

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in New York and Massachusetts

March 18, 2024

Via Electronic Mail

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 667 Main Street, Cromwell, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an existing wireless telecommunications facility at the above-referenced property address (the "Property"). The facility consists of antennas and remote radio heads on a monopole tower. Related equipment is located on the ground, near the base of the tower. The tower and Cellco's use of the tower were approved by the Council in September of 2018 (Docket No. 481). A copy of the Council's Docket No. 481 Decision and Order is included in Attachment 1.

In addition, on May 15, 2023, the Council approved EM-VER-033-230425, permitting the installation of a Multi-Beam Spherical Lens ("MBSL") antenna on the tower for temporary use during the 2023 and 2024 Travelers Championship golf tournaments.

Cellco now seeks Council authorization of the following three facility changes: 1) remove three (3) existing Beta sector antennas from the existing antenna platform; 2) install one (1) new MBSL antenna and three (3) remote radio heads ("RRHs") in the sites Beta sector on the existing antenna platform; and 3) allow Cellco to maintain the existing MBSL antennas, approved in EM-VER-033-23425, as a permanent improvement going forward. A set of project plans showing Cellco's proposed facility modifications and the specifications for Cellco's new antenna and RRHs are included in Attachment 2.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Cromwell's Chief Elected Official and Land Use Officer. A copy of this letter is being sent to the owner of the Property.

Robinson+Cole

Melanie A. Bachman, Esq. March 18, 2024 Page 2

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

The proposed modifications will not result in an increase in the height of the existing tower. The new MBSL antenna will be installed on the existing antenna platform at the same height as Cellco's existing antennas.

The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.

The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

The installation of Cellco's new MBSL antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. Included in <u>Attachment 3</u> are Far Field Approximation Tables demonstrating that the proposed modified facility will comply with the FCC safety standards.

The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

According to the attached Structural Analysis Report ("SA") and Antenna Mount Analysis Report ("MA"), the existing tower, tower foundation, and existing and proposed antenna mounts, with certain modifications, can support the proposed facility modifications. Copies of the SA and MA are included in Attachment 4.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 6</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Kenneth C. Baldwin

Kunie gmu-

Attachments Copy to:

Anthony Salvatore, Town Manager Stuart Popper, Director of Planning and Development Cromwell Concrete Products, Inc., Property Owner Alex Tyurin, Verizon Wireless

ATTACHMENT 1

DOCKET NO. 481 - Cellco Partnership d/b/a Verizon Wireless	}	Connecticut
application for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance, and operation of a	}	Siting
telecommunications facility located at 667, 665, 663 and 663R Main Street, Cromwell, Connecticut.	}	Council
		July 19, 2018

Decision and Order

Pursuant to Connecticut General Statutes §16-50p and the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, maintenance, and operation of a telecommunications facility, including effects on the natural environment, ecological balance, public health and safety, scenic, historic, and recreational values, agriculture, forests and parks, air and water purity, and fish, aquaculture and wildlife are not disproportionate, either alone or cumulatively with other effects, when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to Cellco Partnership d/b/a Verizon Wireless, hereinafter referred to as the Certificate Holder, for a telecommunications facility at 667, 665, 663 and 663R Main Street, Cromwell, Connecticut.

Unless otherwise approved by the Council, the facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be constructed as a monopole at a height of 120 feet above ground level to provide the proposed wireless services, sufficient to accommodate the antennas of Cellco Partnership d/b/a Verizon Wireless and other entities, both public and private. The height of the tower may be extended after the date of this Decision and Order pursuant to regulations of the Federal Communications Commission.
- 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be served on the Town Cromwell for comment, and all parties and intervenors as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction and shall include:
 - a) final site plan(s) for development of the facility that employ the governing standard in the State of Connecticut for tower design in accordance with the currently adopted International Building Code and include specifications for the tower, tower foundation, antennas and equipment compound including, but not limited to, fencing, radio equipment, access road, utility installation and emergency backup generator with consideration of additional run time capacity;
 - b) the tower shall be designed with a yield point to ensure that the tower setback radius remains within the boundaries of the subject property;
 - c) construction plans for site clearing, grading, landscaping, water drainage and stormwater control, and erosion and sedimentation controls consistent with the <u>2002 Connecticut Guidelines for Soil</u> Erosion and Sediment Control, as amended;
 - d) eastern box turtle protection plan;
 - e) plans to protect the tree roots from the utility trench; and
 - f) proposed hours and days of the week for construction activities.

- 3. Prior to the commencement of operation, the Certificate Holder shall provide the Council worst-case modeling of the electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of the electromagnetic radio frequency power density be submitted to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.
- Upon the establishment of any new federal radio frequency standards applicable to frequencies of this
 facility, the facility granted herein shall be brought into compliance with such standards.
- 5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 6. Unless otherwise approved by the Council, if the facility authorized herein is not fully constructed with at least one fully operational wireless telecommunications carrier providing wireless service within eighteen months from the date of the mailing of the Council's Findings of Fact, Opinion, and Decision and Order (collectively called "Final Decision"), this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made. The time between the filing and resolution of any appeals of the Council's Final Decision shall not be counted in calculating this deadline. Authority to monitor and modify this schedule, as necessary, is delegated to the Executive Director. The Certificate Holder shall provide written notice to the Executive Director of any schedule changes as soon as is practicable.
- 7. Any request for extension of the time period referred to in Condition 6 shall be filed with the Council not later than 60 days prior to the expiration date of this Certificate and shall be served on all parties and intervenors, as listed in the service list, and the Town of Cromwell.
- 8. If the facility ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council within 90 days from the one year period of cessation of service. The Certificate Holder may submit a written request to the Council for an extension of the 90 day period not later than 60 days prior to the expiration of the 90 day period.
- 9. Any nonfunctioning antenna, and associated antenna mounting equipment, on this facility shall be removed within 60 days of the date the antenna ceased to function.
- 10. In accordance with Section 16-50j-77 of the Regulations of Connecticut State Agencies, the Certificate Holder shall provide the Council with written notice two weeks prior to the commencement of site construction activities. In addition, the Certificate Holder shall provide the Council with written notice of the completion of site construction, and the commencement of site operation.
- 11. The Certificate Holder shall remit timely payments associated with annual assessments and invoices submitted by the Council for expenses attributable to the facility under Conn. Gen. Stat. §16-50v.

Docket No. 481 Decision and Order Page 3

- 12. This Certificate may be transferred in accordance with Conn. Gen. Stat. §16-50k(b), provided both the Certificate Holder/transferor and the transferee are current with payments to the Council for their respective annual assessments and invoices under Conn. Gen. Stat. §16-50v. In addition, both the Certificate Holder/transferor and the transferee shall provide the Council a written agreement as to the entity responsible for any quarterly assessment charges under Conn. Gen. Stat. §16-50v(b)(2) that may be associated with this facility.
- 13. The Certificate Holder shall maintain the facility and associated equipment, including but not limited to, the tower, tower foundation, antennas, equipment compound, radio equipment, access road, utility line and landscaping in a reasonable physical and operational condition that is consistent with this Decision and Order and a Development and Management Plan to be approved by the Council.
- 14. If the Certificate Holder is a wholly-owned subsidiary of a corporation or other entity and is sold/transferred to another corporation or other entity, the Council shall be notified of such sale and/or transfer and of any change in contact information for the individual or representative responsible for management and operations of the Certificate Holder within 30 days of the sale and/or transfer.
- 15. This Certificate may be surrendered by the Certificate Holder upon written notification and acknowledgment by the Council.

We hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed in the Service List, dated March 1, 2018, and notice of issuance published in the Hartford Courant.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

ATTACHMENT 2

VELESS COMMUNICATIONS FACILITY

verizon'

Cellco Partnership d/b/

ALL-POINTS TELINOLGGY CORPORATO

COMETANCE SHARE JUM

S BOODS FOR STAND JUM

S BOODS FOR STAND JUM

CROMWELL NORTH 2 CT - MULTIBEAM SECTORIZATION 667 MAIN STREET

CROMWELL, CT 06416

DRAWING INDEX

- T-1 TITLE SHEET
- C-1 COMPOUND PLAN, TOWER ELEVATION & NOTES
- C-2 EXISTING & NEW EQUIPMENT CONFIGURATION PLAN & ELEVATION
- B-1 RF BILL OF MATERIALS, EQUIPMENT SPECIFICATIONS & DETAILS
- N-1 NOTES & SPECFICATIONS

SITE DIRECTIONS

START: 20 ALEXANDER DRIVE WALLINGFORD, CONNECTICUT 08492

END: 867 MAIN STREET CROMWELL, CT 08416

- THEO SCHOLD HOWARDS A LOCANGER DINE
 THEOL SCHOLD HOWARDS A LOCANGER DINE
 THEN HIGHT CONVERTS A LOCANGER DINE
 THEN HIGHT CONTO A LOCANGER DINE
 THEN HIGHT CONTO CHECK TO THE CONTO THE CONT
- 6 LIGHT MATERIA CHOIC CARE W.

 COUNTAIN STREAMS TO STAN CHOIC SEE
 5 SHANN HET ID WARKE CONTO IS IN IT
 9 MERGE CANTO IS IN WARKE CONTO IS IN IT
 10 TAKE STORY STREET
 11 LIGHT METHOL KONTO STALE WAY STREET
 12 LIGHT METHOL KONTO STALE WAY AT INVEST STREET
 13 THEN RIGHT KONTO FIGURE WAY IN IT
 14 THEN RIGHT KONTO FIGURE. WAY IT
 15 THEN RIGHT KONTO FIGURE. WAY IT
 16 THEN RIGHT KONTO FIGURE. WAY IT
 16 THEN RIGHT KONTO FIGURE. WAY IT
 16 THEN RIGHT KONTO FIGURE. WAS IT
 16 THEN RIGHT KONTO FIGURE.

SITE INFORMATION

VZ SITE NAME CROMMELL NORTH 2 CT VZ MIXELOXALIOLOXIS BODDZB4589 VZ PRICE UT 1715/2065 VZ PSI C 469424

PROJECT LYPT MULTI BEAM SPOTONIZATION

LOCATION 367 MAIN STREET CHOMMILL, CL 08415

PHOJECESCOPE, HELLE FONDLES ON PRAWING C-TEOR SCOPE OF WORK

ZOMING ENSTRICT THE (BUSINESS PARIC MARPBLOCKALOT: 48/15/28C

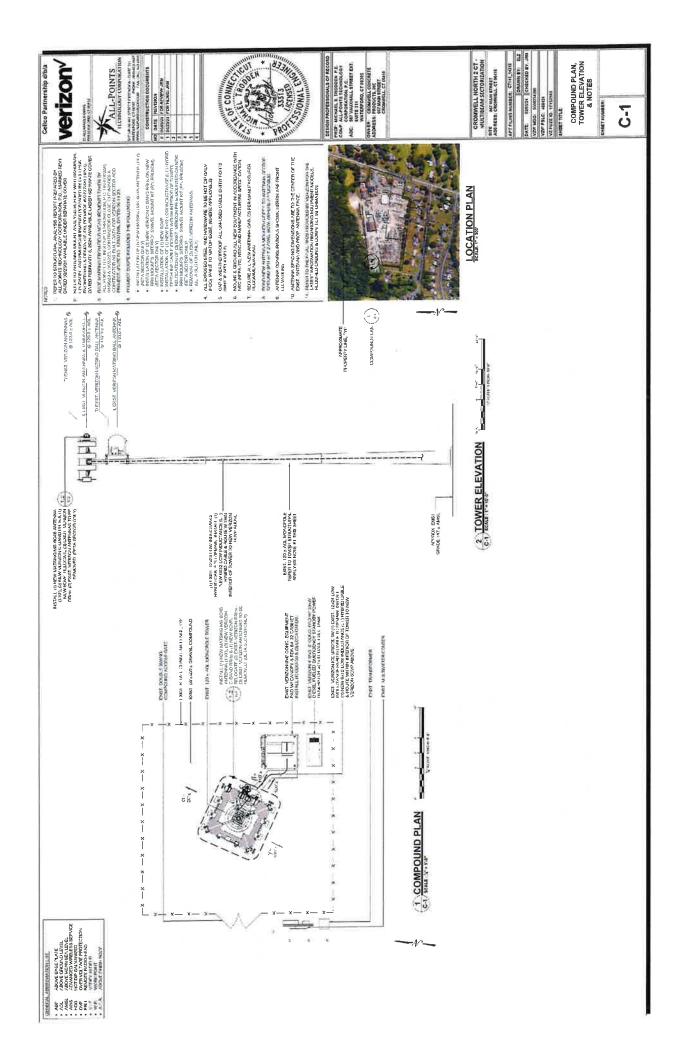
LONGITUDE: 72" 30" 10 727" W (-72 65207972)

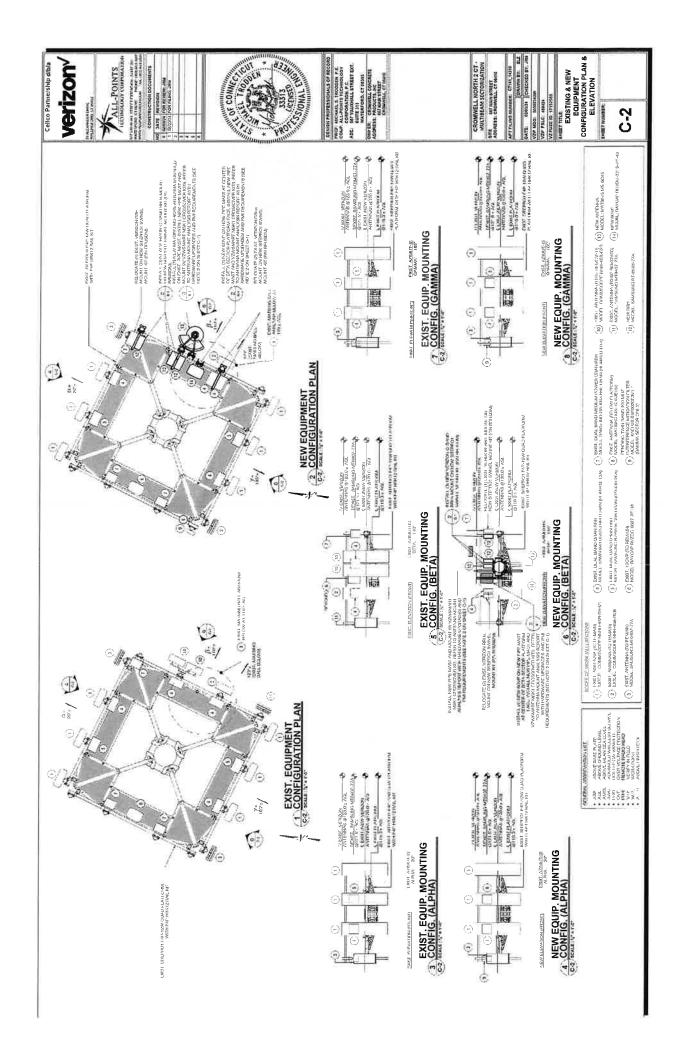
PROPERTY OWNER GROAMVILL CONCHITE PHOLICIS, INC. 667 MAIN SIPELL. OF 6416 GROUND ELEVATION: 147 - AMSL

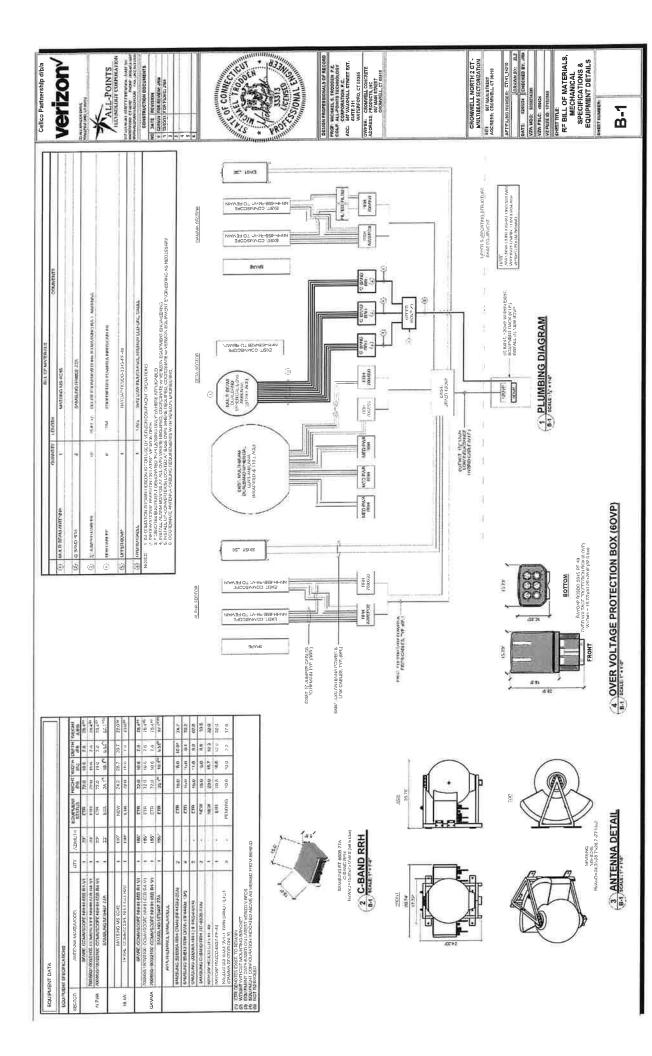
APPLICANI CIULO PABLINITISHP dina VFHZON WHELFSS 20 ALEXANDER CHIVE WALLINGFORD OT 06492

CHOMWELL NORTH 2 CT -MOLTBEAM SECTORIZATION WIT 90 MAIN STREET ADDINESS CROMMELL, CT 06419

CATT CARDON CHECKERS IV.


APT FRING NUMBER OFFICE STID


LEGALAH GULALGAY COUNSEL, ROBINSONA CYN L, LLP ZO PRUMBULL STREET HARTOROL, STREET HARTOROL, CT 06103


ELIGNEER CONTAGT, ALL HYDRITS LICHNAN CKY COMPRANIUX, P.C. WANDAMLL STREET EKTENSION SUITE 311 WARFH CHIS, CL 168395 (650) 663 463 7697.

TITLE SHEET

Ξ

Veriform Verifo	THE STATE OF COMMENTAL TO THE STATE OF COMMENTAL TO THE STATE OF S	CROMWELL NOTTH 2 CT - MULTIBEAM SECREMENTON AND AND SECREMENTON AND SECREMENT SECREMEN
5		
	The control of the co	The control of the co
The control of the co	Company of the compan	

TECHNICAL SPECIFICATIONS

Frequency 3.7 – 4.2 GHz

Gain 22.6dBi

VSWR <1.5:1

Polarization Dual Slant ±45°

Horizontal Coverage 120°

Horizontal Beamwidth (10dB level) 19°

Horizontal Beamwidth (3dB level) 11.5

Vertical Beamwidth (10dB level) 19°

Vertical Beamwidth (3dB level) 11.5°

Beam Cross-over 10dB typical

Total Number of Beams 6

RET per Beam 0° to 15°

First Sidelobe level <-16dB

Front to Back Ratio >28dB

Isolation Port to Port - Polarization >28dB

Isolation Port to Port - Beam >28dB

Power Rating 150W per port

Intermodulation <-153dBc

Impedance 50 ohm

Connector Quantity and Type 12 X 4.3-10 female

MECHANICAL DATA

Spherical Lens diameter: 45cm/18inch

Dimensions (H x W x D)

Antenna dimensions: 61.7 x 72.8 x 67.8 cm 24.3 x 28.7 x 26.7 inch

Antenna Weight 35 kg

na weight 77 lbs

Radome Material Fiber Glass

Adjustable clamps

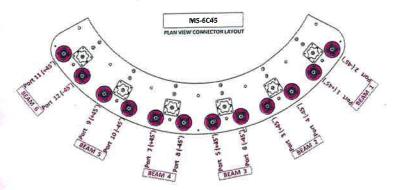
Mounting Compatible pipe diameter:

6.1 – 11.4 cm 2.4 – 4.5 inch

ENVIRONMENTAL RATINGS

Humidity

95% RH @ +30°C

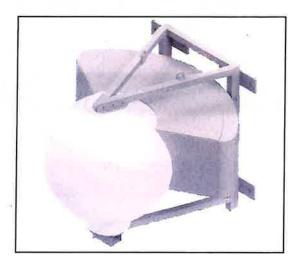

Temperature

-40°C to +70°C

Wind load @ 150m/hr

[N/lbf] Frontal: 263/95 Lateral: 197/44

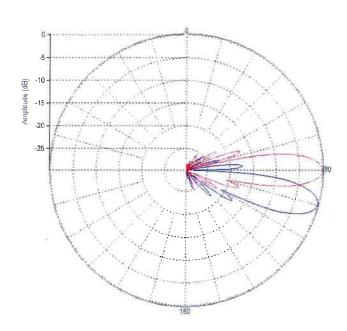
CONNECTOR LAYOUT:



LENS TECHNOLOGY ENABLED

MS-6C45

Multi-Beam Spherical Lens Antenna: 6 independent C-Band (3.7 - 4.2GHz) cross-polarized beams. Each beam has 2X2 MIMO with RET 0-15°.



PATTERN RESULTS:

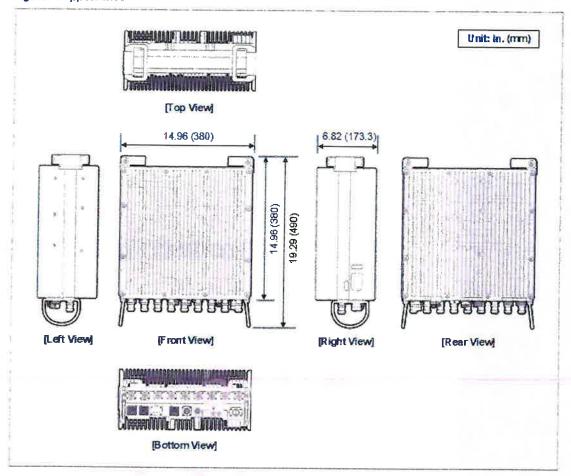
High-Band Horizontal Pattern (3.95GHz)

(p) pringday 20 -25

High-Band Vertical pattern (3.95GHz) tilt 0 & 15°

SAMSUNG

102 RRU Product Specification


for RT8808-77A

Specifies hardware configuration, functions, specifications, components, ports, and LED information for the radio units.

Document Version 1.0 June 2021

Document Number: 2600-00T7PZGA2

Figure 1. Appearance

The RT8808-77A can be mounted on a wall or pole as displayed in the following installation scenario:

Specifications

The following table outlines the main specifications of RT8808-77A.

Table 2. Specifications (RT8808-77A)

Item	RT8808-77A
Radio Technology	5G NR
Operating Frequency	3700 to 3980 MHz
Channel Bandwidth	20/40/60/80/100 MHz
RF Chain	8T8R, 4T4R+4T4R Bi-sector2T2R+2T2R+2T2R Tri-sector4T8R+4T8R split mode
RF Output Power	Max. 320W (8 x 40W)
Capacity	Total Max 2C
CPRI interface	15km, 2 ports (25Gbps x 2), SFP28, single mode, Bi-di (Option: Duplex)
Input Voltage	-48 V DC (-38 V DC to -57 V DC)
Power Consumption (Max.)	1,192 W (100% load, 25°C) (w/o RET)
Operating Humidity	5% to 100%RH (Condensing, not to exceed 30g/m3 absolute humidity)
Operating Temperature	-40°C to 55°C (without solar load)
Dimension (in./mm)	14.96/380 (W) × 6.82/173.3(D) × 14.96/380 (H)
Weight (kg)	27 or less than
Cooling	Natural convection
Waterproof/Dustproof	IP65
Wind Resistance	Telcordia GR-487-CORE Issue5 • Wind Resistance (Section 3.36)
Earthquake Specification	Telcordia GR-63-CORE, Issue5, ☐ Earthquake (Section 4.4.1)
Vibration Specification	Telcordia GR-63-CORE, Issue5, Office Vibration (Section 4.4.4) Transportation Vibration (Section 4.4.5)
Altitude	Telcordia GR-63-CORE, Issue5, • Altitude (Section 4.1.3)
EMC	FCC Title 47 CFR Part 15
RF	FCC Title 47 CFR Part 27, 24
Safety	UL 62368-1, 2nd Edition
Installation	Pole, Wall, Tower

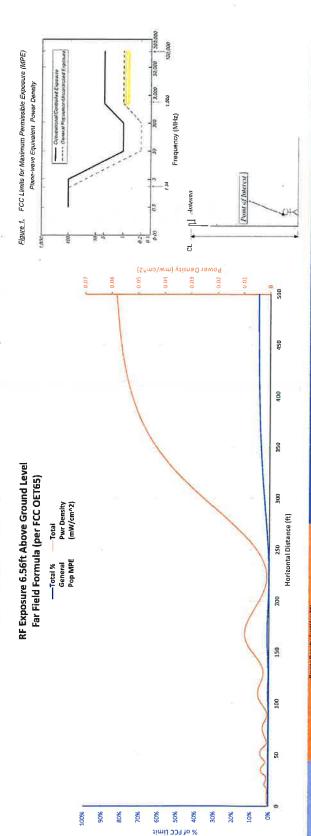
The power consumption is predicted with a simulation and the measured value is subject to change by $\pm 10\%$

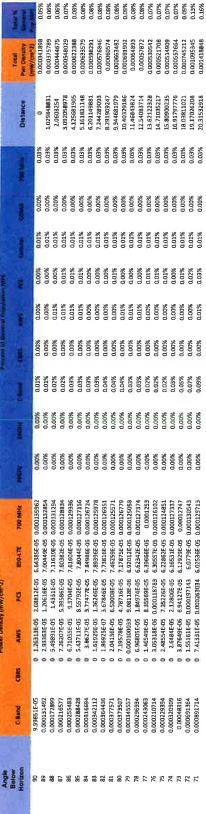
ATTACHMENT 3

Location			Cromwell N 2 CT	INZCT		
Date			3/14/	2024		
Band	C-Band	CBRS	AWS	PCS	880	700
Operating Frequency (MHz)	3,700	3,550	2,145	1,970	980	746
General Population MPE (mW/cm^2)	1	-	-	-	0,58666667	0.49733333
ERP Per Transmitter (Watts)	18,513	0	4,035	3,688	714	529
Number of Transmitters	9	0	12	12	9	9
Antenna Centerline (CL) (feet)	120	110	110	110	110	110
Total ERP (Watts)	111,077	o	48,415	44,257	4,285	3.177
Total ERP (dBm)	80	#N/A	17	76	98	65
Manimum S.o. Comment						

*Guidelines adopted by the FCC on August 1, 1996, 47 CFR Section 1.1310 based on NCRP Report 86, 1986 and generally on ANSI/IEEE C95.1-1992

MHz = Megahertz


mW/cm^2 = milliwatts per square centimeter


ERP = Effective Radiated Power

Absolute worst case maximum values used, including the following assumptions:

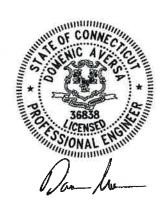
- 1. closest accessible point is distance from antenna to base of pole;
- continuous transmission from all available channels at full power for indefinite time period;
 calculation takes into account a point of interest of 2m or 6.56ft

	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
0,17% 0,13% 0,13% 0,13% 0,13% 0,11% 0,12% 0,12% 0,20%	0,72% 1,63% 2,85% 4,12% 5,80% 6,15% 6,15% 6,11% 5,43% 4,08% 2,26%
0.001514697 0.0013973134 0.0013973134 0.00139737 0.00139737 0.00139737 0.001273737 0.00273737 0.00273737 0.00273737 0.00273737 0.00273737 0.00273737 0.00273737 0.00273737 0.00273737 0.00273733 0.00273737 0.00273737 0.00273737 0.00273737 0.00273737 0.00273737 0.00273737 0.002737373 0.002737373 0.002737373 0.002737373 0.002737373 0.002737373 0.002737373	0,000,181748 0,008,385,351 0,008,385,702 0,008,391,203 0,008,308,391,203 0,008,308,391,203 0,008,308,391,391,391,391,391,391,391,391,391,391
21,47424382 22,64797807 23,83754732 25,658649243 27,5121583 28,7522173 29,006200152 31,00423404 34,06566588 31,4702654 34,06566588 38,46570562 36,86779176 38,46579176 38,46579176 38,26579177 38,26777 38,26777 38,26777 38,26777 38,26777 38,26777 38,26777 38,26777 38,26777 38,26777 3	236,6360751 255,5370706 303,528689 303,528689 344,606227 375,513399 419,8068136 480,516433 51,437508 674,37308 1125,78706 1688,538944 3380,107736
0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.01% 0.00%	0,05% 0,11% 0,128% 0,26% 0,34% 0,43% 0,43% 0,33% 0,15% 0,07%
\$600.0 \$6	%00'0 %00'0 %00'0 %00'0 %00'0 %00'0 %00'0 %00'0 %00'0 %00'0 %00'0 %00'0 %00'0
0.01% 0.01%	0.02% 0.07% 0.13% 0.29% 0.41% 0.41% 0.43% 0.17% 0.08%
0.002% 0.000% 0.000% 0.011% 0.011% 0.011% 0.011% 0.011% 0.012% 0.000% 0.	0.10% 0.23% 0.59% 0.59% 0.34% 0.13% 0.13% 0.15% 0.15% 0.45%
0.013% 0.	0,04% 0,12% 0,12% 0,35% 0,39% 0,37% 0,18% 0,02% 0,05% 0,05% 0,05% 0,14%
\$600'0 \$6	%00°0
0.10% 0.11% 0.008% 0.008% 0.008% 0.014% 0.014% 0.012% 0.012% 0.012% 0.012% 0.012% 0.012% 0.012% 0.012% 0.013% 0.01	0,01% 0,68% 0,68% 1,49% 2,55% 3,68% 5,25% 5,32% 4,80% 3,79% 2,51% 0,34%
\$6000 \$6000	%00°0 %00°0 %00°0 %00°0 %00°0 %00°0 %00°0 %00°0 %00°0
\$60000 \$600000 \$600000 \$600000 \$600000 \$600000 \$600000 \$600000 \$600000 \$60000000 \$600000 \$600000 \$600000 \$600000 \$6000000 \$6000000 \$6000000 \$6000000 \$600000000	%00°0
	116 0.0002/0205 118 0.0002/0205 118 0.00095000 117 0.00167/1456 119 0.00167/1456 119 0.00167/1456 119 0.00167/1456 119 0.00167/1959 119 0.00167/1951 119 0.00167/1951 119 0.00167/1951 119 0.00167/1951 119 0.00167/1951 119 0.00167/1951 119 0.00167/1951 119 0.00167/1951 119 0.00167/1951
	3 0.00013491) 6 0.000761318 6 0.00122371 1 0.001713417 9 0.002319258 8 0.00232758 9 0.0023758 9 0.0023759 5 0.00235763 7 0.00123758 1 0.002055402 1 0.000091527 1 0.000106152
1.6270RE05 1.6270RE05 1.6270RE05 1.6270RE05 0.0000101463 0.000020428 0.000020428 0.0000204318 0.000026418 0.000031344 1.08881E-05 2.111434E-05 3.627378E-05 2.111434E-05 3.627378E-05 2.111434E-05 3.627378E-05 2.000031344 1.08881E-05 0.000031349 1.08881E-05 0.0000312791 0.0000312791 0.0000312791 0.0000312791 0.0000312791 0.0000312791 0.0000312791 0.0000312791 0.0000313977 0.0000313977 0.0000313977 0.0000313977 0.000033691 0.000033691 0.000033691 0.000033691 0.000033691 0.000033691 0.000033691 0.000033691 0.000033691 0.000033691 0.000033691 0.000033691 0.000033691 0.000033691 0.000033691 0.000033691	0.00054883 0.00231716 0.003922786 0.005887871 0.001318648 0.0011318648 0.0011318648 0.001032322 0.006255497 0.004135881
4.19756-60 4.19756-60 4.19756-60 5.19796-60 5.19796-60 5.19796-60 5.19796-60 5.19796-60 5.19796-60 5.19796-60 5.19796-60 5.19796-60 5.19796-60 5.19796-60 5.19796-60 5.19796-60 5.19796-60 5.19796-60 5.19796-60 5.19796-60 5.19796-60 5.19796-60 6.1979	0 0,000,00388 0 0,000,25831 0 0,000,25131 0 0,000,85139 0 0,000,85138 0 0,000,85138 0 0,000,86138 0 0,000,86138 0 0,000,86138 0 0,000,86138 0 0,000,86138 0 0,000,86138 0 0,000,86138 0 0,000,86138 0 0,000,86138 0 0,000,86138
0.001024814 0.001051867 0.000051269 0.000051269 0.000051269 0.000512693 0.000139143 0.0002391443 0.0002391463 0.0002391463 0.0002391463 0.0002391463 0.0002391463 0.0002391463 0.0002391463 0.00012403978 0.00012403978 0.00012403978 0.00016692 0.000124039 0.000124031 0.000124031 0.000124031 0.000124031 0.000124031 0.000124031 0.000124031 0.000124031 0.000124031 0.000124031 0.000124031 0.000124031 0.000124031 0.000124031 0.000124031 0.000124031 0.000124031	5.501338-05 0.001442396 0.006770696 0.02493766 0.02533688 0.02533068 0.052540823 0.052540823 0.02331643 0.03231644 0.04803403 0.042507038 0.002507038
68 68 66 66 66 66 66 66 66 66 66 66 66 6	114 112 110 100 7 7 7 8 8 8 9 100 100 100 100 100 100 100 100 100 1

ATTACHMENT 4

STRUCTURAL ANALYSIS REPORT FOR A PROPOSED ANTENNA & APPURTENANCE INSTALLATION ON AN EXISTING 120'± MONOPOLE TOWER CROMWELL, CONNECTICUT

Prepared for Verizon Wireless


Verizon Site Ref: Cromwell N 2 CT

Site Address: 667 Main Street, Cromwell, CT 06416

FUZE ID: 17152965 Location Code: 469424 MDG Location ID: 5000234399 Project Type: Sector Add

APT Filing No. CT141_14310

Rev 0 February 8, 2024 Rev 1 February 23, 2024

STRUCTURAL ANALYSIS REPORT 120'± MONOPOLE TOWER CROMWELL, CONNECTICUT prepared for Verizon Wireless

EXECUTIVE SUMMARY:

All-Points Technology Corporation, P.C. (APT) performed a structural evaluation of an existing 120'± monopole tower structure to support a proposed Verizon equipment modification.

Details of the proposed equipment configuration are included within the table on the following page.

The results of this analysis indicate that the monopole structure meets the requirements of the 2021 International Building Code (IBC), as amended by the 2022 Connecticut State Building Code, and the ANSI/TIA-222-H standard with Verizon's proposed equipment installation.

Evaluation of the existing foundation was limited to a comparison of the base reactions calculated under the proposed loading against the design reactions indicated within original design documents prepared by Valmont Structures. Reactions imposed by the proposed installation are less than the published design reactions, indicating that the foundation is adequately sized.

The tower steel component usage is summarized in the table below:

Elevation/Component	Capacity	
80.92'-120' (L1)	44%	
43' - 80.92' (L2)	34%	
1' - 43' (L3)	34%	
Anchor Bolts	38%	
Base Plate	34%	

INTRODUCTION:

A structural analysis of the subject communications tower was performed by APT for Verizon Wireless. The subject tower is located at 667 Main Street in Cromwell, Connecticut.

The following information was utilized in the preparation of this analysis:

- Antenna Mount Analysis Report with Hardware Upgrades and PMI Requirements prepared by Colliers Engineering & Design (Project #23777329) marked Rev 1 dated 02/08/24.
- Construction Drawings prepared by APT (Project No. CT141_14060), marked Rev 1, dated 02/23/24.
- Structural Analysis Report prepared by APT (Project No. CT141_12280), marked Rev. 1, dated 10/31/23.
- Tower Inspection Report prepared by APT, inspected on June 26, 2020 and submitted on July 2, 2020.
- Field observations compiled during a site visit conducted by APT on June 26, 2020.
- Communication Pole Record Drawings prepared by Valmont Structures (Order No. 456660) dated December 13, 2019.

Communication Structure Calculation Package prepared by Valmont Structures (Order No. 456600-P1), dated October 23, 2019.

The structure is a 120'±, galvanized steel, 18-sided monopole tower structure designed and manufactured by Valmont Structures.

The analysis was conducted using the following equipment inventory (proposed equipment shown in **bold** text):

Carrier	Antenna and Appurtenance Make/Model	Elevation 1	Status 2	Mount Type	Coax/Feed- Line ³
	(1) Raycap RVZDC-6627-PF-48 (120VP) (1) Raycap RxxDC-3315-PF-48 (60VP)	122.5	ETA P		
	 (4) Samsung B5/B13 ORAN (RF4440d-13A) RRHs (2) Samsung B2/B66A ORAN (RF4439d-25A) RRHs, (3) B2/B66A Med Power ORAN (RF4402d-D1A) RRHs 	121'	ETR	SitePro1 F4P-12W Four-Sided Fortress Platform w/ F4P- HRK12 Handrail kit	(1) 12x24 L Hybrid
Verizon	(2) Kaelus BSF0020F3V1-1 mitigation filters, (1) Commscope NHH-45B-R2B antenna, (6) Commscope NNHH-65B-R4 antennas, (2) Samsung MT6407-77A antennas	120'	ETR	& (16) existing P2STD x 8' Lg. Pipe Mounts & (1) new P2STD x 8' Lg. Pipe Mount	
	(1) Samsung MT6407 77A antenna; (2) Commseepe NHH 45B R2B antenna	120	R		
	(1) Matsing MS-6C45 antenna (3) Samsung RT-8808-77A C-band RRHs		Р		(1) 6x12 Ll Hybrid
	(1) Matsing MS-12.6DB180	110'	ETR	(2) SitePro1 UDS-NP Dual Antenna Pole Mount Assembly with (2) P2.5STD x 8' Lg. Pipe Mounts	(18) 1/2" ⁽⁴

Notes:

- 1. ETR = Existing to Remain; P = Proposed; R = Removed.
- 2. Elevations are measured above ground level (AGL). Tower base is approximately 1' above grade.
- 3. All feed-lines noted above shall be routed within interior of the pole unless otherwise noted.
- 4. Feed lines routed on exterior of pole from existing Verizon RRHs to existing Verizon Matsing Ball antenna.

STRUCTURAL ANALYSIS:

Methodology:

This structural analysis has been prepared in accordance with the ANSI/TIA-222-H standard entitled "Structural Standard for Antenna Supporting Structures, Antennas and Small Wind Turbine Support Structures"; American Institute of Steel Construction (AISC) Manual of Steel Construction, and the 2021 International Building Code (IBC), as amended by the 2022 Connecticut State Building Code utilizing the following criteria:

- Load Case 1: 120 mph (3-second gust), 0" ice
- Load Case 2: 50 mph (3-second gust) w/ 1.5" ice thickness
- o Load Case 3: 60 mph (3-second gust) (Service Load)
- o Risk Category: II
- Exposure Category: C
- Topographic Category: 1

ANALYSIS RESULTS:

The analysis was conducted in accordance with the criteria outlined above with the aforementioned loading. The following table summarizes the results of the analysis:

Elevation/Component	Capacity
80.92'-120' (L1)	44%
43' - 80.92' (L2)	34%
1' - 43' (L3)	34%
Anchor Bolts	38%
Base Plate	34%

Foundation:

Evaluation of the existing foundation was limited to a comparison of the base reactions calculated under the proposed loading against the design reactions indicated within original design documents prepared by Valmont Structures. Reactions imposed by the proposed installation are less than the published design reactions, indicating that the foundation is adequately sized.

The calculated base reactions with the proposed equipment loading are indicated within the table below:

Load Effect	Original Design (TIA-222-H)	Calculated Reactions	Result
Axial	36.2 k ⁽⁵⁾	23.7 k ⁽⁶⁾	PASS
Base Shear	47.7 k	20.7 k	PASS
Overturning Moment	4,686 ft-k	1,810 ft-k	PASS

Notes

- 5. Original vertical reaction based on 0.9DL load combination.
- 6. Calculated vertical reaction based on 0.9DL load combination.

CONCLUSIONS AND RECOMMENDATIONS:

In conclusion, our analysis indicates that the existing tower structure located at 667 Main Street in Cromwell, CT meets the requirements of the 2021 International Building Code (IBC), as amended by the 2022 Connecticut State Building Code, and the ANSI/TIA-222-H standard with Verizon's proposed equipment installation.

Sincerely,

All-Points Technology Corp., P.C.

Domenic Aversa, PE Senior Structural Engineer Verizon Wireless 120'± Monopole Tower, Cromwell, CT 17152965; Cromwell N 2 CT February 23, 2024 ~ Rev 1 Page 4 APT Project #CT141_14310

LIMITATIONS:

This report is based on the following:

- 1. Tower/structure is properly installed and maintained.
- 2. All members and components are in a non-deteriorated condition.
- 3. All required members are in place.
- 4. All bolts are in place and are properly tightened.
- 5. Tower/structure is in plumb condition.
- 6. All tower members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
- 7. Material yield stress values as follows:

Monopole: A572 Gr. 65 Base plate: A572 Gr. 50 Anchor botts: A615 Gr. 75

All-Points Technology Corporation, P.C. (APT) is not responsible for any modifications completed prior to or hereafter which APT is not or was not directly involved. Modifications include but are not limited to:

- 1. Replacing or reinforcing bracing members.
- 2. Reinforcing members in any manner.
- 3. Installing antenna mounts or waveguide cables.
- 4. Adding or relocating antennas.
- 5. Extending tower/structure.

APT hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations, and conclusions are based upon the information contained and set forth herein. If you are aware of any information which is contrary to that which is contained herein, or you are aware of any defects arising from the original design, material, fabrication and erection deficiencies, you should disregard this report and immediately contact APT. APT disclaims all liability for any representation, recommendation, or conclusion not expressly stated herein.

Appendix A

Design Criteria

;	Basic	: Design Win (mph)	Basic Design Wind Speeds, V (mph)	ls, V	Allow	$egin{aligned} ext{able Stress Desi} \ ext{Speeds, V_{asd}} \ & & & & & & & & & & & & & & & & & & $	Allowable Stress Design Wind Speeds, V _{asd} (mph)	Vind	Ground	MCE Ground Accelerations	round	Wind-Borne Debris Region ¹	e Debris m¹	Hurricane-
Municipality	Risk Cat. I	Risk Cat. II	Risk Cat. III	Risk Cat. IV	Risk Cat. I	Risk Cat. II	Risk Cat. III	Risk Cat. IV	Load ps (psf)	SS (g)	S _I	Risk Cat. III Occup. I-2	Risk Cat. IV	Prone Region
Cornwall	105	115	125	130	81	68	1.6	101	40	0.172	0.054			
Coventry	110	120	130	135	85	93	101	105	30	0.188	0.055			Yes
Cromwell	110	120	130	135	85	93	101	105	30	0.207	0.056			Yes
Danbury	110	120	125	130	85	93	62	101	30	0.225	0.056			Yes
Darien	110	120	130	135	85	93	101	105	30	0.250	0.057		Type B	Yes
Deep River	115	125	135	140	89	6	105	108	30	0.210	0.054			Yes
Derby	110	120	130	135	85	93	101	105	30	0.202	0.054			Yes
Durham	110	120	130	135	85	93	101	105	30	0.211	0.055			Yes
East Granby	110	120	125	130	85	93	67	101	35	0.173	0.054			Yes
East Haddam	115	125	135	135	89	62	105	105	30	0.214	0.056			Yes
East Hampton	110	125	130	135	85	97	101	105	30	0.210	0.056			Yes
East Hartford	110	120	130	135	85	93	101	105	30	0.191	0.055			Yes
East Haven	110	125	135	135	85	26	105	105	30	0.200	0.053	Type B	Type B	Yes
East Lyme	120	130	135	140	93	101	105	108	30	0.198	0.053	Type B	Type B	Yes
East Windsor	110	120	130	135	85	93	101	105	30	0.177	0.055			Yes
Eastford	110	120	130	135	85	93	101	105	40	0.180	0.055			Yes
Easton	110	120	130	135	82	93	101	105	30	0.218	0.055			Yes
Ellington	110	120	130	135	85	93	101	105	35	0.178	0.055			Yes
Enfield	011	120	125	130	85	93	97	101	35	0.172	0.055			Yes
Essex	115	125	135	140	68	6	105	108	30	0.207	0.054			Yes
Fairfield	110	120	130	135	85	93	101	105	30	0.219	0.055		Type B	Yes
Farmington	110	120	130	135	85	93	101	105	35	0.188	0.055			Yes
Franklin	115	125	135	140	86	97	105	108	30	0.195	0.054			Yes
Glastonbury	110	120	130	135	85	93	101	105	30	0.200	0.055			Yes
Goshen	110	115	125	130	85	88	6	101	40	0.172	0.054			
Granby	110	120	125	130	85	93	26	101	35	0.171	0.054			Yes
Greenwich	110	120	130	135	85	93	101	105	30	0.274	0.059		Type B	Yes
Griswold	120	125	135	140	93	62	105	108	30	0.189	0.054			Yes
Groton	120	130	140	140	93	101	108	108	30	0.190	0.052	Type B	Type A	Yes
Guilford	115	125	135	140	68	97	105	108	30	0.204	0.054	Type B	Type B	Yes
Haddam	115	125	135	135	68	97	105	105	30	0.214	0.055			Yes
Hamden	110	120	130	135	85	93	101	105	30	0.202	0.054			Yes

2022 Connecticut State Building Code (w/ Errata #1) Amendments to the 2021 International Building Code

ASCE Hazards Report

Address:

No Address at This Location

Standard: ASCE/SEI 7-16

Latitude:

41.632375

Risk Category: II

Longitude: -72.652625

Soil Class:

undefined

Elevation: 145.43829154378895 ft

(NAVD 88)

Wind

Results:

Wind Speed 119 Vmph 10-year MRI 75 Vmph 25-year MRI 84 Vmph 50-year MRI 90 Vmph 100-year MRI 98 Vmph

Data Source:

ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1-CC.2-4, and Section 26.5.2

Date Accessed:

Thu Jan 25 2024

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Ice

Results:

Ice Thickness:

1.50 in.

Concurrent Temperature:

15 F

Gust Speed

50 mph

Data Source:

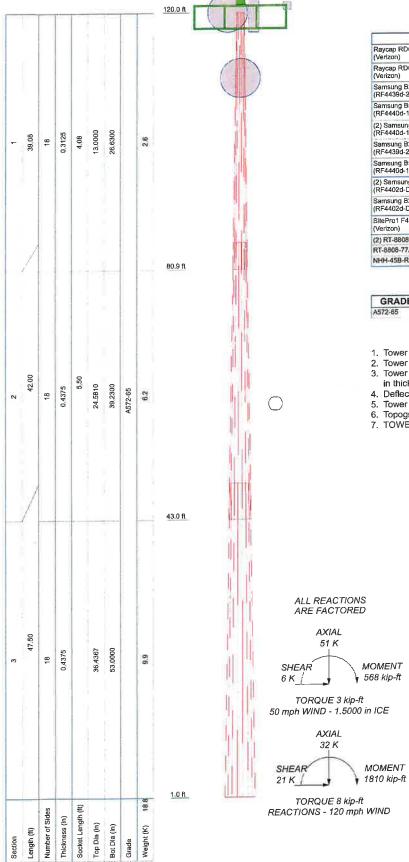
Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed:

Thu Jan 25 2024

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.


The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool.

Appendix B

Tower Schematic

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Raycap RDC-6627-PF-48 OVP	122.5	NNHH-65B-R4-V1 (Verizon)	120
(Verizon)	X	NNHH-R5R-R4-V1 (Varizon)	120
Raycap RDC-3315-PF-48 J-box	122,5	NNHH-65B-R4-V1 (Verizon)	120
(Verizon)		MT6407-77A (Verizon)	120
Samsung B2/B66A ORAN RRH (RF4439d-25A) (Verizon)	121	(2) BSF0020F3V1-1 mitigation filters (Verizon)	120
Samsung B5/B13 ORAN RRH	121	MT6407-77A (Verizon)	120
(RF4440d-13A) (Verizon)		(4) P2.0 x 8.0' Pipe Mount (Verizon)	120
(2) Samsung B5/B13 ORAN RRH (RF4440d-13A) (Verlzon)	121	(5) P2.0 x 8.0' Pipe Mount (Verizon)	120
Samsung B2/B66A ORAN RRH	121	(4) P2.0 x 8.0' Pipe Mount (Verizon)	120
RF4439d-25A) (Verlzon)	121	(4) P2.0 x 8.0° Pipe Mount (Verizon)	120
Samsung B5/B13 ORAN RRH	121	Matsing MS-6C45 (Verizon)	120
RF4440d-13A) (Verizon)		NNHH-65B-R4-V1 (Verizon)	120
(2) Samsung B2/B66 ORAN RRH	121	NNHH-65B-R4-V1 (Verlzon)	120
RF4402d-D1A) (Verizon)		NNHH-658-R4-V1 (Verizon)	120
Samsung B2/B66 ORAN RRH (RF4402d-D1A) (Verizon)	121	SitePro1 F4P-12[W] 12' Quad Platform (Verizon)	119,25
SitePro1 F4P-HRK12 Hand Rall	121	SitePro1 UDS-NP (Verizon)	113.5
(Verizon)		(2) P2.5 Std x 8.0' Pipe Mount	110
2) RT-8808-77A (Verizon)	121	(Verizon)	
RT-8808-77A (Verizon)	121	Matsing Ball MS-12 6DB180 (Verizon)	110
NHH-45B-R2B (Verizon)	120	SitePro1 UDS-NP (Verizon)	106.5

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
AETO OF	OF hel	90 kei			

TOWER DESIGN NOTES

- Tower designed for Exposure C to the TIA-222-H Standard.
- Tower designed for a 120 mph basic wind in accordance with the TIA-222-H Standard.
 Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.
- Deflections are based upon a 60 mph wind.
- 5. Tower Risk Category II.
- 6. Topographic Category 1 with Crest Height of 0.00 ft
- 7. TOWER RATING: 43.6%

All-Points Technology Corporation, P.C. 567 Vauxhall Street Ext. Suite 311

Waterford, CT 06385 Phone: (860) 663-1697 FAX:

. 120' Monopole Tow	rer	
Project: CT141_14310 Cromw	ell North 2 CT	
Client Verizon; 17152965	Drawn by: DJA	App'd:
Code: TIA-222-H	Date: 02/23/24	Scale: NTS
Path:		Dwg No. E-1

Appendix C

Calculations

tnxTower	Job	Page 1 of 7		
All-Points Technology Corporation, P.C.	Project	CT141_14310 Cromwell North 2 CT	Date 11:34:33 02/23/24	
567 Vauxhall Street Ext. Suite 311 Waterford, CT 06385 Phone: (860) 663-1697	Client	Verizon; 17152965	Designed by DJA	

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower base elevation above sea level: 1.00 ft.

Basic wind speed of 120 mph.

Risk Category II.

Exposure Category C.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1.

Crest Height: 0.00 ft.

