426e-6	-5.426e-6	0	0
46	M145		23 926	23 026	0	0
40	M140	X	-5.4269-6	-5.4260-6	0	0
18	M149		23 026	23 026	0	0
10	M163	Y	-1 7180-6	_1 7180-6	0	0
50	M163		7 577	7 577	0	0
51	M189A	Y	-1 2069-6	_1 2060-6	0	0
52	M189A		5 317	5 317	0	0
53	M209	Y	-1 2069-6	_1 206e-6	0	0
54	M209	× v	5 317	5 317	0	0
55	M245A	X	-3.618e-6	-3.618e-6	0	0
56	M245A		15 951	15 051	0	0
57	M246A	Y	-3 6180-6	-3 6180-6	0	0
58	M246A		15 951	15 951	0	0
59	M270	X	-3 6186-6	-3.6186-6	0	0
60	M279		15 951	15 951	0	0
61	M280	X	-3 6186-6	-3.6186-6	0	0
62	M280	× ×	15 951	15 951	0	0
63	M261A	×	_1 7186	_1 7186	0	0
64	M261A	V V	7 577	7 577	0	0
65	M267A	X	-1 7186	-1 718e-6	0	0
66	M267A	Y Y	7 577	7 577	0	0
67	M273A	X	-1 718e-6	-1 718e-6	0	0
68	M273A	Y	7 577	7 577	0	0
69	M279A	X	_1 7186	_1 718e_6	0	0
70	M279A	Ŷ	7 577	7 577	0	0
71	M288B	X	_1 718e_6	_1 718e_6	0	0
72	M288B	Y Y	7 577	7 577	0	0
73	M294A	X	_1 718e_6	-1 718e-6	0	0
74	M294A	Ý	7 577	7 577	0	0
75	M300B	X	-1 718e-6	-1 718e-6	0	0
76	M300B	Ý	7 577	7 577	0	0
77	M306B	X	-1 718e-6	-1 718e-6	0	0
78	M306B	Ý	7 577	7 577	0	0
10	NICOOD		1.511	1.011	0	0

Member Distributed Loads (BLC 8 : Structure Wind (90)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
79	M315	Х	-1.718e-6	-1.718e-6	0	0
80	M315	Y	7.577	7.577	0	0
81	M321	Х	-1.718e-6	-1.718e-6	0	0
82	M321	Y	7.577	7.577	0	0
83	M327	Х	-1.718e-6	-1.718e-6	0	0
84	M327	Y	7.577	7.577	0	0
85	KM5	Х	-3.015e-6	-3.015e-6	0	0
86	KM5	Y	13.292	13.292	0	0
87	KM6	Х	-3.015e-6	-3.015e-6	0	0
88	KM6	Y	13.292	13.292	0	0
89	KM11	Х	-1.819e-6	-1.819e-6	0	0
90	KM11	Y	8.022	8.022	0	0
91	KM12	Х	-1.819e-6	-1.819e-6	0	0
92	KM12	Y	8.022	8.022	0	0
93	KM17	Х	-1.819e-6	-1.819e-6	0	0
94	KM17	Y	8.022	8.022	0	0
95	KM18	Х	-1.819e-6	-1.819e-6	0	0
96	KM18	Ý	8.022	8.022	0	0

Member Distributed Loads (BLC 9 : Structure Wind (120))

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
1	M51	Х	7.975	7.975	0	0
2	M51	Y	13.814	13.814	0	0
3	M60	Х	2.658	2.658	0	0
4	M60	Y	4.605	4.605	0	0
5	M63	Х	2.658	2.658	0	0
6	M63	Y	4.605	4.605	0	0
7	M69	Х	1.396	1.396	0	0
8	M69	Y	2.417	2.417	0	0
9	M72	Х	1.396	1.396	0	0
10	M72	Y	2.417	2.417	0	0
11	M75	Х	5.583	5.583	0	0
12	M75	Y	9.67	9.67	0	0
13	M92	Х	1.329	1.329	0	0
14	M92	Y	2.302	2.302	0	0
15	M94	Х	5.317	5.317	0	0
16	M94	Y	9.209	9.209	0	0
17	M98	Х	1.329	1.329	0	0
18	M98	Y	2.302	2.302	0	0
19	M100	Х	1.329	1.329	0	0
20	M100	Y	2.302	2.302	0	0
21	M104	Х	5.317	5.317	0	0
22	M104	Y	9.209	9.209	0	0
23	M106	Х	1.329	1.329	0	0
24	M106	Y	2.302	2.302	0	0
25	M109	Х	6.646	6.646	0	0
26	M109	Y	11.511	11.511	0	0
27	M110	Х	1.662	1.662	0	0
28	M110	Y	2.878	2.878	0	0
29	M111	Х	1.662	1.662	0	0
30	M111	Y	2.878	2.878	0	0
31	M116	Х	.947	.947	0	0
32	M116	Y	1.64	1.64	0	0
33	M121	Х	.947	.947	0	0
34	M121	Y	1.64	1.64	0	0
35	M126	Х	3.788	3.788	0	0

Member Distributed Loads (BLC 9 : Structure Wind (120)) (Continued)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	36	M126	Y	6.562	6.562	0	0
38 M129 Y 6.907 6.907 0 0 40 M133 X 3.988 3.988 0 0 41 M137 X 3.988 3.988 0 0 42 M137 Y 6.907 6.907 0 0 43 M141 X 3.988 3.988 0 0 44 M141 Y 6.907 6.907 0 0 44 M145 X 15.951 15.951 0 0 45 M145 X 15.951 15.951 0 0 46 M145 X 3.788 3.788 0 0 50 M163 X 3.785 7.975 0 0 51 M189A X 7.975 7.975 0 0 53 M209 X 1.011e-12 0 0 5 54 M209 Y	37	M129	X	3.988	3.988	0	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	38	M129	Y	6.907	6.907	0	0
	39	<u>M133</u>	X	3.988	3.988	0	0
	40	M133	Y	6.907	6.907	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	41	M137	X	3.988	3.988	0	0
	42	M137	Y	6.907	6.907	0	0
	43	M141	X	3.988	3.988	0	0
45 M145 X 15.951 15.951 0 0 46 M145 Y 27.627 27.627 0 0 48 M149 Y 27.627 27.627 0 0 48 M149 Y 27.627 27.627 0 0 49 M163 X 3.788 3.788 0 0 50 M189A X 7.975 7.975 0 0 51 M189A X 7.975 7.975 0 0 53 M209 X 1.011e-12 0.011e-12 0 0 54 M209 Y 1.75e-12 1.75e-12 0 0 0 56 M245A Y 4.605 4.605 0 0 0 57 M246A X 2.658 2.658 0 0 0 57 M246A X 2.658 2.658 0 0 0 58 M246A Y 4.805 4.605 0 0 <td>44</td> <td>M141</td> <td>Y</td> <td>6.907</td> <td>6.907</td> <td>0</td> <td>0</td>	44	M141	Y	6.907	6.907	0	0
46 M145 Y 27.627 27.627 0 0 47 M149 X 15.951 15.951 0 0 48 M149 Y 27.627 27.627 0 0 49 M163 X 3.788 3.788 0 0 50 M163 Y 6.562 6.562 0 0 51 M189A X 7.975 0 0 0 52 M189A Y 13.814 13.814 0 0 0 53 M209 X 1.011e-12 1.011e-12 0 0 0 54 M209 Y 1.75e-12 1.75e-12 0 0 0 56 M245A X 2.658 2.658 0 0 0 57 M246A Y 4.605 4.605 0 0 0 61 M279 X 10.634 10.634 0 0 0 62 M280 X 10.634 10.634	45	M145	X	15.951	15.951	0	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	46	M145	Y	27.627	27.627	0	0
48 M149 Y 27.627 27.627 0 0 49 M163 X 3.788 3.788 0 0 50 M163 Y 6.562 6.562 0 0 51 M189A X 7.975 7.975 0 0 52 M189A Y 13.814 13.814 0 0 53 M209 X 1.011e-12 1.011e-12 0 0 54 M209 Y 1.75e-12 1.75e-12 0 0 55 M245A X 2.658 2.658 0 0 0 57 M246A Y 4.605 4.605 0 0 0 58 M279 X 10.634 10.634 0 0 0 61 M280 X 10.634 10.634 0 0 0 63 M261A X 3.788 3.788 0 0 0 64 M261A Y 6.562 6.562 0 <td>47</td> <td>M149</td> <td>X</td> <td>15.951</td> <td>15.951</td> <td>0</td> <td>00</td>	47	M149	X	15.951	15.951	0	00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	48	M149	Y	27.627	27.627	0	0
	49	M163	X	3.788	3.788	0	0
51 M189A X 7.975 7.755 0 0 52 M189A Y 13.814 13.814 0 0 53 M209 X 1.011e-12 1.011e-12 0 0 54 M209 Y 1.75e-12 1.75e-12 0 0 55 M245A X 2.658 2.658 0 0 56 M246A X 2.658 2.658 0 0 58 M246A Y 4.605 4.605 0 0 59 M279 X 10.634 10.634 0 0 61 M280 X 10.634 10.634 0 0 62 M280 Y 18.418 18.418 0 0 0 63 M261A Y 6.562 6.562 0 0 0 64 M261A Y 6.562 6.562 0 0 0	50	M163	Y	6.562	6.562	0	0
52M189AY13.81413.81400 53 M209X1.011e-121.011e-1200 54 M209Y1.75e-121.75e-1200 55 M245AX2.6582.65800 56 M245AY4.6054.60500 57 M246AX2.6582.65800 58 M246AY4.6054.60500 59 M279X10.63410.63400 60 M279Y18.41818.41800 61 M280X10.63410.63400 63 M261AX3.7883.78800 64 M261AY6.5626.56200 66 M267AX3.7883.78800 66 M267AX3.7883.78800 66 M273AX3.7883.78800 70 M273AY6.5626.56200 71 M288BX3.7883.78800 74 M294AY6.5626.56200 74 M294AY6.5626.56200 74 M294AY6.5626.56200 74 M294AY6.5626.56200 74 M306BY6	51	M189A	X	7.975	7.975	0	0
	52	M189A	Y	13.814	13.814	0	0
54M209Y $1.75e-12$ $1.75e-12$ 0055M245AX 2.658 0056M245AY 4.605 4.605 0057M246AX 2.658 2.658 0058M246AY 4.605 4.605 0059M279X10.63410.6340060M279Y18.41818.4180061M280X10.63410.6340063M261AX3.7883.7880064M261AY6.5626.5620065M267AX3.7883.7880066M267AY6.5626.5620067M273AY6.5626.5620068M273AY6.5626.5620069M279AX3.7883.7880070M279AY6.5626.5620071M288BX3.7883.7880072M288BY6.5626.5620073M294AX3.7883.7880074M306BX3.7883.7880075M300BY6.5626.5620076M300BY6.5626.56200<	53	M209	X	1.011e-12	1.011e-12	0	0
55M245AX2.6582.6580056M245AY4.6054.6050057M246AX2.6582.6580058M279X10.63410.6340060M279Y18.41818.4180061M280X10.63410.6340062M280Y18.41818.4180063M261AX3.7883.7880064M261AY6.5626.5620065M267AX3.7883.7880066M267AY6.5626.5620067M273AX3.7883.7880068M273AY6.5626.5620070M279AY6.5626.5620071M288BX3.7883.7880072M288BY6.5626.5620074M300BX3.7883.7880075M300BX3.7883.7880076M300BY6.5626.5620077M306BX3.7883.7880078M306BY6.5626.5620079M315Y6.5626.5620076	54	M209	Y	1.75e-12	1.75e-12	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	55	M245A	X	2.658	2.658	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	56	M245A	Y	4.605	4.605	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	57	M246A	X	2.658	2.658	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	58	M246A	Y	4.605	4.605	0	0
	59	M279	X	10.634	10.634	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	60	M279	Y	18.418	18.418	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	61	M280	X	10.634	10.634	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	62	M280	Y	18.418	18.418	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	63	M261A	X	3.788	3.788	0	0
65M267AX 3.788 3.788 0 0 66M267AY 6.562 6.562 0 0 67M273AX 3.788 3.788 0 0 68M273AY 6.562 6.562 0 0 69M279AX 3.788 3.788 0 0 70M279AY 6.562 6.562 0 0 71M288BX 3.788 3.788 0 0 72M288BY 6.562 6.562 0 0 73M294AX 3.788 3.788 0 0 74M294AY 6.562 6.562 0 0 75M300BX 3.788 3.788 0 0 76M300BX 3.788 3.788 0 0 78M306BX 3.788 3.788 0 0 79M315X 3.788 3.788 0 0 80M315Y 6.562 6.562 0 0 81M321X 3.788 3.788 0 0 84M327X 6.562 6.562 0 0	64	M261A	Y	6.562	6.562	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	65	M267A	X	3.788	3.788	0	0
67 M273A X 3.788 3.788 0 0 68 M273A Y 6.562 6.562 0 0 69 M279A X 3.788 3.788 0 0 70 M279A Y 6.562 6.562 0 0 71 M288B X 3.788 3.788 0 0 72 M288B Y 6.562 6.562 0 0 73 M294A X 3.788 3.788 0 0 74 M294A Y 6.562 6.562 0 0 75 M300B X 3.788 3.788 0 0 76 M300B Y 6.562 6.562 0 0 78 M306B Y 6.562 0.562 0 0 78 M306B Y 6.562 0.562 0 0 79 M315 X	66	M267A	Y	6.562	6.562	0	0
68 M273A Y 6.562 6.562 0 0 69 M279A X 3.788 3.788 0 0 70 M279A Y 6.562 6.562 0 0 71 M288B X 3.788 3.788 0 0 72 M288B Y 6.562 6.562 0 0 73 M294A X 3.788 3.788 0 0 74 M294A Y 6.562 6.562 0 0 74 M294A Y 6.562 6.562 0 0 75 M300B X 3.788 3.788 0 0 76 M300B Y 6.562 6.562 0 0 78 M306B Y 6.562 0 0 0 78 M306B Y 6.562 0 0 0 80 M315 Y	67	M273A	X	3.788	3.788	0	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	68	M273A	Y	6.562	6.562	0	0
70 M279A Y 6.562 6.562 0 0 71 M288B X 3.788 3.788 0 0 72 M288B Y 6.562 6.562 0 0 73 M294A X 3.788 3.788 0 0 74 M294A Y 6.562 6.562 0 0 74 M294A Y 6.562 6.562 0 0 75 M300B X 3.788 3.788 0 0 76 M300B Y 6.562 6.562 0 0 76 M306B Y 6.562 6.562 0 0 78 M306B Y 6.562 6.562 0 0 79 M315 X 3.788 3.788 0 0 80 M315 Y 6.562 0 0 0 81 M321 X	69	M279A	X	3.788	3.788	0	0
71 M288B X 3.788 3.788 0 0 72 M288B Y 6.562 6.562 0 0 73 M294A X 3.788 3.788 0 0 74 M294A Y 6.562 6.562 0 0 74 M294A Y 6.562 6.562 0 0 75 M300B X 3.788 3.788 0 0 76 M300B Y 6.562 6.562 0 0 76 M306B X 3.788 3.788 0 0 78 M306B X 3.788 3.788 0 0 79 M315 X 3.788 3.788 0 0 80 M315 Y 6.562 6.562 0 0 81 M321 X 3.788 3.788 0 0 82 M321 Y <td>70</td> <td>M279A</td> <td>Y</td> <td>6.562</td> <td>6.562</td> <td>0</td> <td>0</td>	70	M279A	Y	6.562	6.562	0	0
72 M288B Y 6.562 6.562 0 0 73 M294A X 3.788 3.788 0 0 74 M294A Y 6.562 6.562 0 0 75 M300B X 3.788 3.788 0 0 76 M300B Y 6.562 6.562 0 0 76 M306B X 3.788 3.788 0 0 77 M306B X 3.788 3.788 0 0 78 M306B Y 6.562 6.562 0 0 78 M306B Y 6.562 6.562 0 0 79 M315 X 3.788 3.788 0 0 80 M315 Y 6.562 6.562 0 0 81 M321 X 3.788 3.788 0 0 82 M321 Y <td>71</td> <td>M288B</td> <td>X</td> <td>3.788</td> <td>3.788</td> <td>0</td> <td>0</td>	71	M288B	X	3.788	3.788	0	0
73 M294A X 3.788 3.788 0 0 74 M294A Y 6.562 6.562 0 0 75 M300B X 3.788 3.788 0 0 76 M300B Y 6.562 6.562 0 0 76 M306B X 3.788 3.788 0 0 77 M306B X 3.788 3.788 0 0 78 M306B Y 6.562 6.562 0 0 78 M306B Y 6.562 6.562 0 0 79 M315 X 3.788 3.788 0 0 80 M315 Y 6.562 6.562 0 0 81 M321 X 3.788 3.788 0 0 82 M321 Y 6.562 6.562 0 0 83 M327 X <td>72</td> <td>M288B</td> <td>Y</td> <td>6.562</td> <td>6.562</td> <td>0</td> <td>0</td>	72	M288B	Y	6.562	6.562	0	0
74 M294A Y 6.562 6.562 0 0 75 M300B X 3.788 3.788 0 0 76 M300B Y 6.562 6.562 0 0 76 M306B Y 6.562 6.562 0 0 77 M306B X 3.788 3.788 0 0 78 M306B Y 6.562 6.562 0 0 79 M315 X 3.788 3.788 0 0 80 M315 Y 6.562 6.562 0 0 81 M321 X 3.788 3.788 0 0 82 M321 Y 6.562 6.562 0 0 83 M327 X 3.788 3.788 0 0 84 M327 Y 6.562 6.562 0 0	73	M294A	X	3.788	3.788	0	0
75 M300B X 3.788 3.788 0 0 76 M300B Y 6.562 6.562 0 0 77 M306B X 3.788 3.788 0 0 78 M306B Y 6.562 6.562 0 0 79 M315 X 3.788 3.788 0 0 80 M315 Y 6.562 6.562 0 0 81 M321 X 3.788 3.788 0 0 82 M321 Y 6.562 6.562 0 0 83 M327 X 3.788 3.788 0 0 84 M327 Y 6.562 6.562 0 0	74	M294A	Y	6.562	6.562	0	0
76 M300B Y 6.562 6.562 0 0 77 M306B X 3.788 3.788 0 0 78 M306B Y 6.562 6.562 0 0 79 M315 X 3.788 3.788 0 0 80 M315 Y 6.562 6.562 0 0 81 M321 X 3.788 3.788 0 0 82 M321 Y 6.562 6.562 0 0 83 M327 X 3.788 3.788 0 0 84 M327 Y 6.562 6.562 0 0	75	M300B	X	3.788	3.788	0	0
77 M306B X 3.788 3.788 0 0 78 M306B Y 6.562 6.562 0 0 79 M315 X 3.788 3.788 0 0 80 M315 Y 6.562 6.562 0 0 81 M321 X 3.788 3.788 0 0 82 M321 Y 6.562 6.562 0 0 83 M327 X 3.788 3.788 0 0 84 M327 X 6.562 6.562 0 0	76	M300B	Y	6.562	6.562	0	0
78 M306B Y 6.562 6.562 0 0 79 M315 X 3.788 3.788 0 0 80 M315 Y 6.562 6.562 0 0 81 M321 X 3.788 3.788 0 0 82 M321 Y 6.562 6.562 0 0 83 M327 X 3.788 3.788 0 0 84 M327 Y 6.562 6.562 0 0	77	M306B	X	3.788	3.788	0	0
79 M315 X 3.788 3.788 0 0 80 M315 Y 6.562 6.562 0 0 81 M321 X 3.788 3.788 0 0 82 M321 Y 6.562 6.562 0 0 83 M327 X 3.788 3.788 0 0 84 M327 X 6.562 6.562 0 0	78	M306B	Y	6.562	6.562	0	0
80 M315 Y 6.562 6.562 0 0 81 M321 X 3.788 3.788 0 0 82 M321 Y 6.562 6.562 0 0 83 M327 X 3.788 3.788 0 0 84 M327 X 6.562 6.562 0 0	79	M315	Х	3.788	3.788	0	0
81 M321 X 3.788 3.788 0 0 82 M321 Y 6.562 6.562 0 0 83 M327 X 3.788 3.788 0 0 84 M327 X 6.562 6.562 0 0	80	M315	Y	6.562	6.562	0	0
82 M321 Y 6.562 6.562 0 0 83 M327 X 3.788 3.788 0 0 84 M327 X 6.562 6.562 0 0	81	M321	X	3.788	3.788	0	0
83 M327 X 3.788 3.788 0 0	82	M321	Y	6.562	6.562	0	0
84 M327 V 6562 6562 0	83	M327	X	3.788	3.788	0	0
	84	M327	Y	6.562	6.562	0	0
85 KM5 X 5.768 5.768 0 0	85	KM5	X	5.768	5.768	0	0
86 KM5 Y 9.99 9.99 0 0	86	KM5	Y	9.99	9.99	0	0
87 KM6 X 5.768 5.768 0 0	87	KM6	X	5.768	5.768	0	0
88 KM6 Y 9.99 9.99 0 0	88	KM6	Y	9.99	9.99	0	0
89 KM11 X 5.768 5.768 0 0	89	KM11	X	5.768	5.768	0	0
90 KM11 Y 9.99 9.99 0 0	90	KM11	Y	9.99	9.99	0	0
91 KM12 X 5.768 5.768 0 0	91	KM12	X	5.768	5.768	0	0
92 KM12 Y 9.99 9.99 0 0	92	KM12	Y	9.99	9.99	0	0

