EMPIRE telecom

MORIAH KING
Empire Telecom USA LLC
16 Esquire Road
Billerica, MA 01862
339-234-8975
moking@empiretelecomm.com

June 11, 2020

To Melanie A. Bachman
Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

Regarding:	Notice of Exempt Modification - Equipment Modification
Property Address:	48 Newton Rd, Danbury CT 06810
Applicant:	AT\&T Mobility ("AT\&T", Site \# CT2157)
Coordinates:	LONG -73.4244000 / LAT 41.4033000

Dear Ms. Bachman:
AT\&T currently maintains a wireless telecommunications facility on an existing 110-foot monopole at the above-referenced address. Said monopole is owned by Crown Castle and the underlying property owner is 48 Newton Road Corporation.

AT\&T desires to modify its existing telecommunications facility by adding (3) RRUs, (3) Combiners, (1) 1 Main Unit, ancillary equipment and cables, and a tower modification reinforcement. The centerline height of the existing antennas and ancillary tower-mounted equipment is and will remain at 100 feet.

Please accept this letter as notification pursuant to R.C.S.A. §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. §16-50j-72 (b)(2). In accordance with R.C.S.A. §16-50j-73, a copy of this letter is being sent to Mark D Boughton, Mayor of the City of Danbury; Sharon B Calitro, Director of Planning \& Zoning of the City of Danbury; 48 Newton Road Corporation, as the property owner; and Crown Castle, as the tower owner.

The planned modifications to AT\&T's facility fall squarely within those activities explicitly provided for in R.C.S.A. §16-50j-72 (b)(2). Specifically:

1. The planned modification will not result in an increase in the height of the existing structure. The modified equipment will be installed at the existing height of 100 feet on the 110 -foot monopole.
2. The proposed modifications will not involve any changes to AT\&T's ground-space footprint, and therefore and therefore will not require an extension of the site boundary.
3. The proposed modification will not increase the noise level at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the modified facility will not increase radio frequency (RF) emissions at the facility to a level at or above Federal Communications Commission (FCC) safety standard. An RF emissions calculation (enclosed) for AT\&T's modified facility is herein provided.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed AT\&T's loading with proposed modifications. Please see enclosed structural analysis with completed by Malouf Engineering Intl., Inc, dated May $27^{\text {th }}, 2020$.

For the foregoing reasons, AT\&T respectfully requests that the proposed installation be allowed within the exempt modifications under R.C.S.A. §16-50j-72 (b)(2).

Sincerely,

Moriah king

Moriah King
339-234-8975
Site Acquisition Specialist
Empire Telecom USA, LLC
moking@empiretelecomm.com
Enclosures: Exhibit 1 - Field Card and GIS Map
Exhibit 2 - Construction Drawings
Exhibit 3 - Structural Analysis
Exhibit 4 - RF Emissions Analysis Report Evaluation
cc:
Mark D. Boughton Mayor 155 Deer Hill Ave Danbury, CT 06810
Sharon B. Calitro, AICP Director Planning \& Zoning 155 Deer Hill Avenue Danbury, CT 06810
48 Newton Road Corporation 50 Newton Road Danbury CT 06810
April Brown Crown Castle 12 Gill Street, Suite 5800, Woburn, MA 01801

48 NEWTOWN

| Location 48 NEWTOWN | Mblu K12//265//
 Acct\# Owner | 48 NEWTOWN ROAD
 CORPORATION |
| ---: | :--- | ---: | :--- |
| Assessment $\$ 909,000$ | Appraisal | $\$ 1,298,500$ |
| PID 7333 | Building Count | 1 |

Current Value

Appraisal			
Valuation Year	Improvements	Land	Total
2017	\$904,400	\$394,100	\$1,298,500
Assessment			
Valuation Year	Improvements	Land	Total
2017	\$633,100	\$275,900	\$909,000

Owner of Record

Owner	48 NEWTOWN ROAD CORPORATION
Co-Owner	
Address	50 NEWTOWN RD
	DANBURY, CT 06810

Sale Price	$\$ 0$
Book \& Page	$1706 / 908$
Sale Date	$11 / 08 / 2004$
Instrument	29

Ownership History

Ownership History				
Owner	Sale Price	Book \& Page	Instrume	Sale Date
48 NEWTOWN ROAD CORPORATION	\$0	1706/908	29	11/08/2004
MORRIS JULIA B NOMINEE	\$0	1706/906	29	11/08/2004
FORTY EIGHT NEWTOWN ROAD	\$0	1041/0377		03/04/1993

Building Information

Building 1 : Section 1

Year Built:	1988
Living Area:	5,680
Replacement Cost:	$\$ 725,793$
Building Percent Good:	$\mathbf{8 1}$

Building Photo

Building Photo
(http://images.vgsi.com/photos2/DanburyCTPhotos//^00\03105/58.jpg)

Replacement Cost

Less Depreciation:

Building Attributes	
Field	Description
STYLE	Restaurant
MODEL	Commercial
Grade	Average
Stories:	2
Occupancy	4
Exterior Wall 1	Concr/Cinder
Exterior Wall 2	Glass/Thermo.
Roof Structure	Gable/Hip
Roof Cover	Metal/Tin
Interior Wall 1	Drywall/Sheet
Interior Wall 2	
Interior Floor 1	Ceram Clay Til
Interior Floor 2	Carpet
Heating Fuel	Gas
Heating Type	Forced Air-Duc
AC Type	Central
Bldg Use	Comm/Res MDL-94
Total Rooms	
Total Bedrms	00
Total Baths	0
1st Floor Use:	201
Heat/AC	HEAT/AC SPLIT
Frame Type	MASONRY
Baths/Plumbing	AVERAGE
Ceiling/Wall	SUS-CEIL \& WL
Rooms/Prtns	AVERAGE
Wall Height	12
\% Comn Wall	0

Building 1 : Section 1

Year Built:	1988
Living Area:	0
Replacement Cost:	$\$ 725,793$
Building Percent Good:	81
Replacement Cost Less Depreciation:	$\$ 587,900$

Building Attributes	
Field	Description
Style	Outbuildings

Building Layout

(http://images.vgsi.com/photos2/DanburyCTPhotos//Sketches/7333_7333.j

Building Sub-Areas (sq ft)			Legend
Code	Description	Gross Area	Living Area
BAS	First Floor	4,180	4,180
AOF	Office, (Average)	1,500	1,500
CAN	Canopy	528	0
FGR	Garage	930	0
FOP	Open Porch	42	0
PTO	Patio	925	0
		8,105	5,680

Model	
Grade:	
Stories:	
Occupancy	
Exterior Wall 1	
Exterior Wall 2	
Roof Structure:	
Roof Cover	
Interior Wall 1	
Interior Wall 2	
Interior Flr 1	
Interior Flr 2	
Heat Fuel	
Heat Type:	
AC Type:	
Total Bedrooms:	
Total Bthrms:	
Total Half Baths:	
Total Xtra Fixtrs:	
Total Rooms:	
Bath Style:	
Fitchen Style:	
Fin Bseplace Area	
Whirlpool	
Addn'I Kitchen	
Bsm Gar	

Building Photo

(http://images.vgsi.com/photos2/DanburyCTPhotos/^00102170/15.jpg)

Building Layout

Building Layout
(http://images.vgsi.com/photos2/DanburyCTPhotos//Sketches/7333_10498

Building Sub-Areas (sq ft)	Legend
No Data for Building Sub-Areas	

Extra Features

Extra Features	Legend
No Data for Extra Features	

Land

Land Use

Description	Comm/Res MDL-94	Frontage	0
Zone	CG20	Depth	0
Neighborhood	6000	Assessed Value	$\$ 275,900$
Alt Land Appr	No	Appraised Value	$\$ 394,100$
Category			

Outbuildings

Outbuildings						Legend
Code	Description	Sub Code	Sub Description	Size	Value	Bldg \#
CEL	Cell Tower			1 UNITS	\$300,000	1
PAV1	Paving-Asphalt			10500 S.F.	\$16,500	1

Valuation History

Appraisal			
Valuation Year	Improvements	Land	Total
2018	\$900,700	\$394,100	\$1,294,800
2017	\$900,700	\$394,100	\$1,294,800
2016	\$764,800	\$375,300	\$1,140,100

Assessment					
	Valuation Year	Improvements	Land		
2018		$\$ 630,500$	$\$ 275,900$	Total	
2017		$\$ 630,500$	$\$ 906,400$		
2016	$\$ 535,400$	$\$ 275,900$	$\$ 906,400$		

(c) 2020 Vision Government Solutions, Inc. All rights reserved.

 \qquad

SITE WORK GENERAL NOTES

3. all ste work shall be as nicated on the drammgs and pro.ect speaicatons

 9. No fll or givankent materal shall be placed on frozen grouno. frozen materals, stow or iee shall not be placed in 10. The sug grade shall ee compacted and brought to a suooth unforu gade pror to fnshed Surface applcatov, see

Structural steel notes:

 Aprovive ERuML

SLIAB ANO WaLL
BEAMS ANO COUMMS

$-\quad 11 / 2 \mathrm{NCH}$

 ROVNEO BY RAMSET/REDHEAO HLLT OR APPROVED EOU I.

\qquad

COMPACTION EQUIPMEN

ELECTRICAL INSTALLATION NOTES

 WTH THE PROJECT SPECOFFICATONS,COOES

 5. Cables shall not be routed through ladoer-stile cable
Tray runcs.

7. ALL EEECTRICLL COMPONENTS SHALL BE Clearly Labelid wit

 EE USED FOR CONCEALED NDOORR LOCATIONS.

 OR EUUAL) ANO RATED NEMA 1 (OR BETTER) NOOORS, OR NEMA SR (Q BETLER) OUDOORS.
 OR EXCEED UU 50, AND RATE
SR (OR BETTRR) OUTOORS

 R PRotected (WP or better) outdoors.
 AC Power distriution panels.

