Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

October 14, 2022

Via Electronic Mail

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Refiling of a Notice of Exempt Modification – Facility Modification 109 Federal Road, Danbury, Connecticut

Dear Attorney Bachman:

On June 24, 2021 the Siting Council approved the request of Cellco Partnership d/b/a Verizon Wireless ("Cellco") to make certain modifications to its existing wireless facility at 109 Federal Road in Danbury (the "Property"). *See* EM-VER-034-210518. Cellco filed notice of its intent to commence construction of the facility modifications on or about August 19, 2021. Construction of the approved facility modifications did not, however, commence as planned and the Council's approval of EM-VER-034-210518 has now expired.

This letter and the related attachments constitutes a new notice of exempt modification filing requesting Council approval of the same facility modifications it approved on June 24, 2021.

Proposed facility Modifications

The existing Cellco facility consists of antennas and remote radio heads attached to a tower and associated equipment located on the roof of the building at the Property. The tower and antennas are located within a faux chimney structure. Cellco's existing facility was approved by the Council in April of 2015 (Petition No. 1149). A copy of the Council's approval letter for Petition No. 1149 is included in <u>Attachment 1</u>.

Boston | Hartford | New York | Providence | Stamford | Albany | Los Angeles | Miami | New London | rc.com

Melanie A. Bachman, Esq. October 14, 2021 Page 2

Cellco now intends to modify its facility by removing two (2) antennas and installing two (2) antennas Samsung 64T64RMMU antennas, removing four (4) remote radio heads ("RRHs") and installing two (2) RRHs on the existing roof-top tower. To meet antenna clearance requirements, the existing faux chimney enclosure will be replaced with a larger screening structure. Included in <u>Attachment 2</u> is a set of project plans and new antennas and RRH specifications.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Danbury's Chief Elected Official and Land Use Officer.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower or faux chimney screening structure.

2. The proposed modifications will occur on the roof of the building and will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The installation of Cellco's new antennas and RRHs will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A General Power Density table for the modified facility is included in <u>Attachment 3</u>. The modified facility will be capable of providing Cellco's 5G wireless service.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. According to the attached Structural Analysis (SA) and Mount (Antenna Frame) Analysis (MA) which also includes analysis of the new masts and host building, states that the existing building, faux chimney, antenna masts, and antenna mounting devices can support Cellco's proposed modifications. A copy of the SA and MA are included in <u>Attachment 4</u>. Also included in <u>Attachment 4</u> is a separate letter prepared by the consulting engineer responsible for Melanie A. Bachman, Esq. October 14, 2021 Page 3

the preparation of the SL and MA verifying that the antenna model described in the SL and MA, as a Licensed-Sub6 Antenna or VZS01 Antenna, is the Samsung 64T64R model antenna and RRH that will be installed on the tower.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 6</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. 16-50j-72(b)(2).

Sincerely,

Kunig MM

Kenneth C. Baldwin

Enclosures Copy to: Dean Esposito, Danbury Mayor Sharon Calitro, AICP, Danbury Director Planning and Zoning 109 Federal Road LLC Aleksey Tyurin

ATTACHMENT 1

STATE OF CONNECTICUT CONNECTICUT SITING COUNCIL Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov www.ct.gov/csc

CERTIFIED MAIL RETURN RECEIPT REQUESTED

April 20, 2015

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597

RE: **PETITION NO. 1149 -** Cellco Partnership d/b/a Verizon Wireless petition for a declaratory ruling that no Certificate of Environmental Compatibility and Public Need is required for the proposed installation of a small cell telecommunications facility on the roof of an existing commercial building located at 109 Federal Road, Danbury, Connecticut.

Dear Attorney Baldwin:

At a public meeting held on April 16, 2015, the Connecticut Siting Council (Council) considered and ruled that the above-referenced proposal would not have a substantial adverse environmental effect, and pursuant to Connecticut General Statutes § 16-50k, would not require a Certificate of Environmental Compatibility and Public Need with the following conditions:

- Within 45 days after completion of construction, the Council shall be notified in writing that construction has been completed;
- Any nonfunctioning antenna and associated antenna mounting equipment on this facility owned and operated by the Petitioner shall be removed within 60 days of the date the antenna ceased to function;
- If the facility ceases to provide wireless services for a period of one year the Petitioner shall dismantle the facility and remove all associated equipment or reapply for any continued or new use to the Council within 90 days from the one year period of cessation of service. The Petitioner may submit a written request to the Council for an extension of the 90 day period not later than 60 days prior to the expiration of the 90 day period; and
- This Declaratory Ruling may be transferred or partially transferred, provided both the facility owner/operator/transferor and the transferee are current with payments to the Council for their respective annual assessments and invoices under Conn. Gen. Stat. §16-50v. The Council shall be notified of such sale and/or transfer and of any change in contact information for the individual or representative responsible for management and operations of the facility within 30 days of the sale and/or transfer. Both the facility owner/operator/transferor and the transferee shall provide the Council with a written agreement as to the entity responsible for any quarterly assessment charges under Conn. Gen. Stat. §16-50v(b)(2) that may be associated with this facility.

This decision is under the exclusive jurisdiction of the Council and is not applicable to any other modification or construction. All work is to be implemented as specified in the petition dated March 18, 2015.

Enclosed for your information is a copy of the staff report on this project.

Very truly yours,

Keepert Stein MAB

Robert Stein Chairman

RS/RM/lm

Enclosure: Staff Report dated April 16, 2015

 c: The Honorable Mark D. Boughton, Mayor, City of Danbury Dennis Elpern, City Planner, City of Danbury The Honorable William N. Tinsley, First Selectman, Town of Brookfield Katherine Daniel, Community Development Director, Town of Brookfield Alice Dew, Zoning Enforcement Officer, Town of Brookfield 109 Federal Road, LLC

STATE OF CONNECTICUT CONNECTICUT SITING COUNCIL Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov www.ct.gov/csc

Petition No. 1149 Cellco Partnership d/b/a Verizon Wireless 109 Federal Road, Danbury Staff Report April 16, 2015

On March 18, 2015, the Connecticut Siting Council (Council) received a petition from Cellco Partnership d/b/a Verizon Wireless (Cellco) for a declaratory ruling that no Certificate of Environmental Compatibility and Public Need is required for the proposed installation of a small cell telecommunications facility on a commercial building at 109 Federal Road in Danbury. Cellco seeks to improve 1900 MHz and 2100 MHz services in the surrounding area. Two adjacent Cellco sites that provide wireless service to this commercial and heavily trafficked area of Route 7 are beyond their capacity limits. The proposed site would alleviate capacity issues at these two sites as well as provide some coverage to existing service gaps in the area.

Cellco would install four small cell antennas with four remote radio heads on two pipe masts attached to the roof of the building. The masts and antennas would be concealed within a faux chimney structure extending 10.5 feet above the roof.

Two equipment cabinets would be installed on a lower roof of the building. Power and telephone service would be connected to existing service inside the building.

The maximum worst-case power density would be 69.5 percent of the applicable limit established by the Federal Communications Commission.

The visual impact of the project is expected to be negligible as the faux chimney appears similar to the building structure. The building is located in a commercial zone. The small cell would not be an aviation hazard.

Notice was provided to the City of Danbury and the Town of Brookfield (within 2,500 feet), the property owner, and abutting property owners. No comments have been received to date.

ATTACHMENT 2

verizon WIRELESS COMMUNICATIONS FACILITY UPGRADE DANBURY 10 CT 109 FEDERAL ROAD, PROJECT SUMMARY DANBURY, CT 06811 THE PROPOSED UPGRADE SCOPE OF WORK AT THE EXISTING UNMANNEL TELECOMMUNICATIONS FACILITY GENERALLY INCLUDES THE FOLLOWING: AT THE EXISTING ROOFTOP ANTENNA SECTORS: MODIFY THE DUSTING RF FAUX CHIMNEY SCREENING ENCLOSURE TO ACCOMMODATE PROPOSED REPLACEMENT ANTENNAS AND ASSOCIATED CLEARANCE REQUIREMENTS. REMOVE (2) EXISTING ANTENNAS · REMOVE (A) EXISTING REMOTE RADIO HEADS. verizon INSTALL (2) VZS01 ANTENNAS. + INSTALL (2) SAMSUNG 82/866A RRH-BR049 RRUs. · INSTALL (2) COMMSCOPE SDX1926Q-43 DIPLEXERS. SITE DIRECTIONS GENERAL NOTES TO: 109 FEDERAL RD, DANBURY, CT 068 FROM: 20 ALEXANDER DRIVE ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BULDING CODE AS MOOFED BY THE 2016 CONNECTICUT SUPPLIANT, NILLIDING THE TAVEN-222 REVENSION TO STRUCTURES, 2017 STEEL ANTERNA TOMES AND SUPPORTING STRUCTURES, 2017 LOCAL CODES: REVENY CODE, MITCHING, LOCE, AND LOCAL CODES: PROJECT INFORMATION INFLM CHILLING CHILLINGI CHILINGI CHILINI CHILLINGI CHILLINGI CHILLINGI CHILLINGI CHILLINGI 11. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS. 0.18 MI 0.11 MI 0.35 MI 0.17 MI SITE NAME DANBURY 10 CT 12. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY SITE ADDRESS 109 FEDERAL RD, DANBURY, CT 05811 0.17 MI 0.30 MI 3.89 MI 7.79 MI 33.10 MI 0.91 MI 0.24 MI CONDITION PER WFR.'S RECOMMENDATIONS, CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER. SHOULD ANY FIELD CONDITIONS PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL NOT PROCEED WITH ANY AFFECTED WORK. LESSEE /TENANT CELLCO PARTNERSHE 488-0580 488-8587 Fox North Branford J ord, CT 06405 13. ANY AND ALL ERRORS, DISCREPANCES, AND "MISSED" ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE VERIZON WIRELESS CONSTRUCTION MANAGER DURING THE BIOLING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BIO. NO "DOTRY WILL BE ALLOWED FOR MISSED ITEMS. d.b.g. VERIZON WIRELESS 20 ALEXANDER DRIVE WALLINGFORD, CT 06492 Z CONTRACTOR SHALL REVIEW ALL DRWINNES AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SWALL CORRINATE LL WORK SHOWN IN THE SET OF DRWINDS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRWINDS TO ALL SIBCONTRACTORS AND ALL RELEATE DATES. THE SUBCONTRACTORS SHALL EXAMPLE ALL THE DRWINGS AND SPECIFICATIONS FOR THE MYDRAMICH AT AFFECTS THERE WORK. 0.24 NI 0.37 NI WALTER CHARCZNSKI (CONSTRUCTION MANAGER) VERIZON WIRELESS (860) 308-1806 CONTACT PERSON (203) 8 on h Ü 14. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER. CENTEK ENGINEERING, INC. 63-2 NORTH BRANFORD RD. BRANFORD, CT. 06405 ENGINEER 0 8 VICINITY MAP SCALE: 1" = 1000" 15. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW. CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWING OR IN THE WRITTEN SPECIFICATIONS. (203) 488-0580 ž PROJECT COORDINATES: LATITUDE: 41-25-47.125 N LONGITUDE: 73"-24"-56.986"W GROUND ELEVATION: 292.1"± AMSL \overline{c} THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIN ANGLES, AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABI AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LIMPGUL JURISDICTION OVER THE WORK. Partnership d/b/a Verizon (REFERENCED FROM FAA 2-C SURVE COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUCT AND ALL APPLICTEMANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. 9 11. 2015 CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GRIFERL CONSTRUCTION, AND ALL TRADES APPLICABLE PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS. EPTEMBER 2, 2015 DANBURY RESPONSIBILIT OF THE CONTINUOUS, 18. ALL CONTINUENT AND PRODUCTS PURCHASED ARE TO BE REMEWED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTORS FOR ANY CONDITION PER THE MAUNACHTLERE'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE TEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER. SHEET INDEX CONTRACTOR SHALL MUNITAIN A CURRENT SET OF DRWINNOS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRUMINON OF NEW DRWINNOS TO SUBCONTRACTORS AND OTHER RELEVANT FARTES AS SOON AS THEY ARE MADE ANALABLE ALL OLD DRWINNOS SHALL BE WARED VOID MON DREMAND FORM IN E CONTRACT AREA. THE CONTRACTOR SHALL FURNESH AN AS-BULLT SET OF DRWINNOS TO OWNER UPON COMPLETION OF PRACED. DESCRIPTION HT. NO T-1 TITLE SHEET 0 19. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITES.

ENCLOSURE M FOR FOR

REVISED

글글물

888

QAD 06811

DANBURY, CT (

Celco

DATE: 01/07/21

SCALE: AS NOTED

TITLE

SHEET

T-1

JOB NO. 20150.07

0

0

0

0

0

0

N-1

8-1

C-1

C-2

C-3

S-1 E-1 NOTES AND SPECIFICATIONS

ROOF/PARTIAL SITE PLAN AND ELEVATION

RE AND ANTENNA MOUNT ASSEMBLY DETAILS

ELECTRICAL SPECIFICATIONS AND DETAILS

ANTENNA SECTOR CONFIGURATION PLANS AND SECTION

RE ENCLOSURE MOD. FRAMING PLANS AND DETAILS

RF BILL OF MATERIALS

LOCATION OF EQUIPMENT, AND WORK SUPPLIED BY OTHERS THAT IS DAGRAMMATICALLY INICATED ON THE DRAWINGS SHALL BE DETERMINED BY THE CONTACTOR. THE CONTRACTOR SHALL DETERMINE DCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBJECTIVINATORS.

20, THE CONTRACTOR SHALL CONTACT "CALL BEFORE YOU DIG" AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455, ALL UTLITES SHALL BE IDENTIFIED AND CLEARLY MARKED PROR TO ANY EXCAVATION WORK, CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTLITES THROUGHOUT PROJECT COMPLETION.

- THE CONTINUETOR & SOLLY RESPONSIBLE TO DETENDINE CONSTRUCTION PROCEDURE AND SOLUHOR, AND TO ENSURE THE SWETT OF THE DASTIME STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THE DASTIME STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. BAUDRESS (PROPERTY SOLE) RECESSARY, MANYARI DESTINO BULDING (PROPERTY OWNER, CORDINATE WORK WITH DURING PARTY OWNER.
- DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES MILLI INCLUDE IN HIS WORK AND SHALL DOEDUT WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS CODES, RULES ON REGULATIONS WITH NO INCREASE IN COSTS.

NOTES AND SPECIFICATIONS

DESIGN BASIS:

GOVERNING CODE: 2015 INTERNATIONAL BUILDING (IBC) AS MODIFIED BY THE 2018 CT STATE BUILDING CODE AND AMENDMENTS.

- 1. DESIGN CRITERIA:
- RISK CATEGORY: II (BASED ON TABLE 1604.5 OF THE 2015 IBC)
- ultimate design speed (building): 120 MPH (vuit) (exposure b/importance factor 1.0 based on ASCE 7-10) per 2015 international, building code (bc) AS morphed by the 2016 connecteduct state building code.
- SEISMIC LOAD (DOES NOT CONTROL): PER ASCE 7-10 MINIMUM DESIGN LOADS FOR BUILDING AND OTHER STRUCTURES.

GENERAL NOTES:

- 1. ALL CONSTRUCTION SHALL BE IN COMPLIANCE WITH THE GOVERNING BUILDING
- DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RILLES, OR REGULTIONS BERARIS ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL DECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REQUIRINGS WITH NO INCREME. IN COSTS.
- BEFORE BESINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH INVESTIGATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE AND SUBSURFACE) AND COST OF THE WORK,
- DIMENSIONS AND DETAILS SHALL BE CHECKED AGAINST EXISTING FIELD CONDITIONS.
- 5. THE CONTRACTOR SHALL VERIFY AND COORDINATE THE SIZE AND LOCATION OF ALL OPENINGS, SLEEVES AND ANCHOR BOLTS AS REQUIRED BY ALL TRADES.
- ALL DIMENSIONS, ELEVATIONS, AND UNDER REFERENCES TO DUSTING STRUCTURES, SURFACE, AND SUBSURFACE CONDITIONS AND APPROXIMATE. NO GUARANTEE IS DUBLE FOR THE ACCURRCY OR COMPLETENESS OF THE INFORMATION STRUCTURES, MERICIPATION AND AND AND ADDRESS OF THE ADDRESS AND ADDRESS AND ADDRESS AND AND THE DUSTING COMMITMER AND WITH ARCHITECTURAL AND STE DRAWINGS BEFORE PROCEEDING WITH ANY WORK. 6.
- As the work progresses, the contractor shall notify the owner of any conditions which are in complate or otherwise not consistent with the construction documents and shall not proceed with such work until the conflict is satisfactorily resolved.
- THE CONTINUTOR SHULL COMPLY WITH ALL APPLICABLE SAFETY CODES AND RESULATIONS DURING ALL PHASES OF CONSTRUCTION. THE CONTRACTOR IS SOLELY RESPONSIBLE FOR PROFIDENCE AND MAINTAINER ADEQUATE SHORMS BRACHER, AND BARRICADES AS MAY BE REQUIRED FOR THE PROTECTION OF EXISTING PROPERTY, CONSTRUCTION WORKERS, AND FOR PHASE SAFETY.
- THE CONTINUEDR IS SOLULY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SED SOLUCE AND TO ENSURE THE CONSTRUCTION THE EDITION THE ADDITION OF WINDERS'S PROFENSION BROKEN, UNDERSTRUCTION THE EDITION THE ADDITION OF WINDERS'S PROFENSION, BROKEN, UNDERSTRUCTION, THE WIND WINDERS NECESSARY, MANTAN EXISTING SITE OPERATIONS, COORDINATE WORK WITH NORTHEAST UTLIERS
- ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LABLE FOR ALL REPAIRS REQUIRED FOR EDISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 11. REFER TO DRAWING T1 FOR ADDITIONAL NOTES AND REQUIREMENTS

ANTENNA ENCLOSURE

- THE ANTENNA CONCEALMENT ENCLOSURE PANELS SHALL BE ENGINEERED BY A REGISTERED STATE OF CONNECTICUT LICENSED ENGINEER EXPERIENCED IN THE DESIGN OF THESE SYSTEMS.
- THE CONTRACTOR SHALL SUBMIT DETAILED SHOP DRAWINGS AND COMPUTATIONS BEARING THE SEAL OF THE RESPONSIBLE DESIGN PROFESSIONAL FOR REVIEW BY THE ENGINEER OF RECORD PROR TO FABRICATION.
- 3. ANTENNA CONCEALMENT ENCLOSURE COMPONENTS SHALL BE DESIGNED FOR WIND LOADS BASED ON ASCE 7-02 'COMPONENTS AND CLADDING (CC)' WIND PRESSURES. 4. WIND DESIGN DATA PER 2005 CSBC SECTION 1603.1.4:
 - INTERNAL PRESSURE COEFFICIENT, GCpi = ± 0.55

CC - ENCLOSURE SURFACE ELEVATION N.T.S. (ZONE NOMENCLATURE BASED ON ASCE 7-02 FIGURE 8-11A)

- a = 10 PERCENT OF LEAST HORIZONTAL DIMENSION OR 0.4h, WHICHEVER IS SMALLER, BUT NOT LESS THAN EITHER 4 PERCENT OF LEAST HORIZONTAL DIMENSION OR 3 JT.
 h = MEAN ENCLOSURE HEIGHT, IN FEET
- WALL COMPONENTS AND CLADDING EFFECTIVE WIND AREA LESS THAN OR EQUAL TO 10 SQUARE FEET: ZONE 5; Poc = +21 PSF & -26 PSF
- EFFECTIVE WIND AREA MORE THAN OR EQUAL TO 500 SQUARE FEET ZONE 5; Poc = +17 PSF & -18 PSF

() LINEAR INTERPOLATE FOR EFFECTIVE WIND AREAS GREATER THAN 10 SQUARE FEET AND LESS THAN 500 SQUARE FEET. THAN THEN INTERNAL SQUARES FEET. THE INTERNAL SURFACES, SEESCHICALLY REAL SQUARES THE AREA TREBUTARY TO AN INDIVIDUAL FASTERIER.

- 6. EXTENT OF ANTENNA ENCLOSURE IS DENOTED WITHIN THE CONSTRUCTION DOCUMENTS.
- 7. CONTRACTOR SHALL CONDUCT A DETAILED FIELD SURVEY FOR USE IN REPLICATING THE ARCHITECTURAL APPEARANCE OF THE EXISTING BUILDING.
- 11. BOLT HOLES SHALL BE PUNCHED OR DRILLED, FLAME CUT HOLES ARE NOT LEVEL AND PLUMB INDMIDUAL MEMBERS OF THE STRUCTURE TO AN ACCURACY OF 1:500, BUT NOT TO EXCEED 1/4" IN THE FULL HEIGHT OF THE COLUMN. INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, AND FREE FROM DISTORTIONS OR DEFECTS.

Through the stress of the second sec

Existing dimensions of structure shown on these plans are not guaranteed. Contractor smul true field mussification tracessary to assure profer fit of all prinside work and smul assure full responsibility for their accurate when shop drawings based on field measurements are submitted for review to the conducter.

3. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL DRAWINGS MUST BEAR THE REVENDED'S INTELS BEFORE SUBMITING TO THE ENGINEER STATES CONCETION AND INFORMATION FROM THE ADVANCES, AND ADVANCES,

4. STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH THE LATEST PROVISIONS OF AISC MANUAL OF STEEL CONSTRUCTION.

PROVIDE ALL PLATES, CLIP ANGLES, CLOSURE PIECES, STRAP ANCHORS, MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE THE STRUCTURE.

MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION.

THE STRUCTURE IS DESIGNED TO BE SELF SUPPORTING AND STABLE AFTER THE WORK IS FULLY COMPLETED.

10. FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST PRACTICAL SECTIONS FOR DELIVERY TO SITE.

6. CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF 1/4 INCHES.

8. FABRICATE BEAMS WITH WILL CAMBER UP.

- 14. SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BOLTED.
- STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325-N. ALL BOLTS SHALL BE 3/4" DAMETER MINALUM AND SHALL HAVE A MINIMUM OF TWO BOLTS, UNLESS NOTED OTHERWISE ON THE DRAWINGS.
- ALL BOLTED JOINTS SHALL BE SNUG TIGHT (ST) UNLESS OTHERWISE DESIGNATED AS PRETENSIONED (PT) OR SLIP CRITICAL (SC) ON THE DRAWINGS.
- 17. CONTINUE OF SMUL COMPLY MITH AND CODE FOR INFORMATION AND CANADA WITH AND STANDARD COULD THIN AND CODE FOR INFORMATION AND CANADA WITH AND STANDARD COULD CONTINUE AND CODENESS. ALL WEADING SMUL DE COMPLY FOR CLEARING SM ON BLAND SMUL CONFORM TO ADD AND ADD ADD ADD ADD CONTINUE OF STELL CONSTRUCTION "AN EDITOR. AT THE COMPLETION OF WEIDING, ALL DAMAGE TO GUIVERED CONSTRUCTION" AND EDITORS AND THE COMPLETION OF WEIDING.
- 18. USE PRECAUTIONS & PROCEDURES PER AWS D1.1 WHEN WELDING GALVANIZED METALS.
- 19. ALL WELDING SHALL BE PERFORMED BY A CERTIFIED WELDER IN ACCORDANCE WITH AWS STANDARDS. SUBMIT WELDER CERTIFICATION FOR REVIEW BY ENGINEER.
- All Steel Material (Exposed to Weather) shall be galvanized after fabrication in accordance with astim a123 "zinc (hot dipped galvanized) coatings" on irons and steel products.
- ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE".
- 22. NOTIFY THE ENGINEER PRIOR TO FIELD CUTTING OR MODIFYING APPROVED FABRICATIONS 23. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERMISE MISTITING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDUAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW.
- 24. COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER OF MY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK.

DRAWINGS -ONSTRUCTION PRELIMINARY 00 1 1 DIG 03/06/21 0 **0** < <u>1</u> verizon PDO NITIK I 488-0580 488-8587 Fox 488-8587 Fox 488-8587 Fox 488-8587 Fox 106405 ord, CT 06405 (203) 8 on (203) Ü 8 Ň \overline{c} Partnership d/b/a Verizon 9 DANBURY, CT DANBURY Celco DATE: 01/07/21 SCALE: AS NOTED JOB NO. 20150.07 NOTES AND SPECIFICATIONS N-1

EXCLOSURE MOD.

FOR CITO

REVISED

E 1 1

ISSUED DRAWING

STRUCTURAL STEEL NOTES 1. ALL STRUCTURAL STEEL IS DESIGNED BY ALLOWABLE STRESS DESIGN (ASD):

SAMSUNG

SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..

Model Code : MT6407-77A

Points of Differentiation

Wide Bandwidth

With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

C-Band spectrum supported by Massive MIMO Radio

Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.

This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.

Technical Specifications

ltem	Specification
Tech	NR
Band	n77
Frequency Band	3700 - 3980 MHz
EIRP	78.5dBm (53.0 dBm+25.5 dBi)
IBW/OBW	280 MHz / 200 MHz
Installation	Pole/Wall
Size/ Weight	16.06 x 35.06 x 5.51 inch (50.86L)/ 79.4 lbs

Future Proof Product

Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment.

SAMSUNG

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

SAMSUNG

Dual-Band Radio Unit AWS/PCS (B66/B2) RFV01U-D1A

Samsung's RFV01U-D1A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.

The RFV01U-D1A RU targets dual-band support across Band 66 (AWS) and Band 2 (PCS), making it an ideal product for broad coverage footprints across multiple common mid-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributed-and central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation
- Built-in Broadcast Auxiliary Services (BAS) filter ensures compliant AWS operation without impacting footprint

Key Technical Specifications

Duplex Type: FDD Operating Frequencies: B66: DL(2,110-2,180MHz)/UL(1,710-1,780MHz) B2: DL(1,930-1,990MHz)/UL(1,850-1,910MHz) Instantaneous Bandwidth: 70MHz(B66) + 60MHz(B2) RF Chain: 4T4R/2T4R/2T2R Output Power: Total 320W DU-RU Interface: CPRI (10Gbps) Dimensions: 380 x 380 x 255mm (36.8L) Weight: 38.3kg Input Power: -48V DC Operating Temp.: -40 - 55°(w/o solar load) Cooling: Natural convection

ATTACHMENT 3

Site Name: DANBURY 10 CT Cumulative Power Density

Operator	Operating Frequency	Number of Trans.	ERP Per Trans.	Total ERP	Distance to Target	Calculated Power Density	Maximum Permissible Exposure*	Fraction of MPE
	(MHz)		(watts)	(watts)	(feet)	(mW/cm^2)	(mW/cm^2)	(%)
VZW PCS	1980	4	685	2742	32.5	0.0934	1.0000	9.34%
VZW AWS	2120	4	735	2938	32.5	0.1000	1.0000	10.00%
VZW CBAND	3730.005	4	3427	13708	31.5	0.4968	1.0000	49.68%
Total Percentage of Maximum Permissible Exposure								

*Guidelines adopted by the FCC on August 1, 1996, 47 CFR Part 1 based on NCRP Report 86, 1986 and generally on ANSI/IEEE C95.1-1992 **Calculation includes a -10 dB Off Beam Antenna Pattern Adjustment pursuant to Attachments B and C of the Siting Council's November 10, 2015 Memorandum for Exempt Modification filings

MHz = Megahertz mW/cm^2 = milliwatts per square centimeter ERP = Effective Radiated Power

Absolute worst case maximum values used.

ATTACHMENT 4

Centered on Solutions[®]

Structural Analysis Report

Antenna Frame & Host Building

Proposed Verizon Antenna Upgrade

Site Ref: Danbury 10

109 Federal Road Danbury, CT

CENTEK Project No. 20150.07

Date: January 19, 2021 Rev 2: March 5, 2021

Prepared for:

Verizon Wireless 20 Alexander Drive Wallingford, CT 06492

Table of Contents

SECTION 1 - REPORT

- INTRODUCTION
- PRIMARY ASSUMPTIONS USED IN THE ANALYSIS
- ANTENNA AND EQUIPMENT INSTALLATION SUMMARY
- ANALYSIS
- DESIGN LOADING
- RESULTS
- CONCLUSION

SECTION 2 - CONDITIONS & SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM

SECTION 3 – CALCULATIONS

- WIND LOAD CALCULATION
- RISA 3D OUTPUT REPORT

SECTION 4 – REFERENCE MATERIAL

- RF DATA SHEET
- CONSTRUCTION DOCUMENTS PREPARED BY CENTEK ENGINERRING REV.0 DATED JULY 10 2015 (not included)
- STEEL SHOP DRAWINGS PREPARED BY PND WELDING/GoodFAB LLC DATED OCTOBER, 6 2016 (not included)

<u>Introduction</u>

The purpose of this structural analysis report (SAR) is to summarize the results, of the impacted structural components, by the equipment upgrade proposed by Verizon Wireless on the existing host building located in Danbury, CT.

The antennas are mounted on within a proposed replacement RF transparent screen enclosure attached to the roof top of the host building.

The mounts member sizes information and roof framing information were obtained from a construction documents as prepared by Centek Engineering Rev.0, dated July 10, 2015, and steel shop drawings as prepared by PND WELDING/GoodFAB LLC dated October, 6 2016. Proposed/existing antenna and appurtenance information was taken from a RF data sheet dated 11/13/2020 provided by Verizon Wireless.

Primary Assumptions Used in the Analysis

- The host structure's theoretical capacity not including any assessment of the condition of the host structure.
- The existing elevated steel antenna frames carry the horizontal and vertical loads due to the weight of equipment, and wind and transfers into host structure.
- Proposed reinforcement and support steel will be properly installed and maintained.
- Structure is in plumb condition.
- Loading for equipment and enclosure as listed in this report.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All welds are fabricated with ER-70S-6 electrodes.
- All members are assumed to be as observed during roof framing mapping.
- All members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.
- All member protective coatings are in good condition.

<u>Antenna and Equipment Summary</u>

Location	Appurtenance / Equipment	Rad Center Elevation (AGL)	Mount Type
Alpha Sector	(1) HBXX-6513DS Antenna (1) B25-RRH-4x30 (1) B4 RRH 2x60 (1) HBXX-6513DS Antenna (1) VZS01 Antenna (1) Samsung B2/B66A RRH – BR049 (1) SDX1926Q-43 diplexer (1) RFS RRFDC-3315-PF-48	31.9-ft	FRP enclosure attached to building rooftop
Gamma Sector	(1) HBXX-6513DS Antenna (1) B25-RRH-4x30 (1) B4 RRH 2x60 (1) HBXX-6513DS Antenna (1) VZS01 Antenna (1) Samsung B2/B66A RRH – BR049 (1) SDX1926Q-43 diplexer	31.9-ft	FRP enclosure attached to building rooftop

Equipment – Indicates equipment to be removed. Equipment – Indicates equipment to be installed.

<u>Analysis</u>

The existing antenna frames were analyzed using a comprehensive computer program titled Risa3D. The program analyzes the equipment platform and antenna mounts considering the worst case code prescribed loading condition. The structures were considered to be loaded by concentric forces, and the model assumes that the members are subjected to bending, axial, and shear forces.

<u>Design Loading</u>

Loading was determined per the requirements of the 2015 International Building Code amended by the 2018 CSBC and ASCE 7-10 "Minimum Design Loads for Buildings and Other Structures".

Wind Speed:	V _{ult} = 120 mph	Appendix N of the 2018 CT State Building Code
Risk Category:	11	2015 IBC; Table 1604.05
Exposure Category:	Surface Roughness B	ASCE 7-10; Section 26.7.2
Dead Load	Equipment and framing self- weight	Identified within SAR design calculations

<u>Reference Standards</u>

2015 International Building Code:

- 1. ACI 318-14, Building Code Requirements for Structural Concrete.
- 2. ACI 530-13, Building Code Requirements for Masonry Structures.
- 3. AISC 360-10, Specification for Structural Steel Buildings
- 4. AWS D1.1 00, Structural Welding Code Steel.
- 5. AF&PA-12, Span Tables for Joists and Rafters.

<u>Results</u>

Structure stresses were calculated utilizing the structural analysis software RISA 3D. The stresses were determined based on the AISC standard.

• Calculated stresses for the antenna frame were found to **<u>be within allowable</u>** limits.

Sector	Component	ponent Stress Ratio (percentage of capacity)			
All Sectors	L5x5x3/8 FRP	96.5%	PASS		
	Pipe 2.5 X-Strong	28.3%	PASS		
	Pipe 3.5 X-Strong	27.2%	PASS		
	(3) 2x8	73.4%	PASS		

<u>Conclusion</u>

This analysis shows that the subject antenna frame and host building <u>HAVE SUFFICIENT</u> <u>CAPACITY</u> to support the proposed modified antenna configuration.

The analysis is based, in part, on the information provided to this office by Verizon. If the existing conditions are different than the information in this report, Centek Engineering, Inc. must be contacted for resolution of any potential issues.

Please feel free to call with any questions or comments.

Respectfully Submitted by:

Timothy J. Lynn, PE Structural Engineer

<u>Standard Conditions for Furnishing of</u> <u>Professional Engineering Services on</u> <u>Existing Structures</u>

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil
 conditions, the antenna and feed line loading on the structure and its components, or
 other relevant information.
- Information from the field and/or drawings in the possession of Centek Engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to Centek Engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an uncorroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to
 meet any other codes or requirements unless explicitly agreed in writing. If wind and ice
 loads or other relevant parameters are to be different from the minimum values
 recommended by the codes, the client shall specify the exact requirement. In the
 absence of information to the contrary, all work will be performed in accordance with the
 latest revision of ANSI/ASCE10 & ANSI/EIA-222
- All services performed, results obtained, and recommendations made are in accordance with generally accepted engineering principles and practices. Centek Engineering, Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

Wind Load Tabulation for Wall Components & Cladding								
Component	z	Kh	qh	p:	= Net Design	Pressures (osf)	
	(ft.)		(psf)	Zone 4 (+)	Zone 4 (-)	Zone 5 (+)	Zone 5 (-)	
Wall	0	0.73	22.75	26.85	-28.89	26.85	-28.89	
	15.00	0.73	22.75	26.85	-28.89	26.85	-28.89	
	20.00	0.73	22.75	26.85	-28.89	26.85	-28.89	
	25.00	0.73	22.75	26.85	-28.89	26.85	-28.89	
	30.00	0.73	22.75	26.85	-28.89	26.85	-28.89	
For $z = hr$:	34.00	0.73	22.75	26.85	-28.89	26.85	-28.89	
Fare - has	24.00	0.70	00.75	00.05	00.00	00.05	00.00	
For $z = ne$:	34.00	0.73	22.75	20.80	-28.89	20.80	-28.89	
F01 Z - 11.	34.00	0.75	22.70	20.00	-20.09	20.00	-20.09	
Notoe: $1 (+)$ and $()$ si	ane eignifu	wind proces	uros actina t	oward & oway	from respect	ivo surfacos		
Notes. 1. (+) and (-) si	yns siynny o 5 (opd zo	wind pressu	lies acting to		nom respect	ive surfaces.		
2. Width of 201	etion 30.2 1	$\frac{1}{2}$ the minim	um wind los	J.05 d for C&C sha	ll not be less	than 16 pef		
4 References		2, ule minin 7-10 "Minin	num Design	Loads for Built	tings and Ot	her Structure	.e"	
4. 10000000	b "Guide	to the Use	of the Wind	Load Provision	ings and Ot	-02"		
	by: Kis	shor C. Meh	ta and Jame	s M Delahavi	(2004)	02		
	<i>by</i> . rae			bo m. Dolanay	(2001).			

Mar 5, 2021 7:58 AM Checked By:__

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (ft/sec^2)	32.2
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver
Hot Rolled Steel Code	AISC 15th(360-16): ASD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 14th(360-10): ASD
Cold Formed Steel Code	AISI S100-10: ASD
Wood Code	AWC NDS-12: ASD

Wood Code	AWC NDS-12: ASD
Wood Temperature	< 100F
Concrete Code	ACI 318-11
Masonry Code	ACI 530-11: ASD
Aluminum Code	AA ADM1-10: ASD - Building
Stainless Steel Code	AISC 14th(360-10): ASD
Adjust Stiffness?	Yes(Iterative)
•	

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
TZ (sec)	Not Entered
RX	3
RZ	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	l or ll
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	4
Cd X	4
Rho Z	1
Rho X	1
Footing Overturning Safety Factor	1
Optimize for OTM/Sliding	No
Check Concrete Bearing	No
Footing Concrete Weight (k/ft^3)	0
Footing Concrete f'c (ksi)	4
Footing Concrete Ec (ksi)	3644
Lambda	1
Footing Steel fy (ksi)	60
Minimum Steel	0.0018
Maximum Steel	0.0075
Footing Top Bar	#3
Footing Top Bar Cover (in)	2
Footing Bottom Bar	#3
Footing Bottom Bar Cover (in)	3.5
Pedestal Bar	#3
Pedestal Bar Cover (in)	1.5
Pedestal Ties	#3

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\	. Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	58	1.2
3	A992	29000	11154	.3	.65	.49	50	1.1	58	1.2
4	A500 Gr.42	29000	11154	.3	.65	.49	42	1.3	58	1.1
5	A500 Gr.46	29000	11154	.3	.65	.49	46	1.2	58	1.1
6	FRP	2800	450	.35	.44	.12	10	1.5	58	1.2
7	A53 Grade B	29000	11154	.3	.65	.49	35	1.5	58	1.2

Mar 5, 2021 7:58 AM Checked By:__

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design Rul.	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Mount Base_Pipe_2	PIPE_2.5X	Column	Pipe	A53 Grade B	Typical	2.1	1.83	1.83	3.66
2	Pipe_3.5 XStrong	PIPE_3.5X	Column	Pipe	A53 Grade B	Typical	3.43	5.94	5.94	11.9
3	L3X3X3/8	L4X4X6	Column	Single Angle	FRP	Typical	2.86	4.32	4.32	.141
4	L5X5X3/8 V	L5X5X6	Column	Single Angle	FRP	Typical	3.65	8.76	8.76	.183
5	Pipe 2.0 STD	PIPE_2.0	Column	Pipe	A53 Grade B	Typical	1.02	.627	.627	1.25
6	L4x4x1/4	L4X4X4	Beam	Single Angle	A36 Gr.36	Typical	1.93	3	3	.044
7	W8	W8X31	Beam	Wide Flange	A992	Typical	9.13	37.1	110	.536

Hot Rolled Steel Design Parameters

4	Label	Shape Mount Roop, Ding, 2	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[.Lcomp bot[L-to	orq Kyy	Kzz	Cb	Functi
1	IVI7	Mount Base_Pipe_2.	2.417								Lateral
2	IVI8 MO	Mount Base_Pipe_2.	· 2.417								Lateral
3	1019	Mount Base_Pipe_2.	2.417								Lateral
4		Dipo 3.5 XStrong	0.75								Lateral
5	IVI I /		9.75								Lateral
7	M27		9.75								Lateral
8	M28	L5X5X3/8_V	9.75								Lateral
q	M20	L5X5X3/8_V	9.75								Lateral
10	M30		6								Lateral
11	M31	L4x4x1/4	6 5 1 7								Lateral
12	M32	I 4x4x1/4	6								Lateral
13	M33	L 4x4x1/4	6 5 1 7								Lateral
14	M34	L 4x4x1/4	3.258								Lateral
15	M35	L4x4x1/4	2.998								Lateral
16	M36	L4x4x1/4	3.258								Lateral
17	M37	L4x4x1/4	3.002								Lateral
18	M38	Pipe 2.0 STD	3.167								Lateral
19	M39	Pipe 2.0 STD	3.167								Lateral
20	M40	L4x4x1/4	6.517			Lbyy					Lateral
21	M41	L4x4x1/4	6			Lbyy					Lateral
22	M42	L4x4x1/4	6.517			Lbyy					Lateral
23	M43	L4x4x1/4	6			Lbyy					Lateral
24	M36A	L4x4x1/4	6								Lateral
25	M37A	L4x4x1/4	6.517								Lateral
26	M38B	L4x4x1/4	6								Lateral
27	M39B	L4x4x1/4	6.517								Lateral
28	M40A	L4x4x1/4	3.258								Lateral
29	M41A	L4x4x1/4	2.998								Lateral
30	M42A	L4x4x1/4	3.258								Lateral
31	M43A	L4x4x1/4	3.002								Lateral
32	M40B	W8	6			Lbyy					Lateral
33	M41B	W8	6			Lbyy					Lateral
34	M42B	W8	2.917			Lbyy					Lateral
35	M39A	L3X3X3/8	9.22								Lateral
36	M40C	L3X3X3/8	9.22								Lateral
37	M41C	L3X3X3/8	9.564								Lateral
38	M42C	L3X3X3/8	9.564								Lateral

Mar 5, 2021 7:58 AM Checked By:__

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(. Section/Shape	Type Design List	Material	Design R
1	M3	N3	N2			Mount Base- (3-2x8)	Beam Rectangular	DF	Typical
2	M4	N2	N1			Mount Base- (3-2x8)	Beam Rectangular	DF	Typical
3	M5	N8	N7			Mount Base- (3-2x8)	Beam Rectangular	DF	Typical
4	M6	N7	N6			Mount Base- (3-2x8)	Beam Rectangular	DF	Typical
5	M7	N5	N12			Mount Base_Pipe_2.5 XStr.	.Column Pipe	A53 Grade B	Typical
6	M8	N10	N14			Mount Base_Pipe_2.5 XStr.	.Column Pipe	A53 Grade B	Typical
7	M9	N4	N11			Mount Base_Pipe_2.5 XStr.	.Column Pipe	A53 Grade B	Typical
8	M10	N9	N13			Mount Base_Pipe_2.5 XStr.	.Column Pipe	A53 Grade B	Typical
9	M17	N19	N20			Pipe_3.5 XStrong	Column Pipe	A53 Grade B	Typical
10	M26	N39	N43		180	L5X5X3/8_V	ColumnSingle Angle	FRP	Typical
11	M27	N36	N40			L5X5X3/8_V	ColumnSingle Angle	FRP	Typical
12	M28	N41	N37		180	L5X5X3/8_V	ColumnSingle Angle	FRP	Typical
13	M29	N38	N42		270	L5X5X3/8_V	ColumnSingle Angle	FRP	Typical
14	M30	N43	N42		180	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
15	M31	N42	N40		180	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
16	M32	N40	N41		180	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
17	M33	N41	N43		180	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
18	M34	N44	N20		180	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
19	M35	N20	N45		180	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
20	M36	N20	N46		90	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
21	M37	N20	N47		180	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
22	M38	N22	N23			Pipe 2.0 STD	Column Pipe	A53 Grade B	Typical
23	M39	N25	N26			Pipe 2.0 STD	Column Pipe	A53 Grade B	Typical
24	M40	N39	N37			L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
25	M41	N37	N36			L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
26	M42	N36	N38			L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
27	M43	N38	N39			L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
28	M36A	N52	N51		270	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
29	M37A	N51	N49		270	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
30	M38B	N49	N50		270	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
31	M39B	N50	N52		270	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
32	M40A	N53	N48		180	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
33	M41A	N48	N54		180	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
34	M42A	N48	N55		90	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
35	M43A	N48	N56		180	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
36	M40B	N35	N33			W8	Beam Wide Flange	A992	Typical
37	M41B	N34	N32			W8	Beam Wide Flange	A992	Typical
38	M42B	N54A	N55A			W8	Beam Wide Flange	A992	Typical
39	M39A	N50	N40			L3X3X3/8	ColumnSingle Angle	FRP	Typical
40	M40C	N51	N43			L3X3X3/8	ColumnSingle Angle	FRP	Typical
41	M41C	N40	N51			L3X3X3/8	ColumnSingle Angle	FRP	Typical
42	M42C	N43	N50			L3X3X3/8	ColumnSingle Angle	FRP	Typical