Member Distributed Loads (BLC 9 : Structure Wind (120)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
93	KM17	Х	3.133	3.133	0	0
94	KM17	Y	5.426	5.426	0	0
95	KM18	Х	3.133	3.133	0	0
96	KM18	Y	5.426	5.426	0	0

Member Distributed Loads (BLC 10 : Structure Wind (135))

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
1	M51	X	7.519	7.519	0	0
2	M51	Y	7.519	7.519	0	0
3	M60	X	7.519	7.519	0	0
4	M60	Y	7.519	7.519	0	0
5	M63	Х	7,519	7,519	0	0
6	M63	Y	7.519	7.519	0	0
7	M69	X	3.948	3.948	0	0
8	M69	Y	3.948	3.948	0	0
9	M72	X	529	529	0	0
10	M72	Y	529	529	0	0
11	M75	X	7 366	7.366	0	0
12	M75	Y	7 366	7 366	0	0
13	M92	X	3.76	3.76	0	0
14	M92	× ×	3.76	3.76	0	0
15	M94	X	7.016	7.016	0	0
16	M94	× v	7.016	7.016	0	0
17	M98	Y	504	504	0	0
18	MQ8		504	504	0	0
10	M100	Y	3 76	3 76	0	0
20	M100		3.76	3.76	0	0
20	M104	V I	7.016	7.016	0	0
21	M104		7.016	7.010	0	0
22	M104	l l	<u>7.010</u>	7.010	0	0
23	M106		.504	.504	0	0
24	M100	T V	9.760	9.760	0	0
25	M109		0.709	0.709	0	0
20	M1109	ľ	0.709	0.709	0	0
21	M110		4.7	4.7	0	0
20		l l	4.7	4.7	0	0
29			.03	.03	0	0
30		ľ V	.03	.03	0	0
31	M110		2.079	2.079	0	0
32	M110	Ý V	2.079	2.079	0	0
33		X	.359	.359	0	0
34	M121	ř V	.359	.309	0	0
35	M126	<u> </u>	4.999	4.999	0	0
30	M120	Y Y	4.999	4.999	0	0
31	M129	X	11.279	11.279	0	0
38	M129	Y Y	11.279	11.279	0	0
39	M133	X	11.279	11.279	0	0
40	M133	Y Y	11.279	11.2/9	0	0
41	M137	X	1.511	1.511	0	0
42	M137	Y	1.511	1.511	0	0
43	M141	X	1.511	1.511	0	0
44	M141	Y	1.511	1.511	0	0
45	M145	X	21.047	21.047	0	0
46	M145	Y	21.047	21.047	0	0
47	M149	X	21.047	21.047	0	0
48	M149	Y	21.047	21.047	0	0
49	M163	<u> X </u>	5.357	5.357	0	0

Member Distributed Loads (BLC 10 : Structure Wind (135)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f		End Location[in,%]
50	M163	Y	5.357	5.357	0	0
51	M189A	X	14.031	14.031	0	0
52	M189A	Y	14.031	14.031	0	0
53	M209	X	1.007	1.007	0	0
54	M209	Y	1.007	1.007	0	0
55	M245A	X	1.007	1.007	0	0
56	M245A	Y	1.007	1.007	0	0
57	M246A	Х	1.007	1.007	0	0
58	M246A	Y	1.007	1.007	0	0
59	M279	Х	14.031	14.031	0	0
60	M279	Y	14.031	14.031	0	0
61	M280	Х	14.031	14.031	0	0
62	M280	Y	14.031	14.031	0	0
63	M261A	X	5.357	5.357	0	0
64	M261A	Y	5.357	5.357	0	0
65	M267A	X	5.357	5.357	0	0
66	M267A	Y	5.357	5.357	0	0
67	M273A	X	5.357	5.357	0	0
68	M273A	Ŷ	5.357	5.357	0	0
69	M279A	X	5.357	5.357	0	0
70	M279A	Ý	5.357	5.357	0	0
71	M288B	X	5 357	5 357	0	0
72	M288B	Y	5.357	5.357	0	0
73	M294A	X	5.357	5.357	0	0
74	M294A	Y	5.357	5.357	0	0
75	M300B	X	5.357	5.357	0	0
76	M300B	Y	5.357	5.357	0	0
77	M306B	Х	5.357	5.357	0	0
78	M306B	Ý	5.357	5.357	0	0
79	M315	Х	5.357	5.357	0	0
80	M315	Y	5.357	5.357	0	0
81	M321	Х	5.357	5.357	0	0
82	M321	Y	5.357	5.357	0	0
83	M327	Х	5.357	5.357	0	0
84	M327	Y	5,357	5.357	0	0
85	KM5	Х	6.915	6.915	0	0
86	KM5	Y	6.915	6.915	0	0
87	KM6	Х	6.915	6.915	0	0
88	KM6	Y	6.915	6.915	0	0
89	KM11	Х	9.066	9.066	0	0
90	KM11	Y	9,066	9,066	0	0
91	KM12	X	9.066	9.066	0	0
92	KM12	Y	9.066	9.066	0	0
93	KM17	X	4.763	4.763	0	0
94	KM17	Y	4.763	4.763	0	0
95	KM18	Х	4.763	4.763	0	0
96	KM18	Y	4.763	4.763	0	0

Member Distributed Loads (BLC 11 : Structure Wind (150))

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
1	M51	Х	4.605	4.605	0	0
2	M51	Y	2.658	2.658	0	0
3	M60	Х	13.814	13.814	0	0
4	M60	Y	7.975	7.975	0	0
5	M63	Х	13.814	13.814	0	0
6	M63	Y	7.975	7.975	0	0

Member Distributed Loads (BLC 11 : Structure Wind (150)) (Continued)