EMPIRE telecom	SITE NUMBER: CT2157 SROJECT: RF MODIIIP

AT\& T		
NOTES		
Numes	ORRMNG NUMEER	ReV
T2157-PRepeater	02	3

[^0]7770\mathrm{ (UMTS850 pos \#4)
100' (6) LGP21401 (UMTS850 TMA pos \#4)
100' (6) CCI TPX070821 (LTE850/700de pos\#3)
100' (3) RRUS11 (LTE700bc pos\#1)
100' (3) RRUS32b2 (LTEPCS pos\#1)
100' (3) RRUS4478b14 (LTE700b14 pos \#2)
100' (3) RRUS32b66 (LTEAWS pos\#2)
100' (3) RRUS32b30 (LTEWCS pos \#3)
100' Raycap Surge Arrestors (2) DC64860188F (1) DC6486008F
0-100' (12) Coaxial Cables 1.625"
0-100' (2) Fiber trunks, (6) DC trunks
PROPOSED NEW:
100' (3) Sirius XM ionM23 SDARS radio (SXM pos\#4)
100' (3) Commscope CBC23SR-43 (LTEWCS/SXM combiner pos\#4)
Miguel Nobre
Vertical Resources Group
23 MidState Dr., \#210
Auburn, MA 01501
P: 508-981-9590
F: 508-519-8939

```

























\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{WORKFLOW SUMMARY} \\
\hline Date & FROM State / Status & FROM ATTUID & \begin{tabular}{l}
TO \\
State / Status
\end{tabular} & \[
\begin{gathered}
\text { TO } \\
\text { ATTUID }
\end{gathered}
\] & Operation & Comments & PACE Status \\
\hline 01/10/2019 & Preliminary In Progress & sp656b & Preliminary Submitted for Approval & SN2450 & Promote & Prelim RFDS & NER-RCTB-18-09241 MRCTB037940 SUCCESS 01/10/2019
11:55:23 AM \\
\hline 01/15/2019 & Preliminary Submitted for Approval & SN2450 & Preliminary Submitted for Approval & JH495H & Reassign & & \\
\hline 01/21/2019 & Preliminary Submitted for Approval & JH495H & Preliminary In Progress & sp656b & Pull Back & PACE UPDATE & \\
\hline 01/21/2019 & Preliminary In Progress & sp656b & Preliminary Submitted for Approval & SN2450 & Promote & Prelim RFDS & NER-RCTB-18-09241 FAILURE 01/21/2019 4:48:18 PM \\
\hline 01/22/2019 & Preliminary Submitted for Approval & SN2450 & Preliminary Approved & DC5778 & Promote & & \\
\hline
\end{tabular}

\section*{Label Details}

Label Number:

\section*{9405503699300411193154}

SCAN® Form: 9475703699300359180141
Terms
Acceptance Cutoff: 06/09/2020 4:30 PM
Acceptance Time: 06/17/2020 2:00 PM
Expected Date: 06/12/2020 11:59 PM
Dellvery Status: Delivered, Front Desk/Reception/Mai
Label Actions I Room
2020-06-22
USPS Trackino 11:02:00.0
Ship Again

\section*{Need help}

File an insurance claim
Request A Service Refund
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Return Address:} & \multicolumn{3}{|l|}{Package:} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
MORIAH KING \\
EMPIRE TELECOM \\
16 ESQUIRE RD \\
N BILLERICA, MA 01862-2527 \\
moking(e)empiretelecomm.com
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Ship Date: 06/09/20 \\
Value: \(\$ 50.00\) \\
Weight: 1 lbs \(00 z\) \\
From: 01862 \\
Label Type: Batch
\end{tabular}} & \\
\hline \multicolumn{2}{|l|}{Dellvery Address:} & \multicolumn{2}{|l|}{Service:} & \\
\hline \multicolumn{2}{|l|}{MAYOR MARK D BOUGHTON 155 DEER HILL AVE DANBURY, CT 06810-7726} & \multicolumn{2}{|l|}{Priority Mail(3) 2-Day USPS Tracking(3).} & \\
\hline Transaction Number: & 496290400 & Postage Cos USPS Tracki & & \[
\begin{gathered}
\$ 7.50 \\
\text { Free }
\end{gathered}
\] \\
\hline Transaction Type: & Label & & & \\
\hline & & Label Total: & \$7.50 & \\
\hline Payment Method: & VISA-4325 & & & \\
\hline Payment Status: & Account Charged & Order Total: & \$15.00 & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Timestamp & Message \\
\hline 06-09-2020 13:43:37 & LABEL PRINTED \\
\hline \(06-09-2020\) 13:43:27 & Getting Payment \\
\hline \(06-09-2020\) 13:43:14 & Setting Payment \\
\hline
\end{tabular}

Tracking for this label is available until October 7, 2020. Need to keep Tracking history longer? Find out If your label is eligible for Premium Tracking todayl
Back to Shipping History

```


[^0]: DANBURY EAST \#CT2157
 48 NEWTON ROAD, DANBURY, CT 06810

 | COMPONENTS SPECIFIED | |
 | :---: | :---: |
 | hollo-bolts shall be as called for on plans and as manufactured by lindapter usa (866-566-2658) OR EQUIVALENT BOX-BOLT BY LNA SOLUTIONS, ANN ARBOR, MI (888-724-2323). BOLTS TO be hot-dipped galvanized type. bolts to be installed and torqued as per manufacturer's RECOMMENDATIONS. | |
 | | |
 | | |
 | | |
 | PRIOR TO INSTALLATION, INSURE THAT POLE HAS PROPERLY ASSEMBLED POLE SECTIONS - DOES NOTEXHIBIT SIGNIIICANT VISIBLE AIR GAPS (IN EXCESS OF $3 / 16$ IN ON OPPOSITE FLATS). A MINIMUM JACKING FORCE OF 10,000 LBS MUST THEN BE APPLIED TO EACH SIDE OF THE POLE DURING JACKING. THIS FORCE may be appled using min. Two (2) six ton come-a-Longs under the full effort of one man each. JACKING FORCES OF 12 ,000LBS MINIMUM MAY BE REQUIRED | |
 | | |
 | | |
 | | |
 | | |
 | BONDING ADHESIVE AS MANUFACTURED BY FIVE STAR PRODUCTS, FAIRFIELD, CT, (203)336-7900, OF APPROVED EQUIVALENT, SHALL BE USED. FOLLOW MANUFACTURER INSTALLATION AND PREPARATION instructions. | |
 | | |
 | | |

 $301 \frac{\text { ELEVATION: TYPICAL WELD DETAILS FOR STIFFENERS }}{\text { SCALE: } 3 / 4^{\prime \prime}=1^{\prime}-0 "}$

 $302 \frac{\text { ELEVATION: TYPICAL WELD DETAILS FOR STIFFENERS }}{\text { (@ FACE \#) }}$
 REFER 101 FOR MEMBER SIZES AND SCHEDULES.

 # Empire Telecom on behalf of AT\&T Mobility, LLC Site FA - 10035077
 Site ID - CTLO2157
 USID - 16327
 Site Name - DANBURY EAST
 (MRCTB037940)
 48 Newtown Road Danbury, CT 06810

 Latitude: N41-24-11.88
 Longitude: W73-25-27.84
 Structure Type: Monopole
 Report generated date: January 30, 2020
 Report by: Scott Broyles
 Customer Contact: Nora Oliver

 AT\&T Mobility, LLC will be compliant when the remediation recommended in Section 5.2 or other appropriate remediation is implemented.

 Sitesafe logo is a registered trademark of Site Safe, LLC. All rights reserved.

 ## Table of Contents

 1 GENERAL SITE SUMMARY 3
 1.1 Report Summary 3
 1.2 Fall Arrest Anchor Point Summary 3
 1.3 Signage Summary 4
 2 SCALE MAPS OF SITE 5
 3 ANTENNA INVENTORY 7
 4 EMISSION PREDICTIONS 9
 5 SITE COMPLIANCE 13
 5.1 Site Compliance Statement 13
 5.2 Actions for Site Compliance 13
 6 REVIEWER CERTIFICATION 14
 APPENDIX A - STATEMENT OF LIMITING CONDITIONS 15
 APPENDIX B - REGULATORY BACKGROUND INFORMATION 16
 FCC Rules and Regulations 16
 OSHA StATEMENT. 17
 APPENDIX C - SAFETY PLAN AND PROCEDURES 18
 APPENDIX D - RF EMISSIONS 19
 APPENDIX E - ASSUMPTIONS AND DEFINITIONS 20
 General Model Assumptions 20
 Use of Generic Antennas 20
 APPENDIX F - DEFINITIONS 21
 APPENDIX G - REFERENCES 23

 ## 1 General Site Summary

 ### 1.1 Report Summary

 | AT\&T Mobility, LLC | Summary |
 | :--- | :--- |
 | Max Cumulative Simulated RFE Level on the
 Ground | $<1 \%$ General Public Limit |
 | Max Cumulative Simulated RFE Level at
 Antenna Level | $14,630.90 \%$ General Public Limit 1" in front of AT\&T
 Mobility, LLC Gamma Sector Antenna 10 |
 | Compliant per FCC Rules and Regulations? | Will Be Compliant |
 | Compliant per AT\&T Mobility, LLC's Policy? | No |

 The following documents were provided by the client and were utilized to create this report:

 RFDS: 10035077.PM201.RFDS.01092019_As-Built-In-Progress.CT2157
 CD's: 10035077.AE201.FINAL S\&S CDS.LTE.RFMod.Rev2.10112019.CT2157
 RF Powers Used: AT\&T Max RRU Powers

 ### 1.2 Fall Arrest Anchor Point Summary

 | Fall Arrest

 Parapet Info | Parapet Available
 $(\mathrm{Y} / \mathrm{N})$ | Parapet Height
 (inches) | Fall Arrest Anchor
 Available (Y/N) |
 | :---: | :--- | :--- | :--- |
 | Roof Safety Info | N | N / A | N |

 1.3 Signage Summary
 a. Pre-Site Visit AT\&T Signage (Existing Signage)

 | AT\&T
 Signage
 Locations | | | A | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Information 1 | Information 2 | Notice | Notice 2 | Caution | Caution 2B | Warning | Warning 2 | Barriers |
 | Access
 Point(s) | | | | | | | | | |
 | Alpha | | | | | | | | | |
 | Beta | | | | | | | | | |
 | Gamma | | | | | | | | | |

 b. Proposed AT\&T Signage

 | AT\&T Signage Locations | | | | | | | | y | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Information 1 | Information 2 | Notice | Notice 2 | Caution | Caution 2B | Warning | Warning 2 | Barriers |
 | Monopole Access Point(s) | | | | | | 1 | | | |
 | Alpha | | | | | | | | | |
 | Beta | | | | | | | | | |
 | Gamma | | | | | | | | | |

 ## 2 Scale Maps of Site

 The following diagrams are included:

 - Site Scale Map
 - RF Exposure Diagram
 - RF Exposure Diagram - Elevation View
 - AT\&T Mobility, LLC Contribution

