CC CROWN CASTLE

Crown Castle 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065

July 17, 2020

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification for T-Mobile: 823666 - T-Mobile Site ID: CT11237C 15 Pent Road, Deep River, CT 06417 Latitude: 41° 22' 22.17" / Longitude: -72° 26' 3.97"

Dear Ms. Bachman:

T-Mobile currently maintains six (6) antennas at the 178-foot mount on the existing 178-foot Monopole Tower, located at 15 Pent Road, Deep River, CT. The tower is owned by Crown Castle and the property is owned by Beks Holdings LLC. T-Mobile now intends to replace three (3) existing antennas with three (3) new 600/700/1900/2100 MHz antennas. The new antennas will be installed at the 178-ft level of the tower. T-Mobile is also proposing tower mount modifications, as shown on the enclosed mount analysis.

Planned Modifications:

Tower:

<u>Remove and Replace</u>: (3) LNX 6515DS-VTM Antenna (**REMOVE**) - (3) RFS-APXVAARR24_43-U-NA20 Antenna 600/700/1900/2100 MHz (**REPLACE**)

<u>Install New:</u> (3) TMA (3) Radio 4449 B71/B12 (1) 1 5/8" Hybrid Fiber Line

Existing to Remain: (12) 1 5/8" Coax (1) Fiber line (3) EMS RR90-17-02DP Antenna (Dormant) (3) TMA

Ground:

Upgrade to existing ground cabinet. (Internally)

The facility was likely approved by the Town of Deep River Planning and Zoning Commission during the year 2000, as the site went on air on November 30, 2000. Diligent efforts went into attempting to obtain the original facility approval for this telecommunications facility. Search efforts were made throughout all Crown Castle files without success. Efforts were also made on the part of Deep River's Zoning Department

The Foundation for a Wireless World.

CrownCastle.com

Page 2

to try and locate the original approval though that was unsuccessful as well. The Land Records held by the Town of Deep River's Town Clerk did not provide for the original recording of the Special Permit either. To date, the original building permit issued to Voice Stream Wireless dated August 18, 2000, permit no. 00-1-182, for the purposes of constructing an antenna tower, is all that could be located. This is the most legible we could make the copy of the building permit. Should the original Special Permit for this facility become available, we will make it available to the Council as a supplemental part of this filing.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Angus L. McDonald, Jr., First Selectman for the Town of Deep River, Michael D'Amato, Zoning Enforcement Officer, Crown Castle as the tower owner, and Beks Holdings LLC, the property owner.

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the abovereference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Anne Marie Zsamba.

Sincerely,

Anne Marie Zsamba Site Acquisition Specialist 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 (201) 236-9224 AnneMarie.Zsamba@crowncastle.com

Attachments cc:

Page 3

Angus L. McDonald, Jr., First Selectman (*via email only to amcdonald@deepriverct.us*) Town of Deep River Town Hall – Selectman's Office 174 Main Street Deep River, CT 06417 860-526-6020

Michael D'Amato, Zoning Enforcement Officer (*via email only to zoning@deepriverct.us*) Planning & Zoning Office Town of Deep River 174 Main Street Deep River, CT 06417 860-526-6020

Beks Holdings LLC, Property Owner 14 Timberlane Drive Westbrook, CT 06498

Crown Castle, Tower Owner

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

Dear First Selectman McDonald:

Attached please find T-Mobile's exempt modification application that is being submitted to the Connecticut Siting Council, today July 17, 2020.

In light of the present circumstances with Covid-19, The Council has advised that electronic notification of this filing is acceptable. If you could kindly confirm receipt. Thank you.

Best, Anne Marie Zsamba

ANNE MARIE ZSAMBA

Site Acquisition Specialist T: (201) 236-9224 M: (518) 350-3639 F: (724) 416-6112

CROWN CASTLE 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 CrownCastle.com

Dear ZEO D'Amato:

First and foremost, thank you for your efforts in trying to locate the original facility approval here. You'll note in the cover letter, that I will supplement this filing if you are able to find same. I was able to locate a copy of the original building permit which I've included in this filing.

Attached please find T-Mobile's exempt modification application that is being submitted to the Connecticut Siting Council, today July 17, 2020.

In light of the present circumstances with Covid-19, The Council has advised that electronic notification of this filing is acceptable. If you could kindly confirm receipt. Thank you.

Best, Anne Marie Zsamba

ANNE MARIE ZSAMBA

Site Acquisition Specialist T: (201) 236-9224 M: (518) 350-3639 F: (724) 416-6112

CROWN CASTLE

3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 <u>CrownCastle.com</u>

Exhibit A

Original Facility Approval

CT-11-237C

FORM NO. BOCA 2 BP 1994

BUILDING PERMIT

		DATE	AUCEST I	8, 2060		NO. 00-1-182
APPLICANT	VOICE STELAN W	IRELESS	ADDRESS	109 FTL (NO.)	STREET)	12.3, CT. 05092 (CONTR'S LICENSE)
PERMIT TO _	CONSTRUCT ANTE: (TYPE OF IMPROVEMENT)	NO.	STORY	(PROPOSED US	۲ E)	NUMBER OF ()
AT (LOCATI	ON) 19 PENT ROAT), <i>were</i> al	VER (STREET)			ZONING DISTRICT
BETWEEN.		000 070557)		AND		
		USS STREET			LOT	
SUBDIVISION			LOT	BLOCK	SIZE	
BUILDING IS	TO BE FT. W	IDE BY	FT. LONG BY	<u> </u>	FT. IN HEIGHT A	ND SHALL CONFORM IN CONSTRUCTION
ТО ТҮРЕ	USE GI	ROUP	BASE	MENT WALLS OR	FOUNDATION	(TVDE)
	SETSISTE FORTOUTS SHARE	****	5529175 67 5			()) ()) ()) ()) ()) ()) ()) ()) ()) ())
REMARKS:	LL APPLICABLE CON REQUIRED PRICE TO	DES NUST B POUEING A	S LET AND IS NY CONCRETE.	SPECTICUS	REQUESTED.	PIRST INSPECTION
AREA OR	NETRACTOR: COST	LOTIA CONS	T. 2534 XVX estim/	DALE AVE.,	CCEAUSIDE,	<u>ыт 11579</u> — FEE \$ 750,00
	(CUBIC/SQUAF	RE FEET)		· —		
OWNER	DESET STALSDURG				BUILDING DEP	
ADDRESS	e print soad, brea	PIVER			BY	
THIS PERMINENT PERMANENT PROVED BY FROM THE I	IT CONVEYS NO RIGHT T ILY. ENCROACHMENTS OI THE JURISDICTION. STRE DEPARTMENT OF PUBLIC N LICABLE SUBDIVISION RES	O OCCUPY AN N PUBLIC PRO ET OR ALLEY WORKS. THE IS ITRICTIONS.	Y STREET, ALLEY PERTY, NOT SPE GRADES AS WELI SUANCE OF THIS	OR SIDEWALK CIFICALLY PERM AS DEPTH AN PERMIT DOES N	OR ANY PART T MITTED UNDER T D LOCATION OF IOT RELEASE THE	HEREOF, EITHER TEMPORARILY OF HE BUILDING CODE, MUST BE AP PUBLIC SEWERS MAY BE OBTAINED APPLICANT FROM THE CONDITIONS
MINTMUM OF INSPECTION ALL CONSTR 1. FOUNDAT 2. PRIOR TC MEMBERS FINISH CO 3. FINAL INS OCCUPAN	I HREE CALLED S REQUIRED FOR NUCTION WORK: IONS OR FOOTINGS. O COVERING STRUCTURAL G (READY FOR LATH OR OVERING). SPECTION BEFORE [CY.	APPROVED P CARD KEPT MADE. WHEI QUIRED, SUC FINAL INSPEC	LANS MUST BE POSTED UNTIL F RE A CERTIFICA TH BUILDING SHA	RETAINED ON INAL INSPECTI ALL OF OCCUI ALL NOT BE OC MADE.	JOB AND THIS ION HAS BEEN PANCY IS RE- CCUPIED UNTIL	PERMITS ARE REQUIRED FOR ELECTRICAL, PLUMBING AND MECHANICAL INSTALLATIONS.
	POST THI	<u>S CARE</u>	D SO IT IS	s visibi	LE FROM	STREET
1						RICAL INSPECTION APPROVALS
2		2			2	
3		. 1	EATING INSPECTI	NG APPROVALS	REFRIGE 1	ERATION INSPECTION APPROVALS
OTHER		2			2	
WORK SHALL INSPECTOR H STAGES OF C	NOT PROCEED UNTIL THE AS APPROVED THE VARIOUS ONSTRUCTION.	PERMIT WII WORK IS N PERMIT IS IS	LL BECOME NULL OT STARTED WITH	AND VOID IF C IN SIX MONTHS BOVE.	ONSTRUCTION OF DATE THE	INSPECTIONS INDICATED ON THIS CARI CAN BE ARRANGED FOR BY TELEPHONI OR WRITTEN NOTIFICATION.

-

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi Anne Marie

I'll see what I can come up with, I'm not sure how far I'll get. If I'm able to find a copy of the original permit I will let you know.

Thanks, Mike

John Guszkowski, AICP, ENV-SP, LEED Mike D'Amato, CZEO, AICP Co-Interim Zoning Officers Town of Deep River, CT

From: Zsamba, Anne Marie [mailto:AnneMarie.Zsamba@crowncastle.com] Sent: Wednesday, July 15, 2020 9:56 AM

Subject: RE: Seeking Original Telecom Tower Approval - 15 Pent Road - 823666

Hi Mike,

I appreciate your response in light of you both getting up to speed - thank you!

I've searched through the land records and have spoken with Amy and came up short. Below are snips are my searches. The tower was put up by T-Mobile. T-Mobile was originally Omnipoint/VoiceStream back in the day. The fee owner and original lessor was Robert R. Stalsburg. Here is what I was able to find:

Search Results for Town of Deep River

Click the magnifying glass to preview the document (displayed at the bottom of the screen)

							resourc	indication (x o or o)
Preview	Name	File Date	Party	Number	Type Desc.	Inst. Date	# Pgs.	Vol/Page
Q	OMNIPOINT COMMUNICATIONS INC	03/11/2002 00:00:00	Direct	1670072	LEASE	01/01/1900	8	00167/72
Q	OMNIPOINT COMMUNICATIONS INC	12/01/2000 00:00:00	Indirect	1590450	LEASE	01/01/1900	3	00159/450
Q	OMNIPOINT COMMUNICATIONS INC	12/01/2000 00:00:00	Grantor	1590453	EASEMENT	01/01/1900	5	00159/453

"VoiceStream" returns "0" results. I also searched "Voice" "Stream" "VoiceS" "Omni".

Robert R. Stalsburg returns many hits. One of which reads as a special permit, though it was after the tower was built and was granted for the collocation of Verizon's antennas after T-Mobile was already on the tower. I've paid for and attached a copy of that Special Permit to this email for ease of reference. The permit notes the address as 366 Main Street, Map 58, Lot 32F. We now refer to the premises as 15 Pent Road, Map 58, Lot 34. Not sure if that will impact your search at all?

Q	STALSBURG ROBERT R	03/22/2002 00:00:00	Grantee	1670280	RELEASE	01/01/1900	1	00167/280
Q	STALSBURG ROBERT R	02/05/2002 00:00:00	Direct	1660540	SPECIAL PERMIT	01/01/1900	4	00166/540
Q	STALSBURG ROBERT R	12/01/2000 00:00:00	Grantor	1590453	EASEMENT	01/01/1900	5	00159/453
0	CTALCOLING DODEDT D	10/01/0000 00:00:00	Disease in the second sec	1 500 450	Lever	01/01/1000	n .	00460/460

I don't believe the original tower approval, likely dated 2000 or 2001, was recorded. Any effort you can spare to look at the PZC files to ascertain if the original tower approval can be located is much appreciated.

Thank you.

Best, Anne Marie

ANNE MARIE ZSAMBA Site Acquisition Specialist T: (201) 236-9224 M: (518) 350-3639 F: (724) 416-6112

CROWN CASTLE 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 CrownCastle.com

From: Zoning <Zoning@deepriverct.us> Sent: Wednesday, July 15, 2020 9:05 AM To: Zsamba, Anne Marie <AnneMarie.Zsamba@crowncastle.com> Subject: RE: Seeking Original Telecom Tower Approval - 15 Pent Road - 823666

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi Anne Marie

Thanks for the email. John and I are just getting caught up to speed in Deep River, but my understanding is that if this project was approved by the Commission, those files are maintained by the Commission's secretary and they are not here in the zoning office. That being said, I did go through the building file but didn't have any luck. It is likely that once the project was approved by the Town, the certificate of approval was filed on the land records. You should be able to access the Town Clerk's records via her website online. If you don't have any luck there I can attempt to look through the PZC files, but I'll need to know the year the Tower was approved (or built) if possible.

Let me know.

Thanks,

Mike

John Guszkowski, AICP, ENV-SP, LEED Mike D'Amato, CZEO, AICP Co-Interim Zoning Officers Town of Deep River, CT

From: Zsamba, Anne Marie [mailto:AnneMarie.Zsamba@crowncastle.com] Sent: Tuesday, July 14, 2020 2:11 PM To: Zonig Subject: Seeking Original Telecom Tower Approval - 15 Pent Road - 823666

Good afternoon Mike & John

Seeking your assistance if possible. This email follows my voicemail of earlier this morning. I am preparing an exempt modification application for submission to the Connecticut Siting Council on behalf of T-Mobile. Part of that submission should include the original tower approval as issued by the Town of Deep River so as to ensure the modification T-Mobile is proposing are not in violation of any conditions of approval written when the tower was first approved prior to it originally being built.

I have searched high and low through our files here at Crown as the tower owner and I unfortunately cannot locate it. Is this something the Town of Deep River would still have on file? If so, would it be possible to email me a copy?

Any assistance you can provide in this regard is appreciated. We want to make sure we are complying with any and all conditions as original set forth by the Town. Thank you kindly.

Best, Anne Marie

ANNE MARIE ZSAMBA ialist

ANNE MARIE 2341 Site Acquisition Spe T: (201) 236-9224 M: (518) 350-3639 F: (724) 416-6112

CROWN CASTLE 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 CrownCastle.com

This email may contain confidential or privileged material. Use or disclosure of it by anyone other than the recipient is unauthorized. If you are not an intended recipient, please delete this email. This email may contain confidential or privileged material. Use or disclosure of it by anyone other than the recipient is unauthorized. If you are not an intended recipient, please delete this email.

VOL. 166 PAGE 540 SPECIAL PERMIT NOTICE

You are hereby notified that on January 17. 2002 the Planning and Zoning Commission of the Town of Deep River granted your application for amendment to an approved special permit, effective February 14, 2002, as follows:

- Owner of Record: Robert R. Stalsburg and Grace Stalsburg
 Applicant: Cellco Partnership d/b/a Verizon Wireless
 99 East River Drive, East Hartford, CT 06108
- Description of Premises: 366 Main Street Map 58, Lot 32F as identified by the Tax Assessor for the Town of Deep River
- 3. Applicable Zoning Regulations: Section 7.14 of the Deep River Zoning Regulations

4. Nature of Special Permit:

Amendment to Special Permit of VoiceStream Wireless for purpose of attachment of 12 panel-type antennas on a triangular antenna platform at the 170 foot level of the existing 180 foot tower. Equipment associated with the Cellco antennas will be located in a new 12 ft. by 30 ft. equipment shelter located near the base of the tower within the existing fenced compound. The approval is in accordance with plans entitled: "Enlarged Site Plan and Grading Plan, Tower Elevation and Erosion Control Notes, and Detail Sheet, Cellco Partnership dba Verizon Wireless Deep River Telecommunication Facility 366 Main Street Deep River, Connecticut 06417 Scale1" = 10' Date: 12/4/2001" prepared by BL Companies, 355 Research Parkway, Meriden, Connecticut 06450. See Statement of Use attached hereto and made a part hereof.

- 5. Conditions: None
- 6. **Reasons**: Meets the conditions set forth in the Deep River Zoning Regulations.

TOWN OF DEEP RIVER PLANNING AND ZONING COMMISSION

3y <u>Ju L 1C m</u> Jorathan Kastner, Its Secretary

CERTIFICATION

This is to certify that the foregoing is a true copy of a special permit issued by the Deep River Planning and Zoning Commission on January 17, 2002.

TOWN OF DEEP RIVER PLANNING AND ZONING COMMISSION

By / ~ ~ / ~ ~ / ~ ~ Jonathan Kastner, Its Secretary

NOTICE: FOR THIS SPECIAL PERMIT TO BE EFFECTIVE, YOU MUST RECORD THIS CERTIFIED COPY ON THE DEEP RIVER LAND RECORDS IN THE DEEP RIVER TOWN CLERK'S OFFICE, WITHIN SIXTY (60) DAYS OR PERMIT BECOMES NULL AND VOID.

Exhibit B

Property Card

15 PENT RD

Location	15 PENT RD	Mblu	58/ / 34/ /
Acct#	00155800	Owner	BEKS HOLDINGS LLC
Assessment	\$296,520	Appraisal	\$423,600
PID	1745	Building Count	2

Current Value

Appraisal					
Valuation Year	Improvements	Land	Total		
2015	\$291,000	\$132,600	\$423,600		
	Assessment				
Valuation Year	Improvements	Land	Total		
2015	\$203,70	0 \$92,820	\$296,520		

Parcel Addreses

Additional Addresses
No Additional Addresses available for this parcel

Owner of Record

Owner	BEKS HOLDINGS LLC	Sale Price	\$0
Co-Owner		Certificate	
Address	14 TIMBERLANE DR	Book & Page	0245/0035
	WESTBROOK, CT 06498	Sale Date	09/30/2019
		Instrument	29

Ownership History

0	wnership Histo	rv				
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date	
BEKS HOLDINGS LLC	\$0		0245/0035	29	09/30/2019	
STALSBURG ROBERT R JR & SHERI L TRUSTEES	\$0		0239/0150	29	09/29/2017	
STALSBURG ROBERT R JR	\$0		0187/0502	29	07/12/2004	
STALSBURG ROBERT R JR & GRACE A	\$0		0184/0720	29	03/01/2004	

Building Information

Building 1 : Section 1

Year Built:	1948	
Living Area.	Building	Attributes
	Field	Description
STYLE		Warehouse
MODEL		Ind or Comm
Grade		Average
Stories:		1
Occupancy		1.00
Exterior Wall 1		Concr/Cinder
Exterior Wall 2		
Roof Structure		Gable/Hip
Roof Cover		Asph/F Gls/Cmp
Interior Wall 1		Minim/Masonry
Interior Wall 2		Cust Wd Panel
Interior Floor 1		Concr-Finished
Interior Floor 2		Carpet
Heating Fuel		None
Heating Type		None
АС Туре		None
Struct Class		
Bldg Use		COMM WHSE
Total Rooms		
Total Bedrms		00
Total Baths		0
Usrfld 218		
Usrfld 219		
1st Floor Use:		3160
Heat/AC		NONE
Frame Type		MASONRY
Baths/Plumbing		AVERAGE
Ceiling/Wall		CEILING ONLY
Rooms/Prtns		AVERAGE
Wall Height		12.00
% Comn Wall		0.00

Building 2 : Section 1

Building Photo

(http://images.vgsi.com/photos/DeepRiverCTPhotos//\00\00\63\63.jpg)

Building Layout

(ParcelSketch.ashx?pid=1745&bid=1745)

Building Sub-Areas (sq ft)					
Code	Description	Gross Area	Living Area		
BAS	First Floor	408	408		
РТО	Patio	1,394	0		
		1,802	408		

Living Area:

2,954

Building Attributes : Bldg 2 of 2					
Field	Description				
Style	Colonial				
Model	Residential				
Grade:	Good				
Stories:	2 Stories				
Occupancy	1				
Exterior Wall 1	Aluminum Sidng				
Exterior Wall 2					
Roof Structure:	Gable/Hip				
Roof Cover	Asph/F Gls/Cmp				
Interior Wall 1	Plastered				
Interior Wall 2	Cust Wd Panel				
Interior FIr 1	Hardwood				
Interior FIr 2	Carpet				
Heat Fuel	Oil				
Heat Type:	Hot Water				
АС Туре:	None				
Total Bedrooms:	4 Bedrooms				
Total Bthrms:	2				
Total Half Baths:	1				
Total Xtra Fixtrs:	1				
Total Rooms:	12 Rooms				
Bath Style:	Average				
Kitchen Style:	Average				
Num Kitchens	01				
Cndtn					
Usrfld 103					
Usrfld 104					
Usrfld 105					
Usrfld 106					
Usrfld 107					
Num Park					
Fireplaces					
Usrfld 108					
Usrfld 101					
Usrfld 102					
Usrfld 100					
Usrfld 300					
Usrfld 301					

(http://images.vgsi.com/photos/DeepRiverCTPhotos//\00\00\63\64.jpg)

Building Layout

RBM (350 sf)

Π

(ParcelSketch.ashx?pid=1745&bid=2279)

Building Sub-Areas (sq ft)					
Code	Description	Gross Area	Living Area		
BAS	First Floor	1,974	1,974		
FUS	Upper Story, Finished	800	800		
AOF	Office, (Average)	180	180		
FEP	Porch, Enclosed, Finished	288	0		
RBM	Rec Room Bsmt	350	0		
UAT	Attic, Unfinished	800	0		
UBM	Basement, Unfinished	800	0		
WDK	Deck, Wood	80	0		
		5,272	2,954		

Land

Land Use		Land Line Valua	Land Line Valuation		
Use Code	0316	Size (Acres)	3.9		
Description	COMM WHSE	Assessed Value	\$92,820		
Zone	R60	Appraised Value	\$132,600		
Neighborhood	0002				

Outbuildings

Outbuildings					
Code	Description	Size			
SHD1	SHED FRAME	30.00 S.F.			
SPL3	GUNITE	800.00 S.F.			
SHD2	W/LIGHTS ETC	80.00 S.F.			

(c) 2020 Vision Government Solutions, Inc. All rights reserved.

