

David Ford, Site Acquisition c/o New Cingular Wireless, PCS LLC (AT&T) Centerline Communications, LLC 95 Ryan Drive, Suite 1 Raynham, MA 02767 Mobile: (508) 821-6509 <u>dford@clinellc.com</u>

August 2, 2016

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification // Site Number: CT1141 179 Shunpike Road (Site Name: Cromwell US MIL) N 41.6232231 // W -72.6790381

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC (õAT&Tö) currently maintains three (9) antennas at the 115 foot level of the existing 170 foot self-support tower at 179 Shunpike Road, Cromwell, CT 06416. The tower is owned by Cromwell Fire District. The property is also owned by Cromwell Fire District. AT&T now intends to swap three (3) existing antennas with three (3) new larger antennas, adding three (3) RRUS-12+A2 radios, (3) RRUS-32 radios, (1) Raycap surge arrestor, (2) DC power lines and (1) Fiber line. These antennas and equipment would be installed at the 115 foot level of the tower.

The current proposal involves an antenna swap only (three for three); no antennas will be added.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Enzo Faienza, Mayor for the Town of Cromwell, as well as the tower owner and ground owner, Cromwell Fire District. The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

Attached to accommodate this filing are construction drawings dated 8/1/2016 by ComEx Consultants, a structural analysis dated 7/16/2016 by AECOM and an Emissions Analysis Report dated 8/2/2016 by EBI Consulting.

1. The proposed modifications will not result in an increase in the height of the existing structure.

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by AECOM, dated 7/16/2016.

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Jul Jul

David Ford, Site Acquisition c/o New Cingular Wireless, PCS LLC (AT&T) Centerline Communications, LLC 95 Ryan Drive, Suite 1 Raynham, MA 02767 Mobile: (508) 821-6509 dford@clinellc.com

Attachments

cc: Enzo Faienza, Mayor, Town of Cromwell - as elected official Cromwell Fire District - as tower owner Cromwell Fire Distruict - as property owner

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

AT&T Existing Facility

Site ID: CT1141

Cromwell US Mil 179 Shunpike Road Cromwell, CT 06416

August 2, 2016

EBI Project Number: 6616000142

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of				
FCC general public 15.32 %				
allowable limit:				

August 2, 2016

AT&T Mobility – New England Attn: Cameron Syme, RF Manager 550 Cochituate Road Suite 550 – 13&14 Framingham, MA 06040

Emissions Analysis for Site: CT1141 – Cromwell US Mil

EBI Consulting was directed to analyze the proposed AT&T facility located at **179 Shunpike Road**, **Cromwell, CT**, for the purpose of determining whether the emissions from the Proposed AT&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 700 and 850 MHz Bands are approximately 467 μ W/cm² and 567 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over their exposure and can exercise control over the potential for exposure and can exercise control over the potentia

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed AT&T Wireless antenna facility located at **179 Shunpike Road**, **Cromwell, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 UMTS channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 2 UMTS channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 3) 2 GSM channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 4) 2 LTE channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 5) 2 LTE channels (WCS Band 2300 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 6) 2 LTE channels (700 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel

- 7) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 8) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 9) The antennas used in this modeling are the CCI HPA-65R-BUU-H6, Quintel QS66512-3, KMW AM-X-CD-16-65-00T-RET and the Powerwave 7770.00 for transmission in the 700 MHz, 850 MHz 1900 MHz (PCS) and 2300 MHz (WCS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 10) The antenna mounting height centerline of the proposed antennas is **115 feet** above ground level (AGL).
- 11) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

AT&T Site Inventory and Power Data

Sector:	А	Sector:	В	Sector:	С
Antenna #:	1	Antenna #:	1	Antenna #:	1
Make / Model:	Powerwave 7770.00	Make / Model:	Powerwave 7770.00	Make / Model:	Powerwave 7770.00
Gain:	11.4 / 13.4 dBd	Gain:	11.4 / 13.4 dBd	Gain:	11.4 / 13.4 dBd
Height (AGL):	115 feet	Height (AGL):	115 feet	Height (AGL):	115 feet
Frequency Bands	850 MHz /	Frequency Bands	850 MHz /	Frequency Bands	850 MHz /
1 2	1900 MHz (PCS)	1 5	1900 MHz (PCS)	1 2	1900 MHz (PCS)
Channel Count	4	Channel Count	4	Channel Count	4
Total TX Power(W):	120	Total TX Power(W):	120	Total TX Power(W):	120
ERP (W):	2,140.89	ERP (W):	2,140.89	ERP (W):	2,140.89
Antenna A1 MPE%	0.84	Antenna B1 MPE%	0.84	Antenna C1 MPE%	0.84
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:	Quintel QS66512-3	Make / Model:	Quintel QS66512-3	Make / Model:	Quintel QS66512-3
Gain:	12.0 / 15.6 dBd	Gain:	12.0 / 15.6 dBd	Gain:	12.0 / 15.6 dBd
Height (AGL):	115 feet	Height (AGL):	115 feet	Height (AGL):	115 feet
Frequency Bands	850 MHz /	Frequency Bands	850 MHz /	Frequency Bands	850 MHz /
Frequency Banus	1900 MHz (PCS)	Frequency Banus	1900 MHz (PCS)	Frequency Banus	1900 MHz (PCS)
Channel Count	4	Channel Count	4	Channel Count	4
Total TX Power(W):	180	Total TX Power(W):	180	Total TX Power(W):	180
ERP (W):	9,664.81	ERP (W):	9,664.81	ERP (W):	9,664.81
Antenna A2 MPE%	3.14	Antenna B2 MPE%	3.14	Antenna C2 MPE%	3.14
Antenna #:	3	Antenna #:	3	Antenna #:	3
	KMW		CCI		CCI
Make / Model:	AM-X-CD-16-65-	Make / Model:	OPA-65R-BUU-H6	Make / Model:	OPA-65R-BUU-H6
	00T-RET		UPA-03К-DUU-П0		UPA-03K-DUU-H0
Gain:	13.35 dBd	Gain:	11.95 dBd	Gain:	11.95 dBd
Height (AGL):	115 feet	Height (AGL):	115 feet	Height (AGL):	115 feet
Frequency Bands	700 MHz	Frequency Bands	700 MHz	Frequency Bands	700 MHz
Channel Count	2	Channel Count	2	Channel Count	2
Total TX Power(W):	240	Total TX Power(W):	120	Total TX Power(W):	120
ERP (W):	2,595.26	ERP (W):	1,880.10	ERP (W):	1,880.10
Antenna A3 MPE%	1.68	Antenna B3 MPE%	1.22	Antenna C3 MPE%	1.22

Site Composite MPE%				
Carrier	MPE%			
AT&T – Max per sector	5.66 %			
T-Mobile	2.85 %			
CR Police Dept	0.23 %			
CR Fire Dept	0.12 %			
CR Fire Dept	0.12 %			
CR Fire Alarm	0.40 %			
Clearwire	0.11 %			
Sprint	0.19 %			
Verizon Wireless	5.64 %			
Site Total MPE %:	15.32 %			

AT&T Sector 1 Total:	5.66 %
AT&T Sector 2 Total:	5.20 %
AT&T Sector 3 Total:	5.20 %
Site Total:	15.32 %

AT&T_Per Sector (Highest Calculated Sector – Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
AT&T 850 MHz UMTS	2	414.12	115	2.51	850	567	0.44 %
AT&T 1900 MHz (PCS) UMTS	2	656.33	115	3.97	1900	1000	0.40 %
AT&T 850 MHz GSM	2	475.47	115	2.88	850	567	0.51 %
AT&T 1900 MHz (PCS) LTE	2	2178.47	115	13.18	1900	1000	1.32 %
AT&T 2300 MHz (WCS) LTE	2	2178.47	115	13.18	2300	1000	1.32 %
AT&T 700 MHz LTE	2	1297.63	115	7.85	700	467	1.68 %
							5.66 %

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the AT&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

AT&T Sector	Power Density Value (%)
Sector 1:	5.66 %
Sector 2:	5.20 %
Sector 3:	5.20 %
AT&T Maximum Total	5.66 %
(per sector):	5.00 %
Site Total:	15.32 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **15.32** % of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Submitted to AT&T Mobility 550 Cochituate Road Suite 550 13&14 Framingham, MA 01701

Cromwell Fire District One West Street Cromwell, CT 06416 Submitted by AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 July 16, 2016

DETAILED STRUCTURAL ANALYSIS AND EXALUATION OF AN EXISTING 170' SELF SUPPORTING LATTICE TOWER AND FOUNDATION FOR PROPOSED ANTENNA ARRANGEMENT

AT&T Site I.D. #: Site Address:

CT1141 / Cromwell Us MIL 179 Shunpike Road Cromwell, CT

60512677 CFD-010

TABLE OF CONTENTS

- **1. EXECUTIVE SUMMARY**
- 2. INTRODUCTION
- 3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS
- 4. FINDINGS AND EVALUATION
- 5. CONCLUSIONS AND RECOMMENDATIONS
- 6. DRAWINGS AND DATA
 - TNX TOWER INPUT / OUTPUT SUMMARY
 - TNX TOWER FEEDLINE DISTRIBUTION
 - TNX TOWER FEEDLINE PLAN
 - TNX TOWER DETAILED OUTPUT
 - ANCHOR BOLT ANALYSIS
 - FOUNDATION ANALYSIS

1. EXECUTIVE SUMMARY

This report summarizes the structural analysis of the existing 170' self-supporting lattice tower located at 179 Shunpike Road in Cromwell, Connecticut. The analysis was conducted in accordance with the 2005 Connecticut State Building Code which requires a three second gust wind speed of 100 mph which converts to an 80 mph fastest mile per 2003 IBC (Table 1609.3.1) and the TIA/EIA-222-F standard for a wind velocity of 85 mph (fastest mile). The wind speed from the TIA/EIA-222-F standard governs the design at 85 mph (fastest mile) and 74 mph (fastest mile) concurrent with $\frac{1}{2}$ " ice. The antenna loading considered in the analysis consists of all existing and proposed antennas, transmission lines, and ancillary items as outlined in the Introduction Section of this report.

The proposed AT&T antenna modifications are listed below:

Proposed Antenna and Mount	Carrier	Antenna Center Elevation
<u>Remove:</u> (3) Powerwave 7770 Panel Antennas (1 per sector, GSM)	AT&T (Remove)	@ 115'
Install: (3) Quintel QS66512-3 Panel Antennas (1 per sector, LTE/GSM) (3) Ericsson RRUS-12 RRH Units (3) Ericsson A2 Module Units (3) Ericsson RRUS-32 RRH Units (1) Surge Suppressor Unit (1) Fiber Optic Cable (2) DC Cables	AT&T (Proposed)	@ 115'

The results of the analysis indicate that the existing tower structure, anchor bolts and foundation have the capacity to support the proposed loading conditions. The tower structure, anchor bolts and foundation are considered structurally adequate with the wind load classification specified above and the proposed antenna loading.

The analysis results presented herewith are based upon the completed construction of previous tower modifications proposed by URS Corporation's tower modification analysis report, project 36931260, signed and sealed on September 23, 2014. If the tower has not been modified to the specifications proposed by URS, please notify the engineer in writing immediately. No installation of new antennas or equipment shall occur until the modifications have been completed.

1. EXECUTIVE SUMMARY (continued)

This analysis is based on:

- 1) The tower structure's theoretical capacity, not including any assessment of the condition of the tower.
- 2) Tower geometry, structural member sizes, and Foundation information taken from a tower report prepared by PiROD Inc., ENG. File No. A-116398, dated November 18, 1999.
- 3) Foundation modification drawings prepared by Tectonic, dated May 5, 2004.
- 4) Structural analysis and reinforcement performed by URS Corp. on behalf of Sprint and T-Mobile, project number 36931250, signed and sealed on September 23, 2014.
- 5) Structural Analysis and evaluation performed by URS Corporation, on behalf of Verizon Wireless (VZW), signed and sealed on January 7, 2015.
- 6) Proposed Antenna equipment obtained from Radio Frequency Data Sheet (RFDS), dated September 15, 2015, obtained via e-mail, dated July 7, 2016.
- 7) Contract Drawings of proposed antenna installation obtained via e-mail, dated July 7, 2016.
- 8) Proposed additional antenna and mount configuration as specified in Section 2 of this report.

This report is only valid as per the assumptions and data utilized in this report for antenna inventory, mounts and associated cables. The user of this report shall field verify the antenna, cabling and mount configuration used as well as the physical condition of the tower members, connections and foundation. Notify the engineer in writing immediately if any of the information in this report is found to be other than specified.

If you should have any questions, please call.

Sincerely,

AECOM, contracting as URS Corporation AES,

AND STREET STREET Richard A. Sambor, P.E. SIONAL RAS/mcd and in the state

2. INTRODUCTION

The subject tower is located at 179 Shunpike Road in Cromwell, Connecticut. The structure is a 170' self supporting lattice tower designed and manufactured by PiROD Inc.

The current inventory with proposed modification is summarized in the table below:

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable	
(1) Tx Rx 101-90-08 antenna	Town (existing)	15' Mast pipe on 9 Arm Halo Mount	183'	(1) 7/8"	
(1) 8 Bay Dipole (3" dia x 20')	Town (existing)	9 Arm Halo Mount	178'	(1) 7/8"	
(1) 2 ½" dia x 20' Whip	Town (existing)	9 Arm Halo Mount	178'	(1) 1 1/2"	
(3) 2 ½" dia x 15' Whip	Town (existing)	9 Arm Halo Mount	175'	(3) 7/8"	
1 ½" dia x 12' Whip	Town (existing)	9 Arm Halo Mount	174'	(1) 7/8"	
 (3) RFS APXV9TM14- ALU-I20 Panels (3) TD-RRH8x20-25 RRH Units (3) RFS APXVSPP18- C-A20 Antennas (3) 1900 MHz RRHs (3) 800 MHz RRHs (3) 800 MHz Filters 	Sprint (existing)	9 Arm Halo Mount	170'	(27) 8' Jumper Cables (3) 8' AISG Cables (4) RFS HB114-1-0804-MSF Hybrid Cables	
(1) Radiowaves HPD2- 4.7 w/ Radome (1) Cambium PTP49600 Antenna	CPD (existing)	9 Arm Halo Mount	168'	(1) WB3176A – Copper Clad Outdoor Cable (2) 4' long 1/2" Jumper Cables	
(1) SU-RA-HP-2.4 (1' x 1' Antenna)	Town (existing)	9 Arm Halo Mount	168'	(1) 3/8"	
(3) APXV18-206517S	Unknown (existing)	Leg Mount	159'-6"	(6) 1 5/8"	
(1) Sinclair SC420- HF1LDF Omni	CPD (existing)	Pipe mount	158'-6"	(1) 1 5/8" Low Density Foam Cable	
(2) 3" dia x 20' Whip	Town (existing)	20' Platform	144'	(2) 7/8"	
(1) 2 ½" x 20' Whip	Town (existing)	20' Platform	144'	(1) 1/2"	
2" dia x 15' Whip	Town (existing)	20' Platform	141'	(1) 1/2"	
(1) 1.5" dia x 10' Whip	Town (existing)	20' Platform	139'	(1) 1/2"	
(1) 3.5" dia x 9' Whip	Town (existing)	20' Platform	138'-6"	7.25	

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
 (3) Argus LLPX310R antennas (3) Samsung Remote Radio Heads U-RAS (3) Andrew VHLP2.5 dish (2.5' dia.) (1) Andrew VHLP2 dish (2' dia.) (Gamma Sector) 	Clearwire ,(existing)	20' Platform	134'	(6) CAT 5 cable (4) 1/2"
 (3) Commscope LNX- 6515DS-VTM Panel Antennas (3) Ericsson RRUS_11 RRH Unit (6) Ericsson AIR21 B4A B2P Antennas (3) Twin PCS TMAs 	T-Mobile (existing)	(3) Existing T-Frames	125'	(12) 1 5/8" (1) 1-5/8" Hybrid Cable
 (3) QS66512-3 Panel Antennas (3) RRUS-12 RRH Units (3) A2 Module Units (3) RRUS-32 RRH Units (1) Surge Suppressor Unit 	AT&T (Proposed)	See Below Mounts	115'	(1) Fiber Optic Cable (2) DC Cables
 (3) Powerwave 7770 (12) TMA's (3) KMW AM-X-CD-16- 65-00T-RET (3) RRU (1) Surge Suppressor 	AT&T (existing)	(3) T-Frames	115'	(12) 1 5/8" (3) Fiber Optic & (6) DC Cables (Located within 3" dia Flex Conduit)
 (3) LNX-4514DS-A1M Panel Antennas (1) HBX-6517DS- VTM_04DT_2110 Panel Antenna (Alpha Sector) (2) HBX-6517DS- VTM_02DT_2110 Panel Antennas (Beta & Gamma Sectors) (3) AWS RRH Units (1) DB-T1-6Z-8AB-0Z Distribution Box (3) LNX-6514DS-VTM Panel Antennas (3) BXA-171063-12BF _2 antennas (6) FD9R6004/2C-3L Diplexers 	Verizon (existing)	(3) T-Frames	101'	(1) 1 5/8" F.O Cable (12) 1 5/8"

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
(1) 3" x 2" x 22" Panel (1) TMA	AT&T (existing)	Pipe Mount	87'	(2) CAT 5
(1) 3' Dish (1) TMA	AT&T (existing)	3' Stand-off	83'	(2) CAT 5
(1) 3" x 2" x 22" Panel (1) TMA	AT&T (existing)	3' Stand-off	80'	(2) CAT 5
(1) Camera	Unknown (existing)	Leg Mounted	30'	(2) 1/2" (estimated from photographs)
(1) 3' Yagi	Unknown (existing)	Leg Mounted	24'	(1) 1/2"

This structural analysis of the communications tower was performed by AECOM for the Cromwell Fire District on behalf of AT&T. The purpose of this analysis was to investigate the structural integrity of the previously reinforced tower with its existing and proposed antenna loads. This analysis was conducted to evaluate stress on the tower and the effect of forces to the foundation of the tower resulting from existing and proposed antenna arrangements.

The analysis results presented herewith are based upon the completed construction of previous tower modifications proposed by URS Corporation's tower modification analysis report, project 36931260, signed and sealed on September 23, 2014. If the tower has not been modified to the specifications proposed by URS, please notify the engineer in writing immediately. No installation of new antennas or equipment shall occur until the modifications have been completed.

3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS

The structural analysis was done in accordance with the Connecticut State Building Code, TIA/EIA-222-F - Structural Standard for Steel Antenna Towers and Antenna Supporting Structures, and the American Institute of Steel Construction (AISC) Manual of Steel Construction – Allowable Stress Design (ASD).

The analysis was conducted using TNX Tower 6.1.3.1. Two load conditions were evaluated as shown below which were compared to allowable stresses according to AISC and TIA/EIA.

Basic Wind Speed:

٠	Middlesex County; v = 85 mph (fastest mile)	[Section 16 of TIA/EIA-222-F-1996]
٠	Cromwell; v = 100mph (3 second gust) equivalent to 80mph (fastest mile)	[Appendix K, 2005 Connecticut State Building Code Supplement]

Loading Cases:

Load Condition 1 = 85 mph (fastest mile) Wind Load (without ice) + Tower Dead Load Load Condition 2 = 74 mph (fastest mile) Wind Load (with ice) + Ice Load + Tower Dead Load

Please note that wind pressure is a function of velocity squared. Under Load Condition 2, a 25[°] percent reduction in wind pressure is allowed by code to account for the unlikelihood of the full wind pressure and ice load occurring at the same time. The same results may be achieved by utilizing a lower wind pressure without taking the 25 percent reduction, as shown above.

The TIA/EIA standard permits a one-third increase in allowable stresses for towers and monopoles less than 700 feet tall. For the purposes of this analysis, in computing the load capacity the allowable stresses of the tower members were increased by one-third.

4. FINDINGS AND EVALUATION

The combined axial and bending stresses on the tower structure were evaluated to compare with the allowable stress in accordance with AISC. The results of the analysis indicates that the existing tower structure, anchor bolts and foundation have enough capacity to support the proposed loading conditions noted herein. able stresses.

The table below summarizes the critical member capacities for each tower component.

Component/ Existing (Section No.) Component Size		Controlling Component/Elevation	Percent Capacity	Pass/Fail
Tower Leg (T5)	PiROD Truss Leg	Compression 90'-100'	93.2 %	Pass
Diagonal (T7)	L3x3x3/8	Compression 60'-80'	89.9 %	Pass
Top Girt (T1)	7/8" SR	Compression 150'-170'	9.7 %	Pass
Bottom Girt (T1)	7/8" SR	Compression 150'-170'	4.5 %	Pass
Mid Girt (T4)	Mid Girt (T4) L3x3x3/16 C		34.4 %	Pass
Bolt Checks				
Tower Bolts	(1) 1" A325N Bolt / 140'	Member Bearing on Bolt	84.1 %	Pass
Anchor Bolts	(6) 1-1/4"	Tension	77.6 %	Pass

TABLE 1: Tower Component Stress vs. Capacity Summary:

TABLE 2: Foundation Summary

Foundation	Component	Stress (% capacity/FOS)	Pass/Fail	Comments:
Previously Modified Drilled Concrete Caisson	Uplift	90.7 %/2.70	Pass	Min. F.O.S of 2.0 req'd per IBC 2003 Section 3108.4.2

The analysis results presented herewith are based upon the completed construction of previous tower modifications proposed by URS Corporation's tower modification analysis report, project 36931260, signed and sealed on September 23, 2014. If the tower has not been modified to the specifications proposed by URS, please notify the engineer in writing immediately. No installation of new antennas or equipment shall occur until the modifications have been completed.

5. CONCLUSIONS AND RECOMMENDATIONS

The results of the analysis indicate that the existing tower structure, anchor bolts and foundation have the capacity to support the proposed loading conditions. The tower structure, anchor bolts and foundation are considered structurally adequate with the wind load classification specified with the existing and proposed antenna loading noted herein.

The analysis results presented herewith are based upon the completed construction of previous tower modifications proposed by URS Corporation's tower modification analysis report, project 36931260, signed and sealed on September 23, 2014. If the tower has not been modified to the specifications proposed by URS, please notify the engineer in writing immediately. No installation of new antennas or equipment shall occur until the modifications have been completed.

Limitations/Assumptions:

This report is based on the following:

- 1. Tower inventory as listed in this report.
- 2. Tower is properly installed and maintained.
- 3. All members are as specified in the original design documents and are in good condition.
- 4. All required members are in place.
- 5. All bolts are in place and are properly tightened.
- 6. Tower is in plumb condition.
- 7. All member protective coatings are in good condition.
- 8. All tower members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
- 9. Foundations are in good condition without defect and were properly constructed to support original design loads as specified in the original design documents.

AECOM is not responsible for any modifications completed prior to or hereafter in which AECOM is not or was not directly involved. Modifications include but are not limited to:

- A. Adding antennas
- B. Removing/replacing antennas
- C. Adding coaxial cables

AECOM hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations, and conclusions are based upon information contained and set forth herein. If you are aware of any information which conflicts with that which is contained herein, or you are aware of any defects arising from original design, material, fabrication, or erection deficiencies, you should disregard this report and immediately contact AECOM. AECOM disclaims all liability for any representation, recommendation, or conclusion not expressly stated herein.

Ongoing and Periodic Inspection and Maintenance:

After the Contractor has successfully completed the installation and the work has been accepted, the owner will be responsible for the ongoing and periodic inspection and maintenance of the tower.

The owner shall refer to TIA/EIA-222-F for recommendations for maintenance and inspection. The frequency of the inspection and maintenance intervals is to be determined by the owner based upon actual site and environmental conditions. It is recommended that a complete and thorough inspection of the entire tower structural system be performed at least yearly and more frequently as conditions warrant. According to TIA/EIA-222-F section 14.1, Note 1: It is recommended that the structure be inspected after severe wind and/or ice storms or other extreme loading conditions.

6. DRAWINGS AND DATA

83

TNX TOWER INPUT/OUTPUT SUMMARY

ELEVATION E wices. Installation per TIA/EIA-222 and AISC with ASTM A123 and ASTM A153 Standards. - X
 125.6

 125.6

 125.6

 125.6

 125.6

 125.6

 125.6

 115

 115

 115

 115

 115

 115

 115

 115

 115

 115

 115

 115

 115

 115

 115

 115

 115

 115

 115

 115

 115

 115

 116

 101

 101

 101

 101

 101

 101

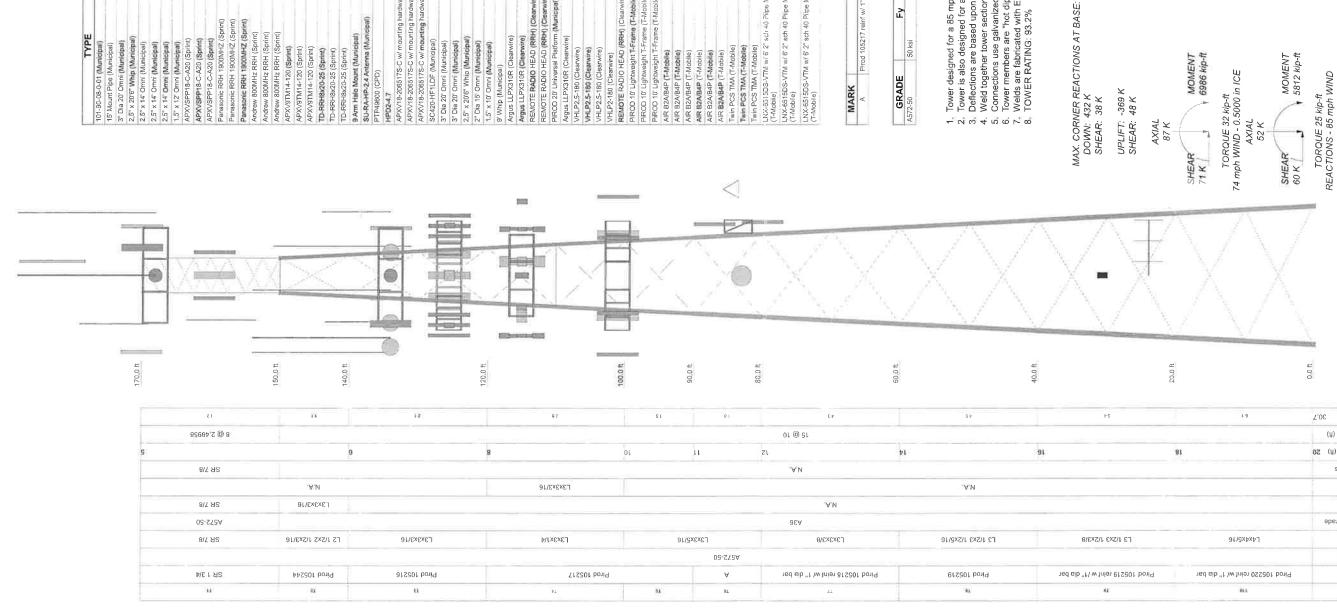
 101

 101

 101

 101

 101

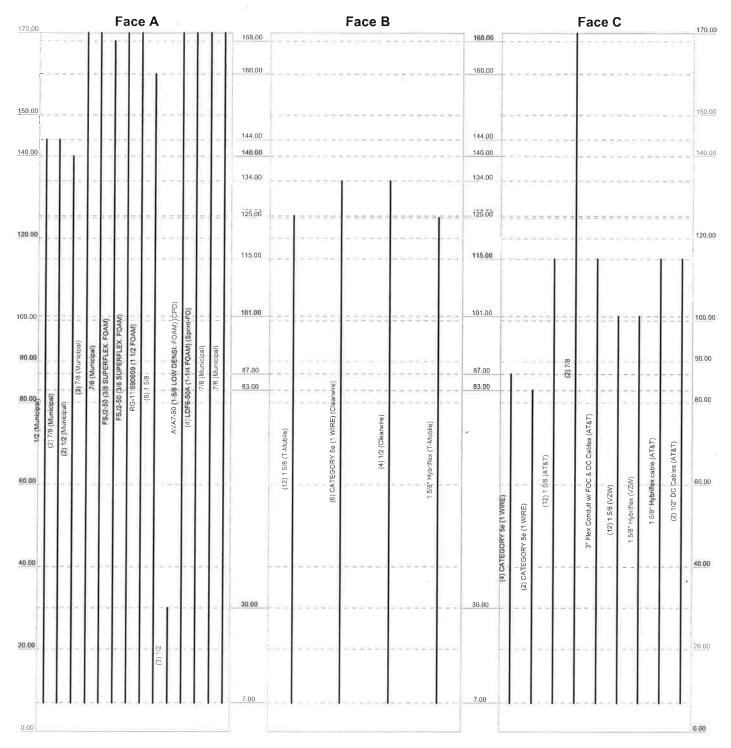

 101

 101

 101

 101

 101
 00 IZE Ŗ DESIGNED APPURTENANCE LOADING ELEVATION TYPE (TTA) (TTA) (TTA) (TTA) (ATT) r (6') (ATT r (6') (ATT r (6') (ATT ame (el Panel (ATT) ght T-Fr ght T-Fr ght T-Fr 'anel -RET -RET 19 TOWER DESIGN NOTES accordance with the TIA/EIA-222-MATERIAL STRENGTH (LIN) SYMBOL LIST MARK accordance with the wind with 0.50 in Ice. 36 and in ac nd in ac 65 ksi 125.5 25.5 SIZE 70S-6 dia t 7 reinf w/ 1" sch 40 Piipe Ŀ. (RRH) (Clean Frame (T-Mo) Frame (T-Mo) Tower designed for a 85.
 Tower is also designed fo
 Deflections are based up.
 Weld together tower sect
 Connections use galvaniz
 Tower members are "hot
 TOWER RATING: 93.2% M-L Pirod 105217 50 ksi w/ 6' 2" 5-180 180


AECOM	PiROD U20'-0"x170' Lattice Tower	Tower
500 Enterprise Drive, Suite 3B	500 Enterprise Drive, Suite 3B Project CFD-010 / Cromwell, CT Tower	
Rockv Hill, CT	Client: Structural Analysis - AT&T Assessment Drawn by: MCD Appt	ment Drawn by: MCD App'd
32	Code: TIA/EIA-222-F	Date: 07/16/16 Scale: NTS
FAX: 860-529-3991	Path:	Dwg No. E.1

Meight (К) 30.7	19 1		
# Panels @ (fl)			
Face Width (ft) 20	81 0	81	
shiĐ molloB			
ahiĐ biM			
shiĐ qoT			
oberð lenogsíð			
slenogaiQ	91/Sx\$x\$J		
eberð gede			
sбəт	Pirod 105220 reinf w/ 1" dia bar		Ы
Section	011		

TNX TOWER FEEDLINE DISTRIBUTION CHART

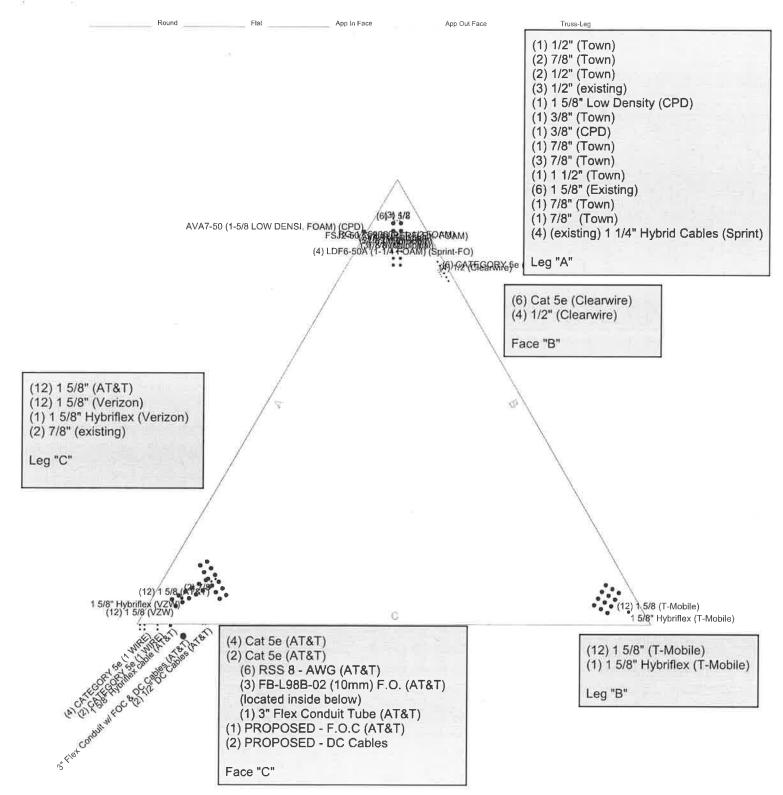
Feed Line Distribution Chart 0' - 170'

App In Face

AECOM	PiROD U20'-0"x170' Lattice Tow	/er
	Project: CFD-010 / Cromwell, CT Tower	
Rocky Hill, CT	Client: Structural Analysis - AT&T Assessment	Drawn by: MCD App'd:
	Code: TIA/EIA-222-F	Date: 07/16/16 Scale: NTS
FAX: 860-529-3991	Path:	Dwg No. E-7

Elevation (ft)

Round


TNX TOWER FEEDLINE PLAN

2

0

ï

Feed Line Plan

AECOM	PiROD U20'-0"x170' Lattice Tow	ver
500 Enterprise Drive, Suite 3B	Project: CFD-010 / Cromwell, CT Tower	
Rocky Hill, CT	Client: Structural Analysis - AT&T Assessment	Drawn by: MCD App'd:
Phone: 860-529-8882	Code: TIA/EIA-222-F	Date: 07/16/16 Scale: NTS
FAX: 860-529-3991	Path:	Dwg No. E-7

TNX TOWER DETAILED OUTPUT

 (\mathbf{x})

tnxTower	Job	PiROD U20'-0"x170' Lattice Tower	Page 1 of 44
AECOM 500 Enterprise Drive, Suite 3B	Project	CFD-010 / Cromwell, CT Tower	Date 12:41:22 07/16/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Structural Analysis - AT&T Assessment	Designed by MCD

3		Tower Input Data	
	×		

The main tower is a 3x free standing tower with an overall height of 170.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 5.00 ft at the top and 20.00 ft at the base.