 Site Scale Map For: DANBURY EAST

 | Ant ID | Operator | Antenna Make \& Model | Type | TX Freq (MHz) | Technology | $\begin{array}{\|c} \mathrm{Az} \\ \text { (Deg) } \\ \hline \end{array}$ | Hor BW (Deg) | Ant Len (ft) | Power | Power Type | Power Unit | Misc Loss | TX Count | Total ERP (Watts) | Ant Gain (dBd) | Z | MDT | EDT |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 11 | AT\&T MOBILITY LLC | CCI Antennas OPA-65R-LCUU-H4 | Panel | 2300 | LTE | 250 | 61.1 | 4 | 100 | TPO | Watt | 0 | 1 | 2666.9 | 14.26 | 98' | 0° | 3° |
 | 12 | AT\&T MOBILITY LLC | Powerwave 7770 | Panel | 850 | UMTS | 23 | 82 | 4.6 | 40 | TPO | Watt | 0 | 1 | 566.3 | 11.51 | 97.7' | 0° | 10° |
 | 13 | UNKNOWN CARRIER | Generic | Panel | 700 | | 0 | 65 | 6.3 | 160 | TPO | Watt | 0 | | 2884.8 | 12.56 | 86.9' | 0° | 0° |
 | 14 | UNKNOWN CARRIER | Generic | Panel | 1900 | | 0 | 65 | 6.3 | 160 | TPO | Watt | 0 | | 6762.7 | 16.26 | 86.9' | 0° | 0° |
 | 15 | UNKNOWN CARRIER | Generic | Panel | 2100 | | 0 | 65 | 6.3 | 160 | TPO | Watt | 0 | | 5716.4 | 15.53 | 86.9' | 0° | 0° |
 | 16 | UNKNOWN CARRIER | Generic | Panel | 700 | | 120 | 65 | 6.3 | 160 | TPO | Watt | 0 | | 2884.8 | 12.56 | 86.9' | 0° | 0° |
 | 17 | UNKNOWN CARRIER | Generic | Panel | 1900 | | 120 | 65 | 6.3 | 160 | TPO | Watt | 0 | | 6762.7 | 16.26 | 86.9' | 0° | 0° |
 | 18 | UNKNOWN CARRIER | Generic | Panel | 2100 | | 120 | 65 | 6.3 | 160 | TPO | Watt | 0 | | 5716.4 | 15.53 | 86.9' | 0° | 0° |
 | 19 | UNKNOWN CARRIER | Generic | Panel | 700 | | 240 | 65 | 6.3 | 160 | TPO | Watt | 0 | | 2884.8 | 12.56 | 86.9' | 0° | 0° |
 | 20 | UNKNOWN CARRIER | Generic | Panel | 1900 | | 240 | 65 | 6.3 | 160 | TPO | Watt | 0 | | 6762.7 | 16.26 | 86.9' | 0° | 0° |
 | 21 | UNKNOWN CARRIER | Generic | Panel | 2100 | | 240 | 65 | 6.3 | 160 | TPO | Watt | 0 | | 5716.4 | 15.53 | 86.9' | 0° | 0° |

 Note: The Z reference indicates the bottom of the antenna height above the main site level unless otherwise indicated. Effective Radiated Power (ERP) is provided by the operator or based on Sitesafe experience. The values used in the modeling may be greater than are currently deployed. For other operators at this site the use of "Generic" as an antenna model or "Unknown" for a wireless operator means the information with regard to operator, their FCC license and/or antenna information was not available nor could it be secured while on site. Other operator's equipment, antenna models and powers used for modeling are based on obtained information or Sitesafe experience.
 Note: The 2300 MHz SADARS remotes are being added to antennas 3, 7 and 11 .

 ## 4 Emission Predictions

 In the RF Exposure Simulations below, all heights are reflected with respect to main site level. In most rooftop cases this is the height of the main rooftop and in other cases this can be ground level. Each different height area, rooftop, or platform level is labeled with its height relative to the main site level. Emissions are calculated appropriately based on the relative height and location of that area to all antennas. The total analyzed elevations in the below RF Exposure Simulations are listed below.

 - \quad Ground $=0$ '
 - Building $1=20^{\prime}$ AGL
 - Building $2=24^{\prime} \mathrm{AGL}$

 The Antenna Inventory heights are referenced to the same level.

 RF Exposure Simulation For: DANBURY EAST
 Composite View

 \% of FCC Public Exposure Limit

 ## RF Exposure Simulation For: DANBURY EAST

 Elevation View

 RF Exposure Simulation For: DANBURY EAST
 AT\&T Mobility, LLC Contributions

 ## 5 Site Compliance

 ### 5.1 Site Compliance Statement

 Upon evaluation of the cumulative RF emission levels from all operators at this site, RF hazard signage and antenna locations, Sitesafe has determined that:

 AT\&T Mobility, LLC will be compliant when the remediation recommended in Section 5.2 or other appropriate remediation is implemented.

 The compliance determination is based on General Public RFE levels derived from theoretical modeling, RF signage placement, and the level of restricted access to the antennas at the site. Any deviation from the proposed AT\&T Mobility, LLC deployment plan could result in the site being rendered non-compliant.

 Modeling is used for determining compliance and the percentage of MPE contribution.

 ### 5.2 Actions for Site Compliance

 Based on FCC regulations, common industry practice, and our understanding of AT\&T Mobility, LLC's RF Safety Policy requirements, this section provides a statement of recommendations for site compliance. Recommendations have been proposed based on our understanding of existing access restrictions, signage, and an analysis of predicted RFE levels.

 AT\&T Mobility, LLC will be made compliant if the following changes are implemented:
 Monopole Access Location
 (1) Yellow Caution 2B sign(s) required at climb point.

 ## Notes:

 - Any existing signage that conflicts with the proposed signage in this report should be removed per AT\&T Signage Posting Rules.
 - Since the red area only extends a few feet from the front of the antennas, AT\&T policy states that Caution 2 signs are adequate.
 - Signage may already be in place. Sitesafe does not have record of any existing signage because there were no previous visits or data supplied regarding them. All remediation is based on a worst-case scenario.

 ## 6 Reviewer Certification

 The reviewer whose signature appears below hereby certifies and affirms:

 That I am an employee of Site Safe, LLC, in Vienna, Virginia, at which place the staff and I provide RF compliance services to clients in the wireless communications industry; and

 That I am thoroughly familiar with the Rules and Regulations of the Federal Communications Commission (FCC) as well as the regulations of the Occupational Safety and Health Administration (OSHA), both in general and specifically as they apply to the FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields; and

 That I have thoroughly reviewed this Site Compliance Report and believe it to be true and accurate to the best of my knowledge as assembled by and attested to by Scott Broyles.

 January 31, 2020

 ## Appendix A - Statement of Limiting Conditions

 Sitesafe has provided computer generated model(s) in this Site Compliance Report to show approximate dimensions of the site, and the model is included to assist the reader of the compliance report to visualize the site area, and to provide supporting documentation for Sitesafe's recommendations.

 Sitesafe may note in the Site Compliance Report any adverse physical conditions, such as needed repairs, that Sitesafe became aware of during the normal research involved in creating this report. Sitesafe will not be responsible for any such conditions that do exist or for any engineering or testing that might be required to discover whether such conditions exist. Because Sitesafe is not an expert in the field of mechanical engineering or building maintenance, the Site Compliance Report must not be considered a structural or physical engineering report.

 Sitesafe obtained information used in this Site Compliance Report from sources that Sitesafe considers reliable and believes them to be true and correct. Sitesafe does not assume any responsibility for the accuracy of such items that were furnished by other parties. When conflicts in information occur between data collected by Sitesafe provided by a second party and data collected by Sitesafe, the data will be used.

 ## Appendix B - Regulatory Background Information

 ## FCC Rules and Regulations

 In 1996, the Federal Communications Commission (FCC) adopted regulations for evaluating the effects of RF emissions in 47 CFR § 1.1307 and 1.1310 . The guideline from the FCC Office of Engineering and Technology is Bulletin 65 ("OET Bulletin 65"), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, Edition 97-01, published August 1997. Since 1996, the FCC periodically reviews these rules and regulations as per their congressional mandate.

 FCC regulations define two separate tiers of exposure limits: Occupational or "Controlled environment" and General Public or "Uncontrolled environment". The General Public limits are generally five times more conservative or restrictive than the Occupational limit. These limits apply to accessible areas where workers or the general public may be exposed to Radio Frequency (RF) electromagnetic fields.

 Occupational or Controlled limits apply in situations in which persons are exposed as a consequence of their employment and where those persons exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

 An area is considered a Controlled environment when access is limited to these aware personnel. Typical criteria are restricted access (i.e. locked or alarmed doors, barriers, etc.) to the areas where antennas are located coupled with proper RF warning signage. A site with Controlled environments is evaluated with Occupational limits.

 All other areas are considered Uncontrolled environments. If a site has no access controls or no RF warning signage it is evaluated with General Public limits.

 The theoretical modeling of the RF electromagnetic fields has been performed in accordance with OET Bulletin 65. The Maximum Permissible Exposure (MPE) limits utilized in this analysis are outlined in the following diagram:

 FCC Limits for Maximum Permissible Exposure (MPE)
 Plane-wave Equivalent Power Density

 Limits for Occupational/Controlled Exposure (MPE)

 | Frequency
 Range
 (MHz) | Electric
 Field
 Strength (E)
 (V/m) | Magnetic
 Field Strength
 (H) (A/m) | Power
 Density (S)
 ($\mathrm{mW} / \mathrm{cm}^{2}$) | Averaging Time $\|\mathrm{E}\|^{2}$,
 $\|\mathrm{H}\|^{2}$ or S (minutes) |
 | :---: | :---: | :---: | :---: | :---: |
 | 0.3-3.0 | 614 | 1.63 | (100)* | 6 |
 | 3.0-30 | 1842/f | 4.89/f | (900/f²)* | 6 |
 | 30-300 | 61.4 | 0.163 | 1.0 | 6 |
 | 300-1500 | -- | -- | f/300 | 6 |
 | 1500- | -- | -- | 5 | 6 |
 | 100,000 | | | | |

 | Limits for General Population/Uncontrolled Exposure (MPE) | | | | |
 | :--- | :--- | :--- | :--- | :--- |
 | Frequency | Electric | Magnetic | Power | Averaging Time $\|\mathrm{E}\|^{2}$, |
 | Range | Field | Field | Density (S) | $\|\mathrm{H}\|^{2}$ or S (minutes) |
 | (MHz) | Strength (E)
 (V/m) Strength
 $(\mathrm{H})(\mathrm{A} / \mathrm{m})$ | | | |
 | $0.3-1.34$ | 614 | 1.63 | $(100)^{*}$ | 30 |
 | $1.34-30$ | $824 / \mathrm{f}$ | $2.19 / \mathrm{f}$ | $\left(180 / \mathrm{f}^{2}\right)^{*}$ | 30 |
 | $30-300$ | 27.5 | 0.073 | 0.2 | 30 |
 | $300-1500$ | -- | -- | $\mathrm{f} / 1500$ | 30 |
 | $1500-$ | -- | - | 1.0 | 30 |

 100,000
 $\mathrm{f}=$ frequency in $\mathrm{MHz} \quad$ *Plane-wave equivalent power density

 ## OSHA Statement

 The General Duty clause of the OSHA Act (Section 5) outlines the occupational safety and health responsibilities of the employer and employee. The General Duty clause in Section 5 states:
 (a) Each employer -
 (1) shall furnish to each of his employees employment and a place of employment which are free from recognized hazards that are causing or are likely to cause death or serious physical harm to his employees:
 (2) shall comply with occupational safety and health standards promulgated under this Act.
 (b) Each employee shall comply with occupational safety and health standards and all rules, regulations, and orders issued pursuant to this Act which are applicable to his own actions and conduct.

 OSHA has defined Radiofrequency and Microwave Radiation safety standards for workers who may enter hazardous RF areas. Regulation Standards 29 CFR § 1910.147 identify a generic Lockout/Tagout procedure aimed to control the unexpected energization or startup of machines when maintenance or service is being performed.

 ## Appendix C - Safety Plan and Procedures

 The following items are general safety recommendations that should be administered on a site by site basis as needed by the carrier.

