

Crown Castle

3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065

December 8, 2020

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification for T-Mobile:

823531 - T-Mobile Site ID: CT11896A 41 Padanaram Road, Danbury, CT 06811

Latitude: 41° 25′ 8.10″ / Longitude: -73° 27′ 43.00″

Dear Ms. Bachman:

T-Mobile currently maintains six (6) antennas at the 78-foot mount on the existing 80-foot Monopole Tower, located at 41 Padanaram Road, Danbury, CT. The tower is owned by Crown Castle and the property is owned by Mr. Robert J. Kaufman. T-Mobile now intends to replace three (3) existing antennas with three (3) new three (3) new 600/700 MHz antennas that will be capable of providing 5G services. The new antennas will be installed at the 78-ft level of the tower.

Planned Modifications:

Tower:

Remove and Replace:

- (3) AIR21_B4A_B12P Antenna (**REMOVE**) (3) RFS-APXVAARR24_43-U-NA20 Antenna 600/700/1900 MHz (**5G**) (**REPLACE**)
- (3) RRUS11 B12 (REMOVE) (3) Radio 4449 B71/B12 (REPLACE)

Install New:

(1) 1 1/2" Hybrid Fiber Line

Existing to Remain:

- (6) 1 5/8" Coax
- (3) AIR32 B66A B2A Antenna 1900/2100 MHz
- (1) 1 ½" Hybrid Fiber Line
- (1) 1 5/8" Hybrid Fiber Line

Ground:

Upgrade to existing ground cabinet. (Internally)

- (3) TMAs added to ground at cabinet.
- (6) RU22 added to ground at cabinet.

The facility was approved by the Connecticut Siting Council as an 80' telecommunications facility in Petition No. 712 on April 27, 2005.

Page 2

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Mark D. Boughton, Mayor for the City of Danbury, Sharon Calitro, Director of Planning & Zoning, Crown Castle as the tower owner, and Mr. Robert Kaufman, the property owner.

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Anne Marie Zsamba.

Sincerely,

Anne Marie Zsamba Site Acquisition Specialist 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 (201) 236-9224 AnneMarie.Zsamba@crowncastle.com

Attachments

cc:

Mark D. Boughton, Mayor (via email only to m.boughton@danbury-ct.gov)
City of Danbury
155 Deer Hill Avenue
Danbury, CT 06810
203.797.4500

Page 3

Sharon Calitro, AICP, Planning Director (via email only to s.calitro@danbury-ct.gov) City of Danbury
155 Deer Hill Avenue
Danbury, CT 06810
203.797.4500

Mr. Robert J. Kaufman, Property Owner 41 Padanaram Road Danbury, CT 06811

Crown Castle, Tower Owner

From: Zsamba, Anne Marie
To: m.boughton@danbury-ct.gov

Subject: Notice of Exempt Modification - T-Mobile - 823531 - 41 Padanaram Road, Danbury

Date: Tuesday, December 8, 2020 11:44:00 AM

Attachments: EM-T-MOBILE-41 PADANARAM RD DANBURY-823531-CT11896A-NOTICE.pdf

Dear Mayor Boughton:

Attached please find T-Mobile's exempt modification application that is being submitted to the Connecticut Siting Council today, December 8, 2020.

In light of the present circumstances with Covid-19, The Council has advised that electronic notification of this filing is acceptable. If you could kindly confirm receipt. Thank you.

Best,

Anne Marie Zsamba

ANNE MARIE ZSAMBA

Site Acquisition Specialist

T: (201) 236-9224 M: (518) 350-3639 F: (724) 416-6112

CROWN CASTLE

3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 CrownCastle.com From: Zsamba, Anne Marie
To: s.calitro@danbury-ct.gov

Subject: Notice of Exempt Modification - T-Mobile - 823531 - 41 Padanaram Road, Danbury

Date: Tuesday, December 8, 2020 11:44:00 AM

Attachments: EM-T-MOBILE-41 PADANARAM RD DANBURY-823531-CT11896A-NOTICE.pdf

Dear Planning Director Calitro:

Attached please find T-Mobile's exempt modification application that is being submitted to the Connecticut Siting Council today, December 8, 2020.

In light of the present circumstances with Covid-19, The Council has advised that electronic notification of this filing is acceptable. If you could kindly confirm receipt. Thank you.

Best,

Anne Marie Zsamba

ANNE MARIE ZSAMBA

Site Acquisition Specialist

T: (201) 236-9224 M: (518) 350-3639 F: (724) 416-6112

CROWN CASTLE

3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 CrownCastle.com

After printing this label:

- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

Exhibit A

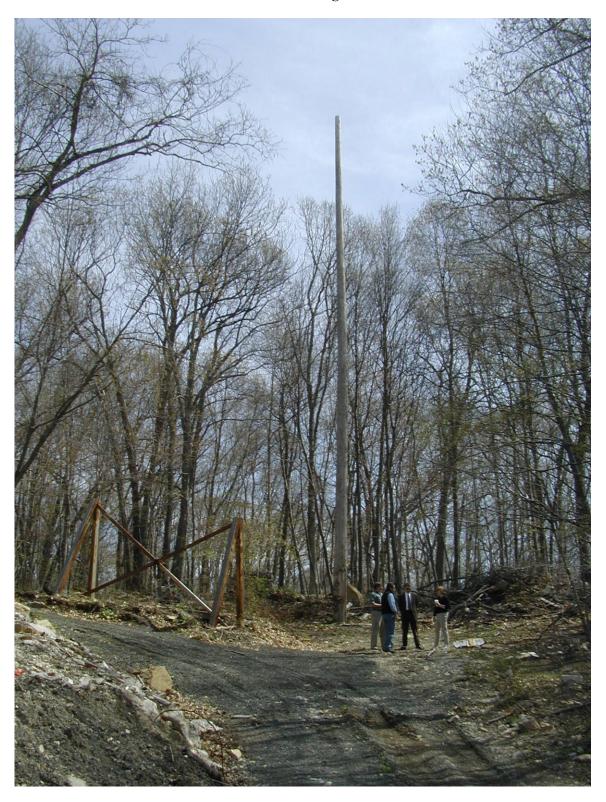
Original Facility Approval

Petition No. 712 Omnipoint (T-Mobile) Danbury, Connecticut Staff Report April 27, 2005

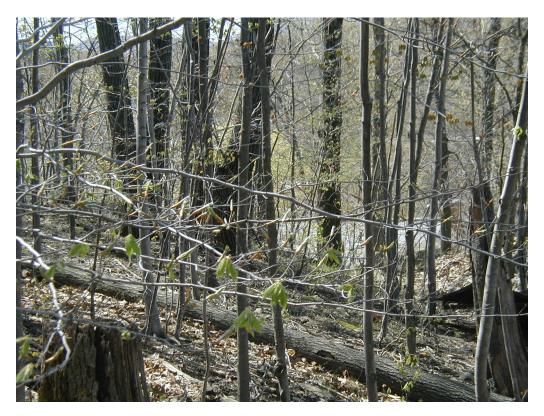
T-Mobile seeks to replace an existing 60-foot tall wooden utility pole, on which whip antennas were formerly attached to dispatch concrete trucks, with an 80-foot tall wood laminate pole to which a platform with twelve antennas would be mounted. The antennas would be mounted with a center line of 80 feet; the tops of the antennas would reach 83 feet. The new pole would be designed to accommodate one additional carrier. At the time of its petition submittal, T-Mobile also notified all abutting property owners of its plans.

On April 26, 2005, Council member Ed Wilensky and staff analyst David Martin visited the site of the petition at 41 Pandanaram Road (Route 37) in Danbury. Stephen Humes, Jackie Slaga, Dan O'Connor, and Jeffrey York were present at the field review representing T-Mobile.

The existing pole is located near the top of a small ridge line that parallels Pandanaram Road. The lower portions of the ridge between the pole site and Pandanaram Road are occupied by a concrete plant (at street level) and several graded off levels that are used for the storage of various concrete products. A graveled access road switches back and forth up the side of the ridge to eventually reach the pole, which is in a small cleared area surrounded by mature deciduous trees that appear to be 65 to 70 feet high.


T-Mobile would install a 15-foot by 15-foot fence compound next to the proposed replacement pole to house its ground equipment which would consist of equipment cabinets on two concrete Pands. In its petition, T-Mobile states the compound would be enclosed by a six-foot high chain link fence topped with three strands of barbed wire. During the field review, T-Mobile representatives stated they would be amenable to installing an eight-foot fence without the barbed wire. Utilities would be brought underground to the compound from a utility pole to be placed somewhere lower on the ridge. Underground utilities would be preferable to overhead lines because of the truck traffic and the use of booms to pick up and move the concrete products.

From the pole site, the ridge continues to rise to the north and east. Although there is a residential area just over the crest of the ridge, no houses are visible from the base of the existing pole. Mr. Wilensky and David Martin drove the residential road nearest the ridge line and could not see the existing tower from this location.


To the south of the existing pole, the ridge falls steeply away to a condominium development. The condominium units nearest to the pole site face the side of the ridge and would not be able to see the replacement pole. Units closer to Pandanaram Road may have some views of the higher proposed tower. Mr. Wilensky and David Martin drove through the condominium development but could not see the existing tower.

To the west of the site, Danbury High School is visible on the side of an opposite ridge. There are a few residences also visible on the opposite ridge. However, existing vegetation and distance should make any visual presence of the proposed, higher tower minimal.

View of Existing Pole

View From Pole, Looking Toward Roof Of Nearest Condominiums

Closer View of Condominium Roof from Edge of Ridge

Looking West From Pole Site

Looking Northeast From Site, Existing Pole In Foreground

Exhibit B

Property Card

PADANARAM RD

Location PADANARAM RD **Mblu** H10/ / 140/ /

Acct# Owner KAUFMAN ROBERT J

Assessment \$1,865,700 **Appraisal** \$2,665,200

PID 10751 Building Count 1

Current Value

Appraisal			
Valuation Year	Improvements	Land	Total
2017	\$829,700	\$1,835,500	\$2,665,200
	Assessment		
Valuation Year	Improvements	Land	Total
2017	\$580,800	\$1,284,900	\$1,865,700

Owner of Record

Owner KAUFMAN ROBERT J Sale Price \$0

 Co-Owner
 Book & Page
 0470/0094

 Address
 41 PADANARAM RD DANBURY, CT 06811
 Sale Date
 02/07/1969

Ownership History

Ownership History			
Owner Sale Price Book & Page Sale Date			
KAUFMAN ROBERT J	\$0	0470/0094	02/07/1969

Building Information

Building 1 : Section 1

 Year Built:
 2006

 Living Area:
 23,280

 Replacement Cost:
 \$1,029,798

Building Percent Good: 66

Replacement Cost

Less Depreciation: \$679,700

Building Attributes

Field	Description
STYLE	Pre-Eng Mfg
MODEL	Ind/Comm
Grade	Average
Stories:	1
Occupancy	1
Exterior Wall 1	Pre-finsh Metl
Exterior Wall 2	
Roof Structure	Gable/Hip
Roof Cover	Metal/Tin
Interior Wall 1	Minim/Masonry
Interior Wall 2	
Interior Floor 1	Concr-Finished
Interior Floor 2	
Heating Fuel	Oil
Heating Type	Hot Air-no Duc
AC Type	None
Bldg Use	Commercial MDL-96
Total Rooms	
Total Bedrms	00
Total Baths	0
1st Floor Use:	2001
Heat/AC	NONE
Frame Type	FIREPRF STEEL
Baths/Plumbing	AVERAGE
Ceiling/Wall	NONE
Rooms/Prtns	AVERAGE
Wall Height	25
% Comn Wall	0

Building Photo

(http://images.vgsi.com/photos2/DanburyCTPhotos/\\00\\02\\39/88.jpg)

Building Layout

(http://images.vgsi.com/photos2/DanburyCTPhotos//Sketches/10751_1075

	Building Sub-Areas (sq ft)				
Code	Description	Gross Area	Living Area		
BAS	First Floor	23,280	23,280		
UEP	Unfi. Enclosed Porch	492	0		
UST	Unf. Storage	4,080	0		
		27,852	23,280		

Extra Features

Extra Features	<u>Legend</u>
No Data for Extra Features	

Land

Land Use		Land Line Valuation	
Use Code	2001	Size (Acres)	9.68

Description Commercial MDL-96

Zone CN20

Neighborhood 6500 Alt Land Appr No

Category

 Frontage
 0

 Depth
 0

Assessed Value \$1,284,900 **Appraised Value** \$1,835,500

Outbuildings

	Outbuildings <u>Leg</u> e					Legend
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
CEL	Cell Tower			1 UNITS	\$150,000	1

Valuation History

Appraisal				
Valuation Year	Improvements	Land	Total	
2019	\$829,700	\$1,835,500	\$2,665,200	
2018	\$829,700	\$1,835,500	\$2,665,200	
2017	\$829,700	\$1,835,500	\$2,665,200	

Assessment				
Valuation Year	Improvements	Land	Total	
2019	\$580,800	\$1,284,900	\$1,865,700	
2018	\$580,800	\$1,284,900	\$1,865,700	
2017	\$580,800	\$1,284,900	\$1,865,700	

(c) 2020 Vision Government Solutions, Inc. All rights reserved.

