

Together with Nextel

10 Industrial Ave, Suite 3 Mahwah, NJ 07430 Phone: (908)447-4716 Kyle Richers Real Estate Consultant

February 20th, 2015

Hand Delivered

Ms. Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

CC to Property Owner Cromwell Fire District 1 West Street, Cromwell, CT 06416

RE: Sprint Spectrum L.P. notice of intent to modify an existing telecommunications facility located at 179 Shunpike Road, Cromwell, CT 06416. Known to Sprint Spectrum L.P. as site CT60XC931.

Dear Ms. Bachman:

In order to accommodate technological changes, implement Code Division Multiple Access ("CDMA") and/or Long Term Evolution ("LTE") capabilities, and enhance system performance in the state of Connecticut, Sprint Spectrum L.P. plans to modify the equipment configurations at many of its existing cell sites. Please accept this letter and attachments as notification, pursuant to R.C.S.A. Section 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2). In compliance with R.C.S.A. Section 16-50j-73, a copy of this letter and its attachments is being sent to the chief elected official of the municipality in which affected cell site is located.

CDMA employs Spread-Spectrum technology and special coding scheme to allow multiple users to be multiplexed over the same physical channel.

LTE is a new high-performance air interface for cellular mobile communications. It is designed to increase the capacity and speed of mobile telephone networks.

Attached is a summary of the planned modifications, including power density calculations reflecting the change in Sprint's operations at the site. Also included is documentation of the structural sufficiency of the tower to accommodate the revised antenna configuration.

The changes to the facility do not constitute modification as defined Connecticut General Statues ("C.G.S.") Section 16-50i(d) because the general physical characteristics of the facility will not be significantly changed or altered. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for the R.C.S.A. Section 16-50j-72(b)(2).

- 1. The height of the overall structure will not be affected.
- 2. The proposed changes will not extend the site boundaries. There will be no effect on the site compound.
- 3. The proposed changes will not increase the noise level at the existing facility by 6 decibels or more.
- 4. Radio Frequency power density may increase due to the use of one or more CDMA transmissions. Moreover, LTE will utilize additional radio frequencies newly licensed by the FCC for cellular mobile communications. However, the changes will not increase the calculated "worst case" power density for the combined operations at the site to a level at or above the applicable standard for uncontrolled environments as calculated for a mixed frequency site.

For the foregoing reasons Sprint Spectrum L.P. respectfully submits that the proposed changes at the referenced site constitute exempt modifications under R.C.S.A. Section 16-50j-72(b)(2).

Please feel free to call me at (908)-447-4716 or email krichers@transcendwireless.com with questions concerning this matter. Thank you for your consideration.

Sincerely,

Kyle Richers Real Estate Consultant

RADIO FREQUENCY FCC REGULATORY COMPLIANCE MAXIMUM PERMISSIBLE EXPOSURE (MPE) ASSESSMENT

Sprint Existing Facility

Site ID: CT60XC931

Cromwell- Rt. 372

179 Shunpike Road Cromwell, CT 06416

February 19, 2015

EBI Project Number: 62151104

February 19, 2015

Sprint Attn: RF Engineering Manager 1 International Boulevard, Suite 800 Mahwah, NJ 07495

Re: Radio Frequency Maximum Permissible Exposure (MPE) Assessment for Site: CT60XC931 - Cromwell- Rt. 372

Site Total: 91.01% - MPE% in full compliance

EBI Consulting was directed to analyze the proposed upgrades to the existing Sprint facility located at **179 Shunpike Road, Cromwell, CT**, for the purpose of determining whether the radio frequency (RF) exposure levels from the proposed Sprint equipment upgrades on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm2 calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limit for the cellular band (850 MHz Band) is approximately 567 μ W/cm², and the general population exposure limit for the 1900 MHz and 2500 MHz bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over their exposure and can exercise control over the potential for exposure and can exercise control over the potentia

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed upgrades to the existing Sprint Wireless antenna facility located at **179 Shunpike Road, Cromwell, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. All calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all emissions were calculated using the following assumptions:

- 1) 4 channels in the 1900 MHz Band were considered for each sector of the proposed installation.
- 2) 1 channel in the 800 MHz Band was considered for each sector of the proposed installation.
- 3) 2 channels in the 2500 MHz Band were considered for each sector of the proposed installation.
- 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.

- 5) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 6) The antennas used in this modeling are the RFS APXVSPP18-C-A20 and the RFS APXV9TM14-C-I20. This is based on feedback from the carrier with regards to anticipated antenna selection. The RFS APXVSPP18-C-A20 has a 15.9 dBd gain value at its main lobe at 1900 MHz and 13.4 dBd at its main lobe for 850 MHz. The RFS APXV9TM14-C-I20 has a 15.9 dBd gain value at its main lobe at 2500 MHz. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antenna mounting height centerline for the proposed antennas is **170 feet** above ground level (AGL).
- 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculation were done with respect to uncontrolled / general public threshold limits

	Site ID	CT60XC	931 - Cromwell	- Rt. 372	1											
	Site Addresss		e Road, Cromwe													
	Site Type		elf Support Tow													
				-	-											
							Sector 1									
						Power										_
						Out Per			Antenna Gain							Power
Antenna			0 II T			Channel	Number of	•	(10 db	Antenna	analysis		Cable Loss		500	Density
	Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology	(Watts)	Channels	Power		Height (ft)	height	Cable Size	. ,	Loss (dB)	ERP	Percentage
1a	RFS RFS	APXVSPP18-C-A20 APXVSPP18-C-A20	RRH RRH	1900 MHz 850 MHz	CDMA / LTE	20	4	80 20	5.9 3.4	170	164 164	1/2 " 1/2 "	0.5	0	277.39 39.00	0.37%
1a					CDMA / LTE	20		-		170		1/2 "	0.5	-	39.00 138.69	
1B	RFS	APXVTMM14-C-120	RRH	2500 MHz	CDMA / LTE	20	2	40	5.9	170	164		0.5	0 Density Value:	0.79%	0.33%
												Sector to	Juar Power L	ensity value.	0.79%	
							Sector 2									
						_										
						Power										
						Out Per		.	Antenna Gain							Power
Antenna	Antonno Mako	Antenna Model	Dadia Tuna	Frequency Band	Tashnalagu	Channel (Matte)	Number of	•	(10 db	Antenna	analysis		Cable Loss		CDD.	Density
	Antenna Make RFS	Antenna Model APXVSPP18-C-A20	Radio Type	Frequency Band 1900 MHz	Technology CDMA / LTE	(Watts) 20	Channels	Power 80	reduction) 5.9	Height (ft) 170	height 164	Cable Size 1/2 "	(dB) 0.5	Loss (dB) 0	ERP 277.39	Percentage
2a 2a	RFS	APXVSPP18-C-A20 APXVSPP18-C-A20	RRH RRH	850 MHz	CDMA / LTE	20	4	20	3.4	170	164	1/2	0.5	0	39.00	0.37%
28 28	RFS	APXVSPP18-C-A20 APXVTMM14-C-120	RRH	2500 MHz	CDMA / LTE	20	2	40	5.9	170	164	1/2	0.5	0	138.69	0.33%
20	IN S	AFXV11010114-C-120	MMT	2300 10112	CDIVIA / LIL	20	2	40	5.5	170	104	,		Density Value:	0.79%	0.3376
												5000010		vensity vulue.	0.7570	
							Sector 3									
						Power										
						Out Per			Antenna Gain							Power
Antenna						Channel	Number of	Composite	(10 db	Antenna	analysis		Cable Loss	Additional		Density
Number	Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology	(Watts)	Channels	Power	reduction)	Height (ft)	height	Cable Size	(dB)	Loss (dB)	ERP	Percentage
3a	RFS	APXVSPP18-C-A20	RRH	1900 MHz	CDMA / LTE	20	4	80	5.9	170	164	1/2 "	0.5	0	277.39	0.37%
3a	RFS	APXVSPP18-C-A20	RRH	850 MHz	CDMA / LTE	20	1	20	3.4	170	164	1/2 "	0.5	0	39.00	0.09%
3B	RFS	APXVTMM14-C-120	RRH	2500 MHz	CDMA / LTE	20	2	40	5.9	170	164	1/2 "	0.5	0	138.69	0.33%
												Sector to	otal Power D	Density Value:	0.79%	

Site C	Composite MPE %
Carrier	MPE %
Sprint	2.37%
AT&T	24.31%
T-Mobile	2.85%
Cromwell Police	2.13%
Cromwell Fire	2.18%
Cromwell Fire Alarm	3.63%
Clearwire	1.04%
Verizon Wireless	52.50%
Total Site MPE %	91.01%

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general public Maximum Permissible Exposure (MPE) to radio frequency energy.

The anticipated Maximum Composite contributions from the Sprint facility are 2.37% (0.79% from sector 1, 0.79% from sector 2 and 0.79% from sector 3) of the allowable FCC established general public limit considering all three sectors simultaneously sampled at the ground level.

The anticipated composite MPE value for this site assuming all carriers present is **91.01%** of the allowable FCC established general public limit sampled at 6 feet above ground level. This total composite site value is based upon MPE values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan RF Engineering Director

EBI Consulting 21 B Street Burlington, MA 01803

DETAILED STRUCTURAL ANALYSIS AND REINFORCEMENT OF AN EXISTING 170' SELF SUPPORTING LATTICE TOWER AND FOUNDATION FOR PROPOSED ANTENNA ARRANGEMENTS

Site ID:	(Sprint) (T-Mobile)	CT60XC931 CT11059C
Site Name:	(Sprint)	Cromwell - Route 372
Site Address:	179 Shunpil Cromwell, C	

prepared for

Transcend Wireless 10 Industrial Ave. Suite 3 Mahwah, NJ. 07430

···**T**··Mobile·

EBI Consulting 21 B Street Burlington, MA 01803

prepared by

URS CORPORATION 500 ENTERPRISE DRIVE, SUITE 3B ROCKY HILL, CT 06067 TEL. 860-529-8882

> 36931260.00000 TWS-027 Rev. 1

September 23, 2014

TABLE OF CONTENTS

- **1. EXECUTIVE SUMMARY**
- 2. INTRODUCTION
- 3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS
- 4. FINDINGS AND EVALUATION
- 5. CONCLUSIONS AND RECOMMENDATIONS
- 6. DRAWINGS AND DATA
 - TOWER REINFORCEMENT DRAWING SK-1
 - TNX TOWER INPUT / OUTPUT SUMMARY
 - TNX TOWER FEEDLINE DISTRIBUTION
 - TNX TOWER FEEDLINE PLAN
 - TNX TOWER DETAILED OUTPUT
 - ANCHOR BOLT ANALYSIS
 - FOUNDATION ANALYSIS

1. EXECUTIVE SUMMARY

This report summarizes the structural analysis of the existing 170' self supporting lattice tower located at 179 Shunpike Road in Cromwell, Connecticut. The analysis was conducted in accordance with the 2005 Connecticut State Building Code which requires a three second gust wind speed of 100 mph which converts to an 80 mph fastest mile per 2003 IBC (Table 1609.3.1) and the TIA/EIA-222-F standard for a wind velocity of 85 mph (fastest mile). The wind speed from the Connecticut State Building Code governs the design at 85 mph (fastest mile) and 74 mph (fastest mile) concurrent with $\frac{1}{2}$ " ice. The antenna loading considered in the analysis consists of all existing and proposed antennas, transmission lines, and ancillary items as outlined in the Introduction Section of this report.

The proposed Sprint and T-Mobile antenna modifications are listed below:

Proposed Antenna and Mount	Carrier	Antenna Center Elevation
Install: (3) RFS APXV9TM14-ALU-I20 Panel Antennas (3) TD-RRH8x20-25 RRH Units (1) 1 1/4" Hybrid Cable (27) 8' Jumper Cables (3) 8' AISG Cables	Sprint (Proposed)	@ 170'
<u>Install:</u> (3) Commscope LNX-6515DS-VTM Panel Antennas (3) Ericsson RRUS_11 RRH Unit (3) 6' Antenna Pipe Mount	T-Mobile (Proposed)	@ 125'

The results of an initial analysis indicated the tower structure did not have sufficient capacity to support the proposed loadings without modification. The required modifications are shown in SK-1. Once the modifications are performed, the tower, anchor bolts, and foundation are considered structurally adequate with the wind loading classification specified above and all the existing and proposed antenna loading. No installation of new antennas or equipment shall occur until the modifications have been completed.

This analysis is based on:

- 1) The tower structure's theoretical capacity, not including any assessment of the condition of the tower.
- Tower geometry, structural member sizes, and Foundation information taken from a tower report prepared by PiROD Inc., ENG. File No. A-116398, dated November 18, 1999.
- 3) Foundation modification drawings prepared by Tectonic, dated May 5, 2004.
- 4) Structural analysis and reinforcement performed by URS Corp. on behalf of Sprint and T-Mobile, project number 36922436, signed and sealed on September 9, 2013.
- 5) Structural analysis performed by URS Corp. on behalf of Verizon Wireless, project number VZ5-178 / 36917427, signed and sealed on August 12, 2014.
- 6) Structural analysis performed by URS Corp., on behalf of Sprint, project number TWS-027 / 36931260, signed and sealed on August 22, 2014.
- 7) T-Mobile RFDS dated July 17, 2014.
- 8) Previous structural analysis performed by URS Corporation, on behalf of T-Mobile, project number EBI-002 / 36931289, signed and sealed August 29, 2014.
- 9) Proposed additional antenna and mount configuration as specified in Section 2 of this report.

1. EXECUTIVE SUMMARY (continued)

This report is only valid as per the assumptions and data utilized in this report for antenna inventory, mounts and associated cables. The user of this report shall field verify the assumption of the antenna and mount configuration as well as the physical condition of the tower and connections. Notify the engineer in writing immediately if any of the information in this report is found to be other than specified.

If you should have any questions, please call.

Sincerely,

URS Corporation

CENSEL OF SOONAL ENGINE Richard A. Sambor, P.E. Senior Structural Engineer RAS/mcd

2. INTRODUCTION

The subject tower is located at 179 Shunpike Road in Cromwell, Connecticut. The structure is a 170' self supporting lattice tower designed and manufactured by PiROD Inc.

The current inventory with proposed modification is summarized in the table below:

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
(1) Tx Rx 101-90-08 antenna	Town (existing)	15' Mast pipe on 9 Arm Halo Mount	183'	(1) 7/8"
(1) 8 Bay Dipole (3" dia x 20')	Town (existing)	9 Arm Halo Mount	178'	(1) 7/8"
(1) 2 ½" dia x 20' Whip	Town (existing)	9 Arm Halo Mount	178'	(1) 1 1/2"
(3) 2 ½" dia x 15' Whip	Town (existing)	9 Arm Halo Mount	175'	(3) 7/8"
1 ½" dia x 12' Whip	Town (existing)	9 Arm Halo Mount	174'	(1) 7/8"
(3) RFS APXV9TM14- ALU-I20 Panel Antennas (3) TD-RRH8x20-25 RRH Units	Sprint (Proposed)	See Mount Below	170'	(1) 1 1/4" Hybrid Cable (27) 8' Jumper Cables (3) 8' AISG Cables
 (3) RFS APXVSPP18- C-A20 Antennas (3) 1900 MHz RRH Units (3) 800 MHz RRH Units (3) 800 MHz Filters 	Sprint (existing)	9 Arm Halo Mount	170'	(3) RFS HB114-1-0804-MSF Hybrid Cables
(1) Radiowaves HPD2- 4.7 w/ Radome (1) Cambium PTP49600 Antenna	CPD (existing)	9 Arm Halo Mount	168'	(1) WB3176A – Copper Clad Outdoor Cable (2) 4' long 1/2" Jumper Cables
(1) SU-RA-HP-2.4 (1' x 1' Antenna)	Town (existing)	9 Arm Halo Mount	168'	(1) 3/8"
(3) APXV18-206517S	Unknown (existing)	Leg Mount	159'-6"	(6) 1 5/8"
(1) Sinclair SC420- HF1LDF Omni	CPD (existing)	Pipe mount	158'-6"	(1) 1 5/8" Low Density Foam Cable
(2) 3" dia x 20' Whip	Town (existing)	20' Platform	144'	(2) 7/8"
(1) 2 ½" x 20' Whip	Town (existing)	20' Platform	144'	(1) 1/2"
2" dia x 15' Whip	Town (existing)	20' Platform	141'	(1) 1/2"
(1) 1.5" dia x 10' Whip	Town (existing)	20' Platform	139'	(1) 1/2"
(1) 3.5" dia x 9' Whip	Town (existing)	20' Platform	138'-6"	
(3) Argus LLPX310R antennas(3) Samsung Remote Radio Heads U-RAS	Clearwire (existing)	20' Platform	134'	(6) CAT 5 cable

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
(3) Andrew VHLP2.5 dish (2.5' dia.) (1) Andrew VHLP2 dish (2' dia.) (Gamma Sector)	Clearwire (existing)	20' Platform	134'	(4) 1/2"
(3) Commscope LNX- 6515DS-VTM Panel Antennas (3) Ericsson RRUS_11 RRH Unit	T-Mobile (Proposed)	(3) Antenna Pipes attached with below	125'	See Below Cables
(6) Ericsson AIR21 B4A B2P Antennas (3) Twin PCS TMAs	T-Mobile (existing)	(3) Existing T-Frames	125'	(12) 1 5/8" (1) 1-5/8" Hybrid Cable
(6) Powerwave 7770 (12) TMA's (3) KMW AM-X-CD-16- 65-00T-RET (6) RRU (1) Surge Suppressor	AT&T (existing)	(3) T-Frames	115'	(12) 1 5/8" (3) Optic Fiber & (6) DC Cables (Located within 3" dia Flex Conduit)
 (1) HBX-6517DS- VTM_04DT_2110 Panel Antenna (Alpha Sector) (2) HBX-6517DS- VTM_02DT_2110 Panel Antennas (Beta & Gamma Sectors) (3) AWS RRH Units (1) DB-T1-6Z-8AB-0Z Distribution Box (1) LNX-6514DS- VTM_03DT_0850 Panel Antenna (Alpha Sector) (1) LNX-6514DS- VTM_04DT_0850 Panel Antenna (Beta Sector) (1) LNX-6514DS- VTM_05DT_0850 Panel Antenna (Beta Sector) (1) LNX-6514DS- VTM_05DT_0850 Panel Antenna (Beta Sector) (1) LNX-6514DS- VTM_05DT_0850 Panel Antenna (Gamma Sector) (2) SWCP 2x5514 antennas (Alpha & Gamma Sector) (1) BXA-70063-6CF-2 antenna (Beta Sector) (3) BXA-171063-12BF 2 antennas (6) FD9R6004/2C-3L Diplexers 	Verizon (existing)	(3) T-Frames (PiROD part #800093)	101'	(1) 1 5/8" F.O Cable (12) 1 5/8"
(1) 3" x 2" x 22" Panel (1) TMA	AT&T (existing)	Pipe Mount	87'	(2) CAT 5

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
(1) 3' Dish (1) TMA	AT&T (existing)	3' Stand-off	83'	(2) CAT 5
(1) 3" x 2" x 22" Panel (1) TMA	AT&T (existing)	3' Stand-off	80'	(2) CAT 5
(1) Camera	Unknown (existing)	Leg Mounted	30'	(2) 1/2" (estimated from photographs)
(1) 3' Yagi	Unknown (existing)	Leg Mounted	24'	(1) 1/2"

This structural analysis of the communications tower was performed by URS Corporation (URS) for Sprint and T-Mobile. The purpose of this analysis was to investigate the structural integrity of the reinforced tower with its existing and proposed antenna loads. This analysis was conducted to evaluate stress on the tower and the effect of forces to the foundation of the tower resulting from existing and proposed antenna arrangements.

3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS

The structural analysis was done in accordance with the Connecticut State Building Code, TIA/EIA-222-F - Structural Standard for Steel Antenna Towers and Antenna Supporting Structures, and the American Institute of Steel Construction (AISC) Manual of Steel Construction – Allowable Stress Design (ASD).

The analysis was conducted using TNX Tower 6.1.3.1. Two load conditions were evaluated as shown below which were compared to allowable stresses according to AISC and TIA/EIA.

Basic Wind Speed:

•	Middlesex County; v = 85 mph (fastest mile)	[Section 16 of TIA/EIA-222-F-1996]
•	Cromwell; v = 100mph (3 second gust) equivalent to 80mph (fastest mile)	[Appendix K, 2005 Connecticut State Building Code Supplement]

Loading Cases:

Load Condition 1 = 85 mph (fastest mile) Wind Load (without ice) + Tower Dead Load Load Condition 2 = 74 mph (fastest mile) Wind Load (with ice) + Ice Load + Tower Dead Load

Please note that wind pressure is a function of velocity squared. Under Load Condition 2, a 25 percent reduction in wind pressure is allowed by code to account for the unlikelihood of the full wind pressure and ice load occurring at the same time. The same results may be achieved by utilizing a lower wind pressure without taking the 25 percent reduction, as shown above.

The TIA/EIA standard permits a one-third increase in allowable stresses for towers and monopoles less than 700 feet tall. For the purposes of this analysis, in computing the load capacity the allowable stresses of the tower members were increased by one-third.

4. FINDINGS AND EVALUATION

The combined axial and bending stresses on the tower structure were evaluated to compare with the allowable stress in accordance with AISC. The results of an initial analysis indicated that the tower structure required modification. The required modifications are shown in SK-1 located in Section 6 of this report. This analysis indicated that once these modifications are performed, the tower, anchor bolts and foundation are considered structurally adequate with the wind load classification specified above and the proposed antenna loading. The table below summarizes the critical members for each tower component.

Component/ (Section No.)	Existing Component Size	Controlling Component/Elevation	Percent Capacity	Pass/Fail
Tower Leg (T5)	PiROD Truss Leg	Compression 90'-100'	92.4 %	Pass
Diagonal (T7)	L3x3x3/8	Compression 60'-80'	88.5 %	Pass
Top Girt (T1)	7/8" SR	Compression 150'-170'	9.5 %	Pass
Bottom Girt (T1)	7/8" SR	Compression 150'-170'	4.4 %	Pass
Mid Girt (T4)	L3x3x3/16	Compression 100'-120'	34.8 %	Pass
Bolt Checks		3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Tower Bolts	(1) 1" A325N Bolt / 140'	Member Bearing on Bolt	83.5 %	Pass
Anchor Bolts	(6) 1-1/4"	Tension	77.0 %	Pass

TABLE 1: Tower	[.] Component Stress v	s. Capacity Summary:
----------------	---------------------------------	----------------------

TABLE 2: Foundation Summary

Foundation	Component	Stress (% capacity/FOS)	Pass/Fail	Comments:
Previously Modified Drilled Concrete Caisson	Uplift	89.9 %/2.22	_	Min. F.O.S of 2.0 req'd per IBC 2003 Section 3108.4.2

5. CONCLUSIONS AND RECOMMENDATIONS

The results of an initial analysis indicated the tower structure did not have sufficient capacity to support the proposed loadings without modification. The required modifications are shown in SK-1. Once the modifications are performed, the tower, anchor bolts, and foundation are considered structurally adequate with the wind loading classification specified above and all the existing and proposed antenna loading. No installation of new antennas or equipment shall occur until the modification have been completed.

Limitations/Assumptions:

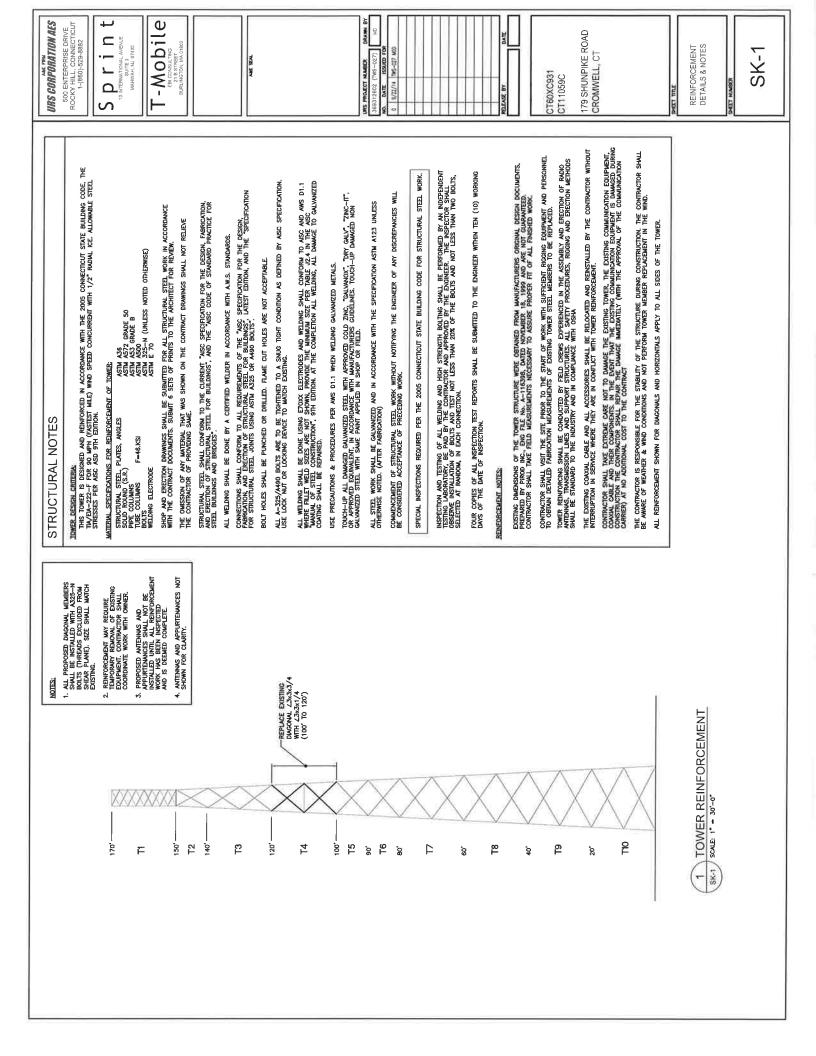
This report is based on the following:

- 1. Tower inventory as listed in this report.
- 2. Tower is properly installed and maintained.
- 3. All members are as specified in the original design documents and are in good condition.
- 4. All required members are in place.
- 5. All bolts are in place and are properly tightened.
- 6. Tower is in plumb condition.
- 7. All member protective coatings are in good condition.
- 8. All tower members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
- 9. Foundations were properly constructed to support original design loads as specified in the original design documents.
- 10. All coaxial cable is installed as specified in Section 6 of this report.

URS is not responsible for any changes/alterations completed prior to or hereafter in which URS is not or was not directly involved. Changes/alterations include but are not limited to:

- A. Adding antennas
- B. Removing/replacing antennas
- C. Adding coaxial cables

URS hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations, and conclusions are based upon information contained and set forth herein. If you are aware of any information which conflicts with that which is contained herein, or you are aware of any defects arising from original design, material, fabrication, or erection deficiencies, you should disregard this report and immediately contact URS. URS disclaims all liability for any representation, recommendation, or conclusion not expressly stated herein.


Ongoing and Periodic Inspection and Maintenance:

After the Contractor has successfully completed the installation and the work has been accepted, the owner will be responsible for the ongoing and periodic inspection and maintenance of the tower.

The owner shall refer to TIA/EIA-222-F for recommendations for maintenance and inspection. The frequency of the inspection and maintenance intervals is to be determined by the owner based upon actual site and environmental conditions. It is recommended that a complete and thorough inspection of the entire tower structural system be performed at least yearly and more frequently as conditions warrant. According to TIA/EIA-222-F section 14.1, Note 1: It is recommended that the structure be inspected after severe wind and/or ice storms or other extreme loading conditions.

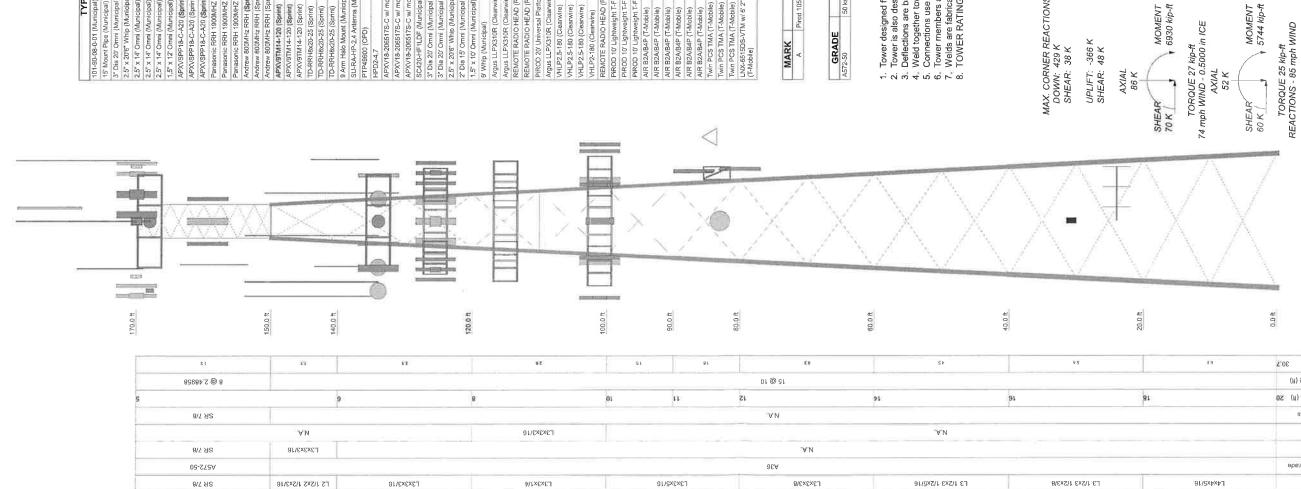
6. DRAWINGS AND DATA

TOWER REINFORCEMENT DRAWING SK-1

TNX TOWER INPUT/OUTPUT SUMMARY

01-90-08-0-01 (Municipal)	183	LNX-6515DS-VTM w/ 6' 2" sch 40 Pilpe Mount	125.5
unt Pip	179,75	(1-Mobile) LNX-6515DS-VTM w/ 6' 2" sch 40 Piine Morint	125.5
31 Dia 201 Ommi (Municipal) 2.5. x 2016. Whin (Municipal)	1/8	(T-Mobile)	
25" x 14" Omni (Municipal)	175	RRUS-11 (T-Mobile)	125,5
2,5" × 14' Omni (Municipal)	175	RRUS-11 (T-Mobile)	125.5
2,5" x 14' Omni (Municipal)	175	RRUS-11 (T-Mobile)	125.5
.5" x 12" Omni (Municipal) Novvebbla C. And Science	174		
APXVSPP18-C-A20 (Sprint)	170	7770 (ATT)	115
APXVSPP18-C-A20 (Sprint)	170	(TT70 (ATT)	115
² anasonic RRH 1900MHZ (Sprint)	170	(2) TMA (shielded) (ATT)	115
Panasonic RRH 1900MHZ (Sprint)	170	(2) TMA (shielded) (ATT)	115
Panasonic RRH 1900MHZ (Sprint)	170	(2) TMA (shielded) (ATT)	115
Andrew BOUMHZ RRH (Spine)	170	(2) TMA (shielded) (ATT)	115
Andrew BOOMHZ RRH (Sprint) Andrew BOOMHZ RRH (Sprint)	170	(2) TMA (snielded) (ATT)	115
aPXV9TM14-120 (Sprint)	170	PIROD 12' Lightweight T-Frame (ATT)	115
APXV9TM14-120 (Sprint)	170	PiROD 12' Lightweight T-Frame (ATT)	115
APXV9TM14-120 (Sprint)	170	PIROD 12' Lightweight T-Frame (ATT)	115
rD-RRH8x20-25 (Sprint)	170		211 145
TD-RRHBX20-25 (Sprint)	170	(2) REMOTE RADIO HEAD (RRH) (ATT)	115
LU-RKHØXZU-ZƏ (SPIIII) 2 Arm Hafa Marint (Miminiau)	1/0	Surge Suppressor (ATT)	115
a Anni Itako Mouni (Municipal) Si Le A-HP-3 A Antenna (Municipal)	160	AM-X-CD-16-65-00T-RET (6') (ATT)	115
	168	AM-X-CD-16-65-00T-RET (6') (ATT)	115
HPD2-4.7	168	AM-X-CD-16-65-00T-RET (6') (ATT)	115
APXV18-206517S-C w/ mounting hardware	159,5	(2) REMOTE RADIO HEAD (RRH) (ATT)	115
APXV18-206517S-C w/ mounting hardware	159.5	(2) REMOTE RADIO HEAD (RRH) (ATT)	115
APXV18-206517S-C w/ mounting hardware	159.5	RH_ZX4U-AVVS (VERZON - AVVS) RH 2X40-AVVS (Verizon - AVVS)	101
SC420-HF1LDF (Municipal)	158.5	BXA-171063-12BF (Verizon)	101
o ua zu umuri (iwunicipar) 3º Dia 20º Omni (Mimicipar)	144	SWCP 2x5514 (Verizon)	101
2.5" × 20'6" Whip (Municipal)	144	BXA-171063-12BF (Verizon)	101
2" Dia 15' Omni (Municipal)	141	BXA-171063-12BF (Verizon)	101
l 5" x 10' Omni (Municipal)	139	SWCP 2x5514 (Verizon)	101
3' Whip (Municipal)	138.5	PIROD 12 Inhoweight T-Frame (Venzon)	101
Argus LLPX310R (Clearwire)	134	PiROD 12' Lightweight T-Frame (Verzon)	101
REMOTE RADIO HEAD (RRH) (Clearwire)	134	(2) Diplexer (Verizon)	101
REMOTE RADIO HEAD (RRH) (Cleanwire)	134	(2) Diplexer (Verizon)	101
PiROD 20' Universal Platform (Municipal)	134	(2) Diplexer (Verizon)	101
Argus LLPX310R (Cleanwire)	134	BAA-70003-BCF (VENZON) HRX-6517DS-VTM (Venzon - AWS)	101
/HLP2.5-180 (Clearwire) /HLP2.5-180 (Clearwire)	134	HBX-6517DS-VTM (Verizon - AWS)	101
/HLP2 5-180 (Cleanwire)	134	HBX-6517DS-VTM (Verizan - AWS)	101
/HLP2-180 (Clearwire)	134	RH_2X40-AWS (Verizon - AWS)	101
REMOTE RADIO HEAD (RRH) (Clearwire)	134	UB-11-62-8AB-UZ (Venzon - AVVS)	101
PiROD 10' Lightweight T-Frame (T-Mobile) DiROD 10'I inhtweicht T-Frame (T-Mobile)	125.5 125.5	LNX-6514DS-T4M (Verizon - 650)	101
PirOD 10' Lightweicht T-Frame (T-Mobile)	125.5	1.121	101
AIR B2A/B4P (T-Mobile)	125,5	3"x2"x22" Panel	87
AIR B2A/B4P (T-Mobile)	125,5	TMA	84.5
VIR B2A/B4P (T-Mobile)	125,5	3' Stand-off	83.5 83.5
VIR BZAVB4P (T-Mobile)	125.5	a atana-on a' Dish	C. 20
AIR BZA/B4P (1-Mobile) AIR BZA/B4P (T-Mobile)	125,5	TMA	83
Twin PCS TMA (T-Mobile)	125.5	TMA	82.5
rwin PCS TMA (T-Mobile)	125.5	3"x2"x22" Panel Camora	80
fwin PCS TMA (T-Mobile) NX-6515DS-VTM w/ 6' 2" soch 40 Piline Merur	125.5 125.5	PC9013N	5
T-Mobile)	0.31		
	SYN	SYMBOL LIST	
MARK	SIZE	MARK	SIZE
A Pirod 105217 reinf w/ 1" dia bar			
	MATERIAL	STRENGTH	
GRADE Fy	Ð	GRADE	Fu
50 ksi	65 ksi	36 ksi	58 ksi
TOWER DESIGN NOTES . Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F .: Tower is also designed for a 74 mph basic wind with 0.50 in ice.	TOWER c wind in accordance ph basic wind with 0.5 nph wind.	TOWER DESIGN NOTES accordance with the TIA/EIA-222-F Standard. and with 0.50 in ice.	
 Weld together tower sections hav Connections use galvanized A32E 	e flange connections, bolts, nuts and lockir	Weld together tower sections have flange connections, Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC Specifications.	and AISC Specifications,
Tower members are "hot dipped"	galvanized in accorda	nce with ASTM A123 and ASTM A153	Standards.
Welds are fabricated with ER-70S TOWED DATING: 02 4%	-6 electrodes.		
I LUVER RALING: 32.4 %			

₽/€ I ЯS


щ

Pirod 105244

LΣ

Pirod 105216

CT.

Pirod 105217

44

02-272A

A

91

51

Pirod 105218 reinf w/ 1" dia bar

21

Pirod 105219

91.

BASE:

URS Corporation	Pircon U20'-0"x170' Lattice Tower	ce Tower
500 Enterprise Drive. Suite 3B Project TWS-027 Rev. 1 / Cromwell, CT Tower	Project: TWS-027 Rev. 1 / Cromwell,	CT Tower
Rockv Hill, CT 06067	Client Sprint / T-Mobile (TWS-027)/(EBI-002) Drawn by MCD App'd:	BI-002) Drawn by MCD App'd:
	Code: TIA/EIA-222-F	Date: 09/23/14 Scate: NTS
FAX: 860-529-3991	Path:	Dwg No. E-1

₽ S	19	Weight (K) 30,7
		(N) @ slans9 #
	81	Face Width (ft) 20
		Bottom Girls
		Mid Girts
		ahið qoT
		Diagonal Grade
8/E×Z/1 E×Z/1 ET	91/9×7×7	slenogeiO
	,	Leg Grade
Pirod 105219 reint w // aia bar	Pirod 105220 rein! w hia bar	sßəŋ
61	011	Section

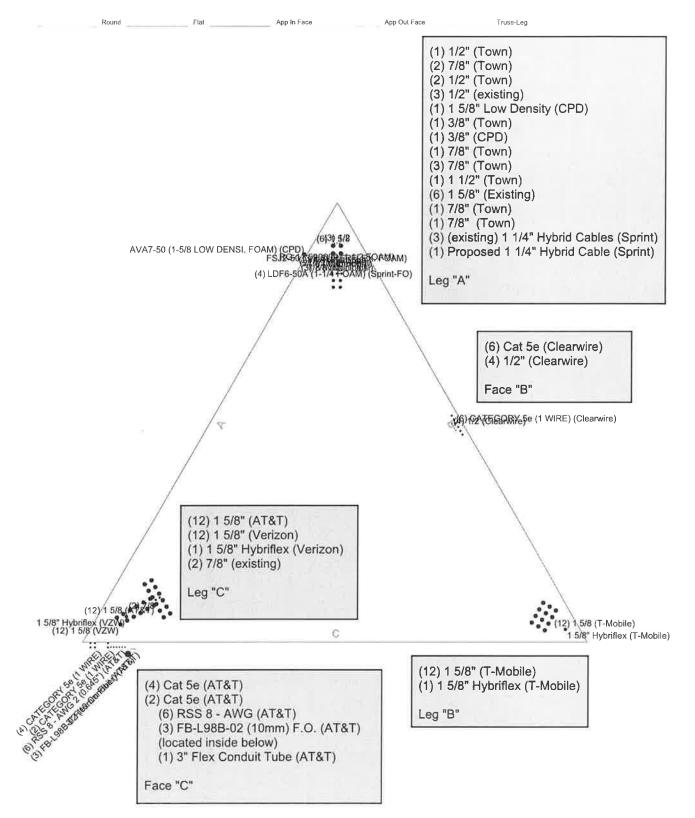
TNX TOWER FEEDLINE DISTRIBUTION CHART

36931260 00000 TWS-027 Rev. 1

Feed Line Distribution Chart 0' - 170' App In Face _____ App Out Face

Truss Leg

Face A Face B Face C 170,00 170.00 168.00 168.00 160.00 160,00 150.00 150.00 144.00 144.00 140.00 140,00 140.00 140.00 134.00 134,00 125.00 125 Od 120.00 120.00 115.00 115.00 AVA7-50 (1-5/8 LOW DENSI, FOAM) (CPD) 101.00 101.00 (4) LDF6-50A (1-1/4 FOAM) (Sprint#RO) 100.00 100.00 FSJ2-50 (3/8 SUPERFLEX, FDAM) FSJ2-50 (3/8 SUPERFLEX, FOAM) RG-11590609 (1 1/2 FOAM) (3) 7/8 (Municipal (Indicional) (1/18) [7/8 (Municipal) 7/8 (Municipal) 90.00 90.00 (2) 7/8 87.00 87,00 1(6) 1 5/8 83.00 (6) CATEGORY 5e (1 WIRE) (Cleanwire) 83.00 1/2.(Municipal) 80.00 (2) 1/2 (Municipal) (4) 1/2 (Clearwire) (2) 7/8 (Mu : 5/8" Hybriflex (T-Mobile) (3) FB-L98B-02 (10mm Fiber) (AT&T) (12) 1 5/8 (T-Mobile) (6) RSS 8 - AWG 2 (0.645") (AT&T) 3" Flex Conduit (AT&T) (12) 1 5/B (AT&T) 60.00 5/8" Hybriflex (VZW) 60.00 (12) 1 5/8 (VZW) (4) CATEGORY 5e (1 WIRE) (2) CATEGORY 5e (1 WIRE) 40,00 40.00 30.00 30.00 20.00 20.00 12 10 7.00 7.00 0.00 0.00


URS Corporation	Jab: PiROD U20'-0"x170' Lattice Tow	wer	
500 Enterprise Drive, Suite 3B	Project: TWS-027 Rev. 1 / Cromwell, CT Tow		In
Rocky Hill, CT 06067	Client Sprint / T-Mobile (TWS-027)/(EBI-002)	Drawn by: MCD	App'd:
Phone: 860-529-8882	Code: TIA/EIA-222-F	Date: 09/23/14	Scale: NTS
FAX: 860-529-3991	Path: It formed when factorized by the construction special management	Handra General	Dwg No. E-7

Elevation (ft)

Round

TNX TOWER FEEDLINE PLAN

Feed Line Plan

PiROD U20'-0"x170' Lattice To			
Project: TWS-027 Rev. 1 / Cromwell, CT Tower Client: Sprint / T-Mobile (TWS-027)/(EBI-002) Drawn by: MCD App'd:			
Code: TIA/EIA-222-F Path:	Date: 09/23/14 Scale: NTS Dwg No. E-7		

TNX TOWER DETAILED OUTPUT

000

T.	Job		Page
tnxTower		PiROD U20'-0"x170' Lattice Tower	1 of 43
URS Corporation	Project		Date
500 Enterprise Drive, Suite 3B		TWS-027 Rev. 1 / Cromwell, CT Tower	11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 170.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 5.00 ft at the top and 20.00 ft at the base.

