

Tectonic Engineering
Theresa Ranciato-Viele
63-3 N. Branford Road
Branford, CT 06405
<u>Tranciato@Tectonicengineering.com</u>
203-606-5127

March 2, 2022

Ms. Melanie Bachman, Executive Director Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification to an existing 112'monopole

tower located at 48 Newtown Road, Danbury, Connecticut

Latitude: 41° 24' 12.27 / Longitude: 73° 25' 27.98"

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless, LLC ("Dish"). Dish plans to install antennas and related equipment to the tower site at the existing 112'monopole tower facility located at 48 Newtown Road, Danbury, Connecticut (See Original Facility Approval attached as Exhibit A) ("Facility"). The property is owned by 48 Newtown Road Corporation (See Danbury Assessor Property Card attached hereto as Exhibit B).

Dish proposes to install three (3) 600/1900/2100 MHz JMA – MX08Fr0665-21 antennas and six (6) FUJITSU TA08025 RRUs on the tower at the two hundred twenty five foot (225') centerline AGL. Dish further proposes to install one (1) 1.5" Hybrid Cable. Dish will also install its equipment cabinets on a 5' X 7' platform within its 10' X 15' lease area. The installation is shown on plans completed by Tectonic Engineering, dated February 10, 2022, and attached hereto as Exhibit C.

Dish requests that the Connecticut Siting Council ("Council") find that the proposed shared use of this Facility satisfies the criteria of C.G.S. sec. 16-50aa and accordingly issue an order approving the proposed shared use. This proposed installation constitutes an exempt modification pursuant to R.C.S.A. 16-50j-89. Pursuant to R.C.S.A. 16-50j-73, Dish is providing notice to Dean Esposito, Mayor of the City of Danbury, Sharon B. Calitro, Director of Planning and Zoning for the City of Danbury and the property owner, 48 Newtown Road Corporation.

Under the Council's regulations, Dish's plans do not constitute a modification subject to the Council's review in that:

Dish will not change the existing 112' height of the Tower as the Dish antennas will be installed at a height of 80'.

The proposed installation will not extend the existing boundaries of the approved compound as depicted in Exhibit C;

The proposed installation will not increase the noise levels at the facility by six (6) decibels or more, or to levels that exceed local and state criteria; and

The proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. The attached Exhibit F indicates that the combined site operations will result in a total power density of 3.7856%.

Tower

The Facility consists of a one hundred twelve (112') foot guy tower located at 48 Newtown Road, Danbury, Connecticut. As indicated above, the tower is owned by 48 Newtown Road Corporation. The tower currently supports AT&T at the one hundred foot (100') centerline, and Verizon Wireless at the ninety foot (90') centerline AGL. The antenna locations are set forth on Sheet A-2 of the attached drawings in Exhibit C.

A. TECHNICAL FEASIBILTY

The existing monopole has been deemed structurally capable of supporting the proposed Dish loading. The structural and mount analyses are attached hereto as Exhibits D and E respectively.

B. LEGAL FEASIBILITY

C.G.S. Se. 16-50aa authorizes the Council to issue orders approving the shared use of existing towers such as the above referenced tower. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish to obtain a building permit from the Town of Danbury to proceed with the proposed installation. Additionally, a Supplement to The Master Lease Agreement is attached as Exhibit G, granting Dish the authority from the tower owner to proceed with this application for shared use.

C. ENVIRONMENTAL FEASIBILITY

The proposed shared use of this Facility would have a minimal environmental impact. The installation of the Dish equipment at the 80' level of the existing tower would have an insignificant visual impact on the area surrounding the tower. The proposed Dish ground equipment would be installed within the existing Facility compound. The Dish installation would not cause any significant

alteration to the physical or environmental characteristics of the existing Facility. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase the radio frequency emissions to a level at or above the Federal Communications Commission safety standards.

D. ECONOMIC FEASIBILTY

Dish has entered into a Lease Agreement (Exhibit G) with the Facility owner for the proposed colocation. Therefore, this shared use is economically feasible.

E. PUBLIC SAFETY CONCERNS

As set forth above, the tower is structurally capable of supporting the proposed Dish loading. Dish is not aware of any public safety concerns relative to the proposed sharing of the existing tower.

For the reasons set forth herein, the proposed shared use of the existing tower at 48 Newttown Road, Danbury, satisfies the criteria stated in C.G.S. sec. 16-50aa, and supports the general goal of preventing the unnecessary proliferation of tower sites in Connecticut. Dish respectfully requests the Council issue an order approving the proposed shared use.

Respectfully submitted,

Dish Wireless, LLC

Theresa Ranciato-Viele, consultant

63-3 N. Branford Road Branford, CT 06405

Tranciato@Tectonicengineering.com

203-606-5127

cc: Danbury Mayor, Honorable Dean Esposito 155 Deer Hill Ave. Danbury, CT 06810

Danbury Director of Planning and Zoning, Sharon B. Calitro
155 Deer Hill Ave,
Danbury, CT 06810

Tower Owner: 48 Newtown Road Corporation 50 Newtown Road Danbury, CT 06810

Exhibit A Original Facility Approval

CITY OF DANBURY

TO

156 DEER HUL AVENUE

DANBURY, CONNECTICUT 06610

PLANNING & ZONING DEPARTMENT (203) 797-4528 (203) 797-4886 (FAX)

Denember 29, 1998

Mr. Paul S. McNamura Donnelly, McNamura & Gustafton, P.C. 150 Denbury Road PO Box 2006 Ridgefield, CT 06877

RE

Waiver No. 98-49
48 Newtown Road - Telephone Tower and Equipment Storage
Assessor's Lot Numbers K12265, K12266

Doer Mr. McNamera:

Your application for a Waiver to Site Plan Requirements for the construction of a Telephone Tower and Equipment Storage on the above-referenced site is approved as follows:

The existing telephone tower on the adjacent site identified as 50 Newtown Road will be removed
in lieu of the construction of the tower and equipment storage facility to be located as 45 Newtown
Road.

There shall be no extenior changes to the building façade other than the addition of the tower in the location as shown on the Size Plan prepared for 48 Newtown Road Corporation by New England.
 Land Surveying, dated August 21, 1989 as revised to September 9, 1994 as submitted in support of this Waiver Application.

 This appears.

This approval does not waive any other departmental approvals, requirements or permits that may be necessary to complete this proposed project.

A Zoning Permit may now be required. Please contact the Zoning Department for further information regarding this process. Upon completion of construction, a Zoning Cartificans of Compliance will be issued by this Office polor to the issuence if a Cartifican of Occapancy by the Bulkling Department, provided work was completed in accordance with the Waiver to Site Plan Requirements approved December 29, 1994.

Respectfully,

Sheron B. Calling

Assistant Planning Director

C: Wayne Sicelly, Zoning Enforcement Officer
Mario Ricozzi, P.E., Director of Dept. of Permit Coordination

Cinnature of Demor or Authorized Ament

Telaphone 797-4525 CITY OF DANBURY PLANNING & ZONING DEPARTMENT

LO Management	Bood Composition	50	,
erty Owner's Name & Address 48 Newtown	ROBG COTPOTATION,	ME WEARDAN KG! DOUDALA	
cant's Name & Address Same			
erty Located At 48 NEWTOWN RD.			
ent Use of Property Commercial	Proposed Use	of Property Same	K-3.12.
CG-20 Lot Area or Dimensions	25,998 вq.	ft. Assesso	r's Lot No. <u>K-12</u>
PERMIT IS FOR THE FOLLOWING ACTIVITY:			
New Construction	Change of Use	Inter	for Alterations
Addition _	Exterior Alteratio		
Sign (Give linear measure of exterior bu	11ding wall	[Proposed Sign Area_	
The state of the s	. لاند	[Maximum Sign Allowe	J
Other (Specify)	<u> </u>		
	(1)	•	
RIPTION OF HORK PROPOSED: Construction	on of telephone to	ver	
MATERIAL OF BURN FIRE COCK.		4*.	
-			
	1.4	A1+ W Minimbe	901±
nsions of Proposed Structure: Width 5	I Length_		
ance from Front Property Line 125'	Adjacent Property	Lines 38'-58'	Rear Line 50'
OFFICE USE ONLY:	<u>Conditions</u> Yes No	Effective Date	Permit No. 0 Expiration D
ulred Permits & Approvals: Plot Plan	1 63	· .	
plot Flan or Waiver		12/29/98	98-49
Special Exception			<u> </u>
Special Permit		and the second s	
Variance		The state of the s	
Subdivision/Resubdivision		, <u> </u>	
E.1.C. Approval			
Sewer Permit (Engineering Dept.)			
Mater Permit (Engineering Dept.)			
Septic Permit/Approval (Health Dept.)	·····		
Well Permit/Approval (Health Dept.)			
Erosion & Sedimentation Permit (Health)	•		
Driveway Permit (Public Works Dept.) State Traffic Comm. Certification (D.O.)			
State Traffic Comm. Certification (D.O.) Flood Plain Zone Permit		**************************************	
Airport Protection District	**************************************	-	
Health Dept.			
Fire Marshal's Approval			
Other			<u> </u>
s Zoning Permit, if issued, is based upon	the plot plan submitte	d. Falsification, by misre	presentation or on
n or failure to comply with conditions of	f approval of this perm	ilt, shall constitute a violi	stion of the Zonii
whations of the City of Danbury. CALL 79	7-4525 WHEN JOB IS COMP	LETED TO ARRANGE ZONING COM	PLIANCE INSPECTION
•		ESTIMATED COST \$75,0	00.00
e de la company de la comp		\$200.00 + \$10.	00 = \$210.00

Total includes \$10 State Con

POST THIS PERMIT CONSPICUOUSLY

DEPARTMENT OF BUILDINGS, DANBURY, CONNECTICUT
Phone 797-4581

ING PERMIT

30 (8) (2)		ing 100' monapole Tower & covie. room: 47'cetaining wal	Zone C6.20		Liberase No.	License No.	
Broire	Coro	Cop.					. *
10/13/19	. 48 Number Rd Corp.	monapale Tower	The same of the sa	11 (910 -	the safe was	Take out our	· · · · · · · · · · · · · · · · · · ·
[Swined	Owner 48	Building 100	entour P	General - Co	100 - 21	Contractor	
	10 02000	107070	1 2 2 D	Parisa 6RT	Hernical Contractor	Plumbine & Henine	NZN

Occupancy of this new building or addition prior to issuance of a Certificate of Occupancy will be considered a violation of the Building Code Regulations. ordinances and Bullding Code of the City of Danbury, otherwise this permit is void Les ? Nullian)

Changes, regardless of size, from stumped approved plans must be submitted to Building Impactor before they are made.

Prompt notification by the Mumbing, Hee-

of a new building, and as many as apply on alteration Normally there are also or more required inspectiv INSPECTIONS: and additions:

- I. ZONING
- SOIL CONDITIONS—before foundation footings
 - FOOTING—drain inspection
- ELECTRICAL—wiring roughing
 - PLUMBING-roughing
- FRAMING—before inspliction or lathing
 - INSULATION—impection
- HIRCTHICAL—final when fixtures have been han GAS OR OIL BURNER—Installation and wiring
 - - i. FINAL-fire divinious, exits, etc.

Exhibit B Property Card

48 NEWTOWN

48 NEWTOWN Location

K12//265//

Acct#

48 NEWTOWN ROAD Owner

CORPORATION

Assessment \$909,000 **Appraisal** \$1,298,500

PID 7333 **Building Count** 1

Current Value

Appraisal					
Valuation Year Improvements Land Total					
2020	\$904,400	\$394,100	\$1,298,500		
	Assessment				
Valuation Year	Improvements	Land	Total		
2020	\$633,106	\$275,9	909,000		

Owner of Record

Owner

48 NEWTOWN ROAD CORPORATION

Sale Price

\$0

Co-Owner **Address**

50 NEWTOWN RD

Book & Page 1706/908

Sale Date

DANBURY, CT 06810

11/08/2004

Instrument

29

Ownership History

	Ownership History					
	概要の特別でで Owner (こうこうから)	Sale Price	Book & Page	Instrument	Sale Date	
48 NEWTO	WN ROAD CORPORATION	\$0	1706/ 908	29	11/08/2004	
MORRIS JU	JLIA B NOMINEE	\$0	1706/ 906	29	11/08/2004	
FORTY EIG	GHT NEWTOWN ROAD	**** \$0	1041/0377		03/04/1993	

Building Information

Building 1 : Section 1

Year Built:

1988

Living Area:

5,680

Replacement Cost:

\$725,793

Building Percent Good:

81

Replacement Cost

Less Depreciation: \$587,900			
Build	ing Attributes		
Field	Description		
STYLE	Restaurant		
MODEL	Commercial		
Grade	Average		
Stories:	2		
Occupancy	4		
Exterior Wall 1	Concr/Cinder		
Exterior Wall 2	Glass/Thermo.		
Roof Structure	Gable/Hip		
Roof Cover	Metal/Tin		
Interior Wall 1	Drywall/Sheet		
Interior Wall 2			
Interior Floor 1	Ceram Clay Til		
Interior Floor 2	Carpet		
Heating Fuel	Gas		
Heating Type	Forced Air-Duc		
AC Type	Central		
Bidg Use	Comm/Res MDL-94		
Total Rooms			
Total Bedrms	00		
Total Baths	0		
1st Floor Use:	201		
Heat/AC	HEAT/AC SPLIT		
Frame Type	MASONRY		
Baths/Plumbing	AVERAGE		
Ceiling/Wall	SUS-CEIL & WL		
Rooms/Prtns :;	AVERAGE		
Wall Height	12		
% Comn Wall	0		

Building 1: Section 1

Year Built:

1988

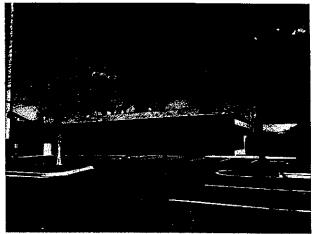
Living Area:

Replacement Cost:

\$725,793

Building Percent Good:

81


Replacement Cost

Less Depreciation:

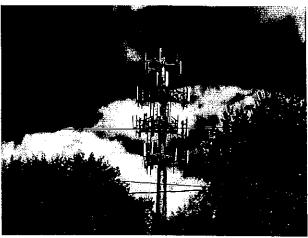
\$587,900

Building Attributes

Building Photo

(http://images.vgsl.com/photos2/DanburyCTPhotos/\00\03\05/58.jpg)

Building Layout



(http://images.vgsi,com/photos2/DanburyCTPhotos//Sketches/7333_7333.j

Building Sub-Areas (sq ft)			<u>Legend</u>
Code	Description	Gross Area	Living Area
BAS	First Floor	4,180	4,180
AOF	Office, (Average)	1,500	1,500
CAN	Сапору	528	0
FGR	Garage	930	0
FOP	Open Porch	42	0
PTO	Patio	925	0
		8,105	5,680

Field	Description
Style	Outbuildings
Model	an ann ann an
Grade:	- Marie Marie Andre Marie Marie Anno a combinate de la companya del companya de la companya de la companya del companya de la companya del la companya del la companya de l
Storles:	
Occupancy	THE RESIDENCE OF THE PROPERTY
Exterior Wall 1	and the state of t
Exterior Wall 2	
Roof Structure:	
Roof Cover	
Interior Wall 1	
Interior Wall 2	
Interior Flr 1	
Interior Fir 2	
Heat Fuel	
Heat Type:	
AC Type:	
Total Bedrooms:	
Total Bthrms:	The state of the s
Total Half Baths:	
Total Xtra Fixtrs:	
Total Rooms:	Control of the Contro
Bath Style:	
Kitchen Style:	
Fireplaces	
Whirtpool	
Addn'l Kitchen	
Bsm Gar	
Fin Bsm Area	
Fin Bsm Qual	
Nhbd	
MH Park	

Building Photo

(http://images.vgsl.com/photos2/DanburyCTPhotos/\00\02\70/15.jpg)

Building Layout

Building Layout

(http://images.vgsl.com/photos2/DanburyCTPhotos//Sketches/7333_10498

ı	Building Sub-Areas (sq ft)	<u>Legend</u>
	No Data for Building Sub-Areas	

Extra Features

Extra Features Legend	1
No Data for Extra Features	
	Į

California de la companie de la comp

Land

Land Use

Use Code

201

Description

Comm/Res MDL-94

Zone

Neighborhood

CG20

Alt Land Appr

6000 Nο

Category

Size (Acres)

Frontage

0

Depth

0

0.6

Assessed Value

Appraised Value \$394,100

\$275,900

Outbuildings

	Outbuildings					
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
CEL	Cell Tower			1 UNITS	\$300,000	1
PAV1	Paving-Asphalt			10500 S.F.	\$16,500	1

Valuation History

Appraisal						
Valuation Year Improvements Land Total						
2019	\$904,400	\$394,100	\$1,298,500			
2018	\$900,700	\$394,100	\$1,294,800			
2017	\$900,700	\$394,100	\$1,294,800			

Assessment						
Valuation Year	Improvements	Land	Total			
2019	\$633,100	\$275,900	\$909,000			
2018	\$630,500	\$275,900	\$906,400			
2017	\$630,500	\$275,900	\$906,400			

(c) 2022 Vision Government Solutions, Inc. All rights reserved.

Exhibit C Project Plans

wireless..

NJJER01128B DISH WIRELESS SITE ID:

DISH WIRELESS SITE ADDRESS:

48 NEWTOWN ROAD DANBURY, CT 06810

CONNECTICUT CODE COMPLIANCE

ALL MORE SHALL BE FERDRED AND ANTENNES SYMMETED IN ACCUPANCE WITH THE CONTEST OF THE TOLLOWING THE COLOR OF THE TOLLOWING THE COLOR OF THE COLOR OF

CODE CT STATE BUILDING CODE/ZOTS NO N/ OT AMERICANSIS ZOTS CT STATE BUILDING CODE/ZOTS NO N/ OT AMERICANSIS ZOTS CT STATE BUILDING CODE/ZOTS NO N/ OT AMERICANSIS

SHEET INDEX

HEET NO. EDLANGED SITE PLAN
MONOPOLE ELEVATION
EQUIPMENT DETAILS SHEET TITLE THE SHEET

LECOND AND ASSESSMENTONS DENSTAL HOTELS

UNDERGROUPED SERVICE ALERY CAYS 81
UTILITY HOTE/CLAYON CENTER OF COMMECTICUT
(989 \$25-1466
WWW.CEYD.COM

"HE POLITY IS L'HANNED AND NOT FOR HUMA HERMODH, A TECHNOM WILL OST THE STE OS REQUESTS FOR ROUTHE MANETONES, THE PROCEST WELL NOT SECULE IN MAY SOMEWARD OSCIMISMATE OF EFFECTS DRAMADE, NO SMITHAY STITCH SERVICE, POTRALE WILLEY, OR TRASH DESIGNAL IS REQUIRED NOU NO COMMERCI SCHAMES, NO SMITHAY STITCH SERVICE, POTRALE WILLEY, OR TRASH DESIGNAL IS REQUIRED NOU NO COMMERCIA GENERAL NOTES

11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

Onteator sixel year al park onting directors, and controls on the size stelland materially mother the signed by method of any degreenaces before the size stelland other the sizes.

THE IS NOT AN ALL MOUNTED LIST COMPOSITION SHALL WILLIES SPECIFIED SCUPPLINT THAT ON SIGNATION APPROVED SCHWARMENT, COMPOSITION SHALL WHENCE SCUPPLINT TO PROVIDE A PUNCTIONAL SITE. THE PROJECT CONTENTLY COMPOSITS OF THE FOLLOWING:

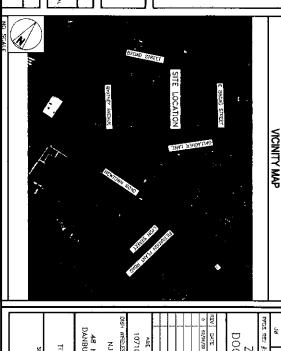
ACCESSA EXCRET OF WING.

ACCESSA EXCRET (3) PROPOSED THE WIND FACTOR (1049)

ACCESSA (3) PROPOSED THE SET FACTOR (1049)

The state of the state described (1) These to the state of the state o

SITE PHOTO


BRAWN 3M CHECKED BY AFFROVED BY

ā

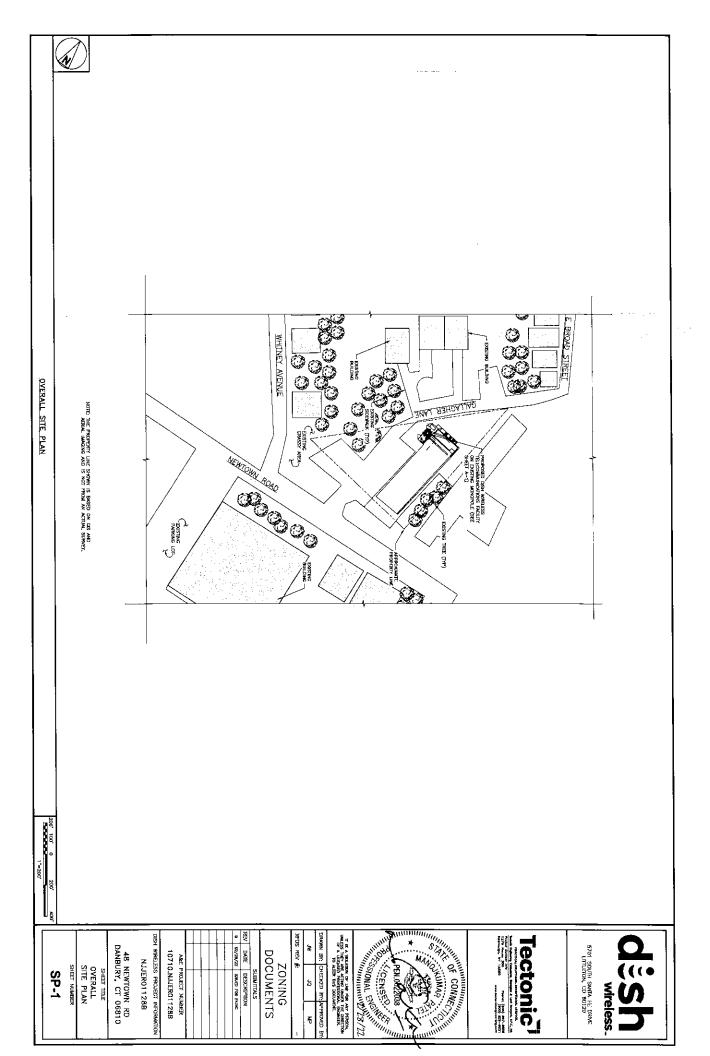
ZONING DOCUMENTS

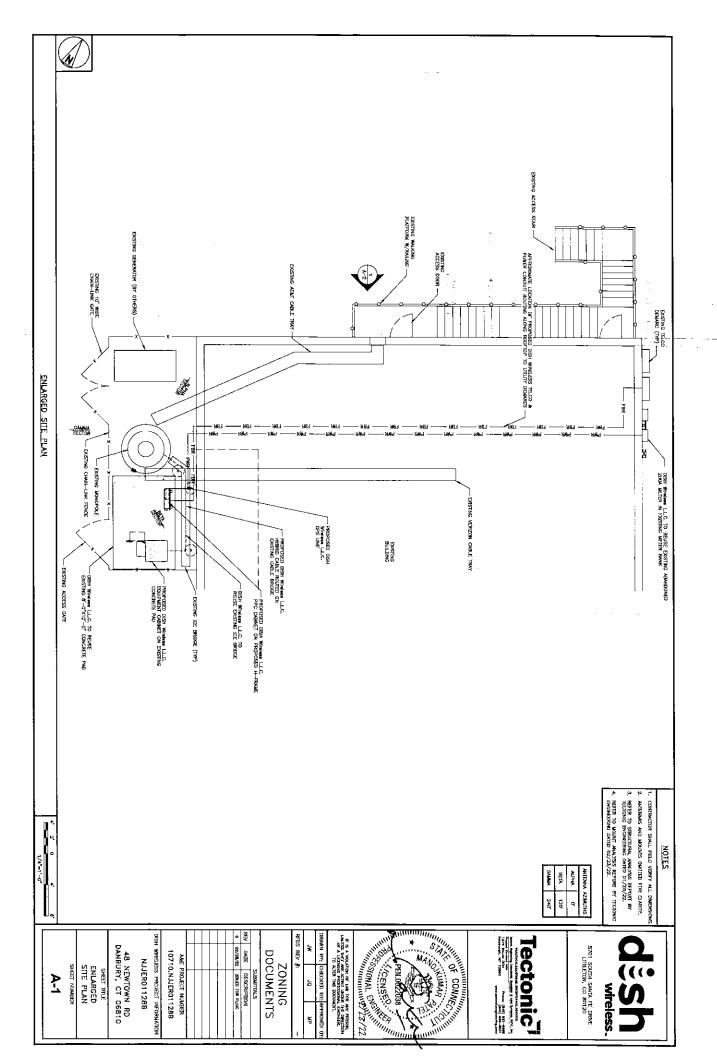
DESCRIPTION

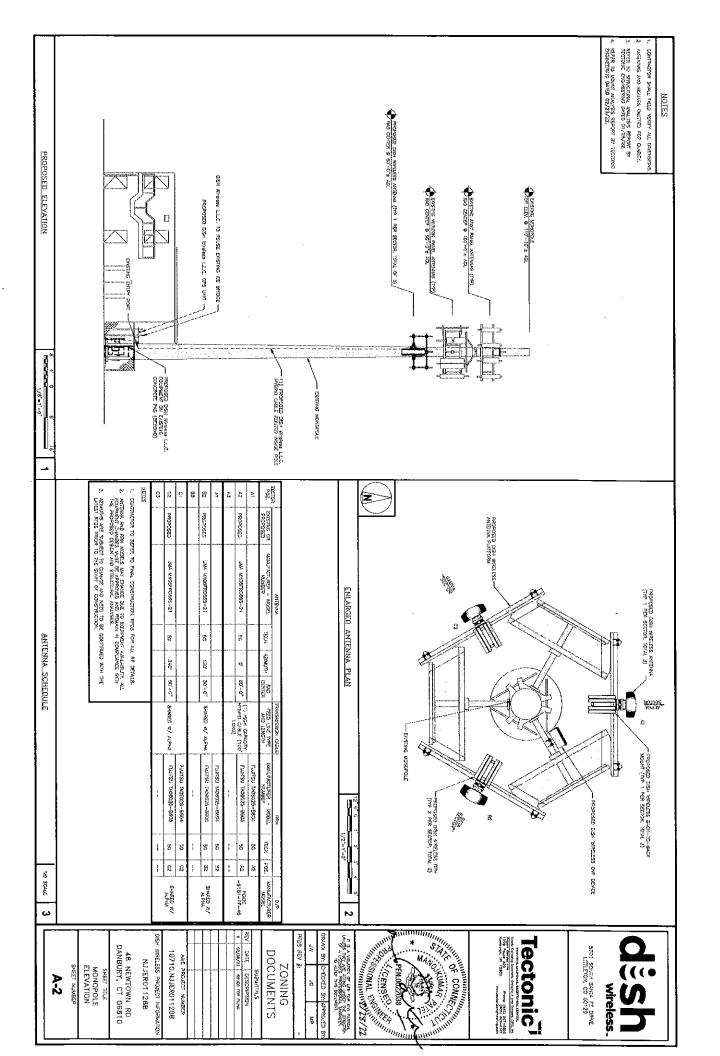
OF A LICENSIO PROFESSIONAL ENGINEER.

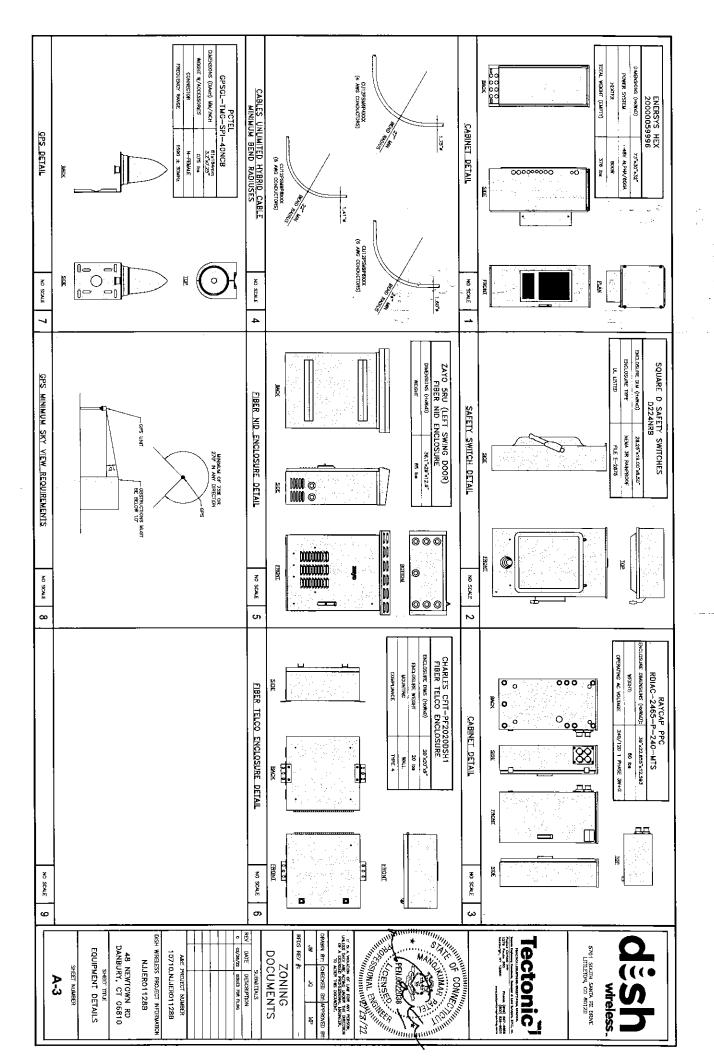
48 NEWTOWN RD DANBURY, CT 06810

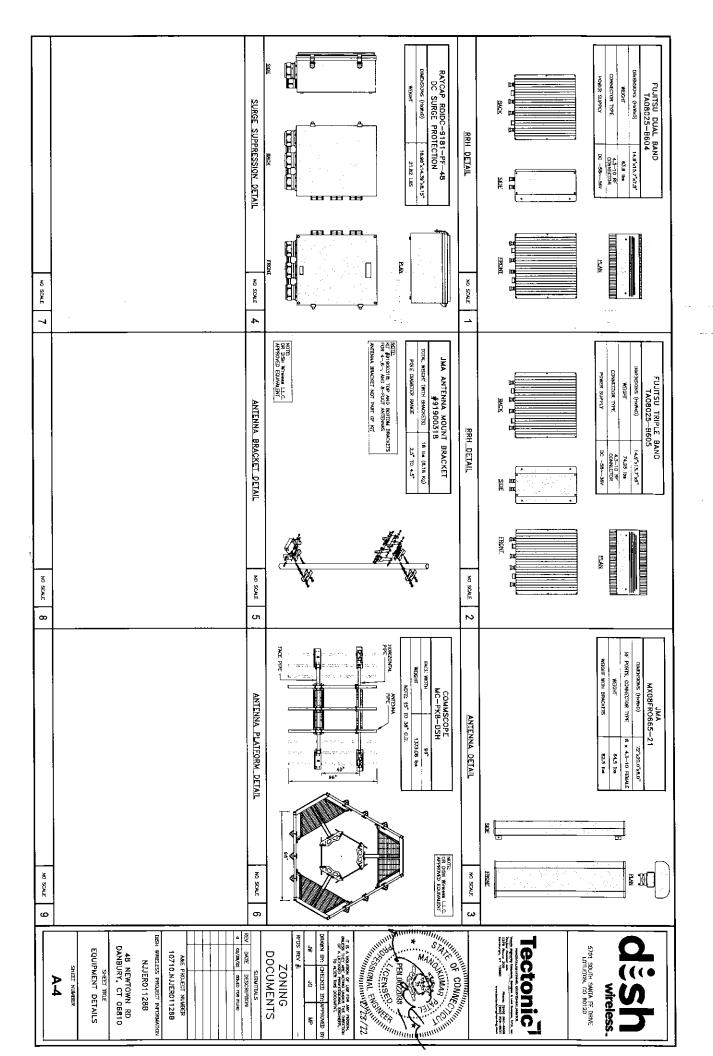
TITLE SHEET

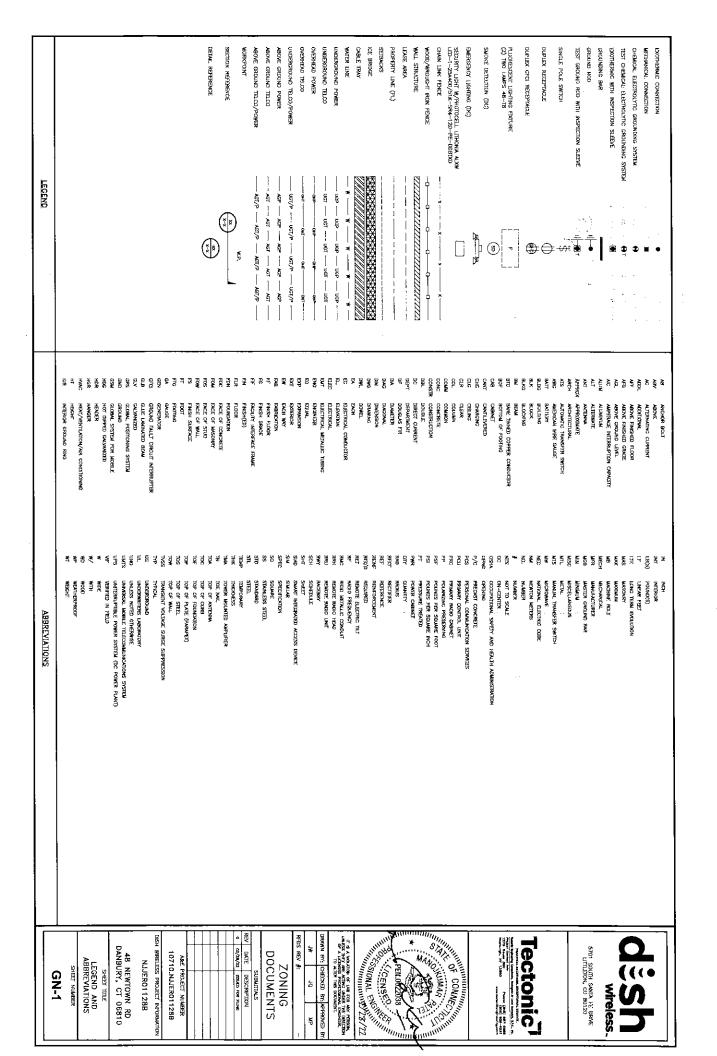

ヹ


WRELESS PROJECT SUFORM 10710.NJJER011288 NJJERO1128B


SITE IN	SITE INFORMATION	PROJECT DIRECTORY
PROPERTY OWNER,	AS NEWTON RE CORPORATION AS NEWTONN ROAD DANSURY, CT 06815	APPLICANT: DIEM MERGLESS 5701 S SAGTA FE ERRAC LITTLETON, DO 80120
TOWER TYPE	\$6\$0P0E	SUE DESPONER TECTONIC ENGINEERING
JOHER CO SITE ID:	*/*	
YOURER APP NUMBER:	₹/A	1279 POUTE 300 HEVELPGH, NY 10953
DOUNTS	FARRELD	(965) 567-8658
LATTILOS (NAO 83):	41 24 12.27 N 41.403408 N	SUE YOUNGEROUS TECHNOLOGIC BUSINESSIONS
LOKOTUĐE (NAC 23):	73,424439 17	CONSULTANTS, OEDICOUSTS CONSULTANTS, OEDICOUSTS
SCHART THRISDICTION	CITY OF DAMBURY/	(845) 567-8656
ZOMNG DETROP	95-20	CONSTRUCTION MANAGER: JOSEPH DIPINZZA
FAROSE NUMBER:	Y1 22650000	SE ENCOREEM: SAME SAME MADAMES
OCCUPANCY GROUP:	ū	PRICENTAL MADIA CARROLLA COM
CONSTRUCTION TOPE	E C	
PONER COMPANY:	EVERSOURCE	
WYNERD BROHESTE	1.8.0	
	DIRECTIONS	TIONS


		٠ا		L.			_
HALLDANG BALL CENTRA ONDAY BAN ABAL SEGRENA NOSESE AND EDGE OF THE SEGRENAL OF ILL	THE STONAL ENGLY 28/22	CENSED A CENSED	PEN.0022038		William Standard	OF CONNECTION	THE PROPERTY OF THE PARTY OF TH
					\leftarrow		-


Tectonic I 5701 SOUTH SWITA FE DRIVE LITTLETION, CC 80120

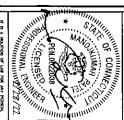


SITE ACTIVITY REQUIREMENTS:

- 1, NOTICE TO PROCEED ... NO WORK SHALL COMMENCE PRORR TO CONTRACTOR HEESYING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER PRORR TO ACCESSING/PURENKE THE SITY FOUL MAIS CONTACT THE DISH WIRELESS AND TOWER OWNER OWNER.
- "LOOK UP" DISH WIRELESS AND TOWER OWNER SAFETY CLIMB REQUIREMENT:
- THE INTERRITY OF THE SMETY CLIMB AND ALL COMPÔNENTS OF THE CUMBIN' SHÂLL DE CONSIDERED DIMENG ALL STACES.
 OF DESIGN, INSTILLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EDIMENT INSTILLATIONS SAMIL,
 NOT COMPROMISE THE MITERRITY OR FUNCTIONAL USE OF THE SMETTY CLIMB OR ANY COMPONENTS OF THE WIRE ROSE FACILITY ON
 THE STRUCTURE. THIS SHALL INCLUCE, BUT NOT BE LIMITED TO: PROCHING OF THE WIRE ROSE, BEDDING OF THE WIRE ROSE FACILITY ON
 THE STRUCTURE TO CONTROL OR CLOSE FORCOMENT TO THE WIRE FOR WINCH MAY CUST, PROCHING WERE, AND TO THE
 ANCHORAGE POINTS IN ANY MAY, OR TO IMPEDE/BLOCK ITS INTERDED USE. ANY COMPROMISES SAME THE THOSE OF WINCH SIM WINCHESS AND DISH WIRELESS AND TOWER OWNER POC OR CALL
 THE NOC TO GÉNEVANTE A SAFETY CLIMB MAINTEMANCE AND CONTRACTOR NOTICE TICKET.
- 3. PRIOR T IS NOT LIMITED AND CONSTRUCT 3. PRIOR TO THE START OF CONSTRUCTION, ALL'REQUIRED JURISDICTIONAL' PERINTS SHALL'BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BILCIDING, ELECTRICAL, HECHANICAL, FIREL FLOOD ZONE, ENVIRONMENTAL, AND ZONING, AFTER ONSITE ACTIVITIES AND CONSTRUCTION, ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFED AND CLOSED OUT ACCORDING TO LICOLA, JURISDICTIONAL REQUIREMENTS.
- THE WORK CONTAINED HEREIN, AND SHALL MEET ANS/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS, AND ANY APPLICAGLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED, ALL RICGING PLANS SHALL ADHERE TO ANS/ASSE A60.48 (LATEST EDITION) AND DISH WIRELESS AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INNOLVEMENT OF A QUALIFIED PRICINETY FOR CLASS OF CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANS/TIA-322 (LATEST EDITION). PIANS, ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING AND HESCLE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE DESCUTION OF
- ALL STE MORK TO COMPLY MITH DISH MERELESS AND TIMES (WHER MESTALATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH MERICES AND TOMES OMNES TOMES STEEL AND ACTIVITIES OF A MESTALATION, AND MANTEMANCE OF ANTEMA SUPPORTING STRUCTURES AND ACTIVINGS.
- 6. IF THE SPECIFED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH WIRELESS AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- ALL MATERIALS FURNISHED AND INSTALLED SWALL RE IN STRICT ACCROMANCE WITH ALL LAPPLICABLE CODES, REGULATIONS AND DEPARTMENT SHALL ESSUE ALL APPROPRIATE WHITEES AND CHARLE WITH ALL LANG CORDINANCES REGULATIONS AND LAWFUL ORDERS OF ANY PROJECT AUTHORITY REGISTRATION THE PERFORMANCE OF THE WHITE ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JUNESDICTIONAL CODES, ORDINANCES AND APPLICABLE RESILUTIONS.
- 8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 10. ALL EXSTING ACTIVE SEMER, WAITER, CAS, BECTIRIC AND OTHER CHILITIES WHERE EXPOSIVEDED IN THE WORK, SHALL BE PROTECTED AT ALL INJECT, MAN WHETER EXPOSITED FOR THE PROPER DESCRIPTION OF THE MORK, SHALL BE RELOVATED AS DIRECTED CONTRACTION. STREAM CANTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCANATION OF DIRECTED AS HEAD AND DESCRIPTION OF THE WORK SHALL BE RELOVATED AS DIRECTED AND ASSET THAN OF THE WORK SHALL BE USED AND ASSET AND ASSET AND ASSET AS THE WORK SHALL BE DIRECTED ĦΥ
- ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
- CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF TRACE, IF RECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STOKES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND
- 13. ALL EXSTING INACTIVE SEMER, WATER GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMORED AND/OR CAPPED, PLUGGED OR OTHERWISE EXCONTINUED AT POWER WHEN, AND/OR LOCAL UTILITIES. THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIRELESS AND TOWER OWNER, AND/OR LOCAL UTILITIES.
- 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
- 5 THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE
- THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT CONSIDED BY THE TOWER EQUIPMENT OR DEPREMY, SMULL BE GOADED TO A UNFORM SLOPE, AND STABILIZED TO PREMENT BROSON AS SPECIFIED ON THE CONSTRUCTION DRAWNESS AND/OR PROJECT SPECIFICATIONS.
- 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER. ED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL
- CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXAL CABLES AND OTHER ITEMS TO FROM THE EXISTING FACILITY, ANTENIALS AND RADIOS REDIONED SHALL BE RETURNED TO THE OWNER'S DESIGNATED
- CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION, TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY
- . NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. PLACED IN ANY FILL OR EMBANKMENT. FROZEN MATERIALS, SNOW OR ICE SHALL NOT

1.FOR THE PURPOSI; OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION


TOWER OWNER: TOWER OWNER

- THESE DRAWNOS HAVE HERY PREPARED LIGNE STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY SECRISED UNDER SMILLAR CRICLASSIANCES BY REPUTABLE FROMERES IN IN THIS OR SMILLAR LOCALITIES. IT IS ASSUMED THAT THE PROPERTY OF THE PAPILICABLE FOR SMILLAR CRICIALDED BY AN EXPERIENCES CONTRACTOR AND/OR WORKFEEPLE WHO HAVE A WORKING KOWLEDGE OF THE PAPILICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD COOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS ONC CAN BE PERFUEITLY SHOWN ON THESE DRAWNINGS. THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD COOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
- 3. THESE DRAWNGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT NOICHTE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SUBLEY RESPONSIBLE FOR THE CONSTRUCTION SHALL BE SUBLEY RESPONSIBLE FOR THE MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL REPONDE ALL MEASURES NECESSARY FOR PROTOCETION OF LIEF AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT HE LIMITED TO, BRACING, FORMAGRE, SHOWING, EN SITE VISTS BY THE ENGINEER OF HIS REPORTATION FOR STRUCTURE ONLY. ETC
- 4. NOTES AND DEPAIS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS.