Exhibit C

Construction Drawings

T-MOBILE SITE NAME: CT896/CONCRETE POLE

T-MOBILE SITE NUMBER: CT11896A

CROWN BU: 823531 / APP#: 479842 67D92DBL CONFIGURATION

> 41 PADANARAM RD DANBURY, CT 06811

EXISTING 80'-0" WOODEN MONOPOLE

TITLE SHEET

OVERALL SITE PLAN

TOWER ELEVATION

ANTENNA AND RRU DETAILS

SHEET

A-1

DRAWING INDEX

SHEET DESCRIPTION

ANTENNA/CABLE SCHEDULE AND AZIMUTH PLANS

PANEL SCEHDULE AND ONE-LINE DIAGRAM

A/E DOCUMENT REVIEW STATUS

SIGNATURE

*T * * Mobile *

F		
	PROJECT NO:	137173.001.01
	CHECKED BY:	MTI

	ISSUED FOR:				
REV	DATE	DRWN	DESCRIPTION		
0	8/7/19	RFC	CONSTRUCTION		
1	8/20/20	MLC	CONSTRUCTION		
2	9/30/20	LHT	CONSTRUCTION		

PROJECT SUMMARY

SITE TYPE:

EXISTING EQUIPMENT UPGRADE

SITE ADDRESS

41 PADANARAM RD

JURISDICTION:

FAIRFIELD COUNTY

LATITUDE: LONGITUDE:

41.418900° N 73.461800° W

TOWER OWNER:

CROWN CASTLE 3200 HORIZON DRIVE, SUITE 150 KING OF PRUSSIA, PA 19406

(610) 635-3225

T-MOBILE 4 SYLVAN WAY CUSTOMER/APPLICANT:

PARSIPPANY, NJ 07054

(973) 397-4800

OCCUPANCY TYPE:

FACILITY IS UNMANNED AND NOT A.D.A. COMPLIANCE:

CONTACT INFORMATION

1717 S. BOULDER, STE. 300 MIKE OAKES

ELECTRIC UNITED ILLUMINATING CO. PROVIDER: 203-499-2000

PROVIDER: 800-934-6489

PROJECT DESCRIPTION

TURN RIGHT ONTO LOCAL ROAD(S) AND ARRIVE AT CT896/M&M CONCRETE POLE.

THE PROPOSED PROJECT INCLUDES:

- REMOVE (3) EXISTING ANTENNAS AT 78'-0".
- REMOVE (2) DUS41s & (1) XMU
- REMOVE (3) RRUS11 B12 RRUS AT CABINET. RELOCATE (3) EXISTING ANTENNAS AT 78'-0".
- INSTALL (3) NEW ANTENNAS AT 78'-0". • INSTALL (3) NEW 4449 B71+B85 AT 78'-0".
- INSTALL (3) NEW TMAS AT CABINET.
- INSTALL (1) NEW 6x12 HCS FIBER.
- INSTALL (1) NEW BB 5216 & (1) BB 6630
- INSTALL (6) NEW RU22s AT CABINET.

DO NOT SCALE DRAWINGS

LOCATION MAP

NO SCALE

DRIVING DIRECTIONS

DEPART FROM BRADLEY INTERNATIONAL AIRPORT ON TERMINAL RD. ROAD NAME CHANGES TO BRADLEY FIELD CONNECTOR. ROAD NAME CHANGES TO CT-20 [BRADLEY FIELD CONNECTOR]. TAKE RAMP (RIGHT) ONTO I-91 [RICHARD P HORAN MEMORIAL HWY]. AT EXIT 32A-32B, TURN RIGHT ONTO RAMP. TAKE RAMP (LEFT) ONTO I-84 [US-6]. AT EXIT 6, TURN RIGHT ONTO RAMP. TURN RIGHT ONTO CT-37 [NORTH

ST]. KEEP STRAIGHT ONTO CT-37 [PADANARAM RD]. TURN RIGHT ONTO JEANETTE RD [JEANETTE ST]. TURN RIGHT ONTO HORSESHOE DR.

ALL DRAWINGS CONTAINED HEREIN ARE FORMATTED FOR 11X17. CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON THE JOB SITE AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING

OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME.

(800) 922-4455 **CALL 3 WORKING DAYS BEFORE YOU DIG!**

TITLE

T-MOBILE PROP T-MOBILE R.F. MGR.:

T-MOBILE NetOps:

PROPERTY OWNER:

PLANNING:

T-MOBILE CONST. MGR.: INTERCONNECT:

T-MOBILE SITE DEV. MGR.:

CALL CONNECTICUT ONE CALL

THE FOLLOWING PARTIES HEREBY APPROVE AND ACCEPT THESE DOCUMENTS AND AUTHORIZE THE CONTRACTOR TO PROCEED WITH THE CONSTRUCTION DESCRIBED HEREIN. ALL DOCUMENTS ARE SUBJECT TO REVIEW BY THE

CODE COMPLIANCE

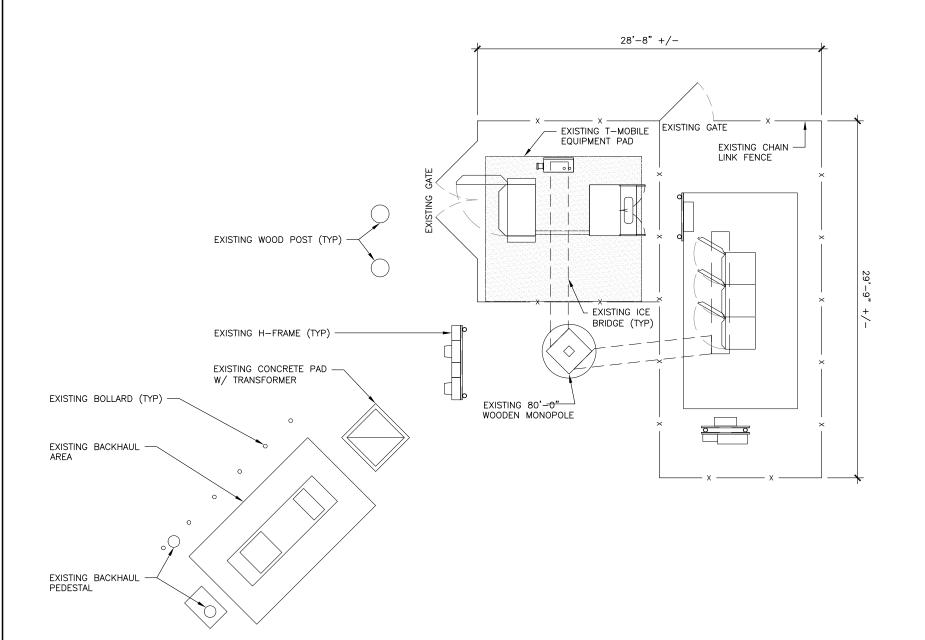
ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES CODE TYPE

STRUCTURAL MECHANICAL ELECTRICAL

NEC 2017

2018 CONNECTICUT STATE BUILDING CODE 2018 CONNECTICUT STATE BUILDING CODE BUILDING/DWELLING 2018 CONNECTICUT STATE BUILDING CODE

REV. #


2

2

2

2

B&T ENGINEERING, INC.

GENERAL NOTES:

1. SUBJECT PROPERTY IS SITUATED AT
41 PADANARAM RD, DANBURY, CT 06811.

2. APPLICANT: T-MOBILE

A DELAWARE LIMITED LIABILITY COMPANY 4 SYLVAN WAY PARSIPPANY, NEW JERSEY 07054

(973) 397-4800

CROWN CASTLE INTERNATIONAL TOWER OWNER:

- THE APPLICANT IS TO UPDATE THEIR NETWORK BY INSTALLING THREE (3) NEW PANEL ANTENNAS, THREE (3) TMAS, NINE (9) RRUS, AND ONE (1) ADDITIONAL CABLE MOUNTED ON AN EXISTING WOODEN
- 3. THIS FACILITY SHALL BE VISITED ON THE AVERAGE OF ONCE A MONTH FOR MAINTENANCE AND SHALL BE MONITORED FROM A REMOTE
- 4. THE EXISTING SITE IS LOCATED AT LATITUDE OF 41.418900° N± AND LONGITUDE OF 73.461800° W±. THE HORIZONTAL DATUM ARE IN TERMS OF NORTH AMERICAN DATUM OF 1983 (NAD 83).
- 5. THIS SET OF PLANS HAS BEEN PREPARED FOR THE PURPOSES OF MUNICIPAL AND AGENCY REVIEW AND APPROVAL. THIS SET OF PLANS SHALL NOT BE UTILIZED AS CONSTRUCTION DOCUMENTS UNTIL ALL CONDITIONS OF APPROVAL HAVE BEEN SATISFIED AND EACH OF THE DRAWINGS HAVE BEEN REVISED TO INDICATED "ISSUED FOR
- 6. ALL MATERIALS, WORKMANSHIP, AND CONSTRUCTION FOR THE SITE IMPROVEMENTS SHOWN HEREON SHALL BE IN ACCORDANCE WITH:
 - 6.A. CURRENT PREVAILING MUNICIPAL AND/OR COUNTY SPECIFICATIONS, STANDARDS, AND REQUIREMENTS. 6.B. CURRENT PREVAILING UTILITY COMPANY AUTHORITY SPECIFICATIONS, STANDARDS AND REQUIREMENTS.
- 7. THE CONTRACTOR SHALL NOTIFY B+T GROUP, P.A. IMMEDIATELY IF ANY FIELD-CONDITIONS ENCOUNTERED DIFFER FROM THOSE REPRESENTED HEREON, AND/OR IF SUCH CONDITIONS WOULD OR COULD RENDER THE DESIGNS SHOWN HEREON INAPPROPRIATE AND/OR INEFFECTIVE.
- 8. THE CONTRACTOR IS RESPONSIBLE TO PROTECT, REPAIR AND/OR REPLACE ANY DAMAGED STRUCTURES, UTILITIES OR LANDSCAPED AREA WHICH MAY BE DISTURBED DURING THE CONSTRUCTION OF THIS
- 9. THE CONSTRUCTION CONTRACTOR IS SOLELY RESPONSIBLE FOR DETERMINING ALL CONSTRUCTION MEANS AND METHODS. THE CONSTRUCTION CONTRACTOR IS ALSO RESPONSIBLE FOR ALL JOB SITE
- 10. SITE INFORMATION SHOWN TAKEN FROM CROWN SITE PLANS AND FROM
- 11. NO GUARANTEE IS MADE NOR SHOULD BE ASSUMED AS TO THE COMPLETENESS OR ACCURACY OF THE HORIZONTAL OR VERTICAL LOCATIONS. ALL PARTIES UTILIZING THIS INFORMATION SHALL FIELD VERIFY THE ACCURACY AND COMPLETENESS OF THE INFORMATION SHOWN PRIOR TO CONSTRUCTION ACTIVITIES.
- 12. ALL IMPROVEMENTS SHALL BE SUBJECT TO INSPECTION AND APPROVAL BY THE TOWNSHIP ENGINEER WHO WILL BE GIVEN PROPER NOTIFICATION PRIOR TO THE START OF ANY CONSTRUCTION.

*T ** Mobile *

CT896/CONCRETE POLE 41 PADANARAM RD DANBURY, CT 06811

CT11896A

EXISTING 80'-0" WOODEN MONOPOLE

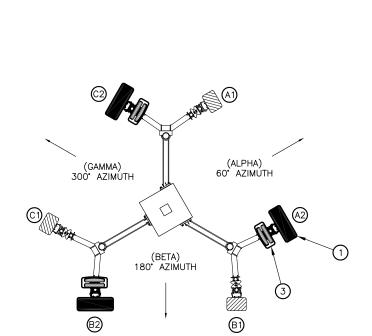
PROJECT NO: 137173.001.01 CHECKED BY: MTJ

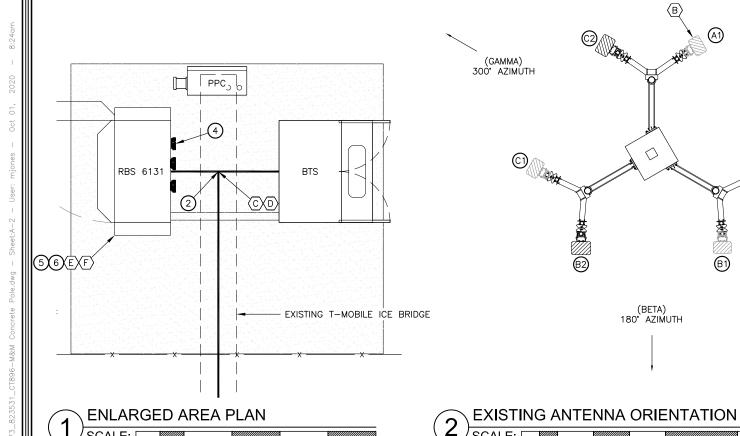
ISSUED FOR:				
REV	DATE	DRWN	DESCRIPTION	
0	8/7/19	RFC	CONSTRUCTION	
1	8/20/20	MLC	CONSTRUCTION	
2	9/30/20	LHT	CONSTRUCTION	

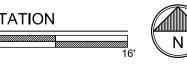
B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/21

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

REVISION


SHEET NUMBER:


