January 23, 2019

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Notice of Exempt Modification for T-Mobile / Crown Site BU: 823531 T-Mobile Site ID: CT11896A
 41 Padanaram Road, Danbury CT 06811
 Latitude: $\mathbf{4 1 . 4 1 8 9 0 0 0 0}$ / Longitude: -73.46180000

Dear Ms. Bachman:
T-Mobile is requesting to file an exempt modification for an existing 80 -foot wood pole located at 41 Padanaram Road, Danbury CT 06811. T-Mobile currently maintains six (6) antennas at the 79 -foot level of the existing 80 -foot tower. The tower is owned by Crown Castle. The property is owned by Robert J Kaufman. T-Mobile now intends to replace three (3) existing antenna with three (3) new antennas as well as add (3) RRUs, remove (6) lines of coax and replace with (1) Hybird fiber line. The new antennas would be installed at the 79- foot and level of the tower, the RRUs will be installed on an H-Frame mount on the ground.

This facility was approved by the CT Siting Council. Per the attached Petition No. 712 - Dated April 27, 2005. Approval for an 80 -foot Centerline on the existing 80 -foot pole. Please see attached.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies§ 16- $\mathrm{SOj}-73$, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.SA. § 16-SOj-73, a copy of this letter is being sent to Mark D. Boughton, Mayor, as Elected Official for the City of Danbury and Sharon Calitro, Director of Zoning as well as the property owner and the tower owner.

1. The proposed modifications will not result in an increase in the height of the existing tower.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

Page 2
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: William Stone.

Sincerely,
William Stone
Real Estate Specialist
3 Corporate Park Drive, Suite 101
Clifton Park, NY 12065
518-373-3543
William.stone@crowncastle.com

Attachments:

Tab 1: Exhibit-1: Compound plan and elevation depicting the planned changes
Tab 2: Exhibit-2: Structural Modification Report
Tab 3: Exhibit-3: General Power Density Table Report (RF Emissions Analysis Report)
cc: \quad Mayor Mark D. Boughton
City of Danbury
155 Deer Hill Avenue
Danbury, CT 06810
203-797-4500
Sharon Calitro- Director of Zoning
City of Danbury
155 Deer Hill Avenue
Danbury, CT 06810
203-797-4500
Robert J. Kaufman
41 PADANARAM RD
DANBURY,CT 06811
(203) 744-2001

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, nondelivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on
fedex.com. FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, nondelivery,misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on
fedex.com. FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, nondelivery,misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss. Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, nondelivery,misdelivery,or misinformation, uniess you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

Petition No. 712
Omnipoint (T-Mobile)
Danbury, Connecticut
Staff Report
April 27, 2005

T-Mobile seeks to replace an existing 60 -foot tall wooden utility pole, on which whip antennas were formerly attached to dispatch concrete trucks, with an 80 -foot tall wood laminate pole to which a platform with twelve antennas would be mounted. The antennas would be mounted with a center line of 80 feet; the tops of the antennas would reach 83 feet. The new pole would be designed to accommodate one additional carrier. At the time of its petition submittal, T-Mobile also notified all abutting property owners of its plans.

On April 26, 2005, Council member Ed Wilensky and staff analyst David Martin visited the site of the petition at 41 Pandanaram Road (Route 37) in Danbury. Stephen Humes, Jackie Slaga, Dan O'Connor, and Jeffrey York were present at the field review representing T-Mobile.

The existing pole is located near the top of a small ridge line that parallels Pandanaram Road. The lower portions of the ridge between the pole site and Pandanaram Road are occupied by a concrete plant (at street level) and several graded off levels that are used for the storage of various concrete products. A graveled access road switches back and forth up the side of the ridge to eventually reach the pole, which is in a small cleared area surrounded by mature deciduous trees that appear to be 65 to 70 feet high.

T-Mobile would install a 15 -foot by 15 -foot fence compound next to the proposed replacement pole to house its ground equipment which would consist of equipment cabinets on two concrete Pands. In its petition, T-Mobile states the compound would be enclosed by a six-foot high chain link fence topped with three strands of barbed wire. During the field review, T-Mobile representatives stated they would be amenable to installing an eight-foot fence without the barbed wire. Utilities would be brought underground to the compound from a utility pole to be placed somewhere lower on the ridge. Underground utilities would be preferable to overhead lines because of the truck traffic and the use of booms to pick up and move the concrete products.

From the pole site, the ridge continues to rise to the north and east. Although there is a residential area just over the crest of the ridge, no houses are visible from the base of the existing pole. Mr. Wilensky and David Martin drove the residential road nearest the ridge line and could not see the existing tower from this location.

To the south of the existing pole, the ridge falls steeply away to a condominium development. The condominium units nearest to the pole site face the side of the ridge and would not be able to see the replacement pole. Units closer to Pandanaram Road may have some views of the higher proposed tower. Mr. Wilensky and David Martin drove through the condominium development but could not see the existing tower.

To the west of the site, Danbury High School is visible on the side of an opposite ridge. There are a few residences also visible on the opposite ridge. However, existing vegetation and distance should make any visual presence of the proposed, higher tower minimal.

Petition 712
Staff Report
Page 2

View of Existing Pole

View From Pole, Looking Toward Roof Of Nearest Condominiums

Closer View of Condominium Roof from Edge of Ridge

Looking West From Pole Site

Looking Northeast From Site, Existing Pole In Foreground

| Location | PADANARAM RD | Mblu / $140 / /$ |
| ---: | ---: | ---: | ---: |
| Acct\# | Owner | KAUFMAN ROBERT J |
| Assessment $\$ 1,725,900$ | Appraisal | $\$ 2,465,500$ |
| PID 10751 | Building Count | 1 |

Current Value

Appraisal				
Valuation Year	I mprovements	Land		
2017		$\$ 661,000$	$\$ 1,804,500$	

Assessment

Valuation Year	I mprovements	Land	Total
2017		$\$ 462,700$	$\$ 1,263,200$

Owner of Record

Owner	KAUFMAN ROBERT J	Sale Price	$\$ 0$
Co-Owner		Book \& Page	$0470 / 0094$
Address	41 PADANARAM RD	Sale Date	$02 / 07 / 1969$

Ownership History

Ownership History				
Owner	Sale Price	Book \& Page		
KAUFMAN ROBERT J		$\$ 0$	$0470 / 0094$	

Building Information

Year Built:	2006
Living Area:	23,280
Replacement Cost:	\$957,958
Building Percent	69
Good:	
Replacement Cost	
Less Depreciation:	\$661,000
Building Attributes	
Field	Description
STYLE	Pre-Eng Mfg
MODEL	Ind/Comm
Grade	Average
Stories:	1
Occupancy	1
Exterior Wall 1	Pre-finsh Metl
Exterior Wall 2	
Roof Structure	Gable/Hip
Roof Cover	Metal/Tin
Interior Wall 1	Minim/Masonry
Interior Wall 2	
Interior Floor 1	Concr-Finished
Interior Floor 2	
Heating Fuel	Oil
Heating Type	Hot Air-no Duc
AC Type	None
Bldg Use	Commercial MDL-96
Total Rooms	
Total Bedrms	00
Total Baths	0
1st Floor Use:	2001
Heat/AC	NONE
Frame Type	FIREPRF STEEL
Baths/Plumbing	AVERAGE
Ceiling/Wall	NONE
Rooms/Prtns	AVERAGE
Wall Height	25
\% Comn Wall	0

Building Photo

(http://images.vgsi.com/photos/DanburyCTPhotos//\00\02 (39/88.jpg)

Building Layout

Building Sub-Areas (sq ft)			Legend
Code	Description	Gross Area	Living Area
BAS	First Floor	23,280	23,280
UEP	Unfi. Enclosed Porch	492	0
UST	Unf. Storage	4,080	0
		27,852	23,280

Extra Features

| Extra Features | Legend |
| :--- | :--- | :--- |
| No Data for Extra Features | |

Land

Land Use	
Use Code	2001
Description	Commercial MDL-96
Zone	CN20
Neighborhood	6500
Alt Land Appr Category	No

Land Line Valuation	
Size (Acres)	9.68
Frontage	0
Depth	0
Assessed Value	$\$ 1,263,200$
Appraised Value	$\$ 1,804,500$

Category

Outbuildings

Outbuildings									Legend	
Code	Description	Sub Code	Sub Description	Size	Value	Bldg \#				
CEL	Cell Tower			1 UNITS	$\$ 0$					

Valuation History

Appraisal			
Valuation Year	I mprovements	Land	Total
2015	\$661,000	\$1,804,500	\$2,465,500
2014	\$661,000	\$1,804,500	\$2,465,500
2013	\$661,000	\$1,804,500	\$2,465,500
Assessment			
Valuation Year	Improvements	Land	Total
2015	\$462,700	\$1,263,200	\$1,725,900
2014	\$462,700	\$1,263,200	\$1,725,900
2013	\$462,700	\$1,263,200	\$1,725,900

(c) 2016 Vision Government Solutions, Inc. All rights reserved.

Exhibit A

GENERAL NOTES

ALL WORK SHALL CONFORM TO THE REQUIREMENTS OF THE STATE BULLDING CODE,
LATEST VERSION AND ALL OTHER APLLCCBELE CODES AND OROLNANCES.
2. CONTRACTOR SHALL VIST THE JOB SITE AND FAMLIARIZE HIMSELF WITH ALL CONDITIONS

 HOURS PRIOR TO WORK START.
8. CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER OF ALL PRODUCTS OR ITEMS
NOTED AS "EXISTING" WHICH ARE NOT FOUND TO BE IN THE FIELD.

CONTRACTOR SHAL SUPERYSE AND OIRECT THE WORK USING THE BEST CONSTRUCTION
SKILLS AND ATENTION. CONTRACTOR SHAL BE SOLELY RESPONSIBEE FOR CONSTRUCTION

12. CONTRACTOR SHALL COORINATE HIS WORK AND SCHEDLLE HIS ACTVITIES AND WORKING
13. CONTRACTOR SHALL RE RESPONSIBLE FOR COORINATING HIS WORK WITH THE WORK OF
OTHERS AS IT MAY RELATE TO RADO EQUPMENT, ANTENNAS ANO ANY OTHER PORTIONS OTHERS AS I,
OF THE WORK.
15.

17. REPAIR ALL EXISTIGG SURFACES DAMAGED DURING CONSTRUCTION SUCH THAT THEY
18. KEEP CONTRACT AREA CIEAN, HAZARD FREE, AND DISOSE OF ALL DEERIS AND
RUBBIISH. EUUPMENT NET SPECIIRD ASE REMANING ON THE PROPERT OF THE OWNER SHALL BE REMOVED. LEAVE PREMSES IN CLEAN CONOHON AND FREE FROM PANT
SPOTS. DUST. OR SMUOGES OF ANT NATURE. CONTRACTOR SHALL BE RESPONSIBLE FOR SPOTS, IUST, OR SMUOGES OF ANY NATURE, CONTRACTOR SHम
MAITANING ALL TEMS UNTL COMPLLION OF CONSTUUCTION.
19. CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND CONDITIONS IN THE FIELD PRIIR TO RERORTED TO THE ATIENTION OF THE ENGINEER.
 21. ALL BROCHURES, OPERATING AND MANTENANCE MANUALS, CATALOGS, SHOP DRAWNGS
AND
CONER DTRUCTONCUMENTATON SHALL BE TURNED OVER TO AT COMPLIION OF
22. COMPLETE JOB SHALL BE GUARANTEED FOR A PERIOD OF ONE (1) YEAR ATEER DATE OF
ACCEETANCE BY. ANY WORK, MATERALS OR EOUPMENT FOND TO ACCEPTANCE BY. ANY WORK, MA
THAT PEEROD SHAL E CORREC
ADOTIONAL COSA TO T-MOBLLE.