This tower is designed using the TIA/EIA-222-F standard.

The following design criteria apply:

Basic wind speed of 85 mph.

Nominal ice thickness of 0.5000 in.

Ice density of 56 pcf.

A wind speed of 74 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 50 mph.

Weld together tower sections have flange connections..

Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC Specifications..

Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.. Welds are fabricated with ER-70S-6 electrodes..

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.333.

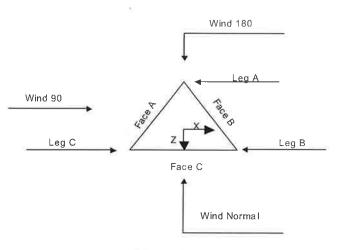
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios

- ✓ Use Code Safety Factors Guys Escalate Ice Always Use Max Kz Use Special Wind Profile
- Include Bolts In Member Capacity
- √ Leg Bolts Are At Top Of Section
- √ Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided)
 √ SR Members Have Cut Ends
- SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned


- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
 √ Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- Bypass Mast Stability Checks √ Use Azimuth Dish Coefficients
- ✓ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination
- ✓ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing √ Tract Feed Line Pundles As Culinder
- ✓ Treat Feed Line Bundles As Cylinder

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces

- ✓ Ignore Redundant Members in FEA
- ✓ SR Leg Bolts Resist Compression
- ✓ All Leg Panels Have Same Allowable Offset Girt At Foundation
- ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

tnxTower	dof	PiROD U20'-0"x170' Lattice Tower	Page 2 of 44
AECOM 500 Enterprise Drive, Suite 3B	Project	CFD-010 / Cromwell, CT Tower	Date 12:41:22 07/16/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Structural Analysis - AT&T Assessment	Designed by MCD

Triangular Tower

Tower Section Geometry

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	
	ft			ft		ft
T1	170.00-150.00			5.00	1	20.00
T2	150.00-140.00		U6.0 105244	5.00	1	10.00
Т3	140.00-120.00		U8.0 105216	6.00	1	20.00
T4	120.00-100.00		U10.0 105217 L3x3/16	8.00	1	20.00
T5	100.00-90.00		U12.0 105216	10.00	1	10.00
Т6	90.00-80.00		U12.0 105216	11.00	1	10,00
Τ7	80.00-60.00		U14.0 105218	12.00	1	20.00
Т8	60,00-40.00		U16.0 105219	14.00	1	20.00
Т9	40.00-20.00		U18.0 105219	16.00	1	20.00
T10	20.00-0.00		U20.0 105219 L4x1/4	18.00	ĩ	20.00

Tower	Tower	Discourt	D	77	77	T C	D
		Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Туре	K Brace	Horizontals	Offset	Offset
				End			
	ſt	ft		Panels		in	īn
TI	170.00-150.00	2.49	X Brace	No	No	0.0000	1.0000
T2	150.00-140.00	10.00	X Brace	No	No	0.0000	0.0000
T3	140.00-120.00	10.00	X Brace	No	No	0.0000	0.0000
T4	120.00-100.00	10.00	X Brace	No	No	0.0000	0.0000
T5	100.00-90.00	10.00	X Brace	No	No	0.0000	0.0000

tores Taxan an	Job		Page
tnxTower		PiROD U20'-0"x170' Lattice Tower	3 of 44
AECOM	Project		Date
500 Enterprise Drive, Suite 3B		CFD-010 / Cromwell, CT Tower	12:41:22 07/16/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Structural Analysis - AT&T Assessment	Designed by MCD

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Туре	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	Īn
Т6	90.00-80.00	10.00	X Brace	No	No	0.0000	0.0000
Т7	80.00-60.00	10.00	X Brace	No	No	0.0000	0.0000
Т8	60.00-40.00	10.00	X Brace	No	No	0.0000	0.0000
Т9	40.00-20.00	10.00	X Brace	No	No	0.0000	0.0000
T10	20.00-0.00	10.00	X Brace	No	No	0.0000	0.0000

Tower Section Geometry (cont'd)

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation ft	Туре	Size	Grade	Туре	Size	Grade
Γ1 170 00-150 00	Solid Round	1 3/4	A572-50	Solid Round	7/8	A572-50
			(50 ksi)			(50 ksi)
Г2 150.00-140.00	Truss Leg	Pirod 105244	A572-50	Single Angle	L2 1/2x2 1/2x3/16	A36
			(50 ksi)			(36 ksi)
ГЗ 140.00-120.00	Truss Leg	Pirod 105216	A572-50	Single Angle	L3x3x3/16	A36
			(50 ksi)			(36 ksi)
Г4 120.00-100.00	Truss Leg	Pirod 105217	A572-50	Single Angle	L3x3x1/4	A36
			(50 ksi)			(36 ksi)
T5 100.00-90.00	Truss Leg	Pirod 105217	A572-50	Single Angle	L3x3x5/16	A36
			(50 ksi)			(36 ksi)
T6 90.00-80.00	Truss Leg	Pirod 105217 reinf w/ 1" dia	A572-50	Single Angle	L3x3x5/16	A36
		bar	(50 ksi)			(36 ksi)
T7 80.00-60.00	Truss Leg	Pirod 105218 reinf w/ 1" dia	A572-50	Single Angle	L3x3x3/8	A36
		bar	(50 ksi)			(36 ksi)
T8 60.00-40.00	Truss Leg	Pirod 105219	A572-50	Single Angle	L3 1/2x3 1/2x5/16	A36
			(50 ksi)			(36 ksi)
T9 40.00-20.00	Truss Leg	Pirod 105219 reinf w /1" dia	A572-50	Single Angle	L3 1/2x3 1/2x3/8	A36
		bar	(50 ksi)			(36 ksi)
T10 20.00-0.00	Truss Leg	Pirod 105220 reinf w/ 1" dia	A572-50	Single Angle	L4x4x5/16	A36
		bar	(50 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 170.00-150.00	Solid Round	7/8	A572-50 (50 ksi)	Solid Round	7/8	A572-50 (50 ksi)
Γ2 150 00-140.00	Single Angle	L3x3x3/16	A36 (36 ksi)	Single Angle		A36 (36 ksi)

tnxTower	Job PiROD U20'-0"x170' Lattice Tower	Page 4 of 44
AECOM 500 Enterprise Drive, Suite 3B	Project CFD-010 / Cromwell, CT Tower	Date 12:41:22 07/16/16
Rocky Hill, CT Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client Structural Analysis - AT&T Assessment	Designed by MCD

Tower Elevation	No. of Mid	Mid Girt Type	Mid Girt Size	Mid Girt Grade	Horizontal Type	Horizontal Size	Horizontal Grade
ſt	Girts						
T4 120.00-100.00	1	Single Angle	L3x3x3/16	A36	Single Angle		A36
				(36 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower	Gusset	Gusset	Gusset Grade	Adjust Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	0
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_{i}	20	Spacing	Spacing	Spacing
Ĥ	Ω^2	in					Diagonals in	Horizontals in	Redundants in
	0.00	0.0000	A36	1	1	1.05	0.0000	0.0000	36,0000
170.00-150.00	0.00	0.0000	(36 ksi)		1.00	1.05	0.0000	0.0000	50.0000
T2	0.00	0.0000	A36	1	1	1.05	0.0000	0.0000	36,0000
150.00-140.00			(36 ksi)						100
T3	0.00	0.0000	A36		1	1.05	0.0000	0.0000	36.0000
140.00-120.00			(36 ksi)						
T4	0.00	0.0000	A36	1	1	1.05	0.0000	0.0000	36.0000
120.00-100.00			(36 ksi)						
T5	0.00	0.0000	A36	1	1	1.05	0.0000	0.0000	36.0000
100.00-90.00			(36 ksi)						
T6 90.00-80.00	0.00	0.0000	A36	1	1	1,05	0.0000	0.0000	36.0000
			(36 ksi)				1		
T7 80 00-60.00	0.00	0.0000	A36	1	1	1.05	0.0000	0.0000	36.0000
			(36 ksi)	14	14				
T8 60.00-40.00	0.00	0.0000	A36	1	1	1.05	0.0000	0.0000	36.0000
TO 10 00 00 00	0.00		(36 ksi)						
Г9 40 00-20 00	0.00	0.0000	A36	1	0	1.05	0.0000	0.0000	36.0000
F10 20 00 0 00	0.00	0.0000	(36 ksi)			1.05	0.0000	0.0000	26.0000
Г10 20.00-0.00	0.00	0.0000	A36	3	1	1.05	0.0000	0.0000	36.0000
			(36 ksi)						

						K Fac	ctors'			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz	Inner Brace
G	Angles	Rounds		X	X	X	X	X	X	X
	Yes	Yes	1	1	1	1	1	1	1	1
170.00-150.00				1	1	1	1	1	1	1
T2	Yes	Yes	1	1	1	1	1	1	1	1
150.00-140.00				T	1	1	1	1	1	-1
Т3	Yes	Yes	1	1	1	1	* 1	1	1	1
140.00-120.00			0e	1	1	1	1	1	1	1
Τ4	Yes	Yes	1	l,	1	1	1	1	1	1
120-00-100.00				<u>I</u>	1	1	1	1	1	1
T5	Yes	Yes	1	1	1	1	1	1	1	1
100.00-90.00				1	1	1	1	1	1	1
Т6	Yes	Yes	1	1	1	1	1	1	1	1
90.00-80.00				1	1	1	1	1	1	1

tnxTower	Jop	PiROD U20'-0"x170' Lattice Tower	Page 5 of 44
AECOM 500 Enterprise Drive, Suite 3B	Project	CFD-010 / Cromwell, CT Tower	Date 12:41:22 07/16/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Structural Analysis - AT&T Assessment	Designed by MCD

K Factors Tower Legs Χ Κ Calc CalcSingle Girts Horiz, Sec. Inner Elevation Κ Κ Brace Brace Diags Horiz Brace Single Solid Diags Diags Angles Rounds X Y Х X Χ Х Х Х Y ft Y Y Y Y Ŷ Yes Yes Τ7 1 1 1 1 1 1 1 1 80.00-60.00 1 1 1 1 1 1 1 Yes Yes 1 Τ8 1 1 1 1 1 T 1 60.00-40.00 Т9 Yes Yes ł 1 40.00-20.00 1 1 T10 Yes Yes 1 л 1 3 1 20:00-0.00

N

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

			Truss-Leg.	K Factors		
	Trus	s-Legs Used As Leg Me	mbers	Truss	-Legs Used As Inner M	embers
Tower Elevation fl	Leg Panels	X Brace Diagonals	Z Brace Diagonals	Leg Panels	X Brace Diagonals	Z Brace Diagonals
T2 150.00-140.00	1	0.5	0.85	1	0.5	0.85
T3 140.00-120.00	1	0.5	0.85	L.	0.5	0.85
T4 120.00-100.00	1	0.5	0.85	1	0,5	0.85
T5 100.00-90.00	1	0.5	0,85	1	0.5	0.85
T6 90.00-80.00	1	0.5	0.85	1	0.5	0,85
T7 80.00-60.00	1	0.5	0.85	1	0.5	0.85
T8 60.00-40.00	1	0,5	0.85	1	0.5	0.85
T9 40.00-20.00	J.	0.5	0.85	$\partial \mathbf{I}_{A}$	0.5	0.85
T10 20.00-0.00	1	0.5	0.85	1	0.5	0.85

Tower Elevation ft	Leg		Diago	nal	Top Girt Botte		Botton	n Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontal
,,,	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct 111	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 70.00-150.00	0.0000	1	0.000	0,75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

tnxTower

PiROD U20'-0"x170	' Lattice Tower
T II (OD 020 0 XII 0	Educe Tower

Page 6 of 44

Date

Project

Client

Job

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Structural Analysis - AT&T Assessment

CFD-010 / Cromwell, CT Tower

Designed by MCD

12:41:22 07/16/16

Tower Elevation ft	Leg		Diagon	al	Top G	rt	Bottom	ı Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontal
<i></i>	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct In	U	Net Width Deduct in	U	Net Width Deduct	U	Net Width Deduct in	U
Т2	0.0000	1	0.0000	1	0,0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1
150.00-140.00 T3 140.00-120.00	0.0000	1	0.0000	1	0,0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1
T4 120.00-100.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1
T5 100.00-90.00	0.0000	1	0.0000	1	0.0000	1	0,0000	1	0,0000	1	0.0000	1	0.0000	1
T6 90.00-80.00	0.0000	1	0,0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1
T7 80.00-60.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1
T8 60.00-40.00	0,0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0,0000	Ĩ.
T9 40.00-20.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0,0000	1	0.0000	1
T10 20.00-0.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1

Tower Section Geometry (cont'd)

Tower Elevation	Leg Connection	Leg		Diagor	ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Horn	izontal	Short Hor	izontal
fl	Туре														
	- <i>J F</i> =	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No	Bolt Size	No	Bolt Size	No	Bolt Size	No.
		in		in		in		in		in		in		in	
T1	Flange	0.7500	0	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
170.00-150.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T2	Flange	1.0000	6	1.0000	1	1.0000	1	0.6250	0	0.6250	0	0.6250	0	0,6250	0
150.00-140.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T3	Flange	1.0000	6	1.0000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
140,00-120.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T4	Flange	1.0000	6	1.0000	1	0.6250	0	0.6250	0	1.0000	1	0.6250	0	0,6250	0
120.00-100.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
Т5	Flange	1.0000	6	1.0000	1	0.6250	0	0.0000	0	0.6250	0	0.6250	0	0.6250	0
100.00-90.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T6 90:00-80.00	Flange	1.0000	6	1.0000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T7 80.00-60.00	Flange	1.0000	6	1,0000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T8 60.00-40.00	Flange	1.2500	6	1.2500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N	1	A325N		A325N		A325N		A325N		A325N		A325N	
T9 40.00-20.00	Flange	1.2500	6	1.2500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T10 20.00-0.00	Flange	0.0000	0	1.2500	1	0.6250	0	0,6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description		Allow Shield	Component Type	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacing	Width or Diameter	Perimeter	Weight
	Leg			ft	in 🖃	(Frac FW)		Row	în	in	in	plf
CATEGORY	С	Yes	Ar (CfAe)	87.00 - 7.00	0.0000	0.49	4	2	1.0000	1.0000		0.21

tnxTower

Job

Project

Client

PiROD U20'-0"x170' Lattice Tower

Page 7 of 44

Date

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

CFD-010 / Cromwell, CT Tower

Structural Analysis - AT&T Assessment

Designed by MCD

12:41:22 07/16/16

Description	or	Allow Shield	Component Type	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacing	Width or Diameter	Perimeter	Weight
	Leg			ft	<i>în</i>	(Frac FW)		Row	in	in	in	plf
5e (1 WIRE)												
CATEGORY 5e (1 WIRE)	С	Yes	Ar (CfAe)	83.00 - 7.00	0.0000	0.46	2	1	1.0000	1.0000		0.21
1/2	А	No	Ar (Leg)	144.00 - 7.00	0.0000	0.125	1	1	0.5800	0.5800		0.25
(Municipal)	A	JNU	AT (Leg)	144.00 - 7.00	0.0000	0.125	1		0.5800	0.2900		0.25
(Municipal) 7/8	А	No	Ar (Leg)	144.00 - 7.00	0.0000	0.125	2	11	1.0000	1 1 1 0 0		0.54
(Municipal)	A	INU	AI (Leg)	144 00 - 7 00	0.0000	0.125	2	1	1,0000	1.1100		0.54
(witherpar) 1/2	А	No	Ar (Leg)	140.00 - 7.00	0.0000	0.12	h		0 5900	0.5900		0.25
	A	140	AT (Leg)	140.00 - 7.00	0.0000	0,13	2	1	0.5800	0.5800		0.25
(Municipal)	٨	No	Ar (Lar)	170.00 7.00	0.0000	0.14	2	1	1.0000	1 1100		0.54
7/8 (Municinal)	А	No	Ar (Leg)	170.00 - 7.00	0.0000	0.14	3	1	1,0000	1,1100		0.54
(Municipal)		NI	A = (Y = =)	170.00 7.00	0.0000	0.14	÷.	1	1 1 1 0 0	1 1 1 0 0		0.54
7/8	А	No	Ar (Leg)	170.00 - 7.00	0.0000	0.14	1	1	1.1100	1.1100		0.54
(Municipal)		NT		1(0.00 7.00	0.0000	0.10		1441	0.4000	0.4000		0.00
FSJ2-50 (3/8	А	No	Ar (Leg)	168.00 - 7.00	0.0000	0.12	1	1	0.4300	0.4300		0.08
SUPERFLEX												
FOAM)		2.7	A (T)	150.00 5.00	0.0000	0.10			0.40.00			
FSJ2-50 (3/8	А	No	Ar (Leg)	170.00 - 7.00	0.0000	0.12	1	1	0.4300	0.4300		0.08
SUPERFLEX.												
FOAM)										<i>8</i>		
RG-11 590609	A	No	Ar (Leg)	170,00 - 7.00	0.0000	0.12	1	1	1.5000	1.5900		0.94
(1 1/2 FOAM)												
1 5/8	В	No	Ar (Leg)	125.50 - 7.00	0.0000	0.1	12	3	1.5000	1.9800		1.04
(T-Mobile)												
1 5/8	С	No	Ar (Leg)	115.00 - 7.00	0.0000	0.17	12	2	1.5000	1.9800		1.04
(AT&T)												
7/8	С	No	Ar (Leg)	170.00 - 7.00	0.0000	0.17	2	2	1.0000	1.1100		0.54
1 5/8	А	- No	Ar (Leg)	160.00 - 7.00	0.0000	0.1	6	3	1.5000	1.9800		1.04
CATEGORY	В	Yes	Ar (CfAe)	134.00 - 7.00	-2,0000	-0.3	6	6	1.0000	1.0000		0.21
5e (1 WIRE)												
(Clearwire)												
1/2	В	Yes	Ar (CfAe)	134.00 - 7.00	-4.0000	-0.3	4	4	0.5800	0.5800		0.25
(Clearwire)												
3" Flex	С	Yes	Ar (CfAe)	115.00 - 7.00	4.0000	0.41	1	1	0.0000	3.0000		3.00
Conduit w/												
FOC & DC												
Cables												
(AT&T)												
1/2	А	No	Ar (Leg)	30.00 - 7.00	0.0000	0.08	3	1	0.5800	0.5800		0.25
AVA7-50	А	Yes	Ar (CfAe)	170.00 - 7.00	0.0000	0.38	1	1	1.5000	1.9800	.0	0.72
(1-5/8 LOW												
DENSI.												
FOAM)												
(CPD)												
1 5/8"	В	No	Ar (Leg)	125.00 - 7.00	0.0000	0.05	1	1	1.5750	1.5750		1.07
Hybriflex												
(T-Mobile)												
LDF6-50A	А	No	Ar (Leg)	170.00 - 7.00	0.0000	0.16	4	2	1.5500	1.5500		0.66
-1/4 FOAM)			· 8/					_				0.00
(Sprint-FO)												
7/8	А	No	Ar (Leg)	170.00 - 7.00	0.0000	0.132	1	1	1.1100	1.1100		0.54
(Municipal)			(208)	110100 1100	0,0000	01152	,		1 - 1 - 0 0	1.1100		0.51
7/8	А	No	Ar (Leg)	170.00 - 7.00	0.0000	0.132	1	1	1,1100	1.1100		0.54
(Municipal)			(205)	110.00 - 1.00	0.0000	0.132		e.	1+1100	1.1100		0.04
1 5/8	С	No	Ar (Leg)	101.00 - 7.00	0.0000	0.12	12	6	1.5000	1.9800		1.04
(VZW)	U I	110	m (LUB)	101-00 - 7-00	0.0000	0.12	12	U	1,2000	1.7000		1_04
1 5/8"	С	No	Ar (Leg)	101-00 - 7.00	0.0000	0.1	1	ĩ	1 5000	1.5000		1.07
Hybriflex	C	140	AI (LCg)	101200 - 7200	0.0000	0.1	4		1.5000	1.5000		1.07
(VZW)												
** Proposed												

AT&T 7/2016

· T	Job		Page
tnxTower		PiROD U20'-0"x170' Lattice Tower	8 of 44
AECOM	Project		Date
500 Enterprise Drive, Suite 3B		CFD-010 / Cromwell, CT Tower	12:41:22 07/16/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	tructural Analysis - AT&T Assessment	Designed by MCD

Description	Face or Leg	Allow Shield	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	Ħ	# Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
1 5/8" Hybriflex cable (AT&T)	С	Yes	Ar (CfAe)	115.00 - 7.00	0.0000	0.435	1	1	1.5000	1.5000		1.07
1/2" DC Cables (AT&T)	С	Yes	Ar (CfAe)	115.00 - 7.00	0.0000	0.37	2	2	0.5800	0,5800		0.25

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	AR	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft²	ft^2	K
T1	170.00-150.00	А	40,136	0.000	0.000	0.000	0.22
		В	33.136	0.000	0.000	0.000	0.00
		С	3.700	0.000	0.000	0.000	0.02
T2	150.00-140.00	А	25.105	0.000	0.000	0.000	0.14
		В	21.605	0.000	0.000	0.000	0.00
		С	1.850	0.000	0.000	0.000	0.01
T3	140.00-120.00	A	54.943	0.000	0.000	0.000	0.32
		В	64.964	0.000	0.000	0.000	0.11
		С	11.015	0.000	0.000	0.000	0.02
Τ4	120.00-100.00	А	81.367	0.000	0.000	0.000	0.32
		В	88.646	0.000	0.000	0.000	0.32
		С	64.037	0.000	0.000	0.000	0.29
Т5	100.00-90.00	А	61.596	0.000	0.000	0.000	0.16
		В	44.323	0.000	0.000	0.000	0.16
		С	54,110	0.000	0.000	0.000	0.32
T6	90.00-80.00	А	61,596	0.000	0.000	0.000	0.16
		В	44.323	0.000	0.000	0.000	0.16
		С	56.843	0.000	0.000	0.000	0.32
Т7	80.00-60.00	А	123,191	0.000	0.000	0.000	0.32
		В	88.646	0.000	0.000	0.000	0.32
		С	117.933	0.000	0.000	0.000	0.66
T8	60.00-40.00	А	123.191	0.000	0.000	0.000	0.32
		В	88.646	0.000	0.000	0.000	0.32
		С	117,933	0.000	0.000	0.000	0.66
T9	40.00-20.00	А	124.641	0.000	0.000	0.000	0.32
		В	90.096	0.000	0.000	0.000	0.32
		С	117.933	0.000	0.000	0.000	0.66
T10	20.00-0.00	А	81.959	0.000	0.000	0.000	0.21
		В	59.505	0.000	0.000	0.000	0.21
		С	76.657	0.000	0.000	0.000	0.43

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C _A A _A In Face	$C_A A_A$ Out Face	Weight
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	K
T1	170.00-150.00	А	0.500	58.953	3.517	0.000	0.000	0.60
		В		50.470	0.000	0.000	0.000	0.00
		С		3,517	3.517	0.000	0.000	0.07
Т2	150.00-140.00	A B	0,500	36.013 31.771	1.758 0.000	0.000 0.000	0.000	0.39

tnxTower	dot	PiROD U20'-0"x170' Lattice Tower	Page 9 of 44
AECOM 500 Enterprise Drive, Suite 3B	Project	CFD-010 / Cromwell, CT Tower	Date 12:41:22 07/16/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Structural Analysis - AT&T Assessment	Designed by MCD

Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C ₄ A ₄ In Face	C_AA_A Out Face	Weight
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	Κ
		С		1.758	1,758	0.000	0.000	0.03
T3	140.00-120.00	А	0.500	82.393	3.517	0.000	0.000	0.87
		В		86,276	15.727	0.000	0.000	0.35
		С		11.706	3.517	0.000	0.000	0.07
Τ4	120.00-100.00	А	0.500	110.234	3.517	0.000	0.000	0.87
		В		110.046	22.467	0.000	0.000	0.90
		С		71_628	4,967	0,000	0.000	0.70
T5	100.00-90.00	А	0.500	77.821	1.758	0.000	0.000	0.44
		В		55.023	11.233	0.000	0.000	0.45
		С		60.201	2,725	0.000	0.000	0.76
Т6	90.00-80.00	А	0.500	77.821	1.758	0.000	0.000	0.44
		В		55.023	11,233	0.000	0.000	0.45
		С		62,368	4,375	0.000	0.000	0,81
T7	80.00-60.00	А	0.500	155.641	3.517	0,000	0.000	0.87
		В		110,046	22.467	0.000	0.000	0.90
		С		130.402	10.164	0.000	0.000	1.67
T8	60.00-40.00	А	0.500	155.641	3.517	0.000	0.000	0.87
		В		110.046	22,467	0.000	0.000	0.90
		С		130,402	10.164	0.000	0.000	1.67
T9	40.00-20.00	А	0.500	158.891	3.517	0.000	0.000	0.90
		В		113.296	22.467	0.000	0.000	0.90
		С		130.402	10,164	0.000	0.000	1.67
T10	20.00-0.00	Α	0.500	105.392	2.286	0.000	0.000	0,60
		В		75,755	14.603	0.000	0.000	0,58
		- C		84.762	6.607	0.000	0.000	1.09

	_		F	eed Line	Shielding	9	
Section	Elevation	Face	A _R	A _R Ice	A_F	A _F Ice	
	ft		ft^2	ft ²	ft^2	ft^2	
T1	170.00-150.00	A	0.239	0.771	0.000	0.000	
		В	0.000	0.000	0.000	0.000	
		С	0.000	0.000	0.000	0.000	
T2	150.00-140.00	A	0.000	0,106	0.184	0.277	
		В	0.000	0.000	0.000	0.000	
		С	0.000	0.000	0,000	0.000	
T3	140.00-120.00	А	0.000	0.145	0.289	0.435	
		В	0.000	0.580	0.849	1.741	
		С	0.000	0.000	0.000	0.000	
T4	120.00-100.00	А	0.000	0.145	0.288	0.434	
		В	0.000	0.828	1.212	2,484	
		С	0.000	0.336	0.618	1.009	
T5	100.00-90.00	А	0.000	0.057	0.114	0.171	
		В	0.000	0.327	0.479	0.981	
		С	0.000	0.177	0.326	0.532	
Т6	90.00-80.00	А	0.000	0.055	0.109	0.165	
		В	0.000	0.314	0.459	0.942	
		С	0.000	0,233	0,406	0.698	
Т7	80,00-60,00	А	0.000	0.105	0.208	0.314	
		В	0.000	0,598	0.875	1.795	
		С	0.000	0.534	0.911	1.603	
T8	60.00-40.00	А	0.000	0.100	0.231	0.348	
		В	0.000	0.570	0.973	1.994	
		С	0.000	0.509	1.012	1.781	
T9	40.00-20.00	А	0.000	0.096	0.223	0.336	

tnxTower	Job PiROD U20'-0''x170' Lattice Tower	Page 10 of 44
AECOM 500 Enterprise Drive, Suite 3B	Project CFD-010 / Cromwell, CT Tower	Date 12:41:22 07/16/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client Structural Analysis - AT&T Assessment	Designed by MCD

Section	Elevation	Face	A _R	A _R	AF	A_F
				Ice		Ice
	ft		ft^2	ft^2	ft^2	ft^2
		С	0.000	0.491	0.977	1.719
T10	20.00-0.00	А	0.000	0.061	0.162	0.243
		В	0.000	0,348	0.679	1.393
		С	0.000	0.311	0.707	1.244

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP _X Jce	CP _z Ice
	ft	in	ĩn	in	in
Т1	170.00-150.00	-0.7973	-8,0376	-0.4853	-7.4212
T2	150 00-140 00	-0.4988	-6,6293	-0.3283	-6.3594
Т3	140.00-120.00	0.9113	-8.7179	0.7562	-8.8599
Τ4	120.00-100.00	-0.5486	-4.0538	-0.2522	-5.7032
Т5	100.00-90.00	-5.4043	-0.9809	-4.1954	-3.3564
Т6	90.00-80.00	-6.5423	-0.5574	-4.9887	-3.2522
T7	80.00-60.00	-7.8366	-0.2220	-6,1271	-3.172
Т8	60.00-40.00	-8.7514	-0.2611	-6.8645	-3.578
Т9	40.00-20.00	-9.6366	-0.6192	-7.5330	-4.463
T10	20.00-0.00	-8.4850	-0.8082	-6,5824	-4.3369

				screte Tower Lo						
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight	
			ft ft ft	o	ft		$_{\sim}ft^{2}$	ft^2	Κ	
101-90-08-0-01 (Municipal)	A	From Leg	9.00 2.00 0.00	0.0000	183.00	No lce 1/2" lce	3.33 4.31	3.33 4.31	0.04 0.06	
15' Mount Pipe (Municipal)	А	From Leg	9.00 2.00 0.00	0.0000	179.75	No Ice 1/2" Ice	4.50 6.03	4.50 6.03	0.09 0.12	
3" Dia 20' Omni (Municipal)	В	From Face	9.00 0.00 0.00	0.0000	178.00	No Ice 1/2" Ice	4.00 6.00	4.00 6.00	0.06 0.10	
5" x 20'6" Whip (Municipal)	С	From Face	9,00 0.00 0.00	0.0000	178.00	No Ice 1/2" Ice	5.14 7.24	5.14 7.24	0.15 0.19	
2,5" x 14' Omni (Municipal)	С	From Face	9.00 0.00 0.00	0.0000	175.00	No Ice 1/2" Ice	3,50 4.93	3.50 4.93	0.03 0.06	
2.5" x 14' Omni (Municipal)	С	From Face	9.00 0.00 0.00	0.0000	175.00	No Ice 1/2" Ice	3.50 4.93	3.50 4.93	0.03 0.06	
2,5" x 14' Omni (Municipal)	С	From Face	9.00 0.00 0.00	0.0000	175.00	No Ice 1/2" Ice	3.50 4.93	3.50 4.93	0.03 0.06	
1.5" x 12' Omni	А	From Face	9.00	0.0000	174.00	No Ice	1.50	1.50	0.06	

4T	Job		Page
tnxTower		PiROD U20'-0"x170' Lattice Tower	11 of 44
AECOM	Project	11	Date
500 Enterprise Drive, Suite 3B		CFD-010 / Cromwell, CT Tower	12:41:22 07/16/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Structural Analysis - AT&T Assessment	Designed by MCD

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weigh
			Vert ft ft ft	0	ft		ft^2	ft ²	Κ
(Municipal)			4.00			1/2" Ice	2,52	2.52	0.07
9 Arm Halo Mount (Municipal)	С	None		0.0000	168.00	No Ice 1/2" Ice	62.60 80.40	62.60 80.40	3.60 4.80
SU-RA-HP-2.4 Antenna (Municipal)	В	From Face	9.00 2.50 0.00	0,0000	168.00	No Ice 1/2" Ice	0.80 0.93	0.37 0.47	0.00 0.01
PTP49600 (CPD)	С	From Leg	9.00 0.00 0.00	0.0000	168.00	No Ice 1/2" Ice	2.04 2.24	0.53 0.65	0.01 0,02
APXV18-206517S-C w/ mounting hardware	А	From Leg	1.00 0.00 0.00	0.0000	159,50	No Ice 1/2" Ice	5.08 5.53	4 46 5 39	0.05 0.09
APXV18-206517S-C w/ mounting hardware	В	From Leg	1.00 0.00 0.00	0.0000	159.50	No Ice 1/2" Ice	5.08 5.53	4.46 5.39	0.05 0.09
APXV18-206517S-C w/ mounting hardware	С	From Leg	1.00 0.00 0.00	0.0000	159.50	No Ice 1/2" Ice	5.08 5.53	4.46 5.39	0.05 0.09
SC420-HF1LDF (Municipal)	А	From Face	6.00 0.00 0.00	0.0000	158.50	No Ice 1/2" Ice	2.14 3.02	2.14 3.02	0.02 0.03
3" Dia 20' Omni (Municipal)	С	From Face	6.00 9.00 0.00	0.0000	144.00	No Ice 1/2" Ice	4.00 6.00	4.00 6.00	0.06 0.10
3" Dia 20' Omni (Municipal)	А	From Face	6.00 -9.00 0.00	0.0000	144.00	No Ice 1/2" Ice	4.00 6.00	4.00 6.00	0.06 0.10
2.5" x 20'6" Whip (Municipal)	A	From Face	6.00 9,00 0.00	0.0000	144.00	No Ice 1/2" Ice	5.14 7.24	5.14 7.24	0.15 0.19
2" Dia 15' Omni (Municipal)	В	From Face	6,00 -5.00 0.00	0.0000	141.00	No Ice 1/2" Ice	3.20 4.83	3.20 4.83	0.04 0.06
1.5" x 10' Omni (Municipal)	В	From Face	6.00 5.00 0.00	0.0000	139.00	No Ice 1/2" Ice	1.50 2.52	1.50 2.52	0.06 0.07
9' Whip (Municipal)	A	From Face	6.00 0.00 0.00	0.0000	138.50	No Ice 1/2" Ice	5.85 7.66	5.85 7.66	0.12 0.17
PiROD 20' Universal Platform (Municipal)	С	None	0.00	0.0000	134.00	No Ice 1/2" Ice	33.10 47.10	33.10 47.10	2.27 2.70
Argus LLPX310R (Clearwire)	А	From Face	6.00 7.00 0.00	0.0000	134.00	No Ice 1/2" Ice	4.86 5.22	3.46 3.80	0.03 0.06
Argus LLPX310R (Clearwire)	В	From Face	6.00 0.00 0.00	0.0000	134.00	No Ice 1/2" Ice	4.86 5.22	3.46 3.80	0.03 0.06
Argus LLPX310R (Clearwire)	С	From Face	6.00 7.00 0.00	0.0000	134.00	No Ice 1/2" Ice	4.86 5.22	3.46 3.80	0.03 0.06
EMOTE RADIO HEAD (RRH) (Clearwire)	A	From Face	6.00 7.00 0.00	0,0000	134.00	No Ice 1/2" Ice	1.82 2.00	0.83 0.97	0.03 0.04
EMOTE RADIO HEAD (RRH)	В	From Face	6.00 0.00	0.0000	134.00	No Ice 1/2" Ice	1.82 2.00	0.83 0.97	0.03 0.04

