

January 29, 2021

Members of the Connecticut Siting Council Connecticut Siting Council 10 Franklin Square New Britain, Connecticut 06051

Re: Request for Tower Share New Cingular Wireless, PCS, LLC ("AT&T") Request for Approval of the Shared Use of an Existing Tower at 15 Great Pasture Road, Danbury, CT AT&T Site: 12684101 / S2873

Dear Members of the Council:

AT&T proposes to collocate on an existing telecommunications tower located at 15 Great Pasture Road in Danbury, CT ("the facility"). The subject parcel is identified by the City of Danbury as Parcel L16 – 5 and owned by Eppoliti Industrial Realty Inc. The tower is owned by Cellco Partnership ("Verizon Wireless"). The property is roughly $12.63\pm$ acres and accommodates an existing fenced compound for the telecommunication facility including an existing 50' x 50' raised concrete tower mat foundation, +/- 119' monopole tower, an existing platform with canopy and ice bridge for the existing telecommunications carrier's equipment and an existing propane tank. The facility is and will continue to be owned and operated by Verizon Wireless.

Pursuant to Connecticut General Statues Section 16-50aa ("the Statute"), AT&T requests a finding from the Connecticut Siting Council that the shared use of this facility is technically, legally, environmentally and economically feasible, will meet safety concerns, will avoid the unnecessary proliferation of towers and is in the public interest. It further requests an order approving the shared use of this facility.

The purpose of this request is to use an existing tower to develop AT&T's wireless network to provide high speed wireless data and wireless service within the State of Connecticut and in this part of Danbury: avoiding the need for an additional tower in Danbury, CT.

AT&T is licensed by the Federal Communications Commission ("FCC") to provide multiple technologies, including PCS, long-term evolution ("LTE") services, AWS, WCS, FirstNet and 850MHz in Fairfield County. AT&T is building and enhancing its network to take advantage of its licensed spectrum and improve its broadband high speed wireless voice and data services.

Existing Facility & Proposed Modification

The existing facility is a +/- 119' monopole tower located at 15 Great Pasture Road in Danbury. Site coordinates (NAD83) are N41° 22' 58.8" and W73° 25' 19.77" (or 41.383, -73.422). Currently there is one other major commercial wireless carrier located on this tower (Verizon) installed at a centerline of +/-120.' The monopole will be extended by 20' to a total height of +/-140' as AT&T intends to install at a centerline of +/-140.' The site plan of the facility is included in the proposed

Monopole Extension Package and Construction Drawings, prepared by Semaan Engineering Solutions dated September 2, 2020 and by Centek Engineering Inc. dated December 16, 2020, respectively, enclosed herewith.

AT&T intends to install a 20' monopole tower extension to the top of the existing monopole, as shown in the Monopole Extension Package. On the extended tower, AT&T intends to install six (6) CCI TPA65R-BU6DA-K panel antennas, twelve (12) Ericsson RRUs and three (3) surge arrestors and associated cabling on an antenna platform mount to be attached to the extended monopole tower at the 140' mount level as detailed and described in the Construction Drawings. This proposal includes B2, B5, and B12 hardware that is both 4G(LTE) and 5GNR capable through remote software configuration and either or both services may be turned on or off at various times.

AT&T is entering into a new agreement for this tower space as well as in order to license the portion of space within the existing compound for the installation of a walk-in cabinet (WIC), ice bridge, a propane generator and a propane tank inside the existing fenced compound as more fully detailed and described in the enclosed Construction Drawings.

Consistent with the requirements of the Statute, it is feasible for AT&T to collocate at this facility. AT&T is proposing to collocate on the existing monopole tower that will continue to remain in the ownership of Verizon Wireless. Included with this application is a Monopole Extension Package from Semaan Engineering Solutions dated September 2, 2020 that shows that the existing tower can support AT&T's proposed equipment once modified.

The Proposal is Legally Feasible

The Council has authority, pursuant to statute, to issue an order approving of the shared use of this tower. By issuing an order approving AT&T's shared use of this tower, AT&T will be able to proceed with obtaining a building permit for the proposed installation. Verizon Wireless has executed a Letter of Authorization that approved AT&T's Request for Tower Share filing on November 16, 2020, which is included with this application. AT&T's proposal is legally feasible.

AT&T is a telecommunication provider licensed by the FCC to provide service in the State of Connecticut, including but not limited to Fairfield County. AT&T will enter into an agreement with the owner of this facility, Verizon Wireless, for the location of this proposed equipment on the existing tower so that it may provide telecommunications services to the surrounding community. Consequently, the proposal is legally feasible.

The Proposal is Environmentally Feasible

Pursuant to the Statute, the proposal will be environmentally feasible for the following reasons:

- The overall impact on the City of Danbury will be decreased with the sharing of a single tower versus the proliferation of multiple towers.
- Although the 20' extension and the addition of the antennas and associated equipment on the tower may minimally increase the visibility of the tower, this modification should not be

considered a substantial change to the facility and will avoid the unnecessary proliferation of towers in the area. *Please see Photo Simulations and Viewshed Analysis of the proposal enclosed herewith.*

- There will be no increased impact on air quality because no air pollutants will be generated during normal operation of the facility.
- There will only be a brief, slight increase in noise pollution while the site is under construction.
- During construction, the proposed project will generate a small amount of traffic as construction takes place. Upon completion, traffic will be limited to an average of one trip per month for maintenance and inspections.
- The operation of the modified facility will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. *Please see the RF emissions calculation for AT&T's facility enclosed herewith.*
- AT&T expects to enhance safety in this portion of Danbury by improving wireless telecommunications for local residents and travelers. AT&T is currently developing its network to provide its customers with quality and reliable coverage to comply with their FCC license, the site is a necessary part of AT&T's network development.
- Specifically, this proposal is designed to provide reliable wireless coverage for this section of Danbury, CT.

Conclusion

For the reasons stated above, the attachment of AT&T's antennas and associated equipment to the tower would meet all the requirements set forth in the Statute. The proposal is legally, technically, economically and environmentally feasible and meets all public safety concerns. Therefore, AT&T respectfully requests that the Council approve this request to collocate on the tower located at 15 Great Pasture Road, Danbury, CT.

Sincerely,

Jennifer Iliades, Site Acquisition Consultant Jeff Delli Colli, Program Manager Centerline Communications, LLC for New Cingular Wireless, PCS, LLC ("AT&T") 750 West Center Street, Suite 301 West Bridgewater, MA 02379 jiliades@clinellc.com jdellicolli@clinellc.com

Enclosures (9): Exhibit 1 – Construction Drawings
	Exhibit 2 – Property Card and GIS
	Exhibit 3 – Structural Analysis
	Exhibit 4 – Mount Analysis
	Exhibit 5 – RF Emissions Analysis Report Evaluation
	Exhibit 6 – Letter of Authorization from Verizon Wireless
	Exhibit 7 – Original Tower Approval
	Exhibit 8 – Photo Simulations and Viewshed Analysis
	Exhibit 9 – Notice Delivery Confirmations
cc:	The Honorable Joseph M. Cavo, Mayor, City of Danbury, as elected official
	Sharon B. Calitro, AICP, Director, Planning & Zoning, City of Danbury
	Cellco Partnership ("Verizon Wireless"), as tower owner
	Eppoliti Industrial Realty Inc, as underlying property owner

EXHIBIT 1

GENERAL NOTES

 ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT STATE BUILDING CODE, INCLUDING THE TIA-222 REVISION "G" STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES, 2018 CONNECTICUT FIRE SAFETY CODE AND, 2017 NATIONAL ELECTRICAL CODE AND LOCAL CODES. 	10. D S L C W C
2. THE COMPOUND, TOWER, PRIMARY GROUND RING, ELECTRICAL SERVICE TO THE METER BANK AND TELEPHONE SERVICE TO THE DEMARCATION POINT ARE PROVIDED BY SITE OWNER. AS BUILT FIELD CONDITIONS REGARDING THESE ITEMS SHALL BE CONFIRMED BY THE CONTRACTOR. SHOULD ANY FIELD CONDITIONS PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL NOT PROCEED WITH ANY AFFECTED WORK.	11. A C 12. A C C T
3. CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.	13. A T M T B 14. C T
4. CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.	15. C T(C
5. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.	м 16. Т А Г/ А
6. CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.	17. C A E R
7. CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.	18. A R C R N 19. A
8. LOCATION OF EQUIPMENT, AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.	20. T
9. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTIN STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, THAT MAY BE NECESSARY MAINTAIN EXISTING BUILDING'S / PROPERTY'S	IG ETC. 21. C

OPERATIONS, COORDINATE WORK WITH BUILDING/PROPERTY OWNER.

- RAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK HOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, AWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE ONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE ORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, ODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- LL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY OMPANY REQUIREMENTS AND SPECIFICATIONS.
- L EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY ONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY ONDITION PER MFR.'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY HESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- NY AND ALL ERRORS, DISCREPANCIES, AND 'MISSED" ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE AT&T CONSTRUCTION IANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL HESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL E ALLOWED FOR MISSED ITEMS.
- HE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND CCEPTED BY THE OWNER.
- ONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY O ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE HECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION ANAGER FOR REVIEW.
- HE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, NGLES, AND EXISTING CONDITIONS AT THE SITE, PRIOR TO ABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT REA.
- OORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUIT ND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF LECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE ESPONSIBILITY OF THE CONTRACTOR.
- LL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE EVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB-ONTRACTORS FOR ANY CONDITION PER THE MANUFACTURER'S ECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- ABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF AMAGED DURING CONSTRUCTION ACTIVITIES.
- HE CONTRACTOR SHALL CONTACT "CALL BEFORE YOU DIG" AT LEAST 8 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL TILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED PRIOR TO ANY XCAVATION WORK. CONTRACTOR SHALL MAINTAIN AND PROTECT ARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES THE CONTRACTOR.

WIRELESS COMMUNICATIONS FACILITY CT2873 BETHEL **15 GREAT PASTURE ROAD** DANBURY, CT 06810

ONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM

LL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE ESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD

CONTRACTOR SHALL COMPLY WITH OWNERS ENVIRONMENTAL ENGINEER ON INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY

SITE DIRECTIONS

500 ENTERPRISE DRIVE ROCKY HILL, CONNECTICUT FROM:

HEAD NORTHEAST ON ENTERPRISE DRIVE TOWARD CAPITAL BLVD.

- TURN LEFT ONTO CAPITAL BLVD. TURN LEFT ONTO WEST STREET.
- I. MERGE ONTO I-91 S VIA RAMP ON THE LEFT TOWARD NEW HAVEN.
- MERGE ONTO I-691 W VIA EXIT 18 TOWARD MERIDEN/WATERBURY.
- MERGE ONTO I-84 W VIA EXIT 1 ON THE LEFT TOWARD WATERBURY/DANBURY. MERGE ONTO NEWTOWN ROAD VIA EXIT 8 TOWARD BETHEL.
- 8. TURN LEFT ONTO OLD SHELTER ROCK ROAD.
- 9. OLD SHELTER ROCK ROAD BECOMES CROSS STREET. 10. TURN LEFT ONTO SHELTER ROCK ROAD.
- 11. TURN SLIGHT RIGHT ONTO SHELTER ROCK LANE.
- 12. TURN LEFT ONTO GREAT PASTURE ROAD. 13. 15 GREAT PASTURE ROAD IS ON THE RIGHT.

PROJECT SUMMARY

- THE PROPOSED SCOPE OF WORK CONSISTS OF THE PROPOSED COLLOCATION OF AT&T AT AN EXISTING UNMANNED WIRELESS TELECOMMUNICATIONS FACILITY, GENERALLY INCLUDING THE FOLLOWING:
- A. INSTALLATION OF A PROPOSED 20' MONOPOLE TOWER EXTENSION TO THE TOP OF THE EXISTING MONOPOLE TOWER. THE DESIGN OF THE PROPOSED EXTENSION IS BY OTHERS.
- B. INSTALLATION OF A PROPOSED ANTENNA MOUNTING PLATFORM. THE PROPOSED PLATFORM TO ACCOMMODATE THE INSTALLATION OF A TOTAL OF (6) PANEL ANTENNAS, (12) RRU UNITS AND (3) SURGE ARRESTOR UNITS ALONG WITH ASSOCIATED CABLING.
- C. THE PROPOSED AT&T GROUND MOUNTED EQUIPMENT TO CONSIST OF A "WALK-IN EQUIPMENT CABINET (WIC) AND A 24 KW PROPANE FUELED GENERATOR, AND A 500 GALLON PROPANE TANK LOCATED WITHIN THE EXISTING FENCED FACILITY COMPOUND. AN ANTENNA CABLE ICE BRIDGE IS PROPOSED TO FACILITATE AT&T ANTENNA CABLES FROM THE WIC TO THE EXISTING MONOPOLE.

PROJECT INFORMATION			
AT&T SITE NUMBER:	CT2873		
AT&T SITE NAME:	BETHEL		
SITE ADDRESS:	15 GREAT PASTURE ROAD DANBURY, CT 06810		
LESSEE/APPLICANT:	AT&T MOBILITY 500 ENTERPRISE DRIVE, SUITE 3A ROCKY HILL, CT 06067		
AT&T PACE JOB:	PACE JOB 1 — MRCTB026223 PACE JOB 2 — MRCTB047907 PACE JOB 3 — MRCTB026243 PACE JOB 4 — MRCTB026229 PACE JOB 5 — MRCTB006512 PACE JOB 6 — MRCTB026247		
AT&T FA LOCATION CODE:	12684101		
ENGINEER:	CENTEK ENGINEERING, INC. 63–2 NORTH BRANFORD RD. BRANFORD, CT 06405		
PROJECT COORDINATES:	LATITUDE: 41°–22'–58.813" LONGITUDE: 73°–25'–19.811" GROUND ELEVATION: 387.1'± A.M.S.L.		
	SITE COORDINATES AND GROUND ELEVATION AND REFERENCED FROM FAA-1A SURVEY CERTIFICATION AS PREPARED BY MARTINEZ COUCH AND ASSOCIATES LLC, DATED FEBRUARY 17, 2015.		

SHEET INDEX				
SHT. NO.	DESCRIPTION	REV.		
T—1	TITLE SHEET			
N-1	NOTES, SPECIFICATIONS AND ANTENNA SCHEDULE	0		
C-1	SITE LOCATION PLAN	0		
C-2	COMPOUND PLANS AND ELEVATION			
C-3	ANTENNA CONFIGURATION AND EQUIPMENT DETAILS	$\left \sum_{i=1}^{n} \right $		
C-4	SITE AND EQUIPMENT DETAILS			
C-5	PLUMBING DIAGRAM	0		
E—1	SITE UTILITY PLAN	0		
E-2	COMPOUND PLANS	0		
E-3	ELECTRICAL RISER DIAGRAM AND NOTES	0		
E-4	SCHEMATIC RISER DIAGRAM AND NOTES	0		
E-5	ELECTRICAL GROUNDING PLAN AND NOTES	0		
E-6	ELECTRICAL DETAILS			
E-7	ELECTRICAL DETAILS	0		
E-8	ELECTRICAL DETAILS	0		
E-9	ELECTRICAL SPECIFICATIONS	0		

				ANTENNA AND APPURTENANCE SCHEDULE					
SECTOR	EXISTING/PROPOSED	BAND	ANTENNA	SIZE (INCHES) (L × W × D)	ANTENNA & HEIGHT	AZIMUTH	DOWNTILT	(E/P) TMA/DIPLEXER /TRIPLEXER (QTY)	(E/P) RRU (QTY)
A1	PROPOSED	LTE 700 B14/LTE AWS/LTE WCS	CCI TPA65R-BU6DA-K	71.2 x 21 x 7.8	140'	15 °	0•		(P) 4478 B14 (1 AT ANTENNA LOCATION), (P) 4415 B30 (1 AT ANTENNA LOC
A2	PROPOSED	LTE 700/ 850 5G/LTE 1900	CCI TPA65R-BU6DA-K	71.2 x 21 x 7.8	140'	15 °	0•		(P) 4449 B5/B12 (1 AT ANTENNA LOCATION), (P) 8843 B2/B66A (1 AT ANTENNA
A3									
A4									
	-			_	-	_		_	
B1	PROPOSED	LTE 700 B14/LTE AWS/LTE WCS	CCI TPA65R-BU6DA-K	71.2 x 21 x 7.8	140'	140 °	0•		(P) 4478 B14 (1 AT ANTENNA LOCATION), (P) 4415 B30 (1 AT ANTENNA LOC
B2	PROPOSED	LTE 700/ 850 5G/LTE 1900	CCI TPA65R-BU6DA-K	71.2 x 21 x 7.8	140'	140°	0•		(P) 4449 B5/B12 (1 AT ANTENNA LOCATION), (P) 8843 B2/B66A (1 AT ANTENNA
B3									
B4									
C1	PROPOSED	LTE 700 B14/LTE AWS/LTE WCS	CCI TPA65R-BU6DA-K	71.2 x 21 x 7.8	140'	260 °	0•		(P) 4478 B14 (1 AT ANTENNA LOCATION), (P) 4415 B30 (1 AT ANTENNA LOC
C2	PROPOSED	LTE 700/ 850 5G/LTE 1900	CCI TPA65R-BU6DA-K	71.2 x 21 x 7.8	140'	260 °	0*		(P) 4449 B5/B12 (1 AT ANTENNA LOCATION), (P) 8843 B2/B66A (1 AT ANTENNA
C3									
C4									

STRUCTURAL SPECIFICATIONS

DESIGN BASIS:

GOVERNING CODE: 2015 INTERNATIONAL BUILDING (IBC) AS MODIFIED BY THE 2018 CT STATE BUILDING CODE AND AMENDMENTS.

1. DESIGN CRITERIA:

•

WIND LOAD: PER TIA 222 G (ANTENNA MOUNTS): 93 MPH (Vasd) RISK CATEGORY: II (BASED ON IBC TABLE 1604.5)

- NOMINAL DESIGN SPEED (OTHER STRUCTURE): 118 MPH (Vasd) (EXPOSURE B/IMPORTANCE FACTOR 1.0 BASED ON ASCE 7-10) PER 2015 INTERNATIONAL BUILDING CODE (IBC) AS MODIFIED BY THE 2018 CONNECTICUT STATE BUILDING CODE.
- SEISMIC LOAD (DOES NOT CONTROL): PER ASCE 7-10 MINIMUM DESIGN LOADS FOR BUILDING AND OTHER STRUCTURES.

SPECIAL INSPECTIONS

1. SPECIAL INSPECTIONS ARE TO BE PROVIDED BY AN APPROVED AGENCY HIRED BY AT&T.

GENERAL NOTES:

CODE.

- ALL CONSTRUCTION SHALL BE IN COMPLIANCE WITH THE GOVERNING BUILDING
- 2. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING 3. SUCH INVESTIGATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE AND SUBSURFACE) AT OR CONTIGUOUS TO THE SITE WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK.
- 4. DIMENSIONS AND DETAILS SHALL BE CHECKED AGAINST EXISTING FIELD CONDITIONS.
- 5. THE CONTRACTOR SHALL VERIFY AND COORDINATE THE SIZE AND LOCATION OF ALL OPENINGS, SLEEVES AND ANCHOR BOLTS AS REQUIRED BY ALL TRADES.
- ALL DIMENSIONS, ELEVATIONS, AND OTHER REFERENCES TO EXISTING STRUCTURES, 6. SURFACE, AND SUBSURFACE CONDITIONS ARE APPROXIMATE. NO GUARANTEE IS MADE FOR THE ACCURACY OR COMPLETENESS OF THE INFORMATION SHOWN. THE CONTRACTOR SHALL VERIFY AND COORDINATE ALL DIMENSIONS, ELEVATIONS, ANGLES WITH EXISTING CONDITIONS AND WITH ARCHITECTURAL AND SITE DRAWINGS BEFORE PROCEEDING WITH ANY WORK.
- 7. AS THE WORK PROGRESSES, THE CONTRACTOR SHALL NOTIFY THE OWNER OF ANY CONDITIONS WHICH ARE IN CONFLICT OR OTHERWISE NOT CONSISTENT WITH THE CONSTRUCTION DOCUMENTS AND SHALL NOT PROCEED WITH SUCH WORK UNTIL THE CONFLICT IS SATISFACTORILY RESOLVED.
- 8. THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE SAFETY CODES AND REGULATIONS DURING ALL PHASES OF CONSTRUCTION. THE CONTRACTOR IS SOLELY RESPONSIBLE FOR PROVIDING AND MAINTAINING ADEQUATE SHORING, BRACING, AND BARRICADES AS MAY BE REQUIRED FOR THE PROTECTION OF EXISTING PROPERTY, CONSTRUCTION WORKERS, AND FOR PUBLIC SAFETY.
- 9. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY. MAINTAIN EXISTING SITE OPERATIONS, COORDINATE WORK WITH NORTHEAST UTILITIES
- 10. THE STRUCTURE IS DESIGNED TO BE SELF-SUPPORTING AND STABLE AFTER FOUNDATION REMEDIATION WORK IS COMPLETE. IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO DETERMINE ERECTION PROCEDURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE STRUCTURE AND ITS COMPONENT PARTS DURING ERECTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, TEMPORARY BRACING, GUYS OR TIEDOWNS, WHICH MIGHT BE NECESSARY.
- 11. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 12. SHOP DRAWINGS, CONCRETE MIX DESIGNS, TEST REPORTS, AND OTHER SUBMITTALS PERTAINING TO STRUCTURAL WORK SHALL BE FORWARDED TO THE OWNER FOR REVIEW BEFORE FABRICATION AND/OR INSTALLATION IS MADE. SHOP DRAWINGS SHALL INCLUDE ERECTION DRAWINGS AND COMPLETE DETAILS OF CONNECTIONS AS WELL AS MANUFACTURER'S SPECIFICATION DATA WHERE APPROPRIATE. SHOP DRAWINGS SHALL BE CHECKED BY THE CONTRACTOR AND BEAR THE CHECKER'S INITIALS BEFORE BEING SUBMITTED FOR REVIEW.
- 13. NO DRILLING WELDING OR TAPING ON EVERSOURCE OWNED EQUIPMENT.
- 14. REFER TO DRAWING T1 FOR ADDITIONAL NOTES AND REQUIREMENTS.

Sheet No. 2

		•
—		-
		-
	¢	
	ŝ	
	 0	-

EL MOUNT	
S	WEIGHT
′5″L x 6.5″W x 4.7″D	39.4 LBS.

RRU (REMOTE RADIO UNIT)					
QUIPMEN	IT	DIMENSIONS	WEIGHT (W/O MOUNTING HDWR)	CLEARANCES	
IAKE: IODEL:	ERICSSON B14 4478	14.9"L x 13.1"W x 7.3"D	60 LBS.	BELOW: 20" MIN.	
IAKE: IODEL:	ERICSSON 4415 B30	14.9"L x 13.2"W x 5.4"D	44 LBS.	BELOW: 20" MIN.	
IAKE: IODEL:	ERICSSON B5/B12 4449	17.9"L x 13.2"W x 9.4"D	71 LBS.	BELOW: 20" MIN.	
IAKE: IODEL:	ERICSSON B2/B66A 8843	14.9"L x 13.2"W x 10.9"D	72 LBS.	BELOW: 20" MIN. TO EDGE OF ANTENNA: 8'	
IOTES:					

NOT	<u>ES:</u>
1.	CONT
	CONS
2.	CON
_	RECO
3.	RAYC
	BRAC

Sheet No. <u>5</u>

PROPANE FUELED GENERATOR			
EQUIPMENT	POWER GENERATION (AC/DC)	DIMENSIONS	
MAKE: KOHLER MODEL: 24RCL	AC	74.0"L x 32.9"W x 46.0"H	
 <u>NOTES:</u> 1. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH AT&T CONSTRUCTION MANAGER PRIOR TO ORDERING. 2. THE RECOMMENDED DISTANCE FROM A STRUCTURE IS DEPENDENT ON STATE AND LOCAL CODES. NFPA 37 (STANDARDS FOR THE INSTALLATION AND USE OF STATIONARY COMBUSTION ENGINES AND GAS TURBINES) STATES THIS DISTANCE SHOULD BE AT LEAST 5 FEET FROM A COMBUSTIBLE MATERIAL. FOR INSTALLATIONS NEAR NON-COMBUSTIBLE MATERIAL BE SURE TO LEAVE A MINIMUM DISTANCE OF 3 FEET TO ENSURE PROPER GENERATOR COOLING. 			
1 BACK UP GENERATOR DETAIL C-4 NOT TO SCALE			

	GPS ANTENNA			
EQUIPMENT	DIMENSIONS	WEIGHT		
MAKE: PCTEL MODEL: GPS-TMG-HR-26N	5.0"H x 3.2"D	0.6 LBS.		
NOTES: 1. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH AT&T CONSTRUCTION MANAGER PRIOR TO ORDERING.				

3	GPS UNIT DETAIL
C-4	NOT TO SCALE

TYP. FOUNDATION WIC BASE ATTACHMENT KIT

PROFESSIONAL ENGINEER SEAL		-O-	Con c			TIL CONSTRUCTION DRAWINGS - WIC MODEL CHA	0 09/28/20 DMD 1JR CONSTRUCTION DRAWINGS - FINAL PER DESC	REV. DATE DRAWN BY CHK'D BY DESCRIPTION
		entered on Solutions ³⁴	031 488 0580	03) 488-8587 Fax	3-2 North Branford Road	anford, CT 06405		ww.Centekeng.com
		WIRELESS COMMUNICATIONS FACILITY				B		
DATE: 08/20/19 SCALE: AS NOTED JOB NO. 19101.00 SITE AND EQUIPMENT DETAILS								

ALL SECTORS

nd H	Broadband 12 port MID/HIGH +45/-45	Broadband 12 port MID/HIGH +45/-45
5D	CCI TPA65R-BU6D - +	CCI TPA65R-BU6D - +
8	RET 1	1 RET 1
I		

	SYMBOLS LEGEND
	PROPERTY LINE
	EASEMENT LINE
	EXISTING ROAD
¢	UTILITY POLE
ŝ	EXISTING DECIDUOUS TREE
	FENCE LINE

Sh	JO C	DA				PROFESSIONAL ENGINEER SEAL				
eet	OI	TE:								
Ro.	<u>, no.</u> MP	<u> </u>	WIRELESS COMMUNICATIONS FACILITY	Centered on Solutions ^{**}		A STATE CONNECTION				
9	1 OL	0 A	CT0873 RETHEI	(202) 400 DEOD		I E LU LOF CENT OF				
	910 JN	8/: S N		(203) 488-8587 Fax)					
of	. <u>.</u> D1.	20,		63-2 North Branford Road	1		-			
2	00 P	/19 TEC		Branford, CT 06405	CENTEDINE	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12/16/20 RTS	DMD CONS	IRUCTION DRAWINGS - GPS GROUNDING [DETAIL
i	LA	9				I A MARINE AND	12/15/20 LGL	DMD CONS	IRUCTION DRAWINGS - EME SIGNAGE DET	FAIL ADDED
	N)	0 0	09/28/20 DMD	TJR CONS	FRUCTION DRAWINGS - FINAL PER DESCO	PED RFDS
	S		DANBURI, CI U0010	www.CentekEng.com		REV.	DATE DRAWN BY	CHK'D BY DESCR	RIPTION	

	RISER DIAGRAM NOTES						
(1)	EXISTING UTILITY FRAME TO REMAIN.						
$\check{2}$	EXISTING TELCO HOFFMAN BOX TO REMAIN.						
3	NEW 200A, 240V UTILITY METER AND 200A/2P CIRCUIT BREAKER						
4	#3/0 AWG, (1) #6 AWG GROUND, 2" CONDUIT.						
5	CONDUIT TO BE MOUNTED ON SLEEPERS WHERE ROUTED ACROSS PAVEMENT AND/OR CONCRETE PAD						
6	4" CONDUIT WITH DRAG LINE FOR FIBER TELCO SERVICE. COORDINATE WITH FIBER SERVICE PROVIDER FOR REQUIREMENTS.						
7	CONDUITS AND CONDUCTORS FOR FIBER TELCO SERVICE CONNECTION. COORDINATE REQUIREMENTS WITH CONSTRUCTION MANAGER.						
8	EXPANSION COUPLING (TYP).						
9	WALK IN EQUIPMENT CABINET.						
10	24KW PROPANE FUELED GENERATOR.						
(11)	REMOTE GENERATOR SHUT OFF SWITCH IN BREAK GLASS ENCLOSURE MOUNTED TO THE EXTERIOR OF THE WALK IN CABINET IN LOCATION APPROVED BY LOCAL FIRE MARSHAL. INSTALL ALL REQUIRED SIGNAGE.						
(12)	GENERATOR GROUND PER NEC AND MANUFACTURER SPECIFICATIONS.						
13	200A, 240V RATED, NEMA 3R, 2 SOURCE, INTEGRATED LOAD CENTER WITH DOOR-IN-DOOR FRAME, COPPER BUS, BOLT-ON BREAKERS, 200A/2P MCB.						
(14)	EXISTING METER CENTER TO REMAIN.						
(15)	EXISTING TELCO HAND-HOLE VERIFY LOCATION IN FIELD.						
16	3/4" CONDUIT AND CONDUCTORS REQUIRED FOR PROPER OPERATION OF EMERGENCY GENERATOR SHUT OFF SWITCH.						
(17)	GENERATOR BLOCK HEATER.						
(18)	PROVIDE DEDICATED 20A, 120V CIRCUIT BREAKER IN ILC FOR GENERATOR BLOCK HEATER.						
(19)	GENERATOR BATTERY CHARGER AND CONVENIENCE RECEPTACLE IN WEATHERPROOF ENCLOSURE.						
20	PROVIDE DEDICATED 20A, 120V CIRCUIT BREAKER IN ILC FOR GENERATOR BATTERY CHARGER AND RECEPTACLE.						
21	200A/2P GENERATOR OUTPUT CIRCUIT BREAKER.						

PROFESSIONAL ENGINEER SEAL		MANANTHIN, CARLEN CONTRACTOR OF	A DE COUNTRATE	1 Et to OF. CENT 2 S.			A A A A A A A A A A A A A A A A A A A	V VOLVEN VOLVEN V 1 12/15/20 LGL DMD CONSTRUCTION DRAWINGS - EME SIGNAGE DETAIL ADDED	1. CONSTRUCTION DRAWINGS - FINAL PER DESCOPED RFDS	REV. DATE DRAWN BY CHK'D BY DESCRIPTION
	S centerune									
		Centered on Solutions ⁵⁶		12031 488-0580	(203) 488-8587 Fax	63-2 North Branford Road	Branford, CT 06405			www.LentekEng.com
AT AAODILITY				CT2873 RFTHFI				15 CREAT PASTIRE ROAD		
DA SC JC	DATE: 08/20/19 SCALE: AS NOTED JOB NO. 19101.00 ELECTRICAL RISER DIAGRAM AND NOTES									
Sh	eet	N	0	<u>1</u> 0		of	3			

GROUNDING SCHEMATIC NOTES									
1	#2/0 GREEN INSULATED								
2	#6 AWG								
	GENERAL NOTES:								
	1. ALL SURGE SUPPRESSION EQUIPMENT SHALL BE BONDED TO GROUND PER MANUFACTURER'S SPECIFICATIONS								
	 UNLESS OTHERWISE NOTED OR REQUIRED BY CODE, GROUND CONDUCTORS SHOWN SHALL BE #2 AWG (SOLID TINNED BCW – EXTERIOR; STRANDED GREEN INSULATED – INTERIOR). 								
	3. BOND CABLE TRAY AND ICE BRIDGE SECTIONS TOGETHER WITH #6 AWG STRANDED GREEN INSULATED JUMPERS.								
	4. ALL SECTOR GROUND BARS SHALL BE BONDED TOGETHER WITH $#2$ AWG SOLID TINNED BCW.								
	5. BOND ALL EQUIPMENT CABINETS TO GROUND PER MANUFACTURER'S SPECIFICATIONS.								
	6. ALL BONDS TO TOWER SHALL BE MADE IN STRICT ACCORDANCE WITH SPECIFICATIONS OF TOWER MANUFACTURER OR STRUCTURAL ENGINEER.								
	7. REFER TO GROUNDING PLAN FOR LOCATION OF GROUNDING DEVICES.								
	8. REFER TO ALL ELECTRICAL AND GROUNDING DETAILS.								
	9. COORDINATE ALL TOWER MOUNTED EQUIPMENT WITH OWNER.								
	10. ALL TOWER MOUNTED AMPLIFIERS AND ASSOCIATED EQUIPMENT SHALL BE BONDED TO THE SECTOR GROUND BAR PER MANUFACTURER'S SPECIFICATIONS.								
	11. ALL GROUNDING SHALL BE IN ACCORDANCE WITH NEC AND OWNER'S REQUIREMENTS.								

15. BOND PROPANE TANK TO GROUND RING PER NEC AND MANUFACTURERS SPECIFICATIONS. COORDINATE WITH TANK MANUFACTURER FOR REQUIREMENTS PRIOR TO INSTALLATION.

ROFESSIONAL ENGINEER SEAL	A MARINA CONVERSE		2 12/16/20 RTS DMD CONSTRUCTION DRAWINGS – GPS GROUNDING DETAIL	REV. DATE DRAWN BY CHK'D BY DESCRIPTION
	Centered on Solutions ^{**}	(203) 488-0580 (203) 488-8587 Fox	63-2 North Branford Road Branford, CT 06405	www.CentekEng.com
AT & AOBILITY	WIRELESS COMMUNICATIONS FACILITY	CT2873 BETHEL		DANBURY, CT 06810
DA SC JO	TE: ALE: B NO. DIA	08/2 AS 1 1910 MATI GRAI NOT	$\frac{20/19}{1.00}$ C RIS M AN ES $\frac{4}{4}$	SER D

GROUNDING PLAN NOTES

- 1 BOND GROUND BAR TO EXISTING TOWER GROUND RING (TYP OF 2). CONTRACTOR TO VERIFY LOCATION IN FIELD.
- 2 UPPER TOWER MOUNTED GROUND BAR PER DETAILS.
- 3 LOWER TOWER MOUNTED GROUND BAR PER DETAILS.

4 BOND UPPER TOWER MOUNTED GROUND BAR TO LOWER TOWER MOUNTED GROUND BAR (2 GROUND LEADS) PER DETAILS.

- 5 MAIN EQUIPMENT GROUND BAR MOUNTED TO CONCRETE PAD PER DETAILS.
- 6 ICE BRIDGE POST AND COVER. BOND EACH SECTION AND SUPPORT TO GROUND RING PER DETAILS.
- 7 BOND EXISTING COMPOUND GROUND RING. VERIFY LOCATION IN FIELD.
- 8 BOND EQUIPMENT CABINET TO GROUND PER MANUFACTUREERS SPECIFICATIONS.
- 9 BOND GENERATOR TO GROUND PER MANUFACTURERS SPECIFICATIONS AND NEC REQUIREMENTS
- (10) BOND HVAC UNIT TO GROUND RING (TYPICAL).
- 11 BOND PROPANE TANK TO GROUND PER MANUFACTURERS SPECIFICATIONS AND NEC REQUIREMENTS

GENERAL NOTES

ALL GROUNDING CONDUITS TO BE MOUNTED ON SLEEPERS PER DETAILS WHERE ROUTED ACROSS CONCRETE PAD

SSIONAL ENGINEER SEAL		CONNT IN					2 12/16/20 RTS DMD CONSTRUCTION DRAWINGS – GPS GROUNDING DETAIL	12/15/20 LGL DMD CONSTRUCTION DRAWINGS - EME SIGNAGE DETAIL ADDED	0 09/28/20 DMD TJR CONSTRUCTION DRAWINGS - FINAL PER DESCOPED RFDS	REV. DATE DRAWN BY CHK'D BY DESCRIPTION
PROFE		Centered on Solutions ^{**}			(203) 488-8587 Fax	63-2 North Branford Road	Branford, CT 06405			www.cenekeng.com
AT ALORI ITY		WIDELECS COMMINICATIONIS FACILITY		CT0873 RFTHFI				15 CREAT PASTI IRE ROAD		DANBURT, CT UGOID
DA SC JO	TE: ALI B		E _UI E		B/2 S 1 910 TF DIN			a b S	1	N

Sheet No. 13

#6 AWG STRANDED COPPER GROUND WIRE (GROUNDED TO GROUND BAR) (STANDARD CABLEWAVE GROUNDING KIT)							
CABLE GROUND KIT							
ANTENNA CABLE							
ENCLOSURE							
NOTES:							

1. DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO GROUND BAR.

E-7

NOT TO SCALE

NAL ENGINEER SEAL		2 12/16/20 RTS DMD CONSTRUCTION DRAWINGS – GPS GROUNDING DETAIL 1 12/15/20 LGL DMD CONSTRUCTION DRAWINGS – EME SIGNAGE DETAIL ADDED	REV. DATE DRAWN BY CHK'D BY DESCRIPTION
PROFESSIO	ared on Solutions ⁴⁸⁸⁻⁰⁵⁸⁰	488-8587 Fax North Branford Road ford, CT 06405	.CentekEng.com
AT&T MOBILITY	WIRELESS COMMUNICATIONS FACILITY CT2873 BETHEL	(203) 63-2 Bran	DANBURY, CT 06810
DATE SCAL JOB	E: 08, E: AS NO. 19 ELECT DET,	/20/19 NOTED 101.00 RICAL AILS	

ELECTRICAL SPECIFICATIONS

SECTION 16010

1.1. SCOPE OF WORK

- A. WORK SHALL INCLUDE ALL LABOR, EQUIPMENT AND SERVICES REQUIRED TO COMPLETE (MAKE READY FOR OPERATION) ALL THE ELECTRICAL WORK INCLUDING, BUT NOT LIMITED TO, THE FOLLOWING:
- 1. INSTALL 200A, 240/120V, 1P, 3 WIRE ELECTRIC SERVICE WITH REVENUE METER AND 200A MAIN CIRCUIT BREAKER FOR OWNER AND ASSOCIATED DISTRIBUTION EQUIPMENT. (AS REQUIRED BY UTILITY CO.)
- 2. NEW SITE TELEPHONE SERVICE AS SPECIFIED BY TELEPHONE COMPANY.
- 3. GENERATOR.
- 4. CELLULAR GROUNDING SYSTEMS, CONSISTING OF ANTENNA GROUNDING, INTERIOR GROUNDING RING, GROUND BARS, ETC.
- 5. FIELD MEASURE EXISTING ELECTRICAL SERVICES TO CONFIRM AVAILABLE EXISTING POWER.
- 6. COORDINATE ALL WORK SHOWN, ON THESE PLANS WITH LOCAL UTILITY COMPANIES. B. LOCAL UTILITY COMPANIES SHALL PROVIDE THE FOLLOWING:
- 1. TELEPHONE CABLES.
- 2. SHUTDOWN OF SERVICE (COORDINATE WITH OWNER)
- C. CONTRACTOR SHALL CONFER WITH LOCAL UTILITY COMPANIES TO ASCERTAIN THE LIMITS OF THEIR WORK AND SHALL INCLUDE IN BID ANY CHARGES OR FEES MADE BY THE UTILITY COMPANIES FOR THEIR PORTION OF THE WORK AND SHALL PROVIDE AND INSTALL ALL ITEMS REQUIRED, BUT NOT PROVIDED BY UTILITY COMPANY.
- D. ELECTRICAL CONTRACTOR SHALL COORDINATE ELECTRICAL INSTALLATION WITH ELECTRIC UTILITY CO. PRIOR TO INSTALLATION.
- CONTRACTOR SHALL COORDINATE WITH TELEPHONE UTILITY COMPANY FOR LOCATION OF TELEPHONE SERVICE AND TO DETERMINE ANY REQUIRED EQUIPMENT TO BE INSTALLED BY CONTRACTOR.