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Dia
1	N1	0	0	0	0	
2	N2	0	0	2	0	
3	N3	0	0	4	0	
4	N4	0	0	0.541667	0	

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Dia
5	N5	0	0	3.458333	0	
6	N6	2.416667	0	0	0	
7	N7	2.416667	0	2	0	
8	N8	2.416667	0	4	0	
9	N9	2.416667	0	0.541667	0	
10	N10	2.416667	0	3.458333	0	
11	N11	0	2.416667	0.541667	0	
12	N12	0	2.416667	3.458333	0	
13	N13	2.416667	2.416667	0.541667	0	
14	N14	2.416667	2.416667	3.458333	0	
15	N19	1.208333	2.416667	2	0	
16	N20	1.208333	12.166667	2	0	
17	N21	1.208333	6.125	2	0	
18	N22	1.208333	6.125	3.583333	0	
19	N23	1.208333	6.125	0.416667	0	
20	N24	1.208333	8.625	2	0	
21	N25	1.208333	8.625	3.583333	0	
22	N26	1.208333	8.625	0.416667	0	
23	N27	0	0	3.333333	0	
24	N32	4.206667	2.416667	3.458333	0	
25	N33	4.206667	2.416667	0.541667	0	
26	N34	-1.793333	2.416667	3.458333	0	
27	N35	-1.793333	2.416667	0.541667	0	
28	N36	4.206667	2.416667	-1.258333	0	
29	N37	-1.793333	2.416667	-1.258333	0	
30	N38	4.206667	2.416667	5.258333	0	
31	N39	-1.793333	2.416667	5.258333	0	
32	N40	4.206667	12.166667	-1.258333	0	
33	N41	-1.793333	12.166667	-1.258333	0	
34	N42	4.206667	12.166667	5.258333	0	
35	N43	-1.793333	12.166667	5.258333	0	
36	N44	1.206667	12.166667	5.258333	0	
37	N45	4.206667	12.166667	2	0	
38	N46	1.206667	12.166667	-1.258333	0	
39	N47	-1.793333	12.166667	2	0	
40	N48	1.208333	5.166667	2	0	
41	N49	4.206667	5.166667	-1.258333	0	
42	N50	-1.793333	5.166667	-1.258333	0	
43	N51	4.206667	5.166667	5.258333	0	
44	N52	-1.793333	5.166667	5.258333	0	
45	N53	1.206667	5.166667	5.258333	0	
46	N54	4.206667	5.166667	2	0	
47	N55	1.206667	5.166667	-1.258333	0	
48	N56	-1.793333	5.166667	2	0	
49	N54A	1.206667	2.416667	3.458333	0	
50	N55A	1.206667	2.416667	0.541667	0	

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N1	Reaction	Reaction	Reaction			Reaction
2	N2	Reaction	Reaction	Reaction			Reaction
3	N3	Reaction	Reaction	Reaction			Reaction
4	N6	Reaction	Reaction	Reaction			Reaction
5	N7	Reaction	Reaction	Reaction			Reaction
6	N8	Reaction	Reaction	Reaction			Reaction

Member Point Loads (BLC 3 : Dead: Equipment)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M38	Y	041	.833
2	M39	Y	041	.833
3	M38	Y	006	1
4	M39	Y	006	1
5	M38	Y	043	2.333
6	M39	Y	043	2.333
7	M38	Y	02	2.333
8	M39	Y	02	2.333

Member Distributed Loads (BLC 6 : BLC 2 Transient Area Loads)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/f.	.Start Location[ft,%]	End Location[ft,%]
1	M26	Y	026	067	0	1.95
2	M26	Y	067	071	1.95	3.9
3	M26	Y	071	035	3.9	5.85
4	M26	Y	035	013	5.85	7.8
5	M26	Y	013	012	7.8	9.75
6	M29	Y	04	045	0	1.95
7	M29	Y	045	032	1.95	3.9
8	M29	Y	032	021	3.9	5.85
9	M29	Y	021	045	5.85	7.8
10	M29	Y	045	083	7.8	9.75
11	M40C	Y	024	02	0	1.844
12	M40C	Y	02	023	1.844	3.688
13	M40C	Y	023	023	3.688	5.532
14	M40C	Y	023	02	5.532	7.376
15	M40C	Y	02	024	7.376	9.22
16	M27	Y	026	067	0	1.95
17	M27	Y	067	071	1.95	3.9
18	M27	Y	071	035	3.9	5.85
19	M27	Y	035	013	5.85	7.8
20	M27	Y	013	012	7.8	9.75
21	M41C	Y	025	021	0	1.913
22	M41C	Y	021	024	1.913	3.826
23	M41C	Y	024	024	3.826	5.738
24	M41C	Y	024	021	5.738	7.651
25	M41C	Y	021	025	7.651	9.564
26	M28	Y	083	045	0	1.95
27	M28	Y	045	021	1.95	3.9
28	M28	Y	021	032	3.9	5.85
29	M28	Y	032	045	5.85	7.8

Member Distributed Loads (BLC 6 : BLC 2 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/f	Start Location[ft,%]	End Location[ft,%]
30	M28	Y	045	04	7.8	9.75
31	M39A	Y	024	02	0	1.844
32	M39A	Y	02	023	1.844	3.688
33	M39A	Y	023	023	3.688	5.532
34	M39A	Y	023	02	5.532	7.376
35	M39A	Y	02	024	7.376	9.22
36	M42C	Y	025	021	0	1.913
37	M42C	Y	021	024	1.913	3.826
38	M42C	Y	024	024	3.826	5.738
39	M42C	Y	024	021	5.738	7.651
40	M42C	Y	021	025	7.651	9.564

Member Distributed Loads (BLC 7 : BLC 4 Transient Area Loads)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/f	Start Location[ft,%]	End Location[ft,%]
1	M26	Х	.041	.104	0	1.95
2	M26	X	.104	.111	1.95	3.9
3	M26	Х	.111	.055	3.9	5.85
4	M26	Х	.055	.021	5.85	7.8
5	M26	Х	.021	.018	7.8	9.75
6	M28	Х	.13	.071	0	1.95
7	M28	Х	.071	.033	1.95	3.9
8	M28	Х	.033	.05	3.9	5.85
9	M28	Х	.05	.07	5.85	7.8
10	M28	X	.07	.062	7.8	9.75
11	M42C	Х	.076	.062	0	1.913
12	M42C	Х	.062	.072	1.913	3.826
13	M42C	Х	.072	.072	3.826	5.738
14	M42C	X	.072	.062	5.738	7.651
15	M42C	Х	.062	.076	7.651	9.564
16	M27	Х	.014	.035	0	1.95
17	M27	Х	.035	.037	1.95	3.9
18	M27	Х	.037	.018	3.9	5.85
19	M27	Х	.018	.007	5.85	7.8
20	M27	Х	.007	.006	7.8	9.75
21	M29	Х	.021	.023	0	1.95
22	M29	Х	.023	.017	1.95	3.9
23	M29	Х	.017	.011	3.9	5.85
24	M29	X	.011	.024	5.85	7.8
25	M29	Х	.024	.043	7.8	9.75
26	M41C	X	.025	.021	0	1.913
27	M41C	X	.021	.024	1.913	3.826
28	M41C	X	.024	.024	3.826	5.738
29	M41C	X	.024	.021	5.738	7.651
30	M41C	X	.021	.025	7.651	9.564

Member Distributed Loads (BLC 8 : BLC 5 Transient Area Loads)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/f	Start Location[ft,%]	End Location[ft,%]
1	M27	Z	.037	.096	0	1.95
2	M27	Z	.096	.102	1.95	3.9
3	M27	Z	.102	.05	3.9	5.85
4	M27	Z	.05	.019	5.85	7.8

RISA-3D Version 17.0.0 [J:\...\...\Backup Documentation\Rev (1)\Risa 3D\Antenna Frame.r3d] Page 7

Member Distributed Loads (BLC 8 : BLC 5 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/f	Start Location[ft,%]	End Location[ft,%]
5	M27	Z	.019	.017	7.8	9.75
6	M28	Z	.119	.065	0	1.95
7	M28	Z	.065	.031	1.95	3.9
8	M28	Z	.031	.046	3.9	5.85
9	M28	Z	.046	.065	5.85	7.8
10	M28	Z	.065	.057	7.8	9.75
11	M39A	Z	.073	.059	0	1.844
12	M39A	Z	.059	.069	1.844	3.688
13	M39A	Z	.069	.069	3.688	5.532
14	M39A	Z	.069	.059	5.532	7.376
15	M39A	Z	.059	.073	7.376	9.22
16	M26	Z	.012	.032	0	1.95
17	M26	Z	.032	.034	1.95	3.9
18	M26	Z	.034	.017	3.9	5.85
19	M26	Z	.017	.006	5.85	7.8
20	M26	Z	.006	.006	7.8	9.75
21	M29	Z	.019	.022	0	1.95
22	M29	Z	.022	.015	1.95	3.9
23	M29	Z	.015	.01	3.9	5.85
24	M29	Z	.01	.022	5.85	7.8
25	M29	Z	.022	.04	7.8	9.75
26	M40C	Z	.024	.02	0	1.844
27	M40C	Z	.02	.023	1.844	3.688
28	M40C	Z	.023	.023	3.688	5.532
29	M40C	Z	.023	.02	5.532	7.376
30	M40C	Z	.02	.024	7.376	9.22

Basic Load Cases

	BLC Description	Category	X Gra	.Y Gra	.Z Gra	Joint	Point	Distrib.	.Area(Surfa
1	Dead: Self	DL								
2	Dead: Enclosure	DL							4	
3	Dead: Equipment	DL					8			
4	Wind X-Dir. (29psf)	WLX							2	
5	Wind Z-Dir.(29psf)	WLZ							2	
6	BLC 2 Transient Area Loads	None						40		
7	BLC 4 Transient Area Loads	None						30		
8	BLC 5 Transient Area Loads	None						30		

Load Combinations

	Description	Solve	P	. S E	3	Fa	BLC	Fact	.BLC	Fa	BLC	Fa	BLC	Fa	В	Fa	в	Fa	. В	Fa	в	Fa	В	Fa
1	IBC 16-8	Yes	Y	[DL	1																		
2	IBC 16-9	Yes	Y	[DL	1	LL	1	LLS	1														
3	IBC 16-10 (b)	Yes	Υ	[DL	1	SL	1	SLN	1														
4	IBC 16-11 (b)	Yes	Y	[DL	1	LL	.75	LLS	.75	SL	.75	SLN	.75										
5	IBC 16-12 (a) (a)	Yes	Υ	[DL	1	WLX	.6																
6	IBC 16-12 (a) (b)	Yes	Y	[DL	1	WLZ	.6																
7	IBC 16-12 (a) (c)	Yes	Υ	[DL	1	WLX	6																
8	IBC 16-12 (a) (d)	Yes	Y	[DL	1	WLZ	6																
9	IBC 16-13 (a) (a)	Yes	Y	[DL	1	WLX	.45	LL	.75	LLS	.75												

Mar 5, 2021 7:58 AM Checked By:_

Load Combinations (Continued)

	Description	Solve	P	SB	Fa	BLC	Fact	.BLC	Fa	BLC	Fa	BLC	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
10	IBC 16-13 (a) (b)	Yes	Y	DL	1	WLZ	.45	LL	.75	LLS	.75												
11	IBC 16-13 (a) (c)	Yes	Y	DL	1	WLX	45	LL	.75	LLS	.75												
12	IBC 16-13 (a) (d)	Yes	Y	DL	1	WLZ	45	LL	.75	LLS	.75												
13	IBC 16-13 (b) (a)	Yes	Y	DL	1	WLX	.45	LL	.75	LLS	.75	SL	.75	S	.75								
14	IBC 16-13 (b) (b)	Yes	Y	DL	1	WLZ	.45	LL	.75	LLS	.75	SL	.75	S	.75								
15	IBC 16-13 (b) (c)	Yes	Y	DL	1	WLX	45	LL	.75	LLS	.75	SL	.75	S	.75								
16	IBC 16-13 (b) (d)	Yes	Y	DL	1	WLZ	45	LL	.75	LLS	.75	SL	.75	S	.75								
17	IBC 16-15 (a)	Yes	Y	DL	.6	WLX	.6																
18	IBC 16-15 (b)	Yes	Y	DL	.6	WLZ	.6																
19	IBC 16-15 (c)	Yes	Y	DL	.6	WLX	6																
20	IBC 16-15 (d)	Yes	Y	DL	.6	WLZ	6																

Envelope Joint Reactions

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N1	max	.275	19	1.802	7	.247	20	0	20	0	20	.352	5
2		min	301	5	-1.02	17	279	6	0	1	0	1	337	19
3	N2	max	.191	19	1.432	7	.193	8	0	20	0	20	.258	5
4		min	209	5	843	17	193	6	0	1	0	1	247	19
5	N3	max	.269	19	2.125	7	.279	8	0	20	0	20	.342	5
6		min	294	5	-1.356	17	247	18	0	1	0	1	329	19
7	N6	max	.3	7	1.955	8	.239	20	0	20	0	20	.338	17
8		min	276	17	-1.179	18	273	6	0	1	0	1	352	7
9	N7	max	.209	7	1.433	5	.188	20	0	20	0	20	.247	17
10		min	191	17	842	19	187	18	0	1	0	1	258	7
11	N8	max	.294	7	2.128	5	.273	8	0	20	0	20	.328	17
12		min	268	17	-1.352	19	239	18	0	1	0	1	342	7
13	Totals:	max	1.525	19	2.661	16	1.404	20						
14		min	-1.525	5	1.597	17	-1.404	6						

Envelope Joint Displacements

	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC	Y Rotatio	LC	Z Rotatio	LC
1	N1	max	0	20	0	20	0	20	0	20	0	20	0	20
2		min	0	1	0	1	0	1	0	1	0	1	0	1
3	N2	max	0	20	0	20	0	20	0	20	0	20	0	20
4		min	0	1	0	1	0	1	0	1	0	1	0	1
5	N3	max	0	20	0	20	0	20	0	20	0	20	0	20
6		min	0	1	0	1	0	1	0	1	0	1	0	1
7	N4	max	0	5	.001	17	0	6	1.703e-04	7	7.542e-05	5	2.978e-04	19
8		min	0	19	002	7	0	20	-9.158e-05	17	-6.942e-05	19	-3.106e-04	5
9	N5	max	0	5	.002	17	0	18	1.279e-04	17	5.988e-05	19	2.901e-04	19
10		min	0	19	003	7	0	8	-2.058e-04	7	-6.612e-05	5	-3.02e-04	5
11	N6	max	0	20	0	20	0	20	0	20	0	20	0	20
12		min	0	1	0	1	0	1	0	1	0	1	0	1
13	N7	max	0	20	0	20	0	20	0	20	0	20	0	20
14		min	0	1	0	1	0	1	0	1	0	1	0	1
15	N8	max	0	20	0	20	0	20	0	20	0	20	0	20
16		min	0	1	0	1	0	1	0	1	0	1	0	1
17	N9	max	0	17	.001	19	0	6	1.703e-04	5	6.94e-05	17	3.104e-04	7
18		min	0	7	002	5	0	20	-9.158e-05	19	-7.551e-05	7	-2.981e-04	17

Mar 5, 2021 7:58 AM Checked By:_

Envelope Joint Displacements (Continued)

	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC	Y Rotatio LC Z Rotatio LC
19	N10	max	0	17	.002	19	0	18	1.276e-04	19	6.603e-05 7 3.022e-04 7
20		min	0	7	003	5	0	8	-2.06e-04	5	-5.99e-05 17 -2.898e-04 17
21	N11	max	.029	5	.002	17	.066	6	3.133e-03	18	9.541e-05 6 3.538e-04 7
22		min	029	7	004	7	066	8	-3.345e-03	8	-9.209e-05 20 -2.399e-04 17
23	N12	max	.029	5	.003	17	.066	6	3.344e-03	6	9.348e-05 18 4.238e-04 7
24		min	029	7	005	7	066	8	-3.131e-03	20	-9.39e-05 8 -3.117e-04 17
25	N13	max	.029	5	.002	19	.064	6	3.086e-03	18	5.649e-05 17 2.395e-04 19
26		min	029	7	004	5	064	8	-3.3e-03	8	-6.091e-05 7 -3.53e-04 5
27	N14	max	.029	5	.003	19	.064	6	3.298e-03	6	6.651e-05 5 3.111e-04 19
28		min	029	7	005	5	064	8	-3.087e-03	20	-6.642e-05 7 -4.245e-04 5
29	N19	max	.029	5	0	17	.065	6	1.056e-04	6	2.354e-06 8 5.712e-03 7
30		min	029	7	0	7	065	8	-1.061e-04	8	-2.913e-06 5 -5.716e-03 5
31	N20	max	.478	5	0	17	.339	6	2.403e-03	6	2.354e-06 8 2.161e-03 7
32		min	477	7	0	7	341	8	-2.4e-03	8	-2.913e-06 5 -2.166e-03 5
33	N21	max	.27	5	0	17	.159	6	2.627e-03	6	2.354e-06 8 4.296e-03 7
34		min	269	7	0	7	16	8	-2.666e-03	8	-2.913e-06 5 -4.301e-03 5
35	N22	max	.269	5	.049	20	.159	6	2.751e-03	6	2.354e-06 8 4.296e-03 7
36		min	269	7	053	6	16	8	-2.574e-03	20	-2.913e-06 5 -4.301e-03 5
37	N23	max	.27	5	.048	18	.159	6	2.521e-03	18	2.354e-06 8 4.296e-03 7
38		min	269	7	054	8	16	8	-2.841e-03	8	-2.913e-06 5 -4.301e-03 5
39	N24	max	.376	5	0	17	.235	6	2.471e-03	6	2.354e-06 8 2.895e-03 7
40		min	375	7	0	7	237	8	-2.506e-03	8	-2.913e-06 5 -2.9e-03 5
41	N25	max	.376	5	.046	20	.235	6	2.596e-03	6	2.354e-06 8 2.895e-03 7
42		min	375	7	05	6	237	8	-2.416e-03	20	-2.913e-06 5 -2.9e-03 5
43	N26	max	.376	5	.045	18	.235	6	2.366e-03	18	2.354e-06 8 2.895e-03 7
44		min	375	7	051	8	237	8	-2.681e-03	8	-2.913e-06 5 -2.9e-03 5
45	N27	max	0	5	.002	17	0	18	7.733e-05	17	3.583e-05 19 2.652e-04 19
46		min	0	19	003	7	0	8	-1.25e-04	7	-3.961e-05 5 -2.761e-04 5
47	N32	max	.029	5	.01	19	.064	6	5.079e-03	5	1.873e-03 5 2.776e-03 19
48		min	029	7	017	5	065	8	-1.47e-03	19	-1.644e-03 19 -4.097e-03 5
49	N33	max	.029	5	.008	19	.064	6	1.087e-03	19	1.549e-03 19 2.578e-03 19
50		min	029	7	014	5	064	8	-4.704e-03	5	-1.778e-03 5 -3.898e-03 5
51	N34	max	.029	5	.01	17	.068	6	5.069e-03	7	1.643e-03 17 4.046e-03 7
52		min	029	7	017	7	069	8	-1.476e-03	17	-1.868e-03 7 -2.734e-03 17
53	N35	max	.029	5	.008	17	.069	6	1.093e-03	17	1.774e-03 7 3.853e-03 7
54		min	029	7	014	7	068	8	-4.703e-03	7	-1.55e-03 17 -2.542e-03 17
55	N36	max	.063	5	.028	19	.065	6	1.897e-03	18	6.861e-04 7 2.457e-03 19
56		min	063	19	139	5	064	8	-6.284e-03	8	-1.265e-04 17 -3.775e-03 5
57	N37	max	.063	17	.028	17	.069	6	1.292e-03	18	1.299e-04 19 3.734e-03 7
58		min	063	7	139	7	068	8	-5.691e-03	8	-6.912e-04 5 -2.424e-03 17
59	N38	max	.068	5	.045	19	.064	6	6.274e-03	6	3.211e-04 17 2.898e-03 19
60		min	067	7	155	5	065	8	-1.903e-03	20	-8.817e-04 7 -4.22e-03 5
61	N39	max	.067	5	.045	17	.068	6	5.631e-03	6	8.922e-04 5 4.165e-03 7
62		min	067	7	155	7	069	8	-1.271e-03	20	-3.281e-04 19 -2.852e-03 17
63	N40	max	.443	5	.031	19	.359	18	1.33e-03	18	9.58e-04 17 3.412e-04 18
64		min	436	7	149	5	366	8	-1.466e-03	8	-1.087e-03 7 -3.929e-04 8
65	N41	max	.444	5	.028	17	.317	6	7.169e-04	18	8.306e-04 17 2.149e-03 17
66		min	436	7	144	7	313	20	-7.888e-04	8	-1.e-03 7 -2.22e-03 7
67	N42	max	.499	5	.044	19	.359	18	1.686e-03	6	7.361e-04 18 4.833e-04 8
68		min	506	7	161	5	366	8	-1.627e-03	20	-8.966e-04 8 -4.13e-04 18
69	N43	max	.499	5	.049	17	.317	6	1.502e-03	6	5.972e-04 17 9.409e-04 5
70		min	506	7	167	7	312	20	-1.381e-03	20	-7.214e-04 7 -9.011e-04 19

RISA-3D Version 17.0.0 [J:\...\...\Backup Documentation\Rev (1)\Risa 3D\Antenna Frame.r3d] Page 10

Envelope Joint Displacements (Continued)

