Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

January 10, 2022

Via Electronic Mail

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 18 Old Ridgebury Road, Danbury, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an existing wireless telecommunications facility at the above-referenced property address (the "Property"). The facility consists of antennas, remote radio heads and an equipment shelter on the roof of the hotel building at the Property. Cellco's existing wireless facility was approved by the Council in October of 1994 (Petition No. 334). A copy of the Petition No. 334 Staff Report is included in Attachment 1.

Cellco now intends to modify its facility by removing six (6) antennas and installing three (3) JMA MX08FIT265-01antennas and six (6) JMA MX06FRO460-02 antennas in the same locations on the building. Cellco also intends to remove six (6) remote radio heads ("RRHs") and install nine (9) new RRHs behind its antennas. A set of project plans showing Cellco's proposed facility modifications and the specifications for Cellco's new antennas and RRHs are included in Attachment 2.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Danbury's Chief Elected Official and Land Use Officer.

Melanie A. Bachman, Esq. January 10, 2022 Page 2

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing facility. Cellco's replacement antennas and RRHs will be installed at the same height and location on the building.
- 2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The installation of Cellco's new antennas and RRHs will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A general Cumulative Power Density table for the modified facility is included in Attachment 3. The modified facility will be capable of providing Cellco's 5G wireless service.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. According to the attached Structural Analysis Report ("SA"), which includes an analysis of the existing mounts, the existing building and antenna mounting system can support Cellco's proposed modifications. A copy of the SA is included in Attachment 4.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in Attachment 6.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Melanie A. Bachman, Esq. January 10, 2022 Page 3

Sincerely,

Kenneth C. Baldwin

Kunig mu

Enclosures Copy to:

Dean Esposito, Danbury Mayor Sharon Calitro, Director of Planning and Zoning Eagle Propco 10 LLC, Property Owner Karla Hanna, Verizon Wireless

ATTACHMENT 1

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

136 Main Street, Suite 401 New Britain, Connecticut 06051-4225 Phone: 827-7682

Petition No. 334
Metro Mobile CTS of Fairfield County, Inc.
Staff Report
October 20, 1994

On October 7, 1994, Metro Mobile CTS of Fairfield County, Inc. (Metro Mobile) petitioned the Connecticut Siting Council (Council) for a declaratory ruling that no Certificate of Environmental Compatibility and Public Need (Certificate) would be needed to install certain cellular telecommunications antennas on an existing Hilton Hotel building located at 18 Old Ridgebury Road, Danbury, Connecticut. Equipment associated with the antenna installation would be located within a 20-foot by 30-foot single story, pre-engineered panel-type building to be placed on the roof of the Hotel.

Under Regulations of Connecticut State Agencies (RSA) section 16-50j-2a(q) "Tower" means a structure, whether free standing or attached to a building or another structure, that has a height greater than its diameter and that is high relative to its surroundings, or that is used to support antennas for sending or receiving signals to or from satellites, which is or is to be:

- used principally to support one or more antennas for receiving or sending radio frequency signals <u>and</u>
- 2) owned or operated by the State or a public service company as defined in 16-1 of the General Statutes, or used for public cellular radio communications service as defined section 16-50i of the General Statutes of Connecticut. (emphasis added)

On September 19, 1994, the Council ruled that it did not have jurisdiction to regulate "associated telecommunications equipment" not directly associated with a tower.

Since there is no existing tower nor will there be a tower as defined in RSA 16-50j-2a(q) after the antennas are attached, staff believes that the Council has no jurisdiction in this matter.

Stephen M. Howard Siting Analyst

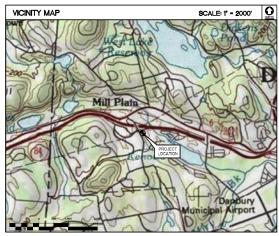
siting\pet\334\sr102094.doc

ATTACHMENT 2

verizon

W DANBURY CT 18 OLD RIDGEBURY ROAD DANBURY, CT 06810

GENERAL NOTES AND SPECIFICATIONS


- ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUDING THE TAY (ZHA-ZZE KENISON) 'G' STRUCTURAL STANDARGS FOR STEEL ANTENNA TOMERS AND SUPPORTING STRUCTURES, 2017 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE, AND LOCAL CODES.
- SHOULD ANY FIELD CONDITIONS PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL NOT PROCEED WITH ANY AFFECTED WORK.
- CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET: CONTRACTOR SHALL COORDINATE ALL WORK COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT REFECTS THEIR WORK AND SPECIFICATIONS FOR THE INFORMATION THAT REFECTS THEIR WORK AND
- CONTRACTOR SHALL PROVIDE A COMPLETE BUILD—OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- 5°C-UPICATIONS.

 S. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- 6. CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL MSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, AND ALL TRADES AS APPLICABLE PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- 7. CONTRECTOR SHALL MANTAN A CURRENT SET OF DRAWNES AND SHEDIFICATION OF NEW SPECIFICATIONS ON SITE AT ALL TIMES AND NEISE DISTRIBUTION OF NEW DRAWNINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MOR AVAILABLE. ALL OLD DRAWNINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN AS—BULL TS OF O'PRAWNIST OF OWNER UPON COMPLETION OF PROJECT.
- 8. LOCATION OF EQUIPMENT, AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWNINGS SHALL BE DETERMINED BY THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUPPLIED ATTORS
- 9. THE CONTRACTOR IS SALELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO EXCHAIN THE SATETY OF THE DAYSTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORME, BRACKING, LINDERPINNING, ETC. THAT MAY BE NECESSARY, MAINTAIN EXISTING BUILDING'S/PROPERTY'S OPERATIONS, COORDINATE WORK WITH BUILDING/PROPERTY OWNER.
- 10. DRAWNSS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO SUBSTANDARD TO ANY DISTORMENT SHOULD BE INDICATED TO SUBSTANDARD TO ANY DISTORMENT SHOULD BE INDICATED TO SUBSTANDARD TO ANY DISTORMENT SHOULD BE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCRESSE, IN COSTS.
- ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- 12. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MFR.'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.

- 13. ANY AND ALL ERRORS, DISCREPANCIES, AND 'MISSED' ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE VERIZON WIRELESS CONSTRUCTION MANAGER DURING THE BIDDION PROCESS BY THE CONTRACTOR ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON—SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 15. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 16. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- 17. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUIT AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- 18. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB—CONTRACTORS FOR ANY CONDITION PER THE MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 20. THE CONTRACTOR SHALL CONTACT "CALL BEFORE YOU DIG" AT LEAST 48 HOURS PRIOR TO ANY EXCANTIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED PRIOR TO ANY EXCANDION WORK. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 21. ALL CONSTRUCTION SHALL BE IN COMPLIANCE WITH THE GOVERNING BUILDING
- 22. BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH INVESTICATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE AND SUBSURFACE) AT OR CONTIQUOUS TO THE SITE WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK.
- 23. ALL DIMENSIONS, ELEVATIONS, AND OTHER REFERENCES TO EXISTING STRUCTURES, SURFACE, AND SUBSIDIFACE CONDITIONS ARE APPROXIMATE. NO CUMPANTEE IS CONTINGATOR SHALL MERRY AND CORDINATE, ALL DIMENSIONS, ELEVATIONS, ANGES WITH EXISTING CONDITIONS AND WITH APCHITECTURAL AND SITE DRAWINGS BEFORE PROCEEDING WITH ANY WORK.
- 24. AS THE WORK PROGRESSES, THE CONTRACTOR SHALL NOTIFY THE OWNER OF ANY CONDITIONS WHICH ARE IN COMPLICT OR OTHERWISE NOT CONSISTENT WITH THE CONSTRUCTION DOCUMENTS AND SHALL NOT PROCEED WITH SUCH WORK UNTIL THE CONFLICT IS SATISFACTORLY RESOLVED.

SITE DIRECTIONS

FROM: 20 ALEXANDER DRIVE WALLINGFORD, CONNECTICUT	TO:	18 OLD RIDGEBURY ROADANBURY, CT 06810
1. START OUT GOING NORTH ON ALEXANDER DR TOWARD BARNES INDUSTRIAL RD.		0.18 MI
2. TURN RIGHT ONTO BARNES INDUSTRIAL RD.		0.11 MI
TAKE THE 1ST LEFT ONTO CT-68.		4.35 MI
 TURN LEFT ONTO S MERIDEN RD/CT-70/CT-68. CONTINUE TO FOLLOW CT-70/CT- 	68.	1.24 MI
5. TURN RIGHT ONTO S MAIN ST/CT-10/CT-70/CT-68.		0.15 MI
6. TURN LEFT ONTO MAIN ST/CT-70/CT-68.		0.29 MI
 TURN LEFT ONTO W MAIN ST/CT-70/CT-68. CONTINUE TO FOLLOW CT-70. 		4.06 MI
8. MERGE ONTO I-84 W VIA THE RAMP ON THE LEFT.		36,49 MI
9. TAKE EXIT 2A-2B TOWARD OLD RIDGEBURY RD/US-6/MILL PLAIN RD/US-202.		0.19 MI
10. MERGE ONTO OLD RIDGEBURY RD VIA EXIT 2A.		0.57 MI
11. 18 OLD RIDGEBURY RD, DANBURY, CT 06810-5128, 18 OLD RIDGEBURY RD IS ON	THE LEF	т.

PROJECT SUMMARY

- THE PROPOSED UPGRADE SCOPE OF WORK AT THE EXISTING UNMANNED
 TELECOMMUNICATIONS FACILITY GENERALLY INCLUDES THE FOLLOWING:
 - A. AT THE EXISTING ROOFTOP MOUNTED ANTENNA SECTORS:
 - INSTALL (4) NEW ANTENNA MASTS. REFER TO DETAILS ON C-3 FOR ADDITIONAL INFORMATION
 - INSTALL (6) JMA MX0FR0460-02 ANTENNAS.
 - INSTALL (3) JMA MX08FIT265-01 ANTENNAS
 - INSTALL (3) JMA 91900314-02 MOUNTS.
 - INSTALL (3) SAMSUNG RF4440d—13A RADIOS.

 - INSTALL (3) COMMSCOPE IMPR-C-2STP FILTERS
 - RETAIN (6) RFS APL868013 ANTENNAS.
 - RETAIN (3) 6x12 HYBRID CABLES.
 - RETAIN (3) RAYCAP OVP-6 BOXES.
 - RETAIN (6) COAXIAL CABLES.
 - REMOVE (3) RFS APX75-866512-T2 749MHZ ANTENNAS.

 REMOVE (7) REMOVE NO. RT. 00070 NUTSTANDO
 - REMOVE (6) NOKIA RADIOS.

PROJECT INFORMATION

SITE NAME: W DANBURY CT
SITE ADDRESS: 18 OLD RIDGEBURY ROAD
DANBURY, CT 08810
LESSEE/TEIMNT: CLLCQ PARTINEFEHP
d-b.d. VERZON WIRELESS
20 ALEXANDER DRIVE
WALLINGFORD, CT 06492

CONTACT PERSON: WALTER CHARCZNSKI (CONSTRUCTION MANAGER)
VERIZON WIRELESS
(860) 306-1806

ENGINEER: CENTEK ENGINEERING, INC. 63-2 NORTH BRANFORD RD. BRANFORD, CT. 06405 (203) 488-0580

PROJECT COORDINATES: LATITUDE: 41° 23° 18.3408°N
LONGITUDE: 73° 30° 54.4464°W

(COORDINATES REFERENCED FROM VERIZON

OUEET.	MIDEY
SHEET	INDEX

SHEET	INDEX	
SHT. NO.	DESCRIPTION	RE
T-1	TITLE SHEET	0
N-1	NOTES AND SPECIFICATIONS	0
B-1	RF BILL OF MATERIALS	0
C-1	ROOF PLAN AND BUILDING ELEVATION	0
C-2	SECTOR CONFIGURATION PLANS	0
C-3	SECTOR CONFIGURATION ELEVATIONS	0
C-4	RF DETAILS	0
E-1	ELECTRICAL DETAILS AND SPECIFICATIONS	0

(203) 488-0580 (203) 488-8887 Fax 69-2 North Branford Road Branford, CT 06-405

DANBURY CT OLD RIDGEBURY ROAD DANBURY, CT 06810

ķ

d/b/a Verizon

DATE: 11/10/21
SCALE: AS NOTED

≥

JOB NO. 21007.61 TITLE SHEET

T-1

NOTES AND SPECIFICATIONS

DESIGN BASIS

GOVERNING CODE: 2015 INTERNATIONAL BUILDING (IBC) AS MODIFIED BY THE 2018 CT STATE BUILDING CODE AND AMENDMENTS.

- 1. DESIGN CRITERIA:
- RISK CATEGORY: II (BASED ON TABLE 1604.5 OF THE 2015 IBC)
- ULTIMATE DESIGN SPEED (BUILDING): 120 MPH (Vuit) (EXPOSURE B/IMPORTANCE FACTOR 1.0 BASED ON ASCE 7-10) PER 2015 INTERNATIONAL BUILDING CODE (IBC) AS MODIFIED BY THE 2018 CONNECTION STATE BUILDING CODE.
- SEISMIC LOAD (DOES NOT CONTROL): PER ASCE 7-10 MINIMUM DESIGN LOADS FOR BUILDING AND OTHER STRUCTURES.

STRUCTURAL STEEL

- 1. ALL STRUCTURAL STEEL IS DESIGNED BY ALLOWABLE STRESS DESIGN (ASD)

 - STRUCTURAL STEEL (W SHAPES)——ASTM A092 (FY = 50 KS)
 STRUCTURAL STEEL (W SHAPES)——ASTM A36 (FY = 30 KS)
 ST = 140 KS)
 ST = 140 KS)
 STRUCTURAL HSS (RICCAMGULAR SHAPES)——ASTM A500 GMADE B,
 STRUCTURAL HSS (ROUND SHAPES)—ASTM A500 GMADE B,
 STRUCTURAL HSS (ROUND SHAPES)—ASTM A525—N
 L-BOLTS——ASTM A325—N
 L-BOLTS——ASTM A325—N
 MACHOR ROUS——ASTM A525—N
 MELDING ELECTRODE——ASTM E 70XX

- CONTRACTOR TO REVEW ALL SHOP DEAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL DRAWNOS MIST BEAR THE CHECKEYS INTILAS BEDDE SUBMITTION TO SECTION PROFILES, SIZES, CONNECTION ATTICHMENT, ENDIFORMED, AND THE OF PASTERIES AND ACCESSORIES, INCLUDE ERECTION PROMISE, ELEVATIONS, AND CETALS,
- STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH THE LATEST PROVISIONS OF AISC MANUAL OF STEEL CONSTRUCTION.
- PROVIDE ALL PLATES, CLIP ANGLES, CLOSURE PIECES, STRAP ANCHORS, MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE THE STRUCTURE.
- FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST PRACTICAL SECTIONS FOR DELIVERY TO SITE.
- INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, AND FREE FROM DISTORTIONS OR DEFECTS.
- AFTER ERECTION OF STRUCTURES, TOUCHUP ALL WELDS, ABRASIONS AND NON-GALVANIZED SURFACES WITH A 95% ORGANIC ZINC RICH PAINT IN ACCORDANCE WITH ASTM 780.
- ALL STEEL MATERIAL (EXPOSED TO WEATHER) SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT DIPPED GALVANIZED) COATINGS" ON IRONS AND STEEL PRODUCTS.
- ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE".
- 10. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE INSPITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW.
- 11. CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF 1/4 INCHES.
- STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325. ALL BOLTS SHALL BE 3/4" DIAMETER MINIMUM AND SHALL HAVE A MINIMUM OF TWO BOLTS, UNLESS OTHERWISE ON THE DRAWINGS.
- 13. LOCK WASHER ARE NOT PERMITTED FOR A325 STEEL ASSEMBLIES.
- 14. SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BOLTED.
- MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION.
- 16. FABRICATE BEAMS WITH MILL CAMBER UP.
- LEVEL AND PLUMB INDIVIDUAL MEMBERS OF THE STRUCTURE TO AN ACCURACY OF 1:500, BUT NOT TO EXCEED 1/4" IN THE FULL HEIGHT OF THE COLUMN.
- COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK.
- INSPECTION AND TESTING OF ALL WELDING AND HIGH STRENGTH BOLTING SHALL BE PERFORMED BY AN INDEPENDENT TESTING LABORATORY.
- FOUR COPIES OF ALL INSPECTION TEST REPORTS SHALL BE SUBMITTED TO THE ENGINEER WITHIN TEN (10) WORKING DAYS OF THE DATE OF INSPECTION.

			CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION	CONSTRUCTION DRAWINGS - REVISED PER FAA 2C SURVEY	CONSTRUCTION DRAWINGS - ISSUED FOR CLIENT REVIEW	
			- 15	20	1 15	
			S	SS	g	
			DRAWIN	DRAMIN	DRAMIN	
			CONSTRUCTION DRAWIN	CONSTRUCTION DRAWIN	CONSTRUCTION DRAWIN	

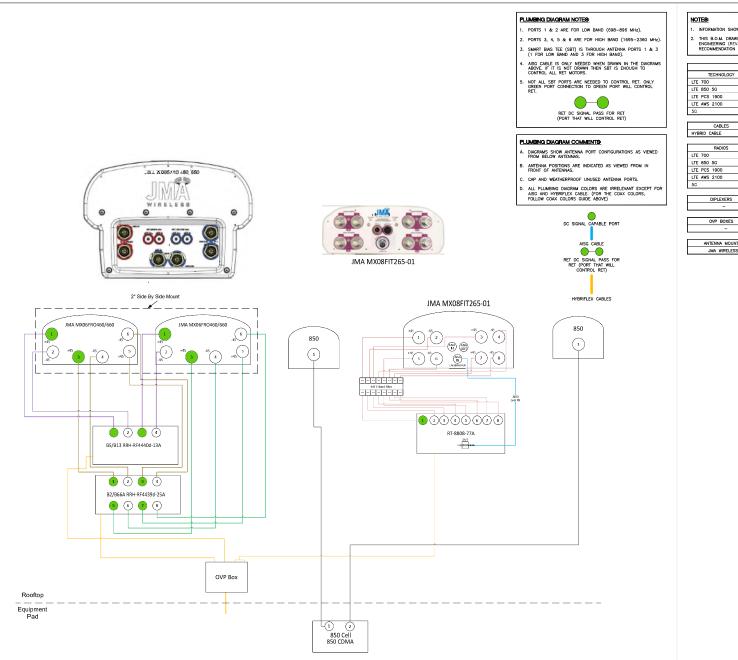
₹ BWD 5 B SP C BND

verizon

· XIII ZIII U

Wireless

(203) 488-0580 (203) 488-8587 Fox 63-2 North Branford R Branford, CT 06405


占 OLD RIDGEBURY ROAD DANBURY, CT 06810 DANBURY

Partnership d/b/a Verizon 11/10/21 SCALE: AS NOTED

≥

JOB NO. 21007.61 NOTES AND SPECIFICATIONS

N-1

- . INFORMATION SHOWN HEREIN IS FOR USE BY VERIZON WIRELESS EQUIPMENT OPERATIONS.
- THIS B.O.M. DRAWING IS BASED ON FACILITY UPGRADE DESIGN DRAWINGS PREPARED BY CENTER ENGINEERING (REV.O DATED: 11/17/2021), & VERIZON WIRELESS RF ANTENNA EQUIPMENT RECOMMENDATION (DATE) 11/16/2021).

BILL OF MATERIALS		
TECHNOLOGY	QUANTITY	ANTENNA
LTE 700	- 6	
LTE 850 5G		JMA ANTENNA MODEL: MX06FR0460-02
LTE PCS 1900		
LTE AWS 2100		
5G	3	JMA ANTENNA MODEL: MX08FIT265-01

CABLES	QUANTITY	LENGTH EA	COMMENTS
HYBRID CABLE	0	±- FT EA	-

RADIOS	QUANTITY	COMMENTS
LTE 700	_	SAMSUNG MODEL: RE4440d-13A
LTE 850 5G	3	SAMSUNG MUDEL: RF44400-13A
LTE PCS 1900	_	SAMSUNG MODEL: RF4439-25A
LTE AWS 2100	3	SAMSUNG MUDEL: RF4439-25A
56	3	SAMSUNG MODEL: RT8808-77A

DIPLEXERS	QUANTITY	COMMENTS
-	0	-
OVP BOXES	QUANTITY	COMMENTS

ANTENNA MOUNT	QUANTITY	COMMENTS
JMA WIRELESS	3	JMA MODEL: 919003314-02

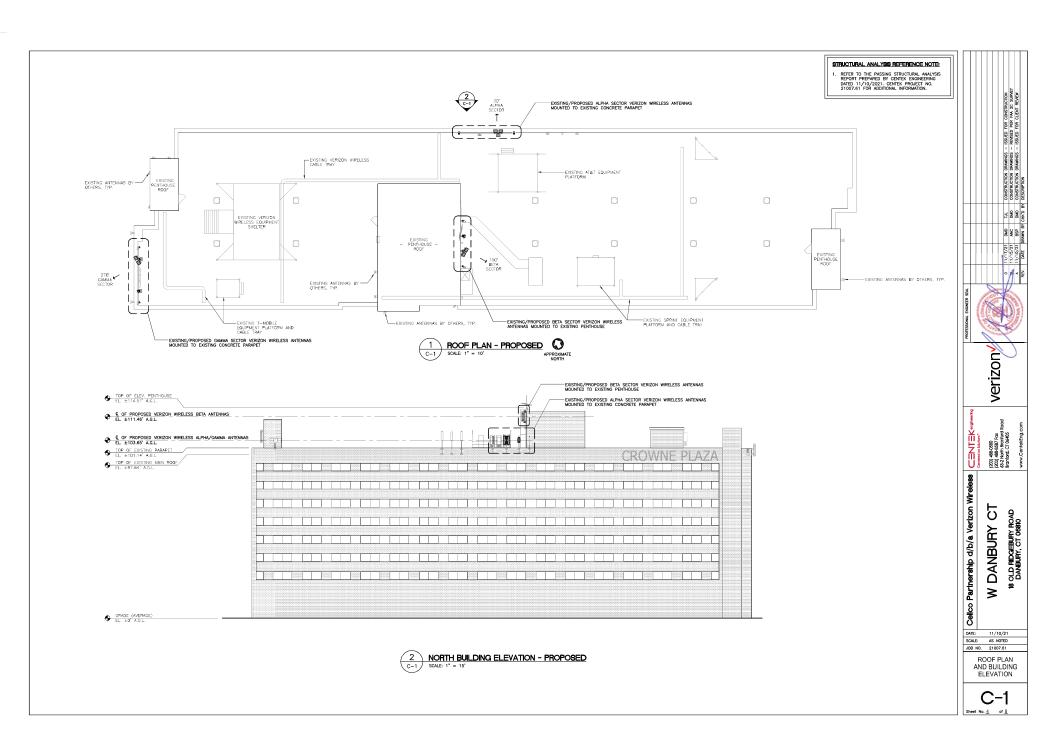
0 11/7/21 DMO C 11/17/21 DMO C 11/17/22 DMO C 11/17