 General Maintenance Work: Any maintenance personnel required to work immediately in front of antennas and / or in areas indicated as above 100\% of the Occupational MPE limits should coordinate with the wireless operators to disable transmitters during their work activities.

 Training and Qualification Verification: All personnel accessing areas indicated as exceeding the General Population MPE limits should have a basic understanding of EME awareness and RF Safety procedures when working around transmitting antennas. Awareness training increases a worker's understanding to potential RF exposure scenarios. Awareness can be achieved in a number of ways (e.g. videos, formal classroom lecture or internet-based courses).

 Physical Access Control: Access restrictions to transmitting antennas locations is the primary element in a site safety plan. Examples of access restrictions are as follows:

 - Locked door or gate
 - Alarmed door
 - Locked ladder access
 - Restrictive Barrier at antenna (e.g. Chain link with posted RF Sign)

 RF Signage: Everyone should obey all posted signs at all times. RF signs play an important role in properly warning a worker prior to entering into a potential RF Exposure area.

 Assume all antennas are active: Due to the nature of telecommunications transmissions, an antenna transmits intermittently. Always assume an antenna is transmitting. Never stop in front of an antenna. If you have to pass by an antenna, move through as quickly and safely as possible thereby reducing any exposure to a minimum.

 Maintain a 3-foot clearance from all antennas: There is a direct correlation between the strength of an EME field and the distance from the transmitting antenna. The further away from an antenna, the lower the corresponding EME field is.

 Site RF Emissions Diagram(s): Section 4 of this report contains RF Diagram(s) that outline various theoretical Maximum Permissible Exposure (MPE) areas at the site. The modeling is a worst-case scenario assuming a duty cycle of 100% for each transmitting antenna at full power. This analysis is based on one of two access control criteria: General Public criteria means the access to the site is uncontrolled and anyone can gain access. Occupational criteria means the access is restricted and only properly trained individuals can gain access to the antenna locations.

 ## Appendix D - RF Emissions

 The RF Emissions Simulation(s) in this report display theoretical spatially averaged percentage of the Maximum Permissible Exposure for all systems at the site unless otherwise noted. These diagrams use modeling as prescribed in OET Bulletin 65 and assumptions detailed in Appendix E.

 The key at the bottom of each RF Emissions Simulation indicates percentages displayed referenced to FCC General Public Maximum Permissible Exposure (MPE) limits. Color coding on the diagram is as follows:

 - Areas indicated as Gray are predicted to be below 5% of the MPE limits. Gray represents areas more than 20 times below the most conservative exposure limit. Gray areas are accessible to anyone.
 - Green represents areas are predicted to be between 5% and 100% of the MPE limits. Green areas are accessible to anyone.
 - Blue represents areas predicted to exceed the General Public MPE limits but are less than Occupational limits. Blue areas should be accessible only to RF trained workers.
 - Yellow represents areas predicted to exceed Occupational MPE limits. Yellow areas should be accessible only to RF trained workers able to assess current exposure levels.
 - Red represents areas predicted to have exposure more than 10 times the Occupational MPE limits. Red indicates that the RF levels must be reduced prior to access. An RF Safety Plan is required which outlines how to reduce the RF energy in these areas prior to access.

 If trained occupational personnel require access to areas that are delineated as above 100% of the limit, Sitesafe recommends that they utilize the proper personal protection equipment (RF monitors), coordinate with the carriers to reduce or shutdown power, or make real-time power density measurements with the appropriate power density meter to determine real-time MPE levels. This will allow the personnel to ensure that their work area is within exposure limits.

 ## Appendix E-Assumptions and Definitions

 ## General Model Assumptions

 In this site compliance report, it is assumed that all antennas are operating at full power at all times. Software modeling was performed for all transmitting antennas located on the site. Sitesafe has further assumed a 100% duty cycle and maximum radiated power.

 The modeling is based on recommendations from the FCC's OET-65 bulletin with the following variances per AT\&T guidance. Reflection has not been considered in the modeling, i.e. the reflection factor is 1.0. The near / far field boundary has been set to 1.5 times the aperture height of the antenna and modeling beyond that point is the lesser of the near field cylindrical model and the far field model taking into account the gain of the antenna.

 The site has been modeled with these assumptions to show the maximum RF energy density. Areas modeled with exposure greater than 100% of the General Public MPE level may not actually occur but are shown as a prediction that could be realized. Sitesafe believes these areas to be safe for entry by occupationally trained personnel utilizing appropriate personal protective equipment (in most cases, a personal monitor).

 ## Use of Generic Antennas

 For the purposes of this report, the use of "Generic" as an antenna model, or "Unknown" for an operator means the information about a carrier, their FCC license and/or antenna information was not provided and could not be obtained while on site. In the event of unknown information, Sitesafe will use our industry specific knowledge of equipment, antenna models, and transmit power to model the site. If more specific information can be obtained for the unknown measurement criteria, Sitesafe recommends remodeling of the site utilizing the more complete and accurate data. Information about similar facilities is used when the service is identified and associated with a particular antenna. If no information is available regarding the transmitting service associated with an unidentified antenna, using the antenna manufacturer's published data regarding the antenna's physical characteristics makes more conservative assumptions.

 Where the frequency is unknown, Sitesafe uses the closest frequency in the antenna's range that corresponds to the highest Maximum Permissible Exposure (MPE), resulting in a conservative analysis.

 ## Appendix F - Definitions

 $\mathbf{5 \%}$ Rule - The rules adopted by the FCC specify that, in general, at multiple transmitter sites actions necessary to bring the area into compliance with the guidelines are the shared responsibility of all licensees whose transmitters produce field strengths or power density levels at the area in question in excess of 5% of the exposure limits. In other words, any wireless operator that contributes 5% or greater of the MPE limit in an area that is identified to be greater than 100% of the MPE limit is responsible for taking corrective actions to bring the site into compliance.

 Compliance - The determination of whether a site complies with FCC standards with regards to Human Exposure to Radio Frequency Electromagnetic Fields from transmitting antennas.

 Decibel (dB) - A unit for measuring power or strength of a signal.
 Duty Cycle - The percent of pulse duration to the pulse period of a periodic pulse train. Also, may be a measure of the temporal transmission characteristic of an intermittently transmitting RF source such as a paging antenna by dividing average transmission duration by the average period for transmission. A duty cycle of 100% corresponds to continuous operation.

 Effective (or Equivalent) Isotropic Radiated Power (EIRP) - The product of the power supplied to the antenna and the antenna gain in a given direction relative to an isotropic antenna.

 Effective Radiated Power (ERP) - The product of the power supplied to the antenna and the antenna gain in a given direction relative to a half-wave dipole antenna.

 Gain (of an antenna) - The ratio of the maximum power in a given direction to the maximum power in the same direction from an isotropic radiator. Gain is a measure of the relative efficiency of a directional antenna as compared to an omnidirectional antenna.

 General Population/Uncontrolled Environment - Defined by the FCC as an area where RF exposure may occur to persons who are unaware of the potential for exposure and who have no control over their exposure. General Population is also referenced as General Public.

 Generic Antenna - For the purposes of this report, the use of "Generic" as an antenna model means the antenna information was not provided and could not be obtained while on site. In the event of unknown information, Sitesafe will use its industry specific knowledge of antenna models to select a worst-case scenario antenna to model the site.

 Isotropic Antenna - An antenna that is completely non-directional. In other words, an antenna that radiates energy equally in all directions.

 Maximum Measurement - This measurement represents the single largest measurement recorded when performing a spatial average measurement.

 Maximum Permissible Exposure (MPE) - The rms and peak electric and magnetic field strength, their squares, or the plane-wave equivalent power densities associated with these fields to which a person may be exposed without harmful effect and with acceptable safety factor.

 Occupational/Controlled Environment - Defined by the FCC as an area where RF exposure may occur to persons who are aware of the potential for exposure as a condition of employment or specific activity and can exercise control over their exposure.

 OET Bulletin 65 - Technical guideline developed by the FCC's Office of Engineering and Technology to determine the impact of RF exposure on humans. The guideline was published in August 1997.

 OSHA (Occupational Safety and Health Administration) - Under the Occupational Safety and Health Act of 1970, employers are responsible for providing a safe and healthy workplace for their employees. OSHA's role is to promote the safety and health of America's working men and women by setting and enforcing standards; providing training, outreach and education; establishing partnerships; and encouraging continual process improvement in workplace safety and health. For more information, visit www.osha.gov.

 Radio Frequency Exposure or Electromagnetic Fields - Electromagnetic waves that are propagated from antennas through space.

 Spatial Average Measurement - A technique used to average a minimum of ten (10) measurements taken in a ten (10) second interval from zero (0) to six (6) feet. This measurement is intended to model the average energy a 6 -foot tall human body will absorb while present in an electromagnetic field of energy.

 Transmitter Power Output (TPO) - The radio frequency output power of a transmitter's final radio frequency stage as measured at the output terminal while connected to a load.

 ## Appendix G - References

 The following references can be followed for further information about RF Health and Safety.

 Site Safe, LLC
 http://www.sitesafe.com
 FCC Radio Frequency Safety
 http://www.fcc.gov/encyclopedia/radio-frequency-safety
 National Council on Radiation Protection and Measurements (NCRP)
 http://www.ncrponline.org
 Institute of Electrical and Electronics Engineers, Inc., (IEEE)
 http://www.ieee.org
 American National Standards Institute (ANSI)
 http://www.ansi.org
 Environmental Protection Agency (EPA)
 http://www.epa.gov/radtown/wireless-tech.html
 National Institutes of Health (NIH)
 http://www.niehs.nih.gov/health/topics/agents/emf/
 Occupational Safety and Health Agency (OSHA)
 http://www.osha.gov/SLTC/radiofrequencyradiation/
 International Commission on Non-lonizing Radiation Protection (ICNIRP)
 http://www.icnirp.org
 World Health Organization (WHO)
 http://www.who.int/pen-emf/en/
 National Cancer Institute
 http://www.cancer.gov/cancertopics/factsheet/Risk/cellphones
 American Cancer Society (ACS)
 http://www.cancer.org/docroot/PED/content/PED 1 3X Cellular Phone Towers.asp?sit earea=PED
 European Commission Scientific Committee on Emerging and Newly Identified Health Risks
 http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_022.pdf
 Fairfax County, Virginia Public School Survey
 http://www.fcps.edu/fts/safety-security/RFEESurvey/
 UK Health Protection Agency Advisory Group on Non-Ionizing Radiation
 http://www.hpa.org.uk/webw/HPAweb\&HPAwebStandard/HPAweb_C/1317133826368
 Norwegian Institute of Public Health
 http://www.fhi.no/dokumenter/545eea7147.pdf

 ## Post-Mod Rigorous Structural Analysis Report

 ## AT\&T

 # AT\&T | Danbury East Site \#CT2157 | FA 10035077 Owner: Crown Castle - Danbury East Site \#852850 Danbury, Connecticut

 May 27, 2020
 MEI Project ID: CT05942M-20V0

 MALOUF ENGINEERING INTL.,INC.