	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC	Y Rotatio	LC	Z Rotatio	LC
71	N44	max	.499	5	.017	20	.339	6	1.594e-03	6	8.122e-04	7	2.538e-03	7
72		min	506	7	133	6	341	8	-1.504e-03	20	-6.84e-04	17	-2.512e-03	5
73	N45	max	.478	5	.038	19	.359	18	1.865e-03	18	7.387e-04	17	4.523e-05	8
74		min	477	7	154	5	366	8	-1.897e-03	8	-8.929e-04	7	-3.613e-05	17
75	N46	max	.444	5	.017	18	.339	6	1.023e-03	18	8.121e-04	7	2.021e-03	7
76		min	436	7	134	8	341	8	-1.128e-03	8	-6.839e-04	17	-2.059e-03	5
77	N47	max	.478	5	.044	17	.317	6	1.53e-03	6	7.519e-04	17	1.539e-03	17
78		min	477	7	16	7	312	20	-1.515e-03	20	-9.059e-04	7	-1.553e-03	7
79	N48	max	.216	5	0	17	.128	6	2.715e-03	6	2.354e-06	8	5.026e-03	7
80		min	216	7	0	7	129	8	-2.74e-03	8	-2.913e-06	5	-5.031e-03	5
81	N49	max	.254	5	.028	19	.201	6	3.207e-03	6	1.486e-03	7	6.424e-03	7
82		min	254	7	142	5	202	8	-2.515e-03	20	-1.342e-03	17	-6.15e-03	17
83	N50	max	.255	5	.029	17	.188	6	2.726e-03	6	1.357e-03	19	6.746e-03	19
84		min	254	7	142	7	189	8	-2.025e-03	20	-1.526e-03	5	-7.069e-03	5
85	N51	max	.273	5	.046	19	.202	6	2.169e-03	18	1.822e-03	17	6.88e-03	7
86		min	274	7	159	5	202	8	-2.891e-03	8	-2.002e-03	7	-6.561e-03	17
87	N52	max	.273	5	.046	17	.188	6	1.806e-03	18	2.041e-03	5	7.253e-03	19
88		min	273	7	159	7	188	8	-2.515e-03	8	-1.891e-03	19	-7.533e-03	5
89	N53	max	.273	5	022	20	.129	6	1.988e-03	18	2.199e-04	7	2.457e-03	7
90		min	273	7	09	6	129	8	-2.703e-03	8	-2.246e-04	5	-2.466e-03	5
91	N54	max	.216	5	.016	19	.201	6	1.292e-03	6	2.442e-04	5	6.652e-03	7
92		min	216	7	142	5	202	8	-1.291e-03	8	-2.519e-04	7	-6.355e-03	17
93	N55	max	.254	5	022	18	.129	6	2.966e-03	6	2.008e-04	7	1.99e-03	7
94		min	254	7	091	8	129	8	-2.27e-03	20	-2.056e-04	5	-1.991e-03	5
95	N56	max	.216	5	.014	17	.188	6	9.407e-04	18	4.455e-04	6	7.e-03	19
96		min	216	7	139	7	189	8	-9.557e-04	8	-4.491e-04	8	-7.301e-03	5
97	N54A	max	.029	5	0	20	.065	6	3.321e-03	6	6.45e-05	5	2.971e-04	7
98		min	029	7	001	6	065	8	-3.109e-03	20	-6.7e-05	7	-2.975e-04	5
99	N55A	max	.029	5	0	18	.065	6	3.109e-03	18	5.771e-05	5	2.369e-04	7
100		min	029	7	001	8	065	8	-3.322e-03	8	-6.02e-05	7	-2.366e-04	5

Envelope AISC 15th(360-16): ASD Steel Code Checks

	Member	Shape	Code Check	Lo	LC	SheLo.	. Dir	Pnc/Pnt/oMnyMnzCb Eqn
1	M29	L5X5X6	.965	0	5	.064 1	y	5 3.762 21.856 1.007 2.089 3.2. H2-1
2	M26	L5X5X6	.927	0	7	.063 0	z	7 3.762 21.856 1.371 2.089 3.1. H2-1
3	M28	L5X5X6	.896	9.75	7	.063 9	z	7 3.762 21.856 1.371 2.089 3.0. H2-1
4	M27	L5X5X6	.895	0	5	.064.102	2 z	5 3.762 21.856 1.371 2.089 3.1. H2-1
5	M42C	L4X4X6	.790	4	7	.039 0	z	5 1.912 17.126 .813 .962 1.1 H2-1
6	M42	L4X4X4	.700	4	5	.101 4	y	5 24.60941.605 2.088 3.749 1.1. H2-1
7	M40	L4X4X4	.698	1	7	.101 0	y	7 24.60941.605 2.088 3.748 1.1 H2-1
8	M39A	L4X4X6	.691	4	8	.034 0	z	8 2.058 17.126 .813 .987 1.1 H2-1
9	M40C	L4X4X6	.557	4	5	.0139.22	2 y	5 2.058 17.126 .772 .987 1.1 H2-1
10	M41C	L4X4X6	.541	5	6	.016 0	y	7 1.912 17.126 .772 .962 1.1 H2-1
11	M36A	L4X4X4	.290	3	8	.015 3	y	8 26.599 41.605 2.088 4.006 1.3. H2-1
12	M38B	L4X4X4	.289	3	6	.016 0	y	8 26.599 41.605 2.088 4.006 1.3. H2-1
13	M10	PIPE_2.5X	.283	0	8	.032 0		7 41.891 44.012 3.091 3.091 2.1 H1
14	M8	PIPE_2.5X	.283	0	6	.035 0		7 41.891 44.012 3.091 3.091 2.1 H1
15	M9	PIPE_2.5X	.283	0	8	.033 0		6 41.891 44.012 3.091 3.091 2.1 H1
16	M7	PIPE_2.5X	.283	0	6	.035 0		5 41.891 44.012 3.091 3.091 2.1H1
17	M17	PIPE_3.5X	.272	0	8	.034 0		6 47.96771.886 7.108 7.108 1.38 H1

Envelope AISC 15th(360-16): ASD Steel Code Checks (Continued)

	Member	Shape	Code Check	Lo	LC	She…Lo…	Dir	Pnc/Pnt/oMnyMnz Cb Eqn
18	M41	L4X4X4	.258	6	5	.023 0	У	5 26.59941.605 2.088 4.439 2.23 H2-1
19	M43	L4X4X4	.257	0	5	.027 0	v	5 26.59941.605 2.088 4.44 2.2H2-1
20	M37A	L4X4X4	.234	3	5	.012 0	ý	5 24.60941.605 2.088 3.855 1.2H2-1
21	M39B	L4X4X4	.228	3	7	.012 0	ý	7 24.60941.605 2.088 3.861 1.23 H2-1
22	M33	L4X4X4	.072	0	6	.005 0	z	7 24.60941.605 2.088 4.064 1.5H2-1
23	M31	L4X4X4	.051	6	6	.004 0	У	8 24.60941.605 2.088 4.11 1.6H2-1
24	M40B	W8X31	.047	4.25	8	.0754.25	y	5 249 273 35.12475.7671.1H1
25	M41B	W8X31	.047	4.25	6	.0844.25	ý	5 249 273 35.12475.767 1.1H1
26	M38	PIPE 2.0	.038	1	16	.010 1		18.95621.377 1.245 1.245 1.9 H1
27	M39	PIPE 2.0	.038	1	16	.010 1		18.95621.377 1.245 1.245 1.9 H1
28	M42B	W8X31	.016	1	8	.086 1	z	5 267 273 35.12475.767 1.3 H1
29	M40A	L4X4X4	.012	0	8	.012 0	У	7 31.57941.605 2.088 4.295 1 H2-1
30	M42A	L4X4X4	.012	0	6	.014 0	ý	5 31.57941.605 2.088 4.295 1 H2-1
31	M32	L4X4X4	.008	3	5	.003 0	z	7 26.59941.605 2.088 4.019 1.3H2-1
32	M41A	L4X4X4	.007	0	19	.007 0	У	8 31.89441.605 2.088 4.36 1 H2-1
33	M43A	L4X4X4	.007	0	17	.009 0	ý	8 31.89 41.605 2.088 4.359 1 H2-1
34	M30	L4X4X4	.006	3	8	.001 3	z	8 26.59941.605 2.088 4.01 1.32 H2-1
35	M37	L4X4X4	.002	0	19	.004 0	y	8 31.89 41.605 2.088 4.359 1 H2-1
36	M35	L4X4X4	.001	0	17	.003 0	ý	6 31.89441.605 2.088 4.36 1 H2-1
37	M36	L4X4X4	.000	0	8	.001 0	ý	8 31.57941.605 2.088 4.295 1 H2-1
38	M34	L4X4X4	.000	0	8	.002 0	v	7 31.57941.605 2.088 4.295 1 H2-1

NORTH EAST > North East > New England > New England West > DANBURY 10 CT - A

Gadasu, Shiva - shiva.gadasu@verizonwireless.com - 11/13/2020 12:1:51

Project Details	Location Information
Carrier Aggregation: false	
:hi Tdi	Ŭ
eCIP-0: false	
Project Name: 850 ADD	Sw
FUZE Project ID: 16244659	Tor
Designed Sector Carrier 4G: 6	F
Designed Sector Carrier 5G: N/A	
Additional Sector Carrier 4G: N/A	Stree
Additional Sector Carrier 5G: N/A	
SiteTraker Project Id:	
FP Solution Type & Tech Type: MODIFICATION;46_850,56_L-Sub6-Prep	
RFDS Project Scope: LSub6 add, RRH swap	
Rev0_11.13.2020 : Initial Design	
Suffix: Rev0 11.13.2020	

C:10 ID. ED.	0000
SITE IU: 5U	808U
E-NodeB ID: 06	557,0659557
PSLC: 46	984
Switch Name: Wa	lingford 2, Wallingford 2
Tower Owner:	
Tower Type: Ro	oftop
Site Type: M/	CRO
Street Address: 10	Federal Road
City: Da	hbury
State: CT	
Zip Code: 06	11
County: Fai	field
Latitude: 41	429758 / 41° 25' 47.1288" N
Longitude: -73	.415831 / 73° 24' 56.9916" W
Latitude: 41 Longitude: -73	429758 / 41° 25' 47.1288" N .415831 / 73° 24' 56.9916" W

Antenna Summary

Addeo																				
200	850	1900	AWS	AWS3	28 GHz	31 GHz	39 GHz	CBRS L	AA L-	-Sub6 Ma	ke	Model	Centerline	Tip Height	Azimuth	RET	4xRx	Inst. Type	Quantity	
										F	BD	nL-Sub6 Antenna	31.5	33.6	25(0001) 220(0002)	false	false	PHYSICAL	2	
Remov	bə																			
700	850	1900	AWS	AW53	28 GHz	31 GHz	39 GHz	CBRS L	AA L-	-Sub6 Ma	ke	Model	Centerline	Tip Height	Azimuth	RET	4xRx	Inst. Type	Quantity	
												ANDREW	HBXX- 6513DS-VTM	32.5	25(01) 220(02)	false	false	PHYSICAL	7	
Retain	ed																			
200	850	1900	AWS	AW53	28 GHz	31 GHz	39 GHz C	CBRS L	AA L-	-Sub6 Ma	ke	Model	Centerline	Tip Height	Azimuth	RET	4xRx	Inst. Type	Quantity	
		LTE	LTE							<	NDREW	HBXX-6513DS-VTM	32.5	33.6	25(01) 220(02)	false	false	PHYSICAL	2	
											Added: 2	Removed: 2	Retain	ed: 2						

Equipment Summary

Added																	
Equipment Type	Location	700	850	1900	AWS	AWS3 2	28 GHz 31	GHz 39	GHz CBI	RS LAA	L-Sub	6 Make	Model	Cable Length	Cable Size	Install Type	Quantity
Diplexer	Tower			LTE	LTE							Commscope	SDX1926Q-43			PHYSICAL	2
RRU	Tower			LTE	Ë							Samsung	B2/B66A RRH-BR049 (RFV01U-D1A)			PHYSICAL	Я
RRU	Tower											Samsung	VZS01			PHYSICAL	2
Removed																	
Equipment Type	Location	700	850	1900	AWS	AWS3 2	28 GHz 31	GHz 39	GHz CBI	RS LAA	L-Subt	6 Make	Model	Cable Length	Cable Size	Install Type	Quantity
RRU	Tower			LTE								Nokia	UHFA B25 RRH 4x30			PHYSICAL	2
RRU	Tower				Ë							Nokia	UHIC B4 RRH 2x60-4R			PHYSICAL	2
Retained																	
Equipment Type	Location	700	850	1900	AWS	AW53 2	28 GHz 31	GHz 39	GHz CBI	RS LAA	L-Sub	6 Make	Model	Cable Length	Cable Size	Install Type	Quantity
OVP Box	Tower															PHYSICAL	Т
Hybrid Cable	Tower															PHYSICAL	1

nfo
The state of the s
9
Ň
Se

5450 D1 D2 D3 D	Sector Azimuth Cell / ENode B ID	D1 35	D2	50
Cut Refer to	Azimuth Cell / ENode B ID	25		**
Cut (The of D) (603)	Cell / ENode B ID	<i>1</i> .7	220	25
Matern Model HOSC 61355 c/H HOSC 61355 c/H HOSC 61355 c/H HOSC 61355 c/H Monton Montal Mont		065557	065557	065557
(Monther) (Monther) <t< td=""><td>Antenna Model HB</td><td>HBXX-6513DS-VTM</td><td>HBXX-6513DS-VTM</td><td>HBXX-6513DS</td></t<>	Antenna Model HB	HBXX-6513DS-VTM	HBXX-6513DS-VTM	HBXX-6513DS
Monto Membro M	Antenna Make	ANDREW	ANDREW	ANDREW
Medication 0 0 Relation 0	Antenna Centerline(Ft)	37.5	32.5	32 5
Interfaction a <t< td=""><td>Mechanical Down-Tilt/Der)</td><td>C:37</td><td>0.17</td><td>C.7C</td></t<>	Mechanical Down-Tilt/Der)	C:37	0.17	C.7C
The found is a constrained in the function of the funct	Electrical Down-Tilt	9 4	9 4	4
Registery (we) (2.3)	Tip Height	33.6	33.6	33.6
Title Second Second </td <td>Regulatory Power</td> <td>47.39</td> <td>47.39</td> <td>62.48</td>	Regulatory Power	47.39	47.39	62.48
Number of TA, R1, Loot Notation Notation State State RU Mode UFA, L23 (RH Acid) UFA, L23 (RH Acid) UFA, L23 (RH Acid) UFA, L23 (RH Acid) CUEA Number of TA, R1, Labor Monta 195931 3.4.4.4.3. Decition 7.01.4.0.0 Number of TA, R1, Labor 195932 195931 195931 7.02.4.0.0 0.00.4.0.0 State 2010 0.03.7 0.00	TMA Make			
Number of the indication in the indication	TMA Model			
Number of T, R, Lucki Urk A23 Bit Acid Urk A23 Bit Acid Extract Acid Extract Acid Extract Acid	RU Make	Nokia	Nokia	Samsund
Number of x (k loss) 2.4 2.4 2.4 2.4 Transitie id metter id x(0, 1/p) 159/90 159/90 159/90 104/90 COULD I x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) CONSTIC x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) Constit x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) Constit x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) Constit x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) Constit x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) Constit x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) Constit x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) Constit x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) Constore x(1/p) x(1/p)	RRU Model UH	IHFA B25 RRH 4x30	UHFA B25 RRH 4x30	B2/B66A RRH-BR049 (I
Transmitter Servet Se	Number of Tx. Rx Lines	2.4	2.4	4.4
Tanantier ld manualite ld ACUL,AI 195790 195791 20002 COND, John ACUL,AI ACUL	Position	-		
Succe ATOL, Joi AT	Transmitter Id	1967909	1967911	7842999
CONTRAT ODD Contract (Contract) Contract (Contract) <thcontract (contract)<="" th=""> Contract (Contrac</thcontract>	Source	ATOLL_API	ATOLL_API	ATOLLAF
Setty D1 D2 D3 D3 Cut / Action 0537 05337 065337 065337 065337 065337 065337 065337 065337 065337 065337 065337 065337 065337 0655337 065337 065337 065337 065337 0655337 0655337 0655337 0655333 0655333 0655333 0655333 0655333 0655333 0655333 0655333 0655333 0655333 0655333 0655333 0655333 0655533 0655533 065533<	DO MHZ I TE		0000	
amout 33	OUTING LIE	2	0000	5
Cell Flore Bill 0:557 (512) 0:556 (512) 0:556	Sector	10	20	30
Number Number<		22	220	C2 C2
Antenna Mate Procession Procession Antenna Mate Procession Antenna Mate Procession Antenna Mate Procession Antenna Mate				
Attenta Male AUOREV A				
Memona Contrille(e) 213 233 233 233 Replanted Down"IR (Peg) 0 <td< td=""><td>Antenna Make</td><td>ANDREW</td><td>ANDREW</td><td>ANDREV</td></td<>	Antenna Make	ANDREW	ANDREW	ANDREV
Mechanical Down-Tilk (bos) 0 0 0 Electrical Down-Tilk (bos) 4 33.6 33.6 33.6 Regulatory Power 101.33 101.33 101.33 30.6 33.6 TAA Nakia TAA Nakia 101.33 101.33 101.33 50.6 33.6 TAA Nakia TAA Nakia 101.33 101.33 101.33 50.6 33.6 TAA Nakia Number of TA, Kulter 2.4 2.4 34.2 34.2 Regulatory Power 2.4 2.4 2.4 33.6 33.6 33.6 Regulatory Power 2.4 2.4 2.4 34.2 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 35.6 35.3 35.6 35.3 35.6 35.3 35.6 35.3 35.6 35.3 35.6 35.3 35.6 35.5 37.6 35.6 37.6 35.6 37.6 35.6 35.6 37.6	Antenna Centerline(Ft)	32.5	32.5	32.5
Electrical Down-Title a a a a Regulatory Power 113.33 3.6 3.6 3.36 66.65 3.36 66.65 3.36 66.65 3.36 66.65 3.36 66.65 3.36 66.65 3.36 3.36 66.65 3.36 56.65 3.36 56.65 3.36 56.65 3.36 56.65 3.36 56.65 3.36 56.65 3.36 56.65 3.36 56.65 3.36 56.65 3.36 56.65 3.36 56.65 3.4 3.36 56.66 3.46 3.36 56.66 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.47 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.56 3.56 3.56 3.56 3.56 3.56	Mechanical Down-Tilt(Dea.)	0	0	0
Thy felget 33.5	Electrical Down-Tilt	4	4	4
Regulatory Power TMA ridat 101.33 101.33 101.33 6.693 TMA ridat TMA ridat TMA ridat TMA ridat E.266.5484 6.93 TMA ridat UNICATE Notate Notate 10.33 6.93 RUN Mode UHIC BI RH1.2x60-4R UHIC BI RH1.2x60-4R UHIC BI RH1.2x60-4R 2.4 2	Tip Height	33.6	33.6	33.6
TMA Note Unit And et al. Notion Base Notion <	Regulatory Power	101.33	101.33	66.95
Triangle Not Model Not Model Not Model Semantic RU Mode UHIC 64 REH 266-4R UHIC 64 REH 266-4R E206664 REHEB0491 Number of Tx, kines 2,4 2,4 2,4 Position 2,4 2,4 2,4 Position 2,4 2,4 2,4 Position 2,67310 1,67310 1,67310 Source ATOL , API 1,67310 1,67310 Source Source ATOL , API ATOL , API Annuch 1,67310 1,67310 1,67310 Annuch 1,67310 1,67312 2,3 Annuch Source ATOL , API ATOL , API Annuch 1,67310 1,67312 2,3 Annuch Source 1,67312 2,3 Annuch Annuch ATOL , API ATOL , API Antenna Ordel Antenna Ordel 1,67314 1,6604 Antenna Ordel Antenna Ordel 1,74014 1,74014 Antena Ordel Antenna Ordel	TMA Make			
RU Make Notai Notai Notai Notai B2666A RH-BR043 RU Make UHC BA RH 2x60-R UHC BA RH 2x60-R UHC BA RH 2x60-R Destend 24 26 26 24 26	TMA Model			
RU Model UHC BA RH 2x60-4R UHC BA RH 2x60-4R UHC BA RH 2x60-4R Desition 2,4 <	RRU Make	Nokia	Nokia	Samsung
Number of Tx, Rx, Lines 2,4,4 2,4,	RRU Model UHI	HC B4 RRH 2x60-4R	UHIC B4 RRH 2x60-4R	B2/B66A RRH-BR049 (
Doction Doction Transitier (d 1967910 196701 196101 <th< td=""><td>Number of Tx, Rx Lines</td><td>2,4</td><td>2,4</td><td>2,4</td></th<>	Number of Tx, Rx Lines	2,4	2,4	2,4
Transmitter id 1967910 1967910 1967910 78701, API 7701, API <t< td=""><td>Position</td><td></td><td></td><td></td></t<>	Position			
Source ATOLL, API ATOLL, API<	Transmitter id	1967910	1967912	7843000
Subfe Sector 0001 Sector Sector 35 Tablitutt Cell / Elude B ID 0659557 Anterna Model 0659557 0559557 Anterna Model 0659557 0559557 Anterna Mice Anterna Model 0539557 Anterna Mice Anterna Mice 053957 Anterna Mice Anterna Mice 05355 Anterna Mice Anterna Mice 05355 Anterna Mice Anterna Mice 05355 Anterna Mice 0513104 05355 Anterna Cartrille 0513104 05355 Anterna Cartria Model 05355 05355 Anterna Cartria Model 05355 05355 Antori A 05355 05355	Source	ATOLL_API	ATOLL_API	ATOLLA
Sector Sector 0001 Animuth Cell / Floode B ID 0005 Cell / Floode B ID Anterna Model 0055537 Anterna Model 0055537 0555357 Anterna Acie 0055537 0555357 Anterna Acie Anterna Acie 0055537 Anterna Centerline(F1) Anterna Centerline(F2) 0.55537 Metana Centerline(F2) Metana Centerline(F2) 0.55537 Metana Centerline(F2) Metana Centerline(F2) 0.55537 Metana Centerline(F2) Metana Centerline(F2) 0.55537 Metanical Down-Tilit(Deg.) Electrical Down-Tilit(Deg.) 3.15 Metanical Down-Tilit Regulatory Power 3.15 3.35 Tip Holdit To Holdit 3.35 Make Tri Make 3.35 RU Make RU Make 3.310.4 RU Make Tri Make 3.310.4 Mutber of TS, RU Make Number of TS, RU Make 3.340.1 Mutber of TS, RU Make Position 4.4 Mutber of TS, RU Make Mutber of TS, RU Make 4	Sub6			
Azimuth 23 Cell / Elvode B ID Cell / Elvode B ID Antenna Mode 0559537 Antenna Mode 0559537 Antenna Mode 0559537 Antenna Kale 0559537 Antenna Kale 0559537 Antenna Kale 0559537 Antenna Kale 05354 Antenna Kale 0 Betchical Down-Tilt 0 Betchical Down-Tilt 0 Tip Height 0 Rug Make 0 TMA Model 0 Ru Model 0 0 0 0	Sector			1000
Cell / ENode B ID 0659557 Arterna Model Arterna Model Arterna Model 0659557 Arterna Model 7BD Arterna Make 7BD Arterna Make 33.6 Tip Height 33.6 RSU Make 73.11.04 TMA Model 27.11.04 RSU Make 78.01 Number of TX, RX Lines 53.6 Number of TX, RX Lines 9.05.10 Anther of TX, RX Lines 7.84.01 Anther of TX, RX Lines 9.05.10	Azimuth			25
Arterna Model InLSUD6 Arte Arterna Model Arterna Model Arterna Model Arterna Model Arterna Serterline(F) 315 Mechanical Down-Titt 315 Benchical Down-Titt 315 Titt Medic 336 Tit Make 336 Tit Make 336 Tit Model 336 RRU Make 336 RRU Make 5msun	Cell / ENode B ID			0659557
TBD Anterna Make Anterna Senterline[F1 Actana Controlled: Mechanical Down-Titt(Beg.) Bectrical Down-Titt(Beg.) Electrical Down-Titt(Beg.) Stattanta TD Height TT Height RRU Make RR	Antenna Model			nL-Sub6 Ante
Antenna Make Antenna Make Antenna Centerina Make 315.0 Antenna Centerina Down-Tilt 315.0 Bectrical Down-Tilt (Deg.) 0 Electrical Down-Tilt Pegit 336.0 Regulatory ower 336.0 TMA Make 2711.04 TMA Make 2711.04 RNU Model 784.0 Number of TX, RX Lines V2501.1 Position 784.00 Converse 2001.1				
Mechanical Down-Title Concententer(1) Realistical Down-Title Down	Antenna Make			181
The frequency of the sector of	Mechanical Down-Tilf(Dect.)			
Tip Height Regulatory Power A Make TM Make TM Model RRU Make RRU Make RRU Make RRU Make RRU Make RRU Make RRU Make RRU Make RRU Make RRU Make A 30301 A 30301	Electrical Down-Tilt			5 m
Regulatory Power 271104 TMA Make 271104 TMA Model TMA Model TMA Model Samsury RaU Model V2501 RaU Model V2501 Number of TX, Rx Lines V2501 Position Position Tammitter id 784301 Curron 784301	Tib Height			33.6
TMA Male TWA Model RRU Male RRU Male RRU Model Number of Tx, Rx Lines Position Transmitter Id Cancer of ATOI 1 A	Regulatory Dower			A0 1 17 5
TMA Model RRU Make RRU Make RRU Model VZSOII Valuation RX, RX, Innes Number of TX, RX, Innes Number of TX, RX, Innes Number of TX, RX, Innes Arrori A RADUT	TMA Make			
RRU Make Samsung RRU Make Samsung RRU Model VZSO1 VZSO1 VZSO1 Position Tansmitter id Transmitter id ATO11	TMA Model			
RaU Model Number of TX, Rx Lines Position Transmitter Id Restrict ATOI 1 A	ARMI INSTRUCTION			Sameling
Number of Tx, fix Lines Position Tassnifter Id ATOI 1 A	RRII Model			LUSZA
Tansmitter Id Tansmitter Id ATOI 1 A	Number of TV RV lines			2.2
Tanton Tamitter Id ATOI A ATOI A	NUTIBEL OF LA, NA LITES			***
	Transmitter Id			7843018
	Control			IV LICTA

