

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

October 7, 2021

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application 15 Pent Road, Deep River, CT 06417 Latitude: 41.372825 Longitude: -72.434436 Site# 823666 Crown Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 15 Pent Road in Deep River, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 5G MHz antenna and six (6) RRUs, at the 148-foot level of the existing 178-foot monopole tower, one (1) Fiber cables will also be installed. Dish Wireless LLC equipment cabinets will be placed within 7x5 lease area. Included are plans by Infinigy, dated August 16, 2021 Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated May 1, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was approved by the Town of Deep River. Building permit No. CT-11-237C is all the Town has on file. Permit is dated August 18, 2000. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to First Selectman Angus L. McDonald, Jr and Michael D'Amato, ZEO for the Town of Deep River, as well as the tower owner (Crown Castle) and property owner (Beks Holdings LLC)

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

- 1. The proposed modification will not result in an increase in the height of the existing structure. The top of the tower is 178-feet; Dish Wireless LLC proposed antennas will be located at a center line height of 148-feet.
- 2. The proposed modifications will not result in the increase of the site boundary as depicted on the attached site plan.

- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.
- 4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total power density of .70078% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully indicates that the shared use of this facility satisfies these criteria.

- A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.
- B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this support tower in Deep River. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.
- C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 148-foot level of the existing 178-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
- D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.
- E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing guyed tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Deep River.

Sincerely,

Denise Sabo

Denise Sabo

Mobile: 203-435-3640 Fax: 413-521-0558

Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments cc:

Angus L. McDonald, Jr., First Selectman Town of Deep River Town Hall – Selectman's Office 174 Main Street Deep River, CT 06417

Michael D'Amato, Zoning Enforcement Officer Planning & Zoning Office -Town of Deep River 174 Main Street Deep River, CT 06417

Beks Holdings LLC, Property Owner 14 Timberlane Drive Westbrook, CT 06498

Crown Castle, Tower Owner

Exhibit A

Original Facility Approval

CT-11-237C

FORM NO. BOCA 2 BP 1994

BUILDING PERMIT**

JOB WEATHER CARD

<u> </u>	DATE AUGE	ST 18, 2000	PERMIT NO	G0-1-182
APPLICANT VOICE STELLAR WIRE!	4-74/-	DRESS 100 FILLS		CT. CSOCO
PERMIT TO CONSTRUCT ANTENNA (TYPE OF IMPROVEMENT)	TOPER) STORY	(PROPOSED USE)	NUMBE DWELL	
AT (LOCATION) 19 FENT ROAD, I	CEP RIVER (STREET)			ZONING DISTRICT
BETWEEN(CROSS S	TREET)	AND	(CROSS S	TREET)
	LC		LOT SIZE	
	_			ALL CONFORM IN CONSTRUCTION
TO TYPE USE GROUP		_ BASEMENT WALLS OR FO	DUNDATION	(TYPE)
REMARKS: PERMIT ISSUED FOR THE ALL APPLICABLE CODES REQUIRED PRIOR TO POL COSTRACTOR: CONTENT	MUST BE LET AN BING ANY CONCR	d inspections re	equested. Pik	ATION AND DRAWINGS. ST INSPECTION
AREA OR VOLUME(CUBIC/SQUARE FEE		ESTIMATED COST \$		\$\$\$
OWNER SUMBET STALSTING				The state of the s
ADDRESS 10 PERCY ROAD, DEEP SI	VER		BUILDING DEPT	
THIS PERMIT CONVEYS NO RIGHT TO OC PERMANENTLY. ENCROACHMENTS ON PU PROVED BY THE JURISDICTION. STREET (FOR THE DEPARTMENT OF PUBLIC WORK APPLICABLE SUBDIVISION RESTRIC	BLIC PROPERTY, NO OR ALLEY GRADES AS (S. THE ISSUANCE OF	T SPECIFICALLY PERMIT WELL AS DEPTH AND	TTED UNDER THE B LOCATION OF PUBLI	UILDING CODE, MUST BE AP- C SEWERS MAY BE OBTAINED
INSPECTIONS REQUIRED FOR ALL CONSTRUCTION WORK: 1. FOUNDATIONS OR FOOTINGS. 2. PRIOR TO COVERING STRUCTURAL MEMBERS (READY FOR LATH OR	D KEPT POSTED UNDE. WHERE A CER RED, SUCH BUILDIN AL INSPECTION HAS	_	N HAS BEEN ELEC ANCY IS RE- CUPIED UNTIL	RE APPLICABLE SEPARATE MITS ARE REQUIRED FOR STRICAL, PLUMBING AND HANICAL INSTALLATIONS.
BUILDING INSPECTION APPROVALS	PLUMBING IN	SPECTION APPROVALS	ELECTRICAL	INSPECTION APPROVALS
1	1		1	
2	2		2	
3		SPECTING APPROVALS	REFRIGERATIO	ON INSPECTION APPROVALS
	. 1		1	
OTHER	_ 2		2	

WORK SHALL NOT PROCEED UNTIL THE INSPECTOR HAS APPROVED THE VARIOUS STAGES OF CONSTRUCTION.

PERMIT WILL BECOME NULL AND VOID IF CONSTRUCTION WORK IS NOT STARTED WITHIN SIX MONTHS OF DATE THE PERMIT IS ISSUED AS NOTED ABOVE.

INSPECTIONS INDICATED ON THIS CARD CAN BE ARRANGED FOR BY TELEPHONE OR WRITTEN NOTIFICATION.

RE: Seeking Original Telecom Tower Approval - 15 Pent Road - 823666 Wednesday, July 15, 2020 11:08:00 AM

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe

Hi Anne Marie

I'll see what I can come up with, I'm not sure how far I'll get. If I'm able to find a copy of the original permit I will let you know.

Thanks,

Mike

John Guszkowski, AICP, ENV-SP, LEED Mike D'Amato, CZEO, AICP Co-Interim Zoning Officers Town of Deep River, CT

From: Zsamba, Anne Marie [mailto:AnneMarie.Zsamba@crowncastle.com]
Sent: Wednesday, July 15, 2020 9:56 AM

To: Zoning

Subject: RE: Seeking Original Telecom Tower Approval - 15 Pent Road - 823666

Hi Mike.

I appreciate your response in light of you both getting up to speed – thank you!

I've searched through the land records and have spoken with Amy and came up short. Below are snips are my searches. The tower was put up by T-Mobile. T-Mobile was originally Omnipoint/VoiceStream back in the day. The fee owner and original lessor was Robert R. Stalsburg. Here is what I was able to find:

Search Results for Town of Deep River

ment (displayed at the bottom of the screen).

,							Result	Matches: [1 - 3 of 3]
Preview	Name	File Date	Party	Number	Type Desc.	Inst. Date	# Pgs.	Vol/Page
Q	OMNIPOINT COMMUNICATIONS INC	03/11/2002 00:00:00	Direct	1670072	LEASE	01/01/1900	8	00167/72
Q	OMNIPOINT COMMUNICATIONS INC	12/01/2000 00:00:00	Indirect	1590450	LEASE	01/01/1900	3	00159/450
Q	OMNIPOINT COMMUNICATIONS INC	12/01/2000 00:00:00	Grantor	1590453	EASEMENT	01/01/1900	5	00159/453

"VoiceStream" returns "0" results. I also searched "Voice" "Stream" "VoiceS" "Omni".

Robert R. Stalsburg returns many hits. One of which reads as a special permit, though it was after the tower was built and was granted for the collocation of Verizon's antennas after T-Mobile was already on the tower. I've paid for and attached a copy of that Special Permit to this email for ease of reference. The permit notes the address as 366 Main Street, Map 58, Lot 32F. We now refer to the premises as 15 Pent Road, Map 58, Lot 34. Not sure if that will impact your search at all?

Q	STALSBURG ROBERT R	03/22/2002 00:00:00	Grantee	1670280	RELEASE	01/01/1900	1	00167/280
Q	STALSBURG ROBERT R	02/05/2002 00:00:00	Direct	1660540	SPECIAL PERMIT	01/01/1900	4	00166/540
Q	STALSBURG ROBERT R	12/01/2000 00:00:00	Grantor	1590453	EASEMENT	01/01/1900	5	00159/453
0	CTAL COURS DODGET S	40/04/0000 00 00 00	Dr. I	4500450	15405	04 (04 (4000		00450/450

I don't believe the original tower approval, likely dated 2000 or 2001, was recorded. Any effort you can spare to look at the PZC files to ascertain if the original tower approval can be located is much appreciated.

Thank you.

Best, Anne Marie

ANNE MARIE ZSAMBA Site Acquisition Specialist T: (201) 236-9224 M: (518) 350-3639 F: (724) 416-6112

CROWN CASTLE 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065

From: Zoning <Zoning@deepriverct.us>

Sent: Wednesday, July 15, 2020 9:05 AM

To: Zsamba, Anne Marie <AnneMarie.Zsamba@crowncastle.com>

Subject: RE: Seeking Original Telecom Tower Approval - 15 Pent Road - 823666

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi Anne Marie

Thanks for the email. John and I are just getting caught up to speed in Deep River, but my understanding is that if this project was approved by the Commission, those files are maintained by the Commission's secretary and they are not here in the zoning office. That being said, I did go through the building file but didn't have any luck. It is likely that once the project was approved by the Town, the certificate of approval was filed on the land records. You should be able to access the Town Clerk's records via her website online. If you don't have any luck there I can attempt to look through the PZC files, but I'll need to know the year the Tower was approved (or built) if possible.

Thanks,

Mike

John Guszkowski, AICP, ENV-SP, LEED Mike D'Amato, CZEO, AICP Co-Interim Zoning Officers Town of Deep River, CT

From: Zsamba, Anne Marie [mailto:AnneMarie.Zsamba@crowncastle.com]
Sent: Tuesday, July 14, 2020 2:11 PM
To: Zoning
Subject: Seeking Original Telecom Tower Approval - 15 Pent Road - 823666

Good afternoon Mike & John

Seeking your assistance if possible. This email follows my voicemail of earlier this morning. I am preparing an exempt modification application for submission to the Connecticut Siting Council on behalf of T-Mobile. Part of that submission should include the original tower approval as issued by the Town of Deep River so as to ensure the modification T-Mobile is proposing are not in violation of any conditions of approval written when the tower was first approved prior to it originally being built.

I have searched high and low through our files here at Crown as the tower owner and I unfortunately cannot locate it. is this something the Town of Deep River would still have on file? If so, would it be possible to email

Any assistance you can provide in this regard is appreciated. We want to make sure we are complying with any and all conditions as original set forth by the Town. Thank you kindly.

Anne Marie

ANNE MARIE ZSAMBA

Site Acquisition Spe T: (201) 236-9224 M: (518) 350-3639 F: (724) 416-6112

CROWN CASTLE

3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 CrownCastle.com

This email may contain confidential or privileged material. Use or disclosure of it by anyone other than the recipient is unauthorized. If you are not an intended recipient, please delete this email. This email may contain confidential or privileged material. Use or disclosure of it by anyone other than the recipient is unauthorized. If you are not an intended recipient, please delete this email.

VOL 166 PAGE 540 SPECIAL PERMIT NOTICE

You are hereby notified that on January 17. 2002 the Planning and Zoning Commission of the Town of Deep River granted your application for amendment to an approved special permit, effective February 14, 2002, as follows:

Owner of Record:

Robert R. Stalsburg and Grace Stalsburg Cellco Partnership d/b/a Verizon Wireless

99 East River Drive, East Hartford, CT 06108

Description of Premises: 366 Main Street

Applicant:

Map 58, Lot 32F as identified by the Tax Assessor for the Town of Deep River

3. Applicable Zoning Regulations: Section 7.14 of the Deep River Zoning Regulations

4. Nature of Special Permit:

Amendment to Special Permit of VoiceStream Wireless for purpose of attachment of 12 panel-type antennas on a triangular antenna platform at the 170 foot level of the existing 180 foot tower. Equipment associated with the Cellco antennas will be located in a new 12 ft. by 30 ft. equipment shelter located near the base of the tower within the existing fenced compound. The approval is in accordance with plans entitled: "Enlarged Site Plan and Grading Plan, Tower Elevation and Erosion Control Notes, and Detail Sheet, Cellco Partnership dba Verizon Wireless Deep River Telecommunication Facility 366 Main Street Deep River, Connecticut 06417 Scale1" = 10' Date: 12/4/2001" prepared by BL Companies, 355 Research Parkway, Meriden, Connecticut 06450. See Statement of Use attached hereto and made a part hereof.

5. Conditions: None

6. Reasons: Meets the conditions set forth in the Deep River Zoning Regulations.

TOWN OF DEEP RIVER PLANNING AND ZONING COMMISSION

By h h 1 C h

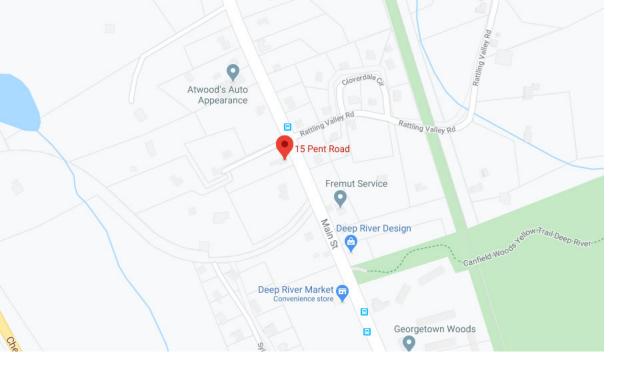
Jordathan Kastner, Its Secretary

CERTIFICATION

This is to certify that the foregoing is a true copy of a special permit issued by the Deep River Planning and Zoning Commission on January 17, 2002.

TOWN OF DEEP RIVER

PLANNING AND ZONING COMMISSION


Jonathan Kastner Its Secretary

NOTICE:

FOR THIS SPECIAL PERMIT TO BE EFFECTIVE, YOU MUST RECORD THIS CERTIFIED COPY ON THE DEEP RIVER LAND RECORDS IN THE DEEP RIVER TOWN CLERK'S OFFICE, WITHIN SIXTY (60) DAYS OR PERMIT BECOMES NULL AND VOID.

Exhibit B

Property Card

15 PENT RD

Location 15 PENT RD Mblu 58/ / 34/ /

Acct# 00155800 Owner BEKS HOLDINGS LLC

Assessment \$296,520 **Appraisal** \$423,600

> PID 1745 **Building Count** 2

Current Value

Appraisal				
Valuation Year	Improvements	Land	Total	
2015	\$291,000	\$132,600	\$423,600	
	Assessment			
Valuation Year	Improvements	Land	Total	
2015	\$203,70	0 \$92,820	\$296,520	

Parcel Addreses

Additional Addresses

No Additional Addresses available for this parcel

Owner of Record

Owner

BEKS HOLDINGS LLC Sale Price \$0

Co-Owner Certificate

Address 14 TIMBERLANE DR **Book & Page** 0245/0035 WESTBROOK, CT 06498 Sale Date 09/30/2019

> Instrument 29

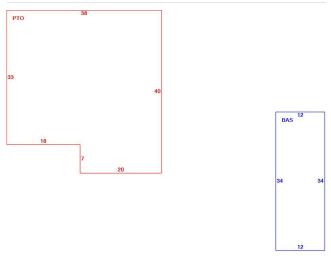
Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date
BEKS HOLDINGS LLC	\$0		0245/0035	29	09/30/2019
STALSBURG ROBERT R JR & SHERI L TRUSTEES	\$0		0239/0150	29	09/29/2017
STALSBURG ROBERT R JR	\$0		0187/0502	29	07/12/2004
STALSBURG ROBERT R JR & GRACE A	\$0		0184/0720	29	03/01/2004

Building Information

Building 1 : Section 1

Year Built: 1948 Living Area: 408


Building Attributes				
Field	Description			
STYLE	Warehouse			
MODEL	Ind or Comm			
Grade	Average			
Stories:	1			
Occupancy	1.00			
Exterior Wall 1	Concr/Cinder			
Exterior Wall 2				
Roof Structure	Gable/Hip			
Roof Cover	Asph/F Gls/Cmp			
Interior Wall 1	Minim/Masonry			
Interior Wall 2	Cust Wd Panel			
Interior Floor 1	Concr-Finished			
Interior Floor 2	Carpet			
Heating Fuel	None			
Heating Type	None			
AC Type	None			
Struct Class				
Bldg Use	COMM WHSE			
Total Rooms				
Total Bedrms	00			
Total Baths	0			
Usrfld 218				
Usrfld 219				
1st Floor Use:	3160			
Heat/AC	NONE			
Frame Type	MASONRY			
Baths/Plumbing	AVERAGE			
Ceiling/Wall	CEILING ONLY			
Rooms/Prtns	AVERAGE			
Wall Height	12.00			

Building Photo

(http://images.vgsi.com/photos/DeepRiverCTPhotos/\00\00\63\63.jpg)

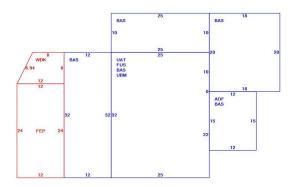
Building Layout

(ParcelSketch.ashx?pid=1745&bid=1745)

Building Sub-Areas (sq ft)			
Code	Description	Gross Area	Living Area
BAS	First Floor	408	408
РТО	Patio	1,394	0
		1,802	408

Building 2 : Section 1

Year Built: 1930


Living Area: 2,954	
Building Attribu	ites : Bldg 2 of 2
Field	Description
Style	Colonial
Model	Residential
Grade:	Good
Stories:	2 Stories
Occupancy	1
Exterior Wall 1	Aluminum Sidng
Exterior Wall 2	
Roof Structure:	Gable/Hip
Roof Cover	Asph/F Gls/Cmp
Interior Wall 1	Plastered
Interior Wall 2	Cust Wd Panel
Interior FIr 1	Hardwood
Interior FIr 2	Carpet
Heat Fuel	Oil
Heat Type:	Hot Water
AC Type:	None
Total Bedrooms:	4 Bedrooms
Total Bthrms:	2
Total Half Baths:	1
Total Xtra Fixtrs:	1
Total Rooms:	12 Rooms
Bath Style:	Average
Kitchen Style:	Average
Num Kitchens	01
Cndtn	
Usrfld 103	
Usrfld 104	
Usrfld 105	
Usrfld 106	
Usrfld 107	
Num Park	
Fireplaces	
Usrfld 108	
Usrfld 101	
Usrfld 102	
Usrfld 100	
Usrfld 300	
Usrfld 301	

(http://images.vgsi.com/photos/DeepRiverCTPhotos/\00\00\63\64.jpg)

Building Layout

(ParcelSketch.ashx?pid=1745&bid=2279)

	Building Sub-Areas (sq ft)				
Code	Description	Gross Area	Living Area		
BAS	First Floor	1,974	1,974		
FUS	Upper Story, Finished	800	800		
AOF	Office, (Average)	180	180		
FEP	Porch, Enclosed, Finished	288	0		
RBM	Rec Room Bsmt	350	0		
UAT	Attic, Unfinished	800	0		
UBM	Basement, Unfinished	800	0		
WDK	Deck, Wood	80	0		
		5,272	2,954		

Land

Land Use		Land Line Valua	tion
Use Code	0316	Size (Acres)	3.9
Description	COMM WHSE	Assessed Value	\$92,820
Zone	R60	Appraised Value	\$132,600
Neighborhood	0002		

Outbuildings

	Outbuildings				
Code	Description	Size			
SHD1	SHED FRAME	30.00 S.F.			
SPL3	GUNITE	800.00 S.F.			
SHD2	W/LIGHTS ETC	80.00 S.F.			

(c) 2020 Vision Government Solutions, Inc. All rights reserved.

Exhibit C

Construction Drawings

wireless...

DISH Wireless L.L.C. SITE ID:

BOBDL00055A

DISH Wireless L.L.C. SITE ADDRESS:

15 PENT RD. DEEP RIVER, CT 06417

CONNECTICUT CODE COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:

CODE TYPE

2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS MECHANICAL 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS ELECTRICAL

	SHEET INDEX
SHEET NO.	SHEET TITLE
T-1	TITLE SHEET
LS1	SITE SURVEY
A-1	OVERALL AND ENLARGED SITE PLAN
A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS
A-4	EQUIPMENT DETAILS
A-5	EQUIPMENT DETAILS
A-5.1	EQUIPMENT DETAILS
A-6	EQUIPMENT DETAILS
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES
E-2	ELECTRICAL DETAILS
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE
G-1	GROUNDING PLANS AND NOTES
G-2	GROUNDING DETAILS
G-3	GROUNDING DETAILS
RF-1	RF CABLE COLOR CODE
GN-1	LEGEND AND ABBREVIATIONS
GN-2	GENERAL NOTES
GN-3	GENERAL NOTES
GN-4	GENERAL NOTES

SCOPE OF WORK

THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIVALENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:

TOWER SCOPE OF WORK:

- REMOVE ABANDONED EQUIPMENT AT 150' AGL TBR
- INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR)
 INSTALL (1) PROPOSED PLATFORM
- INSTALL PROPOSED JUMPERS
- INSTALL (6) PROPOSED RRUS (2 PER SECTOR)
- INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP)
- INSTALL (1) PROPOSED HYBRID CABLE

GROUND SCOPE OF WORK:

- INSTALL (1) PROPOSED METAL PLATFORM
- INSTALL (1) PROPOSED ICE BRIDGE
- INSTALL (1) PROPOSED PPC CABINET
- INSTALL (1) PROPOSED EQUIPMENT CABINET INSTALL (1) PROPOSED POWER CONDUIT
- INSTALL (1) PROPOSED TELCO CONDUIT
- INSTALL (1) PROPOSED TELCO-FIBER BOX
- INSTALL (1) PROPOSED GPS UNIT
- INSTALL (1) PROPOSED SAFETY SWITCH (IF REQUIRED)
 INSTALL (1) PROPOSED CIENA BOX (IF REQUIRED)
 EXISTING METER SOCKET ON EXISTING H-FRAME TO BE UTILIZED

SITE PHOTO

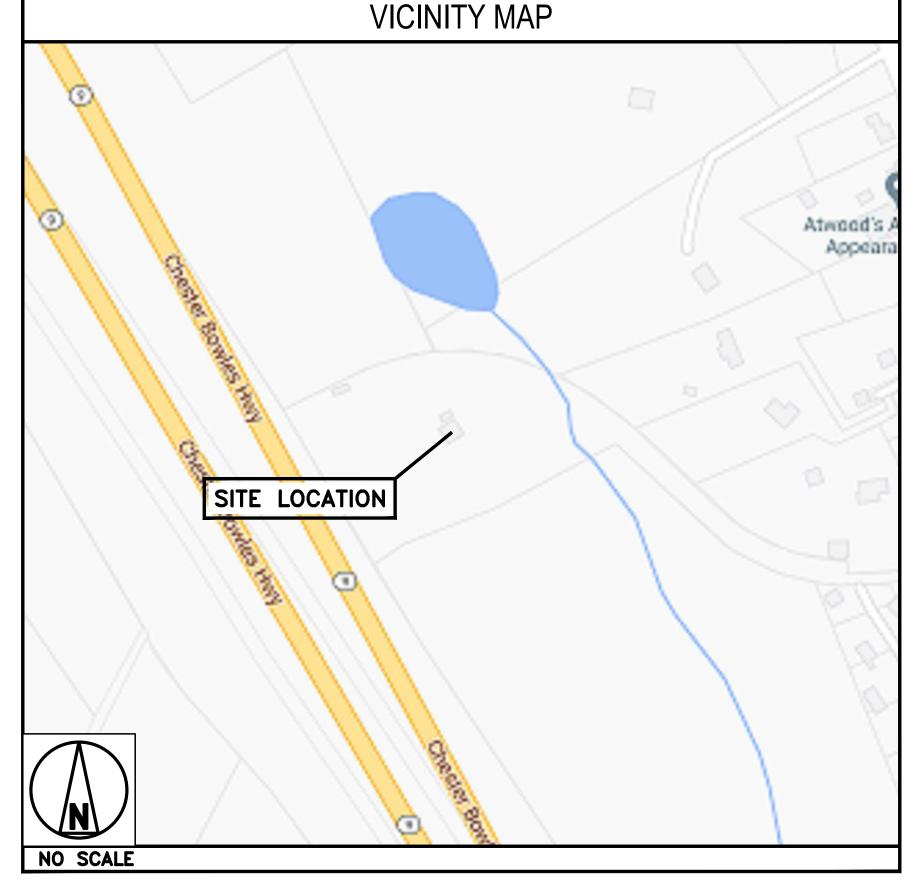
UNDERGROUND SERVICE ALERT CBYD 811 UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455 WWW.CBYD.COM

CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.

11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

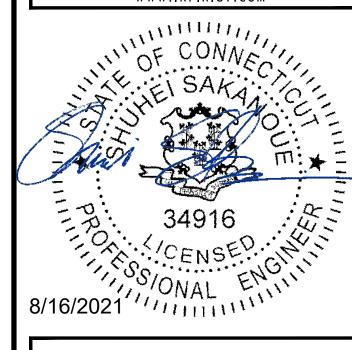

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

SITE INFORMATION PROJECT DIRECTORY BEKS HOLDINGS LLC **PROPERTY OWNER: APPLICANT:** DISH Wireless L.L.C. 5701 SOUTH SANTA FE DRIVE ADDRESS: 14 TIMBERLANE DR WESTBROOK, CT 06498 LITTLETON, CO 80120 **TOWER TYPE:** MONOPOLE TOWER OWNER: CROWN CASTLE 2000 CORPORATE DRIVE TOWER CO SITE ID: 823666 CANONSBURG, PA 15317 TOWER APP NUMBER: (877) 486-9377 SITE DESIGNER: INFINIGY COUNTY: MIDDLESEX 2500 W. HIGGINS RD. STE. 500 HOFFMAN ESTATES, IL 60169 LATITUDE (NAD 83): 41° 22' 22.17" N (847) 648-4068 41.372825 N LONGITUDE (NAD 83): 72° 26' 3.97" W 72.434436 W CT-CONNECTICUT SITING COUNCIL ZONING JURISDICTION: SITE ACQUISITION: NICHOLAS CURRY **ZONING DISTRICT:** CONSTRUCTION MANAGER: JAVIER SOTO PARCEL NUMBER: DEEP-155800-000000 OCCUPANCY GROUP: **BOSSENER CHARLES RF ENGINEER:** CONSTRUCTION TYPE: NORTHEAST UTILITIES POWER COMPANY: TELEPHONE COMPANY: CROWN CASTLE

DIRECTIONS

DIRECTIONS FROM ORLANDO SANFORD INTERNATIONAL AIRPORT:

HEAD NORTHWEST ON CHESTER AIRPORT TOWARD CROSS RD, TURN RIGHT ONTO CT-145 / WINTHROP RD, TURN RIGHT ONTO CT-148 / W MAIN ST, TAKE THE RAMP ON THE RIGHT FOR CT-9 SOUTH AND HEAD TOWARD OLD SAYBROOK, AT EXIT 5, HEAD RIGHT ON THE RAMP FOR CT-80 TOWARD DEEP RIVER, TURN LEFT ONTO CT-80 / W ELM ST TOWARD DEEP RIVER, CONSTRUCTION ON CONSTRUCTION ON CT-80 EB NEAR NY-5, EXPECT LONG DELAYS., TURN RIGHT ONTO UNION ST, BEAR RIGHT ONTO CT-154 / MAIN ST, TURN RIGHT ONTO PENT RD, ARRIVE AT 15 PENT RD., DEEP RIVER, CT 06417



5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CANONSBURG, PA 15317

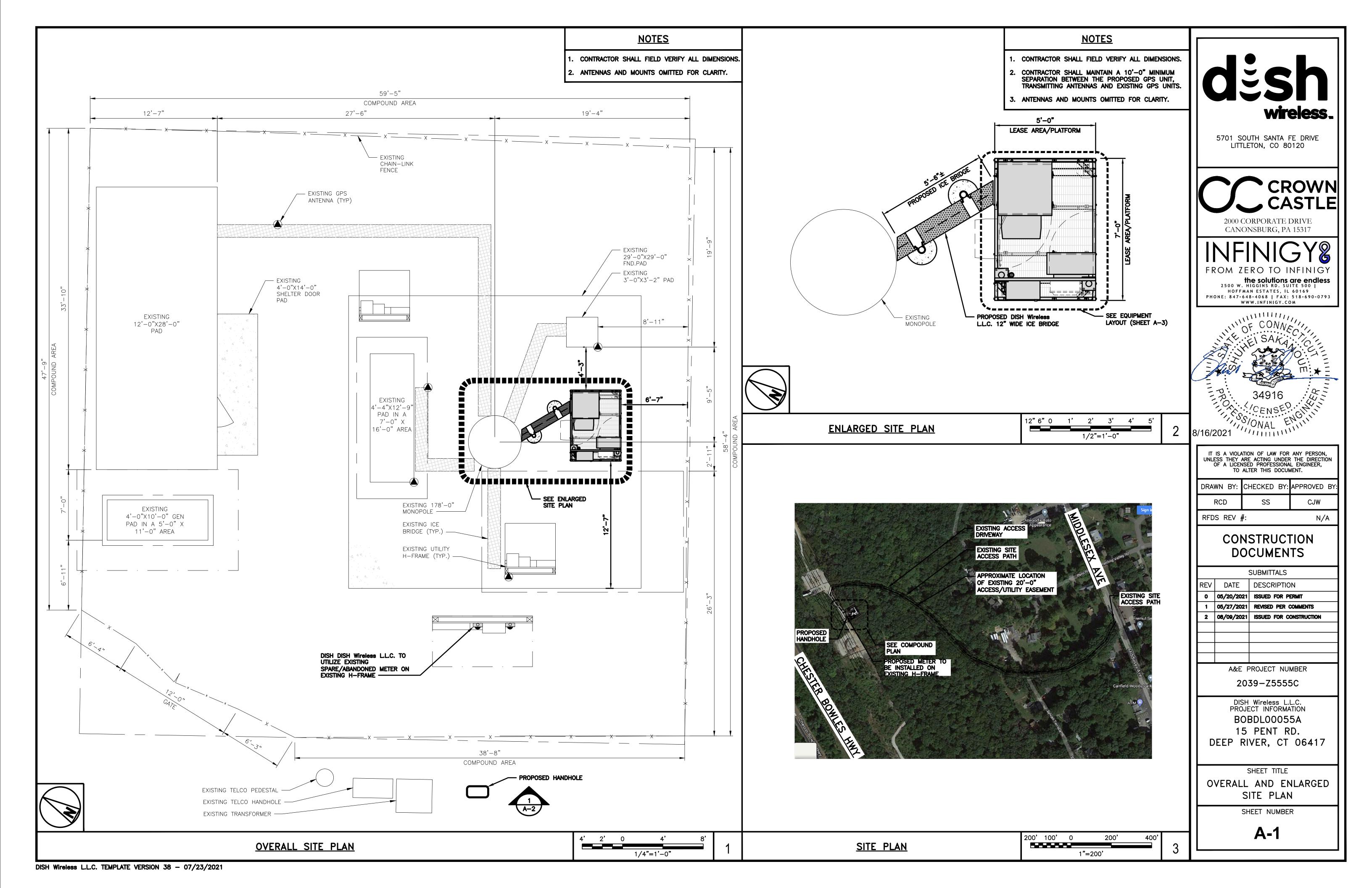
the solutions are endless HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4068 | FAX: 518-690-0793

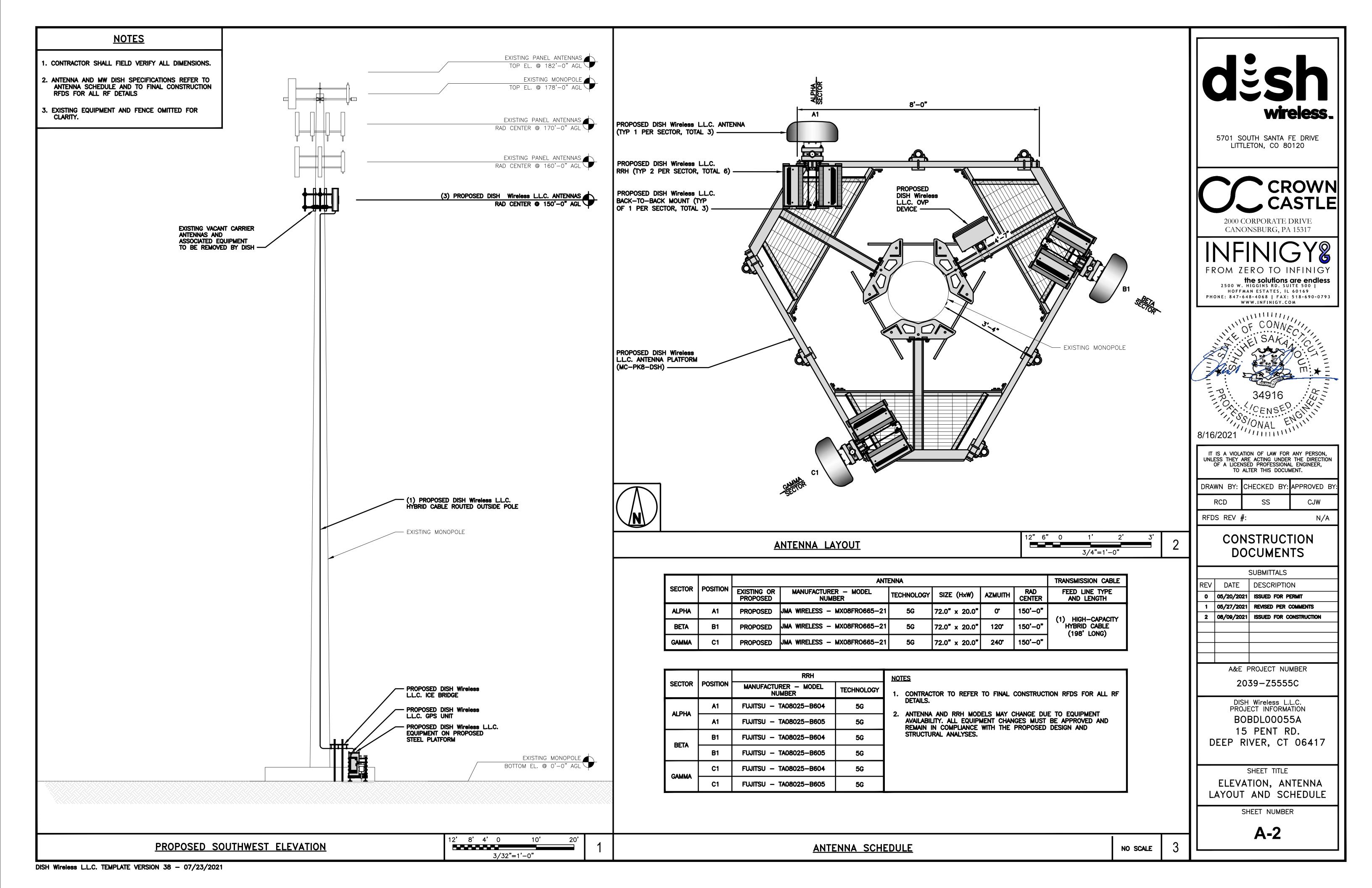
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

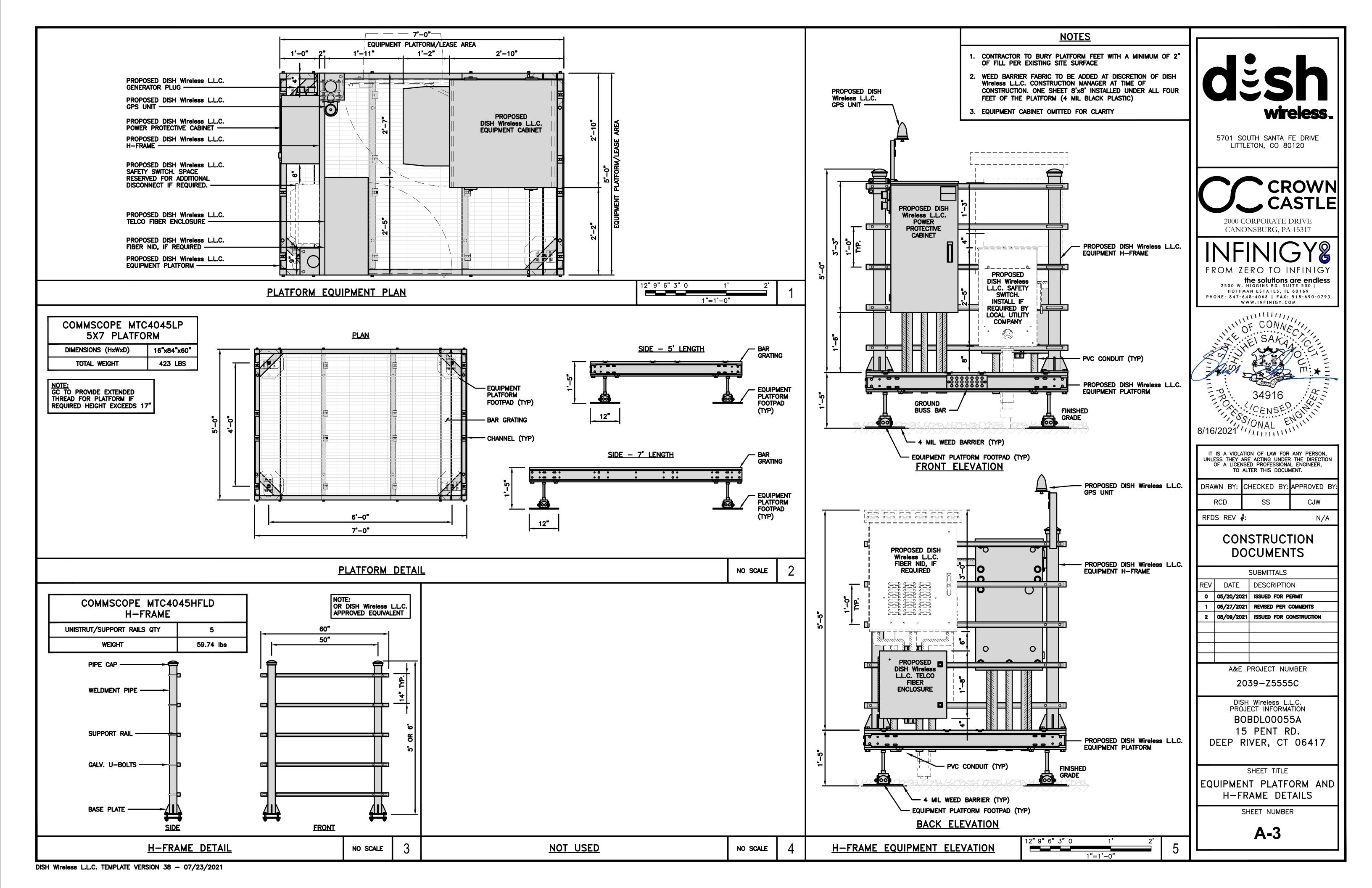
DRAWN BY:	CHECKED BY:	APPROVED BY:
RCD	SS	CJW
RFDS REV ;	N/A	

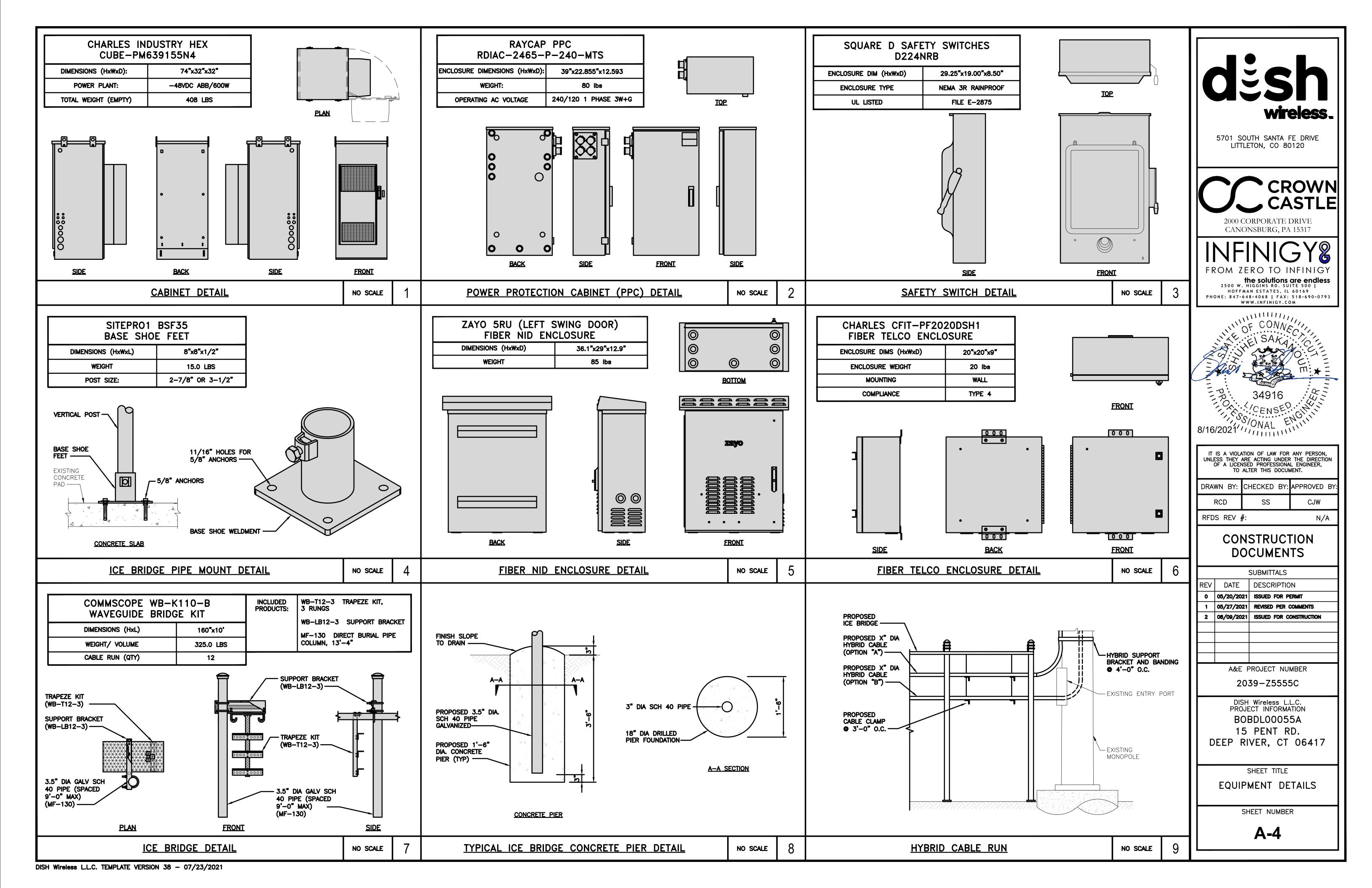
CONSTRUCTION **DOCUMENTS**

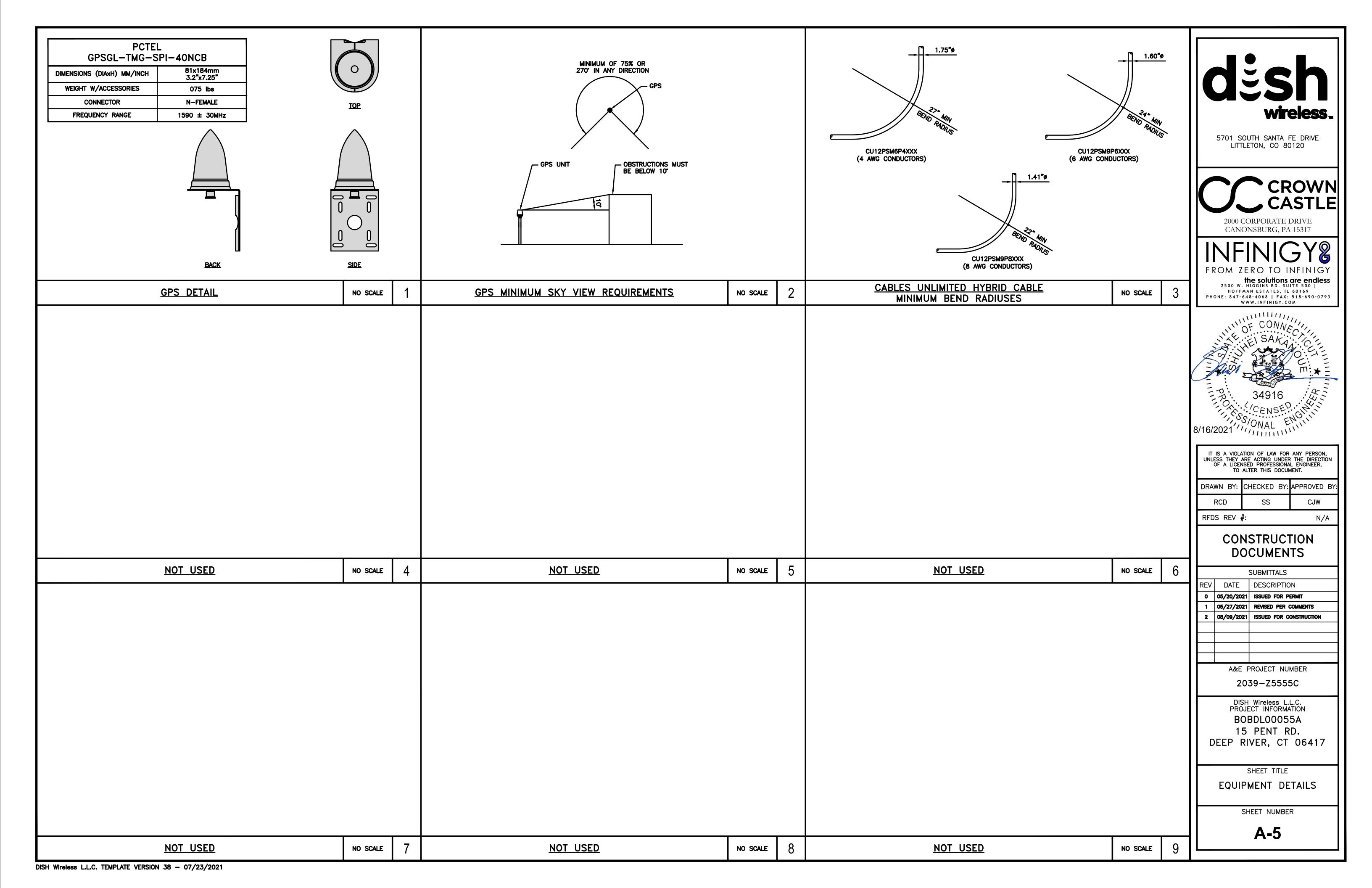
	SUBMITTALS				
REV	DATE	DESCRIPTION			
0	05/20/2021	ISSUED FOR PERMIT			
1	05/27/2021	REVISED PER COMMENTS			
2	08/09/2021	ISSUED FOR CONSTRUCTION			
A&E PROJECT NUMBER					
	2039-755550				

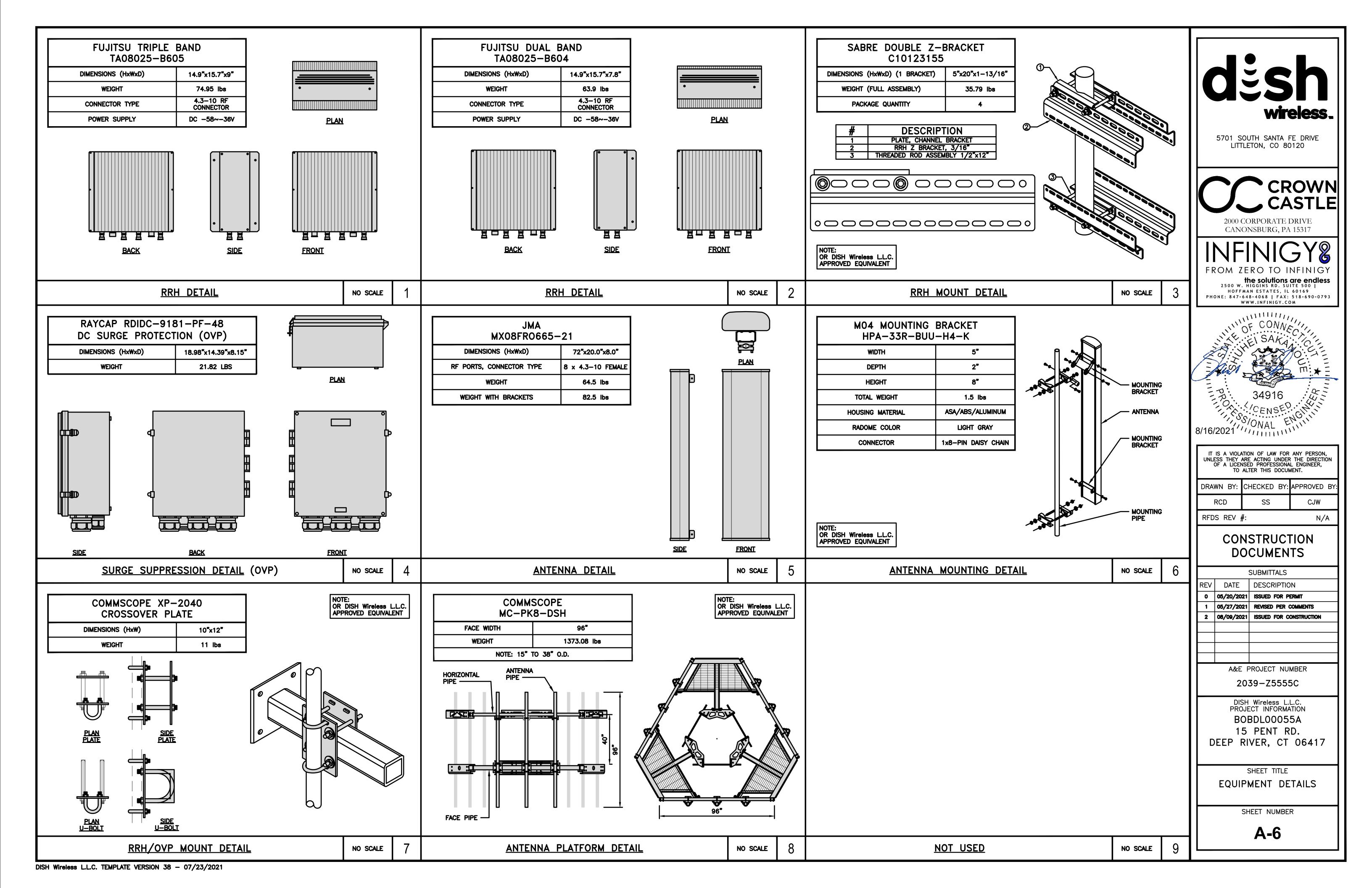

2039-Z5555C DISH Wireless L.L.C.