Nominal ice thickness of 1.5000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From Torque Calculation	Component Type	Placement ft	Total Number		Start/End Position		Perimeter in	Weight plf
1/2 (Verizon)	D	Yes	Surface Ar (CaAa)	120.00 - 110.00	18	9	0.000 0.000	0.5800		0.25

Feed Line/Linear Appurtenances - Entered As Area

Description		Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight
	or Leg	Siliela	Torque	Турс	ft			ft²/ft	plf
			Calculation						
1-5/8" 12x24 LI	D	No	Yes	Inside Pole	120.00 - 9.00	1	No Ice	0.00	3.20
Hybrid	_						1/2" Ice	0.00	3.20
(Verizon)							1" Tce	0.00	3.20
(venzon)							2" Ice	0.00	3.20
2 (01)	ъ	No	Yes	CaAa (Out	120.00 - 9.00	1	No Ice	0.04	0.22
3/8" safety cable	B No	105	Of Face)	120100 >11-		1/2" Ice	0.14	0.83	
				Orraco			1" Ice	0.24	1.98
							2" Ice	0.44	6.10
C-10 I I I I I I I I I	D	No	Yes	Inside Pole	120.00 - 9.00	1	No Ice	0.00	3.20
6x12 LI Hybrid	D	140	103	1110100 1 010			1/2" Ice	0.00	3.20
(Verizon)							1" Ice	0.00	3.20
							2" Ice	0.00	3.20

tnxTower

All-Points Technology

Corporation, P.C.
567 Vauxhall Street Ext. Suite 311
Waterford, CT 06385
Phone: (860) 663-1697
FAX:

Job		Page
	120' Monopole Tower	2 of 7
Project	CT141_14310 Cromwell North 2 CT	Date 11:34:33 02/23/24
Client	Verizon; 17152965	Designed by

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
	Leg		Vert						
			ft	۰	fi		ft²	ft²	K
			ft ft		J.		<i>y</i> -	<i>J</i> -	**
(2) BSF0020F3V1-1	D	From Face	6.00	0.0000	120.00	No Ice	0.96	0.29	0.02
mitigation filters			-6.00			1/2" Ice	1.09	0.37	0.02
(Verizon)			2.00			1" Ice	1.22	0.45	0.03
						2" Ice	1.50	0.65	0.06
NNHH-65B-R4-V1	Α	From Face	6.00	0.0000	120.00	No Ice	12.27	5.72	0.08
(Verizon)			-6.00			1/2" Ice	12.76	6.18	0.15
			0.00			1" Ice	13.26	6.64	0.23
ADDITION OF DATE						2" Ice	14.29	7.59	0.41
NNHH-65B-R4-V1	Α	From Face	6.00	0.0000	120.00	No Ice	12.27	5.72	0.08
(Verizon)			-2.00			1/2" Ice	12.76	6.18	0.15
			0.00			1" Ice	13.26	6.64	0.23
NINITILI CED DA VII		F F		0.0000		2" Ice	14.29	7.59	0.41
NNHH-65B-R4-V1 (Verizon)	A	From Face	6.00	0.0000	120.00	No Ice	12.27	5.72	0.08
(Verizon)			2.00			1/2" Ice	12.76	6.18	0.15
			0.00			1" Ice	13.26	6.64	0.23
NHH-45B-R2B	В	From Face	6.00	0.0000	120.00	2" Ice	14.29	7.59	0.41
(Verizon)	Ь	riom race	2.00	0.0000	120.00	No Ice 1/2" Ice	11.40	5.28	0.13
(voizon)			0.00			1" Ice	11.89	5.74	0.19
			0.00			2" Ice	12.38 13.39	6.20 7.14	0.27
NNHH-65B-R4-V1	C	From Face	6.00	0.0000	120.00	No Ice	12.27	5.72	0.43
(Verizon)		110211 200	-6.00	0.0000	120.00	1/2" Ice	12.76	6.18	0.08 0.15
			0.00			1" Ice	13.26	6.64	0.13
			0.00			2" Ice	14.29	7.59	0.41
NNHH-65B-R4-V1	C	From Face	6.00	0.0000	120.00	No Ice	12.27	5.72	0.08
(Verizon)		11011111100	-2.00	0.0000	120.00	1/2" Ice	12.76	6.18	0.15
			0.00			1" Ice	13.26	6.64	0.23
						2" Ice	14.29	7.59	0.41
NNHH-65B-R4-V1	C	From Face	6.00	0.0000	120.00	No Ice	12.27	5.72	0.08
(Verizon)			2.00			1/2" Ice	12.76	6.18	0.15
			0.00			1" Ice	13.26	6.64	0.23
						2" Ice	14.29	7.59	0.41
MT6407-77A	A	From Face	6.00	0.0000	120.00	No Ice	4.71	1.84	0.09
(Verizon)			6.00			1/2" Ice	5.00	2.07	0.12
			0.00			1" Ice	5.29	2.30	0.15
NATICAL OF TO 1	-	n				2" Ice	5.91	2.78	0.23
MT6407-77A	C	From Face	6.00	0.0000	120.00	No Ice	4.71	1.84	0.09
(Verizon)			6.00			1/2" Ice	5.00	2.07	0.12
			0.00			1" Ice	5.29	2.30	0.15
meuna D2/D64 A OD ANT		P P	4.50	0.0000	101	2" Ice	5.91	2.78	0.23
msung B2/B66A ORAN RRH (RF4439d-25A)	A	From Face	4.50	0.0000	121.00	No Ice	1.87	1.25	0.07
(Verizon)			-2.00			1/2" Ice	2.03	1.39	0.09
(VELIZOII)			0.00			1" Ice	2.21	1.54	0.11
amsung B5/B13 ORAN	Α	From Face	4.50	0.0000	121.00	2" Ice	2.59	1.87	0.17
RRH (RF4440d-13A)	^	FIOIII Face	4.50 2.00	0.0000	121.00	No Ice	1.87	1.13	0.07
(Verizon)			0.00			1/2" Ice	2.03	1.27	0.09
(TOLEOU)			0,00			1" Ice 2" Ice	2.21 2.59	1.41 1.72	0.11
Samsung B5/B13 ORAN	В	From Face	4.50	0.0000	121.00	No Ice	2.59 1.87	1.72	0.16 0.07
RRH (RF4440d-13A)	~	100111100	2.00	0.0000	121.00	1/2" Ice	2.03	1.13	0.07
(Verizon)			0.00			1" Ice	2.03	1.41	0.09
·			0.00			2" Ice	2.59	1.72	0.11
msung B2/B66A ORAN	С	From Face	4.50	0.0000	121.00	No Ice	1.87	1.25	0.07

tnxTower

All-Points Technology Corporation, P.C. 567 Vauxhall Street Ext. Suite 311 Waterford, CT 06385 Phone: (860) 663-1697 FAX:

Job	120' Monopole Tower	Page 3 of 7
Project	CT141_14310 Cromwell North 2 CT	Date 11:34:33 02/23/24
Client	Verizon; 17152965	Designed by DJA

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	۰	ft		fi²	ft²	K
(Verizon)			0.00			1" Ice	2.21	1.54	0.11
(VCIZOII)			2.5			2" Ice	2.59	1.87	0.17
Samsung B5/B13 ORAN	С	From Face	4.50	0.0000	121.00	No Ice	1.87	1.13	0.07
RRH (RF4440d-13A)			2.00			1/2" Ice	2.03	1.27	0.09
(Verizon)			0.00			1" Ice	2.21	1.41	0.11
(2" Ice	2.59	1.72	0.16
(2) Samsung B2/B66 ORAN	D	From Face	4.50	0.0000	121.00	No Ice	1.48	1.11	0.06
RRH (RF4402d-D1A)			0.00			1/2" Ice	1.63	1.25	0.08
(Verizon)			0.00			1" Ice	1.79	1.39	0.09
,						2" Ice	2.13	1.70	0.14
Samsung B2/B66 ORAN	В	From Face	4.50	0.0000	121.00	No Ice	1.48	1.11	0.06
RRH (RF4402d-D1A)			-6.00			1/2" Ice	1.63	1.25	0.08
(Verizon)			0.00			1" Ice	1.79	1.39	0.09
, ,						2" Ice	2.13	1.70	0.14 0.03
Raycap RDC-6627-PF-48	D	From Face	4.50	0.0000	122.50	No Ice 1/2" Ice	4.06	3.10 3.34	0.03
OVP			0.00			-,	4.32 4.58	3.58	0.11
(Verizon)			0.00			1" Ice 2" Ice	5.14	4.09	0.20
				0.0000	110.25	No Ice	46.21	46.21	2.64
SitePro1 F4P-12[W] 12' Quad	D	None		0.0000	119.25	1/2" Ice	58.75	58.75	3.48
Platform						1" Ice	75.54	75.54	4.64
(Verizon)						2" Ice	96.37	96.37	6.00
	-	37 .		0.0000	121.00	No Ice	7.57	7.57	0.51
SitePro1 F4P-HRK12 Hand	D	None		0.0000	121.00	1/2" Ice	10.54	10.54	0.62
Rail						1" Ice	13.63	13.63	0.77
(Verizon)						2" Ice	19.45	19.45	0.95
(4) P2 0 0 01 Pi Mount	Α	From Face	5.50	0.0000	120.00	No Ice	1.90	1.90	0.03
(4) P2.0 x 8.0' Pipe Mount	A	110m race	0.00	0.000		1/2" Ice	2.73	2.73	0.04
(Verizon)			0.00			1" Ice	3.40	3.40	0.06
			0.00			2" Ice	4.40	4.40	0.12
(5) P2.0 x 8.0' Pipe Mount	В	From Face	5.50	0.0000	120.00	No Ice	1.90	1.90	0.03
(Verizon)	2	Tiom race	0.00			1/2" Ice	2.73	2.73	0.04
(VOILEOIL)			0.00			1" Ice	3.40	3.40	0.06
						2" Ice	4.40	4.40	0.12
(4) P2.0 x 8.0' Pipe Mount	C	From Face	5.50	0.0000	120.00	No Ice	1.90	1.90	0.03
(Verizon)			0.00			1/2" Ice	2.73	2.73	0.04
,			0.00			1" Ice	3.40	3.40	0.06
						2" Ice	4.40	4.40	0.12
(4) P2.0 x 8.0' Pipe Mount	D	From Face	5.50	0.0000	120.00	No Ice	1.90	1.90	0.03
(Verizon)			0.00			1/2" Ice	2.73	2.73	0.04 0.06
			0.00			1" Ice	3.40	3.40 4.40	0.12
		_		0.0000	112.50	2" Ice No Ice	4.40 4.24	4.18	0.40
SitePro1 UDS-NP	В	From Face	0.00	0.0000	113.50	1/2" Ice	5.14	5.04	0.46
(Verizon)			0.00			1" Ice	6.11	5.98	0.53
			0.00			2" Ice	7.84	7.62	0.63
	-	P F	0.00	0.0000	106.50	No Ice	4.24	4.18	0.40
SitePro1 UDS-NP	В	From Face	0.00	0.0000	100.50	1/2" Ice	5.14	5.04	0.46
(Verizon)			0.00 0.00			1" Ice	6.11	5.98	0.53
			0.00			2" Ice	7.84	7.62	0.63
No. 4-1- Dell NEC 12 (DD190	D	From Face	3.00	0.0000	110.00	No Ice	28.00	28.00	0.55
Matsing Ball MS-12.6DB180	В	FIOIII FACE	0.00	0.0000		1/2" Ice	36.40	36.40	1.09
(Verizon)			0.00			1" Ice	44.80	44.80	1.64
			0.00			2" Ice	61.60	61.60	2.73
(2) P2.5 Std x 8.0' Pipe	В	From Face	1.00	0.0000	110.00	No Ice	2.30	2.30	0.05
Mount	_		0.00			1/2" Ice	3.13	3.13	0.06
(Verizon)			0.00			1" Ice	3.62	3.62	0.09

All-Points Technology Corporation, P.C. 567 Vauxhall Street Ext. Suite 311 Waterford, CT 06385 Phone: (860) 663-1697 FAX:

Job		Page
	120' Monopole Tower	4 of 7
Project	CT141_14310 Cromwell North 2 CT	Date 11:34:33 02/23/24
Client	Verizon; 17152965	Designed by

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft fl fl	٥	fŧ		ft²	ft²	K
N	_	_	7,44			2" Ice	4.62	4.62	0.15
Matsing MS-6C45	В	From Face	6.00	0.0000	120.00	No Ice	3.41	2.32	0.08
(Verizon)			-2.00			1/2" Ice	4.35	3.21	0.11
			0.00			1" Ice	5.29	4.10	0.14
						2" Ice	7.17	5.88	0.21
(2) RT-8808-77A	В	From Face	4.50	0.0000	121.00	No Ice	1.88	0.85	0.06
(Verizon)			-2.00			1/2" Ice	2.05	0.97	0.07
			0.00			1" Ice	2.22	1.11	0.09
						2" Ice	2.60	1.39	0.14
RT-8808-77A	В	From Face	4.50	0.0000	121.00	No Ice	1.88	0.85	0.06
(Verizon)			-6.00			1/2" Ice	2.05	0.97	0.07
			0.00			1" Ice	2.22	1.11	0.09
						2" Ice	2.60	1.39	0.14
Raycap RDC-3315-PF-48	Α	From Face	4.50	0.0000	122.50	No Ice	2.51	1.64	0.03
J-box			0.00			1/2" Ice	2.71	1.81	0.05
(Verizon)			0.00			1" Ice	2.91	1.98	0.08
						2" Ice	3.35	2.35	0.14

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M_x	Overturning Moment, M ₋	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	26.38	0.00	0.00	-5.43	0.54	-0.00
1.2 Dead+1.0 Wind 0 deg - No Ice	31.66	-0.00	-19.14	-1635.36	0.65	-0.51
0.9 Dead+1.0 Wind 0 deg - No Ice	23.74	0.00	-19.14	-1623.44	0.48	-0.50
1.2 Dead+1.0 Wind 30 deg - No Ice	31.66	9.73	-16.85	-1451.39	-833.51	-5.67
0.9 Dead+1.0 Wind 30 deg - No Ice	23.74	9.73	-16.85	-1440.58	-828.43	-5.65
1.2 Dead+1.0 Wind 45 deg - No Ice	31.66	13.99	-13.99	-1214.21	-1206.98	-7.36
0.9 Dead+1.0 Wind 45 deg - No Ice	23.74	13.99	-13.99	-1204.87	-1199.53	-7.33
1.2 Dead+1.0 Wind 60 deg - No Ice	31.66	17.41	-10.05	-880.27	-1512.62	-8.29
0.9 Dead+1.0 Wind 60 deg - No Ice	23.74	17.41	-10.05	-873.01	-1503.21	-8.26
1.2 Dead+1.0 Wind 90 deg - No	31.66	20.66	0.00	-6.58	-1809.12	-8.50
0.9 Dead+1.0 Wind 90 deg - No Ice	23.74	20.66	0.00	-4.86	-1797.81	-8.47
1.2 Dead+1.0 Wind 120 deg - No Ice	31.66	17.41	10.05	867.10	-1512.60	-7.46
0.9 Dead+1.0 Wind 120 deg - No Ice	23.74	17.41	10.05	863.29	-1503.19	-7.44
1.2 Dead+1.0 Wind 135 deg - No Ice	31,66	13.99	13.99	1201.03	-1206.95	-6.34
0.9 Dead+1.0 Wind 135 deg - No Ice	23.74	13.99	13.99	1195.14	-1199.51	-6.33
1.2 Dead+1.0 Wind 150 deg - No Ice	31.66	9.73	16.85	1438.19	-833.48	-4.61
0.9 Dead+1.0 Wind 150 deg -	23.74	9.73	16.85	1430.84	-828.42	-4.60

All-Points Technology

Corporation, P.C.
567 Vauxhall Street Ext. Suite 311
Waterford, CT 06385
Phone: (860) 663-1697
FAX:

Job	120' Monopole Tower	Page 5 of 7
Project	CT141_14310 Cromwell North 2 CT	Date 11:34:33 02/23/24
Client	Verizon; 17152965	Designed by DJA

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M_x	Overturning Moment, M.	Torque
Combination	K	K	K	kip-ft	kip-ft	kip-ft
No Ice .2 Dead+1.0 Wind 180 deg -	31.66	-0.00	19.14	1622.15	0.65	0.51
No Ice		0.00	10.14	1613.69	0.48	0.50
0.9 Dead+1.0 Wind 180 deg -	23.74	0.00	19.14	1013.09		
No Ice 2 Dead+1.0 Wind 210 deg -	31.66	-9.73	16.85	1438.19	834.79	5.67
No Ice 0.9 Dead+1.0 Wind 210 deg -	23.74	-9.73	16.85	1430.84	829.38	5.65
No Ice		12.00	13.99	1201.03	1208.26	7.36
2 Dead+1.0 Wind 225 deg - No Ice	31.66	-13.99	13.99			
).9 Dead+1.0 Wind 225 deg -	23.74	-13.99	13.99	1195.14	1200.48	7.33
No Ice 1.2 Dead+1.0 Wind 240 deg -	31.66	-17.41	10.05	867.10	1513.91	8.29
No Ice	22.74	-17.41	10.05	863.29	1504.16	8.26
).9 Dead+1.0 Wind 240 deg - No Ice	23.74	-17.41				0.50
1.2 Dead+1.0 Wind 270 deg -	31.66	-20.66	0.00	-6.58	1810.43	8.50
No Ice),9 Dead+1.0 Wind 270 deg -	23.74	-20.66	0.00	-4.86	1798.77	8.47
No Ice	31.66	-17.41	-10.05	-880.27	1513.93	7.46
1.2 Dead+1.0 Wind 300 deg - No Ice	31.00				1504 19	7.4
0.9 Dead+1.0 Wind 300 deg -	23.74	-17.41	-10.05	-873.01	1504.18	7.44
No Ice 1.2 Dead+1.0 Wind 315 deg -	31.66	-13.99	-13.99	-1214.21	1208.29	6.33
No Ice	23.74	-13.99	-13.99	-1204.87	1200.50	6.32
0.9 Dead+1.0 Wind 315 deg - No Ice	23.74			1451 20	834.82	4.60
1.2 Dead+1.0 Wind 330 deg -	31.66	-9.73	-16.85	-1451.39	034.02	7.00
No Ice 0.9 Dead+1.0 Wind 330 deg -	23.74	-9.73	-16.85	-1440.58	829.40	4.60
No Ice	51.20	-0.00	-0.00	-18.88	1.32	-0.00
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0 deg+1.0	51.20	-0.00	-6.18	-554.90	1.33	-0.20
[ce+1.0 Temp 1.2 Dead+1.0 Wind 30 deg+1.0	51.20	3.12	-5.40	-489.18	-270.18	-1.7
Ice+1.0 Temp				-407.85	-387.61	-2.3
1.2 Dead+1.0 Wind 45 deg+1.0	51.20	4.45	-4.45	-407.83		
ce+1.0 Temp 1.2 Dead+1.0 Wind 60 deg+1.0	51.20	5.50	-3.18	-297.45	-4 81.11	-2.7
Ice+1.0 Temp 1.2 Dead+1.0 Wind 90 deg+1.0	51.20	6.41	-0.00	-18.91	-562.77	-2.8
Ice+1.0 Temp			2.10	259.62	-481.11	-2.4
1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	51.20	5.50	3.18	239.02		
1.2 Dead+1.0 Wind 135	51.20	4.45	4.45	370.02	-387.61	-2.0
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150	51.20	3.12	5.40	451.34	-270.18	-1.4
deg+1.0 Ice+1.0 Temp			6.18	517.05	1.33	0.19
1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	51.20	-0.00	0.18			
1.2 Dead+1.0 Wind 210	51.20	-3.12	5.40	451.34	272.83	1.7
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 225	51.20	-4.45	4.45	370.02	390.26	2.3
deg+1.0 Ice+1.0 Temp		5 50	3.18	259.62	483.76	2.7
1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	51.20	-5.50				
1.2 Dead+1.0 Wind 270	51.20	-6.41	-0.00	-18.91	565.42	2.8
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300	51.20	-5.50	-3.18	-297.45	483.76	2.4

All-Points Technology
Corporation, P.C.

567 Vauxhall Street Ext. Suite 311 Waterford, CT 06385 Phone: (860) 663-1697 FAX:

Job		Page
	120' Monopole Tower	6 of 7
Project	CT141_14310 Cromwell North 2 CT	Date 11:34:33 02/23/24
Client	Verizon; 17152965	Designed by DJA

Load Combination	Vertical	Shear _x	Shear_	Overturning Moment, M.	Overturning Moment, M.	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
deg+1.0 Ice+1.0 Temp					nip ji	Kip-ji
1.2 Dead+1.0 Wind 315	51.20	-4.45	-4.45	-407.85	390.27	2.01
deg+1.0 Ice+1.0 Temp			2	407.05	370.21	2.01
1.2 Dead+1.0 Wind 330	51.20	-3.12	-5,40	-489.18	272.83	1.41
deg+1.0 Ice+1.0 Temp			5.10	-407.10	272.03	1,41
Dead+Wind 0 deg - Service	26.38	0.00	-4.28	-368.42	0.54	-0.11
Dead+Wind 30 deg - Service	26.38	2.18	-3.77	-327.42	-185.34	-1.27
Dead+Wind 45 deg - Service	26.38	3.13	-3.13	-274.58	-268:57	-1.65
Dead+Wind 60 deg - Service	26.38	3.90	-2.25	-200.16	-336.68	-1.86
Dead+Wind 90 deg - Service	26.38	4.62	0.00	-5.47	-402.77	-1.91
Dead+Wind 120 deg - Service	26.38	3.90	2.25	189.23	-336.68	-1.68
Dead+Wind 135 deg - Service	26.38	3.13	3.13	263.64	-268.56	-1.42
Dead+Wind 150 deg - Service	26.38	2.18	3.77	316.48	-185.34	-1.42
Dead+Wind 180 deg - Service	26.38	0.00	4.28	357.47	0.54	0.11
Dead+Wind 210 deg - Service	26.38	-2.18	3.77	316.48	186.42	1.27
Dead+Wind 225 deg - Service	26.38	-3.13	3.13	263.64	269.65	1.65
Dead+Wind 240 deg - Service	26.38	-3.90	2.25	189.23	337.76	1.86
Dead+Wind 270 deg - Service	26.38	-4.62	0.00	-5.47	403.85	1.91
Dead+Wind 300 deg - Service	26.38	-3.90	-2.25	-200.16	337.76	1.67
Dead+Wind 315 deg - Service	26.38	-3.13	-3.13	-274.58	269.65	1.42
Dead+Wind 330 deg - Service	26.38	-2.18	-3.77	-327.42	186.42	1.03

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ſi	in	Comb.	0	0
L1	120 - 80.9167	9.867	63	0.9514	0.0314
L2	85 - 43	4.221	63	0.5381	0.0072
L3	48.5 - 1	1.228	63	0.2504	0.0021

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
fi		Load Comb.	in	o		Curvature ft
122.50	Raycap RDC-6627-PF-48 OVP	63	9.867	0.9514	0.0314	28024
121.00	Samsung B2/B66A ORAN RRH (RF4439d-25A)	63	9.867	0.9514	0.0314	28024
120.00	(2) BSF0020F3V1-1 mitigation filters	63	9.867	0.9514	0.0314	28024
119.25	SitePro1 F4P-12[W] 12' Quad Platform	63	9.733	0.9419	0.0308	28024
113.50	SiteProl UDS-NP	63	8.709	0.8692	0.0260	21557
110.00	Matsing Ball MS-12.6DB180	63	8.094	0.8253	0.0200	14012
106.50	SitePro1 UDS-NP	63	7.489	0.7820	0.0232	10379

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	0
L1	120 - 80.9167	44.162	26	4.2352	0.1399
L2	85 - 43	18.925	26	2.4121	0.0322
L3	48.5 - 1	5.508	26	1.1229	0.0095

All-Points Technology

Corporation, P.C.
567 Vauxhall Street Ext. Suite 311
Waterford, CT 06385
Phone: (860) 663-1697
FAX:

Job		Page
300	120' Monopole Tower	7 of 7
Project	CT141_14310 Cromwell North 2 CT	Date 11:34:33 02/23/24
Client	Verizon; 17152965	Designed by DJA

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of Curvature
0		Load Comb.	in	٥	0	ft
122.50	Raycap RDC-6627-PF-48 OVP	26	44.162	4.2352	0.1399	6369
122.50 121.00	Samsung B2/B66A ORAN RRH	26	44.162	4.2352	0.1399	6369
120.00	(RF4439d-25A) (2) BSF0020F3V1-1 mitigation	26	44.162	4.2352	0.1399	6369
119.25	filters SitePro1 F4P-12[W] 12' Quad	26	43.564	4.1934	0.1371	6369
	Platform	26	38.989	3.8735	0.1159	4899
113.50	SiteProl UDS-NP	26	36.240	3.6805	0.1032	3184
110.00 106.50	Matsing Ball MS-12.6DB180 SitePro1 UDS-NP	26	33.538	3.4897	0.0909	2358

Section Capacity Table

Section	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
No. L1 L2 L3	120 - 80.9167 80.9167 - 43 43 - 1	Pole Pole Pole	TP26.63x13x0.3125 TP39.23x24.581x0.4375 TP53x36.4367x0.4375	1 2 3	-10.65 -13.22 -20.32	1444.44 2332.11 3080.17	43.6 33.9 34.4	Pass Pass Pass
L3	43 - 1	2020		-		Pole (L1) RATING =	43.6 43.6	Pass Pass

Waterford, CT 06385 PH: 860-663-1697

Verizon - Cromwell North 2 CT

667 Main Street, Cromwell, CT 06416

APT FILING No. CT141_14310

Anchor Bolt and Base Plate Analysis (Circular Pattern)

Prepared by: DJA, PE: Checked by: MST, PE

Rev 1: 02/23/24

Anchor Bolt and Base Plate Analysis (Non-Grouted Base Plate)

Note: The following rational circular base analysis methdology shall be utilized when base plate design does not conform to conditions 1 thru 10 of TIA-222-H Annex Q, Section Q3.0.

Input Data:

Tower Reactions (1.2DL +1.0WL):

Overturning Moment = $M_{ii} := 1810 \cdot ft \cdot kip$ (Input From tnxTower)

Axial Force = $R_u := 31.7 \cdot kip$ (Input From tnxTower)

Shear Force = $V_{\nu} := 20.7 \cdot kip$ (Input From tnxTower)

Anchor Bolt Data:

Bolt Ultimate Stress =

Anchor Bolt Grade = ASTM A615 Gr. 75 (User Input)

Number of Anchor Bolts = N := 24(User Input)

Diameter of Bolt Circle = $D_{BC} := 59.50 \cdot in$ (User Input)

Bolt "Column" Distance = $l_{ar} := 1.0 \ in$ (Defined as anchor rod projection

from supporting structure to

bottom of leveling nut)

 $F_{ub} = 100 \cdot ksi$ (User Input)

Bolt Yield Stress = $F_{vb} = 75 \cdot ksi$ (User Input)

Bolt Modulus of Elasticity = E := 29000 · ksi (User Input)

Nominal Diameter of Anchor Bolts = D := 1.75 in(User Input)

Threads per Inch = n = 5.0(User Input)

Base Plate Data:

ASTM A572-50

Plate Yield Strength = $F_{vf} = 50 \cdot ksi$ (User Input)

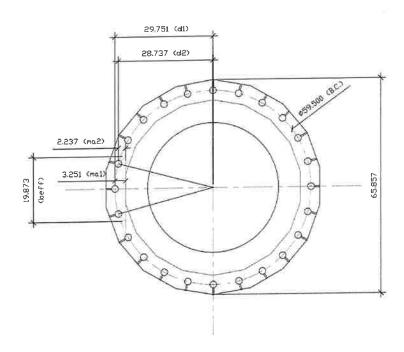
Base Plate Thickness = $t_{bo} := 2.500 \ in$ (User Input)

Base Plate Diameter = $D_{bo} := 65.86 \cdot in$ (User Input)

Outer Pole Diameter = $D_T = 53.00 \cdot in$ (User Input)

567 Vauxhall Street Extension, Suite 311 Waterford, CT 06385 PH: 860-663-1697 Verizon - Cromwell North 2 CT

667 Main Street, Cromwell, CT 06416


APT FILING No. CT141_14310

Anchor Bolt and Base Plate Analysis (Circular Pattern)

Prepared by: DJA, PE: Checked by: MST, PE

Rev 1: 02/23/24

Geometric Layout Data:

ANCHOR BOLT AND PLATE GEOMETRY

567 Vauxhall Street Extension, Suite 311 Waterford, CT 06385 PH: 860-663-1697 Verizon - Cromwell North 2 CT

667 Main Street, Cromwell, CT 06416

APT FILING No. CT141_14310

Anchor Bolt and Base Plate Analysis (Circular Pattern)

Prepared by: DJA, PE: Checked by: MST, PE

Rev 1: 02/23/24

Distance from Bolts to Centroid of Pole:

Radius of Bolt Circle =:

$$R_{bc} := \frac{D_{BC}}{2} = 29.75 \text{ in}$$

Distance to Bolts =

$$i = 1..N$$

$$d_{i} := \left\| \theta \leftarrow 2 \cdot \boldsymbol{\pi} \cdot \left(\frac{i}{N} \right) \right\|_{c}^{1}$$

$$d \leftarrow R_{bc} \cdot \sin(\theta)$$

$$d_1 = 7.70 in$$

$$d_{2} = 14.88 in$$

$$d_{2} = 21.04 in$$

$$d_{1} = 25.76 in$$

$$d_{\rm s} = 28.74 \text{ in}$$

$$d_{s} = 29.75 in$$

$$R_{pole} := \frac{D_T}{2} = 26.5 \text{ in}$$

Moment Arms of Bolts about Neutral Axis =

$$MA_i := if\left(d_i \ge R_{pole}, d_i - R_{pole}, 0 \cdot in\right)$$

$$MA_{1} = 0.00 in$$

$$MA_{_{7}} = 2.24 in$$

$$MA_{2} = 0.00 in$$

$$MA_{_{\rm B}} = 0.00 \ in$$

$$MA_{3} = 0.00 in$$

$$MA_{q} = 0.00 \ in$$

$$MA_{A} = 0.00 in$$

$$MA_{10} = 0.00 in$$

$$MA_{5} = 2.24 in$$

$$MA_{11} = 0.00 in$$

$$MA_{\rm g} = 3.25 \ in$$

Effective Width of Baseplate for Bending =

$$B_{eff} := 19.87 in$$

(User Input)

Vauxhall Street Extension, Suile 311 Waterford, CT 06385 PH: 860-663-1697

Verizon - Cromwell North 2 CT

667 Main Street, Cromwell, CT 06416

APT FILING No. CT141_14310

Anchor Bolt and Base Plate Analysis (Circular Pattern)

Prepared by: DJA, PE: Checked by: MST, PE

Rev 1: 02/23/24

Anchor Bolt Properties:

 $I_p := \sum_i (d_i)^2 = (1.062 \cdot 10^4) in^2$ Polar Moment of Inertia =

 $A_g := \frac{\pi}{4} \cdot D^2 = 2.405 \text{ in}^2$ Nominal Unthreaded Area of Bolt =

 $A_n := \frac{\pi}{4} \cdot \left(D - \frac{0.9743 \cdot in}{n}\right)^2 = 1.899 in^2$ Net Area of Bolt =

 $D_n := D - \frac{0.9743 \cdot in}{n} = 1.555 in$ $Z_x := \frac{D_n^3}{6} = 0.627 in^3$ Tensile Root Diameter =

Plastic Section Modulus of Bolt =

 $r = \frac{D_{rt}}{\Delta} = 0.389 \text{ in}$ Bolt Radius of Gyration =

 $F_{cr} = 74.92 \text{ ksi}$ Bolt Critical Compression Stress =

Anchor Bolt Forces:

 $P_{ut} := M_u \cdot \frac{R_{bc}}{I} - \frac{R_u}{N} = 59.5 \text{ kip}$ Maximum Bolt Tension Force =

 $P_{uc} := M_u \cdot \frac{R_{bc}}{l_o} + \frac{R_u}{N} = 62.2 \text{ kip}$ Maximum Bolt Compression Force =

 $|V_{u}| = \frac{V_{u}}{N} = 0.86 \text{ kip}$ Maximum Bolt Shear Force =

 $M_{ub} := 0.65 \cdot V_u \cdot I_{ar} = 0.561 \ in \cdot kip$ Bolt Bending Moment =

Anchor Bolt Strenaths:

 $\phi_t R_{nt} = 0.75 \cdot F_{ub} \cdot A_n = 142.46 \text{ kip}$ Bolt Design Tension Strength =

Bolt Design Compression Yield Strength = $\phi_c R_{nc} = 0.90 \cdot F_{yb} \cdot A_g = 162.36$ kip

 $\phi_{\nu}R_{n\nu} := 0.75 \cdot 0.5 \cdot F_{ub} \cdot A_g = 90.2 \text{ kip}$ Bolt Design Shear Rupture Strength =

 $\phi_c R_{nvc} := 0.90 \cdot 0.6 \cdot 0.75 \cdot F_{yb} \cdot A_g = 73.06 \text{ kip}$ Bolt Design Shear Yield Strength =

 $\phi_c R_{nb} := 0.90 \cdot F_{cr} \cdot A_g = 162.19 \ kip$ Bolt Design Buckling Strength =

 $\phi_t M_n := 0.90 \ F_{yb} \cdot Z_x = 42.31 \ in \cdot kip$ Bolt Design Flexural Strength =

567 Vauxhall Street Extension, Suite 311 Waterford, CT 06385 PH: 860-663-1697

Verizon - Cromwell North 2 CT

667 Main Street, Cromwell, CT 06416

APT FILING No. CT141_14310

Anchor Bolt and Base Plate Analysis (Circular Pattern)

Prepared by: DJA, PE: Checked by: MST, PE

Rev 1: 02/23/24

Anchor Rod Usage =

Note:

Per TIA-222-H Section 4.9.9 when the anchor rod projection (lar) exceeds 1(d) but is not more than 3 in., it shall be permitted to consider (lar) less than or equal to 1(d) when 5,000 psi min. 7 day strength non shrink, non metallic grout is installed between the supporting structure and the leveling nuts, otherwise all interaction equations shall be investigated based on (lar).

$$\begin{aligned} & \textit{Usage1} \coloneqq \left[\begin{array}{l} & \text{if } I_{ar} \leq 1.0 \cdot D \\ & & \\$$

Base Plate Analysis:

$$Z_p := \frac{B_{eff} \cdot t_{bp}^2}{4} = 31.05 \text{ in}^3$$

$$M_{\rho} := \sum_{i} C_{i} \cdot MA_{i} = 470.77$$
 in \cdot kip

$$\phi M_n := 0.90 \cdot F_{yf} \cdot Z_p = 1397.11 \ in \cdot kip$$

$$Usage2 := \frac{M_p}{\phi M_-} = 0.34$$

Anchor Bolt and Base Plate Analysis Summary:

Anchor Bolt Usage (% of Capacity) =

Usage1 = 38%

Base Plate Bending Usage (% of Capacity) =

Usage2 = 34%

Colliers Engineering & Design CT, PC 1055 Washington Boulevard Stamford, CT 06901 860.395.0055 peter.albano@collierseng.com

Antenna Mount Analysis Report with Hardware Upgrades and PMI Requirements

Mount ReAnalysis-VZW

SMART Tool Project #: 10215089 Colliers Engineering Project #: 23777329 (Rev. 1)

February 8, 2024

Site Information

Site ID:

5000234399-VZW / CROMWELL N 2 CT

- Cromwell Concrete

Site Name:

CROMWELL N 2 CT - Cromwell Concrete

Carrier Name:

Verizon Wireless 667 Main St

Address:

Cromwell, Connecticut 06416

Middlesex County

Latitude:

41.63239583°

Longitude:

-72.65297972°

Structure Information

Tower Type:

120-Ft Monopole

Mount Type:

12.50-Ft Platform

FUZE ID # 17152965

Analysis Results

Platform: 63.0% Pass w/ Hardware Upgrades*

T-Arm: 23.5% Pass*

*Antennas and equipment to be installed in compliance with PMI Requirements of this mount analysis.

***Contractor PMI Requirements:

Included at the end of this MA report

Available & Submitted via portal at https://pmi.vzwsmart.com

For additional questions and support, please reach out to:

pmisupport@colliersengineering.com

Report Prepared By: Frank Centone

Executive Summary:

The objective of this report is to determine the capacity of the antenna support mount at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards. Any modification listed under Sources of Information was assumed completed and was included in this analysis.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

Sources of Information:

Document Type	Remarks				
Radio Frequency Data Sheet (RFDS)	Verizon RFDS, Site ID: 2994680, dated February 8, 2024				
Desktop Mount Mapping Report	Paul J. Ford & Company, Site ID: PSLC:469424, dated April 8, 2021				
Post Modification Inspection Report	Colliers Engineering & Design Project #: 23777003, dated July 5, 2023				

Analysis Criteria:

Codes and Standards:	ANSI/TIA-222-H
Codes and Standards.	ANOI/ HA-ZZZ-M

2022 Connecticut State Building Code (CSBC), Effective October 1, 2022

Wind Parameters:	Basic Wind Speed (Ultimate 3-sec. Gust), VULT
	1 147 10 170

120 mph Ice Wind Speed (3-sec. Gust): 50 mph Design Ice Thickness: 1.50 in Risk Category: П Exposure Category: С Topographic Category: 1

Topographic Feature Considered: N/A Topographic Method: N/A Ground Elevation Factor, Ke: 0.995

Seismic Parameters: S_s: 0.207 g

S₁: 0.056 g

Maintenance Parameters: Wind Speed (3-sec. Gust): 30 mph Maintenance Load, Lv: 250 lbs.

Maintenance Load, Lm: 500 lbs.

Analysis Software: RISA-3D (V21)

Final Loading Configuration:

The following equipment has been considered for the analysis of the mounts:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model 9 HE	Status
		1	Matsing	MS-6C45	
		3	Samsung	RT-8808-77A	Added
		1	RFS	DB-B1-6C-12AB-0Z	
		6	Commscope	NNHH-65B-R4	1
		1	Commscope	NHH-45B-R2B	
119.25	120.00	1	Raycap	RHSDC-6627-PF-48	
		2	Samsung	MT6407-77A	Retained
		3	Samsung	RF4402D-D1A	Retained
		2	Samsung	RF4439d-25A	
		4	Samsung	RF4440d-13A	
110.00	110.00	1	MatSing	MS-12.6DB180	

It is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required unless replacing an existing OVP.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

Standard Conditions:

- 1. All engineering services are performed on the basis that the information provided to Colliers Engineering & Design and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation. Any deviation from the loading locations specified in this report shall be communicated to Colliers Engineering & Design to verify deviation will not adversely impact the analysis.
- Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

- 3. For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped in accordance with the NSTD-446 Standard, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- All member connections are assumed to have been designed to meet or exceed the load carrying capacity
 of the connected member unless otherwise specified in this report.
- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.

- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Colliers Engineering & Design is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.
- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

o Channel, Solid Round, Angle, Plate

ASTM A36 (Gr. 36) ASTM 500 (Gr. B-46)

HSS (Rectangular)

Pipe 0

ASTM A53 (Gr. B-35)

Threaded Rod 0

F1554 (Gr. 36)

Bolts

ASTM A325

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Colliers Engineering & Design.

Analysis Results:

Platform:

Component	Utilization %	Pass/Fail
Mount Support	27.0%	Pass
Mount Pipe	46.0%	Pass
Support Rail Corner	5.2%	Pass
Support Rail	16.7%	Pass
Face Horizontal	25.5%	Pass
Secondary Standoff	35.8%	Pass
Lower Standoff	63.0%	Pass
Grating Bracing	41.8%	Pass
Side Bracing	19.3%	Pass
Standoff Horizontal	14.3%	Pass
Grating Support	42.4%	Pass
Mount Connection	22.4%	Pass

THE STATE OF THE S	THE RESERVE OF THE PARTY OF THE	
Structure Rating – (Controlling Utilization of all Components)	63.0%	

T-Arm:

Component	Utilization %	Pass/Fail
Mount Pipe	14.3%	Pass
Face Horizontal	21.5%	Pass
Standoff	13.2%	Pass
Mount Connection	23.5%	Pass

	Structure Rating – (Controlling Utilization of all Components)	23.5%
--	--	-------

Mount Connection Envelope Reactions - Platform:

	F1		Envelope Wind Reactions				Envelope Wind + Ice Reactions			
Connection Description	Elev. AGL (Ft)	Node Label	Axial (Lbs)	Lateral (Lbs)	Moment (K-Ft)	Torsion (K-Ft)	Axial (Lbs)	Lateral (Lbs)	Moment (K-Ft)	Torsion (K-Ft)
Sector B Top Standoff	119.8	R4	1571	12333	0.120	0.853	3491	16669	0.164	0.282
Sector B Bottom Standoff	118.8	R4A	60	11650	0.100	0.302	130	22756	0.190	0.230
Sector A Top Standoff	119.8	R1	1688	13405	0.130	0.900	3348	15244	0.151	0.304
Sector A Bottom Standoff	118.8	R1A	64	12722	0.110	0.324	127	21309	0.177	0.271
Sector D Top Standoff	119.8	R2	1505	11519	0.112	0.398	3608	17243	0.171	0.136
Sector D Bottom Standoff	118.8	R2A	58	10967	0.094	0.303	133	23357	0.195	0.227
Sector C Top Standoff	119.8	R3	1497	11556	0.112	0.358	3372	15420	0.152	0.130
Sector C Bottom Standoff	118.8	R3A	58	11034	0.095	0.270	127	21536	0.179	0.184

Notes:

- Axial loads act along the axis of the tower leg
- Lateral reactions act perpendicular to the tower leg
- Moment loads introduce bending moment to the tower leg
- Torsion loads introduce twisting moment to the tower leg
- Batch solutions by individual load cases are included at the end of this document

Mount Connection Envelope Reactions - T-Arm:

THE REPORT OF THE PERSON NAMED IN	N 1905		E	nvelope V	Vind Reacti	ons	Env	elope Win	d + Ice Rea	ctions
Connection Description	Elev. AGL (Ft)	Node Label	Axial (Lbs)	Lateral (Lbs)	Moment (K-Ft)	Torsion (K-Ft)	Axial (Lbs)	Lateral (Lbs)	Moment (K-Ft)	Torsion (K-Ft)
Sector A Top Standoff	113.5	N2	622	643	0.671	0.454	1575	304	1.462	0.157
Sector A Bottom Standoff	106.5	N15	623	1262	0.682	1.282	1591	351	1.479	0.289

Notes:

- Axial loads act along the axis of the tower leg
- Lateral reactions act perpendicular to the tower leg
- Moment loads introduce bending moment to the tower leg
- Torsion loads introduce twisting moment to the tower leg
- Batch solutions by individual load cases are included at the end of this document

Mount Steel (EPA)a per ANSI/TIA-222-H Section 2.6.11.2:

atform:	Mount Pipes Ex		Mount Pipes Included				
lce Thickness (ln)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)			
0	45.7 45.7		70.1	70.1			
0.5	66.2	66.2	100.8	100.8			
1	83.5	83.5	128.3	128.3			

Notes:

- (EPA)a values listed above may be used in the absence of more precise information
- (EPA)a values in the table above include 4 sector(s).
- Ka factors included in (EPA)a calculations

T-Arm:

Ice	Mount Pipe	s Excluded	Mount Pipes Included				
Thickness (In)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)			
0	2.0	0.2	6.5	4.8			
0.5	2.7	0.3	9.1	6.8			
1	3.3	0.3	11.7	8.7			

Notes:

- (EPA)a values listed above may be used in the absence of more precise information
- (EPA)a values in the table above include 1 sector.
- Ka factors included in (EPA)a calculations

Requirements:

The existing mounts will be **SUFFICIENT** for the final loading configuration shown in attachment 2 upon the completion of the requirements listed below.

Contractor shall install a new 96" long PIPE 2 SCH40 mount pipe position 2 (Beta Sector Only). Install 12" from position 3 pipe (Contractor shall field verify as required to install proposed Matsing antenna). Top of pipe shall match existing position 3 pipe location on mount. Attach using VZWSMART MSK1 crossover plates. Refer to placement diagrams.

Contractor shall install a new 48" long PIPE 2 SCH40 mount pipe position 4 (Beta Sector Only). Install 24" from position 3 pipe. Attach using VZWSMART MSK1 crossover plates. Refer to placement diagrams.

Contractor shall install the proposed and existing radio units on new Site Pro 1 Dual Swivel Mount Kit (Part #: RRUDSM or EOR approved equivalent) in the location shown in the placement diagrams on the Beta Sector only.

ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other, if required. Separate review fees will apply.

Attachments:

- 1. Contractor Required Post Installation Inspection (PMI) Report Deliverables
- 2. Antenna Placement Diagrams
- 3. Mount Photos
- 4. Mount Mapping Report (for reference only)
- 5. Analysis Calculations

Mount Desktop – Post Modification Inspection (PMI) Report Requirements

Documents & Photos Required from Contractor – Passing Mount Analysis

Passing Mount Analysis requires a PMI due to a modification in loading.

Electronic pdf version of this can be downloaded at https://pmi.vzwsmart.com.

For additional questions and support, please reach out to pmisupport@colliersengineering.com

MDG #: 5000234399

SMART Project #: 10215089

Fuze Project ID: 17152965

<u>Purpose</u> – to provide SMART Tool structural vendor the proper documentation in order to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the installation was completed in accordance with this Passing Mount Analysis.
- Contractor shall relay any data that can impact the performance of the mount, this includes safety issues.

Base Requirements:

- If installation will cause damage to the structure, the climbing facility, or safety climb if present or any installed system, SMART Tool vendor to be notified prior to install. Any special photos outside of the standard requirements will be indicated on the drawings.
- Provide "as built mount drawings" showing contractor's name, contact information, preparer's signature, and date. Any deviations from the drawings (Proposed modification) shall be shown.
 NOTE: If loading is different than what is conveyed in the passing mount analysis (MA) contact the SMART Tool vendor immediately.
- Each photo should be time and date stamped
- Photos should be high resolution.
- Contractor shall ensure that the safety climb wire rope is supported and not adversely
 impacted by the install of the modification components. This may involve the install of wire
 rope guides, or other items to protect the wire rope. If there is conflict, contact the SMART Tool
 engineer for recommendations.
- The PMI can be accessed at the following portal: https://pmi.vzwsmart.com

Photo Requirements:

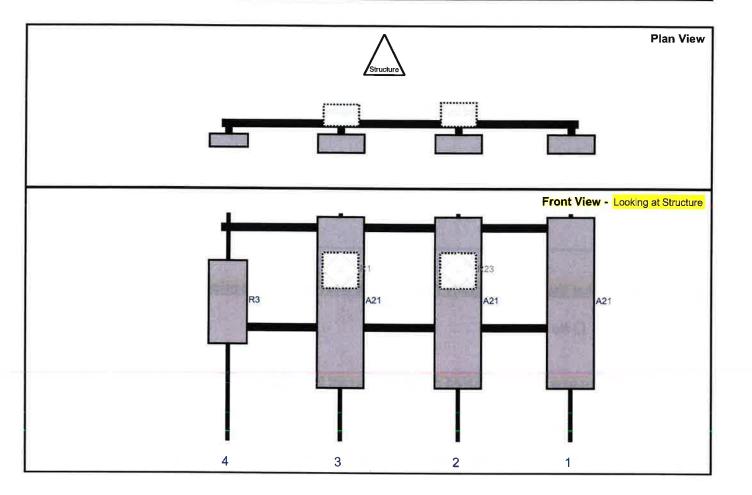
- Photos taken at ground level
 - Photo of Gate Signs showing the tower owner, site name, and number.
 - Overall tower structure after installation.
 - Photos of the mount after installation; if the mounts are at different rad elevations, pictures must be provided for all elevations that equipment was installed.
- Photos taken at Mount Elevation
 - Photos showing the safety climb wire rope above and below the mount prior to installation.
 - Photos showing the climbing facility and safety climb if present.

- Photos showing each individual sector after installation. Each entire sector shall be in one photo to show the interconnection of members.
 - These photos shall also certify that the placement and geometry of the equipment on the mount is as depicted in the antenna placement diagram in this form.
- Photos that show the model number of each antenna and piece of equipment installed per sector.

Antenna & equipment placement and Geometry Confirmation:

 The contractor shall certify that the antenna & equipment placement and geometry is in accordance with the sketch and table as included in the mount analysis and noted below.
\Box The contractor certifies that the photos support and the equipment on the mount is as depicted on the sketch and table included in this form and with the mount analysis provided.
OR
☐ The contractor notes that the equipment on the mount is not in accordance with the sketch and has noted the differences below and provided photo documentation of any alterations.
Special Instructions / Validation as required from the MA or any other information the contractor
deems necessary to share that was identified:
<mark>lssue:</mark>
Contractor shall install a new 96" long PIPE 2 SCH40 mount pipe position 2 (Beta Sector Only). Install 12" from position 3 pipe (Contractor shall field verify as required to install proposed Matsing antenna). Top of pipe shall match existing position 3 pipe location on mount. Attach using VZWSMART MSK1 crossover plates. Refer to placement diagrams.
Contractor shall install the proposed and existing radio units on new Site Pro 1 Dual Swivel Mount Kit (Part #: RRUDSM or EOR approved equivalent) in the location shown in the placement diagrams on the Beta Sector only.
Response:
Special Instruction Confirmation:
\Box The contractor has read and acknowledges the above special instructions.
\Box All hardware listed in the Special Instructions above (if applicable) has been properly installed, and the existing hardware was inspected.

	☐ The material utilized was as specified in the SMART Tool engineering vendor Special Instructions above (if applicable) and included in the material certification folder is a packing list or invoice for these materials.
	OR
	☐ The material utilized was approved by a SMART Tool engineering vendor as an "equivalent" and this approval is included as part of the contractor submission.
Comn	ments:
Contr	ractor certifies that the climbing facility / safety climb was not damaged prior to starting work:
	□ Yes □ No
Contr	ractor certifies no new damage created during the current installation:
	□ Yes □ No
Contr	ractor to certify the condition of the safety climb and verify no damage when leaving the site:
	☐ Safety Climb in Good Condition ☐ Safety Climb Damaged
Certif	fying Individual:
	Company: Employee Name: Contact Phone: Email:


Structure: 5000234399-VZW - CROMWELL N 2 CT - Cromwell Concrete

Sector: A 1/18/2024

Structure Type: Monopole 10215089

Mount Elev: 119.25 Page: 1

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T	H Off	Status	Validation
A21	NNHH-65B-R4	72	19.6	147	1	а	Front	37.5	0	Retained	06/14/2023
A21	NNHH-65B-R4	72	19.6	99.75	2	a	Front	37.5	0	Retained	06/14/2023
R23	RF4439d-25A	15	15	99.75	2	а	Behind	24	0	Retained	06/14/2023
A21	NNHH-65B-R4	72	19.6	50.25	3	а	Front	37.5	0	Retained	06/14/2023
R1	RF4440d-13A	15	15	50.25	3	а	Behind	24	0	Retained	06/14/2023
R3	MT6407-77A	35.1	16.1	3	4	а	Front	37.5	0	Retained	06/14/2023
OVP	RHSDC-6627-PF-48	29.5	16.5	1	Memb	er		4		Retained	06/14/2023
MP3D	RF 4402D-D1A	15	15		Memb	er			T. F	Retained	06/14/2023
MP2D	RF 4402D-D1A	15	15		Memb	ег		2		Retained	06/14/2023
MP1D	BSF0020F3V1-1	10.6	10.9		Memb	er				Added	
M515	BSF0020F3V1-1	10.6	10.9	STUT	Memb	ег			V. F.	Added	

Structure: 5000234399-VZW - CROMWELL N 2 CT - Cromwell Concrete

Sector: B

Structure Type: Monopole

10215089

Colliers Engineering & Design

Mount Elev: 119.25

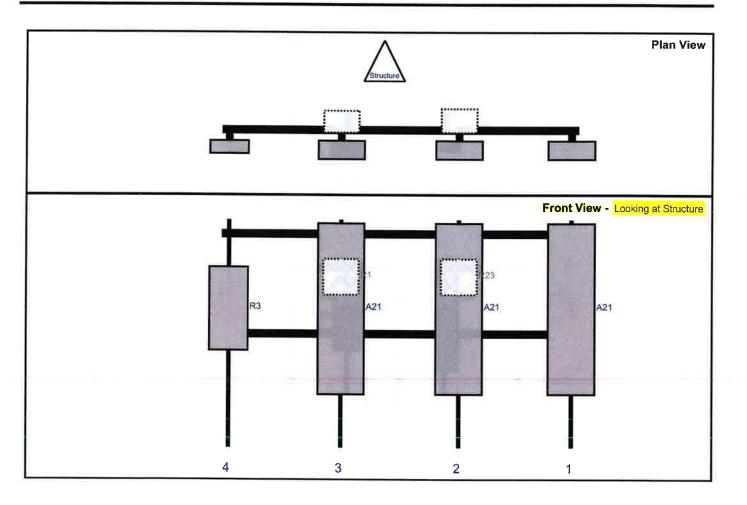
Page: 2

1/23/2024

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm Ta	H Off	Status	Validation
R6	RF4440d-13A	15	15	147	1	а	Behind	24	0	Retained	06/14/2023
R9	RT-8808-77A	15	15	147	1	а	Behind	18	12	Added	
A9	MS-6C45	41.4	28.74	99.75	2	а	Front	37.56	0	Added	
R9	RT-8808-77A	15	15	99.75	2	а	Behind	18	12	Added	
R9	RT-8808-77A	15	15	99.75	2	b	Behind	57	12	Added	14.77
A17	NHH-45B-R2B	72	18	50.25	3	а	Front	37.5	0	Retained	06/14/2023
R6	RF4440d-13A	15	15	50.25	3	а	Behind	24	0	Retained	06/14/2023
R6	RF4440d-13A	15	15	50-25	3	а	Behind	24	0	Retained	06/14/2023
R10	DB-B1-6C-12AB-0Z	15	15	99.75	2	а	Behind	18	12	Added	

Structure: 5000234399-VZW - CROMWELL N 2 CT - Cromwell Concrete

Sector: **C** 1/18/2024


Structure Type: Monopole

10215089

Colliers Engineering & Design

Mount Elev: 119.25

Page: 3

Ref#	Model	Height (in)	Width (in)	H Dist Fm L.	Pipe #	Pipe Pos V	Ant Pos	C. Ant Frm T.	Ant H Off	Status	Validation
A21	NNHH-65B-R4	72	19.6	147	1	а	Front	37.5	0	Retained	06/14/2023
A21	NNHH-65B-R4	72	19.6	99.75	2	а	Front	37.5	0	Retained	06/14/2023
R23	RF4439d-25A	15	15	99.75	2	а	Behind	24	0	Retained	06/14/2023
A21	NNHH-65B-R4	72	19.6	50.25	3	а	Front	37.5	0	Retained	06/14/2023
R1	RF4440d-13A	15	15	50.25	3	а	Behind	24	0	Retained	06/14/2023
R3	MT6407-77A	35.1	16.1	3	4	а	Front	37.5	0	Retained	06/14/2023

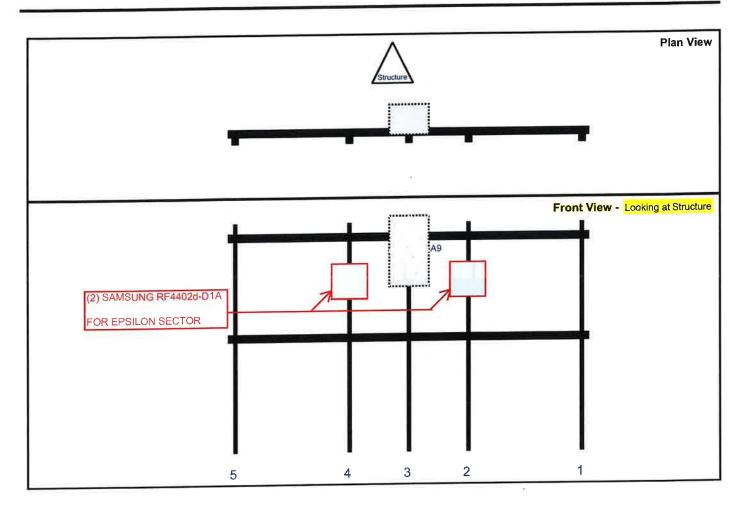
Structure: 5000234399-VZW - Cromwell N2

Sector:

Mount Elev:

D

Structure Type: Monopole


119.25

10215089

10/10/2023

Page: 1

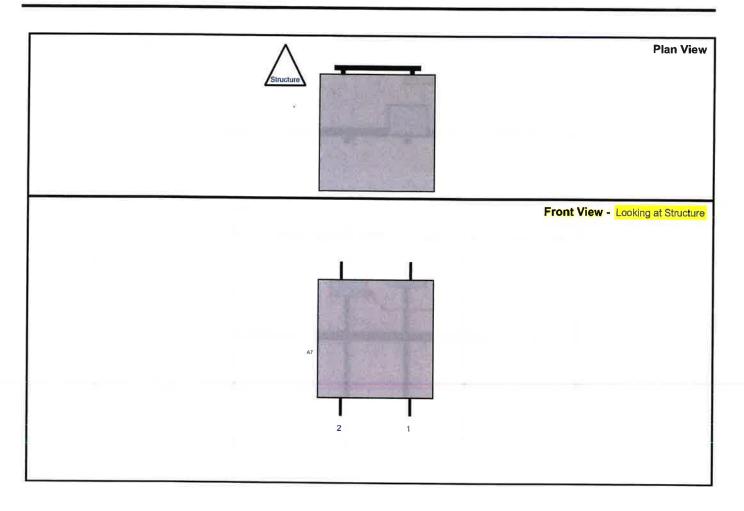
Ref# Model	Height (in)	Width (in)	H Dist Frm L.		Pipe Pos V		C. Ant Frm T.	Ant H Off	Status	Validation	
A9	RHSDC-6627-PF-48	29.5	16.5	75	3	а	Behind	12	0	Retained	

Structure: 5000234399-VZW - Cromwell N2

Sector:

Mount Elev:

A

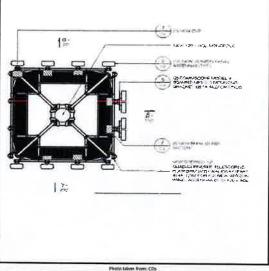

Structure Type: Monopole

e: Monopole 110.00 10215089

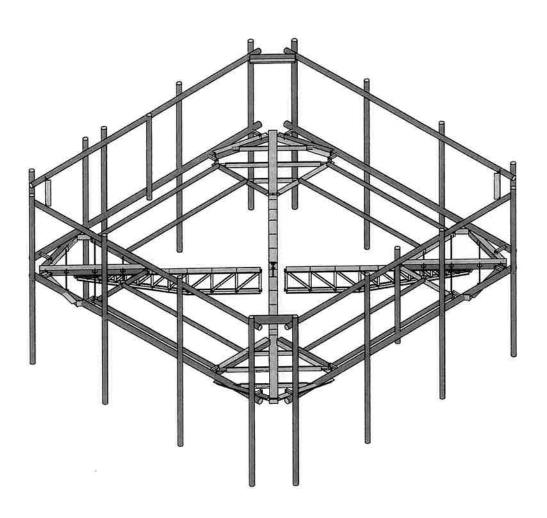

3/22/2023

Page: 3

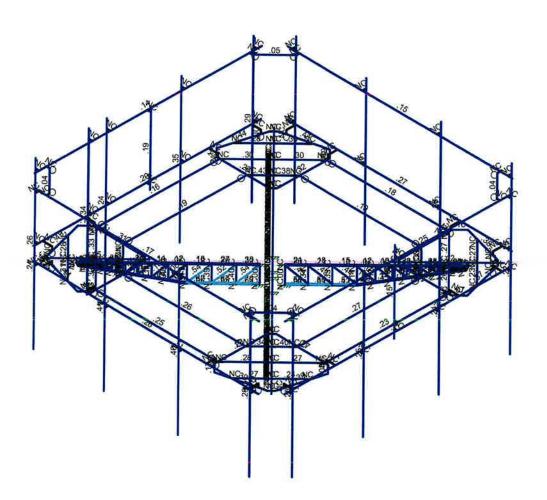
		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Fm L.	#	Pos V	Pos	Frm Ta	H Off	Status	Validation
A7	MS-12.6DB180	71	80	54	1	а	Front	48	-24	Added	


Desktop Mount Mapping Form								
Site Name:	Cromwell N 2 CT	Tower Type:	Monopole					
Site ID:		Tower Owner:						
PSLC:	469424	Tower Height (Ft.):	120					
Customer:		Mount Elevation (Ft.):	120					
Colliers Project No.	21777002A	Date:	4/8/2021					

The information contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication, modification or disclosure by any method is prohibited except by express written permission of PJF.