SGLS	02	220	065557	HBXX-6513DS-VTM	ANDREW	32.5	0	4	33.6	62.48	Samsung	B2/B66A RRH-BR049 (RFV01U-D1A)	4,4	7843001	ATOLL_API	5GLS	02	220	065557	HBXX-6513DS-VTM	ANDREW	32.5	0	4	33.6	66.95	Samsung	B2/B66A RRH-BR049 (RFV01U-D1A)	2,4	7843002	ATOLL_API	5GLS	0002	220	0659557	nL-Sub6 Antenna	TBD	31.5	0	m	33.6	2711.04	Samsung	VZS01	4,4
	01	25	065557	HBXX-6513DS-VTM	ANDREW	32.5	0	4	33.6	62.48	Samsung	B2/B66A RRH-BR049 (RFV01U-D1A)	4,4	7842999	ATOLL API		01	25	065557	HBXX-6513DS-VTM	ANDREW	32.5	0	4	33.6	66.95	Samsung	B2/B66A RRH-BR049 (RFV01U-D1A)	2,4	7843000	ATOLLAPI		0001	25	0659557	nL-Sub6 Antenna	TBD	31.5	0	m	33.6	2711.04	Samsung	VZS01	4,4

7843019 ATOLL_API

ŝ
2
2
CD
-
2
d
- 65
~
-
S
5
9
100
-
-
10
\mathbf{U}

	39 GHz	
	31 GHz	
	28 GHz	
	2100	
	1900	
	850	
Callsigns	00/	
Regulatory	Power	o data available.
Beamwidth		2
Gain		
Mechanical	Tilt	
Electrical	H.	
Azimuth (TN)		
Tip Height		
na Mode Ant CL	Height AGL	
Antenna Make Anten		
Sector		

Approved for Insvc	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Action	added	added	added	added	added												
Status	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active
POPs/Sq Mi	1467.18	1467.18	1467.18	1467,18	1467.18	1467.18	1467.18	1467.18	1467.18	1467.18	1467.18	1467.18	1467.18	1467.18	1467.18	1467.18	1467.18
Threshold (W)	1640	1640	1640	1640	1640	1000	400										
Regulatory Power	62,48	62.48	62.48	66.95	66.95												
Freq Range 4	000000.	000000.	000-000	000-000	000000.	000'-000'	890.000-	000-000	000-000	000-000	000-000	000-000	000-000	000-000	.000000	.000000	000-000
Freq Range 3	000-000	000000	000000	000-000	000000.	000'-000'	845.000- 846.500	000-000	000-000	000-000	.000-000	.000000	.000.000	.000000	.000-000	.000000	000-000
req lange 2	1980.000- 1990.000	1975.000- 1980.000	1970.000- 1975.000	2110.000- 2120.000	2120.000- 2130.000	776.000- 787.000	869.000- 880.000	31075.000- 31225.000	31225.000- 31300.000	000-000	28050.000- 28350.000	000-000	000-000	000-000	000-000	000-000	000-000
Freq Range 1	1900.000- 1910.000	1895.000- 1900.000	1890.000- 1895.000	1710.000- 1720.000	1720.000- 1730.000	746.000- 757.000	824,000- 835.000	29100.000- 29250.000	31000.000- 31075.000	27600.000- 27925.000	27925.000- 27950.000	37600.000- 37700.000	38500.000- 38600.000	37700.000- 37800.000	37800.000- 37900.000	37900.000- 38000.000	38000.000- 38100.000
Total MHZ	20.000	10.000	10.000	20,000	20.000	22.000	25.000	300.000	150.000	325.000	325.000	100.000	100.000	100.000	100.000	100.000	100.000
Wholly Owned	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Licensee Name	AirTouch Cellular	Cellco Partnership	Cellco Partnership	Cellco Partnership	Celico Partnership	Cellco Partnership	Cellco Partnership	Cellco Partnership	Cellco Partnership	Cellco Partnership	Cellco Partnership	Straight Path Spectrum, LLC	Straight Path Spectrum,				
County	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield
State	c1	ر ا	cı	сı	cı	ط	c	L	c	с	cT	đ	t	cl	d	t	ct
Block	U	U	L.	۲	ε	U	٩	A	8	[]	7	IM	MIO	M2	M3	M4	M5
Market Vumber	BTA321	BTA321	BTA321	CMA042	BEA010	REA001	CMA042	BTA321	BTA321	BTA321	BTA321	PEA001	PEA001	PEA001	PEA001	PEA001	PEA001
adio h	CW	CW	cw	AW	aw	MU	C C	ΓD	D	nn	nn	nn	nn	nn	n	nn	n
Market F	New York, NY	New York, NY	New York, NY	Bridgeport- Stamford- Norwalk- Danbury, CT	New York- No. New JerLong Island, NY- NJ-CT-PA- MA-	Northeast	Bridgeport- Stamford- Norwalk- Danbury, CT	New York, NY	New York, NY								
Callsign	KNLF644	WQBT539	KNLH264	WQGB279	WQGA906	WQJQ689	KNKA363	WPOH942	WPLM397	WRBA702	WRBA703	WRHD 609	WRHD610	WRHD611	WRHD 612	WRHD613	WRHD614

Callsigns

Proprietary and Confidential. Not for disclosure outside of Verizon.

Page 6 of 7

Yes	Yes	Yes	Yes	°Z	Yes
Active	Active	Active	Active	Active	Active
1467.18	1467.18	1467.18	1467.18	1467.18	1467.18
000,.000,	000-000	000-000	000,.000.	000,000,	000-000
.000-000	000-000'	.000-000	000'-000'	000'-000'	000-000
.000000	000-000	000-000	000'-000'	000'-000'	000'-000'
38100.000- 38200.000	38200.000- 38300.000	38300.000- 38400.000	38400.000- 38500.000	38600.000- 38700.000	37800.000- 38200.000
100.000	100.000	100.000	100.000	100.000	400.000
Yes	Yes	Yes	Yes	Yes	Yes
Straight Path Spectrum, LLC	Cellco Partnership				
Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield
c	ct	ct	ct	ct	cT
M6	M7	M8	6W	ľN	S2
PEA001	PEA001	PEA001	PEA001	PEA001	PEA001
n	nn	n	nn	n	nn
New Yark, NY	New York, NY	New York, NY	New York, NY	New York, NY	New Yark, NY
WRHD615	WRHD616	WRHD617	WRHD618	WRHD619	WRDG500

I

Centered on Solutions[™]

Structural Analysis Report

Antenna Frame

Proposed Verizon Antenna Upgrade

Site Ref: Danbury 10

109 Federal Road Danbury, CT

CENTEK Project No. 20150.07

Date: January 19, 2021 Rev 1: February 22, 2021

Prepared for:

Verizon Wireless 20 Alexander Drive Wallingford, CT 06492

Table of Contents

SECTION 1 - REPORT

- INTRODUCTION
- PRIMARY ASSUMPTIONS USED IN THE ANALYSIS
- ANTENNA AND EQUIPMENT INSTALLATION SUMMARY
- ANALYSIS
- DESIGN LOADING
- RESULTS
- CONCLUSION

SECTION 2 - CONDITIONS & SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM

SECTION 3 - CALCULATIONS

- WIND LOAD CALCULATION
- RISA 3D OUTPUT REPORT

SECTION 4 – REFERENCE MATERIAL

- RF DATA SHEET
- CONSTRUCTION DOCUMENTS PREPARED BY CENTEK ENGINERRING REV.0 DATED JULY 10 2015 (not included)
- STEEL SHOP DRAWINGS PREPARED BY PND WELDING/GoodFAB LLC DATED OCTOBER, 6 2016 (not included)

<u>Introduction</u>

The purpose of this structural analysis report (SAR) is to summarize the results, of the impacted structural components, by the equipment upgrade proposed by Verizon Wireless on the existing host building located in Danbury, CT.

The antennas are mounted on within a proposed replacement RF transparent screen enclosure attached to the roof top of the host building.

The mounts member sizes information and roof framing information were obtained from a construction documents as prepared by Centek Engineering Rev.0, dated July 10, 2015, and steel shop drawings as prepared by PND WELDING/GoodFAB LLC dated October, 6 2016. Proposed/existing antenna and appurtenance information was taken from a RF data sheet dated 11/13/2020 provided by Verizon Wireless.

Primary Assumptions Used in the Analysis

- The host structure's theoretical capacity not including any assessment of the condition of the host structure.
- The existing elevated steel antenna frames carry the horizontal and vertical loads due to the weight of equipment, and wind and transfers into host structure.
- Proposed reinforcement and support steel will be properly installed and maintained.
- Structure is in plumb condition.
- Loading for equipment and enclosure as listed in this report.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All welds are fabricated with ER-70S-6 electrodes.
- All members are assumed to be as observed during roof framing mapping.
- All members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.
- All member protective coatings are in good condition.

<u>Antenna and Equipment Summary</u>

Location	Appurtenance / Equipment	Rad Center Elevation (AGL)	Mount Type
Alpha Sector	(1) HBXX-6513DS Antenna (1) B25-RRH-4x30 (1) B4 RRH 2x60 (1) HBXX-6513DS Antenna (1) VZS01 Antenna (1) Samsung B2/B66A RRH – BR049 (1) SDX1926Q-43 diplexer (1) RFS RRFDC-3315-PF-48	31.9-ft	FRP enclosure attached to building rooftop
Gamma Sector	(1) HBXX-6513DS Antenna (1) B25-RRH-4x30 (1) B4 RRH-2x60 (1) HBXX-6513DS Antenna (1) VZS01 Antenna (1) Samsung B2/B66A RRH – BR049 (1) SDX1926Q-43 diplexer	31.9-ft	FRP enclosure attached to building rooftop

Equipment – Indicates equipment to be removed. Equipment – Indicates equipment to be installed.

<u>Analysis</u>

The existing antenna frames were analyzed using a comprehensive computer program titled Risa3D. The program analyzes the equipment platform and antenna mounts considering the worst case code prescribed loading condition. The structures were considered to be loaded by concentric forces, and the model assumes that the members are subjected to bending, axial, and shear forces.

Design Loading

Loading was determined per the requirements of the 2015 International Building Code amended by the 2018 CSBC and ASCE 7-10 "Minimum Design Loads for Buildings and Other Structures".

Wind Speed:	V _{ult} = 120 mph	Appendix N of the 2018 CT State Building Code
Risk Category:	11	2015 IBC; Table 1604.05
Exposure Category:	Surface Roughness B	ASCE 7-10; Section 26.7.2
Dead Load	Equipment and framing self- weight	Identified within SAR design calculations

<u>Reference Standards</u>

2015 International Building Code:

- 1. ACI 318-14, Building Code Requirements for Structural Concrete.
- 2. ACI 530-13, Building Code Requirements for Masonry Structures.
- 3. AISC 360-10, Specification for Structural Steel Buildings
- 4. AWS D1.1 00, Structural Welding Code Steel.
- 5. AF&PA-12, Span Tables for Joists and Rafters.

<u>Results</u>

Structure stresses were calculated utilizing the structural analysis software RISA 3D. The stresses were determined based on the AISC standard.

• Calculated stresses for the antenna frame were found to **<u>be within allowable</u>** limits.

Sector	Component	Stress Ratio (percentage of capacity)	Result
	L5x5x3/8 FRP	95.4%	PASS
All Sectors	Pipe 2.5 X-Strong	33.5%	PASS
	Pipe 3.5 X-Strong	34.2%	PASS

<u>Conclusion</u>

This analysis shows that the subject antenna frame **HAS SUFFICIENT CAPACITY** to support the proposed modified antenna configuration.

The analysis is based, in part, on the information provided to this office by Verizon. If the existing conditions are different than the information in this report, Centek Engineering, Inc. must be contacted for resolution of any potential issues.

Please feel free to call with any questions or comments.

Respectfully Submitted by:

Timothy J. Lynn, PE Structural Engineer

<u>Standard Conditions for Furnishing of</u> <u>Professional Engineering Services on</u> <u>Existing Structures</u>

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil
 conditions, the antenna and feed line loading on the structure and its components, or
 other relevant information.
- Information from the field and/or drawings in the possession of Centek Engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to Centek Engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an uncorroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to
 meet any other codes or requirements unless explicitly agreed in writing. If wind and ice
 loads or other relevant parameters are to be different from the minimum values
 recommended by the codes, the client shall specify the exact requirement. In the
 absence of information to the contrary, all work will be performed in accordance with the
 latest revision of ANSI/ASCE10 & ANSI/EIA-222
- All services performed, results obtained, and recommendations made are in accordance with generally accepted engineering principles and practices. Centek Engineering, Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

	Wind L	oad Tabula	ation for Wa	II Component	s & Claddin	g	
Component	z	Kh	qh	p =	= Net Design	Pressures (osf)
	(ft.)		(psf)	Zone 4 (+)	Zone 4 (-)	Zone 5 (+)	Zone 5 (-)
Wall	0	0.73	22.75	26.85	-28.89	26.85	-28.89
	15.00	0.73	22.75	26.85	-28.89	26.85	-28.89
	20.00	0.73	22.75	26.85	-28.89	26.85	-28.89
	25.00	0.73	22.75	26.85	-28.89	26.85	-28.89
	30.00	0.73	22.75	26.85	-28.89	26.85	-28.89
For z = hr:	34.00	0.73	22.75	26.85	-28.89	26.85	-28.89
Fare - has	24.00	0.70	00.75	00.05	00.00	00.05	
For $z = ne$:	34.00	0.73	22.75	20.00	-28.89	20.80	-28.89
F01 Z - 11.	34.00	0.75	22.70	20.00	-20.09	20.00	-20.09
Notoe: $1 (+)$ and $()$ si	ane eignifu	wind proces	uros actina t	word & away	from respecti	ivo surfacos	
Notes. 1. (+) and (-) si	yns siynny o 5 (opd zo	wind pressu	nes acting to		nom respecti In	ive surfaces.	
2. Width of 201	etion 30.2 1	$\frac{1}{2}$ the minim	um wind los	J.05 d for C&C sha	ll not be less	than 16 pef	
4 References		2, ule minin 7-10 "Minin	num Design	Loads for Build	dings and Ot	her Structure	e"
4. 10000000	b "Guide	to the Use	of the Wind	Load Provision	ings and Oa	-02"	5.
	by: Kis	shor C. Meh	ta and Jame	s M Delahav i	(2004)	02	
	<i>by</i> . rae			bo m. Bolandy	(2001).		