 WHERE NO BETALLS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CHORPACT DOCUMENTS. WHERE DISCREPANCES OCCURE RETWEEN UPLANS, DETAILS, GERERAL NOTES, AND SPECIFICATIONS. THE GREATER, MORE STRICT REQUIREDHENTS, SHALL COVERN. IF FURTHER CLARRICATION IS REQUIRED CONTACT THE ENGINEER OF GREATER, MORE STRICT REQUIREDHENTS, SHALL GOVERN.
- 5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWNINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO NELD VERIFY THE DIMENSIONS, REASUREMENTS, AND/OR CLEVANICES SHOWN IN THE CONSTRUCTION DRAWNINGS PRIOR TO FABRICATION OR CUITING OF ANY NEW OR EXISTING CONSTRUCTION BLAKENTS. IF IT IS DETERMINED THAT THERE ARE DISCORPANICES AND/OR CONFIDENCE WITH THE CONSTRUCTION DRAWNINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS
- S. PRIOR TO THE SUBJUSSION OF BIOS, THE BIDDING CONTRACTOR SMALL YIGHT THE CELL STIE TO FAMILMENZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWNOSS.
 DISCRIPPANCY FOUND SHALL HE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER. ŝ
- ALL MATERIAS FURNISHED AND INSTALED SHALL BE IN STRUCT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTION SHALL ISSUE ALL APPROPRIATE NOTICES AND COURTY WITH ALL LAWS, GOTHANCES AND LAWFILL COURTY WHITH ALL LAWS, GOTHANCES AND SHALL COURTY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE RESILLATIONS.
- UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 9. THE CONTRACTOR SMALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 10. If the specified equipalent can not be installed as shown on these danances, the contractor shall propose An alternative, installation for approval by the carrier and tower dyner prior to proceeding with art such change of installation.
- 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONSULTS FOR PUMER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING FLAN DRAWNESS.
- 12. TH THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES, ANY D PART SHALL BE REPARED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH WIRELESS AND TOWER OWNER.
- 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRUP MATERIALS SUCH AS COAXIAL CABLES AND DITHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION, TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

ectonic (man) 1074 - 1084 (man) 1174 - 1084 (man) 1184 - 1185 (man) 1184 -

D.,	FDS REV #	JW	RAWN BY:	IT IS A VIOL MALESS THEY OF A LICE	SALLE.
ZONING DOCUMENTS	*	ģ	RAWN BY: CHECKED BY: APPROVED B	THOM OF LAW FOR AME ACTING UNDER MED PROFESSION ALTER THIS DOCUM	HUESTONAL ENGLISH
STS		Ą	APPROVED B	ANY PERSON, TOLE DIRECTION L'ENCHEER JENT.	N 28/22

DATE		Z Dod	G KEV #
DESCRIPTION	SURMITIALS	ZONING OCUMENTS	
i	1		

- 2

ESSUED FOR FILM

		ı
10710.	A&E PE	
10710.NJJER011288	AKE PROJECT NUMBER	
88	兒	

WIRELESS PROJECT INFORMATION NJJERO1128B

48 NEWTOWN RD DANBURY, CT 06810 GENERAL NOTES

GN-2

Exhibit D Structural Analysis

Date: January 26, 2022

Structural Analysis Report

Carrier:

Dish Wireless

Site Number:

NJJER01128B

Site Data:

48 Newton Road, Danbury, Fairfield County, CT 06810

Latitude 41° 24' 12.32", Longitude -73° 25' 27.97"

112 ft Monopole

Tectonic Project Number:

10710.NJJER01128B

Tectonic Engineering Consultants, Geologists & Land Surveyors, D.P.C. is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation to be:

Structure:

Sufficient Capacity - 93.8%

Foundation:

Sufficient Capacity - 83.3%

This analysis has been performed in accordance with the 2018 Connecticut State Building Code based upon an ultimate 3-second gust wind speed of 120 mph converted to a nominal 3-second gust wind speed of 93 mph per Section 1609.3 and Appendix N as required for use in the TIA-222-G Standard per Exception #5 of Section 1609.1.1. Exposure Category B with a maximum topographic factor, Kzt, of 1.0 and Risk Category II were used in this analysis.

All modifications and equipment proposed in this report shall be installed in accordance with this analysis for the determined available structural capacity to be effective.

We at Tectonic appreciate the opportunity of providing our continuing professional services to you. If you have any questions or need further assistance on this or any other projects please give us a call.

Structural analysis prepared by: John-Fritz Julien / Ian Marinaccio

Respectfully submitted by:

Tectonic Engineering Consultants, Geologists & Land Surveyors, D.P.C.

Edward N. Iamiceli, P.E.

Managing Director - Structural

Project Contact Info

1279 Route 300 | Newburgh, NY 12550 845.567.6656 Tel | 845.567.8703 Fax

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable Information
Table 2 - Existing Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity
4.1) Result / Conclusions

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Additional Calculations

1) INTRODUCTION

This tower is a 112 ft Monopole tower originally designed to 100 ft by Engineered Endeavors, Inc. in July of 1999. The tower was extended to its final height and has been reinforced multiple times in the past.

2) ANALYSIS CRITERIA

TIA-222 Revision:

TIA-222-G

Risk Category:

Ш

Wind Speed:

93 mph

Exposure Category:

В

Topographic Factor:

1

Ice Thickness:

1.0 in

Wind Speed with Ice:

50 mph

Service Wind Speed:

60 mph

Table 1 - Proposed Antenna and Cable Information

Mounting Level (ft)	Carrier Designation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Notes
		3	JMA Wireless	MX08FRO665-21			
	Dish	1	CommScope	8' Platform Mount w/ Top Rail (MC-PK8-DSH)		1	İ
80.0	Wireless	3	Fujitsu	TA08025-B604	1	Hybrid	-
		3	Fujitsu	TA08025-B605			
] .		1	Raycap	RDIDC-9181-PF-48			

Table 2 - Existing Antenna and Cable Information

Mounting Level (ft)	Carrier Designation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Notes
		3	Powerwave Technologies	7770.00		-	
		1	CCI Antennas	OPA-65R-LCUU-H6			
.]		2	CCI Antennas	OPA-65R-LCUU-H4			
		1	CCI Antennas	HPA-65R-BUU-H6]		
	1 1	2	CommScope	SBNHH-1D65A			
1 1111		1	Kathrein	80010965]		
100.0	AT&T	2	Kathrein	80010964	12	1-5/8	4
100.0	ΑΙαι	3	Ericsson	RRUS 11	3	2-1/4	['
		9	Ericsson	RRUS 32			
	<u> </u> -	3	Ericsson	RRUS 4478 B14			
		6	Powerwave Technologies	LGP21401			
1		6	CCI Antennas	TPX-070821			
		3	en	Squid Surge Arrestor			
		3	Sabre	12' V-Boom Mount			

Mounting Level (ft)	Carrier Designation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Notes
		1	Amphenol	BXA-80063-6BF-EDIN-4			
		2	Amphenol BXA-80080/6CF CommScope JAHH-65B-R3B		Ĩ		
		3] [
		3	Samsung XXD\/\/MM-12.5.65.81	XXDWMM-12.5-65-8T- CBRS	6 2	1-5/8 6x12	
90.0	Verizon	3	Samsung Telecommunications	B2/B66 RRH-BR049			
90.0	Wireless	3	Samsung Telecommunications	B5/B13 RRH-BR04C			
			CommScope	CBC78T-DS-43	<u>ו</u>		
		2	-	Junction Box			
		3	Samsung Telecommunications	MT6407-77A			THE PARTY OF THE P
		1	Tower Mounts	Reinforced Platform]		[

Note:

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Dated
Structural Analysis Report	Hudson Design Group LLC	04/27/21
RFDS	Dish Wireless	11/16/21
Site Visit	Tectonic	01/21/22

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

tnxTower was used to determine the loads on the modified structure. Additional calculations were performed to determine the stresses in the pole and in the reinforcing elements. These calculations are presented in Appendix B.

3.2) Assumptions

- 1) Tower and structures were built and maintained in accordance with the manufacturer's specifications.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2.
- 3) Original design information of the existing modifications at the base of the tower was not available at the time of this analysis. The existing flat plate shaft reinforcement by others from 0 20 ft are based solely on the site inspection by Tectonic referenced above.

Existing equipment

This analysis is solely for the supporting tower structure, and it may be affected if any assumptions are not valid or have been made in error. Tectonic should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	110 - 105	Pole	TP15.5714x14.5x0.375	1	-0.369	744.267	0.3	Pass
L2	105 - 100	Pole	TP16.6429x15.5714x0.375	2	-0.763	796,741	0.9	Pass
L3	100 - 96	Pole	TP17.5x16.6429x0.375	3	-4.869	838.721	9.3	Pass
L4	96 - 91	Pole	TP18.548x17.5x0.25	4	-5.218	1078.720	14.6	Pass
L5	91 - 86	Pole	TP19.596x18.548x0.25	5	-10.453	1140.510	26.6	Pass
L6	86 - 81	Pole	TP20.644x19.596x0.25	6	-10.932	1202.290	37.4	Pass
L7	81 - 76	Pole	TP21.692x20.644x0.25	7	-14.048	1264.070	48.7	Pass
L8	76 - 71	Pole	TP22.74x21.692x0.25	8	-14.660	1325.850	58.5	Pass
L9	71 - 66	Pole	TP23.788x22.74x0.25	9	-15.423	1387.640	66.8	Pass
L10	66 61	Pole	TP24.836x23.788x0.25	10	-16.224	1449.420	73.9	Pass
L11	61 - 56	Pole	TP25.884x24.836x0.25	11	-17.060	1501.830	80.4	Pass
L12	56 - 51	Pole	TP26.932x25.884x0.25	12	-17.930	1546.690	86.6	Pass
L13	51 - 46	Pole	TP27.98x26.932x0.25	13	-18.108	1555.510	87.8	Pass
L14	46 - 45	Pole	TP27.6774x26.6416x0.3125	14	-19.382	2016.560	75.6	Pass
L15	45 - 40	Pole	TP28.7133x27.6774x0.3125	15	-20.392	2092.890	78.8	Pass
L16	40 - 35	Pole	TP29.7491x28.7133x0.3125	16	-21.434	2169.220	81.5	Pass
L17	35 - 30	Pole	TP30.785x29.7491x0.3125	17	-22.505	2245.560	83.8	Pass
L18	30 - 25	Pole	TP31.8208x30.785x0.3125	18	-23.604	2317.440	85.9	Pass
L19	25 - 20	Pole	TP32.8566x31.8208x0.3125	19	-24.703	2373.690	88.4	Pass
L20	20 - 19.75	Pole	TP32.9084x32.8566x0.3438	20	-24.769	2639,710	79.8	Pass
L21	19.75 - 14.75	Pole	TP33.9443x32.9084x0.3438	21	-25.807	2723.670	81.1	Pass
L22	14.75 - 10	Pole	TP34.9283x33.9443x0.3438	22	-26.826	2799.590	82.3	Pass
L23	10 - 9.75	Pole	TP34.9801x34.9283x0.45	23	-26.900	3664.180	63.4	Pass
L24	9.75 - 5	Pole	TP35.9642x34.9801x0.4438	24	-27.975	3716.920	65.0	Pass
L25	5 - 4.75	Pole	TP36.016x35.9642x0.4438	25	-28.044	3722.340	65.0	Pass
L26	4.75 - 0	Pole	TP37x36.016x0.4375	26	-29.113	3772.080	66.5	Pass
<u> </u>							Summary*	
***************************************			THE PROPERTY OF THE PROPERTY O		-	Pole (L19)	88.4	Pass
			_			Rating =	88.4	Pass

^{*}NOTE: Above stress ratios for reinforced sections are approximate. More exact calculations are presented in Appendix B.

Table 5 - Tower Component Stresses vs. Capacity

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	41.7	Pass
1	Base Plate	0	57.0	Pass
1	Base Foundation (Soil Interaction)	0	53.1	Pass
1	Base Foundation (Structure)	0	83.3	Pass

-		
- 1		
- 1	Campatone Dating (may form all assures and a	l
- 1	Structure Rating (max from all components) =	93.8 %
		1 33.5 %
	<u> </u>	I.

Note:

4.1) Result / Conclusions

The tower and foundation have sufficient capacity to support the proposed load configuration. No modification is required at this time.

See additional documentation in "Appendix B – Additional Calculations" for calculations supporting the % capacity consumed.

APPENDIX A TNXTOWER OUTPUT

			*																				
Cector	8	₹ -	7	` <u></u>	2	2	2	2	5	2	2	=	2	ת	0	`	0	n	•	·	7	_	
Length (ft)	4,75 0	025 4.75 0	0.25 4.75	5.00 0	025 5.00	5.00	2.00	5.00	5.00	5.0000	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	4.00	5,00	5.00	
Number of Sides	18	18	# is	188	18 18	18	18	18	18	18 18	82	48	4	18	18	18	18	18	18	18	18	18	
Thickness (in)	0.43750.4	0.437 B.443 D.443 D.450 B.3438	50@.3438	0.34380.3	0.34380.34380.3125	0.3125	0.3125	0.3125	0.31250.31250.2500	1250.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.3750	0.3750	0.3750	
Socket Length (ft)									Angeles and the second	4.00													
Top Dia (in)	36.01665.	36.01@5.96424.98CH.92@3.9443	9288.9443		32,9080,85681,8208	30.7850	29.7491	28.7133	27.677-26 641/26.9320	4126.9320	25,8840	24.8360	23.7880	22.7400	21.6920	20.6440	19,5960	18.5480	17.5000	16.6429 1	15.5714 1	14,5000	
Bot Dia (in)	37.0008.	37.000E.016E.3642.980H.9283	9BCH.9283	ļ	33,94492,90632,8566	31.6208	30.7850	29.7491	28.71337.6	28.713.27.677.427.9800	26.9320	25.8840	24.8360	23.7880	22.7400	21.6920	20,6440	19.5960	18.5480	17.5000 1	16.6429 1	15.5714	
Grade										A572-65										A36	_ـــــــــــــــــــــــــــــــــــــ		
Weight (K) 10.0	9.0	0 0.8 C	ob 0.7	0.7.0	0.0	0.5	0.5	.5.0	0.5 0.	0.5 0.4	40	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.2	6.3	0.3	6.3	Di Ira
	0.0 ft	5.0 ft	10.0 ft	14.8 ft	20.0 ft	25.0 ft	30,0 ft	35.0 ft	40.0 ft	46.0 ft	51.0 ft	56,0 ft	61.0 ft	66.0 ft	71.0 ft	81,0 ft 76,0 ft	86,0 ft		91,0 ft	100,0 ft 96,0 ft	105.0 ft	110,0 m	110,0 π
																	4				ĺ		
																			.	-	Н		
																	1_	W.		312			
																			1		4		
										1						-				REGISTERS.			
																			я	Sign Street	S.		
1			ε													L			1	-	ı		
REA	24	.	50 m	Si 7												4		8	2				
CT.	EAI K_∫		T(ph	4Ε <i>Α</i> Κ_∫		Al Al					-									H	H		
J.		_	O.			LL RI													Ļ		L		

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
7770,00 w/ Mount Pipe	100	(2) JAHH-65B-R3B_TIA w/ Mount Pipe	90
7770.00 w/ Mount Pipe	100	(2) JAHH-65B-R3B_TIA w/ Mount Pipe	90
7770.00 w/ Mount Pipe	100	XXDWMM-12.5-65-8T-CBRS	90
80010965_TIA w/ Mount Pipe	100	XXDWMM-12,5-65-8T-CBRS	90
80010964_TIA w/ Mount Pipe	100	XXDWMM-12,5-65-8T-CBRS	90
80010964_TIÁ w/ Mount Pipe	100	B2/B66 RRH-BR049	90
OPA-65R-LCUU-H6_TIA w/ Mount	100	B2/B66 RRH-BR049	90
Pipe		B2/B66 RRH-BR049	90
OPA-65R-LCUU-H6_T(A w/ Mount Pipe	100	B5/B13 RRH-BR04C	90
· · · · · · · · · · · · · · · · · · ·		_ B5/B13 RRH-BR04C	90
OPA-65R-LCUU-H6_T1A w/ Mount Pipe	100	B5/B13 RRH-BR04C	90
HPA-65R-BUU-H6_TIA w/ Mount Pipe	100	(2) CBC78T-DS-43	90
S8NHH-1D65A_TIA w/ Mount Pipe	100	CBC78T-DS-43	90
SBNHH-1D65A, TIA w/ Mount Pipe	100	CBC78T-DS-43	90
RRUS 11	100	RRFDC-3315-PF-48	90
RRUS 11	100	RRFDC-3315-PF-48	90
RRUS 11	100	MT6407-77A	90
(3) RRUS 32	100	MT6407-77A	90
(3) RRUS 32	100	MT6407-77A	90
(3) RRUS 32	100	Empty Mount Pipe	90
RRUS 4478 B14	100	Empty Mount Pipe	90
RRUS 4478 B14	100	Empty Mount Pipe	90
RRUS 4478 B14	100	Platform Mount	90
(2) LGP21401	100	Mount Reinforcement	90
(2) LGP21401	100	MX08FRO665-21 w/ Mount Pipe	80
(2) LGP21401	100	MX08FRO665-21 w/ Mount Pipe	80
(2) TPX-070821	100	MX08FRO665-21 w/ Mount Pipe	80
(2) TPX-070821	100	TA08025-B605	80
(2) TPX-070821	100	TA08025-B605	80
Squid Surge Arrestor	100	TA08025-B605	80
Squid Surge Arrestor	100	TA08025-B604	80
Squid Surge Arrestor	100	TA08025-B604	80
Sabre 12" V-Boom	100	TA08025-B604	80
BXA-80063-68F-EDIN-4 w/ Mount	90	RDIDC-9181-PF-48	80
Pipe		(2) Empty Pipe	80
BXA-80080/6CF W/ Mount Pipe	90	(2) Empty Pipe	80
BXA-80080/6CF W/ Mount Pipe	90	(2) Empty Pipe	80
(2) JAHH-65B-R3B_TIA w/ Mount Pipe	er.	Platform Mount	180

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A36		58 ksi		65 ksi	80 ksl

TOWER DESIGN NOTES

- Tower is located in Fairfield County, Connecticut.
 Tower designed for Exposure B to the TIA-222-G Standard.
 Tower designed for a 93 mph basic wind in accordance with the TIA-222-G Standard.
 Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to
- increase in thickness with height.
- 5. Deflections are based upon a 60 mph wind.
- LL REA⁶. Tower Structure Class II. RE FAC8. TOWER RATING: 93.8%

AXIAL 72 K MOMENT 642 kip-ft

ORQUE 1 kip-ft WIND - 1,0000 in ICE

AXIAL 29 K MOMENT 1857 kip-ft

ORQUE 2 kip-ft IONS - 93 mph WIND

Tectonic

Tectonic 1279 Route 300 Newburgh, NY 12550 Phone: (845) 567-6656 FAX: (845) 567-8703

Path:

^b 10710.NJJER01128B Project: 110 ft Monopole ^{Client:} Dish Drawn by: John-Fritz Julien App'd: Scale: N Date: 01/26/22 Code: TIA-222-G

Dwg No.

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

- Tower is located in Fairfield County, Connecticut.
- Basic wind speed of 93 mph.
- Structure Class II.
- Exposure Category B.
- Topographic Category 1.
- Crest Height 0.00 ft.
- Nominal ice thickness of 1.0000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60 mph.
- TOWER RATING: 93.8%.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

Use Code Stress Ratios Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends

Distribute Leg Loads As Uniform Assume Legs Pinned

- Assume Rigid Index Plate
- Use Clear Spans For Wind Area
- Use Clear Spans For KL/r Retension Guys To Initial Tension
- Bypass Mast Stability Checks Use Azimuth Dish Coefficients
- Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination Secondary Horizontal Braces Leg Secondary Horizontal Braces L Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder SR Members Are Concentric and a second secon

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice

Exemption

Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter In	Wall Thickness In	Bend Radius in	Pole Grade
L1	110.00-105.00	5.00	0.000	18	14.5000	15.5714	0.3750	1.5000	A36 (36 ksi)
L2 .:"	105,00-100.00	5.00	0.000	18	15.5714	16.6429	0.3750	1.5000	A36 (36 ksi)

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter In	Wall Thickness in	Bend Radius In	Pole Grade
L3	100,00-96,00	4,00	0.000	18	16.6429	17.5000	0.3750	1.5000	A36
									(36 ksi)
L4	96.00-91.00	5.00	0.000	18	17.5000	18.5480	0.2500	1.0000	A572-65
									(65 ksi)
L5	91.00-86.00	5.00	0.000	18	18.5480	19.5960	0,2500	1.0000	A572-65
				4.0					(65 ksi)
L6	86.00-81.00	5.00	0.000	18	19.5960	20.6440	0.2500	1.0000	A572-65
	04 00 70 00	5.00	0.000	40	00.0440	04 0000	0.0500	4 0000	(65 ksi)
L7	81.00-76.00	5.00	0.000	18	20.6440	21.6920	0.2500	1.0000	A572-65
L8	76.00-71.00	5.00	0.000	18	21.6920	22,7400	0,2500	1.0000	(65 ksi)
LO	70.00-71.00	5.00	0.000	10	21.0920	22,7400	0.2500	1.0000	A572-65
L9	71.00-66.00	5.00	0.000	18	22.7400	23.7880	0.2500	1.0000	(65 ksi) A572-65
Lo	11.00-00.00	0.00	0.000	.0	22.1400	25,7000	0.2000	1.0000	(65 ksi)
L10	66,00-61.00	5.00	0.000	18	23,7880	24.8360	0.2500	1.0000	A572-65
2.0	00100 0 1100	5,00	0.000	,,,	2011 200	2 110000	0.2000	1.0000	(65 ksi)
L11	61,00-56.00	5.00	0.000	18	24.8360	25.8840	0.2500	1.0000	A572-65
									(65 ksi)
L12	56,00-51.00	5.00	0.000	18	25.8840	26.9320	0.2500	1.0000	À572-65
									(65 ksi)
L13	51.00-46.00	5.00	4.000	18	26.9320	27.9800	0.2500	1.0000	A572-65
									(65 ksi)
L14	46.00-45.00	5.00	0.000	18	26.6416	27.6774	0.3125	1.2500	A572-65
(4 =	45.00.40.00	5.00							(65 ksi)
L15	45.00-40.00	5,00	0.000	18	27.6774	28.7133	0.3125	1.2500	A572-65
1.40	40.00.25.00	E 00	0.000	40	20 7422	20.7404	0.2405	4.0500	(65 ksi)
L16	40.00-35.00	5.00	0.000	18	28.7133	29.7491	0.3125	1.2500	A572-65
L17	35.00-30.00	5.00	0.000	18	29.7491	30.7850	0.3125	1.2500	(65 ksi) A572-65
	00.00 00.00	0.00	0,000		20.7401	30.7030	0.0120	1.2000	(65 ksi)
L18	30.00-25.00	5.00	0.000	18	30.7850	31.8208	0.3125	1.2500	A572-65
				• • •		0110200	0,0 (20	112000	(65 ksi)
L19	25.00-20.00	5.00	0.000	18	31.8208	32.8566	0.3125	1.2500	A572-65
									(65 ksi)
L20	20.00-19.75	0.25	0.000	18	32.8566	32.9084	0.3438	1.3750	A572-65
									(65 ksi)
L21	19.75-14.75	5.00	0.000	18	32.9084	33.9443	0.3438	1.3750	A572-65
				4.5					(65 ksi)
L22	14.75-10.00	4.75	0.000	18	33.9443	34.9283	0.3438	1.3750	A572-65
1.00	10.00.0.75	0.05	0.000	40	24.0002	24.0004	0.4500	4 0000	(65 ksi)
L23	10.00-9.75	0.25	0.000	18	34.9283	34.9801	0.4500	1.8000	A572-65
L24	9.75-5.00	4.75	0.000	18	34.9801	35.9642	0.4437	1.7750	(65 ksi) A572-65
LAT	3.10-3.00	7.70	0.000	10	34.5001	00.0042	0.7707	1.7730	(65 ksi)
L25	5.00-4.75	0.25	0.000	18	35.9642	36.0160	0.4437	1.7750	A572-65
		5.20	2.000		55.56 IL	0100	J		(65 ksi)
L26	4.75-0.00	4.75		18	36.0160	37.0000	0.4375	1.7500	A572-65
									(65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	1	. r	С	I/C	J	It/Q	W	w/t
- ·*	.:∵in	in²	∴ in⁴	in	in	ln³	in⁴	in²	in	
L1	14.6658	16.8123	423.7805	5.0144	7.3660	57.5320	848.1187	8.4077	1.8920	5.045
	15.7538	18.0875	527.7160	5.3947	7.9103	66.7126	1056.1264	9.0455	2.0806	5.548
L2	15.7538	18.0875	527.7160	5.3947	7.9103	66.7126	1056.1264	9.0455	2.0806	5.548
	16.8418	19.3628	647.3910	5.7751	8.4546	76.5729	1295.6339	9.6832	2.2691	6.051
L3	16.8418	19.3628	647.3910	5.7751	8.4546	76.5729	1295.6339	9.6832	2.2691	6.051
	17.7121	20.3830	755.2094	6.0794	8.8900	84.9504	1511.4125	10.1935	2.4200	6.453
L4	17.7314	13.6879	514.5786	6,1238	8.8900	57.8829	1029.8342	6.8452	2.6400	10.56
	18.7956	14.5195	614.1794	6.4958	9.4224	65.1830	1229.1670	7.2611	2.8244	11.298
L5	18.7956	14.5195	614.1794	6.4958	9.4224	65.1830	1229.1670	7.2611	2.8244	11,298
	19.8597	15.3511	725.8685	6.8678	9.9548	72.9167	1452.6921	7.6770	3.0089	12.036
L6	19.8597	15.3511	725.8685	6.8678	9.9548	72.9167	1452.6921	7.6770	3.0089	12.036
	20.9239	16.1826	850.3381	7.2399	10.4872	81.0838	1701.7950	8.0929	3,1933	12,773

tnxTower Report - version 8.1.1.0

Section	Tip Dia.	Area	1	r	С	I/C	J	It/Q	w	w/t
	in	ln²	in⁴	in	In	in³	in⁴	In ²	in	
L7	20.9239	16.1826	850.3381	7.2399	10.4872	81,0838	1701.7950	8.0929	3.1933	12.773
	21.9881	17.0142	988,2806	7.6119	11.0195	89.6844	1977.8615	8.5087	3.3778	13.511
L8	21.9881	17.0142	988.2806	7.6119	11.0195	89.6844	1977.8615	8.5087	3.3778	13.511
	23.0522	17.8458	1140.3883	7.9840	11.5519	98.7185	2282.2771	8.9246	3,5622	14.249
L9	23.0522	17,8458	1140.3883	7.9840	11.5519	98.7185	2282.2771	8.9246	3.5622	14.249
	24.1164	18.6774	1307.3536	8.3560	12.0843	108.1861	2616.4274	9.3405	3.7467	14.987
L10	24.1164	18.6774	1307.3536	8.3560	12.0843	108.1861	2616.4274	9.3405	3.7467	14.987
	25.1806	19.5090	1489.8688	8.7280	12,6167	118.0872	2981.6979	9.7563	3.9311	15.725
L11	25.1806	19,5090	1489.8688	8.7280	12.6167	118.0872	2981.6979	9.7563	3.9311	15.725
	26,2447	20.3406	1688.6262	9.1001	13.1491	128.4217	3379,4743	10.1722	4.1156	16.462
L12	26,2447	20.3406	1688,6262	9.1001	13.1491	128.4217	3379.4743	10.1722	4.1156	16.462
	27.3089	21.1722	1904.3182	9.4721	13.6815	139,1897	3811.1422	10.5881	4.3000	17.2
L13	27,3089	21.1722	1904.3182	9.4721	13.6815	139.1897	3811.1422	10.5881	4.3000	17.2
	28.3731	22.0038	2137.6372	9.8442	14.2138	150.3912	4278,0871	11.0040	4.4845	17.938
L14	27.8458	26.1152	2287.1910	9.3468	13.5339	168.9968	4577.3916	13.0601	4.1389	13.245
	28.0562	27.1426	2567.8987	9.7146	14.0601	182.6368	5139.1764	13.5739	4.3212	13.828
L15	28.0562	27.1426	2567.8987	9.7146	14.0601	182.6368	5139.1764	13.5739	4,3212	13.828
-1.0	29,1080	28,1700	2870.6827	10.0823	14.5863	196.8062	5745.1428	14.0877	4.5035	14.411
L16	29.1080	28.1700	2870.6827	10.0823	14.5863	196.8062	5745,1428	14.0877	4.5035	14.411
2.0	30,1598	29.1974	3196.3786	10.4500	15.1126	211.5049	6396.9631	14.6015	4.6858	14.995
L17	30.1598	29.1974	3196.3786	10.4500	15.1126	211.5049	6396.9631	14.6015	4.6858	14.995
- ''	31.2117	30.2249	3545.8221	10.8177	15.6388	226.7329	7096.3099	15.1153	4.8682	15.578
L18	31.2117	30.2249	3545.8221	10.8177	15,6388	226.7329	7096.3099	15.1153	4.8682	15.578
2.0	32.2635	31.2523	3919.8488	11.1854	16.1650	242,4904	7844.8553	15.6291	5.0505	16.161
L19	32.2635	31.2523	3919.8488	11.1854	16.1650	242.4904	7844.8553	15.6291	5.0505	16.161
2,0	33.3153	32.2797	4319.2943	11.5532	16.6912	258.7772	8644.2720	16.1429	5.2328	16,745
L20	33,3105	35.4736	4737.5500	11.5421	16.6912	283.8356	9481.3337	17.7402	5.1778	15.063
LZO	33.3631	35.5301	4760.2264	11.5605	16.7175	284.7454	9526.7163	17.7684	5.1869	15.089
L21	33.3631	35.5301	4760.2264	11.5605	16.7175	284.7454	9526.7163	17.7684	5.1869	15.089
LZI	34.4149	36.6603	5229.0784	11.9282	17.2437	303.2459	10465.037	18.3336	5.3692	15.619
	04.4140	00.000	0220.010-	11.0202	17.2407	303.2433	3	10.5550	3.3092	13.019
L22	34.4149	36.6603	5229.0784	11.9282	17.2437	303.2459	10465.037	18.3336	5.3692	15.619
							3			
	35.4141	37.7339	5702.0920	12.2775	17.7436	321.3607	11411.687	18.8705	5.5424	16.123
							0		****	101120
L23	35.3977	49.2454	7395.9706	12,2398	17.7436	416.8250	14801.673	24.6274	5.3554	11.901
							0			
	35.4503	49.3194	7429.3505	12.2582	17.7699	418.0863	14868.476	24.6644	5.3645	11.921
							7			
L24	35.4513	48.6432	7330.1439	12.2604	17.7699	412.5035	14669.933	24.3262	5.3755	12.114
							0			
	36.4505	50.0292	7974.7421	12.6097	18.2698	436.4988	15959.977	25.0193	5.5487	12.504
							6			
L25	36.4505	50.0292	7974.7421	12.6097	18,2698	436.4988	15959.977	25.0193	5.5487	12,504
							6			
	36.5031	50.1021	8009.6767	12.6281	18.2961	437.7805	16029.892	25.0558	5.5578	12.525
							8			
L26	36.5041	49.4051	7901.0275	12.6304	18,2961	431.8421	15812.451	24.7073	5.5688	12.729
							4			
- T- jau	37.5033	50.7716	8574.9201	12,9797	18.7960	456,2098	17161.123	25.3906	5.7420	13.125
	1_						2			

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Factor Aı	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft²	In				in	in	in
L1 110.00-			1	1	1			
105.00								
L2 105.00-			1	1	1			
100.00								
L3 100.00-			1	1	1			
96.00								
L4 96.00-			1	1	1			
91.00								
L5 91.00-			1	1	1			
86.00								
L6 86.00-	•		1	1	1			
81.00								

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset GradeAdjust, Factor Aı	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Stitch Bolt Spacing
ft	ft²	in				İn	in	In
L7 81.00-			1	1	1			
76.00								
L8 76.00~			1	1	1			
71.00								
L9 71.00-			1	1	1			
66.00								
L10 66,00-			1	1	1			
61.00								
L11 61.00-			1	1	1			
56.00								
L12 56,00-			1	1	1			
51.00								
L13 51.00-			1	1	1			
46.00								
L14 46.00-			1	1	1			
45.00								
L15 45.00-			1	1	1			
40.00								-
L16 40.00-			1	1	1			
35.00								
L17 35.00-			1	1	1			
30.00								
L18 30.00-			1	1	1			
25.00								
L19 25.00-			1	1	1			
20.00								
L20 20.00-			1	1	1.16272			
19.75				à				
L21 19.75-			1	1	1.1549			
14.75					4.4.50			
L22 14.75-			1	1	1.1479			
10.00				4				
L23 10.00-			1	1	0.970337			
9.75			4	4	0.07000			
L24 9.75-5.00			1	1	0.97608			
L25 5.00-4.75			1	7	0.975684			
L26 4.75-0.00			7	7	0.982043			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From	Componen t	Placement	Total Number	Number Per Row	Start/En d	Width or Diamete	Perimete r	Weight
5 J. 7	-	Torque	Type	fŧ			Position	Γ		klf
	÷.	Calculation						in	in	
**										
LDF7-50A(1-5/8)	С	No	Surface Ar	100.00 -	12	6	0.000	1.9800		0.001
			(CaAa)	20.00			0.000			
MLCH HYBRID	С	No	Surface Ar	90.00 -	2	2	0.000	1.4300		0.002
6X12(1-3/8) **			(CaAa)	20.00			0.000			
CU12PSM9P8XXX 8A	С	No	Surface Ar	80.00 -	1	1	0.000	1.5000		0.002
wg —			(CaAa)	3.00	-	·	0.000	,,,,,,,		0.002
Safety Line 3/8	С	No	Surface Ar	110.00 -	1	1	0.000	0.3750		0.002
			(CaAa)	6.50	•	•	0.000	0,0,00		0.002
Step Bolts	С	No	Surface Ar	110.00 -	2	2	0.000	0.3750		0.002
			(CaAa)	6.50		-	0.000			0.002
***			,				*****			
Reinforcement	Α	No	Surface Af	72.00 -	1	1	0.000	4.5000	10.0000	0.008
PL1/2x4.5			(CaAa)	47.00		-	0.000			
Reinforcement	В	No	Surface Af	72.00 -	1	1	0.000	4.5000	10.0000	0.008
PL1/2x4.5			(CaAa)	47.00	•	•	0.000			
Reinforcement	C	No	Surface Af	72.00 -	1	1	0.000	4.5000	10.0000	0.008

Description	Sector	Exclude	Componen	Placement	Total	Number	Start/En		Perimete	Weight
		From	t		Number	Per Row	ď	Diamete	r	
		Torque	Туре	ft			Position	r		klf
		Calculation						in	in	
PL1/2x4.5			(CaAa)	47.00			0.000			
Reinforcement	Α	No	Surface Af	47.00 -	1	1	0.000	4.5000	10.0000	0.008
PL1/2x4.5			(CaAa)	21.00			0.000			
ReInforcement	₿	No	Surface Af	47.00 -	1	1	0.000	4.5000	10.0000	0.008
PL1/2x4.5			(CaAa)	21.00			0,000			
ReInforcement	С	No	Surface Af	47.00 ~	1	1	0.000	4.5000	10.0000	0.008
PL1/2x4.5			(CaAa)	21.00			0.000			
Reinforcement C6	Α	No	Surface Af	21,00 -	1	1	0.000	6.0000	26.0000	0.000
			(CaAa)	0.50			0.000		_	
Reinforcement C6	В	No	Surface Af	21.00 -	1	1	0.000	6.0000	26.0000	0.000
			(CaAa)	0.50			0.000			
Reinforcement C6	С	No	Surface Af	21.00 -	1	1	0.000	6.0000	26.0000	0.000
			(CaAa)	0.50		•	0.000			2.300
**			\ · · · · · · /				2.700			

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation	Type	ft			ft²/ft	kif
.DF12-50A(2-1/4) **	С	No	No	Inside Pole	100.00 - 20.00	3	No Ice 1/2" Ice 1" Ice	0.00 0.00 0.00	0.001 0.001 0.001
LDF7-50A(1-5/8)	С	No	No	Inside Pole	90.00 - 20.00	6	No Ice 1/2" Ice 1" Ice	0.00 0.00 0.00	0.001 0.001 0.001

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	AF	C_AA_A	C_AA_A	Weight
Section	Elevation				In Face	Out Face	
n	ft		ft ²	ft²	ft ²	ft ²	K
L1	110.00-105.00	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	С	0.000	0.000	0.563	0.000	0,031
. L2	105.00-100.00	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
	5.00	С	0.000	0.000	0.563	0.000	0.031
L3	100.00-96.00	Α	0.000	0.000	0.000	0.000	0.000
	7 to 1	В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	5.202	0.000	0.079
L4	96.00-91.00`	Α	0.000	0.000	0.000	0.000	0.000
	G.C.	В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	6.503	0.000	0.099
L5	91.00-86.00	Α	0.000	0.000	0.000	0.000	0.000
	** P* **	В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	7.646	0.000	0.132
L6	86.00-81.00	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	7.933	0.000	0.140
L7	81.00-76.00	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		C	0.000	0.000	8.533	0.000	0.147
L8	76.00-71.00	Α	0.000	0.000	0.750	0.000	0.008
		В	0.000	0.000	0.750	0.000	0.008
	•	С	0.000	0.000	9.432	0.000	0.156
L9	71.00-66.00	Α	0.000	0.000	3.750	0.000	0.038

tnxTower Report - version 8.1.1.0

Tower Sectio	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft		ft²	ft²	ft²	ft²	κ
		В	0,000	0.000	3.750	0.000	0.038
		Č	0.000	0.000	12.432	0.000	0.187
L10 66.0	66.00-61.00	Ă	0.000	0.000	3.750	0.000	0.107
	00.00 01.00	В	0.000	0.000	3.750	0.000	0.038
		Č	0.000	0.000	12,432	0.000	0.187
L11	61.00-56.00	Ä	0.000	0.000	3.750	0.000	0.038
2	01.00 00.00	В	0.000	0.000	3.750	0.000	0.038
		č	0.000	0.000	12.432	0.000	0.187
L12	56,00-51,00	Ă	0.000	0.000	3.750	0.000	0.038
	00.00 0 1.00	В	0.000	0.000	3.750	0.000	0.038
		Č	0.000	0.000	12,432	0.000	0.187
L13	51.00-46.00	Ă	0.000	0.000	3.750	0.000	0.038
_,,	01100 10100	A B	0.000	0.000	3.750	0.000	0.038
		ć	0.000	0.000	12.432	0.000	0.187
L14	46.00-45.00	Ă	0.000	0.000	0.750	0.000	0.008
	10100 10100	В	0.000	0.000	0.750	0.000	0.008
		č	0.000	0.000	2.486	0.000	0.037
L15	45,00-40,00	Ă	0.000	0.000	3.750	0.000	0.038
	70100 10100	В	0.000	0.000	3.750	0.000	0.038
		Č	0.000	0.000	12.432	0.000	0.187
L16	40.00-35.00	Ă	0.000	0.000	3.750	0.000	0.038
2,0	10100 00100	В	0.000	0.000	3.750	0.000	0.038
		ć	0.000	0.000	12.432	0.000	0.187
L17	35.00-30.00	Ā	0.000	0.000	3.750	0.000	0.038
		A B	0.000	0.000	3.750	0.000	0.038
		ċ	0.000	0.000	12.432	0.000	0.187
L18	30.00-25.00	Ā	0.000	0.000	3.750	0.000	0.038
		В	0.000	0.000	3.750	0.000	0.038
		Ċ	0.000	0.000	12,432	0.000	0.187
L19	25.00-20.00	A B C A B	0.000	0.000	4.000	0.000	0.031
		В	0.000	0.000	4.000	0.000	0.031
		С	0.000	0.000	12.682	0.000	0.179
L20	20.00-19.75	Ā	0.000	0.000	0.250	0.000	0.000
-		В	0.000	0.000	0.250	0.000	0.000
		С	0.000	0.000	0.316	0.000	0.002
L21	19.75-14.75	Α	0.000	0.000	5.000	0.000	0.000
		В	0.000	0.000	5.000	0.000	0.000
		С	0.000	0.000	6.313	0.000	0.039
L22	14.75-10.00	Α	0.000	0.000	4.750	0.000	0.000
		В	0.000	0.000	4.750	0.000	0.000
		С	0.000	0.000	5.997	0.000	0.037
L23	10.00-9.75	Α	0.000	0.000	0.250	0.000	0.000
		В	0.000	0.000	0.250	0.000	0.000
		С	0.000	0.000	0.316	0.000	0.002
L24	9.75-5.00	Α	0.000	0.000	4.750	0.000	0.000
		В	0.000	0.000	4.750	0.000	0.000
		С	0.000	0.000	5.828	0.000	0.028
L25	5,00-4.75	Α	0.000	0.000	0.250	0.000	0.000
	161. 644	В	0.000	0.000	0.250	0.000	0.000
	****	С	0.000	0.000	0.287	0.000	0.000
L26	4.75-0.00	Α	0.000	0.000	4.250	0.000	0.000
		В	0.000	0.000	4.250	0.000	0.000
		С	0.000	0.000	4.513	0.000	0.003

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Sectio	Tower Elevation	Face or	lce Thickness	A _R	A_{F}	C₄A₄ In Face	C _A A _A Out Face	Weight
n	ft	Leg	In	ft²	ft ²	ft²	ft²	K
L1	110.00-105.00	Α	2.251	0.000	0.000	0.000	0.000	0.000
	В		0.000	0.000	0.000	0.000	0.000	
		С		0.000	0.000	5,720	0.000	0.107
L2	105.00-100.00	Α	2.240	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	5.696	0.000	0.106
L3	100.00-96.00	Α	2.230	0.000	0.000	0.000	0.000	0.000