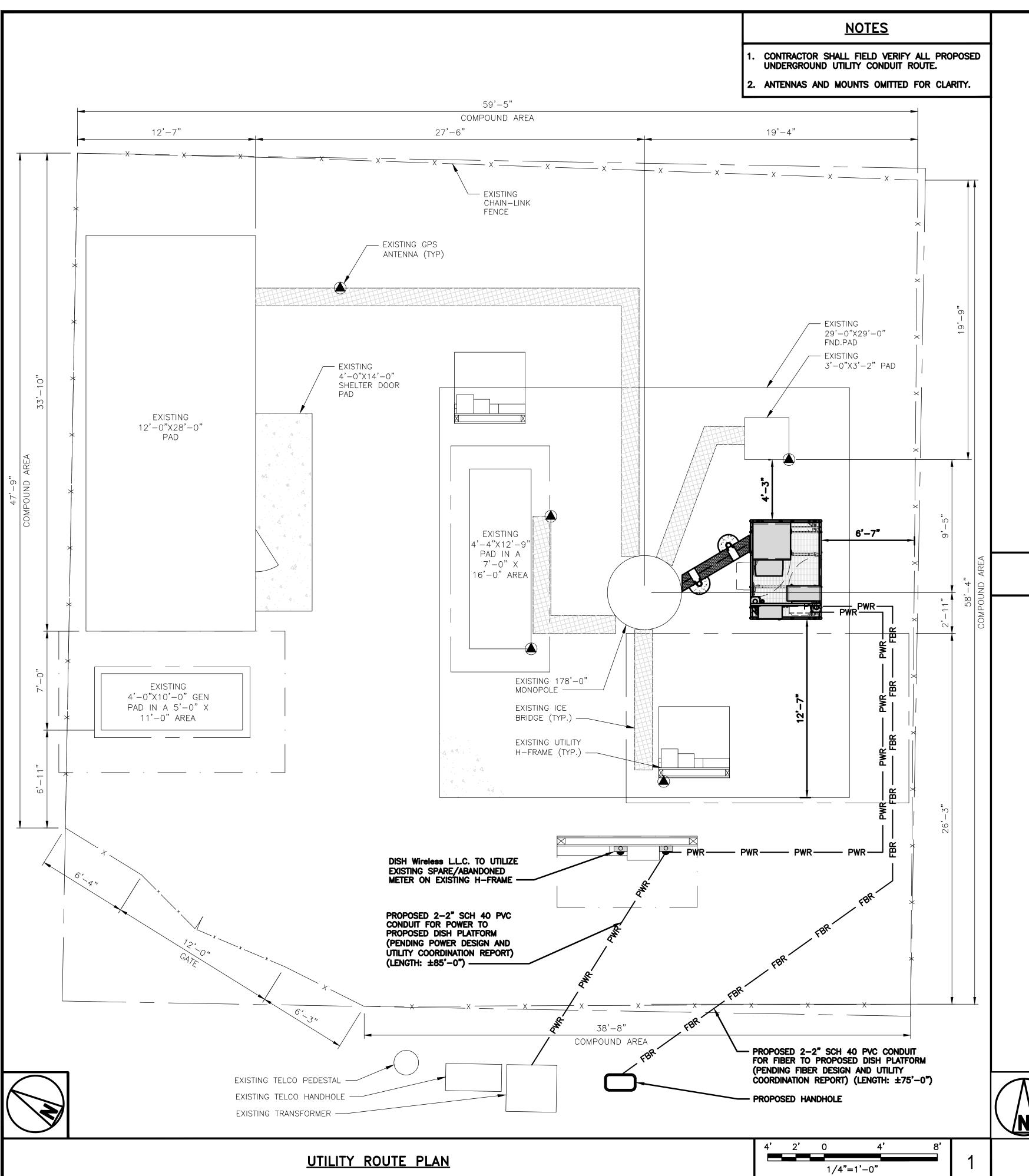

PROJECT INFORMATION BOBDL00055A 15 PENT RD. DEEP RIVER, CT 06417


> SHEET TITLE TITLE SHEET


SHEET NUMBER


T-1





DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING +24V AND -48V CONDUCTORS. RED MARKINGS SHALL IDENTIFY +24V AND BLUE MARKINGS SHALL IDENTIFY -48V.

- 1. CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
- 2. ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS.
- 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
- 4. CONDUIT ROUGH-IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS. VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
- 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
- 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
- 7. CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
- 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
- 9. INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250. THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL DISCONNECT SWITCHES, AND EQUIPMENT CABINETS.

EXISTING ACCESS DRIVEWAY

EXISTING SITE ACCESS PATH

APPROXIMATE LOCATION OF EXISTING 20'-0"

ACCESS/UTILITY EASEMENT

- 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.
- 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT.
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS.
- 13. ALL TRENCHES IN COMPOUND TO BE HAND DUG

ELECTRICAL NOTES

NO SCALE

EXISTING SITE ACCESS PATH

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY N/A RFDS REV #:

CONSTRUCTION

SUBMITTALS

DATE DESCRIPTION 0 05/20/2021 ISSUED FOR PERMIT 05/27/2021 REVISED PER COMMENTS 2 08/09/2021 ISSUED FOR CONSTRUCTION A&E PROJECT NUMBER

DISH Wireless L.L.C. PROJECT INFORMATION BOBDL00055A 15 PENT RD. DEEP RIVER, CT 06417

SHEET TITLE ELECTRICAL/FIBER ROUTE

SHEET NUMBER

E-1

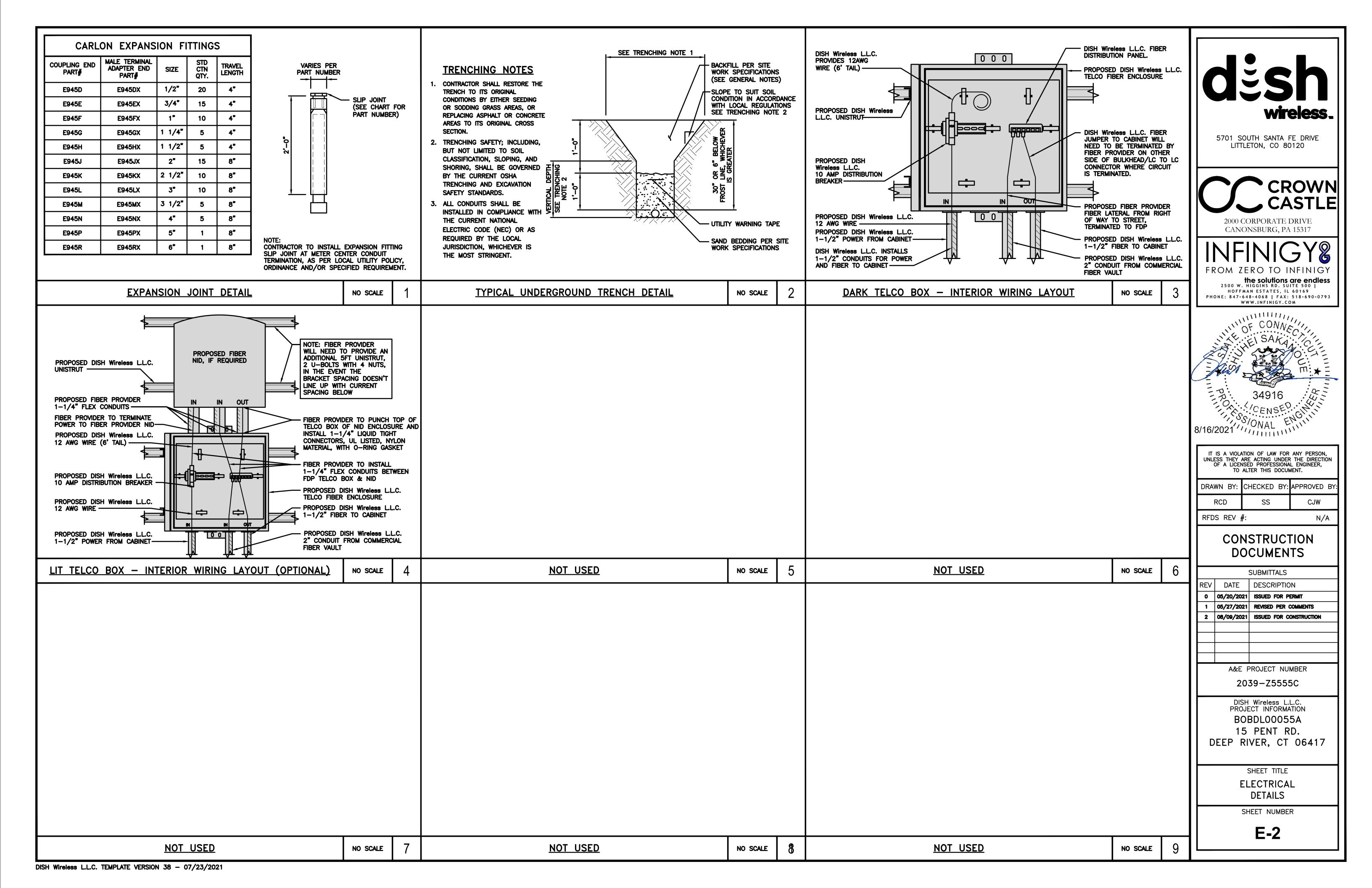
OVERALL UTILITY ROUTE PLAN

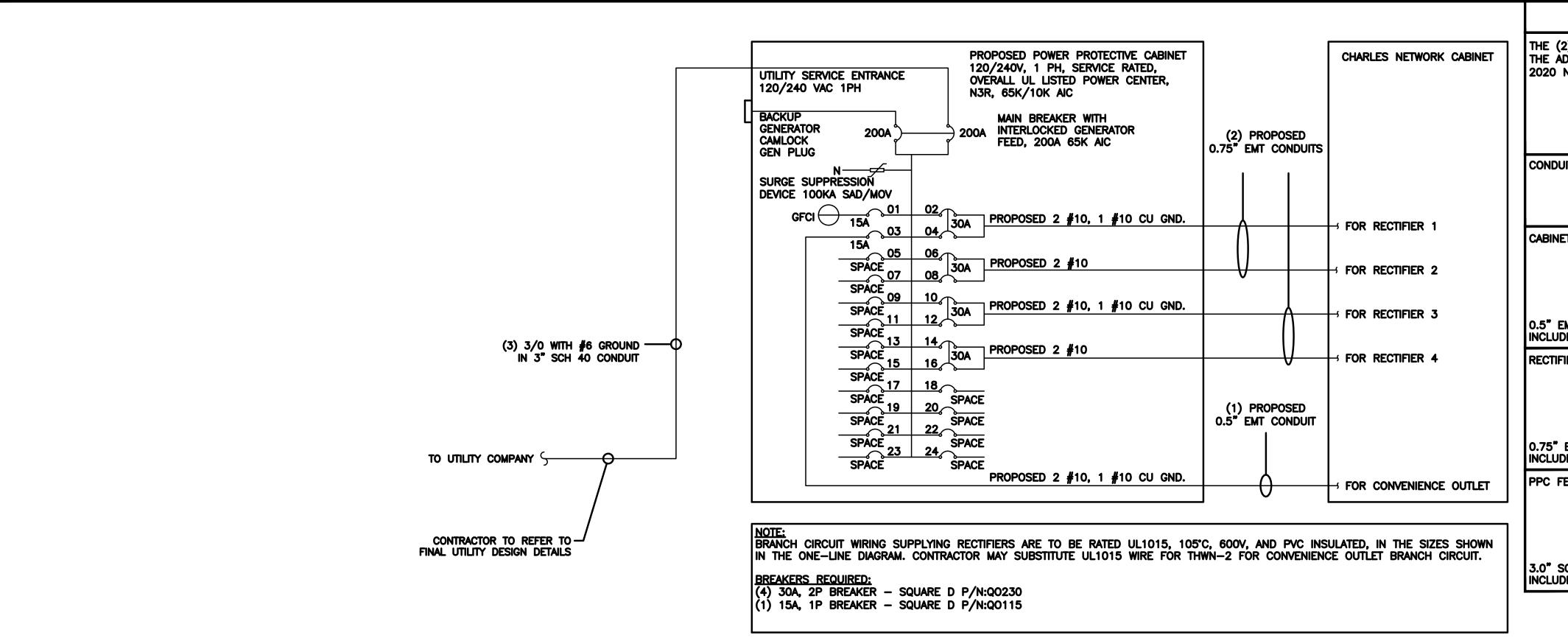
200' 100' 0 400' 200' 1"=200'

DISH Wireless L.L.C. TEMPLATE VERSION 38 - 07/23/2021

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317


the solutions are endless HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4068 | FAX: 518-690-0793 WWW.INFINIGY.COM


8/16/2021////VAL

DOCUMENTS

2039-Z5555C

PLAN AND NOTES

<u>NOTES</u>

THE (2) CONDUITS WITH (4) CURRENT CARRYING CONDUCTORS EACH, SHALL APPLY THE ADJUSTMENT FACTOR OF 80% PER 2014/17 NEC TABLE 310.15(B)(3)(a) OR 2020 NEC TABLE 310.15(C)(1) FOR UL1015 WIRE.

#12 FOR 15A-20A/1P BREAKER: 0.8 x 30A = 24.0A #10 FOR 25A-30A/2P BREAKER: 0.8 x 40A = 32.0A #8 FOR 35A-40A/2P BREAKER: 0.8 x 55A = 44.0A #6 FOR 45A-60A/2P BREAKER: 0.8 x 75A = 60.0A

CONDUIT SIZING: AT 40% FILL PER NEC CHAPTER 9, TABLE 4, ARTICLE 358.

0.5" CONDUIT - 0.122 SQ. IN AREA

0.75" CONDUIT - 0.213 SQ. IN AREA

3.0" CONDUIT - 2.907 SQ. IN AREA

CABINET CONVENIENCE OUTLET CONDUCTORS (1 CONDUIT): USING THWN-2, CU.

#10 - 0.0211 SQ. IN X 2 = 0.0422 SQ. IN #10 - 0.0211 SQ. IN X 1 = 0.0211 SQ. IN <GROUND

0.5" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (3) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

RECTIFIER CONDUCTORS (2 CONDUITS): USING UL1015, CU.

2.0" CONDUIT - 1.316 SQ. IN AREA

#10 - 0.0266 SQ. IN X 4 = 0.1064 SQ. IN #10 - 0.0082 SQ. IN X 1 = 0.0082 SQ. IN <BARE GROUND

= 0.1146 SQ. IN

= 0.0633 SQ. IN

0.75" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (5) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC FEED CONDUCTORS (1 CONDUIT): USING THWN, CU.

3/0 - 0.2679 SQ. IN X 3 = 0.8037 SQ. IN #6 - 0.0507 SQ. IN X 1 = 0.0507 SQ. IN <GROUND

AL = 0.8544 SQ. IN

3.0" SCH 40 PVC CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (4) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

34916 34916 **CENSE! ***SS/ONAL

PPC ONE-LINE DIAGRAM

NO SCALE

TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:

RCD SS CJW

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER,

5701 SOUTH SANTA FE DRIVE

LITTLETON, CO 80120

2000 CORPORATE DRIVE

CANONSBURG, PA 15317

HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

the solutions are endless

RFDS REV #:

CONSTRUCTION DOCUMENTS

N/A

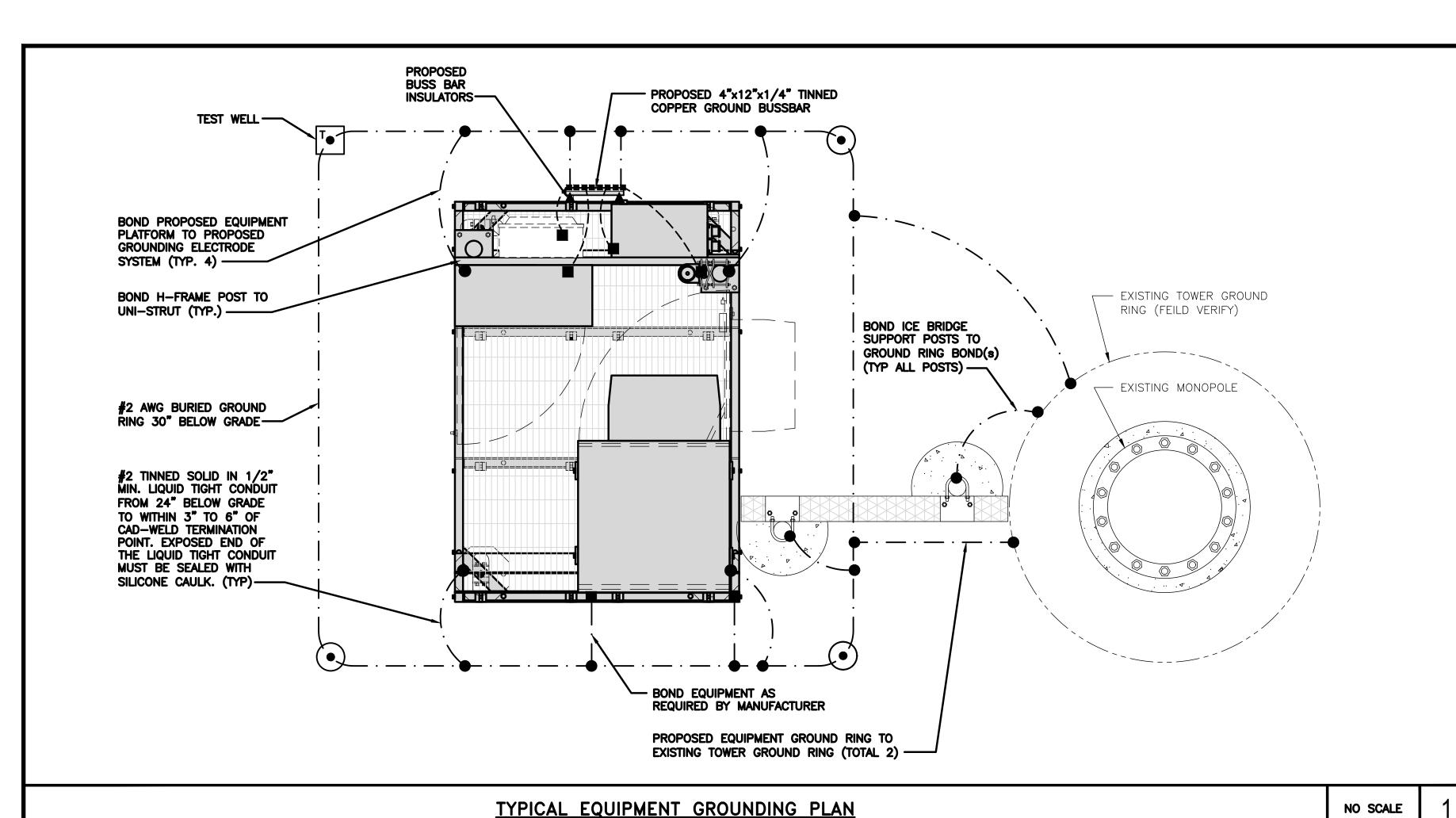
	SUBMITTALS				
REV	DATE	DESCRIPTION			
0	05/20/2021	ISSUED FOR PERMIT			
1	05/27/2021	REVISED PER COMMENTS			
2	08/09/2021	ISSUED FOR CONSTRUCTION			
	ል&F F	PROJECT NUMBER			

A&E PROJECT NUMBER

2039-Z5555C

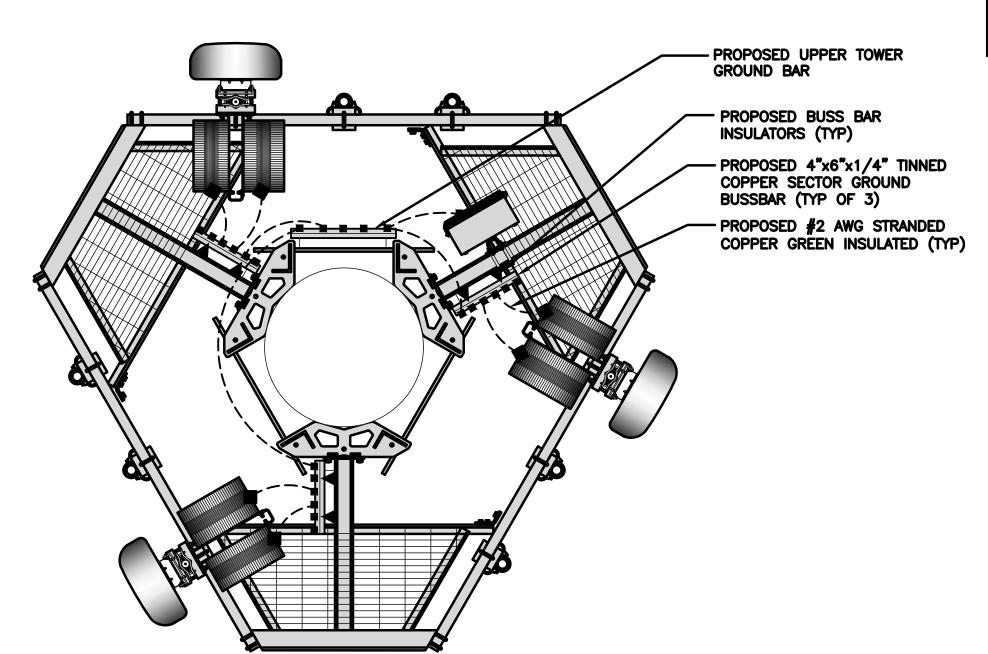
DISH Wireless L.L.C.
PROJECT INFORMATION
BOBDLO0055A
15 PENT RD.
DEEP RIVER, CT 06417

SHEET TITLE


ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE

SHEET NUMBER

E-3


PROPOSED CHARLES PANEL SCHEDULE												
LOAD SERVED		AMPS TTS)	TRIP	CKT #	Pi	HAS	E	CKT #	TRIP	VOLT (WA	AMPS TTS)	LOAD SERVED
	L1	L2	454	Ľ.		•				L1	L2	
PPC GFCI OUTLET CHARLES GFCI OUTLET	180	180	15A 15A	3	台	A B	光	2	30A	2880	2880	ABB/GE INFINITY RECTIFIER 1
-SPACE- -SPACE-				5		A	¥	6	30A	2880	2880	ABB/GE INFINITY RECTIFIER 2
-SPACE-				9	苬	A		10	30A	2880		ABB/GE INFINITY
-SPACE-				11	Ŋ	В	7	12			2880	RECTIFIER 3
-SPACE-				1 <u>3</u> 15	ద	B	央	14 16	30A	2880	2880	ABB/GE INFINITY RECTIFIER 4
-SPACE-				17	\overline{A}	Ā	7	18				-SPACE-
-SPACE-				19	Δ	В	Ъ	20				-SPACE-
-SPACE-				21	\triangle	Α	7	22				-SPACE-
-SPACE-				23	Δ	В	7	24				-SPACE-
VOLTAGE AMPS	180	180								11520	11520	
200A MCB, 14, 24 SPA		/240V	L1			L2						
MB RATING: 65,000 AIC			11700)		<u> 170</u>	0		TAGE AM	PS		
			98			98	Ü	AMF	_			
				_	8				AMPS			
				<u> 1:</u>	23			KAM	125%			

PANEL SCHEDULE

NOTES

ANTENNAS AND OVP SHOWN ARE GENERIC AND NOT REFERENCING TO A SPECIFIC MANUFACTURER. THIS LAYOUT IS FOR REFERENCE

TYPICAL ANTENNA GROUNDING PLAN

EXOTHERMIC CONNECTION TEST GROUND ROD WITH INSPECTION SLEEVE MECHANICAL CONNECTION #6 AWG STRANDED & INSULATED **GROUND BUS BAR** #2 AWG SOLID COPPER TINNED

GROUNDING LEGEND

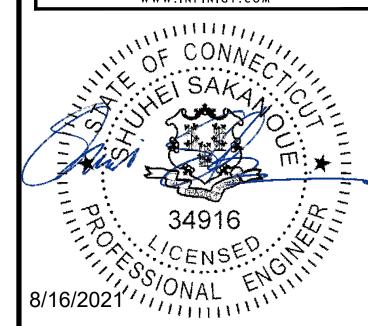
▲ BUSS BAR INSULATOR

1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.

GROUND ROD

- 2. CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM. GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH Wireless L.L.C. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS.
- 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED.

GROUNDING KEY NOTES


- EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DELITION OF A STATEMENT OF OR FOOTING.
- TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS, AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS.
- INTERIOR GROUND RING: #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTOR EXTENDED AROUND THE PERIMETER OF THE EQUIPMENT AREA. ALL NON-TELECOMMUNICATIONS RELATED METALLIC OBJECTS FOUND WITHIN A SITE SHALL BE GROUNDED TO THE INTERIOR GROUND RING WITH #6 AWG STRANDED GREEN INSULATED CONDUCTOR.
- BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS SHALL BE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE CORNERS OF THE
- GROUND ROD: UL LISTED CUPPER CLAD STEEL. MINIMUM 1/2 DIAMETERS DI LIGHT TO THE DEPTH OF RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. GROUND RODS SHALL BE DRIVEN TO THE DEPTH OF GROUND ROD: UL LISTED COPPER CLAD STEEL. MINIMUM 1/2" DIAMETER BY EIGHT FEET LONG. GROUND GROUND RING CONDUCTOR.
- CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 AWG LINESCE MOTES OF THE PROPERTY OF FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GREEN INSULATED COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUCTORS.
- HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN G HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH.
- TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTORS WITH AN EXOTHERMIC WELD AND EXTERIOR CABLE ENTRY PORT GROUND BARS: LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING. BOND INSPECTION SLEEVE.
- 1 TELCO GROUND BAR: BOND TO BOTH CELL REFERENCE GROUND BAR OR EXTERIOR GROUND RING.
- FRAME BONDING: THE BONDING POINT FOR TELECOM EQUIPMENT FRAMES SHALL BE THE GROUND BUS THAT IS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEWORK.
- K INTERIOR UNIT BONDS: METAL FRAMES, CABINETS AND INDIVIDUAL METALLIC UNITS LOCATED WITH THE AREA OF THE INTERIOR GROUND RING REQUIRE A #6 AWG STRANDED GREEN INSULATED COPPER BOND TO THE INTERIOR GROUND RING.
- L FENCE AND GATE GROUNDING: METAL FENCES WITHIN 7 FEET OF THE EXTERIOR GROUND RING OR OBJECTS BONDED TO THE EXTERIOR GROUND RING SHALL BE BONDED TO THE GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEEDING 25 FEET. BONDS SHALL BE MÄDE AT EACH GATE POST AND ACROSS GATE OPENINGS.
- M EXTERIOR UNIT BONDS: METALLIC OBJECTS, EXTERNAL TO OR MOUNTED TO THE BUILDING, SHALL BE BONDED TO THE EXTERIOR GROUND RING. USING #2 TINNED SOLID COPPER WIRE
- N ICE BRIDGE SUPPORTS: EACH ICE BRIDGE LEG SHALL BE BONDED TO THE GROUND RING WITH #2 AWG BARE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRIDGE LEG AND BURIED GROUND RING.
- DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEMENTS AND INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICE CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPPED WITH A MASTER DC SYSTEM RETURN GROUND CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED TO THE CELL SITE REFERENCE GROUND BAR
- (P) TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICALLY BONDED TO PROPOSED ANTENNA MOUNT COLLAR. REFER TO DISH Wireless L.L.C. GROUNDING NOTES.

wireless.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

the solutions are endless HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4068 | FAX: 518-690-0793 WWW.INFINIGY.COM

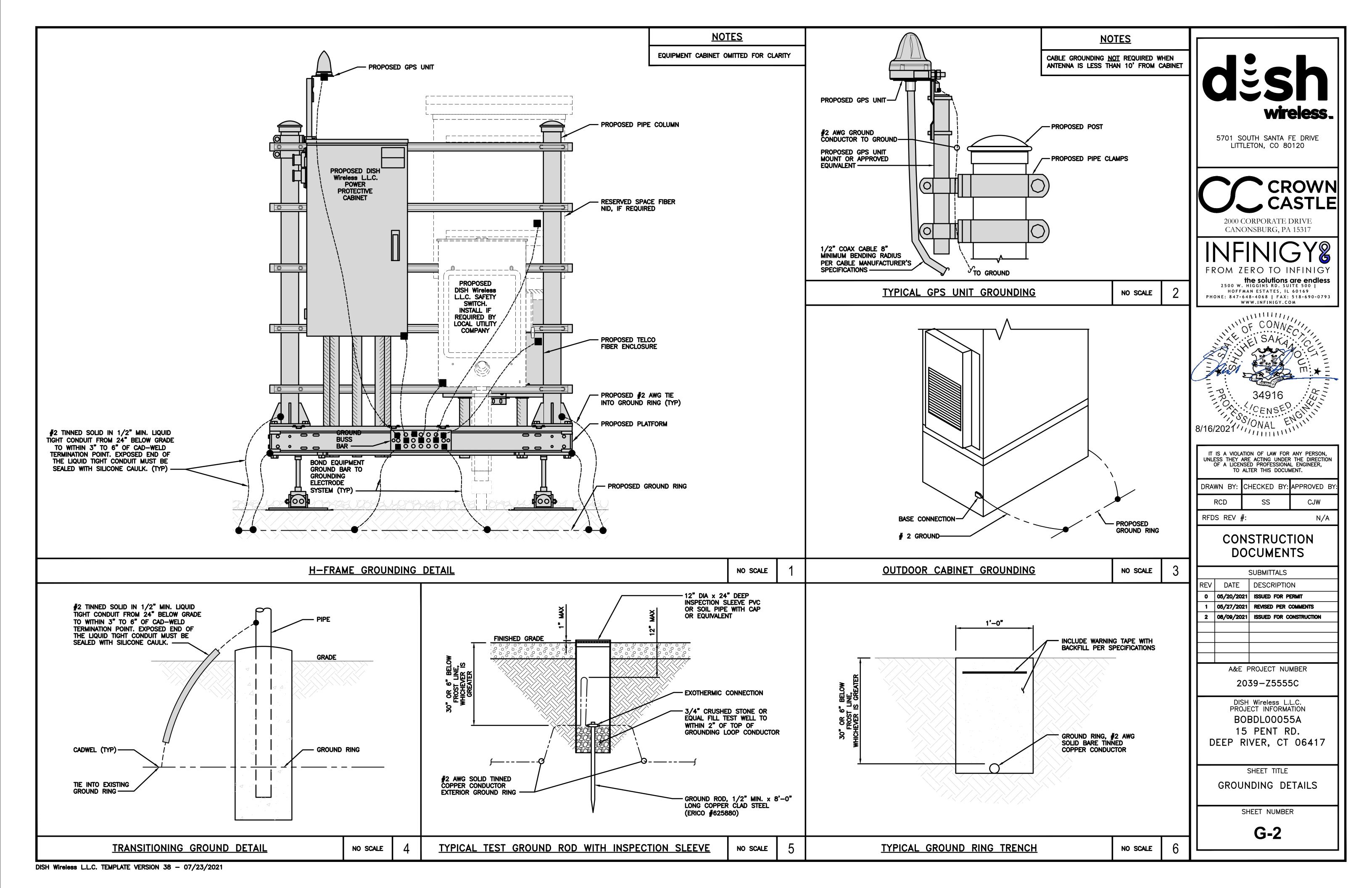
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

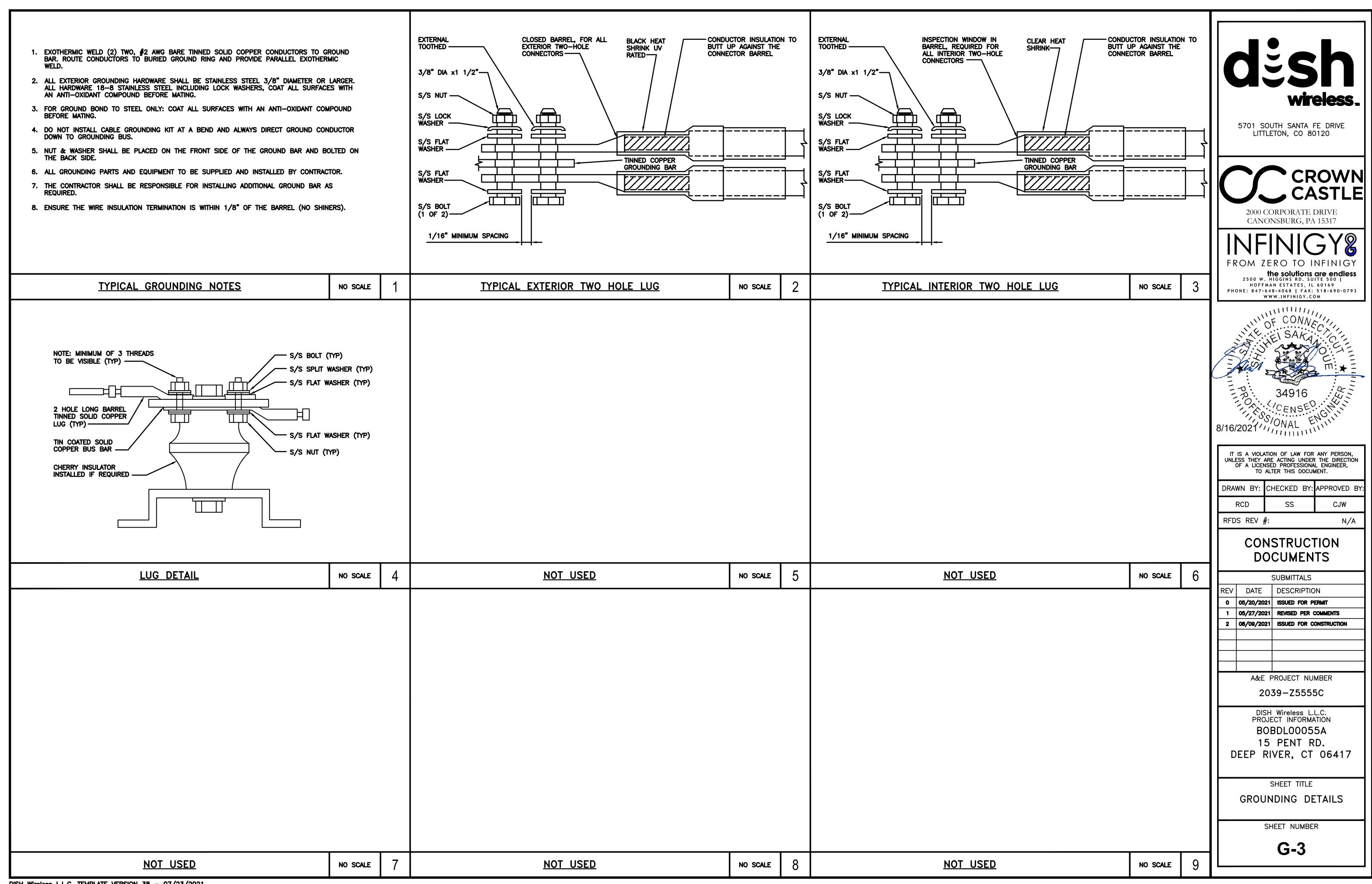
DRAWN BY:	CHECKED BY:	APPROVED BY:
RCD	SS	CJW
RFDS REV	N/A	

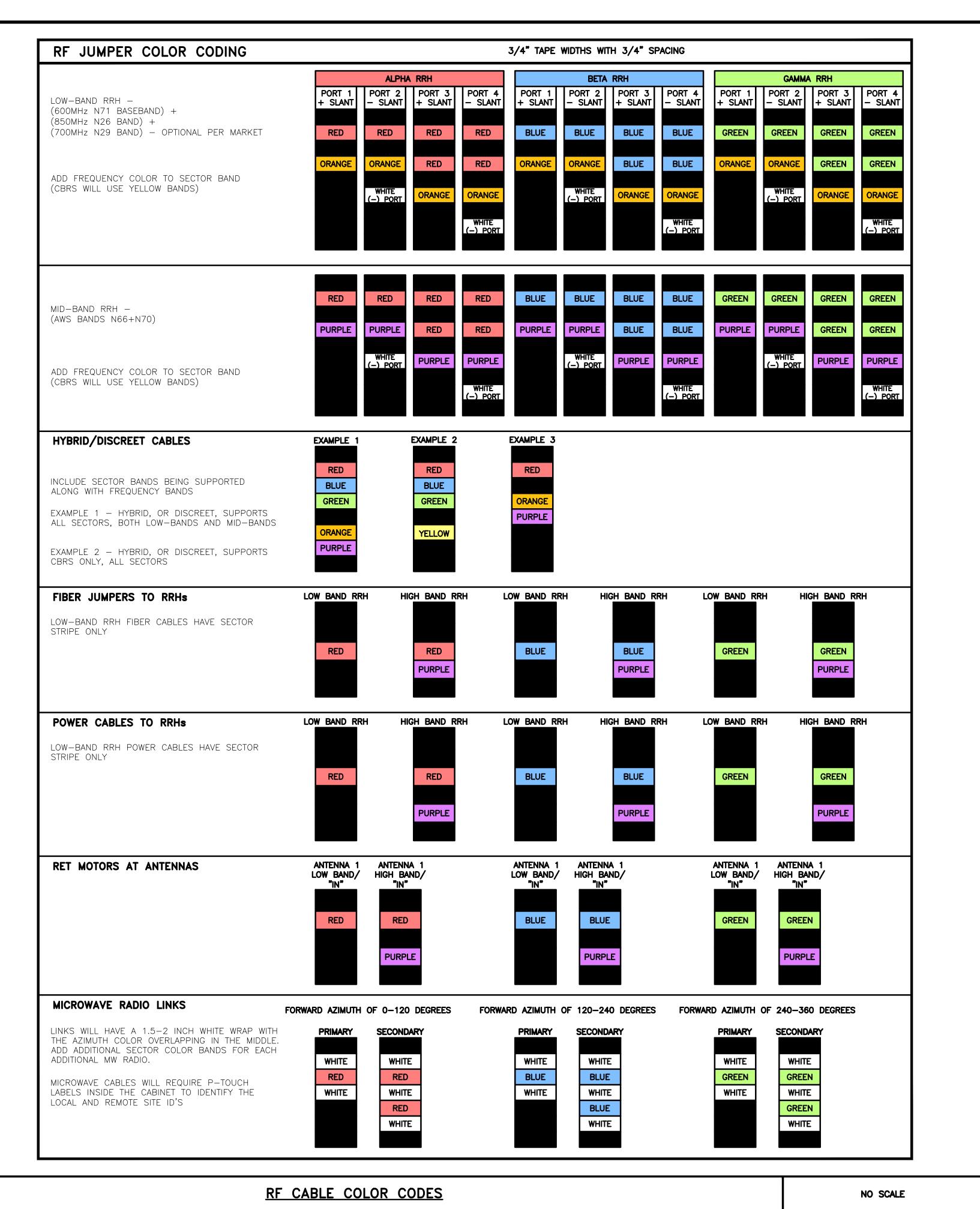
CONSTRUCTION **DOCUMENTS**

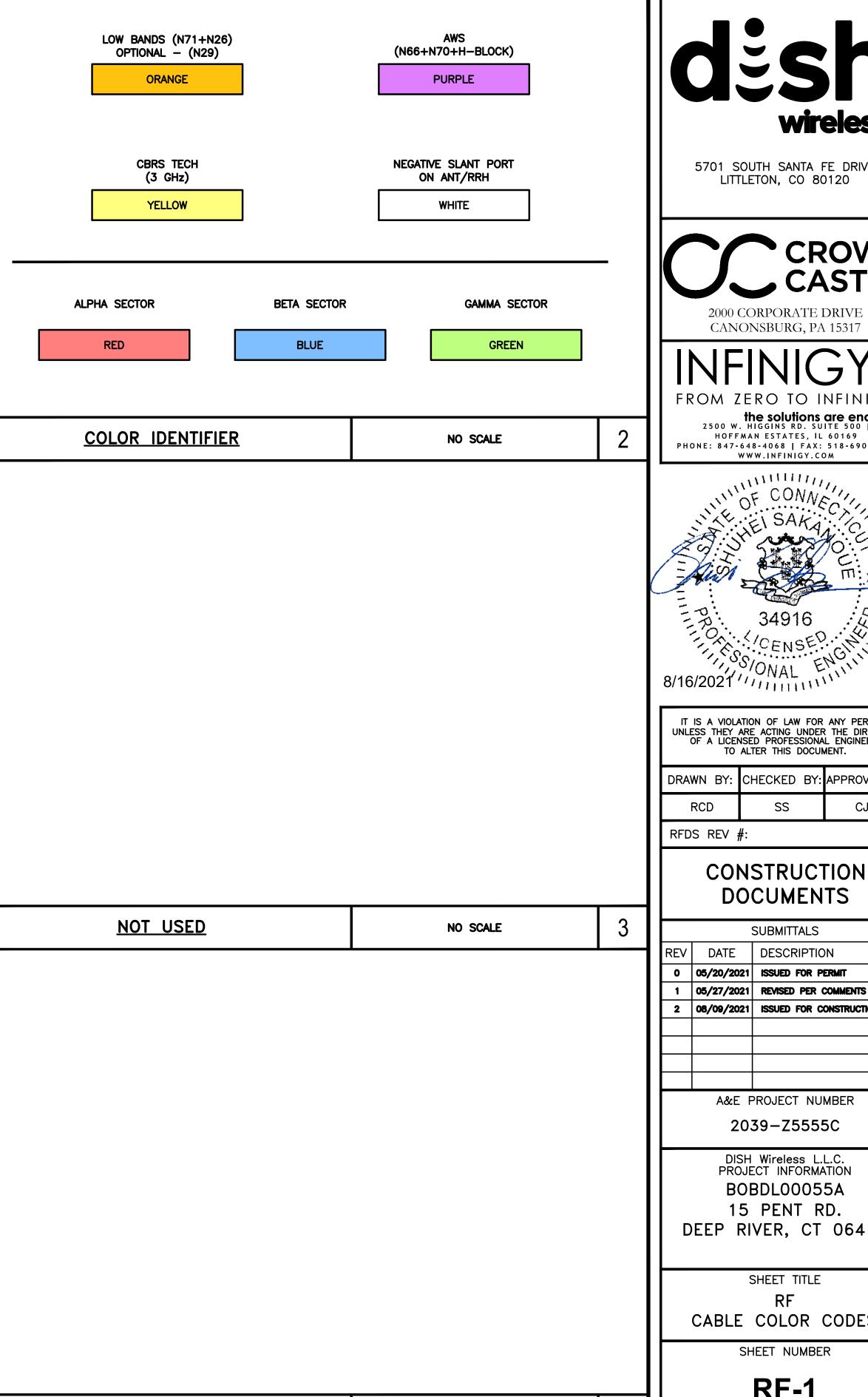
	SUBMITTALS					
REV	DATE	DESCRIPTION				
0	05/20/2021	ISSUED FOR PERMIT				
1	05/27/2021	REVISED PER COMMENTS				
2	08/09/2021	ISSUED FOR CONSTRUCTION				
A&E PROJECT NUMBER						
	2070 755550					

2039-Z5555C


DISH Wireless L.L.C. PROJECT INFORMATION BOBDL00055A 15 PENT RD. DEEP RIVER, CT 06417


SHEET TITLE GROUNDING PLANS AND NOTES


SHEET NUMBER


G-1

NO SCALE

NO SCALE

NOT USED

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

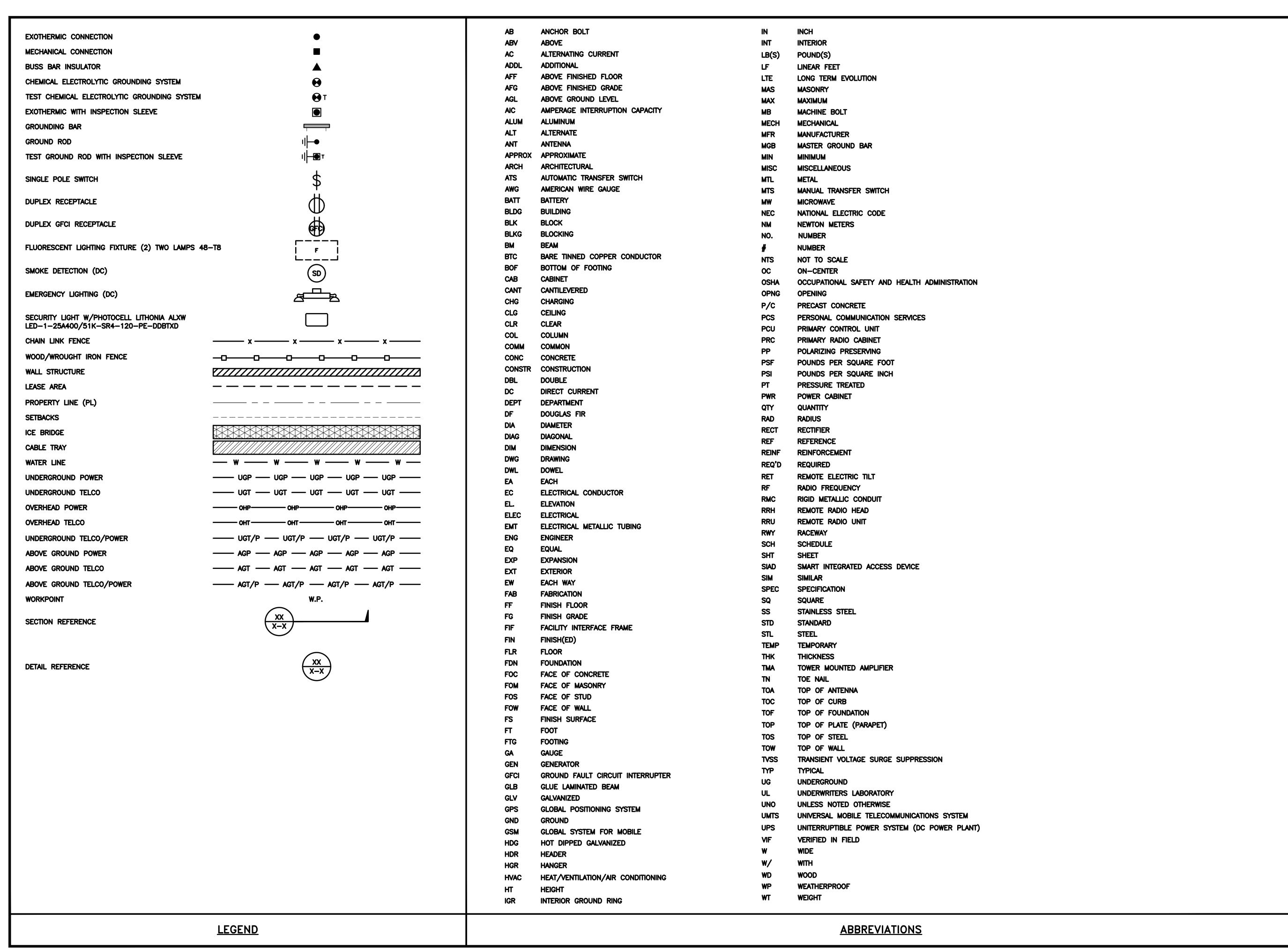
2000 CORPORATE DRIVE CANONSBURG, PA 15317

the solutions are endless HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4068 | FAX: 518-690-0793 WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED BY:
RCD	SS	CJW
RFDS REV ;	#:	N/A

CONSTRUCTION **DOCUMENTS**


	SUBMITTALS					
REV	DATE	DESCRIPTION				
0	05/20/2021	ISSUED FOR PERMIT				
1	05/27/2021	REVISED PER COMMENTS				
2	08/09/2021	ISSUED FOR CONSTRUCTION				
A&E PROJECT NUMBER						
2039-7555C						

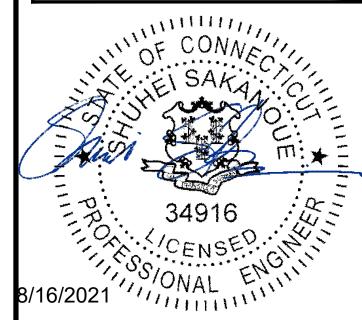
DISH Wireless L.L.C. PROJECT INFORMATION BOBDL00055A 15 PENT RD. DEEP RIVER, CT 06417

CABLE COLOR CODES

SHEET NUMBER

RF-1

dish wireless.