STRUCTURAL NOTES

REFER TO MOUNT MODIFCATON REPORT PREPARED BY PAUL J FORD \& COMPANY, DATED
DECEMBER 14,2018 .
CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND CONDITIONS IN THE FIELD PRIOR TO
FABRICATON AND ERECTION OF ANY MATERIAL. ANY UNUSUAL CONDITINS SHAL BE REPORTED TO THE ATTENTON OF THE ENGINEER.
DESION AND CONSTRUCTION OF STRUCTURAL STEEL SHAL CONFORM TO THE AMERICAN
INSTIUTE OF STEEL CONSTRUCTION "SPECIFICATON FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR BULDINGS", LATEST EOITION
STRUCTURAL STEEL BEAMS SHAL CONFORM TO ASTM A992 (FY=50KSI). STRUCTURAL
STEEL PLALES ANO ANLLES SHALL CONFORM TO ASTM A36.
ROUND AND SQUARE HOLLOW STRUCTURAL SECTIONS (HSS) CONFORM TO ASTM A500
"COLD-FORMED WELDED \& SEAMLESS CARBON STEEL STRUCTURAL TUBING", GRADE B.
STEEL PIPE SHALL CONFORM TO ASTM ASOO "COLD-FORMED WELDED \& SEAMLESS
CARBON STEEL STRUCTURAL TUBINGG", GRAE BE OR OR ATM ASE CARBON STEEL STRUCTURAL TUBNG", GRADE B , OR ASTM AS3 "PIPE, STEEL,
HOT-DIPPED, ZINC-COATED WELDED AND SEAMLESS", TTPE E OR S, GRADE B. CONNECTONS: WELD OR BOLT CONNECTIONS, AS INDICATED:
A. CONNECTINSS NOT DETALLED ON THE DRAWNGS SHALL CONFORM TO THE
B. STUCTURAL BOLTS SHALL CONFORM TO THE LATEST ASTM A325 "HIGH STRENGTH
BLTT FOR STRUCTURAL JONTS, NNLUUING SUITABLE NUTS AND PLANN HARDENED
WASHERS" WASHERS"

D. MINMUM $3 / 16^{\prime \prime}$ FLLET E70-XX WELD SHALL APPLY UNLESS NOTED.
E. MINIMUM $1 / 2^{\prime \prime}$ DIA. A325 bolts Shall apply unless noted.
F. MINMUM SIIE of clup angles shall be Lzx3x3/8" unless noted
c. ALL gUSSET PLATES Shall be $3 / 8^{\prime \prime}$ thick unless noted.
H. AL HOLES FOR BOLTS SHALL BE $1 / 16$ INCH LARGER THAN THE BOLT DIAMETER

 STMM A325 "HIGH STRENGTH BOLTS FOR STRUCTURAL JOINTS, INCLUDING SUITABLE NU
ND PLAIN HARDENED WASHERS", LATEST EDITON. BOLTS SHALL BE $3 / 4$ INCH DIA. UNLESS OTHERWSE NOTED.
CONTRACTOR SHALL COMPLY WTHH AWS CODE FOR PROCEDURES, APPEARANCE AND
OUALTY OF WEES AND FOR MEHOOS USED IN CORRECTNG WELING. ALL WELDERS AND WELDING PROCESSES SHALL SE QUALIFIED IN ACCORDANCE WTH AWS "STANDARD
QUALFICATION PROCEORSS". QUALIFICATION PROCEDURES
ALL STEEL MATERIALS SHALL BE GALVANIZED AFTER FABRICATIN IN ACCORDANCE WTH
ATTM A123 ZINC ((OTTODP GALVANIZED) COATINGS ON IRON ANO STEEL PRODUCTS", ASTM A12
ULESS OTHERWSE NOTED.
o. DAMAGED GALVANIZED SURFACES SHALL BE REPARED BY COLD GALVANIZING IN
ACCORDANCE WTH ASTM A780.

ALL BOLTS, ANCHORS AND MISCLLANEOUS HARDWARE SHALL BE GALVANIIED ACCORDANCE WTH ASTM A153 "ZINC-CO
HAROWARE", UNLESS OTHERMSE NOTED.
AL ALELEL SUPPORTS SHALL BE INSTALLED wTH DOUBLE NUTS AND SHALL BE INSTALLED
3. SLEEVE ANCHORS SHALL CONFFRM TO FEDERAL SPECIFICATION FF-S-325, GROUP IUL TYPE NSTALLATON SHALL BE IN ACCORDANCE WTH THE MANUFACTURER'S RRCOMMENDATIONS
 ACCORDANCE MTH TH
BE FOUR (4) INCHES.

STRUCTURAL NOTES CONT'D

A. DRLL THE HOLE USING MANUFACTURER RECOMMENDED DRILL BIT UP TO
SPECFFED DEPTH. HAMMERNG IS NOT PERMTTED.

c. INsert specified screen tube into the hole.
d. FILL THE SCREEN TUBE COMPLETELY WTH ADHESIVE, BEGINNING AT THE BOTTOM
E. INSERT ANCHR ROD or iNtervaly threade insert into the
F. LOAD FAATENER ONLY AFTER MANUFACTURER SPECIFIED CURE TIME HAS
16. GRATING SHALL BE GALVANIZED WELDED STEEL BAR GRATNG TYPE W/BA WTH $1-1 / 4^{" \prime}$
BEARING BARS AT $1-3 / 16^{\circ}$ OC. FASTEN To SUPPORTNG MEMERS WTH SADLLETYPE

7. HAMMER DRILIS ARE NOT TO BE USED WHEN DRILLING HOLES FOR SLEEVE OR
18. ALL HOLES To be Added in the field shall be punched or drlled. no hole
burning shall be alloweo.
19. SUBMIT DRAWNGS OF ALL STRUCTURAL AND MISCELANEOUS STEEL TO THE ENGINEER
20. INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MSFITTNG OR NONCONFORMING

21. ALL WORK SHALL BE INSPECTED BY THE ENGINEER DURING AND AT THE COMPLETION OF

SITE NOTES

all site work shall be as indicated on the dramine
2. RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED
FROM THE SIIE AND DISPOSED OF LEGALLY.
 CONTRACTOR SHAL MINMIIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION
EROSION CONTROL MEASURES, IF RERUIRED DURING CONSTRUCTON, SHALL BE IN ROSTON CONROL MEASURES IF REQUIRED DURING CONSTRUCTION, SHALL BE IN
5. CARE SHAL BE TAEEN TO RETAN NATURAL GROWTH AND PREVENT DAMAGE TO TREES

6. ALL AREAS IISTURBED BY THE CO
RESTORED BY THE CONTRACTOR.

Tectonici

 HORK ORDER NUMBER DRAWN BY

 SITE ID \#: 823531 CT896/M\&:M CONCRETE POLE T-MOBLIE SIE INFORMATION CTB96/M\&M CONCREIE POLE 41 PADANARAM RD CITY OF DANBURY FTARFIELD
CT 06811

NOTES

NOTE:
THE ABOVE DIAGRAM IS GENERIC AND ANY ELECTRICAL
WORK SHALL BE COMPLETER BY A LICENSEE
WORK SHAL BE COMPLEETED BY A LCENSED
ELECTRICIAN IN ACCORDANCE WTH NEC STANDARDS.
($\mathrm{E}-1$)) scale: wis

SITE NOTES

2. CONTRACTOR SHAL PROVIE ALL LABOR, MATERIALS, INSURANCE,
 THROUCHOUT AND AS INDICATEE
AND/OR AS OTHERWIS REQUIRED.
3. ALL MATERIALS AND EQUPMMENT SHALL BE NEW AND IN PERFECT
CONDITON WHEN INSTALLED AND SHALL BE OF THE BEST GRADE AN

4. CONTRACTOR TO COORDINATE With site ouner for connection or
TEMPORARY AND PERMANENT POWER TO THE SITE, THE TEMPORAR POWER AND ALL HOOKUP COSTS TO BE PAI BY CONTRACTOR.
 HAVE AN INIERRU
CIIRUUT CuNRNT
OF 10,000 A.I.C.
6. ALL ELECTRICAL EQUPMENT SHALL BE LABELED WTH PERMANENT
7. MEIER SOCKETS AMPERES, VOLTAGE AND NUMBER OF PHASES SHALL BE NOTED AND SHALL EE MANUFACTURED BY SQUARE "D" COMPANY,
SANGMO OR APROVE EOUUL METER SOCKIT SHALL BE APPROVED
8. WRE AND CABLE CONDUCTORS SHALL BE COPPER 112 AWG MIMMUM
9. ALL CONOUCTORS SHALL BE COPPER.
10. USE T-TAP CONNECTIONS ON AL MULT-CCRCUITS WTH COMMON
NEUTRAL CONOUCTOR FOR LIGHTING FIXTURES.

- EACH CONDCTOR OF EVERY SYSTEM SHALL BE PERMANENTY TAGGED
 (о.S.'..A.)

12. Conduit
A. RIIID Condut shall be u.l. Label galvanizd Zinc coated wit
ZINC INTERIOR AND SHALL BE USED WHEN NSTALLED IN OR UNDER

 EXIERROR RUN.
NOT BE USED.
c. ELECTRICAL METALLC TUBING (EMT) SHALL HAVE U.L. LABEL, FITINGGS
SHALL BE NO SET SCREW OR CRIMP TYPE FITINGS SHALL BE USED.
 INTERIOR RUNS.
D. FIEEXILLE METALLIC Condut Shall have ULL. LISTED LABEL AND MAY
BE USED WHERE PERMTTED BY CODE. FITTNGS SHALL BE "JAKE" OR "SQUEEZ"" TYPE, SEAL TIGHT FLEXIBLE CONDUIT. ALL CONDUIT IN EXCESS OF SIX FEET IN LENGTH SHALL HAVE FULL SIZE OROUND WRE
e. conduit shall be sized per the nec and as shown
F. CONDUTT RUNS MAY BE SURFACE MOUNTED IN CELINGS OR WALLS PARELLEL OR AT RIGHT ANGLES TO CELING, FLLOOR OR BEAMS. PIM
VERIFY EXACT ROUTNG OF ALL EXPOSED CONDUT WITH OWNER PRIOR VERIF YXACT
TO INSTALLING.
G. ALL CONDUIT ONLY (C.O.) RUNS SHALL HAVE A PULL WRRE OR ROPE.
13. Coverplates shall be brushed stanless steel for all swiches, RECETACLES, TELEPHONE AND BLANANED OUTLETS, AND SHALL HAVE ENGRAVED LETTERING WHERE INIIATED WEATHER
SHALL HAVE SIERRA \#WPD-8 LIFT COVERPLATES.
14. REFER TO MANUFACTURERS MANUAL FOR RECOMMENDED FUSE AND
15. ALL Find connectovs to The eauimen Are To be of flexile
16. THE ENTRE ELECCRRICLL INSTALLATION SHALL BE GROUNDED AS
17. GRRUNDING CONDUCTORS SHALL BE SOLD TINED COPPER AND
ANNEALED \#2, UNLESS OTHERWSE NOTED.
18. UPON COMPLETION OF WORK, CONDUCT CONTINUTY, SHORT CIRCUIT, TEST REPORTS TO THE CONSTRUCTION MANAGER. CLEAN PREMISES ALL DERRIS RESULITNG FROM WORK AND LEAVE WORK IN A COMPL
AND UNDAMAGED CONOITON.
19. PRRVID CONSTRUCTION MANAGER WTH ONE SET OF COMPLETE ELECTRICAL "AS INSTALLED" DRAWNGS AT THE COMPLETION OF
JOB, SHOWING ACTUAL DMENSIONS, ROUTINGS, AND CIRCUITS.
20. CONTRACTOR SHALL BE RESPONSBLEE FOR COORDINATNG WTH GANING APPROVALS AND PAYNG A
FOR ELECTICALC SERVCE.
21. . Mobile
normastric
, mumw
Tectonic ${ }^{-1}$
 HORK OROER NUMEER DRAMN Br

 SITE ID \#: 823531 APP ID \#: 446044 TEMODLE STE ENFRORMATIN
SITE ID \#: CT11896A CT896/M\&M CONCRETE POLE 41 PADANARAM RD CITY OF DANBURY FAIRFIELD
CT 06811

ONE-LINE POWER DIAGRAM \& NOTES

Exhibit B

PAUL J. FORD
\& C©MPANY

Date: October 09, 2018
Denice Nicholson
Crown Castle
3 Corporate Park Drive Suite 101
Clifton Park, NY 12065

Paul J. Ford and Company 250 East Broad St., Suite 600 Columbus, OH 43215 (614) 221-6679

Structural Analysis Report

T-Mobile Co-Locate
Carrier Site Number: CT11896A

Carrier Site Name:

Crown Castle BU Number:
Crown Castle Site Name: Crown Castle JDE Job Number: Crown Castle Work Order Number: Crown Castle Order Number:

CT896/M\&M Concrete Pole

823531
CT896/M\&M Concrete Pole
512464
1634580
446044 Rev. 2
Paul J. Ford and Company Project Number: 37518-2331.010.7805
41 Padanaram Rd, Danbury, Fairfield County, CT
Latitude $41^{\circ} 25^{\prime} 8.1^{\prime \prime}$, Longitude -73${ }^{\circ} 27^{\prime} 43^{\prime \prime}$
80 Foot - Monopole Tower

Dear Denice Nicholson,
Paul J. Ford and Company is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration
Sufficient Capacity
This analysis has been performed in accordance with the 2016 Connecticut State Building Code, the ANSI/TIA-222-G-2-2009 Standard, the ASCE/SE1 7-10, and the 2012 National Design Specification for Wood Construction based upon an ultimate 3 -second gust wind speed of 120 mph converted to a nominal 3 -second gust wind of 93 without ice. Applicable Standards referenced and design criteria are listed in Section 2 - Analysis Criteria.