OVERALL SITE PLAN



	LEGEND								
	EXISTING/DEMOLITION NOTES		INSTALLATION NOTES						
A	EXISTING ERICSSON AIR32 KRD901146-1_B66A_B2A ANTENNA TO BE RELOCATED TO POSITION 1 (TOTAL OF 3)		INSTALL RFS APXVAARR24_43-U-NA20 (8 FANTENNAS ON EXISTING MOUNT. PROVIDE NEW 2 7/8" OD SCH.40 PIPE MAS (LENGTH TO BE V.I.F) (TYP. OF 1 PER SECTOR, TOTAL OF 3)						
B	EXISTING ERICSSON AIR21 B4A/B12P ANTENNA TO BE REMOVED (TOTAL OF 3)	2	INSTALL (1) 6x12 HCS FIBER. RUN FROM EQUIPMENT TO ANTENNAS FOLLOWING EXISTING ROUTING						
©	EXISTING 9x18 HCS FIBER TO REMAIN (TOTAL OF 1)	3	INSTALL (3) RADIO 4449 B71/B85 AT ANTENNA						
(D)	EXISTING 6x12 HCS FIBER TO REMAIN (TOTAL OF 1)	4	INSTALL (3) NEW TMAS AT CABINET						
E	REMOVE (3) RRUS11 B12 RADIOS	(5)	INSTALL (1) BB 5216 & (1) BB 6630						
F	REMOVE (2) DUS41s & (1) XMU	6	INSTALL (6) RU22 RADIOS AT CABINET						

	ANTENNA AND CABLE SCHEDULE											
SECTOR	POSITION	EXISTING ANTENNAS	PROPOSEI CONFIGI	ANTENNA JRATION	E-TILT	M-TILT	ANTENNA CENTERLINE	TMA/RRU	CABLES	JUMPER TYPE	CABLE LENGTH	
	A1	ERICSSON AIR32 KRD901146-1_B66A_B2	LTE GSM	RU22	2°/2° 2°	0.	78'-0" -	0/0	(1) 9x18 HCS FIBER	DC/FIBER	128'-0"	
60° — ALPHA	A2	RFS APXVAARR24_43-U-NA20	LTE UMTS	B71 B85 RU22	2'/2'	O°		1/2	(2) 1 5/8" COAX	DC/FIBER & 1/2" COAX	128'-0"	
180° – BETA	B1	ERICSSON AIR32 KRD901146-1_B66A_B2	LTE GSM	RU22	2./5.	0,	70' 0"	0/0	(1) 6x12 HCS FIBER	DC/FIBER	128'-0"	
160 - BEIA	B2	RFS APXVAARR24_43-U-NA20	LTE UMTS	B71 B85 RU22	2'/2'	o*	78'-0"	1/2	(2) 1 5/8" COAX	DC/FIBER & 1/2" COAX	128'-0"	
300° — GAMMA	C1	ERICSSON AIR32 KRD901146-1_B66A_B2	LTE GSM	RU22	2./5.	0,	70' 0"	0/0	(1) 6x12 HCS FIBER	DC/FIBER	128'-0"	
	C2	RFS APXVAARR24_43-U-NA20	LTE UMTS	B71 B85 RU22	2'/2'	0°	78'–0"	1/2	(2) 1 5/8" COAX	DC/FIBER & 1/2" COAX	128'-0"	

(ALPHA) 60° AZIMUTH

 \bigcirc

(BETA) 180° AZIMUTH

•T•••Mobile•

CT896/CONCRETE POLE EXISTING 80'-0" WOODEN MONOPOLE 41 PADANARAM RD DANBURY, CT 06811

CT11896A BU #: 823531

PROJECT NO:	137173.001.01
CHECKED BY:	MTI

$\ \Gamma \ $	ISSUED FOR:										
R	EV	DESCRIPTION									
	0	8/7/19	RFC	CONSTRUCTION							
	1	8/20/20	MLC	CONSTRUCTION							
	2	9/30/20	LHT	CONSTRUCTION							

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/21

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER: REVISION EXISTING TOWER IS SUFFICIENT PER STRUCTURAL ANALYSIS BY PAUL J. FORD & CO. DATED 8/17/20.

EXISTING MOUNT IS SUFFICIENT PER MOUNT ANALYSIS REPORT BY PAUL J. FORD & CO. DATED 8/7/20.

LEGEND:

NEW

EXISTING

FUTURE

© OTHERS ANTENNAS ELEV. = 70'-0"

EXISTING 80'-0" WOODEN MONOPOLE - 2CXD

(1)3(B)

TOP OF T-MOBILE ANTENNA ELEV. = 82'-0"

TOP OF TOWER

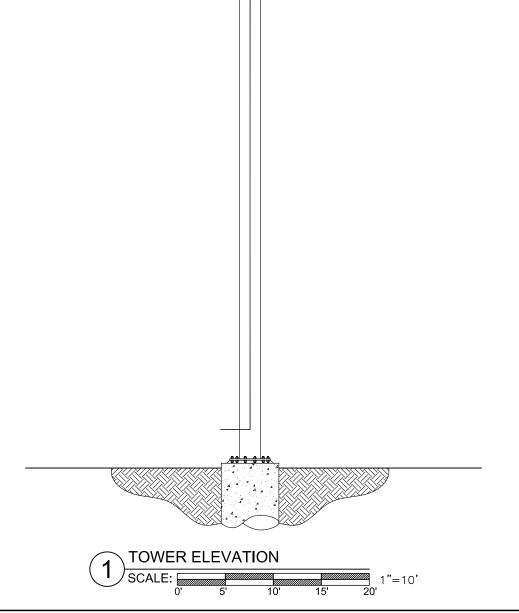
ELEV. = 80'-0"

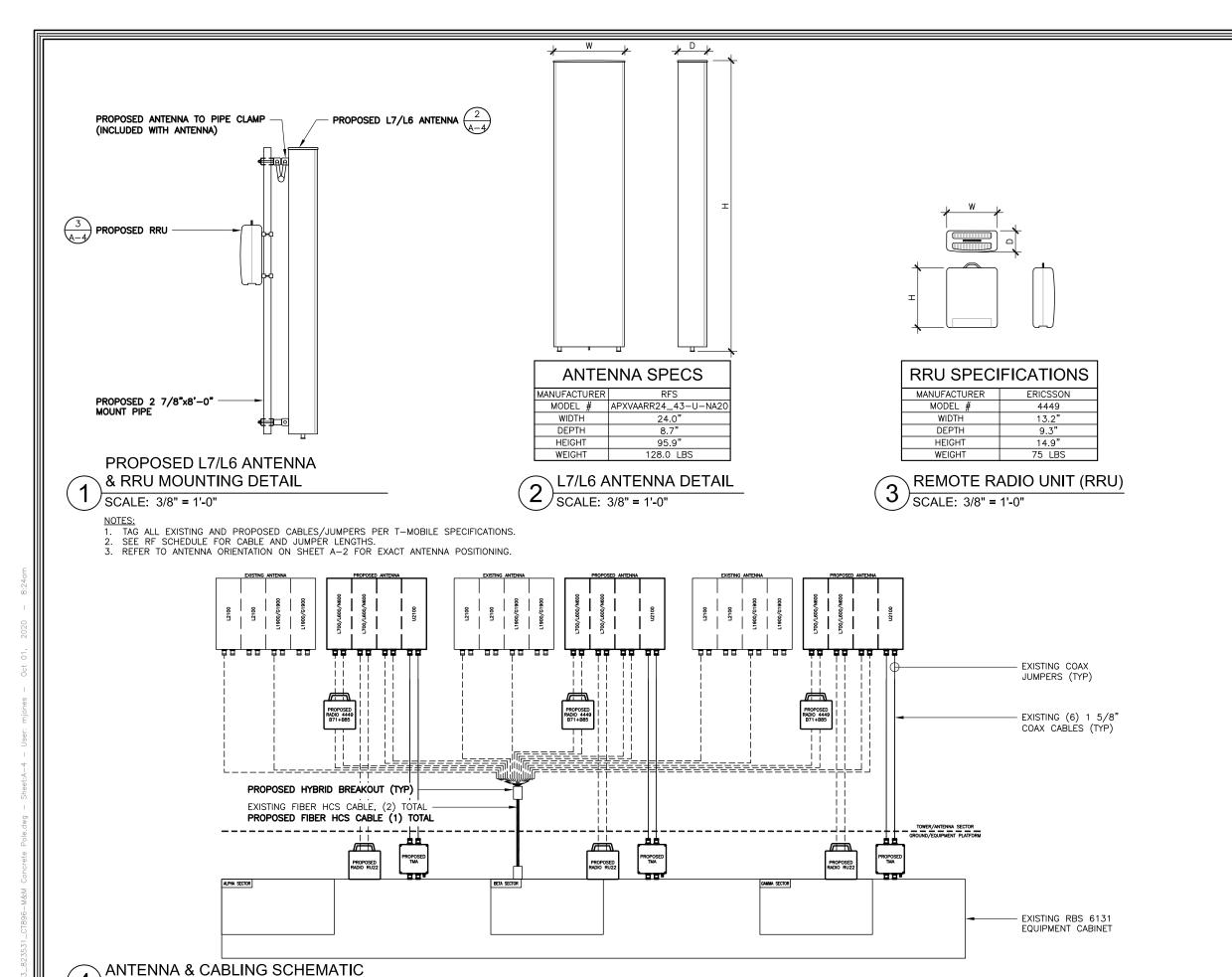
-T---Mobile-

CT11896A
BU #: 823531
CT896/CONCRETE POLE
41 PADANARAM RD
DANBURY, CT 06811

EXISTING 80'-0" WOODEN MONOPOLE

PROJECT NO: 137173.001.01 CHECKED BY: MTJ




B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/21

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER: REVISION 2

4

SCALE: N.T.S.

•T•••Mobile•

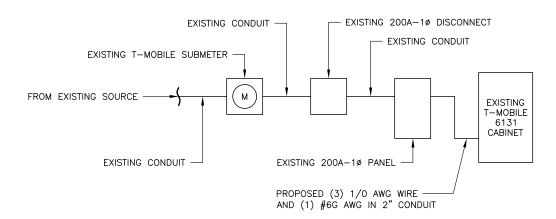
CT896/CONCRETE POLE 41 PADANARAM RD DANBURY, CT 06811 CT11896A BU #: 823531

PROJECT NO: 137173.001.01 CHECKED BY: MTJ

I		ISS	SUED	FOR:
Ш	REV	DATE	DRWN	DESCRIPTION
Ш	0	8/7/19	RFC	CONSTRUCTION
Ш	1	8/20/20	MLC	CONSTRUCTION
Ш	2	9/30/20	LHT	CONSTRUCTION
Ш				
Ш				

B&T ENGINEERING, INC. Expires 2/10/21

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.


SHEET NUMBER: REVISION

FINAL PANEL SCHEDULE									
LOAD	DOLES.	AMDC	BUS		AMDC	DOLES			
LOAD	POLES	AMPS	L1	L2	AMPS	POLES		LOAD	
SURGE	2	604	1	2	20A	1		DDC GFI	
SURGE		60A	3	4	125A	2		RBS 6131	
BTS MAIN		60A	5	6	125A		105 6151		
BIS MAIN	2		7	8	20A	1		SPOTLIGHT	
RATED VOLTAGE: ■120/240 □ 1	PHASE, 3	3 WIRE	BRANC	н РО	LES: □12	■24 □3	30 □42	APPROVED MF'RS	
RATED AMPS: □100 ■200 □400 □			CABINET: ■SURFACE □FLUSH NEMA □1 ■3R □4X				NEMA □1 ■3R □4X		
□MAIN LUGS ONLY MAIN 200 AMPS ■BREAKER	SWITCH	■ HING	ED D	OOR			■KEYED DOOR LATCH		
□FUSED ■CIRCUIT BREAKER BRANCH DEVICE			TO E	BE GFCI BI	REAKERS	FULL NEUTRAL BUS GROUND BAR			
ALL BREAKERS MUST BE RATED TO INTERRUPT	A SHORT	L BREAKERS MUST BE RATED TO INTERRUPT A SHORT CIRCUIT ISC OF 10,000 AMPS SYMMETRICAL							

REPLACE EXISTING BREAKER IN POSITION 4 AND 6 WITH A NEW 2P 125A BREAKER
REPLACE EXISTING WIRES FOR EXISTING 6131 CABINET WITH (3) 1/0 AWG THWN (COPPER) AND (1) #6G AWG. MINIMUM CONDUIT SIZE TO BE 2". IF 125A BREAKER WILL NOT PROPERLY FIT IN EXISTING PANEL, REPLACE (E) PANEL WITH SQUARE D PANEL Q012040M200RB (OR APPROVED EQUAL). UPGRADE FEEDER WIRES TO MEET AMPACITY IF NEW PANEL IS REQUIRED. FINAL PANEL DESIGN AND CALCULATIONS FOR WIRE SIZE WERE BASED OFF OF EXISTING PHOTOS

FINAL T-MOBILE PANEL DETAIL

SCALE: N.T.S.