5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY 8

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

RCD SS CJW	DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
	RCD		SS		CJW	

RFDS REV #:

CONSTRUCTION DOCUMENTS

N/A

	SUBMITTALS					
REV	DATE	DESCRIPTION				
0	05/20/2021	ISSUED FOR PERMIT				
1	05/27/2021 REVISED PER COMMENTS					
2	08/09/2021	ISSUED FOR CONSTRUCTION				
	A&E F	PROJECT NUMBER				

A&E PROJECT NUMBER

2039-Z5555C

DISH Wireless L.L.C.
PROJECT INFORMATION
BOBDLO0055A
15 PENT RD.
DEEP RIVER, CT 06417

SHEET TITLE

LEGEND AND

ABBREVIATIONS

SHEET NUMBER

SITE ACTIVITY REQUIREMENTS:

- 1. NOTICE TO PROCEED NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER CONSTRUCTION MANAGER.
- 2. "LOOK UP" DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH Wireless L.L.C. AND DISH Wireless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

- 3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
- 4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH Wireless L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA—322 (LATEST EDITION).
- 5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
- 6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.
- 11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
- 12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH Wireless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.
- 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
- 15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
- 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.
- 18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.
- 22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

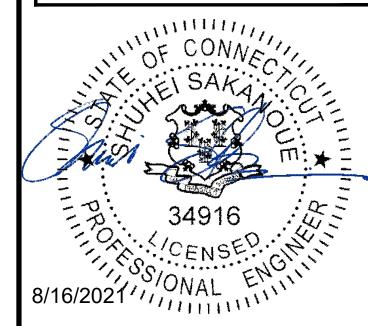
1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR: GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER: DISH Wireless L.L.C.

TOWER OWNER:TOWER OWNER

- 2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
- 3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.
- 4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.
- 5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.
- 6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.
- 12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER
- 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.


5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CANONSBURG, PA 15317

INFINIGY FROM ZERO TO INFINIGY

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED BY:
RCD	SS	CJW
RFDS REV ;	N/A	

CONSTRUCTION DOCUMENTS

	SUBMITTALS					
REV	DATE DESCRIPTION					
0	05/20/2021	ISSUED FOR PERMIT				
1	05/27/2021 REVISED PER COMMENTS					
2	08/09/2021 ISSUED FOR CONSTRUCTION					
	A&E PROJECT NUMBER					
	2039-Z5555C					

DISH Wireless L.L.C.
PROJECT INFORMATION
BOBDL00055A
15 PENT RD.
DEEP RIVER, CT 06417

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

- 1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST—IN—PLACE CONCRETE.
- 2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000
- 3. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°F AT TIME OF PLACEMENT.
- 4. CONCRETE EXPOSED TO FREEZE—THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER—TO—CEMENT RATIO (W/C) OF 0.45.
- 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

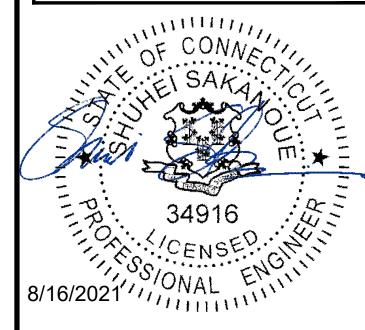
#5 BARS AND LARGER 60 ksi

- 6. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:
- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2"
- 7. A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

- 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.
- 2. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
- 3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
- 4. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.
- 4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.
- 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.
- 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR—CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
- 6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).
- 7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.
- 8. TIE WRAPS ARE NOT ALLOWED.
- 9. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.
- 12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP—STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75° C (90° C IF AVAILABLE).
- 14. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.
- 15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

- ELECTRICAL METALLIC TUBING (EMT) OR METAL—CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.
- 18. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- 19. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.
- 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE NEC.
- 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).
- 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).
- 23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.
- 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY—COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS.
- 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY—COATED OR NON—CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- 28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.".
- 30. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.


5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY FROM ZERO TO INFINIGY

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

	DRAWN BY:	CHECKED BY:	APPROVED BY
	RCD	SS	CJW
	RFDS REV #:		N/A

CONSTRUCTION DOCUMENTS

SUBMITTALS

REV DATE DESCRIPTION

0 05/20/2021 ISSUED FOR PERMIT

1 05/27/2021 REVISED PER COMMENTS

2 08/09/2021 ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER

2039-Z5555C

DISH Wireless L.L.C.
PROJECT INFORMATION
BOBDLO0055A
15 PENT RD.
DEEP RIVER, CT 06417

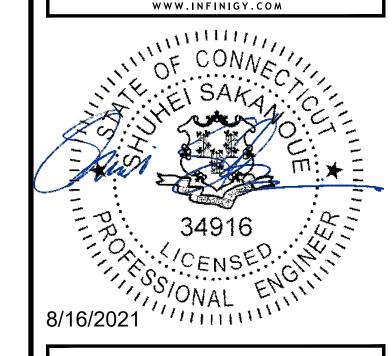
SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GROUNDING NOTES:

- 1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 2. THE CONTRACTOR SHALL PERFORM IEEE FALL—OF—POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
- 4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
- 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
- 8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.
- 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
- 13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.
- 15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.
- 19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDUITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT
- 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
- 21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/O COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.


5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CANONSBURG, PA 15317

INFINIGY &

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED BY:
RCD	SS	CJW
RFDS REV	N/A	

CONSTRUCTION DOCUMENTS

SUBMITTALS

REV DATE DESCRIPTION

0 05/20/2021 ISSUED FOR PERMIT

1 05/27/2021 REVISED PER COMMENTS

2 08/09/2021 ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER

DISH Wireless L.L.C. PROJECT INFORMATION

BOBDLO0055A
15 PENT RD.
DEEP RIVER, CT 06417

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

Exhibit D

Structural Analysis Report

Date: May 01, 2021

Crown Castle 2000 Corporate Dr. Canonsburg, PA 15317 (724) 416-2000

Subject: Structural Analysis Report

Carrier Designation: DISH Network Co-Locate

Site Number: BOBDL00055A Site Name: CT-CCI-T-823666

Crown Castle Designation: BU Number: 823666

Site Name: Deep River/Rt 9

 JDE Job Number:
 645125

 Work Order Number:
 1945880

 Order Number:
 553286 Rev. 4

Engineering Firm Designation: Crown Castle Project Number: 1945880

Site Data: 15 Pent Rd., Deep River, Middlesex County, CT

Latitude 41° 22′ 22.17″, Longitude -72° 26′ 3.97″

178 Foot - Monopole Tower

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Proposed Equipment Configuration

Sufficient Capacity - 74.7%

This analysis utilizes an ultimate 3-second gust wind speed of 130 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - "Analysis Criteria".

Structural analysis prepared by: Derek L. Tordella

Respectfully submitted by:

Jamal A. Huwel, P.E. Director Engineering

Digitally signed by Jamal A Huwel Date: 2021.05.02 22:41:39 -04'00'

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

Table 2 - Non-Carrier Equipment To Be Conditionally Removed

Table 3 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

3.1) Analysis Method

3.2) Assumptions

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)
Table 6 - Tower Component Stresses vs. Capacity - LC5

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 178 ft Monopole tower designed by PIROD MANUFACTURES INC.

2) ANALYSIS CRITERIA

TIA-222 Revision:

Risk Category:

Wind Speed: 130 mph

Exposure Category:BTopographic Factor:1Ice Thickness:1.5 inWind Speed with Ice:50 mphService Wind Speed:60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	E1 4:	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)			
		3	fujitsu	TA08025-B604					
					3	fujitsu	TA08025-B605		
148.0	148.0	3	jma wireless	MX08FRO665-20 w/ Mount Pipe	1	1-1/2			
		1	raycap	RDIDC-9181-PF-48					
		1	tower mounts	Commscope MC-PK8-DSH					

Table 2 - Non-Carrier Equipment To Be Conditionally Removed

Mounting Level (ft)	Flevation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
150.0	150.0 150.0 3		rfs celwave	APXV18-206517LS w/ Mount Pipe	-	_
		1	tower mounts	Pipe Mount [PM 602-3]		

Table 3 - Other Considered Equipment

Mounting Level (ft)			Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)								
		3	ems wireless	RR90-17-02DP w/ Mount Pipe										
		3	ericsson	KRY 112 144/1										
										3	ericsson	KRY 112 489/2		
178.0	178.0	3	ericsson	RADIO 4449 B12/B71	13	1-5/8								
						3	rfs celwave	APXVAARR24_43-U-NA20 w/ Mount Pipe						
		1	tower mounts	Platform Mount [LP 405-1_HR-1]										
		3	alcatel lucent	B4 RRH2X60-4R										
168.0	170.0	3	antel	BXA-70063/6CF w/ Mount Pipe	13	1-5/8								
100.0	170.0	9	commscope	HBXX-6517DS-A2M w/ Mount Pipe		1 0/0								

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)										
	1		raycap	RHSDC-3315-PF-48												
	168.0	1	tower mounts	Platform Mount [LP 303-1]												
		3	cci antennas	TPA-65R-LCUUUU-H8 w/ Mount Pipe												
		1	commscope	SBNH-1D6565C w/ Mount Pipe												
		3	ericsson	RRUS 11 B12												
		1	ericsson	RRUS 32												
	0 160.0	2	ericsson	RRUS 32 B2												
		3	ericsson	RRUS 32 B30												
		3	kaelus	DBC0061F1V51-2	2	3/8										
160.0		2	kmw communications	AM-X-CD-17-65-00T-RET w/ Mount Pipe	4 12	7/16 1-5/8										
												6	powerwave technologies	7020.00	1	Conduit
																6
								3	powerwave technologies	RA21.7770.00 w/ Mount Pipe						
		1	raycap	DC6-48-60-18-8C-EV												
		1	raycap	DC6-48-60-18-8F												
		1	tower mounts	Platform Mount [LP 303-1_HR-1]												

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	3585271	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	3845247	CCISITES
4-TOWER MANUFACTURER DRAWINGS	3585272	CCISITES

3.1) Analysis Method

tnxTower (version 8.0.9.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	178 - 164.25	Pole	TP26x12.75x0.25	1	-6.51	1118.08	11.0	Pass
L2	164.25 - 129.667	Pole	TP34.0625x22.6894x0.3125	2	-17.94	1985.41	40.9	Pass
L3	129.667 - 96	Pole	TP41.75x32.2749x0.375	3	-26.02	2938.76	49.1	Pass
L4	96 - 63.1667	Pole	TP49.0625x39.8209x0.375	4	-35.62	3460.50	59.6	Pass
L5	63.1667 - 31.1667	Pole	TP56.125x46.9571x0.375	5	-46.55	3964.23	67.3	Pass
L6	31.1667 - 0	Pole	TP62.9375x53.847x0.375	6	-61.25	4574.01	74.7	Pass
							Summary	
						Pole (L6)	74.7	Pass
						Rating =	74.7	Pass

Table 6 - Tower Component Stresses vs. Capacity - LC5

	Towns Component Carococc Ver Capacity			
Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	72.5	Pass
2	Base Plate	0	74.7	Pass
1	Base Foundation (Structure)	0	43.1	Pass
1	Base Foundation (Soil Interaction)	0	67.0	Pass

Structure Rating (max from all components) =	74.7%
--	-------

Notes:

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. In order for the results of this analysis to be considered valid, the loading modification, as follows, must be completed.

Loading Changes:

a) Removal of the antennas and mounts at the 150 ft level

No structural modifications are required at this time provided that the above-listed changes are completed.

¹⁾ See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

²⁾ Base plates are assumed to have the same capacity as their respective shaft.

APPENDIX A TNXTOWER OUTPUT

-	13.75	18	0.2500	2.92	12.7500	26.0000		7.0	178.0 ft	1. 2. 3. 4.
2	37.50	18	0.3125	3.83	22.6894	34.0625		3.6	129.7 ft	5. 6. 7. 8.
ю	37.50	18	0.3750	4.67	32.2749	41.7500		5.6	96.0 ft	
4	37.50	18	0.3750	5.50	39.8209	49.0625	A572-65	6.7		
2	37.50	18	0.3750	6.25	46.9571	56.1250		7.8	ALL REACTIONS ARE FACTORED AXIAL 101 K 31.2 ft	
9	37.42	18	0.3750		53.8470	62.9375		8.8	SHEAR MOM 9 K 1166 TORQUE 0 kip-ft 50 mph WIND - 1.5000 in ICE AXIAL 61 K SHEAR 35 K 4498	kip
Section	Length (ft)	Number of Sides	Thickness (in)	Socket Length (ft)	Top Dia (in)	Bot Dia (in)	Grade	Weight (K) 33.1	0.0 ft TORQUE 0 kip-ft REACTIONS - 130 mph WINI	D

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
Δ572-65	65 kei	80 kei			

TOWER DESIGN NOTES

- Tower is located in Middlesex County, Connecticut.

 Tower designed for Exposure B to the TIA-222-H Standard.

 Tower designed for a 130 mph basic wind in accordance with the TIA-222-H Standard.

 Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.

 Deflections are based upon a 60 mph wind.

 Tower Risk Category II.

 Topographic Category 1 with Crest Height of 0.00 ft

 TOWER RATING: 74.7%

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower is located in Middlesex County, Connecticut.
- Tower base elevation above sea level: 95.00 ft.
- Basic wind speed of 130 mph.
- Risk Category II.
- Exposure Category B.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.00 ft.
- Nominal ice thickness of 1.5000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60 mph.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals **Use Moment Magnification**

- Use Code Stress Ratios
- Use Code Safety Factors Guys Escalate Ice Always Use Max Kz

Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned

- Assume Rigid Index Plate
- Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks Use Azimuth Dish Coefficients
- Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination

Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

√ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
L1	178.00-164.25	13.75	2.92	18	12.7500	26.0000	0.2500	1.0000	A572-65
L2	164.25-129.67	37.50	3.83	18	22.6894	34.0625	0.3125	1.2500	(65 ksi) A572-65 (65 ksi)
L3	129.67-96.00	37.50	4.67	18	32.2749	41.7500	0.3750	1.5000	(65 ksi) A572-65 (65 ksi)
L4	96.00-63.17	37.50	5.50	18	39.8209	49.0625	0.3750	1.5000	A572-65 (65 ksi)
L5	63.17-31.17	37.50	6.25	18	46.9571	56.1250	0.3750	1.5000	A572-65 (65 ksi)
L6	31.17-0.00	37.42		18	53.8470	62.9375	0.3750	1.5000	A572-65 (65 ksi)

Section	Tip Dia.	Area	1	r	С	I/C	J	It/Q	W	w/t
	in	in²	in⁴	in	in	in ³	in⁴	in²	in	
L1	12.9081	9.9187	195.8008	4.4375	6.4770	30.2302	391.8592	4.9603	1.8040	7.216
	26.3625	20.4326	1711.6544	9.1412	13.2080	129.5922	3425.5610	10.2183	4.1360	16.544
L2	23.8894	22.1951	1404.0862	7.9438	11.5262	121.8168	2810.0200	11.0996	3.4433	11.019
	34.5398	33.4758	4817.4335	11.9812	17.3038	278.4040	9641.2058	16.7411	5.4450	17.424
L3	33.6985	37.9689	4881.3984	11.3245	16.3957	297.7251	9769.2199	18.9880	5.0204	13.388
	42.3362	49.2466	10650.982	14.6881	21.2090	502.1916	21315.979	24.6280	6.6880	17.835
L4	41.5451	46.9505	9229.5501	14.0033	20.2290	456.2533	18471.244 7	23.4797	6.3485	16.929
	49.7615	57.9503	17355.137 8	17.2841	24.9238	696.3293	34733.111 9	28.9807	7.9750	21.267
L5	48.9890	55.4443	15199.586 5	16.5366	23.8542	637.1873	30419.172 9	27.7274	7.6044	20.279
	56.9330	66.3564	26056.150 6	19.7913	28.5115	913.8821	52146.586 5	33.1845	9.2180	24.581
L6	56.1617	63.6451	22990.857 9	18.9826	27.3543	840.4848	46011.967 8	31.8286	8.8171	23.512
	63.8506	74.4650	36822.894 6	22.2097	31.9722	1151.7142	73694.241	37.2396	10.4170	27.779

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset GradeAdjust. Factor A _f	Adjust. Factor A,	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft^2	in				in	in	in
L1 178.00-			1	1	1			
164.25								
L2 164 25-			1	1	1			
129.67								
L3 129.67-			1	1	1			
96.00								
L4 96.00-			1	1	1			
63.17								
L5 63.17-			1	1	1			
31.17								
L6 31 17-0.00			1	1	1			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude	Componen	Placement	Total	Number	Start/En	Width or	Perimete	Weight
		From	t		Number	<i>PerRow</i>	d	Diamete	r	
		Torque	Type	ft			Position	r		plf
		Calculation	1					in	in	-

Description	Sector	Exclude From	Componen t	Placement	Total Number	Number PerRow	Start/En d	Width or Diamete	Perimete r	Weight
		Torque Calculation	Type	ft			Position	r in	in	plf
Misc PiROD Ladder **	В	No	Surface Ar (CaAa)	178.00 - 0.00	1	1	0.000 0.000	1.2500		0.70
** LDF7-50A(1-5/8) **	С	No	Surface Ar (CaAa)	178.00 - 0.00	6	4	-0.100 0.100	1.9800		0.82
LDF7-50A(1-5/8)	С	No	Surface Ar (CaAa)	160.00 - 0.00	6	6	0.200 0.400	1.9800		0.82
WR-VG122ST- BRDA(7/16) **	С	No	Surface Ar (CaAa)	160.00 - 0.00	3	2	0.420 0.450	0.4600		0.14
CU12PSM9P6XXX(1- 1/2) **	В	No	Surface Ar (CaAa)	148.00 - 0.00	1	1	0.500 0.500	1.6000		2.35

Feed Line/Linear Appurtenances - Entered As Area

Description		Allow	Exclude	Componen	Placement	Total		$C_A A_A$	Weight
	or Leg	Shield	From Torque Calculation	t Type	ft	Number		ft²/ft	plf
** LDF7-50A(1-5/8)	С	No	No	Inside Pole	178.00 - 0.00	6	No Ice	0.00	0.82
LDI 7-30A(1-370)	C	INO	NO	mside i die	170.00-0.00	U	1/2" Ice	0.00	0.82
							1" Ice	0.00	0.82
							2" Ice	0.00	0.82
HCS 6X12	С	No	No	Inside Pole	178.00 - 0.00	1	No Ice	0.00	2.40
4AWG(1-5/8)	Ū			moido i olo	110100 0100	•	1/2" Ice	0.00	2.40
., • (1. •, •)							1" Ice	0.00	2.40
							2" Ice	0.00	2.40
** LDF7-50A(1-5/8)	Α	No	No	Inside Pole	168.00 - 0.00	12	No Ice	0.00	0.82
LDI 1-30A(1-3/0)		110	140	made i die	100.00-0.00	12	1/2" Ice	0.00	0.82
							1" Ice	0.00	0.82
							2"Ice	0.00	0.82
HB158-1-08U8-	Α	No	No	Inside Pole	168.00 - 0.00	1	No Ice	0.00	1.30
S8J18(1-5/8)	, ,	110	140	made i die	100.00 0.00		1/2" Ice	0.00	1.30
00010(1-0/0)							1" Ice	0.00	1.30
							2" Ice	0.00	1.30
LDF7-50A(1-5/8)	С	No	No	Inside Pole	160.00 - 0.00	6	No Ice	0.00	0.82
	•					· ·	1/2" Ice	0.00	0.82
							1" Ice	0.00	0.82
							2" Ice	0.00	0.82
FB-L98B-002-	С	No	No	Inside Pole	160.00 - 0.00	1	No Ice	0.00	0.06
75000(3/8)							1/2" Ice	0.00	0.06
(, , ,							1" Ice	0.00	0.06
							2" ce	0.00	0.06
WR-VG122ST-	С	No	No	Inside Pole	160.00 - 0.00	2	No Ice	0.00	0.14
BRDA(7/16)							1/2" Ice	0.00	0.14
` /							1" Ice	0.00	0.14
							2" Ice	0.00	0.14
2" Rigid Conduit	С	No	No	Inside Pole	160.00 - 0.00	1	No Ice	0.00	2.80
-							1/2" I ce	0.00	2.80
							1" Ice	0.00	2.80
**							2" Ice	0.00	2.80

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_{\digamma}	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation				In Face	Out Face	
n	ft		ft ²	ft ²	ft ²	ft ²	K
L1	178.00-164.25	Α	0.000	0.000	0.000	0.000	0.04
		В	0.000	0.000	1.719	0.000	0.01
		С	0.000	0.000	10.890	0.000	0.17
L2	164.25-129.67	Α	0.000	0.000	0.000	0.000	0.39
		В	0.000	0.000	7.256	0.000	0.07
		С	0.000	0.000	66.217	0.000	0.83
L3	129.67-96.00	Α	0.000	0.000	0.000	0.000	0.38
		В	0.000	0.000	9.595	0.000	0.10
		С	0.000	0.000	69.757	0.000	0.86
L4	96.00-63.17	Α	0.000	0.000	0.000	0.000	0.37
		В	0.000	0.000	9.357	0.000	0.10
		С	0.000	0.000	68.031	0.000	0.84
L5	63.17-31.17	Α	0.000	0.000	0.000	0.000	0.36
		В	0.000	0.000	9.120	0.000	0.10
		С	0.000	0.000	66.304	0.000	0.82
L6	31.17-0.00	Α	0.000	0.000	0.000	0.000	0.35
		В	0.000	0.000	8.883	0.000	0.10
		С	0.000	0.000	64.577	0.000	0.80

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness		_	In Face	Out Face	
n	ft	Leg	in	ft ²	ft ²	ft ²	ft ²	K
L1	178.00-164.25	Α	1.502	0.000	0.000	0.000	0.000	0.04
		В		0.000	0.000	5.850	0.000	0.08
		С		0.000	0.000	18.777	0.000	0.40
L2	164.25-129.67	Α	1.479	0.000	0.000	0.000	0.000	0.39
		В		0.000	0.000	23.157	0.000	0.35
		С		0.000	0.000	118.547	0.000	2.14
L3	129.67-96.00	Α	1.441	0.000	0.000	0.000	0.000	0.38
		В		0.000	0.000	29.519	0.000	0.46
		С		0.000	0.000	124.554	0.000	2.22
L4	96.00-63.17	Α	1.392	0.000	0.000	0.000	0.000	0.37
		В		0.000	0.000	28.285	0.000	0.43
		С		0.000	0.000	120.528	0.000	2.12
L5	63.17-31.17	Α	1.321	0.000	0.000	0.000	0.000	0.36
		В		0.000	0.000	26.936	0.000	0.40
		С		0.000	0.000	116.285	0.000	2.02
L6	31.17-0.00	Α	1.180	0.000	0.000	0.000	0.000	0.35
		В		0.000	0.000	25.355	0.000	0.37
		С		0.000	0.000	111.608	0.000	1.91

Feed Line Center of Pressure

Section	Elevation	CP _X	CPz	CP _X Ice	CP _z Ice
	ft	in	in	in	in
L1	178.00-164.25	0.5287	4.0711	0.8123	2.9369
L2	164.25-129.67	-1.9895	6.8539	-1.2669	5.1840
L3	129.67-96.00	-2.2214	7.8857	-1.3651	6.1863
L4	96.00-63.17	-2.4043	8.5102	-1.5247	6.8379
L5	63 17-31 17	-2.5508	9.0104	-1.6642	7.3764
L6	31.17-0.00	-2.6715	9.4227	-1.7940	7.8292

 $Note: For pole\ sections, center of\ pressure\ calculations\ do\ not\ consider\ feed\ line\ shielding.$

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	Bedenption	Segment	No Ice	Ice
			Ĕlev.		
L1	2	PiROD Ladder	164.25 -	1.0000	1.0000
			178.00		
L1	5	LDF7-50A(1-5/8)	164.25 -	1.0000	1.0000
ا ا		DiDOD Laddar	178.00	4 0000	4 0000
L2	2	PiROD Ladder	129.67 - 164.25	1.0000	1.0000
L2	5	LDF7-50A(1-5/8)	129.67	1.0000	1,0000
	J	2211 0011(1 0/0)	164.25	1,0000	1,0000
L2	12	LDF7-50A(1-5/8)	129.67 -	1.0000	1.0000
			160.00		
L2	14	WR-VG122ST-BRDA(7/16)	129.67 -	1.0000	1.0000
	0.0	OLIA OD OMOD CVVVVA 4/0V	160.00	4 0000	4 0000
L2	20	CU12PSM9P6XXX(1-1/2)	129.67 - 148.00	1.0000	1.0000
L3	2	PiROD Ladder	96.00	1.0000	1.0000
	_	r ii (OD Ladder	129.67	110000	110000
L3	5	LDF7-50A(1-5/8)	96.00-	1.0000	1.0000
			129.67		
L3	12	LDF7-50A(1-5/8)	96.00 -	1.0000	1.0000
ا ا	4.4	MID VOACOOT DDDA (7/40)	129.67	4 0000	4 0000
L3	14	WR-VG122ST-BRDA(7/16)	96.00 - 129.67	1.0000	1.0000
L3	20	CU12PSM9P6XXX(1-1/2)	96.00-	1.0000	1.0000
		33.2. 3 3.0.0.(12)	129.67	110000	1,0000
L4	2	PiROD Ladder	63.17 -	1.0000	1.0000
			96.00		
L4	5	LDF7-50A(1-5/8)	63.17 -	1.0000	1.0000
ا ، ، ا	40	LDEZ E0A (4 E (0)	96.00	4 0000	4 0000
L4	12	LDF7-50A(1-5/8)	63.17 - 96.00	1.0000	1.0000
L4	14	WR-VG122ST-BRDA(7/16)	63.17	1.0000	1.0000
			96.00		
L4	20	CU12PSM9P6XXX(1-1/2)	63.17 -	1.0000	1.0000
		_	96.00		
L5	2	PiROD Ladder	31.17	1.0000	1.0000
L5	5	LDF7-50A(1-5/8)	63.17 31.17 -	1.0000	1.0000
	3	LDF7-30A(1-5/6)	63.17	1.0000	1.0000
L5	12	LDF7-50A(1-5/8)	31.17	1.0000	1.0000
		· ·	63.17		
L5	14	WR-VG122ST-BRDA(7/16)	31.17 -	1.0000	1.0000
	ا. ر		63.17	,	,
L5	20	CU12PSM9P6XXX(1-1/2)	31.17 -	1.0000	1.0000
L6	2	PiROD Ladder	63.17 0.00 -31.17	1.0000	1.0000
L6	5	LDF7-50A(1-5/8)	0.00 - 31.17	1.0000	1.0000
L6	12	LDF7-50A(1-5/8)	0.00 - 31.17	1.0000	1.0000
L6	14	WR-VG122ST-BRDA(7/16)	0.00 - 31.17	1.0000	1.0000
L6	20	CU12PSM9P6XXX(1-1/2)	0.00 -31.17	1.0000	1.0000

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C₄A₄ Front	C _A A _A Side	Weight
			Vert ft ft ft	o	ft		ft²	ft²	К
Misc Lightning Rod 5/8" x 5' on 6' pole	С	From Leg	0.00 0.00 3.00	0.0000	178.00	No Ice 1/2" Ice 1" Ice 2" Ice	2.04 2.91 3.78 5.19	2.04 2.91 3.78 5.19	0.05 0.08 0.10 0.18
178 RR90-17-02DP w/ Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	178.00	No Ice 1/2" Ice 1"Ice	4.47 5.08 5.70 7.01	2.92 3.50 4.10 5.35	0.03 0.07 0.11 0.22
RR90-17-02DP w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	178.00	2" Ice No Ice 1/2" Ice 1" Ice	4.47 5.08 5.70 7.01	2.92 3.50 4.10 5.35	0.03 0.07 0.11 0.22
RR90-17-02DP w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	178.00	2" Ice No Ice 1/2" Ice 1" Ice	4.47 5.08 5.70 7.01	2.92 3.50 4.10 5.35	0.03 0.07 0.11 0.22
APXVAARR24_43-U-NA20 w/ Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	178.00	2" Ice No Ice 1/2" Ice 1" Ice	14.69 15.46 16.23 17.82	6.87 7.55 8.25 9.67	0.19 0.31 0.46 0.79
APXVAARR24_43-U-NA20 w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	178.00	2" Ice No Ice 1/2" Ice 1" Ice	14.69 15.46 16.23 17.82	6.87 7.55 8.25 9.67	0.19 0.31 0.46 0.79
APXVAARR24_43-U-NA20 w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	178.00	2" Ice No Ice 1/2" Ice 1" Ice	14.69 15.46 16.23 17.82	6.87 7.55 8.25 9.67	0.19 0.31 0.46 0.79
KRY 112 489/2	Α	From Leg	4.00 0.00 0.00	0.0000	178.00	2" Ice No Ice 1/2" Ice 1" Ice	0.56 0.66 0.76 1.00	0.37 0.45 0.54 0.75	0.02 0.02 0.03 0.05
KRY 112 489/2	В	From Leg	4.00 0.00 0.00	0.0000	178.00	2" Ice No Ice 1/2" Ice 1" Ice	0.56 0.66 0.76 1.00	0.37 0.45 0.54 0.75	0.02 0.02 0.03 0.05
KRY 112 489/2	С	From Leg	4.00 0.00 0.00	0.0000	178.00	2" Ice No Ice 1/2" Ice 1" Ice	0.56 0.66 0.76 1.00	0.37 0.45 0.54 0.75	0.02 0.02 0.03 0.05
KRY 112 144/1	Α	From Leg	4.00 0.00 0.00	0.0000	178.00	2" Ice No Ice 1/2" Ice 1" Ice	0.35 0.43 0.51 0.70	0.17 0.23 0.30 0.46	0.01 0.01 0.02 0.03
KRY 112 144/1	В	From Leg	4.00 0.00 0.00	0.0000	178.00	2" Ice No Ice 1/2" Ice 1" Ice	0.35 0.43 0.51 0.70	0.17 0.23 0.30 0.46	0.01 0.01 0.02 0.03
KRY 112 144/1	С	From Leg	4.00 0.00 0.00	0.0000	178.00	2" Ice No Ice 1/2" Ice	0.35 0.43 0.51	0.17 0.23 0.30	0.01 0.01 0.02

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C₄A₄ Side	Weight
			Vert ft ft ft	۰	ft		ft ²	ft²	K
						1" Ice 2" Ice	0.70	0.46	0.03
RADIO 4449 B12/B71	Α	From Leg	4.00	0.0000	178.00	No Ice	1.65	1.16	0.07
			0.00			1/2"	1.81	1.30	0.09
			0.00			Ice	1.98	1.45	0.11
						1" Ice 2" Ice	2.34	1.76	0.16
RADIO 4449 B12/B71	В	From Leg	4.00	0.0000	178.00	No Ice	1.65	1.16	0.07
		J	0.00			1/2"	1.81	1.30	0.09
			0.00			Ice	1.98	1.45	0.11
						1" Ice	2.34	1.76	0.16
RADIO 4449 B12/B71	С	From Leg	4.00	0.0000	178.00	2" Ice No Ice	1.65	1.16	0.07
100 4449 B12/B/1	C	1 Ioni Leg	0.00	0.0000	170.00	1/2"	1.81	1.30	0.07
			0.00			Ice	1.98	1.45	0.11
						1" Ice	2.34	1.76	0.16
						2" Ice			
(2) 6' x 2" Mount Pipe	Α	From Leg	4.00	0.0000	178.00	No Ice	1.43	1.43	0.02
			0.00			1/2"	1.92	1.92	0.03
			0.00			Ice 1" Ice	2.29 3.06	2.29 3.06	0.05 0.09
						2" Ice	0.00	0,00	0,00
(2) 6' x 2" Mount Pipe	В	From Leg	4.00	0.0000	178.00	No Ice	1.43	1.43	0.02
		_	0.00			1/2"	1.92	1.92	0.03
			0.00			Ice	2.29	2.29	0.05
						1" Ice 2" Ice	3.06	3.06	0.09
6' x 2" Mount Pipe	С	From Leg	4.00	0.0000	178.00	No Ice	1.43	1.43	0.02
0 X 2 Mounti ipe	C	1 Ioni Leg	0.00	0.0000	170.00	1/2"	1.92	1.92	0.02
			0.00			Ice	2.29	2.29	0.05
						1" Ice	3.06	3.06	0.09
	_					2" Ice			
3' x 2" Pipe Mount	Α	From Leg	4.00	0.0000	178.00	No Ice	0.58	0.58	0.01
			0.00 0.00			1/2" I ce	0.77 0.97	0.77 0.97	0.02 0.02
			0.00			1" Ice	1.39	1.39	0.02
						2" Ice	1100	1100	0.00
3' x 2" Pipe Mount	В	From Leg	4.00	0.0000	178.00	No Ice	0.58	0.58	0.01
			0.00			1/2"	0.77	0.77	0.02
			0.00			Ice	0.97	0.97	0.02
						1" Ice 2" Ice	1.39	1.39	0.05
3' x 2" Pipe Mount	С	From Leg	4.00	0.0000	178.00	No Ice	0.58	0.58	0.01
·		J	0.00			1/2"	0.77	0.77	0.02
			0.00			Ice	0.97	0.97	0.02
						1" Ice	1.39	1.39	0.05
Platform Mount [LP 405-	С	None		0.0000	178.00	2" Ice No Ice	25.33	25.33	2.06
1_HR-1]	O	None		0.0000	170.00	1/2"	33.79	33.79	2.63
						Ice	42.16	42.16	3.36
						1" Ice	58.77	58.77	5.25
0:-l- A M 100 040	^	E	0.50	0.0000	470.00	2" Ice	4.07	2.05	0.00
Side Arm Mount [SO 310-	Α	From Leg	0.50 0.00	0.0000	178.00	No Ice 1/2"	1.67 2.43	3.95	0.06 0.09
1]			0.00			Ice	3.21	5.69 7.62	0.09
			0.00			1" Ice	4.84	12.32	0.25
						2" Ice			
Side Arm Mount [SO 310-	В	From Leg	0.50	0.0000	178.00	No Ice	1.67	3.95	0.06
1]			0.00			1/2"	2.43	5.69	0.09
			0.00			Ice 1"Ice	3.21 4.84	7.62 12.32	0.13 0.25
						2" Ice	4.04	12.32	0.23
170						_ 100			
(3) HBXX-6517DS-A2M w/	Α	From Leg	4.00	0.0000	168.00	No Ice	7.97	5.99	0.08
Mount Pipe			0.00			1/2"	8.73	6.72	0.14

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	o	ft		ft²	ft²	K
			2.00			Ice 1" Ice 2" Ice	9.50 11.11	7.47 9.02	0.22 0.40
(3) HBXX-6517DS-A2M w/ Mount Pipe	В	From Leg	4.00 0.00 2.00	0.0000	168.00	No Ice 1/2" Ice	7.97 8.73 9.50	5.99 6.72 7.47	0.08 0.14 0.22
						1" I ce 2" I ce	11.11	9.02	0.40
(3) HBXX-6517DS-A2M w/ Mount Pipe	С	From Leg	4.00 0.00 2.00	0.0000	168.00	No Ice 1/2" Ice 1" Ice	7.97 8.73 9.50 11.11	5.99 6.72 7.47 9.02	0.08 0.14 0.22 0.40
BXA-70063/6CF w/ Mount Pipe	Α	From Leg	4.00 0.00 2.00	0.0000	168.00	2" Ice No Ice 1/2" Ice 1" Ice	7.34 8.08 8.83	5.51 6.22 6.94	0.06 0.11 0.18
BXA-70063/6CF w/ Mount Pipe	В	From Leg	4.00 0.00	0.0000	168.00	2" Ice 2" Ice No Ice 1/2"	10.38 7.34 8.08	8.44 5.51 6.22	0.35 0.06 0.11
i ipo			2.00			Ice 1" Ice 2" Ice	8.83 10.38	6.94 8.44	0.18 0.35
BXA-70063/6CF w/ Mount Pipe	С	From Leg	4.00 0.00 2.00	0.0000	168.00	No Ice 1/2" Ice 1" Ice	7.34 8.08 8.83 10.38	5.51 6.22 6.94 8.44	0.06 0.11 0.18 0.35
B4 RRH2X60-4R	Α	From Leg	4.00 0.00 2.00	0.0000	168.00	2" Ice No Ice 1/2" Ice 1" Ice	3.36 3.61 3.88 4.42	2.00 2.24 2.48 2.97	0.06 0.08 0.10 0.17
B4 RRH2X60-4R	В	From Leg	4.00 0.00 2.00	0.0000	168.00	2" Ice No Ice 1/2" Ice 1" Ice	3.36 3.61 3.88 4.42	2.00 2.24 2.48 2.97	0.06 0.08 0.10 0.17
B4 RRH2X60-4R	С	From Leg	4.00 0.00 2.00	0.0000	168.00	2" Ice No Ice 1/2" Ice 1" Ice	3.36 3.61 3.88 4.42	2.00 2.24 2.48 2.97	0.06 0.08 0.10 0.17
RHSDC-3315-PF-48	С	From Leg	4.00 0.00 2.00	0.0000	168.00	2" Ice No Ice 1/2" Ice 1" Ice	3.36 3.60 3.84 4.34	2.19 2.39 2.61 3.05	0.03 0.06 0.09 0.17
Platform Mount [LP 303-1]	С	None		0.0000	168.00	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	14.69 18.01 21.34 28.08	14.69 18.01 21.34 28.08	1.25 1.57 1.94 2.85
160 RA21.7770.00 w/ Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	160.00	No Ice 1/2" Ice 1"Ice	4.14 4.57 5.01 5.93	2.46 2.87 3.29 4.15	0.06 0.11 0.17 0.31
RA21.7770.00 w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	160.00	2" Ice No Ice 1/2" Ice 1" Ice	4.14 4.57 5.01 5.93	2.46 2.87 3.29 4.15	0.06 0.11 0.17 0.31
RA21.7770.00 w/ Mount	С	From Leg	4.00	0.0000	160.00	2" Ice No Ice	4.14	2.46	0.06

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	o	ft		ft²	ft²	K
Pipe			0.00			1/2"	4.57	2.87	0.11
			0.00			Ice 1" Ice 2" Ice	5.01 5.93	3.29 4.15	0.17 0.31
AM-X-CD-17-65-00T-RET	Α	From Leg	4.00	0.0000	160.00	No Ice	6.09	4.31	0.09
w/ Mount Pipe			0.00	0.0000		1/2"	6.66	4.86	0.17
·			0.00			Ice	7.24	5.42	0.26
						1" I ce 2" I ce	8.43	6.57	0.48
AM-X-CD-17-65-00T-RET	С	From Leg	4.00	0.0000	160.00	No Ice	6.09	4.31	0.09
w/ Mount Pipe			0.00			1/2"	6.66	4.86	0.17
			0.00			Ice 1"Ice	7.24 8.43	5.42 6.57	0.26 0.48
						2" Ice	0.43	0.57	0.40
TPA-65R-LCUUUU-H8 w/	Α	From Leg	4.00	0.0000	160.00	No Ice	11.85	8.99	0.11
Mount Pipe			0.00			1/2"	12.77	9.88	0.21
·			0.00			Ice	13.71	10.79	0.32
						1" Ice	15.64	12.66	0.58
TDA 05D 01111111110 /	_		4.00	0.0000	400.00	2" Ice	44.05	0.00	0.14
TPA-65R-LCUUUU-H8 w/ Mount Pipe	В	From Leg	4.00 0.00	0.0000	160.00	No Ice 1/2"	11.85 12.77	8.99 9.88	0.11 0.21
Mount Fipe			0.00			Ice	13.71	10.79	0.32
			0.00			1" Ice	15.64	12.66	0.58
						2" Ice			
TPA-65R-LCUUUU-H8 w/	С	From Leg	4.00	0.0000	160.00	No Ice	11.85	8.99	0.11
Mount Pipe			0.00			1/2"	12.77	9.88	0.21
			0.00			Ice	13.71	10.79	0.32
						1" Ice 2" Ice	15.64	12.66	0.58
SBNH-1D6565C w/ Mount	В	From Leg	4.00	0.0000	160.00	No Ice	5.56	4.47	0.08
Pipe		r rom Log	0.00	0.0000	100.00	1/2"	6.07	4 97	0.17
·			0.00			Ice	6.59	5.47	0.26
						1" Ice	7.65	6.52	0.50
(2) CD24 404	^	F	4.00	0.0000	400.00	2" Ice	4.40	0.04	0.01
(2) LGP21401	Α	From Leg	4.00 0.00	0.0000	160.00	No Ice 1/2"	1.10 1.24	0.21 0.27	0.01 0.02
			0.00			Ice	1.24	0.27	0.02
			0.00			1" Ice	1.69	0.52	0.05
						2" Ice			
(2) LGP21401	В	From Leg	4.00	0.0000	160.00	No Ice	1.10	0.21	0.01
			0.00			1/2"	1.24	0.27	0.02
			0.00			Ice 1"Ice	1.38 1.69	0.35 0.52	0.03 0.05
						2" Ice	1.09	0.52	0.05
(2) LGP21401	С	From Leg	4.00	0.0000	160.00	No Ice	1.10	0.21	0.01
,		G	0.00			1/2"	1.24	0.27	0.02
			0.00			Ice	1.38	0.35	0.03
						1" I ce 2" I ce	1.69	0.52	0.05
(2) 7020.00	Α	From Leg	4.00	0.0000	160.00	No Ice	0.10	0.17	0.00
, ,		J	0.00			1/2"	0.15	0.24	0.01
			0.00			Ice	0.20	0.31	0.01
						1" Ice	0.33	0.48	0.02
(2) 7020.00	В	From Leg	4.00	0.0000	160.00	2" Ice No Ice	0.10	0.17	0.00
(2) 7 020.00		r ioni Log	0.00	0.0000	100.00	1/2"	0.15	0.24	0.01
			0.00			lce	0.20	0.31	0.01
						1" Ice	0.33	0.48	0.02
		_				2" Ice			
(2) 7020.00	С	From Leg	4.00	0.0000	160.00	No Ice	0.10	0.17	0.00
			0.00 0.00			1/2" I ce	0.15 0.20	0.24 0.31	0.01 0.01
			0.00			1" Ice	0.20	0.31	0.01
						2" Ice		20	
DC6-48-60-18-8F	Α	From Leg	4.00	0.0000	160.00	No Ice	1.21	1.21	0.02

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C₄A₄ Front	C₄A₄ Side	Weight
			Vert ft ft ft	o	ft		ft²	ft²	K
			0.00			1/2"	1.89	1.89	0.04
			0.00			Ice 1" Ice 2" Ice	2.11 2.57	2.11 2.57	0.07 0.13
RRUS 11 B12	Α	From Leg	4.00	0.0000	160.00	No Ice	2.83	1.18	0.05
			0.00			1/2"	3.04	1.33	0.07
			0.00			Ice	3.26	1.48	0.10
RRUS 11 B12	В	From Leg	4.00	0.0000	160.00	1" Ice 2" Ice No Ice	3.71 2.83	1.83 1.18	0.15 0.05
11100 11 112		1 Tom Log	0.00	0.0000	100.00	1/2"	3.04	1.33	0.07
			0.00			Ice	3.26	1.48	0.10
						1" Ice 2" Ice	3.71	1.83	0.15
RRUS 11 B12	С	From Leg	4.00	0.0000	160.00	No Ice	2.83	1.18	0.05
			0.00			1/2"	3.04 3.26	1.33 1.48	0.07 0.10
			0.00			Ice 1"Ice 2"Ice	3.71	1.83	0.15
RRUS 32 B2	Α	From Leg	4.00	0.0000	160.00	No Ice	2.73	1.67	0.05
			0.00			1/2"	2.95	1.86	0.07
			0.00			Ice 1" Ice 2" Ice	3.18 3.66	2.05 2.46	0.10 0.16
RRUS 32 B2	В	From Leg	4.00	0.0000	160.00	No Ice	2.73	1.67	0.05
		3	0.00			1/2"	2.95	1.86	0.07
			0.00			Ice	3.18	2.05	0.10
						1" Ice	3.66	2.46	0.16
DBC0061F1V51-2	Α	From Leg	4.00	0.0000	160.00	2" Ice No Ice	0.41	0.43	0.03
DBC00011 1V31-2	^	1 Ioiii Leg	0.00	0.0000	100.00	1/2"	0.50	0.52	0.03
			0.00			Ice	0.59	0.61	0.04
						1" Ice 2" Ice	0.79	0.81	0.06
DBC0061F1V51-2	В	From Leg	4.00	0.0000	160.00	No Ice	0.41	0.43	0.03
			0.00			1/2"	0.50	0.52	0.03
			0.00			Ice 1"Ice	0.59 0.79	0.61 0.81	0.04 0.06
						2" Ice	0.79	0.01	0.00
DBC0061F1V51-2	С	From Leg	4.00 0.00	0.0000	160.00	No Ice 1/2"	0.41 0.50	0.43 0.52	0.03 0.03
			0.00			Ice	0.59	0.61	0.04
						1" Ice 2" Ice	0.79	0.81	0.06
RRUS 32 B30	Α	From Leg	4.00	0.0000	160.00	No Ice	2.69	1.57	0.06
			0.00 0.00			1/2" I ce	2.91 3.14	1.76 1.95	0.08 0.10
			0.00			1" Ice 2" Ice	3.61	2.35	0.16
RRUS 32 B30	В	From Leg	4.00	0.0000	160.00	No Ice	2.69	1.57	0.06
		_	0.00			1/2"	2.91	1.76	80.0
			0.00			Ice	3.14	1.95	0.10
						1" Ice 2" Ice	3.61	2.35	0.16
RRUS 32 B30	С	From Leg	4.00	0.0000	160.00	No Ice	2.69	1.57	0.06
11100 02 800	J	riom Log	0.00	0.0000	100.00	1/2"	2.91	1.76	0.08
			0.00			Ice	3.14	1.95	0.10
						1" Ice 2" Ice	3.61	2.35	0.16
DC6-48-60-18-8C-EV	В	From Leg	4.00	0.0000	160.00	No Ice	1.14	1.14	0.03
			0.00 0.00			1/2" I ce	1.79 2.00	1.79 2.00	0.05 0.07
			0.00			1" Ice 1" Ice 2" Ice	2.45	2.45	0.07
RRUS 32	С	From Leg	4.00	0.0000	160.00	No Ice	2.86	1.78	0.06

