



November 7, 2022

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE:

Notice of Exempt Modification for ATT Crown #842857; ATT Site ID CTV5069 66 Sugar Hollow Road, Danbury, CT 06810

Latitude: 41° 20′ 10.00″ / Longitude: -73° 28′ 14.40″

#### Dear Ms. Bachman:

AT&T currently maintains nine (9) antennas at the 108-foot level of the existing 106-foot monopole tower at 66 Sugar Hollow Road, Danbury, CT. The tower is owned by Crown Castle USA Inc. and the property is owned by Sugar Hollow Holding LLC. AT&T now intends to replace nine (9) antennas and to install six (6) new antennas and ancillary equipment at the 108-foot level. This modification may include B2, B5, B17, B14, B29, B30, B66 & n77 hardware that is 4G(LTE) and/or 5GNR capable through remote software configuration and either or both services may be turned on or off at various times.

#### Panned Modification:

#### Tower:

#### Installed New:

Install Mount Modifications per Mount Analysis

- (3) CCI-TPA65R-BU6DA-K Antennas
- (3) CCI-OPA65R-BU6DA Antennas
- (3) Ericsson-4478 B14 RRUs
- (3) Ericsson-8843 B2/B66A RRUs
- (1) Ericsson-4449 B5/B12 RRU
- (1) RAYCAP-DC9-48-60-24-8C-EV Squid
- (1) 24-Pair Fiber Cable (3/8")
- (1) 6AWG DC Cable (7/8")
- (6) Dual Radio Mounts
- (6) Y-Cables for dual band radios

#### Remove:

- (6) POWERWAVE-7770.00.850.02 Antennas
- (3) POWERWAVE-P65-16-XLH-RR Antennas
- (3) ERICSSON-RRUS-11 B12 RRUs
- (6) POWERWAVE-LGP21401
- (3) POWERWAVE-TT19-08BP111-001 TMAs
- (1) RAYCAP-DC6-48-60-18 Squid
- (6) COAX CABLES (1-5/8") & (1) 12-Pair Fiber Cable (3/8") The Foundation for a Wireless World.

CrownCastle.com

Page 2

#### Ground:

Install New:

(1) XMU

#### Remove:

(3) ERICSSON-4415 B25 RRUs

The Connecticut Siting Council's telecommunications database states that the Council approved the tower on March 28, 2001, however, after a diligent search of the available online records, a copy of said decision was not easily available.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Mayor Dean Esposito, for the municipality, Sharon Calitro, Planning Director, Sugar Hollow Holding LLC c/o Lucille Peatt is the property owner and Crown Castle is the tower owner.

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, ATT respectfully submits that the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Domenica Tatasciore.

Sincerely,

Domenica Tatasciore

Site Acquisition Specialist

1800 W. Park Drive

Westborough, MA 01581

(508) 621-9161/ Domenica. Tatasciore@crowncastle.com

#### Page 3

#### Attachments

cc:

Mayor Dean Esposito City of Danbury 155 Deer Hill Avenue Danbury, CT 06810 203-797-4511

Sharon Calitro, Planning Director City of Danbury 155 Deer Hill Avenue Danbury, CT 06810 203-797-4525

Sugar Hollow Holding LLC c/o Lucille Peatt 202-3 Mamanasco Road Ridgefield, CT 06877 561-743-0114

Crown Castle, Tower Owner

From:

TrackingUpdates@fedex.com

То:

Tatasciore, Domenica

Subject: Date: FedEx Shipment 770352546327: Your package has been delivered

Tuesday, November 8, 2022 9:34:55 AM

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.



# Hi. Your package was delivered Tue, 11/08/2022 at 9:28am.



Delivered to 155 DEER HILL AVE, DANBURY, CT 06810 Received by J.JOHN

**OBTAIN PROOF OF DELIVERY** 

TRACKING NUMBER

770352546327

FROM

Domenica Tatasciore 1800 West Park Drive Suite 200

WESTBOROUGH, MA, US, 01581

TO City of Danbury

Mayor Dean Esposito 155 Deer Hill Avenue

DANBURY, CT, US, 06810

REFERENCE

799001.7680

SHIPPER REFERENCE

799001.7680

SHIP DATE

Mon 11/07/2022 08:35 PM

DELIVERED TO

Receptionist/Front Desk

PACKAGING TYPE

FedEx Envelope

ORIGIN

WESTBOROUGH, MA, US, 01581

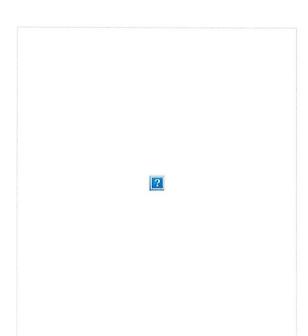
DESTINATION

DANBURY, CT, US, 06810

SPECIAL HANDLING

Deliver Weekday

NUMBER OF PIECES


1

TOTAL SHIPMENT WEIGHT

0.50 LB

SERVICE TYPE

FedEx Priority Overnight



# Get the FedEx® Mobile app

Create shipments, receive tracking alerts, redirect packages to a FedEx retail location for pickup, and more from the palm of your hand

- Download now.



From:

TrackingUpdates@fedex.com

To:

Tatasciore, Domenica

Subject:

FedEx Shipment 770352559213: Your package has been delivered

Date: Tuesday, November 8, 2022 9:34:27 AM

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.



# Hi. Your package was delivered Tue, 11/08/2022 at 9:26am.



Delivered to 155 DEER HILL AVE, DANBURY, CT 06810 Received by M.MICHELLE

**OBTAIN PROOF OF DELIVERY** 

TRACKING NUMBER

770352559213

FROM

Domenica Tatasciore
1800 West Park Drive

Suite 200

WESTBOROUGH, MA, US, 01581

TO City of Danbury

Sharon Calitro, Planning Director

155 Deer Hill Avenue

DANBURY, CT, US, 06810

REFERENCE

799001.7680

SHIPPER REFERENCE

799001.7680

SHIP DATE

Mon 11/07/2022 08:35 PM

DELIVERED TO

Receptionist/Front Desk

PACKAGING TYPE

FedEx Envelope

ORIGIN

WESTBOROUGH, MA, US, 01581

DESTINATION

DANBURY, CT, US, 06810

SPECIAL HANDLING

Deliver Weekday

NUMBER OF PIECES

1

TOTAL SHIPMENT WEIGHT

1.00 LB

SERVICE TYPE

FedEx Priority Overnight

# 2

# Get the FedEx® Mobile app

Create shipments, receive tracking alerts, redirect packages to a FedEx retail location for pickup, and more from the palm of your hand

- Download now.



From: <u>TrackingUpdates@fedex.com</u>
To: <u>Tatasciore, Domenica</u>

**Subject:** FedEx Shipment 770352582895: Your package has been delivered

Date: Tuesday, November 8, 2022 9:52:38 AM

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.



# Hi. Your package was delivered Tue, 11/08/2022 at 9:46am.



Delivered to 202 MAMANASCO RD 3, RIDGEFIELD, CT 06877

**OBTAIN PROOF OF DELIVERY** 



Delivery picture not showing? View in browser.

FROM Domenica Tatasciore

1800 West Park Drive

Suite 200

WESTBOROUGH, MA, US, 01581

TO Sugar Hollow Holding LLC

Lucille Peatt

202-3 Mamanasco Road

RIDGEFIELD, CT, US, 06877

**REFERENCE** 799001.7680

SHIPPER REFERENCE 799001.7680

SHIP DATE Mon 11/07/2022 08:35 PM

DELIVERED TO Residence

PACKAGING TYPE FedEx Envelope

ORIGIN WESTBOROUGH, MA, US, 01581

**DESTINATION** RIDGEFIELD, CT, US, 06877

SPECIAL HANDLING Deliver Weekday

Residential Delivery

NUMBER OF PIECES

TOTAL SHIPMENT WEIGHT 0.50 LB

The Assessor's office is responsible for the maintenance of records on the ownership of properties. Assessments are computed at 70% of the estimated market value of real property at the time of the last revaluation which was 2017.

## **DANBURY** • ct

#### ASSESSOR'S OFFICE

Information on the Property Records for the Municipality of Danbury was last updated on 10/24/2022.

#### **Property Summary Information**

Parcel Data And Values

Building 🕶

Outbuildings

Sales

**Permits** 

#### Parcel Information

Location:

66 SUGAR HOLLOW

Property Use:

Industrial

Primary Use:

Office Warehouse

Unique ID:

G25006

Map Block

G25 6

Acres:

7.7000

490 Acres:

0.00

RD

Zone:

Lot:

LCI4

Volume /

Page:

0949/0773

**Developers** 

Map / Lot:

Census:

#### Value Information

Appraised Value

Assessed Value

Land

2,616,700

1,831,700

Buildings

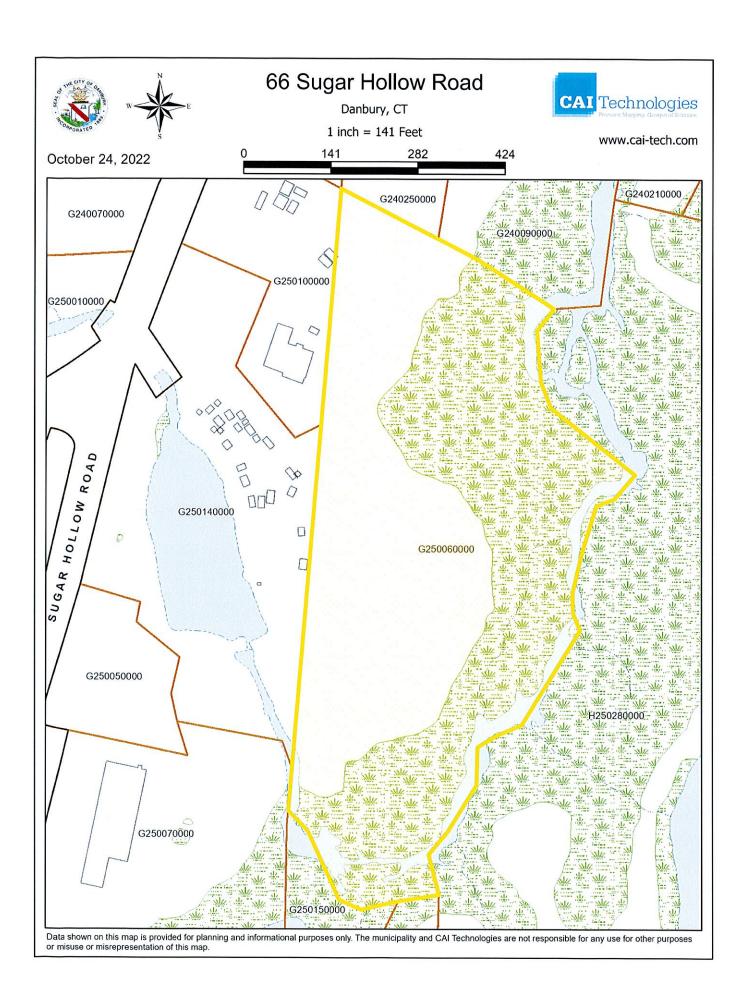
19,700

13,800

|                       | Appraised Value | Assessed Value |
|-----------------------|-----------------|----------------|
| Detached Outbuildings | 1,200           | 800            |
| Total                 | 2,637,600       | 1,846,300      |

#### **Owner's Information**

Owner's Data


STATE OF CONNECTICUT 210 CAPITOL AVE STE 1 HARTFORD, CT 06106

Back To Search

Save Field Card

**Print View** 

Information Published With Permission From The Assessor



### RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS



Site Name: BENNETT POND

Crown Castle Site# 842857

Site ID: CTV5069

Project Name: LTE 4C

**Address:** 66 SUGAR HOLLOW ROAD, DANBURY,

CT 06810

County: FAIRFIELD

**Latitude:** 41.3366919

**Longitude:** -73.4710989

Structure Type: MONOPOLE

Property Owner: SUGAR HOLLOW HOLDING LLC

Property Contact: VERONICA CHAPMAN

#### **AT&T Existing Facility**

#### **Report Information**

Report Writer: Sushil Dogra Report Generated Date: 11-03-2022

#### **Site Compliance Statement**

| Compliance Status                                  | Compliant |
|----------------------------------------------------|-----------|
| Cumulative General Population % MPE (Ground Level) | 14.60%    |

November 03, 2022

#### Emissions Analysis for Site: CTV5069- BENNETT POND

MobileComm Professionals, Inc was directed to analyze the proposed AT&T facility located at **66 SUGAR HOLLOW ROAD**, **DANBURY**, **CT 06810**, for the purpose of determining whether the emissions from the Proposed AT&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of milliwatts per square centimeter (mW/cm²). The number of mW/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of milliwatts per square centimeter (mW/cm²). The general population exposure limits for the 700 and 850 MHz Bands are approximately 0.467 mW/cm² and 0.567 mW/cm² respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS), 2300 MHz (WCS), 3450 MHz (DoD Band) and 3840 MHz (C Band) bands is 1 mW/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

#### 1. Theoretical Calculations

Calculations were done for the proposed AT&T Wireless antenna facility located at **66 SUGAR HOLLOW ROAD**, **DANBURY**, **CT 06810** using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 LTE channels (700 MHz Band 14) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 2) 4 LTE/5G channels (1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) 4 LTE/5G channels (2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 4) 4 LTE channels (700 MHz Band 12) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 5) 4 5G channels (850 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 6) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 7) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 8) The antennas used in this modeling are the CCI TPA65R-BU6D for the 700 MHz(Band 14) / 1900 MHz / 2100 MHz channel(s), the CCI OPA65R-BU6D for the 700 MHz(B12) / 850 MHz channel(s) in Sector A, CCI TPA65R-BU6D for the 700 MHz(Band 14) / 1900 MHz / 2100 MHz channel(s), the CCI OPA65R-BU6D for the 700 MHz(B12) / 850 MHz channel(s) in Sector B, CCI TPA65R-BU6D for the 700 MHz(Band 14) / 1900 MHz / 2100 MHz channel(s), the CCI OPA65R-BU6D for the 700 MHz(B12) / 850 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- The antenna mounting height centerline of the proposed antennas is 108 feet above ground level (AGL).
- 10) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 11) All calculations were done with respect to uncontrolled / general population threshold limits.

#### 2. Antenna Inventory & Power Data

| Sector | Ant ID | Operator | Antenna<br>Mfg | Antenna Model | Antenna<br>Type | FREQ.<br>(MHz) | TECH.    | AZ.<br>(°) | H<br>B<br>W<br>(°) | Antenna<br>Gain (dBd) | Antenna<br>Aperture<br>(ft) | #of<br>Channels | Transmitter<br>Power (Watts) | Total ERP<br>(Watts) | Total EIRP<br>(Watts) | Total Ant<br>Transmitter<br>Power<br>(Watts) | Total Ant<br>ERP(Watts) | Ant MPE% |
|--------|--------|----------|----------------|---------------|-----------------|----------------|----------|------------|--------------------|-----------------------|-----------------------------|-----------------|------------------------------|----------------------|-----------------------|----------------------------------------------|-------------------------|----------|
| Α      | 1      | AT&T     | CCI            | TPA65R-BU6D   | Panel           | 700            | LTE(B14) | 0          | 73                 | 12.35                 | 6                           | 4               | 160.00                       | 2749.64              | 4509.41               |                                              |                         |          |
| Α      | 1      | AT&T     | CCI            | TPA65R-BU6D   | Panel           | 1900           | LTE/5G   | 0          | 66                 | 15.95                 | 6                           | 4               | 160.00                       | 6299.07              | 10330.47              | 480                                          | 15798.28                | 5.84%    |
| Α      | 1      | AT&T     | CCI            | TPA65R-BU6D   | Panel           | 2100           | LTE/5G   | 0          | 66                 | 16.25                 | 6                           | 4               | 160.00                       | 6749.57              | 11069.30              |                                              |                         |          |
| Α      | 2      | AT&T     | CCI            | OPA65R-BU6D   | Panel           | 700            | LTE(B12) | 0          | 73                 | 12.15                 | 6                           | 4               | 160.00                       | 2625.89              | 4306.46               | 320                                          | 5856.44                 | 3.49%    |
| Α      | 2      | AT&T     | CCI            | OPA65R-BU6D   | Panel           | 850            | 5G       | 0          | 64                 | 13.05                 | 6                           | 4               | 160.00                       | 3230.55              | 5298.10               | 320                                          | 3830.44                 | 5.49%    |
| В      | 3      | AT&T     | CCI            | TPA65R-BU6D   | Panel           | 700            | LTE(B14) | 120        | 73                 | 12.35                 | 6                           | 4               | 160.00                       | 2749.64              | 4509.41               |                                              |                         |          |
| В      | 3      | AT&T     | CCI            | TPA65R-BU6D   | Panel           | 1900           | LTE/5G   | 120        | 66                 | 15.95                 | 6                           | 4               | 160.00                       | 6299.07              | 10330.47              | 480                                          | 15798.28                | 5.84%    |
| В      | 3      | AT&T     | CCI            | TPA65R-BU6D   | Panel           | 2100           | LTE/5G   | 120        | 66                 | 16.25                 | 6                           | 4               | 160.00                       | 6749.57              | 11069.30              |                                              |                         | 1        |
| В      | 4      | AT&T     | CCI            | OPA65R-BU6D   | Panel           | 700            | LTE(B12) | 120        | 73                 | 12.15                 | 6                           | 4               | 160.00                       | 2625.89              | 4306.46               | 320                                          | F0FC 44                 | 3.49%    |
| В      | 4      | AT&T     | CCI            | OPA65R-BU6D   | Panel           | 850            | 5G       | 120        | 64                 | 13.05                 | 6                           | 4               | 160.00                       | 3230.55              | 5298.10               | 320                                          | 5856.44                 | 3.49%    |
| С      | 5      | AT&T     | CCI            | TPA65R-BU6D   | Panel           | 700            | LTE(B14) | 240        | 73                 | 12.35                 | 6                           | 4               | 160.00                       | 2749.64              | 4509.41               |                                              |                         |          |
| С      | 5      | AT&T     | CCI            | TPA65R-BU6D   | Panel           | 1900           | LTE/5G   | 240        | 66                 | 15.95                 | 6                           | 4               | 160.00                       | 6299.07              | 10330.47              | 480                                          | 15798.28                | 5.84%    |
| С      | 5      | AT&T     | CCI            | TPA65R-BU6D   | Panel           | 2100           | LTE/5G   | 240        | 66                 | 16.25                 | 6                           | 4               | 160.00                       | 6749.57              | 11069.30              | 1                                            |                         |          |
| С      | 6      | AT&T     | CCI            | OPA65R-BU6D   | Panel           | 700            | LTE(B12) | 240        | 73                 | 12.15                 | 6                           | 4               | 160.00                       | 2625.89              | 4306.46               | 220                                          | 5056.44                 | 2.400/   |
| С      | 6      | AT&T     | CCI            | OPA65R-BU6D   | Panel           | 850            | 5G       | 240        | 64                 | 13.05                 | 6                           | 4               | 160.00                       | 3230.55              | 5298.10               | 320                                          | 5856.44                 | 3.49%    |

**Table 2.1: Antenna Inventory & Power Data** 

.

| Cumulative Site MPE%        |        |  |  |  |  |  |
|-----------------------------|--------|--|--|--|--|--|
| Carrier                     | MPE%   |  |  |  |  |  |
| AT&T (Max MPE% at Sector A) | 9.34%  |  |  |  |  |  |
| Sprint                      | 1.18%  |  |  |  |  |  |
| Dish                        | 4.08%  |  |  |  |  |  |
|                             |        |  |  |  |  |  |
| Site Total MPE%             | 14.60% |  |  |  |  |  |

| AT&T Max MPE% Per Sector |        |  |  |  |  |  |
|--------------------------|--------|--|--|--|--|--|
| AT&T Sector A Total      | 9.34%  |  |  |  |  |  |
| AT&T Sector B Total      | 9.34%  |  |  |  |  |  |
| AT&T Sector C Total      | 9.34%  |  |  |  |  |  |
|                          |        |  |  |  |  |  |
| Site Total MPE%          | 14.60% |  |  |  |  |  |

**Table 2.2: Cumulative Site MPE%** 

Table 2.3: AT&T MPE% Per Sector

| Sector | Ant ID | Operator | Antenna<br>Mfg | Antenna Model | FREQ.<br>(MHz) | TECH.    | #of<br>Channels | Transmitter<br>Power (Watts) | Total ERP<br>(Watts) | Total EIRP<br>(Watts) | Height (ft) | Total Power Density (mW/cm²) | Allowable MPE<br>(mW/cm²) | Calculated MPE% |
|--------|--------|----------|----------------|---------------|----------------|----------|-----------------|------------------------------|----------------------|-----------------------|-------------|------------------------------|---------------------------|-----------------|
| Α      | 1      | AT&T     | CCI            | TPA65R-BU6D   | 700            | LTE(B14) | 4               | 160.00                       | 2749.64              | 4509.41               | 108.00      | 0.008481                     | 0.467                     | 1.82%           |
| Α      | 1      | AT&T     | CCI            | TPA65R-BU6D   | 1900           | LTE/5G   | 4               | 160.00                       | 6299.07              | 10330.47              | 108.00      | 0.019428                     | 1.000                     | 1.94%           |
| Α      | 1      | AT&T     | CCI            | TPA65R-BU6D   | 2100           | LTE/5G   | 4               | 160.00                       | 6749.57              | 11069.30              | 108.00      | 0.020818                     | 1.000                     | 2.08%           |
| Α      | 2      | AT&T     | CCI            | OPA65R-BU6D   | 700            | LTE(B12) | 4               | 160.00                       | 2625.89              | 4306.46               | 108.00      | 0.008099                     | 0.467                     | 1.74%           |
| Α      | 2      | AT&T     | CCI            | OPA65R-BU6D   | 850            | 5G       | 4               | 160.00                       | 3230.55              | 5298.10               | 108.00      | 0.009964                     | 0.567                     | 1.76%           |
|        |        |          |                |               |                |          |                 |                              | Total                | 9.34%                 |             |                              |                           |                 |

Table 2.4: Detailed MPE% at AT&T Sector A

#### 3. Compliance Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the AT&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

| AT&T Sector                     | Power Density Value (%) |  |  |  |
|---------------------------------|-------------------------|--|--|--|
| Sector A                        | 9.34%                   |  |  |  |
| Sector B                        | 9.34%                   |  |  |  |
| Sector C                        | 9.34%                   |  |  |  |
| AT&T Maximum Total (per sector) | 9.34%                   |  |  |  |
|                                 |                         |  |  |  |
| Site Total MPE%                 | 14.60%                  |  |  |  |
|                                 |                         |  |  |  |
| Site Compliance Status          | COMPLIANT               |  |  |  |

The anticipated composite MPE value for this site assuming all carriers present is 14.60% of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were within the allowable 100% threshold standard per the federal government.

Date: August 15, 2022



Infinigy
500 West Office Center Drive, Suite 150
Fort Washington, PA 19034
(518) 690-0790
structural@infinigy.com

Subject: Mount Analysis Report

Carrier Designation: AT&T Mobility Equipment Change Out

Carrier Site Number: CTL05069

Carrier Site Name: BENNETT POND

Carrier FA Number: 10070924

Crown Castle Designation: Crown Castle BU Number: 842857

Crown Castle Site Name: BENNETT POND

Crown Castle JDE Job Number: 715649

Crown Castle Order Number: 614859 Rev. 0

Engineering Firm Designation: Infinigy Report Designation: 1039-Z0001-B

Site Data: 66 Sugar Hollow Road, Danbury, Fairfield Couny, CT, 06810

Latitude 41°20'10.00" Longitude -73°28'14.40"

Structure Information: Tower Height & Type: 106.0 ft Monopole

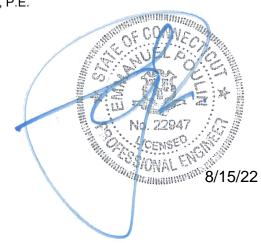
Mount Elevation: 106.0 ft

Mount Type: 14.0 ft Platform

Infinigy is pleased to submit this "Mount Analysis Report" to determine the structural integrity of AT&T Mobility's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform Sufficient


\*See Section 4.1 of this report for the loading and structural modifications required in order for the mount to support the loading listed in Table 1.

This analysis has been performed in accordance with the 2018 International Building Code based upon an ultimate 3-second gust wind speed of 115 mph. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Farhad Ahmadyar

Respectfully Submitted by: Emmanuel Poulin, P.E.

structural@infinigy.com



#### **TABLE OF CONTENTS**

#### 1) INTRODUCTION

#### 2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

#### 3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

#### 4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

4.1) Recommendations

#### 5) APPENDIX A

Wire Frame and Rendered Models

#### 6) APPENDIX B

Software Input Calculations

#### 7) APPENDIX C

Software Analysis Output

#### 8) APPENDIX D

**Additional Calculations** 

#### 1) INTRODUCTION

This is an existing 3-sector 14.0 ft Platform.

#### 2) ANALYSIS CRITERIA

Building Code: 2018 IBC TIA-222 Revision: TIA-222-H

Risk Category:

Ultimate Wind Speed: 115 mph

**Exposure Category: Topographic Factor at Base:** 1.0 **Topographic Factor at Mount:** 1.0 Ice Thickness: 1.0 in Wind Speed with Ice: 50 mph 0.234 Seismic S<sub>s</sub>: Seismic S<sub>1</sub>: 0.057 Live Loading Wind Speed: 30 mph Man Live Load at Mid/End-Points: 250 lb Man Live Load at Mount Pipes: 500 lb

**Table 1 - Proposed Equipment Configuration** 

| Mount<br>Centerline<br>(ft) | Antenna<br>Centerline<br>(ft) | Number<br>of<br>Antennas | Antenna<br>Manufacturer | Antenna Model                | Mount / Modification<br>Details |  |  |  |   |          |               |                     |
|-----------------------------|-------------------------------|--------------------------|-------------------------|------------------------------|---------------------------------|--|--|--|---|----------|---------------|---------------------|
|                             |                               | 3                        | CCI ANTENNAS            | OPA65R-BU6D                  |                                 |  |  |  |   |          |               |                     |
|                             | 108.0                         |                          | 3                       | CCI ANTENNAS                 | TPA65R-BU6DA-K                  |  |  |  |   |          |               |                     |
|                             |                               |                          | 3                       | ERICSSON                     | RRUS 8843 B2/B66                |  |  |  |   |          |               |                     |
| 106.0                       |                               | 3                        | ERICSSON                | RRUS 4449 B5/B12             | 14.0 ft Platform                |  |  |  |   |          |               |                     |
| 100.0                       |                               |                          |                         |                              |                                 |  |  |  | 3 | ERICSSON | RRUS 4478 B14 | 14.0 11 F 141101111 |
|                             |                               | 1                        | RAYCAP                  | DC9-48-60-24-8C-<br>EV_CCIV2 |                                 |  |  |  |   |          |               |                     |
|                             | 106.0                         | 1                        | RAYCAP                  | DC6-48-60-18-8F              |                                 |  |  |  |   |          |               |                     |

#### 3) ANALYSIS PROCEDURE

**Table 2 - Documents Provided** 

| Document                    | Remarks                   | Reference        | Source    |  |
|-----------------------------|---------------------------|------------------|-----------|--|
| Crown Application           | AT&T Mobility Application | 614859 Rev. 0    | CCI Sites |  |
| Loading Document            | AT&T Mobility             | RFDS ID: 5109026 | TSA       |  |
| Tower Manufacturer Drawings | Paul J. Ford and Company  | 5110641          | CCI Sites |  |

#### 3.1) Analysis Method

RISA-3D (Version 20.0.0), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

Infinigy Mount Analysis Tool V2.3.2, a tool internally developed by Infinigy, was used to calculate wind loading on all appurtenances, dishes and mount members for various loading cases. Selected output from the analysis is included in Appendix B "Software Input Calculations".

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Mount Analysis* (Revision E).

#### 3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate ASTM A36 (GR 36)
HSS (Rectangular) ASTM A500 (GR B-46)
Pipe ASTM A53 (GR 35)

Connection Bolts ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Infinigy should be notified to determine the effect on the structural integrity of the antenna mounting system.

#### 4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Platform, All Sectors)

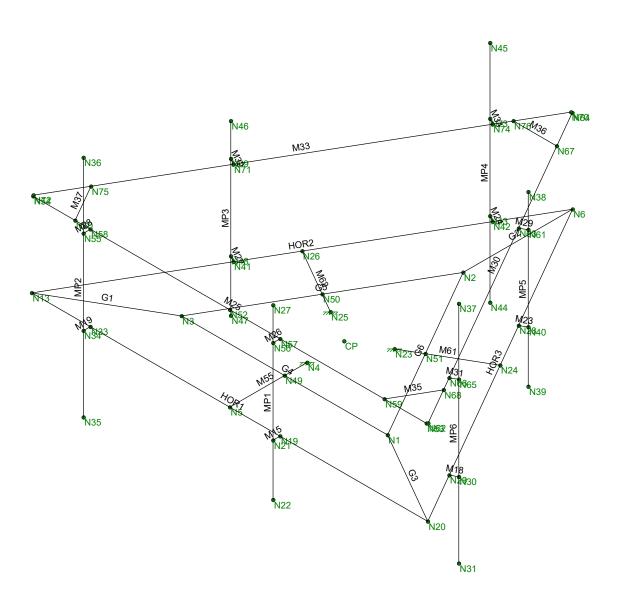
|       | , mount compensate culcode to: supulony (i nationing) in coolers, |                    |                 |            |             |  |  |  |
|-------|-------------------------------------------------------------------|--------------------|-----------------|------------|-------------|--|--|--|
| Notes | Component                                                         | Critical<br>Member | Centerline (ft) | % Capacity | Pass / Fail |  |  |  |
|       | Mount Pipe(s)                                                     | MP5                |                 | 75.9       | Pass        |  |  |  |
| •     | Horizontal(s)                                                     | HOR1               |                 | 99.1       | Pass        |  |  |  |
| 1,2   | Standoff(s)                                                       | M61                | 106.0           | 57.0       | Pass        |  |  |  |
|       | Handrail(s)                                                       | M30                |                 | 51.0       | Pass        |  |  |  |
|       | Mount Connection(s)                                               |                    |                 | 50.8       | Pass        |  |  |  |

| Structure Rating (max from all components) = | 99.1% |
|----------------------------------------------|-------|
|----------------------------------------------|-------|

#### Notes:

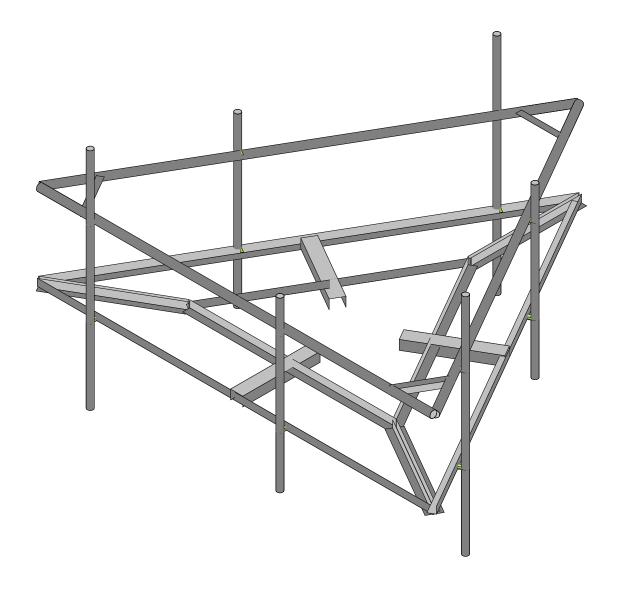
- See additional documentation in "Appendix C Software Analysis Output" for calculations supporting the % capacity consumed.
- 2) See additional documentation in "Appendix D Additional Calculations" for detailed mount connection calculations.

#### 4.1) Recommendations


The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the structural modifications listed below must be completed.

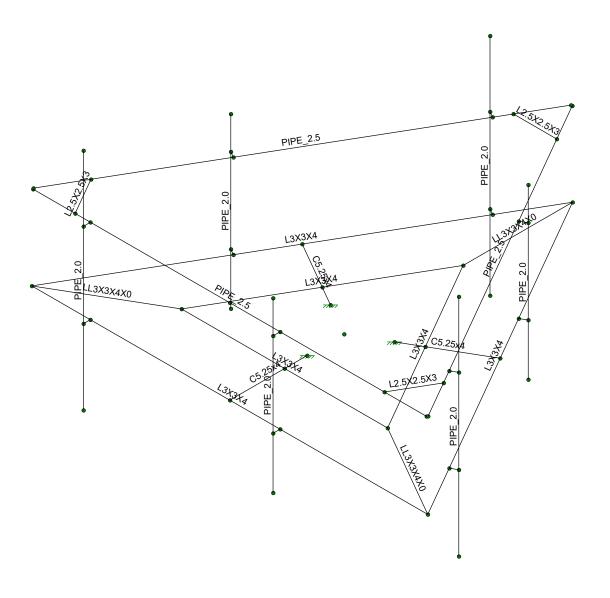
- 1. Installation of (1) Pipe 2.5 STD 14' long horizontal pipe per sector installed 36" above existing face horizontal.
- 2. Installation of (1) Site Pro 1 AHCP handrail corner plate kit.

No structural modifications are required at this time, provided that the above-listed changes are implemented.