7	Member Label	Direction	Start Magnitude[lb/ft,F,psf	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
0	N09		/.232	1.232	0	0
0	N09	I I	4.107	4.10/	0	0
9	<u> </u>				0	0
11	<u> </u>	I I	7.9700-13	7.9700-13	0	0
12	IVI75		1.232	1.232	0	0
12	<u>N02</u>	Y Y	4.107	4.107	0	0
13	N92		0.907	0.907	0	0
14	<u>M04</u>	r V	5.900	5.900	0	0
10	<u>IVI94</u>		0.907	0.907	0	0
10	<u> </u>	Y Y	3.900	3.900	0	0
10	N90			<u>1.307e-12</u>	0	0
10	N190	Y Y	7.0946-13	<u> </u>	0	0
19	M100		6.907	0.907	0	0
20	W100	Y Y	3.988	3.966	0	0
21	W104		6.907	0.907	0	0
22	W104	Y Y	3.900	3.900	0	0
23	M106	X	4.8076-10	4.807e-10	0	0
24	IVI 106	Ý V	2.7750-10	2.7750-10	0	0
25	M109	X	8.034	8.034	0	0
20	M1109	Y Y	4.985	4.985	0	0
27	M110	X	8.634	8.634	0	0
28	WITTU	Ý	4.985		0	0
29		X		1.645e-12	0	0
30	<u>M111</u>	Ý	9.4966-13	9.4966-13	0	0
31	N116	X	4.921	4.921	0	0
32	M116	Ý	2.841	2.841	0	0
33	N121	X	9.3756-13	9.375e-13	0	0
34	N121	Ý V	5.413e-13	<u>5.413e-13</u>	0	0
35	M126	X	4.921	4.921	0	0
30	<u>IVI 126</u>	Ý	2.841	2.841	0	0
31	M129	X	20.721	20.721	0	0
30	<u>IVI129</u>	Y Y	11.903	11.903	0	0
39	IVI 1 3 3		20.721	20.721	0	0
40	IVI 133	Y Y	2 0470 12		0	0
41	IVI137		3.9476-12	<u>3.947e-12</u>	0	0
42	IVI137	Y Y	2.2790-12	<u>2.2/9e-12</u>	0	0
43	<u>IVI 14 1</u>		3.9476-12	<u>3.947e-12</u>	0	0
44	<u>IVI 14 1</u>	Y Y	2.2796-12	2.2/96-12	0	0
45	IVI 145		20.721	20.721	0	0
40	IVI 140	Y V	11.903	20 724	0	0
47	IVI 149		20.721	20.721	0	0
40	IVI 149	T V	6 560	6 560	0	0
49	IVI 103		0.002	0.002	0	0
50	N100	T V	J./00 10 /10	3./00	0	0
51	IVI 169A		10.410	10.410	0	0
52	MOOD	Y V	10.034	10.034	0	0
53	IVIZU9		4.000	4.000	0	0
54		T V	2.000	2.000	0	0
55			1.5100.10	1.5100.10	0	0
57		T V	2 6226 42	2,6220,12	0	0
50			1.5100.10	1 5100 10	0	0
50	<u>IVIZ40A</u>	Y V	12 014	12 014	0	0
59	M270		7 075	7 075	0	0
61	M200	ř V	12 01/	12 01/	0	0
62	IVI∠OU		7 075	7 075	0	0
62		T V	1.9/0	1.910	0	0
<u></u>	IVIZO IA	<u>∧</u>	0.302	0.002	UU	U U

Member Distributed Loads (BLC 11 : Structure Wind (150)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
64	M261A	Y	3.788	3.788	0	0
65	M267A	Х	6.562	6.562	0	0
66	M267A	Y	3.788	3.788	0	0
67	M273A	Х	6.562	6.562	0	0
68	M273A	Y	3.788	3.788	0	0
69	M279A	Х	6.562	6.562	0	0
70	M279A	Y	3.788	3.788	0	0
71	M288B	Х	6.562	6.562	0	0
72	M288B	Y	3.788	3.788	0	0
73	M294A	Х	6.562	6.562	0	0
74	M294A	Y	3.788	3.788	0	0
75	M300B	Х	6.562	6.562	0	0
76	M300B	Y	3.788	3.788	0	0
77	M306B	Х	6.562	6.562	0	0
78	M306B	Y	3.788	3.788	0	0
79	M315	Х	6.562	6.562	0	0
80	M315	Y	3.788	3.788	0	0
81	M321	Х	6.562	6.562	0	0
82	M321	Y	3.788	3.788	0	0
83	M327	Х	6.562	6.562	0	0
84	M327	Y	3.788	3.788	0	0
85	KM5	Х	6.947	6.947	0	0
86	KM5	Y	4.011	4.011	0	0
87	KM6	Х	6.947	6.947	0	0
88	KM6	Y	4.011	4.011	0	0
89	KM11	Х	11.511	11.511	0	0
90	KM11	Y	6.646	6.646	0	0
91	KM12	Х	11.511	11.511	0	0
92	KM12	Y	6.646	6.646	0	0
93	KM17	Х	6.947	6.947	0	0
94	KM17	Y	4.011	4.011	0	0
95	KM18	Х	6.947	6.947	0	0
96	KM18	Ý	4.011	4.011	0	0

Member Distributed Loads (BLC 12 : Structure Wind w/ Ice (0))

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
1	M51	Х	-5.4e-17	-5.4e-17	0	0
2	M51	Y	0	0	0	0
3	M60	Х	-1.564	-1.564	0	0
4	M60	Y	0	0	0	0
5	M63	Х	-1.564	-1.564	0	0
6	M63	Y	0	0	0	0
7	M69	Х	-3.195	-3.195	0	0
8	M69	Y	0	0	0	0
9	M72	Х	799	799	0	0
10	M72	Y	0	0	0	0
11	M75	Х	799	799	0	0
12	M75	Y	0	0	0	0
13	M92	Х	-1.41	-1.41	0	0
14	M92	Y	0	0	0	0
15	M94	Х	352	352	0	0
16	M94	Y	0	0	0	0
17	M98	Х	352	352	0	0
18	M98	Y	0	0	0	0
19	M100	Х	-1.41	-1.41	0	0
20	M100	Y	0	0	0	0

Member Distributed Loads (BLC 12 : Structure Wind w/ Ice (0)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
21	M104	Χ	352	352	0	0
22	M104	Y	0	0	0	0
23	M106	X	352	352	0	0
24	M106	Y	0	0	0	0
25	M109	Х	362	362	0	0
26	M109	Y	0	0	0	0
27	M110	Х	-1.448	-1.448	0	0
28	M110	Y	0	0	0	0
29	M111	Х	362	362	0	0
30	M111	Ý	0	0	0	0
31	M116	X	-2.571	-2.571	0	0
32	M116	Ý	0	0	Ő	Ő
33	M121	X	- 643	- 643	0	0
34	M121	Y	0	0	0	0
35	M126	X	- 643	- 643	0	0
36	M126	Y Y	.010	0	0	0
37	M129	X	-4 586	-4 586	0	0
38	M120		-4.000	-4.000	0	0
20	M123	Y	_4 586	-4 586	0	0
40	M133		-4.500	-4.500	0	0
40	M127	I V	1 1/6	_1 1/6	0	0
41	N127	× ×	-1.140	-1.140	0	0
42	<u>IVI 137</u>	Ť V	1 1 1 6	1 1 4 6	0	0
43	IVI 14 1		-1.140	-1.140	0	0
44	IVI 14 1	Y Y	1.1.10	0	0	0
45	IVI 145	X	-1.140	-1.140	0	0
40	IVI 145	Ý V	1 1 1 1	0	0	0
47	M149	X	-1.140	-1.146	0	0
40	N1149	Ý V	0 571	0 574	0	0
49	IVI 163	X	-2.571	-2.5/1	0	0
50	N1904	ř	1 172	1 1 7 2	0	0
51	<u>IVI 109A</u>		-1.173	-1.173	0	0
52	M200	l l	1 172	1 1 7 2	0	0
55	M209		-1.173	-1.173	0	0
54	N245A	T V	201	201	0	0
55	M245A		391	391	0	0
50	M245A	T Y	0	201	0	0
5/		X	391	391	0	0
58	IVI240A	Y Y	0	0	0	0
59	M279	X	391	391	0	0
60	M279	Y	0	0	0	0
61	IVI280	X	391	391	0	U
62		Y	0	0 574	0	0
63	M261A	X	-2.5/1	-2.5/1	0	0
64	M261A	Y	0	0	0	0
65	M267A	X	-2.571	-2.571	0	0
66	M267A	Y	0	0	0	0
67	M273A	X	-2.571	-2.571	0	0
68	M273A	Y	0	0	0	0
69	M279A	X	-2.571	-2.571	0	0
70	M279A	Y	0	0	0	0
71	M288B	X	-2.571	-2.571	0	0
72	M288B	Y	0	0	0	0
73	M294A	X	-2.571	-2.571	0	0
74	M294A	Y	0	0	0	0
75	M300B	X	-2.571	-2.571	0	0
76	M300B	Y	0	0	0	0
77	M306B	<u> </u>	-2.571	-2.571	0	0

Member Distributed Loads (BLC 12 : Structure Wind w/ Ice (0)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
78	M306B	Y	0	0	0	0
79	M315	Х	-2.571	-2.571	0	0
80	M315	Y	0	0	0	0
81	M321	Х	-2.571	-2.571	0	0
82	M321	Y	0	0	0	0
83	M327	Х	-2.571	-2.571	0	0
84	M327	Y	0	0	0	0
85	KM5	Х	683	683	0	0
86	KM5	Y	0	0	0	0
87	KM6	Х	683	683	0	0
88	KM6	Y	0	0	0	0
89	KM11	Х	-1.257	-1.257	0	0
90	KM11	Y	0	0	0	0
91	KM12	Х	-1.257	-1.257	0	0
92	KM12	Y	0	0	0	0
93	KM17	Х	-1.257	-1.257	0	0
94	KM17	Y	0	0	0	0
95	KM18	Х	-1.257	-1.257	0	0
96	KM18	Y	0	0	0	0

Member Distributed Loads (BLC 13 : Structure Wind w/ Ice (30))

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
1	M51	Х	339	339	0	0
2	M51	Y	.195	.195	0	0
3	M60	Х	-1.016	-1.016	0	0
4	M60	Y	.586	.586	0	0
5	M63	Х	-1.016	-1.016	0	0
6	M63	Y	.586	.586	0	0
7	M69	Х	-2.075	-2.075	0	0
8	M69	Y	1.198	1.198	0	0
9	M72	Х	-2.075	-2.075	0	0
10	M72	Y	1.198	1.198	0	0
11	M75	Х	-1.581e-14	-1.581e-14	0	0
12	M75	Y	9.129e-15	9.129e-15	0	0
13	M92	Х	916	916	0	0
14	M92	Y	.529	.529	0	0
15	M94	Х	-5.851e-11	-5.851e-11	0	0
16	M94	Y	3.378e-11	3.378e-11	0	0
17	M98	Х	916	916	0	0
18	M98	Y	.529	.529	0	0
19	M100	Х	916	916	0	0
20	M100	Y	.529	.529	0	0
21	M104	Х	-8.396e-15	-8.396e-15	0	0
22	M104	Y	4.848e-15	4.848e-15	0	0
23	M106	Х	916	916	0	0
24	M106	Y	.529	.529	0	0
25	M109	Х	-7.169e-15	-7.169e-15	0	0
26	M109	Y	4.139e-15	4.139e-15	0	0
27	M110	Х	941	941	0	0
28	M110	Y	.543	.543	0	0
29	M111	Х	941	941	0	0
30	M111	Y	.543	.543	0	0
31	M116	Х	-1.67	-1.67	0	0
32	M116	Y	.964	.964	0	0
33	M121	Х	-1.67	-1.67	0	0
34	M121	Y	.964	.964	0	0

Member Distributed Loads (BLC 13 : Structure Wind w/ Ice (30)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
35	<u>M126</u>	X	-1.2/3e-14	<u>-1.2/3e-14</u>	0	0
36	<u>M126</u>	Y	<u> </u>	7.348e-15	0	0
37	M129	X	-2.978	-2.978	0	0
38	M129	Y	1.72	1.72	0	0
39	M133	X X	-2.978	-2.978	0	0
40	M133	Y	1.72	1.72	0	0
41	M137	X	-2.978	-2.978	0	0
42	M137	Y	1.72	1.72	0	0
43	M141	Х	-2.978	-2.978	0	0
44	M141	Y	1.72	1.72	0	0
45	M145	Х	-2.27e-14	-2.27e-14	0	0
46	M145	Y	1.31e-14	1.31e-14	0	0
47	M149	X	-2.27e-14	-2.27e-14	0	0
48	M149	Ý	1 31e-14	1 31e-14	0	0
49	M163	×	-2 227	-2 227	0	0
50	M163	× v	1 286	1 286	0	0
51	M189A	X	- 339	- 339	0	0
52	M180A	× ×	105	105	0	0
52	M200	Y	_1 25/	_1 35/	0	0
55	MOOD		792	792	0	0
54			1.02	1.016	0	0
55	<u>IVI245A</u>		-1.016	-1.010	0	0
50	M245A	Y Y	.586	.580	0	0
57	M246A	X	-1.016	-1.016	0	0
58	<u>M246A</u>	Ŷ	.586	.586	0	0
59	<u>M279</u>	X	<u>-7.74e-15</u>	<u>-/./4e-15</u>	0	0
60	<u>M279</u>	Y	<u>4.469e-15</u>	4.469e-15	0	0
61	<u>M280</u>	X	<u>-7.74e-15</u>	-7.74e-15	0	0
62	M280	Y	4.469e-15	4.469e-15	0	0
63	M261A	X	-2.227	-2.227	0	0
64	M261A	Y	1.286	1.286	0	0
65	M267A	X	-2.227	-2.227	0	0
66	M267A	Y	1.286	1.286	0	0
67	M273A	X	-2.227	-2.227	0	0
68	M273A	Y	1.286	1.286	0	0
69	M279A	X	-2.227	-2.227	0	0
70	M279A	Y	1.286	1.286	0	0
71	M288B	X	-2.227	-2.227	0	0
72	M288B	Y	1.286	1.286	0	0
73	M294A	Х	-2.227	-2.227	0	0
74	M294A	Y	1.286	1.286	0	0
75	M300B	X	-2,227	-2.227	0	0
76	M300B	Y	1,286	1,286	0	0
77	M306B	X	-2.227	-2.227	0	0
78	M306B	Ý	1.286	1.286	0	0
79	M315	X	-2,227	-2.227	Ő	Ő
80	M315	Y	1 286	1 286	0 0	0 0
81	M321	×	_2 227	_2 227	0	0
82	M321	V V	1 286	1 286	0	0
82	M327	Y	_2 227	_2 227	0	0
Q/	M227		1.286	1 286	0	0
04		I V	757	757	0	0
00			131	101	0	0
00		ř V	.43/	.437	0	0
0/		X	(5/	/5/	0	
88	KIVID	Y Y	.437	.43/	0	0
89	<u>KM11</u>	X	/5/	/5/	0	0
90	<u>KM11</u>	Y	.43/	.43/	0	0
91	KM12	<u> </u>	/5/	/5/	0	U U