Respectfully submitted by:

Date: October 09, 2018

Denice Nicholson
Crown Castle
3 Corporate Park Drive Suite 101
Clifton Park, NY 12065
Subject:
Carrier Designation:

Structural Analysis Report

T-Mobile Co-Locate
Carrier Site Number:
Carrier Site Name:
Crown Castle BU Number:
Crown Castle Site Name:
Crown Castle JDE Job Number:
Crown Castle Work Order Number:
Crown Castle Order Number:
Paul J. Ford and Company Project Number: 37518-2331.010.7805
41 Padanaram Rd, Danbury, Fairfield County, CT
Latitude $41^{\circ} 25^{\prime} 8.1^{\prime \prime}$, Longitude $-73^{\circ} 27^{\prime} 43^{\prime \prime}$
80 Foot - Monopole Tower

Dear Denice Nicholson,
Paul J. Ford and Company is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration
Sufficient Capacity
This analysis has been performed in accordance with the 2016 Connecticut State Building Code, the ANSI/TIA-222-G-2-2009 Standard, the ASCE/SEI 7-10, and the 2012 National Design Specification for Wood Construction based upon an ultimate 3-second gust wind speed of 120 mph converted to a nominal 3-second gust wind of 93 without ice. Applicable Standards referenced and design criteria are listed in Section 2 - Analysis Criteria.

Respectfully submitted by:

Robert C. Kozak Jr., E.I.
Structural Designer
rkozak@pauljford.com

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided
3.1) Analysis Method
3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity
4.1) Recommendations
5) APPENDIX A

Base Level Drawing

6) APPENDIX B

Additional Calculations

1) INTRODUCTION

This tower is a 80 ft Monopole tower designed by LAMINATED WOOD SYSTEMS, INC.

2) ANALYSIS CRITERIA

TIA-222 Revision:
Risk Category:
Wind Speed:
Exposure Category:
Topographic Factor: Ice Thickness:
Wind Speed with Ice:
Service Wind Speed:

TIA-222-G
II
120 mph
B
1
0.75 in

50 mph
60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	$\begin{array}{\|c} \text { Number } \\ \text { of } \\ \text { Antennas } \end{array}$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
78.0	80.0	3	ericsson	AIR 32 B2A/B66AA w/ Mount Pipe	$\begin{aligned} & 7 \\ & 2 \end{aligned}$	$\begin{aligned} & 1-5 / 8 \\ & 1-1 / 2 \end{aligned}$
		3	ericsson	ERICSSON AIR 21 B4A B12P-B8P 4FT w/ Mount Pipe		
		3	ericsson	KRY 112 144/1		
	78.0	1	tower mounts	Mount Modification		
		1	tower mounts	Side Arm Mount [SO 702-3]		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
70.0	70.0	3	alcatel lucent	1900MHZ RRH	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & 1-5 / 8 \\ & 1-1 / 4 \end{aligned}$
		3	alcatel lucent	800MHZ RRH		
		3	alcatel lucent	RRH2X50-800		
		3	commscope	NNVV-65B-R4 w/ Mount Pipe		
		3	nokia	AAHC w/ Mount Pipe		
		1	tower mounts	Sector Mount [SM 502-3]		

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
4-GEOTECHNICAL REPORTS	FDH, 15BKTB1600, 6/9/2015	3529191	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	Laminated Wood Systems, TMOB-0018.06A1, 9/20/2005	3914350	CCISITES
4-TOWER MANUFACTURER DRAWINGS	Laminated Wood Systems, TMOB-0018.06A1, 9/20/2005	3529192	CCISITES

3.1) Analysis Method

The wooden monopole was analyzed in Microsoft Excel based on the codes and standards referenced on the cover page of this report.

3.2) Assumptions

1) Tower and structures were built in accordance with the manufacturer's specifications.
2) The tower and structures have been maintained in accordance with the manufacturer's specification.
3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
4) The proposed feed line configuration is assumed to match the configuration shown in Appendix B.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Description	$\%$ Capacity	Pass / Fail
L1	$80-0$	Wooden Laminated Pole	83.2	Pass
			Pole (L1)	83.2
			Rating $=$	83.2

Table 5 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	\% Capacity	Pass / Fail
1	Base Foundation	0	87.8	Pass
1	Base Foundation Soil Interaction	0	82.2	Pass

Structure Rating (max from all components) $=$	87.8%

Notes:

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the \% capacity consumed.

4.1) Recommendations

The monopole and its foundation have sufficient capacity to carry the proposed loading configuration. No modifications are required at this time.

APPENDIX A

BASE LEVEL DRAWING

APPENDIX B

ADDITIONAL CALCULATIONS

Job \#:	37518-2331.010.7805
Client \#:	BU 823531
Engineer:	RCK
Date	$10 / 9 / 2018$

Version vo. Effective 1/18/2017 CODE: 2012 NDS (LRFD)

SQUARE WOOD POLE ANALYSIS

ASCE 7-10 --- 2012 NDS (LRFD)

SITE INPUTS

Basic Wind Speed
Exposure Category
Importance Category Importance Factor

Kzt =
Kd =
G =

93
Brh
II
1
1
0.9
1.1

MAXIMUM CAPACITIES
Pole Shaft

105%
105%

INSTALLED SHAFT REINFORCING

Plate Thickness	
Plate Width	
Btm Effective El.	
Top Effective El.	
Bolt Spacing	
Grade	
Modulus of Elasticity	
Design Stress	
Edge Distance	

POLE INFORMATION

Species
$F_{b x}$
$F_{b y}$
F_{c}
F_{v}
E
$\mathrm{E}_{\text {min_Trans }}$
$\mathrm{E}_{\text {min_Long }}$
Density

Southern Pine		
2400		psi
1750	1750	psi
1600		psi
260		psi
1600000		psi
90000		psi
850000		psi
34.32		pcf

*Raceway is assumed to be centered
based on the Top Dimensions
Straight Thru FDN?
Beveled Edge Dim. Beveled Height Dim.

Yes	
0.000	in

TABLE 1 - DISCRETE LOADS

	Database	Description	Classification	Qty.	Height	$\begin{array}{\|c\|} \hline \text { CaAa (F) } \\ \text { No Ice (} \mathrm{ft}^{2} \text {) } \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \text { CaAa (S) } \\ \text { No Ice (} \mathrm{ft}^{2} \text {) } \\ \hline \end{array}$	Weight No Ice (k)
1	ericsson	AIR 32 B2A/B66AA w/ Mount Pipe	Proposed	1	80.0	6.75	6.07	0.15
2	ericsson	AIR 32 B2A/B66AA w/ Mount Pipe	Proposed	1	80.0	6.75	6.07	0.15
3	ericsson	AIR 32 B2A/B66AA w/ Mount Pipe	Proposed	1	80.0	6.75	6.07	0.15
4	ericsson	KRY 112 144/1	Proposed	1	80.0	0.35	0.18	0.01
5	ericsson	KRY 112 144/1	Proposed	1	80.0	0.35	0.18	0.01
6	ericsson	KRY 112 144/1	Proposed	1	80.0	0.35	0.18	0.01
7	ericsson	ERICSSON AIR 21 B4A B12--B8P 4FT w/ Mount Pipe	Proposed	1	80.0	7.86	6.88	0.16
8	ericsson	ERICSSON AIR 21 B4A B12--B8P 4fT w/ Mount Pipe	Proposed	1	80.0	7.86	6.88	0.16
9	ericsson	ERICSSON AR 21 B4A B12P-B8P 4 4T w/ Muont Pipe	Proposed	1	80.0	7.86	6.88	0.16
10	tower mounts (cci)	Side Arm Mount [SO 702-3]	Proposed	1	78.0	3.22	3.22	0.08
11		Mount Modification	Proposed	1	78.0	11.84	11.84	0.28
12		***						
13	alcatel lucent	1900MHZ RRH	Existing-C	2	70.0	2.49	3.26	0.04
14	alcatel lucent	1900MHZ RRH	Existing-C	1	70.0	2.49	3.26	0.04
15	alcatel lucent	800MHZ RRH	Existing-C	2	70.0	2.13	1.77	0.05
16	alcatel lucent	800MHZ RRH	Existing-C	1	70.0	2.13	1.77	0.05
17	commscope	NNVV-65B-R4 w/ Mount Pipe	Existing-C	1	70.0	12.51	7.41	0.10
18	commscope	NNVV-65B-R4 w/ Mount Pipe	Existing-C	1	70.0	12.51	7.41	0.10
19	commscope	NNVV-65B-R4 w/ Mount Pipe	Existing-C	1	70.0	12.51	7.41	0.10
20	nokia	AAHC w/ Mount Pipe	Existing-C	1	70.0	4.41	2.69	0.12
21	nokia	AAHC w/ Mount Pipe	Existing-C	1	70.0	4.41	2.69	0.12
22	nokia	AAHC w/ Mount Pipe	Existing-C	1	70.0	4.41	2.69	0.12
23	alcatel lucent	RRH2X50-800	Existing-C	1	70.0	1.70	1.28	0.05
24	alcatel lucent	RRH2X50-800	Existing-C	2	70.0	1.70	1.28	0.05
25	tower mounts (cci)	Sector Mount [SM 502-3]	Existing-C	1	70.0	33.02	33.02	1.67
26	tower mounts (cci)	$5^{\prime} \times 2$ 2' Pipe Mount	<unassigned>	2	70.0	1.00	1.00	0.03
27	tower mounts (cci)	5' $\times 2$ ' Pipe Mount	<unassigned>	2	70.0	1.00	1.00	0.03
28	tower mounts (cci)	5' $\times 2$ ' Pipe Mount	<unassigned>	2	70.0	1.00	1.00	0.03

TABLE 2 - FEED LINES
$\left.\begin{array}{|l|l|l|c|c|c|c|c|}\hline & & & & & & & \\ \text { Starting } \\ \text { Height }\end{array}\right)$

TABLE 3 - DISHES

Database	Description				Dish	CaAa Classification	Weight No Ice Ice

TABLE 4 - MONOPOLE

Direction	Pole Length (ft)	Embed Depth (ft)	Cf Factor	Centroid Height (ft)	CfAe $(\mathbf{s q f t})$	GL Width	GL Depth	GL $\mathbf{S}\left(\mathbf{i n}^{3}\right)$
Transverse	93.5	13.5	2.00	40.00	350.00	26.25	27.50	3308.59
Longitudinal	93.5	13.5	2.00	34.77	263.33	27.50	26.25	3158.20

TABLE 5 - LOADING SUMMARY (1.2D + 1.6W)

	Pole	Discrete Loads	Feedlines	Dishes	Pロ	Total
Trans. Moment (k-ft)	233.42	213.64	9.97	0.00	5%	767.81
Trans. Shear (kip)	5.84	2.90	0.26	0.00		14.38
Long. Moment (k-ft)	146.65	213.64	24.05	0.00	5%	645.70
Long. Shear (kip)	4.22	2.90	0.64	0.00		12.41
Axial (kip)	11.55	4.25	1.06	0.00		20.24

[^0]
ADJUSTED DESIGN STRESSES

	Flexure	
Trans.		Long.
C_{d}	1	1
	C_{m}	0.800
C_{t}	1	0.800
$\left(\mathrm{C}_{\mathrm{v}}, \mathrm{C}_{\mathrm{L}}\right)$	0.821	1
$\mathrm{C}_{\text {fu }}$	1	1
C_{c}	1	1
C_{i}	1	1
$\mathrm{~K}_{\mathrm{f}}$	2.540	2.540
Φ_{b}	0.850	0.850
	1	1

	Shear	Compression	
C_{d}	1	C_{d}	1
C_{m}	0.875	C_{m}	0.730
C_{t}	1	C_{t}	1
C_{vr}	0.720	C_{p}	0.051
K_{f}	2.540	K_{f}	2.540
Φ_{v}	0.750	Φ_{c}	0.900
λ	1	λ	1

Adjusted Design Stresses
$\mathrm{F}_{\mathrm{b} \text { _trans. }}^{\prime}=3401.3 \mathrm{psi}$
$F_{\text {b_long. }}^{\prime}=3022.6 \mathrm{psi}$
F'v $=312.0$ psi
$F^{\prime} \mathrm{c}=136.7 \mathrm{psi}$