Document Type	Provided? (Yes/No)	Source Name	Project No.	Dated	Comments/Remarks
Previous Mount Mapping	No				
Previous Mapping Photos	No		THE STATE OF		
Previous Mount Analysis	No				
Previous Mount Modifications	No				
Previous Structural Analysis	No				
Construction Drawings	Yes	Cromwell N 2 CT CD Rev0 11-04-2019	NY141NB6710	11/4/2019	Provided and is the primary source of mount information. Mount part numbers along with graphical details are shown.
Closeout Package	Yes				
Closeout Photos	Yes				Photos are helpful for IMA
Handover Package	No				HE PERSON NAMED IN
New Build 445 Documentation	No				
Other	No			10	
Previous PMI	No				

The desktop mount mapping is based on the engineering review of the available site documents in FUZE, as listed above, in place of a full mount mapping, it is assumed that the information provided in the documents listed above, provide an accurate representation of the existing mount. EOR reserves the right and will typically require additional clarification and verification as will be included in the PMI requirements. During the Post Modification inspection (PMI) process, the GC on site will be required to confirm all questions, confirmations, and validations as posed by the EOR. The engineering review for this desktop mount mapping was performed in accordance to the ANSI/TIA-222-H requirements and Verizon's NSTD446 standard.

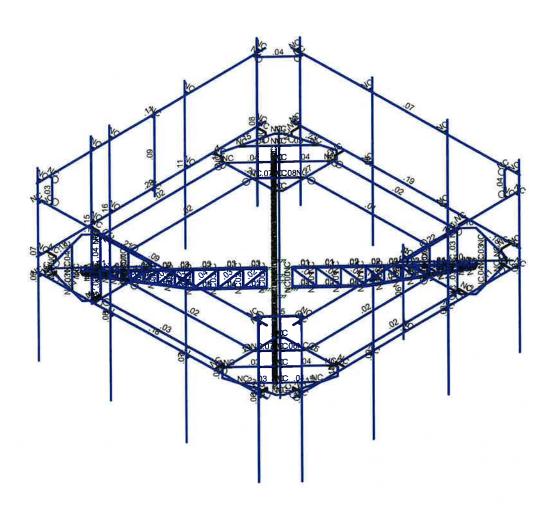


	SK - 1		
Mount Analysis	Feb 8, 2024 at 3:38 PM 5000234399-VZW_MT_LO_H_12.		
	Mount Analysis		

Member Code Checks Displayed (Enveloped) Results for LC 1, 1.2D+1.0Wo (0 Deg)

Colliers Engineering & De	
NL	1
23777329	1

Mount Analysis


SK - 2

Feb 8, 2024 at 3:38 PM

5000234399-VZW_MT_LO_H_12...

Member Shear Checks Displayed (Enveloped) Results for LC 1, 1.2D+1.0Wo (0 Deg)

Colliers Engineering & De.,
NL
23777329

Colliers Engineering & DesignNL23777329Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Basic Load Cases

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Antenna D Antenna Di Antenna Wo (0 Deg) Antenna Wo (30 Deg) Antenna Wo (60 Deg) Antenna Wo (90 Deg) Antenna Wo (120 Deg) Antenna Wo (150 Deg) Antenna Wo (180 Deg) Antenna Wo (210 Deg) Antenna Wo (240 Deg) Antenna Wo (270 Deg) Antenna Wo (300 Deg) Antenna Wo (330 Deg) Antenna Wi (30 Deg) Antenna Wi (30 Deg)	None None None None None None None None					117 117 117 117 117 117 117 117		Area(Me	
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Antenna Wo (0 Deg) Antenna Wo (30 Deg) Antenna Wo (60 Deg) Antenna Wo (90 Deg) Antenna Wo (120 Deg) Antenna Wo (150 Deg) Antenna Wo (180 Deg) Antenna Wo (210 Deg) Antenna Wo (240 Deg) Antenna Wo (270 Deg) Antenna Wo (300 Deg) Antenna Wo (330 Deg) Antenna Wi (0 Deg) Antenna Wi (0 Deg)	None None None None None None None None					117 117 117 117 117 117 117			
4 5 6 7 8 9 10 11 12 13 14 15 16 17	Antenna Wo (30 Deg) Antenna Wo (60 Deg) Antenna Wo (90 Deg) Antenna Wo (120 Deg) Antenna Wo (150 Deg) Antenna Wo (180 Deg) Antenna Wo (210 Deg) Antenna Wo (240 Deg) Antenna Wo (270 Deg) Antenna Wo (300 Deg) Antenna Wo (330 Deg) Antenna Wi (0 Deg) Antenna Wi (0 Deg)	None None None None None None None None					117 117 117 117 117 117			
5 6 7 8 9 10 11 12 13 14 15 16 17	Antenna Wo (60 Deg) Antenna Wo (90 Deg) Antenna Wo (120 Deg) Antenna Wo (150 Deg) Antenna Wo (180 Deg) Antenna Wo (210 Deg) Antenna Wo (240 Deg) Antenna Wo (270 Deg) Antenna Wo (300 Deg) Antenna Wo (330 Deg) Antenna Wi (0 Deg) Antenna Wi (0 Deg)	None None None None None None None None		- 9			117 117 117 117 117			
6 7 8 9 10 11 12 13 14 15 16 17 18	Antenna Wo (90 Deg) Antenna Wo (120 Deg) Antenna Wo (150 Deg) Antenna Wo (180 Deg) Antenna Wo (210 Deg) Antenna Wo (240 Deg) Antenna Wo (270 Deg) Antenna Wo (300 Deg) Antenna Wo (330 Deg) Antenna Wi (0 Deg) Antenna Wi (0 Deg)	None None None None None None None None					117 117 117 117			
7 8 9 10 11 12 13 14 15 16 17	Antenna Wo (120 Deg) Antenna Wo (150 Deg) Antenna Wo (180 Deg) Antenna Wo (210 Deg) Antenna Wo (240 Deg) Antenna Wo (270 Deg) Antenna Wo (300 Deg) Antenna Wo (330 Deg) Antenna Wi (0 Deg) Antenna Wi (300 Deg)	None None None None None None None None		= 3			117 117 117			
8 9 10 11 12 13 14 15 16 17 18	Antenna Wo (150 Deg) Antenna Wo (180 Deg) Antenna Wo (210 Deg) Antenna Wo (240 Deg) Antenna Wo (270 Deg) Antenna Wo (300 Deg) Antenna Wo (330 Deg) Antenna Wi (0 Deg) Antenna Wi (0 Deg)	None None None None None None None None		× 2			117 117 117			
9 10 11 12 13 14 15 16 17 18	Antenna Wo (180 Deg) Antenna Wo (210 Deg) Antenna Wo (240 Deg) Antenna Wo (270 Deg) Antenna Wo (300 Deg) Antenna Wo (330 Deg) Antenna Wi (0 Deg) Antenna Wi (30 Deg)	None None None None None None		- E			117 117			
10 11 12 13 14 15 16 17 18	Antenna Wo (210 Deg) Antenna Wo (240 Deg) Antenna Wo (270 Deg) Antenna Wo (300 Deg) Antenna Wo (330 Deg) Antenna Wi (0 Deg) Antenna Wi (30 Deg)	None None None None None					117			
11 12 13 14 15 16 17 18	Antenna Wo (240 Deg) Antenna Wo (270 Deg) Antenna Wo (300 Deg) Antenna Wo (330 Deg) Antenna Wi (0 Deg) Antenna Wi (30 Deg)	None None None								
12 13 14 15 16 17 18	Antenna Wo (270 Deg) Antenna Wo (300 Deg) Antenna Wo (330 Deg) Antenna Wi (0 Deg) Antenna Wi (30 Deg)	None None None					117			
13 14 15 16 17 18	Antenna Wo (300 Deg) Antenna Wo (330 Deg) Antenna Wi (0 Deg) Antenna Wi (30 Deg)	None None					117			
14 15 16 17 18	Antenna Wo (330 Deg) Antenna Wi (0 Deg) Antenna Wi (30 Deg)	None None					117			
15 16 17 18	Antenna Wo (330 Deg) Antenna Wi (0 Deg) Antenna Wi (30 Deg)	None					117			
16 17 18	Antenna Wi (0 Deg) Antenna Wi (30 Deg)						117	-		
17 18	Antenna Wi (30 Deg)	None					117			
18	A = 1 = = = 14/1 (00 D)	None					117			
	Antenna Wi (60 Deg)	None					117	-		
	Antenna Wi (90 Deg)	None	A 100					_		
	Antenna Wi (120 Deg)	None					117			
20	Antenna Wi (150 Deg)	None					117			
21	Antenna Wi (180 Deg)	None	-				117			
22	Antenna Wi (210 Deg)						117			
23	Antenna Wi (240 Deg)	None					117			
24	Antenna Wi (240 Deg)	None					117			
	Antenna Wi (270 Deg)	None					117			
25	Antenna Wi (300 Deg)	None					117			
26	Antenna Wi (330 Deg)	None			100	1	117			
27	Antenna Wm (0 Deg)	None					117			
28	Antenna Wm (30 Deg)	None			100		117			
29	Antenna Wm (60 Deg)	None					117			
30	Antenna Wm (90 Deg)	None					117			
31	Antenna Wm (120 Deg)	None					117			
32	Antenna Wm (150 Deg)	None		E.K.	CHE.		117			
33	Antenna Wm (180 Deg)	None					117			
34	Antenna Wm (210 Deg)	None				1000	117			
35	Antenna Wm (240 Deg)	None					117			
36	Antenna Wm (270 Deg)	None					117			
37	Antenna Wm (300 Deg)	None			_	_	117			
38	Antenna Wm (330 Deg)	None					117		_	
39	Structure D	None		-1			_11/		20	
40	Structure Di	None						200	22	
41	Structure Wo (0 Deg)	None						299	22	
42	Structure Wo (30 Deg)	None						598		
43	Structure Wo (60 Deg)	None						598		
44	Structure Wo (90 Deg)	None						598		
	Structure Wo (120 Deg)	None						598		
46	Structure Wo (150 Deg)							598		
47	Structure Wo (180 Deg)	None						598		
	Structure Wo (100 Deg)	None						598		
49	Structure Wo (210 Deg)	None						598		
	Structure Wo (240 Deg)	None						598		
50	Structure Wo (270 Deg)	None						598		
51	Structure Wo (300 Deg)	None						598		
52	Structure Wo (330 Deg)	None						598		
53	Structure Wi (0 Deg)	None						598		
54	Structure Wi (30 Deg)	None						598		
55	Structure Wi (60 Deg)	None						598		
56	Structure Wi (90 Deg)	None						598		400
57	Structure Wi (120 Deg)	None						598		
58	Structure Wi (150 Deg)	None		77777				598		-

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	The state of the s	.Area(Me.	Surface(,
59	Structure Wi (180 Deg)	None						598		
60	Structure Wi (210 Deg)	None						598		
61	Structure Wi (240 Deg)	None						598		
62	Structure Wi (270 Deg)	None	SET E					598		
63	Structure Wi (300 Deg)	None						598		
64	Structure Wi (330 Deg)	None						598		
65	Structure Wm (0 Deg)	None						598		
66	Structure Wm (30 Deg)	None						598	H -	
67	Structure Wm (60 Deg)	None						598		
68	Structure Wm (90 Deg)	None						598	JUN THE	
69	Structure Wm (120 Deg)	None						598		
70	Structure Wm (150 Deg)	None						598		
71	Structure Wm (180 Deg)	None						598		
72	Structure Wm (210 Deg)	None						598		
73	Structure Wm (240 Deg)	None						598		
74	Structure Wm (270 Deg)	None						598		
75	Structure Wm (270 Deg)	None						598		
76	Structure Wm (330 Deg)	None			التات			598		
77	Lm1	None					1			
78	Lm2	None					1		3 1 1	
79	Lv1	None					1			
80	Lv2	None			15 31		1			
81	Antenna Ev	None					117			
	Antenna Eh (0 Deg)	None					78			
82	Antenna Eh (90 Deg)	None					78			
83	Structure Ev	ELY		044					22	
84	Structure Ev	ELZ			11				22	
85	Structure Eh (90 Deg)	ELX	.11			W-1			22	
86	BLC 39 Transient Area Loads	None	1					363		
87	BLC 40 Transient Area Loads	None			1 3			363	7.1	
88	BLC 84 Transient Area Loads	None						363		
89	BLC 85 Transient Area Loads	None						363		
90	BLC 86 Transient Area Loads	None						363		

Load Combinations

	Combination		D	S	DI C	Fac	BLC	Fac	BLC	Fac	BI C	Fac	BLC	Fac.	BLC	Fac	BLC	Fac.	BLC	Fac.	BLC	Fac	BLC	Fac.
1	Description 1.2D+1.0Wo (0 Deg	So		J	1	1.2	39			1	41	1		lanktonio.										
2	1.2D+1.0Wo (30 D.				1	1.2	39	_	4	1	42	1	la l	- 1										
3	1.2D+1.0Wo (60 D.				1	1.2	39	1.2	5	1	43	1												
4	1.2D+1.0Wo (90 D.	_	_		1	1.2	39	1.2	6	1	44	1									_			
5	1.2D+1.0Wo (120				1	1.2	39	1.2	7	1	45	1							_		_	_		
6	1.2D+1.0Wo (150				1	1.2	39	1.2	8	1	46	1												
7	1.2D+1.0Wo (180	. Yes	Y		1	1.2	39	1.2	9	1	47	1					_			_	_			
8	1.2D+1.0Wo (210	Yes	Y		1	1.2	39	1.2	10	1	48	1												
9	1.2D+1.0Wo (240	. Yes	Y		1	1.2	39		11	1	49	1			_			_	-		-	-		
10	1.2D+1.0Wo (270	. Yes	Y		1	1.2	39	1.2	_	1	50	_1		0					-		-			
11	1.2D+1.0Wo (300	. Yes	Υ		1	1.2	39		100000000000000000000000000000000000000	1	51	1			_			-	-	-				
12	1.2D+1.0Wo (330			10	1	1.2	39	_	-	1	52	1_			-	4			H	-	-			
13	1.2D + 1.0Di + 1.0	. Yes	Y		1	1.2	39	_	2	1	40	1	15	1	53	1			-	-	-			
14	1.2D + 1.0Di + 1.0				1	1.2	39		_	1	40	1	16	1	54	7		0.0		-			-	
15	1.2D + 1.0Di + 1.0				1	1.2	39		_	1	40	1	17	1	55	1				-	1			
16	1.2D + 1.0Di + 1.0				1	_	-	1.2	_	1	40	1	18	1	56	1			100	-	-			
17	1.2D + 1.0Di + 1.0			_	1	1.2	39		2	1	40	1	19	7	57	1			-	-	-			
18	1.2D + 1.0Di + 1.0				1	1.2	39	1.2	2	1	40	1.	20	1	58	4		-	-	-	-	-		
19	1.2D + 1.0Di + 1.0			_	1	1.2	39	1.2	2	1	40	1	21	1	59 60	4					+			
20	1.2D + 1.0Di + 1.0				1	1.2	39	_	2	1	40	1	22	1	61	1		-	-	_	\vdash			
21	1.2D + 1.0Di + 1.0	Yes	Y		11	1.2	39	1.2	12	1	40	1	23	_1_	[01]		I			_	_			

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Load Combinations (Continued)

	<u>a combination</u>										_					_					-	_		
00	Description	So	P	S	BLC	Fac.	BLC	Fac.	.BLC	Fac.	BLC	Fac.	BLC	Fac.	BLC	Fac.	BLC	Fac	BLC	Fac.	BLO	Fac.	BLC	Fac
22	1.2D + 1.0Di + 1.0	res	Y		1	1.2	39	1.2	2	1	40	1	24	1	62					115				
23	1.2D + 1.0Di + 1.0	Yes	Y		1	1.2	39	1.2	2	1	40	1	25	1	63	1								
24	1.2D + 1.0Di + 1.0	Yes			1	1.2	39	1.2	2	1	40	1	26	1	64	1				Land				
25	1.2D + 1.5Lm1 + 1				1	1.2	39	1.2	77	1.5	27	1	65	1										
26	1.2D + 1.5Lm1 + 1	Yes	Y		1	1.2	39	1.2	77	1.5			66	1						1		100		
27	1.2D + 1.5Lm1 + 1	Yes	Y		1		39		_		_	_	67	1	T								1	
28	1.2D + 1.5Lm1 + 1	Yes	Y		1				_	1.5	_	_	68	1									\vdash	
29	1.2D + 1.5Lm1 + 1	Yes	Y		1		_		_	1.5	_	1	69	1	1				+		1	_	+	-
30	1.2D + 1.5Lm1 + 1	Yes	Y		1	1.2			_	1.5	32	-	70	1		1								
31	1,2D + 1.5Lm1 + 1	Yes			1		39		_	1.5	33	_	71	1	-		-				-	-	-	-
	1.2D + 1.5Lm1 + 1				1	1.2			_	1.5					+		-			-	-	-		
33	1.2D + 1.5Lm1 + 1				1	1.2				1.5	-	_	72	1	-		-			-		-	-	
34	1.2D + 1.5Lm1 + 1	_	Y	\vdash	1	_	_	_	_	_	35	1	73	1							-		-	_
	1.2D + 1.5Lm1 + 1				_	1.2		1.2	_	1.5			74	1	-	-				-	-		-	
	1.2D + 1.5Lm1 + 1		_	\vdash	1	1.2	39	1.2		1.5	_	1	75	1	_									
			Y		1	1.2	39		_	1.5		1	76	1										
37	1.2D + 1.5Lm2 + 1	Yes		\vdash	1	1.2	39	1.2		1.5	27	1	65	1										
		Yes	Y		1	1.2	39			1.5		1	66	1				M N		111				Ď.
	1.2D + 1.5Lm2 + 1	Yes	Y		1_	1.2	39	1.2		1.5		1	67	1										
	1.2D + 1.5Lm2 + 1	Yes	Y		1	1.2	39	1.2	78	1.5	30	1	68	1	(IN)									14
	1.2D + 1.5Lm2 + 1	Yes	Υ		1	1.2	39	1.2	78	1.5	31	1	69	1										
		Yes	Υ		1	1.2	39	1.2	78	1.5	32	1	70	1										
		Yes	Υ		1	1.2	39	1.2	78	1.5	_	1	71	1					1					
44	1.2D + 1.5Lm2 + 1	Yes	Y		1	1.2	39			1.5		1	72	1									799	
45	1.2D + 1.5Lm2 + 1	Yes	Υ		1	1.2	39	1.2		1.5	35	1	73	1										
46	1.2D + 1.5Lm2 + 1	Yes	Y		1		39			1.5		1	74	1									-	750
47	1.2D + 1.5Lm2 + 1	Yes	Υ		1	1.2					37	1	75	1								100-	-	_
	1.00 1.00	Yes	Ÿ		1	1.2			78	1.5		1	76	1										
49		Yes	Ý		1	1.2		1.2	79	1.5	30	_ L	10	- 1		-			-	-	-	50	-	_
50		Yes	Y		1	1.2		1.2	80	1.5			6-									-		
51		Yes	Ÿ		1	_		1.4	OU	1.5			-					_						
=	1.2D + 1.0Ev + 1.0		Ÿ	-	-				04		ELV		00		-								\vdash	
=	100 100	Yes	_	-	1	1.2	39		81		ELY	<u> </u>	82	1	83		ELZ	1	ELX					
	1.00 . 1.05 . 1.0	-	Y		1	1.2	39	1.2	81		ELY	1	82	.866	_		$\overline{}$.866						
		Yes	Y		1	1.2			81	_	ELY	1	82	.5	83	.866		.5		.866				
		Yes	Y		1	1.2	39	1.2	81		ELY	_1_	82		83	-	ELZ		ELX	1				
		Yes	Y	_	1	1.2	39	1.2	81	_	ELY	1	82	5	83	.866			ELX					
	100 1105 10	Yes	Y		1	1.2	39	1.2	81	1	ELY	1	82	866	83	.5	ELZ	866	ELX	.5				
		_	Y		1	1.2	39	1.2	81	1	ELY	1	82	-1	83		ELZ	-1	ELX					
		Yes	Y		1	1.2	39	1.2	81	1	ELY	1	82	866	83	5	ELZ	866	ELX	5				
_	1.2D + 1.0Ev + 1.0	Yes	Y		1	1.2	39	1.2	81	1	ELY	1	82	5	83	866	ELZ	5	ELX	866	1.5		3	
			Υ		1	1.2	39	1.2	81	1	ELY	1	82		83		ELZ		ELX	-1				
	1.2D + 1.0Ev + 1.0		Y	-4	1	1.2		1.2	81	1	ELY	1	82	.5	-	866	-	.5	-	_				
	1.2D + 1.0Ev + 1.0		Y		1	1.2	_			_	ELY					5								
	0.9D - 1.0Ev + 1.0			_	1		39			-1	_		82		83			1						
	0.9D - 1.0Ev + 1.0			_	1		39	.9		-1				.866				.866			_			
	0.9D - 1.0Ev + 1.0				1		39	.9		-1			82			.866								
	0.9D - 1.0Ev + 1.0		Ÿ	_	1		39	.9		-1			82	.0	83		ELZ	_	ELX		-			-
	0.9D - 1.0Ev + 1.0			_	1		39			-1														
69	0.9D - 1.0Ev + 1.0	_	Ÿ	_	1			.9	_				82			.866								
	0.9D - 1.0Ev + 1.0		V	_	\rightarrow		39		81		ELY			866	_			866						
	0.9D - 1.0Ev + 1.0	-	_	_	1		39	.9			ELY		82		83			-1			00		-	
			Y		1		39	.9			ELY					5								
72	0.9D - 1.0Ev + 1.0	res	Y	_	1			.9		-1			82	5		866	$\overline{}$		_	-				
73	0.9D - 1.0Ev + 1.0	res	Y	_	1	-	39	.9			ELY		82		83		ELZ		ELX					
14	0.9D - 1.0Ev + 1.0	res	Y	$\overline{}$	1		_	.9		-1			82							866				
75	0.9D - 1.0Ev + 1.0	res	<u>Y </u>		1	.9	39	.9	81	-1	ELY	-1	82	.866	83	5	ELZ	.866	ELX	5				

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design L.	. Material	Design	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	Face Horizontal	PIPE 2.5	None	None	Q235	Typical	1.61	1.45	1.45	2.89
2	Mount Pipe	PIPE 2.0	None	None	A53 Gr.B	Typical	1.02	.627	.627	1.25
3	Standoff Horizontal	HSS4X3X4	None	None	Q235	Typical	2.91	3.91	6.15	7.96
_	Connector Angle	L2x2x2	None	None	Q235	Typical	.491	.189	.189	.003
4		L3X3X6	None	None	Q235	Typical	2.11	1.75	1.75	.101
5	Grating Support	PL1/2x4	None	None	Q235	Typical	2	.042	2.667	.154
6	Secondary Standoff	PL3/8x4	VBrace	RECT	Q235	Typical	1.5	.018	2	.066
7	Lower Standoff			None	Q235	Typical	.375	.004	.031	.013
8	Bracing	PL3/8X1	None		Q235	Typical	.891	.01	.419	.038
9	Grating Bracing	PL3/8x2.375	None	None		-	1.125	.013	.844	.049
10	Side Bracing	PL3/8x3	VBrace	RECT	Q235	Typical				1.25
11	Support Rail	PIPE 2.0	None	None	A53 Gr.B	Typical	1.02	.627	.627	
12	Support Rail Corner	WT2.5X8	None	None	A36 Gr.36	Typical	2.35	3.75	.845	.096
13	Mount Support	PIPE 1.5	None	None	Q235	Typical	.749	.293	.293	.586
14	TES Grating Bracing	PL3/8x3	VBrace	RECT	Q235	Typical	1.125	.013	.844	.049
15	TES Support Rail Corner	L3X3X6	None	None	Q235	Typical	2.11	1.75	1.75	.101

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	R3	N77	N35			RIGID	None	None	RIGID	Typical
2	R4	N27	N38			RIGID	None	None	RIGID	Typical
3	R5	N28	N39			RIGID	None	None	RIGID	Typical
4	R6	N79	N41			RIGID	None	None	RIGID	Typical
5	R7	N29	N41A			RIGID	None	None	RIGID	Typical
6	R8	N31	N42			RIGID	None	None	RIGID	Typical
7	R9	N47	N50			RIGID	None	None	RIGID	Typical
8	R10	N49	N52A			RIGID	None	None	RIGID	Typical
9	M57	N77	N69			RIGID	None	None	RIGID	Typical
10	M58	N27	N70		أكهام	RIGID	None	None	RIGID	Typical
	M59	N28	N71			RIGID	None	None	RIGID	Typical
11	M63	N64	N72			RIGID	None	None	RIGID	Typical
12	M64	N67	N73			RIGID	None	None	RIGID	Typical
13	M65	N68	N74		region and	RIGID	None	None	RIGID	Typical
14		N47	N78			RIGID	None	None	RIGID	Typical
15	M67		N80			RIGID	None	None	RIGID	Typical
16	M70	N49	N55		-	RIGID	None	None	RIGID	Typical
17	M71	N54	N56		-	RIGID	None	None	RIGID	Typical
18	M72	N55				RIGID	None	None	RIGID	Typical
19	M74A	N58	N59A			RIGID	None	None	RIGID	Typical
20	M75C	N59A	N59			RIGID	None	None	RIGID	Typical
21	M75A	N60A	N61	_		RIGID	None	None	RIGID	Typical
22	M76	N61	N62A			RIGID	None	None	RIGID	Typical
23	M77	N64A	N65			RIGID	None	None	RIGID	Typical
24	M78	N65	N63					None	RIGID	Typical
25	M100	N88	N94			RIGID	None	None	RIGID	Typical
26	M101	N90	N95	II FIEL A		RIGID	None		RIGID	Typical
27	M102	N91	N96			RIGID	None	None	RIGID	Typical
28	M106	N89	N97			RIGID	None	None	RIGID	Typical
29	M107	N92	N98			RIGID	None	None		
30	M108	N93	N99	MA R. D.	Marie	RIGID	None	None	RIGID	Typical
31	M109	N100	N102			RIGID	None	None	RIGID	Typical
32	M111	N101	N104	in the second		RIGID	None	None	RIGID	Typical
33	M133	N88	N108			RIGID	None	None	RIGID	Typical
34	M134	N90	N109			RIGID	None	None	RIGID	Typical
35	M135	N91	N110			RIGID	None	None	RIGID	Typical
36	M139	N105	N111			RIGID	None	None	RIGID	Typical
37	M140	N106	N112			RIGID	None	None	RIGID	Typical
38	M141	N107	N113			RIGID	None	None	RIGID	Typical

Company : Colliers Engineering & Design
Designer : NL
Job Number : 23777329
Model Name : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

	Label	1 Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
39	M143	N100	N114			RIGID	None	None	RIGID	Typical
40	M145	N101	N116			RIGID	None	None	RIGID	Typical
41	M146	N117	N118			RIGID	None	None	RIGID	Typical
42	M147	N118	N119			RIGID	None	None	RIGID	Typical
43	M151	N123	N124			RIGID	None	None	RIGID	Typical
44	M152	N124	N120			RIGID	None	None	RIGID	Typical
45	M153	N125	N126			RIGID	None	None	RIGID	Typical
46	M154	N126	N127			RIGID	None	None	RIGID	Typical
47	M155	N129	N130			RIGID	None	None	RIGID	Typical
48	M156	N130	N128			RIGID	None	None	RIGID	Typical
49	M178	N153	N159			RIGID	None	None	RIGID	Typical
50 51	M179	N155	N160			RIGID	None	None	RIGID	Typical
52	M180	N156	N161			RIGID	None	None	RIGID	Typical
	M184	N154	N162			RIGID	None	None	RIGID	Typical
53	M185	N157	N163			RIGID	None	None	RIGID	Typical
54	M186	N158	N164			RIGID	None	None	RIGID	Typical
55 56	M187 M189	N165	N167			RIGID	None	None	RIGID	Typical
57		N166	N169			RIGID	None	None	RIGID	Typical
58	M211 M212	N153	N173			RIGID	None	None	RIGID	Typical
59	M213	N155	N174			RIGID	None	None	RIGID	Typical
60	M217	N156	N175			RIGID	None	None	RIGID	Typical
61	M218	N170 N171	N176			RIGID	None	None	RIGID	Typical
62	M219	N172	N177			RIGID	None	None	RIGID	Typical
63	M221	N165	N178			RIGID	None	None	RIGID	Typical
64	M223	N166	N179			RIGID	None	None	RIGID	Typical
65	M224	N182	N181 N183			RIGID	None	None	RIGID	Typical
66	M225	N183	N184			RIGID	None	None	RIGID	Typical
67	M229	N188	N189			RIGID	None	None	RIGID	Typical
68	M230	N189	N185			RIGID	None	None	RIGID	Typical
69	M231	N190	N191			RIGID RIGID	None	None	RIGID	Typical
70	M232	N191	N192			RIGID	None	None	RIGID	Typical
71	M233	N194	N195			RIGID	None None	None	RIGID	Typical
72	M234	N195	N193			RIGID	None	None	RIGID	Typical
73	M256	N218	N224			RIGID	None	None None	RIGID RIGID	Typical
74	M257	N220	N225			RIGID	None	None	RIGID	Typical
75	M258	N221	N226			RIGID	None	None	RIGID	Typical Typical
76	M262	N219	N227			RIGID	None	None	RIGID	Typical
77	M263	N222	N228			RIGID	None	None	RIGID	Typical
78	M264	N223	N229			RIGID	None	None	RIGID	Typical
79	M265	N230	N232			RIGID	None	None	RIGID	Typical
80	M267	N231	N234			RIGID	None	None	RIGID	Typical
81	M289	N218	N238			RIGID	None	None	RIGID	Typical
82	M290	N220	N239			RIGID	None	None	RIGID	Typical
83	M291	N221	N240			RIGID	None	None	RIGID	Typical
84	M295	N235	N241			RIGID	None	None	RIGID	Typical
85	M296	N236	N242			RIGID	None	None	RIGID	Typical
86	M297	N237	N243			RIGID	None	None	RIGID	Typical
87	M299	N230	N244			RIGID	None	None	RIGID	Typical
88	M301	N231	N246			RIGID	None	None	RIGID	Typical
89	M302	N247	N248			RIGID	None	None	RIGID	Typical
90	M303	N248	N249			RIGID	None	None	RIGID	Typical
91	M307	N253	N254			RIGID	None	None	RIGID	Typical
92	M308	N254	N250			RIGID	None	None	RIGID	Typical
93	M309	N255	N256			RIGID	None	None	RIGID	Typical
94	M310	N256	N257			RIGID	None	None	RIGID	Typical
95	M311	N259	N260			RIGID	None	None	RIGID	Typical
96 97	M312	N260	N258			RIGID	None	None	RIGID	Typical
	M45A	N50	N52		180	Brating Support	None	None	Q235	Typical

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

	Label	I Joint	J Joint	K Joint		Section/Shape	Type	Design List	Material	Design Rules
98	M68	N78	N79A		90	Grating Support		None	Q235	Typical
99	M74B	N80	N60		180	Grating Support		None	Q235	Typical
100	M75B	N52A	N62		90	Grating Support		None	Q235	Typical
101	M110	N102	N103		180	Grating Support		None	Q235	Typical
102	M144	N114	N115		90	Grating Support		None	Q235	Typical
103	M148	N116	N121		180	Grating Support		None	Q235	Typical
104	M150	N104	N122		90	Grating Support		None	Q235	Typical
105	M188	N167	N168		180	Grating Support		None	Q235	Typical
106	M222	N179	N180		90	Grating Support		None	Q235	Typical
107	M226	N181	N186		180	Grating Support		None	Q235	Typical
108	M228	N169	N187		90	Grating Support		None	Q235	Typical
109	M266	N232	N233		180	Grating Support		None	Q235	Typical
110	M300	N244	N245	W 32	90	Grating Support		None	Q235	Typical
111	M304	N246	N251		180	Grating Support		None	Q235	Typical
112	M306	N234	N252		90	Grating Support		None	Q235	Typical
113	M54	N74A	N75A		90	Standoff Horiz	None	None	Q235	Typical
114	M130	N85	N86		90	Standoff Horiz	None	None	Q235	Typical
115	M208	N150	N151		90	Standoff Horiz	None	None	Q235	Typical
116	M286	N215	N216		90	Standoff Horiz	None	None	Q235	Typical
117	M66	N79A	N60			Side Bracing		RECT	Q235	Typical
118	M74C	N52	N62		10000	Side Bracing		RECT	Q235	Typical
119	M142	N115	N121			Side Bracing		RECT	Q235	Typical
120	M149	N103	N122			Side Bracing		RECT	Q235	Typical
121	M220	N180	N186			Side Bracing		RECT	Q235	Typical
122	M227	N168	N187	DE LED		Side Bracing		RECT	Q235	Typical
123	M298	N245	N251			Side Bracing		RECT	Q235	Typical
124	M305	N233	N252			Side Bracing		RECT	Q235	Typical
125	M31	N38	N29			Grating Bracing		None	Q235	Typical
126	M33	N39	N31	1 1		Grating Bracing		None	Q235	Typical
127	M34A	N35	N79			Grating Bracing		None	Q235	Typical
128	M60	N70	N67			Grating Bracing		None	Q235	Typical
129	M61	N71	N68			Grating Bracing		None	Q235	Typical
130	M62	N69	N64			Grating Bracing		None	Q235	Typical
131	M103	N95	N92			Grating Bracing		None	Q235	Typical
132	M104	N96	N93			Grating Bracing		None	Q235	Typical
133	M105	N94	N89			Grating Bracing		None	Q235	Typical
134	M136	N109	N106			Grating Bracing		None	Q235	Typical
135	M137	N110	N107			Grating Bracing		None	Q235	Typical
136	M138	N108	N105	- C-		Grating Bracing		None	Q235	Typical
137	M181	N160	N157			Grating Bracing	_	None	Q235	Typical
138	M182	N161	N158			Grating Bracing	110110	None	Q235	Typical
139	M183	N159	N154			Grating Bracing		None	Q235	Typical
140	M214	N174	N171			Grating Bracing		None	Q235	Typical
141	M215	N175	N172			Grating Bracing		None	Q235	Typical
142	M216	N173	N170			Grating Bracing		None	Q235	Typical
143	M259	N225	N222			Grating Bracing		None	Q235	Typical
144	M260	N226	N223			Grating Bracing		None	Q235	Typical
145	M261	N224	N219			Grating Bracing		None	Q235	Typical
146	M292	N239	N236			Grating Bracing		None	Q235	Typical
147	M293	N240	N237			Grating Bracing		None	Q235	Typical
148	M294	N238	N235			Grating Bracing		None	Q235	Typical
149	MT1	T8	T1			RIGID	None	None	RIGID	Typical
150	MT2	T15	T9			RIGID	None	None	RIGID	Typical
151	MT3	T16	T10			RIGID	None	None	RIGID	Typical
152	MT4	T17	T11			RIGID	None	None	RIGID	Typical
153	MT5	T18	T12			RIGID	None	None	RIGID	Typical
154	MT6	T19	T3			RIGID	None	None	RIGID	Typical
155	MT7	T20	T13			RIGID	None	None	RIGID	Typical
156	МТ8	T21	T14			RIGID	None	None	RIGID	Typical

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

r r	Label	I Joint	J Joint	K Joint	Rotate(deg) Section/Shape	Type	Design List	Material	Design Rules
157	MT9	T39	T4			RIGID	None	None	RIGID	Typical
158	MT10	T37	T5			RIGID	None	None	RIGID	Typical
159	MT11	T7	T37			RIGID	None	None	RIGID	Typical
160	MT12	T7	T38	III Ess		RIGID	None	None	RIGID	Typical
161	MT13	T41	T40			RIGID	None	None	RIGID	Typical
162	MT14	T30	T36			RIGID	None	None	RIGID	Typical
163	MT15	T29	T35			RIGID	None	None	RIGID	Typical
164	MT16	T28	T34			RIGID	None	None	RIGID	Typical
165	MT17	T27	T33			RIGID	None	None	RIGID	Typical
166	MT18	T25	T32			RIGID	None	None	RIGID	Typical
167	MT19	T26	T23			RIGID	None	None	RIGID	Typical
168	MT20	T24	T31			RIGID	None	None	RIGID	Typical
169	MT21	T6	T22			RIGID	None	None	RIGID	Typical
170	MT22	T5	T14		90	Secondary Sta	None	None	Q235	Typical
171	MT23	T7	T30		90	Lower Standoff		RECT	Q235	Typical
172	MT24	T14	T12		90	Secondary Sta	None	None	Q235	Typical
173	MT25	T12	T10		90	Secondary Sta.,	None	None	Q235	Typical
174	MT26	T10	T9		90	Secondary Sta	None	None	Q235	Typical
175	MT27	Т9	T1		90	Secondary Sta	None	None	Q235	Typical
176	MT28	T30	T27		90	Lower Standoff		RECT	Q235	Typical
177	MT29	T27	T26		90	Lower Standoff	VBrace	RECT	Q235	Typical
178	MT30	T26	T24	9 * 0 = 0	90	Lower Standoff	VBrace	RECT	Q235	Typical
179	MT31	T24	Т6		90	Lower Standoff	VBrace	RECT	Q235	Typical
180	MT32	T37	T21		THE RESERVE	Bracing	None	None	Q235	Typical
181	MT33	T38	T36			Bracing	None	None	Q235	Typical
182	MT34	T21	T18			Bracing	None	None	Q235	Typical
183	MT35	T18	T16			Bracing	None	None	Q235	Typical
184	MT36	T16	T15	S THE	4	Bracing	None	None	Q235	Typical
185	MT37	T15	T8			Bracing	None	None	Q235	Typical
186	MT38	T36	T33			Bracing	None	None	Q235	Typical
187	MT39	T33	T23			Bracing	None	None	Q235	Typical
188	MT40	T23	T31			Bracing	None	None	Q235	Typical
189	MT41	T31	T22			Bracing	None	None	Q235	Typical
190	MT42	T22	T8		315	Bracing	None	None	Q235	Typical
191	MT43	T40	T39			RIGID	None	None	RIGID	Typical
192	MT44	T8	T31			Bracing	None	None	Q235	Typical
193	MT45	T31	T15		315	Bracing	None	None	Q235	Typical
194	MT46	T15	T23			Bracing	None	None	Q235	Typical
195	MT47	T23	T16		315	Bracing	None	None	Q235	Typical
196	MT48	T32	T16	/ 5		Bracing	None	None	Q235	Typical
197	MT49	T32	T17		315	Bracing	None	None	Q235	Typical
198	MT50	T33	T17	1,75		Bracing	None	None	Q235	Typical
199	MT51	T33	T18		315	Bracing	None	None	Q235	Typical
200	MT52	T34	T18	K Inches		Bracing	None	None	Q235	Typical
201	MT53	T34	T19		315	Bracing	None	None	Q235	Typical
202	MT54	T35	T19			Bracing	None	None	Q235	Typical
203	MT55	T35	T20		315	Bracing	None	None	Q235	Typical
204	MT56	T36	T20	principal in	UXED	Bracing	None	None	Q235	Typical
205	MT57	T36	T21			RIGID	None	None	RIGID	Typical
206	MT58	T8	T44			Bracing	None	None	Q235	Typical
207	MT59	T44	T48		-	Bracing	None	None	Q235	Typical
208	MT60	T48	T52			Bracing	None	None	Q235	Typical
209	MT61	T22	T45			Bracing	None	None	Q235 Q235	
210	MT62	T45	T49		DATE I	Bracing	None	None	Q235	Typical
211	MT63	T49	T53			Bracing	None		Q235 Q235	Typical
212	MT64	T53	T52	17 - 24	315	Bracing		None		Typical
213	MT65	T6	T43				None VBrace	None RECT	Q235	Typical
214	MT66	T43	T47			Lower Standoff	VBrace	RECT	Q235 Q235	Typical
215	MT67	T47	R4A				VBrace	RECT	Q235 Q235	Typical
			/ .		55	Staridon	V DI ACE	ILLUI	QZJŲ	Typical

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

	Labol	1 Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
216	MT68	T1	T42	TV DOMA	90	Secondary Sta.,	None	None	Q235	Typical
217	MT69	T42	T46		90	Secondary Sta.,	None	None	Q235	Typical
218	MT70	T46	R4		90	Secondary Sta	None	None	Q235	Typical
219	MT71	T22	T44			Bracing	None	None	Q235	Typical
220	MT72	T45	T44		315	Bracing	None	None	Q235	Typical
	MT73	T45	T48			Bracing	None	None	Q235	Typical
221	MT74	T49	T48		315	Bracing	None	None	Q235	Typical
	MT75	T44	T42		0.0	RIGID	None	None	RIGID	Typical
223		T48	T46		- 40	RIGID	None	None	RIGID	Typical
224	MT76	T52	R4			RIGID	None	None	RIGID	Typical
225	MT77		T53		-	RIGID	None	None	RIGID	Typical
226	MT78	R4A				RIGID	None	None	RIGID	Typical
227	MT 7 9	T47	T49			RIGID	None	None	RIGID	Typical
228	MT80	T43	T45		-	Bracing	None	None	Q235	Typical
229	MT81	T49	T52	_		RIGID	None	None	RIGID	Typical
230	M250	T13	N76			RIGID	None	None	RIGID	Typical
231	M251	N272A	N47		-	RIGID	None	None	RIGID	Typical
232	M252	N282	N275A				None	None	RIGID	Typical
233	M253	N289	N283			RIGID		None	RIGID	Typical
234	M254	N290	N284			RIGID	None		RIGID	Typical
235	M255	N291	N285			RIGID	None	None	RIGID	Typical
236	M256A	N292	N286			RIGID	None	None	RIGID	Typical
237	M257A	N293	N277			RIGID	None	None		
238	M258A	N294	N287			RIGID	None	None	RIGID	Typical
239	M259A	N295	N288			RIGID	None	None	RIGID	Typical
240	M260A	N313	N278			RIGID	None	None	RIGID	Typical
241	M261A	N311	N279			RIGID	None	None	RIGID	Typical
242	M262A	N281	N311			RIGID	None	None	RIGID	Typical
243	M263A	N281	N312			RIGID	None	None	RIGID	Typical
244	M264A	N315	N314			RIGID	None	None	RIGID	Typical
245	M265A	N304	N310			RIGID	None	None	RIGID	Typical
246	M266A	N303	N309			RIGID	None	None	RIGID	Typical
247	M267A	N302	N308			RIGID	None	None	RIGID	Typical
248	M268	N301	N307	TI I		RIGID	None	None	RIGID	Typical
249	M269	N299	N306			RIGID	None	None	RIGID	Typical
	M270	N300	N297			RIGID	None	None	RIGID	Typical
250	M271	N298	N305			RIGID	None	None	RIGID	Typical
251		N280	N296			RIGID	None	None	RIGID	Typical
252	M272	N279	N288		90	Secondary Sta		None	Q235	Typical
253	M273		N304		90	Lower Standoff		RECT	Q235	Typical
254	M274	N281			90	Secondary Sta.	None	None	Q235	Typical
255	M275	N288	N286		90	Secondary Sta.		None	Q235	Typical
256	M276	N286	N284		90	Secondary Sta		None	Q235	Typical
257	M277	N284	N283			Secondary Sta.		None	Q235	Typical
258	M278	N283	N275A		90	Lower Standoff	VBrace	RECT	Q235	Typical
259	M279	N304	N301		90			RECT	Q235	Typical
260	M280	N301	N300		90	Lower Standoff Lower Standoff		RECT	Q235	Typical
261	M281	N300	N298		90			RECT	Q235	Typical
262	M282	N298	N280		90	Lower Standoff			Q235 Q235	Typical
263	M283	N311	N295			Bracing	None	None		
264	M284	N312	N310			Bracing	None	None	Q235	Typical
265	M285	N295	N292			Bracing	None	None	Q235	Typical
266	M286A	N292	N290			Bracing	None	None	Q235	Typical
267	M287	N290	N289			Bracing	None	None	Q235	Typical
268	M288	N289	N282			Bracing	None	None	Q235	Typical
269	M289A	N310	N307			Bracing	None	None	Q235	Typical
270	M290A	N307	N297			Bracing	None	None	Q235	Typical
271	M291A	N297	N305			Bracing	None	None	Q235	Typical
272	M292A	N305	N296			Bracing	None	None	Q235	Typical
	M293A	N296	N282		45	Bracing	None	None	Q235	Typical
273	M294A	N314	N313			RIGID	None	None	RIGID	Typical
274	IVIZOHA	11017				A) 500000 400				Page 8

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

	Label	1 Joint	J Joint	K Joint	Potate/dea	Section/Shape	Туре	Donian List	Material	Davis Dila
275	M295A	N282	N305	IX JOINT	Kolalejueg	Bracing	None	Design List None	Material Q235	Design Rules Typical
276	M296A	N305	N289		45	Bracing	None	None	Q235	Typical
277	M297A	N289	N297		10	Bracing	None	None	Q235	Typical
278	M298A	N297	N290	Ur II II II	45	Bracing	None	None	Q235	Typical
279	M299A	N306	N290		10	Bracing	None	None	Q235	Typical
280	M300A	N306	N291		45	Bracing	None	None	Q235	Typical
281	M301A	N307	N291		70	Bracing	None	None	Q235	Typical
282	M302A	N307	N292		45	Bracing	None	None	Q235	
283	M303A	N308	N292		10	Bracing	None	None	Q235	Typical
284	M304A	N308	N293		45	Bracing	None	None	Q235	Typical Typical
285	M305A	N309	N293		10	Bracing	None	None	Q235	
286	M306A	N309	N294		45	Bracing	None	None	Q235	Typical Typical
287	M307A	N310	N294		70	Bracing	None	None	Q235	Typical
288	M308A	N310	N295			RIGID	None	None	RIGID	Typical
289	M309A	N282	N318			Bracing	None	None	Q235	
290	M310A	N318	N322			Bracing	None	None	Q235	Typical
291	M311A	N322	N326			Bracing	None	None	Q235	Typical Typical
292	M312A	N296	N319			Bracing	None	None	Q235	
293	M313A	N319	N323			Bracing	None	None	Q235	Typical
294	M314A	N323	N327			Bracing	None	None	Q235	Typical Typical
295	M315A	N327	N326		45	Bracing	None	None	Q235	Typical
296	M316A	N280	N317		90	Lower Standoff	VBrace	RECT	Q235	
297	M317	N317	N321		90	Lower Standoff		RECT	Q235 Q235	Typical Typical
298	M318	N321	R1A		90	Lower Standoff	VBrace	RECT	Q235	
299	M319	N275A	N316		90	Secondary Sta.	None	None	Q235	Typical Typical
300	M320	N316	N320			Secondary Sta	None	None	Q235	
301	M321	N320	R1		90	Secondary Sta.	None	None	Q235 Q235	Typical
302	M322	N296	N318		30	Bracing	None	None	Q235	Typical
303	M323	N319	N318		45	Bracing	None	None	Q235 Q235	Typical
304	M324	N319	N322			Bracing	None	None	Q235	Typical
305	M325	N323	N322		45	Bracing	None	None	Q235 Q235	Typical Typical
306	M326	N318	N316		0	RIGID	None	None	RIGID	Typical
307	M327	N322	N320			RIGID	None	None	RIGID	
308	M328	N326	R1			RIGID	None	None	RIGID	Typical
309	M329	R1A	N327			RIGID	None	None	RIGID	Typical Typical
310	M330	N321	N323		MILLE	RIGID	None	None	RIGID	Typical
311	M331	N317	N319			RIGID	None	None	RIGID	Typical
312	M332	N323	N326			Bracing	None	None	Q235	Typical
313	M333	N287	N273			RIGID	None	None	RIGID	Typical
314	M334	N329	N100			RIGID	None	None	RIGID	Typical
315	M335	N338	N331			RIGID	None	None	RIGID	Typical
316	M336	N345	N339	U. 100 H		RIGID	None	None	RIGID	Typical
317	M337	N346	N340			RIGID	None	None	RIGID	. , , , , , , , , , , , , , , , , , , ,
318	M338	N347	N341			RIGID	None	None	RIGID	Typical Typical
319	M339	N348	N342			RIGID	None	None	RIGID	Typical
320	M340	N349	N333	II WELL		RIGID	None	None	RIGID	Typical
321	M341	N350	N343			RIGID	None	None	RIGID	Typical
322	M342	N351	N344	24		RIGID	None	None	RIGID	Typical
323	M343	N369	N334			RIGID	None	None	RIGID	
324	M344	N367	N335			RIGID	None	None	RIGID	Typical Typical
325	M345	N337	N367			RIGID	None	None	RIGID	Typical
326	M346	N337	N368			RIGID	None	None	RIGID	Typical
327	M347	N371	N370			RIGID	None	None	RIGID	Typical
328	M348	N360	N366	4 7 - 500	1-3	RIGID	None	None	RIGID	Typical
329	M349	N359	N365			RIGID	None	None	RIGID	
330	M350	N358	N364	J. 71-78-		RIGID	None	None	RIGID	Typical
331	M351	N357	N363			RIGID	None	None	RIGID	Typical
332	M352	N355	N362			RIGID	None	None	RIGID	Typical
333	M353	N356	N353			RIGID	None	None	RIGID	Typical
		,,,,,,	11000			עוטועו	NUME	INUITE	עוטוט	Typical