Member Distributed Loads (BLC 13 : Structure Wind w/ Ice (30)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
92	KM12	Y	.437	.437	0	0
93	KM17	X	-1.254	-1.254	0	0
94	KM17	Y	.724	.724	0	0
95	KM18	X	-1.254	-1.254	0	0
96	KM18	Y	.724	.724	0	0

Member Distributed Loads (BLC 14 : Structure Wind w/ Ice (45))

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	. Start Location[in,%]	End Location[in,%]
1	M51	X	553	553	0	0
2	M51	Y	.553	.553	0	0
3	M60	X	553	553	0	0
4	M60	Y	.553	.553	0	0
5	M63	X	553	553	0	0
6	M63	Y	.553	.553	0	0
7	M69	X	-1.129	-1.129	0	0
8	M69	Y	1.129	1.129	0	0
9	M72	X	-2.108	-2.108	0	0
10	M72	Y	2.108	2.108	0	0
11	M75	X	151	151	0	0
12	M75	Y	.151	.151	0	0
13	M92	X	498	498	0	0
14	M92	Y	.498	.498	0	0
15	M94	X	067	067	0	0
16	M94	Y	.067	.067	0	0
17	M98	X	93	93	0	0
18	M98	Y	.93	.93	0	0
19	M100	X	498	498	0	0
20	M100	Y	.498	.498	0	0
21	<u>M104</u>	X	067	067	0	0
22	M104	Y	.067	.067	0	0
23	M106	X	93	93	0	0
24	M106	Y	.93	.93	0	0
25	M109	X	069	069	0	0
26	M109	Y	.069	.069	0	0
27	<u>M110</u>	X	512	512	0	0
28	M110	Y	.512	.512	0	0
29	M111	X	956	956	0	0
30	M111	Y	.956	.956	0	0
31	M116	X	909	909	0	0
32	M116	Y	.909	.909	0	0
33	M121	X	-1.696	-1.696	0	0
34	M121	Y	1.696	1.696	0	0
35	<u>M126</u>	X	122	122	0	0
36	<u>M126</u>	Y	.122	.122	0	0
37	<u>M129</u>	X	-1.621	-1.621	0	0
38	<u>M129</u>	Y	1.621	1.621	0	0
39	<u>M133</u>	X	-1.621	-1.621	0	0
40	<u>M133</u>	Y Y	1.621	1.621	0	0
41	<u>M137</u>	X	-3.025	-3.025	0	0
42	<u>M137</u>	Y Y	3.025	3.025	0	0
43	<u>M141</u>		-3.025	-3.025	0	0
44	M141	Y	3.025	3.025	0	0
45	M145	X	217	217	0	0
46	M145	Y	.217	.217	0	0
47	M149	X	217	217	0	0
48	M149	Y	.217	.217	0	0

Member Distributed Loads (BLC 14 : Structure Wind w/ Ice (45)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
49	M163	X	-1.818	-1.818	0	0
50	M163	Y	1.818	1.818	0	0
51	M189A	X	074	074	0	0
52	M189A	Y	.074	.074	0	0
53	M209	X	-1.032	-1.032	0	0
54	M209	Y	1.032	1.032	0	0
55	M245A	X	-1.032	-1.032	0	0
56	M245A	Y	1.032	1.032	0	0
57	M246A	X	-1.032	-1.032	0	0
58	M246A	Y	1.032	1.032	0	0
59	M279	X	074	074	0	0
60	M279	Y	.074	.074	0	0
61	M280	X	074	074	0	0
62	M280	Y	.074	.074	0	0
63	M261A	X	-1.818	-1.818	0	0
64	M261A	Y	1.818	1.818	0	0
65	M267A	X	-1.818	-1.818	0	0
66	M267A	Y	1.818	1.818	0	0
67	M273A	X	-1.818	-1.818	0	0
68	M273A	Y	1.818	1.818	0	0
69	M279A	X	-1.818	-1.818	0	0
70	M279A	Y	1.818	1.818	0	0
71	M288B	X	-1.818	-1.818	0	0
72	M288B	Y	1.818	1.818	0	0
73	M294A	X	-1.818	-1.818	0	0
74	M294A	Y	1.818	1.818	0	0
75	M300B	X	-1.818	-1.818	0	0
76	M300B	Y	1.818	1.818	0	0
77	M306B	X	-1.818	-1.818	0	0
78	M306B	Y	1.818	1.818	0	0
79	M315	X	-1.818	-1.818	0	0
80	M315	Y	1.818	1.818	0	0
81	M321	X	-1.818	-1.818	0	0
82	M321	Y	1.818	1.818	0	0
83	M327	X	-1.818	-1.818	0	0
84	M327	Y	1.818	1.818	0	0
85	KM5	X	753	753	0	0
86	KM5	Y	.753	.753	0	0
87	KM6	X	753	753	0	0
88	KM6	Y	.753	.753	0	0
89	KM11	X	519	519	0	0
90	KM11	Y	.519	.519	0	0
91	KM12	X	519	519	0	0
92	KM12	Y	.519	.519	0	0
93	KM17	X	988	988	0	0
94	KM17	Y	.988	.988	0	0
95	KM18	X	988	988	0	0
96	KM18	Y	.988	.988	0	0

Member Distributed Loads (BLC 15 : Structure Wind w/ Ice (60))

	Member Label	Direction	Start Magnitude[Ib/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
1	M51	Х	586	586	0	0
2	M51	Y	1.016	1.016	0	0
3	M60	Х	195	195	0	0
4	M60	Y	.339	.339	0	0
5	M63	Х	195	195	0	0

Member Distributed Loads (BLC 15 : Structure Wind w/ Ice (60)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
6	M63	Y	.339	.339	0	0
7	M69	X	399	399	0	0
8	M69	Y	.692	.692	0	0
9	M72	X	-1.597	-1.597	0	0
10	M72	Y	2.767	2.767	0	0
11	M75	Х	399	399	0	0
12	M75	Y	.692	.692	0	0
13	M92	Х	176	176	0	0
14	M92	Y	.305	.305	0	0
15	M94	Х	176	176	0	0
16	M94	Y	.305	.305	0	0
17	M98	X	705	705	0	0
18	M98	Y	1.221	1.221	0	0
19	M100	X	- 176	- 176	0	0
20	M100	Y	305	305	0	0
21	M104	X	- 176	- 176	0	0
22	M104	Y	305	305	0	0
23	M106	X	- 705	- 705	0	0
24	M106	V V	1 221	1 221	0	0
25	M100	X	_ 181	_ 181	0	0
26	M100	× ×	31/	31/	0	0
20	M110	Y	181	191	0	0
28	M110		101	101	0	0
20	M111	Y	_ 724	- 724	0	0
20	N111		1 254	1.254	0	0
31	M116	Y	_ 321	- 321	0	0
37	M116		521	521	0	0
32	N121	Y	1 286	1 286	0	0
34	N121		2 227	2 227	0	0
35	N126	Y	_ 321	- 321	0	0
36	M126		557	557	0	0
37	M120	X	- 573	- 573	0	0
38	M129		993	003	0	0
30	M133	X	- 573	- 573	0	0
40	M133		993	003	0	0
/1	M137	Y	_2 203	_2 203	0	0
12	M137	× v	3 971	3 071	0	0
13	M107	X	-2 203	_2 203	0	0
40	M1/1	× v	3 971	3 071	0	0
45	M145	X	- 573	- 573	0	0
46	M145	× ×	993	993	0	0
47	M149	X	- 573	- 573	0	0
48	M149	× ×	993	993	0	0
49	M163	X	-1 286	-1 286	0	0
50	M163	Y	2 227	2 227	0	0
51	M189A	X	-1.929e-14	-1 929e-14	0	0
52	M189A	Y	3 3410-14	3 341e-14	0	0
53	M209	X	- 586	- 586	0	0
54	M209	Y	1 016	1 016	0	0 0
55	M245A	X	- 782	- 782	0	0
56	M245A	Y	1 354	1 354	0	0 0
57	M246A	X	- 782	- 782	0	0
58	M246A	Y	1 354	1 354	0	0 0
59	M279	X	- 195	- 195	0	0
60	M279	Y	.339	339	0	0 0
61	M280	X	- 195	- 195	0	0 0
62	M280	Y	.339	339	Ő	Ő
	111200		1000		~	~

Member Distributed Loads (BLC 15 : Structure Wind w/ Ice (60)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
63	M261A	Х	-1.286	-1.286	0	0
64	M261A	Y	2.227	2.227	0	0
65	M267A	Х	-1.286	-1.286	0	0
66	M267A	Y	2.227	2.227	0	0
67	M273A	Х	-1.286	-1.286	0	0
68	M273A	Y	2.227	2.227	0	0
69	M279A	Х	-1.286	-1.286	0	0
70	M279A	Y	2.227	2.227	0	0
71	M288B	Х	-1.286	-1.286	0	0
72	M288B	Y	2.227	2.227	0	0
73	M294A	Х	-1.286	-1.286	0	0
74	M294A	Y	2.227	2.227	0	0
75	M300B	Х	-1.286	-1.286	0	0
76	M300B	Y	2.227	2.227	0	0
77	M306B	Х	-1.286	-1.286	0	0
78	M306B	Y	2.227	2.227	0	0
79	M315	Х	-1.286	-1.286	0	0
80	M315	Y	2.227	2.227	0	0
81	M321	Х	-1.286	-1.286	0	0
82	M321	Y	2.227	2.227	0	0
83	M327	Х	-1.286	-1.286	0	0
84	M327	Y	2.227	2.227	0	0
85	KM5	Х	628	628	0	0
86	KM5	Y	1.089	1.089	0	0
87	KM6	Х	628	628	0	0
88	KM6	Y	1.089	1.089	0	0
89	KM11	Х	341	341	0	0
90	KM11	Ý	.591	.591	0	0
91	KM12	Х	341	341	0	0
92	KM12	Y	.591	.591	0	0
93	KM17	Х	628	628	0	0
94	KM17	Y	1.089	1.089	0	0
95	KM18	X	628	628	0	0
96	KM18	Y	1.089	1.089	0	0

Member Distributed Loads (BLC 16 : Structure Wind w/ Ice (90))

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
1	M51	Х	-3.547e-7	-3.547e-7	0	0
2	M51	Y	1.564	1.564	0	0
3	M60	Х	-1.824e-20	-1.824e-20	0	0
4	M60	Y	8.043e-14	8.043e-14	0	0
5	M63	Х	-1.824e-20	-1.824e-20	0	0
6	M63	Y	8.043e-14	8.043e-14	0	0
7	M69	Х	-3.727e-20	-3.727e-20	0	0
8	M69	Y	1.643e-13	1.643e-13	0	0
9	M72	Х	-5.434e-7	-5.434e-7	0	0
10	M72	Y	2.396	2.396	0	0
11	M75	Х	-5.434e-7	-5.434e-7	0	0
12	M75	Y	2.396	2.396	0	0
13	M92	Х	-1.753e-20	-1.753e-20	0	0
14	M92	Y	7.728e-14	7.728e-14	0	0
15	M94	Х	-2.398e-7	-2.398e-7	0	0
16	M94	Y	1.057	1.057	0	0
17	M98	Х	-2.398e-7	-2.398e-7	0	0
18	M98	Y	1.057	1.057	0	0
19	M100	Х	-1.6e-17	-1.6e-17	0	0