RESULTS SUMMARY

		Applied Stress (ksi)	Design Stress (ksi)	Capacity
Longitudinal Direction	Bending	2.64	3.02	87.2%
	Shear	0.02	0.31	6.4%
Transverse Direction	Bending	2.99	3.40	87.8%
	Shear	0.02	0.31	5.5%
Compression			0.03	0.14

Wood (-4.3 ft)
Wood (-4.28 ft)

Job \#:	37518-2331.010.7805
Client \#:	BU 823531
Engeer:	RCK
Date:	$10 / 9 / 2018$

Version

LONGITUDINAL DIRECTION CHECKS

Increments$\mathrm{E}_{\text {steel }} / \mathrm{E}_{\text {wood }}$	0.500 ft0.000		Width Slope Depth Slope	$0.194 \mathrm{in} / \mathrm{ft}$		Shaft Reinforcing Plates:	0	X	0	
			$0.000 \mathrm{in} / \mathrm{ft}$	Effective Elevations:	0	to	0			
							Applied Transverse Moment = Moment per $0.5 \mathrm{ft}=$		645.70 kip*ft 4.04 kip*ft	
		\%		fa (ksi)	Fa (ksi)					
Steel		0.0\%	\#N/A	\#N/A	\#N/A	Design Ste			ksi	
Wood		87.2\%	-4.3 ft	2.64	3.02	Design Wood			ksi	

Elevation	S.R. Plate Sizes			Applied Moment (k-in)	Applied Wood Stress f_{b} (ksi)	AllowableWoodStress$F_{b}^{\prime}(k s i)$	Applied Steel Stress f_{b} (ksi)	Allowable Steel Stress F_{b} (ksi)	Wood Capacity	Steel Capacity
	Width (in)	Thk (in)	Area (in ${ }^{2}$)							
80.00				0.00	0.00	3.02			0.0\%	
79.50				48.43	0.03	3.02			1.2\%	
79.00				96.86	0.07	3.02			2.3\%	
78.50				145.28	0.10	3.02			3.4\%	
78.00				193.71	0.14	3.02			4.5\%	
77.50				242.14	0.17	3.02			5.6\%	
77.00				290.57	0.20	3.02			6.7\%	
76.50				338.99	0.23	3.02			7.7\%	
76.00				387.42	0.26	3.02			8.7\%	
75.50				435.85	0.29	3.02			9.8\%	
75.00				484.28	0.33	3.02			10.8\%	
74.50				532.70	0.36	3.02			11.7\%	
74.00				581.13	0.38	3.02			12.7\%	
73.50				629.56	0.41	3.02			13.7\%	
73.00				677.99	0.44	3.02			14.6\%	
72.50				726.41	0.47	3.02			15.6\%	
72.00				774.84	0.50	3.02			16.5\%	
71.50				823.27	0.53	3.02			17.4\%	
71.00				871.70	0.55	3.02			18.3\%	
70.50				920.12	0.58	3.02			19.2\%	
70.00				968.55	0.61	3.02			20.0\%	
69.50				1016.98	0.63	3.02			20.9\%	
69.00				1065.41	0.66	3.02			21.7\%	
68.50				1113.83	0.68	3.02			22.6\%	
68.00				1162.26	0.71	3.02			23.4\%	
67.50				1210.69	0.73	3.02			24.2\%	
67.00				1259.12	0.76	3.02			25.0\%	
66.50				1307.54	0.78	3.02			25.8\%	
66.00				1355.97	0.80	3.02			26.6\%	
65.50				1404.40	0.83	3.02			27.3\%	
65.00				1452.83	0.85	3.02			28.1\%	
64.50				1501.25	0.87	3.02			28.8\%	
64.00				1549.68	0.89	3.02			29.6\%	
63.50				1598.11	0.92	3.02			30.3\%	
63.00				1646.54	0.94	3.02			31.0\%	

Job \#:
Client \#: Engineer:

Date:

$37518-2331.010 .7805$
BU 823531
RCK
$10 / 9 / 2018$

LONGITUDINAL DIRECTION CHECKS

Elevation	S.R. Plate Sizes			Applied Moment (k-in)	Applied Wood Stress f_{b} (ksi)	Allowable Wood Stress $F_{b}{ }_{b}$ (ksi)	Applied Steel Stress f_{b} (ksi)	Allowable Steel Stress F_{b} (ksi)	Wood Capacity	Steel Capacity
	Width (in)	Thk (in)	Area (in ${ }^{2}$)							
62.50				1694.96	0.96	3.02			31.7\%	
62.00				1743.39	0.98	3.02			32.4\%	
61.50				1791.82	1.00	3.02			33.1\%	
61.00				1840.25	1.02	3.02			33.8\%	
60.50				1888.67	1.04	3.02			34.5\%	
60.00				1937.10	1.06	3.02			35.2\%	
59.50				1985.53	1.08	3.02			35.8\%	
59.00				2033.96	1.10	3.02			36.5\%	
58.50				2082.38	1.12	3.02			37.1\%	
58.00				2130.81	1.14	3.02			37.7\%	
57.50				2179.24	1.16	3.02			38.4\%	
57.00				2227.67	1.18	3.02			39.0\%	
56.50				2276.09	1.20	3.02			39.6\%	
56.00				2324.52	1.22	3.02			40.2\%	
55.50				2372.95	1.23	3.02			40.8\%	
55.00				2421.38	1.25	3.02			41.4\%	
54.50				2469.80	1.27	3.02			42.0\%	
54.00				2518.23	1.29	3.02			42.6\%	
53.50				2566.66	1.30	3.02			43.2\%	
53.00				2615.09	1.32	3.02			43.7\%	
52.50				2663.51	1.34	3.02			44.3\%	
52.00				2711.94	1.36	3.02			44.8\%	
51.50				2760.37	1.37	3.02			45.4\%	
51.00				2808.80	1.39	3.02			45.9\%	
50.50				2857.22	1.40	3.02			46.5\%	
50.00				2905.65	1.42	3.02			47.0\%	
49.50				2954.08	1.44	3.02			47.5\%	
49.00				3002.51	1.45	3.02			48.0\%	
48.50				3050.93	1.47	3.02			48.6\%	
48.00				3099.36	1.48	3.02			49.1\%	
47.50				3147.79	1.50	3.02			49.6\%	
47.00				3196.22	1.51	3.02			50.1\%	
46.50				3244.64	1.53	3.02			50.6\%	
46.00				3293.07	1.54	3.02			51.0\%	
45.50				3341.50	1.56	3.02			51.5\%	

Job \#:	$37518-2331.010 .7805$
Client \#:	BU 823531
Engineer:	RCK
Date:	$10 / 9 / 2018$

250 E Broad St, Ste 600 • Columbus, OH 43215 Phone 614.221.6679 www.pauljford.com

LONGITUDINAL DIRECTION CHECKS

Increments $E_{\text {steel }} / E_{\text {wood }}$	0.500 ft0.000		Width Slope	$0.194 \mathrm{in} / \mathrm{ft}$		Shaft Reinforcing Plates:	0	X	0
		0.000		Depth Slope $0.000 \mathrm{in} / \mathrm{ft}$		Effective Elevations:	0	to	0
						Applied Transverse Moment = Moment per $0.5 \mathrm{ft}=$		645.70 kip*ft $4.04 \mathrm{kip}^{* f t}$	
		\%		fa (ksi)	Fa (ksi)				
Steel		0.0\%	\#N/A	\#N/A	\#N/A	Design Ste			ksi
Wood		87.2\%	-4.3 ft	2.64	3.02	Design Wood			ksi

Elevation	S.R. Plate Sizes			Applied Moment(k-in)	Applied Wood Stress f_{b} (ksi)	Allowable Wood Stress F^{\prime} (ksi)	Applied Steel Stress $f_{b}(k s i)$	AllowableSteelStress$F_{b}(k s i)$	Wood Capacity	Steel Capacity
	Width (in)	Thk (in)	Area (in ${ }^{2}$)							
45.00				3389.93	1.57	3.02			52.0\%	
44.50				3438.35	1.59	3.02			52.5\%	
44.00				3486.78	1.60	3.02			52.9\%	
43.50				3535.21	1.61	3.02			53.4\%	
43.00				3583.64	1.63	3.02			53.9\%	
42.50				3632.07	1.64	3.02			54.3\%	
42.00				3680.49	1.66	3.02			54.8\%	
41.50				3728.92	1.67	3.02			55.2\%	
41.00				3777.35	1.68	3.02			55.6\%	
40.50				3825.78	1.70	3.02			56.1\%	
40.00				3874.20	1.71	3.02			56.5\%	
39.50				3922.63	1.72	3.02			56.9\%	
39.00				3971.06	1.73	3.02			57.4\%	
38.50				4019.49	1.75	3.02			57.8\%	
38.00				4067.91	1.76	3.02			58.2\%	
37.50				4116.34	1.77	3.02			58.6\%	
37.00				4164.77	1.78	3.02			59.0\%	
36.50				4213.20	1.80	3.02			59.4\%	
36.00				4261.62	1.81	3.02			59.8\%	
35.50				4310.05	1.82	3.02			60.2\%	
35.00				4358.48	1.83	3.02			60.6\%	
34.50				4406.91	1.84	3.02			61.0\%	
34.00				4455.33	1.86	3.02			61.4\%	
33.50				4503.76	1.87	3.02			61.8\%	
33.00				4552.19	1.88	3.02			62.1\%	
32.50				4600.62	1.89	3.02			62.5\%	
32.00				4649.04	1.90	3.02			62.9\%	
31.50				4697.47	1.91	3.02			63.2\%	
31.00				4745.90	1.92	3.02			63.6\%	
30.50				4794.33	1.93	3.02			64.0\%	
30.00				4842.75	1.94	3.02			64.3\%	
29.50				4891.18	1.96	3.02			64.7\%	
29.00				4939.61	1.97	3.02			65.0\%	
28.50				4988.04	1.98	3.02			65.4\%	
28.00				5036.46	1.99	3.02			65.7\%	

Client \#: Engineer: Date:

$37518-2331.010 .7805$
BU 823531
RCK
$10 / 9 / 2018$

LONGITUDINAL DIRECTION CHECKS

Elevation	S.R. Plate Sizes			Applied Moment (k-in)	Applied Wood Stress f_{b} (ksi)	Allowable Wood Stress $F^{\prime}{ }_{b}$ (ksi)	Applied Steel Stress f_{b} (ksi)	AllowableSteelStressF_{b} (ksi)	Wood Capacity	Steel Capacity
	Width (in)	Thk (in)	Area (in ${ }^{2}$)							
27.50				5084.89	2.00	3.02			66.1\%	
27.00				5133.32	2.01	3.02			66.4\%	
26.50				5181.75	2.02	3.02			66.7\%	
26.00				5230.17	2.03	3.02			67.1\%	
25.50				5278.60	2.04	3.02			67.4\%	
25.00				5327.03	2.05	3.02			67.7\%	
24.50				5375.46	2.06	3.02			68.1\%	
24.00				5423.88	2.07	3.02			68.4\%	
23.50				5472.31	2.08	3.02			68.7\%	
23.00				5520.74	2.09	3.02			69.0\%	
22.50				5569.17	2.10	3.02			69.3\%	
22.00				5617.59	2.11	3.02			69.6\%	
21.50				5666.02	2.11	3.02			70.0\%	
21.00				5714.45	2.12	3.02			70.3\%	
20.50				5762.88	2.13	3.02			70.6\%	
20.00				5811.30	2.14	3.02			70.9\%	
19.50				5859.73	2.15	3.02			71.2\%	
19.00				5908.16	2.16	3.02			71.5\%	
18.50				5956.59	2.17	3.02			71.8\%	
18.00				6005.01	2.18	3.02			72.0\%	
17.50				6053.44	2.19	3.02			72.3\%	
17.00				6101.87	2.19	3.02			72.6\%	
16.50				6150.30	2.20	3.02			72.9\%	
16.00				6198.72	2.21	3.02			73.2\%	
15.50				6247.15	2.22	3.02			73.5\%	
15.00				6295.58	2.23	3.02			73.7\%	
14.50				6344.01	2.24	3.02			74.0\%	
14.00				6392.43	2.25	3.02			74.3\%	
13.50				6440.86	2.25	3.02			74.6\%	
13.00				6489.29	2.26	3.02			74.8\%	
12.50				6537.72	2.27	3.02			75.1\%	
12.00				6586.14	2.28	3.02			75.4\%	
11.50				6634.57	2.29	3.02			75.6\%	
11.00				6683.00	2.29	3.02			75.9\%	
10.50				6731.43	2.30	3.02			76.1\%	