This tower is designed using the TIA/EIA-222-F standard.

The following design criteria apply:

Basic wind speed of 85 mph.

Nominal ice thickness of 0.5000 in.

Ice density of 56 pcf.

A wind speed of 74 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 50 mph.

Weld together tower sections have flange connections..

Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC Specifications..

Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.. Welds are fabricated with ER-70S-6 electrodes..

A non-linear (P-delta) analysis was used.

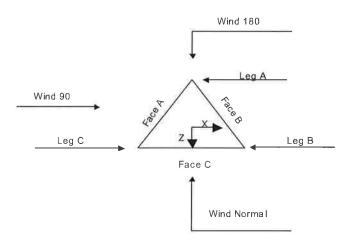
Pressures are calculated at each section.

Stress ratio used in tower member design is 1.333.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios


- ✓ Use Code Safety Factors Guys
 ✓ Use Code Safety Factors Guys
 Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile
- Include Bolts In Member Capacity Leg Bolts Are At Top Of Section
- ✓ Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) Add IBC .6D+W Combination

Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- ✓ Use Clear Spans For Wind Area
 - ✓ Use Clear Spans For KL/r Retension Guys To Initial Tension Bypass Mast Stability Checks
 - ✓ Use Azimuth Dish Coefficients
 - ✓ Project Wind Area of Appurt. Autocalc Torque Arm Areas
- $\sqrt{\text{SR Members Have Cut Ends}}$
- ✓ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Use TIA-222-G Tension Splice Capacity Exemption
- ✓ Treat Feedline Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces
- $\sqrt{}$ Ignore Redundant Members in FEA
- $\sqrt{SR \text{ Leg Bolts Resist Compression}}$
- ✓ All Leg Panels Have Same Allowable Offset Girt At Foundation
- ✓ Consider Feedline Torque
- Include Angle Block Shear Check Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

tnxTower	Job	PiROD U20'-0"x170' Lattice Tower	Page 2 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project	TWS-027 Rev. 1 / Cromwell, CT Tower	Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Triangular Tower

Tower Section Geometry

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	0
	ft			ft		ft
T1	170.00-150.00			5.00	1	20.00
T2	150.00-140.00		U6.0 105244	5.00	1	10.00
Т3	140.00-120.00		U8.0 105216	6.00	1	20.00
Т4	120.00-100.00		U10.0 105217 L3x3/16	8.00	1	20.00
T5	100.00-90.00		U12.0 105216	10.00	1	10.00
T6	90.00-80.00		U12.0 105216	11.00	1	10.00
T7	80.00-60.00		U14.0 105218	12.00	1	20.00
T8	60.00-40.00		U16.0 105219	14.00	1	20.00
T9	40,00-20,00		U18.0 105219	16.00	1	20.00
T10	20.00-0.00		U20.0 105219 L4x1/4	18.00	1	20.00

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Type	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T1	170.00-150.00	2.49	X Brace	No	No	0.0000	1.0000
T2	150.00-140.00	10.00	X Brace	No	No	0.0000	0.0000
Т3	140.00-120.00	10.00	X Brace	No	No	0.0000	0.0000
Т4	120.00-100.00	10.00	X Brace	No	No	0.0000	0.0000
T5	100.00-90.00	10.00	X Brace	No	No	0.0000	0.0000

tnxTower	Job		Page
inxTower		PiROD U20'-0"x170' Lattice Tower	3 of 43
UPS Cornoration	Project		Date
URS Corporation 500 Enterprise Drive, Suite 3B		TWS-027 Rev. 1 / Cromwell, CT Tower	11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Туре	K Brace	Horizontals	Offset	Offset
				End			
	ſt	ſt		Panels		in	în
T6	90.00-80.00	10,00	X Brace	No	No	0.0000	0.0000
Т7	80.00-60.00	10.00	X Brace	No	No	0.0000	0.0000
Т8	60.00-40.00	10.00	X Brace	No	No	0.0000	0.0000
Т9	40.00-20.00	10.00	X Brace	No	No	0.0000	0.0000
T10	20.00-0.00	10.00	X Brace	No	No	0.0000	0.0000

Tower Section Geometry (cont'd)

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation	Туре	Size	Grade	Туре	Size	Grade
fi						
Г1 170.00-150.00	Solid Round	1 3/4	A572-50	Solid Round	7/8	A572-50
			(50 ksi)			(50 ksi)
Г2 150.00-140.00	Truss Leg	Pirod 105244	A572-50	Single Angle	L2 1/2x2 1/2x3/16	A36
			(50 ksi)			(36 ksi)
ГЗ 140.00-120.00	Truss Leg	Pirod 105216	A572-50	Single Angle	L3x3x3/16	A36
			(50 ksi)			(36 ksi)
Γ4 120,00-100,00	Truss Leg	Pirod 105217	A572-50	Single Angle	L3x3x1/4	A36
			(50 ksi)			(36 ksi)
T5 100.00-90.00	Truss Leg	Pirod 105217	A572-50	Single Angle	L3x3x5/16	A36
			(50 ksi)			(36 ksi)
T6 90.00-80.00	Truss Leg	Pirod 105217 reinf w/ 1" dia	A572-50	Single Angle	L3x3x5/16	A36
		bar	(50 ksi)			(36 ksi)
T7 80.00-60.00	Truss Leg	Pirod 105218 reinf w/ 1" dia	A572-50	Single Angle	L3x3x3/8	A36
		bar	(50 ksi)			(36 ksi)
T8 60.00-40.00	Truss Leg	Pirod 105219	A572-50	Single Angle	L3 1/2x3 1/2x5/16	A36
			(50 ksi)			(36 ksi)
T9 40.00-20.00	Truss Leg	Pirod 105219 reinf w /1" dia	A572-50	Single Angle	L3 1/2x3 1/2x3/8	A36
		bar	(50 ksi)			(36 ksi)
T10 20.00-0.00	Truss Leg	Pirod 105220 reinf w/ 1" dia	A572-50	Single Angle	L4x4x5/16	A36
		bar	(50 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 170.00-150.00	Solid Round	7/8	A572-50	Solid Round	7/8	A572-50
			(50 ksi)			(50 ksi)
T2 150.00-140.00	Single Angle	L3x3x3/16	A36	Single Angle		A36
			(36 ksi)			(36 ksi)

tnxTower	Job	PiROD U20'-0"x170' Lattice Tower	Page 4 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project	TWS-027 Rev. 1 / Cromwell, CT Tower	Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Tower Elevation	No. of Mid	Mid Girt Type	Mid Girt Size	Mid Girt Grade	Horizontal Type	Horizontal Size	Horizonta Grade
ft	Girts						
T4 120.00-100.00	1	Single Angle	L3x3x3/16	A36	Single Angle		A36
		0 0		(36 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower* Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust_Factor A _f	Adjust. Factor A,	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonala	Double Angle Stitch Bolt Spacing Horizontals
ß	ft^2	in					Diagonals in	in
T1 170.00-150.00	0.00	0.0000	A36 (36 ksi)	1	1	1.05	Mid-Pt	Mid-Pt
T2 150.00-140.00	0.00	0.0000	A36 (36 ksi)	1	1	1.05	Mid-Pt	Mid-Pt
T3 140.00-120.00	0.00	0.0000	A36 (36 ksi)	4	1	1.05	Mid-Pt	Mid-Pt
T4 120.00-100.00	0.00	0.0000	A36 (36 ksi)	1	1	1.05	Mid-Pt	Mid-Pt
T5 100.00-90.00	0.00	0.0000	A36 (36 ksi)	1	1	1.05	Mid-Pt	Mid-Pt
Т6 90.00-80.00	0.00	0.0000	A36 (36 ksi)	1	1	1.05	Mid-Pt	Mid-Pt
T7 80.00-60.00	0.00	0.0000	A36 (36 ksi)	1	1	1.05	Mid-Pt	Mid-Pt
T8 60.00-40.00	0.00	0.0000	A36 (36 ksi)	1 -	1	1.05	Mid-Pt	Mid-Pt
T9 40 00-20.00	0.00	0.0000	A36 (36 ksi)	1	1	1.05	Mid-Pt	Mid-Pt
T10 20.00-0.00	0.00	0.0000	A36 (36 ksi)	1	1	1.05	Mid-Pt	Mid-Pt

						K Fa	ctors'			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz	Sec. Horiz	Inner Brace
ft	Angles	Rounds		X Y	X Y	X Y	X Y	X Y	X Y	X Y
TI	Yes	Yes	1	1	1	1	1	1	1	1
170.00-150.00				1	1	1	1	T	1	1
T2	Yes	Yes	1	1	1	1	1	1	1	1
150.00-140.00				1	1	1	1	1	1	1
Т3	Yes	Yes	1	1	1	1	1	1	1	1
140.00-120.00				1	1	1	1	1	1	1
Τ4	Yes	Yes	1	1	1	1	1	1	1	1
120.00-100.00				1	1	1	1	1	1	1
T5	Yes	Yes	1	1	1	1	1	1	Ĩ	1
100.00-90.00				1	I	1	1	1	1	1
Т6	Yes	Yes	1	1	Ť	1	1	1	1	1
90.00-80.00				1	1	1	1	1	1	1

tnxTower	Job	PiROD U20'-0"x170' Lattice Tower	Page 5 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project	TWS-027 Rev. 1 / Cromwell, CT Tower	Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

						K Fac	ctors			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz	Inner Brace
ft	Angles	Rounds		X Y	X Y	X Y	X Y	X Y	X Y	X Y
T7	Yes	Yes	1	1	1	1	1	1	1	1
80.00-60.00				1	1	1	1	1	1	1
T8	Yes	Yes	1	4	1	1	1	1	1	1
60.00-40.00				1	1	1	1	1	1	1
Т9	Yes	Yes	1	1	1	1	1	1	1	1
40.00-20.00				1	1	1	1	1	1	1
T10	Yes	Yes	1	1	1	1	1	1	1	1
20.00-0.00				1	1	1	1	1	1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

			Truss-Leg	K Factors		
	Trus	s-Legs Used As Leg Me	mbers	Truss	-Legs Used As Inner M	embers
Tower Elevation ft	Leg Panels	X Brace Diagonals	Z Brace Diagonals	Leg Panels	X Brace Diagonals	Z Brace Diagonals
T2 150.00-140.00	1	0.5	0.85	1	0.5	0.85
T3 140.00-120.00	1	0.5	0.85	1	0.5	0.85
T4 120,00-100,00	1	0.5	0.85	1	0.5	0.85
T5 100.00-90.00	1	0.5	0.85	1	0.5	0.85
T6 90.00-80.00	1	0.5	0.85	1	0,5	0.85
Т7 80.00-60.00	1	0.5	0.85	1	0.5	0.85
T8 60.00-40.00	1	0.5	0.85	1	0.5	0.85
T9 40.00-20.00	1	0.5	0.85	1	0.5	0.85
T10 20.00-0.00	1	0.5	0.85	1	0.5	0.85

Tower Elevation ft	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 170.00-150.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

tnxTower	
----------	--

Job		Page
	PiROD U20'-0"x170' Lattice Tower	6 of 43
Project		Date
	TWS-027 Rev. 1 / Cromwell, CT Tower	11:32:54 09/23/14
Client		Designed by

URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

Sprint / T-Mobile (TWS-027)/(EBI-002)

Designed by MCD

Tower Elevation fl	Leg		Diagon	nal	Top G	Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
ć.	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U	
	Deduct		Deduct		Deduct		Width		Width		Width		Width		
	in		in		in		Deduct		Deduct in		Deduct in		Deduct in		
T2	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	
150.00-140.00															
T3	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	
140.00-120.00															
T4	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	
120.00-100.00															
T5	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	
100.00-90.00															
T6 90.00-80.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	
T7 80.00-60.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	
Г8 60.00-40.00	0.0000	1	0.0000	-1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	
Т9 40.00-20.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	
T10 20.00-0.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000		0.0000	1	0.0000	1	

Tower Section Geometry (cont'd)

Tower	Leg	Leg		Diagor	nal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hori	izontal
Elevation	Connection														
ft	Туре														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in	_	in		in		in		in		în	
T1	Flange	0.7500	0	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
170.00-150.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T2	Flange	1.0000	6	1.0000	1	1.0000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0
150.00-140.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T3	Flange	1.0000	6	1.0000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
140.00-120.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T4	Flange	1.0000	6	1.0000	1	0.6250	0	0.6250	0	1.0000	1	0.6250	0	0.6250	0
120.00-100.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T5	Flange	1.0000	6	1.0000	1	0.6250	0	0.0000	0	0.6250	0	0.6250	0	0.6250	0
100.00-90.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T6 90.00-80.00	Flange	1.0000	6	1.0000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T7 80.00-60.00	Flange	1.0000	6	1.0000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T8 60.00-40.00	Flange	1.2500	6	1.2500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T9 40.00-20.00	Flange	1.2500	6	1.2500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T10 20.00-0.00	Flange	0.0000	0	1,2500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
	-	A325N		A325N		A325N		A325N		A325N		A325N		A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or	Allow Shield	Component Type	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacing	Width or Diameter	Perimeter	Weight
	Leg			ft	in	(Frac FW)		Row	in	in	in	plf
CATEGORY	С	Yes	Ar (CfAe)	87.00 - 7.00	0.0000	0.48	4	2	1.0000	1.0000		0.21

tnxTower	ob PiROD U20'-0''x170' Lattice ⁻	Fower 7 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project TWS-027 Rev. 1 / Cromwell, C	Date T Tower 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Sprint / T-Mobile (TWS-027)/(E	EBI-002) Designed by MCD

Description	or	Allow Shield	Component Type	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacing	Width or Perim Diameter	eter Weigl
- /1	Leg			ft	in	(Frac FW)		Row	in	in in	plf
5e (1 WIRE) CATEGORY 5e (1 WIRE)	С	Yes	Ar (CfAe)	83.00 - 7.00	0.0000	0.45	2	1	1.0000	1.0000	0,21
1/2 (Municipal)	А	No	Ar (Leg)	144.00 - 7.00	0.0000	0.125	1	1	0.5800	0.5800	0.25
7/8 (Municipal)	А	No	Ar (Leg)	144.00 - 7.00	0.0000	0.125	2	1	1,0000	1.1100	0.54
1/2 (Municipal)	А	No	Ar (Leg)	140.00 - 7.00	0.0000	0.13	2	1	0.5800	0,5800	0.25
7/8 (Municipal)	А	No	Ar (Leg)	170.00 - 7.00	0.0000	0,14	3	1	1.0000	1.1100	0,54
7/8 (Municipal)	А	No	Ar (Leg)	170.00 - 7.00	0.0000	0.14	1	I	1.1100	1.1100	0.54
FSJ2-50 (3/8 SUPERFLEX. FOAM)	А	No	Ar (Leg)	168.00 - 7.00	0.0000	0.12	1	1	0.4300	0.4300	0.08
FSJ2-50 (3/8 SUPERFLEX.	A	No	Ar (Leg)	170.00 - 7.00	0.0000	0.12	1	1	0.4300	0.4300	0.08
FOAM) RG-11 590609	А	No	Ar (Leg)	170.00 - 7.00	0.0000	0.12	1	1	1.5000	1.5900	0,94
(1 1/2 FOAM) 1 5/8 (T-Mobile)	В	No	Ar (Leg)	125.50 - 7.00	0.0000	0.1	12	3	1.5000	1.9800	1.04
1 5/8 (VZW)	С	No	Ar (Leg)	101.00 - 7.00	0.0000	0,12	12	6	1.5000	1.9800	1.04
1 5/8 (AT&T)	С	No	Ar (Leg)	115.00 - 7.00	0.0000	0.17	12	2	1,5000	1.9800	1.04
7/8	С	No	Ar (Leg)	170.00 - 7.00	0.0000	0.17	2	2	1.0000	1.1100	0.54
1 5/8	А	No	Ar (Leg)	160.00 - 7.00	0.0000	0.1	6	3	1.5000	1.9800	1.04
CATEGORY 5e (1 WIRE) (Clearwire)	В	Yes	Ar (CfAe)	134.00 - 7.00	-2,0000	0	6	6	1.0000	1.0000	0.21
1/2 (Clearwire)	В	Yes	Ar (CfAe)	134,00 - 7,00	-4.0000	0	4	4	0,5800	0.5800	0.25
FB-L98B-02 (10mm Fiber) (AT&T)	С	Yes	Ar (CfAe)	115.00 - 7.00	3,0000	0.4	3	3	0.3937	0.3937	0,03
RSS 8 - AWG 2 (0.645")	С	Yes	Ar (CfAe)	115.00 - 7.00	2.0000	0.43	6	6	0.6450	0.6450	0.30
(AT&T) 3" Flex Conduit	С	Yes	Ar (CfAe)	115.00 - 7.00	4.0000	0.41	1	1	0.0000	3.0000	3.00
(AT&T) 1/2	А	No	Ar (Leg)	30.00 - 7.00	0.0000	0.08	3	1	0.5800	0.5800	0.25
AVA7-50 (1-5/8 LOW DENSL FOAM)	A	Yes	Ar (CfAe)	170.00 - 7.00	0.0000	0.38	1	1	1.5000	1,9800	0.72
(CPD) 1 5/8" Hybriflex	В	No	Ar (Leg)	125.00 - 7.00	0,0000	0.05	1	1	1.6250	1.6250	0.21
(T-Mobile) 1 5/8" Hybriflex	С	No	Ar (Leg)	101.00 - 7.00	0.0000	0.1	1	1	1.6250	1.6250	0.21
(VZW) LDF6-50A (1-1/4 FOAM)	А	No	Ar (Leg)	170.00 - 7.00	0.0000	0.16	4	2	1.5500	1.5500	0.66
(Sprint-FO) 7/8	A	No	Ar (Leg)	170.00 - 7.00	0.0000	0.132	1	1	1.1100	1.1100	0.54
(Municipal) 7/8	А	No	Ar (Leg)	170.00 - 7.00	0.0000	0.132	1	1	1.1100	1.1100	0.54

tnxTower	Job	PiROD U20'-0"x170' Lattice Tower	Page 8 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project	TWS-027 Rev. 1 / Cromwell, CT Tower	Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Description	Face Allow	Component	Placement	Face	Lateral	#	#	Clear	Width or	Perimeter	Weight
	or Shield	Type		Offset	Offset		Per	Spacing	Diameter		
	Leg		ft	īn	(Frac FW)		Row	in	in	in	plf

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation		ft^2	ft^2	In Face ft ²	Out Face ft ²	K
701	ft						
T1	170.00-150.00	A	40.136	0.000	0.000	0.000	0.22
		В	33.136	0.000	0.000	0.000	0.00
		С	3.700	0.000	0.000	0.000	0.02
Т2	150.00-140.00	А	25.105	0.000	0.000	0.000	0.14
		В	21.605	0.000	0.000	0.000	0.00
		С	1.850	0,000	0.000	0.000	0.01
Т3	140.00-120.00	А	54.943	0.000	0.000	0.000	0.32
		В	64,985	0.000	0.000	0.000	0.10
		С	11.035	0.000	0.000	0.000	0.02
T4	120.00-100.00	Α	81.377	0.000	0.000	0.000	0.32
		В	88.730	0.000	0,000	0.000	0.30
		С	67.119	0.000	0.000	0.000	0.29
T5 10	100.00-90.00	А	61.700	0,000	0.000	0.000	0.16
		В	44.365	0.000	0.000	0.000	0.15
		С	56.248	0.000	0.000	0.000	0.31
Т6	90.00-80.00	А	61.700	0.000	0.000	0.000	0,16
		В	44.365	0.000	0.000	0.000	0.15
		С	58.981	0.000	0.000	0.000	0.32
T7	80.00-60.00	А	123,400	0.000	0.000	0.000	0.32
		В	88.730	0.000	0.000	0.000	0.30
		С	122.210	0.000	0.000	0.000	0.65
T8	60.00-40.00	А	123.400	0.000	0.000	0.000	0.32
		В	88.730	0.000	0,000	0.000	0.30
		C	122.210	0.000	0.000	0.000	0.65
Т9	40.00-20.00	Ă	124.850	0.000	0.000	0.000	0.32
	.0100 20100	B	90.180	0.000	0.000	0.000	0.30
		C	122.210	0.000	0.000	0.000	0.65
T10	20.00-0.00	Ă	82.095	0.000	0.000	0.000	0.05
	20.00 0.00	B	59.559	0.000	0.000	0.000	0.19
		C	79.437	0.000	0.000	0.000	0.19

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Section	Tower Elevation	Face	Ice Thickness	A_R	A_F	$C_A A_A$ In Face	$C_A A_A$ Out Face	Weight
	ft	Leg	in	ft^2	ft^2	ft^2	fl^2	Κ
T1 170.00-150.00	170.00-150.00	A	0.500	58.953	3.517	0.000	0.000	0.60
		В		50.470	0.000	0.000	0.000	0.00
		С		3.517	3.517	0.000	0.000	0.07
T2 150.00-140.00	150.00-140.00	А	0.500	36.013	1.758	0.000	0.000	0.39
		В		31.771	0.000	0.000	0.000	0.00
		С		1.758	1.758	0.000	0.000	0.03
Т3	140.00-120.00	А	0.500	82,393	3,517	0.000	0.000	0.87
		В		86.296	15.727	0.000	0.000	0.34
		С		11.727	3.517	0.000	0.000	0.07
T4	120.00-100.00	А	0.500	110.244	3.517	0.000	0.000	0.87
		В		110.130	22.467	0.000	0.000	0.88

tnxTower	Job	PiROD U20'-0"x170' Lattice Tower	Page 9 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project	TWS-027 Rev. 1 / Cromwell, CT Tower	Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	AF	C _A A _A In Face	$C_A A_A$ Out Face	Weight
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	K
		С		70.420	13.548	0.000	0.000	0.75
Т5	100.00-90.00	А	0.500	77,925	1,758	0.000	0.000	0.44
		В		55.065	11.233	0.000	0.000	0.44
		С		59,479	8.446	0.000	0.000	0.79
T6 90	90.00-80.00	А	0.500	77.925	1.758	0.000	0.000	0.44
		В		55.065	11.233	0.000	0.000	0.44
		С		61.646	10.096	0.000	0.000	0.83
Т7	80.00-60.00	А	0.500	155.850	3.517	0.000	0.000	0.87
		В		110.130	22.467	0.000	0.000	0.88
		С		128,959	21,605	0.000	0.000	1.72
T8	60.00-40.00	А	0.500	155.850	3.517	0.000	0.000	0.87
		В		110.130	22.467	0.000	0.000	0.88
		С		128.959	21.605	0.000	0.000	1.72
T9	40.00-20.00	А	0.500	159.100	3.517	0.000	0.000	0.90
		В		113,380	22.467	0.000	0.000	0.88
		С		128.959	21,605	0.000	0.000	1.72
T10	20.00-0.00	А	0.500	105.527	2.286	0.000	0.000	0.60
		В		75.809	14.603	0.000	0.000	0.57
		С		83.823	14.043	0.000	0.000	1.12

Feed Line Shielding

Section	Elevation	Face	A_R	A_R	A_F	A_F
				Ice		Ice
	ft		ft^2	ft^2	ft^2	ft^2
T1	170.00-150.00	A	0.239	0.771	0.000	0.000
		В	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	0.000
T2	150.00-140.00	А	0.000	0.106	0.184	0.277
		В	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	0.000
T3	140.00-120.00	А	0.000	0.145	0.289	0.435
		В	0.000	0,580	0.849	1.741
		С	0.000	0.000	0.000	0.000
T4	120.00-100.00	А	0.000	0.145	0.288	0.434
		В	0.000	0.828	1.212	2.484
		С	0.000	0.548	0.879	1.645
Т5	100.00-90.00	А	0.000	0.057	0.114	0,171
		В	0.000	0.327	0.479	0.981
		С	0.000	0.289	0.463	0.867
Т6	90.00-80.00	А	0.000	0.055	0.109	0.165
		В	0.000	0.314	0.459	0.942
		С	0.000	0.340	0.538	1.019
T7	80.00-60.00	А	0.000	0.105	0.208	0.314
		В	0.000	0.598	0.875	1,795
		С	0.000	0.739	1.163	2.216
T8	60.00-40.00	А	0.000	0.100	0.231	0.348
		В	0.000	0.570	0.973	1.994
		С	0.000	0.703	1.292	2.462
Т9	40.00-20.00	А	0.000	0.096	0.223	0.336
		В	0.000	0.550	0.939	1.925
		С	0.000	0.679	1.247	2.377
T10	20.00-0.00	А	0.000	0.061	0.162	0.243
		В	0.000	0.348	0.679	1,393
		С	0.000	0.430	0.902	1.719

tnxTower	Job PiROD U20'-0"x170' Lattice Tower	Page 10 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project TWS-027 Rev. 1 / Cromwell, CT Tower	Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	în	în
T1	170.00-150.00	-0.7973	-8.0376	-0.4853	-7.4212
T2	150.00-140.00	-0.4988	-6.6293	-0.3283	-6.3594
Т3	140.00-120.00	1.4194	-7.8403	1.2494	-8.0075
Т4	120.00-100.00	-0.3302	-2.7146	-0.0626	-4.2227
T5	100.00-90.00	-5.2784	0,3685	-4.0917	-1.7690
Т6	90.00-80.00	-6,3856	0.8722	-4.8612	-1.5653
Т7	80.00-60.00	-7.6460	1.3464	-5.9655	-1.3222
Т8	60.00-40.00	-8.5419	1.4777	-6.6864	-1,5207
Т9	40.00-20.00	-9.4077	1.2998	-7.3405	-2,1935
T10	20.00-0.00	-8.2989	0.8730	-6.4327	-2.3698

Discrete Tower Loads									
Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			Vert ft ft ft	o	ft		ft ²	_ft ²	Κ
101-90-08-0-01 (Municipal)	A	From Leg	9.00 2.00 0.00	0,0000	183.00	No Ice 1/2" Ice	3.33 4.31	3.33 4.31	0.04 0.06
15' Mount Pipe (Municipal)	А	From Leg	9.00 2.00 0.00	0.0000	179.75	No Ice 1/2" Ice	4.50 6.03	4.50 6.03	0.09 0.12
3" Dia 20' Omni (Municipal)	В	From Face	9.00 0.00 0.00	0.0000	178.00	No Ice 1/2" Ice	6.00 8.03	6.00 8.03	0.06 0.10
2.5" x 20'6" Whip (Municipal)	С	From Face	9.00 0.00 0.00	0.0000	178.00	No Ice 1/2" Ice	5.14 7.24	5.14 7.24	0.15 0.19
2.5" x 14' Omni (Municipal)	С	From Face	9.00 0.00 0.00	0.0000	175.00	No Ice 1/2" Ice	3.50 4.93	3.50 4.93	0.03 0.06
2.5" x 14' Omni (Municipal)	С	From Face	9.00 0.00 0.00	0.0000	175.00	No Ice 1/2" Ice	3.50 4.93	3.50 4.93	0.03 0.06
2.5" x 14' Omni (Municipal)	С	From Face	9.00 0.00 0.00	0.0000	175.00	No Ice 1/2" Ice	3.50 4.93	3.50 4.93	0.03 0.06
1.5" x 12' Omni (Municipal)	А	From Face	9.00 4.00 0.00	0.0000	174.00	No Ice 1/2" Ice	1.50 2.52	1.50 2.52	0.06 0.07
9 Arm Halo Mount (Municipal)	С	None		0.0000	168.00	No Ice 1/2" Ice	62.60 80.40	62,60 80.40	3.60 4.80
U-RA-HP-2.4 Antenna (Municipał)	В	From Face	9.00 2.50 0.00	0.0000	168.00	No Ice 1/2" Ice	0.80 0.93	0.37 0.47	0.00 0.01
PTP49600 (CPD)	С	From Leg	9.00 0.00	0.0000	168.00	No Ice 1/2" Ice	2.04 2.24	0.53 0.65	0.01 0.02

URS Corporation 500 Enterprise Drive, Suite 3B

Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

Ι	Job		Page
		PiROD U20'-0"x170' Lattice Tower	11 of 43
Í	Project		Date
		TWS-027 Rev. 1 / Cromwell, CT Tower	11:32:54 09/23/14
	Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD
		, , , , ,	WICD

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C₁A₄ Side	Weigh
	Leg	21	Lateral	5					
			Vert	0	ft		ft ²	ft^2	K
			ft ft		<i>µ</i>		Ji	JI	Λ
APXV18-206517S-C w/	А	From Leg	1.00	0.0000	159.50	No Ice	5.08	4.46	0.05
mounting hardware		_	$0.00 \\ 0.00$			1/2" Ice	5.53	5.39	0.09
APXV18-206517S-C w/	В	From Leg	1.00	0.0000	159.50	No Ice	5.08	4.46	0.05
mounting hardware	D	110m Log	0,00	0.0000	155.50	1/2" Ice	5.53	5.39	0.09
0			0.00						
APXV18-206517S-C w/	С	From Leg	1.00	0,0000	159.50	No Ice	5.08	4.46	0.05
mounting hardware			0.00			1/2" Ice	5.53	5.39	0.09
SC420-HF1LDF	А	From Face	0.00 6.00	0.0000	158.50	No Ice	2.14	2.14	0.02
(Municipal)	л	riomrace	0.00	0.0000	158.50	1/2" Ice	3.02	3.02	0.02
(0.00					5101	0,000
3" Dia 20' Omni	С	From Face	6.00	0.0000	144.00	No Ice	6.00	6.00	0.06
(Municipal)			9.00			1/2" Ice	8.03	8.03	0.10
3" Dia 20' Omni	А	From Face	0.00 6.00	0.0000	144.00	No Ice	6,00	6.00	0.06
(Municipal)	A.	From Face	-9.00	0.0000	144.00	1/2" Ice	8.03	8.03	0.00
			0.00				1010	10000	
2.5" x 20'6" Whip	А	From Face	6.00	0.0000	144,00	No Ice	5.14	5.14	0.15
(Municipal)			9.00			1/2" Ice	7.24	7.24	0.19
2" Dia 15' Omni	В	From Face	0.00 6.00	0.0000	141,00	No Ice	3.20	3,20	0.04
(Municipal)	Б	FIOII Face	-5.00	0.0000	141,00	1/2" Ice	4.83	4.83	0.04
(F)			0.00					1100	0100
1,5" x 10' Omni	В	From Face	6.00	0.0000	139.00	No Ice	1.50	1.50	0.06
(Municipal)			5.00			1/2" Ice	2.52	2.52	0.07
9' Whip	А	From Face	0.00 6.00	0.0000	138.50	No Ice	5.85	5.85	0.12
(Municipal)	A	FIUIII FACE	0.00	0.0000	136,50	1/2" Ice	7.66	5.85 7.66	0.12
(memper)			0.00			112 100	1100	1.00	0.17
PiROD 20' Universal	С	None		0.0000	134.00	No Ice	33.10	33.10	2,27
Platform						1/2" Ice	47.10	47.10	2.70
(Municipal) Argus LLPX310R	А	From Face	6.00	0.0000	134.00	No lce	4.86	3.46	0.03
(Clearwire)	A	FIOM Face	7.00	0.0000	134.00	1/2" Ice	5.22	3.80	0.03
(Clear Mile)			0.00			172 100	0.22	5.00	0.00
Argus LLPX310R	В	From Face	6,00	0,0000	134.00	No Ice	4.86	3.46	0.03
(Clearwire)			0.00			1/2" Ice	5.22	3.80	0.06
Argus LLPX310R	С	From Face	$0.00 \\ 6.00$	0.0000	134.00	No Ice	4.86	3.46	0.03
(Clearwire)	C	FIUM FACE	7.00	0.0000	154.00	1/2" Ice	5.22	3.80	0.03
(oldar mite)			0.00			112 100	0.22	5100	0.00
EMOTE RADIO HEAD	А	From Face	6.00	0.0000	134.00	No Ice	1.82	0.83	0.03
(RRH)			7.00			1/2" Ice	2.00	0.97	0.04
(Clearwire) EMOTE RADIO HEAD	В	From Face	0.00 6.00	0.0000	134.00	No Ice	1.82	0.83	0.03
(RRH)	D	FIONI Face	0.00	0.0000	134.00	1/2'' Ice	2.00	0.83	0.03
(Clearwire)			0.00			1.2 100	4.00	0.91	0.04
EMOTE RADIO HEAD	Ĉ	From Face	6.00	0.0000	134.00	No Ice	1.82	0.83	0.03
(RRH)			7.00			1/2" Ice	2.00	0.97	0.04
(Clearwire)	A	Engine Y	0.00	0.0000	115.00	M. I.	0.00	0.00	0.02
(2) TMA (shielded) (AT&T)	A	From Leg	4.00 6.00	0.0000	115,00	No Ice 1/2" Ice	0.00 0.00	0.00 0.00	0.01 0.01
(mul)			0.00			172 100	0.00	0.00	0.01
				0 0000			0.00		0.01
(2) TMA (shielded)	A	From Leg	4.00	0.0000	115.00	No Ice	0.00	0.00	0.01

URS Corporation 500 Enterprise Drive, Suite 3B

Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

() 	Job		Page
		PiROD U20'-0"x170' Lattice Tower	12 of 43
Î	Project		Date
		TWS-027 Rev. 1 / Cromwell, CT Tower	11:32:54 09/23/14
	Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C₄A₄ Side	Weight
	Leg	21	Lateral	5					
			Vert	0	0		c.2	c.2	V
			ft ft		ft		ft²	ft^2	K
			ft						
(2) TMA (shielded)	В	From Leg	0.00 4.00	0.0000	115.00	No Ice	0.00	0.00	0.01
(AT&T)	Б	110m Leg	6.00	0.0000	115.00	1/2" Ice	0.00	0.00	0.01
(///////)			0.00			1/2 100	0.00	0.00	0.01
(2) TMA (shielded)	В	From Leg	4.00	0.0000	115.00	No Ice	0.00	0.00	0.01
(AT&T)		-	-6.00			1/2" Ice	0.00	0.00	0.01
			0.00						
(2) TMA (shielded)	С	From Leg	4,00	0.0000	115.00	No Ice	0.00	0.00	0.01
(AT&T)			6.00			1/2" Ice	0.00	0.00	0.01
(2) TMA (shielded)	C	Enome Lac	0.00	0.0000	115.00	N. L.	0.00	0.00	0.01
(2) TMA (shielded) (AT&T)	С	From Leg	4.00 -6.00	0.0000	115.00	No Ice 1/2" Ice	0.00 0.00	0.00	0.01 0.01
(AI&I)			0.00			1/2 100	0.00	0.00	0.01
PiROD 12' Lightweight	А	From Leg	2.00	0.0000	115.00	No Ice	10.20	10.20	0.25
T-Frame			0.00			1/2" Ice	16.20	16.20	0.35
(AT&T)			0.00						
PiROD 12' Lightweight	в	From Leg	2.00	0.0000	115.00	No Ice	10.20	10,20	0.25
T-Frame			0.00			1/2" Ice	16.20	16.20	0.35
(AT&T)			0.00						
PiROD 12' Lightweight	С	From Leg	2.00	0.0000	115.00	No Ice	10.20	10.20	0.25
T-Frame (AT&T)			0.00 0.00			1/2" Ice	16.20	16.20	0.35
7770	А	From Leg	4.00	0.0000	115.00	No Ice	10.03	5.60	0.02
(AT&T)	А	110m Log	6.00	0.0000	115.00	1/2" Ice	10.61	6.15	0.02
(111001)			0.00			172 100	10.01	0.15	0.07
7770	А	From Leg	4.00	0.0000	115.00	No Ice	10.03	5.60	0.02
(AT&T)		e	-6.00			1/2" Ice	10.61	6.15	0.07
			0.00						
7770	В	From Leg	4.00	0.0000	115.00	No Ice	10.03	5.60	0.02
(AT&T)			6.00			1/2" Ice	10.61	6.15	0.07
7770	D	E	0.00	0.0000	116.00	NL I.	10.02	5 (0	0.02
(AT&T)	В	From Leg	4.00 -6.00	0,0000	115.00	No Ice 1/2" Ice	10.03 10.61	5.60 6.15	0.02 0.07
(AI&I)			0.00			1/2 100	10,01	0.15	0.07
7770	С	From Leg	4.00	0.0000	115.00	No Ice	10.03	5.60	0.02
(AT&T)			6.00			1/2" Ice	10.61	6.15	0.07
			0.00						
7770	С	From Leg	4.00	0.0000	115.00	No Ice	10.03	5.60	0.02
(AT&T)			-6.00			1/2" Ice	10.61	6.15	0.07
			0.00	0.0000	116.00	NT 1	0.01	4.6.4	0.07
M-X-CD-16-65-00T-RET	A	From Leg	4.00	0.0000	115.00	No Ice	8.26	4.64	0.05
(6') (AT&T)			0.00			1/2" Ice	8.81	5.09	0.10
M-X-CD-16-65-00T-RET	В	From Leg	4.00	0.0000	115.00	No Ice	8.26	4.64	0.05
(6')	D	TTOM LOG	0.00	0.0000	115.00	1/2" Ice	8.81	5.09	0.10
(AT&T)			0.00					1995	0120
M-X-CD-16-65-00T-RET	С	From Leg	4.00	0.0000	115.00	No Ice	8.26	4.64	0.05
(6')			0.00			1/2" Ice	8,81	5.09	0.10
(AT&T)		_	0.00						
REMOTE RADIO HEAD	А	From Leg	0.00	0.0000	115.00	No Ice	1.82	0.83	0.03
(RRH)			0.00			1/2" Ice	2.00	0.97	0.04
(AT&T) DEMOTE DADIO HEAD	D	Erom Loc	0.00	0.0000	115.00	No I	1.00	0.01	0.02
REMOTE RADIO HEAD (RRH)	В	From Leg	0.00 0.00	0.0000	115.00	No Ice 1/2" Ice	1.82 2.00	0.83 0.97	0.03 0.04
			0.00			172 100	2.00	U.7/	0.04
(AT&T)									
(AT&T) REMOTE RADIO HEAD	С	From Leg	0.00	0.0000	115.00	No Ice	1.82	0.83	0.03

T	Job		Page
tnxTower	_	PiROD U20'-0"x170' Lattice Tower	13 of 43
URS Corporation	Project		Date
500 Enterprise Drive, Suite 3B		TWS-027 Rev. 1 / Cromwell, CT Tower	11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD
11111 000 020 0000			· · · · · · · · · · · · · · · · · · ·

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	Leg		Lateral Vert						
			ft ft ft	0	fi		_ft ²	ft ²	K
(AT&T)			0.00						
Surge Suppressor (AT&T)	С	From Leg	0.00 0.00 0.00	0.0000	115.00	No Ice 1/2" Ice	0.80 0.94	0.80 0.94	0.03 0.04
BXA-171063-12BF (Verizon)	А	From Leg	4.00 0.00	0,0000	101.00	No Ice 1/2" Ice	4.73 5.18	3.57 4.01	0.02 0.04
SWCP 2x5514 (Verizon)	А	From Leg	0.00 4.00 -4.00	0.0000	101.00	No Ice 1/2" Ice	7.01 7.44	5.70 6.12	0.02 0.07
BXA-171063-12BF (Verizon)	В	From Leg	$0.00 \\ 4.00 \\ 0.00$	0.0000	101.00	No Ice 1/2" Ice	4.73 5.18	3.57 4.01	0.02 0.04
BXA-171063-12BF	С	From Leg	0.00 4.00	0.0000	101.00	No Ice	4.73	3.57	0.02
(Verizon) SWCP 2x5514	С	From Leg	0.00 0.00 4.00	0,0000	101.00	1/2" Ice No Ice	5.18 7.01	4.01 5.70	0.04 0.02
(Verizon)		-	-4.00 0.00			1/2" Ice	7.44	6,12	0.07
PiROD 12' Lightweight T-Frame (Verizon)	A	From Leg	2.00 0.00 0.00	0.0000	101.00	No Ice 1/2" Ice	10.20 16.20	10.20 16.20	0_25 0.35
PiROD 12' Lightweight T-Frame (Verizon)	В	From Leg	2.00 0.00 0.00	0.0000	101.00	No Ice 1/2" Ice	10.20 16.20	10.20 16.20	0.25 0,35
PiROD 12' Lightweight T-Frame (Verizon)	С	From Leg	2.00 0.00 0.00	0.0000	101.00	No Ice 1/2" Ice	10,20 16,20	10.20 16.20	0.25 0.35
(2) Diplexer (Verizon)	А	From Leg	4.00 6.00 0.00	0.0000	101.00	No Ice 1/2" Ice	0.23 0.30	0.17 0.24	0.01 0.01
(2) Diplexer (Verizon)	В	From Leg	4.00 6.00 0.00	0.0000	101.00	No Ice 1/2" Ice	0.23 0.30	0.17 0.24	0.01 0.01
(2) Diplexer (Verizon)	С	From Leg	4.00 6.00	0.0000	101.00	No Ice 1/2" Ice	0.23 0.30	0.17 0.24	0.01 0.01
BXA-70063-6CF (Verizon)	В	From Leg	0.00 4.00 -4.00	0.0000	101.00	No Ice 1/2" Ice	7.73 8.27	4.16 4.60	0.02 0.06
HBX-6517DS-VTM (Verizon - AWS)	А	From Leg	0.00 4.00 6.00	0.0000	101.00	No Ice 1/2" Ice	5.24 5.71	3.24 3.69	0.01 0.04
HBX-6517DS-VTM (Verizon - AWS)	В	From Leg	0.00 4.00 6.00	0.0000	101.00	No Ice 1/2" Ice	5.24 5.71	3,24 3,69	0.01 0.04
HBX-6517DS-VTM (Verizon - AWS)	С	From Leg	0.00 4.00 6.00	0.0000	101.00	No Ice 1/2" Ice	5.24 5.71	3.24 3.69	0.01 0.04
RH_2X40-AWS (Verizon - AWS)	А	From Leg	0.00 4.00 6.00	0.0000	101.00	No Ice 1/2" Ice	2.52 2.75	1.59 1.80	0,04 0.06
RH_2X40-AWS (Verizon - AWS)	В	From Leg	0.00 4.00 6.00	0.0000	101.00	No Ice 1/2" Ice	2.52 2.75	1.59 1.80	0.04 0.06
RH_2X40-AWS (Verizon - AWS)	С	From Leg	0.00 4.00 6.00	0.0000	101.00	No Ice 1/2" Ice	2.52 2.75	1.59 1.80	0.04 0.06

URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	PiROD U20'-0"x170' Lattice Tower	14 of 43
Project		Date
	TWS-027 Rev. 1 / Cromwell, CT Tower	11:32:54 09/23/14
Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	Leg		Lateral Vert	5					
			ft	0	ft		ft^2	ft^2	K
			ft ft		2				
	0	N	0.00	0.0000	101.00		6.96	0.40	0.04
DB-T1-6Z-8AB-0Z (Verizon - AWS)	С	None		0.0000	101.00	No Ice 1/2" Ice	5,35 5.75	2.40 2.72	0.04 0.07
LNX-6514DS-T4M	А	From Leg	4.00	0.0000	101.00	No Ice	8.38	5.41	0.04
(Verizon - 850)		0	-6.00			1/2" Ice	8.93	5.86	0,09
LNX-6514DS-T4M	В	Erom Log	0.00 4.00	0.0000	101.00	N. I.	0.20	5 41	0.04
(Verizon - 850)	В	From Leg	-6.00	0.0000	101.00	No Ice 1/2" Ice	8.38 8.93	5.41 5.86	0.04 0.09
(*6112611 656)			0.00			172 100	0.75	5.00	0.07
LNX-6514DS-T4M	С	From Leg	4.00	0.0000	101.00	No Ice	8.38	5.41	0.04
(Verizon - 850)			-6.00			1/2" Ice	8,93	5.86	0.09
3"x2"x22" Panel	В	From Leg	0.00 2.00	0.0000	87.00	No Ice	0.65	0.47	0.05
	D	110m Leg	0.00	0.0000	87.00	1/2" Ice	0.81	0.61	0.05
			0.00						0100
TMA	В	From Leg	2.00	0.0000	84.50	No Ice	1,06	0.45	0.02
			0.00 0.00			1/2" Ice	1.21	0.57	0.03
3' Stand-off	В	From Leg	1.50	0.0000	83,50	No Ice	1.00	2.00	0.05
	-		0.00	0,0000	00100	1/2" Ice	1.20	2.70	0.07
			0.00						
3' Stand-off	A	From Leg	1.50	0.0000	83.50	No Ice	1.00	2.00	0.05
			0.00			1/2" Ice	1.20	2.70	0.07
TMA	А	From Leg	2.00	0.0000	83.00	No Ice	1.06	0.45	0.02
		0	0.00			1/2" Ice	1.21	0.57	0.03
	P		0.00	0.0000	00.50		1.04		
TMA	В	From Leg	2.00 0.00	0.0000	82.50	No Ice 1/2" Ice	1.06 1.21	0.45 0.57	0.02 0.03
			0.00			1/2 100	1.21	0.57	0.05
3"x2"x22" Panel	в	From Leg	2.00	0.0000	80.00	No Ice	0.65	0.47	0.05
			0.00			1/2" Ice	0.81	0.61	0.05
Camera	А	From Leg	0.00 0.00	0.0000	30.00	No Ice	0.50	0.50	0.01
Camera	л	From Leg	0.00	0.0000	30.00	1/2" Ice	0.50	0.50	0.01
			0.00				0100	0100	0102
PC9013N	А	From Leg	1.00	0.0000	24.00	No Ice	0.46	0.46	0.00
			0.00 0.00			1/2" Ice	0.52	0.52	0.00
APXVSPP18-C-A20	А	From Face	9.00	0.0000	170.00	No Ice	8.40	5.28	0.06
(Sprint)			-1.00	122		1/2" Ice	8.95	5.74	0.11
			0.00	1000					
APXVSPP18-C-A20	В	From Face	9.00 -1.00	0,0000	170.00	No Ice 1/2" Ice	8.40	5.28	0.06
(Sprint)			0.00			1/2 Ice	8.95	5.74	0=11
APXVSPP18-C-A20	С	From Face	9.00	0.0000	170,00	No Ice	8.40	5.28	0.06
(Sprint)			-1.00			1/2" Ice	8.95	5.74	0.11
nasonic RRH 1900MHZ	A	From From	0.00	0.0000	170.00	No I	2.40	2.07	0.00
(Sprint)	A	From Face	8.00 0.00	0.0000	170.00	No Ice 1/2" Ice	2.49 2.71	3.06 3.30	0.09 0.12
(opinit)			0.00			112 100	4.11	5.50	0.12
masonic RRH 1900MHZ	В	From Face	8.00	0.0000	170.00	No Ice	2.49	3.06	0.09
(Sprint)			0.00			1/2" Ice	2.71	3.30	0.12
nasonic RRH 1900MHZ	С	From Face	0.00 8.00	0.0000	170.00	No Ice	2.49	3.06	0.09
(Sprint)	C	10m Tacc	0.00	0.0000	110,00	1/2" Ice	2.49	3.30	0.09
			0.00						

URS Corporation 500 Enterprise Drive, Suite 3B

Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

	Job		Page
		PiROD U20'-0"x170' Lattice Tower	15 of 43
	Project		Date
1		TWS-027 Rev. 1 / Cromwell, CT Tower	11:32:54 09/23/14
	Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	Leg	21 ⁻	Lateral	2					
			Vert	0	ß		<i>c</i> ²	c.2	V
			ft ft	37	ft		ft^2	ft^2	K
			ft						
Andrew 800MHz RRH	А	From Face	8.00	0.0000	170.00	No Ice	2.36	1.97	0.06
(Sprint)			$0.00 \\ 0.00$			1/2" Ice	2.57	2.17	0.08
Andrew 800MHz RRH	В	From Face	8.00	0.0000	170.00	No Ice	2.36	1.97	0.06
(Sprint)	_		0.00			1/2" Ice	2.57	2.17	0.08
			0.00						
Andrew 800MHz RRH	С	From Face	8.00	0.0000	170.00	No Ice	2.36	1.97	0.06
(Sprint)			$0.00 \\ 0.00$			1/2" Ice	2.57	2.17	0.08
APXV9TM14-120	А	From Face	9.00	0,0000	170,00	No Ice	6.90	3.61	0.07
(Sprint)	11	110111200	-4.00	0,0000	170,00	1/2" Ice	7.35	3.97	0.11
(-))			0.00						
APXV9TM14-120	В	From Face	9.00	0.0000	170.00	No Ice	6.90	3.61	0.07
(Sprint)			-4.00			1/2" Ice	7.35	3.97	0.11
APXV9TM14-120	С	From Face	0.00 9.00	0.0000	170.00	No Ice	6.90	3.61	0.07
(Sprint)	C	FIOID Face	-4.00	0.0000	170.00	1/2" Ice	7.35	3.97	0.07
(Sprint)			0.00			112 100		5.51	5.11
TD-RRH8x20-25	А	From Face	9.00	0.0000	170.00	No Ice	4.32	1.41	0.07
(Sprint)			-4.00			1/2" Ice	4.60	1.61	0.09
	-		0.00	0.0000	1.00.00		4.0.0	1.41	0.05
TD-RRH8x20-25	В	From Face	9.00 -4.00	0.0000	170.00	No Ice 1/2" Ice	4,32 4,60	1.41 1.61	0.07 0.09
(Sprint)			-4.00			1/2 100	4.00	1.01	0.09
TD-RRH8x20-25	С	From Face	9.00	0.0000	170.00	No Ice	4.32	1.41	0.07
(Sprint)			-4.00			1/2" Ice	4.60	1.61	0.09
			0.00						
PiROD 10' Lightweight	А	From Leg	2.00	0.0000	125.50	No Ice	9.30	9.30	0.25
T-Frame (T-Mobile)			0.00 0.00			1/2" Ice	14.50	14.50	0.34
PiROD 10' Lightweight	В	From Leg	2.00	0.0000	125.50	No Ice	9.30	9.30	0.25
T-Frame	B	110111 205	0.00	0.0000	120,00	1/2" Ice	14.50	14.50	0.34
(T-Mobile)			0.00						
PiROD 10' Lightweight	С	From Leg	2.00	0.0000	125.50	No Ice	9.30	9.30	0.25
T-Frame			0.00			1/2" Ice	14.50	14.50	0.34
(T-Mobile) AIR B2A/B4P	٨	From Leg	0.00 4.00	0.0000	125.50	No Ice	6.42	4.22	0.08
(T-Mobile)	A	riom Leg	3.00	0.0000	162.00	1/2" lce	6.86	4.22	0.08
(1.1.00110)			0.00				0.00		J.1 20
AIR B2A/B4P	В	From Leg	4.00	0.0000	125.50	No Ice	6.42	4,22	0.08
(T-Mobile)			3.00			1/2" Ice	6.86	4.64	0,12
	C	Europe I	0.00	0.0000	125.50	Ma I	6 42	4.22	0.00
AIR B2A/B4P (T-Mobile)	С	From Leg	4.00 3.00	0.0000	125.50	No Ice 1/2" Ice	6.42 6.86	4.22 4.64	0.08
(1-14100110)			0.00			1/2 100	0.00	7.04	0.12
AIR B2A/B4P	А	From Leg	4.00	0.0000	125.50	No Ice	6.42	4.22	0.08
(T-Mobile)		U	-3.00			1/2" Ice	6.86	4.64	0.12
	-		0.00	0.00			< 1-		
AIR B2A/B4P	В	From Leg	4.00	0.0000	125.50	No Ice	6.42	4.22	0.08
(T-Mobile)			-3.00 0.00			1/2" Ice	6.86	4.64	0.12
AIR B2A/B4P	С	From Leg	4.00	0.0000	125.50	No Ice	6.42	4.22	0.08
(T-Mobile)	2		-3.00		00	1/2" Ice	6.86	4.64	0.12
			0.00						
Twin PCS TMA	А	From Leg	4.00	0.0000	125.50	No Ice	0.77	0.36	0.01
(T-Mobile)			3.00			1/2" Ice	0.96	0.52	0.02

tnxTower	Job	PiROD U20'-0"x170' Lattice Tower	Page 16 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project	TWS-027 Rev. 1 / Cromwell, CT Tower	Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	Leg		Lateral						
			Vert	0	0		c.)	c.7	
			ft	0	ft		ft^2	ft^2	K
			ft ft						
Twin PCS TMA	В	From Leg	4.00	0.0000	125.50	No Ice	0.77	0.36	0.01
(T-Mobile)			3.00			1/2" Ice	0.96	0.52	0.02
			0.00						
Twin PCS TMA	С	From Leg	4,00	0.0000	125.50	No lce	0.77	0.36	0.01
(T-Mobile)			3.00			1/2" Ice	0.96	0.52	0.02
			0.00						
LNX-6515DS-VTM w/ 6' 2"	А	From Leg	4.00	0.0000	125.50	No Ice	11,45	9.12	0.07
sch 40 Piipe Mount			0.00			1/2" Ice	12.06	10.21	0.15
(T-Mobile)			0.00						
LNX-6515DS-VTM w/ 6' 2"	В	From Leg	4.00	0.0000	125.50	No Ice	11.45	9.12	0.07
sch 40 Piipe Mount			0.00			1/2" Ice	12.06	10.21	0.15
(T-Mobile)			0.00						
LNX-6515DS-VTM w/ 6' 2"	С	From Leg	4.00	0.0000	125.50	No Ice	11.45	9.12	0.07
sch 40 Piipe Mount			0.00			1/2" Ice	12.06	10.21	0.15
(T-Mobile)			0.00						
RRUS-11	А	From Leg	4.00	0.0000	125,50	No Ice	3.26	1.38	0.05
(T-Mobile)			0.00			1/2" Ice	3.50	1.56	0.07
			0.00						
RRUS-11	В	From Leg	4.00	0.0000	125.50	No Ice	3.26	1.38	0.05
(T-Mobile)			0.00			1/2" Ice	3.50	1.56	0.07
	~ ~		0.00						
RRUS-11	С	From Leg	4.00	0.0000	125.50	No Ice	3.26	1.38	0.05
(T-Mobile)			0.00			1/2" Ice	3.50	1.56	0.07
			0.00						

	Dishes											
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight	
				ft	0	0	ft	ft		ft^2	K	
3' Dish	A	Paraboloid w/o Radome	From Leg	2.00 0.00 0.00	0.0000		83.00	3.00	No Ice 1/2" Ice	7.07 7.47	0.23 0.27	
VHLP2.5-180 (Clearwire)	A	Paraboloid w/o Radome	From Face	6.00 0.00 0.00	0.0000		134.00	2.50	No Ice 1/2" Ice	4.90 5.24	0.07 0.10	
VHLP2.5-180 (Clearwire)	А	Paraboloid w/o Radome	From Face	6.00 -7.00 0.00	0.0000		134,00	2.50	No Ice 1/2" Ice	4.90 5.24	0.07 0.10	
VHLP2.5-180 (Clearwire)	В	Paraboloid w/o Radome	From Face	6.00 -7.00 0.00	0.0000		134.00	2.50	No Ice 1/2" Ice	4.90 5.24	0.07 0.10	
VHLP2-180 (Clearwire)	С	Paraboloid w/o Radome	From Face	6.00 0.00 0.00	0.0000		134.00	2.00	No Ice 1/2" Ice	3.14 3.41	0.03 0.04	
HPD2-4,7	С	Paraboloid w/Radome	From Face	9,00 0.00 0.00	0.0000		168.00	2.00	No Ice 1/2" Ice	3.14 3.41	0.03 0.04	

tnxTower	Job PiROD U20'-0''x170' Lattice Tower	Page 17 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project TWS-027 Rev. 1 / Cromwell, CT Tower	Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Truss-Leg Properties

Section Designation	Area	Area Ice	Self Weight	Ice Weight	Equiv Diameter	Equiv. Diameter Ice	Leg Area
	in^2	in ²	Κ	K	In	in	in ²
Pirod 105244	1026.8606	1727.9786	0,56	0.21	7.1310	11.9999	3.6816
Pirod 105216	1998.0891	3357.4497	0.51	0.43	6,9378	11.6578	3.6816
Pirod 105217	2130.7479	3520,4599	0.62	0.44	7.3984	12.2238	5,3014
Pirod 105217	2130,7479	3520.4599	0.62	0.44	7,3984	12.2238	5.3014
Pirod 105217 reinf w/ 1" dia bar	2291,5652	3727,7657	0,79	0.46	7,9568	12.9436	7.6570
Pirod 105218 reinf w/ 1" dia bar	2425.8928	3907.6826	0,95	0.48	8.4232	13.5683	9.9280
Pirod 105219	2441.8688	3942.2854	0.94	0.49	8.4787	13.6885	9.4248
Pirod 105219 reinf w /1" dia bar	2571.0468	4121.6676	1.11	0.50	8.9272	14,3113	11,7803
Pirod 105220 reinf w/ 1" dia bar	2697,7688	4300.8949	1,29	0,51	9,3673	14.9337	14,2843

Tower Pressures - No Ice

Section	Ζ	Kz	q_z	A_G	F	AF	A_R	Alug	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	ft^2		ft ²	ft^2
T1	160.00	1.57	29	102.917	A	0,000	52.765	5.833	11.06	0.000	0.000
170.00-150.00					В	0.000	46.004		12.68	0.000	0.000
					C	0.000	16.568		35.21	0.000	0.000
T2	145.00	1.526	28	66.055	A	5.292	37.009	11.905	28.14	0.000	0.000
150.00-140.00					В	5.476	33.509		30.54	0,000	0.000
					С	5.476	13.755		61.91	0.000	0.000
T3	130.00	1.48	27	162,111	Α	10.178	78.107	23.165	26.24	0.000	0.000
140.00-120.00					В	9.618	88.149		23.69	0.000	0.000
					C	10.467	34.200		51.86	0.000	0.000
T4	110.00	1.411	26	202.528	Α	13.676	106.080	24.703	20.63	0.000	0.000
120.00-100.00					В	12.753	113.432		19.58	0.000	0.000
					С	13.085	91.822		23.55	0.000	0.000
T5	95.00	1,353	25	116.264	A	6.447	74.051	12.351	15.34	0.000	0.000
100.00-90.00					В	6.082	56.716		19.67	0.000	0.000
					С	6.098	68,599		16,54	0.000	0,000
T6 90.00-80.00	85.00	1.31	24	126.517	А	6.849	74.983	13.283	16.23	0.000	0,000
					В	6.499	57.648		20.71	0.000	0.000
					С	6.420	72.265		16.88	0.000	0.000
T7 80.00-60.00	70.00	1.24	23	283.450	А	14.936	151.524	28,124	16,90	0.000	0.000
		1			В	14.269	116.854		21.45	0.000	0.000
					С	13.982	150.334		17.12	0.000	0.000
T8 60.00-40.00	50.00	1.126	21	323.362	Α	19.403	151,709	28.309	16.54	0.000	0.000
					В	18.662	117.039		20.86	0.000	0.000
					С	18,343	150,519		16.76	0.000	0.000
T9 40 00-20 00	30.00	1	18	363.756	А	21.437	154.657	29.807	16.93	0.000	0.000
					В	20.722	119.987		21.18	0.000	0.000
					С	20.414	152.017		17.29	0.000	0.000
T10 20.00-0.00	10.00	1	18	404.134	Α	26.964	113.371	31.276	22,29	0.000	0.000

$G_H = 1.125$

tnxTower	Jop	PiROD U20'-0"x170' Lattice Tower	Page 18 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project	TWS-027 Rev. 1 / Cromwell, CT Tower	Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Section	Z	Kχ	q_z	A _G	F	AF	A _R	Aleg	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
					В	26.446	90,836		26.67	0.000	0.000
					С	26.223	110.713		22.84	0,000	0,000

Tower Pressure - With Ice

Section	Z	Kz	q_i	tz	A_G	F	A_F	A_R	Aleg	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Out
					- 2	С			. 1		Face	Face
ft	ft		psf	în	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
T1	160.00	1.57	22	0.5000	104.583	А	3.517	82.422	9.167	10,67	0.000	0,000
170.00-150.00						В	0.000			12.27	0.000	0.000
						С	3.517			29.31	0.000	0.000
T2	145.00	1.526	21	0.5000	66.890		6.957	58.049	20.033	30.82	0.000	0.000
150.00-140.00						В	5.476		~ I	33,73	0.000	0.000
						С	7.234	23.901		64.34	0.000	0.000
T3	130.00	1.48	21	0.5000	163.780	Α	13.549	124.661	38.924	28.16	0.000	0.000
140.00-120.00						В	24.452	128.129		25.51	0.000	0.000
						С	13.984	54.140		57.14	0.000	0.000
T4	110.00	1.411	20	0,5000	204.197	А	17.047	155.568	40.814	23,64	0.000	0.000
120.00-100.00						В	33.947	154.770		21.63	0.000	0.000
						С	25.867	115,341		28,90	0.000	0.000
T5 100.00-90.00	95.00	1,353	19	0.5000	117.098	Α	8.148	100.462	20.407	18.79	0.000	0,000
						В	16.813	77.332		21.68	0.000	0.000
						С	14.140	81.784		21.27	0.000	0.000
T6 90.00-80.00	85.00	1.31	18	0.5000	127.351	Α	8.553	101.798	21.609	19.58	0.000	0.000
						В	17.250	78.679		22.53	0.000	0.000
						С	16.035	85.234		21.34	0.000	0.000
T7 80.00-60.00	70.00	1.24	17	0.5000	285.119	Α	18.347	206.096	45.303	20.18	0.000	0.000
						В	35.816	159,883	-	23,15	0.000	0.000
						С	34.534	178.571		21.26	0.000	0.000
T8 60.00-40.00	50.00	1.126	16	0,5000	325.031	Α	22.803	207.064	45.704	19.88	0.000	0.000
ŝ.				241		В	40,107	160.874		22,74	0.000	0.000
						С	38,778	179.569		20.93	0.000	0.000
T9 40.00-20.00	30.00	1	14	0.5000	365.425	А	24.841	212,976	47.784	20.09	0.000	0.000
						В	42.203	166.803		22.86	0.000	0.000
						С	40.890	182.252		21.41	0.000	0.000
T10 20.00-0.00	10.00	1	14	0.5000	405.803	Ă	29.168	162.109	49.862	26.07	0.000	0.000
		~ _				В	40.336	132.104		28.92	0.000	0.000
						ĉ	39,449	140.036		27.78	0.000	0.000

$G_H = 1.125$

Tower Pressure - Service

 $G_H = 1.125$

Γ	Section Elevation	2	Kz	qz	A _G	F a	A_F	A_R	Alcg	Leg %	$C_A A_A$ In	$C_A A_A$ Out
	ft	ft		psf	fl^2	с е	ft^2	ft^2	ft ²		Face ft ²	Face ft^2
ſ	T1	160.00	1.57	10	102,917	А	0.000	52,765	5.833	11.06	0.000	0.000
1	170.00-150.00					В	0.000	46.004		12.68	0.000	0.000

Job

Project

Client

PiROD U20'-0"x170' Lattice Tower

Page 19 of 43

Date

URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

Sprint / T-Mobile (TWS-027)/(EBI-002))
---------------------------------------	---

TWS-027 Rev. 1 / Cromwell, CT Tower

11:32:54 09/23/14 Designed by MCD

Section	Z	Kz	qz	A _G	F	A _F	A_R	Aleg	Leg	$C_A A_A$	$C_A A_A$
Elevation					a				%	In	Out
G	0		- (ft^2	С	ft^2	ft^2	ft^2		Face	Face
	ft		psf	II	e		-	Jt	0.5.01	ft^2	ft ²
T2	145.00	1.500	10	(())55	C	0.000	16.568	11.005	35.21	0.000	0,000
150.00-140.00	145.00	1.526	10	66.055	A	5.292	37.009	11,905	28.14	0.000	0.000
130.00-140.00					B C	5.476 5.476	33.509		30.54	0.000	0.000
T3	120.00	1.40	9	162.111	-		13.755	22.165	61.91	0,000	0.000
140.00-120.00	130.00	1,48	9	102.111	A	10.178	78.107	23.165	26.24	0.000	0,000
140 00-120.00					B	9.618	88.149		23.69	0.000	0.000
T4	110.00	1.411	9	202,528	C	10.467	34,200 106,080	24.702	51.86	0.000	0.000
120.00-100.00	110.00	1.411	9	202,528	A	13.676		24,703	20.63	0.000	0.000
120.00-100.00					B C	12.753	113.432		19,58	0.000	0,000
T5	95.00	1.353	9	116.264	-	13.085	91.822	12.261	23.55	0.000	0,000
100.00-90.00	95.00	1.555	9	110.204	A	6.447	74.051	12.351	15.34	0.000	0.000
100.00-90.00					B C	6.082 6.098	56.716 68.599		19.67	0.000	0.000
Т6 90.00-80.00	85.00	1.31	8	126.517	A	6.849	74.983	12 202	16.54	0.000	0.000
10 90 00-80.00	65.00	1.51	0	120.317	B	6.499	57.648	13.283	16.23 20.71	0.000	0.000
					Б С	6.499	72.265		16.88	0.000	0.000
Т7 80.00-60.00	70.00	1.24	8	283.450	A	14.936	151.524	28,124	16.88	0.000	0.000 0.000
17 80.00-00.00	70.00	1.24	0	203,450	B	14.930	116.854	20,124	21.45	0.000	0.000
					Б С	14.209	150,334		17.12	0.000	0.000
T8 60.00-40.00	50.00	1.126	7	323.362	A	19.403	150.554	28.309	16.54	0.000	0.000
18 00.00-40.00	50.00	1.120		525,502	B	19.403	117.039	20.309	20.86	0.000	0.000
					Б С	18.343	150.519		16.76	0.000	0.000
Т9 40.00-20.00	30.00	1	6	363,756	A	21.437	154.657	29.807	16.93	0.000	0.000
13 40.00-20,00	30.00	1	U	505.750	B	20.722	119.987	29.007	21.18	0.000	0.000
					Б С	20.722	152.017		17.29	0.000	0.000
T10 20.00-0.00	10.00	1	6	404.134	A	26.964	113.371	31.276	22.29	0.000	0.000
110 20.00-0.00	10.00	1	0	-04.154	B	26,904	90.836	51,270	26.67	0.000	0.000
					C	26.223	110.713		20.07	0.000	0.000
					U.	20.223	110.715		22.04	0.000	0.000

Tower Forces - No Ice - Wind Nor	mal To Face
----------------------------------	-------------

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	a									Face
			С									
ft	K	K	е						ft^2	K	plf	
T1	0.24	1.16	A	0.513	1.884	0.704	1	1	37.149	2.29	114.29	A
170.00-150.00			B	0,447	1.978	0.672	1	1	30.910			
			С	0.161	2.732	0.583	1	1	9.663			
T2	0.16	1.12	Α	0.64	1.785	0.779	□瘣1	1	34.128	1,93	193.38	A
150.00-140.00			В	0.59	1.81	0.748	1	1	30.529			
			С	0.291	2.32	0.613	1	1	13.910			
T3	0.44	2.09	Α	0.545	1.849	0.721	1	1	66.514	4.23	211.37	В
140.00-120.00			В	0.603	1.802	0.755	1	1	76.214			
			С	0.276	2.363	0.609	1	1	31.285			
T4	0.91	2.80	A	0.591	1.81	0.748	1	1	93.057	5.25	262.50	B
120.00-100.00			В	0.623	1.792	0.768	1	Ĩ.	99.866			
			С	0.518	1.878	0.707	1	1	77,988			
Т5	0.62	1.48	Α	0.692	1.776	0.814	1	1	66.761	3.34	333.60	Α
100.00-90.00			В	0.54	1.853	0.719	1	1	46.850	22		
			С	0.642	1.784	0.781	1	1	59.641			
Т6	0.63	1.76	Α	0,647	1.782	0.783	1	E	65.589	3.19	318.69	А
90.00-80.00			В	0.507	1,891	0.701	1	1	46.917	~		
			С	0.622	1.792	0.767	1	1	61.867			
Т7	1,26	4.33	A	0.587	1.812	0.746	3	1	127.956	5.98	299.04	А
80.00-60.00			В	0.463	1.953	0.679	1	1	93.629			
			С	0.58	1.818	0.741	1	1	125.437			
Т8	1.26	4.45	Α	0.529	1.865	0.713	1	1	127.543	5.57	278.60	А

tnxTower	Job	PiROD U20'-0"x170' Lattice Tower	Page 20 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project	TWS-027 Rev. 1 / Cromwell, CT Tower	Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Section Elevation	Add Weight	Self Weight	F a	е	C_F	R_R	D_F	D_R	A _E	F	W	Ctrl Face
Lievanon	neight	" cigni	c									Tuce
ft	K	K	e						ft^2	K	plf	
60.00-40.00			В	0.42	2.026	0.66	1	1	95.887		- Care	-
			C	0.522	1.873	0.709	1	1	125.073			
Т9	1.27	5,44	A	0.484	1.922	0.69	1	1	128.076	5.12	255.98	A
40.00-20.00			В	0.387	2.091	0.646	1	1	98.271			
			C	0.474	1.936	0.685	1	1	124.485			
T10	0.83	6.08	Α	0.347	2.178	0,631	1	1	98.557	4.47	223,27	A
20.00-0.00			В	0,29	2.322	0.613	1	1	82.124			
			C	0.339	2.198	0.629	1	1	95.812			
Sum Weight:	7.61	30.71						OTM	3256.52	41,36		
									kip-ft			

	Tower Forces - No Ice - Wind 45 To Face												
Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A _E	F	W	Ctrl.	
Elevation	Weight	Weight	a				- /	- 6	2	_		Face	
	0	8	с										
ft	K	K	е						ft^2	K	plf		
T1	0.24	1.16	A	0.513	1.884	0.704	0.825	1	37.149	2.29	114.29	А	
70.00-150.00			В	0.447	1.978	0.672	0.825	1	30.910				
			C	0.161	2.732	0.583	0.825	1	9,663				
T2	0.16	1,12	A	0.64	1.785	0.779	0.825	1	33.202	1.88	188.14	А	
150.00-140.00			В	0.59	1.81	0.748	0.825	1	29.570				
			C	0.291	2.32	0.613	0.825	1	12,952				
T3	0.44	2.09	Α	0.545	1.849	0,721	0.825	1	64.733	4.13	206.70	В	
140.00-120.00			В	0.603	1.802	0.755	0.825	1	74,531				
			C	0.276	2.363	0.609	0.825	1	29.454				
T4	0.91	2.80	A	0.591	1.81	0.748	0.825	1	90.664	5,13	256.63	В	
20.00-100.00			В	0.623	1.792	0.768	0.825	1	97.634				
			С	0.518	1.878	0.707	0.825	1	75.698				
T5	0.62	1.48	Α	0.692	1.776	0.814	0.825	1	65,632	3.28	327.96	А	
100.00-90.00			В	0.54	1.853	0.719	0.825	1	45.785				
			C	0.642	1.784	0.781	0.825	1	58.574				
Т6	0.63	1.76	A	0.647	1.782	0.783	0.825	1	64.390	3.13	312.87	А	
90.00-80.00			В	0,507	1,891	0.701	0.825	1	45.780				
			С	0.622	1.792	0.767	0.825	1	60,743				
T7	1.26	4.33	Α	0.587	1.812	0,746	0.825	1	125,342	5.86	292.93	А	
80.00-60.00			В	0.463	1.953	0,679	0.825	1	91.132				
			С	0.58	1.818	0.741	0.825	1	122.990				
T8	1.26	4.45	Α	0,529	1,865	0.713	0.825	1	124,147	5.42	271,18	А	
60.00-40.00			В	0.42	2.026	0.66	0.825	1	92.621				
			С	0.522	1.873	0.709	0.825	Ĩ	121.863				
T9	1.27	5.44	A	0.484	1.922	0.69	0.825	1	124.325	4.97	248.49	А	
40.00-20.00			В	0.387	2.091	0.646	0.825	I	94.645				
			С	0.474	1,936	0.685	0.825	1	120,912				
T10	0.83	6.08	Α	0.347	2.178	0.631	0.825	1	93.838	4.25	212.58	А	
20,00-0.00			В	0.29	2.322	0,613	0.825	1	77.496				
			С	0.339	2.198	0.629	0.825	1	91.223				
Sum Weight:	7.61	30.71						OTM	3190.95	40,35			
5	24	~							kip-ft	26.5			

Tower Forces - No Ice - Wind 60 To Face

tnxTower	Job	PiROD U20'-0"x170' Lattice Tower	Page 21 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project	TWS-027 Rev. 1 / Cromwell, CT Tower	Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Section Elevation	Add Weight	Self Weight	F a	е	C_F	R_R	D_F	D_R	A _E	F	W	Ctrl. Face
	0	0	С									
ft	K	K	e						ft^2	K	plf	
Tl	0.24	1.16	A	0.513	1.884	0.704	0.8	1	37,149	2,29	114.29	A
170.00-150.00			В	0.447	1.978	0.672	0.8	1	30,910			
			С	0,161	2.732	0.583	0.8	1	9.663			
T2	0.16	1.12	A	0.64	1.785	0.779	0.8	1	33.069	1.87	187.39	A
150.00-140.00			В	0.59	1.81	0.748	0.8	1	29.433			
			C	0.291	2.32	0,613	0.8	1	12.815			
Т3	0.44	2,09	Α	0.545	1.849	0,721	0.8	1	64.478	4.12	206.03	В
140.00-120.00			В	0.603	1.802	0.755	0.8	1	74.291			
			С	0.276	2.363	0.609	0.8	1	29.192			
T4	0.91	2,80	A	0,591	1.81	0.748	0.8	1	90.322	5.12	255.80	В
120.00-100.00			В	0.623	1.792	0,768	0.8	Ű.	97,316			
			С	0.518	1.878	0,707	0.8	1	75.371			
T5	0.62	1.48	Α	0.692	1.776	0,814	0.8	1	65.471	3.27	327,16	A
100.00-90.00			В	0.54	1.853	0.719	0.8	1	45.633			
8			С	0.642	1.784	0.781	0.8	1	58,421			
Т6	0.63	1.76	Α	0.647	1.782	0.783	0.8	1	64.219	3:12	312.03	A
90.00-80.00			В	0,507	1.891	0.701	0.8	1	45.617			
			С	0.622	1.792	0.767	0.8	1	60.583			
T7	1.26	4.33	Α	0.587	1.812	0.746	0.8	1	124.968	5.84	292.06	A
80.00-60.00		1.5	В	0.463	1.953	0.679	0,8	1	90.775			
			С	0.58	1.818	0.741	0.8	1	122,641			
Т8	1.26	4.45	Α	0.529	1.865	0.713	0.8	1	123.662	5.40	270.13	A
60.00-40.00			В	0.42	2.026	0.66	0.8	1	92.154			
			С	0.522	1.873	0.709	0.8	1	121.404			
Т9	1.27	5.44	Α	0.484	1,922	0.69	0.8	1	123.789	4.95	247,41	A
40.00-20.00			В	0.387	2.091	0.646	0.8	1	94.127			
			С	0.474	1,936	0.685	0.8	1	120.402			
T10	0.83	6.08	Ā	0.347	2.178	0.631	0.8	1	93.164	4.22	211.05	А
20,00-0,00			В	0.29	2,322	0.613	0.8	1	76.835			
			C	0.339	2.198	0.629	0.8	1	90.567			
Sum Weight:	7.61	30.71	-					OTM	3181.59	40.20		
		/ 1							kip-ft			

	Tower Forces - No Ice - Wind 90 To Face													
Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl		
Elevation	Weight	Weight	a									Face		
			С											
ft	K	K	е						ft^2	K	plf			
Tl	0.24	1.16	Α	0.513	1.884	0.704	0.85	1	37.149	2.29	114.29	А		
170.00-150.00			В	0.447	1.978	0.672	0.85	1	30.910					
			C	0.161	2.732	0.583	0.85	1	9.663					
T2	0.16	1.12	A	0.64	1.785	0.779	0.85	1	33.334	1.89	188.89	А		
150.00-140.00			В	0.59	1.81	0,748	0.85	1	29,707					
			C	0.291	2,32	0.613	0.85	1	13.089					
Т3	0.44	2.09	Α	0.545	1.849	0.721	0.85	1	64.987	4.15	207.37	В		
140.00-120.00			В	0,603	1.802	0.755	0.85	1	74.772					
			С	0.276	2.363	0.609	0,85	1	29.715					
T4	0.91	2.80	A	0,591	1.81	0.748	0.85	Ĩ.	91.006	5.15	257.47	В		
120.00-100.00			В	0.623	1.792	0.768	0.85	1	97.953					
			C	0.518	1.878	0.707	0.85	1	76.025					
T5	0.62	1.48	Α	0.692	1.776	0.814	0.85	1	65,794	3,29	328,77	А		
100.00-90.00			В	0.54	1.853	0.719	0.85	1	45.937					
			С	0,642	1.784	0.781	0.85	1	58.726					
Т6	0.63	1.76	Α	0.647	1,782	0.783	0.85	1	64.561	3.14	313.70	А		
90.00-80.00			В	0.507	1.891	0.701	0.85	1	45.942					

tnxTower	dop	PIROD U20'-0"x170' Lattice Tower	Page 22 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project	TWS-027 Rev. 1 / Cromwell, CT Tower	Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Section Elevation	Add Weight	Self Weight	F a	е	C_F	R_R	D_F	D_R	AE	F	w	Ctrl. Face
ft	K	K	с е						ft ²	K	plf	
			С	0.622	1.792	0.767	0.85	1	60.904			
T7	1,26	4.33	A	0.587	1.812	0,746	0.85	1	125,715	5,88	293,80	А
80,00-60,00			В	0.463	1.953	0.679	0.85	1	91.488			
			С	0.58	1,818	0.741	0.85	1	123.340			
Т8	1.26	4,45	A	0.529	1.865	0.713	0.85	1	124.632	5.44	272.24	А
60.00-40.00			В	0.42	2.026	0.66	0.85	1	93.087			
			С	0.522	1.873	0.709	0.85	1	122,322			
Т9	1.27	5.44	Α	0.484	1.922	0.69	0.85	1	124.860	4.99	249,56	Α
40.00-20.00			В	0.387	2.091	0.646	0.85	1	95.163			
1,000 K			С	0.474	1.936	0.685	0.85	1	121.422			
T10	0.83	6.08	Α	0.347	2.178	0.631	0.85	1	94.512	4.28	214.10	А
20.00-0.00			В	0,29	2.322	0.613	0.85	1	78.157	~		
			С	0.339	2.198	0.629	0.85	1	91.878			
Sum Weight:	7.61	30.71						OTM	3200.32	40.49		
									kip-ft			

Section Elevation	Add Weight	Self Weight	F a	е	C_F	R_R	D_F	D_R	A _E	F	W	Ctrl. Face
ft	K	Κ	с е						ft ²	K	plf	
T1	0.67	1.49	A	0.822	1.834	0.914	1	1	78.881	3.54	177.15	A
170.00-150.00			В	0.714	1.778	0.83	1	1	62.028			
- C2			С	0.299	2,299	0,616	1	1	20.604			
T2	0.43	1.64	Α	0.972	2.044	1	1	1	65.006	3.16	316.37	А
150.00-140.00			В	0.888	1.907	0.972	1	1	57,882			
			С	0.465	1.949	0.68	1	1	23,498	I		
Т3	1.28	3.77	Α	0.844	1.855	0.933	1	1	129.881	6.95	347.34	в
140.00-120.00	10 I	25	В	0.932	1.972	1	1	1	152.582			
			C	0.416	2.033	0.658	1	1	49.621			
T4	2.50	4.64	Α	0.845	1.857	0.934	1	1	162.417	8.14	407.09	в
120.00-100.00			В	0.924	1.96	1	1	1	188.717			
			С	0.692	1.776	0.814	1	1	119.741			
T5	1.67	2.39	Α	0.928	1,966	1	1	1	108.610	4.51	450.57	А
100.00-90.00			В	0.804	1.819	0.9	1	1	86.385			
			С	0.819	1.831	0.912	1	1	88.747			
Т6	1.71	2.70	Α	0.867	1.88	0.953	1	1	105:559	4.06	405.79	А
90.00-80.00			В	0.753	1.789	0.859	1	Ĩ.	84.866			
		0	С	0.795	1.813	0.892	1	1	92.106			
Т7	3.48	6.30	Α	0.787	1.807	0.886	1	1	200.955	7.02	351.19	А
80.00-60.00			В	0.686	1.776	0.81	1	1	165.364			
			C	0.747	1.786	0.855	1	1	187.195			
Т8	3.48	6.58	A	0,707	1.777	0,825	1	1	193.648	6.04	302.22	А
60.00-40.00			В	0.618	1.794	0.765		1	163.176			
			C	0.672	1,777	0.8	1	1	182.461			
Т9	3.51	7.67	A	0.651	1.781	0.786	1	1	192.241	5.34	267,14	А
40.00-20.00			В	0.572	1.824	0.737	1	1	165.109			
			C	0.611	1.798	0.76	1	1	179.432			
T10	2.30	8.52	A	0.471	1.94	0.683	1	1	139,939	4.24	211.79	А
20.00-0.00			в	0.425	2.017	0.662	1	1	127.801			
-			C	0.442	1.986	0.67	1	1	133,241			
Sum Weight:	21.02	45.71						OTM	4593.81	53.01		
-									kip-ft			

tnxTower	Job	PiROD U20'-0"x170' Lattice Tower	Page 23 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project	TWS-027 Rev. 1 / Cromwell, CT Tower	Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

		Т	ow	ver Fo	rces	- Wi	th ic	e - V	Vind 45	5 To Fac	е	
		<u> </u>		,	<u> </u>	- D		<u> </u>	r .			
Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
ft	K	K	с е						ft^2	K	plf	
T1	0.67	1.49	A	0,822	1,834	0.914	0.825		78.265	3,52	175.77	A
170.00-150.00			В	0.714	1.778	0.83	0.825	1	62.028			
			C	0.299	2.299	0.616	0,825	1	19.988			
T2	0.43	1.64	A	0.972	2.044	1	0.825	1	63,789	3.10	310.45	A
150.00-140.00			В	0.888	1.907	0.972	0.825	1	56,923			
			C	0,465	1.949	0.68	0.825	1	22.232			
T3	1.28	3.77	Α	0.844	1.855	0.933	0.825	1	127.510	6.75	337.60	В
140.00-120.00			В	0.932	1.972	1	0.825	1	148.302			
			C	0.416	2.033	0.658	0.825	1	47.174			
T4	2.50	4.64	A	0.845	1.857	0,934	0.825	1	159.433	7.89	394.28	В
120.00-100.00			В	0.924	1.96	1	0.825	1	182.776			
			С	0,692	1.776	0.814	0.825	1	115,214			
T5	1.67	2.39	A	0.928	1.966	1	0.825	1	107.184	4.45	444.65	A
100.00-90.00			В	0.804	1.819	0.9	0.825	1	83.443			
			C	0.819	1,831	0.912	0.825	1	86.273			
T6	1.71	2.70	A	0.867	1.88	0.953	0.825	1	104.062	4.00	400.04	A
90.00-80.00			В	0.753	1.789	0.859	0.825	1	81.847			
125 116			C	0.795	1.813	0,892	0,825	1	89.300			
T7	3.48	6.30	A	0.787	1.807	0.886	0.825	1	197.745	6.91	345.58	А
80.00-60.00			В	0,686	1,776	0.81	0.825	1	159,096			
			C	0.747	1.786	0.855	0.825	1	181.152			
Т8	3.48	6.58	Α	0.707	1.777	0.825	0.825	1	189.657	5.92	295.99	Α
60.00-40.00			В	0.618	1.794	0.765	0,825	1	156.157		~	
			С	0.672	1.777	0.8	0.825	1	175.675			
Т9	3.51	7.67	Α	0,651	1.781	0.786	0.825	1	187,894	5,22	261,10	А
40.00-20.00			В	0.572	1.824	0.737	0.825	1	157.723			
			С	0.611	1,798	0.76	0.825	1	172.276			
T10	2,30	8.52	Α	0.471	1.94	0.683	0.825	1	134.834	4.08	204.06	A
20.00-0.00			В	0.425	2.017	0.662	0.825	1	120.742			
			C	0.442	1.986	0.67	0.825	1	126.338			
Sum Weight:	21.02	45.71						OTM	4497.51	51.84		
									kip-ft			