Exhibit C

Construction Drawings

	Mobil	DE T- CROWN 67D94AE	T-MOBILE SITE NA EP RIVER MOBILE SITE NUM CT11237C BU: 823666 / A R V2 CONFIG 15 PENT ROAD DEEP RIVER, CT 06 ISTING 178'-0" MONG
PROIECT SUMMARY	LOCATI	ON MAP	DRAW
SITE TYPE: EXISTING EQUIPMENT UPGRADE SITE ADDRESS: 15 PENT ROAD DEEP RIVER, CT 06417 JURISDICTION: TOWN OF DEEP RIVER, CT NAD83 IATITUDE: LATITUDE: 41.372826' N LONGITUDE: TOWER OWNER: CROWN CASTLE 3200 HORIZON DRIVE, SUITE 150 KING OF PRUSSIA, PA 19406 JASON SMITH (610) 635–3225 CUSTOMER/APPLICANT: T-MOBILE 4 SYLVAN WAY PARSIPPANY, NJ 07054 (973) 397–4800 OCCUPANCY TYPE: UNMANNED A.D.A. COMPLIANCE: FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION	Red Contraction of the second	CEEP RIMERIRE 9	SHEET # SHEET T-1 TITLE SHEET A-1 OVERALL SITE PLA A-2 ANTENNA/CABLE S A-3 TOWER ELEVATION A-4 ANTENNA AND RRI A-4.1 RRU GROUND MOL
CONTACT INFORMATION	DRIVING D	IRECTIONS	A/E DOCUMEN
A&E FIRM:B+T GROUP 1717 S. BOULDER, STE. 300 TULSA, OK 74119 CONTACT:ELECTRIC PROVIDER;N/A PROVIDER:CONTACT:MIKE 0AAKES (918) 587-4630TELCO PROVIDER:AT&T PROVIDER:	DEPART FROM BRADLEY INTERNATIONAL AIRPORT ON LOCAL F CHANGES TO BRADLEY FIELD CONNECTOR. TAKE RAMP ONTO TAKE RAMP ONTO CT-9. KEEP STRAIGHT ONTO CT-17 [CT KEEP RIGHT ONTO RAMP. TURN LEFT ONTO CT-154 [DEEP F LEFT ONTO KELSEY HILL RD. KEEP STRAIGHT ONTO SYLVAN RIVER/RT 9.	ROAD. TAKE LOCAL ROAD ONTO TERMINAL RD. ROAD NAME I–91 [RICHARD P HORAN MEMORIAL HWY]. AT EXIT 22S, 9]. AT EXIT 13, ROAD NAME CHANGES TO CT–9. AT EXIT 4, RIVER RD]. KEEP STRAIGHT ONTO CT–154 [S MAIN ST]. TURN TERRACE. BEAR LEFT ONTO LOCAL ROAD. ARRIVE AT DEEP	TITLE T-MOBILE PROP: T-MOBILE R.F. MGR.: T-MOBILE NetOps: T-MOBILE CONST. MGR.: INTERCONNECT:
	PROJECT DESCRIPTION	DO NOT SCALE DRAWINGS	T-MOBILE SITE DEV. MGR.: PROPERTY OWNER:
CODE COMPLIANCE ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES: CODE TYPE CODE BUILDING/DWELLING 2018 CT SBC STRUCTURAL 2018 CT SBC MECHANICAL 2018 CT SBC ELECTRICAL 2018 CT SBC	THE PROPOSED PROJECT INCLUDES: • REMOVE (3) EXISTING ANTENNAS AT 177'-0". • REMOVE (1) EXISTING DUS41 IN EXISTING CABINET. • RELOCATE (3) TMAS AT 177'-0" • INSTALL (3) NEW ANTENNAS AT 177'-0". • INSTALL (3) NEW RRUS AT GROUND LEVEL. • INSTALL (3) NEW TMAS AT 177'-0". • INSTALL (3) NEW TMAS AT 177'-0". • INSTALL (1) NEW HCS 6x12 HYBRID CABLE FOR NEW ANTENNAS. • INSTALL (1) NEW PPC CABINET. • INSTALL (2) NEW BB 6630S IN NEW CABINET.	ALL DRAWINGS CONTAINED HEREIN ARE FORMATTED FOR 11X17. CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON THE JOB SITE AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME.	PLANNING: THE FOLLOWING PARTIES HEREE AND AUTHORIZE THE CONTRAC DESCRIBED HEREIN. ALL DOC LOCAL BUILDING DEPARTMENT A CALL CONNI (800) CALL 3 BEFO

2019

Oct

<u>GENERAL NOTES:</u> 1. SUBJECT PROPERTY IS KNOWN AS BLOCK TBD LOT TBD AS SHOWN ON THE DEEP RIVER TOWNSHIP TAX MAP AND IS SITUATED AT 15 PENT ROAD, DEEP RIVER, CT 06417.

- 2. APPLICANT:
- TOWER OWNER:
- FACILITY.
- CONSTRUCTION"
- - 6.A. CURRENT PREVAILING MUNICIPAL AND/OR COUNTY SPECIFICATIONS, STANDARDS, AND REQUIREMENTS. 6.B. CURRENT PREVAILING UTILITY COMPANY AUTHORITY
- INEFFECTIVE.
- FACILITY.
- SAFETY
- AND FROM CROWN CASTLE INSPECTION PHOTOS.
- SHOWN PRIOR TO CONSTRUCTION ACTIVITIES.

T-MOBILE A DELAWARE LIMITED LIABILITY COMPANY 4 SYLVAN WAY PARSIPPANY, NEW JERSEY 07054 (973) 397-4800

CROWN CASTLE INTERNATIONAL

• THE APPLICANT IS TO UPDATE THEIR NETWORK BY INSTALLING THREE (3) NEW PANEL ANTENNAS, THREE (3) TMAS, THREE (3) RRUS, AND ONE (1) ADDITIONAL CABLE MOUNTED ON AN EXISTING MONOPOLE.

3. THIS FACILITY SHALL BE VISITED ON THE AVERAGE OF ONCE A MONTH FOR MAINTENANCE AND SHALL BE MONITORED FROM A REMOTE

4. THE EXISTING SITE IS LOCATED AT LATITUDE OF 41.372826" N± AND LONGITUDE OF 72.434437' $W\pm$. THE HORIZONTAL DATUM ARE IN TERMS OF NORTH AMERICAN DATUM OF 1983 (NAD 83).

5. THIS SET OF PLANS HAS BEEN PREPARED FOR THE PURPOSES OF MUNICIPAL AND AGENCY REVIEW AND APPROVAL. THIS SET OF PLANS SHALL NOT BE UTILIZED AS CONSTRUCTION DOCUMENTS UNTIL ALL CONDITIONS OF APPROVAL HAVE BEEN SATISFIED AND EACH OF THE DRAWINGS HAVE BEEN REVISED TO INDICATED "ISSUED FOR

6. ALL MATERIALS, WORKMANSHIP, AND CONSTRUCTION FOR THE SITE IMPROVEMENTS SHOWN HEREON SHALL BE IN ACCORDANCE WITH:

SPECIFICATIONS, STANDARDS AND REQUIREMENTS.

7. THE CONTRACTOR SHALL NOTIFY B+T GROUP, P.A. IMMEDIATELY IF ANY FIELD-CONDITIONS ENCOUNTERED DIFFER FROM THOSE REPRESENTED HEREON, AND/OR IF SUCH CONDITIONS WOULD OR COULD RENDER THE DESIGNS SHOWN HEREON INAPPROPRIATE AND/OR

8. THE CONTRACTOR IS RESPONSIBLE TO PROTECT, REPAIR AND/OR REPLACE ANY DAMAGED STRUCTURES, UTILITIES OR LANDSCAPED AREA WHICH MAY BE DISTURBED DURING THE CONSTRUCTION OF THIS

9. THE CONSTRUCTION CONTRACTOR IS SOLELY RESPONSIBLE FOR DETERMINING ALL CONSTRUCTION MEANS AND METHODS. THE CONSTRUCTION CONTRACTOR IS ALSO RESPONSIBLE FOR ALL JOB SITE

10. SITE INFORMATION SHOWN TAKEN FROM CROWN CASTLE SITE PLANS

11. NO GUARANTEE IS MADE NOR SHOULD BE ASSUMED AS TO THE COMPLETENESS OR ACCURACY OF THE HORIZONTAL OR VERTICAL LOCATIONS. ALL PARTIES UTILIZING THIS INFORMATION SHALL FIELD VERIFY THE ACCURACY AND COMPLETENESS OF THE INFORMATION

12. ALL IMPROVEMENTS SHALL BE SUBJECT TO INSPECTION AND APPROVAL BY THE TOWNSHIP ENGINEER WHO WILL BE GIVEN PROPER NOTIFICATION PRIOR TO THE START OF ANY CONSTRUCTION.

	LEGEND							
	EXISTING/DEMOLITION NOTES		INSTALLATION NOTES					
A	EXISTING EMS WIRELESS RR90–17–02DP ANTENNA TO REMAIN (TOTAL OF 3)	1	INSTALL RFS APXVAARR24_43-U-NA20 (8 FT) ANTENNAS ON EXISTING MOUNT. PROVIDE NEW 2 7/8" OD SCH.40 PIPE MAST (LENGTH TO BE V.I.F) (TYP. OF 1 PER SECTOR, TOTAL OF 3)					
B	EXISTING COMMSCOPE LNX-6515DS-VTM ANTENNA TO BE REMOVED (TOTAL OF 3)	2	INSTALL NEW ERICSSON KRY 112 144/1 TMA BEHIND ANTENNA (TYP. OF 1 PER SECTOR, TOTAL OF 3)					
\odot	EXISTING ANDREW LDF7–50A COAX CABLES TO REMAIN (TOTAL OF 12)	3	INSTALL RADIO 4449 B12/B71 (TYP. OF 1 PER SECTOR, TOTAL OF 3)					
D	EXISTING (3) TWIN PCS KRY 112 489/2 TMA TO BE RELOCATED.	4	INSTALL EXISTING (3) TWIN PCS KRY 112 489/2 TMA					
		5	INSTALL (1) HCS 6x12 HYBRID FIBER TRUNK FROM EQUIPMENT TO ANTENNAS FOLLOWING EXISTING ROUTING					
		6	INSTALL (3) 4415 B66A RADIOS ON PROPOSED H–FRAME. RE: 1/A–4.1					

ANTENNA AND CABLE SCHEDULE											
SECTOR	POSITION	EXISTING ANTENNAS	PROPOSI	PROPOSED ANTENNA CONFIGURATION		M-TILT	ANTENNA CENTERLINE	TMA/RRU	CABLES	JUMPER TYPE	CABLE LENGTH
30° – ALPHA	A1	EMS RR90-17-XXDP		_	2*	0"		0/0	_	_	
	A2	RFS APXVAARR24_43-U-NA20	LTE UMTS	B71+ B12 B66A	2/2/2	0.		2/1	(1) 6x12 HCS (4) 1 5/8 COAX	(4) COAX (1) FIBER	227'-0"
130* 0574	B1	EMS RR90-17-XXDP	_	_	2*	0.	• 177'-0"	0/0	_	_	_
130 - BEIA	B2	RFS APXVAARR24_43-U-NA20	LTE UMTS	B71+ B12 B66A	2/2/2	0.		2/1	SHARED FIBER (4) 1 5/8" COAX	(4) COAX (1) FIBER	227'-0"
710. 04444	C1	EMS RR90-17-XXDP		_	2*	0.	477' 0"	0/0	_	_	_
310° — GAMMA	C2	RFS APXVAARR24_43-U-NA20	LTE UMTS	B71+ B12 B66A	2/2/2	o	0°	2/1	SHARED FIBER (4) 1 5/8" COAX	(4) COAX (1) FIBER	227'-0"
	·						. <u> </u>				

SPECIFICATIONS						
ACTURER	ERICSSON					
EL #	KRY 112 144/1					
DTH	6.1"					
PTH	2.8"					
GHT	6.93"					
IGHT	74 LBS					

TOWER MOUNTED AMP. (TMA)

- ALL MOUNTING HARDWARE. ALU INSTALLS RRH AND MAKES CABLE TERMINATIONS.

- GALVANIZED FINISH.
- BRACKET. SUBCONTRACTOR SHALL SUPPLY.

Exhibit D

Structural Analysis Report

Date: May 10, 2019

Darcy Tarr Crown Castle 3530 Toringdon Way Suite 300 Charlotte, NC 28277		AW Solutions 300 Crown Oak Longwood, FL 3 (407) 260-0231	c Centre Drive 32750
Subject:	Structural Analysis Report		
Carrier Designation:	<i>T-Mobile</i> Co-Locate Carrier Site Number: Carrier Site Name:		CT11237C Deep River/Rt 9
Crown Castle Designation:	Crown Castle BU Number: Crown Castle Site Name: Crown Castle JDE Job Number Crown Castle Work Order Num Crown Castle Order Number:	er: mber:	823666 Deep River/Rt 9 559236 1739713 479818 Rev. 0
Engineering Firm Designation:	AW Solutions Project Number	r:	823666
Site Data:	15 Pent Rd., Deep River, Midd Latitude <i>41° 22' 22.17"</i> , Longi 178 Foot - Monopole Tower	llesex County, 0 tude -72° 26′ 3.9	CT 07″

Ms. Tarr,

AW Solutions is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity

Structure Rating (max from all components) = 74.1%

This analysis utilizes an ultimate 3-second gust wind speed of 130 mph as required by the 2018 Connecticut State Building Code (2015 IBC). Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Charles Springer, E.I. / AL

Respectfully submitted by:

Alan Lockrem, P.E. Director of Engineering

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) Table 5 – Tower Component Stresses vs. Capacity

- 4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 178 ft Monopole tower designed by PIROD MANUFACTURES INC.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	11
Wind Speed:	130 mph
Exposure Category:	В
Topographic Factor:	1
Ice Thickness:	1.5 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		1	tower mounts	Platform Mount [LP 405-1]		
178.0	178.0	2	tower mounts	Side Arm Mount [SO 310- 1]		1-5/8
		1	tower mounts	Miscellaneous [NA 510-1]- 18'		
		3	ems wireless	RR90-17-02DP w/ Mount Pipe	13	
		3	ericsson	KRY 112 144/1		
	177.0	3	ericsson	KRY 112 489/2		
		3	ericsson	RADIO 4449 B12/B71	-	
		3	rfs celwave	APXVAARR24_43-U- NA20 w/ Mount Pipe		

 Table 2 - Other Considered Equipment

	Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
			3	alcatel lucent	B4 RRH2X60-4R		
		170.0	3	antel	BXA-70063/6CF w/ Mount Pipe	13	1-5/8
	170.0		6	commscope	HBXX-6517DS-A2M w/ Mount Pipe		
			3	commscope	LNX-6514DS-A1M w/ Mount Pipe		
		1	raycap	RHSDC-3315-PF-48	1		
			1	tower mounts	Platform Mount [LP 303-1]		

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)																	
		3	cci antennas	TPA-65R-LCUUUU-H8																			
		1	commscope	SBNH-1D6565C																			
		3	ericsson	RRUS 11																			
		3	ericsson	RRUS 32																			
		3	ericsson	RRUS 32 B2																			
		3	kaelus	DBC0061F1V51-2		3/8 7/16 1-5/8																	
	160.0	2	kmw communications	AM-X-CD-17-65-00T-RET	2 4 12																		
160.0		6	powerwave technologies	7020.00																			
		3	powerwave technologies	7770.00																			
																			6	powerwave technologies	LGP21401		
r -		3	powerwave technologies	LGP21903																			
		2	raycap	DC6-48-60-18-8F																			
		1	tower mounts	Platform Mount [LP 301-1]																			
150.0	150.0	3	rfs celwave	APXV18-206517LS w/ Mount Pipe	-	-																	
		1	tower mounts	Pipe Mount [PM 602-3]																			

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
4-GEOTECHNICAL REPORTS	Dr. Clarence Welti, PE	3585271	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	PIROD	3845247	CCISITES
4-TOWER MANUFACTURER DRAWINGS	PIROD	3585272	CCISITES
4-TOWER STRUCTURAL ANALYSIS REPORT	Crown Castle	7169337	CCISITES

3.1) Analysis Method

tnxTower (version 8.0.5.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were built and maintained in accordance with the manufacturer's specifications.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 3) Base plate design methodology of the manufacturer has been reviewed and found to be an acceptable means of designing to resist the full capacity of the bolts and shaft.
- 4) Soil Friction angle of 40 degrees was conservatively assumed.
- 5) Base plate size and grade per previous structural analysis (Ref. Doc. 7169337).

This analysis may be affected if any assumptions are not valid or have been made in error. AW Solutions should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Section No.	Elevation (ft)	Component Type	Size	Critical Element	Р (К)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	178 - 164.25	Pole	TP26x12.75x0.25	1	-6.14	1118.08	12.3	Pass
L2	164.25 - 129.667	Pole	TP34.0625x22.6894x0.3125	2	-14.61	1985.41	42.6	Pass
L3	129.667 - 96	Pole	TP41.75x32.2749x0.375	3	-22.38	2938.76	49.4	Pass
L4	96 - 63.1667	Pole	TP49.0625x39.8209x0.375	4	-31.67	3460.50	59.4	Pass
L5	63.1667 - 31.1667	Pole	TP56.125x46.9571x0.375	5	-42.28	3964.23	66.9	Pass
L6	31.1667 - 0	Pole	TP62.9375x53.847x0.375	6	-56.61	4574.01	74.1	Pass
							Summary	
						Pole (L6)	74.1	Pass
						Rating =	74.1	Pass

Table 4 - Section Capacity (Summary) (Monopole Tower)

Table 5 - Tower Component Stresses vs. Capacity (Monopole Tower) - LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	66.9	Pass
1,2	Base Plate	0	74.1	Pass
1	Base Foundation Structural	0	42.6	Pass
1	Base Foundation Soil Interaction	0	67.0	Pass

Structure Rating (max from all components) =	74.1%
--	-------

Notes:

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the % capacity consumed.

2) Base plates are assumed to have the same capacity as their respective shaft.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

	MATERIAL STRENGTH						
GRADE	Fy	Fu	GRADE	Fy	Fu		
A572-65 65	65 ksi	80 ksi					

TOWER DESIGN NOTES

- Tower is located in Middlesex County, Connecticut.
 Tower designed for Exposure B to the TIA-222-H Standard.
- 3. Tower designed for a 130 mph basic wind in accordance with the TIA-222-H Standard. 4. Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase

- Topographic Category 1 with Crest Height of 0'
 Topographic Category 1 with Crest Height of 0'

AXIAL 90 K

AXIAL 57 K

MOMENT

MOMENT

4470 kip-ft

🖌 1081 kip-ft

8. TIA-222-H Annex S 9. TOWER RATING: 74.1%

A Palutiona	AW Solutions	^{Job:} BU823666		
	300 Crown Oak Centre Drive	Project: WO1739713		
territoria de la composición d	Longwood, FL 32750	Client: Crown Castle	Drawn by: Charles.Springer	App'd:
AW Solutions	Phone: (407) 260-0231	^{Code:} TIA-222-H	^{Date:} 05/10/19	Scale: NTS
	FAX:	Path: C:\Users\charles.springer\Desktop\BU823	666 - WO1739713\ENGINEERING\BU823666 - WO1739713.er	Dwg No. E-1

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- 1) Tower is located in Middlesex County, Connecticut.
- 2) Tower base elevation above sea level: 95'.
- 3) Basic wind speed of 130 mph.
- 4) Risk Category II.
- 5) Exposure Category B.
- 6) Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- 7) Topographic Category: 1.
- 8) Crest Height: 0'.
- 9) Nominal ice thickness of 1.5000 in.
- 10) Ice thickness is considered to increase with height.
- 11) Ice density of 56 pcf.
- 12) A wind speed of 50 mph is used in combination with ice.
- 13) Temperature drop of 50 °F.
- 14) Deflections calculated using a wind speed of 60 mph.
- 15) TIA-222-H Annex S.
- 16) A non-linear (P-delta) analysis was used.
- 17) Pressures are calculated at each section.
- 18) Stress ratio used in pole design is 1.05.
- 19) Tower analysis based on target reliabilities in accordance with Annex S.
- 20) Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.
- 21) Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile	Distribute Leg Loads As Uniform Assume Legs Pinned Assume Rigid Index Plate Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension Bypass Mast Stability Checks Use Azimuth Dish Coefficients Project Wind Area of Appurt. Autocalc Torque Arm Areas	Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption
Leg Bolts Are At Top Of Section	Add IBC .6D+W Combination	Poles
Secondary Horizontal Braces Leg	Sort Capacity Reports By Component	√ Include Shear-Torsion Interaction

Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

 √ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	

Section	Elevation	Section	Splice	Number	Top	Bottom Diameter	Wall	Bend	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
L1	178'-164'3"	13'9"	2'11-1/32"	18	12.7500	26.0000	0.2500	1.0000	A572-65 (65 ksi)
L2	164'3"-129'8- 1/32''	37'6"	3'9-31/32"	18	22.6894	34.0625	0.3125	1.2500	À572-65 (65 ksi)
L3	129'8-1/32''-96'	37'6"	4'8-1/32"	18	32.2749	41.7500	0.3750	1.5000	À572-65 (65 ksi)
L4	96'-63'2-1/32"	37'6"	5'6''	18	39.8209	49.0625	0.3750	1.5000	À572-65 (65 ksi)
L5	63'2-1/32"- 31'2-1/32"	37'6"	6'3"	18	46.9571	56.1250	0.3750	1.5000	À572-65 (65 ksi)
L6	31'2-1/32"-0'	37'5-1/32''		18	53.8470	62.9375	0.3750	1.5000	A572-65 (65 ksi)

Tapered Pole Properties

Section	Tin Dia	Area	1	r	С	I/C	./	lt/Q	W	w/t
000000	in	in ²	in⁴	in	in	in ³	in⁴	in ²	in	
L1	12.9081	9.9187	195.8008	4.4375	6.4770	30.2302	391.8592	4.9603	1.8040	7.216
	26.3625	20.4326	1711.6544	9.1412	13.2080	129.5922	3425.5610	10.2183	4.1360	16.544
L2	23.8894	22.1951	1404.0863	7.9438	11.5262	121.8168	2810.0202	11.0996	3.4433	11.019
	34.5398	33.4758	4817.4335	11.9812	17.3038	278.4040	9641.2058	16.7411	5.4450	17.424
L3	33.6985	37.9689	4881.3984	11.3245	16.3957	297.7251	9769.2198	18.9880	5.0204	13.388
	42.3362	49.2466	10650.982 2	14.6881	21.2090	502.1916	21315.979 3	24.6280	6.6880	17.835
L4	41.5451	46.9505	9229.5502	14.0033	20.2290	456.2533	18471.244 8	23.4797	6.3485	16.929
	49.7615	57.9503	17355.137 8	17.2841	24.9238	696.3293	34733.111 9	28.9807	7.9750	21.267
L5	48.9890	55.4443	15199.586 5	16.5366	23.8542	637.1873	30419.172 9	27.7274	7.6044	20.279
	56.9330	66.3564	26056.150 6	19.7913	28.5115	913.8821	52146.586 5	33.1845	9.2180	24.581
L6	56.1617	63.6451	22990.857 9	18.9826	27.3543	840.4848	46011.967 8	31.8286	8.8171	23.512
	63.8506	74.4650	36822.894 6	22.2097	31.9722	1151.7142	73694.241 7	37.2396	10.4170	27.779