LONGITUDINAL DIRECTION CHECKS

Increments $E_{\text {steel }} / E_{\text {wood }}$	$0.500 \mathrm{ft}$		Width Slope	$0.194 \mathrm{in} / \mathrm{ft}$		Shaft Reinforcing Plates: Effective Elevations:	$\begin{gathered} \mathrm{x} \\ \text { to } \end{gathered}$	0
						Applied Transverse Moment $=$		kip*ft
		\%		$\mathrm{fa}(\mathrm{ksi})$	$\mathrm{Fa}(\mathrm{ksi})$	Moment per $0.5 \mathrm{ft}=$		kip*ft
Steel		0.0\%	\#N/A	\#N/A	\#N/A	Design Steel Stress =		
Wood		87.2\%	-4.3 ft	2.64	3.02	Design Wood Stress =		ksi

Elevation	S.R. Plate Sizes			Applied Moment (k-in)	Applied Wood Stress f_{b} (ksi)	Allowable Wood Stress $F^{\prime}{ }_{b}$ (ksi)	Applied Steel Stress f_{b} (ksi)	Allowable Steel Stress $F_{b}(k s i)$	Wood Capacity	Steel Capacity
	Width (in)	Thk (in)	Area (in ${ }^{2}$)							
10.00				6779.85	2.31	3.02			76.4\%	
9.50				6828.28	2.32	3.02			76.7\%	
9.00				6876.71	2.32	3.02			76.9\%	
8.50				6925.14	2.33	3.02			77.2\%	
8.00				6973.57	2.34	3.02			77.4\%	
7.50				7021.99	2.35	3.02			77.7\%	
7.00				7070.42	2.35	3.02			77.9\%	
6.50				7118.85	2.36	3.02			78.2\%	
6.00				7167.28	2.37	3.02			78.4\%	
5.50				7215.70	2.38	3.02			78.6\%	
5.00				7264.13	2.38	3.02			78.9\%	
4.50				7312.56	2.39	3.02			79.1\%	
4.00				7360.99	2.40	3.02			79.3\%	
3.50				7409.41	2.41	3.02			79.6\%	
3.00				7457.84	2.41	3.02			79.8\%	
2.50				7506.27	2.42	3.02			80.0\%	
2.00				7554.70	2.43	3.02			80.3\%	
1.50				7603.12	2.43	3.02			80.5\%	
1.00				7651.55	2.44	3.02			80.7\%	
0.50				7699.98	2.45	3.02			80.9\%	
0.00				7748.41	2.45	3.02			81.2\%	
-0.50				0.00	0.00	3.02				
-1.00				0.00	0.00	3.02				
-1.50				0.00	0.00	3.02				
-2.00				0.00	0.00	3.02				
-2.50				0.00	0.00	3.02				
-3.00				0.00	0.00	3.02				
-3.50				0.00	0.00	3.02				
-4.00				0.00	0.00	3.02				
-4.30				8322.00	2.64	3.02			87.2\%	

PAUL J. FORD
\& COMPANY

DIRECT EMBED SOIL AND STEEL ANALYSIS - TIA-222-G

Factored Base Reactions from RISA

Moment, $\mathrm{Mu}=$
Shear, Vu=
Axial Load, $\mathrm{Pu}=$

Comp. (+)	Tension (-)
645.7	
12.4	
20.2	

ips (from 1.2D + 1.6W)*
$\mathrm{OTMu}=$
645.7
0.0 k - ft @ Ground

Safety Factors / Load Factors / Φ Factors
Tower Type =
Monopole DE
ACI Code =
Seismic Design Category $=$
Reference Standard =
Use 1.3 Load Factor?
Load Factor =

ACI 318-08
D
TIA-222-G
No $\quad 1.00$

Direct Embed Concrete / Gravel Parameters

Diameter =
Height Above Grade =
Depth Below Grade =
$\mathrm{fc}=$
$\varepsilon c=$
L / D Ratio =

4.5	ft
0	ft, Assumed 0 ft
13.5	ft
2	ksi
0.003	$\mathrm{in} / \mathrm{in}$
3.00	

Backfill Condition =
Conc. Exterior (Use Conc. Dia.)

Define Soil Layers

Note: Cohesion = Undrained Shear Strengh = Unconfined Compressive Strength $/ 2$

Layer	Thickness ft	Unit Weight pcf	Cohesion psf	Friction Angle degrees
1	1.8	100		27
2	2.2	125		37
3	9.5	130		40
4				
5				
6				
7				
8				
9				
10				
11				
12				

Soil Results: Overturning

Depth to COR =
Bending Moment, $\mathrm{Mu}=$
Resisting Moment, Φ Mn =
MOMENT RATIO =

10.08	ft , from Grade
770.75	k -ft, from COR
1110.34	k - ft , from COR

69.4\%

OK

Soil Results: Uplift

Uplift, Tu =
Uplift Capacity, Φ Tn =
UPLIFT RATIO =

0.00	kips
28.99	kips
0.0%	OK

Shear, $\mathrm{Vu}=$
Resisting Shear, $\Phi \vee n=$

12.41
kips
17.88
kips

SHEAR RATIO =
69.4\% OK

Soil Results: Compression*

Compression, $\mathrm{Cu}=$	20.24
Comp. Capacity, Φ Cn =	496.98

Pole Capacity Results:

Axial Load, $\mathrm{Pu}=$	32.55	kips @ 4.30 ft Below Grade
Shear, Vu =	0.00	kips @ 4.30 ft Below Grade
Moment, Mu =	693.50	k-ft @ 4.30 ft Below Grade

*Note: The drilled pier foundation was analyzed using the methodology in the software 'PLS-Caisson' (Version 8.10, or newer, by Power Line Systems, Inc.). Per the methods in PLS-Caisson, the soil reactions of cohesive soils are calculated using 8CD independent of the depth of the soil layer. The depth of soil to be ignored at the top of the drilled pier is based the recommendations of the site specific geotechnical report. In the absence of any recommendations, the frost depth at the site or one half of the drilled pier diameter (whichever is greater) shall be ignored.

Soil Parameters
Water Table Depth =
Depth to Ignore Soil =
Depth to Full Cohesion =
Full Cohesion Starts at?*

	13.50
ft	
	3.33
ft	
	0

Above Full Cohesion Lateral Resistance $=4$ (Cohesion)(Dia)(H)
Below Full Cohesion Lateral Resistance $=8($ Cohesion)(Dia)(H)

Maximum Capacity Ratios

Maximum Soil Ratio $=$	100.0%
Maximum Steel Ratio $=$	100.0%

- Ultimate

Soil Lateral Resistance $=$
Skin Friction =
End Bearing =
Concrete Wt. Resist Uplift =

Safety Factor	$\boldsymbol{\Phi}$ Factor
2.00	0.75
2.00	0.75
2.00	0.75
1.25	

Load Combinations Checked per TIA-222-G

1. (0.75) Ult. Skin Friction + (0.75) Ult. End Bearing

+ (1.2) Effective Soil Wt. - (1.2) Buoyant Conc. Wt. \geq Comp

2. (0.75) Ult. Skin Friction + (0.9) Buoyant Conc. Wt. \geq Uplift

Soil Type	End Bearing psf	Comp. Ult. Skin Friction psf	Tension Ult. Skin Friction psf	Depth ft
Sand				1.8
Sand				4
	Sand	42200		
				13.5

Job \#:	$37518-2331.010 .7805$
Client \#:	BU 823531
Engineer:	RCK
Date:	$10 / 9 / 2018$

Version
v0.8 Effective 1/18/2017
TRANSVERSE DIRECTION CHECKS

Elevation	S.R. Plate Sizes			Applied Moment (k-in)	Applied Wood Stress f_{b} (ksi)	Allowable Wood Stress $F^{\prime}{ }_{b}$ (ksi)	Applied Steel Stress f_{b} (ksi)	Allowable Steel Stress F_{b} (ksi)	Wood Capacity	Steel Capacity
	Thk (in)	Width (in)	Area $\left(\mathrm{in}^{2}\right)$							
80.00				0.00	0.00	3.40			0.0\%	
79.50				57.59	0.09	3.40			2.6\%	
79.00				115.17	0.18	3.40			5.2\%	
78.50				172.76	0.26	3.40			7.7\%	
78.00				230.34	0.34	3.40			10.1\%	
77.50				287.93	0.42	3.40			12.4\%	
77.00				345.51	0.50	3.40			14.7\%	
76.50				403.10	0.57	3.40			16.9\%	
76.00				460.68	0.65	3.40			19.0\%	
75.50				518.27	0.71	3.40			21.0\%	
75.00				575.86	0.78	3.40			23.0\%	
74.50				633.44	0.85	3.40			24.9\%	
74.00				691.03	0.91	3.40			26.8\%	
73.50				748.61	0.97	3.40			28.6\%	
73.00				806.20	1.03	3.40			30.4\%	
72.50				863.78	1.09	3.40			32.1\%	
72.00				921.37	1.15	3.40			33.7\%	
71.50				978.95	1.20	3.40			35.3\%	
71.00				1036.54	1.25	3.40			36.9\%	
70.50				1094.13	1.31	3.40			38.4\%	
70.00				1151.71	1.36	3.40			39.8\%	
69.50				1209.30	1.40	3.40			41.3\%	
69.00				1266.88	1.45	3.40			42.6\%	
68.50				1324.47	1.50	3.40			44.0\%	
68.00				1382.05	1.54	3.40			45.3\%	
67.50				1439.64	1.58	3.40			46.5\%	
67.00				1497.22	1.62	3.40			47.7\%	
66.50				1554.81	1.66	3.40			48.9\%	
66.00				1612.40	1.70	3.40			50.1\%	
65.50				1669.98	1.74	3.40			51.2\%	
65.00				1727.57	1.78	3.40			52.2\%	
64.50				1785.15	1.81	3.40			53.3\%	
64.00				1842.74	1.85	3.40			54.3\%	
63.50				1900.32	1.88	3.40			55.3\%	
63.00				1957.91	1.91	3.40			56.3\%	

Job \#:	$37518-2331.010 .7805$
Client \#:	BU 823531
Engineer:	RCK
Date:	$10 / 9 / 2018$

Version
v0.8 Effective 1/18/2017
TRANSVERSE DIRECTION CHECKS

Elevation	S.R. Plate Sizes			Applied Moment(k-in)	Applied Wood Stress f_{b} (ksi)	Allowable Wood Stress F_{b} (ksi)	Applied Steel Stress f_{b} (ksi)	Allowable Steel Stress F_{b} (ksi)	Wood Capacity	Steel Capacity
	Thk (in)	Width (in)	Area $\left(\mathrm{in}^{2}\right)$							
62.50				2015.49	1.94	3.40			57.2\%	
62.00				2073.08	1.98	3.40			58.1\%	
61.50				2130.67	2.01	3.40			59.0\%	
61.00				2188.25	2.03	3.40			59.8\%	
60.50				2245.84	2.06	3.40			60.6\%	
60.00				2303.42	2.09	3.40			61.4\%	
59.50				2361.01	2.12	3.40			62.2\%	
59.00				2418.59	2.14	3.40			62.9\%	
58.50				2476.18	2.17	3.40			63.7\%	
58.00				2533.76	2.19	3.40			64.4\%	
57.50				2591.35	2.21	3.40			65.1\%	
57.00				2648.94	2.24	3.40			65.7\%	
56.50				2706.52	2.26	3.40			66.4\%	
56.00				2764.11	2.28	3.40			67.0\%	
55.50				2821.69	2.30	3.40			67.6\%	
55.00				2879.28	2.32	3.40			68.2\%	
54.50				2936.86	2.34	3.40			68.8\%	
54.00				2994.45	2.36	3.40			69.3\%	
53.50				3052.03	2.38	3.40			69.9\%	
53.00				3109.62	2.39	3.40			70.4\%	
52.50				3167.21	2.41	3.40			70.9\%	
52.00				3224.79	2.43	3.40			71.4\%	
51.50				3282.38	2.44	3.40			71.8\%	
51.00				3339.96	2.46	3.40			72.3\%	
50.50				3397.55	2.47	3.40			72.7\%	
50.00				3455.13	2.49	3.40			73.2\%	
49.50				3512.72	2.50	3.40			73.6\%	
49.00				3570.30	2.52	3.40			74.0\%	
48.50				3627.89	2.53	3.40			74.4\%	
48.00				3685.47	2.54	3.40			74.8\%	
47.50				3743.06	2.56	3.40			75.1\%	
47.00				3800.65	2.57	3.40			75.5\%	
46.50				3858.23	2.58	3.40			75.8\%	
46.00				3915.82	2.59	3.40			76.2\%	
45.50				3973.40	2.60	3.40			76.5\%	

Job \#:	$37518-2331.010 .7805$
Client \#:	BU 823531
Engineer:	RCK
Date:	$10 / 9 / 2018$