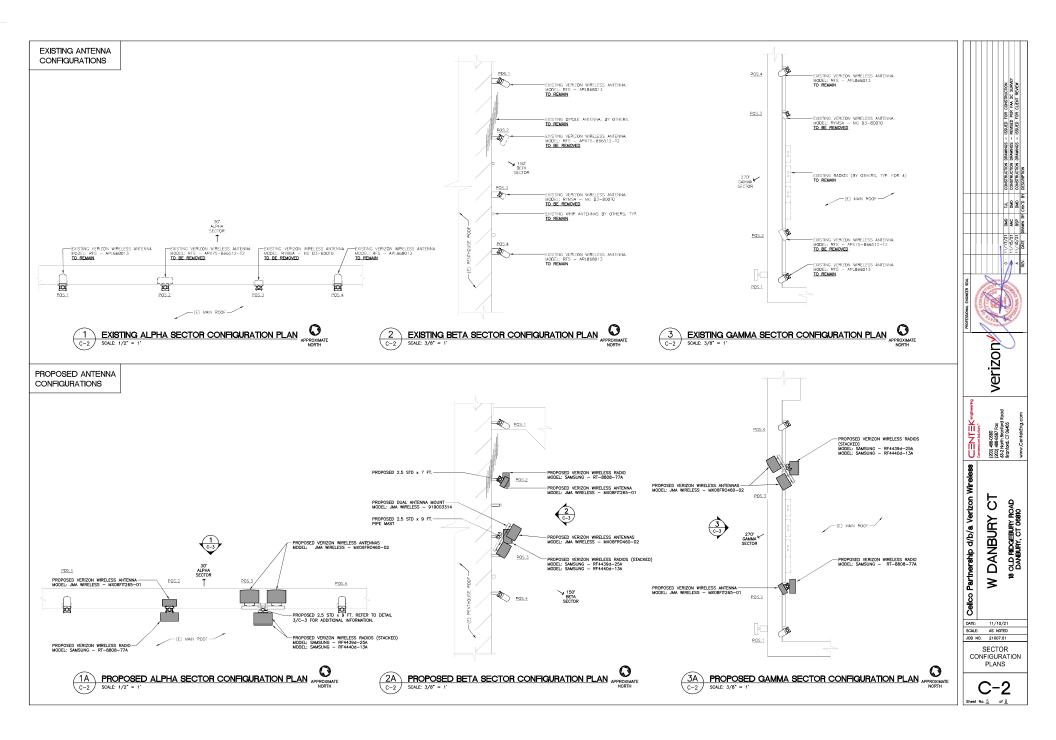
verizon

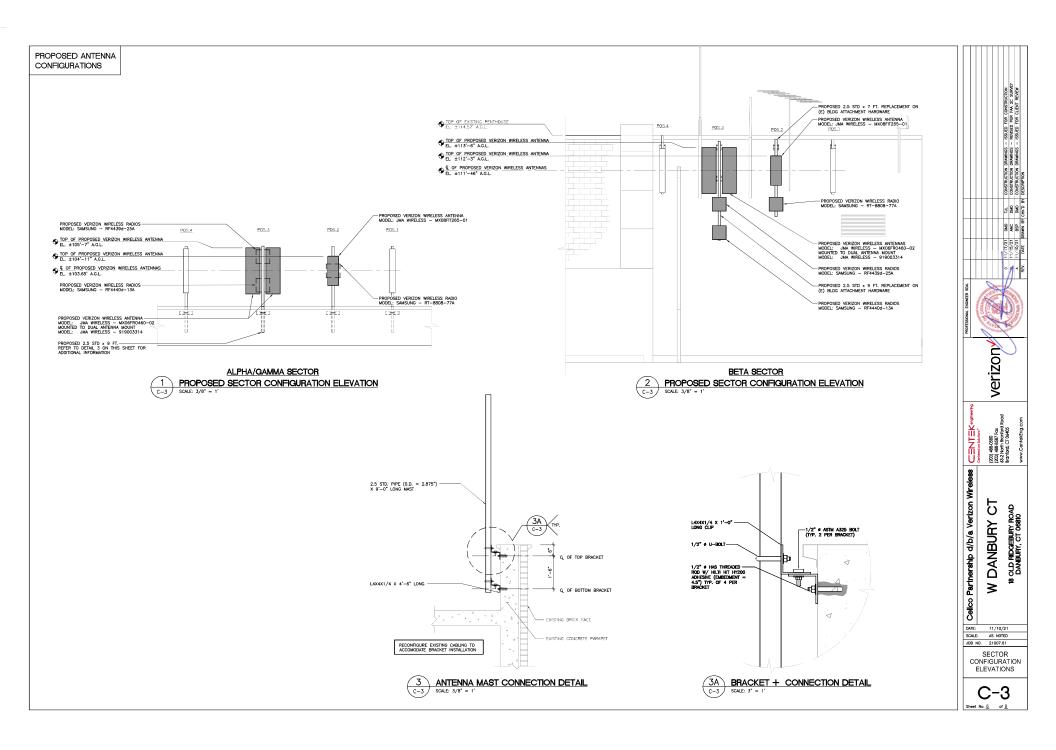
(203) 488-0580 (203) 488-6587 Fax 65-2 North Branford Road Branford, CT 06405

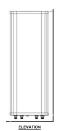
VIIIVIIIV

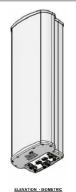
Partnership d/b/a Verizon Wireless


DANBURY CT SOLD RIDGEBURY ROAD DANBURY, CT 06810

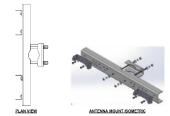

W DAI

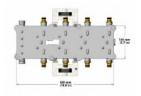

DATE: 11/10/21 SCALE: AS NOTED JOB NO. 21007.61


RF BILL OF MATERIALS



ALPHA/BETA/GAMMA ANTENNA				
E	QUIPMENT	DIMENSIONS	WEIGHT	
MAKE: MODEL:	JMA MX08FIT265-01	32.0°L × 11.6°W × 4.5°D	26.5 LBS.	




8-PORT SECTOR ANTENNA				
EQUIPMENT	DIMENSIONS	WEIGHT		
MAKE: JMA MODEL: MX06FR0460-02	50.2"L x 15.4"W x 10.7"D	41.0 LBS. (W/OUT MOUNT KIT)		

ANTENNA DETAIL

DUAL ANTENNA MOUNTING KIT			
EQUIPMENT	DESCRIPTION		
MOUNT MAKE: JMA MODEL: 919003314	SIDE-BY-SIDE MOUNTING KIT, ACCOMMODATES (2) COMPATABLE ANTENNAS		
	2 BRACKETS REQUIRED FOR 4'-6' ANTENNAS		
	3 BRACKETS REQUIRED FOR 6'-8' ANTENNAS		

COUPLER				
EQUIPMENT DESCRIPTION DIMENSIONS WEIGHT			WEIGHT	
MAKE: MODEL:	COMMSCOPE IMF8-C-2STP E14V00P32	8 PACK, 2 STEP IMF PASS C-BAND, SWITCHABLE, 4.3-10 CONNECTORS	16.9"H × 5.7"W × 3"D	22.3 LBS. (W/MNTG HDWR)

CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH VERIZON WIRELESS CONSTRUCTION MANAGER PRIOR TO ORDERING.

RRH - ISOMETRIC

DUAL BAND RRU (REMOTE RADIO UNIT)			
EQUIPMENT	BANDS	DIMENSIONS	WEIGHT
MAKE: SAMSUNG MODEL: RF4439d-25A	B25: PCS (1900 MHz) B66: AWS (2100 MHz)	15.0"H x 15.0"W x 10.0"D	74.7 LBS.
NOTES: CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH VERIZON WIRELESS CONSTRUCTION MANAGER PRIOR TO ORDERING.			

5 DUAL-BAND AWS/PCS MACRO RADIO UNIT DETAIL

NOT TO SCALE

RRH - ISOMETRIC

DUAL BAND RRU (REMOTE RADIO UNIT)			
EQUIPMENT BANDS DIMENSIONS WEIGHT			
MAKE: SAMSUNG MODEL: RF440d-13A	B5: 850 MHz B13: 700 MHz	15.0"H × 15.0"W × 9.0"D	70.3 LBS.
NOTES: 1. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH VERIZON WIRELESS CONSTRUCTION MANAGER PRIOR TO ORDERING.			

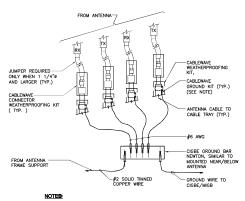
6 DUAL-BAND 700/850 MHZ MACRO RADIO UNIT DETAIL NOT TO SCALE

RRH - ISOMETRIC

C BAND NR RT8808 (8T8R 320W RU) RRU (REMOTE RADIO UNIT)			
EQUIPMENT BANDS DIMENSIONS WEIGHT			WEIGHT
MAKE: SAMSUNG MODEL: RT-8808-77A (8T8R 320W RU)	N77: 3700 MHz	15.0"H x 15.0"W x 6.8"D	59.5 LBS.
NOTES: 1. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH VERIZON WIRELESS			

CONTRACTOR TO COORDINATE FINAL EQUIPMEN CONSTRUCTION MANAGER PRIOR TO ORDERING.

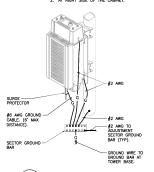
7 C-BAND NR RT8808 (8T8R 320W) RADIO UNIT DETAIL
NOT TO SCALE


DATE:	11/10/21	
SCALE:	AS NOTED	
J08 NO.	21007.61	

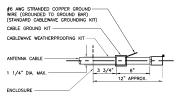
verizon

AIII VIII V (203) 488-0580 (203) 488-8587 Fax 63-2 North Branford R Branford, CT 06405

Cellco Partnership d/b/a Verizon Wireless W DANBURY CT 18 OLD RIDGEBURY ROAD DANBURY, CT 06810

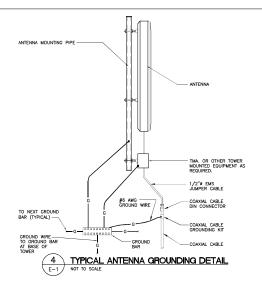

RF DETAILS

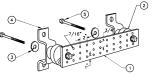
DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO CIGBE


CONNECTION OF GROUND WIRES TO GROUND BAR NOT TO SCALE

EACH RRH CABINET SHALL BE GROUNDED IN THE FOLLOWING MANNER: AT TOP OF THE CABINET
 AT RIGHT SIDE OF THE CABINET.

E-1


2 RRH POLE MOUNT GROUNDING



NOTES:

DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO GROUND BAR.

3 ANTENNA CABLE GROUNDING DETAIL

NOTES

- TINNED COPPER GROUND BAR, $1/4" \times 4" \times 20"$, NEWTON INSTRUMENT CO. HOLE CENTERS TO MATCH NEMA DOUBLE LUG CONFIGURATION.
- INSULATORS, NEWTON INSTRUMENT CAT. NO. 3061-4.
- $5/8^{\prime\prime}$ LOCK WASHERS, NEWTON INSTRUMENT CO. CAT. NO. 3015-8.
- WALL MOUNTING BRACKET, NEWTON INSTRUMENT CO. CAT NO. A-6056.
- 5/8-11 x 1" STAINLESS STEEL TRUSS SPANNER MACHINE SCREWS.
 - 5 GROUND BAR DETAIL

ELECTRICAL SPECIFICATIONS

SECTION 16010

- 1.01. SCOPE OF WORK
- A. WORK SHALL INCLUDE ALL LABOR, EQUIPMENT AND SERVICES REQUIRED TO COMPLETE (MAKE READY FOR OPERATION) ALL THE ELECTRICAL WORK INCLUDING, BUT NOT LIMITED TO, THE FOLLOWING:
- CELLULAR GROUNDING SYSTEMS CONSISTING OF ANTENNA GROUNDING, GROUND BARS, ETC.
- 1.02. GENERAL REQUIREMENTS
- A. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE MADE IN STRICT ACCORDANCE WITH ALL LOCAL, STATE AND NATIONAL CODES AND REGULATIONS WHICH MAY APPLY AND NOTHING IN THE DAWNINGS OR SPECIFICATIONS SHALL BE INTERPRETED AS AN INFRINGEMENT OF SUCH CODES OR REGULATIONS.
- B. THE ELECTRICAL CONTRACTOR IS TO BE RESPONSIBLE FOR THE COMPLETE INSTALLATION AND COORDINATION OF THE ENTIRE ELECTRICAL SERVICE. ALL ACTIVITIES TO BE COORDINATION TO THROUGH OWNERS REPRESENTATIVE, DESIGN ENGINEER AND OTHER AUTHORITIES HAVING JURISDICTION OF TRADES.
- C. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND PAY ALL FEES THAT MAY BE REQUIRED FOR THE ELECTRICAL WORK AND FOR SCHEDULING OF ALL INSPECTIONS THAT MAY BE REQUIRED BY THE LOCAL AUTHORITY.
- D. THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATION WITH THE BUILDING OWNER FOR NEW AND/OR DEMOLITION WORK INVOLVED.
- E. NO MATERIAL OTHER THAN THAT CONTAINED IN THE "LATEST UST OF ELECTRICAL FITTINGS" APPROVED BY THE UNDERWRITERS" LABORATORIES, SHALL BE USED IN ANY PART OF THE WORK. ALL MALENTAL FOR WHICH LABEL SERVICE HAS BEEN ESTABLISHED SHALL BEAR THE U.L. LABEL.
- F. THE CONTRACTOR SHALL GUARANTEE ALL NEW WORK FOR A PERIOD OF ONE YEAR FROM THE ACCEPTANCE DATE BY THE OWNER. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING WARRANTIES FROM ALL EQUIPMENT MANUFACTURERS FOR SUBMISSION TO THE OWNER.
- G. DRIVINGS INJUSTED CRISENAL ARRANGEMENT OF WORK NOLLIDES IN CONTRIVENT CONTRIVENTS SHALL WITHOUT FORM CHARGE. MAY, MODIFICATIONS TO THE LAYOUT OF THE WORK TO PRECIFE COUNTLY WITH WORK OF OTHER TRADES AND FOR THE PROPER INSTILLATION OF WORK. CHECK ALL DRAWINGS AND WOST JOB SITE OF VERIFY SPACE AND TYPE OF EXISTING CONDITIONS IN WHICH WORK WILL BE DONE, PROR TO SUBMITTAL OF BID.
- H. THE ELECTRICAL CONTRACTOR SHALL SUPPLY THREE (3) COMPLETE SETS OF APPROVED DRAWNINGS, ENGINEERING DATA SHEETS, MAINTENANCE AND OPERATING INSTRUCTION MANIALS FOR ALL SYSTEMS AND THEIR RESPECTOR EQUIPMENT. INSEES MAINLES SHALL BE INSERTED IN WINT, COVERED 3—RING BINDERS AND TURNED OVER TO OWNER'S REPRESENTANT ONE (1) WEEK PROOR TO FIRM, PUNCH LIST.
- ALL WORK SHALL BE INSTALLED IN A NEAT AND WORKMAN LIKE MANNER AND WILL BE SUBJECT TO THE APPROVAL OF THE OWNER'S REPRESENTATIVE.
- J. ALL EQUIPMENT AND MATERIALS TO BE INSTALLED SHALL BE NEW, UNLESS OTHERWISE NOTED.
- K. BEFORE FINAL PAYMENT, THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF PRINTS (AS-BUILTS), LEGISLY MARKED IN RED PENGIL TO SHOW ALL CHANGES FROM THE ORIGINAL PLANS.
- L ENTIRE ELECTRICAL INSTALLATION SHALL BE IN ACCORDANCE WITH OWNER'S SPECIFICATIONS, AND REQUIREMENTS OF ALL LOCAL AUTHORITIES HAVING JURISDICTION. IT IS THE CONTINCTOR'S RESPONSIBILITY TO CORDINATE WITH APPROPRIATE INDIVIDUALS TO OBTAIN ALL SUCH SPECIFICATIONS AND REQUIREMENTS. NOTHING CONTINCED IN, OR OMITTED FROM, THESE DOCUMENTS SHALL RELIEVE CONTRICTOR FROM THIS GREATION.

SECTION 16450

- A. ALL NON-CURRENT CARRYING PARTS OF THE ELECTRICAL AND TELEPHONE CONDUIT SYSTEMS SHALL BE MECHANICALLY AND ELECTRICALLY CONNECTED TO PROVIDE AN INDEPENDENT RETURN PATH TO THE EQUIPMENT GROUNDING SOURCES.
- B. GROUNDING SYSTEM WILL BE IN ACCORDANCE WITH THE LATEST ACCEPTABLE EDITION OF THE NATIONAL ELECTRICAL CODE AND REQUIREMENTS PER LOCAL INSPECTOR HAVING JURISDICTION.
- C. EQUIPMENT GROUNDING CONDUCTOR:
- EACH EQUIPMENT GROUND CONDUCTOR SHALL BE SIZED IN ACCORDANCE WITH THE N.E.C. ARTICLE 250-122.
- 2. THE MINIMUM SIZE OF EQUIPMENT GROUND CONDUCTOR SHALL BE #12 AWG COPPER.
- D. CELLULAR GROUNDING SYSTEM:
- PROVIDE THE CELLULAR GROUNDING SYSTEM AS SPECIFIED ON DRAWINGS, INCLUDING, BUT NOT LIMITED TO:
- GROUND BARS
 ANTENNA GROUND CONNECTIONS AND PLATES.
- E. ALL EQUIPMENT SHALL BE BONDED TO GROUND AS REQUIRED BY N.E.C., MFG. SPECIFICATIONS, AND OWNER'S SPECIFICATIONS.

F 8 8 5 DIMD BSP BSP

verizon

488-0580 488-8587 Fox North Branford I ford, CT 06405 (203) (203) (63-2)

ËZIU.

Νį

Partnership d/b/a Verizon

 $^{\circ}$

OLD RIDGEBURY ROAD DANBURY, CT 06810 DANBURY ≥

11/10/21 SCALE: AS NOTED JOB NO. 21007.61

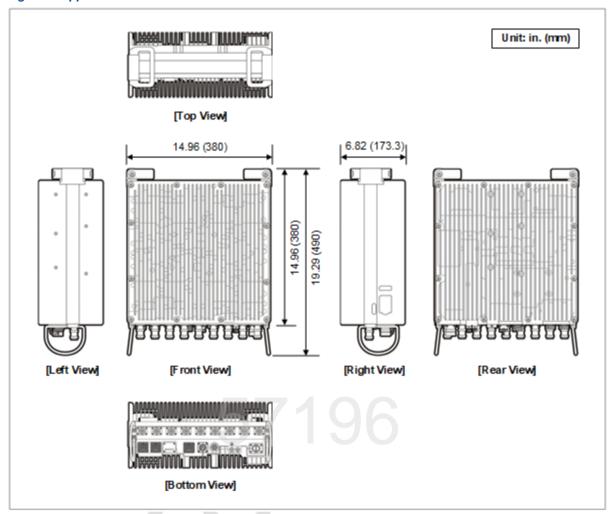
ELECTRICAL DETAILS AND SPECIFICATIONS

Radio Access Network

SAMSUNG

102 RRU Product Specification

for RT8808-77A


Specifies hardware configuration, functions, specifications, components, ports, and LED information for the radio units.

Document Version 1.0 June 2021

Document Number: 2600-00T7PZGA2

SAMSUNG

Figure 1. Appearance

The RT8808-77A can be mounted on a wall or pole as displayed in the following installation scenario:

Specifications

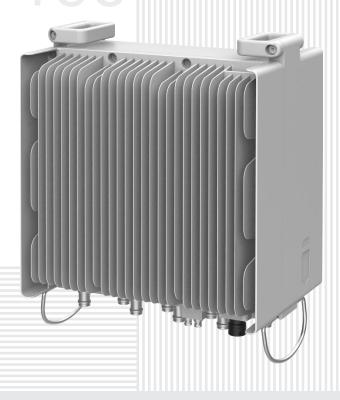
The following table outlines the main specifications of RT8808-77A.

Table 2. Specifications (RT8808-77A)

Item	RT8808-77A	
Radio Technology	5G NR	
Operating Frequency	3700 to 3980 MHz	
Channel Bandwidth	20/40/60/80/100 MHz	
RF Chain	• 8T8R, 4T4R+4T4R Bi-sector	
	2T2R+2T2R+2T2R Tri-sector	
	4T8R+4T8R split mode	
RF Output Power	Max. 320W (8 x 40W)	
Capacity	Total Max 2C	
CPRI interface	15km, 2 ports (25Gbps x 2), SFP28, single mode, Bi-di (Option: Duplex)	
Input Voltage	-48 V DC (-38 V DC to -57 V DC)	
Power Consumption (Max.)	1,192 W (100% load, 25°C) (w/o RET)	
Operating Humidity	5% to 100%RH (Condensing, not to exceed 30g/m3 absolute humidity)	
Operating Temperature	-40°C to 55°C (without solar load)	
Dimension (in./mm) 14.96/380 (W) × 6.82/173.3(D) × 14.96/380 (H)		
Weight (kg)	27 or less than	
Cooling	Natural convection	
Waterproof/Dustproof	IP65	
Wind Resistance	Telcordia GR-487-CORE Issue5	
	Wind Resistance (Section 3.36)	
Earthquake	Telcordia GR-63-CORE, Issue5,	
Specification	☐ Earthquake (Section 4.4.1)	
Vibration Specification	Telcordia GR-63-CORE, Issue5,	
	Office Vibration (Section 4.4.4)	
	Transportation Vibration (Section 4.4.5)	
Altitude	Telcordia GR-63-CORE, Issue5,	
	Altitude (Section 4.1.3)	
EMC	FCC Title 47 CFR Part 15	
RF	FCC Title 47 CFR Part 27, 24	
Safety	UL 62368-1, 2nd Edition	
Installation	Pole, Wall, Tower	

The power consumption is predicted with a simulation and the measured value is subject to change by $\pm 10\%$

SAMSUNG

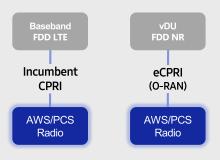

AWS/PCS MACRO RADIO

DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This AWS/PCS 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

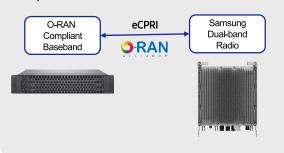
Model Code

RF4439d-25A



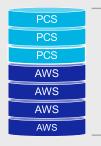
Points of Differentiation

Continuous Migration


Samsung's AWS/PCS macro radio can support each incumbent CPRI interface as well as advanced eCPRI interfaces. This feature provides installable options for both legacy LTE networks and added NR networks.

O-RAN Compliant

A standardized O-RAN radio can help in implementing costeffective networks, which are capable of sending more data without compromising additional investments.


Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). Supporting many carriers is essential for using all frequencies that the operator has available.

The new AWS/PCS dual-band radio can support up to 3 carriers in the PCS (1.9GHz) band and 4 carriers in the AWS (2.1GHz) band, respectively.

Supports up to 7 carriers

Brand New Features in a Compact Size

Samsung's AWS/PCS macro radio offers several features, such as dual connectivity for baseband for both CDU and vDU, O-RAN capability, more carriers and an enlarged PCS spectrum, combined into an incumbent radio volume of 36.8L.