*T***Mobile*

CT896/CONCRETE POLE 41 PADANARAM RD DANBURY, CT 06811 CT11896A BU #: 823531

PROJECT NO: 137173.001.01 CHECKED BY: MTJ

		ISSUED FOR:									
Ш	REV	DATE	DRWN	DESCRIPTION							
Ш	0	8/7/19	RFC	CONSTRUCTION							
Ш	1	8/20/20	MLC	CONSTRUCTION							
Ш	2	9/30/20	LHT	CONSTRUCTION							
Ш											
Ш											

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/21

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:

REVISION:

Exhibit D

Structural Analysis Report

Date: August 17, 2020

Denice Nicholson Crown Castle 3 Corporate Dr Clifton Park, NY 12065 Paul J. Ford and Company 250 E. Broad St., Ste 600 Columbus, OH 43215

614-221-6679

Subject: Structural Analysis Report

Carrier Designation: T-Mobile Co-Locate

Carrier Site Number: CT11896A

Carrier Site Name: CT896/Concrete Pole

Crown Castle Designation: Crown Castle BU Number: 823531

Crown Castle Site Name: CT896/M&M Concrete Pole

Crown Castle JDE Job Number: 559234 Crown Castle Work Order Number: 1875111 Crown Castle Order Number: 479842 Rev. 4

Engineering Firm Designation: Paul J. Ford and Company Project Number: 37520-1749.002.7805

Site Data: 41 Padanaram Rd, Danbury, Fairfield County, CT

Latitude 41° 25' 8.1", Longitude -73° 27' 43"

80 Foot - Wood Monopole Tower

Dear Denice Nicholson,

Paul J. Ford and Company is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Proposed Equipment Configuration

Sufficient Capacity (66.3%)

This analysis utilizes an ultimate 3-second gust wind speed of 120 mph as required by the 2018 Connecticut State Building Code and Appendix N. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Respectfully submitted by:

Seth Tschanen, P.E. Project Engineer

stschanen@pauliford.com

OF CONNEC 2029.08.17 15: ‡6:51-04'00'

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Table 5 – Tower Component Stresses vs. Capacity – LC5

4.1) Recommendations

5) APPENDIX A

CCI Wood Pole Report Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is an 80 ft Monopole tower designed by LAMINATED WOOD SYSTEMS, INC. in September of 2005.

2) ANALYSIS CRITERIA

NDS Revision: 2015 Risk Category: II

Wind Speed: 120 mph

Exposure Category:BTopographic Factor:1Ice Thickness:1.5 inWind Speed with Ice:50 mphService Wind Speed:60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Flevation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	ericsson	RRUS 4449		
70.0	70.0	3	ericsson	AIR 32 B2A/B66AA w/ Mount Pipe	7	1 5/8
78.0	78.0	3	rfs celwave	APXVAARR24_43-U-NA20 w/ Mount Pipe	2	1 1/2
		1	tower mounts	T-Arm Mount [TA 702-3]		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Flovation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	alcatel lucent	1900MHZ RRH		
		3	alcatel lucent	800MHZ RRH		
70.0	70.0	3	alcatel lucent	RRH2X50-800	3	1 1/4
70.0	70.0	3	commscope	NNVV-65B-R4 w/ Mount Pipe	1	1 5/8
		3	nokia	AAHC w/ Mount Pipe		
		1	tower mounts	Sector Mount [SM 502-3]		

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
4-GEOTECHNICAL REPORTS	FDH Velocitel, 15BKTB1600, 6/9/15	3529191	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	Laminated Wood Systems, TMOB-0018.06A1, 9/20/05	3914350	CCISITES
4-TOWER MANUFACTURER DRAWINGS	Laminated Wood Systems, TMOB-0018.06A1, 9/20/05	3529192	CCISITES

3.1) Analysis Method

CCI Wood Pole Tool (version 2.1.0), a tool internally developed by Crown Castle, was used to calculate member stresses for various load cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 Standard.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

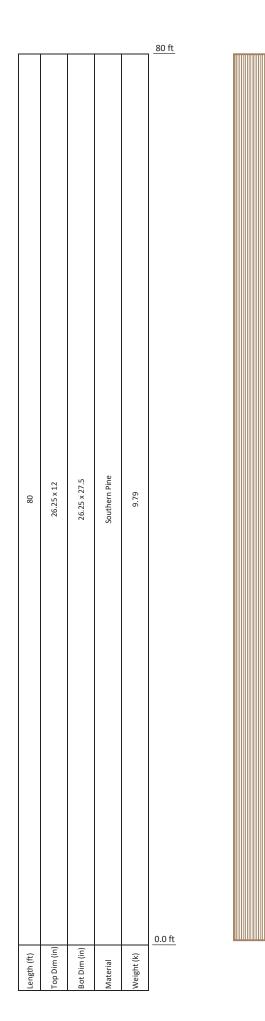
Table 4 - Section Capacity (Summary)

Elevation (ft)	Size	Controlling Direction	f _b (psi)	f _c (psi)	F' _b (psi)	F'c (psi)	% Capacity	Pass / Fail
80	26.25 x 12	X-axis	0.00	0.00	2624.28	70.05	0.0	Pass
78	26.25 x 12.3875	X-axis	3.12	3.58	2620.11	73.67	0.4	Pass
73	26.25 x 13.35625	X-axis	118.29	4.62	2610.27	84.05	5.6	Pass
70	26.25 x 13.9375	X-axis	187.38	12.56	2604.71	91.36	12.6	Pass
65	26.25 x 14.90625	X-axis	384.99	13.07	2595.98	105.86	21.5	Pass
60	26.25 x 15.875	X-axis	557.83	13.58	2587.82	124.08	28.1	Pass
55	26.25 x 16.84375	X-axis	709.80	14.11	2580.16	147.43	33.5	Pass
50	26.25 x 17.8125	X-axis	844.02	14.64	2572.96	178.00	37.9	Pass
45	26.25 x 18.78125	X-axis	962.98	15.17	2566.15	219.08	41.7	Pass
40	26.25 x 19.75	X-axis	1068.72	15.72	2559.71	276.02	45.0	Pass
35	26.25 x 20.71875	X-axis	1162.89	16.26	2553.59	357.94	48.0	Pass
30	26.25 x 21.6875	X-axis	1246.83	16.81	2547.76	481.16	50.7	Pass
25	26.25 x 22.65625	X-axis	1321.68	17.37	2542.2	675.54	53.2	Pass
20	26.25 x 23.625	X-axis	1388.78	17.92	2536.88	987.47	55.5	Pass
15	26.25 x 24.59375	X-axis	1449.21	18.48	2531.79	1383.57	57.7	Pass
10	26.25 x 25.5625	X-axis	1503.89	19.05	2526.9	1604.73	59.7	Pass
5	26.25 x 26.53125	X-axis	1553.57	19.61	2522.21	1676.39	61.7	Pass
0	26.25 x 27.5	X-axis	1598.89	20.13	2517.69	1693.46	63.5	Pass
							Summary	
						Rating =	63.5	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC5

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail	
1	Base Foundation Structural	0	66.0	Pass	
1	Base Foundation Soil Interaction	0	66.3	Pass	

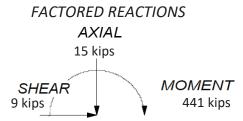
Structure Rating (max from all components) =	66.3%
--	-------


Notes:

- All structural ratings are per TIA-222-H Section 15.5
- 1) See additional documentation in "Appendix C Additional Calculations" for calculations supporting the % capacity consumed.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.


APPENDIX A CCI WOOD POLE REPORT OUTPUT

TOWER ANALYSIS NOTES

- 1. Tower is located in Fairfield County, CT
- 2. Tower was analyzed for a 120 mph 3-second gust wind in accordance with ASCE 7-10
- Exposure category B used in analysis
 Topographic Kzt factor of 1 used in analaysis.

TOWER RATING: 63.5%

120 mph Ultimate 3-sec Gust Wind Speed

Geometry

Pole Data:

Lumber Type:	Glulam	
Pole Length:	80	f
Wood Species:	Southern Pine	1
Wood Database:	24F-V5	1
Design Interval:	5	f

Pole Properties:

Eminy =	790000	psi					
Fby =	1750	psi					
Eminx =	900000	psi					
Fbx =	2400	psi					
Fc =	1450	psi					

Wood Density:	0.034	kcf
Cond. Treatment:	Air Dried	
Temperature:	90	°F

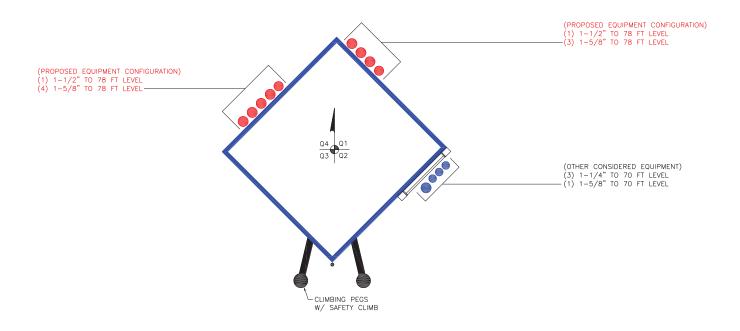
Pole Geometry:

Diameter	Diameter	X-Axis Top	X-Axis Bottom Width "b"	Raceway X-Axis	Y-Axis Top	Y-Axis Bottom	Raceway Y-Axis
Top (in)	Bottom (in)	Width "b" (in)	(in)	Width (in)	Width "d" (in)	Width "d" (in)	Width (in)
		26.25	26.25	0	12	27.5	0

Discrete Loading

Mount CL Elev (ft)	Vertical Offset (ft)	Database	Model	Qty	Offset Type	Face	Azimuth	C _a A _a Front (ft ²)	C _a A _a Side (ft²)	Weight (lb)
78	0	ERICSSON	AIR 32 B2A/B66AA	1	From Face	В	-30	6.75	6.87	132.20
78	0	ERICSSON	AIR 32 B2A/B66AA	1	From Face	С	0	6.75	6.87	132.20
78	0	ERICSSON	AIR 32 B2A/B66AA	1	From Face	D	30	6.75	6.87	132.20
78	0	RFS CELWAVE	APXVAARR24_43-U-NA20	1	From Face	В	-30	14.69	7.55	96.80
78	0	RFS CELWAVE	APXVAARR24_43-U-NA20	1	From Face	С	0	14.69	7.55	96.80
78	0	RFS CELWAVE	APXVAARR24_43-U-NA20	1	From Face	D	30	14.69	7.55	96.80
78	0	ERICSSON	RRUS 4449	1	From Face	В	-30	1.97	1.40	70.50
78	0	ERICSSON	RRUS 4449	1	From Face	С	0	1.97	1.40	70.50
78	0	ERICSSON	RRUS 4449	1	From Face	D	30	1.97	1.40	70.50
70	0	COMMSCOPE	NNVV-65B-R4	1	From Face	В	-30	7.55	4.23	77.40
70	0	COMMSCOPE	NNVV-65B-R4	1	From Face	С	0	7.55	4.23	77.40
70	0	COMMSCOPE	NNVV-65B-R4	1	From Face	D	30	7.55	4.23	77.40
70	0	NOKIA	AAHC	1	From Face	В	-30	4.41	2.69	103.62
70	0	NOKIA	AAHC	1	From Face	С	0	4.41	2.69	103.62
70	0	NOKIA	AAHC	1	From Face	D	30	4.41	2.69	103.62
70	0	ALCATEL LUCENT	RRH2X50-800	1	From Face	В	-30	1.70	1.28	52.90
70	0	ALCATEL LUCENT	RRH2X50-800	1	From Face	С	0	1.70	1.28	52.90
70	0	ALCATEL LUCENT	RRH2X50-800	1	From Face	D	30	1.70	1.28	52.90
70	0	ALCATEL LUCENT	1900MHZ RRH	1	From Face	В	-30	2.49	3.26	44.00
70	0	ALCATEL LUCENT	1900MHZ RRH	1	From Face	С	0	2.49	3.26	44.00
70	0	ALCATEL LUCENT	1900MHZ RRH	1	From Face	D	30	2.49	3.26	44.00
70	0	ALCATEL LUCENT	800MHZ RRH	1	From Face	В	-30	2.13	1.77	53.00
70	0	ALCATEL LUCENT	800MHZ RRH	1	From Face	С	0	2.13	1.77	53.00
70	0	ALCATEL LUCENT	800MHZ RRH	1	From Face	D	30	2.13	1.77	53.00
78		Tower Mounts	Side Arm Mount [SO 702-:	1	None			3.22	3.22	81.00
70		Tower Mounts	Sector Mount [SM 502-3]	1	None			33.02	33.02	1673.10

Linear Loading


	0						
Start Height (ft)	End Height (ft)	Nominal Width (in)	Face	Total #	# Exposed	Diameter (in)	Weight (plf)
0	78	1-5/8	А	4	1	1.98	0.82
0	78	1-1/2	A	1	0	1.5	0.9835
0	78	1-5/8	В	3	1	1.98	0.82
0	78	1-1/2	В	1	0	1.5	0.9835
0	70	1-1/4	С	3	0	1.54	1.3
0	70	1-5/8	С	1	1	1.66	2.39

Results

Elevation (ft)	Breadth (in)	Depth (in)	Axial (k)	Shear (k)	Moment (k-ft)	f _b (psi)	f _c (psi)	F' _b (psi)	F' _c (psi)	% Capacity
80	26.25	12.00	0.000	0.087	0.000	0.00	0.00	2624.28	70.05	0.0%
78	26.25	12.39	1.166	1.504	0.174	3.12	3.58	2620.11	73.67	0.4%
73	26.25	13.36	1.621	1.859	7.693	118.29	4.62	2610.27	84.05	5.6%
70	26.25	13.94	4.596	3.583	13.270	187.38	12.56	2604.71	91.36	12.6%
65	26.25	14.91	5.113	4.013	31.188	384.99	13.07	2595.98	105.86	21.5%
60	26.25	15.88	5.660	4.433	51.253	557.83	13.58	2587.82	124.08	28.1%
55	26.25	16.84	6.237	4.843	73.419	709.80	14.11	2580.16	147.43	33.5%
50	26.25	17.81	6.844	5.242	97.634	844.02	14.64	2572.96	178.00	37.9%
45	26.25	18.78	7.481	5.628	123.841	962.98	15.17	2566.15	219.08	41.7%
40	26.25	19.75	8.148	6.002	151.983	1068.72	15.72	2559.71	276.02	45.0%
35	26.25	20.72	8.845	6.363	181.996	1162.89	16.26	2553.59	357.94	48.0%
30	26.25	21.69	9.572	6.707	213.808	1246.83	16.81	2547.76	481.16	50.7%
25	26.25	22.66	10.329	7.051	247.344	1321.68	17.37	2542.20	675.54	53.2%
20	26.25	23.63	11.116	7.396	282.600	1388.78	17.92	2536.88	987.47	55.5%
15	26.25	24.59	11.933	7.740	319.578	1449.21	18.48	2531.79	1383.57	57.7%
10	26.25	25.56	12.780	8.084	358.278	1503.89	19.05	2526.90	1604.73	59.7%
5	26.25	26.53	13.658	8.428	398.698	1553.57	19.61	2522.21	1676.39	61.7%
0	26.25	27.50	14.530	8.600	440.840	1598.89	20.13	2517.69	1693.46	63.5%