Version
v0.8 Effective 1/18/2017
TRANSVERSE DIRECTION CHECKS

Elevation	S.R. Plate Sizes			Applied Moment(k-in)	Applied Wood Stress f_{b} (ksi)	Allowable Wood Stress F_{b} (ksi)	Applied Steel Stress f_{b} (ksi)	Allowable Steel Stress F_{b} (ksi)	Wood Capacity	Steel Capacity
	Thk (in)	Width (in)	Area $\left(\mathrm{in}^{2}\right)$							
45.00				4030.99	2.61	3.40			76.8\%	
44.50				4088.57	2.62	3.40			77.1\%	
44.00				4146.16	2.63	3.40			77.4\%	
43.50				4203.74	2.64	3.40			77.7\%	
43.00				4261.33	2.65	3.40			77.9\%	
42.50				4318.92	2.66	3.40			78.2\%	
42.00				4376.50	2.67	3.40			78.4\%	
41.50				4434.09	2.68	3.40			78.7\%	
41.00				4491.67	2.68	3.40			78.9\%	
40.50				4549.26	2.69	3.40			79.2\%	
40.00				4606.84	2.70	3.40			79.4\%	
39.50				4664.43	2.71	3.40			79.6\%	
39.00				4722.01	2.71	3.40			79.8\%	
38.50				4779.60	2.72	3.40			80.0\%	
38.00				4837.19	2.73	3.40			80.2\%	
37.50				4894.77	2.73	3.40			80.3\%	
37.00				4952.36	2.74	3.40			80.5\%	
36.50				5009.94	2.74	3.40			80.7\%	
36.00				5067.53	2.75	3.40			80.8\%	
35.50				5125.11	2.75	3.40			81.0\%	
35.00				5182.70	2.76	3.40			81.1\%	
34.50				5240.28	2.76	3.40			81.3\%	
34.00				5297.87	2.77	3.40			81.4\%	
33.50				5355.46	2.77	3.40			81.5\%	
33.00				5413.04	2.78	3.40			81.7\%	
32.50				5470.63	2.78	3.40			81.8\%	
32.00				5528.21	2.79	3.40			81.9\%	
31.50				5585.80	2.79	3.40			82.0\%	
31.00				5643.38	2.79	3.40			82.1\%	
30.50				5700.97	2.80	3.40			82.2\%	
30.00				5758.55	2.80	3.40			82.3\%	
29.50				5816.14	2.80	3.40			82.4\%	
29.00				5873.73	2.80	3.40			82.4\%	
28.50				5931.31	2.81	3.40			82.5\%	
28.00				5988.90	2.81	3.40			82.6\%	

Job \#:	$37518-2331.010 .7805$
Client \#:	BU 823531
Engineer:	RCK
Date:	$10 / 9 / 2018$

Version
v0.8 Effective 1/18/2017
TRANSVERSE DIRECTION CHECKS

Elevation	S.R. Plate Sizes			Applied Moment (k-in)	Applied Wood Stress f_{b} (ksi)	Allowable Wood Stress $F^{\prime}{ }_{b}$ (ksi)	Applied Steel Stress f_{b} (ksi)	AllowableSteelStressF_{b} (ksi)	Wood Capacity	Steel Capacity
	Thk (in)	Width (in)	Area $\left(\mathrm{in}^{2}\right)$							
27.50				6046.48	2.81	3.40			82.7\%	
27.00				6104.07	2.81	3.40			82.7\%	
26.50				6161.65	2.82	3.40			82.8\%	
26.00				6219.24	2.82	3.40			82.8\%	
25.50				6276.82	2.82	3.40			82.9\%	
25.00				6334.41	2.82	3.40			82.9\%	
24.50				6392.00	2.82	3.40			83.0\%	
24.00				6449.58	2.82	3.40			83.0\%	
23.50				6507.17	2.82	3.40			83.0\%	
23.00				6564.75	2.83	3.40			83.1\%	
22.50				6622.34	2.83	3.40			83.1\%	
22.00				6679.92	2.83	3.40			83.1\%	
21.50				6737.51	2.83	3.40			83.2\%	
21.00				6795.09	2.83	3.40			83.2\%	
20.50				6852.68	2.83	3.40			83.2\%	
20.00				6910.27	2.83	3.40			83.2\%	
19.50				6967.85	2.83	3.40			83.2\%	
19.00				7025.44	2.83	3.40			83.2\%	
18.50				7083.02	2.83	3.40			83.2\%	
18.00				7140.61	2.83	3.40			83.2\%	
17.50				7198.19	2.83	3.40			83.2\%	
17.00				7255.78	2.83	3.40			83.2\%	
16.50				7313.36	2.83	3.40			83.2\%	
16.00				7370.95	2.83	3.40			83.2\%	
15.50				7428.54	2.83	3.40			83.2\%	
15.00				7486.12	2.83	3.40			83.2\%	
14.50				7543.71	2.83	3.40			83.2\%	
14.00				7601.29	2.83	3.40			83.1\%	
13.50				7658.88	2.83	3.40			83.1\%	
13.00				7716.46	2.83	3.40			83.1\%	
12.50				7774.05	2.83	3.40			83.1\%	
12.00				7831.63	2.82	3.40			83.0\%	
11.50				7889.22	2.82	3.40			83.0\%	
11.00				7946.81	2.82	3.40			83.0\%	
10.50				8004.39	2.82	3.40			82.9\%	

Elevation	S.R. Plate Sizes			Applied Moment (k-in)	Applied Wood Stress f_{b} (ksi)	Allowable Wood Stress F_{b} (ksi)	Applied Steel Stress f_{b} (ksi)	Allowable Steel Stress F_{b} (ksi)	Wood Capacity	Steel Capacity
	Thk (in)	Width (in)	$\begin{aligned} & \text { Area } \\ & \left(\mathrm{in}^{2}\right) \\ & \hline \end{aligned}$							
10.00				8061.98	2.82	3.40			82.9\%	
9.50				8119.56	2.82	3.40			82.9\%	
9.00				8177.15	2.82	3.40			82.8\%	
8.50				8234.73	2.82	3.40			82.8\%	
8.00				8292.32	2.81	3.40			82.8\%	
7.50				8349.90	2.81	3.40			82.7\%	
7.00				8407.49	2.81	3.40			82.7\%	
6.50				8465.08	2.81	3.40			82.6\%	
6.00				8522.66	2.81	3.40			82.6\%	
5.50				8580.25	2.81	3.40			82.5\%	
5.00				8637.83	2.80	3.40			82.5\%	
4.50				8695.42	2.80	3.40			82.4\%	
4.00				8753.00	2.80	3.40			82.4\%	
3.50				8810.59	2.80	3.40			82.3\%	
3.00				8868.17	2.80	3.40			82.2\%	
2.50				8925.76	2.80	3.40			82.2\%	
2.00				8983.35	2.79	3.40			82.1\%	
1.50				9040.93	2.79	3.40			82.1\%	
1.00				9098.52	2.79	3.40			82.0\%	
0.50				9156.10	2.79	3.40			81.9\%	
0.00				9213.69	2.78	3.40			81.9\%	
-0.50				0.00	0.00	3.40				
-1.00				0.00	0.00	3.40				
-1.50				0.00	0.00	3.40				
-2.00				0.00	0.00	3.40				
-2.50				0.00	0.00	3.40				
-3.00				0.00	0.00	3.40				
-3.50				0.00	0.00	3.40				
-4.00				0.00	0.00	3.40				
-4.28				9876.72	2.99	3.40			87.8\%	

PAUL J.FORD
\& COMPANY

DIRECT EMBED SOIL AND STEEL ANALYSIS - TIA-222-G

Factored Base Reactions from RISA

Moment, $\mathrm{Mu}=$
Shear, $\mathrm{Vu}=$
Axial Load, Pu =
$\mathrm{OTMu}=$

Comp. (+)	Tension (-)
767.8	
14.4	
20.2	

767.8|
0.0 k - ft @ Ground

Direct Embed Concrete / Gravel Parameters

Diameter =
Height Above Grade =
Depth Below Grade =
$\mathrm{fc}=$
$\varepsilon c=$
L / D Ratio =

4.5	ft
0	ft, Assumed 0 ft
13.5	ft
2	ksi
0.003	$\mathrm{in} / \mathrm{in}$
3.00	

Safety Factors / Load Factors / Φ Factors

Safety Factors $/$ Load Factors $/ \boldsymbol{\phi}$ Factors	
Tower Type $=$	Monopole DE
ACI Code $=$	ACI 318-08
Seismic Design Category $=$	D
Reference Standard $=$	TIA-222-G
Use 1.3 Load Factor?	No
Load Factor $=$	

Soil Lateral Resistance $=$
Skin Friction =
End Bearing =
Concrete Wt. Resist Uplift =

| Safety Factor | Ф Factor |
| ---: | ---: | ---: |
| 2.00 | 0.75 |
| 2.00 | 0.75 |
| 2.00 | 0.75 |
| 1.25 | |

Load Combinations Checked per TIA-222-G

1. (0.75) Ult. Skin Friction + (0.75) Ult. End Bearing

+ (1.2) Effective Soil Wt. - (1.2) Buoyant Conc. Wt. \geq Comp

2. (0.75) Ult. Skin Friction $+(0.9)$ Buoyant Conc. Wt. \geq Uplift

Soil Parameters

Water Table Depth =
Depth to Ignore Soil =
Depth to Full Cohesion =
Full Cohesion Starts at?*

	13.50
ft	
2.33	ft
	ft
Ground	

Above Full Cohesion Lateral Resistance $=4($ Cohesion)(Dia) (H)
Below Full Cohesion Lateral Resistance $=8($ Cohesion)(Dia)(H)

Maximum Capacity Ratios

Maximum Soil Ratio $=$	100.0%
Maximum Steel Ratio $=$	100.0%

Backfill Condition =
Conc. Exterior (Use Conc. Dia.)

Define Soil Layers

Note: Cohesion = Undrained Shear Strengh = Unconfined Compressive Strength / 2
Note: Cohesion = Undrained Shear Strengh = Unconfined Compressive Strength / 2

Layer	Thickness ft	Unit Weight pcf	Cohesion psf	Friction Angle degrees	
1	1.8	100		27	
2	2.2	125		37	
3	9.5	130		40	
4					
5					
6					
7					
8					
10					
11					

Soil Results: Overturning

Depth to COR =
Bending Moment, $\mathrm{Mu}=$
Resisting Moment, Φ Mn =
MOMENT RATIO =

10.07	ft , from Grade
912.67	k -ft, from COR
1110.28	k - ft , from COR

82.2\%

OK

Soil Results: Uplift

Uplift, Tu =
Uplift Capacity, Φ Tn =
UPLIFT RATIO =

0.00	kips
28.99	kips
0.0%	OK

0.0\% OK

Pole Capacity Results:

Axial Load, Pu $=$	32.50	$\mathrm{kips} @ 4.28 \mathrm{ft}$ Below Grade
Shear, $\mathrm{Vu}=$	0.00	$\mathrm{kips} @ 4.28 \mathrm{ft}$ Below Grade
Moment, $\mathrm{Mu}=$	823.06	k -ft @ 4.28 ft Below Grade

Shear, $\mathrm{Vu}=$
Resisting Shear, $\Phi \vee n=$

14.38
17.49 kips
kips

SHEAR RATIO =
82.2\% OK

Soil Results: Compression*

Compression, $\mathrm{Cu}=$	20.24
Comp. Capacity, Φ Cn =	496.98

Address:

No Address at This Location

ASCE 7 Hazards Report

Ice

Results:

Ice Thickness:
Concurrent Temperature:
Gust Speed:
Data Source:
Date Accessed:
0.75 in.

15 F
50 mph
Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Tue Oct 092018

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3 -second gust speeds, for a 50 -year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Date: December 14, 2018
Charles Mcguirt
Crown Castle
3530 Toringdon Way
Charlotte, NC 28277

Paul J Ford and Company
250 E. Broad Street, Suite 600
Columbus, OH 43215
614.221.6679

Paul J Ford and Company is pleased to submit this "Mount Modification Report" to determine the structural integrity of the T-Mobile antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:
1.25' T-Arm (typical) 68.1\% SUFFICIENT*

* Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis has been performed in accordance with the 2018 Connecticut State Building Code based upon an ultimate 3 -second gust wind speed of 125 mph . Applicable Standard references and design criteria are listed in Section 2 Analysis Criteria.