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	۰	ft		ft²	ft²	K
			0.00			1/2"	3.08	1.97	0.08
			0.00			Ice 1" Ice 2" Ice	3.32 3.81	2.17 2.58	0.10 0.16
Platform Mount [LP 303-	С	None		0.0000	160.00	No Ice	17.09	17.09	1.50
1_HR-1]						1/2"	21.47	21.47	1.88
						Ice 1" Ice	25.72 33.96	25.72 33.96	2.35 3.52
150 ****						2" Ice			
MX08FRO665-20 w/	Α	From Leg	4.00	0.0000	148.00	No Ice	8.01	4.23	0.10
Mount Pipe	, ,	r rom Log	0.00	0.0000	140.00	1/2"	8.52	4.69	0.18
			0.00			Ice	9.04	5.16	0.28
						1" Ice 2" Ice	10.11	6.12	0.51
MX08FRO665-20 w/	В	From Leg	4.00	0.0000	148.00	∠ ice No Ice	8.01	4.23	0.10
Mount Pipe			0.00	0.0000	110100	1/2"	8.52	4.69	0.18
4-			0.00			Ice	9.04	5.16	0.28
	_					1" Ice 2" Ice	10.11	6.12	0.51
MX08FRO665-20 w/ Mount Pipe	С	From Leg	4.00 0.00	0.0000	148.00	No Ice 1/2"	8.01 8.52	4.23 4.69	0.10 0.18
would ripe			0.00			Ice	9.04	5.16	0.18
			0.00			1" Ice	10.11	6.12	0.51
						2" Ice			
TA08025-B604	Α	From Leg	4.00	0.0000	148.00	No Ice	1.96	0.98	0.06
			0.00			1/2"	2.14	1.11	0.08
			0.00			Ice 1"Ice	2.32 2.71	1.25 1.55	0.10 0.15
						2" Ice			
TA08025-B604	В	From Leg	4.00	0.0000	148.00	No Ice	1.96	0.98	0.06
			0.00			1/2"	2.14	1.11	0.08
			0.00			Ice 1"Ice	2.32 2.71	1.25 1.55	0.10 0.15
						2" Ice	2.11	1.00	0.15
TA08025-B604	С	From Leg	4.00	0.0000	148.00	No Ice	1.96	0.98	0.06
		_	0.00			1/2"	2.14	1.11	80.0
			0.00			Ice	2.32	1.25	0.10
						1" Ice	2.71	1.55	0.15
TA08025-B605	Α	From Leg	4.00	0.0000	148.00	2" Ice No Ice	1.96	1.13	0.08
1700025-5005		r ioni Leg	0.00	0.0000	140.00	1/2"	2.14	1.27	0.09
			0.00			Ice	2.32	1.41	0.11
						1" I ce	2.71	1.72	0.16
TA00025 D605	В	From Log	4.00	0.0000	149.00	2" Ice	1.06	1 12	0.00
TA08025-B605	В	From Leg	4.00 0.00	0.0000	148.00	No Ice 1/2"	1.96 2.14	1.13 1.27	0.08 0.09
			0.00			Ice	2.32	1.41	0.11
						1" Ice	2.71	1.72	0.16
	_					2" Ice			
TA08025-B605	С	From Leg	4.00	0.0000	148.00	No Ice	1.96	1.13	80.0
			0.00 0.00			1/2" Ice	2.14 2.32	1.27 1.41	0.09 0.11
			0.00			1" Ice	2.71	1.72	0.16
						2" Ice			
RDIDC-9181-PF-48	Α	From Leg	4.00	0.0000	148.00	No Ice	2.31	1.29	0.02
			0.00			1/2"	2.50	1.45	0.04
			0.00			Ice 1"Ice	2.70 3.12	1.61 1.96	0.06 0.12
						2" Ice	5.12	1.80	0.12
(2) 8' x 2" Mount Pipe	Α	From Leg	4.00	0.0000	148.00	No Ice	1.90	1.90	0.03
· ·		J	0.00			1/2"	2.73	2.73	0.04
			0.00			Ice	3.40	3.40	0.06
						1" Ice	4.40	4.40	0.12

or Leg	Туре	Horz Lateral	Azimuth Adjustmen t	Placement		C_AA_A Front	C _A A _A Side	Weight
		Vert ft ft ft	o	ft		ft²	ft²	К
					2" Ice			
В	From Leg	4.00 0.00	0.0000	148.00	No Ice 1/2"	1.90 2.73	1.90 2.73	0.03 0.04
		0.00			Ice 1"Ice	3.40 4.40	3.40 4.40	0.06 0.12
С	From Leg	4.00 0.00 0.00	0.0000	148.00	No Ice 1/2" Ice 1" Ice	1.90 2.73 3.40 4.40	1.90 2.73 3.40 4.40	0.03 0.04 0.06 0.12
С	None		0.0000	148.00	No Ice 1/2" Ice 1" Ice	34.24 62.95 91.66 149.08	34.24 62.95 91.66 149.08	1.75 2.10 2.45 3.15
	В	B From Leg C From Leg	B From Leg 4.00 0.00 0.00 C From Leg 4.00 0.00 0.00	Vert ft ft ft ft ft ft ft	Vert ft ft ft ft ft g 4.00 0.0000 148.00 0.00 0.00 0.000 148.00 C From Leg 4.00 0.0000 148.00 0.00 0.00 0.00 0.00	Vert ft ft ft ft ft ft ft	Vert ft ft ft ft ft ft ft	Vert ft ft ft ft ft ft ft

Load Combinations

No. 1 2	Dead Only
	Dead Chiv
	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg -No Ice
4	1.2 Dead+1.0 Wind 30 deg-No Ice
5	0.9 Dead+1.0 Wind 30 deg-No Ice
6	1.2 Dead+1.0 Wind 60 deg-No Ice
7	0.9 Dead+1.0 Wind 60 deg-No Ice
8	1.2 Dead+1.0 Wind 90 deg-No Ice
9	0,9 Dead+1,0 Wind 90 deg-No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0,9 Dead+1,0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0Temp
35 36	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp

Comb.	Description
No.	
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg-Service
45	Dead+Wind 180 deg-Service
46	Dead+Wind 210 deg-Service
47	Dead+Wind 240 deg-Service
48	Dead+Wind 270 deg-Service
49	Dead+Wind 300 deg-Service
50	Dead+Wind 330 deg-Service

Maximum Member Forces

Sectio n	Elevation ft	,		Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	K	kip-ft	kip-ft
L1	178 - 164.25	Pole	Max Tension	26	0.00	0.00	0.00
			Max. Compression	26	-17.38	0.12	-0.36
			Max. Mx	20	-6.51	68.85	-0.67
			Max. My	14	-6.65	0.63	-64.93
			Max. Vy	8	10.66	-68.81	0.55
			Max. Vx	14	9.92	0.63	-64.93
			Max. Torque	12			0.45
L2	164.25 - 129.667	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-40.69	-0.79	-1.87
			Max. Mx	8	-17.94	-655.98	3.03
			Max. Mv	14	-18.14	3.31	-615.89
			Max. Vy	8	22 03	655.98	3.03
			Max. Vx	14	20.80	3.31	-615.89
			Max. Torque	22	20.00	0.0	-0.42
L3	129.667 - 96	Pole	Max Tension	1	0.00	0.00	0.00
	1201001 00	1 010	Max. Compression	26	-52.65	-1.53	-4.71
			Max. Mx	8	-26.02	-1436.35	5.31
			Max. My	14	26.18	6.02	-1354.25
			Max. Vy	8	25.46	-1436.35	5.31
			Max. Vx	14	24.15	6.02	1354.25
			Max. Torque	22	21110	0.02	-0.42
L4	96 - 63.1667	Pole	Max Tension	1	0.00	0.00	0.00
	00 0011001	1 010	Max. Compression	26	-66.30	2.36	7.84
			Max. Mx	8	35.62	-2305.30	7.41
			Max. My	14	35.73	8.61	-2181.47
			Max. Vy	8	28.76	-2305.30	7.41
			Max. Vx	14	27.45	8.61	-2181.47
			Max. Torque	10	27.40	0.01	0.42
L5	63.1667 -	Pole	Max Tension	1	0.00	0.00	0.00
LJ	31 1667	i ole					
			Max. Compression	26	-81.39	-3.20	-11.09
			Max. Mx	8	-46.55	-3252.42	9.32
			Max. My	14	-46.61	11.07	-3088.43
			Max. Vy	8	31.71	-3252.42	9.32
			Max. Vx	14	30.42	11.07	-3088.43
_		_	Max. Torque	10		_	0.42
L6	31.1667 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-100.91	-4.22	-15.06
			Max. Mx	8	-61.25	-4497.79	11.42
			Max. My	14	-61.25	13.88	-4287.18
			Max. Vy	8	34.77	-4497.79	11.42
			Max. Vx	14	33.53	13.88	- 4287.18
			Max, Torque	10			0.42

Maximum F	Reactions
------------------	-----------

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Pole	Max. Vert	30	100.91	-8.64	0.02
	Max. H _∗	21	45.95	34.74	-0.08
	$Max. H_z$	3	45.95	-0.08	33.50
	Max. M _x	2	4280.19	-0.08	33.50
	$Max. M_z$	8	4497.79	-34.74	0.08
	Max. Torsion	10	0.42	-29.71	-17.09
	Min. Vert	5	45.95	-16.84	29.05
	Min. H _x	9	45.95	-34.74	0.08
	Min. H _z	15	45.95	0.08	-33.50
	$Min. M_x$	14	- 4287.18	0.08	-33.50
	$Min. M_z$	20	-4495.71	34.74	-0.08
	Min. Torsion	22	-0.42	29.71	17.09

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shear₂	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only 1.2 Dead+1.0 Wind 0 deg -	51.05 61.26	0.00 0.08	0.00 -33.50	2.78 -4280.19	-0.83 -15.96	0.00 0.22
No Ice						
0.9 Dead+1.0 Wind 0 deg - No Ice	45.95	0.08	-33.50	-4223.13	-15.46	0.22
1.2 Dead+1.0 Wind 30 deg - No Ice	61.26	16.84	-29.05	-3713.70	-2159.13	0.01
0.9 Dead+1.0 Wind 30 deg-	45.95	16.84	-29.05	-3664.30	-2129.62	0.01
No Ice 1.2 Dead+1.0 Wind 60 deg-	61.26	29.16	-16.87	-2159.66	-3738.63	-0.20
No Ice 0.9 Dead+1.0 Wind 60 deg-	45.95	29.16	-16.87	-2131,26	-3687.72	-0.20
No Ice						
1.2 Dead+1.0 Wind 90 deg- No Ice	61.26	34.74	-0.08	-11.42	-4497.79	-0.10
0.9 Dead+1.0 Wind 90 deg - No Ice	45.95	34.74	-0.08	-12.09	-4436.38	-0.10
1.2 Dead+1.0 Wind 120 deg	61.26	29.71	17.09	2191.34	-3811.19	-0.42
- No Ice 0.9 Dead+1.0 Wind 120 deg	45.95	29.71	17.09	2160.88	-3759.41	-0.42
- No Ice 1.2 Dead+1.0 Wind 150 deg	61,26	16.74	29.05	3717.36	-2139.97	-0.37
- No Ice 0.9 Dead+1.0 Wind 150 deg	45.95	16.74	29.05	3666.22	-2110.77	-0.37
- No Ice						
1.2 Dead+1.0 Wind 180 deg - No Ice	61.26	-0.08	33.50	4287.18	13.88	-0.22
0.9 Dead+1.0 Wind 180 deg - No Ice	45.95	-0.08	33.50	4228.30	13.92	-0.22
1.2 Dead+1.0 Wind 210 deg	61.26	-16.84	29.05	3720.69	2157.04	-0.01
- No Ice 0.9 Dead+1.0 Wind 210 deg	45.95	-16.84	29.05	3669.47	2128.07	-0.01
- No Ice 1.2 Dead+1.0 Wind 240 deg	61.26	-29.16	16.87	2166.67	3736.54	0.20
- No Ice 0.9 Dead+1.0 Wind 240 deg	45.95	-29.16	16.87	2136.45	3686.18	0.20
- No Ice 1.2 Dead+1.0 Wind 270 deg	61.26	-34.74	0.08	18.42	4495.71	0.10
- No Ice 0.9 Dead+1.0 Wind 270 deg	45.95	-34.74	0.08	17.28	4434.84	0.10
- No Ice						
1.2 Dead+1.0 Wind 300 deg - No Ice	61.26	-29.71	-17.09	-2184.33	3809.13	0.42
0.9 Dead+1.0 Wind 300 deg	45.95	-29.71	-17.09	-2155.70	3757.89	0.42

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
- No Ice						
1.2 Dead+1.0 Wind 330 deg - No Ice	61.26	-16.74	-29.05	-3710.37	2137.90	0.37
0.9 Dead+1.0 Wind 330 deg - No Ice	45.95	-16.74	-29.05	-3661.04	2109.24	0.37
1.2 Dead+1.0 Ice+1.0 Temp	100.91	0.00	0.00	15.06	-4.22	-0.00
1.2 Dead+1.0 Wind 0	100.91	0.02	-8.55	-1129.66	-9.07	0.11
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 30	100.91	4.31	-7.42	-978.67	-582.77	0.04
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	100.91	7.43	-4.30	-561.35	-1001.46	-0.04
1.2 Dead+1.0 Wind 90	100.91	8.64	-0.02	10.47	-1166.12	-0.08
dea+1.0 ce+1.0 Temp						
1.2 Dead+1.0 Wind 120	100.91	7.41	4.26	583.57	-996.66	-0.15
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150	100.91	4.26	7.39	1004.39	-574.46	-0.15
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 180	100.91	-0.02	8.55	1160.18	0.52	-0.11
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 210	100.91	-4.31	7.42	1009.19	574.22	-0.04
deg+1.0 Ice+1.0 Temp	400.04	7.40	4.00	504.07	000.04	0.04
1.2 Dead+1.0 Wind 240	100.91	-7.43	4.30	591.87	992.91	0.04
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 270	100.91	-8.64	0.02	20.06	1157.57	0.08
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300	100.91	-7.41	-4 .26	-553.05	988.12	0.15
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330	100.91	-4.26	-7.39	-973.88	565.92	0.15
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg -Service	51.05	0.02	-6.72	-850.41	-3.83	0.05
Dead+Wind 30 deg -Service	51.05	3.38	-5.83	-737.58	-430.75	0.01
Dead+Wind 60 deg -Service	51.05	5.85	-3.39	-428.01	-745.40	-0.04
Dead+Wind 90 deg -Service	51.05	6.97	-0.02	-0.07	-896.71	-0.02
Dead+Wind 120 deg- Service	51.05	5.96	3.43	438.74	-759.89	-0.09
Dead+Wind 150 deg- Service	51.05	3,36	5.83	742.70	-426.94	-0.08
Dead+Wind 180 deg-	51.05	-0.02	6.72	856.21	2.11	-0.05
Service Dead+Wind 210 deg-	51.05	-3.38	5.83	743.37	429.03	-0.01
Service Dead+Wind 240 deg-	51.05	-5.85	3.39	433.81	743.68	0.04
Service Dead+Wind 270 deg-	51.05	-6.97	0.02	5.86	894.99	0.02
Service Dead+Wind 300 deg-	51.05	-5.96	-3.43	-432.95	758.17	0.09
Service Dead+Wind 330 deg- Service	51.05	-3.36	-5.83	-736.91	425.22	0.08

Solution Summary

	Sur	n of Applied Force	es	·	Sum of Reactio	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-51.05	0.00	0.00	51.05	0.00	0.000%
2	0.08	-61.26	-33.50	-0.08	61.26	33.50	0.000%
3	0.08	-4 5.95	-33.50	-0.08	45.95	33.50	0.000%
4	16.84	-61.26	-29.05	-16.84	61.26	29.05	0.000%
5	16.84	-45.95	-29.05	-16.84	45.95	29.05	0.000%
6	29.16	-61.26	-16.87	-29.16	61.26	16.87	0.000%
7	29.16	-4 5.95	-16.87	-29.16	45.95	16.87	0.000%
8	34.74	-61.26	-0.08	-34.74	61.26	0.08	0.000%
9	34.74	-45.95	-0.08	-34.74	45.95	0.08	0.000%
10	29.71	-61.26	17.09	-29.71	61.26	-17.09	0.000%

		n of Applied Force			Sum of Reaction	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
11	29.71	- 45.95	17.09	-29.71	45.95	-17.09	0.000%
12	16.74	-61.26	29.05	-16.74	61.26	-29.05	0.000%
13	16.74	-4 5.95	29.05	-16.74	45.95	-29.05	0.000%
14	-0.08	-61.26	33.50	0.08	61.26	-33.50	0.000%
15	-0.08	- 45.95	33.50	0.08	45.95	-33.50	0.000%
16	-16.84	-61.26	29.05	16.84	61.26	-29.05	0.000%
17	-16.84	-45.95	29.05	16.84	45.95	-29.05	0.000%
18	-29.16	-61.26	16.87	29.16	61.26	-16.87	0.000%
19	-29.16	-45.95	16.87	29.16	45.95	-16.87	0.000%
20	-34.74	-61.26	0.08	34.74	61.26	-0.08	0.000%
21	-34.74	-45.95	0.08	34.74	45.95	-0.08	0.000%
22	-29.71	-61.26	-17.09	29.71	61.26	17.09	0.000%
23	-29.71	- 45.95	-17.09	29.71	45.95	17.09	0.000%
24	-16.74	-61.26	-29.05	16.74	61.26	29.05	0.000%
25	-16.74	-45.95	-29.05	16.74	45.95	29.05	0.000%
26	0.00	-100.91	0.00	-0.00	100.91	-0.00	0.000%
27	0.02	-100.91	-8.55	-0.02	100.91	8.55	0.000%
28	4.31	-100.91	-7.42	-4.31	100.91	7.42	0.000%
29	7.43	-100.91	-4.30	-7.43	100.91	4.30	0.000%
30	8.64	-100.91	-0.02	-8.64	100.91	0.02	0.000%
31	7.41	-100.91	4.26	-7.41	100.91	-4.26	0.000%
32	4.26	-100.91	7.39	-4.26	100.91	-7.39	0.000%
33	-0.02	-100.91	8.55	0.02	100.91	-8.55	0.000%
34	4.31	-100.91	7.42	4.31	100.91	-7.42	0.000%
35	-7.43	-100.91	4.30	7.43	100.91	-4.30	0.000%
36	-8.64	-100.91	0.02	8.64	100.91	-0.02	0.000%
37	-7.41	-100.91	-4.26	7.41	100.91	4.26	0.000%
38	-4.26	-100.91	-7.39	4.26	100.91	7.39	0.000%
39	0.02	-51.05	-6.72	-0.02	51.05	6.72	0.000%
40	3.38	-51.05	-5.83	-3.38	51.05	5.83	0.000%
41	5.85	-51.05	-3.39	-5.85	51.05	3.39	0.000%
42	6.97	-51.05	-0.02	-6.97	51.05	0.02	0.000%
43	5.96	-51.05	3.43	-5.96	51.05	-3.43	0.000%
44	3.36	-51.05	5.83	-3.36	51.05	-5.83	0.000%
45	-0.02	-51.05	6.72	0.02	51.05	-6.72	0.000%
46	-3.38	-51.05	5.83	3.38	51.05	-5.83	0.000%
47	-5.85	-51.05	3.39	5.85	51.05	-3.39	0.000%
48	-6.97	-51.05	0.02	6.97	51.05	-0.02	0.000%
49	-5.96	-51.05	-3.43	5.96	51.05	3.43	0.000%
50	-3.36	-51.05	-5.83	3.36	51.05	5.83	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.0000001	0.00000001
2	Yes	5	0.0000001	0.00007193
3	Yes	4	0.0000001	0.00071440
4	Yes	6	0.0000001	0.00021749
5	Yes	6	0.0000001	0.00007269
6	Yes	6	0.0000001	0.00022010
7	Yes	6	0.0000001	0.00007347
8	Yes	5	0.0000001	0.00005965
9	Yes	4	0.0000001	0.00060331
10	Yes	6	0.0000001	0.00022455
11	Yes	6	0.0000001	0.00007448
12	Yes	6	0.0000001	0.00021650
13	Yes	6	0.0000001	0.00007248
14	Yes	5	0.0000001	0.00004889
15	Yes	4	0.0000001	0.00047387
16	Yes	6	0.0000001	0.00021767
17	Yes	6	0.0000001	0.00007272
18	Yes	6	0.0000001	0.00021952
19	Yes	6	0.0000001	0.00007318
20	Yes	5	0.00000001	0.00006063

21	Yes	4	0.0000001	0.00058697
22	Yes	6	0.0000001	0.00022614
23	Yes	6	0.0000001	0.00007518
24	Yes	6	0.0000001	0.00021363
25	Yes	6	0.0000001	0.00007152
26	Yes	4	0.0000001	0.00012449
27	Yes	6	0.0000001	0.00016765
28	Yes	6	0.0000001	0.00020997
29	Yes	6	0.0000001	0.00021018
30	Yes	6	0.0000001	0.00017347
31	Yes	6	0.0000001	0.00021254
32	Yes	6	0.0000001	0.00021279
33	Yes	6	0.0000001	0.00017198
34	Yes	6	0.0000001	0.00021358
35	Yes	6	0.0000001	0.00021406
36	Yes	6	0.0000001	0.00017218
37	Yes	6	0.0000001	0.00020576
38	Yes	6	0.0000001	0.00020488
39	Yes	4	0.0000001	0.00013937
40	Yes	4	0.0000001	0.00059391
41	Yes	4	0.0000001	0.00060391
42	Yes	4	0.0000001	0.00014637
43	Yes	4	0.0000001	0.00061784
44	Yes	4	0.0000001	0.00060084
45	Yes	4	0.0000001	0.00013924
46	Yes	4	0.0000001	0.00059573
47	Yes	4	0.0000001	0.00060190
48	Yes	4	0.0000001	0.00014609
49	Yes	4	0.0000001	0.00062886
50	Yes	4	0.0000001	0.00057184

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	٥
L1	178 - 164.25	24.256	42	1.2268	0.0013
L2	167.167 - 129.667	21.499	42	1.2001	0.0006
L3	133.5 - 96	13.645	42	0.9909	0.0003
L4	100.667 - 63.1667	7.652	42	0.7361	0.0002
L5	68.6667 - 31.1667	3.515	42	0.4840	0.0001
L6	37.4167 - 0	1.051	42	0.2538	0.0000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	۰	۰	ft
178.00	Lightning Rod 5/8" x 5' on 6' pole	42	24.256	1.2268	0.0013	32761
168.00	(3) HBXX-6517DS-A2M w/ Mount Pipe	42	21.709	1.2029	0.0006	16903
160.00 148.00	RA21.7770.00 w/ Mount Pipe MX08FRO665-20 w/ Mount Pipe	42 42	19.718 16.853	1.1700 1.0979	0.0003 0.0002	12221 9250

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	۰	o
L1	178 - 164.25	121.746	8	6.1628	0.0062
L2	167.167 - 129.667	107.918	8	6.0310	0.0029
L3	133.5 - 96	68.508	8	4.9797	0.0016
L4	100.667 - 63.1667	38.423	8	3.6988	0.0008
L5	68.6667 - 31.1667	17.644	8	2.4312	0.0004
L6	37.4167 - 0	5.273	8	1.2739	0.0002

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	۰	۰	ft
178.00	Lightning Rod 5/8" x 5' on 6' pole	8	121.746	6.1628	0.0062	6687
168.00	(3) HBXX-6517DS-A2M w/ Mount Pipe	8	108.971	6.0445	0.0031	3448
160.00	RA21.7770.00 w/ Mount Pipe	8	98.982	5.8801	0.0017	2486
148.00	MX08FRO665-20 w/ Mount Pipe	8	84.608	5.5183	0.0012	1875

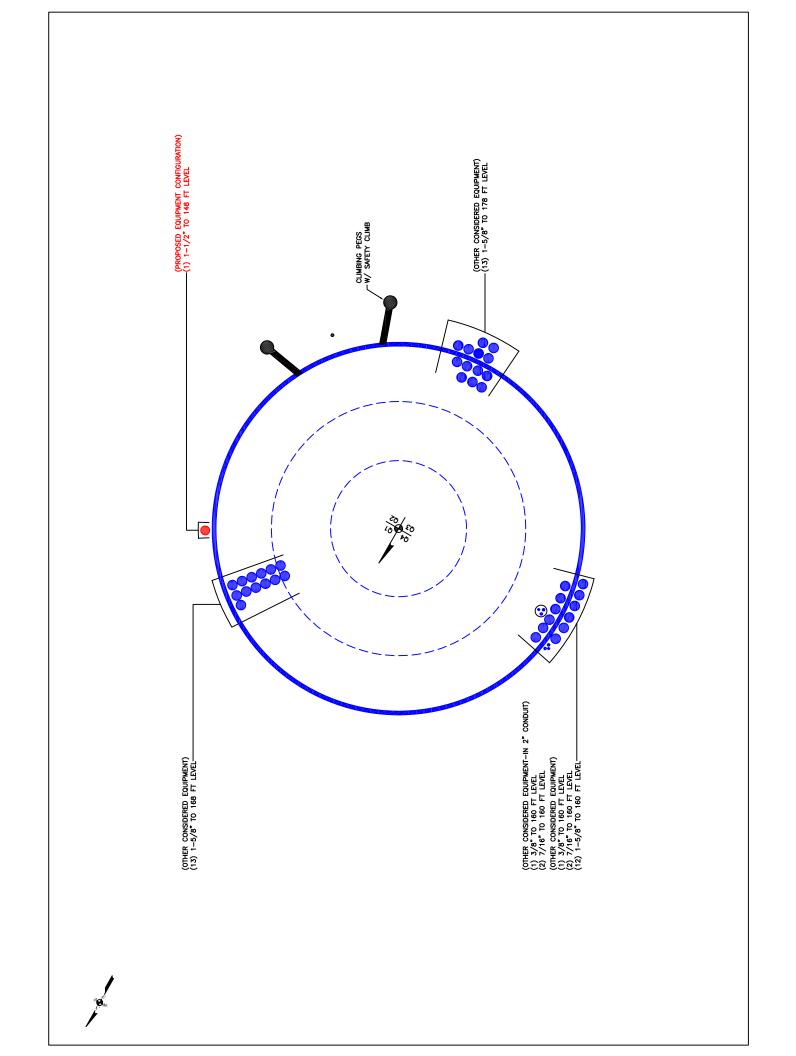
Compression Checks

			Pole	Desig	n Da	ta			
Section No.	Elevation	Size	L	Lu	KI/r	Α	Pu	φP _n	Ratio P _u
	ft		ft	ft		in ²	K	K	${\phi P_n}$
L1	178 - 164.25 (1)	TP26x12.75x0.25	13.75	0.00	0.0	18.202 4	-6.51	1064.84	0.006
L2	164.25 - 129.667 (2)	TP34.0625x22.6894x0.31 25	37.50	0.00	0.0	32.322 6	-17.94	1890.87	0.009
L3	129.667 - 96 (3)	TP41.75x32.2749x0.375	37.50	0.00	0.0	47.843 1	-26.02	2798.82	0.009
L4	96 - 63.1667 (4)	TP49.0625x39.8209x0.37 5	37.50	0.00	0.0	56.337 0	-35.62	3295.71	0.011
L5	63.1667 - 31.1667 (5)	TP56.125x46.9571x0.375	37.50	0.00	0.0	64.537 8	-46.55	3775.46	0.012
L6	31.1667 -0 (6)	TP62.9375x53.847x0.375	37.42	0.00	0.0	74.465 0	-61.25	4356.20	0.014

Pole Bending Design Data

Section	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio	M_{uy}	ϕM_{ny}	Ratio
No.					M_{ux}			M_{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	178 - 164.25	TP26x12.75x0.25	68.85	636.00	0.108	0.00	636.00	0.000
	(1)							
L2	164.25 -	TP34.0625x22.6894x0.31	655.99	1569.31	0.418	0.00	1569.31	0.000
	129,667 (2)	25						
L3	129.667 - 96	TP41.75x32.2749x0.375	1436.36	2844.52	0.505	0.00	2844.52	0.000
	(3)							
L4	96 - 63 1667	TP49.0625x39.8209x0.37	2305.31	3755.29	0.614	0.00	3755.29	0.000
	(4)	5						

Section	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio	M_{uy}	ϕM_{nv}	Ratio
No.				·	M_{ux}			M_{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L5	63.1667 - 31.1667 (5)	TP56.125x46.9571x0.375	3252.43	4686.54	0.694	0.00	4686.54	0.000
L6	31.1667 -0 (6)	TP62.9375x53.847x0.375	4497.81	5847.24	0.769	0.00	5847.24	0.000


		Pol	e Shea	ar Desig	n Data			
Section No.	Elevation	Size	Actual V _u	φVn	Ratio	Actual	φ 7 _n	Ratio
NO.	ft		K	K	$\frac{V_u}{\Phi V_n}$	T _u kip-ft	kip-ft	$\frac{T_u}{\phi T_n}$
L1	178 - 164.25 (1)	TP26x12.75x0.25	10.66	319.45	0.033	0.18	641.75	0.000
L2	164.25 - 129.667 (2)	TP34.0625x22.6894x0.31 25	22.03	567.26	0.039	0.10	1618.88	0.000
L3	129.667 - 96 (3)	TP41.75x32.2749x0.375	25.46	839.65	0.030	0.10	2955.68	0.000
L4	96 - 63.1667 (4)	TP49.0625x39.8209x0.37 5	28.76	988.71	0.029	0.10	4098.32	0.000
L5	63.1667 - 31.1667 (5)	TP56.125x46.9571x0.375	31.71	1132.64	0.028	0.10	5378.32	0.000
L6	31.1667 -0 (6)	TP62.9375x53.847x0.375	34.77	1306.86	0.027	0.10	7160.17	0.000

			Pol	<u>e Inter</u>	<u>action</u>	Desig	n Data		
Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio Muy	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	$\overline{\phi P_n}$	φ <i>M</i> _{nx}	ϕM_{ny}	ϕV_n	$\overline{\phi T_n}$	Ratio	Ratio	
L1	178 - 164.25 (1)	0.006	0.108	0.000	0.033	0.000	0.116	1.050	4.8.2
L2	164.25 - 129.667 (2)	0.009	0.418	0.000	0.039	0.000	0.429	1.050	4.8.2
L3	129.667 - 96 (3)	0.009	0.505	0.000	0.030	0.000	0.515	1.050	4.8.2
L4	96 - 63.1667 (4)	0.011	0.614	0.000	0.029	0.000	0.626	1.050	4.8.2
L5	63.1667 - 31.1667 (5)	0.012	0.694	0.000	0.028	0.000	0.707	1.050	4.8.2
L6	31.1667 - 0 (6)	0.014	0.769	0.000	0.027	0.000	0.784	1.050	4.8.2

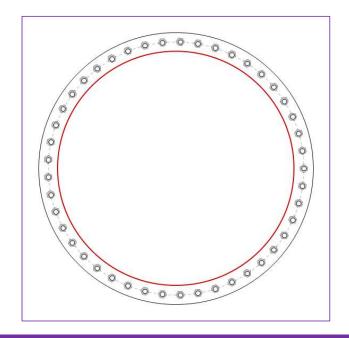
Section Capacity Table								
Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L1	178 - 164.25	Pole	TP26x12.75x0.25	1	-6.51	1118.08	11.0	Pass
L2	164.25 - 129.667	Pole	TP34.0625x22.6894x0.3125	2	-17.94	1985.41	40.9	Pass
L3	129.667 - 96	Pole	TP41.75x32.2749x0.375	3	-26.02	2938.76	49.1	Pass
L4	96 - 63.1667	Pole	TP49.0625x39.8209x0.375	4	-35.62	3460.50	59.6	Pass
L5	63.1667 - 31.1667	Pole	TP56.125x46.9571x0.375	5	-46.55	3964.23	67.3	Pass

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L6	31.1667 - 0	Pole	TP62.9375x53.847x0.375	6	-61.25	4574.01	74.7 Summary	Pass
						Pole (L6) RATING =	74.7 74.7	Pass Pass

APPENDIX B BASE LEVEL DRAWING

APPENDIX C ADDITIONAL CALCULATIONS

Monopole Base Plate Connection



Site Info	
BU#	823666
Site Name	Deep River/Rt 9
Order #	553286 Rev. 4

Ana	lysis Considerations	
	TIA-222 Revision	Н
	Grout Considered:	No
	I _{ar} (in)	1.25

Applied Loads				
Moment (kip-ft)	4497.81			
Axial Force (kips)	61.25			
Shear Force (kips)	34.77			

^{*}TIA-222-H Section 15.5 Applied

Connection	Properti	es
------------	----------	----

Anchor Rod Data	าchor Rod Da	ta	
-----------------	--------------	----	--

(45) 1-1/4" ø bolts (A687 N; Fy=105 ksi, Fu=125 ksi) on 68" BC

Base Plate Data

73" OD x 1.5" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Stiffener Data

N/A

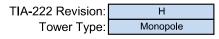
Pole Data

62.9375" x 0.375" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results

Anchor Rod Summary		(units of kips, kip-in)
Pu_t = 69.18	φPn_t = 90.84	Stress Rating
Vu = 0.77	φVn = 57.52	72.5%
Mu = n/a	φMn = n/a	Pass

Base Plate Summary


Max Stress (ksi): Allowable Stress (ksi): -

Stress Rating: Pirod OK

CCIplate - Version 4.1.0 Analysis Date: 5/1/2021

Pier and Pad Foundation

BU # : 823666 Site Name: Deep River/Rt 9 App. Number: 553286 Rev. 4

Top & Bot. Pad Rein. Different?:	
Block Foundation?:	
Rectangular Pad?:	

Superstructure Analysis Reactions				
Compression, P _{comp} :	61.26	kips		
Base Shear, Vu_comp:	34.74	kips		
Moment, M _u :	4497.8	ft-kips		
Tower Height, H:	178	ft		
BP Dist. Above Fdn, bp _{dist} :	2.5	in		
Bolt Circle / Bearing Plate Width, BC:	68	in		

Foundation Analysis Checks				
	Capacity	Demand	Rating*	Check
Lateral (Sliding) (kips)	188.36	34.74	17.6%	Pass
Bearing Pressure (ksf)	18.00	2.98	16.5%	Pass
Overturning (kip*ft)	6931.84	4644.00	67.0%	Pass
Pad Flexure (kip*ft)	4875.64	2204.11	43.1%	Pass
Pad Shear - 1-way (kips)	1436.12	256.11	17.0%	Pass
Pad Shear - 2-way (Comp) (ksi)	0.190	0.003	1.7%	Pass
Flexural 2-way (Comp) (kip*ft)	3989.84	0.00	0.0%	Pass

*Rating per TIA-222-H Section

Soil Rating*:	67.0%
Structural Rating*:	43.1%

Pad Properties				
Depth, D :	3.5	ft		
Pad Width, W ₁ :	29	ft		
Pad Thickness, T:	4	ft		
Pad Rebar Size (Bottom dir. 2), Sp ₂ :	8			
Pad Rebar Quantity (Bottom dir. 2), mp ₂ :	32			
Pad Clear Cover, cc _{pad} :	3	in		

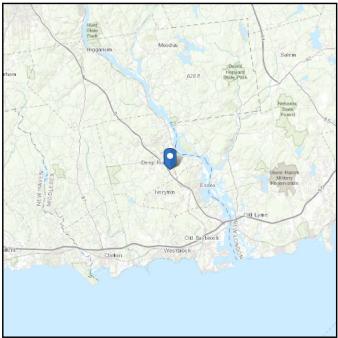
Material Properties				
Rebar Grade, Fy :	60	ksi		
Concrete Compressive Strength, F'c:	4	ksi		
Dry Concrete Density, $\delta {f c}$:	150	pcf		

Soil Properties				
Total Soil Unit Weight, $oldsymbol{\gamma}$:	165	pcf		
Ultimate Gross Bearing, Qult:	24.000	ksf		
Cohesion, Cu:	0.000	ksf		
Friction Angle, $oldsymbol{arphi}$:	40	degrees		
SPT Blow Count, N _{blows} :	50			
Base Friction, μ :				
Neglected Depth, N:	3.50	ft		
Foundation Bearing on Rock?	Yes			
Groundwater Depth, gw :	N/A	ft		

<--Toggle between Gross and Net

Address:

No Address at This Location


ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 94.97 ft (NAVD 88)

Risk Category: || Latitude: 41.372825

Soil Class: D - Stiff Soil Longitude: -72.434436

Wind

Results:

Wind Speed: 130 Vmph
10-year MRI 79 Vmph
25-year MRI 88 Vmph
50-year MRI 97 Vmph
100-year MRI 106 Vmph

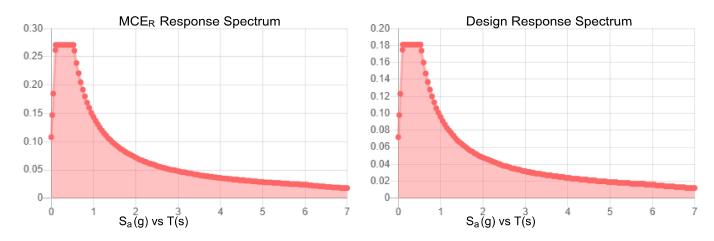
Data Source: ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1—CC-4, incorporating errata of

March 12, 2014

Date Accessed: Wed Nov 18 2020

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.


Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _S :	0.169	$S_{ extsf{DS}}$:	0.181	
S_1 :	0.06	S _{D1} :	0.096	
F _a :	1.6	T_L :	6	
F_{ν} :	2.4	PGA :	0.085	
S_{MS} :	0.271	PGA _M :	0.137	
S _{M1} :	0.144	F _{PGA} :	1.6	
		l _e :	1	

Seismic Design Category B

Data Accessed: Wed Nov 18 2020

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating

Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with

ASCE/SEI 7-10 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Wed Nov 18 2020

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Date: July 23, 2021

Darcy Tarr Crown Castle 3530 Tornigdon Way, Suite 300 Charlotte. NC 28277 (704) 405-6589

Trylon 1825 W. Walnut Hill Lane. Suite 302 Irving, TX 75038 214-930-1730

Subject: **Mount Replacement Analysis Report**

Carrier Designation: **DISH Network Equipment Change Out**

> Carrier Site Number: BOBDL00055A Carrier Site Name: CT-CCI-T-823666

Crown Castle BU Number: Crown Castle Designation: 823666

> Crown Castle Site Name: Deep River/Rt 9

Crown Castle JDE Job Number: 645125

Crown Castle Order Number: 553286 Rev. 4

Engineering Firm Designation: **Trylon Report Designation:** 188207

Site Data: 15 Pent Rd., Deep River, Middlesex County, CT, 06498

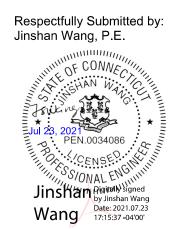
Latitude 41°17'25.70" Longitude -72°28'7.90"

Structure Information: Tower Height & Type: 178.0 ft Monopole

> **Mount Elevation:** 148.0 ft **Mount Type:** 8.0 ft Platform

Dear Darcy Tarr,

Trylon is pleased to submit this "Mount Replacement Analysis Report" to determine the structural integrity of DISH Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.


The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform Sufficient *Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis utilizes an ultimate 3-second gust wind speed of 130 mph as required by the 2015 International Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Jordan Everson, E.I.T.

Respectfully Submitted by:

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

9) APPENDIX E

Supplemental Drawings

1) INTRODUCTION

This is a proposed 3 sector 8.0 ft Platform, designed by Commscope.

2) ANALYSIS CRITERIA

Building Code: 2015 IBC TIA-222 Revision: TIA-222-H

Risk Category:

Ultimate Wind Speed: 130 mph

Exposure Category: В Topographic Factor at Base: 1.0 Topographic Factor at Mount: 1.0 Ice Thickness: 1.5 in Wind Speed with Ice: 50 mph Seismic S_s: 0.170 Seismic S₁: 0.060 Live Loading Wind Speed: 30 mph Man Live Load at Mid/End-Points: 250 lb Man Live Load at Mount Pipes: 500 lb

Table 1 - Proposed Equipment Configuration

	Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details		
		148.0			3 JM	JMA WIRELESS	MX08FRO665-20	O O # Dlotform
	148.0		3	FUJITSU	TA08025-B604	8.0 ft Platform [Commscope MC-		
١			3	FUJITSU	TA08025-B605	PK8-DSH]		
ĺ			1	RAYCAP	RDIDC-9181-PF-48	FK0 - D3H]		

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Crown Application	DISH Network Application	553286 Rev. 4	CCI Sites
Construction Drawings	Infinigy	BOBDL00055A	TSA
Mount Manufacturer Drawings	Commscope	MC-PK8-DSH	TSA

3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed, using Microsoft Excel, by Trylon was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate

ASTM A36 (GR 36)

HSS (Rectangular)

ASTM A500 (GR B-46)

ASTM A53 (GR 35)

Connection Bolts

ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Trylon should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

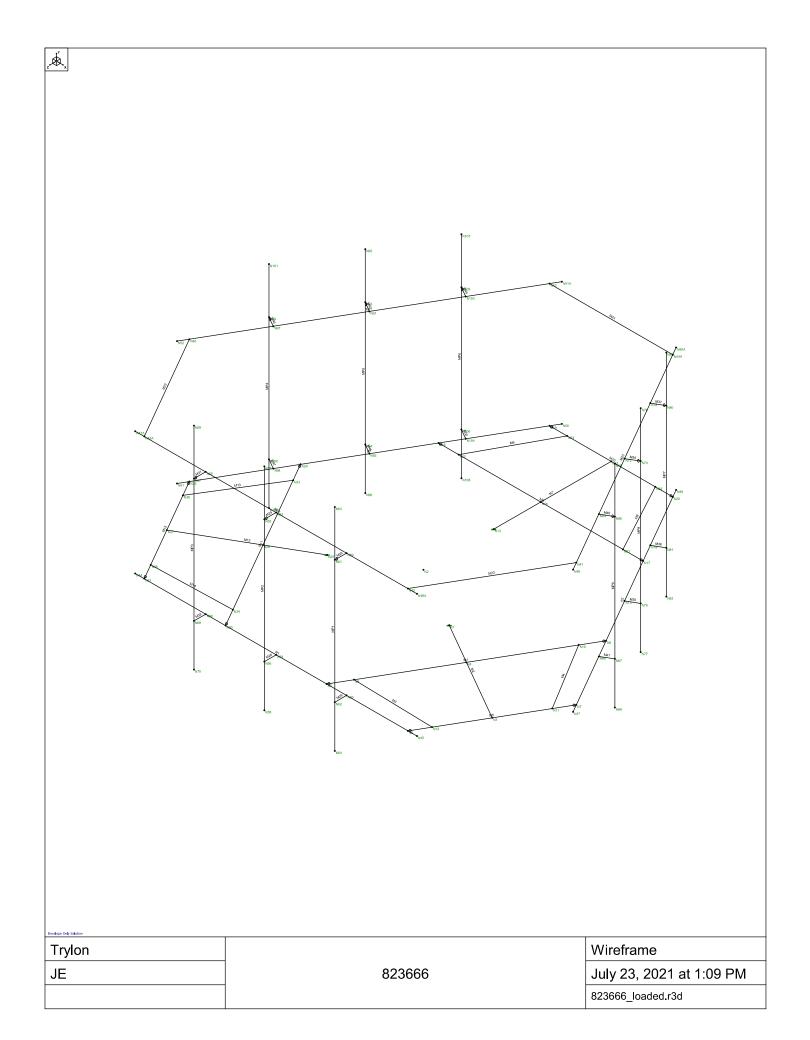
Table 3 - Mount Component Stresses vs. Capacity (Platform, All Sectors)

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
	Mount Pipe(s)	MP1	148.0	34.0	Pass
	Horizontal(s)	H1		10.4	Pass
1, 2	Standoff(s)	M96		50.8	Pass
1, 2	Bracing(s)	M93		38.7	Pass
	Plate(s)	M17		25.2	Pass
	Mount Connection(s)			20.9	Pass

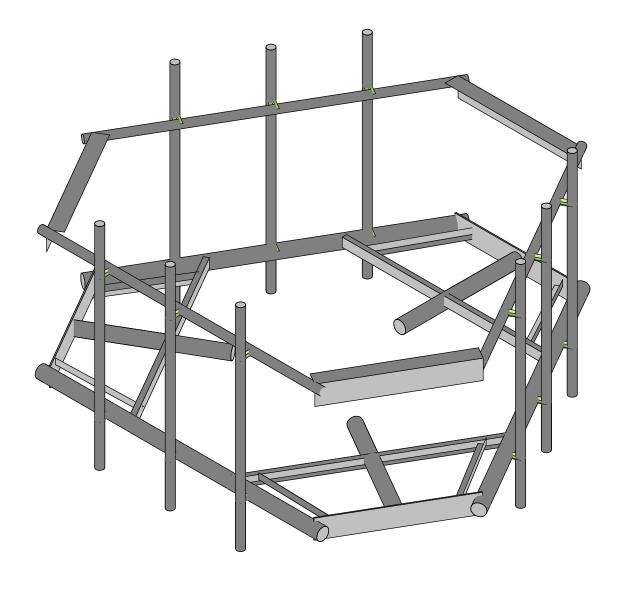
Structure Rating (max from all components) =	50.8%
Structure Rating (max from all components) –	50.6%

Notes:

- 1) See additional documentation in "Appendix C Software Analysis Output" for calculations supporting the % capacity consumed
- 2) Rating per TIA-222-H, Section 15.5


4.1) Recommendations

The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed.


Commscope MC-PK8-DSH.

No structural modifications are required at this time, provided that the above-listed changes are implemented.

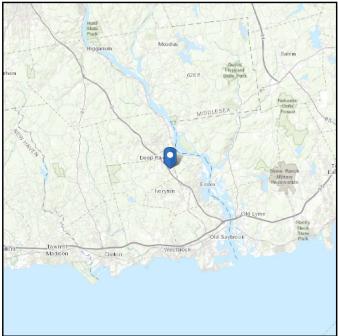
APPENDIX A WIRE FRAME AND RENDERED MODELS

Trylon		Render
JE	823666	July 23, 2021 at 1:09 PM
		823666_loaded.r3d

APPENDIX B SOFTWARE INPUT CALCULATIONS

Address:

No Address at This Location


ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 94.97 ft (NAVD 88)

Risk Category: || Latitude: 41.372825

Soil Class: D - Stiff Soil Longitude: -72.434436

Wed Jul 21 2021

Ice

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Wed Jul 21 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

TIA LOAD CALCULATOR 2.0

PROJECT DATA			
Job Code:	188207		
Carrier Site ID:	823666		
Carrier Site Name:	Deep River/Rt 9		

CODES AND STANDARDS			
Building Code:	2015 IBC		
Local Building Code:	2018 CBC		
Design Standard:	TIA-222-H		

STRUCTURE DETAILS			
Mount Type:	Platform		
Mount Elevation:	148.0	ft.	
Number of Sectors:	3		
Structure Type:	Monopole		
Structure Height:	178 0	ft.	

ANALYSIS CRITERIA			
Structure Risk Category:	=		
Exposure Category:	В		
Site Class:	D - Stiff Soil		
Ground Elevation:	94	ft.	