Feb 8, 2024 3:42 PM Checked By: PMA

Memb	per Primary	Data (Continue	<u>a)</u>						725 5
	Label	1 Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
334	M354	N354	N361			RIGID	None	None	RIGID	Typical
335	M355	N336	N352			RIGID	None	None	RIGID	Typical
336	M356	N335	N344		90	Secondary Sta.,	None	None	Q235	Typical
337	M357	N337	N360		90	Lower Standoff	VBrace	RECT	Q235	Typical
338	M358	N344	N342		90	Secondary Sta.,	None	None	Q235	Typical
339	M359	N342	N340		90	Secondary Sta	None	None	Q235	Typical
340	M360	N340	N339		90	Secondary Sta	None	None	Q235	Typical
341	M361	N339	N331		90	Secondary Sta.,	None	None	Q235	Typical
342	M362	N360	N357		90	Lower Standoff	VBrace	RECT	Q235	Typical
343	M363	N357	N356		90	Lower Standoff	VBrace	RECT	Q235	Typical
344	M364	N356	N354		90	Lower Standoff	VBrace	RECT	Q235	Typical
345	M365	N354	N336		90	Lower Standoff	VBrace	RECT	Q235	Typical
346	M366	N367	N351	0 -	50	Bracing	None	None	Q235	Typical
	M367	N368	N366			Bracing	None	None	Q235	Typical
347	M368	N351	N348			Bracing	None	None	Q235	Typical
348	M369	N348	N346			Bracing	None	None	Q235	Typical
349	M370	N346	N345		TQUE	Bracing	None	None	Q235	Typical
350		N345	N338			Bracing	None	None	Q235	Typical
351	M371	N366	N363		100	Bracing	None	None	Q235	Typical
352	M372	N363	N353			Bracing	None	None	Q235	Typical
353	M373	N353	N361			Bracing	None	None	Q235	Typical
354	M374	N361	N352			Bracing	None	None	Q235	Typical
355	M375		N338		315	Bracing	None	None	Q235	Typical
356	M376	N352	N369		0,0	RIGID	None	None	RIGID	Typical
357	M377	N370	N361			Bracing	None	None	Q235	Typical
358	M378	N338			315	Bracing	None	None	Q235	Typical
359	M379	N361	N345		010	Bracing	None	None	Q235	Typical
360	M380	N345	N353		315	Bracing	None	None	Q235	Typical
361	M381	N353	N346		310	Bracing	None	None	Q235	Typical
362	M382	N362	N346		315	Bracing	None	None	Q235	Typical
363	M383	N362	N347		313	Bracing	None	None	Q235	Typical
364	M384	N363	N347		315	Bracing	None	None	Q235	Typical
365	M385	N363	N348		313	Bracing	None	None	Q235	Typical
366	M386	N364	N348		315	Bracing	None	None	Q235	Typical
367	M387	N364	N349		313	Bracing	None	None	Q235	Typical
368	M388	N365	N349		315	Bracing	None	None	Q235	Typical
369	M389	N365	N350		313	Bracing	None	None	Q235	Typical
370	M390	N366	N350			RIGID	None	None	RIGID	Typical
371	M391	N366	N351	_		Bracing	None	None	Q235	Typical
372	M392	N338	N374				None	None	Q235	Typical
373	M393	N374	N378		-	Bracing	None	None	Q235	Typical
374	M394	N378	N382			Bracing Bracing	None	None	Q235	Typical
375	M395	N352	N375		-		None	None	Q235	Typical
376	M396	N375	N379			Bracing	None	None	Q235	Typical
377	M397	N379	N383		045	Bracing	None	None	Q235	Typical
378	M398	N383	N382		315	Bracing Lower Standoff	VProce	RECT	Q235	Typical
379	M399	N336	N373		90	Lower Standon		RECT	Q235	Typical
380	M400	N373	N377		90	Lower Standon		RECT	Q235	Typical
381	M401	N377	R2A		90	Secondary Sta.			Q235	Typical
382	M402	N331	N372		90	W	None	None	Q235	Typical
383	M403	N372	N376		90	Secondary Sta.		None	Q235 Q235	Typical
384	M404	N376	R2		90	Secondary Sta.		None	Q235 Q235	Typical
385	M405	N352	N374			Bracing	None	None	Q235 Q235	Typical
386	M406	N375	N374	51 .87	315	Bracing	None	None		Typical
387	M407	N375	N378			Bracing	None	None	Q235	
388	M408	N379	N378		315	Bracing	None	None	Q235	Typical
389	M409	N374	N372			RIGID	None	None	RIGID	Typical
390	M410	N378	N376			RIGID	None	None	RIGID	Typical
391	M411	N382	R2			RIGID	None	None	RIGID	Typical Typical
1 39 1 1						RIGID	None	None		LVOICAL

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

000	Label	1 Joint	J Joint	K Joint	Rotate(deg) Section/Shape	Type	Design List	Material	Design Rules
393	M413	N377	N379			RIGID	None	None	RIGID	Typical
394	M414	N373	N375			RIGID	None	None	RIGID	Typical
395	M415	N379	N382			Bracing	None	None	Q235	Typical
396	M416	N343	N330			RIGID	None	None	RIGID	Typical
397	M417	N385	N165			RIGID	None	None	RIGID	Typical
398	M418	N394	N387			RIGID	None	None	RIGID	Typical
399	M419	N401	N395			RIGID	None	None	RIGID	Typical
400	M420	N402	N396			RIGID	None	None	RIGID	Typical
401	M421	N403	N397			RIGID	None	None	RIGID	Typical
402	M422	N404	N398			RIGID	None	None	RIGID	Typical
403	M423	N405	N389			RIGID	None	None	RIGID	Typical
404	M424	N406	N399			RIGID	None	None	RIGID	Typical
405	M425	N407	N400			RIGID	None	None	RIGID	Typical
406	M426	N425	N390			RIGID	None	None	RIGID	Typical
407	M427	N423	N391			RIGID	None	None	RIGID	Typical
408	M428	N393	N423			RIGID	None	None	RIGID	Typical
409	M429	N393	N424			RIGID	None	None	RIGID	Typical
410	M430	N427	N426			RIGID	None	None	RIGID	Typical
411	M431	N416	N422			RIGID	None	None	RIGID	Typical
412	M432	N415	N421			RIGID	None	None	RIGID	Typical
413	M433	N414	N420			RIGID	None	None	RIGID	Typical
414	M434	N413	N419			RIGID	None	None	RIGID	Typical
415	M435	N411	N418			RIGID	None	None	RIGID	Typical
416	M436	N412	N409			RIGID	None	None	RIGID	Typical
417	M437	N410	N417			RIGID	None	None	RIGID	Typical
418	M438	N392	N408			RIGID	None	None	RIGID	Typical
419	M439	N391	N400		90	Secondary Sta.	None	None	Q235	Typical
420	M440	N393	N416		90	Lower Standoff	VBrace	RECT	Q235	Typical
421	M441	N400	N398			Secondary Sta	None	None	Q235	Typical
422	M442	N398	N396			Secondary Sta	None	None	Q235	Typical
423	M443	N396	N395			Secondary Sta	None	None	Q235	Typical
424	M444	N395	N387			Secondary Sta	None	None	Q235	Typical
425	M445	N416	N413		90	Lower Standoff		RECT	Q235	Typical
426	M446	N413	N412			Lower Standoff	VBrace	RECT	Q235	Typical
427	M447	N412	N410		90	Lower Standoff	VBrace	RECT	Q235	Typical
428	M448	N410	N392			Lower Standoff	VBrace	RECT	Q235	Typical
429	M449	N423	N407			Bracing	None	None	Q235	Typical
430	M450	N424	N422	1 . 15		Bracing	None	None	Q235	Typical
431	M451	N407	N404			Bracing	None	None	Q235	Typical
432	M452	N404	N402			Bracing	None	None	Q235	Typical
433	M453	N402	N401			Bracing	None	None	Q235	Typical
434	M454	N401	N394			Bracing	None	None	Q235	Typical
435	M455	N422	N419			Bracing	None	None	Q235	Typical
436	M456	N419	N409	C 100		Bracing	None	None	Q235	Typical
437	M457	N409	N417			Bracing	None	None	Q235 Q235	Typical
438	M458	N417	N408			Bracing	None	None	Q235	
439	M459	N408	N394		45	Bracing	None	None	Q235 Q235	Typical
440	M460	N426	N425		70	RIGID	None	None	RIGID	Typical
441	M461	N394	N417			Bracing	None	None	Q235	Typical
442	M462	N417	N401		45	Bracing	None		Q235 Q235	Typical
443	M463	N401	N409		73	Bracing	None	None None		Typical
444	M464	N409	N402		45	Bracing	None	None	Q235	Typical
445	M465	N418	N402		73				Q235	Typical
446	M466	N418	N403	1 141	45	Bracing	None	None	Q235	Typical
447	M467	N419	N403		70	Bracing Bracing	None	None	Q235	Typical
448	M468	N419	N404	A 100	45		None	None	Q235	Typical
449	M469	N420	N404		40	Bracing	None	None	Q235	Typical
450	M470	N420	N405		45	Bracing	None	None	Q235	Typical
451	M471	N421	N405		40	Bracing	None	None	Q235	Typical
		11761	14-100			Bracing	None	None	Q235	Typical

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

	Label	1 Joint	J Joint	K Joint		Section/Shape	Type	Design List	Material	Design Rules
452	M472	N421	N406		45	Bracing	None	None	Q235	Typical
453	M473	N422	N406			Bracing	None	None	Q235	Typical
454	M474	N422	N407			RIGID	None	None	RIGID	Typical
455	M475	N394	N430			Bracing	None	None	Q235	Typical
456	M476	N430	N434			Bracing	None	None	Q235	Typical
457	M477	N434	N438			Bracing	None	None	Q235	Typical
458	M478	N408	N431			Bracing	None	None	Q235	Typical
459	M479	N431	N435			Bracing	None	None	Q235	Typical
460	M480	N435	N439			Bracing	None	None	Q235	Typical
461	M481	N439	N438		45	Bracing	None	None	Q235	Typical
462	M482	N392	N429		90	Lower Standoff	VBrace	RECT	Q235	Typical
463	M483	N429	N433		90	Lower Standoff	VBrace	RECT	Q235	Typical
	M484	N433	R3A		90	Lower Standoff		RECT	Q235	Typical
464		N387	N428		90	Secondary Sta	None	None	Q235	Typical
465	M485	N428	N432		90	Secondary Sta.,	None	None	Q235	Typical
466	M486		R3		90	Secondary Sta	None	None	Q235	Typical
467	M487	N432	N430		30	Bracing	None	None	Q235	Typical
468	M488	N408			45	Bracing	None	None	Q235	Typical
469	M489	N431	N430		73	Bracing	None	None	Q235	Typical
470	M490	N431	N434		45	Bracing	None	None	Q235	Typical
471	M491	N435	N434		45	RIGID	None	None	RIGID	Typical
472	M492	N430	N428			RIGID	None	None	RIGID	Typical
473	M493	N434	N432		_	RIGID	None	None	RIGID	Typical
474	M494	N438	R3				None	None	RIGID	Typical
475	M495	R3A	N439			RIGID		None	RIGID	Typical
476	M496	N433	N435			RIGID	None		RIGID	Typical
477	M497	N429	N431			RIGID	None	None	Q235	Typical
478	M498	N435	N438			Bracing	None	None	RIGID	Typical
479	M499	N399	N386			RIGID	None	None		
480	M500	N441	N230		If a second	RIGID	None	None	RIGID	Typical
481	M501	N295	N314			RIGID	None	None	RIGID	Typical
482	M502	N312	N313			RIGID	None	None	RIGID	Typical
483	M503	N407	N426			RIGID	None	None	RIGID	Typical
484	M504	N425	N424			RIGID	None	None	RIGID	Typical
485	M505	T21	T40			RIGID	None	None	RIGID	Typical
486	M506	T39	T38			RIGID	None	None	RIGID	Typical
487	M507	N351	N370			RIGID	None	None	RIGID	Typical
488	M508	N369	N368			RIGID	None	None	RIGID	Typical
489	M504A	N437	N436			Face Horizontal	None	None	Q235	Typical
490	M509	N391	N437A			RIGID	None	None	RIGID	Typical
490	M510	T5	N434B			RIGID	None	None	RIGID	Typical
	M510	N279	N435B			RIGID	None	None	RIGID	Typical
492		N335	N436A		1	RIGID	None	None	RIGID	Typical
493	M512	N446	N462			Mount Pipe	None	None	A53 Gr.B	Typical
494	MP4A					Mount Pipe	None	None	A53 Gr.B	Typical
495	MP3A	N440	N456			Mount Pipe	None	None	A53 Gr.B	
496	MP2A	N441A	N457		-	Mount Pipe	None	None	A53 Gr.B	
497	MP1A	N444	N460	and the second		Face Horizontal		None	Q235	Typical
498	M696A	N629B	N628B		-	Face Horizontal	None	None	Q235	Typical
499	M698A	N633	N632	AL PARK		Face Horizontal	None	None	Q235	Typical
500	M700A	N637	N636				None	None	RIGID	Typical
501	M501A	N659	N429A			RIGID			RIGID	Typical
502	M502A	N267	N427A			RIGID	None	None	RIGID	Typical
503	M503A	N268	N428A			RIGID	None	None	RIGID	Typical
504	M504B	N661	N430A			RIGID	None	None		
505	M505A	N434A	N433A			Support Rail		None	A53 Gr.B	
506	M506A	N435A	N439A			RIGID	None	None	RIGID	Typical
507	M507A	N431A	N437B			RIGID	None	None	RIGID	Typical
508	M508A	N432A	N438A			RIGID	None	None	RIGID	Typical
509	M509A	N436B	N440A			RIGID	None	None	RIGID	Typical
510	M510A	N444A	N443	Se (Rub)		Support Rail	None	None	A53 Gr.B	Typical

: Colliers Engineering & Design ; NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

511 512	M511A	N445						100		Design Rules
	1 0/5/2/	N441B	N449			RIGID	None	None	RIGID	Typical
513	M512A M513	N441B	N447			RIGID	None	None	RIGID	Typical
514	M513	N446A	N448 N450			RIGID	None	None	RIGID	Typical
515	M514 M515	N454				RIGID	None	None	RIGID	Typical
516	M516		N453 N459			Support Rail	None	None	A53 Gr.B	Typical
517	M517	N455				RIGID	None	None	RIGID	Typical
518	M518	N451	N457A			RIGID	None	None	RIGID	Typical
519	M519	N452	N458			RIGID	None	None	RIGID	Typical
520	M520	N456A	N460A			RIGID	None	None	RIGID	Typical
521	M521	N464	N463			Support Rail	None	None	A53 Gr.B	Typical
522	M522	N465	N469			RIGID	None	None	RIGID	Typical
		N461	N467			RIGID	None	None	RIGID	Typical
523	M523	N462A	N468			RIGID	None	None	RIGID	Typical
524	M524	N466	N470			RIGID	None	None	RIGID	Typical
525	MP4D	N476	N480			Mount Pipe	None	None	A53 Gr.B	Typical
526	MP3D	N473	N477			Mount Pipe	None	None	A53 Gr.B	Typical
527	MP2D	N474	N478			Mount Pipe	None	None	A53 Gr.B	Typical
528	MP1D	N475	N479			Mount Pipe	None	None	A53 Gr.B	Typical
529	M529	N481	N485			RIGID	None	None	RIGID	Typical
530	M530	N471	N483			RIGID	None	None	RIGID	Typical
531	M531	N472	N484			RIGID	None	None	RIGID	Typical
532	M532	N482	N486			RIGID	None	None	RIGID	Typical
533	MP4C	N492	N496			Mount Pipe	None	None	A53 Gr.B	Typical
534	MP3C	N489	N493			Mount Pipe	None	None	A53 Gr.B	Typical
535	MP2C	N490	N494			Mount Pipe	None	None	A53 Gr.B	Typical
536	MP1C	N491	N495			Mount Pipe	None	None	A53 Gr.B	Typical
537	M537	N497	N501			RIGID	None	None	RIGID	Typical
538	M538	N487	N499			RIGID	None	None	RIGID	Typical
539	M539	N488	N500			RIGID	None	None	RIGID	Typical
540	M540	N498	N502	11		RIGID	None	None	RIGID	Typical
541	MP4B	N508	N512			Mount Pipe	None	None	A53 Gr.B	Typical
542	MP3B	N505	N509			Mount Pipe	None	None	A53 Gr.B	Typical
	MATSING-1	N506	N510			Mount Pipe	None	None	A53 Gr.B	Typical
544	MP1B	N507	N511			Mount Pipe	None	None	A53 Gr.B	Typical
545	M545	N513	N517			RIGID	None	None	RIGID	Typical
546	M546	N503	N515			RIGID	None	None	RIGID	Typical
547	M547	N504	N516			RIGID	None	None	RIGID	Typical
548	M548	N514	N518			RIGID	None	None	RIGID	Typical
549	M549	N519	N520			RIGID	None	None	RIGID	Typical
550	M550	N521	N522			RIGID	None	None	RIGID	Typical
551	M551	N523	N524			RIGID	None	None	RIGID	Typical
552	M552	N525	N526			RIGID	None	None	RIGID	Typical
553	M553	N527	N528			RIGID	None	None	RIGID	Typical
554	M554	N529	N530	E HITT		RIGID	None	None	RIGID	Typical
555	M555	N531	N532			RIGID	None	None	RIGID	Typical
556	M556	N533	N534			RIGID	None	None	RIGID	Typical
557	M557	N522	N532			Support Rail C	None	None	A36 Gr.36	Typical
558	M558	N534	N528		270	Support Rail C	None	None	A36 Gr.36	Typical
559	M559	N530	N524			Support Rail C	None	None	A36 Gr.36	Typical
560	M560	N526	N520			Support Rail C	None	None	A36 Gr.36	Typical
561	M561	N535	N536			RIGID	None	None	RIGID	Typical
562	OVP	N538	N539	القبيات		Mount Pipe	None		A53 Gr.B	Typical
563	M563	N537	N540			RIGID	None	None	RIGID	Typical
564	M564	N228	N73			Mount Support	None	None	Q235	Typical
565	M565	N227	N72			Mount Support	None	None	Q235	Typical
566	M566	N177	N98	1 7 7		Mount Support	None	None	Q235	Typical
567	M567	N176	N97			Mount Support	None	None	Q235	Typical
	11500									Typical
568 569	M568 M569	N41A N41	N112			Mount Support	None	None	Q235	IVDICAL

Colliers Engineering & Design NL 23777329 Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
570	M570	N242	N163	No. of the last		Mount Support	None	None	Q235	Typical
	M571	N241	N162			Mount Support	None	None	Q235	Typical
571		N546	N544	100		Mount Pipe	None	None	A53 Gr.B	Typical
572	MP2B	N546 N547	N545	-		RIGID	None	None	RIGID	Typical
573	M573		N543			RIGID	None	None	RIGID	Typical
574	M574	N548			-	Mount Pipe	None	None	A53 Gr.B	Typical
575	M575	N550	N551	-		RIGID	None	None	RIGID	Typical
576	M576	N551A	N552	-57.4	-		None	None	RIGID	Typical
577	M577	N553	N554			RIGID	None	INOTIE	INGID	Typical

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical Yes	Defl Rat ** NA **	Analysis	Inactive	Seismic None
1	R3						Yes	** NA **			None
2	R4						Yes	** NA **			None
3	R5							** NA **			None
4	R6						Yes	** NA **			None
5	R7						Yes	** NA **			None
6	R8						Yes	** NA **			None
7	R9						Yes	** NA **			
8	R10						Yes				None
9	M57						Yes	** NA **			None
10	M58						Yes				None
11	M59						Yes	** NA **			None
12	M63						Yes	** NA **			None
13	M64						Yes	** NA **			None
14	M65						Yes	** NA **			None
15	M67						Yes	** NA **			None
16	M70						Yes	** NA **			None
17	M71		00000				Yes	** NA **			None
18	M72						Yes	** NA **			None
19	M74A		000000				Yes	** NA **			None
20	M75C		GGGAGG	300			Yes	** NA **			None
21	M75A		000000				Yes	** NA **			None
			COCKOO	* B*			Yes	** NA **			None
22	M76		000000				Yes	** NA **			None
23	M77	- W	COCKOO				Yes	** NA **			None
24	M78						Yes	** NA **			None
25	M100						Yes	** NA **			None
26	M101						Yes	** NA **			None
27	M102		-				Yes	** NA **			None
28	M106						Yes	** NA **			None
29	M107			_			Yes	** NA **			None
30	M108						Yes	** NA **			None
31	M109							** NA **			None
32	M111						Yes	** NA **			None
33	M133						Yes	** NA **			None
34	M134						Yes	** NA **			None
35	M135						Yes	** NA **			
36	M139						Yes	** NA **			None
37	M140						Yes				None
38	M141						Yes	** NA **			None
39	M143						Yes	** NA **			None
40	M145						Yes	** NA **			None
41	M146		000000				Yes	** NA **			None
42	M147						Yes	** NA **			None
43	M151		000000				Yes	** NA **			None
44	M152						Yes	** NA **			None
45	M153		000000				Yes	** NA **			None
46	M154						Yes	** NA **			None

Company : Colliers Engineering & Design
Designer : NL
Job Number : 23777329
Model Name : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

47	Label M155	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only		Defl Rat.	Analysis	Inactive	Seismic
48	M156		COCAGO				Yes	** NA **			None
49	M178						Yes		TEST	TI CIN	None
50	M179		-				Yes	** NA **			None
51	M180						Yes	** NA **	7 6094	DI DI LIBITI	None
52							Yes	** NA **			None
	M184						Yes	** NA **			None
53 54	M185						Yes	** NA **			None
	M186						Yes	** NA **	THE SEC	T ITCM	None
55	M187						Yes	** NA **			None
56	M189						Yes	** NA **			None
57	M211						Yes	** NA **			None
58	M212						Yes	** NA **			None
59	M213						Yes	** NA **			None
60	M217						Yes	** NA **			None
61	M218						Yes	** NA **			None
62	M219						Yes	** NA **			None
63	M221						Yes	** NA **			None
64	M223						Yes	** NA **			None
65	M224		000000				Yes	** NA **			None
66	M225						Yes	** NA **			None
67	M229		000X00				Yes	** NA **			None
68	M230						Yes	** NA **			None
69	M231		000000				Yes	** NA **			None
70	M232						Yes	** NA **			None
71	M233		000000				Yes	** NA **			None
72	M234						Yes	** NA **			None
73	M256						Yes	** NA **			None
74	M257						Yes	** NA **			None
75	M258						Yes	** NA **			None
76	M262						Yes	** NA **			None
77	M263						Yes	** NA **			None
78	M264						Yes	** NA **		1000	None
79	M265						Yes	** NA **			None
80	M267						Yes	** NA **			None
81	M289						Yes	** NA **	-		None
82	M290						Yes	** NA **			None
83	M291						Yes	** NA **	-		None
84	M295						Yes	** NA **			None
85	M296						Yes	** NA **			None
86	M297						Yes	** NA **			
87	M299						Yes	** NA **			None
88	M301						Yes	** NA **			None
89	M302		000000				Yes	** NA **			None
90	M303		COCAGO					** NA **			None
91	M307		000000				Yes	** NA **			None
92	M308		CCCACC		22 = 31 <u>1</u> = 0		Yes	** NA **			None
93	M309		000000				Yes	** NA **			None
94	M310		000000				Yes	** NA **			None
95	M311		000000				Yes				None
96	M312		000000				Yes	** NA **			None
97	M45A	Mc Barrell		3000			Yes	** NA **			None
98	M68						Yes	** NA **			None
99	M74B						Yes	** NA **			None
							Yes	** NA **			None
100	M75B	14-7-1-0					Yes	** NA **			None
101	M110						Yes	** NA **			None
102	M144						Yes	** NA **			None
103	M148							** NA **			None
104	M150						Yes	** NA **			None
105	M188						Yes	** NA **			None

Feb 8, 2024 3:42 PM Checked By: PMA

WOIII	7.7.7.6.1.1.1.1	I Release	J Release	2500 5200	J Offset[in]	T/C Only	Physical	Defl Rat	Analysis	Inactive	Seismic
106	M222	Release	J Nelease	TONSCHIM	J CHOOLINI,		Yes	** NA **			None
107	M226						Yes	** NA **			None
108	M228						Yes	** NA **			None
109	M266						Yes	** NA **			None
110	M300						Yes	** NA **			None
111	M304						Yes	** NA **			None
112	M306		7 - 1				Yes	** NA **			None
113	M54						Yes	** NA **			None
114	M130		12.474				Yes	** NA **			None
115	M208						Yes	** NA **			None
-	M286		THE BUT				Yes	** NA **			None
116	M66						Yes	** NA **			None
	M74C						Yes	** NA **			None
118							Yes	** NA **			None
119	M142			7 - 3 - 1			Yes	** NA **			None
120	M149						Yes	** NA **			None
121	M220						Yes	** NA **			None
122	M227						Yes	** NA **			None
123	M298		77.55				Yes	** NA **			None
124	M305						Yes	** NA **			None
125	M31						Yes	** NA **			None
126	M33						Yes	** NA **			None
127	M34A						Yes	** NA **			None
128	M60						Yes	** NA **			None
129	M61_						Yes	** NA **			None
130	M62	1					Yes	** NA **			None
131	M103							** NA **			None
132	M104						Yes Yes	** NA **			None
133	M105						Yes	** NA **			None
134	M136						_	** NA **			None
135	M137						Yes	** NA **			None
136	M138						Yes	** NA **			None
137	M181						Yes	** NA **			None
138	M182						Yes	** NA **			None
139	M183						Yes	** NA **			None
140	M214						Yes	** NA **			None
141	M215		_				Yes	** NA **			None
142	M216			- 22			Yes	** NA **			None
143	M259						Yes	** NA **	-	1 1 2 2 2 2	None
144	M260						Yes	** NA **			None
145	M261						Yes	** NA **			
146	M292						Yes	** NA **			None
147	M293						Yes				
148	M294		-1-1-				Yes	** NA **			None
149	MT1						Yes	** NA **			None
150	MT2						Yes	** NA ** ** NA **			None
151	MT3						Yes				None
152	MT4			PO L			Yes	** NA **			None
153	MT5						Yes	** NA **			None
154	MT6						Yes	** NA **			None
155	MT7						Yes	** NA **			None
156	MT8						Yes	** NA **			None
157	MT9						Yes	** NA **			None
158	MT10						Yes	** NA **			None
159	MT11						Yes	** NA **			None
160	MT12						Yes	** NA **			None
161	MT13						Yes	** NA **			None
162	MT14	344.254					Yes	** NA **			None
163	MT15						Yes	** NA **			None
164	MT16		-3 - AR				Yes	** NA **			None
104	11110		IDA I		Day 1\DIS/	. = 2 2 2 2 2	1000 1 7	IAL BAT	0 11 40	2-2-1 0	age 16

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

105	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only			Analysis	Inactive	Seismic
165	MT17						Yes	** NA **			None
166	MT18						Yes	** NA **			None
167	MT19						Yes	** NA **			None
168	MT20						Yes	** NA **		100	None
169	MT21						Yes	** NA **			None
170	MT22						Yes	** NA **		100	None
171	MT23						Yes	** NA **			None
172	MT24						Yes	** NA **			None
173	MT25						Yes	** NA **			None
174	MT26						Yes	** NA **		100	None
175	MT27						Yes	** NA **			None
176	MT28						Yes	** NA **			None
177	MT29						Yes	** NA **			None
178	MT30						Yes	** NA **		1 1,5,11	None
179	MT31						Yes	** NA **			None
180	MT32						Yes	** NA **			None
181	MT33						Yes	** NA **			None
182	MT34						Yes	** NA **		- Into	None
183	MT35						Yes	** NA **			None
184	MT36						Yes	** NA **			None
185	MT37						Yes	** NA **			None
186	MT38						Yes	** NA **		ALC:	None
187	MT39						Yes	** NA **			None
188	MT40			707			Yes	** NA **		711	None
189	MT41						Yes	** NA **			None
190	MT42						Yes	** NA **		True	None
191	MT43						Yes	** NA **			None
192	MT44						Yes	** NA **		T INB.	None
193	MT45						Yes	** NA **			None
194	MT46						Yes	** NA **		1774	None
195	MT47						Yes	** NA **			None
196	MT48						Yes	** NA **			None
197	MT49						Yes	** NA **			None
198	MT50						Yes	** NA **		1.00	None
199	MT51						Yes	** NA **		The second second	None
200	MT52						Yes	** NA **		- 1 - 1 - 1	None
201	MT53						Yes	** NA **			None
202	MT54						Yes	** NA **		5.0	None
203	MT55						Yes	** NA **			None
204	MT56						Yes	** NA **			None
205	MT57						Yes	** NA **			
206	MT58			647			Yes	** NA **		7772	None None
207	MT59						Yes	** NA **			
208	MT60		1100	100			Yes	** NA **		71 1957	None
209	MT61						Yes	** NA **			None
210	MT62						Yes	** NA **			None
211	MT63						Yes	** NA **			None
212	MT64			100				** NA **			None
213	MT65						Yes	** NA **			None
214	MT66		75,00	India de	12.5		Yes	** NA **			None
215	MT67						Yes	** NA **			None
216	MT68										None
217	MT69						Yes	** NA **		4.4	None
218	MT70						100				None
	MT71		1100				Yes	** NA **			None
219			0.00				Yes	** NA **			None
220	MT72						Yes	** NA **		- E-6117	None
221	MT73						100	** NA **			None
222	MT74						Yes	** NA **		الالالماس	None
223	MT75						Yes	** NA **			None

Feb 8, 2024 3:42 PM Checked By: PMA

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical Yes	Defi Rat	Analysis	Inactive	Seismic None
224	MT76		1000				Yes	** NA **			None
225	MT77							** NA **			None
226	MT78						Yes	** NA **			None
227	MT79						Yes	** NA **			None
228	MT80						Yes	** NA **			None
229	MT81						Yes	** NA **			None
230	M250						Yes	** NA **			None
231	M251						Yes	** NA **			None
232	M252						Yes	** NA **			None
233	M253						Yes	** NA **			None
234	M254						Yes	** NA **			None
235	M255						Yes	** NA **			
236	M256A						Yes	** NA **			None
237	M257A						Yes				None
238	M258A						Yes	** NA **			None
239	M259A						Yes	** NA **			None
240	M260A						Yes	** NA **		Land Value	None
241	M261A						Yes	** NA **			None
242	M262A		14.8				Yes	** NA **			None
243	M263A						Yes	** NA **			None
244	M264A						Yes	** NA **			None
245	M265A						Yes	** NA **			None
246	M266A						Yes	** NA **			None
247	M267A						Yes	** NA **			None
248	M268						Yes	** NA **			None
249	M269						Yes	** NA **			None
250	M270						Yes	** NA **			None
251	M271						Yes	** NA **			None
252	M272						Yes	** NA **			None
253	M273						Yes	** NA **			None
254	M274		- M				Yes	** NA **			None
255	M275						Yes	** NA **			None
256	M276		17/2				Yes	** NA **			None
257	M277						Yes	** NA **			None
258	M278						Yes	** NA **			None
259	M279						Yes	** NA **			None
260	M280						Yes	** NA **			None
261	M281						Yes	** NA **			None
262	M282		1 - 53	-517			Yes	** NA **			None
263	M283						Yes	** NA **			None
264	M284						Yes	** NA **			None
265	M285						Yes	** NA **			None
266	M286A						Yes	** NA **			None
267	M287						Yes	** NA **			None
268	M288			r men i			Yes	** NA **			None
269	M289A						Yes	** NA **			None
			15000	Total Visit			Yes	** NA **			None
270	M290A						Yes	** NA **			None
271	M291A M292A			12/1/11			Yes	** NA **			None
272	M293A						Yes	** NA **			None
273							Yes	** NA **			None
274	M294A						Yes	** NA **			None
275	M295A						Yes	** NA **			None
276	M296A						Yes	** NA **			None
277	M297A		C 13 11 237				Yes	** NA **			None
278	M298A						Yes	** NA **			None
279	M299A				722-1-253	- 34	Yes	** NA **		F AND	None
280	M300A		1188	SOUTH NAME OF STREET			Yes	** NA **			None
281	M301A						162	** NA **			1.01.0

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

000	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only			Analysis	Inactive	Seismic.
283	M303A						Yes	** NA **			None
284	M304A						Yes	** NA **			None
285	M305A						Yes	** NA **			None
286	M306A						Yes	** NA **			None
287	M307A						Yes	** NA **			None
288	M308A						Yes	** NA **	100	447	None
289	M309A						Yes	** NA **			None
290	M310A						Yes	** NA **		1110	None
291	M311A						Yes	** NA **			None
292	M312A						Yes	** NA **			None
293	M313A						Yes	** NA **			None
294	M314A						Yes	** NA **			None
295	M315A						Yes	** NA **			None
296	M316A						Yes	** NA **			None
297	M317						Yes	** NA **			None
298	M318						Yes	** NA **			None
299	M319						Yes	** NA **			None
300	M320						Yes	** NA **		11120	None
301	M321						Yes	** NA **		- VIII C	None
302	M322		7 1 7				Yes	** NA **			
303	M323							** NA **			None
304	M324						Yes	** NA **			None
305	M325							** NA **			None
306	M326						Yes	** NA **			None
307	M327						Yes			0000	None
308	M328						Yes	** NA **			None
							Yes	** NA **		THE PERSON	None
309	M329						Yes	** NA **			None
310	M330						Yes	** NA **			None
311	M331						Yes	** NA **			None
312	M332					- 40	Yes	** NA **			None
313	M333						Yes	** NA **			None
314	M334						Yes	** NA **			None
315	M335						Yes	** NA **			None
316	M336						Yes	** NA **		1155	None
317	M337						Yes	** NA **			None
318	M338						Yes	** NA **		1000	None
319	M339						Yes	** NA **			None
320	M340			100			Yes	** NA **			None
321	M341						Yes	** NA **			None
322	M342						Yes	** NA **			None
323	M343						Yes	** NA **	- 1		None
324	M344						Yes	** NA **		7 - 1	None
325	M345						Yes	** NA **			None
326	M346		- 17,817				Yes	** NA **			None
327	M347						Yes	** NA **			
328	M348						Yes	** NA **			None
329	M349						Yes	** NA **		Activis	None
330	M350							** NA **			None
331	M351						Yes				None
332	M352						Yes	** NA **			None
	M353						Yes				None
333							Yes	** NA **			None
334	M354			1111			Yes	** NA **			None
335	M355						Yes	** NA **			None
336	M356		4 - 1				Yes	** NA **		in (181),	None
337	M357						Yes	** NA **			None
338	M358						Yes	** NA **			None
339	M359						Yes	** NA **			None
340	M360						Yes	** NA **		Ame	None
341	M361						Yes	** NA **	-		None

Feb 8, 2024 3:42 PM Checked By: PMA

	Label	I Release	J Release	Offset[in]	J Offset[in]	T/C Only		Defl Rat.	Analysis Inacti	ve Seismic None
342	M362						Yes	** NA **		
343	M363						Yes	** NA **		None
344	M364						Yes	** NA **		None
345	M365						Yes	** NA **		None
346	M366						Yes	** NA **		None
347	M367						Yes			None
348	M368						Yes	** NA **		None
349	M369						Yes	** NA **		None
350	M370						Yes	** NA **		None
351	M371						Yes	** NA **		None
352	M372						Yes	** NA **		None
353	M373						Yes	** NA **		None
354	M374						Yes	** NA **		None
355	M375						Yes	** NA **		None
356	M376						Yes	** NA **		None
357	M377						Yes	** NA **		None
358	M378						Yes	** NA **		None
359	M379						Yes	** NA **		None
360	M380						Yes	** NA **		None
361	M381						Yes	** NA **		None
-	M382						Yes	** NA **		None
362		-					Yes	** NA **		None
363	M383						Yes	** NA **		None
364	M384		-				Yes	** NA **		None
365	M385						Yes	** NA **		None
366	M386						Yes	** NA **		None
367	M387		-				Yes	** NA **		None
368	M388						Yes	** NA **		None
369	M389						Yes	** NA **		None
370	M390						Yes	** NA **		None
371	M391						Yes	** NA **		None
372	M392							** NA **		None
373	M393						Yes	** NA **		None
374	M394						Yes	** NA **		None
375	M395						Yes	** NA **		None
376	M396						Yes	** NA **		
377	M397						Yes	** NA **		None
378	M398						Yes	** NA **		None
379	M399						Yes			None
380	M400						Yes	** NA **		None
381	M401						Yes	** NA **		None
382	M402						Yes	** NA **		None
383	M403						Yes	** NA **		None
384	M404						Yes	** NA **		None
385	M405						Yes	** NA **		None
386	M406						Yes	** NA **		None
387	M407						Yes	** NA **		None
388	M408		1-010				Yes	** NA **		None
389	M409						Yes	** NA **		None
390	M410						Yes	** NA **		None
	M411						Yes	** NA **		None
391	M412		-				Yes	** NA **		None
392							Yes	** NA **		None
393	M413		THE PERSON	- 100			Yes	** NA **		None
394	M414						Yes	** NA **		None
395	M415					V	Yes	** NA **		None
396	M416						Yes	** NA **		None
397	M417						Yes	** NA **		None
398	M418						Yes	** NA **		None
399	M419						Yes	** NA **		None
400	M420						169	1 11/1		Page 20

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

401	Label M421	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical Yes	Defl Rat.	Analysis	Inactive	Seismic None
402	M422						Yes	** NA **			None
403	M423						Yes	** NA **			None
404	M424						Yes	** NA **			None
405	M425	1					Yes	** NA **			
406	M426						Yes	** NA **			None
407	M427						Yes	** NA **			None
408	M428							** NA **			None
409	M429						Yes	** NA **			None
410	M430							** NA **			None
411	M431	 					Yes	** NA **			None
412	M432						Yes	** NA **			None
413	M433						Yes	** NA **			None
414	M434						Yes	** NA **			None
415	M435	_					Yes			3.5	None
416	M436	-					Yes	** NA **			None
417							Yes	** NA **		HIP	None
	M437						Yes	** NA **			None
418	M438						Yes	** NA **			None
419	M439						Yes	** NA **			None
420	M440						Yes	** NA **			None
421	M441						Yes	** NA **			None
422	M442						Yes	** NA **			None
423	M443						Yes	** NA **			None
424	M444						Yes	** NA **			None
425	M445						Yes	** NA **			None
426	M446						Yes	** NA **		7110	None
427	M447						Yes	** NA **			None
428	M448						Yes	** NA **		1138	None
429	M449						Yes	** NA **			None
430	M450						Yes	** NA **			None
431	M451		· ·				Yes	** NA **			None
432	M452						Yes	** NA **		7676	None
433	M453						Yes	** NA **			None
434	M454						Yes	** NA **		1000	None
435	M455						Yes	** NA **			None
436	M456						Yes	** NA **			None
437	M457						Yes	** NA **			
438	M458						Yes	** NA **		1 70015	None
439	M459						Yes	** NA **		- F850	None
440	M460			-				** NA **	_		None
441	M461						Yes	** NA **			None
442	M462						Yes	** NA **			None
443	M463						Yes			1,037	None
444							Yes	** NA **			None
	M464						Yes	** NA **		1000	None
445	M465						Yes	** NA **			None
446	M466						Yes	** NA **			None
447	M467						Yes	** NA **			None
448	M468						Yes	** NA **			None
449	M469						Yes	** NA **			None
450	M470						Yes	** NA **			None
451	M471						Yes	** NA **			None
452	M472			THE STATE OF THE S			Yes	** NA **			None
453	M473						Yes	** NA **			None
454	M474						Yes	** NA **			None
455	M475						Yes	** NA **			None
456	M476						Yes	** NA **		- 60 0	None
457	M477						Yes	** NA **			None
458	M478						Yes	** NA **			None
459	M479						Yes	** NA **		10000	None

Feb 8, 2024 3:42 PM Checked By: PMA

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only		Defl Rat	Analysis	Inactive	Seismic. None
460	M480						Yes	** NA **			None
461	M481						Yes	** NA **	15.00		None
462	M482						Yes	** NA **			None
463	M483						Yes	** NA **			None
464	M484						Yes	** NA **			None
465	M485						Yes	** NA **			None
466	M486						Yes	** NA **			None
467	M487						Yes	** NA **			None
468	M488						Yes	** NA **			None
469	M489						Yes	** NA **			None
470	M490						Yes	** NA **			None
471	M491						Yes	** NA **			None
472	M492		ف الانت				Yes	** NA **			None
473	M493						Yes	** NA **			None
474	M494			Let L			Yes	** NA **			None
475	M495						Yes	** NA **			None
476	M496						Yes	** NA **			None
477	M497						Yes				1 3 10 11 P 10 10 P
478	M498						Yes	** NA **			None
479	M499						Yes				None
480	M500			1.00			Yes	** NA ** ** NA **			None
481	M501						Yes				None
482	M502						Yes	** NA **			None
483	M503						Yes	** NA **			None
484	M504						Yes	** NA **			None
485	M505						Yes	** NA **			None
486	M506			I MAY I			Yes	** NA **			_
487	M507						Yes	** NA **			None
488	M508						Yes	** NA **			None
489	M504A						Yes	** NA **			None
490	M509		17.7			Compres	Yes	** NA **			None
491	M510					Compres	Yes	** NA **			None
492	M511					Compres	Yes	** NA **			None
493	M512					Compres	Yes	** NA **			None
494	MP4A						Yes	** NA **			None
495	МР3А						Yes	** NA **			None
496	MP2A						Yes	** NA **			None
497	MP1A						Yes	** NA **			None
498	M696A		100				Yes	** NA **			None
499	M698A						Yes	** NA **			None
500	M700A						Yes	** NA **			None
501	M501A						Yes	** NA **			None
502	M502A						Yes	** NA **		l D	None
503	M503A						Yes	** NA **			None
504	M504B						Yes	** NA **			None
505	M505A						Yes	** NA **			None
506	M506A		17 (0)				Yes	** NA **			None
507	M507A						Yes	** NA **			None
508	M508A			I I I I			Yes	** NA **			None
509	M509A						Yes	** NA **			None
510	M510A						Yes	** NA **			None
511	M511A						Yes	** NA **			None
512	M512A		- Y ()	1 181 1			Yes	** NA **			None
513	M513		-				Yes	** NA **			None
514	M514			1 11 1			Yes	** NA **			None
	M514 M515						Yes	** NA **			None
515	The second secon		The state of	T MAKE T			Yes	** NA **			None
516	M516						Yes	** NA **			None
517 518	M517 M518	1000	S S 1	To the P			Yes	** NA **			None

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

519	Label M519	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical Yes	Defi Rat.	Analysis	Inactive	Seismic. None
520	M520						Yes	** NA **		7 7 7 7	None
521	M521						Yes	** NA **			None
522	M522						Yes	** NA **			None
523	M523						Yes	** NA **			None
524	M524						Yes	** NA **		3.8.0	None
525	MP4D						Yes	** NA **			None
526	MP3D	12 11 11					Yes	** NA **			None
527	MP2D						Yes	** NA **			None
528	MP1D						Yes	** NA **			
529	M529						Yes	** NA **	-		None
530	M530						Yes	** NA **		-0.0	None
531	M531						Yes	** NA **			None
532	M532						Yes	** NA **			None
533	MP4C						Yes	** NA **			None
534	MP3C						Yes	** NA **			None
535	MP2C					-	Yes	** NA **			None
536	MP1C						Yes	** NA **			None
537	M537						Yes	** NA **			None
538	M538		1 7 9 7				Yes	** NA **			None
539	M539							** NA **			None
540	M540						Yes	** NA **			None
541	MP4B						Yes	** NA **			None
542	МР3В						Yes	** NA **			None
	MATSING-1						Yes	** NA **		Caxin	None
544	MP1B						Yes				None
545	M545						Yes	** NA **			None
546	M546		0.000				Yes	** NA **			None
547	M547						Yes	** NA **		7000	None
548	M548						Yes	** NA **			None
549	M549	BenPIN					Yes	** NA **			None
550	M550	BenPIN					Yes	** NA **			None
551	M551	BenPIN					Yes	** NA **			None
552	M552	BenPIN	3020				Yes	** NA **			None
553	M553	BenPIN					Yes	** NA **			None
554	M554	BenPIN					Yes	** NA **			None
555	M555	BenPIN					Yes	** NA **			None
556	M556	BenPIN					Yes	** NA **			None
557	M557	Denrin					Yes	** NA **			None
558	M558						Yes	** NA **			None
559	M559							** NA **			None
560	M560	135					Yes	** NA **			None
561	M561						100	** NA **			None
562	OVP						Yes	** NA **			None
563	M563						100	** NA **			None
564	M564	PopDIN	DesDIN				, 00	** NA **			None
565	M565	BenPIN BenPIN	BenPIN				. 00	** NA **			None
566	M566		BenPIN				100	** NA **			None
567		BenPIN	BenPIN				1,00	** NA **			None
568	M567	BenPIN	BenPIN					** NA **			None
	M568	BenPIN	BenPIN					** NA **			None
569	M569	BenPIN	BenPIN					** NA **			None
570	M570	BenPIN	BenPIN					** NA **		A STORE	None
571	M571	BenPIN	BenPIN				100	** NA **			None
572	MP2B							** NA **			None
573	M573							** NA **			None
574	M574						100	** NA **		-TE = 72 4	None
575	M575							** NA **			None
576	M576						1.00	** NA **			None
577	M577				- 4		Yes	** NA **			None

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 1 : Antenna D)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1B	Y	-70.3	2 2
2	MP1B	My	0	2
3	MP1B	Mz	.023	3
4	MP2B	Y	-70.3	3
5	MP2B	My	0	3
6	MP2B	Mz	.023	2
7	MP3A	Y	-70.3	2
8	MP3A	My	.023	2
9	MP3A	Mz	-70.3	2
10	MP3B	Y	0	2
11	MP3B	My	.023	2
12	MP3B	Mz	-70.3	2
13	MP3C	Y	023	2
14	MP3C	My	023	2
15	MP3C	Mz	-32	1 1
16	OVP	Y	0	1
17	OVP	My	0	1
18	OVP	Mz Y	-43.55	2.13
19	MP4A		022	2.13
20	MP4A	My Mz	0	2.13
21	MP4A	Y	-43.55	4.12
22	MP4A	My	022	4.12
23	MP4A	Mz	0	4.12
24	MP4A	Y	-43.55	2.13
25	MP4C	My	.022	2.13
26	MP4C	Mz	0	2.13
27	MP4C	Y	-43.55	4.12
28	MP4C	My	.022	4.12
29	MP4C	Mz	0	4.12
30	MP4C MP1A	Y	-38.7	1.5
31	MP1A	My	019	1.5
32		Mz	0	1.5
33	MP1A	Y	-38.7	4.75
34	MP1A	My	019	4.75
35	MP1A MP1A	Mz	0	4.75
36	MP1C MP1C	Y	-38.7	1.5
37	MP1C	My	.019	1.5
38	MP1C MP1C	Mz	0	1.5
39	MP1C	Y	-38.7	4.75
40	MP1C	My	.019	4.75
41	MP1C	Mz	0	4.75
42 43	MP2A	Y	-38.7	1.5
	MP2A	My	019	1.5
44	MP2A	Mz	0	1.5
45	MP2A	Y	-38.7	4.75
46 47	MP2A	My	019	4.75
48	MP2A	Mz	0	4.75
49	MP2C	Y	-38.7	1.5
50	MP2C	My	.019	1.5
51	MP2C	Mz	0	1.5
52	MP2C	Y	-38.7	4.75
	MP2C	My	.019	4.75
53	MP2C	Mz	0	4.75
54	MP3A	Y	-38.7	1.5
55	MP3A	My	019	1.5
56	MP3A	Mz	0	1.5
57 58	MP3A	Y	-38.7	4.75

: Colliers Engineering & Design

: NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 1 : Antenna D) (Continued)

59	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
60	MP3A	My	019	4.75
61	MP3A MP3C	Mz	0	4.75
62	MP3C	Y	-38.7	1.5
63	MP3C	My	.019	1.5
64	MP3C	Mz	0	1.5
65	MP3C	Y	-38.7	4.75
66	MP3C	My	.019	4.75
67	MP3B	Mz Y	0	4.75
68	MP3B		-61.5	1.5
69	MP3B	My	0	1.5
70	MP3B	Mz	031	1.5
71	MP3B	Y	-61.5	4.75
72	MP3B	My	0	4.75
73	MP2A	Mz	031	4.75
74	MP2A	Y	-74.7	2
75	MP2A	My	.025	2
76	MP2C	Mz	0	2
77	MP2C	Y	-74.7	2
78	MP2C	My	025	2
79	MP3D	Mz	0	2
80	MP3D	Y	-70.3	2
81	MP3D	My	0	2
82	MP2D	Mz	.023	2
83	MP2D	Y	-70.3	Addition 2
84	MP2D	My	0	2
85	MP1D	Mz	.023	2
86	MP1D	Y	-17.6	2
87	MP1D MP1D	My	0	2
88	M515	Mz	.009	2
89	M515	Y	-17.6	10
90	M515	My	.008	10
91	MATSING-1	Mz	003	10
92	MATSING-1	Y	-19.25	2.38
93	MATSING-1	My	0	2.38
94	MATSING-1	Mz	016	2.38
95	MATSING-1	Y	-19.25	3.88
96	MATSING-1	My	0	3.88
97	MP2B	Mz	016	3.88
98	MP2B	Y	-19.25	2.38
99	MP2B	My	0	2.38
100	MP2B	Mz Y	016	2.38
101	MP2B		-19.25	3.88
102	MP2B	My	0	3.88
103	MP2B	Mz	016	3.88
104	MP2B	Y	-59.5	1.5
105	MP2B	My	059	1.5
106	MP2B	Mz	.02	1.5
107	MP2B	Y	-59.5	4.75
108	MP2B	My	059	4.75
109	MP2B	Mz	.02	4.75
110	MP2B	Y	-59.5	6.8
111	MP2B	My	059	6.8
112	MATSING-1	Mz	.02	6.8
113		Y	-59.5	4.75
114	MATSING-1	My	0	4.75
115	MATSING-1	Mz	.02	4.75
116	M575	Y	-32	1
117	M575	My	0	
1.1.2	M575	Mz	0	1

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 2 : Antenna Di)

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
1	MP1B	<u> </u>	-67.309 0	2 2
2	MP1B	My	.022	2
3	MP1B	Mz		3
4	MP2B	Y	-67.309	3
5	MP2B	My	0	3
6	MP2B	Mz	.022	2
7	MP3A	Y	-67.309	
8	MP3A	My	.022	2
9	MP3A	Mz	0	2
0	MP3B	Y	-67.309	2
1	MP3B	My	0	2
2	MP3B	Mz	.022	2
3	MP3C	Y	-67.309	2
4	MP3C	My	022	2
15	MP3C	Mz	0	2
16	OVP	Y	-135.915	
17	OVP	My	0	1
18	OVP	Mz	0	1 2011
	MP4A	Y	-55.536	2.13
9	MP4A	My	028	2.13
20	MP4A	Mz	0	2.13
21	MP4A	Y	-55.536	4.12
22		My	028	4.12
23	MP4A	Mz	0	4.12
24	MP4A	Y	-55.536	2.13
25	MP4C	My	.028	2.13
26	MP4C	Mz	0	2.13
27	MP4C	Y	-55.536	4.12
28	MP4C		.028	4.12
29	MP4C	My	0	4.12
30	MP4C	Mz	-132.555	1.5
31	MP1A	Y	066	1.5
32	MP1A	My		1.5
33	MP1A	Mz	0	4.75
34	MP1A	Y	-132.555	4.75
35	MP1A	My	066	4.75
36	MP1A	Mz	0	
37	MP1C	Υ	-132.555	1.5
38	MP1C	My	.066	1.5
39	MP1C	Mz	0	1.5
40	MP1C	Y	-132.555	4.75
41	MP1C	My	.066	4.75
42	MP1C	Mz	0	4.75
43	MP2A	Υ	-132.555	1.5
14	MP2A	My	066	1.5
45	MP2A	Mz	0	1.5
	MP2A	Y	-132.555	4.75
46	MP2A	My	066	4.75
47	MP2A	Mz	0	4.75
48	MP2C	Y	-132.555	1.5
49		My	.066	1.5
50	MP2C	Mz	0	1.5
51	MP2C	Y	-132.555	4.75
52	MP2C		.066	4.75
53	MP2C	My	0	4.75
54	MP2C	Mz		1.5
55	MP3A	Y	-132.555	1.5
56	MP3A	My	066	1.5
57	MP3A	Mz	0	4.75
58	MP3A	Y	-132.555	4.75
59	MP3A	My	066	4.75

: Colliers Engineering & Design: NL: 23777329: Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 2 : Antenna Di) (Continued)