## APPENDIX A WIRE FRAME AND RENDERED MODELS






| Infinigy     |        | Wireframe                |
|--------------|--------|--------------------------|
| FA           | 842857 | Aug 15, 2022 at 12:37 PM |
| 1039-Z0001-B |        | 842857_loaded_loaded.r3d |

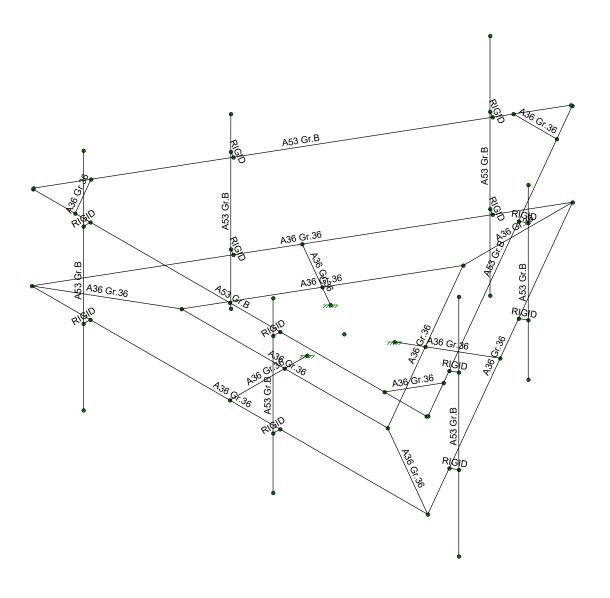





| Infinigy     |        | Render                   |
|--------------|--------|--------------------------|
| FA           | 842857 | Aug 15, 2022 at 12:37 PM |
| 1039-Z0001-B |        | 842857_loaded_loaded.r3d |

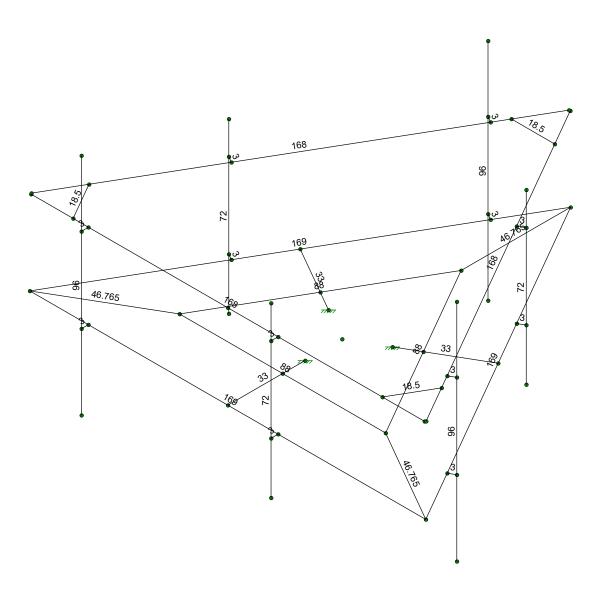





| Infinigy     |        | Shape                    |
|--------------|--------|--------------------------|
| FA           | 842857 | Aug 15, 2022 at 12:37 PM |
| 1039-Z0001-B |        | 842857_loaded_loaded.r3d |



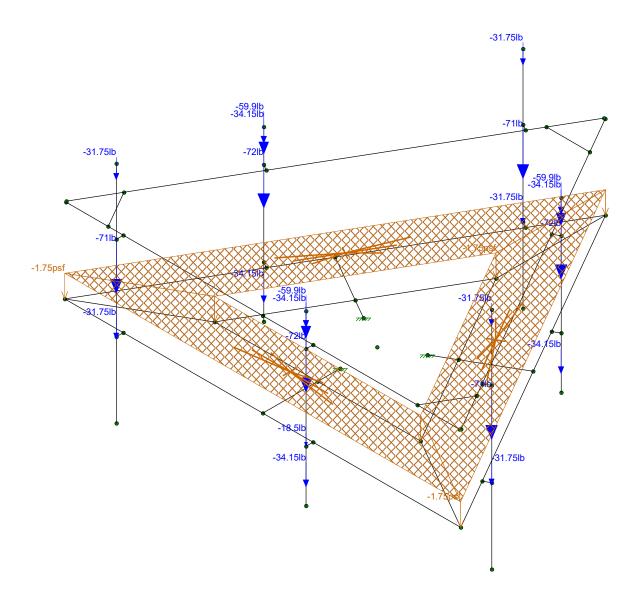



| Infinigy     |        | Section Sets             |  |
|--------------|--------|--------------------------|--|
| FA           | 842857 | Aug 15, 2022 at 12:37 PM |  |
| 1039-Z0001-B |        | 842857_loaded_loaded.r3d |  |





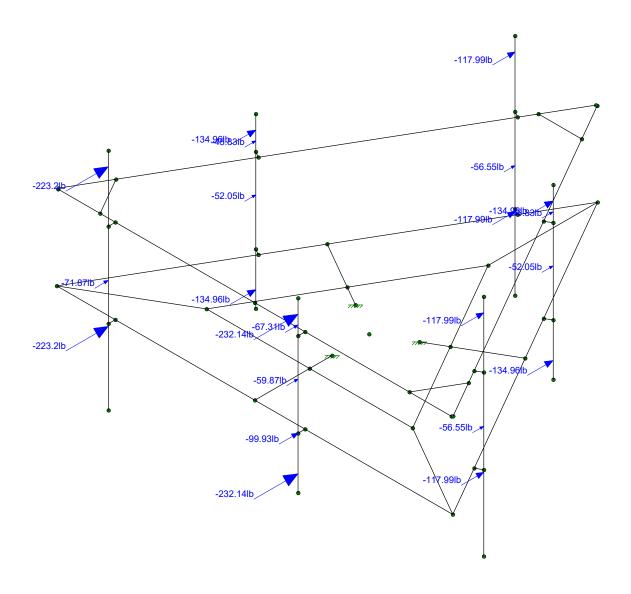
| Infinigy     |        | Grade                    |  |
|--------------|--------|--------------------------|--|
| FA           | 842857 | Aug 15, 2022 at 12:38 PM |  |
| 1039-Z0001-B |        | 842857_loaded_loaded.r3d |  |






#### Member Length (in) Displayed

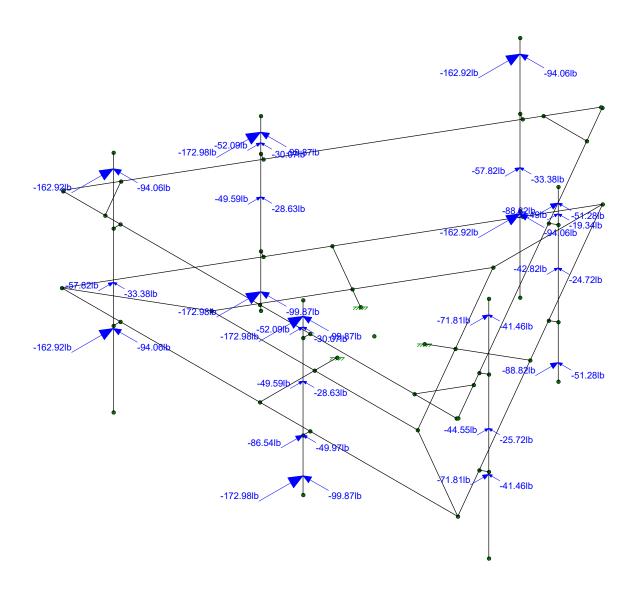
| Infinigy     |        | Length                   |
|--------------|--------|--------------------------|
| FA           | 842857 | Aug 15, 2022 at 12:38 PM |
| 1039-Z0001-B |        | 842857_loaded_loaded.r3d |






Loads: BLC 1, Self Weight

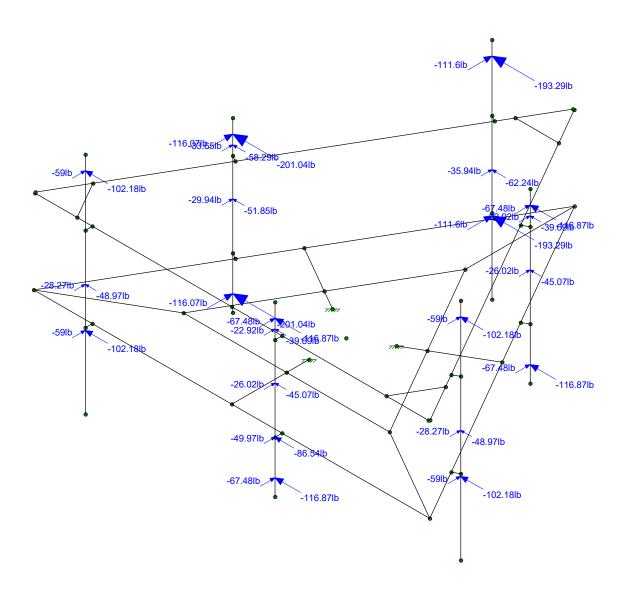
| Infinigy     |        | Self Weight              |
|--------------|--------|--------------------------|
| FA           | 842857 | Aug 15, 2022 at 12:38 PM |
| 1039-Z0001-B |        | 842857_loaded_loaded.r3d |






#### Loads: BLC 2, Wind Load AZI 0

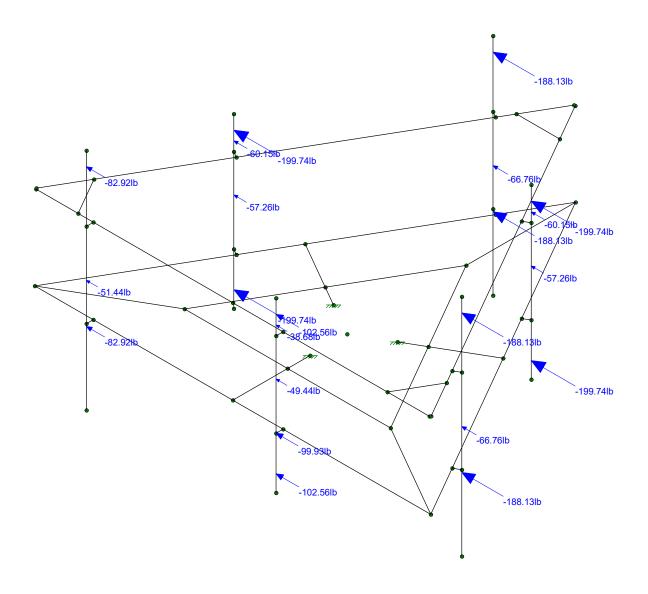
| Infinigy     |        | Wind Loading 0           |
|--------------|--------|--------------------------|
| FA           | 842857 | Aug 15, 2022 at 12:38 PM |
| 1039-Z0001-B |        | 842857_loaded_loaded.r3d |






Loads: BLC 3, Wind Load AZI 30

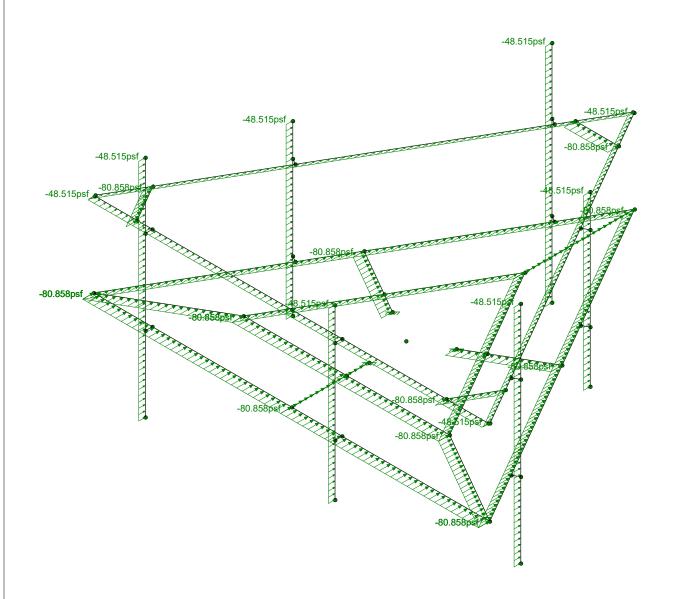
| Infinigy     |        | Wind Loading 30          |
|--------------|--------|--------------------------|
| FA           | 842857 | Aug 15, 2022 at 12:38 PM |
| 1039-Z0001-B |        | 842857_loaded_loaded.r3d |






#### Loads: BLC 4, Wind Load AZI 60

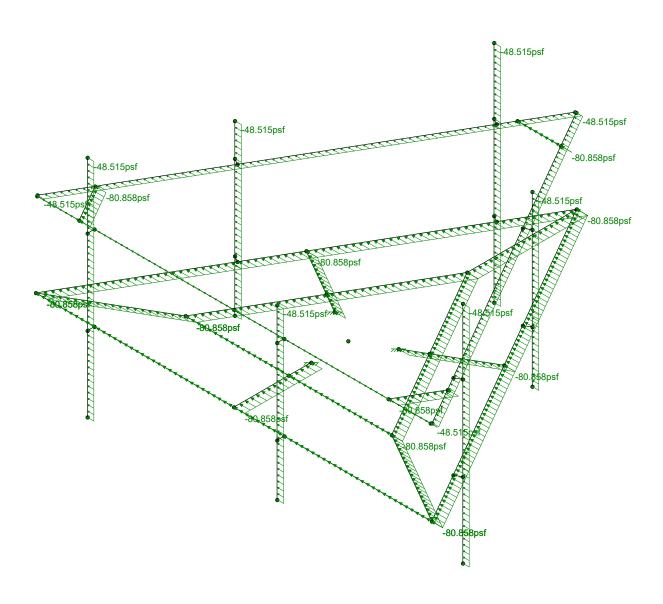
| Infinigy     |        | Wind Loading 60          |
|--------------|--------|--------------------------|
| FA           | 842857 | Aug 15, 2022 at 12:38 PM |
| 1039-Z0001-B |        | 842857_loaded_loaded.r3d |






Loads: BLC 5, Wind Load AZI 90

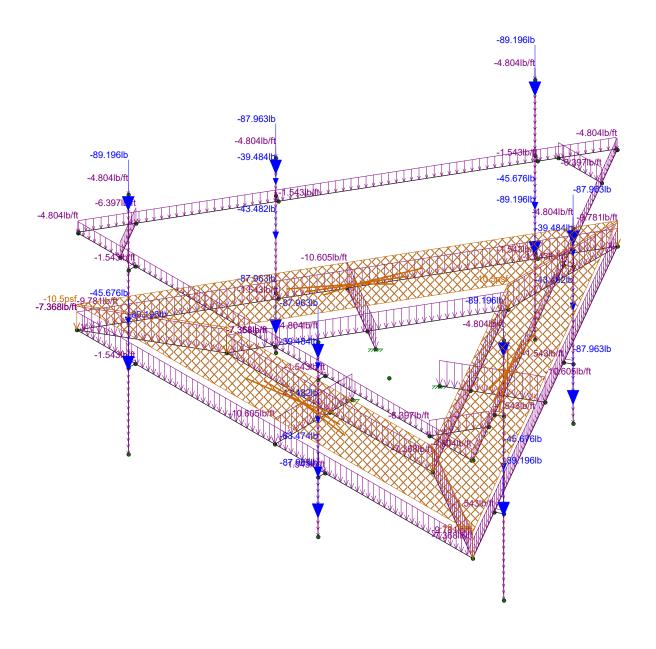
| Infinigy     |        | Wind Loading 90          |
|--------------|--------|--------------------------|
| FA           | 842857 | Aug 15, 2022 at 12:38 PM |
| 1039-Z0001-B |        | 842857_loaded_loaded.r3d |






Loads: BLC 14, Distr. Wind Load Z

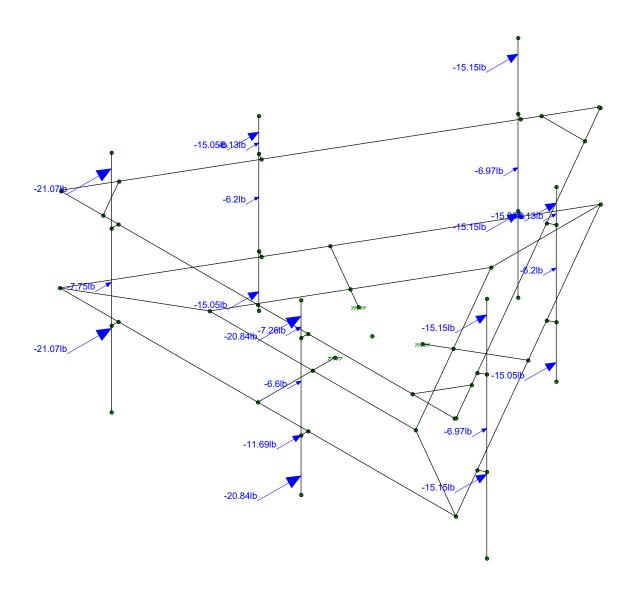
| Infinigy     |        | Dist. Wind Loading 0     |
|--------------|--------|--------------------------|
| FA           | 842857 | Aug 15, 2022 at 12:38 PM |
| 1039-Z0001-B |        | 842857_loaded_loaded.r3d |






Loads: BLC 15, Distr. Wind Load X

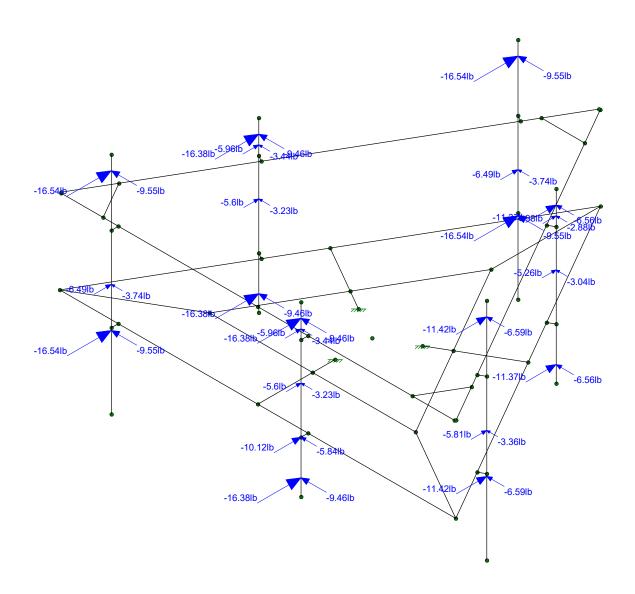
| Infinigy     |        | Dist. Wind Loading 90    |
|--------------|--------|--------------------------|
| FA           | 842857 | Aug 15, 2022 at 12:39 PM |
| 1039-Z0001-B |        | 842857_loaded_loaded.r3d |






Loads: BLC 16, Ice Weight

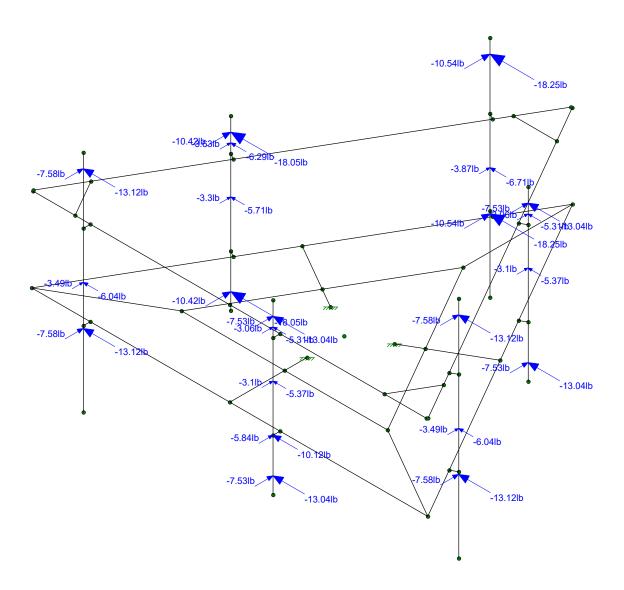
| Infinigy     |        | Ice Weight               |
|--------------|--------|--------------------------|
| FA           | 842857 | Aug 15, 2022 at 12:39 PM |
| 1039-Z0001-B |        | 842857_loaded_loaded.r3d |






Loads: BLC 17, Ice Wind Load AZI 0

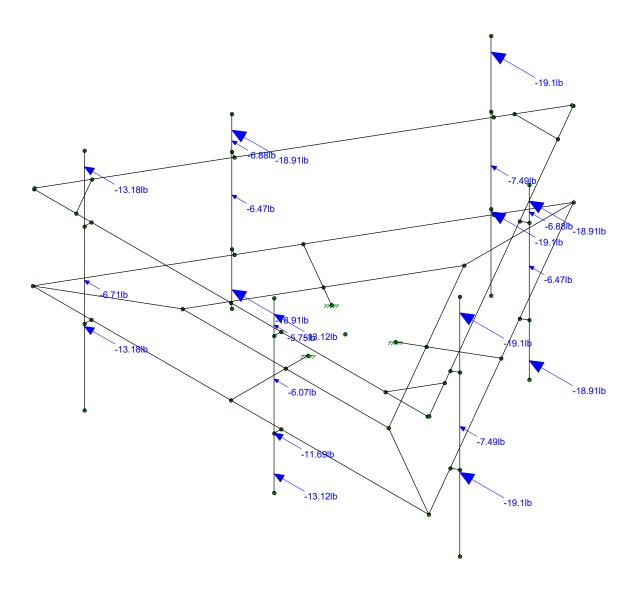
| Infinigy     |        | Ice Wind Loading 0       |
|--------------|--------|--------------------------|
| FA           | 842857 | Aug 15, 2022 at 12:39 PM |
| 1039-Z0001-B |        | 842857_loaded_loaded.r3d |






Loads: BLC 18, Ice Wind Load AZI 30

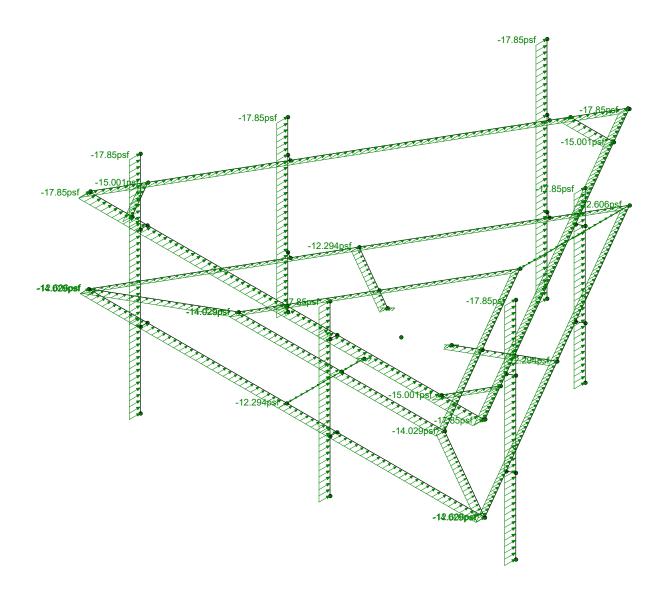
| Infinigy     |        | Ice Wind Loading 30      |
|--------------|--------|--------------------------|
| FA           | 842857 | Aug 15, 2022 at 12:39 PM |
| 1039-Z0001-B |        | 842857_loaded_loaded.r3d |






Loads: BLC 19, Ice Wind Load AZI 60

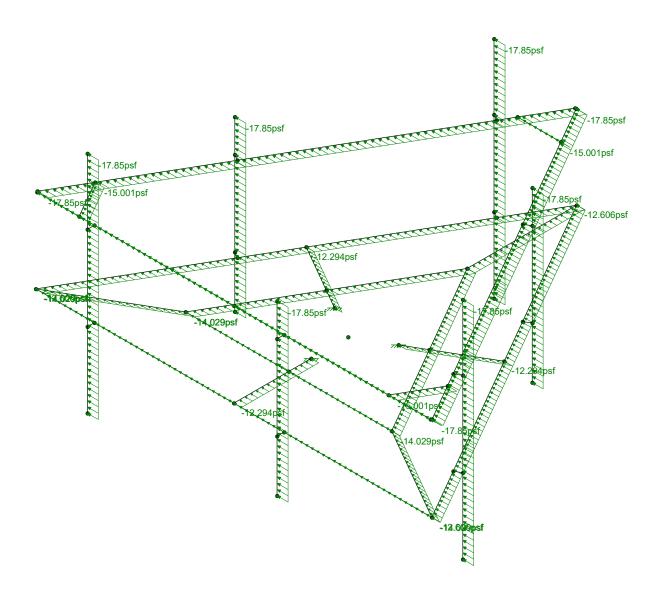
| Infinigy     |        | Ice Wind Loading 60      |
|--------------|--------|--------------------------|
| FA           | 842857 | Aug 15, 2022 at 12:39 PM |
| 1039-Z0001-B |        | 842857_loaded_loaded.r3d |






### Loads: BLC 20, Ice Wind Load AZI 90

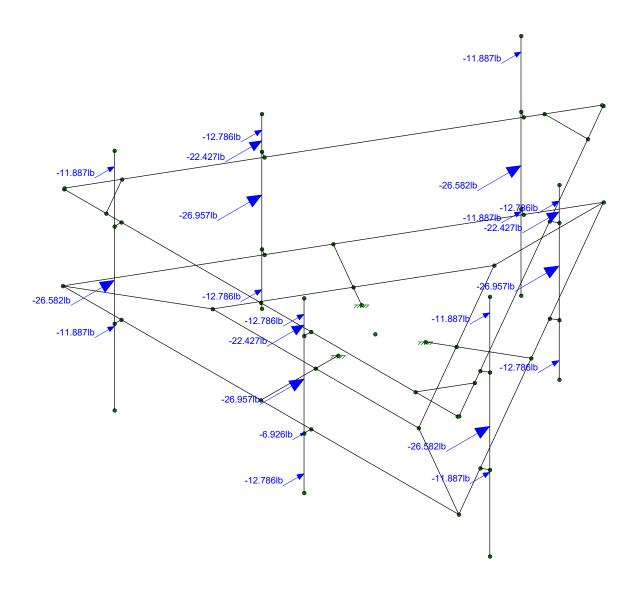
| Infinigy     |        | Ice Wind Loading 90      |
|--------------|--------|--------------------------|
| FA           | 842857 | Aug 15, 2022 at 12:39 PM |
| 1039-Z0001-B |        | 842857_loaded_loaded.r3d |






Loads: BLC 29, Distr. Ice Wind Load Z

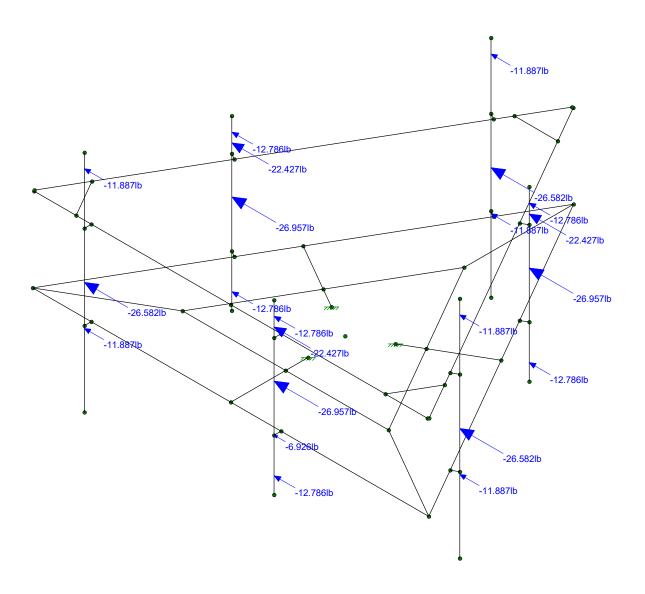
| Infinigy     |        | Dist. Ice Wind Loading 0 |  |
|--------------|--------|--------------------------|--|
| FA           | 842857 | Aug 15, 2022 at 12:39 PM |  |
| 1039-Z0001-B |        | 842857_loaded_loaded.r3d |  |






Loads: BLC 30, Distr. Ice Wind Load X

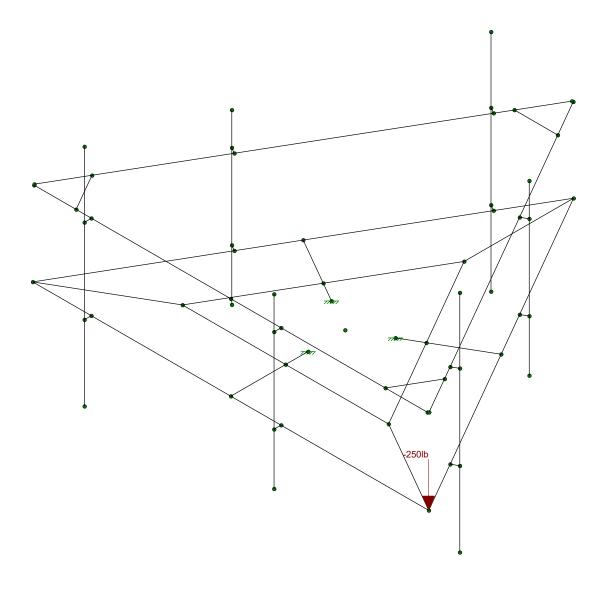
| Infinigy     |        | Dist. Ice Wind Loading 90 |
|--------------|--------|---------------------------|
| FA           | 842857 | Aug 15, 2022 at 12:39 PM  |
| 1039-Z0001-B |        | 842857_loaded_loaded.r3d  |






Loads: BLC 31, Seismic Load Z

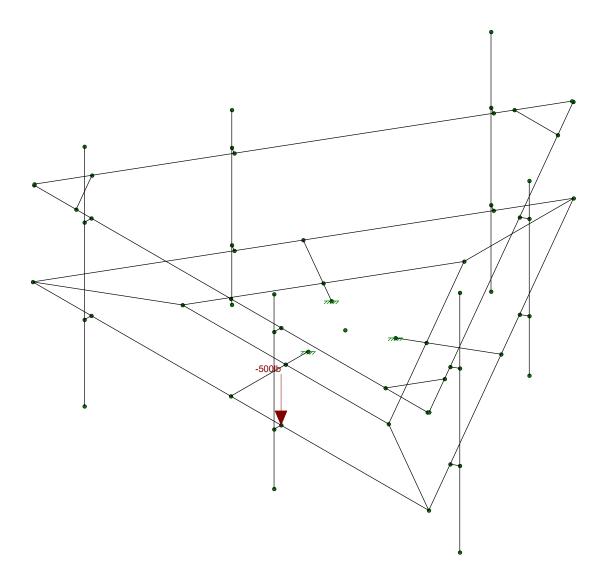
| Infinigy     |        | Seismic Loading 0        |
|--------------|--------|--------------------------|
| FA           | 842857 | Aug 15, 2022 at 12:39 PM |
| 1039-Z0001-B |        | 842857_loaded_loaded.r3d |






Loads: BLC 32, Seismic Load X

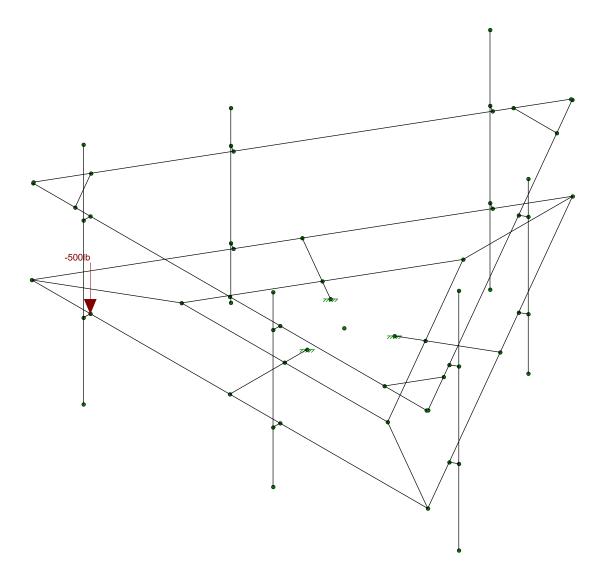
| Infinigy     |        | Seismic Loading 90       |
|--------------|--------|--------------------------|
| FA           | 842857 | Aug 15, 2022 at 12:40 PM |
| 1039-Z0001-B |        | 842857_loaded_loaded.r3d |






Loads: BLC 33, Service Live Loads

| Infinigy     |        | Service                  |
|--------------|--------|--------------------------|
| FA           | 842857 | Aug 15, 2022 at 12:40 PM |
| 1039-Z0001-B |        | 842857_loaded_loaded.r3d |






Loads: BLC 34, Maintenance Load Lm1

| Infinigy     |        | Maintenance Load 1       |
|--------------|--------|--------------------------|
| FA           | 842857 | Aug 15, 2022 at 12:40 PM |
| 1039-Z0001-B |        | 842857_loaded_loaded.r3d |





Loads: BLC 35, Maintenance Load Lm2

| Infinigy     |        | Maintenance Load 2       |
|--------------|--------|--------------------------|
| FA           | 842857 | Aug 15, 2022 at 12:40 PM |
| 1039-Z0001-B |        | 842857_loaded_loaded.r3d |

# APPENDIX B SOFTWARE INPUT CALCULATIONS

# **Program Inputs**



Infinigy Load Calculator V2.3.2

| PROJECT INFORMATION |                 |  |  |  |  |
|---------------------|-----------------|--|--|--|--|
| Site Name:          | BENNETT POND    |  |  |  |  |
| Carrier:            | AT&T Mobility   |  |  |  |  |
| Engineer:           | Farhad Ahmadyar |  |  |  |  |

| SITE INFO              | RMATION       |             |
|------------------------|---------------|-------------|
| Risk Category:         | II            |             |
| Exposure Category:     | С             |             |
| Topo Factor Procedure: | Method 1,     | Category 1  |
| Site Class:            | D - Stiff Soi | l (Assumed) |
| Ground Elevation:      | 527.60        | ft *Rev H   |

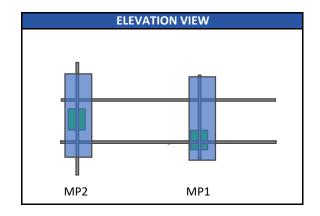
| MOUNT INFORMATION    |        |    |  |  |  |
|----------------------|--------|----|--|--|--|
| Mount Type: Platform |        |    |  |  |  |
| Num Sectors:         | 3      |    |  |  |  |
| Centerline AGL:      | 106.00 | ft |  |  |  |
| Tower Height AGL:    | 106.00 | ft |  |  |  |

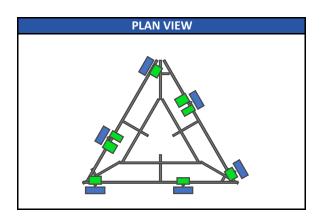
| TOPOGRAPHIC DATA |     |    |  |  |  |
|------------------|-----|----|--|--|--|
| Topo Feature:    | N,  | /A |  |  |  |
| Slope Distance:  | N/A | ft |  |  |  |
| Crest Distance:  | N/A | ft |  |  |  |
| Crest Height:    | N/A | ft |  |  |  |

| FACTORS                                 |       |              |  |  |  |  |
|-----------------------------------------|-------|--------------|--|--|--|--|
| Directionality Fact. (K <sub>d</sub> ): | 0.950 |              |  |  |  |  |
| Ground Ele. Factor $(K_e)$ :            | 0.981 | *Rev H Only  |  |  |  |  |
| Rooftop Speed-Up (K <sub>s</sub> ):     | 1.000 | *Rev H Only  |  |  |  |  |
| Topographic Factor (K <sub>zt</sub> ):  | 1.000 |              |  |  |  |  |
| Height Esc. Fact. (K <sub>iz</sub> ):   | 1.124 |              |  |  |  |  |
| Gust Effect Factor (G <sub>h</sub> ):   | 1.000 |              |  |  |  |  |
| Shielding Factor (K <sub>a</sub> ):     | 0.900 |              |  |  |  |  |
| Velocity Pressure Co.(K <sub>z</sub> ): | 1.281 | (Mount Elev) |  |  |  |  |

| CODE STANDARDS |           |  |  |  |  |  |
|----------------|-----------|--|--|--|--|--|
| Building Code: | 2018 IBC  |  |  |  |  |  |
| TIA Standard:  | TIA-222-H |  |  |  |  |  |
| ASCE Standard: | ASCE 7-16 |  |  |  |  |  |

| WIND AND ICE DATA                        |        |     |  |  |  |  |
|------------------------------------------|--------|-----|--|--|--|--|
| Ultimate Wind (V <sub>ult</sub> ):       | 115    | mph |  |  |  |  |
| Design Wind (V):                         | N/A    | mph |  |  |  |  |
| Ice Wind (V <sub>ice</sub> ):            | 50     | mph |  |  |  |  |
| Base Ice Thickness (t <sub>i</sub> ):    | 1      | in  |  |  |  |  |
| Radial Ice Thickness (t <sub>iz</sub> ): | 1.124  | in  |  |  |  |  |
| Flat Pressure:                           | 80.858 | psf |  |  |  |  |
| Round Pressure:                          | 48.515 | psf |  |  |  |  |
| Ice Wind Pressure:                       | 9.171  | psf |  |  |  |  |


| SEISMIC                                 | DATA    |      |
|-----------------------------------------|---------|------|
| Short-Period Accel. (S <sub>s</sub> ):  | 0.234   | g    |
| 1-Second Accel. (S <sub>1</sub> ):      | 0.057   | g    |
| Short-Period Design (S <sub>DS</sub> ): | 0.250   |      |
| 1-Second Design (S <sub>D1</sub> ):     | 0.091   |      |
| Short-Period Coeff. (F <sub>a</sub> ):  | 1.600   |      |
| 1-Second Coeff. (F <sub>v</sub> ):      | 2.400   |      |
| Amplification Factor (A <sub>s</sub> ): | 3.000   |      |
| Response Mod. Coeff. (R):               | 2.000   |      |
| Seismic Importance (I <sub>e</sub> ):   | 1.000   |      |
| Seismic Response Co. (C <sub>s</sub> ): | 0.125   |      |
| Total App. Weight:                      | 372.100 | lb   |
| Total Shear Force (V <sub>s</sub> ):    | 46.438  | lb   |
| Hor. Seismic Load (E <sub>h</sub> ):    | 46.438  | lb   |
| Vert. Seismic Load (E <sub>v</sub> ):   | 18.575  | lb * |


<sup>\*</sup>For reference only. Per TIA rev H section 16.7, Ev is not applicable to mounts

842857\_BENNETT POND 8/15/2022

# **Program Inputs**







|                                 |           | AP   | <b>PURTENANCE</b> | INFORMATIO | N          |              |                                     |                                     |                      |
|---------------------------------|-----------|------|-------------------|------------|------------|--------------|-------------------------------------|-------------------------------------|----------------------|
| Appurtenance Name               | Elevation | Qty. | Height (in)       | Width (in) | Depth (in) | Weight (lbs) | EPA <sub>N</sub> (ft <sup>2</sup> ) | EPA <sub>T</sub> (ft <sup>2</sup> ) | Member<br>(α sector) |
| CCI ANTENNAS OPA65R-BU6D        | 108.0     | 3    | 71.20             | 21.00      | 7.80       | 63.50        | 12.22                               | 4.54                                | MP2                  |
| CCI ANTENNAS TPA65R-BU6DA-K     | 108.0     | 3    | 71.20             | 20.70      | 7.70       | 68.30        | 12.71                               | 5.62                                | MP1                  |
| ERICSSON RRUS 4478 B14          | 108.0     | 3    | 16.50             | 13.40      | 7.70       | 59.90        | 1.84                                | 1.06                                | MP1                  |
| ERICSSON RRUS 8843 B2/B66A      | 108.0     | 3    | 14.90             | 13.20      | 10.90      | 72.00        | 1.64                                | 1.35                                | MP1                  |
| ERICSSON RRUS 4449 B5/B12       | 108.0     | 3    | 17.90             | 13.19      | 9.44       | 71.00        | 1.97                                | 1.41                                | MP2                  |
| RAYCAP DC6-48-60-18-8F          | 106.0     | 1    | 22.25             | 11.00      | 11.00      | 18.90        | 2.04                                | 2.04                                | Leg/Flush            |
| RAYCAP DC9-48-60-24-8C-EV_CCIV2 | 108.0     | 1    | 31.40             | 10.24      | 10.24      | 18.50        | 2.74                                | 2.74                                | MP1                  |
|                                 |           |      |                   |            |            |              |                                     |                                     |                      |
|                                 |           |      |                   |            |            |              |                                     |                                     |                      |
|                                 |           |      |                   |            |            |              |                                     |                                     |                      |
|                                 |           |      |                   |            |            |              |                                     |                                     |                      |
|                                 |           |      |                   |            |            |              |                                     |                                     |                      |
|                                 |           |      |                   |            |            |              |                                     |                                     |                      |
|                                 |           |      |                   |            |            |              |                                     |                                     |                      |
|                                 |           |      |                   |            |            |              |                                     |                                     |                      |
|                                 |           |      |                   |            |            |              |                                     |                                     |                      |
|                                 |           |      |                   |            |            |              |                                     |                                     |                      |
|                                 |           |      |                   |            |            |              |                                     |                                     |                      |
|                                 |           |      |                   |            |            |              |                                     |                                     |                      |
|                                 |           |      |                   |            |            |              |                                     |                                     |                      |
|                                 |           |      |                   |            |            |              |                                     |                                     |                      |
|                                 |           |      |                   |            |            |              |                                     |                                     |                      |
|                                 |           |      |                   |            |            |              |                                     |                                     |                      |

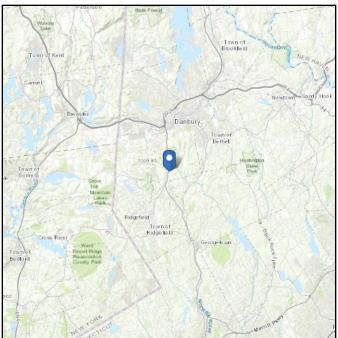
842857\_BENNETT POND 8/15/2022



#### Address:

No Address at This Location

# **ASCE 7 Hazards Report**


ASCE/SEI 7-16 Standard: Elevation: 527.6 ft (NAVD 88)

Risk Category: ||

Latitude: 41.336111 Soil Class: D - Default (see Longitude: -73.470667

Section 11.4.3)





# Wind

#### Results:

Wind Speed 115 Vmph 10-year MRI 75 Vmph 25-year MRI 84 Vmph 50-year MRI 90 Vmph 100-year MRI 96 Vmph

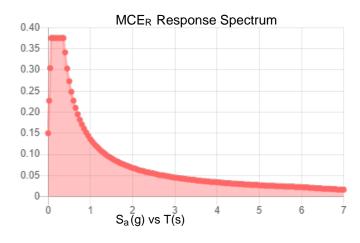
Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1-CC.2-4, and Section 26.5.2

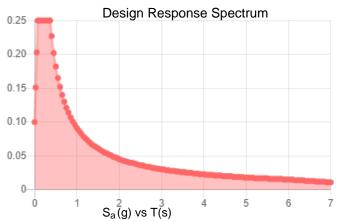
Date Accessed: Wed Aug 10 2022

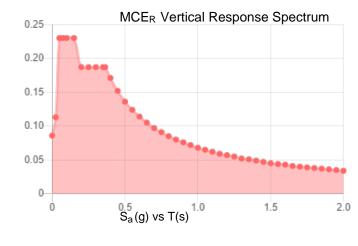
Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

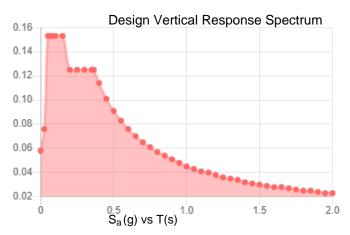
Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.