TOPOGRAPHIC DATA		
Topographic Category:	1.00	
Topographic Feature:	N/A	
Crest Point Elevation:	0.00	ft.
Base Point Elevation:	0.00	ft.
Crest to Mid-Height (L/2):	0.00	ft.
Distance from Crest (x):	0.00	ft.
Base Topo Factor (K _{zt}):	1.00	
Mount Topo Factor (K _{zt}):	1.00	

WIND PARAMETERS			
Design Wind Speed:	130	mph	
Wind Escalation Factor (K _s):	1.00		
Velocity Coefficient (Kz):	1.11		
Directionality Factor (K _d):	0.95		
Gust Effect Factor (Gh):	1.00		
Shielding Factor (K _a):	0.90		
Velocity Pressure (q_z) :	45.28	psf	

ICE PARAME	TERS	
Design Ice Wind Speed:	50	mph
Design Ice Thickness (t _i):	1.50	in
Importance Factor (I _i):	1.00	-
Ice Velocity Pressure (q _{zi}):	45.28	psf
Mount Ice Thickness (t _{iz}):	1.74	in

WIND STRUCTURE CALCULATIONS					
Flat Member Pressure:	81.50	psf			
Round Member Pressure:	48.90	psf			
Ice Wind Pressure:	7.60	psf			

SEISMIC PARA	METERS	
Importance Factor (I _e):	1.00	
Short Period Accel .(S _s):	0.17	g
1 Second Accel (S ₁):	0.06	g
Short Period Des. (S _{DS}):	0.18	g
1 Second Des. (S _{D1}):	0.10	g
Short Period Coeff. (F _a):	1.60	
1 Second Coeff. (F _v):	2.40	
Response Coefficient (Cs):	0.09	
Amplification Factor (A _S):	1.20	

LOAD COMBINATIONS [LRFD]

#	Description
1	1.4DL
2	1.2DL + 1WL 0 AZI
3	1.2DL + 1WL 30 AZI
4	1.2DL + 1WL 45 AZI
5	1.2DL + 1WL 60 AZI
6	1.2DL + 1WL 90 AZI
7	1.2DL + 1WL 120 AZI
8	1.2DL + 1WL 135 AZI
9	1.2DL + 1WL 150 AZI
10	1.2DL + 1WL 180 AZI
11	1.2DL + 1WL 210 AZI
12	1.2DL + 1WL 225 AZI
13	1.2DL + 1WL 240 AZI
14	1.2DL + 1WL 270 AZI
15	1.2DL + 1WL 300 AZI
16	1.2DL + 1WL 315 AZI
17	1.2DL + 1WL 330 AZI
18	0.9DL + 1WL 0 AZI
19	0.9DL + 1WL 30 AZI
20	0.9DL + 1WL 45 AZI
21	0.9DL + 1WL 60 AZI
22	0.9DL + 1WL 90 AZI
23	0.9DL + 1WL 120 AZI
24	0.9DL + 1WL 135 AZI
25	0.9DL + 1WL 150 AZI
26	0.9DL + 1WL 180 AZI
27	0.9DL + 1WL 210 AZI
28	0.9DL + 1WL 225 AZI 0.9DL + 1WL 240 AZI
29	0.9DL + 1WL 240 AZI 0.9DL + 1WL 270 AZI
30	0.9DL + 1WL 270 AZI 0.9DL + 1WL 300 AZI
	0.9DL + 1WL 315 AZI
32	0.9DL + 1WL 330 AZI
33	1.2DL + 1DLi + 1WLi 0 AZI
35	1.2DL + 1DLi + 1WLi 30 AZI
36	1.2DL + 1DLi + 1WLi 45 AZI
37	1.2DL + 1DLi + 1WLi 60 AZI
38	1.2DL + 1DLi + 1WLi 90 AZI
39	1.2DL + 1DLi + 1WLi 120 AZI
40	1.2DL + 1DLi + 1WLi 135 AZI
41	1.2DL + 1DLi + 1WLi 150 AZI

#	Description
42	1.2DL + 1DLi + 1WLi 180 AZI
43	1.2DL + 1DLi + 1WLi 210 AZI
44	1.2DL + 1DLi + 1WLi 225 AZI
45	1.2DL + 1DLi + 1WLi 240 AZI
46	1.2DL + 1DLi + 1WLi 270 AZI
47	1.2DL + 1DLi + 1WLi 300 AZI
48	1.2DL + 1DLi + 1WLi 315 AZI
49	1.2DL + 1DLi + 1WLi 330 AZI
50	(1.2+0.2Sds) + 1.0E 0 AZI
51	(1.2+0.2Sds) + 1.0E 30 AZI
52	(1.2+0.2Sds) + 1.0E 45 AZI
53	(1.2+0.2Sds) + 1.0E 60 AZI
54	(1.2+0.2Sds) + 1.0E 90 AZI
55	(1.2+0.2Sds) + 1.0E 120 AZI
56	(1.2+0.2Sds) + 1.0E 135 AZI
57	(1.2+0.2Sds) + 1.0E 150 AZI
58	(1.2+0.2Sds) + 1.0E 180 AZI
59	(1.2+0.2Sds) + 1.0E 210 AZI
60	(1.2+0.2Sds) + 1.0E 225 AZI
61	(1.2+0.2Sds) + 1.0E 240 AZI
62	(1.2+0.2Sds) + 1.0E 270 AZI
63	(1.2+0.2Sds) + 1.0E 300 AZI
64	(1.2+0.2Sds) + 1.0E 315 AZI
65	(1.2+0.2Sds) + 1.0E 330 AZI
66	(0.9-0.2Sds) + 1.0E 0 AZI
67	(0.9-0.2Sds) + 1.0E 30 AZI
68	(0.9-0.2Sds) + 1.0E 45 AZI
69	(0.9-0.2Sds) + 1.0E 60 AZI
70	(0.9-0.2Sds) + 1.0E 90 AZI
71	(0.9-0.2Sds) + 1.0E 120 AZI
72	(0.9-0.2Sds) + 1.0E 135 AZI
73	(0.9-0.2Sds) + 1.0E 150 AZI
74	(0.9-0.2Sds) + 1.0E 180 AZI
75	(0.9-0.2Sds) + 1.0E 210 AZI
76	(0.9-0.2Sds) + 1.0E 225 AZI
77	(0.9-0.2Sds) + 1.0E 240 AZI
78	(0.9-0.2Sds) + 1.0E 270 AZI
79	(0.9-0.2Sds) + 1.0E 300 AZI
80	(0.9-0.2Sds) + 1.0E 315 AZI
81	(0.9-0.2Sds) + 1.0E 330 AZI
82-88	1.2D + 1.5 Lv1

#	Description
89	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP1
90	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP1
91	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP1
92	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP1
93	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP1
94	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP1
95	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP1
96	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP1
97	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP1
98	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP1
99	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP1
100	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP1
101	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP1
102	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1
103	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1
104	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP1
105	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2
106	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2
107	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2
108	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2
109	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2
110	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2
111	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2
112	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2
113	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP2
114	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2
115	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2
116	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2
117	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2
118	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2
119	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2
120	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2

#	Description
121	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3
122	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3
123	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3
124	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3
125	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3
126	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3
127	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3
128	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3
129	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3
130	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3
131	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3
132	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3
133	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3
134	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3
135	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3
136	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP3
137	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP4
138	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP4
139	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP4
140	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP4
141	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP4
142	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP4
143	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP4
144	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP4
145	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP4
146	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP4
147	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP4
148	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP4
149	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP4
150	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP4
151	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP4
152	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP4

^{*}This page shows an example of maintenance loads for (4) pipes, the number of mount pipe LCs may vary per site

EQUIPMENT LOADING

Appurtenance Name/Location	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
MX08FRO665-20	3	148	No Ice	8.01	3.21	82.50
MP1/MP4/MP7, 0/120/240			w/ Ice	9.63	4.63	289.40
TA08025-B604	3	148	No Ice	1.96	0.98	63.90
MP1/MP4/MP7, 0/120/240			w/ Ice	2.39	1.31	70.48
TA08025-B605	3	148	No Ice	1.96	1.13	75.00
MP1/MP4/MP7, 0/120/240			w/ Ice	2.39	1.48	75.08
RDIDC-9181-PF-48	1	148	No Ice	2.01	1.17	21.85
MP1, 0			w/ Ice	2.45	1.53	74.00
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

EQUIPMENT WIND CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	K _{zt}	Kz	K _d	t _d	q _z [psf]	q _{zi} [psf]
MX08FRO665-20	3	148	1.00	1.11	0.95	1.74	45.28	6.70
TA08025-B604	3	148	1.00	1.11	0.95	1.74	45.28	6.70
TA08025-B605	3	148	1.00	1.11	0.95	1.74	45.28	6.70
RDIDC-9181-PF-48	1	148	1.00	1.11	0.95	1.74	45.28	6.70

EQUIPMENT LATERAL WIND FORCE CALCULATIONS

Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
MX08FRO665-20	3	No Ice	326.40	179.70	277.50	130.81	277.50	179.70
MP1/MP4/MP7, 0/120/240		w/ Ice	58.07	35.46	50.53	27.93	50.53	35.46
TA08025-B604	3	No Ice	80.01	49.99	70.00	39.98	70.00	49.99
MP1/MP4/MP7, 0/120/240		w/ Ice	14.41	9.54	12.79	7.92	12.79	9.54
TA08025-B605	3	No Ice	80.01	54.52	71.51	46.03	71.51	54.52
MP1/MP4/MP7, 0/120/240	-	w/ Ice	14.41	10.28	13.03	8.90	13.03	10.28
RDIDC-9181-PF-48	1	No Ice	81.98	56.20	73.39	47.60	73.39	56.20
MP1, 0	-	w/ Ice	14.74	10.60	13.36	9.21	13.36	10.60
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
	-	w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		W/ ICE			l			

EQUIPMENT SEISMIC FORCE CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	Weight [lbs]	F _p [lbs]
MX08FRO665-20	3	148	82.5	8.98
TA08025-B604	3	148	63.9	6.95
TA08025-B605	3	148	75	8.16
RDIDC-9181-PF-48	1	148	21.85	2.38

APPENDIX C SOFTWARE ANALYSIS OUTPUT

July 23, 2021 1:09 PM Checked By:____

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include W arping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P - Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (in/sec ^2)	386.4
Wall Mesh Size (in)	24
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Υ
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 15th(360-16): LRFD
Adjust Stiffness?	Yes(Iterative)
R ISAC onnection Code	AISC 15th(360-16): LRFD
Cold Formed Steel Code	AIS I S 100-12: LRF D
Wood Code	AWC NDS-15: ASD
Wood Temperature	< 100F
Concrete Code	AC I 318-14
Masonry Code	ACI 530-13: Strength
Aluminum Code	AA ADM 1-10: LRFD - Building
Stainless Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

Company : 7
Designer : 0
Job Number :

: Trylon : JE :

: 823666

July 23, 2021 1:09 PM Checked By:___

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (in)	Not Entered
Add Base Weight?	Yes
CtX	.02
CtZ	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
RX	3
R Z	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	l or II
Drift Cat	Other
O m Z	1
O m X	1
C d Z	1
CdX	1
Rho Z	1
R ho X	1

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E	Density[k/ft	Yield[psi]	Ry	Fu[psi]	Rt
1	A992	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36000	1.5	58000	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42000	1.4	58000	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46000	1.4	58000	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35000	1.6	60000	1.2
7	A1085	29000	11154	.3	.65	.49	50000	1.4	65000	1.3

Hot Rolled Steel Section Sets

	Label	S hape	Type	Design List	Material	Design Ru	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Plates	6.5"x0.37" Plate	Beam	RECT	A53 Gr.B	Typical	2.405	.027	8.468	.106
2	Grating Bracing	L2x2x3	Beam	Single Angle	A36 Gr.36	Typical	.722	.271	.271	.009
3	Standoffs	PIPE 3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04
4	Standoff Bracing	C3X5	Beam	Channel	A36 Gr.36	Typical	1.47	.241	1.85	.043
5	Handrails	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
6	Handrail Corners	L6 5/8x4 7/16x	Beam	Single Angle	A36 Gr.36	Typical	2.039	3.593	9.575	.023
7	Horizontals	PIPE 3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04
8	Mount Pipes	PIPE_2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25

Company :
Designer :
Job Number :
Model Name :

: Trylon : JE er :

: 823666

July 23, 2021 1:09 PM Checked By:____

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N25	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N13	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Member Primary Data

	Label	I J oint	J Joint	K Joint		Section/Shape	Type	Design List	Material	Design Rules
1	M1	N5	N6			Standoff Bracing	Beam	Channel	A36 Gr.36	Typical
2	M2	N3	N1			Standoffs	Beam	Pipe	A53 Gr.B	Typical
3	M3	N9	N12		270	Grating Bracing	Beam	Single Angle	A36 Gr.36	Typical
4	M4	N 10	N11			Grating Bracing	Beam	Single Angle	A36 Gr.36	Typical
5	M5	N8	N7			Plates	Beam	RECT	A53 Gr.B	Typical
6	M6	N17	N18			Standoff Bracing	Beam	Channel	A36 Gr.36	Typical
7	M7	N15	N13			Standoffs	Beam	Pipe	A53 Gr.B	Typical
8	M8	N21	N24		270	Grating Bracing	Beam	Single Angle	A36 Gr.36	Typical
9	M9	N22	N23			Grating Bracing	Beam	Single Angle		Typical
10	M10	N20	N19			Plates	Beam	RECT	A53 Gr.B	Typical
11	M11	N29	N30			Standoff Bracing		Channel	A36 Gr.36	Typical
12	M12	N27	N25			Standoffs	Beam	Pipe	A53 Gr.B	Typical
13	M13	N33	N36		270	Grating Bracing	Beam	Single Angle	A36 Gr.36	Typical
14	M14	N34	N35			Grating Bracing	Beam	Single Angle		Typical
15	M15	N32	N31			Plates	Beam	RECT	A53 Gr.B	Typical
16	H1	N44	N45			Horizontals	Beam	Pipe	A53 Gr.B	
17	Н3	N47	N48			Horizontals	Beam	Pipe	A53 Gr.B	
18	H2	N50	N51			Horizontals	Beam	Pipe	A53 Gr.B	
19	M19	N47A	N48A			Handrails	Beam	Pipe	A53 Gr.B	Typical
20	M20	N49	N50A			Handrails	Beam	Pipe	A53 Gr.B	Typical
21	M21	N51A	N52			Handrails	Beam	Pipe	A53 Gr.B	Typical
22	M22	N46	N45A		180	Handrail Corne	Beam	Single Angle	A36 Gr.36	Typical
23	M23	N42	N41		180	Handrail Corne	Beam	Single Angle	A36 Gr.36	Typical
24	M24	N44A	N43		180	Handrail Corne	Beam	Single Angle		Typical
25	M25	N55	N53			R IG ID	None	None	R IG ID	Typical
26	M26	N56	N54			R IG ID	None	None	R IG ID	Typical
27	MP2	N57	N58			Mount Pipes	Beam	Pipe	A53 Gr.B	Typical
28	M28	N61	N59			RIGID	None	None	RIGID	Typical
29	M29	N62	N60			R IG ID	None	None	R IG ID	Typical
30	MP1	N63	N64			Mount Pipes	Beam	Pipe	A53 Gr.B	Typical
31	M31	N67	N65			R IG ID	None	None	R IG ID	Typical
32	M32	N68	N66			RIGID	None	None	R IG ID	Typical
33	MP3	N69	N70			Mount Pipes	Beam	Pipe	A53 Gr.B	Typical
34	M34	N74	N72			RIGID	None	None	R IG ID	Typical
35	M35	N75	N73			R IG ID	None	None	R IG ID	Typical
36	MP8	N76	N77			Mount Pipes	Beam		A53 Gr.B	Typical
37	M37	N80	N78			R IG ID	None	None	R IG ID	Typical
38	M38	N81	N79			R IG ID	None	None	R IG ID	Typical
39	MP7	N82	N83			Mount Pipes	Beam	Pipe	A53 Gr.B	
40	M40	N86	N84			R IG ID	None	None	R IG ID	Typical
41	M41	N87	N85			R IG ID	None	None	R IG ID	Typical
42	MP9	N88	N89			Mount Pipes	Beam	Pipe	A53 Gr.B	
43	M43	N93	N91			R IG ID	None	None	R IG ID	Typical
44	M44	N94	N92			RIGID	None	None	RIGID	Typical

: JE : :

: 823666

: Trylon

July 23, 2021 1:09 P M Checked B y:____

Member Primary Data (Continued)

	Label	I J oint	J Joint	K Joint	Rotate (deg)	Section/Shape	Type	Design List	Material	Design Rules
45	MP5	N95	N96			Mount Pipes	Beam	Pipe	A53 Gr.B	Typical
46	M46	N99	N97			R IG ID	None	None	RIGID	Typical
47	M47	N100	N98			R IG ID	None	None	RIGID	Typical
48	MP4	N101	N102			Mount Pipes	Beam	Pipe	A53 Gr.B	Typical
49	M49	N 105	N103			R IG ID	None	None	R IG ID	Typical
50	M50	N106	N104			R IG ID	None	None	RIGID	Typical
51	MP6	N 107	N108			Mount Pipes	Beam	Pipe	A53 Gr.B	Typical

Member Advanced Data

	Label	IR eleas e	J Release	I Offset[in]	J Offset[in]	T/C Only	P hysica l	Defl RatAnalysis	. Inactive	Seismic
1	M1	BenPIN	BenPIN				Yes			None
2	M2						Yes			None
3	М3						Yes			None
4	M4						Yes			None
5	M5	0000X0	0000X0				Yes	Default		None
6	M6	BenPIN	BenPIN				Yes			None
7	M7						Yes			None
8	M8						Yes			None
9	M9						Yes			None
10	M10	0000X0	0000X0				Yes	Default		None
11	M11	BenPIN	BenPIN				Yes			None
12	M12						Yes			None
13	M13						Yes			None
14	M14						Yes			None
15	M15	0000X0	0000X0				Yes	Default		None
16	H1						Yes	Default		None
17	Н3						Yes			None
18	H2						Yes			None
19	M19						Yes			None
20	M20						Yes			None
21	M21						Yes			None
22	M22						Yes			None
23	M23						Yes			None
24	M24						Yes			None
25	M25	000X00					Yes	** NA **		None
26	M26						Yes	** NA **		None
27	MP2						Yes			None
28	M28	000X00					Yes	** NA **		None
29	M29						Yes	** NA **		None
30	MP1						Yes			None
31	M31	000X00					Yes	** NA **		None
32	M32						Yes	** NA **		None
33	MP3						Yes			None
34	M34	000X00					Yes	** NA **		None
35	M35						Yes	** NA **		None
36	MP8						Yes			None
37	M37	000X00					Yes	** NA **		None
38	M38						Yes	** NA **		None
39	MP7						Yes			None
40	M40	000X00					Yes	** NA **		None

Company Designer Job Number : Trylon

: 823666

July 23, 2021 1:09 P M Checked By:___

Member Advanced Data (Continued)

	Label	IR eleas e	J Release	I Offset[in]	J Offset[in]	T/C Only	P hysica l	Defl RatAnalysis	Inactive	S eismic
41	M41						Yes	** NA **		None
42	MP9						Yes			None
43	M43	000X00					Yes	** NA **		None
44	M44						Yes	** NA **		None
45	MP5						Yes			None
46	M46	000X00					Yes	** NA **		None
47	M47						Yes	** NA **		None
48	MP4						Yes			None
49	M49	000X00					Yes	** NA **		None
50	M50						Yes	** NA **		None
51	MP6						Yes			None

Hot Rolled Steel Design Parameters

	Label		Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]	Lcomp bot[in]	L-torqu	. Kyy	Kzz	Cb	Function
1	M1	S tandoff Br	69.713			Lbyy						Lateral
2	M2	Standoffs	40			Lbyy						Lateral
3	М3	Grating Bra	27.295			Lbyy						Lateral
4	M4	G rating B ra	27.295			Lbyy						Lateral
5	M5	Plates	42			Lbyy						Lateral
6	M6	S tandoff Br	69.713	28	28	28	28	28				Lateral
7	M7	Standoffs	40			Lbyy						Lateral
8	M8	Grating Bra	27.295			Lbyy						Lateral
9	M9	Grating Bra	27.295			Lbyy						Lateral
10	M10	Plates	42			Lbyy						Lateral
11	M11	S tandoff Br	69.713			Lbyy						Lateral
12	M12	Standoffs	40			Lbyy						Lateral
13	M13	Grating Bra	27.295			Lbyy						Lateral
14	M14	G rating B ra	27.295			Lbyy						Lateral
15	M15	Plates	42			Lbyy						Lateral
16	H1	Horizontals	96			Lbyy						Lateral
17	Н3	Horizontals	96			Lbyy						Lateral
18	H2	Horizontals	96			Lbyy						Lateral
19	M19	Handrails	96			Lbyy						Lateral
20	M20	Handrails	96			Lbyy						Lateral
21	M21	Handrails	96			Lbyy						Lateral
22	M22	Handrail Co	42			Lbyy						Lateral
23	M23	Handrail Co	42			Lbyy						Lateral
24	M24	Handrail Co	42			Lbyy						Lateral
25	MP2	Mount Pipes	72			Lbyy						Lateral
26	MP1	Mount Pipes	72			Lbyy						Lateral
27	MP3	Mount Pipes	72			Lbyy						Lateral
28	MP8	Mount Pipes	72			Lbyy						Lateral
29	MP7	Mount Pipes	72			Lbyy						Lateral
30	MP9	Mount Pipes	72			Lbyy						Lateral
31	MP5	Mount Pipes	72			Lbyy						Lateral
32	MP4	Mount Pipes	72			Lbyy						Lateral
33	MP6	Mount Pipes	72			Lbyy		·	<u> </u>			Lateral

Job Number

: Trylon

: 823666

July 23, 2021 1:09 P M Checked By:__

Joint Loads and Enforced Displacements

Joint Label	L,D,M	Direction	Magnitude [(lb,lb-ft), (in,rad), (lb *s ^
	No Data to Prin	t	

Member Point Loads (BLC 1: Self Weight)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Υ	-41.25	3
2	MP1	Υ	-41.25	69
3	MP1	Υ	-63.9	%50
4	MP1	Υ	-75	%50
5	MP1	Υ	-21.85	%33
6	MP4	Υ	-41.25	3
7	MP4	Υ	-41.25	69
8	MP4	Υ	-63.9	%50
9	MP4	Υ	-75	%50
10	MP7	Υ	-41.25	3
11	MP7	Y	-41.25	69
12	MP7	Υ	-63.9	%50
13	MP7	Y	-75	%50

Member Point Loads (BLC 4: Wind Load 0 AZI)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Z	-163.201	3
2	MP1	Z	-163.201	69
3	MP1	Z	-80.011	%50
4	MP1	Z	-80.011	%50
5	MP1	Z	-81.982	%33
6	MP4	Z	-89.852	3
7	MP4	Z	-89.852	69
8	MP4	Z	-49.988	%50
9	MP4	Z	-54.522	%50
10	MP7	Z	-89.852	3
11	MP7	Z	-89.852	69
12	MP7	Z	-49.988	%50
13	MP7	Z	-54.522	%50
14	MP1	X	0	3
15	MP1	X	0	69
16	MP1	X	0	%50
17	MP1	X	0	%50
18	MP1	X	0	%33
19	MP4	X	0	3
20	MP4	X	0	69
21	MP4	X	0	%50
22	MP4	X	0	%50
23	MP7	X	0	3
24	MP7	X	0	69
25	MP7	X	0	%50
26	MP7	X	0	%50

Member Point Loads (BLC 5: Wind Load 30 AZI)

Member Label	Direction	Magnitude [lb.lb-ft]	Location lin %1

Company Designer Job Number : Trylon : JE

: 823666

July 23, 2021 1:09 P M Checked By:___

Member Point Loads (BLC 5: Wind Load 30 AZI) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Z	-120.162	3
2	MP1	Z	-120.162	69
3	MP1	Z	-60.625	%50
4	MP1	Z	-61.934	%50
5	MP1	Z	-63.555	%33
6	MP4	Z	-120.162	3
7	MP4	Z	-120.162	69
8	MP4	Z	-60.625	%50
9	MP4	Z	-61.934	%50
10	MP7	Z	-56.64	3
11	MP7	Z	-56.64	69
12	MP7	Z	-34.624	%50
13	MP7	Z	-39.859	%50
14	MP1	X	-69.376	3
15	MP1	X	-69.376	69
16	MP1	X	-35.002	%50
17	MP1	X	-35.757	%50
18	MP1	X	-36.694	%33
19	MP4	X	-69.376	3
20	MP4	X	-69.376	69
21	MP4	X	-35.002	%50
22	MP4	X	-35.757	%50
23	MP7	X	-32.701	3
24	MP7	X	-32.701	69
25	MP7	Х	-19.99	%50
26	MP7	X	-23.013	%50

Member Point Loads (BLC 6: Wind Load 45 AZI)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Z	-80.823	3
2	MP1	Z	-80.823	69
3	MP1	Z	-42.423	%50
4	MP1	Z	-44.561	%50
5	MP1	Z	-45.815	%33
6	MP4	Z	-110.768	3
7	MP4	Z	-110.768	69
8	MP4	Z	-54.68	%50
9	MP4	Z	-54.967	%50
10	MP7	Z	-50.879	3
11	MP7	Z	-50.879	69
12	MP7	Z	-30.166	%50
13	MP7	Z	-34.155	%50
14	MP1	Χ	-80.823	3
15	MP1	Χ	-80.823	69
16	MP1	X	-42.423	%50
17	MP1	X	-44.561	%50
18	MP1	X	-45.815	%33
19	MP4	Χ	-110.768	3
20	MP4	X	-110.768	69
21	MP4	X	- 54.68	%50
22	MP4	X	-54.967	%50

: Trylon

: 823666

July 23, 2021 1:09 P M Checked By:___

Member Point Loads (BLC 6: Wind Load 45 AZI) (Continued)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
23	MP7	X	-50.879	3
24	MP7	X	-50.879	69
25	MP7	X	-30.166	%50
26	MP7	Χ	-34.155	%50

Member Point Loads (BLC 7: Wind Load 60 AZI)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Z	-44.926	3
2	MP1	Z	-44.926	69
3	MP1	Z	-24.994	%50
4	MP1	Z	-27.261	%50
5	MP1	Z	-28.099	%33
6	MP4	Z	-81.6	3
7	MP4	Z	-81.6	69
8	MP4	Z	-40.006	%50
9	MP4	Z	-40.006	%50
10	MP7	Z	-44.926	3
11	MP7	Z	-44.926	69
12	MP7	Z	-24.994	%50
13	MP7	Z	-27.261	%50
14	MP1	X	-77.814	3
15	MP1	X	-77.814	69
16	MP1	X	-43.291	%50
17	MP1	X	-47.217	%50
18	MP1	X	-48.669	%33
19	MP4	X	-141.336	3
20	MP4	X	-141.336	69
21	MP4	X	-69.292	%50
22	MP4	X	-69.292	%50
23	MP7	Χ	-77.814	3
24	MP7	X	-77.814	69
25	MP7	X	-43.291	%50
26	MP7	X	-47.217	%50

Member Point Loads (BLC 8: Wind Load 90 AZI)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Z	-4.005e-15	3
2	MP1	Z	-4.005e-15	69
3	MP1	Z	-2.448e-15	%50
4	MP1	Z	-2.818e-15	%50
5	MP1	Z	-2.915e-15	%33
6	MP4	Z	-8.496e-15	3
7	MP4	Z	-8.496e-15	69
8	MP4	Z	-4.286e-15	%50
9	MP4	Z	-4.379e-15	%50
10	MP7	Z	-8.496e-15	3
11	MP7	Z	-8.496e-15	69
12	MP7	Z	-4.286e-15	%50
13	MP7	Z	-4.379e-15	%50
14	MP1	X	-65.403	3
15	MP1	X	-65.403	69

Company Designer Job Number : Trylon : JE

: 823666

July 23, 2021 1:09 P M Checked By:__

Member Point Loads (BLC 8: Wind Load 90 AZI) (Continued)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
16	MP1	X	-39.98	%50
17	MP1	Χ	-46.025	%50
18	MP1	Χ	-47.603	%33
19	MP4	Χ	-138.751	3
20	MP4	Χ	-138.751	69
21	MP4	Χ	-70.003	%50
22	MP4	Χ	-71.515	%50
23	MP7	Χ	-138.751	3
24	MP7	Χ	-138.751	69
25	MP7	X	-70.003	%50
26	MP7	X	-71.515	%50

Member Point Loads (BLC 9: Wind Load 120 AZI)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Z	44.926	3
2	MP1	Z	44.926	69
3	MP1	Z	24.994	%50
4	MP1	Z	27.261	%50
5	MP1	Z	28.099	%33
6	MP4	Z	44.926	3
7	MP4	Z	44.926	69
8	MP4	Z	24.994	%50
9	MP4	Z	27.261	%50
10	MP7	Z	81.6	3
11	MP7	Z	81.6	69
12	MP7	Z	40.006	%50
13	MP7	Z	40.006	%50
14	MP1	X	-77.814	3
15	MP1	X	-77.814	69
16	MP1	X	-43.291	%50
17	MP1	X	-47.217	%50
18	MP1	X	-48.669	%33
19	MP4	X	-77.814	3
20	MP4	X	-77.814	69
21	MP4	X	-43.291	%50
22	MP4	X	-47.217	%50
23	MP7	X	-141.336	3
24	MP7	X	-141.336	69
25	MP7	X	-69.292	%50
26	MP7	X	-69.292	%50

Member Point Loads (BLC 10: Wind Load 135 AZI)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Z	80.823	3
2	MP1	Z	80.823	69
3	MP1	Z	42.423	%50
4	MP1	Z	44.561	%50
5	MP1	Z	45.815	%33
6	MP4	Z	50.879	3
7	MP4	Z	50.879	69
8	MP4	Z	30.166	%50

: Trylon

: 823666

July 23, 2021 1:09 P M Checked By:__

Member Point Loads (BLC 10: Wind Load 135 AZI) (Continued)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
9	MP4	Z	34.155	%50
10	MP7	Z	110.768	3
11	MP7	Z	110.768	69
12	MP7	Z	54.68	%50
13	MP7	Z	54.967	%50
14	MP1	X	-80.823	3
15	MP1	X	-80.823	69
16	MP1	X	-42.423	%50
17	MP1	X	-44.561	%50
18	MP1	X	-45.815	%33
19	MP4	X	-50.879	3
20	MP4	X	-50.879	69
21	MP4	X	-30.166	%50
22	MP4	X	-34.155	%50
23	MP7	X	-110.768	3
24	MP7	X	-110.768	69
25	MP7	X	-54.68	%50
26	MP7	X	-54.967	%50

Member Point Loads (BLC 11: Wind Load 150 AZI)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Z	120.162	3
2	MP1	Z	120.162	69
3	MP1	Z	60.625	%50
4	MP1	Z	61.934	%50
5	MP1	Z	63.555	%33
6	MP4	Z	56.64	3
7	MP4	Z	56.64	69
8	MP4	Z	34.624	%50
9	MP4	Z	39.859	%50
10	MP7	Z	120.162	3
11	MP7	Z	120.162	69
12	MP7	Z	60.625	%50
13	MP7	Z	61.934	%50
14	MP1	X	-69.376	3
15	MP1	X	-69.376	69
16	MP1	X	-35.002	%50
17	MP1	X	-35.757	%50
18	MP1	X	-36.694	%33
19	MP4	X	-32.701	3
20	MP4	X	-32.701	69
21	MP4	X	-19.99	%50
22	MP4	X	-23.013	%50
23	MP7	X	-69.376	3
24	MP7	X	-69.376	69
25	MP7	X	-35.002	%50
26	MP7	X	-35.757	%50

Member Point Loads (BLC 12: ke Weight)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Υ	-144.702	3

: Trylon

: 823666

July 23, 2021 1:09 P M Checked By:___

Member Point Loads (BLC 12: ke Weight) (Continued)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
2	MP1	Υ	-144.702	69
3	MP1	Υ	-70.483	%50
4	MP1	Υ	- 75.079	%50
5	MP1	Υ	-73.998	%33
6	MP4	Υ	-144.702	3
7	MP4	Υ	-144.702	69
8	MP4	Υ	-70.483	%50
9	MP4	Υ	-75.079	%50
10	MP7	Υ	-144.702	3
11	MP7	Y	-144.702	69
12	MP7	Y	-70.483	%50
13	MP7	Y	-75.079	%50

Member Point Loads (BLC 15: ke Wind Load 0 AZI)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Z	-29.034	3
2	MP1	Z	-29.034	69
3	MP1	Z	-14.412	%50
4	MP1	Z	-14.412	%50
5	MP1	Z	-14.742	%33
6	MP4	Z	-17.731	3
7	MP4	Z	-17.731	69
8	MP4	Z	-9.541	%50
9	MP4	Z	-10.276	%50
10	MP7	Z	-17.731	3
11	MP7	Z	-17.731	69
12	MP7	Z	-9.541	%50
13	MP7	Z	-10.276	%50
14	MP1	Χ	0	3
15	MP1	Χ	0	69
16	MP1	X	0	%50
17	MP1	X	0	%50
18	MP1	X	0	%33
19	MP4	X	0	3
20	MP4	X	0	69
21	MP4	X	0	%50
22	MP4	X	0	%50
23	MP7	X	0	3
24	MP7	Х	0	69
25	MP7	Х	0	%50
26	MP7	X	0	%50

Member Point Loads (BLC 16: ke Wind Load 30 AZI)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Z	-21.881	3
2	MP1	Z	-21.881	69
3	MP1	Z	-11.075	%50
4	MP1	Z	-11.287	%50
5	MP1	Z	-11.57	%33
6	MP4	Z	-21.881	3
7	MP4	Z	-21.881	69

: Trylon

: 823666

July 23, 2021 1:09 P M Checked By:___

Member Point Loads (BLC 16: ke Wind Load 30 AZI) (Continued)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
8	MP4	Z	-11.075	%50
9	MP4	Z	-11.287	%50
10	MP7	Z	-12.092	3
11	MP7	Z	-12.092	69
12	MP7	Z	-6.857	%50
13	MP7	Z	-7.705	%50
14	MP1	X	-12.633	3
15	MP1	X	-12.633	69
16	MP1	X	-6.394	%50
17	MP1	X	-6.517	%50
18	MP1	X	-6.68	%33
19	MP4	X	-12.633	3
20	MP4	X	-12.633	69
21	MP4	X	-6.394	%50
22	MP4	X	-6.517	%50
23	MP7	X	-6.981	3
24	MP7	X	-6.981	69
25	MP7	X	-3.959	%50
26	MP7	X	- 4.449	%50

Member Point Loads (BLC 17: ke Wind Load 45 AZI)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Z	-15.202	3
2	MP1	Z	-15.202	69
3	MP1	Z	-7.895	%50
4	MP1	Z	-8.241	%50
5	MP1	Z	-8.47	%33
6	MP4	Z	-19.816	3
7	MP4	Z	-19.816	69
8	MP4	Z	-9.883	%50
9	MP4	Z	- 9.93	%50
10	MP7	Z	-10.587	3
11	MP7	Z	-10.587	69
12	MP7	Z	-5.906	%50
13	MP7	Z	-6.552	%50
14	MP1	X	-15.202	3
15	MP1	X	-15.202	69
16	MP1	X	-7.895	%50
17	MP1	X	-8.241	%50
18	MP1	X	-8.47	%33
19	MP4	X	-19.816	3
20	MP4	X	-19.816	69
21	MP4	X	-9.883	%50
22	MP4	X	-9.93	%50
23	MP7	Х	-10.587	3
24	MP7	X	-10.587	69
25	MP7	Х	-5.906	%50
26	MP7	X	-6.552	%50

Member Point Loads (BLC 18: ke Wind Load 60 AZI)

Member Label Direction Magnitude [lb,lb-ft]	Location[in,%]
---	----------------

Company :
Designer :
Job Number :

: Trylon : JE :

: 823666

July 23, 2021 1:09 P M Checked B y:___

Member Point Loads (BLC 18: ke Wind Load 60 AZI) (Continued)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Z	-8.865	3
2	MP1	Z	-8.865	69
3	MP1	Z	-4.771	%50
4	MP1	Z	-5.138	%50
5	MP1	Z	-5.298	%33
6	MP4	Z	-14.517	3
7	MP4	Z	-14.517	69
8	MP4	Z	-7.206	%50
9	MP4	Z	-7.206	%50
10	MP7	Z	-8.865	3
11	MP7	Z	-8.865	69
12	MP7	Z	-4.771	%50
13	MP7	Z	-5.138	%50
14	MP1	X	-15.355	3
15	MP1	X	-15.355	69
16	MP1	X	-8.263	%50
17	MP1	X	-8.899	%50
18	MP1	X	-9.177	%33
19	MP4	X	-25.144	3
20	MP4	X	-25.144	69
21	MP4	X	-12.481	%50
22	MP4	X	-12.481	%50
23	MP7	Χ	-15.355	3
24	MP7	X	-15.355	69
25	MP7	Х	-8.263	%50
26	MP7	X	-8.899	%50

Member Point Loads (BLC 19: ke Wind Load 90 AZI)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Z	-8.55e-16	3
2	MP1	Z	-8.55e-16	69
3	MP1	Z	-4.848e-16	%50
4	MP1	Z	-5.448e-16	%50
5	MP1	Z	-5.642e-16	%33
6	MP4	Z	-1.547e-15	3
7	MP4	Z	-1.547e-15	69
8	MP4	Z	-7.831e-16	%50
9	MP4	Z	-7.981e-16	%50
10	MP7	Z	-1.547e-15	3
11	MP7	Z	-1.547e-15	69
12	MP7	Z	-7.831e-16	%50
13	MP7	Z	-7.981e-16	%50
14	MP1	X	-13.963	3
15	MP1	X	-13.963	69
16	MP1	X	-7.917	%50
17	MP1	X	-8.897	%50
18	MP1	X	-9.214	%33
19	MP4	Χ	-25.266	3
20	MP4	X	-25.266	69
21	MP4	X	-12.789	%50
22	MP4	X	-13.034	%50

Company Designer Job Number : Trylon

: 823666

July 23, 2021 1:09 P M Checked By:___

Member Point Loads (BLC 19: ke Wind Load 90 AZI) (Continued)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
23	MP7	X	-25.266	3
24	MP7	X	-25.266	69
25	MP7	X	-12.789	%50
26	MP7	X	-13.034	%50

Member Point Loads (BLC 20: ke Wind Load 120 A ZI)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Z	8.865	3
2	MP1	Z	8.865	69
3	MP1	Z	4.771	%50
4	MP1	Z	5.138	%50
5	MP1	Z	5.298	%33
6	MP4	Z	8.865	3
7	MP4	Z	8.865	69
8	MP4	Z	4.771	%50
9	MP4	Z	5.138	%50
10	MP7	Z	14.517	3
11	MP7	Z	14.517	69
12	MP7	Z	7.206	%50
13	MP7	Z	7.206	%50
14	MP1	Χ	-15.355	3
15	MP1	X	-15.355	69
16	MP1	Χ	-8.263	%50
17	MP1	X	-8.899	%50
18	MP1	X	-9.177	%33
19	MP4	X	-15.355	3
20	MP4	Χ	-15.355	69
21	MP4	Χ	-8.263	%50
22	MP4	Χ	-8.899	%50
23	MP7	Χ	-25.144	3
24	MP7	Χ	-25.144	69
25	MP7	Χ	-12.481	%50
26	MP7	X	-12.481	%50

Member Point Loads (BLC 21: ke Wind Load 135 A ZI)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Z	15.202	3
2	MP1	Z	15.202	69
3	MP1	Z	7.895	%50
4	MP1	Z	8.241	%50
5	MP1	Z	8.47	%33
6	MP4	Z	10.587	3
7	MP4	Z	10.587	69
8	MP4	Z	5.906	%50
9	MP4	Z	6.552	%50
10	MP7	Z	19.816	3
11	MP7	Z	19.816	69
12	MP7	Z	9.883	%50
13	MP7	Z	9.93	%50
14	MP1	X	-15.202	3
15	MP1	X	-15.202	69

Company Designer Job Number : Trylon : JE

: 823666

July 23, 2021 1:09 P M Checked By:__

Member Point Loads (BLC 21: Ice Wind Load 135 A ZI) (Continued)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
16	MP1	X	-7.895	%50
17	MP1	X	-8.241	%50
18	MP1	X	-8.47	%33
19	MP4	X	-10.587	3
20	MP4	X	-10.587	69
21	MP4	X	-5.906	%50
22	MP4	X	-6.552	%50
23	MP7	X	-19.816	3
24	MP7	X	-19.816	69
25	MP7	X	-9.883	%50
26	MP7	X	-9.93	%50

Member Point Loads (BLC 22: ke Wind Load 150 A ZI)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Z	21.881	3
2	MP1	Z	21.881	69
3	MP1	Z	11.075	%50
4	MP1	Z	11.287	%50
5	MP1	Z	11.57	%33
6	MP4	Z	12.092	3
7	MP4	Z	12.092	69
8	MP4	Z	6.857	%50
9	MP4	Z	7.705	%50
10	MP7	Z	21.881	3
11	MP7	Z	21.881	69
12	MP7	Z	11.075	%50
13	MP7	Z	11.287	%50
14	MP1	X	-12.633	3
15	MP1	X	-12.633	69
16	MP1	X	-6.394	%50
17	MP1	X	-6.517	%50
18	MP1	X	-6.68	%33
19	MP4	X	-6.981	3
20	MP4	X	-6.981	69
21	MP4	X	-3.959	%50
22	MP4	X	- 4.449	%50
23	MP7	X	-12.633	3
24	MP7	X	-12.633	69
25	MP7	X	-6.394	%50
26	MP7	X	-6.517	%50

Member Point Loads (BLC 23: Seismic Load Z)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Z	-4.488	3
2	MP1	Z	-4.488	69
3	MP1	Z	-6.952	%50
4	MP1	Z	-8.16	%50
5	MP1	Z	-2.377	%33
6	MP4	Z	-4.488	3
7	MP4	Z	-4.488	69
8	MP4	Z	-6.952	%50

: Trylon

: 823666

July 23, 2021 1:09 PM Checked By:__

Member Point Loads	(BLC 23 : Seismic Load Z	(Continued)
--------------------	--------------------------	-------------

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
9	MP4	Z	-8.16	%50
10	MP7	Z	-4.488	3
11	MP7	Z	-4.488	69
12	MP7	Z	-6.952	%50
13	MP7	Z	-8.16	%50

Member Point Loads (BLC 24 : Seismic Load X)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	X	-4.488	3
2	MP1	X	-4.488	69
3	MP1	X	-6.952	%50
4	MP1	X	-8.16	%50
5	MP1	X	-2.377	%33
6	MP4	X	-4.488	3
7	MP4	X	-4.488	69
8	MP4	X	-6.952	%50
9	MP4	X	-8.16	%50
10	MP7	X	-4.488	3
11	MP7	X	-4.488	69
12	MP7	X	-6.952	%50
13	MP7	X	-8.16	%50

Member Point Loads (BLC 25: Live Load 1 (Lv))

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	H1	Υ	-250	0

Member Point Loads (BLC 26: Live Load 2 (Lv))

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	H1	Υ	-250	%50

Member Point Loads (BLC 27: Live Load 3 (Lv))

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	H1	Υ	-250	%100

Member Point Loads (BLC 28: Live Load 4 (Lv))

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	H3	Υ	-250	0

Member Point Loads (BLC 29: Live Load 5 (Lv))

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	H3	Υ	-250	%50

Member Point Loads (BLC 30 : Live Load 6 (Lv))

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	Н3	V	-250	%100

Member Point Loads (BLC 31: Live Load 7 (Lv))

Member Label Direction Magnitude [lb,lb-ft] Location [in,%]				Location[in,%]
---	--	--	--	----------------

Company Designer Job Number Model Name

: Trylon : JE : 823666 July 23, 2021 1:09 PM Checked By:__

	Member Label	Direction	Magnitude [lb,lb-ft]	Location [in, %]
1	H2	Y	-250	0
ombor Poin	tLoads (BLC 32:	live Lead 9 (Lv)		
eniber Foni	•	, ,	Marrie Marrie III. III. 641	L
1	Member Label H2	Direction	Magnitude [lb,lb-ft] -250	Location [in, %] %50
lombor Poin	t Loads (BLC 33:	Live Lead 9 (Ly)	-230	/630
rember rom	•		Magnituda (lb lb ft)	Location Fin 9/1
1	Member Label H2	Direction Y	Magnitude [lb,lb-ft] -250	Location[in,%] %100
		Maintenance Load 1		78100
<u> </u>	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP2	Υ	-500	%50
lember Poin	t Loads (BLC 35: Member Label	Maintenance Load 2 Direction	(L m)) Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Υ	-500	%50
1	Member Label MP3	Maintenance Load 3 Direction Y	Magnitude [lb,lb-ft]	Location[in,%] %50
	tloads (BIC 37 ·	Maintenance Load 4	1 (m))	
<u>viember Poin</u>	t Louds D Lo or .	mannechanice Load -	F (= 111 <i>))</i>	
<u>//emberPoin</u>	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	•			Location[in,%] %50
1	Member Label MP8	Direction	Magnitude [lb,lb-ft] -500	
1	Member Label MP8	Direction Y	Magnitude [lb,lb-ft] -500	%50
1	Member Label MP8 t Loads (BLC 38:	Direction Y Maintenance Load &	Magnitude [lb,lb-ft] -500	
1 Member Poin	Member Label MP8 t Loads (B LC 38: Member Label MP7	Direction Y Maintenance Load &	Magnitude [lb,lb-ft] -500 5 (L m)) Magnitude [lb,lb-ft] -500	%50 Location[in,%]
1 Iember Poin	Member Label MP8 t Loads (BLC 38: Member Label MP7 t Loads (BLC 39: Member Label	Direction Y Maintenance Load S Direction Y	Magnitude [lb,lb-ft] -500 5 (L m)) Magnitude [lb,lb-ft] -500	%50 Location[in,%]
1 lember Poin	Member Label MP8 t Loads (BLC 38: Member Label MP7 t Loads (BLC 39:	Direction Y Maintenance Load S Direction Y Maintenance Load S	Magnitude [lb,lb-ft] -500 5 (L m)) Magnitude [lb,lb-ft] -500 6 (L m))	%50 Location[in,%] %50
1 Member Poin 1 Member Poin 1	Member Label MP8 t Loads (BLC 38: Member Label MP7 t Loads (BLC 39: Member Label MP9	Direction Y Maintenance Load S Direction Y Maintenance Load S Direction	Magnitude [lb,lb-ft] -500 5 (L m)) Magnitude [lb,lb-ft] -500 6 (L m)) Magnitude [lb,lb-ft] -500	%50 Location[in,%]
1 Member Poin 1 Member Poin 1	Member Label MP8 t Loads (BLC 38: Member Label MP7 t Loads (BLC 39: Member Label MP9	Direction Y Maintenance Load S Direction Y Maintenance Load S Direction Y	Magnitude [lb,lb-ft] -500 5 (L m)) Magnitude [lb,lb-ft] -500 6 (L m)) Magnitude [lb,lb-ft] -500	%50 Location[in,%]
1 Member Poin 1 Member Poin 1	Member Label MP8 t Loads (BLC 38: Member Label MP7 t Loads (BLC 39: Member Label MP9 t Loads (BLC 40:	Direction Y Maintenance Load S	Magnitude [lb,lb-ft] -500 5 (L m)) Magnitude [lb,lb-ft] -500 6 (L m)) Magnitude [lb,lb-ft] -500 7 (L m))	%50 Location[in,%]
1 Member Poin 1 Member Poin 1 Member Poin 1	Member Label MP8 t Loads (BLC 38: Member Label MP7 t Loads (BLC 39: Member Label MP9 t Loads (BLC 40: Member Label MP5	Direction Y Maintenance Load S Direction Y	Magnitude [lb,lb-ft] -500 5 (L m)) Magnitude [lb,lb-ft] -500 6 (L m)) Magnitude [lb,lb-ft] -500 7 (L m)) Magnitude [lb,lb-ft] -500	%50 Location[in,%]
1 Member Poin 1 Member Poin 1 Member Poin 1	Member Label MP8 t Loads (BLC 38: Member Label MP7 t Loads (BLC 39: Member Label MP9 t Loads (BLC 40: Member Label MP5	Direction Y Maintenance Load S Direction Direction	Magnitude [lb,lb-ft] -500 5 (L m)) Magnitude [lb,lb-ft] -500 6 (L m)) Magnitude [lb,lb-ft] -500 7 (L m)) Magnitude [lb,lb-ft] -500	%50 Location[in,%]
1 Member Poin 1 Member Poin 1 Member Poin 1	Member Label MP8 t Loads (BLC 38: Member Label MP7 t Loads (BLC 39: Member Label MP9 t Loads (BLC 40: Member Label MP5 t Loads (BLC 41:	Direction Y Maintenance Load & Direction Y	Magnitude [lb,lb-ft] -500 5 (L m)) Magnitude [lb,lb-ft] -500 6 (L m)) Magnitude [lb,lb-ft] -500 7 (L m)) Magnitude [lb,lb-ft] -500	%50 Location[in,%]
Member Poin Member Poin 1 Member Poin 1 Member Poin 1	Member Label MP8 t Loads (BLC 38: Member Label MP7 t Loads (BLC 39: Member Label MP9 t Loads (BLC 40: Member Label MP5 t Loads (BLC 41: Member Label MP5	Direction Y Maintenance Load & Direction Y	Magnitude [lb,lb-ft] -500 5 (L m)) Magnitude [lb,lb-ft] -500 6 (L m)) Magnitude [lb,lb-ft] -500 7 (L m)) Magnitude [lb,lb-ft] -500 8 (L m)) Magnitude [lb,lb-ft] -500	%50 Location[in,%] %50 Location[in,%] %50 Location[in,%] %50 Location[in,%]
1 Member Poin 1 Member Poin 1 Member Poin 1 Member Poin 1	Member Label MP8 t Loads (BLC 38: Member Label MP7 t Loads (BLC 39: Member Label MP9 t Loads (BLC 40: Member Label MP5 t Loads (BLC 41: Member Label MP5	Direction Y Maintenance Load & Direction Y	Magnitude [lb,lb-ft] -500 5 (L m)) Magnitude [lb,lb-ft] -500 6 (L m)) Magnitude [lb,lb-ft] -500 7 (L m)) Magnitude [lb,lb-ft] -500 8 (L m)) Magnitude [lb,lb-ft] -500	%50 Location[in,%] %50 Location[in,%] %50 Location[in,%] %50 Location[in,%]

: Trylon : JE :

: 823666

July 23, 2021 1:09 PM Checked By:___

Member Distributed Loads (BLC 2: Structure Wind Z)

	Member Label	Direction	Start Magnitude [lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	SZ	-81.499	-81.499	0	%100
2	M2	SZ	-48.899	-48.899	0	%100
3	M3	SZ	-81.499	-81.499	0	%100
4	M4	SZ	-81.499	-81.499	0	%100
5	M5	SZ	-81.499	-81.499	0	%100
6	M6	SZ	-81.499	-81.499	0	%100
7	M7	SZ	-48.899	-48.899	0	%100
8	M8	SZ	-81.499	-81.499	0	%100
9	M9	SZ	-81.499	-81.499	0	%100
10	M10	SZ	-81.499	-81.499	0	%100
11	M11	SZ	-81.499	-81.499	0	%100
12	M12	SZ	-48.899	-48.899	0	%100
13	M13	SZ	-81.499	-81.499	0	%100
14	M14	SZ	-81.499	-81.499	0	%100
15	M15	SZ	-81.499	-81.499	0	%100
16	H1	SZ	-48.899	-48.899	0	%100
17	H3	SZ	-48.899	-48.899	0	%100
18	H2	SZ	-48.899	-48.899	0	%100
19	M19	SZ	-48.899	-48.899	0	%100
20	M20	SZ	-48.899	-48.899	0	%100
21	M21	SZ	-48.899	-48.899	0	%100
22	M22	SZ	-81.499	-81.499	0	%100
23	M23	SZ	-81.499	-81.499	0	%100
24	M24	SZ	-81.499	-81.499	0	%100
25	M25	SZ	-81.499	-81.499	0	%100
26	M26	SZ	-81.499	-81.499	0	%100
27	MP2	SZ	-48.899	-48.899	0	%100
28	M28	SZ	-81.499	-81.499	0	%100
29	M29	SZ	-81.499	-81.499	0	%100
30	MP1	SZ	-48.899	-48.899	0	%100
31	M31	SZ	-81.499	-81.499	0	%100
32	M32	SZ	-81.499	-81.499	0	%100
33	MP3	SZ	-48.899	-48.899	0	%100
34	M34	SZ	-81.499	-81.499	0	%100
35	M35	SZ	-81.499	-81.499	0	%100
36	MP8	SZ	-48.899	-48.899	0	%100
37	M37	SZ	-81.499	-81.499	0	%100
38	M38	SZ	-81.499	-81.499	0	%100
39	MP7	SZ	-48.899	-48.899	0	%100
40	M40	SZ	-81.499	-81.499	0	%100
41	M41	SZ	-81.499	-81.499	0	%100
42	MP9	SZ	-48.899	-48.899	0	%100
43	M43	SZ	-81.499	-81.499	0	%100
44	M44	SZ	-81.499	-81.499	0	%100
45	MP5	SZ	-48.899	-48.899	0	%100
46	M46	SZ	-81.499	-81.499	0	%100
47	M47	SZ	-81.499	-81.499	0	%100
48	MP4	SZ	-48.899	-48.899	0	%100
49	M49	SZ	-81.499	-81.499	0	%100
50	M50	SZ	-81.499	-81.499	0	%100
51	MP6	SZ	-48.899	-48.899	0	%100