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft²	in				in	in	in
L1 178'-			1	1	1			
164'3"								
L2 164'3"-			1	1	1			
129'8-1/32"								
L3 129'8-			1	1	1			
1/32"-96'								
L4 96'-63'2-			1	1	1			
1/32"								
L5 63'2-1/32"-			1	1	1			
31'2-1/32"								
L6 31'2-1/32"-			1	1	1			
0'								

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From	Componen t	Placement	Total Number	Number Per Row	Start/En d	Width or Diamete	Perimete r	Weight
		Torque	Туре	ft			Position	r		plf
		Calculation						in	in	
178										
AVA7-50(1-5/8)	С	No	Surface Ar (CaAa)	178' - 0'	6	4	-0.100 0.000	2.0100		0.70
LDF7-50A(1-5/8)	A	No	Surface Ar (CaAa)	160' - 0'	4	4	-0.400 -0.300	1.9800		0.82
PiROD Ladder	В	No	Surface Ar (CaAa)	178' - 0'	1	1	0.000 0.000	1.2500		0.70

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Total Number		C _A A _A	Weight
	Leg		Torque Calculation	Туре	ft			ft²/ft	plf
LDF7-50A(1-5/8)	С	No	No	Inside Pole	178' - 0'	7	No Ice	0.00	0.82
							1/2" Ice	0.00	0.82
							1" Ice	0.00	0.82
170							2" Ice	0.00	0.82
LDF7-50A(1-5/8)	В	No	No	Inside Pole	170' - 0'	13	No Ice	0.00	0.82
							1/2" Ice	0.00	0.82
							1" Ice	0.00	0.82
							2" Ice	0.00	0.82
160									
LDF7-50A(1-5/8)	А	No	No	Inside Pole	160' - 0'	8	No Ice	0.00	0.82
· · · /							1/2" Ice	0.00	0.82
							1" Ice	0.00	0.82
							2" Ice	0.00	0.82
FB-L98B-002-	А	No	No	Inside Pole	160' - 0'	2	No Ice	0.00	0.06
75000(3/8)							1/2" Ice	0.00	0.06
()							1" Ice	0.00	0.06
							2" Ice	0.00	0.06
WR-VG122ST-	А	No	No	Inside Pole	160' - 0'	4	No Ice	0.00	0.14
BRDA(7/16)							1/2" Ice	0.00	0.14
()							1" Ice	0.00	0.14
							2" Ice	0.00	0.14

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A _R	AF	C _A A _A	CAAA	Weight
Sectio	Elevation				In Face	Out Face	
n	ft		ft²	ft²	ft²	ft²	K
L1	178'-164'3"	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	1.719	0.000	0.07
		С	0.000	0.000	11.055	0.000	0.14
L2	164'3"-129'8-	А	0.000	0.000	24.024	0.000	0.32
	1/32"	В	0.000	0.000	4.323	0.000	0.39
		С	0.000	0.000	27.805	0.000	0.34
L3	129'8-1/32"-96'	Α	0.000	0.000	26.664	0.000	0.35
		В	0.000	0.000	4.208	0.000	0.38
		С	0.000	0.000	27.068	0.000	0.33
L4	96'-63'2-1/32"	Α	0.000	0.000	26.004	0.000	0.35
		В	0.000	0.000	4.104	0.000	0.37
		С	0.000	0.000	26.398	0.000	0.33
L5	63'2-1/32"-31'2-	А	0.000	0.000	25.344	0.000	0.34
	1/32"	В	0.000	0.000	4.000	0.000	0.36
		С	0.000	0.000	25.728	0.000	0.32
L6	31'2-1/32"-0'	Α	0.000	0.000	24.684	0.000	0.33

Tower	Tower	Face	A _R	AF	C _A A _A	C _A A _A	Weight
Sectio	Elevation				In Face	Out Face	
п	ft		ft ²	ft²	ft ²	ft ²	K
		В	0.000	0.000	3.896	0.000	0.35
		С	0.000	0.000	25.058	0.000	0.31

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A _R	AF	C _A A _A	C _A A _A	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	-
n	ft	Leg	in	ft ²	ft²	ft ²	ft ²	К
L1	178'-164'3"	А	1.502	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	5.850	0.000	0.14
		С		0.000	0.000	18.983	0.000	0.37
L2	164'3"-129'8-	Α	1.479	0.000	0.000	41.423	0.000	0.75
	1/32"	В		0.000	0.000	14.715	0.000	0.57
		С		0.000	0.000	47.746	0.000	0.93
L3	129'8-1/32"-96'	Α	1.441	0.000	0.000	45.782	0.000	0.83
		В		0.000	0.000	14.170	0.000	0.55
		С		0.000	0.000	46.287	0.000	0.90
L4	96'-63'2-1/32"	Α	1.392	0.000	0.000	44.335	0.000	0.79
		В		0.000	0.000	13.568	0.000	0.53
		С		0.000	0.000	44.827	0.000	0.86
L5	63'2-1/32"-31'2-	Α	1.321	0.000	0.000	42.815	0.000	0.76
	1/32"	В		0.000	0.000	12.908	0.000	0.51
		С		0.000	0.000	43.295	0.000	0.82
L6	31'2-1/32"-0'	Α	1.180	0.000	0.000	41.150	0.000	0.71
		В		0.000	0.000	12.132	0.000	0.48
		С		0.000	0.000	41.618	0.000	0.77

Feed Line Center of Pressure

Section	Elevation	CPx	CPz	CP _X Ice	CPz Ice
	ft	in	in	in	in
L1	178'-164'3"	0.9887	4.1012	1.1684	2.9524
L2	164'3"-129'8-1/32"	-2.2568	4.2517	-1.4204	3.1437
L3	129'8-1/32"-96'	-2.8384	4.6205	-1.9089	3.5196
L4	96'-63'2-1/32"	-3.0321	4.8971	-2.0929	3.8154
L5	63'2-1/32"-31'2- 1/32"	-3.1834	5.1131	-2.2454	4.0532
L6	31'2-1/32"-0'	-3.3055	5.2876	-2.3770	4.2466

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	-	Segment	No Ice	Ice
			Elev.		
L1	2	AVA7-50(1-5/8)	164.25 -	1.0000	1.0000
			178.00		
L1	12	PiROD Ladder	164.25 -	1.0000	1.0000
			178.00		
L1	8	LDF7-50A(1-5/8)	164.25 -	1.0000	1.0000
			160.00		
L2	2	AVA7-50(1-5/8)	129.67 -	1.0000	1.0000
			164.25		
Feed Line	Description	Feed Line	Ka	Ka	
------------	--	--	--	---	
Record No.		Segment	No Ice	lce	
		Elev.			
8	LDF7-50A(1-5/8)	129.67 -	1.0000	1.0000	
		160.00			
12	PiROD Ladder	129.67 -	1.0000	1.0000	
0		164.25	1 0000	1 0000	
2	AVA7-50(1-5/8)	90.00 -	1.0000	1.0000	
Q		129.07	1 0000	1 0000	
0	EDI 7-30A(1-3/0)	129.67	1.0000	1.0000	
12	PiROD Ladder	96 00 -	1 0000	1 0000	
		129.67			
2	AVA7-50(1-5/8)	63.17 -	1.0000	1.0000	
		96.00			
8	LDF7-50A(1-5/8)	63.17 -	1.0000	1.0000	
		96.00			
12	PiROD Ladder	63.17 -	1.0000	1.0000	
		96.00	4 0000	4 0000	
2	AVA7-50(1-5/8)	31.17 -	1.0000	1.0000	
0		03.17	1 0000	1 0000	
0	LDF7-50A(1-5/6)	51.17 - 63.17	1.0000	1.0000	
12	PiROD Ladder	31 17 -	1 0000	1 0000	
12		63.17	1.0000	1.0000	
	Feed Line Record No. 8 12 2 8 12 2 8 12 2 8 12 2 8 12	Feed Line Record No. Description 8 LDF7-50A(1-5/8) 12 PiROD Ladder 2 AVA7-50(1-5/8) 8 LDF7-50A(1-5/8) 12 PiROD Ladder 2 AVA7-50(1-5/8) 12 PiROD Ladder 2 AVA7-50(1-5/8) 8 LDF7-50A(1-5/8) 12 PiROD Ladder 2 AVA7-50(1-5/8) 8 LDF7-50A(1-5/8) 8 LDF7-50A(1-5/8) 12 PiROD Ladder 2 AVA7-50(1-5/8) 12 PiROD Ladder 2 AVA7-50(1-5/8) 12 PiROD Ladder 2 PiROD Ladder	Feed Line Record No. Description Feed Line Segment Elev. 8 LDF7-50A(1-5/8) 129.67 - 160.00 12 PiROD Ladder 129.67 - 164.25 2 AVA7-50(1-5/8) 96.00 - 129.67 8 LDF7-50A(1-5/8) 96.00 - 129.67 12 PiROD Ladder 96.00 - 129.67 12 PiROD Ladder 96.00 - 129.67 2 AVA7-50(1-5/8) 63.17 - 96.00 3 LDF7-50A(1-5/8) 63.17 - 96.00 4 DF7-50A(1-5/8) 63.17 - 96.00 12 PiROD Ladder 63.17 - 96.00 3 LDF7-50A(1-5/8) 63.17 - 63.17 8 LDF7-50A(1-5/8) 31.17 - 63.17 12 PiROD Ladder 63.17 9 FiROD Ladder 31.17 - 63.17	Feed Line Record No. Description Feed Line Segment Elev. K_8 8 LDF7-50A(1-5/8) 129.67 - 160.00 1.0000 12 PiROD Ladder 129.67 - 164.25 1.0000 2 AVA7-50(1-5/8) 96.00 - 129.67 1.0000 8 LDF7-50A(1-5/8) 96.00 - 129.67 1.0000 12 PiROD Ladder 96.00 - 129.67 1.0000 2 AVA7-50(1-5/8) 63.17 - 96.00 1.0000 2 AVA7-50(1-5/8) 63.17 - 96.00 1.0000 12 PiROD Ladder 63.17 - 96.00 1.0000 2 AVA7-50(1-5/8) 63.17 - 96.00 1.0000 2 AVA7-50(1-5/8) 63.17 - 1.0000 1.0000 2 AVA7-50(1-5/8) 63.17 - 96.00 1.0000 2 AVA7-50(1-5/8) 31.17 - 1.0000 1.0000 31.17 1.0000 63.17 1.0000 12 PiROD Ladder 31.17 - 63.17 1.0000 12 PiROD Ladder 31.17 - 63.17 1.0000	

			Disc	rete Tov	ver Loa	ds			
Description	Face	Offcat	Offecter	Azimuth	Placament		C.A.	C.A.	Moight
Description	or Leg	Туре	Horz Lateral Vert	Adjustmen t	Flacement		Front	Side	weight
			ft ft ft	۰	ft		ft²	ft²	ĸ
Misc	-								
Lightning Rod 5/8" x 5' on	С	From Leg	0.00	0.0000	178'	No Ice	2.04	2.04	0.05
6 pole			0,			1/2"	2.91	2.91	0.08
			3			1" loo	3.78 5.10	3.78 5.10	0.10
						2" Ico	5.19	5.19	0.10
178						2 100			
RR90-17-02DP w/ Mount	А	From Lea	4.00	0.0000	178'	No Ice	4.59	3.32	0.03
Pipe			0'			1/2"	5.02	4.09	0.07
·			-1'			Ice	5.44	4.78	0.12
						1" lce 2" lce	6.30	6.23	0.22
RR90-17-02DP w/ Mount	В	From Leg	4.00	0.0000	178'	No Ice	4.59	3.32	0.03
Pipe		-	0'			1/2"	5.02	4.09	0.07
			-1'			Ice	5.44	4.78	0.12
						1" Ice	6.30	6.23	0.22
						2" Ice			
RR90-17-02DP w/ Mount	С	From Leg	4.00	0.0000	178'	No Ice	4.59	3.32	0.03
Pipe			0'			1/2"	5.02	4.09	0.07
			-1'			lce	5.44	4.78	0.12
						1 ICe	6.30	0.23	0.22
(2) 6' x 2" Mount Pino	^	From Log	4 00	0 0000	179'	Z ICE	1 / 3	1 / 2	0.02
	A	FIOIII Leg	4.00	0.0000	170	1/2"	1.43	1.43	0.02
			0'			lce	2 29	2 29	0.05
			0			1" Ice	3.06	3 06	0.09
						2" Ice	0.00	0.00	0.00
(2) 6' x 2" Mount Pipe	В	From Lea	4.00	0.0000	178'	No Ice	1.43	1.43	0.02
		- 5	0'		-	1/2"	1.92	1.92	0.03
			0'			Ice	2.29	2.29	0.05

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	۰	ft		ft²	ft²	К
			11			1" lce 2" lce	3.06	3.06	0.09
6' x 2" Mount Pipe	С	From Lea	4 00	0 0000	178'	No Ice	1 43	1 43	0.02
0 // 1 // (Po	Ū	1.000 209	0'	0.0000		1/2"	1.92	1.92	0.03
			0'			Ice	2.29	2.29	0.05
						1" lce 2" lce	3.06	3.06	0.09
3' x 2" Pipe Mount	Α	From Leg	4.00	0.0000	178'	No Ice	0.58	0.58	0.01
			0'			1/2"	0.77	0.77	0.02
			0'			lce	0.97	0.97	0.02
						1" ICe	1.39	1.39	0.05
3' x 2" Pipe Mount	в	From Lea	4 00	0 0000	178'	No Ice	0.58	0.58	0.01
	D	Tiom Log	-1.00	0.0000	170	1/2"	0.00	0.00	0.02
			0'			Ice	0.97	0.97	0.02
						1" Ice	1.39	1.39	0.05
						2" Ice			
3' x 2" Pipe Mount	С	From Leg	4.00	0.0000	178'	No Ice	0.58	0.58	0.01
			0'			1/2"	0.77	0.77	0.02
			0			1" Ico	1 30	0.97	0.02
						2" Ice	1.00	1.00	0.00
Platform Mount [LP 405-1]	С	None		0.0000	178'	No Ice	20.80	20.80	1.80
						1/2"	28.10	28.10	2.07
						Ice	35.40	35.40	2.33
						1" Ice	50.00	50.00	2.86
Missellenseus [NA E10 1]	C	Nana		0.0000	170	2" Ice	6 75	6.75	0.20
18'	C	None		0.0000	170	1/2"	0.75	0.75	0.29
10						lce	12.38	12.38	0.48
						1" Ice 2" Ice	17.99	17.99	0.66
Side Arm Mount [SO 310-	А	From Leg	0.50	0.0000	178'	No Ice	2.97	2.99	0.06
1]		5	0'			1/2"	4.40	4.58	0.08
_			0'			Ice	5.83	6.17	0.11
						1" Ice	8.69	9.35	0.17
Side Arm Mount [SO 310	P	From Log	0.50	0 0000	179'	2" Ice	2.07	2.00	0.06
31de Ann Mount [30 310- 1]	Б	FIOIII Leg	0.50	0.0000	170	1/2"	4 40	4.58	0.00
.1			0'			lce	5.83	6.17	0.11
						1" Ice	8.69	9.35	0.17
						2" Ice			
KRY 112 489/2	A	From Leg	4.00	0.0000	178'	No Ice	0.56	0.37	0.02
			0' 1'			1/2"	0.66	0.45	0.02
			-1			1" Ice	1.00	0.54	0.05
						2" Ice	1.00	0.70	0.00
KRY 112 489/2	В	From Leg	4.00	0.0000	178'	No Ice	0.56	0.37	0.02
		_	0'			1/2"	0.66	0.45	0.02
			-1'			lce	0.76	0.54	0.03
						1" Ice	1.00	0.75	0.05
KRY 112 489/2	C	From Lea	4 00	0 0000	178'	∠ ice No lce	0.56	0.37	0.02
	0	TIOIN LOg	00	0.0000	170	1/2"	0.66	0.45	0.02
			-1'			lce	0.76	0.54	0.03
						1" Ice	1.00	0.75	0.05
APXVAARR24 43-11-NA20	Δ	From Lea	4 00	0 0000	178'	∠ ice No lce	20.48	11 02	0 16
w/ Mount Pine	А	1 Ioni Ley	0'	0.0000	170	1/2"	21.23	12.55	0.30
			-1'			lce	21.99	14.10	0.44
						1" Ice	23.44	16.45	0.78
	-					2" Ice			
APXVAARR24_43-U-NA20	В	From Leg	4.00	0.0000	178'	No Ice	20.48	11.02	0.16
w/ wount Pipe			-1'			i/2	21.23 21.99	12.55	0.50
						100			J. I T

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft	٥	ft		ft²	ft²	К
			11			1" Ice 2" Ice	23.44	16.45	0.78
APXVAARR24 43-U-NA20	С	From Leg	4.00	0.0000	178'	No Ice	20.48	11.02	0.16
w/ Mount Pipe		-	0'			1/2"	21.23	12.55	0.30
			-1'			lce	21.99	14.10	0.44
						2" Ice	23.44	16.45	0.78
KRY 112 144/1	А	From Leg	4.00	0.0000	178'	No Ice	0.35	0.17	0.01
		-	0'			1/2"	0.43	0.23	0.01
			-1'			lce	0.51	0.30	0.02
						2" Ice	0.70	0.40	0.03
KRY 112 144/1	В	From Leg	4.00	0.0000	178'	No Ice	0.35	0.17	0.01
			0'			1/2"	0.43	0.23	0.01
			-1'			lce	0.51	0.30	0.02
						2" Ice	0.70	0.40	0.03
KRY 112 144/1	С	From Leg	4.00	0.0000	178'	No Ice	0.35	0.17	0.01
			0'			1/2"	0.43	0.23	0.01
			-1'			ICE 1" ICE	0.51	0.30	0.02
						2" Ice	0.70	0.40	0.05
RADIO 4449 B12/B71	А	From Leg	4.00	0.0000	178'	No Ice	1.65	1.30	0.08
			0'			1/2"	1.81	1.44	0.09
			-1			1" Ice	2 34	1.60	0.11
						2" Ice	2.01	1.02	0.10
RADIO 4449 B12/B71	В	From Leg	4.00	0.0000	178'	No Ice	1.65	1.30	0.08
			0' _1'			1/2" Ice	1.81	1.44	0.09
			-1			1" Ice	2.34	1.92	0.16
						2" Ice			
RADIO 4449 B12/B71	С	From Leg	4.00	0.0000	178'	No Ice	1.65	1.30	0.08
			-1'			I/2	1.81	1.44	0.09
						1" Ice	2.34	1.92	0.16
*** 4 + + +						2" Ice			
1/0 BXA-70063/6CF w/ Mount	Δ	From Lea	4 00	0 0000	170'	No Ice	7 82	5 4 1	0.04
Pipe	~	T IOIII LOG	00	0.0000	170	1/2"	8.37	6.56	0.10
·			0'			Ice	8.89	7.42	0.17
						1" Ice	9.94	9.20	0.33
BXA-70063/6CF w/ Mount	в	From Lea	4 00	0 0000	170'	No Ice	7 82	5 41	0.04
Pipe	2		0'	010000		1/2"	8.37	6.56	0.10
			0'			lce	8.89	7.42	0.17
						1" Ice 2" Ice	9.94	9.20	0.33
BXA-70063/6CF w/ Mount	С	From Leg	4.00	0.0000	170'	No Ice	7.82	5.41	0.04
Pipe		-	0'			1/2"	8.37	6.56	0.10
			0'			lce	8.89	7.42	0.17
						2" Ice	9.94	9.20	0.55
(2) HBXX-6517DS-A2M w/	А	From Leg	4.00	0.0000	170'	No Ice	8.77	6.96	0.07
Mount Pipe			0'			1/2"	9.34	8.18	0.14
			0.			ICE 1" ICE	9.89	9.14	0.21
						2" Ice	10.55	11.02	0.40
(2) HBXX-6517DS-A2M w/	В	From Leg	4.00	0.0000	170'	No Ice	8.77	6.96	0.07
Mount Pipe			0'			1/2"	9.34	8.18	0.14
			U			1" Ice	9.09 10.99	9.14 11.02	0.21
						2" Ice			55
(2) HBXX-6517DS-A2M w/	С	From Leg	4.00	0.0000	170'	No Ice	8.77	6.96	0.07
wount Pipe			0.			1/2"	9.34	8.18	0.14

tnxTower Report - version 8.0.5.0

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
			0'			Ice 1" Ice 2" Ice	9.89 10.99	9.14 11.02	0.21 0.40
LNX-6514DS-A1M w/	А	From Leg	4.00	0.0000	170'	No Ice	8.41	7.08	0.06
Mount Pipe			0'			1/2"	8.97	8.27	0.13
			0			1" Ice 2" Ice	9.50 10.59	9.18 11.02	0.39
LNX-6514DS-A1M w/	В	From Leg	4.00	0.0000	170'	No Ice	8.41	7.08	0.06
Mount Pipe			0'			1/2" Ice	8.97 9.50	8.27 0.18	0.13
			0			1" Ice 2" Ice	10.59	11.02	0.39
LNX-6514DS-A1M w/	С	From Leg	4.00	0.0000	170'	No Ice	8.41	7.08	0.06
Mount Pipe			0'			1/2"	8.97	8.27	0.13
			0			1" Ice	10.59	11.02	0.21
						2" Ice			
B4 RRH2X60-4R	A	From Leg	4.00 0'	0.0000	170'	No Ice 1/2"	3.36 3.61	2.00 2.24	0.06 0.08
			0'			Ice	3.88	2.48	0.10
	_		4.00	0.0000	470	1" Ice 2" Ice	4.42	2.97	0.17
B4 RRH2X60-4R	В	From Leg	4.00	0.0000	170'	No Ice	3.36	2.00	0.06
			0'			lce	3.88	2.24	0.08
			-			1" Ice 2" Ice	4.42	2.97	0.17
B4 RRH2X60-4R	С	From Leg	4.00	0.0000	170'	No Ice	3.36	2.00	0.06
			0'			1/2"	3.61	2.24	0.08
			0			1" Ice 2" Ice	4.42	2.40	0.17
RHSDC-3315-PF-48	С	From Leg	4.00	0.0000	170'	No Ice	3.36	2.19	0.03
		-	0'			1/2"	3.60	2.39	0.06
			0'			lce 1" lce 2" lce	3.84 4.34	2.61 3.05	0.09 0.17
Platform Mount [LP 303-1]	С	None		0.0000	170'	No Ice	14.66	14.66	1.25
						1/2"	18.87	18.87	1.48
						Ice	23.08	23.08	1./1
**** 4 0.0****						2" Ice	31.50	31.50	2.10
7770.00	А	From Lea	4.00	0.000	160'	No Ice	5.51	2,93	0.04
			0'			1/2"	5.87	3.27	0.07
			0'			Ice	6.23	3.63	0.11
						1" Ice 2" Ice	6.99	4.35	0.20
7770.00	В	From Leg	4.00	0.0000	160'	No Ice	5.51	2.93	0.04
		U	0'			1/2"	5.87	3.27	0.07
			0'			lce	6.23	3.63	0.11
						1" Ice 2" Ice	6.99	4.35	0.20
7770.00	С	From Leg	4.00	0.0000	160'	No Ice	5.51	2.93	0.04
			0'			1/2"	5.87	3.27	0.07
			0			1" Ice 2" Ice	6.99	4.35	0.20
AM-X-CD-17-65-00T-RET	А	From Leg	4.00	0.0000	160'	No Ice	6.19	3.10	0.06
		5	0'			1/2"	6.78	3.66	0.12
			0'			lce	7.38	4.22	0.19
						1 ICe 2" Ice	0.01	5.39	0.35
AM-X-CD-17-65-00T-RET	С	From Leg	4.00	0.0000	160'	No Ice	6.19	3.10	0.06