Elevation (ft)	Breadth (in)	Depth (in)	Axial (k)	Shear (k)	Moment (k-ft)	f _b (psi)	f _c (psi)	F' _b (psi)	F' _c (psi)	% Capacity
80	12.00	26.25	0.000	0.040	0.000	0.00	0.00	1814.35	61.52	0.0%
78	12.39	26.25	1.166	1.288	0.080	0.68	3.58	1871.05	64.70	0.3%
73	13.36	26.25	1.621	1.460	6.523	51.03	4.62	1978.44	73.82	3.1%
70	13.94	26.25	4.596	3.013	10.903	81.74	12.56	2023.51	80.25	7.0%
65	14.91	26.25	5.113	3.246	25.968	182.03	13.07	2076.61	93.00	11.7%
60	15.88	26.25	5.660	3.489	42.201	277.77	13.58	2111.86	109.03	15.9%
55	16.84	26.25	6.237	3.741	59.648	370.02	14.11	2136.29	129.57	19.9%
50	17.81	26.25	6.844	4.000	78.353	459.62	14.64	2153.95	156.49	23.6%
45	18.78	26.25	7.481	4.265	98.352	547.18	15.17	2167.17	192.69	27.3%
40	19.75	26.25	8.148	4.534	119.675	633.15	15.72	2177.37	242.93	30.8%
35	20.72	26.25	8.845	4.806	142.344	717.88	16.26	2185.43	315.39	34.3%
30	21.69	26.25	9.572	5.078	166.372	801.58	16.81	2191.93	424.88	37.7%
25	22.66	26.25	10.329	5.362	191.763	884.40	17.37	2197.26	599.47	41.1%
20	23.63	26.25	11.116	5.659	218.574	966.72	17.92	2201.71	889.57	44.5%
15	24.59	26.25	11.933	5.967	246.868	1048.85	18.48	2205.45	1309.67	47.9%
10	25.56	26.25	12.780	6.288	276.705	1131.06	19.05	2208.65	1587.09	51.4%
5	26.53	26.25	13.658	6.621	308.145	1213.59	19.61	2240.00	1673.78	54.2%
0	27.50	26.25	14.530	6.792	341.250	1296.62	20.13	2240.00	1693.44	57.9%

APPENDIX B BASE LEVEL DRAWING

BUSINESS UNIT: 823531 TOWER ID: C_BASELEVEL

APPENDIX C ADDITIONAL CALCULATIONS

NDS Version	2015-ASD

X-X Base Reactions

Moment (k-ft):	440.84
Axial (k):	14.53
Shear (k):	8.60

Y-Y Base Reactions

Moment (k-ft):	341.25
Axial (k):	14.53
Shear (k):	6.79

Pole Properties

Encased:	Yes	Select
Depth to check pole (ft):	2.3	

Foundation Dimensions

Caisson Diameter (ft):	4.5
Depth Below Existing Grade (ft):	13.5
Extension Above Grade (ft):	0

Soil Properties

		_
Ultimate Gross Bearing (ksf):	42.20	
Neglect Top Layer:	Yes	Select
Groundwater:	No	Select

Layer Top Depth (ft)	Layer Bottom Depth (ft)	Layer Thickness (ft)	Effective Unit Weight of Soil (pcf)	Cohesion (ksf)	Internal Friction Angle (deg)	SPT Blow Count	Allowable Skin Friction (ksf)
0	2.25	2.25	100	0	27	0	0.000
2.25	4	1.75	125	0	37	0	0.000
4	13.5	9.5	130	0	40	50	0.584

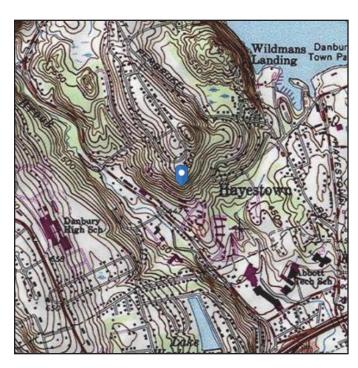
Soil Checks

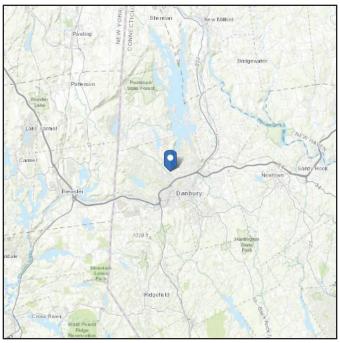
	Available Capacity	Demand	Check	% Capacity
Pier-Soil Interaction (FOS):	3.02	2.00	Pass	66.3%
Bearing (kips):	414.02	46.74	Pass	11.3%

Structural Checks

	F' _b (psi)	F' _c (psi)	Bending (psi	Axial (psi)	Check	% Capacity
X-X Embedded Wood Capacity:	2517.69	1693.46	1661.05	20.60	Pass	66.0%
Y-Y Embedded Wood Capacity:	2240.00	1693.44	1374.21	20.60	Pass	61.3%

Address:


No Address at This Location


ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 571.29 ft (NAVD 88)

Risk Category: || Latitude: 41.418917

Soil Class: D - Stiff Soil Longitude: -73.461944

Wind

Results:

Wind Speed: 116 Vmph 10-year MRI 76 Vmph 25-year MRI 85 Vmph 50-year MRI 90 Vmph 100-year MRI 96 Vmph

Data Source: ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, incorporating errata of

March 12, 2014

Date Accessed: Thu May 02 2019

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Ice

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Thu May 02 2019

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Date: August 7, 2020

Kevin Morrow Crown Castle 6325 Ardrey Kell Road Charlotte, NC 28277 Paul J Ford and Company 250 E. Broad Street, Suite 600

Columbus, OH 43215 614.221.6679

Subject: Mount Analysis Report

Carrier Designation: T-Mobile Equipment Change-out

Carrier Site Number: CT11896A

Carrier Site Name: CT896/Concrete Pole

Crown Castle Designation: Crown Castle BU Number: 823531

Crown Castle Site Name: CT896/M&M Concrete

Pole

Crown Castle JDE Job Number: 559234
Crown Castle Purchase Order Number: 1557309
Crown Castle Order Number: 479842 Rev. 4

Engineering Firm Designation: Paul J Ford and Company Project Number: A37520-1749.001.7190

Site Data: 41 Padanaram Rd, Danbury, Fairfield County, CT 06811

Latitude 41.418917°, Longitude -73.461944°

Structure Information: Tower Height & Type: 80 Foot Monopole

Mount Elevation: 78 Foot

Mount Type: (3) 1.25 Foot T-Arm

Dear Kevin Morrow,

Paul J Ford and Company is pleased to submit this "Mount Analysis Report" to determine the structural integrity of the T-Mobile antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

1.25' T-Arm SUFFICIENT

This analysis utilizes an ultimate 3-second gust wind speed of 120 mph as required by the 2018 Connecticut State Building Code and Appendix N. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Respectfully submitted by:

Anthony Pelino, E.I. Structural Designer apelino@pauliford.com CONNECTOR 2020.98.07
10.45-31-04'00'
No. 30301
CENSED AND THE CONNECTOR STATE OF THE CONNEC

0.5.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Capacity

4.1) Recommendations

5) STANDARD CONDITIONS

6) APPENDIX A

SOFTWARE INPUT CALCULATIONS

7) APPENDIX B

SOFTWARE ANALYSIS OUTPUT

1) INTRODUCTION

The existing mounts under consideration are (3) 1.25' T-Arm mounts estimated based on photos and models of previously analyzed mounts of similar type.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Ultimate Wind Speed: 120 mph

Exposure Category:

Topographic Factor at Base:

Topographic Factor at Mount:

1.00

Ice Thickness:

1.5 in

Wind Speed with Ice:

50 mph

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
		3	ERICSSON	AIR 32 B2A B66AA	
78	78	3	RFS CELWAVE	APXVAARR24_43-U- NA20	(3)-SECTOR MOUNT (0.6')
		3	ERICSSON	RRUS 4449	

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Photos	Dated: 06/17/2020	-	CCISites
Order	ID: 479842 Rev. 4 Dated: 04/12/2019	-	CCISites
Tower Manufacturer Drawings	Laminated Wood Systems, TMOB- 0018-06A1, Dated: 09/20/2005	3529192	CCISites

3.1) Analysis Method

RISA-3D (version 17.0.3), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases.

A tool internally developed, using Microsoft Excel, by Paul J. Ford and Company was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision C).

3.2) Assumptions

- The analysis of the existing tower or the effect of the mount attachment to the tower is not within the current scope of work.
- 2) The antenna mounting system was properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications and all bolts are tightened as specified by the manufacturer and AISC requirements.
- The configuration of antennas, mounts, and other appurtenances are as specified in Table 1.
- 4) All member connections have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report. All U-Bolt connections have been properly tightened. This analysis will be required to be revised if the existing conditions in the field differ from those shown in the above referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Steel grades are as follows, unless noted otherwise:
 - a) Channel, Solid Round, Angle, Plate, Unistrut
 ASTM A36 (GR 36)

 b) Pipe
 ASTM A53 (GR 35)

 c) HSS (Rectangular)
 ASTM 500 (GR B-46)

 d) HSS (Round)
 ASTM 500 (GR B-42)

 e) Threaded Rods
 ASTM A36 (GR 36)

 f) Connection Bolts
 ASTM A325

 g) U-Bolts
 SAE J429 (GR 2)
- 6) Proposed equipment is to be installed in the locations specified in Appendix A. Any changes to the proposed equipment locations will render this report invalid.
- 7) Mount has been modeled based on the photographs and/or the TIA inspection referenced in Table 2. Member information and dimensions not provided have been assumed based on previous experience with similar mounts. No guarantee can be made as to the accuracy of these assumptions without a complete mount mapping.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J Ford and Company should be notified to determine the effect on the structural integrity of the mount.

4) ANALYSIS RESULTS

Table 3 - Mount Component Capacity

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1,2	Face Horizontals		98.5	Pass
1,2	Standoff Members	78	53.4	Pass
1,2	Mount Pipes	70	43.4	Pass
1,2	Mount to Tower Connection		76.2	Pass

Harris B. Complete and Language and Complete	00.50/
Mount Rating (max from all components) =	98.5%

Notes:

4.1) Recommendations

The mount has sufficient capacity to carry the proposed loading configuration. No modifications are required at this time.

See additional documentation in "Appendix C – Software Analysis Output" for calculations supporting the % capacity consumed.

²⁾ Rating per TIA-222-H, Section 15.5

STANDARD CONDITIONS FOR FURNISHING OF PROFESSIONAL ENGINEERING SERVICES ON EXISTING MOUNTS BY PAUL J. FORD AND COMPANY

- 1) It is the responsibility of the client to ensure that the information provided to Paul J. Ford and Company is accurate and complete. Paul J. Ford and Company will rely on the accuracy and completeness of such information in performing or furnishing services under this project.
- 2) If the existing conditions are not as represented on the referenced drawings and/or documents, Paul J. Ford and Company should be contacted immediately to evaluate the significance of the deviation.
- 3) The mount has been analyzed according to the minimum design loads recommended by the Reference Standard. If additional design loads are required, Paul J. Ford and Company should be made aware of this prior to the start of the project.
- 4) The standard of care for all Professional Engineering Services performed or furnished by Paul J. Ford and Company under this project will be the skill and care used by members of the Consultant's profession practicing under similar circumstances at the same time and in the same locality.
- 5) All Services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Paul J. Ford and Company is not responsible for the conclusions, opinions and/or recommendations made by others based on the information supplied herein.