Section	Add	Self	F	e	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			С						,			
ft	K	K	е						ft^2	K	plf	
T1	0.67	1.49	А	0.822	1.834	0.914	0.8	1	78,177	3.51	175.57	А
70.00-150-00			В	0.714	1.778	0.83	0.8	1	62,028			
			C	0.299	2.299	0.616	0.8	1	19.901			
T2	0.43	1.64	A	0.972	2.044	1	0.8	1	63.615	3.10	309.60	А
50.00-140.00			В	0.888	1.907	0.972	0.8	1	56.786			
			С	0,465	1.949	0.68	0.8	1	22.051			
Т3	1.28	3.77	A	0.844	1.855	0.933	0.8	1	127.171	6.72	336.21	В
40.00-120.00			В	0.932	1.972	1	0.8	1	147.691			
			С	0.416	2.033	0.658	0.8	1	46.824			
T4	2.50	4.64	A	0.845	1.857	0.934	0.8	1	159.007	7.85	392.45	В
20.00-100.00			в	0.924	1,96	1	0.8	1	181.928			

tnxTower	Jop	PiROD U20'-0"x170' Lattice Tower	Page 24 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project	TWS-027 Rev. 1 / Cromwell, CT Tower	Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
ft	K	K	с е						ft ²	K	plf	
-			С	0.692	1.776	0.814	0.8	1	114.568			
T5	1.67	2.39	Α	0.928	1.966	1	0,8	1	106,980	4.44	443,81	A
100.00-90.00			В	0.804	1.819	0.9	0.8	1	83.022			
			С	0.819	1.831	0.912	0.8	1	85.919			
T6	1.71	2.70	А	0.867	1.88	0.953	0.8	1	103.848	3,99	399.21	A
90.00-80.00			В	0.753	1.789	0.859	0.8	1	81.415			
1			С	0.795	1,813	0.892	0.8	1	88.899			
T7	3.48	6.30	Α	0.787	1.807	0.886	0.8	1	197.286	6.90	344.78	A
80.00-60.00			В	0.686	1.776	0.81	0.8	1	158.201			
			С	0.747	1.786	0.855	0.8	1	180.289			
T8	3.48	6.58	Α	0.707	1.777	0.825	0.8	1	189.087	5.90	295,10	A
60.00-40.00			В	0.618	1.794	0.765	0.8	1	155.155			
			С	0.672	1.777	0.8	0.8	1	174.705			
T9	3.51	7.67	Α	0,651	1.781	0,786	0.8	1	187.273	5.20	260.23	A
40.00-20,00			В	0.572	1.824	0.737	0.8	1	156,668			
			С	0.611	1.798	0.76	0.8	1	171.254			
T10	2.30	8.52	Α	0,471	1.94	0.683	0.8	1	134.105	4.06	202.96	A
20.00-0.00			В	0,425	2.017	0.662	0.8	1	119.734			
			C	0.442	1.986	0.67	0.8	1	125.352			
Sum Weight:	21.02	45.71						OTM	4483.75	51.67		
									kip-ft			

Tower Forces - With Ice - Wind 90 To Face

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl
Elevation	Weight	Weight	a									Face
			С									
ft	K	K	е						ft ²	K	plf	
T1	0.67	1.49	A	0.822	1.834	0.914	0.85	1	78.353	3.52	175.96	A
170.00-150.00			В	0,714	1.778	0.83	0.85	1	62.028			
			С	0.299	2.299	0.616	0.85	1	20.076			
T2	0.43	1,64	A	0.972	2.044	1	0.85	1	63.963	3.11	311.30	A
150.00-140.00			В	0.888	1.907	0.972	0.85	1	57.060			
			С	0.465	1.949	0.68	0.85	1	22.413			
T3	1.28	3.77	Α	0.844	1.855	0.933	0.85	1	127,849	6.78	338.99	В
140.00-120.00			В	0.932	1.972	1	0.85	1	148.914			
			С	0.416	2.033	0.658	0.85	1	47.523			
T4	2,50	4.64	Α	0.845	1.857	0.934	0.85	1	159.860	7.92	396.11	В
120.00-100.00			В	0.924	1.96	1	0.85	1	183,625			
			С	0.692	1.776	0.814	0.85	1	115.861			
T5	1.67	2.39	Α	0.928	1.966	1	0.85	Ĩ	107.387	4.45	445,50	A
100.00-90.00			В	0.804	1.819	0.9	0.85	1	83.863	192.5		
			С	0.819	1.831	0.912	0.85	1	86.626			
T6	1.71	2.70	Α	0.867	1.88	0.953	0.85	1	104.276	4.01	400.86	А
90.00-80.00			В	0.753	1.789	0.859	0.85	1	82,278			
			С	0.795	1.813	0.892	0.85	1	89.701			
Т7	3.48	6,30	Α	0.787	1.807	0.886	0.85	1	198,203	6.93	346.38	A
80:00-60.00		~ 1	В	0.686	1.776	0.81	0.85	1	159.991			
			C	0.747	1,786	0.855	0.85	1	182.015			
Т8	3.48	6.58	A	0,707	1.777	0.825	0.85	1	190.227	5.94	296.88	А
60.00-40.00			B	0.618	1.794	0.765	0.85	1	157,160			
2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -			C	0.672	1.777	0.8	0.85	1	176.644			
T9	3.51	7.67	A	0.651	1.781	0.786	0.85	1	188.515	5.24	261.96	А
40.00-20.00			в	0.572	1.824	0.737	0.85	1	158,778			
			C	0.611	1.798	0.76	0.85	i	173.298			
T10	2.30	8.52	Ā	0.471	1.94	0.683	0.85	i.	135.564	4.10	205,17	А

tranel	Connon
inx i	Tower

URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone; 860-529-8882 FAX: 860-529-3991

Job		Page
	PiROD U20'-0"x170' Lattice Tower	25 of 43
Project		Date
	TWS-027 Rev. 1 / Cromwell, CT Tower	11:32:54 09/23/14
Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Section Elevation	Add Weight	Self Weight	F a	е	C_F	R _R	D_F	D _R	A_E	F	Ŵ	Ctrl Face
ft	K	K	с е						ft²	K	plf	
20.00-0.00			В	0.425	2.017	0.662	0.85	1	121.751			
			С	0.442	1.986	0.67	0.85	1	127,324			
Sum Weight:	21.02	45.71						OTM	4511.26	52.01		
									kip-ft			-

Tower Forces - Service - Wind Normal To Face

Section	Add	Self	F	е	C_F	R _R	D_F	D_R	A _E	F	w	Ctrl
Elevation	Weight	Weight	а									Face
			С									
ft	K	K	е						ft^2	K	plf	
T1	0.24	1.16	A	0.513	1.884	0.704	1	1	37.149	0,79	39.55	A
170.00-150.00			В	0.447	1.978	0.672	1	1	30.910			
			C	0.161	2.732	0.583	1	1	9.663			
T2	0.16	1.12	A	0.64	1.785	0.779	1	1	34.128	0.67	66.92	A
150.00-140.00			В	0.59	1.81	0.748	1	1	30,529			
			С	0.291	2.32	0.613	1	1	13.910			
T3	0.44	2.09	A	0.545	1.849	0.721	1	1	66,514	1.46	73.14	В
140.00-120.00			В	0.603	1.802	0.755	1	1	76.214			
			С	0.276	2.363	0.609	1	1	31.285			
T4	0.91	2.80	Α	0.591	1.81	0.748	1	1	93.057	1.82	90.83	В
120.00-100.00			В	0.623	1.792	0.768	1	1	99.866		3 3	
			С	0.518	1.878	0.707	F	1	77.988			
T5	0.62	1.48	Α	0.692	1.776	0.814	I	1	66.761	1.15	115.43	A
100.00-90.00			В	0.54	1.853	0.719	1	1	46.850			
			С	0.642	1.784	0.781	1	1	59,641			
T6	0.63	1.76	Α	0.647	1.782	0.783	1	1	65.589	1.10	110.27	А
90.00-80.00			В	0.507	1.891	0.701	1	1	46.917			
			С	0.622	1.792	0.767	1	1	61.867			
T7	1.26	4.33	Α	0.587	1.812	0.746	1	1	127.956	2.07	103.47	А
80.00-60.00			В	0.463	1.953	0.679	1	Î	93.629			
			С	0.58	1.818	0.741	1	1	125.437			
Т8	1.26	4.45	Α	0.529	1.865	0.713	1	1	127.543	1.93	96.40	А
60.00-40.00			В	0.42	2.026	0.66	1	1	95.887			
3277 95			С	0.522	1.873	0.709	1	1	125.073			
Т9	1.27	5.44	Α	0.484	1.922	0.69	1	Î.	128.076	1.77	88.58	А
40.00-20.00			В	0.387	2.091	0.646	1	1	98.271		20120	
			C	0.474	1.936	0.685	1	i.	124.485			
Т10	0.83	6.08	Ă	0.347	2.178	0.631	1	1	98.557	1.55	77.25	А
20.00-0.00	100	5.50	В	0.29	2.322	0.613	i	î	82.124		11800	
30,00 0.00			Ĉ	0.339	2.198	0.629	i	î.	95.812			
Sum Weight:	7.61	30.71	č	0.007	2,170	5.027	S.	OTM	1126.82	14.31		
Sum norgini.	7.01	50.71						C IIM	kip-ft	14.51		

		Т	ow	ver Fo	rces	- Se	ervic	e - W	ind 45	To Fac	e	
Section Elevation	Add Weight	Self Weight	F a	е	C_F	R _R	D_F	D_R	A _E	F	W	Ctrl. Face
ft	K	K	e						ft^2	K	plf	
T1	0.24	1.16	A	0.513	1.884	0.704	0.825	1	37.149	0.79	39,55	Α

tnx I	ower

tnxTower	Job PiROD U20'-0''x170' Lattice Tower	Page 26 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project TWS-027 Rev. 1 / Cromwell, CT Tower	Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	AE	F	w	Ctrl,
Elevation	Weight	Weight	a									Face
			С									
ft	K	K	е						ft^2	K	plf	
170.00-150.00			В	0.447	1.978	0.672	0.825	1	30.910			
			C	0,161	2.732	0.583	0.825	1	9,663			
T2	0.16	1.12	A	0.64	1.785	0.779	0.825	- 0	33.202	0.65	65.10	A
150.00-140.00			В	0.59	1.81	0.748	0.825	1	29,570			
			С	0.291	2.32	0.613	0.825	1	12.952			
T3	0.44	2.09	A	0,545	1,849	0,721	0.825	1	64.733	1.43	71.52	В
140.00-120.00			В	0,603	1.802	0.755	0.825	1	74.531			
			С	0.276	2.363	0.609	0.825	1	29.454			
T4	0.91	2,80	Α	0.591	1.81	0.748	0.825	1	90.664	1.78	88.80	В
120.00-100.00			В	0.623	1.792	0.768	0.825	1	97.634			
			С	0.518	1.878	0,707	0.825	1	75.698			
T5	0.62	1.48	A	0.692	1.776	0.814	0.825	1	65.632	1.13	113.48	A
100.00-90.00	() ()		В	0.54	1.853	0.719	0.825	1	45,785			
			С	0.642	1.784	0.781	0.825	1	58.574			
T6	0.63	1.76	Α	0.647	1.782	0.783	0.825	1	64.390	1.08	108.26	A
90.00-80.00			В	0.507	1.891	0.701	0.825	1	45.780			
			С	0.622	1.792	0,767	0.825	1	60.743			
T7	1.26	4.33	A	0.587	1.812	0.746	0.825	1	125.342	2.03	101.36	A
80.00-60.00			В	0.463	1.953	0.679	0.825	1	91.132			
			C	0,58	1.818	0.741	0.825	1	122.990			
T8	1.26	4.45	A	0.529	1.865	0.713	0.825	1	124.147	1.88	93.84	A
60.00-40.00			В	0.42	2.026	0.66	0.825	1	92.621			
			С	0.522	1.873	0.709	0.825	1	121.863			
T9	1.27	5.44	Α	0.484	1.922	0.69	0.825	1	124.325	1.72	85.98	Α
40.00-20.00			В	0.387	2.091	0.646	0.825	1	94.645			
			С	0.474	1.936	0.685	0.825	1	120,912			
T10	0.83	6.08	А	0.347	2.178	0.631	0.825	1	93.838	1.47	73.56	А
20,00-0.00			В	0.29	2,322	0.613	0.825	1	77.496			
			С	0.339	2.198	0.629	0.825	1	91.223			
Sum Weight:	7.61	30.71						OTM	1104.14	13.96		
Ũ									kip-ft			

		Т	o w	ver Fo	rces	- Se	rvic	e - W	/ind 60	To Fac	e	
Section Elevation	Add Weight	Self Weight	F a	е	C_F	R _R	D_F	D_R	A_E	F	w	Ctrl. Face
ft	K	K	с е						ft^2	K	plf	
T1	0.24	1,16	A	0,513	1.884	0.704	0.8	1	37.149	0.79	39.55	А
170.00-150.00			В	0.447	1.978	0.672	0.8	Ĭ.	30.910			
			C	0.161	2.732	0.583	0.8	T.	9.663			
T2	0.16	1.12	A	0.64	1.785	0.779	0.8	1	33.069	0.65	64.84	Α
150.00-140.00			В	0.59	1.81	0.748	0.8	1	29.433			
			С	0.291	2.32	0.613	0.8	1	12.815			
T3	0.44	2.09	A	0.545	1.849	0.721	0.8	. <u>1</u>	64.478	1.43	71.29	В
140.00-120.00			В	0.603	1.802	0.755	0.8	1	74.291			
			С	0.276	2.363	0.609	0.8	1	29,192			
T4	0.91	2.80	A	0.591	1.81	0.748	0.8	1	90.322	1.77	88,51	В
120.00-100.00			В	0.623	1.792	0.768	0.8	1	97.316			
			С	0.518	1.878	0.707	0.8	1	75.371			
T5	0.62	1.48	A	0.692	1.776	0.814	0.8	1	65.471	1.13	113.20	А
100.00-90.00			В	0.54	1.853	0.719	0.8	1.	45.633			
			C	0.642	1.784	0.781	0.8	1	58.421			
T6	0.63	1.76	A	0.647	1.782	0.783	0.8		64.219	1.08	107.97	А
90.00-80.00			B	0.507	1.891	0.701	0.8	<u> </u>	45.617			
			C	0.622	1.792	0.767	0.8	i ba	60.583			

tnxTower	Job	PiROD U20'-0"x170' Lattice Tower	Page 27 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project	TWS-027 Rev. 1 / Cromwell, CT Tower	Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Section Elevation	Add Weight	Self Weight	F a	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl. Face
Elevation	weigni	w eigin										Face
ft	K	K	с е						ft2	K	plf	
T7	1,26	4,33	A	0.587	1.812	0.746	0.8	1	124.968	2.02	101.06	А
80.00-60.00			В	0.463	1.953	0.679	0.8	1	90.775		C:	
			C	0.58	1.818	0.741	0.8	3	122.641			
Т8	1.26	4.45	Α	0.529	1.865	0.713	0.8	1	123.662	1.87	93.47	A
60.00-40.00			В	0.42	2.026	0.66	0.8		92.154			
			С	0.522	1.873	0.709	0.8	1	121.404			
Т9	1.27	5.44	Α	0.484	1,922	0.69	0.8	1	123.789	1.71	85.61	А
40.00-20.00			В	0.387	2,091	0.646	0.8	1	94.127			
			С	0.474	1.936	0.685	0.8	1	120.402			
T10	0.83	6.08	Α	0.347	2.178	0.631	0.8	1	93,164	1.46	73.03	А
20.00-0.00			В	0.29	2.322	0.613	0.8	1	76.835			
e 99			С	0.339	2.198	0.629	0.8	1	90,567			
Sum Weight:	7.61	30.71						OTM	1100.90	13.91		
									kip-ft			

		T	้อง	ver Fo	orces	- Se	ervic	e - V	/ind 90	To Fac	e	
Section	Add	Self	F	e	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a	C	Cr	1CK	Dr	DR	ME	1	rr	Face
			С									
ft	K	K	е						ft^2	K	plf	
T1	0.24	1.16	A	0.513	1.884	0.704	0.85	1	37.149	0.79	39,55	А
170.00-150.00			В	0.447	1.978	0.672	0.85	1	30,910			
			С	0.161	2.732	0.583	0.85	1	9.663			
T2	0.16	1.12	Α	0.64	1.785	0.779	0.85	1	33,334	0.65	65.36	A
150.00-140.00			В	0.59	1.81	0.748	0.85	1	29.707			
			С	0.291	2.32	0.613	0.85	1	13.089			
T3	0.44	2.09	Α	0.545	1.849	0.721	0.85	1	64.987	1.44	71.75	В
140.00-120.00			В	0.603	1.802	0.755	0,85	1	74.772			
			С	0.276	2.363	0.609	0.85	1	29,715			
T4	0.91	2.80	Α	0.591	1.81	0.748	0.85	1	91.006	1.78	89.09	В
120.00-100.00			В	0.623	1.792	0.768	0.85	1	97.953			
			С	0.518	1.878	0.707	0.85	1	76.025			
T5	0.62	1.48	Α	0.692	1.776	0.814	0.85	1	65.794	1.14	113.76	А
100.00-90.00			В	0.54	1.853	0.719	0.85	1	45.937	1		
			С	0.642	1.784	0.781	0.85	1	58.726			
T6	0.63	1.76	A	0.647	1.782	0.783	0.85	L	64.561	1.09	108.55	A
90.00-80.00			В	0.507	1.891	0.701	0.85	L. L.	45.942			
			С	0.622	1.792	0.767	0.85	1	60,904			
T7	1.26	4.33	A	0.587	1.812	0.746	0.85	ł	125.715	2.03	101.66	A
80.00-60.00			В	0.463	1.953	0.679	0.85	I	91.488			
			С	0,58	1.818	0.741	0.85	1	123.340	()		
Т8	1.26	4.45	A	0.529	1.865	0.713	0.85	1	124.632	1.88	94.20	А
60.00-40.00			В	0,42	2.026	0.66	0.85	1	93.087			
			С	0.522	1:873	0.709	0.85	I	122.322			
T9	1.27	5,44	A	0.484	1.922	0.69	0.85	I.	124.860	1.73	86.35	A
40.00-20.00			В	0.387	2.091	0.646	0.85	1	95.163			
			С	0.474	1.936	0.685	0.85	1	121.422			
T10	0.83	6.08	A	0.347	2,178	0.631	0.85	- 1 -	94,512	1.48	74.08	A
20.00-0.00			В	0.29	2.322	0.613	0.85	1	78.157			
			С	0,339	2.198	0.629	0.85	I	91.878			
Sum Weight:	7.61	30.71						OTM	1107.38	14.01		
			_						kip-ft			

Job

Project

Client

PiROD U20'-0"x170' Lattice Tower	Page
	Date

URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

Sprint / T-Mobile (TWS-027)/(EBI-002)

TWS-027 Rev. 1 / Cromwell, CT Tower

Designed by MCD

28 of 43

11:32:54 09/23/14

Force Totals

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	Sum of Yorques
		X	Z	Moments, M_{π}	Moments, M_z	
	K	K	K	kip-ft	kip-ft	kip-ft
Leg Weight	19.74	TO ALL ALL ALL OF			State 182 States	States New U
Bracing Weight	10.97	An Arth Contra				
Total Member Self-Weight	30.71	날 먹는지 않을	A State of the	-2.00	10.22	11(2) 12 (120)
Total Weight	51.55			-2.00	10.22	
Wind 0 deg - No Ice		-0.03	-59.60	-5708.32	12.35	-22.92
Wind 30 deg - No Ice		29.27	-50.81	-4890.66	-2805.15	-22.82
Wind 45 deg - No Ice	1.5m (\$1627)	41.56	-41.28	-3973.98	-3999.37	-20.02
Wind 60 deg - No Ice		50.83	-29.04	-2795.45	-4898.94	-15.82
Wind 90 deg - No Ice		58.77	0.23	26.18	-5648.79	-5.72
Wind 120 deg - No Ice		51.69	30.08	2874.97	-4945.01	6.21
Wind 135 deg - No Ice	· · · · · · · · · · · · · · · · · · ·	41.56	41.56	3993.08	-4000.25	11.52
Wind 150 deg - No Ice	1	29.55	50.94	4892.75	-2842.34	16.76
Wind 180 deg - No Ice	and in the source	0.21	58.66	5652,84	-15.14	24.54
Wind 210 deg - No Ice	a share and the state	-29.36	50.86	4884,68	2840.92	23.16
Wind 225 deg - No Ice		-41.43	41.46	3982.65	4006.43	20.78
Wind 240 deg - No Ice		-51.57	29.98	2864.78	4952.07	18.07
Wind 270 deg - No Ice	않는 아이는 아이는 것이 같아.	-58.70	0.09	11.35	5659.73	7.95
Wind 300 deg - No Ice		-50.74	-29.22	-2816.52	4905.15	-3.95
Wind 315 deg - No Ice		-41.50	-41.41	-3988.74	4008.72	-9.92
Wind 330 deg - No Ice		-29.33	-50.88	-4897.98	2829.75	-16.05
Member Ice	15.00		11日前1日日日日			COURSE WERE
Total Weight Ice	85.61	0.02	60.00	-2.54	25.10	FOR THE PARTY AND
Wind 0 deg - Ice		-0.02	-69.88	-6864.28	26.49	-19.54
Wind 30 deg - Ice	min sve s	34.37	-59.62	-5870.13	-3357.00	-25.65
Wind 45 deg - Ice	S MORT ARA	48.70	-48.47	-4773.44	-4775.85	-25.79
Wind 60 deg - Ice	1 23 . 24 3.3	59.54	-34.13	-3360.98	-5848.07	-24.11
Wind 90 deg - Ice	"SULTONTOTAL	68.91	0.18	19.71	-6761.26	-17.16
Wind 120 deg - Ice Wind 135 deg - Ice		60.58 48.70	35.16 48.69	3446,86 4786.02	-5927.99	-5.57
Wind 155 deg - Ice Wind 150 deg - Ice	TANK R ATT	34.59	59.71		-4776.18	1.27
Wind 150 deg - Ice	ST A BULL OF DE	0.16	68.72	5869.30 6767.76	-3386.36	8.22
Wind 180 deg - Ice Wind 210 deg - Ice	6 1 3 3 3 5 1 6		59.65		5.09	20.94
Wind 210 deg - Ice Wind 225 deg - Ice		-34.44 -48.60	48.61	5863.16 4778.12	3419.61	25.93
Wind 225 deg - Ice Wind 240 deg - Ice	2011-113 × 1914	-60.49	35.08	3439.26	4815.41	26.40
Wind 240 deg - Ice Wind 270 deg - Ice		-68.86	0.07	8.47	5967.79	26.20 18.94
Wind 300 deg - Ice		-59.46	-34.27	-3377.31	6803.85 5886.54	7.00
Wind 315 deg - Ice		-48.65	-48.57	-4784.82	4816.70	0.01
Wind 330 deg - Ice		-34.41	-59.67	-5875.67	3409.98	-7.66
Total Weight	51.55		-59.07	-2.00	10.22	-7.00
Wind 0 deg - Service	51.55	-0.01	-20.62	-1978.70	2.07	-7.93
Wind 30 deg - Service		10.13	-17.58	-1695.77	-972.85	-7.93
Wind 45 deg - Service	Contraction in the second	14.38	-14.28	-1378.58	-1386.07	-6.93
Wind 60 deg - Service		17.59	-10.05	-970.79	-1697.34	-5.47
Wind 90 deg - Service		20.33	0.08	5.56	-1956.81	-1.98
Wind 120 deg - Service	The Ball South	17.89	10.41	991.30	-1713.28	2.15
Wind 135 deg - Service	1877 Part 1 - 1 - 21	14.38	14.38	1378.19	-1386.38	3.99
Wind 150 deg - Service		10.23	17.63	1689.49	-985.71	5.80
Wind 180 deg - Service	MALE REAL	0.07	20.30	1952.50	-7.45	8.49
Wind 210 deg - Service	Part of the state	-10=16	17.60	1686.70	980.81	8.01
Wind 225 deg - Service	and a state	-14.34	14.35	1374.58	1384.10	7.19
Wind 240 deg - Service	ATT AND A DESCRIPTION OF	-17.85	10.37	987.77	1711.31	6.25
Wind 270 deg - Service		-20.31	0.03	0.42	1956.18	2.75
Wind 300 deg - Service		-17.56	-10.11	-978.08	1695.07	-1.37
Wind 315 deg - Service	·治市寺34 、北市	-14.36	-14.33	-1383.69	1384.89	-3.43
Wind 330 deg - Service		-10.15	-17.61	-1698.30	976.95	-5,55
trand 550 deg Octvice		-10.15	-17.01	1020.00	210.23	-5,55

tnxTower	Job PiROD U20'-0''x170' Lattice Tower	Page 29 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project TWS-027 Rev. 1 / Cromwell, CT Tower	Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Load Combinations

Comb.		Description
No.		Description
1	Dead Only	
2	Dead+Wind 0 deg - No Ice	
3	Dead+Wind 30 deg - No Ice	
4	Dead+Wind 45 deg - No Ice	
5	Dead+Wind 60 deg - No Ice	
6	Dead+Wind 90 deg - No Ice	
7	Dead+Wind 120 deg - No Ice	
8	Dead+Wind 135 deg - No Ice	
9	Dead+Wind 150 deg - No Ice	
10	Dead+Wind 180 deg - No Ice	
11	Dead+Wind 210 deg - No Ice	
12	Dead+Wind 225 deg - No Ice	
13	Dead+Wind 240 deg - No Ice	
14	Dead+Wind 270 deg - No Ice	
15	Dead+Wind 300 deg - No Ice	
16	Dead+Wind 315 deg - No Ice	
17	Dead+Wind 330 deg - No Ice	
18	Dead+Ice+Temp	
19	Dead+Wind 0 deg+Ice+Temp	
20	Dead+Wind 30 deg+Ice+Temp	
21	Dead+Wind 45 deg+Ice+Temp	
22	Dead+Wind 60 deg+Ice+Temp	
23	Dead+Wind 90 deg+Ice+Temp	
24	Dead+Wind 120 deg+Ice+Temp	
25	Dead+Wind 135 deg+Ice+Temp	
26	Dead+Wind 150 deg+Ice+Temp	
27	Dead+Wind 180 deg+Ice+Temp	
28	Dead+Wind 210 deg+Ice+Temp	
29	Dead+Wind 225 deg+Ice+Temp	
30	Dead+Wind 240 deg+Ice+Temp	
31	Dead+Wind 270 deg+Ice+Temp	
32	Dead+Wind 300 deg+Ice+Temp	
33	Dead+Wind 315 deg+Ice+Temp	
34	Dead+Wind 330 deg+Ice+Temp	
35	Dead+Wind 0 deg - Service	
36	Dead+Wind 30 deg - Service	
37	Dead+Wind 45 deg - Service	
38	Dead+Wind 49 deg - Service	
39	Dead+Wind 90 deg - Service	
40	Dead+Wind 120 deg - Service	
41	Dead+Wind 135 deg - Service	
42	Dead+Wind 150 deg - Service	
43	Dead+Wind 180 deg - Service	
44	Dead+Wind 210 deg - Service	
45	Dead+Wind 225 deg - Service	
46	Dead+Wind 220 deg - Service	
47	Dead+Wind 270 deg - Service	
48	Dead+Wind 270 deg - Service	
40	Dead+Wind 315 deg - Service	
50	Dead+Wind 330 deg - Service	

tnxTower	Job PiROD U20'-0''x170' Lattice Tower	Page 30 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project TWS-027 Rev. 1 / Cromwell, CT Tower	Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Axis Moment
	n	VI ·		Comb.	K	kip-ft	kip-ft
T1	170 - 150	Leg	Max Tension	22	29.76	-0.04	0.05
		0	Max. Compression	19	-35.99	-0.00	0.45
			Max. Mx	24	-35.74	-0.38	-0.24
			Max. My	19	-35.99	-0.00	0.45
			Max. Vy	30	-3.91	0.05	-0.06
			Max. Vx	19	-4.53	-0.00	0.45
		Diagonal	Max Tension	26	3.41	0.00	0.00
		-	Max. Compression	26	-3.46	0.00	0.00
			Max. Mx	19	2.89	-0.00	0.00
			Max. My	22	-2.08	-0.00	0.00
			Max. Vy	19	0.01	-0.00	0.00
			Max. Vx	21	0.00	0.00	0.00
		Top Girt	Max Tension	7	0.30	0.00	0.00
			Max. Compression	15	-0.33	0.00	0.00
			Max. Mx	18	-0.01	0.01	0.00
			Max. My	31	0.01	0.00	-0.00
			Max. Vy	18	-0.01	0.00	0.00
			Max. Vx	31	0.00	0.00	0.00
		Bottom Girt	Max Tension	15	0.15	0.00	0.00
			Max. Compression	13	-0.15	0.00	0.00
			Max. Mx	18	-0.00	0.01	0.00
			Max. My	31	-0.01	0.00	-0.00
			Max. Vy	18	-0.01	0.00	0.00
-		-	Max. Vx	31	0.00	0.00	0.00
T2	150 - 140	Leg	Max Tension	22	35.03	-0.42	0.02
			Max. Compression	19	-41.87	2.80	0.28
			Max, Mx	22	34.40	-3.29	0.23
			Max. My	34	-3.47	-0.26	4.03
			Max. Vy	27	0.63	-3.27	-0.36
		D: 1	Max. Vx	30	0.87	-1.76	-3.61
		Diagonal	Max Tension	22	4.91	0.00	0.00
			Max. Compression	30	-5.45	0.00	0.00
			Max. Mx	22	4.33	0.05	0.00
			Max, My	21	-4.23	-0.02	0.02
			Max, Vy	22 21	0.02	0.05	0.00
		Ton Cirt	Max. Vx Max Tanaian	5		0.00	0.00
		Top Girt	Max Tension Max. Compression	2	0.42 -0.37	0.00 0.00	0.00 0.00
			Max. Compression Max. Mx	18	0.04	-0.02	0.00
			Max, Mx Max, My	30	0.04	-0.02	0.00
			Max, My Max, Vy	18	0.22	0.00	0.00
			Max. Vx	30	-0.00	0.00	0.00
Т3	140 - 120	Leg	Max Tension	32	-0.00	-3.70	-0.17
15	170 120	LCR	Max Compression	19	-84.43	3.69	0.03
			Max. Max	32	69.34	-4.52	-0.16
			Max. My	31	-8.47	-4.32	-6.63
			Max. Wy Max. Vy	27	0.69	-4.46	-0.05
			Max. Vx	23	-0.99	-0.41	6.59
		Diagonal	Max Tension	28	9.08	0.00	0.00
		12 raborius	Max Compression	29	-9.44	0.00	0.00
			Max. Mx	19	5,84	0.11	0.01
			Max. My	29	-7.63	-0.06	-0.02
			Max. Vy	19	-0.03	0.11	0.01
			Max. Vy	21	-0.00	0.00	0.00
T4	120 - 100	Leg	Max Tension	32	117,19	-5.13	-0.02
		-*5	Max. Compression	19	-138.35	3.39	0.02
			Max. Mx	19	-109.85	6.13	0.00
			Max. My	31	-11.38	-0.47	-7.36
			Max. Vy	32	0.98	-4.27	-0.10

tnxTowe

Job

Project

Client

PiROD	U20'-0"x170'	Lattice	Tower

Page 31 of 43 Date 11:32:54 09/23/14 Designed by

URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991

Sprint / T-Mobile (TWS-027)/(EBI-002)

TWS-027 Rev. 1 / Cromwell, CT Tower

MCD

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Axi Moment
	3	~ ~		Comb.	Κ	kip-ft	kip-ft
		Diagonal	Max Tension	21	11.55	0.00	0.00
			Max. Compression	29	-12.57	0.00	0.00
			Max. Mx	19	7.08	0.13	0.01
			Max. My	29	-12.53	-0.06	-0.05
			Max. Vy	32	0.04	0.12	-0.00
			Max. Vx	29	0.01	0.00	0.00
		Mid Girt	Max Tension	32	3.92	0.00	0.00
		inte ditt	Max. Compression	19	-3-17	0.00	0.00
			Max, Mx	18	0.41	-0.07	0.00
			Max. My	30	2.10	0.00	0.00
			Max. Vy	18	-0.03	0.00	0.00
			Max. Vy	30	-0.00	0.00	0.00
Т5	100 - 90	Lag	Max. vx Max Tension	30	144.94	-4.27	-0.10
15	100 - 90	Leg		19	-170.56	4.60	
			Max. Compression				0.02
			Max, Mx	19	-170.56	4.60	0.02
			Max. My	31	-12.60	-0.47	-7.36
			Max. Vy	19	-0.25	4.60	0.02
			Max, Vx	31	-0.49	-0.47	-7.36
		Diagonal	Max Tension	28	13.49	0.00	0.00
			Max. Compression	28	-13.72	0.00	0.00
			Max. Mx	19	10.36	0.18	0.01
			Max. My	30	-0.61	0.09	-0.02
			Max. Vy	19	-0.05	0.18	0.01
			Max. Vx	30	-0.00	0.00	0.00
T6	90 - 80	Leg	Max Tension	32	173.18	-4.32	0.01
			Max. Compression	19	-202.06	5.78	0.05
			Max. Mx	30	-201.28	5.78	-0.12
			Max. My	31	-14.57	-0.00	-4.70
			Max. Vy	27	0.39	-5.71	-0.06
			Max, Vx	31	0.28	-0.00	-4.70
		Diagonal	Max Tension	28	13.38	0.00	0.00
		e	Max, Compression	28	-13.75	0.00	0.00
			Max. Mx	19	10.28	0.15	0.01
			Max. My	30	-0.77	0.08	-0.02
			Max. Vy	19	-0.05	0.15	0.01
			Max. Vx	30	0.00	0.00	0.00
T7	80 - 60	Leg	Max Tension	32	225.41	-5.01	0.02
			Max. Compression	19	-261.48	5.55	0.01
			Max. Mx	30	-230.77	5.78	-0.12
			Max. My	34	-15.61	-0.08	5.19
			Max. Vy	22	-0.22	-5.69	0.11
			Max. Vx	34	-0.21	-0.08	5.19
		Diagonal	Max Tension	28	13.78	0.08	0.00
		Lagonal	Max. Compression	28	-14.16	0.00	0.00
			Max. Max	19	10.54	0.00	0.00
			Max. My Max. Vy	21 32	-13.53	0.02	0.02
			Max. Vy Max. Vx		0.05	0.15	-0.01
Т8	60 40	I.c		21	-0.00	0.00	0.00
10	60 - 40	Leg	Max Tension	32	273.18	-5.02	0.02
			Max. Compression	30	-317.16	5.46	-0.09
			Max. Mx	32	272.62	-6.90	-0.01
			Max, My	34	-20.30	0.06	5.99
	21		Max. Vy	22	0.31	-6.89	0.07
		-	Max. Vx	26	0.22	0.05	-5.96
		Diagonal	Max Tension	28	13.88	0.00	0.00
			Max. Compression	28	-14.24	0.00	0.00
			Max. Mx	30	10.13	0.21	-0.01
			Max. My	21	-13.64	0.00	0.03
			Max. Vy	30	-0.06	0.21	-0.01
			M M	21	-0.00	0.00	0.00
Т9			Max. Vx	Ζ1	-0.00	0.00	0.00

tnxTower	Job PiROD U20'-0''x170' Lattice Tower	Page 32 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project TWS-027 Rev. 1 / Cromwell, CT Tower	Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Section No.	Elevation ft	Component Туре	Condition	Gov. Load	Force	Major Axis Moment	Minor Axi Moment
, , , , , , , , , , , , , , , , , , ,		1)00		Comb,	Κ	kip-ft	kip-ft
			Max. Compression	30	-370.16	-0.26	0.02
			Max, Mx	32	315.12	-11.58	0.02
			Max. My	31	-21.23	-0.76	-5.82
			Max. Vy	22	0,97	-11,56	-0.01
			Max. Vx	34	0.25	2.49	5.73
		Diagonal	Max Tension	28	15.13	0.00	0.00
			Max. Compression	28	-14.76	0.00	0.00
			Max, Mx	30	10.20	0.23	-0.02
			Max. My	28	-13.32	0.04	-0.03
			Max. Vy	32	0.07	0.21	-0.02
			Max. Vx	21	-0.00	0.00	0.00
T10	20 - 0	Leg	Max Tension	32	352.05	3.77	0.03
			Max. Compression	30	-419.98	-0.00	-0.00
			Max, Mx	30	-391.92	15.47	0.01
			Max. My	31	-30.36	9.54	-9.86
			Max. Vy	22	-1.65	-11.56	-0.01
			Max, Vx	34	1.08	9.55	9.85
		Diagonal	Max Tension	21	18.81	0.00	0.00
			Max, Compression	20	-16.65	0.00	0.00
			Max. Mx	32	7.51	0.29	-0.02
			Max. My	21	-16,35	0.13	0.04
			Max. Vy	32	0.08	0.29	-0.02
			Max. Vx	21	-0.01	0.00	0.00

Maximum Reactions

Location	Condition	Gov	Vertical	Horizontal, X	Horizontal, Z
		Load	K	Κ	K
		Comb.			
Leg C	Max. Vert	30	428.62	32.54	-19.68
	Max. H _x	30	428_62	32.54	-19,68
	Max. Hz	21	-350,34	-39.23	24.55
	Min. Vert	22	-363.26	-40.90	24,42
	Min. H _x	22	-363.26	-40.90	24.42
	Min. Hz	30	428.62	32,54	-19.68
Leg B	Max. Vert	24	426.83	-32.87	-19-16
	Max. H _x	32	-365.67	41.18	24.03
	Max. Hz	32	-365.67	41.18	24.03
	Min, Vert	32	-365,67	41.18	24.03
	Min. H _x	7	348.76	-32,95	-18.84
	Min. Hz	24	426,83	-32.87	-19.16
Leg A	Max. Vert	19	427.25	-0.58	37.97
	Max. H _x	31	28.06	3.86	-5.11
	Max. Hz	19	427.25	-0.58	37.97
	Min. Vert	27	-364.57	0.59	-47.70
	Min. H _x	23	27.41	-3.86	-5.18
	Min. H _z	27	-364.57	0.59	-47.70

Tower Mast Reaction Summary						
Load Combination	Vertical	Shear _x	Shear ₂	Overturning Moment, M _x	Overturning Moment, M,	Torque
Combination	K	K	K	kip-ft	kip-ft	kip-ft

Job

Project

Client

PiROD U20'-0"x170' Lattice Tower

TWS-027 Rev. 1 / Cromwell, CT Tower

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M ₇	Torque
	K	Κ	Κ	kip-ft	kip-ft	kip-ft
Dead Only	51.55	0.00	0.00	-2,00	10.22	-0.00
Dead+Wind 0 deg - No Ice	51.55	-0.03	-59.60	-5731.31	12.45	-22.98
Dead+Wind 30 deg - No Ice	51.55	29.27	-50.81	-4910.48	-2816.44	-22.88
Dead+Wind 45 deg - No Ice	51.55	41.56	-41.28	-3990.12	-4015.51	-20.09
Dead+Wind 60 deg - No Ice	51.55	50.83	-29.04	-2806.84	-4918.74	-15.89
Dead+Wind 90 deg - No Ice	51.55	58.77	0.23	26,20	-5671.60	-5.78
Dead+Wind 120 deg - No Ice	51.55	51.69	30.08	2886.46	-4964.91	6.19
Dead+Wind 135 deg - No Ice	51.55	41.56	41.56	4009.14	-4016.39	11.54
Dead+Wind 150 deg - No Ice	51.55	29.55	50.94	4912.46	-2853.77	16.79
Dead+Wind 180 deg - No Ice	51.55	0,21	58,66	5675.66	-15,12	24.59
Dead+Wind 210 deg - No Ice	51.55	-29.36	50.86	4904.32	2852.48	23.21
Dead+Wind 225 deg - No Ice	51.55	-41.43	41.46	3998.63	4022.68	20,84
Dead+Wind 240 deg - No Ice	51.55	-51.57	29.98	2876.19	4972.05	18.14
Dead+Wind 270 deg - No Ice	51,55	-58,70	0.09	11.33	5682.58	8.01
Dead+Wind 300 deg - No Ice	51.55	-50,74	-29.22	-2827.93	4924.98	-3.93
Dead+Wind 315 deg - No Ice	51.55	-41.50	-41.41	-4004.87	4024.93	-9.94
Dead+Wind 330 deg - No Ice	51.55	-29.33	-50.88	-4917.75	2841,20	-16.08
Dead+Ice+Temp	85.61	0.00	0.00	-2.59	25,14	0.00
Dead+Wind 0 deg+Ice+Temp	85.61	-0.02	-69.88	-6905.93	26.68	-19,68
Dead+Wind 30 deg+Ice+Temp	85.61	34,37	-59.62	-5905.89	-3377.35	-25.79
Dead+Wind 45 deg+Ice+Temp	85.61	48.70	-48.47	-4802.60	-4804.84	-25.94
Dead+Wind 60 deg+Ice+Temp	85.61	59.54	-34.13	-3381.60	-5883.60	-24.27
Dead+Wind 90 deg+Ice+Temp	85.61	68.91	0.18	19.61	-6802.32	-17.29
Dead+Wind 120 deg+Ice+Temp	85.61	60.58	35.16	3467.54	-5963.93	-5,59
Dead+Wind 135 deg+Ice+Temp	85.61	48.70	48.69	4814.91	-4805.18	1.31
Dead+Wind 150 deg+Ice+Temp	85.61	34.59	59.71	5904,80	-3406.90	8.32
Dead+Wind 180 deg+Ice+Temp	85,61	0.16	68.72	6808.78	5.20	21.08
Dead+Wind 210 deg+Ice+Temp	85.61	-34.44	59.65	5898.58	3440.45	26.07
Dead+Wind 225 deg+Ice+Temp	85.61	-48.60	48.61	4806.92	4844.71	26,55
Dead+Wind 240 deg+Ice+Temp	85,61	-60.49	35.08	3459.87	6003.99	26.35
Dead+Wind 270 deg+Ice+Temp	85.61	-68,86	0.07	8,33	6845.13	19.07
Dead+Wind 300 deg+Ice+Temp	85,61	-59,46	-34.27	-3397.94	5922.26	7.02
Dead+Wind 315 deg+Ice+Temp	85.61	-48.65	-48.57	-4813.96	4845.92	-0.04
Dead+Wind 330 deg+Ice+Temp	85,61	-34,41	-59.67	-5911.38	3430.67	-7.76
Dead+Wind 0 deg - Service	51.55	-0.01	-20.62	-1984.53	11.00	-7.95
Dead+Wind 30 deg - Service	51.55	10.13	-17.58	-1700.49	-967.87	-7.93
Dead+Wind 45 deg - Service	51.55	14.38	-14.28	-1382.01	-1382.78	-6.95
Dead+Wind 60 deg - Service	51.55	17.59	-10.05	-972.56	-1695.31	-5,50
Dead+Wind 90 deg - Service	51,55	20.33	0.08	7.75	-1955.82	-1.99
Dead+Wind 120 deg - Service	51.55	17,89	10,41	997.47	-1711.29	2,14
Dead+Wind 135 deg - Service	51.55	14,38	14.38	1385.94	-1383.08	3.98
Dead+Wind 150 deg - Service	51.55	10.23	17.63	1698.51	-980.78	5.80
Dead+Wind 180 deg - Service	51.55	0.07	20.30	1962.60	1.46	8.51
Dead+Wind 210 deg - Service	51.55	-10.16	17.60	1695.71	993.74	8.05
Dead+Wind 225 deg - Service	51.55	-14.34	14.35	1382.32	1398.66	7.22
Dead+Wind 240 deg - Service	51.55	-17.85	10.37	993.93	1727.18	6.28
Dead+Wind 270 deg - Service	51.55	-20.31	0.03	2.60	1973.05	2.76
Dead+Wind 300 deg - Service	51.55	-17.56	-10.11	-979.87	1710.89	-1.36
Dead+Wind 315 deg - Service	51.55	-14.36	-14.33	-1387.13	1399.44	-3.43
Dead+Wind 330 deg - Service	51,55	-10,15	-17.61	-1703.02	989.84	-5.55