1.02. GENERAL REQUIREMENTS

- A. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE MADE IN STRICT ACCORDANCE WITH ALL LOCAL, STATE AND NATIONAL CODES AND REGULATIONS WHICH MAY APPLY AND NOTHING IN THE DRAWINGS OR SPECIFICATIONS SHALL BE INTERPRETED AS AN INFRINGEMENT OF SUCH CODES OR REGULATIONS.
- B. THE ELECTRICAL CONTRACTOR IS TO BE RESPONSIBLE FOR THE COMPLETE INSTALLATION AND COORDINATION OF THE ENTIRE ELECTRICAL SERVICE. ALL ACTIVITIES TO BE COORDINATED THROUGH OWNERS REPRESENTATIVE, DESIGN ENGINEER AND OTHER AUTHORITIES HAVING JURISDICTION OF TRADES.
- C. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND PAY ALL FEES THAT MAY BE REQUIRED FOR THE ELECTRICAL WORK AND FOR SCHEDULING OF ALL INSPECTIONS THAT MAY BE REQUIRED BY THE LOCAL AUTHORITY.
- D. THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATION WITH THE BUILDING OWNER FOR NEW AND/OR DEMOLITION WORK INVOLVED.
- E. THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATION WITH LOCAL TELEPHONE COMPANY THAT MAY BE REQUIRED FOR THE INSTALLATION OF TELEPHONE SERVICE TO THE PROPOSED CELLULAR SITE.
- NO MATERIAL OTHER THAN THAT CONTAINED IN THE "LATEST LIST OF ELECTRICAL FITTINGS" APPROVED BY THE UNDERWRITERS' LABORATORIES, SHALL BE USED IN ANY PART OF THE WORK. ALL MATERIAL FOR WHICH LABEL SERVICE HAS BEEN ESTABLISHED SHALL BEAR THE U.L. LABEL.
- THE CONTRACTOR SHALL GUARANTEE ALL NEW WORK FOR A PERIOD OF ONE YEAR FROM THE ACCEPTANCE DATE BY THE OWNER. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING WARRANTIES FROM ALL EQUIPMENT MANUFACTURERS FOR SUBMISSION TO THE OWNER.
- H. DRAWINGS INDICATE GENERAL ARRANGEMENT OF WORK INCLUDED IN CONTRACT. CONTRACTOR SHALL, WITHOUT EXTRA CHARGE, MAKE MODIFICATIONS TO THE LAYOUT OF THE WORK TO PREVENT CONFLICT WITH WORK OF OTHER TRADES AND FOR THE PROPER INSTALLATION OF WORK. CHECK ALL DRAWINGS AND VISIT JOB SITE TO VERIFY SPACE AND TYPE OF EXISTING CONDITIONS IN WHICH WORK WILL BE DONE, PRIOR TO SUBMITTAL OF BID
- I. THE ELECTRICAL CONTRACTOR SHALL SUPPLY THREE (3) COMPLETE SETS OF APPROVED DRAWINGS, ENGINEERING DATA SHEETS, MAINTENANCE AND OPERATING INSTRUCTION MANUALS FOR ALL SYSTEMS AND THEIR RESPECTIVE EQUIPMENT. THESE MANUALS SHALL BE INSERTED IN VINYL COVERED 3-RING BINDERS AND TURNED OVER TO OWNER'S REPRESENTATIVE ONE (1) WEEK PRIOR TO FINAL PUNCH LIST.
- J. ALL WORK SHALL BE INSTALLED IN A NEAT AND WORKMAN LIKE MANNER AND WILL BE SUBJECT TO THE APPROVAL OF THE OWNER'S REPRESENTATIVE.
- K. ALL EQUIPMENT AND MATERIALS TO BE INSTALLED SHALL BE NEW, UNLESS OTHERWISE NOTED.
- L. BEFORE FINAL PAYMENT, THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF PRINTS (AS-BUILTS), LEGIBLY MARKED IN RED PENCIL TO SHOW ALL CHANGES FROM THE ORIGINAL PLANS.
- M. PROVIDE TEMPORARY POWER AND LIGHTING IN WORK AREAS AS REQUIRED.
- N. SHOP DRAWINGS:
- 1. CONTRACTOR SHALL SUBMIT SIX (6) COPIES OF SHOP DRAWINGS ON ALL EQUIPMENT AND MATERIALS PROPOSED FOR USE ON THIS PROJECT, GIVING ALL DETAILS, WHICH INCLUDE DIMENSIONS, CAPACITIES, ETC.
- 2. CONTRACTOR SHALL SUBMIT SIX (6) COPIES OF ALL TEST REPORTS CALLED FOR IN THE SPECIFICATIONS AND DRAWINGS.
- O. ENTIRE ELECTRICAL INSTALLATION SHALL BE IN ACCORDANCE WITH OWNER'S SPECIFICATIONS, AND REQUIREMENTS OF ALL LOCAL AUTHORITIES HAVING JURISDICTION. IT IS THE CONTRACTOR'S RESPONSIBILITY TO COORDINATE WITH APPROPRIATE INDIVIDUALS TO OBTAIN ALL SUCH SPECIFICATIONS AND REQUIREMENTS. NOTHING CONTAINED IN, OR OMITTED FROM, THESE DOCUMENTS SHALL RELIEVE CONTRACTOR FROM THIS OBLIGATION.

SECTION 16111

1.01. CONDUIT

- AND CEILINGS AS REQUIRED BY THE N.E.C.
- CONDUIT MATERIAL SHALL BE AS FOLLOWS: 1. ELECTRIC METALLIC TUBING (EMT) - BRANCH CIRCUITS INSIDE EQUIPMENT ROOM
- 2. GALVANIZED RIGID CONDUIT (GRC) FEEDERS AND CIRCUITS EXPOSED TO EXTERIOR & UNDERGROUND.
- 3. LIQUID TIGHT FLEXIBLE METAL CONDUIT FOR SHORT LENGTHS (MAX. 3'-0") WIRING TO VIBRATING EQUIPMENT (HVAC UNITS, MOTORS, ETC.) IN WET LOCATIONS.
- 4. FLEXIBLE METAL CONDUIT FOR SHORT LENGTHS (MAX. 3'–0") WIRING TO VIBRATING EQUIPMENT IN DRY LOCATIONS.

SECTION 16114

- 1.01. CABLE TRAY
- A. CABLE TRAY SHALL BE SOLID SIDE BAR, 18" WIDE (NEWTON INSTRUMENT COMPANY, INC.). TRAY SHALL BE INSTALLED AS SHOWN ON CONTRACT DOCUMENTS.
- B. CROSSWISE RUNS SHALL BE COORDINATED WITH THE SPECIFIC EQUIPMENT THE TRAY SHALL SERVE.
- C. ALL PROTRUDING CABLE TRAY SUPPORT RODS SHALL BE FILED SMOOTH WITH NO SHARP EDGES. ALL SUPPORT RODS SHALL BE CAD-PLATED FOR RUST RESISTANCE AND A MINIMUM 1/2" DIAMETER.

SECTION 16123

1.01. CONDUCTORS

A. ALL CONDUCTORS SHALL BE TYPE THWN (INT. APPLICATION) AND XHHW (EXT. APPLICATION), 75 DEGREE C, 600 VOLT INSULATION, SOFT ANNEALED STRANDED COPPER. #10 AWG AND SMALLER SHALL BE SPLICED USING ACCEPTABLE SOLDERLESS PRESSURE CONNECTORS. #8 AWG AND LARGER SHALL BE SPLICED USING COMPRESSION SPLIT-BOLT TYPE CONNECTORS. #12 AWG SHALL BE THE MINIMUM SIZE CONDUCTOR FOR LINE VOLTAGE BRANCH CIRCUITS. REFER TO PANEL SCHEDULE FOR BRANCH CIRCUIT CONDUCTOR SIZE(S). CONDUCTORS SHALL BE COLOR CODED FOR CONSISTENT PHASE IDENTIFICATION:

	120/208/240V	277/480V
<u>.INE</u>	COLOR	COLOR
N	BLACK	BROWN
}	RED	ORANGE
)	BLUE	YELLOW
1	CONTINUOUS WHITE	GREY
;	CONTINUOUS GREEN	GREEN WITH YELLOW STRIP

B. MINIMUM BENDING RADIUS FOR CONDUCTORS SHALL BE 12 TIMES THE LARGEST DIAMETER OF BRANCH CIRCUIT CONDUCTOR.

SECTION 16130

- 1.01. BOXES A. FURNISH AND INSTALL OUTLET BOXES FOR ALL DEVICES, SWITCHES, RECEPTACLES, ETC.. BOXES TO BE ZINC COATED STEEL.
- B. FURNISH AND INSTALL PULL BOXES IN MAIN FEEDERS RUNS WHERE REQUIRED. PULL BOXES SHALL BE GALVANIZED STEEL WITH SCREW REMOVABLE COVERS, SIZE AND QUANTITY AS REQUIRED. PROVIDE WEATHERPROOF CONSTRUCTION IN WET LOCATIONS.

SECTION 16140

- 1.01. WIRING DEVICES
- A. THE FOLLOWING LIST IS PROVIDED TO CONVEY THE QUALITY AND RATING OF WIRING DEVICES WHICH ARE TO BE INSTALLED. A COMPLETE LIST OF ALL DEVICES MUST BE SUBMITTED BEFORE INSTALLATION FOR APPROVAL.
- 1. 15 MINUTE TIMER SWITCH INTERMATIC #FF15M (INTERIOR LIGHTS)
- 2. DUPLEX RECEPTACLE P&S #2095 (GFCI) SPECIFICATION GRADE
- 3. SINGLE POLE SWITCH P&S #CSB20AC2 (20A-120V HARD USE) SPECIFICATION GRADE
- 4. DUPLEX RECEPTACLE P&S #5362 (20A-120V HARD USE) SPECIFICATION GRADE
- B. PLATES ALL PLATES USED SHALL BE CORROSION RESISTANT TYPE 304 STAINLESS STEEL, PLATES SHALL BE FROM SAME MANUFACTURER AS SWITCHES AND RECEPTACLES. PROVIDE WEATHERPROOF HOUSING FOR DEVICES LOCATED IN WET LOCATIONS.
- C. OTHER MANUFACTURERS OF THE SWITCHES, RECEPTACLES AND PLATES MAY BE SUBMITTED FOR APPROVAL BY THE ENGINEER.

SECTION 16170

- 1.01. DISCONNECT SWITCHES A. FUSIBLE AND NON-FUSIBLE, 600V, HEAVY DUTY DISCONNECT SWITCHES SHALL BE AS MANUFACTURED BY SQUARE "D". PROVIDE FUSES AS CALLED FOR ON THE CONTRACT DRAWINGS. AMPERE RATING SHALL BE CONSISTENT WITH LOAD BEING SERVED. DISCONNECT SWITCH COVER SHALL BE MECHANICALLY INTERLOCKED TO PREVENT COVER FROM OPENING WHEN THE SWITCH IS IN THE "ON" POSITION. EXTERIOR APPLICATIONS SHALL BE NEMA 3R CONSTRUCTION WITH PADLOCK FEATURE.

SECTION 16190 1.01. SEISMIC RESTRAINT

SECTION 16195

- 1.01. LABELING AND IDENTIFICATION NOMENCLATURE FOR ELECTRICAL EQUIPMENT A. CONTRACTOR SHALL FURNISH AND INSTALL NON-METALLIC ENGRAVED BACK-LIT NAMEPLATES ON ALL PANELS AND MAJOR ITEMS OF ELECTRICAL EQUIPMENT.
- 1/4 INCH MARGIN.
- C. IDENTIFICATION NOMENCLATURE SHALL BE IN ACCORDANCE WITH OWNER'S STANDARDS.

A. MINIMUM CONDUIT SIZE FOR BRANCH CIRCUITS, LOW VOLTAGE CONTROL AND ALARM CIRCUITS SHALL BE 3/4". ALL CONDUIT RUNS LOCATED WITHIN THE OWNER'S EQUIPMENT ROOM SHALL ORIGINATE FROM THE WIREWAY AND RUN VERTICALLY TO ITS DESTINATION. NO BENDS WILL BE ACCEPTED. CONDUITS SHALL BE PROPERLY FASTENED TO THE WALLS

5. PVC CONDUIT - WHERE SHOWN ON GROUNDING DETAILS.

- A. ALL DEVICES SHALL BE INSTALLED IN ACCORDANCE WITH ZONE 2 SEISMIC REQUIREMENTS.
- B. LETTERS TO BE WHITE ON BLACK BACKGROUND WITH LETTERS 1-1/2 INCH HIGH WITH

- D. PROVIDE NAMEPLATE FOR PORTABLE ENGINE/GENERATOR CONNECTION SHOWING VOLTAGE KVA/KW RATING, # PHASE, AND # OF WIRES. PLATE TO BE PLASTIC ENGRAVED, RED WITH WHITE LETTERS.
- E. ALL RECEPTACLES, SWITCHES, DISCONNECT SWITCHES, ETC. SHALL BE LABELED WITH THE CORRECT BRANCH CIRCUIT NUMBER SERVED BY MEANS OF PERMANENT PRESSED TYPE BLACK 1/4" TRANSFER LETTERING. (FOR EXAMPLE: "MDP-5", ETC.).
- F. PROVIDE A NAMEPLATE AT THE SERVICE EQUIPMENT INDICATING THE TYPE AND LOCATION OF THE ON SITE GENERATOR.

SECTION 16450

1.01. GROUNDING

- A. ALL NON-CURRENT CARRYING PARTS OF THE ELECTRICAL AND TELEPHONE CONDUIT SYSTEMS SHALL BE MECHANICALLY AND ELECTRICALLY CONNECTED TO PROVIDE AN INDEPENDENT RETURN PATH TO THE EQUIPMENT GROUNDING SOURCES.
- GROUNDING SYSTEM WILL BE IN ACCORDANCE WITH THE LATEST ACCEPTABLE EDITION OF THE NATIONAL ELECTRICAL CODE AND REQUIREMENTS PER LOCAL INSPECTOR HAVING JURISDICTION.
- C. GROUNDING OF PANELBOARDS:
- 1. PANELBOARD SHALL BE GROUNDED BY TERMINATING THE PANELBOARD FEEDER'S EQUIPMENT GROUND CONDUCTOR TO THE EQUIPMENT GROUND BAR KIT(S) LUGGED TO THE CABINET. ENSURE THAT THE SURFACE BETWEEN THE KIT AND CABINET ARE BARE METAL TO BARE METAL. PRIME AND PAINT OVER TO PREVENT CORROSION.
- 2. CONDUIT(S) TERMINATING INTO THE PANELBOARD SHALL HAVE GROUNDING TYPE BUSHINGS. THE BUSHINGS SHALL BE BONDED TOGETHER WITH BARE #10 AWG COPPER CONDUCTOR WHICH IN TURN IS TERMINATED INTO THE PANELBOARD'S EQUIPMENT GROUND BAR KIT(S).
- D. EQUIPMENT GROUNDING CONDUCTOR:
- 1. EACH EQUIPMENT GROUND CONDUCTOR SHALL BE SIZED IN ACCORDANCE WITH THE N.E.C. ARTICLE 250-122.
- 2. THE MINIMUM SIZE OF EQUIPMENT GROUND CONDUCTOR SHALL BE #12 AWG COPPER.
- 3. REFER TO PANEL SCHEDULE "BRANCH CIRCUIT" DATA FOR EQUIPMENT GROUND CONDUCTOR SIZE FOR EACH BRANCH CIRCUIT.
- 4. EACH FEEDER OR BRANCH CIRCUIT SHALL HAVE EQUIPMENT GROUND CONDUCTOR(S) INSTALLED IN THE SAME RACEWAY(S).
- E. CELLULAR GROUNDING SYSTEM:

CONTRACTOR SHALL PROVIDE A CELLULAR GROUNDING SYSTEM WITH THE MAXIMUM AC RESISTANCE TO GROUND OF 5 OHM BETWEEN ANY POINT ON THE GROUNDING SYSTEM AS MEASURED BY 3-POINT GROUNDING TEST. (REFER TO SECTION 16960).

PROVIDE THE CELLULAR GROUNDING SYSTEM AS SPECIFIED ON DRAWINGS, INCLUDING, BUT NOT LIMITED TO:

- 1. GROUND BARS
- 2. INTERIOR GROUND RING 3. EXTERIOR GROUNDING (WHERE REQUIRED DUE TO MEASURED AC RESISTANCE GREATER THAN SPECIFIED).
- 4. ANTENNA GROUND CONNECTIONS AND PLATES.
- F. CONTRACTOR, AFTER COMPLETION OF THE COMPLETE GROUNDING SYSTEM BUT PRIOR TO CONCEALMENT/BURIAL OF SAME, SHALL NOTIFY OWNER'S PROJECT ENGINEER WHO WILL HAVE A DESIGN ENGINEER VISIT SITE AND MAKE A VISUAL INSPECTION OF THE GROUNDING GRID AND CONNECTIONS OF THE SYSTEM.
- G. ALL EQUIPMENT SHALL BE BONDED TO GROUND AS REQUIRED BY N.E.C., MFG. SPECIFICATIONS, AND OWNER'S SPECIFICATIONS.
- **SECTION 16470**
- 1.01. DISTRIBUTION EQUIPMENT
- A. REFER TO CONTRACT DRAWINGS FOR DETAILS AND SCHEDULES.
- **SECTION 16477**
- 1.01. FUSES
- A. FUSES SHALL BE NONRENEWABLE TYPE AS MANUFACTURED BY "BUSSMAN" OR APPROVED EQUAL. FUSES RATED TO 1/10 AMPERE UP TO 600 AMPERES SHALL BE EQUIVALENT TO BUSSMAN TYPE LPN-RK (250V) UL CLASS RK1. LOW PEAK, DUAL ELEMENT, TIME-DELAY FUSES, FUSES SHALL HAVE SEPARATE SHORT CIRCUIT AND OVERLOAD ELEMENTS AND HAVE AN INTERRUPTING RATING OF 200 KAIC. UPON COMPLETION OF WORK. PROVIDE ONE SPARE SET OF FUSES FOR EACH TYPE INSTALLED.

SECTION 16620

(SUPPLIED BY OWNER, INSTALLED BY CONTRACTOR) 1.01. GENERATOR SET

A. REFER TO CONTRACT DRAWINGS FOR DETAILS AND SCHEDULES.

SEC 1.01.

> D. <u>SEC</u> 1.01.

ECTION 16960	ED RFD
01. TESTS BY INDEPENDENT ELECTRICAL TESTING FIRM A. CONTRACTOR SHALL RETAIN THE SERVICES OF A LOCAL INDEPENDENT ELECTRICAL	DING DE DETAL
TESTING FIRM (WITH MINIMUM 5 YEARS COMMERCIAL EXPERIENCE IN THE ELECTRICAL TESTING INDUSTRY) AS SPECIFIED BY OWNER TO PERFORM:	GROUNI SIGNAG
TEST 1: THERMAL OVERLOAD AND MAGNETIC TRIP TEST, AND CABLE INSULATION TEST FOR ALL CIRCUIT BREAKERS RATED 100 AMPS OR GREATER.	GPS FINAL
TEST 2: RESISTANCE TO GROUND TEST ON THE CELLULAR GROUNDING SYSTEM. THE TESTING FIRM SHALL INCLUDE THE FOLLOWING INFORMATION WITH THE REPORT:	
1. TESTING PROCEDURE INCLUDING THE MAKE AND MODEL OF TEST EQUIPMENT.	DRAWI
2. CERTIFICATION OF TESTING EQUIPMENT CALIBRATION WITHIN SIX (6) MONTHS OF DATE OF TESTING. INCLUDE CERTIFICATION LAB ADDRESS AND TELEPHONE NUMBER.	
 GRAPHICAL DESCRIPTION OF TESTING METHOD ACTUALLY IMPLEMENTED. B. THESE TESTS SHALL BE PERFORMED IN THE PRESENCE AND TO THE SATISFACTION OF OWNER'S CONSTRUCTION REPRESENTATIVE. TESTING DATA SHALL BE INITIALED AND DATED BY THE CONSTRUCTION REPRESENTATIVE AND INCLUDED WITH THE WRITTEN REPORT (ANALYSIS 	CONSTRI CONSTRI CONSTRI CONSTRI CONSTRI
C. THE CONTRACTOR SHALL FORWARD SIX (6) COPIES OF THE INDEPENDENT ELECTRICAL TESTING FIRM'S REPORT/ANALYSIS TO ENGINEER A MINIMUM OF TEN (10) WORKING DAYS PRIOR TO THE JOB TURNOVER.	DMD DMD TJR DMD DMD DMD
D. CONTRACTOR TO PROVIDE A MINIMUM OF ONE (1) WEEK NOTICE TO OWNER AND ENGINEER FOR ALL TESTS REQUIRING WITNESSING.	RTS DMD DRAWN
ECTION 16961 D1. TESTS BY CONTRACTOR	16/20 115/20 115/20
A. ALL TESTS AS REQUIRED UPON COMPLETION OF WORK, SHALL BE MADE BY THIS CONTRACTOR. THESE SHALL BE CONTINUITY AND INSULATION TESTS; TEST TO DETERMINE THE QUALITY OF MATERIALS, ETC. AND SHALL BE MADE IN ACCORDANCE WITH N.E.C. RECOMMENDATIONS. ALL FEEDERS AND BRANCH CIRCUIT WIRING (EXCEPT CLASS 2 SIGNAL CIRCUITS) MUST BE TESTED FREE FROM SHORT CIRCUIT AND GROUND FAULT CONDITIONS AT 500V IN A REASONABLY DRY AMBIENT OF APPROXIMATELY 70 DEGREES F.	REV. 09/2/
B. CONTRACTOR SHALL PERFORM LOAD PHASE BALANCING TESTS. CIRCUITS SHALL BE SO CONNECTED TO THE PANELBOARDS SUCH THAT THE NEW LOAD IS DISTRIBUTED AS EQUALLY AS POSSIBLE BETWEEN EACH LOAD AND NEUTRAL. 10% SHALL BE CONSIDERED AS A REASONABLE AND ACCEPTABLE ALLOWANCE. BRANCH CIRCUITS SHALL BE BALANCED ON THEIR OWN PANELBOARDS; FEEDER LOADS SHALL, IN TURN, BE BALANCED ON THE SERVICE EQUIPMENT. REASONABLE LOAD TEST SHALL BE ARRANGED TO VERIFY LOAD BALANCE IF REQUESTED BY THE ENGINEER.	NAL ENGINEER SE
C. ALL TESTS, UPON REQUEST, SHALL BE REPEATED IN THE PRESENCE OF OWNER'S REPRESENTATIVE. ALL TESTS SHALL BE DOCUMENTED AND TURNED OVER TO OWNER. OWNER SHALL HAVE THE AUTHORITY TO STOP ANY OF THE WORK NOT BEING PROPERLY INSTALLED. ALL SUCH DETECTED WORK SHALL BE REPAIRED OR REPLACED AT NO ADDITIONAL EXPENSE TO THE OWNER AND THE TESTS SHALL BE REPEATED.	PROFESSION
	St St
	at at
	ineering
	on Solution -0580 -0590 -0580 -050 -05
	Centered Centered (203) 488 63-2 Nortl Branford, www.Cer
	MUNICA BAST BY, O
	DATE: 08/20/19
	JOB NO. 19101.00
	ELECTRICAL SPECIFICATIONS
	F-9
	Sheet No. <u>16</u> of <u>16</u>

EXHIBIT 2

15 GREAT PASTURE RD

Location	15 GREAT PASTURE RD	Mblu	L16/ / 5/ /
Acct#		Owner	EPPOLITI INDUSTRIAL REALTY INC
Assessment	\$2,895,300	Appraisal	\$4,135,900
PID	10559	Building Count	2

Current Value

Appraisal				
Valuation Year	Improvements	Land	Total	
2017	\$1,975,300	\$2,160,600	\$4,135,900	
Assessment				
Valuation Year	Improvements	Land	Total	
2017	\$1,382,900	\$1,512,400	\$2,895,300	

Owner of Record

Owner	EPPOLITI INDUSTRIAL REALTY INC	Sale Price	\$0
Co-Owner		Book & Page	2028/1121
Address	37 DANBURY RD STE 203	Sale Date	02/02/2009
	RIDGEFIELD, CT 06877	Instrument	06

Ownership History

Ownership History					
Owner	Sale Price	Book & Page	Instrument	Sale Date	
EPPOLITI INDUSTRIAL REALTY INC	\$0	2028/1121	06	02/02/2009	
K & E REALTY INC	\$0	0858/0281		09/18/1987	

_

Building Information

Building 1 : Section 1

-		_
Less Depreciation:	\$1,701,600	
Replacement Cost		
Building Percent Good:	45	
Replacement Cost:	\$3,781,312	
Living Area:	83,734	
Year Built:	1958	

Building Attributes			
Field	Description		
STYLE	Light Industrial		
MODEL	Ind/Comm		
Grade	Average		
Stories:	1		
Occupancy	11		
Exterior Wall 1	Concr/Cinder		
Exterior Wall 2	Brick/Masonry		
Roof Structure	Flat		
Roof Cover	Tar & Gravel		
Interior Wall 1	Drywall/Sheet		
Interior Wall 2			
Interior Floor 1	Vinyl/Asphalt		
Interior Floor 2	Concr-Finished		
Heating Fuel	Gas		
Heating Type	Forced Air-Duc		
АС Туре	None		
Bldg Use	Industrial MDL-94		
Total Rooms			
Total Bedrms			
Total Baths			
1st Floor Use:			
Heat/AC	NONE		
Frame Type	MASONRY		
Baths/Plumbing	AVERAGE		
Ceiling/Wall	CEILING ONLY		
Rooms/Prtns	AVERAGE		
Wall Height	16		
% Comn Wall			

Building Photo

(http://images.vgsi.com/photos2/DanburyCTPhotos//\00\02\87/89.jpg)

Building Layout

(http://images.vgsi.com/photos2/DanburyCTPhotos//Sketches/10559_1055

Building Sub-Areas (sq ft)			<u>Legend</u>
Code Description		Gross Area	Living Area
BAS	First Floor	63,644	63,644
AOF	Office, (Average)	20,090	20,090
		83,734	83,734

Building 2 : Section 1

MODEL

Year Built:	1980)
Living Area:	2,91	2
Replacement Cost:	\$154	1,220
Building Percent Good:	56	
Replacement Cost		
Less Depreciation:	\$86,	400
Buildin	ig Attril	outes : Bldg 2 of 2
Field		Description
STYLE		Warehouse

Commercial

Grade	Average
Stories:	1
Occupancy	1
Exterior Wall 1	Stucco on Wood
Exterior Wall 2	
Roof Structure	Flat
Roof Cover	Metal/Tin
Interior Wall 1	Minim/Masonry
Interior Wall 2	
Interior Floor 1	Concr-Finished
Interior Floor 2	Carpet
Heating Fuel	Gas
Heating Type	Forced Air-Duc
АС Туре	None
AC Type Bldg Use	None Industrial MDL-96
AC Type Bldg Use Total Rooms	None Industrial MDL-96
AC Type Bldg Use Total Rooms Total Bedrms	None Industrial MDL-96
AC Type Bldg Use Total Rooms Total Bedrms Total Baths	None Industrial MDL-96
AC Type Bldg Use Total Rooms Total Bedrms Total Baths 1st Floor Use:	None Industrial MDL-96
AC Type Bldg Use Total Rooms Total Bedrms Total Baths 1st Floor Use: Heat/AC	None Industrial MDL-96 NONE
AC Type Bldg Use Total Rooms Total Bedrms Total Baths 1st Floor Use: Heat/AC Frame Type	None Industrial MDL-96 NONE STEEL
AC Type Bldg Use Total Rooms Total Bedrms Total Baths 1st Floor Use: Heat/AC Frame Type Baths/Plumbing	None Industrial MDL-96 NONE STEEL NONE
AC Type Bldg Use Total Rooms Total Bedrms Total Baths 1st Floor Use: Heat/AC Frame Type Baths/Plumbing Ceiling/Wall	None Industrial MDL-96 NONE STEEL NONE CEILING ONLY
AC Type Bldg Use Total Rooms Total Bedrms Total Baths 1st Floor Use: Heat/AC Frame Type Baths/Plumbing Ceiling/Wall Rooms/Prtns	None Industrial MDL-96 NONE STEEL NONE CEILING ONLY AVERAGE
AC Type Bldg Use Total Rooms Total Bedrms Total Baths 1st Floor Use: Heat/AC Frame Type Baths/Plumbing Ceiling/Wall Rooms/Prtns Wall Height	None Industrial MDL-96 NONE STEEL NONE CEILING ONLY AVERAGE 24

Building Photo

(http://images.vgsi.com/photos2/DanburyCTPhotos//\00\02\87/90.jpg)

Building Layout

(http://images.vgsi.com/photos2/DanburyCTPhotos//Sketches/10559_1256

Building Sub-Areas (sq ft)			<u>Legend</u>
Code	Description	Gross Area	Living Area
BAS	First Floor	2,000	2,000
FUS	Finished Upper Story	960	912
		2,960	2,912

Extra Features

Extra Features				Legend
Code	Description	Size	Value	Bldg #
SPR1	Sprinklers-Wet	72585 S.F.	\$55,100	1
A/C	Air Condition	8262 UNITS	\$10,500	1
LDL1	Load Leveler	4 UNITS	\$2,500	1

Land

Land Use

Use Code	300C	Size (Acres)	12.63
Description	Industrial MDL-94	Frontage	0
Zone	IL40	Depth	0
Neighborhood	4000	Assessed Value	\$1,512,400
Alt Land Appr	No	Appraised Value	\$2,160,600
Category			

Outbuildings

	Outbuildings Legend							
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #		
	BLDG INFO LOST			1	\$75,100	2		
PAV1	Paving-Asphalt			70000 S.F.	\$44,100	1		

Valuation History

Appraisal							
Valuation Year	Improvements	Land	Total				
2019	\$1,975,300	\$2,160,600	\$4,135,900				
2018	\$1,975,300	\$2,160,600	\$4,135,900				
2017	\$1,975,300	\$2,160,600	\$4,135,900				

Assessment							
Valuation Year	Improvements	Land	Total				
2019	\$1,382,900	\$1,512,400	\$2,895,300				
2018	\$1,382,900	\$1,512,400	\$2,895,300				
2017	\$1,382,900	\$1,512,400	\$2,895,300				

(c) 2021 Vision Government Solutions, Inc. All rights reserved.

EXHIBIT 3

Monopole Extension Package

Prepared for:

KGI 805 Las Cimas Parkway, Building Three, Suite 370 Austin, TX 78746

ATTN: Ms. Stephanie Oswald

Structure	: 119 ft Monopole w/ Proposed 20 ft Extension
Site ID	: 28493
Proposed Carrier	: AT&T Wireless
Site Name	: Bethel West 2
Site Location	: 15 Great Pasture Road
	Danbury, CT
	41.383, -73.4222
County	: Fairfield
Date	: September 2, 2020
Max Usage	: 69%
Result	: Pass

Prepared By: Thomas Taylor, P.E., S.E. Engineering Manager

Thomas L. Eugbr

Table of Contents

ntroduction	- 1
Supporting Documents	- 1
Analysis	- 1
Conclusion	1
xisting and Reserved Equipment	2
quipment to be Removed	- 2
Proposed Equipment	2
structure Usages	- 3
oundations	3
itandard Conditions	4
Calculations Attack	hed

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 119 ft Monopole w/ Proposed 20 ft Extension to reflect the change in loading by AT&T Wireless.

Supporting Documents

Tower Drawing	Sabre Job #16-7133-SCB, dated July 13, 2016
Foundation Drawing	Centek Engineering Job #14216.000, dated July 28, 2016
Geotechnical Report	DET Job #2015.13, dated February 19, 2016
Foundation Analysis	Centek Engineering Project #14216.00, dated March 12, 2020
Mount Analysis	Hudson Design Group Site #S2873 (NSB), dated October 10, 2019

Analysis

The tower was analyzed using TNX tower analysis software. This program considers an elastic threedimensional model and second-order effects per ANSI/TIA-222.

Basic Wind Speed	91 mph (3-Second Gust) Vasd / 117 mph (3-Second Gust) Vult
Basic Wind Speed w/Ice	50 mph (3-Second Gust) w/ 3/4" radial ice concurrent
Code	ANSI/TIA-222-G / 2015 IBC / 2018 Connecticut State Building Code
Structure Class	
Exposure Category	В
Topographic Category	1
Crest Height	0 ft
Spectral Response	Ss = 0.22* , S1 = 0.07
Site Class	D - Stiff Soil

* Seismic analysis is not included in this analysis due to the value of Ss less than 1.

Conclusion

Based on the analysis results, the monopole with the proposed extension <u>meets</u> the requirements per the applicable codes listed above. The monopole and foundation can support the equipment as described in this report. If you have any questions or require additional information, please contact Semaan Engineering Solutions at 402-289-1888.

Attachments

- 1. Drawing T-1, Revision1, dated 09/02/2020.
- 2. Drawing N-1, Revision 1, dated 09/02/2020.
- 3. Drawing N-2, Revision 0, dated 05/15/2020.
- 4. Drawing S-1, Revision 0, dated 05/15/2020.
- 5. Drawing S-2, Revision 0, dated 05/15/2020.
- 6. Drawing S-3, Revision 0, dated 05/15/2020.

Existing and Reserved Equipment

This loading is included in the analysis.

Cente	erline					
Elevat	ion (ft)	Qty.	Antenna	Mount Type	Coax (in)	Carrier
Mount	Equip.					
		12	BXA-70080/8CF			
		12	RRUS A2 Module			
		6	3JR52709AA		(12) 1 5 /8"	
120.0	120.0	3	RRH 4x30-4R B13	Platform w/Rail	$(12) \pm 5/8$	Verizon
		3	RRH 4x30-4R B25		(5) Пурпи	
		12	10"x7"x2" TMA			
		3	OVP Junction Box			

Equipment to be Removed

This loading **<u>is not</u>** included in the analysis.

Cente	rline					
Elevatio	on (ft)	Qty.	Antenna	Mount Type	Coax (in)	Carrier
Mount	Equip.					
No loading considered as to be removed						

Proposed Equipment

This loading **is** included in the analysis.

Cente	erline ion (ft)	Otv	Antenna	Mount Type	Coax (in)	Carrier
		Qty.	Antenna	would rype		carrier
would	Equip.					
		9	TPA65R-BU6D			
		3	4478 B14 RRU	C10855721C	(6) 7/8" DC	
140.0	140.0	3	8843 B2/B66A RRU	Diatform w/Pail	(2) 3/8" Fiber	AT&T
		3	4415 B30 RRU		(2) 1/2"	
		3	4449 B5/B12 RRU			
		3	DC6-48-60-18-8F			
		2	GPS			

Install proposed coax anywhere on tower.

Structure Usages

Structural Component	Controlling Usage	Pass/Fail
Shaft	41%	Pass
Anchor Bolts	39%	Pass
Baseplate	40%	Pass
Flange	52%	Pass

Foundations

Reaction Component	Original Design Reactions	Analysis Reactions	% of Design
Moment (Kips-Ft)	4,952.3	2,024.9	41%
Axial (Kips)	57.2	39.1	68%
Shear (Kips)	48.9	19.9	41%

The structure base reactions resulting from this analysis are acceptable when compared to those shown on the original structure drawings.

The attached foundation analysis by Centek Engineering also shows that the existing mat foundation is acceptable without considering the center (4) overloaded micropiles, therefore no modification or reinforcement of the foundation will be required.

Standard Conditions

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessary limited, to:

--Information supplied by the client regarding the structure itself, antenna, mounts and feed line loading on the structure and its components, or other relevant information.

--Information from drawings in the possession of Semaan Engineering Solutions, or generated by field inspections or measurements of the structure.

It is the responsibility of the client to ensure that the information provided to Semaan Engineering Solutions Holdings and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and that their capacity has not significantly changed from the "as new" condition.

Unless explicitly agreed by both the client and Semaan Engineering Solutions, all services will be performed in accordance with the current revision of ANSI/TIA -222. The design basic wind speed will be determined based on the minimum basic wind speed as prescribed in ANSI/TIA-222. Although every effort is taken to ensure that the loading considered is adequate to meet the requirements of all applicable regulatory entities, we can provide no assurance to meet any other local and state codes or requirements. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Semaan Engineering Solutions Holdings is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
C10855721C Platform w/Rail (ATI)	140	(4) BXA-70080/8CF (Verizon)	120
(3) TPA65R-BU6D (ATI)	140	(4) BXA-70080/8CF (Verizon)	120
(3) TPA65R-BU6D (ATI)	140	(4) BXA-70080/8CF (Verizon)	120
(3) TPA65R-BU6D (ATI)	140	(4) RRUS A2 Module (Verizon)	120
4478 B14 RRU (ATI)	140	(4) RRUS A2 Module (Verizon)	120
4478 B14 RRU (AT <u>I</u>)	140	(4) RRUS A2 Module (Verizon)	120
4478 B14 RRU (ATI)	140	(2) 3JR52709AA (Verizon)	120
8843 B2/B66A RRU (ATI)	140	(2) 3JR52709AA (Verizon)	120
8843 B2/B66A RRU (ATI)	140	(2) 3JR52709AA (Verizon)	120
8843 B2/B66A RRU (ATI)	140	RRH 4x30-4R B13 (Verizon)	120
4415 B30 RRU (ATI)	140	RRH 4x30-4R B13 (Verizon)	120
4415 B30 RRU (ATI)	140	RRH 4x30-4R B13 (Verizon)	120
4415 B30 RRU (ATI)	140	RRH 4x30-4R B25 (Verizon)	120
4449 B5/B12 RRU (ATI)	140	RRH 4x30-4R B25 (Verizon)	120
4449 B5/B12 RRU (ATI)	140	RRH 4x30-4R B25 (Verizon)	120
4449 B5/B12 RRU (ATI)	140	(4) 10"x7"x2" TMA (Verizon)	120
DC6-48-60-18-8F (ATI)	140	(4) 10"x7"x2" TMA (Verizon)	120
DC6-48-60-18-8F (ATI)	140	(4) 10"x7"x2" TMA (Verizon)	120
DC6-48-60-18-8F (ATI)	140	OVP Junction Box (Verizon)	120
(2) GPS (ATI)	140	OVP Junction Box (Verizon)	120
Platform w/Rail (Verizon)	120	OVP Junction Box (Verizon)	120

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

- 1. Tower is located in Fairfield County, Connecticut.
- 2. Tower designed for Exposure B to the TIA-222-G Standard. 3.
- Tower designed for a 91 mph basic wind in accordance with the TIA-222-G Standard.
- 4. Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
- 5. Deflections are based upon a 60 mph wind.
- 6. Tower Structure Class II.
- Topographic Category 1 with Crest Height of 0.000 ft
 Weld together tower sections have flange connections.
- 9. Connections use galvanized A325 bolts, nuts and locking devices. Installation per
- TIA/EIA-222 and AISC Specifications.
- 10. Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.
- 11. Welds are fabricated with ER-70S-6 electrodes.
- 12. TOWER RATING: 41.1%

ALL REACTIONS ARE FACTORED

TORQUE 38 lb-ft 50 mph WIND - 0.750 in ICE

TORQUE 93 lb-ft REACTIONS - 91 mph WIND

\mathcal{L}	C ^{uon:} 28493_Bethel West 2				
	Project: REV03				
	^{Client:} KGI	Drawn by: TLT	App'd:		
	^{Code:} TIA-222-G	Date: 09/02/20	Scale: NTS		
	Path:	(files\28493\REV03\28493 REV03.eri	Dwg No. E-1		

Semaan Engineering Solutions LL 1047 N. 205th St. Elkhorn, NE 68022 Phone: 402-289-1888 FAX:

С	^{Job:} 28493_Bethel West 2					
	Project: REV03					
	^{Client:} KGI	Drawn by: TLT	App'd:			
	Code: TIA-222-G	Date: 09/02/20	Scale: NTS			
	Path: \\DMZSESSERVER01\Common\TN>	(files\28493\REV03\28493_REV03.eri	Dwg No. E-4			
TIA-222-G - Service - 60 mph

Semaan Engineering Solutions LL 1047 N. 205th St. Elkhorn, NE 68022 Phone: 402-289-1888 FAX:

C	^{Job:} 28493_Bethel Wes	st 2	
	Project: REV03		
	^{Client:} KGI	Drawn by: TLT	App'd:
	^{Code:} TIA-222-G	Date: 09/02/20	Scale: NTS
	Path: \\DMZSESSERVER01\Common\TN>	(files\28493\REV03\28493 REV03.eri	Dwg No. E-5

Feed Line Distribution Chart 1' - 140'

App In Face _____ App Out Face _____ Truss Leg

Semaan Engineering Solutions LL 1047 N. 205th St. Elkhorn, NE 68022 Phone: 402-289-1888 FAX:

C	^{Job:} 28493_Bethel Wes	st 2	
	Project: REV03		
	^{Client:} KGI	Drawn by: TLT	App'd:
	^{Code:} TIA-222-G	Date: 09/02/20	Scale: NTS
	Path: \\DMZSESSERVER01\Common\TN>	(files\28493\REV03\28493 REV03.eri	Dwg No. E-7

Elevation (ft)

Round

Flat

Feed Line Plan

Semaan Engineering Solutions LLC 1047 N. 205th St. Elkhorn, NE 68022 Phone: 402-289-1888 FAX:

С	^{Job:} 28493_Bethel Wes	st 2	
	Project: REV03		
	^{Client:} KGI	Drawn by: TLT	App'd:
	^{Code:} TIA-222-G	Date: 09/02/20	Scale: NTS
	Path:	(files)28403\RE\/03\28403_RE\/03 eri	Dwg No. E-7

	Job	Page
<i>tnx1ower</i>	28493_Bethel West 2	1 of 20
Semaan Engineering Solutions LLC 1047 N. 205th St.	Project REV03	Date 11:30:21 09/02/20
Elkhorn, NE 68022 Phone: 402-289-1888 FAX:	Client KGI	Designed by TLT

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-G standard. The following design criteria apply:

Tower is located in Fairfield County, Connecticut. Basic wind speed of 91 mph. Structure Class II. Exposure Category B. Topographic Category 1. Crest Height 0.000 ft. Nominal ice thickness of 0.750 in. Ice thickness is considered to increase with height. Ice density of 56 pcf. A wind speed of 50 mph is used in combination with ice. Temperature drop of 50 °F. Deflections calculated using a wind speed of 60 mph. Weld together tower sections have flange connections.. Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC Specifications.. Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards... Welds are fabricated with ER-70S-6 electrodes.. A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- ✓ Use Code Stress Ratios Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile
- ✓ Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric
- Distribute Leg Loads As Uniform
- Assume Legs Pinned
- $\sqrt{}$ Assume Rigid Index Plate $\sqrt{}$ Use Clear Spans For Wind Area
- $\sqrt{}$ Use Clear Spans For KL/r
- $\sqrt{}$ Retension Guys To Initial Tension
- $\sqrt{}$ Bypass Mast Stability Checks
- $\sqrt{}$ Use Azimuth Dish Coefficients
- $\sqrt{\frac{1}{2}}$ Project Wind Area of Appurt.
- $\sqrt{}$ Autocalc Torque Arm Areas
- Add IBC.6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder
- $\sqrt{}$ Ignore KL/ry For 60 Deg. Angle Legs