2 FH connectivity O-RAN capability

> More carriers and spectrum

Same as an incumbent radio volume

Technical Specifications

Item	Specification
Tech	LTE/NR
Brand	B25(PCS), B66(AWS)
Frequency Band	DL: 1930 – 1995MHz, UL: 1850 – 1915MHz DL: 2110 – 2200MHz, UL: 1710 – 1780MHz
RF Power	(B25) 4 × 40W or 2 × 60W (B66) 4 × 60W or 2 × 80W
IBW/OBW	(B25) 65MHz / 30MHz (B66) DL 90MHz, UL 70MHz / 60MHz
Installation	Pole, Wall
Size/ Weight	14.96 x 14.96 x 10.04inch (36.8L) / 74.7lb

SAMSUNG

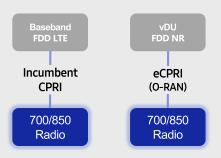
700/850MHZ MACRO RADIO

DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This 700/850MHz 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

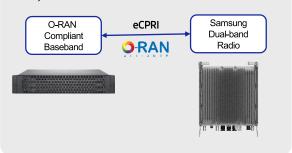
Model Code

RF4440d-13A



Points of Differentiation

Continuous Migration


Samsung's 700/850MHz macro radio can support each incumbent CPRI interface as well as an advanced eCPRI interface. This feature provides installable options for both legacy LTE networks and added NR networks.

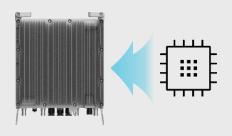
O-RAN Compliant

A standardized O-RAN radio can help when implementing cost-effective networks because it is capable of sending more data without compromising additional investments.

Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). The ability to support many carriers is essential for using all frequencies that the operator has available.


The new 700/850MHz dual-band radio can support up to 2 carriers in the B13 (700MHz) band and 3 carriers in the B5 (850MHz) band, respectively.

Secured Integrity

Access to sensitive data is allowed only to authorized

The Samsung radio's CPU can protect root of trust, which is credential information to verify SW integrity, and secure storage provides access control to sensitive data by using dedicated hardware (TPM).

Technical Specifications

Item	Specification
Tech	LTE / NR
Brand	B13(700MHz), B5(850MHz)
Frequency Band	DL: 746 – 756MHz, UL: 777 – 787MHz DL: 869 – 894MHz, UL: 824 – 849MHz
RF Power	(B13) 4 × 40W or 2 × 60W (B5) 4 × 40W or 2 × 60W
IBW/OBW	(B13) 10MHz / 10MHz (B5) 25MHz / 25MHz
Installation	Pole, Wall
Size/ Weight	14.96 x 14.96 x 9.05inch (33.2L) / 70.33 lb

NWAV™ Panel Antenna

8-Port 32 in. FIT (Form in Tighter), 3700 - 4200 MHz

- 5G C-Band 8T8R beamforming antenna
- Optimized antenna array design for all C-Band beamforming combinations
- Excellent passive intermodulation (PIM) performance reduces harmful interference
- Integrated (internal RET) for remote electrical tilt control

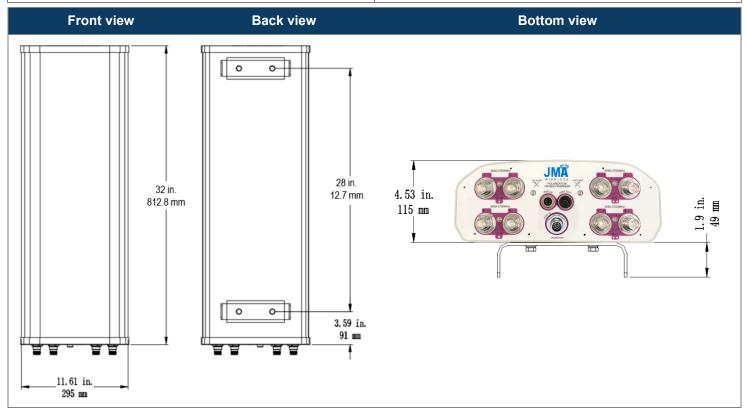
Electrical specification (minimum/maximum)	Ports 1, 2, 3, 4, 5, 6, 7, 8
Frequency bands, MHz	3700-4200
Gain, dBi	17.1
Horizontal beamwidth (HBW), degrees	85
Horizontal beamwidth tolerance, degrees	±5
Front-to-back ratio, co-polar power @180°± 30°, dB	27
Vertical beamwidth (VBW), degrees ¹	5.5
Vertical beamwidth tolerance, degrees	±0.3
Remote electrical downtilt (EDT) range, degrees	2-12
First upper side lobe (USLS) suppression, dB ¹	15
Coupling level, Amp, Antenna port to Cal port, dB	26
Coupling level, max Amp Δ, Antenna port to Cal port, dB	±0.6
Coupler, max Amp Δ, Antenna port to Cal port, dB	0.65
Coupler, max Phase Δ, Antenna port to Cal port, degrees	4
Cross-polar isolation, port-to-port, dB ¹	25
Max VSWR / return loss, dB	1.5:1 / -14.0
Max passive intermodulation (PIM), 2x20W carrier, dBc	-145
Max input power per port at 50 °C, watts	75

¹ Typical value over frequency and tilt

NWAV™ Panel Antenna

Electrical specification, Broadcast 65°	Ports 1, 2, 3, 4, 5, 6, 7, 8
Frequency bands, MHz	3700-4200
Gain over all tilts, dBi	22.5
Horizontal beamwidth (HBW), degrees1	65
Horizontal beamwidth tolerance, degrees	±6
Vertical beamwidth (VBW), degrees ¹	5.5
Vertical beamwidth tolerance, degrees	±0.3
First upper side lobe (USLS) suppression, dB ¹	<-16

Electrical specification, Service Beam	Ports 1, 2, 3, 4, 5, 6, 7, 8
Frequency bands, MHz	3700-4200
Steered 0° gain, dBi	22.5
Steered 0° Gain tolerance, dBi	±0.6
Steered 0° Beamwidth, Horizontal, degrees	22
Steered 0° CPR at beampeak, dB	18
Steered 0° Horizontal Sidelobe, dB	12
Steered 30° Gain, dBi (max)	21.8
Steered 30° Gain tolerance, dBi	±0.6
Steered 30° Gain, dBi	21
Steered 30° Beamwidth, Horizontal, degree	22.2
Steered 30° CPR at beampeak, dB	18
Steered 30° Horizontal Sidelobe, dB	10


Electrical specification, Soft Split	Ports 1, 2, 3, 4, 5, 6, 7, 8
Frequency bands, MHz	3700-4200
Gain over all tilts, dBi	21.8
Horizontal beamwidth (HBW), degrees ¹	32
First upper side lobe (USLS) suppression, dB ¹	15

Beamforming weighting table available upon request

NWAV™ Panel Antenna

Mechanical specifications				
Dimensions height/width/depth, inches (mm)	32.0/ 11.6/ 4.53 (812.8/ 295/ 115)			
Shipping dimensions length/width/height, inches (mm)	37.0/ 16.9/ 11.8 (939.8/ 430/ 300)			
No. of RF input ports, connector type, and location	8 x 4.3-10 female, bottom			
Calibration interface port, connector type, and location	1 x 4.3-10 female, bottom			
RF connector torque	96 lbf·in (10.85 N·m or 8 lbf·ft)			
Net antenna weight, lb (kg)	23.2 (10.52)			
Weight with supplied pipe mount bracket, lb (kg)	26.5 (12.02)			
Shipping weight, lb (kg)	49.1 (22.27)			
Rated wind survival speed, mph (km/h)	150 (241)			
Frontal wind loading @ 150 km/h, lbf (N)	56.9			

Ordering information				
Antenna model	Description			
MX08FIT265-01	32-inch 8T8R beamforming antenna, 3700-4200 MHz with RET			
Mounting kit (included) 91900330 BRACKET KIT, range of mechanical up/down tilt -2° to 12°				
Optional accessories				
AISG cables	M/F cables for AISG connections			
PCU-1000 RET controller	Stand-alone controller for RET control and configurations			

NWAV™ Panel Antenna

Remote electrical tilt (RET 1000) information				
RET location	Integrated into antenna			
RET interface connector type	8-pin AISG connector per IEC 60130-9 or RF port Bias-T			
RET connector torque	Min 0.5 N⋅m to max 1.0 N⋅m (hand pressure & finger tight)			
RET interface connector quantity	1 pair of AISG male/female connectors and 1 RF port Bias-T			
RET interface connector location	Bottom of the antenna			
Total no. of internal RETs	1			
RET input operating voltage, vdc	10-30			
RET max power consumption, idle state, W	≤ 2.0			
RET max power consumption, normal operating conditions, W	≤ 13.0			
RET communication protocol	AISG 2.0 / 3GPP			

RET and RF connector topology

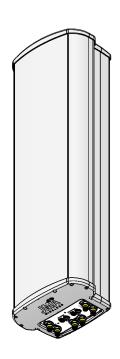
Each RET device can be controlled either via the designated external AISG connector or RF port as shown below:

Array topology

1 set of radiating arrays

P1: 3700-4200 MHz

Band	RF port
3700-4200	1-8


MX06FRO460-02

NWAV™ X-Pol Antenna | Hex-Port | 4 ft | 60°



X-Pol, Hex-Port 4 ft 60° Fast Roll Off with Smart Bias T (2) 698-894 MHz & (4) 1695-2180 MHz

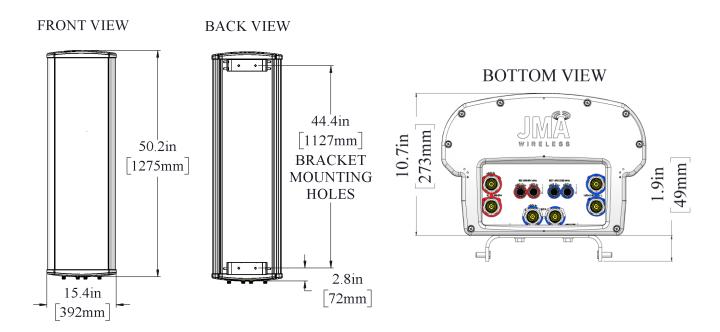
- Fast Roll Off (FRO™) Azimuth beam pattern improves Intra- and Inter-cell SINR
- Excellent Passive Intermodulation (PIM) performance reduces harmful interference
- Fully integrated (iRETs) with independent RET control for low and high bands for ease of network optimization
- SON-Ready array spacing supports beamforming capabilities
- Suitable for LTE/CDMA/PCS/UMTS/GSM Air interface technologies
- Integrated Smart BIAS-Ts reduces leasing costs

Fast Roll-Off (FRO) increased throughput, without compromising coverage

FRO technology increases the Signal to Interference & Noise Ratio (SINR) by eliminating overlap between sectors.

LTE Throughput	SINR	Speed (bps/Hz)	Speed Increase	CQI
Excellent	>20	>5	333+ %	14-15
Good	12-20	3.3-5	277%	10-13
Fair	6-12	1.5-3.3	160%	7-9
Poor	<6	<1.5	0%	1-7

Electrical Specification (Minimum/ Maximum)	Port	s 1,2	Ports 3,4,5,6			
Frequency bands, MHz	698-798	824-894	1695-1880	1920-2180		
Polarization	±	45°		± 45°		
Average gain over all tilts, dBi	13.1	13.5	16.6	16.8	17.2	
Horizontal beamwidth (HBW), degrees ¹	61.0	52.0	57.0	54.0	53.0	
Front-to-back ratio, co-polar power @180°± 30°, dB	>21	>21	>25.0	>25.0	>25.0	
X-Pol discrimination (CPR) at boresight, dB	>16	>15	>17	>17	>17	
Sector power ratio, percent	<4.8	<3.2	<3.7	<3.8	<3.6	
Vertical beamwidth, (VBW), degrees ¹	18.5	16.5	8.2	7.8	7.3	
Electrical downtilt (EDT) range, degrees	2-16	2-16	0-9			
First upper side lobe (USLS) suppression, dB ¹	≤ -15	≤ -16	≤ -16	≤ -16	≤ -16	
Minimum cross-polar isolation, port-to-port, dB	25	25	25 25 25		25	
Maximum VSWR/ return loss, dB	1.5/ -14.0	1.5/ -14.0	1.5/ -14.0	1.5/ -14.0	1.5/ -14.0	
Maximum passive Intermodulation (PIM), 2x 20W carrier, dBc	-153	-153	-153			
Maximum input power per any port, watts	30	00	250			
Total composite power all ports, watts		1500				


¹ Typical value over frequency and tilt

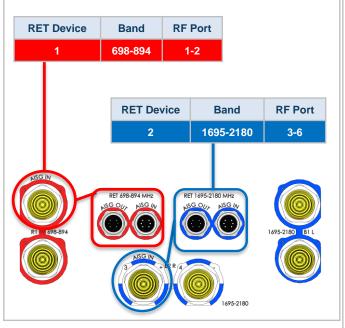
MX06FRO460-02

NWAV™ X-Pol Antenna | Hex-Port | 4 ft | 60°

Mechanical Specifications				
Dimensions height/ width/ depth, inches (mm)	50.2/ 15.4/ 10.7 (1275/ 392/ 273)			
Shipping dimensions length/ width/ height, inches (mm)	60/ 20/ 15 (1524/ 508/ 381)			
No. of RF input ports, connector type & location	6 x 4.3-10 Female, bottom			
RF connector torque	96 in- lb (10.85 N-M or 8 ft-lbs)			
Net antenna weight, lb (kg)	41 (18.64)			
Shipping weight, lbs. (kg)	79 (35.91)			
Antenna mounting and downtilt kit included with antenna	91900318			
Net weight of the mounting and downtilt kit, lbs. (kg)	18 (8.18)			
Range of mechanical up/ down tilt	-2° to 12°			
Rated wind survival speed, mph (km/h)	150 (241)			
Frontal, lateral & rear wind loading @ 150 km/h, lbf (N)	114 (507), 54 (240), 117 (520)			
Equivalent flat plate @100 mph and Cd=2, sq. ft.	1.48			

Ordering Information				
Antenna Model	Description			
MX06FRO460-02 4F X- Pol HEX FRO 60° 2-16°/ 0-9° RET, 4.3-10 & SBT				
Optional Accessories				
992100-CA030-SC	Optional AISG jumper cable, M/F, 3.0 meters			
PCU-1000	Primary control Unit, USB			

MX06FRO460-02

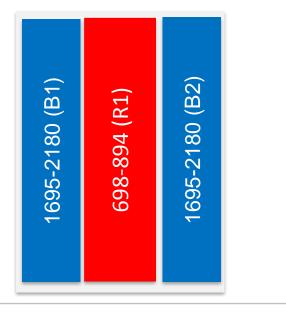


Remote Electrical Tilt (RET 1000) Information				
RET location	Integrated into antenna			
RET interface connector type	8 pin AISG connector per IEC 60130-9			
RET interface connector quantity	2 pairs of AISG male/ female connectors			
RET interface connector location	Bottom of the antenna			
Total No. of internal RETs low bands	1			
Total No. of internal RETs high bands	1			
RET input operating voltage, vdc	10-30			
RET max. power consumption, idle state, W	≤ 2.0			
RET max. power consumption, normal operating conditions, W	≤ 13.0			
RET communication protocol	AISG 2.0/ 3GPP			

RET & RF Connector Topology

Each RET device can be controlled either via the designated external AISG connector or RF port as shown below

Array Topology


3 sets of radiating arrays

R1 – 698-894MHz

B1 - 1695-2180MHz

B2 - 1695-2180MHz

Band	RF Port
1695-2180	3-4
698-894	1-2
1695-2180	5-6

ATTACHMENT 3

Site Name: W DANBURY CT

Cumulative Power Density

Operator	Operating Frequency	Number of Trans.	ERP Per Trans.	Total ERP	Distance to Target	Calculated Power Density	Maximum Permissible Exposure*	Fraction of MPE
	(MHz)		(watts)	(watts)	(feet)	(mW/cm^2)	(mW/cm^2)	(%)
VZW 700	751	4	294	1175	103.65	0.0039	0.5007	0.79%
VZW CDMA	878.49	2	226	452	103.65	0.0015	0.5857	0.26%
VZW Cellular	874	4	337	1349	103.65	0.0045	0.5827	0.78%
VZW PCS	1975	4	1202	4809	103.65	0.0161	1.0000	1.61%
VZW AWS	2120	4	1380	5522	103.65	0.0185	1.0000	1.85%
VZW CBAND	3730.08	4	6531	26125	103.65	0.0875	1.0000	8.75%

Total Percentage of Maximum Permissible Exposure

14.02%

MHz = Megahertz mW/cm^2 = milliwatts per square centimeter ERP = Effective Radiated Power

Absolute worst case maximum values used.

^{*}Guidelines adopted by the FCC on August 1, 1996, 47 CFR Part 1 based on NCRP Report 86, 1986 and generally on ANSI/IEEE C95.1-1992

^{**}Calculation includes a -10 dB Off Beam Antenna Pattern Adjustment pursuant to Attachments B and C of the Siting Council's November 10, 2015 Memorandum for Exempt Modification filings

ATTACHMENT 4

Centered on Solutions[™]

Structural Analysis Report

Antenna Frames & Host Building

Proposed Verizon Antenna Upgrade

Site Ref: West Danbury

18 Old Ridgebury Road Danbury, CT

CENTEK Project No. 21007.61

Date: October 19, 2021

Rev 1: November 10, 2021

Prepared for:

Verizon Wireless 20 Alexander Drive Wallingford, CT 06492

Structural Analysis – Antenna Frames & Host Building Verizon Antenna Upgrade – W Danbury CT Danbury, CT Rev 1 ~ November 10, 2021

Table of Contents

SECTION 1 - REPORT

- INTRODUCTION
- PRIMARY ASSUMPTIONS USED IN THE ANALYSIS
- ANTENNA AND EQUIPMENT INSTALLATION SUMMARY
- ANALYSIS
- DESIGN LOADING
- RESULTS
- CONCLUSION

SECTION 2 - CONDITIONS & SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM

SECTION 3 - CALCULATIONS

- WIND LOAD CALCULATION
- RISA3D OUTPUT REPORT ALPHA & GAMMA SECTORS
- CONNECTION TO BUILDING ALPHA & GAMMA SECTORS
- RISA3D OUTPUT REPORT BETA SECTOR
- CONNECTION TO BUILDING BETA SECTOR

<u>SECTION 4 – REFERENCE MATERIAL (not attached within report)</u>

- RF DATA SHEET
- VERIZON DESIGN EXHIBIT REV.0 PREPARED BY CENTEK ENGINEERING, DATED DECEMBER 23, 2015

TABLE OF CONTENTS TOC-1

Structural Analysis – Antenna Frames & Host Building Verizon Antenna Upgrade – W Danbury CT Danbury, CT Rev 1 ~ November 10, 2021

<u>Introduction</u>

The purpose of this report is to summarize the results of the structural analysis of the equipment upgrade proposed by Verizon on the existing host building located in Danbury, CT.

The host structure is an unoccupied hotel. The antennas are mounted on steel pipe masts, which are attached to the building parapet (Alpha & Gamma sector) and to the elevator penthouse façade (Beta Sector). The mounts geometry and member size information was obtained from a site visit performed by Centek personnel on September 21, 2021

Proposed/existing antenna and appurtenance information was taken from a RF data sheet dated 10/7/2021 provided by Verizon Wireless.

Primary Assumptions Used in the Analysis

- The host structure's theoretical capacity not including any assessment of the condition of the host structure.
- The existing elevated steel platform carries the horizontal and vertical loads due to the weight of equipment, and wind and transfers into host structure.
- Proposed reinforcement and support steel will be properly installed and maintained.
- Structure is in plumb condition.
- Loading for equipment and enclosure as listed in this report.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All welds are fabricated with ER-70S-6 electrodes.
- All members are assumed to be as observed during roof framing mapping.
- All members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.
- All member protective coatings are in good condition.

REPORT SECTION 1-1

Structural Analysis – Antenna Frames & Host Building Verizon Antenna Upgrade – W Danbury CT Danbury, CT Rev 1 ~ November 10, 2021

Antenna and Equipment Summary

Location	Appurtenance / Equipment	Rad Center Elevation (AGL)	Mount Type
Alpha Sector	(2) RFS APL868013 Antenna (2) JMA MX06FRO460-02 Antennas (1) JMA MX08FIT265-01 Antenna (1) RFS APX75-866512-T2 749MHZ Antenna (1) RYMSA MG D3-800T0 Antenna (1) RYMSA MG D3-800T0 Antenna (1) Nokia B13 RRH 4X30 (1) Nokia B4 B25 RRH 4x30 (1) Samsung RF4439d-25A RRH (1) Samsung RF4440d-13A (1) Samsung RT-8808-77A	+/- 103.5-ft	Antenna pipe masts attached to building's parapet
Beta Sector	(2) RFS APL868013 Antenna (2) JMA MX06FRO460-02 Antennas (1) JMA MX08FIT265-01 Antenna (1) RFS APX75-866512-T2 749MHZ Antenna (1) RYMSA MG D3-800T0 Antenna (1) Nokia B13 RRH 4X30 (1) Nokia B4 B25 RRH 4x30 (1) Samsung RF4439d-25A RRH (1) Samsung RF4440d-13A (1) Samsung RT-8808-77A	+/- 111.5-ft	Antenna pipe masts attached to façade of building penthouse
Gamma Sector	(2) RFS APL868013 Antenna (2) JMA MX06FRO460-02 Antennas (1) JMA MX08FIT265-01 Antenna (1) RFS APX75-866512-T2 749MHZ Antenna (1) RYMSA MG D3-800T0 Antenna (1) Nokia B13 RRH 4X30 (1) Nokia B4 B25 RRH 4x30 (1) Samsung RF4439d-25A RRH (1) Samsung RF4440d-13A (1) Samsung RT-8808-77A	+/- 103.5-ft	Antenna pipe masts attached to building's parapet

Equipment – Indicates equipment to be removed. **Equipment** – Indicates equipment to be installed.

REPORT SECTION 1-2

Structural Analysis – Antenna Frames & Host Building Verizon Antenna Upgrade – W Danbury CT Danbury, CT Rev 1 ~ November 10, 2021

Analysis

The existing antenna mounts were modeled using a comprehensive computer program titled Risa3D. The program analyzes the elevated steel supports considering the worst-case code prescribed loading condition. The platform was considered to be loaded by concentric forces, and the model assumes that the members are subjected to bending, axial, and shear forces.

Design Loading

Loading was determined per the requirements of the 2015 International Building Code amended by the 2018 CSBC and ASCE 7-10 "Minimum Design Loads for Buildings and Other Structures".

Wind Speed:	V _{ult} = 120 mph	Appendix N of the 2018 CT State Building Code
Risk Category:	II	2015 IBC; Table 1604.05
Exposure Category:	Surface Roughness C	ASCE 7-10; Section 26.7.2
Dead Load	Equipment and framing self- weight	Identified within SAR design calculations

Reference Standards

2015 International Building Code:

- 1. ACI 318-14, Building Code Requirements for Structural Concrete.
- 2. ACI 530-13, Building Code Requirements for Masonry Structures.
- 3. AISC 360-10, Specification for Structural Steel Buildings
- 4. AWS D1.1 00, Structural Welding Code Steel.
- 5. AF&PA-12, Span Tables for Joists and Rafters.