APPENDIX A SOFTWARE INPUT CALCULATION

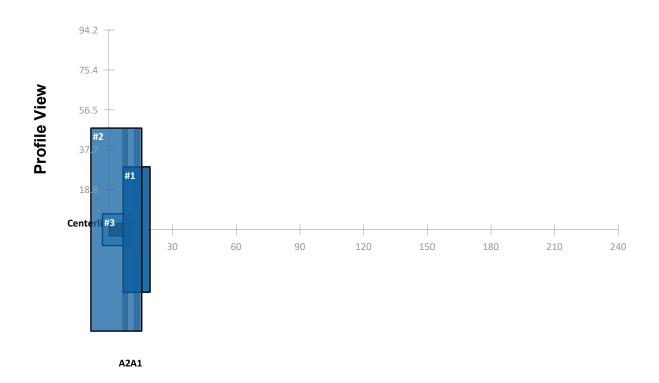
v2.4, Effective 6/16/2020

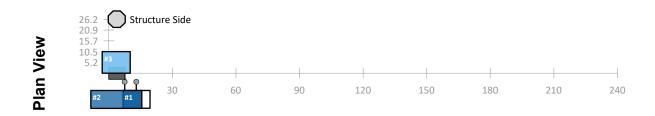
Project # 37520-1749.001.7190 degrees

Analysis 30
EPA Method TIA
File _Client.r3d

Mount Loading per TIA-222-H

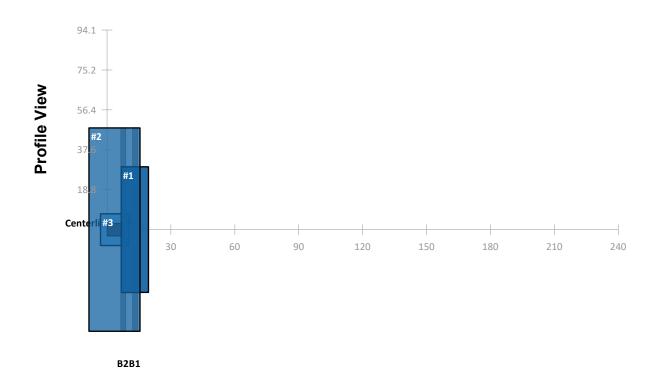
Structure & Wind Speed	Topography	Velocity Pressure Coefficients	Ice Loading
Analysis Scope= Client Structure Type = Mount Mount Type = 3 Sectors Mount Centerline (2) = 78 t C/L Y Coordinate = 0 in Ultimate Wind Speed = 120 mph Service Wind Speed = 30 mph	Risk Category = II Exposure Category = B Topographic Category = 1 Structure Base Height (Z ₁) = 571.29 ft Crest Height (H) = ft	$ Z_g = $	$ \begin{aligned} &I_i &= & 1.00 \\ &K_{ss} &= & 1.0 \\ &q_{u^2} &= & 5.60 \\ &K_{iz} &= & 1.09 \\ &t_{z} &= & 1.63 \\ &h &= & & & & & & & & & \\ && & & & & & & &$
Ice Wind Speed = 50	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

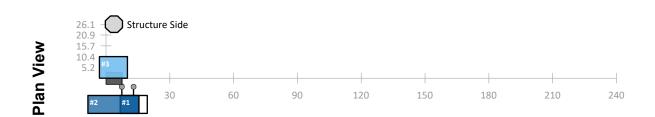

Antennas


ltem	Status	Mounting Location		Antenna	Height (in)	Width (in)	Depth (in)	Flat or Round	Weight (lbs)	Sector / Face	Position	Quantity	Orientation	tovTower	Top/Bottom Mounting Point Spacing	Override Spacing (in)	Max Antenna C/L (ft)	Min Antenna C/L (ft)	Antenna C/L (ft)	Mount Location	Antenna Bottom Mount Location from Mount Pipe Bottom (in)	Antenna	Force per	I Transverse Wind Force per Antenna (lbs)
1	E	Mount	ERICSSON	AIR 32 B2A B66AA	59.25	12.87	8.66	Flat	132.2	С	1	1	Normal	No	53.25		79.781	76.219	78	74.63	21.38		194.664	141.059
2	P	Mount	RFS CELWAVE	APXVAARR24_43-U-NA20_CCI CFD	95.9	24	8.7	Flat	128	С	2	1	Normal	Yes	89.90		78.254	77.746	78	92.95	3.05		416.913	151.191
3	Р	Mount	ERICSSON	RRUS 4449	14.96	13.19	10.43	Flat	73	O	2	1	Normal	No	8.96		81.627	74.373	78	52.48	43.52		46.732	36.953
4	Е	Mount	ERICSSON	AIR 32 B2A B66AA	59.25	12.87	8.66	Flat	132.2	Α	1	1	Normal	No	53.25		79.781	76.219	78	74.63	21.38		194.664	141.059
5	P	Mount	RFS CELWAVE	APXVAARR24_43-U-NA20_CCI CFD	95.9	24	8.7	Flat	128	Α	2	1	Normal	Yes	89.90		78.254	77.746	78	92.95	3.05		416.913	151.191
6	Р	Mount	ERICSSON	RRUS 4449	14.96	13.19	10.43	Flat	73	Α	2	1	Normal	No	8.96		81.627	74.373	78	52.48	43.52		46.732	36.953
7	Е	Mount	ERICSSON	AIR 32 B2A B66AA	59.25	12.87	8.66	Flat	132.2	В	1	1	Normal	No	53.25		79.781	76.219	78	74.63	21.38		194.664	141.059
8	P	Mount	RFS CELWAVE	APXVAARR24_43-U-NA20_CCI CFD	95.9	24	8.7	Flat	128	В	2	1	Normal	Yes	89.90		78.254	77.746	78	92.95	3.05		416.913	151.191
9	P	Mount	ERICSSON	RRUS 4449	14.96	13.19	10.43	Flat	73	В	2	1	Normal	No	8.96		81.627	74.373	78	52.48	43.52		46.732	36.953

Dishes

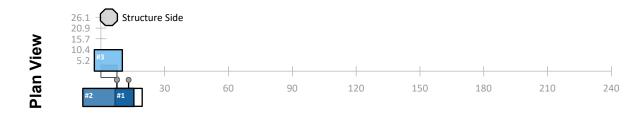
ltem	Status	Mounting Location	Manufacturer	Microwave Dish	Dia (in)	Dish Type	Weight (lbs)	Sector / Face	Position	Top/Bottom Mounting Point Spacing	Override Spacing (in)	Max Dish C/L (ft)	Min Dish C/L (ft)	Dish C/L (ft)	Dish Top Mount Location from Mount Pipe Bottom	Dish Bottom Mount Location from Mount Pipe Bottom	Override Top Dish Mounting Location (in)	Override Bottom Dish Mounting Location (in)
------	--------	----------------------	--------------	----------------	-------------	-----------	-----------------	------------------	----------	---	-----------------------------	-------------------------	-------------------------	------------------	---	--	--	---


Sector A



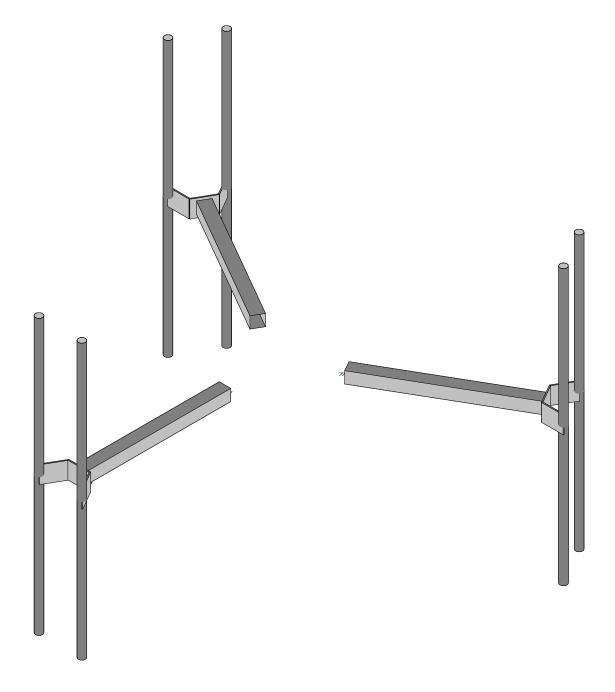
	Ref ID	Туре	Manufacturer	Model	Height (in)	Width (in)	Depth (in)	Center Line (ft)	Mount Pipe	Tangential Offset (in)	Normal Offset (in)
Ī	#1	Antenna	ERICSSON	AIR 32 B2A B66AA	59.25	12.87	8.66	78.00	A1	0.00	3.00
ſ	#2	Antenna	RFS CELWAVE	APXVAARR24_43-U-NA20	95.90	24.00	8.70	78.00	A2	0.00	3.00
I	#3	TME/RRH	ERICSSON	RRUS 4449	14.96	13.19	10.43	78.00	A2	0.00	-3.00

Sector B



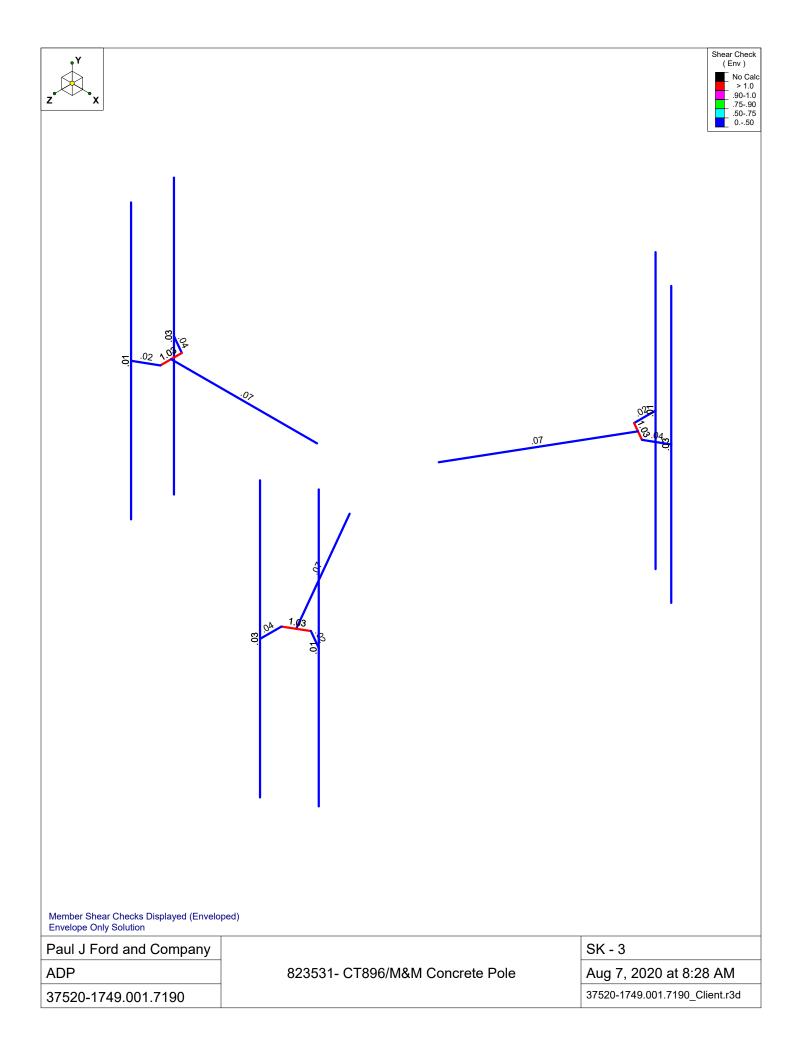
	Ref ID	Туре	Manufacturer	Model	Height (in)	Width (in)	Depth (in)	Center Line (ft)	Mount Pipe	Horizontal Offset (in)	Lateral Offset (in)
	#1	Antenna	ERICSSON	AIR 32 B2A B66AA	59.25	12.87	8.66	78.00	B1	0.00	3.00
Ī	#2	Antenna	RFS CELWAVE	APXVAARR24_43-U-NA20	95.90	24.00	8.70	78.00	B2	0.00	3.00
	#3	TME/RRH	ERICSSON	RRUS 4449	14.96	13.19	10.43	78.00	B2	0.00	-3.00


Sector C



Ref ID	Type	Manufacturer	Model	Height (in)	Width (in)	Depth (in)	Center Line (ft)	Mount Pipe	Horizontal Offset (in)	Lateral Offset (in)
#1	Antenna	ERICSSON	AIR 32 B2A B66AA	59.25	12.87	8.66	78.00	C1	0.00	3.00
#2	Antenna	RFS CELWAVE	APXVAARR24_43-U-NA20	95.90	24.00	8.70	78.00	C2	0.00	3.00
#3	TME/RRH	ERICSSON	RRUS 4449	14.96	13.19	10.43	78.00	C2	0.00	-3.00

APPENDIX B SOFTWARE ANALYSIS OUTPUT



Envelope Only Solution

Paul J Ford and Company		SK - 1
ADP	823531- CT896/M&M Concrete Pole	Aug 5, 2020 at 3:27 PM
37520-1749.001.7190		37520-1749_Client.r3d

Company
Designer
Job Number
Model Name

: Paul J Ford and Company
ADP
: ADP
: 37520-1749.001.7190
Med S23531- CT896/M&M Cond

: 823531- CT896/M&M Concrete Pole

Aug 7, 2020 8:28 AM Checked By:_

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (in/sec^2)	386.4
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Υ
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 15th(360-16): LRFD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	None
Cold Formed Steel Code	None
Wood Code	None
Wood Temperature	< 100F
Concrete Code	None
Masonry Code	None
Aluminum Code	None - Building
Stainless Steel Code	AISC 14th(360-10): ASD
Adjust Stiffness?	Yes(Iterative)

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

Company : Paul J Ford and Company
Designer : ADP
Job Number : 37520-1749.001.7190
Model Name : 823531- CT896/M&M Cond

: 823531- CT896/M&M Concrete Pole

Aug 7, 2020 8:28 AM Checked By:_

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (in)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
TZ(sec)	Not Entered
RX	3
RZ	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	I or II
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	4
Cd X	4
Rho Z	1
Rho X	1

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E	.Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.4	65	1.3