 STRUCTURAL CONSULTANTS

 May 27, 2020

 Mr. Miguel Nobre
 Vertical Resources Group
 Auburn, MA 01501
 POST-MOD RIGOROUS STRUCTURAL ANALYSIS

 | Structure/Make/Model: | 110 ft Monopole | EEl / 18-Sided |
 | :--- | :--- | :--- |
 | Client/Site Name/\#: | Vertical resources Group
 AT\&T | Danbury East \#CT2157
 FA \#10035077 |
 | | Crown Castle | Danbury East - BU\#852850 |
 | MEl Project ID: | | |
 | Location: | 48 Newtown Road | |
 | | Danbury, Connecticut 06810 | Fairfield County |
 | | LAT | $41-24-12.25 \mathrm{~N}$ |

 ## EXECUTIVE SUMMARY:

 Malouf Engineering $I^{\prime} t^{\prime} \mid$ (MEI), as requested, has performed a rigorous structural analysis and modification design of the above-mentioned structure to assess the impact of the changed condition as noted in Table 1.

 Based on the stress analysis performed, the existing structure is in conformance with the Int'I Building Code (IBC) / ANSI/TIA-222-G Standard for the loading considered under the criteria listed and referenced in the report sections after proper installation of the recommended structural strengthening modifications outlined - tower rated at $96.5 \% / 98.9 \%$ - Pole / Foundation.

 The installation of the proposed changed condition as noted in Table 1 is structurally acceptable after proper installation of the proposed strengthening modifications. Refer to modification drawings for details.

 MEI appreciates the opportunity of providing our continuing professional services to you. If you have any questions or need further assistance on this or other projects, please contact us.

 Respectfully submitted,
 Malouf Engineering Int'l, Inc.

 Analysis performed by:

 Krishna Manda, PE
 Sr. Project Engineer
 972-783-2578 ext. 106 mmalouf@maloufengineering.com

 5/27/2020

 ## TABLE OF CONTENTS

 1. INTRODUCTION \& SCOPE 4
 2. SOURCE OF DATA 4
 Background Information: 4
 3. ANALYSIS CRITERIA 5
 Appurtenances Configuration 5
 4. ANALYSIS PROCEDURE 7
 Analysis Program 7
 Assumptions 7
 5. ANALYSIS RESULTS 8
 6. FINDINGS \& RECOMMENDATIONS 9
 7. REPORT DISCLAIMER 10
 APPENDIX 1 - ANALYSIS PRINTOUT \& GRAPHICS 11
 APPENDIX 2 - SOURCE / CHANGED CONDITION 12

 ## Separate Attachment:

 Modification Design Drawings

 ## 1. INTRODUCTION \& SCOPE

 A rigorous structural analysis and modification design were performed by Malouf Engineering Int'l (MEI), as requested and authorized by Mr. Miguel Nobre, Vertical Resources Group, on behalf of AT\&T, to determine the acceptance of the proposed changed conditions in conformance with the IBC / ANSI/TIA-222-G Standard, "Structural Standard for Antenna Supporting Structures and Antennas".
 The scope of this independent analysis is to determine the overall stability and the adequacy of structural members, foundations, and member connections, as available and stated. This analysis considers the structure to have been properly installed and maintained with no structural defects. Installation procedures and related loading are not within the scope of this analysis and should be performed and evaluated by a competent person of the erection contractor.

 The different report sections detail the applicable information used in this evaluation, relating to the tower data, the appurtenances configuration and the wind and ice loading considered.

 ## 2. SOURCE OF DATA

 The following information has been used in this evaluation as source data that accurately represent the existing structure and the related appurtenances:

 | | Source | Information | Reference |
 | :---: | :---: | :---: | :---: |
 | Structure | | | |
 | Tower | Vertical Resources / Mr. Miguel Nobre | Previous SA \& Mods [Structural Components] | $\begin{aligned} & \hline \text { Job \#100216 } \\ & \text { Dated 07/14/2010 } \\ & \hline \end{aligned}$ |
 | | | Modification Drawings [Hudson Design Group] | Ref. \#CT2157
 Dated 04/25/2016 |
 | Foundation | Vertical Resources / Mr. Miguel Nobre | Previous Structural
 Analysis report (SA)
 [Hudson Design Group] | Ref. \#CT2157
 Dated 05/17/2018 |
 | Material Grade | Limited details available from supplied documents - Refer to Appendix | | |
 | Current Appurtenances | | | |
 | | Vertical Resources / Mr. Miguel Nobre | Previous SA [Hudson Design Group] | $\begin{aligned} & \hline \text { Ref. \#CT2157 } \\ & \text { Dated 05/17/2018 } \\ & \hline \end{aligned}$ |
 | CHANGED CONDITION | | | |
 | | Vertical Resources / Mr. Miguel Nobre | AT\&T RFDS | Dated 01/09/2019 |
 | | | Email Instructions | Dated 11/07/2019 |

 ## Background Information:

 Based on available information, the following is known regarding this structure:

 | Designer / Fabricator | EEI / 18-Sided |
 | :---: | :---: |
 | Original Design Criteria | TIA 222-F - Unknown |
 | Prior Structural Modifications | Pole Mods and extension as per Structural Components Job \#100216 Dated 07/14/2010, Mods per CHA project 22702.1013.28000 R1 Dated 07/07/2011, Hudson Design Group Ref. \#CT2157 Dated 05/17/2018 - Assumed to be installed properly and maintained. |

 ## 3. ANALYSIS CRITERIA

 The structural analysis performed used the following criteria:

 | Code / Standard | 2018 CT Bldg. Code / 2015 Int'l Building Code / ANSI/TIA-222-G-4 Standard | |
 | :---: | :---: | :---: |
 | Loading Cases | Full Wind: | 120 Mph Ultimate gust [equiv. 93 Mph (3-sec gust)] w/No Radial Ice** |
 | | Iced Case: | $50 \mathrm{Mph}+0.75^{\prime \prime}$ Radial Ice |
 | | Service: | 60 Mph |
 | | Seismic: | $S_{s}=0.214 / S_{1}=0.067 /$ Site Class: Default Soil |
 | Structure Criteria | Risk Category (Structural Class): Class II | |
 | | Exposure Category: 'B' - Topographic Category: 1 | |

 ## Appurtenances Configuration

 The following appurtenances configuration is denoted by the summation of Tables 1 \& 2:
 Table 1: Tenant with Changed Condition Appurtenances Configuration

 Table 2: Remaining Tenants Current and Reserved/Future Appurtenances

 | Elev
 (ft) | Tenant | Ants Qty | Appurtenance Model / Description | Mount Description | Lines Qty | Line size \& Location |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 90 | VzW | 1 | BXA-80063-6BF Panel Antenna | Platform w/ Handrails / Corner Outriggers / Ladder | 12 | $\begin{aligned} & 15 / 8^{\prime \prime}-\text { (I) } \\ & 1-5 / 8^{\prime \prime}(6 \times 12) \\ & \text { Hybrid } \\ & \text { (HFT1206- } \\ & 24 S V 2-x x) \text { or } \\ & \text { Equiv. - (I) } \end{aligned}$ |
 | | | 2 | BXA-80080-6CF Panel Antennas | | | |
 | | | 6 | JAHH-65B-R3B Panel Antennas | | | |
 | | | 3 | B25 RRH4x30-4R Boxes | | | |
 | | | 3 | RRH4x45 (AWS) Boxes | | | |
 | | | 3 | B13 RRH4x30W-4R Boxes | | | |
 | | | 3 | B5 RRH 4x30-4R Boxes | | | |
 | | | 2 | DB-T1-6Z-8AB-OZ Distribution Boxes | | | |

 ## Notes:

 1. ${ }^{* *}$ As per 2015 IBC for Ultimate $3-s e c$ gust wind speed converted to nominal 3 -sec gust wind speed as per Sect. 1609.3.1 as required to be used in ANSI/TIA-222-G Standard per exception 5 of Sect. 1609.1.1.
 2. All elevations are measured from tower base.
 3. Please note appurtenances not listed above are to be removed/not present as per data supplied.
 4. $(I)=$ Internal; $(E)=$ External; (FZ) = Within Face Zone; (OFZ) = Outside Face Zone - as per TIA-222-G.
 5. The above appurtenances represent MEl's understanding of the appurtenances configuration. If different than above, the analysis is invalid. Please contact MEl if any discrepancies are found.

 MALOUF Engineering Int'l, Inc.

 ## 4. ANALYSIS PROCEDURE

 The subject structure is analyzed for feasibility of the installation of the proposed changed condition previously noted. The data records furnished were reviewed and a computer stress analysis was performed in accordance with the TIA-222 Standard provisions and with the agreed scope of work terms and the results of this analysis are reported.

 ## Analysis Program

 The computer program used to model the structure is a rigorous Finite Element Analysis program, tnxTower (ver. 8.07), a commercially available program by Tower Numerics Inc. The latticed structures members are modeled using beam/truss and cable members and the pole members using tubular beam elements. The structural parameters and geometry of the members are included in the model. The dead loads, temperature loads and the wind loads are internally calculated by the program for the different wind directions and then applied as external loads on the structure. Any applicable exemptions, as per Section 15.6 of the TIA-222-G Standard for existing structures originally designed in accordance with a previous revision of the TIA-222 Standard, have been taken.

 ## Assumptions

 This engineering study is based on the theoretical capacity of the members and is not a condition assessment of the structure. This analysis is based on information supplied, and therefore, its results are based on and as accurate as that supplied data. MEI has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural stress analysis:

 - This existing tower is assumed, for the purpose of this analysis, to have been properly maintained and to be in good condition with no structural defects and with no deterioration to its member capacities.
 - The member sizes and configuration are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated.
 - Limited details of Flange plate at 96 ft are available and assumed to be acceptable.
 - The appurtenances configuration is as supplied and/or as stated in the report. It is assumed to be complete and accurate. All antennas, mounts, feed lines are assumed to be properly installed and supported as per manufacturer requirements.
 - Some assumptions are made regarding antennas and mounts sizes and their projected areas based on best interpretation of data supplied and of best knowledge of antenna type \& industry practice.
 - Mounts/Platforms are considered adequate to support the loading. No actual analysis of the platform/mount itself is performed, with the analysis being limited to analyzing the structure.
 - The soil parameters are as per data supplied or as assumed and as stated. If no data is available, the foundation system is assumed to support the structure with its new reactions.
 - All welds and connections are assumed to develop at least the member capacity, unless determined otherwise and explicitly stated in this report.
 - All prior structural modifications, if any, are assumed to be as per data supplied/available, and to have been properly installed and to be fully effective.

 If any of the above assumptions are not valid or have been made in error, this analysis results may be invalided, MEI should be contacted to review any contradictory information to determine its effect.