Member Distributed Loads (BLC 16 : Structure Wind w/ Ice (90)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
20	M100	Y	7.054e-11	7.054e-11	0	0
21	M104	Х	-2.398e-7	-2.398e-7	0	0
22	M104	Y	1.057	1.057	0	0
23	M106	X	-2.398e-7	-2.398e-7	0	0
24	M106	Y	1.057	1.057	0	0
25	M109	Х	-2.464e-7	-2.464e-7	0	0
26	M109	Y	1.086	1.086	0	0
27	M110	X	-1.69e-20	-1.69e-20	0	0
28	M110	Ý	7.45e-14	7.45e-14	0	0
29	M111	X	-2.464e-7	-2.464e-7	0	0
30	M111	Y	1 086	1 086	0	0 0
31	M116	×	-3e-20	3e_20	0	0
32	M116	× V	1 323e-13	1 323e-13	0	0
33	M121	Y	-1 37/0-7		0	0
34	M121		1 929	1 020	0	0
35	M126	Y I	1.323	1.323	0	0
30	N126		1 020	1 020	0	0
27	<u>IVI120</u>	l l	5 2400 20	<u> </u>	0	0
20	<u>IVI129</u>		-5.3496-20		0	0
30	<u>IVI129</u>	l l	<u> </u>	<u> </u>	0	0
39	IVI 133		-5.3496-20	-5.3496-20	0	0
40	IVI133	Y Y	2.3596-13	<u>2.359e-13</u>	0	0
41	IVI137	<u> </u>	-7.8e-7	-7.8e-7	0	0
42	W137	Y Y	3.439	3.439	0	0
43	M141	X	-7.8e-7	<u>-/.8e-/</u>	0	0
44	<u>M141</u>	Y Y	3.439	3.439	0	0
45	<u>M145</u>	X	-/.8e-/	-/.8e-/	0	0
46	<u>M145</u>	Ŷ	3.439	3.439	0	0
47	<u>M149</u>	X	-7.8e-7	-7.8e-7	0	0
48	<u>M149</u>	Y	3.439	3.439	0	0
49	<u>M163</u>	X	-5.832e-7	<u>-5.832e-7</u>	0	0
50	<u>M163</u>	Y	2.571	2.571	0	0
51	<u>M189A</u>	X	-8.866e-8	<u>-8.866e-8</u>	0	0
52	<u>M189A</u>	Y	.391	.391	0	0
53	M209	X	-8.866e-8	<u>-8.866e-8</u>	0	0
54	M209	Y	.391	.391	0	0
55	M245A	X	-2.66e-7	-2.66e-7	0	0
56	M245A	Y	1.173	1.173	0	0
57	M246A	X	-2.66e-7	-2.66e-7	0	0
58	M246A	Y	1.173	1.173	0	0
59	M279	X	-2.66e-7	-2.66e-7	0	0
60	M279	Y	1.173	1.173	0	0
61	M280	X	-2.66e-7	-2.66e-7	0	0
62	M280	Y	1.173	1.173	0	0
63	M261A	X	-5.832e-7	-5.832e-7	0	0
64	M261A	Y	2.571	2.571	0	0
65	M267A	Х	-5.832e-7	-5.832e-7	0	0
66	M267A	Y	2.571	2.571	0	0
67	M273A	X	-5.832e-7	-5.832e-7	0	0
68	M273A	Y	2.571	2.571	0	0
69	M279A	X	-5.832e-7	-5.832e-7	0	0
70	M279A	Y	2.571	2.571	0	0
71	M288B	Х	-5.832e-7	-5.832e-7	0	0
72	M288B	Y	2.571	2.571	0	0
73	M294A	X	-5.832e-7	-5.832e-7	0	0
74	M294A	Y	2,571	2,571	0	0
75	M300B	X	-5.832e-7	-5.832e-7	0	0
76	M300B	Y	2,571	2,571	0	0
RIS/	A-3D Version 17.0.2	1\\\	Crown\806364\KHRAL	-7882 (MAR)\Mode	el\806364.r3d1	Page 86

Member Distributed Loads (BLC 16 : Structure Wind w/ Ice (90)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
77	M306B	Х	-5.832e-7	-5.832e-7	0	0
78	M306B	Y	2.571	2.571	0	0
79	M315	Х	-5.832e-7	-5.832e-7	0	0
80	M315	Y	2.571	2.571	0	0
81	M321	Х	-5.832e-7	-5.832e-7	0	0
82	M321	Y	2.571	2.571	0	0
83	M327	Х	-5.832e-7	-5.832e-7	0	0
84	M327	Y	2.571	2.571	0	0
85	KM5	Х	-3.285e-7	-3.285e-7	0	0
86	KM5	Y	1.448	1.448	0	0
87	KM6	Х	-3.285e-7	-3.285e-7	0	0
88	KM6	Y	1.448	1.448	0	0
89	KM11	Х	-1.982e-7	-1.982e-7	0	0
90	KM11	Y	.874	.874	0	0
91	KM12	Х	-1.982e-7	-1.982e-7	0	0
92	KM12	Y	.874	.874	0	0
93	KM17	Х	-1.982e-7	-1.982e-7	0	0
94	KM17	Ý	.874	.874	0	0
95	KM18	Х	-1.982e-7	-1.982e-7	0	0
96	KM18	Ý	.874	.874	0	0

Member Distributed Loads (BLC 17 : Structure Wind w/ Ice (120))

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
1	M51	Х	.586	.586	0	0
2	M51	Y	Y 1.016 1.016 0			
3	M60	Х	.195	.195	0	0
4	M60	Y	.339	.339	0	0
5	M63	Х	.195	.195	0	0
6	M63	Y	.339	.339	0	0
7	M69	Х	.399	.399	0	0
8	M69	Y	.692	.692	0	0
9	M72	Х	.399	.399	0	0
10	M72	Y	.692	.692	0	0
11	M75	Х	1.597	1.597	0	0
12	M75	Y	2.767	2.767	0	0
13	M92	Х	.176	.176	0	0
14	M92	Y	.305	.305	0	0
15	M94	Х	.705	.705	0	0
16	M94	Y	1.221	1.221	0	0
17	M98	Х	.176	.176	0	0
18	M98	Y	.305	.305	0	0
19	M100	Х	.176	.176	0	0
20	M100	Y	.305	.305	0	0
21	M104	Х	.705	.705	0	0
22	M104	Y	1.221	1.221	0	0
23	M106	Х	.176	.176	0	0
24	M106	Y	.305	.305	0	0
25	M109	Х	.724	.724	0	0
26	M109	Y	1.254	1.254	0	0
27	M110	Х	.181	.181	0	0
28	M110	Y	.314	.314	0	0
29	M111	Х	.181	.181	0	0
30	M111	Y	.314	.314	0	0
31	M116	Х	.321	.321	0	0
32	M116	Y	.557	.557	0	0
33	M121	Х	.321	.321	0	0

Member Distributed Loads (BLC 17 : Structure Wind w/ Ice (120)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
34	<u>M121</u>	Y Y	.557	.557	0	0
35	<u>M126</u>	X	1.286	1.286	0	0
36	<u>M126</u>	Ŷ	2.227	2.227	0	0
37	M129	X	.573	.573	0	0
38	M129	Y	.993	.993	0	0
39	M133	X	.573	.573	0	0
40	M133	Y	.993	.993	0	0
41	M137	X	.573	.573	0	0
42	M137	Y	.993	.993	0	0
43	M141	X	.573	.573	0	0
44	M141	Y	.993	.993	0	0
45	M145	X	2.293	2.293	0	0
46	M145	Y	3.971	3.971	0	0
47	M149	Х	2.293	2.293	0	0
48	M149	Y	3.971	3.971	0	0
49	M163	X	1.286	1.286	0	0
50	M163	Y	2.227	2.227	0	0
51	M189A	Х	.586	.586	0	0
52	M189A	Y	1.016	1.016	0	0
53	M209	Х	7.43e-14	7.43e-14	0	0
54	M209	Y	1.287e-13	1.287e-13	0	0
55	M245A	Х	.195	.195	0	0
56	M245A	Ý	.339	.339	0	0
57	M246A	Х	.195	.195	0	0
58	M246A	Y	.339	.339	0	0
59	M279	X	.782	.782	0	0
60	M279	Y	1.354	1.354	0	0
61	M280	X	782	782	0	0
62	M280	Y	1.354	1.354	Ő	Ő
63	M261A	X	1 286	1 286	Ő	Ő
64	M261A	Y	2 227	2 227	Ő	Ő
65	M267A	X	1 286	1 286	Ő	Ő
66	M267A	Y	2 227	2 227	Ő	0
67	M273A	X	1 286	1 286	0	0
68	M273A	Y	2 227	2 227	0	0
69	M279A	X	1 286	1 286	0	0
70	M279A	Y	2 227	2 227	0 0	0
71	M288B	X	1 286	1 286	0	0
72	M288B	Y	2 227	2 227	0	0 0
73	M294A	X	1 286	1 286	0	0
74	M294A	Y	2.227	2.227	0 0	0 0
75	M300B	x	1.286	1.286	0	0
76	M300B	Y	2.227	2.227	Ő	Ő
77	M306B	X	1.286	1.286	0	Ő
78	M306B	Y	2.227	2.227	Ő	Ő
79	M315	X	1.286	1.286	0	Ő
80	M315	Y	2.227	2.227	0 0	0 0
81	M321	X	1.286	1.286	0	0
82	M321	Y	2.227	2.227	0 0	0
83	M327	X	1.286	1.286	0	0
84	M327	Y	2.227	2.227	0	0
85	KM5	X	.628	.628	0	0
86	KM5	Y	1 089	1 089	0 0	0 0
87	KM6	x	628	628	0	0
88	KM6	Y	1 089	1 089	0	0
89	KM11	X	628	628	0	0
90	KM11	Y	1 089	1 089	0	0
- 50			1.003	1.003	J	0

Member Distributed Loads (BLC 17 : Structure Wind w/ Ice (120)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
91	KM12	X	.628	.628	0	0
92	KM12	Y	1.089	1.089	0	0
93	KM17	X	.341	.341	0	0
94	KM17	Y	.591	.591	0	0
95	KM18	X	.341	.341	0	0
96	KM18	Y	.591	.591	0	0

Member Distributed Loads (BLC 18 : Structure Wind w/ Ice (135))

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
1	M51	X	.553	.553	0	0
2	M51	Y	.553	.553	0	0
3	M60	X	.553	.553	0	0
4	M60	Y	.553	.553	0	0
5	M63	Х	.553	.553	0	0
6	M63	Y	.553	.553	0	0
7	M69	Х	1.129	1.129	0	0
8	M69	Y	1.129	1.129	0	0
9	M72	Х	.151	.151	0	0
10	M72	Y	.151	.151	0	0
11	M75	X	2,108	2.108	0	0
12	M75	Ý	2.108	2.108	0	0
13	M92	X	.498	.498	0	0
14	M92	Y	498	498	0	0
15	M94	X	93	93	0	0
16	M94	Ý	93	93	Ő	0
17	M98	X	067	067	<u> </u>	0
18	M98	Y	067	067	0	0
19	M100	X	498	498	0	0
20	M100	Y	498	498	0	0
21	M104	X	93	93	0	0
22	M104	Y Y	93	93	0	0
23	M106	X	067	067	0	0
24	M106	× v	067	067	0	0
25	M109	X	956	956	0	0
26	M109	× v	956	956	0	0
20	M110	X	512	512	0	0
28	M110		512	512	0	0
20	M111	Y	069	069	0	0
30	M111		069	069	0	0
31	M116	Y	909	000	0	0
32	M116		909	000	0	0
32	N121	V I	122	122	0	0
34	N121		122	122	0	0
35	N126	Y	1 696	1 606	0	0
36	M120		1.090	1.090	0	0
37	M120	V	1.090	1.090	0	0
30	M120		1.021	1.021	0	0
20	<u>IVI129</u>	v I	1.021	1.021	0	0
40	M122		1.021	1.021	0	0
40	M127		017	217	0	0
41	M127	× ×	.217	.217	0	0
42	M141		.217	.217	0	0
43	<u>IVI 14 1</u>		.217	.217	0	0
44	N1141	T V	.217	.217	0	0
40	IVI 140		3.025	3.025	0	0
40	M140	r V	3.025	3.025	0	0
41	IVI 149	<u> </u>	3.025	3.025	UU	U

Member Distributed Loads (BLC 18 : Structure Wind w/ Ice (135)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
48	M149	Y	3.025	3.025	0	0
49	M163	X	1.818	1.818	0	0
50	M163	Y	1.818	1.818	0	0
51	M189A	Х	1.032	1.032	0	0
52	M189A	Y	1.032	1.032	0	0
53	M209	X	.074	.074	0	0
54	M209	Y	.074	.074	0	0
55	M245A	X	074	074	0	0
56	M245A	Y	074	074	0	0
57	M246A	×	074	074	0	0
58	M246A	Y Y	074	074	0	0
59	M279	X	1 032	1 032	0	0
60	M279		1.032	1.032	0	0
61	M280	V V	1.032	1.032	0	0
62	M280		1.032	1.032	0	0
62	M261A		1 010	1 010	0	0
64	N261A		1.010	1 010	0	0
65	<u>M267A</u>	T T	1.010	1.010	0	0
60	<u>IVI207A</u>		1.010	1.010	0	0
00	NI207A	Ý V	1.010	1.010	0	0
67	M273A	X	1.818	1.818	0	0
68	M273A	Y Y	1.818	1.818	0	0
69	<u>M279A</u>	X	1.818	1.818	0	0
70	<u>M279A</u>	Ŷ	1.818	1.818	0	0
/1	<u>M288B</u>	X	1.818	1.818	0	0
72	<u>M288B</u>	Y	1.818	1.818	0	0
73	<u>M294A</u>	X	1.818	1.818	0	0
74	M294A	Y	1.818	1.818	0	0
75	M300B	X	1.818	1.818	0	0
76	M300B	Y	1.818	1.818	0	0
77	M306B	X	1.818	1.818	0	0
78	M306B	Y	1.818	1.818	0	0
79	<u>M315</u>	Х	1.818	1.818	0	0
80	M315	Y	1.818	1.818	0	0
81	M321	X	1.818	1.818	0	0
82	M321	Y	1.818	1.818	0	0
83	M327	X	1.818	1.818	0	0
84	M327	Y	1.818	1.818	0	0
85	KM5	X	.753	.753	0	0
86	KM5	Y	.753	.753	0	0
87	KM6	X	.753	.753	0	0
88	KM6	Y	.753	.753	0	0
89	KM11	X	.988	.988	0	0
90	KM11	Y	.988	.988	0	0
91	KM12	X	.988	.988	0	0
92	KM12	Y	.988	.988	0	0
93	KM17	X	519	519	0	0
94	KM17	Ý	.519	519	0 0	0
95	KM18	X	519	519	0 0	0
96	KM18	Ý	.519	.519	Ő	0

Member Distributed Loads (BLC 19 : Structure Wind w/ Ice (150))

	Member Label	Direction	Start Magnitude[Ib/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
1	M51	Х	.339	.339	0	0
2	M51	Y	.195	.195	0	0
3	M60	Х	1.016	1.016	0	0
4	M60	Y	.586	.586	0	0

<u>Member Distributed Loads (BLC 19 : Structure Wind w/ Ice (150)) (Continued)</u>