Feb 23, 2021 9:39 AM Checked By:__

(Global) Model Settings

Display Sections for Member Calcs	5
May Internal Castions for Member Calls	07
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (ft/sec^2)	32.2
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver
Hot Rolled Steel Code	AISC 15th(360-16): ASD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 14th(360-10): ASD
Cold Formed Steel Code	AISI S100-10: ASD

AWC NDS-12: ASD
< 100F
ACI 318-11
ACI 530-11: ASD
AA ADM1-10: ASD - Building
AISC 14th(360-10): ASD
Yes(Iterative)

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
TZ (sec)	Not Entered
RX	3
RZ	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	l or ll
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	4
Cd X	4
Rho Z	1
Rho X	1
Footing Overturning Safety Factor	1
Optimize for OTM/Sliding	No
Check Concrete Bearing	No
Footing Concrete Weight (k/ft^3)	0
Footing Concrete f'c (ksi)	4
Footing Concrete Ec (ksi)	3644
Lambda	1
Footing Steel fy (ksi)	60
Minimum Steel	0.0018
Maximum Steel	0.0075
Footing Top Bar	#3
Footing Top Bar Cover (in)	2
Footing Bottom Bar	#3
Footing Bottom Bar Cover (in)	3.5
Pedestal Bar	#3
Pedestal Bar Cover (in)	1.5
Pedestal Ties	#3

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\	. Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	58	1.2
3	A992	29000	11154	.3	.65	.49	50	1.1	58	1.2
4	A500 Gr.42	29000	11154	.3	.65	.49	42	1.3	58	1.1
5	A500 Gr.46	29000	11154	.3	.65	.49	46	1.2	58	1.1
6	FRP	2800	450	.35	.44	.12	10	1.5	58	1.2
7	A53 Grade B	29000	11154	.3	.65	.49	35	1.5	58	1.2

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design Rul.	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Mount Base_Pipe_2	PIPE_2.5X	Column	Pipe	A53 Grade B	Typical	2.1	1.83	1.83	3.66
2	Pipe_3.5 XStrong	PIPE_3.5X	Column	Pipe	A53 Grade B	Typical	3.43	5.94	5.94	11.9
3	L3X3X3/8	L4X4X6	Column	Single Angle	FRP	Typical	2.86	4.32	4.32	.141
4	L5X5X3/8 V	L5X5X6	Column	Single Angle	FRP	Typical	3.65	8.76	8.76	.183
5	Pipe 2.0 STD	PIPE_2.0	Column	Pipe	A53 Grade B	Typical	1.02	.627	.627	1.25
6	L4x4x1/4	L4X4X4	Beam	Single Angle	A36 Gr.36	Typical	1.93	3	3	.044
7	W8	W8X31	Beam	Wide Flange	A992	Typical	9.13	37.1	110	.536

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[.Lcomp bot[.L-torq	Куу	Kzz	Cb	Functi
1	M7	Mount Base_Pipe_2.	. 2.417									Lateral
2	M8	Mount Base_Pipe_2.	. 2.417									Lateral
3	M9	Mount Base_Pipe_2.	. 2.417									Lateral
4	M10	Nount Base_Pipe_2.	. 2.417									Lateral
5	M17	Pipe_3.5 XStrong	9.75									Lateral
6	M26	L5X5X3/8_V	9.75								<u> </u>	Lateral
1	M27	L5X5X3/8_V	9.75									Lateral
8	M28	L5X5X3/8_V	9.75									Lateral
9	M29	L5X5X3/8_V	9.75									Lateral
10	M30	L4X4X1/4	6									Lateral
11	M31	L4X4X1/4	6.517									Lateral
12	M32	L4X4X1/4	6									Lateral
13	M33	L4X4X1/4	6.517									Lateral
14	M34	L4x4x1/4	3.258									Lateral
15	M35	L4x4x1/4	2.998								<u> </u>	Lateral
16	M36	L4x4x1/4	3.258									Lateral
17	M37	L4X4X1/4	3.002									Lateral
18	M38	Pipe 2.0 STD	3.167									Lateral
19	M39	Pipe 2.0 STD	3.167									Lateral
20	M40	L4x4x1/4	6.517			Lbyy						Lateral
21	M41	L4x4x1/4	6			Lbyy						Lateral
22	M42	L4x4x1/4	6.517			Lbyy						Lateral
23	M43	L4x4x1/4	6			Lbyy						Lateral
24	M36A	L4x4x1/4	6									Lateral
25	M37A	L4x4x1/4	6.517									Lateral
26	M38B	L4x4x1/4	6								ļ	Lateral
27	M39B	L4x4x1/4	6.517								<u> </u>	Lateral
28	M40A	L4x4x1/4	3.258								ļ	Lateral
29	M41A	L4x4x1/4	2.998								ļ	Lateral
30	M42A	L4x4x1/4	3.258									Lateral
31	M43A	L4x4x1/4	3.002								ļ	Lateral
32	M40B	W8	6			Lbyy						Lateral
33	M41B	W8	6			Lbyy					<u> </u>	Lateral
34	M42B	W8	2.917			Lbyy						Lateral
35	M39A	L3X3X3/8	9.22									Lateral
36	M40C	L3X3X3/8	9.22									Lateral
37	M41C	L3X3X3/8	10.661									Lateral
38	M42C	L3X3X3/8	9.564									Lateral

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(. Section/Shape	Type Design List	Material	Design R
1	M3	N3	N2			Mount Base- (3-2x8)	Beam Rectangular	DF	Typical
2	M4	N2	N1			Mount Base- (3-2x8)	Beam Rectangular	DF	Typical
3	M5	N8	N7			Mount Base- (3-2x8)	Beam Rectangular	DF	Typical
4	M6	N7	N6			Mount Base- (3-2x8)	Beam Rectangular	DF	Typical
5	M7	N5	N12			Mount Base_Pipe_2.5 XStr.	.Column Pipe	A53 Grade B	Typical
6	M8	N10	N14			Mount Base_Pipe_2.5 XStr.	.Column Pipe	A53 Grade B	Typical
7	M9	N4	N11			Mount Base_Pipe_2.5 XStr.	.Column Pipe	A53 Grade B	Typical
8	M10	N9	N13			Mount Base_Pipe_2.5 XStr.	.Column Pipe	A53 Grade B	Typical
9	M17	N19	N20			Pipe_3.5 XStrong	Column Pipe	A53 Grade B	Typical
10	M26	N39	N43		180	L5X5X3/8 V	ColumnSingle Angle	FRP	Typical
11	M27	N36	N40			L5X5X3/8_V	ColumnSingle Angle	FRP	Typical
12	M28	N41	N37		180	L5X5X3/8_V	ColumnSingle Angle	FRP	Typical
13	M29	N38	N42		270	L5X5X3/8_V	ColumnSingle Angle	FRP	Typical
14	M30	N43	N42		180	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
15	M31	N42	N40		180	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
16	M32	N40	N41		180	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
17	M33	N41	N43		180	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
18	M34	N44	N20		180	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
19	M35	N20	N45		180	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
20	M36	N20	N46		90	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
21	M37	N20	N47		180	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
22	M38	N22	N23			Pipe 2.0 STD	Column Pipe	A53 Grade B	Typical
23	M39	N25	N26			Pipe 2.0 STD	Column Pipe	A53 Grade B	Typical
24	M40	N39	N37			L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
25	M41	N37	N36			L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
26	M42	N36	N38			L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
27	M43	N38	N39			L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
28	M36A	N52	N51		270	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
29	M37A	N51	N49		270	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
30	M38B	N49	N50		270	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
31	M39B	N50	N52		270	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
32	M40A	N53	N48		180	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
33	M41A	N48	N54		180	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
34	M42A	N48	N55		90	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
35	M43A	N48	N56		180	L4x4x1/4	Beam Single Angle	A36 Gr.36	Typical
36	M40B	N35	N33			W8	Beam Wide Flange	A992	Typical
37	M41B	N34	N32			W8	Beam Wide Flange	A992	Typical
38	M42B	N54A	N55A			W8	Beam Wide Flange	A992	Typical
39	M39A	N50	N40			L3X3X3/8	ColumnSingle Angle	FRP	Typical
40	M40C	N51	N43			L3X3X3/8	ColumnSingle Angle	FRP	Typical
41	M41C	N40	N52A			L3X3X3/8	ColumnSingle Angle	FRP	Typical
42	M42C	N43	N50			L3X3X3/8	ColumnSingle Angle	FRP	Typical

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Dia
1	N1	0	0	0	0	
2	N2	0	0	2	0	
3	N3	0	0	4	0	
4	N4	0	0	0.541667	0	

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Dia
5	N5	0	0	3.458333	0	
6	N6	2.416667	0	0	0	
7	N7	2.416667	0	2	0	
8	N8	2.416667	0	4	0	
9	N9	2.416667	0	0.541667	0	
10	N10	2.416667	0	3.458333	0	
11	N11	0	2.416667	0.541667	0	
12	N12	0	2.416667	3.458333	0	
13	N13	2.416667	2.416667	0.541667	0	
14	N14	2.416667	2.416667	3.458333	0	
15	N19	1.208333	2.416667	2	0	
16	N20	1.208333	12.166667	2	0	
17	N21	1.208333	6.125	2	0	
18	N22	1.208333	6.125	3.583333	0	
19	N23	1.208333	6.125	0.416667	0	
20	N24	1.208333	8.625	2	0	
21	N25	1.208333	8.625	3.583333	0	
22	N26	1.208333	8.625	0.416667	0	
23	N27	0	0	3.333333	0	
24	N32	4.206667	2.416667	3.458333	0	
25	N33	4.206667	2.416667	0.541667	0	
26	N34	-1.793333	2.416667	3.458333	0	
27	N35	-1.793333	2.416667	0.541667	0	
28	N36	4.206667	2.416667	-1.258333	0	
29	N37	-1.793333	2.416667	-1.258333	0	
30	N38	4.206667	2.416667	5.258333	0	
31	N39	-1.793333	2.416667	5.258333	0	
32	N40	4.206667	12.166667	-1.258333	0	
33	N41	-1.793333	12.166667	-1.258333	0	
34	N42	4.206667	12.166667	5.258333	0	
35	N43	-1.793333	12.166667	5.258333	0	
36	N44	1.206667	12.166667	5.258333	0	
37	N45	4.206667	12.166667	2	0	
38	N46	1.206667	12.166667	-1.258333	0	
39	N47	-1.793333	12.166667	2	0	
40	N48	1.208333	5.166667	2	0	
41	N49	4.206667	5.166667	-1.258333	0	
42	N50	-1.793333	5.166667	-1.258333	0	
43	N51	4.206667	5.166667	5.258333	0	
44	N52	-1.793333	5.166667	5.258333	0	
45	N53	1.206667	5.166667	5.258333	0	
46	N54	4.206667	5.166667	2	0	
47	N55	1.206667	5.166667	-1.258333	0	
48	N56	-1.793333	5.166667	2	0	
49	N57	0	0.604167	0.541667	0	
50	N54A	1.206667	2.416667	3.458333	0	
51	N55A	1.206667	2.416667	0.541667	0	
52	N52A	2.416667	1.8125	0.541667	0	

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N1	Reaction	Reaction	Reaction			Reaction
2	N2	Reaction	Reaction	Reaction			Reaction
3	N3	Reaction	Reaction	Reaction			Reaction
4	N6	Reaction	Reaction	Reaction			Reaction
5	N7	Reaction	Reaction	Reaction			Reaction
6	N8	Reaction	Reaction	Reaction			Reaction

Member Point Loads (BLC 3 : Dead: Equipment)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M38	Y	041	.833
2	M39	Y	041	.833
3	M38	Y	006	1
4	M39	Y	006	1
5	M38	Y	043	2.333
6	M39	Y	043	2.333
7	M38	Y	02	2.333
8	M39	Y	02	2.333

Member Distributed Loads (BLC 6 : BLC 2 Transient Area Loads)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/f	Start Location[ft,%]	End Location[ft,%]
1	M26	Y	026	067	0	1.95
2	M26	Y	067	071	1.95	3.9
3	M26	Y	071	035	3.9	5.85
4	M26	Y	035	013	5.85	7.8
5	M26	Y	013	012	7.8	9.75
6	M29	Y	019	022	0	1.95
7	M29	Y	022	015	1.95	3.9
8	M29	Y	015	01	3.9	5.85
9	M29	Y	01	022	5.85	7.8
10	M29	Y	022	04	7.8	9.75
11	M40C	Y	024	02	0	1.844
12	M40C	Y	02	023	1.844	3.688
13	M40C	Y	023	023	3.688	5.532
14	M40C	Y	023	02	5.532	7.376
15	M40C	Y	02	024	7.376	9.22
16	M27	Y	039	034	0	2.438
17	M27	Y	034	031	2.438	4.875
18	M27	Y	031	031	4.875	7.313
19	M27	Y	031	031	7.313	9.75
20	M29	Y	039	034	0	2.438
21	M29	Y	034	031	2.438	4.875
22	M29	Y	031	031	4.875	7.313
23	M29	Y	031	031	7.313	9.75
24	M27	Y	012	032	0	1.95
25	M27	Y	032	034	1.95	3.9
26	M27	Y	034	017	3.9	5.85
27	M27	Y	017	006	5.85	7.8
28	M27	Y	006	006	7.8	9.75

Member Distributed Loads (BLC 6 : BLC 2 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/f	Start Location[ft,%]	End Location[ft,%]
29	M28	Y	083	045	0	1.95
30	M28	Y	045	021	1.95	3.9
31	M28	Y	021	032	3.9	5.85
32	M28	Y	032	045	5.85	7.8
33	M28	Y	045	04	7.8	9.75
34	M39A	Y	024	02	0	1.844
35	M39A	Y	02	023	1.844	3.688
36	M39A	Y	023	023	3.688	5.532
37	M39A	Y	023	02	5.532	7.376
38	M39A	Y	02	024	7.376	9.22
39	M42C	Y	025	021	0	1.913
40	M42C	Y	021	024	1.913	3.826
41	M42C	Y	024	024	3.826	5.738
42	M42C	Y	024	021	5.738	7.651
43	M42C	Y	021	025	7.651	9.564

Member Distributed Loads (BLC 7 : BLC 4 Transient Area Loads)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/f	Start Location[ft,%]	End Location[ft,%]
1	M26	Х	.041	.104	0	1.95
2	M26	Х	.104	.111	1.95	3.9
3	M26	X	.111	.055	3.9	5.85
4	M26	X	.055	.021	5.85	7.8
5	M26	Х	.021	.018	7.8	9.75
6	M28	X	.13	.071	0	1.95
7	M28	Х	.071	.033	1.95	3.9
8	M28	X	.033	.05	3.9	5.85
9	M28	Х	.05	.07	5.85	7.8
10	M28	Х	.07	.062	7.8	9.75
11	M42C	Х	.076	.062	0	1.913
12	M42C	Х	.062	.072	1.913	3.826
13	M42C	X	.072	.072	3.826	5.738
14	M42C	X	.072	.062	5.738	7.651
15	M42C	X	.062	.076	7.651	9.564
16	M27	X	.039	.034	0	2.438
17	M27	Х	.034	.031	2.438	4.875
18	M27	X	.031	.031	4.875	7.313
19	M27	X	.031	.031	7.313	9.75
20	M29	X	.039	.034	0	2.438
21	M29	X	.034	.031	2.438	4.875
22	M29	X	.031	.031	4.875	7.313
23	M29	Х	.031	.031	7.313	9.75

Member Distributed Loads (BLC 8 : BLC 5 Transient Area Loads)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/f	Start Location[ft,%]	End Location[ft,%]
1	M27	Z	.037	.096	0	1.95
2	M27	Z	.096	.102	1.95	3.9
3	M27	Z	.102	.05	3.9	5.85
4	M27	Z	.05	.019	5.85	7.8
5	M27	Z	.019	.017	7.8	9.75
6	M28	Z	.119	.065	0	1.95
7	M28	Z	.065	.031	1.95	3.9

Member Distributed Loads (BLC 8 : BLC 5 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/f	Start Location[ft,%]	End Location[ft,%]
8	M28	Z	.031	.046	3.9	5.85
9	M28	Z	.046	.065	5.85	7.8
10	M28	Z	.065	.057	7.8	9.75
11	M39A	Z	.073	.059	0	1.844
12	M39A	Z	.059	.069	1.844	3.688
13	M39A	Z	.069	.069	3.688	5.532
14	M39A	Z	.069	.059	5.532	7.376
15	M39A	Z	.059	.073	7.376	9.22
16	M26	Z	.012	.032	0	1.95
17	M26	Z	.032	.034	1.95	3.9
18	M26	Z	.034	.017	3.9	5.85
19	M26	Z	.017	.006	5.85	7.8
20	M26	Z	.006	.006	7.8	9.75
21	M29	Z	.019	.022	0	1.95
22	M29	Z	.022	.015	1.95	3.9
23	M29	Z	.015	.01	3.9	5.85
24	M29	Z	.01	.022	5.85	7.8
25	M29	Z	.022	.04	7.8	9.75
26	M40C	Z	.024	.02	0	1.844
27	M40C	Z	.02	.023	1.844	3.688
28	M40C	Z	.023	.023	3.688	5.532
29	M40C	Z	.023	.02	5.532	7.376
30	M40C	Z	.02	.024	7.376	9.22

Basic Load Cases

	BLC Description	Category	X Gra	Y Gra	Z Gra	Joint	Point	Distrib	.Area(Surfa
1	Dead: Self	DL								
2	Dead: Enclosure	DL							4	
3	Dead: Equipment	DL					8			
4	Wind X-Dir. (29psf)	WLX							2	
5	Wind Z-Dir.(29psf)	WLZ							2	
6	BLC 2 Transient Area Loads	None						43		
7	BLC 4 Transient Area Loads	None						23		
8	BLC 5 Transient Area Loads	None						30		

Load Combinations

	Description	Solve	P	SB.	. Fa	BLC	Fact	BLC	Fa	BLC	Fa	BLC	Fa	в	Fa	в	Fa	в	Fa	В	Fa	в	Fa
1	IBC 16-8	Yes	Y	DI	1																		
2	IBC 16-9	Yes	Υ	DI	_ 1	LL	1	LLS	1														
3	IBC 16-10 (b)	Yes	Υ	DI	_ 1	SL	1	SLN	1														
4	IBC 16-11 (b)	Yes	Y	DI	_ 1	LL	.75	LLS	.75	SL	.75	SLN	.75										
5	IBC 16-12 (a) (a)	Yes	Υ	DI	_ 1	WLX	.6																
6	IBC 16-12 (a) (b)	Yes	Y	DI	1	WLZ	.6																
7	IBC 16-12 (a) (c)	Yes	Y	DI	1	WLX	6																
8	IBC 16-12 (a) (d)	Yes	Y	DI	_ 1	WLZ	6																
9	IBC 16-13 (a) (a)	Yes	Y	DI	_ 1	WLX	.45	LL	.75	LLS	.75												
10	IBC 16-13 (a) (b)	Yes	Y	DI	1	WLZ	.45	LL	.75	LLS	.75												
11	IBC 16-13 (a) (c)	Yes	Υ	DI	_ 1	WLX	45	LL	.75	LLS	.75												
12	IBC 16-13 (a) (d)	Yes	Y	DI	_ 1	WLZ	45	LL	.75	LLS	.75												

Load Combinations (Continued)

	Description	Solve	P	SB.	Fa.	. BLC	Fact	.BLC	Fa	BLC	Fa	BLC	Fa	В	Fa	в	Fa	В	Fa	в	Fa	В	Fa
13	IBC 16-13 (b) (a)	Yes	Y	D	L 1	WLX	.45	LL	.75	LLS	.75	SL	.75	S	.75								
14	IBC 16-13 (b) (b)	Yes	Y	D	L 1	WLZ	.45	LL	.75	LLS	.75	SL	.75	S	.75								
15	IBC 16-13 (b) (c)	Yes	Y	D	L 1	WLX	45	LL	.75	LLS	.75	SL	.75	S	.75								
16	IBC 16-13 (b) (d)	Yes	Y	D	L 1	WLZ	45	LL	.75	LLS	.75	SL	.75	S	.75								
17	IBC 16-15 (a)	Yes	Y	D	L .6	WLX	.6																
18	IBC 16-15 (b)	Yes	Y	D	L .6	WLZ	.6																
19	IBC 16-15 (c)	Yes	Y	D	L.6	WLX	6																
20	IBC 16-15 (d)	Yes	Y	D	L .6	WLZ	6																

Envelope Joint Reactions

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N1	max	.274	19	1.731	8	.257	8	0	20	0	20	.712	5
2		min	298	5	-1.124	18	251	18	0	1	0	1	677	19
3	N2	max	.192	19	1.178	7	.19	8	0	20	0	20	.513	5
4		min	206	5	616	17	186	18	0	1	0	1	496	19
5	N3	max	.272	19	2.072	7	.255	20	0	20	0	20	.669	5
6		min	289	5	-1.074	17	25	6	0	1	0	1	658	19
7	N6	max	.302	7	1.937	8	.267	20	0	20	0	20	.698	5
8		min	27	17	956	18	288	6	0	1	0	1	687	7
9	N7	max	.206	7	1.18	5	.191	20	0	20	0	20	.508	5
10		min	191	17	615	19	196	6	0	1	0	1	499	7
11	N8	max	.286	19	1.799	5	.25	8	0	20	0	20	.669	5
12		min	277	5	-1.232	19	239	18	0	1	0	1	658	19
13	Totals:	max	1.525	19	2.661	16	1.404	20						
14		min	-1.525	5	1.597	17	-1.404	6						

Envelope Joint Displacements

	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC	Y Rotatio	LC	Z Rotatio	LC
1	N1	max	0	20	0	20	0	20	0	20	0	20	0	20
2		min	0	1	0	1	0	1	0	1	0	1	0	1
3	N2	max	0	20	0	20	0	20	0	20	0	20	0	20
4		min	0	1	0	1	0	1	0	1	0	1	0	1
5	N3	max	0	20	0	20	0	20	0	20	0	20	0	20
6		min	0	1	0	1	0	1	0	1	0	1	0	1
7	N4	max	0	5	0	17	0	18	1.107e-04	7	7.579e-05	5	5.975e-04	19
8		min	0	19	002	7	0	8	-6.174e-05	17	-7.003e-05	19	-6.287e-04	5
9	N5	max	0	5	.001	17	0	6	9.785e-05	17	5.966e-05	19	5.81e-04	19
10		min	0	19	003	7	0	20	-1.944e-04	7	-6.386e-05	5	-5.901e-04	5
11	N6	max	0	20	0	20	0	20	0	20	0	20	0	20
12		min	0	1	0	1	0	1	0	1	0	1	0	1
13	N7	max	0	20	0	20	0	20	0	20	0	20	0	20
14		min	0	1	0	1	0	1	0	1	0	1	0	1
15	N8	max	0	20	0	20	0	20	0	20	0	20	0	20
16		min	0	1	0	1	0	1	0	1	0	1	0	1
17	N9	max	0	17	0	19	0	6	1.362e-04	5	6.973e-05	17	6.062e-04	7
18		min	0	7	002	5	0	20	-4.663e-05	19	-7.554e-05	7	-6.157e-04	5
19	N10	max	0	5	.002	19	0	18	1.118e-04	19	6.407e-05	7	5.808e-04	19
20		min	0	19	002	5	0	8	-1.706e-04	5	-5.983e-05	17	-5.902e-04	5
21	N11	max	.097	5	.001	17	.068	18	7.623e-04	18	1.13e-04	6	2.133e-04	7

RISA-3D Version 17.0.0 [J:\...\...\Backup Documentation\Rev (1)\Risa 3D\Antenna Frame.r3d] Page 9

Feb 23, 2021 9:40 AM Checked By:_

Envelope Joint Displacements (Continued)