REPORT SECTION 1-3

Structural Analysis – Antenna Frames & Host Building Verizon Antenna Upgrade – W Danbury CT Danbury, CT Rev 1 ~ November 10, 2021

Results

Structure stresses were calculated utilizing the structural analysis software RISA 3D. The stresses were determined based on the AISC standard.

 Calculated stresses for the antenna mounts were found to <u>BE WITHIN ALLOWABLE</u> limits.

Sector	Component	Stress Ratio (percentage of capacity)	Result	
	Pipe 2.5 STD (Proposed Antenna Mast)	57.3%	PASS	
Alpha & Gamma	Pipe 2.0 STD (Existing Antenna Mast)	25.6%	PASS	
	1/2" Threaded Rod with Hilti HY20 ADHESIVE	16.4%	PASS	
	Pipe 2.0 STD (Proposed Antenna Mast)	72.4%	PASS	
Beta	Pipe 2.0 STD (Existing Mount Mast)	37.3%	PASS	
	1/2" Threaded Rod with Hilti HY20 ADHESIVE	47.5%	PASS	

Conclusion

This analysis shows that the subject antenna mounts and host building **HAVE SUFFICIENT CAPACITY** to support the proposed modified antenna configuration.

The analysis is based, in part, on the information provided to this office by Verizon. If the existing conditions are different than the information in this report, Centek Engineering, Inc. must be contacted for resolution of any potential issues.

Please feel free to call with any questions or comments.

TO Stown Comments of the Stown Comments of t

Respectfully Submitted by:

Timothy J. Lynn, PE Structural Engineer Prepared by:

Fernando J. Palacios

Engineer

Structural Analysis – Antenna Frames & Host Building Verizon Antenna Upgrade – W Danbury CT Danbury, CT Rev 1 ~ November 10, 2021

<u>Standard Conditions for Furnishing of Professional Engineering Services on Existing Structures</u>

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil
 conditions, the antenna and feed line loading on the structure and its components, or
 other relevant information.
- Information from the field and/or drawings in the possession of Centek Engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to Centek Engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an uncorroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to
 meet any other codes or requirements unless explicitly agreed in writing. If wind and ice
 loads or other relevant parameters are to be different from the minimum values
 recommended by the codes, the client shall specify the exact requirement. In the
 absence of information to the contrary, all work will be performed in accordance with the
 latest revision of ANSI/ASCE10 & ANSI/EIA-222
- All services performed, results obtained, and recommendations made are in accordance
 with generally accepted engineering principles and practices. Centek Engineering, Inc.
 is not responsible for the conclusions, opinions and recommendations made by others
 based on the information we supply.

Structural Analysis – Antenna Frames & Host Building Verizon Antenna Upgrade – W Danbury CT Danbury, CT Rev 1 ~ November 10, 2021

<u>GENERAL DESCRIPTION OF STRUCTURAL</u> ANALYSIS PROGRAM~RISA-3D

• RISA-3D Structural Analysis Program is an integrated structural analysis and design software package for buildings, bridges, tower structures, etc.

Modeling Features:

- Comprehensive CAD-like graphic drawing/editing capabilities that let you draw, modify and load elements as well as snap, move, rotate, copy, mirror, scale, split, merge, mesh, delete, apply, etc.
- Versatile drawing grids (orthogonal, radial, skewed)
- Universal snaps and object snaps allow drawing without grids
- Versatile general truss generator
- Powerful graphic select/unselect tools including box, line, polygon, invert, criteria, spreadsheet selection, with locking
- Saved selections to quickly recall desired selections
- Modification tools that modify single items or entire selections
- Real spreadsheets with cut, paste, fill, math, sort, find, etc.
- Dynamic synchronization between spreadsheets and views so you can edit or view any data in the plotted views or in the spreadsheets
- Simultaneous view of multiple spreadsheets
- Constant in-stream error checking and data validation
- Unlimited undo/redo capability
- Generation templates for grids, disks, cylinders, cones, arcs, trusses, tanks, hydrostatic loads, etc.
- Support for all units systems & conversions at any time
- Automatic interaction with RISASection libraries
- Import DXF, RISA-2D, STAAD and ProSteel 3D files
- Export DXF, SDNF and ProSteel 3D files

Analysis Features:

- Static analysis and P-Delta effects
- Multiple simultaneous dynamic and response spectra analysis using Gupta, CQC or SRSS mode combinations
- Automatic inclusion of mass offset (5% or user defined) for dynamic analysis
- Physical member modeling that does not require members to be broken up at intermediate joints
- State of the art 3 or 4 node plate/shell elements
- High-end automatic mesh generation draw a polygon with any number of sides to create a mesh of well-formed quadrilateral (NOT triangular) elements.
- Accurate analysis of tapered wide flanges web, top and bottom flanges may all taper independently
- Automatic rigid diaphragm modeling
- Area loads with one-way or two-way distributions
- Multiple simultaneous moving loads with standard AASHTO loads and custom moving loads for bridges, cranes, etc.
- Torsional warping calculations for stiffness, stress and design
- Automatic Top of Member offset modeling
- Member end releases & rigid end offsets
- Joint master-slave assignments
- Joints detachable from diaphragms
- Enforced joint displacements

Structural Analysis – Antenna Frames & Host Building Verizon Antenna Upgrade – W Danbury CT Danbury, CT

Rev 1 ~ November 10, 2021

- 1-Way members, for tension only bracing, slipping, etc.
- 1-Way springs, for modeling soils and other effects
- Euler members that take compression up to their buckling load, then turn off.
- Stress calculations on any arbitrary shape
- Inactive members, plates, and diaphragms allows you to quickly remove parts of structures from consideration
- Story drift calculations provide relative drift and ratio to height
- Automatic self-weight calculations for members and plates
- Automatic subgrade soil spring generator

Graphics Features:

- Unlimited simultaneous model view windows
- Extraordinary "true to scale" rendering, even when drawing
- High-speed redraw algorithm for instant refreshing
- Dynamic scrolling stops right where you want
- Plot & print virtually everything with color coding & labeling
- Rotate, zoom, pan, scroll and snap views
- Saved views to guickly restore frequent or desired views
- Full render or wire-frame animations of deflected model and dynamic mode shapes with frame and speed control
- Animation of moving loads with speed control
- High quality customizable graphics printing

Design Features:

- Designs concrete, hot rolled steel, cold formed steel and wood
- ACI 1999/2002, BS 8110-97, CSA A23.3-94, IS456:2000, EC 2-1992 with consistent bar sizes through adjacent spans
- Exact integration of concrete stress distributions using parabolic or rectangular stress blocks
- Concrete beam detailing (Rectangular, T and L)
- Concrete column interaction diagrams
- Steel Design Codes: AISC ASD 9th, LRFD 2nd & 3rd, HSS Specification, CAN/CSA-S16.1-1994 & 2004, BS 5950-1-2000, IS 800-1984, Euro 3-1993 including local shape databases
- AISI 1999 cold formed steel design
- NDS 1991/1997/2001 wood design, including Structural Composite Lumber, multi-ply, full sawn
- Automatic spectra generation for UBC 1997, IBC 2000/2003
- Generation of load combinations: ASCE, UBC, IBC, BOCA, SBC, ACI
- Unbraced lengths for physical members that recognize connecting elements and full lengths of members
- Automatic approximation of K factors
- Tapered wide flange design with either ASD or LRFD codes
- Optimization of member sizes for all materials and all design codes, controlled by standard or user-defined lists of available sizes and criteria such as maximum depths
- Automatic calculation of custom shape properties
- Steel Shapes: AISC, HSS, CAN, ARBED, British, Euro, Indian, Chilean
- Light Gage Shapes: AISI, SSMA, Dale / Incor, Dietrich, Marino\WARE
- Wood Shapes: Complete NDS species/grade database
- Full seamless integration with RISAFoot (Ver 2 or better) for advanced footing design and detailing

Plate force summation tool

Structural Analysis – Antenna Frames & Host Building Verizon Antenna Upgrade – W Danbury CT Danbury, CT Rev 1 ~ November 10, 2021

Results Features:

- Graphic presentation of color-coded results and plotted designs
- Color contours of plate stresses and forces with quadratic smoothing, the contours may also be animated
- Spreadsheet results with sorting and filtering of: reactions, member & joint deflections, beam & plate forces/stresses, optimized sizes, code designs, concrete reinforcing, material takeoffs, frequencies and mode shapes
- Standard and user-defined reports
- Graphic member detail reports with force/stress/deflection diagrams and detailed design calculations and expanded diagrams that display magnitudes at any dialed location
- Saved solutions quickly restore analysis and design results.

Branford, CT 06405

Subject:

Wind Load on Equipment per ASCE 7-10

F: (203) 488-8587

Location:

Rev. 0: 10/14/21

Danbury, CT

Prepared by: T.J.L; Checked by: C.F.C.

Job No. 21007.61

Design Wind Load on Other Structures:

(Based on IBC 2015, 2018 CSBC and ASCE 7-10)

Wind Speed = V := 120(User Input) (CSBC Appendix-N) mph

Risk Category = BC := II(User Input) (IBC Table 1604.5)

Exposure Category = (User Input) Exp := C

Height Above Grade = Z := 123 ft (User Input)

Structure Type = (User Input) Structuretype := Square_Chimney

Structure Height = Height := 6 (User Input)

Horizontal Dimension of Structure = Width := 1(User Input)

Terrain Exposure Constants:

3-Sec Gust Speed Power Law Exponent =

(Table 26.9-1) zg := 1200 if Exp = B = 900Nominal Height of the Atmospheric Boundary Layer =

900 if Exp = C

(Table 26.9-1) $\alpha :=$ 7 if Exp = B = 9.5

(Table 26.9-1) I:= 320 if Exp = B = 500 Integral Length Scale Factor =

500 if Exp = C 650 if Exp = D

(Table 26.9-1) Integral Length Scale Power Law Exponent =

(Table 26.9-1) $c := \begin{bmatrix} 0.3 & \text{if } Exp = B \\ 0.2 & \text{if } Exp = C \end{bmatrix} = 0.2$ Turbulence Intensity Factor =

 $Z_{min} := \begin{bmatrix} 30 & \text{if } Exp = B = 15 \\ 15 & \text{if } Exp = C \\ 7 & \text{if } Exp = D \end{bmatrix}$ Exposure Constant = (Table 26.9-1)

 $K_{Z} := \begin{bmatrix} 2.01 \left(\frac{Z}{zg}\right)^{\left(\frac{2}{\alpha}\right)} & \text{if } 15 \le Z \le zg = 1.32 \\ \\ 2.01 \left(\frac{15}{zg}\right)^{\left(\frac{2}{\alpha}\right)} & \text{if } Z < 15 \end{bmatrix}$ (Table 29.3-1) Exposure Coefficient =

Branford, CT 06405

Subject:

Wind Load on Equipment per ASCE 7-10

F: (203) 488-8587

Location:

Danbury, CT

Prepared by: T.J.L; Checked by: C.F.C. Job No. 21007.61

Rev. 0: 10/14/21

Topographic Factor = (Eq. 26.8-2) $K_{7t} := 1$

Wind Directionality Factor = (Table 26.6-1) $K_d = 0.9$

 $q_z := 0.00256 \cdot K_z \cdot K_{zt} \cdot K_{d} \cdot V^2 = 43.86$ Velocity Pressure = (Eq. 29.3-1)

(Sec 26.9.4) $g_Q := 3.4$ Peak Factor for Background Response =

(Sec 26.9.4) Peak Factor for Wind Response = $g_{V} := 3.4$

 $z := \begin{array}{|c|c|} Z_{min} & \text{if} & Z_{min} > 0.6 \cdot \text{Height} & = 15 \end{array}$ Equivalent Height of Structure = (Sec 26.9.4) 0.6-Height otherwise

 $I_Z := c \cdot \left(\frac{33}{z}\right)^{\left(\frac{1}{6}\right)} = 0.228$ Intensity of Turbul ence = (Eq. 26.9-7)

 $L_Z := I \cdot \left(\frac{z}{33}\right)^E = 427.057$ Integral Length Scale of Turbulence = (Eq. 26.9-9)

 $Q := \sqrt{\frac{1}{1 + 0.63 \left(\frac{\text{Width} + \text{Height}}{L_Z}\right)^{0.63}}} = 0.977$ Background Response Factor = (Eq. 26.9-8)

 $G := 0.925 \cdot \left\lceil \frac{\left(1 + 1.7 \cdot g_{Q} \cdot I_{Z} \cdot Q\right)}{1 + 1.7 \cdot g_{V} \cdot I_{Z}} \right\rceil = 0.913$ Gust Response Factor = (Eq. 26.9-6)

Force Coefficient = $C_f = 1.383$ (Fig 29.5-1 - 29.5-3)

Wind Force = $F := q_z \cdot G \cdot C_f = 55$ psf

Centered on Solutions www.centekeng.com 43-3 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587

Subject:

Location:

Wind Load on Equipment per ASCE 7-10

Danbury, CT

Prepared by: T.J.L; Checked by: C.F.C.

Rev. 0: 10/14/21

Job No. 21007.61

Development of Wind & Ice Load on Antennas

Antenna Model = RFSAPL868013

Antenna Shape = Flat (User Input)

Antenna Height= $L_{ant} := 48$ (User Input)

 $W_{ant} = 6$ Antenna Width = (User Input)

Antenna Thickness = $T_{ant} = 8.6$ (User Input)

Antenna Weight = $WT_{ant} := 10$ (User Input)

Number of Antennas = $N_{ant} := 1$ (User Input)

Wind Load (Front)

 $SA_{ant} := \frac{L_{ant} \cdot W_{ant}}{144} = 2$ Surface Area for One Antenna = sf

Antenna Projected Surface Area = $A_{ant} := SA_{ant} \cdot N_{ant} = 2$ sf

 $F_{ant} := F \cdot A_{ant} = 111$ Total Antenna Wind Force= lbs

Wind Load (Side)

Surface Area for One Antenna = sf

Antenna Projected Surface Area = $A_{ant} := SA_{ant} \cdot N_{ant} = 2.9$

 $F_{ant} := F \cdot A_{ant} = 159$ Total Antenna Wind Force= lbs

Gravity Load (without ice)

Weight of All Antennas= $WT_{ant} \cdot N_{ant} = 10$ lbs

Centered on Solutions | www.centekeng.com 63-2 North Branford Road | P: (203) 488-0580 Branford, CT 06405 | F: (203) 488-8587 Subject:

Wind Load on Equipment per ASCE 7-10

Location: Danbury, CT

Prepared by: T.J.L; Checked by: C.F.C.

lbs

Rev. 0: 10/14/21 Job No. 21007.61

Development of Wind & Ice Load on Antennas

Antenna Model = JMA MX06FRO460-02

Antenna Shape = Flat (User Input)

 $\label{eq:Lant} \mbox{Antema Height} = \mbox{$L_{\mbox{ant}} := 50.2$} \mbox{in} \mbox{$(\mbox{User Input)}$}$

Antenna Width = $W_{ant} := 15.4$ in (User Input)

Antenna Thickness = T_{ant} := 10.7 in (User Input)

Antenna Weight = WT_{ant} := 42 lbs (User Input)

 $Number of Antennas = N_{ant} := 1$ (User Input)

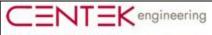
Wind Load (Front)

Surface Area for One Antenna = $SA_{ant} := \frac{L_{ant} \cdot W_{ant}}{144} = 5.4$ sf

Antenna Projected Surface Area = A_{ant} := SA_{ant} · N_{ant} = 5.4

Total Antenna Wind Force = $F_{ant} := F \cdot A_{ant} = 297$

Wind Load (Side)


Surface Area for One Antenna = $SA_{ant} := \frac{L_{ant}T_{ant}}{144} = 3.7$ sf

Antenna Projected Surface Area = $A_{ant} := SA_{ant} \cdot N_{ant} = 3.7$ sf

Total Antenna Wind Force = $F_{ant} = F \cdot A_{ant} = 207$

Gravity Load (without ice)

Weight of All Antennas = WT_{ant}·N_{ant} = 42

Centered on Solutions www.centekeng.com Branford, CT 06405

F: (203) 488-8587

Subject:

Location:

Wind Load on Equipment per ASCE 7-10

Danbury, CT

Prepared by: T.J.L; Checked by: C.F.C.

Rev. 0: 10/14/21 Job No. 21007.61

Development of Wind & Ice Load on Antennas

Antenna Model = JMA MX08FIT265-01

Antenna Shape = Flat (User Input)

Antenna Height= $L_{ant} := 32$ in (User Input)

Antenna Width = $W_{ant} = 11.6$ (User Input)

Antenna Thickness = $T_{ant} := 4.53$ in (User Input)

 $WT_{ant} := 25$ Antenna Weight = (User Input)

Number of Antennas = $N_{ant} := 1$ (User Input)

Wind Load (Front)

 $SA_{ant} := \frac{L_{ant} \cdot W_{ant}}{144} = 2.6$ Surface Area for One Antenna = sf

Antenna Projected Surface Area = $A_{ant} := SA_{ant} \cdot N_{ant} = 2.6$

 $F_{ant} := F \cdot A_{ant} = 143$ Total Antenna Wind Force= lbs

Wind Load (Side)

 $SA_{ant} := \frac{L_{ant} \cdot T_{ant}}{144} = 1$ SurfaceArea for One Antenna = sf

 $A_{ant} := SA_{ant} \cdot N_{ant} = 1$ Antenna Projected Surface Area = sf

Total Antenna Wind Force= $F_{ant} := F \cdot A_{ant} = 56$ lbs

Gravity Load (without ice)

Weight of All Antennas= $WT_{ant} \cdot N_{ant} = 25$ lbs

Centered on Solutions | www.centekeng.com 63-2 North Branford Road | P: (203) 488-0580 Branford, CT 06405 | F: (203) 488-8587 Subject:

Wind Load on Equipment per ASCE 7-10

Location: Danbury, CT

Prepared by: T.J.L; Checked by: C.F.C.

lbs

Rev. 0: 10/14/21 Job No. 21007.61

Development of Wind & Ice Load on RRHs

RRUS Data:

RRUS Model = Samsung RF4439d-25A

RRUS Shape = Flat (User Input)

RRUS Height = L_{RRH} := 14.96 in (User Input)

RRUS Width = $W_{RRH} := 14.96$ in (User Input)

RRUS Thickness = $T_{RRH} := 10.04$ in (User Input)

RRUS Weight = $WT_{RRH} := 75$ lbs (User Input)

Number of RRUS's = $N_{RRH} := 1$ (User Input)

Wind Load (Front)

Surface Area for One R RH = $SA_{RRH} := \frac{L_{RRH} \cdot W_{RRH}}{144} = 1.6$ sf

RRH Projected Surface Area = $A_{RRH} := SA_{RRH} \cdot N_{RRH} = 1.6$ sf

Total RRH Wind Force =

F_{RRH} := F·A_{RRH} = 86

Wind Load (Side)

Surface Area for One R RH = $SA_{RRH} := \frac{L_{RRH}T_{RRH}}{144} = 1$ sf

 $RRH \, Projected \, Surface \, Area = \qquad \qquad A_{RRH} \, := \, SA_{RRH} \cdot N_{RRH} = 1 \qquad \qquad \text{sf} \qquad \qquad \qquad$

Total RRH Wind Force = FDDH := F·ADDH:

F_{RRH} := F·A_{RRH} = 58 lbs

Gravity Load (without ice)

Weight of All RRHs = WT_{RRH}·N_{RRH} = 75

Branford, CT 06405

Subject:

Wind Load on Equipment per ASCE 7-10

F: (203) 488-8587

Location:

Rev. 0: 10/14/21

Danbury, CT

Prepared by: T.J.L; Checked by: C.F.C.

lbs

lbs

Job No. 21007.61

Development of Wind & Ice Load on RRHs

RRUS Data:

RRUS Model = Samsung RF4440d-13A

RRUS Shape = Flat (User Input)

RRUS Height= in (User Input) L_{RRH} := 14.96

RRUS Width = (User Input) $W_{RRH} = 14.96$

RRUS Thickness = $T_{RRH} = 9.05$ (User Input)

RRUS Weight= $WT_{RRH} = 71$ (User Input)

Number of RRUS's = (User Input) $N_{RRH} = 1$

Wind Load (Front)

 $SA_{RRH} := \frac{L_{RRH} \cdot W_{RRH}}{144} = 1.6$ Surface Area for One RRH = sf

RRH Projected Surface Area = $A_{RRH} := SA_{RRH} \cdot N_{RRH} = 1.6$ sf

Total RRH Wind Force =

 $F_{RRH} := F \cdot A_{RRH} = 86$

Wind Load (Side)

 $SA_{RRH} := \frac{L_{RRH} \cdot T_{RRH}}{144} = 0.9$ Surface Area for One R RH =

RRH Projected Surface Area = $A_{RRH} := SA_{RRH} \cdot N_{RRH} = 0.9$

Total RRH Wind Force = $F_{RRH} := F \cdot A_{RRH} = 52$

Gravity Load (without ice)

Weight of All RRHs= $WT_{RRH} \cdot N_{RRH} = 71$ lbs Subject:

Wind Load on Equipment per ASCE 7-10

Centered on Solutions www.centekeng.com 43-3 North Branford Road P: (203) 488-0580 Branford, CT 06405

F: (203) 488-8587

Location: Danbury, CT

Prepared by: T.J.L; Checked by: C.F.C.