- Use ASCE 10 X-Brace Ly Rules
- $\sqrt{}$ Calculate Redundant Bracing Forces
- Ignore Redundant Members in FEA
- $\sqrt{SR \text{ Leg Bolts Resist Compression}}$
- $\sqrt{\text{All Leg Panels Have Same Allowable}}$ Offset Girt At Foundation
- $\sqrt{}$ Consider Feed Line Torque
- √ Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption
- Use TIA-222-G Tension Splice Exemption Poles
- √ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets
- √ Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Arrest Teach are	Job	Page
tnx 1 ower	28493_Bethel West 2	2 of 20
Semaan Engineering Solutions LLC 1047 N. 205th St.	Project REV03	Date 11:30:21 09/02/20
Elkhorn, NE 68022 Phone: 402-289-1888 FAX:	Client KGI	Designed by TLT

lapered Pole Section Geometry									
Section	Elevation	Section Length	Splice Length	Number	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
L1	140.000-120.00	20.000	0.000	18	27.000	31.419	0.250	1.000	A572-65
	0								(65 ksi)
L2	120.000-96.000	24.000	5.250	18	31.419	36.723	0.250	1.000	A572-65
									(65 ksi)
L3	96.000-47.750	53.500	6.500	18	35.063	46.885	0.313	1.250	A572-65
									(65 ksi)
L4	47.750-1.000	53.250		18	44.823	56.590	0.375	1.500	A572-65
									(65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	Ι	r	С	I/C	J	It/Q	w	w/t
	in	in^2	in^4	in	in	in ³	in^4	in^2	in	
L1	27.378	21.226	1918.915	9.496	13.716	139.903	3840.355	10.615	4.312	17.248
	31.866	24.733	3035.783	11.065	15.961	190.199	6075.561	12.369	5.090	20.359
L2	31.866	24.733	3035.783	11.065	15.961	190.199	6075.561	12.369	5.090	20.359
	37.251	28.941	4863.953	12.948	18.655	260.730	9734.306	14.473	6.023	24.093
L3	36.733	34.468	5258.525	12.336	17.812	295.227	10523.969	17.237	5.621	17.987
	47.560	46.194	12658.196	16.533	23.817	531.469	25333.047	23.101	7.702	24.645
L4	46.915	52.905	13205.069	15.779	22.770	579.927	26427.513	26.457	7.229	19.277
	57.405	66.910	26713.597	19.956	28.748	929.242	53462.345	33.461	9.300	24.8

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A_f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing	Double Angle Stitch Bolt Spacing	Double Angle Stitch Bolt Spacing
ft	ft ²	in					Diagonals	Horizontals	Redundants
<u> </u>	Ji	in		1	1	1	in		
LI				1	1	1			
140.000-120.0									
00									
L2				1	1	1			
120.000-96.00									
0									
L3				1	1	1			
96.000-47.750									
L4				1	1	1			
47.750-1.000									

Feed Line/Linear Appurtenances - Entered As Area

Description	Face	Allow	Exclude	Component	Placement	Total		$C_A A_A$	Weight
	or	Shield	From	Type		Number			
	Leg		Torque		ft			ft²/ft	klf
			Calculation						
7/8" DC Cable	С	No	No	Inside Pole	140.000 - 1.000	6	No Ice	0.000	0.001
(AT&T)							1/2" Ice	0.000	0.001
							1" Ice	0.000	0.001
3/8" Fiber	С	No	No	Inside Pole	140.000 - 1.000	2	No Ice	0.000	0.000
(AT&T)							1/2" Ice	0.000	0.000

teres Teres and	Job	Page
<i>inx1ower</i>	28493_Bethel West 2	3 of 20
Semaan Engineering Solutions LLC 1047 N. 205th St.	Project REV03	Date 11:30:21 09/02/20
Elkhorn, NE 68022 Phone: 402-289-1888 FAX:	Client KGI	Designed by TLT

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation	51	ft			ft²/ft	klf
							1" Ice	0.000	0.000
1/2" Coax	С	No	No	Inside Pole	140.000 - 1.000	2	No Ice	0.000	0.000
(AT&T)							1/2" Ice	0.000	0.000
							1" Ice	0.000	0.000
1 5/8" Coax	С	No	No	Inside Pole	120.000 - 1.000	12	No Ice	0.000	0.001
(Verizon)							1/2" Ice	0.000	0.001
							1" Ice	0.000	0.001
Hybrid	С	No	No	Inside Pole	120.000 - 1.000	3	No Ice	0.000	0.002
(Verizon)							1/2" Ice	0.000	0.002
							1" Ice	0.000	0.002

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	lb
L1	140.000-120.000	А	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	0.000	79.600
L2	120.000-96.000	А	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	0.000	523.200
L3	96.000-47.750	А	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	0.000	1051.850
L4	47.750-1.000	А	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	0.000	1019.150

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	-
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	lb
L1	140.000-120.000	А	1.720	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	0.000	79.600
L2	120.000-96.000	Α	1.688	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	0.000	523.200
L3	96.000-47.750	А	1.620	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	0.000	1051.850
L4	47.750-1.000	А	1.452	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	0.000	1019.150

tran	Job	Page
<i>inx1ower</i>	28493_Bethel West 2	4 of 20
Semaan Engineering Solutions LLC 1047 N. 205th St.	Project REV03	Date 11:30:21 09/02/20
Elkhorn, NE 68022 Phone: 402-289-1888 FAX:	Client KGI	Designed by TLT

	Feed Line Center of Press									
Section	Elevation	CP _x	CPz	CP _x	CPz					
				Ice	Ice					
	ft	in	in	in	in					
L1	140.000-120.000	0.000	0.000	0.000	0.000					
L2	120.000-96.000	0.000	0.000	0.000	0.000					
L3	96.000-47.750	0.000	0.000	0.000	0.000					
L4	47.750-1.000	0.000	0.000	0.000	0.000					

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Discrete Tower Loads											
Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight		
			ft ft ft ft	o	ft		ft ²	ft ²	lb		
C10855721C Platform w/Rail (AT&T)	А	None	<u></u>	0.000	140.000	No Ice 1/2" Ice	35.850 40.460 45.070	35.850 40.460 45.070	2500.000 3500.000 4500.000		
(3) TPA65R-BU6D (AT&T)	А	From Face	3.500 0.000	0.000	140.000	No Ice 1/2" Ice	43.070 12.709 13.206	43.070 5.615 6.067	4300.000 69.000 142.956		
(3) TPA65R-BU6D (AT&T)	В	From Face	0.000 3.500 0.000	0.000	140.000	No Ice 1/2" Ice	13.709 12.709 13.206	6.526 5.615 6.067	69.000 142.956		
(3) TPA65R-BU6D (AT&T)	С	From Face	0.000 3.500 0.000	0.000	140.000	No Ice 1/2" Ice	13.709 12.709 13.206	6.526 5.615 6.067	69.000 142.956		
4478 B14 RRU (AT&T)	А	From Face	0.000 3.500 0.000	0.000	140.000	No Ice 1/2" Ice	2.021 2.200	6.526 1.246 1.396	223.562 59.400 77.013		
4478 B14 RRU (AT&T)	В	From Face	0.000 3.500 0.000	0.000	140.000	No Ice 1/2" Ice	2.386 2.021 2.200	1.554 1.246 1.396	97.398 59.400 77.013		
4478 B14 RRU (AT&T)	С	From Face	0.000 3.500 0.000	0.000	140.000	1" Ice No Ice 1/2" Ice	2.386 2.021 2.200	1.554 1.246 1.396	97.398 59.400 77.013		
8843 B2/B66A RRU (AT&T)	А	From Face	0.000 3.500 0.000	0.000	140.000	I" Ice No Ice 1/2" Ice	2.386 1.639 1.799	1.554 1.353 1.500	97.398 72.000 89.596		
8843 B2/B66A RRU (AT&T)	В	From Face	0.000 3.500 0.000	0.000	140.000	1" Ice No Ice 1/2" Ice	1.966 1.639 1.799	1.655 1.353 1.500	109.915 72.000 89.596		
8843 B2/B66A RRU (AT&T)	С	From Face	$0.000 \\ 3.500 \\ 0.000$	0.000	140.000	1" Ice No Ice 1/2" Ice	1.966 1.639 1.799	1.655 1.353 1.500	109.915 72.000 89.596		
4415 B30 RRU (AT&T)	А	From Face	$0.000 \\ 3.500 \\ 0.000$	0.000	140.000	1" Ice No Ice 1/2" Ice	1.966 1.843 2.012	1.655 0.820 0.943	109.915 46.000 60.075		
4415 B30 RRU (AT&T)	В	From Face	0.000 3.500 0.000	0.000	140.000	1" Ice No Ice 1/2" Ice	2.190 1.843 2.012	1.075 0.820 0.943	76.665 46.000 60.075		

A	Job	Page
inxlower	28493_Bethel West 2	5 of 20
Semaan Engineering Solutions LLC 1047 N. 205th St.	Project REV03	Date 11:30:21 09/02/20
Elkhorn, NE 68022 Phone: 402-289-1888 FAX:	Client KGI	Designed by TLT

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	$C_A A_A$	Weight
	or	Type	Horz	Adjustment			Front	Side	
	Leg		Lateral Vort						
			ft	0	ft		ft^2	ft ²	lb
			ft		ji		jı	Ji	10
			ft						
4415 B30 RRU	С	From Face	3.500	0.000	140.000	No Ice	1.843	0.820	46.000
(AT&T)			0.000			1/2" Ice	2.012	0.943	60.075
		F F	0.000	0.000	1 40 000	1" Ice	2.190	1.075	76.665
4449 B5/B12 KRU	А	From Face	3.500	0.000	140.000	No Ice	1.968	1.408	71.000
(A1&1)			0.000			1/2" Ice	2.144	1.304	89.509
4449 B5/B12 RRU	В	From Face	3.500	0.000	140.000	No Ice	1.968	1.408	71.000
(AT&T)	_		0.000			1/2" Ice	2.144	1.564	89.509
			0.000			1" Ice	2.328	1.727	110.838
4449 B5/B12 RRU	С	From Face	3.500	0.000	140.000	No Ice	1.968	1.408	71.000
(AT&T)			0.000			1/2" Ice	2.144	1.564	89.509
DC(49 (0 19 9D		F F	0.000	0.000	140.000	I" Ice	2.328	1.727	110.838
DC6-48-60-18-8F	А	From Face	3.500	0.000	140.000	No Ice	0.917	0.917	32.800
(A1&1)			0.000			1/2 ICC 1" Icc	1.438	1.438	70 725
DC6-48-60-18-8F	В	From Face	3.500	0.000	140.000	No Ice	0.917	0.917	32.800
(AT&T)			0.000			1/2" Ice	1.458	1.458	50.515
			0.000			1" Ice	1.643	1.643	70.725
DC6-48-60-18-8F	С	From Face	3.500	0.000	140.000	No Ice	0.917	0.917	32.800
(AT&T)			0.000			1/2" Ice	1.458	1.458	50.515
(2) CPS		F F	0.000	0.000	140.000	I" Ice	1.643	1.643	70.725
(2) GPS (AT&T)	А	From Face	3.500	0.000	140.000	No Ice 1/2" Ice	0.267	0.267	15.000
(AI&I)			0.000			172 ICC	0.337	0.337	26 148
Platform w/Rail	А	None	0.000	0.000	120.000	No Ice	35.850	35.850	2500.000
(Verizon)						1/2" Ice	40.460	40.460	3500.000
						1" Ice	45.070	45.070	4500.000
(4) BXA-70080/8CF	А	From Face	3.500	0.000	120.000	No Ice	8.291	6.449	23.000
(Verizon)			0.000			1/2" Ice	8.879	7.024	70.397
(4) DVA 70080/8CE	р	Enom Econ	0.000	0.000	120.000	I" Ice	9.474	7.607	125.021
(4) BAA-70080/8CF (Verizon)	D	From Face	0.000	0.000	120.000	1/2" Ice	8.291	7 024	25.000
(verizon)			0.000			1" Ice	9.474	7.607	125.021
(4) BXA-70080/8CF	С	From Face	3.500	0.000	120.000	No Ice	8.291	6.449	23.000
(Verizon)			0.000			1/2" Ice	8.879	7.024	70.397
			0.000			1" Ice	9.474	7.607	125.021
(4) RRUS A2 Module	А	From Face	3.500	0.000	120.000	No Ice	1.600	0.455	21.160
(Verizon)			0.000			1/2" Ice	1.758	0.558	31.489
(4) DDUS A2 Madula	р	Enom Econ	0.000	0.000	120.000	I" Ice	1.924	0.667	44.034
(4) KRUS A2 Module (Verizon)	Б	FIOIIIFace	0.000	0.000	120.000	1/2" Ice	1.000	0.455	21.100
(venzon)			0.000			1" Ice	1.924	0.667	44.034
(4) RRUS A2 Module	С	From Face	3.500	0.000	120.000	No Ice	1.600	0.455	21.160
(Verizon)			0.000			1/2" Ice	1.758	0.558	31.489
			0.000			1" Ice	1.924	0.667	44.034
(2) 3JR52709AA	А	From Face	3.500	0.000	120.000	No Ice	3.355	2.005	55.000
(Verizon)			0.000			1/2" Ice	3.612	2.237	78.159
(2) 3 IP 52709 A A	Р	From Face	3.500	0.000	120.000	No Ice	3.070	2.470	55 000
(Verizon)	Б	FIOITFace	0.000	0.000	120.000	1/2" Ice	3.555	2.003	78 159
(() chizon)			0.000			1" Ice	3.876	2.476	104.946
(2) 3JR52709AA	С	From Face	3.500	0.000	120.000	No Ice	3.355	2.005	55.000
(Verizon)			0.000			1/2" Ice	3.612	2.237	78.159
			0.000			1" Ice	3.876	2.476	104.946
RRH 4x30-4R B13	А	From Face	3.500	0.000	120.000	No Ice	2.160	1.620	57.200
(Verizon)			0.000			1/2" Ice	2.350	1.794	/6.813
			0.000			1 100	4	1.7/.)	77.701

	Job	Page
<i>tnx1ower</i>	28493_Bethel West 2	6 of 20
Semaan Engineering Solutions LLC 1047 N. 205th St. Elkhorn, NE 68022 Phone: 402-289-1888 FAX:	Project REV03	Date 11:30:21 09/02/20
	Client KGI	Designed by TLT

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	Leg		Lateral Vort						
			ft	0	ft		ft^2	ft^2	lh
			ft		ji		Ji	ji	10
			ft						
RRH 4x30-4R B13	В	From Face	3.500	0.000	120.000	No Ice	2.160	1.620	57.200
(Verizon)			0.000			1/2" Ice	2.350	1.794	76.813
			0.000			1" Ice	2.548	1.975	99.381
RRH 4x30-4R B13	С	From Face	3.500	0.000	120.000	No Ice	2.160	1.620	57.200
(Verizon)			0.000			1/2" Ice	2.350	1.794	76.813
			0.000			1" Ice	2.548	1.975	99.381
RRH 4x30-4R B25	А	From Face	3.500	0.000	120.000	No Ice	2.136	1.304	51.000
(Verizon)			0.000			1/2" Ice	2.325	1.460	68.438
			0.000			1" Ice	2.521	1.623	88.698
RRH 4x30-4R B25	В	From Face	3.500	0.000	120.000	No Ice	2.136	1.304	51.000
(Verizon)			0.000			1/2" Ice	2.325	1.460	68.438
			0.000			1" Ice	2.521	1.623	88.698
RRH 4x30-4R B25	С	From Face	3.500	0.000	120.000	No Ice	2.136	1.304	51.000
(Verizon)			0.000			1/2" Ice	2.325	1.460	68.438
			0.000			1" Ice	2.521	1.623	88.698
(4) 10"x7"x2" TMA	А	From Face	3.500	0.000	120.000	No Ice	0.583	0.182	15.000
(Verizon)			0.000			1/2" Ice	0.681	0.250	19.019
			0.000			1" Ice	0.787	0.325	24.463
(4) 10"x7"x2" TMA	В	From Face	3.500	0.000	120.000	No Ice	0.583	0.182	15.000
(Verizon)			0.000			1/2" Ice	0.681	0.250	19.019
· /			0.000			1" Ice	0.787	0.325	24.463
(4) 10"x7"x2" TMA	С	From Face	3.500	0.000	120.000	No Ice	0.583	0.182	15.000
(Verizon)			0.000			1/2" Ice	0.681	0.250	19.019
· · · ·			0.000			1" Ice	0.787	0.325	24.463
OVP Junction Box	А	From Face	3.500	0.000	120.000	No Ice	3.791	2.511	32.000
(Verizon)			0.000			1/2" Ice	4.043	2.724	63.460
· · · · ·			0.000			1" Ice	4.302	2.944	98.675
OVP Junction Box	В	From Face	3.500	0.000	120.000	No Ice	3.791	2.511	32.000
(Verizon)			0.000			1/2" Ice	4.043	2.724	63.460
× /			0.000			1" Ice	4.302	2.944	98.675
OVP Junction Box	С	From Face	3.500	0.000	120.000	No Ice	3.791	2.511	32.000
(Verizon)			0.000			1/2" Ice	4.043	2.724	63.460
` '			0.000			1" Ice	4.302	2.944	98.675

Tower Pressures - No Ice

Section	z	KZ	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		ksf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
L1	129.748	1.065	0.021	49.370	A	0.000	49.370	49.370	100.00	0.000	0.000
140.000-120.0					В	0.000	49.370		100.00	0.000	0.000
00					С	0.000	49.370		100.00	0.000	0.000
L2	107.689	1.009	0.020	69.116	Α	0.000	69.116	69.116	100.00	0.000	0.000
120.000-96.00					В	0.000	69.116		100.00	0.000	0.000
0					С	0.000	69.116		100.00	0.000	0.000
L3	71.426	0.898	0.018	169.464	Α	0.000	169.464	169.464	100.00	0.000	0.000
96.000-47.750					В	0.000	169.464		100.00	0.000	0.000

 $G_{H} = 1.100$

A	Job	Page
<i>tnx1ower</i>	28493_Bethel West 2	7 of 20
Semaan Engineering Solutions LLC 1047 N. 205th St.	Project REV03	Date 11:30:21 09/02/20
Elkhorn, NE 68022 Phone: 402-289-1888 FAX:	Client KGI	Designed by TLT

Section	Z	Kz	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					с					Face	Face
ft	ft		ksf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
					С	0.000	169.464		100.00	0.000	0.000
L4	23.893	0.7	0.014	203.208	Α	0.000	203.208	203.208	100.00	0.000	0.000
47.750-1.000					В	0.000	203.208		100.00	0.000	0.000
					С	0.000	203.208		100.00	0.000	0.000

Tower Pressure - With Ice

<i>a</i> .						-					<i>a i</i>	<i>a</i> .
Section	z	K_Z	q_z	t_Z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Out
						С					Face	Face
ft	ft		ksf	in	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
L1	129.748	1.065	0.006	1.720	55.103	А	0.000	55.103	55.103	100.00	0.000	0.000
140.000-120.000						В	0.000	55.103		100.00	0.000	0.000
						С	0.000	55.103		100.00	0.000	0.000
L2	107.689	1.009	0.006	1.688	75.870	Α	0.000	75.870	75.870	100.00	0.000	0.000
120.000-96.000						В	0.000	75.870		100.00	0.000	0.000
						С	0.000	75.870		100.00	0.000	0.000
L3	71.426	0.898	0.005	1.620	183.041	Α	0.000	183.041	183.041	100.00	0.000	0.000
96.000-47.750						В	0.000	183.041		100.00	0.000	0.000
						С	0.000	183.041		100.00	0.000	0.000
L4 47.750-1.000	23.893	0.7	0.004	1.452	215.833	Α	0.000	215.833	215.833	100.00	0.000	0.000
						В	0.000	215.833		100.00	0.000	0.000
						С	0.000	215.833		100.00	0.000	0.000

$G_{H} = 1.100$

Tower Pressure - Service

 $G_H=1.100$

Section	z	Kz	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		ksf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
L1	129.748	1.065	0.008	49.370	Α	0.000	49.370	49.370	100.00	0.000	0.000
140.000-120.0					В	0.000	49.370		100.00	0.000	0.000
00					С	0.000	49.370		100.00	0.000	0.000
L2	107.689	1.009	0.008	69.116	Α	0.000	69.116	69.116	100.00	0.000	0.000
120.000-96.00					В	0.000	69.116		100.00	0.000	0.000
0					С	0.000	69.116		100.00	0.000	0.000
L3	71.426	0.898	0.007	169.464	Α	0.000	169.464	169.464	100.00	0.000	0.000
96.000-47.750					В	0.000	169.464		100.00	0.000	0.000
					С	0.000	169.464		100.00	0.000	0.000
L4	23.893	0.7	0.006	203.208	Α	0.000	203.208	203.208	100.00	0.000	0.000
47.750-1.000					В	0.000	203.208		100.00	0.000	0.000
					С	0.000	203.208		100.00	0.000	0.000

Tower Forces - No Ice - Wind Normal To Face

Arrest Teach are	Job		Page
<i>tnx1ower</i>	28493	B_Bethel West 2	8 of 20
Semaan Engineering Solutions LLC 1047 N. 205th St.	Project	REV03	Date 11:30:21 09/02/20
Elkhorn, NE 68022 Phone: 402-289-1888 FAX:	Client	KGI	Designed by TLT

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а			_						Face
			С			ksf						
ft	lb	lb	е						ft^2	lb	klf	
L1	79.600	1563.891	Α	1	0.65	0.021	1	1	49.370	756.806	0.038	С
140.000-120.0			В	1	0.65		1	1	49.370			
00			С	1	0.65		1	1	49.370			
L2	523.200	2191.700	Α	1	0.65	0.020	1	1	69.116	1004.575	0.042	С
120.000-96.00			В	1	0.65		1	1	69.116			
0			С	1	0.65		1	1	69.116			
L3	1051.850	7342.187	Α	1	0.65	0.018	1	1	169.464	2178.906	0.045	С
96.000-47.750			В	1	0.65		1	1	169.464			
			С	1	0.65		1	1	169.464			
L4	1019.150	10855.112	А	1	0.65	0.014	1	1	203.208	2099.990	0.045	С
47.750-1.000			В	1	0.65		1	1	203.208			
			С	1	0.65		1	1	203.208			
Sum Weight:	2673.800	21952.890						OTM	406140.72	6040.277		
									7 lb-ft			

	Tower Forces - No Ice - Wind 60 To Face												
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.	
Elevation	Weight	Weight	a			hof						Face	
ft	lb	lb	e			ĸsj			ft ²	lb	klf		
L1	79.600	1563.891	Α	1	0.65	0.021	1	1	49.370	756.806	0.038	С	
140.000-120.0			В	1	0.65		1	1	49.370				
00			С	1	0.65		1	1	49.370				
L2	523.200	2191.700	Α	1	0.65	0.020	1	1	69.116	1004.575	0.042	С	
120.000-96.00			В	1	0.65		1	1	69.116				
0			С	1	0.65		1	1	69.116				
L3	1051.850	7342.187	Α	1	0.65	0.018	1	1	169.464	2178.906	0.045	С	
96.000-47.750			В	1	0.65		1	1	169.464				
			С	1	0.65		1	1	169.464				
L4	1019.150	10855.112	Α	1	0.65	0.014	1	1	203.208	2099.990	0.045	С	
47.750-1.000			В	1	0.65		1	1	203.208				
			С	1	0.65		1	1	203.208				
Sum Weight:	2673.800	21952.890						OTM	406140.72	6040.277			
									7 lb-ft				

Tower Forces - No Ice - Wind 90 To Face												
<i>a</i>		G 14	-		-		5	5				
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			С			ksf						
ft	lb	lb	е						ft^2	lb	klf	
L1	79.600	1563.891	Α	1	0.65	0.021	1	1	49.370	756.806	0.038	С
140.000-120.0			В	1	0.65		1	1	49.370			
00			С	1	0.65		1	1	49.370			
L2	523.200	2191.700	Α	1	0.65	0.020	1	1	69.116	1004.575	0.042	С
120.000-96.00			В	1	0.65		1	1	69.116			
0			С	1	0.65		1	1	69.116			
L3	1051.850	7342.187	А	1	0.65	0.018	1	1	169.464	2178.906	0.045	С

A A A A A A A A A A	Job	Page
<i>tnx1ower</i>	28493_Bethel West 2	9 of 20
Semaan Engineering Solutions LLC 1047 N. 205th St.	Project REV03	Date 11:30:21 09/02/20
Elkhorn, NE 68022 Phone: 402-289-1888 FAX:	Client KGI	Designed by TLT

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			ksf						
ft	lb	lb	е			-			ft^2	lb	klf	
96.000-47.750			В	1	0.65		1	1	169.464			
			С	1	0.65		1	1	169.464			
L4	1019.150	10855.112	Α	1	0.65	0.014	1	1	203.208	2099.990	0.045	С
47.750-1.000			В	1	0.65		1	1	203.208			
			С	1	0.65		1	1	203.208			
Sum Weight:	2673.800	21952.890						OTM	406140.72	6040.277		
Ű									7 lb-ft			

Tower Forces - With Ice - Wind Normal To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С			ksf						
ft	lb	lb	е						ft^2	lb	klf	
L1	79.600	2877.268	Α	1	1.2	0.006	1	1	55.103	470.790	0.024	С
140.000-120.0			В	1	1.2		1	1	55.103			
00			С	1	1.2		1	1	55.103			
L2	523.200	3980.208	Α	1	1.2	0.006	1	1	75.870	614.603	0.026	С
120.000-96.00			В	1	1.2		1	1	75.870			
0			С	1	1.2		1	1	75.870			
L3	1051.850	11508.751	Α	1	1.2	0.005	1	1	182.495	1307.786	0.027	С
96.000-47.750			В	1	1.2		1	1	182.495			
			С	1	1.2		1	1	182.495			
L4	1019.150	15286.603	А	1	1.2	0.004	1	1	214.524	1235.599	0.026	С
47.750-1.000			В	1	1.2		1	1	214.524			
			С	1	1.2		1	1	214.524			
Sum Weight:	2673.800	33652.830						OTM	246573.14	3628.779		
									9 lb-ft			

		Т	ow	er Fo	rces	- Wi	th Ic	e - V	Vind 60	To Fac	е	
Section Elevation	Add Weight	Self Weight	F a	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl. Face
ft	lb	lb	с е			ĸsf			ft ²	lb	klf	
L1	79.600	2877.268	А	1	1.2	0.006	1	1	55.103	470.790	0.024	С
140.000-120.0			В	1	1.2		1	1	55.103			
00			С	1	1.2		1	1	55.103			
L2	523.200	3980.208	A	1	1.2	0.006	1	1	75.870	614.603	0.026	С
120.000-96.00			В	1	1.2		1	1	75.870			
0			С	1	1.2		1	1	75.870			
L3	1051.850	11508.751	Α	1	1.2	0.005	1	1	182.495	1307.786	0.027	С
96.000-47.750			В	1	1.2		1	1	182.495			
			С	1	1.2		1	1	182.495			
L4	1019.150	15286.603	Α	1	1.2	0.004	1	1	214.524	1235.599	0.026	С
47.750-1.000			В	1	1.2		1	1	214.524			
			С	1	1.2		1	1	214.524			
Sum Weight:	2673.800	33652.830						OTM	246573.14	3628.779		
e									9 lb-ft			

Arrest Tools on	Job	Page
<i>tnx1ower</i>	28493_Bethel West 2	10 of 20
Semaan Engineering Solutions LLC 1047 N. 205th St.	Project REV03	Date 11:30:21 09/02/20
Elkhorn, NE 68022 Phone: 402-289-1888 FAX:	Client KGI	Designed by TLT

	Tower Forces - With Ice - Wind 90 To Face											
.			_		~		_	_				
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С			ksf						
ft	lb	lb	е						ft^2	lb	klf	
L1	79.600	2877.268	Α	1	1.2	0.006	1	1	55.103	470.790	0.024	С
140.000-120.0			В	1	1.2		1	1	55.103			
00			С	1	1.2		1	1	55.103			
L2	523.200	3980.208	А	1	1.2	0.006	1	1	75.870	614.603	0.026	С
120.000-96.00			В	1	1.2		1	1	75.870			
0			С	1	1.2		1	1	75.870			
L3	1051.850	11508.751	А	1	1.2	0.005	1	1	182.495	1307.786	0.027	С
96.000-47.750			В	1	1.2		1	1	182.495			
			С	1	1.2		1	1	182.495			
L4	1019.150	15286.603	А	1	1.2	0.004	1	1	214.524	1235.599	0.026	С
47.750-1.000			В	1	1.2		1	1	214.524			
			Ē	1	1.2		1	1	214.524			
Sum Weight:	2673.800	33652.830	-	-	1.2			OTM	246573.14	3628.779		
it eight		111121000							9 lb-ft	20201119		

	Tower Forces - Service - Wind Normal To Face											
Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а			_						Face
		, i i i i i i i i i i i i i i i i i i i	с			ksf						
ft	lb	lb	е			-			ft^2	lb	klf	
L1	79.600	1563.891	А	1	0.65	0.008	1	1	49.370	294.374	0.015	С
140.000-120.0			В	1	0.65		1	1	49.370			
00			С	1	0.65		1	1	49.370			
L2	523.200	2191.700	Α	1	0.65	0.008	1	1	69.116	390.749	0.016	С
120.000-96.00			В	1	0.65		1	1	69.116			
0			С	1	0.65		1	1	69.116			
L3	1051.850	7342.187	Α	1	0.65	0.007	1	1	169.464	847.527	0.018	С
96.000-47.750			В	1	0.65		1	1	169.464			
			С	1	0.65		1	1	169.464			
L4	1019.150	10855.112	А	1	0.65	0.006	1	1	203.208	816.831	0.017	С
47.750-1.000			В	1	0.65		1	1	203.208			
			С	1	0.65		1	1	203.208			
				1								

2673.800 21952.890

Sum Weight:

Tower Forces - Service - Wind 60 To Face	

OTM

157976.16 9 lb-ft

2349.481

Arrest Tools on	Job	Page
inxlower	28493_Bethel West 2	11 of 20
Semaan Engineering Solutions LLC 1047 N. 205th St.	Project REV03	Date 11:30:21 09/02/20
Elkhorn, NE 68022 Phone: 402-289-1888 FAX:	Client KGI	Designed by TLT

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а			_						Face
			С			ksf						
ft	lb	lb	е						ft^2	lb	klf	
L1	79.600	1563.891	Α	1	0.65	0.008	1	1	49.370	294.374	0.015	С
140.000-120.0			В	1	0.65		1	1	49.370			
00			С	1	0.65		1	1	49.370			
L2	523.200	2191.700	Α	1	0.65	0.008	1	1	69.116	390.749	0.016	С
120.000-96.00			В	1	0.65		1	1	69.116			
0			С	1	0.65		1	1	69.116			
L3	1051.850	7342.187	Α	1	0.65	0.007	1	1	169.464	847.527	0.018	С
96.000-47.750			В	1	0.65		1	1	169.464			
			С	1	0.65		1	1	169.464			
L4	1019.150	10855.112	Α	1	0.65	0.006	1	1	203.208	816.831	0.017	С
47.750-1.000			В	1	0.65		1	1	203.208			
			С	1	0.65		1	1	203.208			
Sum Weight:	2673.800	21952.890						OTM	157976.16	2349.481		
									9 lb-ft			

	Tower Forces - Service - Wind 90 To Face											
Cardian		C . 10	E		C		D	D	4	E		Cul
Section	Add Weight	Self	r	е	C_F	q_z	D_F	D_R	A_E	Г	W	Ciri.
Elevation	weigni	weigni	a			hof						гасе
ft	lb	lb	e			кзј			ft ²	lb	klf	
L1	79.600	1563.891	Α	1	0.65	0.008	1	1	49.370	294.374	0.015	С
140.000-120.0			В	1	0.65		1	1	49.370			
00			С	1	0.65		1	1	49.370			
L2	523.200	2191.700	Α	1	0.65	0.008	1	1	69.116	390.749	0.016	С
120.000-96.00			В	1	0.65		1	1	69.116			
0			С	1	0.65		1	1	69.116			
L3	1051.850	7342.187	Α	1	0.65	0.007	1	1	169.464	847.527	0.018	С
96.000-47.750			В	1	0.65		1	1	169.464			
			С	1	0.65		1	1	169.464			
L4	1019.150	10855.112	Α	1	0.65	0.006	1	1	203.208	816.831	0.017	С
47.750-1.000			В	1	0.65		1	1	203.208			
			С	1	0.65		1	1	203.208			
Sum Weight:	2673.800	21952.890						OTM	157976.16	2349.481		
									9 lb-ft			

Force Totals							
Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques	
Case	Forces	Forces	Forces	Overturning	Overturning	Sum of Forques	
		X	Z	Moments, M_x	Moments, M_z		
	lb	lb	lb	lb-ft	lb-ft	lb-ft	
Leg Weight	21952.890						
Bracing Weight	0.000						
Total Member Self-Weight	21952.890			-69.375	120.161		
Total Weight	32581.810			-69.375	120.161		
Wind 0 deg - No Ice		0.000	-12442.688	-1230579.307	120.161	-46.338	
Wind 30 deg - No Ice		6221.344	-10775.684	-1065722.236	-615134.805	-53.506	
Wind 60 deg - No Ice		10775.684	-6221.344	-615324.341	-1065532.700	-46.338	

tran Town on	Job	Page
inxlower	28493_Bethel West 2	12 of 20
Semaan Engineering Solutions LLC 1047 N. 205th St.	Project REV03	Date 11:30:21 09/02/20
Elkhorn, NE 68022 Phone: 402-289-1888 FAX:	Client KGI	Designed by TLT

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Ζ	Moments, M_x	Moments, M_z	
	lb	lb	lb	lb-ft	lb-ft	lb-ft
Wind 90 deg - No Ice		12442.688	0.000	-69.375	-1230389.771	-26.753
Wind 120 deg - No Ice		10775.684	6221.344	615185.591	-1065532.700	0.000
Wind 150 deg - No Ice		6221.344	10775.684	1065583.486	-615134.805	26.753
Wind 180 deg - No Ice		0.000	12442.688	1230440.557	120.161	46.338
Wind 210 deg - No Ice		-6221.344	10775.684	1065583.486	615375.127	53.506
Wind 240 deg - No Ice		-10775.684	6221.344	615185.591	1065773.022	46.338
Wind 270 deg - No Ice		-12442.688	0.000	-69.375	1230630.093	26.753
Wind 300 deg - No Ice		-10775.684	-6221.344	-615324.341	1065773.022	0.000
Wind 330 deg - No Ice		-6221.344	-10775.684	-1065722.236	615375.127	-26.753
Member Ice	11699.940					
Total Weight Ice	59438.393			-181.598	314.538	
Wind 0 deg - Ice		0.000	-6192.090	-576341.429	314.538	-28.599
Wind 30 deg - Ice		3096.045	-5362.508	-499150.648	-287765.378	-33.023
Wind 60 deg - Ice		5362.508	-3096.045	-288261.513	-498654.512	-28.599
Wind 90 deg - Ice		6192.090	0.000	-181.598	-575845.293	-16.512
Wind 120 deg - Ice		5362.508	3096.045	287898.317	-498654.512	0.000
Wind 150 deg - Ice		3096.045	5362.508	498787.451	-287765.378	16.512
Wind 180 deg - Ice		0.000	6192.090	575978.232	314.538	28.599
Wind 210 deg - Ice		-3096.045	5362.508	498787.451	288394.453	33.023
Wind 240 deg - Ice		-5362.508	3096.045	287898.317	499283.587	28.599
Wind 270 deg - Ice		-6192.090	0.000	-181.598	576474.368	16.512
Wind 300 deg - Ice		-5362.508	-3096.045	-288261.513	499283.587	0.000
Wind 330 deg - Ice		-3096.045	-5362.508	-499150.648	288394.453	-16.512
Total Weight	32581.810			-69.375	120.161	
Wind 0 deg - Service		0.000	-4839.821	-478699.644	120.161	-18.024
Wind 30 deg - Service		2419.910	-4191.408	-414575.347	-239194.973	-20.812
Wind 60 deg - Service		4191.408	-2419.910	-239384.509	-414385.811	-18.024
Wind 90 deg - Service		4839.821	0.000	-69.375	-478510.108	-10.406
Wind 120 deg - Service		4191.408	2419.910	239245.759	-414385.811	0.000
Wind 150 deg - Service		2419.910	4191.408	414436.597	-239194.973	10.406
Wind 180 deg - Service		0.000	4839.821	478560.894	120.161	18.024
Wind 210 deg - Service		-2419.910	4191.408	414436.597	239435.295	20.812
Wind 240 deg - Service		-4191.408	2419.910	239245.759	414626.133	18.024
Wind 270 deg - Service		-4839.821	0.000	-69.375	478750.430	10.406
Wind 300 deg - Service		-4191.408	-2419.910	-239384.509	414626.133	0.000
Wind 330 deg - Service		-2419.910	-4191.408	-414575.347	239435.295	-10.406

Load Combinations

1	Comb.		Description
	No.		
	1	Dead Only	
	2	1.2 Dead+1.6 Wind 0 deg - No Ice	
	3	0.9 Dead+1.6 Wind 0 deg - No Ice	
	4	1.2 Dead+1.6 Wind 30 deg - No Ice	
	5	0.9 Dead+1.6 Wind 30 deg - No Ice	
	6	1.2 Dead+1.6 Wind 60 deg - No Ice	
	7	0.9 Dead+1.6 Wind 60 deg - No Ice	
	8	1.2 Dead+1.6 Wind 90 deg - No Ice	
	9	0.9 Dead+1.6 Wind 90 deg - No Ice	
	10	1.2 Dead+1.6 Wind 120 deg - No Ice	
	11	0.9 Dead+1.6 Wind 120 deg - No Ice	
	12	1.2 Dead+1.6 Wind 150 deg - No Ice	
	13	0.9 Dead+1.6 Wind 150 deg - No Ice	
	14	1.2 Dead+1.6 Wind 180 deg - No Ice	
	15	0.9 Dead+1.6 Wind 180 deg - No Ice	

	Job	Page
<i>inx1ower</i>	28493_Bethel West 2	13 of 20
Semaan Engineering Solutions LLC 1047 N. 205th St.	Project REV03	Date 11:30:21 09/02/20
Elkhorn, NE 68022 Phone: 402-289-1888 FAX:	Client KGI	Designed by TLT

Comb.	Description
No.	
16	1.2 Dead+1.6 Wind 210 deg - No Ice
17	0.9 Dead+1.6 Wind 210 deg - No Ice
18	1.2 Dead+1.6 Wind 240 deg - No Ice
19	0.9 Dead+1.6 Wind 240 deg - No Ice
20	1.2 Dead+1.6 Wind 270 deg - No Ice
21	0.9 Dead+1.6 Wind 270 deg - No Ice
22	1.2 Dead+1.6 Wind 300 deg - No Ice
23	0.9 Dead+1.6 Wind 300 deg - No Ice
24	1.2 Dead+1.6 Wind 330 deg - No Ice
25	0.9 Dead+1.6 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
				Comb.	lb	lb-ft	lb-ft
L1	140 - 120	Pole	Max Tension	26	0.000	0.000	0.000
			Max. Compression	26	-15269.640	338.570	195.473
			Max. Mx	20	-6485.401	117020.547	82.552
			Max. My	2	-6485.428	142.985	116959.024
			Max. Vy	20	-6501.820	117020.547	82.552
			Max. Vx	2	-6501.792	142.985	116959.024
			Max. Torque	16			-93.196
L2	120 - 96	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-31895.604	338.570	195.473
			Max. Mx	20	-13530.045	352821.008	84.233
			Max. My	2	-13530.080	145.897	352758.722
			Max. Vy	20	-13219.374	352821.008	84.233
			Max. Vx	2	-13219.338	145.897	352758.722
			Max. Torque	16			-93.189
L3	96 - 47.75	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-45789.011	338.570	195.473
			Max. Mx	20	-23143.998	1052606.56 4	86.889

Arrest Tools on	Job	Page
<i>inx1</i> ower	28493_Bethel West 2	14 of 20
Semaan Engineering Solutions LLC 1047 N. 205th St.	Project REV03	Date 11:30:21 09/02/20
Elkhorn, NE 68022 Phone: 402-289-1888 FAX:	Client KGI	Designed by TLT

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
				Comb.	lb	lb-ft	lb-ft
			Max. My	2	-23144.012	150.496	1052542.90 5
			Max. Vy	20	-16525.124	1052606.56 4	86.889
			Max. Vx	2	-16525.103	150.496	1052542.90 5
			Max. Torque	16			-93.156
L4	47.75 - 1	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-67024.255	338.570	195.473
			Max. Mx	20	-39088.891	2024921.33 1	87.788
			Max. My	2	-39088.891	152.053	2024857.06 6
			Max. Vy	20	-19926.523	2024921.33 1	87.788
			Max. Vx	2	-19926.522	152.053	2024857.06 6
			Max. Torque	16			-93.071

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	lb	lb	lb
		Comb.			
Pole	Max. Vert	36	67024.255	6192.104	0.000
	Max. H _x	20	39098.173	19908.304	0.000
	Max. H _z	2	39098.173	0.000	19908.304
	Max. M _x	2	2024857.066	0.000	19908.304
	Max. M _z	8	2024617.225	-19908.304	0.000
	Max. Torsion	4	93.036	-9954.151	17241.095
	Min. Vert	11	29323.629	-17241.095	-9954.151
	Min. H _x	8	39098.173	-19908.304	0.000
	Min. Hz	14	39098.173	0.000	-19908.304
	Min. M _x	14	-2024681.491	0.000	-19908.304
	Min. Mz	20	-2024921.331	19908.304	0.000
	Min. Torsion	16	-93.039	9954.151	-17241.095