 ## 5. ANALYSIS RESULTS

 The results of the structural stress analysis based on data available and with the previous listed criteria, indicated the following:

 Note: The Wind loading controls over the Seismic loading as per TIA Section 2.7.

 | STRUCTURAL STRENGTHENING ReQUIRED | |
 | :--- | :--- |
 | 1 | Field weld stiffener plates to the base plate as detailed. |
 | 2 | Install overlapping/splice plates at Elev. 20ft (Refer modification details). |
 | 3 | Install end bolts onto the existing reinforcing plates at Elev. 72ft and 21ft as shown. |
 | 4 | Field verify location of plates and interferences, prior to fabrication. |
 | 5 | Perform any Maintenance work as required \& applicable to bring the structure into
 good operational condition. |

 Prior to implementation of the changed conditions and modifications, the data designated on the design documents requiring field verification shall be validated. Rigging and temporary supports required for the erection/modification shall be determined, documented, furnished and installed by the erector/contractor accounting for the loads imposed on the structure due to the proposed construction method.

 Table 3: Stress Analysis Results - AFTER PROPER INSTALLATION OF MODS

 | Component Type | Maximum
 Stress Ratio | Controlling Elev. (ft) /
 Component | Pass/Fail | Comment |
 | :--- | :---: | :---: | :---: | :--- |
 | POLE | 96.5% | $30-25$ | Pass | |
 | BASE PLATE | 91.0% | Bending | Pass | |
 | ANCHOR RODS | 93.0% | Tension | Pass | |
 | FOUNDATION | 98.9% | Pier Length | Pass | |

 Table 4: Serviceability Requirements

 | | Maximum Value | TIA Requirement (10dB) | Pass/Fail | Comment |
 | :--- | :---: | :---: | :---: | :---: |
 | TwIST/SWAY | 1.4754 Deg. | 2 Deg. from Vert. or
 Horiz. Axis | Pass | |
 | HORIZONTAL
 DISPLACEMENT | $16.42 \mathrm{In./}$
 1.24% of Ht. | 3.0% of Height | Pass | |

 ## Notes:

 1. The Maximum Stress Ratio is the percentage that the maximum load in the member is relative to the allowable load as determined by Code requirements.
 2. Refer to the Appendix 1 for more details on the member loads.
 3. A maximum stress ratio between 100% and 105% may be considered as Acceptable according to industry standard practice.

 ## 6. FINDINGS \& RECOMMENDATIONS

 - Based on the rigorous stress analysis results, the subject structure is rated at $\mathbf{9 6 . 5 \%}$ / $\mathbf{9 8 . 9 \%}$ of its support capacity (controlling component: Pole/Foundation) with the proposed changed condition considered. Please refer to Table 3 and to Appendix 1 for more details of the analysis results.
 - Based on the stress analysis performed, the existing structure is in conformance with the IBC / ANSI/TIA 222-G Standard for the loading considered under the criteria listed and referenced in the report sections after proper installation of the recommended structural strengthening modifications outlined.
 - The installation of the proposed changed condition as noted in Table 1 is structurally acceptable after proper installation of the proposed strengthening modifications. Please refer to modification drawings for details.
 - This structure is at maximum support capacity for the appurtenances and loading criteria considered even after its modification. Therefore, no changes to the configuration considered should be made without performing a new proper evaluation.

 Rigging and temporary supports required for the erection/modification shall be determined, documented, furnished and installed by the erector/contractor accounting for the loads imposed on the structure due to the proposed construction method.

 ## 7. REPORT DISCLAIMER

 The engineering services rendered by Malouf Engineering International, Inc. ('MEI') in connection with this Structural Analysis are limited to a computer analysis of the tower structure, size and capacity of its members. MEI does not analyze the fabrication, including welding and connection capacities, except as included in this Report.
 The analysis performed, and the conclusions contained herein are based on the assumption that the tower has been properly installed and maintained, including, but not limited to the following:

 1. Proper alignment and plumbness.
 2. Correct guy tensions, as applicable.
 3. Correct bolt tightness or slip jacking of sleeved connections.
 4. No significant deterioration or damage to any structural component.

 Furthermore, the information and conclusions contained in this Report were determined by application of the current "state-of-the-art" engineering and analysis procedures and formulae. Malouf Engineering International, INC. assumes no obligation to revise any of the information or conclusions contained in this Report in the event that such engineering and analysis procedures and formulae are hereafter modified or revised. In addition, under no circumstances will Malouf Engineering International, Inc. have any obligation or responsibility whatsoever for or on account of consequential or incidental damages sustained by any person, firm or organization as a result of any information or conclusions contained in the Report, and the maximum liability of Malouf Engineering International, Inc., if any, pursuant to this Report shall be limited to the total funds actually received by Malouf Engineering International, Inc. for preparation of this Report.

 Customer has requested Malouf Engineering International, Inc. to prepare and submit to Customer an engineering analysis with respect to the Subject Tower and has further requested Malouf Engineering INTERNATIONAL, INC. to make appropriate recommendations regarding suggested structural modifications and changes to the Subject Tower. In making such request of Malouf Engineering International, Inc., Customer has informed Malouf Engineering International, Inc. that Customer will make a determination as to whether or not to implement any of the changes or modifications which may be suggested by Malouf Engineering International, Inc. and that Customer will have any such changes or modifications made by riggers, erectors and other subcontractors of Customer's choice. Malouf Engineering International, Inc. shall have the right to rely upon the accuracy of the information supplied by the customer and shall not be held responsible for the Customer's misrepresentation or omission of relevant fact whether intentional or otherwise.

 Customer hereby agrees and acknowledges that Malouf Engineering International, Inc. shall have no liability whatsoever to Customer or to others for any work or services performed by any persons other than Malouf Engineering International, Inc. in connection with the implementation of services including but not limited to any services rendered for Customer or for others by riggers, erectors or other subcontractors. Customer acknowledges and agrees that any riggers, erectors or subcontractors retained or employed by Customer shall be solely responsible to Customer and to others for the quality of work performed by them and that Malouf Engineering international, Inc. shall have no liability or responsibility whatsoever as a result of any negligence or breach of contract by any such rigger, erector or subcontractor and that Customer and rigger, erector, or subcontractor will provide MALOuF Engineering International, Inc. with a Certificate of Insurance naming Malouf Engineering International, Inc. as additional insured.

 Malouf Engineering Int'l, Inc. MEI Projectid CT05942M-20V0-05/27/20-Pg. 10 This report is not to be reproduced or copied in whole or in part without MEl's written consent. 2020, MEI, Inc. ©

 ## APPENDIX 1 - ANALYSIS PRINTOUT \& GRAPHICS

 ## AFTER NOTED MODIFICATIONS

 | TYPE | ELEVATION | TYPE | ELEVATION |
 | :--- | :--- | :--- | :--- |
 | HPA-65R-BUU-H6 w/ Pipe Mounts
 (ATT / E) | 100 | ION-M23 SDARS RRU (ATT / P) | 100 |
 | | | ION-M23 SDARS RRU (ATT / P) | 100 |
 | 800-10965 w/ Pipe Mount (ATT / E) | 100 | ION-M23 SDARS RRU (ATT / P) | 100 |
 | OPA-65R-LCUU-H6 w/ Pipe Mounts
 (ATT / E) | 100 | CBC23SR-43 Diplexer (ATT / P) | 100 |
 | 7770.00 Panels w/ Pipe Mount (ATT /
 E) | 100 | CBC23SR-43 Diplexer (ATT / P) | 100 |
 | SBNHH-1D65A w/ pipe mount (ATT /
 E) | 100 | CBC23SR-43 Diplexer (ATT / P) | 100 |
 | 12ft HD V-Frame Mount (Sabre | | | |
 | \#C10857801) (ATT / E) | | | |

 ## MATERIAL STRENGTH

 | GRADE | Fy | Fu | GRADE | Fy | Fu | |
 | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
 | A500-46 | 46 ksi | 62 ksi | A588-46 | 46 ksi | 67 ksi | |
 | A572-65 | 65 ksi | 80 ksi | A570-45 | 45 ksi | 60 ksi | |
 | A572-50 | 50 ksi | 65 ksi | | | | |

 ALL REACTION ARE FACTOREL

 ## TOWER DESIGN NOTES

 1. Tower is located in Fairfield County, Connecticut.
 2. Tower designed for Exposure B to the TIA-222-G Standard.
 3. Tower designed for a 93 mph basic wind in accordance with the TIA-222-G Standard.
 4. Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase . in thickness with height.
 5. Deflections are based upon a 60 mph wind.
 6. Tower Structure Class II.
 7. Topographic Category 1 with Crest Height of 0.00 ft
 TORQUE 1 kip-ft8. TOWER RATING: 96.5\%
 50 mph WIND - 0.7500 in ICE

 TORQUE 4 kip-ft
 REACTIONS - 93 mph WIND

 Malouf Engineering Int'l Inc.
 17950 Preston Road, STE 720
 Dallas, Texas 75252
 Phone: (972) 7832578
 110 ft MONOPOLE - Danbury East \#CT2157 - FA 100350 Project: CTO5942M-2OVO-RUN-II (Modification Analysis)

 FAX: (972) 7832583

 | Client: VRG / AT\&T | Drawn by: KM | App'd: |
 | :---: | :---: | :---: |
 | Code: TIA-222-G | Date: 05/27/20 | Scale: NTS |
 | | | |

 | Client: VRG / AT\&T | Drawn by: KM | App'd: |
 | :--- | :--- | :--- |
 | Code: TIA-222-G | Date: $05 / 27 / 20$ | Scale: NTS |
 | Path: | | |

 ## Tower Input Data

 The tower is a monopole.
 This tower is designed using the TIA-222-G standard.
 The following design criteria apply:
 Tower is located in Fairfield County, Connecticut.
 ASCE 7-10 Wind Data is used (wind speeds converted to nominal values).
 Basic wind speed of 93 mph .
 Structure Class II.
 Exposure Category B.
 Topographic Category 1.
 Crest Height 0.00 ft .
 Nominal ice thickness of 0.7500 in.
 Ice thickness is considered to increase with height.
 Ice density of 56 pcf .
 A wind speed of 50 mph is used in combination with ice.
 Temperature drop of $50^{\circ} \mathrm{F}$.
 Deflections calculated using a wind speed of 60 mph .
 A non-linear (P-delta) analysis was used.
 Pressures are calculated at each section.
 Stress ratio used in pole design is 1 .
 Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

 ## Feed Line/Linear Appurtenances - Entered As Round Or Flat

 | Description | Placement | Total
 Number | Weight |
 | :---: | :---: | :---: | :---: |
 | | $f t$ | | plf |
 | $15 / 8$ | $100.00-$ | 3 | 1.04 |
 | (AT\&T / E) | 15.00 | | |
 | $15 / 8$ | $100.00-$ | 9 | 1.04 |
 | (AT\&T / E) | 15.00 | | |
 | 3/4" DC Power Cable | $100.00-$ | 2 | 0.80 |
 | (AT\&T / E) | 15.00 | | |

