

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

May 23, 2022

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application

126 Ledge Road, Darien, CT 06820

Latitude: 41.072441 Longitude: -73.478150 Site #: 806352 Crown Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 126 Ledge Road, Darien, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 MHz 5G antennas and six (6) RRUs, at the 76-foot level of the existing 117-foot monopole tower, one (1) Fiber cable will also be installed. Dish Wireless LLC equipment cabinets will be placed on a proposed 3'x 3' concrete pad within the existing compound. Included are plans by Fullerton, dated December 16, 2021, Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated June 28, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was approved by the Connecticut Siting Council, Docket No. 155 on December 30, 1992. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Monica McNally, First Selectman and Jeremy Ginsberg, Director of Land Use for the Town of Darien as well as the tower owner (Crown Castle) and property owner (Town of Darien).

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

- 1. The proposed modification will not result in an increase in the height of the existing structure. The top of the existing tower is 117-feet and the Dish Wireless LLC antennas will be located at a center line height of 76-feet.
- 2. The proposed modifications will not result in an increase of the site boundary as depicted on the attached site plan.

- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.
- 4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. The combined site operations will result in a total power density of 60.86% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully submits that the shared use of this facility satisfies these criteria.

- A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.
- B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this monopole tower in Darien. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.
- C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 76-foot level of the existing 117-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
- D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.
- E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Darien.

Sincerely,

Denise Sabo

Denise Sabo

Mobile: 203-435-3640 Fax: 413-521-0558

Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments

Cc: Monica McNally, First Selectman & Property Owner Darien Town Hall 2 Renshaw Road Darien, CT 06820

Jeremy Ginsberg, Town Planner Darien Town Hall 2 Renshaw Road Darien, CT 06820

Crown Castle, Tower Owner

Exhibit A

Original Facility Approval

DOCKET NO. 155 - An application of Metro Mobile CTS of Fairfield County, Inc., for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance, and operation of a cellular telephone telecommunications tower, antennas, associated equipment, and building on a 17-acre parcel of land used and owned by the Town of Darien as the Town waste transfer station off Ledge Road, with an alternative site on a 1 acre parcel owned by the Noroton Heights Fire Department, Inc., located immediately adjacent to the Noroton Heights Fire Department Building at 209 Noroton Avenue in the Town of Darien, Connecticut.

Connecticut

Siting

Council

December 30, 1992

DECISION AND ORDER

Pursuant to the foregoing Findings of Fact, and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a cellular telecommunications tower and equipment building at the proposed Darien, Connecticut, prime site including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application and therefore directs that a Certificate of Environmental Compatibility and Public Need as provided by section 16-50k of the Connecticut General Statutes (CGS), be issued to Metro Mobile CTS of Fairfield County, Inc. (Metro Mobile), for the construction, operation, and maintenance of a cellular telecommunications tower, associated equipment, and building within property owned by the Town of Darien located on Ledge Road, Darien, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

The self-supporting monopole tower shall be no taller than necessary to provide the proposed communications service and the tower shall not exceed a total height of 113 feet above ground level (AGL), with antennas and appurtenances.

- 2. The Certificate holder shall prepare a Development and Management (D&M) plan for this site in compliance with sections 16-50j-75 through 16-50j-77 of the Regulations of State Agencies. The D&M plan shall include detailed plans of the tower, tower foundation, equipment building, access road including all upgrades, utility connection, security fence, and detailed plans for drainage, erosion, and sedimentation controls consistent with the Connecticut Guidelines for Soil Erosion and Sedimentation Control. In addition, the D&M plan shall include detailed landscaping plans for the facility site, with options to provide landscaping on the Town property boundary north of the site and on the Middlesex Common Condominium property subject to their approval.
- 3. The Certificate Holder shall comply with any existing and future radio frequency (RF) standard promulgated by State or federal regulatory agencies. Upon the establishment of any new governmental RF standards, the facility granted herein shall be brought into compliance with such standards.
- 4. The Certificate Holder shall provide the Council a recalculated report of electromagnetic radio frequency power density if and when circumstances in operation cause a change in power density above the levels originally calculated and provided in the application.
- 5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 6. If the facility does not initially provide, or permanently ceases to provide cellular or other services following completion of construction, this Decision and Order shall be void, and the Certificate holder shall dismantle the tower and remove all associated equipment or reapplication for any continued or new use shall be made to the Council before any such use is made.
- 7. Unless otherwise approved by the Council, this Decision and Order shall be void if all construction authorized herein is not completed within three years of the effective date of this Decision and Order or within three years after all appeals to this Decision and Order have been resolved.

Docket No. 155 Decision & Order Page 3

Pursuant to CGS section 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in the <u>Norwalk Hour</u>, <u>Stamford Advocate</u>, and <u>Darien</u> News-Review.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with section 16-50j-17 of the Regulations of State Agencies.

The parties and intervenors to this proceeding are:

APPLICANT

Metro Mobile CTS of Fairfield County, Inc.

ITS REPRESENTATIVES

Metro Mobile CTS of
Fairfield County, Inc.
20 Alexander Drive
Wallingford, CT 06492
Attn: David S. Malko, P.E.
Manager, Engineering and
Regulatory Services

Robinson & Cole
One Commercial Plaza
Hartford, CT 06103-3597
Attn: Earl W. Phillips, Jr., Esq.
Charles R. Wolfe, Esq.
Henry H. Sprague, III, Esq.

INTERVENOR

The Springwich Cellular Limited Partnership

PARTY

Middlesex Common Condominium Association, Inc.

INTERVENOR

Bruce Fletcher 236 Noroton Avenue Darien, Connecticut 06820

FOC 6689E ITS REPRESENTATIVE

Peter J. Tyrrell Senior Attorney SNET Cellular, Inc. 227 Church Street Room 1021 New Haven, CT 06506

ITS REPRESENTATIVE

Rebecca Oldfield Smith 53 Hale Lane Darien, Connecticut 06820

Exhibit B

Property Card

Profile

Parcel: 29014 Land Use Code: MUNICIPAL

Alternate ID: 39 20&21

 Address:
 126 LEDGE ROAD
 NBHD:
 1032

 Owner:
 TOWN OF DARIEN
 Land Acres:
 20.4

PUBLIC WORKS GARAGE

Mailing Address: C/O DPW

2 RENSHAW ROAD DARIEN CT 06820

Value Summary:

 Appraised Land:
 7,330,400
 Assessed Land:
 5,131,280

 Appraised Building:
 4,908,900
 Assessed Building:
 3,436,230

 Appraised Total:
 12,239,300
 Assessed Total:
 8,567,510

Primary Residential Card:

Card: Half Baths: Fireplace Prefab:
Stories: HT/AC: Fireplace OP/ST: /
Use: Fuel: Basement Gar.:

Type: System: Grade:
Year Built: Attic: Cond (CDU):
Year Remodeled: Basement: % Complete:
Total Rooms: RecRm-Not in Liv SF: Family Room:
Bedrooms: Finsh Bsmt-In Liv SF: Ext. Material:

Full Baths: Square Feet:

Commercial Card:

Year Built: 1980 Stories: 332 - AUTO SERVICE

 Eff. Yr. Built:
 2010
 Gross Flr. Area:
 39102

 Units:
 1
 Grade:
 A

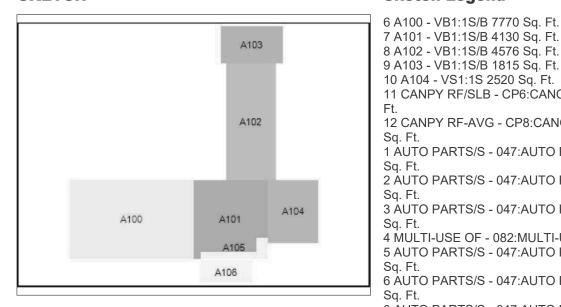
Land:

ClassificationType:AcresSFPRIMARYA-ACREAGE10435600UNDEVELOPEDA-ACREAGE10.4453024

Other Items:

Code	Description	Year Built	Square Ft.
RG6	GARAGE-1S FIN	2013	1100
TT4	TOWER	2007	117
PA1	ASPHALT OR	1985	35000
TT4	TOWER	2016	110

Darien, CT			Property Report Card	Assessors Office
RS3	BRICK/STN	2000	90	
SH3	FINISHED	2007	720	
FN1	FENCE CHAIN	1980	4200	


Sales History:

Date	Book-Page	Grantee	Amount
1800-JAN-01	00000000	TOWN OF DARIEN	

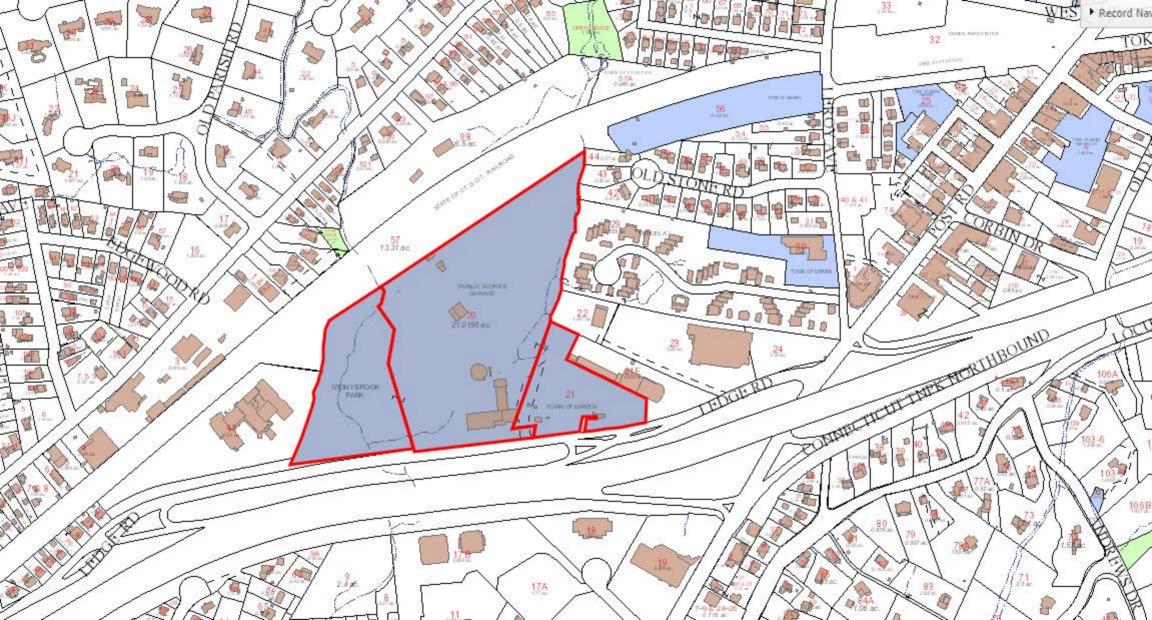
PHOTO

SKETCH

Sketch Legend

8 A102 - VB1:1S/B 4576 Sq. Ft. 9 A103 - VB1:1S/B 1815 Sq. Ft. 10 A104 - VS1:1S 2520 Sq. Ft. 11 CANPY RF/SLB - CP6:CANOPY ROOF/SLAB 490 Sq. 12 CANPY RF-AVG - CP8:CANOPY RF-AVERAGE 920 Sq. Ft. 1 AUTO PARTS/S - 047:AUTO PARTS/SERVICE 7770 Sq. Ft. 2 AUTO PARTS/S - 047:AUTO PARTS/SERVICE 7770 Sq. Ft. 3 AUTO PARTS/S - 047:AUTO PARTS/SERVICE 8706 4 MULTI-USE OF - 082:MULTI-USE OFFICE 4130 Sq. Ft. 5 AUTO PARTS/S - 047:AUTO PARTS/SERVICE 4576 6 AUTO PARTS/S - 047:AUTO PARTS/SERVICE 2520 Sq. Ft. 8 AUTO PARTS/S - 047:AUTO PARTS/SERVICE 1815 Sq. Ft. 9 AUTO PARTS/S - 047:AUTO PARTS/SERVICE 1815 Sq. Ft. 2 FENCE CHAI - FN1:FENCE CHAIN 4200 Sq. Ft. 3 BR/ST SHED - RS3:BRICK/STN UTILITY SHED 90 Sq. Ft. 4 GAR-1S FIN - RG6:GARAGE-1S FIN 1100 Sq. Ft. 5 TOWER CELL - TT4:TOWER CELLULAR 117 Sq. Ft. 6 METAL SHED - SH3:FINISHED METAL SHED 720 Sq. 2 OVRHD DR - OD1:OVERHEAD DR-WOOD/MTL 144 Sq. Ft.

1 ASPH PAVE - PA1:ASPHALT OR BLACKTOP PAVING


1 OVRHD DR - OD1:OVERHEAD DR-WOOD/MTL 196

7 TOWER CELL - TT4:TOWER CELLULAR 110 Sq. Ft.

35000 Sq. Ft.

Sq. Ft.

3 OVRHD DR - OD1:OVERHEAD DR-WOOD/MTL 120 Sq. Ft. 4 OVRHD DR - OD1:OVERHEAD DR-WOOD/MTL 160 Sq. Ft.

Exhibit C

Construction Drawings

O E S N wireless...

DISH WIRELESS L.L.C. SITE ID:

NJJER01085A

DISH WIRELESS L.L.C. SITE ADDRESS:

126 LEDGE ROAD DARIEN, CT 06820

CONNECTICUT CODE COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:

2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS MECHANICAL ELECTRICAL 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS
2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS

	SHEET INDEX
SHEET NO.	SHEET TITLE
T-1	TITLE SHEET
A-1	OVERALL AND ENLARGED SITE PLAN
A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS
A-4	EQUIPMENT DETAILS
A-5	EQUIPMENT DETAILS
A-6	EQUIPMENT DETAILS
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES
E-2	ELECTRICAL DETAILS
E-3	ELECTRICAL ONE-LINE, FAULT CALCS, & PANEL SCHEDULE
G-1	GROUNDING PLANS AND NOTES
G-2	GROUNDING DETAILS
G-3	GROUNDING DETAILS
RF-1	RF CABLE COLOR CODE
GN-1	LEGEND AND ABBREVIATIONS
GN-2	GENERAL NOTES
GN-3	GENERAL NOTES
GN-4	GENERAL NOTES

SCOPE OF WORK

THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIVALENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:

- TOWER SCOPE OF WORK:

 INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR)

 INSTALL (1) PROPOSED ANTENNA PLATFORM MOUNT

 INSTALL PROPOSED JUMPERS

 INSTALL (6) PROPOSED RRUS (2 PER SECTOR)

- INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP) INSTALL (1) PROPOSED HYBRID CABLE (LENGTH: 159'-0")

GROUND SCOPE OF WORKS

- INSTALL (1) PROPOSED ICE BRIDGE
 INSTALL (1) PROPOSED CABLE TRAY
- INSTALL (1) PROPOSED CONCRETE PAD
- INSTALL (1 PROPOSED PPC CABINET
- (1) PROPOSED EQUIPMENT CABINET INSTALL
- PROPOSED POWER CONDUIT
- INSTALL (1) PROPOSED TELCO CONDUIT PROPOSED TELCO-FIBER BOX
- INSTALL PROPOSED GPS UNIT
- INSTALL (1) PROPOSED FIBER NID (IF REQUIRED)
- METER IN EXISTING MULTI-METER SÉRVICE
- INSTALL (1) UTILITY FRAME

SITE INFORMATION PROJECT DIRECTORY DISH WIRELESS L.L.C. PROPERTY OWNER: TOWN OF DARIEN ADDRESS: C/O FIRST SELECTMAN'S OFFICE 2 RENSHAW RD 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 DARIEN, CT 06820 TOWER TYPE: TOWER OWNER: CROWN CASTLE USA, INC. TOWER CO SITE ID: 806352 2000 CORPORATE DRIVE CANONSBURG, PA 15317 TOWER APP NUMBER: 548684 (877) 486-9377 SITE DESIGNER: FULLERTON ENGINEERING COUNTY: FAIRFIELD 1100 E WOODFIELD, STE 500 SCHAUMBURG, IL 60173 LATITUDE (NAD 83): 41° 4' 20.75" N 41.072431° N (847) 908-8400 LONGITUDE (NAD 83): -73° 28' 41.40" W -73.478167° W SITE ACQUISITION: ZONING JURISDICTION: CT. SITING COUNCIL COURTNEY PRESTON ZONING DISTRICT: COURTNEY.PRESTON@CROWNCASTLE.CO. PARCEL NUMBER: DARI-000039-0000 CONSTRUCTION MANAGER: MICHAEL NARDUCCI 00-000020-000021 OCCUPANCY GROUP: MICHAEL.NARDUCCI@DISH.COM CONSTRUCTION TYPE: RF ENGINEER: MURUGARIRAN JAYAPAI

DIRECTIONS

MURUGABIRAN.JAYAPAL@DISH.COM

DIRECTIONS FROM 3 ADP BLVD, ROSELAND NJ 07068:

NORTHEAST UTILITIES

POWER COMPANY:

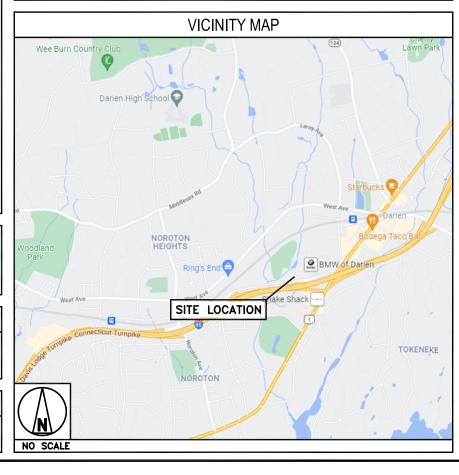
TELEPHONE COMPANY: TBD

HEAD NORTHEAST TOWARD ADP BLYD. TURN LEFT TOWARD ADP BLVD. TURN RIGHT ONTO CHOCTAW WAY. USE THE LEFT LANE TO TURN RIGHT ONTO LIVINGSTON AVE. USE THE RIGHT LANE TO TAKE THE RAMP ONTO I-280 E. CONTINUE ON I-280 E. TAKE GARDEN STATE PKWY, I-287 E AND I-95 N TO US-1/BOSTON POST RD/POST RD IN DARIEN, TAKE EXIT 11 FROM I-95 N. TURN LEFT ONTO US-1/BOSTON RD/POST RD. TURN LEFT ONTO LEDGE RD. DESTINATION WILL BE ON THE RIGHT.

SITE PHOTO

UNDERGROUND SERVICE ALERT CBYD 811 UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455 WWW.CBYD.COM

CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION



GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.

11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

JULLERTON

I 100 E. WOODFIELD ROAD, SUITE 500 SCHAUMBURG, ILLINOIS 60173 TEL: 847-908-8400 www.FullertonEngineering.com

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY RFDS REV #:

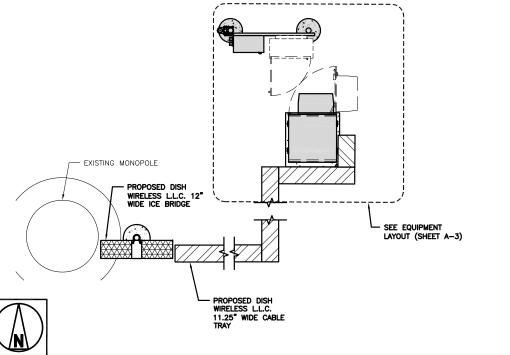
CONSTRUCTION **DOCUMENTS**

SUBMITTALS REV DATE DESCRIPTION 0 11/16/2021 ISSUED FOR REVIEW 1 12/16/2021 FINALS A&E PROJECT NUMBER

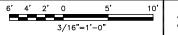
> 2021.0025.0321 DISH WIRELESS L.L.C.

NJJER01085A 126 LEDGE ROAD DARIEN, CT 06820

> SHEET TITLE TITLE SHEET


SHEET NUMBER

T-1



NOTES

- CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS.
- 2. CONTRACTOR SHALL MAINTAIN A 10'-0" MINIMUM SEPARATION BETWEEN THE PROPOSED GPS UNIT, TRANSMITTING ANTENNAS AND EXISTING GPS UNITS.
- 3. ANTENNAS AND MOUNTS OMITTED FOR CLARITY.

ENLARGED SITE PLAN

Proposed conduit of Fiber from Hillity Pole at ROW

Proposed HH outside the compound

Proposed conduit of Fiber from Hillity Pole at ROW

Proposed Conduit of Fiber from HH outside the compound

Proposed Conduit of Fiber from HH outside the compound to Dish Platform

Proposed Conduit of Fiber from HH outside the compound to Dish Platform

Proposed Conduit of Fiber from HH outside the compound to Dish Platform

Proposed Conduit of Fiber from HH outside the compound to Dish Platform

Proposed Conduit of Fiber from HH outside the compound to Dish Platform

Proposed Conduit of Fiber from HH outside the compound to Dish Platform

Proposed Conduit of Fiber from HH outside the compound to Dish Platform

Proposed Conduit of Fiber from HH outside the compound to Dish Platform

Proposed Conduit of Fiber from HH outside the compound to Dish Platform

Proposed Conduit of Fiber from HH outside the compound to Dish Platform

Proposed Conduit of Fiber from HH outside the compound to Dish Platform

Proposed Conduit of Fiber from HH outside the compound to Dish Platform

Proposed Conduit of Fiber from HH outside the compound to Dish Platform

Proposed Conduit of Fiber from HH outside the compound to Dish Platform

Proposed Conduit of Fiber from HH outside the compound to Dish Platform

Proposed Conduit of Fiber from HH outside the compound to Dish Platform

Proposed Conduit of Fiber from HH outside the compound to Dish Platform

Proposed Conduit of Fiber from HH outside the compound to Dish Platform

Proposed Conduit of Fiber from HH outside the compound to Dish Platform

Proposed Conduit of Fiber from HH outside the compound to Dish Platform

Proposed Conduit of Fiber from HH outside the compound to Dish Platform

Proposed Conduit of Fiber from HH outside the compound to Dish Platform

Proposed Conduit of Fiber from HH outside the compound to Dish Platform

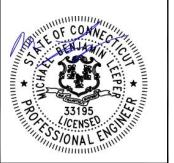
Proposed Conduit of Fiber from HH outside the compound to Dish Platform

Proposed Conduit of Fiber from HH outside the compound to Dish Platform

Proposed Conduit of Fiber f

SHET N

NO SCALE 2


5' 10'

dësh wireless.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

ULLERTON

I 100 E. WOODFIELD ROAD, SUITE 500 SCHAUMBURG, ILLINOIS 60173 TEL: 847-908-8400 COA# PEC.0001899 www.FullertonEngineering.com

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED BY	
SM	CJ	CJ	

RFDS REV #:

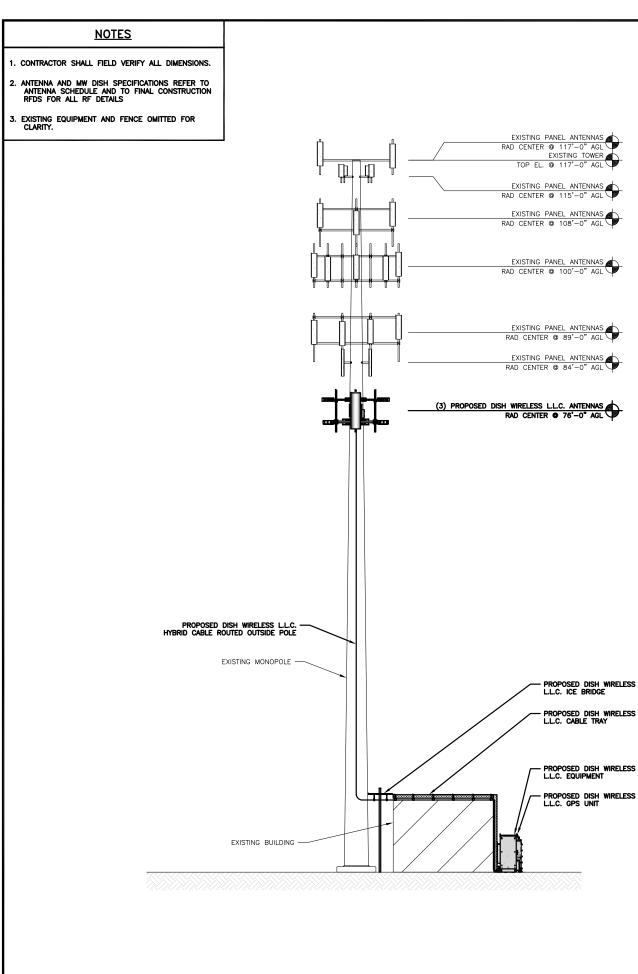
CONSTRUCTION DOCUMENTS

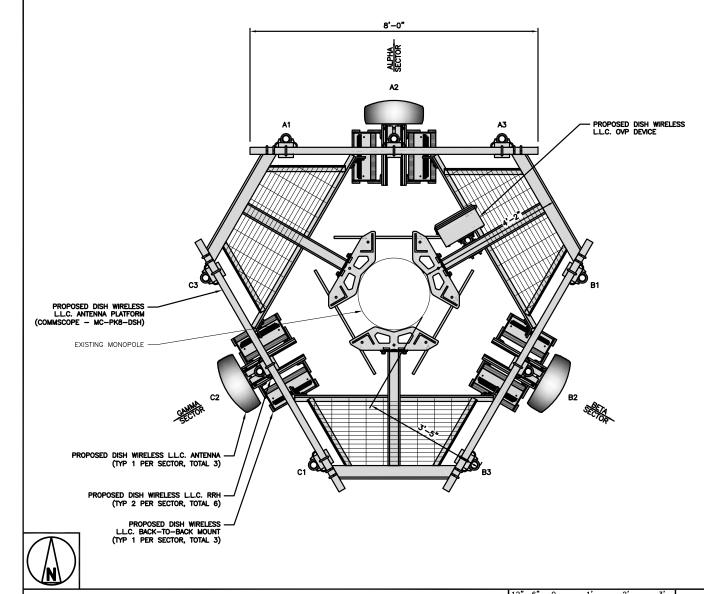
	SUBMITTALS				
REV	DATE	DESCRIPTION			
0	11/16/2021	ISSUED FOR REVIEW			
1	12/16/2021	FINALS			
A&E PROJECT NUMBER					

2021.0025.0321

DISH WIRELESS L.L.C. PROJECT INFORMATION

NJJERO1085A 126 LEDGE ROAD DARIEN, CT 06820


SHEET TITLE


OVERALL AND ENLARGED SITE PLAN

SHEET NUMBER

A-1

SITE PLAN

SECTOR		ANTENNA			TRANSMISSION CABLE	RRH			OVP	
POS.	EXISTING OR PROPOSED	MANUFACTURER — MODEL NUMBER	TECH	AZIMUTH	RAD CENTER	FEED LINE TYPE AND LENGTH	MANUFACTURER — MODEL NUMBER	TECH	POS.	MANUFACTURER MODEL
A1					(1) HIGH-CAPACITY		FUJITSU - TA08025-B604	5G	A2	
A2	PROPOSED	JMA MX08FR0665-21	5G	TBD	76'-0 "	(1) HIGH-CAPACITY HYBRID CABLE (159' LONG)	FUJITSU - TA08025-B605	5G	A2	RAYCAP RDIDC-9181- PF-48
A3						(100 LONO)			-	11 40
B1							FUJITSU - TA08025-B604	5G	B2	
B2	PROPOSED	JMA MX08FR0665-21	5G	TBD	76'-0"	SHARED W/ALPHA	FUJITSU - TA08025-B605	5G	B2	SHARED W/ALPHA
B3					-		-			
C1							FUJITSU - TA08025-B604	5G	C2	
C2	PROPOSED	JMA MX08FR0665-21	5G	TBD	76'-0"	SHARED W/ALPHA	FUJITSU - TA08025-B605	5G	C2	SHARED W/ALPHA
С3										
NOTES		_	•				_			

NOTES

- 1. CONTRACTOR TO REFER TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS.
- ANTENNA AND RRH MODELS MAY CHANGE DUE TO EQUIPMENT AVAILABILITY. ALL EQUIPMENT CHANGES MUST BE APPROVED AND REMAIN IN COMPLIANCE WITH THE PROPOSED DESIGN AND STRUCTURAL ANALYSES.

ANTENNA LAYOUT

3. VERIFY AZIMUTHS WITH LATEST DISH RFDS PRIOR TO INSTALLATION.

0 5' 10' 3/16"=1'-0" 1 ANTENNA SCHEDULE

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

JULLERTON

I 100 E. WOODFIELD ROAD, SUITE 500 SCHAUMBURG, ILLINOIS 60173 TEL: 847-908-8400 COA# PEC.0001899 www.FullertonEngineering.com

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN BY:	CHECKED BY:	APPROVED	BY	
		SM	CJ	CJ	

RFDS REV #:

3/4"=1'-0"

NO SCALE

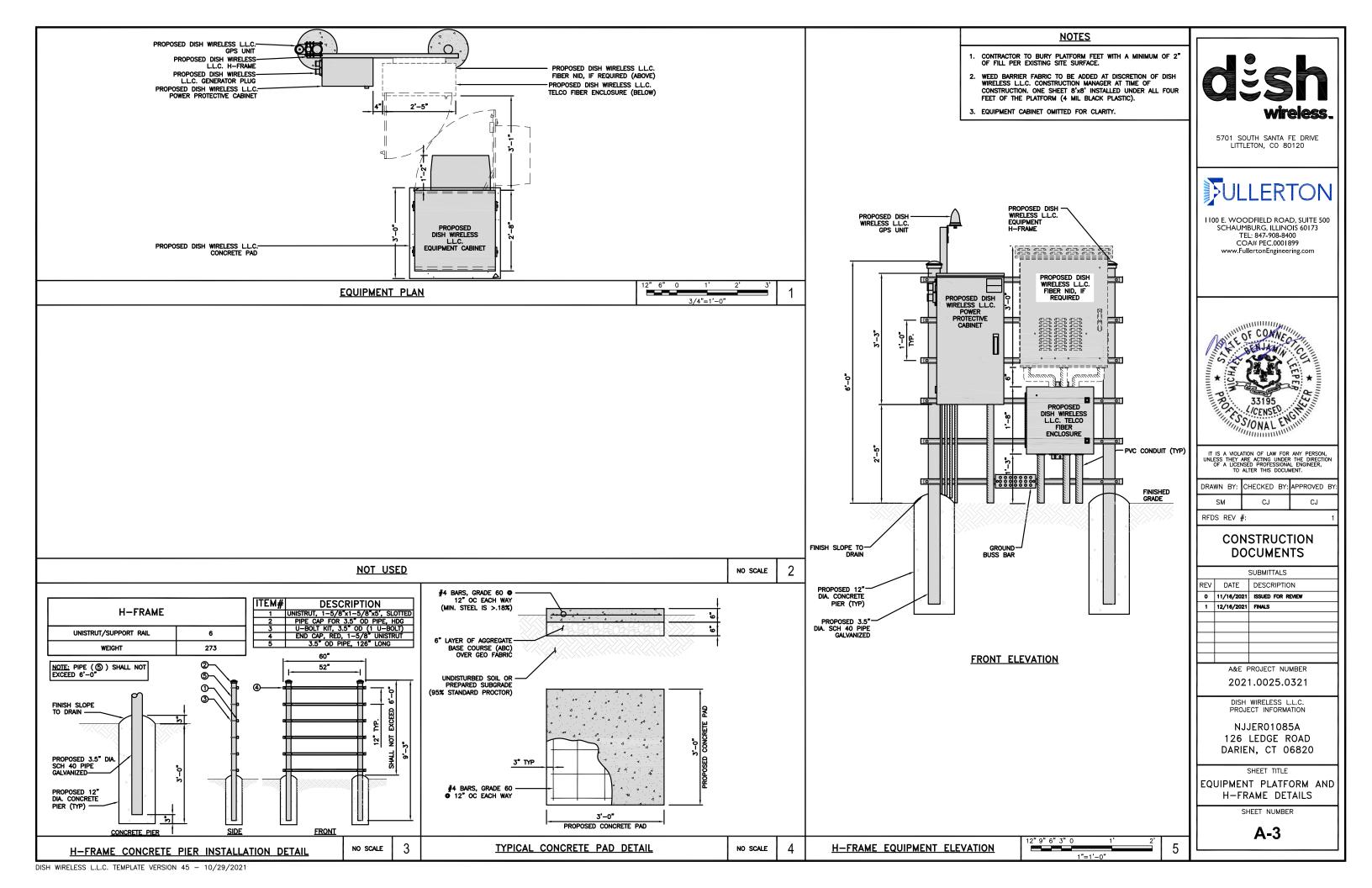
CONSTRUCTION DOCUMENTS

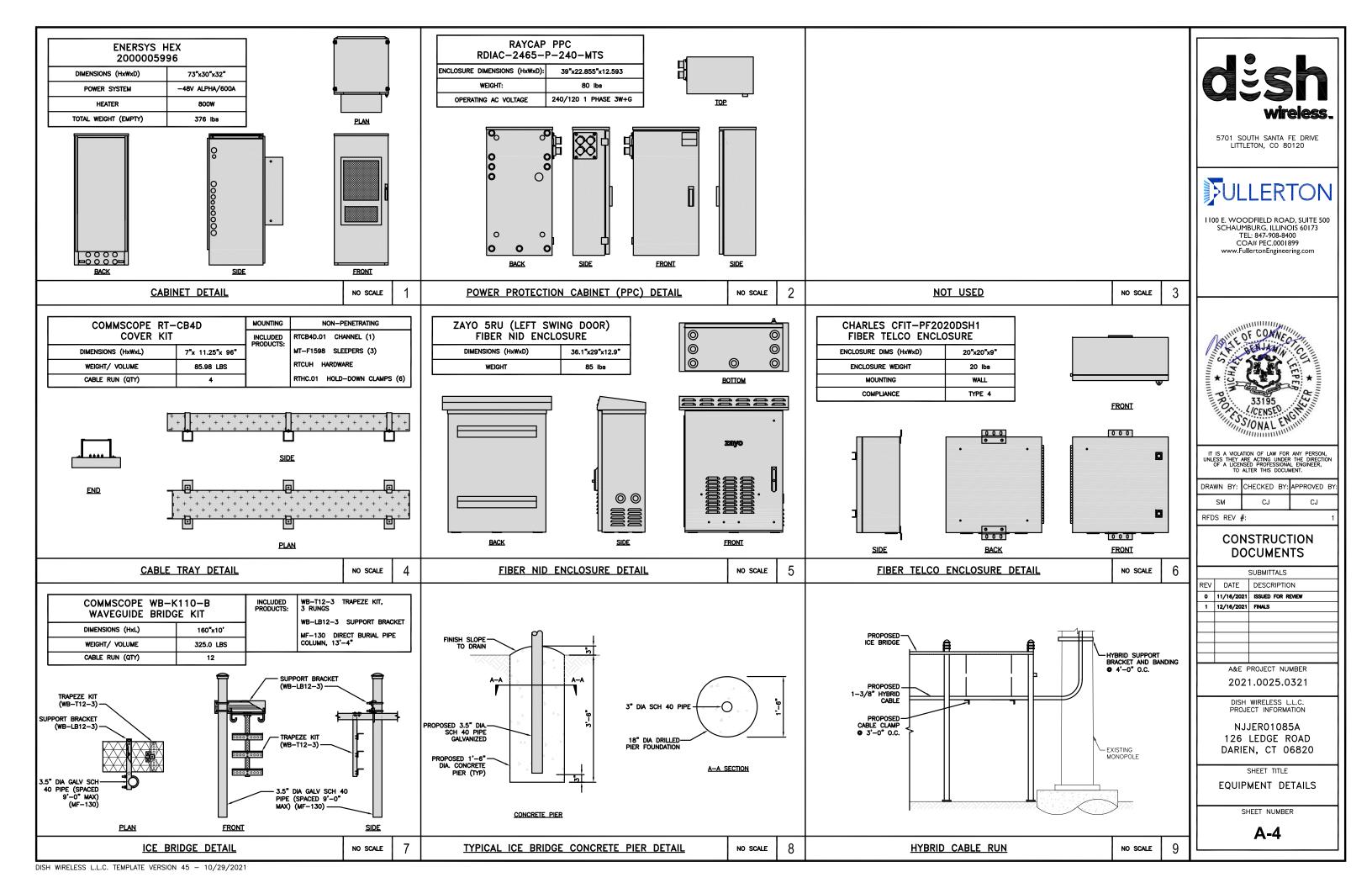
SUBMITTALS				
DATE	DESCRIPTION			
11/16/2021	ISSUED FOR REVIEW			
12/16/2021	FINALS			
A&E PROJECT NUMBER				
	DATE 11/16/2021 12/16/2021			

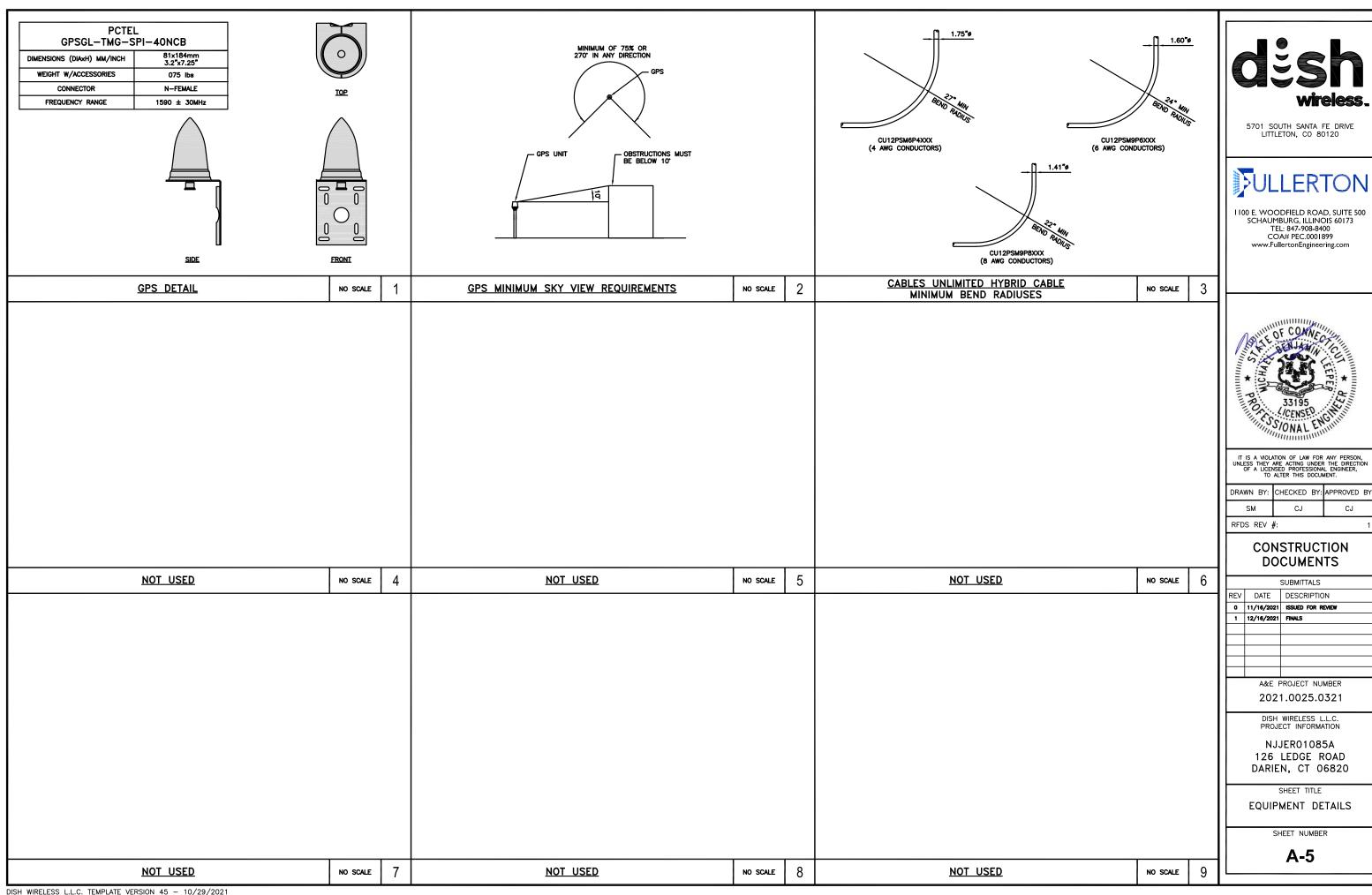
2021.0025.0321

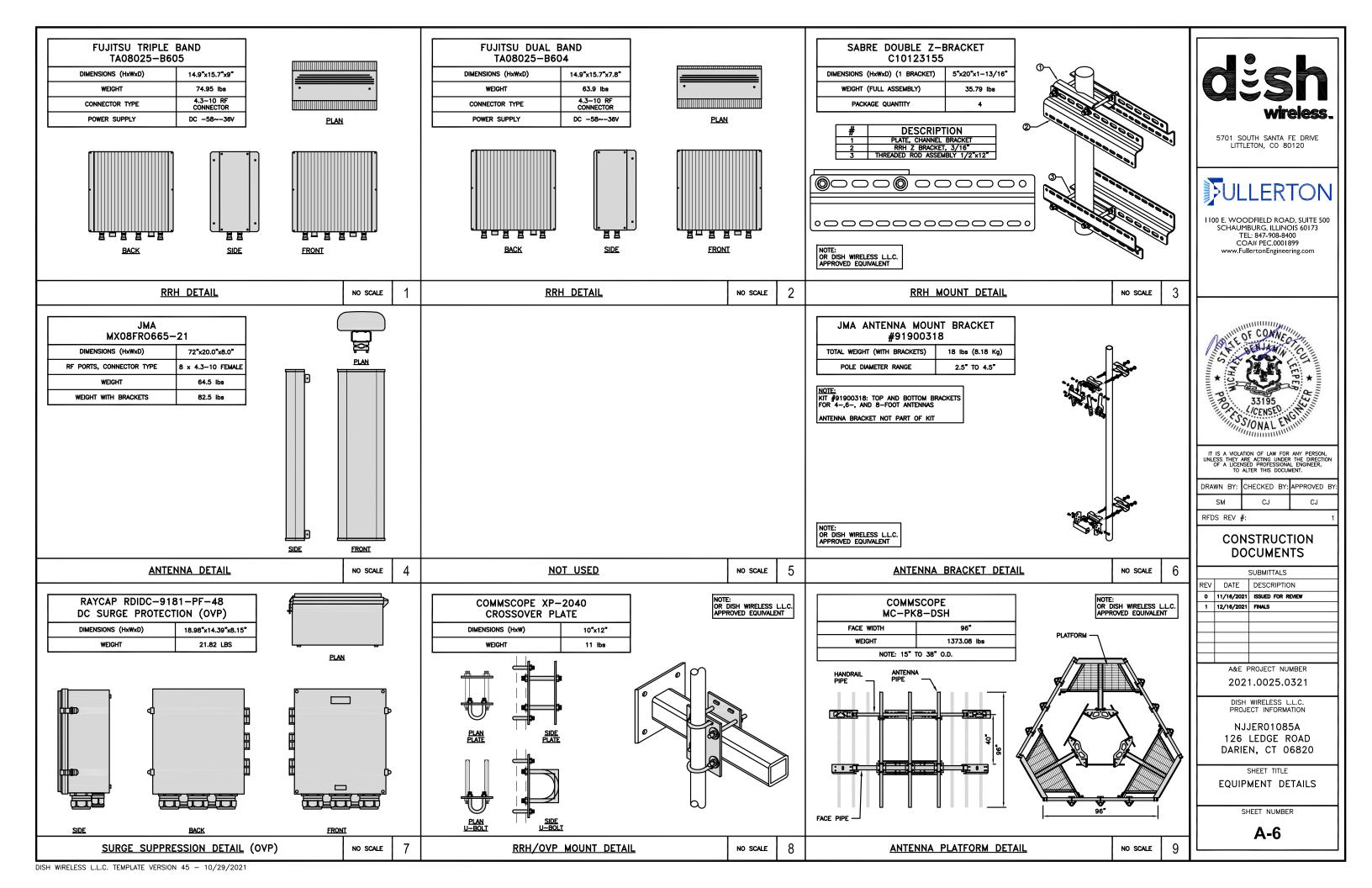
DISH WIRELESS L.L.C. PROJECT INFORMATION

NJJERO1085A 126 LEDGE ROAD DARIEN, CT 06820


SHEET TITLE


ELEVATION, ANTENNA LAYOUT AND SCHEDULE


SHEET NUMBER


A-2

PROPOSED SOUTH ELEVATION

NOTES

CONTRACTOR SHALL FIELD VERIFY ALL PROPOSED UNDERGROUND UTILITY CONDUIT ROUTE.

ANTENNAS AND MOUNTS OMITTED FOR CLARITY.

DUE TO UTILITY EASEMENT RIGHTS SPECIFIED IN THE GROUND LEASE, CUSTOMER MAY INSTALL EQUIPMENT WITHIN SPECIFIED UTILITY EASEMENT AREA. "PWR" AND "FBR" PATHS DEPICTED ON A-1 AND E-1 ARE BASED ON BEST AVAILABLE INFORMATION INCLUDING BUT NOT LIMITED TO A SURVEY, EXHIBITS, MEETS AND BOUNDS OF THE UTILITY EASEMENT, FIELD VERIFICATION, PRIOR PROJECT DOCUMENTATION, AND OTHER REAL PROPERTY RIGHTS DOCUMENTS. WHEN INSTALLING THE UTILITIES, PLEASE LOCATE AND FOLLOW EXISTING PATH. IF EXISTING PATH IS MATERIALLY INCONSISTENT WITH THE "PWR" AND "FBR" PATH DEPICTED ON A-1 AND E-1 AND SAID VARIANCE IS NOT NOTED ON CDs, PLEASE NOTIFY CORE AS FURTHER COORDINATION MAY BE NEEDED.

DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING $\pm 24V$ and $\pm 48V$ conductors. RED MARKINGS SHALL IDENTIFY $\pm 24V$ and blue markings shall identify $\pm 48V$.

- CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
- ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS.
- 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
- 4. CONDUIT ROUGH-IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS. VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
- 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
- 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
- 7. CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
- 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
- INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250.
 THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL
 DISCONNECT SWITCHES, AND EQUIPMENT CABINETS.
- 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.
- 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT.
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS.
- 13. ALL TRENCHES IN COMPOUND TO BE HAND DUG.

ELECTRICAL NOTES

NO SCALE

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

CENSED SONAL ENG

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

I 100 E. WOODFIELD ROAD, SUITE 500

SCHAUMBURG, ILLINOIS 60173 TFI: 847-908-8400

COA# PEC.0001899

www.FullertonEngineering.com

DRAWN BY: CHECKED BY: APPROVED BY

RFDS REV #

CONSTRUCTION DOCUMENTS

		SUBMITTALS
REV	DATE	DESCRIPTION
0	11/16/2021	ISSUED FOR REVIEW
1	12/16/2021	FINALS
	4055	DO ITOT NUMBER

A&E PROJECT NUMBER 2021.0025.0321

DISH WIRELESS L.L.C. PROJECT INFORMATION

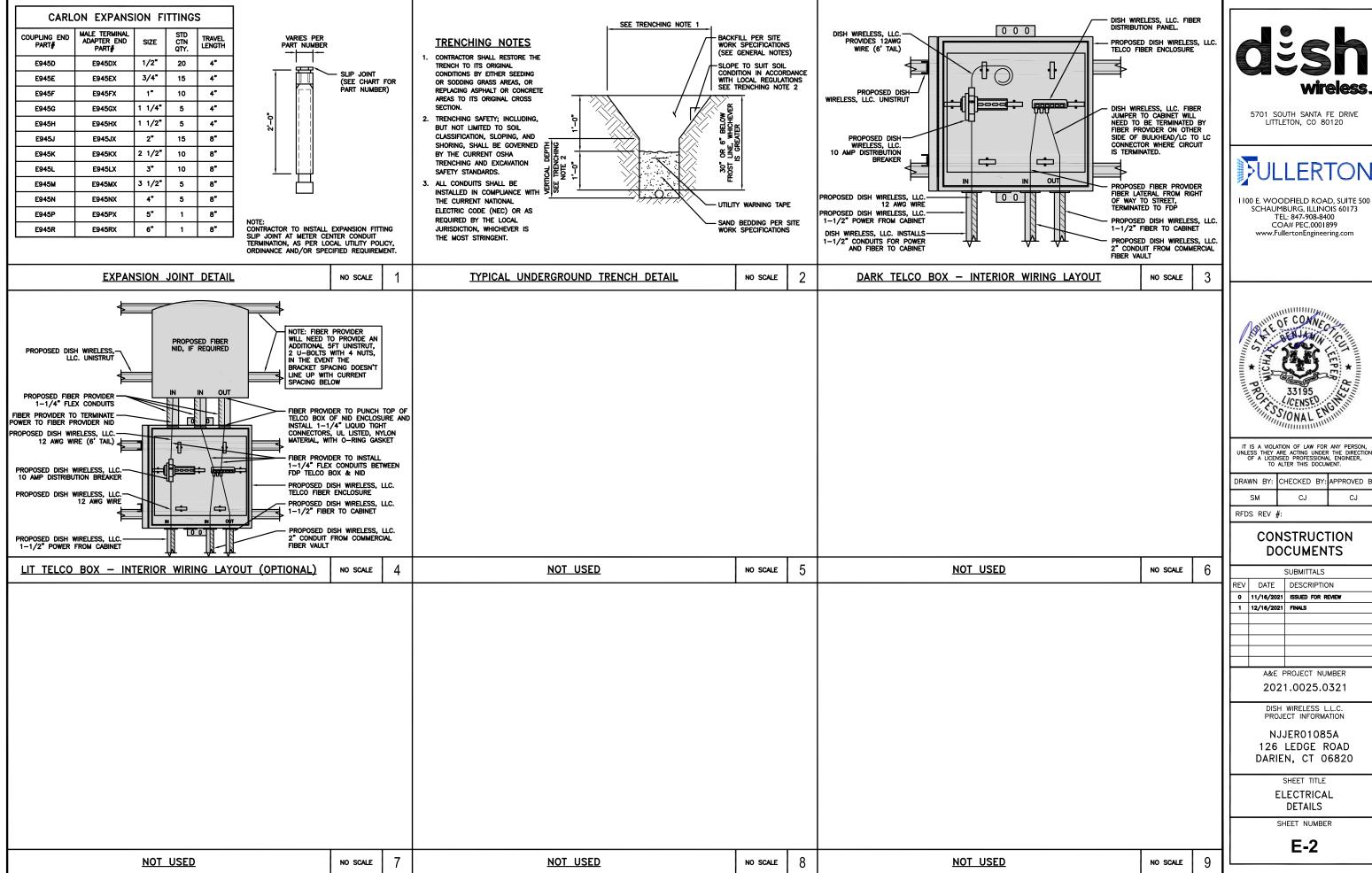
NJJER01085A 126 LEDGE ROAD DARIEN, CT 06820

SHEET TITLE

ELECTRICAL/FIBER ROUTE PLAN AND NOTES

SHEET NUMBER

E-1


PROPOSED CONDUIT -ROUTED FROM PPC TO ENERSYS CABINET EXISTING MONOPOLE EXISTING METER SOCKET (# 89 131 317) TO BE REUSED BY DISH WIRELESS L.L.C. PROPOSED 2" SCH 40 UNDERGROUND FIBER CONDUIT (LENGTH: 175'-0"±) PROPOSED 3" SCH 40 UNDERGROUND POWER CONDUIT (LENGTH: 120'-0"±) PROPOSED FIBER MMP PROPOSED FIBER RUN TO R.O.W.

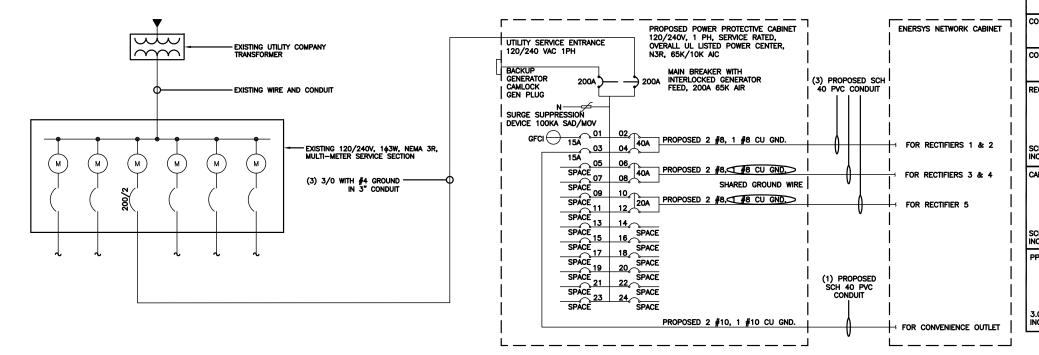
3/16"=1'-0

UTILITY ROUTE PLAN (OVERALL)

NO SCALE

LITTLETON, CO 80120

SCHAUMBURG, ILLINOIS 60173 COA# PEC.0001899 www.FullertonEngineering.com


SM	Cl	CJ	
DRAWN BY:	CHECKED BY:	APPROVED BY	

DOCUMENTS

	SUBMITTALS					
REV	DATE	DESCRIPTION				
0	11/16/2021	ISSUED FOR REVIEW				
1	12/16/2021	FINALS				
	A&E PROJECT NUMBER					
	0004 0005 0704					

DISH WIRELESS L.L.C.

126 LEDGE ROAD DARIEN, CT 06820

BREAKERS REQUIRED:

<u>NOTES</u>

CONDUIT SIZING: AT 40% FILL PER NEC CHAPTER 9, TABLE 4, ARTICLE 358. 0.5" CONDUIT - 0.122 SQ. IN AREA 0.75" CONDUIT - 0.213 SQ. IN AREA

CONDUIT SIZING: AT 40% FILL PER NEC CHAPTER 9, TABLE 4, ARTICLE 353.
2.0" CONDUIT - 1.316 SQ. IN AREA
3.0" CONDUIT - 2.907 SQ. IN AREA

RECTIFIER CONDUCTORS (3 CONDUITS): USING UL1015, CU.

#8 - 0.0552 SQ. IN X 2 = 0.1103 SQ. IN #8 - 0.0131 SQ. IN X 1 = 0.0131 SQ. IN <BARE GROUND TOTAL = 0.1234 SQ. IN

SCH 40 PVC CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (3) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

CABINET CONVENIENCE OUTLET CONDUCTORS (1 CONDUIT): USING THWN-2, CU.

#10 - 0.0211 SQ. IN X 2 = 0.0422 SQ. IN #10 - 0.0211 SQ. IN X 1 = 0.0211 SQ. IN <GROUND

DTAL = 0.0633 SQ. IN

SCH 40 PVC CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (3) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC FEED CONDUCTORS (1 CONDUIT): USING THWN-2, CU.

#3/0 - 0.2679 SQ. IN X 3 = 0.8037 SQ. IN #4 - 0.0824 SQ. IN X 1 = 0.0824 SQ. IN <GROUND TOTAL = 0.8861 SQ. IN

NO SCALE

3.0" SCH 40 PVC CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (4) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

OF CONNECTION OF

5701 SOUTH SANTA FE DRIVE

LITTLETON, CO 80120

I 100 E. WOODFIELD ROAD, SUITE 500 SCHAUMBURG, ILLINOIS 60173

TEL: 847-908-8400 COA# PEC.0001899

www.FullertonEngineering.com

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY

SM CJ CJ

RFDS REV #:

CONSTRUCTION DOCUMENTS

	SUBMITTALS		
REV	DATE	DESCRIPTION	
0	11/16/2021	ISSUED FOR REVIEW	
1	12/16/2021	FINALS	

A&E PROJECT NUMBER 2021.0025.0321

DISH WIRELESS L.L.C. PROJECT INFORMATION

NJJER01085A 126 LEDGE ROAD DARIEN, CT 06820

SHEET TITLE

ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE

SHEET NUMBER

E-3

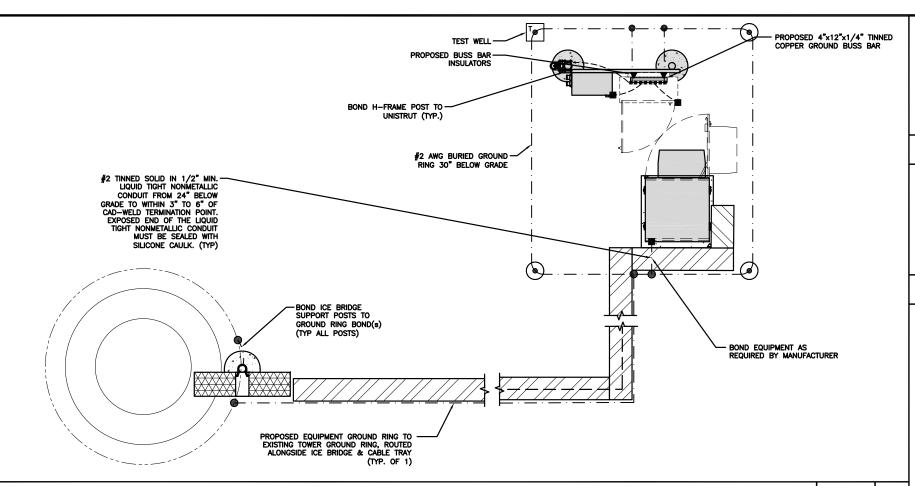
PPC ONE-LINE DIAGRAM

I DIAGRAM

(2) 40A, 2P BREAKER - SQUARE D P/N:Q0240 (1) 20A, 2P BREAKER - SQUARE D P/N:Q0220 (1) 20A, 1P BREAKER - SQUARE D P/N:Q0120

PANEL SCHEDULE

NO SCALE 2

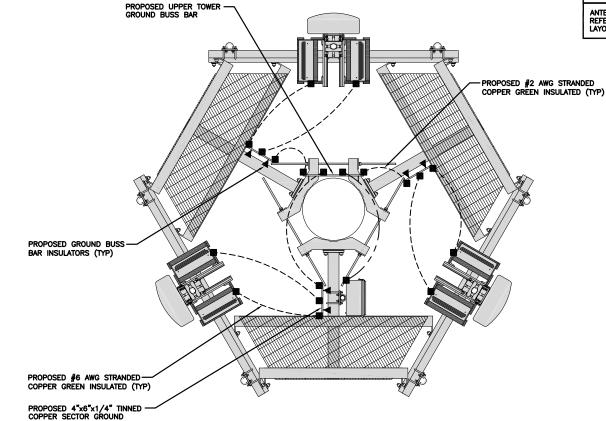

NOTE:
BRANCH CIRCUIT WIRING SUPPLYING RECTIFIERS ARE TO BE RATED UL1015, 105°C, 600V, AND PVC INSULATED, IN THE SIZES SHOWN IN THE ONE-LINE DIAGRAM. CONTRACTOR MAY SUBSTITUTE UL1015 WIRE FOR THWN-2 FOR CONVENIENCE OUTLET BRANCH CIRCUIT.

NOT USED

NO SCALE

DISH WIRELESS L.L.C. TEMPLATE VERSION 45 - 10/29/2021

3



TYPICAL EQUIPMENT GROUNDING PLAN

NO SCALE

NOTES

ANTENNAS AND OVP SHOWN ARE GENERIC AND NOT REFERENCING TO A SPECIFIC MANUFACTURER. THIS LAYOUT IS FOR REFERENCE PURPOSES ONLY

EXOTHERMIC CONNECTION

🖶 GROUND BUS BAR

GROUND ROD

 (\bullet)

TEST GROUND ROD WITH INSPECTION SLEEVE

MECHANICAL CONNECTION

---- #6 AWG STRANDED & INSULATED

▲ BUSS BAR INSULATOR

GROUNDING LEGEND

- 1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.
- CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM. GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH WIRELESS, LLC. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS.
- 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED.