178 Ft Monopole Tower Structural Analysis Project Number 1739713, Order 479818, Revision 0

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
			0'			1/2"	6.78	3.66	0.12
			0'			lce	7.38	4.22	0.19
						2" Ice	0.01	5.39	0.35
SBNH-1D6565C	В	From Leg	4.00	0.0000	160'	No Ice	5.67	3.40	0.05
			0'			1/2"	6.20	3.91	0.12
			0'			lce	6.74	4.43	0.19
						2" Ice	1.00	5.49	0.36
RRUS 11	А	From Leg	4.00	0.0000	160'	No Ice	2.78	1.19	0.05
		U	0'			1/2"	2.99	1.33	0.07
			0'			lce	3.21	1.49	0.10
						1" ICe 2" Ice	3.66	1.83	0.15
RRUS 11	В	From Lea	4.00	0.0000	160'	No Ice	2.78	1.19	0.05
		5	0'			1/2"	2.99	1.33	0.07
			0'			Ice	3.21	1.49	0.10
						1" Ice	3.66	1.83	0.15
RRUS 11	C	From Lea	4 00	0 0000	160'	2" ICe No Ice	2 78	1 10	0.05
	0	110III Leg	00	0.0000	100	1/2"	2.99	1.33	0.07
			0'			lce	3.21	1.49	0.10
						1" Ice	3.66	1.83	0.15
	•	Energy Law	4.00	0.0000	400	2" Ice	1 10	0.04	0.01
(2) LGP21401	A	From Leg	4.00	0.0000	160	1/2"	1.10	0.21	0.01
			0'			lce	1.38	0.35	0.02
						1" Ice	1.69	0.52	0.05
	-					2" Ice			
(2) LGP21401	В	From Leg	4.00	0.0000	160'	No Ice	1.10	0.21	0.01
			0			1/2	1.24	0.27	0.02
			0			1" Ice	1.69	0.52	0.05
						2" Ice			
(2) LGP21401	С	From Leg	4.00	0.0000	160'	No Ice	1.10	0.21	0.01
			0'			1/2"	1.24	0.27	0.02
			0			1" Ice	1.50	0.53	0.03
						2" Ice	1.00	0.02	0.00
LGP21903	А	From Leg	4.00	0.0000	160'	No Ice	0.23	0.16	0.01
			0'			1/2"	0.29	0.21	0.01
			0.			ICe 1" Ice	0.36	0.28	0.02
						2" Ice	0.00	0.42	0.05
LGP21903	В	From Leg	4.00	0.0000	160'	No Ice	0.23	0.16	0.01
			0'			1/2"	0.29	0.21	0.01
			0'			lce	0.36	0.28	0.02
						1 ICe 2" Ice	0.53	0.42	0.03
LGP21903	С	From Leg	4.00	0.0000	160'	No Ice	0.23	0.16	0.01
		0	0'			1/2"	0.29	0.21	0.01
			0'			Ice	0.36	0.28	0.02
						1" Ice	0.53	0.42	0.03
DC6-48-60-18-8F	А	From Lea	4 00	0 0000	160'	No Ice	0 79	0 79	0.02
			0'	0.0000		1/2"	1.27	1.27	0.04
			0'			Ice	1.45	1.45	0.05
						1" Ice	1.83	1.83	0.10
Platform Mount [LP 301-1]	C	None		0 0000	160'	∠ ice No lce	30 10	30.10	1.59
	U	NONG		0.0000	100	1/2"	40.80	40.80	2.03
						Ice	51.50	51.50	2.47
						1" Ice	72.90	72.90	3.35
	٨	From Log	1 00	0 0000	160'	2" Ice	12 20	0 00	0 00
	A	From Leg	4.00	0.0000	100	INO ICE	13.30	0.02	0.00

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
			0'			1/2"	13.90	9.42	0.16
			0'			Ice	14.50	10.03	0.25
						1" Ice	15.74	11.26	0.45
	D		4.00	0.0000	400	2" Ice	10.00	0.00	0.00
TPA-65R-LC0000-H8	В	From Leg	4.00	0.0000	160	1/2"	13.30	0.02	0.08
			0'			lce	14 50	10.03	0.10
			0			1" Ice 2" Ice	15.74	11.26	0.45
TPA-65R-LCUUUU-H8	С	From Leg	4.00	0.0000	160'	No Ice	13.30	8.82	0.08
			0'			1/2"	13.90	9.42	0.16
			0'			Ice	14.50	10.03	0.25
						1" Ice	15.74	11.26	0.45
(0) 7000 00	•	F	1.00	0.0000	100	2" Ice	0.40	0.47	0.00
(2) 7020.00	A	From Leg	4.00	0.0000	160	NO ICE	0.10	0.17	0.00
			0				0.15	0.24	0.01
			0			1" Ice	0.20	0.31	0.01
						2" Ice	0.00	0.40	0.02
(2) 7020.00	В	From Lea	4.00	0.0000	160'	No Ice	0.10	0.17	0.00
(_) · · _ · · · · · ·			0'			1/2"	0.15	0.24	0.01
			0'			Ice	0.20	0.31	0.01
						1" Ice	0.33	0.48	0.02
						2" Ice			
(2) 7020.00	С	From Leg	4.00	0.0000	160'	No Ice	0.10	0.17	0.00
			0'			1/2"	0.15	0.24	0.01
			0.			Ice	0.20	0.31	0.01
						2" Ice	0.33	0.40	0.02
RRUS 32 B2	А	From Lea	4 00	0 0000	160'	No Ice	2 73	1 67	0.05
		1.000 209	0'	0.0000		1/2"	2.95	1.86	0.07
			0'			lce	3.18	2.05	0.10
						1" Ice	3.66	2.46	0.16
						2" Ice			
RRUS 32 B2	В	From Leg	4.00	0.0000	160'	No Ice	2.73	1.67	0.05
			0'			1/2"	2.95	1.86	0.07
			0			1" Ico	3.10	2.05	0.10
						2" Ice	5.00	2.40	0.10
RRUS 32 B2	С	From Lea	4 00	0 0000	160'	No Ice	2 73	1 67	0.05
	Ū	1.000 209	0'	0.0000		1/2"	2.95	1.86	0.07
			0'			Ice	3.18	2.05	0.10
						1" Ice	3.66	2.46	0.16
					1001	2" Ice		. = 0	
RRUS 32	A	From Leg	4.00	0.0000	160'	No Ice	2.86	1.78	0.06
			0			1/2	3.08	1.97	0.08
			0			1" Ice	3.81	2.17	0.10
						2" Ice	0.01	2.00	0.10
RRUS 32	В	From Leg	4.00	0.0000	160'	No Ice	2.86	1.78	0.06
		0	0'			1/2"	3.08	1.97	0.08
			0'			Ice	3.32	2.17	0.10
						1" Ice	3.81	2.58	0.16
	~	F	4.00	0.0000	4001	2" Ice	0.00	4 70	0.00
KKUS 32	С	⊢rom Leg	4.00	0.0000	160'	No Ice	2.86	1.78	0.06
			0				3.UX 3.20	1.97	0.08
			0			1" Ice	3.32	2.17	0.10
						2" Ice	0.01	2.00	0.10
DBC0061F1V51-2	А	From Leg	4.00	0.0000	160'	No Ice	0.43	0.41	0.03
		5	0'			1/2"	0.52	0.50	0.03
			0'			Ice	0.61	0.59	0.04
						1" Ice	0.81	0.79	0.06
	-	F	1.00	0.0000	400	2" Ice	0.40	0.44	0.00
DBC0061F1V51-2	В	⊢rom Leg	4.00	0.0000	160'	INO ICE	0.43	0.41	0.03

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	K
			0' 0'			1/2" Ice 1" Ice 2" Ice	0.52 0.61 0.81	0.50 0.59 0.79	0.03 0.04 0.06
DBC0061F1V51-2	С	From Leg	4.00 0' 0'	0.0000	160'	No Ice 1/2" Ice 1" Ice 2" Ice	0.43 0.52 0.61 0.81	0.41 0.50 0.59 0.79	0.03 0.03 0.04 0.06
DC6-48-60-18-8F	A	From Leg	4.00 0' 0'	0.0000	160'	No Ice 1/2" Ice 1" Ice 2" Ice	0.79 1.27 1.45 1.83	0.79 1.27 1.45 1.83	0.02 0.04 0.05 0.10
APXV18-206517LS w/ Mount Pipe	A	From Leg	1.00 0' 0'	0.0000	150'	No Ice 1/2" Ice 1" Ice 2" Ice	5.29 5.84 6.36 7.42	4.67 5.82 6.69 8.46	0.05 0.10 0.15 0.28
APXV18-206517LS w/ Mount Pipe	В	From Leg	1.00 0' 0'	0.0000	150'	No Ice 1/2" Ice 1" Ice 2" Ice	5.29 5.84 6.36 7.42	4.67 5.82 6.69 8.46	0.05 0.10 0.15 0.28
APXV18-206517LS w/ Mount Pipe	С	From Leg	1.00 0' 0'	0.0000	150'	No Ice 1/2" Ice 1" Ice 2" Ice	5.29 5.84 6.36 7.42	4.67 5.82 6.69 8.46	0.05 0.10 0.15 0.28
Pipe Mount [PM 602-3]	С	None		0.0000	150'	No Ice 1/2" Ice 1" Ice 2" Ice	7.68 9.50 11.32 14.96	7.68 9.50 11.32 14.96	0.28 0.35 0.43 0.58

Load Combinations

Comb.		Description
No.		
1	Dead Only	
2	1.2 Dead+1.0 Wind 0 deg - No Ice	
3	0.9 Dead+1.0 Wind 0 deg - No Ice	
4	1.2 Dead+1.0 Wind 30 deg - No Ice	
5	0.9 Dead+1.0 Wind 30 deg - No Ice	
6	1.2 Dead+1.0 Wind 60 deg - No Ice	
7	0.9 Dead+1.0 Wind 60 deg - No Ice	
8	1.2 Dead+1.0 Wind 90 deg - No Ice	
9	0.9 Dead+1.0 Wind 90 deg - No Ice	
10	1.2 Dead+1.0 Wind 120 deg - No Ice	
11	0.9 Dead+1.0 Wind 120 deg - No Ice	
12	1.2 Dead+1.0 Wind 150 deg - No Ice	
13	0.9 Dead+1.0 Wind 150 deg - No Ice	
14	1.2 Dead+1.0 Wind 180 deg - No Ice	
15	0.9 Dead+1.0 Wind 180 deg - No Ice	
16	1.2 Dead+1.0 Wind 210 deg - No Ice	
17	0.9 Dead+1.0 Wind 210 deg - No Ice	
18	1.2 Dead+1.0 Wind 240 deg - No Ice	

Comb.	Description
No.	
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio	Flevation	Component	Condition	Gov	Axial	Maior Axis	Minor Axis
n	ft	Type	condition	Load	, 1940 0 1	Moment	Moment
No.				Comb.	к	kip-ft	kip-ft
L1	178 - 164.25	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-15.55	0.17	-0.33
			Max. Mx	20	-6.14	77.57	-0.11
			Max. My	14	-6.27	0.09	-74.21
			Max. Vy	20	-11.78	77.57	-0.11
			Max. Vx	14	11.09	0.09	-74.21
			Max. Torque	24			-0.40
L2	164.25 - 129.667	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-32.66	0.50	-0.11
			Max. Mx	20	-14.61	688.25	-1.12
			Max. My	2	-14.81	-1.02	649.75
			Max. Vy	20	-21.44	688.25	-1.12
			Max. Vx	14	20.23	1.34	-649.63
			Max. Torque	21			0.27
L3	129.667 - 96	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-43.83	1.06	-0.70
			Max. Mx	20	-22.38	1450.31	-2.48
			Max. My	14	-22.54	2.69	-1369.50
			Max. Vy	20	-24.94	1450.31	-2.48
			Max. Vx	14	23.62	2.69	-1369.50
			Max. Torque	10			0.25
L4	96 - 63.1667	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-56.71	1.70	-1.36
			Max. Mx	20	-31.67	2303.49	-3.83
			Max. My	14	-31.78	4.02	-2180.25
			Max. Vy	20	-28.30	2303.49	-3.83
			Max. Vx	14	26.98	4.02	-2180.25
			Max. Torque	10			0.25

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Type		Load		Moment	Moment
No.				Comb.	K	kip-ft	kip-ft
L5	63.1667 - 31.1667	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-71.06	2.41	-2.07
			Max. Mx	20	-42.28	3237.36	-5.15
			Max. My	14	-42.35	5.34	-3073.07
			Max. Vy	20	-31.33	3237.36	-5.15
			Max. Vx	14	30.03	5.34	-3073.07
			Max. Torque	10			0.25
L6	31.1667 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-89.73	3.34	-3.01
			Max. Mx	20	-56.61	4470.10	-6.72
			Max. My	14	-56.61	6.90	-4257.90
			Max. Vy	20	-34.48	4470.10	-6.72
			Max. Vx	14	33.23	6.90	-4257.90
			Max. Torque	10			0.25

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Pole	Max. Vert	36	89.73	8.17	-0.01
	Max. H _x	20	56.63	34.46	-0.03
	Max. H _z	2	56.63	-0.03	33.20
	Max. M _x	2	4256.39	-0.03	33.20
	Max. M _z	8	4468.25	-34.46	0.03
	Max. Torsion	10	0.25	-28.74	-16.57
	Min. Vert	25	42.47	16.58	28.74
	Min. H _x	8	56.63	-34.46	0.03
	Min. H _z	14	56.63	0.03	-33.20
	Min. M _x	14	-4257.90	0.03	-33.20
	Min. M _z	20	-4470.10	34.46	-0.03
	Min. Torsion	22	-0.25	28.74	16.57

Tower Mast Reaction Summary

Load Combination	Vertical	Shearx	Shear₂	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	47.19	0.00	0.00	0.61	0.74	0.00
1.2 Dead+1.0 Wind 0 deg -	56.63	0.03	-33.20	-4256.39	-5.03	0.05
No Ice						
0.9 Dead+1.0 Wind 0 deg -	42.47	0.03	-33.20	-4205.35	-5.20	0.04
No Ice						
1.2 Dead+1.0 Wind 30 deg -	56.63	16.63	-28.77	-3689.04	-2133.59	-0.09
No Ice						
0.9 Dead+1.0 Wind 30 deg -	42.47	16.63	-28.77	-3644.80	-2108.13	-0.09
No Ice						
1.2 Dead+1.0 Wind 60 deg -	56.63	28.86	-16.68	-2141.99	-3705.80	-0.20
No Ice						
0.9 Dead+1.0 Wind 60 deg -	42.47	28.86	-16.68	-2116.36	-3661.38	-0.20
No Ice						
1.2 Dead+1.0 Wind 90 deg -	56.63	34.46	-0.03	-5.21	-4468.25	0.00
No Ice						
0.9 Dead+1.0 Wind 90 deg -	42.47	34.46	-0.03	-5.32	-4414.50	0.00
No Ice						
1.2 Dead+1.0 Wind 120 deg	56.63	28.74	16.57	2124.19	-3684.27	-0.25
- No Ice						
0.9 Dead+1.0 Wind 120 deg	42.47	28.74	16.57	2098.43	-3640.13	-0.25
- No Ice						
1.2 Dead+1.0 Wind 150 deg	56.63	16.58	28.74	3684.61	-2123.27	-0.17

Load	Vertical	Shearx	Shearz	Overturning	Overturning	Torque
Combination	К	К	K	Moment, M _x kip-ft	Moment, Mz kip-ft	kip-ft
- No Ice 0.9 Dead+1.0 Wind 150 deg	42.47	16.58	28.74	3640.06	-2097.94	-0.16
1.2 Dead+1.0 Wind 180 deg	56.63	-0.03	33.20	4257.90	6.90	-0.05
0.9 Dead+1.0 Wind 180 deg	42.47	-0.03	33.20	4206.47	6.58	-0.04
1.2 Dead+1.0 Wind 210 deg	56.63	-16.63	28.77	3690.55	2135.46	0.09
0.9 Dead+1.0 Wind 210 deg	42.47	-16.63	28.77	3645.92	2109.50	0.10
1.2 Dead+1.0 Wind 240 deg - No Ice	56.63	-28.86	16.68	2143.50	3707.66	0.20
0.9 Dead+1.0 Wind 240 deg - No Ice	42.47	-28.86	16.68	2117.49	3662.75	0.20
1.2 Dead+1.0 Wind 270 deg - No Ice	56.63	-34.46	0.03	6.72	4470.10	-0.00
0.9 Dead+1.0 Wind 270 deg - No Ice	42.47	-34.46	0.03	6.45	4415.87	-0.00
1.2 Dead+1.0 Wind 300 deg - No Ice	56.63	-28.74	-16.57	-2122.67	3686.13	0.25
0.9 Dead+1.0 Wind 300 deg - No Ice	42.47	-28.74	-16.57	-2097.30	3641.52	0.24
1.2 Dead+1.0 Wind 330 deg - No Ice	56.63	-16.58	-28.74	-3683.10	2125.14	0.17
0.9 Dead+1.0 Wind 330 deg - No Ice	42.47	-16.58	-28.74	-3638.94	2099.33	0.17
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0	89.73 89.73	0.00 0.01	0.00 -8.10	3.01 -1060.33	3.34 2.37	0.00 0.06
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 30	89.73	4.06	-7.02	-918.49	-529.57	-0.01
1.2 Dead+1.0 Wind 60	89.73	7.02	-4.06	-529.66	-918.64	-0.07
1.2 Dead+1.0 Wind 90	89.73	8.17	-0.01	1.97	-1073.61	-0.08
1.2 Dead+1.0 Wind 120	89.73	7.01	4.04	533.94	-917.35	-0.13
1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	89.73	4.05	7.01	923.71	-527.34	-0.10
1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	89.73	-0.01	8.10	1066.84	4.95	-0.06
1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	89.73	-4.06	7.02	925.00	536.88	0.01
1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	89.73	-7.02	4.06	536.17	925.95	0.07
1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	89.73	-8.17	0.01	4.55	1080.91	0.08
1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	89.73	-7.01	-4.04	-527.42	924.66	0.13
1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	89.73	-4.05	-7.01	-917.20	534.65	0.10
Dead+Wind 0 deg - Service	47.19	0.01	-6.66	-847.80	-0.42	0.01
Dead+Wind 30 deg - Service	47.19	3.34	-5.77	-734.72	-424.62	-0.02
Dead+Wind 60 deg - Service	47.19	5.79	-3.35	-426.41	-737.96	-0.04
Dead+Wind 90 deg - Service	47.19	6.91 5.77	-0.01	-0.50	-890.04	0.00
Service	47.19	0.00	5.32	423.01	-/ 33.00	-0.05
Dead+Wind 150 deg - Service	47.19	3.33	5.77	/34./9	-422.56	-0.03
Service	47.19	-0.01	6.66	849.05	1.96	-0.01
Dead+Wind 210 deg - Service	47.19	-3.34	5.77	/35.98	426.17	0.02
Service	47.19	-5.79	3.35	427.07	004 59	0.04
Service	47.19	-0.91	0.01	1.82	891.98	-0.00
Dead+Wind 300 deg -	47.19	-5.77	-3.32	-422.56	735.20	0.05

tnxTower Report - version 8.0.5.0

Load Combination	Vertical	Shearx	Shearz	Overturning Moment. M _x	Overturning Moment. Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Service Dead+Wind 330 deg - Service	47.19	-3.33	-5.77	-733.54	424.11	0.03