# Seismic


Site Soil Class: D - Default (see Section 11.4.3)


Results:


| S <sub>s</sub> :  | 0.234 | $S_{D1}$ :         | 0.091 |
|-------------------|-------|--------------------|-------|
| S <sub>1</sub> :  | 0.057 | T <sub>L</sub> :   | 6     |
| F <sub>a</sub> :  | 1.6   | PGA:               | 0.137 |
| $F_v$ :           | 2.4   | PGA <sub>M</sub> : | 0.209 |
| S <sub>MS</sub> : | 0.375 | F <sub>PGA</sub> : | 1.527 |
| S <sub>M1</sub> : | 0.136 | l <sub>e</sub> :   | 1     |
| S <sub>DS</sub> : | 0.25  | C <sub>v</sub> :   | 0.768 |

#### Seismic Design Category B









Data Accessed: Wed Aug 10 2022

**Date Source:** 

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.



#### **Ice**

#### Results:

Ice Thickness: 1.00 in.

Concurrent Temperature: 15 F

Gust Speed 50 mph

**Data Source:** Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed: Wed Aug 10 2022

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

# APPENDIX C SOFTWARE ANALYSIS OUTPUT



8/15/2022 12:36:08 PM Checked By : \_\_\_\_

### Member Primary Data

|    | Label | I Node | J Node | Rotate(deg) | Section/Shape         | Туре   | Design List           | Material  | Design Rule |
|----|-------|--------|--------|-------------|-----------------------|--------|-----------------------|-----------|-------------|
| 1  | HOR1  | N13    | N20    | 270         | Face Horizontal       | Beam   | Single Angle          | A36 Gr.36 | Typical     |
| 2  | HOR2  | N13    | N6     |             | Face Horizontal       | Beam   | Single Angle          | A36 Gr.36 | Typical     |
| 3  | HOR3  | N20    | N6     | 270         | Face Horizontal       | Beam   | Single Angle          | A36 Gr.36 | Typical     |
| 4  | G4    | N3     | N1     |             | Grating Angle         | Beam   | Single Angle          | A36 Gr.36 | Typical     |
| 5  | G5    | N3     | N2     | 270         | Grating Angle         | Beam   | Single Angle          | A36 Gr.36 | Typical     |
| 6  | G6    | N1     | N2     |             | Grating Angle         | Beam   | Single Angle          | A36 Gr.36 | Typical     |
| 7  | G3    | N20    | N1     | 180         | Corner Angle          | Beam   | Double Angle (No Gap) | A36 Gr.36 | Typical     |
| 8  | G2    | N6     | N2     | 180         | Corner Angle          | Beam   | Double Angle (No Gap) | A36 Gr.36 | Typical     |
| 9  | G1    | N13    | N3     | 180         | Corner Angle          | Beam   | Double Angle (No Gap) | A36 Gr.36 | Typical     |
| 10 | M55   | N5     | N4     | 90          | Standoff (LARGE)      | Beam   | Channel               | A36 Gr.36 | Typical     |
| 11 | M61   | N24    | N23    | 90          | Standoff (LARGE)      | Beam   | Channel               | A36 Gr.36 | Typical     |
| 12 | M62   | N26    | N25    | 90          | Standoff (LARGE)      | Beam   | Channel               | A36 Gr.36 | Typical     |
| 13 | M15   | N19    | N21    |             | RIGID                 | None   | None                  | RIGID     | Typical     |
| 14 | MP1   | N27    | N22    |             | 2.0 STD Mount Pipe    | Column | Pipe                  | A53 Gr.B  | Typical     |
| 15 | M19   | N33    | N34    |             | RIGID                 | None   | None                  | RIGID     | Typical     |
| 16 | MP2   | N36    | N35    |             | 2.0 STD Mount Pipe    | Column | Pipe                  | A53 Gr.B  | Typical     |
| 17 | M18   | N29    | N30    |             | RIGID                 | None   | None                  | RIGID     | Typical     |
| 18 | MP6   | N37    | N31    |             | 2.0 STD Mount Pipe    | Column | Pipe                  | A53 Gr.B  | Typical     |
| 19 | MP5   | N38    | N39    |             | 2.0 STD Mount Pipe    | Column | Pipe                  | A53 Gr.B  | Typical     |
| 20 | M23   | N28    | N40    |             | RIGID                 | None   | None                  | RIGID     | Typical     |
| 21 | M24   | N42    | N43    |             | RIGID                 | None   | None                  | RIGID     | Typical     |
| 22 | MP4   | N45    | N44    |             | 2.0 STD Mount Pipe    | Column | Pipe                  | A53 Gr.B  | Typical     |
| 23 | MP3   | N46    | N47    |             | 2.0 STD Mount Pipe    | Column | Pipe                  | A53 Gr.B  | Typical     |
| 24 | M27   | N41    | N48    |             | RIGID                 | None   | None                  | RIGID     | Typical     |
| 25 | M25   | N53    | N54    |             | Handrail              | Beam   | Pipe                  | A53 Gr.B  | Typical     |
| 26 | M26   | N57    | N56    |             | RIGID                 | None   | None                  | RIGID     | Typical     |
| 27 | M28   | N58    | N55    |             | RIGID                 | None   | None                  | RIGID     | Typical     |
| 28 | M29   | N63    | N61    |             | RIGID                 | None   | None                  | RIGID     | Typical     |
| 29 | M30   | N64    | N62    |             | Handrail              | Beam   | Pipe                  | A53 Gr.B  | Typical     |
| 30 | M31   | N66    | N65    |             | RIGID                 | None   | None                  | RIGID     | Typical     |
| 31 | M32   | N71    | N69    |             | RIGID                 | None   | None                  | RIGID     | Typical     |
| 32 | M33   | N72    | N70    |             | Handrail              | Beam   | Pipe                  | A53 Gr.B  | Typical     |
| 33 | M34   | N74    | N73    |             | RIGID                 | None   | None                  | RIGID     | Typical     |
| 34 | M35   | N59    | N68    | 180         | Handrail Corner Angle | Beam   | Single Angle          | A36 Gr.36 | Typical     |
| 35 | M36   | N67    | N76    | 180         | Handrail Corner Angle | Beam   | Single Angle          | A36 Gr.36 | Typical     |
| 36 | M37   | N75    | N60    | 180         | Handrail Corner Angle | Beam   | Single Angle          | A36 Gr.36 | Typical     |

#### **Hot Rolled Steel Properties**

|    | Label          | E [psi] | G [psi]   | Nu  | Therm. Coeff. [1e⁵°F⁻¹] | Density [k/ft³] | Yield [ksi] | Ry  | Fu [ksi] | Rt  |
|----|----------------|---------|-----------|-----|-------------------------|-----------------|-------------|-----|----------|-----|
| 1  | A992           | 2.9e+07 | 1.115e+07 | 0.3 | 0.65                    | 0.49            | 50          | 1.1 | 65       | 1.1 |
| 2  | A36 Gr.36      | 2.9e+07 | 1.115e+07 | 0.3 | 0.65                    | 0.49            | 36          | 1.5 | 58       | 1.2 |
| 3  | A572 Gr.50     | 2.9e+07 | 1.115e+07 | 0.3 | 0.65                    | 0.49            | 50          | 1.1 | 65       | 1.1 |
| 4  | A500 Gr.B RND  | 2.9e+07 | 1.115e+07 | 0.3 | 0.65                    | 0.527           | 42          | 1.4 | 58       | 1.3 |
| 5  | A500 Gr.B RECT | 2.9e+07 | 1.115e+07 | 0.3 | 0.65                    | 0.527           | 46          | 1.4 | 58       | 1.3 |
| 6  | A500 Gr.C RND  | 2.9e+07 | 1.115e+07 | 0.3 | 0.65                    | 0.527           | 46          | 1.4 | 62       | 1.3 |
| 7  | A500 Gr.C RECT | 2.9e+07 | 1.115e+07 | 0.3 | 0.65                    | 0.527           | 50          | 1.4 | 62       | 1.3 |
| 8  | A53 Gr.B       | 2.9e+07 | 1.115e+07 | 0.3 | 0.65                    | 0.49            | 35          | 1.6 | 60       | 1.2 |
| 9  | A1085          | 2.9e+07 | 1.115e+07 | 0.3 | 0.65                    | 0.49            | 50          | 1.4 | 65       | 1.3 |
| 10 | A913 Gr.65     | 2.9e+07 | 1.115e+07 | 0.3 | 0.65                    | 0.49            | 65          | 1.1 | 80       | 1.1 |



8/15/2022 12:36:08 PM Checked By : \_\_\_\_

Hot Rolled Steel Section Sets

|    | Label                 | Shape         | Type          | Design List           | Material       | Design Rule | Area [in²] | lyy [in⁴] | Izz [in⁴] | J [in⁴] |
|----|-----------------------|---------------|---------------|-----------------------|----------------|-------------|------------|-----------|-----------|---------|
| 1  | Face Horizontal       | L3X3X4        | Beam          | Single Angle          | A36 Gr.36      | Typical     | 1.44       | 1.23      | 1.23      | 0.031   |
| 2  | Grating Angle         | L3X3X4        | Beam          | Single Angle          | A36 Gr.36      | Typical     | 1.44       | 1.23      | 1.23      | 0.031   |
| 3  | Standoff (LARGE)      | C5.25X4       | Beam          | Channel               | A36 Gr.36      | Typical     | 4.688      | 7.568     | 20.707    | 0.207   |
| 4  | Standoff (SMALL)      | HSS4X4X4      | Beam          | Tube                  | A500 Gr.B RECT | Typical     | 3.37       | 7.8       | 7.8       | 12.8    |
| 5  | 2.0 STD Mount Pipe    | PIPE 2.0      | Column        | Pipe                  | A53 Gr.B       | Typical     | 1.02       | 0.627     | 0.627     | 1.25    |
| 6  | 2.5 STD Mount Pipe    | PIPE 2.5      | Column        | Pipe                  | A53 Gr.B       | Typical     | 1.61       | 1.45      | 1.45      | 2.89    |
| 7  | Corner Plate          | 6X0.375       | <b>VBrace</b> | RECT                  | A36 Gr.36      | Typical     | 2.25       | 0.026     | 6.75      | 0.101   |
| 8  | Corner Angle          | LL3X3X4X0     | Beam          | Double Angle (No Gap) | A36 Gr.36      | Typical     | 2.88       | 4.5       | 2.46      | 0.063   |
| 9  | Top Support Pipe      | PIPE_2.0      | Beam          | Pipe                  | A53 Gr.B       | Typical     | 1.02       | 0.627     | 0.627     | 1.25    |
| 10 | Handrail              | PIPE 2.5      | Beam          | Pipe                  | A53 Gr.B       | Typical     | 1.61       | 1.45      | 1.45      | 2.89    |
| 11 | Handrail Corner Angle | L2.5X2.5X3    | Beam          | Single Angle          | A36 Gr.36      | Typical     | 0.901      | 0.535     | 0.535     | 0.011   |
| 12 | Kicker                | LL2.5X2.5X3X0 | Beam          | Double Angle (No Gap) | A36 Gr.36      | Typical     | 1.8        | 1.91      | 1.07      | 0.023   |

**Node Coordinates** 

|    | oue Coordinates |            |        |             |                       |
|----|-----------------|------------|--------|-------------|-----------------------|
|    | Label           | X [in]     | Y [in] | Z [in]      | Detach From Diaphragm |
| 1  | N1              | 44.00005   | -13    | -23.382538  |                       |
| 2  | N2              | 0.00005    | -13    | -99.592774  |                       |
| 3  | N3              | -43.99995  | -13    | -23.382538  |                       |
| 4  | N4              | 0.00005    | -13    | -32.999838  |                       |
| 5  | N5              | 0.00005    | -13    | 0.000148    |                       |
| 6  | N6              | 0.00005    | -13    | -146.358146 |                       |
| 7  | N13             | -84.49995  | -13    | 0.000148    |                       |
| 8  | N20             | 84.50005   | -13    | 0.000147    |                       |
| 9  | N23             | 13.671224  | -13    | -56.679006  |                       |
| 10 | N24             | 42.25005   | -13    | -73.178999  |                       |
| 11 | N25             | -13.671124 | -13    | -56.679006  |                       |
| 12 | N26             | -42.24995  | -13    | -73.178999  |                       |
| 13 | CP              | 0.00005    | -13    | -48.78595   |                       |
| 14 | N19             | 21.50005   | -13    | 0.000148    |                       |
| 15 | N21             | 21.50005   | -13    | 3.000147    |                       |
| 16 | N22             | 21.50005   | -35    | 3.000147    |                       |
| 17 | N27             | 21.50005   | 37     | 3.000147    |                       |
| 18 | N33             | -59.49995  | -13    | 0.000148    |                       |
| 19 | N34             | -59.49995  | -13    | 3.000147    |                       |
| 20 | N35             | -59.49995  | -45    | 3.000147    |                       |
| 21 | N36             | -59.49995  | 51     | 3.000147    |                       |
| 22 | N28             | 31.50005   | -13    | -91.798545  |                       |
| 23 | N29             | 72.00005   | -13    | -21.650487  |                       |
| 24 | N30             | 74.598126  | -13    | -23.150487  |                       |
| 25 | N31             | 74.598126  | -45    | -23.150487  |                       |
| 26 | N37             | 74.598126  | 51     | -23.150487  |                       |
| 27 | N38             | 34.098126  | 37     | -93.298545  |                       |
| 28 | N39             | 34.098126  | -35    | -93.298545  |                       |
| 29 | N40             | 34.098126  | -13    | -93.298545  |                       |
| 30 | N41             | -52.99995  | -13    | -54.559453  |                       |
| 31 | N42             | -12.49995  | -13    | -124.707511 |                       |
| 32 | N43             | -15.098026 | -13    | -126.20751  |                       |
| 33 | N44             | -15.098026 | -45    | -126.20751  |                       |
| 34 | N45             | -15.098026 | 51     | -126.20751  |                       |
| 35 | N46             | -55.598026 | 37     | -56.059453  |                       |
| 36 | N47             | -55.598026 | -35    | -56.059453  |                       |
| 37 | N48             | -55.598026 | -13    | -56.059453  |                       |
| 38 | N49             | 0.00005    | -13    | -23.382538  |                       |
| 39 | N50             | -21.99995  | -13    | -61.487656  |                       |



8/15/2022 12:36:08 PM Checked By : \_\_\_\_

### Node Coordinates (Continued)

|    | Label | X [in]     | Y [in] | Z [in]      | Detach From Diaphragm |
|----|-------|------------|--------|-------------|-----------------------|
| 40 | N51   | 22.00005   | -13    | -61.487656  |                       |
| 41 | N52   | 0.00005    | 23     | 0.000148    |                       |
| 42 | N53   | 84.00005   | 23     | 0.000148    |                       |
| 43 | N54   | -83.99995  | 23     | 0.000148    |                       |
| 44 | N55   | -59.49995  | 23     | 3.000147    |                       |
| 45 | N56   | 21.50005   | 23     | 3.000147    |                       |
| 46 | N57   | 21.50005   | 23     | 0.000148    |                       |
| 47 | N58   | -59.49995  | 23     | 0.000148    |                       |
| 48 | N59   | 66.00005   | 23     | 0.000148    |                       |
| 49 | N60   | -65.99995  | 23     | 0.000148    |                       |
| 50 | N61   | 34.098126  | 23     | -93.298545  |                       |
| 51 | N62   | 84.25005   | 23     | -0.432865   |                       |
| 52 | N63   | 31.50005   | 23     | -91.798545  |                       |
| 53 | N64   | 0.25005    | 23     | -145.925133 |                       |
| 54 | N65   | 74.598126  | 23     | -23.150487  |                       |
| 55 | N66   | 72.00005   | 23     | -21.650487  |                       |
| 56 | N67   | 9.25005    | 23     | -130.336675 |                       |
| 57 | N68   | 75.25005   | 23     | -16.021322  |                       |
| 58 | N69   | -55.598026 | 23     | -56.059453  |                       |
| 59 | N70   | -0.24995   | 23     | -145.925133 |                       |
| 60 | N71   | -52.99995  | 23     | -54.559453  |                       |
| 61 | N72   | -84.24995  | 23     | -0.432865   |                       |
| 62 | N73   | -15.098026 | 23     | -126.20751  |                       |
| 63 | N74   | -12.49995  | 23     | -124.707511 |                       |
| 64 | N75   | -75.24995  | 23     | -16.021322  |                       |
| 65 | N76   | -9.24995   | 23     | -130.336676 |                       |

# Hot Rolled Steel Design Parameters

|    | Label | Shape                 | Lenath [in] | ILb v-v [in] | Lb z-z [in]l | Lcomp top (in) | Lcomp bot fin1 | L-Torque [in] | Channel Conn. | a [in] | Function |
|----|-------|-----------------------|-------------|--------------|--------------|----------------|----------------|---------------|---------------|--------|----------|
| 1  | HOR1  | Face Horizontal       | 169         |              | Segment      | Segment        | Segment        | Segment       | N/A           | N/A    | Lateral  |
| 2  | HOR2  |                       | 169         |              | Segment      | Segment        | Segment        | Segment       | N/A           | N/A    | Lateral  |
| 3  | HOR3  |                       | 169         |              | Segment      | Segment        | Segment        | Segment       | N/A           | N/A    | Lateral  |
| 4  | G4    | Grating Angle         | 88          |              | J            | Lbyy           | <u> </u>       |               | N/A           | N/A    | Lateral  |
| 5  | G5    | Grating Angle         | 88          |              |              | Lbyy           |                |               | N/A           | N/A    | Lateral  |
| 6  | G6    | Grating Angle         | 88          |              |              | Lbyy           |                |               | N/A           | N/A    | Lateral  |
| 7  | G3    | Corner Angle          | 46.765      |              |              | Lbyy           |                |               | N/A           | N/A    | Lateral  |
| 8  | G2    | Corner Angle          | 46.765      |              |              | Lbyy           |                |               | N/A           | N/A    | Lateral  |
| 9  | G1    | Corner Angle          | 46.765      |              |              | Lbyy           |                |               | N/A           | N/A    | Lateral  |
| 10 | M55   | Standoff (LARGE)      | 33          |              |              | Lbyy           |                |               | N/A           | N/A    | Lateral  |
| 11 | M61   | Standoff (LARGE)      | 33          |              |              | Lbyy           |                |               | N/A           | N/A    | Lateral  |
| 12 | M62   | Standoff (LARGE)      | 33          |              |              | Lbyy           |                |               | N/A           | N/A    | Lateral  |
| 13 | MP1   | 2.0 STD Mount Pipe    | 72          |              |              |                |                |               | N/A           | N/A    | Lateral  |
| 14 | MP2   | 2.0 STD Mount Pipe    | 96          |              |              |                |                |               | N/A           | N/A    | Lateral  |
| 15 | MP6   | 2.0 STD Mount Pipe    | 96          |              |              |                |                |               | N/A           | N/A    | Lateral  |
| 16 | MP5   | 2.0 STD Mount Pipe    | 72          |              |              |                |                |               | N/A           | N/A    | Lateral  |
| 17 | MP4   | 2.0 STD Mount Pipe    | 96          |              |              |                |                |               | N/A           | N/A    | Lateral  |
| 18 | MP3   | 2.0 STD Mount Pipe    | 72          |              |              |                |                |               | N/A           | N/A    | Lateral  |
| 19 | M25   | Handrail              | 168         |              |              | Lbyy           |                |               | N/A           | N/A    | Lateral  |
| 20 | M30   | Handrail              | 168         |              |              | Lbyy           |                |               | N/A           | N/A    | Lateral  |
| 21 | M33   | Handrail              | 168         |              |              | Lbyy           |                |               | N/A           | N/A    | Lateral  |
| 22 | M35   | Handrail Corner Angle | 18.5        |              |              | Lbyy           |                |               | N/A           | N/A    | Lateral  |
| 23 | M36   | Handrail Corner Angle | 18.5        |              |              | Lbyy           |                |               | N/A           | N/A    | Lateral  |
| 24 | M37   | Handrail Corner Angle |             |              |              | Lbyy           |                |               | N/A           | N/A    | Lateral  |



8/15/2022 12:36:08 PM Checked By : \_\_\_\_\_

### Basic Load Cases

|    | Di C Di Li                  | <u> </u> |           |           |           |       |       | 51.411.4.1  |              |
|----|-----------------------------|----------|-----------|-----------|-----------|-------|-------|-------------|--------------|
|    | BLC Description             | Category | X Gravity | Y Gravity | Z Gravity | Nodal | Point | Distributed | Area(Member) |
| 1  | Self Weight                 | DL       |           | -1        |           |       | 22    |             | 3            |
| 2  | Wind Load AZI 0             | WLZ      |           |           |           |       | 44    |             |              |
| 3  | Wind Load AZI 30            | None     |           |           |           |       | 44    |             |              |
| 4  | Wind Load AZI 60            | None     |           |           |           |       | 44    |             |              |
| 5  | Wind Load AZI 90            | WLX      |           |           |           |       | 44    |             |              |
| 6  | Wind Load AZI 120           | None     |           |           |           |       | 44    |             |              |
| 7  | Wind Load AZI 150           | None     |           |           |           |       | 44    |             |              |
| 8  | Wind Load AZI 180           | None     |           |           |           |       | 44    |             |              |
| 9  | Wind Load AZI 210           | None     |           |           |           |       | 44    |             |              |
| 10 | Wind Load AZI 240           | None     |           |           |           |       | 44    |             |              |
| 11 | Wind Load AZI 270           | None     |           |           |           |       | 44    |             |              |
| 12 | Wind Load AZI 300           | None     |           |           |           |       | 44    |             |              |
| 13 | Wind Load AZI 330           | None     |           |           |           |       | 44    |             |              |
| 14 | Distr. Wind Load Z          | WLZ      |           |           |           |       |       | 36          |              |
| 15 | Distr. Wind Load X          | WLX      |           |           |           |       |       | 36          |              |
| 16 | Ice Weight                  | OL1      |           |           |           |       | 22    | 36          | 3            |
| 17 | Ice Wind Load AZI 0         | OL2      |           |           |           |       | 44    |             |              |
| 18 | Ice Wind Load AZI 30        | None     |           |           |           |       | 44    |             |              |
| 19 | Ice Wind Load AZI 60        | None     |           |           |           |       | 44    |             |              |
| 20 | Ice Wind Load AZI 90        | OL3      |           |           |           |       | 44    |             |              |
| 21 | Ice Wind Load AZI 120       | None     |           |           |           |       | 44    |             |              |
| 22 | Ice Wind Load AZI 150       | None     |           |           |           |       | 44    |             |              |
| 23 | Ice Wind Load AZI 180       | None     |           |           |           |       | 44    |             |              |
| 24 | Ice Wind Load AZI 210       | None     |           |           |           |       | 44    |             |              |
| 25 | Ice Wind Load AZI 240       | None     |           |           |           |       | 44    |             |              |
| 26 | Ice Wind Load AZI 270       | None     |           |           |           |       | 44    |             |              |
| 27 | Ice Wind Load AZI 300       | None     |           |           |           |       | 44    |             |              |
| 28 | Ice Wind Load AZI 330       | None     |           |           |           |       | 44    |             |              |
| 29 | Distr. Ice Wind Load Z      | OL2      |           |           |           |       |       | 36          |              |
| 30 | Distr. Ice Wind Load X      | OL3      |           |           |           |       |       | 36          |              |
| 31 | Seismic Load Z              | ELZ      |           |           | -0.374    |       | 22    |             |              |
| 32 | Seismic Load X              | ELX      | -0.374    |           |           |       | 22    |             |              |
| 33 | Service Live Loads          | LL       |           |           |           | 1     |       |             |              |
| 34 | Maintenance Load Lm1        | LL       |           |           |           | 1     |       |             |              |
| 35 | Maintenance Load Lm2        | LL       |           |           |           | 1     |       |             |              |
| 36 | Maintenance Load Lm3        | LL       |           |           |           | 1     |       |             |              |
| 37 | Maintenance Load Lm4        | LL       |           |           |           | 1     |       |             |              |
| 38 | Maintenance Load Lm5        | LL       |           |           |           | 1     |       |             |              |
| 39 | Maintenance Load Lm6        | LL       |           |           |           | 1     |       |             |              |
|    | BLC 1 Transient Area Loads  | None     |           |           |           |       |       | 99          |              |
|    | BLC 16 Transient Area Loads | None     |           |           |           |       |       | 99          |              |

### **Load Combinations**

|    | Description         | Solve | P-Delta | BLC | Factor |
|----|---------------------|-------|---------|-----|--------|-----|--------|-----|--------|-----|--------|-----|--------|
| 1  | 1.4DL               | Yes   | Υ       | 1   | 1.4    |     |        |     |        |     |        |     |        |
| 2  | 1.2DL + 1WL AZI 0   | Yes   | Υ       | 1   | 1.2    | 2   | 1      | 14  | 1      | 15  |        |     |        |
| 3  | 1.2DL + 1WL AZI 30  | Yes   | Υ       | 1   | 1.2    | 3   | 1      | 14  | 0.866  | 15  | 0.5    |     |        |
| 4  | 1.2DL + 1WL AZI 60  | Yes   | Υ       | 1   | 1.2    | 4   | 1      | 14  | 0.5    | 15  | 0.866  |     |        |
| 5  | 1.2DL + 1WL AZI 90  | Yes   | Υ       | 1   | 1.2    | 5   | 1      | 14  |        | 15  | 1      |     |        |
| 6  | 1.2DL + 1WL AZI 120 | Yes   | Υ       | 1   | 1.2    | 6   | 1      | 14  | -0.5   | 15  | 0.866  |     |        |
| 7  | 1.2DL + 1WL AZI 150 | Yes   | Υ       | 1   | 1.2    | 7   | 1      | 14  | -0.866 | 15  | 0.5    |     |        |
| 8  | 1.2DL + 1WL AZI 180 | Yes   | Υ       | 1   | 1.2    | 8   | 1      | 14  | -1     | 15  |        |     |        |
| 9  | 1.2DL + 1WL AZI 210 | Yes   | Υ       | 1   | 1.2    | 9   | 1      | 14  | -0.866 | 15  | -0.5   |     |        |
| 10 | 1.2DL + 1WL AZI 240 | Yes   | Υ       | 1   | 1.2    | 10  | 1      | 14  | -0.5   | 15  | -0.866 |     |        |



8/15/2022 12:36:08 PM Checked By : \_\_\_

## **Load Combinations (Continued)**

|    | oad Combinations (Continued)                               |       |         |     |        |     |        |     |        |     |        |     |         |
|----|------------------------------------------------------------|-------|---------|-----|--------|-----|--------|-----|--------|-----|--------|-----|---------|
|    | Description                                                | Solve | P-Delta | BLC | Factor  |
| 11 | 1.2DL + 1WL AZI 270                                        | Yes   | Υ       | 1   | 1.2    | 11  | 1      | 14  |        | 15  | -1     |     |         |
| 12 | 1.2DL + 1WL AZI 300                                        | Yes   | Y       | 1   | 1.2    | 12  | 1      | 14  | 0.5    | 15  | -0.866 |     |         |
| 13 | 1.2DL + 1WL AZI 330                                        | Yes   | Y       | 1   | 1.2    | 13  | 1      | 14  | 0.866  | 15  | -0.5   |     |         |
| 14 | 0.9DL + 1WL AZI 0                                          | Yes   | Ÿ       | 1   | 0.9    | 2   | 1      | 14  | 1      | 15  | -0.0   |     |         |
| 15 | 0.9DL + 1WL AZI 30                                         | Yes   | Y       | 1   | 0.9    | 3   | 1      | 14  | 0.866  | 15  | 0.5    |     |         |
| 16 | 0.9DL + 1WL AZI 60                                         | Yes   | Y       | 1   | 0.9    | 4   | 1      | 14  | 0.5    | 15  | 0.866  |     |         |
| 17 |                                                            |       | Y       | 1   | 0.9    | 5   | 1      | 14  | 0.5    | 15  |        |     |         |
|    | 0.9DL + 1WL AZI 90                                         | Yes   |         |     |        |     |        |     | 0.5    |     | 1      |     |         |
| 18 | 0.9DL + 1WL AZI 120                                        | Yes   | Y       | 1   | 0.9    | 6   | 1      | 14  | -0.5   | 15  | 0.866  |     |         |
| 19 | 0.9DL + 1WL AZI 150                                        | Yes   | Y       | 1   | 0.9    | 7   | 1      | 14  | -0.866 |     | 0.5    |     |         |
| 20 | 0.9DL + 1WL AZI 180                                        | Yes   | Υ       | 1   | 0.9    | 8   | 1      | 14  | -1     | 15  |        |     | $\perp$ |
| 21 | 0.9DL + 1WL AZI 210                                        | Yes   | Υ       | 1   | 0.9    | 9   | 1      | 14_ | -0.866 |     | -0.5   |     |         |
| 22 | 0.9DL + 1WL AZI 240                                        | Yes   | Υ       | 1   | 0.9    | 10  | 1      | 14  | -0.5   | 15  | -0.866 |     |         |
| 23 | 0.9DL + 1WL AZI 270                                        | Yes   | Υ       | 1   | 0.9    | 11  | 1      | 14  |        | 15  | -1     |     |         |
| 24 | 0.9DL + 1WL AZI 300                                        | Yes   | Υ       | 1   | 0.9    | 12  | 1      | 14  | 0.5    | 15  | -0.866 |     |         |
| 25 | 0.9DL + 1WL AZI 330                                        | Yes   | Υ       | 1   | 0.9    | 13  | 1      | 14  | 0.866  | 15  | -0.5   |     |         |
| 26 | 1.2D + 1.0Di                                               | Yes   | Υ       | 1   | 1.2    | 16  | 1      |     |        |     |        |     |         |
| 27 | 1.2D + 1.0Di +1.0Wi AZI 0                                  | Yes   | Υ       | 1   | 1.2    | 16  | 1      | 17  | 1      | 29  | 1      | 30  |         |
| 28 | 1.2D + 1.0Di +1.0Wi AZI 30                                 | Yes   | Y       | 1   | 1.2    | 16  | 1      | 18  | 1      | 29  | 0.866  | 30  | 0.5     |
| 29 | 1.2D + 1.0Di +1.0Wi AZI 60                                 | Yes   | Y       | 1   | 1.2    | 16  | 1      | 19  | 1      | 29  | 0.5    | 30  | 0.866   |
| 30 | 1.2D + 1.0Di +1.0Wi AZI 90                                 | Yes   | Y       | 1   | 1.2    | 16  | 1      | 20  | 1      | 29  | 0.0    | 30  | 1       |
| 31 | 1.2D + 1.0Di +1.0Wi AZI 120                                | Yes   | Y       | 1   | 1.2    | 16  | 1      | 21  | 1      | 29  | -0.5   | 30  | 0.866   |
| 32 | 1.2D + 1.0Di +1.0Wi AZI 120<br>1.2D + 1.0Di +1.0Wi AZI 150 | Yes   | Y       | 1   | 1.2    | 16  | 1      | 22  | 1      | 29  | -0.866 |     | 0.5     |
| 33 | 1.2D + 1.0Di +1.0Wi AZI 180                                | 1     | Y       | 1   |        |     | 1      |     |        |     |        |     | 0.5     |
|    |                                                            | Yes   | Y       |     | 1.2    | 16  |        | 23  | 1      | 29  | -1     | 30  | 0.5     |
| 34 | 1.2D + 1.0Di +1.0Wi AZI 210                                | Yes   |         | 1   | 1.2    | 16  | 1      | 24  | 1      | 29  | -0.866 |     | -0.5    |
| 35 | 1.2D + 1.0Di +1.0Wi AZI 240                                | Yes   | Y       | 1   | 1.2    | 16  | 1      | 25  | 1      | 29  | -0.5   | 30  | -0.866  |
| 36 | 1.2D + 1.0Di +1.0Wi AZI 270                                | Yes   | Y       | 1   | 1.2    | 16  | 1      | 26  | 1      | 29  | 0.5    | 30  | -1      |
| 37 | 1.2D + 1.0Di +1.0Wi AZI 300                                | Yes   | Y       | 1   | 1.2    | 16  | 1      | 27  | 1      | 29  | 0.5    | 30  | -0.866  |
| 38 | 1.2D + 1.0Di +1.0Wi AZI 330                                | Yes   | Y       | 1   | 1.2    | 16  | 1      | 28  | 1      | 29  | 0.866  | 30  | -0.5    |
| 39 | (1.2 + 0.2Sds)DL + 1.0E AZI 0                              | Yes   | Υ       | 1   | 1.25   | 31  | 1      | 32  |        |     |        |     |         |
| 40 | (1.2 + 0.2Sds)DL + 1.0E AZI 30                             | Yes   | Υ       | 1   | 1.25   | 31  | 0.866  | 32  | 0.5    |     |        |     | $\perp$ |
| 41 | (1.2 + 0.2Sds)DL + 1.0E AZI 60                             | Yes   | Υ       | 1   | 1.25   | 31  | 0.5    | 32  | 0.866  |     |        |     |         |
| 42 | (1.2 + 0.2Sds)DL + 1.0E AZI 90                             | Yes   | Υ       | 1   | 1.25   | 31  |        | 32  | 1      |     |        |     |         |
| 43 | (1.2 + 0.2Sds)DL + 1.0E AZI 120                            | Yes   | Υ       | 1   | 1.25   | 31  | -0.5   | 32  | 0.866  |     |        |     |         |
| 44 | (1.2 + 0.2Sds)DL + 1.0E AZI 150                            | Yes   | Υ       | 1   | 1.25   | 31  | -0.866 | 32  | 0.5    |     |        |     |         |
| 45 | (1.2 + 0.2Sds)DL + 1.0E AZI 180                            | Yes   | Υ       | 1   | 1.25   | 31  | -1     | 32  |        |     |        |     |         |
| 46 | (1.2 + 0.2Sds)DL + 1.0E AZI 210                            | Yes   | Υ       | 1   | 1.25   | 31  | -0.866 | 32  | -0.5   |     |        |     |         |
| 47 | (1.2 + 0.2Sds)DL + 1.0E AZI 240                            | Yes   | Υ       | 1   | 1.25   | 31  | -0.5   | 32  | -0.866 |     |        |     |         |
| 48 | (1.2 + 0.2Sds)DL + 1.0E AZI 270                            | Yes   | Υ       | 1   | 1.25   | 31  |        | 32  | -1     |     |        |     |         |
| 49 | (1.2 + 0.2Sds)DL + 1.0E AZI 300                            | Yes   | Υ       | 1   | 1.25   | 31  | 0.5    | 32  | -0.866 |     |        |     |         |
| 50 | (1.2 + 0.2Sds)DL + 1.0E AZI 330                            | Yes   | Y       | 1   | 1.25   | 31  | 0.866  | 32  | -0.5   |     |        |     |         |
| 51 | (0.9 - 0.2Sds)DL + 1.0E AZI 0                              | Yes   | Y       | 1   | 0.85   | 31  | 1      | 32  | 0.0    |     |        |     |         |
| 52 | (0.9 - 0.2Sds)DL + 1.0E AZI 30                             | Yes   | Ý       | 1   | 0.85   | 31  | 0.866  | 32  | 0.5    |     |        |     |         |
| 53 | (0.9 - 0.2Sds)DL + 1.0E AZI 60                             | Yes   | Y       | 1   | 0.85   | 31  | 0.5    | 32  | 0.866  |     |        |     |         |
| 54 | (0.9 - 0.2Sds)DL + 1.0E AZI 90                             | Yes   | Y       | 1   | 0.85   | 31  | 0.5    | 32  | 1      |     |        |     |         |
| 55 |                                                            |       | Y       | 1   |        |     | O.E.   |     | -      |     |        |     |         |
|    | (0.9 - 0.2Sds)DL + 1.0E AZI 120                            | Yes   |         | _   | 0.85   | 31  | -0.5   | 32  | 0.866  |     |        |     |         |
| 56 | (0.9 - 0.2Sds)DL + 1.0E AZI 150                            | Yes   | Y       | 1   | 0.85   | 31  | -0.866 | 32  | 0.5    |     |        |     |         |
| 57 | (0.9 - 0.2Sds)DL + 1.0E AZI 180                            | Yes   | Y       | 1   | 0.85   | 31  | -1     | 32  | 0.5    |     |        |     |         |
| 58 | (0.9 - 0.2Sds)DL + 1.0E AZI 210                            | Yes   | Y       | 1   | 0.85   | 31  | -0.866 |     | -0.5   |     |        |     |         |
| 59 | (0.9 - 0.2Sds)DL + 1.0E AZI 240                            | Yes   | Υ       | 1   | 0.85   | 31  | -0.5   | 32  | -0.866 |     |        |     |         |
| 60 | (0.9 - 0.2Sds)DL + 1.0E AZI 270                            | Yes   | Υ       | 1   | 0.85   | 31  |        | 32  | -1     |     |        |     | $\perp$ |
| 61 | (0.9 - 0.2Sds)DL + 1.0E AZI 300                            | Yes   | Υ       | 1   | 0.85   | 31  | 0.5    | 32  | -0.866 |     |        |     |         |
| 62 | (0.9 - 0.2Sds)DL + 1.0E AZI 330                            | Yes   | Υ       | 1   | 0.85   | 31  | 0.866  | 32  | -0.5   |     |        |     |         |
| 63 | 1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 0                      | Yes   | Υ       | 1   | 1      | 2   | 0.272  | 14  | 0.272  | 15  |        | 33  | 1.5     |
| 64 | 1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 30                     | Yes   | Υ       | 1   | 1      | 3   | 0.272  | 14  | 0.236  | 15  | 0.136  | 33  | 1.5     |
| 65 | 1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 60                     | Yes   | Υ       | 1   | 1      | 4   | 0.272  | 14  | 0.136  | 15  | 0.236  | 33  | 1.5     |
|    | * * * * * * * * * * * * * * * * * * * *                    |       |         |     |        |     |        |     |        |     |        |     |         |



Company : Infinigy
Designer : FA
Job Number : 1039-Z0001-B
Model Name : 842857 8/15/2022 12:36:08 PM Checked By : \_\_\_\_