60	Member Label MP3A	Direction	Magnitude[lb,k-ft]	Location[ft,%]
61	MP3C	Mz	0	4.75
62	MP3C	Y	-132.555	1.5
63	MP3C	My Mz	.066	1.5
64	MP3C	Y	0	1.5
65	MP3C		-132.555	4.75
66	MP3C	My	.066	4.75
67	MP3B	Mz	0	4.75
68	MP3B	Y	-121.162	1.5
69	MP3B	My	0	1.5
70	MP3B	Mz Y	061	1.5
71	MP3B		-121.162	4.75
72	MP3B	My	0	4.75
73	MP2A	Mz Y	061	4.75
74	MP2A MP2A		-70.56	2
75	MP2A MP2A	My	.024	2
76	MP2C	Mz	00	2
77		Y	-70.56	2
78	MP2C MP2C	My	024	2
79	MP3D	Mz	0	2
80	MP3D	Y	-67.309	2
81		My	0	2
82	MP3D	Mz	.022	2
83	MP2D	Y	-67.309	2
84	MP2D	My	0	2
85	MP2D	Mz	.022	2
	MP1D	Y	-28.368	2
86	MP1D	My	0	2
87 88	MP1D	Mz	.014	2
89	M515	Y	-28.368	10
	M515	My	.013	10
90	M515	Mz	005	10
91	MATSING-1	Y	92.75	2.38
92	MATSING-1	My	0	2.38
93	MATSING-1	Mz	.077	2.38
94	MATSING-1	Y	92.75	3.88
95	MATSING-1	My	0	3.88
96 97	MATSING-1	Mz	.077	3.88
	MP2B	Y	92.75	2.38
98	MP2B	My	0	2.38
99	MP2B	Mz	.077	2.38
100	MP2B	Y	92.75	3.88
	MP2B	My	0	3.88
102	MP2B	Mz	.077	3.88
103	MP2B	Y	-58.999	1.5
104	MP2B	My	059	1.5
105	MP2B	Mz	.02	1.5
106	MP2B	Y	-58.999	4.75
107	MP2B	My	059	4.75
108	MP2B	Mz	.02	4.75
109	MP2B	Y	-58.999	6.8
110	MP2B	My	059	6.8
111	MP2B	Mz	.02	6.8
112	MATSING-1	Υ	-58.999	4.75
113	MATSING-1	My	0	4.75
114	MATSING-1	Mz	.02	4.75
115	M575	Y	-135.915	1
116	M575	My	0	
117	M575	Mz	0	1

Colliers Engineering & Design NL 23777329

Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
1	MP1B	X	-38.713	2
2	MP1B		013	2
3	MP1B	Mx	013	3
4	MP2B	X	-38.713	3
5	MP2B	Z		3
6	MP2B	Mx	013	2
7	MP3A	X	0	2
8	MP3A	Z	-63.836	2
9	MP3A	Mx	0	
10	MP3B	X	0	2
1	MP3B	Z	-38.713	2
12	MP3B	Mx	013	2
3	MP3C	X	0	2
14	MP3C	Z	-63.836	2
15	MP3C	Mx	0	2
16	OVP	X	0	
17	OVP	Z	-126.893	1
8	OVP	Mx	0	1
19	MP4A	X	0	2.13
20	MP4A	Z	-80.721	2.13
21	MP4A	Mx	0	2.13
22	MP4A	X	0	4.12
23	MP4A	Z	-80.721	4.12
24	MP4A	Mx	0	4.12
25	MP4C	X	0	2.13
	MP4C	Z	-80.721	2.13
26	MP4C	Mx	0	2.13
27	MP4C MP4C	X	0	4.12
28		Z	-80.721	4.12
29	MP4C	Mx	0	4.12
30	MP4C	X	0	1.5
31	MP1A	Z	-252.666	1.5
32	MP1A		0	1.5
33	MP1A	Mx	0	4.75
34	MP1A	X	-252.666	4.75
35	MP1A	Z		4.75
36	MP1A	Mx	0	1.5
37	MP1C	X		1.5
38	MP1C	Z	-252.666	
39	MP1C	Mx	0	1.5
10	MP1C	X	0	4.75
11	MP1C	Z	-252.666	4.75
2	MP1C	Mx	0	4.75
13	MP2A	X	0	1.5
4	MP2A	Z	-252.666	1.5
15	MP2A	Mx	0	1.5
16	MP2A	X	0	4.75
7	MP2A	Z	-252.666	4.75
18	MP2A	Mx	0	4.75
19	MP2C	X	0	1.5
50	MP2C	Z	-252.666	1.5
51	MP2C	Mx	0	1.5
	MP2C	X	0	4.75
52	MP2C	Z	-252.666	4.75
53		Mx	0	4.75
54	MP2C	X	0	1.5
55	MP3A	Z	-252.666	1.5
6	MP3A		0	1.5
57	MP3A	Mx	0	4.75
58	MP3A	X	-252.666	4.75

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

F 1	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
60	MP3A	Mx	0	4.75
61	MP3C	X	0	1.5
62	MP3C	Z	-252.666	1.5
63	MP3C	Mx	0	1.5
64	MP3C	X	0	4.75
65	MP3C	Z	-252.666	4.75
66	MP3C	Mx	0	4.75
67	MP3B	X	0	1.5
68	MP3B	Z	-45.715	1.5
69	MP3B	Mx	.023	1.5
70	MP3B	X	0	4.75
71	MP3B	Z	-45.715	4.75
72	MP3B	Mx	.023	4.75
73	MP2A	X	0	2
74	MP2A	Z	-63.836	2
75	MP2A	Mx	0	2
76	MP2C	X	0	2
77	MP2C	Z	-63.836	2
78	MP2C	Mx	0	2
79	MP3D	X	0	2
80	MP3D	Z	-38.713	2
81	MP3D	Mx	013	2
82	MP2D	X	0	2
83	MP2D	Z	-38.713	2
84	MP2D	Mx	013	2
85	MP1D	X	0	2
86	MP1D	Z	-11.992	2
87	MP1D	Mx	006	2
88	M515	X	0	10
89	M515	Z	-36.315	10
90	M515	Mx	.006	10
91	MATSING-1	X	0	2.38
	MATSING-1	Z	-92.356	2.38
93	MATSING-1	Mx	.077	2.38
94	MATSING-1	X	0	3.88
95	MATSING-1	Z	-92.356	3.88
96	MATSING-1	Mx	.077	3.88
97 98	MP2B	X	0	2.38
99	MP2B	Z	-92.356	2.38
100	MP2B	Mx	.077	2.38
101	MP2B	X	0	3.88
101	MP2B MP2B	Z	-92.356	3.88
102		Mx	.077	3.88
104	MP2B MP2B	X	0	1.5
104		Z	-35.007	1.5
106	MP2B	Mx	012	1.5
106	MP2B	X	0	4.75
107	MP2B	Z	-35.007	4.75
108	MP2B	Mx	012	4.75
110	MP2B	X	0	6.8
111	MP2B	Z	-35.007	6.8
112	MP2B	Mx	012	6.8
113	MATSING-1	X	0	4.75
113	MATSING-1	Z	-35.007	4.75
	MATSING-1	Mx	012	4.75
115 116	M575	X	0	1
117	M575	Z	-126.893	
111	M575	Mx	0	1

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 4 : Antenna Wo (30 Deg))

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
1	MP1B	X	22.497	2 2
2	MP1B	Z	-38.966	2
3	MP1B	Mx	013	3
4	MP2B	X	22.497	3
5	MP2B	Z	-38.966	3
6	MP2B	Mx	013	
7	MP3A	X	28.778	2
8	МРЗА	Z	-49.844	2
9	MP3A	Mx	.01	2
10	MP3B	X	22.497	2
11	MP3B	Z	-38.966	2
12	MP3B	Mx	013	2
13	MP3C	X	28.778	2
14	MP3C	Z	-49.844	2
15	MP3C	Mx	01	2
16	OVP	X	56.093	
17	OVP	Z	-97.156	11
18	OVP	Mx	0	1
19	MP4A	X	33.745	2.13
20	MP4A	Z	-58.449	2.13
21	MP4A	Mx	017	2.13
	MP4A	X	33.745	4.12
22	MP4A	Z	-58.449	4.12
23	MP4A	Mx	017	4.12
24	MP4C	X	33.745	2.13
25		Z	-58.449	2.13
26	MP4C	Mx	.017	2.13
27	MP4C	X	33.745	4.12
28	MP4C	Z	-58.449	4.12
29	MP4C		.017	4.12
30	MP4C	Mx	109.55	1.5
31	MP1A	X	-189.747	1.5
32	MP1A	Z	055	1.5
33	MP1A	Mx	109.55	4.75
34	MP1A	X		4.75
35	MP1A	Z	-189.747	4.75
36	MP1A	Mx	055	1.5
37	MP1C	X	109.55	
38	MP1C	Z	-189.747	1.5
39	MP1C	Mx	.055	1.5
40	MP1C	X	109.55	4.75
41	MP1C	Z	-189.747	4.75
42	MP1C	Mx	.055	4.75
43	MP2A	X	109.55	1.5
44	MP2A	Z	-189.747	1.5
45	MP2A	Mx	055	1.5
46	MP2A	X	109.55	4.75
47	MP2A	Z	-189.747	4.75
48	MP2A	Mx	055	4.75
	MP2C	X	109.55	1.5
49	MP2C	Z	-189.747	1.5
50	MP2C	Mx	.055	1.5
51		X	109.55	4.75
52	MP2C	Z	-189.747	4.75
53	MP2C	Mx	.055	4.75
54	MP2C		109.55	1.5
55	MP3A	X	-189.747	1.5
56	MP3A		-189.747	1.5
57	MP3A	Mx	109.55	4.75
58	MP3A	X		4.75
59	MP3A	Z	-189.747	7.70

Colliers Engineering & Design
 NL
 23777329
 Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 4 : Antenna Wo (30 Deg)) (Continued)

CO.	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
60	MP3A	Mx	055	4.75
61	MP3C	X	109.55	1.5
63	MP3C	Z	-189.747	1.5
64	MP3C	Mx	.055	1.5
65	MP3C	X	109.55	4.75
66	MP3C	Z	-189.747	4.75
67	MP3C	Mx	.055	4.75
68	MP3B	X	44.865	1.5
69	MP3B	Z	-77.709	1.5
70	MP3B	Mx	.039	1.5
71	MP3B	X	44.865	4.75
72	MP3B	Z	-77.709	4.75
73	MP3B	Mx	.039	4.75
74	MP2A	X	29.292	2
75	MP2A	Z	-50.736	2
	MP2A	Mx	.01	2
76	MP2C	X	29.292	2
77	MP2C	Z	-50.736	2
78	MP2C	Mx	01	2
79	MP3D	X	22.497	2
80	MP3D	Z	-38.966	2
81	MP3D	Mx	013	2
82	MP2D	X	22.497	2
83	MP2D	Z	-38.966	2
84	MP2D	Mx	013	2
85	MP1D	X	9.439	2
86	MP1D	Z	-16.349	2
87	MP1D	Mx	008	2
88	M515	X	11.686	10
89	M515	Z	-20.241	10
90	M515	Mx	.009	10
91	MATSING-1	X	42.87	2.38
92	MATSING-1	Z	-74.254	2.38
93	MATSING-1	Mx	.062	2.38
94	MATSING-1	X	42.87	3.88
95	MATSING-1	Z	-74.254	3.88
96	MATSING-1	Mx	.062	3.88
97	MP2B	X	42.87	2.38
98	MP2B	Z	-74.254	2.38
99	MP2B	Mx	.062	2.38
100	MP2B	X	42.87	3.88
101	MP2B	Z	-74.254	3.88
102	MP2B	Mx	.062	3.88
103	MP2B	X	22.754	1.5
104	MP2B	Z	-39.412	1.5
105	MP2B	Mx	036	1.5
106	MP2B	X	22.754	4.75
107	MP2B	Z	-39.412	4.75
108	MP2B	Mx	036	4.75
109	MP2B	X	22.754	6.8
110	MP2B	Z	-39.412	6.8
111	MP2B	Mx	036	6.8
112	MATSING-1	X	22.754	4.75
113	MATSING-1	Z	-39.412	4,75
114	MATSING-1	Mx	013	4.75
115	M575	X	56.093	1
116	M575	Z	-97.156	1
117	M575	Mx	0	1

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

Member La	(BLC 5 : Antenna Wo (60 De	Magnitude[lb,k-ft] 49,844	Location[ft.%]
1 MP1B		-28.778	2
2 MP1B		01	2
3 MP1B		49.844	3
4 MP2B		-28.778	3
5 MP2B		01	3
6 MP2B		38.966	2
7 MP3A		-22.497	2
8 MP3A		.013	2
9 MP3A		49.844	2
10 MP3B		-28.778	2
MP3B		01	2
MP3B		38.966	2
MP3C		-22.497	2
14 MP3C		013	2
15 MP3C	Mx	86.774	
16 OVP	X	-50.099	1
17 OVP		-50.099	
8 OVP	Mx	35.533	2.13
9 MP4A		-20.515	2.13
20 MP4A			2.13
MP4A		018 35.533	4.12
MP4A			4.12
MP4A		-20.515	4.12
MP4A		018	
MP4C		35.533	2.13
26 MP4C	Z	-20.515	2.13
7 MP4C	Mx	.018	2.13
MP4C	X	35.533	4.12
29 MP4C	Z	-20.515	4.12
30 MP4C	Mx	.018	4.12
MP1A	X	131.61	1.5
MP1A		-75.985	1.5
MP1A		066	1.5
MP1A	X	131.61	4.75
MP1A		-75.985	4.75
MP1A		066	4.75
37 MP10		131.61	1.5
38 MP10		-75.985	1.5
39 MP10		.066	1,5
10 MP10		131.61	4.75
11 MP10		-75.985	4.75
12 MP10		.066	4.75
43 MP2A		131.61	1.5
14 MP2A		-75.985	1.5
15 MP2A		066	1.5
16 MP2A		131.61	4.75
The state of the s		-75.985	4.75
		066	4.75
		131.61	1.5
The state of the s		-75.985	1.5
		.066	1.5
		131.61	4.75
MP20		-75.985	4.75
MP20		.066	4.75
54 MP20		131.61	1.5
55 MP3A		-75.985	1.5
56 MP3A		-,066	1.5
57 MP3A		131.61	4.75
58 MP3A		-75.985	4.75
59 MP3A	Z	-10.800	10

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 5 : Antenna Wo (60 Deg)) (Continued)

[en]	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
60	MP3A	Mx	066	4.75
62	MP3C	X	131.61	1.5
63	MP3C	Z	-75.985	1.5
	MP3C	Mx	.066	1.5
64	MP3C	X	131.61	4.75
65	MP3C	Z	-75.985	4.75
66	MP3C	Mx	.066	4.75
67	MP3B	X	153.946	1.5
68	MP3B	Z	-88.881	1.5
69	MP3B	Mx	.044	1.5
70	MP3B	X	153.946	4.75
71	MP3B	Z	-88.881	4.75
72	MP3B	Mx	.044	4.75
73	MP2A	X	41.641	2
74	MP2A	Z	-24.041	2
75	MP2A	Mx	.014	2
76	MP2C	X	41.641	2
77	MP2C	Z	-24.041	2
78	MP2C	Mx	014	2
79	MP3D	X	49.844	2
80	MP3D	Z	-28.778	2
81	MP3D	Mx	01	2
82	MP2D	X	49.844	2
83	MP2D	Z	-28.778	2
84	MP2D	Mx	01	2
85	MP1D	X	28.276	2
86	MP1D	Z	-16.325	2
87	MP1D	Mx	008	2
88	M515	X	11.104	10
89	M515	Z	-6.411	10
90	M515	Mx	.006	10
91	MATSING-1	X	62.796	2.38
92	MATSING-1	Z	-36.255	2.38
93	MATSING-1	Mx	.03	2.38
94	MATSING-1	X	62.796	3.88
95	MATSING-1	Z	-36.255	3.88
96	MATSING-1	Mx	.03	3.88
97	MP2B	X	62.796	2.38
98	MP2B	Z	-36.255	2.38
99	MP2B	Mx	.03	2.38
100	MP2B	X	62.796	3.88
101	MP2B	Z	-36.255	3.88
02	MP2B	Mx	.03	3.88
103	MP2B	X	57.602	1.5
104	MP2B	Z	-33.256	1.5
105	MP2B	Mx	069	1.5
106	MP2B	X	57.602	4.75
107	MP2B	Z	-33.256	4.75
08	MP2B	Mx	069	4.75
09	MP2B	X	57.602	
110	MP2B	Z	-33.256	6.8
111	MP2B	Mx		6.8
12	MATSING-1	IVIX X	069	6.8
13	MATSING-1		57.602	4.75
14	MATSING-1	Z	-33.256	4.75
115		Mx	011	4.75
116	M575	X	86.774	1
117	M575	Z	-50.099	
1.1.1	M575	Mx	0	1

Colliers Engineering & Design

NL 23777329 Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	ntenna Wo (90 Deg	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1B	X	63.836	2
2	MP1B	Z	0	2
3	MP1B	Mx	0	2
4	MP2B	X	63.836	3
5	MP2B	Z	0	3
3	MP2B	Mx	0	3
7	MP3A	X	38.713	2
В	MP3A	Z	0	2
9	MP3A	Mx	.013	2
10	MP3B	X	63.836	2
11	MP3B	Z	0	2
12	MP3B	Mx	0	2
13	MP3C	X	38.713	2
14	MP3C	Z	0	2
15	MP3C	Mx	013	2
16	OVP	X	102.916	1
7	OVP	Z	0	1
8	OVP	Mx	0	1
9	MP4A	X	27.799	2.13
20	MP4A	Z	0	2.13
1	MP4A	Mx	014	2.13
22	MP4A	X	27.799	4.12
23	MP4A	Z	0	4.12
24	MP4A	Mx	014	4.12
25	MP4C	X	27.799	2.13
26	MP4C	Z	0	2.13
27	MP4C	Mx	.014	2.13
28	MP4C	X	27.799	4.12
29	MP4C	Z	0	4.12
30	MP4C	Mx	.014	4.12
31	MP1A	X	118.405	1.5
32	MP1A	Z	0	1.5
33	MP1A	Mx	059	1.5
34	MP1A	X	118.405	4.75
35	MP1A	Z	0	4.75
36	MP1A	Mx	059	4.75
37	MP1C	X	118.405	1.5
38	MP1C	Z	0	1.5
39	MP1C	Mx	.059	1.5
40	MP1C	X	118.405	4.75
41	MP1C	Z	0	4.75
42	MP1C	Mx	.059	4.75
13	MP2A	X	118.405	1.5
14	MP2A	Z	0	1.5
45	MP2A	Mx	059	1.5
16	MP2A	X	118.405	4.75
17	MP2A	Z	0	4.75
48	MP2A	Mx	059	4.75
49	MP2C	X	118.405	1.5
50	MP2C	Z	0	1.5
51	MP2C	Mx	.059	1.5
52	MP2C	X	118.405	4.75
53	MP2C	Z	0	4.75
54	MP2C	Mx	.059	4.75
55	MP3A	X	118.405	1.5
56	MP3A	Z	0	1.5
57	MP3A	Mx	059	1.5
58	MP3A	X	118.405	4.75
59	MP3A	Z	0	4.75

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 6 : Antenna Wo (90 Deg)) (Continued)

60	Member Label	Direction	Magnitude[jb,k-ft]	Location[ft,%]
61	MP3A	Mx	059	4.75
62	MP3C	X	118.405	1.5
63	MP3C	Z	0	1.5
	MP3C	Mx	.059	1.5
65	MP3C	X	118.405	4.75
66	MP3C	Z	0	4.75
67	MP3C	Mx	.059	4.75
68	MP3B	X	221.778	1.5
	MP3B	Z	0	1.5
69	MP3B	Mx	0	1.5
70	MP3B	X	221.778	4.75
71	MP3B	Z	0	4.75
72	MP3B	Mx	0	4.75
73	MP2A	X	42.832	2
74	MP2A	Z	0	2
75	MP2A	Mx	.014	2
76	MP2C	X	42.832	2
77	MP2C	Z	0	2
78	MP2C	Mx	014	2
79	MP3D	X	63.836	2
80	MP3D	Z	0	2
81	MP3D	Mx	0	2
82	MP2D	X	63.836	2
83	MP2D	Z	0	2
84	MP2D	Mx	0	2
85	MP1D	X	39.537	2
86	MP1D	Z	0	2
87	MP1D	Mx	0	2
88	M515	X	15.214	10
89	M515	Z	0	10
90	M515	Mx	.007	10
91	MATSING-1	X	65.895	2.38
92	MATSING-1	Z	0	2.38
93	MATSING-1	Mx	0	2.38
94	MATSING-1	X	65.895	3.88
95	MATSING-1	Z	0	3.88
96	MATSING-1	Mx	0	3.88
97	MP2B	X	65.895	2.38
98	MP2B	Z	0	2.38
99	MP2B	Mx	0	2.38
100	MP2B	X	65.895	3.88
101	MP2B	Z	0	3.88
102	MP2B	Mx	0	3.88
103	MP2B	X	77.015	1.5
104	MP2B	Z	0	1.5
105	MP2B	Mx	077	1.5
106	MP2B	X	77.015	4.75
107	MP2B	Z	0	4.75
108	MP2B	Mx	077	4.75
109	MP2B	X	77.015	6.8
110	MP2B	Z	0	6.8
111	MP2B	Mx	077	6.8
112	MATSING-1	X	77.015	4.75
113	MATSING-1	Z	0	4.75
114	MATSING-1	Mx	0	4.75
115	M575	X	102.916	4.75
116	M575	Z	0	
117	M575	Mx	0	1

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft] 49.844	Location[ft,%]
1	MP1B	X	28.778	2
2	MP1B		.01	2
3	MP1B	Mx	49.844	3
1	MP2B	X	28.778	3
5	MP2B	Z	.01	3
6	MP2B	Mx		2
7	MP3A	X	38.966	2
3	MP3A	Z	22.497	2
9	MP3A	Mx	.013	
0	MP3B	X	49.844	2
1	MP3B	Z	28.778	2 2
2	MP3B	Mx	.01	
3	MP3C	X	38.966	2
4	MP3C	Z	22.497	2
5	MP3C	Mx	013	2
6	OVP	X	101.864	
7	OVP	Z	58.811	1
8	OVP	Mx	0	
9	MP4A	X	35.533	2.13
20	MP4A	Z	20.515	2.13
1	MP4A	Mx	018	2.13
2	MP4A	X	35.533	4.12
23	MP4A	Z	20.515	4.12
24	MP4A	Mx	-,018	4.12
25	MP4C	X	35.533	2.13
	MP4C	Z	20.515	2.13
6	MP4C	Mx	.018	2.13
27	MP4C	X	35.533	4.12
28	MP4C	Z	20.515	4.12
9		Mx	.018	4.12
30	MP4C	X	131.61	1.5
31	MP1A	Z	75.985	1.5
32	MP1A	Mx	066	1.5
33	MP1A	X	131.61	4.75
34	MP1A	Z	75.985	4.75
35	MP1A		066	4.75
36	MP1A	Mx	131.61	1.5
37	MP1C	X	75.985	1.5
88	MP1C	Z		1.5
39	MP1C	Mx	.066	4.75
0	MP1C	X	131.61	4.75
1	MP1C	Z	75.985	4.75
2	MP1C	Mx	.066	
3	MP2A	X	131.61	1.5
4	MP2A	Z	75.985	1.5
5	MP2A	Mx	066	1.5
16	MP2A	X	131.61	4.75
7	MP2A	Z	75.985	4.75
8	MP2A	Mx	066	4.75
9	MP2C	X	131.61	1.5
0	MP2C	Z	75.985	1.5
51	MP2C	Mx	.066	1.5
52	MP2C	X	131.61	4.75
	MP2C	Z	75.985	4.75
3	MP2C	Mx	.066	4.75
54	MP3A	X	131.61	1.5
55		Z	75.985	1.5
56	MP3A	Mx	-,066	1.5
57	MP3A	X	131.61	4.75
5 8	MP3A MP3A	Z	75.985	4.75

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 7 : Antenna Wo (120 Deg)) (Continued)

60	Member Label MP3A	Direction	Magnitude[lb,k-ft]	Location[ft,%]
61	MP3C	Mx	066	4.75
62	MP3C	X	131.61	1.5
63	MP3C	Z	75.985	1.5
64	MP3C	Mx	.066	1.5
65	MP3C	X	131.61	4.75
66	MP3C	Z	75.985	4.75
67	MP3B	Mx	.066	4.75
68	MP3B	X	153.946	1.5
69	MP3B	Z	88.881	1.5
70	MP3B	Mx	044	1.5
71	MP3B	X	153.946	4.75
72	MP3B	Z	88.881	4.75
73	MP2A	Mx	044	4.75
74	MP2A	X	41.641	2
75	MP2A	Z	24.041	2
76	MP2C	Mx	.014	2
77		X	41.641	2
78	MP2C MP2C	Z	24.041	2
79	MP3D	Mx	014	2
80	MP3D	X	49.844	2
81	MP3D		28.778	2
82	MP2D	Mx	.01	2
83	MP2D	X	49.844	2
84	MP2D	Z	28.778	2
85	MP1D	Mx	.01	2
86	MP1D	X	28.276	2
87	MP1D	Z	16.325	2
88	M515	Mx	.008	2
89	M515	X	24.384	10
90	M515		14.078	10
91	MATSING-1	Mx X	.009	10
92	MATSING-1	Z	62.796	2.38
93	MATSING-1		36.255	2.38
94	MATSING-1	Mx X	03	2.38
95	MATSING-1	Z	62.796	3.88
96	MATSING-1	Mx	36.255	3.88
97	MP2B	X	03	3.88
98	MP2B	Ž	62.796	2.38
99	MP2B	Mx	36.255	2.38
100	MP2B	X	03	2.38
101	MP2B	Z	62.796	3.88
102	MP2B	Mx	36.255	3.88
103	MP2B	X	03 57.602	3.88
104	MP2B	Z	33.256	1.5
105	MP2B	Mx	047	1.5
106	MP2B	X	57.602	1.5
107	MP2B	Z		4.75
108	MP2B	Mx	33.256	4.75
109	MP2B	X	047	4.75
110	MP2B	Z	57.602	6.8
111	MP2B	Mx	33.256	6.8
112	MATSING-1	IVIX X	047	6.8
113	MATSING-1	Z	57.602	4.75
114	MATSING-1		33.256	4.75
115	M575	Mx X	.011	4.75
116	M575	Z	101.864	1
117	M575		58.811	
	TVIOTO	Mx	0	1

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft] 22.497	Location[ft,%]
1	MP1B	X	38.966	2
2	MP1B	Z	.013	2
3	MP1B	Mx	22.497	3
4	MP2B	X		3
5	MP2B	Z	38.966	3
6	MP2B	Mx	.013	2
7	MP3A	X	28.778	2
8	MP3A	Z	49.844	2
9	MP3A	Mx	.01	2
10	MP3B	X	22.497	2
11	MP3B	Z	38.966	2
12	MP3B	Mx	.013	2
13	MP3C	X	28.778	2
14	MP3C	Z	49.844	2
15	MP3C	Mx	01	2
16	OVP	X	64.805	Design of the last
17	OVP	Z	112.246	1
18	OVP	Mx	0	1
19	MP4A	X	33.745	2.13
20	MP4A	Z	58.449	2.13
	MP4A	Mx	017	2.13
21	MP4A	X	33.745	4.12
22		Z	58.449	4.12
23	MP4A	Mx	017	4.12
24	MP4A	X	33.745	2.13
25	MP4C	Z	58.449	2.13
26	MP4C	Mx	.017	2.13
27	MP4C	X	33.745	4.12
28	MP4C	Z	58.449	4.12
29	MP4C		.017	4.12
30	MP4C	Mx	109.55	1.5
31	MP1A	X	189.747	1.5
32	MP1A	Z	055	1.5
33	MP1A	Mx		4.75
34	MP1A	X	109.55	4.75
35	MP1A	Z	189.747	4.75
36	MP1A	Mx	055	
37	MP1C	X	109.55	1.5 1.5
38	MP1C	Z	189.747	
39	MP1C	Mx	.055	1.5
40	MP1C	X	109.55	4.75
41	MP1C	Z	189.747	4.75
42	MP1C	Mx	.055	4.75
43	MP2A	X	109.55	1.5
44	MP2A	Z	189.747	1.5
45	MP2A	Mx	055	1.5
46	MP2A	X	109.55	4.75
47	MP2A	Z	189.747	4.75
	MP2A	Mx	055	4.75
48	MP2C	X	109.55	1.5
49	MP2C	Z	189.747	1.5
50		Mx	.055	1.5
51	MP2C	X	109.55	4.75
52	MP2C	Z	189.747	4.75
53	MP2C		.055	4.75
54	MP2C	Mx	109.55	1.5
55	MP3A	X		1.5
56	MP3A	Z	189.747	1.5
57	MP3A	Mx	055	4.75
58	MP3A	X	109.55	4.75
59	MP3A	Z	189.747	4.70

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

00.1	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
60	MP3A	Mx	055	4.75
61	MP3C	X	109.55	1.5
62	MP3C	Z	189.747	1.5
63	MP3C	Mx	.055	1.5
65	MP3C	X	109.55	4.75
66	MP3C	Z	189.747	4.75
67	MP3C	Mx	.055	4.75
	MP3B	X	44.865	1.5
68	MP3B	Z	77.709	1.5
69 70	MP3B	Mx	039	1.5
71	MP3B	X	44.865	4.75
72	MP3B	Z	77.709	4.75
	MP3B	Mx	039	4.75
73 74	MP2A	X	29.292	2
	MP2A	Z	50.736	2
75	MP2A	Mx	.01	2
76	MP2C	X	29.292	2
77	MP2C	Z	50.736	2
78	MP2C	Mx	01	2
79	MP3D	X	22.497	2
80	MP3D	Z	38.966	2
81	MP3D	Mx	.013	2
82	MP2D	X	22.497	2
83	MP2D	Z	38.966	2
84	MP2D	Mx	.013	2
85	MP1D	X	9.439	2
86	MP1D	Z	16.349	2
87	MP1D	Mx	.800.	2
88	M515	X	19.353	10
89	M515	Z	33.521	10
90	M515	Mx	.003	10
91	MATSING-1	X	42.87	2.38
92	MATSING-1	Z	74.254	2.38
93	MATSING-1	Mx	062	2.38
94	MATSING-1	X	42.87	3.88
	MATSING-1	Z	74.254	3.88
96 97	MATSING-1	Mx	062	3.88
	MP2B	X	42.87	2.38
98	MP2B	Z	74.254	2.38
100	MP2B	Mx	062	2.38
101	MP2B	X	42.87	3.88
	MP2B	Z	74.254	3.88
102 103	MP2B	Mx	062	3.88
	MP2B	X	22.754	1.5
104	MP2B	Z	39.412	1.5
105	MP2B	Mx	01	1.5
106	MP2B	X	22.754	4.75
107	MP2B	Z	39.412	4.75
108	MP2B	Mx	01	4.75
109	MP2B	X	22.754	6.8
110	MP2B	Z	39.412	6.8
111	MP2B	Mx	01	6.8
112	MATSING-1	X	22.754	4.75
113	MATSING-1	Z	39.412	4.75
114	MATSING-1	Mx	.013	4.75
115	M575	X	64.805	1
116	M575	Z	112.246	1
117	M575	Mx	0	1

: Colliers Engineering & Design : NL : 23777329

Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

Montage	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
1	MP1B	X	0	2 2
2	MP1B	Z	38.713	2
3	MP1B	Mx	.013	3
4	MP2B	X	0	3
5	MP2B	Z	38.713	3
6	MP2B	Mx	.013	2
7	MP3A	X	63.836	2
8	MP3A	Z	03.630	2
9	MP3A	Mx	0	2
10	MP3B	X	38.713	2
11	MP3B	Z	.013	2
12	MP3B	Mx	.013	2
13	MP3C	X	63.836	2
14	MP3C	Z	0	2
15	MP3C	Mx	0	
16	OVP	X	126.893	1
17	OVP	Z	0	
18	OVP	Mx	0	2.13
19	MP4A	X	80.721	2.13
20	MP4A		0	2.13
21	MP4A	Mx	0	4.12
22	MP4A	X	80.721	4.12
23	MP4A		0	4.12
24	MP4A	Mx	0	2.13
25	MP4C	X	80.721	2.13
26	MP4C		0	2.13
27	MP4C	Mx	0	4.12
28	MP4C	X Z	80.721	4.12
29	MP4C		0	4.12
30	MP4C	Mx	0	1.5
31	MP1A	X	252.666	1.5
32	MP1A	Mx	0	1.5
33	MP1A	X	0	4.75
34	MP1A	Z	252.666	4.75
35	MP1A	Mx	0	4.75
36	MP1A	X	0	1.5
37	MP1C	Z	252.666	1.5
38	MP1C	Mx	0	1,5
39	MP1C	X	0	4.75
40	MP1C	Z	252.666	4.75
41	MP1C MP1C	Mx	0	4.75
42		X	0	1.5
43	MP2A MP2A	Z	252.666	1.5
44	MP2A MP2A	Mx	0	1.5
45	MP2A MP2A	X	0	4.75
46	MP2A	Z	252.666	4.75
47	MP2A	Mx	0	4.75
48	MP2C	X	0	1.5
49	MP2C	Z	252.666	1.5
50	MP2C	Mx	0	1.5
51	MP2C	X	0	4.75
52	MP2C	Z	252.666	4.75
53	MP2C	Mx	0	4.75
54	MP3A	X	0	1.5
55	MP3A	Ž	252.666	1.5
56	MP3A	Mx	0	1.5
57	MP3A	X	0	4.75
58	MP3A	Z	252.666	4.75
59	IVIE JA			

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 9 : Antenna Wo (180 Deg)) (Continued)

60	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
61	MP3A	Mx	0	4.75
62	MP3C MP3C	X	0	1.5
63		Z	252.666	1.5
64	MP3C	Mx	0	1.5
65	MP3C	X	0	4.75
	MP3C	Z	252.666	4.75
66	MP3C	Mx	0	4.75
67	MP3B	X	0	1.5
68	MP3B	Z	45.715	1.5
69	MP3B	Mx	023	1.5
70	MP3B	X	0	4.75
71	MP3B	Z	45.715	4.75
72	MP3B	Mx	023	4.75
73	MP2A	X	0	2
74	MP2A	Z	63.836	2
75	MP2A	Mx	0	2
76	MP2C	X	0	2
77	MP2C	Z	63.836	2
78	MP2C	Mx	0	2
79	MP3D	X	0	2
80	MP3D	Z	38.713	2
81	MP3D	Mx	.013	2
82	MP2D	X	0	2
83	MP2D	Z	38.713	2
84	MP2D	Mx	.013	2
85	MP1D	X	0	2
86	MP1D	Z	11.992	2
87	MP1D	Mx	.006	2
88	M515	X	0	10
89	M515	Z	36.315	10
90	M515	Mx	006	10
91	MATSING-1	X	0	2.38
92	MATSING-1	Z	92.356	2.38
93	MATSING-1	Mx	077	2.38
94	MATSING-1	X	0	3.88
95	MATSING-1	Z	92.356	3.88
96	MATSING-1	Mx	077	3.88
97	MP2B	X	0	2.38
98	MP2B	Z	92.356	2.38
99	MP2B	Mx	077	2.38
100	MP2B	X	0	
101	MP2B	Z	92.356	3.88 3.88
102	MP2B	Mx	077	
103	MP2B	X	011	3.88
104	MP2B	Z	35.007	1.5
105	MP2B	Mx		1.5
106	MP2B	X	.012	1.5
107	MP2B	Z	0	4.75
108	MP2B	Mx	35.007	4.75
109	MP2B		.012	4.75
10	MP2B	X	0	6.8
111	MP2B	Z	35.007	6.8
112	MATSING-1	Mx	.012	6.8
113		X	0	4.75
114	MATSING-1	Z	35.007	4.75
115	MATSING-1	Mx	.012	4.75
	M575	X	0	1
116	M575	Z	126.893	
117	M575	Mx	0	1

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
1	MP1B	X	-22.497 38.966	2
2	MP1B	Z	.013	2
3	MP1B	Mx	-22.497	3
4	MP2B	X	38.966	3
5	MP2B	Z	.013	3
6	MP2B	Mx	-28.778	2
7	MP3A	X	49.844	2
8	MP3A	Z	-,01	2
9	MP3A	Mx	-22.497	2
10	MP3B	X	38.966	2
11	MP3B	Z		2
12	MP3B	Mx	.013 -28.778	2
13	MP3C	X		2
14	MP3C	Z	49.844	2
15	MP3C	Mx	.01	1
16	OVP	X	-56.093	
17	OVP	Z	97.156	
18	OVP	Mx	0	1 2 12
19	MP4A	X	-33.745	2.13
20	MP4A	Z	58.449	2.13
21	MP4A	Mx	.017	2.13
22	MP4A	X	-33.745	4.12
23	MP4A	Z	58.449	4.12
24	MP4A	Mx	.017	4.12
25	MP4C	X	-33.745	2.13
26	MP4C	Z	58.449	2.13
27	MP4C	Mx	017	2.13
28	MP4C	X	-33.745	4.12
29	MP4C	Z	58.449	4.12
	MP4C	Mx	017	4.12
30	MP1A	X	-109.55	1.5
31	MP1A	Z	189.747	1.5
32	MP1A	Mx	.055	1.5
33		X	-109.55	4.75
34	MP1A	Z	189.747	4.75
35	MP1A	Mx	.055	4.75
36	MP1A	X	-109.55	1.5
37	MP1C	Z	189.747	1.5
38	MP1C	Mx	055	1.5
39	MP1C	X	-109.55	4.75
40	MP1C	Z	189.747	4.75
41	MP1C		055	4.75
42	MP1C	Mx X	-109.55	1.5
43	MP2A	Z	189.747	1.5
44	MP2A	Mx	.055	1.5
45	MP2A		-109.55	4.75
46	MP2A	X Z	189.747	4.75
47	MP2A		.055	4.75
48	MP2A	Mx	-109.55	1.5
49	MP2C	X	189.747	1.5
50	MP2C	Z	055	1.5
51	MP2C	Mx		4.75
52	MP2C	X	-109.55	4.75
53	MP2C	Z	189.747	4.75
54	MP2C	Mx	055	
55	MP3A	X	-109.55	1.5 1.5
56	MP3A	Z	189.747	
57	MP3A	Mx	.055	1.5
58	MP3A	X	-109.55	4.75
59	MP3A	Z	189.747	4.75

: Colliers Engineering & Design : NL

: NL : 23777329 : Mount Analysis Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

60	Member Label MP3A	Direction	Magnitude[ib,k-ft]	Location[ft,%]
61	MP3C	Mx	.055	4.75
62	MP3C	X	-109.55	1.5
63	MP3C	Mx	189.747	1.5
64	MP3C	X	055	1.5
65	MP3C	Z	-109.55	4.75
66	MP3C	Mx	189.747	4.75
67	MP3B	X	055	4.75
68	MP3B	Z	-44.865	1.5
69	MP3B	Mx	77.709	1.5
70	MP3B	X	039 -44.865	1.5
71	MP3B	Z		4.75
72	MP3B	Mx	77.709	4.75
73	MP2A	X	039	4.75
74	MP2A	Z	-29.292	2
75	MP2A		50.736	2
76	MP2C	Mx	01	2
77	MP2C	X	-29.292	2
78	MP2C		50.736	2
79	MP3D	Mx	.01	2
80	MP3D	X	-22.497	2
81	MP3D		38.966	2
82	MP2D	Mx	.013	2
83	MP2D	X	-22.497	2
84	MP2D		38.966	2
85	MP1D	Mx	.013	2
86	MP1D	X	-9.439	2
87	MP1D	Z	16.349	2
88	M515	Mx	.008	2
89	M515	X	-11.686	10
90	M515	Z	20.241	10
91	MATSING-1	Mx	009	10
92	MATSING-1	X	-42.87	2.38
93	MATSING-1		74.254	2.38
94	MATSING-1	Mx	062	2.38
95	MATSING-1	X	-42.87	3.88
96	MATSING-1		74.254	3.88
97	MP2B	Mx X	062	3.88
98	MP2B	Z	-42.87	2.38
99	MP2B		74.254	2.38
100	MP2B	Mx X	062	2.38
101	MP2B	Z	-42.87	3.88
102	MP2B		74.254	3.88
103	MP2B	Mx	062	3.88
104	MP2B	X	-22.754	1.5
105	MP2B		39.412	1.5
106	MP2B	Mx	.036	1.5
107	MP2B	X	-22.754	4.75
108	MP2B	Z	39.412	4.75
109	MP2B	Mx	.036	4.75
110	MP2B	X	-22.754	6.8
111	MP2B	Z	39.412	6.8
112	MATSING-1	Mx	.036	6.8
113		X	-22.754	4.75
114	MATSING-1	Z	39.412	4.75
115	MATSING-1	Mx	.013	4.75
116	M575	X	-56.093	1
117	M575	Z	97.156	1
11/	M575	Mx	0	1

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1B	X	-49.844	2 2
2	MP1B		28.778	2
3	MP1B	Mx	.01	3
4	MP2B	X	-49.844	3
5	MP2B	Z	28.778	3
6	MP2B	Mx	.01	2
7	MP3A	X	-38.966	2
8	MP3A	Z	22.497	2
9	MP3A	Mx	013	2
10	MP3B	X	-49.844	2
11	MP3B	Z	28.778	2
12	MP3B	Mx	.01	
13	MP3C	X	-38.966	2
14	MP3C	Z	22.497	2
15	MP3C	Mx	.013	2
16	OVP	X	-86.774	
17	OVP	Z	50.099	1
18	OVP	Mx	0	1
19	MP4A	X	-35.533	2.13
20	MP4A	Z	20.515	2.13
21	MP4A	Mx	.018	2.13
22	MP4A	X	-35.533	4.12
23	MP4A	Z	20.515	4.12
24	MP4A	Mx	.018	4.12
25	MP4C	X	-35.533	2.13
26	MP4C	Z	20.515	2.13
27	MP4C	Mx	018	2.13
28	MP4C	X	-35.533	4.12
29	MP4C	Z	20.515	4.12
30	MP4C	Mx	018	4.12
31	MP1A	X	-131.61	1.5
32	MP1A	Z	75.985	1.5
33	MP1A	Mx	.066	1.5
34	MP1A	X	-131.61	4.75
35	MP1A	Z	75.985	4.75
36	MP1A	Mx	.066	4.75
37	MP1C	X	-131.61	1.5
38	MP1C	Z	75.985	1.5
39	MP1C	Mx	066	1.5
40	MP1C	X	-131.61	4.75
41	MP1C	Z	75.985	4.75
42	MP1C	Mx	066	4.75
43	MP2A	X	-131.61	1.5
44	MP2A	Z	75.985	1.5
45	MP2A	Mx	.066	1.5
46	MP2A	X	-131.61	4.75
47	MP2A	Z	75.985	4.75
48	MP2A	Mx	.066	4.75
49	MP2C	X	-131.61	1.5
50	MP2C	Z	75.985	1.5
51	MP2C	Mx	066	1.5
52	MP2C	X	-131.61	4.75
53	MP2C	Z	75.985	4.75
	MP2C	Mx	066	4.75
54	MP3A	X	-131.61	1.5
55	MP3A	Z	75.985	1.5
56	MP3A	Mx	.066	1.5
57	MP3A	X	-131.61	4.75
58 59	MP3A	Z	75.985	4.75

: Colliers Engineering & Design: NL: 23777329: Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 11 : Antenna Wo (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
60	MP3A	Mx	.066	4.75
61	MP3C	X	-131.61	1.5
62	MP3C	Z	75.985	1.5
63	MP3C	Mx	066	1.5
64	MP3C	X	-131.61	4.75
65	MP3C	Z	75.985	4.75
66	MP3C	Mx	066	4.75
67	MP3B	X	-153.946	1.5
68	MP3B	Z	88.881	1.5
69	MP3B	Mx	044	1.5
70	MP3B	X	-153.946	4.75
71	MP3B	Z	88.881	4.75
72	MP3B	Mx	044	4.75
73	MP2A	X	-41.641	2
74	MP2A	Z	24.041	2
75	MP2A	Mx	014	2
76	MP2C	X	-41.641	2
77	MP2C	Z	24.041	2
78	MP2C	Mx	.014	2
79	MP3D	X	-49.844	
80	MP3D	Z	28.778	2
81	MP3D	Mx	.01	2
82	MP2D			2
83	MP2D	X	-49.844	2
84	MP2D		28.778	2
85	MP1D	Mx	.01	2
86	MP1D	X	-28.276	2
87	MP1D		16.325	2
88	M515	Mx	.008	2
89	M515	X	-11.104	10
90	M515	Z	6.411	10
91	MATSING-1	Mx	006	10
92	MATSING-1	X	-62.796	2.38
93	MATSING-1	Z	36.255	2.38
94	MATSING-1	Mx	03	2.38
95		X	-62.796	3.88
96	MATSING-1 MATSING-1	Z	36.255	3.88
97	MP2B	Mx	03	3.88
98		X	-62.796	2.38
99	MP2B	Z	36.255	2.38
100	MP2B	Mx	03	2.38
	MP2B	X	-62.796	3.88
101	MP2B	Z	36.255	3.88
102	MP2B	Mx	03	3.88
103	MP2B	X	-57.602	1.5
104	MP2B	Z	33.256	1.5
105	MP2B	Mx	.069	1.5
106	MP2B	X	-57.602	4.75
107	MP2B	Z	33.256	4.75
108	MP2B	Mx	.069	4.75
109	MP2B	X	-57.602	6.8
110	MP2B	Z	33.256	6.8
111	MP2B	Mx	.069	6.8
112	MATSING-1	X	-57.602	4.75
113	MATSING-1	Z	33.256	4.75
114	MATSING-1	Mx	.011	4.75
115	M575	X	-86.774	1
116	M575	Z	50.099	
117	M575	Mx	0	1

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft] -63.836	Location[ft,%]
1	MP1B	X	0	2
2	MP1B	Z	0	2
3	MP1B	Mx	-63.836	3
4	MP2B	X		3
5	MP2B	Z	0	3
6	MP2B	Mx	0	
7	MP3A	X	-38.713	2 2
8	MP3A	Z	0	2
9	MP3A	Mx	013	2
10	MP3B	X	-63.836	2
11	MP3B	Z	0	2
12	MP3B	Mx	0	2
3	MP3C	X	-38.713	2
14	MP3C	Z	0	2
15	MP3C	Mx	.013	2
16	OVP	X	-102.916	
17	OVP	Z	0	1
18	OVP	Mx	0	
	MP4A	X	-27.799	2.13
19	MP4A	Z	0	2.13
20		Mx	.014	2.13
21	MP4A	X	-27.799	4.12
22	MP4A	Z	0	4.12
23	MP4A	Mx	.014	4.12
24	MP4A		-27.799	2.13
25	MP4C	X	0	2.13
26	MP4C		014	2.13
27	MP4C	Mx	-27.799	4.12
28	MP4C	X	0	4.12
29	MP4C	Z		4.12
30	MP4C	Mx	014	1.5
31	MP1A	X	-118.405	1.5
32	MP1A	Z	0	1.5
33	MP1A	Mx	.059	
34	MP1A	X	-118.405	4.75
35	MP1A	Z	0	4.75
36	MP1A	Mx	.059	4.75
37	MP1C	X	-118.405	1.5
38	MP1C	Z	0	1.5
39	MP1C	Mx	059	1.5
	MP1C	X	-118.405	4.75
40	MP1C	Z	0	4.75
41	MP1C	Mx	059	4.75
42		X	-118.405	1.5
43	MP2A	Z	0	1.5
44	MP2A	Mx	.059	1.5
45	MP2A	X	-118.405	4.75
46	MP2A	Z	0	4.75
47	MP2A	Mx	.059	4.75
48	MP2A		-118.405	1.5
49	MP2C	X	-118.403	1.5
50	MP2C	Z	059	1.5
51	MP2C	Mx		4.75
52	MP2C	X	-118.405	4.75
53	MP2C	Z	0	
54	MP2C	Mx	059	4.75
55	MP3A	X	-118.405	1.5
56	MP3A	Z	0	1.5
57	MP3A	Mx	.059	1.5
58	MP3A	X	-118.405	4.75
59	MP3A	Z	0	4.75

: Colliers Engineering & Design

: NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 12 : Antenna Wo (270 Deg)) (Continued)

-	Member Label	Direction	Magnitude[lb,k-ft]	Location(# 9/1
60	MP3A	Mx	.059	Location[ft,%] 4.75
61	MP3C	X	-118.405	1.5
62	MP3C	Z	0	1.5
63	MP3C	Mx	059	1.5
64	MP3C	X	-118.405	4.75
65	MP3C	Z	0	4.75
66	MP3C	Mx	059	
67	MP3B	X	-221.778	4.75
68	MP3B	Z		1.5
69	MP3B	Mx	0	1.5
70	MP3B	X	0	1.5
71	MP3B	Z	-221.778	4.75
72	MP3B	Mx	0	4.75
73	MP2A		0	4.75
74	MP2A	X	-42.832	2
75	MP2A	Z	0	2
76	MP2C	Mx	014	2
77		X	-42.832	2
78	MP2C	Z	0	2
79	MP2C	Mx	.014	2
	MP3D	X	-63.836	2
80	MP3D	Z	0	2
81	MP3D	Mx	0	2
82	MP2D	X	-63.836	2
83	MP2D	Z	0	2
84	MP2D	Mx	0	2
85	MP1D	X	-39.537	2
86	MP1D	Z	0	2
87	MP1D	Mx	0	2
88	M515	X	-15.214	10
89	M515	Z	0	10
90	M515	Mx	007	10
91	MATSING-1	X	-65.895	2.38
92	MATSING-1	Z	0	2.38
93	MATSING-1	Mx	0	2.38
94	MATSING-1	X	-65.895	3.88
95	MATSING-1	Z	0	3.88
96	MATSING-1	Mx	0	3.88
97	MP2B	X	-65.895	2.38
98	MP2B	Z	0	2.38
99	MP2B	Mx	0	2.38
100	MP2B	X	-65.895	3.88
101	MP2B	Z	0	3.88
102	MP2B	Mx	0	3.88
103	MP2B	X	-77.015	1.5
104	MP2B	Z	0	
105	MP2B	Mx	.077	1.5
106	MP2B	X	-77.015	1.5
107	MP2B	Z		4.75
108	MP2B	Mx	.077	4.75
109	MP2B	X		4.75
110	MP2B	Z	-77.015	6.8
111	MP2B		0	6.8
112	MATSING-1	Mx	.077	6.8
113	MATSING-1	X	-77.015	4.75
114		Z	0	4.75
115	MATSING-1	Mx	0	4.75
116	M575	X	-102.916	1
117	M575	Z	0	1
	M575	Mx	0	1

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

Membe	r Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1 MP	1B	X	-49.844	2
2 MP		Z	-28.778	2 2
3 MP	1B	Mx	01	3
4 MP		X	-49.844	3
5 MP	2B	Z	-28.778	3
6 MP	2B	Mx	01	
7 MP	3A	X	-38.966	2
8 MP	3A	Z	-22.497	2
9 MP	3A	Mx	013	2
10 MP	3B	X	-49.844	2
11 MP	3B	Z	-28.778	2
12 MP	3B	Mx	01	2
13 MP	3C	X	-38.966	2
14 MP		Z	-22.497	2
15 MP		Mx	.013	2
16 0\		X	-101.864	1
17 01		Z	-58.811	1
18 0\		Mx	0	1
19 MP		X	-35.533	2.13
20 MP		Z	-20.515	2.13
21 MP		Mx	.018	2.13
22 MP		X	-35.533	4.12
23 MP		Z	-20.515	4.12
24 MP		Mx	.018	4.12
	4C	X	-35.533	2.13
26 MP		Z	-20.515	2.13
	4C	Mx	018	2.13
28 MP		X	-35.533	4.12
	4C	Z	-20.515	4.12
	4C	Mx	018	4.12
	1A	X	-131.61	1.5
	1A	Z	-75.985	1.5
	1A	Mx	.066	1.5
	1A	X	-131.61	4.75
	1A	Z	-75.985	4.75
	71A	Mx	.066	4.75
	1C	X	-131.61	1.5
	1C	Z	-75.985	1.5
	1C	Mx	066	1.5
1000	21C	X	-131.61	4.75
	P1C	Z	-75.985	4.75
100	210	Mx	066	4.75
	2A	X	-131.61	1.5
	2A	Z	-75.985	1.5
		Mx	.066	1.5
	2A	X	-131.61	4.75
	2A	Z	-75.985	4.75
	2A	Mx	.066	4.75
	2A	X	-131.61	1.5
	P2C	Z	-75.985	1.5
	2C	Mx	066	1.5
	2C	X	-131.61	4.75
	P2C	Z	-75.985	4.75
	2C		066	4.75
	2C	Mx	-131.61	1.5
	23A	X	-75.985	1.5
	23A		.066	1.5
	² 3A	Mx	-131.61	4.75
	23A	X	-75.985	4.75
59 MF	P3A	Z	-10.800	4.10

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 13 : Antenna Wo (300 Deg)) (Continued)