Antes Tana an	Job		Page
tnxTower		PiROD U20'-0"x170' Lattice Tower	12 of 44
AECOM	Project		Date
500 Enterprise Drive, Suite 3B		CFD-010 / Cromwell, CT Tower	12:41:22 07/16/16
Rocky [,] Hill, CT	Client		Designed by
Phone: 860-529-8882 FAX: 860-529-3991	e	Structural Analysis - AT&T Assessment	MCD

Description	Face or Leg	Offset Type	Offsets. Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weigh
	Leg		Vert ft ft	o	ft		ft^2	ft ²	K
			ft						
(Clearwire)			0.00						
REMOTE RADIO HEAD	С	From Face	6.00	0.0000	134.00	No Ice	1.82	0.83	0.03
(RRH)			7.00			1/2" Ice	2,00	0.97	0,04
(Clearwire)	П	Examp Lag	0.00	0.0000	87.00	NT T	0.65	0.47	0.05
3"x2"x22" Panel	В	From Leg	2.00 0.00	0.0000	87.00	No Ice 1/2" Ice	0.65 0.81	0.47 0.61	0.05 0.05
			0.00			1/2 100	0.01	0.01	0.05
TMA	В	From Leg	2.00	0.0000	84.50	No Ice	1.06	0,45	0.02
		8	0,00		8.2	1/2" Ice	1.21	0.57	0.03
			0.00						
3' Stand-off	В	From Leg	1.50	0.0000	83.50	No Ice	1.00	2.00	0.05
			0.00			1/2" Ice	1.20	2.70	0.07
21.0. 1.00		D Y	0.00	0.0000	82.50		1.00	• • • •	
3' Stand-off	А	From Leg	1,50	0,0000	83.50	No Ice	1.00	2.00	0.05
			0.00 0.00			1/2" Ice	1,20	2.70	0.07
TMA	А	From Leg	2.00	0.0000	83.00	No Ice	1.06	0.45	0.02
1 3713 6	11	rion bog	0.00	0.0000	02.00	1/2" Ice	1.21	0.57	0.02
			0.00						
TMA	В	From Leg	2.00	0.0000	82.50	No Ice	1.06	0.45	0.02
			0.00			1/2" Ice	1.21	0.57	0.03
			0.00						
3"x2"x22" Panel	В	From Leg	2.00	0.0000	80.00	No Ice	0.65	0.47	0.05
			0.00 0.00			1/2" Ice	0.81	0.61	0.05
Camera	А	From Leg	0.00	0.0000	30,00	No Ice	0.50	0.50	0.01
Camera	л	From Log	0.00	0.0000	00,00	1/2" Ice	0.60	0.60	0.01
		(a)	0.00			1/2 100	0.00	0.00	0.02
PC9013N	А	From Leg	1.00	0.0000	24.00	No Ice	0.46	0.46	0.00
		-	0.00			1/2" Ice	0.52	0.52	0.00
			0.00						
APXVSPP18-C-A20	А	From Face	9.00	0.0000	170.00	No Ice	8.40	5.28	0.06
(Sprint)			-1.00			1/2" Ice	8.95	5.74	0.11
APXVSPP18-C-A20	В	From Face	0.00 9.00	0.0000	170.00	No Ice	8.40	5.28	0.06
(Sprint)	D	FIOIII Face	-1.00	0.0000	170.00	1/2" Ice	8,95	5.28 5.74	0.06 0.11
(oprinc)			0.00			1/2 100	0,95	5.74	0.11
APXVSPP18-C-A20	C	From Face	9.00	0.0000	170.00	No Ice	8.40	5.28	0.06
(Sprint)			-1.00			1/2" Ice	8.95	5.74	0,11
			0.00						
anasonic RRH 1900MHZ	А	From Face	8.00	0.0000	170.00	No Ice	2.49	3.06	0.09
(Sprint)			0.00			1/2" Ice	2.71	3.30	0.12
	D	E E	0.00	0.0000	170.00	N. 1	0.40	2.07	0.00
Panasonic RRH 1900MHZ	В	From Face	8.00	0.0000	170.00	No Ice	2.49	3.06	0.09
(Sprint)			$0.00 \\ 0.00$			1/2" Ice	2.71	3,30	0.12
anasonic RRH 1900MHZ	С	From Face	8.00	0.0000	170.00	No Ice	2.49	3.06	0.09
(Sprint)	0		0.00	0.0000		1/2" Ice	2.71	3.30	0.02
× 1 · · 7			0.00					-35 -	0.24
Andrew 800MHz RRH	А	From Face	8.00	0.0000	170.00	No Ice	2.36	1,97	0.06
(Sprint)			0.00			1/2" Ice	2.57	2.17	0.08
			0.00						
Andrew 800MHz RRH	В	From Face	8.00	0.0000	170.00	No Ice	2.36	1.97	0.06
(Sprint)			0.00			1/2" Ice	2,57	2.17	0.08
	С	From Face	0.00 8.00	0.0000	170.00	No Ice	2.36	1.97	0.06
Andrew 800MHz RRH								1 41	

tnxTower

Project

Client

PiROD U20'-0"x170' Lattice Tower

Page 13 of 44

Date 12:41:22 07/16/16

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 ' FAX: 860-529-3991

Structural Analysis - AT&T Assessment

CFD-010 / Cromwell, CT Tower

Designed by MCD

h.

Description	Face or Leg	Offset Type	Offsets Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	Leg		Vert						
			ft ft ft	0	ft		_ft ²	_ft ²	Κ
			0.00						
APXV9TM14-120 (Sprint)	А	From Face	9_00 -4.00	0.0000	170.00	No Ice 1/2" Ice	7.27 7.80	5.33 6.05	0.10 0.16
			0.00						
APXV9TM14-120 (Sprint)	В	From Face	9.00 -4.00	0.0000	170.00	No Ice 1/2" Ice	7.27 7.80	5.33 6.05	0.10 0.16
			0.00						
APXV9TM14-120 (Sprint)	С	From Face	9.00 -4.00	0.0000	170.00	No Ice 1/2" Ice	7.27 7.80	5,33 6.05	0.10 0.16
TD DDII0 20.25			0.00	0.0000	150.00	N. 1	4.2.0		
TD-RRH8x20-25 (Sprint)	A	From Face	9.00 -4.00	0,0000	170.00	No Ice 1/2" Ice	4.32 4.60	1.41 1.61	0.07 0.09
TD-RRH8x20-25	В	From Face	0.00 9.00	0.0000	170.00	No Ice	4.32	1.41	0.07
(Sprint)	D	110m Pace	-4.00 0.00	0.0000	170.00	1/2" Ice	4.60	1.61	0.09
TD-RRH8x20-25	С	From Face	9.00	0.0000	170.00	No Ice	4.32	1.41	0.07
(Sprint)		1,000,000	-4.00 0.00	010000	110100	1/2" Ice	4.60	1.61	0.09
PiROD 10' Lightweight	А	From Leg	2.00	0.0000	125.50	No Ice	9.30	9.30	0.25
T-Frame (T-Mobile)			0.00			1/2" Ice	14.50	14.50	0.34
PiROD 10' Lightweight	В	From Leg	2.00	0.0000	125.50	No Ice	9.30	9,30	0.25
T-Frame (T-Mobile)		Ū.	$0.00 \\ 0.00$			1/2" Ice	14.50	14.50	0.34
PiROD 10' Lightweight	С	From Leg	2.00	0.0000	125.50	No Ice	9.30	9.30	0.25
T-Frame (T-Mobile)			0.00 0.00			1/2" Ice	14.50	14.50	0.34
AIR B2A/B4P	А	From Leg	4.00	0.0000	125,50	Nò Ice	6.42	4.22	0.08
(T-Mobile)			3.00 0.00			1/2" Ice	6.86	4.64	0.12
AIR B2A/B4P	В	From Leg	4.00	0.0000	125.50	No Ice	6.42	4.22	0.08
(T-Mobile)			3.00 0.00			1/2" Ice	6.86	4.64	0,12
AIR B2A/B4P	С	From Leg	4.00	0.0000	125.50	No Ice	6.42	4.22	0,08
(T-Mobile)			3.00 0.00			1/2" Ice	6.86	4.64	0.12
AIR B2A/B4P	А	From Leg	4.00	0.0000	125.50	No Ice	6,42	4.22	0.08
(T-Mobile)			-3.00 0.00			1/2" Ice	6.86	4.64	0.12
AIR B2A/B4P	В	From Leg	4.00	0.0000	125.50	No Ice	6.42	4.22	0.08
(T-Mobile)	_		-3.00 0.00		125100	1/2" Ice	6.86	4.64	0.12
AIR B2A/B4P	С	From Leg	4.00	0.0000	125.50	No Ice	6.42	4.22	0.08
(T-Mobile)		Ũ	-3.00 0.00			1/2" Ice	6.86	4.64	0.12
Twin PCS TMA	А	From Leg	4.00	0.0000	125,50	No Ice	0.77	0.36	0.01
(T-Mobile)			3.00 0.00			1/2" Ice	0.96	0,52	0.02
Twin PCS TMA (T-Mobile)	В	From Leg	4.00 3.00	0.0000	125.50	No Ice 1/2" Ice	0.77 0.96	0.36 0.52	0.01 0.02
			0.00						
Twin PCS TMA (T-Mobile)	С	From Leg	4.00 3.00	0.0000	125.50	No Ice 1/2" Ice	0.77 0.96	0.36 0.52	0.01 0.02
		-	0.00						
VX-6515DS-VTM w/ 6' 2" sch 40 Piipe Mount	A	From Leg	4.00 0.00	0.0000	125.50	No Ice 1/2" Ice	11.45 12.06	9.12 10.21	0.07 0.15

tnxTower

Project

Client

PiROD U20'-0"x170' Lattice Tower

Page 14 of 44

Date

14 01 4

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Structural Analysis - AT&T Assessment

CFD-010 / Cromwell, CT Tower

Designed by MCD

12:41:22 07/16/16

Description	Face or	Offset Type	Offsets; Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	Leg	51	Lateral Vert	5					
			ft	0	ft		ft^2	ft^2	Κ
			ft ft		3 7 -			J*	
(T-Mobile)			0,00						
LNX-6515DS-VTM w/ 6' 2"	В	From Leg	4.00	0.0000	125.50	No Ice	11.45	9.12	0.07
sch 40 Piipe Mount (T-Mobile)			0.00 0.00			1/2" Ice	12.06	10.21	0.15
LNX-6515DS-VTM w/ 6' 2"	С	From Leg	4.00	0.0000	125.50	No Ice	11.45	9.12	0.07
sch 40 Piipe Mount	Ũ	TION LOG	0.00	0.0000	125.50	1/2" Ice	12.06	10.21	0.15
(T-Mobile)			0.00						
RRUS-11	А	From Leg	4.00	0.0000	125,50	No Ice	2,99	1.25	0.05
(T-Mobile)			0.00			1/2" lce	3.23	1.41	0.07
DDUC 11	D	F	0.00	0.0000	105.50	NI I	2.00	1.26	0.05
RRUS-11 (T-Mobile)	В	From Leg	4.00 0.00	0.0000	125,50	No Ice 1/2" Ice	2.99 3.23	1.25 1.41	0.05 0.07
(1-Mobile)			0.00			172 100	5.25	1.41	0.07
RRUS-11	С	From Leg	4.00	0.0000	125.50	No Ice	2.99	1.25	0.05
(T-Mobile)		0	0.00			1/2" Ice	3.23	1.41	0.07
			0.00						
BXA-171063-12BF	A	From Leg	4.00	0.0000	101.00	No Ice	4.73	3,57	0.02
(Verizon - PCS)			0.00 0.00			1/2" lce	5.18	4,01	0.04
BXA-171063-12BF	В	From Leg	4.00	0.0000	101.00	No Ice	4.73	3.57	0.02
(Verizon - PCS)		TTOM Dep	0.00	0.0000	101.00	1/2" Ice	5.18	4.01	0.02
			0.00						
BXA-171063-12BF	С	From Leg	4.00	0.0000	101.00	No Ice	4.73	3.57	0.02
(Verizon - PCS)			0.00			1/2" Ice	5.18	4.01	0.04
PiROD 12' Lightweight	А	From Leg	0.00 0.00	0.0000	101.00	No Ice	10.20	10.20	0.25
T-Frame	Λ	110m Leg	0.00	0.0000	101.00	1/2" Ice	16.20	16.20	0.35
(Verizon)			0.00						
PiROD 12' Lightweight	В	From Leg	0.00	0.0000	101.00	No lce	10.20	10.20	0.25
T-Frame			0.00			1/2" Jce	16.20	16.20	0.35
(Verizon)	С	From Leg	0.00 0.00	0.0000	101.00	No Ice	10.20	10.20	0.36
PiROD 12' Lightweight T-Frame	C	From Leg	0.00	0.0000	101.00	1/2" Ice	10.20 16.20	16.20	0.25 0.35
(Verizon)			0.00			172 100	10.20	10,20	0.55
(2) Diplexer	А	From Leg	4.00	0.0000	101.00	No Ice	0.23	0,17	0.01
(Verizon - 850)			6.00			1/2" Ice	0.30	0.24	0.01
	D		0.00	0.0000	101.00			0.15	0.01
(2) Diplexer	В	From Leg	4.00	0.0000	101.00	No Ice	0.23	0.17	0.01
(Verizon - 850)			6.00 0.00			1/2" Ice	0.30	0.24	0.01
(2) Diplexer	С	From Leg	4.00	0.0000	101.00	No Ice	0.23	0.17	0.01
(Verizon - 850)		8	6.00			1/2" Ice	0.30	0.24	0.01
			0,00						
HBX-6517DS-VTM	А	From Leg	4.00	0.0000	101.00	No Ice	5.24	3.24	0.01
(Verizon - AWS)			6.00			1/2" lce	5.71	3_69	0.04
HBX-6517DS-VTM	В	From Leg	0.00 4.00	0.0000	101.00	No Ice	5.24	3,24	0.01
(Verizon - AWS)	D	Trom Leg	6.00	0,0000	101.00	1/2" Ice	5.71	3.69	0.01
,			0.00						0.01
HBX-6517DS-VTM	С	From Leg	4.00	0,0000	101.00	No Ice	5.24	3.24	0.01
(Verizon - AWS)			6.00			1/2" lce	5.71	3.69	0.04
DIL OX40 ANUC		Dana I	0.00	0.0000	101.00	NL T	2.52	1.50	0.04
RH_2X40-AWS (Verizon - AWS)	A	From Leg	4.00 6.00	0.0000	101.00	No Ice 1/2" Ice	2.52 2.75	1.59 1.80	0.04 0.06
(venzou - Awa)			0.00			172 100	2,13	1.60	0.00
RH_2X40-AWS	В	From Leg	4.00	0.0000	101.00	No lce	2.52	1.59	0.04
(Verizon - AWS)		0	6.00		_	1/2" Ice	2,75	1.80	0.06

tnxTower	Job PiROD	U20'-0"x170' Lattice Tower	Page 15 of 44
AECOM 500 Enterprise Drive, Suite 3B	Project CFD-	010 / Cromwell, CT Tower	Date 12:41:22 07/16/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client Structural	l Analysis - AT&T Assessment	Designed by MCD

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C ₄ A ₄ Side	Weigh
	Leg		Vert						
			ft	0	ft		ft^2	ft^2	Κ
			ft ft		<u></u>			<i></i>	
			0.00						
RH_2X40-AWS	С	From Leg	4.00	0,0000	101,00	No Ice	2.52	1,59	0.04
(Verizon - AWS)			6.00 0.00			1/2" Ice	2.75	1.80	0.06
DB-T1-6Z-8AB-0Z	С	None	0.00	0,0000	101.00	No Ice	5.35	2.40	0.04
(Verizon - AWS)						1/2" lce	5.75	2.72	0.07
LNX-6514DS-T4M	А	From Leg	4.00	0.0000	101.00	No Ice	8.38	5.41	0.04
(Verizon - 850)		_	-6.00 0.00			1/2" Ice	8.93	5.86	0.09
LNX-6514DS-T4M	В	From Leg	4.00	0.0000	101.00	No Ice	8.38	5,41	0.04
(Verizon - 850)	D	FIOIII Leg	-6.00	0.0000	101.00	1/2" Ice	8.93	5.86	0.04
(VCHZOH = 050)			0.00			1/2 100	0.75	5.00	0.09
LNX-6514DS-T4M	С	From Leg	4.00	0.0000	101.00	No Ice	8.38	5.41	0.04
(Verizon - 850)			-6.00			1/2" Ice	8.93	5.86	0.09
(0.00				187 E	2.20	
LNX-4514DS-A1M	А	From Leg	4.00	0.0000	101.00	No Ice	8.93	5.27	0.06
(Verizon - LTE)			-4.00			1/2" Ice	9.42	5.96	0.12
			0.00						
LNX-4514DS-A1M	В	From Leg	4.00	0.0000	101.00	No Ice	8.93	5.27	0.06
(Verizon - LTE)			-4.00 0.00			1/2" Ice	9.42	5.96	0.12
LNX-4514DS-A1M	С	From Leg	4.00	0.0000	101.00	No Ice	8.93	5.27	0.06
(Verizon - LTE)	0	THOM DOB	-4.00	010000	101100	1/2" Ice	9.42	5.96	0.12
*** ATT New Inventory			0.00						
7/9/2016***									
(2) TMA (shielded)	А	From Leg	4.00	0.0000	115.00	No Ice	0.00	0,00	0.01
(AT&T)		From SPB	6.00	010000		1/2" Ice	0.00	0.00	0.01
			0.00						
(2) TMA (shielded)	В	From Leg	4.00	0.0000	115.00	No Ice	0.00	0.00	0.01
(AT&T)			6.00			1/2" Ice	0.00	0.00	0.01
(3) TN (A (1, 1, 1, 1)	a		0.00	0.0000	116.00	NT T	0.00	0.00	0.01
(2) TMA (shielded)	С	From Leg	4.00	0.0000	115.00	No Ice	0.00	0.00	0.01
(AT&T)			6.00 0.00			1/2" Ice	0.00	0.00	0.01
PiROD 12' Lightweight	А	None		0.0000	115.00	No Ice	10.20	10,20	0.25
T-Frame						1/2" Ice	16.20	16.20	0.35
(AT&T)									
PiROD 12' Lightweight	В	None		0.0000	115.00	No Ice	10.20	10.20	0.25
T-Frame						1/2" Ice	16.20	16.20	0.35
(AT&T)	C	Nama		0.0000	115.00	Ma las	10.20	10.20	0.25
PiROD 12' Lightweight T-Frame	С	None		0.0000	115.00	No Ice 1/2" Ice	10.20 16.20	10.20 16.20	0.25 0.35
(AT&T)						1/2 100	10.20	10.20	0.55
7770	А	From Leg	4.00	0.0000	115.00	No Ice	10.03	5.60	0.02
(AT&T)	71	Troin Log	6.00	0.0000	115.00	1/2" Ice	10.61	6.15	0.02
(0.00						5107
QS66512-3 Quintel Panel	А	From Leg	4.00	0.0000	115.00	No Ice	8.40	8.22	0.07
(AT&T)		U	2.00			1/2" lce	8.95	9.19	0.14
. ,			0.00						
7770	В	From Leg	4.00	0,0000	115.00	No Ice	10.03	5.60	0.02
(AT&T)			6.00			1/2" Ice	10.61	6.15	0.07
			0.00						
QS66512-3 Quintel Panel	В	From Leg	4.00	0_0000	115.00	No Ice	8.40	8.22	0.07
(AT&T)			2.00			1/2" lce	8-95	9.19	0.14
7770	С	From Leg	0.00	0.0000	115.00	NL Y	10.02	5.60	0.02
		From Leg	4.00	0.0000	115.00	No Ice	10.03	2.60	0.02

tnxTower

Project

Client

PiROD U20'-0"x170' Lattice Tower

CFD-010 / Cromwell, CT Tower

16 of 44

Page

Date

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Structural Analysis - AT&T Assessment

Designed by MCD

12:41:22 07/16/16

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weigh
	Deg		Vert ft	o	ft		ft ²	ft^2	K
			ft ft				51		
(AT&T)			6.00 0.00			1/2" Ice	10,61	6.15	0.07
QS66512-3 Quintel Panel (AT&T)	С	From Leg	4_00 2_00 0.00	0,0000	115.00	No Ice 1/2" Ice	8.40 8.95	8.22 9.19	0.07 0.14
AM-X-CD-16-65-00T-RET (6')	А	From Leg	4.00 -6.00	0.0000	115,00	No Ice 1/2" Ice	8.26 8.81	4.64 5.09	0.05 0.10
(AT&T) AM-X-CD-16-65-00T-RET (6')	В	From Leg	0.00 4.00 -6.00	0.0000	115.00	No Ice 1/2" Ice	8.26 8.81	4.64 5.09	0.05 0.10
(AT&T) AM-X-CD-16-65-00T-RET (6')	С	From Leg	0.00 4.00 -6_00	0.0000	115.00	No Ice 1/2" Ice	8.26 8.81	4.64 5.09	0.05 0.10
(AT&T) RRUS-11 (AT&T)	А	From Leg	0.00 4.00 -6.00	0.0000	115.00	No Ice 1/2" Ice	2.99 3.23	1.25 1.41	0.05 0.07
RRUS-11 (AT&T)	В	From Leg	0.00 4,00 -6.00	0.0000	115.00	No Ice 1/2" Ice	2.99 3.23	1.25 1.41	0.05 0.07
RRUS-11 (AT&T)	С	From Leg	0.00 4.00 -6.00	0.0000	115.00	No Ice 1/2" Ice	2.99 3.23	1.25 1.41	0.05
DC6-48-60-18-8F (Squid) Suppressor	С	None	0.00	0.0000	115.00	No Ice 1/2" Ice	1.27 1.46	1.27	0.02
(AT&T) RRUS-11 (AT&T)	А	From Leg	4,00 2,00	0.0000	115.00	No Ice 1/2" Ice	2.99 3.23	1.25 1.41	0.04
RRUS-11	В	From Leg	2.50 4.00	0.0000	115.00	No Ice	2.99	1.25	0.05
(AT&T) RRUS-11	С	From Leg	2.00 2.50 4.00	0.0000	115.00	1/2" Ice No Ice	3.23 2.99	1.41	0.07 0.05
(AT&T) RRUS-32	A	From Leg	2.00 2.50 4.00	0.0000	115.00	1/2" Ice No Ice	3.23 3.88	1.41 2.76	0.07
(AT&T)			2.00 -2.50			1/2" Ice	4.14	2.98	0.11
RRUS-32 (AT&T)	В	From Leg	4.00 2.00 -2.50	0.0000	115.00	No Ice 1/2" Ice	3.88 4.14	2.76 2.98	0.08 0.11
RRUS-32 (AT&T)	С	From Leg	4.00 2.00 -2.50	0.0000	115.00	No lce 1/2" Ice	3.88 4,14	2.76 2.98	0.08 0.11
A2 Module Unit (AT&T)	А	From Leg	4.00 2.00 0.00	0.0000	115.00	No Ice 1/2" Ice	2.42 2.63	0.54 0.67	0.02 0.03
A2 Module Unit (AT&T)	В	From Leg	4 00 2 00 0 00	0.0000	115.00	No Ice 1/2" Ice	2.42 2.63	0.54 0.67	0.02 0.03
A2 Module Unit (AT&T)	Ċ	From Leg	4.00 2.00	0.0000	115.00	No Ice 1/2" Ice	2.42 2.63	0.54 0.67	0.02 0.03
DC6-48-60-18-8F (Squid) Suppressor (AT&T)	С	None	0.00	0.0000	115.00	No Ice 1/2" Ice	1.27 1.46	1.27 1.46	0.02 0.04

to Tanana	Job		Page
tnxTower		PiROD U20'-0"x170' Lattice Tower	17 of 44
AECOM	Project		Date
500 Enterprise Drive, Suite 3B		CFD-010 / Cromwell, CT Tower	12:41:22 07/16/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Structural Analysis - AT&T Assessment	Designed by MCD

					Dis	shes					
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	0	ft	ft		ft^2	Κ
3' Dish	A	Paraboloid w/o Radome	From Leg	2.00 0.00 0.00	0.0000		83.00	3.00	No Ice 1/2" Ice	7.07 7.47	0.23 0.27
VHLP2,5-180 (Clearwire)	А	Paraboloid w/o Radome	From Face	6.00 0.00 0.00	0.0000		134.00	2.50	No Ice 1/2" Ice	4.90 5.24	0.07 0.10
VHLP2,5-180 (Clearwire)	А	Paraboloid w/o Radome	From Face	6.00 -7.00 0.00	0.0000		134.00	2,50	No Ice 1/2" Ice	4,90 5_24	0.07 0,10
VHLP2,5-180 (Clearwire)	В	Paraboloid w/o Radome	From Face	6.00 -7,00 0.00	0.0000		134.00	2.50	No Ice 1/2" Ice	4.90 5.24	0.07 0.10
VHLP2-180 (Clearwire)	С	Paraboloid w/o Radome	From Face	6.00 0.00 0.00	0,0000		134.00	2.00	No Ice 1/2" Ice	3.14 3.41	0.03 0.04
HPD2-4.7	С	Paraboloid w/Radome	From Face	9.00 0.00 0.00	0.0000		168.00	2,00	No Ice 1/2" Ice	3.14 3.41	0.03 0.04

Truss-Leg Properties

Section	Area	Area	Self	Ice	Equiv.	Equiv.	Leg
Designation		Ice	Weight	Weight	Diameter	Diameter Ice	Area
	in ²	in ²	K	Κ	in	in	in^2
Pirod 105244	1026.8606	1727.9786	0.56	0.21	7.1310	11.9999	3,6816
Pirod 105216	1998.0891	3357.4497	0.51	0.43	6.9378	11.6578	3.6816
Pirod 105217	2130,7479	3520.4599	0.62	0.44	7.3984	12.2238	5.3014
Pirod 105217	2130.7479	3520.4599	0.62	0.44	7.3984	12.2238	5.3014
Pirod 105217 reinf w/ 1" dia bar	2291.5652	3727.7657	0.79	0.46	7.9568	12,9436	7.6570
Pirod 105218 reinf w/ 1" dia bar	2425-8928	3907.6826	0.95	0.48	8.4232	13.5683	9.9280
Pirod 105219	2441.8688	3942,2854	0.94	0.49	8.4787	13.6885	9:4248
Pirod 105219 reinf w /1" dia bar	2571.0468	4121.6676	1.11	0.50	8,9272	14.3113	11,7803
Pirod 105220 reinf w/ 1" dia bar	2697.7688	4300.8949	1.29	0.51	9.3673	14.9337	14.284

Tower Pressures - No Ice

.

 $G_H = 1.125$

tnx7	ower
CID-CA	Unci

Project

Client

PiROD U20'-0"x170' Lattice Tower

Page

Date

18 of 44

12:41:22 07/16/16

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Structural Analysis -	AT&T Assessment

CFD-010 / Cromwell, CT Tower

Designed by MCD

Section	Z	Kz	q_z	A_G	F	A _F	A _R	Aleg	Leg	$C_A A_A$	$C_A A_A$
Elevation					a				%	In	Out
0	C.	1	C	c.2	С	c2	c2	c.2		Face	Face
ft	ft	-	psf	ft^2	e	ft^2	$_{ft^2}$	ft^2		ft^2	ft^2
T1	160.00	1.57	29	102.917	A	0.000	52,765	5.833	11.06	0.000	0,000
170.00-150.00				1	B	0.000	46.004		12.68	0.000	0.000
					С	0.000	16.568		35.21	0.000	0.000
T2	145.00	1,526	28	66.055	A	5.292	37.009	11.905	28,14	0.000	0.000
150.00-140.00					В	5.476	33,509		30,54	0.000	0.000
					C	5,476	13.755		61,91	0.000	0.000
Т3	130.00	1.48	27	162,111	A	10.178	78.107	23.165	26.24	0.000	0.000
140.00-120.00					В	9.618	88.128		23.70	0,000	0.000
					С	10.467	34.179		51.88	0.000	0.000
T4	110.00	1.411	26	202.528	A	13.676	106.070	24,703	20.63	0.000	0.000
120.00-100.00					В	12,753	113,349		19,59	0.000	0.000
					С	13.346	88.739		24.20	0.000	0.000
T5	95.00	1 353	25	116.264	A	6.447	73.947	12.351	15,36	0.000	0.000
100.00-90.00					В	6.082	56.674		19.68	0.000	0.000
					С	6.235	66.461		16,99	0.000	0.000
T6 90.00-80,00	85.00	1,31	24	126.517	Α	6.849	74,879	13.283	16.25	0.000	0.000
					В	6.499	57.607		20.72	0.000	0.000
					С	6.552	70.126		17.32	0.000	0.000
T7 80.00-60.00	70.00	1.24	23	283.450	Α	14.936	151.315	28.124	16.92	0.000	0.000
					В	14.269	116.771		21,46	0.000	0.000
					С	14.233	146.057		17.55	0.000	0.000
T8 60.00-40.00	50.00	1.126	21	323.362	A	19.403	151.501	28.309	16.56	0.000	0.000
					В	18.662	116.956		20.87	0.000	0.000
					С	18.623	146.243		17.17	0.000	0.000
T9 40.00-20.00	30.00	1	18	363.756	Α	21.437	154,448	29,807	16.95	0.000	0.000
					В	20.722	119.904		21.20	0.000	0.000
					С	20,684	147.740		17.70	0.000	0.000
T10 20.00-0.00	10.00	1	18	404.134	Α	26.964	113.235	31.276	22.31	0.000	0.000
					В	26.446	90.781		26.68	0.000	0.000
					С	26.418	107.933		23.28	0.000	0.000