Rev. 0: 10/14/21 Job No. 21007.61

Development of Wind & Ice Load on RRHs

RRUS Data:

RRUS Model = Samsung RT8808-77A

RRUS Shape = Flat (User Input)

RRUS Height= $L_{RRH} = 14.96$ in (User Input)

RRUS Width = $W_{RRH} = 14.96$ in (User Input)

RRUS Thickness = $T_{RRH} = 6.82$ (User Input)

RRUS Weight= $WT_{RRH} = 60$ (User Input)

Number of RRUS's = $N_{RRH} = 1$ (User Input)

Wind Load (Front)

 $SA_{RRH} := \frac{L_{RRH} \cdot W_{RRH}}{144} = 1.6$ Surface Area for One R RH =

RRH Projected Surface Area = $A_{RRH} := SA_{RRH} \cdot N_{RRH} = 1.6$

Total RRH Wind Force = $F_{RRH} := F \cdot A_{RRH} = 86$ lbs

Wind Load (Side)

 $SA_{RRH} := \frac{L_{RRH} \cdot T_{RRH}}{144} = 0.7$ Surface Area for One R RH = sf

RRH Projected Surface Area = sf $\mathsf{A}_{RRH} \coloneqq \mathsf{SA}_{RRH} \cdot \mathsf{N}_{RRH} = 0.7$

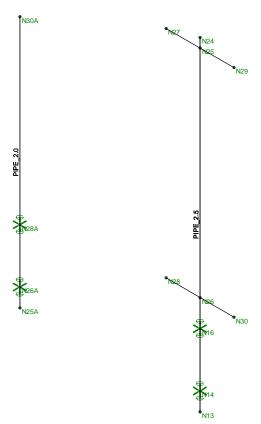
Total RRH Wind Force = $F_{RRH} = F \cdot A_{RRH} = 39$ lbs

Gravity Load (without ice)

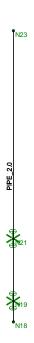
Weight of All RRHs= lbs $WT_{RRH} \cdot N_{RRH} = 60$

Structural Analysis – Antenna Frames & Host Building Verizon Antenna Upgrade – W Danbury CT Danbury, CT Rev 1 ~ November 10, 2021

Alpha & Gamma Sectors



Alpha sector



Gamma sector

Loads: BLC 6, Envelope Only Solution

Centek Engineering		
FJP	CT5072- Antenna Mount - Alpha & Gamma	Oct 19, 2021 at 10:25 AM
21007.61	Member Framing	W Danbury CT_Alpha_ & Gamma.r3d

: Centek Engineering: FJP

Company Designer Job Number Model Name : 21007.61

: CT5072- Antenna Mount - Alpha & Gamma

Oct 19, 2021 10:26 AM Checked By: TJL

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (ft/sec^2)	32.2
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Υ
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver
Hot Rolled Steel Code	AISC 14th(360-10): ASD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 14th(360-10): ASD
Cold Formed Steel Code	AISI S100-10: ASD

Hot Rolled Steel Code	AISC 14th(360-10): ASD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 14th(360-10): ASD
Cold Formed Steel Code	AISI S100-10: ASD
Wood Code	AWC NDS-12: ASD
Wood Temperature	< 100F
Concrete Code	ACI 318-11
Masonry Code	ACI 530-11: ASD
Aluminum Code	AA ADM1-10: ASD - Building
Stainless Steel Code	AISC 14th(360-10): ASD
Adjust Stiffness?	Yes(Iterative)

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

Company Designer Job Number : 21007.61

Model Name : CT5072- Antenna Mount - Alpha & Gamma Oct 19, 2021 10:26 AM Checked By: TJL

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
RX	3
R Z	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	I or II
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	1
Cd X	1
Rho Z	1
Rho X	1
Footing Overturning Safety Factor	1
Optimize for OTM/Sliding	No
Check Concrete Bearing	No
Footing Concrete Weight (k/ft^3)	150.001
Footing Concrete f'c (ksi)	4
Footing Concrete Ec (ksi)	3644
Lambda	1
Footing Steel fy (ksi)	60
Minimum Steel	0.0018
Maximum Steel	0.0075
Footing Top Bar	#3
Footing Top Bar Cover (in)	2
Footing Bottom Bar	#3
Footing Bottom Bar Cover (in)	3.5
Pedestal Bar	#3
Pedestal Bar Cover (in)	1.5
Pedestal Ties	#3

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\	Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	58	1.2
3	A992	29000	11154	.3	.65	.49	50	1.1	58	1.2
4	A500 Gr.42	29000	11154	.3	.65	.49	42	1.3	58	1.1
5	A500 Gr.46	29000	11154	.3	.65	.49	46	1.2	58	1.1
6	A53 Grade B	29000	11154	.3	.65	.49	35	1.5	58	1.2

Company Designer Job Number : 21007.61

Model Name : CT5072- Antenna Mount - Alpha & Gamma

Oct 19, 2021 10:26 AM Checked By: TJL

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design Ru	. A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	(E) Pipe Mast_Pipe 2.0	PIPE_2.0	Column	Pipe	A53 Grade B	Typical	1.02	.627	.627	1.25
2	(P)Pipe Mast_Pipe 2.5	PIPE 2.5	Column	Pipe	A53 Grade B	Typical	1.61	1.45	1.45	2.89

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[.Lcomp bot[.L-torq	Kyy	Kzz	Cb	Functi
1	PS.1	(E) Pipe Mast_Pipe .	. 7	Segment		Lbyy						Lateral
2	PS.3	(P)Pipe Mast_Pipe	. 9	Segment	Segment	Lbyy						Lateral
3	PS.2	(E) Pipe Mast_Pipe .	. 7	Segment		Lbyy						Lateral
4	PS.4	(E) Pipe Mast_Pipe .	. 7	Segment		Lbyy						Lateral

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(Section/Shape	Type	Design List	Material	Design R
1	PS.1	N23	N18			(E) Pipe Mast_Pipe 2.0 STD	Column	Pipe	A53 Grade B	Typical
2	PS.3	N24	N13			(P)Pipe Mast_Pipe 2.5 STD	Column	Pipe	A53 Grade B	Typical
3	PS.2	N12	N7			(E) Pipe Mast_Pipe 2.0 STD	Column	Pipe	A53 Grade B	Typical
4	M13	N27	N29			RIGID	None	None	RIGID	Typical
5	M14	N28	N30			RIGID	None	None	RIGID	Typical
6	PS.4	N30A	N25A			(E) Pipe Mast_Pipe 2.0 STD	Column	Pipe	A53 Grade B	Typical

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
1	N7	10	0	0	0	
2	N8	10	.5	0	0	
3	N10	10	2	0	0	
4	N12	10	7	0	0	
5	N13	5	0	0	0	
6	N14	5	.5	0	0	
7	N16	5	2	0	0	
8	N18	15	0	0	0	
9	N19	15	.5	0	0	
10	N21	15	2	0	0	
11	N23	15	7	0	0	
12	N24	5	9	0	0	
13	N25	5	8.75	0	0	
14	N26	5	2.75	0	0	
15	N27	4.056667	8.75	0	0	
16	N28	4.056667	2.75	0	0	
17	N29	5.9425	8.75	0	0	
18	N30	5.9425	2.75	0	0	
19	N25A	0	0	0	0	
20	N26A	0	.5	0	0	
21	N28A	0	2	0	0	
22	N30A	0	7	0	0	

Company Designer Job Number : 21007.61

: CT5072- Antenna Mount - Alpha & Gamma

Oct 19, 2021 10:26 AM Checked By: TJL

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N28A	Reaction	Reaction	Reaction		Reaction	
2	N26A	Reaction	Reaction	Reaction		Reaction	
3	N16	Reaction	Reaction	Reaction		Reaction	
4	N14	Reaction	Reaction	Reaction		Reaction	
5	N8	Reaction	Reaction	Reaction		Reaction	
6	N10	Reaction	Reaction	Reaction		Reaction	
7	N19	Reaction	Reaction	Reaction		Reaction	
8	N21	Reaction	Reaction	Reaction		Reaction	

Member Point Loads (BLC 2 : Weight of Equipment)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	PS.1	Υ	005	.5
2	PS.1	Υ	005	4.5
3	M13	Υ	021	.472
4	M14	Υ	021	.472
5	M13	Υ	021	1.414
6	M14	Υ	021	1.414
7	PS.2	Υ	013	1.083
8	PS.2	Υ	013	4
9	PS.3	Υ	075	2
10	PS.3	Υ	071	4
11	PS.4	Υ	005	.5
12	PS.4	Υ	005	4.5
13	PS.2	Υ	06	2

Member Point Loads (BLC 3: Wind X-Direction (55 PSF))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	PS.1	Χ	.08	.5
2	PS.1	Χ	.08	4.5
3	M13	X	.104	.472
4	M14	Χ	.104	.472
5	M13	Χ	.104	1.414
6	M14	Χ	.104	1.414
7	PS.2	X	.028	1.083
8	PS.2	Χ	.028	4
9	PS.3	X	.058	2
10	PS.3	X	.052	4
11	PS.4	X	.08	.5
12	PS.4	Χ	.08	4.5
13	PS.2	Χ	.039	2

Member Point Loads (BLC 4: Wind Z-Direction (55 PSF))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	PS.1	Z	.056	.5
2	PS.1	Z	.056	4.5
3	M13	Z	.149	.472
4	M14	Z	.149	.472
5	M13	Z	.149	1.414

Company Designer : Centek Engineering

: FJP Job Number : 21007.61

Model Name : CT5072- Antenna Mount - Alpha & Gamma

Oct 19, 2021 10:26 AM Checked By: TJL

Member Point Loads (BLC 4: Wind Z-Direction (55 PSF)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
6	M14	Z	.149	1.414
7	PS.2	Z	.072	1.083
8	PS.2	Z	.072	4
9	PS.4	Z	.056	.5
10	PS.4	Z	.056	4.5

Member Distributed Loads (BLC 3: Wind X-Direction (55 PSF))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/f	Start Location[ft,%]	End Location[ft,%]_
1	PS.2	X	.011	.011	0	0
2	PS.3	X	.011	.011	0	0
3	PS.1	X	.011	.011	0	0
4	PS.4	X	.011	.011	0	0

Member Distributed Loads (BLC 4: Wind Z-Direction (55 PSF))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/f	Start Location[ft,%]	End Location[ft,%]
1	PS.1	Z	.011	.011	4.5	0
2	PS.1	Z	.011	.011	0	.5
3	PS.3	Z	.011	.011	5.792	7.667
4	PS.2	Z	.011	.011	4	0
5	PS.2	Z	.011	.011	0	1.083
6	PS.4	Z	.011	.011	0	0

Basic Load Cases

	BLC Description	Category	X Gra	Y Gra	Z Gra	Joint	Point	Distrib	Area(Surfa
1	Self Weight	DL		-1						
2	Weight of Equipment	DL					13			
3	Wind X-Direction (55 PSF)	WLX					13	4		
4	Wind Z-Direction (55 PSF)	WLZ					10	6		

Load Combinations

	Description	Solve	P	S B	Fa	BLC	Fact	.BLC	Fa	BLC	Fa	BLC	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	IBC 16-8	Yes	Υ	DL	1																		
2	IBC 16-9	Yes	Υ	DL	1	LL	1	LLS	1														
3	IBC 16-10 (a)	Yes	Υ	DL	1	RLL	1																
4	IBC 16-10 (b)	Yes	Υ	DL	1	SL	1	SLN	1														
5	IBC 16-10 (c)	Yes	Υ	DL	1	RL	1																
6	IBC 16-11 (a)	Yes	Υ	DL	1	LL	.75	LLS	.75	RLL	.75												
7	IBC 16-11 (b)	Yes	Υ	DL	1	LL	.75	LLS	.75	SL	.75	SLN	.75										
8	IBC 16-11 (c)	Yes	Υ	DL	1	LL	.75	LLS	.75	RL	.75												
9	IBC 16-12 (a) (a)	Yes	Υ	DL	1	WLX	.6																
10	IBC 16-12 (a) (b)	Yes	Υ	DL	1	WLZ	.6																
11	IBC 16-12 (a) (c)	Yes	Υ	DL	1	WLX																	
12	IBC 16-12 (a) (d)	Yes	Υ	DL	1	WLZ	6																
13	IBC 16-13 (a) (a)	Yes	Υ	DL	1	WLX	.45	LL	.75	LLS	.75	RLL	.75										
14	IBC 16-13 (a) (b)	Yes	Υ	DL	1	WLZ	.45	LL	.75	LLS	.75	RLL	.75										
15	IBC 16-13 (a) (c)	Yes	Υ	DL	1	WLX			.75	LLS	.75	RLL	.75										
16	IBC 16-13 (a) (d)	Yes	Υ	DL	1	WLZ	45	LL	.75	LLS	.75	RLL	.75										

Company Designer Job Number : Centek Engineering

: 21007.61

: CT5072- Antenna Mount - Alpha & Gamma

Oct 19, 2021 10:26 AM Checked By: TJL

Load Combinations (Continued)

	Description	Solve	P	S	В	Fa	BLC	Fact	.BLC	Fa	BLC	Fa	BLC	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
17	IBC 16-13 (b) (a)	Yes	Y		DL	1	WLX	.45	LL	.75	LLS	.75	SL	.75	S	.75								
18	IBC 16-13 (b) (b)	Yes	~		DL	1	WLZ	.45	LL	.75	LLS	.75	SL	.75	S	.75								
19	IBC 16-13 (b) (c)	Yes	Y		DL	1	WLX	45	LL	.75	LLS	.75	SL	.75	S	.75								
20	IBC 16-13 (b) (d)	Yes	Υ		DL	1	WLZ	45	LL	.75	LLS	.75	SL	.75	S	.75								
21	IBC 16-13 (c) (a)	Yes	Υ		DL	1	WLX	.45	LL	.75	LLS	.75	RL	.75										
22	IBC 16-13 (c) (b)	Yes	Υ		DL	1	WLZ	.45	LL	.75	LLS	.75	RL	.75										
23	IBC 16-13 (c) (c)	Yes	Υ		DL	1	WLX	45	LL	.75	LLS	.75	RL	.75										
24	IBC 16-13 (c) (d)	Yes	Υ		DL	1	WLZ	45	LL	.75	LLS	.75	RL	.75										
25	IBC 16-15 (a)	Yes	Υ		DL	.6	WLX	.6																
26	IBC 16-15 (b)	Yes	Υ		DL	.6	WLZ	.6																
27	IBC 16-15 (c)	Yes	Υ		DL	.6	WLX	6																
28	IBC 16-15 (d)	Yes	Υ		DL	.6	WLZ	6																

Envelope Joint Reactions

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N28A	max	.348	11	.03	24	.271	12	0	28	0	28	0	28
2		min	348	9	.018	25	271	10	0	1	0	1	0	1
3	N26A	max	.206	9	.004	24	.158	10	0	28	0	28	0	28
4		min	206	11	.003	25	158	12	0	1	0	1	0	1
5	N16	max	1.289	11	.272	24	1.281	12	0	28	0	28	0	28
6		min	-1.289	9	.163	25	-1.281	10	0	1	0	10	0	1
7	N14	max	.915	9	.007	24	.911	10	0	28	0	28	0	28
8		min	915	11	.004	25	911	12	0	1	0	1	0	1
9	N8	max	.149	9	.004	24	.157	10	0	28	0	28	0	28
10		min	149	11	.003	25	157	12	0	1	0	1	0	1
11	N10	max	.251	11	.106	24	.27	12	0	28	0	28	0	28
12		min	251	9	.064	25	27	10	0	1	0	1	0	1
13	N19	max	.206	9	.004	24	.114	10	0	28	0	28	0	28
14		min	206	11	.003	25	114	12	0	1	0	1	0	1
15	N21	max	.348	11	.03	24	.201	12	0	28	0	28	0	28
16		min	348	9	.018	25	201	10	0	1	0	1	0	1
17	Totals:	max	.76	27	.458	24	.683	28						
18		min	76	25	.275	25	683	10						

Envelope Joint Displacements

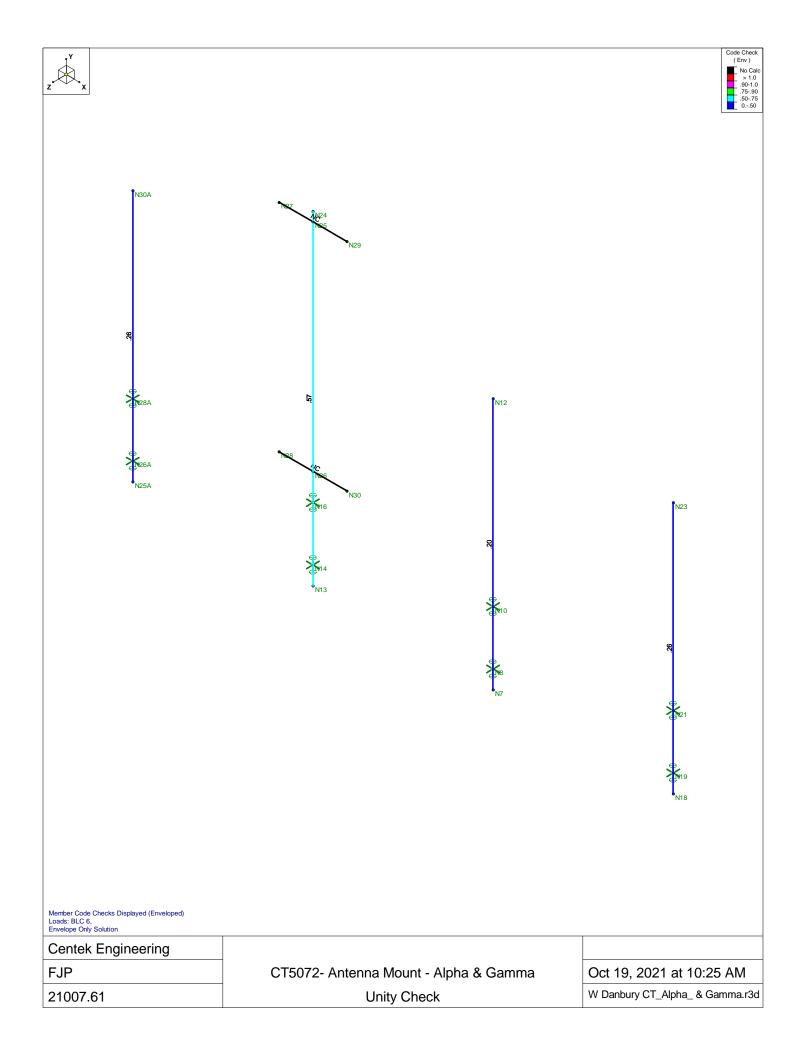
	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC	Y Rotatio	. LC	Z Rotation [rad]	LC
1	N7	max	.003	9	0	28	.004	10	5.853e-04	12	0	28	5.548e-04	9
2		min	003	11	0	1	004	12	-5.853e-04	10	0	1	-5.548e-04	11
3	N8	max	0	28	0	28	0	28	5.84e-04	12	0	28	5.534e-04	9
4		min	0	1	0	1	0	1	-5.84e-04	10	0	1	-5.534e-04	11
5	N10	max	0	28	0	28	0	28	1.253e-03	10	0	28	1.187e-03	11
6		min	0	1	0	1	0	1	-1.253e-03	12	0	1	-1.187e-03	9
7	N12	max	.245	9	0	28	.265	10	5.502e-03	10	0	28	4.977e-03	11
8		min	245	11	0	1	265	12	-5.502e-03	12	0	1	-4.977e-03	9
9	N13	max	.008	9	0	28	.008	10	1.368e-03	12	0	28	1.385e-03	9
10		min	008	11	0	1	008	12	-1.368e-03	10	0	1	-1.385e-03	11
11	N14	max	0	28	0	28	0	28	1.368e-03	12	0	28	1.384e-03	9
12		min	0	1	0	1	0	1	-1.368e-03	10	0	1	-1.384e-03	11
13	N16	max	0	28	0	28	0	28	3.022e-03	10	0	28	3.058e-03	11

Company :
Designer :
Job Number :

: Centek Engineering

: FJP : 21007.61

: CT5072- Antenna Mount - Alpha & Gamma


Oct 19, 2021 10:26 AM Checked By: TJL

Envelope Joint Displacements (Continued)

	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC	Y Rotatio	LC	Z Rotation [rad]	LC
14		min	0	1	0	1	0	1	-3.022e-03	12	0	1	-3.058e-03	9
15	N18	max	.005	9	0	28	.003	10	4.333e-04	12	0	28	7.586e-04	9
16		min	005	11	0	1	003	12	-4.333e-04	10	0	1	-7.586e-04	11
17	N19	max	0	28	0	28	0	28	4.319e-04	12	0	28	7.572e-04	9
18		min	0	1	0	1	0	1	-4.319e-04	10	0	1	-7.572e-04	11
19	N21	max	0	28	0	28	0	28	9.274e-04	10	0	28	1.623e-03	11
20		min	0	1	0	1	0	1	-9.274e-04	12	0	1	-1.623e-03	9
21	N23	max	.365	9	0	28	.215	10	4.713e-03	10	0	28	7.857e-03	11
22		min	365	11	0	1	215	12	-4.713e-03	12	0	1	-7.857e-03	9
23	N24	max	1.246	9	0	28	1.287	10	2.102e-02	10	2.494e-06	26	1.977e-02	11
24		min	-1.246	11	0	1	-1.287	12	-2.102e-02	_	-2.494e-06	12	-1.976e-02	9
25	N25	max	1.187	9	0	28	1.224	10	2.102e-02	10	2.494e-06	26	1.977e-02	11
26		min	-1.187	11	0	1	-1.224	12	-2.102e-02	12	-2.494e-06	12	-1.976e-02	9
27	N26	max	.047	9	0	28	.046	10	6.974e-03	_		26	7.07e-03	11
28		min	047	11	0	1	046	12	-6.974e-03		-4.988e-07		-7.07e-03	9
29	N27	max	1.187	9	.223	9	1.224	10	2.102e-02	10	2.494e-06	26	1.977e-02	11
30		min	-1.187	11	224	11	-1.224	12	-2.102e-02	12	-2.494e-06	12	-1.976e-02	9
31	N28	max	.047	9	.08	9	.046	10	6.974e-03	10	4.988e-07	26	7.07e-03	11
32		min	047	11	08	11	046	12	-6.974e-03	12	-4.988e-07	12	-7.07e-03	9
33	N29	max	1.187	9	.223	11	1.224	10	2.102e-02	10	2.494e-06	26	1.977e-02	11
34		min	-1.187	11	224	9	-1.224	12	-2.102e-02			12	-1.976e-02	9
35	N30	max	.047	9	.08	11	.046	10	6.974e-03			26	7.07e-03	11
36		min	047	11	08	9	046	12	-6.974e-03		-4.988e-07		-7.07e-03	9
37	N25A	max	.005	9	0	28	.004	10	5.879e-04	12	0	28	7.586e-04	9
38		min	005	11	0	1	004	12	-5.879e-04	10	0	1	-7.586e-04	11
39	N26A	max	0	28	0	28	0	28	5.866e-04	12	0	28	7.572e-04	9
40		min	0	1	0	1	0	1	-5.866e-04	10	0	1	-7.572e-04	11
41	N28A	max	0	28	0	28	0	28	1.258e-03	10	0	28	1.623e-03	11
42		min	0	1	0	1	0	1	-1.258e-03	12	0	1	-1.623e-03	9
43	N30A	max	.365	9	0	28	.281	10	6.027e-03	10	0	28	7.857e-03	11
44		min	365	11	0	1	281	12	-6.027e-03	12	0	1	-7.857e-03	9

Envelope AISC 14th(360-10): ASD Steel Code Checks

	Memb Shape	Code Check	L	LC	ShL [DirPnc/o	Pnt/o	Mnyy/om [k-ft]	Mn Cb Eqn
1	PS.1 PIPE_2.0	.256	4	11	.034 5	11.88	21.377	1.245	1.245 2 H1
2	PS.3 PIPE_2.5	.573	6	11	.092 7	33.588	33.743	2.393	2.393 1 H1
3	PS.2 PIPE_2.0	.201	4	12	.027 5	11.88	21.377	1.245	1.245 1 H1
4	PS.4 PIPE_2.0	.256	4	11	.034 5	11.88	21.377	1.245	1.245 2 H1

Subject:

Connection to Host Building

Centered on Solutions www.centekeng.com Branford, CT 06405

F: (203) 488-8587

Location:

Danbury, CT

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 21007.61

Antenna Mast Connection:

Anchor Data:

Rev. 0: 10/19/21

HAS Threaded Rod w/Hilti HY200 Adhesive =

Number of Anchor Bolts = N := 4(User Input) Diameter of Bolts= D := 0.5in (User Input)

Embedment of Bolts = EM := 4.5in (User Input)

Bolt Spacing Horz= $Sp_H := 12in$ (User Input)

Bolt Spacing Vertical = $Sp_V := 0$ in (User Input)

Bolt Edge Distance = (User Input) Edge := 6in

Bolt Design Strength Tension = $\Phi N_n := 5.31 \cdot kips$ (User Input)

Adjustment Factor for Spacing in Tension = $f_{AN} := 0.9$ (User Input)

Adjustment Factor for Edge Distance in Tension = $f_{RN} := 0.85$ (User Input)

> Bolt Design Resistance in Tension = $N_{des} := \Phi N_n \cdot f_{AN} \cdot f_{RN} = 4.1 \cdot kips$ (User Input)

 $\Phi V_n := 11.44 \cdot kips$ Bolt Design Strength Shear = (User Input)

Adjustment Factor for Spacing in Shear = $f_{AV} = 0.66$ (User Input)

Adjustment Factor for Edge Distance in Shear = $f_{RV} := 0.7$ (User Input)

Concrete Thickness Factor in Shear = $f_{HV} := 0.74$ (User Input)

Bolt Design Resistance in Shear = $V_{des} := \Phi V_{n} \cdot f_{AV} \cdot f_{RV} \cdot f_{HV} = 3.9 \cdot kips$ (User Input)

> Converison Factor = (User Input) $\alpha_{ASD} = 1.6$

> $T_{all} := \frac{N_{des}}{\alpha_{ASD}} = 2.54 \cdot \text{kips}$ Alowable Tension = (User Input)

 $V_{all} := \frac{V_{des}}{\alpha_{ASD}} = 2.44 \cdot kips$ Alowable Shear = (User Input)

Centered on Solutions www.centekeng.com Branford, CT 06405

F: (203) 488-8587

Subject:

Connection to Host Building

Location: Danbury, CT

Prepared by: T.J.L. Checked by: C.F.C.