Tower	Tower	Face	lce Thickness	A_R	A_F	$C_A A_A$	C _A A _A	Weight
Sectio n	Elevation ft	or Leg	Thickness in	ft²	ft²	In Face ft²	Out Face ft²	κ
- 11		B B	111	0.000	0.000	0.000	0.000	0.000
		Č		0.000	0.000	12.709	0.000	0.331
L4	96.00-91.00	Ă	2.219	0.000	0.000	0.000	0.000	0.000
	55,55 555	В	_,_,	0.000	0.000	0.000	0.000	0.000
		Ċ		0.000	0.000	15.849	0.000	0.412
L5	91.00-86.00	Ā	2.207	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	19.444	0.000	0,494
L6	86.00-81.00	Α	2.195	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		C		0.000	0.000	20.293	0.000	0.512
L7	81.00-76.00	Α	2.181	0.000	0.000	0,000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	22.573	0.000	0.555
L8	76.00-71.00	Α	2.167	0.000	0.000	1.183	0.000	0.023
		В		0.000	0.000	1.183	0.000	0.023
		Ç		0.000	0.000	24.261	0.000	0.586
L9	71.00-66.00	A	2,151	0.000	0.000	5.901	0.000	0.114
		В		0.000	0.000	5.901	0.000	0.114
1.40	00.00.01.00	Ç	0.405	0.000	0.000	28.891	0.000	0.674
L10	66.00-61.00	A	2.135	0.000	0.000	5.885	0.000	0.113
		В		0.000	0.000	5.885	0.000	0.113
1.4.4	04.00.50.00	Ç	0.440	0.000	0.000	28.782	0.000	0.670
L11	61.00-56.00	. A	2.118	0.000	0.000	5.868	0.000	0.112
		B C		0.000 0.000	0.000	5.868 28.664	0.000	0.112
L12	56.00-51.00	Ä	2.099	0.000	0.000 0.000	5.849	0.000 0.000	0.665 0.112
LIZ	30.00-31.00	B	2.099	0.000	0.000	5.849	0.000	0.112
		Č		0.000	0.000	28.537	0.000	0.112
L13	51.00-46.00	Ā	2.078	0.000	0.000	5.828	0.000	0.000
_13	01.00-40.00	B	2.070	0.000	0.000	5.828	0.000	0.110
		č		0.000	0.000	28.398	0.000	0.654
L14	46.00-45.00	Ă	2.065	0.000	0.000	1.166	0.000	0.022
	10.00 10.00	B	2,000	0.000	0.000	1.166	0.000	0.022
		Ċ		0.000	0.000	5.680	0.000	0.131
L15	45.00-40.00	Ă	2.051	0.000	0.000	5.801	0.000	0.109
	,	В		0.000	0.000	5.801	0.000	0.109
		С		0.000	0.000	28,214	0.000	0.647
L16	40.00-35.00	Α	2.026	0.000	0.000	5.776	0.000	0.108
		В		0.000	0.000	5.776	0.000	0.108
		С		0.000	0.000	28.042	0.000	0.640
L17	35.00-30.00	Α	1.997	0.000	0.000	5.747	0.000	0.106
		В		0.000	0.000	5.747	0.000	0.106
		С		0.000	0.000	27.848	0.000	0.632
L18	30.00-25.00	Α	1.964	0.000	0.000	5.714	0.000	0.105
		В		0.000	0.000	5.714	0.000	0.105
		Ç		0.000	0.000	27.624	0.000	0.623
L19	25.00-20.00	A	1.925	0.000	0.000	5.818	0.000	0.107
		В		0.000	0.000	5.818	0.000	0.107
		Ç		0.000	0.000	27.504	0.000	0.617
L20	20.00-19.75	A	1.901	0.000	0.000	0.319	0.000	0.006
		В		0.000	0.000	0.319	0.000	0.006
101	40.75.44.75	Ç	4 074	0.000	0.000	0.698	0.000	0.013
L21	19.75-14.75	A	1.874	0.000	0.000	6.359	0.000	0.121
	* * *	В	•	0.000	0.000	6.359	0.000	0.121
1.00	44 75 40 00	. Č	4.040	0.000	0.000	13.856	0.000	0.253
L22	14.75-10.00	A	1.813	0.000	0.000	6.006	0.000	0.110
		В		0.000	0.000	6.006	0.000	0.110
1.00	10.00.075	C	4 770	0.000	0.000	12.939	0.000	0.231
L23	10.00-9.75	A	1.773	0.000	0.000	0.315	0.000	0.006
		В		0.000	0.000	0.315	0.000	0.006
104	0.75 5.00	C	4 704	0.000	0.000	0.673	0.000	0.012
L24	9.75-5.00	A	1.721	0.000	0.000	5.953	0.000	0.103
		В		0.000	0.000	5.953	0.000	0.103
125	5 00 1 7E	C	1 650	0.000	0.000	11,245	0.000	0.194
L25	5.00-4.75	A B	1.652	0.000 0.000	0.000 0.000	0.311	0.000	0.005
		C		0.000	0.000	0.311	0.000	0.005
L26	4.75-0.00	Ā	1.537	0.000	0.000	0.431 5.230	0.000	0.007 0.081

Tower	Tower	Face	Ice	A_R	Ae	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	-
n	ft	Leg	in	ft²	ft ²	ft²	ft²	K
		В		0.000	0,000	5.230	0.000	0.081
		С		0.000	0.000	6.030	0.000	0.094

Feed Line Center of Pressure

Section	Elevation	CP_X	CPz	CP_X	CPz
				Ice	Ice
	ft	in	in	in	iņ
L1	110.00-105.00	0.0000	0.9858	0.0000	2.5203
L2	105.00-100.00	0.0000	0.9880	0.0000	2.6042
L3	100.00-96.00	0.0000	6.5761	0,0000	5.0244
L4	96.00-91.00	0.0000	6.6932	0.0000	5.1726
L5	91.00-86.00	0.0000	7.1286	0.0000	5.3926
L6	86.00-81.00	0.0000	7.3467	0.0000	5.5785
L7	81.00-76.00	0.0000	7.6579	0.0000	6.0399
L8	76.00-71.00	0.0000	6.8143	0.0000	5.8491
L9	71.00-66.00	0.0000	4.5824	0.0000	4.7119
L10	66.00-61.00	0.0000	4.7037	0.0000	4.8546
L11	61.00-56.00	0.0000	4.8225	0.0000	4.994
L12	56,00-51.00	0.0000	4.9387	0.0000	5.130
L13	51.00-46.00	0.0000	5.0525	0.0000	5.2637
L14	46.00-45.00	0.0000	5.0657	0.0000	5.280
L15	45.00-40.00	0.0000	5.1319	0.0000	5.3533
L16	40.00-35.00	0.0000	5.2404	0.0000	5.478
L17	35.00-30.00	0.0000	5.3468	0.0000	5.5999
L18	30.00-25.00	0.0000	5.4510	0.0000	5.7170
L19	25.00-20.00	0.0000	5.4123	0.0000	5.7916
L20	20.00-19.75	0.0000	0.6831	0.0000	2.7163
L21	19.75-14.75	0.0000	0.6881	0.0000	2.723
L22	14.75-10.00	0.0000	0.6973	0.0000	2.7240
L23	10.00-9.75	0.0000	0.7021	0.0000	2.7160
L24	9.75-5.00	0.0000	0.6135	0.0000	2.2439
L25	5.00-4.75	0.0000	0.4136	0.0000	1.099
L26	4.75-0,00	0.0000	0.1992	0.0000	0.4246

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K _a	- K _a
Section	Record No.		Segment	No Ice	Ice
*			Elev.		-
L1	13	Safety Line 3/8	105.00 -	1.0000	1.0000
		_ +	110.00		
L1	14	Step Bolts	105.00 -	1.0000	1.0000
	!		110.00		
L2	13	Safety Line 3/8	100.00 -	1.0000	1.0000
		_,	105.00		
L2	14	Step Bolts	100.00 -	1.0000	1.0000
	_	(5 5 - 4 4 4 - 45)	105.00		
L3	2	LDF7-50A(1-5/8)	96.00 -	1.0000	1.0000
	40	0-1-1-1010	100.00	4 0000	
L3	13	Safety Line 3/8	96.00 -	1.0000	1.0000
	4.4	Chair Balla	100.00	4 0000	4 0000
L3	14	Step Bolts	96.00 -	1.0000	1.0000
	ا	LDE7 504/4 5/0)	100.00	4.0000	4 0000
L4	2	LDF7-50A(1-5/8)	91.00 -	1.0000	1.0000
			96.00		

Tower	Feed Line	Description	Feed Line	K _e	Ka
Section	Record No.	·	Segment Elev.	No Îce	Ice
L4	13	Safety Line 3/8	91.00 - 96.00	1.0000	1.0000
L4	14	Step Bolts	91.00 - 96.00	1.0000	1.0000
L5	2	LDF7-50A(1-5/8)	86.00 - 91.00	1.0000	1.0000
L5	9	MLCH HYBRID 6X12(1- 3/8)	86.00 - 90.00	1.0000	1.0000
L5	13	Safety Line 3/8	86.00 - 91.00	1.0000	1.0000
L5	14	Step Bolts	86.00 - 91.00	1.0000	1.0000
L6	2	LDF7-50A(1-5/8)	81.00 - 86.00	1.0000	1.0000
L6	9	MLCH HYBRID 6X12(1- 3/8)	81.00 - 86.00	1.0000	1.0000
L6	13	Safety Line 3/8	81.00 - 86.00	1.0000	1.0000
L6	14	Step Bolts	81.00 - 86.00	1.0000	1.0000
L7	2	LDF7-50A(1-5/8)	76.00 - 81.00	1.0000	1.0000
L7	9	MLCH HYBRID 6X12(1- 3/8)	76.00 - 81.00	1.0000	1.0000
. L7	. 11	CU12PSM9P8XXX_8AWG	76.00 - 80.00	1.0000	1.0000
L7	13	Safety Line 3/8	76.00 - 81.00	1.0000	1.0000
L7	14	Step Bolts	76.00 - 81.00	1.0000	1.0000
L8	2	LDF7-50A(1-5/8)	71.00 - 76.00	1.0000	1.0000
L8	9	MLCH HYBRID 6X12(1- 3/8)	71.00 - 76.00	1.0000	1.0000
L8	11	CU12PSM9P8XXX_8AWG	71.00 - 76.00	1.0000	1.0000
L8	13	Safety Line 3/8	71.00 - 76.00	1.0000	1.0000
L8	14	Step Bolts	71.00 - 76.00	1.0000	1.0000
L8	16	Reinforcement PL1/2x4.5	71.00 - 72.00	1.0000	1.0000
L8	17	Reinforcement PL1/2x4.5	71.00 - 72.00	1.0000	1.0000
L8	18	Reinforcement PL1/2x4.5	71.00 - 72.00	1.0000	1.0000
. L9	2	LDF7-50A(1-5/8)	66.00 - 71.00	1.0000	1.0000
L9	: ::: 9	3/8)	66.00 - 71.00	1.0000	1.0000
L9	· 11	CU12PSM9P8XXX_8AWG	66.00 - 71.00	1.0000	1.0000
L9	· 13	Safety Line 3/8	66.00 - 71.00	1.0000	1.0000
.L9	14	Step Bolts		1.0000	1.0000
L9	16	Reinforcement PL1/2x4.5	66.00 - 71.00	1.0000	1.0000
' L9	_: 17	Reinforcement PL1/2x4.5	66.00 - 71.00	1.0000	1.0000
L9	18	Reinforcement PL1/2x4.5	66.00 - 71.00	1.0000	1.0000
L10	2	LDF7-50A(1-5/8)	61.00 - 66.00	1.0000	1.0000
L10	9	MLCH HYBRID 6X12(1- 3/8)	61.00 - 66.00	1.0000	1.0000
L10	. 11	CU12PSM9P8XXX_8AWG	61.00 - 66.00	1.0000	1.0000
L10	13	Safety Line 3/8		1.0000	1.0000

Tower	Feed Line	Description	Feed Line	K _a	K _e
Section	Record No.	Description	Segment	No Ice	lce
			Elev.		
L10	14	Step Bolts	66.00 61,00 - 66.00	1.0000	1.0000
L10	16	Reinforcement PL1/2x4.5	61.00 - 66.00	1.0000	1.0000
L10	17	Reinforcement PL1/2x4.5	61.00 - 66.00	1.0000	1.0000
L10	18	Reinforcement PL1/2x4.5	61.00 - 66.00	1.0000	1.0000
L11	2	LDF7-50A(1-5/8)	56.00 - 61.00	1.0000	1.0000
L11	9	MLCH HYBRID 6X12(1- 3/8)	56.00 - 61.00	1.0000	1.0000
L11	11	CU12PSM9P8XXX_8AWG	56,00 -	1.0000	1.0000
L11	13	Safety Line 3/8	61.00 56.00 - 61.00	1.0000	1.0000
L11	14	Step Bolts	56.00 - 61.00	1.0000	1.0000
L11	16	Reinforcement PL1/2x4.5	56.00 - 61,00	1.0000	1.0000
L11	17	Reinforcement PL1/2x4.5	56.00 - 61.00	1.0000	1.0000
L11	18	Reinforcement PL1/2x4.5	56.00 - 61.00	1.0000	1.0000
L12	2	LDF7-50A(1-5/8)	51.00 - 56.00	1.0000	1.0000
L12	9	MLCH HYBRID 6X12(1- 3/8)	51.00 - 56.00	1.0000	1.0000
L12	11	CU12PSM9P8XXX_8AWG	51.00 - 56.00	1.0000	1.0000
L12	13	Safety Line 3/8	51.00 - 56.00	1.0000	1.0000
L12	14	Step Bolts	51.00 - 56.00	1.0000	1.0000
L12	. 16	Reinforcement PL1/2x4.5	51.00 - 56.00	1.0000	1.0000
L12	17	Reinforcement PL1/2x4.5	51.00 - 56.00	1.0000	1.0000
L12	18	Reinforcement PL1/2x4.5	51.00 - 56.00	1.0000	1.0000
L13	2	LDF7-50A(1-5/8)	46.00 - 51.00	1.0000	1.0000
L13	9	MLCH HYBRID 6X12(1- 3/8)	46.00 - 51.00	1.0000	1.0000
L13		CU12PSM9P8XXX_8AWG	46.00 <i>-</i> 51.00	1.0000	1.0000
1001 L 13	13	Safety Line 3/8	46.00 - 51.00	1.0000	1.0000
L13		'	46.00 - 51.00	1.0000	1.0000
L13		· :	47.00 - 51.00	1.0000	1.0000
L13	17	Reinforcement PL1/2x4.5	47.00 - 51.00	1.0000	1.0000
L13			47.00 - 51.00	1.0000	1.0000
L13			46.00 - 47.00	1.0000	1.0000
L13	20	Reinforcement PL1/2x4.5	46.00 - 47.00	1.0000	1.0000
L13		Reinforcement PL1/2x4.5	46.00 - 47.00	1.0000	1.0000
L14	2	LDF7-50A(1-5/8)	45.00 - 46.00	1.0000	1.0000
L14	9	3/8)	45.00 - 46.00	1.0000	1.0000
L14	11	CU12PSM9P8XXX_8AWG	45.00 - 46.00	1,0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment	K₃ No Ice	K _a Ice
L14	13	Safety Line 3/8	<i>Elev.</i> 45.00 -	1.0000	1.0000
L14	14	Step Bolts	46.00 45.00 -	1.0000	1.0000
L14	19	Reinforcement PL1/2x4.5	46.00 45.00 -	1.0000	1.0000
L14	20	Reinforcement PL1/2x4.5	46.00 45.00 - 46.00	1.0000	1.0000
L14	21	Reinforcement PL1/2x4.5	45.00 - 45.00 - 46.00	1.0000	1.0000
L15	2	LDF7-50A(1-5/8)	40.00 - 45.00 45.00	1.0000	1.0000
L15	9	MLCH HYBRID 6X12(1- 3/8)	40.00 - 45.00	1.0000	1.0000
L15	11	CU12PSM9P8XXX_8AWG	40.00 - 45.00	1.0000	1.0000
L 15	13	Safety Line 3/8	40.00 - 45.00	1.0000	1.0000
L15	14	Step Bolts	40.00 - 45.00	1.0000	1.0000
L15	19	Reinforcement PL1/2x4.5	40.00 - 45.00	1.0000	1.0000
L15	20	Reinforcement PL1/2x4.5	40.00 - 45.00	1.0000	1.0000
L15	21	Reinforcement PL1/2x4.5	40.00 - 45.00	1.0000	1.0000
L16	2			1.0000	1.0000
L16	9	MLCH HYBRID 6X12(1- 3/8)	35.00 - 40.00	1.0000	1.0000
L16	11		35.00 - 40.00	1.0000	1.0000
L16	13	Safety Line 3/8	35.00 - 40.00	1.0000	1.0000
L16	14	Step Bolts	35.00 - 40.00	1.0000	1.0000
L16	19	Reinforcement PL1/2x4.5	35.00 - 40.00	1.0000	1.0000
L16	20	Reinforcement PL1/2x4.5	35.00 - 40.00	1.0000	1.0000
L16	21	Reinforcement PL1/2x4.5	35.00 - 40.00	1.0000	1,0000
L17	2	LDF7-50A(1-5/8)	30.00 - 35.00	1.0000	1.0000
L17	9	MLCH HYBRID 6X12(1- 3/8)	30.00 - 35.00	1.0000	1.0000
L17	11		30.00 - 35.00	1.0000	1.0000
[L17	13	Safety Line 3/8	30.00 - 35.00	1.0000	1.0000
L17	14	Step Bolts	30.00 - 35.00	1.0000	1.0000
L17	19	Reinforcement PL1/2x4.5	30.00 - 35.00	1.0000	1.0000
" L17	20	Reinforcement PL1/2x4.5	30.00 - 35.00	1.0000	1.0000
L17	21	Reinforcement PL1/2x4,5	30.00 <i>-</i> 35.00	1.0000	1.0000
L18	3 2	LDF7-50A(1-5/8)	25.00 - 30.00	1.0000	1.0000
L18		MLCH HYBRID 6X12(1- 3/8)	25.00 - 30.00	1,0000	1.0000
L18	11		25.00 - 30.00	1.0000	1.0000
L18	13	Safety Line 3/8	25.00 - 30.00	1.0000	1.0000
L18	14	Step Bolts	25.00 - 30.00	1.0000	1.0000
L18	19	Reinforcement PL1/2x4.5		1.0000	1.0000

Section Record No. Segment No ice Ice	Tower	Feed Line	Description	Feed Line	Ka	Ka
L18			Dooription			
L18						
L18	L18	20	Reinforcement PL1/2x4.5		1.0000	1.0000
L19				30.00		
L19	L18	21	Reinforcement PL1/2x4.5		1.0000	1.0000
L19	L19	2	LDF7-50A(1-5/8)	20.00 -	1.0000	1.0000
L19	1.19	9	MI CH HYBRID 6X12(1-		1.0000	1.0000
L19			3/8)	25.00		ĺ
L19	L19	11	CU12PSM9P8XXX_8AWG	i i	1.0000	1.0000
L19	L19	13	Safety Line 3/8	20.00 -	1.0000	1.0000
L19	L19	14	Step Bolts		1.0000	1.0000
L19	1.10	10	Painforcement DI 1/2v4 5		1 0000	1 0000
L19						1.0000
L19	L19	20	Reinforcement PL1/2x4.5		1.0000	1.0000
L19 22 Reinforcement C6 20.00 - 21.00 1.0000 1.000 L19 23 Reinforcement C6 20.00 - 21.00 1.0000 1.000 L19 24 Reinforcement C6 20.00 - 21.00 1.0000 1.000 L20 11 CU12PSM9P8XXX_8AWG 19.75 - 20.00 1.0000 1.000 L20 13 Safety Line 3/8 19.75 - 20.00 1.0000 1.000 L20 14 Step Bolts 19.75 - 20.00 1.0000 1.000 L20 22 Reinforcement C6 19.75 - 20.00 1.0000 1.000 L20 23 Reinforcement C6 19.75 - 1.0000 1.000 L20 24 Reinforcement C6 19.75 - 1.0000 1.000 L21 11 CU12PSM9P8XXX_8AWG 14.75 - 1.0000 1.000 L21 13 Safety Line 3/8 14.75 - 1.0000 1.000 L21 14 Step Bolts 14.75 - 1.0000 1.000 L21 14 Step Bolts 14.75 - 1.0000 1.000 L21 23 Reinforcement C6 14.75 -	L19	21	Reinforcement PL1/2x4.5	21.00 -	1.0000	1.0000
L19	L19	22	Reinforcement C6		1.0000	1.0000
L19				21.00		1
L19	L19	23	Reinforcement C6		1.0000	1.0000
L20 11 CU12PSM9P8XXX_8AWG 19.75 - 20.00 1.0000 1.000 L20 13 Safety Line 3/8 19.75 - 20.00 1.0000 1.000 L20 14 Step Bolts 19.75 - 20.00 1.0000 1.000 L20 22 Reinforcement C6 19.75 - 1.0000 1.000 L20 23 Reinforcement C6 19.75 - 1.0000 1.000 L20 24 Reinforcement C6 19.75 - 1.0000 1.000 L21 11 CU12PSM9P8XXX_8AWG 14.75 - 1.0000 1.000 L21 13 Safety Line 3/8 14.75 - 1.0000 1.000 L21 14 Step Bolts 14.75 - 1.0000 1.000 L21 22 Reinforcement C6 14.75 - 1.0000 1.00 L21 23 Reinforcement C6 14.75 - 1.0000 1.00 L21 23 Reinforcement C6 14.75 - 1.0000 1.00 L21 23 Reinforcement C6 14.75 - 1.0000 1.00 L21 24 Reinforcement C6 14.75 - 1.0000 1.00	L19	24	Reinforcement C6	20.00 -	1.0000	1.0000
L20	L20	11	CU12PSM9P8XXX 8AWG		1.0000	1.0000
L20	1.00	42	_		4.0000	
L20	L20	13	Salety Line 3/6		1.0000	1,0000
L20 22 Reinforcement C6 19.75 - 20.00 1.000 1.000 L20 23 Reinforcement C6 19.75 - 20.00 1.0000 1.000 L20 24 Reinforcement C6 19.75 - 1.0000 1.000 L21 11 CU12PSM9P8XXX_8AWG 14.75 - 1.0000 1.000 L21 13 Safety Line 3/8 14.75 - 1.0000 1.000 L21 14 Step Bolts 14.75 - 1.0000 1.000 L21 22 Reinforcement C6 14.75 - 1.0000 1.00 L21 23 Reinforcement C6 14.75 - 1.0000 1.00 L21 23 Reinforcement C6 14.75 - 1.0000 1.00 L21 24 Reinforcement C6 14.75 - 1.0000 1.00	L20	14	Step Bolts		1.0000	1.0000
L20 23 Reinforcement C6 19.75 - 20.00 1.000 1.000 L20 24 Reinforcement C6 19.75 - 20.00 1.0000 1.000 L21 11 CU12PSM9P8XXX_8AWG 14.75 - 1.0000 1.000 L21 13 Safety Line 3/8 14.75 - 1.0000 1.000 L21 14 Step Bolts 14.75 - 1.0000 1.000 L21 22 Reinforcement C6 14.75 - 1.0000 1.00 L21 23 Reinforcement C6 14.75 - 1.0000 1.00 L21 23 Reinforcement C6 14.75 - 1.0000 1.00 L21 24 Reinforcement C6 14.75 - 1.0000 1.00 L21 24 Reinforcement C6 14.75 - 1.0000 1.00	L20	22	Reinforcement C6	19.75 -	1.0000	1.0000
L20	120	23	Reinforcement C6		1 0000	1.0000
L21 11 CU12PSM9P8XXX_8AWG 14.75 - 1.0000 1.000 19.75 L21 13 Safety Line 3/8 14.75 - 1.0000 1.000 19.75 L21 14 Step Bolts 14.75 - 1.0000 1.000 19.75 L21 22 Reinforcement C6 14.75 - 1.0000 1.000 19.75 L21 23 Reinforcement C6 14.75 - 1.0000 1.000 19.75 L21 24 Reinforcement C6 14.75 - 1.0000 1.000 19.75 L21 27 28 Reinforcement C6 14.75 - 1.0000 1.000 19.75 L21 29 Reinforcement C6 14.75 - 1.0000 1.000 19.75				20.00		Į.
L21 11 CU12PSM9P8XXX_8AWG 14.75 - 1.0000 1.000 19.75 19.75 1.0000 1.000 19.75 1.0000 1.000 1.000 19.75 1.0000 1.000 19.75 1.0000 1.000 19.75 1.0000 1.000 19.75 1.0000 1.000 19.75 1.0000 1.000 19.75 1.0000 1.000 19.75 1.0000 1.000 19.75 1.0000 1.000 19.75 1.0000 1.000 19.75 1.0000 1.000 19.75 1.0000 1.000 19.75 1.0000 1.000 19.75 1.0000 1.00	L20	24	Reinforcement C6		1.0000	1.0000
L21 13 Safety Line 3/8 14.75 - 1.0000 1.00 L21 14 Step Bolts 14.75 - 1.0000 1.00 L21 22 Reinforcement C6 14.75 - 1.0000 1.00 L21 23 Reinforcement C6 14.75 - 1.0000 1.00 L21 24 Reinforcement C6 14.75 - 1.0000 1.00 L21 24 Reinforcement C6 14.75 - 1.0000 1.00 19.75	L21	11	CU12PSM9P8XXX_8AWG	14.75 -	1.0000	1.0000
L21 14 Step Bolts 19.75 14.75 - 1.0000 1.00 19.75 14.75 - 1.0000 1.00 19.75 14.75 - 1.0000 1.00 19.75 19.75 14.75 - 1.0000 1.00 19.75 14.75 - 1.0000 1.00 19.75 14.75 - 1.0000 1.00 19.75 14.75 - 1.0000 1.00 19.75 19.75 19.75	L21	13	Safety Line 3/8		1.0000	1.0000
L21 22 Reinforcement C6 14.75 - 1.0000 1.00 19.75 L21 23 Reinforcement C6 14.75 - 1.0000 1.00 19.75 L21 24 Reinforcement C6 14.75 - 1.0000 1.00 19.75 L21 24 Reinforcement C6 14.75 - 1.0000 1.00 19.75			·		1.0000	
L21 23 ReInforcement C6 14.75 - 1.0000 1.00 19.75 19.75 19.75 19.75 19.75 19.75 19.75 19.75 19.75	LZI		ŕ		1.0000	1.0000
L21 23 ReInforcement C6 14.75 - 1.0000 1.00 19.75 L21 24 Reinforcement C6 14.75 - 1.0000 1.00 19.75	L21	22	Reinforcement C6		1.0000	1.0000
L21 24 Reinforcement C6 14.75 - 1.0000 1.00	L21	". 23	ReInforcement C6		1.0000	1.0000
19.75		24	Reinforcement C6		1 0000	1.0000
L22 11 CU12PSM9P8XXX 8AWG 10.00 - 1 1.0000 1 1.00				19.75		
14.75	L22	11	CU12PSM9P8XXX_8AWG		1.0000	1.0000
L22 13 Safety Line 3/8 10.00 - 1,0000 1.00	L22	. 13	Safety Line 3/8	10.00 -	1.0000	1.0000
L22 14 Step Bolts 10.00 - 1.0000 1.00	L22	14	Step Bolts		1.0000	1.0000
14.75				14.75		
L22 22 Reinforcement C6 10.00 - 1.0000 1.00	L22	22	Reinforcement C6		1.0000	1.0000
L22 23 Reinforcement C6 10.00 - 1.0000 1.00	L22	23	Reinforcement C6	10.00 -	1.0000	1.0000
L22 24 Reinforcement C6 10.00 - 1.0000 1.00	L22	24	Reinforcement C6		1.0000	1.0000
14.75				14.75		
L23 13 Safety Line 3/8 9.75 - 10.00 1.000 1.00	L23	13	Safety Line 3/8			1.0000 1.0000
L23 14 Step Bolts 9.75 - 10.00 1.0000 1.00					1.0000	1.0000
						1.0000 1.0000
	L23					

Tower	Feed Line	Description	Feed Line	Ka	K _a
Section	Record No.		Segment	No Ice	Ice
			Elev.		
L24	11	CU12PSM9P8XXX_8AWG	5.00 - 9.75	1.0000	1.0000
L24	13	Safety Line 3/8	6.50 - 9.75	1.0000	1.0000
L24	14	Step Bolts	6.50 - 9.75	1.0000	1.0000
L24	22	Reinforcement C6	5.00 - 9.75	1.0000	1.0000
L24	23	Reinforcement C6	5.00 - 9.75	1.0000	1.0000
L24	24	Reinforcement C6	5.00 - 9.75	1.0000	1.0000
L25	11	CU12PSM9P8XXX_8AWG	4.75 - 5.00	1,0000	1.0000
L25	22	Reinforcement C6	4.75 - 5.00	1.0000	1.0000
L25	23	Reinforcement C6	4.75 - 5.00	1.0000	1.0000
L25	24	Reinforcement C6	4.75 - 5.00	1.0000	1.0000
L26	11	CU12PSM9P8XXX_8AWG	3.00 - 4.75	1.0000	1.0000
L26	22	Reinforcement C6	0.50 - 4.75	1.0000	1.0000
L26	23	Reinforcement C6	0.50 - 4.75	1.0000	1.0000
L26	24	Reinforcement C6	0.50 - 4.75	1.0000	1,0000

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azlmuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	0	ft		ft²	ft²	K
*** 7770.00 w/ Mount Pipe	Α	From Leg	4.00 0.000 0.000	0.000	100.00	No Ice 1/2" Ice 1" Ice	5.75 6.18 6.61	4.25 5.01 5.71	0.055 0.103 0.157
7770.00 w/ Mount Pipe	В	From Leg	4.00 0.000 0.000	0.000	100.00	No Ice 1/2" Ice 1" Ice	5.75 6.18 6.61	4.25 5.01 5.71	0.055 0.103 0.157
7770.00 w/ Mount Pipe	С	From Leg	4.00 0.000 0.000	0.000	100.00	No Ice 1/2" Ice 1" Ice	5.75 6.18 6.61	4.25 5.01 5.71	0.055 0.103 0.157
0010965_TIA w/ Mount Pipe	Α	From Leg	4.00 0.000 0.000	0.000	100.00	No Ice 1/2" Ice 1" Ice	14.05 14.69 15.30	7.63 8.90 9.96	0.136 0.233 0.338
0010964_TIA w/ Mount Pipe		From Leg	2	0.000	100.00	No Ice 1/2" Ice 1" Ice	10.23 ⁻ 10.74 11.24	5.51 6.37 7.12	0.116 0.191 0.273
80010964_TIA w/ Mount Pipe	В	From Leg	4.00 0.000 0.000	0.000	100.00	No Ice 1/2" Ice 1" Ice	10.23 10.74 11.24	5.51 6,37 7.12	0.116 0.191 0.273
DPA-65R-LCUU-H6_TIA w/ Mount Pipe	A	From Leg	0.000 0.000	0.000	100.00	No Ice 1/2" Ice 1" Ice	9.68 10.25 10.79	7.12 8.30 9.20	0.106 0.181 0.265
DPA-65R-LCUU-H6_TIA w/ Mount Pipe	В	From Leg	4.00 0.000 0.000	0.000	100.00	No Ice 1/2" Ice 1" Ice	9.68 10.25 10.79	7.12 8.30 9.20	0.106 0.181 0.265
DPA-65R-LCUU-H6_TIA w/ Mount Pipe	С	From Leg	4.00 0.000 0.000	0.000	100.00	No Ice 1/2" Ice 1" Ice	9.68 10.25 10.79	7.12 8.30 9.20	0.106 0.181 0.265
PA-65R-BUU-H6_TIA w/	' A	From Leg	4.00	0.000	100.00	No Ice	9.72	7.15	0.074

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azlmuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Welght
			ft ft ft	٠	ft		ft²	ft²	К
Mount Pipe			0.000		······································	1/2"	10.30	8.34	0.149
Woulder ipo			0.000			Ice 1" Ice	10.84	9.24	0.233
SBNHH-1D65A_TIA w/	В	From Leg	4.00	0.000	100.00	No Ice	6.19	5.25	0.054
Mount Pipe			0.000			1/2"	6.64	6.04	0.108
			0,000			lce 1" lce	7.07	6.74	0.169
SBNHH-1D65A_TIA w/	С	From Leg	4.00	0.000	100,00	No Ice	6.19	5.25	0.054
Mount Pipe			0.000			1/2"	6.64	6.04	0.108
			0.000			lce 1" lce	7.07	6.74	0.169
RRUS 11	Α	From Leg	4.00	0.000	100.00	No Ice	2.78	1.19	0.051
			0.000			1/2"	2.99	1.33	0.071
			0.000			lce 1" lce	3.21	1.49	0.095
RRUS 11	В	From Leg	4.00	0.000	100.00	No Ice	2.78	1.19	0.051
			0.000			1/2"	2.99	1.33	0.071
			0.000			Ice	3.21	1.49	0.095
RRUS 11	С	From Leg	4.00	0.000	100.00	1" Ice No Ice	2.78	1.19	0.051
THOO IT	J	i ioni rea	0.000	5.000	100,00	1/2"	2.70	1.13	0.051
= ,			0.000			Ice	3.21	1.49	0.095
						1" Ice			
(3) RRUS 32	Α	From Leg	4.00	0.000	100.00	No ice	2.73	1.67	0.051
			0.000			1/2"	2.95	1.86	0.072
			0.000			lce 1" lce	3.18	2.05	0.096
(3) RRUS 32	В	From Leg	4.00	0.000	100.00	No Ice	2.73	1.67	0.051
(0) / ((0 0 0 2	_		0.000	01000	100.00	1/2"	2.95	1.86	0.072
			0.000			Ice	3.18	2.05	0.096
	_					1" Ice			
(3) RRUS 32	С	From Leg	4.00	0.000	100.00	No Ice	2.73	1.67	0.051
			0.000 0.000			1/2"	2.95	1.86	0.072
			0.000			lce 1" lce	3.18	2.05	0.096
RRUS 4478 B14	Α	From Leg	4.00	0.000	100.00	No Ice	1.84	1.06	0.060
			0.000			1/2"	2.01	1.20	0.076
			000,0			lce 1" lce	2.19	1.34	0.094
RRUS 4478 B14	В	From Leg	4.00	0.000	100.00	No Ice	1.84	1.06	0.060
			0.000			1/2"	2.01	1.20	0.076
			0.000			lce 1" lce	2.19	1.34	0.094
RRUS 4478 B14	C	From Leg	4.00	0.000	100.00	No Ice	1.84	1.06	0.060
***			0.000			1/2"	2.01	1.20	0.076
117. Marian		* - 2	0.000			lce	2.19	1.34	0.094
(**±; **: (2) LGP21401	Α	From Leg	4.00	0.000	100,00	1" Ice No Ice	1.10	0.21	0.014
(2) LOI 21401		1 Tolli Log	0.000	0.000	100.00	1/2"	1.24	0.27	
÷.			0.000			Ice	1.38	0.35	0.030
(2) L CB24404	В	Erom Loa	4.00	0.000	100.00	1" Ice	1.40	0.04	0.044
(2) LGP21401	D	From Leg	0.000	0.000	100.00	No fce 1/2"	1.10 1.2 4	0.21 0.27	0.014 0.021
			0.000			lce	1.38	0.35	0.030
(2) LGP21401	С	From Leg	4.00	0.000	100.00	1" Ice No Ice	1.10	0.21	0.014
(=) === = = = = = = = = = = = = = = = =	•	i i uni Lug	0.000	0.000	100.00	1/2"	1.24	0.27	0.014
			0.000			lce	1.38	0.35	0.030
(2) TPX-070821	Α	From Leg	4.00	0.000	100.00	1" Ice No Ice	0.47	0.10	0.008
_, /\ 0.00E1		, .o., 20g	0.000	3.000	,00,00	1/2"	0.56	0.15	0.008
			0.000			lce	0.66	0.20	0.016
						1" Ice			
(2) TPX-070821	В	From Leg	4.00	0.000	100,00	No Ice	0.47	0.10	0.008
(-) · · · · · · · · · · · · · · · · · · ·		_	0.000			1/2"	0.56	0.15	0.011

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azlmuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft	0	ft		ft²	ft²	κ
*	······································		ft				····		···········
			0.000			lce 1" Ice	0.66	0.20	0.016
(2) TPX-070821	С	From Leg	4.00	0.000	100.00	No Ice	0.47	0.10	0.008
,,,,,			0.000 0.000			1/2" Ice 1" Ice	0.56 0.66	0.15 0.20	0.011 0.016
Squid Surge Arrestor	Α	From Leg	4.00	0.000	100.00	No Ice	0.47	0.10	0.008
, .		J	0.000			1/2" ce 1" ce	0,56 0.66	0.15 0.20	0.011 0.016
Squid Surge Arrestor	В	From Leg	4.00	0.000	100.00	No Ice	0.47	0.10	0.008
		J	0.000			1/2"	0.56	0.15	0.011
			0.000			Ice	0.66	0.20	0.016
Squid Surge Arrestor	С	From Lea	4.00	0.000	100.00	1" Ice No Ice	0.47	0.10	0.008
			0.000	5,000	100.00	1/2"	0.56	0.15	0.011
			0.000			lce 1" lce	0.66	0.20	0.016
Sabre 12' V-Boom	С	None		0.000	100.00	No Ice 1/2"	29.82	29.82	1.673
						ice	42.21 54.43	42.21 54.43	2.266 3.052
**		•				1" Ice	01.10	01110	0.002
BXA-80063-6BF-EDIN-4	Α	From Leg	4.00	0.000	90.00	No Ice	7.50	5.63	0.044
w/ Mount Pipe			0.000 0.000			1/2" Ice 1" Ice	8.03 8.53	6.72 7.56	0.103 0.170
BXA-80080/6CF W/ Mount	В	From Leg	4.00	0.000	90.00	No Ice	8.24	5.83	0.051
Pipe			0.000			1/2"	8.90	7.10	0.114
			0.000			lce 1" lce	9.52	8.22	0.185
BXA-80080/6CF W/ Mount	С	From Leg	4.00	0.000	90.00	No Ice	8.24	5.83	0.051
Pipe			0.000 0.000			1/2" Ice 1" Ice	8.90 9.52	7.10 8.22	0.114 0.185
(2) JAHH-65B-R3B_TIA w/	Α	From Leg	4.00	0.000	90.00	No Ice	9.35	7.65	0.089
Mount Pipe		_	0.000			1/2"	9.92	8.83	0.165
			0.000			lce 1" lce	10.46	9.73	0.250
(2) JAHH-65B-R3B_TIA w/	В	From Leg	4.00	0.000	90.00	No Ice	9.35	7.65	0.089
Mount Pipe			0.000 0.000			1/2" Ice 1" Ice	9.92 10.46	8.83 9.73	0.165 0.250
(2) JAHH-65B-R3B_TIA w/	C	From Leg	4.00	0.000	90.00	No Ice	9.35	7.65	0.089
Mount Pipe			0.000			1/2"	9.92	8.83	0.165
			.:0.000	_		Ice 1" Ice	10.46	9.73	0.250
XXDWMM-12.5-65-8T-	Α	From Leg	4.00	0.000	90.00	No Ice	0.52	1.53	0.023
CBRS			0.000			1/2"	0.61	1.69	0.035
•			0.000			lce 1" lce	0.72	1.85	0.049
XXDWMM-12.5-65-8T-	В	From Leg	4.00	0.000	90.00	No Ice	0.52	1.53	0.023
CBRS			0.000			1/2"	0.61	1.69	0.035
			0.000			lce 1" lce	0.72	1.85	0.049
XXDWMM-12.5-65-8T-	С	From Leg	4.00	0.000	90.00	No Ice	0.52	1.53	0.023
CBRS		_	0.000			1/2"	0.61	1.69	0.035
B0/B00 BBU BB0 40		Facility 4	0.000	0.000	00.00	lce 1" lce	0.72	1.85	0.049
B2/B66 RRH-BR049	Α	From Leg	4.00 0.000	0.000	90.00	No Ice 1/2"	1,88 2,05	1.25 1.39	0.084 0.103
			0.000			ice 1" ice	2.22	1.54	0.103
B2/B66 RRH-BR049	В	From Leg	4.00	0.000	90.00	No Ice	1.88	1.25	0.084
			0.000			1/2"	2.05	1.39	0.103