## Load Combinations (Continued)

| Load Combinations (Co      | ontinaca)                               |       |         |     |        |     |        |     |        |     |        |     |               |
|----------------------------|-----------------------------------------|-------|---------|-----|--------|-----|--------|-----|--------|-----|--------|-----|---------------|
| Desci                      | ription                                 | Solve | P-Delta | BLC | Factor        |
| 66 1.0DL + 1.5LL + 1.05    | SWL (60 mph) AZI 90                     | Yes   | Υ       | 1   | 1      | 5   | 0.272  | 14  |        | 15  | 0.272  | 33  | 1.5           |
|                            | WL (60 mph) AZI 120                     | Yes   | Y       | 1   | 1      | 6   | 0.272  |     | -0.136 | 15  | 0.236  | 33  | 1.5           |
|                            | WL (60 mph) AZI 150                     | Yes   | Y       | 1   | 1      | 7   | 0.272  | 14  | -0.236 | 15  | 0.136  | 33  | 1.5           |
|                            | • • •                                   |       | Y       |     | 1      |     | 0.272  |     |        |     | 0.130  |     |               |
|                            | WL (60 mph) AZI 180                     | Yes   |         | 1   | -      | 8   | _      |     | -0.272 | 15  | 0.400  | 33  | 1.5           |
|                            | WL (60 mph) AZI 210                     | Yes   | Υ       | 1   | 1      | 9   | 0.272  |     | -0.236 | 15  | -0.136 | 33  | 1.5           |
|                            | WL (60 mph) AZI 240                     | Yes   | Υ       | 1   | 1      | 10  | 0.272  | 14  | -0.136 | 15  | -0.236 | 33  | 1.5           |
| 72 1.0DL + 1.5LL + 1.0S    | SWL (60 mph) AZI 270                    | Yes   | Υ       | 1   | 1      | 11  | 0.272  | 14  |        | 15  | -0.272 | 33  | 1.5           |
| 73   1.0DL + 1.5LL + 1.0S  | WL (60 mph) AZI 300                     | Yes   | Υ       | 1   | 1      | 12  | 0.272  | 14  | 0.136  | 15  | -0.236 | 33  | 1.5           |
| 74 1.0DL + 1.5LL + 1.0S    | WL (60 mph) AZI 330                     | Yes   | Υ       | 1   | 1      | 13  | 0.272  | 14  | 0.236  | 15  | -0.136 | 33  | 1.5           |
| 75 1.2DL                   |                                         | Yes   | Υ       | 1   | 1.2    | 33  | 1.5    |     |        |     |        |     |               |
| 76 1.2DL + 1.5LM-MP1 +     |                                         | Yes   | Y       | 1   | 1.2    | 34  | 1.5    | 2   | 0.068  | 14  | 0.068  | 15  |               |
|                            | 1SWL (30 mph) AZI 30                    | Yes   | Y       | 1   | 1.2    | 34  | 1.5    | 3   | 0.068  | 14  | 0.059  | 15  | 0.034         |
|                            | 1SWL (30 mph) AZI 60                    | Yes   | Y       | 1   | 1.2    | 34  | 1.5    | 4   | 0.068  | 14  | 0.034  | 15  | 0.059         |
|                            | •                                       |       | Y       | 1   |        |     |        |     |        |     | 0.034  |     |               |
|                            | 1SWL (30 mph) AZI 90                    | Yes   |         | -   | 1.2    | 34  | 1.5    | 5   | 0.068  | 14  | 0.004  | 15  | 0.068         |
|                            | 1SWL (30 mph) AZI 120                   |       | Υ       | 1   | 1.2    | 34  | 1.5    | 6   | 0.068  | 14  | -0.034 | 15  | 0.059         |
|                            | 1SWL (30 mph) AZI 150                   |       | Υ       | 1   | 1.2    | 34  | 1.5    | 7   | 0.068  | 14  | -0.059 | 15  | 0.034         |
| 82   1.2DL + 1.5LM-MP1 + 1 | <u>1SWL (30 mph) AZI 180</u>            | Yes   | Υ       | 1   | 1.2    | 34  | 1.5    | 88  | 0.068  | 14  | -0.068 | 15  |               |
| 83 1.2DL + 1.5LM-MP1 + 1   | 1SWL (30 mph) AZI 210                   | Yes   | Υ       | 1   | 1.2    | 34  | 1.5    | 9   | 0.068  | 14  | -0.059 | 15  | -0.034        |
| 84 1.2DL + 1.5LM-MP1 + 1   | 1SWL (30 mph) AZI 240                   | Yes   | Y       | 1   | 1.2    | 34  | 1.5    | 10  | 0.068  | 14  | -0.034 | 15  | -0.059        |
|                            | 1SWL (30 mph) AZI 270                   |       | Υ       | 1   | 1.2    | 34  | 1.5    | 11  | 0.068  | 14  |        | 15  | -0.068        |
|                            | 1SWL (30 mph) AZI 300                   |       | Υ       | 1   | 1.2    | 34  | 1.5    | 12  | 0.068  | 14  | 0.034  | 15  | -0.059        |
|                            | 1SWL (30 mph) AZI 330                   |       | Y       | 1   | 1.2    | 34  | 1.5    | 13  | 0.068  | 14  | 0.059  | 15  | -0.034        |
| 88 1.2DL + 1.5LM-MP2 +     |                                         | Yes   | Y       | 1   | 1.2    | 35  | 1.5    | 2   | 0.068  | 14  | 0.068  | 15  | 0.004         |
|                            |                                         |       | Y       | 1   | 1.2    |     |        |     |        |     |        |     | 0.024         |
|                            | 1SWL (30 mph) AZI 30                    | Yes   |         | _   |        | 35  | 1.5    | 3   | 0.068  | 14  | 0.059  | 15  | 0.034         |
|                            | 1SWL (30 mph) AZI 60                    | Yes   | Υ       | 1   | 1.2    | 35  | 1.5    | 4   | 0.068  | 14  | 0.034  | 15  | 0.059         |
|                            | 1SWL (30 mph) AZI 90                    | Yes   | Υ       | 1   | 1.2    | 35  | 1.5    | 5   | 0.068  | 14  |        | 15  | 0.068         |
| 92   1.2DL + 1.5LM-MP2 + 1 |                                         |       | Υ       | 1   | 1.2    | 35  | 1.5    | 6   | 0.068  | 14  | -0.034 | 15  | 0.059         |
| 93 1.2DL + 1.5LM-MP2 + 1   |                                         |       | Υ       | 1   | 1.2    | 35  | 1.5    | 7   | 0.068  | 14  | -0.059 | 15  | 0.034         |
| 94   1.2DL + 1.5LM-MP2 + 1 | 1SWL (30 mph) AZI 180                   | Yes   | Y       | 1   | 1.2    | 35  | 1.5    | 8   | 0.068  | 14  | -0.068 | 15  |               |
| 95 1.2DL + 1.5LM-MP2 + 1   |                                         |       | Υ       | 1   | 1.2    | 35  | 1.5    | 9   | 0.068  | 14  | -0.059 | 15  | -0.034        |
|                            | 1SWL (30 mph) AZI 240                   |       | Y       | 1   | 1.2    | 35  | 1.5    | 10  | 0.068  | 14  | -0.034 | 15  | -0.059        |
| 97 1.2DL + 1.5LM-MP2 + 1   |                                         |       | Y       | 1   | 1.2    | 35  | 1.5    | 11  | 0.068  | 14  | 0.001  | 15  | -0.068        |
|                            | 1SWL (30 mph) AZI 300                   |       | Y       | 1   | 1.2    | 35  | 1.5    | 12  | 0.068  | 14  | 0.034  | 15  | -0.059        |
|                            | * * * * * * * * * * * * * * * * * * * * |       | Y       | 1   | 1.2    |     |        |     |        | 14  |        |     |               |
|                            | 1SWL (30 mph) AZI 330                   |       | Y       |     |        | 35  | 1.5    | 13  | 0.068  |     | 0.059  | 15  | -0.034        |
| 100 1.2DL + 1.5LM-MP3 +    | • • • • • • • • • • • • • • • • • • • • | Yes   |         | 1   | 1.2    | 36  | 1.5    | 2   | 0.068  | 14  | 0.068  | 15  |               |
|                            | 1SWL (30 mph) AZI 30                    | Yes   | Υ       | 1   | 1.2    | 36  | 1.5    | 3   | 0.068  | 14  | 0.059  | 15  | 0.034         |
| 102 1.2DL + 1.5LM-MP3 +    |                                         | Yes   | Υ       | 1   | 1.2    | 36  | 1.5    | 4   | 0.068  | 14  | 0.034  | 15  | 0.059         |
|                            | 1SWL (30 mph) AZI 90                    | Yes   | Υ       | 1   | 1.2    | 36  | 1.5    | 5   | 0.068  | 14  |        | 15  | 0.068         |
| 104 1.2DL + 1.5LM-MP3 + 1  | 1SWL (30 mph) AZI 120                   | Yes   | Υ       | 1   | 1.2    | 36  | 1.5    | 6   | 0.068  | 14  | -0.034 | 15  | 0.059         |
| 105 1.2DL + 1.5LM-MP3 + 1  | 1SWL (30 mph) AZI 150                   | Yes   | Υ       | 1   | 1.2    | 36  | 1.5    | 7   | 0.068  | 14  | -0.059 | 15  | 0.034         |
| 106 1.2DL + 1.5LM-MP3 + 1  | 1SWL (30 mph) AZI 180                   | Yes   | Υ       | 1   | 1.2    | 36  | 1.5    | 8   | 0.068  | 14  | -0.068 | 15  |               |
| 107 1.2DL + 1.5LM-MP3 + 1  |                                         |       | Υ       | 1   | 1.2    | 36  | 1.5    |     |        |     |        |     | -0.034        |
| 108 1.2DL + 1.5LM-MP3 +    |                                         |       | Y       | 1   | 1.2    | 36  | 1.5    | 10  | 0.068  | 14  | -0.034 | 15  | -0.059        |
| 109 1.2DL + 1.5LM-MP3 + 1  |                                         |       | Y       | 1   | 1.2    | 36  | 1.5    | 11  | 0.068  | 14  | -0.00- | 15  | -0.068        |
|                            |                                         |       |         |     |        |     |        |     |        |     | 0.024  |     |               |
| 110 1.2DL + 1.5LM-MP3 + 1  |                                         |       | Y       | 1   | 1.2    | 36  | 1.5    | 12  | 0.068  | 14  | 0.034  | 15  | -0.059        |
| 111 1.2DL + 1.5LM-MP3 + 1  |                                         |       | Υ       | 1   | 1.2    | 36  | 1.5    | 13  | 0.068  | 14  | 0.059  | 15  | -0.034        |
| 112 1.2DL + 1.5LM-MP4 +    |                                         | Yes   | Υ       | 1   | 1.2    | 37  | 1.5    | 2   | 0.068  | 14  | 0.068  | 15  | $\perp$       |
| 113 1.2DL + 1.5LM-MP4 +    |                                         | Yes   | Υ       | 1   | 1.2    | 37  | 1.5    | 3   | 0.068  | 14  | 0.059  | 15  | 0.034         |
| 114 1.2DL + 1.5LM-MP4 +    | 1SWL (30 mph) AZI 60                    | Yes   | Υ       | 1   | 1.2    | 37  | 1.5    | 4   | 0.068  | 14  | 0.034  | 15  | 0.059         |
| 115 1.2DL + 1.5LM-MP4 +    | 1SWL (30 mph) AZI 90                    | Yes   | Υ       | 1   | 1.2    | 37  | 1.5    | 5   | 0.068  | 14  |        | 15  | 0.068         |
| 116 1.2DL + 1.5LM-MP4 + 1  |                                         |       | Y       | 1   | 1.2    | 37  | 1.5    | 6   | 0.068  | 14  | -0.034 | 15  | 0.059         |
| 117 1.2DL + 1.5LM-MP4 + 1  |                                         |       | Y       | 1   | 1.2    | 37  | 1.5    | 7   | 0.068  | 14  | -0.059 | 15  | 0.034         |
| 118 1.2DL + 1.5LM-MP4 + 1  |                                         |       | Y       | 1   | 1.2    | 37  | 1.5    | 8   | 0.068  | 14  | -0.068 | 15  | 0.004         |
| 119 1.2DL + 1.5LM-MP4 + 1  |                                         |       | Y       | 1   | 1.2    | 37  |        | 9   |        | 14  |        |     | -0.034        |
|                            |                                         |       |         |     |        |     | 1.5    |     | 0.068  |     | -0.059 |     | $\overline{}$ |
| 120 1.2DL + 1.5LM-MP4 + 1  | 15VVL (30 mph) AZI 240                  | res   | Υ       | 1   | 1.2    | 37  | 1.5    | 10  | 0.068  | 14  | -0.034 | 15  | -0.059        |



8/15/2022 12:36:08 PM Checked By : \_\_\_\_

**Load Combinations (Continued)** 

| Description                                   | Solve | P-Delta | BLC | Factor |
|-----------------------------------------------|-------|---------|-----|--------|-----|--------|-----|--------|-----|--------|-----|--------|
| 121 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 270 | Yes   | Υ       | 1   | 1.2    | 37  | 1.5    | 11  | 0.068  | 14  |        | 15  | -0.068 |
| 122 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 300 | Yes   | Υ       | 1   | 1.2    | 37  | 1.5    | 12  | 0.068  | 14  | 0.034  | 15  | -0.059 |
| 123 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 330 | Yes   | Υ       | 1   | 1.2    | 37  | 1.5    | 13  | 0.068  | 14  | 0.059  | 15  | -0.034 |
| 124 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 0   | Yes   | Y       | 1   | 1.2    | 38  | 1.5    | 2   | 0.068  | 14  | 0.068  | 15  |        |
| 125 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 30  | Yes   | Υ       | 1   | 1.2    | 38  | 1.5    | 3   | 0.068  | 14  | 0.059  | 15  | 0.034  |
| 126 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 60  | Yes   | Y       | 1   | 1.2    | 38  | 1.5    | 4   | 0.068  | 14  | 0.034  | 15  | 0.059  |
| 127 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 90  | Yes   | Υ       | 1   | 1.2    | 38  | 1.5    | 5   | 0.068  | 14  |        | 15  | 0.068  |
| 128 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 120 | Yes   | Y       | 1   | 1.2    | 38  | 1.5    | 6   | 0.068  | 14  | -0.034 | 15  | 0.059  |
| 129 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 150 | Yes   | Υ       | 1   | 1.2    | 38  | 1.5    | 7   | 0.068  | 14  | -0.059 | 15  | 0.034  |
| 130 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 180 | Yes   | Υ       | 1   | 1.2    | 38  | 1.5    | 8   | 0.068  | 14  | -0.068 | 15  |        |
| 131 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 210 | Yes   | Y       | 1   | 1.2    | 38  | 1.5    | 9   | 0.068  | 14  | -0.059 | 15  | -0.034 |
| 132 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 240 | Yes   | Υ       | 1   | 1.2    | 38  | 1.5    | 10  | 0.068  | 14  | -0.034 | 15  | -0.059 |
| 133 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 270 | Yes   | Υ       | 1   | 1.2    | 38  | 1.5    | 11  | 0.068  | 14  |        | 15  | -0.068 |
| 134 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 300 | Yes   | Υ       | 1   | 1.2    | 38  | 1.5    | 12  | 0.068  | 14  | 0.034  | 15  | -0.059 |
| 135 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 330 | Yes   | Υ       | 1   | 1.2    | 38  | 1.5    | 13  | 0.068  | 14  | 0.059  | 15  | -0.034 |
| 136 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 0   | Yes   | Y       | 1   | 1.2    | 39  | 1.5    | 2   | 0.068  | 14  | 0.068  | 15  |        |
| 137 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 30  | Yes   | Υ       | 1   | 1.2    | 39  | 1.5    | 3   | 0.068  | 14  | 0.059  | 15  | 0.034  |
| 138 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 60  | Yes   | Y       | 1   | 1.2    | 39  | 1.5    | 4   | 0.068  | 14  | 0.034  | 15  | 0.059  |
| 139 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 90  | Yes   | Υ       | 1   | 1.2    | 39  | 1.5    | 5   | 0.068  | 14  |        | 15  | 0.068  |
| 140 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 120 | Yes   | Υ       | 1   | 1.2    | 39  | 1.5    | 6   | 0.068  | 14  | -0.034 | 15  | 0.059  |
| 141 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 150 | Yes   | Y       | 1   | 1.2    | 39  | 1.5    | 7   | 0.068  | 14  | -0.059 | 15  | 0.034  |
| 142 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 180 | Yes   | Υ       | 1   | 1.2    | 39  | 1.5    | 8   | 0.068  | 14  | -0.068 | 15  |        |
| 143 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 210 | Yes   | Υ       | 1   | 1.2    | 39  | 1.5    | 9   | 0.068  | 14  | -0.059 | 15  | -0.034 |
| 144 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 240 | Yes   | Υ       | 1   | 1.2    | 39  | 1.5    | 10  | 0.068  | 14  | -0.034 | 15  | -0.059 |
| 145 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 270 | Yes   | Υ       | 1   | 1.2    | 39  | 1.5    | 11  | 0.068  | 14  |        | 15  | -0.068 |
| 146 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 300 | Yes   | Υ       | 1   | 1.2    | 39  | 1.5    | 12  | 0.068  | 14  | 0.034  | 15  | -0.059 |
| 147 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 330 | Yes   | Υ       | 1   | 1.2    | 39  | 1.5    | 13  | 0.068  | 14  | 0.059  | 15  | -0.034 |

### Material Take-Off

|    | Material         | Size       | Pieces | Length[in] | Weight[K] |
|----|------------------|------------|--------|------------|-----------|
| 1  | General Members  |            |        |            |           |
| 2  | RIGID            |            | 12     | 36         | 0         |
| 3  | Total General    |            | 12     | 36         | 0         |
| 4  |                  |            |        |            |           |
| 5  | Hot Rolled Steel |            |        |            |           |
| 6  | A36 Gr.36        | C5.25X4    | 3      | 99         | 0.132     |
| 7  | A36 Gr.36        | L2.5X2.5X3 | 3      | 55.5       | 0.014     |
| 8  | A36 Gr.36        | L3X3X4     | 6      | 771        | 0.315     |
| 9  | A36 Gr.36        | LL3X3X4X0  | 3      | 140.3      | 0.115     |
| 10 | A53 Gr.B         | PIPE 2.0   | 6      | 504        | 0.146     |
| 11 | A53 Gr.B         | PIPE 2.5   | 3      | 504        | 0.23      |
| 12 | Total HR Steel   | -          | 24     | 2073.8     | 0.951     |

# **Envelope Node Reactions**

|   | Node Label |     | X [lb]    | LC | Y [lb]   | LC | Z [lb]    | LC | MX [lb-ft] | LC | MY [lb-ft] | LC | MZ [lb-ft] | LC |
|---|------------|-----|-----------|----|----------|----|-----------|----|------------|----|------------|----|------------|----|
| 1 | N4         | max | 1816.395  | 18 | 2157.813 | 33 | 859.259   | 2  | 777.857    | 14 | 1366.973   | 6  | 543.682    | 11 |
| 2 |            | min | -1861.298 | 12 | -336.955 | 14 | -798.644  | 20 | -5006.37   | 33 | -1333.595  | 24 | -517.381   | 17 |
| 3 | N23        | max | 1375.564  | 4  | 2083.264 | 37 | 1821.331  | 3  | 2424.46    | 38 | 1828.075   | 10 | 4159.183   | 37 |
| 4 |            | min | -1313.897 | 22 | -331.037 | 18 | -1809.036 | 9  | -472.711   | 19 | -1796.656  | 16 | -669.524   | 18 |
| 5 | N25        | max | 1242.899  | 18 | 2041.568 | 29 | 1838.296  | 14 | 2359.869   | 28 | 1556.226   | 2  | 671.294    | 22 |
| 6 |            | min | -1268.087 | 12 | -338.555 | 22 | -1903.377 | 8  | -512.061   | 21 | -1525.346  | 20 | -4092.003  | 29 |
| 7 | Totals:    | max | 4316.124  | 5  | 5782.37  | 30 | 4441.903  | 14 |            |    |            |    |            |    |
| 8 |            | min | -4316.126 | 11 | 1770.866 | 60 | -4441.917 | 8  |            |    |            |    |            |    |



8/15/2022 12:36:08 PM Checked By : \_\_\_

### Envelope AISC 15TH (360-16): LRFD Member Steel Code Checks

|    | Member | Shape      | Code Check | Loc[in]LC | Shear Chec | kLoc[in][ | Dir L | _C p | hi*Pnc [lb] | ohi*Pnt [lb] | phi*Mn y-y [lb-ft] | phi*Mn z-z [lb-ft] | Cb    | Eqn   |
|----|--------|------------|------------|-----------|------------|-----------|-------|------|-------------|--------------|--------------------|--------------------|-------|-------|
| 1  | HOR1   | L3X3X4     | 0.991      | 84.5 8    | 0.209      | 84.5      | z     | 8 4  | 43453.599   | 46656        | 1688.138           | 3755.745           | 1.5   | H2-1  |
| 2  | HOR3   | L3X3X4     | 0.967      | 84.5 12   | 0.207      | 84.5      | z 1   | 12 2 | 27064.022   | 46656        | 1688.138           | 3521.265           | 1.5   | H2-1  |
| 3  | HOR2   | L3X3X4     | 0.932      | 84.5 4    | 0.205      | 84.5      | y 4   | 4 4  | 43453.599   | 46656        | 1688.138           | 3755.745           | 1.5   | H2-1  |
| 4  | MP5    | PIPE 2.0   | 0.759      | 49.5 10   | 0.17       | 49.5      | 1     | 12 2 | 20866.733   | 32130        | 1871.625           | 1871.625           | 1     | H1-1b |
| 5  | MP3    | PIPE_2.0   | 0.756      | 49.5 2    | 0.171      | 49.5      | 4     | 4 2  | 20866.733   | 32130        | 1871.625           | 1871.625           | 1     | H1-1b |
| 6  | MP1    | PIPE 2.0   | 0.745      | 49.5 6    | 0.18       | 49.5      | { }   | 8 2  | 20866.733   | 32130        | 1871.625           | 1871.625           | 1     | H1-1b |
| 7  | M37    | L2.5X2.5X3 | 0.716      | 18.5 2    | 0.173      | 0         | y :   | 3 2  | 26979.837   | 29192.4      | 872.574            | 1971.83            | 1.006 | H2-1  |
| 8  | M36    | L2.5X2.5X3 | 0.713      | 18.5 10   | 0.173      | 0         | y 1   | 11 2 | 26979.837   | 29192.4      | 872.574            | 1971.83            | 1.005 | H2-1  |
| 9  | M35    | L2.5X2.5X3 | 0.708      | 18.5 6    | 0.172      | 0         | у .   | 7 2  | 26979.837   | 29192.4      | 872.574            | 1971.83            | 1.038 | H2-1  |
| 10 | MP6    | PIPE 2.0   | 0.601      | 64 2      | 0.155      | 28        | 1     | 12 1 | 14916.096   | 32130        | 1871.625           | 1871.625           | 1     | H1-1b |
| 11 | MP4    | PIPE_2.0   | 0.592      | 64 5      | 0.151      | 28        | 4     | 4 1  | 14916.096   | 32130        | 1871.625           | 1871.625           | 1     | H1-1b |
| 12 | MP2    | PIPE 2.0   | 0.59       | 64 9      | 0.153      | 28        | - 1   | 8 1  | 14916.096   | 32130        | 1871.625           | 1871.625           | 1     | H1-1b |
| 13 | M61    | C5.25X4    | 0.57       | 33 10     | 0.199      | 23.719    | z ;   | 3 1  | 136909.686  | 151875       | 12325.223          | 24869.533          | 2.663 | H1-1b |
| 14 | M62    | C5.25X4    | 0.561      | 33 2      | 0.199      | 23.719    | z ·   | 7 1  | 136909.686  | 151875       | 12325.223          | 24869.533          | 2.91  | H1-1b |
| 15 | M55    | C5.25X4    | 0.55       | 33 6      | 0.197      | 23.719    | z 1   | 11 1 | 136909.686  | 151875       | 12325.223          | 24869.533          | 2.928 | H1-1b |
| 16 | M30    | PIPE 2.5   | 0.51       | 61.25 11  | 0.186      | 148.75    | - (   | 6    | 11606.18    | 50715        | 3596.25            | 3596.25            | 1     | H1-1b |
| 17 | M25    | PIPE 2.5   | 0.509      | 61.25 7   | 0.191      | 148.75    |       | 2    | 11606.18    | 50715        | 3596.25            | 3596.25            | 1     | H1-1b |
| 18 | M33    | PIPE 2.5   | 0.507      | 61.25 3   | 0.189      | 148.75    | 1     | 10   | 11606.18    | 50715        | 3596.25            | 3596.25            | 1     | H1-1b |
| 19 | G4     | L3X3X4     | 0.468      | 44 7      | 0.026      | 44        | y   1 | 10 1 | 14376.353   | 46656        | 1688.138           | 3137.94            | 1.317 | H2-1  |
| 20 | G5     | L3X3X4     | 0.464      | 44 3      | 0.025      | 44        | z   9 | 92 1 | 14376.353   | 46656        | 1688.138           | 3136.118           | 1.314 | H2-1  |
| 21 | G6     | L3X3X4     | 0.462      | 44 11     | 0.026      | 44        | y 2   | 2 1  | 14376.353   | 46656        | 1688.138           | 3139.976           | 1.32  | H2-1  |
| 22 | G3     | LL3X3X4X0  | 0.147      | 0 13      | 0.02       | 46.765    | y 1   | 107  | 76393.472   | 93312        | 6480               | 4361.544           | 1     | H1-1b |
| 23 | G2     | LL3X3X4X0  | 0.147      | 0 4       | 0.02       | 46.765    | y 1:  | 267  | 76393.472   | 93312        | 6480               | 4361.544           | 1     | H1-1b |
| 24 | G1     | LL3X3X4X0  | 0.146      | 0 8       | 0.02       | 46.765    | y 9   | 94 7 | 76393.472   | 93312        | 6480               | 4361.544           | 1     | H1-1b |

### Envelope AISI S100-16: LRFD Member Cold Formed Steel Code Checks

No Data to Print..

# APPENDIX D ADDITIONAL CALCUATIONS

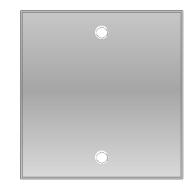
# INFINIGY8

### **Bolt Calculation Tool, V1.6.3**

| Doit Calculation 1001, V1.0.3          |              |  |  |  |  |  |
|----------------------------------------|--------------|--|--|--|--|--|
| PROJECT DATA                           |              |  |  |  |  |  |
| Site Name:                             | BENNETT POND |  |  |  |  |  |
| Site Number:                           | 842857       |  |  |  |  |  |
| Connection Description: Mount to Tower |              |  |  |  |  |  |

| ENVELOPE BOLT LOADS                  |  |  |  |  |  |  |  |  |
|--------------------------------------|--|--|--|--|--|--|--|--|
| (LC10 M61) Bolt Tension: 4724.44 lbs |  |  |  |  |  |  |  |  |
| (LC33 M55) Bolt Shear: 10105.26 lbs  |  |  |  |  |  |  |  |  |

| MAX BOLT USAGE LOADS <sup>1</sup> |          |     |  |  |  |  |
|-----------------------------------|----------|-----|--|--|--|--|
| Bolt Tension:                     | 0.00     | lbs |  |  |  |  |
| Bolt Shear:                       | 10105.26 | lbs |  |  |  |  |


| BOLT PRO          | BOLT PROPERTIES |    |  |  |  |  |  |
|-------------------|-----------------|----|--|--|--|--|--|
| Bolt Type:        | Bolt            | -  |  |  |  |  |  |
| Bolt Diameter:    | 0.75            | in |  |  |  |  |  |
| Bolt Grade:       | A325            | -  |  |  |  |  |  |
| # of Bolts:       | 2               | -  |  |  |  |  |  |
| Threads Excluded? | No              | -  |  |  |  |  |  |

 $<sup>^{1}</sup>$  Max bolt usage loads correspond to Load combination #33 on member M55 in RISA-3D, which causes the maximum demand on the bolts.

### **Member Information**

J nodes of M55, M61, M62,

| BOLT CHECK                    |          |       |
|-------------------------------|----------|-------|
| Tensile Strength              | 30101.39 |       |
| Shear Strength                | 19880.39 |       |
| Max Tensile Usage             | 15.7%    |       |
| Max Shear Usage               | 50.8%    |       |
| Interaction Check (Max Usage) | 0.26     | ≤1.05 |
| Result                        | Pass     |       |



Date: August 16, 2022



Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 724-416-2000

Subject:

Structural Analysis Report

Carrier Designation:

AT&T Mobility Co-Locate

Site Number:

CTL05069

Site Name:

BENNETT POND

**FA Number:** 

10070924

Crown Castle Designation:

BU Number: Site Name: 842857

JDE Job Number:

BENNETT POND 715649

Work Order Number:
Order Number:

2145275 614859 Rev. 0

Engineering Firm Designation:

**Crown Castle Project Number:** 

2145275

Site Data:

66 SUGAR HOLLOW ROAD, DANBURY, FAIRFIELD County, CT

Latitude 41° 20′ 10″, Longitude -73° 28′ 14.4″

106 Foot - Monopole Tower

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

**Sufficient Capacity** 

This analysis utilizes an ultimate 3-second gust wind speed of 115 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - "Analysis Criteria".

Structural analysis prepared by: Didi Rossmiller

Respectfully submitted by:

Maribel Dentinger, P.E. Senior Project Engineer

Maribel Dentinger Digitally signed by Maribel Dentinger Date: 2022.08.17 16:41:21 -04'00'



#### **TABLE OF CONTENTS**

### 1) INTRODUCTION

### 2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
Table 2 - Other Considered Equipment

### 3) ANALYSIS PROCEDURE

Table 3 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

#### 4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity - LC7
4.1) Recommendations

#### 5) APPENDIX A

tnxTower Output

### 6) APPENDIX B

Base Level Drawing

#### 7) APPENDIX C

**Additional Calculations** 

### 1) INTRODUCTION

This tower is a 106 ft Monopole tower designed by Summit Manufacturing and mapped by Paul J. Ford and Company.

### 2) ANALYSIS CRITERIA

TIA-222 Revision:

TIA-222-H

Risk Category:

11

Wind Speed:

115 mph

**Exposure Category:** 

C

Topographic Factor:

1

Ice Thickness:

1 in

Wind Speed with Ice: Service Wind Speed:

50 mph

60 mph

**Table 1 - Proposed Equipment Configuration** 

| Mounting<br>Level (ft) | Center<br>Line<br>Elevation<br>(ft) | Number<br>of<br>Antennas | Antenna<br>Manufacturer | Antenna Model                   | Number<br>of Feed<br>Lines | Feed<br>Line<br>Size (in) |
|------------------------|-------------------------------------|--------------------------|-------------------------|---------------------------------|----------------------------|---------------------------|
|                        |                                     | 3                        | cci antennas            | OPA65R-BU6D w/ Mount Pipe       |                            |                           |
|                        | 108.0                               | 3                        | cci antennas            | TPA65R-BU6DA-K                  | 1                          | 3/8                       |
| 106.0                  |                                     | 1                        | raycap                  | DC9-48-60-24-8C-EV_CCIV2        | 2                          | 13/16                     |
| 100.0                  |                                     | 1                        | raycap                  | DC6-48-60-18-8F                 | 1                          | 7/8                       |
|                        | 106.0                               | 1                        | tower mounts            | Platform Mount [LP 1201-1_HR-1] | 6                          | 1-5/8                     |
|                        |                                     | 1                        | tower mounts            | Mount modifications             |                            |                           |

Table 2 - Other Considered Equipment

| Mounting Line Number of Antennas |      | Antenna<br>Manufacturer                        | Antenna Model                          | Number<br>of Feed<br>Lines | Feed<br>Line<br>Size (in) |              |
|----------------------------------|------|------------------------------------------------|----------------------------------------|----------------------------|---------------------------|--------------|
|                                  |      | 3                                              | alcatel lucent                         | 1900MHz RRH                |                           |              |
|                                  |      | 3                                              | alcatel lucent                         | 800MHZ RRH                 |                           |              |
|                                  | 90.0 | 3                                              | alcatel lucent                         | RRH2X50-800                |                           |              |
| 88.0                             | 90.0 | 3                                              | alcatel lucent                         | TD-RRH8X20-25              | 1                         | 7/8<br>1-1/4 |
| 00.0                             |      | 3                                              | commscope                              | DT465B-2XR w/ Mount Pipe   | 3                         |              |
|                                  |      | 3                                              | rfs celwave                            | APXVSPP18-C-A20            |                           |              |
|                                  | 00.0 | 1                                              | tower mounts                           | Platform Mount [LP 602-1]  |                           |              |
|                                  | 88.0 | 1                                              | tower mounts Side Arm Mount [SO 102-3] |                            |                           |              |
| 75.0                             | 75.0 | 1                                              | gps                                    | GPS_A                      |                           | 4.00         |
| 75.0                             | 75.0 | 1                                              | tower mounts                           | Side Arm Mount [SO 701-1]  |                           | 1/2          |
|                                  |      | 3                                              | fujitsu                                | TA08025-B604               |                           |              |
|                                  |      | 3                                              | fujitsu                                | TA08025-B605               |                           |              |
| 59.0                             | 59.0 | 9.0 3 jma wireless MX08FRO665-21 w/ Mount Pipe |                                        | 1                          | 1-3/8                     |              |
|                                  |      | 1                                              | raycap                                 | RDIDC-9181-PF-48           |                           |              |
|                                  |      |                                                |                                        | Commscope MC-PK8-DSH       |                           |              |

#### 3) ANALYSIS PROCEDURE

**Table 3 - Documents Provided** 

| Document                                 | Remarks                                                 | Reference | Source   |
|------------------------------------------|---------------------------------------------------------|-----------|----------|
| 4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS | Summit Manufacturing, LLC / Paul<br>J. Ford and company | 5110642   | CCISITES |
| 4-TOWER MANUFACTURER DRAWINGS            | Summit Manufacturing, LLC / Paul<br>J. Ford and company | 5110641   | CCISITES |
| 4-GEOTECHNICAL REPORTS                   | FDH Engineering, Inc.                                   | 5300808   | CCISITES |

#### 3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

### 3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

#### 4) ANALYSIS RESULTS

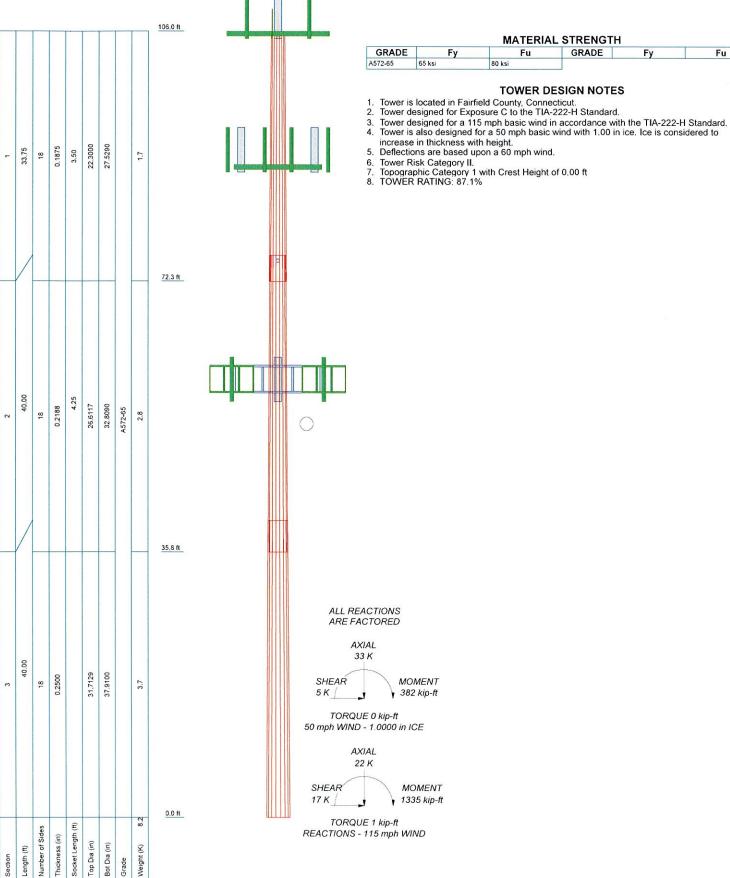
Table 4 - Section Capacity (Summary)

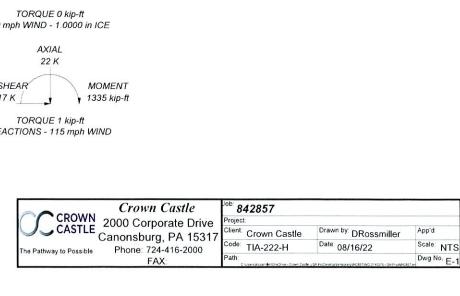
| Section<br>No. | Elevation (ft) | Component<br>Type | Size                    | Critical<br>Element | P (K)  | SF*P_allow<br>(K) | %<br>Capacity | Pass / Fail |
|----------------|----------------|-------------------|-------------------------|---------------------|--------|-------------------|---------------|-------------|
| L1             | 106 - 72.25    | Pole              | TP27.529x22.3x0.1875    | 1                   | -8.57  | 979.66            | 38.0          | Pass        |
| L2             | 72.25 - 35.75  | Pole              | TP32.809x26.6117x0.2188 | 2                   | -15.82 | 1362.14           | 70.3          | Pass        |
| L3             | 35.75 - 0      | Pole              | TP37.91x31.7129x0.25    | 3                   | -22.14 | 1835.58           | 87.1          | Pass        |
|                |                |                   |                         |                     |        |                   | Summary       |             |
|                |                |                   |                         |                     |        | Pole (L3)         | 87.1          | Pass        |
|                |                |                   |                         |                     |        | Rating =          | 87.1          | Pass        |

Table 5 - Tower Component Stresses vs. Capacity

| Notes | Component                          | Elevation (ft) | % Capacity | Pass / Fail |
|-------|------------------------------------|----------------|------------|-------------|
| 1     | Anchor Rods                        | 0              | 70.0       | Pass        |
| 1     | Base Plate                         | 0              | 61.4       | Pass        |
| 1     | Base Foundation (Structure)        | 0              | 14.0       | Pass        |
| 1     | Base Foundation (Soil Interaction) | 0              | 77.1       | Pass        |

| Structure Rating (max from all components) = | 87.1% |
|----------------------------------------------|-------|
|                                              |       |


See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.