Tower Pressure - With Ice

 $G_H = 1.125$

Section	Z	Kz	q_z	tz	AG	F	A _F	A_R	Aleg	Leg	$C_A A_A$	$C_A A_A$
Elevation					0	а				%	In	Out
						С					Face	Face
ft	ft		psf	in	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
T1	160.00	1.57	22	0.5000	104.583	Α	3.517	82.422	9.167	10.67	0.000	0.000
170.00-150.00						В	0.000	74,710		12.27	0.000	0.000
						С	3.517	27.757		29.31	0.000	0.000
T2	145.00	1.526	21	0.5000	66.890	А	6.957	58.049	20.033	30.82	0.000	0.000
150.00-140.00						В	5.476	53.914		33.73	0.000	0.000
~ · · · ·						С	7.234	23,901		64.34	0.000	0.000
T3	130.00	1.48	21	0.5000	163.780	Α	13.549	124.661	38.924	28.16	0.000	0.000
140.00-120.00						В	24,452	128.108		25,51	0.000	0.000
						С	13,984	54.119		57.15	0.000	0.000
T4	110.00	1.411	20	0.5000	204.197	А	17.047	155.558	40.814	23,65	0.000	0.000
120.00-100.00						В	33.947	154.687		21.64	0.000	0.000
~~~~~						С	17.922	116.761		30.30	0.000	0.000
T5 100.00-90.00	95.00	1.353	19	0.5000	117.098	А	8,148	100,357	20,407	18.81	0.000	0.000
						В	16.813	77.290		21.69	0.000	0.000
						С	8.755	82,618		22.33	0.000	0.000
T6 90.00-80.00	85.00	1.31	18	0.5000	127.351	А	8,553	101.694	21.609	19.60	0.000	0.000
1	,			ļ		В	17.250	78,638		22.54	0.000	0.000

tnxTower	Job	PiROD U20'-0"x170' Lattice Tower	Page 19 of 44
<b>AECOM</b> 500 Enterprise Drive, Suite 3B	Project	CFD-010 / Cromwell, CT Tower	Date 12:41:22 07/16/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Structural Analysis - AT&T Assessment	Designed by MCD

Section	Z	Kz	qz	t _Z	$A_G$	F	AF	$A_R$	Aleg	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Out
						С	. 1				Face	Face
ft	ft		psf	în	$ft^2$	е	$ft^2$	$ft^2$	$ft^2$		$ft^2$	$ft^2$
						С	10,636	86.064		22.35	0.000	0.000
T7 80.00-60.00	70.00	1,24	17	0.5000	285.119	Α	18,347	205,888	45_303	20.20	0.000	0.000
						В	35.816	159.799		23.16	0.000	0.000
						С	23,705	180.219		22.22	0.000	0.000
T8 60.00-40.00	50.00	1.126	16	0.5000	325.031	Α	22.803	206.856	45.704	19.90	0.000	0.000
						В	40,107	160.791		22,75	0,000	0.000
						С	28.017	181.208		21.84	0.000	0.000
T9 40.00-20.00	30.00	1	14	0.5000	365.425	Α	24,841	212.768	47.784	20.11	0.000	0.000
						В	42.203	166.719		22.87	0.000	0.000
						C	30,105	183.884		22.33	0.000	0.000
T10 20.00-0.00	10.00	Ĩ	14	0.5000	405,803	Α	29,168	161.974	49.862	26.09	0.000	0.000
	160			ar i		В	40,336	132.050		28.92	0.000	
						С	32,488	141.094		28.73	0.000	

### **Tower Pressure - Service**

#### $G_{H} = 1.125$

Section	Z	Kz	$q_z$	AG	F	A _F	$A_R$	Aleg	Leg	$C_{4}A_{4}$	$C_A A_A$
Elevation					a			<u> </u>	%	In	Out
		(1)			C					Face	Face
ft	ft		psf	$ft^2$	е	$ft^2$	$ft^2$	$ft^2$		$ft^2$	$ft^2$
T1	160.00	1.57	10	102.917	A	0.000	52.765	5.833	11.06	0.000	0.000
170.00-150.00					В	0.000	46.004		12.68	0.000	0.000
					C	0.000	16,568		35.21	0.000	0.000
T2	145.00	1.526	10	66.055	Α	5.292	37.009	11.905	28.14	0.000	0.000
150,00-140,00					В	5.476	33.509		30.54	0.000	0.000
					C	5,476	13.755		61,91	0.000	0.000
T3	130.00	1.48	9	162.111	A	10,178	78,107	23,165	26.24	0.000	0.000
140.00-120.00					В	9.618	88,128	1	23,70	0.000	0.000
					С	10.467	34.179		51.88	0.000	0.000
T4	110.00	1,411	9	202.528	Α	13.676	106.070	24.703	20,63	0.000	0.000
120.00-100.00					В	12.753	113,349		19.59	0.000	0.000
					С	13,346	88.739		24.20	0.000	0.000
T5	95.00	1.353	9	116.264	Α	6.447	73.947	12.351	15.36	0.000	0.000
100.00-90.00					В	6.082	56.674		19.68	0.000	0.000
	(				С	6.235	66.461		16.99	0.000	0.000
T6 90.00-80.00	85.00	1.31	8	126.517	А	6.849	74.879	13.283	16.25	0.000	0,000
					В	6.499	57.607		20.72	0.000	0.000
	1				С	6.552	70,126		17,32	0.000	0.000
T7 80 00-60 00	70.00	1.24	8	283.450	А	14.936	151.315	28.124	16.92	0,000	0.000
					В	14.269	116.771		21.46	0.000	0.000
					С	14.233	146.057		17.55	0,000	0.000
T8 60.00-40.00	50.00	1.126	7	323.362	Α	19,403	151.501	28.309	16.56	0.000	0.000
					В	18.662	116.956		20.87	0.000	0.000
					С	18.623	146.243		17.17	0.000	0.000
T9 40.00-20.00	30.00	1	6	363.756	Α	21.437	154,448	29.807	16.95	0.000	0.000
					В	20.722	119,904		21.20	0.000	0.000
					C	20.684	147.740		17.70	0.000	0.000
T10 20.00-0.00	10.00	1	6	404.134	A	26.964	113,235	31,276	22.31	0.000	0.000
					В	26.446	90.781		26.68	0.000	0.000
		i			С	26.418	107.933		23.28	0.000	0.000

tnxTower

Project

Client

CFD-010 / Cromwell, CT Tower

Page 20 of 44 Date 12:41:22 07/16/16

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Structural Analysis - AT&T Assessment

Designed by MCD

#### Tower Forces - No Ice - Wind Normal To Face

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Section	Add	Self	F	е	$C_F$	R _R	$D_F$	$D_R$	A _E	F	W'	Ctrl
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Elevation	Weight	Weight	a									Face
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				С									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				<u> </u>									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	**	0.24	1,16	A			0.704	1	1	0.5	2,29	114.29	А
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	170.00-150.00					1.978	0.672	1	1				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C	0,161	2.732	0.583	1	1	9,663			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T2	0,16	1.12	A		1.785	0.779	1	1	34.128	1.93	193,38	А
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	150.00-140.00				0.59	1.81	0.748	1	1	30.529			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C	0.291	2.32	0.613	1	1	13.910			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Т3	0.44	2.09	A	0.545	1.849	0.721	1	1	66.514	4.23	211.31	B
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	140,00-120,00			В	0,603	1.802	0.755	1	Ĵ.	76,191			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				C	0.275	2.363	0.609	1	1	31.271			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T4	0.92	2.80	Α	0.591	1.81	0.748	1	Ĩ	93.046	5.25	262.28	В
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	120.00-100.00	2		В	0.623	1,792	0.768	1	Ť	99.772	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				С	0.504	1.895	0.7	1	1	75.426			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T5	0.63	1.48	A	0.691	1.776	0.814	1	1	66.629	3.33	332.94	А
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100.00-90.00			В	0.54	1.854	0.719	1	1	46.808			
90.00-80.00       B       0.507       1.891       0.701       1       1       46.878       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L <td< td=""><td></td><td></td><td></td><td>С</td><td>0.625</td><td>1.791</td><td>0.769</td><td>1</td><td>1</td><td>57.370</td><td></td><td></td><td></td></td<>				С	0.625	1.791	0.769	1	1	57.370			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Т6	0.64	1.76	Α	0.646	1.783	0.783	1	Ē	65,467	3.18	318.14	А
T7       1.29       4.33       A       0.587       1.813       0.745       1       1       127,734       5.97       298,61       A         80,00-60,00       B       0.462       1.954       0.679       1       1       93.556       1       1       93.556       1       1       121.307       1       1       121.307       1       1       121.307       1       1       121.307       1       1       127.342       5.57       278.27       A       0.00-40.00       0       0       0.51       1.888       0.703       1       1       121.307       1       1       121.307       1       1       121.307       1       1       121.307       1       1       121.307       1       1       121.307       1       1       121.307       1       1       121.307       1       1       121.308       1       1       121.368       1       1       121.368       1       1       121.368       1       1       121.368       1       1       121.368       1       1       125.72       A       1       1       121.499       1       1       121.499       1       1       1       1       1 <td>90.00-80.00</td> <td></td> <td></td> <td>В</td> <td>0.507</td> <td>1.891</td> <td>0.701</td> <td>1</td> <td>1</td> <td>46,878</td> <td></td> <td></td> <td></td>	90.00-80.00			В	0.507	1.891	0.701	1	1	46,878			
80,00-60,00         B         0,462         1.954         0.679         1         1         93,556         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th=""> <th1< <="" td=""><td></td><td></td><td></td><td>С</td><td>0.606</td><td>1.8</td><td>0.757</td><td>1</td><td>1</td><td>59,662</td><td></td><td></td><td></td></th1<></th1<>				С	0.606	1.8	0.757	1	1	59,662			
80,00-60,00       B       0.462       1.954       0.679       1       1       93.556       56       5.57       278.27       A         T8       1.29       4.45       A       0.529       1.866       0.712       1       1       121.307         T8       1.29       4.45       A       0.529       1.866       0.712       1       1       121.307         60.00-40.00       B       0.419       2.027       0.666       1       1       121.368       5.57       278.27       A         60.00-40.00       C       0.511       1.888       0.703       1       1       121.368       5.11       255.72       A         M0.00-20.00       E       0.387       2.011       0.689       1       1       121.368       5.11       255.72       A         40.00-20.00       E       0.387       2.019       0.664       1       1       98.206       5.11       255.72       A         T10       0.85       6.08       A       0.347       2.179       0.631       1       1       98.458       4.46       223.12       A         20.00-0.00       E       G       0.332       2.213 </td <td>T7</td> <td>1.29</td> <td>4.33</td> <td>A</td> <td>0.587</td> <td>1-813</td> <td>0.745</td> <td>- 1</td> <td>1</td> <td>127.734</td> <td>5.97</td> <td>298.61</td> <td>А</td>	T7	1.29	4.33	A	0.587	1-813	0.745	- 1	1	127.734	5.97	298.61	А
T8       1.29       4.45       A       0.529       1.866       0.712       1       1       127,342       5.57       278.27       A         60.00-40.00       B       0.419       2.027       0.66       1       1       127,342       5.57       278.27       A         60.00-40.00       C       0.51       1.888       0.703       1       1       121,368       5.57       278.27       A         T9       1.30       5.44       A       0.484       1.922       0.689       1       1       121,368       5.11       255,72       A         40,00-20.00       B       0.387       2.091       0.646       1       1       98.206       1       1       21.049       1       121.049       1       121.049       1       121.049       1       121.049       1       1       20.00       1       1       98.458       4.46       223.12       A       1       1       98.458       4.46       223.12       A       1       1       94.023       1       1       94.023       1       1       1       1       1       1       1       1       1       1       1       1       1	80.00-60.00			В		1.954	0.679	1	Î				
T8       1.29       4.45       A       0.529       1.866       0.712       1       1       127,342       5.57       278.27       A         60.00-40.00       B       0.419       2.027       0.66       1       1       95.819       1       1       121,368       1       1       121,368       1       1       121,368       1       1       121,368       1       1       121,368       1       1       121,368       1       1       121,368       1       1       121,368       1       1       121,368       1       1       121,368       1       1       121,368       1       1       121,368       1       1       121,368       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1				С	0.565	1.829	0.733	1	Ē	121.307			
60.00-40.00       B       0.419       2.027       0.66       1       1       95.819       40.00-20.00       1.30       5.44       A       0.484       1.922       0.689       1       1       121.368       5.11       255.72       A         40,00-20.00       B       0.387       2.091       0.646       1       1       121.368       5.11       255.72       A         40,00-20.00       C       0.463       1.953       0.679       1       1       121.049       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4	Т8	1.29	4.45	A		1.866	0.712	1	1		5,57	278.27	А
T9         1.30         5.44         A         0.484         1.922         0.689         1         1         121,368         5,11         255,72         A           40,00-20.00         B         0.387         2.091         0.646         1         1         121,368         5,11         255,72         A           1         C         0.484         1.922         0.689         1         1         127,889         5,11         255,72         A           1         0.85         6.08         A         0.347         2.091         0.646         1         1         98,206         1         1         210,499         1         1         121,049         1         1         223,12         A         1         1         98,458         4.46         223,12         A           20.00-0.00         B         0.29         2.323         0.613         1         1         82,087         1         1         94,023         1         1         94,023         1         1         94,023         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	60.00-40.00			В	0.419	2.027	0.66	1	I.	95.819			
T9       1.30       5.44       A       0.484       1.922       0.689       1       1       127.889       5.11       255.72       A         40,00-20.00       B       0.387       2.091       0.646       1       1       98.206       1       1       255.72       A         T10       0.85       6.08       A       0.347       2.179       0.631       1       1       121.049       1       223.12       A         20.00-0.00       B       0.29       2.323       0.613       1       1       82.087       1       A       223.12       A         Sum Weight:       7.76       30.71       C       0.332       2.213       0.626       1       1       94.023				С		1.888		1	1				
40.00-20.00       B       0.387       2.091       0.646       1       1       98.206         C       0.463       1.953       0.679       1       1       121.049         T10       0.85       6.08       A       0.347       2.179       0.631       1       1       98.206         20.00-0.00       B       0.292       2.323       0.613       1       1       98.458       4.46       223.12       A         Sum Weight:       7.76       30.71       C       0.332       2.213       0.626       1       1       94.023	Т9	1.30	5.44					្ន	i Pi		5 1 1	255 72	А
T10         0.85         6.08         A         0.347         2.179         0.631         1         1         121.049         4.46         223.12         A           20.00-0.00         B         0.29         2.323         0.613         1         1         98.458         4.46         223.12         A           Sum Weight:         7.76         30.71         C         0.332         2.213         0.626         1         1         94.023		1150						i i	i i			2000//2	
T10         0.85         6.08         A         0.347         2.179         0.631         1         1         98,458         4.46         223.12         A           20.00-0.00         B         0.29         2.323         0.613         1         1         82,087         2         2         0.032         2.213         0.626         1         1         94,023         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32         41.32 <t< td=""><td></td><td></td><td></td><td></td><td>1. 174</td><td></td><td></td><td>î</td><td>i i</td><td></td><td></td><td></td><td></td></t<>					1. 174			î	i i				
20.00-0.00         B         0.29         2.323         0.613         1         1         82.087           Sum Weight:         7.76         30.71         0.332         2.213         0.626         1         1         94.023           OTM         3253.68         41.32         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512         0.512	T10	0.85	6.08					- î	Ē		4 46	223 12	А
Sum Weight:         7.76         30.71         C         0.332         2.213         0.626         1         1         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023         94,023 <th< td=""><td></td><td>0.00</td><td>0.00</td><td></td><td></td><td></td><td></td><td>i</td><td>i i</td><td>S</td><td>,</td><td>223.12</td><td></td></th<>		0.00	0.00					i	i i	S	,	223.12	
Sum Weight:         7.76         30.71         OTM         3253.68         41.32	20.00 0.00			_		100		î.	i i	~			
	Sum Weight	7 76	30.71	Ŭ	0.552	4.413	0.020	<b>1</b>	OTM		41 32		
	oun morght.	1.10	50,71						C 1141	kip-ft	41.52		

Tower	Forces -	· No	lce -	Wind 4	5 To Face	

Section	Add	Self	F	е	$C_F$	$R_R$	$D_F$	$D_R$	$A_E$	F	W	Ctrl
Elevation	Weight	Weight	а									Face
			С									
ft	K	K	е						$ft^2$	K	plf	
T1	0.24	1.16	A	0.513	1.884	0,704	0.825	1	37.149	2,29	114,29	А
170.00-150.00			В	0.447	1.978	0.672	0.825	1	30.910			
			C	0.161	2.732	0.583	0.825	1	9.663			
T2	0.16	1,12	A	0.64	1.785	0.779	0,825	1	33.202	1.88	188.14	Α
150.00-140.00			В	0.59	1.81	0.748	0.825	1	29.570			
			C	0,291	2,32	0.613	0.825	1	12.952			
T3	0.44	2.09	A	0.545	1.849	0.721	0.825	1	64.733	4.13	206,65	В
140.00-120.00			В	0.603	1.802	0.755	0.825	1	74,508	л.		
			С	0.275	2.363	0.609	0.825	1	29,440			
T4	0.92	2.80	Α	0.591	1.81	0.748	0.825	4	90.653	5:13	256.41	В
120.00-100.00			В	0.623	1.792	0.768	0.825	1	97.541			
			С	0.504	1.895	0.7	0.825	1	73.090			
T5	0.63	1.48	А	0.691	1.776	0.814	0.825	1	65,501	3.27	327.31	А
100.00-90.00			В	0.54	1.854	0.719	0.825	1	45,744			

tnxTower

Project

Client

#### PiROD U20'-0"x170' Lattice Tower

Page 21 of 44

Date

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

CFD-010 / Cromwell, CT Tower

Structural Analysis - AT&T Assessment

Designed by MCD

12:41:22 07/16/16

Section Elevation	Add Weight	Self Weight	F a	e	$C_F$	R _R	$D_F$	$D_R$	$A_E$	F	W?	Ctrl Face
ft	K	K	с е				Χ.		$ft^2$	K	plf	
			C	0.625	1.791	0,769	0.825	1	56,279			
Т6	0.64	1.76	A	0.646	1.783	0,783	0.825	1	64.268	3.12	312.32	Α
90.00-80.00			В	0.507	1.891	0.701	0.825	1	45.741			
			C	0.606	1.8	0.757	0.825	1	58.515			
Т7	1.29	4.33	A	0_587	1,813	0.745	0.825	1	125.120	5.85	292.50	А
80,00-60,00			В	0.462	1,954	0,679	0.825	1	91.059			
			C	0.565	1,829	0,733	0.825	1	118,816			
Т8	1.29	4.45	A	0.529	1,866	0.712	0.825	1	123,946	5.42	270.85	А
60.00-40.00			В	0,419	2,027	0.66	0.825	1	92.553			
			С	0.51	1.888	0.703	0.825	1	118,109	38 1.04		
Т9	1.30	5.44	A	0,484	1.922	0.689	0.825	1	124.137	4.96	248,21	А
40.00-20.00			В	0.387	2,091	0.646	0.825	1	94,580			
			С	0.463	1.953	0.679	0,825	1	117,429			
T10	0.85	6.08	Α	0.347	2.179	0.631	0.825	1	93,739	4.25	212.43	А
20.00-0.00	1		В	0.29	2.323	0.613	0.825	1	77,459			
			С	0,332	2.213	0.626	0.825	1	89,400			
Sum Weight:	7.76	30.71						OTM	3188.10	40.30		
				)					kip-ft			

#### Tower Forces - No Ice - Wind 60 To Face

Section Elevation	Add Weight	Self Weight	F a	е	$C_F$	R _R	$D_F$	$D_R$	A _E	F	w	Ctrl Fac
	0	0	c									0.000
ft	K	Κ	е						$ft^2$	K	plf	
T1	0.24	1.16	A	0.513	1.884	0.704	0.8	T.	37.149	2.29	114.29	A
170.00-150.00			В	0.447	1,978	0.672	0.8	1	30.910			
			С	0.161	2.732	0.583	0.8	1	9.663			
T2	0.16	1.12	A	0.64	1.785	0,779	0.8	1	33.069	1.87	187.39	A
150.00-140.00			В	0.59	1.81	0.748	0.8	1	29.433			
			С	0.291	2.32	0.613	0.8	1/	12,815		^	
Т3	0.44	2.09	Α	0.545	1.849	0.721	0.8	1	64.478	4.12	205.98	В
140.00-120.00			В	0.603	1.802	0.755	0.8	1	74.268			
			С	0.275	2.363	0.609	0.8	1	29,178			
T4	0.92	2.80	Α	0.591	1.81	0.748	0.8	1	90.311	5,11	255.58	В
120,00-100,00			В	0.623	1,792	0.768	0.8	1	97.222	200	<u> </u>	
~			С	0,504	1.895	0.7	0.8	1	72.757			
T5	0.63	1.48	Α	0,691	1,776	0.814	0.8	1	65,340	3.27	326.50	А
100.00-90.00		10	В	0.54	1.854	0.719	0.8	1	45.592			
			С	0.625	1.791	0.769	0.8	1	56.123			
Т6	0.64	1.76	Α	0.646	1.783	0.783	0.8	1	64.097	3.11	311.48	А
90.00-80.00			В	0.507	1.891	0.701	0,8	E.	45,578			
			С	0.606	1.8	0.757	0.8	E E	58.351			
Т7	1.29	4.33	Α	0.587	1.813	0,745	0.8	1	124,746	5.83	291:62	А
80 00-60 00			В	0.462	1.954	0.679	0.8	1	90.702			
250 18			С	0.565	1.829	0.733	0.8	1	118,460			
Т8	1.29	4.45	А	0.529	1.866	0.712	0.8	1	123.461	5.40	269.79	А
60.00-40.00			В	0.419	2.027	0.66	0.8	1	92.086			
		-	С	0.51	1.888	0.703	0.8	1	117.644			
Т9	1.30	5.44	A	0.484	1.922	0.689	0.8	1	123.601	4,94	247.14	А
40.00-20.00	CG -		В	0.387	2.091	0.646	0.8	1	94.062	int in	1.1.1	
			C	0.463	1.953	0.679	0.8	1	116_912			
T10	0.85	6.08	A	0.347	2,179	0.631	0,8	1	93.065	4.22	210.90	А
20.00-0.00		Nec -	в	0.29	2.323	0.613	0.8	1	76 798			
			C	0.332	2.213	0.626	0.8	1	88,740			

tnxTower	Job	PiROD U20'-0"x170' Lattice Tower	Page 22 of 44
<b>AECOM</b> 500 Enterprise Drive, Suite 3B	Project	CFD-010 / Cromwell, CT Tower	Date 12:41:22 07/16/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Structural Analysis - AT&T Assessment	Designed by MCD

Section Elevation	Add Weight	Self Weight	F a c	е	$C_{F}$	$R_R$	$D_F$	$D_R$	$A_E$	F	w	Ctrl. Face
ft	K	K	e						$ft^2$	K	plf	
Sum Weight:	7.76	30.71						OTM	3178.73	40.16		
									kip-ft			

### Tower Forces - No Ice - Wind 90 To Face

Section Elevation	Add Weight	Self Weight	F a	е	$C_F$	R _R	$D_F$	$D_R$	$A_E$	F	11/	Ctrl Face
			С									