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustmen	Placement		C _A A _A Front	C _A A _A Side	Weight
	Leg		Lateral Vert	ť					
			ft ft ft	o	ft		ft²	ft²	К
**************************************			0.000			Ice	2.22	1.54	0.124
DO/DOC DDLL DDC40	_	F 1	4.00	0.000	00.00	1" Ice	4.00	4.05	
B2/B66 RRH-BR049	С	From Leg	4.00 0.000	0.000	90.00	No Ice 1/2"	1.88	1.25	0.084
			0.000			lce	2.05 2.22	1.39 1.54	0.103 0.124
			0.000			1" Ice	2.22	1.04	0.124
B5/B13 RRH-BR04C	Α	From Leg	4.00	0.000	90,00	No Ice	1.88	1.01	0.070
		-	0.000			1/2"	2.05	1.14	0.087
			0.000			Ice	2.22	1.28	0.106
DEID40 DDLL DD040	_		4.00			1" Ice			
B5/B13 RRH-BR04C	В	From Leg	4.00 0.000	0,000	90.00	No Ice	1.88	1.01	0.070
			0.000			1/2" Ice	2.05 2.22	1.14 1.28	0.087 0.106
			0.000			1" Ice	2.22	1.20	0.100
B5/B13 RRH-BR04C	С	From Leg	4.00	0.000	90.00	No ice	1.88	1.01	0.070
	•		. 0.000			1/2"	2.05	1.14	0.087
			0.000			Ice	2.22	1.28	0.106
	_					1" Ice			
(2) CBC78T-DS-43	Α	From Leg	4.00	0.000	90.00	No Ice	0.37	0.25	0.011
			0.000			1/2" Ice	0.45 0.53	0.32	0.015
			. 0.000			1" Ice	0.55	0.39	0.020
CBC78T-DS-43	В	From Leg	4.00	0.000	90.00	No Ice	0.37	0.25	0.011
	_		0.000	0.000	00.00	1/2"	0.45	0.32	0.015
			0.000			lce	0.53	0.39	0.020
	_					1" Ice			
CBC78T-DS-43	С	From Leg	4.00	0.000	90.00	No Ice	0.37	0.25	0.011
			0.000 0.000			1/2"	0.45	0.32	0.015
			0.000			ice 1" ice	0.53	0.39	0.020
RRFDC-3315-PF-48	В	From Leg	4.00	0.000	90.00	No Ice	3.71	2.19	0.021
	_	,	0.000	2,000	00,00	1/2"	3.95	2.39	0.052
			0.000			Ice	4.20	2.61	0.086
	_	_				1" Ice			
RRFDC-3315-PF-48	С	From Leg	4.00	0.000	90.00	No Ice	3.71	2.19	0.021
			0.000 0.000			1/2"	3.95	2.39	0.052
			0.000			lce 1" lce	4.20	2.61	0.086
MT6407-77A	Α	From Leg	4.00	0.000	90.00	No Ice	4.71	1.84	0.087
		•	0.000			1/2"	5.00	2.07	0.116
			0.000			Ice	5.29	2.30	0.150
	_					1" Ice			
MT6407-77A	В	From Leg	4.00	0.000	90.00	No Ice	4.71	1.84	0.087
			0.000			1/2" Ice	5.00 5.29	2.07 2.30	0.116 0.150
			. 0.000			1" Ice	3.23	2.50	0.150
MT6407-77A	- с	From Leg	4.00	0.000	90.00	No Ice	4.71	1.84	0.087
			0.000			1/2"	5.00	2.07	0.116
•			0.000		-	lce	5.29	2.30	0.150
County Mayort Dina		C l	:4.00	0.000	00.00	1" Ice	4.00	4.00	
Empty Mount Pipe	Α	From Leg	4.00 0.000	0.000	90.00	No Ice 1/2"	1.90	1.90	0.029
			0.000			ice	2.73 3.40	2.73 3.40	0.044 0.063
-						1" Ice	0.40	3,40	0.003
Empty Mount Pipe	В	From Leg	4.00	0.000	90.00	No Ice	1.90	1.90	0.029
			0.000			1/2"	2.73	2.73	0.044
			0.000			Ice	3.40	3.40	0.063
Frank (Adama) Dina	_	C	4.00	0.000	00.00	1" Ice	4.00	4.00	
Empty Mount Pipe	С	From Leg	4.00 0.000	0.000	90.00	No Ice	1.90	1.90	0.029
			0.000			1/2" lce	2.73 3.40	2.73 3.40	0.044 0.063
			3.000			1" Ice	5.70	0.70	0.003
Platform Mount	С	None		0.000	90.00	No Ice	51.70	51.70	2.262
# · · ·		** **				1/2"	62.70	62.70	2.935
						lce	73.70	73.70	3.608

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Welght
			ft ft ft	•	ft		ft²	ft²	К
Mount Reinforcement	С	None		0.000	90.00	1" lce No lce 1/2" lce 1" lce	13.18 17.57 20.95	13.18 17.57 20.95	0.710 0.877 1.100
MX08FRO665-21 w/ Mount Pipe	Α	From Leg	4.00 0.000 0.000	0.000	80.00	No Ice 1/2" Ice 1" Ice	12.96 13.67 14.34	7.77 9.05 10.19	0.094 0.189 0.292
MX08FRO665-21 w/ Mount Pipe	В	From Leg	4.00 0.000 0.000	0.000	80.00	No Ice 1/2" Ice 1" Ice	12.96 13.67 14.34	7.77 9.05 10.19	0.094 0.189 0.292
MX08FRO665-21 w/ Mount Pipe	С	From Leg	4.00 0.000 0.000	0.000	80.00	No Ice 1/2" Ice 1" Ice	12.96 13.67 14.34	7.77 9.05 10.19	0.094 0.189 0.292
TA08025-B605	Α	From Leg	4.00 0.000 0.000	0.000	80.00	No Ice 1/2" Ice	1.96 2.14 2.32	1.19 1.33 1.48	0.075 0.093 0.114
TA08025-B605	В	From Leg	4.00 0.000 0.000	0.000	80.00	1" ice No ice 1/2" ice 1" ice	1.96 2.14 2.32	1.19 1.33 1.48	0.075 0.093 0.114
TA08025-B605	С	From Leg	4.00 0.000 0.000	0.000	80.00	No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32	1.19 1.33 1.48	0.075 0.093 0.114
TA08025-B604	Α	From Leg	4.00 0.000 0.000	0.000	80.00	No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32	1.03 1.17 1.31	0.064 0.081 0.100
TA08025-B604	В	From Leg	4.00 0.000 0.000	0.000	80.00	No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32	1.03 1.17 1.31	0.064 0.081 0.100
TA08025-B604	С	From Leg	4.00 0.000 0.000	0.000	80.00	No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32	1.03 1.17 1.31	0.064 0.081 0. 1 00
RDIDC-9181-PF-48	C C	From Leg	4.00 0.000 0.000	0.000	80.00	No Ice 1/2" Ice 1" Ice	1.87 2.04 2.21	1.07 1.20 1.35	0.022 0.038 0.057
(2) Empty Pipe	· A	From Leg	4.00 0.000 0.000	0.000	80.00	No Ice 1/2" Ice 1" Ice	1.90 2.73 3.40	1.90 2.73 3.40	0.029 0.044 0.063
(2) Empty Pipe	В	From Leg	4.00 0.000 0.000	0.000	80.00	No Ice 1/2" Ice 1" Ice	1.90 2.73 3.40	1.90 2.73 3.40	0.029 0.044 0.063
(2) Empty Pipe	. C	From Leg	.4.00 0.000 0.000	0.000	80.00	No Ice 1/2" Ice 1" Ice	1.90 2.73 3.40	1.90 2.73 3.40	0.029 0.044 0.063
Platform Mount *	С	None		0.000	80.00	No Ice 1/2" Ice 1" Ice	26.80 32.20 37.60	26.80 32.20 37.60	1.509 1.811 2.113

<u>Dishes</u>										
Description	Face or Leg	Dish Type	Offset Type	Lateral	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter	Aperture Area	Weigh
				Vert ft	0	0	ft	ft	ft²	К

Load Combinations

Comb.	Description	
No.		
1	Dead Only	
2	1.2 Dead+1.6 Wind 0 deg - No Ice	
3	0.9 Dead+1.6 Wind 0 deg - No Ice	
4	1.2 Dead+1.6 Wind 30 deg - No Ice	
5	0.9 Dead+1.6 Wind 30 deg - No Ice	
6	1.2 Dead+1.6 Wind 60 deg - No Ice	
7	0.9 Dead+1.6 Wind 60 deg - No Ice	
8	1.2 Dead+1.6 Wind 90 deg - No Ice	
9	0.9 Dead+1.6 Wind 90 deg - No Ice	
10	1.2 Dead+1.6 Wind 120 deg - No Ice	
- 11	0.9 Dead+1.6 Wind 120 deg - No Ice	
12	1.2 Dead+1.6 Wind 150 deg - No Ice	
13	0.9 Dead+1.6 Wind 150 deg - No Ice	
14	1.2 Dead+1.6 Wind 180 deg - No ice	
15 16	0.9 Dead+1.6 Wind 180 deg - No ice	
	1.2 Dead+1.6 Wind 210 deg - No ice	
17	0.9 Dead+1.6 Wind 210 deg - No ice	
18 10	1.2 Dead+1.6 Wind 240 deg - No Ice	
19	0.9 Dead+1.6 Wind 240 deg - No Ice	
20 21	1.2 Dead+1.6 Wind 270 deg - No Ice	
22	0.9 Dead+1.6 Wind 270 deg - No Ice	
23	1.2 Dead+1.6 Wind 300 deg - No Ice	
23 24	0.9 Dead+1.6 Wind 300 deg - No Ice	
2 4 25	1.2 Dead+1.6 Wind 330 deg - No Ice	
26	0.9 Dead+1.6 Wind 330 deg - No Ice 1.2 Dead+1.0 Ice+1.0 Temp	
27 27	1.2 Dead+1.0 Wind 0 deg+1.0 ce+1.0 Temp	
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	
31	1.2 Dead+1.0 Wind 30 deg+1.0 lce+1.0 Temp	
32	1.2 Dead+1.0 Wind 150 deg+1.0 lce+1.0 Temp	
33	1.2 Dead+1.0 Wind 180 deg+1.0 ice+1.0 Temp	
34	1.2 Dead+1.0 Wind 210 deg+1.0 ice+1.0 Temp	
35	1.2 Dead+1.0 Wind 240 deg+1.0 ce+1.0 Temp	
36	1.2 Dead+1.0 Wind 270 deg+1.0 ice+1.0 Temp	
37	1.2 Dead+1.0 Wind 300 deg+1.0 lce+1.0 Temp	
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	
39	Dead+Wind 0 deg - Service	
40	Dead+Wind 30 deg - Service	
41	Dead+Wind 60 deg - Service	
42	Dead+Wind 90 deg - Service	
43	Dead+Wind 120 deg - Service	
44	Dead+Wind 150 deg - Service	
45	Dead+Wind 180 deg - Service	
46	Dead+Wind 210 deg - Service	
47	Dead+Wind 240 deg - Service	
48	Dead+Wind 270 deg - Service	
49	Dead+Wind 300 deg - Service	
50	Dead+Wind 330 deg - Service	
		-

Maximum Member Forces

Sectio	Elevation	Component	Condition	Car	Aulal	Malan Aut-	Minor Axis	
secuo n	r ⊏ievalion ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	міпог Axis Moment	
No.				Comb.	K	kip-ft	kip-ft	
L1	110 - 105	Pole	Max Tension	48	0.000	0.00	0.00	
			Max. Compression	26	-0.709	0.00	-0.08	
			Max. Mx	8	-0.369	-0.52	-0.03	
			Max. My	14	-0.374	0.00	-0.51	
			Max. Vy	8	0.211	-0.52	-0.03	
			Max. Vx	14	0.197	0.00	-0.51	
			Max. Torque	36			0.00	
L2	105 - 100	Pole	Max Tension	1	0.000	0.00	0.00	
			Max. Compression	26	-1.457	0.00	-0.17	
			Max. Mx	8	-0.763	-2.12	-0.05	
			Max. My	14	-0.772	0.00	-2.04	
			Max. Vy	8	0.430	-2.12	-0.05	
			Max. Vx	14	0.406	0.00	-2.04	
1.3	400.00	Dele	Max. Torque	36	0.000	0.00	0.00	
Ĺ3	100 - 96	Pole	Max Tension	1	0.000	0.00	0.00	
			Max. Compression	26	-17.739	0.01	0.73	
			Max. Mx	8	-4.869 4.007	-25.47	0.04	
			Max. My	2	-4.997	0.00	24.94	
			Max. Vy Max. Vx	8	6.060	-25.47	0.04	
	•		Max. Torque	14 20	5.806	0.00	-24.74	
L4	96 - 91	Pole	Max. Torque Max Tension		0.000	0.00	-0.55	
L4	90-91	Fole	Max. Compression	1 26	0.000	0,00	0.00	
			Max. Mx	8	-18.736 -5.218	0.02 -57.10	0.22 -0.04	
			Max. My	2	-5.390	0.00	-0.04 54.40	
			Max. Vy	8	6.600	-57.10	-0.04	
			Max. Vx	14	6.020	0.01	-54.39	
			Max. Torque	20	0.020	0.01	-0.46	
L5	91 - 86	Pole	Max Tension	1	0.000	0.00	0.00	
LŲ	91-00	role	Max. Compression	26	-35.24 9	0.04	-1.29	
			Max, Mx	8	-33.249 -10.453	-115,57	-0.21	
			Max. My	14	-10.453 -10.778	0.01	-0.21 -108.71	
			Max. Vy	8	13.182	-115.57	-0.21	
			Max. Vx	14	12.105	0.01	-108.71	
			Max. Torque	22	12.103	0.01	-0.45	
L6	86 - 81	Pole	Max Tension	1	0.000	0.00	0.00	
	00-01	1 010	Max. Compression	26	-36.414	0.06	-2.00	
			Max. Mx	8	-10.932	-182.85	-0.33	
			Max. My	14	-11.297	0.02	-169.82	
			Max. Vy	8	13.742	-182.85	-0.33	
			Max. Vx	14	12.301	0.02	-169,82	
			Max. Torque	9	12.001	0.02	-0.42	
L7	81 - 76	Pole	Max Tension	1	0.000	0.00	0.00	
	21.		Max. Compression	26	- 44 .671	0.59	-3.09	
•	1811 - 11		Max. Mx	8	-14.048	-263.68	-0.48	
			Max. My	14	-14.493	0.16	-242.57	
			Max. Vy	8	17,022	-263.68	-0.48	
-	•	•	Max. Vx	14	15.136	0.16	-242.57	
			Max. Torque	9		J, 10	-0.73	
L8	76 - 71	Pole	Max Tension	1	0.000	0.00	0.00	
			Max. Compression	26	-46.020	0.61	-3.92	
		***	Max. Mx	8	-14.660	-350.13	-0.57	
			Max, My	14	-15.131	0.21	-318.74	
		, -	Max. Vy	8	17.582	-350.13	-0.57	
4.	-		Max. Vx	14	15.298	0.21	-318,74	
			Max. Torque	9	= • •		-0.93	
L9	71 - 66	Pole	Max Tension	1	0.000	0.00	0.00	
			Max. Compression	26	-47.685	0.63	-4.76	
			Max. Mx	8	-15.423	-439.39	-0.68	
			Max. My	14	-15.909	0.27	-395.72	
			Max. Vy	8	18.146	-439.39	-0.68	
			Max, Vx	14	15.456	0.27	-395.72	
		,	Max. Torque	9			-1.04	
L10	66 - 61	Pole	Max Tension	Ĭ	0.000	0.00	0.00	
			Max. Compression	26	-49.373	0.65	-5.61	

Section n	Elevation (ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.	· ·			Comb.	K	kip-ft	kip-ft
			Max. Mx	8	-16.224	-531.42	-0.79
			Max. My	14	-16.715	0.32	-473.45
			Max. Vy	8	18.695	-531.42	-0.79
			Max. Vx	14	15.602	0.32	-473.45
1.4.4	04 50	ъ.	Max. Torque	9			-1.16
L11	61 - 56	Pole	Max Tension	1	0.000	0.00	0.00
			Max. Compression	26	-51.081	0,66	-6.45
			Max. Mx	8	-17.060	-626.15	-0.91
			Max. My Max. Vy	14 8	-17.545 19.228	0.37 -626.15	-551.88 -0.91
			Max. Vx	14	15.737	0.37	-551.88
			Max. Torque	9	15.757	0.57	-1.27
L12	56 - 51	Pole	Max Tension	ĭ	0.000	0.00	0.00
	** **	, 5.5	Max. Compression	26	-52.810	0.67	-7.30
			Max. Mx	8	-17.930	-723.49	-1.03
			Max. My	14	-18.397	0.42	-630.95
			Max. Vý	8	19.743	-723.49	-1.03
			Max. Vx	14	15.860	0.42	-630.95
			Max. Torque	9			-1.39
L13	51 - 46	Pole	Max Tension	1	0.000	0.00	0.00
			Max. Compression	26	-53.158	0.68	-7.47
			Max. Mx	8	-18.108	-743.27	-1.06
			Max. My	14	-18.571	0.43	-646.84
			Max. Vy	8	19.842	-743.27	-1.06
		•	Max. Vx	14	15.882	0.43	-646.84
L14	46 - 45	Pole	Max. Torque Max Tension	9 1	0.000	0.00	-1.41
L14	40 - 40	Fole	Max. Compression	26	0.000 ~55.664	0.00 0.69	0.00 -8.32
			Max. Mx	8	-19.382	-843.96	-0.32 -1.18
			Max. My	14	-19.842	0.48	-726.90
			Max. Vy	8	20,447	-843.96	-1.18
			Max. Vx	14	16.089	0.48	-726.90
			Max. Torque	9		67.16	-1.53
L15	45 - 40	Pole	Max Tension	1	0.000	0.00	0.00
			Max. Compression	26	-57.529	0.70	-9.16
			Max. Mx	8	-20.392	-947.35	-1.31
			Max. My	14	-20.824	0.54	-807.75
			Max. Vy	8	20.947	-947.35	-1.31
			Max. Vx	14	16.213	0.54	-807.75
	40.05		Max. Torque	9			-1.65
L16	40 - 35	Pole	Max Tension	1	0.000	0.00	0.00
			Max. Compression	26	-59,414	0.71	-10.00
			Max. Mx	8	-21.434	-1053.19	-1.45
			Max. My	14 8	-21.828 21.425	0.59	-889.20
			мах. Vy Max. Vx	14	21,425 16,327	-1053.19 0.59	-1.45 -889,20
			Max. Torque	9	10.021	0.00	-1.76
L17	35 - 30	Polé 🗀	Max Tension	Ĭ	0.000	0.00	0.00
		1 m (m 1	Max. Compression	26	-61.316	0.71	-10.84
	Property of the Property of	#1 [*]	Max. Mx	8	-22.505	-1161.36	-1.58
-	***		Max. My	14	-22.854	0.64	-971.19
		# * *	Max. Vý	8	21.879	-1161.36	-1.58
: .			Max. Vx	14	16.428	0.64	-971.19
			Max. Torque	9			-1.88
L18	30 - 25	Pole	Max Tension	1	0.000	0.00	0.00
			Max. Compression	26	-63.232	0.72	-11.67
•			Max. Mx	8	-23.604	-1271.76	-1.72
			Max. My	14	-23.901	0.69	-1053.67
			Max. Vý	8	22.319	-1271.76	-1.72
			Max. Vx Max. Torque	14	16.522	0.69	-1053,67
L19	25 - 20	Pole	мах. гоrque Max Tension	9 1	0.000	0.00	-1.99 0.00
LIS	20-20	LOIG	Max. Compression	26	-65,168	0.00	0.00 -12.48
			Max. Mx	8	-03.108 -24.703	-1384.41	-12.48 -1.86
			Max. My	14	-24.703 -24.942	0.74	-1136.62
			Max. Vy	8	22.779	-1384.41	-1.86
			Max. Vx	14	16.614	0.74	-1136.62
			Max. Torque	9		÷ '	-2.12
L20	20 - 19.75	Pole	Max Tension	1	0.000	0.00	0.00

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	K	kip-ft	kip-ft
			Max. Compression	26	-65.256	0.72	-12.50
			Max. Mx	8	-24.769	-1390.10	<i>-</i> 1.87
			Max. My	14	-24.999	0.74	-1140.77
			Max. Vy	8	22.789	-1390.10	-1.87
			Max. Vx	14	16.625	0.74	-1140.77
			Max. Torque	9			-2.12
L21	19.75 - 14.75	Pole	Max Tension	1	0.000	0.00	0.00
			Max. Compression	26	-67.017	0.73	-12.75
			Max. Mx	8	-25.807	-1505.11	-1.89
			Max. My	14	-25.979	0.79	-1224.99
			Max. Vý	8	23.242	-1505.11	-1.89
			Max. Vx	14	17.059	0.79	-1224.99
			Max. Torque	9			-2.14
L22	14.75 - 10	Pole	Max Tension	1	0.000	0.00	0.00
			Max. Compression	26	-68.689	0.73	-12.97
			Max. Mx	8	-26.826	-1616.42	-1.91
			Max. My	14	-26.938	0.83	-1306.99
			Max. Vý	8	23.668	-1616.42	-1. 9 1
			Max. Vx	14	17.472	0.83	-1306.99
			Max. Torque	9			-2.16
L23	10 - 9.75	Pole	Max Tension	1	0.000	0.00	0.00
			Max. Compression	26	-68.782	0.73	-12.98
			Max. Mx	8	-26.900	-1622.34	-1.91
			Max. My	14	-27.003	0.84	-1311.36
	÷		Max. Vý	8	23,676	-1622.34	-1.91
			Max. Vx	14	17.482	0.84	-1311.36
			Max. Torque	9			-2.16
L24	9.75 - 5	Pole	Max Tension	1	0.000	0.00	0.00
			Max. Compression	26	-70.497	0.73	-13.13
			Max. Mx	8	-27.975	-1735,85	-1.92
			Max. My	14	-28.034	0.88	-1395.49
			Max. Vy	8	24.146	-1735.85	-1.92
			Max. Vx	14	17.940	0.88	-1395.49
			Max. Torque	9			-2.18
L25	5 - 4.75	Pole	Max Tension	1	0.000	0.00	0.00
			Max. Compression	26	-70.584	0.73	<i>-</i> 13.13
			Max. Mx	8	-28.044	-1741.89	-1.92
			Max. My	14	-28.095	0.88	-1399,97
			Max. Vý	8	24.156	-1741.89	-1.92
			Max, Vx	14	17.953	0.88	-1399.97
			Max. Torque	9			-2.18
L26	4.75 - 0	Pole	Max Tension	1	0.000	0.00	0.00
			Max. Compression	26	-72,137	0.73	-13.15
			Max, Mx	8	-29,113	-1856,99	-1.87
			Max. My	14	-29.119	0.93	-1485.69
			Max. Vy	8	24.334	-1856.99	-1.87
	marks and said	_ H _ H _ H _	Max. Vx	14	18.155	0,93	-1485.69
			Max. Torque	9		-1	-2.18

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, Z K
Pole	Max. Vert	36	72.137	7.056	-0.002
	Max. H _x	20	29.129	23.948	-0.010
	Max. H _z	2	29.129	-0.010	18.140
	Max. M _x	2	1480.29	-0.010	18.140
	Max. M _z	8	1856.99	-24.315	0.010
	Max. Torsion	21	1.94	23.948	-0.010
	Min. Vert	13	21.846	-8.896	-15.446
	Min. H _x	8	29.129	-24.315	0.010
	Min. H _z	14	29.129	0.010	-18.140
	Min. M _x	14	-1485.69	0.010	-18.140

Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, Z K
	Min. Mz	20	-1835.02	23,948	-0.010
	Min. Torsion	9	-2.18	-24.315	0.010

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft ^	kip-ft	klp-ft
Dead Only	24.274	0.000	0.000	2.19	0.10	0.00
1.2 Dead+1.6 Wind 0 deg - No Ice	29.129	0.010	-18.140	-1480.29	-0.68	-0.13
0.9 Dead+1.6 Wind 0 deg - No Ice	21,846	0.010	-18.140	-1456.12	-0,70	-0.13
1.2 Dead+1.6 Wind 30 deg - No Ice	29.129	8.913	-15.455	-1280.03	-738.83	-0.20
0.9 Dead+1.6 Wind 30 deg - No Ice	21.846	8.913	-15.455	-1259.19	-726.45	-0.20
1.2 Dead+1.6 Wind 60 deg - No Ice	29.129	16.184	-9.365	-762.64	-1321.06	-0.15
0.9 Dead+1.6 Wind 60 deg - No Ice	21.846	16.184	-9.365	-750.54	-1298.98	-0.15
1.2 Dead+1.6 Wind 90 deg - No Ice	29,129	24.315	-0.010	1.87	-1856.99	2.17
0.9 Dead+1.6 Wind 90 deg - No Ice	21.846	24.315	-0.010	1.18	-1827.44	2.18
1.2 Dead+1.6 Wind 120 deg - No Ice	29.129	16.174	9.348	766.67	-1320.24	-0.02
0.9 Dead+1.6 Wind 120 deg - No Ice	21.846	16.174	9.348	753.15	-1298.18	-0.02
1.2 Dead+1.6 Wind 150 deg - No Ice	29.129	8.896	15.446	1284.64	-737.42	0.03
0.9 Dead+1.6 Wind 150 deg - No Ice	21.846	8.896	15.446	1262.38	-725.07	0.03
1.2 Dead+1.6 Wind 180 deg - No Ice	29.129	-0.010	18.140	1485.69	0.93	0.13
0.9 Dead+1.6 Wind 180 deg - No Ice	21.846	-0.010	18.140	1460.09	0.88	0.13
1.2 Dead+1.6 Wind 210 deg - No Ice	29.129	-8.913	15.455	1285.44	739.06	0.20
0.9 Dead+1.6 Wind 210 deg - No Ice	21.846	-8.913	15.455	1263.17	726.62	0.20
1.2 Dead+1.6 Wind 240 deg - No Ice	29.129	-16.184	9.365	768.06	1321.29	0.15
0.9 Dead+1.6 Wind 240 deg - No Ice	21.846	-16.184	9.365	754.53	1299.15	0.15
1.2 Dead+1.6 Wind 270 deg - No Ice	29.129	-23.948	0.010	3.49	1835.02	-1.94
0.9 Dead+1.6 Wind 270 deg - No Ice	21.846	f.	0.010	2.77	1805.69	-1.94
1.2 Dead+1.6 Wind 300 deg - No Ice	29.129	-16.174	-9.348	-761.24	1320.50	0.02
	21.846	1 -16.174	-9.348	-749.16	1298.37	0.02
1.2 Dead+1.6 Wind 330 deg - No Ice	29.129	-8.896	-15.446	-1279.23	737.68	-0.03
0.9 Dead+1.6 Wind 330 deg - No Ice	21.846	-8.896	-15.446	-1258.40	725.26	-0.03
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0	72.137 72.137	-0.000 0.002	0.000 -5.799	13.15 -543.84	0.73 0.53	0.00 -0.06
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 30	72.137	2.881	-4.986	-468.96	-277.73	-0.07
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 60	72,137	5.061	-2.923	-267.10	-484.51	-0.03
deg+1.0 Ice+1.0 Temp 1,2 Dead+1.0 Wind 90	72.137	7.056	-0.002	12.98	-640.51	0.72

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _×	Overturning Moment, M₂	Torque
00///00//	K	K	K	klp-ft	kip-ft	kip-ft
deg+1.0 lce+1.0 Temp						
1.2 Dead+1.0 Wind 120	72.137	5.059	2,919	293.14	-484.30	0.02
deg+1.0 lce+1.0 Temp						
1.2 Dead+1.0 Wind 150	72.137	2.877	4.984	495.13	-277.38	0.03
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	72.137	-0.002	5.799	570.20	0.92	0.06
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	72.137	-2.881	4.986	495.33	279.17	0.07
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 WInd 240	72.137	-5.061	2.923	293.48	485.95	0.03
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	72.137	-7.056	0.002	13.38	641.97	-0.72
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	72.137	-5.059	-2.919	-266.76	485.77	-0.02
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	72.137	-2.877	-4.984	-468.76	278.85	-0.03
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	24.274	0.002	-4.222	-339.73	-0.08	-0.03
Dead+Wind 30 deg - Service	24.274	2.075	-3.597	-293.55	-170.29	-0.05
Dead+Wind 60 deg - Service	24.274	3.767	-2.180	-174.27	-304.59	-0.03
Dead+Wind 90 deg - Service	24.274	5.660	-0.002	2.05	-428.63	0.51
Dead+Wind 120 deg -	24.274	3.765	2.176	178.42	-304,41	-0.00
Service						
Dead+Wind 150 deg -	24.274	2.071	3.595	297.84	-169.97	0.01
Service						
Dead+Wind 180 deg -	24.274	-0.002	4.222	344.20	0.29	0.03
Service						
Dead+Wind 210 deg -	24.274	-2.075	3.597	298.03	170.50	0.05
Service						
Dead+Wind 240 deg -	24.274	-3.767	2.180	178.75	304.80	0.03
Service						
Dead+Wind 270 deg -	24.274	-5.574	0.002	2.42	423.67	-0.46
Service						
Dead+Wind 300 deg -	24.274	-3.765	-2.176	-173.95	304.61	0.00
Service						
Dead+Wind 330 deg -	24.274	-2.071	-3.595	-293.36	170.18	-0.01
Service						

Solution Summary

	Sun	of Applied Force	S		Sum of Reaction	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.000	-24.274	0.000	0.000	24.274	-0.000	0.000%
2	0.010	-29.129	-18.140	-0.010	29.129	18.140	0.000%
3 i · .	0.010	-21.846	-18.140	-0.010	21.846	18.140	0.000%
4	8,913	-29.129	-15.455	-8.913	29.129	15.455	0.000%
5	8.913	-21.846	-15.455	-8.913	21.8 4 6	15.455	0.000%
6	16.184	-29.129	-9.365	-16.184	29.129	9.365	0.000%
7 .	16.184	-21.846	-9.365	-16.184	21.846	9.365	0.000%
8	24.315	-29.129	-0.010	-24.315	29.129	0.010	0.000%
9	24.315	-21.846	-0.010	-24.315	21,846	0.010	0.000%
10	16.174	-29.129	9.348	-16.174	29.129	-9.348	0.000%
11	16.174	-21.846	9.348	-16.174	21.846	-9.348	0.000%
12	8.896	-29.129	15.446	-8.896	29.129	-15.446	0.000%
13 🗀 📖	8.896	21.846	` ⁻ 15.446	-8.896	21.846	-15.446	0.000%
14	-0.010	-29.129	18.140	0.010	29.129	-18.140	0.000%
15	-0.010	-21.846	18.140	0.010	21.846	-18.140	0.000%
16	-8.913	-29.129	15.455	8.913	29.129	-15.455	0.000%
17	-8.913	-21.846	15.455	8. 9 13	21.8 4 6	-15.455	0.000%
18	-16.184	-29.12 9	9.365	16.184	29.129	-9.365	0.000%
19	-16.184	-21.846	9.365	16.184	21.846	-9.365	0.000%
20	-23.948	-29.129	0.010	23.948	29.129	-0.010	0.000%
21	-23.948	-21.846	0.010	23.948	21.846	-0.010	0.000%
22	-16.174	-29.129	-9.348	16.174	29.129	9.348	0.000%
23	-16.174	-21.846	-9.348	16.174	21.846	9.348	0.000%

	Sun	n of Applied Force	es		Sum of Reaction	าร	
Load	PX	PY	PZ	PX	PY	PZ	% Erroi
Comb.	K	K	K	K	K	K	
24	-8.896	-29.129	-15.446	8.896	29,129	15.446	0.000%
25	-8.896	- 21.846	-15.446	8.896	21.846	15,446	0.000%
26	0.000	-72.137	0.000	0.000	72.137	-0.000	0.000%
27	0.002	-72.137	-5.799	-0.002	72.137	5.799	0.000%
28	2.880	-72.137	-4.986	-2.881	72.137	4.986	0.000%
29	5.061	-72.137	-2.923	-5.061	72.137	2.923	0.000%
30	7.056	-72.137	-0.002	-7.056	72.137	0.002	0.000%
31	5.059	-72.137	2.919	-5.059	72.137	-2.919	0.000%
32	2.877	-72.137	4.984	-2.877	72.137	-4.984	0.000%
33	-0.002	-72.137	5.799	0.002	72.137	-5.799	0.000%
34	-2.880	-72.137	4.986	2.881	72.137	-4.986	0.000%
35	-5.061	-72.137	2.923	5,061	7 2.137	-2.923	0.0009
36	-7.056	-72.137	0.002	7.056	72.137	-0,002	0.000%
37	-5.059	-72.137	-2.919	5.059	72.137	2.919	0.000%
38	-2.877	-72.137	-4.984	2.877	72.137	4.984	0.000%
39	0.002	-24,274	-4.222	-0.002	24.274	4.222	0.000%
40	2.075	-24.274	-3.597	-2.075	24.274	3.597	0.000%
41	3.767	-24.274	-2.180	-3.767	24.274	2.180	0.000%
42	5.660	-24.274	-0.002	-5.660	24.274	0.002	0.000%
43	3.765	-24.274	2.176	-3.765	24.274	-2.176	0.000%
44	2.071	-24.274	3.595	-2.071	24,274	-3.595	0.000%
45	-0.002	-24.274	4.222	0.002	24.274	-4.222	0.000%
46	-2.075	-24.274	3.597	2.075	24,274	-3.597	0.000%
47	-3.767	-24.274	2,180	3.767	24.274	-2.180	0.000%
.48	-5.574	-24.274	0.002	5.574	24,274	-0.002	0.000%
49	-3.765	-24.274	-2.176	3.765	24.274	2.176	0.000%
50	-2.071	-24.274	-3.595	2.071	24.274	3.595	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination	-	of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	5	0.00000001	0.00019943
3	Yes	5	0.00000001	0.00007582
4	Yes	6	0.00000001	0.00096969
5	Yes	6	0.0000001	0.00031666
6	Yes	7	0.00000001	0.00008053
7	Yes	6	0.0000001	0.00033495
8	Yes	5	0.0000001	0.00099047
9	Yes	5	0.0000001	0.00044591
10	Yes	7	0.0000001	0.00007998
11	Yes	6	0.0000001	0.00033195
12	Yes	6	0.0000001	0.00098225
13	Yes	6	0.0000001	0.00032057
14	Yes	5 5	0.0000001	0.00021348
15	Yes		0.0000001	0.00008357
16	Yes	6	0.0000001	0.00099146
17	Yes	6	0.0000001	0.00032365
18	Yes	7	0.0000001	0.00007985
19	Yes	6	0.00000001	0.00033126
20	Yes	5	0.0000001	0.00091392
21	Yes	5	0.0000001	0.00041082
22	Yes	7	0.0000001	0.00008012
23	Yes	6	0.0000001	0.00033320
24	Yes	6	0.0000001	0.00097475
. 25	Yes	6	0.0000001	0.00031862
26	Yes	5	0.0000001	0.00030020
27	Yes	7	0.0000001	0.00060698
28	Yes	7	0.0000001	0.00085938
29	Yes	7	0.0000001	0.00087017
30	Yes	7	0.0000001	0.00069584
31	Yes	7	0.0000001	0.00093338
32	Yes	7	0.0000001	0.00092021
33	Yes	7	0.00000001	0.00064088

34	Yes	7	0.0000001	0.00093047
35	Yes	7	0.0000001	0.00093823
36	Yes	7	0.00000001	0.00069888
37	Yes	7	0.00000001	0.00087247
38	Yes	7	0.0000001	0.00086650
39	Yes	4	0.0000001	0.00052046
40	Yes	5	0.0000001	0.00017374
41	Yes	5	0.0000001	0.00019543
42	Yes	5	0.0000001	0.00007396
43	Yes	5	0,0000001	0.00019531
44	Yes	5	0.0000001	0.00018269
4 5	Yes	4	0.0000001	0.00052973
46	Yes	5	0.0000001	0.00018742
4 7	Yes	5	0.0000001	0.00019440
48	Yes	4	0.00000001	0.00096237
49	Yes	5	0.0000001	0.00019316
50	Yes	5	0.0000001	0.00017699

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	٥
L1	-110 - 1 05	23.423	42	1.725	0.004
L2	105 - 100	21.617	42	1.725	0.004
L3	100 - 96	19.811	42	1.724	0.004
L4	96 - 91	18.368	42	1.719	0.004
L5	91 - 86	16.579	42	1.696	0.004
L6	86 - 8 1	14.823	42	1.655	0.004
L7	81 - 76	13.120	42	1.594	0.004
L8	7 6 - 71	11.492	42	1.515	0.004
L9	71 - 66	9.953	42	1.421	0.003
L10	66 - 6 1	8.520	42	1.316	0.003
L11	61 - 56	7.201	42	1.202	0.003
L12	56 - 51	6.004	42	1.083	0.002
L13	51 - 4 6	4.933	42	0.961	0.002
L14	5 0 - 4 5	4.734	42	0.936	0.002
L15	45 - 4 0	3.785	42	0.868	0.002
L16	40 - 35	2.933	42	0.760	0.002
L17	35 - 30	2.193	42	0.652	0.001
L18	30 - 25	1.566	42	0.545	0.001
L19	25 - 20	1.051	42	0.438	0.001
L20	20 - 19.75	0.648	42	0.332	0.001
L21	19.75 - 14.75	0.631	42	0.328	0.001
L22	14.75 - 10	0.337	42	0.233	0.000
L23	10 - 9.75	0.150	42	0.144	0.000
L24	. 9.75 - 5	0.143	42	0.140	0.000
L25	5 â.4.75	0.037	42	0.072	0.000
L26	∂ 4.75 - 0	0.034	42	0.068	0.000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
<u>tt</u>		Comb.	in			ft
100.00	7770.00 w/ Mount Pipe	42	19.811	1.724	0.004	86715
90.00	BXA-80063-6BF-EDIN-4 w/ Mount Pipe	42	16.225	1.689	0.004	8162
80.00	MX08FRO665-21 w/ Mount Pipe	42	12.788	1.579	0.004	38 9 5

Section	Elevation	Horz,	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	٥
L1	110 - 105	101.621	8	7.503	0.015
L2	105 - 100	93.787	8	7.502	0.015
L3	100 <i>-</i> 96	85.954	8	7.499	0.015
L4	96 - 91	79.696	8	7.478	0.016
L5	91 - 86	71.936	8 8	7.375	0.018
L6	86 - 81	64.318	8	7.198	0.017
L7	81 - 76	56.932	8	6.930	0.017
L8	76 - 71	49.865	8	6.587	0.016
L9	71 - 66	43,190	8	6.177	0.014
L10	66 - 6 1	36.969	8	5.719	0.013
L11	61 - 56	31,245	8	5.225	0.011
L12	56 - 51	26.049	8	4.707	0.010
L13	51 - 4 6	21.403	8	4.173	0,008
L14	50 - 45	20.541	8	4.064	0.008
L15	45 - 40	16.423	8	3.770	0.007
L16	40 - 35	12.722	8	3.301	0.006
L17	35 - 30	9.512	8	2.832	0.005
L18	30 - 25	6,792	8	2.365	0.004
L19	25 - 20	4.559	8	1.901	0.003
L20	20 - 19.75	2.809	8	1.442	0.003
L21	19.75 - 14.75	2.734	8 8	1.421	0.002
L22	14.75 - 10	1.462	8	1.009	0,002
L23	10 - 9.75	0.651	8 8	0.623	0.001
L24	9.75 - 5	0.619	8	0.607	0.001
L25	5 - 4.75	0.162	8 8	0.311	0.000
L26	4.75 - 0	0.147	8	0.295	0.000

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	٠	•	ft
100.00	7770.00 w/ Mount Pipe	8	85.954	7.499	0.015	20415
90.00	BXA-80063-6BF-EDIN-4 w/	8	70.398	7.346	0.018	1931
	Mount Pipe					
80.00	MX08FRO665-21 w/ Mount Pipe	8	55.491	6.867	0.016	918

Compression Checks

Pole Design Data

Section No.	Elevation	Size	L	Lu	KI/r	Α	Pu	φPn	Ratio P _u
	ft		ft	ft		in²	K	K	${\Phi P_0}$
L1	110 - 105 (1)	TP15.5714x14.5x0.375	5.00	0.00	0.0	18.087 5	-0.369	744.267	0.000
L2	105 - 100 (2)	TP16.6429x15.5714x0.37 5	5.00	0.00	0.0	19.362 8	-0.763	796.741	0.001
L3	100 - 96 (3)	TP17.5x16.6429x0.375	4.00	0.00	0.0	20.383 0	-4.869	838.721	0.006
L4	96 - 91 (4)	TP18.548x17.5x0.25	5.00	0.00	0.0	14.519 5	-5.218	1078.720	0.005
L5	91 - 86 (5)	TP19.596x18.548x0.25	5.00	0.00	0.0	15.351 1	-10.453	1140,510	0.009
L6	86 - 81 (6)	TP20.644x19.596x0.25	5.00	0.00	0.0	16.182	-10.932	1202.290	0.009

Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	φPn	Ratio Pu
·	ft		ft	ft		in²	K	K	${\phi P_n}$
L7	81 - 76 (7)	TP21.692x20,644x0.25	5.00	0.00	0.0	6 17.014 2	-14,048	1264.070	0.011
L8	76 - 71 (8)	TP22,74x21,692x0.25	5.00	0.00	0.0	17.845	-14.660	1325.850	0.011
L9	71 - 66 (9)	TP23,788x22,74x0.25	5.00	0.00	0.0	8 18.677	-15.423	1387.640	0.011
L10	66 - 61 (10)	TP24.836x23.788x0.25	5.00	0.00	0.0	19.509 0	-16.224	1449.420	0.011
L11	61 - 56 (11)	TP25.884x24.836x0.25	5.00	0.00	0.0	20.340 6	-17.060	1501.830	0.011
L12	56 - 51 (12)	TP26.932x25.884x0.25	5.00	0.00	0.0	21.172 2	-17.930	1546.690	0.012
L13	51 - 46 (13)	TP27.98x26.932x0.25	5.00	0.00	0.0	21.338 5	-18.108	1555,510	0.012
L14	46 - 45 (14)	TP27.6774x26.6416x0.31	5.00	0.00	0.0	27.142 6	-19.382	2016,560	0.010
L15	45 - 40 (15)	TP28.7133x27.6774x0.31	5.00	0.00	0.0	28.170 0	-20.392	2092.890	0.010
L16	40 - 35 (16)	TP29.7491x28.7133x0.31	5.00	0.00	0.0	29.197 4	-21.434	2169.220	0.010
L17	35 - 30 (17)	TP30.785x29.7491x0.312	5.00	0.00	0.0	30.224	-22,505	2245.560	0.010
L18	30 - 25 (18)	TP31.8208x30.785x0.312	5.00	0.00	0.0	31.252 3	-23,604	2317.440	0.010
L19	25 - 20 (19)	TP32,8566x31.8208x0.31	5.00	0.00	0.0	32.279 7	-24.703	2373.690	0.010
L20	20 - 19.75 (20)	TP32.9084x32.8566x0.34	0.25	0.00	0.0	35.530 1	-24.769	2639.710	0.009
L21	19.75 - 14.75 (21)	TP33.9443x32.9084x0.34	5.00	0.00	0.0	36.660 3	-25.807	2723.670	0.009
L22	14.75 - 10 (22)	TP34.9283x33.9443x0.34	4.75	0.00	0.0	37.733 9	-26.826	2799.590	0.010
L23	10 - 9.75 (23)	TP34.9801x34.9283x0.45	0.25	0.00	0.0	49.319	-26.900	3664.180	0.007
L24	9.75 - 5 (24)	TP35.9642x34.9801x0.44	4.75	0.00	0.0	50.029 2	-27.975	3716.920	0.008
L25	5 - 4.75 (25)	TP36.016x35.9642x0.443	0.25	0.00	0.0	50.102	-28.044	3722.340	0.008
L26	4.75 - 0 (26)	TP37x36.016x0.4375	4.75	0.00	0.0	50.771 6	-29.113	3772.080	0.008