Notes:

### 4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

## APPENDIX A TNXTOWER OUTPUT





**MATERIAL STRENGTH** 

**TOWER DESIGN NOTES** 

GRADE

Fy

Fu

#### **Tower Input Data**

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower is located in Fairfield County, Connecticut.
- Tower base elevation above sea level: 528.00 ft.
- Basic wind speed of 115 mph.
- Risk Category II.
- · Exposure Category C.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.00 ft.
- Nominal ice thickness of 1.0000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- · Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60 mph.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: Kes(Fw) = 0.95, Kes(ti) = 0.85.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

#### **Options**

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- √ Use Code Safety Factors Guys Escalate Ice Always Use Max Kz Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination

√ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

√ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption

Poles

✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

#### **Tapered Pole Section Geometry**

| Section | Elevation    | Section<br>Length | Splice<br>Length | Number<br>of | Top<br>Diameter | Bottom<br>Diameter | Wall<br>Thickness | Bend<br>Radius | Pole Grade          |
|---------|--------------|-------------------|------------------|--------------|-----------------|--------------------|-------------------|----------------|---------------------|
|         | ft           | ft                | ft               | Sides        | in              | in                 | in                | in             |                     |
| L1      | 106.00-72.25 | 33.75             | 3.50             | 18           | 22.3000         | 27.5290            | 0.1875            | 0.7500         | A572-65<br>(65 ksi) |
| L2      | 72.25-35.75  | 40.00             | 4.25             | 18           | 26.6117         | 32.8090            | 0.2188            | 0.8752         | A572-65<br>(65 ksi) |
| L3      | 35.75-0.00   | 40.00             |                  | 18           | 31.7129         | 37.9100            | 0.2500            | 1.0000         | À572-65<br>(65 ksi) |

|                    |                        |                    |                      | Tapeı          | red Pole             | Prop                    | erties                      |                    |                        |                                            |                                                                                                               |
|--------------------|------------------------|--------------------|----------------------|----------------|----------------------|-------------------------|-----------------------------|--------------------|------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Section            | Tip Dia.<br>in         | Area<br>in²        | l<br>in⁴             | r<br>in        | C<br>in              | I/C<br>in³              | J<br>in⁴                    | It/Q<br>in²        | w<br>in                | w/t                                        | MONTH AND THE STREET, |
| L1                 | 22.6151<br>27.9248     | 13.1597<br>16.2716 | 812.941<br>1536.783  |                | 11.3284<br>13.9847   | 71.7614<br>109.8901     | 1626.9523<br>3075.5889      | 6.5811<br>8.1374   | 3.5948<br>4.5151       | 19.17<br>24.08                             |                                                                                                               |
| L2                 | 27.5391<br>33.2814     | 18.3291<br>22.6330 | 1613.075<br>3037.055 |                | 13.5188<br>16.6670   | 119.3212<br>182.2200    | 3228.2732<br>6078.1078      | 9.1663<br>11.3186  | 4.2986<br>5.3893       | 19.64<br>24.63                             |                                                                                                               |
| L3                 | 32.8322<br>38.4563     | 24.9658<br>29.8832 | 3122.355<br>5354.579 | 11.1693        | 16.1102<br>19.2583   | 193.8126<br>278.0404    | 6248.8186<br>10716.203<br>6 | 12.4853<br>14.9444 | 5.1415<br>6.2322       | 20.56<br>24.92                             | 6                                                                                                             |
| Tower<br>Elevation | Guss<br>Are<br>(per fa | a Th               | usset G<br>ickness   | Gusset Grade i | Adjust. Factor<br>Aı | Adjust.<br>Factor<br>A, | Weight M                    | Stitch<br>Spa      | n Bolt Stit<br>cing Sp | ole Angle<br>ch Bolt<br>pacing<br>izontals | Double Angle<br>Stitch Bolt<br>Spacing<br>Redundants                                                          |
| ft                 | ft <sup>2</sup>        |                    | in                   |                |                      |                         |                             | i                  |                        | in                                         | in                                                                                                            |
| L1 106.00<br>72.25 | -                      |                    |                      |                | 1                    | 1                       | 1                           |                    |                        |                                            |                                                                                                               |
| L2 72.25-<br>35.75 |                        |                    |                      |                | . 1                  | 1                       | 1                           |                    |                        |                                            |                                                                                                               |
| L3 35.75-0.        | 00                     |                    |                      |                | 1                    | 1                       | 1                           |                    |                        |                                            |                                                                                                               |

| Description | Face | Allow  | Exclude     | Componen | Placement  | Total | Number  | Clear | Width or | Perimete | Weigh                                 |
|-------------|------|--------|-------------|----------|------------|-------|---------|-------|----------|----------|---------------------------------------|
| 2000        | or   | Shield | From        | t        | , idoomone |       | Per Row |       |          |          | · · · · · · · · · · · · · · · · · · · |
|             | Leg  |        | Torque      | Type     | ft         |       |         | in    | r        |          | plf                                   |
|             |      |        | Calculation |          |            |       |         |       | in       | in       |                                       |

#### Feed Line/Linear Appurtenances - Entered As Area

| Description     | Face<br>or | Allow<br>Shield | Exclude<br>From       | Componen<br>t | Placement     | Total<br>Number |          | $C_AA_A$ | Weight |
|-----------------|------------|-----------------|-----------------------|---------------|---------------|-----------------|----------|----------|--------|
|                 | Leg        |                 | Torque<br>Calculation | Type          | ft            |                 |          | ft²/ft   | plf    |
| ** 106 **       |            |                 |                       |               |               |                 |          |          |        |
| PWRT-606-S(7/8) | C          | No              | No                    | Inside Pole   | 106.00 - 0.00 | 1               | No Ice   | 0.00     | 0.89   |
|                 |            |                 |                       |               |               |                 | 1/2" Ice | 0.00     | 0.89   |
|                 |            |                 |                       |               |               |                 | 1" Ice   | 0.00     | 0.89   |
| RFFT-48SM-001-  | C          | No              | No                    | Inside Pole   | 106.00 - 0.00 | 1               | No Ice   | 0.00     | 0.06   |
| XXX(3/8)        |            |                 |                       |               |               |                 | 1/2" Ice | 0.00     | 0.06   |
|                 |            |                 |                       |               |               |                 | 1" Ice   | 0.00     | 0.06   |
| LDF7-50A(1-5/8) | C          | No              | No                    | Inside Pole   | 106.00 - 0.00 | 6               | No Ice   | 0.00     | 0.82   |
|                 |            |                 |                       |               |               |                 | 1/2" Ice | 0.00     | 0.82   |
|                 |            |                 |                       |               |               |                 | 1" Ice   | 0.00     | 0.82   |
| PWRT-608-       | C          | No              | No                    | Inside Pole   | 106.00 - 0.00 | 2               | No Ice   | 0.00     | 0.62   |
| S(13/16)        |            |                 |                       |               |               |                 | 1/2" Ice | 0.00     | 0.62   |

| Description      | Face<br>or | Allow<br>Shield | Exclude<br>From       | Componen<br>t | Placement     | Total<br>Number |          | $C_AA_A$ | Weight |
|------------------|------------|-----------------|-----------------------|---------------|---------------|-----------------|----------|----------|--------|
|                  | Leg        |                 | Torque<br>Calculation | Type          | ft            |                 |          | ft²/ft   | plf    |
|                  |            |                 |                       |               |               |                 | 1" Ice   | 0.00     | 0.62   |
| 2" Rigid Conduit | Α          | No              | No                    | Inside Pole   | 106.00 - 0.00 | 1               | No Ice   | 0.00     | 2.80   |
|                  |            |                 |                       |               |               |                 | 1/2" Ice | 0.00     | 2.80   |
|                  |            |                 |                       |               |               |                 | 1" Ice   | 0.00     | 2.80   |
| ** 88 **         |            |                 |                       |               |               |                 |          |          |        |
| HB114-1-08U4-    | В          | No              | No                    | Inside Pole   | 88.00 - 0.00  | 3               | No Ice   | 0.00     | 1.30   |
| M5F(1-1/4)       |            |                 |                       |               |               |                 | 1/2" Ice | 0.00     | 1.30   |
|                  |            |                 |                       |               |               |                 | 1" Ice   | 0.00     | 1.30   |
| HB114-08U3M12-   | В          | No              | No                    | Inside Pole   | 88.00 - 0.00  | 1               | No Ice   | 0.00     | 0.68   |
| XXXF(7/8)        |            |                 |                       |               |               |                 | 1/2" Ice | 0.00     | 0.68   |
| ,                |            |                 |                       |               |               |                 | 1" Ice   | 0.00     | 0.68   |
| ** 75 **         |            |                 |                       |               |               |                 |          | 0.00     | 0.00   |
| LDF4-50A(1/2)    | В          | No              | No                    | Inside Pole   | 75.00 - 0.00  | 1               | No Ice   | 0.00     | 0.15   |
|                  |            |                 |                       |               | . 3.00        | ė.              | 1/2" Ice | 0.00     | 0.15   |
|                  |            |                 |                       |               |               |                 | 1" Ice   | 0.00     | 0.15   |
| ****             |            |                 |                       |               |               |                 | 1 100    | 0.00     | 0.10   |
| CU12PSM9P8XXX    | В          | No              | No                    | Inside Pole   | 59.00 - 0.00  | 1               | No Ice   | 0.00     | 1.66   |
| (1-3/8)          |            |                 | . 10                  |               | 00.00         | 18              | 1/2" Ice | 0.00     | 1.66   |
| (1.5/0)          |            |                 |                       |               |               |                 | 1" Ice   | 0.00     | 1.66   |
| ***              |            |                 |                       |               |               |                 | 1 100    | 0.00     | 1.00   |

#### Feed Line/Linear Appurtenances Section Areas

| Tower<br>Sectio | Tower<br>Elevation | Face | $A_R$           | $A_F$           | C <sub>A</sub> A <sub>A</sub><br>In Face | C <sub>A</sub> A <sub>A</sub><br>Out Face | Weight |
|-----------------|--------------------|------|-----------------|-----------------|------------------------------------------|-------------------------------------------|--------|
| n               | ft                 |      | ft <sup>2</sup> | ft <sup>2</sup> | ft <sup>2</sup>                          | ft <sup>2</sup>                           | K      |
| L1              | 106.00-72.25       | Α    | 0.000           | 0.000           | 0.000                                    | 0.000                                     | 0.09   |
|                 |                    | В    | 0.000           | 0.000           | 0.000                                    | 0.000                                     | 0.07   |
|                 |                    | C    | 0.000           | 0.000           | 0.000                                    | 0.000                                     | 0.24   |
| L2              | 72.25-35.75        | Α    | 0.000           | 0.000           | 0.000                                    | 0.000                                     | 0.10   |
|                 |                    | В    | 0.000           | 0.000           | 0.000                                    | 0.000                                     | 0.21   |
|                 |                    | С    | 0.000           | 0.000           | 0.000                                    | 0.000                                     | 0.26   |
| L3              | 35.75-0.00         | Α    | 0.000           | 0.000           | 0.000                                    | 0.000                                     | 0.10   |
|                 |                    | В    | 0.000           | 0.000           | 0.000                                    | 0.000                                     | 0.23   |
|                 |                    | С    | 0.000           | 0.000           | 0.000                                    | 0.000                                     | 0.25   |

#### Feed Line/Linear Appurtenances Section Areas - With Ice

| Tower<br>Sectio | Tower<br>Elevation | Face<br>or | lce<br>Thickness | $A_R$           | $A_F$           | C <sub>A</sub> A <sub>A</sub><br>In Face | C <sub>A</sub> A <sub>A</sub><br>Out Face | Weigh |
|-----------------|--------------------|------------|------------------|-----------------|-----------------|------------------------------------------|-------------------------------------------|-------|
| n               | ft                 | Leg        | in               | ft <sup>2</sup> | ft <sup>2</sup> | ft <sup>2</sup>                          | ft <sup>2</sup>                           | K     |
| L1              | 106.00-72.25       | Α          | 0.938            | 0.000           | 0.000           | 0.000                                    | 0.000                                     | 0.09  |
|                 |                    | В          |                  | 0.000           | 0.000           | 0.000                                    | 0.000                                     | 0.07  |
|                 |                    | C          |                  | 0.000           | 0.000           | 0.000                                    | 0.000                                     | 0.24  |
| L2              | 72.25-35.75        | Α          | 0.892            | 0.000           | 0.000           | 0.000                                    | 0.000                                     | 0.10  |
|                 |                    | В          |                  | 0.000           | 0.000           | 0.000                                    | 0.000                                     | 0.21  |
|                 |                    | C          |                  | 0.000           | 0.000           | 0.000                                    | 0.000                                     | 0.26  |
| L3              | 35.75-0.00         | Α          | 0.800            | 0.000           | 0.000           | 0.000                                    | 0.000                                     | 0.10  |
|                 |                    | В          |                  | 0.000           | 0.000           | 0.000                                    | 0.000                                     | 0.23  |
|                 |                    | С          |                  | 0.000           | 0.000           | 0.000                                    | 0.000                                     | 0.25  |

#### **Feed Line Center of Pressure**

| Section | Elevation    | CPx    | CPz    | CP <sub>x</sub><br>Ice | CPz<br>Ice |
|---------|--------------|--------|--------|------------------------|------------|
|         | ft           | in     | in     | in                     | in         |
| L1      | 106.00-72.25 | 0.0000 | 0.0000 | 0.0000                 | 0.0000     |
| L2      | 72.25-35.75  | 0.0000 | 0.0000 | 0.0000                 | 0.0000     |
| L3      | 35.75-0.00   | 0.0000 | 0.0000 | 0.0000                 | 0.0000     |

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                          | Disci                               | ete Tov                                                                                                         | ver Load      | ds                              |                                        |                                       |                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------|---------------------------------|----------------------------------------|---------------------------------------|----------------------|
| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Face<br>or<br>Leg | Offset<br>Type           | Offsets:<br>Horz<br>Lateral<br>Vert | Azimuth<br>Adjustmen<br>t                                                                                       | Placement     |                                 | C <sub>A</sub> A <sub>A</sub><br>Front | C <sub>A</sub> A <sub>A</sub><br>Side | Weigh                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                          | ft<br>ft<br>ft                      | ۰                                                                                                               | ft            |                                 | ft <sup>2</sup>                        | ft²                                   | Κ                    |
| ** Lightning Rod **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                          |                                     |                                                                                                                 |               |                                 |                                        |                                       |                      |
| Lighting Rod 5/8" x 4'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | С                 | From Leg                 | 0.00<br>0.00<br>0.00                | 0.0000                                                                                                          | 107.00        | No Ice<br>1/2"<br>Ice<br>1" Ice | 0.25<br>0.66<br>0.97                   | 0.25<br>0.66<br>0.97                  | 0.03<br>0.03<br>0.04 |
| ** 106 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                          |                                     |                                                                                                                 | 100.00        |                                 |                                        |                                       |                      |
| DPA65R-BU6D w/ Mount<br>Pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | А                 | From Leg                 | 4.00<br>0.00<br>2.00                | 0.0000                                                                                                          | 106.00        | No Ice<br>1/2"<br>Ice           | 12.25<br>13.00<br>13.76                | 6.05<br>6.71<br>7.39                  | 0.09<br>0.18<br>0.27 |
| 2DA65D BUOD / M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                 |                          | 4.00                                | 0.0000                                                                                                          | 400.00        | 1" Ice                          | 40.05                                  | 0.05                                  | 0.00                 |
| OPA65R-BU6D w/ Mount<br>Pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | В                 | From Leg                 | 4.00<br>0.00                        | 0.0000                                                                                                          | 106.00        | No Ice<br>1/2"                  | 12.25<br>13.00                         | 6.05<br>6.71                          | 0.09<br>0.18         |
| i ipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                          | 2.00                                |                                                                                                                 |               | Ice<br>1" Ice                   | 13.76                                  | 7.39                                  | 0.10                 |
| OPA65R-BU6D w/ Mount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | С                 | From Leg                 | 4.00                                | 0.0000                                                                                                          | 106.00        | No Ice                          | 12.25                                  | 6.05                                  | 0.09                 |
| Pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                          | 0.00<br>2.00                        |                                                                                                                 |               | 1/2"<br>Ice<br>1" Ice           | 13.00<br>13.76                         | 6.71<br>7.39                          | 0.18<br>0.27         |
| TPA65R-BU6DA-K w/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Α                 | From Leg                 | 4.00                                | 0.0000                                                                                                          | 106.00        | No Ice                          | 12.87                                  | 6.39                                  | 0.09                 |
| Mount Pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                          | 0.00<br>2.00                        |                                                                                                                 |               | 1/2"<br>Ice<br>1" Ice           | 13.67<br>14.49                         | 7.10<br>7.82                          | 0.18<br>0.28         |
| TPA65R-BU6DA-K w/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | В                 | From Leg                 | 4.00                                | 0.0000                                                                                                          | 106.00        | No Ice                          | 12.87                                  | 6.39                                  | 0.09                 |
| Mount Pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                          | 0.00<br>2.00                        |                                                                                                                 |               | 1/2"<br>Ice                     | 13.67<br>14.49                         | 7.10<br>7.82                          | 0.18<br>0.28         |
| TPA65R-BU6DA-K w/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | С                 | From Leg                 | 4.00                                | 0.0000                                                                                                          | 106.00        | 1" Ice<br>No Ice                | 12.87                                  | 6.39                                  | 0.09                 |
| Mount Pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C                 | 1 Tolli Leg              | 0.00                                | 0.0000                                                                                                          | 100.00        | 1/2"                            | 13.67                                  | 7.10                                  | 0.03                 |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                          | 2.00                                |                                                                                                                 |               | Ice<br>1" Ice                   | 14.49                                  | 7.82                                  | 0.28                 |
| DC9-48-60-24-8C-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Α                 | From Leg                 | 4.00                                | 0.0000                                                                                                          | 106.00        | No Ice                          | 2.74                                   | 2.74                                  | 0.02                 |
| EV_CCIV2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                          | 0.00<br>2.00                        |                                                                                                                 |               | 1/2"<br>Ice<br>1" Ice           | 2.96<br>3.20                           | 2.96<br>3.20                          | 0.04<br>0.07         |
| DC6-48-60-18-8F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | В                 | From Leg                 | 4.00                                | 0.0000                                                                                                          | 106.00        | No Ice                          | 1.21                                   | 1.21                                  | 0.02                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                          | 0.00<br>0.00                        |                                                                                                                 |               | 1/2"<br>Ice<br>1" Ice           | 1.89<br>2.11                           | 1.89<br>2.11                          | 0.04<br>0.07         |
| 6' x 2" Mount Pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Α                 | From Leg                 | 4.00                                | 0.0000                                                                                                          | 106.00        | No Ice                          | 1.43                                   | 1.43                                  | 0.02                 |
| and realized necessary to the transfer of the | 1000              | » ************* <b>5</b> | 0.00                                |                                                                                                                 | 90(0)(E3)(E3) | 1/2"<br>Ice<br>1" Ice           | 1.92<br>2.29                           | 1.92<br>2.29                          | 0.03<br>0.05         |
| 6' x 2" Mount Pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                 | From Leg                 | 4.00                                | 0.0000                                                                                                          | 106.00        | No Ice                          | 1.43                                   | 1.43                                  | 0.02                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                 | 9                        | 0.00                                | (10 10 to |               | 1/2"                            | 1.92                                   | 1.92                                  | 0.03                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 725               |                          | 0.00                                | V 5 22 2                                                                                                        | 20 21 20      | Ice<br>1" Ice                   | 2.29                                   | 2.29                                  | 0.05                 |
| 6' x 2" Mount Pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C                 | From Leg                 | 4.00                                | 0.0000                                                                                                          | 106.00        | No Ice                          | 1.43                                   | 1.43                                  | 0.02                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                          | 0.00                                |                                                                                                                 |               |                                 | 1.92                                   | 1.92                                  | 0.03                 |

| Description                                  | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral<br>Vert | Azimuth<br>Adjustmen<br>t | Placement | vicea material need to according to       | C <sub>A</sub> A <sub>A</sub><br>Front | C <sub>A</sub> A <sub>A</sub><br>Side | Weight               |
|----------------------------------------------|-------------------|----------------|-------------------------------------|---------------------------|-----------|-------------------------------------------|----------------------------------------|---------------------------------------|----------------------|
|                                              |                   |                | ft<br>ft<br>ft                      | ۰                         | ft        |                                           | ft²                                    | ft²                                   | К                    |
|                                              |                   |                | 0.00                                |                           |           | 1/2"<br>Ice<br>1" Ice                     | 2.29                                   | 2.29                                  | 0.05                 |
| 6' x 2" Mount Pipe                           | Α                 | From Leg       | 2.00<br>0.00<br>0.00                | 0.0000                    | 106.00    | No Ice<br>1/2"<br>Ice                     | 1.43<br>1.92<br>2.29                   | 1.43<br>1.92<br>2.29                  | 0.02<br>0.03<br>0.05 |
| 6' x 2" Mount Pipe                           | В                 | From Leg       | 2.00<br>0.00<br>0.00                | 0.0000                    | 106.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice           | 1.43<br>1.92<br>2.29                   | 1.43<br>1.92<br>2.29                  | 0.02<br>0.03<br>0.05 |
| 6' x 2" Mount Pipe                           | С                 | From Leg       | 2.00<br>0.00<br>0.00                | 0.0000                    | 106.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice           | 1.43<br>1.92<br>2.29                   | 1.43<br>1.92<br>2.29                  | 0.02<br>0.03<br>0.05 |
| Top Hat 14" Diameter x 2'<br>3" Tall         | С                 | None           |                                     | 0.0000                    | 106.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice           | 3.67<br>3.95<br>4.22                   | 3.67<br>3.95<br>4.22                  | 0.10<br>0.13<br>0.17 |
| Side Arm Mount [SO 102-<br>3]                | С                 | None           |                                     | 0.0000                    | 106.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice           | 3.60<br>4.18<br>4.75                   | 3.60<br>4.18<br>4.75                  | 0.07<br>0.11<br>0.14 |
| Platform Mount [LP 1201-<br>1_HR-1]          | С                 | None           |                                     | 0.0000                    | 106.00    | 1" Ice<br>No Ice<br>1/2"<br>Ice<br>1" Ice | 26.39<br>31.40<br>36.20                | 26.39<br>31.40<br>36.20               | 2.36<br>3.06<br>3.86 |
| ** 88 **<br>APXVSPP18-C-A20 w/<br>Mount Pipe | Α                 | From Leg       | 4.00<br>0.00<br>2.00                | 0.0000                    | 88.00     | No Ice<br>1/2"<br>Ice                     | 4.60<br>5.05<br>5.50                   | 4.01<br>4.45<br>4.89                  | 0.10<br>0.16<br>0.23 |
| APXVSPP18-C-A20 w/<br>Mount Pipe             | В                 | From Leg       | 4.00<br>0.00<br>2.00                | 0.0000                    | 88.00     | 1" Ice<br>No Ice<br>1/2"<br>Ice           | 4.60<br>5.05<br>5.50                   | 4.01<br>4.45<br>4.89                  | 0.10<br>0.16<br>0.23 |
| APXVSPP18-C-A20 w/<br>Mount Pipe             | С                 | From Leg       | 4.00<br>0.00<br>2.00                | 0.0000                    | 88.00     | 1" Ice<br>No Ice<br>1/2"<br>Ice           | 4.60<br>5.05<br>5.50                   | 4.01<br>4.45<br>4.89                  | 0.10<br>0.16<br>0.23 |
| DT465B-2XR w/ Mount<br>Pipe                  | Α                 | From Leg       | 4.00<br>0.00<br>2.00                | 0.0000                    | 88.00     | 1" Ice<br>No Ice<br>1/2"<br>Ice<br>1" Ice | 5.50<br>5.97<br>6.45                   | 4.38<br>4.84<br>5.30                  | 0.09<br>0.16<br>0.25 |
| DT465B-2XR w/ Mount<br>Pipe                  | В                 | From Leg       | 4.00<br>0.00<br>2.00                | 0.0000                    | 88.00     | No Ice<br>1/2"<br>Ice<br>1" Ice           | 5.50<br>5.97<br>6.45                   | 4.38<br>4.84<br>5.30                  | 0.09<br>0.16<br>0.25 |
| DT465B-2XR w/ Mount<br>Pipe                  | С                 | From Leg       | 4.00<br>0.00<br>2.00                | 0.0000                    | 88.00     | No Ice<br>1/2"<br>Ice                     | 5.50<br>5.97<br>6.45                   | 4.38<br>4.84<br>5.30                  | 0.09<br>0.16<br>0.25 |
| 1900MHz RRH                                  | Α                 | From Leg       | 4.00<br>0.00<br>2.00                | 0.0000                    | 88.00     | 1" Ice<br>No Ice<br>1/2"<br>Ice<br>1" Ice | 2.49<br>2.70<br>2.91                   | 3.26<br>3.48<br>3.72                  | 0.04<br>0.08<br>0.11 |
| 1900MHz RRH                                  | В                 | From Leg       | 4.00<br>0.00<br>2.00                | 0.0000                    | 88.00     | No Ice<br>1/2"<br>Ice<br>1" Ice           | 2.49<br>2.70<br>2.91                   | 3.26<br>3.48<br>3.72                  | 0.04<br>0.08<br>0.11 |
| 1900MHz RRH                                  | С                 | From Leg       | 4.00<br>0.00<br>2.00                | 0.0000                    | 88.00     | No Ice<br>1/2"<br>Ice                     | 2.49<br>2.70<br>2.91                   | 3.26<br>3.48<br>3.72                  | 0.04<br>0.08<br>0.11 |
| 800MHZ RRH                                   | Α                 | From Leg       | 4.00                                | 0.0000                    | 88.00     | 1" Ice<br>No Ice                          | 2.13                                   | 1.77                                  | 0.05                 |

| Description                   | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral<br>Vert | Azimuth<br>Adjustmen<br>t | Placement | SPECIAL SECTION SECTIO | C <sub>A</sub> A <sub>A</sub><br>Front | C <sub>A</sub> A <sub>A</sub><br>Side | Weight               |
|-------------------------------|-------------------|----------------|-------------------------------------|---------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|----------------------|
|                               |                   |                | ft<br>ft<br>ft                      | o                         | ft        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft²                                    | ft²                                   | К                    |
|                               |                   |                | 0.00<br>2.00                        |                           |           | 1/2"<br>Ice<br>1" Ice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.32<br>2.51                           | 1.95<br>2.13                          | 0.07<br>0.10         |
| 800MHZ RRH                    | В                 | From Leg       | 4.00<br>0.00<br>2.00                | 0.0000                    | 88.00     | No Ice<br>1/2"<br>Ice<br>1" Ice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.13<br>2.32<br>2.51                   | 1.77<br>1.95<br>2.13                  | 0.05<br>0.07<br>0.10 |
| 800MHZ RRH                    | С                 | From Leg       | 4.00<br>0.00<br>2.00                | 0.0000                    | 88.00     | No Ice<br>1/2"<br>Ice<br>1" Ice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.13<br>2.32<br>2.51                   | 1.77<br>1.95<br>2.13                  | 0.05<br>0.07<br>0.10 |
| TD-RRH8X20-25                 | Α                 | From Leg       | 4.00<br>0.00<br>2.00                | 0.0000                    | 88.00     | No Ice<br>1/2"<br>Ice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.05<br>4.30<br>4.56                   | 1.53<br>1.71<br>1.90                  | 0.07<br>0.10<br>0.13 |
| TD-RRH8X20-25                 | В                 | From Leg       | 4.00<br>0.00<br>2.00                | 0.0000                    | 88.00     | 1" Ice<br>No Ice<br>1/2"<br>Ice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.05<br>4.30<br>4.56                   | 1.53<br>1.71<br>1.90                  | 0.07<br>0.10<br>0.13 |
| TD-RRH8X20-25                 | С                 | From Leg       | 4.00<br>0.00<br>2.00                | 0.0000                    | 88.00     | 1" Ice<br>No Ice<br>1/2"<br>Ice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.05<br>4.30<br>4.56                   | 1.53<br>1.71<br>1.90                  | 0.07<br>0.10<br>0.13 |
| RRH2X50-800                   | Α                 | From Leg       | 4.00<br>0.00<br>2.00                | 0.0000                    | 88.00     | 1" Ice<br>No Ice<br>1/2"<br>Ice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.70<br>1.86<br>2.03                   | 1.28<br>1.43<br>1.58                  | 0.05<br>0.07<br>0.09 |
| RRH2X50-800                   | В                 | From Leg       | 4.00<br>0.00<br>2.00                | 0.0000                    | 88.00     | 1" Ice<br>No Ice<br>1/2"<br>Ice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.70<br>1.86<br>2.03                   | 1.28<br>1.43<br>1.58                  | 0.05<br>0.07<br>0.09 |
| RRH2X50-800                   | С                 | From Leg       | 4.00<br>0.00<br>2.00                | 0.0000                    | 88.00     | 1" Ice<br>No Ice<br>1/2"<br>Ice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.70<br>1.86<br>2.03                   | 1.28<br>1.43<br>1.58                  | 0.05<br>0.07<br>0.09 |
| 6' x 2" Mount Pipe            | Α                 | From Leg       | 4.00<br>0.00<br>0.00                | 0.0000                    | 88.00     | 1" Ice<br>No Ice<br>1/2"<br>Ice<br>1" Ice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.43<br>1.92<br>2.29                   | 1.43<br>1.92<br>2.29                  | 0.02<br>0.03<br>0.05 |
| 6' x 2" Mount Pipe            | В                 | From Leg       | 4.00<br>0.00<br>0.00                | 0.0000                    | 88.00     | No Ice<br>1/2"<br>Ice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.43<br>1.92<br>2.29                   | 1.43<br>1.92<br>2.29                  | 0.02<br>0.03<br>0.05 |
| 6' x 2" Mount Pipe            | С                 | From Leg       | 4.00<br>0.00<br>0.00                | 0.0000                    | 88.00     | 1" Ice<br>No Ice<br>1/2"<br>Ice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.43<br>1.92<br>2.29                   | 1.43<br>1.92<br>2.29                  | 0.02<br>0.03<br>0.05 |
| Side Arm Mount [SO 102-<br>3] | С                 | None           |                                     | 0.0000                    | 88.00     | 1" Ice<br>No Ice<br>1/2"<br>Ice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.60<br>4.18<br>4.75                   | 3.60<br>4.18<br>4.75                  | 0.07<br>0.11<br>0.14 |
| Platform Mount [LP 602-1]     | С                 | None           |                                     | 0.0000                    | 88.00     | 1" Ice<br>No Ice<br>1/2"<br>Ice<br>1" Ice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31.07<br>34.82<br>38.48                | 31.07<br>34.82<br>38.48               | 1.34<br>1.97<br>2.67 |
| ** 75 **<br>GPS_A             | Α                 | From Leg       | 4.00<br>0.00                        | 0.0000                    | 75.00     | No Ice<br>1/2"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.26<br>0.32                           | 0.26<br>0.32                          | 0.00                 |
| Side Arm Mount [SO 701-1]     | Α                 | From Leg       | 0.00<br>2.00<br>0.00                | 0.0000                    | 75.00     | Ice<br>1" Ice<br>No Ice<br>1/2"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.39<br>0.85<br>1.14                   | 0.39<br>1.67<br>2.34                  | 0.01<br>0.07<br>0.08 |
| *****                         |                   |                | 0.00                                |                           |           | Ice<br>1" Ice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.43                                   | 3.01                                  | 0.09                 |

| MX08FRO665-21 w  A From Leg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Description            | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral<br>Vert | Azimuth<br>Adjustmen<br>t | Placement |                       | C <sub>A</sub> A <sub>A</sub><br>Front | C <sub>A</sub> A <sub>A</sub><br>Side | Weigh                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|----------------|-------------------------------------|---------------------------|-----------|-----------------------|----------------------------------------|---------------------------------------|----------------------|
| MX08FRC665-21 w/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                   |                | ft<br>ft                            | 0                         | ft        |                       | ft²                                    | ft²                                   | κ                    |
| MX08FRC665-21 w/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | Α                 | From Leg       | 4.00<br>0.00                        | 0.0000                    | 59.00     | 1/2"<br>Ice           | 8.52                                   | 4.69                                  | 0.11<br>0.19<br>0.29 |
| MX08FRC665-21 w/   C   From Leg   4 00   0.0000   59.00   No Ice   8.01   4.23   0 0 0.00   1/2"   8.52   4.69   0 0.00   1/2"   8.52   4.69   0 0.00   1/2"   1/2"   2.14   1.11   0 0.00   1/2"   2.14   1.11   0 0.00   1/2"   2.14   1.11   0 0.00   1/2"   2.14   1.11   0 0.00   1/2"   2.14   1.11   0 0.00   1/2"   2.14   1.11   0 0.00   1/2"   2.14   1.11   0 0.00   1/2"   2.14   1.11   0 0.00   1/2"   2.14   1.11   0 0.00   1/2"   2.14   1.11   0 0.00   1/2"   2.14   1.11   0 0.00   1/2"   2.14   1.11   0 0.00   1/2"   2.14   1.11   0 0.00   1/2"   2.14   1.11   0 0.00   1/2"   2.14   1.11   0 0.00   1/2"   2.14   1.11   0 0.00   1/2"   2.14   1.11   0 0.00   1/2"   2.14   1.11   0 0.00   1/2"   2.14   1.11   0 0.00   1/2"   2.14   1.11   0 0.00   1/2"   2.14   1.11   0 0.00   1/2"   2.14   1.11   0 0.00   1/2"   2.14   1.27   0 0.00   1/2"   2.14   1.27   0 0.00   1/2"   2.14   1.27   0 0.00   1/2"   2.14   1.27   0 0.00   1/2"   2.14   1.27   0 0.00   1/2"   2.14   1.27   0 0.00   1/2"   2.14   1.27   0 0.00   1/2"   2.14   1.27   0 0.00   1/2"   2.14   1.27   0 0.00   1/2"   2.14   1.27   0 0.00   1/2"   2.14   1.27   0 0.00   1/2"   2.14   1.27   0 0.00   1/2"   2.14   1.27   0 0.00   1/2"   2.14   1.27   0 0.00   1/2"   2.14   1.27   0 0.00   1/2"   2.14   1.27   0 0.00   1/2"   2.14   1.27   0 0.00   1/2"   2.14   1.27   0 0.00   1/2"   2.14   1.27   0 0.00   1/2"   2.14   1.27   0 0.00   1/2"   2.14   1.27   0 0.00   1/2"   2.14   1.27   0 0.00   1/2"   2.14   1.27   0 0.00   1/2"   2.14   1.27   0 0.00   1/2"   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2.27   2   |                        | В                 | From Leg       | 0.00                                | 0.0000                    | 59.00     | No Ice<br>1/2"<br>Ice | 8.52                                   | 4.69                                  | 0.11<br>0.19<br>0.29 |
| TA08025-B604 A From Leg 4.00 0.0000 59.00 No Ice 1.96 0.98 0.000 11/2" 2.14 1.11 0.000 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        | С                 | From Leg       | 0.00                                | 0.0000                    | 59.00     | No Ice<br>1/2"<br>Ice | 8.52                                   | 4.69                                  | 0.11<br>0.19<br>0.29 |
| TA08025-B604 B From Leg 4.00 0.0000 59.00 No Ice 1.96 0.98 0 0.00 1/2" 2.14 1.11 0 Ice 2.32 1.25 0 1" Ice 1" Ice 1" Ice 1" Ice 1.25 0 1" Ice 2.32 1.25 0 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TA08025-B604           | Α                 | From Leg       | 0.00                                | 0.0000                    | 59.00     | No Ice<br>1/2"<br>Ice | 2.14                                   | 1.11                                  | 0.06<br>0.08<br>0.10 |
| TA08025-B604 C From Leg 4.00 0.0000 59.00 No Ice 1.96 0.98 0 0.00 1/2" 2.14 1.11 0 0.00 1/2" 2.14 1.11 0 0.00 1/2" 2.14 1.11 0 0.00 1/2" 2.14 1.11 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.1 | TA08025-B604           | В                 | From Leg       | 0.00                                | 0.0000                    | 59.00     | No Ice<br>1/2"<br>Ice | 2.14                                   | 1.11                                  | 0.06<br>0.08<br>0.10 |
| TA08025-B605 A From Leg 4.00 0.0000 59.00 No Ice 1.96 1.13 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" 2.14 1.27 0.00 1/2" | TA08025-B604           | С                 | From Leg       | 0.00                                | 0.0000                    | 59.00     | No Ice<br>1/2"        | 2.14                                   | 1.11                                  | 0.06<br>0.08<br>0.10 |
| TA08025-B605 B From Leg 4.00 0.0000 59.00 No loce 1.96 1.13 0 0.00 1/2" 2.14 1.27 0 1ce 2.32 1.41 0.000 1" loce 2.31 1.29 0.000 1/2" 2.50 1.45 0.000 1 loce 2.70 1.61 0.000 1" loce 2.70 1.61 0.000 1" loce 2.70 1.61 0.000 1" loce 3.40 3.40 0.0000 1" loce 3.40 3.40 0.00000 1" loce 3.40 3.40 0.00000000 1" loce 3.40 3.40 0.0000000 1" loce 3.40 3.40 0.00000 1" loce | TA08025-B605           | Α                 | From Leg       | 0.00                                | 0.0000                    | 59.00     | No Ice<br>1/2"        | 2.14                                   | 1.27                                  | 0.08<br>0.09<br>0.11 |
| TA08025-B605 C From Leg 4.00 0.0000 59.00 No Ice 1.96 1.13 0 0.00 1/2" 2.14 1.27 0 0.00 Ice 2.32 1.41 0.0 Ice 2.32 1.41 0.0 I' Ice  RDIDC-9181-PF-48 A From Leg 4.00 0.0000 59.00 No Ice 2.31 1.29 0.00 1/2" 2.50 1.45 0.00 Ice 2.70 1.61 0.00 Ice 3.40 3.40 Ice 3.40 Ice 3.40 3.40 Ice 3.40 Ice 3.40 3.40 Ice 3.40 Ic | TA08025-B605           | В                 | From Leg       | 0.00                                | 0.0000                    | 59.00     | No Ice<br>1/2"        | 2.14                                   | 1.27                                  | 0.08<br>0.09<br>0.11 |
| RDIDC-9181-PF-48 A From Leg 4.00 0.0000 59.00 No Ice 2.31 1.29 0 0.00 1/2" 2.50 1.45 0 0.00 Ice 2.70 1.61 0 0.00 Ice 3.40 3.40 Ice 3 | TA08025-B605           | С                 | From Leg       | 0.00                                | 0.0000                    | 59.00     | No Ice<br>1/2"        | 2.14                                   | 1.27                                  | 0.08<br>0.09<br>0.11 |
| (2) 8' x 2" Mount Pipe A From Leg 4.00 0.0000 59.00 No Ice 1.90 1.90 0 0.000 1/2" 2.73 2.73 0 Ice 3.40 3.40 0 1" Ice (2) 8' x 2" Mount Pipe B From Leg 4.00 0.000 59.00 No Ice 1.90 1.90 0 1.90 0 1/2" 2.73 2.73 0 0.00 Ice 3.40 3.40 0 1" Ice (2) 8' x 2" Mount Pipe C From Leg 4.00 0.000 59.00 No Ice 1.90 1.90 0 1" Ice (2) 8' x 2" Mount Pipe C From Leg 4.00 0.0000 59.00 No Ice 1.90 1.90 0 1" Ice 0.000 1" Ice 3.40 3.40 0 1" Ice 0.000 1" Ice 3.40 3.40 0 0 1" Ice 0.000 1" Ice 3.40 3.40 0 0 1" Ice 0.000 1" Ice 3.40 3.40 10 0 1" Ice 0.0000 1" Ice 3.40 3.40 10 0 1" Ice 0.0000 1" Ice 0.00000 1" Ice 0.0000 1" Ice 0.00000 1" Ice 0.0000 1" Ice 0.00000 1" Ice 0.0000 1" Ice 0.00000 1" Ice 0.0000 1" Ice 0.0000 1" Ice 0.0000 1" Ice 0.0000 Ice 0.0000 1" Ice 0.0000 Ice 0.0000 Ice 0.0000 Ice 0.0000 Ice 0.0000 I | RDIDC-9181-PF-48       | Α                 | From Leg       | 0.00                                | 0.0000                    | 59.00     | No Ice<br>1/2"<br>Ice | 2.50                                   | 1.29<br>1.45                          | 0.02<br>0.04<br>0.06 |
| (2) 8' x 2" Mount Pipe B From Leg 4.00 0.0000 59.00 No Ice 1.90 1.90 0 1.90 0.000 1/2" 2.73 2.73 0 1ce 3.40 3.40 0 1" Ice (2) 8' x 2" Mount Pipe C From Leg 4.00 0.000 59.00 No Ice 1.90 1.90 0 1.90 0 1.90 0.000 1/2" 2.73 2.73 0 1ce 3.40 3.40 0 1/2" 2.73 2.73 0 1ce 3.40 3.40 0 1" Ice 0.000 1" Ice 3.40 3.40 0 1" Ice 0.000 1" Ice 3.40 3.40 1 1" Ice 0.0000 1" Ice 3.40 3.40 1 1" Ice 0.0000 1" Ice 3.424 34.24 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (2) 8' x 2" Mount Pipe | Α                 | From Leg       | 0.00                                | 0.0000                    | 59.00     | No Ice<br>1/2"<br>Ice | 2.73                                   | 2.73                                  | 0.03<br>0.04<br>0.06 |
| (2) 8' x 2" Mount Pipe C From Leg 4.00 0.0000 59.00 No Ice 1.90 1.90 0 0.00 1/2" 2.73 2.73 0 0.00 Ice 3.40 3.40 0 0.00 1" Ice 0.000 59.00 No Ice 34.24 34.24 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2) 8' x 2" Mount Pipe | В                 | From Leg       | 0.00                                | 0.0000                    | 59.00     | No Ice<br>1/2"<br>Ice | 2.73                                   | 2.73                                  | 0.03<br>0.04<br>0.06 |
| mmscope MC-PK8-DSH C None 0.0000 59.00 No Ice 34.24 34.24 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2) 8' x 2" Mount Pipe | С                 | From Leg       | 0.00                                | 0.0000                    | 59.00     | No Ice<br>1/2"<br>Ice | 2.73                                   | 2.73                                  | 0.03<br>0.04<br>0.06 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ommscope MC-PK8-DSH    | С                 | None           |                                     | 0.0000                    | 59.00     | No Ice<br>1/2"<br>Ice | 62.95                                  | 62.95                                 | 1.75<br>2.10<br>2.45 |