ft	K	K	е						$ft^2$	K	plf	
T1	0.24	1.16	A	0.513	1.884	0.704	0.85	1	37.149	2,29	114.29	A
170.00-150.00			В	0.447	1.978	0.672	0.85	1	30.910			
			С	0,161	2.732	0.583	0.85	1	9.663			
T2	0.16	1.12	A	0.64	1.785	0.779	0.85	1	33.334	1.89	188.89	A
150.00-140.00			В	0.59	1.81	0.748	0.85	1	29.707			
			С	0.291	2.32	0.613	0.85	1	13.089			
Т3	0.44	2.09	A	0.545	1.849	0.721	0.85	1	64.987	4.15	207.31	В
140.00-120.00			В	0.603	1.802	0.755	0.85	1	74.749			
			C	0.275	2.363	0.609	0.85	1	29.701			
Т4	0.92	2.80	A	0,591	1.81	0.748	0.85	1	90.995	5.15	257.25	В
120.00-100.00			В	0.623	1.792	0.768	0.85	Ē	97.860			_
			C	0,504	1.895	0.7	0.85	1	73,424			
Т5	0.63	1.48	Ā	0.691	1.776	0.814	0.85	1	65.662	3.28	328.11	A
100.00-90.00	0.05		B	0,54	1.854	0.719	0.85	1	45.896	5120	0-01/1	
100100 90100			Ĉ	0.625	1.791	0.769	0.85	1 P	56.434			
Т6	0.64	1,76	Ā	0.646	1,783	0.783	0.85	i i	64.439	3.13	313.15	A
90.00-80.00	0.01	100	B	0.507	1.891	0.701	0.85	i i	45,903	2913	515.10	
90.00 00.00			C	0.606	1.8	0.757	0.85	ř	58.679			
Т7	1.29	4.33	Ă	0.587	1.813	0.745	0.85	1	125,493	5.87	293.37	A
80.00-60.00	1.27	1.55	B	0.462	1.954	0.679	0.85	i i	91.416	5.07	275.51	11
00.00 00.00			Č	0,565	1.829	0.733	0.85	Ē	119.172			
Т8	1.29	4.45	Ă	0.529	1.866	0.712	0.85	i i	124.431	5.44	271.91	А
60.00-40.00	1.27	4.45	B	0.419	2.027	0.66	0.85		93.020	5.44	271.71	71
00.00-40.00			C	0.51	1.888	0.703	0.85	1	118.575			
Т9	1.30	5.44	A	0,484	1.922	0.689	0.85	1.4.25	124.673	4.99	249.29	А
40.00-20.00	1.00	5.44	B	0.387	2.091	0.646	0.85	1	95.098	7.22	247.27	~
-0.00-20.00			C	0.463	1.953	0.679	0.85	1	117.946			
T10	0.85	6.08	A	0.465	2.179	0.679	0.85	1	94.413	4.28	213.96	А
20.00-0.00	0.05	0.08	B	0.347	2.179	0.613	0.85		78.120	4.20	213,90	A
20.00-0.00			10 III				0.85					
C 317 . : . 1.45	770	20.71	С	0.332	2.213	0.626	0.85		90,061	40.45		
Sum Weight	7.76	30.71						OTM	3197.47	40.45		
						_			kip-ft			

Tower Forces - With Ice - Wind Normal To Face												
Section Add Self F e $C_F$ $R_R$ $D_F$ $D_R$ $A_E$ F w Ctrl.												
Elevation	Weight	Weight	а									Face
fi	K	K	C e						$ft^2$	K	plf	
TI	0.67	1.49	A	0.822	1.834	0.914	1	1	78.881	3.54	177.15	А
170.00-150.00			В	0,714	1.778	0.83	1	1	62.028			
		19	C	0.299	2.299	0.616	1	1	20.604	, ja		1

thyl	ower
UILAI	UNCI

Project

Client

#### PiROD U20'-0"x170' Lattice Tower

Page

Date

23 of 44

12:41:22 07/16/16

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

CFD-010 / Cromwell, CT Tower

Structural Analysis - AT&T Assessment

Designed by MCD

Section	Add	Self	F	е	$C_F$	$R_R$	$D_F$	$D_R$	$A_E$	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С									
ft	<i>K</i>	K	е						$ft^2$	K	plf	
T2	0.43	1.64	A	0.972	2,044	1	T E	1	65.006	3,16	316.37	А
150 00-140 00			В	0.888	1.907	0.972	1	1	57.882			
			С	0.465	1.949	0.68	1	1	23.498			
Т3	1.29	3,77	Α	0.844	1.855	0.933	1	1	129,881	6.95	347,26	В
140.00-120.00			В	0.931	1.972	1	1	1	152.561			
			C	0.416	2.034	0.658	1	1	49.604			
T4	2,47	4.64	Α	0.845	1.856	0.934	1	1	162,400	8,14	406.78	В
120.00-100.00			В	0.924	1.96	1	1	1	188.634			
			С	0.66	1.779	0.792	1	1	110,381			
T5	1.65	2.39	A	0.927	1.964	1	1	1	108.505	4.50	449.81	Α
100.00-90.00			='B	0.804	1.819	0.899	1	Ť.	86.325			
22 65			С	0.78	1.803	0.881	1	1	81.502			
Т6	1.69	2.70	Α	0.866	1,879	0,952	1	1	105.386	4.05	404.92	А
90.00-80.00			В	0.753	1,789	0.859	1	1	84.810			
			С	0.759	1.792	0.864	1	1	84.998			
T7	3.44	6.30	Α	0.786	1.807	0.885	1	1	200.650	7.01	350,57	А
80.00-60.00		50	В	0.686	1,776	0.81	1	1	165,264			
			С	0.715	1.778	0.831	1	1	173.447			
Т8	3.44	6.58	Α	0.707	1.777	0.825	1	1	193.380	6.04	301.79	А
60.00-40.00			В	0.618	1.794	0.765	1	1	163.086			
			С	0.644	1.783	0.781	1	1	169.599			
Т9	3.47	7.67	A	0.65	1.781	0.786	1	1	191.997	5,34	266.82	А
40.00-20.00			В	0.572	1.824	0.737	1	1	165.025		-	
			С	0.586	1.814	0.745	1	1	167.078			
T10	2.27	8.52	A	0.471	1.941	0.683	1	1	139.820	4.23	211.66	А
20.00-0.00			В	0.425	2.017	0.662	1	î	127.757			
			Ċ	0.428	2.012	0.663	1	ĩ	126.077			
Sum Weight:	20.83	45.71						OTM	4589.91	52,95		
8									kip-ft	- 7/5 -		

	Tower Forces - With Ice - Wind 45 To Face													
Section Elevation	Add Weight	Self Weight	F a	е	$C_F$	R _R	$D_F$	D _R	$A_E$	F	w	Ctrl. Face		
ft	K	K	с е						$ft^2$	K	plf			
T1	0.67	1.49	Α	0.822	1.834	0.914	0.825	1	78.265	3.52	175.77	А		
170.00-150.00			В	0.714	1.778	0.83	0.825	1	62.028					
			С	0.299	2.299	0.616	0.825	1	19.988					
T2	0.43	1.64	Α	0.972	2.044	1	0.825	1	63.789	3.10	310.45	А		
150.00-140.00			В	0.888	1,907	0,972	0.825	1	56.923					
			С	0.465	1.949	0.68	0.825	1	22.232					
Т3	1.29	3.77	Α	0.844	1.855	0.933	0.825	1	127.510	6.75	337.52	в		
140.00-120.00			В	0.931	1,972	1	0.825	1	148,282					
			С	0.416	2.034	0.658	0.825	1	47.157					
T4	2_47	4.64	Α	0.845	1.856	0.934	0.825	1	159.417	7.88	393.97	В		
120.00-100.00			В	0.924	1,96	1	0.825	1	182.693					
			С	0.66	1.779	0.792	0.825	1	107_244					
T5	1.65	2.39	А	0.927	1.964	1	0,825	1	107,080	4.44	443.90	A		
100.00-90.00			В	0.804	1.819	0.899	0.825	1	83.383					
			С	0.78	1.803	0.881	0.825	1	79,970					
Т6	1,69	2.70	А	0.866	1.879	0.952	0.825	1	103.889	3.99	399.16	A		
90.00-80.00			В	0.753	1.789	0.859	0.825	1	81.791					
			С	0.759	1,792	0.864	0.825	1	83,137					
Т7	3.44	6.30	А	0.786	1.807	0.885	0.825	1	197.439	6.90	344.96	А		
80.00-60.00			В	0.686	1.776	0.81	0.825	1	158.996					

tnxTo	wer
-------	-----

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	PiROD U20'-0"x170' Lattice Tower	24 of 44
Project		Date
	CFD-010 / Cromwell, CT Tower	12:41:22 07/16/16
Client		Designed by
	Structural Analysis - AT&T Assessment	MCD

Ctrl. Face

А

А

А

Section	Add	Self	F	е	$C_F$	$R_R$	$D_F$	$D_R$	$A_E$	F	w
Elevation	Weight	Weight	а								
		×	С								
ft	K	K	е						$ft^2$	K	plf
			С	0.715	1.778	0,831	0.825	1	169.299		
Т8	3.44	6.58	A	0.707	1.777	0.825	0.825	1	189.390	5.91	295.56
60.00-40.00			В	0.618	1,794	0.765	0.825	1	156.067		
	0		C	0.644	1,783	0.781	0.825	1	164.696		
Т9	3.47	7.67	A	0.65	1.781	0.786	0.825	1	187.650	5.22	260.78
40,00-20,00			В	0,572	1.824	0.737	0,825	1	157,640		
			C	0.586	1.814	0.745	0,825	1	161.810		
T10	2.27	8.52	A	0.471	1.941	0.683	0,825	1	134,716	4.08	203.94
20,00-0,00			В	0.425	2,017	0.662	0.825	- 1	120,699		
			C	0.428	2.012	0.663	0.825	1	120.392		
Sum Weight:	20,83	45,71						OTM	4493.64	51.78	
									kip-ft		

			ow	er ⊦o	rces	- VVI	th Ic	e - V	/ind 60	To Fac	e	
Section Elevation	Add Weight	Self Weight	F a	е	$C_F$	$R_R$	$D_F$	$D_R$	$A_E$	F	W	Ctrl Fac
ft	K	K	с е						ft ²	K	plf	
T1	0.67	1.49	Α	0.822	1.834	0.914	0.8	1	78.177	3.51	175.57	А
170.00-150.00			В	0.714	1.778	0.83	0.8	1	62,028			
			С	0.299	2.299	0.616	0.8	1	19.901			
T2	0.43	1.64	A	0.972	2.044	1	0.8	1	63.615	3,10	309.60	A
150.00-140.00			В	0.888	1.907	0.972	0.8	1	56.786			
			С	0.465	1.949	0.68	0.8	1	22.051			
Т3	1.29	3.77	A	0.844	1.855	0.933	0,8	1	127.171	6.72	336.13	В
140.00-120.00			В	0,931	1,972	1	0.8	L	147.670			
			С	0.416	2,034	0,658	0,8	1	46.807			
T4	2.47	4.64	Α	0.845	1.856	0.934	0,8	1	158.991	7.84	392.14	B
120.00-100.00			В	0.924	1.96	1	0,8	1	181.844			
			С	0.66	1.779	0.792	0.8	1	106.796	I		
T5	1.65	2.39	Α	0.927	1.964	1	0.8	1	106.876	4.43	443.05	Α
100.00-90,00			В	0.804	1.819	0.899	0.8	1	82.962			
			C	0.78	1.803	0.881	0.8	I.	79,751			
T6	1.69	2.70	Α	0.866	1.879	0.952	0.8	1	103.676	3,98	398.34	Α
90.00-80.00			В	0.753	1.789	0.859	0.8	1	81.360			
			С	0.759	1.792	0.864	0.8	1	82.871			
T7	3.44	6.30	Α	0.786	1.807	0.885	0.8	1	196,981	6.88	344.15	А
80.00-60.00			В	0.686	1.776	0,81	0.8	1	158,100			
			С	0.715	1.778	0.831	0.8	1	168.706			
Т8	3.44	6.58	Α	0.707	1.777	0.825	0.8	1	188.819	5.89	294.67	Α
60.00-40.00			В	0.618	1.794	0.765	0.8	1	155.065			
			C	0.644	1.783	0.781	0.8	1	163.996			
Т9	3.47	7.67	A	0.65	1.781	0.786	0.8	1	187.029	5.20	259.92	А
40.00-20.00			В	0.572	1.824	0.737	0.8	L.	156.585			
24-27 A.			C	0.586	1.814	0.745	0.8	1	161.057			
T10	2.27	8.52	A	0.471	1.941	0.683	0.8	1	133.987	4.06	202.83	А
20.00-0.00			в	0,425	2.017	0.662	0.8	E.	119.690		~	
			C	0.428	2.012	0.663	0.8	1	119.580	<		
Sum Weight:	20,83	45.71						OTM	4479.88	51.62		
Ŭ		120							kip-ft			

1 1	<b>n</b>	
tnx I	ower	

Job		Page
	PiROD U20'-0"x170' Lattice Tower	25 of 44
Project		Date
	CFD-010 / Cromwell, CT Tower	12:41:22 07/16/16
Client	e1	Designed by

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Structural Analysis - AT&T Assessment

Designed by MCD

#### Tower Forces - With Ice - Wind 90 To Face

Section	Add	Self	F	C	$C_F$	R _R	$D_F$	$D_R$	AE	F	W	Ctrl
Elevation	Weight	Weight	a	0								Face
	-		С									
ft	K	K	e						$ft^2$	K	plf	
T1	0.67	1.49	A	0.822	1.834	0,914	0.85	1	78.353	3.52	175.96	A
170.00-150.00	· · · ·		В	0.714	1.778	0.83	0.85	1	62.028			
			C	0.299	2.299	0.616	0.85	1	20.076			
T2	0.43	1.64	A	0,972	2.044	1	0.85	3	63.963	3.11	311,30	A
150.00-140.00			В	0.888	1.907	0.972	0.85	1	57.060			
			С	0.465	1.949	0.68	0.85	1	22,413			
Т3	1.29	3.77	A	0.844	1.855	0.933	0.85	1	127.849	6,78	338.91	В
140.00-120.00			В	0.931	1.972	1	0.85	1	148.893			
			С	0.416	2.034	0.658	0.85	1	47.507			
T4	2.47	4.64	A	0.845	1.856	0.934	0.85	1	159.843	7.92	395.80	В
120.00-100.00			В	0.924	1.96	1	0.85	1	183,542		0.0.00	
			С	0.66	1.779	0,792	0.85	1	107.692			
Т5	1.65	2.39	Α	0.927	1.964	1	0.85	1	107,283	4.45	444.74	A
100.00-90.00			В	0.804	1.819	0.899	0.85	1	83.803			
			С	0.78	1.803	0.881	0.85	1	80,189			
Т6	1.69	2.70	A	0.866	1.879	0.952	0.85	1	104,103	4.00	399.99	A
90.00-80.00		·=·	В	0.753	1.789	0.859	0.85	1	82,222		~	
			C	0.759	1.792	0.864	0.85	1	83.403			
T7	3.44	6.30	A	0.786	1.807	0.885	0.85	1	197.898	6.92	345.76	А
80.00-60.00			в	0.686	1.776	0.81	0.85	1	159,891			
			С	0.715	1.778	0.831	0.85	1	169,891			
Т8	3,44	6.58	A	0.707	1,777	0.825	0.85	1	189,960	5,93	296.45	А
60.00-40.00			В	0.618	1.794	0.765	0.85	î	157.070		_,	
÷	I		С	0.644	1.783	0.781	0.85	1	165.397	-		
Т9	3.47	7.67	A	0,65	1.781	0.786	0.85	î	188.271	5.23	261.64	А
40.00-20.00			В	0.572	1.824	0.737	0.85	1	158.695			
			C	0.586	1.814	0.745	0.85	î	162.562			
т10	2.27	8.52	Ă	0.471	1.941	0.683	0.85	î	135,445	4.10	205.04	А
20.00-0.00	7.357		В	0.425	2.017	0.662	0.85	î	121.707		200,01	
			č	0.428	2.012	0.663	0.85	î	121.204			
Sum Weight:	20.83	45.71					0.00	OTM	4507.39	51.95		
	20100							0	kip-ft	51.75		

#### **Tower Forces - Service - Wind Normal To Face**

Section	Add	Self	F	е	$C_F$	$R_R$	$D_F$	$D_R$	$A_E$	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
<i>fi</i>	K	K	C						$ft^2$	K	alf	
			е			-		- 10	J -		plf	
11	0.24	1.16	A	0.513	1.884	0.704	1	1	37.149	0.79	39.55	A
170.00-150.00			В	0.447	1,978	0.672	1	L.	30.910			
			С	0.161	2.732	0.583	1	Ŭ.	9.663			
T2	0.16	1,12	Α	0,64	1,785	0.779	1	10	34.128	0.67	66.92	А
150.00-140.00		1.1.1	В	0.59	1.81	0.748	1	1	30,529			
			С	0.291	2.32	0.613	Ĩ	1	13.910			
Т3	0,44	2.09	Α	0.545	1.849	0,721	1	1	66.514	1.46	73.12	В
140.00-120.00			В	0,603	1.802	0.755	1	1	76.191			
			С	0,275	2.363	0.609	1	1	31.271			
T4	0.92	2,80	Α	0.591	1.81	0.748	1	1	93.046	1.82	90,75	В
120.00-100.00			В	0.623	1.792	0.768	1	1	99.772			
			С	0.504	1.895	0.7	1	1	75,426			
T5	0.63	1.48	Α	0.691	1.776	0.814	1	1	66.629	1.15	115.21	А
100.00-90.00			В	0.54	1.854	0.719	1	1	46.808			

tuvl	ower
una I	UNCI

Project

Client

PiROD U20'-0"x170' Lattice Tower
----------------------------------

CFD-010 / Cromwell, CT Tower

Page 26 of 44 Date 12:41:22 07/16/16

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Structural Analysis - AT&T Assessment

Designed by MCD

Section Elevation	Add Weight	Self	F	е	$C_F$	R _R	$D_F$	$D_R$	$A_E$	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
ft	K	K	с е						$ft^2$	K	plf	
			С	0.625	1.791	0.769	1	1	57,370			
Т6	0.64	1,76	Α	0.646	1.783	0.783	1	1	65.467	1.10	110.08	A
90.00-80.00			В	0.507	1.891	0.701	1	1	46.878			
			С	0.606	1.8	0.757	1	1	59.662			
T7	1.29	4.33	Α	0.587	1.813	0.745	1	ł	127.734	2.07	103.32	A
80.00-60.00			В	0.462	1.954	0.679	1	1	93.556			
e:			С	0.565	1.829	0.733	1	1	121.307			
Т8	1.29	4.45	A	0.529	1.866	0.712	1	1	127.342	1.93	96.29	A
60.00-40.00			В	0.419	2.027	0.66	1	1	95,819			
			C	0.51	1.888	0.703	1	1	121,368			
Т9	1.30	5.44	A	0.484	1.922	0.689	1	1	127.889	1.77	88,48	A
40.00-20.00			В	0.387	2.091	0.646	1	1	98.206	2342	14	
			C	0.463	1.953	0.679	1	1	121.049			
T10	0.85	6.08	Α	0.347	2,179	0.631	1	1.	98,458	1.54	77.20	А
20.00-0.00			В	0.29	2,323	0.613	1	1	82.087	1/20		
			С	0.332	2.213	0.626	i l	1	94.023			
Sum Weight:	7,76	30,71						OTM	1125.84	14.30		
U									kip-ft			

		Т	ow	/er Fo	rces	: - Se	rvic	e - W	ind 45	To Face	•	
Section	Add	Self	F	е	$C_F$	$R_R$	$D_F$	$D_R$	A _E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
ft	K	K	с е						ft ²	K	plf	
T1	0.24	1.16	А	0.513	1.884	0.704	0.825	1	37.149	0.79	39.55	А
170.00-150.00			В	0.447	1.978	0.672	0.825	1	30.910			
			С	0.161	2,732	0,583	0.825	1	9.663			
T2	0.16	1.12	A	0.64	1.785	0.779	0.825	1	33.202	0.65	65.10	A
150.00-140.00			В	0.59	1.81	0.748	0.825	1	29.570			
			С	0.291	2.32	0.613	0.825	1	12.952			
Т3	0.44	2.09	A	0,545	1.849	0.721	0.825	1	64.733	1.43	71.50	В
140.00-120.00			В	0.603	1.802	0.755	0.825	Ê.	74.508			
			С	0.275	2.363	0.609	0.825	- 1.	29,440			
T4	0.92	2.80	Α	0.591	1.81	0.748	0.825	1	90.653	1.77	88.72	В
120.00-100.00			В	0.623	1,792	0.768	0.825	Ť	97,541			
			С	0.504	1.895	0.7	0.825	10	73.090			
T5	0.63	1.48	Α	0.691	1.776	0.814	0.825	1	65.501	1.13	113.25	A
100.00-90.00			В	0,54	1,854	0,719	0.825	15	45.744	8. °		
			С	0.625	1.791	0.769	0.825	1	56.279			
Т6	0.64	1.76	Α	0.646	1,783	0,783	0.825	1	64.268	1.08	108.07	A
90,00-80.00			В	0.507	1.891	0.701	0.825	1	45.741	-	-	
			С	0.606	1.8	0.757	0.825	1	58.515			
T7	1.29	4,33	Α	0.587	1.813	0.745	0.825	1	125,120	2.02	101.21	А
80,00-60.00			В	0.462	1.954	0.679	0.825	1	91.059			
			C	0.565	1.829	0.733	0.825	1	118.816			
Т8	1.29	4.45	A	0.529	1.866	0,712	0.825	1	123,946	1.87	93.72	Α
60.00-40.00			В	0.419	2.027	0.66	0.825	1	92.553			
949 SS			С	0.51	1.888	0.703	0.825	1	118,109			
T9	1.30	5.44	A	0.484	1.922	0.689	0.825	1	124.137	1.72	85.89	А
40.00-20.00			В	0.387	2.091	0.646	0.825	1	94,580		1000	
35.9 R. 1			Ĉ	0.463	1.953	0.679	0.825	1	117 429			
T10	0.85	6.08	Ā	0.347	2.179	0.631	0.825	1	93.739	1.47	73.50	А
20.00-0.00	25	644	В	0.29	2.323	0.613	0.825	1	77.459			
			c	0.332	2.213	0.626	0.825	1	89.400			

tnxTower
----------

**AECOM** 500 Enterprise Drive, Suite 3B

Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	PiROD U20'-0"x170' Lattice Tower	27 of 44
Project		Date
	CFD-010 / Cromwell, CT Tower	12:41:22 07/16/16
Client		Designed by
	Structural Analysis - AT&T Assessment	MCD

Section Elevation	Add Weight	Self Wéight	F a	е	$C_F$	$R_R$	$D_F$	$D_R$	$A_E$	F	W	Ctrl. Face
ft	K	K	e						$ft^2$	K	plf	
Sum Weight:	7,76	30,71						OTM	1103.15	13.95		
									kip-ft			

#### Tower Forces - Service - Wind 60 To Face

Section	Add	Self	F	е	$C_F$	$R_R$	$D_F$	$D_R$	AE	F	W	Ctrl.
Elevation	Weight	Weight	a									Face
			С	1 1								
ft	K	Κ	e						$ft^2$	K	plf	
T1	0,24	1.16	A	0.513	1.884	0.704	0.8	1	37.149	0.79	39.55	A
170.00-150.00	~		В	0.447	1.978	0.672	0.8	1	30,910			
			С	0.161	2.732	0.583	0.8	1	9,663			
T2	0.16	1.12	A	0.64	1.785	0.779	0.8	1	33,069	0.65	64.84	A
150.00-140.00			В	0.59	1.81	0.748	0.8	1	29.433			
			С	0.291	2.32	0.613	0.8	1	12.815			
Т3	0.44	2.09	A	0.545	1.849	0.721	0.8	1	64.478	1.43	71.27	В
140.00-120.00			В	0.603	1.802	0.755	0.8	1	74.268			
22			C	0.275	2.363	0.609	0.8	1	29,178			
T4	0.92	2.80	A	0.591	1.81	0.748	0.8	1	90.311	1.77	88.43	В
120.00-100.00			в	0.623	1.792	0.768	0.8	1	97.222		1 86	
10			С	0.504	1.895	0.7	0,8	1	72.757			
T5	0.63	1.48	A	0.691	1.776	0.814	0,8	i î	65,340	1.13	112,98	A
100.00-90.00			В	0.54	1.854	0.719	0.8	1	45.592		-	
			С	0.625	1.791	0.769	0.8	Î Î	56.123			
Т6	0.64	1.76	Α	0.646	1.783	0.783	0.8	1	64.097	1.08	107.78	A
90.00-80.00		×	В	0.507	1.891	0.701	0,8	1	45.578			
			С	0.606	1.8	0.757	0,8	I	58.351			
T7	1.29	4.33	А	0.587	1.813	0.745	0.8	1	124.746	2.02	100,91	A
80.00-60.00			В	0.462	1.954	0.679	0.8	1	90.702			
			С	0.565	1.829	0.733	0.8	E	118.460			
Т8	1.29	4.45	А	0.529	1.866	0.712	0.8	1	123,461	1,87	93.35	А
60.00-40.00			В	0.419	2.027	0.66	0.8	1	92.086			
			С	0.51	1,888	0.703	0.8	1	117.644			
Т9	1.30	5.44	А	0.484	1.922	0.689	0.8	1 i	123.601	1,71	85,52	A
40.00-20.00			В	0.387	2.091	0.646	0.8	1	94.062			
			Ċ	0.463	1.953	0.679	0.8	î	116.912			
T10	0.85	6.08	Ă	0.347	2,179	0.631	0.8	1	93.065	1.46	72,98	А
20.00-0.00			В	0.29	2.323	0.613	0.8	1	76.798		15 0	
			Ĉ	0.332	2.213	0.626	0.8	i.	88,740			
Sum Weight:	7.76	30,71	-				-0°	OTM	1099.91	13,90		
- Contraction of the second		5 617 1						<i></i>	kip-ft	12,00		

Tower Forces - Service - Wind 90 To Face												
Section Elevation	Add Weight	Self Weight	F a c	С	$C_F$	R _R	$D_F$	$D_R$	A _E	F	w	Ctrl Face
ft	Κ	K	e						$ft^2$	K	plf	
T1	0.24	1.16	Α	0.513	1.884	0.704	0.85	1	37,149	0.79	39,55	А
170.00-150.00	· · · ·	· · · ·	В	0.447	1.978	0.672	0.85	1	30.910			
			С	0.161	2.732	0.583	0.85	1	9.663			

tnxTower

Project

Client

	PiROD	U20'-0"x170'	Lattice ⁻	Tower
--	-------	--------------	----------------------	-------

Page 28 of 44

Date 12:41:22 07/16/16

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

CFD-010 / Cromwell, CT Tower

Structural Analysis - AT&T Assessment

Designed by MCD

Section Elevation	Add Waisht	Self	F	е	$C_F$	$R_R$	$D_F$	$D_R$	$A_E$	F	w	Ctrl
Elevation	Weight	Weight	a									Face
ft	K	K	с е						$ft^2$	K	plf	
<u>7</u> . T2	0.16	1,12	A	0.64	1.785	0.779	0.85	1	33,334	0.65	65.36	A
150.00-140.00	0,90	1+12	B	0.59	1.81	0.748	0.85		29,707	0.05	05.50	
150.00-140.00			C	0.291	2.32	0.613	0.85	1	13.089			
Т3	0.44	2.09	Ă	0.545	1.849	0.721	0.85	1 î.	64.987	1.43	71.73	В
140.00-120.00	0,11	2.07	B	0.603	1.802	0.755	0.85	1	74,749	1.5	11,15	
110.00 120.00			Ċ	0.275	2.363	0.609	0.85	្ន	29.701			
Т4	0,92	2.80	Ă	0.591	1,81	0.748	0.85	1	90.995	1.78	89.01	В
120.00-100.00	0.00	2.00	В	0.623	1,792	0.768	0.85	î	97.860	1.70	05 01	
			C	0.504	1.895	0.7	0.85	î	73,424			
Т5	0.63	1.48	Ā	0.691	1.776	0.814	0.85	î.	65.662	1.14	113.53	A
100.00-90.00			В	0.54	1.854	0.719	0.85	Î.	45.896			
			С	0.625	1.791	0.769	0.85	1	56.434			
Т6	0.64	1.76	А	0.646	1.783	0.783	0.85	1	64.439	1.08	108.36	А
90.00-80.00			В	0.507	1.891	0.701	0.85	Ť.	45,903			
20 25			С	0.606	1.8	0.757	0.85	1	58.679			
Т7	1.29	4.33	Α	0.587	1.813	0.745	0.85	Ť.	125.493	2,03	101.51	A
80.00-60.00			В	0.462	1.954	0.679	0.85	I.	91.416	~	· · · ·	
			С	0.565	1.829	0.733	0.85	1	119.172			
T8	1.29	4.45	А	0,529	1,866	0,712	0.85	Ĩ	124,431	1.88	94.09	A
60.00-40.00			В	0.419	2.027	0.66	0.85	1	93.020			
			С	0.51	1.888	0.703	0.85	1	118,575			
T9	1.30	5.44	А	0.484	1.922	0.689	0.85	1	124.673	1.73	86,26	Α
40.00-20.00			В	0.387	2.091	0.646	0.85	1	95.098			
			С	0.463	1,953	0_679	0,85	1	117.946			
T10	0.85	6.08	А	0.347	2.179	0.631	0.85	1	94.413	1,48	74.03	А
20.00-0.00			В	0.29	2.323	0.613	0.85	1	78,120			
			С	0.332	2,213	0.626	0.85	1	90.061			
Sum Weight:	7.76	30.71						OTM	1106.39	14.00		
									kip-ft			

Force Totals										
Load Case	Vertical Forces K	Sum of Forces X K	Sum of Forces Z K	Sum of Overturning Moments, M _x kip-ft	Sum of Overturning Moments, M₂ kip-ft	Sum of Torques kip-ft				
Leg Weight	19.74	A CALLER OF	, A	nip ji	kip ji	Kip ji				
Bracing Weight	10.97	- 7 - X C -		CHICAGO IL CARL	The West Yorking Yo					
Total Member Self-Weight	30,71			-2.60	10.23					
Total Weight	52.43	Port Habo	State of the second sec	-2,60	10.23					
Wind 0 deg - No Ice		-0.00	-60.21	-5776.89	9.54	-22.51				
Wind 30 deg - No Ice	5	29.59	-51.35	-4951.53	-2839.93	-24.82				
Wind 45 deg - No Ice		41.99	-41.73	-4024.64	-4047.10	-23.05				
Wind 60 deg - No Ice	A CONTRACTOR OF	51,34	-29_37	-2832.49	-4956.36	-19.67				
Wind 90 deg - No Ice	A DEALER AD REAL	59.34	0.20	22.75	-5713.46	-10.45				
Wind 120 deg - No Ice		52.18	30.36	2905.90	-4999.60	1,81				
Wind 135 deg - No Ice		41.95	41.97	4038,53	-4043.97	7.89				
Wind 150 deg - No Ice		29.82	51.45	4949.59	-2872.21	14.02				
Wind 180 deg - No Ice		0.18	59,27	5720.20	-12.29	24,11				
Wind 210 deg - No Ice	NOT BE ALLER	-29.67	51.40	4944.35	2875.74	25,15				
Wind 225 deg - No Ice		-41.86	41.91	4032.11	4054,19	23.81				
Wind 240 deg - No Ice		-52.09	30,30	2900.62	5009.53	22.05				
Wind 270 deg - No Ice	言い自然した。	-59.27	0.11	13.58	5724.44	12.68				
Wind 300 deg - No Ice		-51.22	-29,50	-2848.65	4959.77	0.33				
Wind 315 deg - No Ice		-41.89	-41,82	-4035.40	4052.48	-6.29				
Wind 330 deg - No Ice		-29.60	-51.40	-4956.02	2859.66	-13.31				

*tnxTower* 

#### PiROD U20'-0''x170' Lattice Tower

Page 29 of 44

Date

Project

Client

Job

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

#### CFD-010 / Cromwell, CT Tower

Structural Analysis - AT&T Assessment

Designed by MCD

12:41:22 07/16/16

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		Х	Ζ	Moments, $M_x$	Moments, $M_z$	
	K	K	K	kip-fi	kip-ft	kip-ft
Member Ice	15.00			in the second second		5 4 V V - 02
Total Weight Ice	86.52	CANADA CANADA SA	e sail olaini	-8,69	25.48	1 State 122.08
Wind 0 deg - Ice	Contraction of the second	-0.00	-70.39	-6928.81	24,67	-19.50
Wind 30 deg - Ice	The Review	34.63	-60.07	-5927.95	-3386.45	-28.84