Rev. 0: 10/19/21 Job No. 21007.61

Design Reactions: Wind X-Direction

> Shear X = Shear_x:= 1.3·kips (User Input)

> Shear Y= $Shear_{V} := 0.3 \cdot kips$ (User Input)

Shear Z = (User Input) Shear₇ := 0·kips

Moment X = $Mx := 0 \cdot ft \cdot kips$ (User Input)

Moment Y = $My := 0 \cdot ft \cdot kips$ (User Input)

Moment Z = $Mz := 0 \cdot ft \cdot kips$ (User Input)

Anchor Check:

Max Tension Force =

Max Shear Force =

 $Condition1 := if \left(\frac{T_{Max}}{T_{all}} \, + \, \frac{V_{Max}}{V_{all}} \, \leq \, 1.0 \, , "OK" \, , "NG" \, \right)$ Condition 1 =

% of Capacity=

Wind Z-Direction **Design Reactions:**

> Shear X = Shear_x:= 0·kips (User Input)

> Shear Y= $Shear_{V} := 0.3 \cdot kips$ (User Input)

> Shear Z = Shear₇ := 1.3·kips (User Input)

Moment X = $Mx := 0 \cdot ft \cdot kips$ (User Input)

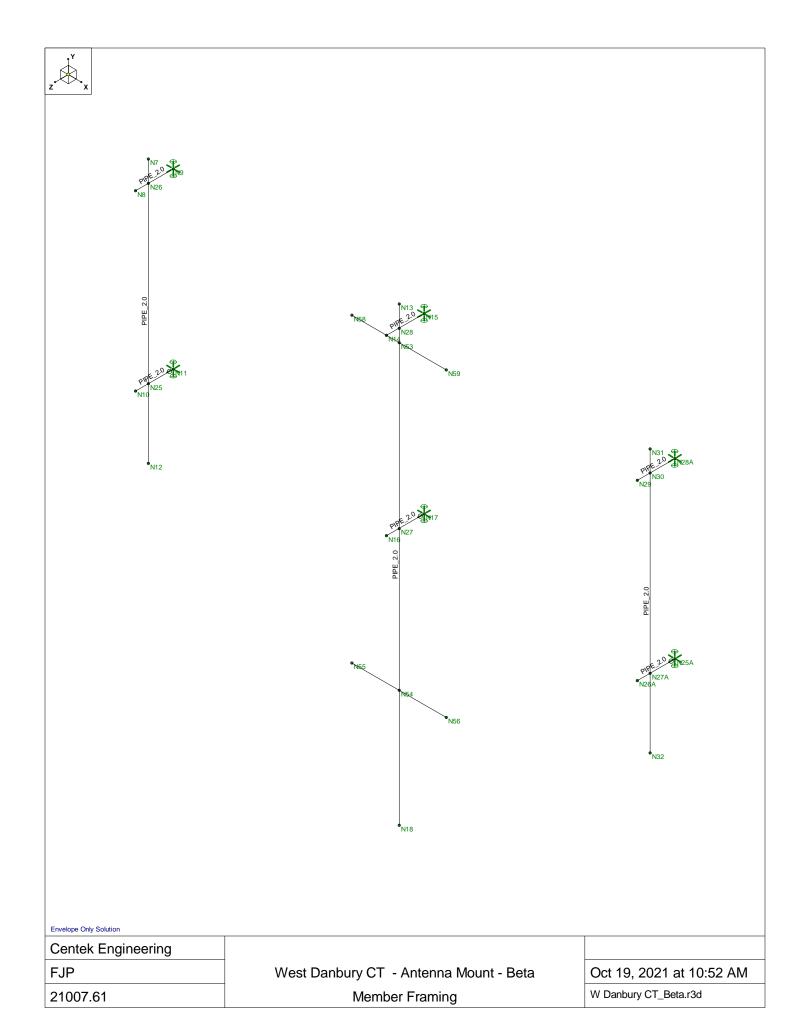
Moment Y = $My := 0 \cdot ft \cdot kips$ (User Input)

Moment Z =(User Input) $Mz := 0 \cdot ft \cdot kips$

Anchor Check:

 $T_{Max} := \frac{Shear_z}{N} = 325lb$ Max Tension Force =

Max Shear Force =


Condition1 := if $\left(\frac{T_{Max}}{T_{all}} + \frac{V_{Max}}{V_{all}} \le 1.0, "OK", "NG"\right)$ Condition 1 =

% of Capacity=

Structural Analysis – Antenna Frames & Host Building Verizon Antenna Upgrade – W Danbury CT Danbury, CT Rev 1 ~ November 10, 2021

Beta Sector

Company : Centek Engineering
Designer : FJP
Job Number : 21007.61
Model Name : West Danbury CT - Antenna Mount - Beta

Oct 19, 2021 10:51 AM Checked By: TJL

(Global) Model Settings

5
97
Yes
Yes
Yes
Yes
144
.12
0.50%
Yes
Yes
3
32.2
12
4
Υ
XZ
Sparse Accelerated
Accelerated Solver

Hot Rolled Steel Code	AISC 14th(360-10): ASD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 14th(360-10): ASD
Cold Formed Steel Code	AISI S100-10: ASD
Wood Code	AWC NDS-12: ASD
Wood Temperature	< 100F
Concrete Code	ACI 318-11
Masonry Code	ACI 530-11: ASD
Aluminum Code	AA ADM1-10: ASD - Building
Stainless Steel Code	AISC 14th(360-10): ASD
Adjust Stiffness?	Yes(Iterative)

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

Company Designer Job Number : 21007.61

Model Name : West Danbury CT - Antenna Mount - Beta Oct 19, 2021 10:51 AM Checked By: TJL

(Global) Model Settings, Continued

Seismic Code ASCE 7-10 Seismic Base Elevation (ft) Not Entered Add Base Weight? Yes Ct X .02
Add Base Weight? Yes Ct X .02
Ct X .02
Ct Z .02
T X (sec) Not Entered
T Z (sec) Not Entered
R X 3
R Z 3
Ct Exp. X .75
Ct Exp. Z .75
SD1 1
SDS 1
S1 1
TL (sec) 5
Risk Cat I or II
Drift Cat Other
Om Z 1
Om X 1
Cd Z 1
Cd X 1
Rho Z 1
Rho X 1
TOTO X
Footing Overturning Safety Factor 1
Optimize for OTM/Sliding No
Check Concrete Bearing No
Footing Concrete Weight (k/ft^3) 150.001
Footing Concrete f'c (ksi) 4
Footing Concrete Ec (ksi) 3644
Lambda 1
Footing Steel fy (ksi) 60
Minimum Steel 0.0018
Maximum Steel 0.0075
Footing Top Bar #3
Footing Top Bar Cover (in) 2
Footing Bottom Bar #3
Footing Bottom Bar Cover (in) 3.5
Pedestal Bar #3
Pedestal Bar Cover (in) 1.5
Pedestal Ties #3

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\	Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	58	1.2
3	A992	29000	11154	.3	.65	.49	50	1.1	58	1.2
4	A500 Gr.42	29000	11154	.3	.65	.49	42	1.3	58	1.1
5	A500 Gr.46	29000	11154	.3	.65	.49	46	1.2	58	1.1
6	A53 Grade B	29000	11154	.3	.65	.49	35	1.5	58	1.2

Company Designer Job Number

: Centek Engineering

: 21007.61

Model Name : West Danbury CT - Antenna Mount - Beta

Oct 19, 2021 10:51 AM Checked By: TJL

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design Ru	. A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	(E) Pipe Mast_Pipe 2.0	PIPE_2.0	Column	Wide Flange	A53 Grade B	Typical	1.02	.627	.627	1.25
2	(P) Pipe Mast_Pipe 2.0	PIPE_2.0	Column	Wide Flange	A53 Grade B	Typical	1.02	.627	.627	1.25
3	(E)1/2"dia.	SR 1/2	Beam	Pipe	A36 Gr.36	Typical	.196	.003	.003	.006

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[.Lcomp bot[.L-torq	Куу	Kzz	Cb	Functi
1	M4	(E) Pipe Mast_Pipe	75			Lbyy						Lateral
2	M5	(E) Pipe Mast_Pipe	.75			Lbyy						Lateral
3	M6	(E) Pipe Mast_Pipe	75			Lbyy						Lateral
4	M7	(E) Pipe Mast_Pipe	.75			Lbyy						Lateral
5	M8	(E) Pipe Mast_Pipe	75			Lbyy						Lateral
6	M9	(E) Pipe Mast_Pipe	75			Lbyy						Lateral
7	PS.1	(E) Pipe Mast_Pipe	- 5.25	Segment		Lbyy						Lateral
8	PS.2	(P) Pipe Mast_Pipe	. 9	Segment		Lbyy						Lateral
9	PS.4	(E) Pipe Mast_Pipe	5.25	Segment		Lbyy						Lateral

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(. Section/Shape	Type	Design List	Material	Design R
1	M4	N10	N11		90	(E) Pipe Mast_Pipe 2.0 STD	Column	Wide Flange	A53 Grade B	Typical
2	M5	N8	N9		90	(E) Pipe Mast_Pipe 2.0 STD	Column	Wide Flange	A53 Grade B	Typical
3	M6	N16	N17		90	(E) Pipe Mast_Pipe 2.0 STD	Column	Wide Flange	A53 Grade B	Typical
4	M7	N14	N15		90	(E) Pipe Mast_Pipe 2.0 STD	Column	Wide Flange	A53 Grade B	Typical
5	M8	N26A	N25A		90	(E) Pipe Mast_Pipe 2.0 STD	Column	Wide Flange	A53 Grade B	Typical
6	M9	N29	N28A		90	(E) Pipe Mast_Pipe 2.0 STD	Column	Wide Flange	A53 Grade B	Typical
7	PS.1	N31	N32			(E) Pipe Mast_Pipe 2.0 STD	Column	Wide Flange	A53 Grade B	Typical
8	PS.2	N13	N18			(P) Pipe Mast_Pipe 2.0 STD	Column	Wide Flange	A53 Grade B	Typical
9	PS.4	N7	N12			(E) Pipe Mast_Pipe 2.0 STD	Column	Wide Flange	A53 Grade B	Typical
10	M24	N58	N59			RIGID	None	None	RIGID	Typical
11	M25	N55	N56			RIGID	None	None	RIGID	Typical

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
1	N12	5	-5.25	.5	0	
2	N18	10	-9	.5	0	
3	N32	15	-5.25	.5	0	
4	N11	5	-3.875	0	0	
5	N10	5	-3.875	.75	0	
6	N25	5	-3.875	.5	0	
7	N17	10	-3.875	0	0	
8	N16	10	-3.875	.75	0	
9	N27	10	-3.875	.5	0	
10	N25A	15	-3.875	0	0	
11	N26A	15	-3.875	.75	0	
12	N27A	15	-3.875	.5	0	
13	N9	5	-0.416667	0	0	
14	N8	5	-0.416667	.75	0	

Company Designer Job Number : 21007.61

: West Danbury CT - Antenna Mount - Beta

Oct 19, 2021 10:51 AM Checked By: TJL

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
15	N26	5	-0.416667	.5	0	·
16	N15	10	-0.416667	0	0	
17	N14	10	-0.416667	.75	0	
18	N28	10	-0.416667	.5	0	
19	N28A	15	-0.416667	0	0	
20	N29	15	-0.416667	.75	0	
21	N30	15	-0.416667	.5	0	
22	N7	5	0	.5	0	
23	N13	10	0	.5	0	
24	N31	15	0	.5	0	
25	N53	10	-0.666667	.5	0	
26	N54	10	-6.666667	.5	0	
27	N55	9.056667	-6.666667	.5	0	
28	N56	10.9425	-6.666667	.5	0	
29	N58	9.056667	-0.666667	.5	0	
30	N59	10.9425	-0.666667	.5	0	

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N9	Reaction	Reaction	Reaction		Reaction	
2	N11	Reaction	Reaction	Reaction		Reaction	
3	N15	Reaction	Reaction	Reaction		Reaction	
4	N17	Reaction	Reaction	Reaction		Reaction	
5	N25A	Reaction	Reaction	Reaction		Reaction	
6	N28A	Reaction	Reaction	Reaction		Reaction	

Member Point Loads (BLC 2 : Weight of Equipment)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	PS.1	Υ	005	.5
2	PS.1	Υ	005	4.5
3	M24	Υ	021	.472
4	M24	Υ	021	1.414
5	M25	Υ	021	.472
6	M25	Υ	021	1.414
7	PS.4	Υ	013	.5
8	PS.4	Υ	013	3
9	PS.4	Υ	06	4.5
10	PS.2	Υ	071	7.5
11	PS.2	Υ	075	8.5

Member Point Loads (BLC 3: Wind X-Direction)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	PS.1	X	.08	.5
2	PS.1	Χ	.08	4.5
3	M24	Χ	.104	.472
4	M24	Χ	.104	1.414
5	M25	Х	.104	.472
6	M25	Х	.104	1.414

Company : Designer :

: Centek Engineering

Designer : FJP Job Number : 2100

: 21007.61

Model Name : West Danbury CT - Antenna Mount - Beta

Oct 19, 2021 10:51 AM Checked By: TJL

Member Point Loads (BLC 3: Wind X-Direction) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
7	PS.4	X	.028	.5
8	PS.4	X	.028	3
9	PS.4	Х	.039	4.5
10	PS.2	Х	.052	7.5
11	PS.2	Х	.058	8.5

Member Point Loads (BLC 4: Wind Z-Direction)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	PS.1	Z	.056	.5
2	PS.1	Z	.056	4.5
3	M24	Z	.149	.472
4	M24	Z	.149	1.414
5	M25	Z	.149	.472
6	M25	Z	.149	1.414
7	PS.4	Z	.072	.5
8	PS.4	Z	.072	3
9	PS.4	Z	.047	4.5
10	PS.2	Z	.086	7.5
11	PS.2	Z	.086	8.5

Member Distributed Loads (BLC 3: Wind X-Direction)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/f.	.Start Location[ft,%]	End Location[ft,%]
1	M4	X	.011	.011	0	0
2	M5	X	.011	.011	0	0
3	M6	X	.011	.011	0	0
4	M7	X	.011	.011	0	0
5	M8	X	.011	.011	0	0
6	M9	X	.011	.011	0	0
7	PS.1	X	.011	.011	0	0
8	PS.2	X	.011	.011	0	0
9	PS.4	X	.011	.011	0	0

Basic Load Cases

	BLC Description	Category	X GraY	Gra	Z Gra	Joint	Point	Distrib	Area(Surfa
1	Self Weight	DL		-1						
2	Weight of Equipment	DL					11			
3	Wind X-Direction	WLX					11	9		
4	Wind 7-Direction	WI 7					11			

Load Combinations

	Description	Solve	Р	S	В	Fa	BLC	Fact	.BLC	Fa	BLC	Fa	BLC	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	Fa
1	IBC 16-8	Yes	Υ		DL	1																		
2	IBC 16-9	Yes	Υ		DL	1	LL	1	LLS	1														
3	IBC 16-10 (a)	Yes	Υ		DL	1	RLL	1																
4	IBC 16-10 (b)	Yes	Υ		DL	1	SL	1	SLN	1														
5	IBC 16-10 (c)	Yes	Υ		DL	1	RL	1																
6	IBC 16-11 (a)	Yes	Υ		DL	1	LL	.75	LLS	.75	RLL	.75												

Company Designer Job Number : 21007.61

Model Name : West Danbury CT - Antenna Mount - Beta

Oct 19, 2021 10:51 AM Checked By: TJL

Load Combinations (Continued)

	Description	Solve	P	S	В	Fa	BLC	Fact	.BLC	Fa	BLC	Fa	BLC	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
7	IBC 16-11 (b)	Yes	Υ		DL	1	LL				SL	.75	SLN	.75										
8	IBC 16-11 (c)	Yes	Υ		DL	1	LL	.75	LLS	.75	RL	.75												
9	IBC 16-12 (a) (a)	Yes	Υ		DL	1	WLX	.6																
10	IBC 16-12 (a) (b)	Yes	Υ		DL	1	WLZ	.6																
11	IBC 16-12 (a) (c)	Yes	Υ		DL	1	WLX																	
12	IBC 16-12 (a) (d)	Yes	Υ		DL	1	WLZ																	
13	IBC 16-13 (a) (a)	Yes	Υ		DL	1	WLX		LL		LLS			.75										
14	IBC 16-13 (a) (b)	Yes	Υ		DL	1	WLZ		_		LLS		RLL											
15	IBC 16-13 (a) (c)	Yes	Υ		DL	1_		45	_		LLS		RLL	.75										
16	IBC 16-13 (a) (d)	Yes	Υ		DL	1	WLZ			.75	LLS	.75	RLL	.75										
17	IBC 16-13 (b) (a)	Yes	Υ		DL	1	WLX	_			LLS					.75								
18	IBC 16-13 (b) (b)	Yes	Υ		DL	1	WLZ				LLS			.75		.75								
19	IBC 16-13 (b) (c)	Yes	Υ	-	DL	1_	WLX				LLS			.75		.75								
20	IBC 16-13 (b) (d)	Yes	Υ		DL	1_	WLZ	45	LL		LLS			.75	S	.75								
21	IBC 16-13 (c) (a)		Υ		DL	1_	WLX		LL		LLS			.75										
22	IBC 16-13 (c) (b)		Υ		DL	1_	WLZ				LLS			.75										
23	IBC 16-13 (c) (c)	Yes	Υ		DL	1		45	_		LLS			.75										
24	IBC 16-13 (c) (d)	Yes	Υ		DL	1	WLZ	45	LL	.75	LLS	.75	RL	.75										
25	IBC 16-15 (a)	Yes	Υ		DL	.6	WLX																	
26	IBC 16-15 (b)	Yes	Υ		DL	.6	WLZ	.6																
27	IBC 16-15 (c)	Yes	Υ		DL	.6	WLX	6																
28	IBC 16-15 (d)	Yes	Υ		DL	.6	WLZ	6																

Envelope Joint Reactions

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N9	max	.034	11	.067	10	.039	28	0	28	.049	11	0	28
2		min	034	9	.02	28	064	10	0	1	049	9	0	1
3	N11	max	.067	27	.068	12	.082	12	0	28	0	28	0	28
4		min	067	25	.021	26	057	26	0	1	0	1	0	1
5	N15	max	.066	25	.899	12	.075	26	0	28	.191	11	0	28
6		min	066	27	69	26	135	12	0	1	191	9	0	1
7	N17	max	.45	27	.899	10	.596	12	0	28	0	28	0	28
8		min	45	25	692	28	536	26	0	1	0	1	0	1
9	N25A	max	.085	27	.033	10	.045	12	0	28	0	28	0	28
10		min	085	25	006	28	038	26	0	1	0	1	0	1
11	N28A	max	.055	11	.033	12	.024	28	0	28	.069	11	0	28
12		min	055	9	006	26	031	10	0	1	069	0	0	1
13	Totals:	max	.625	11	.409	11	.643	28						
14		min	625	9	.246	25	643	10						

Envelope Joint Displacements

	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC	Y Rotatio	LC	Z Rotation [rad]] LC
1	N12	max	.013	25	0	26	0	26	2.214e-04	12	1.385e-03	9	2.788e-04	25
2		min	013	27	001	12	004	12	3.553e-05	26	-1.385e-03	11	-2.788e-04	27
3	N18	max	1.163	25	.015	26	.941	26	1.936e-02	28	9.059e-03	25	2.072e-02	25
4		min	-1.163	27	021	12	972	12	-1.889e-02	26	-9.058e-03	27	-2.071e-02	27
5	N32	max	.021	25	0	26	.002	26	1.987e-04	12	1.763e-03	9	6.486e-04	25
6		min	021	11	0	12	003	12	-1.237e-04	26	-1.763e-03	11	-6.486e-04	27
7	N11	max	0	28	0	28	0	28	0	28	0	28	2.057e-04	25

Company Designer Job Number

: Centek Engineering

ier : FJP imber : 21007.61

: West Danbury CT - Antenna Mount - Beta

Oct 19, 2021 10:51 AM Checked By: TJL

Envelope Joint Displacements (Continued)