GROUNDING KEY NOTES

- (A) EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW GRADE, OR 6 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM THE EXTERIOR WALL OR FOOTING.
- B TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS, AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN BROWNER FOR THE FOUNDATION OF THE FOUNDATION AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS.
- © Interior ground ring: #2 awg stranded green insulated copper conductor extended around the perimeter of the equipment area. All non-telecommunications related metallic objects found within a site shall be grounded to the interior ground ring with #6 awg stranded green
- D BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS SHALL BE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE CORNERS OF THE
- (E) GROUND ROD: UL LISTED COPPER CLAD STEEL. MINIMUM 1/2" DIAMETER BY EIGHT FEET LONG, GROUND RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. GROUND RODS SHALL BE DRIVEN TO THE DEPTH OF GROUND RING CONDUCTOR.
- F CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GREEN INSULATED COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUCTORS.
- G HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH.
- (H) EXTERIOR CABLE ENTRY PORT GROUND BARS: LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING, BOND TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTORS WITH AN EXOTHERMIC WELD AND INSPECTION SLEEVE.
- 1 TELCO GROUND BAR: BOND TO BOTH CELL REFERENCE GROUND BAR OR EXTERIOR GROUND RING.
- J FRAME BONDING: THE BONDING POINT FOR TELECOM EQUIPMENT FRAMES SHALL BE THE GROUND BUS THAT IS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEWORK.
-) Interior unit bonds: Metal frames, cabinets and individual metallic units located with the area of the interior ground ring require a #6 awg stranded green insulated copper bond to the
- L FENCE AND GATE GROUNDING: METAL FENCES WITHIN 7 FEET OF THE EXTERIOR GROUND RING OR OBJECTS BONDED TO THE EXTERIOR GROUND RING SHALL BE BONDED TO THE GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEEDING 25 FEET. BONDS SHALL BE MADE AT EACH CAST FOR THE PORT AND ACCROSS CAST OFFICE AND ACCROSS CAST OFFICE AND ACCROSS CAST OFFICE AND ACCROSS CAST OFFI AND ACCROS
- M EXTERIOR UNIT BONDS: METALLIC OBJECTS, EXTERNAL TO OR MOUNTED TO THE BUILDING, SHALL BE BONDED TO THE EXTERIOR GROUND RING. USING #2 TINNED SOLID COPPER WIRE
- N ICE BRIDGE SUPPORTS: EACH ICE BRIDGE LEG SHALL BE BONDED TO THE GROUND RING WITH #2 AWG BARE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRIDGE LEG AND BURIED
- DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEMENTS AND INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICE CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPPED WITH A MASTER DC SYSTEM RETURN GROUND CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED TO THE CELL SITE REFERENCE (COLUMN) BAR
- (P) TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICALLY BONDED TO PROPOSED ANTENNA MOUNT COLLAR. REFER TO DISH WIRELESS, LLC. GROUNDING NOTES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

JULLERTON

I 100 E. WOODFIELD ROAD, SUITE 500 SCHAUMBURG, ILLINOIS 60173 TFI: 847-908-8400 COA# PEC.0001899 www.FullertonEngineering.com

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
SM		CJ		CJ	

CONSTRUCTION **DOCUMENTS**

	SUBMITTALS		
REV	DATE	DESCRIPTION	
0	11/16/2021	ISSUED FOR REVIEW	
1	12/16/2021	FINALS	
	Δ&F F	PROJECT NUMBER	

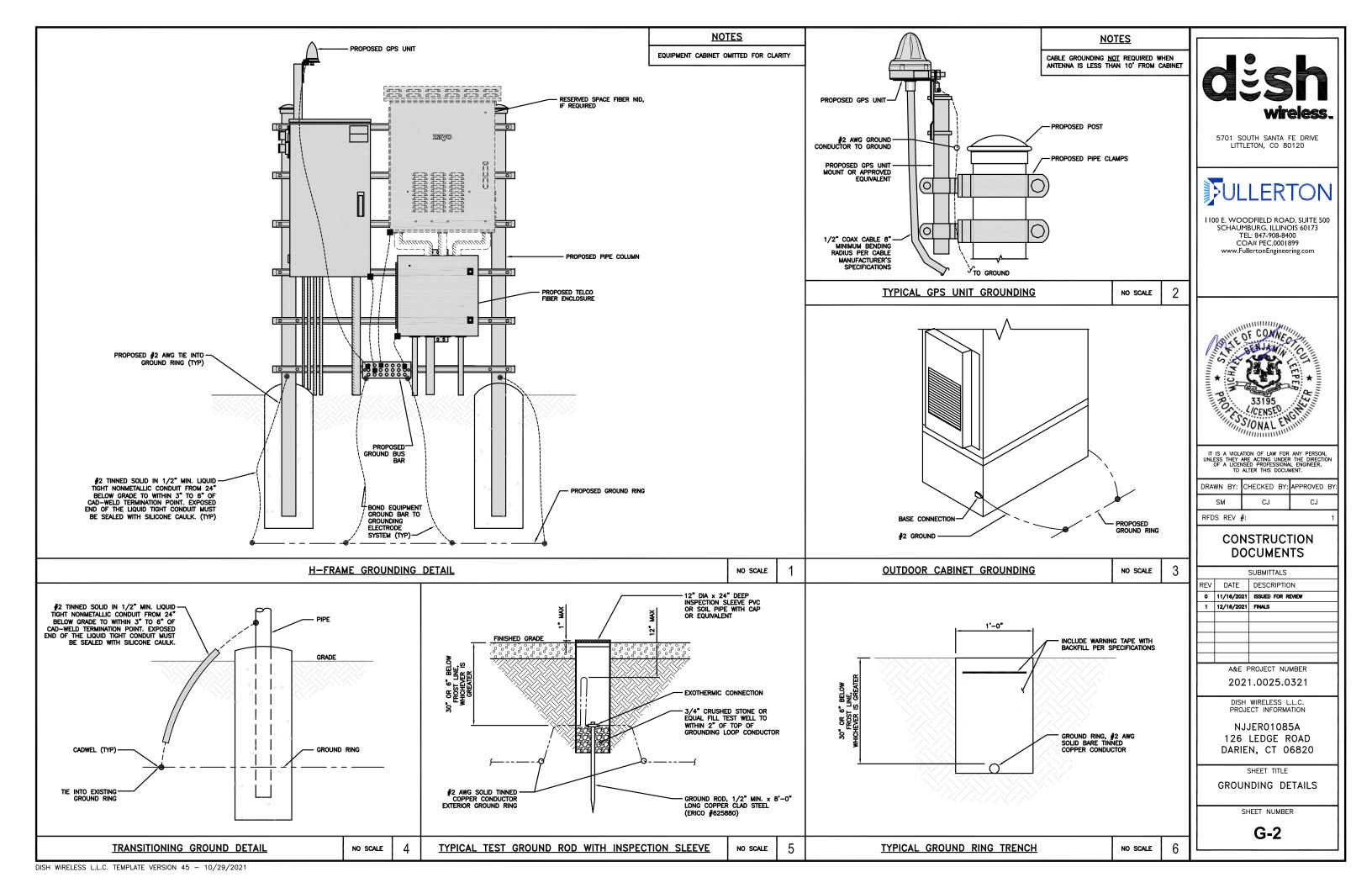
2021.0025.0321

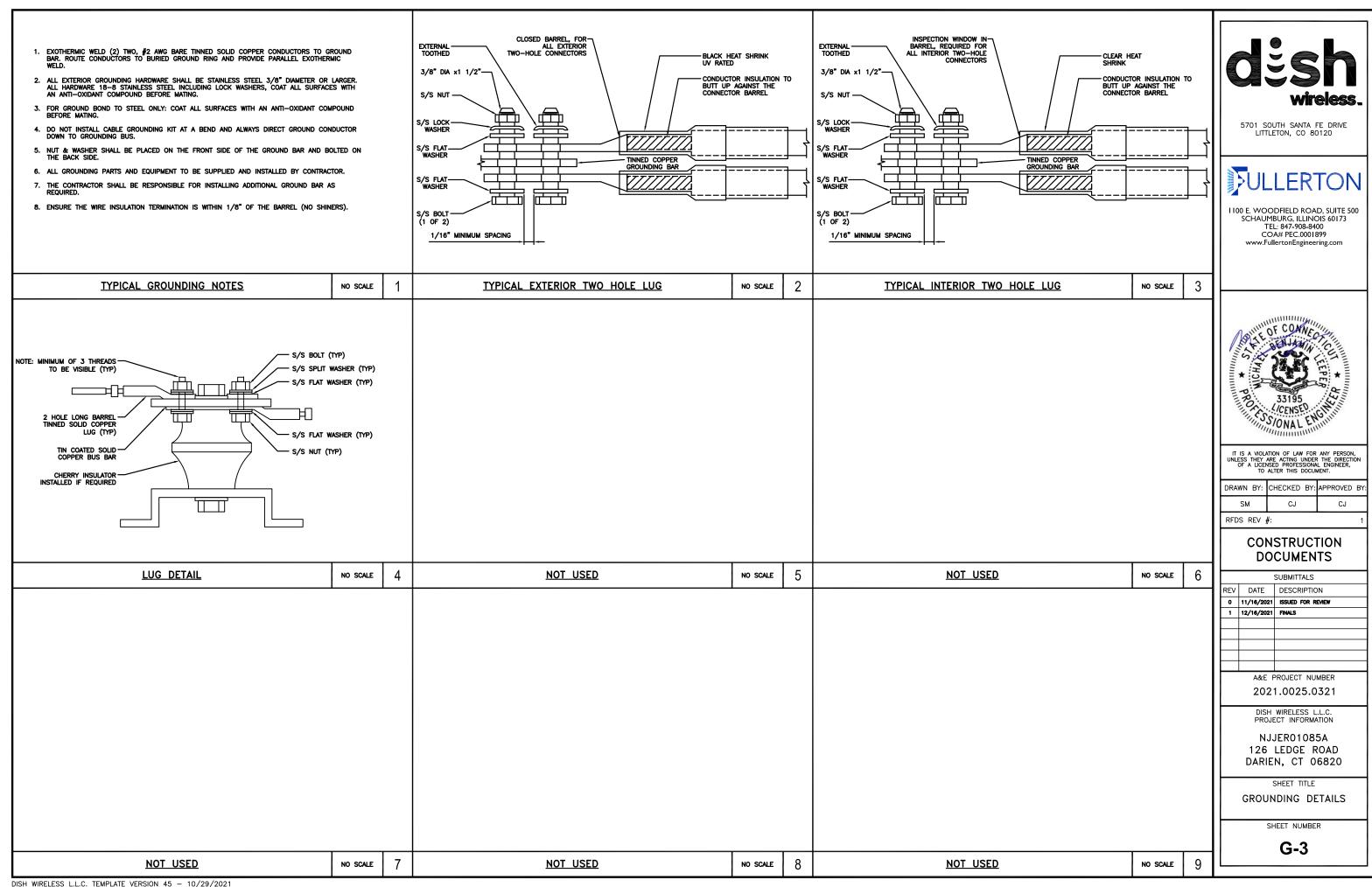
DISH WIRELESS L.L.C. PROJECT INFORMATION

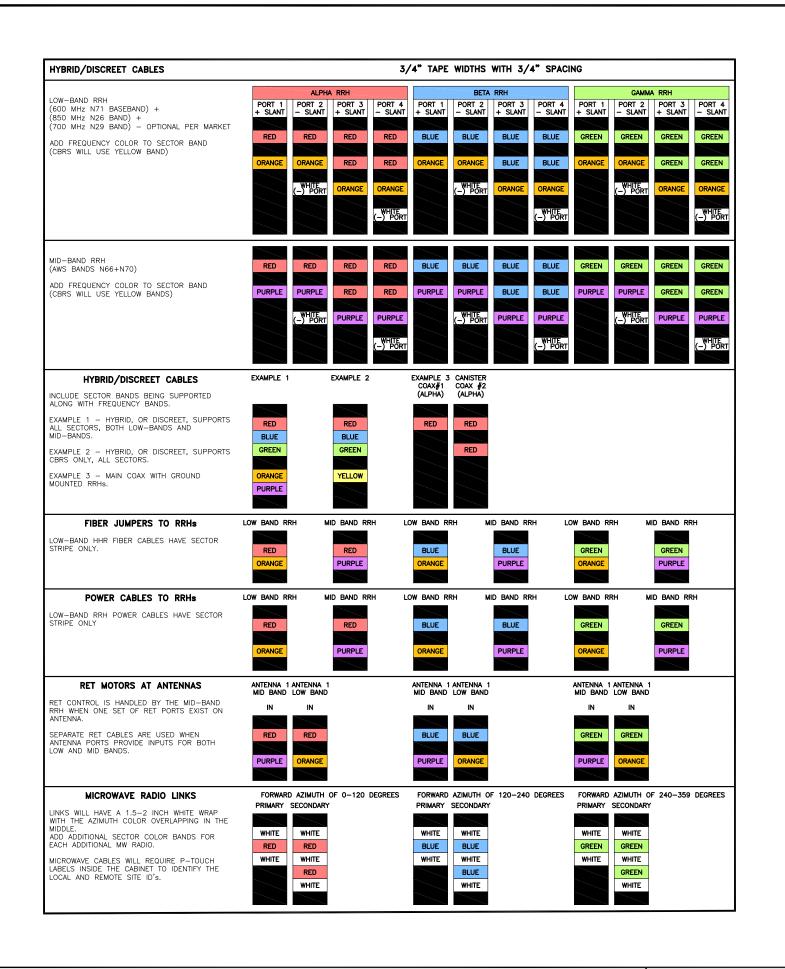
NJJER01085A 126 LEDGE ROAD DARIEN, CT 06820

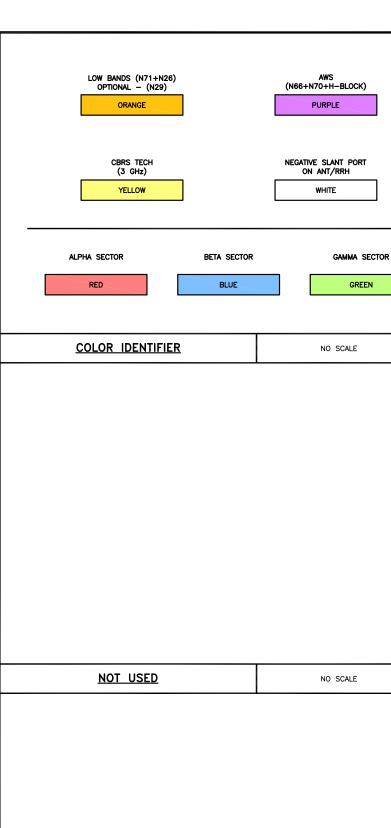
SHEET TITLE

GROUNDING PLANS AND NOTES


SHEET NUMBER


NO SCALE


G-1


TYPICAL ANTENNA GROUNDING PLAN NO SCALE **GROUNDING KEY NOTES**

BUSS BAR (TYP OF (3))

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

I 100 E. WOODFIELD ROAD, SUITE 500 SCHAUMBURG, ILLINOIS 60173 TFI: 847-908-8400 COA# PEC.0001899 www.FullertonEngineering.com

GREEN

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

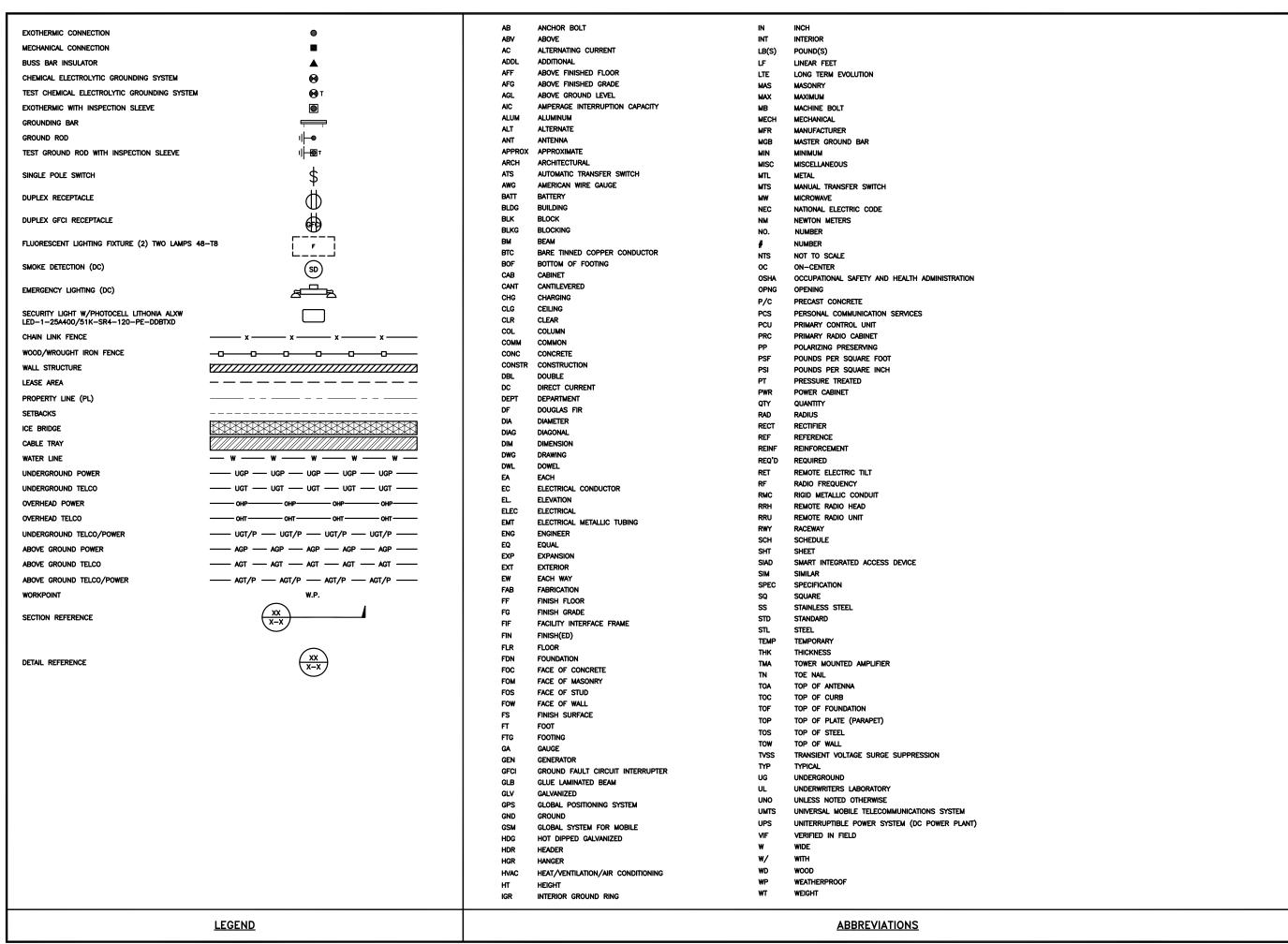
	DRAWN BY:	CHECKED B	r: APPROVED	BY
	SM	CJ	CJ	
	RFDS REV	#:		1

CONSTRUCTION

SUBMITTALS REV DATE DESCRIPTION 0 11/16/2021 ISSUED FOR REVIEW 1 12/16/2021 FINALS A&E PROJECT NUMBER

DOCUMENTS

DISH WIRELESS L.L.C.


2021.0025.0321

NJJER01085A 126 LEDGE ROAD DARIEN, CT 06820

SHEET TITLE CABLE COLOR CODE

SHEET NUMBER

RF-1

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

ULLERTON

I 100 E. WOODFIELD ROAD, SUITE 500 SCHAUMBURG, ILLINOIS 60173 TEL: 847-908-8400 COA# PEC.0001899 www.FullertonEngineering.com

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
SM		CJ		CJ	

RFDS REV #:

CONSTRUCTION DOCUMENTS

	SUBMITTALS			
REV	DATE	DESCRIPTION		
0	11/16/2021	ISSUED FOR REVIEW		
1	12/16/2021	FINALS		
	Δ&F F	PROJECT NUMBER		

2021.0025.0321

DISH WIRELESS L.L.C. PROJECT INFORMATION

NJJER01085A 126 LEDGE ROAD DARIEN, CT 06820

SHEET TITLE

LEGEND AND ABBREVIATIONS

SHEET NUMBER

GN-1

SITE ACTIVITY REQUIREMENTS:

- 1. NOTICE TO PROCEED NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER CONSTRUCTION MANAGER.
- 2. "LOOK UP" DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH Wireless L.L.C. AND DISH Wireless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

- 3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
- 4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIFELDS L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).
- 5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
- 6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.
- 11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
- 12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIReless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.
- 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
- 15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
- 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.
- 18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.
- 22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER:TOWER OWNER

- 2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
- 3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.
- 4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.
- 5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.
- 6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION
- 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS
- 12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER
- 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

ULLERTON

1100 E. WOODFIELD ROAD, SUITE 500 SCHAUMBURG, ILLINOIS 60173 TEL: 847-908-8400 COA# PEC.0001899 www.FullertonEngineering.com

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	SM	CJ	CJ	
	DRAWN BY:	CHECKED BY	: APPROVED	B,

CONSTRUCTION DOCUMENTS

	SUBMITTALS		
REV	DATE	DESCRIPTION	
0	11/16/2021	ISSUED FOR REVIEW	
1	12/16/2021	FINALS	
	A&E F	PROJECT NUMBER	

2021.0025.0321

DISH WIRELESS L.L.C. PROJECT INFORMATION

NJJER01085A 126 LEDGE ROAD DARIEN, CT 06820

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GN-2

DISH WIRELESS L.L.C. TEMPLATE VERSION 45 - 10/29/2021

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

- 1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST—IN—PLACE CONCRETE.
- 2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.
- 3. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90'f AT TIME OF PLACEMENT.
- 4. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.
- 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

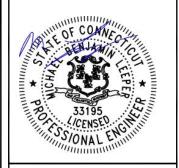
#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

- 6. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:
- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- · CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- · CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2*
- 7. A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

- 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.
- 2. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
- 3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
- 4. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.
- 4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.
- 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.
- 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR—CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
- 6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).
- 7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.
- 8. TIE WRAPS ARE NOT ALLOWED.
- 9. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.
- 12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75° C (90° C IF AVAILABLE).
- 14. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.
- 15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.


- ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.
- 18. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- 19. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.
- 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE NEC.
- 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).
- 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).
- 23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.
- 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS.
- 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY—COATED OR NON—CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- 28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.".
- 30. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

ULLERTON

1100 E. WOODFIELD ROAD, SUITE 500 SCHAUMBURG, ILLINOIS 60173 TEL: 847-908-8400 COA# PEC.0001899 www.FullertonEngineering.com

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN BY:	CHECKED E	BY: AF	PROVED	BY
	SM	CJ		CJ	
	DEDC DE/	"			

CONSTRUCTION DOCUMENTS

	SUBMITTALS		
REV	DATE	DESCRIPTION	
0	11/16/2021	ISSUED FOR REVIEW	
1	12/16/2021	FINALS	
	A&E PROJECT NUMBER		
1			

2021.0025.0321

NJJER01085A 126 LEDGE ROAD DARIEN, CT 06820

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GN-3

GROUNDING NOTES:

- 1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 2. THE CONTRACTOR SHALL PERFORM IEEE FALL—OF—POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
- 4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
- 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
- 8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.
- 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
- 13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND RAR.
- 15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.
- 19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
- 21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/O COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

ULLERTON

I 100 E. WOODFIELD ROAD, SUITE 500 SCHAUMBURG, ILLINOIS 60173 TEL: 847-908-8400 COA# PEC.0001899 www.FullertonEngineering.com

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SM	CJ	CJ
DRAWN BY:	CHECKED BY:	APPROVED BY:

RFDS REV #:

CONSTRUCTION DOCUMENTS

		SUBMITTALS			
	REV	DATE	DESCRIPTION		
П	0	11/16/2021	ISSUED FOR REVIEW		
ı	1	12/16/2021	FINALS		
ı					
ı					
ı					
ı					
ı					
		∧ 9 ₄ ⊏ □	DOLECT NUMBER		

2021.0025.0321

DISH WIRELESS L.L.C. PROJECT INFORMATION

NJJER01085A 126 LEDGE ROAD DARIEN, CT 06820

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GN-4

GIN-4

Exhibit D

Structural Analysis Report

Date: June 28, 2021

Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 (724) 416-2000

Subject: Structural Analysis Report

Carrier Designation: DISH Network Co-Locate

Site Number: NJJER01085A Site Name: CT-CCI-T-806352

Crown Castle Designation: BU Number: 806352

Site Name: BRG 302 943052

 JDE Job Number:
 640162

 Work Order Number:
 1965407

 Order Number:
 548684 Rev. 5

Engineering Firm Designation: Crown Castle Project Number: 1965407

Site Data: 126 Ledge Road, DARIEN, FAIRFIELD County, CT

Latitude 41° 4' 20.75", Longitude -73° 28' 41.4"

117 Foot - Monopole Tower

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity-97.8%

This analysis utilizes an ultimate 3-second gust wind speed of 120 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Abigail Ruiz / TS

Respectfully submitted by:

Terry P. Styran, P.E. Senior Project Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity-LC7
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 117 ft Monopole tower designed by VALMONT. The tower has been modified multiple times to accommodate additional loading

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Wind Speed: 120 mph

Exposure Category:BTopographic Factor:1Ice Thickness:1.5 inWind Speed with Ice:50 mphService Wind Speed:60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Flovation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
76.0	76.0	3	fujitsu	TA08025-B604	1	1-3/8
		3	fujitsu	TA08025-B605		
		3	jma wireless	MX08FRO665-21 w/ Mount Pipe		
		1	raycap	RDIDC-9181-PF-48		
		1	tower mounts	Commscope MC-PK8-DSH		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
117.0	119.0	3	alcatel lucent	TD-RRH8X20-25	3 1	1-1/4 5/8
		9	rfs celwave	ACU-A20-N		
		3	rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe		
		3	rfs celwave	APXVTM14-ALU-I20 w/ Mount Pipe		
	117.0	1	tower mounts	T-Arm Mount [TA 702-3]		
115.0	115.0	3	alcatel lucent	800 EXTERNAL NOTCH FILTER	-	-
		3	alcatel lucent	800MHZ RRH		
		3	alcatel lucent	PCS 1900MHz 4x45W-65MHz		
		1	tower mounts	Side Arm Mount [SO 102-3]		
108.0	108.0	3	commscope	SDX1926Q-43	13	1-5/8
		3	ericsson	AIR 32 B2A B66AA w/ Mount Pipe		
		3	ericsson	AIR6449 B41_T-MOBILE w/ Mount Pipe		
		3	ericsson	KRY 112 144/1		
		3	ericsson	RADIO 4449 B71 B85A_T- MOBILE		

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	ericsson	RRUS 4415 B25_CCIV2		
		3	rfs celwave	APXVAARR24_43-U-NA20 w/ Mount Pipe		
		1	tower mounts	Platform Mount [LP 303-1_HR-1]		
	104.0	1	gps	GPS_A		
		6	decibel	DB844G65ZAXY w/ Mount Pipe		
		6	jma wireless	MX06FRO660-02 w/ Mount Pipe		
1		1	rfs celwave	DB-C1-12C-24AB-0Z		
100.0	102.0	3	samsung telecommunications	RFV01U-D1A	7	7/8 1-5/8
		3	samsung telecommunications	RFV01U-D2A		
		3	VZW	Sub6 Antenna - VZS01 w/ Mount Pipe		
	100.0	1	tower mounts	Platform Mount [LP 715-1]		
	95.0	1	andrew	VHLP1-23		
93.0	94.0	1	andrew	VHLP2-11		
	94.0	1	andrew	VHLP800-11	4	7983A
	93.0	1	tower mounts	Pipe Mount [PM 601-3]		
	92.0	1	andrew	VHLP1-23		
		2	cci antennas	HPA65R-BU6A		
		1	cci antennas	HPA65R-BU8A		
		2	cci antennas	OPA-65R-LCUU-H6		
		1	cci antennas	OPA-65R-LCUU-H8		
		1	cci antennas	TPA-65R-LCUUUU-H8		
		6	cci antennas	TPX-070821		
1		3	ericsson	RRUS 11 B12		
1		3	ericsson	RRUS 32 B2	40	4 4 / 4
1		3	ericsson	RRUS 32 B30	12 4	1-1/4 5/8
89.0	89.0	3	ericsson	RRUS 4426 B66	2	7/8
		3	ericsson	RRUS E2 B29	2	3/8
		3	powerwave technologies	7770.00	3	Conduit
		6	powerwave technologies	LGP21401		
		2	quintel technology	QS66512-2		
		1	raycap	DC6-48-60-18-8C-EV		
		2	raycap	DC6-48-60-18-8F		
		1	tower mounts	Platform Mount [LP 301- 1_KCKR]		
84.0	84.0	3	kathrein	800 10504	6	1-5/8
04.0	04.0	1	tower mounts	Pipe Mount [PM 601-3]	U	1-5/6

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	217769	CCISITES
4-POST-MODIFICATION INSPECTION	6232380	CCISITES
4-POST-MODIFICATION INSPECTION	6122311	CCISITES
4-POST-MODIFICATION INSPECTION	5077215	CCISITES
4-POST-MODIFICATION INSPECTION	4069331	CCISITES
4-POST-MODIFICATION INSPECTION	2785508	CCISITES
4-POST-MODIFICATION INSPECTION	2218625	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	3907710	CCISITES
4-TOWER MANUFACTURER DRAWINGS	217772	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	6083070	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	5969651	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	5632030	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	4115809	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	4062469	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	2743848	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	1094732	CCISITES

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

tnxTower was used to determine the loads on the modified structure. Additional calculations were performed to determine the stresses in the pole and in the reinforcing elements. These calculations are presented in Appendix C.

3.2) Assumptions

- Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fail
L1	117 - 112	Pole	TP15.489x14.36x0.1875	Pole	6.3%	Pass
L2	112 - 110	Pole	TP15.94x15.489x0.1875	Pole	8.3%	Pass

Section No.	Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fail
L3	110 - 105	Pole	TP17.07x15.94x0.1875	Pole	19.0%	Pass
L4	105 - 100	Pole	TP18.2x17.07x0.1875	Pole	27.3%	Pass
L5	100 - 95	Pole	TP19.331x18.2x0.25	Pole	30.8%	Pass
L6	95 - 90	Pole	TP20.461x19.331x0.25	Pole	38.7%	Pass
L7	90 - 85	Pole	TP21.592x20.461x0.25	Pole	49.2%	Pass
L8	85 - 82.38	Pole	TP22.184x21.592x0.25	Pole	54.4%	Pass
L9	82.38 - 82.13	Pole	TP22.241x22.184x0.25	Pole	54.8%	Pass
L10	82.13 - 81.88	Pole	TP22.298x22.241x0.25	Pole	55.3%	Pass
L11	81.88 - 81.63	Pole + Reinf.	TP22.354x22.298x0.35	Reinf. 12 Tension Rupture	50.8%	Pass
L12	81.63 - 76.63	Pole + Reinf.	TP23.485x22.354x0.3563	Reinf. 12 Tension Rupture	58.9%	Pass
L13	76.63 - 76	Pole + Reinf.	TP23.627x23.485x0.3563	Reinf. 12 Tension Rupture	59.8%	Pass
L14	76 - 75.75	Pole + Reinf.	TP23.684x23.627x0.4625	Reinf. 13 Tension Rupture	54.9%	Pass
L15	75.75 - 70.75	Pole + Reinf.	TP24.814x23.684x0.45	Reinf. 13 Tension Rupture	62.8%	Pass
L16	70.75 - 70.5	Pole + Reinf.	TP24.871x24.814x0.675	Reinf. 5 Compression	50.5%	Pass
L17	70.5 - 67.98	Pole + Reinf.	TP25.441x24.871x0.7125	Reinf. 5 Compression	47.0%	Pass
L18	67.98 - 67.73	Pole + Reinf.	TP25.497x25.441x0.7125	Reinf. 5 Compression	47.3%	Pass
L19	67.73 - 63.5	Pole + Reinf.	TP26.454x25.497x0.6875	Reinf. 5 Compression	51.5%	Pass
L20	63.5 - 63.25	Pole + Reinf.	TP26.51x26.454x0.9	Reinf. 5 Compression	41.0%	Pass
L21	63.25 - 58.25	Pole + Reinf.	TP27.641x26.51x0.85	Reinf. 5 Compression	44.8%	Pass
L22	58.25 - 53.25	Pole + Reinf.	TP28.772x27.641x0.825	Reinf. 5 Compression	48.3%	Pass
L23	53.25 - 52	Pole + Reinf.	TP30.09x28.772x0.825	Reinf. 5 Compression	49.2%	Pass
L24	52 - 46.42	Pole + Reinf.	TP29.815x28.554x0.8438	Reinf. 7 Tension Rupture	52.9%	Pass
L25	46.42 - 43.5	Pole + Reinf.	TP30.474x29.815x0.8313	Reinf. 7 Tension Rupture	54.5%	Pass
L26	43.5 - 43.25	Pole + Reinf.	TP30.531x30.474x0.9938	Reinf. 7 Tension Rupture	46.0%	Pass
L27	43.25 - 38.25	Pole + Reinf.	TP31.66x30.531x0.9688	Reinf. 7 Tension Rupture	48.2%	Pass
L28	38.25 - 33.5	Pole + Reinf.	TP32.733x31.66x0.9438	Reinf. 7 Tension Rupture	50.3%	Pass
L29	33.5 - 33.25	Pole + Reinf.	TP32.79x32.733x0.9438	Reinf. 4 Compression	48.8%	Pass
L30	33.25 - 33	Pole + Reinf.	TP32.846x32.79x0.9438	Reinf. 4 Compression	48.9%	Pass
L31	33 - 32.75	Pole + Reinf.	TP32.902x32.846x0.9938	Reinf. 4 Compression	46.6%	Pass
L32	32.75 - 31.5	Pole + Reinf.	TP33.185x32.902x0.9938	Reinf. 4 Compression	47.0%	Pass
L33	31.5 - 31.25	Pole + Reinf.	TP33.241x33.185x0.8313	Reinf. 9 Tension Rupture	54.6%	Pass
L34	31.25 - 26.25	Pole + Reinf.	TP34.371x33.241x0.8188	Reinf. 9 Tension Rupture	56.5%	Pass
L35	26.25 - 21.25	Pole + Reinf.	TP35.5x34.371x0.7938	Reinf. 9 Tension Rupture	58.3%	Pass
L36	21.25 - 16.25	Pole + Reinf.	TP36.629x35.5x0.7813	Reinf. 9 Tension Rupture	59.9%	Pass
L37	1	Pole + Reinf.	TP37.251x36.629x0.7688		60.8%	Pass
	16.25 - 13.5 13.5 - 13.25		TP37.307x37.251x0.7688	Reinf. 9 Tension Rupture		1
L38		Pole + Reinf.		Reinf. 6 Tension Rupture	61.7%	Pass
L39	13.25 - 9	Pole + Reinf.	TP38.267x37.307x0.7688	Reinf. 6 Tension Rupture	62.9%	Pass
L40	9 - 8.75	Pole + Reinf.	TP38.324x38.267x0.8188	Reinf. 6 Tension Rupture	61.0%	Pass
L41	8.75 - 3.75	Pole + Reinf.	TP39.453x38.324x0.8063	Reinf. 6 Tension Rupture	62.3%	Pass
L42	3.75 - 0	Pole + Reinf.	TP40.3x39.453x0.7938	Reinf. 6 Tension Rupture	63.2%	Pass
			<u> </u>	D. I	Summary	
				Pole	55.3%	Pass
				Reinforcement	63.2%	Pass
				Overall	63.2%	Pass

Table 5 - Tower Component Stresses vs. Capacity-LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Flange Bolts	110	5.6	Pass
1	Flange Plate	110	10.1	Pass
1	Flange Bolts	100	23.5	Pass
1	Flange Plate	100	26.1	Pass
1	Anchor Rods	0	43.1	Pass
1	Base Plate	0	17.4	Pass
1	Base Foundation (Structure)	0	97.8	Pass
1	Base Foundation (Soil Interaction)	0	36.4	Pass

m all components) = 97.8%	Structure Rating (max from all c
---------------------------	----------------------------------

Notes:

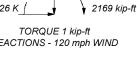
4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

¹⁾ See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

APPENDIX A TNXTOWER OUTPUT

Section length (#)	3.75	41 ,	40 39	38 37	36	35	34 3	33.230	3 28	27 26	26 25 24	23	22	21 2	20 19 1	8 17 7	16 15	£ 8	12 1119	8 69	7 200 5	9 20 25	5 00	4 00 3	3 5 00		2 8
Length (rt) Number of Sides	3.73	3.00 0	2 2	o 1 '		9.00	j _	13.2722	4.	າ່ `	- I ik	o	12		12	2 12 '	Q ~	<u>\$</u>		2 12			12	12	9.00	2 5	5
Thickness (in)	0.7937	7 0.8068.81	1807.768	807.768B766B688	8 0.7813	0.7937	0.81870	8.000000	B0 .9437	0.9688.9	98383038438	38 0.8250	0.8250	0.8500.9	0.850 0 .9000068757	70 2750 2557	5	20488630.	450 0 0482530.35630328800500	_	0.2500 0.	0.2500 0	0.2500	0.1875	0.1875 0.	1875	5 0.1875
Socket Length (ft)											_	4.58															
Top Dia (in)	39.4530		268771305	771.26062!	38.32 36 .28773087128606295 35.5001	34.3707	33.24533	8	1099 (BB)	30.53 08 .4	3482875E	42482875428.7717	27.6410	26.5108.4	1523B492753.	24 (874 C)	B1428.682	(3 38 68 4 2 72	.3540000	26.51 08. 4533849275241334081428.682233427272.35422238139202020.4613		19.3307	18.2000	17.0700	15.940015.488614.3600	5.4886	72
Bot Dia (in)	40.3000		323862G	W1307251	39.45 36 .3235263713072506 36.6295	35.5001	34.376233	18	1888 .7331	31.6600.5	10824381	31.6660.5008240814730.0900	28.7717	27.6426.5 (203345(2015) 2024(087)	3 (ZURB 4 523RB.	29.7294G	8	(233663)	4847773	.81 2233627 23.48 472723468 84421.5920		20.4613 19	19.3307	18.2000	17.070015.940015.4886	5.9400	~
Grade													A57.	A572-65													
Weight (K) 23.	0. 1.2	1.6	0.1 1.3	0.10.8	1.4	4:1	1.4 0	0.0.0	4:1	1.5 0.1	10.7 1.4	4.1	1.1	1.1	0.1 0.7 0	0.00.40.0	0.7	è	0.5	0000000.2	0.3	0.3	0.3	0.2	0.2	0.1	
	<u>0.0 ft</u>	<u>3.8 ft</u>	9.0 ft	<u>13.5 ft</u>	<u>16.3 ft</u>	<u>21.3 ft</u>	<u>26.3 ft</u>	31.5 ft	33.5 ft	38.3 ft	43.5 ft	<u>47.4 ft</u>	<u>53.3 ft</u>	<u>58.3 ft</u>	63.5 ft	68.0 ft	<u>70.8 ft</u>	76.6 ft		85.0 ft 82.4 ft	90.0 ft	95.0 ft	100.0 ft		105.0 ft	112.0 ft 110.0 ft	
																			п								
	26 K <u>∫</u>	SHEAR			SHEAR 6 K		ARE F							\bigcirc													
UE 1 kip-ft - 120 mph WIND	_	51 K MOME	XIAL	UE 0 kip-ft D - 1.5000 in ICE	MOMEI 568 kip	XIAL 39 K	EACTIONS ACTORED															 Tower Ris Topograph TOWER F 	 Tower is a increase i Deflection 	 Tower is le Tower des Tower des 	A572-65	GRADE	


MATERIAL STRENGTH

			-		
GRADE	Fy	Fu	GRADE	Fy	Fu
Δ572-65	65 kei	80 kei			

TOWER DESIGN NOTES

- ower is located in Fairfield County, Connecticut.

 Tower designed for Exposure B to the TIA-222-H Standard.
- ower designed for a 120 mph basic wind in accordance with the TIA-222-H Standard. ower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to
- ncrease in thickness with height.
- Deflections are based upon a 60 mph wind.
- ower Risk Category II.
 opographic Category 1 with Crest Height of 0.00 ft
 OWER RATING: 63.2%

MOMENT 568 kip-ft

MOMENT

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower is located in Fairfield County, Connecticut.
- Tower base elevation above sea level: 71.00 ft.
- Basic wind speed of 120 mph.
- · Risk Category II.
- Exposure Category B.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.00 ft.
- Nominal ice thickness of 1.5000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60 mph.
- TOWER RATING: 63.2%.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.05.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: K_{es}(F_w) = 0.95, K_{es}(t_i) = 0.85.
- Maximum demand-capacity ratio is: 1.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios

 √ Use Code Safety Factors - Guys Escalate Ice
 Always Use Max Kz

Always Use Max Kz Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
 Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
 √ Lies Azimuth Dish Coefficients
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination

√ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

 ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption

Poles

✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	117.00-112.00	5.00	0.00	12	14.3600	15.4886	0.1875	0.7500	A572-65
L2	112.00-110.00	2.00	0.00	12	15.4886	15.9400	0.1875	0.7500	(65 ksi) A572-65
L3	110.00-105.00	5.00	0.00	12	15.9400	17.0700	0.1875	0.7500	(65 ksi) A572-65
									(65 ksi)
L4	105.00-100.00	5.00	0.00	12	17.0700	18.2000	0.1875	0.7500	A572-65 (65 ksi)
L5	100.00-95.00	5.00	0.00	12	18.2000	19.3307	0.2500	1.0000	À572-65
L6	95.00-90.00	5.00	0.00	12	19.3307	20.4613	0.2500	1.0000	(65 ksi) A572-65
L7	90.00-85.00	5.00	0.00	12	20.4613	21.5920	0.2500	1.0000	(65 ksi) A572-65
L8	85.00-82.38	2.62	0.00	12	21.5920	22.1844	0.2500	1.0000	(65 ksi) A572-65
									(65 ksi)
L9	82.38-82.13	0.25	0.00	12	22.1844	22.2410	0.2500	1.0000	A572-65 (65 ksi)
L10	82.13-81.88	0.25	0.00	12	22.2410	22.2975	0.2500	1.0000	A572-65 (65 ksi)
L11	81.88-81.63	0.25	0.00	12	22.2975	22.3540	0.3500	1.4000	À572-65
L12	81.63-76.63	5.00	0.00	12	22.3540	23.4847	0.3563	1.4250	(65 ksi) A572-65
L13	76.63-76.00	0.63	0.00	12	23.4847	23.6272	0.3563	1.4250	(65 ksi) A572-65
L14	76.00-75.75	0.25	0.00	12	23.6272	23.6837	0.4625	1.8500	(65 ksi) A572-65
									(65 ksi)
L15	75.75-70.75	5.00	0.00	12	23.6837	24.8144	0.4500	1.8000	A572-65 (65 ksi)
L16	70.75-70.50	0.25	0.00	12	24.8144	24.8709	0.6750	2.7000	A572-65 (65 ksi)
L17	70.50-67.98	2.52	0.00	12	24.8709	25.4407	0.7125	2.8500	A572-65 (65 ksi)
L18	67.98-67.73	0.25	0.00	12	25.4407	25.4973	0.7125	2.8500	À572-65
L19	67.73-63.50	4.23	0.00	12	25.4973	26.4538	0.6875	2.7500	(65 ksi) A572-65
L20	63.50-63.25	0.25	0.00	12	26.4538	26.5103	0.9000	3.6000	(65 ksi) A572-65
L21	63.25-58.25	5.00	0.00	12	26.5103	27.6410	0.8500	3.4000	(65 ksi) A572-65
									(65 ksi)
L22	58.25-53.25	5.00	0.00	12	27.6410	28.7717	0.8250	3.3000	A572-65 (65 ksi)
L23	53.25-47.42	5.83	4.58	12	28.7717	30.0900	0.8250	3.3000	A572-65 (65 ksi)
L24	47.42-46.42	5.58	0.00	12	28.5543	29.8147	0.8438	3.3750	A572-65 (65 ksi)
L25	46.42-43.50	2.92	0.00	12	29.8147	30.4743	0.8313	3.3250	À572-65
L26	43.50-43.25	0.25	0.00	12	30.4743	30.5308	0.9938	3.9750	(65 ksi) A572-65
L27	43.25-38.25	5.00	0.00	12	30.5308	31.6601	0.9688	3.8750	(65 ksi) A572-65
					31.6601				(65 ksi)
L28	38.25-33.50	4.75	0.00	12		32.7331	0.9437	3.7750	A572-65 (65 ksi)
L29	33.50-33.25	0.25	0.00	12	32.7331	32.7895	0.9437	3.7750	A572-65 (65 ksi)
L30	33.25-33.00	0.25	0.00	12	32.7895	32.8460	0.9437	3.7750	À572-65 (65 ksi)
L31	33.00-32.75	0.25	0.00	12	32.8460	32.9025	0.9938	3.9750	À572-65
L32	32.75-31.50	1.25	0.00	12	32.9025	33.1848	0.9938	3.9750	(65 ksi) A572-65
L33	31.50-31.25	0.25	0.00	12	33.1848	33.2413	0.8313	3.3250	(65 ksi) A572-65
L34	31.25-26.25	5.00	0.00	12	33.2413	34.3707	0.8187	3.2750	(65 ksi) A572-65
									(65 ksi)
L35	26.25-21.25	5.00	0.00	12	34.3707	35.5001	0.7937	3.1750	A572-65

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	
									(65 ksi)
L36	21.25-16.25	5.00	0.00	12	35.5001	36.6295	0.7813	3.1250	A572-65
									(65 ksi)
L37	16.25-13.50	2.75	0.00	12	36.6295	37.2506	0.7688	3.0750	A572-65
									(65 ksi)
L38	13.50-13.25	0.25	0.00	12	37.2506	37.3071	0.7688	3.0750	À572-65
									(65 ksi)
L39	13.25-9.00	4.25	0.00	12	37.3071	38.2671	0.7688	3.0750	A572-65
									(65 ksi)
L40	9.00-8.75	0.25	0.00	12	38.2671	38.3236	0.8187	3.2750	A572-65
									(65 ksi)
L41	8.75-3.75	5.00	0.00	12	38.3236	39.4530	0.8063	3.2250	A572-65
									(65 ksi)
L42	3.75-0.00	3.75		12	39.4530	40.3000	0.7937	3.1750	A572-65
									(65 ksi)

Tapered Pole	Properties
--------------	------------

Section	Tip Dia.	Area	 	r	C	I/C	J in4	It/Q	W	w/t
1.4	in	in ²	in⁴	in	in	in ³	in ⁴	in ²	in	47.045
L1	14.8004	8.5566	219.3727	5.0738	7.4385	29.4916	444.5085	4.2113	3.3460	17.845
	15.9688	9.2380	276.0632	5.4778	8.0231	34.4086	559.3790	4.5467	3.6484	19.458
L2	15.9688	9.2380	276.0632	5.4778	8.0231	34.4086	559.3790	4.5467	3.6484	19.458
	16.4362	9.5106	301.2254	5.6394	8.2569	36.4816	610.3643	4.6808	3.7694	20.104
L3	16.4362	9.5106	301.2254	5.6394	8.2569	36.4816	610.3643	4.6808	3.7694	20.104
	17.6060	10.1928	370.8116	6.0439	8.8423	41.9363	751.3649	5.0166	4.0723	21.719
L4	17.6060	10.1928	370.8116	6.0439	8.8423	41.9363	751.3649	5.0166	4.0723	21.719
	18.7759	10.8750	450.3655	6.4485	9.4276	47.7710	912.5625	5.3524	4.3751	23.334
L5	18.7538	14.4498	594.2582	6.4261	9.4276	63.0339	1204.1282	7.1117	4.2076	16.83
	19.9244	15.3599	713.7759	6.8309	10.0133	71.2829	1446.3035	7.5597	4.5106	18.042
L6	19.9244	15.3599	713.7759	6.8309	10.0133	71.2829	1446.3035	7.5597	4.5106	18.042
	21.0949	16.2701	848.3315	7.2357	10.5990	80.0391	1718.9497	8.0077	4.8136	19.255
L7	21.0949	16.2701	848.3315	7.2357	10.5990	80.0391	1718.9497	8.0077	4.8136	19.255
	22.2655	17.1803	998.8162	7.6404	11.1846	89.3025	2023.8725	8.4556	5.1166	20.467
L8	22.2655	17.1803	998.8162	7.6404	11.1846	89.3025	2023.8725	8.4556	5.1166	20.467
	22.8788	17.6572	1084.3299	7.8525	11.4915	94.3590	2197.1463	8.6903	5.2754	21.102
L9	22.8788	17.6572	1084.3299	7.8525	11.4915	94.3590	2197.1463	8.6903	5.2754	21.102
	22.9374	17.7027	1092.7356	7.8728	11.5208	94.8487	2214.1787	8.7127	5.2906	21.162
L10	22.9374	17.7027	1092.7356	7.8728	11.5208	94.8487	2214.1787	8.7127	5.2906	21.162
	22.9959	17.7482	1101.1847	7.8930	11.5501	95.3398	2231.2988	8.7351	5.3057	21.223
L11	22.9606	24.7348	1520.7763	7.8572	11.5501	131.6677	3081.5051	12.1737	5.0377	14.394
	23.0191	24.7986	1532.5584	7.8774	11.5794	132.3522	3105.3788	12.2051	5.0529	14.437
L12	23.0169	25.2342	1558.5966	7.8752	11.5794	134.6009	3158.1393	12.4195	5.0361	14.137
	24.1875	26.5312	1811.4905	8.2800	12.1651	148.9091	3670.5708	13.0579	5.3391	14.987
L13	24.1875	26.5312	1811.4905	8.2800	12.1651	148.9091	3670.5708	13.0579	5.3391	14.987
	24.3350	26.6946	1845.1715	8.3310	12.2389	150.7632	3738.8177	13.1383	5.3773	15.094
L14	24.2975	34.4980	2362.8236	8.2929	12.2389	193.0590	4787.7211	16.9789	5.0926	11.011
	24.3560	34.5822	2380.1651	8.3132	12.2682	194.0117	4822.8598	17.0203	5.1077	11.044
L15	24.3604	33.6656	2319.5782	8.3177	12.2682	189.0731	4700.0943	16.5692	5.1412	11.425
	25.5310	35.3039	2674.9694	8.7224	12.8538	208.1067	5420.2133	17.3755	5.4442	12.098
L16	25.4516	52.4669	3902.3149	8.6419	12.8538	303.5915	7907.1479	25.8226	4.8412	7.172
	25.5101	52.5897	3929.7957	8.6621	12.8831	305.0345	7962.8314	25.8831	4.8564	7.195
L17	25.4969	55.4254	4128.8606	8.6487	12.8831	320.4862	8366.1910	27.2787	4.7559	6.675
	26.0868	56.7328	4427.9835	8.8527	13.1783	336.0057	8972.2951	27.9221	4.9086	6.889
L18	26.0868	56.7328	4427.9835	8.8527	13.1783	336.0057	8972.2951	27.9221	4.9086	6.889
	26.1454	56.8625	4458.4224	8.8729	13.2076	337.5653	9033.9725	27.9860	4.9238	6.911
L19	26.1542	54.9226	4315.0177	8.8819	13.2076	326.7076	8743.3957	27.0312	4.9908	7.259
	27.1445	57.0402	4833.6022	9.2243	13.7031	352.7386	9794.1885	28.0734	5.2471	7.632
L20	27.0695	74.0549	6172.3566	9.1483	13.7031	450.4360	12506.867	36.4476	4.6776	5.197
-							9	-		
	27.1280	74.2188	6213.4128	9.1685	13.7324	452.4652	12590.059 0	36.5282	4.6928	5.214
L21	27.1457	70.2323	5902.6606	9.1864	13.7324	429.8360	11960.390 7	34.5662	4.8268	5.679

Section	Tip Dia.	Area	1	r	С	I/C	J	It/Q	W	w/t
	<i>in</i> 28.3162	in² 73.3270	<i>in⁴</i> 6717.8032	<i>in</i> 9.5912	<i>in</i> 14.3180	in³ 469.1847	<i>in</i> ⁴ 13612.090	in ² 36.0893	<i>in</i> 5.1298	6.035
L22	28.3250	71.2367	6538.4908	9.6001	14.3180	456.6612	6 13248.755	35.0605	5.1968	6.299
	29.4956	74.2403	7400.9109	10.0049	14.9037	496.5816	1 14996.252	36.5388	5.4998	6.666
L23	29.4956	74.2403	7400.9109	10.0049	14.9037	496.5816	0 14996.252 0	36.5388	5.4998	6.666
	30.8604	77.7425	8498.4819	10.4769	15.5866	545.2421	17220.228 5	38.2625	5.8531	7.095
L24	30.3350	75.2861	7378.9037	9.9204	14.7911	498.8734	14951.659 5	37.0536	5.3913	6.39
	30.5688	78.7105	8432.2733	10.3716	15.4440	545.9894	17086.071 7	38.7389	5.7291	6.79
L25	30.5732	77.5779	8318.1084	10.3761	15.4440	538.5972	16854.742 7	38.1815	5.7626	6.932
	31.2561	79.3433	8899.0056	10.6122	15.7857	563.7391	18031.798 0	39.0504	5.9394	7.145
L26	31.1987	94.3340	10464.658 1	10.5540	15.7857	662.9210	21204.234 5	46.4283	5.5039	5.538
	31.2572	94.5147	10524.907 5	10.5742	15.8149	665.5045	21326.316	46.5173	5.5190	5.554
L27	31.2660	92.2150	10286.204 4	10.5832	15.8149	650.4110	20842.638	45.3854	5.5860	5.766
	32.4353	95.7380	11510.747 0	10.9875	16.4000	701.8767	23323.894	47.1193	5.8887	6.079
L28	32.4441	93.3433	11241.120 5	10.9965	16.4000	685.4360	22777.557 7	45.9407	5.9557	6.311
	33.5548	96.6038	12460.701 7	11.3806	16.9557	734.8962	25248.760 0	47.5454	6.2432	6.615
L29	33.5548	96.6038	12460.701 7	11.3806	16.9557	734.8962	-	47.5454	6.2432	6.615
	33.6133	96.7754	12527.223 5	11.4008	16.9850	737.5471	25383.551 1	47.6299	6.2583	6.631
L30	33.6133	96.7754	12527.223 5	11.4008	16.9850	737.5471	25383.551 1	47.6299	6.2583	6.631
	33.6718	96.9470	12593.982 8	11.4210	17.0142	740.2028	25518.823 6	47.7144	6.2735	6.647
L31	33.6541	101.9232	13198.959 0	11.4031	17.0142	775.7599	26744.669 3	50.1635	6.1395	6.178
	33.7126	102.1039	13269.283 7	11.4233	17.0435	778.5546	26887.166 3	50.2525	6.1546	6.193
L32	33.7126	102.1039	13269.283 7	11.4233	17.0435	778.5546	26887.166 3	50.2525	6.1546	6.193
	34.0049	103.0074	13624.654 1	11.5244	17.1897	792.6038	27607.243 0	50.6971	6.2303	6.269
L33	34.0622	86.5984	11570.187 3	11.5826	17.1897	673.0868	23444.336	42.6211	6.6658	8.019
	34.1207	86.7495	11630.875 9	11.6028	17.2190	675.4679	23567.307	42.6955	6.6809	8.037
L34	34.1251	85.4780	11469.235 8	11.6073	17.2190	666.0806	23239.781	42.0697	6.7144	8.201
	35.2943	88.4555	12710.013	12.0116	17.8040	713.8846	25753.932 8	43.5351	7.0171	8.57
L35	35.3032	85.8185	12349.485 5	12.0205	17.8040	693.6348	25023.405 8	42.2372	7.0841	8.925
	36.4724	88.7050	13638.032	12.4249	18.3890	741.6391	27634.350 7	43.6579	7.3868	9.306
L36	36.4768	87.3396	13437.769 0	12.4293	18.3890	730.7487	27228.563	42.9859	7.4203	9.498
	37.6460	90.1807	14792.268 7	12.8337	18.9741	779.6045	_	44.3842	7.7229	9.885
L37	37.6504	88.7687	14570.823 9	12.8381	18.9741	767.9336	29524.439 7	43.6893	7.7564	10.09
	38.2935	90.3064	15341.186 1	13.0605	19.2958	795.0518	31085.402 3	44.4460	7.9229	10.306
L38	38.2935	90.3064	15341.186 1	13.0605	19.2958	795.0518	31085.402 3	44.4460	7.9229	10.306
	38.3520	90.4461	15412.535 9	13.0807	19.3251	797.5405	31229.976 3	44.5148	7.9381	10.326

Section	Tip Dia.	Area	1	r	С	I/C	J	It/Q	W	w/t
	in	in²	in⁴	in	in	in³	in⁴	in²	in	
L39	38.3520	90.4461	15412.535 9	13.0807	19.3251	797.5405	31229.976 3	44.5148	7.9381	10.326
	39.3458	92.8225	16659.546 8	13.4244	19.8224	840.4424	33756.758 4	45.6844	8.1953	10.661
L40	39.3282	98.7279	17672.213 6	13.4065	19.8224	891.5295	35808.696 0	48.5909	8.0613	9.846
	39.3866	98.8768	17752.280 4	13.4267	19.8516	894.2491	35970.932 9	48.6641	8.0765	9.864
L41	39.3911	97.3996	17498.738 0	13.4312	19.8516	881.4772	35457.187 4	47.9371	8.1100	10.059
	40.5603	100.3317	19127.094 3	13.8355	20.4366	935.9221	38756.678 7	49.3802	8.4126	10.434
L42	40.5647	98.8081	18848.828 0	13.8400	20.4366	922.3060	38192.835 6	48.6303	8.4461	10.641
	41.4416	100.9730	20115.136 5	14.1432	20.8754	963.5809	40758.720 0	49.6959	8.6731	10.927

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft²	in				in	in	in
L1 117.00-			1	1	1			
112.00								
L2 112.00-			1	1	1			
110.00								
L3 110.00-			1	1	1			
105.00								
L4 105.00-			1	1	1			
100.00								
L5 100.00-			1	1	1			
95.00								
L6 95.00-			1	1	1			
90.00								
L7 90.00-			1	1	1			
85.00								
L8 85.00-			1	1	1			
82.38			4		_			
L9 82.38-			1	1	1			
82.13			4		_			
L10 82.13-			1	1	1			
81.88			_		4 0007			
L11 81.88-			1	1	1.2627			
81.63			4	4	4 04 45 4			
L12 81.63-			1	1	1.21454			
76.63 L13 76.63-			1	1	1.2114			
76.00			ı	1	1.2114			
76.00 L14 76.00-			1	1	1.19704			
75.75			ı	1	1.19704			
L15 75.75-			1	1	1.19835			
70.75			'		1.19055			
L16 70.75-			1	1	1.0624			
70.50			•	•	1.0024			
L17 70.50-			1	1	0.913471			
67.98			•	•	0.010111			
L18 67.98-			1	1	0.912187			
67.73			•	•	0.0 .2 .0.			
L19 67.73-			1	1	0.922845			
63.50								
L20 63.50-			1	1	0.892013			
63.25								
L21 63.25-			1	1	0.915274			
58.25								
L22 58.25-			1	1	0.916274			
53.25								
L23 53.25-			1	1	0.910134			
47.42								

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft ²	in				in	in	in
L24 47.42-			1	1	0.92972			
46.42								
L25 46.42-			1	1	0.931507			
43.50								
L26 43.50-			1	1	0.925683			
43.25								
L27 43.25-			1	1	0.926913			
38.25								
L28 38.25-			1	1	0.930899			
33.50								
L29 33.50-			1	1	0.929894			
33.25			4		0.00000			
L30 33.25-			1	1	0.928893			
33.00			4	4	0.000705			
L31 33.00-			1	1	0.926725			
32.75			4	4	0.004004			
L32 32.75-			1	1	0.921631			
31.50			4	1	0.939232			
L33 31.50- 31.25			1	1	0.939232			
31.25 L34 31.25-			1	1	0.935251			
26.25			ı	1	0.933231			
26.25 L35 26.25-			1	1	0.046712			
21.25			ı	1	0.946713			
L36 21.25-			1	1	0.945083			
16.25			ı	,	0.943063			
L37 16.25-			1	1	0.951382			
13.50			'		0.931302			
L38 13.50-			1	1	0.990739			
13.25			'		0.990739			
L39 13.25-			1	1	0.976823			
9.00			'	•	0.570025			
L40 9.00-8.75			1	1	0.96322			
L41 8.75-3.75			1	1	0.961712			
L42 3.75-0.00			1	1	0.964889			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From	Componen	Placement	Total Number	Number Per Row	Start/En d	Width or Diamete	Perimete r	Weight
		Torque	Туре	ft	Nullibei	I GI KOW	Position	r	,	plf
		Calculation		,,			7 00/11/01/	in	in	ρ.,
Safety Line 3/8	В	No	Surface Ar (CaAa)	117.00 - 0.00	1	1	-0.250 -0.250	0.3750		0.22
HCS 6X12 4AWG(1- 5/8) **93**	В	No	Surface Ar (CaAa)	110.00 - 0.00	5	5	0.000 0.000	1.6600		2.40
7983A(ELLIPTICAL) **84**	Α	No	Surface Ar (CaAa)	93.00 - 0.00	4	4	0.250 0.250	0.5730		0.08
AVA7-50(1-5/8)	Α	No	Surface Ar (CaAa)	84.00 - 0.00	6	3	0.000 0.000	2.0100		0.70
Mods										
(Area) CCI-65FP- 060100 (H)	Α	No	Surface Af (CaAa)	35.00 - 0.00	1	1	0.500 0.500	6.0000	14.0000	0.00
(Area) CCI-65FP- 060100 (H)	С	No	Surface Af (CaAa)	35.00 - 0.00	1	1	0.500 0.500	6.0000	14.0000	0.00
(Area) CCI-65FP- 060100 (H)	В	No	Surface Af (CaAa)	35.00 - 0.00	1	1	0.500 0.500	6.0000	14.0000	0.00
(Area) CCI-65FP- 045100 (H)	Α	No	Surface Af (CaAa)	65.00 - 35.00	1	1	0.500 0.500	4.5000	11.0000	0.00

Description	Sector	Exclude From	Componen t	Placement	Total Number	Number Per Row	Start/En d	Width or Diamete	Perimete r	Weight
		Torque Calculation	Type	ft			Position	r in	in	plf
(Area) CCI-65FP- 045100 (H)	С	No	Surface Af (CaAa)	65.00 - 35.00	1	1	0.500 0.500	4.5000	11.0000	0.00
(Area) CCI-65FP- 045100 (H)	В	No	Surface Af (CaAa)	65.00 - 35.00	1	1	0.500 0.500	4.5000	11.0000	0.00
(Area) Sabre MS450 (1.00x4.50)	В	No	Surface Af (CaAa)	10.50 - 0.50	1	1	0.000 0.000	4.5000	11.0000	0.00
(Area) Sabre MS450 (1.00x4.50)	Α	No	Surface Af (CaAa)	45.00 - 30.00	1	1	0.000	4.5000	11.0000	0.00
(Area) Sabre MS450 (1.00x4.50)	С	No	Surface Af (CaAa)	45.00 - 30.00	1	1	0.000	4.5000	11.0000	0.00
(Area) Sabre MS450 (1.00x4.50)	В	No	Surface Af (CaAa)	45.00 - 30.00	1	1	0.000	4.5000	11.0000	0.00
(Area) Sabre MS450	Α	No	Surface Af	72.25 -	1	1	-0.250	4.5000	11.0000	0.00
(1.00x4.50) (Area) Sabre MS450	С	No	(CaAa) Surface Af	50.00 72.25 -	1	1	-0.250 -0.250	4.5000	11.0000	0.00
(1.00x4.50) (Area) Sabre MS450 (1.00x4.50)	В	No	(CaAa) Surface Af (CaAa)	50.00 72.25 - 50.00	1	1	-0.250 -0.250 -0.250	4.5000	11.0000	0.00
** (Area) CCI-65FP- 045100 (H)	Α	No	Surface Af (CaAa)	35.00 - 0.00	1	1	0.250 0.250	4.5000	11.0000	0.00
(Area) CCI-65FP- 045100 (H)	С	No	Surface Af (CaAa)	35.00 - 0.00	1	1	0.250 0.250 0.250	4.5000	11.0000	0.00
(Area) CCI-65FP- 045100 (H)	В	No	Surface Af (CaAa)	35.00 - 0.00	1	1	0.250 0.250 0.250	4.5000	11.0000	0.00
(Area) CCI-65FP-	Α	No	Surface Af	50.00 -	1	1	0.250	4.0000	9.5000	0.00
040075 (H) (Area) CCI-65FP-	С	No	(CaAa) Surface Af	35.00 50.00 -	1	1	0.250 0.250	4.0000	9.5000	0.00
040075 (H) (Area) CCI-65FP- 040075 (H)	В	No	(CaAa) Surface Af (CaAa)	35.00 50.00 - 35.00	1	1	0.250 0.250 0.250	4.0000	9.5000	0.00
** (Area) CCI-65FP-	С	No	Surface Af	35.50 -	1	1	0.000	4.5000	11.0000	0.00
045100 (H) (Area) CCI-65FP- 045100 (H)	В	No	(CaAa) Surface Af (CaAa)	0.50 35.50 - 0.50	1	1	0.000 0.000 0.000	4.5000	11.0000	0.00
** (Area) CCI-65FP- 045100 (H)	Α	No	Surface Af (CaAa)	35.50 - 10.50	1	1	0.000 0.000	4.5000	11.0000	0.00
** (Area) CCI-65FP-	Α	No	Surface Af	70.58 -	1	1	0.000	6.0000	14.0000	0.00
060100 (H) (Area) CCI-65FP-	С	No	(CaAa) Surface Af	35.58 70.58 -	1	1	0.000	6.0000	14.0000	0.00
060100 (H) (Area) CCI-65FP- 060100 (H)	В	No	(CaAa) Surface Af (CaAa)	35.58 70.58 - 35.58	1	1	0.000 0.000 0.000	6.0000	14.0000	0.00
** (Area) CCI-65FP- 045100 (H)	Α	No	Surface Af (CaAa)	83.88 - 65.17	1	1	0.500 0.500	4.5000	11.0000	0.00
** (Area) CCI-65FP- 045100 (H)	С	No	Surface Af (CaAa)	83.88 - 70.67	1	1	0.000 0.000	4.5000	11.0000	0.00
(Area) CCI-65FP- 045100 (H)	В	No	Surface Af (CaAa)	83.88 - 70.67	1	1	0.000	4.5000	11.0000	0.00
** (Area) CCI-65FP- 040075 (H)	Α	No	Surface Af (CaAa)	77.00 - 67.00	1	1	0.250 0.250	4.0000	9.5000	0.00
(Area) CCI-65FP-	С	No	Surface Af	77.00 -	1	1	0.250	4.0000	9.5000	0.00
040075 (H) (Area) CCI-65FP- 040075 (H) ***	В	No	(CaAa) Surface Af (CaAa)	67.00 77.00 - 67.00	1	1	0.250 0.250 0.250	4.0000	9.5000	0.00
*** *** ****										

Description	Sector	Exclude	Componen	Placement	Total	Number	Start/En	Width or	Perimete	Weight
		From	t		Number	Per Row	d	Diamete	r	
		Torque	Type	ft			Position	r		plf
		Calculation						in	in	
CU12PSM9P8XXX(1-	Α	No	Surface Ar	76.00 -	1	1	0.370	1.4110		1.66
3/8)			(CaAa)	0.00			0.410			

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation	Туре	ft			ft²/ft	plf
117									
LDF6-50A(1-1/4)	С	No	No	Inside Pole	117.00 - 0.00	3	No Ice	0.00	0.60
							1/2" Ice	0.00	0.60
							1" Ice	0.00	0.60
							2" Ice	0.00	0.60
HB058-1-08U1-	С	No	No	Inside Pole	117.00 - 0.00	1	No Ice	0.00	0.40
S2F(5/8)							1/2" Ice	0.00	0.40
, ,							1" Ice	0.00	0.40
							2" Ice	0.00	0.40
**110*									
_DF7-50A(1-5/8)	В	No	No	Inside Pole	110.00 - 0.00	8	No Ice	0.00	0.82
							1/2" Ice	0.00	0.82
							1" Ice	0.00	0.82
							2" Ice	0.00	0.82
100	_			5 .	100.00			0.00	4.65
HB158-1-13U6-	С	No	No	inside Pole	100.00 - 0.00	1	No Ice	0.00	1.90
S6F18(1-5/8)							1/2" Ice	0.00	1.90
							1" Ice	0.00	1.90
							2" Ice	0.00	1.90
LDF5-50A(7/8)	С	No	No	Inside Pole	100.00 - 0.00	7	No Ice	0.00	0.33
							1/2" Ice	0.00	0.33
							1" Ice	0.00	0.33
							2" Ice	0.00	0.33
89	_								
_DF6-50A(1-1/4)	В	No	No	Inside Pole	89.00 - 0.00	12	No Ice	0.00	0.60
							1/2" Ice	0.00	0.60
							1" Ice	0.00	0.60
							2" Ice	0.00	0.60
WR-VG66ST-	В	No	No	Inside Pole	89.00 - 0.00	2	No Ice	0.00	0.88
3RD_CCIV2(7/8)							1/2" Ice	0.00	0.88
							1" Ice	0.00	0.88
							2" Ice	0.00	0.88
WR-VG82ST-	В	No	No	Inside Pole	89.00 - 0.00	4	No Ice	0.00	0.31
BRDA(5/8)							1/2" Ice	0.00	0.31
, ,							1" Ice	0.00	0.31
							2" Ice	0.00	0.31
FB-L98-002-	В	No	No	Inside Pole	89.00 - 0.00	2	No Ice	0.00	0.06
XXX(3/8)							1/2" Ice	0.00	0.06
(/							1" Ice	0.00	0.06
							2" Ice	0.00	0.06
' Flexible Conduit	В	No	No	Inside Pole	89.00 - 0.00	3	No Ice	0.00	0.34
Ooridali	_				20.00 0.00	•	1/2" Ice	0.00	0.34
							1" Ice	0.00	0.34
							2" Ice	0.00	0.34
***							50	0.00	0.01

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	AR	AF	C _A A _A	C _A A _A	Weight
Sectio	Elevation		ft²	ft ²	In Face ft²	Out Face ft²	K
<u>n</u> L1	ft 117.00-112.00	Λ		0.000	0.000		
LI	117.00-112.00	A B	0.000 0.000	0.000	0.000	0.000 0.000	0.00 0.00
		C	0.000	0.000	0.000	0.000	0.00
L2	112.00-110.00	A	0.000	0.000	0.000	0.000	0.00
	112.00 110.00	В	0.000	0.000	0.075	0.000	0.00
		Č	0.000	0.000	0.000	0.000	0.00
L3	110.00-105.00	Ā	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	4.338	0.000	0.09
		С	0.000	0.000	0.000	0.000	0.01
L4	105.00-100.00	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	4.338	0.000	0.09
		С	0.000	0.000	0.000	0.000	0.01
L5	100.00-95.00	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	4.338	0.000	0.09
1.0	05.00.00.00	C	0.000	0.000	0.000	0.000	0.03
L6	95.00-90.00	A	0.000	0.000	0.688	0.000	0.00
		B C	0.000	0.000	4.338	0.000	0.09
L7	90.00-85.00	A	0.000 0.000	0.000 0.000	0.000 1.146	0.000 0.000	0.03 0.00
L/	90.00-65.00	В	0.000	0.000	4.338	0.000	0.00
		C	0.000	0.000	0.000	0.000	0.14
L8	85.00-82.38	A	0.000	0.000	2.702	0.000	0.03
LO	03.00-02.00	В	0.000	0.000	3.398	0.000	0.08
		Č	0.000	0.000	1.125	0.000	0.02
L9	82.38-82.13	Ä	0.000	0.000	0.396	0.000	0.00
		В	0.000	0.000	0.404	0.000	0.01
		С	0.000	0.000	0.188	0.000	0.00
L10	82.13-81.88	A B	0.000	0.000	0.396	0.000	0.00
		В	0.000	0.000	0.404	0.000	0.01
		С	0.000	0.000	0.188	0.000	0.00
L11	81.88-81.63	Α	0.000	0.000	0.396	0.000	0.00
		B C	0.000	0.000	0.404	0.000	0.01
		С	0.000	0.000	0.188	0.000	0.00
L12	81.63-76.63	A B	0.000	0.000	8.158	0.000	0.02
		В	0.000	0.000	8.334	0.000	0.15
1.12	76 62 76 00	C	0.000	0.000	3.997	0.000	0.03
L13	76.63-76.00	A B	0.000 0.000	0.000 0.000	1.417 1.439	0.000 0.000	0.00 0.02
		C	0.000	0.000	0.892	0.000	0.02
L14	76.00-75.75	Ä	0.000	0.000	0.597	0.000	0.00
		В	0.000	0.000	0.571	0.000	0.01
		Ċ	0.000	0.000	0.354	0.000	0.00
L15	75.75-70.75	Α	0.000	0.000	13.075	0.000	0.03
		В	0.000	0.000	12.546	0.000	0.15
		С	0.000	0.000	8.208	0.000	0.03
L16	70.75-70.50	Α	0.000	0.000	0.865	0.000	0.00
		В	0.000	0.000	0.711	0.000	0.01
		C	0.000	0.000	0.494	0.000	0.00
L17	70.50-67.98	A	0.000	0.000	10.433	0.000	0.02
		В	0.000	0.000	8.276	0.000	0.08
1.40	67.98-67.73	C	0.000	0.000	6.090	0.000	0.02
L18	67.98-67.73	A	0.000	0.000	1.035	0.000	0.00
		B C	0.000 0.000	0.000 0.000	0.821 0.604	0.000 0.000	0.01 0.00
L19	67.73-63.50	A	0.000	0.000	15.051	0.000	0.00
LIJ	07.70-00.00	В	0.000	0.000	12.684	0.000	0.13
		Č	0.000	0.000	9.014	0.000	0.03
L20	63.50-63.25	Ä	0.000	0.000	0.868	0.000	0.00
		В	0.000	0.000	0.842	0.000	0.01
		C	0.000	0.000	0.625	0.000	0.00
L21	63.25-58.25	A	0.000	0.000	17.366	0.000	0.03
		В	0.000	0.000	16.837	0.000	0.15
		С	0.000	0.000	12.500	0.000	0.03
L22	58.25-53.25	Α	0.000	0.000	17.366	0.000	0.03
		В	0.000	0.000	16.837	0.000	0.15
	E0 05 45 15	C	0.000	0.000	12.500	0.000	0.03
L23	53.25-47.42	A	0.000	0.000	20.034	0.000	0.04
		В	0.000	0.000	19.418	0.000	0.18