#### **Load Combinations**

| Comb.<br>No. | Description                                                |
|--------------|------------------------------------------------------------|
| 1            | Dead Only                                                  |
| 2            | 1.2 Dead+1.0 Wind 0 deg - No Ice                           |
| 3            | 0.9 Dead+1.0 Wind 0 deg - No Ice                           |
| 4            | 1.2 Dead+1.0 Wind 30 deg - No Ice                          |
| 5            | 0.9 Dead+1.0 Wind 30 deg - No Ice                          |
| 6            | 1.2 Dead+1.0 Wind 60 deg - No Ice                          |
| 7            | 0.9 Dead+1.0 Wind 60 deg - No Ice                          |
| 8            | 1.2 Dead+1.0 Wind 90 deg - No Ice                          |
| 9            | 0.9 Dead+1.0 Wind 90 deg - No Ice                          |
| 10           | 1.2 Dead+1.0 Wind 120 deg - No Ice                         |
| 11           | 0.9 Dead+1.0 Wind 120 deg - No Ice                         |
| 12           | 1.2 Dead+1.0 Wind 150 deg - No Ice                         |
| 13           | 0.9 Dead+1.0 Wind 150 deg - No Ice                         |
| 14           | 1.2 Dead+1.0 Wind 180 deg - No Ice                         |
| 15           | 0.9 Dead+1.0 Wind 180 deg - No Ice                         |
| 16           | 1.2 Dead+1.0 Wind 210 deg - No Ice                         |
| 17           | 0.9 Dead+1.0 Wind 210 deg - No Ice                         |
| 18           | 1.2 Dead+1.0 Wind 240 deg - No Ice                         |
| 19           | 0.9 Dead+1.0 Wind 240 deg - No Ice                         |
| 20           | 1.2 Dead+1.0 Wind 270 deg - No Ice                         |
| 21           | 0.9 Dead+1.0 Wind 270 deg - No Ice                         |
| 22           | 1.2 Dead+1.0 Wind 300 deg - No Ice                         |
| 23           | 0.9 Dead+1.0 Wind 300 deg - No Ice                         |
| 24           | 1.2 Dead+1.0 Wind 330 deg - No Ice                         |
| 25           | 0.9 Dead+1.0 Wind 330 deg - No Ice                         |
| 26           | 1.2 Dead+1.0 Ice+1.0 Temp                                  |
| 27           | 1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp                   |
| 28           | 1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp                  |
| 29           | 1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp                  |
| 30           | 1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp                  |
| 31           | 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp                 |
| 32           | 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp                 |
| 33           | 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp                 |
| 34           | 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp                 |
| 35           | 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp                 |
| 36           | 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp                 |
| 37           | 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp                 |
| 38           | 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp                 |
| 39           | Dead+Wind 0 deg - Service                                  |
| 40<br>41     | Dead+Wind 30 deg - Service                                 |
|              | Dead+Wind 60 deg - Service                                 |
| 42<br>43     | Dead+Wind 90 deg - Service                                 |
| 43           | Dead+Wind 120 deg - Service                                |
| 44<br>45     | Dead+Wind 150 deg - Service                                |
| 46           | Dead+Wind 180 deg - Service                                |
| 46           | Dead+Wind 210 deg - Service Dead+Wind 240 deg - Service    |
|              |                                                            |
| 48           | Dead+Wind 270 deg - Service                                |
| 49<br>50     | Dead+Wind 300 deg - Service<br>Dead+Wind 330 deg - Service |
| 50           | Deau-vviilu 330 deg - Selvice                              |

#### **Maximum Member Forces**

| Sectio<br>n<br>No. | Elevation<br>ft  | Component<br>Type | Condition        | Gov.<br>Load<br>Comb. | Axial<br>K | Major Axis<br>Moment<br>kip-ft | Minor Axis<br>Moment<br>kip-ft |
|--------------------|------------------|-------------------|------------------|-----------------------|------------|--------------------------------|--------------------------------|
| L1                 | 106 - 72.25      | Pole              | Max Tension      | 39                    | 0.00       | 0.00                           | -0.00                          |
|                    |                  |                   | Max. Compression | 26                    | -15.96     | -0.27                          | 0.20                           |
|                    |                  |                   | Max. Mx          | 8                     | -8.57      | -223.39                        | 0.04                           |
|                    |                  |                   | Max. My          | 2                     | -8.57      | -0.07                          | 223.34                         |
|                    |                  |                   | Max. Vý          | 8                     | 10.24      | -223.39                        | 0.04                           |
|                    |                  |                   | Max. Vx          | 2                     | -10.24     | -0.07                          | 223.34                         |
|                    |                  |                   | Max. Torque      | 22                    |            |                                | -0.49                          |
| L2                 | 72.25 -<br>35.75 | Pole              | Max Tension      | 1                     | 0.00       | 0.00                           | 0.00                           |
|                    |                  |                   | Max. Compression | 26                    | -26.00     | -0.26                          | 0.89                           |

| Sectio<br>n | Elevation<br>ft | Component<br>Type | Condition        | Gov.<br>Load | Axial  | Major Axis<br>Moment | Minor Axis<br>Moment |
|-------------|-----------------|-------------------|------------------|--------------|--------|----------------------|----------------------|
| No.         |                 |                   |                  | Comb.        | K      | kip-ft               | kip-ft               |
|             |                 |                   | Max. Mx          | 8            | -15.82 | -684.67              | 0.43                 |
|             |                 |                   | Max. My          | 2            | -15.82 | -0.08                | 684.40               |
|             |                 |                   | Max. Vy          | 8            | 15.24  | -684.67              | 0.43                 |
|             |                 |                   | Max. Vx          | 2            | -15.23 | -0.08                | 684.40               |
|             |                 |                   | Max. Torque      | 21           |        |                      | -0.89                |
| L3          | 35.75 - 0       | Pole              | Max Tension      | 1            | 0.00   | 0.00                 | 0.00                 |
|             |                 |                   | Max. Compression | 26           | -33.21 | -0.26                | 0.87                 |
|             |                 |                   | Max. Mx          | 8            | -22.14 | -1334.49             | 0.44                 |
|             |                 |                   | Max. My          | 2            | -22.14 | -0.08                | 1334.10              |
|             |                 |                   | Max. Vy          | 8            | 17.12  | -1334.49             | 0.44                 |
|             |                 |                   | Max. Vx          | 2            | -17.11 | -0.08                | 1334.10              |
|             |                 |                   | Max. Torque      | 21           |        |                      | -0.89                |

#### **Maximum Reactions**

| Location | Condition           | Gov.<br>Load<br>Comb. | Vertical<br>K | Horizontal, X<br>K | Horizontal, 2<br>K |
|----------|---------------------|-----------------------|---------------|--------------------|--------------------|
| Pole     | Max. Vert           | 26                    | 33.21         | 0.00               | -0.00              |
|          | Max. H <sub>x</sub> | 20                    | 22.16         | 17.09              | 0.00               |
|          | Max. Hz             | 3                     | 16.62         | -0.00              | 17.09              |
|          | Max. M <sub>x</sub> | 2                     | 1334.10       | -0.00              | 17.09              |
|          | Max. Mz             | 8                     | 1334.49       | -17.09             | 0.00               |
|          | Max. Torsion        | 9                     | 0.89          | -17.09             | 0.00               |
|          | Min. Vert           | 9                     | 16.62         | -17.09             | 0.00               |
|          | Min. H <sub>x</sub> | 8                     | 22.16         | -17.09             | 0.00               |
|          | Min. H <sub>z</sub> | 15                    | 16.62         | -0.00              | -17.09             |
|          | Min. M <sub>x</sub> | 14                    | -1333.20      | -0.00              | -17.09             |
|          | Min. M <sub>z</sub> | 20                    | -1334.33      | 17.09              | 0.00               |
|          | Min. Torsion        | 21                    | -0.89         | 17.09              | 0.00               |

#### **Tower Mast Reaction Summary**

| Load<br>Combination                   | Vertical | Shear <sub>x</sub> | Shearz | Overturning<br>Moment, M <sub>x</sub> | Overturning<br>Moment, Mz | Torque |
|---------------------------------------|----------|--------------------|--------|---------------------------------------|---------------------------|--------|
|                                       | K        | K                  | K      | kip-ft                                | kip-ft                    | kip-ft |
| Dead Only                             | 18.47    | 0.00               | -0.00  | -0.35                                 | -0.06                     | 0.00   |
| 1.2 Dead+1.0 Wind 0 deg -<br>No Ice   | 22.16    | 0.00               | -17.09 | -1334.10                              | -0.08                     | 0.21   |
| 0.9 Dead+1.0 Wind 0 deg -<br>No Ice   | 16.62    | 0.00               | -17.09 | -1317.56                              | -0.06                     | 0.21   |
| 1.2 Dead+1.0 Wind 30 deg -<br>No Ice  | 22.16    | 8.55               | -14.80 | -1155.56                              | -667.32                   | -0.26  |
| 0.9 Dead+1.0 Wind 30 deg -<br>No Ice  | 16.62    | 8.55               | -14.80 | -1141.17                              | -659.05                   | -0.26  |
| 1.2 Dead+1.0 Wind 60 deg -<br>No Ice  | 22.16    | 14.80              | -8.54  | -667.34                               | -1155.76                  | -0.66  |
| 0.9 Dead+1.0 Wind 60 deg -<br>No Ice  | 16.62    | 14.80              | -8.54  | -658.99                               | -1141.46                  | -0.67  |
| 1.2 Dead+1.0 Wind 90 deg -<br>No Ice  | 22.16    | 17.09              | -0.00  | -0.44                                 | -1334.49                  | -0.89  |
| 0.9 Dead+1.0 Wind 90 deg -<br>No Ice  | 16.62    | 17.09              | -0.00  | -0.32                                 | -1317.94                  | -0.89  |
| 1.2 Dead+1.0 Wind 120 deg - No Ice    | 22.16    | 14.80              | 8.54   | 666.46                                | -1155.76                  | -0.88  |
| 0.9 Dead+1.0 Wind 120 deg<br>- No Ice | 16.62    | 14.80              | 8.54   | 658.34                                | -1141.46                  | -0.88  |
| 1.2 Dead+1.0 Wind 150 deg<br>- No Ice | 22.16    | 8.55               | 14.80  | 1154.67                               | -667.31                   | -0.63  |
| 0.9 Dead+1.0 Wind 150 deg<br>- No Ice | 16.62    | 8.55               | 14.80  | 1140.51                               | -659.05                   | -0.63  |

| Load<br>Combination                               | Vertical<br>K | Shear <sub>x</sub><br>K | Shear₂<br>K | Overturning<br>Moment, M <sub>x</sub> | Overturning<br>Moment, M <sub>z</sub> | Torque<br>kip-ft |
|---------------------------------------------------|---------------|-------------------------|-------------|---------------------------------------|---------------------------------------|------------------|
| 1.2 Dead+1.0 Wind 180 deg                         | 22.16         | 0.00                    | 17.09       | kip-ft<br>1333.20                     | kip-ft<br>-0.08                       | κιρ-π<br>-0.21   |
| - No Ice                                          |               |                         |             |                                       |                                       |                  |
| 0.9 Dead+1.0 Wind 180 deg<br>- No Ice             | 16.62         | 0.00                    | 17.09       | 1316.91                               | -0.06                                 | -0.21            |
| 1.2 Dead+1.0 Wind 210 deg                         | 22.16         | -8.55                   | 14.80       | 1154.66                               | 667.15                                | 0.26             |
| - No Ice                                          |               |                         |             |                                       | 331113                                |                  |
| 0.9 Dead+1.0 Wind 210 deg<br>- No Ice             | 16.62         | -8.55                   | 14.80       | 1140.51                               | 658.93                                | 0.26             |
| 1.2 Dead+1.0 Wind 240 deg                         | 22.16         | -14.80                  | 8.54        | 666.46                                | 1155.60                               | 0.66             |
| - No Ice                                          |               |                         |             |                                       |                                       |                  |
| 0.9 Dead+1.0 Wind 240 deg<br>- No Ice             | 16.62         | -14.80                  | 8.54        | 658.34                                | 1141.34                               | 0.66             |
| 1.2 Dead+1.0 Wind 270 deg                         | 22.16         | -17.09                  | -0.00       | -0.44                                 | 1334.33                               | 0.89             |
| - No Ice                                          | 10.00         | 47.00                   |             |                                       | 72.2.22                               |                  |
| 0.9 Dead+1.0 Wind 270 deg - No Ice                | 16.62         | -17.09                  | -0.00       | -0.32                                 | 1317.82                               | 0.89             |
| 1.2 Dead+1.0 Wind 300 deg                         | 22.16         | -14.80                  | -8.54       | -667.34                               | 1155.61                               | 0.88             |
| - No Ice                                          | 40.00         | 11.00                   | 0.54        | 050.00                                | 4444.05                               |                  |
| 0.9 Dead+1.0 Wind 300 deg - No Ice                | 16.62         | -14.80                  | -8.54       | -658.99                               | 1141.35                               | 0.88             |
| 1.2 Dead+1.0 Wind 330 deg                         | 22.16         | -8.55                   | -14.80      | -1155.55                              | 667.16                                | 0.63             |
| - No Ice<br>0.9 Dead+1.0 Wind 330 deg             | 16.62         | -8.55                   | -14.80      | 4444.47                               | 650.00                                | 0.00             |
| - No Ice                                          | 10.02         | -0.55                   | -14.60      | -1141.17                              | 658.93                                | 0.63             |
| 1.2 Dead+1.0 Ice+1.0 Temp                         | 33.21         | -0.00                   | 0.00        | -0.87                                 | -0.26                                 | 0.00             |
| 1.2 Dead+1.0 Wind 0<br>deg+1.0 Ice+1.0 Temp       | 33.21         | -0.00                   | -4.98       | -381.97                               | -0.30                                 | 0.07             |
| 1.2 Dead+1.0 Wind 30                              | 33.21         | 2.49                    | -4.31       | -330.93                               | -191.05                               | -0.04            |
| deg+1.0 Ice+1.0 Temp                              | 00.04         | 4.00                    | 0.40        | 104.10                                |                                       |                  |
| 1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp         | 33.21         | 4.32                    | -2.49       | -191.48                               | -330.70                               | -0.15            |
| 1.2 Dead+1.0 Wind 90                              | 33.21         | 4.98                    | 0.00        | -0.99                                 | -381.81                               | -0.21            |
| deg+1.0 Ice+1.0 Temp                              | 22.24         | 4.00                    | 0.40        | 400.50                                | 000.00                                | 0.00             |
| 1.2 Dead+1.0 Wind 120<br>deg+1.0 Ice+1.0 Temp     | 33.21         | 4.32                    | 2.49        | 189.50                                | -330.69                               | -0.22            |
| 1.2 Dead+1.0 Wind 150                             | 33.21         | 2.49                    | 4.31        | 328.95                                | -191.05                               | -0.17            |
| deg+1.0 Ice+1.0 Temp<br>1.2 Dead+1.0 Wind 180     | 33.21         | -0.00                   | 4.98        | 379.99                                | 0.20                                  | 0.07             |
| deg+1.0 Ice+1.0 Temp                              | 33.21         | -0.00                   | 4.90        | 379.99                                | -0.30                                 | -0.07            |
| 1.2 Dead+1.0 Wind 210                             | 33.21         | -2.49                   | 4.31        | 328.95                                | 190.46                                | 0.04             |
| deg+1.0 Ice+1.0 Temp<br>1.2 Dead+1.0 Wind 240     | 33.21         | -4.32                   | 2.49        | 189.50                                | 330.10                                | 0.15             |
| deg+1.0 Ice+1.0 Temp                              | 55.21         | -4.52                   | 2.43        | 109.50                                | 330.10                                | 0.10             |
| 1.2 Dead+1.0 Wind 270                             | 33.21         | -4.98                   | 0.00        | -0.99                                 | 381.21                                | 0.21             |
| deg+1.0 Ice+1.0 Temp<br>1.2 Dead+1.0 Wind 300     | 33.21         | -4.32                   | -2.49       | -191.48                               | 330.10                                | 0.22             |
| deg+1.0 Ice+1.0 Temp                              |               | 1.02                    | 2.10        | 101.40                                | 000.10                                | 0.22             |
| 1.2 Dead+1.0 Wind 330                             | 33.21         | -2.49                   | -4.31       | -330.93                               | 190.46                                | 0.17             |
| deg+1.0 Ice+1.0 Temp<br>Dead+Wind 0 deg - Service | 18.47         | -0.00                   | -4.38       | -340.06                               | -0.07                                 | 0.06             |
| Dead+Wind 30 deg - Service                        | 18.47         | 2.19                    | -3.79       | -294.55                               | -169.99                               | -0.06            |
| Dead+Wind 60 deg - Service                        | 18.47         | 3.80                    | -2.19       | -170.21                               | -294.39                               | -0.17            |
| Dead+Wind 90 deg - Service                        | 18.47         | 4.38                    | 0.00        | -0.37                                 | -339.92                               | -0.23            |
| Dead+Wind 120 deg -                               | 18.47         | 3.80                    | 2.19        | 169.47                                | -294.39                               | -0.23            |
| Service<br>Dead+Wind 150 deg -                    | 18.47         | 2.19                    | 3.79        | 293.81                                | -169.99                               | -0.17            |
| Service                                           | 10.17         |                         |             |                                       | 100.00                                | 0.17             |
| Dead+Wind 180 deg -                               | 18.47         | -0.00                   | 4.38        | 339.32                                | -0.07                                 | -0.06            |
| Service<br>Dead+Wind 210 deg -                    | 18.47         | -2.19                   | 3.79        | 293.81                                | 169.86                                | 0.06             |
| Service                                           |               |                         |             |                                       |                                       |                  |
| Dead+Wind 240 deg -                               | 18.47         | -3.80                   | 2.19        | 169.47                                | 294.26                                | 0.17             |
| Service<br>Dead+Wind 270 deg -                    | 18.47         | -4.38                   | 0.00        | -0.37                                 | 339.79                                | 0.23             |
| Service                                           |               |                         |             |                                       |                                       |                  |
| Dead+Wind 300 deg -<br>Service                    | 18.47         | -3.80                   | -2.19       | -170.21                               | 294.26                                | 0.23             |
| Dead+Wind 330 deg -                               | 18.47         | -2.19                   | -3.79       | -294.55                               | 169.86                                | 0.17             |
| Service                                           |               | -1.15                   | 5 0         | _000                                  | . 30.00                               | 3.17             |

| Sol | lution | Summa | arv |
|-----|--------|-------|-----|
|     |        |       | ~ , |

| WATER STREET, |        | n of Applied Force |        |        | Sum of Reaction | าร     | AND A CONTRACTOR OF THE PARTY O |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------|--------|--------|-----------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PX     | PY                 | PZ     | PX     | PY              | PZ     | % Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Comb.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | K      | K                  | K      | K      | K               | K      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00   | -18.47             | 0.00   | -0.00  | 18.47           | 0.00   | 0.000%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00   | -22.16             | -17.09 | -0.00  | 22.16           | 17.09  | 0.006%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00   | -16.62             | -17.09 | -0.00  | 16.62           | 17.09  | 0.005%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.55   | -22.16             | -14.80 | -8.55  | 22.16           | 14.80  | 0.000%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.55   | -16.62             | -14.80 | -8.55  | 16.62           | 14.80  | 0.000%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.80  | -22.16             | -8.54  | -14.80 | 22.16           | 8.54   | 0.000%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.80  | -16.62             | -8.54  | -14.80 | 16.62           | 8.54   | 0.000%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.09  | -22.16             | 0.00   | -17.09 | 22.16           | 0.00   | 0.002%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.09  | -16.62             | 0.00   | -17.09 | 16.62           | 0.00   | 0.005%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.80  | -22.16             | 8.54   | -14.80 | 22.16           | -8.54  | 0.000%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.80  | -16.62             | 8.54   | -14.80 | 16.62           | -8.54  | 0.000%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.55   | -22.16             | 14.80  | -8.55  | 22.16           | -14.80 | 0.000%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.55   | -16.62             | 14.80  | -8.55  | 16.62           | -14.80 | 0.000%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00   | -22.16             | 17.09  | -0.00  | 22.16           | -17.09 | 0.006%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00   | -16.62             | 17.09  | -0.00  | 16.62           | -17.09 | 0.005%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -8.55  | -22.16             | 14.80  | 8.55   | 22.16           | -14.80 | 0.000%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -8.55  | -16.62             | 14.80  | 8.55   | 16.62           | -14.80 | 0.000%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -14.80 | -22.16             | 8.54   | 14.80  | 22.16           | -8.54  | 0.000%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -14.80 | -16.62             | 8.54   | 14.80  | 16.62           | -8.54  | 0.000%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -17.09 | -22.16             | 0.00   | 17.09  | 22.16           | 0.00   | 0.002%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -17.09 | -16.62             | 0.00   | 17.09  | 16.62           | 0.00   | 0.005%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -14.80 | -22.16             | -8.54  | 14.80  | 22.16           | 8.54   | 0.000%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -14.80 | -16.62             | -8.54  | 14.80  | 16.62           | 8.54   | 0.000%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -8.55  | -22.16             | -14.80 | 8.55   | 22.16           | 14.80  | 0.000%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -8.55  | -16.62             | -14.80 | 8.55   | 16.62           | 14.80  | 0.000%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00   | -33.21             | 0.00   | 0.00   | 33.21           | -0.00  | 0.001%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00   | -33.21             | -4.98  | 0.00   | 33.21           | 4.98   | 0.001%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.49   | -33.21             | -4.31  | -2.49  | 33.21           | 4.31   | 0.001%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.32   | -33.21             | -2.49  | -4.32  | 33.21           | 2.49   | 0.001%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.99   | -33.21             | 0.00   | -4.98  | 33.21           | -0.00  | 0.001%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.32   | -33.21             | 2.49   | -4.32  | 33.21           | -2.49  | 0.001%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.49   | -33.21             | 4.31   | -2.49  | 33.21           | -4.31  | 0.001%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00   | -33.21             | 4.98   | 0.00   | 33.21           | -4.98  | 0.001%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.49  | -33.21             | 4.31   | 2.49   | 33.21           | -4.31  | 0.001%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4.32  | -33.21             | 2.49   | 4.32   | 33.21           | -2.49  | 0.001%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4.99  | -33.21             | 0.00   | 4.98   | 33.21           | -0.00  | 0.001%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4.32  | -33.21             | -2.49  | 4.32   | 33.21           | 2.49   | 0.001%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.49  | -33.21             | -4.31  | 2.49   | 33.21           | 4.31   | 0.001%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00   | -18.47             | -4.38  | 0.00   | 18.47           | 4.38   | 0.005%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.19   | -18.47             | -3.80  | -2.19  | 18.47           | 3.79   | 0.005%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.80   | -18.47             | -2.19  | -3.80  | 18.47           | 2.19   | 0.005%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.38   | -18.47             | 0.00   | -4.38  | 18.47           | -0.00  | 0.005%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.80   | -18.47             | 2.19   | -3.80  | 18.47           | -2.19  | 0.005%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.19   | -18.47             | 3.80   | -2.19  | 18.47           | -3.79  | 0.005%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00   | -18.47             | 4.38   | 0.00   | 18.47           | -4.38  | 0.005%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.19  | -18.47             | 3.80   | 2.19   | 18.47           | -3.79  | 0.005%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3.80  | -18.47             | 2.19   | 3.80   | 18.47           | -2.19  | 0.005%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4.38  | -18.47             | 0.00   | 4.38   | 18.47           | -0.00  | 0.005%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3.80  | -18.47             | -2.19  | 3.80   | 18.47           | 2.19   | 0.005%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.19  | -18.47             | -3.80  | 2.19   | 18.47           | 3.79   | 0.005%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

#### Non-Linear Convergence Results

| Load<br>Combination | Converged? | Number<br>of Cycles | Displacement<br>Tolerance | Force<br>Tolerance |
|---------------------|------------|---------------------|---------------------------|--------------------|
| 1                   | Yes        | 6                   | 0.00000001                | 0.00000001         |
| 2                   | Yes        | 14                  | 0.00007264                | 0.00010436         |
| 3                   | Yes        | 14                  | 0.00007204                | 0.00010430         |
| 4                   | Yes        | 18                  | 0.00004779                |                    |
|                     |            | 17                  |                           | 0.00007058         |
| 5<br>6              | Yes        |                     | 0.00000001                | 0.00012544         |
|                     | Yes        | 18                  | 0.00000001                | 0.00007261         |
| 7                   | Yes        | 17                  | 0.00000001                | 0.00012919         |
| 8                   | Yes        | 15                  | 0.0000001                 | 0.00006858         |
| 9                   | Yes        | 14                  | 0.00004779                | 0.00012620         |
| 10                  | Yes        | 18                  | 0.0000001                 | 0.00006900         |
| 11                  | Yes        | 17                  | 0.0000001                 | 0.00012262         |
| 12                  | Yes        | 18                  | 0.0000001                 | 0.00007246         |
| 13                  | Yes        | 17                  | 0.0000001                 | 0.00012900         |
| 14                  | Yes        | 14                  | 0.00007265                | 0.00010425         |
| 15                  | Yes        | 14                  | 0.00004779                | 0.00008419         |
| 16                  | Yes        | 18                  | 0.0000001                 | 0.00007139         |
| 17                  | Yes        | 17                  | 0.0000001                 | 0.00012705         |
| 18                  | Yes        | 18                  | 0.0000001                 | 0.00006949         |
| 19                  | Yes        | 17                  | 0.0000001                 | 0.00012353         |
| 20                  | Yes        | 15                  | 0.0000001                 | 0.00006857         |
| 21                  | Yes        | 14                  | 0.00004778                | 0.00012618         |
| 22                  | Yes        | 18                  | 0.0000001                 | 0.00007318         |
| 23                  | Yes        | 17                  | 0.00000001                | 0.00013026         |
| 24                  | Yes        | 18                  | 0.00000001                | 0.00006959         |
| 25                  | Yes        | 17                  | 0.00000001                | 0.00012365         |
| 26                  | Yes        | 6                   | 0.00000001                | 0.00000851         |
| 27                  | Yes        | 15                  | 0.00000001                | 0.00005972         |
| 28                  | Yes        | 15                  | 0.00000001                | 0.00009543         |
| 29                  | Yes        | 15                  | 0.00000001                | 0.00009668         |
| 30                  | Yes        | 15                  | 0.0000001                 | 0.00005994         |
| 31                  | Yes        | 15                  | 0.0000001                 | 0.00009328         |
| 32                  | Yes        | 15                  | 0.0000001                 | 0.00009528         |
| 33                  | Yes        | 15                  | 0.0000001                 |                    |
| 34                  | Yes        | 15                  |                           | 0.00005920         |
|                     |            |                     | 0.00000001                | 0.00009432         |
| 35                  | Yes        | 15                  | 0.00000001                | 0.00009331         |
| 36                  | Yes        | 15                  | 0.00000001                | 0.00005976         |
| 37                  | Yes        | 15                  | 0.0000001                 | 0.00009694         |
| 38                  | Yes        | 15                  | 0.0000001                 | 0.00009415         |
| 39                  | Yes        | 13                  | 0.0000001                 | 0.00007529         |
| 40                  | Yes        | 13                  | 0.0000001                 | 0.00009021         |
| 41                  | Yes        | 13                  | 0.0000001                 | 0.00010184         |
| 42                  | Yes        | 13                  | 0.0000001                 | 0.00007794         |
| 43                  | Yes        | 13                  | 0.0000001                 | 0.00008186         |
| 44                  | Yes        | 13                  | 0.0000001                 | 0.00010217         |
| 45                  | Yes        | 13                  | 0.0000001                 | 0.00007503         |
| 46                  | Yes        | 13                  | 0.0000001                 | 0.00009451         |
| 47                  | Yes        | 13                  | 0.0000001                 | 0.00008449         |
| 48                  | Yes        | 13                  | 0.0000001                 | 0.00007789         |
| 49                  | Yes        | 13                  | 0.00000001                | 0.00010631         |
| 50                  | Yes        | 13                  | 0.00000001                | 0.00008436         |

#### **Maximum Tower Deflections - Service Wind**

| Section | Elevation     | Horz.      | Gov.  | Tilt   | Twist  |
|---------|---------------|------------|-------|--------|--------|
| No.     |               | Deflection | Load  |        |        |
|         | ft            | in         | Comb. | 0      | ۰      |
| L1      | 106 - 72.25   | 17.897     | 40    | 1.3183 | 0.0032 |
| L2      | 75.75 - 35.75 | 9.928      | 40    | 1.1444 | 0.0019 |
| L3      | 40 - 0        | 2.949      | 40    | 0.6605 | 0.0008 |

#### Critical Deflections and Radius of Curvature - Service Wind

| Elevation | Appurtenance                | Gov.<br>Load | Deflection | Tilt   | Twist  | Radius of<br>Curvature |
|-----------|-----------------------------|--------------|------------|--------|--------|------------------------|
| ft        |                             | Comb.        | in         | 0      | 0      | ft                     |
| 107.00    | Lighting Rod 5/8" x 4'      | 40           | 17.897     | 1.3183 | 0.0032 | 37829                  |
| 106.00    | OPA65R-BU6D w/ Mount Pipe   | 40           | 17.897     | 1.3183 | 0.0032 | 37829                  |
| 88.00     | APXVSPP18-C-A20 w/ Mount    | 40           | 13.043     | 1.2350 | 0.0024 | 10507                  |
|           | Pipe                        |              |            |        |        |                        |
| 75.00     | GPS A                       | 40           | 9.746      | 1.1374 | 0.0019 | 6082                   |
| 59.00     | MX08FRO665-21 w/ Mount Pipe | 40           | 6.163      | 0.9485 | 0.0013 | 3920                   |

#### **Maximum Tower Deflections - Design Wind**

| Section<br>No. | Elevation     | Horz.<br>Deflection | Gov.<br>Load | Tilt   | Twist  |
|----------------|---------------|---------------------|--------------|--------|--------|
|                | ft            | in                  | Comb.        | 0      | ۰      |
| L1             | 106 - 72.25   | 70.241              | 8            | 5.1783 | 0.0126 |
| L2             | 75.75 - 35.75 | 38.974              | 8            | 4.4956 | 0.0075 |
| L3             | 40 - 0        | 11.578              | 8            | 2.5945 | 0.0030 |

#### Critical Deflections and Radius of Curvature - Design Wind

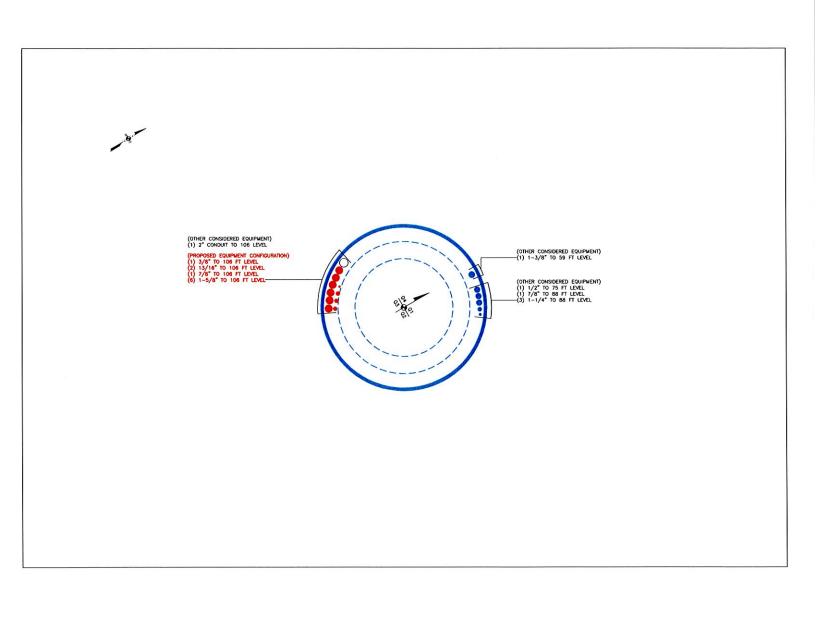
| Elevation | Appurtenance                | Gov.<br>Load | Deflection | Tilt   | Twist  | Radius of<br>Curvature |
|-----------|-----------------------------|--------------|------------|--------|--------|------------------------|
| ft        |                             | Comb.        | in         | ۰      | ۰      | ft                     |
| 107.00    | Lighting Rod 5/8" x 4'      | 8            | 70.241     | 5.1783 | 0.0126 | 9776                   |
| 106.00    | OPA65R-BU6D w/ Mount Pipe   | 8            | 70.241     | 5.1783 | 0.0126 | 9776                   |
| 88.00     | APXVSPP18-C-A20 w/ Mount    | 8            | 51.196     | 4.8514 | 0.0095 | 2713                   |
|           | Pipe                        |              |            |        |        |                        |
| 75.00     | GPS A                       | 8            | 38.258     | 4.4681 | 0.0074 | 1568                   |
| 59.00     | MX08FRO665-21 w/ Mount Pipe | 8            | 24.195     | 3.7260 | 0.0052 | 1006                   |

#### Compression Checks

|                |                      |                             | Pole [ | Desig | n Dat | a               |        |            |             |
|----------------|----------------------|-----------------------------|--------|-------|-------|-----------------|--------|------------|-------------|
| Section<br>No. | Elevation            | Size                        | L      | Lu    | KI/r  | А               | Pu     | $\phi P_n$ | Ratio<br>Pu |
|                | ft                   |                             | ft     | ft    |       | in <sup>2</sup> | K      | K          | $\Phi P_n$  |
| L1             | 106 - 72.25<br>(1)   | TP27.529x22.3x0.1875        | 33.75  | 0.00  | 0.0   | 15.948<br>9     | -8.57  | 933.01     | 0.009       |
| L2             | 72.25 - 35.75<br>(2) | TP32.809x26.6117x0.218<br>8 | 40.00  | 0.00  | 0.0   | 22.175<br>7     | -15.82 | 1297.28    | 0.012       |
| L3             | 35.75 - 0 (3)        | TP37.91x31.7129x0.25        | 40.00  | 0.00  | 0.0   | 29.883          | -22.14 | 1748.17    | 0.013       |

| Pole | Bending | Design | Data |
|------|---------|--------|------|

| Section<br>No. | Elevation   | Size                 | Mux    | $\phi M_{nx}$ | Ratio<br>M <sub>ux</sub> | $M_{uy}$ | $\phi M_{ny}$ | Ratio<br>Muy  |
|----------------|-------------|----------------------|--------|---------------|--------------------------|----------|---------------|---------------|
|                | ft          |                      | kip-ft | kip-ft        | $\phi M_{nx}$            | kip-ft   | kip-ft        | $\phi M_{ny}$ |
| L1             | 106 - 72.25 | TP27.529x22.3x0.1875 | 223.41 | 575.10        | 0.388                    | 0.00     | 575.10        | 0.000         |


| Section<br>No. | Elevation            | Size                        | Mux     | $\phi M_{nx}$ | Ratio<br>M <sub>ux</sub> | $M_{uy}$ | $\phi M_{ny}$ | Ratio<br>Muy  |
|----------------|----------------------|-----------------------------|---------|---------------|--------------------------|----------|---------------|---------------|
|                | ft                   |                             | kip-ft  | kip-ft        | $\phi M_{nx}$            | kip-ft   | kip-ft        | $\phi M_{ny}$ |
| L2             | 72.25 - 35.75<br>(2) | TP32.809x26.6117x0.218<br>8 | 684.77  | 944.73        | 0.725                    | 0.00     | 944.73        | 0.000         |
| L3             | 35.75 - 0 (3)        | TP37.91x31.7129x0.25        | 1334.59 | 1481.51       | 0.901                    | 0.00     | 1481.51       | 0.000         |

|                |                    | Pole                        | Shea         | r Desigr | n Data      |              |                         |             |
|----------------|--------------------|-----------------------------|--------------|----------|-------------|--------------|-------------------------|-------------|
| Section<br>No. | Elevation          | Size                        | Actual<br>Vu | φVn      | Ratio<br>Vu | Actual<br>Tu | φ <i>T</i> <sub>n</sub> | Ratio<br>Tu |
|                | ft                 |                             | K            | K        | $\phi V_n$  | kip-ft       | kip-ft                  | $\phi T_n$  |
| L1             | 106 - 72.25<br>(1) | TP27.529x22.3x0.1875        | 10.25        | 279.90   | 0.037       | 0.28         | 656.92                  | 0.000       |
| L2             | 72.25 - 35.75      | TP32.809x26.6117x0.218<br>8 | 15.24        | 389.18   | 0.039       | 0.67         | 1088.32                 | 0.001       |
| L3             | 35.75 - 0 (3)      | TP37.91x31.7129x0.25        | 17.12        | 524.45   | 0.033       | 0.66         | 1729.68                 | 0.000       |

|                |                      |             | Pole                     | e Intera      | action      | Design                  | Data            |                  |          |   |
|----------------|----------------------|-------------|--------------------------|---------------|-------------|-------------------------|-----------------|------------------|----------|---|
| Section<br>No. | Elevation            | Ratio<br>Pu | Ratio<br>M <sub>ux</sub> | Ratio<br>Muy  | Ratio<br>Vu | Ratio<br>T <sub>u</sub> | Comb.<br>Stress | Allow.<br>Stress | Criteria |   |
|                | ft                   | $\phi P_n$  | Φ <i>M</i> <sub>nx</sub> | $\phi M_{ny}$ | $\phi V_n$  | $\phi T_n$              | Ratio           | Ratio            |          |   |
| L1             | 106 - 72.25<br>(1)   | 0.009       | 0.388                    | 0.000         | 0.037       | 0.000                   | 0.399           | 1.050            | 4.8.2    |   |
| L2             | 72.25 - 35.75<br>(2) | 0.012       | 0.725                    | 0.000         | 0.039       | 0.001                   | 0.739           | 1.050            | 4.8.2    | - |
| L3             | 35.75 - 0 (3)        | 0.013       | 0.901                    | 0.000         | 0.033       | 0.000                   | 0.915           | 1.050            | 4.8.2    |   |