Solution Summary

	Sui	n of Applied Force	5		Sum of Reaction	S	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb	Κ	K	Κ	K	Κ	K	
1	0.00	-51.55	0.00	0.00	51.55	0.00	0.000%
2	-0.03	-51.55	-59.60	0.03	51.55	59.60	0.000%

tnxTower	Job	PiROD U20'-0"x170' Lattice Tower	Page 34 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project	TWS-027 Rev. 1 / Cromwell, CT Tower	Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

		m of Applied Force			Sum of Reaction		
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
3	29,27	-51,55	-50.81	-29.27	51.55	50,81	0.000%
4	41.56	-51.55	-41.28	-41.56	51.55	41.28	0.000%
5	50,83	-51.55	-29.04	-50.83	51.55	29.04	0.000%
6	58.77	-51.55	0.23	-58.77	51.55	-0.23	0.000%
7	51,69	-51_55	30.08	-51.69	51.55	-30.08	0.000%
8	41.56	-51.55	41.56	-41.56	51.55	-41.56	0.000%
9	29.55	-51.55	50.94	-29.55	51.55	-50,94	0.000%
10	0.21	-51.55	58.66	-0.21	51.55	-58.66	0.000%
11	-29.36	-51.55	50.86	29.36	51,55	-50.86	0.000%
12	-41.43	-51.55	41.46	41.43	51,55	-41.46	0.000%
13	-51.57	-51.55	29.98	51.57	51.55	-29.98	0.000%
14	-58.70	-51.55	0.09	58.70	51.55	-0.09	0.000%
15	-50.74	-51.55	-29.22	50,74	51.55	29.22	0.000%
16	-41.50	-51.55	-41.41	41.50	51.55	41.41	0.000%
17	-29.33	-51.55	-50.88	29.33	51.55	50.88	0.000%
18	0.00	-85.61	0.00	-0.00	85.61	0.00	0.000%
19	-0.02	-85.61	-69.88	0.02	85.61	69.88	0.000%
20	34.37	-85.61	-59.62	-34.37	85.61	59.62	0.000%
21	48.70	-85.61	-48,47	-48.70	85.61	48.47	0.000%
22	59.54	-85.61	-34.13	-59.54	85,61	34.13	0.000%
23	68.91	-85.61	0.18	-68.91	85.61	-0.18	0.000%
24	60.58	-85.61	35.16	-60.58	85.61	-35.16	0.000%
25	48.70	-85.61	48.69	-48,70	85.61	-48.69	0.000%
26	34.59	-85.61	59.71	-34.59	85.61	-59.71	0.000%
27	0.16	-85.61	68.72	-0.16	85.61	-68.72	0.000%
28	-34.44	-85,61	59.65	34.44	85.61	-59.65	0.000%
29	-48.60	-85.61	48.61	48.60	85.61	-48.61	0.000%
30	-60.49	-85.61	35.08	60.49	85.61	-35.08	0.000%
31	-68.86	-85.61	0.07	68.86	85.61	-0.07	0.000%
32	-59.46	-85.61	-34.27	59.46	85.61	34.27	0.000%
33	-48.65	-85.61	-48.57	48.65	85.61	48.57	0.000%
34	-34.41	-85.61	-59.67	34.41	85.61	59.67	0.000%
35	-0.01	-51.55	-20.62	0.01	51.55	20.62	0.000%
36	10.13	-51.55	-17.58	-10.13	51.55	17.58	0.000%
37	14.38	-51.55	-14.28	-14.38	51.55	14.28	0.000%
38	17.59	-51.55	-10.05	-17.59	51.55	10.05	0.000%
39	20.33	-51.55	0.08	-20,33	51.55	-0.08	0.000%
40	17.89	-51.55	10.41	-17.89	51.55	-10,41	0.000%
40	14.38	-51.55	14.38	-14.38	51.55	-14.38	0.000%
42	10.23	-51.55	17.63	-10.23	51.55	-17,63	0.000%
42	0.07	-51.55	20.30	-0.07	51.55	-20.30	0.000%
43	-10.16	-51.55	17.60	10.16	51.55		
44 45	-14.34	-51.55	14.35	14.34	51.55	-17.60 -14.35	0.000%
45 46	-14.34 -17.85	-51.55	14.35	14.34	51.55	-14.35	0.000%
	-17.85	-51.55	0.03	20.31			0.000%
47					51.55	-0.03	0.000%
48	-17.56	-51.55	-10,11	17.56	51.55	10.11	0.000%
49	-14.36	-51.55	-14.33	14.36	51.55	14.33	0.000%
50	-10.15	-51,55	-17.61	10,15	51.55	17.61	0.000%

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	4	0,0000001	0.0000001
2	Yes	4	0.00000001	0.00000001
3	Yes	4	0.0000001	0.0000001

tny	Tower	Job			Page	
in and	IUNCI		PiROD U20'-0'	'x170' Lattice Tower	35 of 43	
URS	Corporation	Project			Date	
	rise Drive, Suite 3B		TWS-027 Rev. 1	/ Cromwell, CT Tower	11:32:54 09/23/14	
Phone:	Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991		Sprint / T-Mobile	Designed by MCD		
, B.,						
4	Yes	4	0.0000001	0.0000001		
5	Yes	4	0.00000001	0.00000001		
6 7	Yes Yes	4 4	0.00000001 0.00000001	0.00000001 0.00000001		
8	Yes	4	0.00000001	0.00000001		
9	Yes	4	0.00000001	0.00000001		
10	Yes	4	0,0000001	0.0000001		
11	Yes	4	0.00000001	0.0000001		
12	Yes	4	0.0000001	0.00000001		
13	Yes	4	0.00000001	0.00000001		
14	Yes	4	0.00000001 0.00000001	0.00000001		
15 16	Yes Yes	4 4	0.00000001	0.00000001 0.00000001		
10	Yes	4	0.00000001	0.00000001		
18	Yes	4	0.00000001	0.00000001		
19	Yes	4	0.00000001	0.00000081		
20	Yes	4	0.00000001	0.00000109		
21	Yes	4	0.00000001	0.00000130		
22	Yes	4	0.0000001	0.00000120		
23	Yes	4	0.0000001	0.00000130		
24	Yes	4	0.00000001	0.0000083		
25	Yes	4	0.00000001	0.00000099		
26 27	Yes Yes	4 4	0.00000001 0.00000001	0.00000122 0.00000116		
28	Yes	4	0.00000001	0.00000109		
28	Yes	4	0.00000001	0.00000096		
30	Yes	4	0.00000001	0.00000096		
31	Yes	4	0.00000001	0.00000130		
32	Yes	4	0.00000001	0.00000116		
33	Yes	4	0.0000001	0.00000119		
34	Yes	4	0.0000001	0.00000122		
35	Yes	4	0.00000001	0.00000001		
36	Yes	4	0.00000001	0.00000001		
37	Yes	4	0.00000001	0.00000001		
38 39	Yes Yes	4	0.00000001 0.00000001	0.00000001 0.00000001		
40	Yes	4	0.00000001	0.0000001		
41	Yes	4	0.00000001	0.00000001		
42	Yes	4	0.00000001	0.00000001		
43	Yes	4	0.00000001	0.0000001		
44	Yes	4	0.00000001	0.0000001		
45	Yes	4	0.0000001	0_0000001		
46	Yes	4	0.0000001	0.00000001		
47	Yes	4	0.00000001	0.0000001		
48	Yes	4	0.00000001	0.0000001		
49	Yes Yes	4	0.00000001 0.00000001	0.00000001 0.00000001		

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov	Tilt	Twist
No.		Deflection	Load		
	ft	Īn	Comb.	0	0
T1	170 - 150	5,771	35	0.3279	0.0280
T2	150 - 140	4.409	35	0.2984	0.0346
T3	140 - 120	3.790	35	0.2780	0.0332
T4	120 - 100	2.702	35	0.2252	0.0194
Т5	100 - 90	1.823	46	0.1785	0.0127
Т6	90 - 80	1.464	46	0.1509	0.0107
Т7	80 - 60	1.155	46	0.1305	0.0089

tnxTower	Job	PiROD U20'-0"x170' Lattice Tower	Page 36 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project	TWS-027 Rev. 1 / Cromwell, CT Tower	Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Section	Elevation	Horz,	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	în	Comb.	0	0
T8	60 - 40	0.649	46	0.0966	0.0064
Т9	40 - 20	0.293	46	0.0583	0.0040
T10	20 - 0	0.086	46	0.0265	0.0020

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	ø	ft
183.00	101-90-08-0-01	35	5.771	0.3279	0.0280	88849
179.75	15' Mount Pipe	35	5.771	0.3279	0.0280	88849
178.00	3" Dia 20' Omni	35	5.771	0.3279	0.0280	88849
175.00	2.5" x 14' Omni	35	5.771	0.3279	0.0280	88849
174.00	1.5" x 12' Omni	35	5,771	0.3279	0.0280	88849
170.00	APXVSPP18-C-A20	35	5.771	0.3279	0.0280	88849
168.00	HPD2-4.7	35	5.631	0.3253	0.0289	88849
159.50	APXV18-206517S-C w/ mounting hardware	35	5.042	0.3135	0.0324	42309
158.50	SC420-HF1LDF	35	4.974	0.3121	0.0327	38630
144.00	3" Dia 20' Omni	35	4.032	0.2868	0.0343	23538
141.00	2" Dia 15' Omni	35	3.850	0.2803	0.0336	23984
139.00	1.5" x 10' Omni	35	3.731	0.2756	0.0327	24120
138.50	9' Whip	35	3.702	0.2743	0.0325	24128
134.00	VHLP2.5-180	35	3.443	0.2627	0.0298	23972
125.50	PiROD 10' Lightweight T-Frame	35	2.981	0.2396	0.0233	23558
115.00	(2) TMA (shielded)	46	2.463	0.2135	0.0167	22934
101.00	BXA-171063-12BF	46	1.862	0.1811	0.0129	22013
87.00	3"x2"x22" Panel	46	1.366	0.1440	0.0101	25066
84.50	TMA	46	1.288	0.1388	0.0097	27742
83.50	3' Stand-off	46	1.258	0.1369	0.0095	28975
83.00	3' Dish	46	1.243	0.1359	0.0094	29604
82.50	TMA	46	1.228	0.1350	0.0093	30229
80.00	3"x2"x22" Panel	46	1.155	0.1305	0.0089	32895
30.00	Camera	46	0.171	0.0414	0.0030	32720
24.00	PC9013N	46	0.116	0.0323	0.0024	33266

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb	9	0
T1	170 - 150	19.843	19	1.0972	0.1177
Т2	150 - 140	15.281	19	1.0106	0,1336
Т3	140 - 120	13.176	19	0.9488	0.1236
T4	120 - 100	9.436	30	0.7798	0.0756
T5	100 - 90	6.374	30	0.6219	0.0489
Т6	90 - 80	5.118	30	0.5273	0.0403
Τ7	80 - 60	4,035	30	0.4569	0.0330
Т8	60 - 40	2.263	30	0.3383	0.0223
Т9	40 - 20	1.016	30	0.2040	0.0132
T10	20 - 0	0.296	30	0.0927	0.0064

4 T	Job		Page
tnxTower		PiROD U20'-0"x170' Lattice Tower	37 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project	TWS-027 Rev. 1 / Cromwell, CT Tower	Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	ø	0	ft
183.00	101-90-08-0-01	19	19.843	1.0972	0.1177	30835
179.75	15' Mount Pipe	19	19.843	1,0972	0.1177	30835
178.00	3" Dia 20' Omni	19	19.843	1.0972	0.1177	30835
175.00	2.5" x 14' Omni	19	19,843	1.0972	0.1177	30835
174.00	1.5" x 12' Omni	19	19.843	1.0972	0.1177	30835
170.00	APXVSPP18-C-A20	19	19.843	1.0972	0.1177	30835
168.00	HPD2-4.7	19	19.377	1.0895	0.1203	30835
159.50	APXV18-206517S-C w/ mounting hardware	19	17.410	1,0553	0.1299	14683
158.50	SC420-HF1LDF	19	17.181	1.0510	0.1308	13406
144.00	3" Dia 20' Omni	19	14.000	0.9760	0,1294	8016
141.00	2" Dia 15' Omni	19	13.380	0.9560	0.1253	8024
139.00	1.5" x 10' Omni	19	12,974	0.9414	0.1218	7973
138.50	9' Whip	19	12.874	0.9376	0.1208	7953
134.00	VHLP2.5-180	30	11.986	0.9011	0.1107	7714
125.50	PiROD 10' Lightweight T-Frame	30	10.400	0.8266	0.0887	7254
115.00	(2) TMA (shielded)	30	8.604	0.7409	0.0663	6817
101.00	BXA-171063-12BF	30	6.510	0.6310	0.0498	6415
87.00	3"x2"x22" Panel	30	4.777	0.5034	0.0380	7279
84.50	TMA	30	4.504	0.4856	0.0361	8017
83.50	3' Stand-off	30	4.397	0.4789	0.0354	8355
83.00	3' Dish	30	4.345	0.4757	0.0350	8527
82.50	TMA	30	4.292	0.4724	0.0347	8697
80.00	3"x2"x22" Panel	30	4.035	0.4569	0.0330	9417
30.00	Camera	30	0.592	0.1447	0.0096	9288
24.00	PC9013N	30	0.399	0.1128	0.0077	9439

Bolt Design Data

Section	Elevation	Component	Bolt	Bolt Size	Number	Maximum	Allowable	Ratio	Allowable	Criteria
No.	ft	Туре	Grade	in	Of Bolts	Load per Bolt K	Load K	Load Allowable	Ratio	
T1	170	Diagonal	A325N	0.6250	1	3.46	6,44	0.537 🖌	1,333	Bolt Shear
T2	150	Leg	A325N	1.0000	6	5.84	34.56	0.169	1.333	Bolt Tension
		Diagonal	A325N	1.0000	1	4.91	8.16	0.602	1,333	Member Bearing
		Top Girt	A325N	1.0000	1	0.42	8.16	0.052	1.333	Member Bearing
T3	140	Leg	A325N	1.0000	6	8.57	34.56	0.248	1.333	Bolt Tension
		Diagonal	A325N	1,0000	1	9.08	8.16	1.114	1,333	Member Bearing
T4	120	Leg	A325N	1.0000	6	15.41	34.56	0.446	1.333	Bolt Tension
		Diagonal	A325N	1.0000	1	11.55	10.88	1.062	1.333	Member Bearing
		Mid Girt	A325N	1.0000	1	3,92	8.16	0.480	1.333	Member Bearing
Т5	100	Leg	A325N	1.0000	6	24.16	34,56	0.699	1.333	Bolt Tension
		Diagonal	A325N	1.0000	1	13,49	13.59	0.992	1,333	Member Bearing
Т6	90	Leg	A325N	1.0000	6	28.86	34,56	0.835	1.333	Bolt Tension

tnxTower	Job	PiROD U20'-0"x170' Lattice Tower	Page 38 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project	TWS-027 Rev. 1 / Cromwell, CT Tower	Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load per	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft			in	Bolts	Bolt K	K	Allowable		
		Diagonal	A325N	1.0000	1	13.38	13.59	0.984	1.333	Member Bearing
T7	80	Leg	A325N	1.0000	6	33.26	34,56	0.963	1.333	Bolt Tension
		Diagonal	A325N	1.0000	1	14,16	16.49	0.859	1.333	Bolt Shear
T8	60	Leg	A325N	1.2500	6	41.67	54.00	0.772	1.333	Bolt Tension
		Diagonal	A325N	1.2500	1	13,88	16.99	0.817	1,333	Member Bearing
T 9	40	Leg	A325N	1.2500	6	49.37	54,00	0.914	1.333	Bolt Tension
		Diagonal	A325N	1.2500	1	15.13	20.39	0.742	1,333	Member Bearing
T10	20	Diagonal	A325N	1.2500	1	18.81	16.99	1,107	1.333	Member Bearing

Compression Checks

lection No.	Elevation	Size	L	L_{u}	Kl/r	F_{a}	A	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in ²	K	K	P_{a}
T1	170 - 150	1 3/4	20.00	2.49	68.3 K=1.00	21,253	2.4053	-35.99	51.12	0.704
T2	150 - 140	Pirod 105244	10.02	10.02	45.4 K=1.00	25.051	3.6816	-41.87	92.23	0.454
Т3	140 - 120	Pirod 105216	20.03	10.02	45.4 K=1.00	25.051	3.6816	-84.43	92.23	0.915
T4	120 - 100	Pirod 105217	20.03	10.02	37.8 K=1.00	26.132	5.3014	-138.35	138.54	0.999
Т5	100 - 90	Pirod 105217	10.02	10.02	37.8 K=1,00	26.132	5,3014	-170.56	138.54	1.231
T6	90 - 80	Pirod 105217 reinf w/ 1" dia bar	10.02	10,02	31.5 K=1.00	26.968	7.6570	-202.06	206,49	0.979
Т7	80 - 60	Pirod 105218 reinf w/ 1" dia bar	20.03	10.02	27.6 K=1.00	27.439	9.9280	-261.48	272.41	0.960
T8	60 - 40	Pirod 105219	20.03	10.02	28.4 K=1.00	27.351	9.4248	-317.16	257.78	1.230
Т9	40 - 20	Pirod 105219 reinf w /1" dia bar	20.03	10,02	25.4 K=1.00	27.705	11.7803	-370.16	326.37	1,134
T10	20 - 0	Pirod 105220 reinf w/ 1" dia bar	20.03	10.02	24.3 K=1.00	27.824	14,2843	-419.98	397.44	1.057

Truss-Leg Diagonal Data

tnxTower	Job	PiROD U20'-0"x170' Lattice Tower	Page 39 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project	TWS-027 Rev. 1 / Cromwell, CT Tower	Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Section No.	Elevation	Diagonal Size	L_d	Kl/r	Fa	A	Actual V	Allow. V _a	Stress Ratio
	ft		ft		ksi	in ²	K	K	
T2	150 - 140	0.5	1,48	121.0	10.193	0,1963	0.94	2,24	0.418
Т3	140 - 120	0.5	1,48	121.0	10.133	0.1963	0.99	2.23	0.446
T4	120 - 100	0.5	1,47	120.0	10.279	0,1963	1.73	2.26	0.764
T5	100 - 90	0.5	1.47	120.0	10.279	0.1963	0.50	2.26	0.219
T6	90 - 80	0.5	1.46	118.8	10.452	0.1963	0.39	2,30	0.172
Τ7	80 - 60	0.5	1.44	117.8	10.592	0.1963	0.23	2.33	0.097
Т8	60 - 40	0,625	1.45	94.4	13.671	0,3068	0.32	4.69	0.067
Т9	40 - 20	0.625	1.44	93.7	16.133	0.3068	0.97	5.54	0.175
T10	20 - 0	0.625	1.42	93.0	13.845	0.3068	1.71	4.75	0.360

Diagonal Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	F_{a}	A	Actual P	Allow, P _a	Ratio P
	ft		ft	ft		ksi	in^2	Κ	Κ	P _a
T1	170 - 150	7/8	5.59	2.71	111.6 K=0.75	12.001	0.6013	-3.46	7.22	0.480
T2	150 - 140	L2 1/2x2 1/2x3/16	11.42	5.02	121.8 K=1.00	10.024	0.9020	-5.45	9.04	0.602
Т3	140 - 120	L3x3x3/16	12.50	5.67	115.6 K=1.01	10.799	1.0900	-9.44	11.77	0.802
T4	120 - 100	L3x3x1/4	13.80	6.37	129.1 K=1.00	8.961	1.4400	-12.57	12.90	0.974
T5	100 - 90	L3x3x5/16	14.50	6.74	137.3 K=1.00	7.920	1.7800	-13.72	14.10	0.973
T6	90 - 80	L3x3x5/16	15.24	7.12	145.1 K=1.00	7.090	1.7800	-13.75	12.62	1,090
Τ7	80 - 60	L3x3x3/8	16.80	7.92	162.0 K=1.00	5.691	2.1100	-14.16	12.01	1.179
Т8	60 - 40	L3 1/2x3 1/2x5/16	18.45	8.73	151.8 K=1.00	6.480	2,0900	-14.22	13.54	1.050
T9	40 - 20	L3 1/2x3 1/2x3/8	19.30	9.17	160.1 K=1.00	5.825	2.4800	-14.76	14.45	1.021
T10	20 - 0	L4x4x5/16	21,03	10.04	152.3 K=1.00	6.437	2.4000	-16,65	15.45	1.078

Top Girt Design Data (Compression)

tnxTower	Job	PiROD U20'-0"x170' Lattice Tower	Page 40 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project	TWS-027 Rev. 1 / Cromwell, CT Tower	Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Section No	Elevation	Size	L	L_u	Kl/r	F_a	А	Actual P	Allow_ P _u	Ratio P
	ft		ft	ft		ksi	in ²	Κ	K	P_a
T1	170 - 150	7/8	5.00	4.85	186.4 K=0.70	4.298	0,6013	-0,33	2.58	0.127
T2	150 - 140	L3x3x3/16	5.00	4,52	105.5 K=1,16	12.079	1.0900	-0.37	13.17	0.028

	Bottom Girt Design Data (Compression)										
Section No.	Elevation	Size	L	L	Kl/r	F_a	А	Actual P	Allow, P _a	Ratio P	
	ft		ft	ft		ksi	in^2	K	ĸ	P_a	
Τ1	170 - 150	7/8	5.00	4.85	186.4 K=0.70	4.298	0.6013	-0.15	2.58	0.059	

	Mid Girt Design Data (Compression)										
Section No.	Elevation	Size	L	Lu	Kl/r	F_a	A	Actual P	Allow. Pa	Ratio P	
	ft		ft	ft		ksi	in ²	Κ	K	Pa	
T4	120 - 100	L3x3x3/16	9.00	7.67	154.4 K=1.00	6.267	1.0900	-3.17	6.83	0.464	

Tension Checks

		Le	g Des	sign D	ata (1	Fensio	n)			
Section No.	Elevation	Size	L	Lu	Kl/r	F _a	A	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in^2	K	Κ	Pa
TI	170 - 150	1 3/4	20.00	2.49	68.3	30.000	2.4053	29.76	72,16	0.412
Т2	150 - 140	Pirod 105244	10.02	10.02	45.4	30,000	3,6816	35.03	110.45	0.317
T3	140 - 120	Pirod 105216	20.03	10.02	45.4	30.000	3.6816	70.49	110,45	0.638
Τ4	120 - 100	Pirod 105217	20.03	10.02	37.8	30.000	5.3014	117.19	159,04	0.737
Т5	100 - 90	Pirod 105217	10.02	10.02	37.8	30.000	5.3014	144.94	159.04	0.911
Т6	90 - 80	Pirod 105217 reinf w/ 1" dia bar	10.02	10.02	31.5	30.000	7,6570	173,18	229.71	0.754
Τ7	80 - 60	Pirod 105218 reinf w/ 1" dia bar	20.03	10.02	27.6	30.000	9.9280	225.41	297.84	0.757
Т8	60 - 40	Pirod 105219	20.03	10.02	28.4	30.000	9,4248	273.19	282,74	0,966

tnxTower	Job PiROD U20'-0''x170' Lattice Tower	Page 41 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project TWS-027 Rev. 1 / Cromwell, CT Tov	ver Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Sprint / T-Mobile (TWS-027)/(EBI-00	02) Designed by MCD

Section No	Elevation	Size	L	L_{n}	Kl/r	F_{a}	A	Actual P	Allow P_a	Ratio P
	ft		ft	ft		ksi	in ²	K	K	Pa
										~
Т9	40 - 20	Pirod 105219 reinf w /1" dia bar	20.03	10.02	25.4	30.000	11.7803	315.77	353.41	0.894
T10	20 - 0	Pirod 105220 reinf w/ 1" dia bar	20.03	10.02	24.3	30,000	14,2843	352.06	428,53	0.822

Truss-Leg Diagonal Data

Section No.	Elevation	Diagonal Size	L _d	Kl/r	F_a	A	Actual V	Allow, V _a	Stress Ratio
	ft		ft		ksi	in ²	Κ	ĸ	
T2	150 - 140	0.5	1.48	121.0	10.193	0.1963	0.94	2,24	0.418
T3	140 - 120	0.5	1,48	121.0	10.133	0.1963	0.99	2.23	0.446
T4	120 - 100	0.5	1.47	120.0	10.279	0.1963	1.73	2.26	0.764
Т5	100 - 90	0.5	1.47	120.0	10.279	0.1963	0.50	2,26	0,219
Т6	90 - 80	0.5	1.46	118.8	10.452	0.1963	0.39	2.30	0.172
Т7	80 - 60	0.5	1.44	117.8	10,592	0.1963	0.23	2.33	0.097
Т8	60 - 40	0.625	1.45	94.4	13.671	0.3068	0.32	4.69	0.067
T9	40 - 20	0.625	1,44	93.7	16.133	0.3068	0,97	5.54	0.175
T10	20 - 0	0.625	1.42	93.0	13.845	0.3068	1.71	4.75	0.360

Diagonal Design Data (Tension)

Section No	Elevation	Size	L	L_{u}	Kl/r	F_{a}	А	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in^2	K	ĸ	Pu
T1	170 - 150	7/8	5.59	2.71	148.7	30.000	0.6013	3.41	18.04	0.189
T2	150 - 140	L2 1/2x2 1/2x3/16	11.42	5.02	80.1	21.600	0,9020	4.91	19,48	0.252
Т3	140 - 120	L3x3x3/16	12.50	5.67	74,6	21.600	1.0900	9.08	23.54	0.386
T4	120 - 100	L3x3x1/4	13.80	6.37	84.3	21,600	1.4400	11.55	31,10	0.371
T5	100 - 90	L3x3x5/16	14.50	6.74	89.9	21,600	1.7800	13,49	38.45	0.351
Т6	90 - 80	L3x3x5/16	15.24	7.12	94.9	21.600	1.7800	13.38	38.45	0.348

tnxTower	Job F	PiROD U20'-0"x170' Lattice Tower	Page 42 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project TW	/S-027 Rev. 1 / Cromwell, CT Tower	Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client Sp	rint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Section No,	Elevation	Size	L	L_{μ}	Kl/r	F_{a}	A	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in ²	Κ	K	P_a
Τ7	80 - 60	L3x3x3/8	16.01	7,54	101_2	21.600	2.1100	13.78	45.58	0.302
T8	60 - 40	L3 1/2x3 1/2x5/16	18.45	8.73	99.2	21.600	2,0900	13.88	45,14	0.307
Т9	40 - 20	L3 1/2x3 1/2x3/8	20.16	9.59	109.8	21.600	2.4800	15.13	53.57	0.282
T10	20 - 0	L4x4x5/16	21,92	10,48	103.3	21,600	2.4000	18.81	51.84	0.363

	Top Girt Design Data (Tension)										
Section No.	Elevation	Size	L	L_u	Kl/r	F _a	A	Actual P	Allow. Pa	Ratio P	
	ft		ft	ft		ksi	in ²	K	ĸ	Pa	
T1	170 - 150	7/8	5.00	4.85	266.3	30.000	0.6013	0.30	18.04	0.016	
T2	150 - 140	L3x3x3/16	5.00	4.52	62.0	21.600	1.0900	0.42	23.54	0.018	

	Bottom Girt Design Data (Tension)										
Section No.	Elevation	Size	L	Lu	Kl/r	F_a	A	Actual P	Allow. P.	Ratio P	
	ft		ft	ft		ksi	in ²	K	K	Pa	
T1	170 - 150	7/8	5.00	4,85	266.3	30.000	0.6013	0.15	18,04	0.008	

	Mid Girt Design Data (Tension)										
Section No.	Elevation	Size	L	L_{μ}	Kl/r	Fa	A	Actual P	Allow. P	Ratio P	
	ft		ft	ft		ksi	in ²	K	K	Pu	
Τ4	120 - 100	L3x3x3/16	9.00	7.67	102.2	21.600	1.0900	3.92	23.54	0.166	

Section Capacity Table	9
------------------------	---

Section	Elevation	Component	Size	Critical	Р	SF*P _{allow}	%	Pass
No	ft	Туре		Element	K	K	Capacity	Fail
T1	170 - 150	Leg	1 3/4	3	-35,99	68.14	52.8	Pass
T2	150 - 140	Leg	Pirod 105244	60	-41.87	122.94	34.1	Pass
Т3	140 - 120	Leg	Pirod 105216	72	-84.43	122.94	68.7	Pass

tnxTower	Јор	PiROD U20'-0"x170' Lattice Tower	Page 43 of 43
URS Corporation 500 Enterprise Drive, Suite 3B	Project	TWS-027 Rev. 1 / Cromwell, CT Tower	Date 11:32:54 09/23/14
Rocky Hill, CT 06067 Phone: 860-529-8882 FAX: 860-529-3991	Client	Sprint / T-Mobile (TWS-027)/(EBI-002)	Designed by MCD

Section	Elevation	Component	Size	Critical	Р	SF*Pallow	%	Pass
No.	ft	Туре		Element	K	K	Capacity	Fail
T4	120 - 100	Leg	Pirod 105217	87	-138.35	184.67	74.9	Pass
T5	100 - 90	Leg	Pirod 105217	105	-170.56	184.67	92.4	Pass
T6	90 - 80	Leg	Pirod 105217 reinf w/ 1" dia bar	114	-202,06	275.26	73.4	Pass
Τ7	80 - 60	Leg	Pirod 105218 reinf w/ 1" dia bar	123	-261,48	363.13	72.0	Pass
T8	60 - 40	Leg	Pirod 105219	136	-317.16	343.62	92.3	Pass
T9	40 - 20	Leg	Pirod 105219 reinf w /1" dia bar	151	-370.16	435.06	85.1	Pass
T10	20 - 0	Leg	Pirod 105220 reinf w/ 1" dia bar	166	-419.98	529.79	79.3	Pass
T1	170 - 150	Diagonal	7/8	12	-3.46	9_62	36.0	Pass
T2	150 - 140	Diagonal	L2 1/2x2 1/2x3/16	69	-5.45	12.05	45.2	Pass
T3	140 - 120	Diagonal	L3x3x3/16	78	-9.44	15.69	60.2	Pass
T4	120 - 100	Diagonal	L3x3x1/4	96	-12.57	17.20	73.1	Pass
T5	100 - 90	Diagonal	L3x3x5/16	111	-13.72	18.79	73.0	Pass
T6	90 - 80	Diagonal	L3x3x5/16	120	-13.75	16.82	81.7	Pass
Τ7	80 - 60	Diagonal	L3x3x3/8	129	-14.16	16.01	88.5	Pass
Т8	60 - 40	Diagonal	L3 1/2x3 1/2x5/16	144	-14.22	18.05	78.8	Pass
T9	40 - 20	Diagonal	L3 1/2x3 1/2x3/8	165	-14.76	19.26	76.6	Pass
T10	20 - 0	Diagonal	L4x4x5/16	179	-16.65	20.59	80.9	Pass
T 1	170 - 150	Top Girt	7/8	6	-0.33	3.45	9.5	Pass
T2	150 - 140	Top Girt	L3x3x3/16	61	-0.37	17.55	2.1	Pass
T1	170 - 150	Bottom Girt	7/8	8	-0.15	3.45	4.4	Pass
T4	120 - 100	Mid Girt	L3x3x3/16	88	-3.17	9.11	34,8	Pass
							Summary	
						Leg (T5)	92.4	Pass
						Diagonal (T7)	88.5	Pass
						Top Girt (T1)	9.5	Pass
						Bottom Girt (T1)	4.4	Pass
						Mid Girt (T4)	34.8	Pass
						Bolt Checks	83.5	Pass
						RATING =	92.4	Pass

Program Version 6.1.3.1 - 3/21/2014 File:W:/Transcend_Wireless_TWS/36931319-TWS-028_Cromwell_MOD/08/ERI/MOD_U20x170' PiROD Self-Supporting Lattice Tower.eri

ANCHOR BOLT EVALUATION

			÷		
Job Description		ice Tower - Cromwell, CT	Project No. Computed by Checked by	TWS-027 Rev. 1 MCD	Page of Sheet 1 of 3 Date 09/23/14 Date
	AN	CHOR BOLT	ANALY	SIS	
Input Da	ta				
Max Pie	r Reactions:				
Uplif	īt:	Uplift := 366 kips	user input		
Shea	ar:	Shear := 48 kips	user input		
Com	pression:	Compression := 429 kips	user input		
	Bolt Data:		×		
Use	ASTM A687 Grade				
Num	ber of Anchor Bolts = N	.N.:= 6	user input		
Bolt	Ultimate Strength:	$F_u := 150 \cdot ksi$	user input		
Bolt	Yield Strength:	Fy:= 105·ksi	user input		
Bolt	Modulus:	E := 29000 · ksi	user input		
Thick	kness of Anchor Bolts	D:= 1.25in	user input		
Threa	ads per Inch:	n := 7	user input		
Coef	ficient of Friction:	μ:= 0.55	user input	(for baseplate with	grout ASCE 10-97)

URS				Page of
Job	170' Self-Supporting Lattice Tower - Cromwell, CT	Project No.	TWS-027 Rev. 1	Sheet 2 of 3
Description	Anchor Bolt Analysis	Computed by	MCD	Date 09/23/14
		Checked by		Date

Anchor Bolt Area:

Gross Area of Bolt:

$$A_g := \frac{\pi}{4} \cdot D^2$$
 $A_g = 1.227 \cdot in^2$

Net Area of Bolt:

$$A_n := \frac{\pi}{4} \cdot \left(D - \frac{0.9743 \cdot in}{n} \right)^2 \qquad A_n = 0.969 \cdot in^2$$

Check Tensile Forces:

Maximum Tensile Force (Gross Area):

AllowableTension :=
$$1.33 \cdot (0.33 \cdot A_g \cdot F_u)$$

Note: 1.33 increase allowed per TIA/EIA

Maximum Tensile Force (Net Area):

 $F_{net.area} := 1.33 \cdot (0.60 \cdot A_n \cdot Fy)$

 $F_{net,area} = 81.2 \cdot kips$

AllowableTension = 80.8 kips

Note: 1.33 increase allowed per TIA/EIA

Applied Tension:

MaxTension :=
$$\frac{\text{Uplift}}{N}$$
 MaxTension = 61.0 kips

Check Stresses:

$$\frac{\text{MaxTension}}{F_{\text{net.area}}} = 0.75$$
Condition1 := if $\left(\frac{\text{MaxTension}}{F_{\text{net.area}}} \le 1.00, "OK", "Overstressed"\right)$
Condition1 = "OK"

URS				Page of
Job	170' Self-Supporting Lattice Tower - Cromwell, CT	Project No.	TWS-027 Rev. 1	Sheet 3 of 3
Description	Anchor Bolt Analysis	Computed by	MCD	Date 09/23/14
		Checked by		Date

Check Anchor Bolt Area:

Based on the ASCE 10-97 Design of Latticed Stell Transmission Structures

Required Area:

$$A_{s1} := \frac{\text{Uplift}}{\text{Fy}} + \frac{\text{Shear}}{\mu \cdot 0.85 \cdot \text{Fy}} \qquad A_{s1} = 4.5 \cdot \text{in}^2$$
$$A_{s2} := \left| \frac{\text{Shear} - (0.3 \cdot \text{Compression})}{\mu \cdot 0.85 \cdot \text{Fy}} \right| \qquad A_{s2} = 1.6 \cdot \text{in}^2$$

Provided Area:

$$A_{sprovided} := A_n \cdot N$$
 $A_{sprovided} = 5.8 \cdot in^2$

Condition2 := if
$$\left(\frac{A_{s1}}{A_{sprovided}} \le 1.00, "OK", "Overstressed"\right)$$
 $\frac{A_{s1}}{A_{sprovided}} = 0.77$
Condition2 = "OK"

Condition3 := if $\left(\frac{A_{s2}}{A_{sprovided}} \le 1.00, "OK", "Overstressed"\right)$ $\frac{A_{s2}}{A_{sprovided}} = 0.28$ Condition3 = "OK"

FOUNDATION EVALUATION

Job 170' Sel	If-Supporting Lattice To	wer - Cromw	vell, CT Project No.	TWS-027 Rev. 1	Page of Sheet 1 of 2
Description Drilled F	Pier Caisson Evaluation			MCD	Date 09/23/14
			Checked by		Date
	FOUI	NDATI	ON ANALYS	SIS	
Input Data					
Maximum Pier Reactions:			Material Properties	<u>s:</u>	
Compression:	$C_t := 429 \text{ kips}$	user input	Unit Weight of Concrete	$\gamma c := 150 pcf$	user inpl
Uplift:	$U_t := 366 \text{ kips}$	user input	Unit Weight of Water:	$\gamma w := 62.4 \mu cf$	s user inpl
Foundation Dimensions:		Unit Weight of Soil:	$\gamma s := 100 pcf$	user inpl	
Drilled Caisson Length	CLength := 41.5 ft	user input	Allowable Soil Bearing Capacity	$q_s := 6 \text{ ksf}$	user inpu
Diameter of Pier:	$d_p := 5.5 ft$	user input	(Allowable Bearing Pressure at Depth 41')		
Extension of Pier Above Grade:	$L_{pag} := 0.5 ft$	user input	Water Table Below Grad	Wd := $41 \cdot ft$	user inpl
Additional Concrete	$\operatorname{Conc}_{\operatorname{addl}} := 5 \operatorname{ft} \cdot \left(13 \operatorname{ft} \cdot 1 \right)$	$13 \text{ft} - \frac{\pi \cdot d_p^2}{4}$	Average Allowable Shea	fl := 859 psf	user inpu
			Depth Neglected for Ski	n Depthunbond	:= 4 ft user inpu

Foundation reinforcement per drawings by Tectonic, dated May 5, 2004

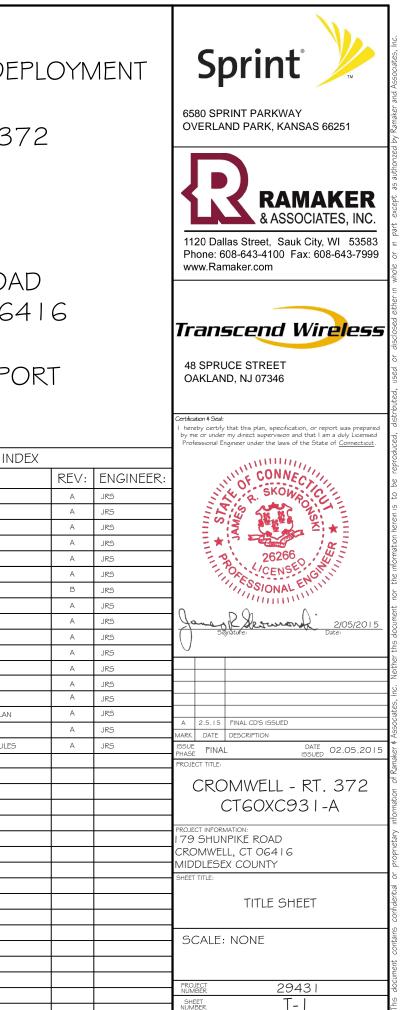
Loading:

TotalDownLoad :=
$$C_t + \pi \cdot \frac{d_p^2}{4} \cdot \left[L_{pag} \cdot \gamma c + \left[\gamma c \cdot \left(C_{Length} - L_{pag} \right) \right] \right]$$

TotalDownLoad = 576.9 kips

$$PierWeight := \pi \cdot \frac{d_p^2}{4} \cdot \left[\left(Wd + L_{pag} \right) \cdot \gamma c + \left(C_{Length} - Wd - L_{pag} \right) \cdot \left(\gamma c - \gamma w \right) \right] + Conc_{addt} \gamma c$$

PierWeight = 256.8 kips SoilShear := $\pi d_p \cdot \left[fl \cdot \left(C_{\text{Length}} - \text{Depthunbond} \right) \right]$