Company Designer Job Number Model Name

: Trylon : JE :

: 823666

July 23, 2021 1:09 P M Checked By:___

Member Distributed Loads (BLC 3: Structure Wind X)

1 M1 SX -81.499 -81.489 0 %100 3 M3 SX -81.499 -81.499 0 %100 4 M4 SX -81.499 -81.499 0 %100 5 M5 SX -81.499 -81.499 0 %100 6 M6 SX -81.499 -81.499 0 %100 7 M7 SX -48.899 -81.499 0 %100 8 M8 SX -81.499 -81.499 0 %100 9 M9 SX -81.499 -81.499 0 %100 10 M10 SX -81.499 -81.499 0 %100 11 M11 SX -81.499 -81.499 0 %100 12 M12 SX -81.499 -81.499 0 %100 14 M14 SX -81.499 -81.499 0 %100		Member Label	Direction	Start Magnitude [lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
3	1	M1	SX	-81.499	-81.499	0	%100
4 M4 SX -81.499 -81.499 0 %:100 5 M5 SX -81.499 -81.499 0 %:100 6 M6 SX -81.499 -81.499 0 %:100 7 M7 SX -48.899 -48.899 0 %:100 9 M9 SX -81.499 -81.499 0 %:100 10 M10 SX -81.499 -81.499 0 %:100 11 M11 SX -81.499 -81.499 0 %:100 12 M12 SX -81.499 -81.499 0 %:100 13 M13 SX -81.499 -81.499 0 %:100 14 M14 SX -81.499 -81.499 0 %:100 15 M15 SX -81.499 -81.499 0 %:100 16 H1 SX -48.899 -48.899 0 %:100	2	M2	SX	-48.899	-48.899	0	%100
5 M5 SX -81.499 -81.499 0 %100 6 M6 SX -81.499 -81.499 0 %100 7 M7 SX -48.899 -81.499 0 %100 8 M8 SX -81.499 -81.499 0 %100 9 M9 SX -81.499 -81.499 0 %100 10 M10 SX -81.499 -81.499 0 %100 11 M11 SX -81.499 -81.499 0 %100 12 M12 SX -48.899 -48.899 0 %100 14 M14 SX -81.499 -81.499 0 %100 14 M14 SX -81.499 -81.499 0 %100 14 M14 SX -81.499 -81.499 0 %100 15 M15 SX -81.499 -81.499 0 %100	3	M3	SX	-81.499	-81.499	0	%100
6 M6 SX -81,499 -81,499 0 %100 7 M7 SX -48,899 0 %100 8 M8 SX -81,499 -81,499 0 %100 9 M9 SX -81,499 -81,499 0 %100 10 M10 SX -81,499 -81,499 0 %100 11 M11 SX -81,499 -81,499 0 %100 12 M12 SX -48,899 -81,499 0 %100 13 M13 SX -81,499 -81,499 0 %100 14 M14 SX -81,499 -81,499 0 %100 15 M16 SX -81,499 -81,499 0 %100 16 H1 SX -88,899 -48,899 0 %100 16 H1 SX -48,899 -48,899 0 %100 18 <td>4</td> <td>M4</td> <td>SX</td> <td>-81.499</td> <td>-81.499</td> <td>0</td> <td>%100</td>	4	M4	SX	-81.499	-81.499	0	%100
R M7 SX 48.899 48.899 0 %100 9 M8 SX -81.499 -81.499 0 %100 10 M10 SX -81.499 -81.499 0 %100 11 M11 SX -81.499 -81.499 0 %100 12 M12 SX -81.499 -81.499 0 %100 12 M12 SX -48.899 -48.899 0 %100 13 M13 SX -81.499 -81.499 0 %100 14 M14 SX -81.499 -81.499 0 %100 15 M15 SX -81.499 -81.499 0 %100 16 H1 SX -48.899 -81.499 0 %100 17 H3 SX -48.899 -48.899 0 %100 19 M19 SX -48.899 -48.899 0 %100	5	M5	SX	-81.499	-81.499	0	%100
8 M8 SX -81.499 -81.499 0 %100 10 M10 SX -81.499 -81.499 0 %100 11 M11 SX -81.499 -81.499 0 %100 12 M12 SX -48.899 -81.499 0 %100 13 M13 SX -81.499 -81.499 0 %100 14 M14 SX -81.499 -81.499 0 %100 15 M15 SX -81.499 -81.499 0 %100 16 H1 SX -81.499 -81.499 0 %100 16 H1 SX -48.899 -48.899 0 %100 18 H2 SX -48.899 -48.899 0 %100 18 H2 SX -48.899 -48.899 0 %100 20 M20 SX -48.899 -48.899 0 %100 <td>6</td> <td>M6</td> <td>SX</td> <td>-81.499</td> <td>-81.499</td> <td>0</td> <td>%100</td>	6	M6	SX	-81.499	-81.499	0	%100
9	7	M7	SX	-48.899	-48.899	0	%100
10	8	M8	SX	-81.499	-81.499	0	%100
11 M11 SX -91.499 -81.499 0 %100 12 M12 SX -48.899 -48.899 0 %100 13 M13 SX -81.499 0 %100 14 M14 SX -81.499 -81.499 0 %100 15 M15 SX -81.499 -81.499 0 %100 16 H1 SX -48.899 -48.899 0 %100 17 H3 SX -48.899 -48.899 0 %100 17 H3 SX -48.899 -48.899 0 %100 19 M19 SX -48.899 -48.899 0 %100 20 M20 SX -48.899 -48.899 0 %100 21 M21 SX -48.899 -48.899 0 %100 22 M22 SX -81.499 -81.499 0 %100 <td< td=""><td>9</td><td>M9</td><td>SX</td><td>-81.499</td><td>-81.499</td><td>0</td><td>%100</td></td<>	9	M9	SX	-81.499	-81.499	0	%100
12	10	M10	SX	-81.499	-81.499	0	%100
13 M13 SX -81.499 -81.499 0 %100 14 M14 SX -81.499 -81.499 0 %100 15 M15 SX -81.499 -81.499 0 %100 16 H1 SX -48.899 -48.899 0 %100 17 H3 SX -48.899 -48.899 0 %100 18 H2 SX -48.899 -48.899 0 %100 19 M19 SX -48.899 -48.899 0 %100 20 M20 SX -48.899 -48.899 0 %100 21 M21 SX -48.899 -48.899 0 %100 21 M21 SX -48.899 -48.899 0 %100 22 M22 SX -81.499 -81.499 0 %100 23 M22 SX -81.499 -81.499 0 %100 <	11	M11	SX	-81.499	-81.499	0	%100
14 M14 SX -81.499 -81.499 0 %100 15 M15 SX -81.499 0 %100 16 H1 SX -48.899 -48.899 0 %100 17 H3 SX -48.899 -48.899 0 %100 18 H2 SX -48.899 -48.899 0 %100 19 M19 SX -48.899 -48.899 0 %100 20 M20 SX -48.899 -48.899 0 %100 21 M21 SX -48.899 -48.899 0 %100 21 M21 SX -48.899 -48.899 0 %100 22 M22 SX -81.499 -81.499 0 %100 23 M23 SX -81.499 -81.499 0 %100 25 M25 SX -81.499 -81.499 0 %100 <td< td=""><td>12</td><td>M12</td><td>SX</td><td>-48.899</td><td>-48.899</td><td>0</td><td>%100</td></td<>	12	M12	SX	-48.899	-48.899	0	%100
15 M15 SX -81,499 -81,499 0 %100 16 H1 SX -48,899 -48,899 0 %100 17 H3 SX -48,899 -48,899 0 %100 18 H2 SX -48,899 -48,899 0 %100 20 M20 SX -48,899 -48,899 0 %100 21 M21 SX -48,899 -48,899 0 %100 21 M21 SX -48,899 -48,899 0 %100 21 M21 SX -48,899 -48,899 0 %100 22 M22 SX -81,499 -81,499 0 %100 24 M23 SX -81,499 -81,499 0 %100 24 M24 SX -81,499 -81,499 0 %100 25 M25 SX -81,499 -81,499 0 %100 <	13	M13	SX	-81.499	-81.499	0	%100
15 M15 SX -81,499 -81,499 0 %100 16 H1 SX -48,899 -48,899 0 %100 17 H3 SX -48,899 -48,899 0 %100 18 H2 SX -48,899 -48,899 0 %100 20 M20 SX -48,899 -48,899 0 %100 21 M21 SX -48,899 -48,899 0 %100 21 M21 SX -48,899 -48,899 0 %100 21 M21 SX -48,499 -81,499 0 %100 23 M23 SX -81,499 -81,499 0 %100 24 M24 SX -81,499 -81,499 0 %100 25 M25 SX -81,499 -81,499 0 %100 27 MP2 SX -48,899 -48,899 0 %100 <	14					0	
16 H1 SX -48.899 -48.899 0 %100 17 H3 SX -48.899 -48.899 0 %100 19 M19 SX -48.899 -48.899 0 %100 20 M20 SX -48.899 -48.899 0 %100 21 M21 SX -48.899 -48.899 0 %100 22 M22 SX -48.899 -48.899 0 %100 22 M22 SX -81.499 -81.499 0 %100 23 M23 SX -81.499 -81.499 0 %100 24 M24 SX -81.499 -81.499 0 %100 25 M25 SX -81.499 -81.499 0 %100 26 M26 SX -81.499 -81.499 0 %100 27 MP2 SX -48.899 -84.899 0 %100	15		SX			0	
17 H3 SX -48.899 -48.899 0 %100 18 H2 SX -48.899 -48.899 0 %100 20 M20 SX -48.899 -48.899 0 %100 21 M21 SX -48.899 -48.899 0 %100 21 M21 SX -48.899 -48.899 0 %100 22 M22 SX -81.499 -81.499 0 %100 23 M23 SX -81.499 -81.499 0 %100 24 M24 SX -81.499 -81.499 0 %100 25 M25 SX -81.499 -81.499 0 %100 26 M26 SX -81.499 -81.499 0 %100 27 MP2 SX -48.899 -48.899 0 %100 29 M29 SX -81.499 -81.499 0 %100	16		SX			0	
18 H2 SX -48.899 -48.899 0 %100 19 M19 SX -48.899 -48.899 0 %100 20 M20 SX -48.899 -48.899 0 %100 21 M21 SX -48.899 -48.899 0 %100 22 M22 SX -81.499 -81.499 0 %100 23 M23 SX -81.499 -81.499 0 %100 24 M24 SX -81.499 -81.499 0 %100 25 M25 SX -81.499 -81.499 0 %100 26 M26 SX -81.499 -81.499 0 %100 27 MP2 SX -48.899 -48.899 0 %100 28 M28 SX -81.499 -81.499 0 %100 30 MP1 SX -48.899 -48.899 0 %100		H3			•	0	
19 M19 SX -48.899 -48.899 0 %100 20 M20 SX -48.899 -48.899 0 %100 21 M21 SX -48.899 -48.899 0 %100 22 M22 SX -81.499 -81.499 0 %100 23 M23 SX -81.499 -81.499 0 %100 24 M24 SX -81.499 -81.499 0 %100 25 M25 SX -81.499 -81.499 0 %100 26 M26 SX -81.499 -81.499 0 %100 27 MP2 SX -48.899 -48.899 0 %100 28 M28 SX -81.499 -81.499 0 %100 29 M29 SX -81.499 -81.499 0 %100 30 MP1 SX -48.899 -48.899 0 %100							
20 M20 SX -48.899 -48.899 0 %100 21 M21 SX -48.899 -48.899 0 %100 22 M22 SX -81.499 -81.499 0 %100 23 M23 SX -81.499 -81.499 0 %100 24 M24 SX -81.499 -81.499 0 %100 25 M25 SX -81.499 -81.499 0 %100 26 M26 SX -81.499 -81.499 0 %100 27 MP2 SX -48.899 -48.899 0 %100 28 M28 SX -81.499 -81.499 0 %100 30 MP1 SX -48.899 -48.899 0 %100 31 M31 SX -81.499 -81.499 0 %100 32 M32 SX -81.499 -81.499 0 %100							
21 M21 SX -48.899 -48.899 0 %100 22 M22 SX -81.499 -81.499 0 %100 24 M23 SX -81.499 -81.499 0 %100 24 M24 SX -81.499 -81.499 0 %100 25 M25 SX -81.499 -81.499 0 %100 26 M26 SX -81.499 -81.499 0 %100 27 MP2 SX -48.899 -48.899 0 %100 28 M28 SX -81.499 -81.499 0 %100 29 M29 SX -81.499 -81.499 0 %100 30 MP1 SX -48.899 -48.899 0 %100 31 M31 SX -81.499 -81.499 0 %100 32 M32 SX -81.499 -81.499 0 %100							
22 M22 SX -81.499 -81.499 0 %100 23 M23 SX -81.499 -81.499 0 %100 24 M24 SX -81.499 -81.499 0 %100 25 M25 SX -81.499 -81.499 0 %100 26 M26 SX -81.499 -81.499 0 %100 27 MP2 SX -48.899 -48.899 0 %100 28 M28 SX -81.499 -81.499 0 %100 29 M29 SX -81.499 -81.499 0 %100 30 MP1 SX -48.899 -48.899 0 %100 31 M31 SX -81.499 -81.499 0 %100 32 M32 SX -81.499 -81.499 0 %100 33 MP3 SX -81.499 -81.499 0 %100							
23 M23 SX -81.499 -81.499 0 %100 24 M24 SX -81.499 -81.499 0 %100 25 M25 SX -81.499 -81.499 0 %100 26 M26 SX -81.499 -81.499 0 %100 27 MP2 SX -48.899 -48.899 0 %100 28 M28 SX -81.499 -81.499 0 %100 29 M29 SX -81.499 -81.499 0 %100 30 MP1 SX -48.899 -48.899 0 %100 31 M31 SX -81.499 -81.499 0 %100 32 M32 SX -81.499 -81.499 0 %100 34 M34 SX -81.499 -81.499 0 %100 34 M34 SX -81.499 -81.499 0 %100							
24 M24 SX -81.499 -81.499 0 %100 25 M25 SX -81.499 -81.499 0 %100 26 M26 SX -81.499 -81.499 0 %100 27 MP2 SX -48.899 -48.899 0 %100 28 M28 SX -81.499 -81.499 0 %100 29 M29 SX -81.499 -81.499 0 %100 30 MP1 SX -48.899 -48.899 0 %100 31 M31 SX -81.499 -81.499 0 %100 32 M32 SX -81.499 -81.499 0 %100 33 MP3 SX -81.499 -81.499 0 %100 34 M34 SX -81.499 -81.499 0 %100 35 M35 SX -81.499 -81.499 0 %100							
25 M25 SX -81.499 -81.499 0 %100 26 M26 SX -81.499 -81.499 0 %100 27 MP2 SX -48.899 -48.899 0 %100 28 M28 SX -81.499 -81.499 0 %100 29 M29 SX -81.499 -81.499 0 %100 30 MP1 SX -48.899 -48.899 0 %100 31 M31 SX -81.499 -81.499 0 %100 31 M31 SX -81.499 -81.499 0 %100 32 M32 SX -81.499 -81.499 0 %100 33 MP3 SX -81.499 -81.499 0 %100 34 M34 SX -81.499 -81.499 0 %100 35 M35 SX -81.499 -81.499 0 %100							
26 M26 SX -81.499 -81.499 0 %100 27 MP2 SX -48.899 -48.899 0 %100 28 M28 SX -81.499 -81.499 0 %100 29 M29 SX -81.499 -81.499 0 %100 30 MP1 SX -48.899 -48.899 0 %100 31 M31 SX -81.499 -81.499 0 %100 32 M32 SX -81.499 -81.499 0 %100 33 MP3 SX -48.899 -48.899 0 %100 34 M34 SX -81.499 -81.499 0 %100 35 M35 SX -81.499 -81.499 0 %100 36 MP8 SX -48.899 -48.899 0 %100 37 M37 SX -81.499 -81.499 0 %100							
27 MP2 SX -48.899 -48.899 0 %100 28 M28 SX -81.499 -81.499 0 %100 29 M29 SX -81.499 -81.499 0 %100 30 MP1 SX -48.899 -48.899 0 %100 31 M31 SX -81.499 -81.499 0 %100 32 M32 SX -81.499 -81.499 0 %100 33 MP3 SX -48.899 -48.899 0 %100 34 M34 SX -81.499 -81.499 0 %100 35 M35 SX -81.499 -81.499 0 %100 36 MP8 SX -48.899 -48.899 0 %100 37 M37 SX -81.499 -81.499 0 %100 38 M38 SX -48.899 -48.899 0 %100							
28 M28 SX -81.499 -81.499 0 %100 29 M29 SX -81.499 -81.499 0 %100 30 MP1 SX -48.899 -48.899 0 %100 31 M31 SX -81.499 -81.499 0 %100 32 M32 SX -81.499 -81.499 0 %100 33 MP3 SX -48.899 -48.899 0 %100 34 M34 SX -81.499 -81.499 0 %100 35 M35 SX -81.499 -81.499 0 %100 36 MP8 SX -48.899 -48.899 0 %100 38 M38 SX -81.499 -81.499 0 %100 39 MP7 SX -48.899 -48.899 0 %100 40 M40 SX -81.499 -81.499 0 %100							
29 M29 SX -81.499 -81.499 0 %100 30 MP1 SX -48.899 -48.899 0 %100 31 M31 SX -81.499 -81.499 0 %100 32 M32 SX -81.499 -81.499 0 %100 33 MP3 SX -48.899 -48.899 0 %100 34 M34 SX -81.499 -81.499 0 %100 35 M35 SX -81.499 -81.499 0 %100 36 MP8 SX -48.899 -48.899 0 %100 37 M37 SX -81.499 -81.499 0 %100 38 M38 SX -48.899 -48.899 0 %100 39 MP7 SX -48.499 -81.499 0 %100 40 M40 SX -81.499 -81.499 0 %100							
30 MP1 SX -48.899 -48.899 0 %100 31 M31 SX -81.499 -81.499 0 %100 32 M32 SX -81.499 -81.499 0 %100 33 MP3 SX -48.899 -48.899 0 %100 34 M34 SX -81.499 -81.499 0 %100 35 M35 SX -81.499 -81.499 0 %100 36 MP8 SX -48.899 -48.899 0 %100 37 M37 SX -81.499 -81.499 0 %100 38 M38 SX -81.499 -81.499 0 %100 39 MP7 SX -48.899 -48.899 0 %100 40 M40 SX -81.499 -81.499 0 %100 42 MP9 SX -48.899 -48.899 0 %100							
31 M31 SX -81.499 -81.499 0 %100 32 M32 SX -81.499 -81.499 0 %100 33 MP3 SX -48.899 -48.899 0 %100 34 M34 SX -81.499 -81.499 0 %100 35 M35 SX -81.499 -81.499 0 %100 36 MP8 SX -48.899 -48.899 0 %100 37 M37 SX -81.499 -81.499 0 %100 38 M38 SX -48.899 -48.899 0 %100 39 MP7 SX -48.899 -48.899 0 %100 40 M40 SX -81.499 -81.499 0 %100 41 M41 SX -81.499 -81.499 0 %100 42 MP9 SX -48.899 -48.899 0 %100					i		
32 M32 SX -81.499 -81.499 0 %100 33 MP3 SX -48.899 -48.899 0 %100 34 M34 SX -81.499 -81.499 0 %100 35 M35 SX -81.499 -81.499 0 %100 36 MP8 SX -48.899 -48.899 0 %100 37 M37 SX -81.499 -81.499 0 %100 38 M38 SX -81.499 -81.499 0 %100 39 MP7 SX -48.899 -48.899 0 %100 40 M40 SX -81.499 -81.499 0 %100 41 M41 SX -81.499 -81.499 0 %100 42 MP9 SX -48.899 -48.899 0 %100 43 M43 SX -81.499 -81.499 0 %100						0	
33 MP3 SX -48.899 -48.899 0 %100 34 M34 SX -81.499 -81.499 0 %100 35 M35 SX -81.499 -81.499 0 %100 36 MP8 SX -48.899 -48.899 0 %100 37 M37 SX -81.499 -81.499 0 %100 38 M38 SX -81.499 -81.499 0 %100 39 MP7 SX -48.899 -48.899 0 %100 40 M40 SX -81.499 -81.499 0 %100 41 M41 SX -81.499 -81.499 0 %100 42 MP9 SX -48.899 -48.899 0 %100 43 M43 SX -81.499 -81.499 0 %100 45 MP5 SX -48.899 -48.899 0 %100	32				i		
34 M34 SX -81.499 -81.499 0 %100 35 M35 SX -81.499 -81.499 0 %100 36 MP8 SX -48.899 -48.899 0 %100 37 M37 SX -81.499 -81.499 0 %100 38 M38 SX -81.499 -81.499 0 %100 39 MP7 SX -48.899 -48.899 0 %100 40 M40 SX -81.499 -81.499 0 %100 41 M41 SX -81.499 -81.499 0 %100 42 MP9 SX -48.899 -48.899 0 %100 43 M43 SX -81.499 -81.499 0 %100 45 MP5 SX -48.899 -48.899 0 %100 46 M46 SX -81.499 -81.499 0 %100					i	0	
35 M35 SX -81.499 0 %100 36 MP8 SX -48.899 -48.899 0 %100 37 M37 SX -81.499 0 %100 38 M38 SX -81.499 0 %100 39 MP7 SX -48.899 -48.899 0 %100 40 M40 SX -81.499 0 %100 41 M41 SX -81.499 0 %100 42 MP9 SX -48.899 -48.899 0 %100 43 M43 SX -81.499 0 %100 44 M44 SX -81.499 0 %100 45 MP5 SX -48.899 -48.899 0 %100 46 M46 SX -81.499 0 %100 47 M47 SX -81.499 -81.499 0 %100	34	M34				0	
36 MP8 SX -48.899 -48.899 0 %100 37 M37 SX -81.499 -81.499 0 %100 38 M38 SX -81.499 -81.499 0 %100 39 MP7 SX -48.899 -48.899 0 %100 40 M40 SX -81.499 -81.499 0 %100 41 M41 SX -81.499 -81.499 0 %100 42 MP9 SX -48.899 -48.899 0 %100 43 M43 SX -81.499 -81.499 0 %100 44 M44 SX -81.499 -81.499 0 %100 45 MP5 SX -48.899 -48.899 0 %100 46 M46 SX -81.499 -81.499 0 %100 48 MP4 SX -84.899 -48.899 0 %100	35	M35			•	0	
37 M37 SX -81.499 -81.499 0 %100 38 M38 SX -81.499 -81.499 0 %100 39 MP7 SX -48.899 -48.899 0 %100 40 M40 SX -81.499 0 %100 41 M41 SX -81.499 0 %100 42 MP9 SX -48.899 -48.899 0 %100 43 M43 SX -81.499 -81.499 0 %100 44 M44 SX -81.499 -81.499 0 %100 45 MP5 SX -48.899 -48.899 0 %100 46 M46 SX -81.499 -81.499 0 %100 48 MP4 SX -81.499 -81.499 0 %100 49 M49 SX -81.499 -81.499 0 %100 50 M	36					0	%100
39 MP7 SX -48.899 -48.899 0 %100 40 M40 SX -81.499 0 %100 41 M41 SX -81.499 0 %100 42 MP9 SX -48.899 -48.899 0 %100 43 M43 SX -81.499 0 %100 44 M44 SX -81.499 0 %100 45 MP5 SX -48.899 -48.899 0 %100 46 M46 SX -81.499 -81.499 0 %100 47 M47 SX -81.499 -81.499 0 %100 48 MP4 SX -48.899 -48.899 0 %100 49 M49 SX -81.499 -81.499 0 %100 50 M50 SX -81.499 -81.499 0 %100		M37				0	
39 MP7 SX -48.899 -48.899 0 %100 40 M40 SX -81.499 0 %100 41 M41 SX -81.499 0 %100 42 MP9 SX -48.899 -48.899 0 %100 43 M43 SX -81.499 0 %100 44 M44 SX -81.499 0 %100 45 MP5 SX -48.899 -48.899 0 %100 46 M46 SX -81.499 -81.499 0 %100 47 M47 SX -81.499 -81.499 0 %100 48 MP4 SX -48.899 -48.899 0 %100 49 M49 SX -81.499 -81.499 0 %100 50 M50 SX -81.499 -81.499 0 %100	38					0	
40 M40 SX -81.499 -81.499 0 %100 41 M41 SX -81.499 0 %100 42 MP9 SX -48.899 0 %100 43 M43 SX -81.499 0 %100 44 M44 SX -81.499 0 %100 45 MP5 SX -48.899 -48.899 0 %100 46 M46 SX -81.499 0 %100 47 M47 SX -81.499 0 %100 48 MP4 SX -48.899 -48.899 0 %100 49 M49 SX -81.499 -81.499 0 %100 50 M50 SX -81.499 -81.499 0 %100							
41 M41 SX -81.499 -81.499 0 %100 42 MP9 SX -48.899 0 %100 43 M43 SX -81.499 0 %100 44 M44 SX -81.499 0 %100 45 MP5 SX -48.899 0 %100 46 M46 SX -81.499 0 %100 47 M47 SX -81.499 0 %100 48 MP4 SX -48.899 0 %100 49 M49 SX -81.499 -81.499 0 %100 50 M50 SX -81.499 -81.499 0 %100							
42 MP9 SX -48.899 -48.899 0 %100 43 M43 SX -81.499 0 %100 44 M44 SX -81.499 0 %100 45 MP5 SX -48.899 0 %100 46 M46 SX -81.499 0 %100 47 M47 SX -81.499 0 %100 48 MP4 SX -48.899 -48.899 0 %100 49 M49 SX -81.499 -81.499 0 %100 50 M50 SX -81.499 -81.499 0 %100							
43 M43 SX -81.499 -81.499 0 %100 44 M44 SX -81.499 0 %100 45 MP5 SX -48.899 0 %100 46 M46 SX -81.499 0 %100 47 M47 SX -81.499 0 %100 48 MP4 SX -48.899 -48.899 0 %100 49 M49 SX -81.499 -81.499 0 %100 50 M50 SX -81.499 -81.499 0 %100							
44 M44 SX -81.499 0 %100 45 MP5 SX -48.899 0 %100 46 M46 SX -81.499 0 %100 47 M47 SX -81.499 0 %100 48 MP4 SX -48.899 -48.899 0 %100 49 M49 SX -81.499 0 %100 50 M50 SX -81.499 -81.499 0 %100							
45 MP5 SX -48.899 -48.899 0 %100 46 M46 SX -81.499 0 %100 47 M47 SX -81.499 0 %100 48 MP4 SX -48.899 0 %100 49 M49 SX -81.499 0 %100 50 M50 SX -81.499 -81.499 0 %100							
46 M46 SX -81.499 0 %100 47 M47 SX -81.499 0 %100 48 MP4 SX -48.899 -48.899 0 %100 49 M49 SX -81.499 0 %100 50 M50 SX -81.499 0 %100							
47 M47 SX -81.499 0 %100 48 MP4 SX -48.899 0 %100 49 M49 SX -81.499 0 %100 50 M50 SX -81.499 0 %100 50 M50 SX -81.499 0 %100							
48 MP4 SX -48.899 -48.899 0 %100 49 M49 SX -81.499 0 %100 50 M50 SX -81.499 0 %100					1		
49 M49 SX -81.499 -81.499 0 %100 50 M50 SX -81.499 -81.499 0 %100							
50 M50 SX -81.499 -81.499 0 %100					i		
					i		
					i		

Company Designer Job Number Model Name

: Trylon : JE :

. : 823666 July 23, 2021 1:09 P M Checked By:____

Member Distributed Loads (BLC 12 : Ice Weight)

1 M1 Y -10.853 -10.853 0 % 2 M2 Y -12.228 -12.228 0 % 3 M3 Y -9.734 -9.734 0 % 4 M4 Y -9.734 -9.734 0 % 5 M5 Y -17.574 -17.574 0 % 6 M6 Y -10.853 -10.853 0 % 7 M7 Y -12.228 -12.228 0 % 8 M8 Y -9.734 -9.734 0 % 9 M9 Y -9.734 -9.734 0 % 10 M10 Y -17.574 -17.574 0 % 11 M11 Y -10.853 -10.853 0 % 12 M12 Y -12.228 -12.228 0 % 13 M13 Y -9.734 -9.734 0 % 14 M14 Y	ation[in,%] 100 100 100 100 100 100 100 100
2 M2 Y -12.228 -12.228 0 % 3 M3 Y -9.734 -9.734 0 % 4 M4 Y -9.734 -9.734 0 % 5 M5 Y -17.574 -17.574 0 % 6 M6 Y -10.853 -10.853 0 % 7 M7 Y -12.228 0 % 8 M8 Y -9.734 -9.734 0 % 9 M9 Y -9.734 -9.734 0 % 10 M10 Y -17.574 -17.574 0 % 11 M11 Y -10.853 -10.853 0 % 12 M12 Y -12.228 -12.228 0 % 13 M13 Y -9.734 -9.734 0 % 14 M14 Y -9.734 -9.734 0 % 15 M15 Y -17.574	100 100 100 100
3 M3 Y -9.734 -9.734 0 % 4 M4 Y -9.734 -9.734 0 % 5 M5 Y -17.574 -17.574 0 % 6 M6 Y -10.853 -10.853 0 % 7 M7 Y -12.228 -12.228 0 % 8 M8 Y -9.734 -9.734 0 % 9 M9 Y -9.734 -9.734 0 % 10 M10 Y -17.574 -17.574 0 % 11 M11 Y -10.853 -10.853 0 % 12 M12 Y -12.228 -12.228 0 % 13 M13 Y -9.734 -9.734 0 % 14 M14 Y -9.734 -9.734 0 % 15 M15 Y -17.574 -17.574 0 %	100 100 100
4 M4 Y -9.734 -9.734 0 % 5 M5 Y -17.574 -17.574 0 % 6 M6 Y -10.853 -10.853 0 % 7 M7 Y -12.228 -12.228 0 % 8 M8 Y -9.734 -9.734 0 % 9 M9 Y -9.734 -9.734 0 % 10 M10 Y -17.574 -17.574 0 % 11 M11 Y -10.853 -10.853 0 % 12 M12 Y -12.228 -12.228 0 % 13 M13 Y -9.734 -9.734 0 % 14 M14 Y -9.734 -9.734 0 % 15 M15 Y -17.574 -17.574 0 %	100 100
5 M5 Y -17.574 -17.574 0 % 6 M6 Y -10.853 -10.853 0 % 7 M7 Y -12.228 -12.228 0 % 8 M8 Y -9.734 -9.734 0 % 9 M9 Y -9.734 -9.734 0 % 10 M10 Y -17.574 -17.574 0 % 11 M11 Y -10.853 -10.853 0 % 12 M12 Y -12.228 -12.228 0 % 13 M13 Y -9.734 -9.734 0 % 14 M14 Y -9.734 -9.734 0 % 15 M15 Y -17.574 -17.574 0 %	100
6 M6 Y -10.853 -10.853 0 % 7 M7 Y -12.228 -12.228 0 % 8 M8 Y -9.734 -9.734 0 % 9 M9 Y -9.734 -9.734 0 % 10 M10 Y -17.574 -17.574 0 % 11 M11 Y -10.853 -10.853 0 % 12 M12 Y -12.228 -12.228 0 % 13 M13 Y -9.734 -9.734 0 % 14 M14 Y -9.734 -9.734 0 % 15 M15 Y -17.574 -17.574 0 %	
7 M7 Y -12.228 -12.228 0 % 8 M8 Y -9.734 -9.734 0 % 9 M9 Y -9.734 -9.734 0 % 10 M10 Y -17.574 -17.574 0 % 11 M11 Y -10.853 -10.853 0 % 12 M12 Y -12.228 -12.228 0 % 13 M13 Y -9.734 -9.734 0 % 14 M14 Y -9.734 -9.734 0 % 15 M15 Y -17.574 -17.574 0 %	
9 M9 Y -9.734 -9.734 0 % 10 M10 Y -17.574 -17.574 0 % 11 M11 Y -10.853 -10.853 0 % 12 M12 Y -12.228 -12.228 0 % 13 M13 Y -9.734 -9.734 0 % 14 M14 Y -9.734 -9.734 0 % 15 M15 Y -17.574 -17.574 0 %	100
9 M9 Y -9.734 -9.734 0 % 10 M10 Y -17.574 -17.574 0 % 11 M11 Y -10.853 -10.853 0 % 12 M12 Y -12.228 -12.228 0 % 13 M13 Y -9.734 -9.734 0 % 14 M14 Y -9.734 -9.734 0 % 15 M15 Y -17.574 -17.574 0 %	100
10 M10 Y -17.574 -17.574 0 % 11 M11 Y -10.853 -10.853 0 % 12 M12 Y -12.228 -12.228 0 % 13 M13 Y -9.734 -9.734 0 % 14 M14 Y -9.734 -9.734 0 % 15 M15 Y -17.574 -17.574 0 %	100
11 M11 Y -10.853 -10.853 0 % 12 M12 Y -12.228 -12.228 0 % 13 M13 Y -9.734 -9.734 0 % 14 M14 Y -9.734 -9.734 0 % 15 M15 Y -17.574 -17.574 0 %	100
12 M12 Y -12.228 -12.228 0 % 13 M13 Y -9.734 -9.734 0 % 14 M14 Y -9.734 -9.734 0 % 15 M15 Y -17.574 -17.574 0 %	100
13 M13 Y -9.734 -9.734 0 % 14 M14 Y -9.734 -9.734 0 % 15 M15 Y -17.574 -17.574 0 %	100
14 M14 Y -9.734 -9.734 0 % 15 M15 Y -17.574 -17.574 0 %	100
15 M15 Y -17.574 -17.574 0 %	100
	100
16	100
	100
	100
	100
	100
	100
	100
	100
	100
	100
	100
	100
	100
	100
	100
	100
	100
	100
	100
	100
36 MP8 Y -8.768 -8.768 0 %	100
37 M37 Y 0 0 0 %	100
	100
	100
	100
	100
	100
	100
	100
	100
	100
	100
	100
	100
	100
51 MP6 Y -8.768 -8.768 0 %	

Company Designer Job Number Model Name

: Trylon : JE :

: 823666

July 23, 2021 1:09 P M Checked B y:____

Member Distributed Loads (BLC 13 : Ice Structure Wind Z)

	Member Label	Direction	Start Magnitude [lb/ft,	.End Magnitude[l b/ft,F	. Start Location[in,%]	End Location[in,%]
1	M1	SZ	-15.506	-15.506	0	%100
2	M2	SZ	-14.23	-14.23	0	%100
3	M3	SZ	-16.974	-16.974	0	%100
4	M4	SZ	-16.974	-16.974	0	%100
5	M5	SZ	-11.675	-11.675	0	%100
6	M6	SZ	-15.506	-15.506	0	%100
7	M7	SZ	-14.23	-14.23	0	%100
8	M8	SZ	-16.974	-16.974	0	%100
9	M9	SZ	-16.974	-16.974	0	%100
10	M10	SZ	-11.675	-11.675	0	%100
11	M11	SZ	-15.506	-15.506	0	%100
12	M12	SZ	-14.23	-14.23	0	%100
13	M13	SZ	-16.974	-16.974	0	%100
14	M14	SZ	-16.974	-16.974	0	%100
15	M15	SZ	-11.675	-11.675	0	%100
16	H1	SZ	-14.23	-14.23	0	%100
17	H3	SZ	-14.23	-14.23	0	%100
18	H2	SZ	-14.23	-14.23	0	%100
19	M19	SZ	-18.763	-18.763	0	%100
20	M20	SZ	-18.763	-18.763	0	%100
21	M21	SZ	-18.763	-18.763	0	%100
22	M22	SZ	-10.928	-10.928	0	%100
23	M23	SZ	-10.928	-10.928	0	%100
24	M24	SZ	-10.928	-10.928	0	%100
25	M25	SZ	0	0	0	%100
26	M26	SZ	0	0	0	%100
27	MP2	SZ	-18.763	-18.763	0	%100
28	M28	SZ	0	0	0	%100
29	M29	SZ	0	0	0	%100
30	MP1	SZ	-18.763	-18.763	0	%100
31	M31	SZ	0	0	0	%100
32	M32	SZ	0	0	0	%100
33	MP3	SZ	-18.763	-18.763	0	%100
34	M34	SZ	0	0	0	%100
35	M35	SZ	0	0	0	%100
36	MP8	SZ	-18.763	-18.763	0	%100
37	M37	SZ	0	0	0	%100
38	M38	SZ	0	0	0	%100
39	MP7	SZ	-18.763	-18.763	0	%100
40	M40	SZ	0	0	0	%100
41	M41	SZ	0	0	0	%100
42	MP9	SZ	-18.763	-18.763	0	%100
43	M43	SZ	0	0	0	%100
44	M44	SZ	0	0	0	%100
45	MP5	SZ	-18.763	-18.763	0	%100
46	M46	SZ	0	0	0	%100
47	M47	SZ	0	0	0	%100
48	MP4	SZ	-18.763	-18.763	0	%100
49	M49	SZ	0	0	0	%100
50	M50	SZ	0	0	0	%100
51	MP6	SZ	-18.763	-18.763	0	%100

Company Designer Job Number Model Name

: Trylon : JE :

: 823666

July 23, 2021 1:09 PM Checked By:___

Member Distributed Loads (BLC 14 : Ice Structure Wind X)

1		Member Label	Direction	Start Magnitude [lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
2	1						
3	2					0	
4 M4 SX -16.974 -11.675 0 %100 5 M6 SX -15.506 -15.506 0 %100 6 M6 SX -15.506 -15.506 0 %100 7 M7 SX -14.23 0 %100 8 M8 SX -16.974 -16.974 0 %100 9 M9 SX -16.974 -16.974 0 %100 10 M10 SX -16.974 -16.974 0 %100 11 M11 SX -15.506 -15.506 0 %100 12 M12 SX -16.974 -16.974 0 %100 13 M13 SX -16.974 -16.974 0 %100 14 M14 SX -16.974 -16.974 0 %100 15 M15 SX -14.23 -14.23 0 %100 16	3	M3					
S	4						
6 M6 SX -15.506 -15.506 0 %100 7 M7 SX -14.23 0 %100 8 M8 SX -16.974 -16.974 0 %100 9 M9 SX -16.974 -15.974 0 %100 10 M10 SX -11.675 -15.906 0 %100 11 M11 SX -15.506 -15.506 0 %100 12 M12 SX -14.23 -14.23 0 %100 13 M13 SX -16.974 -16.974 0 %100 14 M14 SX -16.974 -16.974 0 %100 15 M15 SX -11.675 -11.675 0 %100 16 H1 SX -14.23 -14.23 0 %100 17 H3 SX -14.23 -14.23 0 %100 19	5						
T							
8 M8 SX -16.974 -16.974 0 %100 10 M10 SX -16.974 -16.974 0 %100 11 M10 SX -11.675 -11.675 0 %100 11 M11 SX -14.23 -14.23 0 %100 12 M12 SX -14.23 -14.23 0 %100 13 M13 SX -16.974 -16.974 0 %100 14 M14 SX -16.974 -16.974 0 %100 15 M15 SX -11.675 -11.675 0 %100 16 H1 SX -14.23 -14.23 0 %100 17 H3 SX -14.23 -14.23 0 %100 18 H2 SX -14.23 -14.23 0 %100 19 M19 SX -18.763 -18.763 0 %100 <tr< td=""><td>_</td><td></td><td></td><td></td><td></td><td>0</td><td></td></tr<>	_					0	
9	8	M8				0	
10							
11							
12							
13							
14 M14 SX -16.974 -16.974 0 %100 15 M15 SX -11.675 0 %100 16 H1 SX -14.23 -14.23 0 %100 17 H3 SX -14.23 -14.23 0 %100 18 H2 SX -14.23 -14.23 0 %100 19 M19 SX -18.763 -18.763 0 %100 20 M20 SX -18.763 -18.763 0 %100 21 M21 SX -18.763 18.763 0 %100 22 M22 SX -10.928 -10.928 0 %100 23 M23 SX -10.928 -10.928 0 %100 24 M24 SX -10.928 -10.928 0 %100 25 M25 SX 0 0 0 %100 26 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
15							
16 H1 SX -14,23 -14,23 0 %100 17 H3 SX -14,23 -14,23 0 %100 18 H2 SX -14,23 -14,23 0 %100 19 M19 SX -18,763 -18,763 0 %100 20 M20 SX -18,763 -18,763 0 %100 21 M21 SX -18,763 -18,763 0 %100 22 M22 SX -10,928 -10,928 0 %100 23 M23 SX -10,928 -10,928 0 %100 24 M24 SX -10,928 -10,928 0 %100 25 M25 SX 0 0 0 %100 25 M26 SX 0 0 0 %100 27 MP2 SX -18,763 -18,763 0 %100 28 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
17							
18 H2 SX -14,23 -14,63 0 %100 19 M19 SX -18,763 -18,763 0 %100 20 M20 SX -18,763 -18,763 0 %100 21 M21 SX -18,763 -18,763 0 %100 22 M22 SX -10,928 -10,928 0 %100 23 M23 SX -10,928 -10,928 0 %100 24 M24 SX -10,928 -10,928 0 %100 24 M24 SX -10,928 -10,928 0 %100 25 M25 SX 0 0 0 %100 26 M26 SX 0 0 0 %100 27 MP2 SX -18,763 -18,763 0 %100 28 M28 SX 0 0 0 %100 30							
19							
20							
21 M21 SX -18.763 -18.763 0 %100 22 M22 SX -10.928 -10.928 0 %100 24 M24 SX -10.928 -10.928 0 %100 25 M25 SX 0 0 0 %100 26 M26 SX 0 0 0 %100 27 MP2 SX -18.763 -18.763 0 %100 28 M28 SX 0 0 0 %100 29 M29 SX 0 0 0 %100 30 MP1 SX -18.763 -18.763 0 %100 31 M31 SX 0 0 0 %100 32 M32 SX 0 0 0 %100 33 M93 SX -18.763 -18.763 0 %100 34 M34 SX							
22 M22 SX -10.928 -10.928 0 %100 23 M23 SX -10.928 -10.928 0 %100 24 M24 SX -10.928 -10.928 0 %100 25 M25 SX 0 0 0 %100 26 M26 SX 0 0 0 %100 27 MP2 SX -18.763 -18.763 0 %100 28 M28 SX 0 0 0 %100 29 M29 SX 0 0 0 %100 30 MP1 SX -18.763 -18.763 0 %100 31 M31 SX 0 0 0 %100 32 M32 SX 0 0 0 %100 33 MP3 SX -18.763 -18.763 0 %100 34 M34 SX							
23 M23 SX -10.928 -10.928 0 %100 24 M24 SX -10.928 0 %100 25 M25 SX 0 0 0 %100 26 M26 SX 0 0 0 %100 27 MP2 SX -18.763 -18.763 0 %100 28 M28 SX 0 0 0 %100 29 M29 SX 0 0 0 %100 30 MP1 SX -18.763 0 %100 31 M31 SX 0 0 0 %100 32 M32 SX 0 0 0 %100 32 M32 SX 0 0 0 %100 34 M34 SX 0 0 0 %100 35 M35 SX 0 0 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
24 M24 SX -10.928 -10.928 0 %100 25 M25 SX 0 0 0 %100 26 M26 SX 0 0 0 %100 27 MP2 SX -18.763 -18.763 0 %100 28 M28 SX 0 0 0 %100 29 M29 SX 0 0 0 %100 30 MP1 SX -18.763 -18.763 0 %100 31 M31 SX 0 0 0 %100 32 M32 SX 0 0 0 %100 33 MP3 SX -18.763 -18.763 0 %100 34 M34 SX 0 0 0 %100 35 M35 SX 0 0 0 %100 36 MP8 SX -18.76							
25 M25 SX 0 0 0 %100 26 M26 SX 0 0 0 %100 27 MP2 SX -18.763 -18.763 0 %100 28 M28 SX 0 0 0 %100 29 M29 SX 0 0 0 %100 30 MP1 SX -18.763 -18.763 0 %100 31 M31 SX 0 0 0 %100 31 M31 SX 0 0 0 %100 32 M32 SX 0 0 0 %100 33 MP3 SX -18.763 -18.763 0 %100 34 M34 SX 0 0 0 %100 35 M35 SX -18.763 -18.763 0 %100 36 MP8 SX -18.76							
26 M26 SX 0 0 %100 27 MP2 SX -18.763 -18.763 0 %100 28 M28 SX 0 0 0 %100 29 M29 SX 0 0 0 %100 30 MP1 SX -18.763 -18.763 0 %100 31 M31 SX 0 0 0 %100 32 M32 SX 0 0 0 %100 33 MP3 SX -18.763 -18.763 0 %100 34 M34 SX 0 0 0 %100 35 M35 SX 0 0 0 %100 36 MP8 SX -18.763 -18.763 0 %100 37 M37 SX 0 0 0 %100 38 M38 SX 0 0							
27 MP2 SX -18.763 -18.763 0 %100 28 M28 SX 0 0 0 %100 29 M29 SX 0 0 0 %100 30 MP1 SX -18.763 -18.763 0 %100 31 M31 SX 0 0 0 %100 32 M32 SX 0 0 0 %100 33 MP3 SX -18.763 -18.763 0 %100 34 M34 SX 0 0 0 %100 35 M35 SX 0 0 0 %100 36 MP8 SX -18.763 -18.763 0 %100 37 M37 SX 0 0 0 %100 38 M38 SX 0 0 0 %100 40 M40 SX 0							
28 M28 SX 0 0 0 %100 29 M29 SX 0 0 0 %100 30 MP1 SX -18.763 -18.763 0 %100 31 M31 SX 0 0 0 %100 32 M32 SX 0 0 0 %100 33 MP3 SX -18.763 -18.763 0 %100 34 M34 SX 0 0 0 %100 35 M35 SX 0 0 0 %100 36 MP8 SX -18.763 -18.763 0 %100 37 M37 SX 0 0 0 %100 38 M38 SX 0 0 0 %100 39 MP7 SX -18.763 -18.763 0 %100 40 M40 SX 0				-18.763	-18.763		
29 M29 SX 0 0 %100 30 MP1 SX -18.763 -18.763 0 %100 31 M31 SX 0 0 0 %100 32 M32 SX 0 0 0 %100 33 MP3 SX -18.763 -18.763 0 %100 34 M34 SX 0 0 0 %100 35 M35 SX 0 0 0 %100 36 MP8 SX -18.763 -18.763 0 %100 37 M37 SX 0 0 0 %100 38 M38 SX 0 0 0 %100 39 MP7 SX -18.763 -18.763 0 %100 40 M40 SX 0 0 0 %100 41 M41 SX 0 0							
30 MP1 SX -18.763 -18.763 0 %100 31 M31 SX 0 0 0 %100 32 M32 SX 0 0 0 %100 33 MP3 SX -18.763 -18.763 0 %100 34 M34 SX 0 0 0 %100 34 M34 SX 0 0 0 %100 35 M35 SX 0 0 0 %100 36 MP8 SX -18.763 -18.763 0 %100 37 M37 SX 0 0 0 %100 38 M38 SX 0 0 0 %100 39 MP7 SX -18.763 -18.763 0 %100 40 M40 SX 0 0 0 %100 42 MP9 SX -18.76							
31 M31 SX 0 0 0 %100 32 M32 SX 0 0 0 %100 33 MP3 SX -18.763 -18.763 0 %100 34 M34 SX 0 0 0 %100 35 M35 SX 0 0 0 %100 36 MP8 SX -18.763 -18.763 0 %100 37 M37 SX 0 0 0 %100 38 M38 SX 0 0 0 %100 39 MP7 SX -18.763 -18.763 0 %100 40 M40 SX 0 0 0 %100 41 M41 SX 0 0 0 %100 42 MP9 SX -18.763 -18.763 0 %100 44 M44 SX 0					-		
32 M32 SX 0 0 %100 33 MP3 SX -18.763 -18.763 0 %100 34 M34 SX 0 0 0 %100 35 M35 SX 0 0 0 %100 36 MP8 SX -18.763 -18.763 0 %100 37 M37 SX 0 0 0 %100 38 M38 SX 0 0 0 %100 39 MP7 SX -18.763 -18.763 0 %100 40 M40 SX 0 0 0 %100 41 M41 SX 0 0 0 %100 42 MP9 SX -18.763 -18.763 0 %100 43 M43 SX 0 0 0 %100 44 M44 AX 0 0							
33 MP3 SX -18.763 -18.763 0 %100 34 M34 SX 0 0 0 %100 35 M35 SX 0 0 0 %100 36 MP8 SX -18.763 -18.763 0 %100 37 M37 SX 0 0 0 %100 38 M38 SX 0 0 0 %100 39 MP7 SX -18.763 -18.763 0 %100 40 M40 SX 0 0 0 %100 41 M41 SX 0 0 0 %100 42 MP9 SX -18.763 -18.763 0 %100 43 M43 SX 0 0 0 %100 45 MP5 SX -18.763 -18.763 0 %100 46 M46 SX							
34 M34 SX 0 0 0 %100 35 M35 SX 0 0 0 %100 36 MP8 SX -18.763 -18.763 0 %100 37 M37 SX 0 0 0 %100 38 M38 SX 0 0 0 %100 39 MP7 SX -18.763 -18.763 0 %100 40 M40 SX 0 0 0 %100 41 M41 SX 0 0 0 %100 42 MP9 SX -18.763 -18.763 0 %100 43 M43 SX 0 0 0 %100 45 MP5 SX -18.763 -18.763 0 %100 46 M46 SX 0 0 0 %100 48 MP4 SX -18.76				-	-		
35 M35 SX 0 0 %100 36 MP8 SX -18.763 -18.763 0 %100 37 M37 SX 0 0 0 %100 38 M38 SX 0 0 0 %100 39 MP7 SX -18.763 -18.763 0 %100 40 M40 SX 0 0 0 %100 41 M41 SX 0 0 0 %100 42 MP9 SX -18.763 -18.763 0 %100 43 M43 SX 0 0 0 %100 44 M44 SX 0 0 0 %100 45 MP5 SX -18.763 -18.763 0 %100 46 M46 SX 0 0 0 %100 47 M47 SX 0 0							
36 MP8 SX -18.763 -18.763 0 %100 37 M37 SX 0 0 0 %100 38 M38 SX 0 0 0 %100 39 MP7 SX -18.763 -18.763 0 %100 40 M40 SX 0 0 0 %100 41 M41 SX 0 0 0 %100 42 MP9 SX -18.763 -18.763 0 %100 43 M43 SX 0 0 0 %100 44 M44 SX 0 0 %100 45 MP5 SX -18.763 -18.763 0 %100 46 M46 SX 0 0 0 %100 47 M47 SX 0 0 0 %100 48 MP4 SX -18.763							
37 M37 SX 0 0 %100 38 M38 SX 0 0 %100 39 MP7 SX -18.763 -18.763 0 %100 40 M40 SX 0 0 0 %100 41 M41 SX 0 0 0 %100 42 MP9 SX -18.763 -18.763 0 %100 43 M43 SX 0 0 0 %100 44 M44 SX 0 0 0 %100 45 MP5 SX -18.763 -18.763 0 %100 46 M46 SX 0 0 0 %100 47 M47 SX 0 0 0 %100 48 MP4 SX -18.763 -18.763 0 %100 49 M49 SX 0 0 0				-18,763	-18.763		
38 M38 SX 0 0 %100 39 MP7 SX -18.763 -18.763 0 %100 40 M40 SX 0 0 0 %100 41 M41 SX 0 0 %100 42 MP9 SX -18.763 0 %100 43 M43 SX 0 0 %100 44 M44 SX 0 0 %100 45 MP5 SX -18.763 -18.763 0 %100 46 M46 SX 0 0 0 %100 47 M47 SX 0 0 0 %100 48 MP4 SX -18.763 -18.763 0 %100 49 M49 SX 0 0 0 %100 50 M50 SX 0 0 0 %100							
39 MP7 SX -18.763 -18.763 0 %100 40 M40 SX 0 0 0 %100 41 M41 SX 0 0 0 %100 42 MP9 SX -18.763 -18.763 0 %100 43 M43 SX 0 0 0 %100 44 M44 SX 0 0 0 %100 45 MP5 SX -18.763 -18.763 0 %100 46 M46 SX 0 0 0 %100 47 M47 SX 0 0 0 %100 48 MP4 SX -18.763 -18.763 0 %100 49 M49 SX 0 0 0 %100 50 M50 SX 0 0 0 %100				0	0		
40 M40 SX 0 0 0 %100 41 M41 SX 0 0 %100 42 MP9 SX -18.763 -18.763 0 %100 43 M43 SX 0 0 0 %100 44 M44 SX 0 0 0 %100 45 MP5 SX -18.763 -18.763 0 %100 46 M46 SX 0 0 0 %100 47 M47 SX 0 0 0 %100 48 MP4 SX -18.763 -18.763 0 %100 49 M49 SX 0 0 0 %100 50 M50 SX 0 0 0 %100							
41 M41 SX 0 0 0 %100 42 MP9 SX -18.763 -18.763 0 %100 43 M43 SX 0 0 0 %100 44 M44 SX 0 0 0 %100 45 MP5 SX -18.763 -18.763 0 %100 46 M46 SX 0 0 0 %100 47 M47 SX 0 0 0 %100 48 MP4 SX -18.763 -18.763 0 %100 49 M49 SX 0 0 0 %100 50 M50 SX 0 0 0 %100							
42 MP9 SX -18.763 -18.763 0 %100 43 M43 SX 0 0 0 %100 44 M44 SX 0 0 0 %100 45 MP5 SX -18.763 -18.763 0 %100 46 M46 SX 0 0 0 %100 47 M47 SX 0 0 0 %100 48 MP4 SX -18.763 -18.763 0 %100 49 M49 SX 0 0 0 %100 50 M50 SX 0 0 0 %100							
43 M43 SX 0 0 0 %100 44 M44 SX 0 0 0 %100 45 MP5 SX -18.763 -18.763 0 %100 46 M46 SX 0 0 0 %100 47 M47 SX 0 0 0 %100 48 MP4 SX -18.763 -18.763 0 %100 49 M49 SX 0 0 0 %100 50 M50 SX 0 0 0 %100				-	·		
44 M44 SX 0 0 0 %100 45 MP5 SX -18.763 -18.763 0 %100 46 M46 SX 0 0 0 %100 47 M47 SX 0 0 0 %100 48 MP4 SX -18.763 -18.763 0 %100 49 M49 SX 0 0 0 %100 50 M50 SX 0 0 0 %100							
45 MP5 SX -18.763 -18.763 0 %100 46 M46 SX 0 0 0 %100 47 M47 SX 0 0 0 %100 48 MP4 SX -18.763 -18.763 0 %100 49 M49 SX 0 0 %100 50 M50 SX 0 0 %100				0			
46 M46 SX 0 0 0 %100 47 M47 SX 0 0 0 %100 48 MP4 SX -18.763 -18.763 0 %100 49 M49 SX 0 0 0 %100 50 M50 SX 0 0 0 %100				-18.763			
47 M47 SX 0 0 0 %100 48 MP4 SX -18.763 -18.763 0 %100 49 M49 SX 0 0 0 %100 50 M50 SX 0 0 0 %100							
48 MP4 SX -18.763 -18.763 0 %100 49 M49 SX 0 0 0 %100 50 M50 SX 0 0 0 %100							
49 M49 SX 0 0 0 %100 50 M50 SX 0 0 0 %100				-18.763			
50 M50 SX 0 0 0 %100							
				-18.763	-18.763		