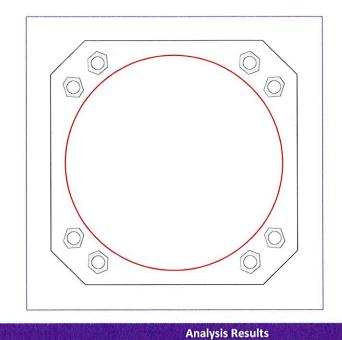
| Section<br>No. | Elevation<br>ft | Component<br>Type | Size                    | Critical<br>Element | P<br>K | øPallow<br>K | %<br>Capacity | Pass<br>Fail |
|----------------|-----------------|-------------------|-------------------------|---------------------|--------|--------------|---------------|--------------|
| L1             | 106 - 72.25     | Pole              | TP27.529x22.3x0.1875    | 1                   | -8.57  | 979.66       | 38.0          | Pass         |
| L2             | 72.25 - 35.75   | Pole              | TP32.809x26.6117x0.2188 | 2                   | -15.82 | 1362.14      | 70.3          | Pass         |
| L3             | 35.75 - 0       | Pole              | TP37.91x31.7129x0.25    | 3                   | -22.14 | 1835.58      | 87.1          | Pass         |
|                |                 |                   |                         |                     |        |              | Summary       |              |
|                |                 |                   |                         |                     |        | Pole (L3)    | 87.1          | Pass         |
|                |                 |                   |                         |                     |        | RATING =     | 87.1          | Pass         |

## APPENDIX B BASE LEVEL DRAWING



## APPENDIX A TNXTOWER OUTPUT

#### **Monopole Base Plate Connection**




| Site Info |             |
|-----------|-------------|
| BU #      | 842857      |
| Site Name | Bennet Pond |
| Order#    |             |

| Analysis Considerations |      |
|-------------------------|------|
| TIA-222 Revision        | Н    |
| Grout Considered:       | No   |
| l <sub>ar</sub> (in)    | 0.75 |

| Applied Loads      |         |
|--------------------|---------|
| Moment (kip-ft)    | 1334.59 |
| Axial Force (kips) | 22.14   |
| Shear Force (kips) | 17.12   |

<sup>\*</sup>TIA-222-H Section 15.5 Applied



## Connection Properties Anchor Rod Data

(8) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 44" BC Anchor Spacing: 6 in

#### Base Plate Data

43" W x 2.5" Plate (A572-50; Fy=50 ksi, Fu=65 ksi); Clip: 6 in

#### Stiffener Data

N/A

#### Pole Data

37.91" x 0.25" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

| Anchor Rod Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (ur               | nits of kips, kip-in) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|
| Pu_t = 179.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | φPn_t = 243.75    | Stress Rating         |
| Vu = 2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\phi Vn = 149.1$ | 70.0%                 |
| Mu = n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | φMn = n/a         | Pass                  |
| The state of the s | 1)                |                       |
| Base Plate Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                       |
| Base Plate Summary Max Stress (ksi):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.02             | (Flexural)            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29.02<br>45       | (Flexural)            |

CCIplate - Version 4.1.2 Analysis Date: 8/16/2022

#### Pier and Pad Foundation

BU # : 842857
Site Name: Bennet Pond
App. Number:



TIA-222 Revision: H
Tower Type: Monopole

| Top & Bot. Pad Rein. Different?: |   |
|----------------------------------|---|
| Block Foundation?:               | 7 |
| Rectangular Pad?:                |   |

| Superstructure Analysis Re                    | actions |         |
|-----------------------------------------------|---------|---------|
| Compression, P <sub>comp</sub> :              | 22.16   | kips    |
| Base Shear, Vu_comp:                          | 17.09   | kips    |
|                                               |         |         |
| Moment, <b>M</b> <sub>u</sub> :               | 1334.59 | ft-kips |
| Tower Height, H:                              | 106     | ft      |
| BP Dist. Above Fdn, <b>bp<sub>dist</sub>:</b> | 3       | in      |
| Bolt Circle / Bearing Plate Width, BC:        | 44      | in      |

| Foundation Analysis Checks     |          |         |         |       |  |
|--------------------------------|----------|---------|---------|-------|--|
|                                | Capacity | Demand  | Rating* | Check |  |
|                                |          |         |         |       |  |
| Lateral (Sliding) (kips)       | 157.79   | 17.09   | 10.3%   | Pass  |  |
| Bearing Pressure (ksf)         | 23.04    | 5.59    | 24.2%   | Pass  |  |
| Overturning (kip*ft)           | 1870.56  | 1441.40 | 77.1%   | Pass  |  |
|                                |          |         |         |       |  |
| Pad Flexure (kip*ft)           | 4965.62  | 731.50  | 14.0%   | Pass  |  |
| Pad Shear - 1-way (kips)       | 1098.05  | 43.55   | 3.8%    | Pass  |  |
| Pad Shear - 2-way (Comp) (ksi) | 0.164    | 0.000   | 0.0%    | Pass  |  |
| Flexural 2-way (Comp) (kip*ft) | 9931.24  | 0.00    | 0.0%    | Pass  |  |

\*Rating per TIA-222-H Section 15.5

| Structural Rating*: | 14.0% |
|---------------------|-------|
| Soil Rating*:       | 77.1% |

| Pad Properties                                        |      |    |
|-------------------------------------------------------|------|----|
| Depth, D:                                             | 5.5  | ft |
| Pad Width, <b>W</b> ₁:                                | 16.5 | ft |
| Pad Thickness, T:                                     | 6    | ft |
| Pad Rebar Size (Bottom dir. 2), Sp <sub>2</sub> :     | 8    |    |
| Pad Rebar Quantity (Bottom dir. 2), mp <sub>2</sub> : | 21   |    |
| Pad Clear Cover, cc <sub>pad</sub> :                  | 3    | in |

| Material Properties                 |     |     |  |  |
|-------------------------------------|-----|-----|--|--|
| Rebar Grade, <b>Fy</b> :            | 60  | ksi |  |  |
| Concrete Compressive Strength, F'c: | 3   | ksi |  |  |
| Dry Concrete Density, δc:           | 150 | pcf |  |  |

| Soil Properties                    |        |         |
|------------------------------------|--------|---------|
| Total Soil Unit Weight, $\gamma$   | 130    | pcf     |
| Ultimate Net Bearing, Qnet:        | 30.000 | ksf     |
| Cohesion, Cu:                      | 0.000  | ksf     |
| Friction Angle, $oldsymbol{arphi}$ | 42     | degrees |
| SPT Blow Count, Noblows:           | 50     |         |
| Base Friction, $\mu$ :             | 0.45   |         |
| Neglected Depth, N:                | 3.33   | ft      |
| Foundation Bearing on Rock?        | Yes    |         |
| Groundwater Depth, gw:             | N/A    | ft      |



#### Address:

No Address at This Location

#### **ASCE 7 Hazards Report**

Standard: ASCE/SEI 7-10 Elevation: 527.6 ft (NAVD 88)

Risk Category: || Latitude: 41.336111

Soil Class: D - Stiff Soil Longitude: -73.470667





#### Wind

#### Results:

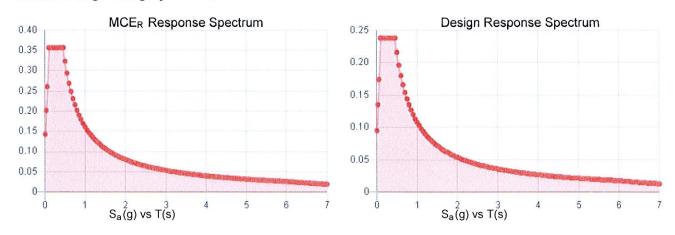
Wind Speed 116 Vmph 10-year MRI 76 Vmph 25-year MRI 85 Vmph 50-year MRI 90 Vmph 100-year MRI 96 Vmph

Data Source: ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, and Section 26.5.2,

incorporating errata of March 12, 2014

Date Accessed: Tue Aug 16 2022

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.



#### Seismic

| Site Soil Class:<br>Results: | D - Stiff Soil |                    |       |  |
|------------------------------|----------------|--------------------|-------|--|
| results.                     |                |                    |       |  |
| S <sub>s</sub> :             | 0.223          | S <sub>DS</sub> :  | 0.238 |  |
| $S_1$ :                      | 0.067          | S <sub>D1</sub> :  | 0.108 |  |
| F <sub>a</sub> :             | 1.6            | T <sub>L</sub> :   | 6     |  |
| F <sub>v</sub> :             | 2.4            | PGA:               | 0.124 |  |
| S <sub>MS</sub> :            | 0.357          | PGA <sub>M</sub> : | 0.192 |  |
| S <sub>M1</sub> :            | 0.162          | F <sub>PGA</sub> : | 1.553 |  |
|                              |                | l <sub>a</sub> :   | 1     |  |

#### Seismic Design Category B



Data Accessed:

Tue Aug 16 2022

**Date Source:** 

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.



#### lce

Results:

Ice Thickness:

0.75 in.

Concurrent Temperature:

15 F

**Gust Speed** 

50 mph

**Data Source:** 

Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

**Date Accessed:** 

Tue Aug 16 2022

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.



CTV5069 AT&T SITE NUMBER:

AT&T SITE NAME: BENNETT POND

AT&T FA CODE: 10070924

AT&T PACE NUMBER: MRCTB062143, MRCTB062175, MRCTB066614, MRCTB066596

SHEET#

T-2

C-1.1

ATTACHED

ATTACHED

AT&T PROJECT: LTE 4C, LTE 3C **BUSINESS UNIT #:** 842857

66 SUGAR HOLLOW ROAD **SITE ADDRESS:** 

DANBURY, CT 06810

**FAIRFIELD COUNTY: MONOPOLE** SITE TYPE:

106'-0" **TOWER HEIGHT:** 

**LOCATION MAP** 

## **CROWN**

CLIFTON PARK, NY 12065

ATLANTA, GA 30324-3300



#### AT&T SITE NUMBER: **CTV5069**

#### BU #: **842857 BENNETT POND**

66 SUGAR HOLLOW ROAD

EXISTING

| ISSUED FOR: |          |      |                    |        |  |
|-------------|----------|------|--------------------|--------|--|
| REV         | DATE     | DRWN | DESCRIPTION        | DES./Q |  |
| A           | 8/29/22  | TDG  | PRELIMINARY REVIEW | MTJ    |  |
| 0           | 10/17/22 | MEH  | CONSTRUCTION       | MTJ    |  |
|             |          |      |                    |        |  |
|             |          |      |                    |        |  |
| Nto.        |          |      |                    |        |  |

# PH: (918) 587-4630

DANBURY, CT 06810

106'-0" MONOPOLE

| ISSUED FOR: |          |      |                    |        |  |
|-------------|----------|------|--------------------|--------|--|
| REV         | DATE     | DRWN | DESCRIPTION        | DES./C |  |
| A           | 8/29/22  | TDG  | PRELIMINARY REVIEW | MTJ    |  |
| 0           | 10/17/22 | MEH  | CONSTRUCTION       | MTJ    |  |
|             |          |      |                    |        |  |
|             |          |      |                    |        |  |
|             |          |      |                    |        |  |
| 40//        |          |      |                    |        |  |

MTS ENGINEERING P.L.L.C. BER:2386985 Expires 3/31/23

IT IS A VIOLATION OF LAW FOR ANY PERSON, JNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

**SHEET NUMBER:** 

**REVISION:** 

SITE INFORMATION CROWN CASTLE USA INC. BENNETT POND SITE NAME: SITE ADDRESS: 66 SUGAR HOLLOW ROAD DANBURY, CT 06810 FAIRFIELD **COUNTY:** G250100000 MAP/PARCEL #: AREA OF CONSTRUCTION: **EXISTING** LATITUDE: 41.336110 LONGITUDE: -73.470710 NAD83 LAT/LONG TYPE: 534' GROUND ELEVATION: **CURRENT ZONING:** LCI-40 CONNECTICUT SITING COUNCIL **JURISDICTION:** OCCUPANCY CLASSIFICATION: U TYPE OF CONSTRUCTION: A.D.A. COMPLIANCE: FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION PROPERTY OWNER: SUGAR HOLLOW HOLDING LLC PEATT LUCILLE, 202-3 MAMANASCO RD RIDGEFIELD, CT 06877 TOWER OWNER: CROWN CASTLE USA INC 2000 CORPORATE DRIVE CANONSBURG, PA 15317 CARRIER/APPLICANT: AT&T TOWER ASSET GROUP 575 MOROSGO DRIVE ATLANTA, GA 30324-3300

## **PROJECT TEAM**

800-286-2000

LIGHTOWER

888-583-4237

NORTHEAST UTILITIES

A&E FIRM:

B+T GROUP 1717 S. BOULDER AVE. TULSA, OK 74119 MARVIN PHILLIPS marvin.phillips@btgrp.com

PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE

CROWN NOC AT (800) 788-7011 & CROWN CONSTRUCTION MANAGER.

CROWN CASTLE USA INC. DISTRICT CONTACTS:

**ELECTRIC PROVIDER:** 

TELCO PROVIDER:

CLIFTON PARK, NY 12065 VERONICA CHAPMAN - PROJECT MANAGER

3 CORPORATE PARK DRIVE, SUITE 101

JASON D'AMICO - CONSTRUCTION MANAGER JASON.DAMICO@CROWNCASTLE.COM

VERONICA.CHAPMAN@CROWNCASTLE.COM

HEATHER MILLER - AES HEATHER.MILLER@CROWNCASTLE.COM ALL DRAWINGS CONTAINED HEREIN ARE FORMATTED FOR FULL SIZE. CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING

**DRAWING INDEX** 

TOWER ELEVATION & ANTENNA PLANS

TITLE SHEET

SITE PLAN

GENERAL NOTES

**EQUIPMENT PLANS** 

ANTENNA SCHEDULE

EQUIPMENT DETAILS

GROUNDING DETAILS

GROUNDING DETAILS

AHCP CORNER PLATE KIT

PLUMBING DIAGRAM

EQUIPMENT SPECS.

SHEET DESCRIPTION

DIMENSIONS AND CONDITIONS ON THE JOB SITE AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME.

> CALL CONNECTICUT ONE CALL (800) 922-4455 CBYD.COM CALL 2 WORKING DAYS BEFORE YOU DIG!

## PROJECT DESCRIPTION

NO SCALE

THE PURPOSE OF THIS PROJECT IS TO ENHANCE BROADBAND CONNECTIVITY AND CAPACITY TO THE EXISTING ELIGIBLE WIRELESS FACILITY.

TOWER SCOPE OF WORK:

• REMOVE (6) POWERWAVE - 7770.00.850.02 ANTENNAS • REMOVE (3) POWERWAVE - P65-16-XLH-RR ANTENNAS

• REMOVE (3) ERICSSON - RRUS-11 B12 RRUs

• REMOVE (6) POWERWAVE - LGP21401

• REMOVE (3) POWERWAVE - TT19-08BP111-001 TMAs • REMOVE (1) RAYCAP - DC6-48-60-18 SQUID

• REMOVE (6) COAX CABLES (1-5/8") & (1) 12-PAIR FIBER CABLE (3/8")

• RELOCATE (2) ERICSSON - 4449 B5/B12 FROM GROUND

• INSTALL MOUNT MODIFICATIONS PER MOUNT ANALYSIS BY INFINIGY

DATED AUGUST 15, 2022

• INSTALL (3) CCI - TPA65R-BU6DA-K ANTENNAS • INSTALL (3) CCI - OPA65R-BU6DA ANTENNAS

• INSTALL (3) ERICSSON - 4478 B14 RRUs

• INSTALL (3) ERICSSON - 8843 B2/B66A RRUs

• INSTALL (1) ERICSSON - 4449 B5/B12 RRU

• INSTALL (1) RAYCAP - DC9-48-60-24-8C-EV SQUID • INSTALL (1) 24-PAIR FIBER CABLE (3/8")

• INSTALL (1) 6AWG DC CABLE (7/8")

• INSTALL (6) DUAL RADIO MOUNTS

• INSTALL (6) Y-CABLES FOR DUAL BAND RADIOS

GROUND SCOPE OF WORK: • REMOVE (3) ERICSSON - 4415 B25 RRUs

• INSTALL (1) XMU

THE POWER DESIGN FOR ANY AC ELECTRICAL POWER CHANGES IS TO

## **APPLICABLE CODES &** REFERENCE DOCUMENTS

SITE PHOTO

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:

CODE TYPE BUILDING

2018 CONNECTICUT SBC/2015 IBC 2018 CONNECTICUT SBC/2015 IMC **MECHANICAL** ELECTRICAL 2018 CONNECTICUT SBC/2017 NEC

**REFERENCE DOCUMENTS:** 

STRUCTURAL ANALYSIS: CROWN CASTLE

MOUNT ANALYSIS: INFINIGY DATED: 8/15/22 RFDS REVISION: PRELIMINARY

DATED: 10/11/22 ORDER ID: 614859

AC ELECTRICAL POWER DESIGN: BY OTHERS

DATED:

REVISION: 0

CODE

DATED: 8/17/22

BE PERFORMED BY OTHERS AND IS SHOWN HERE FOR REFERENCE PURPOSES ONLY. AT&T IS SOLELY RESPONSIBLE FOR THE ELECTRICAL POWER DESIGN.

- 1. NOTICE TO PROCEED— NO WORK SHALL COMMENCE PRIOR TO CROWN CASTLE USA INC. WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE CROWN CASTLE USA INC. NOC AT 800—788—7011 & THE CROWN CASTLE USA INC. CONSTRUCTION MANAGER.
- 2. "LOOK UP" CROWN CASTLE USA INC. SAFETY CLIMB REQUIREMENT:

  THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE
  CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT
  REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR
  FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE
  STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF
  THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH
  MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS
  INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT
  AND REPORTED TO YOUR CROWN CASTLE USA INC. POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB
  MAINTENANCE AND CONTRACTOR NOTICE TICKET.
- 3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
- 4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND CROWN CASTLE USA INC. STANDARD CED—STD—10253, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA—322 (LATEST EDITION).
- 5. ALL SITE WORK TO COMPLY WITH QAS-STD-10068 "INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON CROWN CASTLE USA INC. TOWER SITE," CED-STD-10294 "STANDARD FOR INSTALLATION OF MOUNTS AND APPURTENANCES," AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
- 6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY CROWN CASTLE USA INC. PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.
- 11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
- 12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF CONTRACTOR, TOWER OWNER, CROWN CASTLE USA INC., AND/OR LOCAL UTILITIES.
- 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
- 15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
- 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.
- 18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.
- 22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

#### GENERAL NOTES:

1. FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: CONTRACTOR: GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION CARRIER: AT&T

TOWER OWNER: CROWN CASTLE USA INC.

- THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
- THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.
- 4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER
- CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.

  SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE
- ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.

  6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CROWN CASTLE.
- ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND
- LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

  9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S
- RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

  10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND CROWN CASTLE PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 1. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION AND IS TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN
- 12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEM<mark>ENTS, PAVEMENTS, CURBS, LANDS</mark>CAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF CROWN CASTLE USA INC.
- 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

#### CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

- ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST—IN—PLACE CONCRETE.

  UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED
- TO BE 1000 psf.

  3. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS
- APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°f AT TIME OF PLACEMENT.

  4. CONCRETE EXPOSED TO FREEZE—THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE
- TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.

  5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:
- THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:

#### GREENFIELD GROUNDING NOTES:

- 1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 2. THE CONTRACTOR SHALL PERFORM IEEE FALL—OF—POTENTAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.

  3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE
- TESTING RESULTS.

  4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT
- METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
- 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
- 8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.

  10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.
- 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.

  13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.
- 15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
  17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.
- 19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
- 21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY).

#### ELECTRICAL INSTALLATION NOTES:

- 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.
- CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
- AND TRIP HAZARDS ARE ELIMINATED.
  3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
- 4. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.
  4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.
- 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERYIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.
- 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR—CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
- 6. ALL ELECTRÍCAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).
- 7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS. 8. ALL TIE WRAPS SHALL BE CUT FLUSH WITH APPROVED CUTTING TOOL TO REMOVE SHARP EDGES
- 3. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS
- OTHERWISE SPECIFIED.

  12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI—CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN—2, XHHW, XHHW—2, THW, THW—2, RHW, OR RHW—2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP—STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75°C (90°C IF AVAILABLE).

  14. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE
- AND NEC.
  15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR
- EXPOSED INDOOR LOCATIONS.

  16. ELECTRICAL METALLIC TUBING (EMT) OR METAL—CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.
- 18. LIQUID—TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID—TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- 19. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.
- 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE NEC.
- 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).
- 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).
- 23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO
- MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.

  24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY—COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3R (OR

PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED

- 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY—COATED OR NON—CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR CROWN CASTLE USA INC.
  BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
  28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE

APWA UNIFORM COLOR CODE:

PROPOSED EXCAVATION

GASEOUS MATERIALS

POTABLE WATER

SLURRY LINES

TEMPORARY SURVEY MARKINGS

LECTRIC POWER LINES, CABLES.

GAS, OIL, STEAM, PETROLEUM, OR

RECLAIMED WATER, IRRIGATION, AND

SEWERS AND DRAIN LINES

COMMUNICATION, ALARM OR SIGNAL LINES, CABLES, OR CONDUIT AND TRAFFIC LOOPS

CONDUIT, AND LIGHTING CABLES

- WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.

  29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "AT&T".
- 30. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

| CONDUCTOR COLOR CODE |           |                  |  |  |  |
|----------------------|-----------|------------------|--|--|--|
| SYSTEM               | CONDUCTOR | COLOR            |  |  |  |
|                      | A PHASE   | BLACK            |  |  |  |
| <br>  120/240V, 1Ø   | B PHASE   | RED              |  |  |  |
| 120/2400, 10         | NEUTRAL   | WHITE            |  |  |  |
|                      | GROUND    | GREEN            |  |  |  |
|                      | A PHASE   | BLACK            |  |  |  |
|                      | B PHASE   | RED              |  |  |  |
| 120/208V, 3Ø         | C PHASE   | BLUE             |  |  |  |
|                      | NEUTRAL   | WHITE            |  |  |  |
|                      | GROUND    | GREEN            |  |  |  |
|                      | A PHASE   | BROWN            |  |  |  |
|                      | B PHASE   | ORANGE OR PURPLE |  |  |  |
| 277/480V, 3Ø         | C PHASE   | YELLOW           |  |  |  |
|                      | NEUTRAL   | GREY             |  |  |  |
|                      | GROUND    | GREEN            |  |  |  |
| DC VOLTAGE           | POS (+)   | RED**            |  |  |  |
|                      | NEG (-)   | BLACK**          |  |  |  |

\* SEE NEC 210.5(C)(1) AND (2)

\*\* POLARITY MARKED AT TERMINATION

#### ABBREVIATIONS:

ANT ANTENNA
(E) EXISTING
FIF FACILITY INTERFACE FRAME
GEN GENERATOR

GPS GLOBAL POSITIONING SYSTEM
GSM GLOBAL SYSTEM FOR MOBILE

LTE LONG TERM EVOLUTION
MGB MASTER GROUND BAR
MW MICROWAVE

NEC NATIONAL ELECTRIC CODE
(P) PROPOSED
PP POWER PLANT

SIAD

W.P.

QTY QUANTITY
RECT RECTIFIER
RBS RADIO BASE STATION
RET REMOTE ELECTRIC TILT

RFDS RADIO FREQUENCY DATA SHEET
RRH REMOTE RADIO HEAD
RRU REMOTE RADIO UNIT

WORK POINT

TMA TOWER MOUNTED AMPLIFIER

TYP TYPICAL

UMTS UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM

SMART INTEGRATED DEVICE

ST5 MOROSGO DRIVE

ATLANTA, GA 30324-3300

CROWN
CASTLE



CLIFTON PARK, NY 12065

AT&T SITE NUMBER: **CTV5069** 

BU #: 842857 BENNETT POND

66 SUGAR HOLLOW ROAD DANBURY, CT 06810

> EXISTING 106'-0" MONOPOLE

| 48          |          |      |                    |       |  |
|-------------|----------|------|--------------------|-------|--|
| ISSUED FOR: |          |      |                    |       |  |
| REV         | DATE     | DRWN | DESCRIPTION        | DES./ |  |
| A           | 8/29/22  | TDG  | PRELIMINARY REVIEW | MTJ   |  |
| 0           | 10/17/22 | MEH  | CONSTRUCTION       | MT    |  |
|             |          |      |                    |       |  |
|             |          |      |                    |       |  |
|             |          |      |                    |       |  |



MTS ENGINEERING P.L.L.C. BER:2386985 Expires 3/31/23

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:

0

**REVISION:** 





CORPORATE PARK DRIVE, SUITE 101 CLIFTON PARK, NY 12065



AT&T SITE NUMBER: **CTV5069** 

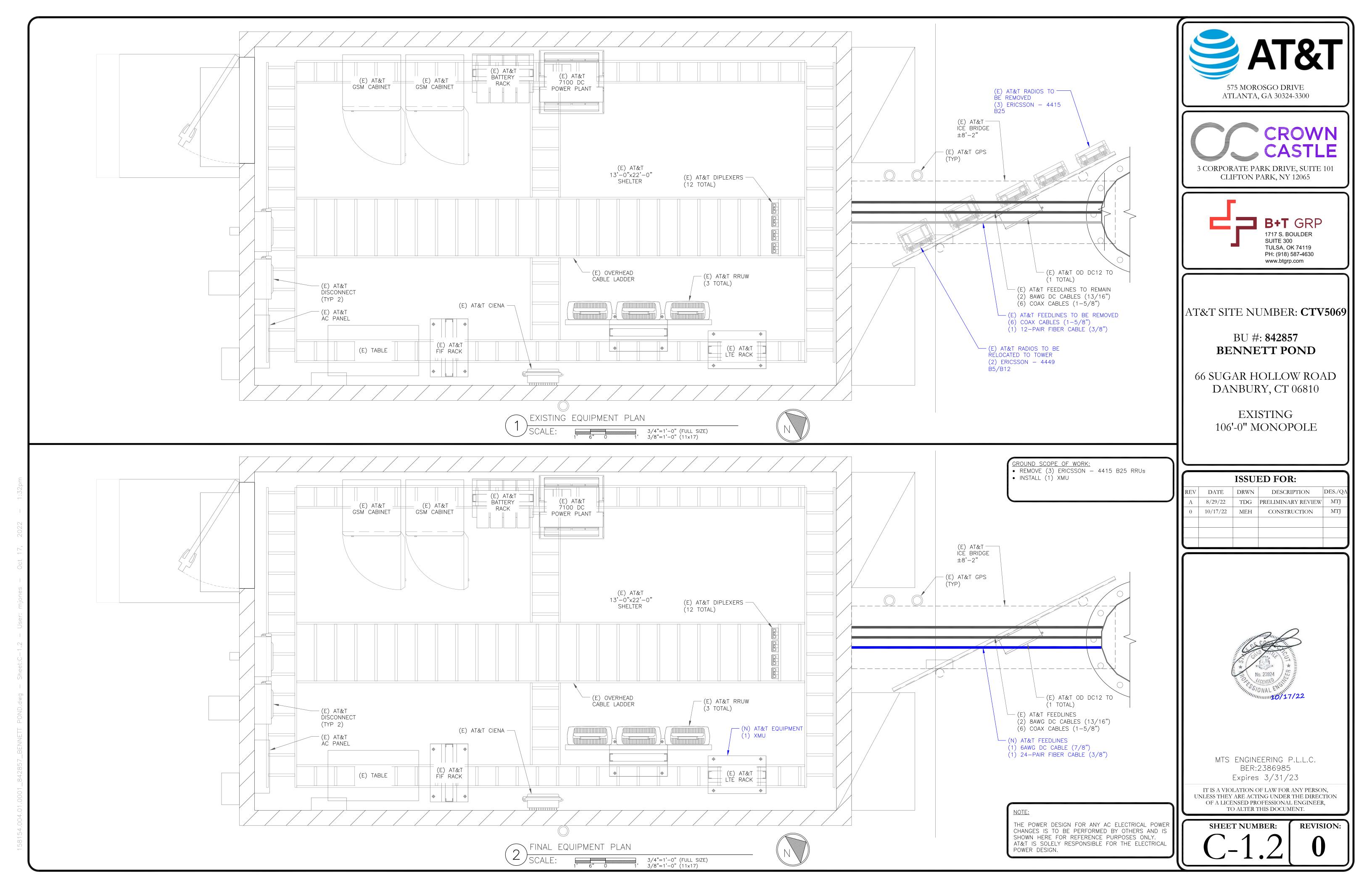
BU #: **842857 BENNETT POND** 

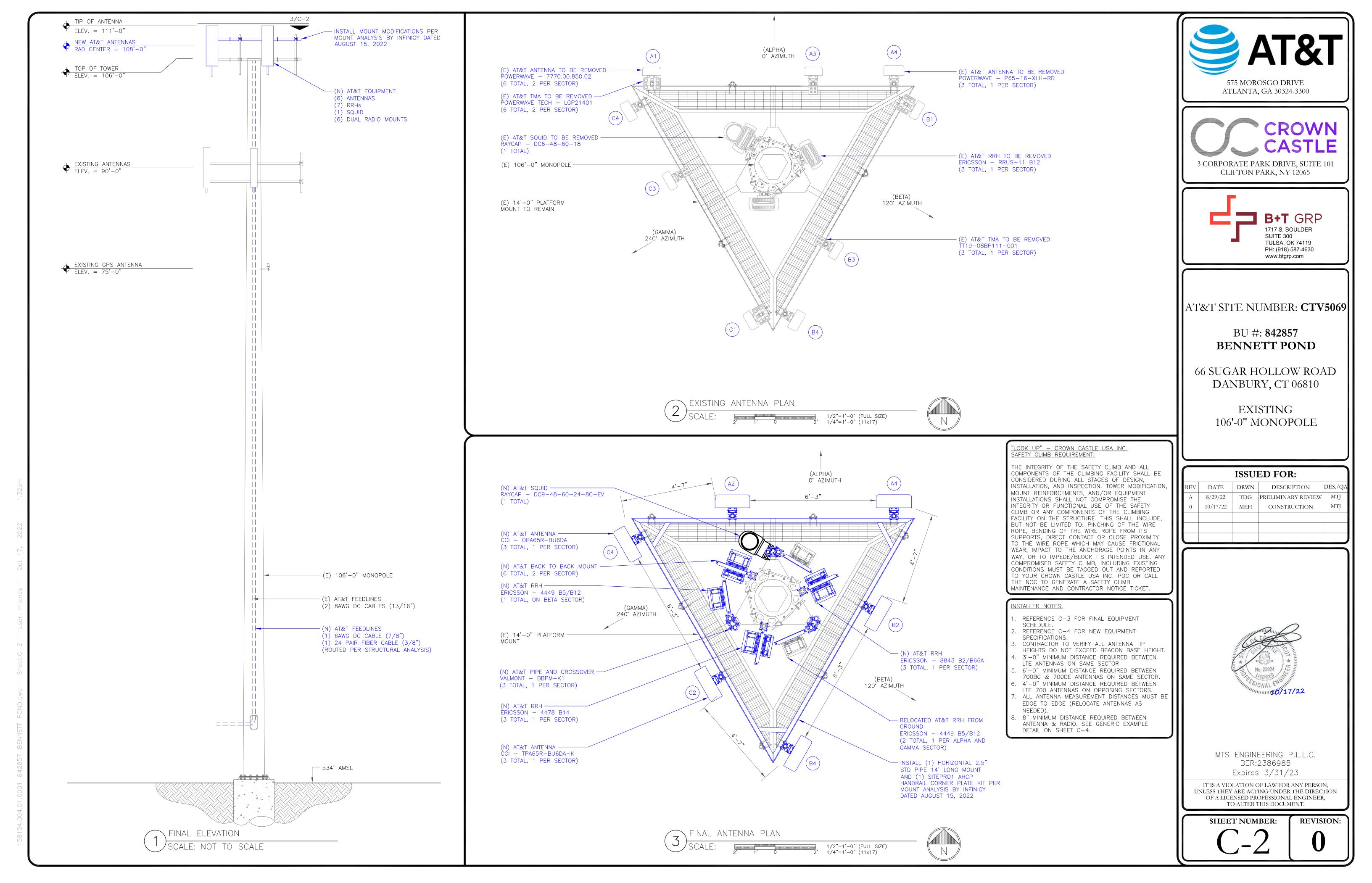
66 SUGAR HOLLOW ROAD DANBURY, CT 06810

> EXISTING 106'-0" MONOPOLE

| N. |     | ISSUED FOR: |      |                    |         |  |  |  |  |  |  |  |
|----|-----|-------------|------|--------------------|---------|--|--|--|--|--|--|--|
|    | REV | DATE        | DRWN | DESCRIPTION        | DES./QA |  |  |  |  |  |  |  |
|    | A   | 8/29/22     | TDG  | PRELIMINARY REVIEW | MTJ     |  |  |  |  |  |  |  |
|    | 0   | 10/17/22    | MEH  | CONSTRUCTION       | MTJ     |  |  |  |  |  |  |  |
|    |     |             |      |                    |         |  |  |  |  |  |  |  |
|    |     |             |      |                    |         |  |  |  |  |  |  |  |
|    |     |             |      |                    |         |  |  |  |  |  |  |  |




MTS ENGINEERING P.L.L.C.
BER:2386985
Expires 3/31/23


IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:

REVISION:

3/8"=1'-0" (FULL SIZE) 2' 1' 0 2' 3/16"=1'-0" (11x17)





|          |         |                            |         |               |      |                                      |          |         | MENT SC<br>CURREN |          |      |                             |      |                           |      |                     |              |                    |
|----------|---------|----------------------------|---------|---------------|------|--------------------------------------|----------|---------|-------------------|----------|------|-----------------------------|------|---------------------------|------|---------------------|--------------|--------------------|
| ALPHA    |         | ANTENNA                    |         |               |      | RADIO                                |          | ' '<br> | DIPLEXER          |          |      | /<br><br>TMA                |      | SURGE PROTECTION          |      | CABL                |              |                    |
| POSITION | TECH.   | STATUS/MANUFACTURER MODEL  | AZIMUTH | RAD<br>CENTER | QTY. | STATUS/MODEL                         | LOCATION | OTY     | STATUS            | LOCATION | OTY  | STATUS/MANUFACTURER MODEL   | QTY. | STATUS/MODEL              | OTY  | STATUS/TYPE         | SIZE         | LENGTH             |
|          | TEOH.   | STATOS/ MANOTACTORER MODEL | AZIMOTH | CENTER        | 1    | (N) RADIO 4478 B14                   | TOWER    | QII.    | 314103            | LOCATION | Q11. | STATUS/ MIANUTACTUREN MODEL | QII. | STATUSÝ MODEL             | QII. | SIAIOS/TIFE         | SIZE         | LENGTH             |
| A2       | LTE /50 | (N) 001 TD105D D110D1 1/   |         |               | 1    | (N) 8843 B2/B66A                     | 1        |         |                   |          |      |                             |      | (N)                       | 2    | (E) DC              | 13/16"       | 158'-0             |
|          | LTE/5G  | (N) CCI — TPA65R—BU6DA—K   | O°      | 108'-0"       | 1    | (N) Y CABLE                          | TOWER    | _       | _                 | _        | _    | _                           | _    | (N)<br>DC9-48-60-24-8C-EV | 1    | (N) DC<br>(N) FIBER | 7/8"<br>3/8" | 158'-0'<br>158'-0' |
|          |         |                            |         |               | -    | _                                    | _        |         |                   |          |      |                             |      |                           | 1    | (N) FIBER           | 3/8"         | 158'-0             |
| A4       | LTE/5G  | (N) CCI - OPA65R-BU6DA     | 0°      | 108'-0"       | 1    | (E) RADIO 4449 B5/B12                | TOWER    | _       | _                 | _        | _    | _                           | _    | _                         | _    | _                   | _            | _                  |
|          | ,       | · /                        |         |               | 1    | (N) Y CABLE                          |          |         |                   |          |      |                             |      |                           | _    | _                   | _            | _                  |
| ВЕТА     |         |                            | _       |               |      |                                      | 1        |         |                   |          |      |                             |      |                           |      |                     |              |                    |
|          |         |                            |         |               | 1    | (N) RADIO 4478 B14                   | TOWER    |         |                   |          |      |                             |      |                           |      |                     |              |                    |
| B2       | LTE/5G  | (N) CCI - TPA65R-BU6DA-K   | 120°    | 108'-0"       | 1    | (N) 8843 B2/B66A<br>(N) Y CABLE      | TOWER    | _       | _                 | _        | _    | _                           | _    | _                         | _    | _                   | _            | _                  |
|          |         |                            |         |               | _    |                                      | _        |         |                   |          |      |                             |      |                           |      |                     |              | <u> </u>           |
| B4       | LTE/5G  | (N) CCI — OPA65R—BU6DA     | 120°    | 108'-0"       | 1    | (N) RADIO 4449 B5/B12<br>(N) Y CABLE | TOWER    | _       | _                 | _        | _    | _                           |      | _                         | _    | _                   | _            | _                  |
|          |         |                            |         |               | 1    | (N) Y CABLE                          |          |         |                   |          |      |                             |      |                           | _    | _                   | _            | _                  |
| GAMMA    |         |                            |         | 1             |      | (V) DADIO 4470 D44                   | T        | I       |                   |          |      |                             |      |                           |      |                     |              | T                  |
| C2       |         |                            |         |               |      | (N) RADIO 4478 B14                   | TOWER    |         |                   |          |      |                             |      |                           |      |                     |              |                    |
| 02       | LTE/5G  | (N) CCI - TPA65R-BU6DA-K   | 240°    | 108'-0"       | 1 1  | (N) 8843 B2/B66A<br>(N) Y CABLE      | TOWER    | _       | _                 | _        | -    | _                           | _    | -                         | _    | _                   | _            | _                  |
|          |         |                            |         |               | _    | _                                    | _        |         |                   |          |      |                             |      |                           |      |                     |              |                    |
| 0.4      | LTE /50 | (N) OOL OBACED BUCDA       | 0.40    |               | 1    | (E) RADIO 4449 B5/B12                | TOWED    |         |                   |          |      |                             |      |                           | _    | _                   | _            | _                  |
| C4       | LTE/5G  | (N) CCI — OPA65R—BU6DA     | 240°    | 108'-0"       | 1    | (N) Y CABLE                          | TOWER    | _       | _                 | _        |      |                             |      | _                         | _    | _                   | _            | _                  |
|          |         |                            |         |               |      |                                      |          |         |                   |          |      |                             |      | UNUSED FEEDLINES:         | 6    | COAX                | 1-5/8"       | 158'-0'            |