Pole Bending D	Design Data
----------------	-------------

Section No.	Elevation	Size	M _{ux}	φM _{nx}	Ratio Μ _{ια}	Muy	φM _{ny}	Ratio M _{uy}
	ft :	- · · · · · · · · · · · · · · · · · · ·	kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	φM _{nv}
L1	110 - 105 (1)	TP15.5714x14.5x0.375	0.52	228.76	0.002	0.00	228.76	0.000
L2	105 - 100 (2)	TP16.6429x15.5714x0.37 5	2.12	262.57	800.0	0.00	262.57	0.000
L3	100 - 96 (3)	TP17.5x16.6429x0.375	25.47	291.30	0.087	0.00	291.30	0.000
L4	96 - 91 (4)	TP18.548x17.5x0.25	57.10	403.56	0.141	0.00	403.56	0.000
L5	91 - 86 (5)	TP19.596x18.548x0.25	115.57	451.44	0.256	0.00	451.44	0.000
L6	86 - 81 (6)	TP20.644x19.596x0.25	182,85	502.01	0.364	0.00	502.01	0.000
L7	81 - 76 (7)	TP21.692x20.644x0.25	263.68	555,26	0.475	0.00	555.26	0.000
L8 .	76 - 71 (8)	TP22.74x21.692x0.25	350.13	611.19	0.573	0.00	611.19	0.000
L9	71 - 66 (9)	TP23.788x22.74x0.25	439.39	669.81	0.656	0.00	669.81	0.000
L10	66 - 61 (ÌÓ)	TP24.836x23.788x0.25	531.42	731,11	0.727	0.00	731.11	0.000
L11	61 - 56 (11)	TP25.884x24.836x0.25	626.15	790.16	0.792	0.00	790.16	0.000
L12	56 - 51 (12)	TP26.932x25.884x0.25	723.49	847.35	0.854	0.00	847.35	0.000
L13	51 - 46 (13)	TP27.98x26.932x0.25	743.27	858.94	0.865	0.00	858.94	0.000
L14	46 - 45 (14)	TP27.6774x26.6416x0.31 25	843.96	1130.75	0.746	0.00	1130.75	0.000
L15	45 - 40 (15)	TP28.7133x27.6774x0.31 25	947.36	1218.47	0.777	0.00	1218.47	0.000

Section No.	Elevation	Size	M _{ux}	ф <i>М_{пх}</i>	Ratio M _{ux}	M _{uy}	ф <i>М_{пу}</i>	Ratio M _{uy}
	ft		kip-ft	klp-ft	ϕM_{nx}	kip-ft	kip-ft	φMny
L16	40 - 35 (16)	TP29.7491x28.7133x0.31 25	1 05 3. 1 9	1309.48	0.804	0.00	1309.48	0.000
L17	35 - 30 (17)	TP30.785x29.7491x0.312 5	1161.37	1403.76	0.827	0.00	1403.76	0.000
L18	30 - 25 (18)	TP31.8208x30,785x0.312 5	1271.76	1498.44	0.849	0.00	1498.44	0.000
L19	25 - 20 (19)	TP32.8566x31.8208x0.31 25	1384.41	1585.77	0.873	0.00	1585.77	0.000
L20	20 - 19.75 (20)	TP32.9084x32.8566x0.34 38	1390.10	1762,93	0.789	0.00	1762.93	0.000
L21	19.75 - 14.75 (21)	TP33.9443x32.9084x0.34 38	1505.11	1877.47	0.802	0.00	1877.47	0.000
L22	14.75 - 10 (22)	TP34.9283x33.9443x0.34 38	1616.43	1986.89	0.814	0.00	1986.89	0.000
L23	10 - 9.75 (23)	TP34.9801x34.9283x0.45	1622.33	2588.47	0.627	0.00	2588.47	0.000
L24	9.75 - 5 (24)	TP35.9642x34.9801x0.44 38	1735.85	2702.47	0.642	0.00	2702.47	0.000
L25	5 - 4.75 (25)	TP36.016x35.9642x0.443 8	1741.89	2710.41	0.643	0.00	2710.41	0.000
L26	4.75 - 0 (26)	TP37x36.016x0.4375	1856.99	2824.51	0.657	0.00	2824.51	0.000

Pole	Shea	r Desian	Data

Section	Elevation	Size	Actual	φVa	Ratio	Actual	ϕT_n	Ratio
No.			V_u		V_{u}	T_u		T_{u}
	ft		K	K	$\overline{\phi V_n}$	kip-ft	kip-ft	$\overline{\phi T_n}$
L1	110 - 105 (1)	TP15.5714x14.5x0.375	0.211	372.133	0.001	0.00	459.76	0.000
L2	105 - 100 (2)	TP16.6429x15.5714x0.37	0.430	398.371	0.001	0.00	527.59	0.000
		5						
L3	100 - 96 (3)	TP17.5x16.6429x0.375	6.060	419.361	0.014	0.48	585.21	0.001
L4	96 - 91 (4)	TP18.548x17.5x0.25	6.600	539,362	0.012	0.31	809.77	0.000
L5	91 - 86 (5)	TP19.596x18.548x0.25	13.182	570.253	0.023	0.21	905.75	0.000
L6	86 - 81 (6)	TP20.644x19.596x0.25	13.742	601.145	0.023	0.42	1007.10	0.000
L7	81 - 76 (7)	TP21.692x20.644x0.25	17.022	632.036	0.027	0.73	1113.83	0.001
L8	76 - 71 (8)	TP22.74x21.692x0.25	17.582	662.927	0.027	0.93	1225.93	0.001
L9	71 - 66 (9)	TP23.788x22.74x0.25	18.147	693.819	0.026	1.04	1343.40	0.001
L10	66 - 61 (10)	TP24.836x23.788x0.25	18.695	724.710	0.026	1.15	1466.24	0.001
L11	61 - 56 (11)	TP25.884x24.836x0.25	19.228	750.914	0.026	1.27	1584.58	0.001
L12	56 - 51 (12)	TP26.932x25,884x0.25	19.744	773.346	0.026	1.39	1699.18	0.001
L13	51 - 46 (13)	TP27.98x26.932x0.25	19.842	777.755	0.026	1.41	1722.39	0.001
L14	46 - 45 (14)	TP27.6774x26.6416x0.31 25	20.447	1008.280	0.020	1.53	2268.16	0.001
L15	45 - 40 (15)	TP28.7133x27.6774x0.31 25	20.947	1046.450	0.020	1.64	2443.97	0.001
L16	40 - 35 (16)	TP29.7491x28.7133x0.31 25	21.425	1084.610	0.020	1.76	2626.35	0.001
L17	. 35 - 30 (17)	TP30.785x29.7491x0.312 5	21.879	1122.780	0.019	1.88	2815.30	0.001
L18	30 - 25 (18)	TP31.8208x30.785x0.312 5	22.319	1158.720	0.019	1.99	3005.03	0.001
L19	25 - 20 (19)	TP32.8566x31.8208x0.31 25	22.779	1 18 6.840	0.019	2.12	3180.00	0.001
L20	20 - 19.75 (20)	TP32.9084x32.8566x0.34 38	22.789	1319.850	0.017	2.12	3535.78	0.001
L21	19.75 - 14.75 (21)	TP33.9443x32.9084x0.34 38	23.242	1361.840	0.017	2.14	3765.32	0.001
L22	14.75 - 10 (22)	TP34.9283x33.9443x0.34 38	23.668	1399.800	0.017	2.16	3984.60	0.001
L23	10 - 9.75 (23)	TP34.9801x34.9283x0.45	23.676	1832.090	0.013	2.16	5193.43	0.000
L24	9.75 - 5 (24)	TP35.9642x34.9801x0.44	24,146	1858.460	0.013	2.17	5421.72	0.000
	,/	38						
L25	5 - 4.75 (25)	TP36.016x35.9642x0.443 8	24.156	1861.170	0.013	2.17	5437.63	0.000
L26	4.75 - 0 (26)	TP37x36.016x0.4375	24.334	1886.040	0.013	2.17	5666.11	0.000

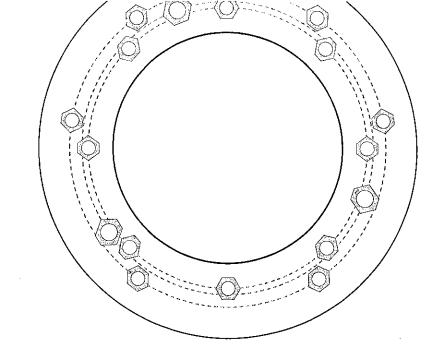
No. V_u V_u V_u T_u T_u T_u T_u T_u T_u	Section	Elevation	Size	Actual	φVn	Ratio	Actual	ϕT_n	Ratio
γ γ γ γ γ γ γ γ γ γ	No.			V_u		V_u	T_u		T_u
		ft		K	K	$\overline{\phi V_n}$		KIP-II	

Pole Interaction Design Data

) 									
Section	Elevation	Ratio	Ratio	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
No.		P_u	Mux	Muy	V	T_u	Stress	Stress	
	ft	ϕP_n	φM _{nx}	ϕM_{ny}	φVn	<u> </u>	Ratio	Ratio	
L1	110 - 105 (1)	0.000	0.002	0.000	0.001	0,000	0.003	1.000	4.8.2
L2	105 - 100 (2)	0.001	0.008	0.000	0.001	0.000	0.009	1.000	4.8.2
L3	100 - 96 (3)	0.006	0.087	0.000	0.014	0.001	0.093	1.000	4.8.2
L4	96 - 91 (4)	0.005	0.141	0.000	0.012	0.000	0.146	1.000	4.8.2
L5	91 - 86 (5)	0.009	0.256	0.000	0.023	0.000	0,266	1.000	4.8.2
L6	86 - 81 (6)	0.009	0.364	0.000	0.023	0.000	0.374	1.000	4.8.2
L7	81 - 76 (7)	0.011	0.475	0.000	0.027	0.001	0.487	1.000	4.8.2
L8	76 - 71 (8)	0.011	0.573	0.000	0.027	0.001	0.585	1.000	4.8.2
L9	71 - 66 (9)	0.011	0.656	0.000	0.026	0.001	0.668	1.000	4.8.2
L10	66 - 61 (10)	0.011	0.727	0.000	0.026	0.001	0.739	1.000	4.8.2
L11	61 - 56 (11)	0.011	0.792	0.000	0.026	0.001	0.804	1.000	4.8.2
L12	56 - 51 (12)	0.012	0.854	0.000	0.026	0.001	0.866	1.000	4.8.2
L13	51 - 46 (13)	0.012	0.865	0.000	0.026	0.001	0.878	1.000	4.8.2
L14	46 - 45 (14)	0.010	0.746	0.000	0.020	0.001	0.756	1.000	4.8.2
L15	45 - 40 (15)	0.010	0.777	0.000	0.020	0.001	0.788	1.000	4.8.2
L16	40 - 35 (16)	0.010	0.804	0.000	0.020	0.001	0.815	1.000	4.8.2
L17	35 - 30 (17)	0.010	0.827	0.000	0.019	0.001	0.838	1,000	4.8.2
L18	30 - 25 (18)	0.010	0.849	0.000	0.019	0.001	0.859	1.000	4.8.2
L19	25 - 20 (19)	0.010	0.873	0.000	0.019	0.001	0.884	1.000	4.8.2
L20	20 - 19.75	0.009	0.789	0.000	0.017	0.001	0.798	1.000	4.8.2
	(20)								
L21	19.75 - 14.75	0.009	0.802	0.000	0.017	0.001	0.811	1.000	4.8.2
	(21)								
L22	14.75 - 10	0.010	0.814	0.000	0.017	0.001	0.823	1.000	4.8.2
	(22)								
L23	10 - 9.75 (23)	0.007	0.627	0.000	0.013	0.000	0.634	1.000	4.8.2
L24	9.75 - 5 (24)	800.0	0.642	0.000	0.013	0.000	0.650	1.000	4.8.2
L25	5 - 4.75 (25)	800.0	0.643	0.000	0.013	0.000	0.650	1.000	4.8.2
L26	4.75 - 0 (26)	800.0	0.657	0.000	0.013	0.000	0.665	1.000	4.8.2
	<u> </u>								

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øPa#ow K	% Capacity	Pass Fail
L1	110 - 105	Pole	TP15.5714x14.5x0.375	1	-0.369	744.267	0.3	Pass
L2	105 - 100	Pole	TP16.6429x15.5714x0.375	2	-0.763	796.741	0.9	Pass
L3	100 - 96	Pole	TP17.5x16.6429x0.375	3	-4.869	838.721	9.3	Pass
L4	96 - 91	Pole	TP18.548x17.5x0.25	4	-5.218	1078.720	14.6	Pass
L5	91 - 86	Pole	TP19.596x18.548x0.25	5	-10.453	1140.510	26,6	Pass
L6	86 - 81	Pole	TP20.644x19.596x0.25	6	-10.932	1202.290	37.4	Pass
L7	81 - 76	Pole	TP21.692x20.644x0.25	7	-14.048	1264.070	48.7	Pass
L8	76 - 71	Pole	TP22.74x21.692x0.25	8	-14.660	1325.850	58,5	Pass
L9	71 - 66	Pole	TP23.788x22.74x0.25	9	-15,423	1387.640	66.8	Pass
L10	66 - 61	Pole	TP24.836x23.788x0.25	10	-16.224	1449,420	73.9	Pass
L11	61 - 56	Pole	TP25.884x24.836x0.25	11	-17.060	1501.830	80.4	Pass
L12	56 - 51	Pole	TP26.932x25.884x0.25	12	-17,930	1546,690	86.6	Pass
L13	51 - 46	Pole	TP27.98x26.932x0.25	13	-18.108	1555.510	87.8	Pass
L14	46 - 45	Pole	TP27.6774x26.6416x0.3125	14	-19.382	2016.560	75.6	Pass
L15	45 - 40	Pole	TP28.7133x27.6774x0.3125	15	-20.392	2092.890	78.8	Pass
L16	40 - 35	Pole	TP29.7491x28.7133x0.3125	16	-21.434	2169,220	81.5	Pass


Section	Elevation	Component	Size	Critical	Р	øP _{allow}	%	Pass
No.	ft	Type		Element	K	K	Capacity	Fail
L17	35 - 30	Pole	TP30.785x29.7491x0.3125	17	-22.505	2245.560	83,8	Pass
L18	30 - 25	Pole	TP31.8208x30.785x0.3125	18	-23,604	2317.440	85.9	Pass
L19	25 - 20	Pole	TP32.8566x31.8208x0,3125	19	-24.703	2373,690	88.4	Pass
L20	20 - 19.75	Pole	TP32.9084x32.8566x0.3438	20	-24.769	2639.710	79.8	Pass
L21	19.75 - 14.75	Pole	TP33.9443x32.9084x0.3438	21	-25.807	2723.670	81.1	Pass
L22	14.75 - 10	Pole	TP34.9283x33.9443x0.3438	22	-26.826	2799.590	82,3	Pass
L23	10 - 9.75	Pole	TP34.9801x34.9283x0.45	23	-26,900	3664.180	63.4	Pass
L24	9.75 - 5	Pole	TP35.9642x34.9801x0,4438	24	-27.975	3716.920	65.0	Pass
L25	5 - 4,75	Pole	TP36.016x35,9642x0.4438	25	-28.044	3722.340	65.0	Pass
L26	4.75 - 0	Pole	TP37x36.016x0.4375	26	-29.113	3772.080	66.5	Pass
							Summary	
						Pole (L19)	88.4	Pass
						RATING =	88.4	Pass

^{*}NOTE: Above stress ratios for reinforced sections are approximate. More exact calculations are presented in Appendix B.

APPENDIX B ADDITIONAL CALCULATIONS

erations	
Revision	G
nsidered:	No
l _{ar} (in)	0
Factor, η	0.5

ıt (kip-ft)	1857.00
rce (kips)	29.11
rce (kips)	24.33

Connection Properties		Aı	nalysis Results	
ta		Anchor Rod Summary	(ui	nits of
!-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=	100 ksi) on 45" BC	GROUP 1:		
!-1/4" ø bolts (A193 Gr. B7 N; Fy=105 ksi,	Fu=125 ksi) on 51" BC	Pu_c = 105.78	φPn_t = 260	St
0, 55, 125, 170, 235, 305		Vu = 1.31	φVn = n/a	
		Mu = n/a	φMn = n/a	
!-3/4" ø bolts (A193 Gr. B7 N; Fy=95 ksi, I	Fu=115 ksi) on 47" BC			
10, 215, 340		GROUP 2:		
		Pu_c = 116.86	φPn_t = 325	St
1		Vu = 1.31	φVn = n/a	
late (A871-GR60; Fy=60 ksi, Fu=75 ksi)	· · · · ·	Mu = n/a	φMn = n/a	
		GROUP 3:		
		Pu_c = 156.45	Φ Pn_t = 453.56	St
		Vu = 1.99	фVn = n/a	
		Mu = n/a	φMn = n/a	
8-sided pole (A572-65; Fy=65 ksi, Fu=80	ksi)		•	
		Base Plate Summary		
	*	Max Stress (ksi):	30.78	
		Allowable Stress (ksi):	54	
	and the second s	Stress Rating:	57.0%	

MONOPOLE REINFORCEMENT

Site Name: NJJER01128B

Work Order: 10710.NJJER01128B

Pole Geometry

	Pole Height Above		Lap Splice Length			Bottom Diameter	:		
	Base (ft)	Section Length (ft)	(ft)	Number of Sides	Top Diameter (in)	(in)	Wall Thickness (in)	Bend Radius (in)	Pole Material
1	110	14	0	18	14.5	17.5	0.375	Auto	A36
2	96	50	4	18	17.50	27.98	0.25	Auto	A572-65
3	50	50	0	18	26.64	37	0.3125	Auto	A572-65

Reinforcement Configuration

							-														
	Bottom Effective	Top Effective					·														
	Elevation (ft)	Elevation (ft)	Туре	Model	Number	1	2 3	4	5	6	7	∞	9	10	11 1	12 13	3 14	15	16	17	18
=	0	20	channel	MC6x15.3	2		X	100							\dashv		\dashv	×	n/Activ		
2	5	20	channel	MC6x15.3	1		\dashv	\Box				\dashv	7	×	\dashv	\dashv			ightharpoonup		
e e	0	10	channel	MC6x15.3	1		_					相關	×	\dashv		\dashv	_		\bot		
4							\dashv		_				\dashv	\dashv		\dashv	_				
5																-	_				
9								\sqcup					\dashv			\dashv	4				
												\dashv	\dashv	\dashv		_	\dashv				
8													_								
9															+	-	\dashv	_			
10							\dashv	\dashv	_			\exists	\dashv	\dashv	-	\dashv	4	_	_		

Rein	Reinforcement Details	tails								
					Bottom	Top	:			
				Pole Face to	Termination	Termination			-	Reinforcement
	B (in)	H (in)	Gross Area (in ²)	Centroid (in)	Length (in)	Length (in)	L _u (in)	Net Area (in²)	Net Area (in²) Bolt Hole Size (in)	Material
	9	3.5	4.49	0.5	20.500	20.500	16.000	4.065	1.1875	A572-65
2	9	3.5	4.49	0.5	20.500	20.500	16.000	4.065	1.1875	A572-65
8	9	3.5	4.49	0.5	20.500	20.500	16.000	4.065	1.1875	A572-65

76	5		18	20.644	21.692	0.25	A572-6
71	5		18	21.692	22.740	0.25	A572-6
66	5		18	22.740	23.788	0.25	A572-6
61	5		18	23.788	24.836	0.25	A572-6
56	5		18	24.836	25.884	0.25	A572-6
51	5		18	25.884	26.932	0.25	A572-6
50	5	4	18	26.932	27.980	0.25	A572-6
45	5		18	26.642	27.677	0.3125	A572-6
40	, 5		18	27.677	28.713	0.3125	A572-6!
35	5		18	28.713	29.749	0.3125	A572-6
30	5		18	29.749	30.785	0.3125	A572-6
25	5		18	30.785	31.821	0.3125	A572-6
20	5		18	31.821	32.857	0.3125	A572-6
19.75	0.25		18	32.857	32.908	0.34375	A572-6
14.75	5		18	32.908	33.944	0.34375	A572-6
10	4.75		18	33.944	34.928	0.34375	A572-6
9.75	0.25		18	34.928	34.980	0.45	A572-6
5	4.75		18	34.980	35.964	0.44375	A572-6
4.75	0.25		18	35.964	36.016	0.44375	A572-6
0	4.75		18	36.016	37.000	0.4375	A572-6

TNX Section Forces

Inc	crement (fl	t):	5			Т	NX Outpu	ıt
			•	,			M _{ux} (kip-	
	Section	Hei	ight (f	t)	Pu	(K)	ft)	V _u (K)
1	110	-	105			0.37	0.52	0.21
2	105	-	100			0.76	2.12	0.43
3	100	•	96			4.87	25.47	6.06
4	96	1	91			5.22	57.10	6.60
5	91	-	86			10.45	115.57	13.18
6	86	-	81			10.93	182.85	13.74
7	81	-	76			14.05	263.68	17.02
8	76	-	71			14.66	350.14	17.58
9	71	-	66			15.42	439.39	18.15
10	66	-	61			16.22	531.42	18.70
- 11	61	-	56			17.06	626.15	19.23
12	56	-	51			17.93	723.49	19.74
13	51	-	50			18.11	743.27	19.84
14	50	-	45			19.38	843.96	20.45
15	45	-	40			20.39	947.36	20.95
16	40	-	35			21.43	1053.20	21.43
17	35	-	30			22.50	1161.36	21.88
18	30	-	25			23.60	1271.76	22.32
19	25	-	20			24.70	1384.41	22.78
20	20	-	19.7	5		24.77	1390.10	22.79
21	19.75	-	14.7	5		25.81	1505.11	23.24
22	14.75	-	10			26,83	1616.42	23.67
23	10	-	9.75			26.90	1622.34	23.68
24	9.75	-	5			27.97	1735.85	24.15
25	5	-	4.75			28.04	1741.89	24.16
26	4,75	_	0			29.11	1857.00	24.33

Elevation (ft)	Туре	Size	Critical Element	% Capacity	Pass / Fai
110 - 105	Pole	TP15.571x14.5x0.375	Pole	0.3%	Pass
105 - 100	Pole	TP16.643x15.571x0.375	Pole	0.9%	Pass
100 - 96	Pole	TP17.5x16.643x0.375	Pole	9.3%	Pass
96 - 91	Pole	TP18.548x17.5x0.25	Pole	14.6%	Pass
91 - 86	Pole	TP19.596x18.548x0.25	Pole	26.6%	Pass
86 - 81	Pole	TP20,644x19,596x0.25	Pole	37.4%	Pass
81 - 76	Pole	TP21.692x20.644x0.25	Pole	48.6%	Pass
76 - 71	Pole	TP22.74x21.692x0.25	Pole	58.4%	Pass
71 - 66	Pole	TP23.788x22.74x0.25	Pole	66.7%	Pass
66 - 61	Pole	TP24.836x23.788x0.25	Pole	73.8%	Pass
61 - 56	Pole	TP25.884x24.836x0.25	Pole	80.4%	Pass
56 - 51	Pole	TP26.932x25.884x0.25	Pole	86.6%	Pass
51 - 50	Pole	TP27.98x26.932x0.25	Pole	87.8%	Pass
50 - 45	Pole	TP27.677x26.642x0.3125	Pole	75.6%	Pass
45 - 40	Pole	TP28.713x27.677x0.3125	Pole	78.7%	Pass
40 - 35	Pole	TP29.749x28.713x0.3125	Pole	81.4%	Pass
35 - 30	Pole.	TP30.785x29.749x0.3125	Pole	83.7%	Pass
30 - 25	Pole	TP31.821x30.785x0.3125	Pole	85.9%	Pass
25 - 20	Pole	TP32.857x31.821x0.3125	Pole	88.4%	Pass
20 - 19.75	Pole + Reinf.	TP32.908x32.857x0.3438	Pole	87.1%	Pass
19.75 - 14.75	Pole + Reinf.	TP33.944x32.908x0.3438	Pole	89.4%	Pass
14.75 - 10	Pole + Reinf.	TP34.928x33.944x0.3438	Pole	91.3%	Pass
10 - 9.75	Pole + Reinf.	TP34.98x34.928x0.45	Reinf. 1 Tension Rupture	90.3%	Pass
9.75 - 5	Pole + Reinf.	TP35.964x34.98x0.4438	Reinf. 1 Tension Rupture	92.1%	Pass
5 - 4.75	Pole + Reinf.	TP36.016x35.964x0.4438	Reinf. 1 Tension Rupture	92.2%	Pass
4.75 - 0	Pole + Reinf.	TP37x36.016x0.4375	Reinf. 1 Tension Rupture	93.8%	Pass
	: .			Summary	
			Pole	91.3%	Pass
			Reinforcement	93.8%	Pass
			Overall	93.8%	Pass

J - 96	755	n/a	755	20.38	n/a	20.38	9.3%			Ŧ
- 91	614	n/a	614	14.52	n/a	14.52	14.6%		·	T
- 86	726	n/a	726	15.35	n/a	15.35	26.6%			†
- 81	850	n/a	850	16.18	n/a	16.18	37.4%	-	_	
- 76	988	n/a	988	17.01	n/a	17.01	48.6%			
i - 71	1140	n/a	1140	17.85	n/a	17.85	58.4%	_		\vdash
- 66	1307	n/a	1307	18.68	n/a	18.68	66.7%			T
- 61	1489	n/a	1489	19.51	n/a	19.51	73.8%			
- 56	1688	n/a	1688	20.34	n/a	20.34	80.4%			T
- 51	1904	n/a	1904	21.17	n/a	21.17	86.6%			\top
- 50	1949	n/a	1949	21.34	n/a	21.34	87.8%		·	
- 45	2567	n/a	2567	27.14	n/a	27.14	75.6%			<u> </u>
- 40	2870	n/a	2870	28.17	n/a	28.17	78.7%		-	
l~ 35	3195	n/a	3195	29.20	n/a	29,20	81.4%			<u> </u>
- 30	3545	n/a	3545	30.22	n/a	30.22	83.7%		<u> </u>	\top
- 25	3918	n/a	3918	31.25	n/a	31.25	85.9%			T
- 20	4318	n/a	4318	32,28	n/a	32.28	88.4%			\Box
19.75	4447	418	4866	32.33	8.98	41.31	87.1%	87.0%		T
- 14.75	4879	449	5328	33.36	8.98	42.34	89.4%	89.2%		
⁷ 5 - 10	5314	480	5794	34.33	8.98	43.31	91.3%	91.1%		†
9.75	5219	2192	7411	34.38	13.47	47.85	64.5%	90.3%		
/5 - 5	5676	2312	7989	35.36	13.47	48.83	66.3%	92.1%	<u>. </u>	Ţ
4.75	5701	2319	8020	35.41	13.47	48.88	66.4%	92.2%		Ţ
/5 - O	6186	2443	8629	36.39	13.47	49.86	68.2%	93.8%		T ,

ion capacity checked in 5 degree increments.

CONNECTICUT DESIGN CRITERIA - STATE

Revison:

CT is NOT a Home Rule State; Tab added only for Design Criteria

(APPENDIX N) M	<u>UNICIPAI</u>	<u>LITY - SPE</u>	CIFIC ST				ETERS		
					esign Par		T -> "	<u> </u>	<u> </u>
>	I≽		CE	I	mate Desi	_	I	nal Desigr	
alit.	2	Spe		S _I	peeds, Vu	# (mph)	Spec	e ds ,Vasd (mph)
ipa	Load	Accelerat	ions (%g)						
Municipality	Ground Snow Load	Ss	S ₁	Risk	Risk	Risk Cat III-	Risk Cat.	Risk Cat.	Risk Cat.
N	<u>ē</u>			Cat.I	Cat.II	liv	li	11	III-IV
_	ام				1				
Andover	30	0.176	0.063	120	130	140	93	101	108
Ansonia	_30	0.195	0.064	.115.	125	135	89	97	105
Ashford	35	0.173	0.063	120	130	140	93	101	108
Avon	35	0.181	0.064	110	120	130	85	93	101
Barkhamsted	40	0.177	0.065	110	120	125	85	93	97
Beacon Falls	30	0.192	0.064	115	125	135	89	97	105
Berlin	30	0.183	0.063	115	125	135	89	97	105
Bethany	30	0.189	0.063	115	125	135	89	97	105
Bethel	30	0.215	0.066	110	120	125	85	93	97
Bethlehem	35	0.190	0.065	110	120	125	85	93	97
Bloomfield	35	0.180	0.064	115	125	130	89	97	101
Bolton	30	0.177	0.063	115	125	135	89	97	105
Bozrah	30	0.170	0.061	120	135	145	93	105	112
Branford	30	0.180	0.061	120	130	140	93	101	108
Bridgeport	30	0.209	0.064	115	125	135	89	97	105
Bridgewater	35	0.201	0.066	110	120	125	85	93	97
Bristol	35	0.185	0.064	110	120	130	85	93	101
Brookfield	35	0.208	0.066	110	120	125	85	93	97
Brooklyn	35	0.171	0.062	120	130	140 -	93	101	108
Burlington	35	0.182	0.064	110	120	130	85	93	101
Canaan	40	0.173	0.065	105	115	120	81	89	93
Canterbury	35	0.171	0.061	120	130	140	93	101	108
Canton	35	0.180	0.064	110	120	130	85	93	101
Chaplin	35	0.173	0.062	120	130	140	93	101	108
Cheshire	30	0.186	0.063	115	125	135	89	97	105
Chester	30	0.172	0.060	120	130	140	93	101	108
Clinton	30	0.169	0.059	120	135	140	93	105	108
Colchester	30	0.174	0.061	120	130	140	93	101	108
Colebrook file	40	0.174	0.065	105	115	125	81	89	97
Columbia 🗀	30	0.175	0.062	120	130	140	93	101	108
Cornwall 1991	40	0.180	0.065	105	115	120	81	89	93
Coventry	30	0.176	0.063	120	130	140	93	101	108
Cromwell	30	0.181	0.063	115	125	135	89	97	105
Danbury	30	0.217	0.067	110	120	125	85	93	97
Darien	. 30	0.242	0.068	110	120	130	85	93	101
Deep River	30	0.170	0.060	120	130	140	93	101	108
Derby	30	0.195	0.064	115	125	135	89	97	105
Durham	30	0.179	0.062	115	130	140	89	101	108
Eastford	··· 40	0.172	0.063	120	130	140	93	101	108
East Granby	35	0.177	0.065	110	120	130	85	93	101
East Haddam	30	0.172	0.061	120	130	140	93	101	108
East Hampton	30	0.177	0.062	120	130	140	93	101	108

Exhibit E Mount Analysis

Date: February 23, 2022

Mount Analysis Report

Project Information:

Carrier: Site Number:

Site Address: Site Type:

Dish Wireless NJJER01128B

48 Newton Road, Danbury, Fairfield County, CT 06810

Platform w/ Railing Mount on Monopole

Tectonic Project Number:

10710.NJJER01128B

Tectonic Engineering Consultants, Geologists & Land Surveyors, D.P.C. is pleased to submit this "Mount Analysis Report" to determine the structural integrity of the above-mentioned proposed mount.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Mount:

Sufficient - 29%

This analysis has been performed in accordance with the 2018 Connecticut State Building Code based upon an ultimate 3-second gust wind speed of 120 mph converted to a nominal 3-second gust wind speed of 93 mph per Section 1609.3 and Appendix N as required for use in the TIA-222-G Standard per Exception #5 of Section 1609.1.1. Exposure Category B with a maximum topographic factor, Kzt, of 1.0 and Risk Category II was used in this analysis.

We at Tectonic appreciate the opportunity of providing our continuing professional services to you and Dish Wireless. If you have any questions or need further assistance on this or any other projects, please give us a call.

Structural analysis prepared by: John-Fritz Julien / Ian Marinaccio

Respectfully submitted by:

Tectonic Engineering Consultants, Geologists & Land Surveyors D.P.C. PEN.0028473

Edward N. Iamiceli, P.E.

Managing Director - Structural

Project Contact Info

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Loading Information

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity 4.1) Result / Conclusions

5) APPENDIX A

Software Input Calculations

6) APPENDIX B

Wire Frame and Rendered Models

7) APPENDIX C

Software Analysis Output

8) APPENDIX D - All Sectors

Additional Calculations

1) INTRODUCTION

Analysis of the proposed antenna mounts due to the loading of the proposed antennas, equipment, and related appurtenances. The proposed mount is a platform mount manufactured by CommScope, P/N: MC-PK8-DSH.

2) ANALYSIS CRITERIA

TIA-222 Revision:

TIA-222-G

Risk Category:

Wind Speed:

93 mph

Exposure Category:

С

Topographic Factor:

1.0

Ice Thickness:

1.0 in

Wind Speed with Ice: Service Load:

50 mph 60 mph

Table 1 - Proposed Equipment Loading Information

Mounting Level (ft)	Carrier Designation	Number of Antennas	Antenna Manufacturer	Antenna Model	Proposed Mount Type	Note
		3	JMA	MX08FRO665-21		
80.0	Dish	3	Fujitsu	TA08025-B604 RRH	CommScope	4
80.0	Wireless	3	Fujitsu	TA08025-B605 RRH	MC-PK8-DSH	1
		1	Raycap	RDIDC-9181-PF-48		

Note: 1)

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Dated
Mount Assembly Drawings	CommScope, P/N: MC-PK8- DSH	03/17/2021
RFDS	Dish Wireless	11/16/2021
Field Notes & Photos	Tectonic	01/21/2022
Preliminary Construction Drawings	Tectonic	02/10/2022

3.1) Analysis Method

A tool internally developed, using Microsoft Excel, was used to calculate wind loading on all appurtenances and mount members. This information was then used in conjunction with another program, RISA-3D, which is a commercially available analysis software package, used to check the antenna mounting system and calculate member stresses for various loading cases. The selected output from the analysis is included in Appendices B and C.

3.2) Assumptions

- The antenna mounting system was properly fabricated, installed, and maintained in good condition in accordance with its original design, TIA Standards, and/or manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Tables 1
 - 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
 - 4) Member length and sizes are based solely on the assembly drawing by CommScope, referenced above.

Proposed equipment to be installed on the proposed mounts.

5) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate

ASTM A36 (GR 36)

HSS (Rectangular)

ASTM 500 (GR B-46)

Pipe

ASTM A53 (GR 35)

Connection Bolts

ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Tectonic should be notified to determine the effect on the structural integrity of the mount.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Platform Mount)

Notes	Component	Mount Centerline (ft)	% Capacity	Pass / Fail
	Standoff End Plate		21	Pass
	Grating Support Angle		9	Pass
ſ	Face Horizontal		14	Pass
, [Mount Pipe		19	Pass
'	Standoff Channel	80.0	29	Pass
ĺ	Standoff		23	Pass
ſ	Rail Connector		15	Pass
	Railing		15	Pass
2	Collar Connection		27	Pass
	Structure Rating (max	from all components) =		29 %

Notes:

1) See additional documentation in "Appendix C - Analysis Output" for calculations supporting the % capacity consumed.

See additional documentation in "Appendix D - Additional Calculations" for calculations supporting the % capacity consumed.

4.1) Result / Conclusions

The proposed platform mount has adequate capacity to support the proposed antenna and equipment installation as detailed in the following report.

This structural analysis only includes evaluation of the antenna mounts and not the monopole. The monopole is to be analyzed under a separate structural analysis by Tectonic.

Contractor shall field verify existing conditions and recommendations as noted on the construction drawings and notify the design engineer of any discrepancies prior to construction. Any further changes to the antenna and/or appurtenance configuration should be reviewed with respect to their effect on structural loads prior to implementation.

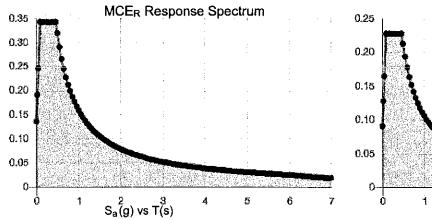
APPENDIX A SOFTWARE INPUT CALCULATIONS

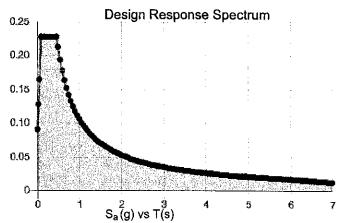
CONNECTICUT DESIGN CRITERIA - STATE

Revison:

CT is NOT a Home Rule State; Tab added only for Design Criteria

(APPENDIX N) MU	<u>JNICIPAI</u>	<u>lity - Spe</u>	CIFIC ST	STRUCTURAL DESIGN PARAMETERS Wind Design Parameters						
	1	344	DE .				N	-I De-	NAC	
æ	≥		ctrai		mate Desi			al Desigr		
alii	<u>%</u> _	Accelerat) st	peeds, Vu	# (mpn)	Spe	eds,Vasd (mpn)	
dio	und Si Load	Acciciat	.ioiis (70g)							
Municipality	= 7	Ss	S ₁	Risk	Risk	Risk Cat III-	Risk Cat.	Risk Cat.		
M	Ground Snow Load			Cat.I	Cat.II	IV	וֹן	11	III-IV	
Andover	30	0.176	0.063	120	130	140	93	101	108	
Ansonia	30	0.195	0.064	115	125	135	89	97	105	
Ashford	35	0.173	0.063	120	130	140	93	101	108	
Avon	35	0.181	0.064	110	120	130	85	93	101	
Barkhamsted	40	0.177	0.065	110	120	125	85	93	97	
Beacon Falls	30	0.192	0.064	115	125	135	89	97	105	
Berlin	30	0.183	0.063	115	125	135	89	97	105	
Bethany	30	0.189	0.063	115	125	135	. 89	97	105	
Bethel	30	0.215	0.066	110	120	125	85	93	97	
Bethlehem	35	0.190	0.065	110	120	125	85	93	97	
Bloomfield	35	0.180	0.064	115	125	130	89	97	101	
Bolton	30	0.177	0.063	115	125	135	89	97	105	
Bozrah	30	0.170	0.061	120	135	145	93	105	112	
Branford	30	0.180	0.061	120	130	140	93	101	108	
Bridgeport	30	0.209	0.064	115	125	135	89	97	105	
Bridgewater	35	0.201	0.066	110	120	125	85	93	97	
Bristol	35	0.185	0.064	110	120	130	85	93	101	
Brookfield	35	0.208	0.066	110	120	125	85	93	97	
Brooklyn	35	0.171	0.062	120	130	140	93	101	108	
Burlington	35	0.182	0.064	110	120	130	85	93	101	
Canaan	40	0.173	0.065	105	115	120	81	89	93	
Canterbury	35	0.171	0.061	120	130	140	93	101	108	
Canton	35	0.180	0.064	110	120	130	85	93	101	
Chaplin	35	0.173	0.062	120	130	140	93	101	108	
Cheshire	30	0.186	0.063	115	125	135	89	97	105	
Chester	30	0.172	0.060	120	130	140	93	101	108	
Clinton	30	0.169	0.059	120	135	140	93	105	108	
Colchester	30	0.174	0.061	120	130	140	93	101	108	
Colebrook	40	0.174	0.065	105	115	125	81	89	97	
Columbia	30	0.175	0.062	120	130	140	93	101	108	
Cornwall	40	0.180	0.065	105	115	120	81	89	93	
Coventry	30	0.176	0.063	120	130	140	93	101	108	
Cromwell	30	0.181	0.063	115	125	135	89	97	105	
Danbury	30	0.217	0.067	110	120	125	85	93	97	
Darien	30	0.242	0.068	110	120	130	85	93	101	
Deep River	30	0.170	0.060	120	130	140	93	101	108	
Derby	30	0.195	0.064	115	125	135	89	97	105	
Durham	30	0.179	0.062	115	130	140	89	101	108	
Eastford	40	0.172	0.063	120	130	140	93	101	108	
East Granby	35	0.177	0.065	110	120	130	85	93	101	
East Haddam	30	0.172	0.061	120	130	140	93	101	108	
East Hampton	30	0.177	0.062	120	130	140	93	101	108	




Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.214	S _{DS} :	0.228	
S_1 :	0.067	S _{D1} :	0.107	
Fa:	1.6	T _L :	6	
F _v :	2.4	PGA:	0.116	
S _{MS} :	0.343	PGA _M :	0.182	
S _{M1} :	0.16	F _{PGA} :	1.567	
		l _e :	1	

Seismic Design Category

В

Data Accessed:

Wed Jan 05 2022

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness:

1.00 in.

Concurrent Temperature:

15 F

Gust Speed

50 mph

Data Source:

Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed:

Wed Jan 05 2022

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Job No. 10710.NJJER01128B

IМ

Sheet No. Calculated By

Checked By

1 JJ of Date : Date : 3 2/22/2022 2/22/2022

WIND AND ICE LOADS PER TIA-222-G

W.O.	LINKAO NONE ROCKLES SEESTE SEESTE SEESTE SEESTE SEESTE SEESTE SEESTE SEESTE SEESTE SEESTE SEESTE SEESTE SEESTE
Project Name	None confidence and the second second second
Locatio <u>n</u>	HENEWIGHT CONTRACTORY, CIT COSTORS 1888 1888
County	is hireful to the second of th

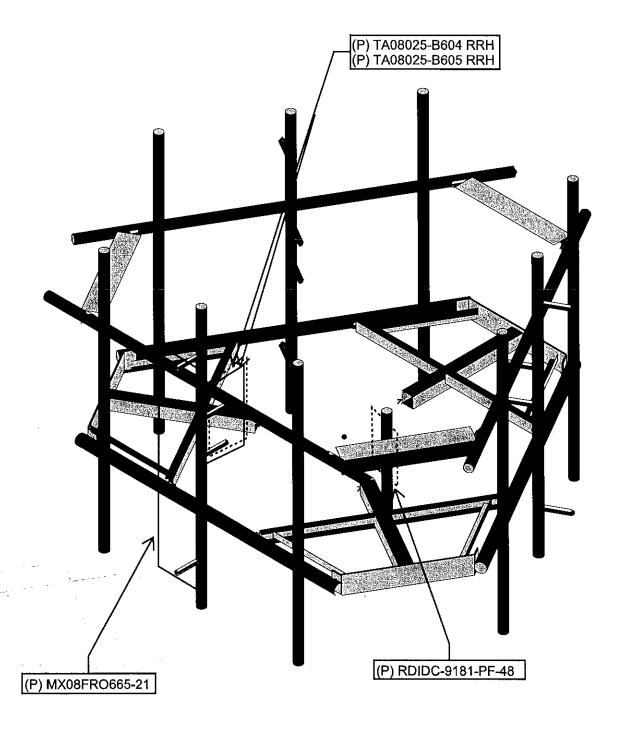
Tower Type	L. WIR	Monopole
		Substantial hazard
Exposure Category	A BY	Suburban/wooded/obstructed
Topo Category	40.49	Flat or rolling terrain
Height of crest		ft

Basic Wind Sp		
Without ice	er of 90kmen	mph*
With ice	(a)	mph
Service	F 00-6	mph
Ice thickness	4001100	in

Importance Fa	ctor			
Wind only	1.00			
Wind with ice	1.00			
lce thickness	1.00			
Supporting Da	ita:			
K₀ʻ	0.90			
K_{t}	N/A			
f	N/A			
z_g	1200			
α	7			
	0.7.			
, Ka	0.95			
G _h	1.00			

Height	z (ft)	(4) (2) (30) (5) (5)
	Kh	N/A
	Kzt	1.00
	Kz	0.93
	Kiz	1.09
Mind Proceure	No Ice	19.50
Wind Pressure, qz (psf)	With Ice	5.64
42 (psi)	Service	8.12
(tiz)	lce Thk	2.19
Appurtenances	No Ice	19.50
(qzGh)	With Ice	5.64
	Service	8.12

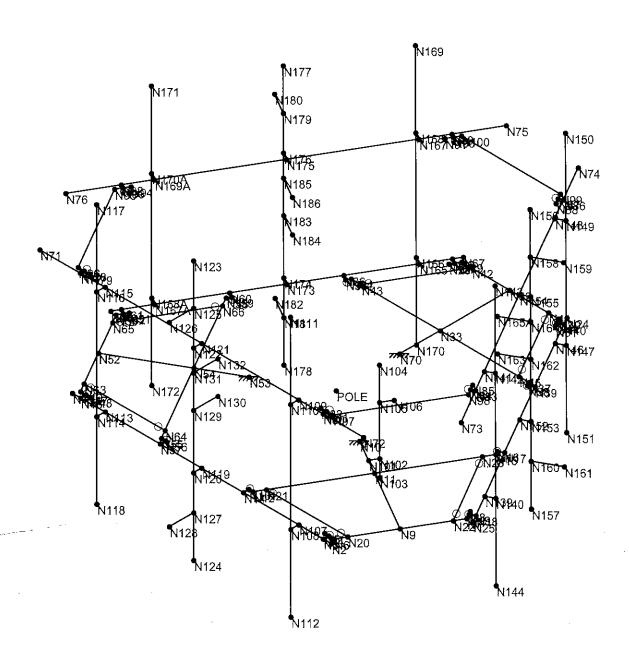
*Ultimate 3-second gust wind speed of 120 mph converted to a nominal 3-second wind gust speed of 93 mph per Section 1609.3 and Appendix N, as required for use in the TIA-222-G Standard.