	Solution Summary												
	Sun	n of Applied Force			Sum of Reaction	ne							
Load	PX	PY	PZ	PX	PY	PZ	% Error						
Comb.	K	К	K	К	K	K							
1	0.00	-47.19	0.00	0.00	47.19	0.00	0.000%						
2	0.03	-56.63	-33.20	-0.03	56.63	33.20	0.000%						
3	0.03	-42.47	-33.20	-0.03	42.47	33.20	0.000%						
4	16.63	-56.63	-28.77	-16.63	56.63	28.77	0.000%						
5	16.63	-42.47	-28.77	-16.63	42.47	28.77	0.000%						
6	28.86	-56.63	-16.68	-28.86	56.63	16.68	0.000%						
7	28.86	-42.47	-16.68	-28.86	42.47	16.68	0.000%						
8	34.46	-56.63	-0.03	-34.46	56.63	0.03	0.000%						
9	34.46	-42.47	-0.03	-34.46	42.47	0.03	0.000%						
10	28.74	-56.63	16.57	-28.74	56.63	-16.57	0.000%						
11	28.74	-42.47	16.57	-28.74	42.47	-16.57	0.000%						
12	16.58	-56.63	28.74	-16.58	56.63	-28.74	0.000%						
13	16.58	-42.47	28.74	-16.58	42.47	-28.74	0.000%						
14	-0.03	-56.63	33.20	0.03	56.63	-33.20	0.000%						
15	-0.03	-42.47	33.20	0.03	42.47	-33.20	0.000%						
16	-16.63	-56.63	28.77	16.63	56.63	-28.77	0.000%						
17	-16.63	-42.47	28.77	16.63	42.47	-28.77	0.000%						
18	-28.86	-56.63	16.68	28.86	56.63	-16.68	0.000%						
19	-28.86	-42.47	16.68	28.86	42.47	-16.68	0.000%						
20	-34.46	-56.63	0.03	34.46	56.63	-0.03	0.000%						
21	-34 46	-42 47	0.03	34 46	42 47	-0.03	0.000%						
22	-28.74	-56.63	-16.57	28.74	56.63	16.57	0.000%						
23	-28.74	-42.47	-16.57	28.74	42.47	16.57	0.000%						
24	-16.58	-56.63	-28.74	16.58	56.63	28.74	0.000%						
25	-16.58	-42.47	-28.74	16.58	42.47	28.74	0.000%						
26	0.00	-89.73	0.00	0.00	89.73	0.00	0.000%						
27	0.01	-89.73	-8.10	-0.01	89.73	8.10	0.000%						
28	4.06	-89.73	-7.02	-4.06	89.73	7.02	0.000%						
29	7.02	-89.73	-4.06	-7.02	89.73	4.06	0.000%						
30	8.17	-89.73	-0.01	-8.17	89.73	0.01	0.000%						
31	7.01	-89.73	4.04	-7.01	89.73	-4.04	0.000%						
32	4.05	-89.73	7.01	-4.05	89.73	-7.01	0.000%						
33	-0.01	-89.73	8.10	0.01	89.73	-8.10	0.000%						
34	-4.06	-89.73	7.02	4.06	89.73	-7.02	0.000%						
35	-7.02	-89.73	4.06	7.02	89.73	-4.06	0.000%						
36	-8.17	-89.73	0.01	8.17	89.73	-0.01	0.000%						
37	-7.01	-89.73	-4.04	7.01	89.73	4.04	0.000%						
38	-4.05	-89.73	-7.01	4.05	89.73	7.01	0.000%						
39	0.01	-47.19	-6.66	-0.01	47.19	6.66	0.000%						
40	3.34	-47.19	-5.77	-3.34	47.19	5.77	0.000%						
41	5.79	-47.19	-3.35	-5.79	47.19	3.35	0.000%						
42	6.91	-47.19	-0.01	-6.91	47.19	0.01	0.000%						
43	5.77	-47.19	3.32	-5.77	47.19	-3.32	0.000%						
44	3.33	-47.19	5.77	-3.33	47.19	-5.77	0.000%						
45	-0.01	-47.19	6.66	0.01	47.19	-6.66	0.000%						
46	-3.34	-47.19	5.77	3.34	47.19	-5.77	0.000%						
47	-5.79	-47 19	3.35	5 79	47 19	-3 35	0.000%						
48	-6.91	-47 19	0.01	6.91	47 19	-0.01	0.000%						
49	-5.77	-47.19	-3.32	5.77	47.19	3.32	0.000%						
50	-3.33	-47 19	-5.77	3.33	47.19	5.77	0.000%						

Non-Linear Convergence Results

178 Ft Monopole Tower Structural Analysis Project Number 1739713, Order 479818, Revision 0

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.0000001	0.0000001
2	Yes	4	0.0000001	0.00079099
3	Yes	4	0.0000001	0.00034134
4	Yes	6	0.0000001	0.00013921
5	Yes	6	0.0000001	0.00004505
6	Yes	6	0.0000001	0.00014106
7	Yes	6	0.0000001	0.00004559
8	Yes	4	0.0000001	0.00081264
9	Yes	4	0.0000001	0.00033751
10	Yes	6	0.00000001	0.00013810
11	Yes	6	0.0000001	0.00004474
12	Yes	6	0.00000001	0.00013887
13	Yes	6	0.0000001	0.00004502
14	Yes	4	0.0000001	0.00077808
15	Yes	4	0.00000001	0.00032830
16	Yes	6	0.0000001	0.00013969
17	Yes	6	0.00000001	0.00004521
18	Yes	6	0.00000001	0.00014043
19	Yes	6	0.00000001	0.00004533
20	Yes	4	0.0000001	0.00082702
21	Yes	4	0.00000001	0.00034875
22	Yes	6	0.00000001	0.00013906
23	Yes	6	0.00000001	0.00004508
24	Yes	6	0.0000001	0.00013825
25	Yes	6	0.0000001	0.00004479
26	Yes	4	0.00000001	0.0000001
27	Yes	5	0.0000001	0.00084168
28	Yes	6	0.0000001	0.00011741
29	Yes	6	0.0000001	0.00011753
30	Yes	5	0.0000001	0.00085351
31	Yes	6	0.0000001	0.00011749
32	Yes	6	0.0000001	0.00011771
33	Yes	5	0.0000001	0.00084604
34	Yes	6	0.0000001	0.00011885
35	Yes	6	0.0000001	0.00011880
36	Yes	5	0.0000001	0.00085935
37	Yes	6	0.0000001	0.00011797
38	Yes	6	0.0000001	0.00011767
39	Yes	4	0.0000001	0.00010828
40	Yes	4	0.0000001	0.00051359
41	Yes	4	0.0000001	0.00052715
42	Yes	4	0.0000001	0.00011410
43	Yes	4	0.0000001	0.00050694
44	Yes	4	0.0000001	0.00051554
45	Yes	4	0.0000001	0.00010835
46	Yes	4	0.0000001	0.00052060
47	Yes	4	0.0000001	0.00052113
48	Yes	4	0.0000001	0.00011434
49	Yes	4	0.0000001	0.00051841
50	Yes	4	0.0000001	0.00050944

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	۰	٥
L1	178 - 164.25	24.415	48	1.2517	0.0008
L2	167.167 - 129.667	21.598	48	1.2254	0.0003
L3	133.5 - 96	13.632	48	0.9964	0.0002
L4	100.667 - 63.1667	7.626	48	0.7354	0.0001
L5	68.6667 - 31.1667	3.498	48	0.4822	0.0000
L6	37.4167 - 0	1.045	48	0.2525	0.0000

tnxTower Report - version 8.0.5.0

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	٥	ft
178'	Lightning Rod 5/8" x 5' on 6' pole	48	24.415	1.2517	0.0008	28714
170'	BXA-70063/6CF w/ Mount Pipe	48	22.329	1.2343	0.0005	18052
160'	7770.00	48	19.783	1.1928	0.0003	11000
150'	APXV18-206517LS w/ Mount	48	17.346	1.1281	0.0002	8884
	Pipe					

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	0
L1	178 - 164.25	122.436	20	6.2861	0.0043
L2	167.167 - 129.667	108.321	20	6.1514	0.0017
L3	133.5 - 96	68.390	20	5.0025	0.0009
L4	100.667 - 63.1667	38.266	20	3.6921	0.0005
L5	68.6667 - 31.1667	17.552	20	2.4204	0.0002
L6	37.4167 - 0	5.242	20	1.2668	0.0001

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	٥	ft
178'	Lightning Rod 5/8" x 5' on 6' pole	20	122.436	6.2861	0.0043	5858
170'	BXA-70063/6CF w/ Mount Pipe	20	111.983	6.1966	0.0023	3682
160'	7770.00	20	99.223	5.9872	0.0013	2238
150'	APXV18-206517LS w/ Mount Pipe	20	87.007	5.6623	0.0011	1803

Compression Checks

	Pole Design Data									
Section No.	Elevation	Size	L	Lu	Kl/r	А	Pu	φ P n	Ratio Pu	
	ft		ft	ft		in²	K	K	ϕP_n	
L1	178 - 164.25 (1)	TP26x12.75x0.25	13'9"	0'	0.0	18.202 4	-6.14	1064.84	0.006	
L2	164.25 - 129.667 (2)	TP34.0625x22.6894x0.31 25	37'6"	0'	0.0	32.322 6	-14.61	1890.87	0.008	
L3	129.667 - 96 (3)	TP41.75x32.2749x0.375	37'6"	0'	0.0	47.843 1	-22.38	2798.82	0.008	
L4	96 - 63.1667 (4)	TP49.0625x39.8209x0.37 5	37'6"	0'	0.0	56.337 0	-31.67	3295.71	0.010	
L5	63.1667 -	TP56.125x46.9571x0.375	37'6"	0'	0.0	64.537	-42.28	3775.46	0.011	

Section No.	Elevation	Size	L	Lu	Kl/r	А	Pu	φPn	Ratio Pu
	ft		ft	ft		in²	K	К	ϕP_n
L6	31.1667 (5) 31.1667 - 0 (6)	TP62.9375x53.847x0.375	37'5- 1/32''	0'	0.0	8 74.465 0	-56.61	4356.20	0.013

Pole Bending Design Data

Section No.	Elevation	Size	M _{ux}	φ M _{nx}	Ratio M _{ux}	M _{uy}	φ M ny	Ratio M _{uy}
	ft		kip-ft	kip-ft	φM _{nx}	kip-ft	kip-ft	φ <i>M_{ny}</i>
L1	178 - 164.25 (1)	TP26x12.75x0.25	77.57	636.00	0.122	0.00	636.00	0.000
L2	164.25 - 129.667 (2)	TP34.0625x22.6894x0.31 25	688.25	1569.31	0.439	0.00	1569.31	0.000
L3	129.667 - 96 (3)	TP41.75x32.2749x0.375	1450.32	2844.52	0.510	0.00	2844.52	0.000
L4	96 - 63.1667 (4)	TP49.0625x39.8209x0.37 5	2303.49	3755.29	0.613	0.00	3755.29	0.000
L5	63.1667 - 31.1667 (5)	TP56.125x46.9571x0.375	3237.37	4686.54	0.691	0.00	4686.54	0.000
L6	31.1667 - Ó (6)	TP62.9375x53.847x0.375	4470.11	5847.24	0.764	0.00	5847.24	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual Vu	φVn	Ratio Vu	Actual T _u	ϕT_n	Ratio T _u
	ft		K	K	φVn	kip-ft	kip-ft	ϕT_n
L1	178 - 164.25 (1)	TP26x12.75x0.25	11.78	319.45	0.037	0.20	641.75	0.000
L2	164.25 - 129.667 (2)	TP34.0625x22.6894x0.31 25	21.44	567.26	0.038	0.00	1618.88	0.000
L3	129.667 - 96 (3)	TP41.75x32.2749x0.375	24.94	839.65	0.030	0.00	2955.68	0.000
L4	96 - 63.1667 (4)	TP49.0625x39.8209x0.37 5	28.30	988.71	0.029	0.00	4098.32	0.000
L5	63.1667 - 31.1667 (5)	TP56.125x46.9571x0.375	31.33	1132.64	0.028	0.00	5378.32	0.000
L6	31.1667 - Ó (6)	TP62.9375x53.847x0.375	34.48	1306.86	0.026	0.00	7160.17	0.000

Pole Interaction Design Data

Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	φMnx	φ M _{ny}	φVn	ϕT_n	Ratio	Ratio	
L1	178 - 164.25 (1)	0.006	0.122	0.000	0.037	0.000	0.129	1.050	4.8.2
L2	164.25 - 129.667 (2)	0.008	0.439	0.000	0.038	0.000	0.448	1.050	4.8.2
L3	129.667 - 96 (3)	0.008	0.510	0.000	0.030	0.000	0.519	1.050	4.8.2
L4	96 - 63 1667 (4)	0.010	0.613	0.000	0.029	0.000	0.624	1.050	4.8.2
L5	63.1667 - 31.1667 (5)	0.011	0.691	0.000	0.028	0.000	0.703	1.050	4.8.2

tnxTower Report - version 8.0.5.0

Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio Vu	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	φM _{nx}	φ M _{ny}	φVn	ϕT_n	Ratio	Ratio	
L6	31.1667 - 0 (6)	0.013	0.764	0.000	0.026	0.000	0.778	1.050	4.8.2

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L1	178 - 164.25	Pole	TP26x12.75x0.25	1	-6.14	1118.08	12.3	Pass
L2	164.25 - 129.667	Pole	TP34.0625x22.6894x0.3125	2	-14.61	1985.41	42.6	Pass
L3	129.667 - 96	Pole	TP41.75x32.2749x0.375	3	-22.38	2938.76	49.4	Pass
L4	96 - 63.1667	Pole	TP49.0625x39.8209x0.375	4	-31.67	3460.50	59.4	Pass
L5	63.1667 - 31.1667	Pole	TP56.125x46.9571x0.375	5	-42.28	3964.23	66.9	Pass
L6	31.1667 - 0	Pole	TP62.9375x53.847x0.375	6	-56.61	4574.01	74.1 Summary	Pass
						Pole (L6)	74.1	Pass
						RATING =	74.1	Pass

APPENDIX B

BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS

Monopole Base Plate Connection

Site Info	
BU #	823666
Site Name	Deep River/Rt 9
Order #	479818 R0

Analysis Considerations					
TIA-222 Revision	Н				
Grout Considered:	No				
l _{ar} (in)	1.25				

Applied Loads						
Moment (kip-ft)	4470.11					
Axial Force (kips)	56.61					
Shear Force (kips) 34.48						
*TIA-222-H Section 15.5 Applied						

Connection Properties

Anchor Rod Data

(45) 1-1/4" ø bolts (A687 N; Fy=105 ksi, Fu=125 ksi) on 68" BC

Base Plate Data

73" OD x 1.5" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Stiffener Data

N/A

Pole Data

62.9375" x 0.375" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results

Anchor Rod Summary	((units of kips, kip-in)
Pu_c = 71.37	φPn_c = 101.75	Stress Rating
Vu = 0.77	φVn = 30.52	66.9%
Mu = n/a	φMn = n/a	Pass
Base Plate Summary		
Max Stress (ksi):	-	
Allowable Stress (ksi):	-	
Stress Rating:	N/A	

Pier and Pad Foundation

BU # :	823666		
Site Name:	Deep River/Rt 9		
App. Number:	479818 R0		

TIA-222 Revision: H Tower Type: Monopole Top & Bot. Pad Rein. Different?: Block Foundation?:

Superstructure Analysis Reactions					
Compression, P_{comp} :	57	kips			
Base Shear, Vu_comp:	34	kips			
Moment, M _u :	4470	ft-kips			
Tower Height, H :	178	ft			
BP Dist. Above Fdn, bp_{dist}:	2.5	in			
Bolt Circle / Bearing Plate Width, BC:	68	in			

Foundation Analysis Checks								
	Capacity	Demand	Rating*	Check				
Lateral (Sliding) (kips)	187.16	34.00	17.3%	Pass				
Bearing Pressure (ksf)	18.00	2.96	16.4%	Pass				
Overturning (kip*ft)	6889.58	4613.08	67.0%	Pass				
Pad Flexure (kip*ft)	4875.64	2182.17	42.6%	Pass				
Pad Shear - 1-way (kips)	1436.12	253.55	16.8%	Pass				
Pad Shear - 2-way (Comp) (ksi)	0.190	0.003	1.5%	Pass				
Flexural 2-way (Comp) (kip*ft)	3989.84	0.00	0.0%	Pass				

*Rating per TIA-222-H Section 15.5

Soil Rating*:	67.0%
Structural Rating*:	42.6%

Pad Properties				
Depth, D :	3.5	ft		
Pad Width, W :	29	ft		
Pad Thickness, T :	4	ft		
Pad Rebar Size (Bottom), Sp :	8			
Pad Rebar Quantity (Bottom), mp :	32			
Pad Clear Cover, cc_{pad}:	3	in		

Material Properties			
Rebar Grade, Fy :	60	ksi	
Concrete Compressive Strength, F'c:	4	ksi	
Dry Concrete Density, δ c :	150	pcf	

Soil Properties				
Total Soil Unit Weight, $m{\gamma}$:	165	pcf		
Ultimate Gross Bearing, Qult:	24.000	ksf		
Cohesion, Cu :	0.000	ksf		
Friction Angle, $oldsymbol{arphi}$:	40	degrees		
SPT Blow Count, N _{blows} :	50			
Base Friction, μ :				
Neglected Depth, N:	3.50	ft		
Foundation Bearing on Rock?	Yes			
Groundwater Depth, gw:	NA	ft		

<--Toggle between Gross and Net

Location

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

 Elevation:
 94.97 ft (NAVD 88)

 Latitude:
 41.372825

 Longitude:
 -72.434436

Wind

Results:

Wind Speed:	130 Vmph
10-year MRI	79 Vmph
25-year MRI	88 Vmph
50-year MRI	97 Vmph
100-year MRI	106 Vmph
Data Source:	ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, incorporating errata of March 12, 2014
Date Accessed:	Thu May 09 2019

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Site Soil Class:	D - Stiff Soil			
Results:				
S _s :	0.169	S _{DS} :	0.181	
S ₁ :	0.06	S _{D1} :	0.096	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA :	0.085	
S _{MS} :	0.271	PGA M :	0.137	
S _{M1} :	0.144	F _{PGA} :	1.6	
		e :	1	

Seismic Design Category B

Data Accessed: Date Source:

Thu May 09 2019

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

	Ice Thickness:	0.75 in.
	Concurrent Temperature:	15 F
	Gust Speed:	50 mph
Data	Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date	Accessed:	Thu May 09 2019

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Date: May 3, 2019

Paul 250 E Colur 614.2	J Ford and (E. Broad Streem Dus, OH 43 221.6679	Company eet, Suite 600 3215
Mount Analysis Report		
<i>T-Mobil</i> e Equipment Change-out Carrier Site Number: Carrier Site Name:		CT11237C Deep River/Rt 9
Crown Castle BU Number: Crown Castle Site Name: Crown Castle JDE Job Number: Crown Castle Purchase Order Numbe Crown Castle Order Number:	ər:	823666 Deep River/Rt 9 559236 1370694 479818 Rev. 0
Paul J Ford and Company Project Nu	mber:	A37519-1564.002.7190
15 Pent Rd., Deep River, Middlesex C Latitude 41.443056°, Longitude -72.50	ounty, CT)6222°	
Tower Height & Type:1Mount Elevation:1Mount Type:('	78 Foot Mo 78 Foot 1) 16.5 Foot	nopole t Platform
	Paul 250 E Colur 614.2 Mount Analysis Report 614.2 <i>T-Mobile</i> Equipment Change-out Carrier Site Number: Carrier Site Number: Carrier Site Name: Crown Castle BU Number: Crown Castle Site Name: Crown Castle DIE Job Number: Crown Castle Purchase Order Number Crown Castle Order Number: Paul J Ford and Company Project Number 15 Pent Rd., Deep River, Middlesex C Latitude 41.443056°, Longitude -72.50 Tower Height & Type: 1 Mount Type: (Paul J Ford and 0 250 E. Broad Stre Columbus, OH 43 614.221.6679Mount Analysis Report <i>T-Mobile</i> Equipment Change-out Carrier Site Number: Carrier Site Name:Carrier Site Number: Crown Castle BU Number: Crown Castle JDE Job Number: Crown Castle Purchase Order Number: Crown Castle Order Number:Paul J Ford and Company Project Number: 15 Pent Rd., Deep River, Middlesex County, CT Latitude 41.443056°, Longitude -72.506222°Tower Height & Type:178 Foot Mo Mount Elevation: 178 Foot Mount Type:

Dear Kevin Morrow,

Paul J Ford and Company is pleased to submit this "Mount Analysis Report" to determine the structural integrity of the T-Mobile antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

16.5' Platform SUFFICIENT*
*The mount has sufficient capacity once the changes, as described in Section 4.1 Recommendations of this report, are completed.

This analysis utilizes an ultimate 3-second gust wind speed of 130 mph as required by the 2018 Connecticut State Building Code and Appendix N. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Respectfully submitted by:

Awar Prog

Steven Pozz, E.I. Structural Designer <u>spozz@pauliford.com</u>

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided3.1) Analysis Method

3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Capacity4.1) Recommendations

5) STANDARD CONDITIONS

6) APPENDIX A WIRE FRAME AND RENDERED MODELS

7) APPENDIX B SOFTWARE INPUT CALCULATIONS

8) APPENDIX C SOFTWARE ANALYSIS OUTPUT

9) APPENDIX D SUPPLEMENTAL MODIFICATION INFORMATION

10) APPENDIX E

MANUFACTURER DRAWINGS (FOR REFERENCE ONLY)

1) INTRODUCTION

The existing mount under consideration is (1) 16.5' Platform mount estimated based on photos and models of previously analyzed mounts of similar type.

2) ANALYSIS CRITERIA

TIA-222-H
II
130 mph
В
1.000
1.000
1.50 in
50 mph
30 mph
250 lb
500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
		3	EMS Wireless	RR90-17-02DP	
		3	RFS Celwave	APXVAARR24_43-U-NA20	
178 177	177 3	3	Ericsson	KRY 112 144/1	(1) 16.5' Platform
		3	Ericsson	KRY 112 489/2	
		3	Ericsson	RADIO 4449 B12/B71	

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Photos	Dated: 01/30/2019	-	CCISites
TIA Inspection	Dated: 11/03/2013	-	CCISites
Order	ID: 479818 Rev. 0 Dated: 04/17/2019	-	CCISites

3.1) Analysis Method

RISA-3D (version 15.0.4), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision C).

3.2) Assumptions

- 1) The analysis of the existing tower or the effect of the mount attachment to the tower is not within the current scope of work.
- 2) The antenna mounting system was properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications and all bolts are tightened as specified by the manufacturer and AISC requirements.
- 3) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1.
- 4) All member connections have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report. All U-Bolt connections have been properly tightened. This analysis will be required to be revised if the existing conditions in the field differ from those shown in the above referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Steel grades are as follows, unless noted otherwise:

a) Channel, Solid Round, Angle, Plate, Unistrut	ASTM A36 (GR 36)
b) Pipe	ASTM A53 (GR 35)
c) HSS (Rectangular)	ASTM 500 (GR B-46)
d) HSS (Round)	ASTM 500 (GR B-42)
e) Threaded Rods	ASTM F1554 (GR 36)
f) Connection Bolts	ASTM A325
g) U-Bolts	SAE J429 (GR 2)
Provide a static sector is to be installed in the leasting	ana alfied in Annandis A Anse

- 6) Proposed equipment is to be installed in the locations specified in Appendix A. Any changes to the proposed equipment locations will render this report invalid.
- 7) Mount has been modeled based on the photographs and the TIA inspection referenced in Table 2. Member information and dimensions not provided have been assumed based on previous experience with similar mounts. No guarantee can be made as to the accuracy of these assumptions without a complete mount mapping.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J Ford and Company should be notified to determine the effect on the structural integrity of the mount.