Tower Mast Reaction Summary

Load	Vertical	$Shear_x$	$Shear_z$	Overturning	Overturning	Torque
Combination				Moment, M_x	Moment, M_z	
	lb	lb	lb	lb-ft	lb-ft	lb-ft
Dead Only	32581.810	0.000	0.000	-69.375	120.161	0.000
1.2 Dead+1.6 Wind 0 deg - No	39098.173	-0.000	-19908.304	-2024857.066	152.042	-80.573
Ice						
0.9 Dead+1.6 Wind 0 deg - No	29323.629	-0.000	-19908.302	-2010305.141	112.472	-78.868
Ice						
1.2 Dead+1.6 Wind 30 deg - No	39098.172	9954.151	-17241.095	-1753591.442	-1012233.771	-93.036
Ice						
0.9 Dead+1.6 Wind 30 deg - No	29323.629	9954.151	-17241.095	-1740984.641	-1005007.990	-91.068
Ice						
1.2 Dead+1.6 Wind 60 deg - No	39098.172	17241.095	-9954.151	-1012473.591	-1753351.613	-80.575
Ice						

tran Toru or	Job		Page
<i>inx1ower</i>		15 of 20	
Semaan Engineering Solutions LLC 1047 N. 205th St.	Project	REV03	Date 11:30:21 09/02/20
Elkhorn, NE 68022 Phone: 402-289-1888 FAX:	Client	KGI	Designed by TLT

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment M	Overturning Moment M	Torque
Combination	lb	lb	lb	<i>Moment,</i> M_x <i>lb-ft</i>	lb-ft	lb-ft
0.9 Dead+1.6 Wind 60 deg - No	29323.629	17241.095	-9954.151	-1005185.395	-1740807.230	-78.869
1.2 Dead+1.6 Wind 90 deg - No	39098.173	19908.304	-0.000	-87.781	-2024617.225	-46.519
0.9 Dead+1.6 Wind 90 deg - No Ice	29323.629	19908.302	-0.000	-64.936	-2010127.722	-45.535
1.2 Dead+1.6 Wind 120 deg - No Ice	39098.172	17241.095	9954.151	1012298.025	-1753351.607	0.002
0.9 Dead+1.6 Wind 120 deg - No Ice	29323.629	17241.095	9954.151	1005055.521	-1740807.226	0.001
1.2 Dead+1.6 Wind 150 deg - No Ice	39098.172	9954.151	17241.095	1753415.869	-1012233.766	46.517
0.9 Dead+1.6 Wind 150 deg - No Ice	29323.629	9954.151	17241.095	1740854.763	-1005007.986	45.534
1.2 Dead+1.6 Wind 180 deg - No Ice	39098.173	-0.000	19908.304	2024681.491	152.042	80.573
0.9 Dead+1.6 Wind 180 deg - No Ice	29323.629	-0.000	19908.302	2010175.261	112.472	78.868
1.2 Dead+1.6 Wind 210 deg - No Ice	39098.172	-9954.151	17241.095	1753415.880	1012537.855	93.039
0.9 Dead+1.6 Wind 210 deg - No Ice	29323.629	-9954.151	17241.095	1740854.770	1005232.933	91.069
1.2 Dead+1.6 Wind 240 deg - No Ice	39098.172	-17241.095	9954.151	1012298.035	1753655.708	80.571
0.9 Dead+1.6 Wind 240 deg - No Ice	29323.629	-17241.095	9954.151	1005055.528	1741032.181	78.867
1.2 Dead+1.6 Wind 270 deg - No Ice	39098.173	-19908.304	-0.000	-87.781	2024921.331	46.519
0.9 Dead+1.6 Wind 270 deg - No Ice	29323.629	-19908.302	-0.000	-64.936	2010352.681	45.534
1.2 Dead+1.6 Wind 300 deg - No Ice	39098.172	-17241.095	-9954.151	-1012473.601	1753655.714	0.002
0.9 Dead+1.6 Wind 300 deg - No Ice	29323.629	-17241.095	-9954.151	-1005185.402	1741032.185	0.001
1.2 Dead+1.6 Wind 330 deg - No Ice	39098.172	-9954.151	-17241.095	-1753591.452	1012537.860	-46.520
0.9 Dead+1.6 Wind 330 deg - No Ice	29323.629	-9954.151	-17241.095	-1740984.648	1005232.937	-45.535
1.2 Dead+1.0 Ice+1.0 Temp	67024.255	0.000	0.000	-195.473	338.570	0.000
I.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	67024.255	-0.000	-6192.104	-611539.026	381.823	-33.169
1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	67024.255	3096.052	-5362.519	-529637.858	-305277.464	-38.300
1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	67024.255	5362.519	-3096.052	-305879.727	-529035.579	-33.169
1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	67024.255	6192.104	-0.000	-220.446	-610936.727	-19.150
1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	67024.255	5362.519	3096.052	305438.830	-529035.570	0.000
1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	67024.255	3096.052	5362.519	529196.950	-305277.454	19.150
1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	67024.255	-0.000	6192.104	611098.112	381.823	33.169
1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	67024.255	-3096.052	5362.519	529196.967	306041.110	38.300
1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	67024.255	-5362.519	3096.052	305438.847	529799.245	33.168
1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	67024.255	-6192.104	-0.000	-220.446	611700.412	19.150
1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	67024.255	-5362.519	-3096.052	-305879.744	529799.255	0.000

trans Torus or	Job	Page
inxlower	28493_Bethel West 2	16 of 20
Semaan Engineering Solutions LLC 1047 N. 205th St.	Project REV03	Date 11:30:21 09/02/20
Elkhorn, NE 68022 Phone: 402-289-1888 FAX:	Client KGI	Designed by TLT

Load	Vertical	Shear _x	$Shear_z$	Overturning	Overturning	Torque
Combination				Moment, M_x	Moment, M_z	-
	lb	lb	lb	lb-ft	lb-ft	lb-ft
1.2 Dead+1.0 Wind 330	67024.255	-3096.052	-5362.519	-529637.875	306041.120	-19.150
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	32581.810	-0.000	-4839.821	-490103.015	125.740	-19.360
Dead+Wind 30 deg - Service	32581.810	2419.910	-4191.408	-424451.388	-244889.471	-22.355
Dead+Wind 60 deg - Service	32581.810	4191.408	-2419.910	-245087.806	-424253.052	-19.360
Dead+Wind 90 deg - Service	32581.810	4839.821	-0.000	-72.596	-489904.679	-11.178
Dead+Wind 120 deg - Service	32581.810	4191.408	2419.910	244942.614	-424253.052	0.000
Dead+Wind 150 deg - Service	32581.810	2419.910	4191.408	424306.196	-244889.470	11.178
Dead+Wind 180 deg - Service	32581.810	-0.000	4839.821	489957.823	125.740	19.360
Dead+Wind 210 deg - Service	32581.810	-2419.910	4191.408	424306.196	245140.950	22.355
Dead+Wind 240 deg - Service	32581.810	-4191.408	2419.910	244942.615	424504.532	19.360
Dead+Wind 270 deg - Service	32581.810	-4839.821	-0.000	-72.596	490156.159	11.178
Dead+Wind 300 deg - Service	32581.810	-4191.408	-2419.910	-245087.806	424504.532	0.000
Dead+Wind 330 deg - Service	32581.810	-2419.910	-4191.408	-424451.388	245140.950	-11.178

Solution Summary

	Sur	n of Applied Force.	\$		Sum of Reaction	s	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	lb	lb	lb	lb	lb	lb	
1	0.000	-32581.810	0.000	0.000	32581.810	0.000	0.000%
2	0.000	-39098.172	-19908.301	0.000	39098.173	19908.304	0.000%
3	0.000	-29323.629	-19908.301	0.000	29323.629	19908.302	0.000%
4	9954.151	-39098.172	-17241.095	-9954.151	39098.172	17241.095	0.000%
5	9954.151	-29323.629	-17241.095	-9954.151	29323.629	17241.095	0.000%
6	17241.095	-39098.172	-9954.151	-17241.095	39098.172	9954.151	0.000%
7	17241.095	-29323.629	-9954.151	-17241.095	29323.629	9954.151	0.000%
8	19908.301	-39098.172	0.000	-19908.304	39098.173	0.000	0.000%
9	19908.301	-29323.629	0.000	-19908.302	29323.629	0.000	0.000%
10	17241.095	-39098.172	9954.151	-17241.095	39098.172	-9954.151	0.000%
11	17241.095	-29323.629	9954.151	-17241.095	29323.629	-9954.151	0.000%
12	9954.151	-39098.172	17241.095	-9954.151	39098.172	-17241.095	0.000%
13	9954.151	-29323.629	17241.095	-9954.151	29323.629	-17241.095	0.000%
14	0.000	-39098.172	19908.301	0.000	39098.173	-19908.304	0.000%
15	0.000	-29323.629	19908.301	0.000	29323.629	-19908.302	0.000%
16	-9954.151	-39098.172	17241.095	9954.151	39098.172	-17241.095	0.000%
17	-9954.151	-29323.629	17241.095	9954.151	29323.629	-17241.095	0.000%
18	-17241.095	-39098.172	9954.151	17241.095	39098.172	-9954.151	0.000%
19	-17241.095	-29323.629	9954.151	17241.095	29323.629	-9954.151	0.000%
20	-19908.301	-39098.172	0.000	19908.304	39098.173	0.000	0.000%
21	-19908.301	-29323.629	0.000	19908.302	29323.629	0.000	0.000%
22	-17241.095	-39098.172	-9954.151	17241.095	39098.172	9954.151	0.000%
23	-17241.095	-29323.629	-9954.151	17241.095	29323.629	9954.151	0.000%
24	-9954.151	-39098.172	-17241.095	9954.151	39098.172	17241.095	0.000%
25	-9954.151	-29323.629	-17241.095	9954.151	29323.629	17241.095	0.000%
26	0.000	-67024.255	0.000	0.000	67024.255	0.000	0.000%
27	0.000	-67024.255	-6192.090	0.000	67024.255	6192.104	0.000%
28	3096.045	-67024.255	-5362.508	-3096.052	67024.255	5362.519	0.000%
29	5362.508	-67024.255	-3096.045	-5362.519	67024.255	3096.052	0.000%
30	6192.090	-67024.255	0.000	-6192.104	67024.255	0.000	0.000%
31	5362.508	-67024.255	3096.045	-5362.519	67024.255	-3096.052	0.000%
32	3096.045	-67024.255	5362.508	-3096.052	67024.255	-5362.519	0.000%
33	0.000	-67024.255	6192.090	0.000	67024.255	-6192.104	0.000%
34	-3096.045	-67024.255	5362.508	3096.052	67024.255	-5362.519	0.000%
35	-5362.508	-67024.255	3096.045	5362.519	67024.255	-3096.052	0.000%
36	-6192.090	-67024.255	0.000	6192.104	67024.255	0.000	0.000%
37	-5362.508	-67024.255	-3096.045	5362.519	67024.255	3096.052	0.000%
38	-3096.045	-67024.255	-5362.508	3096.052	67024.255	5362.519	0.000%

	Job	Page
<i>tnx1</i> ower	28493_Bethel West 2	17 of 20
Semaan Engineering Solutions LLC 1047 N. 205th St.	Project REV03	Date 11:30:21 09/02/20
Elkhorn, NE 68022 Phone: 402-289-1888 FAX:	Client KGI	Designed by TLT

	Su	m of Applied Forces	7		Sum of Reaction	S	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	lb	lb	lb	lb	lb	lb	
39	0.000	-32581.810	-4839.821	0.000	32581.810	4839.821	0.000%
40	2419.910	-32581.810	-4191.408	-2419.910	32581.810	4191.408	0.000%
41	4191.408	-32581.810	-2419.910	-4191.408	32581.810	2419.910	0.000%
42	4839.821	-32581.810	0.000	-4839.821	32581.810	0.000	0.000%
43	4191.408	-32581.810	2419.910	-4191.408	32581.810	-2419.910	0.000%
44	2419.910	-32581.810	4191.408	-2419.910	32581.810	-4191.408	0.000%
45	0.000	-32581.810	4839.821	0.000	32581.810	-4839.821	0.000%
46	-2419.910	-32581.810	4191.408	2419.910	32581.810	-4191.408	0.000%
47	-4191.408	-32581.810	2419.910	4191.408	32581.810	-2419.910	0.000%
48	-4839.821	-32581.810	0.000	4839.821	32581.810	0.000	0.000%
49	-4191.408	-32581.810	-2419.910	4191.408	32581.810	2419.910	0.000%
50	-2419.910	-32581.810	-4191.408	2419.910	32581.810	4191.408	0.000%

Non-Linear Convergence Results

T 1	C 12	N7 1	D: 1	
Load	Converged?	Number	Displacement	Force
Combination	N/	of Cycles	<i>101erance</i>	1 oterance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.0000001	0.00016283
3	Yes	4	0.00000001	0.00008784
4	Yes	5	0.0000001	0.00031213
5	Yes	5	0.00000001	0.00015056
6	Yes	5	0.0000001	0.00031517
7	Yes	5	0.00000001	0.00015207
8	Yes	4	0.00000001	0.00014838
9	Yes	4	0.00000001	0.00007615
10	Yes	5	0.00000001	0.00031359
11	Yes	5	0.00000001	0.00015130
12	Yes	5	0.00000001	0.00031278
13	Yes	5	0.00000001	0.00015090
14	Yes	4	0.00000001	0.00016280
15	Yes	4	0.00000001	0.00008782
16	Yes	5	0.00000001	0.00031551
17	Yes	5	0.00000001	0.00015222
18	Yes	5	0.00000001	0.00031246
19	Yes	5	0.00000001	0.00015070
20	Yes	4	0.00000001	0.00014843
21	Yes	4	0.00000001	0.00007617
22	Yes	5	0.00000001	0.00031402
23	Yes	5	0.00000001	0.00015146
24	Yes	5	0.00000001	0.00031484
25	Yes	5	0.00000001	0.00015186
26	Yes	4	0.00000001	0.00000001
27	Yes	5	0.00000001	0.00027439
28	Yes	5	0.00000001	0.00031943
29	Yes	5	0.00000001	0.00031977
30	Yes	5	0.00000001	0.00027376
31	Yes	5	0.00000001	0.00031907
32	Yes	5	0.00000001	0.00031898
33	Yes	5	0.00000001	0.00027394
34	Yes	5	0.00000001	0.00032019
35	Yes	5	0.00000001	0.00031984
36	Yes	5	0.00000001	0.00027455
37	Yes	5	0.00000001	0.00032053
38	Yes	5	0.00000001	0.00032063
39	Yes	4	0.00000001	0.00003022

tnx	Tower	Job	28493 E	Page 18 of 20	
Semaan Eng	Semaan Engineering Solutions LLC		F	REV03	Date 11:30:21 09/02/20
Elkho Phone:	orn, NE 68022 402-289-1888 FAX:	Client		KGI	Designed by TLT
40	Yes	4	0.00000001	0.00015321	
41	Yes	4	0.00000001	0.00015744	
42	Yes	4	0.00000001	0.00002993	
43	Yes	4	0.00000001	0.00015517	
44	Yes	4	0.00000001	0.00015405	
45	Yes	4	0.00000001	0.00003020	
46	Yes	4	0.00000001	0.00015794	
47	Yes	4	0.00000001	0.00015368	
48	Yes	4	0.00000001	0.00002997	
49	Yes	4	0.00000001	0.00015585	
50	Yes	4	0.00000001	0.00015700	

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	140 - 120	10.529	49	0.640	0.000
L2	120 - 96	7.894	49	0.610	0.000
L3	101.25 - 47.75	5.639	49	0.530	0.000
L4	54.25 - 1	1.582	49	0.272	0.000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
140.000	C10855721C Platform w/Rail	49	10.529	0.640	0.000	72323
120.000	Platform w/Rail	49	7.894	0.610	0.000	18526

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	140 - 120	43.527	20	2.644	0.001
L2	120 - 96	32.637	20	2.521	0.000
L3	101.25 - 47.75	23.314	20	2.192	0.000
L4	54.25 - 1	6.541	20	1.123	0.000

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
140.000	C10855721C Platform w/Rail	20	43.527	2.644	0.001	17612
120.000	Platform w/Rail	20	32.637	2.521	0.000	4509

Areas Toosus are	Job	Page
<i>tnx1ower</i>	28493_Bethel West 2	19 of 20
Semaan Engineering Solutions LLC 1047 N. 205th St.	Project REV03	Date 11:30:21 09/02/20
Elkhorn, NE 68022 Phone: 402-289-1888 FAX:	Client KGI	Designed by TLT

Compression Checks

	Pole Design Data									
Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P _u	
	ft		ft	ft		in^2	lb	lb	ϕP_n	
L1	140 - 120 (1)	TP31.419x27x0.25	20.000	0.000	0.0	24.733	-6485.380	1724110.000	0.004	
L2	120 - 96 (2)	TP36.723x31.419x0.25	24.000	0.000	0.0	28.021	-13530.000	1866770.000	0.007	
L3	96 - 47.75 (3)	TP46.885x35.063x0.313	53.500	0.000	0.0	44.769	-23144.000	2956030.000	0.008	
L4	47.75 - 1 (4)	TP56.59x44.823x0.375	53.250	0.000	0.0	66.910	-39088.898	4349740.000	0.009	

Pole Bending Design Data

Section	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio	M_{uv}	ϕM_{nv}	Ratio
No.					M_{ux}		,,	M_{uy}
	ft		lb-ft	lb-ft	ϕM_{nx}	lb-ft	lb-ft	ϕM_{ny}
L1	140 - 120 (1)	TP31.419x27x0.25	117043.333	1104883.333	0.106	0.000	1104883.333	0.000
L2	120 - 96 (2)	TP36.723x31.419x0.25	352844.167	1356591.667	0.260	0.000	1356591.667	0.000
L3	96 - 47.75 (3)	TP46.885x35.063x0.313	1052633.333	2746158.333	0.383	0.000	2746158.333	0.000
L4	47.75 - 1 (4)	TP56.59x44.823x0.375	2024950.000	5034083.333	0.402	0.000	5034083.333	0.000

Pole Shear Design Data

Section	Elevation	Size	Actual V	ϕV_n	Ratio V	Actual T	ϕT_n	Ratio T
100.	ft		lb	lb	$\frac{v_u}{\phi V_n}$	lb-ft	lb-ft	$\frac{T_u}{\phi T_n}$
L1	140 - 120 (1)	TP31.419x27x0.25	6502.070	862055.000	0.008	0.000	2215150.000	0.000
L2	120 - 96 (2)	TP36.723x31.419x0.25	13219.500	933386.000	0.014	0.001	2719416.667	0.000
L3	96 - 47.75 (3)	TP46.885x35.063x0.313	16525.100	1478010.000	0.011	0.001	5504775.000	0.000
L4	47.75 - 1 (4)	TP56.59x44.823x0.375	19926.500	2174870.000	0.009	0.002	10090666.667	0.000

Pole Interaction Design Data									
Section No.	Elevation	Ratio P.	Ratio M	Ratio M	Ratio V.	Ratio T.	Comb. Stress	Allow. Stress	Criteria
110.	ft	$\frac{1}{\phi P_n}$	ϕM_{nx}	ϕM_{ny}	$\frac{\nabla u}{\Phi V_n}$	ϕT_n	Ratio	Ratio	
L1	140 - 120 (1)	0.004	0.106	0.000	0.008	0.000	0.110	1.000	4.8.2 🗸
L2	120 - 96 (2)	0.007	0.260	0.000	0.014	0.000	0.268	1.000	4.8.2 🖌

A	Job	Page
<i>tnx1ower</i>	28493_Bethel West 2	20 of 20
Semaan Engineering Solutions LLC 1047 N. 205th St.	Project REV03	Date 11:30:21 09/02/20
Elkhorn, NE 68022 Phone: 402-289-1888 FAX:	Client KGI	Designed by TLT

Section No.	Elevation	Ratio P_u	Ratio M _{ux}	Ratio M _{uy}	$Ratio V_u$	Ratio T_u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L3	96 - 47.75 (3)	0.008	0.383	0.000	0.011	0.000	0.391	1.000	4.8.2 🖌
L4	47.75 - 1 (4)	0.009	0.402	0.000	0.009	0.000	0.411	1.000	4.8.2 🖌

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	${}^{\phi P_{allow}}_{lb}$	% Capacity	Pass Fail
L1	140 - 120	Pole	TP31.419x27x0.25	1	-6485.380	1724110.00 0	11.0	Pass
L2	120 - 96	Pole	TP36.723x31.419x0.25	2	-13530.000	1866770.00 0	26.8	Pass
L3	96 - 47.75	Pole	TP46.885x35.063x0.313	3	-23144.000	2956030.00 0	39.1	Pass
L4	47.75 - 1	Pole	TP56.59x44.823x0.375	4	-39088.898	4349740.00 0	41.1	Pass
							Summary	
						Pole (L4)	41.1	Pass
						RATING =	41.1	Pass

Program Version 8.0.7.4 - 5/11/2020 File://DMZSESSERVER01/Common/TNX files/28493/REV03/28493_REV03.eri

Site Number: Site Name: Job Number: Engineer: Date:	28493 Bethel West 2 REV03 CRB 9/2/2020		
Base Plate and Bolt Ana	lysis		
Moment:		2024.9	k-ft
Shear/Leg:		19.9	k
Compression/Leg:		39.1	k
TIA-222 Code Revision:		G	
Anchor Bolt Arrangemer	it:	Round	
Monopole Shaft Diamete	er (Across Flats):	56.6	in
Lower Monopole Thickn	ess:	0.375	in
# of Sides of Pole:		18	
Monopole Shaft Yield St	rength:	65	ksi
Baseplate Diameter / Lei	ngth:	69.00	
Base Plate Thickness:		2.25	in
Base Plate Yield Strength	1:	50	ksi
Baseplate Detail Type:		D	
Include Plate Thickness E	Beyond Bolt Circle:	Y	
Stress Increase:		1.00	
Fillet Weld Size:		0.375	in
Weld Type (CJP or F/F):		CJP	
Weld Strength:		70	ksi

Anchor Bolts		
Anchor Bolt Yield Strength:	75	ksi
Anchor Bolt Ultimate Strength:	100	ksi
Anchor Bolt Diameter:	2.25	in
Anchor Bolt Circle:	63.25	in
# of Anchor Bolts:	16	
Minimum Anchor Bolt Separation:	6.00	in
Additional Anchor Bolts Installed:	Ν	

Baseplate Flexural Capacity					Ba	seplate She	ear Capacity			
	Failure Mode:	Effective Width (in)	Moment (k-in)	S/Z (in˘)	Capacity (k-in)	Usage	Shear (k)	Area (in⁻)	Capacity (k)	Usage
_	AA	32.75	496.0	41.5	1865.3	0.27	280.7	73.7	1989.6	0.14
	AB	40.66	929.2	51.5	2315.6	0.40	280.7	91.5	2469.9	0.11
	BA	30.93	373.4	39.1	1761.6	0.21	280.7	69.6	1879.0	0.15
	BB	37.05	755.1	46.9	2110.0	0.36	280.7	83.4	2250.7	0.12

Anchor Bolt Capacity		
Area of Bolt:	3.25	in ²
Inertia of Bolt:	0.84	in ⁴
Total Bolt Inertia:	25998.5	in ⁴
Maximum Bolt Tension:	93.5	k
Maximum Bolt Compression:	98.4	k
Bolt Shear:	1.2	k
Tensile Bolt Capacity:	259.8	k
Compressive Bolt Capacity:	259.8	k
Shear Bolt Capacity:	140.3	k
Interaction Equation:	0.39	Result:
		ОК
Base Weld Capacity		
Force / Weld:	7.7	k/in
Weld Capacity:	26.6	k/in
Interaction Equation:	0.29	Result:
		ОК
SES Base Plate Design Moment:		327.8 k-in
Design Stress:		23.3 ksi
SES Base Plate Allowable Stress / Moment Capacity:		632.8 ksi / k-in
Usage:		0.52
Moment Factor:		2.83
Length Factor:		3.66

Site Number:	493				
Site Name:	Bethel West 2				
Job Number:	RE	V03			
Engineer:	C	RB			
Date:	9/2,	/2020			
Flange @ 120'					
Moment:		117.0	k-ft		
Shear/Leg:		6.5	k		
Compression/Leg:		6.5	k		
TIA-222 Code Revision: G					
Anchor Bolt Arrangemen	Round				
Monopole Shaft Diamet	er (Across Flats):	31.4	in		
Lower Monopole Thickn	ess:	0.250	in		
# of Sides of Pole:		18			
Monopole Shaft Yield St	rength:	65	ksi		
Baseplate Diameter / Le	ngth:	37.50			
Base Plate Thickness:		1.50	in		
Base Plate Yield Strengtl	ו:	50	ksi		
Baseplate Detail Type:	D				
Include Plate Thickness Beyond Bolt Circle: Y					
Stress Increase:		1.00			
Fillet Weld Size:		0.375	in		

Weld Type (CJP or F/F):

Weld Strength:

Anchor Bolts		
Anchor Bolt Yield Strength:	92	ksi
Anchor Bolt Ultimate Strength:	120	ksi
Anchor Bolt Diameter:	1.00	in
Anchor Bolt Circle:	35.00	in
# of Anchor Bolts:	6	
Minimum Anchor Bolt Separation:	2.67	in
Additional Anchor Bolts Installed:	Ν	

Baseplate Flexural Capacity				Ba	seplate She	ear Capacity			
Failure Mode:	Effective Width (in)	Moment (k-in)	S/Z (in˘)	Capacity (k-in)	Usage	Shear (k)	Area (in⁻)	Capacity (k)	Usage
AA	18.42	49.8	10.4	466.3	0.11	27.8	27.6	746.0	0.04
AB	13.61	49.8	7.7	344.4	0.14	27.8	20.4	551.1	0.05
BA	17.39	43.1	9.8	440.2	0.10	27.8	26.1	704.3	0.04
BB	10.55	43.1	5.9	267.1	0.16	27.8	15.8	427.3	0.07

70 ksi

CJP

Anchor Bolt Capacity	
Area of Bolt:	0.61 in ²
Inertia of Bolt:	0.03 in ⁴
Total Bolt Inertia:	556.7 in ⁴
Maximum Bolt Tension:	25.7 k
Maximum Bolt Compression:	27.8 k
Bolt Shear:	1.1 k
Tensile Bolt Capacity:	58.2 k
Compressive Bolt Capacity:	58.2 k
Shear Bolt Capacity:	26.2 k
Interaction Equation:	0.52 Result:
	ОК
Base Weld Capacity	
Force / Weld:	1.4 k/in
Weld Capacity:	21.9 k/in
Interaction Equation:	0.07 Result:
	ОК
SES Base Plate Design Moment:	49.8 k-in
Design Stress:	5.4 ksi
SES Base Plate Allowable Stress / Moment Capacity:	416.4 ksi / k-in
Usage:	0.12
Moment Factor:	0.86
Length Factor:	0.64

CENTEK engineering Centered on Solutions⁵⁴

Project

Tower Foundation Structural Analysis Report

Bethel W 2

15 Great Pasture Road Danbury, CT

Centek Project No. 14216.00

Prepared For

Verizon Wireless 99 East River Road East Hartford, CT 06108

Attn: Joseph McCarty CC: Scott Kisting, Shirley Rock

Prepared By

Centek Engineering, Inc.

63 North Branford Road Branford, CT 06405 T: 203.488.0580 F: 203.488.8587 www.centekeng.com

March 12, 2020

TABLE OF CONTENTS

1.00	EXECUT		3
	1.01	INTRODUCTION	3
	1.02	REFERENCE MATERIALS	3
	1.03	FOUNDATION ANALYSIS RESULTS	3
		i. Table 1 – Component Capacity Check	3
	1.04	CONCLUSION	4
2.00	CALCUL	ATIONS	5
	2.01	MICROPILE AS-BUILT CAPACITY	6
	2.02	LOADING ON MICROPILE	7
	2.03	REINFORCED CONCRETE MAT	9
3.00	SUPPO	RTING DOCUMENTATION	18
	3.01	MONOPOLE TOWER DESIGN (BASE REACTIONS)	19
	3.02	FOUNDATION DESIGN DRAWINGS	22
	3.03	MICROPILE DESIGN SUBMITTAL (SHEET MP-1.0)	23
	3.04	GEOTECHNICAL REPORT (PAGE 4)	24
	3.05	GROUT COMPRESSION TEST REPORTS (S-1000A, S-1001A AND S-1002A)	25
	3.06	2015 IBC (TABLE 1810.3.2.6)	28

1.00 EXECUTIVE SUMMARY

1.01 INTRODUCTION

This report was prepared on behalf of our client, Verizon Wireless, for the purpose of verifying the structural adequacy of the existing (As-Built) micropile supported tower mat foundation.

The tower foundation was originally designed by Centek in 2017. Upon re-analysis of the foundation by Thomas Taylor of Semaan engineering, a design deficiency in the micropiles was discovered. The deficiency identified consists of an overload condition of the inner (4) piles. Due to the placement of the aforementioned piles they receive the full tower axial load, the weight of the thickened portion of the mat and the associated mat weight. This combined loading exceeds the micro-plie allowable capacity.

Our reanalysis assumes the subject (4) inner micropiles to be failed and re-evaluates the system with the reinforced concrete mat supported by the remaining (40) micropiles. The reinforced concrete mat was conservatively analyzed as a one-way slab for its ability to span to the middle row of piles (31'-4"). The max pile loading was recalculated and compared to the as-built micropile capacity.

1.02 REFERENCE MATERIALS

The following documents were referenced in the structural analysis of the tower foundation:

- Monopole Tower Design Report prepared by Sabre Industries project no. 16-7133-SCB dated 7/13/16.
- Foundation Design Drawings prepared by Centek Engineering, Inc. project no. 14216.00 dated 5/3/17 Rev.2.
- Geotechnical Report prepared by Design Earth Technology project no. 2015.13, dated 2/19/16.
- Drilled Micropile Design submittal prepared by Helical Drilling Inc. dated 3/21/17.
- Grout Compression Tests prepared by Materials Testing, Inc. S-1000A, S-1001A and S-1002A dated 5/3/17.
- 2015 International Building Code (Section 1810 Deep Foundations)
- ACI 318-14 "Building Code Requirements for Structural Concrete"

1.03 FOUNDATION ANALYSIS RESULTS

A structural check was made of the tower foundation. Calculations are provided in Section 2.00 of this report. Refer to the following tables for a summary of the analysis results:

. <u>Table 1</u>

Component Capacity Check							
Component	Туре	Stress Ratio	Result				
Deinferend Constate Mat	Bending	77.4%	PASS				
Reinforced concrete Mat	Shear	72.3%	PASS				
Micropilo	Compression	87.9%	PASS				
wici opile	Rock Socket	99.2%	PASS				

1.04 CONCLUSION

This analysis finds the micropile supported tower foundation in the as-built condition to be structurally adequate to accommodate the tower reactions from the Monopole Tower Design Report prepared by Sabre Industries project no. 16-7133-SCB dated 7/13/16 Sabre.

As discussed with Scott Kisting consultant to Verizon Wireless, the maintenance and condition assessment program that Verizon has in place would identify potential issues with the foundation should they present.

The analysis is based, in part, on the original foundation design documents, Helical micropile design documents and the tower installation field inspection documents, including material testing reports. The field inspection documents compiled during construction of the subject foundation alleviate any concerns with potential installation errors.

Please feel free to call with any questions or comments.

Section 2.0

Calculations

BETHER WEST 2 JOB SHEET NO. OF Centered on Solutions^{5M} <u>www.centekeng.com</u> CALCULATED BY 63-2 North Branford Road P: (203) 488-0580 CHECKED BY DATE Branford, CT 06405 F: (203) 488-8587 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 MICRO PELE (APACETY 27 · CHECK CASED PORTION AREA OF STEEL PERE = 4 TT (5.5)2 - (5.5 - (2)(0.501))2 = 5.83 m2 AllowABLE COMPRESSION STRESS = D. 4 Fy = 32,000 (IBC 1810.3.2.6) 0.4(8) - 32 KS PALL = (5.83 me) 32 KGi) = 186.6K * ADDETIONAL STRENGTH PROVIDED & GROUN/REBAR · CHECK UNCASED PORTION ARAA OF REBAR = 1.27 in2 (FID BAR) AllowABLE GMP STORESS = 0.5Fy = \$2,000 (FBC 1810.3.2.6) 0.5 (75) . 37.5 ksi AGEA OF GENUT = + T(4)2 - 1.2712 = 11.312 ALLOWARLE COMP STRESS = 0,33 f'e (IBC 1810.3,2.6) = (0.33)(7210 psi) = 2379 psi PALLONE (127112) (32 Ksi) + (11.3 in2) (2.38 Ksi) = 67.5 K CHECK END BEARZING / GROUT BOMD (Rock Sacket) ALLOWABLE BOND LOAD = TI(4")(5'x12)(75psi) = 56.5" ALLOWBLE END BEARENG = 4TT (5.5) 2 (10 tous (AZ) (2000) = 3.3 K PALLA = 56.5 + 3.3 = 59.8 - CONTROLS

BETHEL WEST Z JOB_ SHEET NO. Centered on Solutions[™] <u>www.centekeng.com</u> CALCULATED BY DATE 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 CHECKED BY F: (203) 488-8587 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 UNFACTORED TOWER BASE REALTEONS 1 SHEAR = 36" FROM SABRE TOWER DESEGN AXEAL = 47.6K CALCS, TEA-222-F LOADENG MOMENT = 3941E-Ft WEIGHT OF CONCRETE PIER = (B')2(1')(0.15-Kcf) = 9.6K THECKED HAUNCH = = = (4.5) [8.12+ (17)2+ (18)(17) (0.15) = 10k TRIB LEAD MAT INNER (16) PELES = (39.15) = 1533 ft2 WEIGHT MAT = (1533 ft) (2.25 (0.15) = 517.5 4 INNER (16) TRIB AREA MAT = (50)2 - 1533 = 907 ft2 DUTTER (24) WEEGAT MAR = (967 Fr2 (2.25) (0.15) = 326.5K PEONE. (INNEL) = (9.6"+110"+517.5")/16 = 39.8" = 13.6 K Peone (OUTTER) = 320,5°/24 LOADS FROM TOWER FILE POLAR MOMENT OF INFRIZA $I_{P} = (23.5)^{2}(14) + (15.67)^{2}(14) + (7.83')^{2}(8) = 11660 \text{ ft}^{2}$ Mor = (36")(3.5") + 3941"-FT = 4067 =-Ft Prower (INNER) = 4067 K+++ (15.67') + 47.6" = 8.5" Prower (ourrer) = 4007 * F+ (23.5') = 8.2 h

ELUXE FOR BUSINESS 1-800-888-6327

Neurose second P B milita menuna 1	JOB BETHEL WEST	2
	SHEET NO	OF
Centered on Solutions [™] <u>www.centekeng.com</u> 63-2 North Branford Road P [•] (203) 488-0580	CALCULATED BY	DATE
Branford, CT 06405 F: (203) 488-8587	CHECKED BY	DATE
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5	SCALE	8 1 2 3 4 5 6 7 8 1 2 3
		3
DEAD LAND		
17,000 H Tor. /4 = 4750	# (COMMSCOPE VZWA-	9-4×16-6LSP-3
TOTAL LOADS ON PELES		43
	D-k Hok I -k	rapk = rop / r
FTOT (TANNER) = 39.8 +	5.5 + 7.5 + 6.1 = 1.5	9.3 < 57.0(09)
PTOT (OUTTER) = 13.6 " +	8.2 + 7.3 + 6.7 = =	
		8
Por 59.	3k = 99.2 70	6 5
PALL COMP = 59	,3	4
		1 8
PT 59.3	× 379 70	7 6 5
PAUL 05 - 67-1	ри 5	43
		1
		7
		3
		2
		3 2 1
		8
		b 5 4
		3
		1 5 7
		6 6 6
		4 3 2
- N 0 4 9 9 1 8 - N 0 4 9 9 1 8 - N 0 4 9 9 1 9 9 1 9 9 1 9 1 9 1 9 1 9 1 9 1	0 ~ 0 ~ 0 0 4 0 0 ~ 0 ~ 0 0 4 0 0 ~	1 0 = 0 0 = 0 0

TEKLA [®]	Project				Job Ref.	
Centek Engineering, Inc, 63-2 North Branford Road	Section				Sheet no./rev. 1	
Branford, CT 06405	Calc. by T	Date 3/11/2020	Chk'd by	Date	App'd by	Date

	Project				Job Ref.	
Centek Engineering, Inc, 63-2 North Branford Road	Section				Sheet no./rev. 2	
Branford, CT 06405	Calc. by T	Date 3/11/2020	Chk'd by	Date	App'd by	Date
		Smax = 11.250 i	n			
Actual tensile bar spacing provided	I	s = 8.500 in				
	PA	ASS - Spacing o	of bars (+ve mo	ment steel) les	s than maxim	um allowable
Check for section - positive mon	nents					
Depth of equivalent rectangular structure	ess block	$a = (A_{s_prov} \times f_y)$) / (0.85 × f'c) = 2	2.63 in		
Depth of neutral axis		$c = a / B_1 = 3.0$	94 in			
Net tensile strain in long steel at n	ominal strength	$p = 0.003 \times [(d$	(-c)/c] = 0.018	32		
Not toholio ottain in long. Stool at h	ommarotrongtr	51 – 0.000 × [(0	0) / 0] = 0.010	Section is tens	ion controlle	d. desian OK
Strength reduction factor		+ – 0 9				a, accigit ett
	tura va avtin	$\phi = 0.3$	440.000 100 4/4			
Revised required norminal flexural s	strengtn	$IVIns = IVIus / \phi =$	142.222 kip_tt/f		£1./£1	
Actual nominal flexural strength	DAG	IVIns_prov = As_prov	$7 \times T_y \times (d - a / 2)$	2) = 183.756 Kip	_π/π d nominal flav	unal atranath
	PAS	ss - Actual nex	urai strength ex	ceeus requirec	nominai ne	kurai strengtri
Transverse reinforcement - (for s	shrinkage and t	emperature)				
Transverse reinforcement provided		No. 10 @ 8.5 i	n o.c.			
Area of reinforcement provided		At_prov = 1.788	n²/ft			
Min ratio of transverse reinforceme	nt (cl. 7.12.2.1)	ρ ^t = 0.0018				
Minimum area of transverse reinfor	cement required	I At_req = _p t × h =	0.518 in²/ft			
			PA	SS - Area of tra	nsverse stee	l provided OK
Maximum allowable spacing of bars	s	$S_{max_t} = min (5)$	× h, 18 in) = 18	. 000 in		
Actual transverse bar spacing prov	ided	st = 8.500 in				
			PASS - Spacing	of transverse	bars is less t	han allowable
Check for shear						
Nominal shear strength required		$V_n = abs(V_u) / 0$	0.75 = 24.000 ki	ps/ft		
Shear strength provided by concret	te	$V_c = 2 \times \lambda \times \sqrt{f}$	'c × 1 psi) _× d = :	33.189 kips/ft		
Shear strength provided by shear s	teel (assumed)	$V_s = 0 \text{ kips/ft}$		•		
Shear capacity of section		$V = V_c + V_s = 3$	3.189 kips/ft			
			·	PASS	- One-way sl	hear capacity
Check of clear cover (ACL7.7.1)					-	
Permissible min nominal cover to a	III reinforcement	$c_{min} = 0.75$ in				
Clear cover to tension reinforcement	nt (+ve mnt)	$c_0 = b = d = D/2$	2 – 1 500 in			
	PASS - Cove	er to steel resis	tina positive m	oment exceeds	allowable m	inimum cover
Deflection						
Support condition	0.5(.))	Both ends co	ntinuous			
Basic span-to-thickness ratio (Tabi	e 9.5(a))	ratiobasic = 28				
i ype of concrete		Normal weigh	τ			
Concrete density factor (Table 9.5(a))	fdensity = 1.00				
Allowable span-to-thickness ratio		ratioallow = ratio	basic / (fdensity $_{ imes}$ (0.	4 + f _y / 100000 p	osi)) = 28.000	
Actual span-to-thickness ratio		ratio _{actual} = In / ł	n = 15.665			
		PA	SS - The slab tl	hickness is ade	quate to cont	trol deflection
Design summary Slab is 24.0 in thick in 4000 psi cor	ncrete					

	Project				Job Ref.	
Centek Engineering, Inc,	Section				Sheet no./rev.	
63-2 North Branford Road Branford, CT 06405	Calc. by T	Date 3/11/2020	Chk'd by	Date	App'd by	Date
Tension steel provided - positive r Transverse steel provided , No. 10	noment, No. 10 0 @ 8.5 in o.c. i) @ 8.5 in o.c. in 6 in 60000 psi steel	50000 psi steel			

TEKLA [®]	Project				Job Ref.	
Centek Engineering, Inc, 63-2 North Branford Road	Section	Sheet no./rev. 1				
Branford, CT 06405	Calc. by T	Date 3/11/2020	Chk'd by	Date	App'd by	Date