														Job No.	10710.NJJER01128B	01128B	,
Tectonic														Calculated By	7 ∃	e tec	2000000
PROPERTY AND TERMS AND AND AND AND AND AND AND AND AND AND													•	Checked By	3 ₹	Date:	02/22/22
						Indd o	Appurtenance Information	Inform	nation								
Effective Projected Area for Appurtenance (EPA)∧=Max((ea for Appurt	enance (Ef	A)x=Max	((EPA) _W ,(EPA) _T)	(H)		_										
(EPA)T=∑(C⊾AA)T			9	(EPA)N=∑(CaAA)N	ı								Reduction	Reduction Factor =			
Wind Only Load Combinations																	
											Wind ward	Face	Windward	Normal Antenna	Transverse		
				Length or Diameter	Width	Depth	Flator	Antenna	Antenna	Side Face (As)T	Side Face (CaAa)T	Normal (A.)N	(CaAs)N	Wind Load Each	Antenna Wind Load Each	Antenna Weight	Total Weight
Antenna Configuration	(E) or (P)	æ	I (II)	€	Ê	Ē	Cylindrical?	(Ca)	(Ca)	(ft [*] 2)	(ft^2)	(ft^2)	(#*2)	(<u>a</u>)	(qj)	(a)	(<u>a</u>)
CARRESON AND			90	1.24	15.70	7.80	を	1.20	1.20	0.81	2.61	1.62	5.26	æ	44	63.9	191.7
		2000年	99	1.24	15.70	9.00		1.20	1.20	0.93	3.02	1.62	5.26	34	20	74.9	224.7
	10 mm		90	1.58	14.39	8.15	等人 生產	1.20	120	1.07	1.16	1.90	2.05	40	23	21.8	21.8
III TO THE PARTY OF THE PARTY O			90	6.00	20.00	8.00		1.47	125	4.00	15.84	10.00	33.72	219	103	82.5	247.5
										Σ(CaAA)T	2263	S(CaAA)N	46.30				989
									•								
Wind with Ice Load Combinations		ice Thk≖	2.19 in	ڃ													
										Side	,	Face	Windward	Normal			
				Length or	#	4	, to 1	Anteons	Antanna	Face (A.)T	Side Face	Normal (A.)v	Normal No.	Wind Load	Antenna Wind	Ice Area for Wajoht	Ice Welaht
Antenna Configuration	(E) (R) or (P)	ð	2 (#)	€	3	(ln)	Cylindrical?	(Ca)T	(Ca)N	(ft^2)	(ft^2)	(ft^2)	(ft^2)	(Ib)	(Ib)	(ft^2)	None (lbs)
TA08025-B604 RRH	С	3	80	1.61	20.07	12.17	Cylindrical	1.20	1.20	1.63	5.28	2.69	8.70	9	10	4.9	49.6
TA08025-B605 RRH	д	3	80	1.61	20.07	13.37	Cylindrical	1,20	1.20	1.79	5.80	2.69	8.70	16	1	5.1	52.1
RDIDC-9181-PF-48	Ь	1	80	1,95	18.76	12.52	Cylindrical	1.20	1.20	2.03	2,19	3.04	3.29	19	12	5.9	9.09
12-599OXH80XM	ч	3	80	6.36	24.37	12.37	Cylindrical	1.36	1,23	6.56	24.15	12.92	42.86	19	46	28.0	285.5
										∑(CaAA)T	37.42	S(CaAA)N	63,55				448

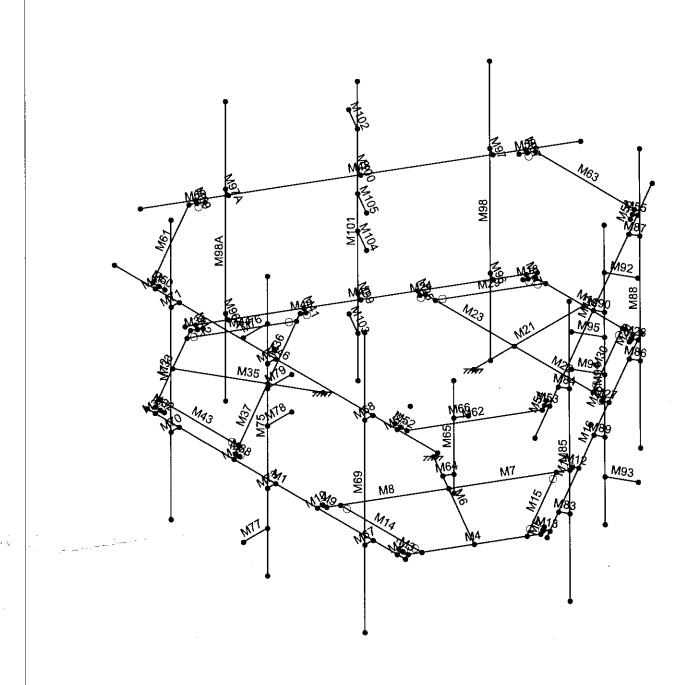
Tectonic State S														
System Information Reduction Factor = Ce Projected Wind Force Weight Weight Area with Force Ce Cylindrical? Factor Area (ft^2) (lbs/ft) (ft^2) (lbs/ft) (ft^2) (lbs/ft) (ft^2) (lbs/ft) (ts/ft) (lbs/ft) (lbs/f	Tectonic								Cal C	Job No. Sheet No. culated By hecked By	10710.NJ. 3 JJ IM	IER01128B of Date: Date:	3 02/22/22 02/22/22	
Flat or Drag Projected Wind Force Weight Weight Area with Factor Area (ft^2) (ibs/ft) (i				Mount		/stem In	forme	ation						
Projected Wind Force Weight Weight Weight Weight Cylindrical? Factor Area (ft^2) (lbs/ft) (ft^2) (lbs/ft) (ft^2) (lbs/ft) (l	Mount Center Line=	80	#											
Quantity Length (ff) Projected (in) Flat or (in) Drag (in) Projected (in) Vind Force (in) Vind (in)	Member sizes are based on the assemb	bly drawings by	Commscop	e, dated 03/17	7/21				Reduction F	actor =				
8 1	Mount Part	Quantity	Length (ff)	Projected Width (in)	Depth (in)	Flat or Cylindrical?		Projected Area (ft^2)	Wind Force (lbs/ft)	Ice Weight Area (ft^2)	Ice Weight (Ibs/ft)	Projected Area with Ice (ft^2)	Wind Force Ice (lbs/ft)	Service Wind Force (lbs/ft)
G C 1.74 17.6 1.85 10.8 3.01 8.8 G S 5.00 5.9 10.00 6.8 15.93 5.4 G S 5.00 6.1 21.98 9.3 18.89 4.0 G S 5.00 6.1 21.98 9.3 18.89 4.0 G S 5.00 6.1 21.98 9.3 18.89 4.0 G S 9.30 14.96 9.2 21.31 6.6 B 300 9.9 14.96 9.2 21.31 6.6 B 300 9.9 14.96 9.2 21.31 6.6 B 300 19.3 16.58 18.8 16.46 9.3 B 300 19.3 16.58 18.8 16.46 9.3 B 300 22.57 7.7 21.74 3.7		2		And the second	, , , , , ,	THE PARTY OF THE P	2	9.75	19.0	10.31	11.7	16.31	9.2	7.9
G G	100						2	1.74	17.6	1.85	10.8	3.01	8.8	7.3
9 1.2 8.40 6.1 21.98 9.3 18.89 4.0 9 1.2 20.70 5.0 5.0 54.17 7.7 52.17 3.7 5 3.5 3.6 9.9 14.96 9.2 21.31 6.6 8 3 3.5 6.84 11.7 13.68 13.6 14.31 7.1 7.1 3 3 3.90 19.3 16.58 18.8 16.46 9.3 3 30 2 9.90 19.3 16.58 18.8 16.46 9.3			1 2 3 1 3 V				2	5.00	5.9	10.00	6.8	15.93	5.4	2.4
3. 3. 3. 4.3 5. 5. 5. 5. 5. 7. 52.17 3.7		. 3		A STATE OF THE STA		感覚ない 谷足	1.2	8.40	6.1	21.98	6.6	18.89	4.0	2.6
Government 2 9.30 9.9 14.96 9.2 21.31 6.6 Same and control of the co		6			, , , , , , , , , , , , , , , , , , ,		1.2	20.70	5.0	54.17	7.7	52.17	3.7	2.1
Section Control Control <t< td=""><td></td><td>9</td><td></td><td>A STATE OF THE STA</td><td>a de la constante de la consta</td><td></td><td>2</td><td>9.30</td><td>9.9</td><td>14.96</td><td>9.2</td><td>21.31</td><td>9.9</td><td>4.1</td></t<>		9		A STATE OF THE STA	a de la constante de la consta		2	9.30	9.9	14.96	9.2	21.31	9.9	4.1
3 16.58 18.8 16.46 9.3 16.58 18.8 16.46 9.3 16.58 18.8 16.46 9.3 1		8	4	1		Sec. 1 13 50	2	6.84	11.7	13.68	13.6	14.31	7.1	4.9
3 1900 1 22.57 7.7 21.74 3.7 3.7 3.0 3.0 22.57 7.7 21.74 3.7 3.7	である。 では、これでは、これでは、これでは、 では、これでは、 では、これでは、 では、これでは、 では、これでは、 では、これでは、 では、これでは、 では、これでは、 では、これでは、 では、これでは、 では、これでは、 では、これでは、 では、これでは、 では、これでは、 では、これでは、 では、これでは、 では、これでは、 では、 では、 では、 では、 では、 では、 では、	3	2000				7	9.90	19.3	16.58	18.8	16.46	9.3	8.0
	CASIS CONTRACTOR OF THE PROPERTY OF THE PROPER		19,00		200	Contrator Co.	1.2	8.63	5.0	22.57	7.7	21.74	3.7	2.1

. .

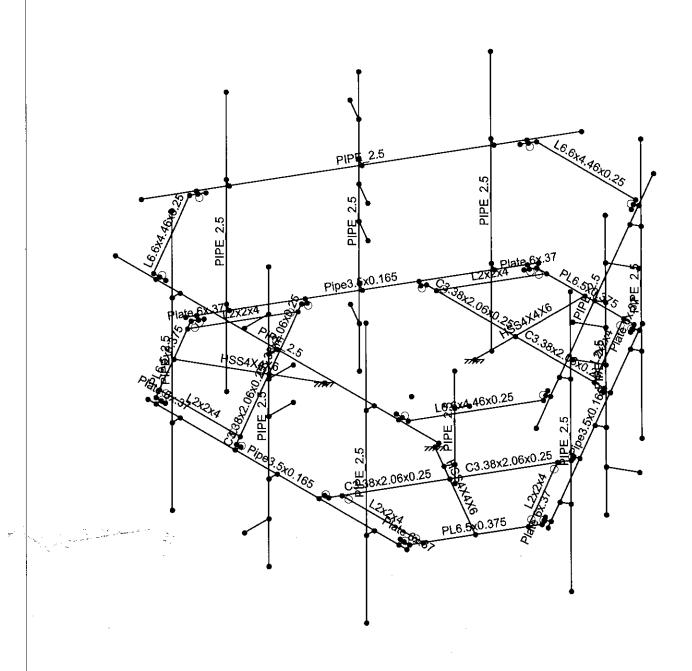
APPENDIX B WIRE FRAME AND RENDERED MODELS

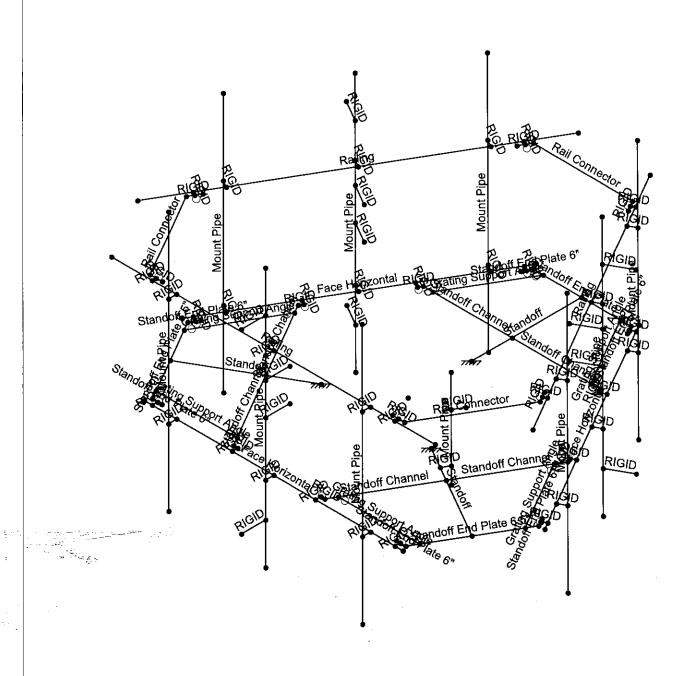


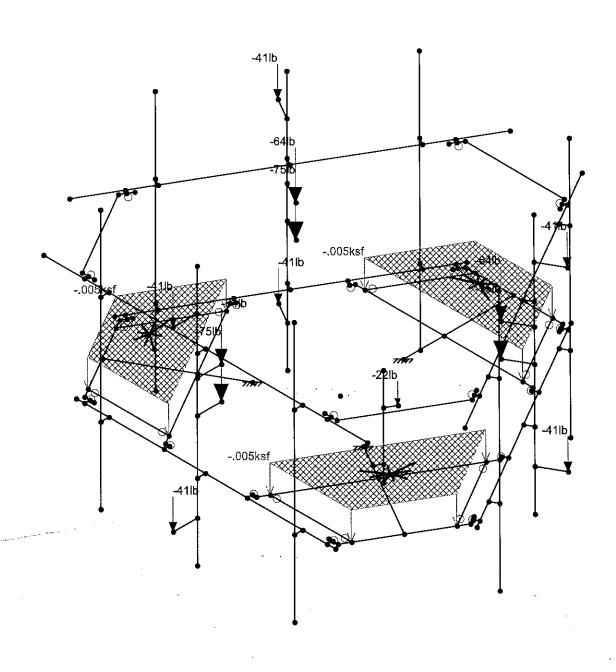
1.75%

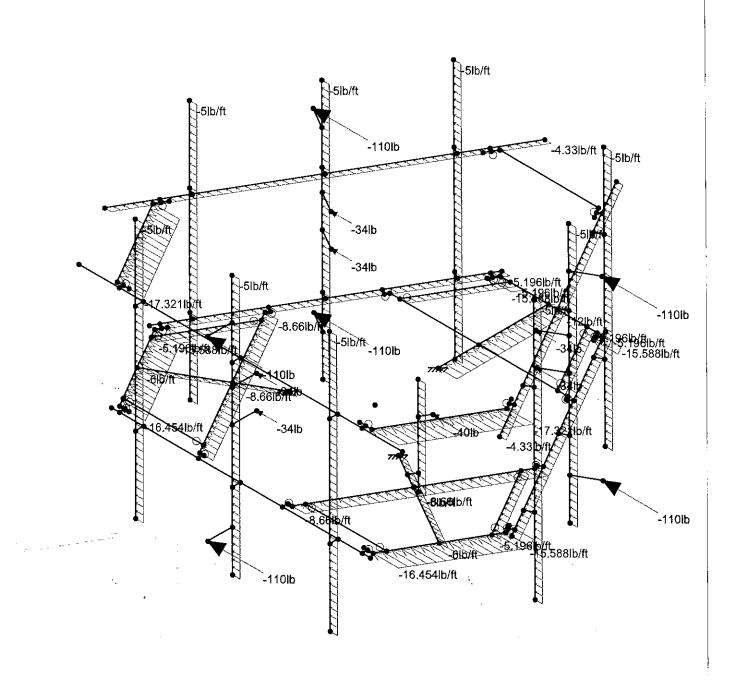

NOTES:

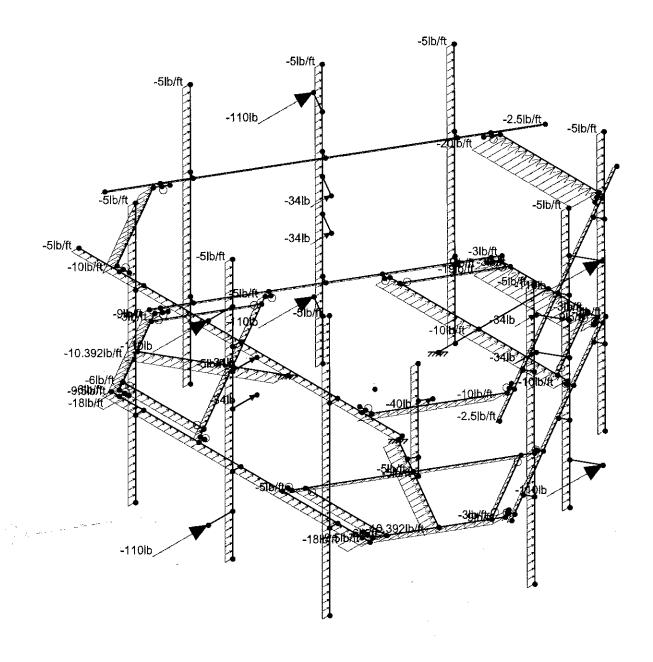
1) PROPOSED ANTENNAS AND MOUNTING PIPES HAVE BEEN VERTICALLY CENTERED ALONG THE EXISTING MOUNT (NO OFFSET).
2) LISTED PROPOSED APPURTENANCES ABOVE ARE TYPICAL FOR ALL SECTORS.

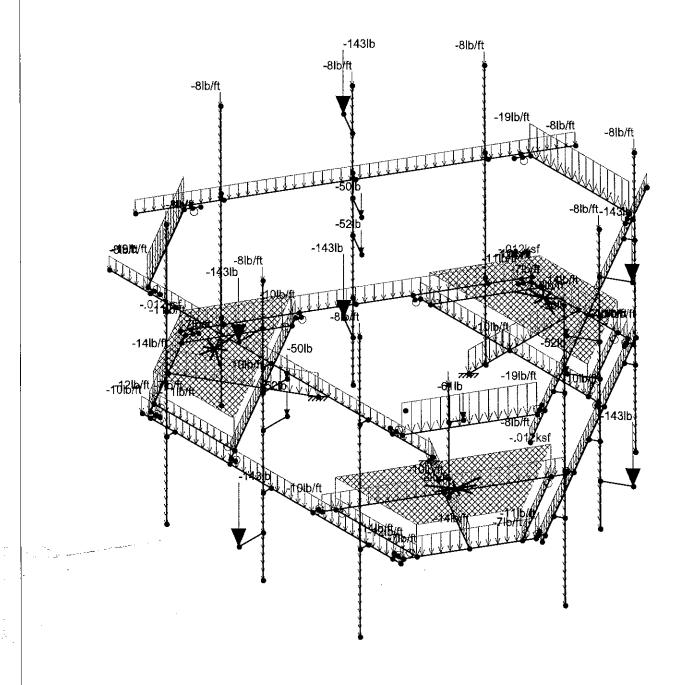


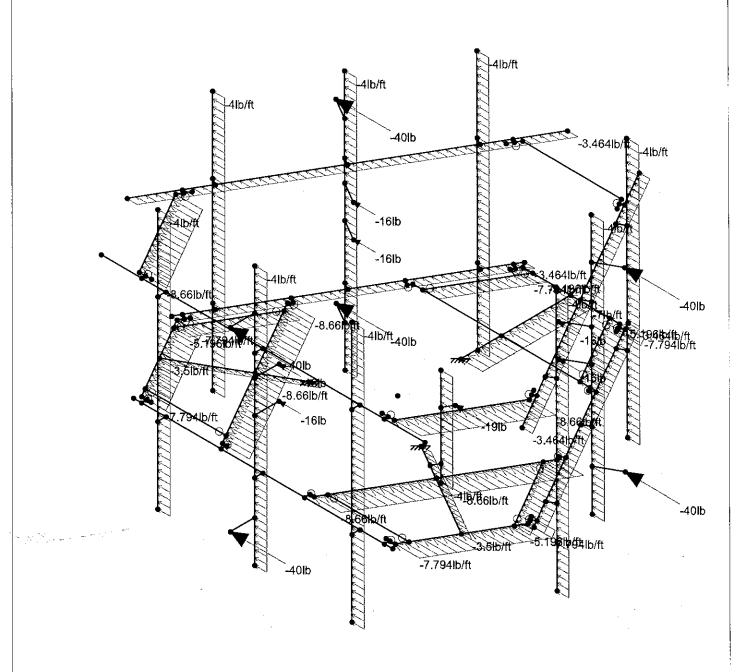


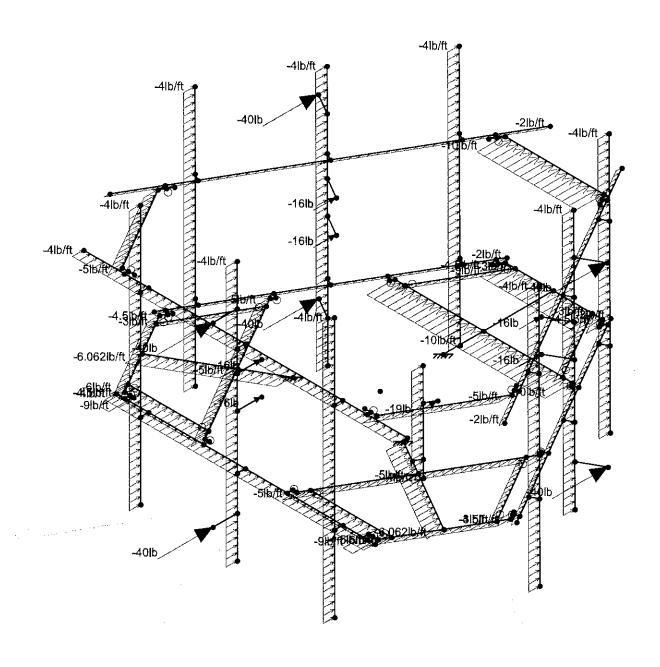


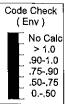


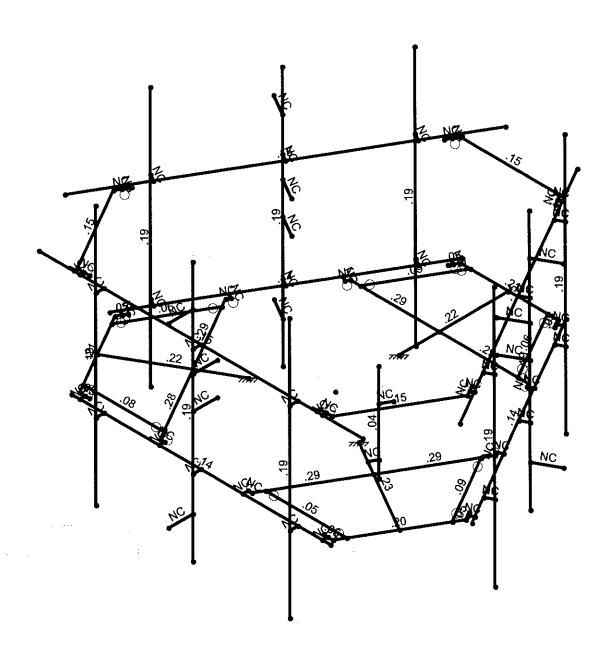


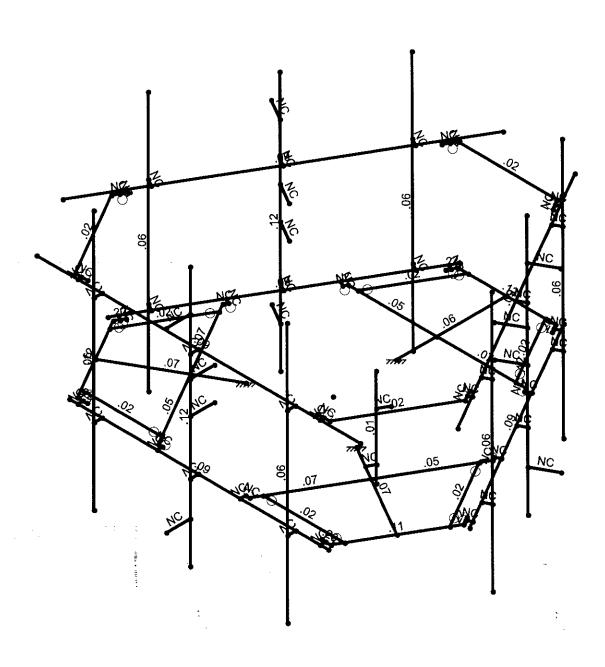











APPENDIX C SOFTWARE ANALYSIS OUTPUT

Company Designer

: Tectonic Engineering

Designer : JJ
Job Number : 10710.NJJER01128B
Model Name : PROPOSED ANTENNA MOUNT

Checked By: IM

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E	Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	<u>.</u> 3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.4	_ 65	1.3

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design R	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	Standoff End Plate 6.5"	PL6.5x0.375	Beam	RECT	A36 Gr.36	Typical	2.438	.029	8.582	.11
2	Standoff End Plate 6"	Plate 6x.37	Beam	RECT	A36 Gr.36	Typical	2.22	.025	6.66	.097
_3	Grating Support Angle	L2x2x4	Beam	Single An	A36 Gr.36	Typical	.944	.346	.346	.021
4	Face Horizontal	Pipe3.5x0.165	_Beam	Pipe	A53 Gr.B	Typical	1.729	2.409	2.409	4.819
5	Mount Pipe	PIPE 2.5	Column	Pipe	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
6	Standoff Channel	C3.38x2.06x0.25	Beam	Channel	A36 Gr.36	Typical	1.75	.715	3.026	.034
7	Standoff	HSS4X4X6	Beam	SquareT	A500 Gr.B R	Typical	4.78	10.3	10.3	17.5
8	Rail Connector	L6.6x4.46x0.25	Beam	Single An	A36 Gr.36	Typical	2.703	4.759	12.473	.055
9	Railing	PIPE_2.5	Beam	Pipe	A53 Gr.B	Typical	1.61	1.45	1.45	2.89

Load Combinations

6 7 8 9 10	1.2D+1.6WLX 1.2D+1.6WLZ 1.2D+1.6(WLX+WLZ) - 0 Deg 1.2D+1.6(WLX+WLZ) - 30 Deg 1.2D+1.6(WLX+WLZ) - 60 Deg 1.2D+1.6(WLX+WLZ) - 90 Deg 1.2D+1.6(WLX+WLZ) - 120 Deg 1.2D+1.6(WLX+WLZ) - 150 Deg 1.2D+1.6(WLX+WLZ) - 180 Deg 1.2D+1.6(WLX+WLZ) - 210 Deg 1.2D+1.6(WLX+WLZ) - 240 Deg	Yes Yes Yes Yes Yes Yes	Y Y Y Y Y Y Y		1 1 1 1 1	1.2 1.2 1.2 1.2	2 3 2 2 2		3	.8 1.3													
3 4 5 6 7 8 9 10	1.2D+1.6WLZ 1.2D+1.6(WLX+WLZ) - 0 Deg 1.2D+1.6(WLX+WLZ) - 30 Deg 1.2D+1.6(WLX+WLZ) - 60 Deg 1.2D+1.6(WLX+WLZ) - 90 Deg 1.2D+1.6(WLX+WLZ) - 120 Deg 1.2D+1.6(WLX+WLZ) - 150 Deg 1.2D+1.6(WLX+WLZ) - 180 Deg 1.2D+1.6(WLX+WLZ) - 210 Deg 1.2D+1.6(WLX+WLZ) - 240 Deg	Yes Yes Yes Yes Yes Yes Yes	Y Y Y Y Y Y		1 1 1 1 1	1.2 1.2 1.2 1.2	3 2 2 2	1.6 1.6 1.3	3														
4 5 6 7 8 9 10	1.2D+1.6(WLX+WLZ) - 0 Deg 1.2D+1.6(WLX+WLZ) - 30 Deg 1.2D+1.6(WLX+WLZ) - 60 Deg 1.2D+1.6(WLX+WLZ) - 90 Deg 1.2D+1.6(WLX+WLZ) - 120 Deg 1.2D+1.6(WLX+WLZ) - 150 Deg 1.2D+1.6(WLX+WLZ) - 180 Deg 1.2D+1.6(WLX+WLZ) - 210 Deg 1.2D+1.6(WLX+WLZ) - 210 Deg 1.2D+1.6(WLX+WLZ) - 240 Deg	Yes Yes Yes Yes Yes Yes	Y Y Y Y Y Y		1 1 1 1	1.2 1.2 1.2	2 2	1.6 1.3 .8	3							•				-			
5 6 7 8 9 10	1.2D+1.6(WLX+WLZ) - 30 Deg 1.2D+1.6(WLX+WLZ) - 60 Deg 1.2D+1.6(WLX+WLZ) - 90 Deg 1.2D+1.6(WLX+WLZ) - 120 Deg 1.2D+1.6(WLX+WLZ) - 150 Deg 1.2D+1.6(WLX+WLZ) - 180 Deg 1.2D+1.6(WLX+WLZ) - 210 Deg 1.2D+1.6(WLX+WLZ) - 240 Deg	Yes Yes Yes Yes Yes Yes	Y Y Y Y Y		1 1 1	1.2 1.2 1.2	2	1.3. .8	3											-			
6 7 8 9 10	1.2D+1.6(WLX+WLZ) - 60 Deg 1.2D+1.6(WLX+WLZ) - 90 Deg 1.2D+1.6(WLX+WLZ) - 120 Deg 1.2D+1.6(WLX+WLZ) - 150 Deg 1.2D+1.6(WLX+WLZ) - 180 Deg 1.2D+1.6(WLX+WLZ) - 210 Deg 1.2D+1.6(WLX+WLZ) - 240 Deg	Yes Yes Yes Yes Yes	Y Y Y Y		1 1 1	1.2 1.2 1.2	2	1.3. .8	3					ļ									
7 8 9 10	1.2D+1.6(WLX+WLZ) - 90 Deg 1.2D+1.6(WLX+WLZ) - 120 Deg 1.2D+1.6(WLX+WLZ) - 150 Deg 1.2D+1.6(WLX+WLZ) - 180 Deg 1.2D+1.6(WLX+WLZ) - 210 Deg 1.2D+1.6(WLX+WLZ) - 240 Deg	Yes Yes Yes Yes	Y Y Y		1	1.2			3	13.												-	
9 7 10 7	1.2D+1.6(WLX+WLZ) - 120 Deg 1.2D+1.6(WLX+WLZ) - 150 Deg 1.2D+1.6(WLX+WLZ) - 180 Deg 1.2D+1.6(WLX+WLZ) - 210 Deg 1.2D+1.6(WLX+WLZ) - 240 Deg	Yes Yes Yes	Y Y Y		1	1.2				1,0,0	1.1									Γ. I		1 1	
9 7 10 7	1.2D+1.6(WLX+WLZ) - 150 Deg 1.2D+1.6(WLX+WLZ) - 180 Deg 1.2D+1.6(WLX+WLZ) - 210 Deg 1.2D+1.6(WLX+WLZ) - 240 Deg	Yes Yes	Y		1	1.2			3														
10 7	1.2D+1.6(WLX+WLZ) - 180 Deg 1.2D+1.6(WLX+WLZ) - 210 Deg 1.2D+1.6(WLX+WLZ) - 240 Deg	Yes	Υ		4	1 . 2	2	8	3	1.3									- 4				
11 ′	1.2D+1.6(WLX+WLZ) - 210 Deg 1.2D+1.6(WLX+WLZ) - 240 Deg			$\overline{}$	1	1.2	2	-1	3	.8													
	1.2D+1.6(WLX+WLZ) - 240 Deg	Yes						-1.6								•							
12			Υ							8													
	4 0 P 4 4 4 4 5 5 5 6 14 5 P 5 0 P 4 P	Yes	Y		1	1.2	2	8	3	-1					: .								
13	1.2D+1.6(WLX+WLZ) - 270 Deg	Yes	Y		1					-1.6													\Box
14	1.2D+1.6(WLX+WLZ) - 300 Deg	Yes	Y		1	1.2			3	-1													
15 ′	1.2D+1.6(WLX+WLZ) - 330 Deg	Yes	Υ		1	1.2		1.3															
16	**Wind Load with Ice**	:	. -	.	:	- 1.				1		٠.											
17	1.2D+1.0Di+1.0WLXi		Y		1	1.2	4	1	5	1								- 1					
18		Yes				1.2					6	1						Г					- 2
19 1	1.2D+1.0Dj+1.0(WLXi+WLZi)	Yes	Y			1.2		1	5	1	6							1					
20 1	1.2D+1.0Di+1.0(WLXi+WLZi)	Yes	Y		1	1.2		1	5	.87		.5								- 7			
	I.2D+1.0Di+1.0(WLXi+WLZi)				1	1.2		1	5	.5	6	.87					! —						
22 1	I.2D+1.0Di+1.0(WLXi+WLZi)	Yes	Y			1.2		1	5		6	1					1	- 				\Box	
	I.2D+1.0Di+1.0(WLXi+WLZi)					1.2		1	5	5		.87									_		
	I.2D+1.0Di+1.0(WLXi+WLZi)				1	1.2		1	5			.5											
	I.2D+1.0Di+1.0(WLXi+WLZi)				1	1.2		1	5	-1	6							T-					
26 1	I.2D+1.0Di+1.0(WLXi+WLZi)	Yes	Y			1.2		1	5			5						\vdash		-			
	I.2D+1.0Di+1.0(WLXi+WLZi)				1			1	5			87											
	I.2D+1.0Di+1.0(WLXi+WLZi)	Yes	Y		1	1.2	4	1	5		6	-1			-	1	1	\Box					
	I.2D+1.0Di+1.0(WLXi+WLZi)				1	1.2		1	5	.5		87			_	!				\vdash		H	
	I.2D+1.0Di+1.0(WLXi+WLZi)				1	1.2		1	5		T -	5	i	 _	1				—		 	 	

Company Designer

: Tectonic Engineering : JJ : 10710.NJJER01128B

: PROPOSED ANTENNA MOUNT

Checked By: IM

Envelope Joint Reactions

	Joint		X [lb]	LC	<u>Y [lb]</u>	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ (k-ft)	LC
1	N10	max	961.376	15	2264.23	26			.406	4	1.664	14	4.24	26
2		min	-960.106	9	146.002	5	-1450.583	14	-2.405	25	-1.658	8	529	5
3	N53	max	864.096	. 5	2131.518	30	1382.721	6	.414	10	1.605	6	.467	9
4		min	-868.509	11	96.826	9	-1384.784	12	-2.406	17	-1.599	12	-4.092	30
5	N70	max	1512.116	4	2140.456	22	438.04	7	4,749	22	1.472	10	.631	4
6	1.71	min	-1509,006	10	78.289	13	-444.317	13	605	13	-1.466	2	63	10
7	Totals:	max	3041,509	4	5797.776	19	3157,458	7						
8	-	min	-3041.509	10	2494.014	10	-3157.457	13						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code .	. Loc[ft]	LC	ShearLoci	Dir	LC_phi*Pnphi*Pntphi*Mnphi*MnCb_Ean_
1	M22	C3.38x2.06x0	.291	2.75	22	.071 .286	Z	12 47760 56700 2.203 5.752 1 H1-1b
2	M23	C3.38x2.06x0		0	22	.053 2.464	Z	8 47/60 56700 2.203 5.752 1H1-1b
3	M36	C3.38x2.06x0		2.75	30	.071 .286	Z	8 47760 56700 2.203 5.752 1 H1-1b
4	M7	C3.38x2.06x0		0	26	.053 2.464	Z	12 47760 56700 2.203 5.752 1 H1-1b
_ 5	M8	C3.38x2.06x0	.287	2.75	26	.065 .286	Z	4 47760 56700 2.203 5.752 1H1-1b
6	M37	C3.38x2.06x0		0 -	30	.048 2.464	∵Z	15 47760 56700 2.203 5.752 1 H1-1b
7	M6	HSS4X4X6	.231	3,417	27	.067 2.634	Z	8 187775 197892 22.046 22.046 2 H1-1b
8	M35	HSS4X4X6	.224	3.417	29	.066 3.417	Z	12 187775 197892 22.046 22.046 2 H1-1b
9	M21	HSS4X4X6	.224	3.417	21	.062 3.417	Z	4 187775 197892 22,046 22.046 2 H1-1b
10	M19	PL6.5x0.375		1.5	6	121 3	y	12 4979.1 78975 617 8.958 1H1-1b
11	M33	PL6.5x0.375		1.5	14	.120 3	У	8 4979.1 78975 .617 8.988 1 H1-1b
12	M4	PL6.5x0.375		1.5	12	.111 0	у	4 4979.1 78975 .617 8.966 1 H1-1b
13	M91	PIPE 2.5	.195	5.667	12	.122 3		6 30038 50715 3.596 3.596 2 H1-1b
14	M101	PIPE_2.5	194	5.667	8	.122 3	A Company	14 30038 50715 3.596 3.596 2 H1-1b
15	M75	PIPE 2.5	.193	5.667	10	.120 3		10 30038 50715 3.596 3.596 3H1-1b
16	M88	PIPE_2.5	188	5.667	6	.055 5.667	•	4 30038 50715 3.596 3.596 3 H1-1b
17	M98A	PIPE 2.5	.188	5,667	14	.057 5.667		12 30038 50715 3.596 3.596 2 H1-1b
18	M98	PIPE_2.5	188	5.667	8	.055 5.667		10 30038 50715 3.596 3.596 3 H1-1b
19	M85	PIPE 2.5	.188	5.667	12	.058 5.667		14 30038 50715 3.596 3.596 2 H1-1b
20	M72	PIPE_2.5	188	5.667	4	058 5.667	· ·	6 30038 50715 3.596 3.596 4 H1-1b
21	M69	PIPE 2.5	.187	5.667	10	.058 5.667		8 30038 50715 3.596 3.596 4 H1-1b
22	M62	L6.6x4.46x0.25		3.06	4	.023 3.06	у	14 51620 87561 2.465 7.125 1 H2-1
23	M46	PIPE 2.5	.154	2.083	4	.086 2.083		15 22373 50715 3.596 3.596 1H1-1b
24	M61	L6.6x4.46x0.25		0	10	.023 0	У	6 51620 87561 2.465 7.125 1 H2-1
25	M47	PIPE 2.5	.152	2.083	12	.087 7.917		7 22373 50715 3.596 3.596 1 H1-1b
26	M48	PIPE 2.5		7.917	14	.087 2.083		7 22373 50715 3.596 3.596 1 H1-1b
27	M63	L6.6x4.46x0.25		3,06	12	.021 0	У	10 51620 87561 2.465 7.125 1 H2-1
28	M45	Pipe3.5x0.165		5.333	8	.092 2.75		8 3882154463.5 4.822 4.822 1H1-1b
29	M16	Pipe3,5x0,165		5.333	6	.092 2.75		6 38821 54463.5 4.822 4.822 1 H1-1b
30	M1	Pipe3,5x0.165		5.333	4	090 5.25		10 38821 54463.5 4.822 4.822 1H1-1b
31	M29	L2x2x4	.090	0	14	.021 0	Z	19 2228030585.6 .691 1.577 1H2-1
32	M1.5	LEAZAT	.000		6	.021 0	Z	23 2228030585.6 ,691 1.577 1H2-1
33	M43	L2x2x4	.080	0	10	.022 0	Z	27 2228030585.6 .691 1.577 1H2-1
34	M30	L2x2x4	061	35 0 0 1	6	023 2.502	у	26 2228030585.6 .691 1.577 2H2-1
35	M44	L2x2x4	.060	0	14	.023 2.502	У	100 (10)
36_	M14 M5	L2x2x4	054				_у	1001 1101
37		Plate 6x.37	.051	.164	7	.223 0	_у	12 67974 71928 .554 8.991 2H1-1b
38 39	M34 M18	Plate 6x.37	.050	.128	15	.201 0	У.	14 67974 71928 .554 8.991 1H1-1b
40	M20	Plate 6x.37 Plate 6x.37	.049	164	11		<u> </u>	8 67974 71928 .554 8.991 2H1-1b
41	M32	Plate 6x.37	.046	.128	11	.201 0	<u>y</u>	+
42	M3	Plate 6x.37	.046	.128	15	.201 .292	<u>_y</u>	
43	M65	PIPE 2.5	.037	.5	8	.012 .5	у	
_43	LIVIOS	FIFE_2.5	100/	j . 3	O	1.012 1.3		11 47114 50715 3.596 3.596 1H1-1b

APPENDIX D ADDITIONAL CALCULATIONS

Job No. 10710.NJJER01128B IJ

Calculated By:

Date: 2/22/22

Checked By:

IM

Date: 2/22/22

Connection Details								
Bolt Details								
Bolt Quantity =								
Bolt Diameter = 100000000000000000000000000000000000								
Vertical Spacing = //////in								
Horizontal Spacing = 1000 in								
Bolt Grade = □ A Car								
Bolt F _{III} if "Other" = ksi								

Loading Details									
Node N70, LC21									
Shear, X =		k							
Shear, Y =	E 1772.	k							
Tension, Z =		k							
Mx =	127433	k-ft							
My =	10,29%	k-ft							
Torsion, Mz =	1) []	k-ft							

1 - Tensile Capacity

$$R_{nt} = F_{nt}A_b$$

$$\Phi = \begin{bmatrix} 0.75 \\ F_{nt} = 90 \\ A_b = 0.307 \end{bmatrix} \text{ ksi }$$

$$\Phi R_{nt} = \begin{bmatrix} 20.72 \\ K_{nt} = 4.26 \end{bmatrix} \text{ k}$$

AISC [Eqn. J3-1]

2 - Shear Capacity

$$R_{nv} = F_{nv}A_b$$

$$\Phi = \begin{bmatrix} 0.75 \\ F_{nv} = 54 \\ A_b = 0.307 \end{bmatrix} \text{ ksi}$$

$$\Phi R_{nv} = \begin{bmatrix} 12.43 \\ V_{max} = 0.60 \end{bmatrix} k$$

ΦRnt > Tmax

ΦRnv > Vmax

3 - Combined Tension and Shear Capacity

$$R'_{nt} = F'_{nt}A_b$$

$$\Phi = \begin{bmatrix} 0.75 \\ F'_{nt} = 90 \\ A_b = 0.307 \end{bmatrix} \text{ ksi}$$

20.72

ΦR'_{nt} =

Job No. 10710.NJJER01128B

Calculated By: Date: 2/22/22 IJ

Checked By:

IM

Date: 2/22/22

Connection Details									
Weld Details									
Weld Type	tiles								
# of Sides									
Electrodes	Øy¹ XX								
Size of Weld =	in								
HSS Height =	466 in								
HSS Width =	Aless in								
HSS Thickness =	%.35 jin								
Plate Details									
Height/Width =	in in								
Thickness =	4645 in								
F _v =	ksi ksi								

4 - Weld Capacity

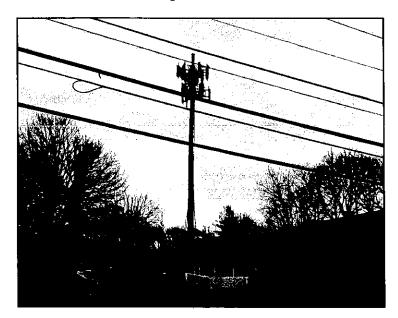
$$\begin{array}{c|c} F_{nw} = 0.6 F_{EXX} \\ & \Phi = \boxed{0.75} \\ & \Phi F_{\text{nw}} = \boxed{63.00} \quad \text{ksi} \\ & f_{\text{V,max}} = \boxed{0.798} \quad \text{ksi} \\ & f_{\text{b,max}} = \boxed{15.60} \quad \text{ksi} \end{array}$$

AISC [Table J2.5]

Min(ΦFnw,ΦFnbm) > √(fv,max+fm,max) 1 1/1

5 - Plate Capacity

ΦFbyy > Fb


Exhibit F Emissions Report

Pinnacle Telecom Group

Professional and Technical Services

Antenna Site FCC RF Compliance Assessment and Report for Municipal Submission

Prepared for:

Dish Wireless, LLC

Site ID:

NJJER01128B

Site Address:

48 Newtown Road

Danbury, CT

LATITUDE:

N 41.403422

Longitude:

W 73.424435

STRUCTURE TYPE:

Monopole

REPORT date:

February 7, 2022

COMPLIANCE CONCLUSION:

Dish Wireless, LLC will be in compliance with the rules and regulations as described in OET Bulletin 65, following the implementation of the proposed mitigation as detailed in the report.