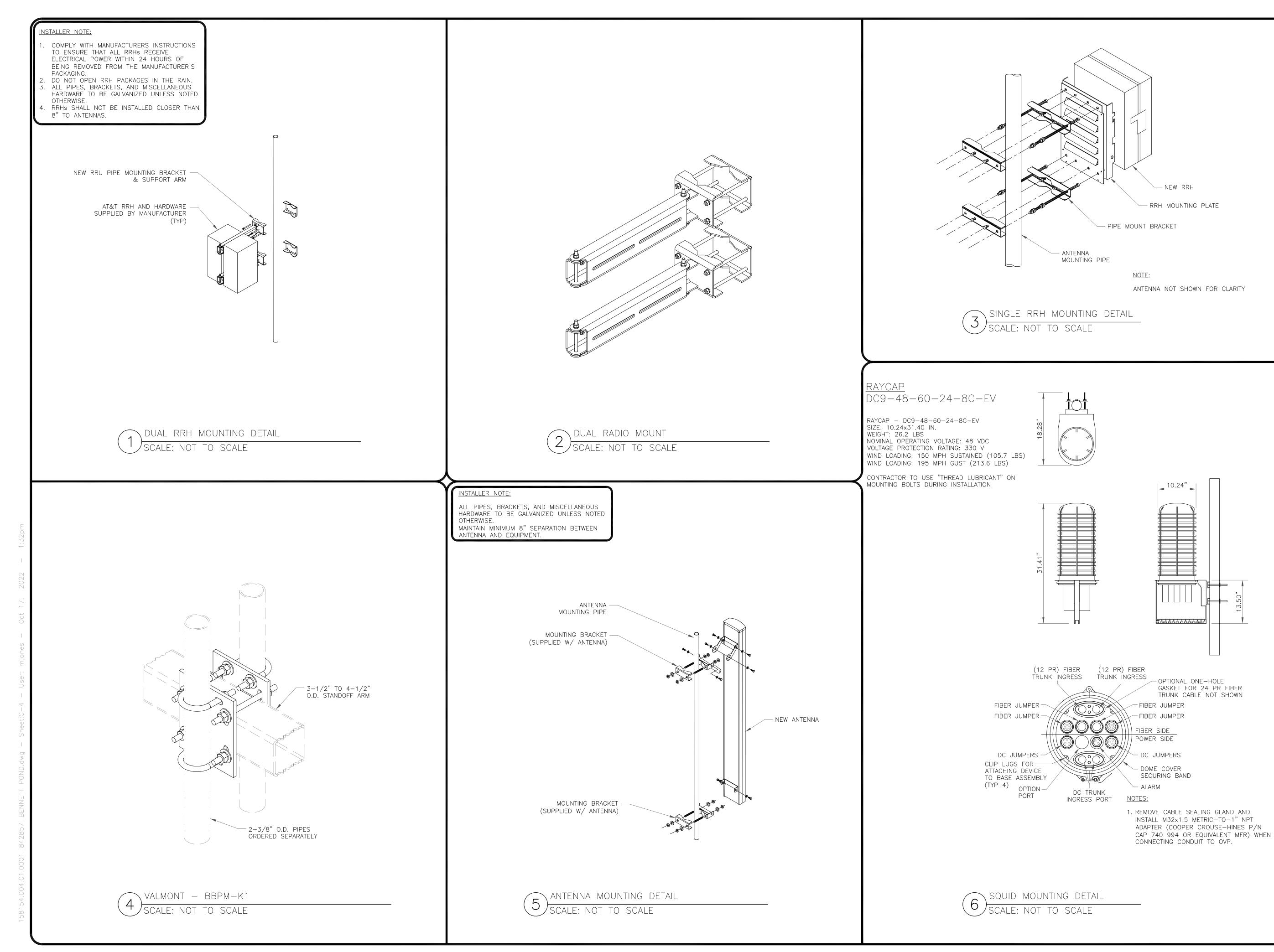
AT&T SITE NUMBER: **CTV5069** 

BU #: **842857 BENNETT POND** 

66 SUGAR HOLLOW ROAD DANBURY, CT 06810

> EXISTING 106'-0" MONOPOLE

|     | ISSUED FOR: |      |                    |         |  |  |  |  |  |  |
|-----|-------------|------|--------------------|---------|--|--|--|--|--|--|
| REV | DATE        | DRWN | DESCRIPTION        | DES./QA |  |  |  |  |  |  |
| A   | 8/29/22     | TDG  | PRELIMINARY REVIEW | MTJ     |  |  |  |  |  |  |
| 0   | 10/17/22    | MEH  | CONSTRUCTION       | MTJ     |  |  |  |  |  |  |
|     |             |      |                    |         |  |  |  |  |  |  |
|     |             |      |                    |         |  |  |  |  |  |  |
|     |             |      |                    |         |  |  |  |  |  |  |




MTS ENGINEERING P.L.L.C. BER:2386985 Expires 3/31/23

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:

REVISION:





CROWN

3 CORPORATE PARK DRIVE, SUITE 101 CLIFTON PARK, NY 12065



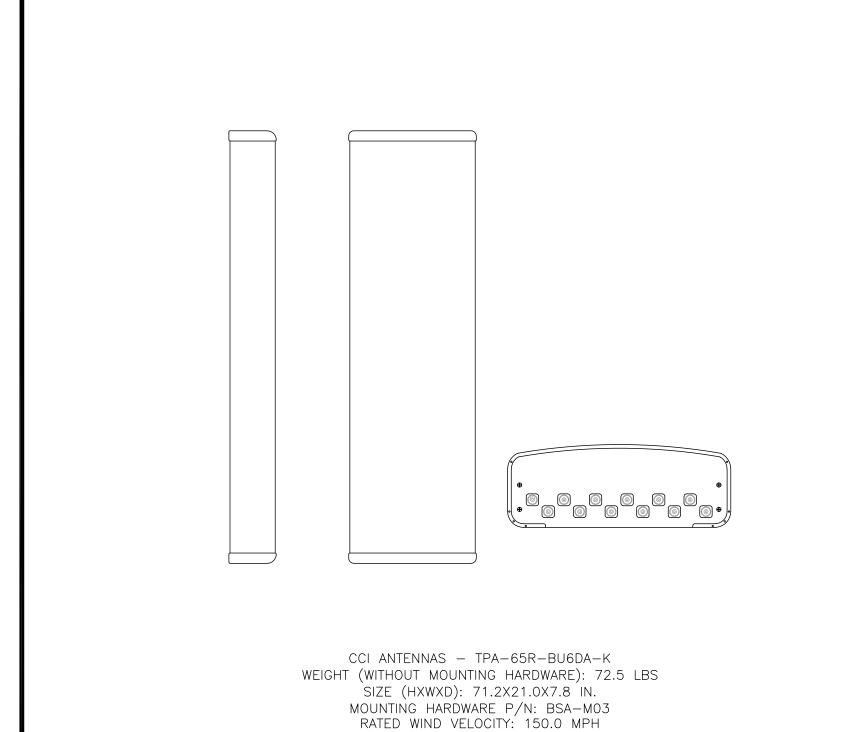
AT&T SITE NUMBER: **CTV5069** 

BU #: **842857 BENNETT POND** 

66 SUGAR HOLLOW ROAD DANBURY, CT 06810

> EXISTING 106'-0" MONOPOLE

|     | ISSUED FOR: |      |                    |         |  |  |  |  |  |
|-----|-------------|------|--------------------|---------|--|--|--|--|--|
| REV | DATE        | DRWN | DESCRIPTION        | DES./QA |  |  |  |  |  |
| A   | 8/29/22     | TDG  | PRELIMINARY REVIEW | MTJ     |  |  |  |  |  |
| 0   | 10/17/22    | MEH  | CONSTRUCTION       | MTJ     |  |  |  |  |  |
|     |             |      |                    |         |  |  |  |  |  |
|     |             |      |                    |         |  |  |  |  |  |
|     |             |      |                    |         |  |  |  |  |  |

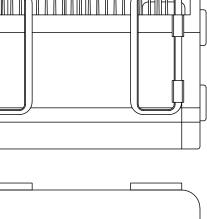


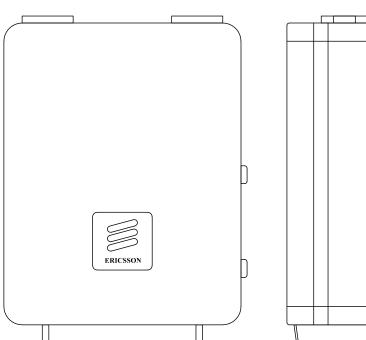

MTS ENGINEERING P.L.L.C. BER:2386985 Expires 3/31/23

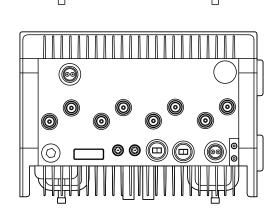
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:

REVISION:





N CCI ANTENNAS − TPA-65R-BU6DA-K


SCALE: NOT TO SCALE



⊕ ⊕ ⊕ ⊕ ⊕







ERICSSON - RADIO 8843 B2/B66A WEIGHT: 75.0 LBS SIZE (HxWxD): 18.0x13.2x11.3 IN.

SCALE: NOT TO SCALE





B+T GRP

1717 S. BOULDER
SUITE 300
TULSA, OK 74119
PH: (918) 587-4630
www.btgrp.com

AT&T SITE NUMBER: CTV5069

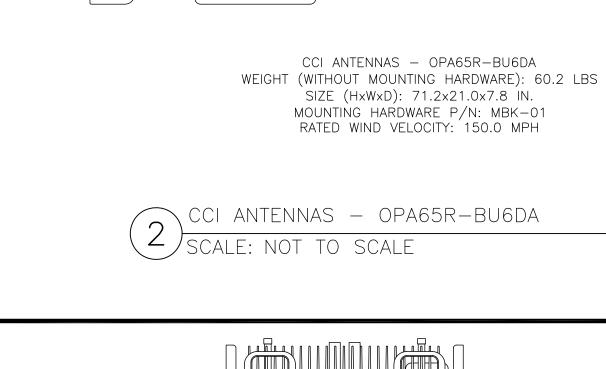
BU #: **842857 BENNETT POND** 

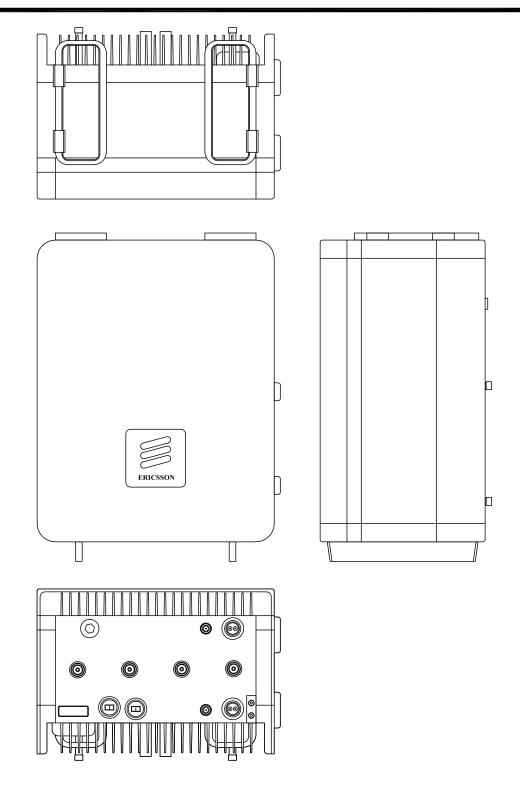
66 SUGAR HOLLOW ROAD DANBURY, CT 06810

> EXISTING 106'-0" MONOPOLE

|     | ISSUED FOR: |      |                    |         |  |  |  |  |  |
|-----|-------------|------|--------------------|---------|--|--|--|--|--|
| REV | DATE        | DRWN | DESCRIPTION        | DES./QA |  |  |  |  |  |
| A   | 8/29/22     | TDG  | PRELIMINARY REVIEW | MTJ     |  |  |  |  |  |
| 0   | 10/17/22    | MEH  | CONSTRUCTION       | MTJ     |  |  |  |  |  |
|     |             |      |                    |         |  |  |  |  |  |
|     |             |      |                    |         |  |  |  |  |  |
|     |             |      |                    |         |  |  |  |  |  |

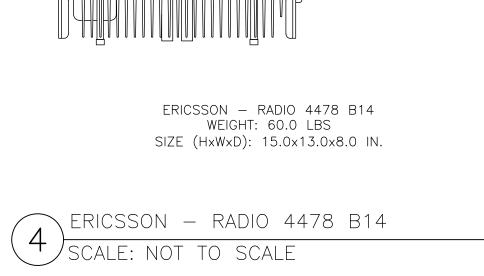



MTS ENGINEERING P.L.L.C. BER:2386985 Expires 3/31/23

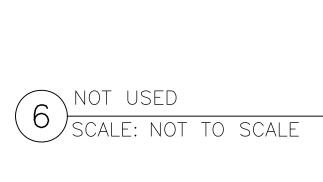

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:

0


**REVISION:** 






ERICSSON - RADIO 4449 B5/B12 WEIGHT: 70.0 LBS SIZE (HxWxD): 18.0x13.2x9.4 IN.

5 ERICSSON - RADIO 4449 B5/B12 SCALE: NOT TO SCALE







SCALE: NOT TO SCALE

GROUNDING PLAN LEGEND:

--- GROUND WIRE

© COPPER GROUND ROD

■ EXOTHERMIC WELD

MECHANICAL CONNECTION

⊗ GROUND ROD W/ TEST WELL

CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 STRANDED GREEN INSULATED COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUITS (ATT-TP-76416 7.6.7).

HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH (2) #2 STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CELL SITE REFERENCE GROUND BAR MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING USING (2) #2 STRANDED GREEN INSULATED COPPER CONDUCTORS.

EXTERIOR CABLE ENTRY PORT GROUND BARS:
LOCATED AT THE ENTRANCE TO THE CELL SITE
BUILDING. BOND TO GROUND RING WITH A #2 SOLID
TINNED COPPER CONDUCTORS WITH AN EXOTHERMIC
WELD AND INSPECTION SLEEVE (ATT-TP-76416
7.6.7.2).

DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEMENTS AND INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICES CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPPED WITH MASTER DC SYSTEM RETURN GROUND CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED TO THE CELL SITE REFERENCE GROUND BAR PER TP76300 SECTION H 6 AND TP76416 FIGURE 7-11 REQUIREMENTS.



575 MOROSGO DRIVE ATLANTA, GA 30324-3300



3 CORPORATE PARK DRIVE, SUITE 101 CLIFTON PARK, NY 12065



BU #: **842857 BENNETT POND** 

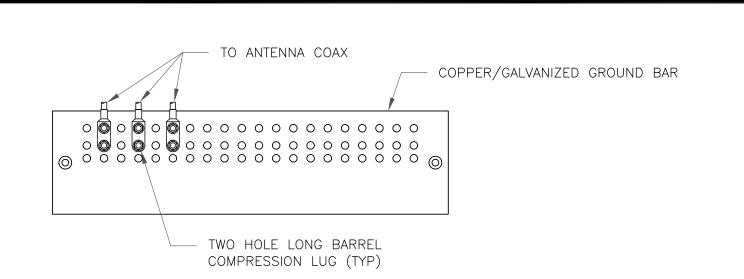
AT&T SITE NUMBER: **CTV5069** 

66 SUGAR HOLLOW ROAD DANBURY, CT 06810

> EXISTING 106'-0" MONOPOLE

|     | ISSUED FOR: |      |                    |         |  |  |  |  |  |
|-----|-------------|------|--------------------|---------|--|--|--|--|--|
| REV | DATE        | DRWN | DESCRIPTION        | DES./QA |  |  |  |  |  |
| A   | 8/29/22     | TDG  | PRELIMINARY REVIEW | MTJ     |  |  |  |  |  |
| 0   | 10/17/22    | MEH  | CONSTRUCTION       | MTJ     |  |  |  |  |  |
|     |             |      |                    |         |  |  |  |  |  |
|     |             |      |                    |         |  |  |  |  |  |
|     |             |      |                    |         |  |  |  |  |  |

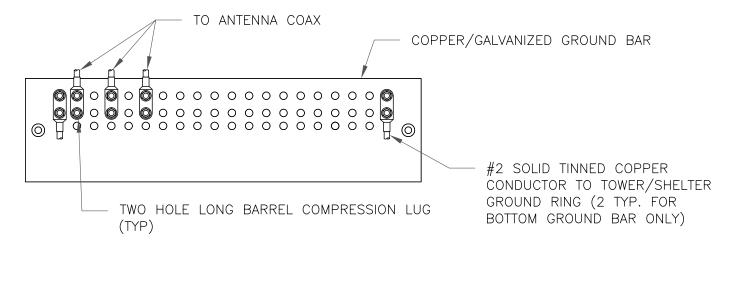



MTS ENGINEERING P.L.L.C. BER:2386985 Expires 3/31/23

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:

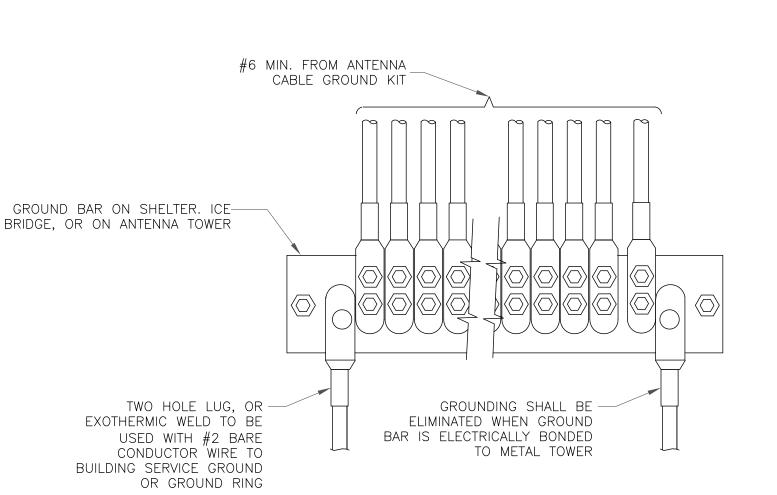
0


**REVISION:** 

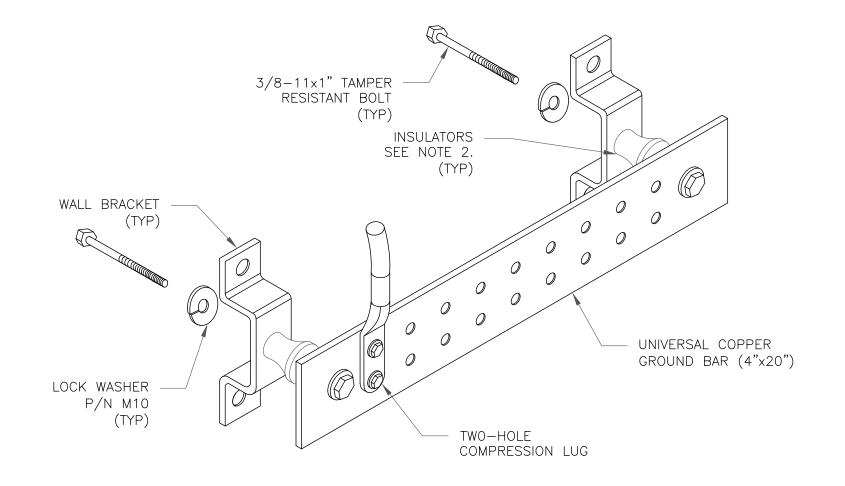


#### NOTES:

- . DOUBLING UP "OR STACKING" OF CONNECTIONS IS NOT PERMITTED.
- EXTERIOR ANTIOXIDANT JOINT COMPOUND TO BE USED ON ALL EXTERIOR CONNECTIONS.
   GROUND BAR SHALL NOT BE ISOLATED FROM TOWER. MOUNT DIRECTLY TO ANTENNA MOUNT STEEL.



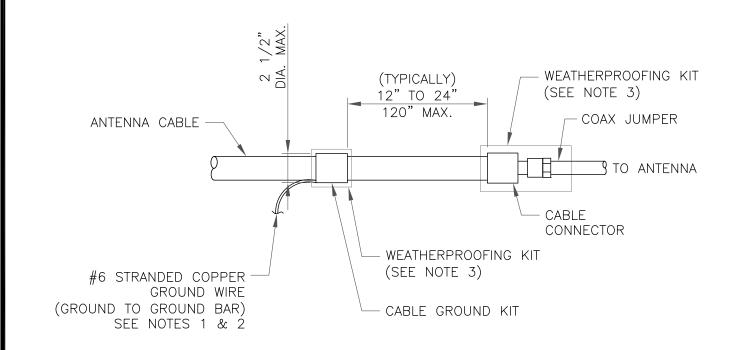




#### NOTES:

- 1. EXTERIOR ANTIOXIDANT JOINT COMPOUND TO BE USED ON ALL EXTERIOR CONNECTIONS.
- 2. GROUND BAR SHALL NOT BE ISOLATED FROM TOWER. MOUNT DIRECTLY TO TOWER STEEL (TOWER ONLY).
  3. GROUND BAR SHALL BE ISOLATED FROM BUILDING OR SHELTER.

## 2) TOWER/SHELTER GROUND BAR DETAIL SCALE: NOT TO SCALE



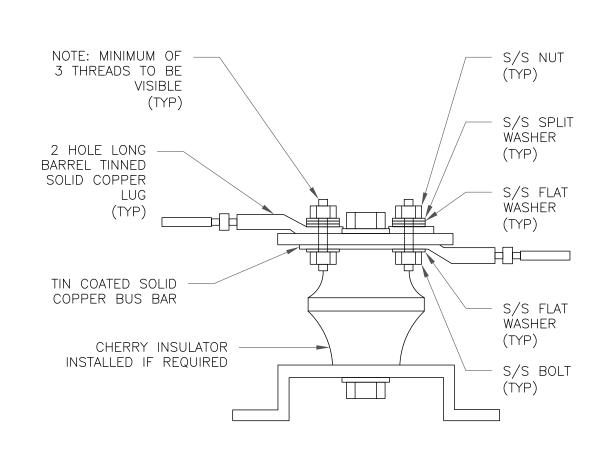





NOTES:

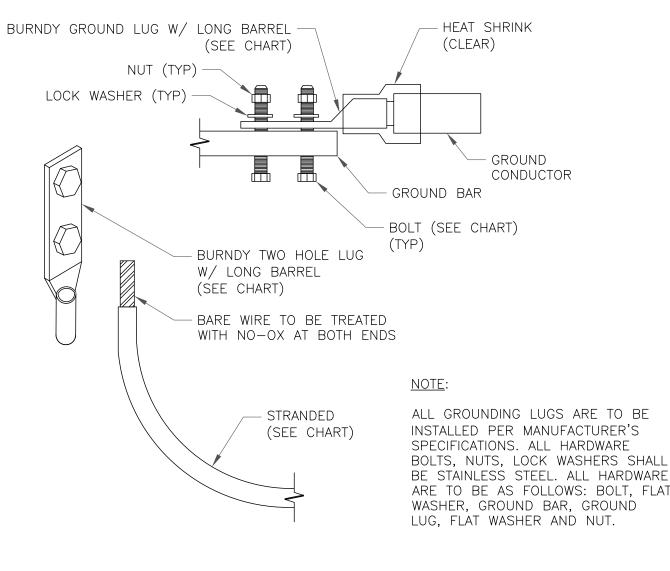
- 1. DOWN LEAD (HOME RUN) CONDUCTORS ARE <u>NOT</u> TO BE INSTALLED ON CROWN CASTLE USA INC. TOWER, PER THE GROUNDING DOWN CONDUCTOR POLICY QAS—STD—10091. NO MODIFICATION OR DRILLING TO TOWER STEEL IS ALLOWED IN ANY FORM OR FASHION, CAD—WELDING ON THE TOWER AND/OR IN THE AIR ARE NOT PERMITTED.
- 2. OMIT INSULATOR WHEN MOUNTING TO TOWER STEEL OR PLATFORM STEEL USE INSULATORS WHEN ATTACHING TO BUILDING OR SHELTERS.



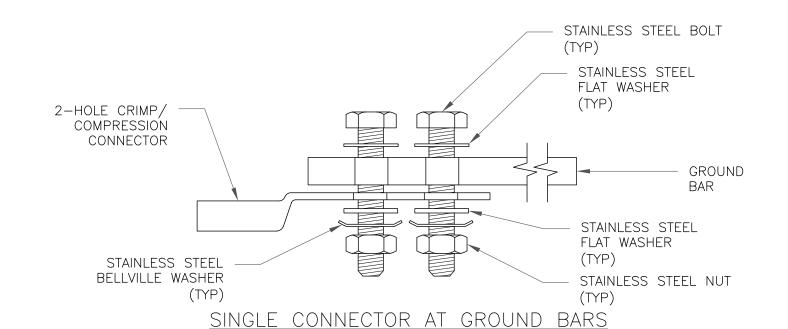


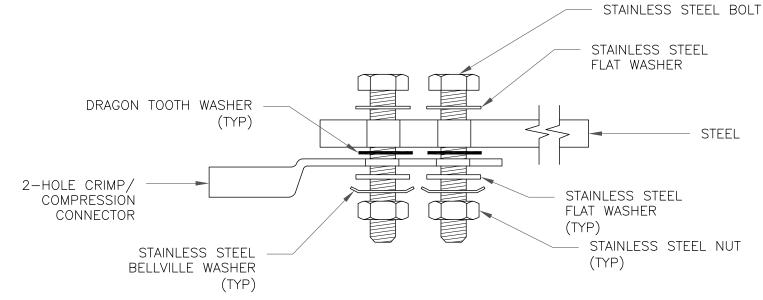

#### NOTES:

- 1. DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO GROUND BAR.
- 2. GROUNDING KIT SHALL BE TYPE AND PART NUMBER AS SUPPLIED OR
- RECOMMENDED BY CABLE MANUFACTURER.

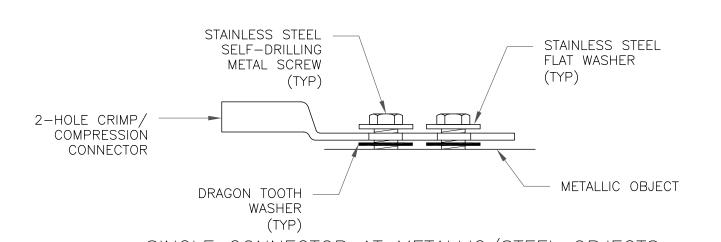

  3. WEATHER PROOFING SHALL BE TWO—PART TAPE KIT, COLD SHRINK SHALL NOT BE USED.

6 CABLE GROUND KIT CONNECTION SCALE: NOT TO SCALE





T SCALE: NOT TO SCALE

|   | WIRE SIZE          | BURNDY LUG | BOLT SIZE              |  |  |  |  |  |  |
|---|--------------------|------------|------------------------|--|--|--|--|--|--|
|   | #6 GREEN INSULATED | YA6C-2TC38 | 3/8" - 16 NC SS 2 BOLT |  |  |  |  |  |  |
|   | #2 SOLID TINNED    | YA3C-2TC38 | 3/8" - 16 NC SS 2 BOLT |  |  |  |  |  |  |
| _ | #2 STRANDED        | YA2C-2TC38 | 3/8" - 16 NC SS 2 BOLT |  |  |  |  |  |  |
| _ | #2/0 STRANDED      | YA26-2TC38 | 3/8" - 16 NC SS 2 BOLT |  |  |  |  |  |  |
| _ | #4/0 STRANDED      | YA28-2N    | 1/2" - 16 NC SS 2 BOLT |  |  |  |  |  |  |










SINGLE CONNECTOR AT STEEL OBJECTS



SINGLE CONNECTOR AT METALLIC/STEEL OBJECTS

8 HARDWARE DETAIL FOR EXTERIOR CONNECTIONS
SCALE: NOT TO SCALE





CLIFTON PARK, NY 12065



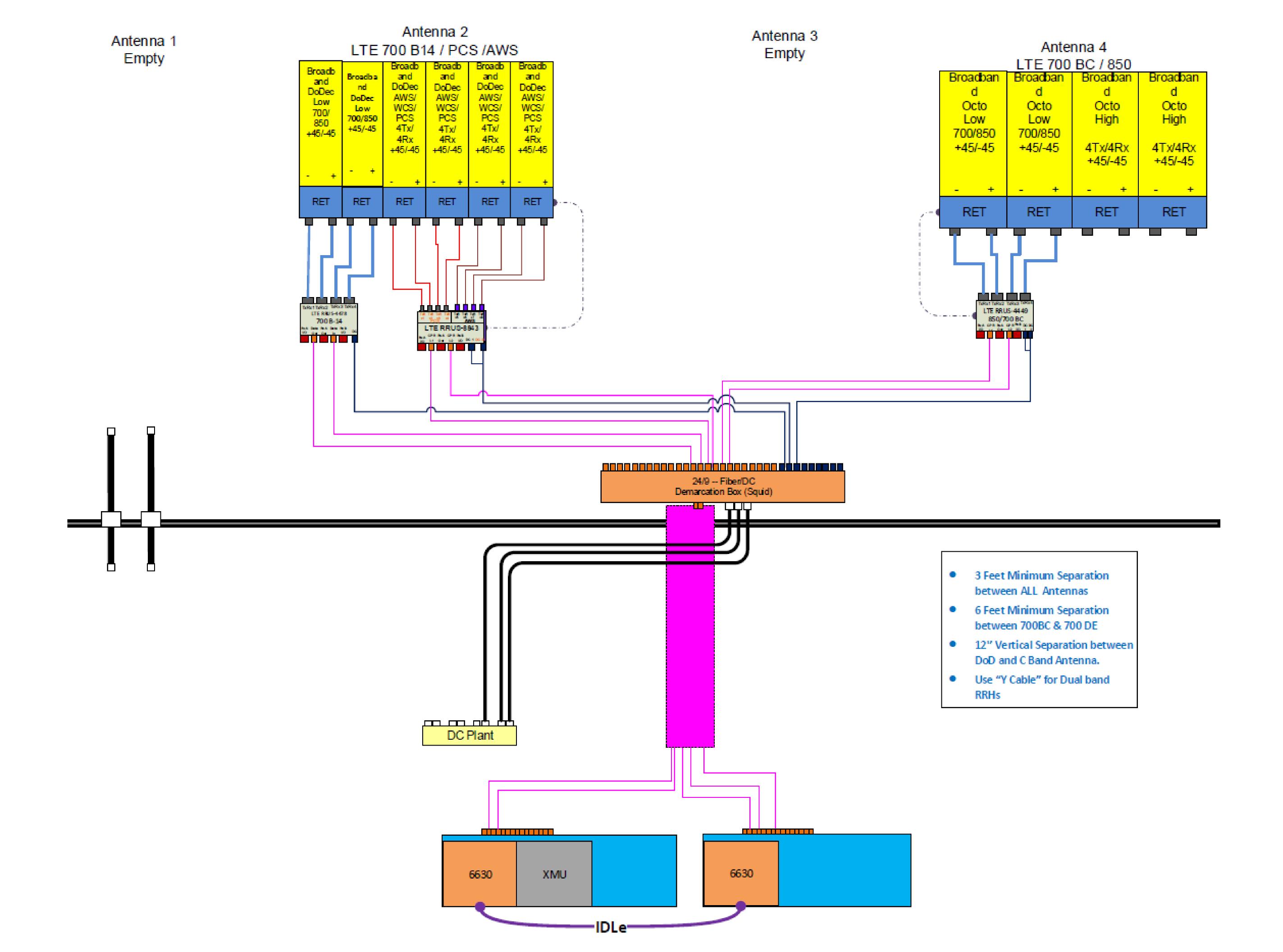
AT&T SITE NUMBER: CTV5069

BU #: **842857 BENNETT POND** 

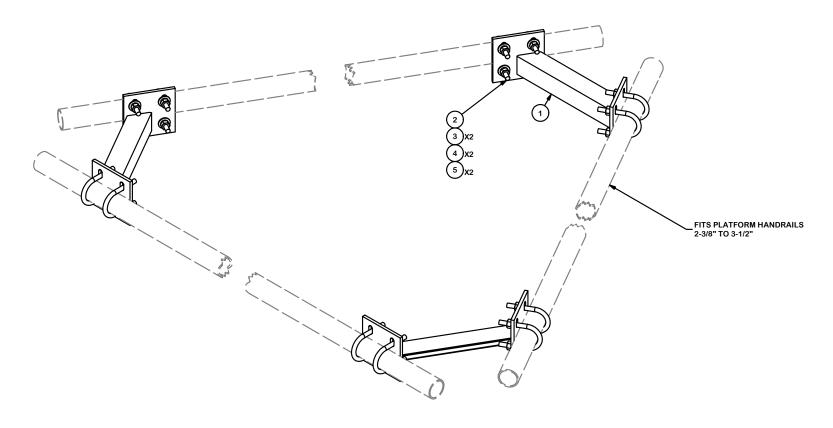
66 SUGAR HOLLOW ROAD DANBURY, CT 06810

> EXISTING 106'-0" MONOPOLE

| ı | 40          |          |      |                    |        |  |  |  |  |  |  |  |  |
|---|-------------|----------|------|--------------------|--------|--|--|--|--|--|--|--|--|
|   | ISSUED FOR: |          |      |                    |        |  |  |  |  |  |  |  |  |
|   | REV         | DATE     | DRWN | DESCRIPTION        | DES./Q |  |  |  |  |  |  |  |  |
|   | A           | 8/29/22  | TDG  | PRELIMINARY REVIEW | MTJ    |  |  |  |  |  |  |  |  |
|   | 0           | 10/17/22 | MEH  | CONSTRUCTION       | MTJ    |  |  |  |  |  |  |  |  |
|   |             |          |      |                    |        |  |  |  |  |  |  |  |  |
| ı |             |          |      |                    |        |  |  |  |  |  |  |  |  |
| ı |             |          |      |                    |        |  |  |  |  |  |  |  |  |




MTS ENGINEERING P.L.L.C.
BER:2386985
Expires 3/31/23


IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:

REVISION:



|      |     |          | PARTS LIST                                |        |             |         |
|------|-----|----------|-------------------------------------------|--------|-------------|---------|
| ITEM | QTY | PART NO. | PART DESCRIPTION                          | LENGTH | UNIT WT.    | NET WT. |
| 1    | 3   | X-AHCP   | ANGLE HANDRAIL CORNER PLATE               |        | 12.92       | 38.76   |
| 2    | 12  | X-UB1212 | 1/2" X 2-1/2" X 4-1/2" X 2" U-BOLT (HDG.) |        | 0.73        | 8.78    |
| 2    | 12  | X-UB1300 | 1/2" X 3" X 5" X 2" U-BOLT (HDG.)         |        | 0.73        | 8.78    |
| 2    | 12  | X-UB1358 | 1/2" X 3-5/8" X 5-1/2" X 3" U-BOLT (HDG.) |        | 0.73        | 8.78    |
| 3    | 24  | G12FW    | 1/2" HDG USS FLATWASHER                   |        | 0.03        | 0.82    |
| 4    | 24  | G12LW    | 1/2" HDG LOCKWASHER                       |        | 0.01        | 0.33    |
| 5    | 24  | G12NUT   | 1/2" HDG HEAVY 2H HEX NUT                 |        | 0.07        | 1.72    |
|      |     |          |                                           |        | TOTAL WT. # | 66.76   |



### **TOLERANCE NOTES**

TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030°) DRILLED AND GAS CUT HOLES (± 0.030°) - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010°) - NO CONING OF HOLES

BENDS ARE ± 1/2 DEGREE
ALL OTHER MACHINING (± 0.030")
ALL OTHER ASSEMBLY (± 0.060")

PROPRIETARY NOTE:
THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALIMONT
ROUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF
VALIMONT INDUSTRIES IS STRICTLY PROMISITED.

#### DESCRIPTION

ANGLE HANDRAIL **CORNER PLATE KIT** 

| STTE<br>PRO | 1 |
|-------------|---|
|             |   |

Engineering
Support Team:
Locations:
New York, NY
Atlanta, GA
Afrighes, CA
1-888-753-7446
Plymouth, IN
Salem, OR
Dallas, TX

| CPD NO. |       | 0.  | DRAWN BY      | ENG. APPROVAL | PART NO. |        |
|---------|-------|-----|---------------|---------------|----------|--------|
|         |       |     | CEK 5/13/2014 |               | AHCP     | ا<br>ا |
|         | CLASS | SUB | DRAWING USAGE | CHECKED BY    | DWG. NO. | Π [    |
|         | 81    | 01  | CUSTOMER      | BMC 5/23/2014 | AHCP     | _      |