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
1	M1	N3	N5		, ,	PL6" x 0.38"	None	None	A36 Gr.36	Typical
2	CBC1	N5	N6			PL6" x 0.38"	None	None	A36 Gr.36	Typical
3	M3	N6	N4			PL6" x 0.38"	None	None	A36 Gr.36	Typical
4	M4	N2	N1			HSS4X4X3	None	None	A500 Gr.B Rect	Typical
5	C2	N9	N7			PIPE 2.0	None	None	A53 Gr.B	Typical
6	C1	N10	N8			PIPE 2.0	None	None	A53 Gr.B	Typical
7	M7	N13	N15			PL6" x 0.38"	None	None	A36 Gr.36	Typical
8	CBB1	N15	N16			PL6" x 0.38"	None	None	A36 Gr.36	Typical
9	M9	N16	N14			PL6" x 0.38"	None	None	A36 Gr.36	Typical
10	M10	N12	N11			HSS4X4X3	None	None	A500 Gr.B Rect	Typical
11	B2	N19	N17			PIPE 2.0	None	None	A53 Gr.B	Typical
12	B1	N20	N18			PIPE 2.0	None	None	A53 Gr.B	Typical
13	M13	N23	N25			PL6" x 0.38"	None	None	A36 Gr.36	Typical
14	CBA1	N25	N26			PL6" x 0.38"	None	None	A36 Gr.36	Typical
15	M15	N26	N24			PL6" x 0.38"	None	None	A36 Gr.36	Typical
16	M16	N22	N21			HSS4X4X3	None	None	A500 Gr.B Rect	Typical
17	A2	N29	N27			PIPE 2.0	None	None	A53 Gr.B	Typical
18	A1	N30	N28			PIPE_2.0	None	None	A53 Gr.B	Typical

Company : Paul J Ford and Company
Designer : ADP
Job Number : 37520-1749.001.7190
Model Name : 823531- CT896/M&M Concrete Pole

Aug 7, 2020 8:28 AM Checked By:_

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl RatAnalysis	Inactive	Seismic
1	M1					·	Yes	** NA **		None
2	CBC1						Yes	** NA **		None
3	M3						Yes	** NA **		None
4	M4						Yes	** NA **		None
5	C2						Yes	** NA **		None
6	C1						Yes	** NA **		None
7	M7						Yes	** NA **		None
8	CBB1						Yes	** NA **		None
9	M9						Yes	** NA **		None
10	M10						Yes	** NA **		None
11	B2						Yes	** NA **		None
12	B1						Yes	** NA **		None
13	M13						Yes	** NA **		None
14	CBA1						Yes	** NA **		None
15	M15						Yes	** NA **		None
16	M16						Yes	** NA **		None
17	A2						Yes	** NA **		None
18	A1						Yes	** NA **		None

Hot Rolled Steel Design Parameters

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]	Lcomp bot[in]	L-torqu	. Kyy	Kzz	Cb	Function
1	M1	PL6" x 0.38"	7.5									Lateral
2	CBC1	PL6" x 0.38"	7.5									Lateral
3	M3	PL6" x 0.38"	7.5									Lateral
4	M4	HSS4X4X3	51									Lateral
5	C2	PIPE 2.0	96									Lateral
6	C1	PIPE 2.0	96									Lateral
7	M7	PL6" x 0.38"	7.5									Lateral
8	CBB1	PL6" x 0.38"	7.5									Lateral
9	M9	PL6" x 0.38"	7.5									Lateral
10	M10	HSS4X4X3	51									Lateral
11	B2	PIPE 2.0	96									Lateral
12	B1	PIPE 2.0	96									Lateral
13	M13	PL6" x 0.38"	7.5									Lateral
14	CBA1	PL6" x 0.38"	7.5									Lateral
15	M15	PL6" x 0.38"	7.5									Lateral
16	M16	HSS4X4X3	51									Lateral
17	A2	PIPE 2.0	96									Lateral
18	A1	PIPE 2.0	96									Lateral

Basic Load Cases

	BLC Description	Category	X Gravity Y Gravity Z Gravity	Joint	Point	Distribut	.Area(MeSurface(
1	Dead	None	-1.1		18		, ,
2	Wind 0	None			36	36	
3	Wind 30	None			36	36	
4	Wind 60	None			36	36	
5	Wind 90	None			36	36	
6	Wind 120	None			36	36	
7	Wind 150	None			36	36	
8	Ice Load	None			18	18	
9	Ice 0	None			36	36	
10	Ice 30	None			36	36	
11	Ice 60	None			36	36	

Company
Designer
Job Number
Model Name

: Paul J Ford and Company
ADP
: ADP
: 37520-1749.001.7190
Med S23531- CT896/M&M Cond

: 823531- CT896/M&M Concrete Pole

Aug 7, 2020 8:28 AM Checked By:_

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
12	Ice 90	None					36	36		
13	Ice 120	None					36	36		
14	Ice 150	None					36	36		
15	Lm1	None				1				
16	Lm2	None				1				
17	Lm3	None				1				
18	Lm4	None				1				
19	Lv1	None				1				
20	Lv2	None				1				
21	Lv3	None				1				
22	Lv4	None				1				

Load Combinations

Description S P S B Fa B F																							
							Fa	В	Fa	В	Fa	В	Fa	B	Fa	В	Fa	В	Fa	В	Fa	В	Fa
_ 1		Yes Y			1.4																	ш	
2		Yes Y		1	1.2	2	1																
3		Yes Y			1.2		1															Ш	
4		Yes Y		1	1.2		1																
5	1.2 D + 1.0 Wo @ 90	Yes Y		1	1.2	5	1																
6		Yes Y		1	1.2	6	1																
7		Yes Y		1		7	1															Ш	
8		Yes Y		1	1.2																		
9	1.2 D + 1.0 Wo @ 210	Yes Y		1	1.2	3	-1															Ш	
10		Yes Y		1	1.2	4	-1																
11		Yes Y		1	1.2		-1																
12	1.2 D + 1.0 Wo @ 300	Yes Y		1	1.2	6																	
13		Yes Y		1	1.2		-1															Ш	
14		Yes Y		1	1.2	8	1	9	1														
15	1.2 D + 1.0 Di + 1.0 Wi @ 30	Yes Y		1	1.2	8	1	10	1														
16	1.2 D + 1.0 Di + 1.0 Wi @ 60	Yes Y			1.2		1	11	1														
17	1.2 D + 1.0 Di + 1.0 Wi @ 90	Yes Y		1	1.2	8	1	12	1														
18	1.2 D + 1.0 Di + 1.0 Wi @ 120	Yes Y		1	1.2	8	1	13	1														
19	1.2 D + 1.0 Di + 1.0 Wi @ 150	Yes Y		1	1.2	8	1	14	1														
20	1.2 D + 1.0 Di + 1.0 Wi @ 180	Yes Y		1	1.2	8	1	9	-1														
21	1.2 D + 1.0 Di + 1.0 Wi @ 210	Yes Y		1	1.2	8	1	10	1														
22	1.2 D + 1.0 Di + 1.0 Wi @ 240	Yes Y		1	1.2	8	1	11	-1														
23	1.2 D + 1.0 Di + 1.0 Wi @ 270	Yes Y		1	1.2	8	1	12	-1														
24	1.2 D + 1.0 Di + 1.0 Wi @ 300	Yes Y		1	1.2	8	1	13	-1														
25	1.2 D + 1.0 Di + 1.0 Wi @ 330			1	1.2	8	1	14	-1													П	
26	1.2 D + 1.5 Lm1 + 1.0 Wm @ 0	Yes Y		1	1.2	15	1.5	2	.063														
27	1.2 D + 1.5 Lm1 + 1.0 Wm @ 30	Yes Y		1	1.2	15	1.5	3	.063														
28	1.2 D + 1.5 Lm1 + 1.0 Wm @ 60	Yes Y		1	1.2	15	1.5	4	.063														
29		Yes Y		1	1.2	15	1.5	5	.063														
30		Yes Y		1	1.2	15	1.5	6	.063														
31		Yes Y							.063														
32		Yes Y		1					.063														
33	1.2 D + 1.5 Lm1 + 1.0 Wm @ 210	Yes Y		1	1.2	15	1.5	3	.063													Ш	
34		Yes Y		1	1.2	15	1.5	4	.063														
35	1.2 D + 1.5 Lm1 + 1.0 Wm @ 270	Yes Y		1	1.2	15	1.5	5	.063														
36		Yes Y		1				6	.063														
37	1.2 D + 1.5 Lm1 + 1.0 Wm @ 330	Yes Y		1	1.2	15	1.5	7	.063														
38	1.2 D + 1.5 Lm2 + 1.0 Wm @ 0				1.2	16	1.5	2	.063														
39		Yes Y							.063														
40	1.2 D + 1.5 Lm2 + 1.0 Wm @ 60	Yes Y							.063														
41	1.2 D + 1.5 Lm2 + 1.0 Wm @ 90	Yes Y							.063														

Company : Paul J Ford and Company
Designer : ADP
Job Number : 37520-1749.001.7190
Model Name : 823531- CT896/M&M Concrete Pole

: Paul J Ford and Company : ADP

Aug 7, 2020 8:28 AM Checked By:_

Load Combinations (Continued)

	Description	S P	S B	.FaB	Fa	В	Fa	В	Fa	В	<u>Fa</u>	В	Fa								
42	1.2 D + 1.5 Lm2 + 1.0 Wm @ 120	Yes Y	1	1.2 1			.063														
43	1.2 D + 1.5 Lm2 + 1.0 Wm @ 150	Yes Y	1	1.2 1	6 1.5	7	.063														1
44	1.2 D + 1.5 Lm2 + 1.0 Wm @ 180	Yes Y	1	1.2 1			.063														
45	1.2 D + 1.5 Lm2 + 1.0 Wm @ 210	Yes Y	1	1.2 1	6 1.5	3	.063														
46	1.2 D + 1.5 Lm2 + 1.0 Wm @ 240	Yes Y	1				.063														
47	1.2 D + 1.5 Lm2 + 1.0 Wm @ 270	Yes Y	1	1.2 1	6 1.5	5	.063														
48	1.2 D + 1.5 Lm2 + 1.0 Wm @ 300	Yes Y	1	1.2 1	6 1.5	6	.063														
49	1.2 D + 1.5 Lm2 + 1.0 Wm @ 330	Yes Y	1	1.2 1	6 1.5	7	.063														
50	1.2 D + 1.5 Lm3 + 1.0 Wm @ 0	Yes Y	1	1.2 1	7 1.5	2	.063														
51	1.2 D + 1.5 Lm3 + 1.0 Wm @ 30	Yes Y	1	1.2 1	7 1.5	3	.063														
52	1.2 D + 1.5 Lm3 + 1.0 Wm @ 60	Yes Y	1	1.2 1	7 1.5	4	.063														
53	1.2 D + 1.5 Lm3 + 1.0 Wm @ 90	Yes Y	1	1.2 1			.063														
54	1.2 D + 1.5 Lm3 + 1.0 Wm @ 120	Yes Y	1	1.2 1	7 1.5	6	.063														
55	1.2 D + 1.5 Lm3 + 1.0 Wm @ 150	Yes Y	1	1.2 1			.063														
56	1.2 D + 1.5 Lm3 + 1.0 Wm @ 180	Yes Y	1	1.2 1	7 1.5	2	.063														
57	1.2 D + 1.5 Lm3 + 1.0 Wm @ 210	Yes Y	1	1.2 1	7 1.5	3	.063														
58	1.2 D + 1.5 Lm3 + 1.0 Wm @ 240	Yes Y	1	1.2 1	7 1.5	4	.063														
59	1.2 D + 1.5 Lm3 + 1.0 Wm @ 270	Yes Y	1	1.2 1			.063														
60	1.2 D + 1.5 Lm3 + 1.0 Wm @ 300	Yes Y	1		7 1.5		.063														
61	1.2 D + 1.5 Lm3 + 1.0 Wm @ 330	Yes Y	1	1.2 1			.063														
62	1.2 D + 1.5 Lm4 + 1.0 Wm @ 0		1				.063														
63	1.2 D + 1.5 Lm4 + 1.0 Wm @ 30	Yes Y	1	1.2 1	8 1.5	3	.063														
64	1.2 D + 1.5 Lm4 + 1.0 Wm @ 60	Yes Y	1				.063														
65	1.2 D + 1.5 Lm4 + 1.0 Wm @ 90	Yes Y	1				.063														
66	1.2 D + 1.5 Lm4 + 1.0 Wm @ 120	Yes Y	1				.063														
67	1.2 D + 1.5 Lm4 + 1.0 Wm @ 150	Yes Y	1				.063														
68	1.2 D + 1.5 Lm4 + 1.0 Wm @ 180	Yes Y	1		8 1.5		0														
69	1.2 D + 1.5 Lm4 + 1.0 Wm @ 210	Yes Y	1	1.2 1			0														
70	1.2 D + 1.5 Lm4 + 1.0 Wm @ 240	Yes Y	1	1.2 1			0														
71	1.2 D + 1.5 Lm4 + 1.0 Wm @ 270	Yes Y	1		8 1.5		0														
72	1.2 D + 1.5 Lm4 + 1.0 Wm @ 300	Yes Y	1	1.2 1			0														
73	1.2 D + 1.5 Lm4 + 1.0 Wm @ 330	Yes Y	1		8 1.5		0														
74	1.2 D + 1.5 Lv1	Yes Y	1	1.2 1																	
75	1.2 D + 1.5 Lv2	Yes Y	1	1.2 2																	
76	1.2 D + 1.5 Lv3	Yes Y	1																		
77	1.2 D + 1.5 Lv4	Yes Y	1	1.2 2	2 1.5																
78	1.0 D	Yes Y	1	1																	