Wind 45 deg - Ice	ALL THE MAN	49.06	-48,85	-4822.44	-4816,52	-30.31
Wind 60 deg - Ice		59.97	-34.40	-3398,24	-5897.16	-29,65
Wind 90 deg - Ice		69.40	0,16	11.35	-6816.72	-23.63
Wind 120 deg - Ice	网络加强的 曲面	60.99	35.40	3467.99	-5974.86	-11.30
Wind 135 deg - Ice	NAN A TRANSFER	49.02	49.03	4819.60	-4813.73	-3.33
Wind 150 deg - Ice	LUNA DE LE	34.81	60.14	5912.61	-3412.00	4.94
Wind 180 deg - Ice	AND AND ADDRESS OF	0.14	69.23	6820.00	7.67	20.88
Wind 210 deg - Ice		-34.70	60.10	5908.67	3449.82	29.11
Wind 225 deg - Ice	BSV BARYSTER	-48.96	48.99	4814.81	4856,84	30.92
Wind 240 deg - Ice		-60.92	35.36	3464.20	6017.63	31.89
Wind 270 deg - Ice		-69.34	0.09	4.51	6860,08	25.41
Wind 300 deg - Ice	21/- 53-9-2	-59.87	-34.51	-3410.75	5934.19	12.60
Wind 315 deg - Ice	and the second second	-48.97	-48.92	-4830.71	4855.01	4.61
Wind 330 deg - Ice		-34.63	-60.10	-5931.29	3436.38	-4.38
Total Weight	52.43	418 200 1000	Sir//=s/T AND IT	-2.60	10.23	MILLANG WILLSON
Wind 0 deg - Service		-0.00	-20.83	-2002.32	0.90	-7.79
Wind 30 deg - Service		10.24	-17.77	-1716.73	-985.07	-8.59
Wind 45 deg - Service		14.53	-14.44	-1396.01	-1402.78	-7.98
Wind 60 deg - Service	Carlor State	17.76	-10.16	-983,50	-1717.40	-6.80
Wind 90 deg - Service	Sand Street or Street	20.53	0.07	4.47	-1979.37	-3.62
Wind 120 deg - Service	11 - 1 - 1 - 1 - 1	18.05	10.51	1002.10	-1732.36	0.63
Wind 135 deg - Service		14.52	14.52	1394.02	-1401.69	2.73
Wind 150 deg - Service	1. 五二次年前2003年	10.32	17.80	1709.26	-996.24	4.85
Wind 180 deg - Service	1100125-02	0.06	20.51	1975.91	-6.65	8.34
Wind 210 deg - Service	174 10 alter	-10.27	17.79	1707.45	992.67	8.70
Wind 225 deg - Service	A DESCRIPTION OF THE PARTY OF T	-14.49	14.50	1391.79	1400.44	8.24
Wind 240 deg - Service	5.415.2	-18.02	10.49	1000.27	1731.00	7.63
Wind 270 deg - Service	and the second second	-20.51	0.04	1.30	1978.38	4.39
Wind 300 deg - Service	A DOWNER OF	-17.72	-10.21	-989.09	1713.79	0.12
Wind 315 deg - Service		-14.49	-14.47	-1399.73	1399.84	-2.18
Wind 330 deg - Service	100 m 21	-10.24	-17.78	-1718.28	987.11	-4.61

### **Load Combinations**

mb. Io.		Description
1	Dead Only	
2	Dead+Wind 0 deg - No Ice	
3	Dead+Wind 30 deg - No Ice	
4	Dead+Wind 45 deg - No Ice	
5	Dead+Wind 60 deg - No Ice	
5	Dead+Wind 90 deg - No Ice	
7	Dead+Wind 120 deg - No Ice	
8	Dead+Wind 135 deg - No Ice	
9	Dead+Wind 150 deg - No Ice	
0	Dead+Wind 180 deg - No Ice	
1	Dead+Wind 210 deg - No Ice	
2	Dead+Wind 225 deg - No Ice	
3	Dead+Wind 240 deg - No Ice	
4	Dead+Wind 270 deg - No Ice	
5	Dead+Wind 300 deg - No Ice	
6	Dead+Wind 315 deg - No Ice	

tnxTower	Job	PiROD U20'-0"x170' Lattice Tower	Page 30 of 44
• <b>AECOM</b> 500 Enterprise Drive, Suite 3B	Project	CFD-010 / Cromwell, CT Tower	Date 12:41:22 07/16/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Structural Analysis - AT&T Assessment	Designed by MCD

Comb.		Description
No.		
17	Dead+Wind 330 deg - No Ice	
18	Dead+Ice+Temp	
19	Dead+Wind 0 deg+Ice+Temp	
20	Dead+Wind 30 deg+Ice+Temp	
21	Dead+Wind 45 deg+Ice+Temp	
22	Dead+Wind 60 deg+Jce+Temp	
23	Dead+Wind 90 deg+Ice+Temp	
24	Dead+Wind 120 deg+Ice+Temp	3
25	Dead+Wind 135 deg+Ice+Temp	
26	Dead+Wind 150 deg+Ice+Temp	
27	Dead+Wind 180 deg+Ice+Temp	
28	Dead+Wind 210 deg+Ice+Temp	
29	Dead+Wind 225 deg+Ice+Temp	
30	Dead+Wind 240 deg+Ice+Temp	
31	Dead+Wind 270 deg+Ice+Temp	
32	Dead+Wind 300 deg+Ice+Temp	
33	Dead+Wind 315 deg+Ice+Temp	
34	Dead+Wind 330 deg+Ice+Temp	
35	Dead+Wind 0 deg - Service	
36	Dead+Wind 30 deg - Service	
37	Dead+Wind 45 deg - Service	
38	Dead+Wind 60 deg - Service	
39	Dead+Wind 90 deg - Service	
40	Dead+Wind 120 deg - Service	
41	Dead+Wind 135 deg - Service	
42	Dead+Wind 150 deg - Service	
43	Dead+Wind 180 deg - Service	
44	Dead+Wind 210 deg - Service	
45	Dead+Wind 225 deg - Service	
46	Dead+Wind 240 deg - Service	
47	Dead+Wind 270 deg - Service	
48	Dead+Wind 300 deg - Service	
49	Dead+Wind 315 deg - Service	
50	Dead+Wind 330 deg - Service	

#### Maximum Member Forces

Section No.	Elevation ft	Component Type	Condition	Gov Load Comb	Force K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
T1	170 - 150	Leg	Max Tension	22	29.84	-0.04	0.05
		0	Max. Compression	19	-36.17	-0.00	0.45
			Max. Mx	24	-35.92	-0.38	-0.24
			Max. My	19	-36.17	-0.00	0.45
			Max. Vy	30	-3.93	0.05	-0.06
		Max, Vx	19	-4.55	-0.00	0.45	
	Diagonal	Max Tension	26	3.35	0.00	0.00	
	0	Max. Compression	26	-3.41	0.00	0.00	
			Max. Mx	19	2.84	-0.00	0.00
			Max. My	22	-2.10	-0.00	0.00
			Max, Vy	19	0.01	-0.00	0.00
			Max. Vx	22	0.00	0.00	0.00
		Top Girt	Max Tension	7	0.30	0.00	0.00
		1	Max. Compression	15	-0.33	0.00	0.00
		Max Mx	18	-0.01	0.01	0.00	
		Max. My	31	0.01	0.00	-0.00	
		Max. Vy	18	-0-01	0.00	0.00	
			Max, Vx	31	0.00	0.00	0.00
		Bottom Girt	Max Tension	15	0.15	0.00	0.00

tnxTower	Job	PiROD U20'-0"x170' Lattice Tower	Page 31 of 44
<b>AECOM</b> 500 Enterprise Drive, Suite 3B	Project	CFD-010 / Cromwell, CT Tower	Date 12:41:22 07/16/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Structural Analysis - AT&T Assessment	Designed by MCD

 $\mathbf{x}^{\mathbf{n}}$ 

Section No.	Elevation ft	Component Type	Condition	Gov Load	Force	Major Axis Moment	Minor Axis Moment
		- 77 -		Comb.	K	kip-ft	kip-ft
			Max. Compression	13	-0.15	0.00	0.00
			Max. Mx	18	-0.00	0.01	0.00
			Max. My	31	-0.01	0.00	-0.00
			Max. Vy	18	-0.01	0.00	0.00
			Max. Vx	31	0.00	0.00	0.00
Т2	150 - 140	Leg	Max Tension	22	35.11	-0.42	0.02
12	150 - 140	LUB	Max. Compression	19	-42.04	2.78	0.24
			Max. Mx	22	34.47	-3.29	0.24
			Max. My	31	-4.10	-0.26	-4.01
			Max. Vy	27	0.61	-3.27	-0.32
				31	0.87	-0.26	-0.32
		Diamanal	Max. Vx Max Tension	22	4.91		
		Diagonal				0.00	0.00
			Max. Compression	30	-5.45	0.00	0.00
			Max. Mx	22	4.32	0.05	0.00
			Max. My	21	-4.25	-0.02	0.02
			Max, Vy	22	0.02	0.05	0.00
		E C	Max, Vx	21	-0.00	0.00	0.00
		Top Girt	Max Tension	5	0.42	0.00	0.00
			Max. Compression	13	-0.37	0,00	0.00
			Max. Mx	18	0.04	-0.02	0.00
			Max. My	31	0.03	0.00	0.00
			Max. Vy	18	0.02	0.00	0.00
			Max. Vx	31	-0.00	0.00	0.00
T3	140 - 120	Leg	Max Tension	32	70.41	-3.67	-0.17
			Max, Compression	19	-84.49	3.77	0.02
			Max. Mx	32	69.28	-4.63	-0.19
			Max. My	31	-8.58	-0.43	-6.71
			Max. Vy	27	0.70	-4.58	-0.05
			Max. Vx	23	-1.00	-0.42	6.66
		Diagonal	Max Tension	28	9.05	0.00	0.00
		- CO	Max. Compression	29	-9.43	0.00	0.00
			Max, Mx	19	5.83	0.11	0.01
			Max. My	29	-7.58	-0.06	-0.02
			Max. Vy	19	-0.03	0.11	0.01
			Max. Vx	21	-0.00	0.00	0.00
T4	120 - 100	Leg	Max Tension	32	117.39	-5.26	-0.04
		8	Max, Compression	19	-139.26	3.38	0.04
		54	Max. Mx	19	-110.20	6.27	0.00
			Max. My	31	-11.87	-0.48	-7.41
			Max. Vy	27	0.99	-4.25	-0.07
			Max. Vy Max. Vx	31	1.73	-0.48	-7.41
		Diagonal	Max Tension	21	11.85	0.00	0.00
		Diagonal	Max Compression	29	-12.90	0.00	0.00
			· · ·	29 19	-12.90	0.00	
			Max. Mx Max. My				0.01
			Max. My Max. Vy	29	-12.85	-0.06	-0.05
			Max, Vy	32	0.04	0.12	-0.00
		MCLCC .	Max. Vx	29	0.01	0.00	0.00
		Mid Girt	Max Tension	32	3.90	0.00	0.00
			Max. Compression	19	-3.13	0.00	0.00
			Max. Mx	18	0.45	-0.07	0.00
			Max. My	31	0.36	0.00	0.00
			Max. Vy	18	0.03	0.00	0.00
			Max. Vx	31	0.00	0.00	0,00
T5	100 - 90	Leg	Max Tension	32	145.63	-4.28	-0.13
			Max. Compression	19	-172.07	4.65	0.02
			Max. Mx	19	-172.07	4.65	0.02
			Max. My	31	-13.08	-0.48	-7.41
			Max. Vy	24	-0,26	4.61	0.01
			Max. Vx	31	-0.51	-0.48	-7.41
		Diagonal	Max Tension	28	13.76	0.00	0.00

tnxTower

#### PiROD U20'-0"x170' Lattice Tower

32 of 44

Page

Date

Project

Client

Job

**AECOM** 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

#### CFD-010 / Cromwell, CT Tower

Structural Analysis - AT&T Assessment

Designed by MCD

12:41:22 07/16/16

Section No	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Axi Moment
	_			Comb.	K	kip-ft	kip-ft
			Max. Mx	19	10_57	0.18	0.01
			Max. My	30	-0,71	0.09	-0.02
			Max. Vy	19	-0.05	0,18	0.01
			Max. Vx	30	-0.00	0.00	0.00
T6	90 - 80	Leg	Max Tension	32	174.33	-4.36	-0.01
		5	Max, Compression	19	-204.07	5.83	0,05
			Max, Mx	19	-204.07	5.83	0.05
			Max, My	31	-15.10	-0.00	-4.76
			Max. Vy	27	0.40	-5.76	-0.06
			Max. Vx	31	0.30	-0.00	-4.76
		Diagonal	Max Tension	28	13.63	0.00	0,00
		Bregonar	Max, Compression	28	-14.01	0.00	0.00
			Max. Mx	19	10.46	0.15	0.01
			Max, My	30	-0.89	0.08	-0.02
			Max. Vy	19	-0.05	0.15	0.01
			Max. Vx	30	0.00	0.00	0.00
T7	80 - 60	Log	Max Tension	30	227.26	-5.06	0.00
1 /	00-00	Leg		19	-264.25	5.61	0.01
			Max. Compression				
			Max. Mx	19	-233.84	5.83	0.05
			Max. My	34	-15.78	-0.09	5.23
			Max. Vy	22	-0.21	-5.74	0.14
		<b>D</b> : 1	Max, Vx	34	-0.20	-0.09	5,23
		Diagonal	Max Tension	28	14.03	0.00	0.00
			Max. Compression	28	-14.40	0.00	0.00
			Max. Mx	19	10.67	0.15	0.01
			Max. My	21	-13.79	0.02	0.02
			Max. Vy	32	0.05	0.15	-0.01
			Max. Vx	22	-0.00	0.00	0.00
T8	60 - 40	Leg	Max Tension	32	275.55	-5.07	0.01
			Max. Compression	30	-320.04	5.51	-0.11
			Max, Mx	32	275.00	-6,95	-0.03
			Max, My	34	-20.40	0.06	6.05
			Max, Vy	22	0.31	-6.94	0.10
			Max. Vx	34	-0.21	0=06	6.05
		Diagonal	Max Tension	28	14.09	0.00	0.00
		Ų	Max. Compression	28	-14.47	0.00	0.00
			Max, Mx	30	10.05	0.21	-0.01
			Max, My	21	-13.89	0.00	0.03
			Max, Vy	30	-0.06	0.21	-0.01
			Max. Vx	21	-0.00	0.00	0.00
Т9	40 - 20	Leg	Max Tension	32	318.52	-3,10	0.02
12	10 20	LUB	Max. Compression	30	-373.39	-0.20	0.02
			Max. Mx	32	317.89	-11.63	0.02
			Max. My	31	-21.75	-0.75	-5.89
			Max. Vy	22	0.97	-11.61	-0.01
		Discussi	Max, Vx	31	-0.26	2.48	-5.77
		Diagonal	Max Tension	28	15.33	0.00	0.00
			Max, Compression	28	-14.97	0.00	0.00
			Max. Mx	30	10.10	0.23	-0.02
			Max, My	21	-12,88	0.05	0.03
			Max, Vy	32	0.07	0.21	-0.02
			Max. Vx	21	-0.00	0.00	0.00
T10	20 - 0	Leg	Max Tension	32	355.09	3.71	0.02
			Max. Compression	30	-423.48	-0.00	0.00
			Max, Mx	30	-395.30	15.51	0.01
			Max. My	31	-30,88	9.54	-9,94
			Max, Vy	22	-1.65	-11.61	-0.01
			Max. Vx	31	-1.09	9.54	-9.94
		Diagonal	Max Tension	21	19.04	0.00	0.00
		2	Max. Compression	28	-16.85	0.00	0.00
				7.39			

tnxTower	Job PiROD U20'-0"x170' Lattice Tower	Page 33 of 44
<b>AECOM</b> 500 Enterprise Drive, Suite 3B	Project CFD-010 / Cromwell, CT Tower	Date 12:41:22 07/16/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client Structural Analysis - AT&T Assessment	Designed by MCD

Section E. No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Axis Moment
		~ *		Comb.	K	kip-ft	kip-ft
			Max. My	21	-16.57	0.13	0.04
	×		Max, Vy	32	0.08	0.30	-0.02
			Max. Vx	21	-0.01	0.00	0.00

### **Maximum Reactions**

Location	Condition	Gov	Vertical K	Horizontal, X	Horizontal, 2
		Load Comb	Λ	K	K
Leg C	Max, Vert	30	432.20	32,75	-20.00
	Max. H _x	13	353.06	32.83	-19,71
	Max. Hz	21	-353.56	-39.42	24,81
	Min. Vert	22	-366.56	-41.09	24.71
	Min. H _x	22	-366.56	-41.09	24.71
	Min. Hz	30	432.20	32.75	-20.00
Leg B	Max. Vert	24	430.16	-33.06	-19.46
	Max. H _x	32	-368.78	41,35	24.31
	Max. Hz	32	-368.78	41.35	24.31
	Min. Vert	32	-368.78	41.35	24.31
	Min. H _x	7	352.71	-33.21	-19.13
	Min, H _z	24	430.16	-33,06	-19.46
Leg A	Max. Vert	19	431.35	-0,58	38.32
	Max. H _x	31	28.59	4.05	-5.10
	Max. Hz	19	431.35	-0.58	38.32
	Min. Vert	27	-367.35	0.59	-48.00
	Min. H _x	23	28.19	-4.06	-5.14
	Min _* H _z	27	-367.35	0.59	-48.00

## **Tower Mast Reaction Summary**

Load Combination	Vertical	Shears	Shear _z	Overturning Moment, M _s	Overturning Moment, M ₂	Torque	
	K	K	K	kip-ft	kip-ft	kip-ft	
Dead Only	52.43	0.00	0.00	-2.60	10.24	-0.00	
Dead+Wind 0 deg - No Ice	52.43	-0.00	-60.21	-5800.64	9.63	-22.57	
Dead+Wind 30 deg - No Ice	52.43	29.59	-51,35	-4972.01	-2851.59	-24.87	
Dead+Wind 45 deg - No Ice	52.43	41.99	-41.73	-4041,32	-4063.76	-23.12	
Dead+Wind 60 deg - No Ice	52.43	51.34	-29.37	-2844.27	-4976.80	-19,74	
Dead+Wind 90 deg - No Ice	52.43	59.34	0.20	22.74	-5737.01	-10.52	
Dead+Wind 120 deg - No Ice	52.43	52.18	30,36	2917.74	-5020.15	1.80	
Dead+Wind 135 deg - No Ice	52.43	41.95	41.97	4055.10	-4060.63	7.90	
Dead+Wind 150 deg - No Ice	52.43	29.82	51.45	4969.93	-2884.02	14.06	
Dead+Wind 180 deg - No Ice	52.43	0.18	59.27	5743.76	-12.26	24.16	
Dead+Wind 210 deg - No Ice	52.43	-29.67	51.40	4964.63	2887.68	25.21	
Dead+Wind 225 deg - No Ice	52.43	-41.86	41.91	4048.60	4070.97	23.87	
Dead+Wind 240 deg - No Ice	52.43	-52.09	30.30	2912.40	5030.16	22.13	
Dead+Wind 270 deg - No Ice	52.43	-59.27	0.11	13.55	5748.03	12.75	
Dead+Wind 300 deg - No Ice	52.43	-51,22	-29.50	-2860,44	4980.23	0.35	
Dead+Wind 315 deg - No Ice	52.43	-41.89	-41.82	-4052.06	4069.19	-6.30	
Dead+Wind 330 deg - No Ice	52.43	-29.60	-51.40	-4976,44	2871.46	-13.35	
Dead+Ice+Temp	86.52	0.00	0.00	-8.76	25.53	-0.00	
Dead+Wind 0 deg+Ice+Temp	86.52	-0.00	-70.39	-6971.68	24.85	-19.64	
Dead+Wind 30 deg+Ice+Temp	86.52	34.63	-60.07	-5964.78	-3407.37	-29.00	

tnxTower	Job	PiROD U20'-0"x170' Lattice Tower	Page 34 of 44
<b>AECOM</b> ' 500 Enterprise Drive, Suite 3B	Project	CFD-010 / Cromwell, CT Tower	Date 12:41:22 07/16/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Structural Analysis - AT&T Assessment	Designed by MCD

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M ₇	Torque
Combination	Κ	K	K	kip-ft	kip-ft	kip-ft
Dead+Wind 45 deg+Ice+Temp	86.52	49.06	-48.85	-4852.49	-4846,33	-30.48
Dead+Wind 60 deg+Ice+Temp	86.52	59.97	-34.40	-3419.51	-5933,70	-29.84
Dead+Wind 90 deg+Ice+Temp	86.52	69.39	0.16	11.18	-6858.95	-23.79
Dead+Wind 120 deg+Ice+Temp	86.52	60.99	35,40	3489,19	-6011.82	-11.35
Dead+Wind 120 deg+Ice+Temp	86.52	49.02	49.03	4849.26	-4843.56	-3.31
Dead+Wind 155 deg+Ice+Temp	86.52	34.81	60.14	5949.09	-3433.12	5,02
Dead+Wind 180 deg+Ice+Temp	86.52	0.14	69.23	6862,17	-3433.12	21.02
Dead+Wind 180 deg+lce+Temp Dead+Wind 210 deg+lce+Temp	86.52	-34.70	60.10	5945.08	3471.28	21.02
Dead+Wind 225 deg+Ice+Temp	86.52	-48,96	48.99	4844.41	4886.99	31.09
Dead+Wind 220 deg+Ice+Temp	86.52	-60.92	35.36	3485.36	6054.87	32,08
Dead+Wind 240 deg+Ice+Temp Dead+Wind 270 deg+Ice+Temp	86.52	-69.34	0.09	4.33	6902.53	25.58
Dead+Wind 300 deg+Ice+Temp	86.52	-59.87	-34,51	-3432.02	5970.91	12.65
C 1	86.52	-48.97	-48.92	-4860.71	4885.05	4.59
Dead+Wind 315 deg+Ice+Temp		-34.63	-48.92	-4860.71 -5968.06	- T	
Dead+Wind 330 deg+Ice+Temp	86.52				3457.64	-4.46
Dead+Wind 0 deg - Service	52.43	-0.00	-20.83	-2008.92	10.04	-7.81
Dead+Wind 30 deg - Service	52.43	10.24	-17.77	-1722.17	-980.02	-8.62
Dead+Wind 45 deg - Service	52.43	14.53	-14.44	-1400.12	-1399.46	-8.00
Dead+Wind 60 deg - Service	52.43	17.76	-10.16	-985,91	-1715.39	-6,83
Dead+Wind 90 deg - Service	52.43	20.53	0.07	6.15	-1978.45	-3,63
Dead+Wind 120 deg - Service	52.43	18.05	10.51	1007.90	-1730.40	0.62
Dead+Wind 135 deg - Service	52.43	14.52	14.52	1401.45	-1398.38	2.73
Dead+Wind 150 deg - Service	52.43	10.32	17.80	1718.00	-991.24	4.85
Dead+Wind 180 deg - Service	52.43	0.06	20.51	1985.77	2.46	8.36
Dead+Wind 210 deg - Service	52.43	-10.27	17.79	1716.18	1005.92	8,74
Dead+Wind 225 deg - Service	52.43	-14.49	14.50	1399.22	1415.39	8.27
Dead+Wind 240 deg - Service	52.43	-18.02	10.49	1006.07	1747_30	7,66
Dead+Wind 270 deg - Service	52.43	-20.51	0.04	2.98	1995.70	4.40
Dead+Wind 300 deg - Service	52,43	-17.72	-10.21	-991.51	1730_02	0.12
Dead+Wind 315 deg - Service	52.43	-14.49	-14,47	-1403.85	1414.77	-2.18
Dead+Wind 330 deg - Service	52.43	-10.24	-17.78	-1723.72	1000.32	-4.61

### **Solution Summary**

	Sui	n of Applied Force	S		Sum of Reaction	15	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	<i>K</i>	K	K	
1	0.00	-52,43	0.00	0.00	52.43	0.00	0.000%
2	-0.00	-52.43	-60.21	0.00	52.43	60.21	0.000%
3	29.59	-52,43	-51.35	-29.59	52.43	51.35	0.000%
4	41.99	-52,43	-41.73	-41.99	52.43	41.73	0.000%
5	51.34	-52.43	-29.37	-51.34	52.43	29.37	0.000%
6	59.34	-52.43	0.20	-59.34	52.43	-0.20	0.000%
7	52,18	-52.43	30.36	-52.18	52.43	-30.36	0.000%
8	41.95	-52.43	41.97	-41.95	52.43	-41-97	0.000%
9	29.82	-52.43	51.45	-29_82	52,43	-51.45	0.000%
10	0.18	-52.43	59.27	-0.18	52.43	-59.27	0.000%
11	-29.67	-52.43	51.40	29.67	52.43	-51.40	0.000%
12	-41.86	-52.43	41.91	41.86	52.43	-41 91	0,000%
13	-52.09	-52.43	30.30	52.09	52.43	-30.30	0.000%
14	-59.27	-52.43	0.11	59.27	52.43	-0,11	0.000%
15	-51.22	-52.43	-29.50	51.22	52.43	29,50	0.000%
16	-41.89	-52.43	-41.82	41.89	52.43	41.82	0.000%
17	-29.60	-52.43	-51,40	29,60	52.43	51,40	0.000%
18	0.00	-86.52	0.00	-0.00	86,52	-0.00	0.000%
19	-0.00	-86.52	-70.39	0.00	86.52	70,39	0.000%
20	34.63	-86,52	-60.07	-34.63	86.52	60.07	0.000%
21	49.06	-86.52	-48.85	-49.06	86.52	48.85	0.000%
22	59.97	-86.52	-34.40	-59.97	86,52	34,40	0.000%

tnxTower	Job	PiROD U20'-0"x170' Lattice Tower	Page 35 of 44
<b>AECOM</b> 500 Enterprise Drive, Suite 3B	Project	CFD-010 / Cromwell, CT Tower	Date 12:41:22 07/16/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Structural Analysis - AT&T Assessment	Designed by MCD

	Su	m of Applied Force	S		Sum of Reaction	15	
Load	PX	PY	PZ	PX	PY	PZ	% Erro
Comb_	K	K	K	Κ	K	- K	
23	69,40	-86,52	0.16	-69.39	86,52	-0,16	0.000%
24	60,99	-86,52	35,40	-60.99	86.52	-35,40	0.000%
25	49.02	-86.52	49.03	-49.02	86.52	-49.03	0.000%
26	34.81	-86.52	60,14	-34.81	86.52	-60.14	0.000%
27	0.14	-86.52	69.23	-0.14	86.52	-69.23	0.000%
28	-34,70	-86.52	60.10	34,70	86,52	-60.10	0.000%
29	-48.96	-86,52	48.99	48.96	86.52	-48.99	0.000%
30	-60.92	-86,52	35,36	60.92	86,52	-35,36	0.000%
31	-69.34	-86.52	0.09	69.34	86,52	-0.09	0.000%
32	-59.87	-86.52	-34.51	59.87	86.52	34.51	0.000%
33	-48,97	-86.52	-48.92	48.97	86.52	48.92	0.000%
34	-34.63	-86.52	-60.10	34.63	86,52	60.10	0.000%
35	-0.00	-52.43	-20.83	0.00	52.43	20.83	0.000%
36	10.24	-52.43	-17.77	-10.24	52.43	17.77	0.000%
37	14,53	-52.43	-14.44	-14,53	52.43	14,44	0.000%
38	17.76	-52.43	-10.16	-17.76	52.43	10.16	0.000%
39	20.53	-52.43	0.07	-20.53	52.43	-0.07	0.000%
40	18.05	-52.43	10.51	-18.05	52.43	-10.51	0.000%
41	14.52	-52.43	14.52	-14.52	52.43	-14.52	0.000%
42	10.32	-52.43	17.80	-10.32	52,43	-17.80	0.000%
43	0.06	-52.43	20,51	-0.06	52,43	-20.51	0.000%
44	-10,27	-52.43	17.79	10.27	52.43	-17.79	0.000%
45	-14.49	-52.43	14.50	14.49	52.43	-14.50	0.000%
46	-18.02	-52,43	10.49	18.02	52.43	-10.49	0,000%
47	-20.51	-52.43	0.04	20.51	52.43	-0.04	0.000%
48	-17.72	-52.43	-10.21	17.72	52.43	10.21	0.000%
49	-14.49	-52.43	-14.47	14.49	52,43	14,47	0.000%
50	-10.24	-52.43	-17.78	10.24	52.43	17.78	0.000%

## Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.0000001	0.0000001
2	Yes	4	0.0000001	0.0000001
3	Yes	4	0.0000001	0.0000001
4	Yes	4	0.0000001	0.0000001
5	Yes	4	0.00000001	0.00000001
6	Yes	4	0.0000001	0.00000001
7	Yes	4	0.0000001	0.0000001
8	Yes	4	0.0000001	0.00000001
9	Yes	4	0.00000001	0.00000001
10	Yes	4	0.0000001	0.00000001
11	Yes	4	0.00000001	0.00000001
12	Yes	4	0.0000001	0.0000001
13	Yes	4	0.0000001	0.0000001
14	Yes	4	0,0000001	0.00000001
15	Yes	4	0.00000001	0.00000001
16	Yes	4	0.00000001	0.00000001
17	Yes	4	0.00000001	0.00000001
18	Yes	4	0.00000001	0.00000001
19	Yes	4	0.00000001	0.0000085
20	Yes	4	0.0000001	0.00000114
21	Yes	4	0.0000001	0.00000133
22	Yes	4	0.00000001	0.00000127
23	Yes	4	0.00000001	0.00000140

tn	xTower	Јор			Page
			PiROD U20'-0'	36 of 44	
	AECOM	Project			Date
	erprise Drive, Suite 3B		CFD-010 / C	12:41:22 07/16/16	
Pho	Rocky Hill, CT ne: 860-529-8882 X: 860-529-3991	Client	Structural Analys	sis - AT&T Assessment	Designed by MCD
24	Yes	4	0.00000001	0.00000090	
25	Yes	4	0.0000001	0.00000103	
26	Yes	4	0.0000001	0.00000126	
27	Yes	4	0.0000001	0.00000123	
28	Yes	4	0.0000001	0.00000114	
29	Yes	4	0.00000001	0.00000102	
30	Yes	4	0.0000001	0.00000104	
31	Yes	4	0,0000001	0.00000139	
32	Yes	4	0.00000001	0.00000123	
33	Yes	4	0.0000001	0.00000124	
34	Yes	4	0.0000001	0.00000126	
35	Yes	4	0.0000001	0.0000001	
36	Yes	4	0.0000001	0,0000001	
37	Yes	4	0.0000001	0.0000001	
38	Yes	4	0.0000001	0.0000001	
39	Yes	4	0.0000001	0.0000001	
40	Yes	4	0.0000001	0.0000001	
41	Yes	4	0.0000001	0.0000001	
42	Yes	4	0.00000001	0.00000001	
43	Yes	4	0.00000001	0.0000001	
44	Yes	4	0.0000001	0.0000001	
45	Yes	4	0.0000001	0.0000001	
46	Yes	4	0.00000001	0.0000001	
47	Yes	4	0.0000001	0.0000001	
48	Yes	4	0.0000001	0.0000001	
49	Yes	4	0.0000001	0.0000001	
50	Yes	4	0.0000001	0.00000001	

### **Maximum Tower Deflections - Service Wind**

Section	Elevation	Horz.	Gov.	Tilt	Twist	
No.		Deflection	Load			
	ft	in	Comb.	0	0	
T1	170 - 150	5,825	35	0.3299	0,0303	
T2	150 - 140	4.454	35	0,3004	0.0369	
Т3	140 - 120	3.831	35	0.2800	0.0355	
T4	120 - 100	2.735	35	0.2273	0.0214	
T5	100 - 90	1.845	46	0.1805	0.0137	
T6	90 - 80	1.482	46	0.1528	0.0113	
Т7	80 - 60	1.169	46	0.1321	0.0095	
Т8	60 - 40	0.657	46	0.0978	0.0067	
Т9	40 - 20	0.296	46	0.0590	0.0042	
T10	20 - 0	0.087	46	0.0269	0.0021	

#### **Critical Deflections and Radius of Curvature - Service Wind**

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	În	o	o	Curvature ft
183.00	101-90-08-0-01	35	5.825	0,3299	0.0303	88933
179.75	15' Mount Pipe	35	5.825	0.3299	0.0303	88933
178.00	3" Día 20' Omni	35	5.825	0.3299	0.0303	88933
175.00	2.5" x 14' Omni	35	5.825	0.3299	0.0303	88933
174.00	1.5" x 12' Omni	35	5,825	0.3299	0.0303	88933
170.00	APXVSPP18-C-A20	35	5,825	0.3299	0.0303	88933
168.00	HPD2-4.7	35	5.684	0.3272	0.0312	88933

tnxTower	Job	PiROD U20'-0"x170' Lattice Tower	Page 37 of 44