Structural Modification prepared by: Brady Hildebrand. E.I.
Respectfully submitted by:

Deepesh Salva, P.E.
Project Engineer
dsalva@pauljford.com

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided
3.1) Analysis Method
3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Capacity
4.1) Recommendations

5) STANDARD CONDITIONS

6) APPENDIX A

WIRE FRAME AND RENDERED MODELS
7) APPENDIX B

SOFTWARE INPUT CALCULATIONS
8) APPENDIX C

SOFTWARE ANALYSIS OUTPUT

9) APPENDIX D

SUPPLEMENTAL MODIFICATION INFORMATION

10) APPENDIX E
MANUFACTURER DRAWINGS (FOR REFERENCE ONLY)

1) INTRODUCTION

The existing mounts under consideration are (3) 1.25' T-Arm mounts installed at the 78 ' elevation on a 80^{\prime} Monopole tower. The existing mounts considered in this analysis are identified as a Laminated Wood Systems, Inc. based on photos.

2) ANALYSIS CRITERIA

Building Code:
TIA-222 Revision:
Risk Category:
Ultimate Wind Speed:
Exposure Category:
Topographic Factor:
Ice Thickness:
Wind Speed with Ice:
Live Loading Wind Speed:

2015 IBC
TIA-222-H
II
125 mph
B
2.0
1.0 in

50 mph
30 mph

Table 1 - Proposed Equipment Information

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
78	80	3	Ericsson	AIR 32 B2A/B66AA	(3) 1.25' T-Arm
		3	Ericsson	KRY 112 144/1	
		3	Ericsson	AIR 21 B4A/B12P-B8P 4FT	

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
Mount Manufacturer Drawings	E-Lam, AMB-TBS-AD Dated: $05 / 27 / 1998$	3529192	CCISites
Photos	Dated: $24 / 08 / 2017$	-	CCISites
Order	ID: 446044 Rev. 2 Dated: $06 / 05 / 2018$	-	CCISites

3.1) Analysis Method

RISA-3D (version 15.0.4), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix C.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 Tower Mount Analysis (Revision C).

3.2) Assumptions

1) The analysis of the existing tower or the effect of the mount attachment to the tower is not within the current scope of work.
2) The antenna mounting system was properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications and all bolts are tightened as specified by the manufacturer and AISC requirements.
3) The configuration of antennas, mounts, and other appurtenances are as specified in Tables 1 and 2.
4) All member connections have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report. All U-Bolt connections have been properly tightened. This analysis will be required to be revised if the existing conditions in the field differ from those shown in the above referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
5) Steel grades are as follows, unless noted otherwise:
a) Channel, Solid Round, Angle, Plate, Unistrut

ASTM A36 (GR 36)
b) Pipe
c) HSS (Rectangular)

ASTM A53 (GR 35)
d) HSS (Round)

ASTM 500 (GR B-46)
e) Threaded Rods

ASTM 500 (GR B-42)
f) Connection Bolts

ASTM F1554 (GR 36)
ASTM A325
6) Proposed equipment is to be installed in the locations specified in Appendix A. Any changes to the proposed equipment locations will render this report invalid.
7) SitePro1 HSRK-35 Kits are installed properly as shown in manufacturer drawings attached at the end of this report. Field cut angles to appropriate length and field drill holes at shortened end of angles.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J Ford and Company should be notified to determine the effect on the structural integrity of the mount.

4) ANALYSIS RESULTS

Table 3 - Mount Component Capacity

Notes	Component	Elevation (ft)	\% Capacity	Pass / Fail
1	Face Horizontals		56.8	Pass
1	Standoff Members		61.1	Pass
1	Mount Pipes	78		23.8
1	Kick-Brace		9.50	Pass
1	Mount to Tower Connection			Pass
			68.1	Pass

Mount Rating (max from all components) $=$	68.1%

Notes:

1) See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the \% capacity consumed.

4.1) Recommendations

- Install (3) 2.5 -ft long 2STD ($2.375^{\prime \prime}$ OD $\times 0.154$ ") pipes with crossover plates as shown in SK-8. Contractor to field verify required length and cut pipe to fit behind antennas, if necessary.
- Install (3) SitePro1 HSRK-35 Kit or EOR approved equivalent as shown in SK-8 and in conformance with the attached manufacturer drawings. Field cut and field drill the bracing angles to fit the mount as shown in SK-8.

STANDARD CONDITIONS FOR FURNISHING OF PROFESSIONAL ENGINEERING SERVICES ON EXISTING MOUNTS BY PAUL J. FORD AND COMPANY

1) It is the responsibility of the client to ensure that the information provided to Paul J. Ford and Company is accurate and complete. Paul J. Ford and Company will rely on the accuracy and completeness of such information in performing or furnishing services under this project.
2) If the existing conditions are not as represented on the referenced drawings and/or documents, Paul J. Ford and Company should be contacted immediately to evaluate the significance of the deviation.
3) The mount has been analyzed according to the minimum design loads recommended by the Reference Standard. If additional design loads are required, Paul J. Ford and Company should be made aware of this prior to the start of the project.
4) The standard of care for all Professional Engineering Services performed or furnished by Paul J. Ford and Company under this project will be the skill and care used by members of the Consultant's profession practicing under similar circumstances at the same time and in the same locality.
5) All Services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Paul J. Ford and Company is not responsible for the conclusions, opinions and/or recommendations made by others based on the information supplied herein.

APPENDIX A

WIRE FRAME AND RENDERED MODELS

Paul J Ford and Company		SK -1
BMH	823531- CT896/M\&M Concrete Pole	Dec 13, 2018 at 12:01 PM
37518-2331.011.7191		375-2331.011.7191 - MOD_Wind L....

APPENDIX B

SOFTWARE INPUT CALCULATION

Phone 614.221.6679 www.pauljford.com
\qquad A37518-2331.011.7191

Page 1 of 1 Date: 12/14/18

Analysis 30 degrees

Mount Loading per TIA-222-H

Antennas

								Antenna Attachment Locations					
Item	Manufacturer	Antenna	Height (in)	Width (in)	Depth (in)	Flat or Round	Weight (lbs)	Label	Label	Label	Label	Label	Label
1	ERICSSON	AIR 32 B2A/B66AA	56.6	12.9	8.7	Flat	132.2	C1					
2	ERICSSON	KRY 112 144/1	7	6	3	Flat	11	C1(2)					
3	ERICSSON	AIR 21 B4A/B12P-B8P 4FT	58.8	14.8	9.5	Flat	124	C2					
4													
5													
6													
7													
8													
9													
10													
11													
12													
13													
14													
15													

Address:

No Address at This Location

ASCE 7 Hazards Report

Wind

Results:	75 Vmph
Wind Speed:	115 Vmph
10-year MRI	75 Vmph
25-year MRI	84 Vmph
50-year MRI	89 Vmph
100-year MRI	96 Vmph
Data Source:	ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1-CC.2-4
Date Accessed:	Thu Dec 13 2018
Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear	
interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds	
correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability =	
0.00143, MRI = 700 years).	

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.
Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

AMERICAN SOCIETY OF CIVIL ENGINEERS

Seismic

Site Soil Class: D-Stiff Soil

Results:

$\mathrm{S}_{\mathrm{S}}:$	0.223	$\mathrm{~S}_{\mathrm{D} 1}:$	0.09
$\mathrm{~S}_{1}:$	0.056	$\mathrm{~T}_{\mathrm{L}}:$	6
$\mathrm{~F}_{\mathrm{a}}:$	1.6	$\mathrm{PGA}:$	0.128
$\mathrm{~F}_{\mathrm{V}}:$	2.4	$\mathrm{PGA}_{\mathrm{M}}:$	0.198
$\mathrm{~S}_{\mathrm{MS}}:$	0.357	$\mathrm{~F}_{\mathrm{PGA}}:$	1.543
$\mathrm{~S}_{\mathrm{M} 1}:$	0.135	$\mathrm{I}_{\mathrm{e}}:$	1
$\mathrm{~S}_{\mathrm{DS}}:$	0.238	$\mathrm{C}_{\mathrm{V}}:$	0.746

Seismic Design Category
B

Data Accessed:
Date Source:

Thu Dec 132018
USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

AMERICAN SOCIETY OF CIVIL ENGINEERS
Ice

Results:

Ice Thickness:
Concurrent Temperature:
Gust Speed:
Data Source:
Date Accessed:
1.00 in.

15 F
50 mph
Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Thu Dec 132018

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3 -second gust speeds, for a 500 -year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

APPENDIX C

SOFTWARE ANALYSIS OUTPUT

Member Code Checks Displayed (Enveloped)
Envelope Only Solution

Paul J Ford and Company		SK - 3
BMH	823531-CT896/M\&M Concrete Pole	Dec 14, 2018 at 8:04 AM
37518-2331.011.7191		$375-2331.011 .7191$ - MOD_Wind L...

Member Shear Checks Displayed (Enveloped)
Envelope Only Solution

Paul J Ford and Company		SK - 4
BMH	823531-CT896/M\&M Concrete Pole	Dec 14, 2018 at 8:04 AM
37518-2331.011.7191		$375-2331.011 .7191$ - MOD_Wind L...

Paul J Ford and Company		SK -5
BMH	823531- CT896/M\&M Concrete Pole	Dec 13, 2018 at 12:02 PM
37518-2331.011.7191		$375-2331.011 .7191-$ MOD_Wind L.... y

Paul J Ford and Company		SK - 6
BMH	823531-CT896/M\&M Concrete Pole	Dec 13, 2018 at 12:02 PM
37518-2331.011.7191		$375-2331.011 .7191-$ MOD_Wind L...

Loads: BLC 1, Dead
Envelope Only Solution

Paul J Ford and Company		SK - 7
BMH	823531-CT896/M\&M Concrete Pole	Dec 13, 2018 at 12:02 PM
37518-2331.011.7191		$375-2331.011 .7191-$ MOD_Wind L...

\qquad
(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (in/sec^2)	386.4
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver
Hot Rolled Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	None
Cold Formed Steel Code	None
Wood Code	None
Wood Temperature	$<100 F$
Concrete Code	None
Masonry Code	None
Aluminum Code	None - Building
Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	4
Parme Beta Factor (PCA)	Exact Integration
Concrete Stress Block	65
Use Cracked Sections?	Rectangular
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	Yes
Unused Force Warnings?	Yos
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min \% Steel for Column	8
Max \% Steel for Column	

\qquad
(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (in)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
R X	3
R Z	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	10 or II
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	4
Cd X	4
Rho Z	1
Rho X	1

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (11E.	Density[k/ft.	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	. 3	. 65	. 49	50	1.1	65	1.1
2	A36 Gr. 36	29000	11154	3	65	. 49	36	1.5	58	1.2
3	A572 Gr. 50	29000	11154	3	. 65	. 49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	3	. 65	. 527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	3	65	. 527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	3	. 65	. 49	35	1.6	60	1.2
7	A1085	29000	11154	. 3	. 65	. 49	50	1.4	65	1.3

Member Primary Data

	Label	1 Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
1	M1	N3	N5			PL6" x 0.38"	None	None	A36 Gr. 36	Typical
2	M2	N5	N6			PL6" $\times 0.38{ }^{\prime \prime}$	None	None	A36 Gr. 36	Typical
3	M3	N6	N4			PL6" x 0.38"	None	None	A36 Gr. 36	Typical
4	M4	N2	N1			HSS4x4x3	None	None	A500 Gr.B..	Typical
5	C2	N9	N7			PIPE 2.0	None	None	A53 Gr.B	Typical
6	C1	N10	N8			PIPE 2.0	None	None	A53 Gr.B	Typical
7	M7	N13	N14			PIPE 2.0	None	None	A53 Gr.B	Typical
8	M8	N17	N18		90	L2.5x2.5x3	None	None	A36 Gr. 36	Typical
9	M9	N20	N19		90	L2.5x2.5x3	None	None	A36 Gr. 36	Typical
10	M10	N21	N20A		270	L4x3x4	None	None	A36 Gr. 36	Typical

Member Advanced Data

	Label	1 Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Analysis .	Inactive	Seismic Design ...
1	M1						Yes			None
2	M2						Yes			None
3	M3						Yes			None
4	M4						Yes			None

\qquad

Member Advanced Data (Continued)

	Label	1 Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Analysis	Inactive	Seismic Design .
5	C2						Yes			None
6	C1						Yes			None
7	M7						Yes			None
8	M8	BenPIN	BenPIN				Yes			None
9	M9	BenPIN	BenPIN				Yes			None
10	M10						Yes			None

Hot Rolled Steel Design Parameters

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]	Lcomp bot[in]	L-torqu...	Kyy	Kzz	Cb	Function
1	M1	PL6" x 0.38"	7.5									Lateral
2	M2	PL6" x 0.38"	7.5									Lateral
3	M3	PL6" x 0.38"	7.5									Lateral
4	M4	HSS4x4x3	51									Lateral
5	C2	PIPE 2.0	96									Lateral
6	C1	PIPE 2.0	96									Lateral
7	M7	PIPE 2.0	24									Lateral
8	M8	L2.5x2.5x3	58.016									Lateral
9	M9	L2.5x2.5x3	58.016									Lateral
10	M10	L4x3x4	18									Lateral

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me.	Surface(P
1	Dead	None		-1.1			6			
2	Live	None								
3	Wind 0	None					12	20		
4	Wind 30	None					12	20		
5	Wind 60	None					12	20		
6	Wind 90	None					12	20		
7	Wind 120	None					12	20		
8	Wind 150	None					12	20		
9	Ice Load	None					6	10		
10	Ice 0	None					12	20		
11	Ice 30	None					12	20		
12	Ice 60	None					12	20		
13	Ice 90	None					12	20		
14	Ice 120	None					12	20		
15	Ice 150	None					12	20		

Load Combinations

Description Sol...PD...SR...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact.