	Project				Job Ref.	
Centek Engineering, Inc, 63-2 North Branford Road	Section				Sheet no./rev. 2	
Branford, CT 06405	Calc. by T	Date 3/11/2020	Chk'd by	Date	App'd by	Date
		Smax = 11.250	in			
Actual tensile bar spacing provid	bed	Shog = 8.500 in	า			
		PASS	- Spacing of	bars (-ve mnt) less than maxiı	num allow
Check for section - negative m	noment					
Depth of equivalent rectangular	stress block	ahog = (As_prov_	_{hog} × fy) / (0.85	× f'c) = 2.63 in	1	
Depth of neutral axis		Chog = a_{hog} / β_1	= 3.094 in			
Net tensile strain in long. steel at	t nominal strength	$_{\rm E}t_{\rm hog} = 0.003$	× [(dhog – Chog)	/ Chog] = 0.018	2	
	· ·	0	•	Section is	tension controll	ed, Desig
Strength reduction factor		_{фhog} = 0.9				-
Revised required nominal flexura	al strength	$M_{\rm nh} = M_{\rm uh} / A_{\rm hh}$	og = 95.556 kip	ft/ft		
Actual nominal flexural strength	2. ottorig	$M_{nh} prov = A_{s} pr$	$roy hog \times f_{V} \times (dt)$	$-a_{hog} - a_{hog} / 2) =$	183.756 kip ft/ft	
	PAS	SS - Actual fle	xural strength	exceeds req	uired nominal fle	exural stre
Transverse reinforcement (fo	ar chrinkago and t	omporatura)	, in the second s			
Transverse reinforcement provid	hed		inoc			
Area of reinforcement provided	leu	NO. 10 @ 8.5	in ² /ft			
Min ratio of transverse reinforcer	ment (cl. 7 12 2 1)					
		$\rho^{t} = 0.0018$	0.540 := 2/4			
Minimum area of transverse fem	norcement required	$At_req = \rho t \times \Pi$	U.518 III-/IL	2455 - 4102 0	f transvorso sto	ol provido
Maximum allowable spacing of h	are	$S_{max} + - \min($	r 5 y h 18 in) -	18 000 in	i liansverse slee	er provide
Actual transverse bar spacing of b	rovided	$S_{t} = 8500$ in	5 × 11, 10 11) =	10.000 11		
	ovidod	0. - 0.000 m	PASS - Spac	ing of transve	erse bars is less	than allow
Chack for shoar				J		
Nominal shear strength required		$N_{\rm r} = abs(N_{\rm r})/c$	0 75 - 24 000	kins/ft		
Shoer strength provided by cons	proto	$V_{\rm H} = 2 \cos(V_{\rm H})/$	$(f^2 \times 1 \text{ poi})$	-22400 k	no/ft	
Shear strength provided by conc	r stool (assumed)	$V_c = 2 \times \chi \times \sqrt{1}$	(ic x i psi) _× u	nog = 33.109 KI	ps/m	
Shear canacity of section	ir steel (assumed)	$V_s = 0$ kip3/it	33 189 kins/ft			
chear capacity of section		$\mathbf{v} = \mathbf{v}\mathbf{c} + \mathbf{v}\mathbf{s} =$	33.103 Kip3/It	P	ASS - One-way	shear cana
						neur eupe
Check of clear cover (ACI 7.7.1	l) a all rainfaraamaat	0.75 in				
Clear cover to topoion reinference		$C_{min} = 0.75 \text{ III}$	D: /2 - 1	500 in		
clear cover to tension reinforcem	PASS - Cove	r to steel resis	$\log - D \log/2 = 1.$	moment evc	oods allowable n	ninimum c
	1 A00 - 0076		sing negative			
Deflection						
		Both ends co	ontinuous			
Support condition	$r = 0 \Gamma(r)$	fattobasic = 28				
Basic span-to-thickness ratio (Ta	able 9.5(a))		l. 4			
Basic span-to-thickness ratio (Ta Type of concrete	able 9.5(a))	Normal weig	ht			
Basic span-to-thickness ratio (Ta Type of concrete Concrete density factor (Table 9.	able 9.5(a)) .5(a))	Normal weig	ht			
Basic span-to-thickness ratio (Ta Type of concrete Concrete density factor (Table 9. Allowable span-to-thickness ratio	able 9.5(a)) .5(a)) ว	Normal weig fdensity = 1.00 ratioallow = rati	ht Obasic / (fdensity _×	(0.4 + fy / 1000	000 psi)) = 28.000)
Basic span-to-thickness ratio (Ta Type of concrete Concrete density factor (Table 9 Allowable span-to-thickness ratio Actual span-to-thickness ratio	able 9.5(a)) .5(a)) o	Normal weig fdensity = 1.00 ratiOallow = rati ratiOactual = ln /	ht _{Obasic} / (f _{density ×} h = 15.665	(0.4 + fy / 1000	000 psi)) = 28.000	I

Tension steel provided - negative moment, No. 10 @ 8.5 in o.c. in 60000 psi steel

·*·	TEKLA	Project				Job Ref.	
Centek En	gineering, Inc,	Section				Sheet no./rev.	
63-2 North	Branford Road			0		3	
Branion	a, CT 06405	Calc. by T	Date 3/11/2020	Chk'd by	Date	App'd by	Date
Transverse	teel provided No. 10	@ 85 in o.c. in	60000 nsi stael	1	L	I	1
		@ 0.5 III 0.0. III					
						-	
			C	\sim			
)			
		\mathcal{O}					
	-						

Section 3.0

Supporting Documentation

Bethel West 2 Tower Foundation (SAR)

Sabre Industries Towers and Poles
Structural Design Report 120' Extendible to 140' Monopole Site: Bethel W2, CT Site Number: 5-0157
Prepared for: VERIZON WIRELESS by: Sabre Towers & Poles [™]
Job Number: 16-7133-SCB
July 13, 2016
Monopole Profile 1
Pole Calculations
Mo. 28396 HAR CONNECTION HAR CONNECT

Designed Appurtenance Loading

Elev	Description	Tx-Line
140***	(3) 800 10510	(3) 1 5/8"
140***	(18) TMA	
140***	(2) DB-B1-6C-12AB-0Z	(2) DC/Fiber Trunks
140***	(12) RRH2x40-AWS	
140***	(9) 800 10766	(9) 1 5/8"
138***	L.P. Platform (Monopole Only) - 12' w/ Handrail	
130***	L.P. Platform (Monopole Only) - 12' w/ Handrail	
130***	(12) RRH2x40-AWS	
130***	(18) TMA	
130***	(3) 800 10510	(3) 1 5/8"
130***	(9) 800 10766	(9) 1 5/8"
130***	(2) DB-B1-6C-12AB-0Z	(2) DC/Fiber Trunks
120	(6) HBX-6517DS-VTM	(9) 1 5/8"
120	(3) RRH2x60-AWS	
120	(3) RRH2x60-1900A-4R	
120	(2) DB-B1-6C-12AB-0Z	(2) DC/Fiber Trunks
120	(6) 800 10766	(9) 1 5/8"
120	(3) RRH2x60-700	
118	L.P. Platform (Monopole Only) - 14' w/ Handrail	
110	L.P. Platform (Monopole Only) - 12' w/ Handrail	
110	(12) RRH2x40-AWS	
110	(18) TMA	
110	(3) 800 10510	(3) 1 5/8"
110	(9) 800 10766	(9) 1 5/8"
110	(2) DB-B1-6C-12AB-0Z	(2) DC/Fiber Trunks
100	L.P. Platform (Monopole Only) - 12' w/ Handrail	
100	(12) RRH2x40-AWS	
100	(18) TMA	
100	(3) 800 10510	(3) 1 5/8"
100	(9) 800 10766	(9) 1 5/8"
100	(2) DB-B1-6C-12AB-0Z	(2) DC/Fiber Trunks

Load Case Reactions

Description	Axial (kips)	Shear (kips)	Moment (ft-k)	Deflection (ft)	Sway (deg)
3s Gusted Wind	57.21	45.89	4952.27	9.02	6.45
3s Gusted Wind 0.9 Dead	42.95	45.76	4867.79	8.82	6.3
3s Gusted Wind&Ice	81.12	14.08	1566.09	2.91	2.07
Service Loads	47.65	9.22	988.59	1.81	1.29

Base Plate Dimensions

Shape	Diameter Thickness		Bolt Circle	Bolt Qty	Bolt Diameter	
Round	69"	2.25"	63.25"	16	2.25"	

Anchor Bolt Dimensions

	Length	Diameter	Hole Diameter	Weight	Туре	Finish
l	84"	2.25"	2.625"	1937.6	A615-75	Galv-18"

Notes

- 1) Antenna Feed Lines Run Inside Pole
- 2) All dimensions are above ground level, unless otherwise specified.
- 3) Weights shown are estimates. Final weights may vary.
- 4) The Monopole was designed for a basic wind speed of 100 mph with 0" of radial ice, and 50 mph with 3/4" of radial ice, in accordance with ANSI/TIA-222-G, Structure Class II, Exposure Category C, Topographic Category 1.
- 6) The Monopole was designed for a basic wind speed of 85 mph with 1/2" radial ice with reduction, in accordance with EIA/TIA-222-F.
- 7) ANSI/TIA-222-G load case reactions are shown in the table above. EIA/TIA -222-F load case reactions can be found in the calcuations toward the end of this design report.
- These Appurtenances cannot be installed until the Monopole has been

95.00	0.02	0.54	0.55 180.0	0.04	0.00	0.04 90.0	
	0.02	0.55	0.57 180.0	0.04	0.00	0.04 90.0	
81.08	0.02	0.74	0.75 180.0	0.04	0.00	0.04 90.0	
	0.02	0.74	0.75 180.0	0.04	0.00	0.04 90.0	
67.17	0.02	0.87	0.89 180.0	0.03	0.00	0.03 90.0	
	0.02	0.87	0.89 180.0	0.03	0.00	0.03 90.0	
53.25	0.02	0.97	0.98 180.0	0.03	0.00	0.03 90.0	
55.25	0.01	0.81	0.82 180.0	0.03	0.00	0.03 90.0	
46.75	0.01	0.84	0.85 180.0	0.03	0.00	0.03 90.0	
	0.01	0.86	0.87 180.0	0.03	0.00	0.03 90.0	
35.06	0.01	0.90	0.92 180.0	0.03	0.00	0.03 90.0	
55100	0.01	0.90	0.92 180.0	0.03	0.00	0.03 90.0	
23.37	0.01	0.94	0.95 180.0	0.03	0.00	0.03 90.0	
	0.01	0.94	0.95 180.0	0.03	0.00	0.03 90.0	
11 69	0.01	0.96	0.97 180.0	0.03	0.00	0.03 90.0	
11105	0.01	0.96	0.98 180.0	0.03	0.00	0.03 90.0	
0.00	0.01	0.98	0.99 180.0	0.02	0.00	0.02 90.0	
EXTREME	FIBRE STRESS	ES IN LAF	SPLICE				

16-7133-SCB - Extension

ELEV	CONTACT.P	RESSURE	HOOP.S	TRESSES	BENDING.S	TRESSES
ft	MAX ksi	AZI deg	MAX ksi	AZI deg	MAX ksi	AZI deg
100.25	0.30	0.0	21.55	90.0	29.57	180.0
95.00	0.29	180.0	21.56	90.0	28.76	180.0
53.25	0.54	0.0	39.05	90.0	50.24	180.0
46.75	0.52	180.0	39.06	90.0	44.78	180.0

LOADS ONTO FOUNDATION(w.r.t. NORTH-EAST-DOWN coordinates) -----____

TOTAL	NORTH	HEAR		.MOMENT	TORSION
kip	kip	ki	p <u>ft-kip</u>	ft-kip	ft-kip
47.56	-36.16	0.0	3940.84	0.00	0.00
LOADS ONTO	FOUNDATION(w.r	.t. wind	direction)		
DOWN	SHEAR.w.r.t.W	IND.DIR	MOMENT.w.r.t	.WIND.DIR	TORSION
kip	kip	kip	ft-kip	ft-kip	ft-kip
47.56	36.16	0.00	-3940.84	0.00	0.00

85 mph + 0.5" ice (Reduction Allowed)

NOTES:

1. Micropiles shall be advanced through the fill soil and bonded into bedrock at an average maximum depth of 25.0' below working grade.

2. Micropiles shall consist of steel casing, with an outside diameter of 5.5" and a wall thickness of 0.361" as manufactured by PennDrill Manufacturing (Punxsutawney, PA) with N80 flush joint casing. The lead section of casing shall be fitted with carbide "J" teeth. Beyond that a 4.0" rock socket will be a drilled for the bond zone. The borehole will be filled with a minimum 4.0 ksi neat cement arout and a #10 (GR-75) thread bar. The thread bar will be centered using PVC centralizers. A minimum bond length of 5'-0" is required.

3. All Micropiles will be designed for 55 kips (allowable) axial compression.

4. Pile cap plates will be a minimum of 6.5" x 6.5" x .75" structural steel plates. Structural Engineer of Record to verify depth/height of bearing plates in pile cap.

5. Concrete pile caps and grade beams, including pile embedment into concrete, shall be sized and designed by the Structural Engineer of Record. We have schematically shown the pile caps. Pile layout will be the responsibility of others along with any as-built information. Minimum pile spacing shall be 3 times the pile diameter.

SCALE AS NOTE	DATE 3/21/17	SHEET	PLAN #		639 GRANITE ST. BRAINTREE MA	MICROPILE LOC
DRAWN I	BY CHKD BY	APPD BY	DISK REF #	HELICAL	02 84	15 Gre
MJP	PJY	RMV		Geotechnical Design/Build	(78) 848-2 0	I

Carlo F. Centore, P.E. February 19, 2016 Page 4

accomplished by rotary percussive methods, which can address obstructions (i.e. cobbles, boulders, wood/stumps, debris). It is estimated that these mini-piles would be about 30 to 40 feet deep. Static load tests would be required to verify load capacity. These rock-socketed mini-piles would achieve capacity through side friction in the rock socket and end bearing.

There are a few considerations when the mini-piles are designed by the structural engineer. The design load shall be distributed into the bedrock using the bond strength between the bedrock and the grout. This bond strength value can be estimated from the bedrock core samples at Ultimate Bond Strength of 150 psi. A minimum of 5' shall used as the uncased bond length into bedrock. Due to the relatively small cross sectional area of the mini-pile, load carrying capacity resulting from end bearing is generally considered to be negligible for mini-piles, the use of 10.0 tons/square foot net allowable bearing capacity could be used if end bearing is being considered. Corrosion of the mini-piles needs to be addressed in both the bonded and unbonded zones. It is recommended in the un-bonded zone to have steel installation casing left inplace (from top of bedrock to within the upper horizontal foundation component). This produces a superior mini-pile that has a higher quality of installation. Mini-piles are very slender elements that can not resist lateral load effectively. The use of battered mini-piles is recommended for the lateral loads. The mini-piles shall not be designed to carry tensile or uplift loads. Because the fill material will continue to settle, the mini-pile design must address "negative" skin friction. Negative skin friction develops along the contact surface between pile and soil when the soil settles relative to the pile. The negative skin friction must be added into the dead load of the pile. A preliminary estimate of this negative skin friction load could be as much as 20 tons per pile.

At least one verification load test should be performed to confirm the ultimate bond stress. A minimum of one proof test should also be performed on one of the production pile.

Equipment Shelter

If the shelter is allowed to settle because of the deep fill material, a spread footing is considered appropriate, if minimal settlement is allowed for the shelter, a deep foundation with a mini-pile foundation system is to be used.

EARTHQUAKE DESIGN (SEISMIC)

Seismic design requirements for the State of Connecticut are based on the Connecticut State Building Code, which incorporates the Seismic design Category approach from the International Building Code. The seismic design Category determination is based on a few category factors. One such category is the "Site Classification (soil type)". From our test borings, we consider that the site subsurface conditions match the General Description of "Very Dense Soil and Soft Rock". The site classification is therefore "C".

The proposed deep foundation is to bear on bedrock. This bedrock <u>will not</u> liquefy during a seismic event and needs not be addressed in the foundation design.

MATERIALS TESTING, INC.

55 LAURA STREET • NEW HAVEN, CONNECTICUT 06512 • (203)468-5216

42 BOSTON POST ROAD • WILLIMANTIC, CONNECTICUT 06226 • (860)423-1972

materialstestinginc.com

COMPRESSION TESTS (MASONRY)							
CLIENT:	Centek Engineering 63-2 North Branford Road Branford, CT 06405 Attn: Erik Armas	S-1001A					
PROJECT:	17000.01 Bethel West 2	4					
LOCATION:	Pile #36						
MATERIAL:	Type II Portland Cement						
DATE CAST:	04-18-17	DATE RECEIVED: 05-03-17					
TEMPERATU	RE-AMBIENT:	MIX:					
SAMPLES CA	ST BY: Contractor	SAMPLING TIME:					
REQUIRED S	TRENGTH: 5000 PSI						
SAMPLE TYPE: SLUMP: 3½" x 3½" x 7" GROUT - ASTM C1019 FLOW RATE: 6" x 12" CYLINDERS - COARSE GROUT - ASTM C31 FLOW RATE: 2" x 2" CUBES - MORTAR - ASTM C109 MODIFIED							

SAMPLE NUMBER	AGE DAYS	DATE TESTED	LOAD LBS.	COMPRESSIVE STRENGTH- PSI
S-50746	21	05-09-17	31,660	7920
S-50747	28	05-16-17	32,510	8130
S-50748	28	05-16-17	28,840	7210

Materials Testing, Inc.

William J. Soucy

1cc: Client

SW

MATERIALS TESTING, INC.

55 LAURA STREET • NEW HAVEN, CONNECTICUT 06512 • (203)468-5216 42 BOSTON POST ROAD • WILLIMANTIC, CONNECTICUT 06226 • (860)423-1972

materialstestinginc.com

COMPRESSION TESTS (MASONRY)						
CLIENT:	Centek Engineering 63-2 North Branford Road Branford, CT 06405 Attn: Erik Armas	S-1000A				
PROJECT:	17000.01 Bethel West 2	4				
LOCATION:	Pile #3					
MATERIAL:	Type II Portland Cement					
DATE CAST:	04-18-17	DATE RECEIVED: 05-03-17				
TEMPERATU	RE-AMBIENT:	MIX:				
SAMPLES C	AST BY: Contractor	SAMPLING TIME:				
REQUIRED S	TRENGTH: 5000 PSI					
SAMPLE TYPE: SLUMP: 3½" x 3½" x 7" GROUT - ASTM C1019 FLOW RATE: 6" x 12" CYLINDERS - COARSE GROUT - ASTM C31 FLOW RATE: 2" x 2" CUBES - MORTAR - ASTM C109 MODIFIED						

SAMPLE NUMBER	AGE DAYS	DATE TESTED	LOAD LBS.	COMPRESSIVE STRENGTH- PSI
S-50743	21	05-09-17	42,980	10,720
S-50744	28	05-16-17	39,580	9900
S-50745	28	05-16-17	45,380	11350

Materials Testing, Inc.

William J. Soucy

1cc: Client

SW

Test reports may not be reproduced without the express permission of Materials Testing, Inc. Results only relate to items tested.

MATERIALS TESTING, INC.

55 LAURA STREET • NEW HAVEN, CONNECTICUT 06512 • (203)468-5216 42 BOSTON POST ROAD • WILLIMANTIC, CONNECTICUT 06226 • (860)423-1972

materialstestinginc.com

COMPRESSION TESTS (MASONRY)							
CLIENT:	Centek Engineering 63-2 North Branford F Branford, CT 06405 Attn: Erik Armas	Road	S-1002A				
PROJECT:	17000.01 Bethel Wes	st 2					
LOCATION:	Pile #25						
MATERIAL:	Type II Portland C	ement					
DATE CAST:	04-18-17		DATE RECEIVED: 05-03-17				
TEMPERATU	RE-AMBIENT:		MIX:				
SAMPLES C	AST BY: C	ontractor	SAMPLING TIME:				
REQUIRED S	TRENGTH:	5000 PSI					
SAMPLE TY	PE:		SLUMP:				
□ 3½" x 3½	" x 7" GROUT - ASTM	I C1019					
CORRECTION OF A STM C100 MODIFIED							
□ 2" X 2" CUBES - MORTAR - ASTMICTU9 MODIFIED							
□ OTHER:							

SAMPLE NUMBER	AGE DAYS	DATE TESTED	LOAD LBS.	COMPRESSIVE STRENGTH- PSI
S-50749	21	05-09-17	28,840	7210
S-50750	28	05-16-17	30,750	7690
S-50751	28	05-16-17	30,690	7670

Materials Testing, Inc.

William J. Soucy

1cc: Client

SW

Test reports may not be reproduced without the express permission of Materials Testing, Inc. Results only relate to items tested.

1810.3.2.6 Allowable stresses. The allowable stresses for materials used in deep foundation elements shall not exceed those specified in Table 1810.3.2.6.

This section refers the code user to the table of allowable stresses in order to identify the correct values that apply to various types of deep foundations. Note that Section 1810.1.4 allows "special types of piles" using the allowable stresses for materials that are specified herein.

TABLE 1810.3.2.6. See below.

This table provides a complete list of the relevant allowable stresses for deep foundation element materials including concrete, reinforcing steel and structural steel.

1810.3.2.7 Increased allowable compressive stress for cased cast-in-place elements. The allowable compressive stress in the concrete shall be permitted to be increased as specified in Table 1810.3.2.6 for those portions of permanently cased cast-in-place elements that satisfy all of the following conditions:

- 1. The design shall not use the casing to resist any portion of the axial load imposed.
- 2. The casing shall have a sealed tip and be mandrel driven.
- 3. The thickness of the casing shall not be less than manufacturer's standard gage No.14 (0.068 inch) (1.75 mm).

- 4. The casing shall be seamless or provided with seams of strength equal to the basic material and be of a configuration that will provide confinement to the cast-in-place concrete.
- 5. The ratio of steel yield strength (F_y) to specified compressive strength (f'_c) shall not be less than six.
- 6. The nominal diameter of the element shall not be greater than 16 inches (406 mm).
- ✤ For cased cast-in-place concrete elements formed by driving permanent steel casings, the allowable design compressive stress in Table 1810.3.2.6 is generally not to exceed 0.33*f* '_c. When the permanent casing complies with the requirements of this section, the allowable concrete compressive stress may be increased to 0.40*f* '_c. The basis for this increase in allowable concrete stress is the added strength given to the concrete by the confining action of the steel casing. The general formula for increased allowable stress caused by confinement is:

$$f_c 0.33 f'_c \left(\frac{1+7.5 t f_y}{D f'_c}\right)$$

where:

 f_c = Allowable concrete stress.

 f'_c = Specified concrete strength.

MATERIAL TYPE AND CONDITION	MAXIMUM ALLOWABLE STRESS ^a					
1. Concrete or grout in compression ^b Cast-in-place with a permanent casing in accordance with Section 1810.3.2.7 Cast-in-place in a pipe, tube, other permanent casing or rock Cast-in-place without a permanent casing Precast nonprestressed Precast prestressed	$\begin{array}{c} 0.4 f'_{c} \\ 0.33 f'_{c} \\ 0.3 f'_{c} \\ 0.33 f'_{c} \\ 0.33 f'_{c} \\ 0.33 f'_{c} - 0.27 f_{pc} \end{array}$					
2. Nonprestressed reinforcement in compression	$0.4 f_y \le 30,000 \text{ psi}$					
 3. Steel in compression Cores within concrete-filled pipes or tubes Pipes, tubes or H-piles, where justified in accordance with Section 1810.3.2.8 Pipes or tubes for micropiles Other pipes, tubes or H-piles Helical piles 	$\begin{array}{c} 0.5 \ F_{y} \leq 32,000 \ \text{psi} \\ 0.5 \ F_{y} \leq 32,000 \ \text{psi} \\ 0.4 \ F_{y} \leq 32,000 \ \text{psi} \\ 0.35 \ F_{y} \leq 16,000 \ \text{psi} \\ 0.6 \ F_{y} \leq 0.5 \ F_{u} \end{array}$					
4. Nonprestressed reinforcement in tension Within micropiles Other conditions	$\begin{array}{c} 0.6f_{\mathrm{y}}\\ 0.5f_{\mathrm{y}} \leq 24{,}000~\mathrm{psi} \end{array}$					
 5. Steel in tension Pipes, tubes or H-piles, where justified in accordance with Section 1810.3.2.8 Other pipes, tubes or H-piles Helical piles 	$\begin{array}{c} 0.5 \ F_{y} \leq 32,000 \ \text{psi} \\ 0.35 \ F_{y} \leq 16,000 \ \text{psi} \\ 0.6 \ F_{y} \leq 0.5 \ F_{u} \end{array}$					
6. Timber	In accordance with the AWC NDS					

TABLE 1810.3.2.6 ALLOWABLE STRESSES FOR MATERIALS USED IN DEEP FOUNDATION ELEMENTS

a. f'_c is the specified compressive strength of the concrete or grout; f_{yc} is the compressive stress on the gross concrete section due to effective prestress forces only; f_y is the specified yield strength of reinforcement; F_y is the specified minimum yield stress of steel; F_u is the specified minimum tensile stress of structural steel.

b. The stresses specified apply to the gross cross-sectional area within the concrete surface. Where a temporary or permanent casing is used, the inside face of the casing shall be considered the concrete surface.

18-54 INTERNATIONAL CODE COUNCIL

2015 INTERNATIONAL BUILDING CODE® COMMENTARY

Copyright © 2015 ICC. ALL RIGHTS RESERVED. Accessed by Christopher Zygmunt jr. (CZYGMUNT@centekeng.com), (-) Order Number #100611969 on Nov 2, 2018 7:56:22 AM pursuant to License Agreement with ICC. No further reproduction or distribution authorized. Single user only, copying and networking prohibited. ANY UNAUTHORIZED REPRODUCTION OR DISTRIBUTION IS A VIOLATION OF THE FEDERAL COPYRIGHT ACT AND THE LICENSE AGREEMENT, AND SUBJECT TO CIVIL AND CRIMINAL PENALTIES THEREUNDER.

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

Elevation: 386.01 ft (NAVD 88) Latitude: 41.383 Longitude: -73.4222

Wind

Results:

Wind Speed:	117 Vmph
10-year MRI	76 Vmph
25-year MRI	85 Vmph
50-year MRI	90 Vmph
100-year MRI	96 Vmph
Data Source:	ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, incorporating errata of March 12, 2014
Date Accessed:	Mon Feb 10 2020

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Site Soil Class: Results:	D - Stiff Soil			
S _S :	0.216	S _{DS} :	0.23	
S ₁ :	0.067	S _{D1} :	0.107	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA :	0.118	
S _{MS} :	0.345	PGA M :	0.184	
S _{M1} :	0.16	F _{PGA} :	1.565	
		l _e :	1	

Seismic Design Category B

Data Accessed: Date Source:

Mon Feb 10 2020

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:	0.75 in.	
Concurrent Tem	erature: 15 F	
Gust Speed:	50 mph	
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 1	0-8
Date Accessed:	Mon Feb 10 2020	

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

Elevation: 386.01 ft (NAVD 88) Latitude: 41.383 Longitude: -73.4222

Wind

Results:

Wind Speed:	117 Vmph
10-year MRI	76 Vmph
25-year MRI	85 Vmph
50-year MRI	90 Vmph
100-year MRI	96 Vmph
Data Source:	ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, incorporating errata of March 12, 2014
Date Accessed:	Mon Feb 10 2020

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Site Soil Class: Results:	D - Stiff Soil			
S _S :	0.216	S _{DS} :	0.23	
S ₁ :	0.067	S _{D1} :	0.107	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA :	0.118	
S _{MS} :	0.345	PGA M :	0.184	
S _{M1} :	0.16	F _{PGA} :	1.565	
		l _e :	1	

Seismic Design Category B

Data Accessed: Date Source:

Mon Feb 10 2020

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:	0.75 in.	
Concurrent Tem	erature: 15 F	
Gust Speed:	50 mph	
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 1	0-8
Date Accessed:	Mon Feb 10 2020	

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

PREPARED FOR

CONTACT INFORMATION

SEMAAN ENGINEERING SOLUTIONS HOLDINGS. LLC

ENGINEER OF RECORD

ADDRESS: 1047 N 205TH STREET ELKHORN, NE 68022

CONTACT. THOMAS TAYLOR ----(402) 289-1888 x1 TOMT@SEMAANENG.COM

NAME

EMAIL ·

MODIFICATION PACKAGE FOR A 119 FT 18-SIDED SABRE MONOPOLE WITH A PROPOSED 20 FT EXTENSION

CLIENT SITE NAME/NUMBER

28493

PROPOSED CARRIER / SITE NAME

AT&T / BETHEL WEST 2

SITE ADDRESS

15 GREAT PASTURE ROAD DANBURY, CT 06810 FAIRFIELD COUNTY N41°22'58.8", W73°25'19.92"

> DATE: 09/02/2020

	SHEET INDEX		STAMP	VICINITY MAP
SHEET #	SHEET TITLE	REV #		
T-1	TITLE SHEET	1		Star generations Department of Motor Vehicles
N-1	GENERAL NOTES	1		the stanley Engineered
N-2	SITE SPECIFIC NOTES	0	anthinning a second s	Transford Hudsan Country master factor Rob Martlessort School P
S-1	MONOPOLE ELEVATION VIEW	0	IN OF CONVECTION	Party Depot
S-2	MONOPOLE EXTENSION DETAILS	0	AR AS L TAL C	
S-3	MONOPOLE EXTENSION SECTIONS	0		DRSCI
			* notes the	en 2 FuelGall Energy
			No. 28130	Michael's II Cale 😲
			CENSE CENSE	A soles a 15 Great Pasture Road
			///// ONALENCIUM 02.20	
			EXP. 01/31/2021	A longer of the second second
				The second
]	Bid Quarry Nature Comer
			I HEREBY CERTIFY THAT THIS ENGINEERING DOCUMENT WAS PREPARED BY ME OR UNDER MY DIRECT PERSONAL SUPERVISION	Both
			AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF CONNECTICUT	

PREPARED BY

MODIFICATION OUTLINE

THE MODIFICATIONS PROVIDED IN THESE DRAWINGS ARE BASED ON THE RECOMMENDATIONS OUTLINED IN THE STRUCTURAL MODIFICATIONS ANALYSIS REPORT COMPLETED BY SEMAAN ENGINEERING SOLUTIONS HOLDINGS, LLC (SES) DATED 09/02/2020. THIS REPORT IS BASED ON A SPECIFIC ANTENNA LOADING AND COAX CONFIGURATION AS DEFINED IN THE REPORT. ANY OTHER ANTENNA OR COAX CONFIGURATION REQUIRES **REVIEW BY SES**

CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, QUANTITIES, PART NUMBERS AND COAX/ANTENNA PLACEMENTS PRIOR TO BIDDING, ORDERING MATERIALS, AND CONSTRUCTION.

GENERAL NOTES:

- 1. REFERENCE THE SEMAAN ENGINEERING SOLUTIONS ANALYSIS DATED 09/02/2020 FOR THE PROPOSED AND EXISTING LOADS CONSIDERED. THIS DRAWING IS NOT VALID IF LOADS OTHER THAN THOSE CONSIDERED IN THE ANALYSIS ARE ADDED TO OR REMOVED FROM THE STRUCTURE UNLESS APPROVED IN WRITING BY SEMAAN ENGINEERING SOLUTIONS HOLDINGS, LLC.
- 2. THE PROPOSED LOADS SHALL NOT BE ADDED TO THE STRUCTURE UNTIL ALL MODIFICATIONS HAVE BEEN COMPLETED, INSPECTED BY A 3RD PARTY, AND APPROVED BY THE ENGINEER OF RECORD.
- 3. ALL METHODS, MATERIALS AND WORKMANSHIP SHALL FOLLOW THE DICTATES OF GOOD CONSTRUCTION PRACTICE
- 4. ALL WORK INDICATED ON THESE DRAWINGS SHALL BE PERFORMED BY QUALIFIED CONTRACTORS EXPERIENCED IN TOWER AND FOUNDATION CONSTRUCTION
- 5. THE CONTRACTOR SHALL FIELD VERIFY ALL EXISTING DIMENSIONS, ELEVATIONS AND CONDITIONS PRIOR TO FABRICATION. THE CONTRACTOR WILL BE SOLELY RESPONSIBLE FOR THE PROPER FIT AND CLEARANCE IN THE FIELD. CONTACT SEMAAN ENGINEERING IF ANY DISCREPANCIES EXIST.
- 6. THE CONTRACTOR SHALL NOTIFY THE ENGINEER OF RECORD IMMEDIATELY OF ANY INSTALLATION INTERFERENCES. ALL NEW WORK SHALL ACCOMMODATE EXISTING CONDITIONS. DETAILS NOT SPECIFICALLY SHOWN ON THE DRAWINGS SHALL FOLLOW SIMILAR DETAILS FOR THIS JOB.
- 7. THIS DRAWING DOES NOT INDICATE THE METHOD OF CONSTRUCTION. THE CONTRACTOR SHALL SUPERVISE AND INSPECT THE WORK AND SHALL BE SOLELY RESPONSIBLE FOR ALL THE CONSTRUCTION MEANS, TECHNIQUES, SEQUENCES AND PROCEDURES.
- 8. ALL WORK SHALL BE DONE IN ACCORDANCE WITH LOCAL CODES AND OSHA SAFETY REGULATIONS. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE ON-SITE SAFETY ASSOCIATED WITH THE WORK TO BE PERFORMED AS WELL AS THE PUBLIC AFFECTED BY THE WORK IN THE VICINITY OF THE JOB SITE
- 9. THE CONTRACTOR IS RESPONSIBLE FOR THE DESIGN AND EXECUTION OF ALL MISCELLANEOUS SHORING BRACING TEMPORARY SUPPORTS, ETC. NECESSARY, PER TIA-322-A, TO PROVIDE A COMPLETE AND STABLE STRUCTURE AS SHOWN ON THESE DRAWINGS
- 10. THE CONTRACTOR'S PROPOSED INSTALLATION SHALL NOT INTERFERE, NOR DENY ACCESS TO, ANY EXISTING OPERATIONAL AND SAFETY EQUIPMENT.
- 11. THE CONTRACTOR SHALL ALSO BE RESPONSIBLE FOR THE PROTECTION OF THE PROPERTY IN THE VICINITY OF THE JOB SITE. THE CONTRACTOR SHALL USE THE PRECAUTIONARY MEANS NECESSARY FOR ADEQUATE PROTECTION
- 12. ALL WORK SHALL BE PERFORMED IN CALM WIND CONDITIONS, WHERE SPEED DOES NOT EXCEED 10 MPH
- 13. ALL MATERIALS AND WORKMANSHIP SHALL BE WARRANTED FOR ONE YEAR FROM ACCEPTANCE DATE
- 14. ALL TOWER MODIFICATION WORK SHALL BE IN ACCORDANCE WITH TIA-322-A STANDARDS FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS

APPLICABLE CODES AND STANDARDS:

- 1. ANSI/TIA-222 STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND ANTENNA SUPPORTING STRUCTURES, REV G.
- 2. 2015 INTERNATIONAL BUILDING CODE. WITH CONNECTICUT STATE AMENDMENTS.
- 3. ACI 318: AMERICAN CONCRETE INSTITUTE, BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE, 318-14 (LATEST EDITION)
- 4 CRSI: CONCRETE REINFORCEMENT STEEL INSTITUTE MANUAL OF STANDARD PRACTICE 318-14
- 5. AISC: AMERICAN INSTITUTE OF STEEL CONSTRUCTION, MANUAL OF STEEL CONSTRUCTION, 15TH DITION - 2017 (LATEST EDITION).
- 6. AWS: AMERICAN WELDING SOCIETY D1.1, STRUCTURAL WELDING CODE 2015, (LATEST EDITION).

STEEL CONSTRUCTION:

- 1. STRUCTURAL STEEL SHALL CONFORM TO THE AISC MANUAL OF STEEL CONSTRUCTION, 14TH EDITION, FOR THE DESIGN, FABRICATION, AND ERECTION OF STEEL COMPONENTS.
- 2. UNLESS NOTED OTHERWISE, ALL STRUCTURAL ELEMENTS SHALL CONFORM TO THE FOLLOWING REQUIREMENTS

- ANGLE:	ASTM A36
- PIPE/TUBE:	ASTM A500 (46 ksi YIELD)
- PLATE:	ASTM A36
A. ALL BOLTS,	ASTMA325 GALVANIZED HIGH STRENGTH BOLTS.
B. ALL U-BOLTS,	ASTM A36
C. ALL NUTS,	A563 CARBON AND STEEL ALLOY NUTS.
D. ALL WASHERS	, ASTM F436 HARDENED STEEL WASHERS

3. SHOP DRAWINGS SHALL BE SUBMITTED TO SES FOR APPROVAL PRIOR TO FABRICATION. SHOP DRAWINGS SHALL INCLUDE ALL FABRICATED STEEL ASSEMBLIES INCLUDING MONOPOLE/TOWER EXTENSIONS

STEEL CONSTRUCTION (CONT.):

- 4. ALL EXTERIOR STEEL WORK SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A123 FOR COMPONENTS AND ASTM A153 FOR HARDWARE, AND AS FOLLOWS, UNLESS OTHERWISE NOTED
- A. GALVANIZING SHALL BE PERFORMED AFTER SHOP FABRICATION AND WELDING TO THE GREATEST EXTENT POSSIBLE
- B. ALL DINGS, SCRAPES, MARS AND WELDS IN THE GALVANIZED AREA SHALL BE COATED WITH (3) BRUSH COATS OF ZRC COLD GALVANIZING COMPOUND OR APPROVED EQUAL. THE COATING SHALL BE APPLIED IN STRICT ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS
- C. IF THE STRUCTURE WAS ORIGINALLY PAINTED, AFTER ZINC-RICH COATING IS DRY, OVERCOAT WITH AN APPROPRIATE PAINT WITH THE SAME COLOR AS THE EXISTING
- 5. NO TORCH CUTTING SHALL BE PERMITTED UNLESS APPROVED BY THE ENGINEER
- 6. DO NOT PLACE HOLES THROUGH STRUCTURAL STEEL MEMBERS EXCEPT AS SHOWN AND DETAILED

WELDING NOTES:

- 1. ALL WELDING TO BE PERFORMED BY AWS CERTIFIED WELDERS AND CONDUCTED IN ACCORDANCE WITH THE LATEST EDITION OF THE AWS WELDING CODE D1 1
- 2. CONTRACTOR SHALL RETAIN AN AWS CERTIFIED WELD INSPECTOR TO PERFORM VISUAL INSPECTIONS ON ALL FIELD WELDS. A REPORT SHALL BE SUBMITTED TO SEMAAN ENGINEERING FOR FINAL APPROVAL
- 3. ALL ELECTRODES SHALL BE LOW HYDROGEN E70XX ELECTRODES, PER AWS D1.1, UNLESS NOTED OTHERWISE
- 4. MINIMUM WELD SIZE TO BE 0.1875 INCH FILLET WELDS, UNLESS NOTED OTHERWISE.
- 5. PRIOR TO FIELD WELDING GALVANIZED MATERIAL, CONTRACTOR SHALL GRIND OFF GALVANIZING AND ANY OTHER CONTAMINANTS 2" BEYOND ALL FIELD WELD SURFACES. AFTER WELDING, REPAIR ALL GROUND AND WELDED SURFACES WITH (3) BRUSH COATS OF ZRC COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURERS REQUIREMENTS
- 6. ALL FULL PENETRATION WELDS ARE REQUIRED TO BE 100% NDE INSPECTED BY ULTRASONIC TESTING (UT) IN ACCORDANCE WITH AWS D1.1
- 7. ALL PARTIAL PENETRATION AND FILLET WELDS ARE REQUIRED TO BE 100% VISUALLY INSPECTED IN ACCORDANCE WITH AWS D1.1.

BOLTING NOTES:

- 1 STRUCTURAL CONNECTIONS TO BE ASSEMBLED AND INSPECTED IN ACCORDANCE WITH RCSC-2009 (SPECIFICATIONS FOR STRUCTURAL JOINTS USING ASTM A325 OR ASTM A490 BOLTS.)
- 2. ALL CONNECTION BOLTS SHALL BE ASTM A325N (GALVANIZED). UNLESS NOTED OTHERWISE
- 3. SPLICE/FLANGE BOLTS SUBJECT TO DIRECT TENSION SHALL BE INSTALLED AND TIGHTENED AS PER SECTION 8.2.1 OF THE AISC "SPECIFICATION FOR STRUCTURAL JOINTS USING A325 OR A490 BOLTS" LOCATED IN THE AISC MANUAL OF STEEL CONSTRUCTION. THE INSTALLATION PROCEDURE IS PARAPHRASED AS FOLLOWS:

FASTENERS SHALL BE INSTALLED IN PROPERLY ALIGNED HOLES AND TIGHTENED BY ONE OF THE METHODS DESCRIBED IN SUBSECTION 8.2.1 THROUGH 8.2.4.

8.2.1 TURN-OF-NUT PRETENSIONING

BOLTS SHALL BE INSTALLED IN ALL HOLES OF THE CONNECTION AND BROUGHT TO A SNUG TIGHT CONDITION AS DEFINED IN SECTION 8.1, UNTIL ALL THE BOLTS ARE SIMULTANEOUSLY SNUG TIGHT AND THE CONNECTION IS FULLY COMPACTED. FOLLOWING THIS INITIAL OPERATION ALL BOLTS IN THE CONNECTION SHALL BE TIGHTENED FURTHER BY THE APPLICABLE AMOUNT OF ROTATION SPECIFIED IN THE TABLE PROVIDED. DURING THE TIGHTENING OPERATION THERE SHALL BE NO ROTATION OF THE PART NOT TURNED BY THE WRENCH. TIGHTENING SHALL PROGRESS SYSTEMATICALLY

TURN-OF-NUT ROTATION FROM SNUG TIGHT CONDITION

	BOTH FACE	S NORMAL T	O BOLT AXIS
BOLT LENGTH (UNDER SIDE OF HEAD TO END OF BOLT)	NUT ROTATION	INITIAL MARKING POSITION	FINAL MARKING POSITION
UP TO AND INCLUDING 4 DIAMETERS	1/3 TURN		$\langle \chi \rangle$
OVER 4 DIA- METERS BUT NOT EXCEED- ING 8 DIA.	1/2 TURN		
OVER 8 DIA- METERS BUT NOT EXCEED- ING 12 DIA.	2/3 TURN		

USE A WATERPROOF BLACK MARKER TO MARK THE BOLT AND NUT AS SHOWN ON THE TABLE.