Company
Designer
Job Number

: Trylon : JE er : ne : 823666 July 23, 2021 1:09 PM Checked By:__

Member Distributed Loads (BLC 43: BLC 1 Transient Area Loads)

	Member Label	Direction	Start Magnitude [lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M12	Υ	-10.921	-10.921	0	23.596
2	M13	Υ	-5.504	-5.504	3.828	27.295
3	M14	Υ	-5.504	-5.504	3.828	27.295
4	M7	Υ	-10.921	-10.921	0	23.596
5	M8	Υ	-5.504	-5.504	3.828	27.295
6	M9	Υ	-5.504	-5.504	3.828	27.295
7	M2	Υ	-10.921	-10.921	0	23.596
8	M3	Υ	-5.504	-5.504	3.828	27.295
9	M4	Υ	-5.504	-5.504	3.828	27.295

Member Distributed Loads (BLC 44: BLC 12 Transient Area Loads)

	Member Label	Direction	Start Magnitude [lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M12	Υ	-29.487	-29.487	0	23.596
2	M13	Υ	-14.86	-14.86	3.828	27.295
3	M14	Υ	-14.86	-14.86	3.828	27.295
4	M7	Υ	-29.487	-29.487	0	23.596
5	M8	Υ	-14.86	-14.86	3.828	27.295
6	M9	Υ	-14.86	-14.86	3.828	27.295
7	M2	Υ	-29.487	-29.487	0	23.596
8	M3	Υ	-14.86	-14.86	3.828	27.295
9	M4	Υ	-14.86	-14.86	3.828	27.295

Member Area Loads (BLC 1: Self Weight)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude [psf]
1	N35	N36	N33	N34	Υ	Two Way	-6
2	N22	N23	N24	N21	Υ	Two Way	-6
3	N9	N10	N11	N12	Υ	Two Way	-6

Member Area Loads (BLC 12 : Ice Weight)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude [psf]
1	N35	N36	N33	N34	Υ	Two Way	-16.2
2	N22	N23	N24	N21	Υ	Two Way	-16.2
3	N9	N10	N11	N12	Υ	Two Way	-16.2

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z G ravity	Joint	Point	Distributed	A rea (Me	Surface(P
1	Self Weight	DĽ		-1			13		3	
2	Structure Wind Z	WLZ						51		
3	Structure Wind X	WLX						51		
4	Wind Load 0 AZI	WLZ					26			
5	Wind Load 30 AZI	None					26			
6	Wind Load 45 AZI	None					26			
7	Wind Load 60 AZI	None					26			
8	Wind Load 90 AZI	WLX					26			
9	Wind Load 120 AZI	None					26			
10	Wind Load 135 AZI	None					26			
11	Wind Load 150 AZI	None					26			
12	Ice Weight	OL1					13	51	3	

Company :
Designer :
Job Number :

: Trylon : JE : : : : 823666 July 23, 2021 1:09 PM Checked By:___

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z G ravity	Joint	Point	Distributed	A rea (Me	Surface(P
13	Ice Structure Wind Z	OL2						51		
14	Ice Structure Wind X	OL3						51		
15	Ice Wind Load 0 AZI	OL2					26			
16	Ice Wind Load 30 AZI	None					26			
17	Ice Wind Load 45 AZI	None					26			
18	Ice Wind Load 60 AZI	None					26			
19	Ice Wind Load 90 AZI	OL3					26			
20	Ice Wind Load 120 AZI	None					26			
21	Ice Wind Load 135 AZI	None					26			
22	Ice Wind Load 150 AZI	None					26			
23	Seismic Load Z	ELZ			109		13			
24	Seismic Load X	ELX	109				13			
25	Live Load 1 (Lv)	None					1			
26	Live Load 2 (Lv)	None					1			
27	Live Load 3 (Lv)	None					1			
28	Live Load 4 (Lv)	None					1			
29	Live Load 5 (Lv)	None					1			
30	Live Load 6 (Lv)	None					1			
31	Live Load 7 (Lv)	None					1			
32	Live Load 8 (Lv)	None					1			
33	Live Load 9 (Lv)	None					1			
34	Maintenance Load 1 (None					1			
35	Maintenance Load 2 (None					1			
36	Maintenance Load 3 (None					1			
37	Maintenance Load 4 (None					1			
38	Maintenance Load 5 (None					1			
39	Maintenance Load 6 (None					1			
40	Maintenance Load 7 (None					1			
41	Maintenance Load 8 (None					1			
42	Maintenance Load 9 (None					1			
43	BLC 1 Transient Area	None						9		
44	BLC 12 Transient Are	None						9		

Load Combinations

	Des cription	S o	P	S	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac
1	1.4DL	Yes	Υ		DL	1.4																		
2	1.2DL + 1WL 0 AZI	Yes	Υ		DL	1.2	2	1	3		4	1												
3	1.2DL + 1WL 30 AZI	Yes	Υ		DL	1.2	2	.866	3	.5	5	1												
4	1.2DL + 1WL 45 AZI	Yes	Υ		DL	1.2	2	.707	3	.707	6	1												
5	1.2DL + 1WL 60 AZI	Yes	Υ		DL	1.2	2	.5	3	.866	7	1												
6	1.2DL + 1WL 90 AZI	Yes	Υ		DL	1.2	2		3	1	8	1												
7	1.2DL + 1WL 120 AZI	Yes	Υ		DL	1.2	2	5	3	.866	9	1												
8	1.2DL + 1WL 135 AZI	Yes	Υ		DL	1.2	2	707	3	.707	10	1												
9	1.2DL + 1WL 150 AZI	Yes	Υ		DL	1.2	2	866	3	.5	11	1												
10	1.2DL + 1WL 180 AZI	Yes	Υ		DL	1.2	2	-1	3		4	7												
11	1.2DL + 1WL 210 AZI	Yes	Υ		DL	1.2	2	866	3	5	5	٦												
12	1.2DL + 1WL 225 AZI	Yes	Υ		DL	1.2	2	707	3	707	6	7												
13	1.2DL + 1WL 240 AZI	Yes	Υ		DL	1.2	2	5	3	866	7	-1												
14	1.2DL + 1WL 270 AZI	Yes	Υ		DL	1.2	2		3	-1	8	-1												
15	1.2DL + 1WL 300 AZI	Yes	Υ		DL	1.2	2	.5	3	866	9	-1												

Company Designer Job Number Model Name : Trylon

: 823666

July 23, 2021 1:09 PM Checked By:___

		50	P	ς	RIC	Fac	RIC	`Fac	RIC	Fac	RIC	Fac	RIC	Fac	RIC	Fac								
16	Description 1.2DL + 1WL 315 AZI	Yes		J	DL		2	.707		707			DLO	1 ac	DEC	1 ac		l ac.		l ac.	.blc	1 ac		1 ac
17	1.2DL + 1WL 330 AZI	Yes			DL		2	.866	_	5	11	-1												
18	0.9DL + 1WL 0 AZ	_			DL	.9	2	1	3	.0	4	1												
19	0.9DL + 1WL 30 AZI	Yes			DL	.9	2	.866		.5	5	1												
20	0.9DL + 1WL 45 AZI	Yes			DL	.9	2	.707		.707	6	1												
21	0.9DL + 1WL 60 AZI	Yes			DL	.9	2	.5	3	.866	7	1												
22	0.9DL + 1WL 90 AZI	Yes	_		DL	.9	2	1.5	3	1	8	1												
23	0.9DL + 1WL 120 AZI				DL	.9	2	5	3	.866		1												
24	0.9DL + 1WL 135 AZI	_			DL	.9	_	707		.707														
25	0.9DL + 1WL 150 AZI	_	_		DL	.9	_	866		.5	11	1												
26	0.9DL + 1WL 180 AZI	_			DL	.9	2	-1	3	.0	4	-1												
27	0.9DL + 1WL 210 AZI	_			DL	.9		866		5	5	-1												
28	0.9DL + 1WL 225 AZI	_			DL	.9	2	707		707	6	-1												
29	0.9DL + 1WL 240 AZI	Yes	_		DL	.9	2	5	3	866	7	-1												
30	0.9DL + 1WL 270 AZI	Yes	<u> </u>		DL	.9	2		3	-1	8	-1												
31	0.9DL + 1WL 300 AZI				DL	.9	2	.5	3	866		-1												
32	0.9DL + 1WL 315 AZI				DL	.9	2	.707		707														
33	0.9DL + 1WL 330 AZI				DL	.9	2	.866		5	11	-1												
34	1.2DL + 1DLi + 1W Li				DL		OL1	_	13	1	14	'	15	1										
35	1.2DL + 1DLi + 1W Li		-		DL		OL1		13			.5	16	1										
36	1.2DL + 1DLi + 1W Li				DL							.707		1										
37	1.2DL + 1DLi + 1W Li				DL		OL1	1	13	.5		.866		1										
38	1.2DL + 1DLi + 1W Li		_		DL		_		13		14		19	1										
39	1,2DL + 1DLi + 1W Li		_		DL		_	_	13	5		.866		1										
40	1.2DL + 1DLi + 1W Li		<u> </u>		DL		OL1					.707		1										
41	1.2DL + 1DLi + 1W Li				DL		OL1			866			22	1										
42	1.2DL + 1DLi + 1W Li				DL				13		14		15	-1										
43	1.2DL + 1DLi + 1W Li	. Yes	Ÿ		DL		_			866	_	5		-1										
44	1.2DL + 1DLi + 1W Li	. Yes	<u> </u>		DL		OL1		_		_	707		-1										
45	1.2DL + 1DLi + 1W Li	. Yes			DL		OL1	_	13	5	_	866		-1										\Box
46	1.2DL + 1DLi + 1W Li	. Yes	Υ		DL		OL1	_	13		14		19	-1										
47	1.2DL + 1DLi + 1W Li	. Yes	Υ		DL	_	OL1	_	13	.5	_	866		-1										
48	1.2DL + 1DLi + 1W Li	. Yes	Υ		DL		OL1		13			707		-1										
49	1.2DL + 1DLi + 1W Li	. Yes			DL		OL1	_	13					-1										
50	(1.2+0.2Sds)DL + 1E	. Yes	Υ		DL	1.2	23		24															
51	(1.2+0.2Sds)DL + 1E	. Yes	Υ		DL	1.2	_	.866		.5														
52	(1.2+0.2Sds)DL + 1E	. Yes	Υ			1.2		.707																
53	(1.2+0.2Sds)DL + 1E	. Yes	Υ		_					.866														
	(1.2+0.2Sds)DL + 1E	. Yes	Υ			1.2			24															
55	(1.2+0.2Sds)DL + 1E	. Yes	Υ					5																
56	(1.2+0.2Sds)DL + 1E	. Yes	Υ					707																
57	(1.2+0.2Sds)DL + 1E	. Yes	Υ					866																
	(1.2+0.2Sds)DL + 1E				DL	1.2	23	-1	24															
59	(1.2+0.2Sds)DL + 1E	. Yes	Υ		DL	1.2	23	866	24	5														
60	(1.2+0.2Sds)DL + 1E	. Yes	Υ		DL	1.2	23	707	24	707														
61		_	_		DL	1.2	23	5	24	866														
62	(1.2+0.2Sds)DL + 1E	. Yes	Υ		DL	1.2	23		24	-1														
63	(1.2+0.2Sds)DL + 1E	. Yes	Υ			1.2	23			866														
	(1.2+0.2Sds)DL + 1E				DL	1.2	23	.707	24	707														
	(1.2+0.2Sds)DL + 1E				DL	1.2	23	.866	24	5														
66	(0.9-0.2Sds)DL + 1E 0.					.864			24															
67	(0.9-0.2Sds)DL + 1E 3.	.Yes	Υ		DL	.864	23	.866	24	.5														

Company Designer Job Number

: Trylon : JE er :

. : 823666 July 23, 2021 1:09 PM Checked By:___

88 0.9-0.25ds/Du + 1E 4 Fee Y Du 884 23, 707 24, 707 77 70 70 70 70 70 70		Des cription	SoP	SBLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac.	BLC	Fac	BLC	Fac
69 0.9-0.25ds;Du + 1E 6., Nes Y D. 364 23 5 24 866	68					_		_															
70	69	(0.9-0.2Sds)DL + 1E 6	Yes Y					_															
T1		(0.9-0.2Sds)DL + 1E 9.	Yes Y																				
T2 (0.9-0.254s) DL + 1E 1./Yes Y DL .884 23 .707 24 .707		*					5																
173 (0.9-0.25ds)DL + EE I., Nes Y DL. 864 23 -866 24 -5 -		, , ,																					
TAT (0.9-0.254s)DL + IE 1./Yes Y DL .864 23 - 657 TO (0.9-0.254s)DL + IE 2./Yes Y DL .864 23 - 677 TO (0.9-0.254s)DL + IE 2./Yes Y DL .864 23 - 707 TO (0.9-0.254s)DL + IE 2./Yes Y DL .864 23 - 707 TO (0.9-0.254s)DL + IE 2./Yes Y DL .864 23 - 707 TO (0.9-0.254s)DL + IE 3./Yes Y DL .864 23 - 707 TO (0.9-0.254s)DL + IE 3./Yes Y DL .864 23 .5 24 - 866 TO (0.9-0.254s)DL + IE 3./Yes Y DL .864 23 .5 24 - 866 TO (0.9-0.254s)DL + IE 3./Yes Y DL .864 23 .707 TO TO (0.9-0.254s)DL + IE 3./Yes Y DL .864 23 .707 TO TO (0.9-0.254s)DL + IE 3./Yes Y DL .864 23 .866 245 TO TO TO TO TO TO TO TO TO								_															
To Sign Color Co		, ,						_	.0														
Total Tota									- 5														
177 (0.9-0.25ds)DL + HE 2, Yes Y DL, 864 23 24 -1		· · · · · · · · · · · · · · · · · · ·				$\overline{}$		_															
78 (0.9-0.284s)DL + HE 2., Yes Y DL .864 23 .5 24 .866 80 (0.9-0.284s)DL + HE 3., Yes Y DL .864 23 .5 24 .866 81 (0.9-0.284s)DL + HE 3., Yes Y DL .864 23 .50 24 .707 81 (0.9-0.284s)DL + HE 3., Yes Y DL .864 23 .866 24 .5 .5 82 1.2DL + 1LV1 Yes Y DL .864 23 .866 24 .5 .5 83 1.2DL + 1LV2 Yes Y DL .2 25 1.5 84 1.2DL + 1LV3 Yes Y DL 1.2 25 1.5 85 1.2DL + 1LV4 Yes Y DL 1.2 29 1.5 86 1.2DL + 1LV5 Yes Y DL 1.2 29 1.5 87 1.2DL + 1LV6 Yes Y DL 1.2 29 1.5 88 1.2DL + 1LV7 Yes Y DL 1.2 23 1.5 88 1.2DL + 1LV8 Yes Y DL 1.2 23 1.5 89 1.2DL + 1LSM + Yes Y DL 1.2 23 1.5 90 1.2DL + 1LSM + Yes Y DL 1.2 23 1.5 91 1.2DL + 1.5Im + Yes Y DL 1.2 23 1.5 93 1.2DL + 1.5Im + Yes Y DL 1.2 23 1.5 94 1.2DL + 1.5Im + Yes Y DL 1.2 23 1.5 2. .048 3.027 5.053 3. 95 1.2DL + 1.5Im + Yes Y DL 1.2 23 1.5 2. .048 3.027 5.053 3. 96 1.2DL + 1.5Im + Yes Y DL 1.2 23 1.5 2. .048 3.027 5.053 3. 97 1.2DL + 1.5Im + Yes Y DL 1.2 23 1.5 2. .048 3.027 5.053 3. 98 1.2DL + 1.5Im + Yes Y DL 1.2 23 1.5 2. .048 3.027 5.053 3. 99 1.2DL + 1.5Im + Yes Y DL 1.2 23 1.5 2. .048 3.027 5.053 3. 99 1.2DL + 1.5Im + Yes Y DL 1.2 23 1.5 2. .048 3.027 1.053 3. 99 1.2DL + 1.5Im + Yes Y DL 1.2 23 1.5 2. .048 3.027 1.053 3. 91 1.2DL + 1.5Im + Yes Y DL 1.2 23 1.5 2. .046 3.027 1.053 3. 91 1.2DL + 1.5Im + Yes Y DL 1.2 23 1.5 2. .046 3.027 5.053 3. 91 1.2DL + 1.5Im + Yes Y DL 1.2 23 1.5 2. .046 3.027 5.053 3. 101 1.		* * * * * * * * * * * * * * * * * * * *																					
Top Co-9-0.28ds DL + 1E 3. Yes Y DL 864 23 57 24 -866		, , , , , , , , , , , , , , , , , , ,																					
80 (0.9-0.28ds)DL + 1E 3. Yes Y DL 864 23 306 24 -50 5 8 8 1.2DL + 1LV1 Yes Y DL 1.2 25 1.5 8 8 1.2DL + 1LV2 Yes Y DL 1.2 26 1.5 8 8 1.2DL + 1LV3 Yes Y DL 1.2 27 1.5 8 8 1.2DL + 1LV4 Yes Y DL 1.2 28 1.5 8 8 1.2DL + 1LV4 Yes Y DL 1.2 28 1.5 8 8 1.2DL + 1LV5 Yes Y DL 1.2 29 1.5 8 8 1.2DL + 1LV7 Yes Y DL 1.2 29 1.5 8 8 1.2DL + 1LV7 Yes Y DL 1.2 21 1.5 8 8 1.2DL + 1LV7 Yes Y DL 1.2 31 1.5 8 9 1.2DL + 1LV8 Yes Y DL 1.2 31 1.5 8 9 1.2DL + 1LV8 Yes Y DL 1.2 31 1.5 8 9 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .063 3 3 4 .053 9 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .064 3 .027 5 .053 9 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 7 .063 9 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 7 .063 9 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 7 .063 9 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 7 .063 9 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .003 3 .063 8 .063 9 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .003 3 .063 8 .063 9 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .003 3 .063 8 .063 9 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .003 3 .063 8 .063 9 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .003 3 .004 7 .063 9 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .004 3 .007 1 .005 9 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .003 3 .003 6 .003 9 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .003 3 .003 6 .003 1 .005 1 .005 1 .005 .005 .005 .005 .005							5																
81																							
Record R																							
83 1.2DL +1Lv3 Yes Y DL 1.2 26 1.5		<u>'</u>						_7	.0														
85		 																					
85																							
86																							
88																							
88		 																					
89																							
90																							
91 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .053 3 4 4 .053 92 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .046 3 .027 5 .053 93 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .038 3 .038 6 .053 94 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 7 .053 95 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 7 .053 96 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 9 .053 97 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .038 3 .038 10 .053 98 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .038 3 .038 10 .053 99 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .046 3 .027 11 .053 99 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .046 3 .027 11 .053 99 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .046 3 .027 11 .053 99 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .046 3 .027 15 .053 100 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .046 3 .027 15 .053 1101 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .046 3 .027 5 .053 1102 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .038 3 .038 6 .053 1104 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 7 .053 1105 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 9 .053 1104 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 9 .053 1105 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 9 .053 1106 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 9 .053 1107 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .038 3 .038 10 .053 1106 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .068 3 .027 11 .053 1101 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 15 .053 1101 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .053 3 4 .053 10 .053 1111 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .053 3 4 .038 10 .053 1111 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 7 .053 1111 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 9 .053 1111 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .006 3 .038 10 .053 1111 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .006 3 .038 10 .053 1111 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .006 3 .038 10 .053 1111 1.2DL +1.5																							
92 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .046 3 .027 5 .053								2	.053	3		4	.053										
93 1.2DL + 1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .038 3 .038 6 .053	92	1.2DL + 1.5Lm + 1W			-						.027		.053										
94 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 7 .053 96 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 9 .053 97 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 9 .053 98 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .038 3 .038 10 .053 98 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .046 3 .027 11 .053 99 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .046 3 .027 11 .053 99 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .046 3 .027 5 .053 100 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .046 3 .027 5 .053 100 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .046 3 .027 5 .053 100 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .046 3 .027 5 .053 100 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .046 3 .027 5 .053 100 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .038 3 .038 6 .053 10 .053 100 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 9 .053 10 100 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 9 .053 10 100 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 9 .053 10 100 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .038 3 .038 10 .053 10 100 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .038 3 .038 10 .053 10 100 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .038 3 .038 10 .053 10 100 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .038 3 .038 10 .053 10 100 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .046 3 .027 11 .053 10 100 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 1 1 .053 10 100 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 5 .053 10 10 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 5 .053 10 10 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 5 .053 10 10 .053 10 10 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .038 3 .038 10 .053 10 .053 10 11 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .006 3 .006 7 .053 10 10 .053 10 10 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .006 3 .006 7 .053 10 10 .053 10 10 .053 10 10 .053 10 10 .053	93	1.2DL + 1.5Lm + 1W									.038		.053										
95 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 3 0.63 8 0.63 9 0.63 9 0.63 9 0.7 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 0.038 3 0.38 10 0.63 9 0.63 9 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 0.038 3 0.038 10 0.63 9 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 0.038 3 0.038 10 0.63 9 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 0.046 3 0.027 11 0.053 10 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 0.046 3 0.027 15 0.053 10 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 0.046 3 0.027 15 0.053 10 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 0.046 3 0.027 15 0.053 10 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 0.027 3 0.046 7 0.053 10 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 0.027 3 0.046 7 0.053 10 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 0.027 3 0.046 7 0.053 10 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 0.027 3 0.046 7 0.053 10 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 0.027 3 0.046 7 0.053 10 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 0.027 3 0.046 9 0.053 10 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 0.027 3 0.046 9 0.053 10 0.053 10 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 0.046 3 0.027 11 0.053 10 10 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 0.046 3 0.027 11 0.053 10 10 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 0.046 3 0.027 11 0.053 10 10 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 0.046 3 0.027 15 0.053 10 10 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 0.046 3 0.027 15 0.053 10 10 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 0.038 3 0.038 10 0.053 10 10 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 0.027 3 0.046 9 0.053 11 11 0.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 0.027 3 0.046 9 0.053 11 11 0.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 0.046 3 0.027 11 0.053 11 11 0.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 0.046 3 0.027 11 0.053 11 11 0.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 0.046 3 0.027 11 0.053 11 11 0.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 0.046 3 0.027 11 0.053 11 11 0.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 0.046 3 0.027 11 0.053 11 11 0.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 0.046 3 0.027 11 0.053 11 11 0.2DL +1.5Lm +1W Y	94	1.2DL + 1.5Lm + 1W									.046		.053										
96 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 -027 3 .046 9 .053 98 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 -038 3 .038 10 .053 99 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 -046 3 .027 11 .053 99 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 -046 3 .027 5 .053 99 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 -046 3 .027 5 .053 99 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 -046 3 .027 5 .053 99 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 -046 3 .027 5 .053 90 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .046 3 .027 5 .053 90 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 7 .053 90 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 7 .053 90 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 7 .053 90 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 9 .053 90 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 9 .053 90 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 9 .053 90 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .046 3 .027 11.053 90 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 11.053 90 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 11.053 90 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 5 .053 90 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 5 .053 90 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 5 .053 90 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 5 .053 90 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 7 .053 90 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 7 .053 90 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 9 .053 90 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 9 .053 90 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 9 .053 90 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 9 .053 90 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 9 .053 90 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 9 .053 90 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 9 .053 90 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 9 .053 90 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 9 .	95	1.2DL + 1.5Lm + 1W									.053	8	.053										
97 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 -038 3 .038 10 .053 98 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 -046 3 .027 11 .053 99 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 -046 3 .027 11 .053 99 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 -046 3 -0.27 5 -0.53 100 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 -0.46 3 -0.27 5 -0.53 101 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 -0.46 3 -0.27 5 -0.53 102 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 -0.46 7 -0.53 102 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 -0.46 7 -0.53 103 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .027 3 -0.46 7 -0.53 103 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .027 3 -0.46 9 -0.53 104 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .038 3 -0.38 10 -0.53 105 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .038 3 -0.38 10 -0.53 106 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .046 3 .027 11 -0.53 106 1.2DL +1.5Lm +1W Yes Y DL 1.2 34 1.5 2 .046 3 .027 11 -0.53 108 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .053 3 4 .053 108 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .053 3 4 .053 109 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .053 3 .038 6 .053 109 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 10 .053 109 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 10 .053 109 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 10 .053 109 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 10 .053 109 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 7 .053 109 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 9 .053 111 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 9 .053 111 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .038 3 .038 10 .053 111 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .038 3 .038 10 .053 111 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .038 3 .038 10 .053 111 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .038 3 .038 10 .053 111 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .038 3 .038 10 .053 111 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .036 3 .027 11 .053 111 1.2DL +1.5Lm +1W Yes Y DL 1.2 35 1.5 2 .038 3 .038 6 .053 111 1.2DL +1.5Lm +1W		1.2DL + 1.5Lm + 1W		DL					027		.046		.053										
98 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 -0.46 3 .027 11 .053	97	1.2DL + 1.5Lm + 1W	Yes Y						038		.038	10	.053										
99 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 -053 3 4 -053	98	1.2DL + 1.5Lm + 1W	Yes Y	DL					046	3	.027	11	.053										
100 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 -0.46 3 -0.27 5 -0.53	99	1.2DL + 1.5Lm + 1W	Yes Y	DL	1.2	34	1.5	2	053	3		4	053										
102 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 7 .053 103 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 9 .053 104 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 9 .053 105 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .038 3 .038 10 .053 106 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .046 3 .027 11 .053 107 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 5 .053 109 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .038 3 .038 <	100	1.2DL + 1.5Lm + 1W	Yes Y	DL				2	046	3	027	5	053										
103 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 3 053 8 053 104 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .027 3 046 9 053 105 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .038 3 038 10 053 106 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .046 3 027 11 053 107 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 5 .053 108 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 5 .053 110 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 7	101	1.2DL + 1.5Lm + 1W	Yes Y	DL	1.2	34	1.5	2	038	3	038	6	053										
103 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 3 053 8 053 104 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .027 3 046 9 053 105 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .038 3 038 10 053 106 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .046 3 027 11 053 107 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 5 .053 108 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 5 .053 110 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 7	102	1.2DL + 1.5Lm + 1W	Yes Y								046	7	053										
104 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .027 3 .046 9 .053 105 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .038 3 .038 10 .053 106 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .046 3 .027 11 .053 107 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 5 .053 108 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 5 .053 110 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 7 .053 111 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 <	103	1.2DL + 1.5Lm + 1W	Yes Y							3	053	8	053										
105 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .038 3 038 10 053 106 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .046 3 027 11 053 107 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .046 3 027 5 .053 108 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 5 .053 110 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 7 .053 111 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 7 .053 112 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .027 3 .046	104	1.2DL + 1.5Lm + 1W	Yes Y						.027		046	9	053										
106 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 34 1.5 2 .046 3 .027 11 .053 107 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .053 3 4 .053 108 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 5 .053 109 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .038 3 .038 6 .053 110 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 7 .053 111 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 9 .053 112 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 9 .053 113 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 9 .053 114 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .038 3 .038 10 .053 115 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 11 .053 116 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 5 .053 117 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .038 3 .038 6 .053 118 1.2DL	105	1.2DL + 1.5Lm + 1W	Yes Y						.038	3	038	10	053										
107 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .053 3 4 .053 108 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 5 .053 109 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .038 3 .038 6 .053 110 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 7 .053 111 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 9 .053 112 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 9 .053 113 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .038 3 .038 10 .053 114 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 11 .053 115 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .053 3 4 4 .053 116 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 5 .053 117 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .038 3 .038 6 .053 118 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .038 3 .027 5 .053	106	1.2DL + 1.5Lm + 1W	Yes Y																				
108 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 5 .053 109 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .038 3 .038 6 .053 110 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 7 .053 111 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 9 .053 112 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 9 .053 113 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .038 3 .038 10 .053 114 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 11 .053 115 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .053 3 4 .053 116 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 5 .053 117 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .038 3 .038 6 .053 118 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .038 3 .027 5 .053	107	1.2DL + 1.5Lm + 1W	Yes Y					_	.053	3		4	.053										
109 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .038 3 .038 6 .053 110 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 7 .053 111 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 9 .053 112 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 9 .053 113 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .038 3 .038 10 .053 114 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 11 .053 116 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 <	108	1.2DL + 1.5Lm + 1W	Yes Y						.046		.027	5	.053										
110 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 7 .053 111 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 9 .053 112 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .038 3 .038 10 .053 113 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 11 .053 114 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 11 .053 115 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 5 .053 116 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .046 3 .027 5 .053 117 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .038 3 .038 6 .053 118 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 .027 3 .046 7 .053	109	1.2DL + 1.5Lm + 1W	Yes Y						.038		.038												
111 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 3 .053 8 .053 112 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 -027 3 .046 9 .053 113 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 -038 3 .038 10 .053 114 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 -046 3 .027 11 .053 116 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 -046 3 -027 5 -053 117 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 -046 3 -027 5 -053 118 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 -038 3 -046 7	110	1.2DL + 1.5Lm + 1W	Yes Y						.027	3	.046	7	.053										
112 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2027 3 .046 9 .053 .053 113 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2038 3 .038 10 .053 .053 114 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2046 3 .027 11 .053 115 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2053 3 4053 116 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2046 3027 5053 117 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2038 3038 6053 118 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2027 3046 7053	111	1.2DL + 1.5Lm + 1W	Yes Y							3	.053	8	.053										
113 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 -0.038 3 .038 10 .053 114 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 -0.046 3 .027 11 .053 115 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 -0.053 3 4 -0.53 116 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 -0.046 3 -0.027 5 -0.53 118 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 -0.038 3 -0.053 -0.053	112	1.2DL + 1.5Lm + 1W	Yes Y	DL					027	3	.046	9	.053										
114 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 -0.46 3 .027 11 .053 115 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 -0.053 3 4 -0.053 116 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 -0.46 3 -0.07 5 -0.53 117 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 -0.08 3 -0.053 1.08	113	1.2DL + 1.5Lm + 1W	Yes Y								.038	10	.053										
115 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 053 3 4 053 116 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 046 3 027 5 053 117 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 038 3 046 7 053 118 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 027 3 046 7 053	114	1.2DL + 1.5Lm +1W	Yes Y						046	3	.027	11	.053										
116 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 046 3 027 5 053 117 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 038 3 046 6 053 118 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 027 3 046 7 053									053	3		4	053										
117 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 038 3 046 6 053 118 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2 027 3 046 7 053	116	1.2DL + 1.5Lm +1W	Yes Y						046	3	027	5	053										
118 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 35 1.5 2027 3046 7053	117	1.2DL + 1.5Lm + 1W	Yes Y						038	3	038	6	053										
	118	1.2DL + 1.5Lm + 1W	Yes Y						027	3	046	7	053										
	119	1.2DL + 1.5Lm + 1W	Yes Y								053	8	053										

Company Designer Job Number Model Name

ny : Trylon er : JE mber : Name : 823666 July 23, 2021 1:09 PM Checked By:___

Description	٥,	D		DIC	Egg	DIC	Egg	DIC	Egg	DI C	Eac	DIC	Egg	DIC	Eac	DIC	Eac	DIC	Eac	DIC	Foo	DIC	Eac
Des cription 120 1.2DL + 1.5Lm + 1W	Yes		<u> </u>	DL		35		2	.027		046		053		rac	DLC	rac	BLC	rac.	DLC	rac	DLC	Fac
121 1.2DL + 1.5Lm + 1W	Yes	-		DL	1.2	35		2	.038		038		_										
122 1.2DL + 1.5Lm + 1W	Yes			DL	1.2	35		2	.046		027		053										
123 1.2DL + 1.5Lm + 1W	Yes			DL	1.2		_	2	.053		021	4	.053										
120	Yes						1.5	2	.046	_	.027	5	.053										
				DL	1.2	36	_	2	.038		.038	6	.053										
	Yes	_		DL		36		_	.027		.036		.053										
.20	Yes	_		DL	1.2		1.5	2	.021	3	.053	8	.053										
	Yes	<u> </u>		DL	1.2		1.5	2	027	3	.033		.053										
	Yes	•		DL	1.2	36		_	027		.038	9											
	Yes	i i		DL	1.2	36		2	036		.027												
	Yes	•		DL	1.2	36		2	053	_	.027	<u>11</u>	053										
		<u> </u>		DL	1.2	36		2	033	_	027	<u>4</u> 5	053										
	Yes			DL	1.2	36	_	2	038		038	6	053										
	Yes			DL	1.2	36		2	027	3	046		053										
134 1.2DL + 1.5Lm + 1W 135 1.2DL + 1.5Lm + 1W	Yes	-		DL	1.2	36 36	_	2	021		053		053										
100	Yes	<u> </u>		DL	1.2	36		2	.027	3	046		053										
136 1.2DL + 1.5Lm + 1W	Yes			DL DL	1.2	36	_	2	.038		038												
138 1.2DL + 1.5Lm + 1W	Yes			DL	1.2	36	_	2	.046		027		_										
139 1.2DL + 1.5Lm + 1W	Yes			DL	1.2	37	_	2	.053		.021	4	.053										
140 1.2DL + 1.5Lm + 1W	Yes	_		DL	1.2	37	_	2	.046		.027	5	.053										
141 1.2DL + 1.5Lm + 1W	Yes	•		DL	1.2	37	_	2	.038		.038		.053										
142 1.2DL + 1.5Lm + 1W	Yes	_		DL	1.2	37	_	2	.027	3	.046		.053										
143 1.2DL + 1.5Lm + 1W	Yes			DL	1.2		1.5	2	.021	3	.053	8	.053										
144 1.2DL + 1.5Lm + 1W	Yes	_		DL	1.2	37		2	027	3	.046		.053										
145 1.2DL + 1.5Lm + 1W	Yes			DL	1.2	37		2	038		.038												
146 1.2DL + 1.5Lm + 1W	Yes	<u> </u>		DL	1.2	37	_	2	046		.027	11	.053										
147 1.2DL + 1.5Lm + 1W	Yes			DL	1.2	37	_	2	053	_	1027	4	053										
148 1.2DL + 1.5Lm + 1W	Yes	·		DL	1.2	37	_	2	046	3	027	5	053										
149 1.2DL + 1.5Lm + 1W	Yes	Ÿ		DL	1.2	37		2	038	3	038	6	053										
150 1.2DL + 1.5Lm + 1W	Yes	Y		DL	1.2	37		2	027	3	046		053										
151 1.2DL + 1.5Lm + 1W	Yes	_		DL	1.2	37	_	2		3	053		053										
152 1.2DL + 1.5Lm + 1W	Yes	<u> </u>		DL	1.2	37	_	2	.027	3	046		053										
153 1.2DL + 1.5Lm + 1W	Yes			DL	1.2	37	_	2	.038				053										
154 1.2DL + 1.5Lm + 1W	Yes			DL	1.2	37	_	2	.046				053										
155 1.2DL + 1.5Lm + 1W	Yes			DL	1.2	38	_	2	.053			4	.053										
156 1.2DL + 1.5Lm + 1W	Yes	_		DL	1.2	38	_	2	.046		.027	5	.053										
157 1.2DL + 1.5Lm + 1W	Yes	_					1.5	_	.038		.038		.053										
158 1.2DL + 1.5Lm + 1W				DL			1.5	2	.027		.046		.053										
159 1.2DL + 1.5Lm + 1W				DL			1.5			3	.053		.053										
160 1.2DL + 1.5Lm + 1W				DL			1.5		027		.046		_										
161 1.2DL + 1.5Lm + 1W	Yes	_		DL	1.2		1.5		038		.038		.053										
162 1.2DL + 1.5Lm + 1W	Yes	Υ		DL			1.5		046	_			.053										
163 1.2DL + 1.5Lm + 1W	Yes	Υ		DL	1.2		1.5		053				053										
164 1.2DL + 1.5Lm + 1W	Yes	Υ		DL	1.2		1.5		046	_	027		053	_									
165 1.2DL + 1.5Lm + 1W	Yes			DL	1.2		1.5	_	038		038		053	_									
166 1.2DL + 1.5Lm + 1W	Yes			DL	1.2		1.5		027		046		053										
167 1.2DL + 1.5Lm + 1W	Yes	Y		DL	1.2		1.5	2		3	053		053										
168 1.2DL + 1.5Lm + 1W	Yes	Υ		DL	1.2		1.5	2	.027	3	046		053										
169 1.2DL + 1.5Lm + 1W	Yes			DL	1.2		1.5	2	.038		038		_										
170 1.2DL + 1.5Lm + 1W	Yes			DL			1.5	_	.046		027		_										
171 1.2DL + 1.5Lm + 1W	Yes	Υ				_	1.5	_	.053	_		4	.053										
			•			-		-	1					-				-		•			

Company : Trylon Designer : JE Job Number :

