VIA ELECTRONIC MAIL

September 14, 2021
Victoria Masse
Northeast Site Solutions
420 Main Street Unit \#2
Sturbridge, MA 01566
victoria@northeastsitesolutions.com
RE: EM-T-MOBILE-035-210812 - T-Mobile notice of intent to modify an existing telecommunications facility located at 0 Mechanic Street, Darien, Connecticut.

Dear Ms. Masse:
The Connecticut Siting Council (Council) received a notice of intent to modify the above-referenced facility on August 12, 2021. A revised notice that included Construction Drawings stamped and signed by a Professional Engineer licensed in the State of Connecticut was submitted September 10, 2021.

According to Section 16-50j-71 of the Regulations of Connecticut State Agencies, "... any modification, as defined in Section 16-50j-2a of the Regulations of Connecticut State Agencies, to an existing tower site, except as specified in Sections $16-50 \mathrm{j}-72$ and $16-50 \mathrm{j}-88$ of the Regulations of Connecticut State Agencies, may have a substantial adverse environmental effect."

Staff has reviewed this exempt modification request (initial and revised submittals) for completeness and has identified a deficiency in the request. The Antenna Mast Design drawings prepared by Centek Engineering and last revised November 29, 2018 are not stamped and signed by a Professional Engineer licensed in the State of Connecticut.

Therefore, the exempt modification request remains incomplete at this time. The Council recommends that Northeast Site Solutions provide Antenna Mast Design Drawings that are signed and stamped by a Professional Engineer licensed in the State of Connecticut, on or before October 13, 2021. If additional time is needed to gather the requested information, please submit a written request for an extension of time prior to October 13, 2021. Please provide an electronic version and one hard copy of the requested information for the incomplete exempt modification to be rendered complete and processed. Please include the Council's exempt modification identification number referenced above with the submittal.

This notice of incompletion shall have the effect of tolling the Federal Communications Commission (FCC) 60-day timeframe in accordance with Paragraph 217 of the FCC Wireless Infrastructure Report and Order issued on October 21, 2014 (FCC 14-153).

Thank you for your attention to this matter. Should you have any questions, please feel free to contact me at 860-827-2951.

Sincerely,

Melanie Bachman
Executive Director
MAB/FOC/emr

From: Deborah Chase <deborah@ northeastsitesolutions.com>
Sent: Friday, September 10, 2021 4:05 PM
To: CSC-DL Siting Council < Siting.Council@ct.gov>; Bachman, Melanie Melanie.Bachman@ct.gov; Mathews, Lisa A Lisa.A.Mathews@ct.gov
Cc: victoria@ northeastsitesolutions.com
Subject: 3 Mechanic Street (aka 0 Mechanic Street), Darien CT 06820- EM Application CD not S\&S
Siting Council-
We reviewed our filing on the Siting Council website and noticed the following discrepancy, the CD in the EM application was not signed and stamped.
Please see attached the updated EM Application as well as the signed and stamped CD's.
A hard copy is being sent to you as well via Priority Mail, see attached label.
Thank you very much

Deborah Chase

Senior Project Coordinator \& Analyst
Mobile: 860-490-8839

save a tree. Refuse.Reduce. Reuse. Recycle.

Turnkey Wireless Development

Northeast Site Solutions
Victoria Masse
420 Main Street \#2, Sturbridge, MA 01566
860-306-2326
victoria@northeastsitesolutions.com

July 23, 2021

Members of the Siting Council
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

RE: Exempt Modification Application
3 Mechanic Street (aka 0 Mechanic Street), Darien CT 06820
Latitude: 41.196250
Longitude: -73.431941
T-Mobile Site\#: CT11290C_L700 4x2

Dear Ms. Bachman:
T-Mobile currently maintains three (3) antennas at the 124 -foot level of the existing 115 -foot transmission pole at 3 Mechanic Street, Darien CT 06820. The electric transmission pole is owned by CL\&P d/b/a Eversource. The property is owned by State of CT DOT. T-Mobile now intends to install three (3) new 600/700/1900/2100 MHz.
The new antennas would be installed at the 124 -foot level of the tower. T-Mobile also intends to make the
following modifications. As shown on the enclosed mount analysis.
Planned Modifications
Remove:
NONE

Remove and Replace:
(3) Andrew SBNHH Antenna (Remove) - (3) RFS APX16DWV 600/700/1900/2100 MHz Antenna (Replace)
(3) RRUS-11 B12 RRU (Remove) - (3) 4449 B71 B12 RRU (Replace) (At ground level)

Install New:
(6) 1-1/4" Coax

Existing to Remain:
(3) Smart Bias Tees
(18) 1-1/4" Coax

Turnkey Wireless Development

This facility was originally approved by the CSC in Petition No. 420 dated July 15, 1999. The original approval indicates a structure height of 95 ' which conflicts with future exempt modification approvals reflecting the tower height as 115^{\prime}. This was most likely in error and the tower height is 115^{\prime}. Outside of the discrepancy, the proposed modification complies with the original approval. The top of the antennas were approved to be approximately 10 -feet above the top of the tower. Please see the enclosed.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies§ 16- SOj-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.SA. § 16-SOj-73, a copy of this letter is being sent to First Selectman Jayme Stevenson, Elected Official for the Town of Darien, as well as the property owner and the tower owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S;A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site. .
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under
R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Victoria Masse
Mobile: 860-306-2326
Fax: 413-521-0558
Office: 420 Main Street, Unit 2, Sturbridge MA 01566
Email: victoria@northeastsitesolutions.com

NORTHE兰ST
 SITE SOLUTIONS

Turnkey Wireless Development

Attachments
cc: The Honorable Jayme J. Stevenson - First Selectman - Jstevenson@darienct.gov
Darien Town Hall
2 Renshaw Rd
Darien, CT, 06820
(203) 656-7300
Kathleen A. Clark-Buch - Town Administrator - kbuch@darienct.gov
Darien Town Hall
2 Renshaw Rd, Room 202
Darien, CT, 06820
(203) 656-7300

CL\&P d/b/a Eversource - as tower owner
107 SELDEN ST BERLIN CT 06037-1616

State of CT DOT - property owner
2800 BERLIN TURNPIKE NEWINGTON CT 06111

Exhibit A

Petition No. 420
Omnipoint Communications
Darien, CT
Staff Report
July 15, 1999

On July 7, 1999, Connecticut Siting Council (Council) member Edward S. Wilensky and Executive Director Joel M. Rinebold met with J. Brendan Sharkey, Mark Finley, Brian Ragazzine, and Cheatan Dhaduk of Omnipoint Communications, Inc. (Omnipoint) for a field review in the Town of Darien, Connecticut. Omnipoint is petitioning the Council for a determination that no Certificate of Environmental Compatibility and Public Need (Certificate) would be required for modifications to an existing Connecticut Light and Power Company (CL\&P) electric transmission line facility in Darien. Omnipoint submits no Certificate would be required because the addition of three antennas and associated equipment would not have a substantial adverse environmental effect.

Omnipoint proposes to attach three PCS antennas to existing CL\&P transmission line structure number 1068, located south of Mechanic Street in Darien, Connecticut. Access would be from Mechanic Street. A temporary staging area would be established adjacent to the transmission line structure in the right-of-way. The top of the antenna assembly would extend approximately 10 feet above the top of the existing 95 -foot transmission line structure. The proposed antennas are 56 inches in length, 8 inches in width, and 2.75 inches in diameter, and weigh 18 lbs . The antennas would be placed on top of the existing tower structure and no compression post would be required. The communications equipment would be installed upon or eight-foot by 3.75 -foot concrete slab, to be placed at the northeast corner of the tower base. Additional screening is recommended around the equipment cabinet at the base of the tower.

The total calculated radio frequency power density at the base of the tower would be $0.0149 \mathrm{mw} / \mathrm{cm}^{2}$, which is 1.49 percent of the maximum permissible exposure for uncontrolled environments based on Federal Communications Commission (FCC) Bulletin 65, August 1997.

CL\&P POLE \#1068 MECHANIC STREET DARIEN, CT

search area: DARIEN / DOWNTOWN

 SITE E.D. : CT-11-290C

[^0]

NOTE:
NOTE:
CL\&P TO REMOVE EXISTING
CL\&P TO REMOVE EXISTING
VINES FROM POLE.
VINES FROM POLE.
© copyright 1999 by ARCNET Architects. he

NOTES:

1. * CONTRACTOR TO VERIFY
ALL BOLT LOCATIONS * ALL HOLES 11/16* TYPICAL WEIGHT OF SUB BASE $=110$ LBS.
2. IN INSTANCES WHERE THE BTS IS DUNNAGE OR WALL MOUNTED THE CONTRACTOR SHALL PROVIDE AN 18 GAUGE ALUMINUM CLOSURE
PANEL $3^{\prime}-9^{\prime \prime} \times 4^{\prime}-5^{\prime \prime}$. HELD IN PLACE WHEN SANDWICHED beTwEEN SUB-BASE AND GRATING. DRILL (2) WEEP HOLES AT EACH CORNER AND AT CENTER.
3. ALL SUB-BASES TO BE MOUNTED TO SUBSTRATE USING 1/2" HIGH STRENGTH BOLTS. WHERE MOUNTING TO CONCRETE USE HILTI HIT HY 150 SYSTEM WITH 3 1/2" EMBEOMENT. WHERE MOUNTING TO GRATING USE HIGH STRENGTH SADOLE CLIPS.
SHADED AREA DENOTES CABINET LOCATION ON SUB-BASE

© copyright 1999 by ARCNEFT Architects. fic.

NOTE:

ELEVATION OF NEW CONCRETE SLAB TO MATCH ELEVATION OF EXISTING STEEL POLE FOUNDATION

© copyright 1999 by ARCNEJ Architects, finc.

(C) copyright 1999 by ARCNET Architects, fic.

(C) copyright 1999 by ARCNET Architects. nc.

(C) copyright 1999 by ARCNET Architects. fhe.
NOTES:

1) STAKE ALL EVERGREEN TREES
2] TREE SHALL BEAR SAME RELATION to Finished grade as it bore to PREVIOUS GRADE.
2) NEVER CUT LEADERS.
3) PRUNE ONLY to remove damaged OR BROKEN BRANCHES. PLANTING PITS SHALL BE NO LESS THAN $30^{\prime \prime}$ IN DIAMETER AND 181 DEEP

SET 3 STAKES OR GUYS

 $1 / 2-2 / 3$ UP TREE.$$
\begin{aligned}
& 4^{4} \text { OF MULCH MOUND }{ }^{\top} \\
& \text { FORM SAUCER AROUN }
\end{aligned}
$$ TREE

REMOVE BURLAP FROM TOP $1 / 3$ OF BALL
PLANT MIXTURE
SCARIFY TO $4^{\prime \prime}$ DEPTH AND RECOMPACTED
Stakes to Extend $18 "$
below tree pit in UNDISTURBED GROUND

(1) PLANTING DETAIL	
A-12	SCALE: $1 / 8^{\prime \prime}=1+011$

(C) copyright 1999 by ARCNES Architects, ifc.

GENERAL NOTES:

1. ALL WORK SHALL BE DONE IN ACCORDANCE WITH ALL APPLICABLE FEDERAL STATE AND LOCAL CODES AND ORDINANCES.
2. CONTRACTOR SHALL INSTALL ALL EQUIPMENT SUPPLIED BY OMNIPOINT AS NOTED ON THE MATERIAL LIST. ALL ITEMS NOT SPECIFIED IN THE MATERIAL LIST SHALL BE SUPPLIED \& INSTALLED BY THE CONTRACTOR.
3. ALL EQUIPMENT SHALL BE INSTALLED PLUMB AND LEVEL.
4. ALL STRUCTURAL STEEL SHALL BE FAbRICATED and erected in accordance with the latest aisc code AND ASTM SPECIFICATION. STEEL SHALL CONFORM TO ASTM A-36. PIPE SHALL CONFORM TO ASTM A-501 OR ASTM A-53 (GRADE B)
5. ALL CONNECTIONS OF STRUCTURAL STEEL MEMBERS SHALL BE MADE USING SPECIFIED WELDS WITH WELDING ELECTRODES E-7OXX OR SPECIFIED HIGH STRENGTH BOLTS TO BE ASTM A325, THREAD EXCLUDED FROM SHEAR PLANE.
6. ALL STEEL, AFTER FABRICATION, SHALL BE HOT DIPPED GALVANIZED PER ASTM A-123. ALL DAMAGED SURFACES, WELDED AREAS AND AUTHORIZED NON-GALVANIZED MEMBERS OR PARTS (EXISTING OR NEW) SHALL BE PAINTED WITH 2 COATS OF ZRC COLD GALVANIZING COMPOUND MANUFACTURED BY ZRC CHEMICAL PRODUCTS CO. QUINCY, MASS.. OR USE THERMAL SPRAYING WITH PLATTZINC $85 / 15$ AS MANUFACTURED BY PLATT BROTHERS \& COMPANY WATERBURY, CT 1-800-752-8276.
7. ALL SHOP AND FIELD WELDING SHALL BE DONE BY WELDERS QUALIFIED AS DESCRIBED IN THE "AMERICAN WELDING SOCIETY'S STANDARD QUALIFICATION PROCEDURE" TO PERFORM THE TYPE OF WORK REQUIRED.

8. ALL GALVANIZED PIPE SIZES ARE NOMINAL DIAMETER. (INSIDE DIAMETER)

9. CONTRACTOR SHALL MEASURE AND VERIFY ALL EXISTING CONDITIONS AND DIMENSIONS IN FIELD. ANY UNUSUAL CONDITIONS SHALL BE BROUGHT TO THE ATTENTION OF THE ARCHITECT AND ENGINEER PRIOR TO THE PURCHASE, EABRICATION AND ERECTION OF ANY MATERIAL.
10. INCORRECTLY FABRICATED, DAMAGED, OTHERWISE MISFITTING, OR NON-CONFORMING MATERIALS AND CONDITIONS SHALL BE REPORTED TO THE OWNER, ARCHITECT, AND CONSTRUCTION MANAGER PRIOR TO ANY REMEDIAL OR CORRECTIVE ACTION. ALL ACTIONS SHALL REQUIRE APPROVAL FROM THE OWNER.
11. CONTRACTOR SHALL EXECUTE ALL WORK PREVENTING ANY DAMAGE TO EXISTING STRUCTURES, ESPECIALLY TO ROOF. ANY ROOF WORK INVOLVING ATTACHMENT, REMOVAL OF FINISH SURFACE OR PENETRATION SHALL BE PERFORMED TO PRESERVE EXISTING, ROOFING GUARANTEES AND WARRANTIES. ROOF SHALL BE RESTORED TO COMPLETE WATER TIGHTNESS WITH THE APPROVED MATERIAL AND BY A SUB CONTRACTOR PRE-APPROVED BY THE OWNER IN WRITING.
12. MASONRY PENETRATIONS SHOULD USE ROTARY ACTION ONLY.(NO HAMMERING ACTION.)
13. ALL PENETRATIONS TO BE PROPERLY FIRE-STOPPED WITH 3M F.S. 195 WRAP STRIP FIRE-STOP AND CP25 NON-SHRINKING PUTTY FIRE BARRIER SEALANT. MAINTAIN FIRE rating of all penetrated surfaces.

14. ALL MOUNTS TO WALLS TO BE SEALED AT TOP AND SIDES WITH DOW CORNING CLEAR SILICONE SEALANT OR APPROVED EQUAL. SILICONE APPLICATIONS ARE TO BE TOOLED TO MAINTAIN A FINISHED APPEARANCE,
15. CONTRACTOR SHALL PROMPTLY REMOVE ANY \& ALL DEBRIS FROM SITE.
16. CONTRACTOR SHALL PROVIDE A $3 / 4^{\prime \prime}$ CHAMFER ON ALL CONCRETE SLABS.

(C) copyright 1999 by ARCNIETS Architects, fic.
17. WHERE SPECIFIED ON THE CONSTRUCTION DOCUMENTS, THE GENERAL CONTRACTOR SHALL PAINT ALL NEW ANTENNAS, SHROUD AND RELATED HARDWARE TO MATCH EXISTING CONDITIONS BELOW.

NOTE ALL PAINT TO BE SHERWIN WILLIAMS OR APPROVED EQUAL, UNLESS OTHERWISE SPECIFIED
A. ANTENNA PAINT SPECIFICATIONS

SURFACE PREPARATION:
REMOVE SURFACE CONTAMINATION USING ALCOHOL SOLVENT. APPLICATION PROCEDURES

PAINTING TO BE DONE INDOORS.

1. APPLY ONE PRIMER COAT OF POLANE 2.8 PLUS FIL D61H75 PRIMER IN ACCORDANCE WITH MANUFACTURER'S INSTRUCTIONS.
2. APPLY ONE TOP COAT IN ACCORDANCE WITH MANUFACTURER'S INSTRUCTIONS.
a. FOR CELWAVE USE POLANE "HS 2.8 PLUS POLYURETHENE"
b. FOR EMS USE POLANE B OR POLANE T POLYURETHANE ENAMEL

DO NOT USE THESE METAL BASED COLORS ON ANTENNAS;
TURBINE ORANGE....DECIBEL ORANGE.... BETA YELLOW.... ULTRASONIC CHROME
B. MOUNTING HARDWARE / CONDUIT PAINT SPECIFICATION

SURFACE PREPARATION REMOVE SURFACE CONTAMINATION USING ALCOHOL SOLVENT, ETHANOL. PROPANOL, ISOPROPANOL, OR butanol. A TEN PERCENT SOLUTION OF METHYL ETHYL KETONE IN WATER CAN ALSO bE USED WHENEVER STUBBORN OIL OR GREASE IS ENCOUNTERED.
GALVANIZED SURFACES
ONE COAT OF PERMABOND - BONDING AGENT BY CORONADO PAINT CO. *100-10 DO NOT LET DRY IMMEDIATELY APPLY ONE COAT OF SHERWIN WILLIAMS S-W A100 FLAT LATEX HOUSE \& TRIM ${ }_{1}$ AG SERIES. LET DRY AND APPLY SECOND COAT OF SHERWIN WILLIAMS 5 -W A100 FLAT LATEX HOUSE \& TRIM, AG SERIES (4 MILS WET, 1.3 MILS DRY PER COAT).
C. BTS CLEARANCE LIMIT LINE DEMARCATION

WHEN SPECIFIED ON CONSTRUCTION DOCUMENTS, THE CONTRACTOR SHALL PAINT A CONTINUOUS $4^{\prime \prime}$ WIDE SAFETY LINE WITH CON-LUX ROAD PLEX \#17 TRAFFIC YELLOW OR APPROVED EQUAL ON THE WALKING SURFACE ADJACENT TO CABINET TO DENOTE REQUIRED CLEARANCE LIMITS TO CABINET.
18. HOISTING GRIP TAPING DETAIL -

CONCRETE NOTES

FOUNDATION

1. ALL FOOTINGS SHALL BEAR ON SOIL HAVING A MINIMUM SAFE BEARING CAPACITY OF 1.0 TONS PER SQUARE FOOT. SUBGRADE SHALL BE FREE FROM ALL LOOSE SOIL AND DEBRIS. CONFIRM IN FIELD PRIOR TO PLACING FOOTINGS.
2. ELEVATIONS GIVEN CORRESPOND TO THE COMPUTED BOTTOM OF FOOTINGS AND ARE MINIMUM DEPTHS. ADDITIONAL DEPTH MAY BE REQUIRED TO REACH GOOD BEARING. ALL OVER EXCAVATED MATERIALS SHALL BE REPLACED WITH 95% COMPACTED FILL, $3 / 4^{11}$ CLEAN STONE, OR CONCRETE.
3. NO FOOTINGS SHALL BE PLACED IN WATER OR ON FROZEN GROUND. AFTER FOOTINGS are placed they shall be protected against frost.
4. FILL AND BACK FILL MATERIAL SHALL BE FREE OF DELETERIOUS ORGANIC MATTER.

CAST-IN-PLACE CONCRETE

1. ALL CONCRETE WORK SHALL CONFORM TO THE LATEST EDITION OF THE ACI BUILDING COOE.
2. ALL CONCRETE SHALL ATTAIN 4000 PSI COMPRESSIVE STRENGTH AT 28 DAYS.
3. READY MIX: COMPLY WITH ACI-301 AND ASTM C-94. ALL CONCRETE EXPOSED TO THE GROUND OR WEATHER SHALL BE AIR ENTRAINED.
4. COLD WEATHER CONCRETE POURING SHALL BE IN ACCORDANCE WITH ACI-306.
5. THROUGHOUT CONSTRUCTION THE CONCRETE WORK SHALL BE ADEQUATELY PROTECTED AGAINST DAMAGE DUE TO EXCESSIVE LOADING, CONSTRUCTION EQUIPMENT, MATERIALS OR METHODS, ICE, RAIN, SNOW, EXCESSIVE HEAT AND FREEZING TEMPERATURES.
6. EARLY DRYING OUT OF CONCRETE, ESPECIALLY DURING THE FIRST 24 HOURS, SHALL BE CAREFULLY GUARDED AGAINST. ALL SURFACES SHALL BE PROTECTED USING MOIST CURING OR A MEMBRANE CURING AGENT APPLIED AS SOON AS FORMS ARE REMOVED OR FINISHING OPERATIONS ARE COMPLETE. CARE SHALL BE EXERCISED SO AS NOT TO DAMAGE COATING.
7. APPLY NON-SLIP BROOM FINISH IMMEDIATELY AFTER TROWEL FINISHING.
8. CONTRACTOR TO COORDINATE REQUIREMENTS OF STRUCTURAL, ARCHITECTURAL, MECHANICAL AND ELECTRICAL DRAWINGS; INCLUDING ANY AND ALL PENETRATIONS SPECIFIED, PRIOR TO POURING CONCRETE.

REINFORCING

1. ALL REINFORCING BAR DETAILS SHALL CONFORM TO THE LATEST ACI CODE AND dETAILING MANUAL.
2. WHERE REINFORCING IS CALLED OUT IN THE CONSTRUCTION DOCUMENTS IT SHALL BE 3" CLEAR COVER (MINIMUM UNLESS OTHERWISE NOTED|
3. ALL BARS SHALL BE ASTM A-615, GRADE 60
4. WELDED WIRE FABRIC SHALL BE ASTM A-185
5. WHERE CONTINUOUS BARS ARE CALLED FOR, THEY SHALL BE RUN CONTINUOUSLY AROUND CORNERS AND LAPPED AT NECESSARY SPLICES OR HOOKED AT DISCONTINUOUS ENDS. LAP SHALL BE 40 BAR DIAMETERS.

DESIGN CRITERIA

1. ELECTRIC: PROVIDE AND INSTALL A $208 V$ OR 240V, 2P, 60A CIRCUIT FROM A RELIABLE SOURCE TO THE COMMUNICATION CABINET. THIS SOURCE SHALL BE LOCKED ON WTH A CB LOCK. THE CONTRACTOR SHALL PROVDE (2) SPARE FUSES WHEREVER A FUSED DISCONNECT IS REQUIRED. THE CONTRACTOR SHALL VERIFY (BEFORE ANY CONSTRUCTION IS STARTED) THAT THE POWER SOURCE IS BETWEEN $2 O B V ~ A N D ~ 24 O V ~$ LINE TO LINE. IF IT IS NOT BETWEEN THE SPECIFIED VOLTAGE, THEN CALL DLB ASSOCIATES, INC. AT (732) 922-8375 AND ASK FOR MARK WORTHLEY. ALL ELECTRICAL EQUIPMENT SHALL BE LABELED WITH A BLACK PLASTIC TAG WTH WHITE LETTERS "OCS" ENGRAVED ${ }^{\prime \prime}$ IT.
2. UTLITY METER; IF A UTLLITY METER IS SPECIFIED ON THE DRAWNGS, IT IS THE CONTRACTORS RESPONSIBILITY TO OBTAIN ALL NECESSARY INSPECTIONS, CUT-IN CARDS, ETC., THAT ARE REQUIRED TO SET THE METER. THE CONTRACTOR SHALL MEET WITH THE UTILITY COMPANY TO. VERIFY METER AND TAP LOCATION PRIOR TO INSTALLATION. DLB ASSOCIATES BEGINS THE PAPERWORK WTH THE VARIOUS UTILITY COMPANIES AND CAN PROMDE THE ELECTRICAL DETAILERS NAME AND PHONE NUMBER. CONTACT DLB AT (732) 922-8375 AND ASK FOR MARIA DeVAUGHN FOR UTILITY RELATED QUESTIONS. IF TEMPORARY POWER IS REQUIRED, ALL NEC AND/OR LOCAL ELECTRIC CODES SHALL ADHERED TO. CONTACT OCS PRIOR TO MAKING AND TEMPORARY POWER CONNECTIONS.
3. IELEPHONE; PROVDE A $1-1 / 2^{\prime \prime}$ CONDUIT (WITH DRAG LINE IN NY AND BELDEN CABLE \#8768 IN NJ AND CT) FROM THE COMMUNICATION CABINET TO THE MAIN DEMARCATION POINT (USUALLY LOCATED IN THE BASEMENT). THE MAIN DEMARCATION POINT ALLOWS FOR THE LEAST AMOUNT OF NOISE AND THE MOST AMOUNT OF PROTECTION. FOR COST SAVNGS, A CLOSER DEMARCATION POINT MAY BE SPECIFIED IN MULTIPLE STORY BUILDINGS WTH THE APPROVAL OF THE TELEPHONE COMPANY. FOR NEW TELEPHONE SERVICES IN NJ, NY, \& CT, PROVDE A $4^{\prime \prime}$ CONDUIT WITH A DRAGLINE FROM THE SPECIFIED UTILITY POLE TO THE LOCATION OF THE NEW DEMARCATION POINT.
4. CONDUIT ROUTING: THE ROUTNNG OF THE CONDUIT SHALL BE SUCH THAT THE EASIEST AND MOST PRACTICAL METHODS ARE USED WITHOUT IMPACTING THE BUILDING OWNER AND THE AESTHETIC APPEAL OF THE BUILDING. BECAUSE THE WORK BEING DONE IS IN EXISTING STRUCTURES IT IS IMPOSSIBLE TO SHOW EVERY JUNCTION BOX, LB, CONDUIT BEND, ETC. IN A TWO DIMENSIONAL PLAN. IT IS FOR THIS REASON THAT THE CONTRACTOR MUST VISIT THE SITE BEFORE ACCEPTING THE OFFER AND UNDERSTAND THE TRUE INSTALLATION OBSTACLES THAT ARE UNIQUE TO THAT BUILDING.

WRING METHODS

1. GENERAL: ALL WIRING IN FINISHED AREAS SHALL BE CONCEALED UNLESS NOTED OTHERWISE. IN UNFINISHED AREAS, SUCH AS BASEMENTS, MECHANICAL ROOMS, ELECTRICAL CLOSETS, ETC. WRING SHALL BE ROUTED ON THE INTERIOR SURFACE. NO WRING SHALL BE ROUTED ON THE OUTSIDE SURFACES OF THE BUILDING UNLESS SPECIFICALLY NOTED. ALL NEC AND LOCAL ELECTRIC CODES SHALL BE ADHERED TO. ALL CONDUCTORS SHALL BE COPPER UNLESS OTHERWSE NOTED.
2. BELOW GRADE (UNDERGROUND IN EARTH OR FILL): ALL CONDUITS SHALL HAVE A MINIMUM BURIAL DEPTH OF 24*. BRANCH CIRCUITS SHALL CONSIST OF PULLED CONDUCTORS IN DIRECT BURIED SCHEDULE 40 PVC CONDUITS. CONDUITS THAT ARE BURIED UNDER EARTH THAT HAVE HEAVY VEHICLE TRAFFIC OVER IT SHALL BE ENCASED IN CONCRETE. CONCRETE ENCASEMENT SHALL GE $3^{\prime \prime}$ MINIMUM ALL AROUND AND BETWEEN CONDUITS. ALL ELBOWS USED WITH PVC CONDUIT SHALL BE SCHEDULE 80 PVC. ALL CONDUIT INSTALLED ABOVE FINISHED GRADE SHALL BE SCHEDULE 80 PVC. PRIOR TO EXCAVATION, A UTILITY MARK OUT SHALL BE DONE TO LOCATE EXISTING UNDERGROUND UTILITIES. PICTURES SHALL BE TAKEN OF ALL UNDERGROUND WORK TO BE VEWED AT THE PUNCHLIST.
3. INDOORS (UNCLASSIFIED AREAS): ALL FEEDERS SHALL CONSIST OF PULLED CONDUCTORS IN EMT. ALL BRANCH CIRCUITS SHALL CONSIST OF PULLED CONDUCTORS IN EMT., EXCEPT 15 AND 20 AMPERE 1 POLE LIGHTING RECEPTACLE, OR MISCELLANEOUS BRANCH CIRCUITS CONCEALED ABOVE SUSPENDED CEILINGS OR WTHIN DRY WALLS SHALL CONSIST OF TYPE MC METAL CLAD CABLE IF ALLOWED BY CODE. CONNECTIONS TO COMMUNICATION CABINET AND VIBRATING EQUIPMENT SHALL CONSIST OF PULLED CONDUCTORS IN FLEXIBLE METALLIC CONDUIT, MAXIMUM 6' IN LENGTH.
4. OUTDOORS OR INDOORS CLASSIFIED 'DAMP' OR 'WET' LOCATIONS: ALL FEEDERS AND BRANCH CIRCUITS SHALL CONSIST OF PULLED CONDUCTORS IN RGS OR RA CONDUIT. CONNECTIONS TO COMMUNICATION CABINET AND VBRATING EQUIPMENT SHALL CONSIST OF PULLED CONDUCTORS IN LIQUID TIGHT FLEXIBLE STEEL CONDUIT, MAXIMUM 6' IN LENGTH.

© copyright 1999 by ARCNEST Architects, /ic.

(C) copyright 1999 by ARCNETET Architects, yic.

© copyright 1999 by ARCNEST Architects, ype.

© copyright 1999 by ARCNEU Architects, fre.

Exhibit B

PARID: 29241

STATE OF CT DOT

Parcel

Alt ID	719
Address	MECHANIC STREET
Unit	
Neighborhood	3050
Class	300
Land Use Code	$901-$ STATE
Living Units	
Acres	-1
Zoning	CBD
Street1/Street2	$8-$ SECONDARY /-
Topo1/Topo2/Topo3	$-/-/-$
Util1/Util2/Util3	$-/-/-$
Notes	TELECOM ANTENNAS \& RELATED
	EQUIP ON CL\&P POLE
	PERS PROP UPDATES 2010, AH, N.C.