14 Ridgedale Avenue - Suite 260 • Cedar Knolls, NJ 07927 • 973-451-1630

CONTENTS

Introduction and Summary
Antenna and Transmission Data
Compliance Analysis
Compliance Conclusion
Certification
Appendix A. Documents Used to Prepare the Analysis
Appendix B. Background on the FCC MPE Limit
Appendix C. Proposed Signage
Appendix D. Summary of Expert Qualifications

Introduction and Summary

At the request of Dish Wireless, LLC ("Dish"), Pinnacle Telecom Group has performed an independent expert assessment of radiofrequency (RF) levels and related FCC compliance for proposed wireless base station antenna operations on an existing monopole located at 48 Newtown Road in Danbury, CT. Dish refers to the antenna site by the code "NJJER01128B", and its proposed operation involves directional panel antennas and transmission in the 600 MHz, 2000 MHz, and 2100 MHz frequency bands licensed to it by the FCC.

The FCC requires all wireless antenna operators to perform an assessment of potential human exposure to radiofrequency (RF) fields emanating from all the transmitting antennas at a site whenever antenna operations are added or modified, and to ensure compliance with the Maximum Permissible Exposure (MPE) limit in the FCC's regulations. In this case, the compliance assessment needs to take into account the RF effects of other existing antenna operations at the site by AT&T and Verizon Wireless. Note that FCC regulations require any future antenna collocators to assess and assure continuing compliance based on the cumulative effects of all then-proposed and then-existing antennas at the site.

This report describes a mathematical analysis of RF levels resulting around the site in areas of unrestricted public access, that is, at street level around the site. The compliance analysis employs a standard FCC formula for calculating the effects of the antennas in a very conservative manner, in order to overstate the RF levels and to ensure "safe-side" conclusions regarding compliance with the FCC limit for safe continuous exposure of the general public.

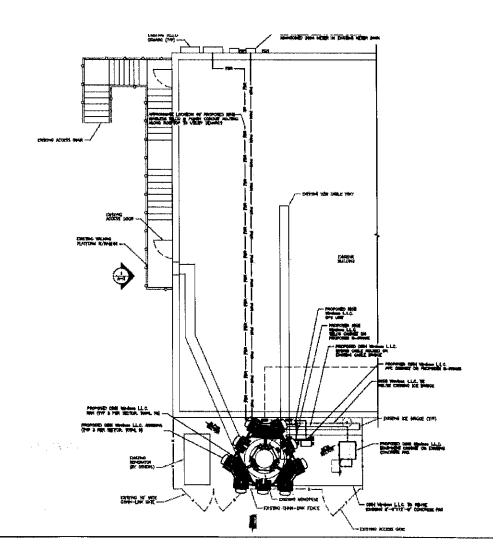
The results of a compliance assessment can be described in layman's terms by expressing the calculated RF levels as simple percentages of the FCC MPE limit. If the normalized reference for that limit is 100 percent, then calculated RF levels higher than 100 percent indicate the MPE limit is exceeded and there is a need to mitigate the potential exposure. On the other hand, calculated RF levels consistently below 100 percent serve as a clear and sufficient demonstration of compliance with the MPE limit. We can (and will) also describe the overall worst-case result via the "plain-English" equivalent "times-below-the-limit" factor.

The result of the RF compliance assessment in this case is as follows:

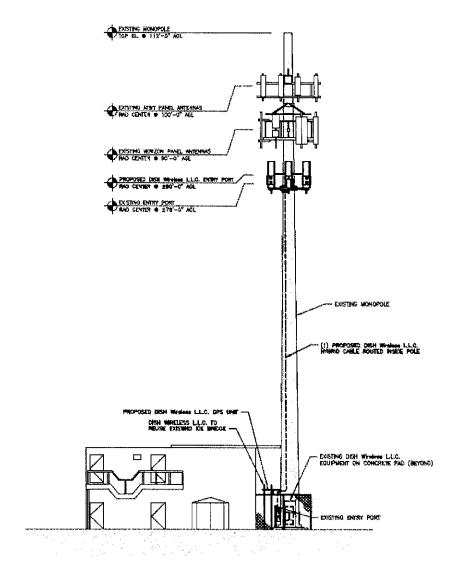
- At street level, the conservatively calculated maximum RF level from the combination of proposed and existing antenna operations at the site is 3.7856 percent of the FCC general population MPE limit well below the 100-percent reference for compliance. In other words, the worst-case calculated RF level intentionally and significantly overstated by the calculations is still more than 25 times below the FCC limit for safe, continuous exposure of the general public.
- A supplemental analysis of the RF levels at the same height as the Dish antennas indicate that the FCC MPE limit is potentially exceeded. Therefore, it is recommended that two Caution signs be installed six feet below the antennas. In addition, NOC Information signs are to be installed at the base of the monopole.
- The results of the calculations, along with the proposed mitigation, combine to satisfy the FCC requirements and associated guidelines on RF compliance. Moreover, because of the significant conservatism incorporated in the analysis, RF levels actually caused by the antennas will be lower than these calculations indicate.

The remainder of this report provides the following:

- □ relevant technical data on the proposed Dish antenna operations at the site, as well as on the other existing antenna operations;
- a description of the applicable FCC mathematical model for calculating RF levels, and application of the relevant technical data to that model;
- analysis of the results of the calculations against the FCC MPE limit, and the compliance conclusion for the site.


In addition, four Appendices are included. Appendix A provides information on the documents used to prepare the analysis. Appendix B provides background on the FCC MPE limit. Appendix C details the proposed mitigation to satisfy the FCC requirements and associated guidelines on RF compliance. Appendix D provides

a summary of the qualifications of the expert certifying FCC compliance for this site.

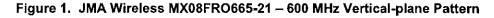

Antenna and Transmission Data

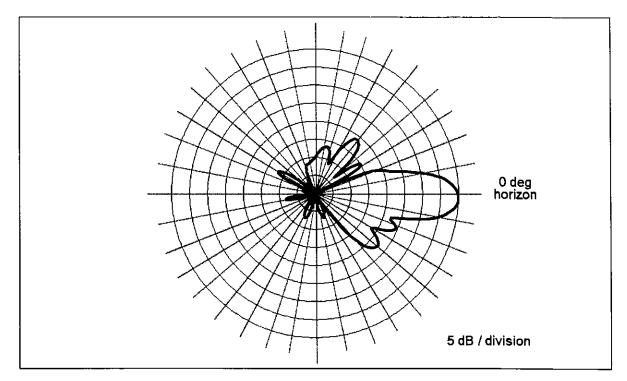
The plan and elevation views that follow, extracted from the site drawings, illustrate the mounting positions of the Dish antennas at the site.

Plan View:

Elevation View:

The table that follows summarizes the relevant data for the proposed Dish antenna operations. Note that the "Z" height references the centerline of the antenna.


(A) 45 (A)									
TÖM	0	0	0	0	0	0	0	0	0
EDT.	2	2	2	2	2	2	2	2	2
Azimuth	0	0	0	120	120	120	240	240	240
B/W,	68	62	64	99	62	8	89	62	64
Ant Galn• (dBd)	11.46	16.16	16.66	11.46	16.16	16.66	11.46	16.16	16.66
, Z (m):	80	80	80	80	80	80	80	80	80
Total ERP (watts)	1637	6011	7567	1637	6011	7567	1637	6011	7567
Ant. Dim.*	9	9	9	9	9	9	9	9	9
Fred; :-(MHz)	009	2000	2100	009	2000	2100	900	2000	2100
Type	Panel								
Antenna	MX08FRO665-21	MX08FRO665-21	MX08FRO665-21	MX08FRO665-21	MX08FRO665-21	MX08FRO665-21	MX08FRO665-21	MX08FRO665-21	MX08FRO665-21
Antenna	JMA Wireless								
Carrier	Dish								
Ant.	•	•	•	0	٥	•	•	•	0


The area below the antennas, at street level, is of interest in terms of potential "uncontrolled" exposure of the general public, so the antenna's vertical-plane emission characteristic is used in the calculations, as it is a key determinant of the relative amount of RF emissions in the "downward" direction.

By way of illustration, Figure 1 that follows shows the vertical-plane radiation pattern of the proposed antenna model in the 600 MHz frequency band. In this type of antenna radiation pattern diagram, the antenna is effectively pointed at the three o'clock position (the horizon) and the relative strength of the pattern at different angles is described using decibel units.

Note that the use of a decibel scale to describe the relative pattern at different angles actually serves to significantly understate the actual focusing effects of the antenna. Where the antenna pattern reads 20 dB the relative RF energy emitted at the corresponding downward angle is 1/100th of the maximum that occurs in the main beam (at 0 degrees); at 30 dB, the energy is only 1/1000th of the maximum.

Finally, note that the automatic pattern-scaling feature of our internal software may skew side-by-side visual comparisons of different antenna models, or even different parties' depictions of the same antenna model.

As noted at the outset, there are other existing wireless antenna operations to include in the compliance assessment. For each of the wireless operators, we will conservatively assume operation with maximum channel capacity and at maximum transmitter power per channel to be used by each wireless operator in each of their respective FCC-licensed frequency bands.

The table that follows summarizes the relevant data for the collocated antenna operations.

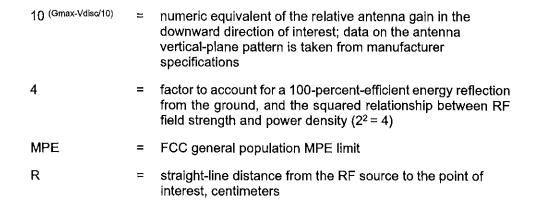
Azimuth	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ant. Gain (dBd)	11.25	11.76	15.56	15.66	16.16	11,76	12.36	15.26	15.46
Z(AGL) (ff)	100	100	100	100	100	90	90	90	06
. Total ERP (watts)	4945	2400	5756	5890	4131	2400	5166	5372	5625
Freq (MHz)	700	850	1900	2100	2300	746	698	1900	2100
Type:	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel
Antenna Model **	Generic	Generic	Generic	Generic	Generic	Generic	Generic	Generic	Generic
Antenna	Generic	Generic	Generic	Generic	Generic	Generic	Generic	Generic	Generic
Carrier	AT&T	AT&T	AT&T	AT&T	AT&T	Verizon Wireless	Verizon Wireless	Verizon Wireless	Verizon Wireless

Compliance Analysis

FCC Office of Engineering and Technology Bulletin 65 ("OET Bulletin 65") provides guidelines for mathematical models to calculate the RF levels at various points around transmitting antennas. Different models apply in different areas around antennas, with one model applying to street level around a site, and another applying to the area at the same height as the antennas. We will address each area of interest in turn in the subsections that follow.

Street Level Analysis

At street-level around an antenna site (in what is called the "far field" of the antennas), the RF levels are directly proportional to the total antenna input power and the relative antenna gain in the downward direction of interest – and the levels are otherwise inversely proportional to the square of the straight-line distance to the antenna.


Conservative calculations also assume the potential RF exposure is enhanced by reflection of the RF energy from the intervening ground. Our calculations will assume a 100% "perfect", mirror-like reflection, which is the absolute worst-case scenario.

The formula for street-level compliance assessment for any given wireless antenna operation is as follows:

MPE% =
$$(100 * Chans * TxPower * 10 (Gmax-Vdisc/10) * 4) / (MPE * 4 π * R²)$$

where

MPE%	= .	RF level, expressed as a percentage of the MPE limit applicable to continuous exposure of the general public
100	=	factor to convert the raw result to a percentage
Chans	=	maximum number of RF channels per sector
TxPower	=	maximum transmitter power per channel, in milliwatts

The MPE% calculations are performed out to a distance of 500 feet from the facility to points 6.5 feet (approximately two meters, the FCC-recommended standing height) off the ground, as illustrated in Figure 2, below.

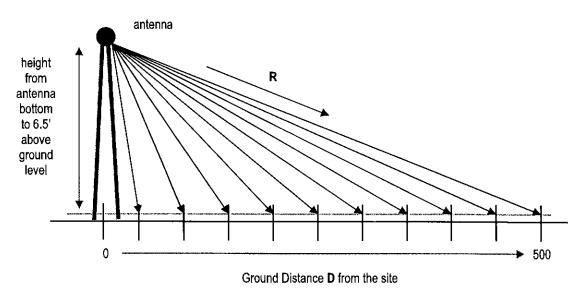


Figure 2. Street-level MPE% Calculation Geometry

It is popularly understood that the farther away one is from an antenna, the lower the RF level – which is generally but not universally correct. The results of MPE% calculations fairly close to the site will reflect the variations in the vertical-plane antenna pattern as well as the variation in straight-line distance to the antenna.

Therefore, RF levels may actually increase slightly with increasing distance within

the range of zero to 500 feet from the site. As the distance approaches 500 feet and beyond, though, the antenna pattern factor becomes less significant, the RF levels become primarily distance-controlled and, as a result, the RF levels generally decrease with increasing distance. In any case, the RF levels more than 500 feet from a wireless antenna site are well understood to be sufficiently low to be comfortably in compliance.

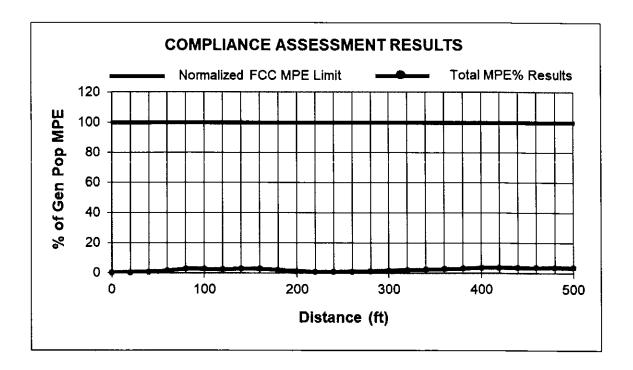
According to the FCC, when directional antennas (such as panels) are used, compliance assessments are based on the RF effect of a single (facing) antenna sector, as the effects of directional antennas pointed away from the point(s) of interest are considered insignificant. If the different parameters apply in the different sectors, compliance is based on the worst-case parameters.

Street level FCC compliance for a collocated antenna site is assessed in the following manner. At each distance point along the ground, an MPE% calculation is made for each antenna operation (including each frequency band), and the sum of the individual MPE% contributions at each point is compared to 100 percent, the normalized reference for compliance with the MPE limit. We refer to the sum of the individual MPE% contributions as "total MPE%", and any calculated total MPE% result exceeding 100 percent is, by definition, higher than the FCC limit and represents non-compliance and a need to mitigate the potential exposure. If all results are consistently below 100 percent, on the other hand, that set of results serves as a clear and sufficient demonstration of compliance with the MPE limit.

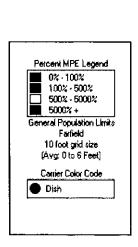
Note that the following conservative methodology and assumptions are incorporated into the MPE% calculations on a general basis:

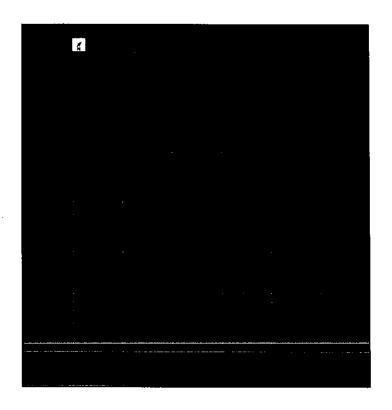
- 1. The antennas are assumed to be operating continuously at maximum power and maximum channel capacity.
- 2. The power-attenuation effects of shadowing or other obstructions to the line-of-sight path from the antenna to the point of interest are ignored.
- 3. The calculations intentionally minimize the distance factor (R) by assuming a 6'6" human and performing the calculations from the bottom (rather than the centerline) of each operator's lowest-mounted antenna, as applicable.

- 4. The calculations also conservatively take into account, when applicable, the different technical characteristics and related RF effects of the use of multiple antennas for transmission in the same frequency band.
- 5. The RF exposure at ground level is assumed to be 100-percent enhanced (increased) via a "perfect" field reflection from the intervening ground.


The net result of these assumptions is to intentionally and significantly overstate the calculated RF levels relative to the levels that will actually result from the antenna operations – and the purpose of this conservatism is to allow very "safe-side" conclusions about compliance.

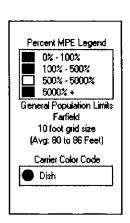
The table that follows provides the results of the MPE% calculations for each antenna operation, with the overall worst-case calculated result highlighted in bold in the last column.

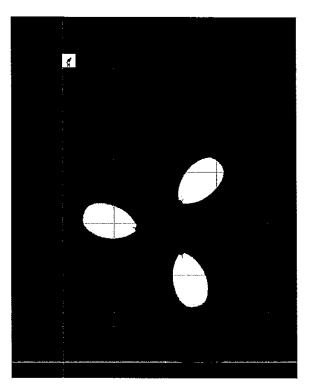

Total MPE%	0.1969	0.4075	0.8727	1.4883	2,7965	2,7038	2.2798	2.9664	2.7453	1.9820	1.2624	0.6634	0.7074	0.9163	1.1266	1.5340	1.9996	2.2640	2.7460	3.0922	3.7018	3.7125	3.7401	3.5174	3.7856	3.4970
Verizon Wireless MPE%	0.0510	0.0965	0.3360	0.3533	0.4150	0.6531	0.7240	1.0772	0.8589	0.5273	0.2319	0.0617	0.1211	0,2246	0.3665	0.5466	0.7507	0.9847	1.2212	1.1015	1.3345	1.5566	1.4229	1,3056	1.4818	1.3686
AT&T MPE%	0.1392	0.2203	0.4285	0.7001	0.6612	1.1279	1,3666	1,3951	1.5701	1.2412	0.7458	0.4219	0.3438	0.3258	0.3292	0.5577	0.8002	0.7150	1.0193	1.3611	1.6699	1.5216	1.7378	1.5956	1.7368	1.6050
Dish 2100 MHz MPE%	0.0001	0.0282	0.0606	0.2798	1.0093	0.2848	0.0665	0.0793	0.0581	0.0454	0.0993	0.0341	0.0567	0.1021	0.1044	0.0552	0.0079	0.0041	0.0036	0.0217	0.0167	0.0152	0.0139	0.0001	0.0001	0.0001
Dish 2000 MHz MPE%	0.0037	0.0446	0.0419	0.0169	0.3581	0.4727	0.0236	0.2185	0.0595	0.0329	0.1040	0.0553	0.0636	0.0849	0.0739	0.0311	0.0017	0.0079	0.0071	0.0202	0.0108	0.008	0.0000	0.0026	0.0024	0.0022
Dish 600 MHz MPE%	0.0029	0.0179	0:0057	0.1382	0.3529	0.1653	0.0991	0.1963	0.1987	0.1352	0.0814	0.0904	0.1222	0.1789	0.2526	0.3434	0.4391	0.5523	0.4948	0.5877	0.6699	0.6093	0.5565	0.6135	0.5645	0.5211
Ground Distance (ft)	0	20	40	09	80	100	120	140	160	180	200	220	240	260	280	300	320	340	360	380	400	420	440	460	480	500


As indicated, the maximum calculated overall RF level is 3.7856 percent of the FCC MPE limit – well below the 100-percent reference for compliance.

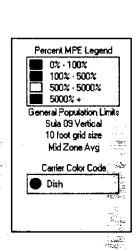
A graph of the overall calculation results, shown below, perhaps provides a clearer *visual* illustration of the relative compliance of the calculated RF levels. The line representing the overall calculation results barely visibly rises above the graph's baseline, and shows an obviously clear, consistent margin to the FCC MPE limit.

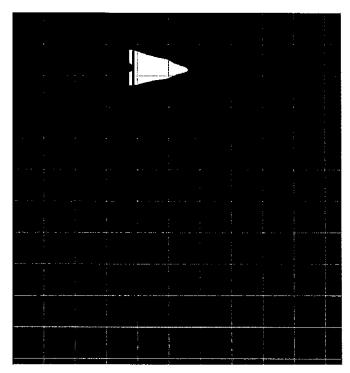
The graphic output for the areas at street level surrounding the site is reproduced on the next page.




Near-field Analysis

The compliance analysis for the same height as the antennas is performed using the RoofMaster program by Waterford Consultants.


RF levels in the near field of an antenna depend on the power input to the antenna, the antenna's length and horizontal beamwidth, the mounting height of the antenna above nearby standing level, and one's position and distance from the antenna. RF levels in front of a directional antenna are higher than they are to the sides or rear, and in any given horizontal direction are inversely proportional to the straight-line distance to the antenna.


The RoofMaster graphic outputs for the same height as the Dish antennas are reproduced on the next page.

RoofMaster – Same Height as the Antennas – Alpha / Beta / Gamma sectors

RoofMaster – Same Height as the Antennas – Alpha / Beta / Gamma sectors

Compliance Conclusion

According to the FCC, the MPE limit has been constructed in such a manner that continuous human exposure to RF fields up to and including 100 percent of the MPE limit is acceptable and safe.

The conservative analysis in this case shows that the maximum calculated RF level from the proposed modifications to the existing antenna operations at the site is 3.7856 percent of the FCC general population MPE limit. At the same height as the antennas, the analysis shows that the calculated RF levels potentially exceed the FCC MPE limit. Per Dish guidelines, and consistent with FCC guidance on compliance, it is recommended that two Caution signs be six feet below the antennas. In addition, NOC Information signs be installed at the base of the monopole.

The results of the calculations, along with the described RF mitigation, combine to satisfy the FCC's RF compliance requirements and associated guidelines on compliance.

Moreover, because of the extremely conservative calculation methodology and operational assumptions we applied in the analysis, RF levels actually caused by the antennas will be significantly lower than the calculation results here indicate.

CERTIFICATION

It is the policy of Pinnacle Telecom Group that all FCC RF compliance assessments are reviewed, approved, and signed by the firm's Chief Technical Officer who certifies as follows:

- 1. I have read and fully understand the FCC regulations concerning RF safety and the control of human exposure to RF fields (47 CFR 1.1301 *et seq*).
- 2. To the best of my knowledge, the statements and information disclosed in this report are true, complete and accurate.
- 3. The analysis of site RF compliance provided herein is consistent with the applicable FCC regulations, additional guidelines issued by the FCC, and industry practice.
- 4. The results of the analysis indicate that the subject antenna operations will be in compliance with the FCC regulations concerning the control of potential human exposure to the RF emissions from antennas.

Daniel Collins

Chief Technical Officer

Pinnacle Telecom Group, LLC

2/7/22

Date

Appendix A. Documents Used to Prepare the Analysis

RFDS: RFDS-NJJER01128B-Preliminary-20211116-v.1_20211116131105

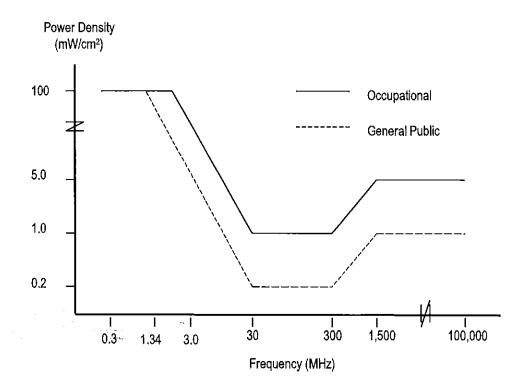
CD: NJJER01128B_LeaseExhlbit_20220117075943

Appendix B. Background on the FCC MPE Limit

As directed by the Telecommunications Act of 1996, the FCC has established limits for maximum continuous human exposure to RF fields.

The FCC maximum permissible exposure (MPE) limits represent the consensus of federal agencies and independent experts responsible for RF safety matters. Those agencies include the National Council on Radiation Protection and Measurements (NCRP), the Occupational Safety and Health Administration (OSHA), the National Institute for Occupational Safety and Health (NIOSH), the American National Standards Institute (ANSI), the Environmental Protection Agency (EPA), and the Food and Drug Administration (FDA). In formulating its guidelines, the FCC also considered input from the public and technical community – notably the Institute of Electrical and Electronics Engineers (IEEE).

The FCC's RF exposure guidelines are incorporated in Section 1.301 *et seq* of its Rules and Regulations (47 CFR 1.1301-1.1310). Those guidelines specify MPE limits for both occupational and general population exposure.


The specified continuous exposure MPE limits are based on known variation of human body susceptibility in different frequency ranges, and a Specific Absorption Rate (SAR) of 4 watts per kilogram, which is universally considered to accurately represent human capacity to dissipate incident RF energy (in the form of heat). The occupational MPE guidelines incorporate a safety factor of 10 or greater with respect to RF levels known to represent a health hazard, and an additional safety factor of five is applied to the MPE limits for general population exposure. Thus, the general population MPE limit has a built-in safety factor of more than 50. The limits were constructed to appropriately protect humans of both sexes and all ages and sizes and under all conditions – and continuous exposure at levels equal to or below the applicable MPE limits is considered to result in no adverse health effects or even health risk.

The reason for two tiers of MPE limits is based on an understanding and assumption that members of the general public are unlikely to have had appropriate RF safety training and may not be aware of the exposures they receive; occupational exposure in controlled environments, on the other hand, is assumed to involve individuals who have had such training, are aware of the exposures, and know how to maintain a safe personal work environment.

The FCC's RF exposure limits are expressed in two equivalent forms, using alternative units of field strength (expressed in volts per meter, or V/m), and power density (expressed in milliwatts per square centimeter, or mW/cm²). The table on the next page lists the FCC limits for both occupational and general population exposures, using the mW/cm² reference, for the different radio frequency ranges.

Frequency Range (F) (MHz)	Occupational Exposure (mW/cm²)	General Public Exposure (mW/cm²)					
0.3 - 1.34	100	100					
1.34 - 3.0	100	180 / F ²					
3.0 - 30	900 / F ²	180 / F ²					
30 - 300	1.0	0.2					
300 - 1,500	F/300	F / 1500					
1,500 - 100,000	5,0	1.0					

The diagram below provides a graphical illustration of both the FCC's occupational and general population MPE limits.

Because the FCC's RF exposure limits are frequency-shaped, the exact MPE limits applicable to the instant situation depend on the frequency range used by the systems of interest.

The most appropriate method of determining RF compliance is to calculate the RF power density attributable to a particular system and compare that to the MPE limit applicable to the operating frequency in question. The result is usually expressed as a percentage of the MPE limit.

For potential exposure from multiple systems, the respective percentages of the MPE limits are added, and the total percentage compared to 100 (percent of the limit). If the result is less than 100, the total exposure is in compliance; if it is more than 100, exposure mitigation measures are necessary to achieve compliance.

Note that the FCC "categorically excludes" all "non-building-mounted" wireless antenna operations whose mounting heights are more than 10 meters (32.8 feet) from the routine requirement to demonstrate compliance with the MPE limit, because such operations "are deemed, individually and cumulatively, to have no significant effect on the human environment". The categorical exclusion also applies to all point-to-point antenna operations, regardless of the type of structure they're mounted on. Note that the FCC considers any facility qualifying for the categorical exclusion to be automatically in compliance.

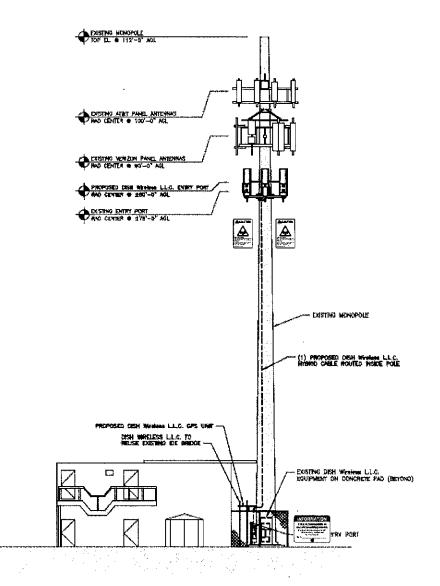
In addition, FCC Rules and Regulations Section 1.1307(b)(3) describes a provision known in the industry as "the 5% rule". It describes that when a specific location – like a spot on a rooftop – is subject to an overall exposure level exceeding the applicable MPE limit, operators with antennas whose MPE% contributions at the point of interest are less than 5% are exempted from the obligation otherwise shared by all operators to bring the site into compliance, and those antennas are automatically deemed by the FCC to satisfy the rooftop compliance requirement.

FCC References on RF Compliance

47 CFR, FCC Rules and Regulations, Part 1 (Practice and Procedure), Section 1.1310 (Radiofrequency radiation exposure limits).

FCC Second Memorandum Opinion and Order and Notice of Proposed Rulemaking (FCC 97-303), In the Matter of Procedures for Reviewing Requests for Relief From State and Local Regulations Pursuant to Section 332(c)(7)(B)(v) of the Communications Act of 1934 (WT Docket 97-192), Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation (ET Docket 93-62), and Petition for Rulemaking of the Cellular Telecommunications Industry Association Concerning Amendment of the Commission's Rules to Preempt State and Local Regulation of Commercial Mobile Radio Service Transmitting Facilities, released August 25, 1997.

FCC First Memorandum Opinion and Order, ET Docket 93-62, *In the Matter of Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation*, released December 24, 1996.


FCC Report and Order, ET Docket 93-62, In the Matter of Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, released August 1, 1996.

FCC Report and Order, Notice of Proposed Rulemaking, Memorandum Opinion and Order (FCC 19-126), Proposed Changes in the Commission's Rules Regarding Human Exposure to Radiofrequency Electromagnetic Fields; Reassessment of Federal Communications Commission Radiofrequency Exposure Limits and Policies, released December 4, 2019.

FCC Office of Engineering and Technology (OET) Bulletin 65, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Edition 97-01, August 1997.

FCC Office of Engineering and Technology (OET) Bulletin 56, "Questions and Answers About Biological Effects and Potential Hazards of RF Radiation", edition 4, August 1999.

Appendix C. Proposed Signage

NOC Information Sign	INSORMATION JAKES ASSESSED IN ACCOUNT OF THE PROPERTY AND THE PROPERTY AN	Cautlon Sign	
Guidefines Sign		Werning Sign	To and the state of the state o
Notice Sign	WO THE E		

Appendix D. Summary of Expert Qualifications

Daniel J. Collins, Chief Technical Officer, Pinnacle Telecom Group, LLC

	是一个人,他们就是一个人,他们就不会,他们就是一个人,他们就是一个人,他们就是一个人,他们就是一个人,他们就是一个人,他们就是一个人,他们就是一个人,他们就是一
Synopsis:	40+ years of experience in all aspects of wireless system
	engineering, related regulation, and RF exposure
	Has performed or led RF exposure compliance assessments
	on more than 20,000 antenna sites since the latest FCC
	regulations went into effect in 1997
	Has provided testimony as an RF compliance expert more
	than 1,500 times since 1997
	Have been accepted as an FCC compliance expert in
	Connecticut, New York, New Jersey, Pennsylvania and more
ng mining kinakan kan 1944 kan kan manangan sa kan kan kan kan kan kan kan kan kan ka	than 40 other states, as well as by the FCC
Education:	B.E.E., City College of New York (Sch. Of Eng.), 1971
	M.B.A., 1982, Fairleigh Dickinson University, 1982
	Bronx High School of Science, 1966
Current Responsibilities:	Leads all PTG staff work involving RF safety and FCC
	compliance, microwave and satellite system engineering, and
	consulting on wireless technology and regulation
Prior Experience:	Edwards & Kelcey, VP – RF Engineering and Chief
	Information Technology Officer, 1996-99
	Bellcore (a Bell Labs offshoot after AT&T's 1984 divestiture),
	Executive Director – Regulation and Public Policy, 1983-96
	AT&T (Corp. HQ), Division Manager – RF Engineering, and
	Director – Radio Spectrum Management, 1977-83
	AT&T Long Lines, Group Supervisor – Microwave Radio
	System Design, 1972-77
Specific RF Safety /	 Involved in RF exposure matters since 1972
Compliance Experience:	 Have had lead corporate responsibility for RF safety and
	compliance at AT&T, Bellcore, Edwards & Kelcey, and PTG
	 While at AT&T, helped develop the mathematical models for
	calculating RF exposure levels
	Have been relied on for compliance by all major wireless
	carriers, as well as by the federal government, several state
	and local governments, equipment manufacturers, system
Other Dealerman de	integrators, and other consulting / engineering firms
Other Background:	Author, Microwave System Engineering (AT&T, 1974)
	Co-author and executive editor, A Guide to New Technologies and Services (Bellegre, 1993)
	Technologies and Services (Bellcore, 1993)
_ seent	National Spectrum Management Association (NSMA) – former three-term President and Chairman of the Board of
	Directors; was founding member, twice-elected Vice
	President, long-time member of the Board, and was named
, F	an NSMA Fellow in 1991
	Have published more than 35 articles in industry magazines
	- Trato published more diali of aldoles ill illudady illayazilles

Exhibit G Lease Agreement

SITE LEASE AGREEMENT

This Site Lease Agreement (the "Agreement") is made and effective as of the date the last Party executes this Agreement (the "Effective Date"), by and between 48 Newtown Road Corporation, a Connecticut corporation having a place of business at 50 Newtown Road Danbury, CT 06810 ("Landlord"), and DISH Wireless L.L.C., a Colorado limited liability company having a place of business at 9601 S. Meridian Blvd., Englewood, Colorado 80112 ("Tenant," and together with Landlord, the "Parties," each a "Party").

WITNESSETH:

1. Definitions.

"Affiliate(s)" means, with respect to a Party, any person or entity, directly or indirectly, controlling, controlled by, or under common control with such Party, in each case for so long as such control continues. For purposes of this definition, "control" shall mean (i) the ownership, directly or indirectly, or at least fifty percent (50%) of either: (a) the voting rights attached to issued voting shares; or (b) the power to elect fifty percent (50%) of the directors of such entity, or (ii) the ability to direct the actions of the entity. Notwithstanding the preceding, for purposes of this Agreement, EchoStar Corporation and its direct and indirect subsidiaries shall not be deemed to be "Affiliates" of Tenant unless after the Effective Date any such entity qualifies as a direct or indirect subsidiary of DISH Network Corporation.

"Applicable Law" means any applicable federal, state or local act, law, statute, ordinance, building code, rule, regulation or permit, or any order, judgment, consent or approval of any Governmental Authority having jurisdiction over the Parties or this Agreement.

"Governmental Authority" means any: (i) federal, state, county, municipal, tribal or other local government and any political subdivision thereof having jurisdiction over the Parties or this Agreement; (ii) any court or administrative tribunal exercising proper jurisdiction; or (iii) any other governmental, quasi-governmental, self-regulatory, judicial, public or statutory instrumentality, authority, body, agency, bureau or entity of competent jurisdiction.

"Installation" means the installation of Tenant's Equipment at the Premises.

"Permitted Modifications" means adding, replacing, or modifying Tenant's Equipment within the Premises.

"Property" means that certain parcel of real property upon which the Structure, Tower, and Premises are located.

"Structure" means that certain structure of which the Premises are a part.

"Tower" means the structure located on the Property upon which Tenant's antennas, radios, and related communication equipment are mounted, but does not include the ground space used for the placement of cabinets, generators, cabling, conduit, backhaul fiber, electrical feeds and similar supporting communications equipment are located.

2. Premises, Term, Rent and Contingencies.

2.1 <u>Premises</u>. Landlord is the owner of the Property located at 48 Newtown Road Danbury, CT 06810, as more particularly described in <u>Exhibit A</u>. Landlord leases to Tenant approximately 100 square feet of ground

1

Site Number: NJJER01128B

Confidential & Proprietary

Market: New Jersey

Lease Version: 1.0

space for the placement of communications equipment together with additional space on the tower for antennas and related equipment and additional space for cabling, conduit, backhaul fiber, electrical feeds and similar supporting communications equipment, all for the use and operation of its facilities as such are initially described in Exhibit B, collectively referred to as the "Premises". Landlord also grants to Tenant: (a) the right to use any available electrical systems and/or fiber installed at the Property to support Tenant's Installation: and (b) any easements on, over, under, and across the Property for utilities, fiber and access to the Premises. Landlord agrees that providers of utility or fiber services may use such easement(s) and/or available conduit(s) for the installation of any equipment necessary to provide utility or fiber service. If the existing utility or fiber sources located within the Premises or on the Property are insufficient for Tenant's Permitted Use, Landlord agrees to grant Tenant and/or the applicable third party utility or fiber provider the right, at Tenant's sole cost and expense, to install such utilities or fiber on, over and/or under the Property as is necessary for Tenant's Permitted Use; provided that Landlord and Tenant shall mutually agree on the location of such installation(s).

- 2.2 <u>Term.</u> This Agreement shall be effective as of the Effective Date. The initial term of this Agreement (the "Initial Term") will commence on the first (1st) day of the month following the commencement of Tenant's Installation (the "Commencement Date"), and will expire on the last day of the month that is months after the Commencement Date unless terminated sooner, renewed or extended in accordance with this Agreement. The Initial Term shall automatically renew for up to additional terms of months each (each, a "Renewal Term" and together with the Initial Term, the "Term"). However, Tenant may, in Tenant's sole and absolute discretion, elect not to renew the lease at the end of the then-current Term by giving Landlord written Notice at least ninety (90) days prior to the end of the then-current Term. The Parties agree that, subject to the Contingencies, this Agreement constitutes a binding and valid obligation on each Party and that each Party has vested rights in this Agreement as of the Effective Date.
- Rent. Beginning on the Commencement Date and continuing through the term of this Agreement, Tenant shall pay Landlord rent for the Premises ("Rent") in the amount of per month. The first Rent payment shall be made within twenty (20) business days of the Commencement Date, with subsequent rent payable by the fifth day of each month. On each anniversary of the Commencement Date, the Rent shall be automatically increased by a continuing through the term of this Agreement, and the commencement Date, with subsequent rent payable by the fifth day of each month. On each anniversary of the Commencement Date, the Rent shall be automatically increased by a continuing through the term of this Agreement. All payments for any fractional month shall be prorated based upon the number of days during such month that the payment obligation was in force ("Payment Terms"). Tenant shall require receipt of a validly completed IRS approved W-9 form (or its equivalent) prior to paying any Rent or any other amount(s) due under this Agreement.
- 2,4 Contingencies. The Parties acknowledge and agree that Tenant's ability to lawfully use the Premises is contingent upon Tenant obtaining each of the following: (a) a satisfactory structural analysis showing that the Tower is suitable for Tenant's Permitted Use; and (b) all certificates, permits, approvals and other authorizations that may be required by any Governmental Authority in accordance with Applicable Law (collectively, the "Governmental Approvals"). Tenant will endeavor to obtain all such Governmental Approvals promptly. Landlord hereby authorizes Tenant, at Tenant's sole cost and expense, to file and submit for Governmental Approvals. Landlord shall: (x) cooperate with Tenant in Tenant's efforts to obtain such Governmental Approvals; (y) promptly execute and deliver all documents necessary to obtain and maintain the Government Approvals; and (z) not take any action that would adversely affect Tenant's ability to obtain and/or maintain the Governmental Approvals. If: (i) any application for Governmental Approvals is rejected, conditioned, materially delayed or otherwise not approved for any or no reason; (ii) a structural analysis shows that the Tower is not suitable for Tenant's Permitted Use; or (iii) Tenant determines, in Tenant's sole and absolute discretion, that such Governmental Approvals cannot be obtained in a timely and commercially reasonable manner (clauses (i), (ii) and (iii) collectively, the "Contingencies"), then, Tenant shall have the right in its sole and absolute discretion to terminate this Agreement immediately upon Notice to Landlord, without penalty or further obligation to

Site Number: NJJER01128B

Market: New Jersey

Confidential & Proprietary

2

Landlord (or Landlord's affiliates, employees, officers, agents or lenders). If, following the Commencement Date, and through no fault of Tenant, any Governmental Approval issued to Tenant is canceled, expires, lapses or is otherwise withdrawn or terminated by the applicable Governmental Authority, then Tenant shall have the right in its sole and absolute discretion to terminate this Agreement upon ninety (90) days' Notice to Landlord without penalty or further obligation to Landlord (or Landlord's affiliates, employees, officers, agents or lenders). If this Agreement is terminated, this Agreement shall be of no further force or effect (except as set forth to the contrary herein).