SoilShear = 556.6 kips

URS				Page of
Job	170' Self-Supporting Lattice Tower - Cromwell, CT	Project No.	TWS-027 Rev. 1	Sheet 2 of 2
Description	Drilled Pier Caisson Evaluation	Computed by	MCD	Date 09/23/14
		Checked by		Date
Compress	sion Capacity:			
FotalDownLo	padCapacity := SoilShear + $q_s \left(\pi \cdot \frac{d_p^2}{4} \right)$			
FotalDownLo	padCapacity = 699.1 kips			
CheckDownL		pacity, "Okay", "I	√o Good")	
CheckDownL	.oadCapacity = "Okay"			
<u>Fension C</u>	apacity:			
FotalUpLiftCa	apacity := SoilShear + PierWeight			
FotalUpLiftCa	apacity = 813.4 kips			
CheckUpLiftC	Capacity:= if(U _t < TotalUpLiftCapacity, "Okay", "No Go	ood")		
CheckUpLift	Capacity = "Okay"			
SafetyFactor _{pt}	$rovided := \frac{TotalUpLiftCapacity}{U_t}$			
SafetyFactor _{pr}	rovided = 2.22			
heck Co	ne Failure:			
ConeFailureCa	apacity := $\frac{\left[\left(C_{\text{Length}} - L_{\text{pag}}\right) \cdot \tan(30 \text{deg}) \cdot 2 + d_{\text{p}}\right]^2 \cdot \pi}{4} \cdot \frac{C_{\text{L}}}{4}$	$\frac{ength - L_{pag}}{3} \cdot \gamma s$		
ConeFailureCa	apacity = 2997.25 · kips			
CheckConeFai	ilureCapacity := $if(U_t < ConeFailureCapacity, "Okay", "PailoreCapacity)$	No Good")		
heckConeFai	ilureCapacity = "Okay"			
ConeSafetyFac	$ctor_{provided} := \frac{ConeFailureCapacity}{U_t}$			
ConeSafetyFac	$ctor_{provided} = 8.19$			

5

Sprint	тм	PROJECT: SITE NAME: SITE CASCADE: SITE ADDRESS:	179 SHUNPIKE ROAD
		SITE ADDRESS: SITE TYPE:	I 79 SHUNPIKE ROAD CROMWELL, CT 064 I 70'-0" SELF SUPPOF
			ITO-O JELI JUITON

SITE INFORMATION	AREA MAP	PROJECT DESCRIPTION		SHEET INC
PROPERTY OWNER:	28 (9) Westfield Springfield		SHT NO:	SHEET TITLE:
CROMWELL FIRE DEPARTMENT	Webster		T-1	TITLE SHEET
CROMWELL, CT 06416	vn Winsted Putnam Attleboro Pawtucketo Pawtucketo	INSTALL (1) EQUIPMENT CABINET	SP-1	SPRINT SPECIFICATIONS
CROMWELL, CT 06416	offindsur Storrs 000 OProvi	INSTALL NEW BATTERY STRING(S) IN EXISTING BATTERY CABINET	SP-2	SPRINT SPECIFICATIONS
SITE ADDRESS:	Poughkeepsie West Hartford 0 Hartford 6 Claristotic Fa Bristolo New Britain Warwick	INSTALL (3) PANEL ANTENNAS	SP-3	SPRINT SPECIFICATIONS
I 79 SHUNPIKE ROAD	Waterbury Widdletown Norwich	INSTALL (3) RRH'S ON TOWER	A- I	SITE PLAN
CROMWELL, CT 06416 MIDDLESEX COUNTY	wn Meriden Newpo		A-2	EQUIPMENT PLAN
	Highland Mills Carmels Danbury Hamden 9 New London Wakefield	INSTALL (1) HYBRID CABLE AND (2) SECTOR JUMPERS	A-3	TOWER ELEVATION
GEOGRAPHIC COORDINATES:	Peekskill Stonington	INSTALL (27) ANTENNA / RRH JUMPERS	A-4	ANTENNA DETAILS
LATITUDE: 41° 37' 23.74" N (41.623261° N) LONGITUDE: -72° 40' 45.62" W (-72.679339° W)	SITE LOCATION		A-5	RF DATA SHEET
ZONING JURISDICTION:	Iford P277 PStamford (25)		A-6	FIBER PLUMBING DIAGRAM
CROMWELL	Vonkers		A-7	CABLE COLOR CODING
	Sono Sournampton		A-8	ANTENNA & HYBRID CABLE DETAILS
ZONING DISTRICT:	Manattan Syosseta o Ouran varko o oQueens 000 eBrentwood «Shirley		A-9	EQUIPMENT DETAILS
A-25 RESIDENTIAL	ethe New York		A-10	EQUIPMENT DETAILS
POWER COMPANY:	o •Far Rockaway North		E-I	EQUIPMENT UTILITY & GROUNDING PLAN
CONNECTICUT LIGHT AND POWER			E-2	GROUNDING DETAILS
PH.: (800) 286-2000	LOCATION MAP	APPLICABLE CODES	E-3	DC POWER DETAILS & PANEL SCHEDULES
AAV PROVIDER:	AND SHALL SHALL AND S			
PH.: (888) 949-0447	A STATE AND A STATE AND A STATE			
SPRINT CONSTRUCTION MANAGER:	Black Birchion	* ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN		
NAME: MIKE DELIA	ST TANKA THE PROPERTY AND THE REAL	ACCORDANCE WITH THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE		
PHONE: (781) 316-6348 E-MAIL: Michael.Delia@Sprint.com		CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES.		
EQUIPMENT SUPPLIER:	C A BERGER TO TO A LABOR OF A			
ALCATEL-LUCENT				
I GOO-700 MOUNTAIN AVENUE MURRAY HILL, NJ 07974		I. INTERNATIONAL BUILDING CODE		
PH.: (908) 508-8080	SITE LOCATION	2. ANSI/TIA-222 STRUCTURAL STANDARD FOR ANTENNA STRUCTURES		
PLANS PREPARED BY:		3. NFPA 780 - LIGHTNING PROTECTION CODE		
RAMAKER & ASSOCIATES, INC.		4. NATIONAL ELECTRIC CODE		
CONTACT: KEITH BOHNSACK, PROJECT MANAGER PH.: (608) 643-4100	Attended the second states of			
EMAIL: kbohnsack@ramaker.com	a line top real			
		Know what's below.		
		Call before you dig.		
4	NORTH			

SECTION OI 100 - SCOPE OF WORK

THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE CONSTRUCTION DRAWINGS AND ASSOCIATED OUTLINE SPECIFICATIONS AND THE SITE SPECIFIC WORK ORDER, DESCRIBE THE WORK TO BE PERFORMED BY THIS CONSTRUCTION CONTRACTOR (SUPPLIER).

RELATED DOCUMENT

- A. THE REQUIREMENTS OF EACH SECTION OF THIS SPECIFICATION APPLY TO ALL SECTIONS, INDIVIDUALLY AND COLLECTIVELY
- B. RELATED DOCUMENTS: THE CONTRACTOR SHALL COMPLY WITH THE MOST CURRENT VERSION OF THE FOLLOWING SUPPLEMENTAL REQUIREMENTS FOR INSTALLATION AND TESTING. I. EN-2012-001: (FIBER OPTIC, DC CABLE, AND DC CIRCUIT BREAKER TAGGING STANDARDS)
- 2. TS-0200 (TRANSMISSION ANTENNA LINE ACCEPTANCE STANDARDS) 3.EL-0568: (FIBER TESTING POLICY)
- 4.NP-3 | 2-20 |: (EXTERIOR GROUNDING SYSTEM TESTING) 5.NP-760-500: ETHERNET, MICROWAVE, TESTING AND ACCEPTANCE

Ramaker

201.

 (\mathbf{O})

SHOULD CONFLICTS OCCUR BETWEEN THE STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES AND THE CONSTRUCTION DRAWINGS, INFORMATION ON THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE. NOTIFY SPRINT CONSTRUCTION MANAGER IF THIS OCCURS.

NATIONALLY RECOGNIZED CODES AND STANDARDS: THE WORK SHALL COMPLY WITH APPLICABLE NATIONAL AND LOCAL CODES AND STANDARDS, LATEST EDITION, AND PORTIONS THEREOF, INCLUDED BUT NOT LIMITED TO THE FOLLOWING: A. GR-63-CORE NEBS REQUIREMENTS: PHYSICAL PROTECTION

- B. GR-78-CORE GENERIC REQUIREMENTS FOR THE PHYSICAL DESIGN AND MANUFACTURE OF
- TELECOMMUNICATIONS EQUIPMENT.
- C. GR-1089 CORE, ELECTROMAGNETIC COMPATIBILITY AND ELECTRICAL SAFETY -GENERIC CRITERIA FOR NETWORK TELECOMMUNICATIONS FOUIPMENT
- D. NATIONAL FIRE PROTECTION ASSOCIATION CODES AND STANDARDS (NFPA) INCLUDING NFPA 70
- (NATIONAL ELECTRICAL CODE "NEC") AND NFPA IOI (LIFE SAFETY CODE). AMERICAN SOCIETY FOR TESTING OF MATERIALS (ASTM)
- F. INSTITUTE OF ELECTRONIC AND ELECTRICAL ENGINEERS (IEEE) G. AMERICAN CONCRETE INSTITUTE (ACI)

- H. AMERICAN WIRE PRODUCERS ASSOCIATION (AWPA) I. CONCRETE REINFORCING STEEL INSTITUTE (CRSI) J. AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)
- K. PORTLAND CEMENT ASSOCIATION (PCA)
- L. NATIONAL CONCRETE MASONRY ASSOCIATION (NCMA) M.BRICK INDUSTRY ASSOCIATION (BIA)
- N. AMERICAN WELDING SOCIETY (AWS)
- O. NATIONAL ROOFING CONTRACTORS ASSOCIATION (NRCA)
- P. SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA) Q. DOOR AND HARDWARE INSTITUTE (DHI)

- R. OCCUPATIONAL SAFETY AND HEALTH ACT (OSHA) S. APPLICABLE BUILDING CODES INCLUDING UNIFORM BUILDING CODE, SOUTHERN BUILDING CODE, BOCA, AND THE INTERNATIONAL BUILDING CODE.

- A. WORK: THE SUM OF TASKS AND RESPONSIBILITIES IDENTIFIED IN THE CONTRACT DOCUMENTS.
- B. COMPANY: "SPRINT"; SPRINT NEXTEL CORPORATION AND IT'S OPERATING ENTITIES. C. ENGINEER: SYNONYMOUS WITH ARCHITECT & ENGINEER AND "A&E". THE DESIGN PROFESSIONAL HAVING
- PROFESSIONAL RESPONSIBILITY FOR DESIGN OF THE PROJECT. D. CONTRACTOR: CONSTRUCTION CONTRACTOR, SUPPLIER, CONSTRUCTION VENDOR; INDIVIDUAL OR ENTITY WHO AFTER EXECUTION OF A CONTRACT IS BOUND TO ACCOMPLISH THE WORK.
- E. THIRD PARTY VENDOR OR AGENCY: A VENDOR OR AGENCY ENGAGED SEPARATELY BY THE COMPANY. A#E. OR CONTRACTOR TO PROVIDE MATERIALS OR TO ACCOMPLISH SPECIFIC TASKS RELATED TO BUT NOT INCLUDED IN THE WORK
- CONSTRUCTION MANAGER ALL PROJECTS RELATED COMMUNICATION TO FLOW THROUGH SPRINT REPRESENTATIVE IN CHARGE OF PROJECT.

SITE FAMILIARITY

CONTRACTOR SHALL BE RESPONSIBLE FOR FAMILIARIZING HIMSELF WITH ALL CONTRACT DOCUMENTS, FIELD CONDITIONS AND DIMENSIONS PRIOR TO PROCEEDING WITH CONSTRUCTION. ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE SPRINT CONSTRUCTION MANAGER PRIOR TO THE COMMENCEMENT OF WORK. NO COMPENSATION WILL BE AWARDED BASED ON CLAIM OF LACK OF KNOWLEDGE OR FIELD CONDITIONS

COMMUNICATION BETWEEN SPRINT AND THE CONTRACTOR SHALL FLOW THROUGH THE SINGLE SPRINT CONSTRUCTION MANAGER APPOINTED TO MANAGE THE PROJECT FOR SPRINT.

THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE RESPONSIBLE FOR CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES IN ACCORDANCE WITH THE CONTRACT DOCUMENTS. THE CONTRACTOR SHALL EMPLOY A COMPETENT SUPERINTENDENT WHO SHALL BE IN ATTENDANCE AT THE SITE AT ALL TIMES DURING PERFORMANCE OF THE WORK.

AWINGS REQUIRED AT JOBSITI

THE CONSTRUCTION CONTRACTOR SHALL MAINTAIN A FULL SET OF THE CONSTRUCTION DRAWINGS FOR WRELESS SITES AND THE STANDARD CONSTRUCTION SPECIFICATIONS FOR WRELESS SITES AT THE JOBSITE FROM MOBILIZATION THROUGH CONSTRUCTION COMPLETION.

- A. THE JOBSITE DRAWINGS SHALL BE CLEARLY MARKED DAILY IN RED PENCIL WITH ANY CHANGES IN CONSTRUCTION OVER WHAT IS DEPICTED IN THE DOCUMENTS. AT CONSTRUCTION COMPLETION, THIS JOBSITE MARKUP SET SHALL BE DELIVERED TO THE COMPANY OR COMPANY'S DESIGNATED REPRESENTATIVE TO BE FORWARDED TO THE COMPANY'S A&E VENDOR FOR PRODUCTION OF "AS-BUILT" DRAWINGS.
- DIMENSIONS SHOWN ARE TO FINISH SURFACES UNLESS NOTED OTHERWISE. SPACING BETWEEN EQUIPMENT IS THE REQUIRED CLEARANCE. SHOULD THERE BE ANY QUESTIONS REGARDING THE CONTRACT DOCUMENTS, EXISTING CONDITIONS AND/OR DESIGN INTENT, THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING A CLARIFICATION FROM THE SPRINT CONSTRUCTION MANAGER PRIOR TO PROCEEDING WITH THE WORK

USE OF JOB SITE: THE CONTRACTOR SHALL CONFINE ALL CONSTRUCTION AND RELATED OPERATIONS INCLUDING STAGING AND STORAGE OF MATERIALS AND EQUIPMENT, PARKING, TEMPORARY FACILITIES, AND WASTE STORAGE TO THE LEASE PARCEL UNLESS OTHERWISE PERMITTED BY THE CONTRACT DOCUMENTS.

WHERE NECESSARY TO CUT EXISTING PIPES, ELECTRICAL WIRES, CONDUITS, CABLES, ETC., OF UTILITY SERVICES, OR OF FIRE PROTECTION OR COMMUNICATIONS SYSTEMS. THEY SHALL BE CUT AND CAPPED AT SUITABLE PLACES OR WHERE SHOWN. ALL SUCH ACTIONS SHALL BE COORDINATED WITH THE UTILITY COMPANY INVOLVED:

WHEN REQUIRED THAT A PERMIT OR CONNECTION FEE BE PAID TO A PUBLIC UTILITY PROVIDER FOR NEW SERVICE TO THE CONSTRUCTION PROJECT, PAYMENT OF SUCH FEE SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR.

CONTRACTOR SHALL TAKE ALL MEASURES AND PROVIDE ALL MATERIAL NECESSARY FOR PROTECTING EXISTING EQUIPMENT AND PROPERTY.

ISE OF ELECTRONIC PROJECT MANAGEMENT SYSTEM

CONTRACTOR WILL UTILIZE ITS BEST EFFORTS TO WORK WITH SPRINT ELECTRONIC PROJECT MANAGEMENT SYSTEMS, CONTRACTOR UNDERSTANDS THAT SUFFICIENT INTERNET ACCESS, EQUIVALENT TO "BROADBAND" OR BETTER, IS REQUIRED TO TIMELY AND EFFECTIVELY UTILIZE SPRINT DATA AND DOCUMENT MANAGEMENT SYSTEMS AND AGREES TO MAINTAIN APPROPRIATE CONNECTIONS FOR CONTRACTOR'S STAFE AND OFFICES THAT ARE COMPATIBLE WITH SPRINT DATA AND DOCUMENT MANAGEMENT SYSTEMS

TEMPORARY UTILITIES AND FACILITIES: THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL TEMPORARY UTILITIES AND FACILITIES NECESSARY EXCEPT AS OTHERWISE INDICATED IN THE CONSTRUCTION DOCUMENTS. TEMPORARY UTILITIES AND FACILITIES INCLUDE POTABLE WATER, HEAT, HVAC, ELECTRICITY, SANITARY FACILITIES, WASTE DISPOSAL FACILITIES, AND TELEPHONE/COMMUNICATION SERVICES. PROVIDE TEMPORARY UTILITIES AND FACILITIES IN ACCORDANCE WITH OSHA AND THE AUTHORITY HAVING JURISDICTION. CONTRACTOR MAY UTILIZE THE COMPANY ELECTRICAL SERVICE IN THE COMPLETION OF THE WORK WHEN IT BECOMES AVAILABLE. USE OF THE LESSOR'S OR SITE OWNER'S UTILITIES OR FACILITIES IS EXPRESSLY FORBIDDEN EXCEPT AS OTHERWISE ALLOWED IN THE CONTRACT DOCUMENTS

ACCESS TO WORK: THE CONTRACTOR SHALL PROVIDE ACCESS TO THE JOB SITE FOR AUTHORIZED COMPANY PERSONNEL AND AUTHORIZED REPRESENTATIVES OF THE ARCHITECT/ENGINEER DURING ALL PHASES OF THE WORK.

VERIFY DIMENSIONS INDICATED ON DRAWINGS WITH FIELD DIMENSIONS BEFORE FABRICATION OR ORDERING OF MATERIALS, DO NOT SCALE DRAWINGS.

NOTIFY THE SPRINT CONSTRUCTION MANAGER OF EXISTING CONDITIONS DIFFERING FROM THOSE INDICATED ON THE DRAWINGS. DO NOT REMOVE OR ALTER STRUCTURAL COMPONENTS WITHOUT PRIOR WRITTEN APPROVAL FROM THE ARCHITECT AND ENGINEER.

SECTION 01 200 - COMPANY FURNISHED MATERIAL AND EQUIPMENT

COMPANY FURNISHED MATERIALS AND EQUIPMENT TO BE INSTALLED BY THE CONTRACTOR (OFIC) IS IDENTIFIED ON THE RF DATA SHEET IN THE CONSTRUCTION DOCUMENTS.

RECEIPT OF MATERIAL AND EQUIPMENT: A.THE CONTRACTOR IS RESPONSIBLE FOR SPRINT PROVIDED MATERIAL AND EQUIPMENT AND UPON RECEIPT SHALL

- I. ACCEPT DELIVERIES AS SHIPPED AND TAKE RECEIPT
- 2. VERIFY COMPLETENESS AND CONDITION OF ALL DELIVERIES. 3. TAKE RESPONSIBILITY FOR EQUIPMENT AND PROVIDE INSURANCE PROTECTION AS REQUIRED IN AGREEMENT
- B RECORD ANY DEFECTS OR DAMAGES AND WITHIN TWENTY-FOUR HOURS AFTER RECEIPT. REPORT TO
- OPRINT OR ITS DESIGNATED PROJECT REPRESENTATIVE OF SUCH
- C.PROVIDE SECURE AND NECESSARY WEATHER PROTECTED WAREHOUSING
- D.COORDINATE SAFE AND SECURE TRANSPORTATION OF MATERIAL AND EQUIPMENT, DELIVERING AND OFF-LOADING FROM CONTRACTOR'S WARFHOUSE TO SITE

DELIVERABI F

A. COMPLETE SHIPPING AND RECEIPT DOCUMENTATION IN ACCORDANCE WITH COMPANY PRACTICE. B IF APPLICABLE. COMPLETE LOST/STOLEN/DAMAGED DOCUMENTATION REPORT AS NECESSARY IN

ACCORDANCE WITH COMPANY PRACTICE, AND AS DIRECTED BY COMPANY

SECTION 01 300 - CELL SITE CONSTRUCTION

A NO WORK SHALL COMMENCE PRIOR TO COMPANY'S ISSUANCE OF THE WORK ORDER B.UPON RECEIVING NOTICE TO PROCEED, CONTRACTOR SHALL FULLY PERFORM ALL WORK NECESSARY TO PROVIDE SPRINT WITH AN OPERATIONAL WIRELESS FACILITY.

- GENERAL REQUIREMENTS FOR CONSTRUCTION: A.CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK, CONTRACTOR SHALL REMOVE FROM THE SITE ALL REMAINING RUBBISH, IMPLEMENTS, TEMPORARY FACILITIES, AND SURPLUS MATERIALS.
- B.EQUIPMENT ROOMS SHALL AT ALL TIMES BE MAINTAINED "BROOM CLEAN" AND CLEAR OF DEBRIS C.CONTRACTOR SHALL TAKE ALL REASONABLE PRECAUTIONS TO DISCOVER AND LOCATE ANY HAZARDOUS CONDITION
- I. IN THE EVENT CONTRACTOR ENCOUNTERS ANY HAZARDOUS CONDITION WHICH HAS NOT BEEN ABATED OR OTHERWISE MITIGATED, CONTRACTOR AND ALL OTHER PERSONS SHALL IMMEDIATELY STOP WORK IN THE AFFECTED AREA AND NOTIFY COMPANY IN WRITING. THE WORK IN THE AFFECTED
- AREA SHALL NOT BE RESUMED EXCEPT BY WRITTEN NOTIFICATION BY COMPANY. 2. CONTRACTOR AGREES TO USE CARE WHILE ON THE SITE AND SHALL NOT TAKE ANY ACTION THAT WILL OR MAY RESULT IN OR CAUSE THE HAZARDOUS CONDITION TO BE FURTHER RELEASED IN THE ENVIRONMENT, OR TO FURTHER EXPOSE INDIVIDUALS TO THE HAZARD.
- D.CONTRACTOR'S ACTIVITIES SHALL BE RESTRICTED TO THE PROJECT LIMITS. SHOULD AREAS OUTSIDE THE PROJECT LIMITS BE AFFECTED BY CONTRACTOR'S ACTIVITIES, CONTRACTOR SHALL IMMEDIATELY RETURN
- THEM TO ORIGINAL CONDITION

SURFACE TREATMENTS.

- FUNCTIONAL REQUIREMENTS: A.THE ACTIVITIES DESCRIBED IN THIS PARAGRAPH REPRESENT MINIMUM ACTIONS AND PROCESSES REQUIRED TO SUCCESSFULLY COMPLETE THE WORK. CONTRACTOR SHALL TAKE ALL ACTIONS AS NECESSARY TO SUCCESSFULLY COMPLETE THE CONSTRUCTION OF A FULLY FUNCTIONING WIRELESS FACILITY AT THE SITE IN ACCORDANCE WITH COMPANY PROCESSES.
- B. SUBMIT SPECIFIC DOCUMENTATION AS INDICATED HEREIN, AND OBTAIN REQUIRED APPROVALS WHILE THE WORK IS BEING PERFORMED.

2. PREPARE GROUND SITES; PROVIDE DE-GRUBBING; AND ROUGH AND FINAL GRADING, AND COMPOUND

3 MANAGE AND CONDUCT ALL ACTIVITIES FOR INSTALLATION OF UTILITIES INCLUDING ELECTRICAL AND

4.INSTALL UNDERGROUND FACILITIES INCLUDING UNDERGROUND POWER AND COMMUNICATIONS

- C.MANAGE AND CONDUCT ALL FIELD CONSTRUCTION SERVICE RELATED ACTIVITIES
- D. PROVIDE CONSTRUCTION ACTIVITIES TO THE EXTENT REQUIRED BY THE CONTRACT DOCUMENTS, INCLUDING BUT NOT LIMITED TO THE FOLLOWING:

5.INSTALL ABOVE GROUND GROUNDING SYSTEMS, CONDUIT AND BOXES. 6.PROVIDE NEW HVAC INSTALLATIONS AND MODIFICATIONS.

9. ACCOMPLISH REQUIRED MODIFICATION OF EXISTING FACILITIES.

7.INSTALL "H-FRAMES", CABINETS AND PADS AND PLATFORMS AS INDICATED. 8.INSTALL ROADS, ACCESS WAYS, CURBS AND DRAINS AS INDICATED.

PERFORM ANY REQUIRED SITE ENVIRONMENTAL MITIGATION

CONDUITS, AND UNDERGROUND GROUNDING SYSTEM.

BACKHAUL (FIBER, COPPER, OR MICROWAVE).

PROVIDE SLABS AND EQUIPMENT PLATFORMS. INSTALL COMPOUND FENCING, SIGHT SHIELDING, LANDSCAPING AND ACCESS BARRIERS. PERFORM INSPECTION AND MATERIAL TESTING AS REQUIRED HEREINAFTER CONDUCT SITE RESISTANCE TO EARTH TESTING AS REQUIRED HEREINAFTER INSTALL FIXED GENERATOR SETS AND OTHER STANDBY POWER SOLUTIONS I.G. INSTALL TOWERS, ANTENNA SUPPORT STRUCTURES AND PLATEORMS ON EXISTING TOWERS AS

10. PROVIDE ANTENNA SUPPORT STRUCTURE FOUNDATIONS.

CONDUCT ALL REQUIRED TESTS AND INSPECTIONS

b. PDF SCAN OF REDLINES PRODUCED IN THE FIELD

12

17.

19

DELIVERABLES

CLOSFOUT

DOCUMENTATION.

SPECIFICATIONS

STANDARDS

3. CONCRETE BREAK TESTS

4. SITE RESISTANCE TO EARTH TEST

CHEMICAL GROUNDING SYSTEM

4. REINFORCEMENT CERTIFICATIONS . STRUCTURAL BACKFILL TEST RESULTS . SWEEP AND FIBER TESTS

TESTING BY THIRD PARTY AGENCY

B.REQUIRED THIRD PARTY TESTS

STANDARDS

ANTENNA AZIMUTH AND DOWN-TILT VERIFICATION

8. POST CONSTRUCTION HEIGHT VERIFICATION

AGENCY IS SUBJECT TO APPROVAL BY COMPANY.

AASJTO, AND OTHER METHODS IS NEEDED.

4. REBAR PLACEMENT VERIFICATION WITH REPORT 5. TESTING TENSION STUDY FOR ROCK ANCHORS

INSTALLATION SPECIFICATION HEREIN.

1. COAX SWEEP TESTS PER SPRINT STANDARD TS-0200 2. FIBER TESTS PER SPRINT STANDARD EL-0568

SITE RESISTANCE TO FARTH TEST PER NP-312-201

THE SOIL ROCK AND GROUNDWATER CONDITIONS

5. STRUCTURAL BACKFILL COMPACTION TESTS

REQUIRED.

AND LANDLORDS

NOT LIMITED TO THE FOLLOWING

4. ALL REQUIRED TEST REPORTS.

e FINAL PAYMENT APPLICATION f. REQUIRED FINAL CONSTRUCTION PHOTOS

LISTS OF SUBCONTRACTORS

PROJECT PROGRESS REPORTS

3. PRE-CONSTRUCTION MEETING NOTES.

d.LIEN WAIVERS

SITE PHOTOS

INSTALL CELL SITE RADIOS MICROWAVE GPS COAXIAL MAINLINE ANTENNAS CROSS BAND COUPLERS, TOWER TOP AMPLIFIERS, LOW NOISE AMPLIFIERS AND RELATED EQUIPMENT

PERFORM, DOCUMENT, AND CLOSE OUT ALL JURISDICTIONAL PERMITTING REQUIREMENTS AND ANY CONSTRUCTION CONTROL DOCUMENTS THAT MAY BE REQUIRED BY GOVERNMENT AGENCIES

20. PERFORM ALL ADDITIONAL WORK AS IDENTIFIED IN SCOPE OF SERVICES ATTACHED TO THE SUPPLIER AGREEMENT FOR THIS PROJECT. THIS WORK MAY INCLUDE COMMISSION INTEGRATION, SPECIAL WAREHOUSING, REVERSE LOGISTICS ACTIVITIES, ETC. PERFORM COMMISSIONING AND INTEGRATION ACTIVITIES PER APPLICABLE MOPS.

A. THE CONTRACTOR SHALL PROVIDE ALL REQUIRED TEST REPORTS AND DOCUMENTATION INCLUDED BUT

I. PRODUCT SPECIFICATIONS FOR MATERIALS OR SPECIAL CONSTRUCTION IF REQUESTED BY SPRINT . ACTUALIZE ALL CONSTRUCTION RELATED MILESTONES IN SITERRA AND COMPLETE ALL ON-LINE FORMS AND COMPLETE DOCUMENT UP-LOADS, UPLOAD ALL REQUIRED CLOSEOUT DOCUMENTS AND FINAL

3. SCANABLE BARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSIBLE SERIALIZED EQUIPMENT LEFT ON SITE INSIDE BASE OF MAIN RF CABINET IN A PROTECTIVE POUCH.

5. REQUIRED CLOSEOUT DOCUMENTATION INCLUDING BUT NOT LIMITED TO: a. ALL JURISDICTIONAL PERMITTING AND OCCUPANCY INFORMATION

c. ELECTRONIC AS-BUILT DRAWINGS IN AUTOCAD AND PDF FORMATS

a CONSTRUCTION AND COMMISSIONING CHECKLIST COMPLETE WITH NO DEFICIENT ITEMS

B PROVIDE ADDITIONAL DOCUMENTATION INCLUDING, BUT NOT LIMITED TO, THE FOLLOWING DOCUMENTATION SHALL BE FORWARDED IN ORIGINAL FORMAT AND/OR UPLOADED INTO SMS. I. ALL CORRESPONDENCE AND PRELIMINARY CONSTRUCTION REPORTS.

SECTION 01 400 - TESTS, INSPECTIONS, SUBMITTALS, AND PROJECT

TESTS AND INSPECTIONS: A. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL CONSTRUCTION TESTS, INSPECTIONS AND PROJECT

B. CONTRACTOR SHALL ACCOMPLISH TESTING INCLUDING BUT NOT LIMITED TO THE FOLLOWING I. COAX SWEEPS AND FIBER TESTS PER TS-0200 (CURRENT VERSION) ANTENNA LINE ACCEPTANCE

2. POST CONSTRUCTION HEIGHT VERIFICATION, AZIMUTH AND DOWNTILT USING ELECTRONIC COMMERCIAL MADE-FOR-THE-PURPOSE ANTENNA ALIGNMENT TOOL.

6. CONTRACTOR SHALL BE RESPONSIBLE FOR ANY AND ALL CORRECTIONS TO ANY WORK IDENTIFIED AS UNACCEPTABLE IN SITE INSPECTION ACTIVITIES AND/OR AS A RESULT OF TESTING. 7. ADDITIONAL TESTING AS REQUIRED ELSEWHERE IN THIS SPECIFICATION

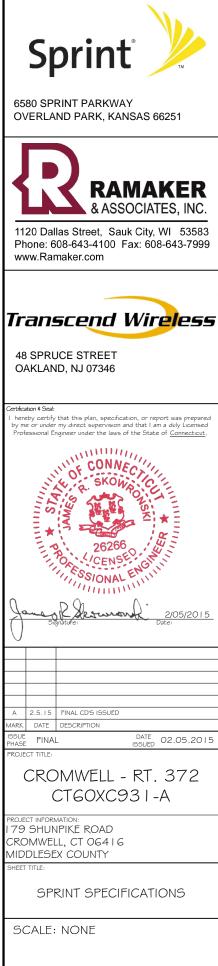
 $\frac{\text{SUBMITTALS:}}{\text{A.THE WORK IN ALL ASPECTS SHALL COMPLY WITH THE CONSTRUCTION DRAWINGS AND THESE$

B.UPLOAD THE FOLLOWING TO SITERRA AS APPLICABLE INCLUDING BUT NOT LIMITED TO THE FOLLOWING: . CONCRETE MIX-DESIGNS FOR TOWER FOUNDATIONS, ANCHORS PIERS, AND CONCRETE PAVING. ... CONCRETE BREAK TESTS AS SPECIFIED HEREIN.

9. ADDITIONAL SUBMITTALS MAY BE REQUIRED FOR SPECIAL CONSTRUCTION OR MINOR MATERIALS C.ALTERNATES: AT THE COMPANY'S REQUEST, ANY ALTERNATIVES TO THE MATERIALS OR METHODS SPECIFIED SHALL BE SUBMITTED TO SPRINT'S CONSTRUCTION MANAGER FOR APPROVAL PRIOR TO BEING SHIPPED TO SITE. SPRINT WILL REVIEW AND APPROVE ONLY THOSE REQUESTS MADE IN WRITING. NO VERBAL APPROVALS WILL BE CONSIDERED. SUBMITTAL FOR APPROVAL SHALL INCLUDE A STATEMENT OF COST REDUCTION PROPOSED FOR USE OF ALTERNATE PRODUCT.

LABORATORY OF ENGINEERS AND SCIENTISTS WHO IS REGULARLY ENGAGED IN FIELD AND LABORATORY TESTING AND ANALYSIS, AGENCY SHALL HAVE BEEN IN BUSINESS A MINIMUM OF FIVE YEARS, AND BE LICENSED AS PROFESSIONAL ENGINEERS IN THE STATE WHERE THE PROJECT IS LOCATED.

I. AGENCY MUST HAVE A THOROUGH UNDERSTANDING OF LOCAL AVAILABLE MATERIALS, INCLUDING


2. AGENCY IS TO BE FAMILIAR WITH THE APPLICABLE REQUIREMENTS FOR THE TESTS TO BE DONE, EQUIPMENT TO BE USED. AND ASSOCIATED HEALTH AND SAFETY ISSUES 3. EXPERIENCE IN SOILS, CONCRETE, MASONRY, AGGREGATE, AND ASPHALT TESTING USING ASTM,

2. CONCRETE CYLINDER BREAK TESTS FOR TOWER PIER AND ANCHORS PER NATIONALLY RECOGNIZED

3. STRUCTURAL SOILS COMPACTION TESTS PER NATIONALLY RECOGNIZED STANDARDS

6. ALL THIRD PARTY TESTS AS REQUIRED BY LOCAL JURISDICTION C.REQUIRED TESTS BY CONTRACTOR

MICROWAVE LINK TESTS PER NP.-760-500
 ANTENNA AZIMUTHS AND DOWN TILT USING ELECTRONIC ALIGNMENT TOOL PER ANTENNA

29431

SP-1

PROJEC1 NUMBER SHEET

 (\mathbf{O})

- POST CONSTRUCTION HEIGHT VERIFICATION AS REQUIRED HEREWITH IN THE TOWER INSTALLATION SPECIFICATIONS
- ASPHALT ROADWAY COMPACTED THICKNESS, SURFACE SMOOTHNESS, AND COMPACTED DENSITY 6 TESTING AS SPECIFIED HEREWITH IN THE ASPHALT PAVING SPECIFICATIONS.
- FIELD QUALITY CONTROL TESTING AS SPECIFIED HEREWITH IN THE CONCRETE PAVING SPECIFICATIONS.
- TESTING REQUIRED HEREWITH UNDER SPECIFICATIONS FOR AGGREGATE BASE FOR ROADWAYS ALL OTHER TESTS REQUIRED BY LOCAL JURISDICTION
- D.INSPECTIONS BY COMPANY: THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY AND ALL CORRECTIONS TO ANY WORK IDENTIFIED AS UNACCEPTABLE IN INSPECTION ACTIVITIES, FINAL ACCEPTANCE / PUNCH WALK REVIEW, AND/OR AS A RESULT OF TESTING
- E. SPRINT RESERVES THE RIGHT TO INSPECT THE CONSTRUCTION SITE AT ANY TIME VIA SITE WALKS AND/OR PHOTO REVIEWS, CONTRACTOR SHALL GIVE SPRINT 24 HOURS NOTICE PRIOR TO THE COMMENCEMENT OF THE FOLLOWING CONSTRUCTION ACTIVITIES AND PHOTOGRAPHS OF THE IN-PROGRESS WORK.
- GROUNDING SYSTEM AND BURIED UTILITIES INSTALLATION PRIOR TO EARTH CONCEALMENT DOCUMENTED WITH DIGITAL PHOTOGRAPHS BY CONTRACTOR, APPROVED BY A&E OR SPRINT REPRESENTATIVE
- FORMING FOR CONCRETE AND REBAR PLACEMENT PRIOR TO POUR DOCUMENTED WITH DIGITAL PHOTOGRAPHS BY CONTRACTOR, APPROVED BY A¢E OR SPRINT REPRESENTATIVE
- 3 COMPACTION OF BACKFUL MATERIALS AGGREGATE BASE FOR ROADS PADS AND ANCHORS ASPHALT PAVING, AND SHAFT BACKFILL FOR CONCRETE AND WOOD POLES, BY INDEPENDENT THIRD PARTY AGENCY.
- PRE AND POST CONSTRUCTION ROOFTOP AND STRUCTURAL INSPECTIONS ON EXISTING FACILITIES. PRIOR TO CONSTRUCTION ACTIVITIES AND AFTER CONSTRUCTION IS COMPLETE, PROVIDE PHOTOGRAPHIC DOCUMENTATION OF ROOF, FLASHINGS, AND PARAPETS, BOTH BEFORE AND AFTER CONSTRUCTION IS COMPLETE.
- TOWER ERECTION SECTION STACKING AND PLATFORM ATTACHMENT DOCUMENTED BY DIGITAL PHOTOGRAPHS BY THIRD PARTY AGENCY
- TOWER TOP AND INACCESSIBLE EQUIPMENT (RRUS, ANTENNAS, AND CABLING): PROVIDE PHOTOS OF THE BACKS OF ALL ANTENNAS, RRUS, COMBINERS, FILTERS, FIBER AND DC CABLING, CABLE COLOR CODING, EQUIPMENT GROUNDING AND CONNECTOR WATER PROOFING INCLUDING NAME PLATE AND SERIAL NUMBER FOR ALL SERIALIZED EQUIPMENT.

PROJECT CLOSEOUT: A.FINAL ACCEPTANCE PUNCH WALK AND INSPECTION: AS IDENTIFIED IN THE SCOPE OF SERVICES, SPRINT WILL CONDUCT A FINAL PUNCH WALK OR FINAL DESK TOP PHOTO REVIEW (SITE MODIFICATIONS). PUNCH WALKS MUST BE SCHEDULED IN ADVANCE AS REQUIRED. AT THE PUNCH WALK / REVIEW, SPRINT MAY IDENTIFY CRITICAL DEFICIENCIES WHICH MUST BE CORRECTED PRIOR TO PUTTING SITE ON AIR. MINOR DEFICIENCIES MUST BE CORRECTED WITHIN 30 DAYS EXCEPT AS OTHERWISE REQUIRED. VERIFICATIONS OF CORRECTIONS MAY BE MADE BY COMPANY DURING A REPEAT SITE WALK OR DESK TOP PHOTO REVIEW AT COMPANYS SOLE DISCRETION.

B. CLOSEOUT DOCUMENTATION: ALL CLOSEOUT DOCUMENTATION AND PHOTOGRAPHS SHALL BE UPLOADED PRIOR TO FINAL ACCEPTANCE. SPRINT WILL REVIEW CLOSEOUT DOCUMENTATION FOR PRESENCE AND CONTENT. CLOSEOUT DOCUMENTATION SHALL INCLUDE BUT IS NOT LIMITED TO THE FOLLOWING AS APPLICABLE:

- COAX SWEEP TESTS:
- FIBER TESTS:
- JURISDICTION FINAL INSPECTION DOCUMENTATION REINFORCEMENT CERTIFICATION (MILL CERTIFICATION)
- CONCRETE MIX DESIGN AND PRODUCT DATA (TOWER FOUNDATION)
- LIEN WAIVERS AND RELEASES.
- POST -CONSTRUCTION HEIGHT VERIFICATION
- JURISDICTION CERTIFICATE OF OCCUPANCY ELECTRONIC ANTENNA AZIMUTH AND DOWN TILT VERIFICATION
- . STRUCTURAL BACKFILL TEST RESULTS (IF APPLICABLE) . CELL SITE UTILITY SETUP
- AS-BUILT REDUKE CONSTRUCTION DRAWINGS (PDF SCAN OF FIELD MARKS)
- 13. AS-BUILT CONSTRUCTION DRAWINGS IN DWG AND PDF FORMATS
- 14 LIST OF SUB CONTRACTORS
- 15. APPROVED PERMITTING DOCUMENTS
- I.G. FINAL SITE PHOTOS UP-LOADED TO SITERRA. INCLUDE THE FOLLOWING AS APPLICABLE: a. TOWER, ANTENNAS, RRUS, AND MAINLINE: INSPECTION AND PHOTOGRAPHS OF SECTION STACKING; INSPECTION AND PHOTOGRAPHS OF PLATFORM COMPONENT ATTACHMENT POINTS; PHOTOGRAPHS OF TOWER TOP GROUNDING; PHOTOS OF TOWER COAX/CABLE LINE COLOR CODING AT THE TOP AND AT GROUND LEVEL; INSPECTION AND PHOTOGRAPHS OF OPERATIONAL OF TOWER LIGHTING, AND PLACEMENT OF FAA REGISTRATION SIGN: PHOTOGRAPHS SHOWING ADDITIONAL GROUNDING POINTS FOR TOWERS GREATER THAN 200 FEET.; PHOTOS OF ANTENNA GROUND BAR, EQUIPMENT GROUND BAR, AND MASTER GROUND BAR; PHOTOS OF GPS ANTENNA(5); PHOTOS OF EACH SECTOR OF ANTENNAS; ONE PHOTOGRAPH LOOKING AT THE SECTOR AND ONE FROM BEHIND SHOWING THE PROJECTED COVERAGE AREA; PHOTOS OF COAX WEATHERPROOFING - TOP AND BOTTOM; PHOTOS OF COAX GROUNDING--TOP AND BOTTOM; PHOTOS OF ANTENNA AND MAST GROUNDING; PHOTOS OF COAX CABLE ENTRY INTO SHELTER;
- PHOTOS OF PLATFORM MECHANICAL CONNECTIONS TO TOWERMONOPPOLE. b. ROOF TOPS: PRE-CONSTRUCTION AND POST-CONSTRUCTION VISUAL INSPECTION AND PHOTOGRAPHS OF THE ROOF AND INTERIOR TO DETERMINE AND DOCUMENT CONDITIONS; ROOF TOP CONSTRUCTION INSPECTIONS AS REQUIRED BY THE JURISDICTION: PHOTOGRAPHS OF CABLE TRAY AND/OR ICE BRIDGE; PHOTOGRAPHS OF DOGHOUSE/CABLE EXIT FROM ROOF c. SITE LAYOUT - PHOTOGRAPHS OF THE OVERALL COMPOUND, INCLUDING EQUIPMENT PLATFORM
- FROM ALL FOUR CORNERS.
- A.FINISHED UTILITIES: CLOSE-UP PHOTOGRAPHS OF THE PPC BREAKER PANEL; CLOSE-UP PHOTOGRAPH OF THE INSIDE OF THE TELCO PANEL AND NIU; CLOSE-UP PHOTOGRAPH OF THE POWER METER AND DISCONNECT; PHOTOS OF POWER AND TELCO ENTRANCE TO COMPANY ENCLOSURE: PHOTOGRAPHS AT METER BOX AND/OR FACILITY DISTRIBUTION PANEL.