Owners				
Owner	Address	City	State	Zip
STATE OF CT DOT	2800 BERLIN TURNPIKE	NEWINGTON	CT	06111

Exhibit C

ESIGN BASIS

3. Desion critera

GENERAL NOTES:

ALL constructon Shall ee in complance wit the governig buloing

4. Dimesions ano derals shall ge checke nanns Exsting fil conomons.

8. THE Contaroor siml

 northeast ulurites

STRUCTURAL STEEL

Lowase stress desicn (ASD)

E. Concerion

5. Fit ANo stiop asembe fabriatons in the larest practical sectons for

11. CONNECTON ANCLES SHALL HAVE A MNMMM THCCNNES OF $1 / 4$ MCHES.

13. Lock washer are not permiteo for az25 stel assemules.

SuL be weligo or hich strencim bolieo.

Exhibit D

Centered on Solutions" ${ }^{\text {"" }}$

StructuralAnalysisof AntennaMastand Pole

> T-Mobile Site Ref: CT11290C

Eversource StructureNo. 1068 115' Electric Transmission Pole

3 Mechanic Street Darien, CT

CENTEK Project No. 18058.58

Date: September 27,2018 Rev 6: December 14, 2018

Prepared for:
T-Mobile USA
35 Griffin Road
Bloomfield, CT 06002

Table of Contents

SECTION 1 -
 REPORT

- INTRODUCTION
- PRIMARY ASSUMPTIONS USED IN THE ANALYSIS
- ANALYSIS
- DESIGN BASIS
- RESULTS
- CONCLUSION

SECTION 2- CONDITIONS \& SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAMS
- RISA 3-D
- PLS POLE

SECTION 3- DESIGN CRITERIA

- CRITERIA FOR DESIGN OF PCS FACILITIES ON OR EXTENDING ABOVE METAL ELECTRIC TRANSMISSON TOWERS
- NU DESIGN CRITERIA TABLE
- PCS SHAPE FACTOR CRITERIA
- WIRE LOADS SHEET

SECTION 4 - DRAWINGS

- MAST REPLACEMENT DRAWINGS

SECTION 5 -
 TIA-222-G LOAD CALCULATIONS FOR MAST ANALYSIS

- MAST WIND \& ICE LOAD

SECTION 6 - MAST ANALYSIS PER TIA-222G

- LOAD CASES AND COMBINATIONS (TIA LOADING)
- RISA 3-D ANALYSIS REPORT
- MAST CONNECTION TO TOWER ANALYSIS

SECTION 7 - NECS/NU LOAD CALCULATIONS FOR OBTAINING MAST REACTIONS APPLIED TO UTILITY STRUCTURE

- MAST WIND LOAD

SECTION 8 - MAST ANALYSIS PER NESC/NU FOR OBTAINING REACTIONS APPLIED TO UTILITY STRUCTURE

- LOAD CASES AND COMBINATIONS (NESC/NU LOADING)
- RISA 3-D ANALYSIS REPORT

SECTION 9- PLS POLE RESULTS FROM MAST REACTIONS CALCULATED IN RISA WITH NESC/NU CRITERIA

- COAX CABLE LOAD ON CL\&P TOWER CALCULATION
- PLS REPORT
- ANCHOR BOLT ANALYSIS

SECTION 10 - REFERENCE MATERIAL

- RFDS SHEET
- EQUIPMENT CUT SHEETS

lntroduction

The purpose of this report is to analyze the existing mast and 115 ' utility pole located at 3 Mechanic Street in Darien, CT for the proposed antenna and equipment upgrade by T-Mobile.
The existing/proposed loads consist of the following:

- T-MOBILE (Existing to Remain):

Coax Cables: Eighteen (18) 1-1/4" \varnothing coax cables running on the outside of the tower as indicated in section 4 of this report.

- T-MOBILE (Existing to Relocate):

Antennas: Three (3) Andrew ATSBT-TOP-FM-4G Smart Bias Tees mounted relocated from existing pipe mast to new pipe mast.

- T-MOBILE (Existing to be Removed):

Antennas: Three (3) Andrew SBNHH-1D65A panel antennas mounted on a mast with a RAD center elevation of $120-\mathrm{ft}$ above tower base plate.

- T-MOBILE (Proposed):

Antennas: Three (3) RFS APXVAARR18_43 panel antennas mounted on a proposed mast with a RAD center elevation of 124 -ft above tower base plate.
Coax Cables: Six (6) 1-1/4" \varnothing coax cables running on the outside of the tower as indicated in section 4 of this report.

Primary assumptionsused in the analysis

- Design steel stresses are defined by AISC-LRFD $14^{\text {th }}$ edition for design of the antenna Mast and antenna supporting elements.
- ASCE Manual No. 48-11, "Design of Steel Transmission Pole Structures", defines allowable steel stresses for evaluation of the utility pole.
- All utility pole members are adequately protected to prevent corrosion of steel members.
- All proposed antenna mounts are modeled as listed above.
- Pipe mast will be properly installed and maintained.
- No residual stresses exist due to incorrect pole erection.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All welds conform to the requirements of AWS D1.1.
- Pipe mast and utility pole will be in plumb condition.
- Utility pole was properly installed and maintained and all members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
- Any deviation from the analyzed loading will require a new analysis for verification of structural adequacy.

Analysis

Structural analysis of the existing antenna mast was independently completed using the current version of RISA-3D computer program licensed to CENTEK Engineering, Inc.
The existing mast was found to be structural inadequate to support the new equipment configuration and will need to be replaced with a 8 -in x 21 -ft long SCH. 80 pipe (O.D. $=8.625^{\prime \prime}$) connected at two points to the existing tower. The proposed mast was designed to resist loads prescribed by the TIA-222G standard. Section 5 of this report details these gravity and lateral wind loads. NESC prescribed loads were also applied to the mast in order to obtain reactions needed for analyzing the utility pole structure. These loads are developed in Section 7 of this report. Load cases and combinations used in RISA-3D for TIA-222-G loading and for NESC/NU loading are listed in report Sections 6 and 8, respectively.
An envelope solution was first made to determine maximum and minimum forces, stresses, and deflections to confirm the selected section as adequate. Additional analyses were then made to determine the NESC forces to be applied to the pole structure.
The RISA-3D program contains a library of all AISC shapes and corresponding section properties are computed and applied directly within the program. The program's Steel Code Check option was also utilized. The forces calculated in RISA-3D using NESC guidelines were then applied to the pole using PLS-Pole. Maximum usage for the pole was calculated considering the additional forces from the mast and associated appurtenances.

Design Basis

Our analysis was performed in accordance with TIA-222-G, ASCE Manual No. 48-11, "Design of Steel Transmission Pole Structures", NESC C2-2007 and Northeast Utilities Design Criteria.

- UTILITY POLE ANALYSIS

The purpose of this analysis is to determine the adequacy of the existing utility pole to support the proposed antenna loads. The loading and design requirements were analyzed in accordance with the NU Design Criteria Table, NESC C2-2007 ~ Construction Grade B, and ASCE Manual No. 48-11.
Load cases considered:
Load Case 1: NESC Heavy
Wind Pressure..................................... 4.0 psf
Radial Ice Thickness.............................. 0.5"
Vertical Overload Capacity Factor............. 1.50
Wind Overload Capacity Factor................ 2.50
Wire Tension Overload Capacity Factor...... 1.65
Load Case 2: NESC Extreme
Wind Speed...................................... $110 \mathrm{mph}^{(1)}$
Radial Ice Thickness............................. 0"
Note 1: NESC C2-2007, Section25, Rule 250C: Extreme Wind Loading, $1.25 \times$ Gust Response Factor (wind speed: 3second gust)

- MAST ASSEMBLY ANALYSIS

Mast, appurtenances and connections to the utility tower were analyzed and designed in accordance with the NU Design Criteria Table, TIA-222-G and AISC standards.

Load cases considered:
Load Case 1:
Wind Speed...................................... 93 mph (2016 CSBC Appendix-N)
Radial Ice Thickness............................. 0"
Load Case 2:
Wind Pressure
50 mph wind pressure
Radial Ice Thickness.
0.75 "

Results

- MAST ASSEMBLY

The existing mast was found to be structural inadequate to support the new equipment configuration and will need to be replaced with a 8 -in $\times 21$-ft long SCH. 80 pipe.

Member	Stress Ratio (\% of capacity)	Result
8 " Sch. 80 Pipe	45.0%	PASS

- UTILITY POLE

This analysis finds that the subject utility pole is adequate to support the proposed antenna mast and related appurtenances. The pole stresses meet the requirements set forth by the ASCE Manual No. 48-11, "Design of Steel Transmission Pole Structures", for the applied NESC Heavy and Hi-Wind load cases. The detailed analysis results are provided in Section 6 of this report. The analysis results are summarized as follows:
A maximum usage of $\mathbf{9 7 . 8 1 \%}$ occurs in the utility pole under the NESC Extreme loading condition.

POLE SECTION:

The utility pole was found to be structurally adequate to support the proposed equipment.

Tower Section	Elevation	Stress Ratio (\% of capacity)	Result
Tube Number 4	$0.00^{\prime}-15.08^{\prime}(\mathrm{AGL})$	97.81%	PASS

BASE PLATE:

The base plate was found to be within allowable limits from the PLS output based on 10 bend lines.

Tower Component	Design Limit	Stress Ratio (percentage of capacity)	Result
Base Plate	Bending	93.44%	PASS

- FOUNDATION AND ANCHORS

The existing foundation consists of a 6 - ft diameter x 18 -ft long reinforced concrete caisson. The base of the tower is connected to the foundation by means of (12) 2.25 " \varnothing, ASTM A432 Grade 60 anchor bolts embedded into the concrete foundation structure.

BASE REACTIONS:

From PLS-Pole analysis of pole based on NESC/NU prescribed loads.

Load Case	Shear	Axial	Moment
NESC Heavy Wind	17.64 kips	47.37 kips	1617.52 ft -kips
NESC Extreme Wind	26.07 kips	24.75 kips	2188.86 ft -kips

Note 1 - 10\% increase applied to tower base reactions per OTRM 051
ANCHOR BOLTS:
The anchor bolts were found to be within allowable limits.

Tower Component	Design Limit	Stress Ratio (\% of capacity)	Result
Anchor Bolts	Tension	53.89%	PASS

FOUNDATION:

The foundation was found to be within allowable limits.

Design Limit	Original Design Reaction	Proposed Reaction $^{(1)}$	Result
Shear	29.5 kips	28.7 kips	PASS
Moment	$2414.4 \mathrm{ft}-\mathrm{kips}$	$2407.8 \mathrm{ft}-\mathrm{kips}$	PASS

| Note 1: 10% increase to PLS base reactions used in foundation analysis per OTRM 051.

Conclusion

This analysis shows that the subject utility pole is adequate to support the proposed T-Mobile equipment upgrade.
The analysis is based, in part on the information provided to this office by Eversource and T-Mobile. If the existing conditions are different than the information in this report, CENTEK engineering, Inc. must be contacted for resolution of any potential issues.

Please feel free to call with any questions or comments.
Respectfully Submitted by:

STANDARD CONDITIONS FORFURNISHINGOF PROFESSIONAL ENGINEERINGSERVICESON EXISTING STRUCTURES

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil conditions, the antenna and feed line loading on the structure and its components, or other relevant information.
- Information from the field and/or drawings in the possession of CENTEK engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to CENTEK engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an un-corroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to meet any other codes or requirements unless explicitly agreed in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement. In the absence of information to the contrary, all work will be performed in accordance with the latest revision of ANSI/ASCE10 \& ANSI/EIA-222.
- All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. CENTEK engineering, Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

GENERAL DESCRIPTIONOFSTRUCTURAL ANALYSIS PROGRAM~RISA-3D

RISA-3D Structural Analysis Program is an integrated structural analysis and design software package for buildings, bridges, tower structures, etc.

Modeling Features:

- Comprehensive CAD-like graphic drawing/editing capabilities that let you draw, modify and load elements as well as snap, move, rotate, copy, mirror, scale, split, merge, mesh, delete, apply, etc.
- Versatile drawing grids (orthogonal, radial, skewed)
- Universal snaps and object snaps allow drawing without grids
- Versatile general truss generator
- Powerful graphic select/unselect tools including box, line, polygon, invert, criteria, spreadsheet selection, with locking
- Saved selections to quickly recall desired selections
- Modification tools that modify single items or entire selections
- Real spreadsheets with cut, paste, fill, math, sort, find, etc.
- Dynamic synchronization between spreadsheets and views so you can edit or view any data in the plotted views or in the spreadsheets
- Simultaneous view of multiple spreadsheets
- Constant in-stream error checking and data validation
- Unlimited undo/redo capability
- Generation templates for grids, disks, cylinders, cones, arcs, trusses, tanks, hydrostatic loads, etc.
- Support for all units systems \& conversions at any time
- Automatic interaction with RISASection libraries
- Import DXF, RISA-2D, STAAD and ProSteel 3D files
- Export DXF, SDNF and ProSteel 3D files

Analysis Features:

- Static analysis and P-Delta effects
- Multiple simultaneous dynamic and response spectra analysis using Gupta, CQC or SRSS mode combinations
- Automatic inclusion of mass offset (5\% or user defined) for dynamic analysis
- Physical member modeling that does not require members to be broken up at intermediate joints
- State of the art 3 or 4 node plate/shell elements
- High-end automatic mesh generation - draw a polygon with any number of sides to create a mesh of well-formed quadrilateral (NOT triangular) elements.
- Accurate analysis of tapered wide flanges - web, top and bottom flanges may all taper independently
- Automatic rigid diaphragm modeling
- Area loads with one-way or two-way distributions
- Multiple simultaneous moving loads with standard AASHTO loads and custom moving loads for bridges, cranes, etc.
- Torsional warping calculations for stiffness, stress and design
- Automatic Top of Member offset modeling
- Member end releases \& rigid end offsets
- Joint master-slave assignments
- Joints detachable from diaphragms
- Enforced joint displacements
- 1-Way members, for tension only bracing, slipping, etc.
- 1-Way springs, for modeling soils and other effects
- Euler members that take compression up to their buckling load, then turn off.
- Stress calculations on any arbitrary shape
- Inactive members, plates, and diaphragms allows you to quickly remove parts of structures from consideration
- Story drift calculations provide relative drift and ratio to height
- Automatic self-weight calculations for members and plates
- Automatic subgrade soil spring generator

Graphics Features:

- Unlimited simultaneous model view windows
- Extraordinary "true to scale" rendering, even when drawing
- High-speed redraw algorithm for instant refreshing
- Dynamic scrolling stops right where you want
- Plot \& print virtually everything with color coding \& labeling
- Rotate, zoom, pan, scroll and snap views
- Saved views to quickly restore frequent or desired views
- Full render or wire-frame animations of deflected model and dynamic mode shapes with frame and speed control
- Animation of moving loads with speed control
- High quality customizable graphics printing

Design Features:

- Designs concrete, hot rolled steel, cold formed steel and wood
- ACI 1999/2002, BS 8110-97, CSA A23.3-94, IS456:2000,EC 2-1992 with consistent bar sizes through adjacent spans
- Exact integration of concrete stress distributions using parabolic or rectangular stress blocks
- Concrete beam detailing (Rectangular, T and L)
- Concrete column interaction diagrams
- Steel Design Codes: AISC ASD 9th, LRFD 2nd \& 3rd, HSS Specification, CAN/CSA-S16.11994 \& 2004, BS 5950-1-2000, IS 800-1984, Euro 3-1993 including local shape databases
- AISI 1999 cold formed steel design
- NDS 1991/1997/2001 wood design, including Structural Composite Lumber, multi-ply, full sawn
- Automatic spectra generation for UBC 1997, IBC 2000/2003
- Generation of load combinations: ASCE, UBC, IBC, BOCA, SBC, ACI
- Unbraced lengths for physical members that recognize connecting elements and full lengths of members
- Automatic approximation of K factors
- Tapered wide flange design with either ASD or LRFD codes
- Optimization of member sizes for all materials and all design codes, controlled by standard or user-defined lists of available sizes and criteria such as maximum depths
- Automatic calculation of custom shape properties
- Steel Shapes: AISC, HSS, CAN, ARBED, British, Euro, Indian, Chilean
- Light Gage Shapes: AISI, SSMA, Dale / Incor, Dietrich, MarinoIWARE
- Wood Shapes: Complete NDS species/grade database
- Full seamless integration with RISAFoot (Ver 2 or better) for advanced footing design and detailing
- Plate force summation tool

Results Features:

- Graphic presentation of color-coded results and plotted designs
- Color contours of plate stresses and forces with quadratic smoothing, the contours may also be animated
- Spreadsheet results with sorting and filtering of: reactions, member \& joint deflections, beam \& plate forces/stresses, optimized sizes, code designs, concrete reinforcing, material takeoffs, frequencies and mode shapes
- Standard and user-defined reports
- Graphic member detail reports with force/stress/deflection diagrams and detailed design calculations and expanded diagrams that display magnitudes at any dialed location
- Saved solutions quickly restore analysis and design results.

GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM~PLS-TOWER

PLS-TOWER is a Microsoft Windows program for the analysis and design of steel latticed towers used in electric power lines or communication facilities. Both self-supporting and guyed towers can be modeled. The program performs design checks of structures under user specified loads. For electric power structures it can also calculate maximum allowable wind and weight spans and interaction diagrams between different ratios of allowable wind and weight spans.

Modeling Features:

- Powerful graphics module (stress usages shown in different colors)
- Graphical selection of joints and members allows graphical editing and checking
- Towers can be shown as lines, wire frames or can be rendered as 3-d polygon surfaces
- Can extract geometry and connectivity information from a DXF CAD drawing
- CAD design drawings, title blocks, drawing borders or photos can be tied to structure model
- XML based post processor interface
- Steel Detailing Neutral File (SDNF) export to link with detailing packages
- Can link directly to line design program PLS-CADD
- Automatic generation of structure files for PLS-CADD
- Databases of steel angles, rounds, bolts, guys, etc.
- Automatic generation of joints and members by symmetries and interpolations
- Automated mast generation (quickly builds model for towers that have regular repeating sections) via graphical copy/paste
- Steel angles and rounds modeled either as truss, beam or tension-only elements
- Guys are easily handled (can be modeled as exact cable elements)

Analysis Features:

- Automatic handling of tension-only members
- Automatic distribution of loads in 2-part suspension insulators (v-strings, horizontal vees, etc.)
- Automatic calculation of tower dead, ice, and wind loads as well as drag coefficients according to:
- ASCE 74-1991
- NESC 2002
- NESC 2007
- IEC 60826:2003
- EN50341-1:2001 (CENELEC)
- EN50341-3-9:2001 (UK NNA)
- EN50341-3-17:2001 (Portugal NNA)
- ESAA C(b)1-2003 (Australia)
- TPNZ (New Zealand)
- REE (Spain)
- EIA/TIA 222-F
- ANSI/TIA 222-G
- CSA S37-01
- Automated microwave antenna loading as per EIA/TIA 222-F and ANSI/TIA 222-G
- Minimization of problems caused by unstable joints and mechanisms
- Automatic bandwidth minimization and ability to solve large problems
- Design checks according to (other standards can be added easily):
- ASCE Standard 10-90
- AS 3995 (Australian Standard 3995)
- BS 8100 (British Standard 8100)
- EN50341-1 (CENELEC, both empirical and analytical methods are available)
- ECCS 1985
- NGT-ECCS
- PN-90/B-03200
- EIA/TIA 222-F
- ANSI/TIA 222-G
- CSA S37-01
- EDF/RTE Resal
- IS 802 (India Standard 802)

Results Features:

- Design summaries printed for each group of members
- Easy to interpret text, spreadsheet and graphics design summaries
- Automatic determination of allowable wind and weight spans
- Automatic determination of interaction diagrams between allowable wind and weight spans
- Capability to batch run multiple tower configurations and consolidate the results
- Automated optimum angle member size selection and bolt quantity determination

Tool for interactive angle member sizing and bolt quantity determination.

```
Criteria for Design of PCS Facilities on or
Extending Above Metal Electric Transmission
Towers\&Analysis of Transmission Towers
Supporting PCSMasts
```


lntroduction

This criteria is the result from an evaluation of the methods and loadings specified by the separate standards, which are used in designing telecommunications towers and electric transmission towers. That evaluation is detailed elsewhere, but in summary; the methods and loadings are significantly different. This criteria specifies the manner in which the appropriate standard is used to design PCS facilities including masts and brackets (hereafter referred to as "masts"), and to evaluate the electric transmission towers to support PCS masts. The intent is to achieve an equivalent level of safety and security under the extreme design conditions expected in Connecticut and Massachusetts.

ANSI Standard TIA-222 covering the design of telecommunications structures specifies a working strength/allowable stress design approach. This approach applies the loads from extreme weather loading conditions, and designs the structure so that it does not exceed some defined percentage of failure strength (allowable stress).

ANSI Standard C2-2007 (National Electrical Safety Code) covering the design of electric transmission metal structures is based upon an ultimate strength/yield stress design approach. This approach applies a multiplier (overload capacity factor) to the loads possible from extreme weather loading conditions, and designs the structure so that it does not exceed its ultimate strength (yield stress).

Each standard defines the details of how loads are to be calculated differently. Most of the NU effort in "unifying" both codes was to establish what level of strength each approach would provide, and then increasing the appropriate elements of each to achieve a similar level of security under extreme weather loadings.

Two extreme weather conditions are considered. The first is an extreme wind condition (hurricane) based upon a 50 -year recurrence (2% annual probability). The second is a winter condition combining wind and ice loadings.

The following sections describe the design criteria for any PCS mast extending above the top of an electric transmission tower, and the analysis criteria for evaluating the loads on the transmission tower from such a mast from the lower portions of such a mast, and loads on the pre-existing electric lower portions of such a mast, and loads on the pre-existing electric transmission tower and the conductors it supports.

Note 1: Prepared from documentation provide from Northeast Utilities.

PCSMast

The PCS facility (mast, external cable/trays, including the initial and any planned future support platforms, antennas, etc. extending the full height above the top level of the electric transmission structure) shall be designed in accordance with the provisions of TIA 222-G:

ELECTRIC TRANSMISSION TOWER

The electric transmission tower shall be analyzed using yield stress theory in accordance with the attached table titled "NU Design Criteria". This specifies uniform loadings (different from the TIA loadings) on the each of the following components of the installed facility:

- PCS mast for its total height above ground level, including the initial and planned future support platforms, antennas, etc. above the top of an electric transmission structure.
- Conductors are related devices and hardware.
- Electric transmission structure. The loads from the PCS facility and from the electric conductors shall be applied to the structure at conductor and PCS mast attachment points, where those load transfer to the tower.

The uniform loadings and factors specified for the above components in the table are based upon the National Electrical Safety Code 2007 Edition Extreme Wind (Rule 250C) and Combined Ice and Wind (Rule 250B-Heavy) Loadings. These provide equivalent loadings compared to TIA and its loads and factors with the exceptions noted above. (Note that the NESC does not require the projected wind surfaces of structures and equipment to be increased by the ice covering.)

In the event that the electric transmission tower is not sufficient to support the additional loadings of the PCS mast, reinforcement will be necessary to upgrade the strength of the overstressed members.

Eversource
 Overhead Transmission Standards

Attachment A Eversource Design Criteria

		Attachment A NU Design Criteria				$\begin{aligned} & \stackrel{\text { ön }}{0} \\ & \stackrel{4}{\leftrightarrows} \\ & \text { © } \end{aligned}$		
			V (MPH)	Q (PSF)	Kz	Gh		
$\begin{aligned} & \text { 을 } \\ & \text { 음 } \\ & \hline 0 \\ & \text { © } \end{aligned}$		Antenna Mount	TIA	$\begin{gathered} \text { TIA } \\ (0.75 \mathrm{Wi} \\) \end{gathered}$	TIA	TIA	TIA, Section 3.1.1.1 disallowed for connection design	TIA
		Tower/Pole Analysis with antennas extending above top of Tower/Pole (Yield Stress)	-	4	1	1	2.50	1.6 Flat Surfaces 1.3 Round Surfaces
		Tower/Pole Analysis with antennas below top of Tower/Pole (on two faces)	-	4	1	1	2.50	1.6 Flat Surfaces 1.3 Round Surfaces
		Conductors:	Conductor Loads Provided by NU					
	$\underset{\text { ¢ }}{\substack{\text { ¢ }}}$	Antenna Mount	85	TIA	TIA	TIA	TIA, Section 3.1.1.1 disallowed for connection design	TIA
		Tower/Pole Analysis with antennas extending above top of Tower/Pole	For wind speed use OTRM 060 Map 1, Rule 250C: Extreme Wind Loading Apply a $1.25 \times$ Gust Response Factor to all telecommunication equipment projected above top of tower/pole and apply a $1.0 \times$ Gust Response Factor to the tower/pole structure					1.6 Flat Surfaces 1.3 Round Surfaces
		Tower/Pole Analysis with antennas below top of Tower/Pole	For wind speed use OTRM 060 Map 1, Rule 250C: Extreme Wind Loading Height above ground is based on overall height to top of tower/pole					1.6 Flat Surfaces 1.3 Round Surfaces
		Conductors:	Conductor Loads Provided by NU					
		Tower/Pole Analysis with antennas extending above top of Tower/Pole	tower/p	For win Rule 250 SF Wind Apply a 1 communic pole and a	spee Extr ad $5 \times$ on eq ly a towe	OT Ice w X G Resp nent Gust stru	060 Map 1, Wind Loading Response Factor Factor to all jected above top of esponse Factor to the re	1.6 Flat Surfaces 1.3 Round Surfaces
		Tower/Pole Analysis with antennas below top of Tower/Pole	Heigh	For win Rule 250D ht above gro			060 Map 1, Wind Loading d verall height to top of	1.6 Flat Surfaces 1.3 Round Surfaces
		Conductors:	Conductor Loads Provided by NU					
		* Only for structures installed after 2007						

Communication Antennas on Transmission Structures

Eversource
 Overhead Transmission Standards

mount as specified below, and shall include the wireless communication mast and antenna loads per NESC criteria)
The strength reduction factor obtained from the field investigation shall be applied to the members or connections that are showing signs of deterioration from their original condition
With the written approval of Eversource Transmission Line Engineering on a case by case the existing structures may be analyzed initially using the current NESC code, then it is permitted to use the original design code with the original conductor load should the existing tower fail the current NESC code.
The structure shall be analyzed using yield stress theory in accordance with Attachment A, "Eversource Design Criteria." This specifies uniform loadings (different from the TIA loadings) on each of the following components of the installed facility:
a) Wireless communication mast for its total height above ground level, including the initial and any planned future equipment (Support Platforms, Antennas, TMA's etc.) above the top of an electric transmission structure.
b) Conductors and related devices and hardware (wire loads will be provided by Eversource).
c) Electric Transmission Structure
i) The loads from the wireless communication equipment components based on NESC and Eversource Criteria in Attachment A, and from the electric conductors shall be applied to the structure at conductor and wireless communication mast attachment points, where those loads transfer to the tower.
ii) Shape Factor Multiplier:

NESC Structure Shape	Cd
Polyround (for polygonal steel poles)	1.3
Flat	1.6
Open Lattice	3.2
Pole with Coaxial Cable	1.6

iii) When Coaxial Cables are mounted alongside the pole structure, the shape multiplier shall be:

Mount Type	Cable Cd	Pole Cd
Coaxial Cables on outside periphery (One layer)	1.45	1.45
Coaxial Cables mounted on stand offs	1.6	1.6

d) The uniform loadings and factors specified for the above components in Attachment A, "Eversource Design Criteria" are based upon the National Electric Safety Code 2007 Edition Extreme Wind (Rule 250C) and Combined Ice and Wind (Rule 250B-Heavy) Loadings. These provide equivalent loadings compared to the TIA and its loads and factors with the exceptions noted above.
Note: The NESC does not require ice load be included in the supporting structure. (Ice on conductors and shield wire only, and Eversource will provide these loads).
e) Mast reaction loads shall be evaluated for local effects on the transmission structure members at the attachment points.