BOLTING NOTES (CONT.):

- 4. ALL OTHER BOLTED CONNECTIONS SHALL BE BROUGHT TO A SNUG TIGHT CONDITION AS DEFINED IN SECTION 8.1 OF THE SPECIFICATION.
- 5. ALL BOLT HOLES SHALL BE ALIGNED TO PERMIT INSERTION OF THE BOLTS WITHOUT UNDUE DAMAGE TO THE THREADS. BOLTS SHALL BE PLACED IN ALL HOLES WITH WASHERS POSITIONED AS REQUIRED AND NUTS THREADED TO COMPLETE THE ASSEMBLY. COMPACTING THE JOINT TO THE SNUG-TIGHT CONDITION SHALL PROGRESS SYSTEMATICALLY FROM THE MOST RIGID PART OF THE JOINT THE SNUG-TIGHTENED CONDITION IS THE TIGHTNESS. THAT IS ATTAINED WITH A FEW IMPACTS OF AN IMPACT WRENCH OR THE FULL EFFORT OF AN IRONWORKER USING AN ORDINARY SPUD WRENCH TO BRING THE CONNECTED PLIES INTO FIRM CONTACT.
- 6. A NUT LOCKING DEVICE SHALL BE INSTALLED ON ALL PROPOSED AND/OR REPLACED BOLTS.
- 7. ALL NEW BOLTS SHALL BE LONG ENOUGH TO FULLY ENGAGE THE FULL DEPTH OF THE NUT AND LOCKING DEVICE.
- 8. GALVANIZED ASTM A325 BOLTS SHALL NOT BE REUSED.

CONCRETE CONSTRUCTION:

- 1. ALL CONCRETE SHALL CONFORM TO THE SPECIFICATIONS FOR STRUCTURAL CONCRETE FOR BUILDINGS, ACI 301
- 2. ALL CONCRETE SHALL BE MADE WITH STONE AGGREGATE & SHALL DEVELOP 4000 PSI MIN. COMPRESSIVE STRENGTH IN 28 DAYS. CONCRETE MIX DESIGN: 6 1/2 SACKS OF CEMENT MINIMUM PER CUBIC YARD, 3/4" MAXIMUM AGGREGATE. AIR ENTRAINMENT = 6% ± 1% AND SLUMP = 4" ± 1" (WITHOUT PLASTICIZER)
- 3. ALL REINFORCING SHALL BE HIGH STRENGTH DEFORMED BARS, GRADE 60, ASTM A615, WITH 60,000 PSI MINIMUM YIFI D POINT
- 4. REINFORCING PROTECTION: CONCRETE POURED AGAINST EARTH ...
- 5. ALL BAR LENGTHS ARE NOT DRAWN TO SCALE. NO SPLICES OF REINFORCEMENT SHALL BE MADE EXCEPT AS DETAILED OR AS AUTHORIZED BY THE STRUCTURAL ENGINEER. LAP SPLICES, WHERE PERMITTED, SHALL BE A MINIMUM OF 40 BAR DIAMETERS UNLESS NOTED.
- 6. DETAIL BARS IN ACCORDANCE WITH ACI DETAILING MANUAL & ACI BUILDING CODE REQUIREMENTS FOR REINFORCED CONCRETE.
- 7. PROVIDE ALL ACCESSORIES NECESSARY TO SUPPORT REINFORCING AT THE POSITIONS SHOWN ON THE PLANS
- 8 BACKEILL AND COMPACT SOIL TO A MINIMUM 95% OF STANDARD PROCTOR DENSITY PER ASTM D 698.THE COMPACTED SOIL SHALL PROVIDE A MINIMUM UNIT WEIGHT OF 120 POUNDS PER CUBIC FOOT FOR THE FILL MATERIAL.
- 9. AS APPLICABLE, ORIENT NEW ANCHORS IN LINE WITH EXISTING ANCHORS.
- 10. AS APPLICABLE, ANCHOR RODS TO PASS THROUGH CENTROID OF BLOCK

EPOXY-GROUTED FASTENER INSTALLATION:

- 1. CONTRACTOR SHALL VERIFY THAT DRILLING CLEARANCE IS ADEQUATE PRIOR TO CONSTRUCTION. NOTIFY THE ENGINEER IF A CLEARANCE PROBLEM EXISTS.
- 2. ALL HOLES SHALL BE WIRE-BRUSHED TO PROFILE THE CONCRETE SURFACE, ALL CORED HOLES WITH SMOOTH WALLS SHALL BE ROUGHENED.
- 3. USE COMPRESSED AIR TO BLOW ANY REMAINING DEBRIS OUT OF THE NEWLY DRILLED HOLES.
- 4. EPOXY GROUT THE NEW ANCHOR BOLTS OR REBAR IN PLACE PER THE MANUFACTURER'S INSTRUCTIONS

CONTINUOUS INSPECTION AND MAINTENANCE:

CONTINUOUS INSPECTION OF THE STRUCTURE AND THE ADDED REINFORCING CONSISTENT WITH THE CURRENT REQUIREMENTS OF THE LATEST TIA 222 STANDARD SHALL BE IMPLEMENTED BY THE OWNER. ANY FUTURE CORROSION OR OTHER DETERIORATION OF THE STRUCTURE OR ITS REINFORCING WILL REDUCE ITS CAPACITY TO WITHSTAND THE REQUIRED LOADS. ANY DEFECTS SHALL BE REPAIRED TO ENSURE THE STRUCTURAL INTEGRITY FOR THE LIFE OF THE STRUCTURE

SPECIAL INSPECTION:

1. A QUALIFIED INDEPENDENT INSPECTION FIRM, EMPLOYED BY THE OWNER, SHALL PERFORM INSPECTION AND TESTING IN ACCORDANCE WITH THE IBC 2015, SECTION 1704 AS REQUIRED BY PROJECT SPECIFICATIONS FOR THE FOLLOWING CONSTRUCTION WORK TO BE INCLUDED IN THE POST-MODIFICATION INSPECTION (PMI) REPORT.

SPECIAL INSPECTION REQUIREMENTS (TO BE INCLUDED IN PMI REPORT)

REQUIRED (Y,N,NA)

REPORT ITEM

PRE-CONSTRUCTION		
N	PRE-APPROVED INSPECTION AGENCY APPROVED BY LOCAL JURISDICTION	
N	PRE-APPROVED FABRICATOR APPROVED BY LOCAL JURISDICTION	
Y	GC SITE VISIT TO FIELD VERIFY MODIFICATION INSTALLATION(S)	
Y	EOR APPROVED SHOP DRAWINGS	
Y	FABRICATOR CERTIFIED WELD INSPECTION/QA PROGRAM	
Y	MATERIAL CERTIFICATIONS	
	CONSTRUCTION	
Y	CONSTRUCTION INSPECTIONS	
NA	CONTINUOUS FOUNDATION INSPECTIONS	
NA	CONCRETE COMPRESSIVE STRENGTH, AIR, AND SLUMP TESTS (SEE CONCRETE NOTES FOR TESTS)	
Y	CONTINUOUS VISUAL WELD INSPECTION (FIELD WELDS)	
Y	WELD NON-DESTRUCTIVE EVALUATION (NDE) REQUIRED	
Y	HIGH STRENGTH BOLT INSPECTION (VERIFY TURN-OF-NUT INSTALLATION)	
NA	EARTHWORK, LIFT, AND DENSITY	
Y	ON-SITE COLD GALVANIZING VERIFICATIONS	
NA	GUY CABLE TENSION VERIFICATIONS	
Y	GC AS-BUILT DOCUMENTS	
	POST-CONSTRUCTION	
Y	SPECIAL INSPECTION NOTED DEVIATIONS	
NA	POST-INSTALLED ANCHOR ROD PULL-OUT TESTS	
Y	PHOTOGRAPHS (CLOSE-UP ON STRUCTURES)	

2. THE INSPECTION AGENCY SHALL SUBMIT INSPECTION AND TEST REPORTS TO THE BUILDING DEPARTMENT, THE ENGINEER OF RECORD, AND THE OWNER IN ACCORDANCE WITH IBC 2015, 1704. THE INSPECTION FIRM SHALL ALSO PROVIDE A REDLINE SET OF THE AS-BUILT DRAWINGS AND COMPLETE PHOTO DOCUMENTATION OF THE MODIFICATIONS COMPLETED AT THE SITE.

12 12 6

~ Э

~

DETAILS

EXHIBIT 4

October 10, 2019 August 10, 2020 (Rev. 1)

Centerline Communications 750 West Center Street, Suite #301 West Bridgewater, MA 02379

RE: Site Number: S2873 (NSB) FA Number: 12684101 PACE Number: MRCTB036632 PT Number: 2051A0LAWW Site Name: DANBURY GREAT PASTURE ROAD Site Address: 15 Great Pasture Road Danbury, CT 06810

To Whom It May Concern:

Hudson Design Group LLC (HDG) has been authorized by Centerline Communications to perform a mount analysis on the proposed AT&T antenna/RRH mounts to determine their capability of supporting the following additional loading:

- (9) TPA65R-BU6DA-K Antennas (71.2"x20.7"x7.7" Wt. = 69 lbs. /each)
- (3) B14 4478 RRH's (18.1"x13.4"x8.3" Wt. = 60 lbs. /each)
- (3) 4415 B30 RRH's (16.5"x13.4"x5.9" Wt. = 46 lbs. /each)
- (3) 4449 B5/B12 RRH's (17.9"x13.2"x9.5" Wt. = 71 lbs. /each)
- (3) B2/B66A 8843 RRH's (14.9"x13.2"x10.9" Wt. = 72 lbs. /each)
- (3) Squid Surge Arrestors (24.0"x9.7" Ø Wt. = 33 lbs.)

*Proposed equipment shown in bold

Mount fabrication drawings prepared by Sabre Industries Towers and Poles, P/N C10855721C, dated October 18, 2017 were available for the proposed mounts.

Mount Analysis Methods:

- This analysis was conducted in accordance with EIA/TIA-222-H, Structural Standards for Steel Antenna Towers and Antenna Supporting Structures, the International Building Code 2015 with 2018 Connecticut State Building Code, and AT&T Mount Technical Directive R13.
- HDG considers this mount to be asymmetrical and has applied wind loads in 30 degree increments all around the mount. Per TIA-222-H and Appendix N of the Connecticut State Building Code, the max basic wind speed for this site is equal to 120 mph with a max basic wind speed with ice of 50 mph and a max ice thickness of 1.0 in. An escalated ice thickness of 1.16 in was used for this analysis.
- HDG considers this site to be exposure category B; tower is located in an urban/suburban or wooded area with numerous closely spaced obstructions.
- HDG considers this site to be topographic category 1; tower is located on flat terrain or the bottom of a hill or ridge.
- The mount has been analyzed with load combinations consisting of 250 lbs live load using a service wind speed of 30 mph wind on the worst case antenna. Analysis performed on each antenna pipe to determine worst case location; worst case location was antenna position 4.
- The mount has been analyzed with load combinations consisting of a 250 lbs live load in a worst case location on the mount.

Based on our evaluation, we have determined that the <u>New Sabre Industries C10855721C</u> mounts <u>ARE</u> <u>CAPABLE</u> of supporting the proposed installation.

	Component	Controlling Load Case	Stress Ratio	Pass/Fail
Proposed (NSB) Mount Rating	69	LC10	47%	PASS

Reference Documents:

• Fabrication drawings prepared by Sabre Industries Towers and Poles, P/N C10855721C, dated October 18, 2017.

This determination was based on the following limitations and assumptions:

- 1. HDG is not responsible for any modifications completed prior to and hereafter which HDG was not directly involved.
- 2. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
- 3. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer's requirements.
- 4. The proposed mount will be adequately secured to the tower structure per the mount manufacturer's specifications.
- 5. All components pertaining to AT&T's mounts must be tightened and re-plumbed prior to the installation of new appurtenances.
- 6. HDG performed a localized analysis on the mount itself and not on the supporting tower structure.

Please feel free to contact our office should you have any questions.

Respectfully Submitted, Hudson Design Group LLC

Ynland al

Michael Cabral Vice President

Daniel P. Hamm, PE Principal

Wind & Ice Calculations
 Date:
 8/10/2020

 Project Name:
 DANBURY GREAT PASTURE ROAD

 Project No.:
 \$2873

 Designed By:
 RL
 Checked By: MSC

2.6.5.2 Velocity Pressure Coeff:

$K_z = 2.01 (z/z_g)^{2/\alpha}$		z=	140 (ft)
		z _g =	1200 (ft)
K _z =	1.088	α=	7.0

Kzmin \leq Kz \leq 2.01

Table 2-4

Exposure	Zg	α	K _{zmin}	K _c
В	1200 ft	7.0	0.70	0.9
С	900 ft	9.5	0.85	1.0
D	700 ft	11.5	1.03	1.1

2.6.6.2 Topographic Factor:

Table 2-5

Topo. Category	Kt	f
2	0.43	1.25
3	0.53	2.0
4	0.72	1.5

 $K_{zt} = [1 + (K_c K_t / K_h)]^2$

 $K_h = e^{(f^*z/H)}$

K _{zt} =	#DIV/0!

(If Category	1	then	К	₋₊ =1.0)
1.1				71

Category=	1

2.6.10 Design Ice Thickness

Max Ice Thickness =	t _i =
Importance Factor =	I=
	K _{iz} =
$t_{iz} = t_i^* I^* K_{iz}^* (K_{zt})^{0.35}$	t _{iz} =

K _h =	#DIV/0!	
K _c =	0.9	(from Table 2-4)
K _t =		(from Table 2-5)
f=		(from Table 2-5)
z=	140	
z _s =	390	(Mean elevation of base of structure above sea level)
H=		(Ht. of the crest above surrounding terrain)
K _{zt} =	1.00	(from 2.6.6.2.1)
K _e =	0.99	(from 2.6.8)

t _i =	1.00	in
=	1.00	(from Table 2-3)
K _{iz} =	1.16	(from Sec. 2.6.10)

t_{iz} = 1.16 in

Date:8/10/2020Project Name:DANBURY GREAT PASTURE ROADProject No.:\$2873Designed By:RLChecked By: MSC

2.6.9 Gust Effect Factor

2.6.9.1 Self Supporting Lattice Structures

 $G_h = 1.0$ Latticed Structures > 600 ft

G_h = 0.85 Latticed Structures 450 ft or less

$G_{L} =$	0.85 +	0 15	[h/150 -	3 01
$\mathbf{u}_n =$	0.05 .	0.10	[11] ±30	5.01

h= ht. of structure

h=	140	G _h =	0.85
2.6.9.2 Guyed Masts		G _h =	0.85
2.6.9.3 Pole Structures		G _h =	1.1
2 6 9 Annurtenances		G _b =	10
21013 Appartenances		-11	1.0

2.6.9.4 Structures Supported on Other Structures

(Cantilivered tubular or latticed spines, pole, structures on buildings (ht. : width ratio > 5)

G _h =	1.35	Gh=	1.00	
2.6.11.2 Design Wind Force	on Appurtenances			
F= qz*Gh*(EPA)A				
q _z = 0.00256*K _z *K _{zt} *K	s*Ke*Kd*Vmax ²		K _z =	1.088 (from 2.6.5.2)

		K _{zt} =	1.0	(from 2.6.6.2.1)
		K _s =	1.0	(from 2.6.7)
q _z =	37.57	K _e =	0.99	(from 2.6.8)
q _{z (ice)} =	6.52	K _d =	0.95	(from Table 2-2)
q _{z (30)} =	2.35	V _{max} =	120	mph (Ultimate Wind Speed)
		V _{max (ice)} =	50	mph
		V ₃₀ =	30	mph

Table 2-2

Structure Type	Wind Direction Probability Factor, Kd
Latticed structures with triangular, square or rectangular cross sections	0.85
Tubular pole structures, latticed structures with other cross sections, appurtenances	0.95
Tubular pole structures supporting antennas enclosed within a cylindrical shroud	1.00
Date:
 8/10/2020

 Project Name:
 DANBURY GREAT PASTURE ROAD

 Project No.:
 \$2873

 Designed By:
 RL
 Checked By: MSC

Determine Ca:

Table 2-9

Force Coefficients (Ca) for Appurtenances									
	MamberTuna	Aspect Ratio ≤ 2.5	Aspect Ratio = 7	Aspect Ratio ≥ 25					
	Member type	Ca	Ca	Ca					
	Flat	1.2	1.4	2.0					
Squ	uare/Rectangular HSS	1.2 - 2.8(r _s) ≥ 0.85	$1.4 - 4.0(r_s) \ge 0.90$	2.0 - 6.0(r _s) ≥ 1.25					
Round	C < 39	0.7	0.8	1 0					
	(Subcritical)	0.7	0.0	1.2					
	39 ≤ C ≤ 78	0.485	0.00/10.415	10 0 (10)					
	(Transitional)	4.14/(C****)	3.66/(C****)	46.8/(C ⁻²⁻²)					
	C > 78	0.5	0.6	0.6					
	(Supercritical)	0.5	0.6	0.6					

Aspect Ratio is the overall length/width ratio in the plane normal to the wind direction.

(Aspect ratio is independent of the spacing between support points of a linear appurtenance,

Note: Linear interpolation may be used for aspect ratios other than those shown.

Ice Thickness =	1.16	in	Angle =	0 (deg)		Equival	ent Angle =	180 (deg)	
Appurtenances	<u>Height</u>	<u>Width</u>	<u>Depth</u>	Flat Area	<u>Aspect</u> <u>Ratio</u>	<u>Ca</u>	Force (lbs)	Force (lbs) (w/ lce)	<u>Force (lbs)</u> (30 mph)
TPA65R-BU6DA-K Antenna	71.2	20.7	7.7	10.24	3.44	1.24	477	95	30
B14 4478 RRH B14 4478 RRH (Side)	18.1 18.1	13.4 8.3	8.3 13.4	1.68 1.04	1.35 2.18	1.20 1.20	76 47	17 12	5 3
4415 B30 RRH 4415 B30 RRH (Side)	16.5 16.5	13.4 5.9	5.9 13.4	1.54 0.68	1.23 2.80	1.20 1.21	69 31	16 8	4 2
4449 B5/B12 RRH 4449 B5/B12 RRH (Side)	17.9 17.9	13.2 9.5	9.5 13.2	1.64 1.18	1.36 1.88	1.20 1.20	74 53	17 13	5 3
B2/B66A 8843 RRH B2/B66A 8843 RRH (Side)	14.9 14.9	13.2 10.9	10.9 13.2	1.37 1.13	1.13 1.37	1.20 1.20	62 51	15 12	4 3
Surge Arrestor	24.0	9.7	9.7	1.62	2.47	0.70	43	10	3
HSS 6x3	3.0	12.0	-	0.25	0.25	1.25	12		
HSS 3x3	3.0	12.0	-	0.25	0.25	1.25	12		
L 2x2 Angles	2.0	12.0	-	0.17	0.17	2.00	13		
PL 2x1/8	0.1	12.0	-	0.01	0.01	2.00	1		
2-1/2" Pipe	2.9	12.0	-	0.24	0.24	1.20	11		
2" Pipe	2.4	12.0	-	0.20	0.20	1.20	9		

				V	/IND LOADS							
Angle = 30	(deg)	Ì	Ice Thickn	iess =	1.16	in.			Equiva	lent Angle =	210	(deg)
WIND LOADS WITH NO ICE:												
Appurtenances	<u>Height</u>	<u>Width</u>	<u>Depth</u>	<u>Flat Area</u> (normal)	Flat Area (side)	Aspect Ratio	Aspect Ratio	<u>Ca (normal)</u>	<u>Ca</u> (side)	Force (lbs) (normal)	Force (lbs) (side)	Force (lbs) (angle)
TPA65R-BU6DA-K Antenna	71.2	20.7	7.7	10.24	3.81	3.44	9.25	1.24	1.47	477	211	411
B14 4478 RRH	18.1	13.4	8.3	1.68	1.04	1.35	2.18	1.20	1.20	76	47	69
B14 4478 RRH (Side)	18.1	8.3	13.4	1.04	1.68	2.18	1.35	1.20	1.20	47	76	54
4415 B30 RRH	16.5	13.4	5.9	1.54	0.68	1.23	2.80	1.20	1.21	69	31	60
4415 B30 RRH (Side)	16.5	5.9	13.4	0.68	1.54	2.80	1.23	1.21	1.20	31	69	40
4449 B5/B12 RRH	17.9	13.2	9.5	1.64	1.18	1.36	1.88	1.20	1.20	74	53	69
4449 B5/B12 RRH (Side)	17.9	9.5	13.2	1.18	1.64	1.88	1.36	1.20	1.20	53	74	58
B2/B66A 8843 RRH	14.9	13.2	10.9	1.37	1.13	1.13	1.37	1.20	1.20	62	51	59
B2/B66A 8843 RRH (Side)	14.9	10.9	13.2	1.13	1.37	1.37	1.13	1.20	1.20	51	62	54
WIND LOADS WITH ICE:												
TPA65R-BU6DA-K Antenna	73.5	23.0	10.0	11.75	5.11	3.19	7.34	1.23	1.41	94	47	82
B14 4478 RRH	20.4	15.7	10.6	2.23	1.50	1.30	1.92	1.20	1.20	17	12	16
B14 4478 RRH (Side)	20.4	10.6	15.7	1.50	2.23	1.92	1.30	1.20	1.20	12	17	13
4415 B30 RRH	18.8	15.7	8.2	2.05	1.07	1.20	2.29	1.20	1.20	16	8	14
4415 B30 RRH (Side)	18.8	8.2	15.7	1.07	2.05	2.29	1.20	1.20	1.20	8	16	10
4449 B5/B12 RRH	20.2	15.5	11.8	2.18	1.66	1.30	1.71	1.20	1.20	17	13	16
4449 B5/B12 RRH (Side)	20.2	11.8	15.5	1.66	2.18	1.71	1.30	1.20	1.20	13	17	14
B2/B66A 8843 RRH	17.2	15.5	13.2	1.85	1.58	1.11	1.30	1.20	1.20	15	12	14
B2/B66A 8843 RRH (Side)	17.2	13.2	15.5	1.58	1.85	1.30	1.11	1.20	1.20	12	15	13
WIND LOADS AT 30 MPH:												
TPA65R-BU6DA-K Antenna	71.2	20.7	7.7	10.24	3.81	3.44	9.25	1.24	1.47	30	13	26
B14 4478 RRH	18.1	13.4	8.3	1.68	1.04	1.35	2.18	1.20	1.20	5	3	4
B14 4478 RRH (Side)	18.1	8.3	13.4	1.04	1.68	2.18	1.35	1.20	1.20	3	5	3
4415 B30 RRH	16.5	13.4	5.9	1.54	0.68	1.23	2.80	1.20	1.21	4	2	4
4415 B30 RRH (Side)	16.5	5.9	13.4	0.68	1.54	2.80	1.23	1.21	1.20	2	4	3
4449 B5/B12 RRH	17.9	13.2	9.5	1.64	1.18	1.36	1.88	1.20	1.20	5	3	4
4449 B5/B12 RRH (Side)	17.9	9.5	13.2	1.18	1.64	1.88	1.36	1.20	1.20	3	5	4
B2/B66A 8843 RRH	14.9	13.2	10.9	1.37	1.13	1.13	1.37	1.20	1.20	4	3	4
B2/B66A 8843 RRH (Side)	14.9	10.9	13.2	1.13	1.37	1.37	1.13	1.20	1.20	3	4	3

Angle = 60	(deg)		Ice Thick	ness =	1.16	in.		[Equivale	nt Angle =	240	(deg)
WIND LOADS WITH NO ICE:												
Appurtenances	Height	Width	Depth	Flat Area	Flat Area	Ratio	Ratio	Са	Ca	Force	Force	Force
				(normal)	(side)	(normal)	(side)	(normal)	(side)	<u>(lbs)</u>	(lbs)	<u>(lbs)</u>
TPA65R-BU6DA-K Antenna	71.2	20.7	77	10 24	3 81	3 44	9 25	1 24	1 47	477	211	278
TRAUSIC-DOODA-K AIItellina	/1.2	20.7	7.7	10.24	5.61	3.44	5.25	1.24	1.47	4//	211	270
B14 4478 RRH	18.1	13.4	8.3	1.68	1.04	1.35	2.18	1.20	1.20	76	47	54
B14 4478 RRH (Side)	18.1	8.3	13.4	1.04	1.68	2.18	1.35	1.20	1.20	47	76	69
4415 B30 RRH	16.5	13.4	5.9	1.54	0.68	1.23	2.80	1.20	1.21	69	31	40
4415 B30 RRH (Side)	16.5	5.9	13.4	0.68	1.54	2.80	1.23	1.21	1.20	31	69	60
4449 B5/B12 RRH	17 9	13.2	95	1 64	1 18	1 36	1 88	1 20	1 20	74	53	58
4449 B5/B12 RRH (Side)	17.9	9.5	13.2	1.18	1.64	1.88	1.36	1.20	1.20	53	74	69
· · · · · · · · · · · · · · · · · · ·												
B2/B66A 8843 RRH B2/B66A 8843 RRH (Side)	14.9 14.9	13.2 10.9	10.9 13.2	1.37	1.13	1.13	1.37 1.13	1.20	1.20	62 51	51 62	54
52/ 500A 5043 MMI (Side)	14.5	10.5	13.2	1.15	1.57	1.57	1.15	1.20	1.20	51	02	35
WIND LOADS WITH ICE:												
TPA65R-BU6DA-K Antenna	73 5	23.0	10.0	11 75	5 11	3 19	7 34	1 23	1 41	94	47	59
	, 515	2010	10.0	11.75	5.111	0.120	7.01	1.20	1.11	5.		
B14 4478 RRH	20.4	15.7	10.6	2.23	1.50	1.30	1.92	1.20	1.20	17	12	13
B14 4478 RRH (Side)	20.4	10.6	15.7	1.50	2.23	1.92	1.30	1.20	1.20	12	17	16
4415 B30 RRH	18.8	15.7	8.2	2.05	1.07	1.20	2.29	1.20	1.20	16	8	10
4415 B30 RRH (Side)	18.8	8.2	15.7	1.07	2.05	2.29	1.20	1.20	1.20	8	16	14
4449 B5/B12 BRH	20.2	15 5	11 8	2 18	1.66	1 30	1 71	1 20	1 20	17	13	14
4449 B5/B12 RRH (Side)	20.2	11.8	15.5	1.66	2.18	1.71	1.30	1.20	1.20	13	17	16
B2/B66A 8843 RRH	17.2	15.5	13.2	1.85	1.58	1.11	1.30	1.20	1.20	15	12	13
62/ 600A 8043 KKH (Side)	17.2	15.2	15.5	1.58	1.05	1.50	1.11	1.20	1.20	12	15	14
WIND LOADS AT 30 MPH:												
TPA65R-BU6DA-K Antenna	71.2	20.7	77	10.24	3 81	3 44	9 25	1 74	1 47	30	13	17
	/ 1.2	20.7	,.,	10.24	5.01	3.44	5.25	1.27	1.77		15	11
B14 4478 RRH	18.1	13.4	8.3	1.68	1.04	1.35	2.18	1.20	1.20	5	3	3
B14 4478 RRH (Side)	18.1	8.3	13.4	1.04	1.68	2.18	1.35	1.20	1.20	3	5	4
4415 B30 RRH	16.5	13.4	5.9	1.54	0.68	1.23	2.80	1.20	1.21	4	2	3
4415 B30 RRH (Side)	16.5	5.9	13.4	0.68	1.54	2.80	1.23	1.21	1.20	2	4	4
	17.0	12.2	0.5	1 64	1 10	1.26	1 00	1 20	1 20		2	4
4449 B5/B12 RKH 4449 B5/B12 RRH (Side)	17.9	9.5	9.5 13.2	1.64	1.18	1.36	1.88	1.20	1.20	3	5	4
	1	2.0	_0.2		2.0.		2.00		0	-		
B2/B66A 8843 RRH	14.9	13.2	10.9	1.37	1.13	1.13	1.37	1.20	1.20	4	3	3
B2/B66A 8843 RRH (Side)	14.9	10.9	13.2	1.13	1.37	1.37	1.13	1.20	1.20	3	4	4

				VV	IND LOADS							
Angle = 90	(deg)		Ice Thick	ness =	1.16	in.		I	Equival	ent Angle =	270	(deg)
WIND LOADS WITH NO ICE:												
Appurtenances	Height	Width	Depth	Flat Area	Flat Area	Ratio	Ratio	Ca	Ca	Force	Force	Force
				(normal)	<u>(side)</u>	(normal)	(side)	(normal)	(side)	<u>(lbs)</u>	(lbs)	<u>(lbs)</u>
TPA65R-BU6DA-K Antenna	71.2	20.7	7.7	10.24	3.81	3.44	9.25	1.24	1.47	477	211	211
B14 4478 RRH	18.1	13.4	8.3	1.68	1.04	1.35	2.18	1.20	1.20	76	47	47
B14 4478 RRH (Side)	18.1	8.3	13.4	1.04	1.68	2.18	1.35	1.20	1.20	47	76	76
4415 B30 RRH	16.5	13.4	5.9	1.54	0.68	1.23	2.80	1.20	1.21	69	31	31
4415 B30 RRH (Side)	16.5	5.9	13.4	0.68	1.54	2.80	1.23	1.21	1.20	31	69	69
4449 B5/B12 RRH	17.9	13.2	9.5	1.64	1.18	1.36	1.88	1.20	1.20	74	53	53
4449 B5/B12 RRH (Side)	17.9	9.5	13.2	1.18	1.64	1.88	1.36	1.20	1.20	53	74	74
B2/B66A 8843 RRH	14.9	13.2	10.9	1.37	1.13	1.13	1.37	1.20	1.20	62	51	51
B2/B66A 8843 RRH (Side)	14.9	10.9	13.2	1.13	1.37	1.37	1.13	1.20	1.20	51	62	62
WIND LOADS WITH ICE:												
TPA65R-BU6DA-K Antenna	73.5	23.0	10.0	11.75	5.11	3.19	7.34	1.23	1.41	94	47	47
B14 4478 RRH	20.4	15.7	10.6	2.23	1.50	1.30	1.92	1.20	1.20	17	12	12
B14 4478 RRH (Side)	20.4	10.6	15.7	1.50	2.23	1.92	1.30	1.20	1.20	12	17	17
4415 B30 RRH	18.8	15.7	8.2	2.05	1.07	1.20	2.29	1.20	1.20	16	8	8
4415 B30 RRH (Side)	18.8	8.2	15.7	1.07	2.05	2.29	1.20	1.20	1.20	8	16	16
4449 B5/B12 RRH	20.2	15.5	11.8	2.18	1.66	1.30	1.71	1.20	1.20	17	13	13
4449 B5/B12 RRH (Side)	20.2	11.8	15.5	1.66	2.18	1.71	1.30	1.20	1.20	13	17	17
B2/B66A 8843 RRH	17.2	15.5	13.2	1.85	1.58	1.11	1.30	1.20	1.20	15	12	12
B2/B66A 8843 RRH (Side)	17.2	13.2	15.5	1.58	1.85	1.30	1.11	1.20	1.20	12	15	15
WIND LOADS AT 30 MPH:												
TPA65R-BU6DA-K Antenna	71.2	20.7	7.7	10.24	3.81	3.44	9.25	1.24	1.47	30	13	13
B14 4478 RRH	18.1	13.4	8.3	1.68	1.04	1.35	2.18	1.20	1.20	5	3	3
B14 4478 RRH (Side)	18.1	8.3	13.4	1.04	1.68	2.18	1.35	1.20	1.20	3	5	5
4415 B30 RRH	16.5	13.4	5.9	1.54	0.68	1.23	2.80	1.20	1.21	4	2	2
4415 B30 RRH (Side)	16.5	5.9	13.4	0.68	1.54	2.80	1.23	1.21	1.20	2	4	4
4449 B5/B12 RRH	17.9	13.2	9.5	1.64	1.18	1.36	1.88	1.20	1.20	5	3	3
4449 B5/B12 RRH (Side)	17.9	9.5	13.2	1.18	1.64	1.88	1.36	1.20	1.20	3	5	5
B2/B66A 8843 RRH	14.9	13.2	10.9	1.37	1.13	1.13	1.37	1.20	1.20	4	3	3
B2/B66A 8843 RRH (Side)	14.9	10.9	13.2	1.13	1.37	1.37	1.13	1.20	1.20	3	4	4

Angle = 120	(deg)		Ice Thick	ness =	1.16	in.]	Equivale	nt Angle =	300	(deg)
								-				
WIND LOADS WITH NO ICE:												
Appurtenances	<u>Height</u>	<u>Width</u>	<u>Depth</u>	<u>Flat Area</u> (normal)	Flat Area (side)	Ratio (normal)	Ratio (side)	<u>Ca</u> (normal)	<u>Ca</u> (side)	Force (lbs)	<u>Force</u> (lbs)	Force (lbs)
TPA65R-BU6DA-K Antenna	71.2	20.7	7.7	10.24	3.81	3.44	9.25	1.24	1.47	477	211	278
B14 4478 RRH	18.1	13.4	8.3	1.68	1.04	1.35	2.18	1.20	1.20	76	47	54
B14 4478 RRH (Side)	18.1	8.3	13.4	1.04	1.68	2.18	1.35	1.20	1.20	47	76	69
4415 B30 RRH	16.5	13.4	5.9	1.54	0.68	1.23	2.80	1.20	1.21	69	31	40
4415 B30 RRH (Side)	16.5	5.9	13.4	0.68	1.54	2.80	1.23	1.21	1.20	31	69	60
4449 B5/B12 RRH	17.9	13.2	9.5	1.64	1.18	1.36	1.88	1.20	1.20	74	53	58
4449 B5/B12 RRH (Side)	17.9	9.5	13.2	1.18	1.64	1.88	1.36	1.20	1.20	53	74	69
B2/B66A 8843 RRH	14.9	13.2	10.9	1.37	1.13	1.13	1.37	1.20	1.20	62	51	54
B2/B66A 8843 RRH (Side)	14.9	10.9	13.2	1.13	1.37	1.37	1.13	1.20	1.20	51	62	59
WIND LOADS WITH ICE:												
TPA65R-BU6DA-K Antenna	73.5	23.0	10.0	11.75	5.11	3.19	7.34	1.23	1.41	94	47	59
B14 4478 RRH	20.4	15.7	10.6	2.23	1.50	1.30	1.92	1.20	1.20	17	12	13
B14 4478 RRH (Side)	20.4	10.6	15.7	1.50	2.23	1.92	1.30	1.20	1.20	12	17	16
4415 B30 RRH	18.8	15.7	8.2	2.05	1.07	1.20	2.29	1.20	1.20	16	8	10
4415 B30 RRH (Side)	18.8	8.2	15.7	1.07	2.05	2.29	1.20	1.20	1.20	8	16	14
4449 B5/B12 RRH	20.2	15.5	11.8	2.18	1.66	1.30	1.71	1.20	1.20	17	13	14
4449 B5/B12 RRH (Side)	20.2	11.8	15.5	1.66	2.18	1.71	1.30	1.20	1.20	13	17	16
B2/B66A 8843 RRH	17.2	15.5	13.2	1.85	1.58	1.11	1.30	1.20	1.20	15	12	13
B2/B66A 8843 RRH (Side)	17.2	13.2	15.5	1.58	1.85	1.30	1.11	1.20	1.20	12	15	14
WIND LOADS AT 30 MPH:												
TPA65R-BU6DA-K Antenna	71.2	20.7	7.7	10.24	3.81	3.44	9.25	1.24	1.47	30	13	17
B14 4478 RRH	18.1	13.4	8.3	1.68	1.04	1.35	2.18	1.20	1.20	5	3	3
B14 4478 RRH (Side)	18.1	8.3	13.4	1.04	1.68	2.18	1.35	1.20	1.20	3	5	4
4415 B30 RRH	16.5	13.4	5.9	1.54	0.68	1.23	2.80	1.20	1.21	4	2	3
4415 B30 RRH (Side)	16.5	5.9	13.4	0.68	1.54	2.80	1.23	1.21	1.20	2	4	4
4449 B5/B12 RRH	17.9	13.2	9.5	1.64	1.18	1.36	1.88	1.20	1.20	5	3	4
4449 B5/B12 RRH (Side)	17.9	9.5	13.2	1.18	1.64	1.88	1.36	1.20	1.20	3	5	4
B2/B66A 8843 RRH	14.9	13.2	10.9	1.37	1.13	1.13	1.37	1.20	1.20	4	3	3
B2/B66A 8843 RRH (Side)	14.9	10.9	13.2	1.13	1.37	1.37	1.13	1.20	1.20	3	4	4

Angle = 150	(deg)	[Ice Thick	ness =	1.16	in.			Equivale	ent Angle =	330	(deg)
WIND LOADS WITH NO ICE:												
Annurtenances	Height	Width	Denth	Elat Area	Elat Area	Datia	Datia	63	G	Force	Force	Force
Appurtenances	neight	width	Deptil	(normal)	(side)	(normal)	(side)	(normal)	(side)	(lbs)	(lbs)	(lbs)
TPA65R-BU6DA-K Antenna	71.2	20.7	7.7	10.24	3.81	3.44	9.25	1.24	1.47	477	211	411
B14 4478 RRH	18.1	13.4	8.3	1.68	1.04	1.35	2.18	1.20	1.20	76	47	69
B14 4478 RRH (Side)	18.1	8.3	13.4	1.04	1.68	2.18	1.35	1.20	1.20	47	76	54
4415 B30 RRH	16.5	13.4	5.9	1.54	0.68	1.23	2.80	1.20	1.21	69	31	60
4415 B30 RRH (Side)	16.5	5.9	13.4	0.68	1.54	2.80	1.23	1.21	1.20	31	69	40
4449 B5/B12 BBH	17 9	13.2	9.5	1 64	1 18	1 36	1 88	1 20	1 20	74	53	69
4449 B5/B12 RRH (Side)	17.9	9.5	13.2	1.18	1.64	1.88	1.36	1.20	1.20	53	74	58
	14.0	12.2	10.0	1 27	1 1 2	1.12	1.27	1.20	1.20	62	54	50
B2/B66A 8843 RRH (Side)	14.9	13.2	10.9	1.37	1.13	1.13	1.37	1.20	1.20	51	62	59
WIND LOADS WITH ICE:												
TPA65R-BU6DA-K Antenna	73.5	23.0	10.0	11.75	5.11	3.19	7.34	1.23	1.41	94	47	82
	20.4	45.7	10.0	2.22	1.50	4.20	1.00	4.20	4.20	47	40	46
B14 4478 RRH (Side)	20.4	15.7	10.6	2.23	2.23	1.30 1.92	1.92	1.20	1.20	17	12	16
4415 B30 RRH 4415 B30 RRH (Side)	18.8 18.8	15.7 8.2	8.2 15.7	2.05	1.07	1.20	2.29	1.20	1.20	16 8	8 16	14 10
4419 000 Mar (Slac)	10.0	0.2	15.7	1.07	2.05	2.25	1.20	1.20	1.20	0	10	10
4449 B5/B12 RRH	20.2	15.5	11.8	2.18	1.66	1.30	1.71	1.20	1.20	17	13	16
4449 B5/B12 KKH (Side)	20.2	11.8	15.5	1.00	2.18	1.71	1.30	1.20	1.20	13	1/	14
B2/B66A 8843 RRH	17.2	15.5	13.2	1.85	1.58	1.11	1.30	1.20	1.20	15	12	14
B2/B66A 8843 RRH (Side)	17.2	13.2	15.5	1.58	1.85	1.30	1.11	1.20	1.20	12	15	13
WIND LOADS AT 30 MPH:												
TPA65R-BUGDA-K Antenna	71.2	20.7	77	10.24	3 81	3 11	0.25	1 24	1 47	30	12	26
TPA05K-D00DA-K Antenna	/1.2	20.7	1.1	10.24	5.61	3.44	9.25	1.24	1.47	30	13	20
B14 4478 RRH	18.1	13.4	8.3	1.68	1.04	1.35	2.18	1.20	1.20	5	3	4
B14 4478 RRH (Side)	18.1	8.3	13.4	1.04	1.68	2.18	1.35	1.20	1.20	3	5	3
4415 B30 RRH	16.5	13.4	5.9	1.54	0.68	1.23	2.80	1.20	1.21	4	2	4
4415 B30 RRH (Side)	16.5	5.9	13.4	0.68	1.54	2.80	1.23	1.21	1.20	2	4	3
4449 B5/B12 RRH	17.9	13.2	9.5	1.64	1.18	1.36	1.88	1.20	1.20	5	3	4
4449 B5/B12 RRH (Side)	17.9	9.5	13.2	1.18	1.64	1.88	1.36	1.20	1.20	3	5	4
B2/B66A 8843 RRH	14.9	13.2	10.9	1.37	1.13	1.13	1.37	1.20	1.20	4	3	4
, _ 50, 00 10	14.0	10.0	12.2	1.12	1.13	1 27	1 1 2	1.20	1 20	2	4	2