 Feed Line/Linear Appurtenances - Entered As Area

 | Description | Placement | Total
 Number | Weight |
 | :---: | :---: | :---: | :---: |
 | | $f t$ | | plf |
 | DC Power Cable | $100.00-15.00$ | 4 | 0.80 |
 | (AT\&T / E) | | | 0.80 |
 | | | | 0.80 |
 | Fiber Cable | $100.00-15.00$ | | 0.60 |
 | (AT\&T / E) | | | 0.60 |
 | | | 12 | 0.60 |
 | $15 / 8$ | $90.00-15.00$ | | 1.04 |
 | (VzW / E) | | | 1.04 |
 | | | 2 | 1.04 |
 | 1-5/8" (6x12) Hybrid | $90.00-15.00$ | | 1.78 |
 | (HFT1206-24SV2-x | | | 1.78 |

 | Description | Placement | Total
 Number | Weight |
 | :---: | :---: | :---: | :---: |
 | | $f t$ | | plf |
 | x) or Equiv. | | | 1.78 |
 | (VzW / E) | | 1 | 0.22 |
 | Safety Line $3 / 8$ | $110.00-0.00$ | 1 | 0.75 |
 | (E) | | | 1.28 |
 | | | | |
 | | | | |
 | | | | |
 | | | | |
 | | | | |

 ## Discrete Tower Loads

 Description Placement Weight
 Description Placement Weight

 | | $f t$ | K |
 | :---: | :---: | :---: |
 | HPA-65R-BUU-H6 w/ Pipe | 100.00 | 0.09 |
 | Mounts | | 0.17 |
 | (ATT / E) | | 0.26 |
 | 800-10965 w/ Pipe Mount | 100.00 | 0.15 |
 | (ATT / E) | | 0.25 |
 | | | 0.36 |
 | OPA-65R-LCUU-H6 w/ Pipe | 100.00 | 0.10 |
 | Mounts | | 0.17 |
 | (ATT / E) | | 0.26 |
 | 7770.00 Panels w/ Pipe | 100.00 | 0.04 |
 | Mount | | 0.09 |
 | (ATT / E) | | 0.15 |
 | SBNHH-1D65A w/ pipe | 100.00 | 0.06 |
 | mount | | 0.12 |
 | (ATT / E) | | 0.18 |
 | 800-10964 w/ Pipe Mount | 100.00 | 0.12 |
 | (ATT / E) | | 0.20 |
 | | | 0.28 |
 | OPA-65R-LCUU-H4 w/ Pipe | 100.00 | 0.08 |
 | Mounts | | 0.13 |
 | (ATT / E) | | 0.20 |
 | 7770.00 Panels w/ Pipe | 100.00 | 0.04 |
 | Mount | | 0.09 |
 | (ATT / E) | | 0.15 |
 | SBNHH-1D65A w/ pipe | 100.00 | 0.06 |
 | mount | | 0.12 |
 | (ATT / E) | | 0.18 |
 | 800-10964 w/ Pipe Mount | 100.00 | 0.12 |
 | (ATT / E) | | 0.20 |
 | | | 0.28 |
 | OPA-65R-LCUU-H4 w/ Pipe | 100.00 | 0.08 |
 | Mounts | | 0.13 |
 | (ATT / E) | | 0.20 |
 | 7770.00 Panels w/ Pipe | 100.00 | 0.04 |
 | Mount | | 0.09 |
 | (ATT / E) | | 0.15 |
 | RRUS-11 (AT\&T) | 100.00 | 0.06 |
 | (ATT / E) | | 0.08 |
 | | | 0.11 |
 | RRUS-11 (AT\&T) | 100.00 | 0.06 |
 | (ATT / E) | | 0.08 |
 | | | 0.11 |
 | RRUS-11 (AT\&T) | 100.00 | 0.06 |
 | (ATT / E) | | 0.08 |
 | | | 0.11 |
 | RRUS-32 B2 | 100.00 | 0.05 |
 | (ATT / E) | | 0.07 |
 | | | 0.10 |
 | RRUS-32 B2 | 100.00 | 0.05 |
 | (ATT / E) | | 0.07 |
 | | | 0.10 |
 | RRUS-32 B2 | 100.00 | 0.05 |
 | (ATT / E) | | 0.07 |
 | | | 0.10 |

 | | $f t$ | K |
 | :---: | :---: | :---: |
 | RRUS-4478 B14 | 100.00 | 0.06 |
 | (ATT / E) | | 0.07 |
 | | | 0.09 |
 | RRUS-4478 B14 | 100.00 | 0.06 |
 | (ATT / E) | | 0.07 |
 | | | 0.09 |
 | RRUS-4478 B14 | 100.00 | 0.06 |
 | (ATT / E) | | 0.07 |
 | | | 0.09 |
 | RRUS-32 B66 | 100.00 | 0.06 |
 | (ATT / E) | | 0.08 |
 | | | 0.11 |
 | RRUS-32 B66 | 100.00 | 0.06 |
 | (ATT / E) | | 0.08 |
 | | | 0.11 |
 | RRUS-32 B66 | 100.00 | 0.06 |
 | (ATT / E) | | 0.08 |
 | | | 0.11 |
 | RRUS-32 B30 | 100.00 | 0.06 |
 | (ATT / E) | | 0.08 |
 | | | 0.11 |
 | RRUS-32 B30 | 100.00 | 0.06 |
 | (ATT / E) | | 0.08 |
 | | | 0.11 |
 | RRUS-32 B30 | 100.00 | 0.06 |
 | (ATT / E) | | 0.08 |
 | | | 0.11 |
 | (2) TPX-070821 Triplexer | 100.00 | 0.01 |
 | (ATT / E) | | 0.01 |
 | | | 0.02 |
 | (2) TPX-070821 Triplexer | 100.00 | 0.01 |
 | (ATT / E) | | 0.01 |
 | | | 0.02 |
 | (2) TPX-070821 Triplexer | 100.00 | 0.01 |
 | (ATT / E) | | 0.01 |
 | | | 0.02 |
 | (2) LGP21401 TMA'S | 100.00 | 0.02 |
 | (ATT / E) | | 0.03 |
 | | | 0.04 |
 | (2) LGP21401 TMA'S | 100.00 | 0.02 |
 | (ATT / E) | | 0.03 |
 | | | 0.04 |
 | (2) LGP21401 TMA'S | 100.00 | 0.02 |
 | (ATT / E) | | 0.03 |
 | | | 0.04 |
 | Raycap DC6-48-60-18-8F | 100.00 | 0.02 |
 | SUPRESSOR | | 0.04 |
 | (ATT / E) | | 0.05 |
 | Raycap DC6-48-60-18-8F | 100.00 | 0.02 |
 | SUPRESSOR | | 0.04 |
 | (ATT / E) | | 0.05 |
 | Raycap DC6-48-60-0-8F | 100.00 | 0.03 |
 | SUPRESSOR | | 0.05 |
 | (ATT / E) | | 0.07 |

 | tnxTower
 Malouf Engineering Int'l Inc.
 17950 Preston Road, STE 720
 Dallas, Texas 75252
 Phone: (972) 7832578
 FAX: (972) 7832583 | Job 110 ft | MONOPOLE - Danbury East \#CT2157 - FA 10035077 | Page 3 of 5 |
 | :---: | :---: | :---: | :---: |
 | | Project | CT05942M-20V0-RUN-II (Modification Analysis) | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 13:12:47 05/27/20 } \end{array}$ |
 | | Client | VRG / AT\&T | Designed by KM |

 Description Placement Weight
 Description Placement Weight

 | | $f t$ | K |
 | :---: | :---: | :---: |
 | $\begin{aligned} & \text { ION-M23 SDARS RRU } \\ & \text { (ATT / P) } \end{aligned}$ | 100.00 | 0.06 |
 | | | 0.08 |
 | | | 0.09 |
 | ION-M23 SDARS RRU
 (ATT / P) | 100.00 | 0.06 |
 | | | 0.08 |
 | | | 0.09 |
 | ION-M23 SDARS RRU
 (ATT / P) | 100.00 | 0.06 |
 | | | 0.08 |
 | | | 0.09 |
 | CBC23SR-43 Diplexer
 (ATT / P) | 100.00 | 0.01 |
 | | | 0.01 |
 | | | 0.02 |
 | CBC23SR-43 Diplexer
 (ATT / P) | 100.00 | 0.01 |
 | | | 0.01 |
 | | | 0.02 |
 | CBC23SR-43 Diplexer
 (ATT / P) | 100.00 | 0.01 |
 | | | 0.01 |
 | | | 0.02 |
 | 12ft HD V-Frame Mount (Sabre \#C10857801) (ATT / E) | 100.00 | 0.47 |
 | | | 0.65 |
 | | | 0.82 |
 | 12 ft HD V-Frame Mount (Sabre \#C10857801) (ATT / E) | 100.00 | 0.47 |
 | | | 0.65 |
 | | | 0.82 |
 | 12ft HD V-Frame Mount (Sabre \#C10857801) (ATT / E) | 100.00 | 0.47 |
 | | | 0.65 |
 | | | 0.82 |
 | 3-Way Close Contact Mount w/ Pipes (ATT / E) | 100.00 | 0.70 |
 | | | 0.95 |
 | | | 1.20 |
 | Plate | 96.00 | 0.25 |
 | (E) | | 0.37 |
 | | | 0.49 |
 | BXA-80063-6BF w/ Pipe | 90.00 | 0.06 |
 | Mount | | 0.12 |
 | (VzW / E) | | 0.19 |
 | BXA-80080-6CF w/ Pipe | 90.00 | 0.05 |
 | Mount | | 0.11 |
 | (VzW / E) | | 0.18 |
 | BXA-80080-6CF w/ Pipe | 90.00 | 0.05 |
 | Mount | | 0.11 |
 | (VzW / E) | | 0.18 |
 | (2) JAHH-65B-R3B w/ Pipe | 90.00 | 0.11 |
 | Mount | | 0.19 |
 | (VzW / E) | | 0.27 |
 | (2) JAHH-65B-R3B w/ Pipe | 90.00 | 0.11 |
 | Mount | | 0.19 |
 | (VzW / E) | | 0.27 |
 | (2) JAHH-65B-R3B w/ Pipe | 90.00 | 0.11 |
 | Mount | | 0.19 |
 | (VzW / E) | | 0.27 |
 | B25 RRH4x $30-4 \mathrm{R}$ | 90.00 | 0.06 |
 | (VzW / E) | | 0.08 |