Communication Antennas on Transmission Structures

Northeast Utilities System
Job:
o-o oystem

Description:

	Page	of
Spec. Number	Sheet	of
Computed by	Date	$5 / 26 / 09$
Checked by	Date	

INPUT DATA

Structure Height (ft) : 115
Wind Zone : Central CT (green)
Tower Type: Suspension
Wind Speed : $\quad 110 \mathrm{mph}$

Extreme Wind Model : PCS Addition

Shield Wire Properties:

NAME $=$
BACK
DESCRIPTION $=$
STRANDING $=$
OPGW-012
DIAMETER $=$
WEIGHT $=$
$2-G r o o v e$
AHEAD

Conductor Properties:

NAME =		BACK	AHEAD		
		BITTERN	BITTERN		
Number of Conductors per phase	1	$\begin{aligned} & 1272.000 \\ & \text { 45/7 ACSR } \end{aligned}$	$\begin{aligned} & 1272.000 \\ & 45 / 7 \text { ACSR } \end{aligned}$	1	Number of Conductors per phase
$\begin{array}{r} \text { DIAMETER = } \\ \text { WEIGHT }= \end{array}$		$\begin{gathered} 1.345 \mathrm{in} \\ 1.432 \mathrm{lb} / \mathrm{ft} \end{gathered}$	$\begin{gathered} 1.345 \mathrm{in} \\ 1.432 \mathrm{lb} / \mathrm{ft} \end{gathered}$		

Insulator Weight $=200$ Ibs Broken Wire Side $=$ AHEAD SPAN
Horizontal Line Tensions:

BACK		AHEAD		
NESC HEAVY $=$	Shield	Conductor	Shield	Conductor
\left.${=} \begin{array}{rccc} & 3,800 & 10,000 & 3,800 \\ \text { LONG. WIND }= & 2,500 & 6,751 & 2,500 \\ \text { 250D COMBINED }= & \text { na } & \text { na } & 6,751 \\ \text { NESC W/O OLF }= & \text { na } & \text { na } & \text { na }\end{array}\right]$ na $}$				
na	na	na	na	
1,319	4,289	na	na	
DEG F NO WIND $=$	1,319	4,289		

Line Geometry:

l	
LINE ANGLE (deg)	$=$
WIND SPAN $(\mathrm{ft})=$	BACK: 2 AHEAD: 2 BACK: 210 AHEAD: 210 3 WEIGHT SPAN (ft) $=$ BACK: 217 AHEAD: BAD

Northeast
Utilities System
Job:

	Page	of
Spec. Number	Sheet	of
Computed by	Date	$5 / 26 / 09$
Checked by	Date	

WIRE LOADING AT ATTACHMENTS

TOWER ID: \qquad

Wind Span	$=$
Weight Span	$=$
Total Angle	$=420 \mathrm{ft}$
434 ft	
3	degrees

Broken Wire Span $=$ AHEAD SPAN
Type of Insulator Attachment = SUSPENSION

1. NESC RULE 250B Heavy Loading:

	INTACT CONDITION			BROKEN WIRE CONDITION		
	Horizontal	Longitudinal	Vertical	Horizontal	Longitudina	Vertical
Shield Wire =	901 lb	0 lb	826 lb	450 lb	4,369 lb	413 lb
Conductor $=$	$1,685 \mathrm{lb}$	0 lb	2,279 lb	842 lb	$11,496 \mathrm{lb}$	$1,140 \mathrm{lb}$

2. NESC RULE 250C Transverse Extreme Wind Loading:

	Horizontal	Longitudinal	Vertical
Shield Wire $=$	828 lb	0 lb	244 lb
Conductor $=$	0 lb	$1,021 \mathrm{lb}$	

3. NESC RULE 250C Longitudinal Extreme Wind Loading:

	Horizontal	Longitudinal	Vertical
Shield Wire =	\#VALUE!	\#VALUE!	244 lb
Conductor $=$	\#VALUE!	\#VALUE!	1.021 lb

4. NESC RULE 250D Extreme Ice \& Wind Loading:

	Horizontal	Longitudinal	Vertical
Shield Wire $=$		\#VALUE! \#VALUE! $1,127 \mathrm{lb}$ Conductor $=$ \#VALUE! \#VALUE!	$2,287 \mathrm{lb}$

5. NESC RULE 250B w/o OLF's

	Horizontal	Longitudinal	Vertical
Shield Wire =	\#VALUE!	\#VALUE!	551 lb
Conductor =	\#VALUE!	\#VALUE!	$1,519 \mathrm{lb}$

6. 60 Deg. F. No Wind

	Horizontal	Longitudinal	Vertical
Shield Wire $=$	69 lb	0 lb	244 lb
Conductor	$=$$1,021 \mathrm{lb}$	225 lb	0 lb

7. Construction

	Horizontal	Longitudinal	Vertical
Shield Wire $=$	104 lb 0 lb Conductor $=$ 337 lb 0 lb	$1,532 \mathrm{lb}$	

NOTE: All loads include required overload factors (OLF's).

Northeast Utilities System

Job :

Description:

	Page	of
Spec. Number	Sheet	of
Computed by	Date	$5 / 26 / 09$
Checked by	Date	

INPUT DATA

Structure Height (ft) : 115

Wind Zone : Central CT (green)
Tower Type : Suspension
Wind Speed: $\quad 110 \mathrm{mph}$

Extreme Wind Model : PCS Addition

Shield Wire Properties:

	BACK	AHEAD
NAME $=$	OPGW-012	OPGW-012
DESCRIPTION $=$	2 -Groove	2 -Groove
STRANDING $=$	12 \#8 FOCAS	12 \#8 FOCAS
DIAMETER $=$	0.635 in	0.635 in
WEIGHT $=$	$0.563 \mathrm{lb} / \mathrm{ft}$	$0.563 \mathrm{lb} / \mathrm{ft}$

Conductor Properties:

Insulator Weight $=200$ Broken Wire Side $=$ AHEAD SPAN
Horizontal Line Tensions:

	BACK		AHEAD	
	Shield	Conductor	Shield	Conductor
	3,800	5,000	3,800	5,000
EXTREME WIND $=$	2,500	3,464	2,500	3,464
LONG. WIND $=$	na	na	na	na
250D COMBINED $=$	na	na	na	na
NESC W/O OLF $=$	na	na	na	na
60 DEG F NO WIND $=$	1,319	1,943	1,319	1,943

Line Geometry:

LINE ANGLE (deg) =					SUM
	BACK:	2	AHEAD:	2	3
WIND SPAN (ft) =	BACK:	210	AHEAD:	210	420
WEIGHT SPAN (ft) $=$	BACK:	217	AHEAD:	217	434

WIRE LOADING AT ATTACHMENTS

TOWER ID:

\square

Wind Span $=$	420 ft
Weight Span $=$	434 ft
Total Angle $=$	3 degrees

Broken Wire Span	$=$ AHEAD SPAN
Type of Insulator Attachment	$=$ SUSPENSION

1. NESC RULE 250B Heavy Loading:

	INTACT CONDITION			BROKEN WIRE CONDITION		
	Horizontal	Longitudinal	Vertical	Horizontal	Longitudinal	Vertical
Shield Wire =	901 lb	0 lb	826 lb	450 lb	$4,369 \mathrm{lb}$	413 lb
Conductor =	$1,034 \mathrm{lb}$	0 lb	$1,395 \mathrm{lb}$	517 lb	$5,748 \mathrm{lb}$	697 lb

2. NESC RULE 250C Transverse Extreme Wind Loading:

	Horizontal	Longitudinal	Vertical
Shield Wire $=$	828 lb	0 lb	244 lb
Conductor $=$	072 lb	601 lb	

3. NESC RULE 250C Longitudinal Extreme Wind Loading:

	Horizontal		Longitudinal
Shield Wire $=$	\#VALUE! \#VALUE!	244 lb	
Conductor $=$	\#VALUE!	\#VALUE!	601 lb

4. NESC RULE 250D Extreme Ice \& Wind Loading:

	Horizontal		Longitudinal
Shield Wire $=$	\#VALUE! \#VALUE! Conductor $=$ $1,127 \mathrm{lb}$ \#VALUE! \#VALUE! $1,529 \mathrm{lb}$		

5. NESC RULE 250B w/o OLF's

	Horizontal	
Songitudinal	Vertical	
Shield Wire	$=$\#VALUE! \#VALUE! 551 lb Conductor $=$ \#VALUE! \#VALUE! 930 lb	

6. 60 Deg. F, No Wind

	Horizontal	Longitudinal	Vertical
Shield Wire =	69 lb	0 lb	244 lb
Conductor =	102 lb	0 lb	601 lb

7. Construction

	Horizontal	Longitudinal	Vertical
Shield Wire =	104 lb	0 lb	367 lb
Conductor =	153 lb	0 lb	901 lb

NOTE: All loads include required overload factors (OLF's).

ANTENNA MAST DESIGN

STRUCT. NO. 1068 3 MECHANIC STREET DARIEN, CT 06820

DESIGN BASIS

. GOVERNING CODE: 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CT STATE SUPPLEMENT.
2. TIA-222-G, ASCE MANUAL NO. 48-11 - "DESIGN OF STEEL TRANSMISSION POLE STRUCTURES SECOND EDITION", NESC C2-2007 AND NORTHEAST UTILITIES DESIGN CRITERIA.
3. DESIGN CRITERIA

WIND LOAD: (ANTENNA MAST)
NOMINAL DESIGN WIND SPEED $(\mathrm{V})=93 \mathrm{MPH}$ (2018 CSBC: APPENDIX 'N')

WIND LOAD: (UTILITY POLE \& FOUNDATION) BASIC WIND SPEED (V) $=110 \mathrm{MPH}$ ($3-$ SECOND GUST) BASED ON NESC C2-2007, SECTION 25 RULE 250 C .

GENERAL NOTES

1. REFER TO STRUCTURAL ANALYSIS REPORT PREPARED BY CENTEK ENGINEERING, INC., FOR T-MOBILE, DATED $11 / 1 / 18$
2. TOWER GEOMETRY AND STRUCTURE MEMBER SIZES WERE OBTAINED FROM THE TOWER DESIGN DRAWINGS PREPARED BY UNIVERSAL POLE BRACKET CORP.; SHOP ORDER T-6291 DATED MAY 17, 1967.
3. ALL CONSTRUCTION SHALL BE IN ACCORDANCE WITH THE GOVERNING BUILDING CODE.
4. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO
ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS SCOPE OF WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN costs.
5. BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH INVESTIGATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE AND SUBSURFACE) AT OR CONTIGUOUS TO THE SITE WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK. THIS AFFECT PERFORMANCE AND COST OF THE WORK. THIS
INCLUDES VERIFYING ALL DIMENSIONS, ELEVATIONS, ANGLES, INCLUDES VERIFYING ALL DIMENSIONS, ELEVATIONS,
AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA. CONTRACTOR SHALL TAKE FIELD MEASUREMENTS NECESSARY TO ASSURE PROPER FIT OF ALL FINISHED WORK.
6. PCS MAST INSTALLATION SHALL BE CONDUCTED BY FIELD CREWS EXPERIENCED IN THE ASSEMBLY AND ERECTION OF TRANSMISSION STRUCTURES. ALL SAFETY PROCEDURES, THE INDUSTRY AND IN COMPLIANCE WITH OSHA.
7. IF ANY FIELD CONDITIONS EXIST WHICH PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL PROCEED WITH AFFECTED WORK AFTER CONFLICT IS SATISFACTORILY RESOLVED.
8. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS
REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
9. NO DRILLING WELDING OR TAPING IS PERMITTED ON CL\&P OWNED EQUIPMENT.

STRUCTURAL STEEL

1. ALL STRUCTURAL STEEL IS DESIGNED BY ALLOWABLE STRESS DESIGN (ASD).
2. MATERIAL SPECIFICATIONS
A. STRUCTURAL STEEL (W SHAPES)---ASTM A992
B. STRUCTURAL STEEL (OTHER SHAPES)---ASTM A36
($\mathrm{FY}=36 \mathrm{KSI}$)
C. STRUCTURAL STEEL
(TOWER REINF. SOLID ROUND BAR)---
ASTM A572_GR50 (50 KSI)
D. STRUCTURAL HSS (RECTANGULAR SHAPES)---ASTM A500 GRADE B, (FY $=46 \mathrm{KSI})$
E. STRUCTURAL HSS (ROUND SHAPES)---ASTM A500 GRADE B, (FY $=42 \mathrm{KSI}) \quad$ (FI $=35 \mathrm{KSI})$
3. FASTENER SPECIFICATIONS
A. CONNECTION BOLTS---ASTM A325-N, UNLESS OTHERWISE SCHEDULED.
B U-BOLTS---ASTM A307
C. ANCHOR RODS---ASTM F1554
C. ANCHOR RODS---ASTM F1554 D. WELDING ELECTRODES---ASTM E70XX FOR A36 \& A572_GR50 STEELS, ASTM E80XX FOR
A572_GR65 STEEL
E. BLIND BOLTS---AS1252 PROPERTY CLASS 8.8 ($\mathrm{FU}=120 \mathrm{KSI}$).
4. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE ENGINEER FOR REVIEW. SHOP DRAWINGS SHALL INCLUDE THE FOLLOWING: SECTION PROFILES, SIZES, CONNECTION ATTACHMENTS, FASTENERS AND ACCESSORIES. INCLUDE ERECTION DRAWINGS, ELEVATIONS AND DETAILS.
5. STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH THE LATEST PROVISIONS OF AISC MANUAL OF STEEL CONSTRUCTION.
6. PROVIDE ALL PLATES, CLIP ANGLES, CLOSURE PIECES, STRAP ANCHORS, MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE THE STRUCTURE
7. FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST PRACTICAL SECTIONS FOR DELIVERY TO SITE.
8. INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, AND FREE FROM DISTORTIONS OR DEFECTS
9. AFTER ERECTION OF STRUCTURES, TOUCHUP ALL WELDS ABRASIONS AND NON-GALVANZED SURCACES WITH A ASTM 780.
10. ALL STEEL MATERIAL (EXPOSED TO WEATHER) SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT DIPPED GALVANIZED) COATINGS" ON IRONS AND STEEL PRODUCTS
11. ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE".
12. CONTRACTOR SHALL COMPLY WITH AWS CODE FOR PROCEDURES APPEARANCE AND QUALITY OF WELDS, AND WELDING PROCESSES SHALL BE QUALIFIED IN ACCORDANCE WITH AWS "STANDARD QUALIFICATION PROCEDURES". ALL WELDING SHALL BE DONE USING THE SCHEDULED ELECTRODES AND WELDING SHALL CONFORM TO AISC AND DI. THE MINIMUM SIZE PER TABLET 12.4 IN THE AISC "MANUAL OF STEEL COBLETRUCTION" OTH EDTION AT THE COEEL CONSING ALL WELDRE, ALL BE REPAIRED.
13. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW
14. CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF $1 / 4$ INCHES.
15. STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325. ALL BOLTS SHALL BE 3/4" DIAMETER MINIMUM AND SHALL HAVE A MINIMUM OF TWO BOLTS, UNLESS OTHERWISE ON THE DRAWINGS.
16. ALL BOLTS SHALL BE INSTALLED PER THE REQUIREMENTS OF AISC 14TH EDITION \& RCSC "SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH STRENGTH BOLTS".
17. ALL BOLTS SHALL BE INSTALLED AS SNUG-TIGHT CONNECTIONS UNLESS OTHERWISE INDICATED. CONNECTIONS SPECIFIED AS PRETENSIONED OR
SLIP-CRITICAL SHALL BE TIGHTENED TO A BOLT TENSION NOT LESS THAN THAT GIVEN IN TABLE J3.1 OF AISC 14TH EDITION.
18. LOCK WASHER ARE NOT PERMITTED FOR A325 BOLTED STEEL ASSEMBLIES.
19. LOAD INDICATOR WASHERS SHALL BE UTILIZED ON ALL PRETENSIONED OR SLIP-CRITICAL CONNECTIONS
20. SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BOLTED.
21. MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION.
22. FABRICATE BEAMS WITH MILL CAMBER UP.
23. LEVEL AND PLUMB INDIVIDUAL MEMBERS OF THE STRUCTURE TO AN ACCURACY OF $1: 500$, BUT NOT TO EXCEED $1 / 4$ " IN THE FULL HEIGHT OF THE COLUMN.
24. COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK

MODIFICATION INSPECTION REPORT REQUIREMENTS

PRE-CONSTUCTION		during Construction		POST-CONSTRUCTION	
$\begin{gathered} \text { SCHEDULED } \\ \text { TEM } \end{gathered}$	REPORT TEM	SCHEDULED Item	REPORT TEM	SCHEDULED TEM	REPORT ITEM
\times	EOR MODIFICATION INSPECTION DRAWING	-	FOUNDATIONS	\times	MODIFICATION INSPECTOR RECORD REDLINE DRAWING
\times	EOR APPROVED SHOP DRAWINGS	-	EARTHWORK: BACKFILL MATERIAL \& COMPACTION	-	POST-INSTALLED ANCHOR ROD PULL-OUT TEST
-	EOR APPROVED POST-INSTALLED ANCHOR MPII	-	REBAR \& FORMWORK GEOMETRY VERIFICATION	x	PHOTOGRAPHS
-	FABRICATION INSPECTION	-	CONCRETE TESTING		
-	FABrICATOR CERTIFIED WELDER InSPECTION	\times	STEEL INSPECTION		
x	MATERIAL CERTIFICATIONS	-	POST INSTALLED ANCHOR ROD VERIFICATION		
		-	base plate grout verification		
		-	CONTRACTOR'S CERTIFIED WELD INSPECTION		
		\times	ON-SITE COLD GALVANIZING VERIFICATION		
		\times	CONTRACTOR AS-BUILT REDLINE DRAWINGS		
NOTES: 1. REEER TO MODIFICATION INSPECTION NOTES FOR ADDITIONAL REOUIREMENTS 2. "X" DENOTES DOCUMENT REQUIRED FOR INCLUSION IN MODIFICATION INSPECTION FINAL REPORT. 3. "-" DENOTES DOCUMENT NOT REQUIRED FOR INCLUSION IN MODIFICATION INSPECTION FINAL REPORT. 4. EOR - ENGER OF RECRD 4. MPII - - "MANUFACTURER'S PRINTED INSTALLATION GUIDELINES"					

GENERAL

1. THE MODIFICATION INSPECTION IS A VISUAL INSPECTION OF STRUCTURAL MODIFICATIONS, TO INCLUDE A REVIEW AND COMPILATION OF SPECIFIED SUBMITTALS AND COMPILANCE WITH THE CONSTRUCTION DOCUMENTS PREPARED UNDER THE DIRECTION OF THE ENGINEFR OF RECORD (EOR).
2. THE MODIFICATION INSPECTION IS TO CONFIRM INSTALLATION CONFIGURATION AND GENERAL WORKMANSHIP AND IS NOT A REVIEW OF THE MODIFICATION DESIGN. OWNERSHIP OF THE MODIFICATION DESIGN EFFECTIVENESS AND INTENT RESIDES WITH THE
ENGINEER OF RECORD.
3. TO ENSURE COMPLIANCE WITH THE MODIFICATION INSPECTION REQUIREMENTS THE GENERAL CONTRACTOR (GC) AND THE MODIFICATION INSPECTOR (MI) COMMENCE COMMUNICATION UPON AUTHORIZATION TO PROCEED BY THE CLIENT. EACH PARTY SHALL BE PROACTIVE IN CONTACTING THE OTHER. THE EOR SHALL BE CONTACTED IF SPECIFIC GC/MI CONTACT INFORMATION IS NOT MADE AVAILABLE.
4. THE GC SHALL PROVIDE THE MI WITH A MINIMUM OF 5 BUSINESS DAYS NOTICE OF IMPENDING INSPECTIONS.
5. WHEN POSSIBLE, THE GC AND MI SHALL BE ON SITE DURING THE MODIFICATION INSPECTION TO HAVE ANY NOTED DEFICIENCIES ADDRESSED DURING THE INITIAL MODIFICATION INSPECTION.

MODIFICATION INSPECTOR (MI)

THE MI SHALL CONTACT THE GC UPON AUTHORIZATION BY THE CLIENT TO

- REVIEW THE MODIFICATION INSPECTION REPOR REQUIREMENTS
- WORK WITH THE GC IN DEVELOPMENT OF A SCHEDULE FOR ON-SITE INSPECTIONS
- DISCUSS CRITICAL INSPECTIONS AND PROJECT CONCERNS.

2. THE MI IS RESPONSIBLE FOR COLLECTION OF ALL INSPECTION AND TEST REPORTS, REVIEWING REPORTS FOR ADHERENCE TO THE CONTRACT DOCUMENTS, CONDUCTING ON-SITE INSPECTIONS AND COMPILATION \& SUBMISS
OF THE MODIFICATION INSPECTION REPORT TO THE CLIENT AND THE EOR.

GENERAL CONTRACTOR (GC)

1. THE GC IS REQUIRED TO CONTACT THE GC UPON AUTHORIZATION TO PROCEED WITH CONSTRUCTION BY THE CLIENT TO:

- REVIEW THE MODIFICATION INSPECTION REPORT REQUIREMENTS.
- WORK WITH THE MI IN DEVELOPMENT OF A SCHEDULE FOR ON-SITE INSPECTIONS
- DISCUSS CRITICAL INSPECTIONS AND PROJECT CONCERNS

2. THE GC IS RESPONSIBLE FOR COORDINATING AND SCHEDULING IN ADVANCE ALL REQUIRED INSPECTIONS

CORRECTION OF FAILING MODIFICATION

INSPECTION

1. SHOULD THE STRUCTURAL MODIFICATION NOT COMPLY WITH THE REQUIREMENTS OF THE CONSTRUCTION DOCUMENTS, THE GC SHALL WORK WITH THE MODIFICATION INSPECTOR IN A VIABLE REMEDIATION PLAN AS FOLLOWS

- CORRECT ALL DEFICIENCIES TO COMPLY WITH THE CORRECT ALL DEFICIENCIES TO COMPLY WITH THE CONTRACT DOCUMENTS AND COORD
WITH CLIENT AUTHORIZATION, THE GC MAY WORK WITH THE EOR TO REANALYZE THE MODIFICATION USING THE AS-BUILT CONDITION.

REQUIRED PHOTOGRAPHS

1. THE GC AND MI SHALL AT MINIMUM PHOTO DOCUMENT THE FOLLOWING FOR INCLUSION IN THE MODIFICATION INSPECTION REPORT

- PRE-CONSTRUCTION: GENERAL CONDITION OF THE SITE.
- DURING CONSTRUCTION: RAW MATERIALS, CRITICAL DETAILS, WELD PREPARATION BOLT INSTALIATION \& TORQUE, FINAL INSTALLED CONDITION \& SURFACE
- POST-CONSTRUCTION: FINAL CONDITION OF THE SITE

modification

 MODIFICATIONINSECTON INSPECTION
REQUIREMENTS

Ml-1

(2 ANTENNA MOUNTING DETAIL

 DIA. COAX CABLES DIA. COAX CABLESDOUBLE STACKED ON WITH SNAP-IN HANGERS
WIH SNAP-IN HANGERS

EXISTING (18) 1-1

2 BOTTOM BRACKET PLAN VIEW s-3

1. POLE TAPER $=0.2099^{\prime \prime} /$ FT (V.I.F.)

1 BOTTOM BRACKET DETAIL
SCALE: $1-1 / 2^{\prime \prime}=1^{\prime}-0$

二NT $=\mathrm{K}$ engineering	Subject:	Loads on Equipmnet Structure 1068
	Location:	Darien, CT
	Rev. 2: 10/5/18	Prepared by: T.J.L. Checked by: C.F.C. Job No. 18058.58

Development of Design Heights, Exposure Coefficients, and Velocity Pressures Per TIA-222-G

Wind Speeds

Basic Wind Speed
Basic Wind Speed with Ice
Input

Structure Type $=$
Structure Category $=$
Exposure Category $=$
Structure Height $=$
Height to Center of Antennas=
Radial Ice Thickness $=$
Radial Ice Density $=$
Topograpic Factor $=$
Gust Response Factor $=$
Output

Wind Direction Probability Factor =

Importance Factors =

$$
\mathrm{K}_{\mathrm{iz}}:=\left(\frac{\mathrm{z}_{\mathrm{ant}}}{33}\right)^{0.1}=1.142
$$

Velocity Pressure CoefficientAntemas=

Velocity Pressure w/o Ice Antennas =

Velocity Pressure with Ice Antennas=
$\mathrm{V}:=93 \quad \mathrm{mph} \quad$ (User Input-2016 CSBC AppendixN)
$\mathrm{V}_{\mathrm{i}}:=50 \quad \mathrm{mph} \quad$ (User Input per Annex B ofTIA-2२2-G)

Structure_Type := Pole
SC := III
Exp := C
$\mathrm{h}:=115$
ft
$\mathrm{ft} \quad$ (User Input)
$z_{\text {ant }}:=124$
in
pcf
(User Input)
(User Input)
(User Input)
(User Input)

Output

$I_{\text {ice }}: \left\lvert\, \begin{aligned} & 0 \text { if } \mathrm{SC}=1 \\ & 1.00 \text { if } \mathrm{SC}=2 \\ & 1.25 \text { if } \mathrm{SC}=3\end{aligned}=1.25\right.$
$\mathrm{t}_{\text {iz.ant }}:=2.0 \cdot \mathrm{t}_{\mathrm{i} \cdot} \mathrm{I}_{\mathrm{ice}} \cdot \mathrm{K}_{\mathrm{iz}} \cdot \mathrm{K}_{\mathrm{zt}}{ }^{0.35}=2.14$
$K z_{\text {ant }}:=2.01\left(\left(\frac{z_{\text {ant }}}{z g}\right)\right)^{\frac{2}{\alpha}}=1.324$
$\mathrm{qz} \mathrm{ant}:=0.00256 \cdot \mathrm{~K}_{\mathrm{d}} \cdot \mathrm{Kz}_{\mathrm{ant}} \cdot \mathrm{V}^{2} \cdot \mathrm{I}_{\text {Wind }}=32.033$
$q z_{\text {ice.ant }}:=0.00256 \cdot \mathrm{~K}_{\mathrm{d}} \cdot \mathrm{Kz}_{\mathrm{ant}} \cdot \mathrm{V}_{\mathrm{i}}{ }^{2} \cdot{ }^{\text {I }}$ Wind_w_Ice $=8.051$

C三NT $=\mathrm{K}$ engineering	Subject:	Loads on Equipmnet Structure 1068
	Location:	Darien, CT
	Rev. 2: 10/5/18	Prepared by: T.J.L. Checked by: C.F.C. Job No. 18058.58

Development of Wind \& Ice Load on Mast

Mast Data:	(8" Sch. 80 Pipe)		(User Input)
Mast Shape $=$	Round		(User Input)
Mast Diameter $=$	$\mathrm{D}_{\text {mast }}:=8.625$	in	(User Input)
Mast Length $=$	$L_{\text {mast }}:=22$	ft	(User Input)
Mast Thickness $=$	$t_{\text {mast }}:=0.5$	in	(User Input)
Velocity Coefficient $=$	$\mathrm{C}:=\sqrt{1 \cdot \mathrm{Kz}} \mathrm{ant} \cdot \mathrm{V}$	$\frac{D_{\text {mast }}}{12}=77$	
MastForce Coefficient $=$	$C F_{\text {mast }}=0.6$		

Wind Lœad (without ice)

Mast Projected Surface Area $=$
Total Mast Wind Force $=$
Wind Load (with ice)

Mast Projected SurfaceArea w/ Ice $=$

Total Mast Wind Force w/ Ice =

Gravity Loads (without ice)

Weight of the mast =

Gravity Loads (ice only)

IceAreaper Linear Foot =

Weight of Ice on Mast =

$$
\begin{array}{ll}
\mathrm{A}_{\text {mast }}:=\frac{\mathrm{D}_{\text {mast }}}{12}=0.719 & \text { sfft } \\
\mathrm{qz}_{\text {ant }} \cdot \mathrm{G}_{H} \cdot \mathrm{CF}_{\text {mast }} \cdot \mathrm{A}_{\text {mast }}=19 & \text { plf } \\
\text { BLC 5 }
\end{array}
$$

AICE $_{\text {mast }}:=\frac{\left(\mathrm{D}_{\text {mast }}+2 \cdot \mathrm{t}_{\text {iz.ant }}\right)}{12}=1.075$
sfft
qzice.ant $\cdot G_{H} \cdot F_{\text {mast }} \cdot$ AICE $_{\text {mast }}=7$
plf

SelfWeight
(Computed internally by Risa-3D)
plf
BLC 1
BLC 4

$A i_{\text {mast }}:=\frac{\pi}{4}\left[\left(\mathrm{D}_{\text {mast }}+\mathrm{t}_{\text {iz.ant }} \cdot 2\right)^{2}-\mathrm{D}_{\text {mast }}{ }^{2}\right]=72.4$
sqin
$W_{\text {ICEmast2 }}:=I d \cdot \frac{A i_{\text {mast }}}{144}=28$

二NT $=\mathrm{K}$ engineering	Subject:	Loads on Equipmnet Structure 1068
	Location:	Darien, CT
	Rev. 2: 10/5/18	Prepared by: T.J.L. Checked by: C.F.C. Job No. 18058.58

Development of Wind \& Ice Load on Antennas

Antenna Data:

Antenna Model =	RFSAPXVAARR18_43	
Antenna Shape $=$	Flat	(User Input)
Antema Height $=$	$\mathrm{L}_{\text {ant }}:=72 \quad$ in	(User Input)
Antenna Width =	$\mathrm{W}_{\text {ant }}:=24 \quad$ in	(User Input)
Antenna Thickness =	$\mathrm{T}_{\text {ant }}:=8.5 \quad$ in	(User Input)
Antenna Weight =	$\mathrm{W} \mathrm{Tant}:=132 \mathrm{lbs}$	(User Input)
Number of Antennas =	$\mathrm{Nant} \mathrm{=}=3$	(User Input)
AntennaAspectRaio =	$\mathrm{Ar}_{\mathrm{ant}}:=\frac{\mathrm{L}_{\mathrm{ant}}}{\mathrm{~W}_{\mathrm{ant}}}=3.0$	
Antenna Force Coefficient =	$\mathrm{Ca}_{\mathrm{ant}}=1.22$	

Wind Load (without ice)

SurfaceArea for One Antenna =

Antenna Projected Surface Area =

TotalArtennaWindForce=

$$
\begin{array}{ll}
\mathrm{SA}_{\mathrm{ant}}:=\frac{\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{~W}_{\mathrm{ant}}}{144}=12 & \mathrm{sf} \\
\mathrm{~A}_{\mathrm{ant}}:=\mathrm{SA}_{\mathrm{ant}} \cdot N_{\mathrm{ant}}=36 & \mathrm{sf} \\
\mathrm{~F}_{\mathrm{ant}}:=\mathrm{qZ} \\
\mathrm{ant}
\end{array} \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{ant}} \cdot \mathrm{~K}_{\mathrm{a}} \cdot \mathrm{~A}_{\mathrm{ant}}=1903 \quad \text { lbs } \quad \text { BLC5 } 5
$$

SA ICEant $:=\frac{\left(L_{\text {ant }}+2 \cdot t_{i z . a n t}\right) \cdot\left(W_{\text {ant }}+2 \cdot t_{i z . a n t}\right)}{144}=15 \quad \mathrm{sf}$
A ICEant $:=$ SA $_{\text {ICEant }} \cdot N_{\text {ant }}=44.9$ sf
$\mathrm{Fi}_{\text {ant }}:=\mathrm{qz}$ ice.ant $\cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {ant }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{A}_{\text {ICEant }}=597 \quad \mathrm{lbs}$

BLC 4

BLC 2
$\mathrm{V}_{\mathrm{ant}}:=\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{W}_{\mathrm{ant}} \cdot \mathrm{T}_{\mathrm{ant}}=1 \times 10^{4}$
cu in

Volume oflœ on EachAntenna =

$$
\mathrm{V}_{\mathrm{ice}}:=\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz.ant}}\right)\left(\mathrm{W}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz.ant}}\right) \cdot\left(\mathrm{T}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz.ant}}\right)-\mathrm{V}_{\mathrm{ant}}=1 \times 10^{4}
$$

Weight of Ice on EachAntenna =
$W_{\text {ICEant }}:=\frac{V_{\text {ice }}}{1728} \cdot$ ld $=418$
lbs
$W_{\text {ICEant }} N_{\text {ant }}=1253$ lbs
cu in

BLC 3

二NT $=\mathrm{K}$ engineering	Subject:	Loads on Equipmnet Structure 1068
	Location:	Darien, CT
Branford, CTO6405 F:(203) 48888587	Rev. 2: 10/5/18	Prepared by: T.J.L. Checked by: C.F.C. Job No. 18058.58