 Date:
 8/10/2020

 Project Name:
 DANBURY GREAT PASTURE ROAD

 Project No.:
 S2873

 Designed By:
 RL
 Checked By: MSC

ICE WEIGHT CALCULATIONS

Thickness of ice:	1.16 in.
Density of ice:	56 pcf

TPA65R-BU6DA-K Antenna

Weight of ice based on total radial SF area:									
Height (in):	71.2								
Width (in):	20.7								
Depth (in):	7.7								
Total weight of ice on object: 195 lbs									
Weight of object:	69.0	lbs							
Combined weight of ice and object: 264 lbs									

4415 B30 RRH

Weight of ice based on total radial SF area:								
Height (in):	16.5							
Width (in):	13.4							
Depth (in):	5.9							
Total weight of ice on object: 31 lbs								
Weight of object: 46.0 lbs								
Combined weight of ice and object: 77 lbs								

B2/B66A 8843 RRH

Weight of ice based on total radial SF area:								
Height (in):	14.9							
Width (in):	13.2							
Depth (in):	10.9							
Total weight of ice on o	object:	32 lbs						
Weight of object:	72.0	lbs						
Combined weight of ice and object: 104 lbs								

HSS 6x3

Weight of ice based on total radial SF area:									
Height (in):	6								
Width (in):	3								
Per foot weight of ice o	on object:	11 plf							

L 2x2 Angles

Weight of ice based on		
Height (in):	2	
Width (in):	2	
Per foot weight of ice o	on object:	6 plf

2-1/2" Pipe

Per foot weight of ice:		
diameter (in):	2.88	
Per foot weight of ice c	on object:	6 plf

B14 4478 RRH

Weight of ice based on total radial SF area:						
Height (in):	18.1					
Width (in):	13.4					
Depth (in):	8.3					
Total weight of ice on obj	ject:	36 lbs				
Weight of object:	60.0	lbs				
Combined weight of ice and object: 96 lbs						

4449 B5/B12 RRH

Weight of ice based on total radial SF area:							
Height (in):	17.9						
Width (in):	13.2						
Depth (in):	9.5						
Total weight of ice on object: 37 lbs							
Weight of object: 71.0 lbs							
Combined weight of ice and object: 108 lbs							

Squid Surge Arrestor

Weight of ice based on total radial SF area:						
Depth (in):	24.0					
Diameter(in):	9.7					
Total weight of ice on ob	ject:	31 lbs				
Weight of object:	33	lbs				
Combined weight of ice a	ind object:	64 lbs				

HSS 3x3

Weight of ice based on total radial SF area:					
Height (in):	3				
Width (in):	3				
Per foot weight of ice on	8 plf				

PL 2x1/8

Weight of ice based on total radial SF area:					
Height (in):	2				
Width (in):	0.13				
Per foot weight of ice on	object:	4 plf			

2" Pipe

Per foot weight of ice:		
diameter (in):	2.38	
Per foot weight of ice on	object:	5 plf

Mount Calculations (Existing Conditions)

X

Z

Current Date: 8/10/2020 1:15 PM Units system: English File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\S2873\NSB\Rev. 1\S2873 (NSB).retx

X Z

Current Date: 8/10/2020 1:16 PM Units system: English File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\S2873\NSB\Rev. 1\S2873 (NSB).retx

Current Date: 8/10/2020 1:16 PM Units system: English File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\S2873\NSB\Rev. 1\S2873 (NSB).retx

Current Date: 8/10/2020 1:16 PM Units system: English File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\S2873\NSB\Rev. 1\S2873 (NSB).retx

Load data

GLOSSARY

Comb

: Indicates if load condition is a load combination

Load Conditions

Condition	Description	Comb.	Category	
 DL	Dead Load		DL	
W0	Wind Load 0/60/120 deg	No	WIND	
W30	Wind Load 30/90/150 deg	No	WIND	
Di	Ice Load	No	LL	
Wi0	Ice Wind Load 0/60/120 deg	No	WIND	
Wi30	Ice Wind Load 30/90/150 deg	No	WIND	
WL0	WL 30 mph 0/60/120 deg	No	WIND	
WL30	WL 30 mph 30/90/150 deg	No	WIND	
LL1	250 lb Live Load Center of Mount	No	LL	
LL2	250 lb Live Load End of Mount	No	LL	
LLa1	250 lb Live Load Antenna 1	No	LL	
LLa2	250 lb Live Load Antenna 2	No	LL	
LLa3	250 lb Live Load Antenna 3	No	LL	
LLa4	250 lb Live Load Antenna 4	No	LL	

Distributed force on members

Condition	Member	Dir1	Val1 [Kip/ft]	Val2 [Kip/ft]	Dist1 [ft]	%	Dist2 [ft]	%
DL	71	Y	-0.01	-0.01	0.00	Yes	100.00	Yes
	69	Υ	-0.01	-0.01	0.00	Yes	100.00	Yes
	74	Υ	-0.01	-0.01	0.00	Yes	100.00	Yes
	72	Υ	-0.01	-0.01	0.00	Yes	100.00	Yes
	70	Υ	-0.01	-0.01	0.00	Yes	100.00	Yes
	73	Υ	-0.01	-0.01	0.00	Yes	100.00	Yes
	84	Y	-0.01	-0.01	0.00	Yes	100.00	Yes
	75	Y	-0.01	-0.01	0.00	Yes	100.00	Yes
	76	Y	-0.01	-0.01	0.00	Yes	100.00	Yes
	86	Y	-0.01	-0.01	0.00	Yes	100.00	Yes
	80	Y	-0.01	-0.01	0.00	Yes	100.00	Yes
	79	Y	-0.01	-0.01	0.00	Yes	100.00	Yes
	77	Y	-0.01	-0.01	0.00	Yes	100.00	Yes
	78	Y	-0.01	-0.01	0.00	Yes	100.00	Yes
	85	Y	-0.01	-0.01	0.00	Yes	100.00	Yes

W0	35	Z	-0.011	-0.011	0.00	No	100.00	Yes
	37	Z	-0.011	-0.011	0.00	No	100.00	Yes
	38	Z	-0.011	-0.011	0.00	No	100.00	Yes
	39	Z	-0.011	-0.011	0.00	No	100.00	Yes
	40	Z	-0.011	-0.011	0.00	No	100.00	Yes
	41	z	-0.011	-0.011	0.00	No	100.00	Yes
	42	z	-0.011	-0.011	0.00	No	100.00	Yes
	43	z	-0.011	-0.011	0.00	No	100.00	Yes
	44	z	-0.011	-0.011	0.00	No	100.00	Yes
	66	z	-0.001	-0.001	0.00	No	100.00	Yes
	67	z	-0.001	-0.001	0.00	No	100.00	Yes
	68	z	-0.001	-0.001	0.00	No	100.00	Yes
	105	z	-0.009	-0.009	0.00	No	100.00	Yes
	106	Z	-0.009	-0.009	0.00	No	100.00	Yes
	107	Z	-0.009	-0.009	0.00	No	100.00	Yes
	108	Z	-0.009	-0.009	0.00	No	100.00	Yes
	109	Z	-0.009	-0.009	0.00	No	100.00	Yes
	110	Z	-0.009	-0.009	0.00	No	100.00	Yes
	71	Z	-0.013	-0.013	0.00	No	100.00	Yes
	69	Z	-0.013	-0.013	0.00	No	100.00	Yes
	21	Z	-0.012	-0.012	0.00	No	100.00	Yes
	57	Z	-0.011	-0.011	0.00	No	100.00	Yes
	74	Z	-0.013	-0.013	0.00	No	100.00	Yes
	72	z	-0.013	-0.013	0.00	No	100.00	Yes
	23	z	-0.012	-0.012	0.00	No	100.00	Yes
	59	Z	-0.011	-0.011	0.00	No	100.00	Yes
	70	Z	-0.013	-0.013	0.00	No	100.00	Yes
	73	Z	-0.013	-0.013	0.00	No	100.00	Yes
	22	Z	-0.012	-0.012	0.00	No	100.00	Yes
	58	Z	-0.011	-0.011	0.00	No	100.00	Yes
	84	Z	-0.013	-0.013	0.00	No	100.00	Yes
	88	Z	-0.012	-0.012	0.00	No	100.00	Yes
	61	Z	-0.012	-0.012	0.00	No	100.00	Yes
	87	Z	-0.012	-0.012	0.00	No	100.00	Yes
	27	Z	-0.012	-0.012	0.00	NO	100.00	Yes
	63	Z	-0.012	-0.012	0.00	NO	100.00	Yes
	75	Z	-0.012	-0.012	0.00	NO	100.00	Yes
	76	Z	-0.012	-0.012	0.00	INO N.a	100.00	Yes
	02	2	-0.012	-0.012	0.00	NO	100.00	Yes
	91	2	-0.012	-0.012	0.00	No	100.00	Vee
	00	2	-0.013	-0.013	0.00	No	100.00	Yes
	92	2	-0.012	-0.012	0.00	No	100.00	Voc
	70	2	-0.012	-0.012	0.00	No	100.00	Ves
	28	2	-0.012	-0.012	0.00	No	100.00	Ves
	64	2	-0.012	-0.012	0.00	No	100.00	Yes
	77	2	-0.012	-0.012	0.00	No	100.00	Ves
	78	7	-0.012	-0.012	0.00	No	100.00	Yes
	60	7	-0.012	-0.012	0.00	No	100.00	Yes
	85	Z	-0.013	-0.013	0.00	No	100.00	Yes
	89	Z	-0.012	-0.012	0.00	No	100.00	Yes
	90	z	-0.012	-0.012	0.00	No	100.00	Yes
W30	33	х	-0.011	-0.011	0.00	No	100.00	Yes
	34	x	-0.011	-0.011	0.00	No	100.00	Yes
	35	x	-0.011	-0.011	0.00	No	100.00	Yes
	36	х	-0.011	-0.011	0.00	No	100.00	Yes
	37	х	-0.011	-0.011	0.00	No	100.00	Yes
	38	х	-0.011	-0.011	0.00	No	100.00	Yes
	39	х	-0.011	-0.011	0.00	No	100.00	Yes
	40	х	-0.011	-0.011	0.00	No	100.00	Yes

43	x	-0.011	-0.011	0.00	No	100.00	Yes
40 66	X	0.001	0.001	0.00	No	100.00	Voo
00	~	-0.001	-0.001	0.00	NU NI	100.00	165
67	х	-0.001	-0.001	0.00	NO	100.00	res
68	х	-0.001	-0.001	0.00	No	100.00	Yes
105	х	-0.009	-0.009	0.00	No	100.00	Yes
106	Х	-0.009	-0.009	0.00	No	100.00	Yes
107	х	-0.009	-0.009	0.00	No	100.00	Yes
108	х	-0.009	-0.009	0.00	No	100.00	Yes
109	x	-0 009	-0.009	0.00	No	100 00	Yes
110	×	_0.000	-0.009	0.00	No	100.00	Vec
57	~	-0.003	-0.003	0.00	No	100.00	Vee
5/	X	-0.011	-0.011	0.00	INO	100.00	res
74	х	-0.013	-0.013	0.00	No	100.00	Yes
72	Х	-0.013	-0.013	0.00	No	100.00	Yes
23	х	-0.012	-0.012	0.00	No	100.00	Yes
59	х	-0.011	-0.011	0.00	No	100.00	Yes
70	х	-0.013	-0.013	0.00	No	100.00	Yes
73	x	-0.013	-0.013	0.00	No	100 00	Yes
22	×	_0.012	-0.012	0.00	No	100.00	Vec
50	~	-0.012	-0.012	0.00	No	100.00	Vee
00	X	-0.011	-0.011	0.00	INO	100.00	res
84	х	-0.013	-0.013	0.00	INO	100.00	Yes
88	х	-0.012	-0.012	0.00	No	100.00	Yes
61	Х	-0.012	-0.012	0.00	No	100.00	Yes
87	х	-0.012	-0.012	0.00	No	100.00	Yes
27	х	-0.012	-0.012	0.00	No	100.00	Yes
63	x	-0 012	-0.012	0.00	No	100 00	Yes
75	x v	_0.012	-0.012	0.00	No	100.00	Ves
76	~	0.012	0.012	0.00	No	100.00	Voo
70	X	-0.012	-0.012	0.00	INU NL	100.00	res
29	х	-0.012	-0.012	0.00	INO	100.00	Yes
65	х	-0.012	-0.012	0.00	No	100.00	Yes
28	Х	-0.012	-0.012	0.00	No	100.00	Yes
64	х	-0.012	-0.012	0.00	No	100.00	Yes
77	х	-0.012	-0.012	0.00	No	100.00	Yes
78	х	-0.012	-0.012	0.00	No	100.00	Yes
60	x	-0.012	-0.012	0.00	No	100 00	Yes
85	×	-0.013	-0.013	0.00	No	100.00	Vec
80	~	-0.010	-0.013	0.00	No	100.00	Voo
09	X	-0.012	-0.012	0.00	INO N.L.	100.00	res
90	х	-0.012	-0.012	0.00	No	100.00	Yes
33	У	-0.006	-0.006	0.00	No	100.00	Yes
34	У	-0.006	-0.006	0.00	No	100.00	Yes
35	у	-0.006	-0.006	0.00	No	100.00	Yes
36	y	-0.006	-0.006	0.00	No	100.00	Yes
37	v	-0.006	-0.006	0.00	No	100.00	Yes
38	y V	-0.006	-0.006	0.00	No	100.00	Yes
30	y V	-0.006	-0.006	0.00	No	100.00	Vec
40	у	-0.000	-0.000	0.00	No	100.00	Vee
40	У	-0.006	-0.006	0.00	INO	100.00	res
41	У	-0.006	-0.006	0.00	No	100.00	Yes
42	У	-0.006	-0.006	0.00	No	100.00	Yes
43	У	-0.006	-0.006	0.00	No	100.00	Yes
44	у	-0.006	-0.006	0.00	No	100.00	Yes
66	V	-0.004	-0.004	0.00	No	100.00	Yes
67	v	-0 004	-0 004	0.00	No	100 00	Yes
68	y V	-0.004	-0.004	0.00	No	100.00	Ves
105	J	-0.005	-0.005	0.00	No	100.00	Vec
100	у	-0.005	-0.005	0.00	No	100.00	Ve-
100	У	-0.005	-0.005	0.00	INO	100.00	res
107	У	-0.005	-0.005	0.00	No	100.00	Yes
108	У	-0.005	-0.005	0.00	No	100.00	Yes
109	У	-0.005	-0.005	0.00	No	100.00	Yes
110	у	-0.005	-0.005	0.00	No	100.00	Yes
71	v	-0.006	-0.006	0.00	No	100.00	Yes
69	v	-0.006	-0.006	0.00	No	100 00	Yes
	,		5.000	5.55			

21	У	-0.008	-0.008	0.00	No	100.00	Yes
57	У	-0.006	-0.006	0.00	No	100.00	Yes
74	У	-0.006	-0.006	0.00	No	100.00	Yes
72	У	-0.006	-0.006	0.00	No	100.00	Yes
23	У	-0.008	-0.008	0.00	No	100.00	Yes
59	У	-0.006	-0.006	0.00	No	100.00	Yes
70	У	-0.006	-0.006	0.00	No	100.00	Yes
73	У	-0.006	-0.006	0.00	No	100.00	Yes
22	У	-0.008	-0.008	0.00	No	100.00	Yes
58	У	-0.006	-0.006	0.00	No	100.00	Yes
84	У	-0.006	-0.006	0.00	No	100.00	Yes
88	У	-0.008	-0.008	0.00	No	100.00	Yes
61	У	-0.008	-0.008	0.00	No	100.00	Yes
87	У	-0.008	-0.008	0.00	No	100.00	Yes
27	У	-0.011	-0.011	0.00	No	100.00	Yes
63	У	-0.008	-0.008	0.00	No	100.00	Yes
75	У	-0.008	-0.008	0.00	No	100.00	Yes
76	У	-0.008	-0.008	0.00	No	100.00	Yes
62	У	-0.008	-0.008	0.00	No	100.00	Yes
91	У	-0.008	-0.008	0.00	No	100.00	Yes
86	У	-0.006	-0.006	0.00	No	100.00	Yes
92	У	-0.008	-0.008	0.00	No	100.00	Yes
80	У	-0.008	-0.008	0.00	No	100.00	Yes
79	У	-0.008	-0.008	0.00	No	100.00	Yes
29	У	-0.011	-0.011	0.00	No	100.00	Yes
65	У	-0.008	-0.008	0.00	No	100.00	Yes
28	У	-0.011	-0.011	0.00	No	100.00	Yes
64	У	-0.008	-0.008	0.00	No	100.00	Yes
77	У	-0.008	-0.008	0.00	No	100.00	Yes
78	У	-0.008	-0.008	0.00	No	100.00	Yes
60	У	-0.008	-0.008	0.00	No	100.00	Yes
85	У	-0.006	-0.006	0.00	No	100.00	Yes
89	У	-0.008	-0.008	0.00	No	100.00	Yes
90	У	-0.008	-0.008	0.00	No	100.00	Yes

Concentrated forces on members

Condition	Member	Dir1	Value1 [Kip]	Dist1 [ft]	%
DL	33	у	-0.035	1.50	No
		y	-0.035	6.50	No
	34	у	-0.035	1.50	No
		у	-0.035	6.50	No
	35	у	-0.033	6.00	No
	36	у	-0.035	1.50	No
		у	-0.035	6.50	No
	37	у	-0.035	1.50	No
		у	-0.035	6.50	No
	38	у	-0.035	1.50	No
		у	-0.035	6.50	No

39	У	-0.033	6.00	No
40	y	-0.035	1.50	No
	y	-0.035	6.50	No
41	y	-0.035	1.50	No
	y	-0.035	6.50	No
42	ý	-0.035	1.50	No
	v	-0.035	6.50	No
43	v	-0.033	6.00	No
44	v	-0.035	1.50	No
	v	-0.035	6.50	No
105	v	-0.06	2.00	No
	v	-0.071	4.00	No
106	ý	-0.046	2.00	No
	ý	-0.072	4.00	No
107	ý	-0.06	2.00	No
	ý	-0.071	4.00	No
108	ý	-0.046	2.00	No
	ý	-0.072	4.00	No
109	v	-0.06	2.00	No
	ý	-0.071	4.00	No
110	ý	-0.046	2.00	No
	ý	-0.072	4.00	No
33	Z	-0.239	1.50	No
	Z	-0.239	6.50	No
34	Z	-0.239	1.50	No
	Z	-0.239	6.50	No
35	Z	-0.043	6.00	No
36	Z	-0.239	1.50	No
	Z	-0.239	6.50	No
37	Z	-0.139	1.50	No
	Z	-0.139	6.50	No
38	Z	-0.139	1.50	No
	Z	-0.139	6.50	No
39	Z	-0.043	6.00	No
40	Z	-0.139	1.50	No
	Z	-0.139	6.50	No
41	Z	-0.139	1.50	No
	Z	-0.139	6.50	No
42	Z	-0.139	1.50	No
	Z	-0.139	6.50	No
43	Z	-0.043	6.00	No
44	Z	-0.139	1.50	No
105	Z	-0.139	6.50	No
105	Z	-0.047	2.00	INO
100	Z	-0.053	4.00	INO Na
106	Z	-0.031	2.00	INO Na
107	2	-0.051	4.00	No
107	2	-0.009	2.00	No
109	2	-0.009	2.00	No
100	Z 7	-0.00	2.00	No
100	Z 7	-0.059	2.00	No
103	7	-0.069	4 00	No
110	7	-0.06	2 00	No
	- 7	-0.059	4 00	No
33	_ x	-0.106	1.50	No
	x	-0.106	6.50	No
34	x	-0.106	1.50	No
	х	-0.106	6.50	No
35	х	-0.043	6.00	No

W0

36	х	-0.106	1.50	No
	х	-0.106	6.50	No
37	х	-0.206	1.50	No
	х	-0.206	6.50	No
38	х	-0.206	1.50	No
	х	-0.206	6.50	No
39	х	-0.043	6.00	No
40	х	-0.206	1.50	No
	х	-0.206	6.50	No
41	х	-0.206	1.50	No
	х	-0.206	6.50	No
42	х	-0.206	1.50	No
	х	-0.206	6.50	No
43	х	-0.043	6.00	No
44	х	-0.206	1.50	No
	х	-0.206	6.50	No
105	х	-0.076	2.00	No
	х	-0.074	4.00	No
106	х	-0.069	2.00	No
	х	-0.062	4.00	No
107	х	-0.054	2.00	No
	х	-0.058	4.00	No
108	х	-0.04	2.00	No
	х	-0.054	4.00	No
109	х	-0.054	2.00	No
	х	-0.058	4.00	No
110	х	-0.04	2.00	No
	х	-0.054	4.00	No
33	У	-0.098	1.50	No
	У	-0.098	6.50	No
34	У	-0.098	1.50	No
	У	-0.098	6.50	No
35	У	-0.031	6.00	No
36	У	-0.098	1.50	No
	У	-0.098	6.50	No
37	У	-0.098	1.50	No
	У	-0.098	6.50	No
38	У	-0.098	1.50	No
	У	-0.098	6.50	No
39	У	-0.031	6.00	No
40	У	-0.098	1.50	No
	У	-0.098	6.50	No
41	У	-0.098	1.50	No
	У	-0.098	6.50	No
42	У	-0.098	1.50	No
10	У	-0.098	6.50	NO
43	У	-0.031	6.00	NO
44	У	-0.098	1.50	NO
405	У	-0.098	6.50	NO
105	у	-0.036	2.00	NO No
100	У	-0.037	4.00	NO No
001	у	-0.031	∠.00 4.00	No
107	у	-0.032	4.00	No
107	У	-0.030	2.00	No
108	y V	-0.037	2.00	No
100	y V	-0.032	4 00	No
109	y V	-0.036	2.00	No
100	y V	-0.037	4 00	No
110	J V	-0.031	2 00	No
	,	0.001	2.00	

		У	-0.032	4.00	No
Wi0	33	Z	-0.048	1.50	No
		z	-0.048	6.50	No
	34	Z	-0.048	1.50	No
		Z	-0.048	6.50	No
	35	Z	-0.01	6.00	No
	36	Z	-0.048	1.50	No
		z	-0.048	6.50	No
	37	z	-0.03	1.50	No
		Z	-0.03	6.50	No
	38	Z	-0.03	1.50	No
		7	-0.03	6 50	No
	39	7	-0.01	6.00	No
	40	7	-0.03	1.50	No
	10	7	-0.03	6 50	No
	41	7	-0.03	1 50	No
		7	-0.03	6 50	No
	12	2	-0.03	1 50	No
	42	2	-0.03	6.50	No
	13	2	-0.03	6.00	No
	43	2	-0.01	0.00	No
	44	2	-0.03	1.50	No
	105	2	-0.03	0.50	INO No
	105	Z	-0.012	2.00	INO Nie
	100	Z	-0.013	4.00	NO No
	106	Z	-0.008	2.00	NO
	407	Z	-0.012	4.00	NO
	107	Z	-0.016	2.00	NO
		Z	-0.016	4.00	No
	108	Z	-0.014	2.00	No
		Z	-0.014	4.00	No
	109	Z	-0.016	2.00	No
		Z	-0.016	4.00	No
	110	Z	-0.014	2.00	No
		Z	-0.014	4.00	No
Wi30	33	Х	-0.024	1.50	No
		Х	-0.024	6.50	No
	34	х	-0.024	1.50	No
		х	-0.024	6.50	No
	35	Х	-0.01	6.00	No
	36	Х	-0.024	1.50	No
		х	-0.024	6.50	No
	37	х	-0.042	1.50	No
		Х	-0.042	6.50	No
	38	Х	-0.042	1.50	No
		х	-0.042	6.50	No
	39	х	-0.01	6.00	No
	40	х	-0.042	1.50	No
		х	-0.042	6.50	No
	41	Х	-0.042	1.50	No
		Х	-0.042	6.50	No
	42	х	-0.042	1.50	No
		х	-0.042	6.50	No
	43	х	-0.01	6.00	No
	44	х	-0.042	1.50	No
		х	-0.042	6.50	No
	105	х	-0.017	2.00	No
		х	-0.017	4.00	No
	106	х	-0.016	2.00	No
		х	-0.015	4.00	No
	107	х	-0.013	2.00	No

		х	-0.014	4.00	No
	108	Х	-0.01	2.00	No
		Х	-0.013	4.00	No
	109	Х	-0.013	2.00	No
		Х	-0.014	4.00	No
	110	Х	-0.01	2.00	No
		Х	-0.013	4.00	No
WL0	33	Z	-0.015	1.50	No
		Z	-0.015	6.50	No
	34	Z	-0.015	1.50	No
		Z	-0.015	6.50	No
	35	Z	-0.003	6.00	No
	36	Z	-0.015	1.50	No
		Z	-0.015	6.50	No
	37	Z	-0.009	1.50	No
		Z	-0.009	6.50	No
	38	Z	-0.009	1.50	No
		Z	-0.009	6.50	No
	39	Z	-0.003	6.00	No
	40	Z	-0.009	1.50	No
		Z	-0.009	6.50	No
	41	Z	-0.009	1.50	No
		Z	-0.009	6.50	No
	42	Z	-0.009	1.50	No
		Z	-0.009	6.50	No
	43	Z	-0.003	6.00	No
	44	Z	-0.009	1.50	No
		Z	-0.009	6.50	No
	105	Z	-0.003	2.00	No
		Z	-0.003	4.00	No
	106	Z	-0.002	2.00	No
		Z	-0.003	4.00	No
	107	Z	-0.004	2.00	No
		Z	-0.004	4.00	No
	108	Z	-0.004	2.00	No
		Z	-0.004	4.00	No
	109	Z	-0.004	2.00	No
		Z	-0.004	4.00	No
	110	Z	-0.004	2.00	No
		Z	-0.004	4.00	No
WL30	33	Х	-0.007	1.50	No
		Х	-0.007	6.50	No
	34	Х	-0.007	1.50	No
		Х	-0.007	6.50	No
	35	Х	-0.003	6.00	No
	36	Х	-0.007	1.50	No
		Х	-0.007	6.50	No
	37	Х	-0.013	1.50	No
		Х	-0.013	6.50	No
	38	Х	-0.013	1.50	No
		Х	-0.013	6.50	No
	39	х	-0.003	6.00	No
	40	х	-0.013	1.50	No
		х	-0.013	6.50	No
	41	х	-0.013	1.50	No
		х	-0.013	6.50	No
	42	х	-0.013	1.50	No
		х	-0.013	6.50	No
	43	х	-0.003	6.00	No
	44	х	-0.013	1.50	No

		х	-0.013	6.50	No
	105	х	-0.005	2.00	No
		х	-0.005	4.00	No
	106	х	-0.004	2.00	No
		х	-0.004	4.00	No
	107	х	-0.003	2.00	No
		х	-0.004	4.00	No
	108	х	-0.003	2.00	No
		х	-0.003	4.00	No
	109	х	-0.003	2.00	No
		х	-0.004	4.00	No
	110	х	-0.003	2.00	No
		х	-0.003	4.00	No
LL1	57	у	-0.25	50.00	Yes
LL2	57	у	-0.25	100.00	Yes
LLa1	33	у	-0.25	50.00	Yes
LLa2	34	у	-0.25	50.00	Yes
LLa3	35	У	-0.25	50.00	Yes
LLa4	36	У	-0.25	50.00	Yes

Self weight multipliers for load conditions

			Self weight multiplier				
Condition	Description	Comb.	MultX	MultY	MultZ		
DL	Dead Load	No	0.00	-1.00	0.00		
W0	Wind Load 0/60/120 deg	No	0.00	0.00	0.00		
W30	Wind Load 30/90/150 deg	No	0.00	0.00	0.00		
Di	Ice Load	No	0.00	0.00	0.00		
Wi0	Ice Wind Load 0/60/120 deg	No	0.00	0.00	0.00		
Wi30	Ice Wind Load 30/90/150 deg	No	0.00	0.00	0.00		
WL0	WL 30 mph 0/60/120 deg	No	0.00	0.00	0.00		
WL30	WL 30 mph 30/90/150 deg	No	0.00	0.00	0.00		
LL1	250 lb Live Load Center of Mount	No	0.00	0.00	0.00		
LL2	250 lb Live Load End of Mount	No	0.00	0.00	0.00		
LLa1	250 lb Live Load Antenna 1	No	0.00	0.00	0.00		
LLa2	250 lb Live Load Antenna 2	No	0.00	0.00	0.00		
LLa3	250 lb Live Load Antenna 3	No	0.00	0.00	0.00		
LLa4	250 lb Live Load Antenna 4	No	0.00	0.00	0.00		

Earthquake (Dynamic analysis only)

Condition	a/g	Ang. [Deg]	Damp. [%]	
DL	0.00	0.00	0.00	
W0	0.00	0.00	0.00	
W30	0.00	0.00	0.00	
Di	0.00	0.00	0.00	
Wi0	0.00	0.00	0.00	
Wi30	0.00	0.00	0.00	
WL0	0.00	0.00	0.00	
WL30	0.00	0.00	0.00	

LL1	0.00	0.00	0.00	
LL2	0.00	0.00	0.00	
LLa1	0.00	0.00	0.00	
LLa2	0.00	0.00	0.00	
LLa3	0.00	0.00	0.00	
LLa4	0.00	0.00	0.00	

Current Date: 8/10/2020 1:17 PM Units system: English File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\S2873\NSB\Rev. 1\S2873 (NSB).retx

Steel Code Check

Report: Summary - Group by member

Load conditions to be included in design :

LC1=1.2DL+W0 LC2=1.2DL+W30 LC3=1.2DL-W0 LC4=1.2DL-W30 LC5=0.9DL+W0 LC6=0.9DL+W30 LC7=0.9DL-W0 LC8=0.9DL-W30 LC9=1.2DL+Di+Wi0 LC10=1.2DL+Di+Wi30 LC11=1.2DL+Di-Wi0 LC12=1.2DL+Di-Wi30 LC13=1.2DL LC15=1.2DL+1.5LL1 LC16=1.2DL+1.5LL2 LC17=1.2DL+WL0+1.5LLa1 LC18=1.2DL+WL30+1.5LLa1 LC19=1.2DL-WL0+1.5LLa1 LC20=1.2DL-WL30+1.5LLa1 LC21=1.2DL+WL0+1.5LLa2 LC22=1.2DL+WL30+1.5LLa2 LC23=1.2DL-WL0+1.5LLa2 LC24=1.2DL-WL30+1.5LLa2 LC25=1.2DL+WL0+1.5LLa3 LC26=1.2DL+WL30+1.5LLa3 LC27=1.2DL-WL0+1.5LLa3 LC28=1.2DL-WL30+1.5LLa3 LC29=1.2DL+WL0+1.5LLa4 LC30=1.2DL+WL30+1.5LLa4 LC31=1.2DL-WL0+1.5LLa4 LC32=1.2DL-WL30+1.5LLa4

Description	Section	Member	Ctrl Eq.	Ratio	Status	Reference
	HSS_RECT 6X3X3_16	27	LC10 at 0.00%	0.20	ок	Eq. H1-1b
		28	LC12 at 0.00%	0.20	OK	Eq. H1-1b
		29	LC10 at 0.00%	0.20	OK	Eq. H1-1b
	HSS_SQR 3X3X1_4	87	LC11 at 100.00%	0.11	OK	Eq. H1-1b
		88	LC10 at 0.00%	0.12	OK	Eq. H1-1b
		89	LC11 at 100.00%	0.12	OK	Eq. H1-1b
		90	LC12 at 0.00%	0.11	OK	Eq. H1-1b
		91	LC9 at 100.00%	0.12	OK	Eq. H1-1b
		92	LC9 at 0.00%	0.11	OK	Eq. H1-1b
	HSS_SQR 3X3X3_16	21	LC10 at 40.28%	0.10	OK	Eq. H1-1b
		22	LC9 at 59.72%	0.10	OK	Eq. H1-1b
		23	LC12 at 59.72%	0.10	OK	Eq. H1-1b
		75	LC10 at 100.00%	0.22	OK	Eq. H1-1b
		76	LC10 at 0.00%	0.22	OK	Eq. H1-1b
		77	LC11 at 100.00%	0.22	OK	Eq. H1-1b
		78	LC12 at 0.00%	0.22	OK	Eq. H1-1b

	79	LC9 at 100.00%	0.22	ОК	Eq. H1-1b
	80	LC9 at 100.00%	0.22	OK	Eq. H1-1b
HEE SOD 27275 16	60		0.26		
H33_3QR 3A3A3_10	60	LC2 at 50.00%	0.20	OK	
	62	LC4 at 50.00%	0.30	OK	
	62	LC3 at 0.00%	0.25	OK	
	64	LC3 at 0.00%	0.27	OK	
	65	LC1 at 95.75%	0.29	OK	
	60	LC2 at 0.00%	0.34	UK	Eq. HI-ID
L 2X2X1_4	69	LC10 at 90.63%	0.47	ОК	Eq. H3-8
	70	LC11 at 90.63%	0.25	OK	Eq. H2-1
	71	LC12 at 90.63%	0.25	OK	Eq. H2-1
	72	LC12 at 9.38%	0.25	OK	Eq. H2-1
	73	LC9 at 90.63%	0.46	OK	Eq. H3-8
	74	LC9 at 9.38%	0.46	OK	Eq. H3-8
	84	LC10 at 50.00%	0.26	OK	Eq. H2-1
	85	LC11 at 50.00%	0.26	OK	Eq. H2-1
	86	LC9 at 50.00%	0.26	OK	Eq. H2-1
PIPE 2-1 2x0.203	33	LC1 at 43.75%	0.29	ок	Eq. H1-1b
-	34	LC1 at 43.75%	0.29	OK	Eq. H1-1b
	35	LC10 at 93.75%	0.13	OK	Eq. H1-1b
	36	LC3 at 43.75%	0.29	OK	Eq. H1-1b
	37	LC2 at 43.75%	0.29	OK	Eq. H1-1b
	38	LC4 at 43.75%	0.29	OK	Eq. H1-1b
	39	LC12 at 93.75%	0.15	OK	Eq. H1-1b
	40	LC2 at 43.75%	0.29	OK	Eq. H1-1b
	41	LC4 at 43.75%	0.25	OK	Eq. H1-1b
	42	LC4 at 43.75%	0.25	OK	Eq. H1-1b
	43	LC11 at 93.75%	0.12	OK	Eq. H1-1b
	44	LC2 at 43.75%	0.25	OK	Eq. H1-1b
	57	LC1 at 86.61%	0.42	OK	Eq. H1-1b
	58	LC4 at 13.39%	0.39	OK	Eq. H1-1b
	59	LC2 at 13.39%	0.33	OK	Eq. H1-1b
PIPE 2x0.154	105	LC2 at 18.75%	0.11	OK	Eq. H1-1b
	106	LC4 at 18.75%	0.11	OK	Eq. H1-1b
	107	LC3 at 18.75%	0.11	OK	Eq. H1-1b
	108	LC3 at 18.75%	0.12	OK	Eq. H1-1b
	109	LC3 at 18.75%	0.12	OK	Eq. H1-1b
	110	LC3 at 18.75%	0.11	OK	Eq. H1-1b
PL 2x1/8	66	LC10 at 100.00%	0.29	With warnings	Eq. H1-1a
	67	LC12 at 100.00%	0.28	With warnings	Eq. H1-1a
	68	LC9 at 100.00%	0.29	With warnings	Eq. H1-1a
				-	

Current Date: 8/10/2020 1:17 PM Units system: English File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\S2873\NSB\Rev. 1\S2873 (NSB).retx

Geometry data

GLOSSARY

Cb22, Cb33	: Moment gradient coefficients								
Cm22, Cm33	: Coefficients applied to bending term in interaction formula								
d0	: Tapered member section depth at J end of member								
DJX	: Rigid end offset distance measured from J node in axis X								
DJY	: Rigid end offset distance measured from J node in axis Y								
DJZ	: Rigid end offset distance measured from J node in axis Z								
DKX	: Rigid end offset distance measured from K node in axis X								
DKY	: Rigid end offset distance measured from K node in axis Y								
DKZ	: Rigid end offset distance measured from K node in axis Z								
dL	: Tapered member section depth at K end of member								
lg factor	: Inertia reduction factor (Effective Inertia/Gross Inertia) for reinforced concrete members								
K22	: Effective length factor about axis 2								
K33	: Effective length factor about axis 3								
L22	: Member length for calculation of axial capacity								
L33	: Member length for calculation of axial capacity								
LB pos	: Lateral unbraced length of the compression flange in the positive side of local axis 2								
LB neg	: Lateral unbraced length of the compression flange in the negative side of local axis 2								
RX	: Rotation about X								
RY	: Rotation about Y								
RZ	: Rotation about Z								
ТО	: 1 = Tension only member 0 = Normal member								
TX	: Translation in X								
TY	: Translation in Y								
TZ	: Translation in Z								

Nodes

Node	X [ft]	Y [ft]	Z [ft]	Rigid Floor
9	0.00	0.00	-1.75	0
216	0.00	5.00	-1.75	0
172	1.5155	0.00	0.875	0
214	1.5155	5.00	0.875	0
174	-1.5155	0.00	0.875	0
215	-1.5155	5.00	0.875	0

Restraints

Node	тх	ΤY	ΤZ	RX	RY	RZ
9		1	1	1	 1	1
216	1	1	1	1	1	1
172	1	1	1	1	1	1
214	1	1	1	1	1	1
174	1	1	1	1	1	1
215	1	1	1	1	1	1

Members

Member NJ		NK	Description	Section	Material	d0 [in]	dL [in]	lg factor
	239	227		PIPE 2-1 2x0 203	 A53 GrB	0.00	0.00	0.00
34	240	228		PIPE 2-1 2x0.203	A53 GrB	0.00	0.00	0.00
35	242	230		PIPE 2-1 2x0.203	A53 GrB	0.00	0.00	0.00
36	241	229		PIPE 2-1 2x0.203	A53 GrB	0.00	0.00	0.00
37	243	231		PIPE 2-1 2x0.203	A53 GrB	0.00	0.00	0.00
38	244	232		PIPE 2-1 2x0.203	A53 GrB	0.00	0.00	0.00
39	245	233		PIPE 2-1 2x0.203	A53 GrB	0.00	0.00	0.00
40	246	234		PIPE 2-1 2x0.203	A53 GrB	0.00	0.00	0.00
41	247	235		PIPE 2-1 2x0.203	A53 GrB	0.00	0.00	0.00
42	248	236		PIPE 2-1 2x0.203	A53 GrB	0.00	0.00	0.00
43	249	237		PIPE 2-1 2x0.203	A53 GrB	0.00	0.00	0.00
44	250	238		PIPE 2-1 2x0.203	A53 GrB	0.00	0.00	0.00
66	215	211		PL 2x1/8	A53 GrB SABRE 50.	0.00	0.00	0.00
67	214	212		PL 2x1/8	A53 GrB SABRE 50.	0.00	0.00	0.00
68	216	213		PL 2x1/8	A53 GrB SABRE 50.	0.00	0.00	0.00
105	380	377		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
106	379	375		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
107	384	371		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
108	383	369		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
109	382	365		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
110	381	363		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
71	288	286		L 2X2X1_4	A36	0.00	0.00	0.00
69	289	287		L 2X2X1_4	A36	0.00	0.00	0.00
21	29	28		HSS_SQR 3X3X3_16	A53 GrB SABRE 50.	0.00	0.00	0.00
57	314	315		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
74	273	272		L 2X2X1_4	A36	0.00	0.00	0.00
72	271	270		L 2X2X1_4	A36	0.00	0.00	0.00
23	4	5		HSS_SQR 3X3X3_16	A53 GrB SABRE 50.	0.00	0.00	0.00
59	318	319		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
70	284	282		L 2X2X1_4	A36	0.00	0.00	0.00
73	285	283		L 2X2X1_4	A36	0.00	0.00	0.00
22	25	26		HSS_SQR 3X3X3_16	A53 GrB SABRE 50.	0.00	0.00	0.00
58	316	317		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
84	287	282		L 2X2X1_4	A36	0.00	0.00	0.00
88	359	354		HSS_SQR 3X3X1_4	A53 GrB SABRE 50.	0.00	0.00	0.00
61	334	331		HSS_SQR 3X3X5_16	A53 GrB SABRE 50.	0.00	0.00	0.00
87	357	359		HSS_SQR 3X3X1_4	A53 GrB SABRE 50.	0.00	0.00	0.00
27	1/4	208		HSS_RECT 6X3X3_16	A53 GrB SABRE 50.	0.00	0.00	0.00
63	215	217		HSS_SQR 3X3X5_16	A53 GrB SABRE 50.	0.00	0.00	0.00
75	206	211		HSS_SQR 3X3X3_16	A53 GrB SABRE 50.	0.00	0.00	0.00
70 60	211	201		HS5_SQR 3X3X3_10	A53 GIB SABRE 50.	0.00	0.00	0.00
02	320	332			A53 GIB SABRE 50.	0.00	0.00	0.00
91	349	000 000		HSS_SQR 3A3A1_4	ADD GID SADRE DU.	0.00	0.00	0.00
00	213	203				0.00	0.00	0.00
92	200	200				0.00	0.00	0.00
00 70	202	213				0.00	0.00	0.00
20	109	213			ASS GID SADRE SU.	0.00	0.00	0.00
29 65	9 216	210		HSS_CRECT 07373_10	A53 GrB SABRE 50	0.00	0.00	0.00
28	172	223		HSS RECT 6X3X3 16	453 GrB SABRE 50	0.00	0.00	0.00
64	214	200		HSS_SOR 3X3X5_16	A53 GrB SABRE 50	0.00	0.00	0.00
77	205	223		HSS_SOR 3X3X3_16	453 GrB SABRE 50	0.00	0.00	0.00
78	212	180		HSS_SOR_3X3X3_16	A53 GrB SABRE 50	0.00	0.00	0.00
60	333	321		HSS_SOR_3X3X5_16	A53 GrB SARRE 50	0.00	0.00	0.00
85	286	271		22221 4	A36	0.00	0.00	0.00
89	356	360		HSS_SOR_3X3X1_4	A53 GrB SABRE 50		0.00	0.00
90	360	348		HSS_SQR 3X3X1_4	A53 GrB SABRE 50.	0.00	0.00	0.00

Orientation of local axes

Member	Rotation [Deg]	Axes23	NX	NY	NZ	
71	270.00	0	0.00	0.00	0.00	
72	270.00	0	0.00	0.00	0.00	
70	270.00	0	0.00	0.00	0.00	
27	90.00	0	0.00	0.00	0.00	
86	270.00	0	0.00	0.00	0.00	
29	90.00	0	0.00	0.00	0.00	
28	90.00	0	0.00	0.00	0.00	
85	270.00	0	0.00	0.00	0.00	

Rigid end offsets

Member	DJX [in]	DJY [in]	DJZ [in]	DKX [in]	DKY [in]	DKZ [in]	
		4.00					
00	0.00	-1.00	0.00	0.00	-3.00	0.00	
07	0.00	-1.00	0.00	0.00	-3.00	0.00	
71	0.00	-1.00	0.00	0.00	-3.00	0.00	
/ I 60	0.00	-1.00	0.00	0.00	-1.00	0.00	
09 57	0.00	-1.00	0.00	0.00	-1.00	0.00	
57	0.00	3.50	0.00	0.00	3.50	0.00	
74	0.00	-1.00	0.00	0.00	-1.00	0.00	
12	0.00	-1.00	0.00	0.00	-1.00	0.00	
59	0.00	3.50	0.00	0.00	3.50	0.00	
70	0.00	-1.00	0.00	0.00	-1.00	0.00	
73	0.00	-1.00	0.00	0.00	-1.00	0.00	
58	0.00	3.50	0.00	0.00	3.50	0.00	
84	0.00	-1.00	0.00	0.00	-1.00	0.00	
88	0.00	-3.00	0.00	0.00	-3.00	0.00	
61	0.00	0.75	0.00	0.00	0.75	0.00	
87	0.00	-3.00	0.00	0.00	-3.00	0.00	
27	0.00	-3.00	0.00	0.00	-3.00	0.00	
63	0.00	-2.00	0.00	0.00	-2.00	0.00	
75	0.00	-3.00	0.00	0.00	-3.00	0.00	
76	0.00	-3.00	0.00	0.00	-3.00	0.00	
62	0.00	0.75	0.00	0.00	0.75	0.00	
91	0.00	-3.00	0.00	0.00	-3.00	0.00	
86	0.00	-1.00	0.00	0.00	-1.00	0.00	
92	0.00	-3.00	0.00	0.00	-3.00	0.00	
80	0.00	-3.00	0.00	0.00	-3.00	0.00	
79	0.00	-3.00	0.00	0.00	-3.00	0.00	
29	0.00	-3.00	0.00	0.00	-3.00	0.00	
65	0.00	-2.00	0.00	0.00	-2.00	0.00	
28	0.00	-3.00	0.00	0.00	-3.00	0.00	
64	0.00	-2.00	0.00	0.00	-2.00	0.00	
77	0.00	-3.00	0.00	0.00	-3.00	0.00	
78	0.00	-3.00	0.00	0.00	-3.00	0.00	
60	0.00	0.75	0.00	0.00	0.75	0.00	
85	0.00	-1.00	0.00	0.00	-1.00	0.00	
89	0.00	-3.00	0.00	0.00	-3.00	0.00	
90	0.00	-3.00	0.00	0.00	-3.00	0.00	

Hinges

		Node-J			Node-K						
Member	M33	M22	V3	V2	M33	M22	V3	V2	TOR	AXL	Axial rigidity
66	0	0	0	0	0	0	0	0	0	0	Tension only
67	0	0	0	0	0	0	0	0	0	0	Tension only
68	0	0	0	0	0	0	0	0	0	0	Tension only

EXHIBIT 5

Radio Frequency Safety Survey Report Prediction (RFSSRP)

AT&T Wireless Monopole Facility

Site ID: CT2873 Site Name: DANBURY GREAT PASTURE ROAD Address: 15 GREAT PASTURE ROAD, DANBURY, CT 06810 Latitude: 41.383003 Longitude: -73.422159 USID: 253157 FA: 12684101 **Prepared for:**

AT&T Mobility 550 Cochituate Road, Suite 13 Framingham, MA 01701

<u>Report Writer:</u> Dane Folie <u>Date:</u> September 28, 2020 <u>Report Reviewer:</u> Brandon Green

Statement of Compliance

AT&T will be compliant with FCC Regulations upon installation of recommended mitigation measures.