Tower Sectio	Tower Elevation	Face	A _R	AF	C _A A _A In Face	C _A A _A Out Face	Weight
ก	ft		ft ²	ft²	ft²	ft ²	K
**		С	0.000	0.000	14.360	0.000	0.04
L24	47.42-46.42	Ā	0.000	0.000	3.390	0.000	0.01
		В	0.000	0.000	3.284	0.000	0.03
		С	0.000	0.000	2.417	0.000	0.01
L25	46.42-43.50	Α	0.000	0.000	11.024	0.000	0.02
		В	0.000	0.000	10.715	0.000	0.09
		С	0.000	0.000	8.182	0.000	0.02
L26	43.50-43.25	Α	0.000	0.000	1.035	0.000	0.00
		В	0.000	0.000	1.009	0.000	0.01
		С	0.000	0.000	0.792	0.000	0.00
L27	43.25-38.25	Α	0.000	0.000	20.700	0.000	0.03
		В	0.000	0.000	20.171	0.000	0.15
		С	0.000	0.000	15.833	0.000	0.03
L28	38.25-33.50	Α	0.000	0.000	19.585	0.000	0.03
		В	0.000	0.000	19.082	0.000	0.14
		С	0.000	0.000	14.962	0.000	0.03
L29	33.50-33.25	Α	0.000	0.000	1.056	0.000	0.00
		В	0.000	0.000	1.029	0.000	0.01
		С	0.000	0.000	0.813	0.000	0.00
L30	33.25-33.00	Α	0.000	0.000	1.056	0.000	0.00
		В	0.000	0.000	1.029	0.000	0.01
		С	0.000	0.000	0.813	0.000	0.00
L31	33.00-32.75	Α	0.000	0.000	1.056	0.000	0.00
		В	0.000	0.000	1.029	0.000	0.01
		С	0.000	0.000	0.813	0.000	0.00
L32	32.75-31.50	Α	0.000	0.000	5.279	0.000	0.01
		В	0.000	0.000	5.147	0.000	0.04
		С	0.000	0.000	4.063	0.000	0.01
L33	31.50-31.25	Α	0.000	0.000	1.056	0.000	0.00
		В	0.000	0.000	1.029	0.000	0.01
		С	0.000	0.000	0.813	0.000	0.00
L34	31.25-26.25	Α	0.000	0.000	18.304	0.000	0.03
		В	0.000	0.000	17.775	0.000	0.15
		С	0.000	0.000	13.438	0.000	0.03
L35	26.25-21.25	Α	0.000	0.000	17.366	0.000	0.03
		В	0.000	0.000	16.837	0.000	0.15
		С	0.000	0.000	12.500	0.000	0.03
L36	21.25-16.25	Α	0.000	0.000	17.366	0.000	0.03
		В	0.000	0.000	16.837	0.000	0.15
		С	0.000	0.000	12.500	0.000	0.03
L37	16.25-13.50	Α	0.000	0.000	9.552	0.000	0.02
		В	0.000	0.000	9.261	0.000	0.08
		С	0.000	0.000	6.875	0.000	0.02
L38	13.50-13.25	Α	0.000	0.000	0.868	0.000	0.00
		В	0.000	0.000	0.842	0.000	0.01
		С	0.000	0.000	0.625	0.000	0.00
L39	13.25-9.00	Α	0.000	0.000	13.637	0.000	0.03
		В	0.000	0.000	15.437	0.000	0.13
		C	0.000	0.000	10.625	0.000	0.03
L40	9.00-8.75	Α	0.000	0.000	0.681	0.000	0.00
		В	0.000	0.000	1.029	0.000	0.01
		C	0.000	0.000	0.625	0.000	0.00
L41	8.75-3.75	Α	0.000	0.000	13.617	0.000	0.03
		В	0.000	0.000	20.587	0.000	0.15
		C	0.000	0.000	12.500	0.000	0.03
L42	3.75-0.00	Α	0.000	0.000	10.212	0.000	0.02
		В	0.000	0.000	14.691	0.000	0.11
		С	0.000	0.000	9.000	0.000	0.02

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Sectio	Tower Elevation	Face or	Ice Thickness	A _R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft	Leg	in	ft ²	ft²	ft ²	ft ²	K
L1	117.00-112.00	A	1.444	0.000	0.000	0.000	0.000	0.00
		R		0.000	0.000	1 631	0.000	0.02

Tower	Tower	Face	Ice	AR	A _F	C _A A _A	C _A A _A	Weight
Sectio	Elevation	or	Thickness	£12	ft²	In Face	Out Face	
n	ft	Leg C	in	ft ² 0.000	<u>π</u> - 0.000	ft² 0.000	ft² 0.000	<i>K</i> 0.01
L2	112.00-110.00	A	1.439	0.000	0.000	0.000	0.000	0.00
	112.00 110.00	В	1.100	0.000	0.000	0.651	0.000	0.01
		Ċ		0.000	0.000	0.000	0.000	0.00
L3	110.00-105.00	Α	1.435	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	8.603	0.000	0.18
1.4	105.00-100.00	C	1 100	0.000	0.000	0.000	0.000	0.01
L4	105.00-100.00	A B	1.428	0.000 0.000	0.000 0.000	0.000 8.588	0.000 0.000	0.00 0.18
		C		0.000	0.000	0.000	0.000	0.10
L5	100.00-95.00	Ä	1.421	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	8.572	0.000	0.18
		С		0.000	0.000	0.000	0.000	0.03
L6	95.00-90.00	Α	1.413	0.000	0.000	1.920	0.000	0.02
		B C		0.000	0.000	8.555	0.000	0.18
L7	90.00-85.00	A	1.406	0.000 0.000	0.000 0.000	0.000 3.189	0.000 0.000	0.03 0.03
	30.00-03.00	В	1.400	0.000	0.000	8.538	0.000	0.22
		Č		0.000	0.000	0.000	0.000	0.03
L8	85.00-82.38	Α	1.399	0.000	0.000	5.000	0.000	0.06
		В		0.000	0.000	5.982	0.000	0.14
	00 00 00 40	C	4.007	0.000	0.000	1.515	0.000	0.03
L9	82.38-82.13	A B	1.397	0.000 0.000	0.000 0.000	0.692 0.678	0.000 0.000	0.01 0.01
		C		0.000	0.000	0.253	0.000	0.00
L10	82.13-81.88	Ä	1.397	0.000	0.000	0.692	0.000	0.01
		В		0.000	0.000	0.678	0.000	0.01
		С		0.000	0.000	0.252	0.000	0.00
L11	81.88-81.63	A	1.396	0.000	0.000	0.692	0.000	0.01
		B C		0.000 0.000	0.000 0.000	0.678 0.252	0.000 0.000	0.01 0.00
L12	81.63-76.63	A	1.391	0.000	0.000	14.139	0.000	0.00
	01.00 70.00	В	1.001	0.000	0.000	13.871	0.000	0.28
		С		0.000	0.000	5.365	0.000	0.08
L13	76.63-76.00	A	1.386	0.000	0.000	2.280	0.000	0.03
		В		0.000	0.000	2.247	0.000	0.04
L14	76.00-75.75	C A	1.386	0.000 0.000	0.000 0.000	1.177 1.009	0.000 0.000	0.01 0.01
L14	10.00-10.10	В	1.000	0.000	0.000	0.892	0.000	0.02
		Ċ		0.000	0.000	0.467	0.000	0.01
L15	75.75-70.75	Α	1.381	0.000	0.000	21.700	0.000	0.25
		В		0.000	0.000	19.354	0.000	0.33
1.40	70 75 70 50	C	4.070	0.000	0.000	10.872	0.000	0.13
L16	70.75-70.50	A B	1.376	0.000 0.000	0.000 0.000	1.365 1.077	0.000 0.000	0.01 0.02
		C		0.000	0.000	0.653	0.000	0.02
L17	70.50-67.98	Ā	1.373	0.000	0.000	15.936	0.000	0.16
		В		0.000	0.000	12.221	0.000	0.18
		C	4.0=0	0.000	0.000	7.955	0.000	0.08
L18	67.98-67.73	A B	1.370	0.000 0.000	0.000 0.000	1.580 1.212	0.000 0.000	0.02 0.02
		C		0.000	0.000	0.789	0.000	0.02
L19	67.73-63.50	Ä	1.366	0.000	0.000	23.533	0.000	0.25
		В		0.000	0.000	19.020	0.000	0.29
		С		0.000	0.000	11.873	0.000	0.13
L20	63.50-63.25	Α	1.361	0.000	0.000	1.363	0.000	0.01
		В		0.000 0.000	0.000 0.000	1.251 0.829	0.000 0.000	0.02
L21	63.25-58.25	C A	1.355	0.000	0.000	27.216	0.000	0.01 0.28
LZI	00.20-00.20	В	1.000	0.000	0.000	24.990	0.000	0.36
		Č		0.000	0.000	16.566	0.000	0.17
L22	58.25-53.25	Α	1.344	0.000	0.000	27.140	0.000	0.28
		В		0.000	0.000	24.929	0.000	0.36
1.00	E2 0E 47 40	C	1 220	0.000	0.000	16.531	0.000	0.17
L23	53.25-47.42	A B	1.330	0.000 0.000	0.000 0.000	31.327 28.768	0.000 0.000	0.32 0.42
		C		0.000	0.000	19.012	0.000	0.19
L24	47.42-46.42	Ā	1.321	0.000	0.000	5.327	0.000	0.05
		В		0.000	0.000	4.888	0.000	0.07

Tower Sectio	Tower Elevation	Face or	lce Thickness	A _R	AF	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft	Leg	in	ft ²	ft²	ft²	ft ²	K
		C		0.000	0.000	3.215	0.000	0.03
L25	46.42-43.50	Α	1.315	0.000	0.000	17.018	0.000	0.17
		В		0.000	0.000	15.747	0.000	0.22
		С		0.000	0.000	10.880	0.000	0.10
L26	43.50-43.25	A	1.310	0.000	0.000	1.578	0.000	0.02
		В		0.000	0.000	1.470	0.000	0.02
		Č		0.000	0.000	1.054	0.000	0.01
L27	43.25-38.25	Ä	1.302	0.000	0.000	31.506	0.000	0.31
LZI	40.20-00.20	В	1.002	0.000	0.000	29.347	0.000	0.39
		C		0.000	0.000	21.042	0.000	0.39
1.00	38.25-33.50	<u> </u>	1 206					0.20
L28	38.25-33.50	A	1.286	0.000	0.000	29.713	0.000	0.29
		В		0.000	0.000	27.681	0.000	0.37
		C		0.000	0.000	19.827	0.000	0.18
L29	33.50-33.25	Α	1.276	0.000	0.000	1.587	0.000	0.02
		В		0.000	0.000	1.480	0.000	0.02
		С		0.000	0.000	1.068	0.000	0.01
L30	33.25-33.00	Α	1.275	0.000	0.000	1.586	0.000	0.02
		В		0.000	0.000	1.480	0.000	0.02
		С		0.000	0.000	1.068	0.000	0.01
L31	33.00-32.75	A	1.275	0.000	0.000	1.586	0.000	0.02
_0.	00.00 020	В		0.000	0.000	1.480	0.000	0.02
		Č		0.000	0.000	1.067	0.000	0.01
L32	32.75-31.50	Ä	1.272	0.000	0.000	7.923	0.000	0.08
LJZ	32.73-31.30	В	1.272	0.000	0.000	7.393	0.000	0.10
		0						
1.00	04 50 04 05	C	4 000	0.000	0.000	5.334	0.000	0.05
L33	31.50-31.25	Α	1.269	0.000	0.000	1.584	0.000	0.02
		В		0.000	0.000	1.478	0.000	0.02
		С		0.000	0.000	1.066	0.000	0.01
L34	31.25-26.25	Α	1.257	0.000	0.000	27.832	0.000	0.27
		В		0.000	0.000	25.729	0.000	0.36
		С		0.000	0.000	17.524	0.000	0.16
L35	26.25-21.25	Α	1.234	0.000	0.000	26.426	0.000	0.25
		В		0.000	0.000	24.352	0.000	0.34
		С		0.000	0.000	16.201	0.000	0.15
L36	21.25-16.25	Ā	1.205	0.000	0.000	26.238	0.000	0.25
	21.20 10.20	В	1.200	0.000	0.000	24.200	0.000	0.34
		Č		0.000	0.000	16.115	0.000	0.15
L37	16.25-13.50	A	1.177	0.000	0.000	14.333	0.000	0.13
LUI	10.25-15.50	В	1.177	0.000	0.000		0.000	0.13
		С				13.231		
1.00	40 50 40 05		4.405	0.000	0.000	8.818	0.000	0.08
L38	13.50-13.25	A	1.165	0.000	0.000	1.299	0.000	0.01
		В		0.000	0.000	1.200	0.000	0.02
		C		0.000	0.000	0.800	0.000	0.01
L39	13.25-9.00	Α	1.144	0.000	0.000	20.496	0.000	0.19
		В		0.000	0.000	21.621	0.000	0.29
		С		0.000	0.000	13.541	0.000	0.12
L40	9.00-8.75	Α	1.118	0.000	0.000	1.040	0.000	0.01
		В		0.000	0.000	1.407	0.000	0.02
		Č		0.000	0.000	0.793	0.000	0.01
L41	8.75-3.75	Ä	1.079	0.000	0.000	20.593	0.000	0.19
	0.70-0.70	В	1.070	0.000	0.000	27.924	0.000	0.13
		C		0.000				
1.42	2 75 0 00		0.057		0.000	15.738	0.000	0.13
L42	3.75-0.00	A	0.957	0.000	0.000	14.939	0.000	0.13
		В		0.000	0.000	19.511	0.000	0.23
		С		0.000	0.000	11.057	0.000	0.09

Feed Line Center of Pressure

Section	Elevation	CPx	CPz	CPx Ice	CPz Ice
	ft	in	in	in	in
L1	117.00-112.00	0.1142	-0.1979	0.5795	-1.0037
L2	112.00-110.00	0.1143	-0.1979	0.5860	-1.0150
L3 L4	110.00-105.00 105.00-100.00	3.0188 3.0783	-1.8254 -1.8617	2.8886 2.9875	-2.0375 -2.1078

Section	Elevation	CPx	CPz	CPx	CPz
				Ice	Ice
	ft	in	in	in	in
L5	100.00-95.00	3.1354	-1.8966	3.0826	-2.1751
L6	95.00-90.00	2.7488	-2.2956	2.4061	-2.6211
L7	90.00-85.00	2.5298	-2.5590	2.0608	-2.9077
L8	85.00-82.38	2.6821	-2.7225	1.9527	-2.9238
L9	82.38-82.13	2.8638	-2.7569	2.0262	-2.9105
L10	82.13-81.88	2.8688	-2.7612	2.0305	-2.9157
L11	81.88-81.63	2.8753	-2.7668	2.0354	-2.9218
L12	81.63-76.63	2.8552	-2.7414	2.0433	-2.9237
L13	76.63-76.00	2.2251	-2.1317	1.7157	-2.4466
L14	76.00-75.75	2.1434	-2.3157	1.5829	-2.7513
L15	75.75-70.75	2.0157	-2.1735	1.5158	-2.6259
L16	70.75-70.50	1.1820	-2.1759	0.9061	-2.6189
L17	70.50-67.98	0.8143	-2.0432	0.6264	-2.4809
L18	67.98-67.73	0.8238	-2.0640	0.6340	-2.5050
L19	67.73-63.50	0.5776	-1.9708	0.3942	-2.4377
L20	63.50-63.25	0.0350	-1.3473	-0.0621	-1.8898
L21	63.25-58.25	0.0366	-1.3693	-0.0617	-1.9215
L22	58.25-53.25	0.0397	-1.4111	-0.0608	-1.9811
L23	53.25-47.42	0.0433	-1.4695	-0.0601	-2.0567
L24	47.42-46.42	0.0446	-1.4973	-0.0605	-2.0875
L25	46.42-43.50	0.0416	-1.3756	-0.0548	-1.9412
L26	43.50-43.25	0.0391	-1.2782	-0.0507	-1.8230
L27	43.25-38.25	0.0404	-1.2968	-0.0502	-1.8491
L28	38.25-33.50	0.0430	-1.3360	-0.0492	-1.9022
L29	33.50-33.25	0.0433	-1.3250	-0.0478	-1.8982
L30	33.25-33.00	0.0434	-1.3267	-0.0478	-1.9006
L31	33.00-32.75	0.0436	-1.3286	-0.0477	-1.9030
L32	32.75-31.50	0.0439	-1.3337	-0.0475	-1.9100
L33	31.50-31.25	0.0443	-1.3384	-0.0473	-1.9164
L34	31.25-26.25	0.0516	-1.5372	-0.0519	-2.1655
L35	26.25-21.25	0.0568	-1.6467	-0.0519	-2.3018
L36	21.25-16.25	0.0595	-1.6841	-0.0494	-2.3478
L37	16.25-13.50	0.0616	-1.7128	-0.0470	-2.3807
L38	13.50-13.25	0.0624	-1.7238	-0.0459	-2.3925
L39	13.25-9.00	0.7854	-1.7402	0.5541	-2.3955
L40	9.00-8.75	2.1137	-1.7567	1.6643	-2.3861
L41	8.75-3.75	2.1379	-1.7755	1.6906	-2.3993
L42	3.75-0.00	1.9402	-1.8508	1.5369	-2.4525

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment	No Ice	Ice
			Elev.		
L1	1	Safety Line 3/8	112.00 -	1.0000	1.0000
			117.00		
L2	1	Safety Line 3/8	110.00 -	1.0000	1.0000
			112.00		
L3	1	Safety Line 3/8	105.00 -	1.0000	1.0000
			110.00		
L3	7	HCS 6X12 4AWG(1-5/8)	105.00 -	1.0000	1.0000
			110.00		
L4	1	Safety Line 3/8	100.00 -	1.0000	1.0000
			105.00		
L4	7	HCS 6X12 4AWG(1-5/8)	100.00 -	1.0000	1.0000
			105.00		
L5	1	Safety Line 3/8	95.00 -	1.0000	1.0000
			100.00		
L5	7	HCS 6X12 4AWG(1-5/8)	95.00 -	1.0000	1.0000
		1	100.00		

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K₃ Ice
L6	1	Safety Line 3/8	90.00 -	1.0000	1.0000
L6	7	HCS 6X12 4AWG(1-5/8)	95.00 90.00 - 95.00	1.0000	1.0000
L6	18	7983A(ELLIPTICAL)	90.00 -	1.0000	1.0000
L7	1	Safety Line 3/8	93.00 85.00 - 90.00	1.0000	1.0000
L7	7	HCS 6X12 4AWG(1-5/8)	85.00 - 90.00	1.0000	1.0000
L7	18	7983A(ELLIPTICAL)	85.00 - 90.00	1.0000	1.0000
L8	1	Safety Line 3/8	82.38 - 85.00	1.0000	1.0000
L8	7	HCS 6X12 4AWG(1-5/8)	82.38 - 85.00	1.0000	1.0000
L8	18	7983A(ELLIPTICAL)	82.38 - 85.00	1.0000	1.0000
L8	20	AVA7-50(1-5/8)	82.38 - 84.00	1.0000	1.0000
L8	58	(Area) CCI-65FP-045100 (H)	82.38 - 83.88	1.0000	1.0000
L8	60	(Area) CCI-65FP-045100 (H)	82.38 - 83.88	1.0000	1.0000
L8	61	(Area) CCI-65FP-045100 (H)	82.38 - 83.88	1.0000	1.0000
L9	1	Safety Line 3/8	82.13 - 82.38	1.0000	1.0000
L9	7	HCS 6X12 4AWG(1-5/8)	82.13 - 82.38	1.0000	1.0000
L9	18	7983A(ELLIPTICAL)	82.13 - 82.38	1.0000	1.0000
L9	20	AVA7-50(1-5/8)	82.13 - 82.38	1.0000	1.0000
L9	58	(Area) CCI-65FP-045100 (H)	82.13 - 82.38	1.0000	1.0000
L9	60	(Area) CCI-65FP-045100 (H)	82.13 - 82.38	1.0000	1.0000
L9	61	(Area) CCI-65FP-045100 (H)	82.13 - 82.38	1.0000	1.0000
L10	1	Safety Line 3/8	81.88 - 82.13	1.0000	1.0000
L10	7	HCS 6X12 4AWG(1-5/8)	81.88 - 82.13	1.0000	1.0000
L10	18	7983A(ELLIPTICAL)	81.88 - 82.13	1.0000	1.0000
L10	20	AVA7-50(1-5/8)	81.88 - 82.13	1.0000	1.0000
L10	58	(Area) CCI-65FP-045100 (H)	81.88 - 82.13	1.0000	1.0000
L10	60	(Area) CCI-65FP-045100 (H)	81.88 - 82.13	1.0000	1.0000
L10	61	(Area) CCI-65FP-045100 (H)	81.88 - 82.13	1.0000	1.0000
L11	1	Safety Line 3/8	81.63 - 81.88	1.0000	1.0000
L11	7	HCS 6X12 4AWG(1-5/8)	81.63 - 81.88	1.0000	1.0000
L11	18	7983A(ELLIPTICAL)	81.63 - 81.88	1.0000	1.0000
L11	20	AVA7-50(1-5/8)	81.63 - 81.88	1.0000	1.0000
L11	58	(Area) CCI-65FP-045100 (H)	81.63 - 81.88	1.0000	1.0000
L11	60	(Area) CCI-65FP-045100 (H)	81.63 - 81.88	1.0000	1.0000
L11	61	(Area) CCI-65FP-045100 (H)	81.63 - 81.88	1.0000	1.0000

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
L12	1	Safety Line 3/8	76.63 - 81.63	1.0000	1.0000
L12	7	HCS 6X12 4AWG(1-5/8)	76.63 - 81.63	1.0000	1.0000
L12	18	7983A(ELLIPTICAL)	76.63 - 81.63	1.0000	1.0000
L12	20	AVA7-50(1-5/8)	76.63 - 81.63	1.0000	1.0000
L12	58	(Area) CCI-65FP-045100 (H)	76.63 - 81.63	1.0000	1.0000
L12	60	(Area) CCI-65FP-045100	76.63 - 81.63	1.0000	1.0000
L12	61	(H) (Area) CCI-65FP-045100 (H)	76.63 - 81.63	1.0000	1.0000
L12	63	(Area) CCI-65FP-040075 (H)	76.63 - 77.00	1.0000	1.0000
L12	64	(Area) CCI-65FP-040075	76.63 -	1.0000	1.0000
L12	65	(H) (Area) CCI-65FP-040075 (H)	77.00 76.63 - 77.00	1.0000	1.0000
L13	1	Safety Line 3/8	76.00 - 76.63	1.0000	1.0000
L13	7	HCS 6X12 4AWG(1-5/8)	76.00 - 76.63	1.0000	1.0000
L13	18	7983A(ELLIPTICAL)	76.00 - 76.63	1.0000	1.0000
L13	20	AVA7-50(1-5/8)	76.00 - 76.63	1.0000	1.0000
L13	58	(Area) CCI-65FP-045100 (H)	76.00 - 76.63	1.0000	1.0000
L13	60	(Area) CCI-65FP-045100 (H)	76.00 - 76.63	1.0000	1.0000
L13	61	(Area) CCI-65FP-045100 (H)	76.00 - 76.63	1.0000	1.0000
L13	63	(Area) CCI-65FP-040075 (H)	76.00 - 76.63	1.0000	1.0000
L13	64	(Area) CCI-65FP-040075 (H)	76.00 - 76.63	1.0000	1.0000
L13	65	(Area) CCI-65FP-040075 (H)	76.00 - 76.63	1.0000	1.0000
L14	1	Safety Line 3/8	75.75 - 76.00	1.0000	1.0000
L14	7	HCS 6X12 4AWG(1-5/8)	75.75 - 76.00	1.0000	1.0000
L14	18	7983A(ELLIPTICAL)	75.75 - 76.00	1.0000	1.0000
L14	20	AVA7-50(1-5/8)	75.75 - 76.00	1.0000	1.0000
L14	58	(Area) CCI-65FP-045100	75.75 - 76.00	1.0000	1.0000
L14	60	(H) (Area) CCI-65FP-045100	75.75 - 76.00	1.0000	1.0000
L14	61	(H) (Area) CCI-65FP-045100	76.00 75.75 - 76.00	1.0000	1.0000
L14	63	(H) (Area) CCI-65FP-040075 (H)	75.75 - 76.00	1.0000	1.0000
L14	64	(H) (Area) CCI-65FP-040075	76.00 75.75 - 76.00	1.0000	1.0000
L14	65	(H) (Area) CCI-65FP-040075	75.75 - 76.00	1.0000	1.0000
L14	69	(H) CU12PSM9P8XXX(1-3/8)	75.75 - 76.00	1.0000	1.0000
L15	1	Safety Line 3/8	70.75 - 75.75	1.0000	1.0000
L15	7	HCS 6X12 4AWG(1-5/8)	70.75 - 75.75	1.0000	1.0000
L15	18	7983A(ELLIPTICAL)	70.75 - 75.75	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L15	20	AVA7-50(1-5/8)	70.75 - 75.75	1.0000	1.0000
L15	37	(Area) Sabre MS450 (1.00x4.50)	70.75 - 72.25	1.0000	1.0000
L15	38	(Area) Sabre MS450	70.75 -	1.0000	1.0000
L15	39	(1.00x4.50) (Area) Sabre MS450	72.25 70.75 -	1.0000	1.0000
L15	58	(1.00x4.50) (Area) CCI-65FP-045100	72.25 70.75 -	1.0000	1.0000
L15	60	(H) (Area) CCI-65FP-045100	75.75 70.75 -	1.0000	1.0000
L15	61	(H) (Area) CCI-65FP-045100	75.75 70.75 -	1.0000	1.0000
L15	63	(H) (Area) CCI-65FP-040075	75.75 70.75 -	1.0000	1.0000
L15	64	(H) (Area) CCI-65FP-040075	75.75 70.75 -	1.0000	1.0000
L15	65	(H) (Area) CCI-65FP-040075	75.75 70.75 -	1.0000	1.0000
L15	69	(H) CU12PSM9P8XXX(1-3/8)	75.75 70.75 -	1.0000	1.0000
L16	1	Safety Line 3/8	75.75 70.50 -	1.0000	1.0000
L16	7	HCS 6X12 4AWG(1-5/8)	70.75 70.50 -	1.0000	1.0000
L16	18	7983A(ELLIPTICAL)	70.75 70.50 -	1.0000	1.0000
L16	20	AVA7-50(1-5/8)	70.75 70.50 -	1.0000	1.0000
L16	37	(Area) Sabre MS450	70.75 70.50 -	1.0000	1.0000
L16	38	(1.00x4.50) (Area) Sabre MS450	70.75 70.50 -	1.0000	1.0000
L16	39	(1.00x4.50) (Area) Sabre MS450	70.75 70.50 -	1.0000	1.0000
L16	54	(1.00x4.50) (Area) CCI-65FP-060100	70.75 70.50 -	1.0000	1.0000
L16	55	(H) (Area) CCI-65FP-060100	70.58 70.50 -	1.0000	1.0000
L16	56	(H) (Area) CCI-65FP-060100	70.58 70.50 -	1.0000	1.0000
L16	58	(H) (Area) CCI-65FP-045100	70.58 70.50 -	1.0000	1.0000
L16	60	(H) (Area) CCI-65FP-045100	70.75 70.67 -	1.0000	1.0000
L16	61	(H) (Area) CCI-65FP-045100	70.75 70.67 -	1.0000	1.0000
L16	63	(H) (Area) CCI-65FP-040075	70.75 70.50 -	1.0000	1.0000
L16	64	(H) (Area) CCI-65FP-040075	70.75 70.50 -	1.0000	1.0000
L16	65	(H) (Area) CCI-65FP-040075	70.75 70.50 -	1.0000	1.0000
L16	69	(H) CU12PSM9P8XXX(1-3/8)	70.75 70.50 -	1.0000	1.0000
L17	1	Safety Line 3/8	70.75 67.98 -	1.0000	1.0000
L17	7	HCS 6X12 4AWG(1-5/8)	70.50 67.98 -	1.0000	1.0000
L17	18	7983A(ELLIPTICAL)	70.50 67.98 -	1.0000	1.0000
L17	20	AVA7-50(1-5/8)	70.50 67.98 -	1.0000	1.0000
L17	37	(Area) Sabre MS450	70.50 67.98 -	1.0000	1.0000
L17	38	(1.00x4.50) (Area) Sabre MS450	70.50 67.98 -	1.0000	1.0000
	30	(1.00x4.50)	70.50	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L17	39	(Area) Sabre MS450	67.98 -	1.0000	1.0000
L17	54	(1.00x4.50) (Area) CCI-65FP-060100 (H)	70.50 67.98 - 70.50	1.0000	1.0000
L17	55	(Area) CCI-65FP-060100	67.98 -	1.0000	1.0000
L17	56	(H) (Area) CCI-65FP-060100 (H)	70.50 67.98 - 70.50	1.0000	1.0000
L17	58	(Area) CCI-65FP-045100 (H)	67.98 - 70.50	1.0000	1.0000
L17	63	(Area) CCI-65FP-040075 (H)	67.98 - 70.50	1.0000	1.0000
L17	64	(Area) CCI-65FP-040075 (H)	67.98 - 70.50	1.0000	1.0000
L17	65	(Area) CCI-65FP-040075 (H)	67.98 - 70.50	1.0000	1.0000
L17	69	CU12PSM9P8XXX(1-3/8)	67.98 - 70.50	1.0000	1.0000
L18	1	Safety Line 3/8	67.73 - 67.98	1.0000	1.0000
L18	7	HCS 6X12 4AWG(1-5/8)	67.73 - 67.98	1.0000	1.0000
L18	18	7983A(ELLIPTICAL)	67.73 - 67.98	1.0000	1.0000
L18	20	AVA7-50(1-5/8)	67.73 - 67.98	1.0000	1.0000
L18	37	(Area) Sabre MS450 (1.00x4.50)	67.73 - 67.98	1.0000	1.0000
L18	38	(Area) Sabre MS450	67.73 - 67.98	1.0000	1.0000
L18	39	(1.00x4.50) (Area) Sabre MS450 (1.00x4.50)	67.73 - 67.98	1.0000	1.0000
L18	54	(Area) CCI-65FP-060100 (H)	67.73 - 67.98	1.0000	1.0000
L18	55	(Area) CCI-65FP-060100 (H)	67.73 - 67.98	1.0000	1.0000
L18	56	(Area) CCI-65FP-060100 (H)	67.73 - 67.98	1.0000	1.0000
L18	58	(Area) CCI-65FP-045100 (H)	67.73 - 67.98	1.0000	1.0000
L18	63	(Area) CCI-65FP-040075 (H)	67.73 - 67.98	1.0000	1.0000
L18	64	(Area) CCI-65FP-040075 (H)	67.73 - 67.98	1.0000	1.0000
L18	65	(Area) CCI-65FP-040075 (H)	67.73 - 67.98	1.0000	1.0000
L18	69	CU12PSM9P8XXX(1-3/8)	67.73 - 67.98	1.0000	1.0000
L19	1	Safety Line 3/8	63.50 - 67.73	1.0000	1.0000
L19	7	HCS 6X12 4AWG(1-5/8)	63.50 - 67.73	1.0000	1.0000
L19	18	7983A(ELLIPTICAL)	63.50 - 67.73	1.0000	1.0000
L19	20	AVA7-50(1-5/8)	63.50 - 67.73	1.0000	1.0000
L19	27	(Area) CCI-65FP-045100 (H)	63.50 - 65.00	1.0000	1.0000
L19	28	(Area) CCI-65FP-045100 (H)	63.50 - 65.00	1.0000	1.0000
L19	29	(Area) CCI-65FP-045100 (H)	63.50 - 65.00	1.0000	1.0000
L19	37	(Area) Sabre MS450 (1.00x4.50)	63.50 - 67.73	1.0000	1.0000
L19	38	(Area) Sabre MS450 (1.00x4.50)	63.50 - 67.73	1.0000	1.0000
L19	39	(Area) Sabre MS450 (1.00x4.50)	63.50 - 67.73	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L19	54	(Area) CCI-65FP-060100	63.50 -	1.0000	1.0000
L19	55	(H) (Area) CCI-65FP-060100 (H)	67.73 63.50 - 67.73	1.0000	1.0000
L19	56	(Area) CCI-65FP-060100	63.50 -	1.0000	1.0000
L19	58	(H) (Area) CCI-65FP-045100 (H)	67.73 65.17 - 67.73	1.0000	1.0000
L19	63	(Area) CCI-65FP-040075	67.00 -	1.0000	1.0000
L19	64	(H) (Area) CCI-65FP-040075	67.73 67.00 -	1.0000	1.0000
L19	65	(H) (Area) CCI-65FP-040075	67.73 67.00 -	1.0000	1.0000
L19	69	(H) CU12PSM9P8XXX(1-3/8)	67.73 63.50 -	1.0000	1.0000
L20	1	Safety Line 3/8	67.73 63.25 -	1.0000	1.0000
L20	7	HCS 6X12 4AWG(1-5/8)	63.50 63.25 - 63.50	1.0000	1.0000
L20	18	7983A(ELLIPTICAL)	63.25 - 63.50	1.0000	1.0000
L20	20	AVA7-50(1-5/8)	63.25 - 63.50	1.0000	1.0000
L20	27	(Area) CCI-65FP-045100 (H)	63.25 - 63.50	1.0000	1.0000
L20	28	(Area) CCI-65FP-045100 (H)	63.25 - 63.50	1.0000	1.0000
L20	29	(Area) CCI-65FP-045100 (H)	63.25 - 63.50	1.0000	1.0000
L20	37	(Area) Sabre MS450 (1.00x4.50)	63.25 - 63.50	1.0000	1.0000
L20	38	(Area) Sabre MS450 (1.00x4.50)	63.25 - 63.50	1.0000	1.0000
L20	39	(Area) Sabre MS450 (1.00x4.50)	63.25 - 63.50	1.0000	1.0000
L20	54	(Area) CCI-65FP-060100 (H)	63.25 - 63.50	1.0000	1.0000
L20	55	(Area) CCI-65FP-060100 (H)	63.25 - 63.50	1.0000	1.0000
L20	56	(Area) CCI-65FP-060100 (H)	63.25 - 63.50	1.0000	1.0000
L20	69	CU12PSM9P8XXX(1-3/8)	63.25 - 63.50	1.0000	1.0000
L21	1	Safety Line 3/8	58.25 - 63.25	1.0000	1.0000
L21	7	HCS 6X12 4AWG(1-5/8)	58.25 - 63.25	1.0000	1.0000
L21	18	7983A(ELLIPTICAL)	58.25 - 63.25	1.0000	1.0000
L21	20	AVA7-50(1-5/8)	58.25 - 63.25	1.0000	1.0000
L21	27	(Area) CCI-65FP-045100 (H)	58.25 - 63.25	1.0000	1.0000
L21	28	(Area) CCI-65FP-045100 (H)	58.25 - 63.25	1.0000	1.0000
L21	29	(Area) CCI-65FP-045100 (H)	58.25 - 63.25	1.0000	1.0000
L21	37	(Area) Sabre MS450 (1.00x4.50)	58.25 - 63.25	1.0000	1.0000
L21	38	(Area) Sabre MS450 (1.00x4.50)	58.25 - 63.25	1.0000	1.0000
L21	39	(Area) Sabre MS450 (1.00x4.50)	58.25 - 63.25	1.0000	1.0000
L21	54	(Area) CCI-65FP-060100 (H)	58.25 - 63.25	1.0000	1.0000
L21	55	(Area) CCI-65FP-060100 (H)	58.25 - 63.25	1.0000	1.0000

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	·	Segment Elev.	No Ice	Ice
L21	56	(Area) CCI-65FP-060100	58.25 -	1.0000	1.0000
L21	69	(H) CU12PSM9P8XXX(1-3/8)	63.25 58.25 - 63.25	1.0000	1.0000
L22	1	Safety Line 3/8	53.25 - 58.25	1.0000	1.0000
L22	7	HCS 6X12 4AWG(1-5/8)	53.25 - 58.25	1.0000	1.0000
L22	18	7983A(ELLIPTICAL)	53.25 - 58.25	1.0000	1.0000
L22	20	AVA7-50(1-5/8)	53.25 - 58.25	1.0000	1.0000
L22	27	(Area) CCI-65FP-045100 (H)	53.25 - 58.25	1.0000	1.0000
L22	28	(Area) CCI-65FP-045100	53.25 - 58.25	1.0000	1.0000
L22	29	(Area) CCI-65FP-045100 (H)	53.25 - 58.25	1.0000	1.0000
L22	37	(Area) Sabre MS450 (1.00x4.50)	53.25 - 58.25	1.0000	1.0000
L22 L22	38 39	(Area) Sabre MS450 (1.00x4.50) (Area) Sabre MS450	53.25 - 58.25 53.25 -	1.0000	1.0000 1.0000
L22 L22	54	(1.00x4.50) (Area) CCI-65FP-060100	58.25 - 53.25 -	1.0000	1.0000
L22	55	(H) (Area) CCI-65FP-060100	58.25 53.25 -	1.0000	1.0000
L22	56	(H) (Area) CCI-65FP-060100	58.25 53.25 -	1.0000	1.0000
L22	69	(H) CU12PSM9P8XXX(1-3/8)	58.25 53.25 -	1.0000	1.0000
L23	1	Safety Line 3/8	58.25 47.42 -	1.0000	1.0000
L23	7	HCS 6X12 4AWG(1-5/8)	53.25 47.42 -	1.0000	1.0000
L23	18	7983A(ELLIPTICAL)	53.25 47.42 -	1.0000	1.0000
L23	20	AVA7-50(1-5/8)	53.25 47.42 - 53.25	1.0000	1.0000
L23	27	(Area) CCI-65FP-045100 (H)	47.42 - 53.25	1.0000	1.0000
L23	28	(Area) CCI-65FP-045100 (H)	47.42 - 53.25	1.0000	1.0000
L23	29	(Area) CCI-65FP-045100 (H)	47.42 - 53.25	1.0000	1.0000
L23	37	(Area) Sabre MS450 (1.00x4.50)	50.00 - 53.25	1.0000	1.0000
L23	38	(Area) Sabre MS450 (1.00x4.50)	50.00 - 53.25	1.0000	1.0000
L23	39	(Area) Sabre MS450 (1.00x4.50)	50.00 - 53.25	1.0000	1.0000
L23	45	(Area) CCI-65FP-040075 (H)	47.42 - 50.00	1.0000	1.0000
L23	46	(Area) CCI-65FP-040075 (H)	47.42 - 50.00	1.0000	1.0000
L23	47	(Area) CCI-65FP-040075 (H)	47.42 - 50.00	1.0000	1.0000
L23	54	(Area) CCI-65FP-060100 (H)	47.42 - 53.25	1.0000	1.0000
L23	55	(Area) CCI-65FP-060100 (H)	47.42 - 53.25	1.0000	1.0000
L23 L23	56 69	(Area) CCI-65FP-060100 (H) CU12PSM9P8XXX(1-3/8)	47.42 - 53.25	1.0000	1.0000
L23 L24	1	Safety Line 3/8	47.42 - 53.25 46.42 -	1.0000	1.0000
L24	'	Salety Lille 3/0	47.42	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K₄ Ice
L24	7	HCS 6X12 4AWG(1-5/8)	46.42 -	1.0000	1.0000
L24	18	7983A(ELLIPTICAL)	47.42 46.42 - 47.42	1.0000	1.0000
L24	20	AVA7-50(1-5/8)	46.42 -	1.0000	1.0000
L24	27	(Area) CCI-65FP-045100 (H)	47.42 46.42 - 47.42	1.0000	1.0000
L24	28	(Area) CCI-65FP-045100	46.42 -	1.0000	1.0000
L24	29	(H) (Area) CCI-65FP-045100	47.42 46.42 -	1.0000	1.0000
L24	45	(H) (Area) CCI-65FP-040075	47.42 46.42 -	1.0000	1.0000
L24	46	(H) (Area) CCI-65FP-040075	47.42 46.42 -	1.0000	1.0000
L24	47	(H) (Area) CCI-65FP-040075	47.42 46.42 -	1.0000	1.0000
L24	54	(H) (Area) CCI-65FP-060100	47.42 46.42 -	1.0000	1.0000
L24	55	(H) (Area) CCI-65FP-060100 (H)	47.42 46.42 - 47.42	1.0000	1.0000
L24	56	(H) (Area) CCI-65FP-060100 (H)	47.42 46.42 - 47.42	1.0000	1.0000
L24	69	(H) CU12PSM9P8XXX(1-3/8)	46.42 - 47.42	1.0000	1.0000
L25	1	Safety Line 3/8	43.50 - 46.42	1.0000	1.0000
L25	7	HCS 6X12 4AWG(1-5/8)	43.50 - 46.42	1.0000	1.0000
L25	18	7983A(ELLIPTICAL)	43.50 - 46.42	1.0000	1.0000
L25	20	AVA7-50(1-5/8)	43.50 - 46.42	1.0000	1.0000
L25	27	(Area) CCI-65FP-045100 (H)	43.50 - 46.42	1.0000	1.0000
L25	28	(Area) CCI-65FP-045100 (H)	43.50 - 46.42	1.0000	1.0000
L25	29	(Area) CCI-65FP-045100 (H)	43.50 - 46.42	1.0000	1.0000
L25	33	(Area) Sabre MS450 (1.00x4.50)	43.50 - 45.00	1.0000	1.0000
L25	34	(Area) Sabre MS450	43.50 -	1.0000	1.0000
L25	35	(1.00x4.50) (Area) Sabre MS450 (1.00x4.50)	45.00 43.50 - 45.00	1.0000	1.0000
L25	45	(Area) CCI-65FP-040075	45.00 43.50 - 46.42	1.0000	1.0000
L25	46	(H) (Area) CCI-65FP-040075 (H)	43.50 - 46.42	1.0000	1.0000
L25	47	(H) (Area) CCI-65FP-040075 (H)	43.50 - 46.42	1.0000	1.0000
L25	54	(H) (Area) CCI-65FP-060100 (H)	43.50 - 46.42	1.0000	1.0000
L25	55	(Area) CCI-65FP-060100 (H)	43.50 - 46.42	1.0000	1.0000
L25	56	(Area) CCI-65FP-060100 (H)	43.50 - 46.42	1.0000	1.0000
L25	69	CU12PSM9P8XXX(1-3/8)	43.50 - 46.42	1.0000	1.0000
L26	1	Safety Line 3/8	43.25 - 43.50	1.0000	1.0000
L26	7	HCS 6X12 4AWG(1-5/8)	43.25 - 43.50	1.0000	1.0000
L26	18	7983A(ELLIPTICAL)	43.25 - 43.50	1.0000	1.0000
L26	20	AVA7-50(1-5/8)	43.25 - 43.50	1.0000	1.0000

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
L26	27	(Area) CCI-65FP-045100 (H)	43.25 - 43.50	1.0000	1.0000
L26	28	(Area) CCI-65FP-045100 (H)	43.25 - 43.50	1.0000	1.0000
L26	29	(Area) CCI-65FP-045100	43.25 - 43.50	1.0000	1.0000
L26	33	(H) (Area) Sabre MS450 (1.00x4.50)	43.25 - 43.50	1.0000	1.0000
L26	34	(Area) Sabre MS450 (1.00x4.50)	43.25 - 43.50	1.0000	1.0000
L26	35	(Area) Sabre MS450 (1.00x4.50)	43.25 - 43.50	1.0000	1.0000
L26	45	(1.004-30) (Area) CCI-65FP-040075 (H)	43.25 - 43.50	1.0000	1.0000
L26	46	(Area) CCI-65FP-040075 (H)	43.25 - 43.50	1.0000	1.0000
L26	47	(Area) CCI-65FP-040075	43.25 -	1.0000	1.0000
L26	54	(H) (Area) CCI-65FP-060100 (H)	43.50 43.25 - 43.50	1.0000	1.0000
L26	55	(Area) CCI-65FP-060100 (H)	43.25 - 43.50	1.0000	1.0000
L26	56	(Area) CCI-65FP-060100 (H)	43.25 - 43.50	1.0000	1.0000
L26	69	CU12PSM9P8XXX(1-3/8)	43.25 - 43.50	1.0000	1.0000
L27	1	Safety Line 3/8	38.25 - 43.25	1.0000	1.0000
L27	7	HCS 6X12 4AWG(1-5/8)	38.25 - 43.25	1.0000	1.0000
L27	18	7983A(ELLIPTICAL)	38.25 - 43.25	1.0000	1.0000
L27	20	AVA7-50(1-5/8)	38.25 - 43.25	1.0000	1.0000
L27	27	(Area) CCI-65FP-045100 (H)	38.25 - 43.25	1.0000	1.0000
L27	28	(Area) CCI-65FP-045100 (H)	38.25 - 43.25	1.0000	1.0000
L27	29	(Area) CCI-65FP-045100 (H)	38.25 - 43.25	1.0000	1.0000
L27	33	(Area) Sabre MS450	38.25 -	1.0000	1.0000
L27	34	(1.00x4.50) (Area) Sabre MS450	43.25 38.25 -	1.0000	1.0000
L27	35	(1.00x4.50) (Area) Sabre MS450	43.25 38.25 -	1.0000	1.0000
L27	45	(1.00x4.50) (Area) CCI-65FP-040075	43.25 38.25 -	1.0000	1.0000
L27	46	(H) (Area) CCI-65FP-040075	43.25 38.25 -	1.0000	1.0000
L27	47	(H) (Area) CCI-65FP-040075	43.25 38.25 -	1.0000	1.0000
L27	54	(H) (Area) CCI-65FP-060100	43.25 38.25 -	1.0000	1.0000
L27	55	(H) (Area) CCI-65FP-060100	43.25 38.25 -	1.0000	1.0000
L27	56	(H) (Area) CCI-65FP-060100	43.25 38.25 -	1.0000	1.0000
L27	69	(H) CU12PSM9P8XXX(1-3/8)	43.25 38.25 -	1.0000	1.0000
L28	1	Safety Line 3/8	43.25 33.50 - 38.25	1.0000	1.0000
L28	7	HCS 6X12 4AWG(1-5/8)	33.50 - 38.25	1.0000	1.0000
L28	18	7983A(ELLIPTICAL)	33.50 - 38.25	1.0000	1.0000
L28	20	AVA7-50(1-5/8)	33.50 - 38.25	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line	K _a No Ice	K _a Ice
Section	Record No.		Segment Elev.	No ice	ice
L28	23	(Area) CCI-65FP-060100 (H)	33.50 - 35.00	1.0000	1.0000
L28	24	(Area) CCI-65FP-060100 (H)	33.50 - 35.00	1.0000	1.0000
L28	25	(Area) CCI-65FP-060100 (H)	33.50 - 35.00	1.0000	1.0000
L28	27	(Area) CCI-65FP-045100 (H)	35.00 - 38.25	1.0000	1.0000
L28	28	(Area) CCI-65FP-045100 (H)	35.00 - 38.25	1.0000	1.0000
L28	29	(Area) CCI-65FP-045100 (H)	35.00 - 38.25	1.0000	1.0000
L28	33	(Area) Sabre MS450 (1.00x4.50)	33.50 - 38.25	1.0000	1.0000
L28	34	(Area) Sabre MS450 (1.00x4.50)	33.50 - 38.25	1.0000	1.0000
L28	35	(Area) Sabre MS450 (1.00x4.50)	33.50 - 38.25	1.0000	1.0000
L28	41	(Area) CCI-65FP-045100 (H)	33.50 - 35.00	1.0000	1.0000
L28	42	(Area) CCI-65FP-045100 (H)	33.50 - 35.00	1.0000	1.0000
L28	43	(Area) CCI-65FP-045100 (H)	33.50 - 35.00	1.0000	1.0000
L28	45	(Area) CCI-65FP-040075 (H)	35.00 - 35.25	1.0000	1.0000
L28	46	(Area) CCI-65FP-040075 (H)	35.00 - 38.25	1.0000	1.0000
L28	47	(Area) CCI-65FP-040075 (H)	35.00 - 38.25	1.0000	1.0000
L28	49	(Area) CCI-65FP-045100 (H)	33.50 - 35.50	1.0000	1.0000
L28	50	(Area) CCI-65FP-045100 (H)	33.50 - 35.50	1.0000	1.0000
L28	52	(Area) CCI-65FP-045100 (H)	33.50 - 35.50	1.0000	1.0000
L28	54	(Area) CCI-65FP-060100 (H)	35.58 - 38.25	1.0000	1.0000
L28	55	(Area) CCI-65FP-060100 (H)	35.58 - 38.25	1.0000	1.0000
L28	56	(Area) CCI-65FP-060100 (H)	35.58 - 38.25	1.0000	1.0000
L28	69	CU12PSM9P8XXX(1-3/8)	33.50 - 38.25	1.0000	1.0000
L29	1	Safety Line 3/8	33.25 - 33.50	1.0000	1.0000
L29	7	HCS 6X12 4AWG(1-5/8)	33.25 - 33.50	1.0000	1.0000
L29	18	7983A(ELLIPTICAL)	33.25 - 33.50	1.0000	1.0000
L29	20	AVA7-50(1-5/8)	33.25 - 33.50	1.0000	1.0000
L29	23	(Area) CCI-65FP-060100 (H)	33.25 - 33.50	1.0000	1.0000
L29	24	(Area) CCI-65FP-060100 (H)	33.25 - 33.50	1.0000	1.0000
L29	25	(Area) CCI-65FP-060100 (H)	33.25 - 33.50	1.0000	1.0000
L29	33	(Area) Sabre MS450 (1.00x4.50)	33.25 - 33.50	1.0000	1.0000
L29	34	(Area) Sabre MS450 (1.00x4.50)	33.25 - 33.50	1.0000	1.0000
L29	35	(Area) Sabre MS450 (1.00x4.50)	33.25 - 33.50	1.0000	1.0000
L29	41	(Area) CCI-65FP-045100 (H)	33.25 - 33.50	1.0000	1.0000
L29	42	(Area) CCI-65FP-045100 (H)	33.25 -	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L29	43	(Area) CCI-65FP-045100	33.25 -	1.0000	1.0000
L29	49	(H) (Area) CCI-65FP-045100 (H)	33.50 33.25 - 33.50	1.0000	1.0000
L29	50	(Area) CCI-65FP-045100	33.25 -	1.0000	1.0000
L29	52	(H) (Area) CCI-65FP-045100 (H)	33.50 33.25 - 33.50	1.0000	1.0000
L29	69	CU12PSM9P8XXX(1-3/8)	33.25 - 33.50	1.0000	1.0000
L30	1	Safety Line 3/8	33.00 - 33.25	1.0000	1.0000
L30	7	HCS 6X12 4AWG(1-5/8)	33.25 33.25 33.25	1.0000	1.0000
L30	18	7983A(ELLIPTICAL)	33.00 - 33.25	1.0000	1.0000
L30	20	AVA7-50(1-5/8)	33.00 - 33.25	1.0000	1.0000
L30	23	(Area) CCI-65FP-060100 (H)	33.00 - 33.25	1.0000	1.0000
L30	24	(Area) CCI-65FP-060100 (H)	33.00 - 33.25	1.0000	1.0000
L30	25	(Area) CCI-65FP-060100 (H)	33.00 - 33.25	1.0000	1.0000
L30	33	(Area) Sabre MS450 (1.00x4.50)	33.00 - 33.25	1.0000	1.0000
L30	34	(Area) Sabre MS450 (1.00x4.50)	33.00 - 33.25	1.0000	1.0000
L30	35	(Area) Sabre MS450 (1.00x4.50)	33.00 - 33.25	1.0000	1.0000
L30	41	(Area) CCI-65FP-045100 (H)	33.00 - 33.25	1.0000	1.0000
L30	42	(Area) CCI-65FP-045100 (H)	33.00 - 33.25	1.0000	1.0000
L30	43	(Area) CCI-65FP-045100 (H)	33.00 - 33.25	1.0000	1.0000
L30	49	(Area) CCI-65FP-045100 (H)	33.00 - 33.25	1.0000	1.0000
L30	50	(Area) CCI-65FP-045100 (H)	33.00 - 33.25	1.0000	1.0000
L30	52	(Area) CCI-65FP-045100 (H)	33.00 - 33.25	1.0000	1.0000
L30	69	CU12PSM9P8XXX(1-3/8)	33.00 - 33.25	1.0000	1.0000
L31	1	Safety Line 3/8	32.75 - 33.00	1.0000	1.0000
L31	7	HCS 6X12 4AWG(1-5/8)	32.75 - 33.00	1.0000	1.0000
L31	18	7983A(ELLIPTICAL)	32.75 - 33.00	1.0000	1.0000
L31	20	AVA7-50(1-5/8)	32.75 - 33.00	1.0000	1.0000
L31	23	(Area) CCI-65FP-060100 (H)	32.75 - 33.00	1.0000	1.0000
L31	24	(Area) CCI-65FP-060100 (H)	32.75 - 33.00	1.0000	1.0000
L31	25	(Area) CCI-65FP-060100 (H)	32.75 - 33.00	1.0000	1.0000
L31	33	(Area) Sabre MS450 (1.00x4.50)	32.75 - 33.00	1.0000	1.0000
L31	34	(Area) Sabre MS450 (1.00x4.50)	32.75 - 33.00	1.0000	1.0000
L31	35	(Area) Sabre MS450 (1.00x4.50)	32.75 - 33.00	1.0000	1.0000
L31	41	(Area) CCI-65FP-045100 (H)	32.75 - 33.00	1.0000	1.0000
L31	42	(Area) CCI-65FP-045100 (H)	32.75 - 33.00	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L31	43	(Area) CCI-65FP-045100	32.75 -	1.0000	1.0000
L31	49	(H) (Area) CCI-65FP-045100 (H)	33.00 32.75 - 33.00	1.0000	1.0000
L31	50	(Area) CCI-65FP-045100	32.75 -	1.0000	1.0000
L31	52	(H) (Area) CCI-65FP-045100 (H)	33.00 32.75 - 33.00	1.0000	1.0000
L31	69	CU12PSM9P8XXX(1-3/8)	32.75 -	1.0000	1.0000
L32	1	Safety Line 3/8	33.00 31.50 -	1.0000	1.0000
L32	7	HCS 6X12 4AWG(1-5/8)	32.75 31.50 -	1.0000	1.0000
L32	18	7983A(ELLIPTICAL)	32.75 31.50 -	1.0000	1.0000
L32	20	AVA7-50(1-5/8)	32.75 31.50 -	1.0000	1.0000
L32	23	(Area) CCI-65FP-060100	32.75 31.50 - 32.75	1.0000	1.0000
L32	24	(H) (Area) CCI-65FP-060100 (H)	31.50 - 32.75	1.0000	1.0000
L32	25	(Area) CCI-65FP-060100 (H)	31.50 - 32.75	1.0000	1.0000
L32	33	(Area) Sabre MS450 (1.00x4.50)	31.50 - 32.75	1.0000	1.0000
L32	34	(Area) Sabre MS450 (1.00x4.50)	31.50 - 32.75	1.0000	1.0000
L32	35	(Area) Sabre MS450 (1.00x4.50)	31.50 - 32.75	1.0000	1.0000
L32	41	(Area) CCI-65FP-045100 (H)	31.50 - 32.75	1.0000	1.0000
L32	42	(Area) CCI-65FP-045100	31.50 - 32.75	1.0000	1.0000
L32	43	(H) (Area) CCI-65FP-045100 (H)	31.50 - 32.75	1.0000	1.0000
L32	49	(Area) CCI-65FP-045100 (H)	31.50 - 32.75	1.0000	1.0000
L32	50	(Area) CCI-65FP-045100 (H)	31.50 - 32.75	1.0000	1.0000
L32	52	(Area) CCI-65FP-045100 (H)	31.50 - 32.75	1.0000	1.0000
L32	69	CU12PSM9P8XXX(1-3/8)	31.50 - 32.75	1.0000	1.0000
L33	1	Safety Line 3/8	31.25 - 31.50	1.0000	1.0000
L33	7	HCS 6X12 4AWG(1-5/8)	31.25 - 31.50	1.0000	1.0000
L33	18	7983A(ELLIPTICAL)	31.25 - 31.50	1.0000	1.0000
L33	20	AVA7-50(1-5/8)	31.25 - 31.50	1.0000	1.0000
L33	23	(Area) CCI-65FP-060100 (H)	31.25 - 31.50	1.0000	1.0000
L33	24	(Area) CCI-65FP-060100 (H)	31.25 - 31.50	1.0000	1.0000
L33	25	(Area) CCI-65FP-060100 (H)	31.25 - 31.50	1.0000	1.0000
L33	33	(ח) (Area) Sabre MS450 (1.00x4.50)	31.25 - 31.50	1.0000	1.0000
L33	34	(Area) Sabre MS450	31.25 -	1.0000	1.0000
L33	35	(1.00x4.50) (Area) Sabre MS450 (1.00x4.50)	31.50 31.25 -	1.0000	1.0000
L33	41	(1.00x4.50) (Area) CCI-65FP-045100 (H)	31.50 31.25 - 31.50	1.0000	1.0000
L33	42	(H) (Area) CCI-65FP-045100 (H)	31.25 - 31.50	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L33	43	(Area) CCI-65FP-045100	31.25 -	1.0000	1.0000
L33	49	(H) (Area) CCI-65FP-045100 (H)	31.50 31.25 - 31.50	1.0000	1.0000
L33	50	(Area) CCI-65FP-045100	31.25 -	1.0000	1.0000
L33	52	(H) (Area) CCI-65FP-045100 (H)	31.50 31.25 - 31.50	1.0000	1.0000
L33	69	CU12PSM9P8XXX(1-3/8)	31.25 -	1.0000	1.0000
L34	1	Safety Line 3/8	31.50 26.25 - 31.25	1.0000	1.0000
L34	7	HCS 6X12 4AWG(1-5/8)	26.25 - 31.25	1.0000	1.0000
L34	18	7983A(ELLIPTICAL)	26.25 - 31.25	1.0000	1.0000
L34	20	AVA7-50(1-5/8)	26.25 - 31.25	1.0000	1.0000
L34	23	(Area) CCI-65FP-060100 (H)	26.25 - 31.25	1.0000	1.0000
L34	24	(Area) CCI-65FP-060100 (H)	26.25 - 31.25	1.0000	1.0000
L34	25	(Area) CCI-65FP-060100 (H)	26.25 - 31.25	1.0000	1.0000
L34	33	(Area) Sabre MS450 (1.00x4.50)	30.00 - 31.25	1.0000	1.0000
L34	34	(Area) Sabre MS450 (1.00x4.50)	30.00 - 31.25	1.0000	1.0000
L34	35	(Area) Sabre MS450 (1.00x4.50)	30.00 - 31.25	1.0000	1.0000
L34	41	(Area) CCI-65FP-045100 (H)	26.25 - 31.25	1.0000	1.0000
L34	42	(Area) CCI-65FP-045100 (H)	26.25 - 31.25	1.0000	1.0000
L34	43	(Area) CCI-65FP-045100 (H)	26.25 - 31.25	1.0000	1.0000
L34	49	(Area) CCI-65FP-045100 (H)	26.25 - 31.25	1.0000	1.0000
L34	50	(Area) CCI-65FP-045100 (H)	26.25 - 31.25	1.0000	1.0000
L34	52	(Area) CCI-65FP-045100 (H)	26.25 - 31.25	1.0000	1.0000
L34	69	CU12PSM9P8XXX(1-3/8)	26.25 - 31.25	1.0000	1.0000
L35	1	Safety Line 3/8	21.25 - 26.25	1.0000	1.0000
L35	7	HCS 6X12 4AWG(1-5/8)	21.25 - 26.25	1.0000	1.0000
L35	18	7983A(ELLIPTICAL)	21.25 - 26.25	1.0000	1.0000
L35	20	AVA7-50(1-5/8)	21.25 - 26.25	1.0000	1.0000
L35	23	(Area) CCI-65FP-060100 (H)	21.25 - 26.25	1.0000	1.0000
L35	24	(Area) CCI-65FP-060100 (H)	21.25 - 26.25	1.0000	1.0000
L35	25	(Area) CCI-65FP-060100 (H)	21.25 - 26.25	1.0000	1.0000
L35	41	(Area) CCI-65FP-045100 (H)	21.25 - 26.25	1.0000	1.0000
L35	42	(Area) CCI-65FP-045100 (H)	21.25 - 26.25	1.0000	1.0000
L35	43	(Area) CCI-65FP-045100 (H)	21.25 - 26.25	1.0000	1.0000
L35	49	(Area) CCI-65FP-045100 (H)	21.25 - 26.25	1.0000	1.0000
L35	50	(Area) CCI-65FP-045100 (H)	21.25 - 26.25	1.0000	1.0000

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
L35	52	(Area) CCI-65FP-045100 (H)	21.25 - 26.25	1.0000	1.0000
L35	69	CU12PSM9P8XXX(1-3/8)	21.25 - 26.25	1.0000	1.0000
L36	1	Safety Line 3/8	16.25 - 21.25	1.0000	1.0000
L36	7	HCS 6X12 4AWG(1-5/8)	16.25 - 21.25	1.0000	1.0000
L36	18	7983A(ELLIPTICAL)	16.25 - 21.25	1.0000	1.0000
L36	20	AVA7-50(1-5/8)	16.25 - 21.25	1.0000	1.0000
L36	23	(Area) CCI-65FP-060100 (H)	16.25 - 21.25	1.0000	1.0000
L36	24	(Area) CCI-65FP-060100 (H)	16.25 - 21.25	1.0000	1.0000
L36	25	(Area) CCI-65FP-060100 (H)	16.25 - 21.25	1.0000	1.0000
L36	41	(Area) CCI-65FP-045100 (H)	16.25 - 21.25	1.0000	1.0000
L36	42	(Area) CCI-65FP-045100 (H)	16.25 - 21.25	1.0000	1.0000
L36	43	(Area) CCI-65FP-045100 (H)	16.25 - 21.25	1.0000	1.0000
L36	49	(Area) CCI-65FP-045100 (H)	16.25 - 21.25	1.0000	1.0000
L36	50	(Area) CCI-65FP-045100 (H)	16.25 - 21.25	1.0000	1.0000
L36	52	(Area) CCI-65FP-045100 (H)	16.25 - 21.25	1.0000	1.0000
L36	69	CU12PSM9P8XXX(1-3/8)	16.25 - 21.25	1.0000	1.0000
L37	1	Safety Line 3/8	13.50 - 16.25	1.0000	1.0000
L37	7	HCS 6X12 4AWG(1-5/8)	13.50 - 16.25	1.0000	1.0000
L37	18	7983A(ELLIPTICAL)	13.50 - 16.25	1.0000	1.0000
L37	20	AVA7-50(1-5/8)	13.50 - 16.25	1.0000	1.0000
L37	23	(Area) CCI-65FP-060100 (H)	13.50 - 16.25	1.0000	1.0000
L37	24	(Area) CCI-65FP-060100 (H)	13.50 - 16.25	1.0000	1.0000
L37	25	(Area) CCI-65FP-060100 (H)	13.50 - 16.25	1.0000	1.0000
L37	41	(Area) CCI-65FP-045100 (H)	13.50 - 16.25	1.0000	1.0000
L37	42	(Area) CCI-65FP-045100 (H)	13.50 - 16.25	1.0000	1.0000
L37	43	(Area) CCI-65FP-045100 (H)	13.50 - 16.25	1.0000	1.0000
L37	49	(Area) CCI-65FP-045100 (H)	13.50 - 16.25	1.0000	1.0000
L37	50	(Area) CCI-65FP-045100 (H)	13.50 - 16.25	1.0000	1.0000
L37	52	(Area) CCI-65FP-045100 (H)	13.50 - 16.25	1.0000	1.0000
L37	69	CU12PSM9P8XXX(1-3/8)	13.50 - 16.25	1.0000	1.0000
L38	1	Safety Line 3/8	13.25 - 13.50	1.0000	1.0000
L38	7	HCS 6X12 4AWG(1-5/8)	13.25 - 13.50	1.0000	1.0000
L38	18	7983A(ELLIPTICAL)	13.25 - 13.50	1.0000	1.0000
L38	20	AVA7-50(1-5/8)	13.25 - 13.50	1.0000	1.0000