	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC	Y Rotatio	LC	Z Rotation [rad]	LC
8		min	0	1	0	1	0	1	0	1	0	1	-2.057e-04	27
9	N10	max	.013	9	0	26	0	26	1.671e-04	12	1.386e-03	9	2.057e-04	25
10		min	013	11	002	12	0	12	9.011e-05	26	-1.386e-03	11	-2.057e-04	27
11	N25	max	.009	9	0	26	0	26	1.67e-04	12	1.385e-03	_	2.057e-04	25
12		min	009	11	001	12	0	12	9.006e-05	26	-1.385e-03	11	-2.057e-04	27
13	N17	max	0	28	0	28	0	28	0	28	0	28	8.994e-03	25
14		min	0	1	0	1	0	1	0	1	0	1	-8.994e-03	27
15	N16	max	.084	25	.025	26	0	26	4.005e-03		9.059e-03		8.994e-03	25
16		min	084	27	032	12	0	12	-3.395e-03		-9.059e-03		-8.994e-03	27
17	N27	max	.057	25	.015	26	0	26	4.005e-03		9.059e-03		8.994e-03	25
18		min	057	27	02	12	0	12	-3.395e-03	_	-9.058e-03		-8.994e-03	27
19	N25A	max	0	28	0	28	0	28	0	28	0	28	5.278e-04	25
20		min	0	1	0	1	0	1	0	1	0	1	-5.278e-04	27
21	N26A	max	.016	9	0	26	0	26	1.338e-04		1.763e-03		5.278e-04	25
22		min	016	11	001	12	0	12	-5.867e-05		-1.763e-03		-5.278e-04	27
23	N27A	max	.011	9	0	26	0	26	1.337e-04	_	1.763e-03	_	5.278e-04	25
24		min	011	11	0	12	0	12	-5.873e-05	_	-1.763e-03		-5.278e-04	27
25	N9	max	0	28	0	28	0	28	2.39e-04	12	0	28	2.743e-04	9
26		min	0	1	0	1	0	1	1.126e-04	26	0	1	-2.743e-04	11
27	N8	max	.001	9	0	26	0	10	1.881e-04	_	2.039e-04	_	2.743e-04	9
28		min	001	11	002	12	0	28	5.737e-05		-2.039e-04		-2.743e-04	11
29	N26	max	0	9	0	26	0	10	1.88e-04		2.038e-04	_	2.743e-04	9
30		min	0	11	001	12	0	28	5.732e-05	_	-2.038e-04		-2.743e-04	11
31	N15	max	0	28	0	28	0	28	3.356e-03	12	0	28	2.211e-03	27
32		min	0	1	0	1	0	1	-2.512e-03	26	0	1	-2.211e-03	25
33	N14	max	.006	25	.019	26	0	12	2.245e-03		1.029e-03		2.211e-03	27
34		min	006	27	026	12	0	26	-1.657e-03		-1.029e-03		-2.211e-03	25
35	N28	max	.003	25	.014	26	0	12	2.245e-03		1.029e-03		2.211e-03	27
36		min	003	27	019	12	0	26	-1.657e-03	_	-1.029e-03		-2.211e-03	25
37	N28A	max	0	28	0	28	0	28	1.366e-04	12	0	28	1.886e-04	9
38		min	0	1	0	1	0	1	-3.035e-05	26	0	1	-1.886e-04	11
39	N29	max	.002	9	0	26	0	10	9.676e-05	12	2.735e-04	9	1.886e-04	9
40		min	002	11	001	12	0	28	-2.23e-05		-2.735e-04	11	-1.886e-04	11
41	N30	max	0	9	0	26	0	10	9.667e-05		2.733e-04	9	1.886e-04	9
42		min	0	11	0	12	0	28	-2.236e-05		-2.733e-04		-1.886e-04	11
43	N7	max	0	11	0	26	0	12	1.88e-04	_	2.038e-04	_	2.736e-04	9
44		min	0	9	001	12	0	26	5.732e-05		-2.038e-04		-2.736e-04	11
45	N13	max	.014	25	.014	26	.011	12	2.245e-03		1.029e-03			27
46		min	014	27	019	12	008	26	-1.657e-03		-1.029e-03		-2.212e-03	25
47	N31	max	0	25	0	26	0	12	9.667e-05	_	2.733e-04		1.878e-04	9
48		min	0	27	0	12	0	26	-2.236e-05		-2.733e-04		-1.878e-04	11
49	N53	max	.004	27	.014	26	.004	26	1.177e-03		1.609e-03			27
50		min	004	25	019	12	005	12	-8.25e-04		-1.609e-03			25
51	N54	max	.588	25	.015	26	.418	26	1.837e-02		9.059e-03			25
52		min	588	27	021	12	436	12	-1.789e-02		-9.058e-03			27
53	N55	max	.588	25	.224	27	.419	26	1.837e-02		9.059e-03			25
54		min	588	27	228	25	436	12	-1.789e-02		-9.058e-03			27
55	N56	max	.588	25	.223	25	.418	26	1.837e-02		9.059e-03			25
56		min	588	27	228	27	436	12	-1.789e-02	_	-9.058e-03		-1.993e-02	27
57	N58	max	.004	27	.023	25	.018	25	1.177e-03		1.609e-03			27
58		min	004	25	027	11	019	11	-8.25e-04	26	-1.609e-03	27	-2.187e-03	25
59	N59	max	.004	27	.023	27	.018	27	1.177e-03	12	1.609e-03	25	2.187e-03	27

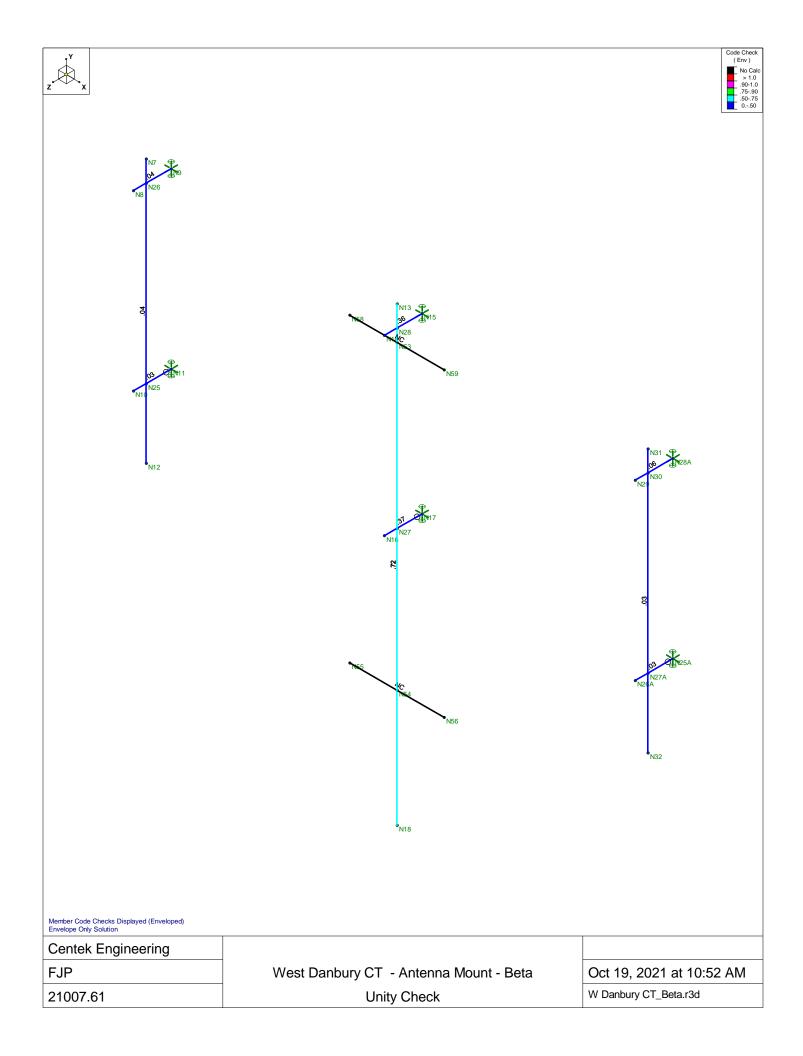
Company Designer Job Number

: Centek Engineering

: FJP

: 21007.61

Model Name : West Danbury CT - Antenna Mount - Beta


Oct 19, 2021 10:51 AM Checked By: TJL

Envelope Joint Displacements (Continued)

	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC Y Rotatio LC Z Rotation [rad] LC
60		min	004	25	027	9	019	9	-8.25e-04	26-1.609e-03 27 -2.187e-03 25

Envelope AISC 14th(360-10): ASD Steel Code Checks

	Memb	. Shape	Code Check	L	LC	Shl		Dir		Pnc/o	Pnt/o	Mnyy/om [k-ft]	Mn Cb Eqn
1	M4	PIPE_2.0	.035	.25	11	.014	75			21.234	21.377	1.245	1.245 1H1
2	M5	PIPE_2.0	.040	.75	11	.010	75			21.234	21.377	1.245	1.245 1 H1
3	M6	PIPE_2.0	.373	.25	10	.140 .	75			21.234	21.377	1.245	1.245 1 H1
4	M7	PIPE_2.0	.364	.25	12	.140 .	75			21.234	21.377	1.245	1.245 1 H1
5	M8	PIPE_2.0	.034	.25	11	.013	75			21.234	21.377	1.245	1.245 1 H1
6	M9	PIPE_2.0	.055	.75	11	.009	75			21.234	21.377	1.245	1.245 1 H1
7	PS.1	PIPE_2.0	.029	3	11	.045 .	4			15.361	21.377	1.245	1.245 2 H1
8	PS.2	PIPE_2.0	.724	3	26	.238	3			8.08	21.377	1.245	1.245 1 H1
9	PS.4	PIPE_2.0	.039	3	12	.035	3			15.361	21.377	1.245	1.245 1 H1

Subject:

Location:

Rev. 0: 10/05/2021

Connection to Building

Danbury, CT

(User Input)

(User Input)

Prepared by: F.J.P; Checked by: T.J.L Job No. 21007.61

Antenna Mast to Building Connection:

Anchor Data:

1/2" Threaded Rod with Hilti HY20 ADHESIVE

Number of Bolts = N := 4

Embedment = Embed $:= 6 \cdot in$ (User Input)

Spacing= $S := 3 \cdot in$

 $T_{all} \coloneqq 745 \boldsymbol{\cdot} \boldsymbol{\mathsf{lbf}}$ Allowable Load in Tension = (User Input)

Allowable Load in Shear = $V_{all} := 930 \cdot lbf$ (User Input)

Design Reactions:

Shear X = $Shear_x := .445 \cdot kip$ (User Input)

Axial = Vertical := .965 kip (User Input)

Shear Z = $Shear_7 := .566 \cdot kip$ (User Input)

Moment Y = $M_Y := 0 \cdot kip \cdot ft$ (User Input)

 $M_7 := 0 \cdot kip \cdot ft$ Moment Z = (User Input)

Anchor Check:

Max Tension Force =

 $V_{Max} := \frac{\sqrt{Shear_x^2 + Vertical^2}}{N} + \frac{M_Z}{S \cdot N} = 265.67 \text{ lbf}$ Max Shear Force =

 $Condition1 \coloneqq \textbf{if} \left(\frac{T_{Max}}{T_{all}} \le 1.00 \text{ , "OK" , "NG"} \right) = \text{"OK"}$ Condition 1 =

 $Condition2 \coloneqq \textbf{if} \left(\frac{V_{Max}}{V_{all}} \leq 1.00 \text{ , "OK" , "NG"} \right) = \text{"OK"}$ Condition 2 =

 $Condition3 \coloneqq \textbf{if} \left(\frac{T_{Max}}{T_{all}} + \frac{V_{Max}}{V_{all}} \le 1.0 \text{ , "OK" , "NG"} \right) = \text{"OK"}$ Condition 3 =

% of Capacity =

Note: Due to lack of attachment information, it has been assumed that (4) -1/2" bolts were used for the attachment to the building façade using with Hilti HY20 Adhesive.

EAST > North East > New England > New England West > W DANBURY CT

Mahmood, Shaikh - shaikh.mahmood@verizonwireless.com - 10/7/2021 22:50:16

Project Details	
FUZE Project ID: 16486722	
Project Name: 5G L-Sub6 - Carrier Add	
Project Alt Name: 5G L-Sub6 - Carrier Add	
Project Type: Modification	
Modification Type: VDU_UPGRADE_OR_ADD	
Designed Sector Carrier 4G: 15	
Designed Sector Carrier 5G: 3	
Additional Sector Carrier 4G: N/A	
Additional Sector Carrier 5G: N/A	
FP Solution Type & Tech Type: MODIFICATION;4G_4TX,4G_PCS,5G_850,5G_ Sub6-Prep,5G_vDU add - Sub3	L-
Carrier Aggregation: false	
MPT Id:	
eCIP-0: false	
Suffix: Rev0_10.07.2021	

Location Information
Site ID: 325024
E-NodeB ID: 0659452,065007
PSLC: 468225
Switch Name: Westboro
Tower Owner:
Tower Type: Building Side-Mounted
Site Type: MACRO
Site Sub Type: SPOKE
Street Address: 18 Old Ridgebury Rd.
City: Danbury
State: CT
Zip Code: 06810
County: Fairfield
Latitude: 41.388428 / 41° 23' 18.3408" N
Longitude: -73.515124 / 73° 30' 54.4464" W

RFDS Project Scope:

******Rooftop******

Rev0_10.07.2021: Initial Design.

850-LTE, 5G_850,PCS-LTE, 5G_L-Sub6 Add:

- Swap out existing LTE antennas with JMA MX06FRO460-02
- 850 CDMA 1xRTT Antenna remains in all sectors.
- Add 2" Side by Side Antenna Mounting Bracket.
- This site is in close proximity of Earth Satellite Station buffer. Add CommScope IMF8-C-2STP |

E14V00P32 Filter for L-Sub6 8T8R RRH.

- Retain existing OVP Box and Hybrid Power/Fiber cables.
- Add L-Sub6 Samsung antennas to all sectors.
- Upgrade Nokia RRHs to Samsung RRHs: DB LB / DB HB.
- Place all RRHs near antennas on Rooftop.
- Capped and weatherproof unused RF ports.

Antenna Summary

Added														
700	850	1900	AWS	L-Sub6	Make	Model	Centerline	Tip Height	Azimuth	RET	4xRx	Inst. Type	Quantity	Item ID
LTE	LTE 5G	LTE	LTE		JMA	MX06FRO460-02	123	125.1	150(0008) 150(02)	false	false	PHYSICAL	2	MX06FRO460-02
LTE	LTE 5G	LTE	LTE		JMA	MX06FRO460-02	108	110.1	30(0007) 30(01)	false	false	PHYSICAL	2	MX06FRO460-02
LTE	LTE 5G	LTE	LTE		JMA	MX06FRO460-02	86	88.1	270(0009) 270(03)	false	false	PHYSICAL	2	MX06FRO460-02
				5G	JMA	MX08FIT265-01	123	124	150(0008)	false	false	PHYSICAL	1	
				5G	JMA	MX08FIT265-01	86	87	270(0009)	false	false	PHYSICAL	1	
				5G	JMA	MX08FIT265-01	108	109	30(0007)	false	false	PHYSICAL	1	
Remov	ed													
700	850	1900	AWS	L-Sub6	Make	Model	Centerline	Tip Height	Azimuth	RET	4xRx	Inst. Type	Quantity	Item ID
LTE					RFS	APX75-866512-T2 749MHZ	86	88.2	270(03)	false	false	PHYSICAL	1	
LTE					RFS	APX75-866512-T2 749MHZ	108	110.2	30(01)	false	false	PHYSICAL	1	
LTE					RFS	APX75-866512-T2 749MHZ	123	125.2	150(02)	false	false	PHYSICAL	1	
			LTE		RYMSA	MG D3-800T0 (210750)	86	88.3	270(03)	false	false	PHYSICAL	1	
			LTE		RYMSA	MG D3-800T0 (210750)	108	110.3	30(01)	false	false	PHYSICAL	1	
			LTE		RYMSA	MG D3-800T0 (210750)	123	125.3	150(02)	false	false	PHYSICAL	1	
Retaine	ed													
700	850	1900	AWS	L-Sub6	Make	Model	Centerline	Tip Height	Azimuth	RET	4xRx	Inst. Type	Quantity	Item ID
	CDMA				RFS	APL868013	123	125	150(D2)	false	false	PHYSICAL	2	
	CDMA				RFS	APL868013	108	110	30(D1)	false	false	PHYSICAL	2	
	CDMA				RFS	APL868013	86	88	270(D3)	false	false	PHYSICAL	2	

Added: 9 Removed: 6 Retained: 6

Equipment Summary

Added													
Equipment Type	Location	700	850	1900	AWS	L-Sub6	Make	Model	Cable Length	Cable Size	Install Type	Quantity	Item ID
Mount	Tower						Antenna Vendor	Beamforming / 2" spacing			PHYSICAL	3	
Other	Tower					5G	COMMSCOPE	IMF8-C-2STP E14V00P32			PHYSICAL	3	
RRU	Tower			LTE	LTE		Samsung	RF4439d-25A			PHYSICAL	3	
RRU	Tower	LTE	LTE 5G				Samsung	RF4440d-13A			PHYSICAL	3	
RRU	Tower					5G	Samsung	RT-8808-77A			PHYSICAL	3	
Removed													
Equipment Type	Location	700	850	1900	AWS	L-Sub6	Make	Model	Cable Length	Cable Size	Install Type	Quantity	Item ID
RRU	Tower	LTE					Nokia	UHBA B13 RRH 4x30			PHYSICAL	3	
RRU	Tower				LTE		Nokia	UHIC B4 RRH 2x60-4R			PHYSICAL	3	
Retained													
Equipment Type	Location	700	850	1900	AWS	L-Sub6	Make	Model	Cable Length	Cable Size	Install Type	Quantity	Item ID
Hybrid Fiber	Tower						Hybrid	6x12			PHYSICAL	3	
OVP Box	Tower						OVP	6-OVP			PHYSICAL	3	
Coaxial Cables	Tower						coax	coax			PHYSICAL	6	

Service Info

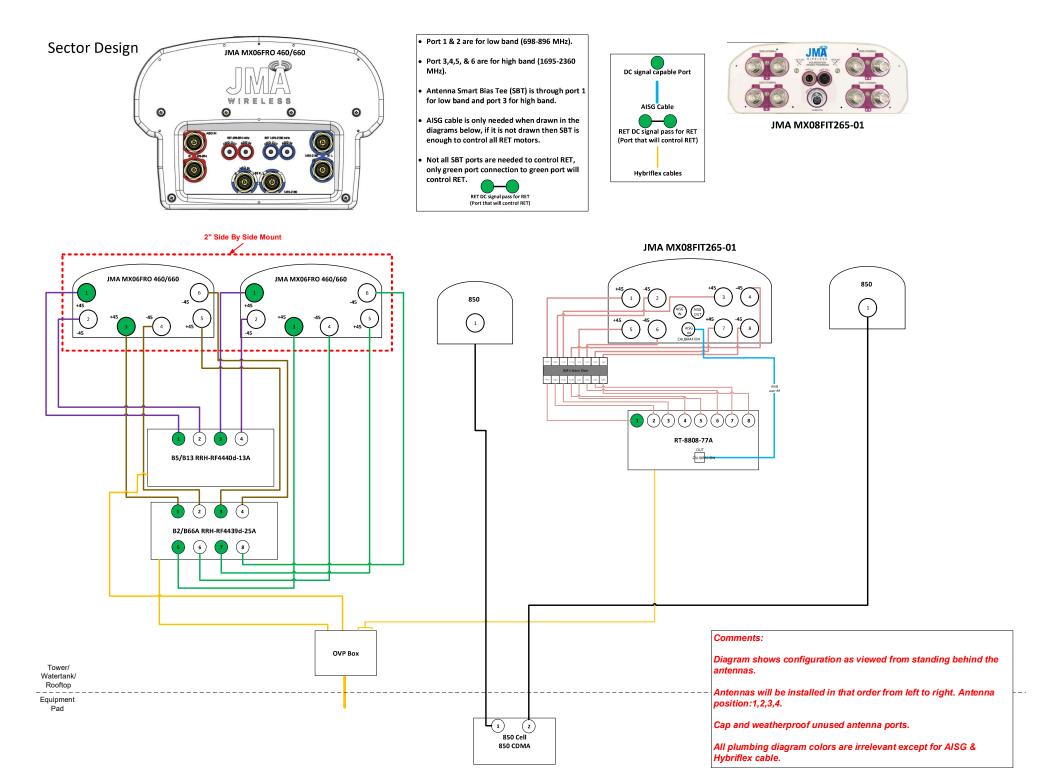
700 MHz LTE		0000			5GLS	
Sector	01	02	03	01	02	03
Azimuth	30	150	270	30	150	270
Cell / ENode B ID	065007	065007	065007	065007	065007	065007
Antenna Model	APX75-866512-T2 749MHZ	APX75-866512-T2 749MHZ	APX75-866512-T2 749MHZ	MX06FRO460-02	MX06FRO460-02	MX06FRO460-02
Antenna Make	RFS	RFS	RFS	JMA	JMA	JMA
Antenna Centerline(Ft)	108	123	86	108	123	
Mechanical Down-Tilt(Deg.)	0	0		0	0	86 0
			4			
Electrical Down-Tilt	2	2	2	2	2	6
Tip Height	110.2	125.2	88.2	110.1	125.1	88.1
Regulatory Power	44.54	44.34	43.33	32.64	32.49	31.75
DLEARFCN	5230	5230	5230	5230	5230	5230
Channel Bandwidth(MHz)	10	10	10	10	10	10
Total ERP (W)	400.87	399.02	389.94	293.76	292.42	285.76
TMA Make						
TMA Model						
RRU Make	Nokia	Nokia	Nokia	Samsung	Samsung	Samsung
RRU Model	UHBA B13 RRH 4x30	UHBA B13 RRH 4x30	UHBA B13 RRH 4x30	RF4440d-13A	RF4440d-13A	RF4440d-13A
Number of Tx, Rx Lines	4,4	4,4	4,4	4,4	4,4	4,4
Position	·, ·	.,.	.,-	.,-	.,-	., .
Transmitter Id	1946307	1946305	1946306	10959623	10959625	10959627
Source	ATOLL_API	ATOLL_API	ATOLL_API	ATOLL_API	ATOLL_API	ATOLL_API
O MHz LTE		, , , , , , , , , , , , , , , , , , ,			5GLS	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Sector				01	02	03
Azimuth				30	150	270
Cell / ENode B ID				065007	065007	065007
Antenna Model				MX06FRO460-02	MX06FRO460-02	MX06FRO460-02
Antenna woder				MX001 R0400-02	MA001 NO400-02	MX001 KO400-02
Antenna Make				JMA	JMA	JMA
Antenna Centerline(Ft)				108	123	86
Mechanical Down-Tilt(Deg.)				0	0	0
Electrical Down-Tilt				2	2	6
Tip Height				110.1	125.1	88.1
Regulatory Power				149.91	149.22	145.82
DLEARFCN				2450	2450	2450
Channel Bandwidth(MHz)				10	10	10
Total ERP (W)				337.29	335.74	328.1
TMA Make						
TMA Model						
RRU Make				Samsung	Samsung	Samsung
RRU Model				RF4440d-13A	RF4440d-13A	RF4440d-13A
Number of Tx, Rx Lines				4,4	4,4	4,4
Position				-,,	.,,	., .
Transmitter Id				10959770	10959771	10959772
Source				ATOLL_API	ATOLL_API	ATOLL_API
						A TOLL AT