4) ANALYSIS RESULTS

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Face Horizontals		68.2	Pass
1	Bracing Members		58.4	Pass
1	Grating Support Members		43.6	Pass
1	Standoff Members	178	48.8	Pass
1	Corner Plates		55.0	Pass
1	Mount Pipes		99.3	Pass
1	Mount to Tower Connection		85.3	Pass

Mount Rating (max from all components) =	99.3%
--	-------

Notes:

1) See additional documentation in "Appendix C – Software Analysis Output" for calculations supporting the % capacity consumed.

4.1) Recommendations

The mount will have sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, modification listed below must be completed.

- Install a handrail kit made up of (3) P2 STD (2.38" O.D. X 0.154") pipes with total lengths match the existing boom lengths and (3) SitePro-1 AHCP Angle Handrail Corner Plate Kits or EOR Approved Equivalents. See Appendix D for details.
- Install an additional 6-ft long, P2 STD (2.38" O.D. x 0.154") mount pipe on (2) Sectors. See Appendix D for details.

No structural modifications are required at this time, provided that the above-listed changes are implemented.

STANDARD CONDITIONS FOR FURNISHING OF PROFESSIONAL ENGINEERING SERVICES ON EXISTING MOUNTS BY PAUL J. FORD AND COMPANY

- 1) It is the responsibility of the client to ensure that the information provided to Paul J. Ford and Company is accurate and complete. Paul J. Ford and Company will rely on the accuracy and completeness of such information in performing or furnishing services under this project.
- 2) If the existing conditions are not as represented on the referenced drawings and/or documents, Paul J. Ford and Company should be contacted immediately to evaluate the significance of the deviation.
- 3) The mount has been analyzed according to the minimum design loads recommended by the Reference Standard. If additional design loads are required, Paul J. Ford and Company should be made aware of this prior to the start of the project.
- 4) The standard of care for all Professional Engineering Services performed or furnished by Paul J. Ford and Company under this project will be the skill and care used by members of the Consultant's profession practicing under similar circumstances at the same time and in the same locality.
- 5) All Services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Paul J. Ford and Company is not responsible for the conclusions, opinions and/or recommendations made by others based on the information supplied herein.

APPENDIX A

WIRE FRAME AND RENDERED MODELS

Proposed: (typ. on all s - (1) Ericsson RADIO 4	ectors) 449 B12/B71			
Paul J. Ford and Company STP 37519-1564.002.7190	823666 - Deep River Rt9	SK - 2 May 3, 2019 at 12:49 PM 37519-1564_Wind Load.r3d		

APPENDIX B

SOFTWARE INPUT CALCULATION

Project #	37519-1564.002.719
By	STP

Analysis 30 degrees

Page 1 of 1 Date: 05/03/19

v1.0, Effective 04/03/2018

Mount Loading per TIA-222-H

Structure Information

Mount Type =	3 Sectors		Velocity F	Pressure C	oefficien	ts
Mount Elev, z =	178	ft	z _g =	1200	ft	
Ground Elev, z _s =	95	ft	a =	7.00		
			K _{zmin} =	0.70		
Wind Speed =	130	mph	K _z =	1.17		(
Ice Wind Speed =	50	mph	Ke =	1.00		0
Ice Thickness =	1.5	in	K _z =	1.17		١
Exposure Cat =	В		K _{zt} =	1.00		
Structure Class =	=		Gh =	1.00		0
Topographic Cat =	1		K _d =	0.95		١
Crest Height =	0	ft	K _a =	0.90		5
		•	q _z =	42.95	psf	١

Calculated Value Ground Elevation Factor Velocity Press Coef (Section 2.6.5.2) Topographic Factor (Section 2.6.6.4) Gust Effect Factor (Section 2.6.7) Wind Dir Probability Factor (Table 2-2) Shielding factor (Section 16.6) Velocity Pressure (Section 2.6.9.6)

Ice Load	ling	
li =	1.00	
lwi =	1.00	
q _z =	7.08	psf
K _{iz} =	1.18	
T _{iz} =	1.78	in
h =	1.00	in
W _i =	12.95	psf
		-

42.954 psf 7.085 psf

Wind Pressures

Pressure =

Ice Pressure =

Ice Importance Factor (Table 2-3) Wind Ice Importance Factor (Table 2-3) Ice Velocity Pressure (Section 2.6.9,6) Ice Escalation Factor (Section 2.6.8) Factored Ice Thickness (Section 2.6.8) Bar Grating Height Grating Ice Weight

Antenna Attachment Labels & Elevations (inches with Respect to Bottom of Member)

Face	Label	Top Elev (in)	Bot Elev (in)	Length, in	Face	Label	Top Elev (in)	Bot Elev (in)	Length, in	Face	Label	Top Elev (in)	Bot Elev (in)	Length, in	Face	Label	Top Elev (in)	Bot Elev (in)
Α	A1	83.0	13	96.0	В	B1	52.0	8	60.0	С	C1	83.0	13	96.0	D			
Α	A4	52.0	8	60.0	В	B4	83.0	13	96.0	С	C4	70.0	26	96.0	D			
Α					В					С					D			
A (2)	A1	56.0	56	96.0	B (2)	B1	24.0	24	60.0	C (2)	C1	56.0	56	96.0	D			
A (3)	A1	72	72	96.0	B (3)	B1	48	48	60.0	C (3)	C1	72	72	96.0	D			
A (2)	A4	48	48	60.0	B (2)	B4	56	56	96.0	C (2)	C4	56	56	96.0	D			
Α					В					С					D			
Α					В					С					D			
Α					В					С					D			
A					В					С					D			

Antennas

									Anter	nna Attach	ment Loca	ations	
ltem	Manufacturer	Antenna	Height (in)	Width (in)	Depth (in)	Flat or Round	Weight (lbs)	Label	Label	Label	Label	Label	Label
1	EMS WIRELESS	RR90-17-02DP	56	8	2.75	Flat	13.5	A4	B1	C4			
2	RFS CELWAVE	APXVAARR24_43-U-NA20	95.9	24	8.7	Flat	128	A1	B4	C1			
3	ERICSSON	KRY 112 144/1	7	6	3	Flat	11	A1(2)	B1(2)	C1(2)			
4	ERICSSON	KRY 112 489/2	11	6.1	3.94	Flat	15.4	A1(3)	B1(3)	C1(3)			
5	ERICSSON	RADIO 4449 B12/B71	15	13.2	9.3	Flat	74	A4(2)	B4(2)	C4(2)			
6													
7													
8													
9													
10													
11													
12													
13													
14													
15													

Dishes

							Dis	h Attachm	ent Locati	ons	
ltem	Manufacturer	Microwave Dish	Dia (in)	Dish Type	Weight (Ibs)	Label	Label	Label	Label	Label	Label
1											
2											
3											
4											
5											

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

 Elevation:
 94.97 ft (NAVD 88)

 Latitude:
 41.372825

 Longitude:
 -72.434436

Wind

Results:

Wind Speed:	130 Vmph
10-year MRI	79 Vmph
25-year MRI	88 Vmph
50-year MRI	97 Vmph
100-year MRI	106 Vmph
Data Source:	ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, incorporating errata of March 12, 2014
Date Accessed:	Fri Apr 26 2019

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Ice

Results:

Ice Thickness:	0.75 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Fri Apr 26 2019

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

APPENDIX C

SOFTWARE ANALYSIS OUTPUT

(Global) Model Settings

Max % Steel for Column

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	No
Max Iterations for Wall Stiffness	3
Gravity Acceleration (in/sec^2)	386.4
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver
Hot Rolled Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	None
Cold Formed Steel Code	None
Wood Code	None
Wood Temperature	< 100F
Concrete Code	None
Masonry Code	None
Aluminum Code	None - Building
Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR SET_ASTMA615
Min % Steel for Column	1

8

(Global) Model Settings, Continued

Seismic Code	ASCE 7-05
Seismic Base Elevation (in)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
RX	3
RZ	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Occupancy Cat	l or ll
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	4
Cd X	4
Rho Z	1
Rho X	1

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E	.Density[k/ft	Yield[ksi]	Rv	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
3	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.42	29000	11154	.3	.65	.49	42	1.4	58	1.3
5	A500 Gr.46	29000	11154	.3	.65	.49	46	1.4	58	1.3
6	A53 Gr. B (35 ksi)	29000	11154	.3	.65	.49	35	1.5	60	1.2

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(d	Section/Shape	Туре	Design List	Material	Design Ru
1	D1	N6	N1			PIPE 4.0	None	None	A53 Gr. B (35 ksi)	Typical
2	F2	N1	N2			PL 6" x 1/2"	None	None	A36 Gr.36	Typical
3	D2	N2	N3			PIPE 4.0	None	None	A53 Gr. B (35 ksi)	Typical
4	F3	N3	N4			PL 6" x 1/2"	None	None	A36 Gr.36	Typical
5	D3	N4	N5			PIPE 4.0	None	None	A53 Gr. B (35 ksi)	Typical
6	F1	N5	N6			PL 6" x 1/2"	None	None	A36 Gr.36	Typical
7	FSD	N7	N8			HSS5x5x5	None	None	A500 Gr.46	Typical
8	C2	N9	N10			HSS5x5x5	None	None	A500 Gr.46	Typical
9	C3	N11	N12			HSS5x5x5	None	None	A500 Gr.46	Typical
10	I112	N49	N50			SR 3/4"	None	None	A36 Gr.36	Typical
11	111	N29	N40			SR 3/4"	None	None	A36 Gr.36	Typical
12	l12	N30	N31			SR 1"	None	None	A36 Gr.36	Typical
13	I13	N32	N33			SR 1"	None	None	A36 Gr.36	Typical
14	l14	N34	N35			SR 1"	None	None	A36 Gr.36	Typical
15	I15	N36	N37			SR 1"	None	None	A36 Gr.36	Typical
16	l16	N38	N39			SR 1"	None	None	A36 Gr.36	Typical
17	HH1	N40	N256			SR 3/4"	None	None	A36 Gr.36	Typical
18	113	N41	N42			SR 3/4"	None	None	A36 Gr.36	Typical
19	114	N43	N48			SR 3/4"	None	None	A36 Gr.36	Typical
20	112	N44	N45			SR 3/4"	None	None	A36 Gr.36	Typical

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint Rotate	(d Section/Shape	Туре	Design List	Material	Design Ru
21	<u> </u>	N46	N47		SR 3/4"	None	None	A36 Gr.36	Typical
22	H1	N47	N48		SR 3/4"	None	None	A36 Gr.36	Typical
23	<u> 111</u>	N51	N52			None	None	A36 Gr.36	Typical
24	l110	N53	N54			None	None	A36 Gr.36	Typical
25	119	N55	N56			None	None	A36 Gr.36	Typical
26	l18	N57	N58			None	None	A36 Gr.36	Typical
27	117	N59	N60			None	None	A36 Gr.36	Typical
28	1212	N115	N116		SR 3/4"	None	None	A36 Gr.36	Typical
29	121	N95	N106		SR 3/4"	None	None	A36 Gr.36	Typical
30	122	N96	N97		SR 1"	None	None	A36 Gr.36	Typical
31	123	N98	N99			None	None	A36 Gr.36	Typical
32	124	N100	N101		SR 1"	None	None	A36 Gr.36	Typical
33	125	N102	N103			None	None	A36 Gr.36	Typical
34	126	N104	N105		SR 1"	None	None	A36 Gr.36	Typical
35	HH2	N106	N258		SR 3/4"	None	None	A36 Gr.36	Typical
36	117	N107	N108		SR 3/4"	None	None	A36 Gr.36	Typical
37	118	N109	N114		SR 3/4"	None	None	A36 Gr.36	Typical
38	116	N110	N111		SR 3/4"	None	None	A36 Gr.36	Typical
39	115	N112	N113		SR 3/4"	None	None	A36 Gr.36	Typical
40	H2	N113	N114		SR 3/4"	None	None	A36 Gr.36	Typical
41	I211	N117	N118		SR 1"	None	None	A36 Gr.36	Typical
42	1210	N119	N120		SR 1"	None	None	A36 Gr.36	Typical
43	129	N121	N122		SR 1"	None	None	A36 Gr.36	Typical
44	128	N123	N124		SR 1"	None	None	A36 Gr.36	Typical
45	127	N125	N126		SR 1"	None	None	A36 Gr.36	Typical
46	1312	N181	N182		SR 3/4"	None	None	A36 Gr.36	Typical
47	131	N161	N172		SR 3/4"	None	None	A36 Gr.36	Typical
48	132	N162	N163		SR 1"	None	None	A36 Gr.36	Typical
49	133	N164	N165		SR 1"	None	None	A36 Gr.36	Typical
50	134	N166	N167		SR 1"	None	None	A36 Gr.36	Typical
51	135	N168	N169		SR 1"	None	None	A36 Gr.36	Typical
52	136	N170	N171		SR 1"	None	None	A36 Gr.36	Typical
53	HH3	N172	N260		SR 3/4"	None	None	A36 Gr.36	Typical
54	1111	N173	N174		SR 3/4"	None	None	A36 Gr.36	Typical
55	112	N175	N180		SR 3/4"	None	None	A36 Gr.36	Typical
56	II10	N176	N177		SR 3/4"	None	None	A36 Gr.36	Typical
57	119	N178	N179		SR 3/4"	None	None	A36 Gr.36	Typical
58	H3	N179	N180		SR 3/4"	None	None	A36 Gr.36	Typical
59	1311	N183	N184		SR 1"	None	None	A36 Gr.36	Typical
60	1310	N185	N186		SR 1"	None	None	A36 Gr.36	Typical
61	139	N187	N188		SR 1"	None	None	A36 Gr.36	Typical
62	138	N189	N190		SR 1"	None	None	A36 Gr.36	Typical
63	137	N191	N192		SR 1"	None	None	A36 Gr.36	Typical
64	M117	N240	N241A		RIGID	None	None	RIGID	Typical
65	ASD	N243A	N242A		PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
66	M140A	N256	N50		SR 3/4"	None	None	A36 Gr.36	Typical
67	M141A	N258	N116		SR 3/4"	None	None	A36 Gr.36	Typical
68	M142	N260	N182		SR 3/4"	None	None	A36 Gr.36	Typical
69	M69	N140	N139		SR 3/4	None	None	A36 Gr.36	Typical
70	M70	N139	N141		SR 3/4	None	None	A36 Gr.36	Typical
71	M71	N141	N142		SR 3/4	None	None	A36 Gr.36	Typical
72	M72	N142	N140		SR 3/4	None	None	A36 Gr 36	Typical
73	M73	N144	N143		SR 3/4	None	None	A36 Gr 36	Typical
74	M74	N143	N145		SR 3/4	None	None	A36 Gr 36	Typical
75	M75	N145	N146		SR 3/4	None	None	A36 Gr 36	Typical
76	M76	N146	N144		SR 3/4	None	None	A36 Gr 36	Typical
77	M77	N148	N147		SR 3/4	None	None	A36 Gr 36	Typical
			111171			TROLLE	NULLE	700 01.00	туріса

RISA-3D Version 15.0.4 [G:\...\...\...\37519-1564.002.7190_MA\RISA\37519-1564_Wind Load.r3d] Page 3

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(d	Section/Shape	Туре	Design List	Material	Design Ru
78	M78	N147	N149			SR 3/4	None	None	A36 Gr.36	Typical
79	M79	N149	N150			SR 3/4	None	None	A36 Gr.36	Typical
80	M80	N150	N148			SR 3/4	None	None	A36 Gr.36	Typical
81	WER	N158	N157			PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
82	M82	N155	N153			PIPE_2.0	None	None	A53 Gr. B (35 ksi)	Typical
83	M83	N156	N154			PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
84	M84	N161A	N159			RIGID	None	None	RIGID	Typical
85	M85	N162A	N160			RIGID	None	None	RIGID	Typical
86	M86	N151	N149A			RIGID	None	None	RIGID	Typical
87	M87	N152	N150A			RIGID	None	None	RIGID	Typical
88	M88	N165A	N164A			RIGID	None	None	RIGID	Typical
89	M89	N167A	N166A			PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
90	M90	N163A	N168A			PIPE_2.0	None	None	A53 Gr. B (35 ksi)	Typical
91	<u>M91</u>	N169A	N170A			RIGID	None	None	RIGID	Typical
92	M92	N172A	N171A			PIPE_2.0	None	None	A53 Gr. B (35 ksi)	Typical
93	SDF	N182A	N181A			PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
94	M94	N179A	N177A			<u> </u>	None	None	A53 Gr. B (35 ksi)	Typical
95	<u>M95</u>	N180A	N178A			PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
96	M96	N185A	N183A			RIGID	None	None	RIGID	Typical
97	M97	N186A	N184A			RIGID	None	None	RIGID	Typical
98	M98	N175A	N173A			RIGID	None	None	RIGID	Typical
99	<u>M99</u>	N176A	N174A			RIGID	None	None	RIGID	Typical
100	<u>M100</u>	N189A	N188A			RIGID	None	None	RIGID	Typical
101	<u>M101</u>	N191A	N190A			PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
102	M102	N187A	N192A			<u>PIPE_2.0</u>	None	None	A53 Gr. B (35 ksi)	Typical
103	<u>M103</u>	N194	N193			RIGID	None	None	RIGID	Typical
104	<u>C1</u>	N196	N195			<u> </u>	None	None	A53 Gr. B (35 ksi)	Typical
105	<u>M105</u>	N198	N197			RIGID	None	None	RIGID	Typical
106	<u>A1</u>	N200	N199			PIPE_2.0	None	None	A53 Gr. B (35 ksi)	Typical
107	<u>M107</u>	N202	N201			RIGID	None	None	RIGID	Typical
108	FDS	N204	N203A			<u>PIPE_2.0</u>	None	None	A53 Gr. B (35 KSI)	Typical
109	<u>M109</u>	N206	N205			RIGID	None	None	RIGID	Typical
110	<u>M110</u>	N208	N207			<u>PIPE_2.0</u>	None	None	A53 Gr. B (35 KSI)	Typical
111	<u>M113</u>	N214	N213			RIGID	None	None	RIGID	Typical
112	<u>M114</u>	N216	N215			<u>PIPE_2.0</u>	None	None	Ab3 Gr. B (35 KSI)	Typical
113	<u>M113A</u>	N214A	N213A			RIGID	None	None	RIGID	Typical
114	<u>C4</u>	N216A	N215A			<u>PIPE_2.0</u>	None	None	ADD GL B (DD KSI)	Typical
115	<u>M115</u>	N218	N217			RIGID	None	None	RIGID	Typical
110		N220	N219				None	None		Typical
110	<u>IVITI/A</u>	N221	NOOO				None	None	RIGID	Typical
110	<u>M110</u>	N221	N223				None	None		Typical
119	M120	N224	N220				None	None		Typical
120	M121	N222	N225				None	None		Typical
121	M122	N222	N220				None	None	A36 Gr 26	Typical
122	M122	N229	N220				None	None	A53 Gr B (35 kei)	Typical
123	M124	N220	N220				None	None		Typical
124	M125	N229	N221				None	None	PICID	Typical
125	M126	N232	N233			RIGID	None	None	RIGID	Typical
120	M120	N232	N234			RIGID	None	None	RIGID	Typical
127	M128	N230	N233			SR 3/A	None	None	A36 Gr 36	Typical
120	M120	N231	N234			SR 2//	None	None	Δ36 Cr 36	Typical
120	M130	N236	N235			RIGID	None	None	RIGID	Typical
131		N238	N237			PIPE 20	None	None	A53 Gr. B (35 ksi)	Typical
132	M132	N240A	N230			RIGID	None	None	RIGID	Typical
132	M132	N242R	N241R			PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
134	M135	N2454	N2474			RIGID	None	None	RIGID	Typical
104	WI00						TIONE	NONE		Typical

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(d	Section/Shape	Туре	Design List	Material	Design Ru
135	M136	N245A	N249A			RIGID	None	None	RIGID	Typical
136	M137	N246A	N248A			RIGID	None	None	RIGID	Typical
137	M138	N246A	N250A			RIGID	None	None	RIGID	Typical
138	M139	N251A	N253			RIGID	None	None	RIGID	Typical
139	M140	N251A	N255			RIGID	None	None	RIGID	Typical
140	M141	N252A	N254			RIGID	None	None	RIGID	Typical
141	M142A	N252A	N256A			RIGID	None	None	RIGID	Typical
142	M143	N247A	N253			SR 3/4	None	None	A36 Gr.36	Typical
143	M144	N249A	N255			SR 3/4	None	None	A36 Gr.36	Typical
144	M145	N248A	N254			SR 3/4	None	None	A36 Gr.36	Typical
145	M146	N250A	N256A			SR 3/4	None	None	A36 Gr.36	Typical
146	A4	N258A	N257A			PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
147	M148	N259A	N261A			RIGID	None	None	RIGID	Typical
148	M149	N259A	N263A			RIGID	None	None	RIGID	Typical
149	M150	N260A	N262A			RIGID	None	None	RIGID	Typical
150	M151	N260A	N264A			RIGID	None	None	RIGID	Typical
151	M152	N265	N267			RIGID	None	None	RIGID	Typical
152	M153	N265	N269			RIGID	None	None	RIGID	Typical
153	M154	N266	N268			RIGID	None	None	RIGID	Typical
154	M155	N266	N270			RIGID	None	None	RIGID	Typical
155	M156	N261A	N267			SR 3/4	None	None	A36 Gr.36	Typical
156	M157	N263A	N269			SR 3/4	None	None	A36 Gr.36	Typical
157	M158	N262A	N268			SR 3/4	None	None	A36 Gr.36	Typical
158	M159	N264A	N270			SR 3/4	None	None	A36 Gr.36	Typical
159	B1	N272	N271			PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
160	M160	N275	N276			PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
161	M161	N280	N279			RIGID	None	None	RIGID	Typical
162	M163	N284	N283			RIGID	None	None	RIGID	Typical
163	M164	N286	N285			RIGID	None	None	RIGID	Typical
164	M164A	N285A	N286A			PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
165	M165	N289	N290			PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
166	M166	N294	N293			RIGID	None	None	RIGID	Typical
167	M167	N296	N295			RIGID	None	None	RIGID	Typical
168	M168	N298	N297			RIGID	None	None	RIGID	Typical
169	M169	N300	N299			RIGID	None	None	RIGID	Typical
170	M170	N302	N301			RIGID	None	None	RIGID	Typical
171	M171	N304	N303			PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
172	M172	N306	N305			RIGID	None	None	RIGID	Typical
173	M173	N308	N307			RIGID	None	None	RIGID	Typical
174	M174	N310	N309			PIPE_2.0	None	None	A53 Gr. B (35 ksi)	Typical
175	M175	N312	N311			RIGID	None	None	RIGID	Typical
176	M176	N277	N288		180	L2.5x2.5x4	None	None	A36 Gr.36	Typical
177	M177	N287	N292		180	L2.5x2.5x4	None	None	A36 Gr.36	Typical
178	M178	N291	N278		180	L2.5x2.5x4	None	None	A36 Gr.36	Typical