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	Description	Segment	No Ice	lce
00011011	7.00074 710.		Elev.	710 700	100
L38	23	(Area) CCI-65FP-060100	13.25 -	1.0000	1.0000
		(H)	13.50		
L38	24	(Area) CCI-65FP-060100	13.25 -	1.0000	1.0000
		(H)	13.50		
L38	25	(Area) CCI-65FP-060100	13.25 -	1.0000	1.0000
	4.4	(H)	13.50	4 0000	4 0000
L38	41	(Area) CCI-65FP-045100	13.25 - 13.50	1.0000	1.0000
L38	42	(H) (Area) CCI-65FP-045100	13.25 -	1.0000	1.0000
L30	42	(H)	13.50	1.0000	1.0000
L38	43	(Area) CCI-65FP-045100	13.25 -	1.0000	1.0000
	.0	(H)	13.50		
L38	49	(Area) CCI-65FP-045100	13.25 -	1.0000	1.0000
		(H)	13.50		
L38	50	(Area) CCI-65FP-045100	13.25 -	1.0000	1.0000
		(H)	13.50		
L38	52	(Area) CCI-65FP-045100	13.25 -	1.0000	1.0000
1.00	00	(H)	13.50	4 0000	4 0000
L38	69	CU12PSM9P8XXX(1-3/8)	13.25 -	1.0000	1.0000
L39	1	Safety Line 3/8	13.50 9.00 - 13.25	1.0000	1.0000
L39	7	HCS 6X12 4AWG(1-5/8)	9.00 - 13.25	1.0000	1.0000
L39	18	7983A(ELLIPTICAL)	9.00 - 13.25	1.0000	1.0000
L39	20	AVA7-50(1-5/8)	9.00 - 13.25	1.0000	1.0000
L39	23	(Area) CCI-65FP-060100	9.00 - 13.25	1.0000	1.0000
		(H)			
L39	24	(Area) CCI-65FP-060100	9.00 - 13.25	1.0000	1.0000
		(H)			
L39	25	(Area) CCI-65FP-060100	9.00 - 13.25	1.0000	1.0000
		(H)			
L39	31	(Area) Sabre MS450	9.00 - 10.50	1.0000	1.0000
		(1.00x4.50)			
L39	41	(Area) CCI-65FP-045100	9.00 - 13.25	1.0000	1.0000
		(H)			
L39	42	(Area) CCI-65FP-045100	9.00 - 13.25	1.0000	1.0000
		(H)			
L39	43	(Area) CCI-65FP-045100	9.00 - 13.25	1.0000	1.0000
	4.0	(H)			
L39	49	(Area) CCI-65FP-045100	9.00 - 13.25	1.0000	1.0000
	50	(H)	0.00 40.05	4 0000	4 0000
L39	50	(Area) CCI-65FP-045100	9.00 - 13.25	1.0000	1.0000
	50	(H)	40.50	4 0000	4 0000
L39	52	(Area) CCI-65FP-045100	10.50 -	1.0000	1.0000
	00	(H)	13.25	4 0000	4 0000
L39	69	CU12PSM9P8XXX(1-3/8)	9.00 - 13.25	1.0000	1.0000
L40	1	Safety Line 3/8	8.75 - 9.00	1.0000	1.0000
L40	7	HCS 6X12 4AWG(1-5/8)	8.75 - 9.00	1.0000	1.0000
L40	18	7983A(ELLIPTICAL)	8.75 - 9.00	1.0000	1.0000
L40	20	AVA7-50(1-5/8)	8.75 - 9.00	1.0000	1.0000
L40	23	(Area) CCI-65FP-060100	8.75 - 9.00	1.0000	1.0000
0	_0	(H)			
L40	24	(Area) CCI-65FP-060100	8.75 - 9.00	1.0000	1.0000
		` (H)			
L40	25	(Area) CCI-65FP-060100	8.75 - 9.00	1.0000	1.0000
		` (H)			
L40	31	(Area) Sabre MS450	8.75 - 9.00	1.0000	1.0000
		(1.00x4.50)			
L40	41	(Area) CCI-65FP-045100	8.75 - 9.00	1.0000	1.0000
		` (H)			
L40	42	(Area) CCI-65FP-045100	8.75 - 9.00	1.0000	1.0000
		(H)			
L40	43	(Area) CCI-65FP-045100	8.75 - 9.00	1.0000	1.0000
		(H)			
L40	49	(Area) CCI-65FP-045100	8.75 - 9.00	1.0000	1.0000
		(H)			
L40	50	(Area) CCI-65FP-045100	8.75 - 9.00	1.0000	1.0000
		(H)			
L40	69	CU12PSM9P8XXX(1-3/8)	8.75 - 9.00	1.0000	1.0000
L41	1	Safety Line 3/8	3.75 - 8.75	1.0000	1.0000

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	,,,,	Segment Elev.	No Ice	Ice
L41	7	HCS 6X12 4AWG(1-5/8)	3.75 - 8.75	1.0000	1.0000
L41	18	7983A(ELLIPTICAL)	3.75 - 8.75	1.0000	1.0000
L41	20	AVA7-50(1-5/8)	3.75 - 8.75	1.0000	1.0000
L41	23	(Area) CCI-65FP-060100	3.75 - 8.75	1.0000	1.0000
1.44	24	(H)	275 075	1 0000	1 0000
L41	24	(Area) CCI-65FP-060100 (H)	3.75 - 8.75	1.0000	1.0000
L41	25	(Area) CCI-65FP-060100 (H)	3.75 - 8.75	1.0000	1.0000
L41	31	(Area) Sabre MS450	3.75 - 8.75	1.0000	1.0000
L41	41	(1.00x4.50) (Area) CCI-65FP-045100	3.75 - 8.75	1.0000	1.0000
L41	42	(H) (Area) CCI-65FP-045100	3.75 - 8.75	1.0000	1.0000
L41	43	(H) (Area) CCI-65FP-045100	3.75 - 8.75	1.0000	1.0000
		` / (H)			
L41	49	(Area) CCI-65FP-045100 (H)	3.75 - 8.75	1.0000	1.0000
L41	50	(Area) CCI-65FP-045100 (H)	3.75 - 8.75	1.0000	1.0000
L41	69	CU12PSM9P8XXX(1-3/8)	3.75 - 8.75	1.0000	1.0000
L42	1	Safety Line 3/8	0.00 - 3.75	1.0000	1.0000
L42	7	HCS 6X12 4AWG(1-5/8)	0.00 - 3.75	1.0000	1.0000
L42	18	7983A(ELLIPTICAL)	0.00 - 3.75	1.0000	1.0000
L42	20	AVA7-50(1-5/8)	0.00 - 3.75	1.0000	1.0000
L42	23	(Area) CCI-65FP-060100	0.00 - 3.75	1.0000	1.0000
		(H)			
L42	24	(Area) CCI-65FP-060100 (H)	0.00 - 3.75	1.0000	1.0000
L42	25	(Area) CCI-65FP-060100	0.00 - 3.75	1.0000	1.0000
L42	31	(H) (Area) Sabre MS450	0.50 - 3.75	1.0000	1.0000
L42	41	(1.00x4.50) (Area) CCI-65FP-045100	0.00 - 3.75	1.0000	1.0000
		` (H)			
L42	42	(Area) CCI-65FP-045100 (H)	0.00 - 3.75	1.0000	1.0000
L42	43	(Area) CCI-65FP-045100 (H)	0.00 - 3.75	1.0000	1.0000
L42	49	(Area) CCI-65FP-045100	0.50 - 3.75	1.0000	1.0000
L42	50	(H) (Area) CCI-65FP-045100	0.50 - 3.75	1.0000	1.0000
L42	69	(H) CU12PSM9P8XXX(1-3/8)	0.00 - 3.75	1.0000	1.0000

Effective Width of Flat Linear Attachments / Feed Lines

Tower Section	Attachment Record No.	Description	Attachment Segment	Ratio Calculatio	Effective Width
			Elev.	n	Ratio
				Method	
L8	58	(Area) CCI-65FP-045100	82.38 -	Auto	0.0000
		(H)	83.88		
L8	60	(Area) CCI-65FP-045100	82.38 -	Auto	0.0000
		(H)	83.88		
L8	61	(Area) CCI-65FP-045100	82.38 -	Auto	0.0000
		(H)	83.88		
L9	58	(Area) CCI-65FP-045100	82.13 -	Auto	0.0000
		` (H)	82.38		

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.	Восоприон	Segment	Calculatio	Width
			Elev.	n	Ratio
L9	60	(Area) CCI-65FP-045100	82.13 -	Method Auto	0.0000
L9	61	(H) (Area) CCI-65FP-045100	82.38 82.13 -	Auto	0.0000
L10	58	(H) (Area) CCI-65FP-045100	82.38 81.88 -	Auto	0.0000
L10	60	(H) (Area) CCI-65FP-045100	82.13 81.88 -	Auto	0.0000
L10	61	(H) (Area) CCI-65FP-045100	82.13 81.88 - 82.13	Auto	0.0000
L11	58	(H) (Area) CCI-65FP-045100 (H)	81.63 - 81.88	Auto	0.0000
L11	60	(Area) CCI-65FP-045100 (H)	81.63 - 81.88	Auto	0.0000
L11	61	(Area) CCI-65FP-045100 (H)	81.63 - 81.88	Auto	0.0000
L12	58	(Area) CCI-65FP-045100 (H)	76.63 - 81.63	Auto	0.0000
L12	60	(Area) CCI-65FP-045100 (H)	76.63 - 81.63	Auto	0.0000
L12	61	(Area) CCI-65FP-045100 (H)	76.63 - 81.63	Auto	0.0000
L12	63	(Area) CCI-65FP-040075 (H)	76.63 - 77.00	Auto	0.0000
L12	64	(Area) CCI-65FP-040075 (H)	76.63 - 77.00	Auto	0.0000
L12	65	(Area) CCI-65FP-040075 (H)	76.63 - 77.00	Auto	0.0000
L13	58	(Area) CCI-65FP-045100 (H)	76.00 - 76.63	Auto	0.0000
L13	60	(Area) CCI-65FP-045100 (H)	76.00 - 76.63	Auto	0.0000
L13	61	(Area) CCI-65FP-045100 (H)	76.00 - 76.63	Auto	0.0000
L13	63	(Area) CCI-65FP-040075 (H)	76.00 - 76.63	Auto	0.0000
L13	64	(Area) CCI-65FP-040075 (H)	76.00 - 76.63	Auto	0.0000
L13	65	(Area) CCI-65FP-040075 (H)	76.00 - 76.63	Auto	0.0000
L14	58	(Area) CCI-65FP-045100 (H)	75.75 - 76.00	Auto	0.0000
L14	60	(Area) CCI-65FP-045100 (H)	75.75 - 76.00	Auto	0.0000
L14	61	(Area) CCI-65FP-045100 (H)	75.75 - 76.00	Auto	0.0000
L14	63	(Area) CCI-65FP-040075 (H)	75.75 - 76.00	Auto	0.0000
L14	64	(Area) CCI-65FP-040075 (H)	75.75 - 76.00	Auto	0.0000
L14	65	(Area) CCI-65FP-040075 (H)	75.75 - 76.00	Auto	0.0000
L15	37	(Area) Sabre MS450 (1.00x4.50)	70.75 - 72.25	Auto	0.0000
L15	38	(Area) Sabre MS450 (1.00x4.50)	70.75 - 72.25	Auto	0.0000
L15	39	(Area) Sabre MS450 (1.00x4.50)	70.75 - 72.25	Auto	0.0000
L15	58	(Area) CCI-65FP-045100 (H)	70.75 - 75.75	Auto	0.0000
L15	60	(Area) CCI-65FP-045100 (H)	70.75 - 75.75	Auto	0.0000
L15	61	(Area) CCI-65FP-045100 (H)	70.75 - 75.75	Auto	0.0000
L15	63	(Area) CCI-65FP-040075 (H)	70.75 - 75.75	Auto	0.0000
L15	64	(Area) CCI-65FP-040075 (H)	70.75 - 75.75	Auto	0.0000

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.	Description	Segment	Calculatio	Width
			Ĕlev.	n	Ratio
L15	65	(Area) CCI-65FP-040075	70.75 -	Method Auto	0.0000
LIJ	03	(H)	75.75	Auto	0.0000
L16	37	(Area) Sabre MS450 (1.00x4.50)	70.50 - 70.75	Auto	0.0000
L16	38	(Area) Sabre MS450 (1.00x4.50)	70.50 - 70.75	Auto	0.0000
L16	39	(Area) Sabre MS450 (1.00x4.50)	70.50 - 70.75	Auto	0.0000
L16	54	(1.0044.30) (Area) CCI-65FP-060100 (H)	70.73 70.50 - 70.58	Auto	0.1910
L16	55	(Area) CCI-65FP-060100 (H)	70.50 - 70.58	Auto	0.1910
L16	56	(Area) CCI-65FP-060100 (H)	70.50 - 70.58	Auto	0.1910
L16	58	(Area) CCI-65FP-045100 (H)	70.50 - 70.75	Auto	0.0000
L16	60	(Area) CCI-65FP-045100 (H)	70.67 - 70.75	Auto	0.0000
L16	61	(Area) CCI-65FP-045100 (H)	70.67 - 70.75	Auto	0.0000
L16	63	(Area) CCI-65FP-040075 (H)	70.75 70.50 - 70.75	Auto	0.0000
L16	64	(Area) CCI-65FP-040075 (H)	70.75 70.50 - 70.75	Auto	0.0000
L16	65	(Area) CCI-65FP-040075 (H)	70.75 70.50 - 70.75	Auto	0.0000
L17	37	(Area) Sabre MS450	67.98 -	Auto	0.0000
L17	38	(1.00x4.50) (Area) Sabre MS450	70.50 67.98 -	Auto	0.0000
L17	39	(1.00x4.50) (Area) Sabre MS450 (1.00x4.50)	70.50 67.98 - 70.50	Auto	0.0000
L17	54	(Area) CCI-65FP-060100 (H)	67.98 - 70.50	Auto	0.1946
L17	55	(Area) CCI-65FP-060100 (H)	67.98 - 70.50	Auto	0.1946
L17	56	(Area) CCI-65FP-060100 (H)	67.98 - 70.50	Auto	0.1946
L17	58	(Area) CCI-65FP-045100 (H)	67.98 - 70.50	Auto	0.0000
L17	63	(Area) CCI-65FP-040075 (H)	67.98 - 70.50	Auto	0.0000
L17	64	(Area) CCI-65FP-040075 (H)	67.98 - 70.50	Auto	0.0000
L17	65	(Area) CCI-65FP-040075 (H)	67.98 - 70.50	Auto	0.0000
L18	37	(Area) Sabre MS450 (1.00x4.50)	67.73 - 67.98	Auto	0.0000
L18	38	(Area) Sabre MS450 (1.00x4.50)	67.73 - 67.98	Auto	0.0000
L18	39	(Area) Sabre MS450 (1.00x4.50)	67.73 - 67.98	Auto	0.0000
L18	54	(1.0044.30) (Area) CCI-65FP-060100 (H)	67.73 - 67.98	Auto	0.1806
L18	55	(Area) CCI-65FP-060100 (H)	67.98 67.98	Auto	0.1806
L18	56	(Area) CCI-65FP-060100 (H)	67.73 - 67.98	Auto	0.1806
L18	58	(Area) CCI-65FP-045100 (H)	67.73 - 67.98	Auto	0.0000
L18	63	(Area) CCI-65FP-040075 (H)	67.73 - 67.98	Auto	0.0000
L18	64	(Area) CCI-65FP-040075 (H)	67.73 - 67.98	Auto	0.0000
L18	65	(Area) CCI-65FP-040075 (H)	67.73 - 67.98	Auto	0.0000
L19	27	(Area) CCI-65FP-045100 (H)	63.50 - 65.00	Auto	0.0000
•	•	` , ,			_

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.	Description	Segment	Calculatio	Width
			Ĕlev.	n	Ratio
L19	28	(Area) CCI-65FP-045100	63.50 -	Method Auto	0.0000
	20	` (H)	65.00	71010	0.0000
L19	29	(Area) CCI-65FP-045100 (H)	63.50 - 65.00	Auto	0.0000
L19	37	(Area) Sabre MS450 (1.00x4.50)	63.50 - 67.73	Auto	0.0000
L19	38	(Area) Sabre MS450 (1.00x4.50)	63.50 - 67.73	Auto	0.0000
L19	39	(Area) Sabre MS450 (1.00x4.50)	63.50 - 67.73	Auto	0.0000
L19	54	(Area) CCI-65FP-060100 (H)	63.50 - 67.73	Auto	0.1468
L19	55	(Area) CCI-65FP-060100 (H)	63.50 - 67.73	Auto	0.1468
L19	56	(Area) CCI-65FP-060100 (H)	63.50 - 67.73	Auto	0.1468
L19	58	(Area) CCI-65FP-045100 (H)	65.17 - 67.73	Auto	0.0000
L19	63	(Area) CCI-65FP-040075 (H)	67.00 - 67.73	Auto	0.0000
L19	64	(Area) CCI-65FP-040075 (H)	67.73 67.00 - 67.73	Auto	0.0000
L19	65	(Area) CCI-65FP-040075 (H)	67.00 - 67.73	Auto	0.0000
L20	27	(Area) CCI-65FP-045100 (H)	63.25 - 63.50	Auto	0.0000
L20	28	(Area) CCI-65FP-045100 (H)	63.25 - 63.50	Auto	0.0000
L20	29	(Area) CCI-65FP-045100 (H)	63.25 - 63.50	Auto	0.0000
L20	37	(Area) Sabre MS450 (1.00x4.50)	63.25 - 63.50	Auto	0.0000
L20	38	(Area) Sabre MS450 (1.00x4.50)	63.25 - 63.50	Auto	0.0000
L20	39	(Area) Sabre MS450 (1.00x4.50)	63.25 - 63.50	Auto	0.0000
L20	54	(Area) CCI-65FP-060100 (H)	63.25 - 63.50	Auto	0.2191
L20	55	(Area) CCI-65FP-060100 (H)	63.25 - 63.50	Auto	0.2191
L20	56	(Area) CCI-65FP-060100 (H)	63.25 - 63.50	Auto	0.2191
L21	27	(Area) CCI-65FP-045100 (H)	58.25 - 63.25	Auto	0.0000
L21	28	(Area) CCI-65FP-045100 (H)	58.25 - 63.25	Auto	0.0000
L21	29	(Area) CCI-65FP-045100 (H)	58.25 - 63.25	Auto	0.0000
L21	37	(Area) Sabre MS450 (1.00x4.50)	58.25 - 63.25	Auto	0.0000
L21	38	(Area) Sabre MS450 (1.00x4.50)	58.25 - 63.25	Auto	0.0000
L21	39	(Area) Sabre MS450 (1.00x4.50)	58.25 - 63.25	Auto	0.0000
L21	54	(Area) CCI-65FP-060100 (H)	58.25 - 63.25	Auto	0.1703
L21	55	(Area) CCI-65FP-060100 (H)	58.25 - 63.25	Auto	0.1703
L21	56	(Area) CCI-65FP-060100 (H)	58.25 - 63.25	Auto	0.1703
L22	27	(Area) CCI-65FP-045100 (H)	53.25 - 58.25	Auto	0.0000
L22	28	(Area) CCI-65FP-045100 (H)	53.25 - 58.25	Auto	0.0000
L22	29	(Area) CCI-65FP-045100 (H)	53.25 - 58.25	Auto	0.0000
L22	37	(Area) Sabre MS450 (1.00x4.50)	53.25 - 58.25	Auto	0.0000
- '	. '	/ 1		. '	•

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.	2000	Segment	Calculatio	Width
			Elev.	n Method	Ratio
L22	38	(Area) Sabre MS450	53.25 -	Auto	0.0000
L22	39	(1.00x4.50) (Area) Sabre MS450 (1.00x4.50)	58.25 53.25 - 58.25	Auto	0.0000
L22	54	(Area) CCI-65FP-060100 (H)	53.25 - 58.25	Auto	0.1086
L22	55	(Area) CCI-65FP-060100 (H)	53.25 - 58.25	Auto	0.1086
L22	56	(Area) CCI-65FP-060100 (H)	53.25 - 58.25	Auto	0.1086
L23	27	(Area) CCI-65FP-045100 (H)	47.42 - 53.25	Auto	0.0000
L23	28	(Area) CCI-65FP-045100 (H)	47.42 - 53.25	Auto	0.0000
L23	29	(Area) CCI-65FP-045100 (H)	47.42 - 53.25	Auto	0.0000
L23	37	(Area) Sabre MS450 (1.00x4.50)	50.00 - 53.25	Auto	0.0000
L23	38	(Area) Sabre MS450 (1.00x4.50)	50.00 - 53.25	Auto	0.0000
L23	39	(Area) Sabre MS450 (1.00x4.50)	50.00 - 53.25	Auto	0.0000
L23	45	(Area) CCI-65FP-040075 (H)	47.42 - 50.00	Auto	0.0000
L23	46	(Area) CCI-65FP-040075 (H)	47.42 - 50.00	Auto	0.0000
L23	47	(Area) CCI-65FP-040075 (H)	47.42 - 50.00	Auto	0.0000
L23	54	(Area) CCI-65FP-060100 (H)	47.42 - 53.25	Auto	0.0539
L23	55	(Area) CCI-65FP-060100 (H)	47.42 - 53.25	Auto	0.0539
L23	56	(Area) CCI-65FP-060100 (H)	47.42 - 53.25	Auto	0.0539
L24	27	(Area) CCI-65FP-045100 (H)	46.42 - 47.42	Auto	0.0000
L24	28	(Area) CCI-65FP-045100 (H)	46.42 - 47.42	Auto	0.0000
L24	29	(Area) CCI-65FP-045100 (H)	46.42 - 47.42	Auto	0.0000
L24	45	(Area) CCI-65FP-040075 (H)	46.42 - 47.42	Auto	0.0000
L24	46	(Area) CCI-65FP-040075 (H)	46.42 - 47.42	Auto	0.0000
L24	47	(Area) CCI-65FP-040075 (H)	46.42 - 47.42	Auto	0.0000
L24	54	(Area) CCI-65FP-060100 (H)	46.42 - 47.42	Auto	0.0502
L24	55	(Area) CCI-65FP-060100 (H)	46.42 - 47.42	Auto	0.0502
L24	56	(Area) CCI-65FP-060100 (H)	46.42 - 47.42	Auto	0.0502
L25	27	(Area) CCI-65FP-045100 (H)	43.50 - 46.42	Auto	0.0000
L25	28	(Area) CCI-65FP-045100 (H)	43.50 - 46.42	Auto	0.0000
L25	29	(Area) CCI-65FP-045100 (H)	43.50 - 46.42	Auto	0.0000
L25	33	(Area) Sabre MS450 (1.00x4.50)	43.50 - 45.00	Auto	0.0000
L25	34	(Area) Sabre MS450 (1.00x4.50)	43.50 - 45.00	Auto	0.0000
L25	35	(Area) Sabre MS450 (1.00x4.50)	43.50 - 45.00	Auto	0.0000
L25	45	(Area) CCI-65FP-040075 (H)	43.50 - 46.42	Auto	0.0000
L25	46	(Area) CCI-65FP-040075 (H)	43.50 - 46.42	Auto	0.0000

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.	Восоприон	Segment	Calculatio	Width
			Elev.	n	Ratio
L25	47	(Area) CCI-65FP-040075	43.50 -	Method Auto	0.0000
		(H)	46.42		
L25	54	(Area) CCI-65FP-060100 (H)	43.50 - 46.42	Auto	0.0248
L25	55	(Area) CCI-65FP-060100 (H)	43.50 - 46.42	Auto	0.0248
L25	56	(Area) CCI-65FP-060100 (H)	43.50 - 46.42	Auto	0.0248
L26	27	(Area) CCI-65FP-045100 (H)	43.25 - 43.50	Auto	0.0000
L26	28	(Area) CCI-65FP-045100 (H)	43.25 - 43.50	Auto	0.0000
L26	29	(Area) CCI-65FP-045100 (H)	43.25 - 43.50	Auto	0.0000
L26	33	(Area) Sabre MS450 (1.00x4.50)	43.25 - 43.50	Auto	0.0000
L26	34	(Area) Sabre MS450 (1.00x4.50)	43.25 - 43.50	Auto	0.0000
L26	35	(Area) Sabre MS450 (1.00x4.50)	43.25 - 43.50	Auto	0.0000
L26	45	(Area) CCI-65FP-040075 (H)	43.25 - 43.50	Auto	0.0000
L26	46	(Area) CCI-65FP-040075 (H)	43.25 - 43.50	Auto	0.0000
L26	47	(Area) CCI-65FP-040075 (H)	43.25 - 43.50	Auto	0.0000
L26	54	(Area) CCI-65FP-060100	43.25 - 43.50	Auto	0.0814
L26	55	(H) (Area) CCI-65FP-060100	43.25 -	Auto	0.0814
L26	56	(H) (Area) CCI-65FP-060100	43.50 43.25 -	Auto	0.0814
L27	27	(H) (Area) CCI-65FP-045100	43.50 38.25 - 43.25	Auto	0.0000
L27	28	(H) (Area) CCI-65FP-045100	38.25 -	Auto	0.0000
L27	29	(H) (Area) CCI-65FP-045100	43.25 38.25 -	Auto	0.0000
L27	33	(H) (Area) Sabre MS450 (1.00x4.50)	43.25 38.25 - 43.25	Auto	0.0000
L27	34	(Area) Sabre MS450	38.25 -	Auto	0.0000
L27	35	(1.00x4.50) (Area) Sabre MS450	43.25 38.25 -	Auto	0.0000
L27	45	(1.00x4.50) (Area) CCI-65FP-040075	43.25 38.25 -	Auto	0.0000
L27	46	(H) (Area) CCI-65FP-040075	43.25 38.25 -	Auto	0.0000
L27	47	(H) (Area) CCI-65FP-040075	43.25 38.25 - 43.25	Auto	0.0000
L27	54	(H) (Area) CCI-65FP-060100 (H)	38.25 - 43.25	Auto	0.0438
L27	55	(Area) CCI-65FP-060100	38.25 - 43.25	Auto	0.0438
L27	56	(H) (Area) CCI-65FP-060100	38.25 -	Auto	0.0438
L28	23	(H) (Area) CCI-65FP-060100	43.25 33.50 -	Auto	0.0000
L28	24	(H) (Area) CCI-65FP-060100	35.00 33.50 -	Auto	0.0000
L28	25	(H) (Area) CCI-65FP-060100	35.00 33.50 -	Auto	0.0000
L28	27	(H) (Area) CCI-65FP-045100	35.00 35.00 -	Auto	0.0000
L28	28	(H) (Area) CCI-65FP-045100	38.25 35.00 -	Auto	0.0000
L28	29	(H) (Area) CCI-65FP-045100	38.25 35.00 -	Auto	0.0000
i I		(H)	38.25		

Section Record No. Segment Calculatio Method Ratio Method Ratio Method Ratio Method Nethod N	Tower	Attachment	Description	Attachment	Ratio	Effective
L28			Description			
L28				•		Ratio
L28	L28	33	(Area) Sabre MS450	33.50 -		0.0000
(1,00x4,50) 38,25 (Area) Sabre MS450 (1,00x4,50) 38,25 (Area) Sabre MS450 (1,00x4,50) 38,25 (Area) CCI-65FP-045100 33,50 - Auto 0,0000 (H) 35,00 (Area) CCI-65FP-045100 33,50 - Auto 0,0000 (Area) CCI-65FP-045100 33,50 - Auto 0,0000 (Area) CCI-65FP-045100 35,00 - Auto 0,0000 (Area) CCI-65FP-040075 35,00 - Auto 0,0000 (Area) CCI-65FP-040100 35,50 - Auto 0,0000 (Area) CCI-65FP-045100 33,50 - Auto 0,0000 (Area) CCI-65FP-060100 35,58 - Auto 0,0010 (Area) CCI-65FP-060100 33,50 - Auto 0,0010 (Area) CCI-65FP-060100 33,50 - Auto 0,0010 (Area) CCI-65FP-060100 33,55 - Auto 0,0000 (Area) CCI-65FP-060100 33,55 - Auto 0,0000 (Area) CCI-65FP-060100 33,25 - Auto 0,0000 (Area) CCI-65FP-045100 33,25 - Auto 0,0000 (Area) CCI-65FP-045100 33,25 - Auto 0,0000 (Area) CCI-65FP-045100 33,25 - Auto 0,0000 (Area) CCI-65FP-060100 33,25 - Auto 0,0000 (Area) CC	1.00	24			A 4 -	0.0000
L28	L28	34	,		Auto	0.0000
L28	L28	35	(Area) Sabre MS450	33.50 -	Auto	0.0000
L28	L28	41			Auto	0.0000
(H) 35.00	1.20	42	` '		Auto	0.0000
(H) 35.00	LZO	42	,		Auto	0.0000
L28	L28	43			Auto	0.0000
L28	L28	45	(Area) CCI-65FP-040075	35.00 -	Auto	0.0000
H 38.25	1.28	46			Auto	0 0000
H 38.25			` (H)	38.25		
(H) 35.50 Auto 0.0000	L28	47			Auto	0.0000
L28	L28	49			Auto	0.0000
L28	L28	50	` ,		Auto	0.0000
L28 54 (Area) CCI-65FP-060100 35.58 - Auto 0.0010	1 28	52			Auto	0.0000
Carear CCI-65FP-060100 35.58 Auto 0.0010		52	(H)		Auto	0.0000
L28	L28	54	,		Auto	0.0010
L28	L28	55		35.58 -	Auto	0.0010
Company	L28	56			Auto	0.0010
Care CCI-65FP-060100 Care CAre CCI-65FP-060100 Care CAre CCI-65FP-060100 Care Care CAre CCI-65FP-060100 Care Care CAre CCI-65FP-060100 Care C			(H)	38.25		
L29 24 (Area) CCI-65FP-060100 (H) 33.50 Auto 0.0000 L29 25 (Area) CCI-65FP-060100 (H) 33.50 33.50 Auto 0.0000 L29 33 (Area) Sabre MS450 (1.00x4.50) 33.50 Auto 0.0000 L29 34 (Area) Sabre MS450 (1.00x4.50) 33.50 Auto 0.0000 L29 35 (Area) Sabre MS450 (1.00x4.50) 33.50 Auto 0.0000 L29 41 (Area) CCI-65FP-045100 (H) 33.50 Auto 0.0000 L29 42 (Area) CCI-65FP-045100 (H) 33.50 Auto 0.0000 L29 43 (Area) CCI-65FP-045100 (H) 33.50 Auto 0.0000 L29 49 (Area) CCI-65FP-045100 (H) 33.50 Auto 0.0000 L29 49 (Area) CCI-65FP-045100 (H) 33.50 Auto 0.0000 L29 50 (Area) CCI-65FP-06100 (H) 33.50 Auto 0.0000 L29 52 (Area) CCI-65FP-06100 (H) 33	L29	23	` '		Auto	0.0000
L29 25 (Area) CCI-65FP-060100 (H) 33.25 - (Auto) 0.0000 L29 33 (Area) Sabre MS450 (1.00x4.50) 33.25 - (Auto) 0.0000 L29 34 (Area) Sabre MS450 (1.00x4.50) 33.25 - (Auto) 0.0000 L29 35 (Area) Sabre MS450 (1.00x4.50) 33.50 - (Auto) 0.0000 L29 41 (Area) CCI-65FP-045100 (H) 33.50 - (Auto) 0.0000 L29 42 (Area) CCI-65FP-045100 (H) 33.50 - (Auto) 0.0000 L29 43 (Area) CCI-65FP-045100 (H) 33.50 - (Auto) 0.0000 L29 49 (Area) CCI-65FP-045100 (H) 33.50 - (Auto) 0.0000 L29 50 (Area) CCI-65FP-045100 (H) 33.50 - (Auto) 0.0000 L29 50 (Area) CCI-65FP-045100 (H) 33.50 - (Auto) 0.0000 L30 23 (Area) CCI-65FP-060100 (H) 33.00 - (Auto) 0.0000 L30 24 (Area) CCI-65FP-060100 (H) 33.25 - (Auto) 0.0000 L30 25 (Area) CCI-65FP-060100 (H) 33.25 - (Auto) 0.0000 L30 25 (Area) CCI-65FP-	L29	24	(Area) CCI-65FP-060100	33.25 -	Auto	0.0000
L29 33 (Area) Sabre MS450 (1.00x4.50) 33.25 (1.00x4.50) 33.50 Auto 0.0000 L29 34 (Area) Sabre MS450 (1.00x4.50) 33.50 Auto 0.0000 L29 35 (Area) Sabre MS450 (1.00x4.50) 33.50 Auto 0.0000 L29 41 (Area) CCI-65FP-045100 (H) (33.50) 33.25 (Auto) 0.0000 L29 42 (Area) CCI-65FP-045100 (H) (H) (33.50) 33.25 (Auto) 0.0000 L29 43 (Area) CCI-65FP-045100 (H) (Area) (CI-65FP-045100 (H) (Area) (CI-65FP-060100 (H) (Area) (Area) (CI-65FP-060100 (Area) (Area	L29	25			Auto	0.0000
Company	1 20	33	` ,		Auto	0.0000
Company			(1.00x4.50)	33.50		
L29	L29	34	, ,		Auto	0.0000
L29	L29	35	(Area) Sabre MS450	33.25 -	Auto	0.0000
L29	L29	41			Auto	0.0000
L29			(H)	33.50		
L29	L29	42	` '		Auto	0.0000
L29 49 (Area) CCI-65FP-045100 33.25 - (H) 33.50 Auto 0.0000 L29 50 (Area) CCI-65FP-045100 33.25 - (H) 33.50 Auto 0.0000 L29 52 (Area) CCI-65FP-045100 33.25 - (H) Auto 0.0000 L30 23 (Area) CCI-65FP-060100 33.00 - (H) 33.25 L30 24 (Area) CCI-65FP-060100 33.00 - (H) 33.25 L30 25 (Area) CCI-65FP-060100 33.00 - (H) 33.25 L30 33 (Area) Sabre MS450 33.00 - (Auto) 0.0000 L30 34 (Area) Sabre MS450 33.00 - (Auto) 0.0000 L30 35 (Area) Sabre MS450 33.00 - (Auto) 0.0000 L30 35 (Area) Sabre MS450 33.00 - (Auto) 0.0000 L30 35 (Area) Sabre MS450 33.00 - (Auto) 0.0000 L30 41 (Area) CCI-65FP-045100 33.00 - (Auto) 0.0000	L29	43	(Area) CCI-65FP-045100	33.25 -	Auto	0.0000
L29 50 (Area) CCI-65FP-045100 33.25 - (H) 33.50 Auto 0.0000 L29 52 (Area) CCI-65FP-045100 33.25 - (H) 33.50 Auto 0.0000 L30 23 (Area) CCI-65FP-060100 33.00 - (H) 33.25 Auto 0.0000 L30 24 (Area) CCI-65FP-060100 33.00 - (H) 33.25 Auto 0.0000 L30 25 (Area) CCI-65FP-060100 33.00 - (H) 33.25 Auto 0.0000 L30 33 (Area) Sabre MS450 33.00 - (Auto) Auto 0.0000 L30 34 (Area) Sabre MS450 33.00 - (Auto) Auto) 0.0000 L30 35 (Area) Sabre MS450 33.00 - (Auto) Auto) 0.0000 L30 41 (Area) CCI-65FP-045100 33.00 - (Auto) Auto) 0.0000	L29	49	(Area) CCI-65FP-045100	33.25 -	Auto	0.0000
L29 52 (Area) CCI-65FP-045100 33.25 - Auto 0.0000 L30 23 (Area) CCI-65FP-060100 33.00 - Auto 0.0000 (H) 33.25 L30 24 (Area) CCI-65FP-060100 33.00 - Auto 0.0000 (H) 33.25 L30 25 (Area) CCI-65FP-060100 33.00 - Auto 0.0000 (H) 33.25 L30 33 (Area) Sabre MS450 33.00 - Auto 0.0000 (1.00x4.50) 33.25 L30 34 (Area) Sabre MS450 33.00 - Auto 0.0000 (1.00x4.50) 33.25 L30 35 (Area) Sabre MS450 33.00 - Auto 0.0000 (1.00x4.50) 33.25 L30 35 (Area) Sabre MS450 33.00 - Auto 0.0000 (1.00x4.50) 33.25 L30 35 (Area) Sabre MS450 33.00 - Auto 0.0000 (1.00x4.50) 33.25 L30 41 (Area) CCI-65FP-045100 33.00 - Auto 0.0000	1 29	50			Auto	0 0000
L30			` (H)	33.50		
L30	L29	52	` '		Auto	0.0000
L30	L30	23	(Area) CCI-65FP-060100	33.00 -	Auto	0.0000
L30	L30	24			Auto	0.0000
L30			` (H)	33.25		0.0000
Comparison of			` '		Auto	
L30 34 (Area) Sabre MS450 33.00 - (1.00x4.50) Auto 0.0000 L30 35 (Area) Sabre MS450 33.00 - (1.00x4.50) Auto 0.0000 L30 41 (Area) CCI-65FP-045100 33.00 - (Auto) Auto 0.0000	L30	33	, , , , , , , , , , , , , , , , , , , ,		Auto	0.0000
L30 35 (Area) Sabre MS450 33.00 - Auto 0.0000 (1.00x4.50) 33.25 L30 41 (Area) CCI-65FP-045100 33.00 - Auto 0.0000	L30	34	(Area) Sabre MS450	33.00 -	Auto	0.0000
(1.00x4.50) 33.25 L30 41 (Area) CCI-65FP-045100 33.00 - Auto 0.0000	1.30	35	,		Auto	0.0000
			(1.00x4.50)	33.25		
	L30	41	(Area) CCI-65FP-045100 (H)			0.0000

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.	Description	Segment	Calculatio	Width
			Elev.	n Madaad	Ratio
L30	42	(Area) CCI-65FP-045100	33.00 -	Method Auto	0.0000
L30	43	(H) (Area) CCI-65FP-045100	33.25 33.00 -	Auto	0.0000
L30	49	(H) (Area) CCI-65FP-045100	33.25 33.00 -	Auto	0.0000
L30	50	(H) (Area) CCI-65FP-045100	33.25 33.00 -	Auto	0.0000
L30	52	(H) (Area) CCI-65FP-045100	33.25 33.00 - 33.25	Auto	0.0000
L31	23	(H) (Area) CCI-65FP-060100 (H)	32.75 - 33.00	Auto	0.0000
L31	24	(Area) CCI-65FP-060100 (H)	32.75 - 33.00	Auto	0.0000
L31	25	(Area) CCI-65FP-060100 (H)	32.75 - 33.00	Auto	0.0000
L31	33	(Area) Sabre MS450 (1.00x4.50)	32.75 - 33.00	Auto	0.0000
L31	34	(Area) Sabre MS450 (1.00x4.50)	32.75 - 33.00	Auto	0.0000
L31	35	(Area) Sabre MS450 (1.00x4.50)	32.75 - 33.00	Auto	0.0000
L31	41	(Area) CCI-65FP-045100 (H)	32.75 - 33.00	Auto	0.0000
L31	42	(Area) CCI-65FP-045100 (H)	32.75 - 33.00	Auto	0.0000
L31	43	(Area) CCI-65FP-045100 (H)	32.75 - 33.00	Auto	0.0000
L31	49	(Area) CCI-65FP-045100 (H)	32.75 - 33.00	Auto	0.0000
L31	50	(Area) CCI-65FP-045100 (H)	32.75 - 33.00	Auto	0.0000
L31	52	(Area) CCI-65FP-045100 (H)	32.75 - 33.00	Auto	0.0000
L32	23	(Area) CCI-65FP-060100 (H)	31.50 - 32.75	Auto	0.0000
L32	24	(Area) CCI-65FP-060100 (H)	31.50 - 32.75	Auto	0.0000
L32	25	(Area) CCI-65FP-060100 (H)	31.50 - 32.75	Auto	0.0000
L32	33	(Area) Sabre MS450 (1.00x4.50)	31.50 - 32.75	Auto	0.0000
L32	34	(Area) Sabre MS450 (1.00x4.50)	31.50 - 32.75	Auto	0.0000
L32	35	(Area) Sabre MS450 (1.00x4.50)	31.50 - 32.75	Auto	0.0000
L32	41	(Area) CCI-65FP-045100 (H)	31.50 - 32.75	Auto	0.0000
L32	42	(Area) CCI-65FP-045100 (H) (Area) CCI-65FP-045100	31.50 - 32.75	Auto	0.0000
L32 L32	43 49	(Area) CCI-65FP-045100 (H) (Area) CCI-65FP-045100	31.50 - 32.75 31.50 -	Auto	0.0000
L32	50	(Area) CCI-65FP-045100 (H) (Area) CCI-65FP-045100	31.50 - 32.75 31.50 -	Auto Auto	0.0000
L32	52	(Area) CCI-65FP-045100 (H) (Area) CCI-65FP-045100	32.75 31.50 -	Auto	0.0000
L32	23	(Area) CCI-65FP-060100	32.75 31.25 -	Auto	0.0000
L33	24	(Area) CCI-65FP-060100 (Area) CCI-65FP-060100	31.50 31.25 -	Auto	0.0000
L33	25	(H) (Area) CCI-65FP-060100	31.50 31.25 -	Auto	0.0000
L33	33	(H) (Area) Sabre MS450	31.50 31.25 -	Auto	0.0000
L33	34	(1.00x4.50) (Area) Sabre MS450	31.50 31.25 -	Auto	0.0000
l I		(1.00x4.50)			

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.		Segment	Calculatio	Width
			Elev.	n Method	Ratio
L33	35	(Area) Sabre MS450	31.25 -	Auto	0.0000
L33	41	(1.00x4.50) (Area) CCI-65FP-045100	31.50 31.25 - 31.50	Auto	0.0000
L33	42	(H) (Area) CCI-65FP-045100 (H)	31.25 - 31.50	Auto	0.0000
L33	43	(Area) CCI-65FP-045100	31.25 - 31.50	Auto	0.0000
L33	49	(H) (Area) CCI-65FP-045100 (H)	31.25 - 31.50	Auto	0.0000
L33	50	(Area) CCI-65FP-045100 (H)	31.25 - 31.50	Auto	0.0000
L33	52	(Area) CCI-65FP-045100 (H)	31.25 - 31.50	Auto	0.0000
L34	23	(Area) CCI-65FP-060100 (H)	26.25 - 31.25	Auto	0.0000
L34	24	(Area) CCI-65FP-060100 (H)	26.25 - 31.25	Auto	0.0000
L34	25	(Area) CCI-65FP-060100 (H)	26.25 - 31.25	Auto	0.0000
L34	33	(Area) Sabre MS450 (1.00x4.50)	30.00 - 31.25	Auto	0.0000
L34	34	(Area) Sabre MS450 (1.00x4.50)	30.00 - 31.25	Auto	0.0000
L34	35	(Area) Sabre MS450 (1.00x4.50)	30.00 - 31.25	Auto	0.0000
L34	41	(Area) CCI-65FP-045100 (H)	26.25 - 31.25	Auto	0.0000
L34	42	(Area) CCI-65FP-045100 (H)	26.25 - 31.25	Auto	0.0000
L34	43	(Area) CCI-65FP-045100 (H)	26.25 - 31.25	Auto	0.0000
L34	49	(Area) CCI-65FP-045100 (H)	26.25 - 31.25	Auto	0.0000
L34	50	(Area) CCI-65FP-045100 (H)	26.25 - 31.25	Auto	0.0000
L34	52	(Area) CCI-65FP-045100 (H)	26.25 - 31.25	Auto	0.0000
L35	23	(Area) CCI-65FP-060100 (H)	21.25 - 26.25	Auto	0.0000
L35	24	(Area) CCI-65FP-060100 (H)	21.25 - 26.25	Auto	0.0000
L35	25	(Area) CCI-65FP-060100 (H)	21.25 - 26.25	Auto	0.0000
L35	41	(Area) CCI-65FP-045100 (H)	21.25 - 26.25	Auto	0.0000
L35	42	(Area) CCI-65FP-045100 (H)	21.25 - 26.25	Auto	0.0000
L35	43	(Area) CCI-65FP-045100 (H)	21.25 - 26.25	Auto	0.0000
L35	49	(Area) CCI-65FP-045100 (H)	21.25 - 26.25	Auto	0.0000
L35	50	(Area) CCI-65FP-045100 (H)	21.25 - 26.25	Auto	0.0000
L35	52	(Area) CCI-65FP-045100 (H)	21.25 - 26.25	Auto	0.0000
L36	23	(Area) CCI-65FP-060100 (H)	16.25 - 21.25	Auto	0.0000
L36	24	(Area) CCI-65FP-060100 (H)	16.25 - 21.25	Auto	0.0000
L36	25	(Area) CCI-65FP-060100 (H)	16.25 - 21.25	Auto	0.0000
L36	41	(Area) CCI-65FP-045100 (H)	16.25 - 21.25	Auto	0.0000
L36	42	(Area) CCI-65FP-045100 (H)	16.25 - 21.25	Auto	0.0000
L36	43	(Area) CCI-65FP-045100 (H)	16.25 - 21.25	Auto	0.0000

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Segment	Calculatio	Width
			Elev.	n Method	Ratio
L36	49	(Area) CCI-65FP-045100 (H)	16.25 - 21.25	Auto	0.0000
L36	50	(Area) CCI-65FP-045100 (H)	16.25 - 21.25	Auto	0.0000
L36	52	(Area) CCI-65FP-045100 (H)	16.25 - 21.25	Auto	0.0000
L37	23	(Area) CCI-65FP-060100 (H)	13.50 - 16.25	Auto	0.0000
L37	24	(Area) CCI-65FP-060100 (H)	13.50 - 16.25	Auto	0.0000
L37	25	(Area) CCI-65FP-060100 (H)	13.50 - 16.25	Auto	0.0000
L37	41	(Area) CCI-65FP-045100 (H)	13.50 - 16.25	Auto	0.0000
L37	42	(Area) CCI-65FP-045100 (H)	13.50 - 16.25	Auto	0.0000
L37	43	(Area) CCI-65FP-045100 (H)	13.50 - 16.25	Auto	0.0000
L37	49	(Area) CCI-65FP-045100 (H)	13.50 - 16.25	Auto	0.0000
L37	50	(Area) CCI-65FP-045100 (H)	13.50 - 16.25	Auto	0.0000
L37	52	(Area) CCI-65FP-045100 (H)	13.50 - 16.25	Auto	0.0000
L38	23	(Area) CCI-65FP-060100 (H)	13.25 - 13.50	Auto	0.0000
L38	24	(Area) CCI-65FP-060100 (H)	13.25 - 13.50	Auto	0.0000
L38	25	(Area) CCI-65FP-060100 (H)	13.25 - 13.50	Auto	0.0000
L38	41	(Area) CCI-65FP-045100 (H)	13.25 - 13.50	Auto	0.0000
L38	42	(Area) CCI-65FP-045100 (H)	13.25 - 13.50	Auto	0.0000
L38	43	(Area) CCI-65FP-045100 (H)	13.25 - 13.50	Auto	0.0000
L38	49	(Area) CCI-65FP-045100 (H)	13.25 - 13.50	Auto	0.0000
L38	50	(Area) CCI-65FP-045100 (H)	13.25 - 13.50	Auto	0.0000
L38	52	(Area) CCI-65FP-045100 (H)	13.25 - 13.50	Auto	0.0000
L39	23	(Area) CCI-65FP-060100 (H)	9.00 - 13.25	Auto	0.0000
L39	24	(Area) CCI-65FP-060100 (H)	9.00 - 13.25	Auto	0.0000
L39	25	(Area) CCI-65FP-060100 (H)	9.00 - 13.25	Auto	0.0000
L39	31	(Area) Sabre MS450 (1.00x4.50)	9.00 - 10.50	Auto	0.0000
L39	41	(Area) CCI-65FP-045100 (H)	9.00 - 13.25	Auto	0.0000
L39	42	(Area) CCI-65FP-045100 (H)	9.00 - 13.25	Auto	0.0000
L39	43	(Area) CCI-65FP-045100 (H)	9.00 - 13.25	Auto	0.0000
L39	49	(Area) CCI-65FP-045100 (H)	9.00 - 13.25	Auto	0.0000
L39	50	(Area) CCI-65FP-045100 (H)	9.00 - 13.25	Auto	0.0000
L39	52	(Area) CCI-65FP-045100 (H)	10.50 - 13.25	Auto	0.0000
L40	23	(Area) CCI-65FP-060100 (H)	8.75 - 9.00	Auto	0.0000
L40	24	(Area) CCI-65FP-060100 (H)	8.75 - 9.00	Auto	0.0000
L40	25	(Area) CCI-65FP-060100 (H)	8.75 - 9.00	Auto	0.0000

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.	•	Segment	Calculatio	Width
			Elev.	n	Ratio
1.40	0.4	(A.z) O.z.b MO450	0.75 0.00	Method	0.0000
L40	31	(Area) Sabre MS450 (1.00x4.50)	8.75 - 9.00	Auto	0.0000
L40	41	(Area) CCI-65FP-045100 (H)	8.75 - 9.00	Auto	0.0000
L40	42	(Area) CCI-65FP-045100 (H)	8.75 - 9.00	Auto	0.0000
L40	43	(Area) CCI-65FP-045100 (H)	8.75 - 9.00	Auto	0.0000
L40	49	(Area) CCI-65FP-045100 (H)	8.75 - 9.00	Auto	0.0000
L40	50	(Area) CCI-65FP-045100 (H)	8.75 - 9.00	Auto	0.0000
L41	23	(Area) CCI-65FP-060100 (H)	3.75 - 8.75	Auto	0.0000
L41	24	(Area) CCI-65FP-060100 (H)	3.75 - 8.75	Auto	0.0000
L41	25	(Area) CCI-65FP-060100 (H)	3.75 - 8.75	Auto	0.0000
L41	31	(Area) Sabre MS450 (1.00x4.50)	3.75 - 8.75	Auto	0.0000
L41	41	(Area) CCI-65FP-045100	3.75 - 8.75	Auto	0.0000
L41	42	(Area) CCI-65FP-045100 (H)	3.75 - 8.75	Auto	0.0000
L41	43	(Area) CCI-65FP-045100 (H)	3.75 - 8.75	Auto	0.0000
L41	49	(Area) CCI-65FP-045100 (H)	3.75 - 8.75	Auto	0.0000
L41	50	(Area) CCI-65FP-045100 (H)	3.75 - 8.75	Auto	0.0000
L42	23	(Area) CCI-65FP-060100 (H)	0.00 - 3.75	Auto	0.0000
L42	24	(Area) CCI-65FP-060100	0.00 - 3.75	Auto	0.0000
L42	25	(Area) CCI-65FP-060100 (H)	0.00 - 3.75	Auto	0.0000
L42	31	(Area) Sabre MS450 (1.00x4.50)	0.50 - 3.75	Auto	0.0000
L42	41	(Area) CCI-65FP-045100 (H)	0.00 - 3.75	Auto	0.0000
L42	42	(Area) CCI-65FP-045100 (H)	0.00 - 3.75	Auto	0.0000
L42	43	(Area) CCI-65FP-045100 (H)	0.00 - 3.75	Auto	0.0000
L42	49	(Area) CCI-65FP-045100 (H)	0.50 - 3.75	Auto	0.0000
L42	50	(Area) CCI-65FP-045100 (H)	0.50 - 3.75	Auto	0.0000

Discrete Tower Loads										
Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight	
	209		Vert ft ft ft	•	ft		ft²	ft²	К	
117 APXVSPP18-C-A20 w/ Mount Pipe	Α	From Leg	3.00 0.00 2.00	0.0000	117.00	No Ice 1/2" Ice	4.60 5.05 5.50	4.01 4.45 4.89	0.10 0.16 0.23	

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	۰	ft		ft²	ft²	K
						1" Ice 2" Ice	6.44	5.82	0.42
APXVSPP18-C-A20 w/	В	From Leg	3.00	0.0000	117.00	No Ice	4.60	4.01	0.10
Mount Pipe		3	0.00			1/2"	5.05	4.45	0.16
			2.00			Ice	5.50	4.89	0.23
						1" Ice 2" Ice	6.44	5.82	0.42
APXVSPP18-C-A20 w/	С	From Leg	3.00	0.0000	117.00	No Ice	4.60	4.01	0.10
Mount Pipe			0.00			1/2"	5.05	4.45	0.16
			2.00			Ice 1" Ice 2" Ice	5.50 6.44	4.89 5.82	0.23 0.42
APXVTM14-ALU-I20 w/	Α	From Leg	3.00	0.0000	117.00	No Ice	4.09	2.86	0.08
Mount Pipe			0.00	0.000		1/2"	4.48	3.23	0.13
•			2.00			Ice	4.88	3.61	0.19
						1" Ice	5.71	4.40	0.33
ADVO/TNAAA ALLI IOO/	-		0.00	0.0000	447.00	2" Ice	4.00	0.00	0.00
APXVTM14-ALU-I20 w/	В	From Leg	3.00 0.00	0.0000	117.00	No Ice 1/2"	4.09 4.48	2.86 3.23	0.08 0.13
Mount Pipe			2.00			lce	4.48	3.23	0.13
			2.00			1" Ice	5.71	4.40	0.33
						2" Ice			
APXVTM14-ALU-I20 w/	С	From Leg	3.00	0.0000	117.00	No Ice	4.09	2.86	0.08
Mount Pipe			0.00			1/2"	4.48	3.23	0.13
			2.00			Ice 1" Ice 2" Ice	4.88 5.71	3.61 4.40	0.19 0.33
(3) ACU-A20-N	Α	From Leg	3.00	0.0000	117.00	No Ice	0.07	0.12	0.00
(-)			0.00			1/2"	0.10	0.16	0.00
			2.00			Ice	0.15	0.21	0.00
						1" Ice 2" Ice	0.26	0.34	0.01
(3) ACU-A20-N	В	From Leg	3.00	0.0000	117.00	No Ice	0.07	0.12	0.00
			0.00			1/2"	0.10	0.16	0.00
			2.00			lce 1" lce	0.15 0.26	0.21 0.34	0.00 0.01
						2" Ice	0.20	0.54	0.01
(3) ACU-A20-N	С	From Leg	3.00	0.0000	117.00	No Ice	0.07	0.12	0.00
` ,		J	0.00			1/2"	0.10	0.16	0.00
			2.00			Ice	0.15	0.21	0.00
						1" Ice 2" Ice	0.26	0.34	0.01
TD-RRH8X20-25	Α	From Leg	3.00	0.0000	117.00	No Ice	4.05	1.53	0.07
15 144 10,420 20	, ,	r rom Log	0.00	0.0000	111.00	1/2"	4.30	1.71	0.10
			2.00			Ice	4.56	1.90	0.13
						1" Ice	5.10	2.30	0.20
TD DDLIOVOO OF	Б	Erom Loc	2.00	0.0000	117.00	2" Ice	4.05	1.50	0.07
TD-RRH8X20-25	В	From Leg	3.00 0.00	0.0000	117.00	No Ice 1/2"	4.05 4.30	1.53 1.71	0.07 0.10
			2.00			lce	4.56	1.71	0.10
						1" Ice 2" Ice	5.10	2.30	0.20
TD-RRH8X20-25	С	From Leg	3.00	0.0000	117.00	No Ice	4.05	1.53	0.07
			0.00			1/2"	4.30	1.71	0.10
			2.00			Ice	4.56	1.90	0.13
						1" Ice 2" Ice	5.10	2.30	0.20
1.9" x 5' Stabilizer	Α	From Leg	1.50	0.0000	117.00	No Ice	0.95	0.95	0.01
o classificati		<u>-</u> -09	0.00			1/2"	1.37	1.37	0.02
			0.00			Ice	1.68	1.68	0.03
						1" Ice	2.32	2.32	0.06
1 O" v E! Ot-L:::		Francis:	1.50	0.0000	117.00	2" Ice	0.05	0.05	0.04
1.9" x 5' Stabilizer	В	From Leg	1.50 0.00	0.0000	117.00	No Ice 1/2"	0.95 1.37	0.95 1.37	0.01 0.02
			0.00			Ice	1.68	1.68	0.02
			0.00						3.30

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	۰	ft		ft²	ft²	К
			-			1" Ice 2" Ice	2.32	2.32	0.06
1.9" x 5' Stabilizer	С	From Leg	1.50	0.0000	117.00	No Ice	0.95	0.95	0.01
1.5 X 5 Glabilizer	O	1 Tolli Log	0.00	0.0000	117.00	1/2"	1.37	1.37	0.01
			0.00			Ice	1.68	1.68	0.03
						1" Ice 2" Ice	2.32	2.32	0.06
T-Arm Mount [TA 702-3]	С	None		0.0000	117.00	No Ice	4.75	4.75	0.34
						1/2"	5.82	5.82	0.43
						lce 1" lce	6.98	6.98	0.55
						2" Ice	9.72	9.72	0.87
115 PCS 1900MHz 4x45W-	Α	From Leg	2.00	0.0000	115.00	No Ice	2.32	2.24	0.06
65MHz	,,	1 Tom Log	0.00	0.0000	110.00	1/2"	2.53	2.44	0.08
			0.00			Ice	2.74	2.65	0.11
						1" Ice 2" Ice	3.19	3.09	0.17
PCS 1900MHz 4x45W-	В	From Leg	2.00	0.0000	115.00	No Ice	2.32	2.24	0.06
65MHz			0.00			1/2"	2.53	2.44	0.08
			0.00			Ice	2.74	2.65	0.11
						1" Ice 2" Ice	3.19	3.09	0.17
PCS 1900MHz 4x45W-	С	From Leg	2.00	0.0000	115.00	No Ice	2.32	2.24	0.06
65MHz	Ū	1 Tom Log	0.00	0.0000	110.00	1/2"	2.53	2.44	0.08
33			0.00			lce	2.74	2.65	0.11
						1" Ice	3.19	3.09	0.17
		_				2" Ice			
800 EXTERNAL NOTCH	Α	From Leg	2.00	0.0000	115.00	No Ice	0.66	0.32	0.01
FILTER			0.00			1/2" Ice	0.76	0.40	0.02
			0.00			1" Ice	0.87 1.11	0.48 0.67	0.02 0.04
						2" Ice	1.11	0.07	0.04
800 EXTERNAL NOTCH	В	From Leg	2.00	0.0000	115.00	No Ice	0.66	0.32	0.01
FILTER		_	0.00			1/2"	0.76	0.40	0.02
			0.00			Ice	0.87	0.48	0.02
						1" Ice	1.11	0.67	0.04
800 EXTERNAL NOTCH	С	From Leg	2.00	0.0000	115.00	2" Ice No Ice	0.66	0.32	0.01
FILTER	C	i ioni Leg	0.00	0.0000	113.00	1/2"	0.76	0.40	0.01
			0.00			Ice	0.87	0.48	0.02
						1" Ice	1.11	0.67	0.04
						2" Ice			
800MHZ RRH	Α	From Leg	2.00	0.0000	115.00	No Ice	2.13	1.77	0.05
			0.00 0.00			1/2"	2.32 2.51	1.95 2.13	0.07 0.10
			0.00			lce 1" lce	2.92	2.13	0.16
						2" Ice	2.02	2.01	0.10
800MHZ RRH	В	From Leg	2.00	0.0000	115.00	No Ice	2.13	1.77	0.05
		_	0.00			1/2"	2.32	1.95	0.07
			0.00			Ice	2.51	2.13	0.10
						1" Ice	2.92	2.51	0.16
800MHZ RRH	С	From Leg	2.00	0.0000	115.00	2" Ice No Ice	2.13	1.77	0.05
OOOWI IZ TATA	O	1 Tolli Log	0.00	0.0000	110.00	1/2"	2.32	1.95	0.03
			0.00			Ice	2.51	2.13	0.10
						1" Ice 2" Ice	2.92	2.51	0.16
(2) 2.4" Dia x 4-ft Mount	Α	From Leg	0.50	0.0000	115.00	No Ice	0.87	0.87	0.01
Pipe		J	0.00			1/2"	1.12	1.12	0.02
			0.00			Ice	1.37	1.37	0.03
						1" Ice	1.91	1.91	0.06
(2) 2.4" Dia x 4-ft Mount	В	From Leg	0.50	0.0000	115.00	2" Ice No Ice	0.87	0.87	0.01
(2) 2.4 Dia x 4-it Woullt Pipe	ט	i ioni Leg	0.00	0.0000	1 13.00	INO ICE	1.12	1.12	0.01
60			3.00					2	0.02

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	۰	ft		ft²	ft²	K
			0.00			1/2" Ice 1" Ice	1.37 1.91	1.37 1.91	0.03 0.06
(2) 2.4" Dia x 4-ft Mount	С	From Leg	0.50	0.0000	115.00	2" Ice No Ice	0.87	0.87	0.01
Pipe			0.00			1/2"	1.12	1.12	0.02
			0.00			Ice 1" Ice 2" Ice	1.37 1.91	1.37 1.91	0.03 0.06
Side Arm Mount [SO 102-	С	None		0.0000	115.00	No Ice	3.60	3.60	0.07
3]						1/2"	4.18	4.18	0.11
						Ice	4.75	4.75	0.14
						1" Ice 2" Ice	5.90	5.90	0.20
110		_							
AIR6449 B41_T-MOBILE w/ Mount Pipe	Α	From Centroid-	4.00 0.00	0.0000	110.00	No Ice 1/2"	5.19 5.59	2.71 3.04	0.13 0.17
w/ Would Fipe		Face	0.00			Ice	6.02	3.38	0.17
		racc	0.00			1" Ice	6.90	4.12	0.25
						2" Ice	0.00		0.00
AIR6449 B41_T-MOBILE	В	From	4.00	0.0000	110.00	No Ice	5.19	2.71	0.13
w/ Mount Pipe		Centroid-	0.00			1/2"	5.59	3.04	0.17
		Face	0.00			Ice	6.02	3.38	0.23
						1" Ice 2" Ice	6.90	4.12	0.35
AIR6449 B41 T-MOBILE	С	From	4.00	0.0000	110.00	No Ice	5.19	2.71	0.13
w/ Mount Pipe	Ŭ	Centroid-	0.00	0.0000	110.00	1/2"	5.59	3.04	0.17
•		Face	0.00			Ice	6.02	3.38	0.23
						1" Ice	6.90	4.12	0.35
ADVI/AADD24 42 II NA20	^	Гтот	4.00	0.0000	110.00	2" Ice	14.60	6.07	0.40
APXVAARR24_43-U-NA20 w/ Mount Pipe	Α	From Centroid-	4.00 0.00	0.0000	110.00	No Ice 1/2"	14.69 15.46	6.87 7.55	0.19 0.31
w/ Wount i pc		Face	0.00			Ice	16.23	8.25	0.46
						1" Ice 2" Ice	17.82	9.67	0.79
APXVAARR24_43-U-NA20	В	From	4.00	0.0000	110.00	No Ice	14.69	6.87	0.19
w/ Mount Pipe		Centroid-	0.00			1/2"	15.46 16.23	7.55	0.31
		Face	0.00			lce 1" lce	17.82	8.25 9.67	0.46 0.79
						2" Ice	17.02	5.07	0.73
APXVAARR24_43-U-NA20	С	From	4.00	0.0000	110.00	No Ice	14.69	6.87	0.19
w/ Mount Pipe		Centroid-	0.00			1/2"	15.46	7.55	0.31
		Face	0.00			Ice	16.23	8.25	0.46
						1" Ice 2" Ice	17.82	9.67	0.79
AIR 32 B2A B66AA w/	Α	From	4.00	0.0000	110.00	No Ice	3.76	3.15	0.19
Mount Pipe		Centroid-	0.00			1/2"	4.12	3.49	0.25
		Face	0.00			Ice	4.48	3.84	0.32
						1" Ice 2" Ice	5.24	4.58	0.48
AIR 32 B2A B66AA w/	В	From	4.00	0.0000	110.00	No Ice	3.76	3.15	0.19
Mount Pipe	_	Centroid-	0.00	0.000		1/2"	4.12	3.49	0.25
•		Face	0.00			Ice	4.48	3.84	0.32
						1" Ice	5.24	4.58	0.48
AIR 32 B2A B66AA w/	С	From	4.00	0.0000	110.00	2" Ice No Ice	3.76	3.15	0.19
Mount Pipe	O	Centroid-	0.00	0.0000	110.00	1/2"	4.12	3.49	0.15
Wedner ipe		Face	0.00			Ice	4.48	3.84	0.32
						1" Ice	5.24	4.58	0.48
		_				2" Ice			
KRY 112 144/1	Α	From	4.00	0.0000	110.00	No Ice	0.35	0.17	0.01
		Centroid-	0.00			1/2"	0.43	0.23	0.01
		Face	0.00			lce 1" lce	0.51 0.70	0.30 0.46	0.02 0.03
						2" Ice	0.10	0.70	0.00

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	۰	ft		ft²	ft²	K
KRY 112 144/1	В	From	4.00	0.0000	110.00	No Ice	0.35	0.17	0.01
		Centroid-	0.00			1/2"	0.43	0.23	0.01
		Face	0.00			Ice	0.51	0.30	0.02
						1" Ice 2" Ice	0.70	0.46	0.03
KRY 112 144/1	С	From	4.00	0.0000	110.00	No Ice	0.35	0.17	0.01
	•	Centroid-	0.00	0.000		1/2"	0.43	0.23	0.01
		Face	0.00			Ice	0.51	0.30	0.02
						1" Ice	0.70	0.46	0.03
CDV402CQ 42	^		4.00	0.0000	110.00	2" Ice	0.04	0.40	0.04
SDX1926Q-43	Α	From Centroid-	4.00 0.00	0.0000	110.00	No Ice 1/2"	0.24 0.31	0.10 0.14	0.01 0.01
		Face	0.00			lce	0.31	0.14	0.01
		1 400	0.00			1" Ice	0.55	0.32	0.02
						2" Ice			
SDX1926Q-43	В	From	4.00	0.0000	110.00	No Ice	0.24	0.10	0.01
		Centroid-	0.00			1/2"	0.31	0.14	0.01
		Face	0.00			Ice 1" Ice	0.38 0.55	0.19	0.01 0.02
						2" Ice	0.55	0.32	0.02
SDX1926Q-43	С	From	4.00	0.0000	110.00	No Ice	0.24	0.10	0.01
		Centroid-	0.00			1/2"	0.31	0.14	0.01
		Face	0.00			Ice	0.38	0.19	0.01
						1" Ice	0.55	0.32	0.02
DADIO 4440 D74 D054 T	^	From	4.00	0.0000	110.00	2" Ice	1.07	1.50	0.07
RADIO 4449 B71 B85A_T- MOBILE	Α	Centroid-	4.00 0.00	0.0000	110.00	No Ice 1/2"	1.97 2.15	1.59 1.75	0.07 0.09
MOBILE		Face	0.00			lce	2.13	1.73	0.09
			0.00			1" Ice	2.72	2.28	0.17
						2" Ice			
RADIO 4449 B71 B85A_T-	В	From	4.00	0.0000	110.00	No Ice	1.97	1.59	0.07
MOBILE		Centroid-	0.00			1/2"	2.15	1.75	0.09
		Face	0.00			Ice 1" Ice	2.33 2.72	1.92 2.28	0.12 0.17
						2" Ice	2.72	2.20	0.17
RADIO 4449 B71 B85A_T-	С	From	4.00	0.0000	110.00	No Ice	1.97	1.59	0.07
MOBILE		Centroid-	0.00			1/2"	2.15	1.75	0.09
		Face	0.00			Ice	2.33	1.92	0.12
						1" Ice 2" Ice	2.72	2.28	0.17
RRUS 4415 B25 CCIV2	Α	From	4.00	0.0000	110.00	No Ice	1.84	0.82	0.05
		Centroid-	0.00	0.000		1/2"	2.01	0.94	0.06
		Face	0.00			Ice	2.19	1.07	0.08
						1" Ice	2.57	1.37	0.12
DDI 12 4445 D25 CCIV2	В	From	4.00	0.0000	110.00	2" Ice No Ice	1.84	0.82	0.05
RRUS 4415 B25_CCIV2	Ь	Centroid-	0.00	0.0000	110.00	1/2"	2.01	0.82	0.05
		Face	0.00			Ice	2.19	1.07	0.08
						1" Ice	2.57	1.37	0.12
	_					2" Ice			
RRUS 4415 B25_CCIV2	С	From	4.00	0.0000	110.00	No Ice	1.84	0.82	0.05
		Centroid- Face	0.00 0.00			1/2" Ice	2.01 2.19	0.94 1.07	0.06 0.08
		гасе	0.00			1" Ice	2.19	1.07	0.06
						2" Ice			···-
Platform Mount [LP 303-	С	None		0.0000	110.00	No Ice	17.09	17.09	1.50
1_HR-1]						1/2"	21.47	21.47	1.88
						lce	25.72	25.72	2.35
						1" Ice 2" Ice	33.96	33.96	3.52
100						_ 100			
(2) DB844G65ZAXY w/	Α	From	4.00	0.0000	100.00	No Ice	4.23	4.51	0.03
Mount Pipe		Centroid-	0.00			1/2"	4.71	5.00	0.08
		Leg	2.00			Ice 1" Ice	5.21	5.50 6.57	0.13
						i ice	6.26	6.57	0.25