	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC	Y Rotatio LC	Z Rotatio	LC
22		min	093	19	003	7	071	8	-3.691e-03	8	-1.092e-04 20	-1.7e-04	17
23	N12	max	.091	5	.002	17	.068	18	3.413e-03	7	1.114e-04 6	4.036e-04	7
24		min	09	19	004	7	071	8	1.515e-04	17	-1.115e-04 20	-2.362e-04	17
25	N13	max	.097	5	.001	19	.066	18	1.183e-03	18	8.851e-05 5	1.542e-04	19
26		min	093	19	003	5	069	8	-3.929e-03	8	-6.484e-05 19	-2.377e-04	5
27	N14	max	.091	5	.003	19	.066	18	3.138e-03	5	1.014e-04 5	2.687e-04	19
28		min	09	19	004	5	069	8	-1.531e-06	19	-7.168e-05 19	-3.482e-04	5
29	N19	max	.095	5	0	20	.067	18	1.055e-04	18	1.256e-04 20	5.586e-03	7
30		min	092	19	0	6	07	8	-1.236e-04	8	-2.135e-04 6	-5.682e-03	5
31	N20	max	.521	17	0	20	.501	18	4.549e-03	18	1.256e-04 20	2.295e-03	7
32		min	542	7	001	6	626	8	-6.133e-03	8	-2.135e-04 6	-1.917e-03	17
33	N21	max	.331	5	0	20	.187	18	3.841e-03	18	1.256e-04 20	4.288e-03	7
34		min	328	7	001	6	212	8	-4.805e-03	8	-2.135e-04 6	-4.139e-03	17
35	N22	max	.328	5	.088	8	.187	18	3.915e-03	18	1.256e-04 20	4.288e-03	7
36		min	326	7	075	18	212	8	-4.68e-03	8	-2.135e-04 6	-4.139e-03	17
37	N23	max	.335	5	.071	18	.187	18	3.735e-03	18	1.256e-04 20	4.288e-03	7
38		min	329	7	095	8	212	8	-4.98e-03	8	-2.135e-04 6	-4.139e-03	17
39	N24	max	.43	5	0	20	.31	18	4.309e-03	18	1.256e-04 20	2.98e-03	7
40		min	435	7	001	6	371	8	-5.706e-03	8	-2.135e-04 6	-2.681e-03	17
41	N25	max	.427	5	.105	8	.31	18	4.383e-03	18	1.256e-04 20	2.98e-03	7
42		min	434	7	084	18	371	8	-5.582e-03	8	-2.135e-04 6	-2.681e-03	17
43	N26	max	.434	5	.079	18	.31	18	4.203e-03	18	1.256e-04 20	2.98e-03	7
44		min	436	7	112	8	371	8	-5.882e-03	8	-2.135e-04 6	-2.681e-03	17
45	N27	max	0	5	.002	17	0	6	5.884e-05	17	3.563e-05 19	5.312e-04	19
46		min	0	19	003	7	0	20	-1.174e-04	7	-3.816e-05 5	-5.396e-04	5
47	N32	max	.091	5	.009	19	.065	18	4.696e-03	5	1.696e-03 5	2.91e-03	19
48		min	09	19	014	5	069	8	-1.868e-03	19	-1.652e-03 19	-3.777e-03	5
49	N33	max	.097	5	.006	18	.065	18	1.494e-03	18	1.618e-03 19	2.561e-03	19
50		min	093	19	011	8	069	8	-4.105e-03	8	-1.881e-03 5	-3.491e-03	5
51	N34	max	.092	5	.008	17	.071	18	5.372e-03	7	1.488e-03 17	4.123e-03	7
52		min	09	19	017	7	074	8	-1.483e-03	17	-1.963e-03 7	-2.673e-03	17
53	N35	max	.097	5	.006	17	.071	18	1.19e-03	17	1.837e-03 7	3.612e-03	7
54		min	093	19	009	7	074	8	-4.276e-03	7	-1.648e-03 17	-2.466e-03	17
55	N36	max	.133	5	.07	18	.065	18	3.901e-03	18	5.758e-04 7	2.345e-03	19
56		min	127	19	148	8	069	8	-7.043e-03	8	-1.873e-04 17	-3.315e-03	5
57	N37	max	.132	5	.037	18	.072	18	2.273e-03	18	1.628e-04 19	3.297e-03	7
58		min	127	19	123	8	074	8	-5.735e-03	8	-6.117e-04 5	-2.338e-03	17
59	N38	max	.127	17	.056	19	.065	18	4.434e-03	5	2.5e-04 17	3.126e-03	19
60		min	131	7	14	5	069	8	-1.321e-03	19	-1.003e-03 7	-3.953e-03	5
61	N39	max	.126	17	.043	17	.071	18	5.95e-03	6	7.594e-04 5	4.439e-03	7
62		min	131	7	164	7	074	8	-1.086e-03	20	-4.026e-04 19	-2.8e-03	17
63	N40	max	499	5	.079	18	.629	18	2.241e-03	18	9.959e-04 17	3.2e-03	8
64		min	- 465	19	- 157	8	- 949	8	-2.871e-03	8	-1.823e-03 7	-7.323e-04	18
65	N41	max	499	5	.036	18	.397	6	1.199e-03	6	7.59e-04 17	2.774e-03	5
66		min	466	19	128	8	331	20	-7.987e-04	20	-2.023e-03 7	-2.249e-03	19
67	N42	max	.542	17	.056	19	.629	18	2.517e-03	18	6.962e-04 20	2.163e-03	18
68		min	614	7	145	5	949	8	-3.007e-03	8	-1.626e-03 6	-3.448e-03	8
69	N43	max	.542	17	.047	17	.397	6	1.965e-03	6	5.612e-04 17	1.283e-03	5
70		min	614	7	176	7	33	20	-1.395e-03	20	-1.849e-03 7	-6.262e-04	19
71	N44	max	.542	17	.008	20	.5	18	2.188e-03	6	8.796e-03 8	2.928e-03	7
72		min	614	7	115	6	626	8	-2.133e-03	8	-3.477e-03 18	-2.355e-03	17
73	N45	max	.521	17	.05	19	.629	18	1.825e-03	6	6.178e-04 17	1.067e-03	5
										`	1 11		

RISA-3D Version 17.0.0 [J:\...\...\Backup Documentation\Rev (1)\Risa 3D\Antenna Frame.r3d] Page 10

Envelope Joint Displacements (Continued)

	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC	Y Rotatio L	_C	Z Rotatio	LC
74		min	542	7	132	5	949	8	-1.358e-03	20	-2.096e-03	7	-4.668e-04	19
75	N46	max	.499	5	.06	18	.5	18	1.667e-03	18	8.795e-03	8	1.941e-03	7
76		min	465	19	147	8	626	8	-1.788e-03	8	-3.474e-03 1	18	-1.726e-03	17
77	N47	max	.521	17	.044	17	.397	6	2.041e-03	6	6.983e-04 1	17	2.029e-03	5
78		min	542	7	154	7	331	20	-1.564e-03	20	-1.979e-03	7	-1.438e-03	19
79	N48	max	.28	5	0	20	.145	18	3.598e-03	18	1.256e-04 2	20	4.97e-03	7
80		min	274	7	001	6	159	8	-4.321e-03	8	-2.135e-04	6	-4.913e-03	5
81	N49	max	.338	5	.073	18	.186	18	3.031e-03	18	8.433e-04 1	19	6.203e-03	19
82		min	298	19	152	8	23	8	-3.513e-03	8	-2.261e-03	5	-6.438e-03	5
83	N50	max	.338	5	.037	18	.227	6	3.475e-03	6	1.224e-03 2	20	6.253e-03	19
84		min	298	19	127	8	205	20	-2.193e-03	20	-2.36e-03	6	-7.4e-03	5
85	N51	max	.328	17	.057	19	.186	18	2.923e-03	18	1.528e-03 1	17	7.072e-03	7
86		min	349	7	144	5	229	8	-4.258e-03	8	-2.756e-03	7	-6.94e-03	5
87	N52	max	.328	17	.044	17	.227	6	2.347e-03	18	1.862e-03 1	17	7.523e-03	7
88		min	348	7	168	7	204	20	-2.555e-03	8	-2.301e-03	7	-7.361e-03	17
89	N53	max	.328	17	028	20	.145	18	2.635e-03	18	9.277e-04	7	2.842e-03	7
90		min	348	7	074	6	159	8	-3.407e-03	8	-3.224e-05 1	17	-2.303e-03	17
91	N54	max	.28	5	.026	19	.186	18	1.402e-03	6	1.15e-03 2	20	6.626e-03	7
92		min	275	7	114	5	23	8	-8.348e-04	20	-1.589e-03	6	-6.689e-03	5
93	N55	max	.338	5	.02	18	.145	18	3.2e-03	6	9.091e-04	7	1.862e-03	7
94		min	298	19	106	8	159	8	-2.784e-03	20	-1.347e-05 1	17	-1.702e-03	17
95	N56	max	.28	5	.012	17	.227	6	1.346e-03	6	3.059e-04 2	20	6.853e-03	19
96		min	275	7	133	7	205	20	-9.395e-04	20	-1.007e-03	6	-7.379e-03	5
97	N57	max	.012	5	.001	17	.006	6	1.559e-03	18	7.579e-05	5	2.265e-03	19
98		min	012	19	002	7	006	8	-1.596e-03	8	-7.062e-05 1	19	-2.379e-03	5
99	N54A	max	.091	5	0	20	.067	18	2.728e-03	6	9.34e-05	5	2.785e-04	7
100		min	09	19	001	6	07	8	6.053e-04	20	-7.911e-05 1	19	-2.408e-04	17
101	N55A	max	.097	5	0	18	.067	18	9.723e-04	18	8.287e-05	6	1.51e-04	19
102		min	093	19	001	8	07	8	-3.81e-03	8	-7.25e-05 2	20	-1.75e-04	5
103	N52A	max	.064	5	.001	19	.043	18	3.07e-03	18	8.353e-05	5	4.152e-03	19
104		min	061	19	003	5	044	8	-3.28e-03	8	-6.738e-05 1	19	-4.414e-03	5

Envelope AISC 15th(360-16): ASD Steel Code Checks

	Member	Shape	Code Check	Lo	LC	SheLo	Dir	Pnc/	Pnt/oMny	Mnz	Cb	Eqn
1	M7	PIPE_2.5X	.326	0	7	.035 0		5 41.891	44.012 3.091	3.091	1.6	.H1
2	M8	PIPE_2.5X	.326	0	5	.036 0		5 41.891	44.012 3.091	3.091	1.6	.H1
3	M9	PIPE_2.5X	.324	0	5	.032.604		8 41.891	44.012 3.091	3.091	1.6	.H1
4	M10	PIPE_2.5X	.335	0	5	.036 1		5 41.891	44.012 3.091	3.091	1.6	.H1
5	M17	PIPE_3.5X	.342	0	8	.033 0		6 47.967	71.886 7.108	7.108	1.3	.H1
6	M26	L5X5X6	.911	0	7	.060.508	z	7 3.762	21.856 1.371	2.089	3.1	.H2-1
7	M27	L5X5X6	.662	0	5	.055 0	у	5 3.762	21.856 1.371	2.089	2.7	.H2-1
8	M28	L5X5X6	.819	9.75	7	.0597.82	z	7 3.762	21.856 1.371	2.089	3.06	H2-1
9	M29	L5X5X6	.954	0	5	.065.711	у	5 3.762	21.856 1.007	2.089	3.3	.H2-1
10	M30	L4X4X4	.027	3	8	.006 3	z	8 26.599	41.605 <mark>2.088</mark>	4.007	1.3	.H2-1
11	M31	L4X4X4	.167	0	8	.023 3	у	8 24.609	41.605 2.088	4.362	2.18	H2-1
12	M32	L4X4X4	.028	3	8	.007 0	z	8 26.599	41.605 2.088	4.007	1.3	.H2-1
13	M33	L4X4X4	.075	0	6	.006 0	z	5 24.609	41.605 2.088	4.009	1.4	.H2-1
14	M34	L4X4X4	.001	0	8	.003 0	У	7 31.579	41.605 2.088	4.295	1	H2-1
15	M35	L4X4X4	.002	0	5	.024 0	ý	8 31.894	41.605 2.088	4.36	1	H2-1
16	M36	L4X4X4	.001	0	8	.002 0	ý	7 31.579	41.605 2.088	4.295	1	H2-1

Envelope AISC 15th(360-16): ASD Steel Code Checks (Continued)

	Member	Shape	Code Check	Lo	LC	SheLo	Dir	Pnc/Pnt/oMnyMnz	Cb Eqn
17	M37	L4X4X4	.002	0	19	.023 0	у	3 31.89 41.605 2.088 4.359	1 H2-1
18	M38	PIPE 2.0	.038	1	16	.010 1		18.95621.377 1.245 1.245 1	.9H1
19	M39	PIPE 2.0	.038	1	16	.010 1		18.95621.377 1.245 1.245 1	.9H1
20	M40	L4X4X4	.723	1	7	.104 0	У	7 24.60941.605 2.088 3.839 1	.2H2-1
21	M41	L4X4X4	.259	6	5	.022 0	ý	<mark>5</mark> 26.59941.605 2.088 4.444 2	.2H2-1
22	M42	L4X4X4	.727	1	8	.095 4	у	5 24.60941.605 2.088 4.163 1	.7H2-1
23	M43	L4X4X4	.259	0	5	.031 0	y	7 26.59941.605 2.088 4.441 2	.2H2-1
24	M36A	L4X4X4	.259	3	6	.016 3	y	3 26.59941.605 2.088 4.007 1	.3H2-1
25	M37A	L4X4X4	.328	0	8	.021 0	z	3 24.60941.605 2.088 4.362 2	.1H2-1
26	M38B	L4X4X4	.265	3	6	.016 0	у	3 26.59941.605 2.088 4.007 1	.3H2-1
27	M39B	L4X4X4	.214	3	7	.014 3	y	7 24.60941.605 2.088 3.861 1	.23 H2-1
28	M40A	L4X4X4	.010	0	20	.013 0	У	5 31.57941.605 2.088 4.295	1 H2-1
29	M41A	L4X4X4	.007	0	19	.018 0	y	3 31.89441.605 2.088 4.36	1 H2-1
30	M42A	L4X4X4	.011	0	6	.015 0	y	5 31.57941.605 2.088 4.295	1 H2-1
31	M43A	L4X4X4	.008	0	17	.017 0	ý	3 31.89 41.605 2.088 4.359	1 H2-1
32	M40B	W8X31	.049	4	8	.0394.25	y	3 249 273 35.12475.767 1	.2H1
33	M41B	W8X31	.046	1	6	.054 0	ý	7 249 273 35.12475.7671	.2H1
34	M42B	W8X31	.019	1	8	.087 1	z	5 267 273 <u>35.12475.767</u> 1	.3H1
35	M39A	L4X4X6	.736	4	20	.034 0	z	3 2.058 17.126 .813 .987 1	.1H2-1
36	M40C	L4X4X6	.564	4	5	.013 0	У	3 2.058 17.126 .772 .987 1	.1H2-1
37	M41C	L4X4X6	.788	0	6	.001 0	ý	6 1.539 17.126 .813 .068	1 H2-1
38	M42C	L4X4X6	.783	4	7	.039 0	z	5 1.912 17.126 .813 .962 1	.1H2-1

NORTH EAST > North East > New England > New England West > DANBURY 10 CT - A

Gadasu, Shiva - shiva.gadasu@verizonwireless.com - 11/13/2020 12:1:51

Project Details	Location Information
Carrier Aggregation: false	
:hi Tdi	Ŭ
eCIP-0: false	
Project Name: 850 ADD	Sw
FUZE Project ID: 16244659	Tor
Designed Sector Carrier 4G: 6	F
Designed Sector Carrier 5G: N/A	
Additional Sector Carrier 4G: N/A	Stree
Additional Sector Carrier 5G: N/A	
SiteTraker Project Id:	
FP Solution Type & Tech Type: MODIFICATION;46_850,56_L-Sub6-Prep	
RFDS Project Scope: LSub6 add, RRH swap	
Rev0_11.13.2020 : Initial Design	
Suffix: Rev0 11.13.2020	

C:10 ID. ED.	0000
SITE IU: 5U	808U
E-NodeB ID: 06	557,0659557
PSLC: 46	984
Switch Name: Wa	lingford 2, Wallingford 2
Tower Owner:	
Tower Type: Ro	oftop
Site Type: M/	CRO
Street Address: 10	Federal Road
City: Da	hbury
State: CT	
Zip Code: 06	11
County: Fai	field
Latitude: 41	429758 / 41° 25' 47.1288" N
Longitude: -73	.415831 / 73° 24' 56.9916" W
Latitude: 41 Longitude: -73	429758 / 41° 25' 47.1288" N .415831 / 73° 24' 56.9916" W

Antenna Summary

Addeo																				
200	850	1900	AWS	AWS3	28 GHz	31 GHz	39 GHz	CBRS L	AA L-	-Sub6 Ma	ke	Model	Centerline	Tip Height	Azimuth	RET	4xRx	Inst. Type	Quantity	
										F	BD	nL-Sub6 Antenna	31.5	33.6	25(0001) 220(0002)	false	false	PHYSICAL	2	
Remov	bə																			
700	850	1900	AWS	AW53	28 GHz	31 GHz	39 GHz	CBRS L	AA L-	-Sub6 Ma	ke	Model	Centerline	Tip Height	Azimuth	RET	4xRx	Inst. Type	Quantity	
												ANDREW	HBXX- 6513DS-VTM	32.5	25(01) 220(02)	false	false	PHYSICAL	7	
Retain	ed																			
200	850	1900	AWS	AW53	28 GHz	31 GHz	39 GHz C	CBRS L	AA L-	-Sub6 Ma	ke	Model	Centerline	Tip Height	Azimuth	RET	4xRx	Inst. Type	Quantity	
		LTE	LTE							<	NDREW	HBXX-6513DS-VTM	32.5	33.6	25(01) 220(02)	false	false	PHYSICAL	2	
											Added: 2	Removed: 2	Retain	ed: 2						

Equipment Summary

Added																	
Equipment Type	Location	700	850	1900	AWS	AWS3 2	28 GHz 31	GHz 39	GHz CBI	RS LAA	L-Sub	6 Make	Model	Cable Length	Cable Size	Install Type	Quantity
Diplexer	Tower			LTE	LTE							Commscope	SDX1926Q-43			PHYSICAL	2
RRU	Tower			LTE	Ë							Samsung	B2/B66A RRH-BR049 (RFV01U-D1A)			PHYSICAL	Я
RRU	Tower											Samsung	VZS01			PHYSICAL	2
Removed																	
Equipment Type	Location	700	850	1900	AWS	AWS3 2	28 GHz 31	GHz 39	GHz CBI	RS LAA	L-Subt	6 Make	Model	Cable Length	Cable Size	Install Type	Quantity
RRU	Tower			LTE								Nokia	UHFA B25 RRH 4x30			PHYSICAL	2
RRU	Tower				Ë							Nokia	UHIC B4 RRH 2x60-4R			PHYSICAL	2
Retained																	
Equipment Type	Location	700	850	1900	AWS	AW53 2	28 GHz 31	GHz 39	GHz CBI	RS LAA	L-Sub	6 Make	Model	Cable Length	Cable Size	Install Type	Quantity
OVP Box	Tower															PHYSICAL	Т
Hybrid Cable	Tower															PHYSICAL	1