1	1.4 D	Yes	Y	1	1.4																		
2	$1.2 \mathrm{D}+1$.	Yes	Y	1	1.2	2	1																
3	1.2 D + 1...	Yes	Y	1	1.2	3	1																
4	1.2 D + 1...	Yes	Y	1	1.2	4	1																
5	$1.2 \mathrm{D}+1$.	Yes	Y	1	1.2	5	1																
6	1.2 D + 1....	Yes	Y	1	1.2	6	1																
7	1.2 D + 1...	Yes	Y	1	1.2	7	1																
8	1.2 D + 1....	Yes	Y	1	1.2	8	1																
9	1.2 D + 1....	Yes	Y	1	1.2	3	-1																
10	1.2 D + 1..	Yes	Y	1	1.2	4	-1																
11	1.2 D + 1....	Yes	Y	1	1.2	5	-1																
12	$1.2 \mathrm{D}+1$.	Yes	Y	1	1.2	6	-1																

\qquad

Load Combinations (Continued)
Description Sol...PD...SR...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact..

13	1.2 D + 1....	Yes	Y	1	1.2	7	-1																
14	1.2 D + 1....	Yes	Y	1	1.2	8	-1																
15	1.2 D + 1....	Yes	Y	1	1.2	9	1	10	1														
16	1.2 D + 1....	Yes	Y	1	1.2	9	1	11	1														
17	1.2 D + 1....	Yes	Y	1	1.2	9	1	12	1														
18	1.2 D + 1....	Yes	Y	1	1.2	9	1	13	1														
19	1.2 D + 1....	Yes	Y	1	1.2	9	1	14	1														
20	1.2 D + 1....	Yes	Y	1	1.2	9	1	15	1														
21	1.2 D + 1....	Yes	Y	1	1.2	9	1	10	-1														
22	1.2 D + 1....	Yes	Y	1	1.2	9	1	11	-1														
23	1.2 D + 1....	Yes	Y	1	1.2	9	1	12	-1														
24	1.2 D + 1....	Yes	Y	1	1.2	9	1	13	-1														
25	1.2 D + 1....	Yes	Y	1	1.2	9	1	14	-1														
26	1.2 D + 1....	Yes	Y	1	1.2	9	1	15	-1														

Envelope Joint Reactions

Joint			X [Ib]	LC Y [lb]		LC Z [lb]		LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N1	max	713.056	11	1544.32	26	717.887	4	-1.082	14	3.043	13	1.147	5
2		min	-713.056	7	525.797	8	-717.887	10	-6.881	20	-3.029	5	-1.117	13
3	Totals:	max	713.056	11	1544.32	26	717.887	4						
4		min	-713.056	7	525.797	8	-717.887	10						

Envelope AISC 14th(360-10): LRFD Steel Code Checks

2 ㄷ. PAUL J.FORD

250 E Broad St, Ste 600 - Columbus, OH 43215
Phone 614.221 .6679

Project \# A37518-2331.011.7191
By BMH
Date: 12/14/18
v0.1, Effective 07/10/18

MOUNT TO TOWER CONNECTION CHECKS

REACTIONS
$P x=0.718$ Кір
$\mathrm{Py}=1.54$ Кір
(Axial) $\mathrm{Pz}=0.713 \mathrm{Kip}$
$M x=13.76 \quad$ Kip-in
$M y=36.51 \quad$ Kip-in
(Torque)Mz= 82.57 Kip-in WELD CHECKS

Number of Bolts
$=4$

Standoff Member Type		Square	
	$=$	4	
Width	in		
Depth (only for square members)	4	in	
Assumed Weld Size	$\mathbf{0 . 2 5 0 0}$		
		68.13%	

BOLT CHECKS

Tension Reaction	4.37	kip
Shear Reaction	5.27	kip
Bolt Type	A325N	
Bolt Diameter	0.625	in
Tensile Strength	20.7	kips
Shear Strength	12.4	kips
Reduced Tensile Strength	-	kips
Tensile Capacity Used	21.1\%	Note: Tension reduction not required if tension or shear capacity < 30\%
Shear Capacity Used	42.4\%	

APPENDIX D

SUPPLEMENTAL MODIFICATION INFORMATION

APPENDIX E

MANUFACTURER DRAWINGS (FOR REFERENCE ONLY)

NOTES:

1. 3.5 "Ø MAX HANDRAIL CONNECTION
2. 5 " $\times 5$ " MAX STANDOFF CONNECTION
3. FIELD LOCATE AND DRILL SECOND HOLE

OR Kicker angle to clip angle connection
4. PLACEA FLAT WASHER OVER EVERY SLOT
5. KIT INCLUDES STEEL AND HARDWARE FOR ONE SECTOR ONLY

PARTS LIST						
ITEM	QTY	PART NO.	PART DESCRIPTION	LENGTH	UNIT WT.	NET WT.
1	1	X-KB35	KICKER BRACKET	18 in	25.32	25.32
2	1	X-BA35	BACKER ANGLE	9 in	12.45	12.45
3	2	X-UCA	CLIP ANGLE	4 in	1.94	3.89
4	2	X-KA314	KICKER ANGLE	96 in	41.67	83.35
5	2	ACP	CLAMP HALF	$53 / 4$ in	0.65	1.31
6	8	G1202	1/2" $\times 2$ 2" HDG HEX BOLT GR5	2 in	0.18	1.41
7	4	G1205	1/2" $\times 5$ " HDG HEX BOLT GR5 FULL THREAD	5 in	0.33	1.30
8	4	G12R-8	1/2" $\times 8$ " THREADED ROD (HDG.)		0.40	1.60
9	16	G12FW	1/2" HDG USS FLATWASHER	$3 / 32$ in	0.03	0.55
10	20	G12LW	1/2" HDG LOCKWASHER	$1 / 8$ in	0.01	0.28
11	20	G12NUT	1/2" HDG HEAVY 2H HEX NUT		0.07	1.43
					TOTAL WT.\#	141.05

DETAIL A
(11) 10$)^{9}(8$

NOTES:

1. 3.5"Ø MAX HANDRAIL CONNECTION
2. 5 " $\times 5$ " MAX STANDOFF CONNECTION
3. FIELD LOCATE AND DRILL SECOND HOLE 3. FIELD LOCATE AND DRILL SECOND HOLE
FOR KICKER ANGLE TO CLIP ANGLE CONNECTION
4. PLACE A FLAT WASHER OVER EVERY SLOT

5. KIT INCLUDES STEEL AND HARDWARE FOR ONE SECTOR ONLY

Exhibit C

EBI Consulting
environmental | engineering | due diligence

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility
Site ID: CT11896A
CT896/M\&M Concrete Pole
41 Padanaram Road
Danbury, CT 06811
October 30, 2018
EBI Project Number: 6218006913

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{1 0 . 3 3 \%}$

EBI Consulting
environmental | engineering | due diligence

October 30, 2018
T-Mobile USA
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 06002

Emissions Analysis for Site: CT11896A - CT896/M\&M Concrete Pole

EBI Consulting was directed to analyze the proposed T-Mobile facility located at 41 Padanaram Road,
Danbury, CT, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(b)(1)-(b)(3)$, to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limits for the 700 MHz frequency band is approximately $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$. The general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS) frequency bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

EBI Consulting

environmental | engineering | due diligence

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 41 Padanaram Road, Danbury, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was focused at the base of the tower. For this report the sample point is the top of a 6 -foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 2 GSM channels (PCS Band -1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 15 Watts per Channel.
2) 1 UMTS channel (AWS Band -2100 MHz) was considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
3) 2 LTE channels (PCS Band -1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
4) 2 LTE channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
5) 2 LTE channels (700 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.

EBI Consulting
environmental | engineering | due diligence
6) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
7) For the following calculations the sample point was the top of a 6 -foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
8) The antennas used in this modeling are the Ericsson AIR32 B2A/B66AA \& Ericsson AIR21 B4A/B12P-B8P-4 for 1900 MHz (PCS), 2100 MHz (AWS) and 700 MHz channels. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
9) The antenna mounting height centerline of the proposed antennas is $\mathbf{8 0}$ feet above ground level (AGL).
10) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
11) All calculations were done with respect to uncontrolled / general population threshold limits.

EBI Consulting

environmental | engineering | due diligence

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	1	Antenna \#:	1	Antenna \#:	1
Make / Model:	Ericsson AIR32 B2A/B66AA	Make / Model:	Ericsson AIR32 B2A/B66AA	Make / Model:	Ericsson AIR32 B2A/B66AA
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	80 feet	Height (AGL):	80 feet	Height (AGL):	80 feet
Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz}(\mathrm{AWS}) \\ & \hline \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz} \text { (PCS) / } \\ & 2100 \mathrm{MHz} \text { (AWS) } \\ & \hline \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz} \text { (PCS) / } \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$
Channel Count	6	Channel Count	6	Channel Count	6
Total TX Power(W):	230	Total TX Power(W):	230	Total TX Power(W):	230
ERP (W):	8,948.04	ERP (W):	8,948.04	ERP (W):	8,948.04
Antenna A1 MPE\%	5.87	Antenna B1 MPE\%	5.87	Antenna C1 MPE\%	5.87
Antenna \#:	2	Antenna \#:	2	Antenna \#:	2
Make / Model:	$\begin{gathered} \text { Ericsson AIR21 } \\ \text { B4A/B12P-B8P-4 } \end{gathered}$	Make / Model:	Ericsson AIR21 B4A/B12P-B8P-4	Make / Model:	$\begin{gathered} \text { Ericsson AIR21 } \\ \text { B4A/B12P-B8P-4 } \end{gathered}$
Gain:	$11.5 / 15.5 \mathrm{dBd}$	Gain:	$11.5 / 15.5 \mathrm{dBd}$	Gain:	11.5 / 15.5 dBd
Height (AGL):	80 feet	Height (AGL):	80 feet	Height (AGL):	80 feet
Frequency Bands	$\begin{gathered} 700 \mathrm{MHz} / \\ 2100 \mathrm{MHz} \text { (AWS) } \end{gathered}$	Frequency Bands	$\begin{gathered} 700 \mathrm{MHz} / \\ 2100 \mathrm{MHz} \text { (AWS) } \end{gathered}$	Frequency Bands	$\begin{gathered} 700 \mathrm{MHz} / \\ 2100 \mathrm{MHz} \text { (AWS) } \end{gathered}$
Channel Count	3	Channel Count	3	Channel Count	3
Total TX Power(W):	80	Total TX Power(W):	80	Total TX Power(W):	80
ERP (W):	1,984.27	ERP (W):	1,984.27	ERP (W):	1,984.27
Antenna A2 MPE\%	1.73	Antenna B2 MPE\%	1.73	Antenna C2 MPE\%	1.73

Site Composite MPE \%	
Carrier	MPE \%
T-Mobile (Per Sector Max)	$\mathbf{7 . 6 0} \%$
Sprint	$\mathbf{2 . 4 3} \%$
Clearwire	$\mathbf{0 . 3 0} \%$
Site Total MPE \%:	$\mathbf{1 0 . 3 3} \%$

T-Mobile Sector A Total:	7.60%
T-Mobile Sector B Total:	7.60%
T-Mobile Sector C Total:	7.60%
Site Total:	
10.33%	

T-Mobile Maximum MPE Power Values (Per Sector)

EBI Consulting
environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (\%)
Sector A:	7.60%
Sector B:	7.60%
Sector C:	7.60%
T-Mobile Maximum	7.60%
MPE (Per Sector):	
Site Total:	10.33%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{1 0 . 3 3 \%}$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

[^0]: ${ }^{*} \mathrm{P} \Delta$ only applies to the Moment (default value $=5 \%$)