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
5	M63	X	1.016	1.016	0	0
6	M63	Ŷ	.586	.586	0	0
1	<u>M69</u>	X	2.075	2.075	0	0
8	M69	Y	1.198	1.198	0	0
9	M72	X	<u>3.953e-13</u>	<u>3.953e-13</u>	0	0
10	M72	Y	2.282e-13	2.282e-13	0	0
11	M75	X	2.075	2.075	0	0
12	M75	Y	1.198	1.198	0	0
13	M92	X	.916	.916	0	0
14	M92	Y	.529	.529	0	0
15	M94	X	.916	.916	0	0
16	M94	Y	.529	.529	0	0
17	M98	X	1.813e-13	1.813e-13	0	0
18	M98	Y	1.047e-13	1.047e-13	0	0
19	M100	Х	.916	.916	0	0
20	M100	Y	.529	529	0	0
21	M104	X	.916	.916	0	0
22	M104	Ý	.529	529	Ő	0 0
23	M106	X	6.373e-11	6.373e-11	0	0 0
24	M106	Ý	3 68e-11	3 68e-11	0	n N
25	M109	×	941	941	0	0
26	M109	V V	543	543	0	0
27	M103	X	941	941	0	0
28	M110		543	5/3	0	0
20	M111	Y	1 7020-13	1 7020-13	0	0
20	M111		1.0350-13	1.0350-13	0	0
30	M116	Y I	1.0356-13	1.000-10	0	0
22	N116		064	064	0	0
22	N121			.904	0	0
24				1 0270 12	0	0
25	N126		1.0376-13	1.0376-13	0	0
26	N126		064	064	0	0
27	<u>IVI120</u>	V I	2.079	2.079	0	0
20	N120		2.970	2.970	0	0
30	<u>IVI129</u>	Ť V	2.079	2.079	0	0
39	IVI 133		2.970	2.970	0	0
40	IVI 133	ř V	<u> </u>	<u> </u>	0	0
41	IVI 137	X	5.6746-13	<u>5.674e-13</u>	0	0
42	N137	Y Y	3.276e-13	3.276e-13	0	0
43	M141	X	5.674e-13	<u>5.674e-13</u>	0	0
44	N1141	Y Y	3.2766-13	<u>3.2/6e-13</u>	0	0
45	IVI145	X	2.978	2.978	0	0
46	M145	Ý	1./2	1./2	0	0
4/	M149	X	2.978	2.9/8	0	0
48	M149	Y	1./2	1./2	0	0
49	M163	X	2.227	2.227	0	0
50	M163	Y	1.286	1.286	0	0
51	M189A	X	1.354	1.354	0	0
52	M189A	Y	.782	.782	0	0
53	M209	X	.339	.339	0	0
54	M209	Y	.195	.195	0	0
55	M245A	X	<u>1.935e-13</u>	<u>1.935e-13</u>	0	0
56	M245A	Y	1.117e-13	<u>1.117e-13</u>	0	0
57	M246A	X	1.935e-13	1.935e-13	0	0
58	M246A	Y	1.117e-13	<u>1 117e-13</u>	0	0
59	M279	X	1.016	1.016	0	0
60	M279	Y	.586	.586	0	0
61	M280	<u> X </u>	1.016	1.016	0	0

Member Distributed Loads (BLC 19 : Structure Wind w/ Ice (150)) (Continued)

_	Member Label	Direction	Start Magnitude[Ib/ft,F,psf]	End Magnitude[lb/f	Start Location[in,%]	End Location[in,%]
62	M280	Y	.586	.586	0	0
63	M261A	X	2.227	2.227	0	0
64	M261A	Y	1.286	1.286	0	0
65	M267A	X	2.227	2.227	0	0
66	M267A	Y	1.286	1.286	0	0
67	M273A	Х	2.227	2.227	0	0
68	M273A	Y	1.286	1.286	0	0
69	M279A	X	2.227	2.227	0	0
70	M279A	Y	1.286	1.286	0	0
71	M288B	X	2.227	2.227	0	0
72	M288B	Y	1.286	1.286	0	0
73	M294A	Х	2.227	2.227	0	0
74	M294A	Y	1.286	1.286	0	0
75	M300B	X	2.227	2.227	0	0
76	M300B	Y	1.286	1.286	0	0
77	M306B	Х	2.227	2.227	0	0
78	M306B	Y	1.286	1.286	0	0
79	M315	Х	2.227	2.227	0	0
80	M315	Y	1.286	1.286	0	0
81	M321	Х	2.227	2.227	0	0
82	M321	Y	1.286	1.286	0	0
83	M327	Х	2.227	2.227	0	0
84	M327	Y	1.286	1.286	0	0
85	KM5	Х	.757	.757	0	0
86	KM5	Y	.437	.437	0	0
87	KM6	Х	.757	.757	0	0
88	KM6	Y	.437	.437	0	0
89	KM11	Х	1.254	1.254	0	0
90	KM11	Y	.724	.724	0	0
91	KM12	Х	1.254	1.254	0	0
92	KM12	Y	.724	.724	0	0
93	KM17	Х	.757	.757	0	0
94	KM17	Y	.437	.437	0	0
95	KM18	Х	.757	.757	0	0
96	KM18	Y	437	437	0	0

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot [k-ft/rad]	Y Rot [k-ft/rad]	Z Rot.[k-ft/rad]
1	N35	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N61	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N88	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
4	KN5	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
5	KN13	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
6	KN21	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
7	N1402						
8	BRC						
9	N1392						
10	GRC						
11	N1394						
12	ARC						

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [I b]	LC	Z [I b]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N35	max	1115,761	3	3003.039	14	780.378	28	-94.998	11	163.833	18	1861.522	18
2		min	-1755.821	11	-1884.086	6	213.939	92	-917.661	28	-977.551	74	-1863.445	10
3	N61	max	1088.782	16	1820.254	16	654.928	31	856.666	20	259.697	5	1832.046	12
4		min	-1736.318	8	-2931.829	8	250.421	7	212.932	12	-906.301	61	-1833.854	4
5	N88	max	3404.56	3	1004.64	15	644.241	25	470.44	7	921.093	25	1830.063	7
6		min	-2119.078	11	-1009.207	7	221.144	1	-529.602	15	343.151	81	-1832.01	15
7	KN5	max	-409.303	11	89.716	15	2200.111	19	52.925	7	618.781	19	80.828	7
8		min	-2256.941	19	-89.728	7	371.224	11	-58.927	15	104.407	11	-87.096	15
9	KN13	max	1131.202	30	-352.86	6	2205.44	30	-88.043	6	-55.352	6	81.047	18
10		min	203.795	6	-1959.517	30	369.506	6	-534.984	30	-313.942	30	-87.307	10
11	KN21	max	1128.916	24	1955.128	24	2200.779	24	538.227	24	-48.909	16	80.867	12
12		min	204.745	16	354.751	16	371.5	16	92.411	16	-305.702	24	-87.092	4
13	Totals:	max	4545.338	3	4545.203	15	8087.996	23						
14		min	-4545.335	11	-4545.172	7	3370.164	1						

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[. LC	Shear C	. Lo	LC	phi*	phi* p	ohi*M	.phi*	Eqn
1	M288B	PIPE 2.0	.315	68.2	. 8	.083	68	18	1491.	. 32130 1	871	1871	H1
2	M315	PIPE_2.0	.315	68.2	. 14	.083	68	7	1491.	. 32130 1	871	.1871	H1
3	M261A	PIPE 2.0	.315	68.2	. 3	.083	68	12	1491.	. 32130 1	871	1871	H1
4	M321	PIPE 2.0	.310	68.2	. 16	.070	68	4	1491.	. 32130 1	871	1871	H1
5	M294A	PIPE 2.0	.310	68.2	. 11	.070	68	15	1491.	. 32130 1	871	1871	H1
6	M267A	PIPE 2.0	.310	68.2	. 6	.070	68	10	1491.	. 32130 1	871	.1871	H1
7	KM18	L2 5x2 5x3	.298	40.8	. 5	.007	0 y	4	7075.	. 29198	372.5	1518	H2 - 1
8	KM12	L2.5x2.5x3	.288	40.8	. 27	.007	81y	10	7075.	. 29198	372.5	.1518	H2 - 1
9	KM6	L2.5x2.5x3	.288	40.8	. 32	.007	0 y	15	7075.	. 29198	372.5	.1518	H2 - 1
10	KM11	L2.5x2.5x3	.276	40.8	. 17	.007	0 z	10	7075.	. 29198	372.5	.1518	H2 - 1
11	KM17	L2.5x2.5x3	.273	40.8	. 12	.007	81Z	4	7075.	. 29198	372.5	1518	H2-1
12	KM5	L2.5x2.5x3	.273	40.8	. 7	.007	0 z	15	7075.	. 29198	372.5	1518	H2 - 1
13	M273A	PIPE 2.0	.205	68.2	. 6	.085	60	4	1491.	. 32130 1	871	1871	H1
14	M327	PIPE 2.0	.205	68.2	. 16	.085	60	15	1491.	. 32130 1	871	1871	H1
15	M300B	PIPE 2.0	.205	68.2	. 11	.085	60	10	1491.	. 32130 1	871	1871	H1
16	M189A	HSS4X4X4	.197	0	18	.095	77y	11	9285.	. 1061 1	231	1231	H1
17	M209	HSS4X4X4	.194	0	12	.097	77y	5	9285.	. 1061 1	231	1231	H1
18	M51	HSS4X4X4	.193	0	7	.095	77y	16	9285.	. 1061. 1	231	1231	H1
19	M110	L2 5x2 5x4	.181	0	17	.053	0 z	7	3569.	. 37485 1	082	2466	H2-1
20	M306B	PIPE 2.0	.181	68.2	. 17	.086	68	7	1491.	. 32130 1	871	1871	H1
21	M279A	PIPE 2.0	.177	68.2	. 12	.089	68	17	1491.	. 32130 1	871	1871	H1
22	M163	PIPE 2.0	.177	68.2	. 7	.086	68	12	1491.	. 32130 1	871	1871	H1
23	M126	PIPE 2.0	.176	160	. 3	.133	16	18	4678.	. 32130 1	871	.1871	H1
24	M116	PIPE_2.0	.176	160	. 14	.133	16	12	4678.	. 32130 1	871	.1871	H1
25	M121	PIPE 2.0	.176	160	. 8	.133	16	7	4678.	. 32130 1	871	1871	H1
26	M111	L2.5x2.5x4	.170	0	12	.053	0 z	18	3569.	. 37485 1	082	2466	H2 - 1
27	M109	L2.5x2.5x4	.169	0	7	.053	0 z	12	3569.	. 37485 1	082	2466	H2 - 1
28	M245A	HSS4X4X4	.126	30.4	. 76	.066	3 Z	3	1040.	. 10611	231	1231	H1
29	M280	HSS4X4X4	.126	0	58	.067	27 <u>z</u>	3	1040.	. 10611	231	1231	H1
30	M69	PIPE 3.0	.119	13.7	. 14	.121	59	11	2126.	. 65205 5	5748	5748	H1
31	M75	PIPE 3.0	.119	13.7	. 3	.121	59	16	2126.	. 65205 5	5748	5748	H1
32	M72	PIPE 3.0	.119	13.7	. 8	.122	59	6	2126.	. 65205 5	5748	.5748	H1
33	M63	HSS4X4X4	.118	0	20	.067	27Z	14	1040.	. 1061. 1	231	1231	H1
34	M246A	HSS4X4X4	.118	0	31	.067	27Z	8	1040.	. 1061 1	231	1231	H1
35	M60	HSS4X4X4	.115	30.4	. 34	.066	3 Z	9	1040.	. 1061 1	231	1231	H1
36	M279	HSS4X4X4	.115	30.4	23	.066	3 Z	14	1040.	. 10611	231	1231	<mark>H1-</mark>
37	M100	L2x2x3	.113	50.5	. 21	.007	50Z	21	9585.	. 22743 5	<u>542.2</u>	1204	H2-1

Envelope AISC 14th(360-10): LRFD Steel Code Checks (Continued)

	Member	Shape	Code Check	Loc[. LC	Shear C	. Lo	LC	; phi*	phi*	phi*M	.phi*	Eqn
38	M106	L2x2x3	.113	50.5	. 32	.007	50	z 32	9585	22743	542.2	1204	H2-1
39	M94	L2x2x3	.113	50.5	. 27	.007	50	z 27	9585	22743	542.2	1204	H2 - 1
40	M104	L2x2x3	.112	0	17	.006	0	z 8	9585	22743	542.2	1204	H2 - 1
41	M92	L2x2x3	.104	0	12	.006	0	z 3	9585	22743	542.2	1199	H2-1
42	M98	L2x2x3	.104	0	7	.006	0	z 14	9585	22743	542.2	1199	H2-1