<b>AECOM</b> 500 Enterprise Drive, Suite 3B	Project	CFD-010 / Cromwell, CT Tower	Date 12:41:22 07/16/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Structural Analysis - AT&T Assessment	Designed by MCD

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
159.50	APXV18-206517S-C w/ mounting hardware	35	5.092	0.3156	0.0346	42349
158.50	SC420-HF1LDF	35	5.023	0.3141	0.0350	38667
144.00	3" Dia 20' Omni	35	4.074	0.2889	0.0366	23391
141.00	2" Dia 15' Omni	35	3.891	0.2823	0.0358	23788
139.00	1.5" x 10' Omni	35	3.771	0.2776	0.0350	23932
138.50	9' Whip	35	3.742	0.2763	0.0348	23949
134.00	VHLP2.5-180	35	3.481	0.2648	0.0320	23929
125,50	PiROD 10' Lightweight T-Frame	35	3.016	0.2416	0.0254	23798
115.00	(2) TMA (shielded)	35	2,493	0.2156	0.0186	23163
101.00	BXA-171063-12BF	46	1.885	0.1832	0.0139	21831
87.00	3"x2"x22" Panel	46	1.383	0.1457	0.0107	24817
84.50	TMA	46	1.304	0.1405	0.0102	27439
83.50	3' Stand-off	46	1.273	0.1386	0.0100	28646
83.00	3' Dish	46	1.258	0.1376	0.0100	29260
82.50	TMA	46	1,243	0.1367	0.0099	29871
80.00	3"x2"x22" Panel	46	1.169	0.1321	0.0095	32473
30.00	Camera	46	0.173	0.0419	0.0031	32308
24.00	PC9013N	46	0.117	0.0327	0.0025	32850

### Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist	
No.		Deflection	Load			
	fl	in	Comb.	0	0	
T1	170 - 150	20.000	19	1.1038	0.1287	
T2	150 - 140	15.409	19	1.0170	0.1446	
Т3	140 - 120	13,291	19	0.9551	0.1346	
T4	120 - 100	9.519	19	0.7859	0.0853	
Т5	100 - 90	6.429	30	0.6277	0.0566	
Т6	90 - 80	5.162	30	0.5321	0.0472	
<b>T</b> 7	80 - 60	4.070	30	0.4608	0.0390	
Т8	60 - 40	2,282	30	0.3412	0.0266	
Т9	40 - 20	1.025	30	0.2058	0.0160	
T10	20 - 0	0.298	30	0.0934	0.0077	

### **Critical Deflections and Radius of Curvature - Design Wind**

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	tn	o	D	f1
183.00	101-90-08-0-01	19	20,000	1.1038	0.1287	30833
179.75	15' Mount Pipe	19	20.000	1.1038	0.1287	30833
178.00	3" Dia 20' Omni	19	20.000	1.1038	0.1287	30833
175.00	2.5" x 14' Omni	19	20.000	1.1038	0.1287	30833
174.00	1.5" x 12' Omni	19	20,000	1,1038	0.1287	30833
170.00	APXVSPP18-C-A20	19	20.000	1.1038	0.1287	30833
168.00	HPD2-4.7	19	19.531	1.0960	0.1313	30833
159.50	APXV18-206517S-C w/ mounting hardware	19	17.551	1.0618	0.1409	14682
158.50	SC420-HF1LDF	19	17.321	1.0576	0.1417	13405
144.00	3" Dia 20' Omni	19	14.120	0.9823	0.1405	7956

tnxTower	Jop	PiROD U20'-0"x170' Lattice Tower	Page 38 of 44
<b>AECOM</b> 500 Enterprise Drive, Suite 3B	Project	CFD-010 / Cromwell, CT Tower	Date 12:41:22 07/16/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Structural Analysis - AT&T Assessment	Designed by MCD

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb	in	o	٥	ft
141.00	2" Dia 15' Omni	19	13.496	0.9623	0.1363	7953
139.00	1.5" x 10' Omni	19	13,087	0.9476	0.1327	7906
138.50	9' Whip	19	12.986	0.9438	0.1318	7889
134.00	VHLP2.5-180	19	12.093	0.9073	0.1215	7686
125,50	PiROD 10' Lightweight T-Frame	19	10.492	0.8327	0.0990	7291
115.00	(2) TMA (shielded)	19	8.679	0.7470	0.0755	6852
101.00	BXA-171063-12BF	30	6.566	0.6368	0.0576	6368
87.00	3"x2"x22" Panel	30	4.818	0.5079	0.0446	7217
84.50	TMA	30	4.542	0.4899	0.0425	7944
83.50	3' Stand-off	30	4.435	0.4832	0.0417	8276
83.00	3' Dish	30	4.382	0.4799	0.0413	8445
82.50	TMA	30	4.329	0.4766	0.0409	8612
80.00	3"x2"x22" Panel	30	4.070	0.4608	0.0390	9319
30.00	Camera	30	0.596	0.1459	0.0116	9206
24.00	PC9013N	30	0,402	0.1137	0.0093	9357

### **Bolt Design Data**

Section No.	Elevation ft	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt K	Allowable Load K	Ratio Load Allowable	Allowable Ratio	Criteria
T1	170	Diagonal	A325N	0.6250	1	3.41	6.44	0.529 🖌	1.333	Bolt Shear
Т2	150	Leg	A325N	1.0000	6	5.85	34,56	0.169	1.333	Bolt Tension
		Diagonal	A325N	1.0000	1	4.91	8.16	0.601	1,333	Member Bearing
		Top Girt	A325N	1.0000	1	0.42	8.16	0.052	1.333	Member Bearing
Т3	140	Leg	A325N	1.0000	6	8,58	34.56	0.248	1.333	Bolt Tension
		Diagonal	A325N	1.0000	1	9.05	8.16	1.109	1.333	Member Bearing
Т4	120	Leg	A325N	1.0000	6	15.41	34.56	0.446	1.333	Bolt Tension
		Diagonal	A325N	1.0000	1	11.85	10.88	1.090	1.333	Member Bearing
		Mid Girt	A325N	1.0000	1	3.90	8.16	0.478	1.333	Member Bearing
Т5	100	Leg	A325N	1.0000	6	24.27	34.56	0.702	1,333	Bolt Tension
		Diagonal	A325N	1.0000	1	13.76	13.59	1.012	1.333	Member Bearing
T6	90	Leg	A325N	1.0000	6	29.05	34.56	0.841	1.333	Bolt Tension
		Diagonal	A325N	1.0000	1	13,63	13,59	1.003	1.333	Member Bearing
Т7	80	Leg	A325N	1.0000	6	33.51	34,56	0.970	1.333	Bolt Tension
		Diagonal	A325N	1.0000	1	14.40	16.49	0.873	1,333	Bolt Shear
Т8	60	Leg	A325N	1.2500	6	42.02	54.00	0.778	1.333	Bolt Tension
		Diagonal	A325N	1.2500	1	14,09	16.99	0.829	1.333	Member Bearing
Т9	40	Leg	A325N	1.2500	6	49.80	54.00	0.922	1,333	Bolt Tension
		Diagonal	A325N	1.2500	1	15.33	20.39	0.752	1.333	Member Bearing
T10	20	Diagonal	A325N	1.2500	1	19.04	16.99	1.120	1.333	Member Bearing

tnxTower

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

#### **Compression Checks**

#### Leg Design Data (Compression)

Section No	Elevation	Size	L	$L_u$	Kl/r	$F_{a}$	А	Actual P	Allow, P _a	Ratio P
	ft		ft	ft		ksi	$in^2$	K	K	Pa
T1	170 - 150	1 3/4	20.00	2.49	68.3 K=1.00	21,253	2,4053	-36.17	51.12	0.708
T2	150 - 140	Pirod 105244	10,02	10.02	45.4 K=1.00	25.051	3.6816	-42.04	92,23	0.456
Т3	140 - 120	Pirod 105216	20.03	10.02	45.4 K=1.00	25.051	3.6816	-84.49	92.23	0,916
Τ4	120 - 100	Pirod 105217	20.03	10.02	37.8 K=1.00	26.132	5.3014	-139.26	138.54	1.005
Т5	100 - 90	Pirod 105217	10.02	10.02	37.8 K=1.00	26,132	5,3014	-172.07	138.54	1.242
Т6	90 - 80	Pirod 105217 reinf w/ 1" dia bar	10.02	10.02	31.5 K=1.00	26.968	7.6570	-204.07	206.49	0.988
T7	80 - 60	Pirod 105218 reinf w/ 1" dia bar	20.03	10.02	27.6 K=1.00	27,439	9,9280	-264.25	272.41	0.970
T8	60 - 40	Pirod 105219	20.03	10.02	28.4 K=1.00	27.351	9.4248	-320.04	257.78	1.242
Т9	40 - 20	Pirod 105219 reinf w /1" dia bar	20.03	10,02	25.4 K=1.00	27.705	11.7803	-373.39	326.37	1.144
T10	20 - 0	Pirod 105220 reinf w/ 1" dia bar	20,03	10.02	24.3 K=1.00	27.824	14.2843	-423.48	397.44	1.066

#### **Truss-Leg Diagonal Data**

Section No	Elevation	Diagonal Size	$L_d$	Kl/r	$F_{a}$	A	Actual V	Allow. $V_a$	Stress Ratio
	ft		ſt		ksi	$in^2$	K	K	
T2	150 - 140	0.5	1.48	121.0	10.193	0.1963	0.92	2.24	0.409
Т3	140 - 120	0.5	1.48	121.0	10.133	0.1963	1.01	2.23	0.453
T4	120 - 100	0.5	1,47	120,0	10.279	0,1963	1.74	2.26	0.769
Т5	100 - 90	0.5	1.47	120.0	10,279	0.1963	0.51	2.26	0.227
Т6	90 - 80	0.5	1,46	118.8	10.452	0,1963	0.40	2.30	0.173
Т7	80 - 60	0.5	1.44	117.8	10,592	0,1963	0.23	2.33	0.097
Т8	60 - 40	0.625	1_45	94.4	13.671	0.3068	0.32	4.69	0.067
Т9	40 - 20	0.625	1.44	93.7	16,133	0,3068	0.97	5.54	0,175
T10	20 - 0	0.625	1.42	93.0	13.845	0.3068	1.71	4.75	0.360

tnxTower	Job	PiROD U20'-0"x170' Lattice Tower	Page 40 of 44
<b>AECOM</b> 500 Enterprise Drive, Suite 3B	Project	CFD-010 / Cromwell, CT Tower	Date 12:41:22 07/16/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Structural Analysis - AT&T Assessment	Designed by MCD

Section	Elevation	Diagonal Size	$L_d$	Kl/r	$F_a$	А	Actual	Allow.	Stress
No.							V	$V_{a}$	Ratio
	ſt		ft		ksi	$in^2$	K	K	
	1.25								V

## Diagonal Design Data (Compression)

Section No.	Elevation	Size	L	L	Kl/r	$F_a$	A	Actual P	Allow: $P_a$	Ratio P
	ft		ft	ft		ksi	$in^2$	K	K	Pa
T1	170 - 150	7/8	5.59	2.71	133.9 K=0.90	8,334	0.6013	-3.41	5.01	0.680
T2	150 - 140	L2 1/2x2 1/2x3/16	11.42	5.02	121.8 K=1.00	10.024	0.9020	-5,45	9,04	0,603
Т3	140 - 120	L3x3x3/16	12,50	5,67	115.6 K=1.01	10,799	1.0900	-9.43	11.77	0,801
T4	120 - 100	L3x3x1/4	13.80	6.37	129.1 K=1.00	8.961	1.4400	-12,90	12.90	0,999
Т5	100 - 90	L3x3x5/16	14,50	6.74	137.3 K=1.00	7.920	1.7800	-13.99	14,10	0.993
Т6	90 - 80	L3x3x5/16	15.24	7.12	145.1 K=1.00	7,090	1.7800	-14.01	12.62	1.110
Τ7	80 - 60	L3x3x3/8	16.80	7.92	162.0 K=1.00	5.691	2.1100	-14.40	12.01	1,199
Т8	60 - 40	L3 1/2x3 1/2x5/16	18.45	8.73	151.8 K=1.00	6,480	2.0900	-14.45	13.54	1.067
Т9	40 - 20	L3 1/2x3 1/2x3/8	19.30	9.17	160.1 K=1.00	5.825	2.4800	-14.97	14.45	1.037
T10	20 - 0	L4x4x5/16	21_03	10.04	152.3 K=1.00	6.437	2.4000	-16.85	15.45	1.091

### Top Girt Design Data (Compression)

Section No.	Elevation	Size	L	$L_{\mu}$	Kl/r	$F_a$	А	Actual P	Allow $P_{a}$	Ratio P
	ft		ft	ft		ksi	$in^2$	K	K	$P_{u}$
T1	170 - 150	7/8	5.00	4.85	186.4 K=0.70	4.298	0.6013	-0.33	2.58	0.129
Т2	150 - 140	L3x3x3/16	5.00	4.52	105.5 K=1.16	12.079	1.0900	-0.37	13.17	0.028

	Bottom Girt Design Data (Compression)											
Section No.	Elevation	Size	L	Lu	Kl/r	$F_{a}$	A	Actual P	Allow P.	Ratio P		
	ft		ft	ft		ksi	$in^2$	K	K	Pa		
T1	170 - 150	7/8	5.00	4.85	186.4 K=0,70	4.298	0.6013	-0.15	2.58	0.060		

tnxTower	Job PiROD U20'-0"x170' Lattice Tower	Page 41 of 44
<b>AECOM</b> 500 Enterprise Drive, Suite 3B	Project CFD-010 / Cromwell, CT Tower	Date 12:41:22 07/16/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client Structural Analysis - AT&T Assessment	Designed by MCD

Section	Elevation	Size	L	Lu	Kl/r	$F_a$	A	Actual	Allow	Ratio
No.	ft		ft	ft		ksi	$in^2$	P K	$P_a$ K	$\frac{P}{P_a}$
		2								4

## Mid Girt Design Data (Compression)

Section No.	Elevation	Size	L	$L_u$	Kl/r	$F_{a}$	А	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	$in^2$	K	K	$P_a$
T4	120 - 100	L3x3x3/16	9.00	7.67	154.4 K=1.00	6.267	1.0900	-3.13	6.83	0.459

### **Tension Checks**

			9 200			<u> </u>				
Section No	Elevation	Size	L	L _{ii}	Kl/r	Fa	А	Actual P	Allow P _a	Ratio P
	ft		ft	ft		ksi	in ²	Κ	K	Pa
Т1	170 - 150	1 3/4	20.00	2.49	68.3	30.000	2.4053	29.84	72.16	0.414
Т2	150 - 140	Pirod 105244	10.02	10.02	45,4	30,000	3,6816	35.11	110.45	0.318
Т3	140 - 120	Pirod 105216	20.03	10.02	45.4	30.000	3.6816	70.41	110.45	0.638
T4	120 - 100	Pirod 105217	20.03	10.02	37,8	30,000	5.3014	117,39	159.04	0.738
Т5	100 - 90	Pirod 105217	10.02	10.02	37.8	30.000	5.3014	145.63	159.04	0.916
Т6	90 - 80	Pirod 105217 reinf w/ 1" dia bar	10.02	10.02	31.5	30,000	7.6570	174.33	229.71	0.759
Т7	80 - 60	Pirod 105218 reinf w/ 1" dia bar	20.03	10.02	27.6	30.000	9,9280	227.26	297,84	0,763
Т8	60 - 40	Pirod 105219	20.03	10.02	28,4	30,000	9.4248	275,55	282.74	0.975
Т9	40 - 20	Pirod 105219 reinf w /1" dia bar	20.03	10.02	25.4	30,000	11,7803	318.52	353.41	0.901
T10	20 - 0	Pirod 105220 reinf w/ 1" dia bar	20.03	10.02	24.3	30.000	14.2843	355.09	428.53	0.829

			Truss-	Leg D	iagor	al Da	ata		
Section	Elevation	Diagonal Size	L _d	Kl/r	$F_a$	A	Actual	Allow	Stress
No	ſt		ft		ksi	in ²	V K	$V_a$ K	Ratio

tnxTower	Job	PiROD U20'-0"x170' Lattice Tower	Page 42 of 44
<b>AECOM</b> 500 Enterprise Drive, Suite 3B	Project	CFD-010 / Cromwell, CT Tower	Date 12:41:22 07/16/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Structural Analysis - AT&T Assessment	Designed by MCD

Elevation	Diagonal Size	$L_d$	Kl/r	$F_a$	А	Actual V	Allow. Va	Stress Ratio
ſi		A		ksi	in ²	K	K	
150 - 140	0.5	1.48	121.0	10.193	0.1963	0.92	2,24	0.409
140 - 120	0.5	1.48	121.0	10,133	0,1963	1.01	2.23	0.453
120 - 100	0.5	1.47	120.0	10.279	0,1963	1.74	2.26	0.769
100 - 90	0.5	1.47	120,0	10,279	0,1963	0.51	2.26	0.227
90 - 80	0.5	1.46	118,8	10,452	0.1963	0.40	2.30	0.173
80 - 60	0.5	1.44	117.8	10,592	0.1963	0.23	2.33	0.097
60 - 40	0.625	1.45	94.4	13_671	0,3068	0.32	4.69	0.067
40 - 20	0.625	1.44	93.7	16.133	0.3068	0.97	5.54	0.175
20 - 0	0.625	1.42	93,0	13.845	0.3068	1.71	4.75	0.360
	<i>ft</i> 150 - 140 140 - 120 120 - 100 100 - 90 90 - 80 80 - 60 60 - 40 40 - 20	jt       150 - 140     0.5       140 - 120     0.5       120 - 100     0.5       100 - 90     0.5       90 - 80     0.5       80 - 60     0.5       60 - 40     0.625       40 - 20     0.625	p         p           150 - 140         0.5         1.48           140 - 120         0.5         1.48           120 - 100         0.5         1.47           100 - 90         0.5         1.47           90 - 80         0.5         1.46           80 - 60         0.5         1.44           60 - 40         0.625         1.45           40 - 20         0.625         1.44	ji         ji           150 - 140         0.5         1.48         121.0           140 - 120         0.5         1.48         121.0           120 - 100         0.5         1.47         120.0           100 - 90         0.5         1.47         120.0           90 - 80         0.5         1.46         118.8           80 - 60         0.5         1.44         117.8           60 - 40         0.625         1.45         94.4           40 - 20         0.625         1.44         93.7	p         ksi           150 - 140         0.5         1.48         121.0         10.193           140 - 120         0.5         1.48         121.0         10.133           120 - 100         0.5         1.47         120.0         10.279           100 - 90         0.5         1.47         120.0         10.279           90 - 80         0.5         1.46         118.8         10.452           80 - 60         0.5         1.44         117.8         10.592           60 - 40         0.625         1.45         94.4         13.671           40 - 20         0.625         1.44         93.7         16.133	p         ksi         in ² 150 - 140         0.5         1.48         121.0         10.193         0.1963           140 - 120         0.5         1.48         121.0         10.133         0.1963           120 - 100         0.5         1.47         120.0         10.279         0.1963           100 - 90         0.5         1.47         120.0         10.279         0.1963           90 - 80         0.5         1.46         118.8         10.452         0.1963           80 - 60         0.5         1.44         117.8         10.592         0.1963           60 - 40         0.625         1.45         94.4         13.671         0.3068           40 - 20         0.625         1.44         93.7         16.133         0.3068	$\mu$ $\mu$ $ksi$ $in^2$ $K$ 150 - 1400.51.48121.010.1930.19630.92140 - 1200.51.48121.010.1330,19631.01120 - 1000.51.47120.010.2790,19631.74100 - 900.51.47120.010,2790,19630.5190 - 800.51.46118.810,4520.19630.4080 - 600.51.44117.810,5920.19630.2360 - 400.6251.4594.413,6710,30680.3240 - 200.6251.4493.716.1330,30680.97	$\mu$ $\mu$ $k_{Si}$ $in^2$ $V_n$ $V_n$ 150 - 1400.51.48121.010.1930.19630.922.24140 - 1200.51.48121.010.1330.19631.012.23120 - 1000.51.47120.010.2790.19631.742.26100 - 900.51.47120.010.2790.19630.512.2690 - 800.51.46118.810.4520.19630.402.3080 - 600.51.44117.810.5920.19630.232.3360 - 400.6251.4493.716.1330.30680.975.54

### Diagonal Design Data (Tension)

Section No.	Elevation	Size	L	Lu	Kl/r	Fa	A	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in ²	Κ	ĸ	Pa
T1	170 - 150	7/8	5.59	2.71	148.7	30.000	0.6013	3.35	18.04	0.186
T2	150 - 140	L2 1/2x2 1/2x3/16	11.42	5.02	80.1	21.600	0.9020	4.91	19.48	0.252
Т3	140 - 120	L3x3x3/16	12.50	5,67	74.6	21.600	1.0900	9.05	23.54	0.384
T4	120 - 100	L3x3x1/4	13.80	6.37	84.3	21.600	1.4400	11.85 /	31.10	0.381
Т5	100 - 90	L3x3x5/16	14.50	6.74	89.9	21.600	1.7800	13.76	38.45	0,358
T6	90 - 80	L3x3x5/16	15.24	7.12	94.9	21.600	1.7800	13.63	38.45	0.355
Τ7	80 - 60	L3x3x3/8	16.01	7.54	101.2	21.600	2,1100	14.03	45.58	0.308
Т8	60 - 40	L3 1/2x3 1/2x5/16	18.45	8.73	99.2	21.600	2.0900	14.09	45.14	0.312
Т9	40 - 20	L3 1/2x3 1/2x3/8	20.16	9.59	109.8	21,600	2.4800	15.33	53.57	0.286
Т10	20 - 0	L4x4x5/16	21.92	10.48	103.3	21.600	2.4000	19.04	51.84	0.367

## Top Girt Design Data (Tension)

tnxTower	Job PiROD U20'-0''x170' Lattice Tower	Page 43 of 44
<b>AECOM</b> 500 Enterprise Drive, Suite 3B	Project CFD-010 / Cromwell, CT Tower	Date 12:41:22 07/16/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client Structural Analysis - AT&T Assessment	Designed by MCD

Section No.	Elevation	Size	L	$L_u$	Kl/r	$F_{a}$	A	Actual P	Allow. P _a	Ratio P
	ft		ft	ft		ksi	in ²	Κ	K	Pa
T1	170 - 150	7/8	5.00	4.85	266.3	30.000	0,6013	0.30	18.04	0.017
T2	150 - 140	L3x3x3/16	5.00	4.52	62.0	21,600	1:0900	0.42	23.54	0.018

Bottom Girt Design Data (Tension)										
Section No.	Elevation	Size	L	La	Kl/r	Fa	A	Actual P	Allow P.	Ratio P
	ft		ft	ft		ksi	$in^2$	K	ĸ	Pa
T1	170 - 150	7/8	5.00	4.85	266.3	30,000	0.6013	0,15	18.04	0.008

Mid Girt Design Data (Tension)										
Section No.	Elevation	Size	L	Lu	Kl/r	F _a	A	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	$in^2$	Κ	ĸ	Pa
T4	120 - 100	L3x3x3/16	9.00	7.67	102.2	21.600	1.0900	3.90	23.54	0.166

## Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	SF*P _{allow} K	% Capacity	Pass Fail
T1	170 - 150	Leg	1 3/4	3	-36.17	68.14	53.1	Pass
Τ2	150 - 140	Leg	Pirod 105244	60	-42.04	122.94	34.2	Pass
T3	140 - 120	Leg	Pirod 105216	72	-84,49	122.94	68.7	Pass
T4	120 - 100	Leg	Pirod 105217	87	-139.26	184.67	75.4	Pass
T5	100 - 90	Leg	Pirod 105217	105	-172.07	184.67	93.2	Pass
Т6	90 - 80	Leg	Pirod 105217 reinf w/ 1" dia bar	114	-204.07	275.26	74.1	Pass
T7	80 - 60	Leg	Pirod 105218 reinf w/ 1" dia bar	123	-264.25	363.13	72.8	Pass
Τ8	60 - 40 -	Leg	Pirod 105219	136	-320.04	343.62	93.1	Pass
Т9	40 - 20	Leg	Pirod 105219 reinf w /1" dia bar	151	-373,39	435.06	85.8	Pass
T10	20 - 0	Leg	Pirod 105220 reinf w/ 1" dia bar	166	-423.48	529.79	79.9	Pass
T1	170 - 150	Diagonal	7/8	12	-3.41	6.68	51.0	Pass
T2	150 - 140	Diagonal	L2 1/2x2 1/2x3/16	69	-5.45	12.05	45.2	Pass
Т3	140 - 120	Diagonal	L3x3x3/16	78	-9.43	15.69	60.1	Pass
Τ4	120 - 100	Diagonal	L3x3x1/4	96	-12.90	17.20	75.0	Pass
Т5	100 - 90	Diagonal	L3x3x5/16	111	-13.99	18.79	74.5	Pass
Т6	90 - 80	Diagonal	L3x3x5/16	120	-14.01	16.82	83.3	Pass
T7	80 - 60	Diagonal	L3x3x3/8	129	-14.40	16.01	89.9	Pass
Т8	60 - 40	Diagonal	L3 1/2x3 1/2x5/16	144	-14.45	18.05	80.0	Pass
T9	40 - 20	Diagonal	L3 1/2x3 1/2x3/8	165	-14.97	19.26	77.8	Pass
T10	20 - 0	Diagonal	L4x4x5/16	180	-16.85	20.59	81.8	Pass
T1	170 - 150	Top Girt	7/8	6	-0.33	3.45	9.7	Pass
T2	150 - 140	Top Girt	L3x3x3/16	62	-0.37	17,55	2.1	Pass

· <b>T</b>	Job		Page
tnxTower		PiROD U20'-0"x170' Lattice Tower	44 of 44
AECOM	Project		Date
500 Enterprise Drive, Suite 3B		CFD-010 / Cromwell, CT Tower	12:41:22 07/16/16
Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991	Client	Structural Analysis - AT&T Assessment	Designed by MCD

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	$SF^*P_{attow}$ K	% Capacity	Pass Fail
T1	170 - 150	Bottom Girt	7/8	8	-0.15	3.45	4.5	Pass
T4	120 - 100	Mid Girt	L3x3x3/16	88	-3,13	9.11	34.4	Pass
							Summary	
						Leg (T5)	93.2	Pass
						Diagonal (T7)	89.9	Pass
						Top Girt (T1)	9.7	Pass
						Bottom Girt (T1)	4.5	Pass
						Mid Girt (T4)	34.4	Pass
						Bolt Checks	84.1	Pass
						RATING =	93.2	Pass

Program Version 7.0.5.1 - 2/1/2016 File:P:/Projects/Telcom/Structurals_By_Location/Connecticut/CromwellCFD/02-60512677-CFD-010/ERI/U20x170' PiROD Self-Supporting Lattice Tower.eri

_

#### ANCHOR BOLT EVALUATION

ĥ.

	170' Self-Supporting Latt Anchor Bolt Analysis	ice Tower - Cromwell, CT	_Project No. _Computed by _Checked by _	CFD-010         Sheet         1         of           MCD         Date         07/16/1           Date         07/16/1
	AN	CHOR BOLT	ANALY	SIS
out Data	a			
<u>lax Pier</u>	Reactions:			
Uplift:		Uplift := 369 kips	user input	
Shear	<del>.</del>	Shear := 49 kips	user input	
Comp	pression:	Compression := 432 kips	user input	
nchor E	Bolt Data:			
	STM A687 Grade			
Numb	er of Anchor Bolts = N	<u>N</u> := 6	user input	
Bolt U	Iltimate Strength:	$F_u := 150 \cdot ksi$	user input	
Bolt Y	ield Strength:	Fy:= 105·ksi	user input	
Bolt M	1odulus:	E:= 29000·ksi	user input	
Thickr	ness of Anchor Bolts	D:= 1.25in	user input	
Thread	ds per Inch:	n := 7	user input	
Coeffi	cient of Friction:	$\mu := 0.55$	user input	(for baseplate with grout ASCE 10

 $\mathcal{X}$ 

Ξ.

00

AECO	M			Page of
Job	170' Self-Supporting Lattice Tower - Cromwell, CT	Project No.	CFD-010	Sheet 2 of 3
Description	Anchor Bolt Analysis	Computed by	MCD	Date 07/16/16
		Checked by		Date

#### Anchor Bolt Area:

Gross Area of Bolt:

$$A_g := \frac{\pi}{4} \cdot D^2 \qquad \qquad A_g = 1.227 \cdot in^2$$

Net Area of Bolt:

$$A_n := \frac{\pi}{4} \cdot \left( D - \frac{0.9743 \cdot in}{n} \right)^2 \qquad A_n = 0.969 \cdot in^2$$

#### **Check Tensile Forces:**

Maximum Tensile Force (Gross Area):

 $\label{eq:allowableTension} \mbox{AllowableTension} := 1.33 \cdot \left( 0.33 \cdot A_g \cdot F_u \right) \qquad \qquad \mbox{AllowableTension} = 80.8 \cdot \mbox{kips}$ 

Note: 1.33 increase allowed per TIA/EIA

Maximum Tensile Force (Net Area):

 $F_{net.area} := 1.33 \cdot (0.60 \cdot A_n \cdot Fy)$ 

Note: 1.33 increase allowed per TIA/EIA

Applied Tension:

MaxTension := 
$$\frac{\text{Uplift}}{N}$$

MaxTension =  $61.5 \cdot \text{kips}$ 

F_{net.area} = 81.2 kips

Check Stresses:

$$\frac{\text{MaxTension}}{\text{F}_{\text{net,area}}} = 0.76$$
Condition1 := if  $\left(\frac{\text{MaxTension}}{\text{F}_{\text{net,area}}} \le 1.00, \text{"OK"}, \text{"Overstressed"}\right)$ 
Condition1 = "OK"

AECO	M			Page of
Job	170' Self-Supporting Lattice Tower - Cromwell, CT	Project No.	CFD-010	Sheet 3 of 3
Description	Anchor Bolt Analysis	Computed by	MCD	Date 07/16/16
		Checked by		Date

### Check Anchor Bolt Area:

Based on the ASCE 10-97 Design of Latticed Steel Transmission Structures

Required Area:

$$A_{s1} := \frac{\text{Uplift}}{\text{Fy}} + \frac{\text{Shear}}{\mu \cdot 0.85 \cdot \text{Fy}} \qquad A_{s1} = 4.5 \cdot \text{in}^2$$
$$A_{s2} := \left| \frac{\text{Shear} - (0.3 \cdot \text{Compression})}{\mu \cdot 0.85 \cdot \text{Fy}} \right| \qquad A_{s2} = 1.6 \cdot \text{in}^2$$

Provided Area:

$$A_{sprovided} := A_n \cdot N$$
  $A_{sprovided} = 5.8 \cdot in^2$ 

Condition2 := if 
$$\left(\frac{A_{s1}}{A_{sprovided}} \le 1.00, "OK", "Overstressed"\right)$$
  $\frac{A_{s1}}{A_{sprovided}} = 0.78$   
Condition2 = "OK"

Condition3 := if 
$$\left(\frac{A_{s2}}{A_{sprovided}} \le 1.00, "OK", "Overstressed"\right)$$
  $\frac{A_{s2}}{A_{sprovided}} = 0.28$   
[Condition3 = "OK"]

### FOUNDATION EVALUATION

Job 170' Self-	Supporting Lattice To	wer - Cromw	vell, CT Project No.	Pa CFD-010 Sh	ge of eet 1 of 2
	er Caisson Evaluation		Computed by	MCD Dat	
			Checked by	Dat	e
	FOU	NDATI	ON ANALYSI	S	
Input Data					
<u>Maximum Pier Rea</u>	actions:		Material Properties:		
Compression:	$C_t := 432 \text{ kips}$	user input	Unit Weight of Concrete:	$\gamma c := 150 pcf$	user inpu
Uplift:	U _t := 369 kips	user input	Unit Weight of Water:	$\gamma w := 62.4 pcf$	user inpu
Foundation Dimer	isions:		Unit Weight of Soil:	$\gamma s := 100 pcf$	user input
Drilled Caisson Length:	$C_{\text{Length}} := 41.5 \text{ ft}$	user input	Allowable Soil Bearing Capacity	$q_s := 6 \text{ ksf}$	user input
Diameter of Pier:	$d_p := 5.5 ft$	user input	(Allowable Bearing Pressure at Depth 41')		
Extension of Pier Above Grade:	$L_{pag} = 0.5 ft$	user input	Water Table Below Grade:	$Wd := 4l \cdot ft$	user input
Additional Concrete	$\operatorname{Conc}_{\operatorname{addl}} := 5 \operatorname{ft} \left( 13 \operatorname{ft} \cdot 1 \right)$	$3 \operatorname{ft} - \frac{\pi \cdot d_p^2}{4}$	Average Allowable Shear:	fl:= 859 psf	user input
	$Conc_{addl} = 726.2  \text{ft}^3$	4)	Depth Neglected for Skin Friction at Top:	Depthunbond := 4	ft user input

### Loading:

TotalDownLoad := 
$$C_t + \pi \cdot \frac{d_p^2}{4} \cdot \left[ L_{pag} \gamma c + \left[ \gamma c \cdot \left( C_{Length} - L_{pag} \right) \right] \right]$$

TotalDownLoad = 579.9 kips

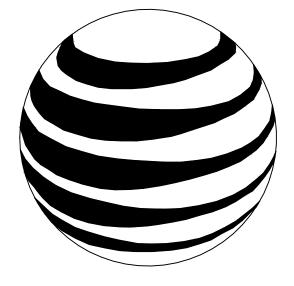
 $PierWeight := \pi \cdot \frac{d_p^2}{4} \cdot \left[ \left( Wd + L_{pag} \right) \cdot \gamma c + \left( C_{Length} - Wd - L_{pag} \right) \cdot \left( \gamma c - \gamma w \right) \right] + Conc_{addl} \gamma c$ 

PierWeight = 256.8 kips

SoilShear :=  $\pi d_p \cdot \left[ f \cdot \left( C_{\text{Length}} - \text{Depthunbond} \right) \right]$ 

SoilShear = 556.6 kips

Job Description	170' Self-Supporting Lattice Tower - Cromwell, CT	_Project No. _Computed by Checked by	CFD-010 MCD	Page of Sheet 2 of 2 Date 07/16/16 Date
Compres	sion Capacity:		-	
TotalDownLo	$\operatorname{badCapacity} := \operatorname{SoilShear} + q_{s} \left( \pi \cdot \frac{d_{p}^{2}}{4} \right)$			
	padCapacity = 699.1 kips			
CheckDownI	LoadCapacity:= if(TotalDownLoad < TotalDownLoadCa	pacity, "Okay", "No	Good")	
CheckDownI	LoadCapacity = "Okay"			
Tension C	Capacity:			
TotalUpLiftC	apacity := SoilShear + PierWeight			
FotalUpLiftC	apacity = 813.4 kips			
CheckUpLift	Capacity:= if(U _t < TotalUpLiftCapacity, "Okay", "No Go	ood")		
CheckUpLift	Capacity = "Okay"			
SafetyFactor _p	$rovided := \frac{TotalUpLiftCapacity}{U_t}$			
	rovided = 2.20			
Check Co	ne Failure:			
ConeFailureC	$\text{bapacity} := \frac{\left[\left(C_{\text{Length}} - L_{\text{pag}}\right) \cdot \tan(30\text{deg}) \cdot 2 + d_{\text{p}}\right]^2 \cdot \pi}{4} \cdot \frac{C_{\text{L}}}{4}$	$\frac{\text{ength} - L_{\text{pag}}}{3} \cdot \gamma s$		
ConeFailureC	apacity = 2997.25 kips			
CheckConeFa	ilureCapacity := $if(U_t < ConeFailureCapacity, "Okay", "]$	No Good" )		
CheckConeFa	ilureCapacity = "Okay"			
ConeSafetyFa	$ctor_{provided} := \frac{ConeFailureCapacity}{U_t}$			
ConeSafetyFa	$ctor_{provided} = 8.12$		.*1	


#### About AECOM

AECOM (NYSE: ACM) is a global provider of professional technical and management support services to a broad range of markets, including transportation, facilities, environmental, energy, water and government. With approximately 45,000 employees around the world, AECOM is a leader in all of the key markets that it serves. AECOM provides a blend of global reach, local knowledge, innovation, and collaborative technical excellence in delivering solutions that enhance and sustain the world's built, natural, and social environments. A Fortune 500 company, AECOM serves clients in more than 100 countries and has annual revenue in excess of \$6 billion.

More information on AECOM and its services can be found at www.aecom.com.

500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 860-529-8882 Fax: 860-529-3991

	PF	<b>ROJECT INFORMAT</b>	ION		
SCOPE OF WORK	<ul> <li>(2) EXISTIN</li> <li>AT&amp;T RRUs</li> <li>NEW RRUs;</li> <li>(1) EXISTIN</li> </ul>	NNAS: (1) NEW ANTENNA PER SE G ANTENNAS PER SECTOR TO RE : (2) NEW RRU PER SECTOR WIT (1) NEW A2 MODULE PER SECTO G RRU PER SECTOR TO BE REUS	MAIN. H (3) SECTORS, FOR DR FOR A TOTAL OF	A TOTAL OF (6) (3) A2 MODULES;	
		DS: (1) NEW DC-6 SQUID; (1) E ES: (1) NEW FIBER TRUNK & (2)		TO REMAIN.	
SITE ADDRESS:	179 SHUNPIKE CROMWELL, CT				
	41.6232231	41°37'23.60316"N			
USID:	-72.6790381	72°40'44.53716"W			
	CROMWELL FIRE	DEPARTMENT			
TYPE OF SITE:	LATTICE TOWER				
TOWER HEIGHT:	170'-0"±				] ]
RAD CENTER:	115 <b>'</b> ±				
CURRENT USE:	UNMANNED WIR	ELESS TELECOMMUNICATIONS FACI	LITY		
PROPOSED USE:	UNMANNED WIR	ELESS TELECOMMUNICATIONS FACI	LITY		
Τ 1		DRAWING INDEX			DEPART
T-1 GN-1	TITLE SHEET	NERAL NOTES		0	BEAR L
A-1	COMPOUND LAYOU			0	RIGHT
A-2	EQUIPMENT LAYOU			0	_ I-90 [   TAKE F
A-3	ANTENNA LAYOUTS	& ELEVATION		0	- (RIGHT) LEFT (
A-4	DETAILS			0	RIGHT ONTO L
G-1	GROUNDING, ONE-	LINE DIAGRAM & DETAILS		0	-
	DARTIES LEDERY AF	PROVE AND ACCEPT THESE DOCL		75 TUS	
SUBCONTRACTOR	TO PROCEED WITH	THE CONSTRUCTION DESCRIBED F DEPARTMENT AND MAY IMPOSE (	HEREIN, ALL DOCUMEI	NTS ARE SUBJECT	
DISCIPLINE:		NAME:		DATE:	1
SITE ACQUISITION	 	· · · · ··· · · ·			
CONSTRUCTION N					- (
AT&T PROJECT I	MANAGER:		 I		6
COM	<b>→EX</b> ltants	EMPR	E si	SITE NUMB TE NAME: CRO	
115 R SUIT MOUNTAIN LA PHONE: 8	U I L A II L S OUTE 46 TE E39 AKES, NJ 07046 62.209.4300 2.209.4301	telecor	n	179 SHUNI CROMWELL, MIDDLESE>	PIKE ROA CT 0641





# FA CODE: 10035331 SITE NUMBER: CT1141 SITE NAME: CROMWELL US MIL

### **CLIENT REPRESENTATIVE**

COMPANY: ADDRESS: CONTACT: PHONE: EMAIL:

DAVID COOPER

SITE ACQUISITION:

COMPANY: ADDRESS: CONTACT: PHONE: EMAIL:

EMPIRE TELECOM 16 ESQUIRE ROAD BILLERICA, MA 01821 DAVID COOPER 617-639-4908 dcooper@empiretelecomm.com

### ZONING:

COMPANY: ADDRESS: CONTACT: PHONE:

EMAIL:

DAVID COOPER

### **ENGINEERING:** COMPANY:

ADDRESS:

CONTACT:

PHONE: EMAIL:

COM-EX CONSULTANTS, LLC 115 ROUTE 46 SUITE E39 MOUNTAIN LAKES, NJ 07046 NICHOLAS D. BARILE, P.E. 862-209-4300 nbarile@comexconsultants.com

550 COCHITUATE RD, TOWN OF FRAMINGHAM, MA 01701: ON SR-30 [COCHITUATE RD] (WEST). EFT (SOUTH) ONTO SR-126 [CONCORD ST], TURN LEFT (SOUTH) ONTO CONCORD ST. TURN (WEST) ONTO SR-9 [WORCESTER RD], MERGE ONTO SR-30 [SR-9]. KEEP STRAIGHT ONTO SR-9 STER RD], TURN RIGHT ONTO RAMP. KEEP LEFT TO STAY ON RAMP *TOLL ROAD*. MERGE ONTO MASS PIKE], AT EXIT 9, TAKE RAMP (RIGHT) ONTO 1-84. ENTERING CONNECTICUT. AT EXIT 57, AMP (LEFT) ONTO SR-15, ROAD NAME CHANGES TO US-5 [SR-15]. AT EXIT 86, TAKE RAMP ONTO I-91, AT EXIT 23, TURN RIGHT ONTO RAMP. TURN RIGHT (WEST) ONTO WEST ST, TURN SOUTH) ONTO SR-3 [CROMWELL AVE]. BEAR LEFT (SOUTH) ONTO SR-3 [SHUNPIKE RD]. TURN (WEST) ONTO COLES RD, TURN LEFT (EAST) ONTO TWIN OAKS DR. TURN LEFT (SOUTH-EAST) OCAL ROAD ARRIVE AT SITE: THERE IS AN AUTOMATIC GATE AT THE ENTRANCE.



0	08/01/16		ISSUED AS FINAL		GR	
NO.	DATE		REVISIONS		BY	С
	SCALE: AS	SHOWN	DESIGNED BY: JW	D	RAWN	ΒY

5144 US MIL



### **PROJECT TEAM**

EMPIRE TELECOM 16 ESQUIRE ROAD BILLERICA, MA 01821 617-639-4908 dcooper@empiretelecomm.com

EMPIRE TELECOM 16 ESQUIRE ROAD BILLERICA, MA 01821 617-639-4908 dcooper@empiretelecomm.com **RF ENGINEER:** 

COMPANY: ADDRESS:

CONTACT: PHONE: EMAIL:

COMPANY:

ADDRESS:

CONTACT:

PHONE:

EMAIL:

AT&T MOBILITY - NEW ENGLAND 550 COCHITUATE ROAD SUITE 550 13 & 14 FRAMINGHAM, MA 01701 CAMERON SYME 508-596-7146 cs6970@att.com

### **CONSTRUCTION MANAGEMENT:**

EMPIRE TELECOM 16 ESQUIRE ROAD BILLERICA, MA 01821 GRZEGORZ "GREG" DORMAN 484-683-1750 gdorman@empiretelecomm.com

### **GENERAL NOTES**

THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY, AND COPYRIGHTED WORK OF AT&T. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED. DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED.

THE FACILITY IS AN UNMANNED PRIVATE AND SECURED EQUIPMENT INSTALLATION. IT IS ONLY ACCESSED BY TRAINED TECHNICIANS FOR PERIODIC ROUTINE MAINTENANCE AND THEREFORE DOES NOT REQUIRE ANY WATER OR SANITARY SEWER SERVICE. THE FACILITY IS NOT GOVERNED BY REGULATIONS REQUIRING PUBLIC ACCESS PER ADA REQUIREMENTS.

CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON THE JOB SITE AND SHALL IMMEDIATELY NOTIFY THE AT&T REPRESENTATIVE IN WRITING OF DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME.



CONNECTICUT LAW REQUIRES TWO WORKING DAYS NOTICE PRIOR TO ANY EARTH MOVING ACTIVITIES BY CALLING 800-922-4455 OR DIAL 811

		SEAL:		T&T	
DTS	NB	NO HOMASE DEPENDENCED	DRAWING TITLE:	SHEET	
СНК	APP'D	CT LICENSE NO! 28643	JOB NUMBER	DRAWING NUMBER	REV
BY: JW	V		15108-EMP	T-1	0

### GROUNDING NOTES:

- 1. THE SUBCONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM AND LIGHTNING PROTECTION SYSTEM (AS DESIGNED AND INSTALLED) FOR STRICT COMPLIANCE WITH THE NEC (AS ADOPTED BY THE AHJ), THE SITE-SPECIFIC (UL, LPI, OR NFPA) LIGHTING PROTECTION CODE, AND GENERAL COMPLIANCE WITH TELCORDIA AND TIA GROUNDING STANDARDS. THE SUBCONTRACTOR SHALL REPORT ANY VIOLATIONS OR ADVERSE FINDINGS TO THE CONTRACTOR FOR RESOLUTION.
- 2. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION, AND AC POWER GES'S) SHALL BE BONDED TOGETHER, AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 3. THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR NEW GROUND ELECTRODE SYSTEMS. THE SUBCONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS. TESTS SHALL BE PERFORMED IN ACCORDANCE WITH 25471-000-3PS-EG00-0001, DESIGN & TESTING OF FACILITY GROUNDING FOR CELL SITES.
- 4. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 5. EACH BTS CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, 6 AWG STRANDED COPPER OR LARGER FOR INDOOR BTS: 2 AWG STRANDED COPPER FOR OUTDOOR BTS.
- 6. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 7. APPROVED ANTIOXIDANT COATINGS (I.E., CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 8. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED WITH STAINLESS STEEL HARDWARE TO THE BRIDGE AND THE TOWER GROUND BAR.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 11. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH 6 AWG COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 12. GROUND CONDUCTORS USED IN THE FACILITY GROUND AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC PLASTIC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (E.G., NON-METALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 13. ALL TOWER GROUNDING SYSTEMS SHALL COMPLY WITH THE REQUIREMENTS OF ANSI/TIA 222. FOR TOWERS BEING BUILT TO REV-G OF THE STANDARD, THE WIRE SIZE OF THE BURIED GROUND RING AND CONNECTIONS BETWEEN THE TOWER AND THE BURIED GROUND RING SHALL BE CHANGED FROM 2 AWG TO 2/0 AWG. IN ADDITION, THE MINIMUM LENGTH OF THE GROUND RODS SHALL BE INCREASED FROM EIGHT FEET (8') TO TEN FEET (10').
- 14. ALL NEW STRUCTURES WITH A FOUNDATION AND/OR FOOTING HAVING 20 FT. OR MORE 1/2" OR GREATER ELECTRICALLY CONDUCTIVE REINFORCING STEEL MUST HAVE IT BONDED TO THE GROUND RING USING AN EXOTHERMIC WELD CONNECTION USING #2 AWG SOLID TINNED COPPER GROUND WIRE, PER NEC 250.50.





### GENERAL NOTES:

- 1. FOR THE PURP

- ONLY.
- THE DRAWINGS.
- CONTRACTOR.

- INSTITUTE (ACI) 301.
- PAINT.

- AFTER MIDNIGHT.

### SITE NUMBER: CT5144 SITE NAME: CROMWELL US MIL

179 SHUNPIKE ROAD CROMWELL, CT 06416 MIDDLESEX COUNTY

POSE OF CONSTRUCTION	DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:	
CONTRACTOR -	EMPIRE TELECOM	
SUBCONTRACTOR -	GENERAL CONTRACTOR (CONSTRUCTION)	
OWNER -	AT&T MOBILITY	
OEM -	ORIGINAL EQUIPMENT MANUFACTURER	

2. PRIOR TO THE SUBMISSION OF BIDS. THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CONTRACTOR.

3. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES. SUBCONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

4. DRAWINGS PROVIDED HERE ARE NOT TO BE SCALED AND ARE INTENDED TO SHOW OUTLINE

5. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON

6. THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

7. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION SPACE FOR APPROVAL BY THE

8. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND T1 CABLES, GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING. SUBCONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING WITH THE CONTRACTOR. ROUTING OF TRENCHING SHALL BE APPROVED BY CONTRACTOR

9. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.

10. SUBCONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OFF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

11. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION.

12. ALL CONCRETE REPAIR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN CONCRETE

13. ANY NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL HAVE 4000 PSI STRENGTH AT 28 DAYS UNLESS OTHERWISE SPECIFIED. ALL CONCRETING WORK SHALL BE DONE IN ACCORDANCE WITH ACI 318 CODE REQUIREMENTS.

14. ALL STRUCTURAL STEEL WORK SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH AISC SPECIFICATIONS. ALL STRUCTURAL STEEL SHALL BE ASTM A36 (Fy=36 ksi). ALL STEEL EXPOSED TO WEATHER SHALL BE HOT DIPPED GALVANIZED. TOUCH UP ALL SCRATCHES AND OTHER MARKS IN THE FIELD AFTER STEEL IS ERECTED USING A COMPATIBLE ZINC RICH

15. CONSTRUCTION SHALL COMPLY WITH SPECIFICATION 25741-000-3APS-A00Z-00002, "GENERAL CONSTRUCTION SERVICES FOR CONSTRUCTION OF AT&T MOBILITY SITES."

16. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. SUBCONTRACTOR SHALL NOTIFY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.

17. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION. ANY CONSTRUCTION WORK BY SUBCONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WITH CONTRACTOR. ALSO, WORK MAY NEED TO BE SCHEDULED FOR AN APPROPRIATE MAINTENANCE WINDOW USUALLY IN LOW TRAFFIC PERIODS

18. SINCE THE CELL SITE MAY BE ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE REQUIRED TO BE WORN TO ALERT OF ANY DANGEROUS EXPOSURE LEVELS.

- STANDARDS:
- CONCRETE
- THIRTEENTH EDITION

- TELECOMMUNICATIONS
- GROUNDING OF ELECTRONIC EQUIPMENT

- CONSTRUCTION.

							SEAL:	A	AT&T	
0	08/01/16		ISSUED AS FINAL	G	R DTS	S NB		DRAWING TITLE: GROUNDING NOTES	S & GENERAL NO	TES
NO.	DATE		REVISIONS	B	r Сні	< APP'D	CT LICE SAL NO. 28643	JOB NUMBER	DRAWING NUMBER	REV
	SCALE: AS	SHOWN	DESIGNED BY: JW	DRAW	N BY:	JW		15108-EMP	GN-1	0



19. SUBCONTRACTOR'S WORK SHALL COMPLY WITH ALL APPLICABLE NATIONAL, STATE, AND LOCAL CODES AS ADOPTED BY THE LOCAL AUTHORITY HAVING JURISDICTION (AHJ) FOR THE LOCATION. THE EDITION OF THE AHJ ADOPTED CODES AND STANDARDS IN EFFECT ON THE DATE OF CONTRACT AWARD SHALL GOVERN THE DESIGN.

INTERNATIONAL BUILDING CODE: IBC 2009 WITH LOCAL & COUNTY AMENDMENTS

NATIONAL ELECTRICAL CODE: NEC 2011 WITH LOCAL & COUNTY AMENDMENTS

• FIRE/LIFE SAFETY CODE: NFPA-101 2009 WITH LOCAL & COUNTY AMENDMENTS

20. SUBCONTRACTOR'S WORK SHALL COMPLY WITH THE LATEST EDITION OF THE FOLLOWING

AMERICAN CONCRETE INSTITUTE (ACI) 318, BUILDING CODE REQUIREMENTS FOR STRUCTURAL

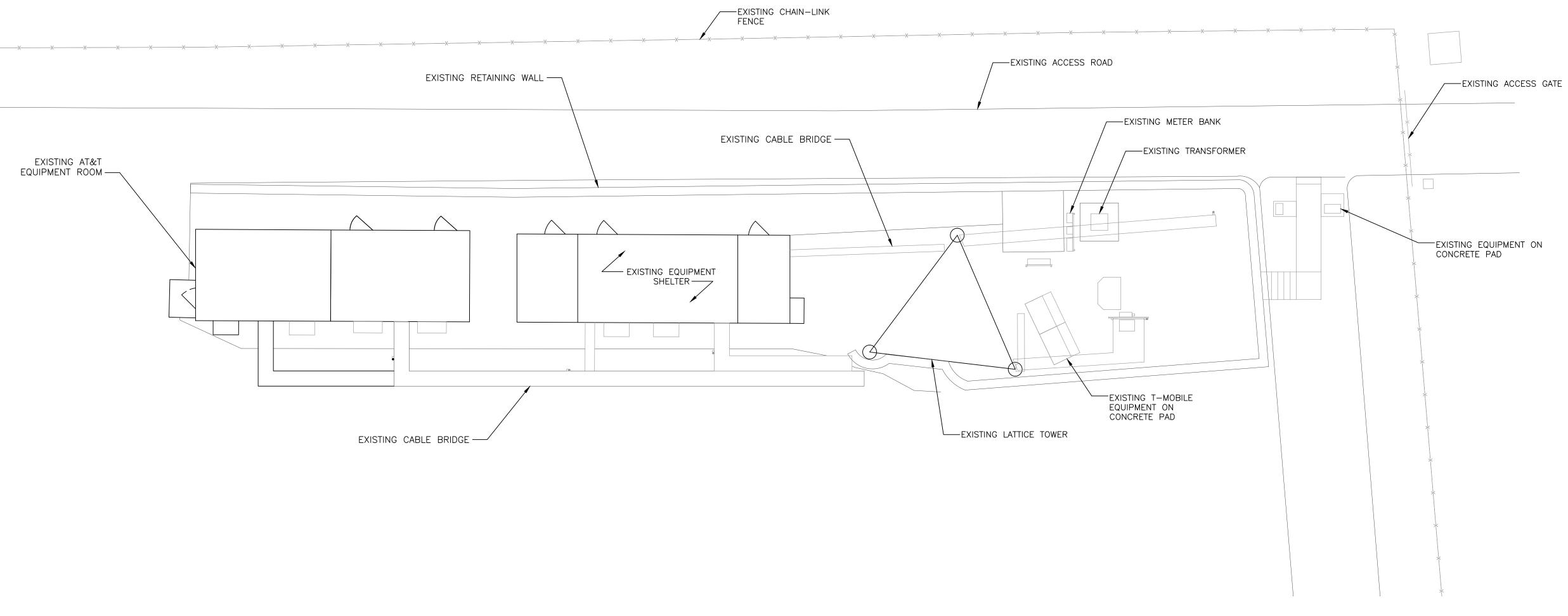
AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC), MANUAL OF STEEL CONSTRUCTION,

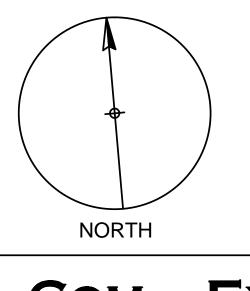
AMERICAN SOCIETY OF TESTING OF MATERIALS, ASTM

• TELECOMMUNICATIONS INDUSTRY ASSOCIATION (ANSI/TIA-222-G-1), STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWER AND ANTENNA SUPPORTING STRUCTURES:

• TIA 607. COMMERCIAL BUILDING GROUNDING AND BONDING REQUIREMENTS FOR

OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, OSHA


• INSTITUTE FOR ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE) 81, GUIDE FOR MEASURING EARTH RESISTIVELY, GROUND IMPEDANCE, AND EARTH SURFACE POTENTIALS OF A GROUND SYSTEM IEEE 1100 (1999) RECOMMENDED PRACTICE FOR POWERING AND


• TELCORDIA GR-1503. COAXIAL CABLE CONNECTIONS

21. FOR ANY CONFLICTS BETWEEN SECTIONS OF LISTED CODES AND STANDARDS REGARDING MATERIAL, METHODS OF CONSTRUCTION, OR OTHER REQUIREMENTS, THE MOST RESTRICTIVE REQUIREMENT SHALL GOVERN. WHERE THERE IS CONFLICT BETWEEN A GENERAL REQUIREMENT AND A SPECIFIC REQUIREMENT, THE SPECIFIC REQUIREMENT SHALL GOVERN.

22. CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXISTING CONDITIONS AT THE SITE PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA AND SUBMIT TO THE ENGINEER ANY DISCREPANCIES FROM THE DRAWINGS.

23. INFORMATION SHOWN ON THIS SET OF PLANS TAKEN FROM DRAWINGS PREPARED BY DEWBERRY ENGINEERING FOR A RECENT UPGRADE DATED 06/29/2012. CONTRACTOR TO NOTIFY DESIGN ENGINEER OF ANY DISCREPANCIES PRIOR TO COMMENCEMENT OF

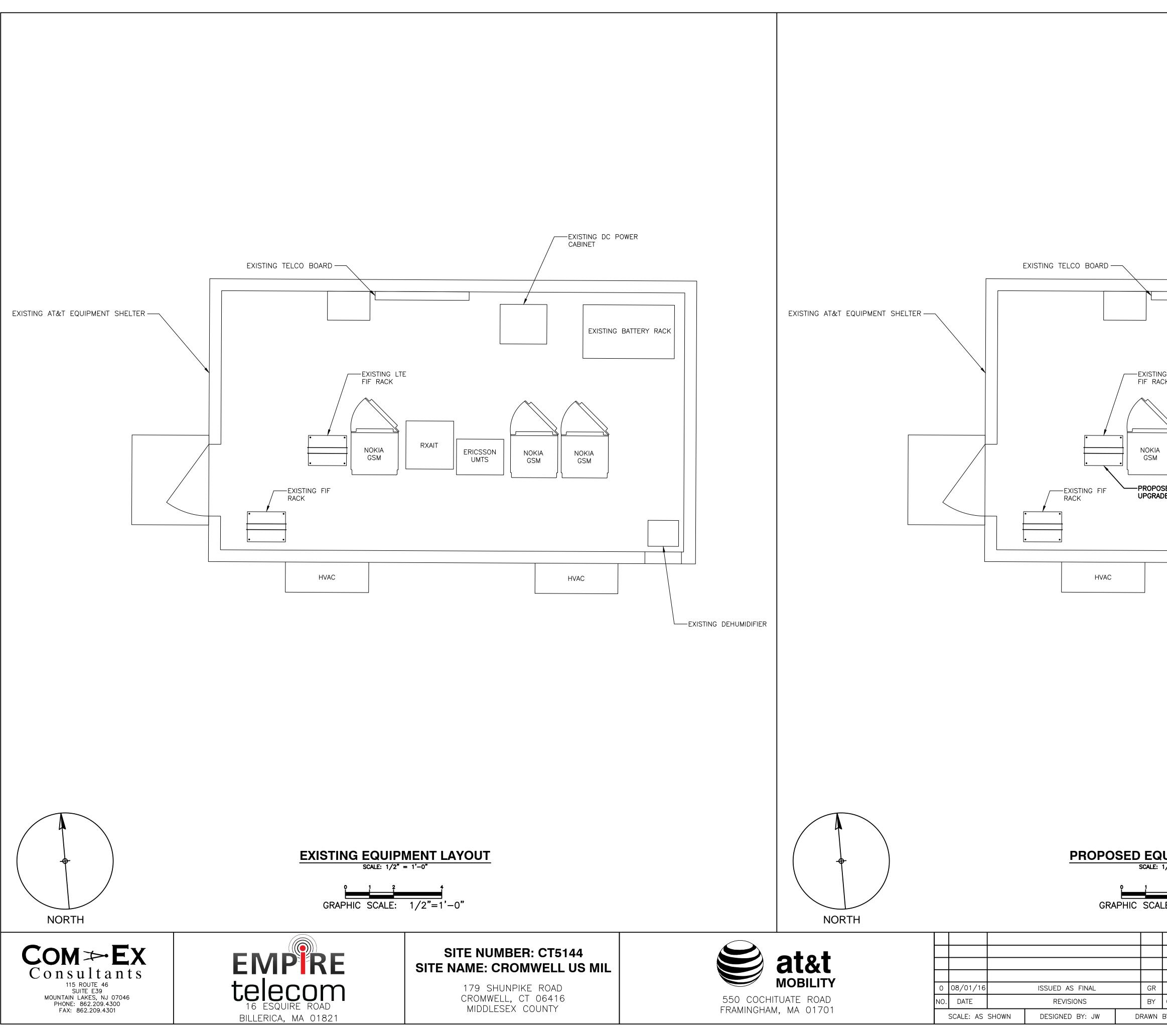




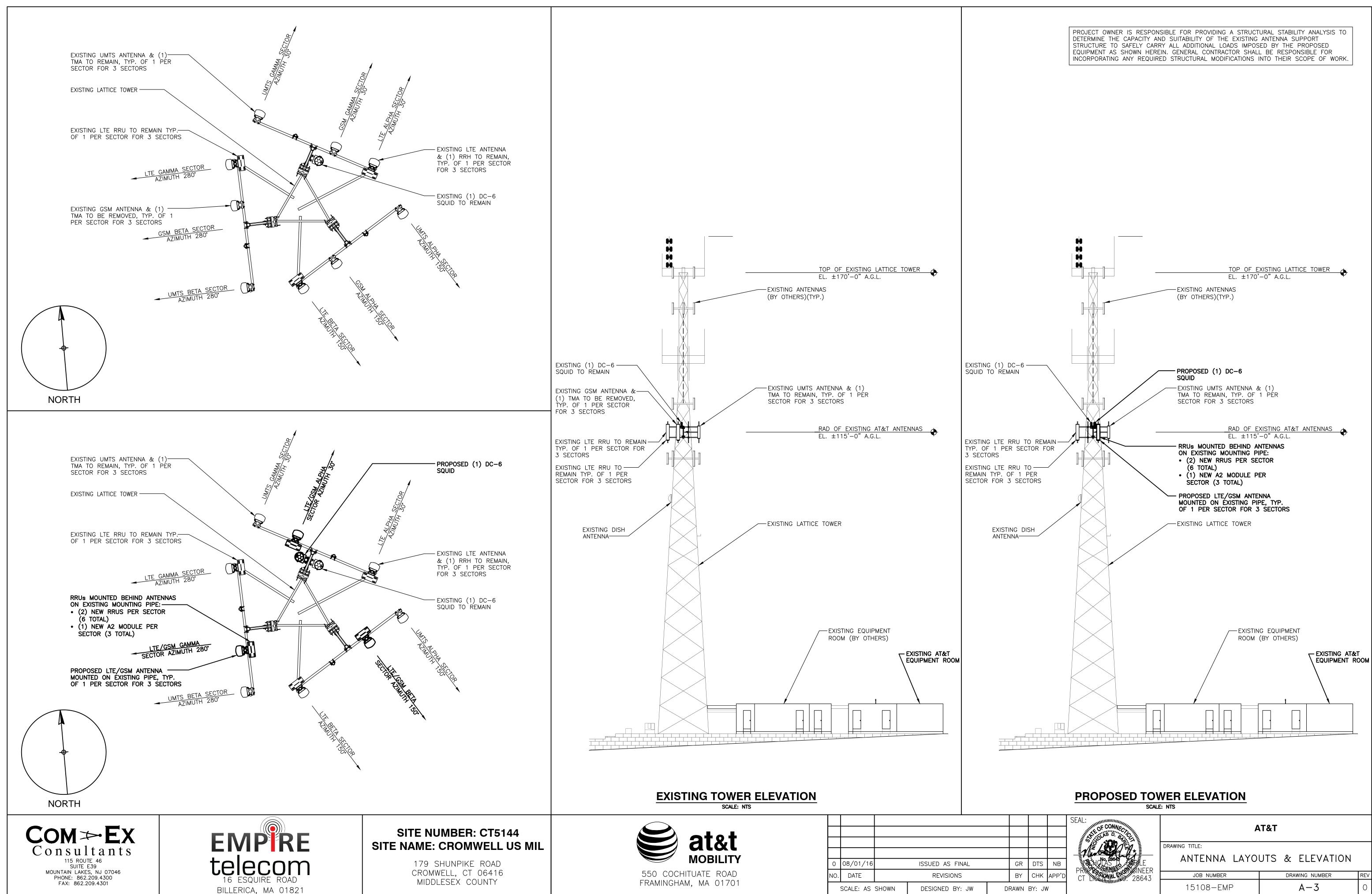


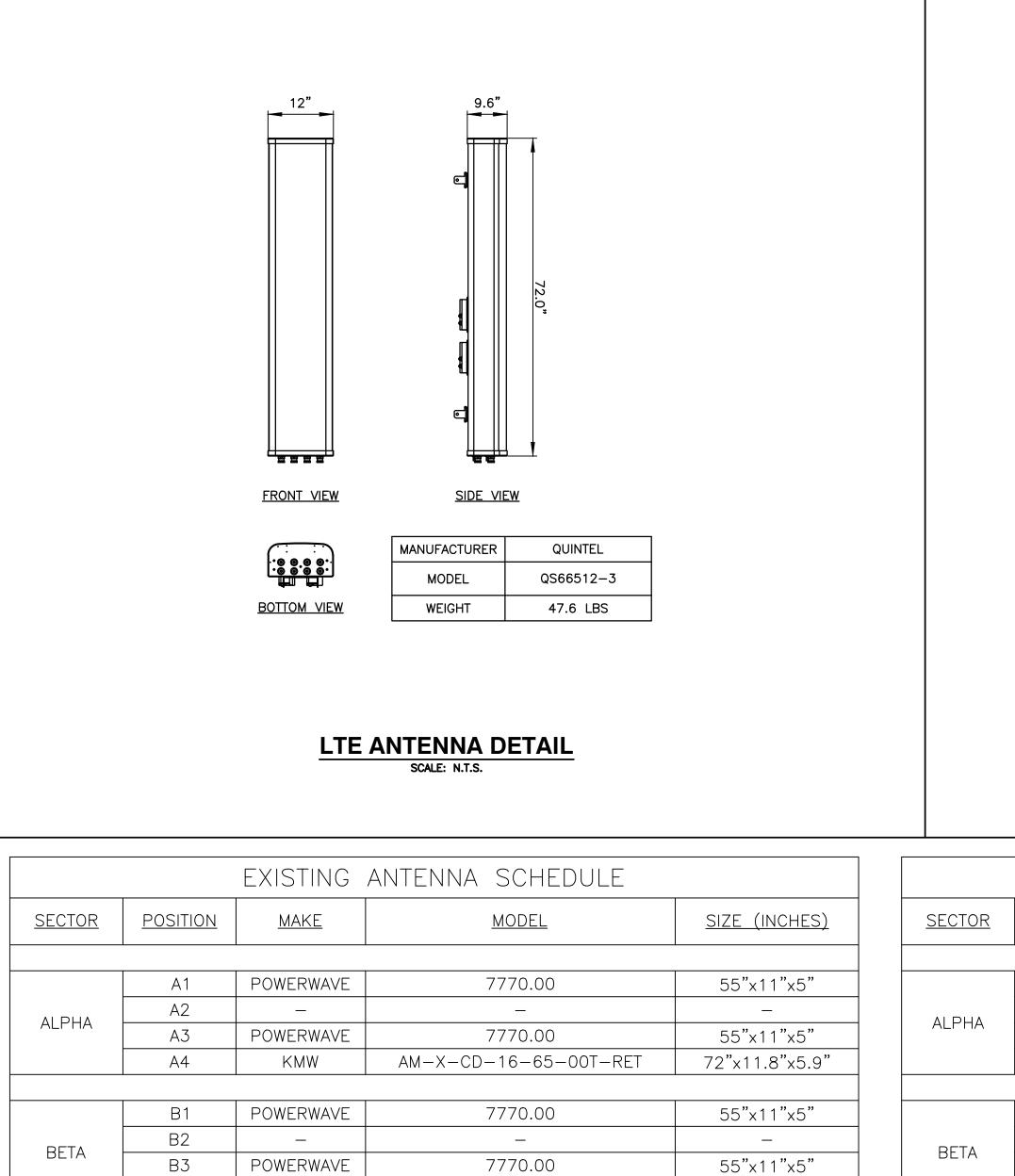


### SITE NUMBER: CT5144 SITE NAME: CROMWELL US MIL


179 SHUNPIKE ROAD CROMWELL, CT 06416 MIDDLESEX COUNTY

## COMPOUND LAYOUT SCALE: 1/8" = 1'-0"


GRAPHIC SCALE: 1/8"=1'-0"




_									SEAL:		AT&T	
_	0	08/01/16		ISSUED AS FINAL		GR	DTS	NB	No HOLAS B. DATALE	DRAWING TITLE:	JND LAYOUT	
٢	٧٥.	DATE		REVISIONS		ΒY	СНК	APP'D	CT LIVE OSAL NO. 28643	JOB NUMBER	DRAWING NUMBER	REV
		SCALE: AS	SHOWN	DESIGNED BY: JW	DR	AWN	BY: JV	N		15108-EMP	A-1	0



	EXISTING DC POWER CABINET	
	EXISTING BATTERY	RACK
RXAIT RXAIT RXAIT ERICSSON UMTS NOF GS ED DUL TO DUS E. ADD 2ND DUS	KIA M KIA GSM	
	HVAC	EXISTING DEHUMIDIFIER
<b>JIPMENT LAYOUT</b> '2" = 1'-0" 24		
E: 1/2"=1'-0"	Α	T&T
DTS NB CHK APP'D Y: JW	DRAWING TITLE: EQUIPMEN JOB NUMBER 15108-EMP	NT LAYOUT DRAWING NUMBER REV A-2 0





AM-X-CD-16-65-00T-RET

7770.00

_

7770.00

AM-X-CD-16-65-00T-RET

GAMMA

72"x11.8"x5.9"

55"x11"x5"

—

55"x11"x5"

72"x11.8"x5.9"



Β4

G1

G2

G3

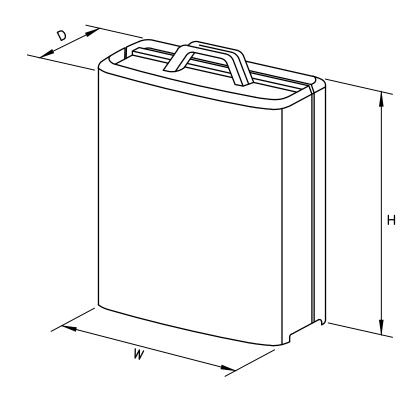
G4

GAMMA

KMW

POWERWAVE

—


POWERWAVE

KMW



### SITE NUMBER: CT5144 SITE NAME: CROMWELL US MIL

179 SHUNPIKE ROAD CROMWELL, CT 06416 MIDDLESEX COUNTY

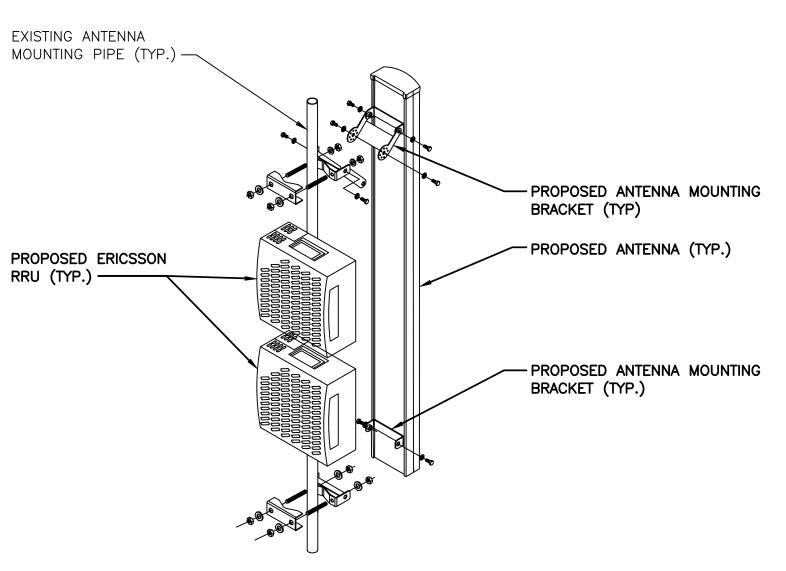


MODEL	L x W x H	WEIGHT
*RRUS-11	19.69" x 16.97" x 7.17"	50.7 LBS
RRUS-12	20.4" x 18.5" x 7.5"	58 LBS
RRUS-32	29.9" x 13.3" x 9.5"	77 LBS
A2 MODULE	16.4" x 15.2" x 3.4"	22 LBS

*DENOTES EXISTING

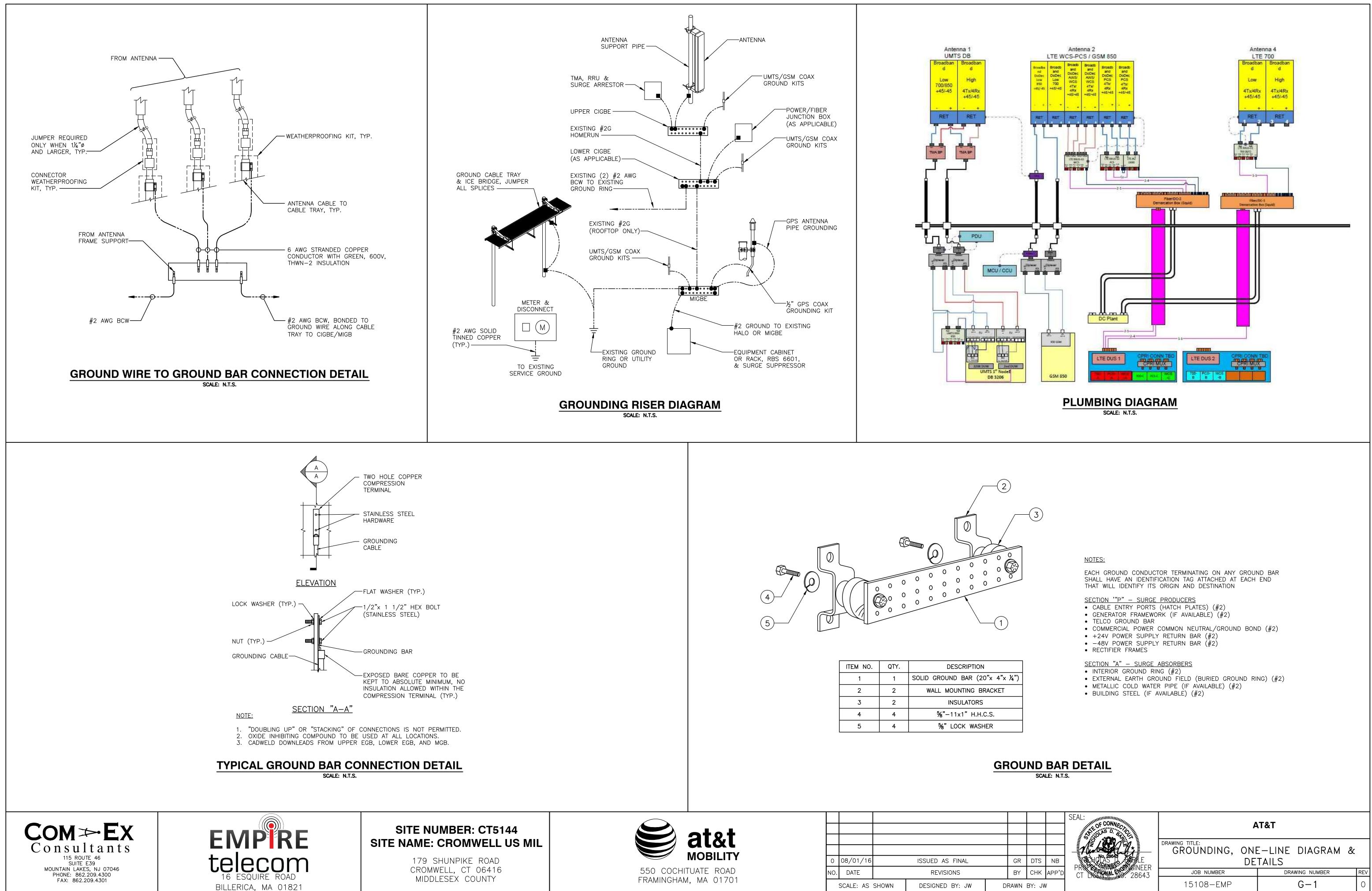
### **RRUS DETAIL** SCALE: N.T.S.

FINAL ANTENNA SCHEDULE						
POSITION	MAKE	MODEL	<u>size (inches)</u>			
	1					
A1	POWERWAVE	7770.00	55"x11"x5"			
A2	QUINTEL	QS66512-3	72"x12"x9.6"			
A3	_		-			
A4	KMW	AM-X-CD-16-65-00T-RET	72"x11.8"x5.9"			
B1	POWERWAVE	7770.00	55"x11"x5"			
B2	QUINTEL	QS66512-3	72"x12"x9.6"			
B3	—	_	-			
B4	CCI	HPA-65R-BUU-H6	72"x14.8"x7.4"			
G1	POWERWAVE	7770.00.	55"x11"x5"			
G2	QUINTEL	QS66512-3	72"x12"x9.6"			
G3	-	_	-			
G4	CCI	HPA-65R-BUU-H6	72"x14.8"x7.4"			
	•					


		PROPC	)SED RRH SCHE	EDULE	
<u>SECTOR</u>	MAKE	MODEL	<u>SIZE (INCHES)</u>	ADDITIONAL COMPONENT	<u>SIZE (INCHES)</u>
	ERICSSON	RRUS-12	20.4"x18.5"x7.5"	ERICSSON A2 MODULE	16.4"x15.2"x3.4"
ALPHA	ERICSSON	RRUS-32	29.9"x13.3"x9.5"		
	ERICSSON	RRUS-11	19.7"x16.9"x7.2"		
BETA	ERICSSON	RRUS-12	20.4"x18.5"x7.5"	ERICSSON A2 MODULE	16.4"x15.2"x3.4"
	ERICSSON	RRUS-32	29.9"x13.3"x9.5"		
	ERICSSON	RRUS-11	19.7"X16.9"X7.2"		
	ERICSSON	RRUS-12	20.4"x18.5"x7.5"	ERICSSON A2 MODULE	16.4"x15.2"x3.4"
GAMMA	ERICSSON	RRUS-32	29.9"x13.3"x9.5"		
	ERICSSON	RRUS-11	19.7"X16.9"X7.2"		

PROJECT OWNER IS RESPONSIBLE FOR PROVIDING A STRUCTURAL STABILITY ANALYSIS TO DETERMINE THE CAPACITY AND SUITABILITY OF THE EXISTING ANTENNA SUPPORT STRUCTURE TO SAFELY CARRY ALL ADDITIONAL LOADS IMPOSED BY THE PROPOSED EQUIPMENT AS SHOWN HEREIN. GENERAL CONTRACTOR SHALL BE RESPONSIBLE FOR INCORPORATING ANY REQUIRED STRUCTURAL MODIFICATIONS INTO THEIR SCOPE OF WORK.




0	08/01/16	ISSUED AS FINAL			GR	
NO.	DATE		REVISIONS		BY	(
	SCALE: AS	SHOWN	DESIGNED BY: JW	D	RAWN	B,

RRU (TYP.) -



### ANTENNA AND RRU MOUNTING DETAIL SCALE: N.T.S.

		SEAL:	AT&T				
DIC			DRAWING TITLE:	TAILS			
DTS	NB						
СНК	APP'D	CT LICE SAL NO. 28643	JOB NUMBER	DRAWING NUMBER	REV		
BY: JW	1		15108-EMP	A-4	0		



ITEM NO.	QTY.	DESCRIPTION		
1	1	SOLID GROUND BAR (20"x 4"x ¼")		
2	2	WALL MOUNTING BRACKET		
3	2	INSULATORS		
4	4	5∕%"—11x1" H.H.C.S.		
5	4	%" LOCK WASHER		

0	08/01/16	ISSUED AS FINAL		GR		
NO.	DATE	REVISIONS		ΒY		
SCALE: AS SHOWN		SHOWN	DESIGNED BY: JW	DI	RAWN	E