nfo
The state of the s
9
Ň
Se

5450 D1 D2 D3 D	Sector Azimuth Cell / ENode B ID	D1 35	D2	50
Cut Refer to	Azimuth Cell / ENode B ID	25		**
Cut (The of D) (603)	Cell / ENode B ID	<i>1</i> .7	220	25
Matern Model HOSC 61355 c/H HOSC 61355 c/H HOSC 61355 c/H HOSC 61355 c/H Monton Montal Mont		065557	065557	065557
(Monther) (Monther) <t< td=""><td>Antenna Model HB</td><td>HBXX-6513DS-VTM</td><td>HBXX-6513DS-VTM</td><td>HBXX-6513DS</td></t<>	Antenna Model HB	HBXX-6513DS-VTM	HBXX-6513DS-VTM	HBXX-6513DS
Monto Membro M	Antenna Make	ANDREW	ANDREW	ANDREW
Medication 0 0 Relation 0	Antenna Centerline(Ft)	32.5	32.5	32 5
Interfaction a <t< td=""><td>Mechanical Down-Tilt/Der)</td><td>C:37</td><td>0.17</td><td>C.7C</td></t<>	Mechanical Down-Tilt/Der)	C:37	0.17	C.7C
The found is a constrained in the function of the funct	Electrical Down-Tilt	9 4	9 4	4
Registery (we) (2.3)	Tip Height	33.6	33.6	33.6
Title Second Second </td <td>Regulatory Power</td> <td>47.39</td> <td>47.39</td> <td>62.48</td>	Regulatory Power	47.39	47.39	62.48
Number of TA, R1, Loot Notation Notation State State RU Mode UFA, L23 (RH Acid) UFA, L23 (RH Acid) UFA, L23 (RH Acid) UFA, L23 (RH Acid) CUEA Number of TA, R1, Labor Monta 195931 3.4.4.4.3. Decition 7.01.4.0.0 Number of TA, R1, Labor 195932 195931 195931 7.02.4.0.0 0.00.4.0.0 State 2010 0.03.7 0.00	TMA Make			
Number of the indication in the indication	TMA Model			
Number of T, R, Lucki Urk A23 Bit Acid Urk A23 Bit Acid Extract Acid Extract Acid Extract Acid	RU Make	Nokia	Nokia	Samsund
Number of x (k loss) 2.4 2.4 2.4 2.4 Transitie id metter id x(0, 1/p) 159/90 159/90 159/90 104/90 COULD I x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) CONSTIC x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) Constit x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) Constit x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) Constit x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) Constit x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) Constit x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) Constit x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) Constit x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) x(0, 1/p) Constore x(1/p) x(1/p)	RRU Model UH	IHFA B25 RRH 4x30	UHFA B25 RRH 4x30	B2/B66A RRH-BR049 (I
Transmitter Servet Se	Number of Tx. Rx Lines	2.4	2.4	4.4
Tanantier ld manualite ld ACUL,AI 195790 195791 20002 COND, John ACUL,AI ACUL	Position	-		
Succe ATOL, Joi AT	Transmitter Id	1967909	1967911	7842999
CONTRAT ODD Contract (Contract) Contract (Contract) <thcontract (contract)<="" th=""> Contract (Contrac</thcontract>	Source	ATOLL_API	ATOLL_API	ATOLLAF
Setty D1 D2 D3 D3 Cut / Action 0537 05337 065337 065337 065337 065337 065337 065337 065337 065337 065337 065337 065337 065337 0655337 065337 065337 065337 065337 0655337 0655337 0655337 0655333 0655333 0655333 0655333 0655333 0655333 0655333 0655333 0655333 0655333 0655333 0655333 0655333 0655533 0655533 065533<	DO MHZ I TE		0000	
amout 33	OUTING LIE	2	0000	5
Cell Flore Bill 0:557 (512) 0:556 (512) 0:556	Sector	10	20	30
Number Number<		22	220	C2 C2
Antenna Mate Procession Procession Antenna Mate Procession Antenna Mate Procession Antenna Mate Procession Antenna Mate				
Attenta Male AUOREV A				
Memona Contrille(e) 213 233 233 233 Replanted Down"IR (Peg) 0 <td< td=""><td>Antenna Make</td><td>ANDREW</td><td>ANDREW</td><td>ANDREV</td></td<>	Antenna Make	ANDREW	ANDREW	ANDREV
Mechanical Down-Tilk (bos) 0 0 0 Electrical Down-Tilk (bos) 4 33.6 33.6 33.6 Regulatory Power 101.33 101.33 101.33 30.6 33.6 TAA Nakia TAA Nakia 101.33 101.33 101.33 50.6 33.6 TAA Nakia TAA Nakia 101.33 101.33 101.33 50.6 33.6 TAA Nakia Number of TA, Kulter 2.4 2.4 34.2 34.2 Regulatory Power 2.4 2.4 2.4 33.6 33.6 33.6 Regulatory Power 2.4 2.4 2.4 34.2 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 35.6 35.3 35.6 35.3 35.6 35.3 35.6 35.3 35.6 35.3 35.6 35.3 35.6 35.5 37.6 37.6 37.6 37.6 37.6 37.6 35.6 37.6	Antenna Centerline(Ft)	32.5	32.5	32.5
Electrical Down-Title a a a a Regulatory Power 113.33 3.6 3.6 3.36 66.65 3.36 66.65 3.36 66.65 3.36 66.65 3.36 66.65 3.36 66.65 3.36 3.36 66.65 3.36 56.65 3.36 56.65 3.36 56.65 3.36 56.65 3.36 56.65 3.36 56.65 3.36 56.65 3.36 56.65 3.36 56.65 3.36 56.65 3.36 56.65 3.4 3.36 56.66 3.46 3.36 56.66 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.47 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.56 3.56 3.56 3.56 3.56 3.56	Mechanical Down-Tilt(Dea.)	0	0	0
Thy felget 33.5	Electrical Down-Tilt	4	4	4
Regulatory Power TMA ridat 101.33 101.33 101.33 6.693 TMA ridat TMA ridat TMA ridat TMA ridat E.266.5484 6.93 TMA ridat UNICATE Notate Notate 10.33 6.93 RUN Mode UHIC BI RH1.2x60-4R UHIC BI RH1.2x60-4R UHIC BI RH1.2x60-4R 2.4 2	Tip Height	33.6	33.6	33.6
TMA Note Unit And et al. Notion Base Notion <	Regulatory Power	101.33	101.33	66.95
Triangle Not Model Not Model Not Model Semantic RU Mode UHIC 64 REH 266-4R UHIC 64 REH 266-4R E206664 REHEB0491 Number of Tx, kines 2,4 2,4 2,4 Position 2,4 2,4 2,4 Position 2,4 2,4 2,4 Position 2,67310 1,67310 1,67310 Source ATOL , API 1,67310 1,67310 Source Source ATOL , API ATOL , API Annuch 1,67310 1,67310 1,67310 Annuch 1,67310 1,67312 2,3 Annuch Source ATOL , API ATOL , API Annuch 1,67310 1,67312 2,3 Annuch Source 1,67312 2,3 Annuch Annuch ATOL , API ATOL , API Antenna Ordel Antenna Ordel 1,67314 1,6604 Antenna Ordel Antenna Ordel 1,74014 1,74014 Antena Ordel Antenna Ordel	TMA Make			
RU Make Notai Notai Notai Notai B2666A RH-BR043 RU Make UHC BA RH 2x60-R UHC BA RH 2x60-R UHC BA RH 2x60-R Destend 24 26	TMA Model			
RU Model UHC BA RH 2x60-4R UHC BA RH 2x60-4R UHC BA RH 2x60-4R Desition 2,4 <	RRU Make	Nokia	Nokia	Samsung
Number of Tx, Rx, Lines 2,4,4 2,4,	RRU Model UHI	HC B4 RRH 2x60-4R	UHIC B4 RRH 2x60-4R	B2/B66A RRH-BR049 (
Doction Doction Transitier (d 1967910 196701 196101 <th< td=""><td>Number of Tx, Rx Lines</td><td>2,4</td><td>2,4</td><td>2,4</td></th<>	Number of Tx, Rx Lines	2,4	2,4	2,4
Transmitter id 1967910 1967910 1967910 78701, API 7701, API <t< td=""><td>Position</td><td></td><td></td><td></td></t<>	Position			
Source ATOLL, API ATOLL, API<	Transmitter id	1967910	1967912	7843000
Subfe Sector 0001 Sector Sector 35 Tablitutt Cell / Elude B ID 0659557 Anterna Model 0659557 0559557 Anterna Model 0659557 0559557 Anterna Mice Anterna Model 0539557 Anterna Mice Anterna Mice 053957 Anterna Mice Anterna Mice 05355 Anterna Mice Anterna Mice 05355 Anterna Mice Anterna Mice 05355 Anterna Mice 0511104 0531104 Anterna Cartrille 05100 0 0 Anterna Cartrian Model 05100 0 0 RRU Make RRU Make 05100 0 0 Antorian 050464 0 0 0 Antorian 05000 0 0 0 0 Antorian 05000 0 0 0 0 0 0 0 0 0 0 0 0 0	Source	ATOLL_API	ATOLL_API	ATOLLA
Sector Sector 0001 Animuth Cell / Floode B ID 0005 Cell / Floode B ID Anterna Model 0055537 Anterna Model 0055537 0555357 Anterna Acie 0055537 0555357 Anterna Acie Anterna Acie 0055537 Anterna Centerline(F1) Anterna Centerline(F2) 0.55537 Metana Centerline(F2) Metana Centerline(F2) 0.55537 Metana Centerline(F2) Metana Centerline(F2) 0.55537 Metana Centerline(F2) Metana Centerline(F2) 0.55537 Metanical Down-Tilit(Deg.) Electrical Down-Tilit(Deg.) 3.15 Metanical Down-Tilit Regulatory Power 3.15 3.35 Tip Holdit To Holdit 3.35 Make Tri Make 3.35 RU Make RU Make 3.310.4 RU Make Tri Make 3.310.4 Mutber of TS, RU Make Number of TS, RU Make 3.340.1 Mutber of TS, RU Make Position 4.4 Mutber of TS, RU Make Mutber of TS, RU Make 4	Sub6			
Azimuth 23 Cell / Elvode B ID Cell / Elvode B ID Antenna Mode 0559537 Antenna Mode 0559537 Antenna Mode 0559537 Antenna Kale 0559537 Antenna Kale 0559537 Antenna Kale 0559537 Antenna Kale 05354 Antenna Kale 0 Betchfich Down-Tilt 0 Betchfich Down-Tilt 0 Tip Height 7315 Rou Make 7336 TMA Model TMA Model Ruu Make TMA Model Ruu Model 78401 Number of Tx, Rx Lines 951104 Position 78401 Tommetrid 78401	Sector			1000
Cell / ENode B ID 0659557 Arterna Model Arterna Model Arterna Model 0659567 Arterna Model 7BD Arterna Make 7BD Arterna Make 33.6 Tip Height 33.6 RSU Make 73.11.04 TMA Model 27.11.04 RSU Make 78.01 Number of TX, RX Lines 53.6 Number of TX, RX Lines 9.05.10 Antoin 7.84.01 Antoin 7.84.01 Antoin 7.84.01 Antoin 7.84.01	Azimuth			25
Arterna Model InLSUD6 Arte Arterna Model Arterna Model Arterna Model Arterna Model Arterna Serterline(F) 315 Mechanical Down-Titt 315 Benchical Down-Titt 315 Titt Medic 336 Tit Make 336 Tit Make 336 Tit Model 336 RRU Make 336 RRU Make 5msun	Cell / ENode B ID			0659557
TBD Anterna Make Anterna Senterline[F1 Actana Control (F2) Mechanical Down-Titt(Beg.) Bectrical Down-Titt(Beg.) Electrical Down-Titt(Beg.) Statual Statual Make TM Make RRU Make RRU Make RRU Make RRU Make RRU Make Samsun Valuation Number of RRU Make Dosition Transmitter id Transmitter id Transmitter id	Antenna Model			nL-Sub6 Ante
Antenna Make Antenna Make Antenna Centerina Make 315.0 Antenna Centerina Down-Tilt 315.0 Bectrical Down-Tilt (Deg.) 0 Electrical Down-Tilt Pegit 336.0 Regulatory ower 336.0 TMA Make 2711.04 TMA Make 2711.04 RNU Model 784.0 Number of TX, RX Lines V2501.1 Position 784.00 Converse 2001.1				
Mechanical Down-Tilt Recretion First 0 Bectrical Down-Tilt Recretion First 336 Tip Height 336 Regulatory Power 336 TMA Mode 2711.04 TMA Mode 2711.04 TMA Mode 7336 TMA Mode 7336 Runber of TX, RX Undel VZS01 Number of TX, RX Undel 936 Samuration 784.01 Concrete 784.01 Accord 784.01 Accord 784.01 Accord 784.01 Accord 784.01 Accord 784.01	Antenna Make			181
The frequency of the sector of	Mechanical Down-Tilf(Dect.)			
Tip Height Regulatory Power A Make TM Make TM Model RRU Make RRU Make RRU Make RRU Make RRU Make RRU Make RRU Make RRU Make RRU Make RRU Make A 30301 A 30301	Electrical Down-Tilt			5 m
Regulatory Power 271104 TMA Make 271104 TMA Model TMA Model TMA Model Samsury RaU Model V2501 RaU Model V2501 Number of TX, Rx Lines V2501 Position Position Tammitter id 784301 Curron 784301	Tib Height			33.6
TMA Male TWA Model RRU Male RRU Male RRU Model Number of Tx, Rx Lines Position Transmitter Id Cancer of ATOI 1 A	Regulatory Dower			A0 1 17 5
TMA Model RRU Make RRU Make RRU Model VZSOII Valuation RX, RX, Innes Number of TX, RX, Innes Number of TX, RX, Innes Number of TX, RX, Innes Arrori A RADUT	TMA Make			
RRU Make Samsung RRU Make VZSO1 RRU Model VZSO1 Number of Tx, Rx Lines VZSO1 Position Tansmitter id Transmitter id ZATO11	TMA Model			
RaU Model Number of TX, Rx Lines Position Transmitter Id Restrict ATTOIL 10 ATTOIL 10	ARMI INSTRUCTION			Sameling
Number of Tx, fix Lines Position Tassnifter Id ATOI 1 A	RRII Model			LUSZA
Tansmitter Id ATOI 1 A ATOI 2	Number of TV RV lines			2.2
Tanton Tamitter ld ATOIL A	NUTIBEL OF LA, NA LITES			***
	Transmitter Id			7843018
	Control			IV LICTA

SGLS	02	220	065557	HBXX-6513DS-VTM	ANDREW	32.5	0	4	33.6	62.48	Samsung	B2/B66A RRH-BR049 (RFV01U-D1A)	4,4	7843001	ATOLL_API	5GLS	02	220	065557	HBXX-6513DS-VTM	ANDREW	32.5	0	4	33.6	66.95	Samsung	B2/B66A RRH-BR049 (RFV01U-D1A)	2,4	7843002	ATOLL_API	5GLS	0002	220	0659557	nL-Sub6 Antenna	TBD	31.5	0	m	33.6	2711.04	Samsung	VZS01	4,4
	01	25	065557	HBXX-6513DS-VTM	ANDREW	32.5	0	4	33.6	62.48	Samsung	B2/B66A RRH-BR049 (RFV01U-D1A)	4,4	7842999	ATOLL API		01	25	065557	HBXX-6513DS-VTM	ANDREW	32.5	0	4	33.6	66.95	Samsung	B2/B66A RRH-BR049 (RFV01U-D1A)	2,4	7843000	ATOLLAPI		0001	25	0659557	nL-Sub6 Antenna	TBD	31.5	0	m	33.6	2711.04	Samsung	VZS01	4,4

7843019 ATOLL_API

ŝ
2
2
CD
-
2
d
- 65
~
-
S
5
9
100
-
-
10
\mathbf{U}

	39 GHz	
	31 GHz	
	28 GHz	
	2100	
	1900	
	850	
Callsigns	00/	
Regulatory	Power	o data available.
Beamwidth		2
Gain		
Mechanical	Tilt	
Electrical	H.	
Azimuth (TN)		
Tip Height		
na Mode Ant CL	Height AGL	
Antenna Make Anten		
Sector		

Approved for Insvc	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Action	added	added	added	added	added												
Status	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active
POPs/Sq Mi	1467.18	1467.18	1467.18	1467,18	1467.18	1467.18	1467.18	1467.18	1467.18	1467.18	1467.18	1467.18	1467.18	1467.18	1467.18	1467.18	1467.18
Threshold (W)	1640	1640	1640	1640	1640	1000	400										
Regulatory Power	62,48	62.48	62.48	66.95	66.95												
Freq Range 4	000000.	000000.	000-000	000-000	000000.	000'-000'	890.000-	000-000	000-000	000-000	000-000	000-000	000-000	000-000	.000000	.000000	000-000
Freq Range 3	000-000	000000	000000	000-000	000000.	000'-000'	845.000- 846.500	000-000	000-000	000-000	.000-000	.000000	000-000	.000000	.000-000	.000000	000-000
req lange 2	1980.000- 1990.000	1975.000- 1980.000	1970.000- 1975.000	2110.000- 2120.000	2120.000- 2130.000	776.000- 787.000	869.000- 880.000	31075.000- 31225.000	31225.000- 31300.000	000-000	28050.000- 28350.000	000-000	000-000	000-000	000-000	000-000	000-000
Freq Range 1	1900.000- 1910.000	1895.000- 1900.000	1890.000- 1895.000	1710.000- 1720.000	1720.000- 1730.000	746.000- 757.000	824,000- 835.000	29100.000- 29250.000	31000.000- 31075.000	27600.000- 27925.000	27925.000- 27950.000	37600.000- 37700.000	38500.000- 38600.000	37700.000- 37800.000	37800.000- 37900.000	37900.000- 38000.000	38000.000- 38100.000
Total MHZ	20.000	10.000	10.000	20,000	20.000	22.000	25.000	300.000	150.000	325.000	325.000	100.000	100.000	100.000	100.000	100.000	100.000
Wholly Owned	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Licensee Name	AirTouch Cellular	Cellco Partnership	Cellco Partnership	Cellco Partnership	Celico Partnership	Cellco Partnership	Cellco Partnership	Cellco Partnership	Cellco Partnership	Cellco Partnership	Cellco Partnership	Straight Path Spectrum, LLC	Straight Path Spectrum,				
County	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield
State	c1	ر ا	cı	сı	cı	ط	c	L	c	с	cT	đ	t	cl	d	t	cl
Block	U	U	L.	۲	ε	U	٩	A	8	11	7	IM	MIO	M2	M3	M4	M5
Market Vumber	BTA321	BTA321	BTA321	CMA042	BEA010	REA001	CMA042	BTA321	BTA321	BTA321	BTA321	PEA001	PEA001	PEA001	PEA001	PEA001	PEA001
adio h	CW	CW	cw	AW	aw	MU	C C	ΓD	D	nn	nn	nn	nn	nn	n	nn	n
Market F	New York, NY	New York, NY	New York, NY	Bridgeport- Stamford- Norwalk- Danbury, CT	New York- No. New JerLong Island, NY- NJ-CT-PA- MA-	Northeast	Bridgeport- Stamford- Norwalk- Danbury, CT	New York, NY	New York, NY								
Callsign	KNLF644	WQBT539	KNLH264	WQGB279	WQGA906	WQJQ689	KNKA363	WPOH942	WPLM397	WRBA702	WRBA703	WRHD 609	WRHD610	WRHD611	WRHD 612	WRHD613	WRHD614

Callsigns

Proprietary and Confidential. Not for disclosure outside of Verizon.

Page 6 of 7

Yes	Yes	Yes	Yes	°Z	Yes
Active	Active	Active	Active	Active	Active
1467.18	1467.18	1467.18	1467.18	1467.18	1467.18
000,.000,	000-000	000-000	000,.000.	000,000,	000-000
.000-000	000-000'	.000-000	000'-000'	000'-000'	000-000
.000000	000-000	000-000	000'-000'	000'-000'	000'-000'
38100.000- 38200.000	38200.000- 38300.000	38300.000- 38400.000	38400.000- 38500.000	38600.000- 38700.000	37800.000- 38200.000
100.000	100.000	100.000	100.000	100.000	400.000
Yes	Yes	Yes	Yes	Yes	Yes
Straight Path Spectrum, LLC	Cellco Partnership				
Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield
c	ct	ct	ct	ct	cT
M6	M7	M8	6W	ľN	S2
PEA001	PEA001	PEA001	PEA001	PEA001	PEA001
n	nn	n	nn	n	nn
New Yark, NY	New York, NY	New York, NY	New York, NY	New York, NY	New Yark, NY
WRHD615	WRHD616	WRHD617	WRHD618	WRHD619	WRDG500

I

April 28, 2021

Mr. Andrew Leone Verizon Wireless 20 Alexander Drive Wallingford, CT 06492

Re: Letter ~ Antenna Model Clarification Site Ref: Danbury 10 109 Federal Road Danbury, CT 06811

Centek Project No. 20150.07

Dear Mr. Leone,

This letter is intended to clarify the equipment depicted in the Centek structural analysis and CDs for the proposed Verizon Wireless equipment upgrade at the above referenced site. One of the proposed antennas is referenced by multiple interchangeable names "Licensed Sub-6", "L-Sub6", "VZS01" and "MT6407-77A" per RF information provided by Verizon, and refers to the 64T64RMMU antenna as manufactured by Samsung Electronics.

For the purpose of the analysis a worst case design loading was used based on the following dimensions and weight per direction from Verizon.

Dimensions: 35.1" x 16.1" x 5.5"

Weight: ± 87 lbs

If the dimensions of weight of the final antenna exceed the above the analysis will need to be rerun.

Respectfully Submitted by DE SONAL Timothy J. Lynn, Structural Engineer

ATTACHMENT 5

Danbury,CT

109 FEDERAL RD

Location 109 FEDERAL RD Mblu L08//30// Acct# Owner 109 FEDERAL ROAD LLC Assessment \$1,254,800 Appraisal \$1,792,500 PID 5697 **Building Count** 1 Current Value

Appraisal

Valuation Year	Improvements	Land	Total
2020	\$811,200	\$981,300	\$1,792,500

Assessment

Valuation Year	Improvements	Land	Total
2020	\$567,900	\$686,900	\$1,254,800

Owner of Record

Owner	109 FEDERAL ROAD LLC		
Co-Owner			
Address	2 STONY HILL RD SUITE 201		
	BETHEL, CT 06801		
Sale Price	\$1,375,000		
Book & Pag	e 1425/ 348		
Sale Date	03/22/2002		
Instrument	00		

Ownership History

Ownership History

Owner	Sale Price	Book & Page	Instrument	Sale Date
109 FEDERAL ROAD LLC	\$1,375,000	1425/ 348	00	03/22/2002
DIMASI PETER ESTATE	\$0	1405/ 937	01	12/28/2001
DIMASI PETER	\$0	0341/0337		04/03/1959

Building Information	
Building 1 : Section 1	
Year Built:	1966
Living Area:	10,455
Replacement Cost:	\$1,104,654
Building Percent Good:	72
Replacement Cost	
Less Depreciation:	\$795,400

Building Attributes

Field	Description
STYLE	Strip Stores
MODEL	Commercial
Grade	Good+
Stories:	2
Occupancy	5
Exterior Wall 1	Stucco on Wood
Exterior Wall 2	
Roof Structure	Flat
Roof Cover	Tar & Gravel
Interior Wall 1	Drywall/Sheet
Interior Wall 2	
Interior Floor 1	Carpet
Interior Floor 2	Concr-Finished
Heating Fuel	Oil
Heating Type	Forced Air-Duc
АС Туре	Central
Bldg Use	Commercial MDL-94
Total Rooms	
Total Bedrms	00
Total Baths	0
1st Floor Use:	200
Heat/AC	HEAT/AC SPLIT
Frame Type	WOOD FRAME
Baths/Plumbing	AVERAGE
Ceiling/Wall	SUS-CEIL & WL
Rooms/Prtns	AVERAGE

Wall Height	12	
% Comn Wall	0	
Building Photo		

Building Layout

Building Sub-Areas (sq ft) Legend

Code	Description	Gross Area	Living Area
BAS	First Floor	6,470	6,470
SPA	Service Production Area	3,336	2,168
FUS	Finished Upper Story	1,155	1,097
AOF	Office, (Average)	720	720
CAN	Canopy	655	0
FGR	Garage	240	0
		12,576	10,455

Extra Features

Extra Features Legend

No Data for Extra Features

Land	
Land Use	
Use Code	200
Description	Commercial MDL-94
Zone	CG20
Neighborhood	8000
Alt Land Appr	No
Category	
Land Line Valuation	on
Size (Acres)	0.93
Frontage	0
Depth	0
Assessed Value	e \$686,900
Appraised Value	e \$981,300

Outbuildings

Outbuildings Legend

Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
PAV1	Paving-Asphalt			25000 S.F.	\$15,800	1

Valuation History

Appraisal					
Valuation Year	Improvements	Land	Total		
2019	\$811,200	\$981,300	\$1,792,500		
2018	\$811,200	\$981,300	\$1,792,500		
2017	\$811,200	\$981,300	\$1,792,500		

Assessment					
Valuation Year	Improvements	Land	Total		
2019	\$567,900	\$686,900	\$1,254,800		
2018	\$567,900	\$686,900	\$1,254,800		
2017	\$567,900	\$686,900	\$1,254,800		

(c) 2021 Vision Government Solutions, Inc. All rights reserved.

closecloseclose

ATTACHMENT 6

PS Form **3665**, January 2017 (Page <u>1</u> of <u>1</u>) PSN 7530-17-000-5549