TABLE OF CONTENTS

1.0 GENERAL SUMMARY
1.1 SITE SUMMARY
2.0 SITE SCALE MAP
3.0 ANTENNA INVENTORY
4.0 PREDICTED EMISSION LEVELS AND DISCUSSION
5.0 EMISSIONS DIAGRAMS
6.0 STATEMENT OF COMPLIANCE
6.1 STATEMENT OF AT&T MOBILITY COMPLIANCE11
6.2 RECOMMENDATIONS11
7.0 FALL ARREST AND PARAPET INFORMATION12
APPENDIX A: RF SIGNAGE
APPENDIX B: FCC GUIDELINES AND EMISSIONS THRESHOLD LIMITS
APPENDIX C: CALCULATION METHODOLOGY
APPENDIX D: CERTIFICATIONS
APPENDIX E: PROPRIETARY STATEMENT

1.0 GENERAL SUMMARY

Centerline Communications, LLC ("Centerline") has been contracted to provide a Radio Frequency (RF) Analysis for the following AT&T Mobility wireless monopole facility to determine whether the facility is in compliance with federal standards and regulations regarding RF emissions. This analysis includes theoretical emissions calculations, for all equipment for AT&T Mobility and any other wireless carriers on site.

Analysis Site Data									
	Site USID:	253157							
	Site FA#:	12684101							
	Site Name:	DANBURY GREAT PASTURE ROAD							
	Site Address:	15 GREAT PASTURE ROAD,							
		DANBURY CT 06810							
	Site Latitude:	41.383003							
	Site Longitude:	-73.422159							
	Facility Type:	Monopole							
	Compliance Summ	ary							
	Compliance Status:	Compliant Upon Mitigation Installation							
Maximum Modeled AT&	T MPE% on Walking Surface	0.06%							
	(General Public Limit):								
Maximum Modeled A	T&T MPE% at Ground Level	0.06%							
	(General Public Limit):								
	Site Survey Dat	a							
Is A	ccess Locked or Controlled? :	Unknown							
Lock or	Control Measures if Present:	Unknown							
	Parapet Height:	N/A							
	Site Data Informat	tion							
CD:	2020-0928 CT2873 Bethel -	CD Rev0_19101.00 (S&S).pdf							
RFDS:	NEW-ENGLAND_CONNEC	CTICUT_CT2873_2020-New-							
	Site_New_ra9161_2051A0D	Q2P_12684101_253157_03-18-							
	2019 Preliminary-In-Progres	ss v3.00.pdf							

1.1 SITE SUMMARY

Signage and barriers are the primary means of mitigating access to accessible areas of exposure. Below is a summary of existing and recommended signage at this AT&T facility.

Existing Signage and Barriers (AT&T Sectors)											
Location	Information	Notice	Notice 2	Caution	Caution 2	Caution 2B	Caution 2C	Warning	Warning 2	Barriers	
Gate	0	0	0	0	0	0	0	0	0	0	
Monopole Base	0	0	0	0	0	0	0	0	0	0	

Recommended Signage and Barriers (AT&T Sectors)										
Location	Notice 2	Caution 2	Caution 2B	Caution 2C	Warning 2	Barriers				
Gate	0	0	0	0	0	0				
Monopole Base	0	0	1	0	0	0				

Monopole Base:

• Install (1) Caution 2B sign at the base of the monopole.

2.0 SITE SCALE MAP

3.0 ANTENNA INVENTORY

ANT ID	Operator	Antenna Make	Antenna Model	Туре	Freq (MHz)	TPO (Watts)	# of TX	Azimuth (°)	BW (°)	Gain (dBd)	Total ERP (Watts)	Length (ft.)	Antenna Z Value (ft.) AGL*
1	AT&T	CCI	TPA65R-BU6D	Panel	700	40	4	15	68	11.75	2393.98	5.9	137.3
1	AT&T	CCI	TPA65R-BU6D	Panel	2100	40	4	15	60	15.85	6153.47	5.9	137.3
1	AT&T	CCI	TPA65R-BU6D	Panel	2300	25	4	15	52	14.75	2985.38	5.9	137.3
2	AT&T	CCI	TPA65R-BU6D	Panel	700	40	2	15	68	11.75	1196.99	5.9	137.3
2	AT&T	CCI	TPA65R-BU6D	Panel	850	40	2	15	65	12.45	1406.34	5.9	137.3
2	AT&T	CCI	TPA65R-BU6D	Panel	1900	40	4	15	63	14.85	4887.87	5.9	137.3
3	AT&T	CCI	TPA65R-BU6D	Panel	700	40	4	140	68	11.75	2393.98	5.9	137.3
3	AT&T	CCI	TPA65R-BU6D	Panel	2100	40	4	140	60	15.85	6153.47	5.9	137.3
3	AT&T	CCI	TPA65R-BU6D	Panel	2300	25	4	140	52	14.75	2985.38	5.9	137.3
4	AT&T	CCI	TPA65R-BU6D	Panel	700	40	2	140	68	11.75	1196.99	5.9	137.3
4	AT&T	CCI	TPA65R-BU6D	Panel	850	40	2	140	65	12.45	1406.34	5.9	137.3
4	AT&T	CCI	TPA65R-BU6D	Panel	1900	40	4	140	63	14.85	4887.87	5.9	137.3
5	AT&T	CCI	TPA65R-BU6D	Panel	700	40	4	260	68	11.75	2393.98	5.9	137.3
5	AT&T	CCI	TPA65R-BU6D	Panel	2100	40	4	260	60	15.85	6153.47	5.9	137.3
5	AT&T	CCI	TPA65R-BU6D	Panel	2300	25	4	260	52	14.75	2985.38	5.9	137.3
6	AT&T	CCI	TPA65R-BU6D	Panel	700	40	2	260	68	11.75	1196.99	5.9	137.3
6	AT&T	CCI	TPA65R-BU6D	Panel	850	40	2	260	65	12.45	1406.34	5.9	137.3
6	AT&T	CCI	TPA65R-BU6D	Panel	1900	40	4	260	63	14.85	4887.87	5.9	137.3

 Table 1: Total Site Data Table
 (*AGL = Above Ground Level)

Note: Z Value represents the bottom tip height of the antenna

4.0 PREDICTED EMISSION LEVELS AND DISCUSSION

All calculations performed based upon the data listed for this facility have produced results that are within allowable limits for General Population limits for exposure to RF emissions as specified by federal standards.

AT&T's RF Exposure: Responsibilities, Procedures & Guidelines document states that microwave dishes are compliant if they are mounted 20 feet or greater above any accessible walking or working surface.

Maximum Predicted MPE Level on Site:	% of MPE Limit:	Location:	
Accessible General Population MPE Limits:	0.06%	Sector A	
Accessible Occupational MPE Limits:	0.01%		

Ground Level Assessment:	% of MPE Limit:
Ground Level General Population MPE Limits:	0.06%
Ground Level Occupational MPE Limits:	0.01%

Sector A: Transmitting over Ground Level	% of MPE Limit:	*Distance from Antenna:
Accessible General Population MPE Limits:	0.06%	0
Accessible Occupational MPE Limits:	0.01%	0

Sector B: Transmitting over Ground Level	% of MPE Limit:	*Distance from Antenna:
Accessible General Population MPE Limits:	0.05%	0
Accessible Occupational MPE Limits:	0.01%	0

Sector C: Transmitting over Ground Level	% of MPE Limit:	*Distance from Antenna:
Accessible General Population MPE Limits:	0.05%	0
Accessible Occupational MPE Limits:	0.01%	0

*Distance from Antenna is the distance that the MPE limits are exceeded from the front face of the antenna, outward across an accessible area.

5.0 EMISSIONS DIAGRAMS

DANBURY GREAT PASTURE ROAD / 253157 / 12684101

6.0 STATEMENT OF COMPLIANCE

Centerline conducted worst case modeling to determine whether the monopole facility located at 15 GREAT PASTURE ROAD in DANBURY, Connecticut is in compliance with FCC Regulations.

6.1 STATEMENT OF AT&T MOBILITY COMPLIANCE

Based on the information analyzed, AT&T will be compliant with FCC Regulations once the mitigation measures recommended in this report are implemented.

6.2 RECOMMENDATIONS

Recommended Signage and Barriers (AT&T Sectors)									
Location	Notice 2	Caution 2	Caution 2B	Caution 2C	Warning 2	Barriers			
Gate	0	0	0	0	0	0			
Monopole Base	0	0	1	0	0	0			

Monopole Base:

• Install (1) Caution 2B sign at the base of the monopole.

7.0 FALL ARREST AND PARAPET INFORMATION

As per AT&T barrier policy, rooftop edges that are protected with a 39-inch parapet wall or guardrail are safe for work activity within six (6) feet of the edge. OSHA has stated that an existing 39-inch guardrail or parapet provides sufficient protection for employees. The height of the top rail or equivalent component of guardrail systems in new construction shall be at least 42 inches above the walking or working surface. It should also be noted that the height of the parapet or guardrail may be reduced to no less than 30 inches at any point provided the sum of the depth (horizontal distance) of the top edge, and the height of the top edge (vertical distance from the work surface to the top edge of the top member, is at least 48 inches. If there is no reason for working atop the roof, then edge protection is not required. In addition, workers may use personnel lifts or temporary fall protection measures to perform work within 6 feet of the roof edge in place of permanent edge protection. Reference: 29 CFR 1910.28, 29 CFR 1910.23 (NPRM-1990); OSHA Letters of Interpretation 2/9/83 and 3/8/9

APPENDIX A: RF SIGNAGE

AT&T RF Signage

Sign	Description	Sign	Description
<section-header><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></section-header>	Information 1 Sign Gives guidelines on how to proceed and who to contact regarding areas that may exceed either the FCC's General Population or Occupational emissions limits.	INFORMATION ACTIVE ANTENNAS ARE MOUNTED CONTROL CITEDE FACCO THEIR BULLEND CONTROL CITEDE FACCO THEIR CONTROL CITERE FACC	Information 2 Sign Gives specific information on how to proceed and who to contact regarding antennas that are façade mounted, concealed or on stand-alone structures.
NOTICE We way to be a set of the	Blue Notice 1 Sign Used to alert individuals that they are entering an area that may exceed the FCC's General Population emissions limit. Must be positioned such that persons approaching from any angle have ample warning to avoid the marked areas.	NOTICE Weight and the second	Blue Notice 2 Sign Used to alert individuals that they are entering an area that may exceed the FCC's General Population emissions limits. To be used on barriers or antenna sectors as a hybrid of the Information 1 and Blue Notice 1 signs.
	Yellow Caution 1 Sign- Rooftop		Yellow Caution 2 Sign-
CAUTION	Used to inform individuals that they are entering an area that may exceed the FCC's Occupational emissions limit. Must be positioned such that persons approaching from any angle have ample warning to avoid the marked areas.	A CAUTION A CAUTION	Rooftop Used to alert individuals that they are entering an area that may exceed the FCC's Occupational emissions limit. To be used on barriers or antenna sectors as a hybrid of the Information 1 and Yellow Caution 1 signs.
	Yellow Caution 1 Sign-		Warning 2 Sign
CAUTION CONTINUE CONTINU	Tower Used to inform individuals that they are entering an area that may exceed the FCC's Occupational emissions limits. Must be placed at the base of the tower to warn tower climbers of potential for exposure.	Contraction of the second seco	Used to inform individuals that they are entering an area that may exceed the FCC's Occupational emissions limit by a factor of 10 or greater. Must be positioned such that persons approaching from any angle have ample warning to avoid the marked areas.

APPENDIX B: FCC GUIDELINES AND EMISSIONS THRESHOLD LIMITS

All power density values used in this report were analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General Population/Uncontrolled exposure</u> limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limit for the 700 and 800 MHz Bands is approximately 467 μ W/cm² and 567 μ W/cm² respectively, and the general population exposure limit for the 1900 MHz PCS and 2100 MHz AWS bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/Controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure, have been properly trained in RF safety and can exercise control over their exposure. Occupational/Controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure, have been trained in RF safety and can exercise control over his or her exposure by leaving the area or by some other appropriate means. The Occupational/Controlled exposure limits all utilized frequency bands is five (5) times the FCC's General Public / Uncontrolled exposure limit.

The FCC Mandates that if a site is found to be out of compliance with regard to emissions that any system operator contributing 5% or more to areas exceeding the FCC's allowable limits will be responsible for bringing the site into compliance.

Additional details can be found in FCC OET 65.

	Table 1: Limits for	r Maximum Permissible Expo	osure (MPE)	
(A) Limits for Occupation	nal/Controlled Exposure			
Frequency Range (MHz)	Electric Field Strength (E)	Magnetic Field Strength (H)	Power Density (S)	Averaging Time [E] ² , [H] ² , or S
	(V/m)	(A/m)	(mW/cm²)	(minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f ²)*	6
30-300	61.4	0.163	1.0	6
300-I,500			f/300	6
1,500-100,000			5	6
(B) Limits for General Pu	ıblic/Uncontrolled Exposure	e		
Frequency Range (MHz)	Electric Field Strength (E)	Magnetic Field Strength (H)	Power Density (S)	Averaging Time [E] ² , [H] ² , or S
	(V/m)	(A/m)	(mW/cm ²)	(minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f ²)*	30
30-300	27.5	0.073	0.2	30
300-I,500			f/1,500	30
1,500-100,000			1.0	30
f = F	Frequency in (MHz)			

* Plane-wave equivalent power density

Centerline Communications, LLC 750 W Center St West Bridgewater MA 02379 P a g e | 15

APPENDIX C: CALCULATION METHODOLOGY

Centerline Communications, LLC has performed theoretical modeling using Waterford Consultants' RoofMaster[™] 2020 Version 21.9.04.20 which uses a cylindrical model for conservative power density predictions within the near field of the antenna where the antenna pattern has not truly formed yet. Within this area power density values tend to decrease based upon an inverse distance function. At the point where it is appropriate for modeling to change from near-field calculations to far-field calculations the power decreases inversely with the square of the distance. This modeling technique is accurate with low antenna centerlines, such as rooftops, where persons can get close to the antennas and pass through fields in close proximity.

The modeling is based on worst-case assumptions for the number of antennas and transmitter power. No losses were included in the power calculations unless they were specifically provided for the project.

APPENDIX D: CERTIFICATIONS

I, Dane Folie, preparer of this report certify that I am fully trained and aware of the Rules and Regulations of both the Federal Communications Commissions (FCC) and the Occupational Safety and Health Administration (OSHA) with regard to Human Exposure to Radio Frequency Radiation. I have been trained in the procedures and requirements outlined in AT&T's RF Exposure: Responsibilities, Procedures & Guidelines document.

Dane Folie

9/28/2020

I, Brandon Green, reviewer and approver of this report certify that I am fully trained and aware of the Rules and Regulations of both the Federal Communications Commissions (FCC) and the Occupational Safety and Health Administration (OSHA) with regard to Human Exposure to Radio Frequency Radiation. I have been trained in the procedures and requirements outlined in AT&T's RF Exposure: Responsibilities, Procedures & Guidelines document.

Brandon Green

9/28/2020

APPENDIX E: PROPRIETARY STATEMENT

This report was prepared for the use of AT&T Mobility, LLC to meet requirements specified in AT&T's corporate RF safety guidelines. It was performed in accordance with generally accepted practices of other consultants undertaking similar studies at the same time and in the same locale under like circumstances. The conclusions provided by Centerline Communications, LLC are based solely on the information provided by AT&T Mobility and all observations in this report are valid on the date of the investigation. Any additional information that becomes available concerning the site should be provided to Centerline Communications, LLC so that our conclusions may be revised and modified, if necessary. This report has been prepared in accordance with Standard Conditions for Engagement and authorized proposal, both of which are integral parts of this report. No other warranty, expressed or implied, is made.

EXHIBIT 6

verizon

Verizon Wireless 1515 E. Woodfield Rd. Suite 1400 Schaumburg, IL 60173

LETTER OF AUTHORIZATION

Site Location:	New	England					
Coordinates:	41° 22' 58.8" N, 73° 25' 19.8" W						
Site Address:	15 G	15 Great Pasture Road, Danbury, CT 06810					
County:	Fairf	ield					
Elevation	387	Feet AMSL	Tower Height: 120 Feet AGI				

Tower Type:MonoPoleVerizon Site Name:Bethel West 2 / LC: 467694Tenant Site Name:Bethel West 2 / S2873KGI Tower #:28493

RE: Authorization of Agent - Jeff DelliColli, Attachment to Verizon Wireless Tower

Cellco Partnership ("Verizon Wireless"), FCC licensee and owner of the cellular tower located on the property referenced, hereby appoints and authorizes **Jeff DelliColli**, representing **AT&T** ("Tenant") to act, execute and deliver on behalf of and with full authority of Verizon Wireless, any documentation required by Federal, State or Local authorities to secure zoning or permitting approvals related to Tenant's application to attach to the above-referenced tower.

This authorization applies solely to the zoning and permitting process and shall not be used for any other purpose. The term of this Letter of Authorization shall be for six (6) months from the date of this letter.

Cellco Partnership d/b/a Verizon Wireless

By: _

Name: Joseph McCarty

Title: Manager-Network Engineering & Operations

Date: _____11 16 20

EXHIBIT 7

Additional desc . Permit pin number Permit Fee Issue Date Expiration Date . Other Fees Fee summary	3150.00 . 12/12/16 . 12/12/17 CO FI STATE Charged Pa	Valuation E EDUCATION FEE PER id Credited			
Additional desc . Permit pin number Permit Fee Issue Date Expiration Date . Other Fees	. 3150.00 . 12/12/16 . 12/12/17 CO FF STATE	Valuation SE E EDUCATION FEE PER	00 175000 		
Additional desc . Permit pin number Permit Fee Issue Date Expiration Date .	. 3150.00 . 12/12/16 . 12/12/17	Valuation	00 175000		
Permit	. BUILDING PERMIT	COMM./INDUST.		-	
Owner EPPOLITI INDUSTR 37 DANBURY RD STH RIDGEFIELD Structure Informa Construction Type Occupancy Type	IAL REALTY INC 3 203 CT 06877 ation 000 000 TOWEN 3 TYPE 11 UTILIT	Contractor BELL ATLANTIC D/I WIRELESS/BRIAN RJ 99 EAST RIVER DR: EAST HARTFORD (860) 999-3481 R/ANTENNAS/GENERATOI B PROTECTED NONCOMB Y	B/A VERIZON AGOZZINE IVE 9TH FLOOR CT 06108 R, PROPANE TANKS	<i>u</i> r	
Application Numb Application pin : Property Address Tax Assessor's L Tenant nbr, name Application type Property Use Property Zoning Application valu	er	0059302 64 REAT PASTURE RD 05- VERIZON ERCIAL ALTERATION STRIAL LIGHT INDUST 40000 175000	Date 12/12/16		

Application Number . Application pin number Property Address Tax Assessor's Lot Num Tenant nbr, name Application type descr Property Use Property Zoning Application valuation	16-00 41546 15 GR aber L1600 ription COMME INDUS INDL, 1	059302 4 EAT PASTURE RD 5- VERIZON RCIAL ALTERATION TRIAL LIGHT INDUST 40000 75000	Date	5/08/17	
Owner		Contractor		_	REVISED
 EPPOLITI INDUSTRIAL RE 37 DANBURY RD STE 203 RIDGEFIELD C	CALTY INC T 06877	BELL ATLANTIC D/ WIRELESS/BRIAN R 99 EAST RIVER DR EAST HARTFORD (860) 999-3481 /ANTENNAS/GENERATO	B/A VER AGOZZIN IVE 9TH CT	- IZON E FLOOR 06108 NE TANKS	MAY - 8 2017 PERMIT COORDINATION DEPT. CITY OF DANBURY
 Construction Type Occupancy Type	TYPE 1B UTILITY	PROTECTED NONCOMB			
Permit	COMM ELECTRIC P RE-PRINT CORREC 111285 ICPHEE, MICHAEL 303.00 3/27/17 3/27/18	ERMIT TED CONTRACTOR E (E1) Plan Check Fee Valuation	•••	.00 24000	
 Special Notes and Comm PER DOUG WITH MCPHEE CONSTRUCTION VALUE IS ORIGINAL VALUE ON BUI WILL PULL STAND ALONE crs# 2893257. McPhee	ents ELECTRIC/THE S SEPARATE THAN LDING PERMIT/T E ELECTRICAL. C Electric.	HEY HRIS			
 Other Fees	CO FE. STATE	E EDUCATION FEE PER	к	56.00 51.74	
 Fee summary Cha	rged Pa	id Credited	Due	е	
Permit Fee Total Plan Check Total Other Fee Total	303.00 30 .00 107.74 10	03.00 .00 .00 .00 07.74 .00		.00 .00 .00	
Grand Total	410.74 43	.00		.00	•

Applic Applic Proper Tax As Tenant Applic Proper Applic	ation Numbe ation pin m ty Address sessor's Lo nbr, name ation type ty Use ty Zoning . ation valua	r	16-00059302 415464 15 GREAT PA L16005- VER: COMMERCIAL INDUSTRIAL IND, LIGHT 175000	2 ASTURE RD IZON ALTERATION INDUST 40000	Date :	3/27/17	
Owner			Cont	ractor			
EPPOLT 37 DAN RIDGEF Struct Constru Occupa:	TI INDUSTRI BURY RD STE IELD ure Informat uction Type ncy Type .	AL REALTY INC 203 CT 06877 tion 000 000 T U	BELI WIRE 99 E EAST (860 TOWER/ANTEN YPE 1B PROTE TILITY	ATLANTIC D/B ELESS/BRIAN RA EAST RIVER DRI THARTFORD) 999-3481 INAS/GENERATOR ECTED NONCOMB	/A VERI2 GOZZINE VE 9TH H CT (, PROPANE	ZON 7LOOR 06108 E TANKS	
Permit Additi Permit Permit Issue I Expirat	onal desc . pin number Fee Date zion Date .	. COMM ELEC . SUPPLY PO . 1111285 . 303.0 . 3/27/1 . 3/27/1	TRIC PERMIT WER TO CELL 0 Pl 7 Va 8	SITE an Check Fee luation	· · ·	.00 24000	
Specia PER D CONSTI ORIGII WILL 1	l Notes and DUG WITH MCB RUCTION VALU NAL VALUE ON PULL STAND P	Comments PHEE ELECTRIC DE IS SEPARAT BUILDING PE ALONE ELECTRI	/THE E THAN RMIT/THEY CAL. CHRIS				
Other I	ees	• • • • • • •	CO FEE STATE EDUCA	TION FEE PER 1	56 K 51	5.00 74	
Fee sur	nmary	Charged	Paid	Credited	Due		
Permit Plan (Other	Fee Total Theck Total Fee Total	303.00 .00 107.74	303.00 .00 107.74	00. 00. 00.	•	00 00 00 00	

e i

Application Numbe Application pin r Property Address Tax Assessor's Lo Tenant nbr, name Application type Property Use Property Zoning . Application value	er	16-0005930 415464 15 GREAT F L16005- VER COMMERCIAL INDUSTRIAL IND, LIGHT 175000	2 ASTURE RD IZON ALTERATION INDUST 40000	Date 12/12/1
Owner		Con	tractor	
EPPOLITI INDUSTRI 37 DANBURY RD STE RIDGEFIELD - Structure Informa Construction Type Occupancy Type .	AL REALTY INC 203 CT 06877 tion 000 000 TX 	BEL WIR 99) EAS (860 TOWER/ANTEN PE 1B PROTY TLLTY	L ATLANTIC D/B BLESS/BRIAN RA EAST RIVER DRI I HARTFORD) 999-3481 WAS/GENERATOR &CTED NONCOMB	/A VERIZON GOZZINE VE 9TH FLOOR CT 06108 , PROPANE TANKS
Permit	BUILDING P 1088616 3150.00 12/12/16 12/12/17	PERMIT COMM. Pl Va	/INDUST. an Check Fee . luation	0 17500
Other Fees		co fee State Educa	TION FEE PER M	28.00 (45.50
Fee summary	Charged	Paid	Credited	Due
Permit Fee Total Plan Check Total Other Fee Total	3150.00 .00 73.50	3150.00 .00 73.50	00, 00, 00,	.00 .00 .00
Grand Total	3223.50	3223.50	.00	.00

•

· · · (

 \mathcal{C}

÷

OTICE: Changes, regardless of size, from stamped approved plans must be submitted to Building 5.1 spector before they are made. Prompt notification by the Plumbing, Electrical and General contrac- 8.1 rs of completion of their respective portions of the work will avoid delay in issuance of the Certificate 9.2 Occupancy. This permit is null and void one year after date of issue, except by extension from the 10.4 "Wa "Wa	Building Inspector Special Inspection Required Non accordance with application, plans and specifications on file and subject to ordinances and building codes of a Certificate of Occupancy will be considered a violation of the Building Code 4. a agulations.	The second secon	HVAC Contractor Contractor Description 120' Cell Tour & Ggnipman	Contractor <u>Electrical Contractor</u>	Permit Number 59302 Location /S Great Partue Rd. Issued 12/12/12/16 Owner Emoliti	DEPARTMENT OF BUILDINGS, DANBURY, Telephone 203-797-4580 Fax 203-796	
IVAC framing isulation sas or Oil Burner oning (If Needed) Final Final If Applicable	PECTIONS: nally there are nine or more required inspections of a new building, and as y as apply on alterations and additions*: foll Conditions (Footings) iooling Drains & Damp Proofing liectrical Rough liectrical Rough		cense No.	one	Expires 12/ 12/17	CUSLY CONNECTICUT	

, ,

Application Number Application pin nu Property Address Tax Assessor's Lot Tenant nbr, name Application type d Property Use Property Zoning . Application valuat	Mumber	16-00059302 415464 15 GREAT PA L16005- VERI COMMERCIAL INDUSTRIAL IND, LIGHT 175000	D STURE RD ZON ALTERATION INDUST 40000	ate 6/0	05/17	
Owner		Cont	ractor			
 EPPOLITI INDUSTRIA 37 DANBURY RD STE RIDGEFIELD Structure Informat Construction Type Occupancy Type	L REALTY INC 203 CT 06877 ion 000 000 T U	BELL WIRE 99 E EAST (860 TOWER/ANTEN YPE 1B PROTE TILITY	ATLANTIC D/B/ LESS/BRIAN RAG AST RIVER DRIVI HARTFORD) 999-3481 NAS/GENERATOR,I CTED NONCOMB	A VERIZOR DZZINE E 9TH FLC CT 063 PROPANE 1	N DOR 108 FANKS	
 Permit Additional desc . Permit pin number Sub Contractor Permit Fee	. HVAC PERM . 1000 AG > . 1125863 . BOOTH, CH . 72.0 . 6/05/1 . 6/05/1	ITT GENERATOR ARLES A. (G1 0 Pl. 7 Va 8) an Check Fee . luation		.00 3000	
 Special Notes and PER DOUG WITH MCP CONSTRUCTION VALU ORIGINAL VALUE ON WILL PULL STAND A Crs# 2893257. MCP	Comments HEE ELECTRIC E IS SEPARAT BUILDING PE LONE ELECTRI hee Electric	/THE E THAN RMIT/THEY CAL. CHRIS				
 Other Fees		CO FEE STATE EDUCA'	TION FEE PER K	84.(52.5	00 52	
 Fee summary	Charged	Paid	Credited	Due		
Permit Fee Total Plan Check Total	72.00	72.00	.00	.00	-))	
Other Fee Total Grand Total	136.52 208.52	136.52 208.52	.00 .00	.00)	

, ,

DOCKET NO. 462 – Cellco Partnership d/b/a Verizon Wireless	}	Connecticut
application for a Certificate of Environmental Compatibility and		
Public Need for the construction, maintenance, and operation of a	}	Siting
telecommunications facility located at Danbury Tax Assessor's Map		_
L16, Lot 5, 15 Great Pasture Road, Danbury, Connecticut.	}	Council

December 10, 2015

Decision and Order

Pursuant to Connecticut General Statutes §16-50p and the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, maintenance, and operation of a telecommunications facility, including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate, either alone or cumulatively with other effects, when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to Cellco Partnership d/b/a Verizon Wireless (Cellco), hereinafter referred to as the Certificate Holder, for a telecommunications facility at the proposed site, located at 15 Great Pasture Road, Danbury, Connecticut.

Unless otherwise approved by the Council, the facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be constructed as a monopole at a height of 120-feet above ground level to provide the proposed wireless services, sufficient to accommodate the antennas of Cellco and other entities, both public and private. The height of the tower may be extended after the date of this Decision and Order pursuant to regulations of the Federal Communications Commission.
- 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be served on the City of Danbury and Town of Bethel for comment, and all parties and intervenors as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction and shall include:
 - a) final site plan(s) for development of the facility to include specifications for the tower, tower foundation, antennas, equipment compound including, but not limited to, fence design with anticlimbing measures, radio equipment, access road, utility line, utility trench depth relative to Department of Energy and Environmental Protection No Dig Restriction depth, emergency backup generator, and generator fuel tank with associated run time that employ the governing standard in the State of Connecticut for tower design in accordance with the currently adopted International Building Code;
 - b) construction plans for site clearing, grading, landscaping, water drainage, and erosion and sedimentation controls consistent with the <u>2002 Connecticut Guidelines for Soil Erosion and</u> <u>Sediment Control</u>, as amended;
 - c) Protection plans for eastern box turtle, wood turtle and bog turtle including plans for the bog turtle's terrestrial activity; and
 - d) Wetland protection plans.

Docket No. 462 Decision and Order Page 2

- 3. Prior to the commencement of operation, the Certificate Holder shall provide the Council worst-case modeling of the electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of the electromagnetic radio frequency power density be submitted to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.
- 4. Upon the establishment of any new federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 6. Unless otherwise approved by the Council, if the facility authorized herein is not fully constructed with at least one fully operational wireless telecommunications carrier providing wireless service within eighteen months from the date of the mailing of the Council's Findings of Fact, Opinion, and Decision and Order (collectively called "Final Decision"), this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council's Final Decision shall not be counted in calculating this deadline. Authority to monitor and modify this schedule, as necessary, is delegated to the Executive Director. The Certificate Holder shall provide written notice to the Executive Director of any schedule changes as soon as is practicable.
- 7. Any request for extension of the time period referred to in Condition 6 shall be filed with the Council not later than 60 days prior to the expiration date of this Certificate and shall be served on all parties and intervenors, as listed in the service list, the City of Danbury and the Town of Bethel.
- 8. If the facility ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council within 90 days from the one year period of cessation of service. The Certificate Holder may submit a written request to the Council for an extension of the 90 day period not later than 60 days prior to the expiration of the 90 day period.
- 9. Any nonfunctioning antenna, and associated antenna mounting equipment, on this facility shall be removed within 60 days of the date the antenna ceased to function.
- 10. In accordance with Section 16-50j-77 of the Regulations of Connecticut State Agencies, the Certificate Holder shall provide the Council with written notice two weeks prior to the commencement of site construction activities. In addition, the Certificate Holder shall provide the Council with written notice of the completion of site construction, and the commencement of site operation.
- 11. The Certificate Holder shall remit timely payments associated with annual assessments and invoices submitted by the Council for expenses attributable to the facility under Conn. Gen. Stat. §16-50v.

- 12. This Certificate may be transferred in accordance with Conn. Gen. Stat. §16-50k(b), provided both the Certificate Holder/transferor and the transferee are current with payments to the Council for their respective annual assessments and invoices under Conn. Gen. Stat. §16-50v. In addition, both the Certificate Holder/transferor and the transferee shall provide the Council a written agreement as to the entity responsible for any quarterly assessment charges under Conn. Gen. Stat. §16-50v(b)(2) that may be associated with this facility.
- 13. The Certificate Holder shall maintain the facility and associated equipment, including but not limited to, the tower, tower foundation, antennas, equipment compound, radio equipment, access road, utility line and landscaping in a reasonable physical and operational condition that is consistent with this Decision and Order and a Development and Management Plan to be approved by the Council.
- 14. If the Certificate Holder is a wholly-owned subsidiary of a corporation or other entity and is sold/transferred to another corporation or other entity, the Council shall be notified of such sale and/or transfer and of any change in contact information for the individual or representative responsible for management and operations of the Certificate Holder within 30 days of the sale and/or transfer.
- 15. This Certificate may be surrendered by the Certificate Holder upon written notification and approval by the Council.

We hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed in the Service List, dated July 9, 2015, and notice of issuance published in the <u>Danbury News</u> <u>Times.</u>

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

EXHIBIT 8

Photographic Simulation Package

Proposed Upgrade to Existing Wireless Telecommunications Facility:

CT2873 Bethel 15 Great Pasture Road Danbury, CT 06810

- Proposed 20ft extension to existing 119ft tower

Package prepared by:

Virtual Site Simulations, LLC 24 Salt Pond Road Suite C3 South Kingstown, Rhode Island 02879

www.VirtualSiteSimulations.com www.ThinkVSSFirst.com

Wireless Telecommunications Facility:

CT2873 Bethel 15 Great Pasture Road Danbury, CT 06810

Legend:

Photo location - Year Round Visibility

X Photo location- Obscured Visibility

Photo location - NOT visible

Site: CT2873 Bethel

Site: CT2873 Bethel

Site: CT2873 Bethel

Site: CT2873 Bethel

Tower Visibility			Location	% Vis	Acres
			Top 25%	0.56%	11.2
Tower Height:	120 ft		Тор 50%	0.78%	15.7
Lat, Lon:	41.383003 -73.422169		Top 75%	0.38%	7.7
Ring Range:	1 mi		Top 100%	0.08%	1.7
Color Bands:	4 equal + base		Base	0.09%	1.9
	-		TOTAL	1.90%	38.2 Acres

Created by: VSS, LLC using VSS- IVS Interactive Viewshed Analysis Tool Important Note:

Visibility percentages and acreages based on range perameter.

Tower Visibility			Color	Location	% Vis	Acres
rower visionity			Top 25%	0.61%	12.2	
Tower Height:	140 ft	0 ft .383003 -73.422169 ni cqual + base		Top 50%	0.56%	11.3
Lat, Lon:	41.383003			Top 75%	0.66%	13.2
Ring Range:	1 mi			Top 100%	0.47%	9.4
Color Bands:	4 equal + ba			Base	0.01%	0.3
	•			TOTAL	2.30%	46.3 Acr

Created by: VSS, LLC using VSS- IVS Interactive Viewshed Analysis Tool Important Note:

Visibility percentages and acreages based on range perameter.
EXHIBIT 9

- 1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to print the label.
- 2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

3. GETTING YOUR SHIPMENT TO UPS

Customers with a Daily Pickup

Your driver will pickup your shipment(s) as usual.

Customers without a Daily Pickup

Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.

Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages. Hand the package to any UPS driver in your area.

UPS Access PointTM CVS STORE # 972 555 WASHINGTON ST SOUTH EASTON ,MA 02375 UPS Access PointTM CVS STORE # 7232 689 DEPOT ST NORTH EASTON ,MA 02356 UPS Access PointTM TOWN LINE GENERAL STORE 450 E CENTER ST WEST BRIDGEWATER ,MA 02379

- 1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to print the label.
- 2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

3. GETTING YOUR SHIPMENT TO UPS

Customers with a Daily Pickup

Your driver will pickup your shipment(s) as usual.

Customers without a Daily Pickup

Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.

Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages. Hand the package to any UPS driver in your area.

UPS Access PointTM CVS STORE # 972 555 WASHINGTON ST SOUTH EASTON ,MA 02375 UPS Access PointTM CVS STORE # 7232 689 DEPOT ST NORTH EASTON ,MA 02356

UPS Access PointTM TOWN LINE GENERAL STORE 450 E CENTER ST WEST BRIDGEWATER ,MA 02379

- 1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to print the label.
- 2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

3. GETTING YOUR SHIPMENT TO UPS

Customers with a Daily Pickup

Your driver will pickup your shipment(s) as usual.

Customers without a Daily Pickup

Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.

Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages. Hand the package to any UPS driver in your area.

UPS Access PointTM CVS STORE # 972 555 WASHINGTON ST SOUTH EASTON ,MA 02375 UPS Access PointTM CVS STORE # 7232 689 DEPOT ST NORTH EASTON ,MA 02356

UPS Access PointTM TOWN LINE GENERAL STORE 450 E CENTER ST WEST BRIDGEWATER ,MA 02379

- 1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to print the label.
- 2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

3. GETTING YOUR SHIPMENT TO UPS

Customers with a Daily Pickup

Your driver will pickup your shipment(s) as usual.

Customers without a Daily Pickup

Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.

Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages. Hand the package to any UPS driver in your area.

UPS Access PointTM CVS STORE # 972 555 WASHINGTON ST SOUTH EASTON ,MA 02375 UPS Access PointTM CVS STORE # 7232 689 DEPOT ST NORTH EASTON ,MA 02356

UPS Access PointTM TOWN LINE GENERAL STORE 450 E CENTER ST WEST BRIDGEWATER ,MA 02379