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	۰	ft		ft²	ft²	K
(2) DB844G65ZAXY w/ Mount Pipe	В	From Centroid- Leg	4.00 0.00 2.00	0.0000	100.00	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	4.23 4.71 5.21 6.26	4.51 5.00 5.50 6.57	0.03 0.08 0.13 0.25
(2) DB844G65ZAXY w/ Mount Pipe	С	From Centroid- Leg	4.00 0.00 2.00	0.0000	100.00	No Ice 1/2" Ice 1" Ice 2" Ice	4.23 4.71 5.21 6.26	4.51 5.00 5.50 6.57	0.03 0.08 0.13 0.25
(2) MX06FRO660-02 w/ Mount Pipe	Α	From Centroid- Leg	4.00 0.00 2.00	0.0000	100.00	No Ice 1/2" Ice 1" Ice 2" Ice	6.54 7.06 7.60 8.70	5.54 6.05 6.57 7.64	0.08 0.16 0.26 0.48
(2) MX06FRO660-02 w/ Mount Pipe	В	From Centroid- Leg	4.00 0.00 2.00	0.0000	100.00	No Ice 1/2" Ice 1" Ice 2" Ice	6.54 7.06 7.60 8.70	5.54 6.05 6.57 7.64	0.08 0.16 0.26 0.48
(2) MX06FRO660-02 w/ Mount Pipe	С	From Centroid- Leg	4.00 0.00 2.00	0.0000	100.00	No Ice 1/2" Ice 1" Ice 2" Ice	6.54 7.06 7.60 8.70	5.54 6.05 6.57 7.64	0.08 0.16 0.26 0.48
Sub6 Antenna - VZS01 w/ Mount Pipe	Α	From Centroid- Leg	4.00 0.00 2.00	0.0000	100.00	No Ice 1/2" Ice 1" Ice 2" Ice	4.92 5.26 5.62 6.37	2.69 3.15 3.63 4.64	0.10 0.14 0.19 0.29
Sub6 Antenna - VZS01 w/ Mount Pipe	В	From Centroid- Leg	4.00 0.00 2.00	0.0000	100.00	No Ice 1/2" Ice 1" Ice 2" Ice	4.92 5.26 5.62 6.37	2.69 3.15 3.63 4.64	0.10 0.14 0.19 0.29
Sub6 Antenna - VZS01 w/ Mount Pipe	С	From Centroid- Leg	4.00 0.00 2.00	0.0000	100.00	No Ice 1/2" Ice 1" Ice 2" Ice	4.92 5.26 5.62 6.37	2.69 3.15 3.63 4.64	0.10 0.14 0.19 0.29
GPS_A	С	From Centroid- Leg	4.00 0.00 4.00	0.0000	100.00	No Ice 1/2" Ice 1" Ice 2" Ice	0.26 0.32 0.39 0.56	0.26 0.32 0.39 0.56	0.00 0.00 0.01 0.02
DB-C1-12C-24AB-0Z	Α	From Centroid- Leg	4.00 0.00 2.00	0.0000	100.00	No Ice 1/2" Ice 1" Ice 2" Ice	4.06 4.32 4.58 5.14	3.10 3.34 3.58 4.09	0.03 0.07 0.11 0.20
RFV01U-D1A	Α	From Centroid- Leg	4.00 0.00 2.00	0.0000	100.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.88 2.05 2.22 2.60	1.25 1.39 1.54 1.86	0.08 0.10 0.12 0.18
RFV01U-D1A	В	From Centroid- Leg	4.00 0.00 2.00	0.0000	100.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.88 2.05 2.22 2.60	1.25 1.39 1.54 1.86	0.08 0.10 0.12 0.18
RFV01U-D1A	С	From Centroid- Leg	4.00 0.00 2.00	0.0000	100.00	No Ice 1/2" Ice 1" Ice	1.88 2.05 2.22 2.60	1.25 1.39 1.54 1.86	0.08 0.10 0.12 0.18

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	0	ft		ft²	ft²	K
DEVOALL DOA	_	F	4.00	0.0000	400.00	2" Ice	4.00	4.04	0.07
RFV01U-D2A	В	From Centroid-	4.00 0.00	0.0000	100.00	No Ice 1/2"	1.88 2.05	1.01 1.14	0.07 0.09
		Leg	2.00			Ice	2.22	1.28	0.03
		3				1" Ice	2.60	1.59	0.15
						2" Ice			
(2) RFV01U-D2A	С	From	4.00	0.0000	100.00	No Ice	1.88	1.01	0.07
		Centroid-	0.00 2.00			1/2" Ice	2.05 2.22	1.14 1.28	0.09 0.11
		Leg	2.00			1" Ice	2.22	1.59	0.11
						2" Ice	2.00	1.00	0.10
Platform Mount [LP 715-1]	С	None		0.0000	100.00	No Ice	46.77	46.77	1.77
						1/2"	50.25	50.25	2.88
						Ice	53.97	53.97	4.09
						1" Ice 2" Ice	62.22	62.22	6.81
L1 1/2x1 1/2 x 1/8 x 12 ft	Α	From	4.00	0.0000	100.00	No Ice	1.80	0.02	0.01
		Centroid-	0.00			1/2"	2.61	0.04	0.03
		Leg	0.00			Ice	3.43	0.07	0.06
						1" Ice	5.09	0.14	0.15
L1 1/2x1 1/2 x 1/8 x 12 ft	В	From	4.00	0.0000	100.00	2" Ice No Ice	1.80	0.02	0.01
L1 1/2X1 1/2 X 1/0 X 12 II	ь	Centroid-	0.00	0.0000	100.00	1/2"	2.61	0.02	0.01
		Leg	0.00			lce	3.43	0.07	0.06
		•				1" Ice	5.09	0.14	0.15
1.4.4/0.4.4/04/040 %	0	-	4.00	0.0000	400.00	2" Ice	4.00	0.00	0.04
L1 1/2x1 1/2 x 1/8 x 12 ft	С	From Centroid-	4.00 0.00	0.0000	100.00	No Ice 1/2"	1.80 2.61	0.02 0.04	0.01 0.03
		Leg	0.00			Ice	3.43	0.07	0.06
		Ü				1" Ice	5.09	0.14	0.15
93						2" Ice			
Pipe Mount [PM 601-3]	С	None		0.0000	93.00	No Ice	3.17	3.17	0.20
r ipe Modrit [r M 00 1-5]	C	None		0.0000	93.00	1/2"	3.79	3.79	0.20
						Ice	4.42	4.42	0.28
						1" Ice	5.76	5.76	0.40
89						2" Ice			
HPA65R-BU8A	Α	From	4.00	0.0000	89.00	No Ice	8.18	5.32	0.05
		Centroid-	0.00	0.000	00.00	1/2"	8.97	6.08	0.12
		Face	0.00			Ice	9.77	6.86	0.20
						1" Ice	11.42	8.45	0.37
HPA65R-BU6A	В	From	4.00	0.0000	89.00	2" Ice No Ice	5.88	3.82	0.05
TH AGON-BOOK	В	Centroid-	0.00	0.0000	05.00	1/2"	6.47	4.39	0.00
		Face	0.00			Ice	7.07	4.96	0.16
						1" Ice	8.32	6.15	0.29
HPA65R-BU6A	С	From	4.00	0.0000	89.00	2" Ice No Ice	5.88	3.82	0.05
TIFA03N-B00A	C	Centroid-	0.00	0.0000	09.00	1/2"	6.47	4.39	0.03
		Face	0.00			Ice	7.07	4.96	0.16
						1" Ice	8.32	6.15	0.29
TPA-65R-LCUUUU-H8	Α	From	4.00	0.0000	89.00	2" Ice No Ice	11.87	7.02	0.08
1PA-03R-LC0000-H6	A	Centroid-	0.00	0.0000	69.00	1/2"	12.82	7.02	0.06
		Face	0.00			Ice	13.77	8.82	0.25
						1" Ice	15.74	10.68	0.45
0000540.0	_	_	4.00	0.0000	00.00	2" Ice	4.04	0.0-	0.44
QS66512-2	В	From Centroid-	4.00 0.00	0.0000	89.00	No Ice 1/2"	4.01 4.41	3.37 3.76	0.11 0.17
		Face	0.00			lce	4.41	3.76 4.15	0.17
						1" Ice	5.65	4.97	0.38
						2" Ice			

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	•	ft		ft²	ft²	K
QS66512-2	С	From	4.00	0.0000	89.00	No Ice	4.01	3.37	0.11
		Centroid-	0.00			1/2"	4.41	3.76	0.17
		Face	0.00			Ice	4.81	4.15	0.23
						1" Ice 2" Ice	5.65	4.97	0.38
OPA-65R-LCUU-H8	Α	From	4.00	0.0000	89.00	No Ice	11.95	6.03	0.07
		Centroid-	0.00			1/2"	12.92	6.93	0.14
		Face	0.00			lce 1" lce	13.90 15.92	7.85 9.74	0.22 0.41
						2" Ice			
OPA-65R-LCUU-H6	В	From	4.00	0.0000	89.00	No Ice	9.20	4.63	0.08
		Centroid-	0.00			1/2"	9.97	5.34	0.14
		Face	0.00			Ice	10.76	6.07	0.20
						1" Ice 2" Ice	12.39	7.57	0.35
OPA-65R-LCUU-H6	С	From	4.00	0.0000	89.00	No Ice	9.20	4.63	0.08
		Centroid-	0.00			1/2"	9.97	5.34	0.14
		Face	0.00			Ice	10.76	6.07	0.20
						1" Ice 2" Ice	12.39	7.57	0.35
7770.00	Α	From	4.00	0.0000	89.00	No Ice	5.51	2.93	0.04
		Centroid-	0.00			1/2"	5.87	3.27	0.07
		Face	0.00			Ice	6.23	3.63	0.11
						1" Ice 2" Ice	6.99	4.35	0.20
7770.00	В	From	4.00	0.0000	89.00	No Ice	5.51	2.93	0.04
		Centroid-	0.00			1/2"	5.87	3.27	0.07
		Face	0.00			Ice	6.23	3.63	0.11
						1" Ice 2" Ice	6.99	4.35	0.20
7770.00	С	From	4.00	0.0000	89.00	No Ice	5.51	2.93	0.04
		Centroid-	0.00			1/2"	5.87	3.27	0.07
		Face	0.00			Ice 1" Ice	6.23 6.99	3.63 4.35	0.11 0.20
						2" Ice			
RRUS E2 B29	Α	From	4.00	0.0000	89.00	No Ice	3.15	1.29	0.06
		Centroid-	0.00			1/2"	3.36	1.44	0.08
		Face	0.00			Ice	3.59	1.60	0.11
						1" Ice 2" Ice	4.07	1.95	0.17
RRUS E2 B29	В	From	4.00	0.0000	89.00	No Ice	3.15	1.29	0.06
		Centroid-	0.00			1/2"	3.36	1.44	0.08
		Face	0.00			Ice	3.59	1.60	0.11
						1" Ice 2" Ice	4.07	1.95	0.17
RRUS E2 B29	С	From	4.00	0.0000	89.00	No Ice	3.15	1.29	0.06
	•	Centroid-	0.00	0.000	00.00	1/2"	3.36	1.44	0.08
		Face	0.00			Ice	3.59	1.60	0.11
						1" Ice 2" Ice	4.07	1.95	0.17
DC6-48-60-18-8C-EV	В	From	4.00	0.0000	89.00	No Ice	1.14	1.14	0.03
		Centroid-	0.00			1/2"	1.79	1.79	0.05
		Face	0.00			Ice	2.00	2.00	0.07
						1" Ice 2" Ice	2.45	2.45	0.13
RRUS 32 B2	Α	From	4.00	0.0000	89.00	No Ice	2.73	1.67	0.05
		Centroid-	0.00			1/2"	2.95	1.86	0.07
		Face	0.00			Ice	3.18	2.05	0.10
						1" Ice 2" Ice	3.66	2.46	0.16
RRUS 32 B2	В	From	4.00	0.0000	89.00	No Ice	2.73	1.67	0.05
		Centroid-	0.00	5.5000	22.00	1/2"	2.95	1.86	0.07
		Face	0.00			Ice	3.18	2.05	0.10
		-	-			1" Ice	3.66	2.46	0.16
						2" Ice			

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	۰	ft		ft²	ft²	K
RRUS 32 B2	С	From Centroid- Face	4.00 0.00 0.00	0.0000	89.00	No Ice 1/2" Ice 1" Ice 2" Ice	2.73 2.95 3.18 3.66	1.67 1.86 2.05 2.46	0.05 0.07 0.10 0.16
RRUS 4426 B66	Α	From Centroid- Face	4.00 0.00 0.00	0.0000	89.00	No Ice 1/2" Ice 1" Ice	1.64 1.80 1.97 2.33	0.73 0.84 0.97 1.24	0.05 0.06 0.08 0.11
RRUS 4426 B66	В	From Centroid- Face	4.00 0.00 0.00	0.0000	89.00	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	1.64 1.80 1.97 2.33	0.73 0.84 0.97 1.24	0.05 0.06 0.08 0.11
RRUS 4426 B66	С	From Centroid- Face	4.00 0.00 0.00	0.0000	89.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.64 1.80 1.97 2.33	0.73 0.84 0.97 1.24	0.05 0.06 0.08 0.11
RRUS 11 B12	Α	From Centroid- Face	4.00 0.00 0.00	0.0000	89.00	No Ice 1/2" Ice 1" Ice 2" Ice	2.83 3.04 3.26 3.71	1.18 1.33 1.48 1.83	0.05 0.07 0.10 0.15
RRUS 11 B12	В	From Centroid- Face	4.00 0.00 0.00	0.0000	89.00	No Ice 1/2" Ice 1" Ice 2" Ice	2.83 3.04 3.26 3.71	1.18 1.33 1.48 1.83	0.05 0.07 0.10 0.15
RRUS 11 B12	С	From Centroid- Face	4.00 0.00 0.00	0.0000	89.00	No Ice 1/2" Ice 1" Ice 2" Ice	2.83 3.04 3.26 3.71	1.18 1.33 1.48 1.83	0.05 0.07 0.10 0.15
RRUS 32 B30	Α	From Centroid- Face	4.00 0.00 0.00	0.0000	89.00	No Ice 1/2" Ice 1" Ice 2" Ice	2.69 2.91 3.14 3.61	1.57 1.76 1.95 2.35	0.06 0.08 0.10 0.16
RRUS 32 B30	В	From Centroid- Face	4.00 0.00 0.00	0.0000	89.00	No Ice 1/2" Ice 1" Ice 2" Ice	2.69 2.91 3.14 3.61	1.57 1.76 1.95 2.35	0.06 0.08 0.10 0.16
RRUS 32 B30	С	From Centroid- Face	4.00 0.00 0.00	0.0000	89.00	No Ice 1/2" Ice 1" Ice 2" Ice	2.69 2.91 3.14 3.61	1.57 1.76 1.95 2.35	0.06 0.08 0.10 0.16
(2) TPX-070821	Α	From Centroid- Face	4.00 0.00 0.00	0.0000	89.00	No Ice 1/2" Ice 1" Ice 2" Ice	0.47 0.56 0.66 0.87	0.10 0.15 0.20 0.33	0.01 0.01 0.02 0.03
(2) TPX-070821	В	From Centroid- Face	4.00 0.00 0.00	0.0000	89.00	No Ice 1/2" Ice 1" Ice 2" Ice	0.47 0.56 0.66 0.87	0.10 0.15 0.20 0.33	0.01 0.01 0.02 0.03
(2) TPX-070821	С	From Centroid- Face	4.00 0.00 0.00	0.0000	89.00	No Ice 1/2" Ice 1" Ice 2" Ice	0.47 0.56 0.66 0.87	0.10 0.15 0.20 0.33	0.01 0.01 0.02 0.03

Description	Face	Offset	Offsets:	Azimuth	Placement		CAAA	C _A A _A	Weight
Безсприон	or Leg	Type	Horz Lateral Vert	Adjustmen t	riacement		Front	Side	vveigin
			ft ft ft	0	ft		ft²	ft²	Κ
(2) LGP21401	Α	From	4.00	0.0000	89.00	No Ice	1.10	0.21	0.01
		Centroid- Face	0.00 0.00			1/2" Ice	1.24 1.38	0.27 0.35	0.02 0.03
						1" Ice 2" Ice	1.69	0.52	0.05
(2) LGP21401	В	From	4.00	0.0000	89.00	No Ice	1.10	0.21	0.01
		Centroid- Face	0.00 0.00			1/2" Ice	1.24 1.38	0.27 0.35	0.02 0.03
						1" Ice 2" Ice	1.69	0.52	0.05
(2) LGP21401	С	From Centroid-	4.00 0.00	0.0000	89.00	No Ice 1/2"	1.10 1.24	0.21 0.27	0.01 0.02
		Face	0.00			Ice	1.24	0.27	0.02
	_	_				1" Ice 2" Ice	1.69	0.52	0.05
DC6-48-60-18-8F	Α	From Centroid-	4.00 0.00	0.0000	89.00	No Ice 1/2"	1.21 1.89	1.21 1.89	0.02 0.04
		Face	0.00			Ice	2.11	2.11	0.07
						1" Ice 2" Ice	2.57	2.57	0.13
DC6-48-60-18-8F	С	From	4.00	0.0000	89.00	No Ice	1.21	1.21	0.02
		Centroid-	0.00			1/2"	1.89	1.89	0.04
		Face	0.00			lce 1" lce	2.11 2.57	2.11 2.57	0.07 0.13
						2" Ice			
Platform Mount [LP 301-	С	None		0.0000	89.00	No Ice 1/2"	35.03 44.46	35.03 44.46	1.86 2.52
1_KCKR]						Ice	53.72	53.72	3.33
***						1" Ice 2" Ice	72.29	72.29	5.42
84 800 10504	Α	From Face	1.00	0.0000	84.00	No Ice	2.69	1.27	0.02
			0.00			1/2"	3.15	1.70	0.04
			0.00			Ice 1" Ice	3.63 4.63	2.15 3.10	0.06 0.12
						2" Ice	4.03	3.10	0.12
800 10504	В	From Face	1.00	0.0000	84.00	No Ice	2.69	1.27	0.02
			0.00 0.00			1/2" Ice	3.15 3.63	1.70 2.15	0.04 0.06
						1" Ice	4.63	3.10	0.12
800 10504	В	From Face	1.00	0.0000	84.00	2" Ice No Ice	2.69	1.27	0.02
300 1000 1	_		0.00	0.000	000	1/2"	3.15	1.70	0.04
			0.00			lce 1" lce	3.63 4.63	2.15 3.10	0.06 0.12
						2" Ice	4.03	3.10	0.12
Pipe Mount [PM 601-3]	С	None		0.0000	84.00	No Ice	3.17	3.17	0.20
						1/2" Ice	3.79 4.42	3.79 4.42	0.23 0.28
						1" Ice	5.76	5.76	0.40
***						2" Ice			
MX08FRO665-21 w/	Α	From Leg	4.00	0.0000	76.00	No Ice	8.01	4.23	0.11
Mount Pipe			0.00			1/2"	8.52	4.69	0.19
			0.00			lce 1" lce	9.04 10.11	5.16 6.12	0.29 0.52
	_	_				2" Ice			
MX08FRO665-21 w/ Mount Pipe	В	From Leg	4.00 0.00	0.0000	76.00	No Ice 1/2"	8.01 8.52	4.23 4.69	0.11 0.19
wount i ipe			0.00			Ice	9.04	5.16	0.29
						1" Ice 2" Ice	10.11	6.12	0.52
MX08FRO665-21 w/	С	From Leg	4.00	0.0000	76.00	No Ice	8.01	4.23	0.11
Mount Pipe			0.00 0.00			1/2" Ice	8.52 9.04	4.69 5.16	0.19 0.29
			0.00			ICE	3.04	J. 10	0.29

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	۰	ft		ft²	ft²	K
						1" Ice 2" Ice	10.11	6.12	0.52
TA08025-B604	Α	From Leg	4.00	0.0000	76.00	No Ice	1.96	0.98	0.06
			0.00			1/2"	2.14	1.11	0.08
			0.00			Ice	2.32	1.25	0.10
						1" Ice 2" Ice	2.71	1.55	0.15
TA08025-B604	В	From Leg	4.00	0.0000	76.00	No Ice	1.96	0.98	0.06
			0.00			1/2"	2.14	1.11	0.08
			0.00			Ice	2.32	1.25	0.10
						1" Ice 2" Ice	2.71	1.55	0.15
TA08025-B604	С	From Leg	4.00	0.0000	76.00	No Ice	1.96	0.98	0.06
			0.00			1/2"	2.14	1.11	0.08
			0.00			Ice	2.32	1.25	0.10
						1" Ice 2" Ice	2.71	1.55	0.15
TA08025-B605	Α	From Leg	4.00	0.0000	76.00	No Ice	1.96	1.13	80.0
			0.00			1/2"	2.14	1.27	0.09
			0.00			Ice	2.32	1.41	0.11
						1" Ice 2" Ice	2.71	1.72	0.16
TA08025-B605	В	From Leg	4.00	0.0000	76.00	No Ice	1.96	1.13	80.0
			0.00			1/2"	2.14	1.27	0.09
			0.00			Ice	2.32	1.41	0.11
						1" Ice 2" Ice	2.71	1.72	0.16
TA08025-B605	С	From Leg	4.00	0.0000	76.00	No Ice	1.96	1.13	0.08
			0.00			1/2"	2.14	1.27	0.09
			0.00			Ice 1" Ice	2.32 2.71	1.41 1.72	0.11 0.16
						2" Ice			
RDIDC-9181-PF-48	Α	From Leg	4.00	0.0000	76.00	No Ice	2.31	1.29	0.02
			0.00			1/2"	2.50	1.45	0.04
			0.00			Ice	2.70	1.61	0.06
						1" Ice 2" Ice	3.12	1.96	0.12
(2) 8' x 2" Mount Pipe	Α	From Leg	4.00	0.0000	76.00	No Ice	1.90	1.90	0.03
			0.00			1/2"	2.73	2.73	0.04
			0.00			Ice	3.40	3.40	0.06
						1" Ice 2" Ice	4.40	4.40	0.12
(2) 8' x 2" Mount Pipe	В	From Leg	4.00	0.0000	76.00	No Ice	1.90	1.90	0.03
			0.00			1/2"	2.73	2.73	0.04
			0.00			Ice	3.40	3.40	0.06
						1" Ice 2" Ice	4.40	4.40	0.12
(2) 8' x 2" Mount Pipe	С	From Leg	4.00	0.0000	76.00	No Ice	1.90	1.90	0.03
			0.00			1/2"	2.73	2.73	0.04
			0.00			Ice	3.40	3.40	0.06
						1" Ice 2" Ice	4.40	4.40	0.12
Commscope MC-PK8-DSH	С	None		0.0000	76.00	No Ice	34.24	34.24	1.75
						1/2"	62.95	62.95	2.10
						Ice	91.66	91.66	2.45
						1" Ice 2" Ice	149.08	149.08	3.15

					Dishe	es					
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weigh
				ft	0	۰	ft	ft		ft²	K
VHLP2-11	Α	Paraboloid w/Shroud (HP)	From Leg	2.00 -1.00 1.00	48.0000		93.00	2.00	No Ice 1/2" Ice 1" Ice 2" Ice	3.72 4.01 4.30 4.88	0.03 0.05 0.07 0.11
VHLP1-23	Α	Paraboloid w/Radome	From Leg	2.00 1.00 2.00	68.0000		93.00	1.27	No Ice 1/2" Ice 1" Ice 2" Ice	1.28 1.45 1.62 1.97	0.01 0.02 0.03 0.04
VHLP800-11	В	Paraboloid w/Shroud (HP)	From Leg	2.00 1.00 1.00	90.0000		93.00	2.80	No Ice 1/2" Ice 1" Ice 2" Ice	6.16 6.53 6.90 7.64	0.02 0.06 0.09 0.17
VHLP1-23	В	Paraboloid w/Radome	From Leg	2.00 -1.00 -1.00	-52.0000		93.00	1.27	No Ice 1/2" Ice 1" Ice 2" Ice	1.28 1.45 1.62 1.97	0.01 0.02 0.03 0.04
******									_ 100		3.01

Load Combinations

Comb.	Description
No.	<u> </u>
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp

Comb.	Description
No.	
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	K	kip-ft	kip-ft
L1	117 - 112	Pole	Max Tension	26	0.00	0.000	-0.000
			Max. Compression	26	-5.09	-0.010	0.009
			Max. Mx	8	-1.92	-13.309	0.005
			Max. My	2	-1.92	-0.004	13.307
			Max. Vy	20	-2.60	13.308	-0.002
			Max. Vx	2	-2.59	-0.004	13.307
			Max. Torque	8			-0.001
L2	112 - 110	Pole	Max Tension	1	0.00	0.000	0.000
			Max. Compression	26	-5.24	-0.014	0.013
			Max. Mx	8	-2.00	-18.600	0.008
			Max. My	2	-2.00	-0.005	18.596
			Max. Vy	20	-2.70	18.598	-0.002
			Max. Vx	2	-2.70	-0.005	18.596
			Max. Torque	8			-0.001
L3	110 - 105	Pole	Max Tension	1	0.00	0.000	0.000
			Max. Compression	26	-14.01	-0.118	0.085
			Max. Mx	8	-6.22	-47.134	0.052
			Max. My	2	-6.22	-0.064	47.102
			Max. Vy	20	-5.83	47.037	0.016
			Max. Vx	2	-5.83	-0.064	47.102
			Max. Torque	8			-0.001
L4	105 - 100	Pole	Max Tension	1	0.00	0.000	0.000
			Max. Compression	26	-14.61	-0.227	0.159
			Max. Mx	8	-6.57	-76.969	0.098
			Max. My	2	-6.57	-0.126	76.907
			Max. Vy	20	-6.09	76.771	0.036
			Max. Vx	2	-6.09	-0.126	76.907
			Max. Torque	8			-0.001
L5	100 - 95	Pole	Max Tension	1	0.00	0.000	0.000
			Max. Compression	26	-26.38	0.199	-0.005
			Max. Mx	20	-10.67	135.913	-0.396
			Max. My	14	-10.68	0.259	-135.935
			Max. Vy	20	-10.90	135.913	-0.396
			Max. Vx	2	-10.89	0.011	135.394
			Max. Torque	19			-0.201
L6	95 - 90	Pole	Max Tension	1	0.00	0.000	0.000
			Max. Compression	26	-27.80	-0.207	0.148
			Max. Mx	20	-11.47	192.806	-0.994
			Max. My	14	-11.48	0.888	-192.785
			Max. Vy	20	-11.67	192.806	-0.994
			Max. Vx	2	-11.68	-0.710	192.539
			Max. Torque	25			-0.544
L7	90 - 85	Pole	Max Tension	1	0.00	0.000	0.000
			Max. Compression	26	-38.86	0.088	0.508
			Max. Mx	8	-16.23	-269.695	1.551
			Max. My	14	-16.24	1.185	-269.383
			Max. Vy	20	-16.43	269.531	-1.616
			Max. Vx	2	-16.34	-1.490	269.160
			Max. Torque	17			-0.674

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Туре	Condition	Load	Axiai	Moment	Moment
No.		,,,,,		Comb.	K	kip-ft	kip-ft
L8	85 - 82.38	Pole	Max Tension	1	0.00	0.000	0.000
_0	00 02.00	. 5.5	Max. Compression	26	-40.03	-0.095	0.854
			Max. Mx	8	-16.87	-313.338	2.016
			Max. My	14	-16.88	1.428	-312.611
			Max. Vy	20	-16.86	313.148	-1.821
			Max. Vx	2	-16.72	-1.786	312.603
			Max. Torque	19			-0.696
L9	82.38 -	Pole	Max Tension	1	0.00	0.000	0.000
	82.13						
			Max. Compression	26	-40.09	-0.097	0.865
			Max. Mx	8	-16.92	-317.545	2.057
			Max. My	2	-16.93	-1.812	316.784
			Max. Vy	20	-16.86	317.359	-1.847
			Max. Vx Max. Torque	2 19	-16.72	-1.812	316.784
L10	82.13 -	Pole	Max Tension	19	0.00	0.000	-0.695 0.000
LIU	81.88	FUIC	IVIAX TETISION	ı	0.00	0.000	0.000
	000		Max. Compression	26	-40.14	-0.099	0.875
			Max. Mx	8	-16.96	-321.755	2.098
			Max. My	2	-16.97	-1.838	320.967
			Max. Vy	20	-16.87	321.574	-1.874
			Max. Vx	2	-16.73	-1.838	320.967
			Max. Torque	19			-0.695
L11	81.88 -	Pole	Max Tension	1	0.00	0.000	0.000
	81.63		May Compression	26	40.24	0.404	0.006
			Max. Compression Max. Mx	26 8	-40.21 -17.00	-0.101 -325.967	0.886 2.139
			Max. My	2	-17.00 -17.01	-1.865	325.153
			Max. Vy	20	-16.89	325.791	-1.900
			Max. Vx	2	-16.74	-1.865	325.153
			Max. Torque	19			-0.695
L12	81.63 -	Pole	Max Tension	1	0.00	0.000	0.000
	76.63						
			Max. Compression	26	-41.63	-0.144	1.095
			Max. Mx	8	-17.96	-410.906	2.959
			Max. My	2	-17.97	-2.391	409.566
			Max. Vy	20	-17.16	410.828	-2.421
			Max. Vx	2 19	-17.01	-2.391	409.566
L13	76.63 - 76	Pole	Max. Torque Max Tension	19	0.00	0.000	-0.695
LIS	70.03 - 70	FUIC	Max. Compression	26	-41.83	-0.149	0.000 1.122
			Max. Mx	8	-18.09	-421.701	3.062
			Max. My	2	-18.10	-2.457	420.295
			Max. Vy	20	-17.19	421.635	-2.486
			Max. Vx	2	-17.04	-2.457	420.295
			Max. Torque	19			-0.695
L14	76 - 75.75	Pole	Max Tension	1	0.00	0.000	0.000
			Max. Compression	26	-47.67	-0.150	1.573
			Max. Mx	8	-21.28	-426.579	3.216
			Max. My	2	-21.29	-2.483	425.273
			Max. Vy	20	-19.55	426.518	-2.400
			Max. Vx	2	-19.43	-2.483	425.273
L15	75.75 -	Pole	Max. Torque Max Tension	19 1	0.00	0.000	-0.847 0.000
LIO	70.75	1 010	Wax Telision		0.00	0.000	0.000
			Max. Compression	26	-49.48	-0.164	1.809
			Max. Mx	20	-22.45	524.950	-2.915
			Max. My	2	-22.46	-3.005	523.149
			Max. Vy	20	-19.85	524.950	-2.915
			Max. Vx	2	-19.71	-3.005	523.149
	70 75 70 7	5 ·	Max. Torque	19	0.00	0.000	-0.847
L16	70.75 - 70.5	Pole	Max Tension	1	0.00	0.000	0.000
			Max. Compression	26	-49.58	-0.163	1.823
			Max. Mx	20	-22.53	529.910	-2.940
			Max. My Max. Vy	2 20	-22.54 -19.86	-3.031 529.910	528.078 -2.940
			Max. Vx	20	-19.00 -19.72	-3.031	-2.940 528.078
			Max. Torque	19	10.72	0.001	-0.847
L17	70.5 - 67.98	Pole	Max Tension	1	0.00	0.000	0.000
				-			

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
วะเเบ n	Elevalion ft	Туре	Condition	Load	Axiai	Moment	Moment
No.	**	,,,,,		Comb.	K	kip-ft	kip-ft
			Max. Compression	26	-50.68	-0.150	1.955
			Max. Mx	20	-23.21	580.134	-3.198
			Max. My	2	-23.22	-3.293	577.997
			Max. Vy	20	-20.03	580.134	-3.198
			Max. Vx	2	-19.89	-3.293	577.997
1.40	07.00	5.1	Max. Torque	19	0.00	0.000	-0.847
L18	67.98 - 67.73	Pole	Max Tension	1	0.00	0.000	0.000
	07.73		Max. Compression	26	-50.79	-0.148	1.968
			Max. Mx	20	-23.28	585.140	-3.224
			Max. My	2	-23.29	-3.319	582.972
			Max. Vy	20	-20.04	585.140	-3.224
			Max. Vx	2	-19.90	-3.319	582.972
			Max. Torque	19			-0.847
L19	67.73 - 63.5	Pole	Max Tension	1	0.00	0.000	0.000
			Max. Compression	26	-52.58	-0.131	2.152
			Max. Mx	20	-24.43	670.430	-3.655
			Max. My	2	-24.44	-3.761	667.729
			Max. Vy	20	-20.31	670.430	-3.655
			Max. Vx	2	-20.16	-3.761	667.729
1.20	62 5 62 25	Pole	Max. Torque	19	0.00	0.000	-0.847
L20	63.5 - 63.25	Pole	Max Tension	1 26	0.00	0.000	0.000
			Max. Compression Max. Mx	20	-52.70 -24.52	-0.131 675.507	2.163 -3.680
			Max. My	2	-24.52 -24.53	-3.787	672.772
			Max. Vy	20	-20.32	675.507	-3.680
			Max. Vx	2	-20.17	-3.787	672.772
			Max. Torque	<u> </u>		00.	-0.847
L21	63.25 -	Pole	Max Tension	1	0.00	0.000	0.000
	58.25						
			Max. Compression	26	-55.14	-0.122	2.348
			Max. Mx	20	-26.16	777.918	-4.187
			Max. My	2	-26.17	-4.309	774.489
			Max. Vy	20	-20.67	777.918	-4.187
			Max. Vx	2	-20.50	-4.309	774.489
L22	E0.0E	Pole	Max. Torque	19	0.00	0.000	-0.847
LZZ	58.25 - 53.25	Pole	Max Tension	1	0.00	0.000	0.000
	00.20		Max. Compression	26	-57.60	-0.114	2.540
			Max. Mx	20	-27.83	881.981	-4.691
			Max. My	2	-27.83	-4.832	877.812
			Max. Vy	20	-20.99	881.981	-4.691
			Max. Vx	2	-20.82	-4.832	877.812
			Max. Torque	19			-0.847
L23	53.25 -	Pole	Max Tension	1	0.00	0.000	0.000
	47.42		Max. Compression	26	-58.22	-0.112	2.590
			Max. Mx	20	-28.25	908.249	-4.816
			Max. My	2	-28.26	-4.963	903.891
			Max. Vy	20	-21.07	908.249	-4.816
			Max. Vx	2	-20.90	-4.963	903.891
			Max. Torque	19			-0.846
L24	47.42 -	Pole	Max Tension	1	0.00	0.000	0.000
	46.42		May Compression	26	60.61	0.402	0.040
			Max. Compression Max. Mx	26 20	-62.61	-0.103 1026.963	2.812 -5.374
			Max. My	20	-31.50 -31.50	-5.549	-3.374 1021.747
			Max. Vy	20	-21.50	1026.963	-5.374
			Max. Vx	2	-21.32	-5.549	1021.747
			Max. Torque	19		3.5 10	-0.846
L25	46.42 - 43.5	Pole	Max Tension	1	0.00	0.000	0.000
			Max. Compression	26	-64.15	-0.099	2.929
			Max. Mx	20	-32.55	1089.952	-5.665
			Max. My	2	-32.56	-5.856	1084.270
			Max. Vy	20	-21.69	1089.952	-5.665
			Max. Vx	2	-21.50	-5.856	1084.270
1.00	40.5 40.05	D.I.	Max. Torque	19	0.00	0.000	-0.846
L26	43.5 - 43.25	Pole	Max Tension	1	0.00	0.000	0.000
			Max. Compression	26	-64.30	-0.098	2.941

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.		,,		Comb.	K	kip-ft	kip-ft
			Max. Mx	20	-32.66	1095.370	-5.690
			Max. My	2	-32.67	-5.882	1089.646
			Max. Vy	20	-21.69	1095.370	-5.690
			Max. Vx	2	-21.50	-5.882	1089.646
			Max. Torque	19			-0.846
L27	43.25 - 38.25	Pole	Max Tension	1	0.00	0.000	0.000
			Max. Compression	26	-67.28	-0.092	3.145
			Max. Mx	20	-34.74	1204.621	-6.186
			Max. My	2	-34.75	-6.407	1197.991
			Max. Vy	20	-22.04	1204.621	-6.186
			Max. Vx	2	-21.82	-6.407	1197.991
			Max. Torque	19			-0.846
L28	38.25 - 33.5	Pole	Max Tension	1	0.00	0.000	0.000
			Max. Compression	26	-70.13	-0.086	3.345
			Max. Mx	20	-36.74	1309.946	-6.654
			Max. My	2	-36.75	-6.907	1302.331
			Max. Vy	20	-22.35	1309.946	-6.654
			Max. Vx	2	-22.10	-6.907	1302.331
			Max. Torque	19			-0.846
L29	33.5 - 33.25	Pole	Max Tension	1	0.00	0.000	0.000
			Max. Compression	26	-70.28	-0.086	3.357
			Max. Mx	20	-36.86	1315.530	-6.678
			Max. My	2	-36.86	-6.933	1307.860
			Max. Vy	20	-22.35	1315.530	-6.678
			Max. Vx	2	-22.11	-6.933	1307.860
	00.05.00	5.1	Max. Torque	19	0.00	0.000	-0.846
L30	33.25 - 33	Pole	Max Tension	1	0.00	0.000	0.000
			Max. Compression	26	-70.43	-0.086	3.368
			Max. Mx	20	-36.96	1321.118	-6.703
			Max. My	2	-36.97	-6.959	1313.392
			Max. Vy	20	-22.37	1321.118	-6.703
			Max. Vx Max. Torque	2 19	-22.12	-6.959	1313.392
L31	33 - 32.75	Pole	Max Tension	19	0.00	0.000	-0.846 0.000
LSI	33 - 32.73	Fole	Max. Compression	26	-70.59	-0.085	3.379
			Max. Mx	20	-37.08	1326.709	-6.727
			Max. My	2	-37.08	-6.985	1318.929
			Max. Vy	20	-22.39	1326.709	-6.727
			Max. Vx	2	-22.14	-6.985	1318.929
			Max. Torque	19	22.17	0.000	-0.846
L32	32.75 - 31.5	Pole	Max Tension	1	0.00	0.000	0.000
LUZ	02.70 01.0	1 010	Max. Compression	26	-71.37	-0.084	3.430
			Max. Mx	20	-37.63	1354.728	-6.850
			Max. My	2	-37.64	-7.117	1346.667
			Max. Vy	20	-22.48	1354.728	-6.850
			Max. Vx	2	-22.22	-7.117	1346.667
			Max. Torque	19			-0.846
L33	31.5 - 31.25	Pole	Max Tension	1	0.00	0.000	0.000
			Max. Compression	26	-71.52	-0.084	3.442
			Max. Mx	20	-37.73	1360.344	-6.874
			Max. My	2	-37.74	-7.143	1352.225
			Max. Vý	20	-22.48	1360.344	-6.874
			Max. Vx	2	-22.23	-7.143	1352.225
			Max. Torque	19			-0.846
L34	31.25 - 26.25	Pole	Max Tension	1	0.00	0.000	0.000
	20.20		Max. Compression	26	-74.29	-0.079	3.658
			Max. Mx	20	-39.70	1473.364	-7.360
			Max. My	2	-39.71	-7.668	1464.106
			Max. Vy	20	-22.76	1473.364	-7.360
			Max. Vx	2	-22.51	-7.668	1464.106
			Max. Torque	19	22.01	7.000	-0.846
L35	26.25 - 21.25	Pole	Max Tension	1	0.00	0.000	0.000
	Z 1.ZJ		Max. Compression	26	-77.04	-0.075	3.878
			Max. Mx	20	-41.71	1587.730	-7.842
			Max. My	2	-41.71	-8.193	1577.338
			Max. Vy	20	-23.03	1587.730	-7.842
						22	

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
110.			Max. Vx	2	-22.78	-8.193	1577.338
			Max. Torque	19	-22.70	-0.193	-0.846
L36	21.25 - 16.25	Pole	Max Tension	1	0.00	0.000	0.000
	10.20		Max. Compression	26	-79.81	-0.073	4.101
			Max. Mx	20	-43.74	1703.445	-8.319
			Max. My	2	-43.75	-8.716	1691.928
			Max. Vy	20	-23.30	1703.445	-8.319
			Max. Vx	2	-23.05	-8.716	1691.928
			Max. Torque	19			-0.846
L37	16.25 - 13.5	Pole	Max Tension	1	0.00	0.000	0.000
			Max. Compression	26	-81.34	-0.073	4.225
			Max. Mx	20	-44.87	1767.668	-8.579
			Max. My	2	-44.87	-9.004	1755.535
			Max. Vy	20	-23.46	1767.668	-8.579
			Max. Vx	2	-23.20	-9.004	1755.535
			Max. Torque	19			-0.846
L38	13.5 - 13.25	Pole	Max Tension	1	0.00	0.000	0.000
			Max. Compression	26	-81.48	-0.073	4.237
		Max. Mx	20	-44.99	1773.527	-8.603	
		Max. My	2	-44.99	-9.030	1761.338	
			Max. Vy	20	-23.46	1773.527	-8.603
			Max. Vx	2	-23.20	-9.030	1761.338
			Max. Torque	19			-0.846
L39	13.25 - 9	Pole	Max Tension	1	0.00	0.000	0.000
			Max. Compression	26	-83.90	-0.103	4.427
			Max. Mx	20	-46.81	1873.654	-9.002
			Max. My	2	-46.81	-9.473	1860.518
			Max. Vy	20	-23.70	1873.654	-9.002
			Max. Vx	2	-23.45	-9.473	1860.518
			Max. Torque	19			-0.846
L40	9 - 8.75	Pole	Max Tension	1	0.00	0.000	0.000
			Max. Compression	26	-84.05	-0.108	4.439
			Max. Mx	20	-46.93	1879.575	-9.025
			Max. My	2	-46.93	-9.499	1866.383
			Max. Vy	20	-23.70	1879.575	-9.025
			Max. Vx	2	-23.45	-9.499	1866.383
	0.75 0.75	5 .	Max. Torque	19	0.00	0.000	-0.846
L41	8.75 - 3.75	Pole	Max Tension	1	0.00	0.000	0.000
			Max. Compression	26	-86.97	-0.203	4.661
			Max. Mx	20	-49.18	1998.738	-9.489
			Max. My	2	-49.18	-10.019	1984.441
			Max. Vy	20	-24.00	1998.738	-9.489
			Max. Vx	2	-23.75	-10.019	1984.441
1.40	0.75 0	D.I.	Max. Torque	19	0.00	0.000	-0.846
L42	3.75 - 0	Pole	Max Tension	1	0.00	0.000	0.000
			Max. Compression	26	-89.11	-0.263	4.819
			Max. Mx	20	-50.89	2089.048	-9.833
			Max. My	2	-50.89	-10.408	2073.927
			Max. Vy	20	-24.22	2089.048	-9.833
			Max. Vx	2	-23.97	-10.408	2073.927
			Max. Torque	19			-0.846

Maximum Reactions

Location	Condition	Gov. Load	Vertical K	Horizontal, X K	Horizontal, Z K
		Comb.			
Pole	Max. Vert	26	89.11	-0.00	0.00
	Max. H _x	20	50.90	24.20	-0.11
	Max. H _z	3	38.18	-0.09	23.95
	Max. M _x	2	2073.927	-0.09	23.95
	Max. M₂	8	2087.722	-24.17	0.15
	Max. Torsion	7	0.650	-21.10	12.21
	Min. Vert	11	38.18	-20.76	-11.93

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
	Min. H _x	8	50.90	-24.17	0.15
	$Min. H_z$	14	50.90	0.12	-23.93
	Min. M _x	14	-2069.671	0.12	-23.93
	$Min. M_z$	20	-2089.048	24.20	-0.11
	Min. Torsion	19	-0.846	21.10	-12.19

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shear₂	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	42.42	0.00	0.00	-1.052	-0.815	0.000
1.2 Dead+1.0 Wind 0 deg -	50.90	0.09	-23.95	-2073.927	-10.408	-0.149
No Ice						
0.9 Dead+1.0 Wind 0 deg -	38.18	0.09	-23.95	-2054.457	-10.057	-0.148
No Ice						
1.2 Dead+1.0 Wind 30 deg -	50.90	13.01	-22.42	-1875.483	-1089.421	-0.542
No Ice	22.12	40.04	20.40	10-0 1-0	40=0.000	
0.9 Dead+1.0 Wind 30 deg -	38.18	13.01	-22.42	-1858.159	-1079.289	-0.544
No Ice	E0.00	21.10	-12.21	1054 010	1010 EGG	-0.646
1.2 Dead+1.0 Wind 60 deg - No Ice	50.90	21.10	-12.21	-1054.212	-1819.566	-0.040
0.9 Dead+1.0 Wind 60 deg -	38.18	21.10	-12.21	-1044.190	-1802.568	-0.650
No Ice	30.10	21.10	-12.21	-1044.190	-1002.300	-0.030
1.2 Dead+1.0 Wind 90 deg -	50.90	24.17	-0.15	-15.873	-2087.722	-0.583
No Ice	30.30	24.17	-0.13	-10.070	-2007.722	-0.500
0.9 Dead+1.0 Wind 90 deg -	38.18	24.17	-0.15	-15.408	-2068.226	-0.588
No Ice	000		00		2000.220	0.000
1.2 Dead+1.0 Wind 120 deg	50.90	20.76	11.93	1030.549	-1797.675	-0.573
- No Ice						
0.9 Dead+1.0 Wind 120 deg	38.18	20.76	11.93	1021.350	-1780.828	-0.579
- No Ice						
1.2 Dead+1.0 Wind 150 deg	50.90	12.06	20.98	1803.237	-1037.299	-0.120
- No Ice						
0.9 Dead+1.0 Wind 150 deg	38.18	12.06	20.98	1786.951	-1027.500	-0.124
- No Ice	50.00	0.40	00.00	0000 074	40.540	0.470
1.2 Dead+1.0 Wind 180 deg	50.90	-0.12	23.93	2069.671	10.548	0.473
- No Ice 0.9 Dead+1.0 Wind 180 deg	38.18	-0.12	23.93	2050.877	10.702	0.472
- No Ice	30.10	-0.12	23.93	2030.077	10.702	0.472
1.2 Dead+1.0 Wind 210 deg	50.90	-13.02	22.42	1873.188	1088.673	0.802
- No Ice	00.00	10.02	22.72	1070.100	1000.070	0.002
0.9 Dead+1.0 Wind 210 deg	38.18	-13.02	22.42	1856.518	1079.055	0.804
- No Ice						
1.2 Dead+1.0 Wind 240 deg	50.90	-21.10	12.19	1050.480	1817.956	0.842
- No Ice						
0.9 Dead+1.0 Wind 240 deg	38.18	-21.10	12.19	1041.125	1801.480	0.846
- No Ice						
1.2 Dead+1.0 Wind 270 deg	50.90	-24.20	0.11	9.833	2089.048	0.706
- No Ice	00.40			40.050	22-2 24-	
0.9 Dead+1.0 Wind 270 deg	38.18	-24.20	0.11	10.056	2070.045	0.712
- No Ice	50.00	00.00	44.00	1000 010	4004.457	0.470
1.2 Dead+1.0 Wind 300 deg	50.90	-20.82	-11.88	-1028.640	1801.157	0.472
- No Ice 0.9 Dead+1.0 Wind 300 deg	38.18	-20.82	-11.88	-1018.825	1784.783	0.477
- No Ice	30.10	-20.02	-11.00	-1010.023	1704.703	0.477
1.2 Dead+1.0 Wind 330 deg	50.90	-12.05	-21.02	-1809.347	1033.657	0.360
- No Ice	00.00	12.00	21.02	1000.041	1000.001	0.000
0.9 Dead+1.0 Wind 330 deg	38.18	-12.05	-21.02	-1792.372	1024.396	0.364
- No Ice	333	.2.00			. 32	2.20
1.2 Dead+1.0 Ice+1.0 Temp	89.11	0.00	-0.00	-4.819	-0.263	-0.000
1.2 Dead+1.0 Wind 0	89.11	0.02	-6.14	-557.145	-2.449	-0.063
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30	89.11	3.19	-5.50	-492.788	-283.205	-0.171
deg+1.0 Ice+1.0 Temp						

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment. Mx	Overturning Moment. Mz	Torque
Combination	K	K	K	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 60	89.11	5.34	-3.09	-282.865	-479.962	-0.184
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90	89.11	6.16	-0.03	-8.327	-553.677	-0.162
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	89.11	5.32	3.06	270.012	-478.655	-0.138
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	89.11	3.06	5.32	472.732	-274.626	-0.017
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	89.11	-0.03	6.14	546.810	2.454	0.130
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	89.11	-3.19	5.51	482.896	283.018	0.224
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	89.11	-5.34	3.09	272.606	479.598	0.225
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	89.11	-6.16	0.02	-2.451	553.953	0.187
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	89.11	-5.34	-3.05	-279.140	479.393	0.118
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	89.11	-3.05	-5.32	-483.524	273.831	0.066
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	42.42	0.02	-5.64	-486.782	-3.041	-0.034
Dead+Wind 30 deg - Service	42.42	3.07	-5.28	-440.313	-255.922	-0.128
Dead+Wind 60 deg - Service	42.42	4.97	-2.88	-247.822	-427.015	-0.153
Dead+Wind 90 deg - Service	42.42	5.69	-0.03	-4.487	-489.852	-0.139
Dead+Wind 120 deg -	42.42	4.89	2.81	240.732	-421.878	-0.137
Service						
Dead+Wind 150 deg -	42.42	2.84	4.94	421.810	-243.693	-0.030
Service						
Dead+Wind 180 deg -	42.42	-0.03	5.64	484.243	1.865	0.111
Service						
Dead+Wind 210 deg -	42.42	-3.07	5.28	438.234	254.539	0.190
Service						
Dead+Wind 240 deg -	42.42	-4.97	2.87	245.404	425.428	0.200
Service						
Dead+Wind 270 deg -	42.42	- 5.70	0.03	1.530	488.953	0.168
Service						
Dead+Wind 300 deg -	42.42	-4.91	-2.80	-241.828	421.483	0.113
Service						
Dead+Wind 330 deg -	42.42	-2.84	-4.95	-424.783	241.630	0.087
Service						

Solution Summary

	Sun	n of Applied Force	es		Sum of Reactions			
Load	PX	PY	PZ	PX	PY	PZ	% Erroi	
Comb.	K	K	K	K	K	K		
1	0.00	-42.42	0.00	0.00	42.42	0.00	0.000%	
2	0.09	-50.90	-23.95	-0.09	50.90	23.95	0.000%	
3	0.09	-38.18	-23.95	-0.09	38.18	23.95	0.000%	
4	13.01	-50.90	-22.42	-13.01	50.90	22.42	0.000%	
5	13.01	-38.18	-22.42	-13.01	38.18	22.42	0.000%	
6	21.10	-50.90	-12.21	-21.10	50.90	12.21	0.000%	
7	21.10	-38.18	-12.21	-21.10	38.18	12.21	0.000%	
8	24.17	-50.90	-0.15	-24.17	50.90	0.15	0.000%	
9	24.17	-38.18	-0.15	-24.17	38.18	0.15	0.000%	
10	20.76	-50.90	11.93	-20.76	50.90	-11.93	0.000%	
11	20.76	-38.18	11.93	-20.76	38.18	-11.93	0.000%	
12	12.06	-50.90	20.98	-12.06	50.90	-20.98	0.000%	
13	12.06	-38.18	20.98	-12.06	38.18	-20.98	0.000%	
14	-0.12	-50.90	23.93	0.12	50.90	-23.93	0.000%	
15	-0.12	-38.18	23.93	0.12	38.18	-23.93	0.000%	
16	-13.02	-50.90	22.42	13.02	50.90	-22.42	0.000%	
17	-13.02	-38.18	22.42	13.02	38.18	-22.42	0.000%	
18	-21.10	-50.90	12.19	21.10	50.90	-12.19	0.000%	
19	-21.10	-38.18	12.19	21.10	38.18	-12.19	0.000%	
20	-24.20	-50.90	0.11	24.20	50.90	-0.11	0.000%	

	Sun	of Applied Force	es		Sum of Reaction	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
21	-24.20	-38.18	0.11	24.20	38.18	-0.11	0.000%
22	-20.82	-50.90	-11.88	20.82	50.90	11.88	0.000%
23	-20.82	-38.18	-11.88	20.82	38.18	11.88	0.000%
24	-12.05	-50.90	-21.02	12.05	50.90	21.02	0.000%
25	-12.05	-38.18	-21.02	12.05	38.18	21.02	0.000%
26	0.00	-89.11	0.00	-0.00	89.11	0.00	0.000%
27	0.02	-89.11	-6.14	-0.02	89.11	6.14	0.000%
28	3.19	-89.11	-5.50	-3.19	89.11	5.50	0.000%
29	5.34	-89.11	-3.09	-5.34	89.11	3.09	0.000%
30	6.16	-89.11	-0.03	-6.16	89.11	0.03	0.000%
31	5.32	-89.11	3.06	-5.32	89.11	-3.06	0.000%
32	3.06	-89.11	5.32	-3.06	89.11	-5.32	0.000%
33	-0.03	-89.11	6.14	0.03	89.11	-6.14	0.000%
34	-3.19	-89.11	5.51	3.19	89.11	-5.51	0.000%
35	-5.34	-89.11	3.09	5.34	89.11	-3.09	0.000%
36	-6.16	-89.11	0.02	6.16	89.11	-0.02	0.000%
37	-5.34	-89.11	-3.05	5.34	89.11	3.05	0.000%
38	-3.05	-89.11	-5.32	3.05	89.11	5.32	0.000%
39	0.02	-42.42	-5.64	-0.02	42.42	5.64	0.000%
40	3.07	-42.42	-5.28	-3.07	42.42	5.28	0.000%
41	4.97	-42.42	-2.88	-4.97	42.42	2.88	0.000%
42	5.69	-42.42	-0.03	-5.69	42.42	0.03	0.000%
43	4.89	-42.42	2.81	-4.89	42.42	-2.81	0.000%
44	2.84	-42.42	4.94	-2.84	42.42	-4.94	0.000%
45	-0.03	-42.42	5.64	0.03	42.42	-5.64	0.000%
46	-3.07	-42.42	5.28	3.07	42.42	-5.28	0.000%
47	-4.97	-42.42	2.87	4.97	42.42	-2.87	0.000%
48	-5.70	-42.42	0.03	5.70	42.42	-0.03	0.000%
49	-4.91	-42.42	-2.80	4.91	42.42	2.80	0.000%
50	-2.84	-42.42	-4.95	2.84	42.42	4.95	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.0000001	0.00000001
2	Yes	5	0.0000001	0.00008296
3	Yes	4	0.0000001	0.00087804
4	Yes	6	0.0000001	0.00012127
5	Yes	6	0.0000001	0.00004245
6	Yes	6	0.0000001	0.00012315
7	Yes	6	0.0000001	0.00004351
8	Yes	5	0.0000001	0.00017156
9	Yes	5	0.0000001	0.00008123
10	Yes	6	0.0000001	0.00011416
11	Yes	6	0.0000001	0.00004031
12	Yes	6	0.0000001	0.00011743
13	Yes	6	0.0000001	0.00004153
14	Yes	5	0.0000001	0.00014343
15	Yes	5	0.0000001	0.00006658
16	Yes	6	0.0000001	0.00012701
17	Yes	6	0.0000001	0.00004469
18	Yes	6	0.0000001	0.00011598
19	Yes	6	0.0000001	0.00004083
20	Yes	5	0.0000001	0.00012893
21	Yes	5	0.0000001	0.00005897
22	Yes	6	0.0000001	0.00011881
23	Yes	6	0.0000001	0.00004210
24	Yes	6	0.0000001	0.00011527
25	Yes	6	0.0000001	0.00004070
26	Yes	4	0.0000001	0.00014049
27	Yes	6	0.0000001	0.00034827
28	Yes	6	0.0000001	0.00037452
29	Yes	6	0.0000001	0.00037146
30	Yes	6	0.0000001	0.00034582
31	Yes	6	0.0000001	0.00036399
32	Yes	6	0.0000001	0.00036269
33	Yes	6	0.00000001	0.00034138
34	Yes	6	0.00000001	0.00036856
35	Yes	6	0.00000001	0.00036577
36	Yes	6	0.0000001	0.00034598
37	Yes	6	0.0000001	0.00036928
38	Yes	6	0.0000001	0.00036923
39	Yes	4	0.0000001	0.00034946
40	Yes	4	0.00000001	0.00099117
41	Yes	5	0.00000001	0.00004391
42	Yes	4	0.00000001	0.00037722
43	Yes	4	0.00000001	0.00097722
44	Yes	4	0.0000001	0.00032232
45	Yes	4	0.00000001	0.00037217
46	Yes	5	0.00000001	0.00004544
47	Yes	4	0.00000001	0.00093201
48	Yes	4	0.0000001	0.00033201
49	Yes	4	0.00000001	0.00099838
50	Yes	4	0.0000001	0.00093510

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	•
L1	117 - 112	12.187	40	1.0530	0.0015
L2	112 - 110	11.088	40	1.0433	0.0015
L3	110 - 105	10.653	40	1.0360	0.0015
L4	105 - 100	9.583	40	1.0038	0.0015
L5	100 - 95	8.557	40	0.9538	0.0015
L6	95 - 90	7.585	40	0.8994	0.0014
L7	90 - 85	6.678	40	0.8301	0.0013
L8	85 - 82.38	5.851	40	0.7477	0.0011
L9	82.38 - 82.13	5.454	40	0.6990	0.0009
L10	82.13 - 81.88	5.417	40	0.6942	0.0009

tnxTower Report - version 8.1.1.0

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	٥	٥
L11	81.88 - 81.63	5.381	40	0.6894	0.0009
L12	81.63 - 76.63	5.345	40	0.6859	0.0009
L13	76.63 - 76	4.664	40	0.6132	0.0007
L14	76 - 75.75	4.584	40	0.6037	0.0007
L15	75.75 - 70.75	4.552	40	0.6007	0.0007
L16	70.75 - 70.5	3.956	40	0.5372	0.0005
L17	70.5 - 67.98	3.928	40	0.5350	0.0005
L18	67.98 - 67.73	3.652	40	0.5132	0.0005
L19	67.73 - 63.5	3.625	40	0.5110	0.0005
L20	63.5 - 63.25	3.189	40	0.4722	0.0004
L21	63.25 - 58.25	3.164	40	0.4704	0.0004
L22	58.25 - 53.25	2.692	40	0.4319	0.0003
L23	53.25 - 47.42	2.261	40	0.3919	0.0003
L24	52 - 46.42	2.159	40	0.3819	0.0003
L25	46.42 - 43.5	1.726	40	0.3551	0.0003
L26	43.5 - 43.25	1.517	40	0.3308	0.0002
L27	43.25 - 38.25	1.499	40	0.3291	0.0002
L28	38.25 - 33.5	1.174	40	0.2933	0.0002
L29	33.5 - 33.25	0.899	40	0.2591	0.0002
L30	33.25 - 33	0.885	40	0.2573	0.0002
L31	33 - 32.75	0.872	40	0.2555	0.0002
L32	32.75 - 31.5	0.859	40	0.2538	0.0002
L33	31.5 - 31.25	0.793	40	0.2455	0.0002
L34	31.25 - 26.25	0.780	40	0.2435	0.0002
L35	26.25 - 21.25	0.546	40	0.2034	0.0001
L36	21.25 - 16.25	0.355	40	0.1631	0.0001
L37	16.25 - 13.5	0.205	40	0.1230	0.0001
L38	13.5 - 13.25	0.140	40	0.1011	0.0001
L39	13.25 - 9	0.135	40	0.0991	0.0001
L40	9 - 8.75	0.062	40	0.0657	0.0000
L41	8.75 - 3.75	0.058	40	0.0639	0.0000
L42	3.75 - 0	0.011	40	0.0273	0.0000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
_		Load		۰	۰	Curvature
ft		Comb.	in	0	•	ft
117.00	APXVSPP18-C-A20 w/ Mount Pipe	40	12.187	1.0530	0.0015	17639
115.00	PCS 1900MHz 4x45W-65MHz	40	11.746	1.0500	0.0015	17639
110.00	AIR6449 B41_T-MOBILE w/ Mount Pipe	40	10.653	1.0360	0.0015	12594
100.00	(2) DB844G65ZAXY w/ Mount Pipe	40	8.557	0.9538	0.0015	5473
95.00	VHLP1-23	40	7.585	0.8994	0.0014	4537
94.00	VHLP2-11	40	7.398	0.8869	0.0014	4367
93.00	Pipe Mount [PM 601-3]	40	7.214	0.8736	0.0013	4205
92.00	VHLP1-23	40	7.032	0.8596	0.0013	4051
89.00	HPA65R-BU8A	40	6.506	0.8146	0.0013	3640
84.00	800 10504	40	5.696	0.7294	0.0010	3281
76.00	MX08FRO665-21 w/ Mount Pipe	40	4.584	0.6037	0.0007	4186

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	۰	0
L1	117 - 112	52.010	4	4.5052	0.0063
L2	112 - 110	47.317	4	4.4640	0.0063
L3	110 - 105	45.457	4	4.4326	0.0064

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	۰	۰
L4	105 - 100	40.887	4	4.2950	0.0064
L5	100 - 95	36.503	4	4.0809	0.0064
L6	95 - 90	32.352	4	3.8455	0.0058
L7	90 - 85	28.481	4	3.5471	0.0056
L8	85 - 82.38	24.949	4	3.1935	0.0046
L9	82.38 - 82.13	23.255	4	2.9847	0.0039
L10	82.13 - 81.88	23.099	4	2.9641	0.0039
L11	81.88 - 81.63	22.945	4	2.9435	0.0038
L12	81.63 - 76.63	22.791	4	2.9284	0.0038
L13	76.63 - 76	19.887	4	2.6171	0.0030
L14	76 - 75.75	19.545	4	2.5766	0.0029
L15	75.75 - 70.75	19.410	4	2.5639	0.0029
L16	70.75 - 70.5	16.867	4	2.2924	0.0022
L17	70.5 - 67.98	16.748	4	2.2828	0.0022
L18	67.98 - 67.73	15.568	4	2.1896	0.0020
L19	67.73 - 63.5	15.453	4	2.1803	0.0020
L20	63.5 - 63.25	13.596	4	2.0146	0.0017
L21	63.25 - 58.25	13.490	4	2.0068	0.0017
L22	58.25 - 53.25	11.475	4	1.8422	0.0015
L23	53.25 - 47.42	9.636	4	1.6715	0.0013
L24	52 - 46.42	9.204	4	1.6287	0.0012
L25	46.42 - 43.5	7.359	4	1.5143	0.0011
L26	43.5 - 43.25	6.465	4	1.4107	0.0010
L27	43.25 - 38.25	6.391	4	1.4033	0.0010
L28	38.25 - 33.5	5.002	4	1.2507	0.0008
L29	33.5 - 33.25	3.830	4	1.1045	0.0007
L30	33.25 - 33	3.773	4	1.0969	0.0007
L31	33 - 32.75	3.716	4	1.0893	0.0007
L32	32.75 - 31.5	3.659	4	1.0821	0.0007
L33	31.5 - 31.25	3.380	4	1.0464	0.0007
L34	31.25 - 26.25	3.326	4	1.0379	0.0006
L35	26.25 - 21.25	2.328	4	0.8672	0.0005
L36	21.25 - 16.25	1.511	4	0.6951	0.0004
L37	16.25 - 13.5	0.873	4	0.5242	0.0003
L38	13.5 - 13.25	0.598	4	0.4306	0.0002
L39	13.25 - 9	0.575	4	0.4222	0.0002
L40	9 - 8.75	0.263	4	0.2800	0.0001
L41	8.75 - 3.75	0.249	4	0.2722	0.0001
L42	3.75 - 0	0.046	4	0.1162	0.0001

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	٥	۰	ft
117.00	APXVSPP18-C-A20 w/ Mount Pipe	4	52.010	4.5052	0.0063	4172
115.00	PCS 1900MHz 4x45W-65MHz	4	50.128	4.4926	0.0063	4172
110.00	AIR6449 B41 T-MOBILE w/	4	45.457	4.4326	0.0064	2978
	Mount Pipe					
100.00	(2) DB844G65ZAXY w/ Mount	4	36.503	4.0809	0.0064	1292
	Pipe					
95.00	VHLP1-23	4	32.352	3.8455	0.0058	1074
94.00	VHLP2-11	4	31.553	3.7914	0.0058	1033
93.00	Pipe Mount [PM 601-3]	4	30.767	3.7341	0.0057	993
92.00	VHLP1-23	4	29.992	3.6740	0.0057	956
89.00	HPA65R-BU8A	4	27.745	3.4808	0.0054	857
84.00	800 10504	4	24.289	3.1150	0.0043	771
76.00	MX08FRO665-21 w/ Mount Pipe	4	19.545	2.5766	0.0029	983