Envelope Plate/Shell Principal Stresses

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Plate		Surf	<u>. Sigma1 [ksi]</u>	LC	Sigma2 [ksi]	LC	Tau Max [ksi]	LC	Angle [rad]	LC	Von Mises [ksi]	LC
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	P798	max	Т	22.208	6	5.037	6	8.586	6	1.846	12	20.167	6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2		min		-3.891	14	-19.55	14	.183	91	.146	18	.45	92
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3		max	В	15.17	14	4.242	14	6.641	6	2.126	94	16.655	6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4		min		-5.403	6	-18.685	6	.118	29	699	31	.285	30
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5	P726	max	Т	22.202	11	5.033	11	8.584	11	1.974	76	20.162	11
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6		min		-3.887	3	-19.544	3	.245	35	.145	7	.798	35
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7		max	В	15.16	3	4.239	3	6.638	11	2.098	21	16.646	11
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8		min		-5.4	11	-18.675	11	.152	19	701	20	.285	19
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	P655	max	Т	22.202	16	5.037	16	8.583	16	1.846	7	20.161	16
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10		min		-3.893	8	-19.571	9	.067	70	.146	12	.166	75
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	11		max	В	15.178	8	4.245	8	6.641	16	2.323	89	16.654	16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12		min		-5.404	16	-18.685	16	.043	71	689	26	.075	71
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	P828	max	Т	19.015	14	4.099	14	8.241	6	1.295	4	19.466	6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14		min		-4.994	6	-21.476	6	.075	95	304	15	.261	95
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	15		max	В	18.148	6	5.295	6	6.427	6	2.276	44	16.165	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16		min		-4.397	14	-15.279	14	.12	18	729	47	.234	18
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	P756	max	Т	19.004	3	4.095	3	8.239	11	1.296	10	19.459	11
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18		min		-4.99	11	-21.468	11	.147	21	443	75	.368	7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19		max	В	18.138	11	5.292	11	6.423	11	2.18	34	16.155	11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20		min		-4.393	3	-15.266	3	.12	7	509	33	.236	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	P685	max	Т	19.019	8	4.101	8	8.237	16	1.441	75	19.458	16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22		min		-4.993	16	-21.468	16	.037	42	504	58	.07	58
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23		max	В	18.145	16	5.294	16	6.425	16	2.156	23	16.162	16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24		min		-4.4	8	-15.286	8	.031	74	625	40	.072	55
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	25	P661	max	Т	19.386	17	5.353	16	7.028	17	1.885	55	17.346	17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26		min		-4.464	8	-16.848	9	.011	70	.197	12	.059	75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27		max	В	14.349	9	4.313	8	6.591	17	2.237	74	16.452	17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28		min		-5.324	16	-18.438	17	.015	72	688	72	.084	74
30 min -4.462 14 -16.631 14 .067 46 .196 18 .159 93 31 max B 14.261 14 4.31 14 6.553 6 1.934 4 16.428 6 32 min -5.323 6 -18.43 6 .374 94 .33 16 .827 30 33 P732 max T 19.257 11 5.351 11 6.953 11 2.086 75 17.217 11 34 min -4.459 3 -16.625 3 .162 34 .195 7 .281 34 35 max B 14.249 3 4.307 3 6.549 11 1.936 9 16.417 11 36 min -5.32 11 -18.417 11 .186 75 127 75 .584 75 37 P822 <td>29</td> <td>P804</td> <td>max</td> <td>Т</td> <td>19.263</td> <td>6</td> <td>5.353</td> <td>6</td> <td>6.955</td> <td>6</td> <td>1.867</td> <td>12</td> <td>17.222</td> <td>6</td>	29	P804	max	Т	19.263	6	5.353	6	6.955	6	1.867	12	17.222	6
31 max B 14.261 14 4.31 14 6.553 6 1.934 4 16.428 6 32 min -5.323 6 -18.43 6 .374 94 .33 16 .827 30 33 P732 max T 19.257 11 5.351 11 6.953 11 2.086 75 17.217 11 34 min -4.459 3 -16.625 3 .162 34 .195 7 .281 34 35 max B 14.249 3 4.307 3 6.549 11 1.936 9 16.417 11 36 min -5.32 11 -18.417 11 .186 75 127 75 .584 75 37 P822 max T 15.646 13 3.484 14 6.839 6 1.275 1 16.167 6	30		min		-4.462	14	-16.631	14	.067	46	.196	18	.159	93
32 min -5.323 6 -18.43 6 .374 94 .33 16 .827 30 33 P732 max T 19.257 11 5.351 11 6.953 11 2.086 75 17.217 11 34 min -4.459 3 -16.625 3 .162 34 .195 7 .281 34 35 max B 14.249 3 4.307 3 6.549 11 1.936 9 16.417 11 36 min -5.32 11 -18.417 11 .186 75 127 75 .584 75 37 P822 max T 15.646 13 3.484 14 6.839 6 1.275 1 16.167 6 38 min -4.163 6 -17.842 6 .033 94 344 16 .102 94 39 <td>31</td> <td></td> <td>max</td> <td>В</td> <td>14.261</td> <td>14</td> <td>4.31</td> <td>14</td> <td>6.553</td> <td>6</td> <td>1.934</td> <td>4</td> <td>16.428</td> <td>6</td>	31		max	В	14.261	14	4.31	14	6.553	6	1.934	4	16.428	6
33 P732 max T 19.257 11 5.351 11 6.953 11 2.086 75 17.217 11 34 min -4.459 3 -16.625 3 .162 34 .195 7 .281 34 35 max B 14.249 3 4.307 3 6.549 11 1.936 9 16.417 11 36 min -5.32 11 -18.417 11 .186 75 127 75 .584 75 37 P822 max T 15.646 13 3.484 14 6.839 6 1.275 1 16.167 6 38 min -4.163 6 -17.842 6 .033 94 344 16 .102 94 39 max B 17.536 6 4.177 6 6.679 6 1.56 18 15.866 6 <t< td=""><td>32</td><td></td><td>min</td><td></td><td>-5.323</td><td>6</td><td>-18.43</td><td>6</td><td>.374</td><td>94</td><td>.33</td><td>16</td><td>.827</td><td>30</td></t<>	32		min		-5.323	6	-18.43	6	.374	94	.33	16	.827	30
34 min -4.459 3 -16.625 3 .162 34 .195 7 .281 34 35 max B 14.249 3 4.307 3 6.549 11 1.936 9 16.417 11 36 min -5.32 11 -18.417 11 .186 75 127 75 .584 75 37 P822 max T 15.646 13 3.484 14 6.839 6 1.275 1 16.167 6 38 min -4.163 6 -17.842 6 .033 94 344 16 .102 94 39 max B 17.536 6 4.177 6 6.679 6 1.56 18 15.866 6 40 min -3.558 14 -14.431 14 .086 30 565 45 .15 30	33	P732	max	Т	19.257	11	5.351	11	6.953	11	2.086	75	17.217	11
35 max B 14.249 3 4.307 3 6.549 11 1.936 9 16.417 11 36 min -5.32 11 -18.417 11 .186 75 127 75 .584 75 37 P822 max T 15.646 13 3.484 14 6.839 6 1.275 1 16.167 6 38 min -4.163 6 -17.842 6 .033 94 344 16 .102 94 39 max B 17.536 6 4.177 6 6.679 6 1.56 18 15.866 6 40 min -3.558 14 -14.431 14 .086 30 565 45 .15 30	34		min		-4.459	3	-16.625	3	.162	34	.195	7	.281	34
36 min -5.32 11 -18.417 11 .186 75 127 75 .584 75 37 P822 max T 15.646 13 3.484 14 6.839 6 1.275 1 16.167 6 38 min -4.163 6 -17.842 6 .033 94 344 16 .102 94 39 max B 17.536 6 4.177 6 6.679 6 1.56 18 15.866 6 40 min -3.558 14 -14.431 14 .086 30 565 45 .15 30	35		max	В	14.249	3	4.307	3	6.549	11	1.936	9	16.417	11
37 P822 max T 15.646 13 3.484 14 6.839 6 1.275 1 16.167 6 38 min -4.163 6 -17.842 6 .033 94 344 16 .102 94 39 max B 17.536 6 4.177 6 6.679 6 1.56 18 15.866 6 40 min -3.558 14 -14.431 14 .086 30 565 45 .15 30	36		min		-5.32	11	-18.417	11	.186	75	127	75	.584	75
38 min -4.163 6 -17.842 6 .033 94 344 16 .102 94 39 max B 17.536 6 4.177 6 6.679 6 1.56 18 15.866 6 40 min -3.558 14 -14.431 14 .086 30 565 45 .15 30	37	P822	max	Т	15.646	13	3.484	14	6.839	6	1.275	1	16.167	6
39 max B 17.536 6 4.177 6 6.679 6 1.56 18 15.866 6 40 min -3.558 14 -14.431 14 .086 30 565 45 .15 30	38		min		-4.163	6	-17.842	6	.033	94	344	16	.102	94
40 min -3.558 14 -14.431 14 .086 30565 45 .15 30	39		max	В	17.536	6	4.177	6	6.679	6	1.56	18	15.866	6
	40		min		-3.558	14	-14.431	14	.086	30	565	45	.15	30
41 P679 max T 15.634 8 3.485 8 6.837 16 2.24 58 16.161 16	41	P679	max	Т	15.634	8	3.485	8	6.837	16	2.24	58	16.161	16
42 min -4.161 16 -17.835 16 .015 39688 41 .094 41	42		min		-4.161	16	-17.835	16	.015	39	688	41	.094	41
43 max B 17.534 16 4.176 16 6.679 16 2.319 74 15.864 16	43		max	В	17.534	16	4.176	16	6.679	16	2.319	74	15.864	16
44 min -3.56 8 -14.439 8 .022 74707 55 .06 74	44		min		-3.56	8	-14.439	8	.022	74	707	55	.06	74
45 P750 max T 15.619 3 3.481 3 6.837 11 1.277 9 16.16 11	45	P750	max	Т	15.619	3	3.481	3	6.837	11	1.277	9	16.16	11
46 min -4.16 11 -17.834 11 .099 20501 75 .199 20	46		min		-4.16	11	-17.834	11	.099	20	501	75	.199	20
47 max B 17.525 11 4.175 11 6.675 11 1.641 75 15.855 11	47		max	В	17.525	11	4.175	11	6.675	11	1.641	75	15.855	11

APPENDIX D

ADDITIONAL CALCUATIONS

CCI Mount Analysis Square Plate Connection 1.0.1

		-
Location:	А	Selec
		-
SITE DA	TA	
BU Number:	806364	
Site Name:	HRT 106(B) 943202	
Order Number:	517085	

BOLT DATA						
Quantity:	4					
Diameter:	0.625	in				
Material:	A325	Selec				
Fy:	92	ksi				
Fu:	120	ksi				
Bolt Spacing:	6	in				

PLATE DATA						
Width:	8	in				
Thickness:	0.75	in				
Fy:	36	ksi				

SUPPORT ARM DATA						
Туре:	HSST	Select				
Diameter/Width:	4	in				
Thickness	0.25	in				
Fy:	35	ksi				
Number of Sides:	4					

TIA Revision:	TIA-222-H	Select				
Normalizing to 100	% per TIA-222-H Section 15.5	1				
REACTIO	ONS	1				
Moment:	1.860	kip-ft				
Axial:	0.710	kips				
Shear:	1.040	kips				
		-				
Load Combination	10					
		_				
BOLT RES	ULTS					
Max Bolt (Cu+ Vu/η):	2.81	kips				
Axial Design Strength:	21.70	kips				
Stress Ratio	12.33%					
		_				
PLATE RESULTS						
Base Plate Stress:	6.12	ksi				
Bending Strength:	32.40	ksi				

Controlling Load Combination	10

Exhibit F

Power Density/RF Emissions Report

RF EMISSIONS COMPLIANCE REPORT

Crown Castle on behalf of AT&T Mobility, LLC

BU: 806364 Site: HRT 106(B) 943202 Order ID: 517085 143 R Old Blue Hill Road Durham, CT 6/11/2020

Report Status:

AT&T Mobility, LLC is Compliant

Michael Fischer, P.E. Registered Professional Engineer (Electrical) Connecticut License Number 33928 Expires January 31, 2021

Signed 12 June 2020

Prepared By:

Site Safe, LLC

Vienna, VA 22182

Engineering Statement in Re: Electromagnetic Energy Analysis AT&T Mobility, LLC Durham, CT

My signature on the cover of this document indicates:

That I am registered as a Professional Engineer in the jurisdiction indicated; and

That I have extensive professional experience in the wireless communications engineering industry; and

That I am an employee of Site Safe, LLC in Vienna, Virginia; and

That I am thoroughly familiar with the Rules and Regulations of the Federal Communications Commission ("the FCC" and "the FCC Rules") both in general and specifically as they apply to the FCC's Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields; and

That the technical information serving as the basis for this report was supplied by Crown Castle on behalf of AT&T Mobility, LLC (see attached Site Summary and Carrier documents) and that AT&T Mobility, LLC's installation involves communications equipment, antennas and associated technical equipment at a location referred to as "HRT 106(B) 943202" ("the site"); and

That AT&T Mobility, LLC proposes to operate at the site with transmit antennas listed in the carrier summary and with a maximum effective radiated power as specified by AT&T Mobility, LLC and shown on the worksheet and that worst-case 100% duty cycle has been assumed; and

That in addition to the emitters specified in the worksheet, there are additional collocated pointto-point microwave facilities on this structure, and the antennas used are highly directional and oriented at angles at or just below the horizontal, and that the energy present at ground level is typically so low as to be considered insignificant and has not been included in this analysis (a list of microwave antennas is included); and

That this analysis has been performed with the assumption that the ground immediately surrounding the tower is primarily flat or falling; and

That at this time, the FCC requires that certain licensees address specific levels of radio frequency energy to which workers or members of the public might possibly be exposed (at §1.1307(b) of the FCC Rules); and

That such consideration of possible exposure of humans to radio frequency energy must utilize the standards set by the FCC, which is the federal agency having jurisdiction over communications facilities; and

That the FCC rules define two tiers of permissible exposure guidelines: 1) "uncontrolled environments," which defines situations in which persons may not be aware of (the "general public"), or may not be able to control their exposure to a transmission facility; and 2) "controlled environments," which defines situations in which persons are aware of their potential for exposure (industry personnel); and That this statement specifically addresses the uncontrolled environment (which is more conservative than the controlled environment) and the limit set forth in the FCC rules for licensees of AT&T Mobility, LLC's operating frequencies as shown on the attached antenna worksheet; and

That when applying the uncontrolled environment standards, the predicted Maximum Power Density at two meters above ground level from the proposed AT&T Mobility, LLC operation is no more than 1.221% of the maximum permissible exposure limits in any accessible area on the ground; and

That it is understood per FCC Guidelines and OET 65 Appendix A, that regardless of the existent radio frequency environment, only those licensees whose contributions exceed 5% of the exposure limit pertinent to their operation(s) bear any responsibility for bringing any non-compliant area(s) into compliance; and

That when applying the uncontrolled environment standards, the cumulative predicted energy density from the proposed operation is no more than 10.833% of the maximum in any accessible area up to two meters above the ground per OET 65; and

That the calculations provided in this report are based on data provided by the client and antenna pattern data supplied by the antenna manufacturer, in accordance with FCC guidelines listed in OET 65. Horizontal and vertical antenna patterns are combined for modeling purposes to accurately reflect the energy two meters above ground level where on-axis energy refers to maximum energy two meters above the ground along the azimuth of the antenna and where area energy refers to the maximum energy anywhere two meters above the ground regardless of the antenna azimuth, accounting for cumulative energy from multiple antennas for the carrier(s) and frequency range(s) indicated; and

That the Occupational Safety and Health Administration has policies in place which address worker safety in and around communications sites, thus individual companies will be responsible for their employees' training regarding radio frequency safety; and

In summary, it is stated here that the proposed operation at the site will not result in exposure of the public to excessive levels of radio frequency energy as defined in the FCC Rules and Regulations, specifically 47 CFR 1.1307(b), and that AT&T Mobility, LLC's proposed operation is completely compliant.