3. Use, Access and Modifications to Tenant's Equipment.

- 3.1 <u>Tenant's Permitted Use</u>. Landlord agrees that Tenant may use the Premises for the purpose of the installation, operation, maintenance and management of a telecommunications facility (including, without limitation, equipment designed to transmit and receive radio frequency signals) (collectively, "Tenant's Equipment"), which shall include the right to replace, repair, add, or otherwise modify any or all of Tenant's Equipment and the frequencies over which Tenant's Equipment operates ("Tenant's Permitted Use"). Landlord acknowledges and agrees that if radio frequency signage and/or barricades are required by Applicable Law, Tenant shall have the right to install the same on the Property.
- 3.2 Access. Commencing on the Effective Date and continuing throughout the Term, Tenant, its employees, agents and contractors shall have unrestricted access to the Premises 24 hours per day, 7 days per week and at no additional cost or expense to Tenant. Further, Landlord grants to Tenant the right of ingress and egress to the Structure, Tower and the Premises.
- 3.3 <u>Modifications to Tenant's Equipment</u>. After Tenant's initial Installation, Tenant may make Permitted Modifications, including those which allow Tenant to: (i) modify or add additional frequencies or technologies; and (ii) replace, modify or add equipment within the Premises; in either case, without incurring any increase in the then-current Rent, or other modification of the terms and conditions set forth in this Agreement. For any modification or addition that is not a Permitted Modification, Tenant shall seek Landlord's approval of Tenant's installation plans and specifications prior to commencing any such addition or modification.

4. Utilities, Liens and Taxes.

4.1 <u>Utilities</u>. Tenant may have its own utility meter installed in a mutually agreed upon location. If separate metering is not commercially reasonable, then Tenant may install a utility sub meter on Landlord's main utility meter, which Landlord shall read and bill to Tenant on a monthly basis (without mark-up) for Tenant's utility consumption and provide Tenant with documentation to substantiate all invoiced amounts. Tenant's actual utility usage charges shall be paid by Tenant to Landlord (each without mark-up) within sixty (60) days following Tenant's receipt of an undisputed invoice and documentation substantiating all invoiced amounts.

Landlord grants to Tenant and its utility providers non-exclusive easement(s) for utilities, including, without limitation, fiber optic cabling and electrical power as may be reasonably necessary for utilization of Tenant's Equipment at the Premises ("Easement"). The Parties acknowledge and agree that independent third-party providers of utility services, including but not limited to, fiber, gas, electric and telephone, may utilize the Easement.

4.2 <u>Liens</u>. Tenant will use commercially reasonable efforts to prevent any lien from attaching to the Property or any part thereof. If any lien is filed purporting to be for labor or material furnished or to be furnished at the request of Tenant, then Tenant shall do all acts necessary to discharge such lien by payment, satisfaction or posting of bond within ninety (90) days of receipt of Notice of the same from Landlord; provided, that Tenant may

3

Site Number: NJJER01128B

Confidential & Proprietary

Market: New Jersey

Lease Version: 1.0

contest any such lien if Tenant provides Landlord with cash or a letter of credit in the amount of said lien as security for its payment within such ninety (90) day period, and thereafter diligently contests such lien. In the event Tenant fails to deposit the aforementioned security with Landlord and fails to pay any lien claim after entry of final judgment in favor of the claimant, then Landlord shall have the right to expend all sums reasonably necessary to discharge the lien claim and Tenant will be responsible to indemnify and hold harmless Landlord for its costs and expenses incurred in removing the lien.

4.3 Taxes. Landlord shall pay all taxes that accrue against the Structure, Tower, and Property during the Term. If any such tax or excise is levied or assessed directly against Tenant, then Tenant shall be responsible for and shall pay the taxing authority. Tenant shall be liable for all taxes against Tenant's personal property or Tenant's fixtures placed in the Premises, whether levied or assessed against Landlord or Tenant. Landlord shall reasonably cooperate with Tenant, at Tenant's expense, in any appeal or challenge to Taxes. If, as a result of any appeal or challenge by Tenant, there is a reduction, credit or repayment received by Landlord for any Taxes previously paid by Tenant, Landlord agrees to promptly reimburse to Tenant the amount of said reduction, credit or repayment. If Tenant does not have the standing rights to pursue a good faith and reasonable dispute of any Taxes under this section, Landlord will pursue such dispute at Tenant's sole cost and expense upon written request of Tenant.

5. Interference and Relocation of Tenant's Equipment.

- 5.1 <u>Interference</u>. Tenant agrees to use commercially reasonable efforts to ensure that Tenant's Equipment does not cause measurable Interference (as defined below) with any equipment installed at the Structure, Tower, or Property as of the Effective Date. Following the Effective Date, Landlord agrees not to install or to permit others to install any structure or equipment which could block or otherwise interfere with any transmission or reception by Tenant's Equipment ("Interference"). If Interference continues for a period more than forty-eight (48) hours following a Party's receipt of notification thereof, Landlord shall cause any interfering party to cease operating, and/or relocate, the source of Interference, or to reduce the power sufficiently to minimize the Interference until such Interference can be remedied.
- 5.2 Structure Unfit For Tenant's Permitted Use. In the event that all or a substantial portion of the Tower is destroyed, damaged or otherwise becomes unfit for Tenant's occupancy in accordance with the Tenant's Permitted Use (as determined by Tenant in its reasonable discretion) and the Tower cannot be restored, or rebuilt, by Landlord within thirty (30) days to a condition which is fit for Tenant's occupancy in accordance with the Tenant's Permitted Use (as determined by Tenant in its reasonable discretion), then Tenant may elect to immediately terminate this Agreement by written Notice to Landlord without penalty or further obligation to Landlord, its employees, officers, agents or lenders. Landlord shall inform Tenant whether Landlord intends to rebuild, repair or replace the Tower as soon as possible under the circumstances, but in all cases within ten (10). days following Landlord's discovery of such condition. In the event Tenant does not elect to terminate this Agreement, then Landlord shall promptly commence and diligently pursue to completion the restoration or repair of the Tower in accordance with prevailing tower industry standards, at Landlord's sole cost and expense. If such restoration or repair cannot reasonably be undertaken without moving Tenant's Equipment, then, at Landlord's sole cost and expense, Tenant may remove Tenant's Equipment from the Tower, thereafter replacing Tenant's Equipment on the Tower as soon as reasonably possible. Tenant shall be entitled to deploy and use a mobile structure, temporary power solution or other interim cell siting arrangement in a location mutually agreed upon by the Parties in good faith, and to an abatement of its Rent obligation (and/or a pro rata refund of prepaid Rent, as applicable) until such time that the affected facility is replaced or otherwise restored to a condition fit for Tenant's occupancy in accordance with the Tenant's Permitted Use (as determined by Tenant in its reasonable discretion).

Site Number: NJJER01128B

Market: New Jersey

Relocation of Tenant's Equipment. Following Tenant's receipt of a written Notice from Landlord, Tenant agrees to temporarily relocate its equipment to a mutually agreed upon location on the Property (a "Temporary Location") to facilitate Landlord's performance of maintenance, repair or similar work at the Property or in or on the Structure, provided that: (a) Landlord pays all costs incurred by Tenant for relocating Tenant's Equipment to the Temporary Location as well as back to the original location; (b) Landlord gives Tenant at least six (6) months prior written Notice (except in the case of a bona fide emergency which is reasonably likely to result in damage or injury to persons, the Structure or the Property (an "Emergency"), in which event Landlord will provide the greatest amount of notice possible under the circumstances; and (c) except for an Emergency Tenant shall not be required to relocate its equipment to a Temporary Location more than one (1) time within any five (5) year period. If Tenant's use of the Temporary Location requires Tenant to undergo re-zoning or re-permitting, Landlord shall not require Tenant to relocate Tenant's Equipment, absent an Emergency, until Tenant's receipt of all Governmental Approvals applicable to Tenant's use of the Temporary Location.

6. Maintenance and Repair Obligations.

6.1 Landlord Maintenance of the Structure and Tower. Landlord represents and warrants that, as of the Effective Date, the Structure, the Structure's systems and all structural elements of the Structure are in compliance with Applicable Law. Throughout the term of this Agreement, Landlord shall maintain, at its sole cost and expense, the Structure and the Property (but not Tenant's Equipment located thereon) in good operating condition. Landlord shall not have any obligation to maintain, repair or replace Tenant's Equipment except to the extent required due to the acts and/or omissions of Landlord, Landlord's agents, contractors or other tenants of the Structure. Landlord agrees to safeguard Tenant's Equipment with the same standard of care it uses to protect its own property, but in no event less than reasonable care. In addition, Tenant may take all actions necessary, in Tenant's reasonable discretion, to secure and/or restrict access to Tenant's Equipment.

Landlord represents and warrants that: (i) its operation of the Tower (exclusive of Tenant's Equipment), including, without limitation, any required or advisable lighting systems, currently complies with, and will be maintained throughout the Term of this Agreement in accordance with, all Applicable Laws. Landlord shall at all times throughout the Term maintain, at its sole cost and expense, the Tower, including, without limitation, the lighting systems, transmission lines, equipment and building(s) in good operating condition. In no event shall Landlord access, power down, move, modify or otherwise alter Tenant's Equipment without Tenant's prior written consent (email being sufficient).

6.2 <u>Tenant Maintenance of Tenant's Equipment</u>. Tenant assumes sole responsibility for the maintenance, repair and/or replacement of Tenant's Equipment, except as set forth in Section 6.1. Tenant agrees to perform all maintenance, repair or replacement of Tenant's Equipment ("Tenant Maintenance") in accordance with Applicable Law, and in a good and workmanlike manner. Tenant shall not be permitted to conduct Tenant Maintenance in a manner that would materially increase the size of the Premises.

7. Surrender and Hold Over.

2.1 Surrender. Except as set forth to the contrary herein, within ninety (90) days following the expiration or termination of this Agreement (the "Equipment Removal Period"), in accordance with the terms of this Agreement, Tenant will surrender the Premises to Landlord in a condition similar to that which existed immediately prior to Tenant's Installation together with any additions alteration and improvements to the Premises, in either case, normal wear and tear excepted and provided, however, that Tenant shall have no obligation to remove any Tenant's Equipment or other objects that are below the surface of the Property or behind/under ceilings, floors or walls (such as cables) or any concrete or equivalent installation pad. The Parties acknowledge and agree that Rent will not accrue during the Equipment Removal Period. However, if Tenant's

5

Site Number: NJJER01128B

Market: New Jersey

Confidential & Proprietary

Lease Version: 1.0

Equipment is not removed during the Equipment Removal Period, Tenant will be deemed to be in Hold Over (as defined in Section 7.2 below) until Tenant's Equipment is removed from the Premises. Tenant shall have the right to access the Premises or remove any or all of Tenant's Equipment from the Premises at any time during the Term or the Equipment Removal Period.

7.2 <u>Hold Over</u>. If Tenant occupies the Premises beyond the Equipment Removal Period without Landlord's written consent ("**Hold Over**"), Tenant will be deemed to occupy the Premises on a month-to-month basis, terminable by either Party on thirty (30) days' written Notice to the other Party. All of the terms and provisions of this Agreement shall be applicable during that period, except that Tenant shall pay Landlord a rental fee equal to the then current monthly Rent applicable at the expiration or termination of the Agreement, prorated for the number of days of such hold over.

8. Default, Remedies and Termination.

- Default. If any of the following events occur during the Term (each a "Default"), then the non-Defaulting Party may elect one or more of the remedies set forth below in this Section 8 or seek any other remedy available: (a) Tenant's failure to make any payment required by this Agreement within thirty (30) days after receipt of written Notice from the Landlord of such failure to pay; (b) failure by either Party to observe or perform any provision of this Agreement where such failure: (1) continues for a period of thirty (30) days after written Notice thereof from the non-Defaulting Party and the Defaulting Party has failed to cure or commenced the cure of such Default; and/or (2) based upon Tenant's reasonable determination, materially affects Tenant's ability to transmit or receive wireless communications signals to or from the Premises; (c) either Party files a petition in bankruptcy or insolvency or for reorganization or arrangement under the bankruptcy laws or under any insolvency act of any state, or admits the material allegations of any such petition by answer or otherwise, or is dissolved or makes an assignment for the benefit of creditors; and/or (d) involuntary proceedings under any such bankruptcy law or insolvency act or for the dissolution of either Party are instituted against either Party, or a receiver or trustee is appointed for all or substantially all of the property of either Party, and such proceeding is not dismissed, or such receivership or trusteeship vacated within sixty (60) days after such institution or appointment.
- 8.2 <u>Remedies</u>. Upon the occurrence of any uncured Default, the non-Defaulting Party may thereafter terminate this Agreement immediately upon written Notice to the other Party without prejudice to any other remedies the non-Defaulting Party may have at law or in equity.
- 8.3 Termination. Tenant shall have the right to terminate this Agreement without further liability upon thirty (30) days prior written Notice to Landlord due to any one or more of the following: (i) changes in Applicable Law which prohibit or materially adversely affect Tenant's ability to operate Tenant's Equipment at the Premises; or (ii) Landlord or a third party installs any structure, equipment, or other item which blocks, hinders, limits, or prevents Tenant from being able to use the Tenant Equipment for Tenant's Permitted Use. In addition, at any time after the Initial Term, Tenant shall have the right to terminate this Agreement without further liability upon ninety (90) days prior written Notice to Landlord in the event Tenant, in its sole discretion, determines that Tenant's Permitted Use of the Premises is obsolete or unnecessary and Tenant shall pay Landlord a termination fee equal to six (6) months at the Rent in effect at the time of the applicable termination date.

9. Limitation of Liability and Indemnification.

9.1 <u>Limitation of Liability</u>. EXCEPT FOR EACH PARTY'S INDEMNIFICATION OBLIGATIONS SET FORTH BELOW IN THIS SECTION 9, NEITHER PARTY NOR ANY OF ITS AGENTS, CONTRACTORS OR EMPLOYEES, SHALL BE LIABLE TO THE OTHER PARTY OR ANY PERSON CLAIMING THROUGH THAT PARTY FOR ANY EXEMPLARY, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES FOR ANY CAUSE WHATSOEVER, INCLUDING, WITHOUT LIMITATION,

Site Number: NJJER01128B

6

Confidential & Proprietary

Market: New Jersey

Lease Version: 1.0

CLAIMS CAUSED BY OR RESULTING FROM THE NEGLIGENCE, GROSS NEGLIGENCE OR WILLFUL MISCONDUCT OF THAT PARTY, ITS AGENTS, CONTRACTORS OR EMPLOYEES.

- 9.2 Tenant's Indemnity. Except to the extent caused by the breach of this Agreement by Landlord or the acts or omissions of Landlord, its officers, agents, employees, contractors, or any other person or entity for whom Landlord is legally responsible, Tenant shall defend, indemnify and hold Landlord and its officers, directors, shareholders, employees, agents and representatives ("Landlord's Representatives") harmless from and against any and all claims, demands, litigation, settlements, judgments, damages, liabilities, costs and expenses (including, without limitation, reasonable attorneys' fees) (individually or collectively, a "Claim") arising directly or indirectly out of: (i) any act or omission of Tenant, its officers, agents, employees, contractors, or any other person or entity for whom Tenant is legally responsible ("Tenant's Representatives"); or (ii) a breach of any representation. warranty or covenant of Tenant contained or incorporated in this Agreement. Tenant's obligations under this Section 9.2 shall survive the expiration or earlier termination of this Agreement for two (2) years.
- 9.3 Landlord's Indemnity. Except to the extent caused by the breach of this Agreement by Tenant or the acts or omissions of Tenant or Tenant's Representatives, , Landlord shall defend, indemnify and hold Tenant. its officers, directors, shareholders, employees, agents and representatives harmless from and against any and all Claims arising directly or indirectly out of: (i) any act or omission of Landlord, its officers, agents, employees, contractors or any other person or entity for whom Landlord is legally responsible; (ii) a breach of any representation, warranty or covenant of Landlord contained or incorporated in this Agreement; and/or (iii) the generation, possession, use, storage, presence, release, spill, treatment, transportation, manufacture, refinement, handling, production and/or disposal of Hazardous Substances in, on, about, adjacent to, under or near the Premises, the Structure and/or the Property, and/or any contamination of the Premises, the Structure and/or the Property by any Hazardous Substance, but only to the extent not caused by Tenant or Tenant's Representatives. Landlord's obligations under this Section 9.3 shall survive the expiration or earlier termination of this Agreement for two (2) years.
- Indemnification Procedure. The Party seeking indemnification (the "Indemnified Party") shall promptly send Notice to the Party from whom indemnification is being sought (the "Indemnifying Party") of the claim or suit for which indemnification is sought. The Indemnified Party shall not make any admission as to liability or agree to any settlement of or compromise any claim without the prior written consent of the Indemnifying Party. The Indemnified Party shall, at the Indemnifying Party request and expense, give the Indemnifying Party all reasonable assistance in connection with those negotiations and litigation.

10. Insurance.

- 10.1 Landlord Obligations. Throughout the Term, Landlord shall maintain, at Landlord's sole cost and expense, the following insurance coverage: (i) Commercial General Liability of not less than \$1,000,000 per occurrence and \$2,000,000 aggregate; and (ii) such other insurance policies as may be deemed normal and customary for substantially similar properties, including, without limitation, coverage for loss of rent. All such policies shall be endorsed to include Tenant as an additional insured. Subject to the policy minimums set forth above in this Section 10.1, the insurance required of Landlord hereunder may be maintained by a blanket or master policy that includes properties other than the Property.
- Tenant Obligations. Throughout the Term, Tenant shall maintain, at Tenant's sole cost and expense, the following insurance coverage: (i) workers' compensation insurance with no less than the minimum limits required by Applicable Law; (ii) employer's liability insurance with such limits as required by Applicable Law; and (iii) Commercial General Liability with a minimum limit of \$1,000,000 per occurrence and \$2,000,000 aggregate. All such policies shall be endorsed to include Landlord as additional insured.

7

Site Number: NJJER01128B

Market: New Jersey

- 10.3 <u>Insurance Requirements</u>. All policies required by this Section 10 shall be issued by insurers that are (1) licensed to do business in the state in which the Property and/or Structure are located, and (2) rated A- or better by Best's Key Rating Guide.
- 10.4 <u>Waiver of Subrogation</u>. To the fullest extent permitted by law, Landlord and Tenant for themselves and any and all parties claiming under or through them, including, without limitation, their respective insurers, hereby mutually release and discharge each other and the other's Affiliates, and their respective officers, directors, shareholders, agents, employees, contractors, and/or any other person or entity for whom a Party is legally responsible from any claims for damage to any person or to the Premises or any other real or personal property that are or are claimed to have been caused by or result from risks insured against under any insurance policies carried by the waiving party and in force at the time of such damage and hereby waive any right of subrogation that might otherwise exist in or accrue to any person on account thereof. All policies required to be carried by either Party herein shall contain an endorsement in favor of the other Party waiving the insurance company's right of subrogation against such other Party. THIS RELEASE SHALL APPLY EVEN IF THE LOSS OR DAMAGE IS CAUSED BY THE FAULT OR NEGLIGENCE OF A PARTY HERETO OR BY ANY PERSON FOR WHICH SUCH PARTY IS RESPONSIBLE. EACH PARTY AGREES TO NOTIFY ITS INSURANCE CARRIER(S) OF THIS PROVISION.

11. Representations and Warranties.

Representations and Warranties. Landlord represents, warrants and covenants that: (a) Landlord 11.1 has the right and authority to execute and perform this Agreement; (b) there are no liens, judgments or other title matters materially and adversely affecting Landlord's title to the Property; (c) there are no covenants, easements or restrictions that prevent the use of the Premises for Tenant's Permitted Use; (d) the Structure, Tower and the Premises are in good repair and suitable for Tenant's Permitted Use; (e) Landlord will comply with all federal, state, and local laws in connection with any substances brought on to the Property and/or Structure that are identified as toxic or hazardous by any Applicable Law, ordinance or regulation ("Hazardous Substance"); and (f) Tenant's use and quiet enjoyment of the Premises shall not be disturbed. Landlord is responsible for any loss or damage, including remediation, with respect to Hazardous Substances as per Applicable Law. Landlord understands and agrees that notwithstanding anything contained in this Agreement to the contrary, in no event shall Tenant have any liability whatsoever with respect to any Hazardous Substance that was on, about, adjacent to, under or near the Property and/or Structure prior to the Effective Date, or that was generated, possessed, used, stored, released, spilled, treated, transported, manufactured, refined, handled, produced or disposed of on, about, adjacent to, under or near the Property and/or Structure by: (1) Landlord, its agents, employees, contractors or invitees; or (2) any third party who is not an employee, agent, contractor or invitee of Tenant.

12. Miscellaneous.

Assignment. Neither Party may assign or otherwise transfer any of its rights or obligations under this Agreement to any third party without the prior written approval of the other Party, which consent shall not be unreasonably withheld, conditioned or delayed. Notwithstanding the foregoing, either Party may assign or transfer some or all of its rights and/or obligations under the Agreement to: (i) an Affiliate; (ii) a successor entity to its business, whether by merger, consolidation, reorganization, or by sale of all or substantially all of its assets or stock; (iii) any entity in which a Party or its Affiliates have any direct or indirect equity investment; and/or (iv) any other entity directly or indirectly controlling, controlled by or under common control with any of the foregoing, and in each case, such assignment, transfer or other such transaction shall not be considered an assignment under this Section 12.1 requiring consent and the non-assigning Party shall have no right to delay, alter or impede such assignment or transfer.

8

Site Number: NJJER01128B

Market: New Jersey

- 12.2 Rights Upon Sale of Property or Structure. Should Landlord, at any time during the Term, sell or transfer all or any part of the Property, the Tower or the Structure to a purchaser other than Tenant, such transfer shall be subject to this Agreement and Landlord shall require any such purchaser or transferee to recognize Tenant's rights under the terms of this Agreement in a written instrument signed by Landlord and the third party transferee. If Landlord completes any such transfer without executing such a written instrument, then Landlord shall not be released from its obligations to Tenant under this Agreement, and Tenant shall have the right to look to Landlord and the third party for the full performance of this Agreement. In addition to, and not in limitation of the preceding, in the event the Landlord sells or transfers either its rights in all or any portion of the Premises or Landlord's right to the receive the Rent (and other payments) derived from the Premises under this Agreement, in either case separate from the underlying Structure and/or Property, to any third party who is not an Affiliate of Landlord, then prior to any such sale or transfer Landlord shall first provide Tenant with a right of first refusal ("ROFR") to acquire such right(s). In order to evaluate the terms and conditions offered to Landlord by such third party Landlord shall provide Tenant with a full, complete and unredacted copy thereof and Tenant shall have thirty (30) days from receipt thereof to elect to exercise its ROFR; provided that Tenant's exercise of the ROFR shall be on the same terms and conditions as offered to Landlord by such third party (except as may be mutually agreed upon to the contrary).
- 12.3 <u>Subordination and Non-Disturbance</u>. This Agreement shall be subordinate to any mortgage, deed of trust, or other security agreement (each a "Mortgage") by Landlord which, from time to time, may encumber all or part of the Property; provided, however, the lender under every such Mortgage shall, in the event of a foreclosure of Landlord's interest, recognize the validity of this Agreement and Tenant's right to remain in occupancy of and have access to the Premises, as long as no Default by Tenant exists under this Agreement. If the Property is encumbered by a Mortgage, then Landlord shall, promptly following Tenant's request, obtain and furnish to Tenant a non-disturbance agreement, in recordable form, for each such Mortgage.
- 12.4 Condemnation. If all or any portion of the Premises is condemned, taken by a Governmental Authority or otherwise appropriated by the exercise of the right of eminent domain or a deed or conveyance in lieu of eminent domain (each, a "Taking"), either Party hereto shall have the right to terminate this Agreement immediately upon Notice to the other Party. If either Party elects to terminate this Agreement, the Rent set forth herein shall be abated, and Tenant's liability therefor will cease as of the date of such Taking, this Agreement shall terminate as of such date, and any prepaid rent shall be returned to Tenant. If this Agreement is not terminated as herein provided, then it shall continue in full force and effect, and Landlord shall, within a reasonable time after possession is physically taken by the condemning authority restore the remaining portion of the Premises to render it reasonably suitable for the uses permitted by this Agreement and the Rent shall be proportionately and equitably reduced. Notwithstanding the foregoing, Landlord shall not be obligated to expend an amount greater than the proceeds received from the condemning authority less all expenses reasonably incurred in connection therewith (including attorneys' fees) for the restoration. All compensation awarded in connection with a Taking shall be the property of Landlord, provided that if allowed under Applicable Law, Tenant may apply for and keep as its property a separate award for (i) the value of Tenant's leasehold interest; (ii) the value of Tenant's Equipment or other personal property of Tenant; (iii) Tenant's relocation expenses; and (iv) damages to Tenant's business incurred as a result of such Taking.
- 12.5 <u>Recording.</u> If requested by Tenant, Landlord and Tenant agree to execute a Memorandum of Lease that Tenant may record at Tenant's sole cost and expense. The date set forth in the Memorandum of Lease is for recording purposes only, and bears no reference to commencement of the Term or rent payments of any kind.
- 12.6 <u>Force Majeure</u>. Notwithstanding anything to the contrary in this Agreement, neither Party shall be liable to the other Party for nonperformance or delay in performance of any of its obligations under this

Site Number: NJJER01128B

Market: New Jersey

Confidential & Proprietary

Lease Version: 1.0

Agreement due to causes beyond its reasonable control, including, without limitation, strikes, lockouts, pandemics, labor troubles, acts of God, accidents, technical failure governmental restrictions, insurrections, riots, enemy act, war, civil commotion, fire, explosion, flood, windstorm, earthquake, natural disaster or other casualty ("Force Majeure"). Upon the occurrence of a Force Majeure condition, the affected Party shall immediately notify the other Party with as much detail as possible and shall promptly inform the other Party of any further developments. Immediately after the Force Majeure event is removed or abates, the affected Party shall perform such obligations with all due speed. Neither Party shall be deemed in default of this Agreement to the extent that a delay or other breach is due to or related to a Force Majeure event. A proportion of the Rent herein reserved, according to the extent that such Force Majeure event shall interfere with the full enjoyment and use of the Premises, shall be suspended and abated from the date of commencement of such Force Majeure event until the date that such Force Majeure event subsides. If such Force Majeure event prevents the affected Party from performing its obligations under this Agreement, in whole or in part, for a period of forty-five (45) or more days, then the other Party may terminate this Agreement immediately upon Notice to the affected Party.

- 12.7 <u>Successors and Assigns</u>. The respective rights and obligations provided in this Agreement shall bind and shall continue to apply for the benefit of the Parties hereto, their legal representative, heirs, successors and permitted assigns. No rights however, shall continue to apply for the benefit of any assignee, unless such assignment was made in accordance with Section 12.1 of this Agreement.
- 12.8 <u>Governing Law and Construction</u>. This Agreement shall be construed, governed and enforced in accordance with the laws of the state in which the Premises is located. The section and paragraph headings contained in this Agreement are solely for reference purposes, and shall not affect in any way the meaning or interpretation of this Agreement.
- 12.9 <u>Severability</u>. Each provision of this Agreement shall be construed as separable and divisible from every other provision and the enforceability of any one provision shall not limit the enforceability, in whole or in part, of any other provision. If a court or administrative body of competent jurisdiction holds any provision of this Agreement to be invalid, illegal, void or less than fully enforceable as to time, scope or otherwise, such provision shall be construed by limiting and reducing it so that such provision is valid, legal and fully enforceable while preserving to the greatest extent permissible the original intent of the parties; the remaining terms and conditions of this Agreement shall not be affected by such alteration, and shall remain in full force and effect.
- 12.10 <u>Waiver; Remedies</u>. It is agreed that, except as expressly set forth in this Agreement, the rights and remedies herein provided in case of Default or breach by either Landlord or Tenant are cumulative and shall not affect in any manner any other remedies that the non-breaching Party may have by reason of such default or breach. The exercise of any right or remedy herein provided shall be without prejudice to the right to exercise any other right or remedy provided herein, at law, in equity or otherwise. In addition to, and not in limitation of, the preceding, the Parties acknowledge and agree that there will not be an adequate remedy at law for noncompliance with the provisions of Section 5, and therefore either Party shall have the right to equitable remedies, including, without limitation, injunctive relief and specific performance.
- 12.11 <u>Notice</u>. All notices or requests that are required or permitted to be given pursuant to this Agreement must be given in writing by certified US mail (postage pre-paid) with return receipt requested or by courier service (charges prepaid), or solely in the case of notice to Landlord by email, to the party to be notified, addressed to such party at the address(es) or email address(es) set forth below, or such other address(es), email address(es) or fax number(s) as such Party may have substituted by written notice (given in accordance with this Section 12.11) to the other Party ("**Notice**"). The sending of such Notice to the proper email address (in the case of email transmission) or the receipt of such Notice (in the case of delivery by first-class certified mail or by courier service) will constitute the giving thereof.

10

Site Number: NJJER01128B

Market: New Jersey

If to be given to Landlord:

48 Newtown Road Corporation Attn: Jessica Granger

50 Newtown Road Danbury, Connecticut 06810

If by courier service:
48 Newtown Road Corporation
Attn: Jessica Granger
50 Newtown Road
Danbury, Connecticut 06810

If by first-class certified mail: 48 Newtown Road Corporation Attn: Jessica Granger 50 Newtown Road Danbury, Connecticut 06810

If by email:

Email address: jessicag@brt.com

If to be given to Tenant:

DISH Wireless L.L.C. Attn: Lease Administration 5701 South Santa Fe Blvd. Littleton, Colorado 80120

- 12.12 <u>Entire Agreement</u>. This Agreement sets forth the entire, final and complete understanding between the Parties hereto regarding the subject matter of this Agreement, and it supersedes and replaces all previous understandings or agreements, written, oral, or implied, regarding the subject matter of this Agreement made or existing before the date of this Agreement. Except as expressly provided by this Agreement, no waiver or modification of any of the terms or conditions of this Agreement shall be effective unless in writing and signed by both Parties. Any provision of this Agreement that logically would be expected to survive termination or expiration, shall survive for a reasonable time period under the circumstances, whether or not specifically provided in this Agreement.
- 12.13 Compliance with Law. Each Party shall, with respect to its actions and/or inactions pursuant to and in connection with this Agreement, comply with all applicable statutes, laws, rules, ordinances, codes and governmental or quasi-governmental orders or regulations (in each case, whether federal, state, local or otherwise) and all amendments thereto, now enacted or hereafter promulgated and in force during the term of this Agreement, a Renewal Term or any extension of either of the foregoing.
 - 12.14 <u>Counterparts</u>. This Agreement may be executed in any number of identical counterparts and, if so executed, shall constitute one agreement, binding on all the Parties hereto, notwithstanding that all the Parties are not signatories to the original or the same counterpart. Execution of this Agreement by facsimile or electronic signature shall be effective to create a binding agreement and, if requested, Landlord and Tenant agree to exchange original signed counterparts in their possession.
 - 12.15 <u>Attorneys' Fees</u>. If an action is brought by either Party for breach of any covenant and/or to enforce or interpret any provision of this Agreement, the prevailing Party shall be entitled to recover its costs, expenses and reasonable attorneys' fees, both at trial and on appeal, in addition to all other sums allowed by law.

11

Site Number: NJJER01128B

Market: New Jersey

12.16 <u>Incorporation of Exhibits</u>. All exhibits referenced herein and attached hereto are hereby incorporated herein in their entirety by this reference.

[Remainder of page intentionally left blank. Signature page follows.]

Site Number: NJJER01128B 12

Market: New Jersey

IN WITNESS WHEREOF, the Parties have caused their duly authorized representatives to execute this Agreement as of the Effective Date.

LANDLORD:

48 Newtown Road Corporation

DocuSigned by:

By:

Name: Jessica Granger

its:

1/27/2022 Date:

VP / Treasurer

TENANT:

DISH WIRELESS L.L.C.

By:

Name: Dave Mayo

lts:

EVP

1/30/2022 Date:

1/27/2022

Site Number: NJJER01128B

Market: New Jersey

EXHIBIT A

LEGAL DESCRIPTION OF PROPERTY

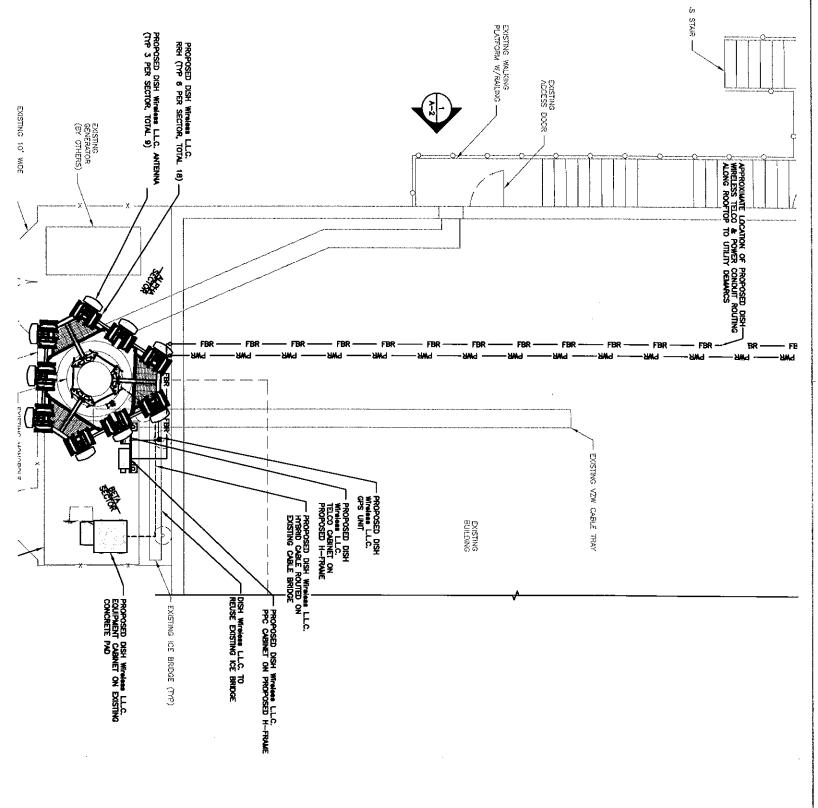
All that certain piece or parcel of land, together with the buildings and improvements thereon, to be known as 48 Newtown Road in the City of Danbury, County of Fairfield, State of Connecticut, and being the same property as set out in Quit Claim Deed recorded in the City of Danbury Land Records on Volume 1041, Page 377 intending to merge the First Parcel and Second Parcel referenced therein into one piece. Said merged parcel is depicted on a map known as: "PROPERTY SURVEY SHOWING LOT LINE TO BE VACATED PREPARED FOR 48 NEWTOWN ROAD CORPORATION 46 & 48 NEWTOWN ROAD DANBURY, CONNECTICUT AREA 25,998±S.F. 0.60±AC." dated 10-01-04 prepared by CCA, LLC of Brookfield, Connecticut, to be recorded with the Town Clerk of the City of Danbury, and is more particularly bounded and described as follows:

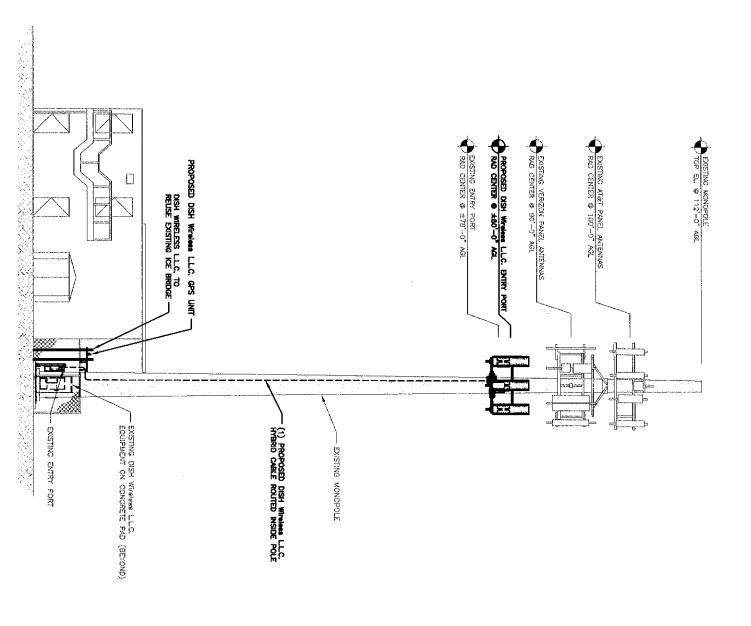
Commencing at a point being the southeasterly point of the property hereinafter described; Thence continuing S36°08'23"W a distance of 21.43' to a point; Thence S41°15'23"W a distance of 152.07' to a point; Thence S27°31'25"W a distance of 30.55' to a point; Thence S88°24'05"W a distance of 3.13' to a point; Thence N12°53'10"W a distance of 184.45' to a point; Thence N06°59'40"W a distance of 134.24' to a point; Thence S50°34'55"E a distance of 242.90' to the point or place of beginning.

14

Site Number: NJJER01128B

Market: New Jersey


EXHIBIT B


SITE PLAN

See attached drawings.

NOTE: Tenant may be referred to in the attached as "DISH Wireless LLC".

NOTE ALSO: Certain right of way grants of Easements for access and utilities as provided in the Agreement may or may not be described or depicted in the attached drawings.

Exhibit H Mailing Receipts


FROM: LEV MAYZLER (203) 488-0712 CONSTRUCTION SERVICES OF BRANF

63-3 NORTH BRANFORD ROAD BRANFORD CT 06405-2848

SHIP TO:

HON. DEAN ESPOSITO 15 DEER HILL AVE.

DANBURY CT 06810

LTR 1 0F 1

CT 068 0-01

UPS 2ND DAY AIR

TRACKING #: 1Z E05 345 02 6339 1716

BILLING: P/P

WS 22.0.17 SHARP MX-3070 10.0A 02/2022

Fold here and place in label pouch

Proof of Delivery

Dear Customer,

This notice serves as proof of delivery for the shipment listed below.

Tracking Number

1ZE053450263391716

Service

UPS 2nd Day Air®

Delivered On

03/07/2022 9:31 A.M.

Delivered To

DANBURY, CT, US Received By

ELLIOT

Left At

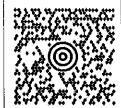
Inside Delivery

Thank you for giving us this opportunity to serve you. Details are only available for shipments delivered within the last 120 days. Please print for your records if you require this information after 120 days.

Sincerely,

UPS

Tracking results provided by UPS: 03/07/2022 3:47 P.M. EST

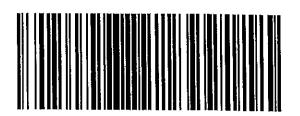

FROM: LEV MAYZLER (203) 488-0712 CONSTRUCTION SERVICES OF BRANF 63-3 NORTH BRANFORD ROAD BRANFORD CT 06405-2848

SHIP TO:

DIRECTOR OF PLANING & ZONING MS. SHARON B. CALITRO 155 DEER HILL AVE.

LTR 10F1

DANBURY CT 06810



CT 068 0-01

UPS 2ND DAY AIR

TRACKING #: 1Z E05 345 02 6158 2728

2

BILLING: P/P

WS 22.0.17 SHARP MX-3070 10.0A 02/2022

Fold here and place in label pouch

Proof of Delivery

Dear Customer,

This notice serves as proof of delivery for the shipment listed below.

Tracking Number

1ZE053450261582728

Service

UPS 2nd Day Air®

Delivered On

03/07/2022 9:31 A.M.

Delivered To

DANBURY, CT, US Received By

ELLIOT

Left At

Inside Delivery

Thank you for giving us this opportunity to serve you. Details are only available for shipments delivered within the last 120 days. Please print for your records if you require this information after 120 days.

Sincerely,

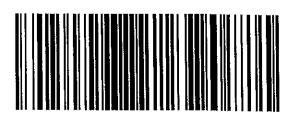
UPS

Tracking results provided by UPS: 03/07/2022 3:48 P.M. EST

FROM: LEV MAYZLER (203) 488-0712 CONSTRUCTION SERVICES OF BRANF 63-3 NORTH BRANFORD ROAD BRANFORD CT 06405-2848

SHIP TO:

48 NEWTOWN ROAD CORP. 50 NEWTOWN RD. **DANBURY CT 06810**


LTR 1 0F 1

CT 068 0-01

UPS 2ND DAY AIR

TRACKING #: 1Z E05 345 02 6148 8536

2

BILLING: P/P

WS 22,0,17 SHARP MX-3070 10,0A 02/2022

Fold here and place in label pouch

Proof of Delivery

Dear Customer,

This notice serves as proof of delivery for the shipment listed below.

Tracking Number

1ZE053450261488536

Service

UPS 2nd Day Air®

Delivered On

03/04/2022 12:48 P.M.

Delivered To

50 NEWTOWN RD DANBURY, CT, 06810, US Received By

BRT

Left At

Receiver

Thank you for giving us this opportunity to serve you. Details are only available for shipments delivered within the last 120 days. Please print for your records if you require this information after 120 days.

Sincerely,

UPS

Tracking results provided by UPS: 03/07/2022 6:27 A.M. EST