) MHz CDMA		0000			5GLS	
Sector	D1	D2	D3	D1	D2	D3
Azimuth	30	150	270	30	150	270
Cell / ENode B ID						
Antenna Model	APL868013	APL868013	APL868013	APL868013	APL868013	APL868013
Antenna Make	RFS	RFS	RFS	RFS	RFS	RFS
Antenna Centerline(Ft)	108	123	86	108	123	86
Mechanical Down-Tilt(Deg.)	0	0	0	0	0	0
Electrical Down-Tilt	0	0	0	0	0	0
Tip Height	110	125	88	110	125	88
Regulatory Power	427.56	425.6	415.91	427.56	425.6	415.91
DLEARFCN	201, 242, 283	201, 242, 283	201, 242, 283	201, 242, 283	201, 242, 283	201, 242, 283
Channel Bandwidth(MHz)	3	3	3	3	3	3
Total ERP (W)						
TMA Make						
TMA Model						
RRU Make						
RRU Model						
Number of Tx, Rx Lines	2,2	2,2	2,2	2,2	2,2	2,2
Position						
Transmitter Id						
Source	ATOLL_API	ATOLL_API	ATOLL_API	ATOLL_API	ATOLL_API	ATOLL_API
MHz 5GNR					5GLS	
Sector				0007	0008	0009
Azimuth				30	150	270
Cell / ENode B ID				0659452	0659452	0659452
Antenna Model				MX06FRO460-02	MX06FRO460-02	MX06FRO460-02
Antenna Make				JMA	JMA	JMA
Antenna Centerline(Ft)				108	123	86
Mechanical Down-Tilt(Deg.)				0	0	0
Electrical Down-Tilt				2	2	6
Tip Height				110.1	125.1	88.1
Regulatory Power				149.91	149.22	145.82
DLEARFCN				2450	2450	2450
Channel Bandwidth(MHz)				10	10	10
Total ERP (W)				337.29	335.74	328.1
TMA Make						
TMA Model						
TMA Model RRU Make				Samsung	Samsung	Samsung
TMA Model RRU Make RRU Model				Samsung RF4440d-13A	Samsung RF4440d-13A	RF4440d-13A
TMA Model RRU Make RRU Model Number of Tx, Rx Lines						
TMA Model RRU Make RRU Model Number of Tx, Rx Lines Position				RF4440d-13A	RF4440d-13A	RF4440d-13A
TMA Model RRU Make RRU Model Number of Tx, Rx Lines				RF4440d-13A	RF4440d-13A	RF4440d-13A

) MHz LTE					5GLS	
Sector				01	02	03
Azimuth				30	150	270
Cell / ENode B ID				065007	065007	065007
Antenna Model				MX06FRO460-02	MX06FRO460-02	MX06FRO460-02
Antenna Make				JMA	JMA	JMA
Antenna Centerline(Ft)				108	123	86
Mechanical Down-Tilt(Deg.)				0	0	0
Electrical Down-Tilt				2	2	2
Tip Height				110.1	125.1	88.1
Regulatory Power				109.58	109.58	109.58
DLEARFCN				1100	1100	1100
Channel Bandwidth(MHz)				20	20	20
Total ERP (W)				1202.26	1202.26	1202.26
TMA Make				2202120		1202.20
TMA Model						
RRU Make				Samsung	Samsung	Samsung
RRU Model				RF4439d-25A	RF4439d-25A	RF4439d-25A
Number of Tx, Rx Lines				4,4	4,4	4,4
Position				- , .	•	·, ·
Transmitter Id				10959767	10959768	10959769
Source				ATOLL_API	ATOLL_API	ATOLL_API
00 MHz LTE		0000			5GLS	
Sector	01	02	03	01	02	03
Azimuth	30	150	270	30	150	270
Cell / ENode B ID	065007	065007	065007	065007	065007	065007
Antenna Model	MG D3-800T0 (210750)	MG D3-800T0 (210750)	MG D3-800T0 (210750)	MX06FRO460-02	MX06FRO460-02	MX06FRO460-02
Antenna Make	RYMSA	RYMSA	RYMSA	JMA	JMA	JMA
Antenna Centerline(Ft)	108	123	86	108	123	86
Mechanical Down-Tilt(Deg.)	0	0	0	0	0	0
Electrical Down-Tilt	0	0	0	2	2	2
Tip Height	110.3	125.3	88.3	110.1	125.1	88.1
Regulatory Power	190.43	190.43	190.43	125.81	125.81	125.81
DLEARFCN	2050	2050	2050	2050	2050	2050
Channel Bandwidth(MHz)	20	20	20	20	20	20
Total ERP (W)	2089.3	2089.3	2089.3	1380.38	1380.38	1380.38
TMA Make						
TMA Model						
RRU Make	Nokia	Nokia	Nokia	Samsung	Samsung	Samsung
RRU Model	UHIC B4 RRH 2x60-4R	UHIC B4 RRH 2x60-4R	UHIC B4 RRH 2x60-4R	RF4439d-25A	RF4439d-25A	RF4439d-25A
Number of Tx, Rx Lines	4,4	4,4	4,4	4,4	4,4	4,4
Position						
Transmitter Id	1946308	1946309	1946313	10959624	10959626	10959628
Source	ATOLL_API	ATOLL_API	ATOLL_API	ATOLL_API	ATOLL_API	ATOLL_API

		5GLS	
Sector	0007	0008	0009
Azimuth	30	150	270
ENode B ID	0659452	0659452	0659452
	MX08FIT265-01	MX08FIT265-01	MX08FIT265-0
na Make	JMA	JMA	JMA
Ft)	108	123	86
	0	0	0
Deg.) n-Tilt	2	2	2
t	109	124	87
	490.89	490.89	490.89
	648672	648672	648672
	60	60	60
	4263.83	4263.83	4263.83
odel			
e	Samsung	Samsung	Samsung
odel	RT-8808-77A	RT-8808-77A	RT-8808-77A
nes	4,4	4,4	4,4
tion			
ter Id	10959680	10959681	10959682
Source	ATOLL_API	ATOLL_API	ATOLL_API

Callsigns Per Antenna


Sector	Antenna Ma		Tip Height	Azimuth (TI			Gain	Beamwidth	Regulatory	Callsigns						
		Height AGL			Tilt	Tilt			Power	700	850	1900	2100	28 GHz	31 GHz	39 GHz
								N	o data available							

Callsigns

Callsign	Market	Radio Code	Market Number	Block	State	County	Licensee Name	Wholly Owned	Total MHZ	Freq Range 1	Freq Range 2	Freq Range 3	Freq Range 4	Regulatory Power	Threshold (W)	POPs/Sq Mi	Status	Action	Approved for Insvc
WQJQ689	Northeast	wu	REA001	С	СТ	Fairfield	Cellco Partnership	Yes	22.000	746.000- 757.000	776.000- 787.000	.000000	.000000	32.64	1000	1467.18	Active	added	Yes
KNKA363	Bridgeport- Stamford- Norwalk- Danbury, CT	CL	CMA042	A	ст	Fairfield	Cellco Partnership	Yes	25.000	824.000- 835.000	869.000- 880.000	845.000- 846.500	890.000- 891.500	427.56	500	1467.18	Active	added	Yes
WQBT539	New York, NY	CW	BTA321	С	СТ	Fairfield	Cellco Partnership	Yes	10.000	1895.000- 1900.000	1975.000- 1980.000	.000000	.000000	109.58	1640	1467.18	Active	added	Yes
KNLF644	New York, NY	CW	BTA321	С	СТ	Fairfield	AirTouch Cellular	Yes	20.000	1900.000- 1910.000	1980.000- 1990.000	.000000	.000000	109.58	1640	1467.18	Active	added	Yes
KNLH264	New York, NY	CW	BTA321	F	СТ	Fairfield	Cellco Partnership	Yes	10.000	1890.000- 1895.000	1970.000- 1975.000	.000000	.000000	109.58	1640	1467.18	Active	added	Yes
WQGB279	Bridgeport- Stamford- Norwalk- Danbury, CT	AW	CMA042	A	ст	Fairfield	Cellco Partnership	Yes	20.000	1710.000- 1720.000	2110.000- 2120.000	.000000	.000000	125.81	1640	1467.18	Active	added	Yes
WQGA906	New York-No. New Jer Long Island, NY-NJ- CT-PA- MA-	AW	BEA010	В	ст	Fairfield	Cellco Partnership	Yes	20.000	1720.000- 1730.000	2120.000- 2130.000	.000000	.000000	125.81	1640	1467.18	Active	added	Yes
WRBA702	New York, NY	UU	BTA321	Li	СТ	Fairfield	Cellco Partnership	Yes	325.000	27600.000 27925.000	.000000	.000000	.000000			1467.18	Active		Yes
WRBA703	New York, NY	UU	BTA321	L2	СТ	Fairfield	Cellco Partnership	Yes	325.000	27925.000- 27950.000	28050.000 28350.000	.000000	.000000			1467.18	Active		Yes
WRHD609	New York, NY	UU	PEA001	M1	СТ	Fairfield	Straight Path Spectrum, LLC	Yes	100.000	37600.000 37700.000	.000000	.000000	.000000			1467.18	Active		Yes
WRHD610	New York, NY	UU	PEA001	M10	СТ	Fairfield	Straight Path Spectrum, LLC	Yes	100.000	38500.000 38600.000	.000000	.000000	.000000			1467.18	Active		Yes
WRHD611	New York, NY	UU	PEA001	M2	СТ	Fairfield	Straight Path Spectrum, LLC	Yes	100.000	37700.000- 37800.000	.000000	.000000	.000000			1467.18	Active		Yes
WRHD612	New York, NY	UU	PEA001	M3	СТ	Fairfield	Straight Path Spectrum, LLC	Yes	100.000	37800.000 37900.000	.000000	.000000	.000000			1467.18	Active		Yes

							Straight											
WRHD613	New York, NY	UU	PEA001	M4	СТ	Fairfield	Path Spectrum, LLC	Yes	100.000	37900.000 38000.000	.000000	.000000	.000000		1467.18	Active		Yes
WRHD614	New York, NY	UU	PEA001	M5	ст	Fairfield	Straight Path Spectrum, LLC	Yes	100.000	38000.000 38100.000	.000000	.000000	.000000		1467.18	Active		Yes
WRHD615	New York, NY	UU	PEA001	M6	СТ	Fairfield	Straight Path Spectrum, LLC	Yes	100.000	38100.000- 38200.000	.000000	.000000	.000000		1467.18	Active		Yes
WRHD616	New York, NY	UU	PEA001	M7	СТ	Fairfield	Straight Path Spectrum, LLC	Yes	100.000	38200.000 38300.000	.000000	.000000	.000000		1467.18	Active		Yes
WRHD617	New York, NY	UU	PEA001	M8	СТ	Fairfield	Straight Path Spectrum, LLC	Yes	100.000	38300.000 38400.000	.000000	.000000	.000000		1467.18	Active		Yes
WRHD618	New York, NY	UU	PEA001	М9	СТ	Fairfield	Straight Path Spectrum, LLC	Yes	100.000	38400.000 38500.000	.000000	.000000	.000000		1467.18	Active		Yes
WRHD619	New York, NY	UU	PEA001	N1	СТ	Fairfield	Straight Path Spectrum, LLC	Yes	100.000	38600.000 38700.000	.000000	.000000	.000000		1467.18	Active	N/A	No
WRLD509	D09001 - Fairfield, CT	PL	D09001	o	ст	Fairfield	Verizon Wireless Network Procuremer LP	Yes	100.000	3550.000- 3650.000	.000000	.000000	.000000	501	.00	Active		Yes
WRLD511	D09001 - Fairfield, CT	PL	D09001	0	ст	Fairfield	Verizon Wireless Network Procuremer LP	Yes	100.000	3550.000- 3650.000	.000000	.000000	.000000	501	.00	Active		Yes
WRLD512	D09001 - Fairfield, CT	PL	D09001	o	ст	Fairfield	Verizon Wireless Network Procuremer LP	Yes	100.000	3550.000- 3650.000	.000000	.000000	.000000	501	.00	Active		Yes
WRLD510	D09001 - Fairfield, CT	PL	D09001	o	ст	Fairfield	Verizon Wireless Network Procuremer	Yes	100.000	3550.000- 3650.000	.000000	.000000	.000000	501	.00	Active		Yes
WRNE581	New York, NY	PM	PEA001	A1	СТ	Fairfield	Cellco Partnership	Yes	20.000	3700.000- 3720.000	.000000	.000000	.000000		1467.18	Active		No
WRNE582	New York, NY	РМ	PEA001	A2	СТ	Fairfield	Cellco Partnership		20.000	3720.000- 3740.000	.000000	.000000	.000000		1467.18	Active		No

WRNE583	New York, NY	РМ	PEA001	А3	СТ	Fairfield	Cellco Partnership	Yes	20.000	3740.000- 3760.000	.000000	.000000	.000000	1467.18	Active	No
WRNE584	New York, NY	PM	PEA001	A4	СТ	Fairfield	Cellco Partnership	Yes	20.000	3760.000- 3780.000	.000000	.000000	.000000	1467.18	Active	No
WRNE585	New York, NY	РМ	PEA001	A5	СТ	Fairfield	Cellco Partnership	Yes	20.000	3780.000- 3800.000	.000000	.000000	.000000	1467.18	Active	No
WRNE586	New York, NY	PM	PEA001	B1	СТ	Fairfield	Cellco Partnership	Yes	20.000	3800.000- 3820.000	.000000	.000000	.000000	1467.18	Active	No
WRNE587	New York, NY	PM	PEA001	B2	СТ	Fairfield	Cellco Partnership	Yes	20.000	3820.000- 3840.000	.000000	.000000	.000000	1467.18	Active	No
WRNE588	New York, NY	PM	PEA001	В3	СТ	Fairfield	Cellco Partnership	Yes	20.000	3840.000- 3860.000	.000000	.000000	.000000	1467.18	Active	No

Band	Sector 1 (Alpha) Color Codes				Sector 2 (Beta) Color Codes							Sector 3 (Gamma) Color Codes												
850 CDMA	\gg	R R	R	\sim	\bowtie	M	\bowtie	\gg	\gg	B B	В	\bowtie	\gg	\approx	\approx	\gg	\bowtie	G G	\sqrt{G}	\bowtie	$\geq \leq$	\gg	\gg	\gg
700	\bigotimes	R R R	P R R	P R			\mathbb{W}			B B B	B B	P B						G G	P G G	P G	P		\gg	
850 LTE		R R R	R P R	P P R	P P					B B B	B P B	B P P	B P P					G G	G P G G	G P P G	G P P			
		R R R	R P R	R P P	R P P	P	P			B B	B B P B	B P	B P	P	P			G G G	G P G	G P	G P P	P P		
700 / 850	\bigotimes	R R R	R R W	R R	P R	P P	P P	P		B B	B B W	B B	P B	P P	P P	P		G G	G G W	G	P G	P P	P P	P
AWS		R R R	R R R	W R R	W	$\underset{w}{\bigotimes}$				B B	B B	W B B	W B	W				G G	G G	W G G	W G	W		
PCS		R R R	W R R	W W	W	**************************************				B B	W B B	W W	W	W				G G	W G G	W W	WW	W		
	\approx	R R R	R W R	R W W	R W W	W	W			B B	B W B	B W	B W W	W	W			G G	G W G	G W W	G W W	W	w W	
AWS / PCS	\bigotimes	R R R	R R Y	R R	W	W	W	W		B B	B B Y	B B	W B	W	W	W		G G G	G G Y	G	W	W	W	W
CBRS	\bigotimes	R R R	R R R	Y R R	Y	Y	\bigotimes			B B B	B B B	Y B B	Y B	Y				G G G	G G G	Y G G	Y G	Y		
LAA	\gtrsim	R R	Y R	Y	<u>ү</u>	\gg	\bowtie	>	\bowtie	B B	Y B	Y	\searrow	\gg	\gg	>	\bowtie	G	Y G	Y	∑ Y	\gg	\mathbb{W}	\leq
	Sector 4 (Delta) Color Codes												•					Ū						
		,	<u>Sector</u>	4 (Delta	a) Color	Codes	<u> </u>					(Epsilo	n) Col	or Code	es es				Sector	6 (Zeta)	Color	Codes		
850 CDMA	Gray Gray	R R	R	4 (Delta	a) Color	Codes			Gray Gray	<u>S</u> B	ector 5	(Epsilo	on) Cole	or Code	es Es		Gray Gray	G G	G	6 (Zeta)	Color	Codes		
850 CDMA	Gray Gray Gray Gray	R R R R	R P R R	P R					Gray Gray Gray Gray	B B B B	ector 5	P B		or Code	es E		Gray Gray Gray Gray	G G G	G P G G	P G	P			
	Gray Gray Gray Gray Gray Gray Gray Gray	R R R R R R	R P R R P R	P R R P	P R				Gray Gray Gray Gray Gray Gray Gray Gray	B B B B B B B B B B B B B B B B B B B	B B B B B	P B B P	P B	or Code	es es		Gray Gray Gray Gray Gray Gray Gray Gray	G G G G G	G P G G G	P G G P	P G P			
700 850 LTE	Gray Gray Gray Gray Gray Gray Gray Gray	R R R R R	R P R R P	P R R P	P R		P		Gray Gray Gray Gray Gray Gray Gray Gray	B B B B B B B B B B B B B B B B B B B	B P B B B P	P B B	P B	P P P	<u>85</u>		Gray Gray Gray Gray Gray Gray Gray Gray	G G G G	G P G G F P	P G G	P G			
700	Gray Gray Gray Gray Gray Gray Gray Gray	R R R R R R R R	R P R R R R P R R	P R R R P P R	P R P P	P P			Gray Gray Gray Gray Gray Gray Gray Gray	B B B B B B B B B B B B B B B B B B B	B B B B B B B B B B B B B B B B B B B	P B B P P B B P	P B P P B	P	P		Gray Gray Gray Gray Gray Gray Gray Gray	G G G G G G	G P G G G G P G P P P P P G G P P G G G G G P P G G G G G P P G G G G G G P P G	P G G G P	P G P G	P	P	
700 850 LTE	Gray Gray Gray Gray Gray Gray Gray Gray	R R R R R R R R R	R P R R R R R R R R R R R R R R R R R R	P R R P P R R	P P P P	P P P	P		Gray Gray Gray Gray Gray Gray Gray Gray	B B B B B B B B B B B B B B B B B B B	B B B B B B B B B B B B B B B B B B B	P B B B B B B B B B B B B B B B B B B B	P B B P P P P	P P P	P	P P	Gray Gray Gray Gray Gray Gray Gray Gray	G G G G G G G G G G G G G G G G G G G	G P G G G G F G G G G G G G G G G G G G	P G G G P P G G G G G G G G G G G G G G	P G P P G P	P P P P	P	
700 850 LTE 700 / 850	Gray Gray Gray Gray Gray Gray Gray Gray	R R R R R R R R R R R R R R R R R R R	R P R R R P R R R R R R R R R R R R R R	P P R R P P R R R W W R R	P R P P P R W W W	P P P P W W			Gray Gray Gray Gray Gray Gray Gray Gray	B B B B B B B B B B B B B B B B B B B	BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	P B B B B B B B B B B B B B B B B B B B	P B B P P P B B W W W	P P P P W W	P		Gray Gray Gray Gray Gray Gray Gray Gray	G G G G G G G G G G G G G G G G G G G	G P G G G G P G G G G G W G G G G G G G	P G G G G W W G G	P G G P P G G W W W	P P P P W W	P P	
700 850 LTE 700 / 850 AWS PCS	Gray Gray Gray Gray Gray Gray Gray Gray	R R R R R R R R R R R R R R R R R R R	R P R R P R R R R P R R R R W R R W R R R R	P R R P P R R W W R R W W W	P P P P R W W W W W W	P P P P W W W W	P P W		Gray Gray Gray Gray Gray Gray Gray Gray	B B B B B B B B B B B B B B B B B B B	ector 5 B P B B B B B B B B B B B B B B B B B	P B B P P B B B W W B B B W W W W	P B B P P B B W W W W W W	P P P P P W W W W	P P P W W		Gray Gray Gray Gray Gray Gray Gray Gray	G G G G G G G G G G G G G G G G G G G	G P G G G P G G G G P G G G G W G G G W G G W G G G W G G G G W G G G G W G G G G G W G	P G G P P G G G W W	P P P P G G W W W W W W W W	P P P P W W W W	P P P	
700 850 LTE 700 / 850	Gray Gray Gray Gray Gray Gray Gray Gray	R R R R R R R R R R R R R R R R R R R	R P R R R P R R R R R W R R W R R R V R R V	P P R R P P P R R R W W W W R R R R	P P P P P R W W W W W W W	P P P P W W W W			Gray Gray Gray Gray Gray Gray Gray Gray	B B B B B B B B B B B B B B B B B B B	BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	P B B B P P P B B B B W W W B B B W W W B B B B	P B B P P P B B W W W W W W W W W W W W	P P P P W W W W	P		Gray Gray Gray Gray Gray Gray Gray Gray	G G G G G G G G G G G G G G G G G G G	G P G G G G G G G W G G W G G W G G W G W	P P P G G P P P G G W W W G G G W	P G G P P G G W W G W	P P P P P W W W W	P P W W W W W	
700 850 LTE 700 / 850 AWS PCS	Gray Gray Gray Gray Gray Gray Gray Gray	R R R R R R R R R R R R R R R R R R R	R P R R R P P R R R W R R R W R R R R R	P P P P R R P P P R R R W W R R R W W R R	P P P P P R W W W W W W W	P P P W W W W W W	P P W		Gray Gray Gray Gray Gray Gray Gray Gray	B B B B B B B B B B B B B B B B B B B	ector 5 B P B B B B B B B W B B B W B B B B W B	P B B B B B B B B B B B B B B B B B B B	P B B P P P B B W W W W W	P P P P P W W W W W W W	P P P W W		Gray Gray Gray Gray Gray Gray Gray Gray	G G G G G G G G G G G G G G G G G G G	G P G G G G G P G G G G G W G G G G G G	P G G P P P G G G G W W W W W G G G G G	P P P P G W W W W W W	P P P P W W W W W W	$\mathbb{W}_{\mathbf{s}}$	

ATTACHMENT 5

Search Street Listing Sales Search Map Feedback Back Home

18 OLD RIDGEBURY RD

Location 18 OLD RIDGEBURY RD Mblu C15/ / 8/ /

Acct# Owner EAGLE PROPCO 10 LLC

Assessment \$6,967,700 **Appraisal** \$9,953,900

PID 4815 Building Count 1

Current Value

	Appraisal		
Valuation Year	Improvements	Land	Total
2020	\$6,716,600	\$3,237,300	\$9,953,900
	Assessment		
Valuation Year	Improvements	Land	Total
2020	\$4,701,600	\$2,266,100	\$6,967,700

Owner of Record

 Owner
 EAGLE PROPCO 10 LLC
 Sale Price
 \$5,847,160

 Co-Owner
 ATT: HERSA HOSPITALITY
 Book & Page
 2577/ 834

 Address
 510 WALNUT ST 9TH FLOOR
 Sale Date
 07/19/2021

 PHILADELPHIA, PA 19106
 Instrument
 18

ATTACHMENT 6

Affix Stamp Here TOTAL NO. TOTAL NO. Name and Address of Sender of Pieces Received at Post Office™ Postmark with Date of Receipt. of Pieces Listed by Sender Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103 Postmaster, per (name of receiving employee) 0411.12203937 Parcel Airlift Special Handling Address Fee **USPS® Tracking Number** Postage (Name, Street, City, State, and ZIP Code™) Firm-specific Identifier Dean Esposito, Mayor City of Danbury 155 Deer Hill Road Danbury, CT 06810 Sharon Calitro, Director of Planning and Zoning City of Danbury 155 Deer Hill Road Danbury, CT 06810 Eagle Propco 10 LLC Attn: Hersha Hospitality 510 Walnut Street, 9th Floor Philadelphia, PA 19106