MP3A MP3C MP3C MP3C MP3C MP3C MP3C MP3C MP3C	Mx X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	.066 -131.61 -75.985066 -131.61 -75.985066 -153.946 -88.881 .044 -153.946 -88.881 .044 -41.641 -24.041014	Location[ft.%] 4.75 1.5 1.5 1.5 4.75 4.75 4.75 4.75 1.5 1.5 1.5 1.5 1.5 1.5 2.2 2
MP3C MP3C MP3C MP3C MP3C MP3C MP3C MP3B MP3B MP3B MP3B MP3B MP3B MP3B MP2A MP2A MP2A MP2A MP2C MP2C MP2C MP3D	Z Mx X X X X X X X X X X X X X X X X X X	-75.985066 -131.61 -75.985066 -153.946 -88.881 .044 -153.946 -88.881 .044 -41.641 -24.041014	1.5 1.5 1.5 4.75 4.75 4.75 1.5 1.5 1.5 4.75 4.75 4.75 4.75
MP3C MP3C MP3C MP3C MP3C MP3C MP3B MP3B MP3B MP3B MP3B MP3B MP3B MP2A MP2A MP2A MP2A MP2C MP2C MP2C MP3D	Mx X Z Mx X X X X X X X X X X X X X X X X X X	066 -131.61 -75.985066 -153.946 -88.881 .044 -153.946 -88.881 .044 -41.641 -24.041014	1.5 4.75 4.75 4.75 1.5 1.5 1.5 4.75 4.75 4.75 4.75
MP3C MP3C MP3C MP3C MP3B MP3B MP3B MP3B MP3B MP3B MP3B MP2A MP2A MP2A MP2A MP2C MP2C MP2C MP3D	X Z Mx X X X X X X X X X X X X X X X X X X	-131.61 -75.985 066 -153.946 -88.881 .044 -153.946 -88.881 .044 -41.641 -24.041 014	4.75 4.75 4.75 1.5 1.5 1.5 4.75 4.75 4.75
MP3C MP3C MP3B MP3B MP3B MP3B MP3B MP3B MP3B MP2A MP2A MP2A MP2C MP2C MP2C MP3D	Z Mx X X X X X X X X X X X X X X X X X X	-75.985066 -153.946 -88.881 .044 -153.946 -88.881 .044 -41.641 -24.041014	4.75 4.75 1.5 1.5 1.5 4.75 4.75 4.75 2
MP3C MP3B MP3B MP3B MP3B MP3B MP3B MP3B MP2A MP2A MP2A MP2C MP2C MP2C MP3D	Mx X Z Mx X Z Mx X Z Mx Z Mx X Z Mx X X X X	066 -153.946 -88.881 .044 -153.946 -88.881 .044 -41.641 -24.041 014	4.75 1.5 1.5 1.5 4.75 4.75 4.75 2
MP3B MP3B MP3B MP3B MP3B MP3B MP3B MP2A MP2A MP2A MP2C MP2C MP2C MP3D	X Z Mx X Z Mx X Z Mx X Z Mx X X X X X X X X X X X X X X X X X X	-153.946 -88.881 .044 -153.946 -88.881 .044 -41.641 -24.041 014	4.75 1.5 1.5 1.5 4.75 4.75 4.75 2
MP3B MP3B MP3B MP3B MP3B MP3B MP2A MP2A MP2A MP2C MP2C MP2C MP3D	Z Mx X Z Mx X Z Mx X X X X X X X X X X X X X X X X X X	-88.881 .044 -153.946 -88.881 .044 -41.641 -24.041 014	1.5 1.5 4.75 4.75 4.75 2
MP3B MP3B MP3B MP3B MP3B MP2A MP2A MP2A MP2C MP2C MP2C MP3D	Mx X Z Mx X Z Mx X Z Mx X X X	.044 -153.946 -88.881 .044 -41.641 -24.041 014	1.5 1.5 4.75 4.75 4.75 2
MP3B MP3B MP3B MP2A MP2A MP2A MP2C MP2C MP2C MP3D	X Z Mx X Z Mx X	-153.946 -88.881 .044 -41.641 -24.041 014	1.5 4.75 4.75 4.75 2
MP3B MP3B MP2A MP2A MP2A MP2C MP2C MP2C MP2C MP3D	Z Mx X Z Mx X	-88.881 .044 -41.641 -24.041 014	4.75 4.75 4.75 2
MP3B MP2A MP2A MP2A MP2C MP2C MP2C MP2C MP3D	Mx X Z Mx X	-88.881 .044 -41.641 -24.041 014	4.75 4.75 2
MP2A MP2A MP2A MP2C MP2C MP2C MP2C MP3D	X Z Mx X	-41.641 -24.041 014	4.75
MP2A MP2A MP2C MP2C MP2C MP3D	Z Mx X	-24.041 014	2
MP2A MP2C MP2C MP2C MP3D	Mx X	-24.041 014	
MP2C MP2C MP2C MP3D	X	014	
MP2C MP2C MP3D			2
MP2C MP3D		-41.641	2 (1)
MP3D		-24.041	2
	Mx	.014	2
MP3D	X	-49.844	2
	Z	-28.778	2
MP3D	Mx	01	2
MP2D	X	-49.844	2
MP2D	Z	-28.778	2
MP2D	Mx	01	2
MP1D	X	-28.276	2
MP1D	Z	-16.325	2
MP1D	Mx	008	2
M515	X	-24.384	10
M515	Z	-14.078	10
M515	Mx	009	10
MATSING-1			2.38
			2.38
			2.38
			3.88
			3.88
			3.88
			2.38
			2.38
			2.38
			3.88
			3.88
			3.88
			1.5
			1.5
			1.5 4.75
	7		
			4.75
			4.75
	7		6.8
			6.8
			6.8
			4.75
			4.75
			4.75
			1
	MATSING-1 MATSING-1 MATSING-1 MATSING-1 MATSING-1 MATSING-1 MATSING-1 MP2B MP2B MP2B MP2B MP2B MP2B MP2B MP2B	MATSING-1 Z MATSING-1 Mx MATSING-1 X MATSING-1 Z MATSING-1 Mx MP2B X MP2B Z MP2B X MP2B X MP2B Z MP2B X MP2B	MATSING-1 Z -36.255 MATSING-1 Mx .03 MATSING-1 X -62.796 MATSING-1 Z -36.255 MATSING-1 Mx .03 MP2B X -62.796 MP2B X -57.602 MP2B X -57.602<

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 14 : Antenna Wo (330 Deg))

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
1	MP1B	X	-22.497	2
2	MP1B	Z	-38.966 013	2
3	MP1B	Mx	-22.497	3
4	MP2B	X	-22.497	3
5	MP2B	Z	-38.966	3
6	MP2B	Mx	013	2
7	MP3A	X	-28.778	2
8	MP3A	Z	-49.844	2
9	MP3A	Mx	01	2
10	MP3B	X	-22.497	
11	MP3B	Z	-38.966	2
12	MP3B	Mx	013	2
13	MP3C	X	-28.778	2
14	MP3C	Z	-49.844	2
15	MP3C	Mx	.01	2
16	OVP	X	-64.805	
17	OVP	Z	-112.246	11
18	OVP	Mx	0	1 111
19	MP4A	X	-33.745	2.13
20	MP4A	Z	-58.449	2.13
21	MP4A	Mx	.017	2.13
22	MP4A	X	-33.745	4.12
23	MP4A	Z	-58.449	4.12
24	MP4A	Mx	.017	4.12
25	MP4C	X	-33.745	2.13
	MP4C	Z	-58.449	2.13
26	MP4C	Mx	017	2.13
27	MP4C	X	-33.745	4.12
28	MP4C	Z	-58.449	4.12
29		Mx	017	4.12
30	MP4C	X	-109.55	1.5
31	MP1A	Z	-189.747	1.5
32	MP1A	Mx	.055	1.5
33	MP1A	X	-109.55	4.75
34	MP1A	Z	-189.747	4.75
35	MP1A		.055	4.75
36	MP1A	Mx	-109.55	1.5
37	MP1C	X	-189.747	1.5
38	MP1C		055	1.5
39	MP1C	Mx	-109.55	4.75
40	MP1C	X		4.75
41	MP1C	Z	-189.747 055	4.75
42	MP1C	Mx		1.5
43	MP2A	X	-109.55	1.5
44	MP2A	Z	-189.747	1.5
45	MP2A	Mx	.055	
46	MP2A	X	-109.55	4.75
47	MP2A	Z	-189.747	4.75
48	MP2A	Mx	.055	4.75
49	MP2C	X	-109.55	1.5
50	MP2C	Z	-189.747	1.5
51	MP2C	Mx	055	1.5
52	MP2C	X	-109.55	4.75
53	MP2C	Z	-189.747	4.75
54	MP2C	Mx	055	4.75
55	MP3A	X	-109.55	1.5
56	MP3A	Z	-189.747	1.5
	MP3A	Mx	.055	1.5
57	MP3A	X	-109.55	4.75
58 59	MP3A	Z	-189.747	4.75

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 14: Antenna Wo (330 Deg)) (Continued)

60	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
61	MP3A	Mx	.055	4.75
62	MP3C	X	-109.55	1.5
	MP3C	Z	-189.747	1.5
63	MP3C	Mx	055	1.5
64	MP3C	X	-109.55	4.75
65	MP3C	Z	-189.747	4.75
66	MP3C	Mx	055	4.75
67	MP3B	X	-44.865	1.5
68	MP3B	Z	-77.709	1.5
69	MP3B	Mx	.039	1.5
70	MP3B	X	-44.865	4.75
71	MP3B	Z	-77.709	4.75
72	MP3B	Mx	.039	4.75
73	MP2A	X	-29.292	2
74	MP2A	Z	-50.736	2
75	MP2A	Mx	01	2
76	MP2C	X	-29.292	2
77	MP2C	Z	-50.736	2
78	MP2C	Mx	.01	
79	MP3D	X	-22.497	2
80	MP3D	Z		2
81	MP3D		-38.966	2
82	MP2D	Mx	013	2
83		X	-22,497	2
	MP2D	Z	-38.966	2
34	MP2D	Mx	013	2
35	MP1D	X	-9.439	2
86	MP1D	Z	-16.349	2
37	MP1D	Mx	008	2
38	M515	X	-19.353	10
39	M515	Z	-33.521	10
90	M515	Mx	003	10
91	MATSING-1	X	-42.87	2.38
92	MATSING-1	Z	-74.254	2.38
93	MATSING-1	Mx	.062	2.38
94	MATSING-1	X	-42.87	3.88
95	MATSING-1	Z	-74.254	3.88
96	MATSING-1	Mx	.062	3.88
97	MP2B	X	-42.87	2.38
8	MP2B	Z		
99	MP2B	Mx	-74.254	2.38
00	MP2B	X	.062	2.38
01	MP2B		-42.87	3.88
02	MP2B	Z	-74.254	3.88
03	MP2B	Mx	.062	3.88
		X	-22.754	1.5
04	MP2B	Z	-39.412	1.5
05	MP2B	Mx	.01	1.5
06	MP2B	X	-22.754	4.75
07	MP2B	Z	-39.412	4.75
08	MP2B	Mx	.01	4.75
09	MP2B	X	-22.754	6.8
10	MP2B	Z	-39.412	6.8
11	MP2B	Mx	.01	6.8
12	MATSING-1	X	-22.754	4.75
13	MATSING-1	Z	-39.412	4.75
14	MATSING-1	Mx	013	4.75
15	M575	X	-64.805	
16	M575	Z		1
17	M575	Mx	-112.246 0	1

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

Me	ember Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1B	X	0	2
2	MP1B	Z	-11.395	2
3	MP1B	Mx	004	2
4	MP2B	X	0	3
5	MP2B	Z	-11.395	3
6	MP2B	Mx	004	3
7	MP3A	X	0	2
8	MP3A	Z	-17.368	2
9	MP3A	Mx	0	2
0	MP3B	X	0	2
1	МРЗВ	Z	-11.395	2
2	MP3B	Mx	004	2
3	MP3C	X	0	2
4	MP3C	Z	-17.368	2
15	MP3C	Mx	0	2
6	OVP	X	0	
7	OVP	Z	-34.005	1
8	OVP	Mx	0	1
9	MP4A	X	0	2.13
20	MP4A	Z	-20.073	2.13
21	MP4A	Mx	0	2.13
22	MP4A	X	0	4.12
	MP4A	Z	-20.073	4.12
23	MP4A	Mx	0	4.12
24	MP4C	X	0	2.13
25	MP4C	Z	-20.073	2.13
26	MP4C	Mx	0	2.13
27	MP4C	X	0	4.12
28	MP4C	Z	-20.073	4.12
29	MP4C	Mx	0	4.12
30		X	0	1.5
31	MP1A	Z	-49.024	1.5
32	MP1A	Mx	0	1.5
33	MP1A	X	0	4.75
34	MP1A	Z	-49.024	4.75
35	MP1A	Mx	0	4.75
36	MP1A	X	0	1.5
37	MP1C	Ž	-49.024	1.5
38	MP1C	Mx	0	1.5
39	MP1C	X	0	4.75
10	MP1C	Z	-49.024	4.75
41	MP1C		0	4.75
12	MP1C	Mx	0	1.5
13	MP2A	X	-49.024	1.5
14	MP2A			1.5
15	MP2A	Mx	0	4.75
16	MP2A	X	-49.024	4.75
47	MP2A	Z		4.75
18	MP2A	Mx	0	1.5
19	MP2C	X		1.5
50	MP2C	Z	-49.024	1.5
51	MP2C	Mx	0	4.75
52	MP2C	X	0	4.75
53	MP2C	Z	-49.024	
54	MP2C	Mx	0	4.75
55	MP3A	X	0	1.5
56	MP3A	Z	-49.024	1.5
57	MP3A	Mx	0	1.5
58	MP3A	X	0	4.75
59	MP3A	Z	-49.024	4.75

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 15 : Antenna Wi (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
60	MP3A	Mx	0	4.75
61	MP3C	X	0	1.5
62	MP3C	Z	-49.024	1.5
63	MP3C	Mx	0	1.5
64	MP3C	X	0	4.75
65	MP3C	Z	-49.024	4.75
66	MP3C	Mx	0	4.75
67	MP3B	X	0	1.5
68	MP3B	Z	-23.24	1.5
69	MP3B	Mx	.012	1.5
70	MP3B	X	0	4.75
71	MP3B	Z	-23.24	4.75
72	MP3B	Mx	.012	4.75
73	MP2A	X	0	2
74	MP2A	Z	-17.368	2
75	MP2A	Mx	0	2
76	MP2C	X	0	2
77	MP2C	Z	-17.368	2
78	MP2C	Mx	0	2
79	MP3D	X	0	2
80	MP3D	Z	-11.395	2
81	MP3D	Mx	004	2
82	MP2D	X	0	2
83	MP2D	Z	-11.395	2
84	MP2D	Mx	004	2
85	MP1D	X	0	2
86	MP1D	Z	-4.062	2
87	MP1D	Mx	002	2
88	M515	X	0	10
89	M515	Z	-9.162	10
90	M515	Mx	.002	10
91	MATSING-1	X	0	2.38
92	MATSING-1	Z	-19.005	2.38
93	MATSING-1	Mx	.016	2.38
94	MATSING-1	X	0	3.88
95	MATSING-1	Z	-19.005	3.88
96	MATSING-1	Mx	.016	3.88
97	MP2B	X	0	2.38
98	MP2B	Z	-19.005	2.38
99	MP2B	Mx	.016	2.38
100	MP2B	X	0	3.88
101	MP2B	Z	-19.005	3.88
102	MP2B	Mx	.016	3.88
103	MP2B	X	0	1.5
104	MP2B	Z	-9.067	1.5
105	MP2B	Mx	003	1.5
106	MP2B	X		4.75
107	MP2B	Z	-9.067	4.75
108	MP2B	Mx	003	4.75
109	MP2B	X	0	6.8
110	MP2B	Z	-9.067	6.8
111	MP2B	Mx	003	6.8
112	MATSING-1	X	0	4.75
113	MATSING-1	Z	-9.067	4.75
114	MATSING-1	Mx	003	4.75
115	M575	X	0	1
116	M575	Z	-34.005	
117	M575	Mx	0	1

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 16 : Antenna Wi (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1B	X	6.444	2
2	MP1B	Z	-11.162	2
3	MP1B	Mx	004	2
4	MP2B	X	6.444	3
5	MP2B	Z	-11.162	3
6	MP2B	Mx	004	3
7	MP3A	X	7.937	2
8	MP3A	Z	-13.748	2
9	MP3A	Mx	.003	2
10	MP3B	X	6.444	2
11	MP3B	Z	-11.162	2
12	MP3B	Mx	004	2
13	MP3C	X	7.937	2
14	MP3C	Z	-13.748	2
15	MP3C	Mx	003	2
	OVP	X	15.283	
16	OVP	Z	-26.472	1
17	OVP	Mx	0	1
18		X	8.64	2.13
19	MP4A MP4A	Z	-14.965	2.13
20		Mx	004	2.13
21	MP4A		8.64	4.12
22	MP4A	Z	-14.965	4.12
23	MP4A		004	4.12
24	MP4A	Mx	8.64	2.13
25	MP4C	X	-14.965	2.13
26	MP4C	Z		2.13
27	MP4C	Mx	.004	4.12
28	MP4C	X	8.64	4.12
29	MP4C	Z	-14.965	
30	MP4C	Mx	.004	4.12
31	MP1A	X	21.502	1.5
32	MP1A	Z	-37.243	1.5
33	MP1A	Mx	011	1.5
34	MP1A	X	21.502	4.75
35	MP1A	Z	-37.243	4.75
36	MP1A	Mx	011	4.75
37	MP1C	X	21.502	1.5
38	MP1C	Z	-37.243	1.5
39	MP1C	Mx	.011	1.5
40	MP1C	X	21.502	4.75
41	MP1C	Z	-37.243	4.75
42	MP1C	Mx	.011	4.75
43	MP2A	X	21.502	1.5
44	MP2A	Z	-37.243	1.5
45	MP2A	Mx	011	1.5
	MP2A	X	21.502	4.75
46	MP2A	Z	-37.243	4.75
47		Mx	011	4.75
48	MP2A	X	21.502	1.5
49	MP2C	Z	-37.243	1.5
50	MP2C		.011	1.5
51	MP2C	Mx	21.502	4.75
52	MP2C	X	-37.243	4.75
53	MP2C	Z		4.75
54	MP2C	Mx	.011	1.5
55	MP3A	X	21.502	1.5
56	MP3A	Z	-37.243	
57	MP3A	Mx	011	1.5
58	MP3A	X	21.502	4.75
59	MP3A	Z	-37.243	4.75

: Colliers Engineering & Design

: NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 16 : Antenna Wi (30 Deg)) (Continued)

A	Magnitude[lb,k-ft]011 21.502 -37.243 .011 21.502 -37.243 .011 14.439 -25.009 .013 14.439 -25.009 .013 8.051 -13.945 .003 8.051 -13.945003	Location[ft,%] 4.75 1.5 1.5 1.5 4.75 4.75 4.75 1.5 1.5 4.75 4.75 4.75 2 2 2 2
C Z C Mx C X C Z C Mx B X B Z B Mx B X B Z B Mx C X C Z C Mx C Z C Z C Z C Z C Z C Z C Z C Z C Z C Z	-37.243 .011 21.502 -37.243 .011 14.439 -25.009 .013 14.439 -25.009 .013 8.051 -13.945 .003 8.051 -13.945003	1.5 1.5 1.5 4.75 4.75 4.75 1.5 1.5 1.5 4.75 4.75 4.75 4.75 2 2
C	.011 21.502 -37.243 .011 14.439 -25.009 .013 14.439 -25.009 .013 8.051 -13.945 .003 8.051 -13.945 -1003	1.5 4.75 4.75 4.75 1.5 1.5 1.5 4.75 4.75 4.75 2 2
C	21.502 -37.243 .011 14.439 -25.009 .013 14.439 -25.009 .013 8.051 -13.945 .003 8.051 -13.945 -2003	1.5 4.75 4.75 4.75 1.5 1.5 1.5 4.75 4.75 4.75 2 2
C Z C Mx B X B Z B Mx B X B Z B Mx C Z C Z C Mx C Z	-37.243 .011 14.439 -25.009 .013 14.439 -25.009 .013 8.051 -13.945 .003 8.051 -13.945 -13.945003	4.75 4.75 4.75 1.5 1.5 1.5 4.75 4.75 4.75 2 2
C Mx B X B Z B Mx B X B X B X B X B X B X C X C X C X C X C X C X C X C X C X C	-37.243 .011 14.439 -25.009 .013 14.439 -25.009 .013 8.051 -13.945 .003 8.051 -13.945 -13.945003	4.75 4.75 1.5 1.5 1.5 4.75 4.75 4.75 2 2
B	.011 14.439 -25.009 .013 14.439 -25.009 .013 8.051 -13.945 .003 8.051 -13.945 003	4.75 1.5 1.5 1.5 4.75 4.75 4.75 2 2 2
B	14.439 -25.009 .013 14.439 -25.009 .013 8.051 -13.945 .003 8.051 -13.945003	1.5 1.5 1.5 4.75 4.75 4.75 2 2 2
B Z B Mx B X B X B Z B Mx A X A X A Z A Mx C X C Z C Mx D X	-25.009 .013 14.439 -25.009 .013 8.051 -13.945 .003 8.051 -13.945003	1.5 1.5 4.75 4.75 4.75 2 2 2
B	.013 14.439 -25.009 .013 8.051 -13.945 .003 8.051 -13.945 003	1.5 4.75 4.75 4.75 2 2 2
B X B Z B Mx A X A X A Z A Mx C X C Z C Mx D X	14.439 -25.009 .013 8.051 -13.945 .003 8.051 -13.945 003	4.75 4.75 4.75 2 2 2
B Z B Mx A X A Z A Z A Mx C X C Z C Mx D X	-25.009 .013 8.051 -13.945 .003 8.051 -13.945 003	4.75 4.75 2 2 2
B	.013 8.051 -13.945 .003 8.051 -13.945 003	4.75 2 2 2 2
A X A Z A Mx C X C Z C Mx D X D Z	8.051 -13.945 .003 8.051 -13.945 003	2 2 2
A Z A Mx C X C Z C Mx D X	-13.945 .003 8.051 -13.945 003	2
A	.003 8.051 -13.945 003	2
C X Z Z Z C Mx D X D Z	8.051 -13.945 003	
C Z C Mx D X D Z	-13.945 003	
C Mx D X D Z	003	2
D X		2 171
D Z	6.444	2
	-11.162	2
D Mx	004	2
D X	6.444	2
D Z	-11.162	2
D Mx	004	2
D X	2.753	2
D Z	-4.768	2
) Mx	002	2
5 X	3.224	10
5 Z	-5.584	10
5 Mx	.002	10
IG-1 X	8.52	2.38
IG-1 Z	-14.757	2.38
IG-1 Mx	.012	2.38
		3.88
		3.88
		3.88
		2.38
		2.38
		2.38
		3.88
		3.88
		0.00
		3.88 1.5
		1.5
		1.5
		4.75
		4.75
		4.75
		6.8
		6.8
		6.8
J		4.75
		4.75
G-1 Z		4.75
G-1 Z G-1 Mx	15.283	7
G-1 Z G-1 Mx	-26.472	
	AG-1	AG-1 X 8.52 AG-1 Z -14.757 AG-1 Mx .012 B X 8.52 B Z -14.757 B X 8.52 B X 8.52 B X 8.52 B X 8.52 B X 9.649 B X 5.571 B

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
1	MP1B	X	13.748	2 2
2	MP1B	Z	-7.937	2
3	MP1B	Mx	003 13.748	3
4	MP2B	X	-7.937	3
5	MP2B	Z	-7.937	3
6	MP2B	Mx	11.162	2
7	MP3A	X	-6.444	2
8	MP3A	Z	.004	2
9	MP3A	Mx	13.748	2
10	MP3B	X	-7.937	2
11	MP3B	Z	003	2
12	MP3B	Mx	11.162	2
13	MP3C	X	-6.444	2
14	MP3C		-0.444	2
15	MP3C	Mx	24.044	
16	OVP	X	-13.882	
17	OVP	Z	-13.002	
18	OVP	Mx	10.126	2.13
19	MP4A	X	-5.846	2.13
20	MP4A	Z		2.13
21	MP4A	Mx	005 10.126	4.12
22	MP4A	X	-5.846	4.12
23	MP4A	Z	-0.046	4.12
24	MP4A	Mx		2.13
25	MP4C	X	10.126	2.13
26	MP4C	Z	-5.846	2.13
27	MP4C	Mx	.005	4.12
28	MP4C	X	10.126	4.12
29	MP4C	Z	-5.846	4.12
30	MP4C	Mx	.005	1.5
31	MP1A	X	26.816	1.5
32	MP1A	Z	-15.482	1.5
33	MP1A	Mx	013	4.75
34	MP1A	X	26.816	4.75
35	MP1A	Z	-15.482	4.75
36	MP1A	Mx	013	1.5
37	MP1C	X	26.816	1.5
38	MP1C	Z	-15.482	1.5
39	MP1C	Mx	.013	4.75
40	MP1C	X	26.816	4.75
41	MP1C	Z	-15.482	4.75
42	MP1C	Mx	.013	1.5
43	MP2A	X	26.816	1.5
44	MP2A	Z	-15.482	1.5
45	MP2A	Mx	013	4.75
46	MP2A	X	26.816	4.75
47	MP2A	Z	-15.482	4.75
48	MP2A	Mx	013	1.5
49	MP2C	X	26.816	1.5
50	MP2C	Z	-15.482	1.5
51	MP2C	Mx	.013	4,75
52	MP2C	X	26.816	4.75 4.75
53	MP2C	Z	-15.482	
54	MP2C	Mx	.013	4.75
55	MP3A	X	26.816	1.5
56	MP3A	Z	-15.482	1.5
57	MP3A	Mx	013	1.5
58	MP3A	X	26.816	4.75
59	MP3A	Z	-15.482	4.75

Colliers Engineering & Design

23777329 Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 17 : Antenna Wi (60 Deg)) (Continued)

MP3A MP3C MP3C MP3C MP3C MP3C MP3C MP3C MP3C	Mx X Z Mx X X Z Mx	013 26.816 -15.482 .013 26.816 -15.482 .013 34.773 -20.076 .01 34.773	4.75 1.5 1.5 1.5 4.75 4.75 4.75 1.5 1.5
MP3C MP3C MP3C MP3C MP3C MP3C MP3B MP3B MP3B MP3B MP3B MP3B MP3B MP3B	Z Mx X X Z Mx	-15.482 .013 26.816 -15.482 .013 34.773 -20.076 .01	1.5 1.5 4.75 4.75 4.75 1.5 1.5
MP3C MP3C MP3C MP3C MP3C MP3B MP3B MP3B MP3B MP3B MP3B MP3B MP3B	Mx X Z Mx X Z Mx X Z Mx Z Mx X Z Mx X X Z	.013 26.816 -15.482 .013 34.773 -20.076 .01 34.773	1.5 4.75 4.75 4.75 1.5 1.5
MP3C MP3C MP3C MP3B MP3B MP3B MP3B MP3B MP3B MP3B MP3B	X Z Mx	26.816 -15.482 .013 34.773 -20.076 .01 34.773	4.75 4.75 4.75 1.5 1.5
MP3C MP3C MP3B MP3B MP3B MP3B MP3B MP3B MP3B MP2A MP2A	Z Mx X Z Mx X Z Mx	-15.482 .013 34.773 -20.076 .01 34.773	4.75 4.75 1.5 1.5 1.5
MP3C MP3B MP3B MP3B MP3B MP3B MP3B MP3B MP3B	Mx X Z Mx X Z Mx X Z Mx	.013 34.773 -20.076 .01 34.773	4.75 1.5 1.5 1.5
MP3B MP3B MP3B MP3B MP3B MP3B MP3B MP2A MP2A	X Z Mx X Z Mx	34.773 -20.076 .01 34.773	1.5 1.5 1.5
MP3B MP3B MP3B MP3B MP3B MP3B MP2A MP2A	Z Mx X Z Mx	-20.076 .01 34.773	1.5 1.5
MP3B MP3B MP3B MP3B MP2A MP2A	Mx X Z Mx	.01 34.773	1.5
MP3B MP3B MP3B MP2A MP2A	Z Mx	34.773	
MP3B MP3B MP2A MP2A	Z Mx		470
MP3B MP2A MP2A	Mx		4.75
MP2A MP2A		-20.076	4.75
MP2A		.01	4.75
	X	11.753	2
	Z	-6.786	2
MP2A	Mx	.004	2
MP2C	X	11.753	2 1
MP2C	Z	-6.786	2
			2
			2
			2
			2
			2
			2
			2
	<u> </u>		2
			2
			2
	X		10
			10
			10
	<u> </u>		2.38
			2.38
			2.38
			3.88
MATCING 4			3.88
			3.88
			2.38
			2.38
			2.38
			3.88
			3.88
			3.88
			1.5
			1.5
			1.5
			4.75
			4.75
			4.75
	X		6.8
			6.8
			6.8
	X		4.75
			4.75
			4.75
			1
			1
	MP2C MP3D MP3D MP3D MP3D MP3D MP2D MP2D MP2D MP2D MP1D MP1D MP1D MS15 M515 M515 M515 M515 MATSING-1 MATSING-1 MATSING-1 MATSING-1 MATSING-1 MATSING-1 MP2B MP2B MP2B MP2B MP2B MP2B MP2B MP2B	MP2C Mx MP3D X MP3D Z MP3D Mx MP2D X MP2D X MP2D Mx MP2D Mx MP2D Mx MP2D Mx MP2D Mx MP2D Mx Mx Mx MP1D X MP1D X MP1D X MP1D X MP1D Mx MS15 X MS15 X MS15 X MS15 X MX X MATSING-1 X MATSING-1 X MP2B X <td>MP2C Mx -,004 MP3D X 13,748 MP3D Z -7,937 MP3D Mx -,003 MP2D X 13,748 MP2D X 1,293 MP2D Mx -,003 MP2D X 7,289 MP2D Mx -,002 MP1D X 7,289 MP1D X 7,289 MP1D X 7,289 MP1D X 3,668 MP1D X 3,668 MS15 X 3,668 MS15 X 3,668 MS16</td>	MP2C Mx -,004 MP3D X 13,748 MP3D Z -7,937 MP3D Mx -,003 MP2D X 13,748 MP2D X 1,293 MP2D Mx -,003 MP2D X 7,289 MP2D Mx -,002 MP1D X 7,289 MP1D X 7,289 MP1D X 7,289 MP1D X 3,668 MP1D X 3,668 MS15 X 3,668 MS15 X 3,668 MS16

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 18 : Antenna Wi (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1B	X	17.368	2
2	MP1B	Z	0	2
3	MP1B	Mx		3
4	MP2B	X	17.368	3
5	MP2B	Z	0	3
6	MP2B	Mx	0	3
7	MP3A	X	11.395	2
8	MP3A	Z	0	2
9	MP3A	Mx	.004	2
10	MP3B	X	17.368	2
11	MP3B	Z	0	2
12	MP3B	Mx	0	2
13	MP3C	X	11.395	2
14	MP3C	Z	0	2
15	MP3C	Mx	004	2
16	OVP	X	28.399	
17	OVP	Z	0	1
18	OVP	Mx	0	1
19	MP4A	X	8.899	2.13
20	MP4A	Z	0	2.13
21	MP4A	Mx	004	2.13
22	MP4A	X	8.899	4.12
23	MP4A	Z	0	4.12
	MP4A	Mx	004	4.12
24	MP4C	X	8.899	2.13
25	MP4C	Z	0	2.13
26	MP4C	Mx	.004	2.13
27		X	8.899	4.12
28	MP4C	Z	0	4.12
29	MP4C	Mx	.004	4.12
30	MP4C	X	24.945	1.5
31	MP1A	Ž	0	1.5
32	MP1A	Mx	012	1.5
33	MP1A		24.945	4.75
34	MP1A	X	0	4.75
35	MP1A		012	4.75
36	MP1A	Mx	24.945	1.5
37	MP1C	X	0	1.5
38	MP1C	Z	.012	1.5
39	MP1C	Mx		4.75
40	MP1C	X	24.945	4.75
41	MP1C	Z	0	4.75
42	MP1C	Mx	.012	1.5
43	MP2A	X	24.945	1.5
44	MP2A	Z	0	1.5
45	MP2A	Mx	012	4.75
46	MP2A	X	24.945	4.75
47	MP2A	Z	0	4.75
48	MP2A	Mx	012	
49	MP2C	X	24.945	1.5
50	MP2C	Z	0	1.5
51	MP2C	Mx	.012	1.5
52	MP2C	X	24.945	4.75
53	MP2C	Z	0	4.75
54	MP2C	Mx	.012	4.75
55	MP3A	X	24.945	1.5
	MP3A	Z	0	1.5
56	MP3A	Mx	012	1.5
57	MP3A	X	24.945	4.75
58 59	MP3A	Z	0	4.75

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 18 : Antenna Wi (90 Deg)) (Continued)

60	Member Label MP3A	Direction	Magnitude[lb,k-ft]	Location[ft,%]
61	MP3C	Mx	012	4.75
62	MP3C	X	24.945	1.5
63	MP3C	Z	0	1.5
64	MP3C	Mx	.012	1.5
65	MP3C	X	24.945	4.75
66	MP3C	Z	0	4.75
67	MP3B	Mx	.012	4.75
68	MP3B	X	45.789	1.5
69	MP3B	Z	0	1.5
70	MP3B	Mx	0	1.5
71	MP3B	X	45.789	4.75
72	MP3B	Z	0	4.75
73	MP2A	Mx	0	4.75
74	MP2A	X	12.306	2
75	MP2A	Z	0	2
76	MP2C	Mx	.004	2
77		X	12.306	2
78	MP2C	Z	0	2
79	MP2C	Mx	004	2
80	MP3D MP3D	X	17.368	2
81		Z	0	2
82	MP3D	Mx	0	2
83	MP2D	X	17.368	2
84	MP2D	Z	0	2
	MP2D	Mx	0	2
85	MP1D	X	9.838	2
86	MP1D	Z	0	2
87	MP1D	Mx	0	2
88	M515	X	4.737	10
89	M515	Z	0	10
90	M515	Mx	.002	10
91	MATSING-1	X	11.143	2.38
	MATSING-1	Z	0	2.38
93	MATSING-1	Mx	0	2.38
94	MATSING-1	X	11.143	3.88
	MATSING-1	Z	0	3.88
96	MATSING-1	Mx	0	3.88
98	MP2B	X	11,143	2.38
99	MP2B	Z	0	2.38
	MP2B	Mx	0	2.38
100	MP2B	X	11.143	3.88
100	MP2B	Z	0	3.88
102	MP2B	Mx	0	3.88
103	MP2B	X	17.368	1.5
104	MP2B	Z	0	1.5
105	MP2B	Mx	017	1.5
106	MP2B	X	17.368	4.75
107	MP2B	Z	0	4.75
108	MP2B	Mx	017	4.75
109	MP2B	X	17.368	6.8
110	MP2B	Z	0	6.8
111	MP2B	Mx	017	6.8
112	MATSING-1	X	17.368	4.75
113	MATSING-1	Z	0	4.75
114	MATSING-1	Mx	0	4.75
115	M575	X	28.399	1
116	M575	Z	0	
117	M575	Mx	0	1

Colliers Engineering & Design

NL 23777329 Mount Analysis Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

Member Labo	el Direction	Magnitude[lb,k-ft]	Location[ft,%]
1 MP1B	X	13.748 7.937	2
2 MP1B	Z	.003	2
3 MP1B	Mx	13.748	3
4 MP2B	X Z	7.937	3
5 MP2B		.003	3
6 MP2B	Mx		2
7 MP3A	X	11.162	2
B MP3A	Z	6.444	2
9 MP3A	Mx	.004	2
0 MP3B	X	13.748	2
1 MP3B	Z	7.937	2
2 MP3B	Mx	.003	
3 MP3C	X	11.162	2
4 MP3C	Z	6.444	2
5 MP3C	Mx	004	2
6 OVP	X	27.572	
7 OVP	Z	15.919	11
8 OVP	Mx	0	1
9 MP4A	X	10.126	2.13
0 MP4A	Z	5.846	2.13
1 MP4A	Mx	005	2.13
100000000000000000000000000000000000000	X	10.126	4.12
	Z	5.846	4.12
The second secon	Mx	005	4.12
	X	10.126	2.13
	Z	5.846	2.13
	Mx	.005	2.13
7 MP4C	X	10.126	4.12
8 MP4C	Z	5.846	4.12
9 MP4C	Mx	.005	4.12
MP4C	X	26.816	1.5
MP1A	Z	15.482	1.5
MP1A	Mx	013	1.5
MP1A	X	26.816	4.75
MP1A	Z	15.482	4.75
MP1A		013	4.75
MP1A	Mx	26.816	1.5
7 MP1C	X	15.482	1.5
MP1C	Z		1.5
MP1C	Mx	.013	4.75
MP1C	X	26.816	4.75
1 MP1C	Z	15.482	4.75
MP1C	Mx	.013	1.5
MP2A	X	26.816	1.5
MP2A	Z	15.482	
MP2A	Mx	013	1.5
6 MP2A	X	26.816	4.75
7 MP2A	Z	15.482	4.75
8 MP2A	Mx	013	4.75
9 MP2C	X	26.816	1.5
50 MP2C	Z	15.482	1.5
51 MP2C	Mx	.013	1.5
	X	26.816	4.75
	Ž	15.482	4.75
100000000000000000000000000000000000000	Mx	.013	4.75
	X	26.816	1.5
MP3A	Z	15.482	1.5
MP3A	Mx	013	1.5
MP3A	IVIX X	26.816	4.75
MP3A	Z	15.482	4.75
MP3A		\5000234399-VZW MT LO	

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 19 : Antenna Wi (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
60	MP3A	Mx	013	4.75
61	MP3C	X	26.816	1.5
	MP3C	Z	15.482	1.5
63	MP3C	Mx	.013	1.5
65	MP3C	X	26.816	4.75
66	MP3C	Z	15.482	4.75
67	MP3C	Mx	.013	4.75
68	MP3B	X	34.773	1.5
	MP3B	Z	20.076	1.5
70 s	MP3B	Mx	01	1.5
71	MP3B	X	34.773	4.75
72	MP3B	Z	20.076	4.75
73	MP3B	Mx	01	4.75
	MP2A	X	11.753	2
74 75	MP2A	Z	6.786	2
76	MP2A	Mx	.004	2
77	MP2C	X	11.753	2
78	MP2C	Z	6.786	2
79	MP2C	Mx	004	2
80	MP3D	X	13.748	2
81	MP3D	Z	7.937	2
82	MP3D	Mx	.003	2
83	MP2D	X	13.748	2
84	MP2D MP2D	Z	7.937	2
85	MP1D	Mx	.003	2
86		X	7.269	2
87	MP1D MP1D	Z	4.197	2
88	M515	Mx	.002	2
89	M515	X	6.453	10
90	M515	Z	3.726	10
91	MATSING-1	Mx	.002	10
92	MATSING-1	X	11.352	2.38
93	MATSING-1		6.554	2.38
94	MATSING-1	Mx	005	2.38
95	MATSING-1	X	11.352	3.88
96	MATSING-1		6.554	3.88
97	MP2B	Mx X	005	3.88
98	MP2B	Z	11.352	2.38
99	MP2B	Mx	6.554	2.38
100	MP2B	X	005 11.352	2.38
101	MP2B	Z	6.554	3.88
102	MP2B	Mx		3.88
103	MP2B	X	005 13.244	3.88
104	MP2B	Z	7.646	1.5
105	MP2B	Mx	011	1.5
106	MP2B	X	13.244	1.5
107	MP2B	Z	7.646	4.75
108	MP2B	Mx		4.75
109	MP2B	X	011 13.244	4.75
110	MP2B	Z	7.646	6.8
111	MP2B	Mx	011	6.8
112	MATSING-1	X	13.244	6.8
113	MATSING-1	Z	7.646	4.75
114	MATSING-1	Mx	.003	4.75
115	M575	X	27.572	4.75
116	M575	Z	15.919	1
117	M575	Mx	0	1 1

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1B	X	6.444	2
2	MP1B	Z	11.162	2
3	MP1B	Mx	.004	2
4	MP2B	X	6.444	3
5	MP2B	Z	11.162	3
6	MP2B	Mx	.004	3
7	MP3A	X	7.937	2
8	MP3A	Z	13.748	2
9	MP3A	Mx	.003	2
10	MP3B	X	6.444	2
11	MP3B	Z	11.162	2
12	MP3B	Mx	.004	2
13	MP3C	X	7.937	2
14	MP3C	Z	13.748	2
15	MP3C	Mx	003	2
16	OVP	X	17.32	
17	OVP	Z	29.999	1
18	OVP	Mx	0	1
19	MP4A	X	8.64	2.13
20	MP4A	Z	14.965	2.13
21	MP4A	Mx	004	2.13
22	MP4A	X	8.64	4.12
23	MP4A	Z	14.965	4.12
24	MP4A	Mx	004	4.12
25	MP4C	X	8.64	2.13
26	MP4C	Z	14.965	2.13
27	MP4C	Mx	.004	2.13
28	MP4C	X	8.64	4.12
29	MP4C	Z	14.965	4.12
30	MP4C	Mx	.004	4.12
31	MP1A	X	21.502	1.5
32	MP1A	Z	37.243	1.5
33	MP1A	Mx	011	1.5
34	MP1A	X	21.502	4.75
35	MP1A	Z	37.243	4.75
36	MP1A	Mx	011	4.75
37	MP1C	X	21.502	1.5
38	MP1C	Z	37.243	1.5
39	MP1C	Mx	.011	1.5
40	MP1C	X	21.502	4.75
41	MP1C	Z	37.243	4.75
42	MP1C	Mx	.011	4.75
43	MP2A	X	21.502	1.5
44	MP2A	Z	37.243	1.5
45	MP2A	Mx	011	1.5
46	MP2A	X	21.502	4.75
47	MP2A	Z	37.243	4.75
48	MP2A	Mx	011	4.75
49	MP2C	X	21.502	1.5
50	MP2C	Z	37.243	1.5
51	MP2C	Mx	.011	1.5
52	MP2C	X	21.502	4.75
53	MP2C	Z	37.243	4.75
54	MP2C	Mx	.011	4.75
	MP3A	X	21.502	1.5
55	MP3A	Z	37.243	1.5
56	MP3A	Mx	011	1.5
57	MP3A	X	21.502	4.75
58 59	MP3A	Z	37.243	4.75

: Colliers Engineering & Design

: NL : 23777329 : Mount Analysis Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
60	MP3A	Mx	011	4.75
61	MP3C	X	21.502	1.5
62	MP3C	Z	37.243	1.5
63	MP3C	Mx	.011	1.5
64	MP3C	X	21.502	4.75
65	MP3C	Z	37.243	4.75
66	MP3C	Mx	.011	4.75
67	MP3B	X	14.439	1.5
68	MP3B	Z	25.009	1.5
69	MP3B	Mx	013	1.5
70	MP3B	X	14.439	4.75
71	MP3B	Z	25.009	4.75
72	MP3B	Mx	013	4.75
73	MP2A	X	8.051	2
74	MP2A	Z	13.945	2
75	MP2A	Mx	.003	
76	MP2C	X		2
7	MP2C	Z	8.051	2
8	MP2C	Mx	13.945	2
9	MP3D		003	2
80	MP3D	X	6.444	2
11			11.162	2
32	MP3D	Mx	.004	2
	MP2D	X	6.444	2
3	MP2D	Z	11.162	2
4	MP2D	Mx	.004	2
5	MP1D	X	2.753	2
6	MP1D	Z	4.768	2
7	MP1D	Mx	.002	2
8	M515	X	4.832	10
9	M515	Z	8.369	10
0	M515	Mx	.000839	10
1	MATSING-1	X	8.52	2.38
2	MATSING-1	Z	14.757	2.38
3	MATSING-1	Mx	012	2.38
4	MATSING-1	X	8.52	3.88
5	MATSING-1	Z	14.757	3.88
6	MATSING-1	Mx	012	3.88
7	MP2B	X	8.52	2.38
8	MP2B	Z	14.757	2.38
9	MP2B	Mx	012	2.38
00	MP2B	X	8.52	3.88
)1	MP2B	Z	14.757	3.88
)2	MP2B	Mx	012	3.88
03	MP2B	X	5.571	
)4	MP2B	Z		1.5
)5	MP2B		9.649	1.5
06	MP2B	Mx	002	1.5
7	MP2B	X	5.571	4.75
18	MP2B	Z	9.649	4.75
9		Mx	002	4.75
	MP2B	X	5.571	6.8
0	MP2B	Z	9.649	6.8
1	MP2B	Mx	002	6.8
2	MATSING-1	X	5.571	4.75
3	MATSING-1	Z	9.649	4.75
4	MATSING-1	Mx	.003	4.75
5	M575	X	17.32	1
6	M575	Z	29.999	
7	M575	Mx	0	1

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft.%]
1	MP1B	X	0 11.395	2 2
2	MP1B	Z		2
3	MP1B	Mx	.004	3
4	MP2B	X	0	3
5	MP2B	Z	11.395	3
6	MP2B	Mx	.004	2
7	MP3A	X	0	2
8	MP3A	Z	17.368	2
9	MP3A	Mx	0	2
10	MP3B	X	0	
11	MP3B	Z	11.395	2
12	MP3B	Mx	.004	2 2
13	MP3C	X	0	
14	MP3C	Z	17.368	2
15	MP3C	Mx	0	2
16	OVP	X	0	41-VA
17	OVP	Z	34.005	1
18	OVP	Mx	0	1
19	MP4A	X	0	2.13
20	MP4A	Z	20.073	2.13
21	MP4A	Mx	0	2.13
22	MP4A	X	0	4.12
23	MP4A	Z	20.073	4.12
24	MP4A	Mx	0	4.12
25	MP4C	X	0	2.13
26	MP4C	Z	20.073	2.13
27	MP4C	Mx	0	2.13
28	MP4C	X	0	4.12
29	MP4C	Z	20.073	4.12
30	MP4C	Mx	0	4.12
31	MP1A	X	0	1.5
32	MP1A	Z	49.024	1.5
33	MP1A	Mx	0	1.5
	MP1A	X	0	4.75
34	MP1A	Z	49.024	4.75
35	MP1A	Mx	0	4.75
36	MP1C	X	0	1.5
37	MP1C	Z	49.024	1.5
38		Mx	0	1.5
39	MP1C	X	0	4.75
40	MP1C	Z	49.024	4.75
41	MP1C	Mx	0	4.75
42	MP1C	X	0	1.5
43	MP2A	Z	49.024	1.5
44	MP2A		0	1.5
45	MP2A	Mx	0	4.75
46	MP2A	X Z	49.024	4.75
47	MP2A		0	4.75
48	MP2A	Mx	0	1.5
49	MP2C	X	49.024	1.5
50	MP2C	Z		1.5
51	MP2C	Mx	0	4.75
52	MP2C	X	0	4.75
53	MP2C	Z	49.024	4.75
54	MP2C	Mx	0	
55	MP3A	X	0	1.5
56	MP3A	Z	49.024	1.5
57	MP3A	Mx	0	1.5
58	MP3A	X	0	4.75
59	MP3A	Z	49.024	4.75

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 21 : Antenna Wi (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
60	MP3A	Mx	0	4.75
61	MP3C	X	0	1.5
62	MP3C	Z	49.024	1.5
63	MP3C	Mx	0	1.5
64	MP3C	X	0	4.75
65	MP3C	Z	49.024	4.75
66	MP3C	Mx	0	4.75
67	MP3B	X	0	1.5
68	MP3B	Z	23.24	1.5
69	MP3B	Mx	012	1.5
70	MP3B	X	0	4.75
71	MP3B	Z	23.24	4.75
72	MP3B	Mx	012	4.75
73	MP2A	X	0	2
74	MP2A	Z	17.368	2
75	MP2A	Mx	0	2
76	MP2C	X	0	2
77	MP2C	Z	17.368	2
78	MP2C	Mx	0	2
79	MP3D	X	0	2
80	MP3D	Z	11.395	2
81	MP3D	Mx	.004	2
82	MP2D	X	0	2
83	MP2D	Z	11.395	2
84	MP2D	Mx	.004	2
85	MP1D	X	0	2
86	MP1D	Z	4.062	2 int
87	MP1D	Mx	.002	2
88	M515	X	0	10
89	M515	Z	9.162	10
90	M515	Mx	002	10
91	MATSING-1	X	0	2.38
92	MATSING-1	Z	19.005	2.38
93	MATSING-1	Mx	016	2.38
94	MATSING-1	X	0	3.88
95	MATSING-1	Z	19.005	3.88
96	MATSING-1	Mx	016	3.88
97	MP2B	X	0	2.38
98	MP2B	Z	19.005	2.38
99	MP2B	Mx	016	2.38
100	MP2B	X	0	3.88
101	MP2B	Z	19.005	3.88
102	MP2B	Mx	016	3.88
103	MP2B	X	0	1.5
104	MP2B	Z	9.067	1.5
105	MP2B	Mx	.003	1.5
106	MP2B	X	0	4.75
107	MP2B	Z	9.067	4.75
108	MP2B	Mx	.003	4.75
109	MP2B	X	0	6.8
110	MP2B	Z	9.067	6.8
111	MP2B	Mx	.003	6.8
112	MATSING-1	X	0	4.75
113	MATSING-1	Z	9.067	4.75
114	MATSING-1	Mx	.003	4.75
115	M575	X	0	4.75
116	M575	Z	34.005	
117	M575	Mx	0	1

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1B	X	-6.444 11.162	2 2
2	MP1B	Z	.004	2
3	MP1B	Mx	-6.444	3
4	MP2B	X	11.162	3
5	MP2B	Z		3
6	MP2B	Mx	.004	2
7	MP3A	X	-7.937	2
8	MP3A	Z	13.748	2
9	MP3A	Mx	003	2
10	MP3B	X	-6.444	2
11	MP3B	Z	11.162	2
12	MP3B	Mx	.004	2
13	MP3C	X	-7.937	
14	MP3C	Z	13.748	2
15	MP3C	Mx	.003	2
16	OVP	X	-15.283	
17	OVP	Z	26.472	1
18	OVP	Mx	0	1
19	MP4A	X	-8.64	2.13
20	MP4A	Z	14.965	2.13
21	MP4A	Mx	.004	2.13
22	MP4A	X	-8.64	4.12
23	MP4A	Z	14.965	4.12
24	MP4A	Mx	.004	4.12
25	MP4C	X	-8.64	2.13
26	MP4C	Z	14.965	2.13
27	MP4C	Mx	004	2.13
28	MP4C	X	-8.64	4.12
29	MP4C	Z	14.965	4.12
30	MP4C	Mx	004	4.12
31	MP1A	X	-21.502	1.5
32	MP1A	Z	37.243	1.5
33	MP1A	Mx	.011	1.5
34	MP1A	X	-21.502	4.75
35	MP1A	Z	37.243	4.75
36	MP1A	Mx	.011	4.75
	MP1C	X	-21.502	1.5
37	MP1C	Z	37.243	1.5
38	MP1C	Mx	011	1.5
39	MP1C	X	-21.502	4.75
40	MP1C	Z	37.243	4.75
41		Mx	011	4.75
42	MP1C	X	-21.502	1.5
43	MP2A	Z	37.243	1.5
44	MP2A	Mx	.011	1.5
45	MP2A	X	-21.502	4.75
46	MP2A	Z	37.243	4.75
47	MP2A	Mx	.011	4.75
48	MP2A	X	-21.502	1.5
49	MP2C	Z	37.243	1.5
50	MP2C		011	1.5
51	MP2C	Mx	-21.502	4.75
52	MP2C	X Z	37.243	4.75
53	MP2C			4.75
54	MP2C	Mx	011	1.5
55	MP3A	X	-21.502	1.5
56	MP3A	Z	37.243	1.5
57	MP3A	Mx	.011	
58	MP3A	X	-21.502	4.75
59	MP3A	Z	37.243	4.75

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
60	MP3A	Mx	.011	4.75
61	MP3C	X	-21.502	1.5
62	MP3C	Z	37.243	1.5
63	MP3C	Mx	011	1.5
64	MP3C	X	-21.502	4.75
65	MP3C	Z	37.243	4.75
66	MP3C	Mx	011	4.75
67	MP3B	X	-14.439	1.5
68	MP3B	Z	25.009	1.5
69	MP3B	Mx	013	1.5
70	MP3B	X	-14.439	4.75
71	MP3B	Z	25.009	4.75
72	MP3B	Mx	013	4.75
73	MP2A	X	-8.051	2
74	MP2A	Z	13.945	2
75	MP2A	Mx	003	2
76	MP2C	X	-8.051	2
77	MP2C	Z	13.945	2
78	MP2C	Mx	.003	2
79	MP3D	X	-6.444	2
80	MP3D	Z	11.162	2
81	MP3D	Mx	.004	2
82	MP2D	X	-6.444	2
83	MP2D	Z	11.162	2
84	MP2D	Mx	.004	2
85	MP1D	X	-2.753	2
86	MP1D	Z	4.768	2
87	MP1D	Mx	.002	2
88	M515	X	-3.224	10
89	M515	Z	5.584	10
90	M515	Mx	002	10
91	MATSING-1	X	-8.52	2.38
92	MATSING-1	Z	14.757	2.38
93	MATSING-1	Mx	012	2.38
94	MATSING-1	X	-8.52	3.88
95	MATSING-1	Z	14.757	3.88
96	MATSING-1	Mx	012	3.88
97	MP2B	X	-8.52	2.38
98	MP2B	Z	14.757	2.38
99	MP2B	Mx	012	2.38
100	MP2B	X	-8.52	3.88
101	MP2B	Z	14.757	3.88
02	MP2B	Mx	012	3.88
103	MP2B	X	-5.571	1.5
104	MP2B	Z	9.649	1.5
105	MP2B	Mx	.009	1.5
106	MP2B	X	-5.571	4.75
07	MP2B	Z	9.649	4.75
08	MP2B	Mx	.009	4.75
09	MP2B	X	-5.571	6.8
10	MP2B	Z	9.649	6.8
11	MP2B	Mx	.009	6.8
12	MATSING-1	X	-5.571	4.75
13	MATSING-1	Z	9.649	4.75
14	MATSING-1	Mx	.003	4.75
15	M575	X	-15.283	1
16 17	M575	Z	26.472	