 | | $f t$ | K |
 | :---: | :---: | :---: |
 | | | 0.10 |
 | $\begin{gathered} \text { B25 RRH4x30-4R } \\ (\mathrm{VzW} / \mathrm{E}) \end{gathered}$ | 90.00 | 0.06 |
 | | | 0.08 |
 | | | 0.10 |
 | $\begin{gathered} \text { B25 RRH4x30-4R } \\ (\mathrm{VzW} / \mathrm{E}) \end{gathered}$ | 90.00 | 0.06 |
 | | | 0.08 |
 | | | 0.10 |
 | $\begin{gathered} \text { RRH4x45 (AWS) } \\ (\mathrm{VzW} / \mathrm{E}) \end{gathered}$ | 90.00 | 0.07 |
 | | | 0.10 |
 | | | 0.13 |
 | $\begin{gathered} \text { RRH4x45 (AWS) } \\ (\mathrm{VzW} / \mathrm{E}) \end{gathered}$ | 90.00 | 0.07 |
 | | | 0.10 |
 | | | 0.13 |
 | $\begin{gathered} \text { RRH4x45 (AWS) } \\ (\mathrm{VzW} / \mathrm{E}) \end{gathered}$ | 90.00 | 0.07 |
 | | | 0.10 |
 | | | 0.13 |
 | B13 RRH4x30W-4R
 (VzW / E) | 90.00 | 0.06 |
 | | | 0.08 |
 | | | 0.10 |
 | B13 RRH4x30W-4R
 ($\mathrm{VzW} / \mathrm{E}$) | 90.00 | 0.06 |
 | | | 0.08 |
 | | | 0.10 |
 | B13 RRH4x30W-4R
 ($\mathrm{VzW} / \mathrm{E}$) | 90.00 | 0.06 |
 | | | 0.08 |
 | | | 0.10 |
 | B5 RRH 4x 30-4R
 (VzW / E) | 90.00 | 0.06 |
 | | | 0.08 |
 | | | 0.10 |
 | B5 RRH 4x30-4R ($\mathrm{VzW} / \mathrm{E}$) | 90.00 | 0.06 |
 | | | 0.08 |
 | | | 0.10 |
 | $\begin{aligned} & \text { B5 RRH 4x30-4R } \\ & (\mathrm{VzW} / \mathrm{E}) \end{aligned}$ | 90.00 | 0.06 |
 | | | 0.08 |
 | | | 0.10 |
 | DB-T1-6Z-8AB-0Z DISTRIBUTION BOX (VzW / E) | 90.00 | 0.04 |
 | | | 0.08 |
 | | | 0.12 |
 | $\begin{gathered} \text { DB-T1-6Z-8AB-0Z } \\ \text { DISTRIBUTION BOX } \\ (\mathrm{VzW} / \mathrm{E}) \end{gathered}$ | 90.00 | 0.04 |
 | | | 0.08 |
 | | | 0.12 |
 | (2) Empty Pipe Mount (VzW / E) | 90.00 | 0.03 |
 | | | 0.05 |
 | | | 0.07 |
 | (2) Empty Pipe Mount (VzW / E) | 90.00 | 0.03 |
 | | | 0.05 |
 | | | 0.07 |
 | (2) Empty Pipe Mount (VzW / E) | 90.00 | 0.03 |
 | | | 0.05 |
 | | | 0.07 |
 | Platform w/ Handrails / corner supports (VzW / E) | 90.00 | 2.15 |
 | | | 3.00 |
 | | | 3.85 |

 | tnxTower
 Malouf Engineering Int'l Inc.
 17950 Preston Road, STE 720
 Dallas, Texas 75252
 Phone: (972) 7832578
 FAX: (972) 7832583 | Job 110 | ft MONOPOLE - Danbury East \#CT2157 - FA 10035077 | Page
 Date
 13:12:47 5 |
 | :---: | :---: | :---: | :---: |
 | | CT05942M-20V0-RUN-II (Modification Analysis) | | |
 | | Client | VRG / AT\&T | Designed by KM |

 ## Maximum Tower Deflections - Service Wind

 | Section No. | Elevation ft | Horz. Deflection in | Gov. Load Comb. | Tilt | Twist |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | L1 | 110-96 | 19.509 | 50 | 1.4748 | 0.0057 |
 | L2 | 96-95.5 | 15.191 | 50 | 1.4641 | 0.0055 |
 | L3 | 95.5-72 | 15.038 | 50 | 1.4619 | 0.0055 |
 | L4 | 72-65 | 8.440 | 50 | 1.1561 | 0.0047 |
 | L5 | 65-60 | 6.826 | 50 | 1.0444 | 0.0042 |
 | L6 | 60-55 | 5.777 | 50 | 0.9579 | 0.0038 |
 | L7 | 55-46 | 4.821 | 50 | 0.8675 | 0.0034 |
 | L8 | 50-45 | 3.963 | 50 | 0.7714 | 0.0030 |
 | L9 | 45-40 | 3.183 | 50 | 0.7091 | 0.0028 |
 | L10 | 40-35 | 2.485 | 50 | 0.6243 | 0.0024 |
 | L11 | 35-30 | 1.876 | 50 | 0.5387 | 0.0021 |
 | L12 | 30-25 | 1.357 | 50 | 0.4528 | 0.0017 |
 | L13 | 25-20 | 0.927 | 50 | 0.3672 | 0.0014 |
 | L14 | 20-15 | 0.588 | 50 | 0.2819 | 0.0010 |
 | L15 | 15-10 | 0.330 | 50 | 0.2108 | 0.0007 |
 | L16 | 10-5 | 0.146 | 50 | 0.1400 | 0.0005 |
 | L17 | 5-0 | 0.036 | 50 | 0.0697 | 0.0002 |

 ## Critical Deflections and Radius of Curvature - Service Wind

 | Elevation ft | Appurtenance | Gov. Load Comb | Deflection in | Tilt | Twist 。 | Radius of Curvature ft |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 100.00 | HPA-65R-BUU-H6 w/ Pipe Mounts | 50 | 16.420 | 1.4754 | 0.0056 | 40535 |
 | 96.00 | Plate | 50 | 15.191 | 1.4641 | 0.0055 | 16679 |
 | 90.00 | BXA-80063-6BF w/ Pipe Mount | 50 | 13.376 | 1.4203 | 0.0056 | 6425 |

 Maximum Tower Deflections - Design Wind

 | Section
 No. | Elevation | Horz.
 Deflection
 in | Gov.
 Load
 Comb. | Tilt | o |
 | :---: | :---: | :---: | :---: | :---: | :---: |

 ## Base Plate Design Data

 | Plate | Actual | Actual | Controlling | Ratio |
 | :---: | :---: | :---: | :---: | :---: |
 | Thickness | Allowable | Allowable | Condition | |
 | | Ratio | Ratio | | |
 | | Bolt | Plate | | |
 | | Tension | Stress | | |
 | 1.5000 | K | $k s i$ | | |
 | | 226.53 | 48.84 | Plate | 0.93 |
 | | 243.58 | 54.00 | | |
 | | 0.93 | 0.91 | | |

 *Base Plate Evaluated Using Mathcad

 ## Section Capacity Table

 | Section No. | $\begin{gathered} \text { Elevation } \\ f t \end{gathered}$ | Component Type | Size | Critical Element | $\begin{aligned} & P \\ & K \end{aligned}$ | $\begin{gathered} ø P_{\text {allow }} \\ K \end{gathered}$ | \%
 Capacity | Pass
 Fail |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | L1 | 110-96 | Pole | TP16x16x0.375 | 1 | -5.72 | 762.08 | 11.0 | Pass |
 | L2 | 96-95.5 | Pole | TP17.5949x16x0.25 | 2 | -6.01 | 928.51 | 11.5 | Pass |
 | L3 | 95.5-72 | Pole | TP22.5252x17.5949x0.25 | 3 | -12.65 | 1313.19 | 56.7 | Pass |
 | L4 | 72-65 | Pole | TP23.9938x22.5252x0.25* | 4 | -13.77 | 1420.75 | 65.9 | Pass |
 | L5 | 65-60 | Pole | TP25.0428x23.9938x0.25* | 5 | -14.61 | 1461.62 | 72.8 | Pass |
 | L6 | 60-55 | Pole | TP26.0918x25.0428x0.25* | 6 | -15.48 | 1509.80 | 78.6 | Pass |
 | L7 | 55-46 | Pole | TP27.1408x26.0918x0.25* | 7 | -16.37 | 1525.06 | 87.2 | Pass |
 | L8 | 46-45 | Pole | TP27.559x26.0366x0.3125* | 8 | -17.67 | 1561.58 | 93.3 | Pass |
 | L9 | 45-40 | Pole | TP28.608x27.559x0.3125* | 9 | -18.73 | 1822.61 | 86.7 | Pass |
 | L10 | 40-35 | Pole | TP29.657x28.608x0.3125* | 10 | -19.82 | 1871.08 | 90.5 | Pass |
 | L11 | 35-30 | Pole | TP30.706x29.657x0.3125* | 11 | -20.93 | 1923.13 | 93.7 | Pass |
 | L12 | 30-25 | Pole | TP31.755x30.706x0.3125* | 12 | -22.08 | 1979.31 | 96.5 | Pass |
 | L13 | 25-20 | Pole | TP32.804x31.755x0.3125* | 13 | -23.25 | 2205.91 | 91.3 | Pass |
 | L14 | 20-15 | Pole | TP33.853x32.804x0.3125** | 14 | -24.59 | 2437.80 | 87.2 | Pass |
 | L15 | 15-10 | Pole | TP34.902x33.853x0.3125** | 15 | -25.74 | 2492.14 | 89.3 | Pass |
 | L16 | 10-5 | Pole | TP35.951x34.902x0.3125** | 16 | -26.92 | 2545.10 | 91.3 | Pass |
 | L17 | 5-0 | Pole | TP37x35.951x0.3125** | 17 | -28.13 | 2596.69 | 93.1 | Pass |
 | | | | | | | Summary | | |
 | | | | | | | Pole (L12) | 96.5 | Pass |
 | | | | | | | Base Plate | 93.0 | Pass |
 | | | | | | | RATING = | 96.5 | Pass |

 *Pole reinforced with (3) Plates
 **Pole reinforced with (3) Channels

 ## APPENDIX 2 - SOURCE / CHANGED CONDITION

    ```
    Subject:
    Attachments:
    FW: SA Quotes - AT&T CT2157
    10035077.CT2157.CD.LTE.RFMod.Rev1.05.21.2019.pdf; NEW-
    ENGLAND_CONNECTICUT_CTLO2157_2019-Cell-Site-RF-Modifications_IP-
    Repeater---Type-1_sp656b_PTN_10035077_16327_01-09-2019_Preliminary-
    Approved_v1.00.pdf
    From: Vertical Resources Group <mnobre@verticalresourcesgrp.com>
    Sent: Thursday, November 7, 2019 9:39 AM
    To:Mark Malouf <mmalouf@maloufengineering.com>
    Cc: MEI Admin <execadmin@maloufengineering.com>
    Subject: RE: SA Quotes - AT&T CT2157
    Dropbox link to the last pics we took is below.
    https://www.dropbox.com/sh/90gchv51jt03hj7/AABKmaeSAQDQ-OAq4ORAvVkWa?dl=0
    Proposed AT&T changes are as follows:
    EXISTING TO REMAIN:
    100' (1) CCI HPA65RBUUH6 (LTEPCS/700bc pos #1)
    100' (1) Kathrein 800-10965 (LTE700b14/AWS pos #2)
    100' (1) CCI OPA65RLCUUH6 (LTE850/WCS/700de pos #3)
    100' (2) Andrew SBNHH1D65A (LTEPCS/700bc pos #1)
    100' (2) Kathrein 800-10964 (LTE700b14/AWS pos #2)
    100' (2) CCI OPA65RLCUUH4 (LTE850/WCS/700de pos #3)
    100' (3) Powerwave ```