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Analysis	Inactive	Seismic Design
1	D1					-	Yes	-		None
2	F2						Yes			None
3	D2						Yes			None
4	F3						Yes			None
5	D3						Yes			None
6	F1						Yes			None
7	FSD						Yes			None
8	C2						Yes			None

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Analysis	Inactive	Seismic Design
9	<u>C3</u>						Yes			None
10	1112						Yes			None
11	<u> 11</u>						Yes			None
12	112						Yes			None
13	<u> 13</u>						Yes			None
14	114						Yes			None
15	115						Yes			None
16	l16						Yes			None
17	HH1						Yes			None
18	113						Yes			None
19	114						Yes			None
20	112						Yes			None
21	1						Yes			None
22	H1						Yes			None
23	<u> 111</u>						Yes			None
24	I110						Yes			None
25	119						Yes			None
26	118						Yes			None
27	117						Yes			None
28	1212						Yes			None
29	121						Yes			None
30	122						Yes			None
31	123						Yes			None
32	124						Yes			None
33	125						Yes			None
34	126						Yes			None
35	HH2						Yes			None
36	117						Yes			None
37	118						Yes			None
38	116						Yes			None
39	115						Yes			None
40	H2						Yes			None
41	1211						Yes			None
42	1210						Yes			None
43	129						Yes			None
44	128						Yes			None
45	127						Yes			None
46	1312						Yes			None
47	131						Yes			None
48	132						Yes			None
49	133						Yes			None
50	134						Yes			None
51	135						Yes			None
52	136						Yes			None
53	HH3						Yes			None
54	11						Yes			None
55	12						Yes			None
56	10						Yes			None
57	9						Yes			None
58	H3						Yes			None
59	1311						Yes			None
60	1310						Yes			None
61	130						Yes			None
62	138						Yes			None
63	137						Yes			None
64	M117						Yes			None
65							Yes			None
		1	1			1	105			

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	<u>Analysis</u>	Inactive	Seismic Design
66	M140A						Yes			None
67	M141A						Yes			None
68	M142						Yes			None
69	M69						Yes			None
70	M70						Yes			None
71	M71						Yes			None
72	M72						Yes			None
73	M73						Yes			None
74	M74						Yes			None
75	M75						Yes			None
76	M76						Yes			None
77	M77						Yes			None
78	M78						Yes			None
79	M79						Yes			None
80	M80						Yes			None
81	WER						Yes			None
82	M82						Yes			None
83	M83						Yes			None
84	M84						Yes			None
85	M85						Yes			None
86	M86		OOOXOX				Yes			None
87	M87		OOOXOX				Yes			None
88	M88						Yes			None
89	<u>M89</u>						Yes			None
90	M90	BenPIN	BenPIN				Yes			None
91	M91						Yes			None
92	M92						Yes			None
93	SDF						Yes			None
94	M94						Yes			None
95	<u>M95</u>						Yes			None
96	M96						Yes			None
97	<u>M97</u>						Yes			None
98	<u>M98</u>		000X0X				Yes			None
99	<u>M99</u>		000X0X				Yes			None
100	<u>M100</u>						Yes			None
101	<u>M101</u>						Yes			None
102	M102	BenPIN	BenPIN				Yes			None
103	<u>M103</u>						Yes			None
104	<u>C1</u>						Yes			None
105	M105						Yes			None
106	A1						Yes			None
107	<u>M107</u>						Yes			None
108	FDS						Yes			None
109	M109						Yes			None
110	M110						Yes			None
111	<u>M113</u>						Yes			None
112	M114						Yes			None
113	M113A						Yes			None
114							Yes			None
115	IVI115						Yes			None
110	IVI116						Yes			None
11/	MAAA						Yes			None
118	<u>W118</u>						Yes			None
119	<u>N1119</u>						res			None
120	M120						Yes			None
121	M121						Yes			None
122	M122						Yes			None

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical A	Analysis	Inactive	Seismic Design
123	M123						Yes			None
124	M124						Yes			None
125	M125						Yes			None
126	M126						Yes			None
127	M127						Yes			None
128	M128						Yes			None
129	M129						Yes			None
130	M130						Yes			None
131	B4						Yes			None
132	M132						Yes			None
133	M133						Yes			None
134	M135						Yes			None
135	M136						Yes			None
136	M137						Yes			None
137	M138						Ves			None
138	M130						Ves			None
130	M140						Ves			None
140	M141						Voc			None
140	M1420						Voc			None
141	M142A						Voc			None
142	<u>IVI 143</u>						Vec			None
143	<u>IVI 144</u>						Yes			None
144	<u>IVI 145</u>						Yes			None
145	<u>M146</u>						Yes			None
140	<u>A4</u>						Yes			None
147	<u>M148</u>						Yes			None
148	<u>M149</u>						Yes			None
149	M150						Yes			None
150	M151						Yes			None
151	<u>M152</u>						Yes			None
152	M153						Yes			None
153	M154						Yes			None
154	M155						Yes			None
155	M156						Yes			None
156	M157						Yes			None
157	M158						Yes			None
158	M159						Yes			None
159	B1						Yes			None
160	M160						Yes			None
161	M161		000X0X				Yes			None
162	M163		000X0X				Yes			None
163	M164		000X0X				Yes			None
164	M164A						Yes			None
165	M165						Yes			None
166	M166		000X0X				Yes			None
167	M167		000X0X				Yes			None
168	M168		OOOXOX				Yes			None
169	M169		OOOXOX				Yes			None
170	M170						Yes			None
171	M171						Yes			None
172	M172		000X0X				Yes			None
173	M173		000/0/				Yes			None
174	M174						Yes			None
175	M175		000202				Yes			None
176	M176	00000	00000				Yes			None
177	M177	000000	000000				Yee			None
179	M179	000000	000000				Vec			None
1/0	IVI 170						Tes			NUTIE

Hot Rolled Steel Design Parameters

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]L	<u>_comp_bot[in]L</u>	<u>-torqu.</u>	. Kyy	<u> </u>	Cb	Function
1	D1	PIPE 4.0	200			Lbyy						Lateral
2	F2	PL 6" x 1/2"	8			Lbyy						Lateral
3	D2	PIPE 4.0	200			Lbyy						Lateral
4	F3	PL 6" x 1/2"	8			Lbyy						Lateral
5	D3	PIPE 4.0	200			Lbvv						Lateral
6	F1	PL 6" x 1/2"	8			Lbvv						Lateral
7	ESD	HSS5x5x5	50			Lbvy						Lateral
8	C2	HSS5x5x5	50			Lbvv						Lateral
a	<u>C3</u>	HSS5x5x5	50			Lbvv						Lateral
10	1112	SR 3/4"	6									Lateral
11	1112	SP 2/4"	6									Lateral
10	112		6									Lateral
12	112		0			LDyy						Lateral
13	113		0			LDVV						Lateral
14	114	SR 1"	6			Lbyy				 		Lateral
15	115	<u>SR 1"</u>	6			Lbyy				<u> </u>		Lateral
16	116	SR 1"	6			Lbyy				ļ		Lateral
17	HH1	SR 3/4"	78	16	16	Lbyy				L		Lateral
18	113	SR 3/4"	13			Lbyy						Lateral
19	4	SR 3/4"	13			Lbyy						Lateral
20	112	SR 3/4"	13			Lbyy						Lateral
21	11	SR 3/4"	13			Lbyy						Lateral
22	H1	SR 3/4"	52			Lbvv						Lateral
23	1111	SR 1"	6			Lbvv						Lateral
24	1110	SR 1"	6									Lateral
25	110	SR 1"	6			Lbvv						Lateral
26	118	SP 1"	6									Lateral
20	117	SP 1"	6									Lateral
21	1010		6									Lateral
20	1212		0			Lby						Lateral
29	121	<u>SR 3/4</u>	0			LDVV						Lateral
30	122		0			LDyy						Lateral
31	123	<u>SR 1"</u>	6			LDVV					<u> </u>	Lateral
32	124	<u>SR 1"</u>	6			Lbyy						Lateral
33	125	SR 1"	6			Lbyy						Lateral
34	126	SR 1"	6			Lbyy				ļ		Lateral
35	HH2	SR 3/4"	78	16	16	Lbyy				L		Lateral
36	7	SR 3/4"	13			Lbyy				<u> </u>		Lateral
37	118	SR 3/4"	13			Lbyy						Lateral
38	116	SR 3/4"	13			Lbyy						Lateral
39	115	SR 3/4"	13			Lbyy						Lateral
40	H2	SR 3/4"	52			Lbyy						Lateral
41	1211	SR 1"	6			Lbyy						Lateral
42	1210	SR 1"	6			Lbvv						Lateral
43	129	SR 1"	6			Lbvv						Lateral
44	128	SR 1"	6			Lbvv						Lateral
45	127	SR 1"	6			Lbvv						Lateral
46	1312	SR 3/4"	6									Lateral
47	121	SR 3///"	6									Lateral
18	132	SR 1"	6									Lateral
40	132	SP 1"	6								-	Lateral
49	100		6									Lateral
50	134		0			Lbyy						Lateral
51	130		0			LDVV						Lateral
52	136	SK 1	0	40	40	LDYY						Lateral
53	HH3	SK 3/4"	/8	16	16	LDyy						Lateral
54	1111	SR 3/4"	13			Lbyy						Lateral
55	1112	SR 3/4"	13			Lbyy						Lateral
56	1110	<u>SR 3/4</u> "	13			Lbyy						Lateral

Hot Rolled Steel Design Parameters (Continued)

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]	Lcomp bot[in]L-torqu	. Kyy	Kzz	Cb	Function
57	119	<u>SR 3/4"</u>	13			Lbyy					Lateral
58	<u>H3</u>	<u>SR 3/4"</u>	52			Lbyy					Lateral
59	1311	<u>SR 1"</u>	6			Lbyy			<u> </u>		Lateral
60	1310	SR 1"	6			Lbyy					Lateral
61	139	<u>SR 1"</u>	6			Lbyy			<u> </u>		Lateral
62	138	SR 1"	6			Lbyy					Lateral
63	137	SR 1"	6			Lbyy				L	Lateral
64	ASD	PIPE_2.0	60			Lbyy					Lateral
65	M140A	SR 3/4"	78	16	16	Lbyy					Lateral
66	M141A	SR 3/4"	78	16	16	Lbyy					Lateral
67	M142	SR 3/4"	78	16	16	Lbyy					Lateral
68	M69	SR 3/4	15								Lateral
69	M70	SR 3/4	12								Lateral
70	M71	SR 3/4	15								Lateral
71	M72	SR 3/4	12								Lateral
72	M73	SR 3/4	15								Lateral
73	M74	SR 3/4	12								Lateral
74	M75	SR 3/4	15								Lateral
75	M76	SR 3/4	12								Lateral
76	M77	SR 3/4	15								Lateral
77	M78	SR 3/4	12								Lateral
78	M79	SR 3/4	15								Lateral
70	M80		12								Lateral
80			60			Lbw					Lateral
00		PIPE 2.0	60			LDyy					Lateral
01			60								Lateral
82	10183	PIPE 2.0	60								Lateral
83	<u>M89</u>	PIPE 2.0	18								Lateral
84	<u>M90</u>	<u>PIPE_2.0</u>	52.233			·					Lateral
85	<u>M92</u>	PIPE 2.0	60			Lbyy					Lateral
86	SDF	PIPE 2.0	60			Lbyy				<u> </u>	Lateral
87	<u>M94</u>	PIPE 2.0	60						<u> </u>	L	Lateral
88	M95	PIPE_2.0	60								Lateral
89	M101	PIPE 2.0	18								Lateral
90	M102	PIPE_2.0	52.233								Lateral
91	<u>C1</u>	PIPE 2.0	96								Lateral
92	A1	PIPE_2.0	96								Lateral
93	FDS	PIPE 2.0	60								Lateral
94	M110	PIPE 2.0	18								Lateral
95	M114	PIPE 2.0	60								Lateral
96	C4	PIPE 2.0	96								Lateral
97	M116	PIPE 2.0	60								Lateral
98	M121	SR 3/4	6								Lateral
99	M122	SR 3/4	6								Lateral
100	M123	PIPE 2.0	60								Lateral
101	M128	SR 3/4	6								Lateral
102	M129	SR 3/4	6								Lateral
102	R/	PIPE 20	90								Lateral
104	M133		18								Lateral
104	M1/2		6								Lateral
100	M143	SP 2/4	6								Lateral
100	N144	SR 3/4	6								
107	N145	SR 3/4	0								Lateral
108	M146	<u>SK 3/4</u>	0			1 U .					Lateral
109	<u>A4</u>		60			Lbyy			<u> </u>		Lateral
110	M156	SR 3/4	6								Lateral
111	M157	SR 3/4	6								Lateral
112	M158	SR 3/4	6								Lateral
113	M159	<u>SR 3/4</u>	6							<u> </u>	Lateral

Hot Rolled Steel Design Parameters (Continued)

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]	Lcomp bot[in]	L-torqu.	. Kyy	Kzz	Cb	Function
114	B1	PIPE 2.0	60			Lbyy						Lateral
115	M160	PIPE 2.0	200									Lateral
116	M164A	PIPE 2.0	200									Lateral
117	M165	PIPE 2.0	200									Lateral
118	M171	PIPE 2.0	72									Lateral
119	M174	PIPE 2.0	72									Lateral
120	M176	L2.5x2.5x4	20									Lateral
121	M177	L2.5x2.5x4	20									Lateral
122	M178	L2.5x2.5x4	20									Lateral

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(Pl
1	Dead	None		-1.1	-		30		6	
2	Live	None								
3	Wind 0	None					60	244		
4	Wind 30	None					60	244		
5	Wind 60	None					60	244		
6	Wind 90	None					60	244		
7	Wind 120	None					60	244		
8	Wind 150	None					60	244		
9	Ice Load	None					30	122	6	
10	Ice 0	None					60	244		
11	Ice 30	None					60	244		
12	Ice 60	None					60	244		
13	Ice 90	None					60	244		
14	Ice 120	None					60	244		
15	Ice 150	None					60	244		
16	Lm	None				1				
17	Lv	None				1				
18	BLC 1 Transient Area	None						183		
19	BLC 9 Transient Area	None						183		

Load Combinations

	Description S.	PDelta	ı S	В	Fa	В	Factor	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	Fa	. B	Fa
1	1.4 D Ye	s Y		1	1.4																		
2	1.2 D + 1.6 L Ye	s Y		1	1.2	2	1.6																
3	1.2 D + 1.0 Wo @ 0 Ye	s Y		1	1.2	3	1																
4	1.2 D + 1.0 Wo @ 30Ye	s Y		1	1.2	4	1																
5	1.2 D + 1.0 Wo @ 60Ye	s Y		1	1.2	5	1																
6	1.2 D + 1.0 Wo @ 90Ye	s Y		1	1.2	6	1																
7	1.2 D + 1.0 Wo @ Ye	s Y		1	1.2	7	1																
8	1.2 D + 1.0 Wo @ Ye	s Y		1	1.2	8	1																
9	1.2 D + 1.0 Wo @ Ye	s Y		1	1.2	3	-1																
10	1.2 D + 1.0 Wo @ Ye	es Y		1	1.2	4	-1																
11	1.2 D + 1.0 Wo @ Ye	es Y		1	1.2	5	-1																
12	1.2 D + 1.0 Wo @ Ye	s Y		1	1.2	6	-1																
13	1.2 D + 1.0 Wo @ Ye	es Y		1	1.2	7	-1																
14	1.2 D + 1.0 Wo @ Ye	es Y		1	1.2	8	-1																
15	1.2 D + 1.0 Di + 1.0Ye	es Y		1	1.2	9	1	10	1														
16	1.2 D + 1.0 Di + 1.0Ye	es Y		1	1.2	9	1	11	1														
17	1.2 D + 1.0 Di + 1.0Ye	s Y		1	1.2	9	1	12	1														
18	1.2 D + 1.0 Di + 1.0Ye	s Y		1	1.2	9	1	13	1														
19	1.2 D + 1.0 Di + 1.0Ye	s Y		1	1.2	9	1	14	1														
20	1.2 D + 1.0 Di + 1.0Ye	s Y		1	1.2	9	1	15	1														

Load Combinations (Continued)

DescriptionS	PDelta	S	В	Fa	В	FactorB	Fa	. B	Fa	В	Fa										
21 1.2 D + 1.0 Di + 1.0. Ye	es Y		1	1.2	9	1 10	-1														
22 1.2 D + 1.0 Di + 1.0Ye	es Y		1	1.2	9	1 11	-1														
23 1.2 D + 1.0 Di + 1.0Ye	es Y		1	1.2	9	1 12	-1														
24 1.2 D + 1.0 Di + 1.0Ye	es Y		1	1.2	9	1 13	-1														
25 1.2 D + 1.0 Di + 1.0Ye	es Y		1	1.2	9	1 14	-1														
26 1.2 D + 1.0 Di + 1.0Ye	es Y		1	1.2	9	1 15	-1														
27 1.2 D + 1.5 Lm + 1Ye	es Y		1	1.2	3	.053 16	1.5														
28 1.2 D + 1.5 Lm + 1Ye	es Y		1	1.2	4	.053 16	1.5														
29 1.2 D + 1.5 Lm + 1Ye	es Y		1	1.2	5	.053 16	1.5														
30 1.2 D + 1.5 Lm + 1Ye	es Y		1	1.2	6	.053 16	1.5														
31 1.2 D + 1.5 Lm + 1Ye	es Y		1	1.2	7	.053 16	1.5														
32 1.2 D + 1.5 Lm + 1Ye	es Y		1	1.2	8	.053 16	1.5														
33 1.2 D + 1.5 Lm + 1Ye	es Y		1	1.2	3	053 16	1.5														
34 1.2 D + 1.5 Lm + 1Ye	es Y		1	1.2	4	053 16	1.5														
35 1.2 D + 1.5 Lm + 1Ye	es Y		1	1.2	5	053 16	1.5														
36 1.2 D + 1.5 Lm + 1Ye	es Y		1	1.2	6	053 16	1.5														
37 1.2 D + 1.5 Lm + 1Ye	es Y		1	1.2	7	053 16	1.5														
38 1.2 D + 1.5 Lm + 1Ye	es Y		1	1.2	8	053 16	1.5														
39 1.2 D + 1.5 Lv Ye	es Y		1	1.2	17	1.5															

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	1102.746	12	3361.806	24	2813.047	14	.447	4	8.053	14	-1.422	6
2		min	-1160.901	6	852.276	6	-2814.452	8	-1.823	34	-8.072	8	-12.878	24
3	N10	max	2594.06	12	3403.278	20	1422.98	3	-1.587	14	6.926	12	6.466	19
4		min	-2564.406	6	918.261	14	-1367.115	9	-12.284	20	-6.957	6	.519	13
5	N12	max	2163.908	12	3226.788	16	1589.377	3	11.318	16	5.155	6	6.884	17
6		min	-2135.338	6	814.818	10	-1646.655	9	.967	10	-5.116	12	.889	11
7	Totals:	max	5860.714	12	9752.705	24	5498.943	3						
8		min	-5860.646	6	3457.405	6	-5498.855	9						

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[in]	LC	Shear Check	Loc[in]	Dir	LC	phi*Pnphi*Pntphi*Mnphi*MnCb_Eqn_
1	M171	PIPE 2.0	.993	24	22	.142	66		20	20866 32130 1.872 1.872 2H1-1b
2	C1	PIPE 2.0	.970	36	16	.156	36		11	14916 32130 1.872 1.872 2 H1-1b
3	M92	PIPE 2.0	.869	25	26	.267	25		14	23808 32130 1.872 1.872 1 H1-1b
4	M174	PIPE 2.0	.816	24	26	.127	66		16	20866 32130 1.872 1.872 2 H1-1b
5	B4	PIPE 2.0	.790	36	7	.135	36		13	14916 32130 1.872 1.872 1 H1-1b
6	ASD	PIPE 2.0	.749	25	22	.220	25		10	23808 32130 1.872 1.872 1 H1-1b
7	FDS	PIPE 2.0	.739	12.5	7	.110	12.5		13	23808 32130 1.872 1.872 1 H1-1b
8	D2	PIPE 4.0	.682	100	20	.136	100		13	38344 93240 10.631 10.631 1 H1-1b
9	D1	PIPE 4.0	.669	100	24	.135	100		17	38344 93240 10.631 10.631 1 H1-1b
10	M116	PIPE 2.0	.642	12.5	10	.084	12.5		12	23808 32130 1.872 1.872 1 H1-1b
11	M128	SR 3/4	.641	0	11	.350	0		10	1356214313 179 . 179 2H1-1b
12	C4	PIPE 2.0	.635	36	10	.060	78		24	14916 32130 1.872 1.872 2 H1-1b
13	M95	PIPE 2.0	.582	6.25	18	.044	53.75		18	23808 32130 1.872 1.872 1 H1-1b
14	D3	PIPE 4.0	.571	100	17	.155	47.917		15	38344 93240 10.631 10.631 1H1-1b
15	M94	PIPE 2.0	.571	6.25	24	.046	53.75		24	23808 32130 1.872 1.872 1H1-1b
16	SDF	PIPE 2.0	.560	9.375	18	.199	17.5		6	23808 32130 1.872 1.872 1H1-1b
17	F2	PL 6" x 1/2"	.550	8	13	.233	0	y	13	82685 97200 1.012 12.15 1H1-1b
18	A1	PIPE 2.0	.536	36	9	.109	36		20	14916 32130 1.872 1.872 2 H1-1b
19	M129	SR 3/4	.522	0	7	.321	6		10	13562 14313179 .179 2H1-1b
20	M114	PIPE 2.0	.521	12.5	9	.085	12.5		20	23808 32130 1.872 1.872 1 H1-1b
21	M83	PIPE_2.0	.496	6.25	18	.039	53.75		18	23808 32130 1.872 1.872 1 H1-1b