Development of Wind \& Ice Load on Antennas

Antenna Data:

Antenna Model $=$	CommscopeATSBT-TOP-FM-4G Bias Te	
Antenna Shape $=$	Flat	(User Input)
Antema Height $=$	$\mathrm{L}_{\mathrm{ant}}:=5.63$	in
Antenna Width $=$	$\mathrm{W}_{\mathrm{ant}}:=3.7$	in
Antenna Thickness $=$	$\mathrm{T}_{\mathrm{ant}}:=2.0$	in
(User Input)		
Antenna Weight $=$	$\mathrm{WT}_{\mathrm{ant}}:=2$	(User Input)
Number of Antennas $=$	$\mathrm{N}_{\mathrm{ant}}:=3$	(User Input)
AntennaAspectRaio $=$	$\mathrm{Ar}_{\mathrm{ant}}:=\frac{\mathrm{L}_{\mathrm{ant}}}{\mathrm{W}_{\mathrm{ant}}}=1.5$	(User Input)
Antenna Force Coefficient $=$	$\mathrm{Ca}_{\mathrm{ant}}=1.2$	(User Input)

Wind Load (without ice)

SurfaceArea for One Antenna =

Antenna Projected Surface Area =

TotalArtennaWind Force=
$S_{a n t}:=\frac{L_{a n t} \cdot W_{a n t}}{144}=0.1$
sf
$\mathrm{A}_{\text {ant }}:=\mathrm{SA}_{\text {ant }} \mathrm{N}_{\text {ant }}=0.4$ sf

Wind Load (with ice)

SurfaceArea for One Antenna w/ lce =

Antenna Projected Surface Area w/ ce =

Total Antenna Wind Forcew/lce =

Gravity Load (without ice)
Weight of All Antennas=
Gravity Loads (ice only)
Volume of Each Antenna =
$\mathrm{F}_{\mathrm{ant}}:=\mathrm{qz} \mathrm{ant} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{ant}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{A}_{\mathrm{ant}}=23$
lbs
$\mathrm{V}_{\mathrm{ant}}:=\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{W}_{\mathrm{ant}} \cdot \mathrm{T}_{\mathrm{ant}}=42$
cu in

Cu in

$$
V_{\text {ice }}:=\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz} . \mathrm{ant}}\right)\left(\mathrm{W}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz} . \mathrm{ant}}\right) \cdot\left(\mathrm{T}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz} . \mathrm{ant}}\right)-\mathrm{V}_{\mathrm{ant}}=455
$$

$$
\begin{equation*}
W_{\text {ICEant }}:=\frac{V_{\text {ice }}}{1728} \cdot \mathrm{ld}=15 \tag{lbs}
\end{equation*}
$$

$\mathrm{W}_{\text {ICEant }} \mathrm{N}_{\text {ant }}=44 \quad \mathrm{lb}$
LC 3

BLC 5
sf
sf
$\mathrm{Fi}_{\text {ant }}:=\mathrm{qz} \mathrm{zice}_{\text {.ant }} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{ant}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{A}_{\text {ICEant }}=21$
lbs
lbs
BLC 2

二NT $=\mathrm{K}$ engineering	Subject:	Loads on Equipmnet Structure 1068
	Location:	Darien, CT
	Rev. 2: 10/5/18	Prepared by: T.J.L. Checked by: C.F.C. Job No. 18058.58

Development of Wind \& Ice Load on Antenna Mounts

Mount Data:
Mbunt Type: Lightweight Ring Mount with FlushAdapters

MountShape $=$

MountShape $=$	Flat		(User Input)
MountProjected SurfaceArea=	$\mathrm{CaAa}:=0$	sf	(User Input)
Mount Projected Surface Area w/ Ice =	CaAa ${ }_{\text {ice }}:=0$	sf	(User Input)
Mbunt Weight $=$	W $T_{\text {mnt }}:=305$	lbs	(User Input)
Mount Weightw/ $\mathrm{lce}=$	$W T_{\text {mnt.ice }}:=425$	lbs	

Wind Load (without ice)

Total Mount Wind Force $=$

$F_{\text {mnt }}:=q z_{a n t} \cdot G_{H} \cdot C a A a=0$
lbs

Wind Load (with ice)

Total Mount Wind Force $=$
$\mathrm{Fi}_{\mathrm{mnt}}:=\mathrm{qz} \mathrm{zice}_{\mathrm{ic}} \cdot \mathrm{ant} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{CaAa}_{\mathrm{ice}}=0$
lbs

Gravity Loads (without ice)

Weight ofAll Mounts =
$W T_{m n t}=305$
lbs
BLC 2

Gravity Loads (ice only)

Weight of Ice onAll Mounts=
$\mathrm{W} \mathrm{T}_{\text {mnt.ice }}-\mathrm{W} \mathrm{T}_{\mathrm{mnt}}=120$
lbs
BLC 3

二NT $=\mathrm{K}$ engineering	Subject:	Loads on Equipmnet Structure 1068
	Location:	Darien, CT
	Rev. 2: 10/5/18	Prepared by: T.J.L. Checked by: C.F.C. Job No. 18058.58

Development of Wind \& Ice Load on Coax Cables

Coax Cable Data:

CoaxType $=$
Shape $=$

Coax Outside Diameter =
CoaxCable Length $=$
Weight of Coax per foot =
Total Number of Coax=
Total Number of Exterior Coax= No. of Coax Projecting Outside Face of Mast =

Coax aspectratio,

Coax Cable Force Factor Coefficient =
Wind Load (without ice)

Coax projected surface area $=$

Total Coax Wind Force =

Wind Load (with ice)

Coax projected surface area w/ lce =

Total Coax Wind Force w/ Ice =

Gravity Loads (without ice)

Weight of all cables w/o ice

Gravity Loads (ice only)

IceAreaper Linear Foot =

Ice WeightAll Coax per foot =

HELIAX 1-1/4"

Round (User Input)
$D_{\text {coax }}:=1.55$ in (User Input)
$\mathrm{L}_{\text {coax }}:=15 \quad \mathrm{ft} \quad$ (User Input)
$\mathrm{Wt}_{\text {coax }}:=0.66 \quad$ plf \quad (User Input)
$\mathrm{N}_{\text {coax }}:=24 \quad$ (User Input)
$\mathrm{Ne}_{\text {coax }}:=24 \quad$ (User Input)
$\mathrm{NP}_{\text {coax }}:=4 \quad$ (User Input)
$\operatorname{Ar}_{\text {coax }}:=\frac{\left(L_{\text {coax }} \cdot 12\right)}{D_{\text {coax }}}=116.1$
$\mathrm{Ca}_{\text {coax }}=1.2$

$$
\begin{aligned}
& A_{\text {coax }}:=\frac{\left(N P_{\operatorname{coax}} D_{\operatorname{coax}}\right)}{12}=0.5 \\
& F_{\text {coax }}:=\mathrm{Ca}_{\text {coax }} \cdot q z_{\mathrm{ant}} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{~A}_{\text {coax }}=27
\end{aligned}
$$

$\mathrm{AICE}_{\text {coax }}:=\frac{\left(\mathrm{NP}_{\text {coax }} \cdot \mathrm{D}_{\text {coax }}+2 \cdot \mathrm{t}_{\text {iz.ant }}\right)}{12}=0.9 \quad \mathrm{sffft}$
$\mathrm{Fi}_{\text {coax }}:=\mathrm{Ca}_{\text {coax }} \cdot \mathrm{qz}_{\text {ice.ant }} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{AICE}_{\text {coax }}=11$
$\mathrm{WT}_{\text {coax }}:=\mathrm{Wt}_{\text {coax }} \cdot \mathrm{N}_{\text {coax }}=16$
plf
BLC 2
$A i_{\text {coax }}:=\frac{\pi}{4}\left[\left(D_{\text {coax }}+2 \cdot t_{i z . a n t}\right)^{2}-D_{\text {coax }}{ }^{2}\right]=24.8$
sq in
$W \mathrm{Ti}_{\text {coax }}:=\mathrm{N}_{\text {coax }} \cdot \mathrm{Id} \cdot \frac{A \mathrm{C}_{\text {coax }}}{144}=232$
plf
plf

Model Name

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	. 12
P-Delta Analysis Tolerance	0.50\%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	No
Max Iterations for Wall Stiffness	3
Gravity Acceleration (ft/sec^2)	32.2
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver
Hot Rolled Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 14th(360-10): ASD
Cold Formed Steel Code	AISI 1999: ASD
Wood Code	AF\&PA NDS-91/97: ASD
Wood Temperature	< 100F
Concrete Code	ACI 318-02
Masonry Code	ACI 530-05: ASD
Aluminum Code	AA ADM1-05: ASD - Building
Stainless Steel Code	AISC 14th(360-10): ASD
Adjust Stiffness?	Yes(lterative)
Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	PCA Load Contour
Parme Beta Factor (PCA)	. 65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min \% Steel for Column	1
Max \% Steel for Column	8

(Global) Model Settings, Continued

Seismic Code	UBC 1997
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	No
Ct X	.035
Ct Z	Not Entered
T X (sec)	Not Entered
T Z (sec)	8.5
R X	8.5
R Z	.36
Ca	.54
Cv	1
Nv	4
Occupancy Category	3
Seismic Zone	1
Om Z	1
Om X	1
Rho Z	1
Rho X	
	1.5
Footing Overturning Safety Factor	No
Optimize for OTM/Sliding	No
Check Concrete Bearing	0
Footing Concrete Weight (k/ft^3)	3
Footing Concrete f'c (ksi)	4000
Footing Concrete Ec (ksi)	1
Lambda	60
Footing Steel fy (ksi)	0.0018
Minimum Steel	0.0075
Maximum Steel	$\# 3$
Footing Top Bar	3.5
Footing Top Bar Cover (in)	$\# 3$
Footing Bottom Bar	3.5
Footing Bottom Bar Cover (in)	$\# 3$
Pedestal Bar	$\# 3$
Pedestal Bar Cover (in)	
Pedestal Ties	

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm ($\backslash 1$	Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi	Rt
1	A36 Gr. 36	29000	11154	. 3	. 65	. 49	36	1.5	58	1.2
2	A572 Gr. 50	29000	11154	. 3	. 65	49	50	1.1	58	1.2
3	A992	29000	11154	. 3	. 65	. 49	50	1.1	58	1.2
4	A500 Gr. 42	29000	11154	. 3	. 65	49	42	1.3	58	1.1
5	A500 Gr. 46	29000	11154	. 3	. 65	49	46	1.2	58	1.1
6	A53 Gr. B	29000	11154	. 3	. 65	49	35	1.5	58	1.2

Hot Rolled Steel Section Sets

Label		Shape	Type	Design List	Material	Design ... A [in2]		lyy [in4]	Izz [in4] J [in4]	
1	Existing Mast	PIPE_8.0X	Column	Wide Flange	A53 Gr. B	Typical	11.9	100	100	199

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft]	Lcomp bot[ft]	L-torqu...	Kyy	Kzz	Cb	Function
1	M1	Existing Mast	21			Lbyy						Lateral

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(d..	Section/Shape	Type	Design List	Material	Design Rul.
1	M1	BOTMA..	TOPMA...			Existing Mast	Column	Wide Flange	A53 Gr. B	Typical

Joint Coordinates and Temperatures

Label		$\mathrm{X}[\mathrm{ft}]$		$\mathrm{Y}[\mathrm{ft}]$	$\mathrm{Z}[\mathrm{ft}]$	

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	TOPCONNECTION	Reaction		Reaction			
2	BOTMAST	Reaction	Reaction	Reaction		Reaction	

Member Point Loads (BLC 2 : Weight of Appurtenances)

Member Label	Direction		Magnitude[k,k-ft]	Location[ft, $\%]$
1	M 1	Y	-.396	18
2	M 1	Y	-.006	18
3	M 1	Y	-.305	18

Member Point Loads (BLC 3 : Weight of Ice Only)

Member Label		Direction		Magnitude[k,k-ft]
1	M 1	Y	-1.253	Location[ft,\%]
2	M 1	Y	-.044	18
3	M 1	Y	-.12	18

Member Point Loads (BLC 4 : TIA Wind with Ice)

Member Label		Direction	Magnitude[k,k-ft]	Location[ft,\%]
1	M 1	X	.597	18
2	M 1	X	.021	18

Member Point Loads (BLC 5 : TIA Wind)

Member Label	Direction		Magnitude[k,k-ft]	Location[ft,\%]
1	M1	X	1.903	18
2	M 1	X	.023	18

Member Distributed Loads (BLC 2 : Weight of Appurtenances)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/...	Start Location[ft,\%]	End Location[ft, \%]
1	M1	Y	-. 016	-. 016	9	15

Member Distributed Loads (BLC 3 : Weight of Ice Only)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/.	Start Location[ft,\%]	End Location[ft,\%]
1	M1	Y	-. 028	-. 028	0	0
2	M1	Y	-. 232	-. 232	9	15

Member Distributed Loads (BLC 4 : TIA Wind with Ice)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/...	Start Location[ft,\%]	End Location[ft,\%]
1	M1	X	. 007	. 007	0	15
2	M1	X	. 011	011	9	15

Member Distributed Loads (BLC 5 : TIA Wind)

Member Label									Direction		Start Magnitude $[\mathrm{k} / \mathrm{ft}, \mathrm{F}, \mathrm{ksf}]$		End Magnitude $[\mathrm{k} / \ldots$ Start Location $[\mathrm{ft}, \%]$ End Location $[\mathrm{ft}, \%]$	
1	M 1	X	.019	.019	0	15								
2	M 1	X	.027	.027	9	15								

Basic Load Cases

BLC Description		Category	X Gravity Y Gravity Z Gravity			Joint	Point	Distribu..	Area(M...	Surface...
1	Self Weight	None		-1						
2	Weight of Appurtenances	None					3	1		
3	Weight of Ice Only	None					3	2		
4	TIA Wind with Ice	None					2	2		
5	TIA Wind	None					2	2		

Load Combinations

Description So...P... S... BLCFac...BLC Fac...BLC Fac...BLC Fac...BLC Fac...BLC Fac...BLC Fac...BLC Fac...BLC Fac...BLCFac...

1	$1.2 \mathrm{D}+1.6 \mathrm{~W}$	Yes	Y		1	1.2	2	1.2	5	1.6												
2	$0.9 \mathrm{D}+1.6 \mathrm{~W}$	Yes	Y		1	.9	2	.9	5	1.6												
3	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 . . \mathrm{Yes}$	Y		1	1.2	2	1.2	3	1	4	1											

Envelope Joint Reactions

Joint			X [k]	LC Y [k]		LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	TOPCONNEC...	max	-1.829	3	0	3	0	3	0	3	0	3	0	
2		min	-8.88	1	0	1	0	1	0	1	0	1	0	1
3	BOTMAST	max	5.084	1	5.381	3	0	3	0	3	0	3	0	3
4		min	1.04	3	1.488	2	0	1	0	1	0	1	0	1
5	Totals:	max	-. 789	3	5.381	3	0	3						
6		min	-3.797	1	1.488	2	0	1						

Envelope Joint Displacements

Joint			$X[\mathrm{in}]$0	LC	Y [in]	LC	Z [in]	LC	X Rotation [... LC		C Y Rotation [... LC Z Rotation [... LC			
1	BOTMAST	max		3	0	3	0	3	0	3	0	3	2.531e-03	1
2		min	0	1	0	1	0	1	0	1	0	1	5.183e-04	3
3	TOPCONNECT.	max	0	3	0	2	0	3	0	3	0	3	-1.088e-03	3
4		min	0	1	-. 002	3	0	1	0	1	0	1	-5.308e-03	1
5	TOPMAST	max	2.397	1	0	2	0	3	0	3	0	3	-3.546e-03	3
6		min	. 49	3	-. 003	3	0	1	0	1	0	1	-1.734e-02	1

Envelope AISC 14th(360-10): LRFD Steel Code Checks

Member		Shape	Code Check	Loc... LC		Shea...Loc.		L..phi*Pn..phi*Pn..phi*M... phi*M...			Eqn
1	M1	PIPE 8.0X	450	7	1	. 047	7	1254.613374 .85	81.375	81.375	1..H1-1b

Joint Reactions

	LC	Joint Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	1	TOPCONNECTION	-8.88	0	0	0	0	0
2	1	BOTMAST	5.084	1.984	0	0	0	0
3	1	Totals:	-3.797	1.984	0			
4	1	COG (ft):	X: 0	$\mathrm{Y}: 13.794$	Z: 0			

Joint Reactions

	LC	Joint Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	2	TOPCONNECTION	-8.875	0	0	0	0	0
2	2	BOTMAST	5.078	1.488	0	0	0	0
3	2	Totals:	-3.797	1.488	0			
4	2	COG (ft):	X: 0	$\mathrm{Y}: 13.794$	Z: 0			

Joint Reactions

LC		Joint Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	3	TOPCONNECTION	-1.829	0	0	0	0	0
2	3	BOTMAST	1.04	5.381	0	0	0	0
3	3	Totals:	-. 789	5.381	0			
4	3	COG (ft):	X: 0	Y: 14.078	Z: 0			

Member Code Checks Displayed (Enveloped)
Envelope Only Solution

CENTEK		
TJL	Strcuture \#1068-Mast	Oct 31, 2018 at 3:40 PM
18058.58 /T-Mobile CT112...	Unity Check	TIA.r3d

CENTEK	Strcuture \#1068-Mast	
TJL		Oct 31, 2018 at 3:40 PM
18058.58 /T-Mobile CT112...		TIA.r3d

Member Code Checks Displayed
Member Code Checks Displayed

CENTEK		
TJL	Strcuture \#1068 - Mast	Oct 31, 2018 at 3:41 PM
$18058.58 /$ T-Mobile CT112...		LC \#1 Reactions and Deflected Shape

Member Code Checks Displayed
Member Code Checks Displayed
Results or
Reaction and Moment Units are k and k - ft

CENTEK		
TJL	Strcuture \#1068 - Mast	Oct 31, 2018 at 3:42 PM
$18058.58 /$ T-Mobile CT112...		LC \#2 Reactions and Deflected Shape

CENTEK	Strcuture \#1068-Mast LC \#3 Loads	
TJL		Oct 31, 2018 at 3:41 PM
18058.58 /T-Mobile CT112...		TIA.r3d

Member Code Checks Displayed
Member Code Checks Displayed
Results for LC 3, 1.2D $+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$
Reaction and Moment Units are k and k -ft

CENTEK		
TJL	Strcuture \#1068 - Mast	Oct 31, 2018 at 3:42 PM
18058.58 /T-Mobile CT112...		LC \#3 Reactions and Deflected Shape

- =NT $=\mathbf{K}$ engineering	Subject:	Mast Connection to CL\&P Pole \# 1068
Centered on Solutions" \quad monocentekeng.com 63.2 North Branford Road	Location:	Darien, CT
Branford, CTO6405 $\quad \mathrm{F}:(203) 488.8587$	Rev. 4: 11/19/18	Prepared by: T.J.L. Checked by: C.A.G. Job No. 18058.58

Mast Top Connection:

Maximum Design Reactions at Brace:

Vertical $=$	Vert $:=0 \cdot \mathrm{kips}$	(User Input)
Horizontal $=$	Horz $:=8.9 \cdot \mathrm{kips}$	(User Input)
Moment $=$	Moment $:=0$	(User Input)

Bolt Data:

Bolt Grade =
Number of Bolts =
Bolt Diameter =
Nomianl Tensile Strength =
Nomianl Shear Strength =
Resistance Factor =

Bolt Eccentricity from C.L. Mast =

Vetical Spacing Betw œn Top and Bottom Bolts =

Horizontal Spacing Between Bolts =

BoltArea $=$

A325
$n_{b}:=6$
$\mathrm{d}_{\mathrm{b}}:=0.75 \mathrm{in}$
$\mathrm{F}_{\mathrm{nt}}:=90 \cdot \mathrm{ksi} \quad$ (User Input)
$\mathrm{F}_{\mathrm{nv}}:=54 \cdot \mathrm{ksi} \quad$ (User Input)
$\phi:=0.75$
$e:=14.875$. in
$\mathrm{S}_{\text {vert }}:=9$-in
(User Input)
$\mathrm{S}_{\text {horz }}:=17.75$. in
(User Input)
(User Input)
(User Input)
(User Input)
(User Input) (User Input)
$a_{b}:=\frac{1}{4} \cdot \pi \cdot d_{b}{ }^{2}=0.442 \cdot \mathrm{in}^{2}$

二NT=K engineering	Subject:	Mast Connection to CL\&P Pole \# 1068
	Location:	Darien, CT
	Rev. 4: 11/19/18	Prepared by: T.J.L. Checked by: C.A.G. Job No. 18058.58

Check Bolt Stresses:

Wind Acting Parallel to Stiffiner Plate:

$$
\begin{aligned}
& f_{v}:=\frac{\text { Vert }}{n_{b} \cdot a_{b}}=0 \cdot \mathrm{ksi} \\
& \begin{array}{l}
\text { Condition1: : if }\left(\mathrm{f}_{\mathrm{v}}<\phi \cdot \mathrm{F}_{\mathrm{nv}}, \text { "OK" , "Overstressed" }\right) \quad \frac{\mathrm{f}_{\mathrm{v}}}{\left(\phi \cdot \mathrm{~F}_{\mathrm{nv}}\right)}=0 . \% \\
\text { Condition1 }=\text { "OK" }
\end{array} \\
& F_{n t}^{\prime}:=\left\{\begin{array}{l}
\left(1.3 \cdot F_{n t}-\frac{F_{n t}}{\phi \cdot F_{n v}} \cdot f_{v}\right) \text { if } 1.3 \cdot F_{n t}-\frac{F_{n t}}{\phi \cdot F_{n v}} \cdot f_{v} \leq F_{n t}=90 \cdot \mathrm{ksi} \\
F_{n t} \text { otherwise }
\end{array}\right. \\
& F_{\text {tension.bolt }}:=\frac{\text { Horz }}{n_{b}}+\frac{\text { Vert } \cdot \mathrm{e}}{\mathrm{~S}_{\text {vert }}{ }^{2}}=1.483 \cdot \text { kips } \\
& \text { Tension Stress Each Bolt = } \\
& f_{t}:=\frac{F_{\text {tension.bolt }}}{a_{b}}=3.4 \cdot \mathrm{ksi} \\
& \begin{array}{l}
\text { Condition2: }=\mathrm{if}\left(\mathrm{f}_{\mathrm{t}}<\phi \cdot \mathrm{F}_{\mathrm{nt}}^{\prime}, \text { "OK" " "Overstressed" }\right) \\
\text { Condition2 }=\text { "OK" }
\end{array}
\end{aligned}
$$

Wind Acting Perpendicular to Stiffiner Plate:

二NT $=\mathrm{K}$ engineering	Subject:	Mast Connection to Bottom Bracket
	Location:	Darien, CT
Branford, CTOG405 F:(203)48888587	Rev. 4: 11/19/18	Prepared by: T.J.L. Checked by: C.A.G. Job No. 18058.58

Mast Connection to Bottom Bracket:

Design Reactions at Brace:

Axial $=$	Axial $:=2.0 \cdot \mathrm{kips}$	(User Input)
Shear $=$	Shear $:=5.1 \cdot \mathrm{kips}$	(User Input)
Moment $=$	Moment $:=0 \cdot \mathrm{kips} \cdot \mathrm{ft}$	(User Input)

Anchor Bolt Data: Bolt Grade $=$ Design Shear Stress $=$ Design Tension Stress $=$ Total Number of Bolts $=$	A 325	$\mathrm{~F}_{\mathrm{v}}:=40.5 \cdot \mathrm{ksi}$

二N小示	Subject：	Mast Connection to Bottom Bracket
	Location：	Darien，CT
Canlorder ${ }^{\text {a }}$	Rev．4：11／19／18	Prepared by：T．J．L．Checked by：C．A．G． Job No． 18058.58

Anchor Bolt Check：

\quad BoltArea $=\quad a_{b}:=\frac{1}{4} \cdot \pi \cdot d_{b}^{2}=0.442 \cdot$ in 2

Bolt Spacing Diag．Direction $=$
Tension Load per Bolt Parallel＝
Tension Load per Bolt Diagonal＝

Tension per bolt $=$

Actual Tensile Stress＝
$S_{\text {diag }}:=\sqrt{S_{x}{ }^{2}+S_{z}{ }^{2}}=13.44 \cdot$ in
$T_{p a r}:=\frac{\text { Moment }}{S_{X} \cdot n_{b . p a r}}-\frac{\text { Axial }}{n_{b}}=-0.5 \cdot \mathrm{kips}$
$T_{\text {diag }}:=\frac{\text { Moment }}{S_{\text {diag }} \cdot n_{b . d i a g}}-\frac{\text { Axial }}{n_{b}}=-0.5 \cdot \mathrm{kips}$
$\mathrm{T}:=\mathrm{if}\left(\mathrm{T}_{\text {par }}>\mathrm{T}_{\text {diag }}, \mathrm{T}_{\text {par }}, \mathrm{T}_{\text {diag }}\right)=-0.5 \cdot \mathrm{kips}$
$\mathrm{f}_{\mathrm{t}}:=\frac{\mathrm{T}}{\mathrm{a}_{\mathrm{b}}}=-1.13 \cdot \mathrm{ksi}$
Condition2 ：＝if $\left(\mathrm{f}_{\mathrm{t}}<\mathrm{F}_{\mathrm{T}}\right.$ ，＂OK＂，＂Overstressed＂$)$
Condition2 $=$＂OK＂

Base Plate Check：

Design Bending Stress＝

Plate Bending Width＝

MomentArm $=$
Load per Bolt Diagonal＝

Moment in Base Plate $=$

Section Modulus＝

Bending Stress＝
$F_{b}:=0.9 \cdot F_{y}=32.4 \cdot \mathrm{ksi}$
$\mathrm{Z}:=\left(\mathrm{Pl}_{\mathrm{w}} \cdot \sqrt{2}-\mathrm{D}_{\mathrm{p}}\right)=8.35 \cdot$ in
$K:=\frac{\left(S_{\text {diag }}-D_{p}\right)}{2}=2.41 \cdot$ in
$P_{\text {diag }}:=\frac{\text { Moment }}{S_{\text {diag }} \cdot n_{b . d i a g}}+\frac{\text { Axial }}{n_{b}}=0.5 \cdot \mathrm{kips}$
$\mathrm{M}:=\mathrm{K} \cdot \mathrm{P}_{\text {diag }}=1.2 \cdot \mathrm{kips} \cdot \mathrm{in}$
$S_{Z}:=\frac{1}{6} \cdot Z \cdot P I_{t}^{2}=1.39 \cdot$ in 3
$f_{b}:=\frac{M}{S_{Z}}=0.86 \cdot \mathrm{ksi}$
Condition3 ：＝if（ $\mathrm{f}_{\mathrm{b}}<\mathrm{F}_{\mathrm{b}}$, ＂OK＂，＂Overstressed＂$)$
Condition3＝＂OK＂

二NT $=\mathbf{K}$ engineering	Subject:	Mast Connection to Bottom Bracket
	Location:	Darien, CT
	Rev. 4: 11/19/18	Prepared by: T.J.L. Checked by: C.A.G. Job No. 18058.58

Base Plate to PCS Mast Weld Check:

Design Weld Stress =

WeldArea =

Weld Moment of Inertia =

年
Section Modulus of Weld =

Weld Stress $=$
$F_{w}:=0.45 \cdot F_{y w}=31.5 \cdot \mathrm{ksi}$
$A_{w}:=\frac{\pi}{4} \cdot\left[\left(D_{p}+2 s w \cdot 0.707\right)^{2}-D_{p}^{2}\right]=7.4 \cdot \mathrm{in}^{2}$
$I_{w}:=\frac{\pi}{64} \cdot\left[\left(D_{p}+2 s w \cdot 0.707\right)^{4}-D_{p}^{4}\right]=73.22 \cdot \mathrm{in}^{4}$
$c:=\frac{D_{p}}{2}+s w \cdot 0.707=4.58 \cdot \mathrm{in}$
$S_{w}:=\frac{I_{w}}{c}=15.99 \cdot$ in 3
$f_{w}:=\frac{\text { Moment }}{S_{w}}+\frac{\text { Shear }}{A_{w}}=0.69 \cdot k s i$
Condition4 : $=\mathrm{if}\left(\mathrm{f}_{\mathrm{w}}<\mathrm{F}_{\mathrm{w}}\right.$, "OK" , "Overstressed" $)$
Condition4 = "OK"

二NT=人 engineering	Subject:	Mast Connection to CL\&P Pole \# 1068
	Location:	Darien, CT
	Rev. 4: 11/19/18	Prepared by: T.J.L. Checked by: C.A.G. Job No. 18058.58

Mast Bottom Connection:

Maximum Design Reactions at Brace:

Vertical $=$	Vert $:=2.0 \cdot \mathrm{kips}$	(User Input)
Horizontal $=$	Horz $:=5.1 \cdot \mathrm{kips}$	(User Input)
Moment $=$	Moment $:=0 \cdot \mathrm{ft} \cdot \mathrm{kips}$	(User Input)

Bolt Data:

Bolt Grade =
Number of Bolts =
Bolt Diameter =
Nomianl Tensile Strength =
Nomianl Shear Strength =
Resistance Factor =

Bolt Eccentricity from C.L. Mast =

Horizontal Spacing Between Bolts = Vetical Spacing Betwen Top and Bottom Bolts =

BoltArea $=$

A325
$n_{b}:=6$
$d_{b}:=0.75 i n$
$F_{n t}:=90 \cdot k s i$
$F_{n v}:=54 \cdot k s i$
$\phi:=0.75$
$e:=14.875$. in
$S_{\text {horz }}:=19.25 \cdot$ in
$S_{\text {vert }}:=9$.in
$a_{b}:=\frac{1}{4} \cdot \pi \cdot d_{b}{ }^{2}=0.442 \cdot$ in 2

二NT $=\mathrm{K}$ engineering	Subject:	Mast Connection to CL\&P Pole \# 1068
	Location:	Darien, CT
Branford, CTO6405 F:(203)488-8587	Rev. 4: 11/19/18	Prepared by: T.J.L. Checked by: C.A.G. Job No. 18058.58

Check Bolt Stresses:
Wind Acting Parallel to Stiffiner Plate:

> Shear Stress per Bolt =
> Tensile StressAdjusted frShear =
> Tension Force Each Bolt =
> Tension Stress Each Bolt =
> $f_{v}:=\frac{\text { Vert }}{n_{b} \cdot a_{b}}=0.755 \cdot \mathrm{ksi}$
> $\begin{array}{ll}\text { Condition1 : if }\left(\mathrm{f}_{\mathrm{v}}<\phi \cdot \mathrm{F}_{\mathrm{nv}}, \text { "OK" , "Overstressed" }\right) & \frac{\mathrm{f}_{\mathrm{v}}}{\left(\phi \cdot \mathrm{F}_{\mathrm{nv}}\right)}=1.9 \cdot \% \\ \text { Condition1 }=\text { "OK" }\end{array}$
> $F_{n t}^{\prime}:=\left\{\begin{array}{l}\left(1.3 \cdot F_{n t}-\frac{F_{n t}}{\phi \cdot F_{n v}} \cdot f_{v}\right) \text { if } 1.3 \cdot F_{n t}-\frac{F_{n t}}{\phi \cdot F_{n v}} \cdot f_{v} \leq F_{n t}=90 \cdot \mathrm{ksi} \\ F_{n t} \text { otherwise }\end{array}\right.$
> $F_{\text {tension.bolt }}:=\frac{\text { Horz }}{n_{b}}+\frac{(\text { Vert } \cdot \mathrm{e}+\text { Moment })}{2 \cdot \mathrm{~S}_{\text {vert }}}=2.503 \cdot \mathrm{kips}$
> $f_{t}:=\frac{F_{\text {tension.bolt }}}{a_{b}}=5.7 \cdot \mathrm{ksi}$
> $\begin{aligned} & \text { Condition2 : }=\mathrm{if}\left(\mathrm{f}_{\mathrm{t}}<\phi \cdot \mathrm{F}_{\mathrm{nt}}, \text { "OK" , "Overstressed" }\right) \\ & \text { Condition2 }=\text { "OK" }\end{aligned}$

Wind Acting Perpendicular to Stiffiner Plate:

Shear Stress per Bolt =

Tensile StressAdjusted forShear =

Tension Force per Bolt =

Tension Stress Each Bolt =
$f_{v}:=\sqrt{\left(\frac{\text { Vert }}{n_{b} \cdot a_{b}}+\frac{\text { Moment } \cdot 2}{S_{\text {horz }} \cdot n_{b} \cdot a_{b}}\right)^{2}+\left(\frac{\text { Horz }}{n_{b} \cdot a_{b}}\right)^{2}}=2.067 \cdot k s i$
$\begin{array}{ll}\text { Condition3 }:=\mathrm{if}\left(\mathrm{f}_{\mathrm{v}}<\phi \cdot \mathrm{F}_{\mathrm{nv}}, \text { "OK" , "Overstressed" }\right) & \frac{\mathrm{f}_{\mathrm{v}}}{\left(\phi \cdot \mathrm{F}_{\mathrm{nv}}\right)}=5.1 \cdot \% \\ \text { Condition3 }=\text { "OK" }\end{array}$
$F_{n t}^{\prime}:=\left\{\begin{array}{l}\left(1.3 \cdot F_{n t}-\frac{F_{n t}}{\phi \cdot F_{n v}} \cdot f_{v}\right) \text { if } 1.3 \cdot F_{n t}-\frac{F_{n t}}{\phi \cdot F_{n v}} \cdot f_{v} \leq F_{n t}=90 \cdot \mathrm{ksi} \\ F_{n t} \text { otherwise }\end{array}\right.$
$F_{\text {tension.conn }}:=\frac{\text { Horz•e }}{S_{\text {horz }} \cdot \frac{n_{b}}{2}}+\frac{\text { Vert } \cdot \mathrm{e}}{2 \cdot \mathrm{~S}_{\text {vert }}}=2.966 \cdot \mathrm{kips}$
$f_{t}:=\frac{F_{\text {tension.conn }}}{a_{b}}=6.715 \cdot \mathrm{ksi}$
Condition4: $=\mathrm{if}\left(\mathrm{f}_{\mathrm{t}}<\phi \cdot \mathrm{F}_{\mathrm{nt}}^{\prime}\right.$, "OK" , "Overstressed" $)$
Condition4 $=$ "OK"

二NT二人 ${ }^{\text {Engineering }}$	Subject：	Load Analysis of T－Mobile Equipment on Structure \＃1068
	Location：	Darien，CT
Branford，CTO6405 F：（203）488－8587	Rev．6：12／14／18	Prepared by：T．J．L Checked by：C．F．C． Job No． 18058.58

二 NT 二人 engineering	Subject：	Load Analysis of T－Mobile Equipment on Structure \＃1068
	Location：	Darien，CT
	Rev．6：12／14／18	Prepared by：T．J．L Checked by：C．F．C． Job No． 18058.58

Development of Wind \＆Ice Load on PCS Mast

Mast Data：
Mast Shape $=$
Mast Diameter $=$

Mast Length $=$
Mast Thickness＝
（Pipe 8＂Sch．80）
Round

$\mathrm{D}_{\text {mast }}:=8.625$	in	（User Input）
$\mathrm{L}_{\text {mast }}:=22$	ft	（User Input）
$\mathrm{t}_{\text {mast }}:=0.5$	in	（User Input）

Wind Load（NESC Extreme）

Mast Projected SurfaceArea＝

Total Mast Wind Force（Above NU Structure）＝

Total Mast W ind Force $($ Below NU Structure $)=$
$A_{\text {mast }}:=\frac{D_{\text {mast }}}{12}=0.719 \quad$ sf／tt
$q z \cdot$ cd $_{\text {coax }} \cdot A_{\text {mast }} \cdot m=50 \quad$ Coax on MastAbove Tower plf
$\mathrm{qz} \cdot \mathrm{Cd}_{\mathrm{R}} \cdot \mathrm{A}_{\text {mast }}=33 \quad$ plf
$\operatorname{AICE}_{\text {mast }}:=\frac{\left(D_{\text {mast }}+2 \cdot \operatorname{lr}\right)}{12}=0.802 \quad$ sfft
$\mathrm{p} \cdot \mathrm{Cd}_{\text {coax }} \cdot \mathrm{AICE}_{\text {mast }}=5 \quad$ plf

SelfWeight
（Computed internally by Risa－3D）
plf
$A i_{\text {mast }}:=\frac{\pi}{4}\left[\left(D_{\text {mast }}+I r \cdot 2\right)^{2}-D_{\text {mast }}{ }^{2}\right]=14.3$
sqin

WICEmast $:=$ Id．$\frac{A i_{\text {mast }}}{144}=6$
plf

BLC 5

BLC 5

Wind Load（NESE Heavy）

Mast Projected Surface Area w／lce＝

Total Mast Wind Force w／lce＝

Gravity Loads（without ice）

Weight of the mast＝

Gravity Loads（ice only）

IceAreaper Linear Foot＝

Weight of lce on Mast＝

BLC 1

二NT $=\mathrm{K}$ engineering	Subject:	Load Analysis of T-Mobile Equipment on Structure \#1068
	Location:	Darien, CT
	Rev. 6: 12/14/18	Prepared by: T.J.L Checked by: C.F.C. Job No. 18058.58

Development of Wind \& Ice Load on Antennas

Proposed Antenna Data:

Antenna Model $=$	RFSAPXVAARR18_43		
Antenna Shape $=$	Flat	in	(User Input)
Antema Height $=$	$\mathrm{L}_{\mathrm{ant}}:=72$	$\mathrm{~W}_{\mathrm{ant}}:=24$	in
Antenna Width $=$	$\mathrm{T}_{\mathrm{ant}}:=8.5$	in	(User Input)
Antenna Thickness $=$	$\mathrm{WT}_{\mathrm{ant}}:=132$	ldser Input)	
Antenna Weight $=$	$\mathrm{N}_{\mathrm{ant}}:=3$		(User Input)
Number of Antennas $=$			(User Input)

Wind Load (NESC Extreme)

Assumes Maximum Possible Wind Pressure

 Applied to all Antennas SimultaneouslySurfaceArea for One Antenna=

Antenna Projected Surface Area =

TotalArtennaWind Force=

Wind Load (NESC Heavy)

Assumes Maximum Possible Wind Pressure Applied to all Antennas Simultaneously

SurfaceArea for One Antenna w/ lce =

Antenna Projected Surface Area w/ ce =

Total Antenna Wind Forcew/lce =

Gravity Load (without ice)

Weight ofAll Antennas=

Gravity Load (ice only)

Volume of Each Antenna =

Volume of lœ on EachAntenna =

Weight of Ice on Each Antenna =

Weight of lce onAllArtennas =
$\mathrm{SA}_{\mathrm{ant}}:=\frac{\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{W}_{\mathrm{ant}}}{144}=12 \quad \mathrm{sf}$
$\mathrm{A}_{\text {ant }}:=\mathrm{SA}_{\text {ant }} \cdot \mathrm{N}_{\text {ant }}=36 \quad \mathrm{sf}$
$\mathrm{F}_{\text {ant }}:=\mathrm{qz} \cdot \mathrm{Cd}_{\mathrm{F}} \cdot \mathrm{A}_{\mathrm{ant}} \cdot \mathrm{m}=2525$

SA $_{\text {ICEant }}:=\frac{\left(\mathrm{L}_{\mathrm{ant}}+1\right) \cdot\left(\mathrm{W}_{\mathrm{ant}}+1\right)}{144}=12.7$
AICEant $^{:=}$SA $_{\text {ICEant }} \cdot N_{\text {ant }}=38 \quad \mathrm{sf}$
$\mathrm{Fi}_{\text {ant }}:=\mathrm{p} \cdot \mathrm{Cd}_{\mathrm{F}} \cdot \mathrm{A}_{\text {ICEant }}=243$
$\mathrm{V}_{\mathrm{ant}}:=\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{W}_{\mathrm{ant}} \cdot \mathrm{T}_{\mathrm{ant}}=1 \times 10^{4}$
$\mathrm{V}_{\text {ice }}:=\left(\mathrm{L}_{\mathrm{ant}}+1\right)\left(\mathrm{W}_{\mathrm{ant}}+1\right) \cdot\left(\mathrm{T}_{\mathrm{ant}}+1\right)-\mathrm{V}_{\text {ant }}=2650$
$W_{\text {ICEant }}:=\frac{V_{\text {ice }}}{1728} \cdot$ Id $=86$
$W_{\text {ICEant }} N_{\text {ant }}=258$
lbs
sf
lbs
BLC 4

BLC 2
cu in
cu in
lbs

BLC 3

二NT $=\mathrm{K}$ engineering	Subject:	Load Analysis of T-Mobile Equipment on Structure \#1068
	Location:	Darien, CT
	Rev. 6: 12/14/18	Prepared by: T.J.L Checked by: C.F.C. Job No. 18058.58

Development of Wind \& Ice Load on Antennas

Proposed Antenna Data:

Antenna Model $=$	CommscopeATSBT-TOP-FM-4G Bias Te		
Antenna Shape $=$	Flat		(User Input)
Antema Height $=$	$\mathrm{L}_{\mathrm{ant}}:=5.63$	in	(User Input)
Antenna Width $=$	$\mathrm{W}_{\mathrm{ant}}:=3.7$	in	(User Input)
Antenna Thickness $=$	$\mathrm{T}_{\mathrm{ant}}:=2.0$	in	(User Input)
Antenna Weight $=$	$\mathrm{WT}_{\mathrm{ant}}:=2$	lbs	(User Input)
Number of Antennas $=$	$\mathrm{N}_{\mathrm{ant}}:=3$		(User Input)

Wind Load (NESC Extreme)

Assumes Maximum Possible Wind Pressure

 Applied to all Antennas SimultaneouslySurfaceArea for One Antenna =

Antenna Projected Surface Area =

Total Artenna Wind Force=
Wind Load (NESC Heavy)

Assumes Maximum Possible Wind Pressure

 Applied to all Antennas SimultaneouslySurfaceArea for One Antenna w/ Ice =

Antenna Projected Surface Area w/ ce =

Total Antenna Wind Forcew/ Ice =

Gravity Load (without ice)

Weight of All Antennas=

Gravity Load (ice only)

Volume of Each Antenna =

Volume of Iœ on EachAntenna =

Weight of Ice on Each Antenna =

Weight of lce onAllArtennas =

SA ICEant $:=\frac{\left(\mathrm{L}_{\mathrm{ant}}+1\right) \cdot\left(\mathrm{W}_{\mathrm{ant}}+1\right)}{144}=0.2$
sf

AICEant $^{:=}$SA $_{\text {ICEant }} \cdot \mathrm{N}_{\text {ant }}=0.6 \quad \mathrm{sf}$
$\mathrm{Fi}_{\text {ant }}:=\mathrm{p} \cdot \mathrm{Cd}_{\mathrm{F}} \cdot \mathrm{A}_{\text {ICEant }}=4$ lbs
BLC 4
sf
sf
lbs
$\mathrm{F}_{\mathrm{ant}}:=\mathrm{qz} \cdot \mathrm{Cd}_{\mathrm{F}} \cdot \mathrm{A}_{\mathrm{ant}} \cdot \mathrm{m}=30$
BLC 5

BLC 2

BLC 3

二NT $=\mathrm{K}$ engineering	Subject:	Load Analysis of T-Mobile Equipment on Structure \#1068
	Location:	Darien, CT
	Rev. 6: 12/14/18	Prepared by: T.J.L Checked by: C.F.C. Job No. 18058.58

Development of Wind \& Ice Load on Mount

Mount Data:

Model $=\quad$ Lightweight Ring Mount with FlushAdapters
MountShape =
Mount Projected SurfaceArea =
Mount Projected SurfaceArea w/ lce =
Mount Weight $=$
MountWeight w/ lce =

Gravity Loads (without ice)

Weight ofAll Mounts =

Gravity Load (ice only)

Weight of Ice onAll Mounts =

Wind Load (NESC Heavy)

Total Mount Wind Force w/ Ice =

Wind Load (NESC Extreme)

$\mathrm{Wt}_{\mathrm{mnt} 1}:=\mathrm{WT}_{\mathrm{mnt}}=305$
lbs
$W t_{\text {ice.mnt1 }}:=\left(W T_{\text {mnt.ice }}-W T_{m n t}\right)=120$
lbs
$\mathrm{Fi}_{\mathrm{mnt} 1}:=\mathrm{p} \cdot \mathrm{CdAa}_{\mathrm{ice}}=0$
lbs
$F_{m n t 1}:=q z \cdot C d A a \cdot m=0$
lbs

二 NT 二人 engineering	Subject：	Load Analysis of T－Mobile Equipment on Structure \＃1068
	Location：	Darien，CT
	Rev．6：12／14／18	Prepared by：T．J．L Checked by：C．F．C． Job No． 18058.58

Development of Wind \＆Ice Load on Coax Cables

Coax Cable Data：

Coax Type $=$	HELIAX 1－1／4＂		
Shape $=$	Round		（User Input）
Coax Outside Diameter $=$	$\mathrm{D}_{\text {coax }}:=1.55$	in	（User Input）
CoaxCable Length $=$	$\mathrm{L}_{\text {coax }}:=15$	ft	（User Input）
Weight of Coax per foot $=$	$\mathrm{Wt}_{\text {coax }}:=0.66 \quad$ plf	（User Input）	
Total Number of Coax $=$	$\mathrm{N}_{\text {coax }}:=24$		（User Input）
de Face of PCS Mast $=$	$\mathrm{NP}_{\text {coax }}:=4$	（User Input）	

Wind Load（NESC Extreme）

Coax projected surface area $=$
$A_{\text {coax }}:=\frac{\left(N P_{\text {coax }} D_{\text {coax }}\right)}{12}=0.5$

$$
\mathrm{F}_{\text {coax }}:=\mathrm{qz} \cdot \mathrm{Cd}_{\text {coax }} \cdot \mathrm{A}_{\text {coax }} \cdot \mathrm{m}=36
$$

$$
\mathrm{AICE}_{\text {coax }}:=\frac{\left(\mathrm{NP}_{\operatorname{coax}} \cdot \mathrm{D}_{\text {coax }}+2 \cdot \mathrm{Ir}\right)}{12}=0.6
$$

$$
\mathrm{Fi}_{\text {coax }}:=\mathrm{p} \cdot \mathrm{Cd}_{\text {coax }} \cdot \mathrm{AlCE}_{\text {coax }}=4
$$

$$
\mathrm{WT}_{\text {coax }}:=\mathrm{W} \mathrm{t}_{\operatorname{coax}} \cdot \mathrm{N}_{\operatorname{coax}}=16
$$

$\mathrm{Ai}_{\text {coax }}:=\frac{\pi}{4}\left[\left(\mathrm{D}_{\text {coax }}+2 \cdot \mathrm{Ir}\right)^{2}-\mathrm{D}_{\text {coax }}{ }^{2}\right]=3.2$
$W T i_{\text {coax }}:=N_{\text {coax }} \cdot \frac{\mathrm{Id} \cdot \frac{A i_{\text {coax }}}{144}=30 ~}{\text { a }}$
plf

BLC 5
sfft
plf
plf

BLC 2
sqin
(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	No
Max Iterations for Wall Stiffness	3
Gravity Acceleration (ft/sec^2)	32.2
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver
Hot Rolled Steel Code	AISC 9th: ASD
RISAConnection Code	AISC 14th(360-10): ASD
Cold Formed Steel Code	AISI 1999: ASD
Wood Code	AF\&PA NDS-91/97: ASD
Wood Temperature	$<$
Concrete Code	8
Masonry Code	ACI 318-02
Aluminum Code	ACI 530-05: ASD
Stainless Steel Code	AA ADM1-05: ASD - Building
Adjust Stiffness?	AISC 14th(360-10): ASD
	Yes(Iterative)
Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	PCA Load Contour
Parme Beta Factor (PCA)	65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	Nos
Unused Force Warnings?	Min 1 Bar Diam. Spacing?
Concrete Rebar Set	Min \% Steel for Column
Max \% Steel for Column	

(Global) Model Settings, Continued

Seismic Code	UBC 1997
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	No
Ct X	.035
Ct Z	Not Entered
T X (sec)	Not Entered
T Z (sec)	8.5
R X	8.5
R Z	.36
Ca	.54
Cv	1
Nv	4
Occupancy Category	3
Seismic Zone	1
Om Z	1
Om X	1
Rho Z	1
Rho X	
	1.5
Footing Overturning Safety Factor	No
Optimize for OTM/Sliding	No
Check Concrete Bearing	0
Footing Concrete Weight (k/ft^3)	3
Footing Concrete f'c (ksi)	4000
Footing Concrete Ec (ksi)	1
Lambda	60
Footing Steel fy (ksi)	0.0018
Minimum Steel	0.0075
Maximum Steel	$\# 3$
Footing Top Bar	3.5
Footing Top Bar Cover (in)	$\# 3$
Footing Bottom Bar	3.5
Footing Bottom Bar Cover (in)	$\# 3$
Pedestal Bar	1.5
Pedestal Bar Cover (in)	
Pedestal Ties	

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (11.	Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr. 36	29000	11154	. 3	. 65	49	36	1.5	58	1.2
2	A572 Gr. 50	29000	11154	. 3	. 65	49	50	1.1	58	1.2
3	A992	29000	11154	. 3	. 65	49	50	1.1	58	1.2
4	A500 Gr. 42	29000	11154	. 3	. 65	49	42	1.3	58	1.1
5	A500 Gr. 46	29000	11154	. 3	. 65	49	46	1.2	58	1.1
6	A53 Gr. B	29000	11154	. 3	. 65	49	35	1.5	58	1.2

Hot Rolled Steel Section Sets

Label		Shape	Type	Design List	Material	Design ... A [in2]		lyy [in4]	Izz [in4] J [in4]	
1	Existing Mast	PIPE_8.0X	Column	Wide Flange	A53 Gr. B	Typical	11.9	100	100	199

Hot Rolled Steel Design Parameters

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(d..	Section/Shape	Type	Design List	Material	Design Rul..
1	M1	BOTMA...	TOPMA.			Existing Mast	Column	Wide Flange	A53 Gr. B	Typical

Joint Coordinates and Temperatures

Label		$\mathrm{X}[\mathrm{ft}]$		$\mathrm{Y}[\mathrm{ft}]$	$\mathrm{Z}[\mathrm{ft}]$	

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	TOPCONNECTION	Reaction		Reaction			
2	BOTMAST	Reaction	Reaction	Reaction		Reaction	

Member Point Loads (BLC 2 : Weight of Appurtenances)

Member Label	Direction		Magnitude $[\mathrm{k}, \mathrm{k}-\mathrm{ft}]$	Location[ft,\%]
1	M 1	Y	-.396	18
2	M 1	Y	-.006	18
3	M 1	Y	-.305	18

Member Point Loads (BLC 3 : Weight of Ice Only)

Member Label		Direction		Magnitude[k,k-ft]
1	M 1	Y	-.258	Location[ft,\%]
2	M 1	Y	-.005	18
3	M 1	Y	-.12	18

Member Point Loads (BLC 4 : NESC Heavy Wind)

Member Label		Direction		Magnitude $[k, k-\mathrm{ft}]$
1	M 1	X	.243	Location[ft,\%]
2	M 1	X	.004	18

Member Point Loads (BLC 5 : NESC Extreme Wind)

Member Label	Direction	Magnitude[k,k-ft]	Location[ft,\%]	
1	M 1	X	2.525	18
2	M 1	X	.03	18

Member Distributed Loads (BLC 2 : Weight of Appurtenances)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/...	Start Location[ft,\%]	End Location[ft,\%]
1	M1	Y	-. 016	-. 016	9	15

Member Distributed Loads (BLC 3 : Weight of Ice Only)

Member Label		Sirection		Start Magnitude[k/ft,F,ksf]		End Magnitude[k/...Start Location[ft,\%] End Location[ft,\%]	
1	M 1	Y	-.006	-.006	0	0	
2	M 1	Y	-.03	-.03	9	15	

Member Distributed Loads (BLC 4 : NESC Heavy Wind)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/...	Start Location[ft,\%]	End Location[ft,\%]
1	M1	X	. 005	. 005	0	15
2	M1	X	. 004	. 004	9	15

Member Distributed Loads (BLC 5 : NESC Extreme Wind)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/.	Start Location[ft,\%]	End Location[ft, \%]
1	M1	X	. 05	. 05	9	15
2	M1	X	. 033	. 033	0	9
3	M1	X	. 036	. 036	9	15

Basic Load Cases

BLC Description		Category	X Gravity Y Gravity Z Gravity Joint				Point	Distribu...Area(M...Surface...		
1	Self Weight	None		-1						
2	Weight of Appurtenances	None					3	1		
3	Weight of Ice Only	None					3	2		
4	NESC Heavy Wind	None					2	2		
5	NESC Extreme Wind	None					2	3		

Load Combinations

Envelope Joint Reactions

Joint			X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	TOPCONNEC...	max	-1.892	1	0	2	0	2	0	2	0	2	0	2
2		min	-7.645	2	0	1	0	1	0	1	0	1	0	1
3	BOTMAST	max	4.277	2	3.514	1	0	2	0	2	0	2	0	2
4		min	1.027	1	1.653	2	0	1	0	1	0	1	0	1
5	Totals:	max	-. 865	1	3.514	1	0	2						
6		min	-3.368	2	1.653	2	0	1						

Joint			x [in]	LC	Y [in]	LC	Z [in]		R Rotation [..		Rotation [...L		Z Rotation [... LC	
1	BOTMAST	max		2	0	2	0	2	0	2	0	2		2
2		min	0	1	0	1	0	1	0	1	0	1	$4.101 \mathrm{e}-04$	1
3	TOPCONNECT..	max	0	2	0	2	0	2	0	2	0	2	-8.743e-04	1
4		min	0	1	0	1	0	1	0	1	0	1	-3.602e-03	2
5	TOPMAST	max	1.614	2	0	2	0	2	0	2	0	2	-2.824e-03	1
6		min	. 392	1	-. 002	1	0	1	0	1	0	1	-1.164e-02	2

Envelope AISC ASD Steel Code Checks

LC		Joint Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	1	TOPCONNECTION	-1.892	0	0	0	0	0
2	1	BOTMAST	1.027	3.514	0	0	0	0
3	1	Totals:	-. 865	3.514	0			
4	1	COG (ft):	X: 0	Y: 14.167	Z: 0			

LC			Joint Label	$\mathrm{X}[\mathrm{k}]$	$\mathrm{Y}[\mathrm{k}]$	$\mathrm{Z}[\mathrm{k}]$	$\mathrm{MX}[\mathrm{k}-\mathrm{tt}]$	$\mathrm{MY}[\mathrm{k}-\mathrm{ft}]$
$\mathrm{MZ}[\mathrm{k}-\mathrm{ft}]$								
2	2	TOPCONNECTION	-7.645	0	0	0	0	0
3	2	BOTMAST	4.277	1.653	0	0	0	0
3	2	Totals:	-3.368	1.653	0			
4	2	COG (ft):	$\mathrm{X}: 0$	$\mathrm{Y}: 13.794$	$\mathrm{Z}: 0$			

Loads: LC 1, NESC Heary Wind		
Centek		
TJL	Structure \# 1068 - Mast	Dec 14, 2018 at 10:06 AM
18058.58 /T-Mobile CT112...		

Results for LC 1, NESC Heavy Wind
Reaction and Moment Units are k and k - ft

Centek	Structure \# 1068 - Mast LC \#1 Reactions	
TJL		Dec 14, 2018 at 10:07 AM
18058.58 /T-Mobile CT112..		NESC.r3d

Centek	Structure \# 1068 - Mast LC \#2 Loads	
TJL		Dec 14, 2018 at 10:06 AM
18058.58 /T-Mobile CT112..		NESC.r3d

Results for LC 2, NESC Extreme Wind
Reaction and Moment Units are k and k - ft

Centek		
TJL	Structure \# 1068 - Mast	
	LC \#2 Reactions	

C三NT $=\mathrm{K}$ engineering	Subject:	Coax Cable on CL\&P Pole \#1068
	Location:	Darien, CT
	Rev. 1: 9/28/18	Prepared by: T.J.L Checked by: C.F.C. Job No. 18058.58

Coax Cable on CL\&P Pole

－二NT三人engineering	Subject：	Coax Cable on CL\＆P Pole \＃1068
	Location：	Darien，CT
	Rev．1：9／28／18	Prepared by：T．J．L Checked by：C．F．C． Job No． 18058.58

Diameter of Coax Cable＝
Weight of Coax Cable $=$
Number of CoaxCables $=$ Number of Projected CoaxCables $=$

Shape Factor $=$
Overload Factor for NESC Heawy Wind TransverseLoad＝
Overload Factor for NESC Heavy Wind Vertical Lœad＝
Overload Factor for NESC Extreme Wind TransverseLoad＝ Overload Factor for NESC Extreme Wind Vertical Load＝
Wind Area without Ice $=$
WindArea with Ice $=$
IceAreaper Liner Ft $=$
Weight of Ice onAll Coax Cables $=$

Heaw Wind Vertical Load＝
Heavy＿WInd Vert $:=\xrightarrow[{\left[\left(\mathrm{N}_{\text {coax }} \cdot \mathrm{W}_{\text {coax }}+\mathrm{W}_{\text {ice }}\right) \cdot \mathrm{Coax}_{\text {Span }} \cdot \mathrm{OF}_{\mathrm{HWV}}\right.}]]{ }$
HeavyWind Transverse Load $=$
Heavy＿Wind $_{\text {Trans }}:=\xrightarrow[\left(\mathrm{p} \cdot \mathrm{A}_{\text {ice }} \cdot \mathrm{Cd}_{\text {coax }} \cdot \text { Coax }_{\text {Span }} \cdot \mathrm{OF}_{\mathrm{HWT}}\right)]{ }$

Extreme Wind Vertical Load＝
Extreme＿Wind $_{\text {Vert }}:=\overrightarrow{\left(\mathrm{N}_{\text {coax }} \cdot W_{\text {coax }} \cdot \mathrm{Coax}_{\text {Span }} \cdot \mathrm{OF}_{\text {EWV }}\right)}$
Extreme Wind Transverse Load＝
Extreme＿Wind $\left._{\text {Trans }}:=\xrightarrow[{\left[\left(q z \cdot p s f \cdot A \cdot \text { Cd }_{\text {coax }}\right) \cdot \text { Coax }_{\text {Span }} \cdot \mathrm{OF}_{\mathrm{EWT}}\right.}]\right]{ }$

$\mathrm{D}_{\text {coax }}:=1.55 \cdot \mathrm{in}$	（User Input）
$\mathrm{W}_{\text {coax }}:=0.66 \cdot$ plf	（User Input）
$\mathrm{N}_{\text {coax }}:=24$	（User Input）
$\mathrm{NP}_{\text {coax }}:=3$	（User Input）
$\mathrm{Cd}_{\text {coax }}:=1.6$	（User Input）
$\mathrm{OF}_{\mathrm{HWT}}:=2.5$	（User Input）
$\mathrm{OF}_{\mathrm{HWV}}:=1.5$	（User Input）
$\mathrm{OF}_{\mathrm{EWT}}:=1.0$	（User Input）
$\mathrm{OF}_{\mathrm{EWV}}:=1.0$	（User Input）

$A:=\left(N P_{\text {coax }} \cdot D_{\text {coax }}\right)=4.65 \cdot \mathrm{in}$
$A_{\text {ice }}:=\left(N P_{\text {coax }} \cdot D_{\text {coax }}+2 \cdot \mathrm{lr}\right)=5.65 \cdot$ in
$\mathrm{Ai}_{\mathrm{coax}}:=\frac{\pi}{4} \cdot\left[\left(\mathrm{D}_{\mathrm{coax}}+2 \cdot \mathrm{rr}\right)^{2}-\mathrm{D}_{\mathrm{coax}}{ }^{2}\right]=0.022 \mathrm{ft}^{2}$
$W_{\text {ice }}:=A i_{\text {coax }} \cdot I d \cdot N_{\text {coax }}=30.055$ ．plf

Heavy＿WInd Vert $^{\prime}=\left(\begin{array}{c}688 \\ 688 \\ 688 \\ 688 \\ 688 \\ 688 \\ 688 \\ 688 \\ 688 \\ 688\end{array}\right) \mathrm{lb} \quad$ Heavy＿Wind $_{\text {Trans }}=\left(\begin{array}{c}75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75 \\ 75\end{array}\right) \mathrm{lb}$

$$
\text { Project Name : } 18058.58 \text { - Darien, CT }
$$

Project Notes: Structure \# 1068/ T-Mobile CT11290C

Project File : J: \Jobs $\backslash 1805800$. WI\58_CT11290C $\backslash 05$ _Structural\Backup Documentation\Rev (6) \Calcs $\backslash P L S$ Pole\CLP Pole $1068 . \operatorname{pol}$
Date run : 10:04:34 AM Friday, December 14, 2018
by : PLS-POLE Version 12.50
Licensed to : Centek Engineering Inc
Successfully performed nonlinear analysis
The model has 0 warnings.
Loads from file: j: \jobs \1805800.wi\58_ct11290c\05_structural\backup documentation\rev (6) \calcs\pls pole\cl\&p pole \# 1068.lca *** Analysis Results:

Maximum element usage is 97.81% for Steel Pole "CLP " in load case "EXTREME" Maximum insulator usage is 28.79% for Clamp "C17" in load case "EXTREME"

Summary of Joint Support Reactions For All Load Cases:

Load Case	Joint Label	Long. Force (kips)	Tran. Force (kips)	Vert. Force (kips)	Shear Force (kips)	Tran. Moment (ft-k)	Long. Moment (ft-k)	Bending Moment (ft-k)	Vert. Moment (ft-k)	Found. Usage
NESC HEAVY	CLP : 9	-0.10	-17.64	-47.37	17.64	1617.51	-5.43	1617.52	0.00	0.00
EXTREME	CLP : 9	-0.03	-26.07	-24.75	26.07	2188.86	-1.35	2188.86	-0.00	0.00

Summary of Tip Deflections For All Load Cases:

Note: postive tip load results in positive deflection

Load Case	Joint Label	Long. Defl. (in)	Tran. Defl. (in)	Vert. Defl. (in)	Resultant Defl. (in)	Long. Rot. (deg)	Tran. Rot. (deg)	Twist (deg)
NESC HEAVY	CLP : t	0.22	89.85	-4.00	89.94	0.01	-6.81	0.00
EXTREME	CLP : t	0.05	121.03	-7.28	121.25	0.00	-9.55	0.00

Tubes Summary:

Pole Label	Tube Num.	Weight (lbs)	Load Case	Maximum Usage \%	Resultant Moment (ft-k)
CLP	1	1854	EXTREME	96.86	379.48
CLP	2	3496	EXTREME	97.25	1121.28
CLP	3	4553	EXTREME	89.99	1804.18
CLP	4	2253	EXTREME	97.81	2188.86

*** Overall summary for all load cases - Usage = Maximum Stress / Allowable Stress

Summary of Steel Pole Usages:

Steel Pole Maximum Load Case Segment

Label Usage \% | Weight |
| ---: |
| Number |

Summary of Tubular Davit Usages:

Tubular
Davit
Label

Usage $\%$ Load Case \begin{tabular}{c}
Segment

Number

Weight

(lbs)
\end{tabular}

*** Maximum Stress Summary for Each Load Case

Summary of Maximum Usages by Load Case:

Load Case Maximum	Element	Element	
Usage \%	Label	Type	
NESC HEAVY	78.43	CLP	Steel Pole
EXTREME	97.81	CLP	Steel Pole

Summary of Steel Pole Usages by Load Case:

Load Case Maximum	Steel Pole	Segment			
Usage \%			\quad	Label	Number
---:	:---	---:			

Summary of Base Plate Usages by Load Case:

Load Case	Pole Label	Bend Line	Length (in)	Vertical Load (kips)	Moment (ft-k)	Moment (ft-k)	Bending Stress (ksi)	Bolt Moment $\underset{(f t-k)}{\text { Sum }}$	\# Bolts Acting On Bend Line	Max Bolt Load For Bend Line (kips)	Minimum Plate Thickness (in)	Usage
NESC HEAVY	CLP	1	15.491	46.156	1617.507	-5.435	39.164	63.726	3	79.793	2.321	71.21
EXTREME	CLP	1	15.491	23.542	2188.864	-1.349	51.393	83.623	3	104.563	2.658	93.44

Summary of Tubular Davit Usages by Load Case:
Load Case Maximum

Usage \% \begin{tabular}{rlr}

Tubular \& \begin{tabular}{c}
Davit

Label

 \&

Segment

Number
\end{tabular}

\hline NESC HEAVY \& 55.96 \& ARM3.1R
\end{tabular}

Summary of Insulator Usages:

| Insulator
 Label | Insulator Maximum
 Type | Load CaseWeight
 (lbs) | | |
| ---: | ---: | ---: | ---: | ---: | ---: |
| C1 | Clamp | 9.45 | NESC HEAVY | 0.0 |
| C2 | Clamp | 9.45 | NESC HEAVY | 0.0 |
| C3 | Clamp | 9.45 | NESC HEAVY | 0.0 |
| C4 | Clamp | 9.45 | NESC HEAVY | 0.0 |

C5	Clamp	9.45	NESC HEAVY	0.0
C6	Clamp	9.45	NESC HEAVY	0.0
C7	Clamp	2.31	NESC HEAVY	0.0
C8	Clamp	2.31	NESC HEAVY	0.0
C9	Clamp	2.31	NESC HEAVY	0.0
C10	Clamp	2.31	NESC HEAVY	0.0
C11	Clamp	2.31	NESC HEAVY	0.0
C12	Clamp	2.31	NESC HEAVY	0.0
C13	Clamp	2.31	NESC HEAVY	0.0
C14	Clamp	2.31	NESC HEAVY	0.0
C15	Clamp	2.31	NESC HEAVY	0.0
C16	Clamp	2.31	NESC HEAVY	0.0
C17	Clamp	28.79	EXTREME	0.0
C18	Clamp	15.28	EXTREME	0.0
C19	Clamp	2.31	NESC HEAVY	0.0
C20	Clamp	4.07	NESC HEAVY	0.0

*** Weight of structure (lbs) Weight of Tubular Davit Arms: Weight of Steel Poles:
3365.5 13858.7
*** End of Report

```
** POLE AND FRAME ANALY
    POLE AND FRAME ANALYSIS AND DESIGN
    Copyright Power Line Systems, Inc. 1999-2011
```

Project Name : 18058.58 - Darien, CT
Project Notes: Structure \# 1068/ T-Mobile CT11290C
Project File : J: \Jobs $\backslash 1805800$.WI \58_CT11290C $\backslash 05$ Structural\Backup Documentation Rev (6) \Calcs \backslash PLS Pole Date run : 10:04:34 AM Friday, December 14, 2018
by : PLS-POLE Version 12.50
Licensed to : Centek Engineering Inc
Successfully performed nonlinear analysis
The model has 0 warnings

Modeling options:
Offset Arms from Pole/Mast: Yes
Offset Braces from Pole/Mast: Yes
Offset Guys from Pole/Mast: Yes
Offset Posts from Pole/Mast: Yes
Offset Strains from Pole/Mast: No
Use Alternate Convergence Process: No
Steel poles checked with ASCE/SEI 48-11

Default Modulus of Elasticity for Steel $=29000.00$ (ksi)
Default Weight Density for Steel $=490.00$ (lbs/ft^3)

Steel Pole Properties:

Steel Tubes Properties

	$\begin{aligned} & \text { cle } \\ & \text { cty } \end{aligned}$	Tube No.	Length (ft)	Thickness (in)	$\begin{array}{r} \text { Lap } \\ \text { Length } \\ (\mathrm{ft}) \end{array}$	$\begin{array}{r} \text { Lap } \\ \text { Factor } \end{array}$	Lap Gap (in)	Yield Stress (ksi)	Moment Cap. Override (ft-k)	Tube Weight (lbs)	Center of Gravity (ft)	Calculated Taper (in/ft)	Tube Top Diameter (in)	Tube Bot. Diameter (in)	$\begin{aligned} & 1.5 x \\ & \text { Lap } \end{aligned}$	Diam. Length (ft)	Actual Overlap (ft)
CLP	1068	1	38	0.25	2.833	0.000	0.000	50.000	0.000	1854	20.57	0.22619	13.26	21.86		2.670	2.833
CLP	1068	2	39.833	0.3125	4.000	0.000	0.000	65.000	0.000	3496	21.12	0.22619	20.72	29.73		3.638	4.000
CLP	1068	3	34	0.375	5.083	0.000	0.000	65.000	0.000	4553	17.69	0.22619	28.20	35.89		4.392	5.083
CLP	1068	4	15.083	0.375	0.000	0.000	0.000	65.000	0.000	2253	7.66	0.22619	33.99	37.40		0.000	0.000

Base Plate Properties

Pole Property	Plate Plate Diam. Shape (in)	Plate Thick. (in)	Plate Weight (lbs)	Bend Line Length Override (in)	Hole Diam. (in)	Hole Shape	Steel Density $\left(\mathrm{lbs} / \mathrm{ft} \mathrm{f}^{\prime} 3\right)$	Steel Yield Stress (ksi)	Bolt Diam. (in)	Bolt Pattern Diam. (in)	Num. Of Bolts	$\begin{array}{r} \text { Bolt } \\ \text { Cage } \mathrm{x} \\ \text { Inertia } \\ \left(\text { in^4 }^{\wedge}\right. \end{array}$	$\begin{array}{r} \text { Bolt } \\ \text { Cage } \mathrm{Y} \\ \text { Inertia } \\ \text { (in^4) } \end{array}$
P 106													

Base Plate Bolt Coordinates for Property "CLP 1068":
$\left.\begin{array}{crr}\begin{array}{l}\text { Bolt X Bolt Y } \\ \text { Coord. }\end{array} \\ & \begin{array}{r}\text { Bolt } \\ \text { Angle }\end{array} \\ \text { (deg) }\end{array}\right]$

Steel Pole Connectivity:
Pole Tip Base X of Y of Z of Inclin. Inclin. Property Attach. Base Embed \% Embed C. Label Joint Joint Base Base Base About X About Y Set Labels Connect Override Override

Relative Attachment Labels for Steel Pole "CLP ":

Joint Label	Distance From Origin/Top Joint $(\mathbf{f t)}$	Global z of Attach $(\mathbf{f t)}$
CLP : ARM 1	12.67	0.00
CLP :ARM 2	23.67	0.00
CLP : ARM 3	34.67	0.00
CLP :WVGD1	0.00	110.00
CLP :WVGD2	0.00	100.00

CLP :WVGD3	0.00	90.00
CLP :WVGD4	0.00	80.00
CLP :WVGD5	0.00	70.00
CLP :WVGD6	0.00	50.00
CLP :WVGD7	0.00	40.00
CLP :WVGD8	0.00	30.00
CLP :WVGD9	0.00	20.00
CLP :WVGD10	0.00	10.00
CLP :WVGD11	0.00	113.00
CLP : BotConn	0.00	106.00
CLP : opgw	0.00	65.00

Transverse/Vertical (Y) Axis

Pole Steel Properties:

Element Label		Joint Label		Josi	oint tion	Rel. Dist. (ft)	Outer Diam. (in)	$\begin{gathered} \text { Area } \\ \left(\text { in^ }^{\wedge} 2\right) \end{gathered}$	T-Moment Inertia (in^4)	L-Moment Inertia (in^4)		$\begin{gathered} \text { W/t } \\ \text { Max. } \end{gathered}$	Fy (ksi)	Fa Min. (ksi)	T-Moment Capacity (ft-k)	L-Moment Capacity (ft-k)
CLP		CLP : t		CLP : t	Ori	0.00	13.26	10.78	241.33	241.33	0.00	17.8	50.00	50.00	151.63	151.63
CLP	CLP	:TopConn	CLP :	:TopConn	End	2.00	13.72	11.16	267.38	267.38	0.00	18.6	50.00	50.00	162.45	162.45
CLP	CLP	:TopConn	CLP :	:TopConn	Ori	2.00	13.72	11.16	267.38	267.38	0.00	18.6	50.00	50.00	162.45	162.45
CLP	CLP	P :WVGD1	CLP	:WVGD1	End	5.00	14.39	11.72	309.86	309.86	0.00	19.7	50.00	50.00	179.39	179.39
CLP	CLP	P :WVGD1	CLP	: WVGD1	Ori	5.00	14.39	11.72	309.86	309.86	0.00	19.7	50.00	50.00	179.39	179.39

Tubular Davit Properties:

Intermediate Joints for Davit Property "D281-6S":

```
Joint Horz. Vert.
Label Offset Offset
```

	(ft)	(ft)
END	6.25	-1.25

Intermediate Joints for Davit Property "D281-8D":

Joint	Horz.
LabelVert Ofset Offse	
	$(f t)$

Tubular Davit Arm Connectivity:

Davit Label	Attach Label	Davit Property Set	(deg)

Transverse/Vertical (Y) Axis

Tubular Davit Arm Steel Properties:

Element Label	Joint Label	Joint Position	Rel. Dist. (ft)	Outer Diam. (in)	$\begin{gathered} \text { Area } \\ \left(\text { in^ }^{\wedge} 2\right) \end{gathered}$	V-Moment Inertia (in^4)	H-Moment Inertia (in^4)		$\begin{aligned} & \text { W/t } \\ & \text { Max. } \end{aligned}$		$\begin{gathered} \text { Fa } \\ \text { Min. } \\ (k s i) \end{gathered}$	v-Moment Capacity (ft-k)	H-Moment Capacity (ft-k)
ARM1.1R	ARM1.1R:0	Origin	0.00	7.88	4.78	37.32	37.32	0.00	13.3	50.00	50.00	36.49	36.49
ARM1.1R	ARM1.1R:END	End	8.34	3.50	2.06	2.99	2.99	0.00	3.6	50.00	50.00	6.58	6.58
ARM1.1L	ARM1.1L: 0	Origin	0.00	6.88	4.16	24.58	24.58	0.00	11.0	50.00	50.00	27.52	27.52
ARM1.1L	ARM1.1L:END	End	6.37	3.50	2.06	2.99	2.99	0.00	3.6	50.00	50.00	6.58	6.58
ARM2.1R	ARM2.1R:O	Origin	0.00	7.88	4.78	37.32	37.32	0.00	13.3	50.00	50.00	36.49	36.49
ARM2.1R	ARM2.1R:END	End	8.34	3.50	2.06	2.99	2.99	0.00	3.6	50.00	50.00	6.58	6.58
ARM2.1L	ARM2.1L: 0	Origin	0.00	6.88	4.16	24.58	24.58	0.00	11.0	50.00	50.00	27.52	27.52
ARM2.1L	ARM2.1L:END	End	6.37	3.50	2.06	2.99	2.99	0.00	3.6	50.00	50.00	6.58	6.58
ARM3.1R	ARM3.1R:O	Origin	0.00	7.88	4.78	37.32	37.32	0.00	13.3	50.00	50.00	36.49	36.49
ARM3.1R	ARM3.1R:END	End	8.34	3.50	2.06	2.99	2.99	0.00	3.6	50.00	50.00	6.58	6.58
ARM3.1L	ARM3.1L: 0	Origin	0.00	6.88	4.16	24.58	24.58	0.00	11.0	50.00	50.00	27.52	27.52
ARM3.1L	ARM3.1L:END	End	6.37	3.50	2.06	2.99	2.99	0.00	3.6	50.00	50.00	6.58	6.58

*** Insulator Data

Clamp Properties:

LabelStock Number Capacity	
(lbs)	

CLAMP $3 e+004$

Clamp Insulator Connectivity:

Clamp Label	Structure And Tip Attach	Property Set	
		Min. Required Vertical Load (uplift) (lbs)	
C1		ARM1.1R:END	CLAMP

C18	CLP $:$ BotConn	CLAMP	No Limit
C19	CLP $:$ WVGD11	CLAMP	No Limit
C20	CLP :opgw	CLAMP	No Limit

Loads from file: j: \jobs \1805800.wi\58_ct11290c\05_structural\backup documentation\rev (6) \calcs\pls pole\cl\&p pole \# 1068.lca Insulator dead and wind loads are already included in the point loads printed below.

Loading Method Parameters:
Structure Height Summary (used for calculating wind/ice adjust with height):
Z of ground for wind height adjust 0.00 (ft) and structure Z coordinate that will be put on the centerline ground profile in PLS-CADD
Ground elevation shift 0.00 (ft)
Z of ground with shift 0.00 (ft)
Z of structure top (highest joint)
Structure height
115.00 (ft)

Structure height above ground
115.00 (ft)
115.00 (ft)

Vector Load Cases:

Point Loads for Load Case "NESC HEAVY":

Joint Label	Vertical Load (lbs)	Transverse Load (lbs)	Longitudinal Load (lbs)	Load Comment
CLP : TopConn	1395	1034	0	Linnet
ARM1.1L:END	2279	1685	0	BITTERN
ARM1.1R:END	2279	1685	0	BITTERN
ARM2.1L:END	2279	1685	0	BITTERN
ARM2.1R:END	2279	1685	0	BITTERN
ARM3.1L:END	2279	1685	0	BITTERN
ARM3.1R:END	2279	1685	0	BITTERN
CLP :opgw	826	901	0	OPGW-012
CLP :WVGD1	688	75	0	Coax Cable
CLP :WVGD2	688	75	0	Coax Cable
CLP : WVGD3	688	75	0	Coax Cable
CLP :WVGD4	688	75	0	Coax Cable
CLP :WVGD5	688	75	0	Coax Cable
CLP :WVGD6	688	75	0	Coax Cable
CLP :WVGD7	688	75	0	Coax Cable
CLP : WVGD8	688	75	0	Coax Cable

CLP :WVGD9	688	75	0	Coax Cable
CLP :WVGD10	688	75	0	Coax Cable
CLP :WVGD11	688	75	0	Coax Cable
CLP :TopConn	0	1892	0	Mast Top Connection
CLP : BotConn	3514	-1027	0 Mast Bottom Connection	

Point Loads for Load Case "EXTREME":

Joint Label	Vertical Load (lbs)	Transverse Load (lbs)	Longitudinal Load (lbs)
CLP :TopConn	601	972	Load Comment
ARM1.1L:END	1021	1830	0

Detailed Pole Loading Data for Load Case "EXTREME":
Notes: Does not include loads from equipment, arms, guys, braces, etc. or user input loads.
Wind load is calculated for the undeformed shape of a pole.

Pole Label	Top Joint	Bottom Joint	$\begin{array}{r} \text { Section } \\ \text { Top } \\ \mathbf{Z} \\ \text { (ft) } \end{array}$	$\begin{array}{r} \text { Section } \\ \text { Bottom } \\ \mathbf{Z} \\ (f t) \end{array}$	Section Average Elevation (ft)	Outer Diameter (in)	Reynolds Number	Drag Coef.	Adjusted Wind Pressure (psf)	Adjusted Ice Thickness (in)	Pole Vert. Load (lbs)	Pole Wind Load (lbs)	Pole Ice Vertical Load (lbs)	Pole Ice Wind Load (lbs)	Tran. Wind Load (lbs)	Long. Wind Load (lbs)
CLP	CLP : t	CLP : TopConn	115.00	113.00	114.00	13.489	$1.14 \mathrm{e}+006$	1.000	31.88	0.00	74.64	71.67	0.00	0.00	71.67	0.00
CLP	CLP : TopConn	CLP :WVGD1	113.00	110.00	111.50	14.055	$1.19 \mathrm{e}+006$	1.000	31.88	0.00	116.74	112.01	0.00	0.00	112.01	0.00
CLP	CLP : WVGD1	CLP : BotConn	110.00	106.00	108.00	14.846	$1.25 e+006$	1.000	31.88	0.00	164.59	157.75	0.00	0.00	157.75	0.00
CLP	CLP : BotConn	CLP : ARM 1	106.00	102.33	104.16	15.714	$1.33 e+006$	1.000	31.88	0.00	159.98	153.19	0.00	0.00	153.19	0.00
CLP	CLP : ARM 1	CLP :WVGD2	102.33	100.00	101.17	16.392	$1.39 \mathrm{e}+006$	1.000	31.88	0.00	106.03	101.46	0.00	0.00	101.46	0.00
CLP	CLP : WVGD2	CLP :ARM 2	100.00	91.33	95.67	17.636	$1.49 \mathrm{e}+006$	1.000	31.88	0.00	424.93	406.19	0.00	0.00	406.19	0.00
CLP	CLP :ARM 2	CLP :WVGD3	91.33	90.00	90.67	18.767	$1.59 \mathrm{e}+006$	1.000	31.88	0.00	69.43	66.31	0.00	0.00	66.31	0.00
CLP	CLP : WVGD3	CLP :ARM 3	90.00	80.33	85.17	20.011	$1.69 \mathrm{e}+006$	1.000	31.88	0.00	538.68	514.04	0.00	0.00	514.04	0.00
CLP	CLP : ARM 3	CLP :WVGD 4	80.33	80.00	80.17	21.142	$1.79 \mathrm{e}+006$	1.000	31.88	0.00	19.44	18.53	0.00	0.00	18.53	0.00
CLP	CLP : WVGD4		80.00	79.83	79.92	21.199	$1.79 \mathrm{e}+006$	1.000	31.88	0.00	9.86	9.40	0.00	0.00	9.40	0.00
CLP			79.83	77.00	78.42	21.288	$1.8 \mathrm{e}+006$	1.000	31.88	0.00	376.80	160.20	0.00	0.00	160.20	0.00
CLP		CLP :WVGD5	77.00	70.00	73.50	22.150	$1.87 e+006$	1.000	31.88	0.00	538.70	411.88	0.00	0.00	411.88	0.00
CLP	CLP : WVGD5	CLP : opgw	70.00	65.00	67.50	23.507	$1.99 \mathrm{e}+006$	1.000	31.88	0.00	408.65	312.22	0.00	0.00	312.22	0.00
CLP	CLP : opgw	CLP :WVGD 6	65.00	60.00	62.50	24.638	$2.08 \mathrm{e}+006$	1.000	31.88	0.00	428.58	327.24	0.00	0.00	327.24	0.00
CLP	CLP : WVGD 6	CLP :WVGD7	60.00	50.00	55.00	26.334	$2.23 e+006$	1.000	31.88	0.00	916.93	699.55	0.00	0.00	699.55	0.00

CLP	CLP	:WVGD7			50.00	44.00	47.00	28.144	$2.38 \mathrm{e}+006$	1.000	31.88	0.00	588.42	448.57	0.00	0.00	448.57	0.00
CLP			CLP	:WVGD8	44.00	40.00	42.00	28.962	$2.45 e+006$	1.000	31.88	0.00	886.29	307.75	0.00	0.00	307.75	0.00
CLP	CLP	:WVGD8	CLP	:WVGD9	40.00	30.00	35.00	30.233	$2.56 e+006$	1.000	31.88	0.00	1262.62	803.12	0.00	0.00	803.12	0.00
CLP	CLP	:WVGD9	CLP	:WVGD10	30.00	20.00	25.00	32.495	$2.75 \mathrm{e}+006$	1.000	31.88	0.00	1358.18	863.21	0.00	0.00	863.21	0.00
CLP	CLP	:WVGD10			20.00	15.08	17.54	34.182	$2.89 \mathrm{e}+006$	1.000	31.88	0.00	702.89	446.47	0.00	0.00	446.47	0.00
CLP			CLP	:WVGD11	15.08	10.00	12.54	34.938	$2.95 e+006$	1.000	31.88	0.00	1485.74	471.76	0.00	0.00	471.76	0.00
CLP	CLP	:WVGD11		CLP : 9	10.00	0.00	5.00	36.269	$3.07 e+006$	1.000	31.88	0.00	1517.86	963.46	0.00	0.00	963.46	0.00

*** Analysis Results:
Maximum element usage is 97.81% for Steel Pole "CLP " in load case "EXTREME"
Maximum insulator usage is 28.79\% for Clamp "C17" in load case "EXTREME

*** Analysis Results for Load Case No. 1 "NESC HEAVY" - Number of iterations in SAPS 17

Equilibrium Joint Positions and Rotations for Load Case "NESC HEAVY":

	Joint Label	$\begin{array}{r} \text { x-Displ } \\ (f t) \end{array}$	$\begin{array}{r} \text { Y-Displ } \\ (\mathrm{ft}) \end{array}$	$\begin{array}{r} \text { z-Displ } \\ (\mathrm{ft}) \end{array}$	$\begin{gathered} \mathrm{X}-\mathrm{Rot} \\ \text { (deg) } \end{gathered}$	$\begin{gathered} \text { Y-Rot } \\ \text { (deg) } \end{gathered}$	$\begin{gathered} \text { z-Rot } \\ \text { (deg) } \end{gathered}$	$\begin{gathered} \mathrm{X}-\mathrm{Pos} \\ (\mathrm{ft}) \end{gathered}$	$\begin{gathered} \text { Y-Pos } \\ \text { (ft) } \end{gathered}$	$\begin{gathered} \mathrm{z}-\mathrm{Pos} \\ (\mathrm{ft}) \end{gathered}$
	CLP : 9	0	0	0	0.0000	0.0000	0.0000	0	0	0
	CLP : t	0.01829	7.487	-0.3335	-6.8099	0.0149	0.0002	0.01829	7.487	114.7
CLP	:TopConn	0.01777	7.25	-0.3194	-6.8099	0.0149	0.0002	0.01777	7.25	112.7

CLP : WVGD1	1699	6.894	-0.2982	-6.7957	0.0149	0.0002	. 01699	6.894	9.7
CLP : BotConn	0.01596	6.423	-0.2703	-6.7413	0.0149	0.0002	0.01596	6.423	105.7
CLP : ARM 1	0.01501	5.994	-0.2451	-6.6681	0.0148	0.0002	0.01501	5.994	102.1
CLP : WVGD2	0.01441	5.725	-0.2294	-6.5950	0.0147	0.0002	0.01441	. 725	7
CLP :ARM 2	0.01223	4.754	-0.1747	-6.2135	0.0141	0.0002	0.01223	4.754	91.16
CLP :WVGD3	0.0119	4.611	-0.1669	-6.1388	0.0140	0.0002	0.0119	4.611	89.83
CLP : ARM 3	0.00962	3.625	-0.1162	-5.4943	0.0129	0.0001	0.00962	. 62	80.21
CLP : WVGD4	0.009546	3.594	-0.1147	-5.4693	0.0129	0.0001	0.009546	. 594	79.89
CLP : WVGD5	0.0074	2.702	-0.07439	-4.7359	0.0116	0.0001	0.0074	2.702	69.93
CLP : opgw	0.006414	2.305	-0.05843	-4.3513	0.0109	0.0001	0.006414	. 305	64.94
CLP : WVGD6	0.005491	1.942	-0.04505	-3.9597	0.0102	0.0001	0.005491	1.942	59.95
CLP :WVG	0.003845	1.317	-0.02508	-3.1752	0.0086	0.0000	0.003845	1.317	49.97
CLP : WVGD8	0.002494	0.8281	-0.01273	-2.4250	0.0069	0.0000	0.002494	0.8281	39.99
CLP :WVG	0.001427	0.4599	-0.005628	-1.7720	0.005	0.0000	0.001427	599	29.99
CLP :WVGD10	0.0006474	0.2026	-0.001991	-1.1575	0.0036	0.0000	0.0006474	0.2026	20
CLP :WVGD11	0.0001685	0.05116	-0.0004782	-0.5712	0.0018	-0.0000	0.0001685	0.05116	10
ARM1.1R:0	0.01499	5.989	-0.3231	-6.6681	0.0148	0.0002	0.01499	6.661	102
ARM1.1R:END	0.015	6.082	-1.404	-7.8401	0.0148	0.0002	0.015	15	102.2
ARM1.1L: 0	0.01503	5.999	-0.1671	-6.6681	0.0148	0.0002	0.01503	5.326	102.2
ARM1.1L: END	0.01556	6.17	0.4991	-5.9497	0.0149	0.0003	0.01556	-0.7522	104.1
ARM2.1R:0	0.0122	4.749	-0.2586	-6.2135	0.0141	0.0002	0.0122	5.525	91.07
ARM2.1R:END	0.01224	4.84	-1.274	-7.3918	0.0141	0.0002	0.01224	13.87	91.31
ARM2.1L: 0	0.01225	4.759	-0.09072	-6.2135	0.0141	0.0002	0.01225	3.983	91.24
ARM2.1L:END	0.01274	4.915	0.5266	-5.4874	0.0142	0.0003	0.01274	-2.111	93.11
ARM3.1R:O	0.009599	3.621	-0.2004	-5.4943	0.0129	0.0001	0.009599	4.501	80.13
RM3.1R:END	0.009657	3.709	-1.112	-6.6825	0.0130	0.0001	0.009657	12.84	80.47
ARM3.1L: 0	0.009641	3.629	-0.03199	-5.4943	0.0129	0.0001	0.009641	2.75	80.3
ARM3.1L: END	0.01007	3.762	0.5078	-4.7560	0.0130	0.0002	0.01007	-3.367	82.09

Joint Support Reactions for Load Case "NESC HEAVY":

Joint Label	Force (kips)	Usage	$\begin{array}{r} Y \\ \text { Force } \\ \text { (kips) } \end{array}$	Usage	$\begin{array}{r} \text { H-Shear } \\ \text { Usage } \\ \% \end{array}$	$\begin{array}{r} z \\ \text { Force } \\ \text { (kips) } \end{array}$	Comp. Usage	Uplift Usage \%	Result. Force (kips)	Result. Usage \%	x Moment (ft-k)	$\mathrm{X}-\mathrm{M} .$ Usage	$\begin{array}{r} Y \\ \text { Moment } \\ (\mathrm{ft}-\mathrm{k}) \end{array}$	$\mathrm{Y}-\mathrm{M} .$ Usage	$\begin{array}{r} \text { H-Bend-M } \\ \text { Usage } \\ \% \end{array}$	Moment $(f t-k)$	$\mathrm{Z}-\mathrm{M}$ Usage	
CLP : 9	0.10	. 0	7.64	. 0	. 0	7.37	. 0	0.0	50.54	0.0	617.51	0.0	-5.4	0.0	0.0	0.00	0.	0.0

Detailed Steel Pole Usages for Load Case "NESC HEAVY":