PROJECT PHOTOGRAPHS: A.PROVIDE PROJECT CLOSEOUT GENERAL ARRANGEMENT PHOTOS OF ALL NEW WORK. THE FOLLOWING LIST REPRESENTS MINIMUM REQUIREMENTS AND MINIMUM QUANTITY. ADDITIONAL PHOTOS MAY BE REQUIRED TO ADEQUATELY DOCUMENT THE WORK

- ASR AND RF MPE SIGNAGE (IF NOT IN PLACE, SUPPLIER NOTIFIES EMS FIELD REPRESENTATIVE)
- BACK OF ANTENNAS AND RRUS (I EACH SECTOR) BACK OF ANTENNAS AND RRUS (I EACH SECTOR) CLOSE UP SHOWING WEATHERPROOFING AND GROUNDING (AS REQUIRED). CLOSE-UP OF BACK SIDE OF EACH PERMANENT RRU SHOWING SERIAL NUMBER/BAR CODE.

- VIEW (I EACH SECTOR) ALONG THE AZIMUTH AND TILT OF THE ANTENNAS TOP OF TOWER FROM GROUND, I EACH SECTOR MAINLINE HYBRID CABLE ROUTE DOWN TOWER SHOWING FASTENERS AND SUPPORT MAINLINE/HYBRID CABLE ROUTE ALONG ICE BRIDGE OR IN CABLE TRAY SHOWING FASTENERS AND
- SUPPORT GROUND MOUNTED RRU RACKS (FRONT AND BACK)
- 9. FRONT, SIDE AND BACK ELEVATIONS OF ALL GROUND CABINETS 10. VIEW OF COMPOUND FROM A DISTANCE
- VIEW OF EACH GROUND CABINET (POWER, RF, FIBER SPOOL, PPC POWER, PPC TELCO WITH DOOR OPFN)
- BACKHAUL FIBER MEET-ME-POINT AND CONDUIT ROUTE (MICROWAVE INSTALLATION IF NOT FIBER) 1.3. AAV NETWORK INTERFACE DEVICE OR MICROWAVE RADIO INSTALLATION

CONTRACTOR IS RESPONSIBLE FOR ALL CORRECTIONS TO DEFICIENCIES IDENTIFIED THROUGH TESTING, REVIEW OF SUBMITTALS, INSPECTIONS AND CLOSEOUT REVIEWS.

SECTION OI 500 - PROJECT REPORTING

WEEKLY REPORT

A.CONTRACTOR SHALL REPORT TO SPRINT AT MINIMUM ON A WEEKLY BASIS VIA SITERRA BY UPDATING ALL APPLICABLE POST END KEEPING MILESTONES WITH ACTUAL AND FORECASTED COMPLETION DATES. B. ADDITIONAL REQUIREMENTS FOR REPORTING MAY BE IDENTIFIED ELSEWHERE OR REQUIRED BY THE SCOPE OF SERVICES OR SPRINTS LOCAL MARKET CONSTRUCTION MANAGER. THIS INFORMATION WILL PROVIDE A BASIS FOR PROGRESS MONITORING AND PAYMENT

PROJECT CONFERENCE CALLS

SPRINT MAY HOLD PERIODIC PROJECT CONFERENCE CALLS, CONTRACTOR WILL BE REQUIRED TO COMMUNICATE SITE STATUS, MILESTONE COMPLETIONS AND UPCOMING MILESTONE PROJECTIONS, AND ANSWER ANY OTHER SITE STATUS QUESTIONS AS NECESSARY.

FINAL PROJECT ACCEPTANCE: PRIOR TO SPRINTS FINAL PROJECT ACCEPTANCE. ALL REQUIRED MILESTONE ACTUALS MUST BE UPDATED IN SITERRA AND ALL REQUIRED REPORTING TASKS MUST BE COMPLETE.

SECTION 11 700 - ANTENNA ASSEMBLY, REMOTE RADIO UNITS AND CABLE INSTALLATION

THIS SECTION SPECIFIES INSTALLATION OF ANTENNAS, RRU'S, AND CABLE EQUIPMENT, INSTALLATION, AND TESTING OF COAXIAL FIBER CABLE.

ANTENNAS AND REUS

THE NUMBER AND TYPE OF ANTENNAS AND RRU'S TO BE INSTALLED IS DETAILED ON THE CONSTRUCTION DRAWINGS

HYBRID CABLE WILL BE DC/FIBER AND FURNISHED FOR INSTALLATION AT EACH SITE. CABLE SHALL BE INSTALLED PER THE CONSTRUCTION DRAWINGS AND THE APPLICABLE MANUFACTURER'S REQUIREMENTS.

TURNIGH AND INSTALL 1/2" COAX JUMPER CABLES BETWEEN THE RRU'S AND ANTENNAS. JUMPERS SHALL BE TYPE LDF 4, FLC 12-50, CR 540, OR FXL 540, SUPER-FLEX CABLES ARE NOT ACCEPTABLE. JUMPERS ETWEEN THE RRU'S AND ANTENNAS OR TOWER TOP AMPLIFIERS SHALL CONSIST OF 1/2 INCH FOAM DIELECTRIC, OUTDOOR RATED COAXIAL CABLE, MIN. LENGTH FOR JUMPER SHALL BE 10"-0".

REMOTE ELECTRICAL TILT (RET) CABLES:

MISCELLANEOUS: INSTALL SPLITTERS, COMBINERS, FILTERS PER RF DATA SHEET, FURNISHED BY SPRINT.

THE CONTRACTOR SHALL ASSEMBLE ALL ANTENNAS ONSITE IN ACCORDANCE WITH THE INSTRUCTIONS SUPPLIED BY THE MANUFACTURER. ANTENNA HEIGHT, AZIMUTH, AND FEED ORIENTATION INFORMATION SHALL BE A DESIGNATED ON THE CONSTRUCTION DRAWINGS.

- A. THE CONTRACTOR SHALL POSITION THE ANTENNA ON TOWER PIPE MOUNTS SO THAT THE BOTTOM STRUT IS LEVEL. THE PIPE MOUNTS SHALL BE PLUMB TO WITHIN I DEGREE.
- B.ANTENNA MOUNTING REQUIREMENTS: PROVIDE ANTENNA MOUNTING HARDWARE AS INDICATED ON THE DRAWINGS.

HYBRID CABLE INSTALLATION:

- A. THE CONTRACTOR SHALL ROUTE, TEST, AND INSTALL ALL CABLES AS INDICATED ON THE CONSTRUCTION DRAWINGS AND IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS.
- B. THE INSTALLED RADIUS OF THE CABLES SHALL NOT BE LESS THAN THE MANUFACTURER'S SPECIFICATIONS FOR BENDING RADII
- C.EXTREME CARE SHALL BE TAKEN TO AVOID DAMAGE TO THE CABLES DURING HANDLING AND INSTALLATION.
 - FASTENING MAIN HYBRID CABLES: ALL CABLES SHALL BE INSTALLED INSIDE MONOPOLE WITH CABLE SUPPORT GRIPS AS REQUIRED BY THE MANUFACTURER.
- 2. FASTENING INDIVIDUAL FIBER AND DC CABLES ABOVE BREAKOUT ENCLOSURE (MEDUSA). WITHIN THE MMBS CABINET AND ANY INTERMEDIATE DISTRIBUTION BOXES:
 - FIBER: SUPPORT FIBER BUNDLES USING 1/2" VELCRO STRAPS OF THE REQUIRED LENGTH AT 18" O.C. STRAPS SHALL BE UV. OIL AND WATER RESISTANT AND SUITABLE FOR INDUSTRIAL INSTALLATIONS AS MANUFACTURED BY TEXTOL OR APPROVED EQUAL.
 - b. DC: SUPPORT DC BUNDLES WITH ZIP TIES OF THE ADEQUATE LENGTH. ZIP TIES TO BE UV STABILIZED, BLACK NYLON, WITH TENSILE STRENGTH AT 12,000 PSI AS MANUFACTURED BY NELCO PRODUCTS OR EQUAL
- 3. FASTENING JUMPERS: SECURE JUMPERS TO THE SIDE ARMS OR HEAD FRAMES USING STAINLESS STEEL TIE WRAPS OR STAINLESS STEEL BUTTERFLY CLIPS.

4 CABLE INSTALLATION:

- a, INSPECT CABLE PRIOR TO USE FOR SHIPPING DAMAGE, NOTIFY THE CONSTRUCTION MANAGER.
- b. CABLE ROUTING: CABLE INSTALLATION SHALL BE PLANNED TO ENSURE THAT THE LINES WILL BE PROPERLY ROUTED IN THE CABLE ENVELOP AS INDICATED ON THE DRAWINGS. AVOID TWISTING AND CROSSOVERS.
- c. HOIST CABLE USING PROPER HOISTING GRIPS. DO NOT EXCEED MANUFACTURER'S RECOMMENDED MAXIMUM BEND RADIUS.
- 5. GROUNDING OF TRANSMISSION LINES: ALL TRANSMISSION LINES SHALL BE GROUNDED AS INDICATED ON DRAWINGS
- 6. HYBRID CABLE COLOR CODING: ALL COLOR CODING SHALL BE AS REQUIRED IN TS 0200 (CURRENT VERSION)
- HYBRID CABLE LABELING: INDIVIDUAL HYBRID AND DC BUNDLES SHALL BE LABELED ALPHA-NUMERICALLY ACCORDING TO SPRINT CELL SITE ENGINEERING NOTICE EN 2012-001, REV 1

WEATHERPROOFING EXTERIOR CONNECTORS AND HYBRID CABLE GROUND KITS:

A. ALL FIBER & COAX CONNECTORS AND GROUND KITS SHALL BE WEATHERPROOFED.

- B WEATHERPROOFED USING ONE OF THE FOLLOWING METHODS, ALL INSTALLATIONS MUST BE DONE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS AND INDUSTRY BEST PRACTICES.
- COLD SHRINK: ENCOMPASS CONNECTOR IN COLD SHRINK TUBING AND PROVIDE A DOUBLE WRAP OF 2" ELECTRICAL TAPE EXTENDING 2" BEYOND TUBING. PROVIDE 3M COLD SHRINK CXS SERIES OR FOLIAL
- 2. SELF-AMALGAMATING TAPE: CLEAN SURFACES. APPLY A DOUBLE WRAP OF SELF-AMALGAMATING TAPE 2" BEYOND CONNECTOR, APPLY A SECOND WRAP OF SELF-AMALGAMATING TAPE IN OPPOSITE DIRECTION, APPLY DOUBLE WRAP OF 2" WIDE ELECTRICAL TAPE EXTENDING 2" BEYOND THE SFLF-AMALGAMATING TAPE
- 3. 3M SLIM LOCK CLOSURE 716: SUBSTITUTIONS WILL NOT BE ALLOWED.
- 4. OPEN FLAME ON JOB SITE IS NOT ACCEPTABLE

SECTION 11 800 - INSTALLATION OF MULTIMODAL BASE STATIONS (MMBS) AND RELATED EQUIPMENT

SUMMARY:

- A. THIS SECTION SPECIFIES MMBS CABINETS, POWER CABINETS, AND INTERNAL EQUIPMENT INCLUDING BY NOT LIMITED TO RECTIFIERS. POWER DISTRIBUTION UNITS, BASE BAND UNITS, SURGE ARRESTORS, BATTERIES, AND SIMILAR EQUIPMENT FURNISHED BY THE COMPANY FOR INSTALLATION BY THE CONTRACTOR (OFCI).
- B.CONTRACTOR SHALL PROVIDE AND INSTALL ALL MISCELLANEOUS MATERIALS AND PROVIDE ALL LABOR REQUIRED FOR INSTALLATION EQUIPMENT IN EXISTING CABINET OR NEW CABINET AS SHOWN ON DRAWINGS AND AS REQUIRED BY THE APPLICABLE INSTALLATION MOPS.
- C.COMPLY WITH MANUFACTURER'S INSTALLATION AND START-UP REQUIREMENTS.

DC CIRCUIT BREAKER LABELING

QUALITY ASSURANCE

AND FREE FROM DEFECTS.

PROVIDE PRODUCTS BY THE FOLLOWING:

3. UNISTRUT DIVERSIFIED PRODUCTS

3. FASTEN BY MEANS OF WOOD SCREWS ON WOOD.

4. TOGGLE BOLTS ON HOLLOW MASONRY UNITS.

ALLIED TUBE AND CONDUIT

SUPPORTING DEVICES:

2 B-LINE SYSTEM

THOMAS ∉ BETTS

STRUCTURES.

PROJECT

A.NEW DC CIRCUIT IS REQUIRED IN MMBS CABINET SHALL BE CLEARLY IDENTIFIED AS TO RRU BEING SERVICED

LABELS AND LISTINGS ARE AVAILABLE IN THE INDUSTRY

SECTION 26 100 - BASIC ELECTRICAL REQUIREMENTS

THIS SECTION SPECIFIES BASIC ELECTRICAL REQUIREMENTS FOR SYSTEMS AND COMPONENTS

A.ALL EQUIPMENT FURNISHED UNDER DIVISION 26 SHALL CARRY UL LABELS AND LISTINGS WHERE SUCH

B.MANUFACTURERS OF EQUIPMENT SHALL HAVE A MINIMUM OF THREE YEARS EXPERIENCE WITH THEIR EQUIPMENT INSTALLED AND OPERATING IN THE FIELD IN A USE SIMILAR TO THE PROPOSED USE FOR THIS

C.MATERIALS AND EQUIPMENT : ALL MATERIALS AND EQUIPMENT SPECIFIED IN DIVISION 26 OF THE SAME TYPE SHALL BE OF THE SAME MANUFACTURER AND SHALL BE NEW, OF THE BEST QUALITY AND DESIGN,

A.MANUFACTURED STRUCTURAL SUPPORT MATERIALS: SUBJECT TO COMPLIANCE WITH REQUIREMENTS,

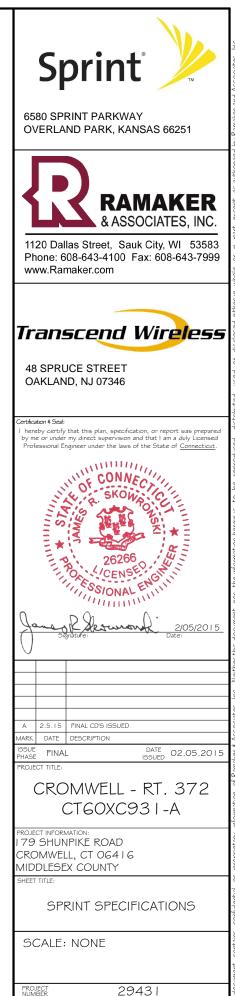
B.FASTENERS: TYPES, MATERIALS, AND CONSTRUCTION FEATURES AS FOLLOWS:

1. EXPANSION ANCHORS: CARBON STEEL WEDGE OR SLEEVE TYPE.

2. POWER-DRIVEN THREADED STUDS: HEAT-TREATED STEEL, DESIGNED SPECIFICALLY FOR THE INTENDED

5. CONCRETE INSERTS OR EXPANSION BOLTS ON CONCRETE OR SOLID MASONRY.

6. MACHINE SCREWS, WELDED THREADED STUDS, OR SPRING-TENSION CLAMPS ON STEEL


7. EXPLOSIVE DEVICES FOR ATTACHING HANGERS TO STRUCTURE SHALL NOT BE PERMITTED.

8. DO NOT WELD CONDUIT, PIPE STRAPS, OR ITEMS OTHER THAN THREADED STUDS TO STEEL

SHEET

SP-2

9. IN PARTITIONS OF LIGHT STEEL CONSTRUCTION, USE SHEET METAL SCREWS.

SUPPORTING DEVICES

R

Ramaker "////

2014

밝

 \odot

- A. INSTALL SUPPORTING DEVICES TO FASTEN ELECTRICAL COMPONENTS SECURELY AND PERMANENTLY IN ACCORDANCE WITH NEC.
- B. COORDINATE WITH THE BUILDING STRUCTURAL SYSTEM AND WITH OTHER TRADES.
- C. UNLESS OTHERWISE INDICATED ON THE DRAWINGS, FASTEN ELECTRICAL ITEMS AND THEIR SUPPORTING HARDWARE SECURELY TO THE STRUCTURE IN ACCORDANCE WITH THE FOLLOWING:
- I. ENSURE THAT THE LOAD APPLIED BY ANY FASTENER DOES NOT EXCEED 25 PERCENT OF THE PROOF TEST LOAD.
- 2. USE VIBRATION AND SHOCK-RESISTANT FASTENERS FOR ATTACHMENTS TO CONCRETE SLABS

ELECTRICAL IDENTIFICATION:

- A. UPDATE AND PROVIDE TYPED CIRCUIT BREAKER SCHEDULES IN THE MOUNTING BRACKET, INSIDE DOORS OF AC PANEL BOARDS WITH ANY CHANGES MADE TO THE AC SYSTEM.
- B. BRANCH CIRCUITS FEEDING AVIATION OBSTRUCTION LIGHTING EQUIPMENT SHALL BE CLEARLY IDENTIFIED AS SUCH AT THE BRANCH CIRCUIT PANELBOARD.

SECTION 26 200 - ELECTRICAL MATERIALS AND EQUIPMENT

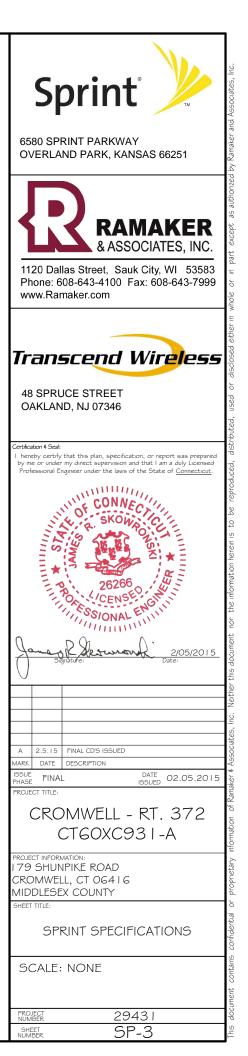
- A. RIGID GALVANIZED STEEL (RGS) CONDUIT SHALL BE USED FOR EXTERIOR LOCATIONS ABOVE GROUND AND IN UNFINISHED INTERIOR LOCATIONS AND FOR UNDERGROUND RUNS. RIGID CONDUIT AND FITTINGS SHALL BE STEEL, COATED WITH ZINC EXTERIOR AND INTERIOR BY THE HOT DIP GALVANIZING PROCESS, CONDUIT SHALL BE PRODUCED TO ANSI SPECIFICATIONS C80.1, FEDERAL SPECIFICATION WW-C-581 AND SHALL BE LISTED WITH THE UNDERWRITERS' LABORATORIES. FITTINGS SHALL BE THREADED - SET SCREW OR COMPRESSION FITTINGS WILL NOT BE ACCEPTABLE, RGS CONDUITS SHALL BE MANUFACTURED BY ALLIED, REPUBLIC OR WHEATLAND.
- B. UNDERGROUND CONDUIT IN CONCRETE SHALL BE POLYVINYLCHLORIDE (PVC) SUITABLE FOR DIRECT BURIAL AS APPLICABLE. JOINTS SHALL BE BELLED, AND FLUSH SOLVENT WELDED IN ACCORDANCE WITH MANUFACTURER'S INSTRUCTIONS. CONDUIT SHALL BE CARLON ELECTRICAL PRODUCTS OR APPROVED EQUAL.
- C. TRANSITIONS BETWEEN PVC AND RIGID (RGS) SHALL BE MADE WITH PVC COATED METALLIC LONG SWEEP RADIUS ELBOWS.
- D. EMT OR RIGID GALVANIZED STEEL CONDUIT MAY BE USED IN FINISHED SPACES CONCEALED IN WALLS AND CEILINGS. EMT SHALL BE MILD STEEL, ELECTRICALLY WELDED, ELECTRO-GALVANIZED OR HOT-DIPPED GALVANIZED AND PRODUCED TO ANSI SPECIFICATION UW-C-563, AND SHALL BE UL LISTED, EMT SHALL BE MANUFACTURED BY ALLIED, REPUBLIC OR WHEATLAND, OR APPROVED EQUAL, FITTINGS SHALL BE METALLIC COMPRESSION. SET SCREW CONNECTIONS SHALL NOT BE ACCEPTABLE.
- E. LIQUID TIGHT FLEXIBLE METALLIC CONDUIT SHALL BE USED FOR FINAL CONNECTION TO EQUIPMENT. FITTINGS SHALL BE METALLIC GLAND TYPE COMPRESSION FITTINGS, MAINTAINING THE INTEGRITY OF CONDUIT SYSTEM. SET SCREW CONNECTIONS SHALL NOT BE ACCEPTABLE. MAXIMUM LENGTH OF FLEXIBLE CONDUIT SHALL NOT EXCEED G-FEET. LFMC SHALL BE PROTECTED AND SUPPORTED AS REQUIRED BY NEC. MANUFACTURERS OF FLEXIBLE CONDUITS SHALL BE CAROL, ANACONDA METAL HOSE OR UNIVERSAL METAL HOSE. OR APPROVED EQUAL.
- F. MINIMUM SIZE CONDUIT SHALL BE 3/4 INCH (21MM).

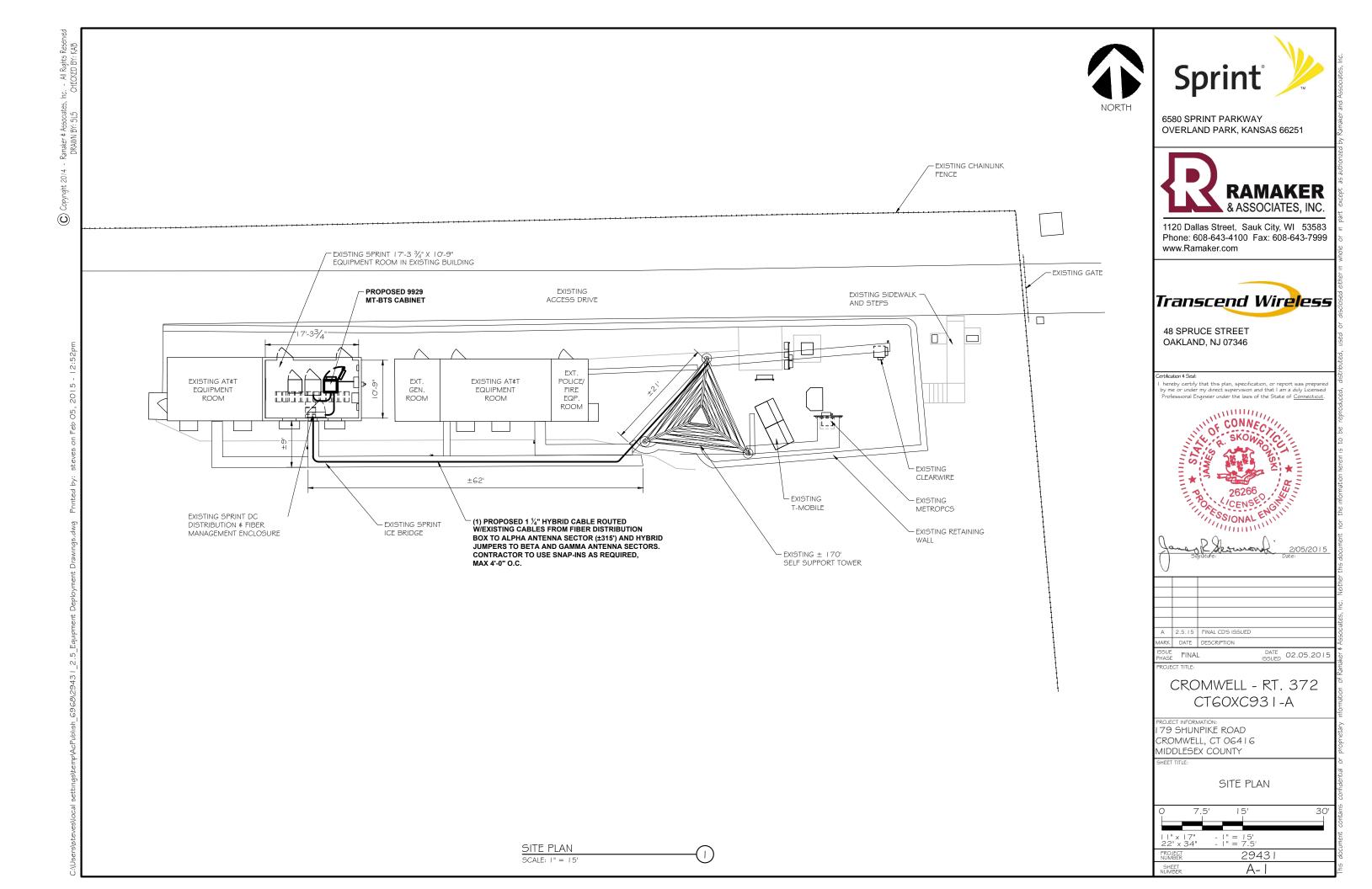
HUBS AND BOXES

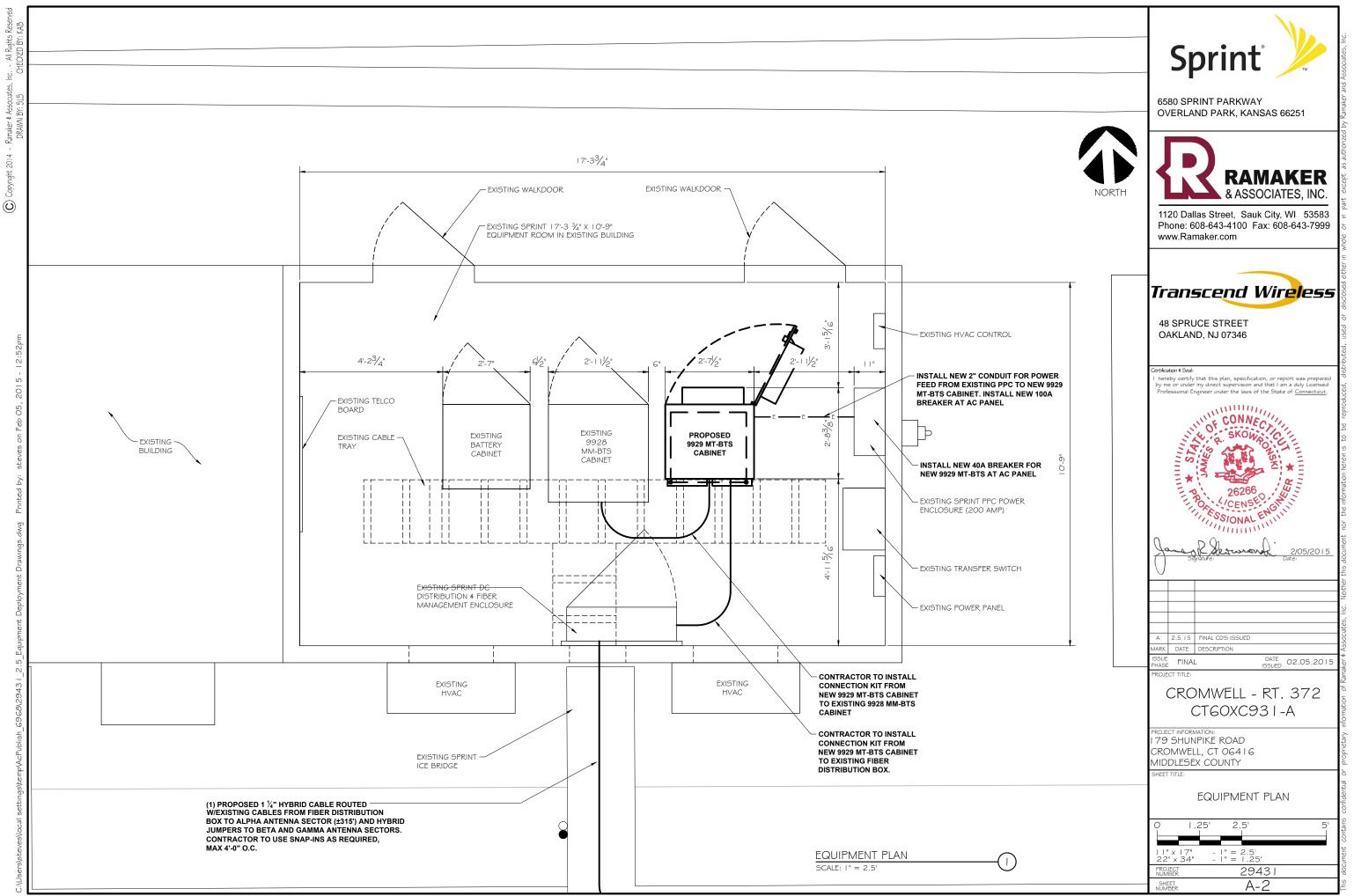
- A. AT ENTRANCES TO CABINETS OR OTHER EQUIPMENT NOT HAVING INTEGRAL THREADED HUBS PROVIDE METALLIC THREADED HUBS OF THE SIZE AND CONFIGURATION REQUIRED. HUB SHALL INCLUDE LOCKNUT AND NEOPRENE O-RING SEAL. PROVIDE IMPACT RESISTANT 105 DEGREE C PLASTIC BUSHINGS TO PROTECT CABLE INSULATION.
- B. CABLE TERMINATION FITTINGS FOR CONDUIT
- 1. CABLE TERMINATORS FOR RGS CONDUITS SHALL BE TYPE CRC BY O-Z/GEDNEY OR EQUAL BY ROXTEC.
- CABLE TERMINATORS FOR LFMC SHALL BE ETCO CL2075; OR MADE FOR THE PURPOSE PRODUCTS BY ROXTEC.
- C. EXTERIOR PULL BOXES AND PULL BOXES IN INTERIOR INDUSTRIAL AREAS SHALL BE PLATED CAST ALLOY, HEAVY DUTY, WEATHERPROOF, DUST PROOF, WITH GASKET, PLATED IRON ALLOY COVER AND STAINLESS STEEL COVER SCREWS, CROUSE-HINDS WAB SERIES OR EQUAL.
- D. CONDUIT OUTLET BODIES SHALL BE PLATED CAST ALLOY WITH SIMILAR GASKET COVERS. OUTLET BODIES SHALL BE OF THE CONFIGURATION AND SIZE SUITABLE FOR THE APPLICATION. PROVIDE CROUSE-HINDS FORM & OR EQUAL.
- E. MANUFACTURER FOR BOXES AND COVERS SHALL BE HOFFMAN, SQUARE "D", CROUSE-HINDS, COOPER, ADALET, APPLETON, O-Z GEDNEY, RACO, OR APPROVED EQUAL.

SUPPLEMENTAL GROUNDING SYSTEM:

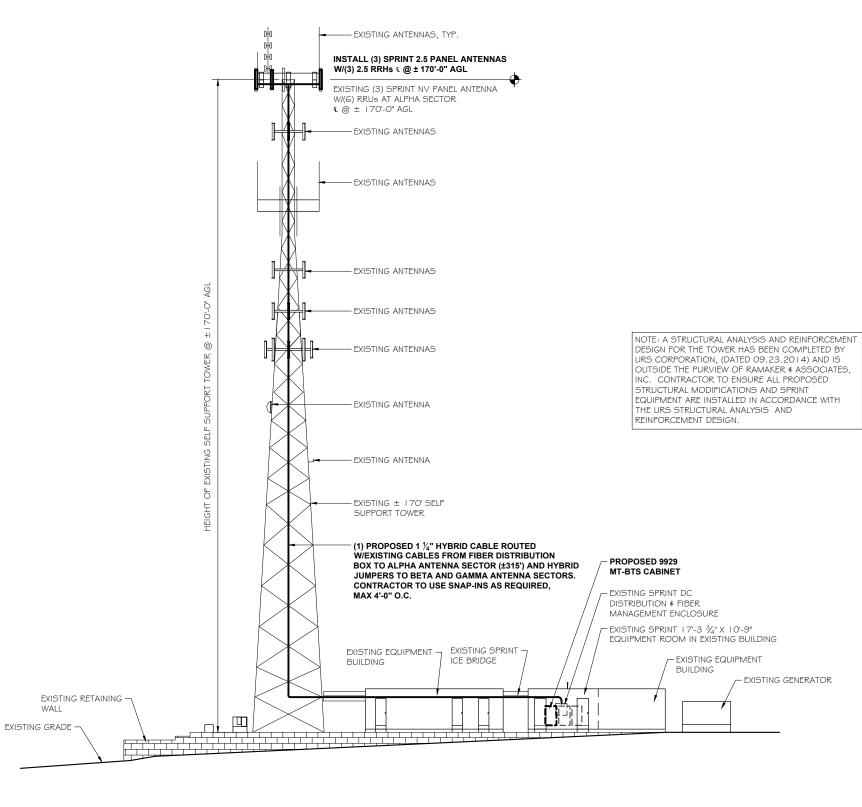
- A. FURNISH AND INSTALL A SUPPLEMENTAL GROUNDING SYSTEM TO THE EXTENT INDICATED ON THE DRAWINGS. SUPPORT SYSTEM WITH NON-MAGNETIC STAINLESS STELL CLIPS WITH RUBBER GROMMETS. GROUNDING CONNECTORS SHALL BE TINNED COPPER WIRE, SIZES AS INDICATED ON THE DRAWINGS. PROVIDE STRANDED OR SOLID BARE OR INSULATED CONDUCTORS EXCEPT AS OTHERWISE NOTED.
- B. SUPPLEMENTAL GROUNDING SYSTEM: ALL CONNECTIONS TO BE MADE WITH CAD WELDS, EXCEPT AT EQUIPMENT USE LUGS OR OTHER AVAILABLE GROUNDING MEANS AS REQUIRED BY MANUFACTURER; AT GROUND BARS USE TWO HOLE SPADES WITH NO-OX.
- C. STOLEN GROUND-BARS: IN THE EVENT OF STOLEN GROUND BARS, CONTACT SPRINT CM FOR REPLACEMENT INSTRUCTION USING THREADED ROD KITS.

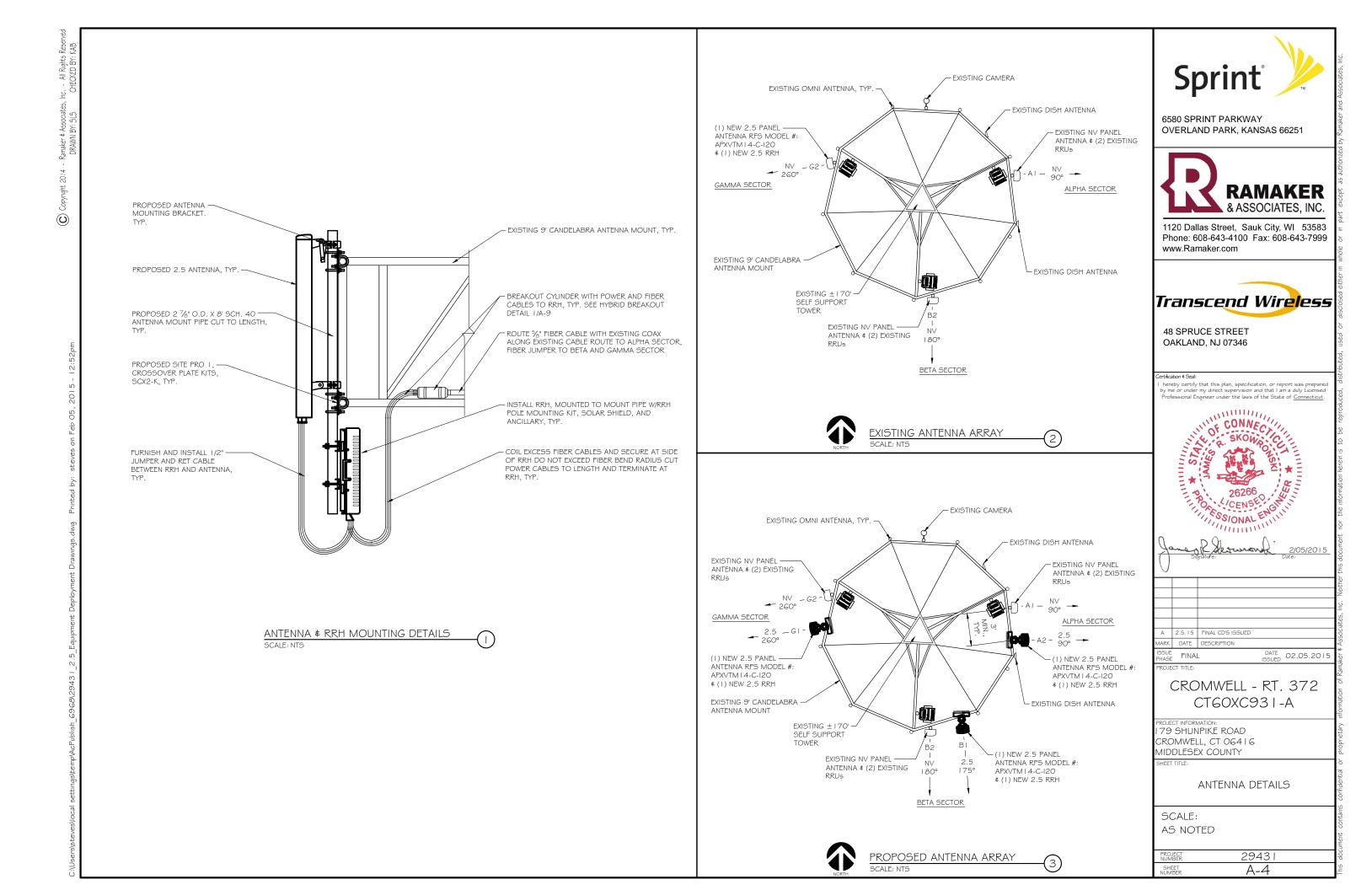

EXISTING STRUCTURE:


A. EXISTING EXPOSED WIRING AND ALL EXPOSED OUTLETS, RECEPTACLES, SWITCHES, DEVICES, BOXES, AND OTHER EQUIPMENT THAT ARE NOT TO BE UTILIZED IN THE COMPLETED PROJECT SHALL BE REMOVED OR DE-ENERGIZED AND CAPPED IN THE WALL, CEILING, OR FLOOR SO THAT THEY ARE CONCEALED AND SAFE. WALL, CEILING, OR FLOOR SHALL BE PATCHED TO MATCH THE ADJACENT CONSTRUCTION.

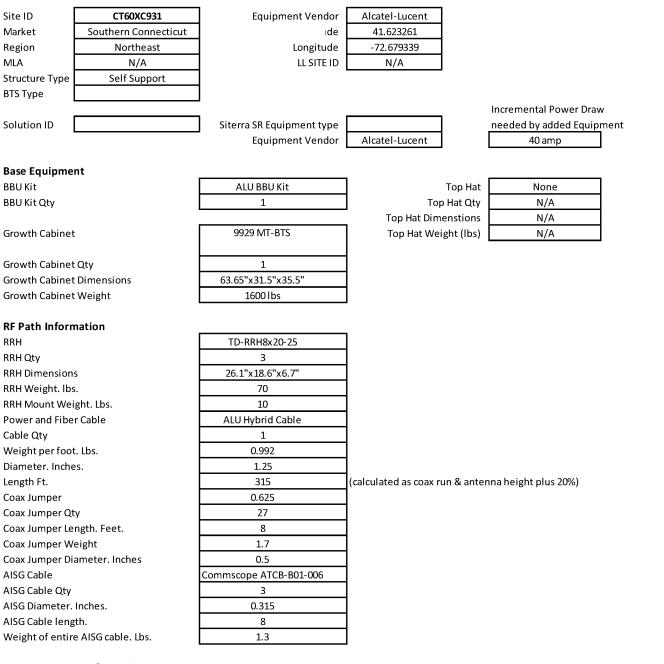

CONDUIT AND CONDUCTOR INSTALLATION:

A. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER, PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.


B.CONDUCTORS SHALL BE PULLED IN ACCORDANCE WITH ACCEPTED GOOD PRACTICE.