Envelope AISC 14th(360-10): LRFD Steel Code Checks (Continued)

	Member	Shape	Code Check	Loc[in]	LC	Shear Check	Loc[in]	Dir	LC	phi*Pnphi*Pnt	phi*Mn	.phi*MnCb Eqn
22	<u>C2</u>	HSS5x5x5	.488	50	18	.098	50	У	36	20785 217764	<u>31.602</u>	31.602 1H1-1b
23	M82	PIPE 2.0	.486	6.25	24	.040	53.75		24	2380832130	1.8/2	1.8/2 1H1-1b
24	WER	PIPE_2.0	.478	9.375	18	.149	9.375		4	2380832130	1.8/2	1.8/2 1H1-10
25	FSD	HSSSXSXS	.457	50	20	.100	50	y	22	20785 217764	31.602	31.602 1HI-ID
20	03		.456	50	18	.082	50	Z	8	20700 217704	31.602	31.602 1 HI-10
27	M146	SR 3/4	.452	0	6	.120	0		6	13502 14313	.179	.179 2HI-ID
28	M121	SR 3/4	.449	0	5	.173	6		10	1300214313	.179	179 2HI-10
29	HI	SR 3/4"	.436	20	20	.093	20		19	1297.014313	.179	179 1HI-10
30		SR 3/4	.420	20	20	.087	20		20	1297.014313	.179	170 1 H1 1b
31	H3	SR 3/4	.403	0	24	.090	0		22	12562 1/212	170	170 2 H1 1b
32		<u>SK 3/4</u>	.391	0	6	.153	0		22	1330214313 92695 07200	.179	179 Z HI-10
33			.382	0	5	.210	0	V	5	02000	170	12.15 1
34	N145	SR 3/4	.300	0	10	.090	0		0	12562 14212	170	170 2 H1 1b
30	140	SR 3/4	.348		18	.103	0		0	13002 14313	.179	.179 Z H1-10
30			.343	0	0	.040	0		0	2400020440	.424	.4 <u>2</u> 4 1H1-10
37	F3		.339	0	3	.210	8	V	3	02000	1.012	
38	113		.321	0	0	.042	0		7	2400020440	.424	<u>.424</u> 1H1-10
39	120		.310	0	13	.048	6		1	2400020440	.424	<u>.424</u> 1H1-10
40	130		.314	0	9	.040	6		<u></u> С	13562 1/313	.424	<u>.424</u> 1⊓1-10
41	1/144	SR 3/4	.300	0	0	.053	6		0	13562 1/313	170	.179 2111-10 170 2 H1 1b
42	125	<u>SK 3/4</u>	.302	0	0	.037	6		0	24686 25446	.179	.179 2111-10 404 1 H1 1b
43	133		.301		7	.050	6		5 7	2400025440	.424	.424 1111-10
44	114		.301	0	5	.041	6		/	2400025440	.424	<u>.424</u> 1111-10
45			.300	12 912	<u> </u>	.042	16 212		22	9756 1 14313	.424	.424 1111-1b
40	120	SR 3/4	.297	0	0	.140	40.313		23	24686 25446	.179	.179 1 H1-1b
47	1110	SP 1"	.295	0	4	.039	6		10	24686 25446	424	<u>.424</u> 1111-1b
40	110		.291	0	4	.037	6		5	24686 25446	.424	.424 1111-1b
<u>49</u> 50	M158		200	0	18	.037	0		6	13562 14313	170	170 2 H1-1b
51	M160		280	175	17	.002	175		21	3541 1 32130	1 872	1 872 2 H1-1b
52	129	SR 1"	286	0	13	039	6		7	24686 25446	424	424 1. H1-1b
53	1111	SR 1"	286	0	10	039	6		14	2468625446	424	424 1H1-1b
54	115	SR 1"	284	0	7	042	6		13	24686 25446	424	424 1. H1-1b
55	122	SR 1"	282	0	4	036	6	-	4	2468625446	424	424 1H1-1b
56	1112	SR 3/4"	281	0	8	029	6		8	1356214313	179	179 1H1-1b
57	123	SR 1"	274	0	4	038	6		9	2468625446	424	424 1H1-1b
58	134	SR 1"	.266	0	11	.039	6		5	2468625446	.424	.424 1H1-1b
59	124	SR 1"	.265	0	3	.037	6		9	2468625446	424	424 1H1-1b
60	125	SR 1"	.258	Ő	3	.041	6		9	2468625446	.424	.424 1H1-1b
61	1310	SR 1"	.256	0	8	.030	6		14	2468625446	.424	.424 1H1-1b
62	M143	SR 3/4	.255	0	6	.049	6		6	1356214313	.179	.179 1H1-1b
63	M140A	SR 3/4"	.255	64.188	4	.146	31.688		25	9756.114313	.179	.179 1 H1-1b
64	M157	SR 3/4	.255	0	6	.048	6		6	1356214313	.179	.179 2H1-1b
65	M141A	SR 3/4"	.246	16.25	13	.162	31.687		21	9756.114313	.179	.179 3H1-1b
66	HH2	SR 3/4"	.246	13.813	4	.145	46.313		19	9756.114313	.179	.179 1 H1-1b
67	1311	SR 1"	.242	0	8	.029	6		8	2468625446	.424	.424 1H1-1b
68	121	SR 3/4"	.241	0	4	.026	6		4	1356214313	.179	. 179 2H1-1b
69	M142	SR 3/4"	.239	16.25	9	.146	31.688		17	9756.114313	.179	.179 2H1-1b
70	1211	SR 1"	.231	0	6	.030	6		6	2468625446	.424	.424 1H1-1b
71	HH3	SR 3/4"	.229	61.75	11	.167	46.312		15	9756.114313	.179	.179 2H1-1b
72	M164A	PIPE 2.0	.228	175	21	.066	175		7	3541.1 32130	1.872	1.872 2H1-1b
73	1210	SR 1"	.227	0	6	.033	6		7	2468625446	.424	.424 1 H1-1b
74	127	SR 1"	.218	0	13	.041	6		13	2468625446	.424	.424 1 H1-1b
75	137	SR 1"	.214	0	9	.046	0		10	2468625446	.424	.424 1 H1-1b
76	1212	SR 3/4"	.213	0	6	.022	6		6	1356214313	.179	.179 2H1-1b
77	136	SR 1"	.209	0	11	.036	6		11	2468625446	.424	.424 1H1-1b
78	M156	SR 3/4	.208	0	18	.043	6		6	1356214313	.179	.179 1H1-1b

RISA-3D Version 15.0.4 [G:\...\...\...\37519-1564.002.7190_MA\RISA\37519-1564_Wind Load.r3d] Page 13

Envelope AISC 14th(360-10): LRFD Steel Code Checks (Continued)

	Member	Shape	Code Check	Loc[in]	LC	Shear Check	Loc[in]	Dir	LC	phi*Pn	.phi*Pnt.	.phi*Mn	.phi*Mn	.Cb Eqn
79	117	SR 1"	.201	0	5	.041	0		18	24686	25446	.424	.424	1H1-1b
80	118	SR 3/4"	.200	0	12	.042	0		25	11113	.14313	.179	.179	2H1-1b
81	1312	SR 3/4"	.198	0	6	.021	6		12	13562	.14313	.179	.179	1H1-1b
82	M165	PIPE 2.0	.197	45.833	16	.047	12.5		5	3541.1.	32130	1.872	1.872	1H1-1b
83	II12	SR 3/4"	.194	0	3	.053	0		22	11113	.14313	.179	.179	2H1-1b
84	133	SR 1"	.190	0	5	.035	6		5	24686	.25446	.424	.424	1H1-1b
85	119	SR 3/4"	.188	0	12	.043	0		23	11113	.14313	.179	.179	2H1-1b
86	1	SR 3/4"	.187	0	8	.053	0		19	11113	.14313	.179	.179	2H1-1b
87	4	SR 3/4"	.187	0	4	.048	0		18	11113	.14313	.179	.179	2H1-1b
88	132	SR 1"	.186	0	6	.028	6		6	24686	.25446	.424	.424	1H1-1b
89	I16	SR 1"	.180	0	7	.044	0		18	24686	.25446	.424	.424	1H1-1b
90	131	SR 3/4"	.172	0	6	.020	6		6	13562	.14313	.179	.179	1H1-1b
91	115	SR 3/4"	.169	0	9	.042	0		26	11113	.14313	.179	.179	2H1-1b
92	126	SR 1"	.168	0	3	.039	0		26	24686	.25446	.424	.424	1H1-1b
93	117	SR 3/4"	.140	13	12	.085	0		26	11113	.14313	.179	.179	2H1-1b
94	M101	PIPE 2.0	.137	6	6	.090	6		6	31274	32130	1.872	1.872	3H1-1b
95	M178	L2.5x2.5x4	.133	20	9	.059	20	Z	9	35215	38556	1.114	2.537	1H2-1
96	II10	SR 3/4"	.133	13	12	.078	0		23	11113	.14313	.179	.179	2H1-1b
97	ll11	SR 3/4"	.131	13	9	.091	0		22	11113	.14313	.179	.179	2H1-1b
98	113	SR 3/4"	.129	13	4	.088	0		18	11113	.14313	.179	.179	2H1-1b
99	112	SR 3/4"	.128	13	8	.093	0		18	11113	.14313	.179	.179	2H1-1b
100	M176	L2.5x2.5x4	.128	20	5	.098	20	Z	11	35215	38556	1.114	2.537	1H2-1
101	116	SR 3/4"	.117	13	4	.084	0		26	11113	.14313	.179	.179	2H1-1b
102	M89	PIPE 2.0	.116	6	6	.079	6		6	31274	32130	1.872	1.872	3H1-1b
103	M177	L2.5x2.5x4	.104	0	5	.072	20	y	9	35215	38556	1.114	2.537	1H2-1
104	M70	SR 3/4	.095	6	8	.047	6		23	11537	.14313	.179	.179	1H1-1b
105	M72	SR 3/4	.085	6	8	.034	6		23	11537	.14313	.179	.179	1H1-1b
106	M74	SR 3/4	.080	6	6	.048	6		21	11537	.14313	.179	.179	1H1-1b
107	M76	SR 3/4	.071	6	12	.035	6		21	11537	.14313	.179	.179	1H1-1b
108	M123	PIPE_2.0	.067	9.375	10	.042	9.375		12	23808	32130	1.872	1.872	1H1-1b
109	A4	PIPE 2.0	.059	6.25	18	.054	6.25		6	23808	32130	1.872	1.872	1H1-1b
110	M78	SR 3/4	.059	6	6	.045	6		17	11537	.14313	.179	.179	1H1-1b
111	M80	SR 3/4	.052	6	6	.033	6		17	11537	.14313	.179	.179	1H1-1b
112	B1	PIPE_2.0	.048	6.25	18	.039	6.25		6	23808	32130	1.872	1.872	1H1-1b
113	M75	SR 3/4	.035	0	21	.009	0		36	10219	.14313	.179	.179	1H1-1b
114	M69	SR 3/4	.034	15	23	.009	0		21	10219	.14313	.179	.179	1H1-1b
115	M79	SR 3/4	.033	0	17	.008	15		20	10219	.14313	.179	.179	1H1-1b
116	M73	SR 3/4	.031	15	19	.007	0		36	10219	.14313	.179	.179	1H1-1b
117	M77	SR 3/4	.031	15	15	.005	0		8	10219	.14313	.179	.179	1H1-1b
118	M102	PIPE_2.0	.031	52.233	12	.101	0		14	25600	32130	1.872	1.872	1H1-1b*
119	M90	PIPE 2.0	.028	52.233	12	.074	0		4	25600	32130	1.872	1.872	1H1-1b*
120	M71	SR 3/4	.028	0	25	.007	15		34	10219	14313	.179	.179	1H1-1b
121	M133	PIPE 2.0	.002	6	9	.001	6		9	31274	32130	1.872	1.872	1 H1-1b
122	M110	PIPE_2.0	.002	6	11	.001	6		11	31274	32130	1.872	1.872	2H1-1b

PAUL J. FORD & COMPANY 250 E Broad St, Ste 600 • Columbus, OH 43215 Phone 614.221.6679 www.pauljford.com

A325N

0.625

20.7

12.4

-

63.4%

11.5%

in

kips

kips

kips

Project #	37519-1564.002.7190
-----------	---------------------

STP By

Date: 05/03/19 v0.1, Effective 07/10/18

MOUNT TO TOWER CONNECTION CHECKS

b=

d=

REACTIONS-LC24

Px=	0.051	Кір	
Py=	3.36	Кір	
(Axial)Pz=	0.269	Кір	
Mx=	154.56	Kip-in	
My=	2.172	Kip-in	
(Torque)Mz=	11.916	Kip-in	
Num	ber of Bolts		=
D	ato Sizo		b=
FI	ale Size		d=
Edge	distance for	r Bolts	=
Bolt grou	up centroid	y-coordina	ate, Yc
Bolt grou	up centroid	x-coordina	ate, Xc
Load ec	centricity ir	n x-directio	on, ex
Load ec	centricity ir	n y-directio	on, ey
Total Moment in	cluding loa	d eccentri	cityΣMx=
Total Moment in	cluding loa	d eccentri	cityΣMy=
Total Moment in	cluding loa	d eccentri	cityΣMz=
BOL	T CHECKS		
Tension Reactio	n	13.13	kip
Shear Reaction		1.43	kip

4	
9	in
9	in
1.5	in
4.5	in
4.5	in
0	in
0	in
154.56	Kips-in
2.172	Kips-in
11.916	Kips-in

WELD CHECKS Standoff Member Type Square Width 5 = in Depth (only for square members) = 5 in 0.2500 Assumed Weld Size = Total Forces in X direction = 0.184 kips Total Forces in Y direction = 0.515 kips 4.72 kips Total Forces in Z direction = 4.75 kips Resultant = Φ^*Fw (Kip/in)/16" weld = 1.392 85.25% Capacity used

Note: Tension reduction not required if tension or shear capacity < 30%

Tensile Capacity Used Shear Capacity Used

Reduced Tensile Strength

Bolt Type

Bolt Diameter

Tensile Strength

Shear Strength

APPENDIX D

SUPPLEMENTAL MODIFICATION INFORMATION

APPENDIX E

MANUFACTURER DRAWINGS (FOR REFERENCE ONLY)

	PARTS LIST								
ITEM	QTY	PART NO.	PART DESCRIPTION	LENGTH	UNIT WT.	NET WT.			
1	1	X-AHCP	ANGLE HANDRAIL CORNER PLATE		12.92	12.92			
2	4	X-UB1212	1/2" X 2-1/2" X 4-1/2" X 2" U-BOLT (HDG.)		0.73	2.93			
2	4	X-UB1300	1/2" X 3" X 5" X 2" U-BOLT (HDG.)		0.73	2.93			
2	4	X-UB1358	1/2" X 3-5/8" X 5-1/2" X 3" U-BOLT (HDG.)		0.73	2.93			
3	8	G12FW	1/2" HDG USS FLATWASHER		0.03	0.27			
4	8	G12LW	1/2" HDG LOCKWASHER		0.01	0.11			
5	8	G12NUT	1/2" HDG HEAVY 2H HEX NUT		0.07	0.57			

TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.0307) DRILLED AND GAS CUT HOLES (± 0.0307) NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.0107) - NO CONING OF HOLES DENDS A05 A 1/2 DEGES		DESCRIPTION ANGLE HANDRAIL CORNER PLATE KIT				STTE III	Engineering upport Team: 188-753-7446	Locations: New York, NY Atlanta, GA Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX	
ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")	CPD NO).	DRAWN BY CEK 5/13/2014	ENG. APPROVAL	PAR	T NO. AHC	CP		- P
PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT MOUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF VALMONT INDUSTRIES IS STRUCTLY PROVINETD.	CLASS 81	suв 01	DRAWING USAGE CUSTOMER	снескер ву ВМС 5/23/2014	DWG	в. NO. АНС	CP		т А

Exhibit F

Power Density/RF Emissions Report

Wireless Network Design and Deployment

Radio Frequency Emissions Analysis Report

T-MOBILE Existing Facility

Site ID: CT11237C

Deep River/Rt 9 15 Pent Rd Deep River, CT 06417

May 16, 2019

Transcom Engineering Project Number: 737001-0014

Site Compliance Summary						
Compliance Status:	COMPLIANT					
Site total MPE% of FCC general population allowable limit:	5.42 %					

Wireless Network Design and Deployment

May 16, 2019

T-MOBILE Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, CT 6009

Emissions Analysis for Site: CT11237C - Deep River/Rt 9

Transcom Engineering, Inc ("Transcom") was directed to analyze the proposed upgrades to the T-MOBILE facility located at **15 Pent Rd, Deep River, CT**, for the purpose of determining whether the emissions from the Proposed T-MOBILE Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 & 700 MHz bands are approximately 400 μ W/cm² and 467 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2500 MHz (BRS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Wireless Network Design and Deployment

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over this or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

Wireless Network Design and Deployment

CALCULATIONS

Calculations were performed for the proposed upgrades to the T-MOBILE antenna facility located at **15 Pent Rd, Deep River, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-MOBILE is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in *Table 1*:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
LTE	1900 MHz (PCS)	4	40
GSM	1900 MHz (PCS)	1	15
LTE	2100 MHz (AWS)	2	60
LTE / 5G NR	600 MHz	2	40
LTE	700 MHz	2	20

Table 1: Channel Data Table

Wireless Network Design and Deployment

The following antennas listed in *Table 2* were used in the modeling for transmission in the 600, 700 MHz, 1900 MHz (PCS) and 2100 MHz (AWS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

			Antenna
	Antenna		Centerline
Sector	Number	Antenna Make / Model	(ft)
А	1	RFS APXVAARR24_43-U-NA20	178
А	2	EMS RR90-17-XXDP (Dormant)	178
В	1	RFS APXVAARR24_43-U-NA20	178
В	2	EMS RR90-17-XXDP (Dormant)	178
С	1	RFS APXVAARR24_43-U-NA20	178
С	2	EMS RR90-17-XXDP (Dormant)	178

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

Cable losses were factored in the calculations for this site. Since all **1900 MHz (PCS) and 2100 MHz** (**AWS**) radios are ground mounted the following cable loss values were used. For each ground mounted **1900 MHz (PCS)** radio there was **2.16 dB** of cable loss calculated into the system gains / losses for this site. For each ground mounted **2100 MHz (AWS)** radio there was **2.23 dB** of cable loss calculated into the system gains / losses for this site. These values were calculated based upon the manufacturers specifications for **210 feet** of **1-5/8**" coax.

Wireless Network Design and Deployment

RESULTS

Per the calculations completed for the proposed T-MOBILE configurations *Table 3* shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

					Total TX		
Antenna			Antenna Gain	Channel	Power		
ID	Antenna Make / Model	Frequency Bands	(dBd)	Count	(W)	ERP (W)	MPE %
		1900 MHz (PCS) /	15.65 / 16.35				
Antenna	RFS	2100 MHz (AWS) /	/ 12.95 /				
A1	APXVAARR24_43-U-NA20	600 MHz / 700 MHz	13.35	11	415	9,450.49	1.56
Antenna							
A2	EMS RR90-17-XXDP	Dormant	NA	0	0	0.00	0.00
				S	Sector A Com	posite MPE%	1.56
		1900 MHz (PCS) /	15.65 / 16.35				
Antenna	RFS APXVAARR24 43-U-	2100 MHz (AWS) /	/ 12.95 /				
B1	NA20 –	600 MHz / 700 MHz	13.35	11	415	9,450.49	1.56
Antenna							
B2	EMS RR90-17-XXDP	Dormant	NA	0	0	0.00	0.00
				S	Sector B Com	posite MPE%	1.56
		1900 MHz (PCS) /	15.65 / 16.35				
Antenna	RFS APXVAARR24 43-U-	2100 MHz (AWS) /	/ 12.95 /				
C1	NA20	600 MHz / 700 MHz	13.35	11	415	9,450.49	1.56
Antenna							
C2	EMS RR90-17-XXDP	Dormant	NA	0	0	0.00	0.00
Sector C Composite MPE% 1.5							1.56

Table 3: T-MOBILE Emissions Levels

Wireless Network Design and Deployment

The Following table (*table 4*) shows all additional carriers on site and their MPE% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum T-MOBILE MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. *Table 5* below shows a summary for each T-MOBILE Sector as well as the composite MPE value for the site.

Site Composite MPE%						
Carrier	MPE%					
T-MOBILE – Max Per Sector Value	1.56 %					
AT&T	1.49 %					
MetroPCS	0.33 %					
Verizon Wireless	2.04 %					
Site Total MPE %:	5.42 %					

Table 4: All Carrier MPE Contributions

T-MOBILE Sector A Total:	1.56 %
T-MOBILE Sector B Total:	1.56 %
T-MOBILE Sector C Total:	1.56 %
Site Total:	5.42 %

Table 5: Site MPE Summary

Wireless Network Design and Deployment

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. *Table 6* below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated T-MOBILE sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

T-MOBILE _ Frequency Band / Technology Max Power Values (Per Sector)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm ²)	Calculated % MPE
T-Mobile 1900 MHz (PCS) LTE	4	893.43	178	4.34	1900 MHz (PCS)	1000	0.43%
T-Mobile 1900 MHz (PCS) GSM	1	335.04	178	0.41	1900 MHz (PCS)	1000	0.04%
T-Mobile 2100 MHz (AWS) LTE	2	1,549.36	178	3.77	2100 MHz (AWS)	1000	0.38%
T-Mobile 600 MHz LTE / 5G NR	2	788.97	178	1.92	600 MHz	400	0.48%
T-Mobile 700 MHz LTE	2	432.54	178	1.05	700 MHz	467	0.23%
						Total:	1.56%

Table 6: T-MOBILE Maximum Sector MPE Power Values

Wireless Network Design and Deployment

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-MOBILE facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-MOBILE Sector	Power Density Value (%)
Sector A:	1.56 %
Sector B:	1.56 %
Sector C:	1.56 %
T-MOBILE Maximum	1 56 %
Total (per sector):	1.30 %
Site Total:	5.42 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **5.42** % of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

/A Alf

Scott Heffernan RF Engineering Director Transcom Engineering, Inc PO Box 1048 Sterling, MA 01564