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N1	max	786.609	11	1412.557	25	505.482	2	.248	15	2.332	3	-2.054	78
2		min	-786.609	5	454.43	78	-505.482	8	.043	78	-2.323	9	-6.451	17
3	N11	max	620.357	12	1412.557	25	716.327	2	-1.8	78	2.332	11	3.013	14
4		min	-620.357	6	454.43	78	-716.327	8	-5.71	25	-2.323	5	.99	78
5	N21	max	620.357	10	1412.557	25	716.327	2	5.464	22	2.332	7	3.439	20
6		min	-620.357	4	454.43	78	-716.327	8	1.757	78	-2.323	13	1.064	78
7	Totals:	max	1938.136	11	4237.67	25	1938.136	2						
8		min	-1938.136	5	1363.29	78	-1938.136	8						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code C	.Loc[in]	LC	Shear	Loc[in]	Dir	LC phi*Pnc [lb]	phi*Pnt [lb]	_phi*Mn y	phi*Mn z	. Cb	<u>Eqn</u>
1	CBC1	PL6" x 0.38"	.660	3.75	4	1.034	3.75	У	23 57757.121	73872	.585	9.234	1	H1-1b
2	CBB1	PL6" x 0.38"	.660	3.75	12	1.034	3.75	У	19 57757.121	73872	.585	9.234	1	H1-1b
3	CBA1	PL6" x 0.38"	.660	3.75	8	1.034	3.75	ý	15 57757.121	73872	.585	9.234	1	H1-1b

Company Designer Job Number Model Name

: Paul J Ford and Company: ADP: 37520-1749.001.7190

: 823531- CT896/M&M Concrete Pole

Aug 7, 2020 8:28 AM Checked By:_

Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)

	Member	Shape	Code C	.Loc[in]	LC :	Shear	Loc[in]	Dir	LC	phi*Pnc [lb]	phi*Pnt [lb]	phi*Mn y	.phi*Mn z	Cb Eqn
4	M16	HSS4X4X3	.561	51	24	.071	51	У	20	99323.283	106812	12.662	12.662	1 H1-1b
5	M10	HSS4X4X3	.561	51	16	.071	51	y	24	99323.283	106812	12.662	12.662	1 H1-1b
6	M4	HSS4X4X3	.561	51	20	.071	51	У	16	99323.283	106812	12.662	12.662	1 H1-1b
7	M13	PL6" x 0.38"	.449	7.5	8	.035	7.5	y		57757.121	73872	.585	9.234	1 H1-1b
8	M7	PL6" x 0.38"	.449	7.5	12	.035	7.5	У	18	57757.121	73872	.585	9.234	1 H1-1b
9	M1	PL6" x 0.38"	.449	7.5	4	.035	7.5	y	22	57757.121	73872	.585	9.234	1 H1-1b
10	C2	PIPE 2.0	.456	48	11	.027	48		11	14916.096	32130	1.872	1.872	1 H1-1b
11	A2	PIPE 2.0	.456	48	3	.027	48		3	14916.096	32130	1.872	1.872	1 H1-1b
12	B2	PIPE 2.0	.456	48	7	.027	48		7	14916.096	32130	1.872	1.872	1 H1-1b
13	M15	PL6" x 0.38"	.242	0	11	.016	0	У	17	57757.121	73872	.585	9.234	1 H1-1b
14	M9	PL6" x 0.38"	.242	0	9	.016	0	У	21	57757.121	73872	.585	9.234	1 H1-1b
15	M3	PL6" x 0.38"	.242	0	13	.016	0	У	25	57757.121	73872	.585	9.234	1 H1-1b
16	B1	PIPE 2.0	.147	48	7	.013	48		7	14916.096	32130	1.872	1.872	1 H1-1b
17	A1	PIPE 2.0	.147	48	3	.013	48		3	14916.096	32130	1.872	1.872	1 H1-1b
18	C1	PIPE_2.0	.147	48	11	.013	48		11	14916.096	32130	1.872	1.872	1 H1-1b

Project # 37520-1749.001.7190

By ADP

Date: 08/07/20 v3.5, Effective 06/26/2020

MOUNT TO TOWER CONNECTION CHECKS-LRFD

TIA Rev.	H-15.5	AISC	15th
Mount Type	3-Sector	Checks	Bolts & Welds

	REACTIONS FROM RISA-3D								
NODE	LC	Horizontal Shear (k)	Vertical Shear (k)	Axial along member(k)	Moment about horizontal axis (ft-k)	Moment about Vertical axis (ft-k)	Torque (ft-k)		
N1	Envelope	0.51	1.41	0.79	6.45	2.33	0.25		

Bolt Information	Туре	Dia (in)	Quantity	Vertical Bolt spacing (D) (in)	Horizontal Bolt spacing (B) (in)
Illioilliation	A325N	0.625	4	7.5	7.5

CHECKS	Forces	Strength	Rating
TENSION (K)	7.22	20.7	34.9%
	-		
SHEAR (k)	0.52	12.4	4.1%

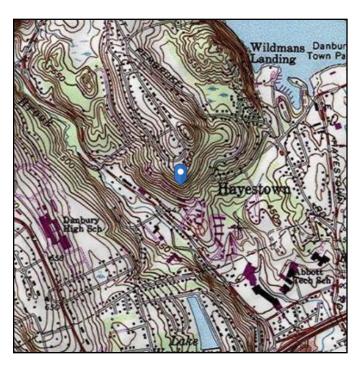
Note: Tension reduction not required if tension or shear capacity < 30%

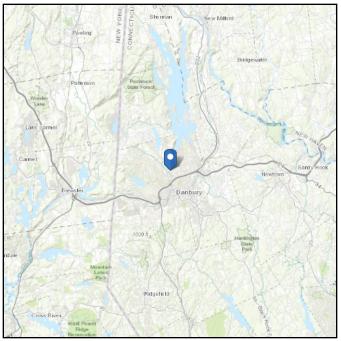
Standoff	Туре	Width (b) (in)	Depth (d) (in)	thickness (in)	Weld Size	Weld Assumed?	Stiffeners present
Member	Rectangle	4	4	0.1875	0.1875	yes	No

WELDS CHECKS	Resultant (k)	Strength (k)	Rating
WELDS CHECKS	3.34	4.18	80.0%

Controlling Rating per TIA-222-H Section 15.5: 76.2%
--

Address:


No Address at This Location


ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 571.29 ft (NAVD 88)

Risk Category: || Latitude: 41.418917

Soil Class: D - Stiff Soil Longitude: -73.461944

Wind

Results:

Wind Speed: 116 Vmph ← Jurisdiction requires 120 mph Ult wind speed

10-year MRI 76 Vmph 25-year MRI 85 Vmph 50-year MRI 90 Vmph 100-year MRI 96 Vmph

Data Source: ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, incorporating errata of

March 12, 2014

Date Accessed: Thu May 02 2019

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Ice

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Thu May 02 2019

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit F

Power Density/RF Emissions Report

Wireless Network Design and Deployment

Radio Frequency Emissions Analysis Report

T-MOBILE Existing Facility

Site ID: CT11896A

CT896/M&M Concrete Pole 41 Padanaram Rd Danbury, CT 06811

May 23, 2019

Transcom Engineering Project Number: 737001-0048

Site Compliance Summary							
Compliance Status:	COMPLIANT						
Site total MPE% of FCC general population allowable limit:	25.02 %						

Wireless Network Design and Deployment

May 23, 2019

T-MOBILE Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, CT 6009

Emissions Analysis for Site: **CT11896A – CT896/M&M Concrete Pole**

Transcom Engineering, Inc ("Transcom") was directed to analyze the proposed upgrades to the T-MOBILE facility located at **41 Padanaram Rd, Danbury, CT**, for the purpose of determining whether the emissions from the Proposed T-MOBILE Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 & 700 MHz bands are approximately 400 μ W/cm² and 467 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Wireless Network Design and Deployment

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

Wireless Network Design and Deployment

CALCULATIONS

Calculations were performed for the proposed upgrades to the T-MOBILE antenna facility located at **41 Padanaram Rd, Danbury, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-MOBILE is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in *Table 1*:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
LTE	1900 MHz (PCS)	4	40
LTE	2100 MHz (AWS)	2	60
GSM	1900 MHz (PCS)	1	15
LTE / 5G NR	600 MHz	2	40
LTE	700 MHz	2	20
UMTS	2100 MHz (AWS)	1	40

Table 1: Channel Data Table

Wireless Network Design and Deployment

The following antennas listed in *Table 2* were used in the modeling for transmission in the 600, 700 MHz, 1900 MHz (PCS) and 2100 MHz (AWS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

			Antenna
	Antenna		Centerline
Sector	Number	Antenna Make / Model	(ft)
A	1	Ericsson AIR32 B66A / B2A	80
A	2	RFS APXVAARR18_43-C-NA20	80
В	1	Ericsson AIR32 B66A / B2A	80
В	2	RFS APXVAARR18_43-C-NA20	80
C	1	Ericsson AIR32 B66A / B2A	80
C	2	RFS APXVAARR18_43-C-NA20	80

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

Cable losses were factored in the calculations for this site. Since all **2100 MHz** (**AWS**) **UMTS** radios are ground mounted the following cable loss values were used. For each ground mounted **2100 MHz** (**AWS**) **UMTS** radio there was **1.42 dB** of cable loss calculated into the system gains / losses for this site. These values were calculated based upon the manufacturers specifications for **110 feet** of **1-1/4**" coax.

Wireless Network Design and Deployment

RESULTS

Per the calculations completed for the proposed T-MOBILE configurations *Table 3* shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

					Total TX		
Antenna			Antenna Gain	Channel	Power		
ID	Antenna Make / Model	Frequency Bands	(dBd)	Count	(W)	ERP (W)	MPE %
Antenna	Ericsson	1900 MHz (PCS) /					
A1	AIR32 B66A / B2A	2100 MHz (AWS)	15.85	7	295	11,345.46	7.45
Antenna	RFS	600 MHz / 700 MHz /	12.85 / 13.55				
A2	APXVAARR18_43-C-NA20	2100 MHz (AWS)	/ 17.15	5	160	3,944.32	4.78
Sector A Co					ctor A Compo	site MPE%	12.23
Antenna	Ericsson	1900 MHz (PCS) /					
B1	AIR32 B66A / B2A	2100 MHz (AWS)	15.85		295	11,345.46	7.45
Antenna	RFS	600 MHz / 700 MHz /	12.85 / 13.55				
B2	APXVAARR18_43-C-NA20	2100 MHz (AWS)	/ 17.15		160	3,944.32	4.78
	Sector B Composite MPE%					12.23	
Antenna	Ericsson	1900 MHz (PCS) /					
C1	AIR32 B66A / B2A	2100 MHz (AWS)	15.85	7	295	11,345.46	7.45
Antenna	RFS	600 MHz / 700 MHz /	12.85 / 13.55				
C2	APXVAARR18_43-C-NA20	2100 MHz (AWS)	/ 17.15	5	160	3,944.32	4.78
Sector C Composite MPE%						12.23	

Table 3: T-MOBILE Emissions Levels

Wireless Network Design and Deployment

The Following table (*table 4*) shows all additional carriers on site and their MPE% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum T-MOBILE MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. *Table 5* below shows a summary for each T-MOBILE Sector as well as the composite MPE value for the site.

Site Composite MPE%				
Carrier	MPE%			
T-MOBILE – Max Per Sector Value	12.23 %			
Sprint	12.49 %			
Clearwire	0.30 %			
Site Total MPE %:	25.02 %			

Table 4: All Carrier MPE Contributions

T-MOBILE Sector A Total:	12.23 %
T-MOBILE Sector B Total:	12.23 %
T-MOBILE Sector C Total:	12.23 %
Site Total:	25.02 %

Table 5: Site MPE Summary

Wireless Network Design and Deployment

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. *Table 6* below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated T-MOBILE sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

T-MOBILE _ Frequency Band / Technology Max Power Values (Per Sector)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
T-Mobile 1900 MHz (PCS) LTE	4	1,538.37	80	40.40	1900 MHz (PCS)	1000	4.04%
T-Mobile 2100 MHz (AWS) LTE	2	2,307.55	80	30.30	2100 MHz (AWS)	1000	3.03%
T-Mobile 1900 MHz (PCS) GSM	1	576.89	80	3.79	1900 MHz (PCS)	1000	0.38%
T-Mobile 600 MHz LTE / 5G NR	2	771.01	80	10.12	600 MHz	400	2.53%
T-Mobile 700 MHz LTE	2	452.93	80	5.95	700 MHz	467	1.27%
T-Mobile 2100 MHz (AWS) UMTS	1	1,496.44	80	9.82	2100 MHz (AWS)	1000	0.98%
						Total:	12.23%

Table 6: T-MOBILE Maximum Sector MPE Power Values

Wireless Network Design and Deployment

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-MOBILE facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-MOBILE Sector	Power Density Value (%)		
Sector A:	12.23 %		
Sector B:	12.23 %		
Sector C:	12.23 %		
T-MOBILE Maximum	12.23 %		
Total (per sector):	12.23 %		
Site Total:	25.02 %		
Site Compliance Status:	COMPLIANT		

The anticipated composite MPE value for this site assuming all carriers present is **25.02** % of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

Transcom Engineering, Inc

PO Box 1048

Sterling, MA 01564