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
1	MP1B	X	-13.748	2
2	MP1B	Z	7.937	2
3	MP1B	Mx	.003	2
4	MP2B	X	-13.748	3
5	MP2B	Z	7.937	3
6	MP2B	Mx	.003	3
7	MP3A	X	-11.162	2
8	MP3A	Z	6.444	2
9	MP3A	Mx	004	2
10	MP3B	X	-13.748	2
11	MP3B	Z	7.937	2
12	MP3B	Mx	.003	2
13	MP3C	X	-11.162	2
14	MP3C	Z	6.444	2
15	MP3C	Mx	.004	2
16	OVP	X	-24.044	1
17	OVP	Z	13.882	11
18	OVP	Mx	0	1
19	MP4A	X	-10.126	2.13
20	MP4A	Z	5.846	2.13
21	MP4A	Mx	.005	2.13
22	MP4A	X	-10.126	4.12
23	MP4A	Z	5.846	4.12
24	MP4A	Mx	.005	4.12
25	MP4C	X	-10.126	2.13
26	MP4C	Z	5.846	2.13
27	MP4C	Mx	005	2.13
28	MP4C	X	-10.126	4.12
29	MP4C	Z	5.846	4.12
30	MP4C	Mx	005	4.12
31	MP1A	X	-26.816	1.5
32	MP1A	Z	15.482	1.5
33	MP1A	Mx	.013	1.5
34	MP1A	X	-26.816	4.75
35	MP1A	Z	15.482	4.75
36	MP1A	Mx	.013	4.75
37	MP1C	X	-26.816	1.5
38	MP1C	Z	15.482	1.5
39	MP1C	Mx	013	1.5
40	MP1C	X	-26.816	4.75
41	MP1C	Z	15.482	4.75
42	MP1C	Mx	013	4.75
43	MP2A	X	-26.816	1.5
44	MP2A	Z	15.482	1.5
45	MP2A	Mx	.013	1.5
46	MP2A	X	-26.816	4.75
47	MP2A	Z	15.482	4.75
48	MP2A	Mx	.013	4.75
49	MP2C	X	-26.816	1.5 1.5
50	MP2C	Z	15.482	1.5
51	MP2C	Mx	013	
52	MP2C	X	-26.816	4.75 4.75
53	MP2C	Z	15.482	
54	MP2C	Mx	013	4.75
55	MP3A	X	-26.816	1.5
56	MP3A	Z	15.482	1.5
57	MP3A	Mx	.013	1.5
58	MP3A	X	-26.816	4.75
59	MP3A	Z	15.482	4.75

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 23 : Antenna Wi (240 Deg)) (Continued)

rr	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
60	MP3A	Mx	.013	4.75
61	MP3C	X	-26.816	1.5
62	MP3C	Z	15.482	1.5
63	MP3C	Mx	013	1.5
64	MP3C	X	-26.816	4.75
65	MP3C	Z	15.482	4.75
66	MP3C	Mx	013	4.75
67	MP3B	X	-34.773	1.5
68	MP3B	Z	20.076	1.5
69	MP3B	Mx	01	1.5
70	MP3B	X	-34.773	4.75
71	MP3B	Z	20.076	4.75
72	MP3B	Mx	01	4.75
73	MP2A	X	-11.753	2
74	MP2A	Z	6.786	2
75	MP2A	Mx	004	2
76	MP2C	X	-11.753	2
77	MP2C	Z	6.786	2
78	MP2C	Mx	.004	2
79	MP3D	X	-13.748	2
80	MP3D	Z	7.937	2
81	MP3D	Mx	.003	2
82	MP2D	X	-13.748	2
83	MP2D	Z	7.937	2
84	MP2D	Mx	.003	2
85	MP1D	X	-7.269	2
86	MP1D	Z	4.197	2
87	MP1D	Mx	.002	2
88	M515	X	-3.668	10
89	M515	Z	2.118	10
90	M515	Mx	002	10
91	MATSING-1	X	-11.352	2.38
92	MATSING-1	Z	6.554	2.38
93	MATSING-1	Mx	005	2.38
94	MATSING-1	X	-11.352	3.88
95	MATSING-1	Z	6.554	3.88
96	MATSING-1	Mx	005	3.88
97	MP2B	X	-11.352	2.38
98	MP2B	Z	6.554	2.38
99	MP2B	Mx	005	2.38
100	MP2B	X	-11.352	3.88
101	MP2B	Z	6.554	3.88
102	MP2B	Mx	005	3.88
103	MP2B	X	-13.244	1.5
104	MP2B	Z	7.646	1.5
105	MP2B	Mx	.016	1.5
106	MP2B	X	-13.244	4.75
107	MP2B	Z	7.646	4.75
108	MP2B	Mx	.016	4.75
109	MP2B	X	-13.244	6.8
110	MP2B	Z	7.646	6.8
111	MP2B	Mx	.016	6.8
112	MATSING-1	X	-13.244	4.75
113	MATSING-1	Z	7.646	4.75
114	MATSING-1	Mx	.003	4.75
115	M575	X	-24.044	1
116	M575	Z	13.882	OF STATE OF THE PARTY.
117	M 57 5	Mx	0	1

Colliers Engineering & Design

NL 23777329 Mount Analysis Feb 8, 2024 3:42 PM Checked By: PMA

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1B	X	-17.368	2
2	MP1B	Z	0	2
3	MP1B	Mx		3
4	MP2B	X	-17.368	3
5	MP2B	Z	0	3
6	MP2B	Mx	0	2
7	MP3A	X	-11.395	2
8	MP3A	Z	0	2
9	MP3A	Mx	004	2
10	MP3B	X	-17.368	2
11	MP3B	Z	0	2
12	MP3B	Mx	0	2
13	MP3C	X	-11.395	2
14	MP3C	Z	0	2
15	MP3C	Mx	.004	1
16	OVP	X	-28.399	
17	OVP	Z	0	
18	OVP	Mx	0	2.13
19	MP4A	X	-8.899	2.13
20	MP4A	Z	0	2.13
21	MP4A	Mx	.004	4.12
22	MP4A	X	-8.899 0	4.12
23	MP4A	Z		4.12
24	MP4A	Mx	.004	2.13
25	MP4C	X	-8.899	2.13
26	MP4C	Z	0	2.13
27	MP4C	Mx	004	4.12
28	MP4C	X	-8.899	4.12
29	MP4C	Z	0	4.12
30	MP4C	Mx	004	1.5
31	MP1A	X	-24.945	1.5
32	MP1A	Z	.012	1.5
33	MP1A	Mx		4.75
34	MP1A	X	-24.945	4.75
35	MP1A	Z	0	4.75
36	MP1A	Mx	.012	1.5
37	MP1C	X	-24.945	1.5
38	MP1C	Z	0	1.5
39	MP1C	Mx	012	4.75
40	MP1C	X	-24.945	4.75
41	MP1C	Z	0	
42	MP1C	Mx	012	4.75 1.5
43	MP2A	X	-24.945	1.5
44	MP2A	Z	0	1.5
45	MP2A	Mx	.012	4.75
46	MP2A	X	-24.945	4.75
47	MP2A	Z	0	4.75
48	MP2A	Mx	.012	1.5
49	MP2C	X	-24.945	1.5
50	MP2C	Z	0	1.5
51	MP2C	Mx	012	4.75
52	MP2C	X	-24.945	4.75
53	MP2C	Z	0	4.75
54	MP2C	Mx	012	
55	MP3A	X	-24.945	1.5 1.5
56	MP3A	Z	0	1.5
57	MP3A	Mx	.012	4.75
58	MP3A	X	-24.945	4.75
59	MP3A	Z	0	4.75

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 24 : Antenna Wi (270 Deg)) (Continued)

60	Member Label MP3A	Direction	Magnitude[lb,k-ft]	Location[ft,%]
61	MP3C	Mx	.012	4.75
62	MP3C	X	-24.945	1.5
63	MP3C	Z	0	1.5
64	MP3C	Mx	012	1.5
65	MP3C	X	-24.945	4.75
66	MP3C	Z	0	4.75
67	MP3B	Mx	012	4.75
68	MP3B	X	-45.789	1.5
69	MP3B	Z	0	1.5
70	MP3B	Mx	0	1.5
71	MP3B	X	-45.789	4.75
72	MP3B	Z	0	4.75
73		Mx	0	4.75
74	MP2A MP2A	X	-12.306	2
75		Z	0	2
	MP2A	Mx	004	2
76 77	MP2C	X	-12.306	2
	MP2C	Z	0	2
78	MP2C	Mx	.004	2
79	MP3D	X	-17.368	2
80	MP3D	Z	0	2
81	MP3D	Mx	0	2
82	MP2D	X	-17.368	2
83	MP2D	Z	0	2
84	MP2D	Mx	0	2
85	MP1D	X	-9.838	2
86	MP1D	Z	0	2
87	MP1D	Mx	0	2
88	M515	X	-4.737	10
89	M515	Z	0	10
90	M515	Mx	002	10
91	MATSING-1	X	-11.143	2.38
92	MATSING-1	Z	0	2.38
93	MATSING-1	Mx	0	2.38
94	MATSING-1	X	-11.143	3.88
95	MATSING-1	Z	0	3.88
96	MATSING-1	Mx	0	3.88
97	MP2B	X	-11.143	2.38
98	MP2B	Z	0	2.38
99	MP2B	Mx	0	2.38
00	MP2B	X	-11.143	3.88
01	MP2B	Z	0	3.88
02	MP2B	Mx	0	3.88
03	MP2B	X	-17.368	1.5
04	MP2B	Z	0	1.5
05	MP2B	Mx	.017	1.5
06	MP2B	X	-17.368	4.75
07	MP2B	Z	0	4.75
08	MP2B	Mx	.017	
09	MP2B	X	-17.368	4.75
10	MP2B	Z	0	6.8
11	MP2B	Mx	.017	6.8
12	MATSING-1	X		6.8
13	MATSING-1	Z	-17.368	4.75
14	MATSING-1	Mx	0	4.75
15	M575	X	0	4.75
16	M575	Z	-28.399	
17	M575		0	1 1
-		Mx	0	1

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
1	MP1B	X	-13.748 -7.937	2
2	MP1B	Z	003	2
3	MP1B	Mx	-13.748	3
4	MP2B	X	-7.937	3
5	MP2B	Z	003	3
6	MP2B	Mx	-11.162	2
7	MP3A	X	-6.444	2
8	MP3A	Z	004	2
9	MP3A	Mx	-13.748	2
10	MP3B	X		2
11	MP3B	Z	-7.937 003	2
12	MP3B	Mx	-11.162	2
13	MP3C	X		2
14	MP3C	Z	-6.444 .004	2
15	MP3C	Mx	-27.572	1
6	OVP	X		1
17	OVP	Z	-15.919	
18	OVP	Mx	-10.126	2.13
19	MP4A	X		2.13
20	MP4A	Z	-5.846	2.13
21	MP4A	Mx	.005	4.12
22	MP4A	X	-10.126 -5.846	4.12
23	MP4A	Z		4.12
24	MP4A	Mx	.005	2.13
25	MP4C	X	-10.126	2.13
26	MP4C	Z	-5.846	2.13
27	MP4C	Mx	005	4.12
28	MP4C	X	-10.126	4.12
29	MP4C	Z	-5.846	4.12
30	MP4C	Mx	005	1.5
31	MP1A	X	-26.816	1.5
32	MP1A	Z	-15.482	1.5
33	MP1A	Mx	.013	4.75
34	MP1A	X	-26.816	4.75
35	MP1A	Z	-15.482	4.75
36	MP1A	Mx	.013	
37	MP1C	X	-26.816	1.5
38	MP1C	Z	-15.482	1.5
39	MP1C	Mx	013	1.5
40	MP1C	X	-26.816	4.75
41	MP1C	Z	-15.482	4.75
42	MP1C	Mx	013	4.75
43	MP2A	X	-26.816	1.5
44	MP2A	Z	-15.482	1.5
45	MP2A	Mx	.013	1.5
46	MP2A	X	-26.816	4.75
47	MP2A	Z	-15.482	4.75
48	MP2A	Mx	.013	4.75
49	MP2C	X	-26.816	1.5
50	MP2C	Z	-15.482	1.5
51	MP2C	Mx	013	1.5
52	MP2C	X	-26.816	4.75
53	MP2C	Z	-15.482	4.75
	MP2C	Mx	013	4.75
54	MP3A	X	-26.816	1.5
55	MP3A	Z	-15.482	1.5
56	MP3A	Mx	.013	1.5
57	MP3A	X	-26.816	4.75
58	MP3A	Z	-15.482	4.75
59	IVIT OF		\5000234399-VZW_MT_LO_	H 120.r3d] Page 7

Colliers Engineering & DesignNL23777329Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 25 : Antenna Wi (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
60	MP3A	Mx	.013	4.75
61	MP3C	X	-26.816	1.5
62	MP3C	Z	-15.482	1.5
63	MP3C	Mx	013	1.5
64	MP3C	X	-26.816	4.75
65	MP3C	Z	-15.482	4.75
66	MP3C	Mx	013	4.75
67	MP3B	X	-34.773	1.5
68	MP3B	Z	-20.076	1.5
69	MP3B	Mx	.01	1.5
70	MP3B	X	-34.773	4.75
71	MP3B	Z	-20.076	4.75
72	MP3B	Mx	.01	4.75
73	MP2A	X	-11.753	2
74	MP2A	Z	-6.786	2
75	MP2A	Mx	004	2
76	MP2C	X	-11.753	2
77	MP2C	Z	-6.786	2
78 79	MP2C	Mx	.004	2
80	MP3D	X	-13.748	2
81	MP3D	Z	-7.937	2
82	MP3D	Mx	003	2
83	MP2D	X	-13.748	2
	MP2D	Z	-7.937	2
84	MP2D	Mx	003	2
85	MP1D	X	-7.269	2
86	MP1D	Z	-4.197	2
88	MP1D	Mx	002	2
89	M515	X	-6.453	10
90	M515	Z	-3.726	10
91	M515	Mx	002	10
92	MATSING-1	X	-11.352	2.38
93	MATSING-1	Z	-6.554	2.38
94	MATSING-1	Mx	.005	2.38
95	MATSING-1	X	-11.352	3.88
96	MATSING-1 MATSING-1	Z	-6.554	3.88
97	MP2B	Mx	.005	3.88
98	MP2B	X	-11.352	2.38
99	MP2B	Z	-6.554	2.38
100	MP2B	Mx	.005	2.38
101	MP2B	X	-11.352	3.88
102	MP2B	Z	-6.554	3.88
103	MP2B	Mx	.005	3.88
104	MP2B	X	-13.244	1.5
105	MP2B	Z	-7.646	1.5
106		Mx	.011	1.5
107	MP2B	X	-13.244	4.75
108	MP2B	Z	-7.646	4.75
109	MP2B MP2B	Mx	.011	4.75
110	MP2B	X	-13.244	6.8
111	MP2B	Z	-7.646	6.8
112	MP2B	Mx	.011	6.8
113	MATSING-1	X	-13.244	4.75
	MATSING-1	Z	-7.646	4.75
114 115	MATSING-1	Mx	003	4.75
	M575	X	-27.572	1
116 117	M575	Z	-15.919	
117	M575	Mx	0	1

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

	oint Loads (BLC 26 : Member Label	Direction	Magnitude[ib,k-ft] -6,444	Location[ft,%]
1	MP1B	X	-11.162	2
2	MP1B	Z	004	2
3	MP1B	Mx	-6.444	3
1	MP2B	X	-11.162	3
5	MP2B	Mx	004	3
3	MP2B	X	-7.937	2
7	MP3A	Z	-13.748	2
В	MP3A	Mx	-,003	2
9	MP3A	X	-6.444	2
0	MP3B MP3B	Z	-11.162	2
11	MP3B	Mx	004	2
2	MP3C	X	-7.937	2
3	MP3C	Z	-13.748	2
15	MP3C	Mx	.003	2
	OVP	X	-17.32	1
7	OVP	Z	-29.999	1
8	OVP	Mx	0	11
9	MP4A	X	-8.64	2.13
20	MP4A	Z	-14.965	2.13
21	MP4A	Mx	.004	2.13
22	MP4A	X	-8.64	4.12
23	MP4A	Z	-14.965	4.12
24	MP4A	Mx	.004	4.12
25	MP4C	X	-8.64	2.13
26	MP4C	Z	-14.965	2.13
7	MP4C	Mx	004	2.13
28	MP4C	X	-8.64	4.12
29	MP4C	Z	-14.965	4.12
30	MP4C	Mx	004	4.12
31	MP1A	X	-21.502	1.5 1.5
32	MP1A	Z	-37.243	1.5
33	MP1A	Mx	.011	4.75
34	MP1A	X	-21.502	4.75
35	MP1A	Z	-37.243	4.75
36	MP1A	Mx	.011	1.5
37	MP1C	X	-21.502	1.5
38	MP1C	Z	-37.243 011	1.5
39	MP1C	Mx	-21.502	4.75
40	MP1C	X	-37.243	4.75
41	MP1C	Z	011	4.75
42	MP1C	Mx X	-21.502	1.5
43	MP2A	Z	-37.243	1.5
44	MP2A	Mx	.011	1.5
45	MP2A	X	-21.502	4.75
46	MP2A	Z	-37.243	4.75
47	MP2A	Mx	.011	4.75
48	MP2A	X	-21.502	1.5
49	MP2C MP2C	Z	-37.243	1.5
50		Mx	011	1.5
51	MP2C MP2C	X	-21.502	4.75
52		Z	-37.243	4.75
53	MP2C MP2C	Mx	011	4.75
54	MP3A	X	-21.502	1.5
55	MP3A	Z	-37.243	1.5
56	MP3A	Mx	.011	1.5
57	MP3A	X	-21.502	4.75
58 59	MP3A	Z	-37.243	4.75

: Colliers Engineering & Design NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 26 : Antenna Wi (330 Dea)) (Continued)

	Member Label	Direction	Magnitude[jb,k-ft]	Location[ft,%]
60	MP3A	Mx	.011	4.75
61	MP3C	X	-21.502	1.5
62	MP3C	Z	-37,243	1.5
63	MP3C	Mx	011	1.5
64	MP3C	X	-21.502	4.75
65	MP3C	Z	-37.243	4.75
66	MP3C	Mx	011	4.75
67	MP3B	X	-14.439	1.5
68	MP3B	Z	-25.009	1.5
69	MP3B	Mx	.013	1.5
70	MP3B	X	-14.439	4.75
71	MP3B	Z	-25.009	4.75
72	MP3B	Mx	.013	4.75
73	MP2A	X	-8.051	2
74	MP2A	Z	-13.945	2
75	MP2A	Mx	003	2
76	MP2C	X	-8.051	2
77	MP2C	Z	-13.945	2
78	MP2C	Mx	.003	2
79	MP3D	X	-6.444	2
80	MP3D	Z	-11.162	2
81	MP3D	Mx	004	2
82	MP2D	X	-6.444	2
83	MP2D	Z	-11.162	2
84 85	MP2D	Mx	004	2
	MP1D	X	-2.753	2
86 87	MP1D	Z	-4.768	2
88	MP1D	Mx	002	2
89	M515	X	-4.832	10
90	M515	Z	-8.369	10
91	M515	Mx	000839	10
92	MATSING-1	X	-8.52	2.38
93	MATSING-1	Z	-14.757	2.38
94	MATSING-1 MATSING-1	Mx	.012	2.38
95		X	-8.52	3.88
96	MATSING-1 MATSING-1	Z	-14.757	3.88
97	MP2B	Mx	.012	3.88
98	MP2B	X	-8.52	2.38
99	MP2B	Z	-14.757	2.38
00	MP2B	Mx	.012	2.38
01	MP2B	X	-8.52	3.88
02	MP2B	Z	-14.757	3.88
03	MP2B	Mx	.012	3.88
04	MP2B	X	-5.571	1.5
05	MP2B	Z	-9.649	1.5
06	MP2B	Mx	.002	1.5
07	MP2B	X	-5.571	4.75
08	MP2B	Z	-9.649	4.75
09	MP2B	Mx	.002	4.75
10	MP2B	X	-5.571	6.8
11	MP2B	Z	-9.649	6.8
12	MATSING-1	Mx	.002	6.8
13	MATSING-1	X	-5.571	4.75
14	MATSING-1	Z	-9.649	4.75
15	M575	Mx	003	4.75
16	M575	X	-17.32	1
17	M575	Z	-29.999	
	IVIO/O	Mx	0	1

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

	per Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
	P1B	X	-2.42	2
	P1B			2
	P1B	Mx	000807	3
	P2B	X	0	3
	P2B	Z	-2.42	3
6 N	P2B	Mx	000807	2
7 N	P3A	X	0	
B N	P3A	Z	-3.99	2
9 N	P3A	Mx	0	2
	P3B	X	0	2
	P3B	Z	-2.42	2
	P3B	Mx	000807	2
	P3C	X	0	2
	P3C	Z	-3.99	2
	P3C	Mx	0	2
	OVP	X	0	actual 1 Lett
	OVP	Z	-7.931	1
	OVP	Mx	0	1
	IP4A	X	0	2.13
	IP4A	Z	-5.045	2.13
	IP4A	Mx	0	2.13
		X	0	4.12
	IP4A	Z	-5.045	4.12
	IP4A	Mx	0	4.12
	IP4A	X	0	2.13
	IP4C	Z	-5.045	2.13
	IP4C	Mx	0	2.13
	IP4C	X	0	4.12
	IP4C	Z	-5.045	4.12
	IP4C		0	4.12
	IP4C	Mx	0	1.5
	IP1A	X	-15.792	1.5
	IP1A	Z		1.5
	IP1A	Mx	0	4.75
	IP1A	X	0	4.75
	IP1A	Z	-15.792	4.75
36 N	IP1A	Mx	0	
37 N	IP1C	X	0	1.5
38 N	MP1C	Z	-15.792	1.5
39 N	1P1C	Mx	0	1.5
10 N	1P1C	X	0	4.75
	MP1C	Z	-15.792	4.75
	MP1C	Mx	0	4.75
43 N	1P2A	X	0	1.5
	MP2A	Z	-15.792	1.5
	1P2A	Mx	0	1.5
	MP2A	X	0	4.75
	MP2A	Z	-15.792	4.75
	MP2A	Mx	0	4.75
	MP2C	X	0	1.5
	MP2C	Z	-15.792	1.5
		Mx	0	1.5
	MP2C	X	0	4.75
	MP2C	Z	-15.792	4.75
	MP2C	Mx	0	4.75
	MP2C		0	1.5
	MP3A	X	-15.792	1.5
	MP3A	Z		1.5
	/P3A	Mx	0	4.75
	MP3A	X	0	4.75
59 <u>N</u>	/IP3A	Z	-15.792	4.70

Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

60	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
61	MP3A MP3C	Mx	0	4.75
62	MP3C	X	0	1.5
63	MP3C	Z	-15.792	1.5
64	MP3C	Mx	0	1.5
65	MP3C	X	0	4.75
66	MP3C		-15.792	4.75
67	MP3B	Mx X	0	4.75
68	MP3B	Z	0	1.5
69	MP3B	Mx	-2.857	1.5
70	MP3B	X	.001	1.5
71	MP3B	Z	-2.857	4.75
72	MP3B	Mx		4.75
73	MP2A	X	.001	4.75
74	MP2A	Z	-3.99	2
75	MP2A	Mx		2
76	MP2C	X	0	2
77	MP2C	Z	-3.99	2
78	MP2C	Mx	-3.99	2 2
79	MP3D	X	0	2
80	MP3D	Z	-2.42	2
81	MP3D	Mx	000807	2
82	MP2D	X	000607	2
83	MP2D	Z	-2.42	2
84	MP2D	Mx	000807	2
85	MP1D	X	0	2
86	MP1D	Z	749	2
87	MP1D	Mx	000374	2
88	M515	X	0	10
89	M515	Z	-2.27	10
90	M515	Mx	.000388	10
91	MATSING-1	X	0	2.38
92	MATSING-1	Z	-5.772	2.38
93	MATSING-1	Mx	.005	2.38
94	MATSING-1	X	0	3.88
95	MATSING-1	Z	-5.772	3.88
96	MATSING-1	Mx	.005	3.88
97	MP2B	X	0	2.38
98	MP2B	Z	-5.772	2.38
99	MP2B	Mx	.005	2.38
100	MP2B	X	0	3.88
101	MP2B	Z	-5.772	3.88
102	MP2B	Mx	.005	3.88
103	MP2B	X	0	1.5
104	MP2B	Z	-2.188	1.5
105	MP2B	Mx	000729	1.5
106	MP2B	X	0	4.75
107	MP2B	Z	-2.188	4.75
108	MP2B	Mx	000729	4.75
109	MP2B	X	0	6.8
110	MP2B	Z	-2.188	6.8
111	MP2B	Mx	000729	6.8
112	MATSING-1	X	0	4.75
113	MATSING-1	Z	-2.188	4.75
114	MATSING-1	Mx	000729	4.75
115	M575	X	0	1
116	M575	Z	-7.931	
117	M575	Mx	0	1

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
1	MP1B	X	1.406 -2.435	2
2	MP1B	Z	-,000812	2
3	MP1B	Mx	1.406	3
4	MP2B	X	-2.435	3
5	MP2B	Z	000812	3
6	MP2B	Mx	1.799	2
7	MP3A	X	-3.115	2
8	MP3A	Z	.0006	2
9	MP3A	Mx	1.406	2
10	MP3B	X	-2.435	2
11	MP3B	Z	000812	2
12	MP3B	Mx	1.799	2
13	MP3C	X	-3.115	2
14	MP3C		0006	2
15	MP3C	Mx	3.506	
16	OVP	X	-6.072	1
17	OVP		0	
18	OVP	Mx	2.109	2.13
19	MP4A	X	-3.653	2.13
20	MP4A		001	2.13
21	MP4A	Mx	2.109	4.12
22	MP4A	X	-3.653	4.12
23	MP4A		001	4.12
24	MP4A	Mx	2.109	2.13
25	MP4C	X	-3.653	2.13
26	MP4C		.001	2.13
27	MP4C	Mx X	2.109	4.12
28	MP4C	Z	-3.653	4.12
29	MP4C		.001	4.12
30	MP4C	Mx	6.847	1.5
31	MP1A	X	-11.859	1.5
32	MP1A		003	1.5
33	MP1A	Mx X	6.847	4.75
34	MP1A	Z	-11.859	4.75
35	MP1A	Mx	003	4.75
36	MP1A	X	6.847	1.5
37	MP1C	Z	-11.859	1.5
38	MP1C	Mx	.003	1.5
39	MP1C	X	6.847	4.75
40	MP1C	Z	-11.859	4.75
41	MP1C	Mx	.003	4.75
42	MP1C	X	6.847	1.5
43	MP2A	Z	-11.859	1.5
44	MP2A	Mx	003	1.5
45	MP2A	X	6.847	4.75
46	MP2A	Z	-11.859	4.75
47	MP2A	Mx	003	4.75
48	MP2A	X	6.847	1.5
49	MP2C	Z	-11.859	1.5
50	MP2C	Mx	.003	1.5
51	MP2C	X	6.847	4.75
52	MP2C	Z	-11.859	4.75
53	MP2C	Mx	.003	4.75
54	MP2C	X	6.847	1.5
55	MP3A	Z	-11.859	1.5
56	MP3A	Mx	003	1.5
57	MP3A MP3A	X	6.847	4.75
58 59	MP3A	Z	-11.859	4.75

Colliers Engineering & DesignNL23777329Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 28 : Antenna Wm (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
60	MP3A	Mx	003	4.75
61	MP3C	X	6.847	1.5
62	MP3C	Z	-11.859	1.5
63	MP3C	Mx	.003	1.5
64	MP3C	X	6.847	4.75
65	MP3C	Z	-11.859	4.75
66	MP3C	Mx	.003	4.75
67	MP3B	X	2.804	1.5
68	MP3B	Z	-4.857	1.5
69	MP3B	Mx	.002	1.5
70	MP3B	X	2.804	4.75
71	MP3B	Z	-4.857	4.75
72	MP3B	Mx	.002	4.75
73	MP2A	X	1.831	2
74	MP2A	Z	-3.171	2
75	MP2A	Mx	.00061	2
76	MP2C	X	1.831	2
77	MP2C	Z	-3.171	2
78	MP2C	Mx	00061	2
79	MP3D	X	1.406	2
80	MP3D	Z	-2.435	2
81	MP3D	Mx	000812	2
82	MP2D	X	1.406	2
83	MP2D	Z	-2.435	2
84	MP2D	Mx	000812	2
85	MP1D	X	.59	2
86	MP1D	Z	-1.022	2
87	MP1D	Mx	000511	2
88	M515	X	.73	10
89	M515	Z	-1.265	10
90	M515	Mx	.000559	10
91	MATSING-1	X	2.679	2.38
92	MATSING-1	Z	-4.641	2.38
93	MATSING-1	Mx	.004	2.38
94	MATSING-1	X	2.679	3.88
95	MATSING-1	Z	-4.641	3.88
96	MATSING-1	Mx	.004	3.88
97	MP2B	X	2.679	2.38
98	MP2B	Z	-4.641	2.38
99	MP2B	Mx	.004	2.38
100	MP2B	X	2.679	3.88
101	MP2B	Z	-4.641	3.88
102	MP2B	Mx	.004	
103	MP2B	X	1.422	3.88 1.5
104	MP2B	Z	-2.463	1.5
105	MP2B	Mx	002	1.5
106	MP2B	X	1.422	4.75
107	MP2B	Z	-2.463	4.75
108	MP2B	Mx	002	4.75
109	MP2B	X	1.422	6.8
110	MP2B	Z	-2.463	6.8
111	MP2B	Mx	002	6.8
112	MATSING-1	X	1.422	
113	MATSING-1	Z	-2.463	4.75
114	MATSING-1	Mx		4.75
115	M575	X	000821 3.506	4.75
116	M575	Z	-6.072	1
117	M575	Mx		1
	IVIOTO	I IVIX	0	1

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1B	X	3.115 -1.799	2
2	MP1B	Z		2
3	MP1B	Mx	0006 3.115	3
4	MP2B	X	-1.799	3
5	MP2B	Z		3
6	MP2B	Mx	0006	2
7	MP3A	X	2.435	2
8	MP3A	Z	-1.406	2
9	MP3A	Mx	.000812	2
10	MP3B	X	3.115	2
11	MP3B	Z	-1.799	2
12	MP3B	Mx	0006	
13	MP3C	X	2.435	2 2
14	MP3C	Z	-1.406	
15	MP3C	Mx	000812	2
16	OVP	X	5.423	
17	OVP	Z	-3.131	1
18	OVP	Mx	0	1
19	MP4A	X	2.221	2.13
20	MP4A	Z	-1.282	2.13
21	MP4A	Mx	001	2.13
22	MP4A	X	2.221	4.12
23	MP4A	Z	-1.282	4.12
24	MP4A	Mx	001	4.12
25	MP4C	X	2.221	2.13
26	MP4C	Z	-1.282	2.13
27	MP4C	Mx	.001	2.13
28	MP4C	X	2.221	4.12
29	MP4C	Z	-1.282	4.12
30	MP4C	Mx	.001	4.12
31	MP1A	X	8.226	1.5
32	MP1A	Z	-4.749	1.5
33	MP1A	Mx	004	1.5
34	MP1A	X	8.226	4.75
35	MP1A	Z	-4.749	4.75
36	MP1A	Mx	004	4.75
	MP1C	X	8.226	1.5
37	MP1C	Z	-4.749	1.5
38	MP1C	Mx	.004	1.5
39	MP1C	X	8.226	4.75
40	MP1C	Z	-4.749	4.75
41	MP1C	Mx	.004	4.75
42	MP2A	X	8.226	1.5
43		Z	-4.749	1.5
44	MP2A	Mx	004	1.5
45	MP2A	X	8.226	4.75
46	MP2A	Z	-4.749	4.75
47	MP2A	Mx	004	4.75
48	MP2A	X	8.226	1.5
49	MP2C	Z	-4.749	1.5
50	MP2C		.004	1.5
51	MP2C	Mx	8.226	4.75
52	MP2C	X	-4.749	4.75
53	MP2C	Z	-4.749	4.75
54	MP2C	Mx		1.5
55	MP3A	X	8.226	1.5
56	MP3A	Z	-4.749	1.5
57	MP3A	Mx	004	4.75
58	MP3A	X	8.226	4.75
59	MP3A	Z	-4.749	4.10

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

I on I	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
60	MP3A	Mx	004	4.75
61	MP3C	X	8.226	1.5
62	MP3C		-4.749	1.5
63	MP3C	Mx	.004	1.5
64	MP3C	X	8.226	4.75
65	MP3C	Z	-4.749	4.75
66	MP3C	Mx	.004	4.75
67	MP3B	X	9.622	1.5
68	MP3B	Z	-5.555	1.5
69	MP3B	Mx	.003	1.5
70	MP3B	X	9.622	4.75
71	MP3B	Z	-5.555	4.75
72	MP3B	Mx	.003	4.75
73	MP2A	X	2.603	2
74	MP2A	Z	-1.503	2
75	MP2A	Mx	.000868	2
76	MP2C	X	2.603	2
77	MP2C	Z	-1.503	2
78	MP2C	Mx	000868	2
79	MP3D	X	3.115	2
80	MP3D	Z	-1.799	2
81	MP3D	Mx	0006	2
82	MP2D	X	3.115	2
83	MP2D	Z	-1.799	2
84	MP2D	Mx	0006	2
85	MP1D	X	1.767	2
86	MP1D	Z	-1.02	2
87	MP1D	Mx	00051	2
88	M515	X	.694	10
89	M515	Z	401	10
90	M515	Mx	.000395	10
91	MATSING-1	X	3.925	2.38
92	MATSING-1	Z	-2.266	2.38
93	MATSING-1	Mx	.002	2.38
94	MATSING-1	X	3.925	3.88
95	MATSING-1	Z	-2.266	3.88
96	MATSING-1	Mx	.002	3.88
97	MP2B	X	3.925	2.38
98	MP2B	Z	-2.266	2.38
99	MP2B	Mx	.002	2.38
100	MP2B	X	3.925	3.88
101	MP2B	Z	-2.266	3.88
102	MP2B	Mx	.002	3.88
103	MP2B	X	3.6	1.5
104	MP2B	Z	-2.079	1.5
105	MP2B	Mx	004	1.5
106	MP2B	X	3.6	4.75
107	MP2B	Z	-2.079	
108	MP2B	Mx	004	4.75 4.75
109	MP2B	X	3.6	
110	MP2B	Z		6.8
111	MP2B		-2.079	6.8
112	MATSING-1	Mx X	004	6.8
113	MATSING-1		3.6	4.75
114	MATSING-1	Z	-2.079	4.75
115	M575	Mx	000693	4.75
116		X	5.423	1
117	M575	Z	-3.131	روا لا علاقي النق
111	M575	Mx	0	1

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

	oint Loads (BLC 30 : A	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1B	X	3.99	2
2	MP1B	Z	0	2
3	MP1B	Mx	0	3
4	MP2B	X	3.99	3
5	MP2B	Z	0	3
6	MP2B	Mx	2.42	2
7	MP3A	X		2
8	MP3A	Z	.000807	2
9	MP3A	Mx	3.99	2
10	MP3B	X	0	2
11	MP3B		0	2
12	MP3B	Mx	2.42	2
13	MP3C	X	0	2
14	MP3C	Mx	000807	2
15	MP3C	X	6.432	1
16	OVP	Z	0	1
17	OVP	Mx	0	1
18	OVP	X	1.737	2.13
19	MP4A	Z	0	2,13
20	MP4A MP4A	Mx	000868	2.13
21	MP4A MP4A	X	1.737	4.12
22	MP4A	Z	0	4.12
23	MP4A	Mx	000868	4.12
24	MP4C	X	1.737	2.13
25 26	MP4C	Z	0	2.13
27	MP4C	Mx	.000868	2.13
28	MP4C	X	1.737	4.12
29	MP4C	Z	0	4.12
30	MP4C	Mx	.000868	4.12
31	MP1A	X	7.4	1.5
32	MP1A	Z	0	1.5
33	MP1A	Mx	004	1.5 4.75
34	MP1A	X	7.4	4.75
35	MP1A	Z	0	
36	MP1A	Mx	004	4,75 1.5
37	MP1C	X	7.4	1.5
38	MP1C	Z	0	1.5
39	MP1C	Mx	.004	4.75
40	MP1C	X	7.4	4.75
41	MP1C	Z	0.004	4.75
42	MP1C	Mx	7.4	1.5
43	MP2A	X	0	1.5
44	MP2A	Z	004	1.5
45	MP2A	Mx	7.4	4.75
46	MP2A	X	0	4.75
47	MP2A		004	4.75
48	MP2A	Mx	7.4	1.5
49	MP2C	X	0	1.5
50	MP2C	Mx	.004	1.5
51	MP2C	X	7.4	4.75
52	MP2C	Z	0	4.75
53	MP2C	Mx	.004	4.75
54	MP2C	X	7.4	1.5
55	MP3A	Ž	0	1.5
56	MP3A	Mx	004	1.5
57	MP3A	X	7.4	4.75
58 59	MP3A MP3A	Z	0	4.75

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

60	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
61	MP3A MP3C	Mx	004	4.75
62	MP3C	X	7.4	1.5
63	MP3C	Z	0	1.5
64		Mx	.004	1.5
65	MP3C	X	7.4	4.75
66	MP3C	Z	0	4.75
67	MP3C	Mx	.004	4.75
68	MP3B	X	13.861	1.5
69	MP3B	Z	0	1.5
70	MP3B	Mx	0	1.5
71	MP3B	X	13.861	4.75
72	MP3B	Z	0	4.75
73	MP3B	Mx	0	4.75
74	MP2A	X	2.677	2
75	MP2A	Z	0	2
	MP2A	Mx	.000892	2
76	MP2C	X	2.677	2
77	MP2C	Z	0	2
78	MP2C	Mx	000892	2
79	MP3D	X	3.99	2
80	MP3D	Z	0	2
81	MP3D	Mx	0	2
82	MP2D	X	3.99	2
83	MP2D	Z	0	2
84	MP2D	Mx	0	2
85	MP1D	X	2.471	2
86	MP1D	Z	0	2
87	MP1D	Mx	0	2
88	M515	X	.951	10
89	M515	Z	0	10
90	M515	Mx	.000447	10
91	MATSING-1	X	4.118	2.38
92	MATSING-1	Z	0	2.38
93	MATSING-1	Mx	0	2.38
94	MATSING-1	X	4.118	3.88
95	MATSING-1	Z	0	3.88
96	MATSING-1	Mx	0	3.88
97	MP2B	X	4.118	2.38
98	MP2B	Z	0	2.38
99	MP2B	Mx	0	2.38
100	MP2B	X	4.118	3.88
101	MP2B	Z	0	3.88
102	MP2B	Mx	0	3.88
103	MP2B	X	4.813	1.5
104	MP2B	Z	0	1.5
105	MP2B	Mx	005	1.5
106	MP2B	X	4.813	4.75
107	MP2B	Z	0	4.75
108	MP2B	Mx	005	4.75
109	MP2B	X	4.813	6.8
110	MP2B	Z	0	6.8
111	MP2B	Mx	005	6.8
112	MATSING-1	X	4.813	4.75
113	MATSING-1	Z	0	4.75
114	MATSING-1	Mx	Ö	4.75
115	M575	X	6.432	4.75
116	M575	Z	0	
117	M575	Mx	0	1

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1B	X	3.115 1.799	2
2	MP1B		.0006	2
3	MP1B	Mx	3.115	3
4	MP2B	X	1.799	3
5	MP2B	Z	.0006	3
6	MP2B	Mx		2
7	MP3A	X	2.435	2
8	MP3A	Z	1.406	2
9	MP3A	Mx	.000812	2
10	MP3B	X	3.115	2
11	MP3B	Z	1.799	2
12	MP3B	Mx	.0006	
13	MP3C	X	2.435	2
14	MP3C	Z	1.406	2
15	MP3C	Mx	000812	2
16	OVP	X	6.366	1
17	OVP	Z	3.676	1
18	OVP	Mx	0	1
19	MP4A	X	2.221	2.13
20	MP4A	Z	1.282	2.13
21	MP4A	Mx	001	2.13
22	MP4A	X	2.221	4.12
23	MP4A	Z	1.282	4.12
	MP4A	Mx	001	4.12
24 25	MP4C	X	2.221	2.13
	MP4C	Z	1.282	2.13
26	MP4C	Mx	.001	2.13
27	MP4C	X	2.221	4.12
28		Z	1.282	4.12
29	MP4C	Mx	.001	4.12
30	MP4C	X	8.226	1.5
31	MP1A	Z	4.749	1.5
32	MP1A	Mx	004	1.5
33	MP1A	X	8.226	4.75
34	MP1A	Z	4.749	4.75
35	MP1A		004	4.75
36	MP1A	Mx	8.226	1.5
37	MP1C	X	4.749	1.5
38	MP1C	Z		1.5
39	MP1C	Mx	.004	4.75
40	MP1C	90 X	8.226	4.75
41	MP1C	Z	4.749	
42	MP1C	Mx	.004	4.75
43	MP2A	X	8.226	1.5
44	MP2A	Z	4.749	1.5
45	MP2A	Mx	004	1.5
46	MP2A	X	8.226	4.75
47	MP2A	Z	4.749	4.75
48	MP2A	Mx	004	4.75
49	MP2C	X	8.226	1.5
50	MP2C	Z	4.749	1.5
	MP2C	Mx	.004	1.5
51	MP2C	X	8.226	4.75
52	MP2C	Z	4.749	4.75
53		Mx	.004	4.75
54	MP2C	X	8.226	1.5
55	MP3A	Z	4.749	1.5
56	MP3A		004	1.5
57	MP3A	Mx	8.226	4.75
58 59	MP3A MP3A	X	4.749	4.75

: Colliers Engineering & Design

: NL : 23777329 : Mount Analysis Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 31 : Antenna Wm (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
60	MP3A	Mx	004	4.75
61	MP3C	X	8.226	1.5
	MP3C	Z	4.749	1.5
63	MP3C	Mx	.004	1.5
65	MP3C	X	8.226	4.75
66	MP3C	Z	4.749	4.75
	MP3C	Mx	.004	4.75
67	MP3B	X	9.622	1.5
69	MP3B	Z	5.555	1.5
70	MP3B	Mx	003	1.5
71	MP3B	X	9.622	4.75
72	MP3B	Z	5.555	4.75
	MP3B	Mx	003	4.75
73	MP2A	X	2.603	2
74	MP2A	Z	1.503	2
75	MP2A	Mx	.000868	2
76	MP2C	X	2.603	2
77	MP2C	Z	1.503	2
78	MP2C	Mx	000868	2
79	MP3D	X	3.115	2
80	MP3D	Z	1.799	2
81	MP3D	Mx	.0006	2
82	MP2D	X	3.115	2
83	MP2D	Z	1.799	2
84	MP2D	Mx	.0006	2
85	MP1D	X	1.767	2
86	MP1D	Z	1.02	2
87	MP1D	Mx	.00051	2
88	M515	X	1.524	10
89	M515	Z	.88	10
90	M515	Mx	.000566	10
91	MATSING-1	X	3.925	2.38
92	MATSING-1	Z	2.266	2.38
93	MATSING-1	Mx	002	2.38
94	MATSING-1	X	3.925	3.88
95	MATSING-1	Z	2.266	3.88
96	MATSING-1	Mx	002	3.88
97	MP2B	X	3.925	2.38
98	MP2B	Z	2.266	2.38
99	MP2B	Mx	002	2.38
100	MP2B	X	3.925	3.88
101	MP2B	Z	2.266	3.88
102	MP2B	Mx	002	3.88
103	MP2B	X	3.6	1.5
104	MP2B	Z	2.079	1.5
105	MP2B	Mx	003	1.5
106	MP2B	X	3.6	4.75
107	MP2B	Z	2.079	4.75
108	MP2B	Mx	003	4.75
109	MP2B	X	3.6	6.8
110	MP2B	Z	2.079	6.8
111	MP2B	Mx	003	6.8
112	MATSING-1	X	3.6	4.75
113	MATSING-1	Z	2.079	4.75
114	MATSING-1	Mx	.000693	4.75
115	M575	X	6.366	1
116	M575	Z	3.676	
117	M575	Mx	0	1

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1 MP1B	X	1.406 2.435	2
2 MP1B		.000812	2
3 MP1B	Mx	1.406	3
4 MP2B	X	2.435	3
5 MP2B	Z	.000812	3
6 MP2B	Mx	1.799	2
7 MP3A	X	3.115	2
8 MP3A	Z	.0006	2
9 MP3A	Mx	1.406	2
10 MP3B	X	2.435	2
11 MP3B	Z	.000812	2
12 MP3B	Mx	1.799	2
13 MP3C	X	3.115	2
14 MP3C	Z		2
15 MP3C	Mx	0006	
16 OVP	X	4.05	1
17 OVP	Z	7.015 0	88.
18 OVP	Mx	2.109	2.13
19 MP4A	X	3.653	2.13
20 MP4A	Z		2.13
21 MP4A	Mx	001	4.12
22 MP4A	X	2.109	4.12
23 MP4A	Z	3.653	4.12
24 MP4A	Mx	001	2.13
25 MP4C	X	2.109	2.13
26 MP4C	Z	3.653	2.13
27 MP4C	Mx	.001	4.12
28 MP4C	X	2.109	4.12
29 MP4C	Z	3.653	4.12
30 MP4C	Mx	.001	1.5
31 MP1A	X	6.847	1.5
32 MP1A	Z Z	11.859	1.5
33 MP1A	Mx	003	4.75
34 MP1A	X	6.847	4.75
35 MP1A	Z	11.859	4.75
36 MP1A	Mx	003 6.847	1.5
37 MP1C	X		1.5
38 MP1C	Z	11.859	1.5
39 MP1C	Mx	.003	4.75
40 MP1C	X	6.847	4.75
41 MP1C	Z	11.859	4.75
42 MP1C	Mx	.003	1.5
43 MP2A	X	6.847	1.5
44 MP2A	Z	11.859	1.5
45 MP2A	Mx	003	4.75
46 MP2A	X	6.847	4.75
47 MP2A	Z	11.859	4.75
48 MP2A	Mx	003	1.5
49 MP2C	X	6.847	1.5
50 MP2C	Z	11.859	1.5
51 MP2C	Mx	.003	4.75
52 MP2C	X	6.847	
53 MP2C	Z	11.859	4.75
54 MP2C	Mx	.003	4.75
55 MP3A	X	6.847	1.5
56 MP3A	Z	11.859	1.5
57 MP3A	Mx	003	1.5
58 MP3A	X	6.847	4.75
59 MP3A	Z	11.859	4.75

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

60	Member Label MP3A	Direction	Magnitude[lb,k-ft]	Location[ft, %]
61	MP3C	Mx	003	4.75
62	MP3C	X	6.847	1.5
63	MP3C	Z	11.859	1.5
64	MP3C	Mx	.003	1.5
65	MP3C	X	6.847	4.75
66	MP3C	Z	11.859	4.75
67	MP3B	Mx	.003	4.75
68	MP3B	X	2.804	1.5
69	MP3B		4.857	1.5
70	MP3B	Mx X	002	1.5
71	MP3B	Z	2.804	4.75
72	MP3B	Mx	4.857	4.75
73	MP2A		002	4.75
74	MP2A	X	1.831	2
75	MP2A		3.171	2
76	MP2C	Mx	.00061	2
77	MP2C	X	1.831	2
78	MP2C		3.171	2
79	MP3D	Mx	00061	2
80	MP3D	X	1.406	2
81	MP3D		2.435	2 1 2
82	MP2D	Mx	.000812	2
83	MP2D	X	1.406	2
84	MP2D		2.435	2
85	MP1D	Mx	.000812	2
86	MP1D	X	.59	2
87	MP1D	Mx	1.022	2
88	M515	X	.000511	2
89	M515	Z	1.21	10
90	M515	Mx	2.095	10
91	MATSING-1	X	.00021	10
92	MATSING-1	Z	2.679	2.38
93	MATSING-1	Mx	4.641	2.38
94	MATSING-1	X	004	2.38
95	MATSING-1	Z	2.679	3.88
96	MATSING-1	Mx	4.641	3.88
97	MP2B	X	004	3.88
98	MP2B	Z	2.679 4.641	2.38
99	MP2B	Mx	004	2.38
100	MP2B	X	2.679	2.38
101	MP2B	Z	4.641	3.88
102	MP2B	Mx		3.88
103	MP2B	X	004 1.422	3.88
104	MP2B	Z		1.5
105	MP2B	Mx	2.463 000601	1.5
106	MP2B	X		1.5
107	MP2B	Z	1.422	4.75
108	MP2B	Mx	2.463	4.75
109	MP2B	X	000601	4.75
110	MP2B	Z	1.422	6.8
111	MP2B		2.463	6.8
112	MATSING-1	Mx X	000601	6.8
113	MATSING-1		1.422	4.75
114	MATSING-1	Z	2.463	4.75
115	M575	Mx	.000821	4.75
116	M575	X	4.05	
			7.015	1 1150
117	M575	Mx	0	

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

	Member Label	Direction	Magnitude[ib.k-ft]	Location[ft,%]
1	MP1B	X	0 2.42	2 2
2	MP1B	Z	.000807	2
3	MP1B	Mx	0	3
4	MP2B	X	2.42	3
5	MP2B	Z	.000807	3
6	MP2B	Mx	0	2
7	MP3A	X	3.99	2
8	MP3A	Mx	0	2
9	MP3A	X	0	2
10	MP3B	Z	2.42	2
11	MP3B	Mx	.000807	2
12	MP3B	X	0	2
13	MP3C	Z	3.99	2
14	MP3C	Mx	0	2
15	MP3C	X	0	1
16	OVP OVP	Z	7.931	1
17		Mx	0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18	OVP	X	0	2.13
19	MP4A MP4A	Z	5.045	2.13
20		Mx	0	2.13
21	MP4A MP4A	X	0	4.12
22	MP4A	Z	5.045	4.12
23	MP4A	Mx	0	4.12
24	MP4C	X	0	2.13
25	MP4C	Z	5.045	2.13
26 27	MP4C	Mx	0	2.13
28	MP4C	X	0	4.12
29	MP4C	Z	5.045	4.12
30	MP4C	Mx	0	4.12
31	MP1A	X	0	1.5
32	MP1A	Z	15.792	1.5
33	MP1A	Mx	0	1.5
34	MP1A	X	0	4.75
35	MP1A	Z	15.792	4.75
36	MP1A	Mx	0	4.75
37	MP1C	X	0	1.5
38	MP1C	Z	15.792	1.5
39	MP1C	Mx	0	1.5
40	MP1C	X	0	4.75
41	MP1C	Z	15.792	4.75
42	MP1C	Mx	0	4.75
43	MP2A	X	0	1.5
44	MP2A	Z	15.792	1.5
45	MP2A	Mx	0	1.5
46	MP2A	X	0	4.75
47	MP2A	Z	15.792	4.75
48	MP2A	Mx	0	4.75
49	MP2C	X	0	1.5
50	MP2C	Z	15.792	1.5
51	MP2C	Mx	0	1.5
52	MP2C	X	0	4.75
53	MP2C	Z	15.792	4.75
54	MP2C	Mx	0	4.75
55	MP3A	X	0	1.5
56	MP3A	Z	15.792	1.5
57	MP3A	Mx	0	1.5
58	MP3A	X	0	4.75
59	MP3A	Z	15.792	4.75

: Colliers Engineering & Design: NL: 23777329: Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

C 00 1	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
60	MP3A	Mx	0	4.75
61	MP3C	X	0	1.5
62	MP3C	Z	15.792	1.5
63	MP3C	Mx	0	1.5
64	MP3C	X	0	4.75
65	MP3C	Z	15.792	4.75
66	MP3C	Mx	0	4.75
67	MP3B	X	0	1.5
68	MP3B	Z	2.857	1.5
69	MP3B	Mx	001	1.5
70	MP3B	X	0	4.75
71	MP3B	Z	2.857	4.75
72	MP3B	Mx	001	4.75
73	MP2A	X	0	2
74	MP2A	Z	3.99	2
75	MP2A	Mx	0	2
76	MP2C	X	Ö	2
77	MP2C	Z	3.99	2
78	MP2C	Mx	0	2
79	MP3D	X	0	2
80	MP3D	Z	2.42	2 2
81	MP3D	Mx	.000807	2
82	MP2D	X	0	2
83	MP2D	Z	2.42	2
84	MP2D	Mx	.000807	2 2
85	MP1D	X	0	2
86	MP1D	Z	.749	2
87	MP1D	Mx	.000374	2
88	M515	X	0	10
89	M515	Z	2.27	10
90	M515	Mx	000388	10
91	MATSING-1	X	0	2.38
92	MATSING-1	Z	5.772	2.38
93	MATSING-1	Mx	005	2.38
94	MATSING-1	X	005	3.88
95	MATSING-1	Z	5.772	
96	MATSING-1	Mx	005	3.88
97	MP2B	X	005	2.38
98	MP2B	Z	5.772	
99	MP2B	Mx	005	2.38
100	MP2B	X	005	2.38
101	MP2B	Z	5.772	3.88
102	MP2B	Mx		3.88
103	MP2B	X	005 0	3.88
104	MP2B	Z	2.188	1.5
105	MP2B	Mx		1.5
106	MP2B	X	.000729	1.5
107	MP2B	Z	0 2.188	4.75
108	MP2B	Mx		4.75
109	MP2B	X	.000729	4.75
110	MP2B	Z	0	6.8
111	MP2B		2.188	6.8
112	MATSING-1	Mx	.000729	6.8
113	MATSING-1	X	0	4.75
114	MATSING-1		2.188	4.75
115		Mx	.000729	4.75
116	M575 M575	X	0	
117	M575	Z	7.931	
11/1	C / GIVI	Mx	0	1