Compression Checks

	Pole Design Data											
Section	Elevation	Size	L	Lu	KI/r	Α	Pu	φ P _n	Ratio			
No.	ft		ft	ft		in²	K	K	$\frac{P_u}{\phi P_n}$			
L1	117 - 116 116 - 115	TP15.4886x14.36x0.1875	5.00	0.00	0.0	8.6929 8.8292	-1.24 -1.27	508.54 516.51	0.002 0.002			
	115 - 114 114 - 113					8.9655 9.1018	-1.85 -1.88	524.48 532.45	0.004 0.004			
	113 - 112					9.2380	-1.92	540.42	0.004			
L2	112 - 111	TP15.94x15.4886x0.1875	2.00	0.00	0.0	9.3743	-1.96	548.40	0.004			
L3	111 - 110 110 - 109	TP17.07x15.94x0.1875	5.00	0.00	0.0	9.5106 9.6470	-2.00 -5.96	556.37 564.35	0.004 0.011			
LJ	109 - 109	1F 17.07X 15.94X0.1675	5.00	0.00	0.0	9.7835	-6.02	572.33	0.011			
	108 - 107					9.9199	-6.09	580.32	0.010			
	107 - 106					10.056 4	-6.15	588.30	0.010			
	106 - 105					10.192 8	-6.22	596.28	0.010			
L4	105 - 104	TP18.2x17.07x0.1875	5.00	0.00	0.0	10.329 3	-6.28	604.26	0.010			
	104 - 103					10.465 7	-6.35	612.24	0.010			
	103 - 102					10.602 2	-6.42	620.23	0.010			
	102 - 101					10.738 6	-6.49	628.21	0.010			
	101 - 100					10.875 0	-6.56	636.19	0.010			
L5	100 - 99	TP19.3307x18.2x0.25	5.00	0.00	0.0	14.631 8	-10.28	855.96	0.012			
	99 - 98					14.813 8	-10.37	866.61	0.012			
	98 - 97					14.995 9	-10.47	877.26	0.012			
	97 - 96					15.177 9	-10.57	887.91	0.012			
	96 - 95					15.359 9	-10.67	898.56	0.012			
L6	95 - 94	TP20.4613x19.3307x0.25	5.00	0.00	0.0	15.542 0	-10.78	909.21	0.012			
	94 - 93					15.724 0	-10.91	919.85	0.012			
	93 - 92					15.906 0	-11.24	930.50	0.012			
	92 - 91					16.088 1	-11.35	941.15	0.012			
	91 - 90					16.270 1	-11.46	951.80	0.012			
L7	90 - 89	TP21.592x20.4613x0.25	5.00	0.00	0.0	16.452 1	-11.58	962.45	0.012			
	89 - 88					16.634 2	-15.84	973.10	0.016			
	88 - 87					16.816 2	-15.97	983.75	0.016			
	87 - 86					16.998 3	-16.09	994.40	0.016			
	86 - 85					17.180 3	-16.23	1005.05	0.016			
L8	85 - 83.69	TP22.1844x21.592x0.25	2.62	0.00	0.0	17.418 8	-16.68	1019.00	0.016			
	83.69 - 82.38					17.657 2	-16.87	1032.95	0.016			
L9	82.38 - 82.13 (9)	TP22.241x22.1844x0.25	0.25	0.00	0.0	17.702 7	-16.92	1035.61	0.016			
L10	82.13 - 81.88 (10)	TP22.2975x22.241x0.25	0.25	0.00	0.0	17.748 2	-16.95	1038.27	0.016			
L11	81.88 - 81.63 (11)	TP22.354x22.2975x0.35	0.25	0.00	0.0	24.798 5	-17.00	1450.72	0.012			

Section No.	Elevation	Size	L	Lu	KI/r	Α	Pu	φPn	Ratio Pu
710.	ft		ft	ft		in²	K	K	$\frac{-\frac{1}{4}P_n}{\Phi}$
L12	81.63 - 80.63	TP23.4847x22.354x0.356	5.00	0.00	0.0	25.493 6	-17.18	1491.38	0.012
	80.63 - 79.63	3				25.753	-17.37	1506.55	0.012
	79.63 - 78.63					0 26.012 4	-17.57	1521.73	0.012
	78.63 - 77.63					26.271 8	-17.76	1536.90	0.012
	77.63 - 76.63					26.531 2	-17.96	1552.08	0.012
L13	76.63 - 76 (13)	TP23.6272x23.4847x0.35 63	0.63	0.00	0.0	26.694 6	-18.08	1561.64	0.012
L14	76 - 75.75 (14)	TP23.6837x23.6272x0.46 25	0.25	0.00	0.0	34.582 2	-21.28	2023.06	0.011
L15	75.75 - 74.75	TP24.8143x23.6837x0.45	5.00	0.00	0.0	33.993 3	-21.50	1988.61	0.011
	74.75 - 73.75					34.320 9	-21.73	2007.78	0.011
	73.75 - 72.75					34.648 6	-21.97	2026.94	0.011
	72.75 - 71.75					34.976 3	-22.21	2046.11	0.011
	71.75 - 70.75					35.303 9	-22.45	2065.28	0.011
L16	70.75 - 70.5 (16)	TP24.8709x24.8143x0.67 5	0.25	0.00	0.0	52.589 8	-22.53	3076.50	0.007
L17	70.5 - 69.24	TP25.4407x24.8709x0.71	2.52	0.00	0.0	56.079 1	-22.86	3280.63	0.007
	69.24 - 67.98					56.732 7	-23.20	3318.87	0.007
L18	67.98 - 67.73 (18)	TP25.4973x25.4407x0.71 25	0.25	0.00	0.0	56.862 5	-23.27	3326.45	0.007
L19	67.73 - 66.6725	TP26.4538x25.4973x0.68	4.23	0.00	0.0	55.452 0	-23.54	3243.94	0.007
	66.6725 - 65.615					55.981 4	-23.83	3274.91	0.007
	65.615 - 64.5575					56.510 8	-24.12	3305.88	0.007
	64.5575 - 63.5					57.040 2	-24.41	3336.85	0.007
L20	63.5 - 63.25 (20)	TP26.5103x26.4538x0.9	0.25	0.00	0.0	74.218 8	-24.50	4341.80	0.006
L21	63.25 - 62.25	TP27.641x26.5103x0.85	5.00	0.00	0.0	70.851 3	-24.81	4144.80	0.006
	62.25 - 61.25					71.470 2	-25.14	4181.01	0.006
	61.25 - 60.25					72.089 1	-25.47	4217.21	0.006
	60.25 - 59.25					72.708 0	-25.80	4253.42	0.006
	59.25 - 58.25					73.327 0	-26.13	4289.63	0.006
L22	58.25 - 57.25	TP28.7717x27.641x0.825	5.00	0.00	0.0	71.837 4	-26.46	4202.49	0.006
	57.25 - 56.25					72.438 1	-26.79	4237.63	0.006
	56.25 - 55.25					73.038 8	-27.12	4272.77	0.006
	55.25 - 54.25					73.639 6	-27.45	4307.91	0.006
	54.25 - 53.25					74.240 3	-27.79	4343.06	0.006
L23	53.25 - 52	TP30.09x28.7717x0.825	5.83	0.00	0.0	74.991 2	-28.21	4386.98	0.006
	52 - 47.42					77.742 5	-15.56	4547.93	0.003
L24	52 - 47.42	TP29.8147x28.5543x0.84 38	5.58	0.00	0.0	78.096 8	-15.53	4568.66	0.003

Section	Elevation	Size	L	Lu	KI/r	Α	Pu	φ <i>P</i> _n	Ratio
No.	ft		ft	ft		in²	κ	κ	$\frac{P_u}{\phi P_n}$
	47.42 - 46.42					78.710	-31.46	4604.56	0.007
L25	46.42 - 44.96	TP30.4743x29.8147x0.83	2.92	0.00	0.0	5 78.460	-31.98	4589.94	0.007
	44.96 - 43.5	13				6 79.343	-32.51	4641.58	0.007
L26	43.5 - 43.25 (26)	TP30.5308x30.4743x0.99	0.25	0.00	0.0	3 94.514 7	-32.62	5529.11	0.006
L27	43.25 - 42.25	TP31.6601x30.5308x0.96	5.00	0.00	0.0	92.919 6	-33.03	5435.80	0.006
	42.25 - 41.25	00				93.624 2	-33.44	5477.01	0.006
	41.25 - 40.25					94.328 8	-33.86	5518.23	0.006
	40.25 - 39.25					95.033 4	-34.28	5559.45	0.006
	39.25 - 38.25					95.738 0	-34.70	5600.67	0.006
L28	38.25 - 37.0625	TP32.7331x31.6601x0.94	4.75	0.00	0.0	94.158 4	-35.20	5508.27	0.006
	37.0625 - 35.875	30				94.973 5	-35.70	5555.95	0.006
	35.875 - 34.6875					95.788 7	-36.20	5603.64	0.006
	34.6875 - 33.5					96.603 8	-36.71	5651.32	0.006
L29	33.5 - 33.25 (29)	TP32.7895x32.7331x0.94 38	0.25	0.00	0.0	96.775 4	-36.82	5661.36	0.007
L30	33.25 - 33 (30)	TP32.846x32.7895x0.943	0.25	0.00	0.0	96.947 0	-36.93	5671.40	0.007
L31	33 - 32.75 (31)	TP32.9025x32.846x0.993	0.25	0.00	0.0	102.10 40	-37.04	5973.08	0.006
L32	32.75 - 31.5 (32)	TP33.1848x32.9025x0.99	1.25	0.00	0.0	103.00 70	-37.59	6025.93	0.006
L33	31.5 - 31.25 (33)	TP33.2413x33.1848x0.83	0.25	0.00	0.0	86.749 5	-37.70	5074.85	0.007
L34	31.25 - 30.25	TP34.3707x33.2413x0.81	5.00	0.00	0.0	86.073 5	-38.08	5035.30	0.008
	30.25 - 29.25	00				86.669 0	-38.48	5070.14	0.008
	29.25 - 28.25					87.264 5	-38.87	5104.97	0.008
	28.25 - 27.25					87.860 0	-39.27	5139.81	0.008
	27.25 - 26.25					88.455 5	-39.67	5174.65	0.008
L35	26.25 - 25.25	TP35.5001x34.3707x0.79 38	5.00	0.00	0.0	86.395 8	-40.07	5054.15	0.008
	25.25 - 24.25	00				86.973 1	-40.47	5087.93	0.008
	24.25 - 23.25					87.550 4	-40.87	5121.70	0.008
	23.25 - 22.25					88.127 7	-41.27	5155.47	0.008
	22.25 - 21.25					88.705 0	-41.68	5189.25	0.008
L36	21.25 - 20.25	TP36.6295x35.5001x0.78 13	5.00	0.00	0.0	87.907 8	-42.08	5142.61	0.008
	20.25 - 19.25	10				88.476 0	-42.49	5175.85	0.008
	19.25 - 18.25					89.044 2	-42.90	5209.09	0.008
	18.25 - 17.25					89.612 5	-43.31	5242.33	0.008
	17.25 - 16.25					90.180 7	-43.72	5275.57	0.008
L37	16.25 - 14.875	TP37.2506x36.6295x0.76 88	2.75	0.00	0.0	89.537 6	-44.28	5237.95	0.008

Section No.	Elevation	Size	L	Lu	KI/r	Α	Pu	ϕP_n	Ratio Pu
	ft		ft	ft		in ²	K	K	$\overline{\phi P_n}$
	14.875 - 13.5					90.306 4	-44.85	5282.92	0.008
L38	13.5 - 13.25 (38)	TP37.3071x37.2506x0.76 88	0.25	0.00	0.0	90.446 1	-44.97	5291.10	0.008
L39	13.25 - 12.1875	TP38.2671x37.3071x0.76 88	4.25	0.00	0.0	91.040 2	-45.42	5325.85	0.009
	12.1875 - 11.125					91.634 3	-45.87	5360.61	0.009
	11.125 - 10.0625					92.228 4	-46.33	5395.36	0.009
	10.0625 - 9					92.822	-46.79	5430.11	0.009
L40	9 - 8.75 (40)	TP38.3236x38.2671x0.81 88	0.25	0.00	0.0	98.876 8	-46.91	5784.29	0.008
L41	8.75 - 7.75	TP39.453x38.3236x0.806	5.00	0.00	0.0	97.986 0	-47.36	5732.18	0.008
	7.75 - 6.75					98.572 4	-47.81	5766.49	0.008
	6.75 - 5.75					99.158 9	-48.26	5800.79	0.008
	5.75 - 4.75					99.745 3	-48.72	5835.10	0.008
	4.75 - 3.75					100.33 20	-49.17	5869.40	0.008
L42	3.75 - 2.5	TP40.3x39.453x0.7938	3.75	0.00	0.0	99.529 7	-49.74	5822.49	0.009
	2.5 - 1.25					100.25 10	-50.32	5864.71	0.009
	1.25 - 0					100.97 30	-50.89	5906.92	0.009

Pole Bending Design Data

Section No.	Elevation	Size	M _{ux}	фМлх	Ratio M _{ux}	Muy	ф М пу	Ratio M _{uy}
	ft		kip-ft	kip-ft	фМлх	kip-ft	kip-ft	ϕM_{ny}
L1	117 - 116	TP15.4886x14.36x0.1875	4.083	187.007	0.022	0.000	187.007	0.000
	116 - 115		5.747	192.954	0.030	0.000	192.954	0.000
	115 - 114		8.221	198.994	0.041	0.000	198.994	0.000
	114 - 113		10.744	205.128	0.052	0.000	205.128	0.000
	113 - 112		13.316	211.355	0.063	0.000	211.355	0.000
L2	112 - 111	TP15.94x15.4886x0.1875	15.938	217.088	0.073	0.000	217.088	0.000
	111 - 110		18.610	222.521	0.084	0.000	222.521	0.000
L3	110 - 109	TP17.07x15.94x0.1875	24.218	227.998	0.106	0.000	227.998	0.000
	109 - 108		29.879	233.511	0.128	0.000	233.511	0.000
	108 - 107		35.590	239.058	0.149	0.000	239.058	0.000
	107 - 106		41.353	244.639	0.169	0.000	244.639	0.000
	106 - 105		47.169	250.253	0.188	0.000	250.253	0.000
L4	105 - 104	TP18.2x17.07x0.1875	53.036	255.896	0.207	0.000	255.896	0.000
	104 - 103		58.956	261.570	0.225	0.000	261.570	0.000
	103 - 102		64.927	267.272	0.243	0.000	267.272	0.000
	102 - 101		70.952	273.003	0.260	0.000	273.003	0.000
	101 - 100		77.029	278.758	0.276	0.000	278.758	0.000
L5	100 - 99	TP19.3307x18.2x0.25	93.015	397.070	0.234	0.000	397.070	0.000
	99 - 98		103.731	407.080	0.255	0.000	407.080	0.000
	98 - 97		114.499	417.213	0.274	0.000	417.213	0.000
	97 - 96		125.319	427.473	0.293	0.000	427.473	0.000
	96 - 95		136.192	437.855	0.311	0.000	437.855	0.000
L6	95 - 94	TP20.4613x19.3307x0.25	147.119	448.363	0.328	0.000	448.363	0.000
	94 - 93		158.477	458.996	0.345	0.000	458.996	0.000
	93 - 92		170.058	469.753	0.362	0.000	469.753	0.000
	92 - 91		181.718	480.634	0.378	0.000	480.634	0.000
	91 - 90		193.440	491.640	0.393	0.000	491.640	0.000
L7	90 - 89	TP21.592x20.4613x0.25	205.214	502.771	0.408	0.000	502.771	0.000
	89 - 88		221.380	512.926	0.432	0.000	512.926	0.000

Section No.	Elevation	Size	M _{ux}	ф М пх	Ratio M _{ux}	M uy	ϕM_{ny}	Ratio Muy
740.	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
			•				· · · · · · · · · · · · · · · · · · ·	
	88 - 87		237.634	522.585	0.455	0.000	522.585	0.000
	87 - 86		253.935	532.295	0.477	0.000	532.295	0.000
	86 - 85		270.336	542.053	0.499	0.000	542.053	0.000
L8	85 - 83.69	TP22.1844x21.592x0.25	292.044	554.908	0.526	0.000	554.908	0.000
	83.69 - 82.38		314.084	567.843	0.553	0.000	567.843	0.000
L9	82.38 - 82.13 (9)	TP22.241x22.1844x0.25	318.299	570.321	0.558	0.000	570.321	0.000
L10	82.13 - 81.88 (10)	TP22.2975x22.241x0.25	322.516	572.800	0.563	0.000	572.800	0.000
L11	81.88 - 81.63 (11)	TP22.354x22.2975x0.35	326.737	812.973	0.402	0.000	812.973	0.000
L12	81.63 - 80.63	TP23.4847x22.354x0.356	343.651	844.008	0.407	0.000	844.008	0.000
	80.63 - 79.63		360.618	861.408	0.419	0.000	861.408	0.000
	79.63 - 78.63		377.637	878.983	0.430	0.000	878.983	0.000
	78.63 - 77.63		394.708	896.742	0.440	0.000	896.742	0.000
	77.63 - 76.63		411.832	914.675	0.450	0.000	914.675	0.000
L13	76.63 - 76	TD22 6272v22 4047v0 25	422.647	926.067		0.000	926.067	0.000
LIS	(13)	TP23.6272x23.4847x0.35 63	422.047	920.007	0.456	0.000	920.007	0.000
L14	76 - 75.75 (14)	TP23.6837x23.6272x0.46 25	427.596	1191.717	0.359	0.000	1191.717	0.000
L15	75.75 - 74.75	TP24.8143x23.6837x0.45	447.188	1184.317	0.378	0.000	1184.317	0.000
	74.75 - 73.75		466.846	1207.475	0.387	0.000	1207.475	0.000
	73.75 - 72.75		486.568	1230.858	0.395	0.000	1230.858	0.000
	72.75 - 71.75							
			506.354	1254.467	0.404	0.000	1254.467	0.000
	71.75 - 70.75		526.205	1278.292	0.412	0.000	1278.292	0.000
L16	70.75 - 70.5 (16)	TP24.8709x24.8143x0.67 5	531.179	1873.675	0.283	0.000	1873.675	0.000
L17	70.5 - 69.24	TP25.4407x24.8709x0.71 25	556.318	2015.967	0.276	0.000	2015.967	0.000
	69.24 - 67.98		581.581	2063.917	0.282	0.000	2063.917	0.000
L18	67.98 - 67.73 (18)	TP25.4973x25.4407x0.71 25	586.607	2073.492	0.283	0.000	2073.492	0.000
L19	67.73 - 66.6725	TP26.4538x25.4973x0.68 75	607.971	2046.200	0.297	0.000	2046.200	0.000
	66.6725 - 65.615		629.467	2085.983	0.302	0.000	2085.983	0.000
	65.615 - 64.5575		651.076	2126.150	0.306	0.000	2126.150	0.000
	64.5575 - 63.5		672.798	2166.700	0.311	0.000	2166.700	0.000
L20	63.5 - 63.25 (20)	TP26.5103x26.4538x0.9	677.949	2779.267	0.244	0.000	2779.267	0.000
L21	63.25 - 62.25	TP27.641x26.5103x0.85	698.622	2687.758	0.260	0.000	2687.758	0.000
	62.25 - 61.25		719.402	2735.675	0.263	0.000	2735.675	0.000
	61.25 - 60.25		740.287	2784.017	0.266	0.000	2784.017	0.000
	60.25 - 59.25		761.278	2832.783	0.269	0.000	2832.783	0.000
	59.25 - 58.25		782.378	2881.967	0.271	0.000	2881.967	0.000
L22	58.25 - 57.25	TP28.7717x27.641x0.825	803.582	2853.258	0.282	0.000	2853.258	0.000
LZZ	57.25 - 56.25	11 20.77 17 727 .04 170.025	824.893	2901.892	0.284	0.000	2901.892	0.000
	56.25 - 55.25		846.308	2950.933	0.287	0.000	2950.933	0.000
	55.25 - 54.25		867.825	3000.392	0.289	0.000	3000.392	0.000
	54.25 - 53.25		889.450	3050.250	0.292	0.000	3050.250	0.000
L23	53.25 - 52	TP30.09x28.7717x0.825	916.617	3113.158	0.294	0.000	3113.158	0.000
	52 - 47.42		516.961	3349.150	0.154	0.000	3349.150	0.000
L24	52 - 47.42	TP29.8147x28.5543x0.84 38	500.435	3300.917	0.152	0.000	3300.917	0.000
	47.42 - 46.42		1039.667	3353.742	0.310	0.000	3353.742	0.000
L25	46.42 - 44.96	TP30.4743x29.8147x0.83	1072.342	3385.108	0.317	0.000	3385.108	0.000
	44.96 - 43.5	-	1105.242	3462.767	0.319	0.000	3462.767	0.000
L26	43.5 - 43.25 (26)	TP30.5308x30.4743x0.99	1110.892	4087.858	0.272	0.000	4087.858	0.000
L27	43.25 - 42.25	TP31.6601x30.5308x0.96 88	1133.575	4057.408	0.279	0.000	4057.408	0.000
	42.25 - 41.25	-	1156.367	4120.158	0.281	0.000	4120.158	0.000
	41.25 - 40.25		1179.258	4183.383	0.282	0.000	4183.383	0.000
	40.25 - 39.25		1202.250	4247.092	0.283	0.000	4247.092	0.000
	39.25 - 38.25		1225.358	4311.275	0.284	0.000	4311.275	0.000
	Ja.2J - 30.23		1223.330	4311.273	0.204	0.000	4311.273	0.000

Section No.	Elevation	Size	Mux	фМлх	Ratio M _{ux}	Muy	φMny	Ratio M _{uy}
710.	ft		kip-ft	kip-ft	$\frac{Max}{\phi M_{nx}}$	kip-ft	kip-ft	$\frac{M_{ny}}{\phi M_{ny}}$
L28	38.25 - 37.0625	TP32.7331x31.6601x0.94 38	1252.925	4285.250	0.292	0.000	4285.250	0.000
	37.0625 - 35.875		1280.642	4360.875	0.294	0.000	4360.875	0.000
	35.875 - 34.6875		1308.492	4437.158	0.295	0.000	4437.158	0.000
	34.6875 - 33.5		1336.492	4514.100	0.296	0.000	4514.100	0.000
L29	33.5 - 33.25 (29)	TP32.7895x32.7331x0.94 38	1342.408	4530.383	0.296	0.000	4530.383	0.000
L30	33.25 - 33 (30)	TP32.846x32.7895x0.943	1348.325	4546.692	0.297	0.000	4546.692	0.000
L31	33 - 32.75 (31)	TP32.9025x32.846x0.993	1354.250	4782.275	0.283	0.000	4782.275	0.000
L32	32.75 - 31.5 (32)	TP33.1848x32.9025x0.99 38	1383.975	4868.567	0.284	0.000	4868.567	0.000
L33	31.5 - 31.25 (33)	TP33.2413x33.1848x0.83	1389.933	4149.058	0.335	0.000	4149.058	0.000
L34	31.25 - 30.25	TP34.3707x33.2413x0.81 88	1413.833	4149.317	0.341	0.000	4149.317	0.000
	30.25 - 29.25		1437.808	4207.633	0.342	0.000	4207.633	0.000
	29.25 - 28.25		1461.850	4266.358	0.343	0.000	4266.358	0.000
	28.25 - 27.25		1485.958	4325.492	0.344	0.000	4325.492	0.000
	27.25 - 26.25		1510.142	4385.033	0.344	0.000	4385.033	0.000
L35	26.25 - 25.25	TP35.5001x34.3707x0.79 38	1534.392	4318.833	0.355	0.000	4318.833	0.000
	25.25 - 24.25		1558.717	4377.417	0.356	0.000	4377.417	0.000
	24.25 - 23.25		1583.100	4436.383	0.357	0.000	4436.383	0.000
	23.25 - 22.25		1607.558	4495.758	0.358	0.000	4495.758	0.000
	22.25 - 21.25		1632.083	4555.517	0.358	0.000	4555.517	0.000
L36	21.25 - 20.25	TP36.6295x35.5001x0.78 13	1656.675	4547.867	0.364	0.000	4547.867	0.000
	20.25 - 19.25		1681.342	4607.500	0.365	0.000	4607.500	0.000
	19.25 - 18.25		1706.067	4667.517	0.366	0.000	4667.517	0.000
	18.25 - 17.25		1730.867	4727.925	0.366	0.000	4727.925	0.000
	17.25 - 16.25		1755.733	4788.717	0.367	0.000	4788.717	0.000
L37	16.25 - 14.875	TP37.2506x36.6295x0.76 88	1790.033	4799.958	0.373	0.000	4799.958	0.000
	14.875 - 13.5		1824.458	4883.608	0.374	0.000	4883.608	0.000
L38	13.5 - 13.25 (38)	TP37.3071x37.2506x0.76 88	1830.733	4898.892	0.374	0.000	4898.892	0.000
L39	13.25 - 12.1875	TP38.2671x37.3071x0.76 88	1857.433	4964.125	0.374	0.000	4964.125	0.000
	12.1875 - 11.125		1884.217	5029.792	0.375	0.000	5029.792	0.000
	11.125 - 10.0625		1911.067	5095.892	0.375	0.000	5095.892	0.000
	10.0625 - 9		1938.000	5162.417	0.375	0.000	5162.417	0.000
L40	9 - 8.75 (40)	TP38.3236x38.2671x0.81 88	1944.342	5492.925	0.354	0.000	5492.925	0.000
L41	8.75 - 7.75	TP39.453x38.3236x0.806	1969.775	5480.558	0.359	0.000	5480.558	0.000
	7.75 - 6.75		1995.258	5547.042	0.360	0.000	5547.042	0.000
	6.75 - 5.75		2020.808	5613.925	0.360	0.000	5613.925	0.000
	5.75 - 4.75		2046.425	5681.217	0.360	0.000	5681.217	0.000
	4.75 - 3.75		2072.100	5748.900	0.360	0.000	5748.900	0.000
L42	3.75 - 2.5	TP40.3x39.453x0.7938	2104.283	5749.158	0.366	0.000	5749.158	0.000
	2.5 - 1.25		2136.558	5833.667	0.366	0.000	5833.667	0.000
	1.25 - 0		2168.933	5918.791	0.366	0.000	5918.791	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual Vu	ϕV_n	Ratio Vu	Actual Tu	ϕT_n	Ratio Tu
IVU.	ft		K K	Κ	$\frac{V_u}{\phi V_n}$	kip-ft	kip-ft	$\frac{T_u}{\phi T_n}$
L1	117 - 116	TP15.4886x14.36x0.1875	1.64	152.56	0.011	0.000	193.220	0.000
	116 - 115		1.69	154.95	0.011	0.000	199.325	0.000
	115 - 114		2.50	157.34	0.016	0.000	205.526	0.000
	114 - 113		2.55	159.74	0.016	0.000	211.821	0.000
L2	113 - 112 112 - 111	TP15.94x15.4886x0.1875	2.60 2.65	162.13 164.52	0.016 0.016	0.000 0.000	218.212 224.697	0.000
LZ	111 - 110	1P 15.94x 15.4666x0.1675	2.05	166.91	0.016	0.000	231.278	0.000
L3	110 - 109	TP17.07x15.94x0.1875	5.63	169.31	0.033	0.000	237.961	0.000
	109 - 108		5.68	171.70	0.033	0.000	244.740	0.000
	108 - 107		5.73	174.10	0.033	0.000	251.614	0.000
	107 - 106		5.78	176.49	0.033	0.000	258.584	0.000
	106 - 105		5.83	178.88	0.033	0.000	265.648	0.000
L4	105 - 104	TP18.2x17.07x0.1875	5.89	181.28	0.032	0.000	272.808	0.000
	104 - 103 103 - 102		5.94 5.99	183.67 186.07	0.032 0.032	0.000 0.000	280.063 287.414	0.000
	103 - 102		6.04	188.46	0.032	0.000	294.859	0.000
	101 - 100		6.10	190.86	0.032	0.000	302.400	0.000
L5	100 - 99	TP19.3307x18.2x0.25	10.70	256.79	0.042	0.200	410.559	0.000
	99 - 98		10.76	259.98	0.041	0.200	420.838	0.000
	98 - 97		10.81	263.18	0.041	0.200	431.245	0.000
	97 - 96		10.86	266.37	0.041	0.200	441.778	0.000
	96 - 95		10.91	269.57	0.040	0.200	452.438	0.000
L6	95 - 94	TP20.4613x19.3307x0.25	11.01	272.76	0.040	0.232	463.226	0.000
	94 - 93		11.45	275.96	0.041	0.052	474.141	0.000
	93 - 92 92 - 91		11.62 11.71	279.15 282.35	0.042 0.041	0.052 0.049	485.183 496.352	0.000 0.000
	91 - 90		11.77	285.54	0.041	0.049	507.647	0.000
L7	90 - 89	TP21.592x20.4613x0.25	11.82	288.74	0.041	0.049	519.070	0.000
	89 - 88		16.25	291.93	0.056	0.671	530.621	0.001
	88 - 87		16.30	295.13	0.055	0.671	542.298	0.001
	87 - 86		16.35	298.32	0.055	0.671	554.102	0.001
	86 - 85		16.42	301.51	0.054	0.437	566.033	0.001
L8	85 - 83.69	TP22.1844x21.592x0.25	16.80	305.70	0.055	0.494	581.856	0.001
	83.69 - 82.38	TD00 044,000 4044,00 05	16.86	309.88	0.054	0.494	597.897	0.001
L9	82.38 - 82.13 (9)	TP22.241x22.1844x0.25	16.86	310.68	0.054	0.494	600.982	0.001
L10	82.13 - 81.88 (10)	TP22.2975x22.241x0.25	16.87	311.48	0.054	0.494	604.076	0.001
L11	81.88 - 81.63 (11)	TP22.354x22.2975x0.35	16.88	435.21	0.039	0.494	842.375	0.001
L12	81.63 - 80.63	TP23.4847x22.354x0.356 3	16.94	447.41	0.038	0.494	874.642	0.001
	80.63 - 79.63		16.99	451.96	0.038	0.494	892.525	0.001
	79.63 - 78.63		17.04	456.52	0.037	0.494	910.600	0.001
	78.63 - 77.63		17.10	461.07	0.037	0.494	928.850	0.001
L13	77.63 - 76.63 76.63 - 76	TP23.6272x23.4847x0.35	17.15 17.18	465.62 468.49	0.037 0.037	0.494 0.493	947.283 958.992	0.001 0.001
L13	(13) 76 - 75.75	63 TP23.6837x23.6272x0.46	19.55	606.92	0.037	0.493	1239.692	0.001
L15	(14) 75.75 - 74.75	25 TP24.8143x23.6837x0.45	19.62	596.58	0.033	0.647	1231.108	0.001
	74.75 - 73.75	11 2 1.0 1 10×20.0001×0.10	19.69	602.33	0.033	0.647	1254.950	0.001
	73.75 - 72.75		19.75	608.08	0.032	0.647	1279.025	0.001
	72.75 - 71.75		19.82	613.83	0.032	0.647	1303.333	0.000
	71.75 - 70.75		19.88	619.58	0.032	0.647	1327.867	0.000
L16	70.75 - 70.5 (16)	TP24.8709x24.8143x0.67 5	19.89	922.95	0.022	0.647	1964.350	0.000
L17	70.5 - 69.24	TP25.4407x24.8709x0.71 25	20.00	984.19	0.020	0.647	2116.108	0.000
L18	69.24 - 67.98 67.98 - 67.73	TP25.4973x25.4407x0.71	20.10 20.11	995.66 997.94	0.020 0.020	0.647 0.647	2165.725 2175.642	0.000 0.000
L19	(18) 67.73 - 66.6725	25 TP26.4538x25.4973x0.68 75	20.27	973.18	0.021	0.500	2144.283	0.000
	66.6725 - 65.615	15	20.37	982.47	0.021	0.501	2185.425	0.000
	65.615 - 64.5575		20.48	991.76	0.021	0.502	2226.950	0.000

Section	Elevation	Size	Actual	φVn	Ratio	Actual	φ <i>T</i> _n	Ratio
No.	4		V _u		V_u	Tu		<u>Tu</u>
	ft		K	K	φ <i>V</i> _n	kip-ft	kip-ft	φ <i>T</i> _n
	64.5575 - 63.5		20.59	1001.05	0.021	0.504	2268.875	0.000
L20	63.5 - 63.25 (20)	TP26.5103x26.4538x0.9	20.61	1302.54	0.016	0.504	2934.308	0.000
L21	63.25 - 62.25	TP27.641x26.5103x0.85	20.72	1243.44	0.017	0.506	2831.375	0.000
	62.25 - 61.25		20.82	1254.30	0.017	0.507	2881.058	0.000
	61.25 - 60.25		20.93	1265.16	0.017	0.509	2931.175	0.000
	60.25 - 59.25		21.04	1276.03	0.016	0.510	2981.717	0.000
	59.25 - 58.25		21.15	1286.89	0.016	0.512	3032.700	0.000
L22	58.25 - 57.25	TP28.7717x27.641x0.825	21.25	1260.75	0.017	0.513	2998.942	0.000
	57.25 - 56.25		21.35	1271.29	0.017	0.515	3049.308	0.000
	56.25 - 55.25		21.46	1281.83	0.017	0.517	3100.092	0.000
	55.25 - 54.25		21.56	1292.37	0.017	0.518	3151.300	0.000
	54.25 - 53.25		21.67	1302.92	0.017	0.520	3202.925	0.000
L23	53.25 - 52	TP30.09x28.7717x0.825	21.77	1316.10	0.017	0.520	3268.042	0.000
	52 - 47.42		11.39	1364.38	0.008	0.264	3512.233	0.000
L24	52 - 47.42	TP29.8147x28.5543x0.84 38	10.84	1370.60	0.008	0.256	3465.567	0.000
	47.42 - 46.42	TD00 4740 00 0447 0 00	22.30	1381.37	0.016	0.520	3520.242	0.000
L25	46.42 - 44.96	TP30.4743x29.8147x0.83 13	22.45	1376.98	0.016	0.522	3550.525	0.000
	44.96 - 43.5		22.60	1392.47	0.016	0.524	3630.867	0.000
L26	43.5 - 43.25 (26)	TP30.5308x30.4743x0.99 38	22.62	1658.73	0.014	0.525	4309.658	0.000
L27	43.25 - 42.25	TP31.6601x30.5308x0.96 88	22.73	1630.74	0.014	0.526	4272.908	0.000
	42.25 - 41.25		22.83	1643.10	0.014	0.528	4337.958	0.000
	41.25 - 40.25		22.94	1655.47	0.014	0.529	4403.500	0.000
	40.25 - 39.25		23.04	1667.84	0.014	0.531	4469.525	0.000
	39.25 - 38.25		23.15	1680.20	0.014	0.532	4536.050	0.000
L28	38.25 - 37.0625	TP32.7331x31.6601x0.94 38	23.27	1652.48	0.014	0.534	4503.833	0.000
	37.0625 - 35.875		23.39	1666.79	0.014	0.536	4582.150	0.000
	35.875 - 34.6875		23.51	1681.09	0.014	0.538	4661.142	0.000
	34.6875 - 33.5		23.63	1695.40	0.014	0.539	4740.808	0.000
L29	33.5 - 33.25 (29)	TP32.7895x32.7331x0.94	23.65	1698.41	0.014	0.540	4757.667	0.000
L30	33.25 - 33 (30)	TP32.846x32.7895x0.943	23.67	1701.42	0.014	0.540	4774.550	0.000
L31	33 - 32.75 (31)	TP32.9025x32.846x0.993	23.70	1791.92	0.013	0.540	5029.550	0.000
L32	32.75 - 31.5 (32)	TP33.1848x32.9025x0.99 38	23.83	1807.78	0.013	0.542	5118.950	0.000
L33	31.5 - 31.25 (33)	TP33.2413x33.1848x0.83 13	23.85	1522.45	0.016	0.543	4340.342	0.000
L34	31.25 - 30.25	TP34.3707x33.2413x0.81 88	23.93	1510.59	0.016	0.543	4338.192	0.000
	30.25 - 29.25		24.00	1521.04	0.016	0.543	4398.425	0.000
	29.25 - 28.25		24.07	1531.49	0.016	0.543	4459.075	0.000
	28.25 - 27.25		24.14	1541.94	0.016	0.543	4520.142	0.000
1.25	27.25 - 26.25	TD25 5001×24 2707×0 70	24.21	1552.39	0.016	0.543	4581.625	0.000
L35	26.25 - 25.25	TP35.5001x34.3707x0.79 38	24.28	1516.25	0.016	0.543	4508.400	0.000
	25.25 - 24.25		24.35	1526.38	0.016	0.543	4568.850	0.000
	24.25 - 23.25		24.42	1536.51	0.016	0.543	4629.708	0.000
	23.25 - 22.25 22.25 - 21.25		24.48 24.55	1546.64 1556.77	0.016 0.016	0.543 0.543	4690.967 4752.633	0.000 0.000
L36	21.25 - 20.25	TP36.6295x35.5001x0.78	24.62	1542.78	0.016	0.543	4742.267	0.000
	20.25 - 19.25	13	24.69	1552.75	0.016	0.542	4803.767	0.000
	19.25 - 18.25		24.09	1562.73	0.016	0.542	4865.667	0.000
	18.25 - 17.25		24.70	1572.70	0.016	0.542	4927.967	0.000
	17.25 - 16.25		24.89	1582.67	0.016	0.542	4990.658	0.000
L37	16.25 -	TP37.2506x36.6295x0.76	24.99	1571.38	0.016	0.542	4999.725	0.000
	14.875 14.875 - 13.5	88	25.08	1584.88	0.016	0.542	5085.958	0.000

Section No.	Elevation	Size	Actual V _u	ϕV_n	Ratio Vu	Actual T _u	ϕT_n	Ratio Tu
	ft		K	K	$\overline{\phi V_n}$	kip-ft	kip-ft	ϕT_n
L38	13.5 - 13.25 (38)	TP37.3071x37.2506x0.76 88	25.08	1587.33	0.016	0.542	5101.717	0.000
L39	13.25 - 12.1875	TP38.2671x37.3071x0.76 88	25.16	1597.76	0.016	0.542	5168.950	0.000
	12.1875 - 11.125		25.23	1608.18	0.016	0.542	5236.633	0.000
	11.125 - 10.0625		25.30	1618.61	0.016	0.542	5304.750	0.000
	10.0625 - 9		25.37	1629.03	0.016	0.542	5373.317	0.000
L40	9 - 8.75 (40)	TP38.3236x38.2671x0.81 88	25.38	1735.29	0.015	0.542	5724.775	0.000
L41	8.75 - 7.75	TP39.453x38.3236x0.806	25.45	1719.66	0.015	0.542	5709.258	0.000
	7.75 - 6.75		25.51	1729.95	0.015	0.542	5777.800	0.000
	6.75 - 5.75		25.57	1740.24	0.015	0.542	5846.750	0.000
	5.75 - 4.75		25.64	1750.53	0.015	0.542	5916.108	0.000
	4.75 - 3.75		25.70	1760.82	0.015	0.542	5985.875	0.000
L42	3.75 - 2.5	TP40.3x39.453x0.7938	25.78	1746.75	0.015	0.542	5983.333	0.000
	2.5 - 1.25		25.86	1759.41	0.015	0.542	6070.408	0.000
	1.25 - 0		25.93	1772.08	0.015	0.542	6158.117	0.000

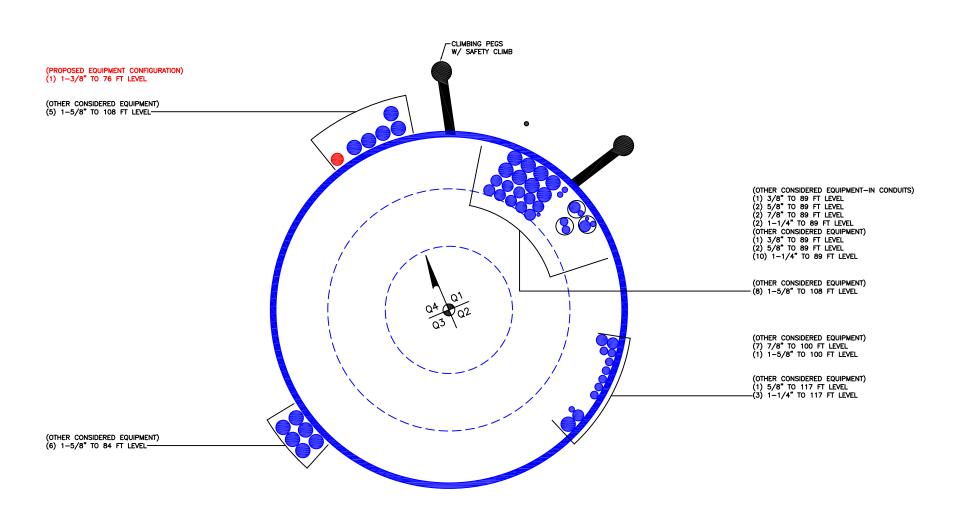
Pole Interaction Design Data

Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio Muy	Ratio Vu	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
140.	ft	$\frac{P_n}{\Phi P_n}$	ϕM_{nx}	ϕM_{ny}	$\frac{V_u}{\phi V_n}$	$\frac{Tu}{\phi T_n}$	Ratio	Ratio	
L1	117 - 116	0.002	ψ <i>ινι</i> ιχ 0.022	0.000	0.011	0.000	0.024	1.050	4.8.2
	116 - 115	0.002	0.030	0.000	0.011	0.000	0.032	1.050	4.8.2
	115 - 114	0.002	0.030	0.000	0.011	0.000	0.032	1.050	4.8.2
	114 - 113	0.004	0.052	0.000	0.016	0.000	0.056	1.050	4.8.2
	113 - 112	0.004	0.063	0.000	0.016	0.000	0.067	1.050	4.8.2
L2	112 - 111	0.004	0.073	0.000	0.016	0.000	0.077	1.050	4.8.2
	111 - 110	0.004	0.084	0.000	0.016	0.000	0.087	1.050	4.8.2
L3	110 - 109	0.011	0.106	0.000	0.033	0.000	0.118	1.050	4.8.2
	109 - 108	0.011	0.128	0.000	0.033	0.000	0.140	1.050	4.8.2
	108 - 107	0.010	0.149	0.000	0.033	0.000	0.160	1.050	4.8.2
	107 - 106	0.010	0.169	0.000	0.033	0.000	0.181	1.050	4.8.2
	106 - 105	0.010	0.188	0.000	0.033	0.000	0.200	1.050	4.8.2
L4	105 - 104	0.010	0.207	0.000	0.032	0.000	0.219	1.050	4.8.2
	104 - 103	0.010	0.225	0.000	0.032	0.000	0.237	1.050	4.8.2
	103 - 102	0.010	0.243	0.000	0.032	0.000	0.254	1.050	4.8.2
	102 - 101	0.010	0.260	0.000	0.032	0.000	0.271	1.050	4.8.2
	101 - 100	0.010	0.276	0.000	0.032	0.000	0.288	1.050	4.8.2
L5	100 - 99	0.012	0.234	0.000	0.042	0.000	0.248	1.050	4.8.2
	99 - 98	0.012	0.255	0.000	0.041	0.000	0.269	1.050	4.8.2
	98 - 97	0.012	0.274	0.000	0.041	0.000	0.288	1.050	4.8.2
	97 - 96	0.012	0.293	0.000	0.041	0.000	0.307	1.050	4.8.2
	96 - 95	0.012	0.311	0.000	0.040	0.000	0.325	1.050	4.8.2
L6	95 - 94	0.012	0.328	0.000	0.040	0.000	0.342	1.050	4.8.2
	94 - 93	0.012	0.345	0.000	0.041	0.000	0.359	1.050	4.8.2
	93 - 92	0.012	0.362	0.000	0.042	0.000	0.376	1.050	4.8.2
	92 - 91	0.012	0.378	0.000	0.041	0.000	0.392	1.050	4.8.2
	91 - 90	0.012	0.393	0.000	0.041	0.000	0.407	1.050	4.8.2
L7	90 - 89	0.012	0.408	0.000	0.041	0.000	0.422	1.050	4.8.2
	89 - 88	0.016	0.432	0.000	0.056	0.001	0.451	1.050	4.8.2
	88 - 87	0.016	0.455	0.000	0.055	0.001	0.474	1.050	4.8.2
	87 - 86	0.016	0.477	0.000	0.055	0.001	0.496	1.050	4.8.2
	86 - 85	0.016	0.499	0.000	0.054	0.001	0.518	1.050	4.8.2
L8	85 - 83.69	0.016	0.526	0.000	0.055	0.001	0.546	1.050	4.8.2
	83.69 - 82.38	0.016	0.553	0.000	0.054	0.001	0.572	1.050	4.8.2
L9	82.38 - 82.13	0.016	0.558	0.000	0.054	0.001	0.577	1.050	4.8.2
	(9)								

Section	Elevation	Ratio	Ratio	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
No.		Pu	Mux	Muy	V _u	Tu	Stress	Stress	
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L10	82.13 - 81.88	0.016	0.563	0.000	0.054	0.001	0.582	1.050	4.8.2
L11	(10) 81.88 - 81.63	0.012	0.402	0.000	0.039	0.001	0.415	1.050	4.8.2
1.40	(11)	0.040	0.407	0.000	0.000	0.004	0.400	4.050	400
L12	81.63 - 80.63	0.012	0.407	0.000	0.038	0.001	0.420	1.050	4.8.2
	80.63 - 79.63	0.012	0.419	0.000	0.038	0.001	0.432	1.050	4.8.2
	79.63 - 78.63	0.012	0.430	0.000	0.037	0.001	0.443	1.050	4.8.2
	78.63 - 77.63	0.012	0.440	0.000	0.037	0.001	0.453	1.050	4.8.2
	77.63 - 76.63	0.012	0.450	0.000	0.037	0.001	0.463	1.050	4.8.2
L13	76.63 - 76	0.012	0.456	0.000	0.037	0.001	0.469	1.050	4.8.2
1.44	(13) 76 - 75.75	0.044	0.359	0.000	0.032	0.004	0.070	4.050	400
L14	76 - 75.75 (14)	0.011	0.339	0.000	0.032	0.001	0.370	1.050	4.8.2
L15	75.75 - 74.75	0.011	0.378	0.000	0.033	0.001	0.390	1.050	4.8.2
	74.75 - 73.75	0.011	0.387	0.000	0.033	0.001	0.399	1.050	4.8.2
	73.75 - 72.75	0.011	0.395	0.000	0.032	0.001	0.407	1.050	4.8.2
	72.75 - 71.75	0.011	0.404	0.000	0.032	0.000	0.416	1.050	4.8.2
	71.75 - 70.75	0.011	0.412	0.000	0.032	0.000	0.424	1.050	4.8.2
L16			0.412					1.050	
L16	70.75 - 70.5 (16)	0.007	0.283	0.000	0.022	0.000	0.291	1.050	4.8.2
L17	70.5 - 69.24	0.007	0.276	0.000	0.020	0.000	0.283	1.050	4.8.2
	69.24 - 67.98	0.007	0.282	0.000	0.020	0.000	0.289	1.050	4.8.2
L18	67.98 - 67.73	0.007	0.283	0.000	0.020	0.000	0.209	1.050	4.8.2
LIO	(18)	0.007	0.200	0.000	0.020	0.000	0.230	1.000	4.0.2
L19	67.73 -	0.007	0.297	0.000	0.021	0.000	0.305	1.050	4.8.2
	66.6725	0.007	0.302	0.000	0.004	0.000	0.200	4.050	4.0.0
	66.6725 - 65.615	0.007	0.302	0.000	0.021	0.000	0.309	1.050	4.8.2
	65.615 -	0.007	0.306	0.000	0.021	0.000	0.314	1.050	4.8.2
	64.5575	0.007	0.044	0.000	0.004	0.000	0.040	4.050	400
	64.5575 - 63.5	0.007	0.311	0.000	0.021	0.000	0.318	1.050	4.8.2
L20	63.5 - 63.25	0.006	0.244	0.000	0.016	0.000	0.250	1.050	4.8.2
LZO	(20)	0.000	0.244	0.000	0.010	0.000	0.200	1.000	4.0.2
L21	63.25 - 62.25	0.006	0.260	0.000	0.017	0.000	0.266	1.050	4.8.2
	62.25 - 61.25	0.006	0.263	0.000	0.017	0.000	0.269	1.050	4.8.2
	61.25 - 60.25	0.006	0.266	0.000	0.017	0.000	0.272	1.050	4.8.2
	60.25 - 59.25	0.006	0.269	0.000	0.017	0.000	0.275	1.050	4.8.2
	59.25 - 58.25	0.006	0.271	0.000	0.016	0.000	0.278	1.050	4.8.2
L22	58.25 - 57.25	0.006	0.282	0.000	0.017	0.000	0.288	1.050	4.8.2
	57.25 - 56.25	0.006	0.284	0.000	0.017	0.000	0.291	1.050	4.8.2
	56.25 - 55.25	0.006	0.287	0.000	0.017	0.000	0.293	1.050	4.8.2
	55.25 - 54.25	0.006	0.289	0.000	0.017	0.000	0.296	1.050	4.8.2
	54.25 - 53.25	0.006	0.292	0.000	0.017	0.000	0.298	1.050	4.8.2
L23	53.25 - 52	0.006	0.294	0.000	0.017	0.000	0.301	1.050	4.8.2
LZS									
	52 - 47.42	0.003	0.154	0.000	0.008	0.000	0.158	1.050	4.8.2
L24	52 - 47.42	0.003	0.152	0.000	0.008	0.000	0.155	1.050	4.8.2
	47.42 - 46.42	0.007	0.310	0.000	0.016	0.000	0.317	1.050	4.8.2
L25	46.42 - 44.96	0.007	0.317	0.000	0.016	0.000	0.324	1.050	4.8.2
-	44.96 - 43.5	0.007	0.319	0.000	0.016	0.000	0.326	1.050	4.8.2
L26	43.5 - 43.25	0.006	0.272	0.000	0.014	0.000	0.278	1.050	4.8.2
	(26)	0.00-	0.0==	0.00-	0.04:	0.00-	0.00-	4 0=0	
L27	43.25 - 42.25	0.006	0.279	0.000	0.014	0.000	0.286	1.050	4.8.2
	42.25 - 41.25	0.006	0.281	0.000	0.014	0.000	0.287	1.050	4.8.2
	41.25 - 40.25	0.006	0.282	0.000	0.014	0.000	0.288	1.050	4.8.2
	40.25 - 39.25	0.006	0.283	0.000	0.014	0.000	0.289	1.050	4.8.2
	39.25 - 38.25	0.006	0.284	0.000	0.014	0.000	0.291	1.050	4.8.2
L28	38.25 -	0.006	0.292	0.000	0.014	0.000	0.291	1.050	4.8.2
LZO	36.25 - 37.0625	0.000	0.232	0.000	0.014	0.000	0.233	1.000	4.0.2
	37.0625 -	0.006	0.294	0.000	0.014	0.000	0.300	1.050	4.8.2
	35.875 35.875 -	0.006	0.295	0.000	0.014	0.000	0.302	1.050	4.8.2
		0.000	0.290	0.000	0.014	0.000	0.302	1.030	4.0.∠
	34.6875			0.000	0.014	0.000	0.303	1.050	4.8.2
	34.6875 34.6875 -	0.006	0.296	0.000	0.014	0.000	0.000	1.000	4.0.2
		0.006	0.296	0.000	0.014	0.000	0.000	1.000	4.0.2
L29	34.6875 -	0.006 0.007	0.296 0.296	0.000	0.014	0.000	0.303	1.050	4.8.2
	34.6875 - 33.5 33.5 - 33.25 (29)	0.007	0.296	0.000	0.014	0.000	0.303	1.050	4.8.2
L29 L30	34.6875 - 33.5 33.5 - 33.25								

Section	Elevation	Ratio	Ratio	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
No.	. .	Pu	Mux	Muy	Vu	Tu	Stress	Stress	
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L31	33 - 32.75	0.006	0.283	0.000	0.013	0.000	0.290	1.050	4.8.2
1.00	(31)	0.000	0.004	0.000	0.040	0.000	0.004	4.050	4.0.0
L32	32.75 - 31.5 (32)	0.006	0.284	0.000	0.013	0.000	0.291	1.050	4.8.2
L33	31.5 - 31.25	0.007	0.335	0.000	0.016	0.000	0.343	1.050	4.8.2
	(33)	0.00.	0.000	0.000	0.0.0	0.000	0.0.0		
L34	31.25 - 30.25	0.008	0.341	0.000	0.016	0.000	0.349	1.050	4.8.2
	30.25 - 29.25	0.008	0.342	0.000	0.016	0.000	0.350	1.050	4.8.2
	29.25 - 28.25	0.008	0.343	0.000	0.016	0.000	0.351	1.050	4.8.2
	28.25 - 27.25	0.008	0.344	0.000	0.016	0.000	0.351	1.050	4.8.2
	27.25 - 26.25	0.008	0.344	0.000	0.016	0.000	0.352	1.050	4.8.2
L35	26.25 - 25.25	0.008	0.355	0.000	0.016	0.000	0.363	1.050	4.8.2
	25.25 - 24.25	0.008	0.356	0.000	0.016	0.000	0.364	1.050	4.8.2
	24.25 - 23.25	0.008	0.357	0.000	0.016	0.000	0.365	1.050	4.8.2
	23.25 - 22.25	0.008	0.358	0.000	0.016	0.000	0.366	1.050	4.8.2
	22.25 - 21.25	0.008	0.358	0.000	0.016	0.000	0.367	1.050	4.8.2
L36	21.25 - 20.25	0.008	0.364	0.000	0.016	0.000	0.373	1.050	4.8.2
	20.25 - 19.25	0.008	0.365	0.000	0.016	0.000	0.373	1.050	4.8.2
	19.25 - 18.25	0.008	0.366	0.000	0.016	0.000	0.374	1.050	4.8.2
	18.25 - 17.25	0.008	0.366	0.000	0.016	0.000	0.375	1.050	4.8.2
	17.25 - 16.25	0.008	0.367	0.000	0.016	0.000	0.375	1.050	4.8.2
L37	16.25 -	0.008	0.373	0.000	0.016	0.000	0.382	1.050	4.8.2
	14.875								
	14.875 - 13.5	0.008	0.374	0.000	0.016	0.000	0.382	1.050	4.8.2
L38	13.5 - 13.25	0.008	0.374	0.000	0.016	0.000	0.382	1.050	4.8.2
•	(38)								
L39	13.25 -	0.009	0.374	0.000	0.016	0.000	0.383	1.050	4.8.2
	12.1875								
	12.1875 -	0.009	0.375	0.000	0.016	0.000	0.383	1.050	4.8.2
	11.125	0.000	0.0.0	0.000	0.0.0	0.000	0.000		
	11.125 -	0.009	0.375	0.000	0.016	0.000	0.384	1.050	4.8.2
	10.0625	0.000	0.0.0	0.000	0.0.0	0.000	0.00.		
	10.0625 - 9	0.009	0.375	0.000	0.016	0.000	0.384	1.050	4.8.2
L40	9 - 8.75 (40)	0.008	0.354	0.000	0.015	0.000	0.362	1.050	4.8.2
L41	8.75 - 7.75	0.008	0.359	0.000	0.015	0.000	0.368	1.050	4.8.2
	7.75 - 6.75	0.008	0.360	0.000	0.015	0.000	0.368	1.050	4.8.2
	6.75 - 5.75	0.008	0.360	0.000	0.015	0.000	0.369	1.050	4.8.2
	5.75 - 4.75	0.008	0.360	0.000	0.015	0.000	0.369	1.050	4.8.2
	4.75 - 3.75	0.008	0.360	0.000	0.015	0.000	0.369	1.050	4.8.2
L42	3.75 - 2.5	0.000	0.366	0.000	0.015	0.000	0.375	1.050	4.8.2
L42	2.5 - 1.25	0.009	0.366	0.000	0.015	0.000	0.375	1.050	4.8.2
	1.25 - 0	0.009	0.366	0.000	0.015	0.000	0.375	1.050	4.8.2

Section Capacity Table


Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L1	117 - 112	Pole	TP15.4886x14.36x0.1875	1	-1.92	567.45	6.4	Pass
L2	112 - 110	Pole	TP15.94x15.4886x0.1875	2	-2.00	584.19	8.3	Pass
L3	110 - 105	Pole	TP17.07x15.94x0.1875	3	-6.22	626.09	19.0	Pass
L4	105 - 100	Pole	TP18.2x17.07x0.1875	4	-6.56	668.00	27.4	Pass
L5	100 - 95	Pole	TP19.3307x18.2x0.25	5	-10.67	943.48	30.9	Pass
L6	95 - 90	Pole	TP20.4613x19.3307x0.25	6	-11.46	999.39	38.8	Pass
L7	90 - 85	Pole	TP21.592x20.4613x0.25	7	-16.23	1055.30	49.3	Pass
L8	85 - 82.38	Pole	TP22.1844x21.592x0.25	8	-16.87	1084.60	54.5	Pass
L9	82.38 - 82.13	Pole	TP22.241x22.1844x0.25	9	-16.92	1087.39	55.0	Pass
L10	82.13 - 81.88	Pole	TP22.2975x22.241x0.25	10	-16.95	1090.18	55.5	Pass
L11	81.88 - 81.63	Pole	TP22.354x22.2975x0.35	11	-17.00	1523.26	39.5	Pass
L12	81.63 - 76.63	Pole	TP23.4847x22.354x0.3563	12	-17.96	1629.68	44.1	Pass
L13	76.63 - 76	Pole	TP23.6272x23.4847x0.3563	13	-18.08	1639.72	44.7	Pass
L14	76 - 75.75	Pole	TP23.6837x23.6272x0.4625	14	-21.28	2124.21	35.3	Pass
L15	75.75 - 70.75	Pole	TP24.8143x23.6837x0.45	15	-22.45	2168.54	40.3	Pass

Section	Elevation	Component	Size	Critical	Р	olimits olimits Pallow	%	Pass
No.	ft	Type		Element	K	K	Capacity	Fail
L16	70.75 - 70.5	Pole	TP24.8709x24.8143x0.675	16	-22.53	3230.32	27.7	Pass
L17	70.5 - 67.98	Pole	TP25.4407x24.8709x0.7125	17	-23.20	3484.81	27.5	Pass
L18	67.98 - 67.73	Pole	TP25.4973x25.4407x0.7125	18	-23.27	3492.77	27.6	Pass
L19	67.73 - 63.5	Pole	TP26.4538x25.4973x0.6875	19	-24.41	3503.69	30.3	Pass
L20	63.5 - 63.25	Pole	TP26.5103x26.4538x0.9	20	-24.50	4558.89	23.8	Pass
L21	63.25 - 58.25	Pole	TP27.641x26.5103x0.85	21	-26.13	4504.11	26.5	Pass
L22	58.25 - 53.25	Pole	TP28.7717x27.641x0.825	22	-27.79	4560.21	28.4	Pass
L23	53.25 - 47.42	Pole	TP30.09x28.7717x0.825	23	-28.21	4606.33	28.7	Pass
L24	47.42 - 46.42	Pole	TP29.8147x28.5543x0.8438	24	-31.46	4834.79	30.2	Pass
L25	46.42 - 43.5	Pole	TP30.4743x29.8147x0.8313	25	-32.51	4873.66	31.1	Pass
L26	43.5 - 43.25	Pole	TP30.5308x30.4743x0.9938	26	-32.62	5805.57	26.5	Pass
L27	43.25 - 38.25	Pole	TP31.6601x30.5308x0.9688	27	-34.70	5880.70	27.7	Pass
L28	38.25 - 33.5	Pole	TP32.7331x31.6601x0.9438	28	-36.71	5933.89	28.8	Pass
L29	33.5 - 33.25	Pole	TP32.7895x32.7331x0.9438	29	-36.82	5944.43	28.9	Pass
L30	33.25 - 33	Pole	TP32.846x32.7895x0.9438	30	-36.93	5954.97	28.9	Pass
L31	33 - 32.75	Pole	TP32.9025x32.846x0.9938	31	-37.04	6271.73	27.6	Pass
L32	32.75 - 31.5	Pole	TP33.1848x32.9025x0.9938	32	-37.59	6327.23	27.7	Pass
L33	31.5 - 31.25	Pole	TP33.2413x33.1848x0.8313	33	-37.70	5328.59	32.6	Pass
L34	31.25 - 26.25	Pole	TP34.3707x33.2413x0.8188	34	-39.67	5433.38	33.6	Pass
L35	26.25 - 21.25	Pole	TP35.5001x34.3707x0.7938	35	-41.68	5448.71	34.9	Pass
L36	21.25 - 16.25	Pole	TP36.6295x35.5001x0.7813	36	-43.72	5539.35	35.7	Pass
L37	16.25 - 13.5	Pole	TP37.2506x36.6295x0.7688	37	-44.85	5547.07	36.4	Pass
L38	13.5 - 13.25	Pole	TP37.3071x37.2506x0.7688	38	-44.97	5555.65	36.4	Pass
L39	13.25 - 9	Pole	TP38.2671x37.3071x0.7688	39	-46.79	5701.62	36.6	Pass
L40	9 - 8.75	Pole	TP38.3236x38.2671x0.8188	40	-46.91	6073.50	34.5	Pass
L41	8.75 - 3.75	Pole	TP39.453x38.3236x0.8063	41	-49.17	6162.87	35.1	Pass
L42	3.75 - 0	Pole	TP40.3x39.453x0.7938	42	-50.89	6202.27	35.7	Pass
							Summary	
						Pole (L10)	55.5	Pass
						RATING =	55.5	Pass

^{*}NOTE: Above stress ratios for reinforced sections are approximate. More exact calculations are presented in Appendix C.