Finally, it is stated that access to the tower should be restricted to communication industry professionals and approved contractor personnel trained in radio frequency safety and that this instant analysis addresses exposure levels at two meters above ground level and does not address exposure levels on the tower or in the immediate proximity of the antennas.

AT&T Mobility, LLC HRT 106(B) 943202 Site Summary

Carrier	Area Maximum Percentage MPE
AT&T Mobility, LLC	0.050 %
AT&T Mobility, LLC	0.161 %
AT&T Mobility, LLC	0.148 %
AT&T Mobility, LLC (Proposed)	0.170 %
AT&T Mobility, LLC (Proposed)	0.126 %
AT&T Mobility, LLC (Proposed)	0.164 %
AT&T Mobility, LLC (Proposed)	0.402 %
Sprint	0.951 %
Sprint	0.390 %
Sprint	0.391 %
T-Mobile	0.682 %
T-Mobile	0.832 %
T-Mobile	0.949 %
T-Mobile	0.570 %
T-Mobile	0.287 %
Town of Durham CT	0.142 %
Town of Durham CT	0.330 %
Town of Durham CT	0.331 %
Town of Durham CT	1.944 %
Verizon Wireless	0.462 %
Verizon Wireless	0.343 %
Verizon Wireless	0.413 %
Verizon Wireless	0.595 %

Composite Site MPE:

10.833 %

Frequency:	850	MHz
Maximum Permissible Exposure (MPE):	566.67	µW/cm ²
Maximum power density at ground level:	0.28346	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.05002	%

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
ANDREW	SBNHH-1D65A	116	30	560	0.177715	0.031361	0.253697	0.044770
ANDREW	SBNHH-1D65A	116	160	560	0.177715	0.031361	0.253697	0.044770
ANDREW	SBNHH-1D65A	116	280	560	0.177715	0.031361	0.253697	0.044770

Frequency:	1900	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm ²
Maximum power density at ground level:	1.60565	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.16057	%

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
ANDREW	SBNHH-1D65A	116	30	4657	0.663722	0.066372	1.187918	0.118792
ANDREW	SBNHH-1D65A	116	160	4657	0.663722	0.066372	1.187918	0.118792
ANDREW	SBNHH-1D65A	116	280	4657	0.663722	0.066372	1.187918	0.118792

Frequency:	2300	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm²
Maximum power density at ground level:	1.48154	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.14815	%

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
ANDREW	SBNHH-1D65A	116	30	2685	0.917196	0.091720	1.472741	0.147274
ANDREW	SBNHH-1D65A	116	160	2685	0.917196	0.091720	1.472741	0.147274
ANDREW	SBNHH-1D65A	116	280	2685	0.917196	0.091720	1.472741	0.147274

Frequency:	737	MHz
Maximum Permissible Exposure (MPE):	491.33	µW/cm²
Maximum power density at ground level:	0.83447	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.16984	%

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
Kathrein-Sca l a	800-10964	116	30	2209	0.521863	0.106214	0.732260	0.149035
Kathrein-Scala	800-10964	116	160	2209	0.521863	0.106214	0.732260	0.149035
Kathrein-Scala	800 - 10964	116	280	2209	0.521863	0.106214	0.732260	0.149035

Frequency:	850	MHz
Maximum Permissible Exposure (MPE):	566.67	µW/cm²
Maximum power density at ground level:	0.71256	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.12575	%

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
Kathrein-Scala	800-10964	116	30	2631	0.454437	0.080195	0.556542	0.098213
Kathrein-Scala	800-10964	116	160	2631	0.454437	0.080195	0.556542	0.098213
Kathrein-Sca l a	800 - 10964	116	280	2631	0.454437	0.080195	0.556542	0.098213

Frequency:	763	MHz
Maximum Permissible Exposure (MPE):	508.67	µW/cm²
Maximum power density at ground level:	0.83447	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.16405	%

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
Kathrein-Scala	800-10964	116	30	2209	0.521863	0.102594	0.732260	0.143957
Kathrein-Scala	800-10964	116	160	2209	0.521863	0.102594	0.732260	0.143957
Kathrein-Scala	800 - 10964	116	280	2209	0.521863	0.102594	0.732260	0.143957

Frequency:	2100	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm²
Maximum power density at ground level:	4.02294	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.40229	%

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
Kathrein-Scala	800-10964	116	30	7911	1.015688	0.101569	2.430218	0.243022
Kathrein-Scala	800-10964	116	30	3955	0.507845	0.050784	1.215110	0.121511
Kathrein-Scala	800-10964	116	160	7911	1.015688	0.101569	2.430218	0.243022
Kathrein-Scala	800-10964	116	160	3955	0.507845	0.050784	1.215110	0.121511
Kathrein-Scala	800-10964	116	280	7911	1.015688	0.101569	2.430218	0.243022
Kathrein-Sca l a	800 - 10964	116	280	3955	0.507845	0.050784	1.215110	0.121511

Sprint HRT 106(B) 943202 Carrier Summary

Frequency:	1900	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm ²
Maximum power density at ground level:	9.51202	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.95120	%

					On Axis		Ar	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
Commscope	NNVV-65B-R4	89	10	7333	3.085459	0.308546	5.137908	0.513791
Commscope	NNVV-65B-R4	89	150	7333	3.085459	0.308546	5.137908	0.513791
Commscope	NNVV-65B-R4	89	270	7333	3.085459	0.308546	5.137908	0.513791

Sprint HRT 106(B) 943202 Carrier Summary

Frequency:	862	MHz
Maximum Permissible Exposure (MPE):	574.67	µW/cm ²
Maximum power density at ground level:	2.23924	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.38966	%

					On Axis		Ar	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
Commscope	NNVV-65B-R4	89	10	2042	0.877350	0.152671	1.287775	0.224091
Commscope	NNVV-65B-R4	89	150	2042	0.877350	0.152671	1.287775	0.224091
Commscope	NNVV-65B-R4	89	270	2042	0.877350	0.152671	1.287775	0.224091

Sprint HRT 106(B) 943202 Carrier Summary

Frequency:	2500	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm²
Maximum power density at ground level:	3.91219	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.39122	%

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
RFS	APXVTM14-C-I20	89	10	6939	1.326560	0.132656	2.502871	0.250287
RFS	APXVTM14-C-I20	89	150	6939	1.326560	0.132656	2.502871	0.250287
RFS	APXVTM14-C-I20	89	270	6939	1.326560	0.132656	2.502871	0.250287

Frequency:	2500	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm²
Maximum power density at ground level:	6.81789	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.68179	%

					On	Axis	Area		
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE	
Ericsson	AIR6449 B41	73	60	5084	2.718751	0.271875	3.395821	0.339582	
Ericsson	AIR6449 B41	73	180	5084	2.718751	0.271875	3.395821	0.339582	
Ericsson	AIR6449 B41	73	300	5084	2.718751	0.271875	3.395821	0.339582	

Frequency:	700	MHz
Maximum Permissible Exposure (MPE):	466.67	µW/cm²
Maximum power density at ground level:	3.88279	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.83203	%

					On Axis		Ar	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
RFS	APXVAARR24_43-U-NA20	73	60	3484	1.804981	0.386782	1.895023	0.406076
RFS	APXVAARR24_43-U-NA20 APXVAARR24_43-U-NA20	73 73	300	3484 3484	1.804981	0.386782	1.895023	0.406076 0.406076

Frequency:	600	MHz
Maximum Permissible Exposure (MPE):	400	µW/cm²
Maximum power density at ground level:	3.79712	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.94928	%

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
RFS	APXVAARR24_43-U-NA20	73	60	3335	1.867786	0.466946	1.896668	0.474167
RFS	APXVAARR24_43-U-NA20	73	180	3335	1.867786	0.466946	1.896668	0.474167
RFS	APXVAARR24_43-U-NA20	73	300	3335	1.867786	0.466946	1.896668	0.474167

Frequency:	2100	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm²
Maximum power density at ground level:	5.69995	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.57000	%

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
Ericsson	AIR 32 B2A/B66AA	73	60	2313	3.876491	0.387649	3.876491	0.387649
Ericsson	AIR 21 B4A B2P	73	60	2438	0.952985	0.095299	1.088594	0.108859
Ericsson	AIR 32 B2A/B66AA	73	180	2313	3.876491	0.387649	3.876491	0.387649
Ericsson	AIR 21 B4A B2P	73	180	2438	0.952985	0.095299	1.088594	0.108859
Ericsson	AIR 32 B2A/B66AA	73	300	2313	3.876491	0.387649	3.876491	0.387649
Ericsson	AIR 21 B4A B2P	73	300	2438	0.952985	0.095299	1.088594	0.108859

Frequency:	1900	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm²
Maximum power density at ground level:	2.86545	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.28655	%

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
Ericsson	AIR 32 B2A/B66AA	73	60	2313	0.904081	0.090408	1.032731	0.103273
Ericsson	AIR 21 B4A B2P	73	60	2061	0.805765	0.080576	0.920425	0.092042
Ericsson	AIR 32 B2A/B66AA	73	180	2313	0.904081	0.090408	1.032731	0.103273
Ericsson	AIR 21 B4A B2P	73	180	2061	0.805765	0.080576	0.920425	0.092042
Ericsson	AIR 32 B2A/B66AA	73	300	2313	0.904081	0.090408	1.032731	0.103273
Ericsson	AIR 21 B4A B2P	73	300	2061	0.805765	0.080576	0.920425	0.092042

Frequency:	462	MHz
Maximum Permissible Exposure (MPE):	308	µW/cm²
Maximum power density at ground level:	0.43889	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.14250	%

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
ANDREW	DB201 - A	123	0	170	0.438890	0.142497	0.438891	0.142497

Frequency:	153	MHz
Maximum Permissible Exposure (MPE):	200	µW/cm²
Maximum power density at ground level:	0.65923	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.32961	%

					On Axis		Are	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
ANDREW	ASP-655	54	0	45	0.499340	0.249670	0.589974	0.294987
RFS	PD1121-6	53	0	45	0.111698	0.055849	0.114332	0.057166

Frequency:	800	MHz
Maximum Permissible Exposure (MPE):	533.33	µW/cm ²
Maximum power density at ground level:	1.76356	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.33067	%

					On Axis		Area		
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE	
ANDREW	DB492A	50	320	100	1.477148	0.276965	1.498738	0.281013	
ANDREW	DB809MT3-XT	125	0	794	0.330897	0.062043	0.330897	0.062043	

Frequency:	45	MHz
Maximum Permissible Exposure (MPE):	200	µW/cm²
Maximum power density at ground level:	3.88766	µW/cm²
Highest percentage of Maximum Permissible Exposure:	1.94383	%

					On Axis		Are	a
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (µW/cm²)	Percent of MPE
RFS	PD1142-1	57	0	300	3.887659	1.943830	3.887661	1.943830

Verizon Wireless HRT 106(B) 943202 Carrier Summary

Frequency:	2100	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm ²
Maximum power density at ground level:	4.61907	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.46191	%

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
ANDREW	SBNHH-1D65B	101	30	7732	2.665638	0.266564	4.080253	0.408025
ANDREW	SBNHH-1D65B	101	170	7732	2.665638	0.266564	4.080253	0.408025
ANDREW	SBNHH-1D65B	101	290	7732	2.665638	0.266564	4.080253	0.408025

Verizon Wireless HRT 106(B) 943202 Carrier Summary

Frequency:	751	MHz
Maximum Permissible Exposure (MPE):	500.67	µW/cm ²
Maximum power density at ground level:	1.71539	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.34262	%

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
ANDREW	SBNHH-1D65B	101	30	2043	0.587292	0.117302	0.956563	0.191058
ANDREW	SBNHH-1D65B	101	170	2043	0.587292	0.117302	0.956563	0.191058
ANDREW	SBNHH-1D65B	101	290	2043	0.587292	0.117302	0.956563	0.191058
Verizon Wireless HRT 106(B) 943202 Carrier Summary

Frequency:	1900	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm²
Maximum power density at ground level:	4.12546	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.41255	%

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
ANDREW	SBNHH-1D65B	101	30	4583	3.175927	0.317593	4.072351	0.407235
ANDREW	SBNHH-1D65B	101	170	4583	3.175927	0.317593	4.072351	0.407235
ANDREW	SBNHH-1D65B	101	290	4583	3.175927	0.317593	4.072351	0.407235

Verizon Wireless HRT 106(B) 943202 Carrier Summary

Frequency:	850	MHz
Maximum Permissible Exposure (MPE):	566.67	µW/cm ²
Maximum power density at ground level:	3.37027	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.59475	%

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
Antel	LPA-80080/6CF	101	20	3014	0.808608	0.142696	1.236973	0.218289
Antel	LPA-80080/6CF	101	20	3014	0.808608	0.142696	1.236973	0.218289
Antel	LPA-80080/6CF	101	150	3014	0.808608	0.142696	1.236973	0.218289
Antel	LPA-80080/6CF	101	150	3014	0.808608	0.142696	1.236973	0.218289
Antel	LPA-80080/6CF	101	270	3014	0.808608	0.142696	1.236973	0.218289
Antel	LPA-80080/6CF	101	270	3014	0.808608	0.142696	1.236973	0.218289

HRT 106(B) 943202 Composite Microwave Antenna Summary

CarrierAntenna Make/ModelHeight (feet)T-MobileCommscope SHP2-1375Town of Durham CTGabriel Electronics GLF6-450107