. : 823666 July 23, 2021 1:09 PM Checked By:____

172 1.20L + 1.9.m + 1.9m. + yee Y	Des cription	So P	S BLC Fac	BLCFac	BLC	Fac	BLC	Fac	BLC	Fac	BLCF	ac B	I C Fa	n BIO	CFac	BLC	Fac	BLC	Fac
173 120L + 1,5Lm + 1W Yes Y DL 1,2 39 1,5 2 .038 3 .038 6 .053 176 1.2DL + 1,5Lm + 1W Yes Y DL 1,2 39 1,5 2 .073 3 .068 8 .083 176 1.2DL + 1,5Lm + 1W Yes Y DL 1,2 39 1,5 2 .027 3 .068 9 .033 177 1.2DL + 1,5Lm + 1W Yes Y DL 1,2 39 1,5 2 .027 3 .068 9 .033 178 1.2DL + 1,5Lm + 1W Yes Y DL 1,2 39 1,5 2 .026 3 .027 11 .053 179 1.2DL + 1,5Lm + 1W Yes Y DL 1,2 39 1,5 2 .046 3 .027 11 .053 180 1.2DL + 1,5Lm + 1W Yes Y DL 1,2 39 1,5 2 .046 3 .027 5 .053 181 1.2DL + 1,5Lm + 1W Yes Y DL 1,2 39 1,5 2 .046 3 .027 5 .053 181 1.2DL + 1,5Lm + 1W Yes Y DL 1,2 39 1,5 2 .007 3 .046 6 .053 182 1.2DL + 1,5Lm + 1W Yes Y DL 1,2 39 1,5 2 .027 3 .046 7 .053 183 1.2DL + 1,5Lm + 1W Yes Y DL 1,2 39 1,5 2 .027 3 .046 9 .053 184 1.2DL + 1,5Lm + 1W Yes Y DL 1,2 39 1,5 2 .027 3 .046 9 .053 185 1.2DL + 1,5Lm + 1W Yes Y DL 1,2 39 1,5 2 .027 3 .046 9 .053 186 1.2DL + 1,5Lm + 1W Yes Y DL 1,2 39 1,5 2 .027 3 .046 9 .053 186 1.2DL + 1,5Lm + 1W Yes Y DL 1,2 39 1,5 2 .027 3 .046 9 .053 187 1.2DL + 1,5Lm + 1W Yes Y DL 1,2 39 1,5 2 .027 3 .046 9 .053 188 1.2DL + 1,5Lm + 1W Yes Y DL 1,2 39 1,5 2 .027 3 .046 9 .053 189 1.2DL + 1,5Lm + 1W Yes Y DL 1,2 40 1,5 2 .053 3 .4 .053 189 1.2DL + 1,5Lm + 1W Yes Y DL 1,2 40 1,5 2 .053 3 .058 190 1.2DL + 1,5Lm + 1W Yes Y DL 1,2 40 1,5 2 .053 3 .058 191 1.2DL + 1,5Lm + 1W Yes Y DL 1,2 40 1,5 2 .053 3 .058 191												102		J <u>D</u> L	1 40.		1 40		40
174 1.20 +1.9.m +1W Yes Y DL 1.2 39 1.5 2 .027 3 .046 7 .053 176 1.20 +1.9.m +1W Yes Y DL 1.2 39 1.5 2 .027 3 .046 9 .053 177 1.20 +1.9.m +1W Yes Y DL 1.2 39 1.5 2 .027 3 .046 9 .053 178 1.20 +1.9.m +1W Yes Y DL 1.2 39 1.5 2 .046 3 .027 11 .053 178 1.20 +1.9.m +1W Yes Y DL 1.2 39 1.5 2 .046 3 .027 11 .053 179 1.20 +1.9.m +1W Yes Y DL 1.2 39 1.5 2 .053 3 .4 .053 181 1.20 +1.9.m +1W Yes Y DL 1.2 39 1.5 2 .053 3 .038 6 .053 181 1.20 +1.9.m +1W Yes Y DL 1.2 39 1.5 2 .027 3 .046 9 .053 183 1.20 +1.9.m +1W Yes Y DL 1.2 39 1.5 2 .027 3 .046 9 .053 184 1.20 +1.9.m +1W Yes Y DL 1.2 39 1.5 2 .027 3 .046 9 .053 185 1.20 +1.9.m +1W Yes Y DL 1.2 39 1.5 2 .027 3 .046 9 .053 186 1.20 +1.9.m +1W Yes Y DL 1.2 39 1.5 2 .038 3 .038 10 .053 187 1.20 +1.9.m +1W Yes Y DL 1.2 39 1.5 2 .038 3 .038 10 .053 188 1.20 +1.9.m +1W Yes Y DL 1.2 29 1.5 2 .038 3 .038 10 .053 189 1.20 +1.9.m +1W Yes Y DL 1.2 20 1.5 2 .053 3 .046 3 .027 11 .053 189 1.20 +1.9.m +1W Yes Y DL 1.2 20 1.5 2 .053 3 .027 5 .053 189 1.20 +1.9.m +1W Yes Y DL 1.2 20 1.5 2 .053 3 .027 5 .053 189 1.20 +1.9.m +1W Yes Y DL 1.2 40 1.5 2 .053 3 .027 5 .053 189 1.20 +1.9.m +1W Yes Y DL 1.2 40 1.5 2 .053 3 .027 5 .053 199 1.20 +1.9.m +1W Yes Y DL 1.2 40 1.5 2 .027 3 .046 7 .053 199 1.20 +1.9.m +1W Yes Y DL 1.2 40 1.5 2 .027 3					_		_												
175 12DL + 1.9Lm + 1W Yes Y DL 1.2 39 1.5 2 -027 3 0.46 9 .053		<u> </u>					_												
176 12DL + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 -027 3 0.46 9 0.53 178 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 -038 3 0.38 10 0.53 178 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 -046 3 0.27 11 0.53 179 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 -046 3 0.27 15 0.53 181 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 -046 3 0.27 5 -053 181 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 -046 3 -035 6 -053 182 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 -027 3 -046 7 -053 183 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 -027 3 -046 7 -053 184 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 -027 3 -046 7 -053 185 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 -027 3 -046 7 -053 186 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 -027 3 -046 9 -053 186 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 -047 3 -048 9 -053 188 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 -046 3 -027 1 -055 188 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -065 3 -027 3 -046 9 -053 190 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -038 3 -038 6 -053 191 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -037 3 -046 7 -053 192 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -038 3 -038 6 -053 193 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -038 3 -038 6 -053 194 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -027 3 -046 7 -053 194 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -027 3 -046 9 -053 195 1.2DL + 1.5Lm + 1W Yes Y DL 1.2							_												
177 12DL + 1.SLm + 1W Yes Y DL 1.2 39 1.5 2 - 038 3 038 10 053	110					- 027													
178 120L + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 - 046 3 .027 11 .053 180 1.20L + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 - 068 3 .027 5 - 068 181 1.20L + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 - 068 3 - 027 5 - 068 182 1.20L + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 - 068 3 - 027 5 - 068 183 1.20L + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 - 068 3 - 028 6 - 058 184 1.20L + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 - 027 3 - 068 7 - 068 185 1.20L + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 - 027 3 - 068 9 - 058 186 1.20L + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 - 027 3 - 068 9 - 058 187 1.20L + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 - 027 3 - 068 9 - 058 188 1.20L + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 - 027 3 - 046 9 - 058 187 1.20L + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 - 027 3 - 046 9 - 058 188 1.20L + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 - 007 3 - 046 9 - 058 189 1.20L + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 - 007 3 - 046 9 - 058 189 1.20L + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 - 068 3 - 027 11 - 053 190 1.20L + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 - 068 3 - 027 1 - 053 191 1.20L + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 - 027 3 - 046 9 - 053 193 1.20L + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 - 027 3 - 046 9 - 053 194 1.20L + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 - 028 3 - 038 1 - 053 195 1.20L + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 - 028 3 - 038 1 - 053 196 1.20L + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 - 046 3 - 027 11 - 053 197 1.20L + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 - 048 3 - 027 11 - 053 198 1.20L + 1.5Lm + 1W					_				_										
179 120L + 1,SLm + 1W Yes Y DL 1,2 39 1,5 2 -055 3					_					_									
180 1.20L + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 -0.046 3 -0.27 5 -0.53					_			.021		_									
R81 L2DL + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 -0.03 3 -0.03 6 -0.53					_			- 027		_									
182 1.20L + 1.5Lm +1W Yes Y DL 1.2 39 1.5 2 0.27 3 0.46 7 0.53					_														
183 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 0.27 3 -0.63 8 -0.63 8 -0.63 8 -0.63 8 -0.63 8 -0.63 8 -0.63 8 -0.63 8 -0.63 8 -0.63 8 -0.63 8 -0.63 8 -0.63 8 -0.63 8 -0.63 -0.63 8 -0.63 -0.63 8 -0.63					_					_									
186 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 .027 3 .046 9 .053	102				_	021			•										
186 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 .046 3 .027 17 .053						027													
186 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 39 1.5 2 .046 3 .027 11 .053																			
187 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 .053 3 3 4 .053 3 3 3 3 3 3 3 3 3							_			_									
188 1.2DL +1.5Lm +1W Yes Y DL 1.2 40 1.5 2 .046 3 .027 5 .053 189 1.2DL +1.5Lm +1W Yes Y DL 1.2 40 1.5 2 .038 3 .038 6 .053 191 1.2DL +1.5Lm +1W Yes Y DL 1.2 40 1.5 2 .027 3 .046 7 .053 192 1.2DL +1.5Lm +1W Yes Y DL 1.2 40 1.5 2 .027 3 .046 9 .053 193 1.2DL +1.5Lm +1W Yes Y DL 1.2 40 1.5 2 .038 3 .048 9 .053 194 1.2DL +1.5Lm +1W Yes Y DL 1.2 40 1.5 2 .038 3 .038 10 .053 194 1.2DL +1.5Lm +1W Yes Y DL 1.2 40 1.5 2 .038 3 .027 11 .053 195 1.2DL +1.5Lm +1W Yes Y DL 1.2 40 1.5 2 .046 3 .027 11 .053 196 1.2DL +1.5Lm +1W Yes Y DL 1.2 40 1.5 2 .046 3 .027 5 .053 197 1.2DL +1.5Lm +1W Yes Y DL 1.2 40 1.5 2 .046 3 .027 5 .053 198 1.2DL +1.5Lm +1W Yes Y DL 1.2 40 1.5 2 .046 3 .027 5 .053 199 1.2DL +1.5Lm +1W Yes Y DL 1.2 40 1.5 2 .038 3 .038 6 .053 199 1.2DL +1.5Lm +1W Yes Y DL 1.2 40 1.5 2 .027 3 .046 9 .053 190 1.2DL +1.5Lm +1W Yes Y DL 1.2 40 1.5 2 .027 3 .046 9 .053 200 1.2DL +1.5Lm +1W Yes Y DL 1.2 40 1.5 2 .037 3 .046 9 .053 201 1.2DL +1.5Lm +1W Yes Y DL 1.2 40 1.5 2 .038 3 .038 6 .053 202 1.2DL +1.5Lm +1W Yes Y DL 1.2 40 1.5 2 .038 3 .038 6 .053 203 1.2DL +1.5Lm +1W Yes Y DL 1.2 40 1.5 2 .036 3 .027 11 .053 204 1.2DL +1.5Lm +1W Yes Y DL 1.2 41 1.5 2 .036 3 .046 9 .053 205 1.2DL +1.5Lm +1W Yes Y DL 1.2 41 1.5 2 .036 3 .038 6 .053 206 1.2DL +1.5Lm +1W Yes Y DL 1.2 41 1.5 2								02/											
189 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 .038 3 .038 6 .053						_	_	027											
190 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 .027 3 .046 7 .053																			
191 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 2 3 .053 8 .053										_									
192 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -0.27 3 0.46 9 .053 193 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -0.28 3 .038 10 .053 195 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -0.46 3 .027 11 .053 196 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -0.68 3 .027 5 .053 197 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -0.38 3 .038 6 .053 198 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -0.27 3 .046 7 .055 199 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -0.27 3 .046 7 .055 199 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 .027 3 .046 7 .055 190 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 .027 3 .046 7 .055 200 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 .027 3 .046 7 .053 201 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 .038 3 .038 10 .053 202 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 .036 3 .027 11 .053 203 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 .046 3 .027 11 .053 204 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .036 3 .038 6 .053 205 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .036 3 .038 6 .053 206 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .027 3 .046 7 .053 207 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .027 3 .046 7 .053 208 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .026 3 .027 11 .053 210 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .026 3 .038 10 .053 211 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .036 3 .038 10 .053 212 1.2DL + 1.5Lm + 1W Yes Y DL 1.2						.027													
193 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -0.38 3 .038 10 .053 194 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -0.46 3 .027 11 .053 196 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -0.46 3 .027 5 -0.63 196 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -0.46 3 .027 5 -0.63 197 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -0.27 3 -0.46 6 .053 198 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -0.27 3 -0.46 7 -0.53 199 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -0.27 3 -0.46 9 -0.53 200 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -0.27 3 -0.46 9 -0.53 201 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -0.27 3 -0.46 9 -0.53 202 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -0.36 3 -0.27 11 -0.53 203 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -0.63 3 -0.27 11 -0.53 204 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.63 3 -0.27 11 -0.53 205 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.63 3 -0.27 11 -0.53 206 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.63 3 -0.53 207 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.63 3 -0.53 208 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.27 3 -0.46 7 -0.53 209 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.27 3 -0.46 7 -0.53 209 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.27 3 -0.46 7 -0.53 210 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.27 3 -0.46 7 -0.53 211 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.64 3 -0.27 1 -0.53 212 1.2DL + 1.5Lm + 1W						0.07													
194 1.2DL +1.5Lm +1W Yes Y DL 1.2 40 1.5 2 -0.46 3 .027 11 .053					_														
195 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -053 3 4 -053 196 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -046 3 -027 5 -053 197 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -038 3 -038 6 -053 198 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -027 3 -046 7 -053 199 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -027 3 -046 9 -053 200 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -027 3 -046 9 -053 201 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -038 3 -0.38 10 -0.53 202 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -038 3 -0.77 11 -0.53 203 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.63 3 -0.77 11 -0.53 204 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.63 3 -0.77 1 -0.53 205 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.038 3 -0.038 -0.53 206 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.038 3 -0.038 -0.53 207 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.037 3 -0.46 9 -0.53 208 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.27 3 -0.46 9 -0.53 209 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.27 3 -0.46 9 -0.53 209 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.27 3 -0.46 9 -0.53 210 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.046 3 -0.27 1 -0.53 211 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.046 3 -0.27 1 -0.53 212 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.046 3 -0.27 1 -0.53 213 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.046 3 -0.27 1 -0.53 214 1.2DL + 1.5Lm + 1W					_		_					_							
196 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -0.46 3 -0.27 5 -0.53					_			.027				_							
197 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -0.38 3 -0.38 6 -0.53 198 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 -0.27 3 -0.46 7 -0.53 199 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 0.203 3 -0.66 7 -0.53 200 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 .028 3 -0.68 9 -0.53 201 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 .038 3 -0.83 1.0 -0.53 203 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .063 3 4 .053 204 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .063 3 .027 5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>0.07</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							_	0.07				_							
198 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 .027 3 .046 7 .053 199 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 0.3 .053 8 .053 200 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 .027 3 .046 9 .053 202 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 .008 3 .028 10 .053 202 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 .006 3 .027 5 .053 203 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .046 3 .027 5 .053 205 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .046 3 .027 3 <td< td=""><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>					_				_	_									
199 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 3 .053 8 .053					_														
200 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 .027 3 .046 9 .053					_	027			•										
201 1.2DL +1.5Lm +1W Yes Y DL 1.2 40 1.5 2 .038 3 .038 10 .053																			
202 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 40 1.5 2 .046 3 -027 11 .053 203 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .046 3 .027 5 .053 204 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .046 3 .027 5 .053 205 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .027 3 .046 7 .053 207 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .027 3 .046 7 .053 208 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .027 3 .046 9 .053 210 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .027 3 .046 <t< td=""><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					_														
203 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .053 3 4 .053 204 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .046 3 .027 5 .053 205 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .038 3 .038 6 .053 206 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .027 3 .046 7 .053 207 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .027 3 .046 9 .053 209 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .028 3 .038 10 .053 210 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .046 3 .027 1 .053 212 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .046 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>_</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							_			_		_							
204 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .038 3 .038 6 .053 205 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .038 3 .038 6 .053 206 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .027 3 .046 7 .053 207 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .027 3 .046 9 .053 208 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .027 3 .046 9 .053 209 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .038 3 .038 10 .053 210 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .046 3 .027 11 .053 211 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .046 3 .027 5 .053 212 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .046 3 .027 5 .053 213 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .038 3 .038 6 .053 214 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .027 3 .046 7 .053 215 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .027 3 .046 7 .053 216 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .027 3 .046 9 .053 216 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .046 3 .027 1 .046 9 .					_		_	027											
205 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .038 3 .038 6 .053					_		_												
206 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .027 3 .046 7 .053 <t< td=""><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					_														
207 1.2DL +1.5Lm +1W Yes Y DL 1.2 41 1.5 2 3 .053 8 .053																			
208 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -027 3 .046 9 .053					_	.027		.046	•										
209 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.38 3 .038 10 .053 210 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.46 3 .027 11 .053 211 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.046 3 .027 5 -0.53 212 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.046 3 -0.027 5 -0.53 213 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.038 3 -0.038 6 -0.53 214 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.027 3 -0.046 7 -0.53 215 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2								.053		_									
210 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.46 3 .027 11 .053 .027 11 .053 211 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.63 3 4 -0.53 .027 5 -0.53 212 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.46 3 -0.27 5 -0.53 213 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.38 3 -0.38 6 -0.53 214 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.27 3 -0.46 7 -0.53 215 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.27 3 -0.46 9 -0.53 216 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.38 3 -0.38 10 -0.53 217 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 -0.46 3 -0.27 11 -0.53 218 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 -0.46 3 -0.27 11 -0.53 219 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 -0.46 3 -0.27 11 -0.53 220 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 -0.46 3 -0.27 5 -0.53 221 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 -0.46 3 -0.27 5 -0.53 221 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 -0.46 3 -0.27 5 -0.53					_														
211 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2053 3 4053 212 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2046 3027 5053 213 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2038 3038 6053 214 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2027 3046 7053 215 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 0.027 3046 7053 216 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .027 3046 9053 217 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .038 3038 10053 218 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 .046																			
212 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2046 3027 5053 213 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2038 3038 6053 214 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2027 3046 7053 215 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 3053 8053 216 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 0.027 3046 9053 217 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 0.038 3038 10053 218 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 0.046 3027 11053 219 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 0.046 3 0.027 5 0.053 220 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 0.046 3 0.027 5 0.053 221 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 0.038 3 0.038 6 0.053 221 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 0.038 3 0.038 6 0.053 222 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 0.027 3 0.046 7 0.053					_	_		.027											
213 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2038 3038 6053 214 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2027 3046 7053 215 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2027 3046 9053 216 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2027 3046 9053 217 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2038 3038 10053 218 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2046 3027 11053 219 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2053 3 4053 220 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2046 3027 5053 221 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2038 3038 6053 221 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2038 3038 6053 222 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2027 3046 7053					_														
214 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 027 3 046 7 053 215 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .027 3 046 9 053 216 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .027 3 046 9 053 217 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .038 3 038 10 053 218 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .046 3 027 11053 219 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 .046 3 .027 5 .053 220 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 .046 3 .027 5																			
215 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 3053 8053 216 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .027 3046 9053 217 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .038 3038 10053 218 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .046 3027 11053 219 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 .046 3 .027 11053 220 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 .046 3 .027 5 .053 221 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 .038 3 .038 6 .053 222 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 .027 3 .046 7 .053										_									
216 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .027 3 046 9 053 .053			DL 1.2	41 1.5	2	027	3												
217 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .038 3 038 10 053 218 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .046 3 027 11 053 219 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 .053 3 4 .053 220 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 .046 3 .027 5 .053 221 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 .038 3 .038 6 .053 222 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 .027 3 .046 7 .053			DL 1.2	41 1.5	2		_	053											
218 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 41 1.5 2 .046 3 027 11053 11053 219 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 .053 3 4 .053 220 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 .046 3 .027 5 .053 221 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 .038 3 .038 6 .053 222 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 .027 3 .046 7 .053			DL 1.2	41 1.5	2	.027													
219 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 .053 3 4 .053 220 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 .046 3 .027 5 .053 221 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 .038 3 .038 6 .053 222 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 .027 3 .046 7 .053			DL 1.2	41 1.5	2	.038	3	038	10	053									
220 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 .046 3 .027 5 .053 221 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 .038 3 .038 6 .053 222 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 .027 3 .046 7 .053			DL 1.2	41 1.5	2	.046	3	027	11	053									
221 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 .038 3 .038 6 .053 222 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 .027 3 .046 7 .053			DL 1.2	42 1.5	2	.053	3												
222 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 .027 3 .046 7 .053			DL 1.2	42 1.5	2	.046	3	.027	5	.053									
222 1.2DL + 1.5Lm + 1W Yes Y DL 1.2 42 1.5 2 .027 3 .046 7 .053	221 1.2DL + 1.5Lm + 1W	Yes Y	DL 1.2	42 1.5	2	.038	3	.038	6	.053									
	222 1.2DL + 1.5Lm + 1W	Yes Y			2	.027	3	.046	7	.053									
	223 1.2DL + 1.5Lm + 1W	Yes Y					3	.053	8	.053									

Company : Trylon
Designer : JE
Job Number :

: 823666

July 23, 2021 1:09 PM Checked By:____

Load Combinations (Continued)

	Des cription	S o	Р	S	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac
224	1.2DL + 1.5Lm + 1W	Yes	Υ		DL	1.2	42	1.5	2	027	3	.046	9	.053										
225	1.2DL + 1.5Lm + 1W	Yes	Υ		DL	1.2	42	1.5	2	038	3	.038	10	.053										
226	1.2DL + 1.5Lm + 1W	Yes	Υ		DL	1.2	42	1.5	2	046	3	.027	11	.053										
227	1.2DL + 1.5Lm + 1W	Yes	Υ		DL	1.2	42	1.5	2	053	3		4	053										
228	1.2DL + 1.5Lm + 1W	Yes	Υ		DL	1.2	42	1.5	2	046	3	027	5	053										
229	1.2DL + 1.5Lm + 1W	Yes	Υ		DL	1.2	42	1.5	2	038	3	038	6	053										
230	1.2DL + 1.5Lm + 1W	Yes	Υ		DL	1.2	42	1.5	2	027	3	046	7	053										
231	1.2DL + 1.5Lm + 1W	Yes	Υ		DL	1.2	42	1.5	2		3	053	8	053										
232	1.2DL + 1.5Lm + 1W	Yes	Υ		DL	1.2	42	1.5	2	.027	3	046	9	053										
233	1.2DL + 1.5Lm + 1W	Yes	Υ		DL	1.2	42	1.5	2	.038	3	038	10	053										
234	1.2DL + 1.5Lm + 1W	Yes	Υ		DL	1.2	42	1.5	2	.046	3	027	11	053										

Envelope Joint Reactions

	Joint		X [b]	LC	Y [b]	LC	Z [l b]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N25	max	1013.65	20	1965.713	39	1530.936	3	369.064	33	1813.03	19	296.879	30
2		min	-1017.846	12	-15.455	31	-1525.232	27	-1993.702	41	-1816.109	11	-3615.466	38
3	N1	max	910.716	8	2017.817	45	1602.299	17	394.206	19	1849.559	25	3535.128	45
4		min	-903.407	32	-6.322	21	-1600.527	25	-2417.586	43	-1854.015	17	-261.831	21
5	N13	max	1558.491	22	1920.51	34	412.7	18	4014.373	34	1525.209	30	754.928	167
6		min	-1561.34	14	-48.68	26	-420.433	10	-416.48	26	-1528.103	6	-619.867	223
7	Totals:	max	2947.72	22	5536.081	41	3153.468	18						
8		min	-2947.72	30	1429.053	81	-3153.47	10						

Envelope AISC 15th (360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[in]	LC	Shear	.Loc[in]	Dir	LC phi*Pnc	phi*Pnt [.	phi*Mn y	.phi*Mn z	.Cb !	Eqn
1	M2	PIPE 3.5	.534	40	45	.186	40		9 75262.68	78750	7953.75	7953.75	2H	1-1b
2	M12	PIPE 3.5	.516	40	39	.177	40		3 75262.68	78750	7953.75	7953.75	2H	1-1b
3	M7	PIPE 3.5	.505	40	34	.165	40		14 75262.68	78750	7953.75	7953.75	2H	1-1b
4	M1	C3X5	.406	34.856	44	.143	63.177	У	41 11202.9	47628	981.263	4104	1H	1-1b
5	M11	C3X5	.396	34.856	40	.142	63.177	У	35 11202.9	47628	981.263	4104	1H	1-1b
6	M6	C3X5	.387	34.856	34	.137	63.177	У	46 37027.8	47628	981.263	4020.228	1 H	1-1b
7	MP1	PIPE 2.0	.357	57	16	.046	57		16 20866.7	32130	1871.625	1871.625	1H	1-1b
8	MP3	PIPE_2.0	.344	57	5	.039	57		10 20866.7	32130	1871.625	1871.625	1H	1-1b
9	MP9	PIPE_2.0	.342	57	10	.028	57		3 20866.7	32130		1871.625		
10	MP4	PIPE_2.0	.332	57	11	.048	57		11 20866.7	32130	1871.625	1871.625	1H	1-1b
11	MP2	PIPE_2.0	.328	57	5	.050	57		9 20866.7	32130	1871.625	1871.625	1H	1-1b
12	MP8	PIPE_2.0	.328	57	10	.041	57		10 20866.7	32130	1871.625	1871.625	1H	1-1b
13	MP7	PIPE 2.0	.318	57	10	.039	57		9 20866.7	32130	1871.625	1871.625	1H	1-1b
14	MP5	PIPE_2.0	.304	57	16	.049	57		3 20866.7	32130	1871.625	1871.625	1H	1-1b
15	MP6	PIPE_2.0	.303	57	15	.034	57		5 20866.7	32130	1871.625	1871.625	1H	1-1b
16	M10	6.5"x0.37" P	.265	21	2	.097	21	у	48 3513.807	75757.5	583.963	6350.662	1H	1-1b
17	M15	6.5"x0.37" P	.262	21	7	.099	21	у	37 3513.807	75757.5	583.963	6313.86	1H	1-1b
18	M5	6.5"x0.37" P	.258	21	12	.104	21	У	42 3513.807	75757.5	583.963	6599.95	1H	1-1b
19	M13	L2x2x3	.183	0	14	.028	0	z	43 18051.7	23392.8	557.717	1239.29	2 ⊦	12-1
20	М3	L2x2x3	.175	0	3	.029	0	z	49 18051.7	23392.8	557.717	1239.29	2 ⊦	12-1
21	M22	L6 5/8x4 7/	.164	0	21	.032	42	У	11 15453.0	66065.6	. 1040.591	3031.076	1 F	12-1
22	M19	PIPE 2.0	.160	72	10	.139	72		2 14916.0	32130	1871.625	1871.625	1H	1-1b
23	M8	L2x2x3	.157	0	9	.028	0	z	38 18051.7	23392.8	557.717	1239.29	2 	12-1
24	M23	L6 5/8x4 7/	.155	0	26	.033	42	у	17 15453.0	66065.6	. 1040.591	3031.076	1 	12-1

Company Designer Job Number Model Name

: Trylon : JE :

: 823666

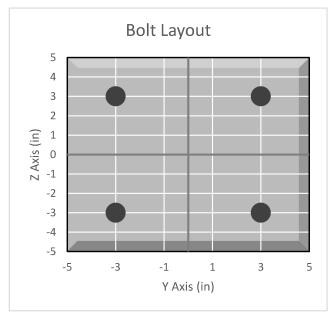
July 23, 2021 1:09 PM Checked By:___

Envelope AISC 15th (360-16): LRFD Steel Code Checks (Continued)

	Member	Shape	Code Check	Loc[in]	LC	Shear	.Loc[in]	Dir	LC phi*Pnc	.phi*Pnt [.phi*Mn y	.phi*Mn z	Cb Eqn
25	M21	PIPE 2.0	.145	72	5	.131	72		13 14916.0	32130	1871.625	1871.625	1H1-1b
26	M4	L2x2x3	.145	0	13	.031	0	у	41 18051.7	23392.8	557.717	1239.29	2 H2-1
27	M20	PIPE 2.0	.141	24	16	.131	72		8 14916.0	32130	1871.625	1871.625	1H1-1b
28	M24	L6 5/8x4 7/	.131	0	32	.030	42	у	6 15453.0	.66065.6	1040.591	3031.076	1 H2-1
29	M9	L2x2x3	.129	0	2	.030	0	у	46 18051.7	23392.8	557.717	1239.29	2 H2-1
30	M14	L2x2x3	.119	0	7	.031	0	у	36 18051.7	23392.8	557.717	1239.29	2 H2-1
31	Н3	PIPE 3.5	.109	31	10	.104	24		16 60666.0	78750	7953.75	7953.75	1H1-1b
32	H1	PIPE 3.5	.108	72	121	.108	24		10 60666.0	78750	7953.75	7953.75	1 _. H1-1b
33	H2	PIPE 3.5	.105	72	212	.097	24		5 60666.0	78750	7953.75	7953.75	1 _. H1-1b

APPENDIX D ADDITIONAL CALCUATIONS

Analysis date: 7/23/2021



BOLT TOOL 1.5.2

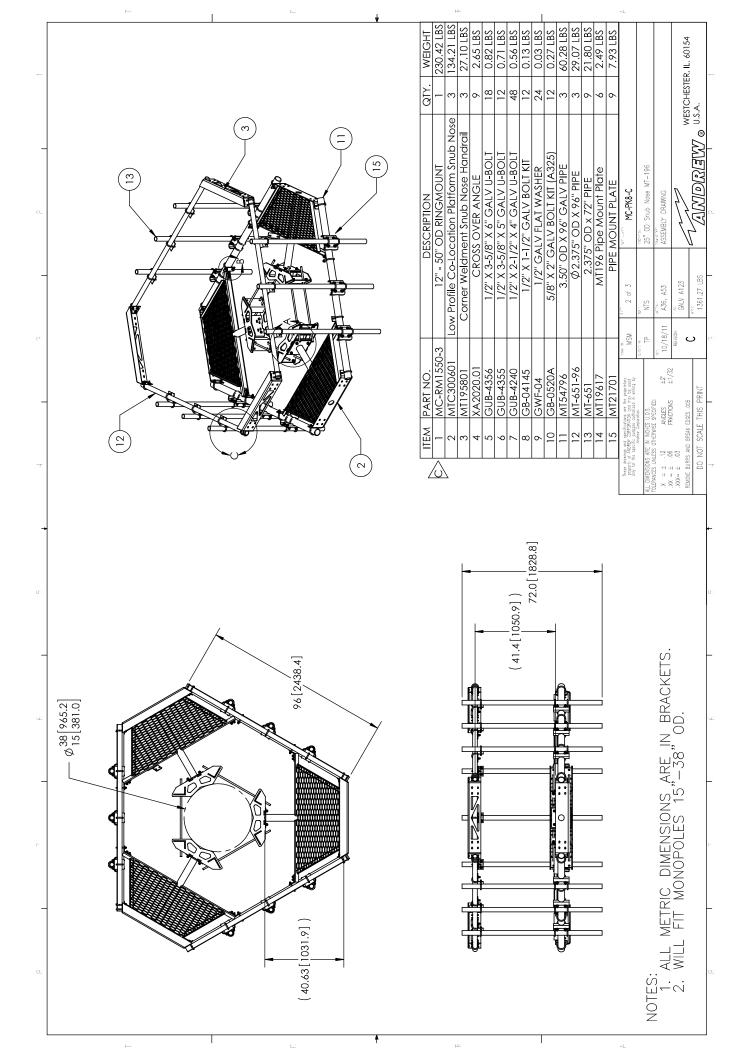
Project Data										
Job Code:	188207									
Carrier Site ID:	823666									
Carrier Site Name:	Deep River/Rt 9									

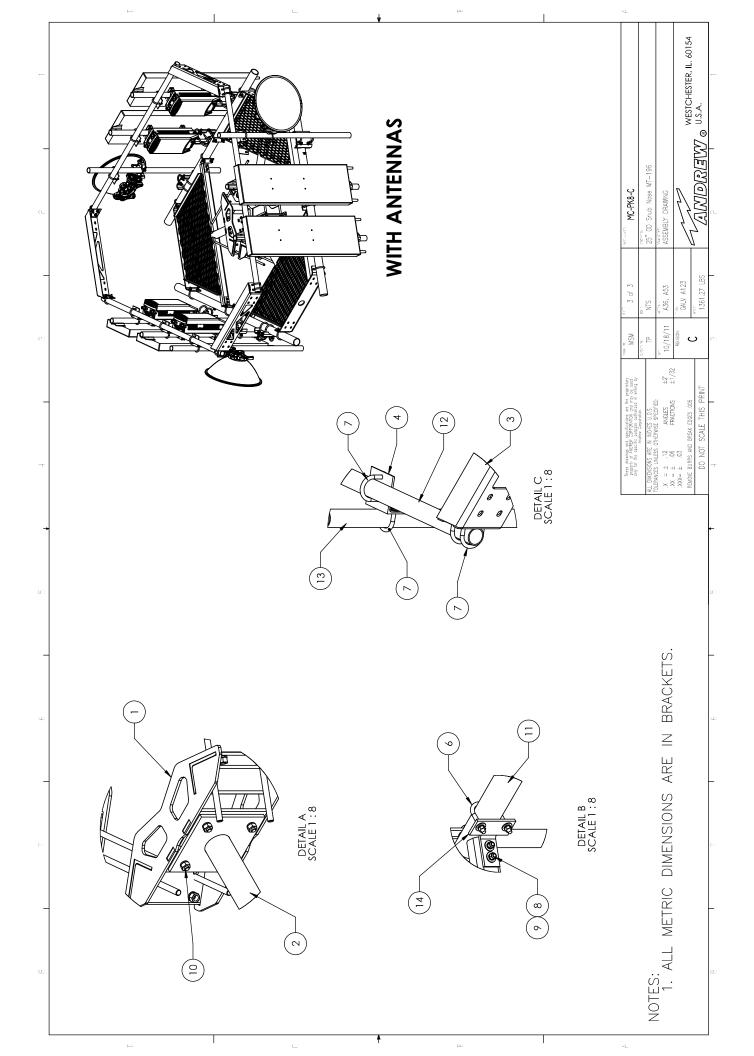
Code										
Design Standard:	TIA-222-H									
Slip Check:	No									
Pretension Standard:	-									

Bolt Pro	Bolt Properties												
Connection Type:	Bolt												
Diameter:	0.625	in											
Grade:	A325												
Yield Strength (Fy):	92	ksi											
Ultimate Strength (Fu):	120	ksi											
Number of Bolts:	4												
Threads Included:	Yes												
Double Shear:	No												
Connection Pipe Size:	-	in											

Connection Description	
Standoff to Collar	

Bolt Check*												
Tensile Capacity (ϕT_n):	20340.1	lbs										
Shear Capacity (φV _n):	13805.8	lbs										
Tension Force (T _u):	4462.4	lbs										
Shear Force (V _u):	757.1	lbs										
Tension Usage:	20.9%											
Shear Usage:	5.2%											
Interaction:	20.9%	Pass										
Controlling Member:	M2											
Controlling LC:	42											


^{*}Rating per TIA-222-H Section 15.5


APPENDIX E SUPPLEMENTAL DRAWINGS

WESTCHESTER, IL. 60154

WESTCHESTER, IL. 60154

U.S.A. BY DRR MSM DESCRIPTION
INITIAL RELEASE
CHANGE NOSE CORNER BRKT, ADD GUB-4240 LOW PROFILE PLATFORM KIT 8' FACE MC-PK8-C REVISIONS ASSEMBLY DRAWING 1410.14 LBS GALV A123 1 of 3 A36, A500 10/18/11 MSM DO NOT SCALE THIS PRINT \triangle NOTE NO. 464.27 LBS 543.22 LBS FOR BOM ENTRY ONLY 402.64 LBS WEIGHT QIY. NOTES: 1. CUSTOMER ASSEMBLY SHEETS 2-3. STEEL BUNDLE FOR SNUB NOSE PLATFORM PIPE STEEL BUNDLE FOR MC-PK8-C HARDWARE KIT FOR MC-PK8-C DESCRIPTION 2 MCPK8CSB 3 MCPK8CHWK MTC3006SB ITEM PART NO.

Exhibit F

Power Density/RF Emissions Report

RF EMISSIONS COMPLIANCE REPORT

Crown Castle on behalf of Dish Wireless

Crown Castle Site Name: Deep River/Rt 9
Crown Castle Site BU Number: 823666
Dish Wireless Site Name: CT-CCI-T-823666
Dish Wireless Site ID: BOBDL00055A
Application ID: 553286
15 Pent Road
Deep River, CT
6/10/2021

Report Status:

Dish Wireless is Compliant

Signed 10 June 2021

Prepared By:

Site Safe, LLC

8618 Westwood Center Drive Suite 315

Vienna, VA 22182

Voice: 703-276-1100 Fax: 703-276-1169

Engineering Statement in Re: Electromagnetic Energy Analysis Crown Castle Deep River, CT

My signature on the cover of this document indicates:

That I am registered as a Professional Engineer in the jurisdiction indicated; and

That I have extensive professional experience in the wireless communications engineering industry; and

That I am an employee of Site Safe, LLC in Vienna, Virginia; and

That I am thoroughly familiar with the Rules and Regulations of the Federal Communications Commission ("the FCC" and "the FCC Rules") both in general and specifically as they apply to the FCC's Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields; and

That the technical information serving as the basis for this report was supplied by Crown Castle on behalf of Dish Wireless (see attached Site Summary and Carrier documents) and that Dish Wireless' installation involves communications equipment, antennas and associated technical equipment at a location referred to as "Deep River/Rt 9" ("the site"); and

That Dish Wireless proposes to operate at the site with transmit antennas listed in the carrier summary and with a maximum effective radiated power as specified by Dish Wireless and shown on the worksheet and that worst-case 100% duty cycle has been assumed; and

That this analysis has been performed with the assumption that the ground immediately surrounding the tower is primarily flat or falling; and

That at this time, the FCC requires that certain licensees address specific levels of radio frequency energy to which workers or members of the public might possibly be exposed (at §1.1307(b) of the FCC Rules); and

That such consideration of possible exposure of humans to radio frequency energy must utilize the standards set by the FCC, which is the federal agency having jurisdiction over communications facilities; and

That the FCC rules define two tiers of permissible exposure guidelines: 1) "uncontrolled environments," which defines situations in which persons may not be aware of (the "general public"), or may not be able to control their exposure to a transmission facility; and 2) "controlled environments," which defines situations in which persons are aware of their potential for exposure (industry personnel); and

That this statement specifically addresses the uncontrolled environment (which is more conservative than the controlled environment) and the limit set forth in the FCC rules for licensees of Dish Wireless' operating frequencies as shown on the attached antenna worksheet; and

That when applying the uncontrolled environment standards, the predicted Maximum Power Density at two meters above ground level from the proposed T-Mobile operation is no more than 1.480% of the maximum permissible exposure limits in any accessible area on the ground; and

That it is understood per FCC Guidelines and OET 65 Appendix A, that regardless of the existent radio frequency environment, only those licensees whose contributions exceed 5% of the exposure limit pertinent to their operation(s) bear any responsibility for bringing any non-compliant area(s) into compliance; and

That when applying the uncontrolled environment standards, the cumulative predicted energy density from the proposed operation is no more than 3.850% of the maximum in any accessible area up to two meters above the ground per OET 65; and

That the calculations provided in this report are based on data provided by the client and antenna pattern data supplied by the antenna manufacturer, in accordance with FCC guidelines listed in OET 65. Horizontal and vertical antenna patterns are combined for modeling purposes to accurately reflect the energy two meters above ground level where on-axis energy refers to maximum energy two meters above the ground along the azimuth of the antenna and where area energy refers to the maximum energy anywhere two meters above the ground regardless of the antenna azimuth, accounting for cumulative energy from multiple antennas for the carrier(s) and frequency range(s) indicated; and

That the Occupational Safety and Health Administration has policies in place which address worker safety in and around communications sites, thus individual companies will be responsible for their employees' training regarding radio frequency safety; and

In summary, it is stated here that the proposed operation at the site will not result in exposure of the public to excessive levels of radio frequency energy as defined in the FCC Rules and Regulations, specifically 47 CFR 1.1307(b), and that Dish Wireless' proposed operation is completely compliant.

Finally, it is stated that access to the tower should be restricted to communication industry professionals and approved contractor personnel trained in radio frequency safety and that this instant analysis addresses exposure levels at two meters above ground level and does not address exposure levels on the tower or in the immediate proximity of the antennas.

Crown Castle Deep River/Rt 9 Site Summary

Carrier	Area Maximum Percentage MPE	_
AT&T Mobility, LLC	0.123 %	
AT&T Mobility, LLC	0.222 %	
AT&T Mobility, LLC	0.155 %	
AT&T Mobility, LLC	0.107 %	
Dish Wireless (Proposed)	0.701 %	
Dish Wireless (Proposed)	0.600 %	
Dish Wireless (Proposed)	0.179 %	
T-Mobile	0.266 %	
T-Mobile	0.309 %	
T-Mobile	0.206 %	
T-Mobile	0.272 %	
Verizon Wireless	0.187 %	
Verizon Wireless	0.309 %	
Verizon Wireless	0.214 %	
Composite Site MPE:	3.850 %	

					On A	Axis	Are	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
CCI	TPA-65R-LCUUUU-H8	160	30	2729	0.514521	0.051452	1.087721	0.108772
CCI	TPA-65R-LCUUUU-H8	160	140	2729	0.514521	0.051452	1.087721	0.108772
CCI	TPA-65R-LCUUUU-H8	160	300	2729	0.514521	0.051452	1.087721	0.108772

					On A	Axis	Arc	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (µW/cm²)	Percent of MPE
CCI	TPA-65R-LCUUUU-H8	160	30	3892	0.730938	0.073094	1.714898	0.171490
CCI	TPA-65R-LCUUUU-H8	160	140	3892	0.730938	0.073094	1.714898	0.171490
CCI	TPA-65R-LCUUUU-H8	160	300	3892	0.730938	0.073094	1.714898	0.171490

					On A	Axis	Arc	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (µW/cm²)	Percent of MPE
KMW	AM-X-CD-17-65-00T	160	30	1750	0.394756	0.080344	0.403973	0.082220
ANDREW	SBNH-1D6565C	160	140	916	0.209468	0.042632	0.384427	0.078242
KMW	AM-X-CD-17-65-00T	160	300	1750	0.394756	0.080344	0.403973	0.082220

					On A	Axis	Area		
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE	
Powerwave	7770	160	30	547	0.200644	0.035408	0.315206	0.055625	
Powerwave	7770	160	140	547	0.200644	0.035408	0.315206	0.055625	
Powerwave	7770	160	300	547	0.200644	0.035408	0.315206	0.055625	

Dish Wireless (Proposed) Deep River/Rt 9 Carrier Summary

Antenna Make					On A	Axis	Ar	ea
	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
JMA Wireless	MX08FRO665-20	148	0	11861	3.194525	0.319452	6.931306	0.693131
JMA Wireless	MX08FRO665-20	148	120	11861	3.194525	0.319452	6.931306	0.693131
JMA Wireless	MX08FRO665-20	148	240	11861	3.194525	0.319452	6.931306	0.693131

Dish Wireless (Proposed) Deep River/Rt 9 Carrier Summary

					On Axis		Area		
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE	
JMA Wireless	MX08FRO665-20	148	0	9866	2.781619	0.278162	5.902174	0.590217	
JMA Wireless	MX08FRO665-20	148	120	9866	2.781619	0.278162	5.902174	0.590217	
JMA Wireless	MX08FRO665-20	148	240	9866	2.781619	0.278162	5.902174	0.590217	

Dish Wireless (Proposed) Deep River/Rt 9 Carrier Summary

					On /	Axis	Ar	Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE	
JMA Wireless	MX08FRO665-20	148	0	1304	0.540631	0.135158	0.678176	0.169544	
JMA Wireless	MX08FRO665-20	148	120	1304	0.540631	0.135158	0.678176	0.169544	
JMA Wireless	MX08FRO665-20	148	240	1304	0.540631	0.135158	0.678176	0.169544	

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
RFS	APXVAARR24_43-U-NA20	178	30	8632	1.087296	0.108730	2.094751	0.209475
RFS	APXVAARR24_43-U-NA20	178	130	8632	1.087296	0.108730	2.094751	0.209475
RFS	APXVAARR24_43-U-NA20	178	310	8632	1.087296	0.108730	2.094751	0.209475

					On A	Axis	Ar	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
RFS	APXVAARR24_43-U-NA20	178	30	3484	0.696975	0.149352	0.728643	0.156138
RFS	APXVAARR24_43-U-NA20	178	130	3484	0.696975	0.149352	0.728643	0.156138
RFS	APXVAARR24 43-U-NA20	178	310	3484	0.696975	0.149352	0.728643	0.156138

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
RFS	APXVAARR24_43-U-NA20	178	30	1251	0.269549	0.067387	0.275922	0.068981
RFS	APXVAARR24_43-U-NA20	178	30	1251	0.269549	0.067387	0.275922	0.068981
RFS	APXVAARR24_43-U-NA20	178	130	1251	0.269549	0.067387	0.275922	0.068981
RFS	APXVAARR24_43-U-NA20	178	130	1251	0.269549	0.067387	0.275922	0.068981
RFS	APXVAARR24_43-U-NA20	178	310	1251	0.269549	0.067387	0.275922	0.068981
RFS	APXVAARR24_43-U-NA20	178	310	1251	0.269549	0.067387	0.275922	0.068981

					On <i>I</i>	Axis	Are	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
EMS	RR90-17-02DP	178	30	4407	0.972391	0.097239	1.446724	0.144672
EMS	RR90-17-02DP	178	130	4407	0.972391	0.097239	1.446724	0.144672
EMS	RR90-17-02DP	178	310	4407	0.972391	0.097239	1.446724	0.144672

Verizon Wireless Deep River/Rt 9 Carrier Summary

					On A	Axis	Are	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
ANDREW	HBXX-6517DS-VTM	170	30	5621	0.878167	0.087817	1.705246	0.170525
ANDREW	HBXX-6517DS-VTM	170	150	5621	0.878167	0.087817	1.705246	0.170525
ANDREW	HBXX-6517DS-VTM	170	270	5621	0.878167	0.087817	1.705246	0.170525

Verizon Wireless Deep River/Rt 9 Carrier Summary

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (µW/cm²)	Percent of MPE
ANDREW	HBXX-6517DS-VTM	170	30	3420	0.593583	0.059358	1.145312	0.114531
ANDREW	HBXX-6517DS-VTM	170	30	5130	0.890376	0.089038	1.717970	0.171797
ANDREW	HBXX-6517DS-VTM	170	150	3420	0.593583	0.059358	1.145312	0.114531
ANDREW	HBXX-6517DS-VTM	170	150	5130	0.890376	0.089038	1.717970	0.171797
ANDREW	HBXX-6517DS-VTM	170	270	3420	0.593583	0.059358	1.145312	0.114531
ANDREW	HBXX-6517DS-VTM	170	270	5130	0.890376	0.089038	1.717970	0.171797

Verizon Wireless Deep River/Rt 9 Carrier Summary

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
Antel	BXA-70063-6CF	170	30	3014	0.849360	0.169646	1.016450	0.203019
Antel	BXA-70063-6CF	170	150	3014	0.849360	0.169646	1.016450	0.203019
Antel	BXA-70063-6CF	170	270	3014	0.849360	0.169646	1.016450	0.203019

Exhibit G

Letter of Authorization

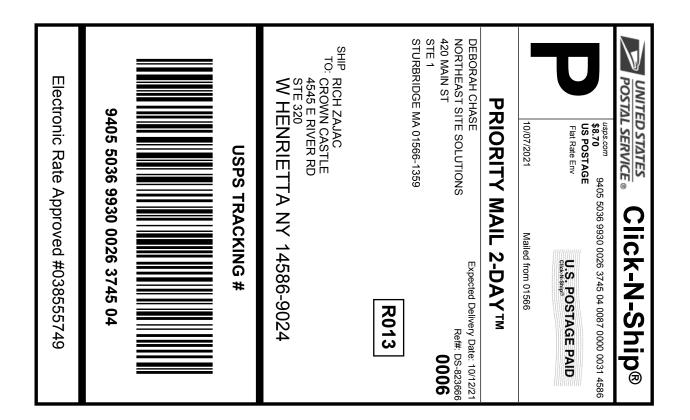
3 Corporate Dr, Suite 101 Clifton Park, NY 12065 Phone: (201) 236-9224 Fax: (724) 416-6112 www.crowncastle.com

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Re: Tower Share Application
Crown Castle telecommunications site at: 15 Pent Rd., Deep River, CT 06417

CROWN ATLANTIC COMPANY LLC ("Crown Castle") hereby authorizes DISH WIRELESS LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:


Crown Site ID/Name: 823666/Deep River/Rt 9 Customer Site ID: BOBDL00055A/CT-CCI-T-823666 Site Address: 15 Pent Rd., Deep River, CT 06417

Crown Castle USA Inc.

By: _	amozan	Date:	5/13/21	
. –	Anne Marie Zsamba			
	Project Manager – Site Acquisition			

Exhibit H

Recipient Mailings

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0026 3745 04

545441805 10/07/2021 Trans. #: Print Date: Ship Date: 10/07/2021 10/12/2021 Delivery Date:

Priority Mail® Postage: \$8.70 \$8.70 Total:

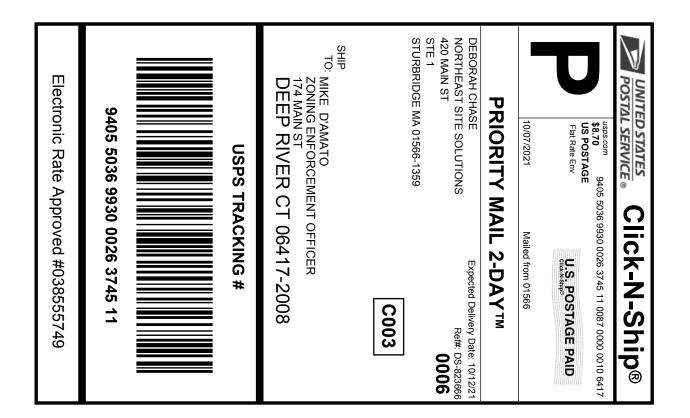
Ref#: DS-823666 From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


RICH ZAJAC CROWN CASTLE

4545 E RIVER RD

STE 320

W HENRIETTA NY 14586-9024

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0026 3745 11

545441805 10/07/2021 Trans. #: Print Date: Ship Date: 10/07/2021 10/12/2021 Delivery Date:

Priority Mail® Postage: \$8.70 \$8.70 Total:

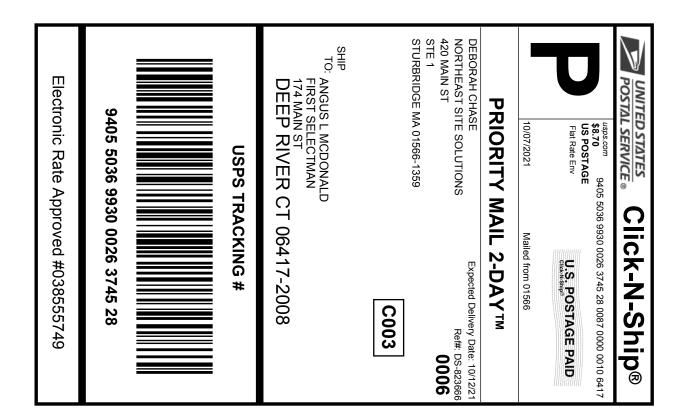
Ref#: DS-823666 From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


MIKE D'AMATO

ZONING ENFORCEMENT OFFICER

174 MAIN ST

DEEP RIVER CT 06417-2008

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0026 3745 28

545441805 10/07/2021 Trans. #: Print Date: Ship Date: 10/07/2021 10/12/2021 Delivery Date:

Priority Mail® Postage: Total:

\$8.70 \$8.70

Ref#: DS-823666

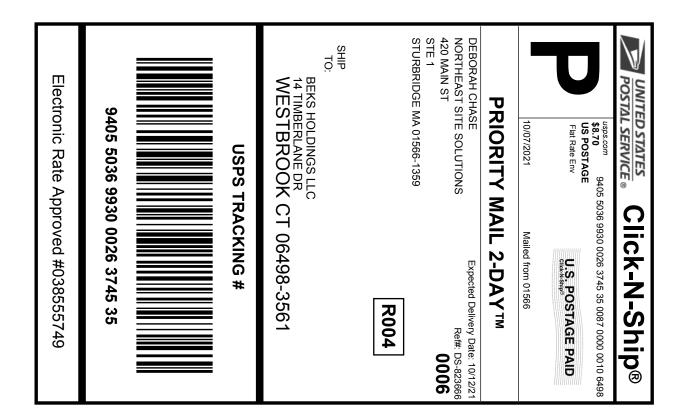
From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


ANGUS L MCDONALD

FIRST SELECTMAN

174 MAIN ST

DEEP RIVER CT 06417-2008

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0026 3745 35

545441805 10/07/2021 Trans. #: Print Date: Ship Date: 10/07/2021 10/12/2021 Delivery Date:

Priority Mail® Postage: Total:

\$8.70 \$8.70

Ref#: DS-823666

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

BEKS HOLDINGS LLC 14 TIMBERLANE DR

WESTBROOK CT 06498-3561

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

823666

UNIONVILLE 24 MILL ST UNIONVILLE, CT 06085-9998 (800)275-8777

10/08/2021	(0007270 0		01:40 PM	
Product	Qty	Unit Price	Price	
Prepaid Mail West Henrie Weight: 0 11 Acceptance Fri 10/ Tracking #: 9405 50	b 2.00 oz Date:			
Tracking #	Date: ⁄08/2021		\$0.00 35	
Prepaid Mail Deep River Weight: 0 Acceptance Fri 10 Tracking # 9405 5	lb 13.80 d Date: /08/2021		\$0.00 28	
Acceptance Fri 10 Tracking f 9405 5)/08/2021 ‡: 5036 9930 0	026 3745		
Grand Total:			\$0.00	
availahi	riencing U ses and li lity due t Wa appreci	nprecedem mited emp o the imp ate vour	nted volume ployee pacts of patience.	