Element Label		Joint Label	Joint Position	Rel. Dist. (ft)	$\begin{aligned} & \text { Trans. } \\ & \text { Defl. } \\ & \text { (in) } \end{aligned}$	Long. Defl. (in)	Vert. Defl. (in)	Trans. Mom. (Local Mx) (ft-k)	Long. Mom. (Local My) (ft-k)	Tors. Mom. (ft-k)	$\begin{aligned} & \text { Axial } \\ & \text { Force } \\ & \text { (kips) } \end{aligned}$	$\begin{aligned} & \text { Tran. } \\ & \text { Shear } \\ & \text { (kips) } \end{aligned}$	Long. Shear (kips)	$\begin{array}{r} \text { P/A } \\ \text { (ksi) } \end{array}$	M/S. (ksi)	$\mathrm{v} / \mathrm{Q} .$ (ksi)	$\begin{aligned} & T / R . \\ & (k s i) \end{aligned}$	Res. (ksi)	Max. Usage	$\begin{aligned} & \text { At } \\ & \text { Pt. } \end{aligned}$
CLP		CLP : t	igin	0.00	89.85	0.22	-4.00	-0.00	-0.00	0.0	-0.06	0.02	-0.00	-0.01	0.00	0.00	0.00	0.01	0.0	4
CLP	CLP :	:TopConn	End	2.00	87.00	0.21	-3.83	0.05	-0.00	0.0	-0.06	0.02	-0.00	-0.00	0.02	0.00	0.00	0.02	0.0	2
CLP	CLP :	:TopConn	Origin	2.00	87.00	0.21	-3.83	0.05	-0.00	-0.0	-1.24	3.16	-0.00	-0.11	0.00	0.59	0.00	1.02	2.0	4
CLP	CLP	P :WVGD1	End	5.00	82.73	0.20	-3.58	9.52	-0.01	-0.0	-1.24	3.16	-0.00	-0.11	2.65	0.21	0.00	2.79	5.6	2
CLP	CLP	P :WVGD1	Origin	5.00	82.73	0.20	-3.58	9.52	-0.01	0.0	-2.12	3.40	-0.00	-0.18	2.65	0.23	0.00	2.86	5.7	2
CLP	CLP :	: BotConn	End	9.00	77.07	0.19	-3.24	23.14	-0.02	0.0	-2.12	3.40	-0.00	-0.17	5.69	0.22	0.00	5.88	11.8	2
CLP	CLP :	: BotConn	Origin	9.00	77.07	0.19	-3.24	23.14	-0.02	0.0	-5.98	2.90	-0.01	-0.48	5.69	0.19	0.00	6.18	12.4	2
CLP	CLP	P : ARM 1	End	12.67	71.93	0.18	-2.94	33.77	-0.05	0.0	-5.98	2.90	-0.01	-0.45	7.46	0.18	0.00	7.92	15.8	2
CLP	CLP	P : ARM 1	Origin	12.67	71.93	0.18	-2.94	42.79	-0.05	-0.0	-10.56	6.88	-0.01	-0.80	9.45	0.42	0.00	10.28	20.6	2
CLP	CLP	P :WVGD2	End	15.00	68.70	0.17	-2.75	58.82	-0.08	-0.0	-10.56	6.88	-0.01	-0.78	12.16	0.40	0.00	12.96	25.9	2
CLP	CLP	P :WVGD2	Origin	15.00	68.70	0.17	-2.75	58.82	-0.08	-0.0	-11.66	7.16	-0.01	-0.86	12.16	0.42	0.00	13.04	26.1	2
CLP	CLP	P :ARM 2	End	23.67	57.05	0.15	-2.10	120.92	-0.20	-0.0	-11.66	7.16	-0.01	-0.77	19.92	0.37	0.00	20.70	41.4	2
CLP	CLP	P :ARM 2	Origin	23.67	57.05	0.15	-2.10	129.93	-0.20	-0.0	-16.47	11.14	-0.02	-1.08	21.41	0.58	0.00	22.51	45.0	2
CLP	CLP	P :WVGD3	End	25.00	55.33	0.14	-2.00	144.74	-0.22	-0.0	-16.47	11.14	-0.02	-1.06	23.08	0.57	0.00	24.16	48.3	2
CLP	CLP	P :WVGD3	Origin	25.00	55.33	0.14	-2.00	144.74	-0.22	-0.0	-17.66	11.38	-0.02	-1.14	23.08	0.58	0.00	24.24	48.5	2

CLP	CLP :ARM 3	End	34.67	43.50	0.12	-1.39	254.76
CLP	CLP :ARM 3	Origin	34.67	43.50	0.12	-1.39	263.75
CLP	CLP :WVGD4	End	35.00	43.12	0.11	-1.38	268.79
CLP	CLP :WVGD4	Origin	35.00	43.12	0.11	-1.38	268.79
CLP	SpliceT	End	35.17	42.93	0.11	-1.37	271.36
CLP	SpliceT	Origin	35.17	42.93	0.11	-1.37	271.36
CLP	SpliceB	End	38.00	39.76	0.11	-1.22	315.04
CLP	SpliceB	Origin	38.00	39.76	0.11	-1.22	315.04
CLP	CLP :WVGD5	End	45.00	32.42	0.09	-0.89	423.38
CLP	CLP : WVGD5	Origin	45.00	32.42	0.09	-0.89	423.38
CLP	CLP : opgw	End	50.00	27.66	0.08	-0.70	501.61
CLP	CLP : opgw	Origin	50.00	27.66	0.08	-0.70	501.61
CLP	CLP :WVGD 6	End	55.00	23.31	0.07	-0.54	584.79
CLP	CLP : WVGD 6	Origin	55.00	23.31	0.07	-0.54	584.79
CLP	CLP : WVGD7	End	65.00	15.80	0.05	-0.30	752.75
CLP	CLP : WVGD7	Origin	65.00	15.80	0.05	-0.30	752.75
CLP	SpliceT	End	71.00	12.09	0.04	-0.20	854.31
CLP	SpliceT	Origin	71.00	12.09	0.04	-0.20	854.31
CLP	CLP : WVGD8	End	75.00	9.94	0.03	-0.15	922.14
CLP	CLP : WVGD8	Origin	75.00	9.94	0.03	-0.15	922.14
CLP	CLP : WVGD9	End	85.00	5.52	0.02	-0.07	1093.47
CLP	CLP :WVGD9	Origin	85.00	5.52	0.02	-0.07	1093.47
CLP	CLP :WVGD10	End	95.00	2.43	0.01	-0.02	1266.53
CLP	CLP : WVGD10	Origin	95.00	2.43	0.01	-0.02	1266.53
CLP	SpliceT	End	99.92	1.38	0.00	-0.01	1352.32
CLP	SpliceT	Origin	99.92	1.38	0.00	-0.01	1352.32
CLP	CLP :WVGD11	End	105.00	0.61	0.00	-0.01	1441.23
CLP	CLP :WVGD11	Origin	105.00	0.61	0.00	-0.01	1441.23
CLP	CLP : 9	End	115.00	0.00	0.00	0.00	1617.51

| -0.44 | -0.0 | -17.66 | 11.38 | -0.02 | -1.02 | 32.51 | 0.52 | 0.00 | 33.54 | 67.1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -0.44 | -0.0 | -22.61 | 15.25 | -0.03 | -1.31 | 33.65 | 0.70 | 0.00 | 34.98 | 70.0 | 2 |
| -0.45 | -0.0 | -22.61 | 15.25 | -0.03 | -1.30 | 34.05 | 0.70 | 0.00 | 35.37 | 70.7 | 2 |
| -0.45 | -0.0 | -23.31 | 15.39 | -0.03 | -1.34 | 34.05 | 0.70 | 0.00 | 35.42 | 70.8 | 2 |
| -0.45 | -0.0 | -23.31 | 15.39 | -0.03 | -1.34 | 34.25 | 0.70 | 0.00 | 35.61 | 71.2 | 2 |
| -0.45 | -0.0 | -23.63 | 15.42 | -0.03 | -1.36 | 34.25 | 0.70 | 0.00 | 35.63 | 71.3 | 2 |
| -0.53 | -0.0 | -23.63 | 15.42 | -0.03 | -1.08 | 31.66 | 0.56 | 0.00 | 32.76 | 50.4 | 2 |
| -0.53 | -0.0 | -24.41 | 15.48 | -0.03 | -1.12 | 31.66 | 0.56 | 0.00 | 32.80 | 50.5 | 2 |
| -0.76 | -0.0 | -24.41 | 15.48 | -0.03 | -1.04 | 36.77 | 0.52 | 0.00 | 37.82 | 58.2 | 2 |
| -0.76 | -0.0 | -25.92 | 15.65 | -0.04 | -1.11 | 36.77 | 0.53 | 0.00 | 37.89 | 58.3 | 2 |
| -0.94 | -0.0 | -25.92 | 15.65 | -0.04 | -1.05 | 39.49 | 0.50 | 0.00 | 40.56 | 62.4 | 2 |
| -0.94 | -0.0 | -27.41 | 16.64 | -0.04 | -1.11 | 39.49 | 0.54 | 0.00 | 40.62 | 62.5 | 2 |
| -1.15 | -0.0 | -27.41 | 16.64 | -0.04 | -1.06 | 41.93 | 0.51 | 0.00 | 43.00 | 66.2 | 2 |
| -1.14 | -0.0 | -29.27 | 16.80 | -0.05 | -1.14 | 41.93 | 0.52 | 0.00 | 43.08 | 66.3 | 2 |
| -1.62 | -0.0 | -29.27 | 16.80 | -0.05 | -1.04 | 45.32 | 0.47 | 0.00 | 46.36 | 74.0 | 2 |
| -1.62 | -0.0 | -31.26 | 16.93 | -0.05 | -1.11 | 45.32 | 0.48 | 0.00 | 46.43 | 74.1 | 2 |
| -1.94 | -0.0 | -31.26 | 16.93 | -0.05 | -1.06 | 46.63 | 0.45 | 0.00 | 47.69 | 78.4 | 2 |
| -1.94 | -0.0 | -32.48 | 16.96 | -0.06 | -1.10 | 46.63 | 0.46 | 0.00 | 47.73 | 78.4 | 2 |
| -2.18 | -0.0 | -32.48 | 16.96 | -0.06 | -0.91 | 41.39 | 0.38 | 0.00 | 42.31 | 65.1 | 2 |
| -2.18 | -0.0 | -34.91 | 17.13 | -0.07 | -0.98 | 41.39 | 0.38 | 0.00 | 42.38 | 65.2 | 2 |
| -2.84 | -0.0 | -34.91 | 17.13 | -0.07 | -0.91 | 42.15 | 0.35 | 0.00 | 43.06 | 66.2 | 2 |
| -2.83 | -0.0 | -37.75 | 17.31 | -0.08 | -0.98 | 42.15 | 0.36 | 0.00 | 43.13 | 66.4 | 2 |
| -3.59 | -0.0 | -37.75 | 17.31 | -0.08 | -0.91 | 42.37 | 0.33 | 0.00 | 43.29 | 67.3 | 2 |
| -3.59 | -0.0 | -40.12 | 17.45 | -0.08 | -0.97 | 42.37 | 0.33 | 0.00 | 43.35 | 67.4 | 2 |
| -4.00 | -0.0 | -40.12 | 17.45 | -0.08 | -0.94 | 42.35 | 0.32 | 0.00 | 43.29 | 68.4 | 2 |
| -4.00 | -0.0 | -41.85 | 17.49 | -0.09 | -0.98 | 42.35 | 0.32 | 0.00 | 43.33 | 68.5 | 2 |
| -4.46 | -0.0 | -41.85 | 17.49 | -0.09 | -0.97 | 44.10 | 0.32 | 0.00 | 45.07 | 71.7 | 2 |
| -4.46 | -0.0 | -44.93 | 17.63 | -0.10 | -1.04 | 44.10 | 0.32 | 0.00 | 45.14 | 74.9 | 2 |
| -5.43 | -0.0 | -44.93 | 17.63 | -0.10 | -0.98 | 43.61 | 0.30 | 0.00 | 44.58 | 73.4 | 2 |

Detailed Tubular Davit Arm Usages for Load Case "NESC HEAVY":

Element Joint Label Label	Joint Position	Rel. Dist. (ft)	$\begin{aligned} & \text { Trans. } \\ & \text { Defl. } \\ & \text { (in) } \end{aligned}$	Long. Defl. (in)	Vert. Defl. (in)	Vert. Mom. (ft-k)	$\begin{aligned} & \text { Horz. } \\ & \text { Mom. } \\ & (\mathrm{ft}-\mathrm{k}) \end{aligned}$	Tors. Mom. (ft-k)	Axial Force (kips)	$\begin{aligned} & \text { Vert. } \\ & \text { Shear } \\ & \text { (kips) } \end{aligned}$	Horz. Shear (kips)	$\begin{array}{r} \text { P/A } \\ \text { (ksi) } \end{array}$	M/S. (ksi)	v/Q. (ksi)	$\begin{aligned} & T / R . \\ & (k s i) \end{aligned}$	Res. (ksi)	Max. Usage \%	$\begin{array}{r} \text { At } \\ \text { Pt. } \end{array}$
ARM1.1R ARM1.1R:0	Origin	0.00	71.87	0.18	-3.88	-19.91	-0.01	0.0	1.64	2.39	0.00	0.34	27.28	0.00	0.00	27.62	55.2	1
ARM1.1R ARM1.1R:END	End	8.34	72.98	0.18	-16.85	0.00	0.00	0.0	1.64	2.39	0.00	0.80	0.00	2.43	0.00	4.27	8.5	3
ARM1.1L ARM1.1L:0	Origin	0.00	71.98	0.18	-2.00	-10.92	0.00	0.0	-2.31	1.71	-0.00	-0.56	19.84	0.00	0.00	20.40	40.8	1
ARM1.1L ARM1.1L:END	End	6.37	74.04	0.19	5.99	-0.00	0.00	0.0	-2.31	1.71	-0.00	-1.12	0.00	1.74	0.00	3.22	6.4	3
ARM2.1R ARM2.1R:0	Origin	0.00	56.99	0.15	-3.10	-20.01	-0.01	0.0	1.62	2.40	0.00	0.34	27.42	0.00	0.00	27.76	55.5	1
ARM2.1R ARM2.1R:END	End	8.34	58.09	0.15	-15.29	0.00	0.00	0.0	1.62	2.40	0.00	0.79	0.00	2.44	0.00	4.30	8.6	3
ARM2.1L ARM2.1L:O	Origin	0.00	57.10	0.15	-1.09	-11.04	0.00	0.0	-2.29	1.73	-0.00	-0.55	20.06	0.00	0.00	20.61	41.2	1
ARM2.1L ARM2.1L:END	End	6.37	58.98	0.15	6.32	-0.00	0.00	0.0	-2.29	1.73	-0.00	-1.11	0.00	1.76	0.00	3.25	6.5	3
ARM3.1R ARM3.1R:0	Origin	0.00	43.45	0.12	-2.40	-20.18	-0.00	0.0	1.59	2.42	0.00	0.33	27.65	0.00	0.00	27.98	56.0	1
ARM3.1R ARM3.1R:END	End	8.34	44.50	0.12	-13.34	0.00	0.00	0.0	1.59	2.42	0.00	0.77	0.00	2.46	0.00	4.33	8.7	3
ARM3.1L ARM3.1L:O	Origin	0.00	43.55	0.12	-0.38	-11.23	0.00	0.0	-2.27	1.76	-0.00	-0.55	20.39	0.00	0.00	20.94	41.9	1
ARM3.1L ARM3.1L:END	End	6.37	45.15	0.12	6.09	-0.00	0.00	0.0	-2.27	1.76	-0.00	-1.10	0.00	1.79	0.00	3.29	6.6	3

Summary of Clamp Capacities and Usages for Load Case "NESC HEAVY":

Label	(kips)	Holding Capacity (kips)	$\begin{gathered} \text { Holding } \\ \text { Capacity } \\ \text { (kips) } \end{gathered}$	\%
C1	2.834	30.00	30.00	9.45
C2	2.834	30.00	30.00	9.45
C3	2.834	30.00	30.00	9.45
C4	2.834	30.00	30.00	9.45
C5	2.834	30.00	30.00	9.45
C6	2.834	30.00	30.00	9.45
C7	0.692	30.00	30.00	2.31
C8	0.692	30.00	30.00	2.31
C9	0.692	30.00	30.00	2.31
C10	0.692	30.00	30.00	2.31
C11	0.692	30.00	30.00	2.31
C12	0.692	30.00	30.00	2.31
C13	0.692	30.00	30.00	2.31
C14	0.692	30.00	30.00	2.31
C15	0.692	30.00	30.00	2.31
C16	0.692	30.00	30.00	2.31
C17	3.242	30.00	30.00	10.81
C18	3.661	30.00	30.00	12.20
C19	0.692	30.00	30.00	2.31
C20	1.222	30.00	30.00	4.07

Equilibrium Joint Positions and Rotations for Load Case "EXTREME":

Joint Label	$\begin{array}{r} \text { x-Displ } \\ (\mathrm{ft}) \end{array}$	$\begin{array}{r} \text { Y-Displ } \\ (f t) \end{array}$	$\begin{array}{r} \text { z-Displ } \\ \text { (ft) } \end{array}$	$\begin{gathered} \mathrm{X}-\mathrm{Rot} \\ \text { (deg) } \end{gathered}$	$\begin{gathered} \text { Y-Rot } \\ \text { (deg) } \end{gathered}$	$\begin{gathered} \text { z-Rot } \\ \text { (deg) } \end{gathered}$	$\begin{gathered} \mathrm{X}-\mathrm{Pos} \\ (\mathrm{ft}) \end{gathered}$	$\begin{gathered} \text { Y-Pos } \\ (f t) \end{gathered}$	$\begin{gathered} \mathrm{z} \text {-Pos } \\ (\mathrm{ft}) \end{gathered}$
CLP : 9	0	0	0	0.0000	0.0000	0.0000	0	0	0
CLP : t	0.004388	10.09	-0.6065	-9.5462	0.0035	0.0001	0.004388	10.09	114.4
CLP : TopConn	0.004265	9.754	-0.5788	-9.5461	0.0035	0.0001	0.004265	9.754	112.4
CLP : WVGD1	0.004081	9.257	-0.5374	-9.5071	0.0035	0.0001	0.004081	9.257	109.5
CLP : BotConn	0.003835	8.6	-0.4831	-9.3586	0.0035	0.0001	0.003835	8.6	105.5
CLP : ARM 1	0.003611	8.009	-0.4351	-9.1718	0.0035	0.0001	0.003611	8.009	101.9
CLP : WVGD2	0.00347	7.64	-0.4058	-9.0281	0.0035	0.0001	0.00347	7.64	99.59
CLP :ARM 2	0.002952	6.324	-0.3051	-8.3743	0.0034	0.0001	0.002952	6.324	91.02
CLP : WVGD3	0.002875	6.131	-0.2911	-8.2584	0.0033	0.0001	0.002875	6.131	89.71
CLP :ARM 3	0.002332	4.814	-0.2008	-7.3132	0.0031	0.0001	0.002332	4.814	80.13
CLP : WVGD4	0.002314	4.772	-0.1981	-7.2781	0.0031	0.0001	0.002314	4.772	79.8
CLP : WVGD5	0.0018	3.59	-0.1277	-6.2762	0.0028	0.0000	0.0018	3.59	69.87
CLP : opgw	0.001563	3.064	-0.1	-5.7622	0.0026	0.0000	0.001563	3.064	64.9
CLP : WVGD6	0.00134	2.584	-0.07679	-5.2430	0.0025	0.0000	0.00134	2.584	59.92
CLP : WVGD7	0.0009417	1.756	-0.04226	-4.2104	0.0021	0.0000	0.0009417	1.756	49.96
CLP : WVGD8	0.0006127	1.107	-0.02097	-3.2256	0.0017	0.0000	0.0006127	1.107	39.98
CLP : WVGD9	0.0003515	0.6167	-0.008784	-2.3657	0.0013	0.0000	0.0003515	0.6167	29.99
CLP : WVGD10	0.00016	0.2726	-0.002705	-1.5517	0.0009	0.0000	0.00016	0.2726	20
CLP : WVGD11	$4.175 \mathrm{e}-005$	0.06906	-0.0004132	-0.7694	0.0005	0.0000	$4.175 \mathrm{e}-005$	0.06906	10
ARM1.1R:0	0.003603	8	-0.5423	-9.1718	0.0035	0.0001	0.003603	8.672	101.8
ARM1.1R:END	0.003578	8.094	-1.923	-9.6831	0.0035	0.0001	0.003578	17.02	101.7
ARM1.1L:0	0.003619	8.018	-0.328	-9.1718	0.0035	0.0001	0.003619	7.346	102
ARM1.1L:END	0.003773	8.293	0.6421	-9.0275	0.0035	0.0002	0.003773	1.371	104.2
ARM2.1R:0	0.002945	6.315	-0.4181	-8.3743	0.0034	0.0001	0.002945	7.091	90.91
ARM2.1R:END	0.00293	6.41	-1.684	-8.8980	0.0034	0.0001	0.00293	15.44	90.9
ARM2.1L: 0	0.00296	6.332	-0.1921	-8.3743	0.0034	0.0001	0.00296	5.556	91.14
ARM2.1L:END	0.0031	6.577	0.6937	-8.2175	0.0034	0.0001	0.0031	-0.4489	93.27
ARM3.1R:0	0.002325	4.807	-0.3128	-7.3132	0.0031	0.0001	0.002325	5.686	80.02
ARM3.1R:END	0.002323	4.9	-1.426	-7.8534	0.0031	0.0001	0.002323	14.03	80.15
ARM3.1L:O	0.002339	4.821	-0.08889	-7.3132	0.0031	0.0001	0.002339	3.942	80.24
ARM3.1L:END	0.002459	5.027	0.6842	-7.1399	0.0031	0.0001	0.002459	-2.102	82.26

Joint Support Reactions for Load Case "EXTREME":

Detailed Steel Pole Usages for Load Case "EXTREME":

Element Label		Joint Label	Joint Position	Rel. Dist. (ft)	$\begin{array}{r} \text { Trans. } \\ \text { Defl. } \\ \text { (in) } \end{array}$	Long. Defl. (in)	Vert. Defl. (in)	Trans. Mom. (Local Mx) (ft-k)	Long. Mom (Local My) (ft-k)	Tors. Mom. (ft-k)	$\begin{aligned} & \text { Axial } \\ & \text { Force } \\ & \text { (kips) } \end{aligned}$	Tran. Shear (kips)	Long. Shear (kips)	$\begin{array}{r} P / A \\ (k s i) \end{array}$	$\begin{aligned} & \text { M/S. } \\ & (k s i) \end{aligned}$	$\begin{aligned} & \text { v/Q. } \\ & \text { (ksi) } \end{aligned}$	$\begin{aligned} & T / R . \\ & (k s i) \end{aligned}$	Res. (ksi)	$\begin{gathered} \text { Max. At } \\ \text { Usage Pt. } \\ \% \end{gathered}$
CLP		CLP	Origin	0.00	121.03	0.05	-7.28	-0.00	-0.00	0.0	-0.04	0.04	-0.00	-0.00	0.00	0.01	0.00	0.01	0.0
CLP	CLP	:TopConn	End	2.00	117.05	0.05	-6.95	0.08	-0.00	0.0	-0.04	0.04	-0.00	-0.00	0.03	0.00	0.00	0.03	0.1
CLP	CLP	:TopConn	Origin	2.00	117.05	0.05	-6.95	0.08	-0.00	-0.0	0.70	8.74	-0.00	0.06	0.00	1.62	0.00	2.81	5.6

CLP	CLP :WVGD1	End	5.00	111.08	0.05	-6.45	26.31	-0.00	-0.0	0.70	8.74	-0.00	0.06	7.33	0.59	0.00	7.47	14.9
CLP	CLP :WVGD1	Origin	5.00	111.08	0.05	-6.45	26.31	-0.00	0.0	0.43	9.12	-0.00	0.04	7.33	0.62	0.00	7.45	14.9
CLP	CLP : BotConn	End	9.00	103.20	0.05	-5.80	62.79	-0.01	0.0	0.43	9.12	-0.00	0.03	15.45	0.58	0.00	15.51	31.0
CLP	CLP : BotConn	Origin	9.00	103.20	0.05	-5.80	62.79	-0.01	0.0	-2.08	5.34	-0.00	-0.17	15.45	0.34	0.00	15.62	31.2
CLP	CLP : ARM 1	End	12.67	96.11	0.04	-5.22	82.41	-0.01	0.0	-2.08	5.34	-0.00	-0.16	18.19	0.32	0.00	18.36	36.7
CLP	CLP : ARM 1	Origin	12.67	96.11	0.04	-5.22	88.93	-0.01	0.0	-3.81	9.45	-0.00	-0.29	19.63	0.57	0.00	19.94	39.9
CLP	CLP :WVGD2	End	15.00	91.68	0.04	-4.87	110.94	-0.02	0.0	-3.81	9.45	-0.00	-0.28	22.93	0.55	0.00	23.23	46.5
CLP	CLP :WVGD2	Origin	15.00	91.68	0.04	-4.87	110.94	-0.02	0.0	-4.26	9.93	-0.00	-0.31	22.93	0.58	0.00	23.27	46.5
CLP	CLP :ARM 2	End	23.67	75.88	0.04	-3.66	197.05	-0.04	0.0	-4.26	9.93	-0.00	-0.28	32.45	0.52	0.00	32.74	65.5
CLP	CLP :ARM 2	Origin	23.67	75.88	0.04	-3.66	203.60	-0.04	0.0	-6.22	14.11	-0.00	-0.41	33.52	0.74	0.00	33.96	67.9
CLP	CLP :WVGD3	End	25.00	73.57	0.03	-3.49	222.36	-0.05	0.0	-6.22	14.11	-0.00	-0.40	35.44	0.72	0.00	35.86	71.7
CLP	CLP : WVGD3	Origin	25.00	73.57	0.03	-3.49	222.36	-0.05	0.0	-6.77	14.60	-0.01	-0.44	35.44	0.75	0.00	35.90	71.8
CLP	CLP :ARM 3	End	34.67	57.77	0.03	-2.41	363.55	-0.10	0.0	-6.77	14.60	-0.01	-0.39	46.36	0.67	0.00	46.77	93.5
CLP	CLP : ARM 3	Origin	34.67	57.77	0.03	-2.41	370.13	-0.10	0.0	-8.90	18.75	-0.01	-0.52	47.20	0.86	0.00	47.74	95.5
CLP	CLP : WVGD4	End	35.00	57.27	0.03	-2.38	376.31	-0.10	0.0	-8.90	18.75	-0.01	-0.51	47.64	0.86	0.00	48.18	96.4
CLP	CLP : WVGD4	Origin	35.00	57.27	0.03	-2.38	376.31	-0.10	0.0	-9.05	18.98	-0.01	-0.52	47.64	0.87	0.00	48.19	96.4
CLP	SpliceT	End	35.17	57.01	0.03	-2.36	379.48	-0.10	0.0	-9.05	18.98	-0.01	-0.52	47.87	0.87	0.00	48.42	96.8
CLP	SpliceT	Origin	35.17	57.01	0.03	-2.36	379.48	-0.10	0.0	-9.30	19.06	-0.01	-0.54	47.87	0.87	0.00	48.43	96.9
CLP	SpliceB	End	38.00	52.79	0.03	-2.10	433.47	-0.12	0.0	-9.30	19.06	-0.01	-0.43	43.54	0.70	0.00	43.99	67.7
CLP	SpliceB	Origin	38.00	52.79	0.03	-2.10	433.47	-0.12	0.0	-9.91	19.32	-0.01	-0.45	43.54	0.70	0.00	44.01	67.7
CLP	CLP :WVGD5	End	45.00	43.07	0.02	-1.53	568.68	-0.18	0.0	-9.91	19.32	-0.01	-0.42	49.36	0.65	0.00	49.80	76.6
CLP	CLP : WVGD5	Origin	45.00	43.07	0.02	-1.53	568.68	-0.17	0.0	-10.73	19.83	-0.01	-0.46	49.36	0.67	0.00	49.83	76.7
CLP	CLP : opgw	End	50.00	36.77	0.02	-1.20	667.83	-0.22	0.0	-10.73	19.83	-0.01	-0.44	52.55	0.64	0.00	53.00	81.5
CLP	CLP : opgw	Origin	50.00	36.77	0.02	-1.20	667.83	-0.22	0.0	-11.49	20.94	-0.01	-0.47	52.55	0.68	0.00	53.03	81.6
CLP	CLP : WVGD 6	End	55.00	31.01	0.02	-0.92	772.50	-0.27	0.0	-11.49	20.94	-0.01	-0.45	55.35	0.64	0.00	55.81	85.9
CLP	CLP :WVGD6	Origin	55.00	31.01	0.02	-0.92	772.50	-0.27	0.0	-12.58	21.56	-0.01	-0.49	55.35	0.66	0.00	55.85	85.9
CLP	CLP :WVGD7	End	65.00	21.07	0.01	-0.51	988.07	-0.38	0.0	-12.58	21.56	-0.01	-0.45	59.44	0.61	0.00	59.89	92.2
CLP	CLP :WVGD7	Origin	65.00	21.07	0.01	-0.51	988.07	-0.38	0.0	-13.79	22.20	-0.01	-0.49	59.44	0.63	0.00	59.94	92.3
CLP	SpliceT	End	71.00	16.15	0.01	-0.34	1121.28	-0.46	0.0	-13.79	22.20	-0.01	-0.47	61.15	0.60	0.00	61.63	97.2
CLP	SpliceT	Origin	71.00	16.15	0.01	-0.34	1121.28	-0.46	0.0	-14.72	22.50	-0.01	-0.50	61.15	0.60	0.00	61.66	97.2
CLP	CLP : WVGD8	End	75.00	13.29	0.01	-0.25	1211.28	-0.52	0.0	-14.72	22.50	-0.01	-0.41	54.33	0.50	0.00	54.75	84.2
CLP	CLP : WVGD8	Origin	75.00	13.29	0.01	-0.25	1211.28	-0.52	0.0	-16.18	23.16	-0.02	-0.45	54.33	0.51	0.00	54.79	84.3
CLP	CLP :WVGD9	End	85.00	7.40	0.00	-0.11	1442.84	-0.69	0.0	-16.18	23.16	-0.02	-0.42	55.56	0.48	0.00	55.99	86.1
CLP	CLP : WVGD9	Origin	85.00	7.40	0.00	-0.11	1442.84	-0.69	0.0	-17.99	24.00	-0.02	-0.47	55.56	0.49	0.00	56.04	86.2
CLP	CLP :WVGD10	End	95.00	3.27	0.00	-0.03	1682.80	-0.88	0.0	-17.99	24.00	-0.02	-0.44	56.24	0.46	0.00	56.68	88.1
CLP	CLP :WVGD10	Origin	95.00	3.27	0.00	-0.03	1682.80	-0.88	0.0	-19.43	24.69	-0.02	-0.47	56.24	0.47	0.00	56.72	88.2
CLP	SpliceT	End	99.92	1.87	0.00	-0.01	1804.18	-0.98	0.0	-19.43	24.69	-0.02	-0.45	56.44	0.46	0.00	56.90	89.9
CLP	SpliceT	Origin	99.92	1.87	0.00	-0.01	1804.18	-0.98	0.0	-20.69	25.03	-0.02	-0.48	56.44	0.46	0.00	56.93	90.0
CLP	CLP :WVGD11	End	105.00	0.83	0.00	-0.00	1931.40	-1.10	0.0	-20.69	25.03	-0.02	-0.48	59.03	0.46	0.00	59.52	94.6
CLP	CLP :WVGD11	Origin	105.00	0.83	0.00	-0.00	1931.40	-1.10	0.0	-22.60	25.75	-0.03	-0.52	59.03	0.47	0.00	59.56	94.7
CLP	CLP : 9	End	115.00	0.00	0.00	0.00	2188.86	-1.35	0.0	-22.60	25.75	-0.03	-0.49	58.94	0.44	0.00	59.44	97.8