All Rights OKED BV. - Ramaker DRAWI mght 2014 Copyl

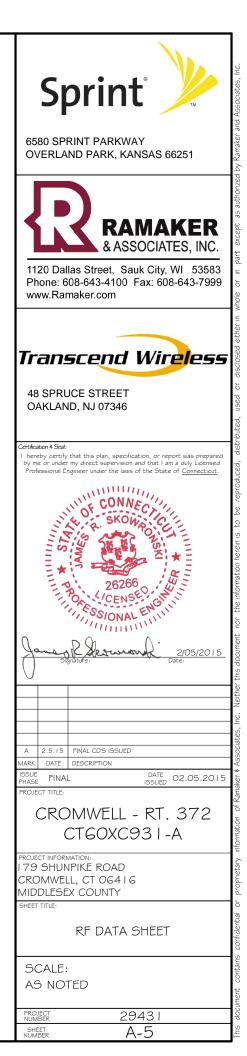
BUILDING ELEVATION SCALE: |" = 25'


(|)

RFDS Sheet

General Site Information

Antenna Sector Information

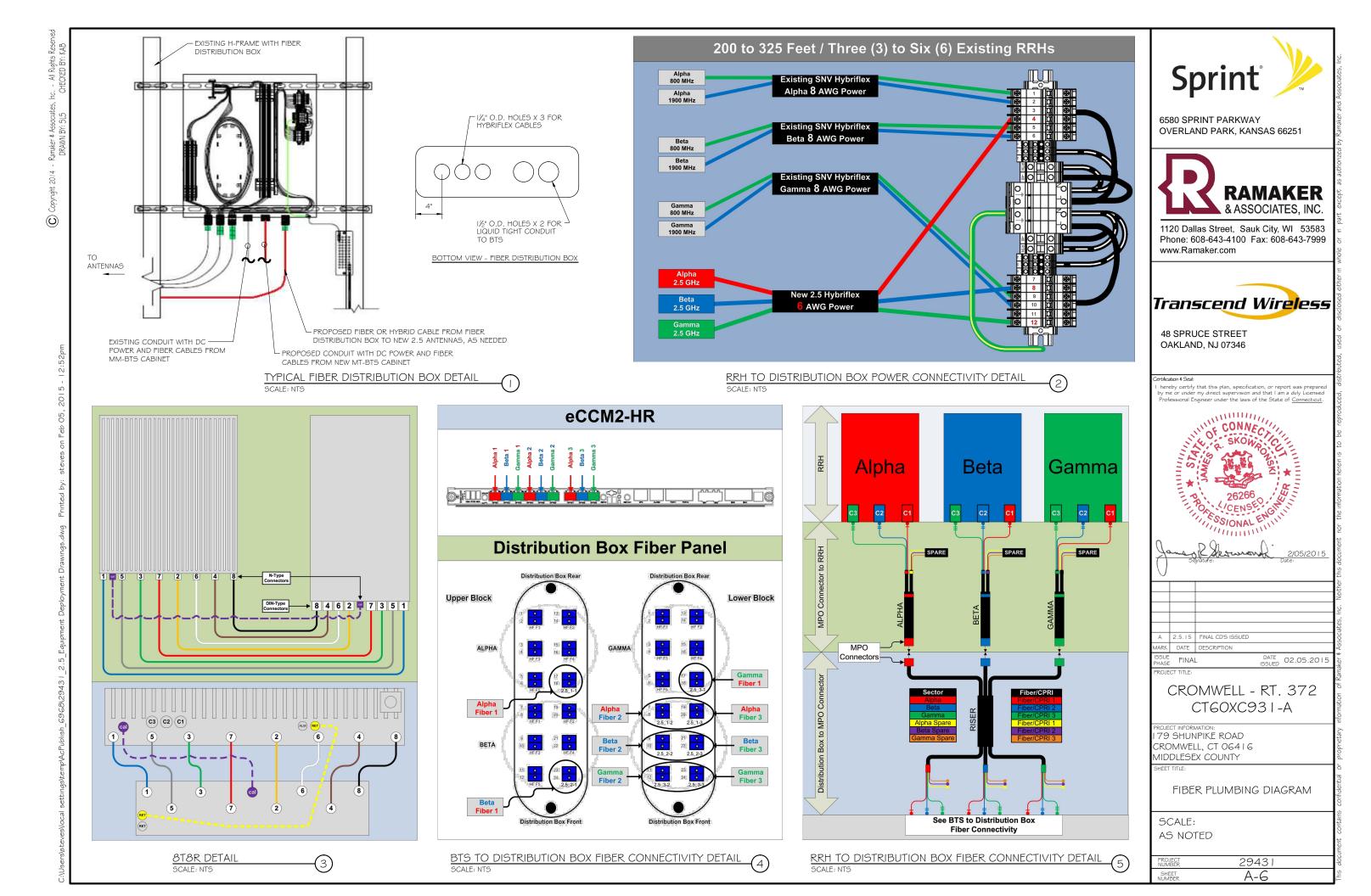

Antenna make/model Antenna qty Antenna Dimensions. Inches Antenna Weight. Lbs Antenna Mounting Kit Weight. Lbs. CL Height Antenna Azimuth Antenna Mechanical Downtilt Antenna etilt

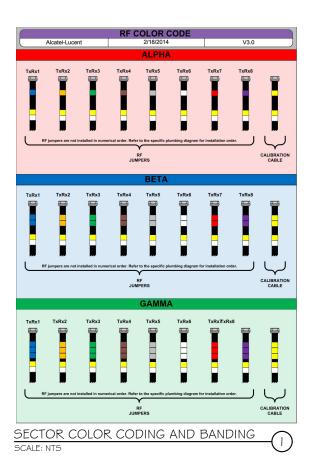
Sector 1	Sector 2	Sector 3
RFS APXV9TM14-ALU-120	RFS APXV9TM14-ALU-120	RFS APXV9TM14-ALU-120
1	1	1
56.3"x12.6"x6.3"	56.3"x12.6"x6.3"	56.3"x12.6"x6.3"
55.12	55.12	55.12
11.5	11.5	11.5
170'-0"	170'-0"	170'-0"
90	175	260
0	0	0
-2	-2	-2

*RFDS SHEET WAS GENERATED BY RAMAKER & ASSOCIATES FROM PLAN OF RECORD (POR) PROVIDED BY SPRINT. CONTRACTOR SHALL VERIFY AND OBTAIN FINAL RFDS FROM SPRINT CONSTRUCTION MANAGER PRIOR TO CONSTRUCTION

NOTES:

- ENGINEER.
- SPRINT AND NON-SPRINT ANTENNAS
- TOOL OR EQUIVALENT TOOL


I. GENERAL CONTRACTOR TO FIELD VERIFY AZIMUTH AND C/I HEIGHT AND MECHANICAL DOWNTILT. IF DIFFERENT THAN CALLED OUT BELOW, HALT ANTENNA WORK FOR ONE HOUR, CALL SPRINT RE ENGINEER (OR MANAGER F RF ENGINEER DOES NOT ANSWER, BUT STILL LEAVE A MESSAGE TO RF ENGINEER) USING CONTACT INFORMATION ABOVE FOR FURTHER INSTRUCTIONS. IF SPRINT DOES NOT RESPOND WITHIN ONE HOUR, PLACE 2.5GHZ ANTENNA AT SAME C/L HEIGHT AS I .9GHZ ANTENNA AND EMAIL CORRECT C/L HEIGHT AND AZIMUTH TO SPRINT RF ENGINEER. UPDATE AS-BUILD DRAWING WITH CORRECT C/L HEIGHT, ALSO EMAIL CORRECT I .9GHZ AND 800MHZ ANTENNA C/L HEIGHT, AZIMUTH AND MECHANICAL DOWNTILT TO RF


2. AISG TESTS TO VERIPY OPERATION IS TO BE PERFORMED AFTER FINAL INSTALLATION OF ANTENNAS AND AISG CABLES HAVE BEEN CONNECTED. VERIPY OPERATION OF ALL EXISTING SPRINT AISG EQUIPMENT INCLUDING 800MHZ, I.9GHZ AND 2.5GHZ. TEST TO INCLUDE COMPLETE DOWNTILT, AZIMUTH (IF APPLICABLE) AND BEAMWIDTH SWINGS (IF APPLICABLE), DOCUMENT AISG TEST RESULTS IN COAX SWEEP TEST SPREADSHEET.

3. GENERAL CONTRACTOR MUST ENSURE THAT NO OBJECT IS LOCATED WITHIN 45 DEGREES OF LEFT AND RIGHT OF FRONT OF ANTENNA OR 7 DEGREES UP AND DOWN FROM CENTER OF ANTENNA. IF THIS IS NOT POSSIBLE, CONTACT RF ENGINEER FOR FURTHER INSTRUCTION. IN ADDITION, 2.5GHZ ANTENNA IS NOT TO BE PLACED IN FRONT OF ANY OTHER ANTENNA USING THE SAME 45 DEGREE RULE. THIS INCLUDES

4. 2.5GHZ ANTENNA MUST BE AT LEAST 6" FROM 1.9GHZ ANTENNA, 30" FROM 800MHZ ANTENNA AND 30 FROM DUAL BAND 1.9GHZ AND 800MHZ ANTENNA.

5. GENERAL CONTRACT IS REQUIRED TO USE A DIGITAL ALIGNMENT TOOL TO SET AZIMUTH, ROLL AND DOWNTILT, AZIMUTH ACCURACY IS TO BE WITHIN I DEGREE. DOWNTILT AND ROLL (LEFT TO RIGHT TILT) IS TO BE WITHIN O. I. DEGREES. IF FOR SOME REASON THIS ACCURACY CANNOT BE ACHIEVED, UPDATE AS-BUILT DRAWINGS AND EMAIL SPRINT RF ENGINEER WITH AS-BUILT SETTINGS. USE 3Z RF ALIGNMENT

2.5 Coaxial Cable Color Code (Radio#1	2.5 Coaxial Cable Color Cod	le (Radio#1)
---------------------------------------	-----------------------------	--------------

Sector	Cable	Start at Connector Side	Wrap2	Wrap3	Wrap4	Wrap5
1 Alpha	1	Blue			Yellow	White
1	2	Orange			Yellow	White
1	3	Green			Yellow	White
1	4	Brown			Yellow	White
1	5	Slate			Yellow	White
1	6	White			Yellow	White
1	7	Red			Yellow	White
1	8	Violet			Yellow	White
	Calibration					
1	Cable	Yellow			Yellow	White
2 Beta	1	Blue	Blue		Yellow	White
2	2	Orange	Orange		Yellow	White
2	3	Green	Green		Yellow	White
2	4	Brown	Brown		Yellow	White
2	5	Slate	Slate		Yellow	White
2	6	White	White		Yellow	White
2	7	Red	Red		Yellow	White
2	8	Violet	Violet		Yellow	White
2	Calibration Cable	Yellow	Yellow		Yellow	White
2 3 Gamma	1	Blue	Blue	Blue	Yellow	White
3	2	Orange	Orange	Orange	Yellow	White
3	3	Green	Green	Green	Yellow	White
3	4	Brown	Brown	Brown	Yellow	White
3	5	Slate	Slate	Slate	Yellow	White
3	6	White	White	White	Yellow	White
3	7	Red	Red	Red	Yellow	White
3	8	Violet	Violet	Violet	Yellow	White
	o Calibration	violet	violet	VIOLET	1 CHOW	wince
3	Cable	Yellow	Yellow	Yellow	Yellow	White

2.5 Coaxial Cable Color Code (Radio#2) Start at Sector Cable Connector Wrap2 Wrap3 Wrap4 Wrap5 Side 1 Alpha Violet 1 Rhie Yellow 2 Violet 1 Orange Yellow Yellow √iolet 1 3 √iolet 1 4 Yellow own 1 5 Slate Yellow /iolet 1 6 White Yellow ∕iolet 1 7 Yellow ∕iolet √iolet Yellow 1 8 Violet Calibration Cable Yellow 1 ∕iolet 2 Beta 1 Yellow Violet 2 2 Orange Yellow Violet Violet 2 3 Yellow 2 Yellow Violet 4 Brown Slate Slate Yellow Violet 2 5 2 6 White White Yellow √iolet 2 7 Yellow √iolet √iolet 2 8 Violet Violet Yellow Calibration 2 Cable Yellow Yellow /iolet 3 Gamma /iolet 1 ellow 3 2 Orang Yellow /iolet /iolet 3 3 (ellow /iolet 3 4 Brown Yellow Brown 3 Slate Slate ∕iolet 5 Slate Yellow 3 White White Yellow √iolet 6 White 3 7 Red Yellow √iolet Violet 3 8 Violet Violet Violet Yellow Calibration Cable Yellow Yellow Yellow

2.5 COAXIAL CABLE COLOR CODE (2)SCALE: NTS

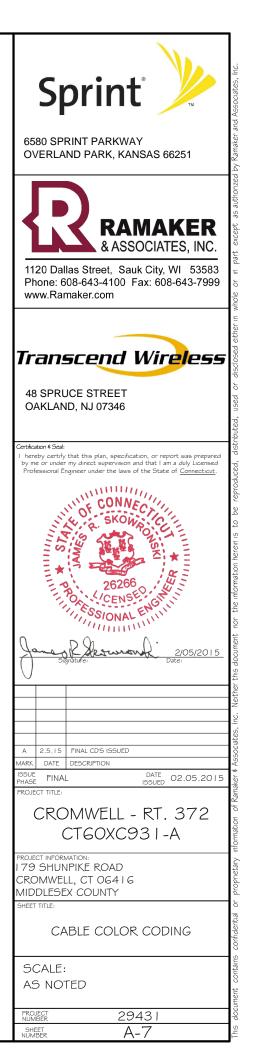
3

Yellow

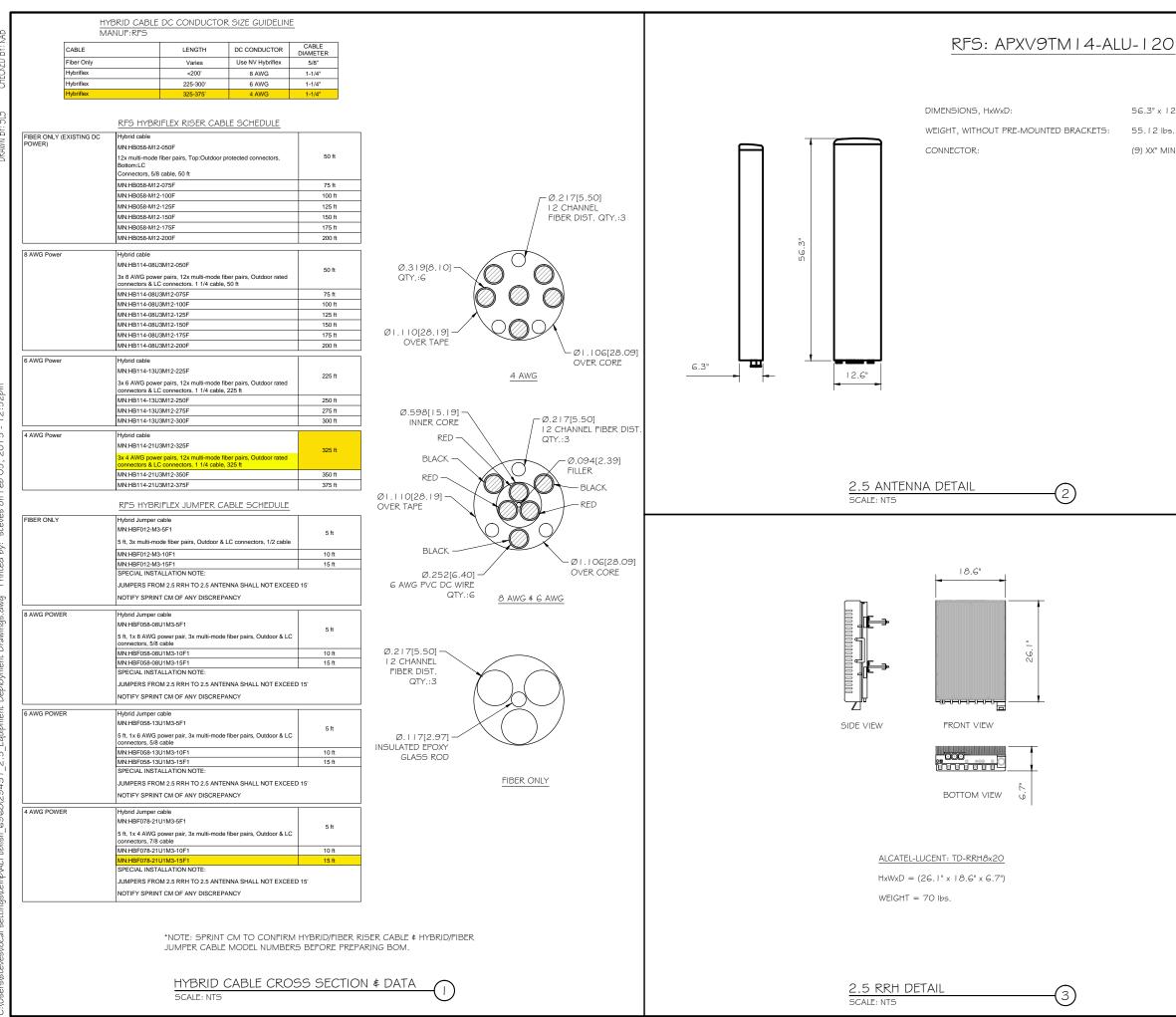
/iolet

CABLE MARKING NOTES

- STABILIZED, UL APPROVED TAPE.
- THE FIRST RING SHALL BE CLOSEST TO THE END OF THE CABLE AND SPACED APPROXIMATELY 2" FROM THE END CONNECTOR, WEATHERPROOFING, OR BREAKOUT UNIT. THERE SHALL BE I" SPACE BETWEEN EACH RING.
- PLACED NEXT TO EACH OTHER WITH NO SPACES.
- 4. THE 2" COLORED TAPE(S) SHALL BE WRAPPED A MINIMUM OF 3 TIMES AROUND THE INDIVIDUAL CABLES, AND THE TAPE SHALL BE KEPT IN THE SAME LOCATION AS MUCH AS POSSIBLE.
- 5. SITES WITH MORE THAN FOUR (4) SECTORS WILL REQUIRE ADDITIONAL RINGS FOR EACH SECTOR, FOLLOWING THE PATTERN. HIGH CAPACITY SITES BANDS OF TAPE
- 6. HYBRID FIBER CABLE SHALL BE SECTOR IDENTIFIED ANY ENTRANCE OR EXIT.
- FREQUENCY CODES, AS IT CONTAINS ALL FREQUENCIES.
- 8. INDIVIDUAL POWER PAIRS AND FIBER BUNDLES SHALL BE LABELED WITH BOTH THE CABLE AND FREQUENCY.

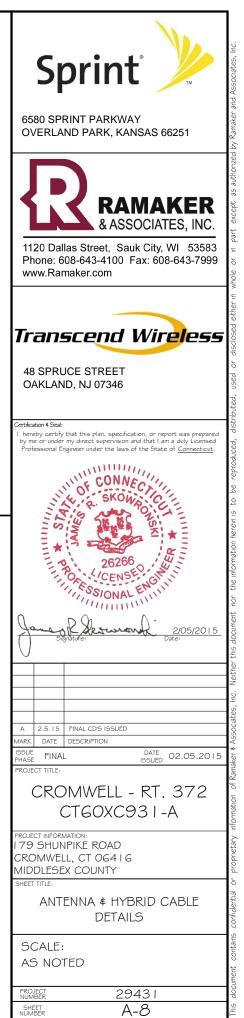

ALL CABLES SHALL BE MARKED WITH 2" WIDE, UV

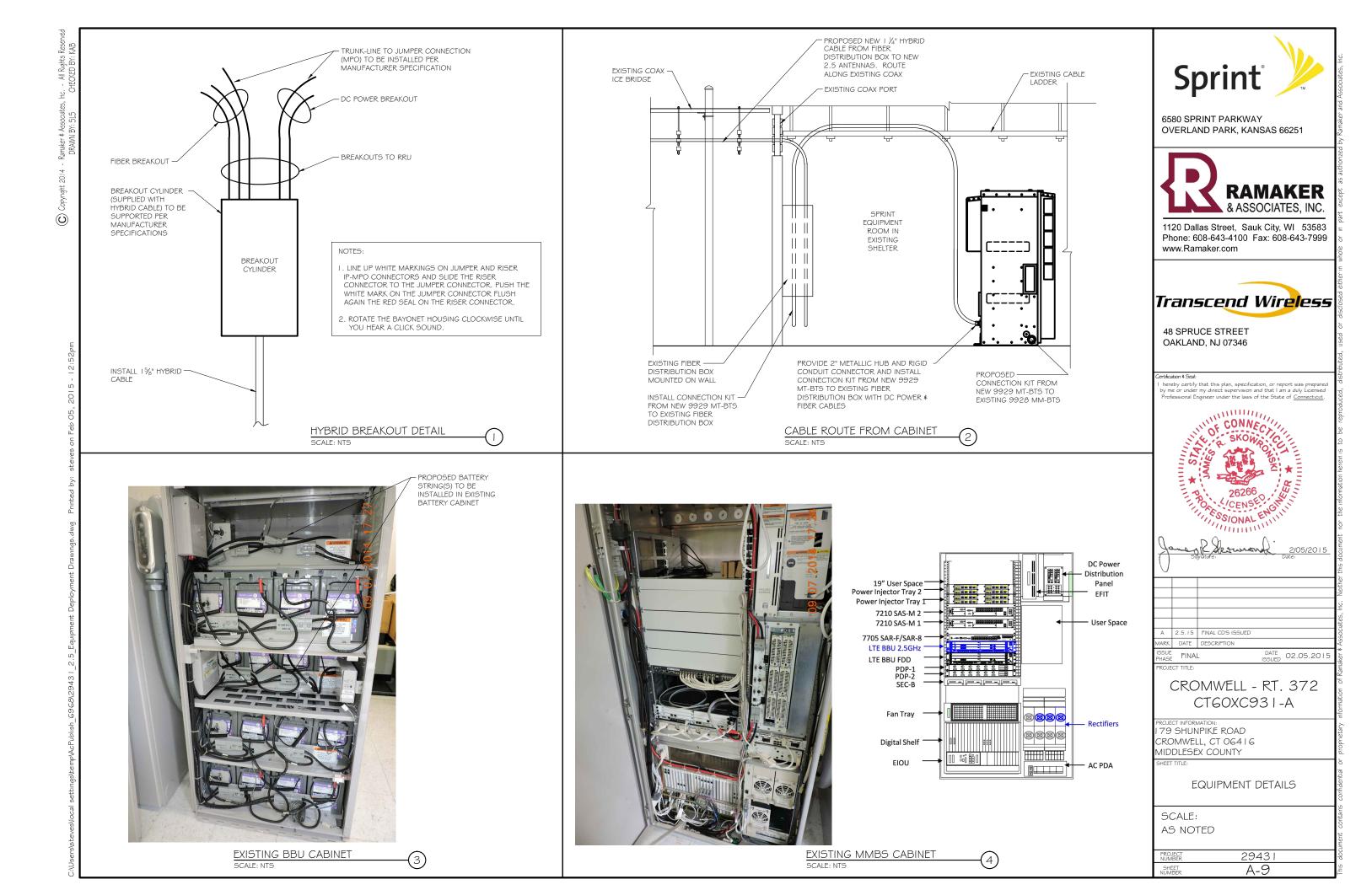
3. A 2" GAP SHALL SEPARATE THE CABLE COLOR CODE FROM THE FREQUENCY COLOR CODE. THE 2" COLOR RINGS FOR THE FREQUENCY CODE SHALL BE


WILL USE THE SECOND CABLE IDENTIFIED BY BLUE

INSIDE THE CABINET ON FREQUENCY BUNDLES, ON THE SEALTITE, ON THE MAIN LINE UPON EXIT OF SEALTITE, AND BEFORE AND AFTER THE BREAKOUT UNIT (MEDUSA), AS WELL AS BEFORE AND AFTER

7. HFC "MAIN TRUNK" WILL NOT BE MARKED WITH THE


 \odot



56.3" x 12.6" x 6.3"

55.12 lbs.

(9) XX" MINI-DIN FEMALE/BOTTOM

ALCATEL-LUCENT 9929 MULTI TECHNOLOGY BTS OUTDOOR CABINET

In order to help network operators to improve TCO for distributed radio based sites with extended battery backup requirements, Alcatel-Lucent proposes the 9929 Multi Technology Outdoor Cabinet for CDMA/LTE/WCDMA multi-standard configurations

9929 MT-BTS OUTDOOR CABINET

• The 9929 MT-BTS cabinet is designed to provide, in a single footprint, a full site support with a capability to host 3G and 4G Telecom equipment with internal power and battery support.

 The 9929 MT-BTS Outdoor Cabinet offers 17.5 U of user space capable of hosting 19" rack based telecom equipment and rectification. The 9929 MT-BTS supports distributed RF deployment scenarios with the hosting of Digital base band unit and transport equipment.

• The 9929 MT-BTS cabinet can host up of 2 strings of batteries.

The 9929 MT-BTS is AC powered and can deliver up to 10.5kW of -48V DC power thanks to its internal N+1 redundant rectifier.

- The 19" modules could have either front-back or side-side cooling. The cabinet uses direct air-cooling (fresh air filter) technology on front door to provide 8000 W of cooling capacity. A wide temperature operating range (-40°C to +50°C full operation) allows the deployment of this cabinet in various locations.
- The 9929 MT-BTS cabinet is compliant with Zone 4 earthquake regulations.
- As an matter of example the following configuration is supported by the cabinet:
 - ✓ Distributed configuration: AC configuration with up to 10.5kW DC Power, up to 3 baseband units, 2U service aggregation router, 2U of microwave transport equipment, up to 2 battery of 190AH.

------Alcatel-Lucent AT THE SPEED OF IDEAS™

FEATURES

- Can host BBU(s) for CDMA/WCDMA/LTE
- Supports standard 19" Telecom equipment
- Uses Direct Air Cooling (no air conditioning) with fan speed control based upon temperature • Support of up to two 190 Ah or up to two 145AH battery strings that can provide backup for
- 8 hours for up to 2375 W, or 4 hour backup for up to 4150 Convenience AC outlet (2)
- **TECHNICAL SPECIFICATIONS**

INTERFACE:

- ¬ CPRI (up to 9 RRH modules)
- ¬ Backhaul (Gigabit Ethernet or T1)
- ¬ External user alarms (up to 32 user alarms)
- ¬ AC Power input
- ¬ DC Power input for RRH (up to 9 RRH's)

PHYSICAL DIMENSIONS

- Height: 1617 mm (63.65 in)
- ¬ Width: 800 mm (31.5 in)
- ¬ Depth: 900 mm (35.5 in)

WEIGHT

- ¬ 197 kg (434 lbs) unloaded
- ¬ Up to 725 kg (1600 lbs) fully loaded

POWER

- Power supply:
- 230V AC (single phase or 3 phases)
- Rectifier:
- ¬ up to 10.5kW DC -48V output power
- ¬ Rectifier redundancy N+1

SUPPORTED TELECOM EQUIPMENT

- ¬ LTE 9926 BBU
- CDMA 9926 BBU

2

- ¬ WDMA 9926 BBU
- SAR Aggregation router
- ¬ Microwave Indoor Unit

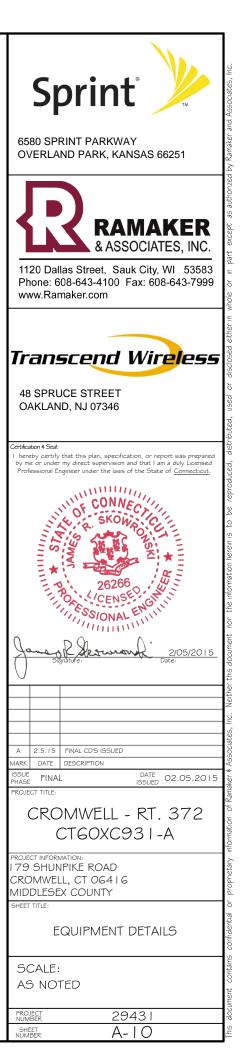
OPERATING ENVIRONMENT

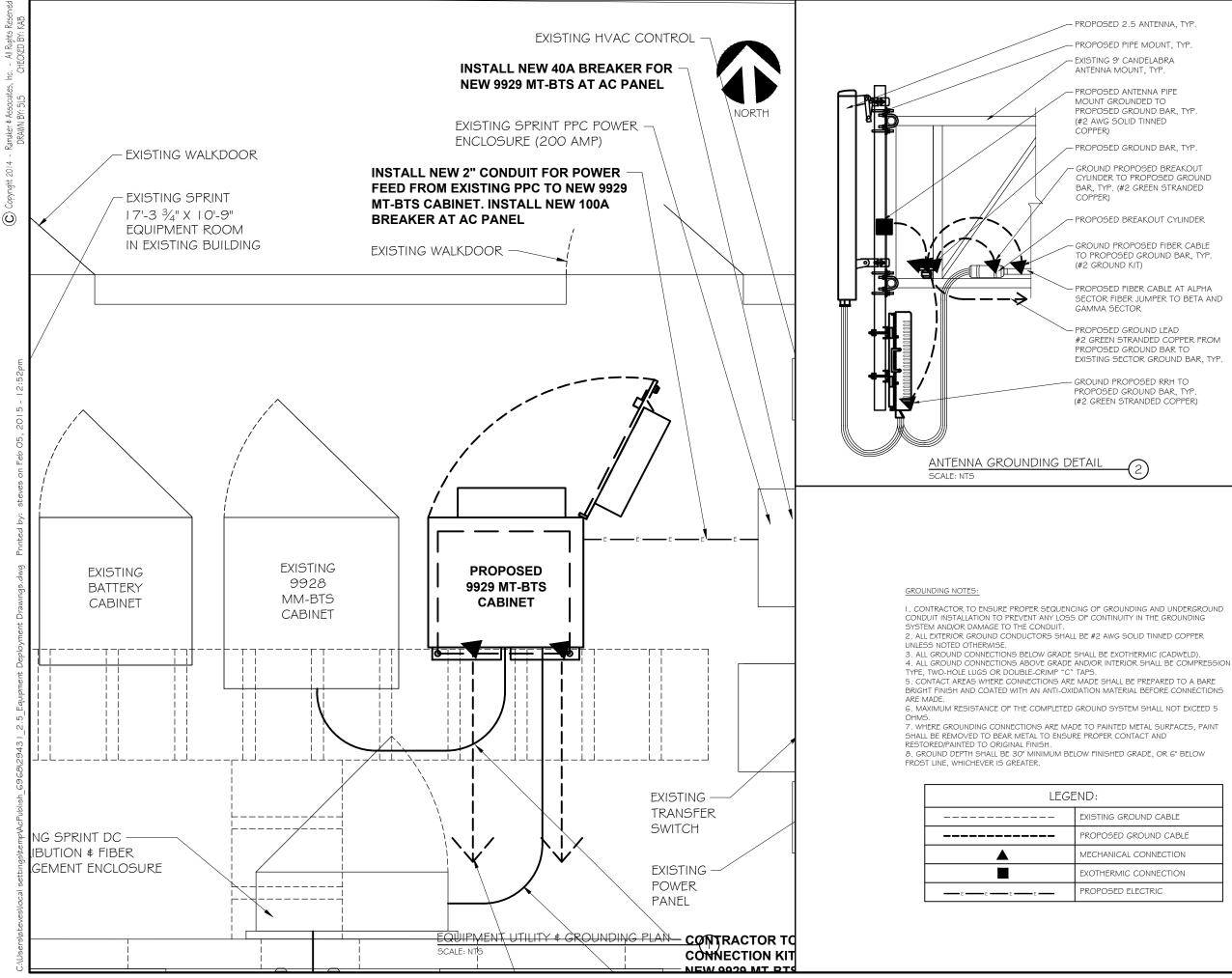
- ¬ Outdoor temperature range: -40°C to +50°C
- ¬ Direct Air Cooling - Enclosure:
- ¬ IP55 (International Protection rating)
- ¬ Zone 4 Earthquake

STANDARDS COMPLIANCY

- ¬ UL 60950-1 / CAN/CSA C22.2 No. 60950-1-07
- UL 50/50E CSA C22.2 No. 94.1- 07/94.2-07
- EN50272-2
- ¬ EIA-310-D

EMC& ENVIRONNEMENTAL CONDITIONS


- ¬ FCC Part 15 class B
- ¬ GR-63-CORE,
- GR-487-CORE - GR-1089-CORE


9929 Multi Technology Outdoor BTS ALCATEL-LUCENT DATA SHEET

PROPOSED 9929 MT-BTS OUTDOOR CABINET SCALE: NTS

PROPOSED 2.5 ANTENNA, TYP

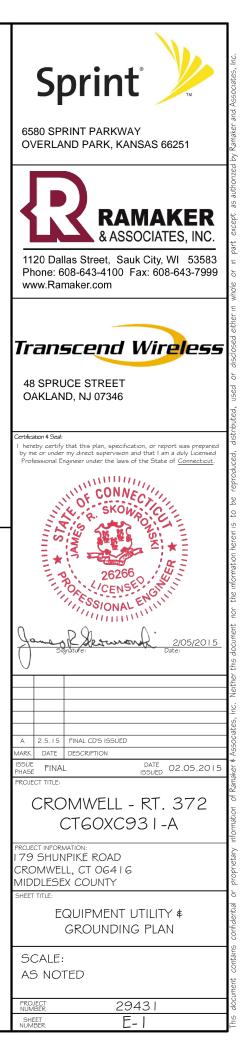
EXISTING 9' CANDELABRA

PROPOSED ANTENNA PIPE PROPOSED GROUND BAR, TYP.

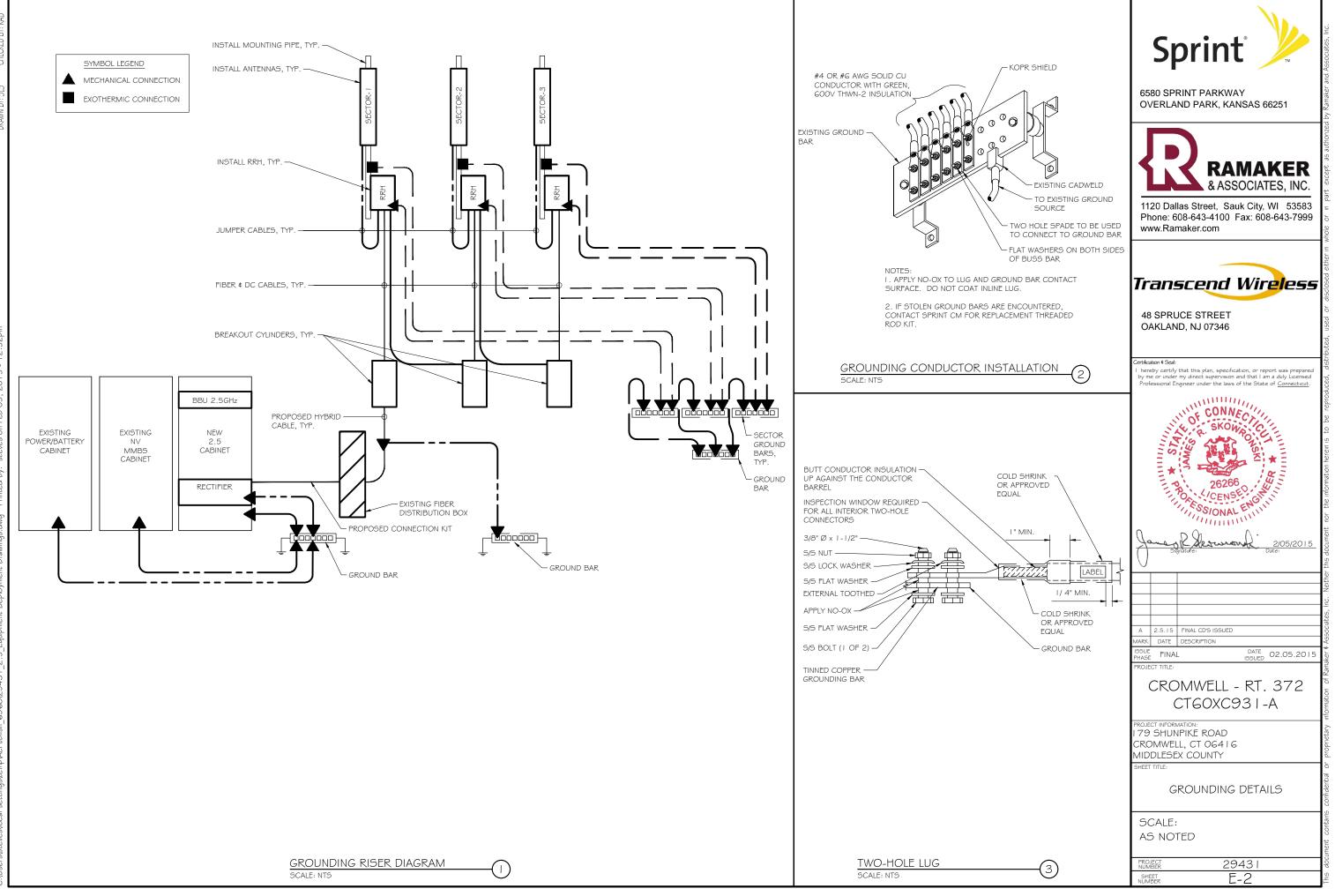
PROPOSED GROUND BAR, TYP.

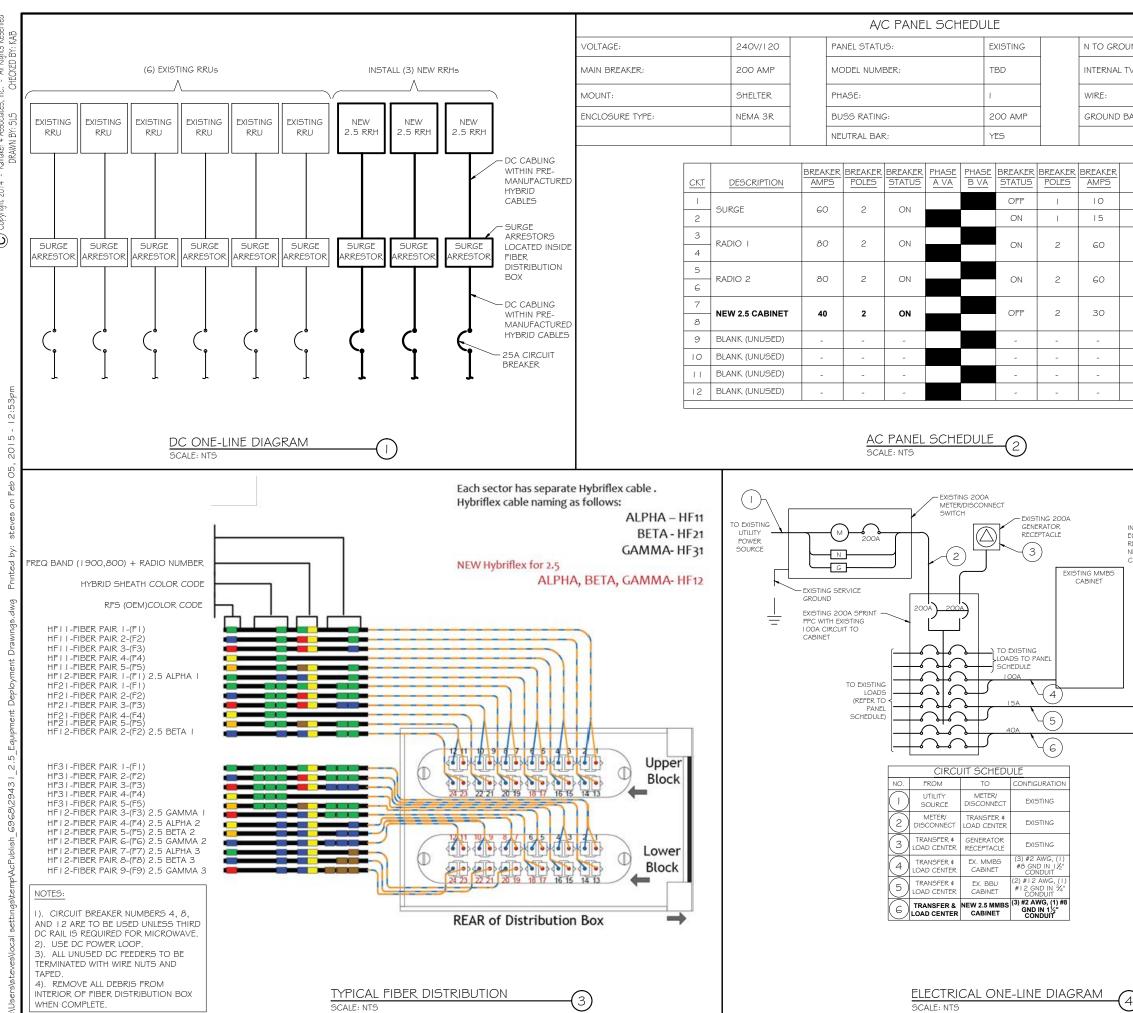
GROUND PROPOSED BREAKOUT CYLINDER TO PROPOSED GROUND BAR, TYP. (#2 GREEN STRANDED

PROPOSED BREAKOUT CYLINDER


GROUND PROPOSED FIBER CABLE TO PROPOSED GROUND BAR, TYP

PROPOSED FIBER CABLE AT ALPHA SECTOR FIBER JUMPER TO BETA AND


PROPOSED GROUND LEAD #2 GREEN STRANDED COPPER FROM PROPOSED GROUND BAR TO EXISTING SECTOR GROUND BAR, TYP.


GROUND PROPOSED RRH TO PROPOSED GROUND BAR, TYP (#2 GREEN STRANDED COPPER)

):
STING GROUND CABLE
DPOSED GROUND CABLE
CHANICAL CONNECTION
DTHERMIC CONNECTION
DPOSED ELECTRIC

R Ramake 2014 Ight Copyl \odot

OUND BOND:		YES	
L TVSS:		YES	Sprint 🌽
		3	
) BAR:		YES	6580 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251
DESCRIPTION	<u>СКТ</u>		
SPARE	13		
GFI	14		& ASSOCIATES, INC.
HVAC I	15		
	16	_	1120 Dallas Street, Sauk City, WI 53583 Phone: 608-643-4100 Fax: 608-643-7999
HVAC 2	17	-	www.Ramaker.com
	18	-	
SPARE	19	-	
BLANK (UNUSED)	20	-	Transcend Wireless
BLANK (UNUSED)	22	-	
BLANK (UNUSED)	23	1	48 SPRUCE STREET
BLANK (UNUSED)	24	1	OAKLAND, NJ 07346
INSTALL NEW 2.5 EQUIPMENT AND RECTIFIER UNIT IN NEW 2.5 MMBS CABINET EXISTING BBU CABINET		2.5 MMBS CABINET	Jane of Action 2/05/2015 Date:
			A 2.5.15 FINAL CD'S ISSUED MARK DATE DESCRIPTION ISSUE FINAL DESCRIPTION PHASE FINAL DATE DATE 02.05.2015 PROJECT TITLE: CROMWELL - RT. 372 CTGOXC931-A
			PROJECT INFORMATION: 179 SHUNPIKE ROAD CROMWELL, CT OG416 MIDDLESEX COUNTY SHEET TITLE: DC POWER DETAILS & PANEL SCHEDULES SCALE: AS NOTED
4			PROJECT 2943 I SHEET E-3