APPENDIX B BASE LEVEL DRAWING

APPENDIX C ADDITIONAL CALCULATIONS

Site BU:	806352	
Work Order:		

Pole Geometry

CASII	_
Copyright © 2019 Crown Ca	stle

	Pole Height Above Base (ft)	Section Length (ft)	Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)	Wall Thickness (in)	Bend Radius (in)	Pole Material
1	117	7	0	12	14.36 15.94 0		0.1875	Auto	A572-65
2	110	10	0	12	15.94	18.2 0.1875		Auto	A572-65
3	100	52.58	4.58	12	18.20	30.09	0.25	Auto	A572-65
4	52	52	0	12	28.55	40.3	0.34375	Auto	A572-65

Reinforcement Configuration

	inor comone c																
	Bottom Effective Elevation (ft)	Top Effective Elevation (ft)	Туре	Model	Number	1	2	3	4	5	6	7	8	9	10	11	12
1	0	33	plate	CCI-WSFP-060100	3												
2	33	63.5	plate	CCI-WSFP-045100	3												
3	0	9	plate	MS-450 (1.1875")	1												
4	31.5	43.5	plate	MS-450 (1.1875")	3												
5	51.5	70.75	plate	MS-450 (1.1875")	3												
6	0	33.5	plate	CCI-SFP-045100	3												
7	33.5	49	plate	CCI-SFP-040075	3												
8	0	33.5	plate	CCI-AFP-045100	2												
9	13.5	33.5	plate	CCI-AFP-045100	1												
10	33.5	68.08	plate	CCI-AFP-060100	3												
11	68.08	82.38	plate	CCI-AFP-045100	1												
12	68.08	81.88	plate	CCI-AFP-045100	2												
13	68	76	plate	CCI-SFP-040075	3												
14	0	13.5	plate	TS 1.25 x 6.5	1			С									
15		·															

Reinforcement Details

	B (in)	H (in)	Gross Area (in²)	Pole Face to Centroid (in)	Bottom Termination Type	Bottom Termination Length (in)	Top Termination Type	Top Termination Length (in)	Lu (in)	Net Area (in2)	Bolt Hole Size (in)	Reinforcement Material
1	6	1	6	0.5	Welded	n/a	PC 8.8 - M20 (100)	24.000	16.000	4.750	1.1875	A572-65
2	4.5	1	4.5	0.5	Welded	n/a	PC 8.8 - M20 (100)	18.000	20.000	3.250	1.1875	A572-65
3	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	18	PC 8.8 - M20 (100)	18.000	20.625	3.250	1.1875	A572-65
4	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	18	PC 8.8 - M20 (100)	18.000	20.625	3.250	1.1875	A572-65
5	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	18	PC 8.8 - M20 (100)	18.000	20.625	3.250	1.1875	A572-65
6	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	18	PC 8.8 - M20 (100)	18.000	20.000	3.250	1.1875	A572-65
7	4	0.75	3	0.375	PC 8.8 - M20 (100)	12	PC 8.8 - M20 (100)	12.000	16.000	2.063	1.1875	A572-65
8	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	20.000	3.250	1.1875	A572-65
9	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	20.000	3.250	1.1875	A572-65
10	6	1	6	0.5	PC 8.8 - M20 (100)	30	PC 8.8 - M20 (100)	30.000	16.000	4.750	1.1875	A572-65
11	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	20.000	3.250	1.1875	A572-65
12	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	20.000	3.250	1.1875	A572-65
13	4	0.75	3	0.375	PC 8.8 - M20 (100)	12	PC 8.8 - M20 (100)	12.000	16.000	2.063	1.1875	A572-65
14	1.25	6.5	8.125	3.25	Welded	n/a	Welded	n/a	0.000	8.125	0.0000	A572-65

Connection Details for Custom Reinforcements

_	Joinnechon L	Jetans	ioi cu	Stuill I	elliloi (cement	.3								
	Reinforcement	End	# Bolts	N or X	Bolt Spacing (in)	Edge Dist (in)	Weld Grade (ksi)	Transverse (Horiz.) Weld Type	Horiz. Weld Length (in)	Horiz. Groove Depth (in)	Horiz. Groove Angle (deg)	Horiz. Fillet Size (in)	Vertical Weld Length (in)	Vertical Fillet Size (in)	Rev H Connection Capacity (kip)
	TS 1.25 x 6.5	Top	-	-	-	-	70	None	-	-	-	-	65.25	0.313	-
	13 1.23 X 0.5	Bottom	-	-	_	-	70	CJP Groove	5.75	1.25	45	0.1875	-	-	_

TNX Geometry Input

			Lap Splice Length			Bottom Diameter		Tapered Pole	Weight
	Section Height (ft)	Section Length (ft)	(ft)	Number of Sides	Top Diameter (in)	(in)	Wall Thickness (in)	Grade	Multiplier
1	117 - 112	5		12	14.360	15.489	0.1875	A572-65	1.000
2	112 - 110	2	0	12	15.489	15.940	0.1875	A572-65	1.000
3	110 - 105	5		12	15.940	17.070	0.1875	A572-65	1.000
4	105 - 100	5	0	12	17.070	18.200	0.1875	A572-65	1.000
5	100 - 95	5		12	18.200	19.331	0.25	A572-65	1.000
6	95 - 90	5		12	19.331	20.461	0.25	A572-65	1.000
7	90 - 85	5		12	20.461	21.592	0.25	A572-65	1.000
8	85 - 82.38	2.62		12	21.592	22.184	0.25	A572-65	1.000
9	82.38 - 82.13	0.25		12	22.184	22.241	0.25	A572-65	1.000
10	82.13 - 81.88	0.25		12	22.241	22.298	0.25	A572-65	1.000
11	81.88 - 81.63	0.25		12	22.298	22.354	0.35	A572-65	1.263
12	81.63 - 76.63	5		12	22.354	23.485	0.35625	A572-65	1.215
13	76.63 - 76	0.63		12	23.485	23.627	0.35625	A572-65	1.211
14	76 - 75.75	0.25		12	23.627	23.684	0.4625	A572-65	1.197
15	75.75 - 70.75	5		12	23.684	24.814	0.45	A572-65	1.198
16	70.75 - 70.5	0.25		12	24.814	24.871	0.675	A572-65	1.062
17	70.5 - 67.98	2.52		12	24.871	25.441	0.7125	A572-65	0.913
18	67.98 - 67.73	0.25		12	25.441	25.497	0.7125	A572-65	0.912
19	67.73 - 63.5	4.23		12	25.497	26.454	0.6875	A572-65	0.923
20	63.5 - 63.25	0.25		12	26.454	26.510	0.9	A572-65	0.892
21	63.25 - 58.25	5		12	26.510	27.641	0.85	A572-65	0.915
22	58.25 - 53.25	5		12	27.641	28.772	0.825	A572-65	0.916
23	53.25 - 52	5.83	4.58	12	28.772	30.090	0.825	A572-65	0.910
24	52 - 46.42	5.58		12	28.554	29.815	0.84375	A572-65	0.930
25	46.42 - 43.5	2.92		12	29.815	30.474	0.83125	A572-65	0.932
26	43.5 - 43.25	0.25		12	30.474	30.531	0.99375	A572-65	0.926
27	43.25 - 38.25	5		12	30.531	31.660	0.96875	A572-65	0.927
28	38.25 - 33.5	4.75		12	31.660	32.733	0.94375	A572-65	0.931
29	33.5 - 33.25	0.25		12	32.733	32.790	0.94375	A572-65	0.930
30	33.25 - 33	0.25		12	32.790	32.846	0.94375	A572-65	0.929
31	33 - 32.75	0.25		12	32.846	32.902	0.99375	A572-65	0.927
32	32.75 - 31.5	1.25		12	32.902	33.185	0.99375	A572-65	0.922
33	31.5 - 31.25	0.25		12	33.185	33.241	0.83125	A572-65	0.939
34	31.25 - 26.25	5		12	33.241	34.371	0.81875	A572-65	0.935
35	26.25 - 21.25	5		12	34.371	35.500	0.79375	A572-65	0.947
36	21.25 - 16.25	5		12	35.500	36.629	0.78125	A572-65	0.945
37	16.25 - 13.5	2.75		12	36.629	37.251	0.76875	A572-65	0.951
38	13.5 - 13.25	0.25		12	37.251	37.307	0.76875	A572-65	0.991
39	13.25 - 9	4.25		12	37.307	38.267	0.76875	A572-65	0.977
40	9 - 8.75	0.25		12	38.267	38.324	0.81875	A572-65	0.963
41	8.75 - 3.75	5		12	38.324	39.453	0.80625	A572-65	0.962
42	3.75 - 0	3.75		12	39.453	40.300	0.79375	A572-65	0.965

TNX Section Forces

Inc	crement (f	t):	5		TNX Output							
						M _{ux} (kip-						
	Section	Не	ight (ft)	P_{u}	(K)	ft)	V _u (K)					
1	117	-	112		1.92	13.32	2.60					
2	112	-	110		2.00	18.61	2.70					
3	110	-	105		6.22	47.17	5.83					
4	105	-	100		6.56	77.03	6.10					
5	100	-	95		10.67	136.19	10.91					
6	95	-	90		11.46	193.44	11.77					
7	90	-	85		16.23	270.34	16.42					
8	85	-	82.38		16.87	314.08	16.86					
9	82.38	-	82.13		16.92	318.30	16.86					
10	82.13	-	81.88		16.95	322.52	16.87					
11	81.88	-	81.63		17.00	326.74						
12	81.63	-	76.63		17.96	411.83	17.15					
13	76.63	-	76		18.08	422.65	17.18					
14	76	-	75.75		21.28	427.60	19.55					
15	75.75	-	70.75		22.45	526.21	19.88					
16	70.75	-	70.5		22.53	531.18						
17	70.5	-	67.98		23.20	581.58	20.10					
18	67.98	-	67.73		23.27	586.61	20.11					
19	67.73	-	63.5		24.41	672.80	20.59					
20	63.5	-	63.25		24.50	677.95	20.61					
21	63.25	-	58.25		26.13	782.38	21.15					
22	58.25	-	53.25		27.79	889.45	21.67					
23	53.25	-	52		28.21	916.61	21.77					
24	52	-	46.42		31.46	1039.66						
25	46.42	-	43.5		32.51	1105.24						
26	43.5	-	43.25		32.62	1110.89	22.62					
27		-	38.25		34.70							
28	38.25	-			36.71							
29	33.5	-	33.25		36.82		23.65					
30	33.25	-	33		36.93		23.67					
31	33	-	32.75		37.04		23.70					
32	32.75	-	31.5		37.59		23.83					
33	31.5	-	31.25		37.70	1389.94						
34	31.25	-	26.25		39.67	1510.14	24.21					
35	26.25	-	21.25		41.68	1632.08						
36	21.25	-	16.25		43.72							
37	16.25	-	13.5		44.85 44.97	1824.46 1830.73	25.08 25.08					
38	13.5	-	13.25									
39	13.25	_	9 75		46.79 46.91	1938.00	25.37					
40	9 75	_	8.75		49.17	1944.35 2072.10	25.38 25.70					
41	8.75 3.75	-	3.75									
42	3.75	-	0		50.89	2168.93	25.93					

Analysis Results

Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fail
117 - 112	Pole	TP15.489x14.36x0.1875	Pole	6.3%	Pass
112 - 110	Pole	TP15.94x15.489x0.1875	Pole	8.3%	Pass
110 - 105	Pole	TP17.07x15.94x0.1875	Pole	19.0%	Pass
105 - 100	Pole	TP18.2x17.07x0.1875	Pole	27.3%	Pass
100 - 95	Pole	TP19.331x18.2x0.25	Pole	30.8%	Pass
95 - 90	Pole	TP20.461x19.331x0.25	Pole	38.7%	Pass
90 - 85	Pole	TP21.592x20.461x0.25	Pole	49.2%	Pass
85 - 82.38	Pole	TP22.184x21.592x0.25	Pole	54.4%	Pass
82.38 - 82.13	Pole	TP22.241x22.184x0.25	Pole	54.8%	Pass
82.13 - 81.88	Pole	TP22.298x22.241x0.25	Pole	55.3%	Pass
81.88 - 81.63	Pole + Reinf.	TP22.354x22.298x0.35	Reinf. 12 Tension Rupture	50.8%	Pass
81.63 - 76.63	Pole + Reinf.	TP23.485x22.354x0.3563	Reinf. 12 Tension Rupture	58.9%	Pass
76.63 - 76	Pole + Reinf.	TP23.627x23.485x0.3563	Reinf. 12 Tension Rupture	59.8%	Pass
76 - 75.75	Pole + Reinf.	TP23.684x23.627x0.4625	Reinf. 13 Tension Rupture	54.9%	Pass
75.75 - 70.75	Pole + Reinf.	TP24.814x23.684x0.45	Reinf. 13 Tension Rupture	62.8%	Pass
70.75 - 70.5	Pole + Reinf.	TP24.871x24.814x0.675	Reinf. 5 Compression	50.5%	Pass
70.5 - 67.98	Pole + Reinf.	TP25.441x24.871x0.7125	Reinf. 5 Compression	47.0%	Pass
67.98 - 67.73	Pole + Reinf.	TP25.497x25.441x0.7125	Reinf. 5 Compression	47.3%	Pass
67.73 - 63.5	Pole + Reinf.	TP26.454x25.497x0.6875	Reinf. 5 Compression	51.5%	Pass
63.5 - 63.25	Pole + Reinf.	TP26.51x26.454x0.9	Reinf. 5 Compression	41.0%	Pass
63.25 - 58.25	Pole + Reinf.	TP27.641x26.51x0.85	Reinf. 5 Compression	44.8%	Pass
58.25 - 53.25	Pole + Reinf.	TP28.772x27.641x0.825	Reinf. 5 Compression	48.3%	Pass
53.25 - 52	Pole + Reinf.	TP30.09x28.772x0.825	Reinf. 5 Compression	49.2%	Pass
52 - 46.42	Pole + Reinf.	TP29.815x28.554x0.8438	Reinf. 7 Tension Rupture	52.9%	Pass
46.42 - 43.5	Pole + Reinf.	TP30.474x29.815x0.8313	Reinf. 7 Tension Rupture	54.5%	Pass
43.5 - 43.25	Pole + Reinf.	TP30.531x30.474x0.9938	Reinf. 7 Tension Rupture	46.0%	Pass
43.25 - 38.25	Pole + Reinf.	TP31.66x30.531x0.9688	Reinf. 7 Tension Rupture	48.2%	Pass
38.25 - 33.5	Pole + Reinf.	TP32.733x31.66x0.9438	Reinf. 7 Tension Rupture	50.3%	Pass
33.5 - 33.25	Pole + Reinf.	TP32.79x32.733x0.9438	Reinf. 4 Compression	48.8%	Pass
33.25 - 33	Pole + Reinf.	TP32.846x32.79x0.9438	Reinf. 4 Compression	48.9%	Pass
33 - 32.75	Pole + Reinf.	TP32.902x32.846x0.9938	Reinf. 4 Compression	46.6%	Pass
32.75 - 31.5	Pole + Reinf.	TP33.185x32.902x0.9938	Reinf. 4 Compression	47.0%	Pass
	Pole + Reinf.	TP33.241x33.185x0.8313	·	54.6%	_
31.5 - 31.25 31.25 - 26.25			Reinf. 9 Tension Rupture		Pass
	Pole + Reinf.	TP34.371x33.241x0.8188	Reinf. 9 Tension Rupture	56.5%	Pass
26.25 - 21.25	Pole + Reinf.	TP35.5x34.371x0.7938	Reinf. 9 Tension Rupture	58.3%	Pass
21.25 - 16.25	Pole + Reinf.	TP36.629x35.5x0.7813	Reinf. 9 Tension Rupture	59.9%	Pass
16.25 - 13.5	Pole + Reinf.	TP37.251x36.629x0.7688	Reinf. 9 Tension Rupture	60.8%	Pass
13.5 - 13.25	Pole + Reinf.	TP37.307x37.251x0.7688	Reinf. 6 Tension Rupture	61.7%	Pass
13.25 - 9	Pole + Reinf.	TP38.267x37.307x0.7688	Reinf. 6 Tension Rupture	62.9%	Pass
9 - 8.75	Pole + Reinf.	TP38.324x38.267x0.8188	Reinf. 6 Tension Rupture	61.0%	Pass
8.75 - 3.75	Pole + Reinf.	TP39.453x38.324x0.8063	Reinf. 6 Tension Rupture	62.3%	Pass
3.75 - 0	Pole + Reinf.	TP40.3x39.453x0.7938	Reinf. 6 Tension Rupture	63.2%	Pass
			Pole	Summary 55.3%	Pass
			Reinforcement	63.2%	Pass
			Overall	63.2%	Pass

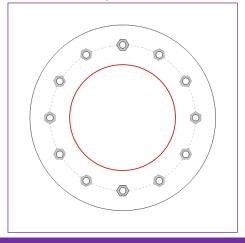
Additional Calculations

Section	Mom	ent of Inertia	a (in ⁴)		Area (in²)								% Ca	pacity*							
Elevation (ft)	Pole	Reinf.	Total	Pole	Reinf.	Total	Pole	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14
117 - 112	276	n/a	276	9.22	n/a	9.22	6.3%														
112 - 110	302	n/a	302	9.50	n/a	9.50	8.3%														
110 - 105	371	n/a	371	10.18	n/a	10.18	19.0%														
105 - 100	451	n/a	451	10.86	n/a	10.86	27.3%														
100 - 95	715	n/a	715	15.34	n/a	15.34	30.8%														
95 - 90	849	n/a	849	16.25	n/a	16.25	38.7%														
90 - 85	1000	n/a	1000	17.16	n/a	17.16	49.2%														
85 - 82.38	1086	n/a	1086	17.63	n/a	17.63	54.4%														
82.38 - 82.13	1094	n/a	1094	17.68	n/a	17.68	54.8%														
82.13 - 81.88	1103	n/a	1103	17.72	n/a	17.72	55.3%														
81.88 - 81.63	1152	416	1569	17.77	13.50	31.27	43.7%											43.9%	50.8%		
81.63 - 76.63	1339	521	1859	18.68	13.50	32.18	50.1%											51.0%	58.9%		
76.63 - 76	1363	527	1890	18.79	13.50	32.29	50.9%											51.8%	59.8%		
76 - 75.75	1344	1076	2420	18.84	22.50	41.34	38.9%											40.7%	45.9%	54.9%	
75.75 - 70.75	1547	1176	2723	19.75	22.50	42.25	45.1%											46.8%	52.6%	62.8%	
70.75 - 70.5	1550	2365	3915	19.79	36.00	55.79	31.0%					50.5%						35.9%	39.3%	45.6%	
70.5 - 67.98	1645	2792	4437	20.25	31.50	51.75	28.6%					47.0%					42.6%				
67.98 - 67.73	1656	2804	4460	20.29	31.50	51.79	28.7%					47.3%					42.8%				
67.73 - 63.5	1851	3007	4859	21.06	31.50	52.56	31.8%					51.5%					46.6%				
63.5 - 63.25	1863	4309	6172	21.11	45.00	66.11	25.3%		40.6%			41.0%					37.1%				
63.25 - 58.25	2114	4666	6780	22.02	45.00	67.02	28.2%		44.3%			44.8%					40.5%				
58.25 - 53.25	2387	5037	7425	22.93	45.00	67.93	31.0%		47.8%			48.3%					43.7%				
53.25 - 52	2459	5133	7591	23.15	45.00	68.15	31.7%		48.7%			49.2%					44.5%				
52 - 46.42	3621	4836	8457	32.57	40.50	73.07	29.6%		50.8%					52.9%			46.4%				
46.42 - 43.5	3870	5043	8913	33.30	40.50	73.80	30.7%		52.3%					54.5%			47.8%				
43.5 - 43.25	3892	6751	10643	33.37	54.00	87.37	25.9%		44.1%		44.6%			46.0%			40.3%				
43.25 - 38.25	4345	7240	11585	34.61	54.00	88.61	27.6%		46.3%		46.8%			48.2%			42.3%				
38.25 - 33.5	4807	7720	12527	35.80	54.00	89.80	29.1%		48.2%		48.7%			50.3%			44.1%				
33.5 - 33.25	4832	7755	12587	35.86	54.00	89.86	29.2%		48.3%		48.8%		48.3%		48.3%	48.3%					
33.25 - 33	4858	7780	12638	35.92	54.00	89.92	29.2%		48.4%		48.9%		48.4%		48.4%	48.4%					
33 - 32.75	4883	8468	13351	35.99	58.50	94.49	27.8%	42.1%			46.6%		46.1%		46.1%	46.1%					
32.75 - 31.5	5011	8609	13620	36.30	58.50	94.80	28.2%	42.6%			47.0%		46.6%		46.6%	46.6%					
31.5 - 31.25	5037	6647	11684	36.36	45.00	81.36	33.1%	49.9%					54.6%		54.6%	54.6%					
31.25 - 26.25	5574	7089	12663	37.61	45.00	82.61	34.7%	51.6%					56.5%		56.5%	56.5%					
26.25 - 21.25	6147	7546	13693	38.86	45.00	83.86	36.3%	53.3%					58.3%		58.3%	58.3%					
21.25 - 16.25	6759	8017	14775	40.11	45.00	85.11	37.8%	54.8%					59.9%		59.9%	59.9%					
16.25 - 13.5	7112	8282	15394	40.79	45.00	85.79	38.6%	55.5%					60.8%		60.8%	60.8%					
13.5 - 13.25	7153	8387	15540	40.86	48.63	89.48	40.1%	56.2%					61.7%		61.6%						43.8%
13.25 - 9	7724	8810	16534	41.92	48.63	90.54	41.4%	57.3%					62.9%		62.8%						44.7%
9 - 8.75	7823	10105	17928	41.98	53.13	95.10	39.3%	54.6%		55.0%			61.0%		59.6%						44.8%
8.75 - 3.75	8540	10691	19231	43.23	53.13	96.35	40.7%	55.8%		56.3%			62.3%		60.9%						45.8%
3.75 - 0	9105	11142	20247	44.16	53.13	97.29	41.7%	56.6%		57.1%			63.2%		61.8%						49.5%

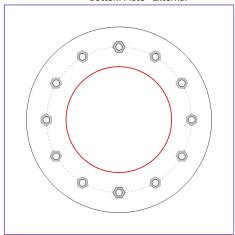
Note: Section capacity checked using 5 degree increments.
Rating per TIA-222-H Section 15.5.

Monopole Flange Plate Connection

BU#	806352
Site Name	BRG 302 943052
Order#	548684 rev.5


TIA-222 Revision	Н

Elevation = 110 ft.


Applied Loads									
Moment (kip-ft)	18.61								
Axial Force (kips)	2.00								
Shear Force (kips)	2.70								

^{*}TIA-222-H Section 15.5 Applied

Top Plate - External

Bottom Plate - External

Connection Properties

Bolt Data

(12) 1" ø bolts (A325 N; Fy=92 ksi, Fu=120 ksi) on 22" BC

Top Plate Data

28" OD x 1.25" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Top Stiffener Data

N/A

Top Pole Data

15.94" x 0.1875" 12-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Bottom Plate Data

28" OD x 1.25" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Bottom Stiffener Data

N/A

Bottom Pole Data

15.94" x 0.1875" 12-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Analysis F	Results	
Bolt Cap	acity	
Max Load (kips)	3.21	
Allowable (kips)	54.54	
Stress Rating:	5.6%	Pass

Top Plate Capacity

Max Stress (ksi):	3.44	(Flexural)	
Allowable Stress (ksi):	32.40		
Stress Rating:	10.1%	Pass	
Tension Side Stress Rating:	5.2%	Pass	

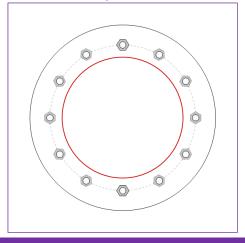
Bottom Plate Capacity

3.44	(Flexural)
32.40	
10.1%	Pass
5.2%	Pass
	32.40 10.1%

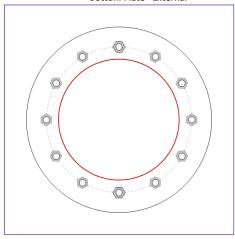
CCIplate - Version 4.1.1 Analysis Date: 6/28/2021

Monopole Flange Plate Connection

BU#	806352
Site Name	BRG 302 943052
Order#	548684 rev.5


TIA-222 Revision	Н

Elevation = 100 ft.


Applied Loads		
Moment (kip-ft)	77.03	
Axial Force (kips)	6.56	
Shear Force (kips)	6.10	

^{*}TIA-222-H Section 15.5 Applied

Top Plate - External

Bottom Plate - External

Connection Properties

Bolt Data

(12) 1" ø bolts (A325 N; Fy=92 ksi, Fu=120 ksi) on 22" BC

Top Plate Data

28" OD x 1.25" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Top Stiffener Data

N/A

Top Pole Data

18.2" x 0.1875" 12-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Bottom Plate Data

28" OD x 1.25" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Bottom Stiffener Data

N/A

Bottom Pole Data

18.2" x 0.25" 12-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results			
Bolt Capacity			
Max Load (kips) 13	13.45		
Allowable (kips) 54	54.53		
Stress Rating: 23	23.5% Pass		

Top Plate Capacity

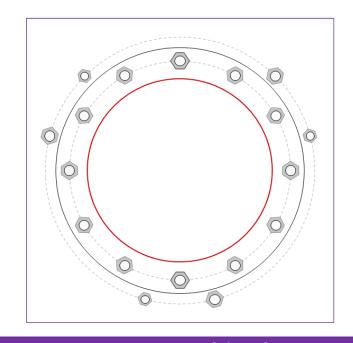
Max Stress (ksi):	8.89	(Flexural)
Allowable Stress (ksi):	32.40	
Stress Rating:	26.1%	Pass
Tension Side Stress Rating:	10.4%	Pass

Bottom Plate Capacity

Max Stress (ksi):	8.89	(Flexural)	
Allowable Stress (ksi):	32.40		
Stress Rating:	26.1%	Pass	
Tension Side Stress Rating:	10.4%	Pass	

CCIplate - Version 4.1.1 Analysis Date: 6/28/2021

Monopole Base Plate Connection



Site Info	
BU i	806352
Site Name	BRG 302 943052
Order :	# 548684 rev.5

Analysis Considerations			
TIA-222 Revision	Н		
Grout Considered:	See Custom Sheet		
I _{ar} (in)	See Custom Sheet		

Applied Loads	
Moment (kip-ft)	2168.93
Axial Force (kips)	50.89
Shear Force (kips)	25.93

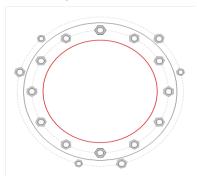
^{*}TIA-222-H Section 15.5 Applied

Connection Properties			
Anchor Rod Data			
GROUP 1: (12) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 48.22" BC			
GROUP 2: (3) 2-1/4" ø bolts (A193 Gr. B7 N; Fy=105 ksi, Fu=125 ksi) on 58.72" BC			
GROUP 3: (3) 1-3/4" ø bolts (A193 Gr. B7 N; Fy=105 ksi, Fu=125 ksi) on 58.72" BC			
Base Plate Data			
54.22" OD x 2.5" Plate (A193 Gr. B7; Fy=105 ksi, Fu=125 ksi)			
Stiffener Data			
N/A			
Pole Data			
40.3" x 0.79375" 12-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)			

A	naiysis Results	
Anchor Rod Summary		(units of kips, kip-
GROUP 1:		
Pu_t = 109.01	φPn_t = 243.75	Stress Rati
Vu = 2.16	φVn = 149.1	42.6%
Mu = n/a	φMn = n/a	Pass
GROUP 2:		
Pu_t = 137.91	ϕ Pn_t = 304.69	Stress Rati
Vu = 0	φVn = 186.38	43.1%
Mu = n/a	φMn = n/a	Pass
GROUP 3:		
Pu_t = 80.63	φPn_t = 178.13	Stress Rati
Vu = 0	φVn = 112.75	43.1%
Mu = n/a	φMn = n/a	Pass
Base Plate Summary		
Max Stress (ksi):	17.24	(Flexural
Allowable Stress (ksi):	94.5	
Stress Rating:	17.4%	Pass

CCIplate - Version 4.1.1 Analysis Date: 6/28/2021

CCIplate


Elevation (ft)	0	(Base)

note: Bending interaction not considered when Grout Considered = "Yes"

Bolt Group	Resist Axial	Resist Shear	Induce Plate Bending	Grout Considered	Apply at BARB Elevation	BARB CL Elevation (ft)
1	Yes	Yes	Yes	No	No	
2	No	No	No	No	No	
3	No	No	No	No	No	

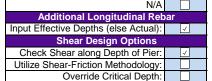
Custom	Bolt Con	nection								
Bolt	Bolt Group ID	Location (deg.)	Diameter (in)	<u>Material</u>	Bolt Circle (in)	Eta Factor, η:	I _{ar} (in):	Thread Type	Area Override, in^2	Tension Only
1	1	0	2.25	A615-75	48.22	0.5	0	N-Included		No
2	1	30	2.25	A615-75	48.22	0.5	0	N-Included		No
3	1	60	2.25	A615-75	48.22	0.5	0	N-Included		No
4	1	90	2.25	A615-75	48.22	0.5	0	N-Included		No
5	1	120	2.25	A615-75	48.22	0.5	0	N-Included		No
6	1	150	2.25	A615-75	48.22	0.5	0	N-Included		No
7	1	180	2.25	A615-75	48.22	0.5	0	N-Included		No
8	1	210	2.25	A615-75	48.22	0.5	0	N-Included		No
9	1	240	2.25	A615-75	48.22	0.5	0	N-Included		No
10	1	270	2.25	A615-75	48.22	0.5	0	N-Included		No
11	1	300	2.25	A615-75	48.22	0.5	0	N-Included		No
12	1	330	2.25	A615-75	48.22	0.5	0	N-Included		No
13	2	45	2.25	A193 Gr. B7	58.72	0.5	0	N-Included		No
14	2	165	2.25	A193 Gr. B7	58.72	0.5	0	N-Included		No
15	2	285	2.25	A193 Gr. B7	58.72	0.5	0	N-Included		No
16	3	15	1.75	A193 Gr. B7	58.72	0.5	0	N-Included		No
17	3	135	1.75	A193 Gr. B7	58.72	0.5	0	N-Included		No
18	3	255	1.75	A193 Gr. B7	58.72	0.5	0	N-Included		No

Plot Graphic

CClplate - Version 4.1.1 Analysis Date: 6/28/2021

Drilled Pier Foundation

BU # : 806352
Site Name: BRG 302 943052
Order Number:
TIA-222 Revison: H
Tower Type: Monopole


Applied Loads									
	Comp.	Uplift							
Moment (kip-ft)	2168.93								
Axial Force (kips)	50.9								
Shear Force (kips)	25.92								

Material Properties								
Concrete Strength, f'c:	3	ksi						
Rebar Strength, Fy:	60	ksi						
Tie Yield Strength, Fyt:	40	ksi						

	Pier D	esign Data	
	Depth	16.4	ft
	Ext. Above Grade	0.2	ft
	Pier	Section 1	
	From 0.2' above gr	ade to 16.4' below	grade
	Pier Diameter	6.5	ft
Γ	Rebar Quantity	24	
	Rebar Size	10	
	Clear Cover to Ties	5	in
	Tie Size	6	
L	Tie Spacing		in

Analysi	s Results	
Soil Lateral Check	Compression	Uplift
D _{v=0} (ft from TOC)	6.04	
Soil Safety Factor	3.48	•
Max Moment (kip-ft)	2346.61	1
Rating*	36.4%	•
Soil Vertical Check	Compression	Uplift
Skin Friction (kips)	569.51	1
End Bearing (kips)	918.34	-
Weight of Concrete (kips)	99.15	
Total Capacity (kips)	1487.85	-
Axial (kips)	150.05	-
Rating*	9.6%	
Reinforced Concrete Flexure	Compression	Uplift
Critical Depth (ft from TOC)	5.79	-
Critical Moment (kip-ft)	2346.08	
Critical Moment Capacity	4396.78	1
Rating*	50.8%	-
Reinforced Concrete Shear	Compression	Uplift
Critical Depth (ft from TOC)	13.33	
Critical Shear (kip)	618.16	-
Critical Shear Capacity	602.16	-
Rating*	97.8%	-

Check Limitation

Apply TIA-222-H Section 15.5:

Go to Soil Calculations

Soil Interaction Rating*		
*Rating per TIA-222-H Section	n 15.5	

Structural Foundation Rating*

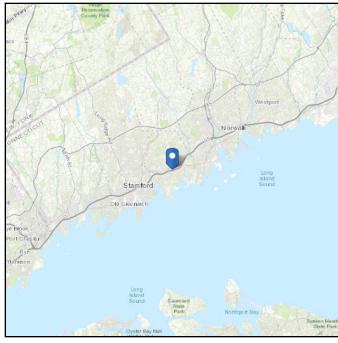
	Soil Profile													
Groundwater Depth N/A # of Layers 4														
Layer (c) Bottom (ft) Thickness Y _{soil} Y _{concrete} Cohesion Angle of Ultimate Skin Ultimate Skin Ultimate Skin Ultimate Skin Friction Comp Friction Ultimate Skin Ultimate Skin Friction Comp Friction Uplift Bearing SPT Blow Science Science Science Science Specific								Soil Type						
Layer	(ft)	Bottom (it)	(ft) (pcf) (p	(pcf)	(ksf)	(ksf) (degrees) F	Friction Comp (ksf)	Friction Uplift (ksf)	Override (ksf)	Override (ksf)	Capacity	Count	Jon Type	
1	0	4	4	115	150	0	0	0.000	0.000	0.00	0.00			Cohesionless
2	4	6	2	120	150	0	39	0.000	0.000	0.42	0.42			Cohesionless
3	6	11	5	135	150	0	45	0.000	0.000	2.15	2.15			Cohesionless
4	11	16.4	5.4	135	150	14	0	6.300	6.300	4.74	4.74	36.9		Cohesive

97.8%

36.4%

Address:

No Address at This Location


ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 71.42 ft (NAVD 88)

Risk Category: || Latitude: 41.072431

Soil Class: D - Stiff Soil Longitude: -73.478167

Wind

Results:

Wind Speed: 119 Vmph 10-year MRI 76 Vmph 25-year MRI 86 Vmph 50-year MRI 91 Vmph 100-year MRI 98 Vmph

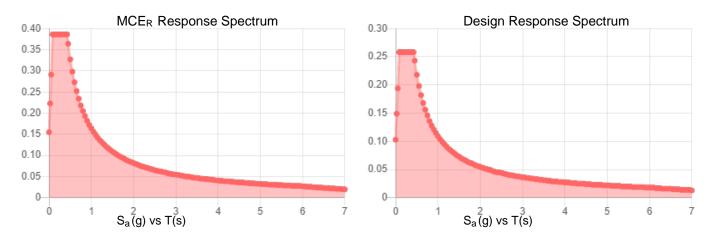
Data Source: ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, incorporating errata of

March 12, 2014

Date Accessed: Thu Oct 15 2020

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.


Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.242	S _{DS} :	0.258	
S_1 :	0.068	S _{D1} :	0.109	
F _a :	1.6	T _L :	6	
F_{v} :	2.4	PGA:	0.139	
S _{MS} :	0.386	PGA _M :	0.212	
S _{M1} :	0.164	F _{PGA} :	1.522	
		l _e :	1	

Seismic Design Category B

Data Accessed: Thu Oct 15 2020

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating

Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with

ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Thu Oct 15 2020

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Date: July 29, 2021

Darcy Tarr Crown Castle 3530 Toringdon Way, Suite 300 Charlotte, NC 28277 (704) 405-6589

Trylon 1825 W. Walnut Hill Lane, Suite 302 Irving, TX 75038 214-930-1730

Subject: Mount Replacement Analysis Report

Carrier Designation: Dish Network Dish 5G

Carrier Site Number: NJJER01085A Carrier Site Name: CT-CCI-T-806352

Crown Castle BU Number: 806352

Crown Castle Site Name: BRG 302 943052

Crown Castle JDE Job Number: 640162 Crown Castle Order Number: 548684 Rev. 5

Engineering Firm Designation: Trylon Report Designation: 188622

Site Data: 126 Ledge Road, Darien, Fairfield County, CT, 06820

Latitude 41°4'20.75" Longitude -72°28'41.40"

Structure Information: Tower Height & Type: 117.0 ft Monopole

Mount Elevation: 76.0 ft
Mount Type: 8.0 ft Platform

Dear Darcy Tarr,

Trylon is pleased to submit this "Mount Replacement Analysis Report" to determine the structural integrity of Dish Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform Sufficient*
*Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis utilizes an ultimate 3-second gust wind speed of 120 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Ionela Neamtu

Respectfully Submitted by: Cliff Abernathy, P.E.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

9) APPENDIX E

Supplemental Drawings

1) INTRODUCTION

This is a proposed 3 sector 8.0 ft Platform, designed by Commscope.

2) ANALYSIS CRITERIA

Building Code: 2015 IBC TIA-222 Revision: TIA-222-H

Risk Category:

Ultimate Wind Speed: 120 mph

Exposure Category: Topographic Factor at Base: 1.00 Topographic Factor at Mount: 1.00 Ice Thickness: 1.50 in Wind Speed with Ice: 50 mph Seismic Ss: 0.242 Seismic S₁: 0.068 Live Loading Wind Speed: 30 mph Man Live Load at Mid/End-Points: 250 lb Man Live Load at Mount Pipes: 500 lb

Table 1 - Proposed Equipment Configuration

	Mount nterline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
	76.0	76.0	3	JMA Wireless	MX08FRO665-21	O O # Dio#o was
			76.0	3	Fujitsu	TA08025-B604
76.0		76.0	3	Fujitsu	TA08025-B605	[Commscope, MC-PK8-C]
			1	Raycap	RDIDC-9181-PF-48	WC-PRO-Cj

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Crown Application	Dish Network Application	548684 Rev. 5	CCI Sites
Mount Manufacturer Drawings	Commscope	MC-PK8-C	Trylon

3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed, using Microsoft Excel, by Trylon was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate

HSS (Rectangular)

Pipe

ASTM A36 (GR 36)

ASTM A500 (GR B-46)

ASTM A53 (GR 35)

Connection Bolts

ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Trylon should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Platform, All Sectors)

	mount component cureese rei cup		, 		
Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
	Mount Pipe(s)	MP1		24.3	Pass
-	Horizontal(s)	H1		9.2	Pass
	Standoff(s)	SA2		47.4	Pass
1,2	Bracing(s)	PB2	76.0	33.3	Pass
,	Handrail(s)	M19		11.4	Pass
	Plate(s)	CP4		17.7	Pass
	Mount Connection(s)	-		19.1	Pass

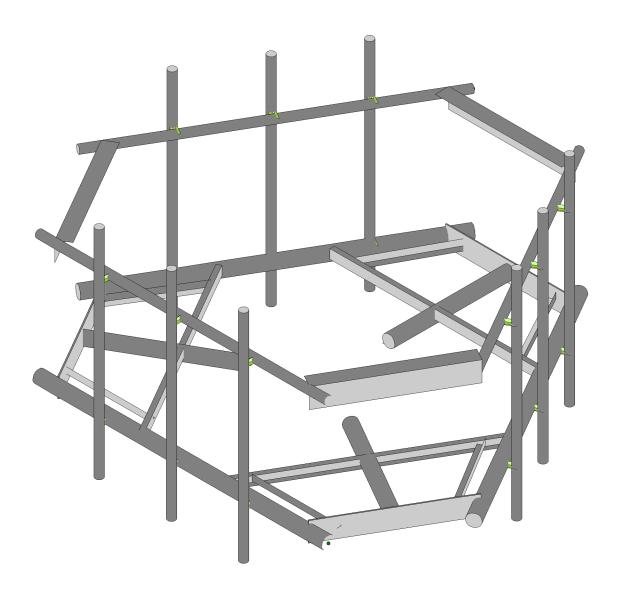
Structure Rating (max from all components) =	47.4%
--	-------

Notes:

¹⁾ See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.

²⁾ Rating per TIA-222-H, Section 15.5

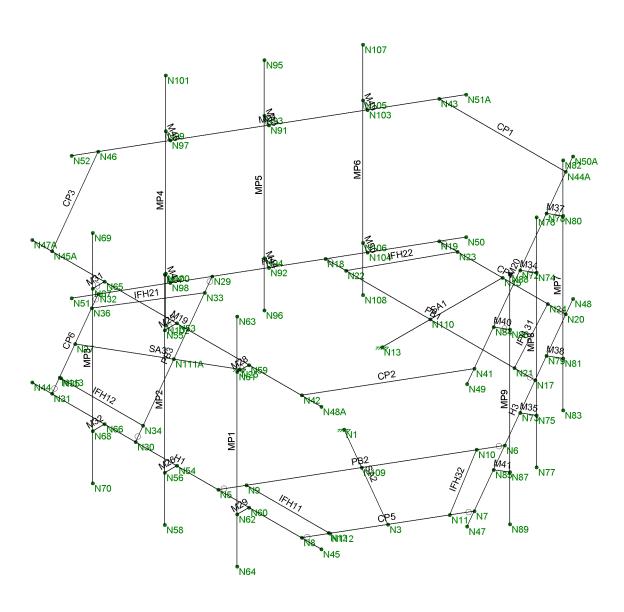
4.1) Recommendations


The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed.

1. Commscope, MC-PK8-C.

No structural modifications are required at this time, provided that the above-listed changes are implemented.

APPENDIX A WIRE FRAME AND RENDERED MODELS



Envelope Only Solution

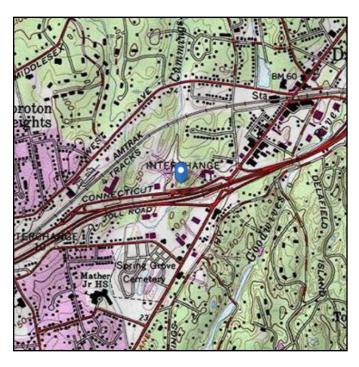
Trylon		SK - 1
IN	806352_BRG 302 943052	July 27, 2021 at 1:01 PM
188622		806352_BRG 302 943052.r3d

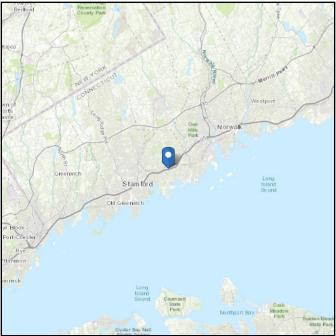
Envelope Only Solution

Trylon		SK - 2
IN	806352_BRG 302 943052	July 27, 2021 at 1:01 PM
188622		806352_BRG 302 943052.r3d

APPENDIX B SOFTWARE INPUT CALCULATIONS

Address:

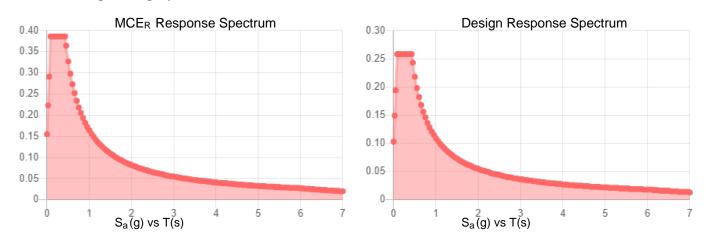

No Address at This Location


ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 71.42 ft (NAVD 88)

Risk Category: || Latitude: 41.072431

Soil Class: D - Stiff Soil Longitude: -73.478167



Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.242	S _{DS} :	0.258	
S_1 :	0.068	S _{D1} :	0.109	
F _a :	1.6	T _L :	6	
F_{ν} :	2.4	PGA:	0.139	
S _{MS} :	0.386	PGA _M :	0.212	
S _{M1} :	0.164	F _{PGA} :	1.522	
		L ·	1	

Seismic Design Category B

Data Accessed: Tue Jul 27 2021

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating

Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with

ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Tue Jul 27 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

TIA LOAD CALCULATOR 2.0

PROJECT DATA		
Job Code:	188622	
Carrier Site ID:	NJJER01085A	
Carrier Site Name:	CT-CCI-T-806352	

CODES AND STANDARDS		
Building Code:	2015 IBC	
Local Building Code:	Connecticut State Building	
Design Standard:	TIA-222-H	

STRUCTURE DETAILS		
Mount Type:	Platform	
Mount Elevation:	76.0	ft.
Number of Sectors:	3	
Structure Type:	Monopole	
Structure Height:	117.0	ft.

ANALYSIS CRITERIA		
Structure Risk Category:	II	
Exposure Category:	В	
Site Class:	D - Stiff Soil	
Ground Elevation:	71.42	ft.

TOPOGRAPHIC DATA		
Topographic Category:	1.00	
Topographic Feature:	N/A	
Crest Point Elevation:	0.00	ft.
Base Point Elevation:	0.00	ft.
Crest to Mid-Height (L/2):	0.00	ft.
Distance from Crest (x):	0.00	ft.
Base Topo Factor (K _{zt}):	1.00	
Mount Topo Factor (K _{zt}):	1.00	

WIND PARAMETERS		
Design Wind Speed:	120	mph
Wind Escalation Factor (K _s):	1.00	
Velocity Coefficient (K _z):	0.91	
Directionality Factor (K _d):	0.95	
Gust Effect Factor (Gh):	1.00	
Shielding Factor (K _a):	0.90	
Velocity Pressure (q _z):	31.92	psf

ICE PARAMETERS		
Design Ice Wind Speed:	50	mph
Design Ice Thickness (t _i):	1.50	in
Importance Factor (I _i):	1.00	
Ice Velocity Pressure (qzi):	31.92	psf
Mount Ice Thickness (t _{iz}):	1.63	in

WIND STRUCTURE C	ALCULATIONS	
Flat Member Pressure:	57.45	psf
Round Member Pressure:	34.47	psf
Ice Wind Pressure:	7.12	psf

SEISMIC PARAMETERS		
Importance Factor (I _e):	1.00	
Short Period Accel .(S _s):	0.242	g
1 Second Accel (S ₁):	0.068	g
Short Period Des. (S_{DS}) :	0.26	g
1 Second Des. (S _{D1}):	0.11	g
Short Period Coeff. (F _a):	1.60	
1 Second Coeff. (F _v):	2.40	
Response Coefficient (Cs):	0.13	
Amplification Factor (A _S):	1.20	

LOAD COMBINATIONS [LRFD]

#	Description
1	1.4DL
2	1.2DL + 1WL 0 AZI
3	1.2DL + 1WL 30 AZI
4	1.2DL + 1WL 45 AZI
5	1.2DL + 1WL 60 AZI
6	1.2DL + 1WL 90 AZI
7	1.2DL + 1WL 120 AZI
8	1.2DL + 1WL 135 AZI
9	1.2DL + 1WL 150 AZI
10	1.2DL + 1WL 180 AZI
11	1.2DL + 1WL 210 AZI
12	1.2DL + 1WL 225 AZI
13	1.2DL + 1WL 240 AZI
14	1.2DL + 1WL 270 AZI
15	1.2DL + 1WL 300 AZI
16	1.2DL + 1WL 315 AZI
17	1.2DL + 1WL 330 AZI
18	0.9DL + 1WL 0 AZI
19	0.9DL + 1WL 30 AZI
20	0.9DL + 1WL 45 AZI
21	0.9DL + 1WL 60 AZI
22	0.9DL + 1WL 90 AZI
23	0.9DL + 1WL 120 AZI
24	0.9DL + 1WL 135 AZI
25	0.9DL + 1WL 150 AZI
26	0.9DL + 1WL 180 AZI
27	0.9DL + 1WL 210 AZI
28	0.9DL + 1WL 225 AZI
29 30	0.9DL + 1WL 240 AZI
31	0.9DL + 1WL 270 AZI 0.9DL + 1WL 300 AZI
32	0.9DL + 1WL 300 AZI 0.9DL + 1WL 315 AZI
33	0.9DL + 1WL 330 AZI
34	1.2DL + 1WL 330 AZI
35	1.2DL + 1DLi + 1WLi 0 AZI
36	1.2DL + 1DLi + 1WLi 45 AZI
37	1.2DL + 1DLi + 1WLi 60 AZI
38	1.2DL + 1DLi + 1WLi 90 AZI
39	1.2DL + 1DLi + 1WLi 120 AZI
40	1.2DL + 1DLi + 1WLi 135 AZI
41	1.2DL + 1DLi + 1WLi 150 AZI

#	Description
42	1.2DL + 1DLi + 1WLi 180 AZI
43	1.2DL + 1DLi + 1WLi 210 AZI
44	1.2DL + 1DLi + 1WLi 225 AZI
45	1.2DL + 1DLi + 1WLi 240 AZI
46	1.2DL + 1DLi + 1WLi 270 AZI
47	1.2DL + 1DLi + 1WLi 300 AZI
48	1.2DL + 1DLi + 1WLi 315 AZI
49	1.2DL + 1DLi + 1WLi 330 AZI
50	(1.2+0.2Sds) + 1.0E 0 AZI
51	(1.2+0.2Sds) + 1.0E 30 AZI
52	(1.2+0.2Sds) + 1.0E 45 AZI
53	(1.2+0.2Sds) + 1.0E 60 AZI
54	(1.2+0.2Sds) + 1.0E 90 AZI
55	(1.2+0.2Sds) + 1.0E 120 AZI
56	(1.2+0.2Sds) + 1.0E 135 AZI
57	(1.2+0.2Sds) + 1.0E 150 AZI
58	(1.2+0.2Sds) + 1.0E 180 AZI
59	(1.2+0.2Sds) + 1.0E 210 AZI
60	(1.2+0.2Sds) + 1.0E 225 AZI
61	(1.2+0.2Sds) + 1.0E 240 AZI
62	(1.2+0.2Sds) + 1.0E 270 AZI
63	(1.2+0.2Sds) + 1.0E 300 AZI
64	(1.2+0.2Sds) + 1.0E 315 AZI
65	(1.2+0.2Sds) + 1.0E 330 AZI
66	(0.9-0.2Sds) + 1.0E 0 AZI
67	(0.9-0.2Sds) + 1.0E 30 AZI
68	(0.9-0.2Sds) + 1.0E 45 AZI
69	(0.9-0.2Sds) + 1.0E 60 AZI
70	(0.9-0.2Sds) + 1.0E 90 AZI
71	(0.9-0.2Sds) + 1.0E 120 AZI
72	(0.9-0.2Sds) + 1.0E 135 AZI
73	(0.9-0.2Sds) + 1.0E 150 AZI
74	(0.9-0.2Sds) + 1.0E 180 AZI
75	(0.9-0.2Sds) + 1.0E 210 AZI
76	(0.9-0.2Sds) + 1.0E 225 AZI
77	(0.9-0.2Sds) + 1.0E 240 AZI
78	(0.9-0.2Sds) + 1.0E 270 AZI
79	(0.9-0.2Sds) + 1.0E 300 AZI
80	(0.9-0.2Sds) + 1.0E 315 AZI
81	(0.9-0.2Sds) + 1.0E 330 AZI
82-88	
J_ 00	1.25 1 1.0 2 1

#	Description
89	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP1
90	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP1
91	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP1
92	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP1
93	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP1
94	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP1
95	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP1
96	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP1
97	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP1
98	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP1
99	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP1
100	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP1
101	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP1
102	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1
103	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1
104	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP1
105	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2
106	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2
107	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2
108	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2
109	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2
110	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2
111	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2
112	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2
113	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP2
114	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2
115	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2
116	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2
117	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2
118	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2
119	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2
120	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2

#	Description
121	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3
122	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3
123	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3
124	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3
125	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3
126	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3
127	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3
128	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3
129	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3
130	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3
131	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3
132	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3
133	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3
134	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3
135	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3
136	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP3
137	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP4
138	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP4
139	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP4
140	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP4
141	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP4
142	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP4
143	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP4
144	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP4
145	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP4
146	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP4
147	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP4
148	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP4
149	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP4
150	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP4
151	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP4
152	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP4

^{*}This page shows an example of maintenance loads for (4) pipes, the number of mount pipe LCs may vary per site

EQUIPMENT LOADING

Appurtenance Name/Location	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
MX08FRO665-21	3	76	No Ice	8.01	3.21	82.50
MP1/MP4/MP7, 0/120/240			w/ Ice	9.62	4.62	265.55
TA08025-B605	3	76	No Ice	1.96	1.13	75.00
MP1/MP4/MP7, 90/210/330			w/ Ice	2.36	1.45	69.13
TA08025-B604	3	76	No Ice	1.96	0.98	63.90
MP1/MP4/MP7, 90/210/330			w/ Ice	2.36	1.29	64.86
RDIDC-9181-PF-48	1	76	No Ice	2.01	1.17	21.85
MP1, 0			w/ Ice	2.42	1.50	68.13
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
		·-	No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

EQUIPMENT LOADING [CONT.]

Appurtenance Name/Location	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
	-		w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

EQUIPMENT WIND CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	K _{zt}	K _z	K _d	t _d	q _z [psf]	q _{zi} [psf]
MX08FRO665-21	3	76	1.00	0.91	0.95	1.63	31.92	5.54
TA08025-B605	3	76	1.00	0.91	0.95	1.63	31.92	5.54
TA08025-B604	3	76	1.00	0.91	0.95	1.63	31.92	5.54
RDIDC-9181-PF-48	1	76	1.00	0.91	0.95	1.63	31.92	5.54

EQUIPMENT LATERAL WIND FORCE CALCULATIONS

Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
MX08FRO665-21	3	No Ice	230.08	126.67	195.61	92.21	195.61	126.67
MP1/MP4/MP7, 0/120/240	-	w/ Ice	47.98	29.29	41.75	23.05	41.75	29.29
TA08025-B605	3	No Ice	56.40	38.43	50.41	32.44	50.41	38.43
MP1/MP4/MP7, 90/210/330		w/ Ice	11.77	8.37	10.64	7.24	10.64	8.37
TA08025-B604	3	No Ice	56.40	35.24	49.35	28.18	49.35	35.24
MP1/MP4/MP7, 90/210/330		w/ Ice	11.77	7.77	10.44	6.43	10.44	7.77
RDIDC-9181-PF-48	1	No Ice	57.79	39.61	51.73	33.56	51.73	39.61
MP1, 0	-	w/ Ice	12.04	8.63	10.91	7.49	10.91	8.63
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						

EQUIPMENT LATERAL WIND FORCE CALCULATIONS [CONT.]

Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						

EQUIPMENT SEISMIC FORCE CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	Weight [lbs]	F _p [lbs]
MX08FRO665-21	3	76	82.5	12.78
TA08025-B605	3	76	75	11.62
TA08025-B604	3	76	63.9	9.90
RDIDC-9181-PF-48	1	76	21.85	3.38

APPENDIX C SOFTWARE ANALYSIS OUTPUT

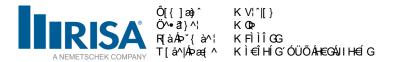
fţ`cVUŁAcXY`GYH]b[g

[Öã] æ Áu^8cā] } • Áu ¦ ÁT ^{ à^¦ ÁÔæ}&•	ΓÍ Á
Tæ¢ÁQze^¦}æţÁÛ^&cã[}•Á[¦ÁT^{ à^¦ÁÔæţ&•	JÏ Á
Q& `å^AÛ@ æbAÖ^4;{ æeaf}}Ñ`	ΫΛ•
Q& ^æ•^Ápæájā;*ÁÔæ);æ&ãĉÁ;¦ÁYā;åÑ	ΫΛ•
Q& a^A/ æ a * Ñ	ΫΛ•
V¦aa) • ÁŠ[æánÁÓc] ÁQ(c^\¦• ^ &cā] * ÁY [[å ÁY æ Ñ	ΫΛ•
OE^ æÁŠ[æåÁT^•@ÁQ] âGD	FIL
T^*^Â/[^\a} &^Â@ D	ÈG
ÚEÖ^ cæÓOE æf • ã Á/[^ æ} &^	€Ě€Ã
Q& å^ÁÚEÖ^ cæÁ ¦Á æ •Ñ	ΫΛ•
CE d { accibact ÁOch acch ÁUcã-} ^•• ÁI Ár act • Ñ	ΫΛ•
Tæ¢Á@^¦æaaaa}^••	Н
Õ¦æçãc Á028&^ ^¦æáa}}ÁÇa}Ð^&âGD	HÌ Î È
Y adlÁT ^ • @Ûã ^ÁÇ D	G
Òđ^}•[' đi } ÁÔ[} ç^ * ^ } &^ Á/[ÉÁFEÐED	
X^la8æl/AOt¢ã	Z
Õ∥àæþÁT^{ à^¦ÁU¦ã^}cænā[}ÁÚ æ}^	ÝΫ
Ùæ&AÛ[c^	Ù]æ••^Á018&^ ^¦æe^å
Ö^}æ{ 8&AÙ[ç^\	OB&^ ^ ag^åÂÛ[ç^
P[cÁÜ[^åÁÛc^^ ÁÔ[å^	OEDÙÔÁFÍ c@QHÎ €ËFÎ DMÁŠÜØÖ
Œab • œÛcã-} ^••Ñ	Ÿ^• @ \¦æac^D
ÜOÙOĐÔ[}}^&cā[}ÁÔ[å^	OEDÙÔÁFÍ c@QHÎ €ËFÎ DMÁŠÜØÖ
Ô[åÁØ[¦{ ^åÁÙ¢^ ÁÔ[å^	OEDÙ QÁÙ F€€ËFCHÁŠÜ ØÖ
Y [[å ÁÔ[å^	CEY ÔÁÞÖÙĒFÍ KÁDĒÙÖ
Y [[åÁv^{] ^ æc	ŁÁF€€Ø
Ô[} & ^&\document{\text{\text{\text{\text{0}}[\dagger} \text{\text{\text{\text{0}}[\dagger} \dagger} \text{\text{\text{\text{0}}[\dagger} \dagger} \text{\text{\text{0}}[\dagger] \text{\text{\text{\text{0}}[\dagger} \dagger} \dagger} \text{\text{\text{0}}[\dagger] \dagger} \text{\text{\text{0}}[\dagger] \dagger} \text{\text{\text{0}}[\dagger] \dagger} \dagger} \text{\text{\text{0}}[\dagger] \dagger} \text{\text{\text{0}}[\dagger] \dagger} \dagger} \text{\text{\text{0}}[\dagger] \dagger} \dagger] \text{\text{0}[\dagger] \dagger} \dagger} \dagger \da	OLÔ CÁFÌ LEI
Tæ[}¦^ÂÔ[å^	OEÔQà H€ËFHÁÛ¢^} *c@
OE { a } { AÔ [a^	OEDEÁOEÖT FÉF€KÁSÜØÖÆEÓ° BåBj*
Ùæ∄ ^••ÂÛơ^^ ÁÔ[å^	OEDÙÔÁFI c@GHÎ CÜT €DMÁŠÜØÖ
Œabi • cÁŪcã→} ^••Ñ	Ÿ^• @ 0\¦æaḡç^D
Þ`{ à^¦Á; ÂÛ@\æ¦ÁÜ^* ã;} •	
Ü^* ā[} ÁÙ] æ&ā[* ÁQ & ^{ ^} Ó Ā[] D	
Óãæ¢ãæ∮ÁÔ[ˇ{}ÁT^cQQå	Ò¢æ&oÁQ;c^*¦æeã[}
Úæl{^ÁÓ^œÁØæ&G¦ÁQÚÔŒD	ÊÍ
Ô[}& ^&\AÛd^••ÁÓ [&\	Ü^&ca) *
W•^ÁÔ¦æ&\^åÁÙ^&@ã}}•Ñ	ΫΛ•
W•^ÁÔ¦æ&∖^åÁÙ^&@ã}}•ÁÛ æàÑ	ΫΛ•
ÓæåÁØlæ{ā,*Á/æ}}ã,*•Ñ	Þ[
(W) * • ^ å ÁØ[¦ &^ ÁY æ k} ā * • Ñ	ΫΛ•
ŢāļÁFÁÓæļÁÖãæ(EÀÚ) æ&āj*Ñ	Þ
Ô[} & ^ c^ ÁÜ^àæ ÁÛ^c	ÜÒӌܴÙÒV´ŒÙVTŒFÍ
T ā Áà ÁÙ c^ Áʃ ¦ÁÔʃ ´ { }	F
Tæ¢ÁÑÁÙ&^ Á[¦ÁÔ[ˇ{}	i

fł `cVUŁA cXY` GYłłjb[gž7 cbłjbi YX

Tite of the control o	
Ù^ã{ 884Ô[å^	ŒÙÔÒÄ ËF€
Ù^ã{ã&ÁÔæ ^ÁÔ ^çæã[}ÁÇ]D	Þ[ơ�Ò} &\^å
ŒååÁÓæ•^ÁY ^ãt @Ñ	Ÿ^•
ÔœŶ	ÆG
ÔďZ	ÆG
VÁÝÁG^&D	Þ[ðÔ} &\^å
VÆÆ.	Þ[ðÔ} &\^å
ÜÄ	H
ÜÆ	H
ÔớÔ¢] ĐấÝ	ĔÍ
Ô¢Ô¢] ፟	ĚÍ
ÙÖF	F
ÙÖÙ	F
ÙF	F
VŠÁĢ^&D	ĺ
Üã√ÁÔæ	CÁT LÁGO.
Öl ão/Ôæc	U @\
U{ ÂZ	F
U{ Ä⁄	F
	F
ÔåÁÝ	F
Ü @ <i>Ā</i> Z	F
Ü @ Á	F

<chFc``YX'GhYY`DfcdYff]Yg


	Šæà^	ÒÆŽ•ãã	ÕÆX•ãa	Þř	V@\¦{ Á (IDH	Ö^}•ãc²ŽiÐcâHá	ŸãN∣åŽj∙ãã	Ü^	ØĭŽj∙ãã	Üc
F	ŒJĠ	GJ€€€	FFFÍ I	È	ÊÍ	ÈΙ	Í€€€€	FÈ	î퀀€	FÈF
G	OEHÎ ÁÕ¦ÈHÎ	GJ€€€	FFFÍ I	Ħ	Ēί	ÈJ	HÎ €€€	FĚ	í쀀€	FÈG
Н	OÉÏGÁզɀ	GJ€€€	FFFÍ I	Ĭ	ÈÍ	ÈJ	Í€€€€	FÈ	î퀀€	FÈ
1	OÉ €€ÁÕ¦ÉÓÁÜÞÖ	GJ€€€	FFFÍ I	È	Ēί	ĚĞ	IŒ€€	FÈ	í쀀€	FÈH
ĺ	OÉ €€ÁÕ¦ÈÓÁÜ^&c	GJ€€€	FFFÍ I	ÈH	Ēί	ĚĞ	l΀€€	FÈ	í쀀€	FÈH
Î	OÉ HÁÕ¦ ÈÓ	GJ€€€	FFFÍ I	È	Ēί	ÈJ	HÍ €€€	F₿	î €€€ €	FÈG
Ϊ	OEF€ÌÍ	GJ€€€	FFFÍ I	È	Ēί	ÈJ	Í€€€€	FÈ	î퀀€	FÈH

7c'X': cfa YX'GhYY'DfcdYff]Yg

	Šæà^	ÒÆX•ãã	ÕÆX•ãã	Þř	V@N¦{ ÁQEEFÒÍÁROI	Ö^}•ãcÎŽÐcâHá	ŸãN∣åŽj∙ãã	ØĭŽj•ãã
Ŧ	OÉÍHÁÙÙÁÕ¦HH	GJÍ €€	FFHI Î	È	ĚÍ	ÈΙ	HH€€€	lÍ€€€
റ	OÉÍHÁÙÙÁզ̀EF	GJÍ €€	FFHI Î	È	Ēĺ	ÈJ	Í €€€€	îÍ€€€

<chFc``YX'GhYY'GYWJcb'GYlg</pre>

	Šæà^	Ù@ ≱ ^	V^]^	Ö^∙ã} Æãc	Tæe^∖ãæ∳	Ö^• ã} Á⊞ OÆÃ; (àQ^Ããa,IáQ	:ÆŽajláRÆŽajlá
F	Ú æ^•	ÎLĂ¢€ÈHÎÄÁÚ æe^	Ó^æ{	ÜÒÔV	OÉ HÁÕ¦ ÈÓ	V^] 28æ GH €		ÈÎÌÌÈ€Î
G	Õ¦ægā,*ÁÓ¦æs&ā,*	ŠG¢G¢H	Ó^æ{	Ùã * ^ ÁOE * ^	OEHÎ ÁÕ¦ÈHÎ	V^]ã&æ; ÈEGC	BÉG F	ÈGÏF ÈE €J
Н	Ùæ) å[~•	ÚQÚÒ´HĚ	Ó^æ{	Úą^	OÉ HÁÕ¦ ÈÓ	V^]ã&æ; GHĚ	IĚGI	ĚG JÈ€I
1	Ùœ) å[~ÁÓ¦æ&ã]*	ÔHÝÍ	Ó^æ{	Ô@a}}^	OEHÎ ÁÕ¦ÈHÎ	V^]ã&æ e FÈÏ	ÈGIF F	FÈÍ ÈEIH
ĺ	Pæ}妿a∮•	ÚŒÓ ŒĒ	Ó^æ{	Ú ą ^	OÉ HÁÕ¦ ÈÓ	V^]ã&æ; FÈ€0		ĒG FĒG
Î	Pæ}妿ã[ÁÔ[¦}^¦•	ŠÎĖ΢IÈÌ΢€ÈĞ	Ó^æ{	Ùā; * ^ÁOE; * ^	OEHÎ ÁÕ¦ÈHÎ	V^]ã&æ; GĒi€	⊣lËÍJ F	GÈÈÏH ÈEÍÍ
Ϊ	P[¦ã[}æ•	ÚQÚÒ´HĚ	Ó^æ{	Úą^	OÉ HÁÕ¦ ÈÓ	V^]ã&æ ; GHĚ	IĚGI	ĚG JÈ€I

<chFc``YX`GhYY`GYWjcb`GYlg`ff'cbhjbi YXŁ</pre>

	Šæà^∣	Ù@ } ^	V^]^	Ö^∙ãt}Æšãc	Tæe^∖ãæ¢	Ö^• ã} Â	ÈOEÄAG Q	^ÁŽajláQ:ÁŽajla	áRÁŽálá
Ì	T [* } cÁÚā] ^•	ÚŒÓ′GÈE	Ó^æ	Úą^	CÉ HÁÕ¦ ÈÓ	V^]	FÈ€G	ĒĠ ĒĠ	FÈGÍ

7c`X': cfa YX'GhYY'GYWIjcb'GYhg

	Šæà^	Ù@ 4 ^	V^]^			Ö^• ã } Áܡ ^•				
F	ÔØFŒ	ÌÔWFÈĠÍÝ€ÍÏ	Ó^æ	þ[}^	CHÎÍHÂÙ ÙÁÕ	##E V^1 a8æ	ĚÌF	È€ÍÏ	IÈF	È€€ÎH

>c]bhi6 ci bXUfm7 cbX]h]cbg

	R[ā]oÁŠæà∧	ÝÁŽ Đặá	ŸÁŽÐajá	ZÁŽEAjá	ÝÁÜ[dĚŽËdĐæåá	ŸÁÜ[dĚŽËdĐæåá	ZÁÜ[dÈŽË-6Dæåá
F	ÞĞ	Ü^æ & æ [}	Ü^æ \$ æ [}	Ü^æ & æ []	Ü^æ \$ æ [}	Ü^æ &a {}}	Ü^æ \$ æ [}
G	ÞF	Ü^æ % æ [}	Ü^æ \$ æ [}	Ü^æ & æ []	Ü^æ \$a [}	Ü^æ &a [}	Ü^æ \$a [}
Н	ÞFH	Ü^æ % æ [}	Ü^æ \$ æ [}	Ü^æ & æ []	Ü^æ \$ æ [}	Ü^æ &a {}}	Ü^æ \$ æ [}

6 Ug]W@:UX'7 UgYg

	ÓŠÔÁÖ^•&¦₫;æ[}	Ôæe^*[¦^	ÝÁÕ¦æçãcî	ŸÁŐ¦æçãcî	ZÁÕ¦æçãcî	R[ã]c	Ú[ặc	Öã dãa čo^å	Œ^æÇT^⊞	``. ``
F	Ù^ -ÁY ^	ÖŠ			Ë		FH		Н	
G	Ùdˇ&č¦^ÁYą¾áÁÝ	Y ŠÝ						HH		
Н	Ùdˇ&cˇ¦^ÁY∄åÁŸ	Y ŠŸ						HH		
	YājåÁŠ[æåÁ€ÁOEZQ	Y ŠÝ					FH			
ĺ	Yā)åÁŠ[æåÁH€ÁOZQ	Þ[}^					GÎ GÎ			
Î	YājāÁŠ[æåÁlÍÁOZQ	Þ[}^					Ĝ			
Ϊ	Yā)åÁŠ[æåÁÌ€ÁOZQ	Þ[}^					Ĝ			
Ì	Yā)åÁŠ[æåÁJ€ÁOZQ	ΥŠΫ́					FH			
J	YājåÁŠ[æåÁFG€ÁOZQ	Þ[}^					GÎ			
F€	Yājā ÁŠ[æā ÁFHÍÁOZQ	Þ[}^					Ĝ			
FF	YājåÁŠ[æåÁFÍ€ÁOZQ	Þ[}^					Ĝ			
FG	© 4∧Á√ ∧ã @c	UŠF					FH	HH	Η	
FH	Ùd šc l^ÁQA^ÁYājāÁÝ	UŠG						HH		
FI	Ùdĭ&cĭl^ÁQ3(^ÁYā);åÄŸ	UŠH						HH		
FÍ	O&^ÁYa}åÁŠ[æåÁ€ÁOZQ	UŠG					FH			
FÎ	O&^ÁY ajåÁŠ[æåÁH€ÁOEZQ	Þ[}^					Ĝ			
FΪ	O&^ÁYa}åÆŠ[æåÁnÍÁOEZQ	Þ[}^					GÎ GÎ			
FÌ	O&^ÁYa}åÆŠ[æåÁn€ÁOEZQ	Þ[}^								
FJ	O&^ÁYa}åÆŠ[æåÁJ€ÁOEZQ	UŠH					FH			
G€	Qa^ÁY ājåÁŠ[æåÁFG€ÁOEZQ	Þ[}^					Ĝ			
Œ	O&AÁY ajáÁS[æáÁFHÍÁOEZQ	Þ[}^					GÎ GÎ			
GG	O&^ÁY ājåÁŠ[æåÁFÍ€ÁOEZQ	Þ[}^					Ĝ			
GH	Ù^ãr{ 3&ÁS[æåÁÝ	ÒŠÝ	iii í				FH			
G	Ù^ãr{ 88.485[æå.497	ÒŠŸ		iii í			FH			
GÍ	Šãç^ÁŠ[æåÁFÁÇŠçD	<u>ŠŠ</u>				F				
Ĝ	Šãç^ÁŠ[æåÁGÁÇŠçD	ŠŠ				F				
Ğ	Šãç^ÁŠ[æåÁHÁÇŠçD	<u>ŠŠ</u>				F				
GÌ	Šãç^ÁŠ[æåÁIÁQŠçD	ÒŠŸ ŠŠ ŠŠ ŠŠ ŠŠ ŠŠ				F				
GJ	Šãç^ÁŠ[æåÁÁÁŠçD	<u>ŠŠ</u>				F				
H€	Šãç^ÁŠ[æåÁÁÁÇŠçD					F				
HF	Tænjio^}ænji&^ÁnjiænjiÁFÁÇnji(D	Þ[}^				F				
HG	Tænjio^}ænji&^ÁðjænjáÁGÁÇŠ(D	Þ[}^				F				
HH	Tænjio^}ænje&^AčjamåÁnHÁÇŠ(D	Þ[}^				F				

6 Ug]W@UX'7 UgYg'ff cbhjbi YXŁ

	ÓŠÔÁÖ^∙&¦ājcāj}	Ôæe^*[¦^	ÝÁÕ¦æçãcî	ŸÁÕ¦æçãcî	ZÁŐ¦æçãcî	R[ã]c	Ú[ặc	Öã dãa čo^å	O∄^æÇT^⊞	Ù`¦æ&^ Q)È
H	Tænjio^}ænji&^ÁnjiænjáÁnÁçnš(D	Þ[}^				F				
HÍ	Tænjio^}ænja&^AŠ[ænjaÄ,ÁÇŠ(D	Þ[}^				F				
HÎ	Tænjio^}ænja&^AñjænjaĥaĥajŠ(D	Þ[}^				F				
HÏ	Tænjio^}ænji&^ÁkjjænjáÄÁçjš(D	Þ[}^				F				
HÌ	Tænjio^}ænji&^ÁkjjænjáÅáQjš(D	Þ[}^				F				
HJ	Tænjio^}ænji&^ÁkjjænjáJÁÇŠ(D	Þ[}^				F				
I€	ÓŠÔÁFÁV¦æ)•ãN}œÁŒ^æÁŠ[æå•	Þ[}^						J		
1 F	ÓŠÔÁFGÁV¦æ}•ãN}œÁŒ^æÆS[æå•	Þ[}^						J		