Detailed Tubular Davit Arm Usages for Load Case "EXTREME":

Element Label	Joint Label	Joint Position	Rel. (ft)	$\begin{array}{r} \text { Trans. } \\ \text { Defl. } \\ \text { (in) } \end{array}$	Long. Defl. (in)	Vert. Defl. (in)	Vert. Mom. (ft-k)		Tors. Mom. $(f t-k)$	Axial Force (kips)	Vert. Shear (kips)	Horz. Shear (kips)	$\begin{array}{r} \text { P/A } \\ \text { (ksi) } \end{array}$	$\begin{aligned} & \text { M/S. } \\ & \text { (ksi) } \end{aligned}$	$\begin{aligned} & \text { v/Q. } \\ & (k s i) \end{aligned}$	$\begin{aligned} & T / R . \\ & (k s i) \end{aligned}$	Res. (ksi)	Max. Usage	$\begin{array}{r} \text { At } \\ \text { Pt. } \end{array}$
ARM1.1R	ARM1.1R:0	Origin	0.00	96.01	0.04	-6.51	-8.68	-0.00	0.0	1.85	1.04	0.00	0.39	11.90	0.00	0.00	12.29	24.6	1
ARM1.1R	ARM1.1R:END	End	8.34	97.12	0.04	-23.08	0.00	0.00	0.0	1.85	1.04	0.00	0.90	0.00	1.06	0.00	2.04	4.1	3
ARM1.1L	ARM1.1L: 0	Origin	0.00	96.21	0.04	-3.94	-2.19	0.00	0.0	-2.08	0.34	-0.00	-0.50	3.99	0.00	0.00	4.49	9.0	1
ARM1.1L	ARM1.1L:END	End	6.37	99.52	0.05	7.70	-0.00	0.00	0.0	-2.08	0.34	-0.00	-1.01	0.00	0.35	0.00	1.18	2.4	3
ARM2.1R	ARM2.1R:O	Origin	0.00	75.78	0.04	-5.02	-8.90	-0.00	0.0	1.83	1.07	0.00	0.38	12.19	0.00	0.00	12.57	25.1	1
ARM2.1R	ARM2.1R:END	End	8.34	76.92	0.04	-20.21	0.00	0.00	0.0	1.83	1.07	0.00	0.89	0.00	1.08	0.00	2.08	4.2	3
ARM2.1L	ARM2.1L: 0	Origin	0.00	75.98	0.04	-2.31	-2.38	0.00	0.0	-2.08	0.37	-0.00	-0.50	4.33	0.00	0.00	4.83	9.7	1

ARM2.1L	ARM2.1L:END	End	6.37	78.92	0.04	8.32	-0.00	0.00	0.0	-2.08	0.37	-0.00	-1.01	0.00	0.38	0.00	1.21	2.4	3
ARM3.1R	ARM3.1R:O	Origin	0.00	57.68	0.03	-3.75	-9.17	-0.00	0.0	1.81	1.10	0.00	0.38	12.57	0.00	0.00	12.95	25.9	1
ARM3.1R	ARM3.1R:END	End	8.34	58.80	0.03	-17.11	0.00	0.00	0.0	1.81	1.10	0.00	0.88	0.00	1.12	0.00	2.13	4.3	3
ARM3.1L	ARM3.1L:O	Origin	0.00	57.85	0.03	-1.07	-2.64	0.00	0.0	-2.07	0.41	-0.00	-0.50	4.79	0.00	0.00	5.29	10.6	1
ARM3.1L	ARM3.1L: END	End	6.37	60.33	0.03	8.21	-0.00	0.00	0.0	-2.07	0.41	-0.00	-1.01	0.00	0.42	0.00	1.24	2.5	3

Summary of Clamp Capacities and Usages for Load Case "EXTREME":

Clamp Label	Force (kips)	Input Holding Capacity (kips)	Factored Holding Capacity (kips)	Usage \%
C1	2.096	30.00	30.00	6.99
C2	2.096	30.00	30.00	6.99
C3	2.096	30.00	30.00	6.99
C4	2.096	30.00	30.00	6.99
C5	2.096	30.00	30.00	6.99
C6	2.096	30.00	30.00	6.99
C7	0.253	30.00	30.00	0.84
C8	0.253	30.00	30.00	0.84
C9	0.253	30.00	30.00	0.84
C10	0.253	30.00	30.00	0.84
C11	0.253	30.00	30.00	0.84
C12	0.253	30.00	30.00	0.84
C13	0.253	30.00	30.00	0.84
C14	0.253	30.00	30.00	0.84
C15	0.253	30.00	30.00	0.84
C16	0.253	30.00	30.00	0.84
C17	8.638	30.00	30.00	28.79
C18	4.585	30.00	30.00	15.28
C19	0.253	30.00	30.00	0.84
C20	0.863	30.00	30.00	2.88

Summary of Steel Pole Usages:

Steel Pole Maximum Load Case Label Usage $\%$	Segment Number	Weight (lbs)		
CLP	97.81	EXTREME	22	13365.5

Base Plate Results by Bend Line:

Pole Label	Load Case	Bend Line \#	Start (ft)	Start (ft)	$\begin{array}{r} \text { End } \\ \mathbf{x} \\ (\mathrm{ft}) \end{array}$	$\begin{array}{r} \text { End } \\ \mathbf{Y} \\ (\mathrm{ft}) \end{array}$	Length (in)	Bending Stress (ksi)	Bolt Mom. Sum $(f t-k)$	\# Bolts Acting	Bolt Max Load (kips)	Min Plate Thickness (in)	Actual Thickness (in)	Usage \%
CLP	NESC HEAVY	1	0.645	1.558	-0.645	1.558	15.491	39.164	63.726	3	79.793	2.321	2.750	71.21
CLP	NESC HEAVY	2	-0.645	1.558	-1.558	0.645	15.492	34.812	56.645	1.5	78.693	2.188	2.750	63.30
CLP	NESC HEAVY	3	-1.558	-0.645	-0.645	-1.558	15.492	30.768	50.065	1.5	-69.758	2.057	2.750	55.94
CLP	NESC HEAVY	4	-0.645	-1.558	0.645	-1.558	15.491	35.355	57.528	3	-72.100	2.205	2.750	64.28
CLP	NESC HEAVY	5	0.645	-1.558	1.558	-0.645	15.492	31.407	51.104	1.5	-71.001	2.078	2.750	57.10
CLP	NESC HEAVY	6	1.558	0.645	0.645	1.558	15.492	34.174	55.606	1.5	77.451	2.168	2.750	62.13
CLP	EXTREME	1	0.645	1.558	-0.645	1.558	15.491	51.393	83.623	3	104.563	2.658	2.750	93.44
CLP	EXTREME	2	-0.645	1.558	-1.558	0.645	15.492	45.321	73.744	1.5	102.389	2.496	2.750	82.40
CLP	EXTREME	3	-1.558	-0.645	-0.645	-1.558	15.492	43.425	70.660	1.5	-98.157	2.444	2.750	78.95
CLP	EXTREME	4	-0.645	-1.558	0.645	-1.558	15.491	49.450	80.462	3	-100.640	2.608	2.750	89.91
CLP	EXTREME	5	0.645	-1.558	1.558	-0.645	15.492	43.584	70.918	1.5	-98.466	2.448	2.750	79.24
CLP	EXTREME	6	1.558	0.645	0.645	1.558	15.492	45.162	73.486	1.5	102.081	2.492	2.750	82.11

Summary of Tubular Davit Usages:

Tubular Davit Label	Maximum Usage	Load Case	Segment Number	Weight (lbs)
ARM1.1R	55.24	NESC HEAVY	1	97.0
ARM1.1L	40.79	NESC HEAVY	1	67.4
ARM2.1R	55.52	NESC HEAVY	1	97.0
ARM2.1L	41.22	NESC HEAVY	1	67.4
ARM3.1R	55.96	NESC HEAVY	1	97.0
ARM3.1L	41.88	NESC HEAVY	1	67.4

*** Maximum Stress Summary for Each Load Case

Summary of Maximum Usages by Load Case:

| Load Case Maximum | Element
 Usage $\%$ | Element |
| :---: | :---: | :---: | ---: |
| Label | Type | |

Summary of Steel Pole Usages by Load Case:
Load Case Maximum Steel Pole Segment

Usage \% Label Number

NESC HEAVY	78.43	CLP	17
EXTREME	97.81	CLP	22

Summary of Base Plate Usages by Load Case:

Load Case	Pole Label	Bend Line \#	Length (in)	Vertical Load (kips)	Moment (ft-k)	Moment $(f t-k)$	Bending Stress (ksi)	Bolt Moment Sum $(f t-k)$	\# Bolts Acting On Bend Line	Max Bolt Load For Bend Line (kips)	Minimum Plate Thickness (in)	Usage
NESC HEAVY	CLP	1	15.491	46.156	1617.507	-5.435	39.164	63.726	3	79.793	2.321	71.21
EXTREME	CLP	1	15.491	23.542	2188.864	-1.349	51.393	83.623	3	104.563	2.658	93.44

Summary of Tubular Davit Usages by Load Case:
Load Case Maximum

Usage $\%$$\quad$\begin{tabular}{ccr}

Tubular Davit \& | Segment |
| ---: |
| Label |

Number
\end{tabular}

Summary of Insulator Usages:

Insulator Label	Insulator Type		
Maximum			
Usage		Load Case	Weight
---:			
(lbs)			

Loads At Insulator Attachments For All Load Cases:

	Load Case	Insulator Label	Insulator Type	Structure Attach Label	Structure Attach Load x (kips)	Structure Attach Load Y (kips)	Structure Attach Load Z (kips)	Structure Attach Load Res. (kips)
NESC	HEAVY	C1	Clamp	ARM1.1R:END	0.000	1.685	2.279	2.834
NESC	HEAVY	C2	Clamp	ARM1.1L:END	0.000	1.685	2.279	2.834
NESC	HEAVY	C3	Clamp	ARM2.1R:END	0.000	1.685	2.279	2.834

NESC HEAVY	C4	Clamp	ARM2.1L:END	0.000	1.685	2.279	2.834
NESC HEAVY	C5	Clamp	ARM3.1R:END	0.000	1.685	2.279	2.834
NESC HEAVY	C6	Clamp	ARM3.1L:END	0.000	1.685	2.279	2.834
NESC HEAVY	C7	Clamp	CLP :WVGD1	0.000	0.075	0.688	0.692
NESC HEAVY	C8	Clamp	CLP :WVGD2	0.000	0.075	0.688	0.692
NESC HEAVY	C9	Clamp	CLP :WVGD3	0.000	0.075	0.688	0.692
NESC HEAVY	C10	Clamp	CLP :WVGD4	0.000	0.075	0.688	0.692
NESC HEAVY	C11	Clamp	CLP :WVGD5	0.000	0.075	0.688	0.692
NESC HEAVY	C12	Clamp	CLP :WVGD6	0.000	0.075	0.688	0.692
NESC HEAVY	C13	Clamp	CLP :WVGD7	0.000	0.075	0.688	0.692
NESC HEAVY	C14	Clamp	CLP :WVGD8	0.000	0.075	0.688	0.692
NESC HEAVY	C15	Clamp	CLP :WVGD9	0.000	0.075	0.688	0.692
NESC HEAVY	C16	Clamp	CLP : WVGD10	0.000	0.075	0.688	0.692
NESC HEAVY	C17	Clamp	CLP : TopConn	0.000	2.926	1.395	3.242
NESC HEAVY	C18	Clamp	CLP : BotConn	0.000	-1.027	3.514	3.661
NESC HEAVY	C19	Clamp	CLP :WVGD11	0.000	0.075	0.688	0.692
NESC HEAVY	C20	Clamp	CLP : opgw	0.000	0.901	0.826	1.222
EXTREME	C1	Clamp	ARM1.1R:END	0.000	1.830	1.021	2.096
EXTREME	C2	Clamp	ARM1.1L:END	0.000	1.830	1.021	2.096
EXTREME	C3	Clamp	ARM2.1R: END	0.000	1.830	1.021	2.096
EXTREME	C4	Clamp	ARM2.1L:END	0.000	1.830	1.021	2.096
EXTREME	C5	Clamp	ARM3.1R:END	0.000	1.830	1.021	2.096
EXTREME	C6	Clamp	ARM3.1L:END	0.000	1.830	1.021	2.096
EXTREME	C7	Clamp	CLP :WVGD1	0.000	0.198	0.158	0.253
EXTREME	C8	Clamp	CLP :WVGD2	0.000	0.198	0.158	0.253
EXTREME	C9	Clamp	CLP :WVGD3	0.000	0.198	0.158	0.253
EXTREME	C10	Clamp	CLP : WVGD4	0.000	0.198	0.158	0.253
EXTREME	C11	Clamp	CLP : WVGD5	0.000	0.198	0.158	0.253
EXTREME	C12	Clamp	CLP :WVGD6	0.000	0.198	0.158	0.253
EXTREME	C13	Clamp	CLP :WVGD7	0.000	0.198	0.158	0.253
EXTREME	C14	Clamp	CLP :WVGD8	0.000	0.198	0.158	0.253
EXTREME	C15	Clamp	CLP :WVGD9	0.000	0.198	0.158	0.253
EXTREME	C16	Clamp	CLP : WVGD10	0.000	0.198	0.158	0.253
EXTREME	C17	Clamp	CLP : TopConn	0.000	8.617	0.601	8.638
EXTREME	C18	Clamp	CLP : BotConn	0.000	-4.277	1.653	4.585
EXTREME	C19	Clamp	CLP : WVGD11	0.000	0.198	0.158	0.253
EXTREME	C20	Clamp	CLP : opgw	0.000	0.828	0.244	0.863

Overturning Moments For User Input Concentrated Loads:
Moments are static equivalents based on central axis of 0,0 (i.e. a single pole).

Load Case	Total Tran. Load (kips)	Total Long. Load (kips)	Total Vert. Load (kips)	Transverse Overturning Moment (ft-k)	Longitudinal Overturning Moment (ft-k)	Torsional Moment (ft-k)
NESC HEAVY	13.735	0.000	26.977	1279.499	-0.000	-0.000
EXTREME	18.326	0.000	10.362	1727.513	-0.000	-0.000

*** Weight of structure (lbs):
Weight of Tubular Davit Arms
Weight of Steel Poles:
493.2
13365.5
*** End of Report

$=\mathrm{NT}=\mathrm{K}$ engineering	Subject:	Anchor Bolt Analysis Pole \#1068
	Location:	Darien, CT
	Rev. 6: 12/14/18	Prepared by: T.J.L. Checked by: C.A.G. Job No. 18058.58

Anchor Bolt Analysis:

Input Data:

BoltForce

Maximum Tension Force per Bolt $=$
Maximum Shear Force at Base $=$

Anchor Bolt Data:
UseASTMA432 Grade 60
Number of Anc hor Bolts $=$
Bolt "Column" Distance $=$
Bolt Ulimate Strength $=$
Bolt Yeild Strength $=$
Bolt Modulus $=$

Diameter ofAnchor Bol $\mathrm{s}=$
Threads per Inch =
$\begin{array}{ll}\mathrm{T}_{\text {Max }}:=105 \cdot \mathrm{kips} & \text { (User Input from PLS-Pole) } \\ \mathrm{V}_{\text {base }}:=26.1 \cdot \mathrm{kips} & \text { (User Input from PLS-Pole) }\end{array}$ (User Inputrom PLSPole)
$N:=12$
$\mathrm{I}:=3.0 \cdot \mathrm{in}$
$\mathrm{F}_{\mathrm{u}}:=90 \cdot \mathrm{ksi}$
$F_{y}:=60 \cdot \mathrm{ksi}$
$\mathrm{E}:=29000 \cdot \mathrm{ksi}$
$D:=2.25 \cdot \mathrm{in}$
$n:=4.5$
(User Input)

Anchor Bolt Analysis:

StressArea ofBolt =

Maximum Shear Force per Bolt =

Shear Stress per Bolt =

Tensile Stress Permitted =

Shear Stress Permitted =

PermittedAxial Tensile Stress in Conjuction with Shear =

Bolt Tension \% of Capacity =

Condition1 =
$\mathrm{A}_{\mathrm{S}}:=\frac{\pi}{4} \cdot\left(\mathrm{D}-\frac{0.9743 \cdot \mathrm{in}}{\mathrm{n}}\right)^{2}=3.248 \cdot \mathrm{in}^{2}$
$\mathrm{V}_{\mathrm{Max}}:=\frac{\mathrm{V}_{\text {base }}}{\mathrm{N}}=2.2 \times 10^{3} \mathrm{lbf}$
$f_{v}:=\frac{V_{M a x}}{A_{S}}=669.7 \mathrm{psi}$
$F_{t}:=\min \left(F_{y}, 0.83 \cdot F_{u}\right)=60 \cdot \mathrm{ksi}$
$\mathrm{F}_{\mathrm{V}}:=0.65 \mathrm{~F}_{\mathrm{y}}=39 \cdot \mathrm{ksi}$
$\mathrm{F}_{\mathrm{tv}}:=\mathrm{F}_{\mathrm{t}} \sqrt{1-\left(\frac{\mathrm{f}_{\mathrm{v}}}{\mathrm{F}_{\mathrm{v}}}\right)^{2}}=59.99 \cdot \mathrm{ksi}$
$\frac{\mathrm{T}_{\text {Max }}}{\mathrm{F}_{\mathrm{tv} \cdot} \cdot \mathrm{A}_{\mathrm{s}}}=53.89 \cdot \%$
Condition1 $:=$ if $\left(\frac{T_{\text {Max }}}{\mathrm{F}_{\mathrm{tv}} \cdot \mathrm{A}_{\mathrm{s}}} \leq 1.00\right.$, "OK" , "Overstressed" $)$
Condition1 = "OK"

Exhibit E

EBI Consulting
environmental | engineering | due diligence

March 14, 2019
T-Mobile USA
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 06002

Emissions Analysis for Site: CT11290C - Eversource Structure \# 1068

EBI Consulting was directed to analyze the proposed T-Mobile facility located at $\mathbf{3}$ Mechanic Street, Darien, CT, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(\mathrm{~b})(1)-(\mathrm{b})(3)$, to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately $400 \mu \mathrm{~W} / \mathrm{cm}^{2}$ and $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$ respectively. The general population exposure limit for the $1900 \mathrm{MHz}(\mathrm{PCS})$ and 2100 MHz (AWS) frequency bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

EBI Consulting
environmental | engineering | due diligence

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at $\mathbf{3}$ Mechanic Street, Darien, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was focused at the base of the tower. For this report the sample point is the top of a 6 -foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 1 GSM channels (PCS Band - 1900 MHz) was considered for each sector of the proposed installation. These Channels have a transmit power of 15 Watts per Channel.
2) 1 UMTS channel (AWS Band -2100 MHz) was considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
3) 2 LTE channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
4) 2 LTE channels (AWS Band - 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
5) 2 LTE channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
6) 2 LTE channels (700 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.

EBI Consulting
environmental | engineering | due diligence
7) Cable losses were factored in the calculations for this site. Since all of the proposed radios are ground mounted the following cable loss values were used. For each ground mounted 600 MHz radio there was 1.03 dB of cable loss calculated into the system gains / losses for this site. For each ground mounted 700 MHz radio there was 1.12 dB of cable loss calculated into the system gains / losses for this site. For each ground mounted 1900 MHz (PCS) radio there was 1.95 dB of cable loss calculated into the system gains / losses for this site. For each ground mounted 2100 MHz (AWS) radio there was 2.06 dB of cable loss calculated into the system gains / losses for this site. These values were calculated based upon the manufacturers specifications for 160 feet of $1-1 / 4$ " coax
8) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
9) For the following calculations the sample point was the top of a 6 -foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
10) The antennas used in this modeling are the RFS APXVAARR18_43-U-NA20 for 600 MHz , $700 \mathrm{MHz}, 1900 \mathrm{MHz}$ (PCS) and 2100 MHz (AWS) channels. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
11) The antenna mounting height centerline of the proposed antennas is $\mathbf{1 2 4}$ feet above ground level (AGL).
12) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
13) All calculations were done with respect to uncontrolled / general population threshold limits.

EBI Consulting

environmental | engineering | due diligence

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	1	Antenna \#:	1	Antenna \#:	1
Make / Model:	RFS APXVAARR18_43-U- NA20	Make / Model:	RFS APXVAARR18_43- U-NA20 2	Make / Model:	RFS APXVAARR18_43-U- NA20
Gain:	$\begin{gathered} \hline 12.85 / 13.55 / 15.85 / \\ 17.15 \mathrm{dBd} \\ \hline \end{gathered}$	Gain:	$\begin{gathered} \hline 12.85 / 13.55 / 15.85 / \\ 17.15 \mathrm{dBd} \\ \hline \end{gathered}$	Gain:	$\begin{gathered} \hline 12.85 / 13.55 / 15.85 / \\ 17.15 \mathrm{dBd} \end{gathered}$
Height (AGL):	124 feet	Height (AGL):	124 feet	Height (AGL):	124 feet
Frequency Bands	$\begin{gathered} \hline 600 \mathrm{MHz} / 700 \mathrm{MHz} / \\ 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ 2100 \mathrm{MHz}(\mathrm{AWS}) \\ \hline \end{gathered}$	Frequency Bands	$\begin{gathered} \hline 600 \mathrm{MHz} / 700 \mathrm{MHz} / \\ 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ 2100 \mathrm{MHz}(\mathrm{AWS}) \\ \hline \end{gathered}$	Frequency Bands	$\begin{gathered} \hline 600 \mathrm{MHz} / 700 \mathrm{MHz} / \\ 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ 2100 \mathrm{MHz} \text { (AWS) } \\ \hline \end{gathered}$
Channel Count	10	Channel Count	10	Channel Count	10
Total TX Power(W):	375	Total TX Power(W):	375	Total TX Power(W):	375
ERP (W):	9,413.94	ERP (W):	9,413.94	ERP (W):	9,413.94
Antenna A1 MPE\%	3.11	Antenna B1 MPE $\%$	3.11	Antenna C1 MPE $\%$	3.11

Site Composite MPE\%	
Carrier	MPE\%
T-Mobile (Per Sector Max)	$\mathbf{3 . 1 1 ~ \%}$
No Additional Carriers	NA
Site Total MPE \%:	$\mathbf{3 . 1 1} \%$

T-Mobile Sector A Total:	3.11%
T-Mobile Sector B Total:	3.11%
T-Mobile Sector C Total:	3.11%
Site Total:	
3.11%	

T-Mobile Maximum MPE Power Values (Per Sector)

T-Mobile_Frequency Band / Technology (Per Sector)	$\#$ Channels	Watts ERP $($ Per Channel)	Height $($ feet $)$	Total Power Density $\left(\mu W / \mathbf{c m}^{2}\right)$	Frequency $(\mathbf{M H z})$	Allowable MPE $\left(\mu W / \mathbf{c m}^{2}\right)$
T-Mobile PCS - 1900 MHz GSM	1	368.21	124	0.95	PCS -1900 MHz	1000.00
C-Mobile PCS - 1900 MHz LTE	2	981.88	124	5.07	PCS -1900 MHz	1000.00
MPE						

EBI Consulting
environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (\%)
Sector A:	3.11%
Sector B:	3.11%
Sector C:	3.11%
T-Mobile Maximum	3.11%
MPE (Per Sector):	
Site Total:	3.11%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{3 . 1 1 \%}$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit F

August 15, 2019
Mr. Mark Richard
T-Mobile
35 Griffin Rd. South
Bloomfield, CT 06002
RE: T-Mobile Antenna Site CT-11290C, Mechanic St, Darien CT, Eversource Structure 1068
Dear Mr. Richard:
Based on our reviews of the site drawings, the structural analysis and foundation review provided by Centek Engineering, along with a third party review performed by Paul J. Ford and Company, we accept the proposed modification.

Please work with Christopher Gelinas of Eversource Real Estate to process the site lease amendment. Please do not hesitate to contact us with questions or concerns. Christopher can be contacted at 860-6652008, and I can be contacted at 860-728-4503.

Sincerely,

Ref: 18058.58-CT11290C Structural Analysis Rev6 18.12.14
18058.58 - CT11290C CD Rev1 19.05.13 (S\&S)

Exhibit G

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage $®$, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{\text {TM }}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship ${ }^{\circledR}$ Label Record

USPS TRACKING \# :9405503699300469409955				
		540432300	Priority Mail® Postage:	\$15.50
Print Date:		08/10/2021		
Ship Date: 08/10/2021				
Delivery Date: 08/13/2021				
From:	DEBORAH CHASE Ref\# 290-L700NORTHEAST SITE SOLUTIONS			
	420 MAIN ST			
	STE 1			
	STURBRIDGE MA 01566-1359			
то:	LISA A MATTHEWS			
	CT SITING COUNCIL			
	10 FRANKLIN SQ			
	NEW BRITAIN CT 06051-2655			

Exhibit H

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage $®$, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{\text {TM }}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship ${ }^{\circledR}$ Label Record

USPS TRACKING \# : 9405503699300459120266				
		539575756	Priority Mail® Postage:	\$7.95
Print Date:		07/29/2021		\$7.95
Expected Delivery Date:		08/01/2021		
		08/05/2021		
From:	DEB CHASENORTHEAST SITE SOLUTIONS $290-L 700$			
	NORTHEAST SITE SOLUTIONS			
	STE 1			
	STURBRIDGE MA 01566-1359			
To:	JAYME J StEVENSON			
	FIRST SELECTMAN-DARIEN			
	2 RENSHAW RD			
	DARIEN CT 06820-5344			

Status

Your item was delivered in or at the mailbox at $8: 53 \mathrm{am}$ on August 7, 2021 in DARIEN, CT 06820.

USPS Tracking Plus ${ }^{T M}$ Available \vee

Text \& Email Updates

Tracking History

© Delivered, In/At Mailbox

August 7, 2021 at 8:53 am DARIEN, CT 06820

Get Updates

Text \& Email Updates	\vee
Tracking History	\vee
USPS Tracking Plus ${ }^{\text {TM }}$	\vee
Product Information	\vee

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage $®$, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{\text {TM }}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship ${ }^{\circledR}$ Label Record

USPS TRACKING \# : 9405503699300459120235				
Trans. \#:		539575756	Priority Mail® Postage:	\$7.95
Print Date:		07/29/2021	Total:	\$7.95
Ship Date:		08/01/2021		
Delivery Date:		08/05/2021		
From:	DEB CHASE ${ }^{\text {N }}$ Ref\#: 290-L700			
	NORTHEAST SITE SOLUTIONS	MAIN ST		
	STE 1			
	STURBRIDGE MA 01566-1359			
To:	CHRIS GELINAS			
	EVERSOURCE			
	107 SELDEN ST			
	BERLIN CT 06037-1616			

Your item was delivered in or at the mailbox at 10:41 am on
August 9,2021 in BERLIN, CT 06037 .
USPS Tracking Plus ${ }^{\text {Tm }}$ Available \vee

USPS Tracking Plus ${ }^{\text {TM }}$ Available \vee

Text \& Email Updates

Tracking History

USPS Tracking Plus ${ }^{\text {TM }}$

Product Information

See Less

	9405503699300459120259				$\begin{array}{\|l} \hline \stackrel{?}{\rho} \\ \stackrel{1}{\omega} \\ \hline \end{array}$					

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage $®$, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{\text {TM }}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship ${ }^{\circledR}$ Label Record

USPS TRACKING \# : 9405503699300459120259				
Trans. \#:		539575756	Priority Mail® Postage:	\$7.95
Print Date:		07/29/2021	Total:	\$7.95
Ship Date:		08/01/2021		
Delivery Date:		08/05/2021		
From:	DEB CHASE Ref\#: 290-L700			
				NORTHEAST SITE SOLUTIONS
	420 MAIN ST			
	STE 1			
	STURBRIDGE MA 01566-1359			
	STATE OF CT DEPT. OF TRANSPORTATION (DOT)			
	NEWINGTON CT 06111-4113			

Your item was picked up at a postal facility at 8:34 am on August 7, 2021 in NEWINGTON, CT 06131.

USPS Tracking Plus ${ }^{T M}$ Available \checkmark

Status

© Delivered, Individual Picked Up at Postal Facility

August 7, 2021 at 8:34 am
NEWINGTON, CT 06131

Get Updates V

Text \& Email Updates

Tracking History

USPS Tracking Plus ${ }^{\text {TM }}$

Product Information

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT РНOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage $®$, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{\text {TM }}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING \# : 9405503699300459120273				
		539575756	Priority Mail® Postage:	\$7.95
Print Date:Ship Date:		07/29/2021		
		08/01/2021		
Expected Delivery Date:		08/05/2021		
From:	DEB CHASE			Ref\#: 290-L700
	NORTHEAST SITE SOLUTIONS			
	420 MAIN ST			
	STE 1			
	STURBRIDGE MA 01566-1359			
	KATHLEEN A CLARK-BUCH			
	TOWN PLANNER			
	2 RENSHAW RD			
	RM 202			
	DARIEN CT 06820-5344			

Your item was delivered in or at the mailbox at 8:53 am on August 7, 2021 in DARIEN, CT 06820.	Status	
	(Delivered, In/At Mailbox	
	August 7, 2021 at $8: 53$ am DARIEN, CT 06820	
USPS Tracking Plus ${ }^{\text {Tm }}$ Available \vee		
	Get Updates \checkmark	
1	1	
		Delivered
Text \& Email Updates		\checkmark
Tracking History		\checkmark
USPS Tracking Plus ${ }^{\text {TM }}$		\checkmark
Product Information		\checkmark

See Less へ

[^0]: (C) copyright 1999 by ARCNESis Architects, fac.