@cUX'7ca V]bUhjcbg

	Ö^• &{ā cā}}	ı`ı 'ii'	(1))) .(1)	誰ó誰	X-0-I I	Δììì	C-oli	i č iii	- COÌÌ	l T T T T T T T T T T T T T T T T T T T	o~oπ)	\	С~ец	\	o~oπ)	 	ഗഹി	\	- (XOL)	\	· Cranti		~~i ii
F	FÈÖŠ	ÿΛ•		ÖŠ		OEE	XH X II		XH X II	E)3U	VH O II		XH O O		CHOOLI		XH O II		XH O O		XH O II		
G	FÉGÖŠÆÆFY ŠÆÆØZØ	1.			FEG	G	F	Н		-	F												
Н	FÉGÖSÁÉÁFY ŠÁHEÁOZO				FEG		Èîî	Н	Ě	+	F												
11	FÉGÖSÁÉÁFY ŠÁLÍÁOZO	-			FEG		Ë€Ï	_	Ë€Ï	î	F												
í	FÉGÖSÁÉÁFY ŠÁÍ€ÁOZO				FEG				Èîî	÷	F												
î	FÉGÖSÁÉÁFY ŠÁJ€ÁOZO		Ϋ		FÈG	G	ш	Н	F	-	F												
+	FÈGÖŠÆÆY ŠÆŒÆOZQ		Ÿ	ÖŠ	FEG		Η̈́		ÈÎÎ	<u></u> 	F												
ì	FÉGÖSÁÉÁFY ŠÁFH ÁOZQ		Ÿ		FEG				Ë€Ï	F€	F												
-	FÈGÖŠÆÆFYŠÆTÍ€ÁOZQ		Ÿ	ÖŠ	FEG		⊞îî	Н	Ě	FF	F												
J F€	FÈGÖŠÆÆFYŠÆFÌ€ÆOZQ		Ÿ	ÖŠ	FEG	G		Н	ш	<u> </u>	Ë												
FF	FÈGÖŠÆÆFY ŠÆF€Æ		Ÿ	ÖŠ	FEG		<u> </u>	Н	Η̈́	-	Ë												
FG	FÉGÖSÁÉÁFY ŠÁGG ÁOZQ	Ÿ۸۰	Ÿ	ÖŠ	FEG		III (I		⊞≝	î	Ë												
FH	FÈGÖŠÆÆFY ŠÆGI€ÁOZQ	1.	Ÿ	ÖŠ	FEG				⊞îî	+	Ë												
FI	FÈGÖŠÆÆFY ŠÆGÏ€ÁOZQ		Ÿ		FEG		ш	Н		+	Ë												
FÍ	FÉGÖSÁÉÁFY ŠÁHEEÁOZQ		Ÿ	ÖŠ	FEG		Ě		⊞ÎÎÎ	_ <u>'</u> J	Ë												
FÎ	FÉGÖSÁÉÁFY ŠÁHFÍ ÁOZQ		Ÿ	ÖŠ	FEG		Ë€Ϊ			F€	Ë												
FΪ	FÉGÖSÁÉÁFY ŠÁHHEÁOZQ		Ÿ	ÖŠ	FEG		Èîî	Н	Ħ	FF	Ë												
FÌ	€ÈÖŠÆFYŠÆÆ		Ÿ	ÖŠ	È	G	F	Н	ш	<u> </u>	F												
FJ	€BÖSÁÉÁFY ŠÁHEÁOZO			ÖŠ	È		ÈÎÎ	Н	Ě	<u> </u>	F												
G€	€DÖSÁÉÁFY ŠÁLÍÁOZO			ÖŠ	È		Ë€Ï		Ë€Ï	î	F												
Œ	€BÖSÁÉÁFY ŠÁ €ÁOZO		Ÿ	ÖŠ	È	G	Ě	Н	Èîî	╬	F												
GG	€DÖSÁÉÁFY ŠÁJ€ÁOZO		Ϋ	ÖŠ	È	G	ш	Н	F	 	F												
GH	€DÖSÁEÁFY ŠÁFŒÁOZQ		Ÿ	ÖŠ	È	G	Η̈́		Èîî	<u></u> 	F												
G	€DÖŠÆÆFYŠÆFHÁOZQ		Ÿ	ÖŠ	È		ш Щ €Ï		Ë€Ï	F€	F												
GÍ	€DÖŠÆÆFYŠÆFÍ€ÆOZQ		Ÿ	ÖŠ	È		⊞îî	Н	Ě	FF	F												
Ĝ	€DÖŠÆÆFYŠÆFÌ€ÆOZQ		Ϋ	ÖŠ	È	G		Н	ш	<u> </u>	Ë												
GÏ	€ÈIÖŠÁÉÁFYŠÁÐF€ÁOZQ		Ÿ	ÖŠ	È		⊞ÎÎÎ		Η̈́	í	Ë												
GÌ	€ÈIÖŠÁÉÁFYŠÁÐGÍÁOZQ		Ÿ	ÖŠ	È		ŒĦ		Щ́€Ï	î	Ë												
GJ	€DÖŠÆÆFYŠÆGI€ÆOZQ		Ÿ	ÖŠ	È	G			⊞îî	╬	Ë												
H€	(£)ÖŠÁÉÁFYŠÁGÏ€ÁOZQ		Ÿ	ÖŠ	È	G	ш		Ë	<u> </u>	Ë												
HF	€DÖSÁÉÁFY ŠÁHEEÁOZQ		Ÿ	ÖŠ	È	G	Ě		Œ ⊞ÎÎÎ	<u></u> 	Ë												
HG	€DÖŠÆÆFYŠÆHFÍÆOZQ		Ϋ	ÖŠ	È		Ë€Ϊ		ŒĦ	F€	Ë												
HH	€ÈIÖŠÁÉÁFY ŠÁNH€ÁOZQ		Ÿ	ÖŠ	È		ÈÎÎ	Н	Ħ	FF	Ë												
H	FÉGÖSÁÉÁFÖSÁÉÁFY SÁÆÁO		Ÿ	ÖŠ		UΉ		FH		FI	ш	FÍ	F										
HÍ	FÉGÖSÁÉÁFÖSÁÁÉÁFY SÁÁHEÁ		Ÿ	ÖŠ	FEG				ÈÎÎ	FI	Ě	FÎ	F										
HÎ	FÉGÖSÁÉÁFÖSÁÁÉÁFY SÁÁ Í Á		Ϋ		FÈG				Ë€Ï			FΪ	F										
H	FÉGÖŠÆÆFÖŠÆÆFY ŠæÑ €Æ		Ÿ		FEG			FH			Èîî	FÌ	F										
HÌ	FÉGÖSÁÉÁFÖSÁÁÉÁFY SÁNJ€Á		Ϋ		FEG			FH		FI	F	FJ	F										
HU	FÉGÖSÁÉÁFÖSÁÉÁFY ŠÁFGÉ		Ÿ	ÖŠ	FEG				Η̈́		ÊÎÎ	G€											
ID	I LOOKE IN COME IN I COME CIT	' '	1	03	שויו	ОШ	- F	CIT	ш	Е	411	Œ	Г					<u> </u>	L				

@UX'7ca V]bUhjcbg'f7cbhjbi YXŁ

<u> </u>	A / Ca Vjborje														 						
	Ö^• &¦āj cāj}													Ď ÌÌÌØæ	ÈØæ&À	Ď	Øæ&H	ĎË	Øæ&Ĥ	ĎЩ	2 08 €
	FÉGÖŠÆÁFÖŠÆÁFY			Ö	ŠFÈ	UE	F	FΗ	Ħŧ	FI	Ë€Ï	Œ	F								
	FÈGÖŠÆÁFÖŠÆÆÁFY			Ö	ŠFÈG	UЩ	F	FΗĖ	ĤÎÎ	FI	Ě	Œ	F								
ΙG	FÈCOSÁÉÁFOSÁÉÁFY	ŠÁÁFÌ ÈÈÝ^	Ϋ́	Ö	ŠFÈ	UЩ	F	FΗ	Ë	FI		FÍ	Ë								
ΙH	FÈCOSÆÁFOSÆÁFY	Š áGFIII Ÿ^	·Ϋ́		ŠFÈ						ΉĬ	FÎ	Ë								
11	FÉGÖŠÆÁFÖŠÆÆFY	l l			ŠFĖ							FΪ	Ë								
ií	FÉGÖŠÁÉÁFÖŠÁÉÁFY			Ö		UЩ		FΗ			ĦÎÎ		Ë								
ÌÎ	FÉGÖSÆÆFÖSÆÆFY	l l		Ö		UЩ			ш	FI	Ë	FJ	Ë								
1.0	FÉGÖSÁÉÁFÖSÁÉÁFY			Ö		UЩ			č			Œ									
	FÉGÖSÆÁFÖSÆÁFY			Ö		U					⊞ïeï										
11.	FÈGÖŠÆÆFÖŠÆÆFY						_	-	_												
IJ		l l		Ö		UЩ	_		Èîî	<u>FI</u>	Ħ	Œ	<u>н</u>								
,	ÇÊÉ€ÊÛå• DÆÆ				Š FĖG			ÉĆ													
ĮΕ	ÇFÉCÉ€ÉGÙå• DÆÆFÈ				Š FĖGI	ÒÈÈÈ														\sqcup	
	ÇFÈEÉ€ÈÈÙå• DÆÆFÈ				ŠFĖG																
ĺΗ	ÇFÈEÉ€ÈÈÙå• DÆÆÆÈ				ŠFÈG			ΞÉ												Ш	
ĺΙ	ÇFÈEÉ€ÈÈÙå• DÆÆFÈ				ŠFÈG	ÒЩ		無Ć													
ĺĺ	ÇFÉCÉ€ÉGÙå•DÆÆFÈ	€ÒÆG€ÌÌŸ^	Ÿ	Ö	ŠFÈG	ÒЩ	Ή̈́	ΞÉ	ÈÎÎ												
ĺÎ	ÇFÉEÉ€ÉBÙå• DÆÆÆ	€ÒÆHÍ ÈÈŸ^	Ϋ́		ŠFÈG			無ć	Ë€Ï												
ÍΪ	ÇFÉEÉ€ÉGÙå• DÆÆÆFÈ	€ÒÁFÍ €ÌÌÌŸ^	·Ϋ́		ŠFĖG																
ίì	ŒŘÉÉŘŮª DÆÆ				ŠFĖG	ÒÈ		ЩĆ	_												
ÍJ	ÇÊŒÊÛå• DÆÆ				ŠFĖG	Ò			ΪŤ												
	ÇÊÉÉÈÙå• DÆÆÆ	l l			ŠFĖG	ÒĦĦ															
ÎF	ÇÊÉÉ€ÈÈÙå• DÆÆÆÈ				ŠFEG	ÒÈÈ		ÒЩÜ													_
	Ç ÉÉÉ€ÉGÙå• DÆÆFÈ	l l				ÒЩ		E É													
	ÇÊÉ€ÊÛå• DÆÆÊ				Š FĖG																
ΙΗ					Š FĖG			É													
11	ÇÊÉÉÊÛå• DÆÆ				Š FĖG																
	ÇFÉEÉ€ÉGÙå• DÆÆFÈ	l l			Š ĘĖ				Ш											\sqcup	
ÎÎ	ÇEÈ ËŒŒÛå• DÆÆÆ				ŠÈÎ	ÒЩ			Į.												
ΪΪ	ÇEÈJËETÈGÙå•DÆÆFÈE			Ö		ÒÈÈ														Ш	
ÎÌ	ÇEÈJËETEGÙå•DÆÆFEE				ŠÈÎ	ÒŒÊ			Ë€Ï												
ÎJ	Ç€ÈJË€EÇÛå•DÆÆFÈ€			Ö	ŠÈÎ	ÒЩ	Ě	É	ÈÎÎ												
Ï€	Ç€ÈJË€ÈGÙå•DÆÆFÈ€	ÒÁJ€ÁQEÈÈ^	Ϋ́	Ö	ŠÈÎ	ÒЩ	(無Ć	F												
ΪF	Ç€ÈJË€EGÙå•DÆÆFE€	ÒÆÆÆÆÆÄ	·Ϋ́	Ö		ÒÈ	ΉĬ	無ć	Èîî												
ΪG	ŒÈËŒŒŮå• DÆÆFE	ÒÆH Á	·Ϋ́	Ö		ÒÈ	Ï€Ï	無ć	Ë€Ï												
ΪΗ	ŒÈJËŒÈGÙå• DÆÆFÈ			Ö		ÒĦĦ	ÌÎÎ	ΞÉ	Ř												-
ΪΙ	ÇEÈJËŒÌCGÙå• DÆÆFÈE			Ö		ÒÈ		ΞÓ													
Ϊİ	ÇEÈJËŒÎĞÛå•DÆÆFÈ€				ŠĖÎ	ÒHH			ШΥ												
ïî	ŒÈËŒŒÛå• DÆÆFŒ				ŠĖÎ	Ò															
<u> </u>	ÇEÈ ËŒĠŮå• DÆÆE				ŠĖÎ	ÒÈ															
						ÒЩ) E													
ΪÌ					ŠÈÎ																
	Ç€ÈJËŒÈĞÙå•DÆÆFÈ				ŠÈÎ	ÒÈ															
_	ÇEÈ ËŒÈCÙå• DÆÆE				ŠĖį	ÒŒÊ															
ĮF	ÇEÈ ËETÈ Lª DÉÆ E				Š Èį	ÒŒÊ		IJ III	HH											\sqcup	
ÌG					Š FÈ																
ÌΗ					ŠFÈ																
ÌΙ	FÉGÖÆÆÆÐ Á				ŠFÈ																
ÌÍ	FÉGÖÆÆÆÆ Á		Ϋ́		ŠFÈ																
ÌÎ	FÉGÖÆÆÆÅFĚÆ		Ϋ́		Š FÈ																
ÌÏ	FIEGÖÆÆFE Æ	ŠcÎ Ÿ^	·Ϋ́		Š FE																
ìì	FÉGÖÆÆFÉ Š(ÆÆFÉ				Š FEG			ı	ÈÉÍÌ	G	ÈÉÌ	Н									
	FÉGÖÁÉÁFÍL Š(ÁÉÁFÍL				ŠFĖ			-	±i Eaiì		ÈÍ		È€GJ								
	FÉGÖÁÉÁFÉ Š(ÁÉÁFÉ				ŠFĖ			\rightarrow	ÈÉIÌ		È F										
	FÈGÖÁÉÁFÍL ŠÍ ÁÉÁFÍL							-	EEII												
JF	LEGOHERE S. HEVER	EI (METTY)	' Υ		Š FĖC	HF	-H	I	LE 1	G	È€GJ	Н	Œ							ш	

@UX7ca V]bUhjcbgff7cbhjbi YXŁ

<u> </u>)))/ Y A	.,,	v				.,		,,,,,			
	Ö^• & a ca }	V 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ëٌӌ&q			/ \	Øæ&⊞			EDEE Ø	HD III	Øæ&E	D EE		EØæ&B	ÐŒ	<i>2</i> 668.⊞
JG	FÉGÖÁÉÁFÉ Š(ÁÉÁFÉEY {					_			ÈÉÌ								
JH	FÉGÖÁÉÁFÉ Š(ÁÉÁFÉEY {		ÖŠ FĒG	HF FÉ					ÈÉÍ								
JI	FÉCOÁÉÁFÉ Š(ÁÉÁFÉEY {		ÖŠFĖG	HF FĚ	F€È	íì G	⊞€IF	Н	ÈEIF								
JÍ	FÉGÖÆÆÆFĚÝ {	AETŸ^• Ÿ	ÖŠ FÈG	HF FĚ	FF Ȁ	íì G	ŒΘ	Н	ÈŒJ								
JÎ	FIÈSÖÁÉÁFIĽŠ ÁÉÁFIEY {	ÁŒΥ^• Ÿ		HF FĚ			Œ€íì	Н									
JΪ	FIÈSÖÆÆÆFIĚ ŠĮÆÆÆFIÈEY {			HF FĚ			⊞€Í		ËEGJ								
JÌ	FIEGÖÁÉÁFIĽŠ ÁÉÁFIEY {			HF FĚ					— ŒIF								
JJ	FÉGÖÁÉÁFÉ Š(ÁÉÁFÉEY {			HF FĚ					ΞÉÍ								
	FÉGÖÁÉÁFÉ Š(ÁÉÁFÉEY {						шесы		Œ Œ(ì								
				HF FĚ			È L									-	
	FÈGÖÁÉÁFÍL Š(ÁÉÁFÍEY {			HF FĚ			È€GJ		Ė							\vdash	
	FÈCOÁÉÁFĚŠ(ÁÉÁFÈEY {			HF FÉ					ŒEIF								
	FIÈGÖÁÉÁFIĽŠ(ÁÉÁFIÈEY {			HF FĚ					ŒŒGJ								
F€							È€ÍÌ	Н									
F€Í	FÉGÖÁÉÁFIĽŠ(ÁÉÁFEEY {	AHY^• Ÿ	ÖŠ FÈG	HG FĚ	Í È€	íì G	Ì€Í	Н	ÈŒGJ								
F€Î	FÉGÖÁÉÁFIĚŠ ÁÉÁFIÈEY {	AEEY^• Ÿ	ÖŠ FÈG	HG FĚ	ÎÈ€	íì G	È∃F	Τ	È∃F								
F€Ï	FÉCOÁÉÁFÉ Š(ÁÉÁFÉEY {	AΠΥ^• Ϋ́		HG FĚ		íì G	È€GJ	Н	È€Í								
F€Ì	FIÈSÖÆÆFIÐ Š(ÆÆFDEY {			HG FĚ					ÈÉÍÌ								
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			HG FÉ			ËEGJ	H								\Box	
	FÉGÖÁÉÁFÉ Š(ÁÉÁFÉEY {								È F								
	\ // / V V // / \						EE		È€GJ							\vdash	
FFF	FÉGÖÁÉÁFÉ Š ÁÉÁFÉY {								LEGGI								
								Н	ii)coi							\vdash	
	FÈGÖÁÉÁFIĽŠ(ÁÉÁFIEY {						Ħ		ŒGJ							ш	
FF	FÈGÖÁÉÁFÉ Š(ÁÉÁFÉEY {						⊞€I F										
	FÉGÖÁEÁFIĽŠ(ÁEÁFIEY {						ŒŒGJ		Œ								
	FIÈSÖÆÆÆFIĚŠ(ÆÆÆFIÈEY{								Œ€ĺÌ								
	FIÈGÖÁÉÁFIĽŠ(ÁÉÁFIÈEY {		ÖŠ FÈG	HG FĚ	JÈ€	íì G	È€GJ	Η	Œ€Í								
FFÌ	FÈGÖÆÆFE Š{ÆÆFE€Y {	AETΫ́^• Ϋ́	ÖŠ FÈG	HG FÉ	F€È	íì G	È∃F	Н	Ë€IF								
FFJ	FÉGÖÁÉÁFÍÉŠ(ÁEÁFÉ€Y{	AΠΥ^• Ϋ́				íì G	È€Í	Н	ŒŒGJ								
	FIÈGÖÆÆÆFIĚ Š(ÆÆÆFIÈEY {						È Ì	Н									
	FIEGÖÁÉÁFIĽŠ ÁÉÁFIEY {					/ \			È€GJ								
	FÉGÖÁÉÁFÉ Š(ÁÉÁFÉEY {						_	_	È∄F								
	FÉGÖÁÉÁFÉ Š(ÁÉÁFÉEY {			HH FĚ			È€GJ		È							\vdash	
	FÉGÖÁÉÁFIĽŠ ÁÉÁFÉEY {						LEGGI										
FG	-			HH FÉ			iii n	• •	È Ì								
FG	FÉGÖÁÉÁFÉ Š(ÁÉÁFÉEY {			HH FÉ		_			ÈÍ_							ш	
FĜ	FÈGÖÆÆÆFĚŠ(ÆÆÆFÈEY {			HH FÉ					ÈE F								
FG	FÉGÖÁÉÁFÉ Š(ÁÉÁFÉEY {						Ħ		ŒGJ								
	FIÈSÖÆÆÆTĚ Š(ÆÆÆTÈEY {						Œ€Í Ì										
	FÉGÖÁÉÁFÉ Š(ÁÉÁFÉEY {								ŒŒGJ								
FH€	FÉGÖÁÉÁFIĽŠ(ÁEÁFÈEY {	ÆĤŸ^• Ÿ	ÖŠ FĒG	HH FĚ	ÎÈ€	íì G	ŒEIF	Н	Œ€IF								
	FIÈGÖÆÆFIĚ Š(ÆÆFIÈEY {					_	⊞€GJ										
FHG	FIEGÖÁÉÁFIĽŠ ÁÉÁFIEY {	ÆTY^• Ÿ				_		Н	ŒĺÌ								
	FIEGÖÁÉÁFIÐ ŠÍ ÁÉÁFÐEY {			HH FĚ			ÈŒGJ	Н	iii⁄aí								
FH	FÉGÖÁÉÁFÉ Š ÁÉÁFÉEY {	AHY^• Ÿ					È F										
	FÉGÖÁÉÁFÉ Š ÁÉÁFÉY {	AH Y^• Y							⊞€GJ								
									TE CI								
FH	FÉGÖÁÉÁFÉ Š(ÁÉÁFÉEY {	ATTY (A						Н	iòoo .								
FH	FÉGÖÁÉÁFÉ Š(ÁÉÁFÉEY {	А Т 7^• 7							È€GJ								
	FÈCOÁÉÁFIĽŠ(ÁÉÁFÈEY {						È€F										
	FÉGÖÁÉÁFÉ Š(ÁÉÁFÉEY {						È€GJ		Œĺ								
	FIÈSÖÆÆÆFIĚŠ(ÆÆÆFIÈEY{							Н	ÈÉÌ								
	FÉGÖÁÉÁFIĚŠ(ÁÉÁFÈEY {		ÖŠ FĒG	HI FĚ	JÈ€	íì G	⊞€GJ	Н	ÈÉÍ								
FLG	FÈSÖÆÆFĚŠ(ÆÆFÈEY {	ÆHŸ^• Ÿ					Ë€IF										
	FIÈSÖÆÆÆFIĚ Š(ÆÆÆFIÈEY {						⊞€Í		_								
1111	1 321=== 3(12:21 (11 11 11 11	11 1 1 -	- 0	سا	1.1			1		oxdot			ш	

@UX'7ca V]bUh]cbg'fl'cbh]bi YXŁ

<u>@UX'7ca V]bUh]cbg'f7cbl</u>	@UX'7ca V]bUhjcbg'ff'cbhjbi YXŁ													
Ö^•& āi cāi} ÙÈÈI														
FII FÉGÖÁÉÁFÉ Š(ÁÉÁFÉEY (AÉÉÝ^•	Ÿ ÖŠ FĒĞ HIFĒ I ĒÉ Ì G ĒÉÌ H													
FIÍ FÉGÖÆÆFÉŠ(ÆÆFEY{AEEŸ^•	Ÿ ÖŠ FÈG HI FÉ Í ÈÉÌ G ÈÉÉ H ÈÉGI													
FIÎ FÊGÖÆÆFÊ Š(ÆÆFÈEY { ÆÊËŸ^•	Ÿ ÖŠ FÈG HIFÈ Î ÈÉ Ì G ÉEIF H ÉEIF													
FII FEGÖÆÆFE Š(ÆÆFEY { ARTÝ^•	Ÿ ÖŠ FÈG HI FÉ Ï ÈÉÌ G ËEEGI H ËEÉ													
FI FESÖÆÆFE Š(ÆÆFEY { ÆEFY^•	Ÿ ÖŠ FĒG HI FĒĒ Ì ĒĒ Ì G H ĒĒĒ Ì													
FIJ FÉSÖÁÉÁFÉ Š ÁÉÁFÉEY (AÉÉÝ^•	Ÿ ÖŠ FĒG HI FĒĽ J ĒÉ Ì G ĒĒGJ H ĒĒĒ													
FÍ€ FÉSÖÆÆFÉŠ(ÆÆFEY{AEEY^•	Ÿ ÖŠ FĒG HI FĒĽ F€ ĒŒÍÌ G ĒŒIF H ĒĒĒIF													
FÍF FÉGÖÁÉÁFÉ Š(ÁÉÁFÉEY { ARTÍY^•	Ÿ ÖŠ FĒG HI FĒĽ FF ĒÉ Ì G RĒÉ H ĒĒĒGJ													
	Ÿ ÖŠ FĒG HÍ FĒĽ I ĒĠÌ G ĒĠÌ H													
FÍH FÉGÖÁÉÁFÉ Š(ÁÉÁFÉEY { ARTÝ^•	Ÿ ÖŠ FĒG HÍ FĒĽ Í ĒÉÌ G ŘEÍ H ĒEGJ													
FÍI FEGÖÆÆFE Š(ÆÆFEY { ÆEEY^•	Ÿ ÖŠ FĒG HÍ FĒ Î ĒĠ Ì G ĒG F H ĒG F													
FÍÍ FIESÖÆÆÆFE Š(ÆÆÆFEY { ÆEEY^•	Ÿ ÖŠ FĒG HÍ FĒĽ Ï ĒÉÌ G ĒEGJ H ĒEÍ													
	Ÿ ÖŠ FĒG HÍ FĒĽ Ì ĒĠ Ì G H ĒĠ Ì													
FÍÏ FÉGÖÆÆÆFĚŠ(ÆÆÆFEY{ÆEFY^•	Ÿ ÖŠ FĒG HÍ FĒĽ J ĒÉ Ì G ĒĒG H ĒEÍ													
	Ÿ ÖŠ FĒG HÍ FĒ F€ ĒÉ Ì G ĒĒE F H ĒE F													
	Ÿ ÖŠ FĒG HÍ FĒĽ FF ĒĒ Ì G ĒĒĒĒ H ĒĒGJ													
	Ÿ ÖŠ FĒG HÍ FĒĽ I ĒĠÌ G ĒĒĠÌ H													
FÎF FÊSÖÁÉÁFĚŠ, ÁÉÁFÈEY { ÁÈÍÝ^•	Ÿ ÖŠ FĒG HÍ FĒĽ Í ĒÉÌ G ĒĒÉ H ĒĒGJ													
FÎG FECOÁEÁFE Š ÁEÁFEY { ÁEEÝ^•	Ÿ ÖŠ FĒG HÍ FĒ Î ĒĒ I GĒĒ F HĒĒ F													
FÎH FÎCSÖÁÉÁFÎLŠ, ÁÉÁFÎEY (ALTÎY^•	Ÿ ÖŠ FĒG HÍ FĒ Ï ĒÉ Ì G ĒĒG H ĒĒĒ													
FÎ FESÖÆÆÆË Š(ÆÆÆEY { ÆËŸ^•	Ÿ ÖŠ FĒG HÍ FĒ Ì ĒĠ Ì G H ĒĒÍ Ì													
FÎ Í FIESÖÆÆÆË Š(ÆÆÆEY {ÆËŸ^•	Ÿ ÖŠ FĒG HÍ FĒ J ĒĒ Ì G ĒŒJ H ĒĒĒ													
FÎÎ FÊSÖÆÆÆĚŠ(ÆÆÆÈY {ÆËŸ^•	Ÿ ÖŠ FĒG HÍ FĒ F€ ĒÉ Ì G ĒE F H ĒĒ F													
FÎ FÎBO KÊ KFÎ Š(KÊ KFÎEY { ARÎÎ Y^•	Ÿ ÖŠ FĒG HÍ FĒĒ FF ĒĒ Ì G RĒĒ H ĒĒĒG!													
FÎÌ FÊSÖÆÆÆËŠ(ÆÆÆEY {ÆËŸ^•	Ÿ ÖŠ FĒG HÍ FĒ I ĒĠ Ì G ĒĠ Ì H													
FÎJ FÊSÖÆÆÆËŠ(ÆÆÆEY{ÆËŸ^•	Ÿ ÖŠ FĒG HÍ FĒĒ Í ĒĒ Ì G ĒEĒ H ĒEGJ													
FÏ € FÊSÖÆÆÆË Š(ÆÆÆEY { ÆËŸ^•	Ÿ ÖŠ FĒG HÍ FĒ Î ĒĠ Ì G ĒB F H ĒB F													
FÏF FESÖÆÆÆË Š(ÆÆÆEY { ÆËŸ^•	Ÿ ÖŠ FĒG HÍ FĒÉ Ï ĒÉÌ G ĒĒGJ H ĒEÍ													
FIG FESÖÆÆÆËŠ(ÆÆÆEY {ÆËŸ^•	Ÿ ÖŠ FĒG HÍ FĒ Ì ĒĠ Ì G H ĒĠ Ì													
FÏ H FÊSÖÆÆÆË Š(ÆÆÆEY { ÆËŸ^•	Ÿ ÖŠ FĒG HÍ FĒ J ĒĠ Ì G ĒĒG H ĒĒ													
	Ÿ ÖŠ FĒG HÍ FĒ F€ ĒĠÌ G ĒĒ F HĒB F													
FÏÍ FÉSÖÆÆÆË Š(ÆÆÆEY {ÆËŸ^•	Ÿ ÖŠ FĒG HÍ FĒ FF ĒĒ Ì G ĒĒĒ HĒEGJ													
	Ÿ ÖŠ FĒG HÍ FĒ I ĒĠÌ G ĒĒĠÌ H													
FÏ FÊSÖÆÆÆË Š(ÆÆÆEY { ÆËŸ^•	Ÿ ÖŠ FĒG HÌ FĒ Í ĒĒ Ì G ĒĒĒ HĒĒG													
FÏÌ FÈSÖÆÆÆË Š(ÆÆÆÈY {ÆËŸ^•	Ÿ ÖŠ FĒG HÍ FĒ Î ĒĠ Ì G ĒĒ F HĒĒ F													
FÏJ FÊSÖÆÆÆË Š(ÆÆÆEY { ÆËŸ^•	Ÿ ÖŠ FĒG HÌ FĒ Ï ĒĒ Ì G ĒĒG H ĒĒĒ													
	Ÿ ÖŠ FĒG HÍ FĒ Ì ĒĠ Ì G HĒĠ Ì													
FIF FESÖÆÆÆË Š(ÆÆÆEY { ÆËŸ^•	Ÿ ÖŠ FĒG HÍ FĒ J ĒĠ Ì G ĒŒGJ H ĒĒĠ													
FÌG FÈSÖÆÆÆË Š(ÆÆÆEY {ÆËŸ^•														
FIH FESÖÆÆÆË Š(ÆÆÆEY { ÆËŸ^•														
FI FESÖÆÆÆË Š(ÆÆÆEY { ÆËŸ^•														
FÌ Í FÉSÖÆÆRE Š ÆÆREY (ÆEÝ^•														
FÌÌ FÌEÖÄÉÁFÍÉ ŠĮ ÆÆFÉEY { À HEÝ^•														
F) FIESOÁLÁFIL Š ÁLÁFIEY { ALLTY^•														
FI FIESOÁLÁTÍ Š ÁLÁTEY (ALTÝ)														
F) J FTESÖÆÆTË Š(ÆÆTEEY (ÆTEY)														
FJ€ FTEÖÄÆÆTËŠ ÆÆFTEY { ÆTTŸ^•														
FJF FTEOÄEÁFTÉ Š ÆÆFTEY { ALTEY •														
FJG FESOÁLÁTĚ Š ÁLÁFEY (ALEÝ)^•														
FJH FTEOÄEÁFTÉ Š ÆÆFTEY { ARTEY														
FJI FTEOÄÆÆTĚŠ ÆÆFTEY (ÆTTÝ^•														
FJÍ FTEOÖÆÆTE ŠÍÆÆTEY { ARTIVO														
FUI FESOMENTE SCHEMET CHEET CHEET	Ÿ ÖŠ FĒG HĪ FĒĒ I ĒĒ Ì GĒĒG HĒĒG HĒĒ													

@UX'7ca V]bUh]cbg'f/7cbh]bi YXŁ

	n / ca	•]~		<u> </u>			<u>,</u>																		
		j^• 8					ÚЩ	Ù誰Ó誰	:Øæ&q	¦Ó∰	ÈØæ&È	ĦĎĦ	Øæ&I	TÉ)ŠÔ	Øæ&È	ĎШ	Øæ£È	Ď₩œ	ÈØæ£	ĦŎĦ	Øæ£À	ŤĚ	Øæ£È	ĎЩ	2008 <u>#</u>
FJÎ	FÈSÖÆÆ	ŤŠ(Æ	ÁFÈ€Y {	Æ	Ϋ́^•	Ϋ	ÖŠ	FÈ	ΗÏ	FĚ	Ì	ÈÉÍÌ	G		Н	⊞ (ì								
FJÏ	FÈSÖÆÆ	ŤŠ(Æ	ÁFÈ€Y {	Â	Ϋ́Λ∙	Ϋ	ÖŠ	FÈG	ΗÏ	FĚ	J	ÈÉÍÌ	G	ÈŒU	Н	⊞								
FJÌ	FÈSÖÆÆ	ŤŠ(Æ	ÁFÈ€Y {	Æ	Ϋ́^•	Ϋ	ÖŠ	FÈ	ΗÏ	FĚ	F€	ÈÉÍÌ	G	È∃F		Œ€IF								
FJJ		•			•		Ϋ	ÖŠ	FÈ	ΗÏ	FĚ	FF	ÈÉÉÌÌ	G	ÈÉÍ	Н	ËEGJ								
G€€	FÉGÖÆÆ	ŤŠ(Æ	ÁFÈ€Y {	Æ	Ϋ́^•	Ϋ	ÖŠ	FÈ	ΗÌ	FĚ	Τ	ÈÉÍÌ	G	ÈÉÍÌ	Н									
G€F	FÈSÖÆÆ	ŤŠ(Æ	ÁFÈ€Y {	Æ	Ϋ́Λ∙	Ϋ	ÖŠ	FÈ	ΗÌ	FĚ	ĺ	ÈÉÍÌ	G			ÈŒJ								
	FÉGÖÆÆ						Ϋ	ÖŠ	FÈ	ΗÌ	FĚ	Î	ÈÉÍÌ	G	È∃F	Н	È∃F								
G€H	FÉGÖÆÆ						Ϋ	ÖŠ	FÈG	HÌ	FĚ	Ϊ	È€ÍÌ	G	È€GJ	Η	ÈÉÍ								
G€	FÈSÖÆÆ						Ϋ	ÖŠ	FÈ	ΗÌ	FĚ	Ì	ÈÉÍÌ	G		Н	ÉÉ Ì								
G€Í	FÈSÖÆÆ	ŤŠ(Æ	ÁFÈ€Y {	Â	Ϋ́Λ∙	Ϋ	ÖŠ	FÈ	ΗÌ	FĚ	J	ÈÉÍÌ	G	ËEGJ	Н	Œĺ								
G€Î	FÈSÖÆÆ					Ϋ́^•	Ϋ	ÖŠ	FÈ	ΗÌ	FĚ	F€	ÈÉÍÌ	G	Œ€IF	Н	È∃F								
G€Ï	FÈSÖÆÆ					Ÿ ^•	Ϋ	ÖŠ	FÈG	Ĥ	FĚ	FF	È€ÍÌ		Ħ	Н	È€GJ								
G€Ì	FÈSÖÆÆ					Υ۸۰	Ϋ	ÖŠ	FÈG	HÌ	ΓĚ	1	È€ÍÌ		Œ€íì	Н									
G€J	1					Ϋ́Λ∙	Ϋ	ÖŠ	FÈG	HÌ	FĚ	ĺ	ÈÉÍÌ		Ē		ŒŒGJ								
	FÉGÖÆÆ					Ϋ́^•	Ϋ	ÖŠ	FÈ	ΗÌ	FĚ	Î	ÈÉÍÌ	G	Œ€IF	Н	Œ€IF								
	FÈSÖÆÆ					Ϋ́Λ∙	Ϋ	ÖŠ	FÈ	HÌ	FĚ	Ϊ	ÈÉÍÌ	G	ËEGJ	Н	Ħ								
	FÉGÖÆÆ					Ϋ́^•	Ϋ	ÖŠ	FÈG	HÌ	FĚ	Ì	È€ÍÌ	G		Н	Œ€íì								
GFH	FÉGÖÆÆ					Ϋ́Λ∙	Ϋ	ÖŠ		HÌ	FĚ	J	È€ÍÌ	G	È€GJ	Н	⊞€Í								
GFI	FÈSÖÆÆ					Ϋ́^•	Ϋ	ÖŠ	FÈ	HÌ	FĚ		ÈÉÍÌ	G	È∃F		Œ€IF								
GFÍ	FÈSÖÆÆ					Ϋ́Λ∙	Ϋ	ÖŠ	FÈ	HÌ	FĚ	FF	È€ÍÌ	G	ÈÉÍ	Н	ŒŒGJ								
ŒÎ	FÈSÖÆÆ					Ÿ^•	Ϋ	ÖŠ		Ы	FĚ	1	È€ÍÌ	G	ÈÉIÌ	Н									
GFÏ	FÈSÖÆÆ					ΫΛ∙	Ϋ	ÖŠ	FÈG	HJ	ΓĚ	ĺ	È€ÍÌ	G	ÈÉÍ		È€GJ								
GFÌ	FÈSÖÆÆ	•			•	Ÿ ^•	Ϋ	ÖŠ	FÈG	HJ	ΓĚ	Î	È€ÍÌ		È∃F	Η	È∃F								
	FÈSÖÆÆ					ΫΛ∙	Ϋ	ÖŠ		HJ	ΓĚ	Ϊ	È€ÍÌ	G	È€GJ	Η	ÈÉÍ								
	FÉGÖÆÆ					Ÿ^•	Ϋ	ÖŠ		HJ	ΓĚ	Ì	È€ÍÌ	G			ÈÉÌ								
	FÈSÖÆÆ					Ϋ́^•	Ϋ	ÖŠ		HJ	ΓĚ	J	È€ÍÌ		ËEGJ		ÈÉÍ								
	FÉGÖÆÆ					Ÿ ^•	Ϋ	ÖŠ		HJ	ΓĚ		ÈEÍÌ	G	Ë€IF	Η	È∃F								
GGH	FÉGÖÆÆ					Ÿ ^•	Ϋ	ÖŠ			FĚ	FF	È€ÍÌ		Œ€Í	Н	È€GJ								
GG							Ϋ	ÖŠ			FĚ	1	ÈÉÍÌ		Œíì	Н									
ŒÍ	FÈGÖÆÆ					Ÿ ^•	Ϋ	ÖŠ			FĚ	ĺ	È€ÍÌ		Œ€Í		ŒŒGJ								
GGÎ	FÈGÖÆÆ					Ÿ^•	Ϋ	ÖŠ				Î	È€ÍÌ		Ë€IF		⊞€IF								
GĞ	FÈSÖÆÆ					Ϋ́^•	Ϋ	ÖŠ	FÈG	Н	FĚ	Ϊ	È€ÍÌ	G	ËEGJ	Н	⊞€Í								
ϓ	FÈSÖÆÆ					Ÿ^•		ÖŠ		Ш	FĚ	Ì	È€ÍÌ	G		Н	Œ€íì								
GGJ	FÈSÖÆÆ					Ϋ́^•	Ϋ	ÖŠ	FÈG	HJ	FĚ	J	È€ÍÌ	G	È€GJ		⊞€Í								
	FÈSÖÆÆ					Υ۸۰	Ϋ	ÖŠ	FÈG	Ш	FĚ	F€	ÈÉÍÌ	G	È∃F	Н	⊞€IF								
GHF	FÈSÖÆÆ	ĔŠ(Æ	ÁFÈ€Y {	Á	Ϋ́^•	Ϋ	ÖŠ	FÈ	HJ	FĚ	FF	È€ÍÌ	G	ÈÉÍ	Н	ËEGJ								

9bj YcdY'>c]bhFYUMjcbg

	R[ã]c		ÝÆjaá	ŠÔ	ŸÁŽàá	ŠÔ	Z <i>Ä</i> žjàá	ŠÔ	T ÝÆŽàË∙cá	ŠÔ	TŸ <i>Á</i> ŽjàË-cá	ŠÔ	TZÁĞÄäËcá	ŠÔ
F	ÞĞ	{ æ¢		Н	ÎJHÈ€ÌÏ	Œ	FÌ Œ ĚÍÏ	HJ	FÍ∄ÌF	HF	FÍÎÈÍH	\mathbb{H}	FĠHĖJF	FJ
G		{ ā	ËF€ÏÏĚIÍ	ĞÏ	ÉÜJÎÈHFÌ	FG	JÌÈŒJH	HF	ËHHHÈIÏ	Ш		FĞ	ËĠJĖIÍ	FF
Н	ÞF	{ æ¢	FFGGÈ H	FΪ	ÎÍIÈĞÏ	Ì	FÌÏ FÐÍ	Ιĺ	HH€ÌÈFÌ	ΙÍ	FIÌËÏÍ	FJ	FHF€LĚHÌ	GÍ
1		{ ā	ÉFFGGÉHÎ H	ď	ÉLÎÈGF	HG		Œ	ÍĖII	GF	ËGGFIĚÏI	ΙH	ËĦÏĚĤ	FΪ
ĺ	ÞFH	{ æ¢	GÍHÈĖJÏ	FÌ	F€JÎÈGHÍ	8	FΪΪÌÈ̈́U	Н		FJG		Н	F∉ÏIÈFG	H€
Î		{ ā	ËG΀ÈGÛÎ	F€	ËFF€€ËFÏ	FI	ÎJÈNJ	Ĝ	ĔÏÌĔÌH	FÏ G	ĖÌĖÍÎ	Ĝ	ËF€Ì€ÈÉÍÌ	Î
Ϊ	V[œ ; K	{ æ¢	GGGGEË HG		G∉ÏÍÈÌG	Î	ÍGJĚJ	ΙH						
Ì		{ a	ËECECCEË HH	F€	ËG€ÏÍÈDÌG	H€	FĤIĚ€J	ÎΪ						

9bj YcdY5=G7 % h fl *\$!% L @F: 8 GhYY 7cXY7\ YWg

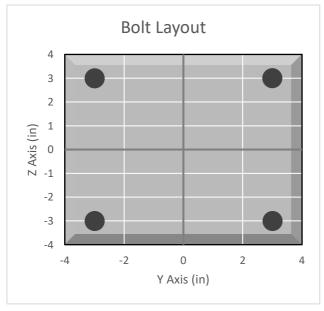
	T^{ à^¦	Ù@ ≱ ^	Ô[å^ÁÔ@^&\	Š[&Žajá	ŠÔ	Ù@@##\$`\$####\$###@#U}###@### @#### O`}
F	ÙŒ	ÚQÚÒ HĚ	ÈJÌ	I€	ΙÍ	ÎEÎÎ Î € UÎ ÎI I JÊHÎÎÎ ÎÎ Î €Î JÎ HÊÎÎ ÎJÎ HÊÎ (ŒÎPÊFÊ à
G	ÙŒH	ÚQÚÒ´HĚ	ÈÌ€	I€	HJ	EFÍ€ I€ FEÉIJFÉÉÌÍÍÍ€ÍJÍHÉÍÍJÍHÉÍ GÉÉFÉÀ
Н	ÙŒF	ÚQÚÒ´HĚ	ÈÎJ	I€	Н	EFÍ€ I€ FEÉIJFÉÉÌÏÍ€ÏJÍHÉÍÏJÍHÉÍ GÉÉFÉÀ
- 1	ÚÓG	ÔHÝÍ	ÈHÍ€	ΗĖίî	ΙÍ	EFH€ÎHEEÊÎHEEÊ
ĺ	ÚÓH	ÔHÝÍ	ÈΗΪ	ΗĖίî	IF	EFHGÎHEE HÎHGÎÎE EFÊ
Î	ÚÓF	ÔHÝÍ	ÈHH	ΗĖίî	Н	EFG ÎHEE ÎIHGIÎE ÎE ÎG JÎFEGÎH IF€I FEEFE
Ï	T ÚF	ÚŒÓÓ ŒÈ	ÈĠÎ	ÍΪ	Î	<u>FEGÌÍÏ</u> FÎŒÌÎÎ∰HŒHEFÌÏF∰FÌÏF∰F PFËFÀ
Ì	ΤÚΪ	ÚŒÓÓ ŒÈ	ÈGÍ	ÍΪ	FF	<u>F</u> EG ÍÏ F€ ŒÌÎÎ #HGFH€ FÌÏ F##FÌÏ F##PFËFÀ
J	ΤÚΙ	ÚŒÚÒ´ŒÈ	ĚΘΙ	ÍΪ	F€	EEHF ÍÏ FFŒÌÎÎ⊞HŒHEFÌÏF⊞FÌÏF⊞F PFËà
F€	ΤÚΗ	ÚŒÓÓ ŒÈ	ΗŒΙ	ÍΪ	ĺ	<u>FEGÌÍÏ</u> FFŒÌÎÎ∰HŒHEFÌÏF∰FÌÏF∰F PFÆà
FF	TÚG	ÚŒÚÒ´ŒÈ	ÈGIF	ÍΪ	Î	EEHH ÍÏ J ŒÌÎÎ HHGFH€ FÌÏFHHFÌÏFHHF PFËFÀ
FG	TÚJ	ÚŒÓÓ ŒÈ	ÈGI F	ÍΪ	F€	<u>FEGÎ Î Î H</u> GEÎ Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î
FH	ΤÚÌ	ÚŒÚÒ´ŒÈ	ÈHÌ	ÍΪ	F€	<u>FEGÎÎÎ</u> FEGÊÎÎÎ HH-QFH∈FÎ ÏFHHFÎ ÎFHHÊFÊFÊ
FI	ΤÚĺ	ÚŒÓÓ ŒÈ	ÈGF	ÍΪ	FΪ	EEHG Í Ï H ŒÌÎÎ EHHGFH€ FÌ Ï FEHHFÌ Ï FEHHÈFËFÀ
FÍ	ΤÚÎ	ÚŒÚÒ´ŒÈ	ÈGFF	ÍΪ	FÎ	<u> </u> <u>FEGÎ Î </u>
FÎ	ÔÚI	ÎĔÄ¢€ÈÄÄÁÚ∣æ€	Ėìî	Œ	G	<u>PÉ</u> IÌ GF ^ Ì GÏÍIÌ È ŒÍIÍ ÏÉ [Ì HÐ]ÎHÎIÍ G ÌÌÌÌ È P ĒFË à
FΪ	ÔÚÎ	ÎĔÄ¢€ÈÄÄÁÚ∣æ€	ÈÌÍ	Œ	Ϊ	EEJH GF ^ H G (
FÌ	ÔÚÍ	Î Ě Ä¢ CÎ İİ ÄÁÚ æ¢\	ÈÌ G	Œ	FH	PĒEJI GF ^ GG (I I Ì EÈÉ (I Í TÉ Í Ì HÐ) Î HĴ (GE EÈÈÈÈ FËF À
FJ	T FJ	ÚŒÓ ŒÈ	ÈG€	ΪG	F€	ÈEGJ ÏG GFIJFÎ HHOFH€FÌ ÏFHHFÌ ÏFHHEFËÀ
G€	ØP Œ	ŠŒ¢ŒH	ÈFÍ	€	FI	EEGÍ € : IHFÌ €Ì I EEGHHJOEÌ Í Í Ï Ë FÏ FFÌ GHH F POËF
Œ	Ø PFF	ŠG¢G¢H	ÈF€	€	Н	EEG € : IJFI € I EEGHHJŒ I I I E FFIJEEF PŒF
GG	TG€	ÚŒÓ ŒÈ	È€Ì	G	FÎ	LEFFÍ ÏG Î FI JFÎ HHHQFH€ FÎ ÏFHHHPÎ ÎFHHPÊFEFA
GH	TŒ	ÚŒÓ ŒÈ	È€l	ΪG	ĺ	ĒFÎ ÏG FHFIJFÎ ĒHGFH€ FÌ ÏF⊞FÌ ÏF⊞FĒFĒ à
G	PF	ÚQÚÒ´HĒ	È€JÏ	ΪG	ìì	<u>F</u> EÏÌ G F€Î€ÎÎÎ##Î]ÏÍ€ÏJÍHEÏÍÏJÍHEÏÍF PFEFà
GÍ	PH	ÚQÚÒ´HĒ	È€JÍ	ΪG	FÌΪ	BÉÏÎ G FÎ΀ÎÎÎ##Î]ÏÍ€ÏJÍH#ÎÍJÍHÊÎF PF#Eà
Ĝ	PG	ÚQÚÒ´HĒ	È€JÍ	ΪG	FIH	E EÏ € G Í Î €Î Î Î E Ħ Î Ï Í HĒ Î I I HĒ Î I I HĒ Î I
ĞÏ	OXP ÁHF	ŠQ¢Q¢H	È∭	€	J	EEG € : H Fi € I EEGHHJOE I I I E FFÌGHHF POEF
Ġ	ØPHG	ŠG¢G¢H	ΕÈÌΗ	€	FH	EEGÌ € ^ GFÌ €Ì I EEGHHJŒÌ [Í Ï Ë FFÌ G##F PŒF
GJ	ØP GG	ŠG¢G¢H	ÈEÏ€	€	G	EEGÎ € ^ I FI ê I EEGHHJOEÎ Í Í I É FI FFÌ GHH F POEF
H€	ØP FG	ŠG¢G¢H	ÈÎÌ	€	ì	EEGÏ € ^ HÎ FÎ € I EEGHHJOEÎ Í Í Ï ÉÏ FF FFÏ J I I I FF POEF
HF	ÔÚG	ŠÎĖ΢IÈÈ΢⊕EĞÍ	ÈÉÍJ	€	Ĝ	EGÜ € ^ J ÍFFÌ HEFËÏ Í Ï Ï EGG Î HEFF FG EFF PGËF
HG	ÔÚH	SÎÊ¢IÈ΢€EGÍ	ÈÍÌ	€	Œ	EEGÎ € ^ HIFFI HEETI Í TI EEG Î HEET F G EEF PŒF
HH	ÔÚF	ŠÎĖĖ¢IĖĖ΢⊕ĖGÍ	È∃Ì	€	HG	EG € ^ FI FFI HEET I I TEG G Î HEET F G EEF P GEF

9bj YcdY5=G=G%\$!%& '@F: 8 7c 'X': cfa YX'GHYY 7cXY7\ YWg

T^{à^¦Ù@na}^ Ô[å^ÁÔ@^&\ ŠŢ&ŽājáŠÔÙ@ca#HHŠŢ&ŽÃHHŠTåŠÔ]@and\}Ž#HH\$@and=T}#HH\$@and=T}#HH\$Oà Ô{^^Ô{:: Ò`} Þ[ÁÖæncæÁN[ÁÚ¦ā]dÁHH

APPENDIX D ADDITIONAL CALCUATIONS

Analysis date: 27.07.2021



BOLT TOOL 1.5.2

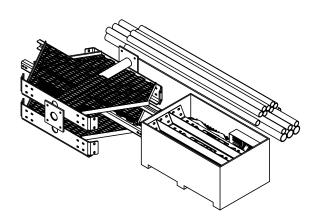
Project Data									
Job Code:	188622								
Carrier Site ID:	NJJER01085A								
Carrier Site Name:	CT-CCI-T-806352								

Co	de
Design Standard:	TIA-222-H
Slip Check:	No
Pretension Standard:	TIA-222-H

Bolt Properties									
Connection Type:	Bolt								
Diameter:	0.625	in							
Grade:	A325								
Yield Strength (Fy):	92	ksi							
Ultimate Strength (Fu):	120	ksi							
Number of Bolts:	4								
Threads Included:	No								
Double Shear:	No								
Connection Pipe Size:	-	in							

Connection Description	
Standoff to Monopole	

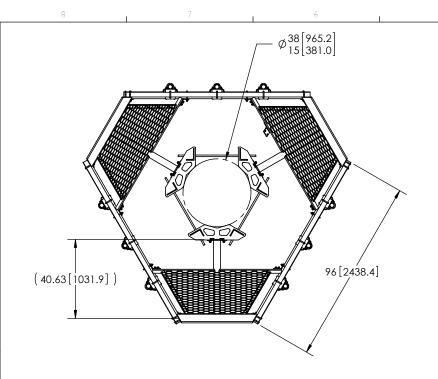
Bolt C	heck*	
Tensile Capacity (ϕT_n):	20340.1	lbs
Shear Capacity (ϕV_n) :	17257.3	lbs
Tension Force (T _u):	4075.5	lbs
Shear Force (V _u):	650.6	lbs
Tension Usage:	19.1%	
Shear Usage:	3.6%	
Interaction:	19.1%	Pass
Controlling Member:	SA2	
Controlling LC:	42	

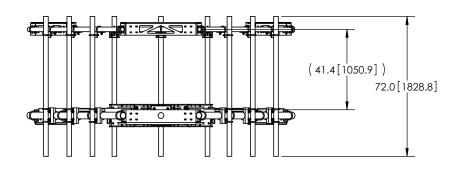

*Rating per TIA-222-H Section 15.5

APPENDIX E SUPPLEMENTAL DRAWINGS

ITEM	PART NO.	DESCRIPTION	QTY.	WEIGHT	NOTE NO.
1 MTC3006SB	STEEL BUNDLE FOR SNUB NOSE PLATFORM	1 402.64 LBS			
2 MCPK8CSB	PIPE STEEL BUNDLE FOR MC-PK8-C	1 464.27 LBS			
3 MCPK8CHWK	HARDWARE KIT FOR MC-PK8-C	1 543.22 LBS			

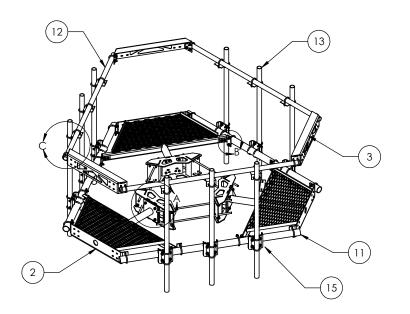
	REVISIONS								
REV.	ECN	DESCRIPTION	BY	DATE					
Α		Initial release	DRR	12/27/11					
В	8000005979	CHANGE NOSE CORNER BRKT, ADD GUB-4240	MSM	11/25/14					
С	8000007579	NEW RINGMOUNT WELDMENT DESIGN	RJC	04/07/15					

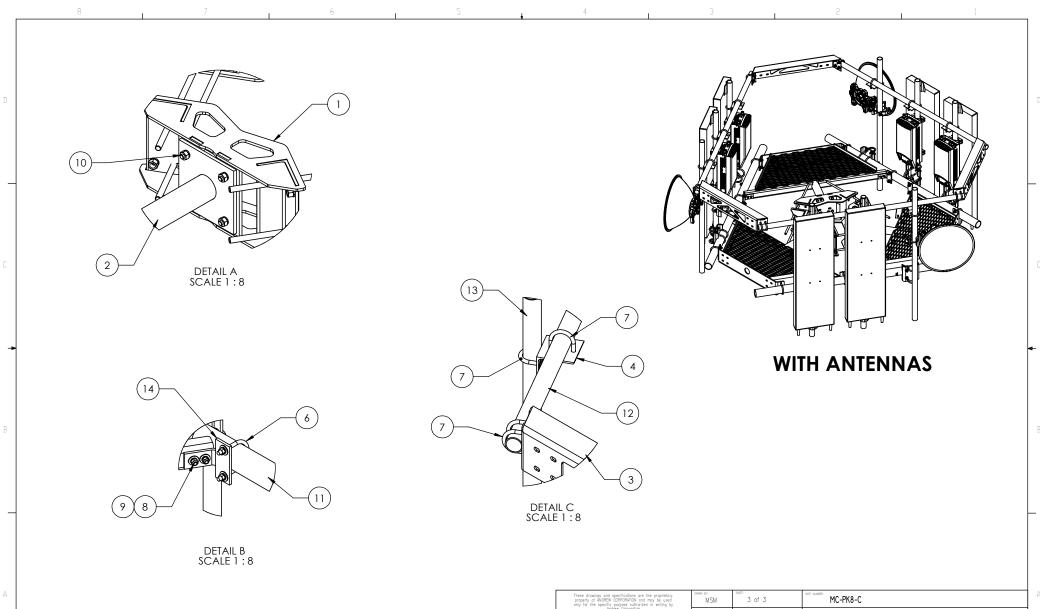

FOR BOM ENTRY ONLY



NOTES:

1. CUSTOMER ASSEMBLY SHEETS 2-3.


property of ANDREW CORPORATION and may be only for the specific purpose authorized in wr Andrew Corporation.	be used iriting by	MSM	1 of 3	MC-PK8-C
Andrew Corporation. ALL DIMENSIONS ARE IN INCHES U.O.S. TOLERANCES UNLESS OTHERWISE SPECIFIED:		онохо ву: ТР	NTS	LOW PROFILE PLATFORM KIT 8' FACE
.X = ± .12 ANGLES .XX = ± .06 FRACTIONS	±2° ±1/32	10/18/11	A36, A500	ASSEMBLY DRAWING
.XXX= ± .03	11/02	REVISION:	GALV A123	WESTCHESTER, IL, 60154
DO NOT SCALE THIS PRINT		C	1410.14 LBS	ANDREW @ U.S.A.


NOTES:

- 1. ALL METRIC DIMENSIONS ARE IN BRACKETS.
 2. WILL FIT MONOPOLES 15"-38" OD.

	ITEM	PART NO.	DESCRIPTION	QTY.	WEIGHT
>	1	MC-RM1550-3	12" - 50" OD RINGMOUNT	1	230.42 LBS
	2	MTC300601	Low Profile Co-Location Platform Snub Nose	3	134.21 LBS
	3	MT195801	Corner Weldment Snub Nose Handrail	3	27.10 LBS
	4	XA2020.01	CROSS OVER ANGLE	9	2.65 LBS
	5	GUB-4356	1/2" X 3-5/8" X 6" GALV U-BOLT	18	0.82 LBS
	6	GUB-4355	1/2" X 3-5/8" X 5" GALV U-BOLT	12	0.71 LBS
	7	GUB-4240	1/2" X 2-1/2" X 4" GALV U-BOLT	48	0.56 LBS
	8	GB-04145	1/2" X 1-1/2" GALV BOLT KIT	12	0.13 LBS
	9	GWF-04	1/2" GALV FLAT WASHER	24	0.03 LBS
	10	GB-0520A	5/8" X 2" GALV BOLT KIT (A325)	12	0.27 LBS
	11	MT54796	3.50" OD X 96" GALV PIPE	3	60.28 LBS
	12	MT-651-96	Ø 2.375" OD X 96" PIPE	3	29.07 LBS
Ī	13	MT-651	2.375" OD x 72" PIPE	9	21.80 LBS
Ī	14	MT19617	MT196 Pipe Mount Plate	6	2.49 LBS
	15	MT21701	PIPE MOUNT PLATE	9	7.93 LBS

These drawings and specifications are the proprietary property of ANDREW CORPORATION and may be used only for the specific purpose authorized in writing by Andrew Corporation.	MSM	2 of 3	MC-PK8-C
LL DIMENSIONS ARE IN INCHES U.O.S.	онахиах вт: ТР	NTS	25" OD Snub Nose MT-196
OLERANCES UNLESS OTHERWISE SPECIFIED: .X = \pm .12 ANGLES \pm 2' .XX = \pm .06 FRACTIONS \pm 1/32	10/18/11	A36, A53	BRANG TYSE ASSEMBLY DRAWING
.XXX= ± .03 REMOVE BURRS AND BREAK EDGES .005	REVISION:	GALV A123	WESTCHESTER, IL, 60154
DO NOT SCALE THIS PRINT	C	1361.27 LBS	ANDREW & U.S.A.

NTS

A36, A53 FNSH GALV A123

1361.27 LBS

10/18/11

С

DO NOT SCALE THIS PRINT

25" OD Snub Nose MT-196

WESTCHESTER, IL. 60154

ASSEMBLY DRAWING

NOTES:

1. ALL METRIC DIMENSIONS ARE IN BRACKETS.

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: 806352

NJJER01085A 126 Ledge Road Darien, Connecticut 06820

May 20, 2022

EBI Project Number: 6222003431

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of FCC general population allowable limit:	60.86%			

May 20, 2022

Attn: Dish Wireless

Emissions Analysis for Site: 806352 - NJJER01085A

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at 126 Ledge Road in Darien, Connecticut for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 126 Ledge Road in Darien, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n7l channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) 4 n66 channels (AWS Band 2190 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 5) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative

estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 6) The antennas used in this modeling are the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector A, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector B, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antenna mounting height centerline of the proposed antennas is 76 feet above ground level (AGL).
- 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 9) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	Α	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21
Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz	Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz	Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz
Gain:	11.35 dBd / 15.75 dBd / 16.75 dBd	Gain:	11.35 dBd / 15.75 dBd / 16.75 dBd	Gain:	11.35 dBd / 15.75 dBd / 16.75 dBd
Height (AGL):	76 feet	Height (AGL):	76 feet	Height (AGL):	76 feet
Channel Count:	12	Channel Count:	12	Channel Count:	12
Total TX Power (W):	440.00 Watts	Total TX Power (W):	440.00 Watts	Total TX Power (W):	440.00 Watts
ERP (W):	2,524.75	ERP (W):	2,524.75	ERP (W):	2,524.75
Antenna A1 MPE %:	2.34%	Antenna BI MPE %:	2.34%	Antenna C1 MPE %:	2.34%

environmental | engineering | due diligence

Site Composite MPE %				
Carrier	MPE %			
Dish Wireless (Max at Sector A):	2.34%			
AT&T	10.67%			
Verizon	19.21%			
Clearwire	0.39%			
Sprint	5.95%			
Metro PCS	3.95%			
T-Mobile	18.35%			
Site Total MPE % :	60.86%			

Dish Wireless MPE % Per Sector				
Dish Wireless Sector A Total:	2.34%			
Dish Wireless Sector B Total:	2.34%			
Dish Wireless Sector C Total:	2.34%			
Site Total MPE % :	60.86%			

Dish Wireless Maximum MPE Power Values (Sector A)							
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE
Dish Wireless 600 MHz n71	4	110.82	76.0	3.25	600 MHz n71	400	0.81%
Dish Wireless 1900 MHz n70	4	245.22	76.0	7.20	1900 MHz n70	1000	0.72%
Dish Wireless 2190 MHz n66	4	275.14	76.0	8.07	2190 MHz n66	1000	0.81%
						Total:	2.34%

[•] NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)
Sector A:	2.34%
Sector B:	2.34%
Sector C:	2.34%
Dish Wireless Maximum MPE % (Sector A):	2.34%
Site Total:	60.86%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **60.86**% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

6325 Ardrey Kell Rd, Suite 600 Charlotte, NC 28277

Phone: www.crowncastle.com

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

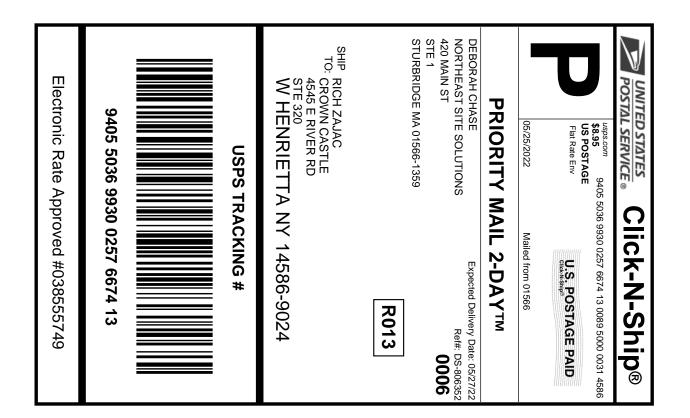
Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Tower Share Application

Crown Castle telecommunications site at: 126 LEDGE ROAD, DARIEN, CT 06820

CROWN ATLANTIC COMPANY LLC ("Crown Castle") hereby authorizes DISH NETWORK, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name: 806352/BRG 302 943052


Customer Site ID: NJJER01085A/CT-CCI-T-806352 Site Address: 126 Ledge Road, DARIEN, CT 06820

Crown Castle

Robin Cannizzaro Real Estate Specialist

Exhibit H

Recipient Mailings

Cut on dotted line.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0257 6674 13

564256756 05/25/2022 Trans. #: Print Date: Ship Date: 05/25/2022 Delivery Date: 05/27/2022 Priority Mail® Postage: Total:

\$8.95 \$8.95

Ref#: DS-806352

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


RICH ZAJAC

CROWN CASTLE 4545 E RIVER RD

STE 320

W HENRIETTA NY 14586-9024

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Cut on dotted line.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0257 6674 20

564256756 05/25/2022 Trans. #: Print Date: Ship Date: 05/25/2022 Delivery Date: 05/27/2022 Priority Mail® Postage: Total:

\$8.95 \$8.95

Ref#: DS-806352

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

MONICA MCNALLY

FIRST SELECTMAN 2 RENSHAW RD DARIEN CT 06820-5344

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Cut on dotted line.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0257 6674 37

564256756 05/25/2022 Trans. #: Print Date: Ship Date: 05/25/2022 Delivery Date: 05/27/2022 Priority Mail® Postage: Total:

\$8.95 \$8.95

Ref#: DS-806352

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

JEREMY GINSBURG

TOWN PLANNER 2 RENSHAW RD DARIEN CT 06820-5344

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

FARMINGTON 210 MAIN ST FARMINGTON, CT 06032-9998 (800)275-8777

05/25/2022

04:46 PM

Product

Qty Unit

Price

Price

Prepaid Mail

\$0.00

West Henrietta, NY 14586 Weight: O lb 2.00 oz

Acceptance Date: Wed 05/25/2022

Tracking #: 9405 5036 9930 0257 6674 13

\$0.00

Prepaid Mail 1 Darien, CT 06820 Weight: 0 lb 9.90 oz Acceptance Date:

Wed 05/25/2022

Tracking #: 9405 5036 9930 0257 6674 37

\$0.00

Prepaid Mail 1 Darien, CT 06820 Weight: 0 lb 9.70 oz Acceptance Date: Wed 05/25/2022

Tracking #: 9405 5036 9930 0257 6674 20

Grand Total:

Every household in the U.S. is now eligible to receive a third set of 8 free test kits. Go to www.covidtests.gov

Preview your Mail Track your Packages Sign up for FREE @ https://informeddelivery.usps.com

All sales final on stamps and postage. Refunds for guaranteed services only. Thank you for your business.

Tell us about your experience. Go to: https://postalexperience.com/Pos or scan this code with your mobile device.

or call 1-800-410-7420.

UFN: 082618-0132

Receipt #: 840-50600020-1-4740476-1

Clerk: 09