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1B	X	-1.406 2.435	2 2
2	MP1B	Z	.000812	2
3	MP1B	Mx	-1.406	3
4	MP2B	X	2.435	3
5	MP2B	Z	.000812	3
6	MP2B	Mx		2
7	MP3A	X	-1.799	2
8	MP3A	Z	3.115	2
9	MP3A	Mx	0006	
10	MP3B	X	-1.406	2
11	MP3B	Z	2.435	2
12	MP3B	Mx	.000812	2
13	MP3C	X	-1.799	2
14	MP3C	Z	3.115	2
15	MP3C	Mx	.0006	2
16	OVP	X	-3.506	
17	OVP	Z	6.072	
18	OVP	Mx	0	1
19	MP4A	X	-2.109	2.13
20	MP4A	Z	3.653	2.13
21	MP4A	Mx	.001	2.13
22	MP4A	X	-2.109	4.12
23	MP4A	Z	3.653	4.12
24	MP4A	Mx	.001	4.12
25	MP4C	X	-2.109	2.13
	MP4C	Z	3.653	2.13
26	MP4C	Mx	001	2.13
27	MP4C	X	-2.109	4.12
28	MP4C	Z	3.653	4.12
29	MP4C	Mx	001	4.12
30		X	-6.847	1.5
31	MP1A	Z	11.859	1.5
32	MP1A	Mx	.003	1.5
33	MP1A	X	-6.847	4.75
34	MP1A	Z	11.859	4.75
35	MP1A		.003	4.75
36	MP1A	Mx	-6.847	1.5
37	MP1C	X	11.859	1.5
38	MP1C		003	1.5
39	MP1C	Mx	-6.847	4.75
40	MP1C	X		4.75
41	MP1C	Z	11.859	4.75
42	MP1C	Mx	003	1.5
43	MP2A	X	-6.847	1.5
44	MP2A	Z	11.859	1.5
45	MP2A	Mx	.003	1.5
46	MP2A	X	-6.847	4.75
47	MP2A	Z	11.859	4.75
48	MP2A	Mx	.003	4.75
49	MP2C	X	-6.847	1.5
50	MP2C	Z	11.859	1.5
51	MP2C	Mx	003	1.5
52	MP2C	X	-6.847	4.75
53	MP2C	Z	11.859	4.75
54	MP2C	Mx	003	4.75
55	MP3A		-6.847	1.5
	MP3A	X	11.859	1.5
56	MP3A	Mx	.003	1.5
57	MP3A	X	-6.847	4.75
58 59	MP3A	Z	11.859	4.75

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 34 : Antenna Wm (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
60	MP3A	Mx	.003	4.75
61	MP3C	X	-6.847	1.5
62	MP3C	Z	11.859	1.5
63	MP3C	Mx	003	1.5
64	MP3C	X	-6.847	4.75
65	MP3C	Z	11.859	4.75
66	MP3C	Mx	003	4.75
67	MP3B	X	-2.804	1.5
68	MP3B	Z	4.857	1.5
69	MP3B	Mx	002	1.5
70	MP3B	X	-2.804	4.75
71	MP3B	Z	4.857	4.75
72	MP3B	Mx	002	4.75
73	MP2A	X	-1.831	2
74	MP2A	Z	3.171	2
75	MP2A	Mx	00061	2
76	MP2C	X	-1.831	999 2 111
77	MP2C	Z	3.171	2
78	MP2C	Mx	.00061	2
79	MP3D	X	-1.406	2
80	MP3D	Z	2.435	2
81	MP3D	Mx	.000812	2
82	MP2D	X	-1.406	2
83	MP2D	Z	2.435	2
84	MP2D	Mx	.000812	2
85	MP1D	X	59	2
86	MP1D	Z	1.022	2
87	MP1D	Mx	.000511	2
88	M515	X	73	10
89	M515	Z	1.265	10
90	M515	Mx	000559	10
91	MATSING-1	X	-2.679	2.38
92	MATSING-1	Z	4.641	2.38
93	MATSING-1	Mx	004	2.38
94	MATSING-1	X	-2.679	3.88
95	MATSING-1	Z	4.641	3.88
96	MATSING-1	Mx	004	3.88
97	MP2B	X	-2.679	2.38
98	MP2B	Z	4.641	2.38
99	MP2B	Mx	004	2.38
100	MP2B	X	-2.679	3.88
101	MP2B	Z	4.641	3.88
102	MP2B	Mx	004	3.88
103	MP2B	X	-1.422	1.5
104	MP2B	Z	2.463	1.5
105	MP2B	Mx	.002	1.5
106	MP2B	X	-1.422	4.75
107	MP2B	Z		
108	MP2B	Mx	2.463	4.75
109	MP2B	X		4.75
110	MP2B	Z	-1.422	6.8
111	MP2B	Mx	2.463	6.8
112	MATSING-1		.002	6.8
113	MATSING-1	X	-1.422	4.75
114	MATSING-1		2.463	4.75
115		Mx	.000821	4.75
116	M575	X	-3.506	1
117	M575	Z	6.072	
	M575	Mx	0	1

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1B	X	-3.115 1.799	2
2	MP1B	Z	.0006	2
3	MP1B	Mx		3
4	MP2B	X	-3.115 1.799	3
5	MP2B	Z		3
6	MP2B	Mx	.0006	2
7	MP3A	X	-2.435	2
8	MP3A	Z	1.406	2
9	MP3A	Mx	000812	
10	MP3B	X	-3.115	2 2
11	MP3B	Z	1.799	2
12	MP3B	Mx	.0006	2
13	MP3C	X	-2.435	2
14	MP3C	Z	1.406	2
15	MP3C	Mx	.000812	2
16	OVP	X	-5.423	
17	OVP	Z	3.131	1
18	OVP	Mx	0	1
19	MP4A	X	-2.221	2.13
20	MP4A	Z	1.282	2.13
21	MP4A	Mx	.001	2.13
22	MP4A	X	-2.221	4.12
23	MP4A	Z	1.282	4.12
	MP4A	Mx	.001	4.12
24	MP4C	X	-2.221	2.13
25	MP4C	Z	1.282	2.13
26		Mx	001	2.13
27	MP4C	X	-2.221	4.12
28	MP4C	Z	1.282	4.12
29	MP4C	Mx	001	4.12
30	MP4C	X	-8.226	1.5
31	MP1A	Z	4.749	1.5
32	MP1A		.004	1.5
33	MP1A	Mx	-8.226	4.75
34	MP1A	X	4.749	4.75
35	MP1A		.004	4.75
36	MP1A	Mx	-8.226	1.5
37	MP1C	X	4.749	1.5
38	MP1C			1.5
39	MP1C	Mx	004	4.75
40	MP1C	X	-8.226	4.75
41	MP1C	Z	4.749	4.75
42	MP1C	Mx	004	1.5
43	MP2A	X	-8.226	1.5
44	MP2A	Z	4.749	1.5
45	MP2A	Mx	.004	
46	MP2A	X	-8.226	4.75
47	MP2A	Z	4.749	4.75
48	MP2A	Mx	.004	4.75
49	MP2C	X	-8.226	1.5
50	MP2C	Z	4.749	1.5
51	MP2C	Mx	004	1.5
52	MP2C	X	-8.226	4.75
53	MP2C	Z	4.749	4.75
	MP2C	Mx	004	4.75
54	MP3A	X	-8.226	1.5
55	MP3A	Z	4.749	1.5
56	MP3A MP3A	Mx	.004	1.5
57	MP3A	X	-8.226	4.75
58 59	MP3A	Z	4.749	4.75

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis NL 23777329 Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 35 : Antenna Wm (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
60	MP3A	Mx	.004	4.75
61	MP3C	X	-8.226	1.5
62	MP3C	Z	4.749	1.5
63	MP3C	Mx	004	1.5
64	MP3C	X	-8.226	4.75
65	MP3C	Z	4.749	4.75
66	MP3C	Mx	004	4.75
67	МР3В	X	-9.622	1.5
68	MP3B	Z	5.555	1.5
69	MP3B	Mx	003	1.5
70	MP3B	X	-9.622	4.75
71	MP3B	Z	5.555	4.75
72	MP3B	Mx	003	4.75
73	MP2A	X	-2.603	2
74	MP2A	Z	1.503	2
75	MP2A	Mx	000868	
76	MP2C	X	-2.603	2
77	MP2C	Z	1.503	2
78	MP2C	Mx	.000868	2
79	MP3D	X	-3.115	2
80	MP3D	Z		2
81	MP3D	Mx	1.799	2
82	MP2D	X	.0006	2
83	MP2D	Z	-3.115	2
84	MP2D		1.799	2
85	MP1D	Mx	.0006	2
86	MP1D	X	-1.767	2
87	MP1D	Z	1.02	2
88	M515	Mx	.00051	2
89	M515	X	694	10
90	M515	Z	.401	10
91	MATSING-1	Mx	000395	10
92	MATSING-1	X	-3.925	2.38
93	MATSING-1	Z	2.266	2.38
94		Mx	002	2.38
95	MATSING-1	X	-3.925	3.88
96	MATSING-1	Z	2.266	3.88
97	MATSING-1	Mx	002	3.88
98	MP2B	X	-3.925	2.38
99	MP2B	Z	2.266	2.38
100	MP2B	Mx	002	2.38
101	MP2B	X	-3.925	3.88
	MP2B	Z	2.266	3.88
102	MP2B	Mx	002	3.88
103	MP2B	X	-3.6	1.5
104	MP2B	Z	2.079	1.5
105	MP2B	Mx	.004	1.5
106	MP2B	X	-3.6	4.75
107	MP2B	Z	2.079	4.75
108	MP2B	Mx	.004	4.75
109	MP2B	X	-3.6	6.8
110	MP2B	Z	2.079	6.8
111	MP2B	Mx	.004	6.8
112	MATSING-1	X	-3.6	4.75
113	MATSING-1	Z	2.079	4.75
114	MATSING-1	Mx	.000693	4.75
115	M575	X	-5.423	1
116	M575	Z	3.131	/ Enex 1 150 S
117	M575	Mx	0	1

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

Me	mber Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
1	MP1B	X	-3.99	2 2
2	MP1B	Z	0	2
3	MP1B	Mx	0	3
4	MP2B	X	-3.99	3
5	MP2B	Z	0	3
3	MP2B	Mx	-2.42	2
7	MP3A	X		2
8	MP3A	Z	000807	2
9	MP3A	Mx		2
0	MP3B	X	-3.99	2
1	MP3B	Z	0	2
2	MP3B	Mx		2
13	MP3C	X	-2.42	2
14	MP3C	Z	0	2
15	MP3C	Mx	.000807	1 1
6	OVP	X	-6.432	1
17	OVP	Z	0	
8	OVP	Mx	0	2.13
19	MP4A	X	-1.737	2.13
20	MP4A	Z	0	2.13
21	MP4A	Mx	.000868	4.12
22	MP4A	X	-1.737	4.12
23	MP4A	Z	0	4.12
24	MP4A	Mx	.000868	2.13
25	MP4C	X	-1.737	2.13
26	MP4C	Z	0	2.13
27	MP4C	Mx	000868	4.12
28	MP4C	X	-1.737	4.12
29	MP4C	Z	0	4.12
30	MP4C	Mx	000868	1.5
31	MP1A	X	-7.4	1.5
32	MP1A	Z	0	1.5
33	MP1A	Mx	.004	4.75
34	MP1A	X	-7.4	4.75
35	MP1A	Z	0	4.75
36	MP1A	Mx	.004	1.5
37	MP1C	X	-7.4	1.5
38	MP1C	Z	0	1.5
39	MP1C	Mx	004	4.75
40	MP1C	X	-7.4	4.75
41	MP1C	Z	0	4.75
42	MP1C	Mx	004	1.5
43	MP2A	X	-7.4	1.5
44	MP2A	Z	0	1.5
45	MP2A	Mx	.004	4.75
46	MP2A	X	-7.4	4.75
47	MP2A	Z	0	4.75
48	MP2A	Mx	.004	1.5
49	MP2C	X	-7.4	1.5
50	MP2C	Z	0	1.5
51	MP2C	Mx	004	4.75
52	MP2C	X	-7.4	4.75
53	MP2C	Z	0	4.75
54	MP2C	Mx	004	
55	MP3A	X	-7.4	1.5
56	MP3A	Z	0	1.5
57	MP3A	Mx	.004	1.5
58	MP3A	X	-7.4	4.75
59	MP3A	Z	0	4.75

Colliers Engineering & DesignNL23777329Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

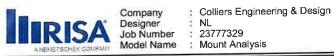
Member Point Loads (BLC 36 : Antenna Wm (270 Deg)) (Continued)

COL	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
60	MP3A	Mx	.004	4.75
61	MP3C	X	-7.4	1.5
62	MP3C	Z	0	1.5
	MP3C	Mx	004	1.5
65	MP3C	X	-7.4	4.75
	MP3C	Z	0	4.75
66	MP3C	Mx	004	4.75
67	MP3B	X	-13.861	1.5
68	MP3B	Z	0	1.5
69	MP3B	Mx	0	1.5
70	MP3B	X	-13.861	4.75
72	MP3B	Z	0	4.75
73	MP3B	Mx	0	4.75
	MP2A	X	-2.677	2
74	MP2A	Z	0	2
75	MP2A	Mx	000892	2
76	MP2C	X	-2.677	2 1 1 1
77	MP2C	Z	0	2
78	MP2C	Mx	.000892	2
79	MP3D	X	-3.99	2
80	MP3D	Z	0	2
81	MP3D	Mx	0	2
	MP2D	X	-3.99	2
83	MP2D	Z	0	2
84	MP2D	Mx	0	2
	MP1D	X	-2.471	2
86	MP1D	Z	0	2
88	MP1D	Mx	0	2
89	M515	X	951	10
90	M515	Z	0	10
91	M515	Mx	000447	10
92	MATSING-1	X	-4.118	2.38
93	MATSING-1	Z	0	2.38
94	MATSING-1	Mx	0	2.38
95	MATSING-1	X	-4.118	3.88
96	MATSING-1	Z	0	3.88
97	MATSING-1	Mx	0	3.88
98	MP2B MP2B	X	-4.118	2.38
99	MP2B	Z	0	2.38
100		Mx	0	2.38
101	MP2B MP2B	X	-4.118	3.88
102	MP2B	Z	0	3.88
103	MP2B	Mx	0	3.88
104		X	-4.813	1.5
105	MP2B MP2B	Z	0	1.5
106	MP2B	Mx	.005	1.5
107		X	-4.813	4.75
108	MP2B	Z	0	4.75
108	MP2B	Mx	.005	4.75
110	MP2B	X	-4.813	6.8
111	MP2B	Z	0	6.8
112	MP2B	Mx	.005	6.8
	MATSING-1	X	-4.813	4.75
113	MATSING-1	Z	0	4.75
114	MATSING-1	Mx	0	4.75
115	M575	X	-6.432	1
116	M575	Z	0	
117	M575	Mx	0	1

Feb 8, 2024 3:42 PM Checked By: PMA

(BLC 37 · Antenna Wm (300 Dea))

M	ember Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1B	X	-3.115	2
2	MP1B	Z	-1.799	2 2
3	MP1B	Mx	0006	3
4	MP2B	X	-3.115	3
5	MP2B	Z	-1.799	3
6	MP2B	Mx	0006	2
7	MP3A	X	-2.435 -1.406	2
8	MP3A	Z	000812	2
9	MP3A	Mx	-3.115	2
10	MP3B	X	-1.799	2
11	MP3B	Z	0006	2
12	MP3B	Mx X	-2.435	2
13	MP3C	Z	-1.406	2
14	MP3C	Mx	.000812	2
15	MP3C	X	-6.366	
16	OVP	Z	-3.676	1
17	OVP	Mx	0	1
18	OVP	X	-2.221	2.13
19	MP4A	Z	-1.282	2.13
20	MP4A	Mx	,001	2.13
21	MP4A	X	-2.221	4.12
22	MP4A	Z	-1.282	4.12
23	MP4A MP4A	Mx	.001	4.12
24		X	-2.221	2.13
25	MP4C MP4C	Z	-1.282	2.13
26	MP4C	Mx	-,001	2.13
27	MP4C	X	-2.221	4.12
28	MP4C	Z	-1.282	4.12
29	MP4C	Mx	001	4.12
30	MP1A	X	-8.226	1.5
31 32	MP1A	Z	-4.749	1.5
33	MP1A	Mx	.004	1.5
	MP1A	X	-8.226	4.75
34 35	MP1A	Z	-4.749	4.75
36	MP1A	Mx	.004	4.75
37	MP1C	X	-8.226	1.5
38	MP1C	Z	-4.749	1.5
39	MP1C	Mx	004	1.5
40	MP1C	X	-8.226	4.75
41	MP1C	Z	-4.749	4.75
42	MP1C	Mx	004	4.75
43	MP2A	X	-8.226	1.5
44	MP2A	Z	-4.749	1.5
45	MP2A	Mx	.004	1.5
46	MP2A	X	-8.226	4.75
47	MP2A	Z	-4.749	4.75
48	MP2A	Mx	.004	4.75
49	MP2C	X	-8.226	1.5
50	MP2C	Z	-4.749	1.5
51	MP2C	Mx	004	1.5
52	MP2C	X	-8.226	4.75
53	MP2C	Z	-4.749	4.75
54	MP2C	Mx	004	4.75
55	MP3A	X	-8.226	1.5
56	MP3A	Z	-4.749	1.5
57	MP3A	Mx	.004	1.5 4.75
58	MP3A	X	-8.226	4.75
59	MP3A	Z	-4.749	4./0



: Colliers Engineering & Design

: NL : 23777329 : Mount Analysis Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 37 : Antenna Wm (300 Deg)) (Continued)

60	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
60	MP3A	Mx	.004	4.75
62	MP3C	X	-8.226	1.5
	MP3C	Z	-4.749	1.5
63 64	MP3C	Mx	004	1.5
65	MP3C	X	-8.226	4.75
66	MP3C	Z	-4.749	4.75
	MP3C	Mx	004	4.75
67	MP3B	X	-9.622	1.5
69	MP3B	Z	-5.555	1.5
	MP3B	Mx	.003	1.5
70	MP3B	X	-9.622	4.75
72	MP3B	Z	-5.555	4.75
	MP3B	Mx	.003	4.75
73	MP2A	X	-2.603	2
74	MP2A	Z	-1.503	2
75	MP2A	Mx	000868	2
76	MP2C	X	-2.603	2
77	MP2C	Z	-1.503	2
78	MP2C	Mx	.000868	2
79	MP3D	X	-3.115	2
80	MP3D	Z	-1.799	2
81	MP3D	Mx	0006	2
82	MP2D	X	-3.115	2
83	MP2D	Z	-1.799	2
84	MP2D	Mx	0006	2
85	MP1D	X	-1.767	2
86	MP1D	Z	-1.02	2
87	MP1D	Mx	00051	2
88	M515	X	-1.524	10
89	M515	Z	88	10
90	M515	Mx	000566	10
91	MATSING-1	X	-3.925	2.38
92	MATSING-1	Z	-2.266	2.38
93	MATSING-1	Mx	.002	2.38
94	MATSING-1	X	-3.925	3.88
95	MATSING-1	Z	-2.266	3.88
96	MATSING-1	Mx	.002	3.88
97	MP2B	X	-3.925	2.38
98	MP2B	Z	-2.266	2.38
99	MP2B	Mx	.002	2.38
100	MP2B	X	-3.925	3.88
101	MP2B	Z	-2.266	3.88
102	MP2B	Mx	.002	3.88
103	MP2B	X	-3.6	1.5
104	MP2B	Z	-2.079	1.5
105	MP2B	Mx	.003	1.5
106	MP2B	X	-3.6	4.75
107	MP2B	Z	-2.079	4.75
108	MP2B	Mx	.003	4.75
109	MP2B	X	-3.6	6.8
110	MP2B	Z	-2.079	6.8
111	MP2B	Mx	.003	6.8
112	MATSING-1	X	-3.6	4.75
113	MATSING-1	Z	-2.079	4.75
114	MATSING-1	Mx	000693	4.75
115	M575	X	-6.366	1
116	M575	Z	-3.676	
117	M575	Mx	0	1

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1B	X	-1.406	2 2
2	MP1B	Z	-2.435	2
3	MP1B	Mx	000812 -1.406	3
4	MP2B	X	-2.435	3
5	MP2B		000812	3
6	MP2B	Mx	-1.799	2
7	MP3A	X	-3.115	2
8	MP3A	Mx	0006	2
9	MP3A	X	-1,406	2
10	MP3B	Z	-2.435	2
11	MP3B	Mx	000812	2
12	MP3B MP3C	X	-1.799	2
13	MP3C	Z	-3.115	2
14	MP3C	Mx	.0006	2
15	OVP	X	-4.05	
16	OVP	Z	-7.015	1
17	OVP	Mx	0	1
19	MP4A	X	-2.109	2.13
20	MP4A	Z	-3.653	2.13
21	MP4A	Mx	.001	2.13
22	MP4A	X	-2.109	4.12
23	MP4A	Z	-3.653	4.12
24	MP4A	Mx	.001	4.12
25	MP4C	X	-2.109	2.13
26	MP4C	Z	-3.653	2.13
27	MP4C	Mx	001	2.13
28	MP4C	X	-2.109	4.12
29	MP4C	Z	-3.653	4.12
30	MP4C	Mx	001	4.12
31	MP1A	X	-6.847	1.5
32	MP1A	Z	-11.859	1.5
33	MP1A	Mx	.003	1.5
34	MP1A	X	-6.847	4.75
35	MP1A	Z	-11.859	4.75
36	MP1A	Mx	.003	4.75
37	MP1C	X	-6.847	1.5
38	MP1C	Z	-11.859	1.5
39	MP1C	Mx	003	1.5
40	MP1C	X	-6.847	4.75
41	MP1C	Z	-11.859	4.75
42	MP1C	Mx	003	4.75
43	MP2A	X	-6.847	1.5 1.5
44	MP2A	Z	-11.859	1.5
45	MP2A	Mx	.003	4.75
46	MP2A	X	-6.847	4.75
47	MP2A	Z	-11.859	4.75
48	MP2A	Mx	.003 -6.847	1.5
49	MP2C	X		1.5
50	MP2C	Z	-11. 8 59 003	1.5
51	MP2C	Mx	-6.847	4.75
52	MP2C	X	-11.859	4.75
53	MP2C		003	4.75
54	MP2C	Mx	-6.847	1.5
55	MP3A	X	-11.859	1.5
56	MP3A		.003	1.5
57	MP3A	Mx	-6.847	4.75
58	MP3A	X	-11.859	4.75
59	MP3A		-11.000	

: Colliers Engineering & Design: NL: 23777329: Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 38 : Antenna Wm (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
60	MP3A	Mx	.003	4.75
61	MP3C	X	-6.847	1.5
62	MP3C	Z	-11.859	1.5
63	MP3C	Mx	003	1.5
64	MP3C	X	-6.847	4.75
65	MP3C	Z	-11.859	4.75
66	MP3C	Mx	003	4.75
67	MP3B	X	-2.804	1.5
68	MP3B	Z	-4.857	1.5
69	MP3B	Mx	.002	1.5
70	MP3B	X	-2.804	4.75
71	MP3B	Z	-4.857	4.75
72	MP3B	Mx	.002	4.75
73	MP2A	X	-1.831	2
74	MP2A	Z	-3.171	2 2
75	MP2A	Mx	00061	2
76	MP2C	X	-1.831	2 1.00
77	MP2C	Z	-3.171	
78	MP2C	Mx	.00061	2
79	MP3D	X	-1.406	2
80	MP3D	Z		2
81	MP3D	Mx	-2.435	2
82	MP2D	X	000812	2
83	MP2D	Z	-1.406	2
84	MP2D		-2.435	2
85	MP1D	Mx	000812	2
86	MP1D MP1D	X	59	2
87		Z	-1.022	2
88	MP1D	Mx	000511	2
89	M515	X	-1.21	10
90	M515	Z	-2.095	10
	M515	Mx	00021	10
91	MATSING-1	X	-2.679	2.38
92	MATSING-1	Z	-4.641	2.38
93	MATSING-1	Mx	.004	2.38
94	MATSING-1	X	-2.679	3.88
95	MATSING-1	Z	-4.641	3.88
96	MATSING-1	Mx	.004	3.88
97	MP2B	X	-2.679	2.38
98	MP2B	Z	-4.641	2.38
99	MP2B	Mx	.004	2.38
100	MP2B	X	-2.679	3.88
101	MP2B	Z	-4.641	3.88
102	MP2B	Mx	.004	3.88
103	MP2B	X	-1.422	1.5
104	MP2B	Z	-2.463	1.5
105	MP2B	Mx	.000601	1.5
106	MP2B	X	-1.422	4.75
107	MP2B	Z	-2.463	4.75
108	MP2B	Mix	.000601	4.75
109	MP2B	X	-1.422	6.8
110	MP2B	Z	-2.463	6.8
111	MP2B	Mx	.000601	6.8
112	MATSING-1	X	-1.422	4.75
113	MATSING-1	Z	-2.463	4.75
114	MATSING-1	Mx	000821	4.75
115	M575	X	-4.05	1
116	M575	Z	-7.015	
117	M575	Mx	0	1

: Colliers Engineering & Design

: NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 77: Lm1)

11	er Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
	00A	Y	-500	%66

Member Point Loads (BLC 78 : Lm2)

Welliber		Direction	Magnitude[lb,k-ft]	Location[ft.%]
1	Member Label M700A	Y	-500	%34

Member Point Loads (BLC 79 : Lv1)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M700A	Y	-250	0

Member Point Loads (BLC 80 : Lv2)

Marshor Lobol	Direction	Magnitude[lb,k-ft]	Location[ft.%]
Member Label M700A	V	-250	%50

Member Point Loads (BLC 81 : Antenna Ev)

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1 MP1B	Y	-3.104	2
2 MP1B	My	0	2
3 MP1B	Mz	.001	2
4 MP2B	Y	-3.104	3
5 MP2B	My	0	3
6 MP2B	Mz	.001	3
7 MP3A	Y	-3.104	2
8 MP3A	My	.001	2
9 MP3A	Mz	0	2
10 MP3B	Y	-3.104	2
11 MP3B	My	0	2
12 MP3B	Mz	.001	2
13 MP3C	Y	-3.104	2
14 MP3C	My	001	2
15 MP3C	Mz	0	2
16 OVP	Y	-1.413	1-
17 OVP	My	0	1
18 OVP	Mz	0	1
19 MP4A	Y	-1.923	2.13
The State of the S	My	000962	2.13
20	Mz	0	2.13
	Y	-1.923	4.12
	My	000962	4.12
and an area of the second	Mz	0	4.12
	Y	-1.923	2.13
	My	.000962	2.13
20	Mz	0	2.13
27 MP4C	Y	-1.923	4.12
28 MP4C	My	.000962	4.12
29 MP4C	Mz	0	4.12
30 MP4C	Y	-1.709	1.5
31 MP1A	My	000854	1.5
32 MP1A	Mz	0	1.5
33 MP1A	Y	-1.709	4.75
34 MP1A		000854	4.75
35 MP1A	My	000834	4.75
36 MP1A	Mz	-1.709	1.5
37 MP1C	Y	.000854	1.5
38 MP1C	My	0	1.5
39 MP1C	Mz	-1.709	4.75
40 MP1C	Y	.000854	4.75
41 MP1C	My	.000654	7.10

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

42	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]	
43	MP1C	Mz	0	4.75 1.5	
44	MP2A	Y	-1.709		
45	MP2A MP2A	My	000854	1.5	
46	MP2A	Mz	0	1.5	
47	MP2A	Y	-1.709	4.75	
48	MP2A	My	000854	4.75	
49	MP2C	Mz	0	4.75	
50	MP2C	Y	-1.709	1.5	
51	MP2C	My	.000854	1.5	
52	MP2C	Mz	0	1.5	
53	MP2C MP2C	Y	-1.709	4.75	
54	MP2C	My	.000854	4.75	
55	MP3A	Mz	0	4.75	
56	MP3A	Y	-1.709	1.5	
57	MP3A	My	000854	1.5	
58	MP3A	Mz	0	1.5	
59	MP3A	Y	-1.709	4.75	
60	MP3A	My	000854	4.75	
61	MP3C	Mz Y	0	4.75	
62	MP3C		-1.709	1.5	
63	MP3C	My	.000854	1.5	
64	MP3C MP3C	Mz	0	1.5	
65	MP3C	Y	-1.709	4.75	
66	MP3C	My	.000854	4.75	
67	MP3B	Mz	0	4.75	
68	MP3B	Y	-2.716	1.5	
69	MP3B	My	0	1.5	
70	MP3B	Mz	001	1.5	
71	MP3B	Y	-2.716	4.75	
72	MP3B	My	0	4.75	
73	MP2A	Mz	001	4.75	
74	MP2A	Y	-3.299	2	
75	MP2A	My	.001	2	
76	MP2C	Mz Y	0	2	
77	MP2C		-3.299	2	
78	MP2C	My	001	2	
79	MP3D	Mz Y	0	2	
80	MP3D		-3.104	2	
81	MP3D	My	0	2	
82	MP2D	Mz Y	.001	2	
83	MP2D	My	-3.104	2	
84	MP2D	Mz	0	2	
85	MP1D	Y	.001	2	
86	MP1D	My	777	2	
87	MP1D	Mz	0	2	
88	M515	Y	.000389	2	
89	M515	My	.000365	10	
90	M515	Mz		10	
91	MATSING-1	Y	000133	10	
92	MATSING-1	My	85 0	2.38	
93	MATSING-1	Mz	000708	2.38	
94	MATSING-1	Y		2.38	
95	MATSING-1	My	85	3.88	
96	MATSING-1	Mz	0	3.88	
97	MP2B	Y	000708	3.88	
98	MP2B	My	85	2.38	
99	MP2B	Mz	0	2.38	
00	MP2B	Y	000708	2.38	
	1111 444		85	3.88	

Colliers Engineering & Design

NL 23777329

Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
101	MP2B	Mv	0	3.88
102	MP2B	Mz	000708	3.88
103	MP2B	Y	-2.628	1.5
104	MP2B	My	003	1.5
105	MP2B	Mz	.000876	1.5
106	MP2B	Y	-2.628	4.75
107	MP2B	Mv	003	4.75
108	MP2B	Mz	.000876	4.75
109	MP2B	Y	-2.628	6.8
110	MP2B	Mv	003	6.8
	MP2B	Mz	.000876	6.8
111	MATSING-1	Y	-2.628	4.75
	MATSING-1	My	0	4.75
113	MATSING-1	Mz	.000876	4.75
114	M575	Y	-1,413	1
115		Mv	0	
116	M575 M575	Mz	0	11

Member Point Loads (BLC 82 : Antenna Eh (0 Deg))

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]	
1	MP1B	Z	-7.761	2	
2	MP1B	Mx	003	2	
3	MP2B	Z	-7.761	3	
4	MP2B	Mx	003	3	
5	MP3A	Z	-7.761	2	
6	MP3A	Mx	0	2	
7	MP3B	Z	-7.761	2	
8	MP3B	Mx	003	2	
9	MP3C	Z	-7.761	2	
10	MP3C	Mx	0	2	
11	OVP	Z	-3.533	1	
12	OVP	Mx	0		
13	MP4A	Z	-4.808	2.13	
14	MP4A	Mx	0	2.13	
15	MP4A	Z	-4.808	4.12	
16	MP4A	Mx	0	4.12	
17	MP4C	Z	-4.808	2.13	
18	MP4C	Mx	0	2.13 4.12	
19	MP4C	Z	-4.808		
20	MP4C	Mx	0	4.12	
21	MP1A	Z	-4.272	1.5 1.5 4.75	
22	MP1A	Mx	0		
23	MP1A	Z	-4.272 0		
24	MP1A	Mx		4.75	
25	MP1C	Z	-4.272	1.5	
26	MP1C	Mx	0	1.5	
27	MP1C	Z	-4.272	4.75	
28	MP1C	Mx	0	4.75	
29	MP2A	Z	-4.272	1.5	
30	MP2A	Mx	0	1.5	
31	MP2A	Z	-4.272	4.75	
32	MP2A	Mx	0	4.75	
33	MP2C	Z	-4.272	1.5	
34	MP2C	Mx	0	1.5	
35	MP2C	Z	-4.272	4.75	
	MP2C	Mx	0 4.75		
36	MP3A	Z	-4,272 1.5		
37	MP3A	Mx	0 1.5		

Colliers Engineering & Design

23777329 Mount Analysis Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 82 : Antenna Eh (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]	
39	MP3A	Z	-4.272	4.75	
40	MP3A	Mx	0	4.75	
41	MP3C	Z	-4.272	1.5	
42	MP3C	Mx	0	1.5	
43	MP3C	Z	-4.272	4.75	
44	MP3C	Mx	0	4.75	
45	MP3B	Z	-6.79	1.5	
46	MP3B	Mx	.003	1.5	
47	MP3B	Z	-6.79	4.75	
48	MP3B	Mx	.003	4.75	
49	MP2A	Z	-8.247	2	
50	MP2A	Mx	0	2	
51	MP2C	Z	-8.247	2	
52	MP2C	Mx	0	2	
53	MP3D	Z	-7.761	2	
54	MP3D	Mix	003	2	
55	MP2D	Z	-7.761	2	
56	MP2D	Mx	003	2	
57	MP1D	Z	-1.943	2	
58	MP1D	Mx	000972	2	
59	M515	Z	-1.943	10	
60	M515	Mx	.000332	10	
61	MATSING-1	Z	-2.125	2.38	
62	MATSING-1	Mx	.002	2.38	
63	MATSING-1	Z	-2.125	3.88	
64	MATSING-1	Mx	.002	3.88	
65	MP2B	Z	-2.125	2.38	
66	MP2B	Mx	.002	2.38	
67	MP2B	Z	-2.125	3.88	
68	MP2B	Mx	.002	3.88	
69	MP2B	Z	-6.569	1.5	
70	MP2B	Mx	002	1.5	
71	MP2B	Z	-6.569	4.75	
72	MP2B	Mx	002	4.75	
73	MP2B	Z	-6.569	6.8	
74	MP2B	Mx	002	6.8	
75	MATSING-1	Z	-6.569	4.75	
76	MATSING-1	Mx	002	4.75	
77	M575	Z	-3.533	1	
78	M575	Mx	0		

Member Point Loads (BLC 83 : Antenna Eh (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Locationfft,%1
1	MP1B	X	7.761	2
2	MP1B	Mx	0	2
3	MP2B	X	7.761	3
4	MP2B	Mx	0	3
5	MP3A	X	7.761	2
6	MP3A	Mx	.003	2
7	MP3B	X	7.761	2
8	MP3B	Mx	0	2
9	MP3C	X	7.761	2
10	MP3C	Mx	003	2
11	OVP	X	3.533	1
12	OVP	Mx	0	14218)
13	MP4A	X	4.808	2.13
14	MP4A	Mx	002	2.13
15	MP4A	X	4.808	4.12

: Colliers Engineering & Design

: NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 83 : Antenna Eh (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
6	MP4A	Mx	002	4.12
7	MP4C	X	4.808	2.13
8	MP4C	Mx	.002	2.13
9	MP4C	X	4.808	4.12
20	MP4C	Mx	.002	4.12
21	MP1A	X	4.272	1.5
22	MP1A	Mx	002	1.5
23	MP1A	X	4.272	4.75
24	MP1A	Mx	002	4.75
25	MP1C	X	4.272	1.5
26	MP1C	Mx	.002	1.5
27	MP1C	X	4.272	4.75
28	MP1C	Mx	.002	4.75
	MP2A	X	4.272	1.5
29	MP2A	Mx	002	1.5
30	MP2A	X	4.272	4.75
31		Mx	002	4.75
32	MP2A MP2C	X	4.272	1.5
33		Mx	.002	1.5
34	MP2C	X	4.272	4.75
35	MP2C	Mx	.002	4.75
36	MP2C	X	4.272	1.5
37	MP3A	Mx	002	1.5
38	MP3A	X	4.272	4.75
39	MP3A	Mx	002	4.75
40	MP3A		4.272	1.5
41	MP3C	X	.002	1.5
42	MP3C	Mx	4.272	4.75
43	MP3C	X	.002	4.75
14	MP3C	Mx	6.79	1.5
45	MP3B	X	0.79	1.5
46	MP3B	Mx		4.75
47	MP3B	X	6.79	4.75
48	MP3B	Mx	0 0 0 1 7	4.75
49	MP2A	X	8.247	
50	MP2A	Mx	.003	2 2
51	MP2C	X	8.247	
52	MP2C	Mx	003	2
53	MP3D	X	7.761	2
54	MP3D	Mx	0	2
55	MP2D	X	7.761	2
56	MP2D	Mx	0	2
57	MP1D	X	1.943	2
58	MP1D	Mx	0	2
59	M515	X	1.943	10
60	M515	Mx	.000913	10
61	MATSING-1	X	2.125	2.38
62	MATSING-1	Mx	0	2.38
63	MATSING-1	X	2.125	3.88
	MATSING-1	Mx	0	3.88
64	MP2B	X	2.125	2.38
65	MP2B	Mx	0	2.38
66		X	2.125	3.88
67	MP2B	Mx	0	3.88
68	MP2B	X	6.569	1.5
69	MP2B		007	1.5
70	MP2B	Mx	6.569	4.75
71	MP2B	X	007	4.75
72	MP2B	Mx	6.569	6.8
73	MP2B	X		6.8
74	MP2B	Mx	007	H 120.r3d] Page 10 ⁴

: Colliers Engineering & Design : NL : 23777329 Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

Member Point Loads (BLC 83 : Antenna Eh (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
75	MATSING-1	X	6.569	4.75
76	MATSING-1	Mx	0	4.75
77	M575	X	3.533	1
78	M575	Mx	0	DAGIL 1

Member Area Loads (BLC 39 : Structure D)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N251	N245	N244	N246	Y	Two Way	005
2	N244	N230	N231	N246	Y	Two Way	005
3	N252	N233	N232	N234	Y	Two Way	005
4	N234	N231	N230	N232	Y	Two Way	005
5	N62	N52	N50	N52A	Y	Two Way	005
6	N52A	N49	N47	N50	Y	Two Way	005
7	N60	N79A	N78	N80	Ý	Two Way	005
8	N80	N49	N47	N78	Y	Two Way	005
9	N121	N115	N114	N116	V	Two Way	005
10	N116	N101	N100	N114	Y	Two Way	005
11	N122	N103	N102	N104	V	Two Way	005
12	N104	N101	N100	N102	V	Two Way	
13	N186	N180	N179	N181	V	Two Way	005
14	N181	N166	N165	N179	\ \ \		005
15	N187	N168	N167	N169	Y	Two Way	005
16	N169	N166				Two Way	005
17	N241	N162	N165	N167	Y	Two Way	005
18	N111		N163	N242	Y	Two Way	005
		N41	N41A	N112	Y	Two Way	005
19	N72	N227	N228	N73	Y	Two Way	005
20	N176	N97	N98	N177	Y	Two Way	005
21	N97	N176	N177	N98	Y	Two Way	005
22	N162	N241	N242	N163	Y	Two Way	005

Member Area Loads (BLC 40 : Structure Di)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N251	N245	N244	N246	Y	Two Way	013
2	N244	N230	N231	N246	Y	Two Way	013
3	N252	N233	N232	N234	Y	Two Way	013
4	N234	N231	N230	N232	Y	Two Way	013
5	N62	N52	N50	N52A	Y	Two Way	013
6	N52A	N49	N47	N50	Y	Two Way	013
7	N60	N79A	N78	N80	Y	Two Way	013
8	N80	N49	N47	N78	Y	Two Way	013
9	N121	N115	N114	N116	Y	Two Way	013
10	N116	N101	N100	N114	Y	Two Way	013
11	N122	N103	N102	N104	Ý	Two Way	013
12	N104	N101	N100	N102	Ý	Two Way	013
13	N186	N180	N179	N181	Ÿ	Two Way	013
14	N181	N166	N165	N179	Y	Two Way	013
15	N187	N168	N167	N169	Ÿ	Two Way	013
16	N169	N166	N165	N167	V	Two Way	013
17	N241	N162	N163	N242	Ÿ	Two Way	013
18	N111	N41	N41A	N112	Y	Two Way	013
19	N72	N227	N228	N73	Y	Two Way	013
20	N176	N97	N98	N177	V	Two Way	013
21	N97	N176	N177	N98	Y	Two Way	013
22	N162	N241	N242	N163	Y	Two Way	013

Member Area Loads (BLC 84 : Structure Ev)

Joint A	Joint B	Joint C	Joint D	Direction.	Distribution	Magr	oitudelksfl
RISA-3D Version 17.0.1	[R:\\	\\\Rev	1\RISA\50002	34399-V <i>Z</i> W	MT LO H	120 r3dI	Page 105

Feb 8, 2024 3:42 PM Checked By: PMA

Member Area Loads (BLC 84 : Structure Ev) (Continued)

	276. 275.		Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
4	Joint A	Joint B N245	N244	N246	Y	Two Way	00023
1	N251	N230	N231	N246	Y	Two Way	00023
2	N244		N232	N234	Y	Two Way	00023
3	N252	N233	N230	N232	Y	Two Way	00023
4	N234	N231	N50	N52A	Y	Two Way	00023
5	N62	N52	N47	N50	Y	Two Way	00023
6	N52A	N49	N78	N80	Y	Two Way	00023
7	N60	N79A	N47	N78	Ý	Two Way	00023
8	N80	N49		N116	Y	Two Way	00023
9	N121	N115	N114	N114	Y	Two Way	00023
10	N116	N101	N100	N104	Ÿ	Two Way	00023
11	N122	N103	N102		Y	Two Way	00023
12	N104	N101	N100	N102	Y	Two Way	00023
13	N186	N180	N179	N181	Y	Two Way	00023
14	N181	N166	N165	N179	Y	Two Way	00023
15	N187	N168	N167	N169	Y	Two Way	00023
16	N169	N166	N165	N167	Y	Two Way	00023
17	N241	N162	N163	N242	Y	Two Way	00023
18	N111	N41	N41A	N112	Y		00023
19	N72	N227	N228	N73	Y	Two Way	00023
20	N176	N97	N98	N177		Two Way	00023
21	N97	N176	N177	N98	Y	Two Way	00023
22	N162	N241	N242	N163	Y	Two Way	00023

Member Area Loads (BLC 85 : Structure Eh (0 Deg))

		laist P	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
-	Joint A	Joint B N245	N244	N246	Z	Two Way	000574
1	N251		N231	N246	Z	Two Way	000574
2	N244	N230	N232	N234	Z	Two Way	000574
3	N252	N233		N232	Z	Two Way	000574
4	N234	N231	N230	N52A	Z	Two Way	000574
5	N62	N52	N50	N50	Z	Two Way	000574
6	N52A	N49	N47	N80	Z	Two Way	000574
7	N60	N79A	N78	N78	7	Two Way	000574
8	N80	N49	N47		7	Two Way	000574
9	N121	N115	N114	N116	7	Two Way	000574
10	N116	N101	N100	N114	7	Two Way	000574
11	N122	N103	N102	N104	7	Two Way	000574
12	N104	N101	N100	N102			000574
13	N186	N180	N179	N181	Z	Two Way	000574
14	N181	N166	N165	N179	Z	Two Way	000574
15	N187	N168	N167	N169	Z	Two Way	
16	N169	N166	N165	N167	Z	Two Way	000574
17	N241	N162	N163	N242	Z	Two Way	000574
18	N111	N41	N41A	N112	Z	Two Way	000574
19	N72	N227	N228	N73	Z	Two Way	000574
20	N176	N97	N98	N177	Z	Two Way	000574
21	N97	N176	N177	N98	Z	Two Way	000574
22	N162	N241	N242	N163	Z	Two Way	000574

Member Area Loads (BLC 86 : Structure Eh (90 Deg))

CITIZ	CI AI CO LOS	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
4	Joint A	N245	N244	N246	X	Two Way	.000574
1	N251	N230	N231	N246	X	Two Way	.000574
2	N244		N232	N234	X	Two Way	.000574
3	N252	N233	N230	N232	X	Two Way	.000574
4	N234	N231	N50	N52A	X	Two Way	.000574
5	N62	N52	N47	N50	X	Two Way	.000574
6	N52A	N49		N80	X	Two Way	.000574
7	N60	N79A	N78	N78	Y	Two Way	.000574
8	N80	N49	N47	N/O		TWO Way	

: Colfiers Engineering & Design

NL 23777329 Mount Analysis Feb 8, 2024 3:42 PM Checked By: PMA

Member Area Loads (BLC 86 : Structure Eh (90 Deg)) (Continued)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksfl
9	N121	N115	N114	N116	X	Two Way	.000574
10	N116	N101	N100	N114	X	Two Way	.000574
11	N122	N103	N102	N104	X	Two Way	.000574
12	N104	N101	N100	N102	X	Two Way	.000574
13	N186	N180	N179	N181	X	Two Way	.000574
14	N181	N166	N165	N179	X	Two Way	.000574
15	N187	N168	N167	N169	X	Two Way	.000574
16	N169	N166	N165	N167	X	Two Way	
17	N241	N162	N163	N242	X	Two Way	.000574
18	N111	N41	N41A	N112	X		.000574
19	N72	N227	N228	N73	X	Two Way	.000574
20	N176	N97	N98	N177		Two Way	.000574
21	N97	N176	N177		X	Two Way	.000574
22	N162	N241	N242	N98	X	Two Way	.000574
	11102	1424	NZ4Z	N163	X	Two Way	.000574

Envelope Joint Reactions

	Joint		X [lb]	LC	Y (lb)	LC	ZIIbi	LC	MX [k-ft]	LC	MY [k-ft]	10	M7 (1. A)	1.0
1	R4	max	12788.581	24	3721.754		12939.556		.009	6	1.158	LC I 1	MZ [k-ft]	LC 24
2		min	-1032.911	6	925,432	69	-1466.832	6	124	24	-1.166	7	012	6
3	R4A	max	-3146.458	6	134.576	24	-3264.061	6	028	6	.502	12	.147	24
4		min	-17324.935	24	39.633	69	-17339.164	_	144	24	483	6	.021	6
5	R1	max	13786.247		3952.713		-453.828	2	.135	20	1.297	12	.138	20
6		min	752.202	2	1159.975	_	-13895.64	20	.008	2	-1.274	6	.006	20
7	R1A	max	-5066.139	2	139.88	19	18301.41	20	.152	21	.476	12	.155	
8		min	-18286.471	20	47.835	_	5132.931	_	.044	2	566	6	.038	20
9	R2	max	2016.36	12	3521.969		1878.283		.11	18	.725	11	.019	12
10	110515	min	-11586.617	18	786.997	_	-11595.441		016	12	689	5	119	18
11	R2A	max	16057.505	18	130.777	18	16133.419	18	.134	18	.455	12	02	
12		min	2453.887	12	34.634		2361.312	12	.016	12	486	6		12
13	R3		1710.972	8	3319.031	14	10507.151	14	.014	8	.501	2	135	18
14	4-75-1	min	-10500.012		797.999	71	-1619.2	8	1	14	518	6	.016	8
15	R3A	max	14980.801	14	126.25	14	-2598,408	8	018	8	.454	_	107	14
16			2657.055		35.014		-15045.122	14	125	14	THE PARTY OF THE P	12	021	8
17	Totals:			10	14673.564	21	7937.7	14	125	14	409	6	125	14
18			-6520.886		3905.315		-7937.695	7						

Joint Reactions

	LC .	Joint Label	X [lb]	У ПЫ	Z fibi	MX [k-ft]	MY [k-ft]	M7 (L. 41
1	1	R4	8003.1	1630.552	8579.589	079	1.158	MZ [k-ft] .082
2	1	R4A	-8406.736	62.654	-8287.527	068	.474	.076
3	1	R1	2065.774	1352.687	-1534.702	.021	1.129	.016
4	1	R1A	-5632.854	58,189	5732.997	.051	.425	.043
5	1	R2	713.829	873.033	723,728	003	.433	.008
6	1	R2A	3062,055	41.182	3001.056	.023	.404	024
7	1	R3	-6880.592	1401.958	6861.507	064	.448	07
8	1	R3A	7075.822	55.53	-7138.948	062	.428	06
9	1	Totals:	.398	5475.785	7937.7	.002	.420	00
10	1	COG (ft):	X:763	Y: .853	Z: .277			
11	2	R4	5417.401	1447.864	5955.997	055	1.057	.057
12	2	R4A	-6988.993	58.299	-6859.079	054	.432	
13	2	R1	752,202	1304.889	-453.828	.008	.778	.063
14	2	R1A	-5066,139	57.243	5132.931	.044	.353	.038
15	2	R2	-1883,356	1039.974	-1837.58	.02	.336	
16	2	R2A	4392.085	45.927	4374.976	.036	.318	018
17	2	R3	-8056.074	1464.627	7951.487	075	.501	036
18	2	R3A	7654.116	56.922	-7719.138	067	.381	08 065

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

*****		tions (Continue		V III	Z [lb]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
	LC	Joint Label	X [lb]	Y [lb] 5475.744	6545.766	Mrs (V-rd)	I III [K-14]	1000 (15.14)
19	2	Totals:	-3778.758	Y: .853	Z: .277			
20	2	COG (ft):	X:763		3249.666	03	.736	.031
21_	3	R4	2849.441	1265.41 53.748	-5466.56	043	.278	.049
2	3	R4A	-5566.978		-1205.414	.012	.212	.014
23	3	R1	1191.702	1370.806		.045	.187	.044
24	3	R1A	-5469.343	59.301	5486.447	.043	.151	043
25	3	R2	-4362.32	1202.082	-4291.433	.043	.156	047
26	3	R2A	5637.04	50.144	5658.034		.441	073
27	3	R3	-7568.339	1418.588	7401.574	072	.242	062
28	3	R3A	7356.816	55.662	-7407.327	065	.242	002
29	3	Totals:	-5931.98	5475.739	3424.987			
30	3	COG (ft):	X:763	Y: .853	Z: .277	000	.116	.012
31	4	R4	920.941	1127.885	1073.161	009		.037
32	4	R4A	-4452.763	50.093	-4444.765	035	061	
33	4	R1	2553.508	1479.021	-2897.696	.026	524	.029
34	4	R1A	-6326.722	62.196	6254.534	.05	147	.054
35	4	R2	-6176.99	1317.417	-5988.708	.059	313	06
36	4	R2A	6502.175	53.009	6561.393	.057	132	054
37	4	R3	-6258.996	1332.635	6176.524	061	.03	06
38	4	R3A	6717.962	53.489	-6734.457	058	04	057
39	4	Totals:	-6520.886	5475.746	014			
40	4	COG (ft):	X:763	Y: .853	Z: .277			
41	5	R4	-525.387	1012.41	-693.38	.005	599	004
42	5	R4A	-3542.219	46.669	-3626.636	03	383	.026
43	5	R1	4465.865	1614.075	-5046.795	.046	-1.106	.048
44	5	R1A	-7416.912	65.396	7262.543	.058	468	.066
45	5	R2	-7554.74	1412.645	-7296.926	.071	689	074
	5	R2A	7204.267	55.482	7295.026	.064	401	06
46	5	R3	-4470.26	1218.41	4501.563	044	416	044
47	5	R3A	5863.452	50.674	-5845.503	049	31	05
48		Totals:	-5975.934	5475.76	-3450.107			
49	5	COG (ft):	X:763	Y: .853	Z: .277			
50	5		-1032.911	953.094	-1466.832	.009	-1.054	012
51	6	R4	-3146.458	44.746	-3264.061	028	483	.021
52	6	R4A	7124.387	1794.537	-7769.662	.073	-1.274	.073
53	6	R1	-8851.712	69.331	8684.783	.07	566	.079
54	6	R1A	-8004.061	1459.783	-7858.628	.074	633	08
55	6	R2	7512.93	56.799	7606.428	.066	486	063
56	6	R2A		1051.203	2007.286	021	518	019
57	6	R3	-1976.085	46.312	-4528.564	037	409	039
58	6	R3A	4569.368	5475.806	-6589.248	.001	1	
59	6	Totals:	-3804.542		Z: .277			
60	6	COG (ft):	X:763	Y: .853 1024.406	-339.181	003	-1.166	002
61	7	R4	213.853		-3896.729	035	445	.026
62	7	R4A	-3779.785	46.806	-10366.078	.098	-1.109	.098
63	7	R1	9822.653	1959.651		.084	507	.092
64	7	R1A	-10241.071	72.531	10112.252 -6703.728	.062	398	069
65	7	R2	-6686.944	1387.526		.062	435	059
66	7	R2A	6896.208	55.128	6963.871		454	.006
67	7	R3	545.499	888.115	-534.39	.002	454	026
68	7	R3A	3229.278	41.709	-3173.713	024	*.09	020
69	7	Totals:	308	5475.871	-7937.695			
70	7	COG (ft):	X:763	Y: .853	Z: .277	0.07	1.07	.023
71	8	R4	2813.471	1204.41	2274.219	027	-1.07	
72	8	R4A	-5207.055	51.829	-5322.078	048	396	.039
73	8	R1	11128.281	2009.607	-11441.732	.11	762	.108
74	8	R1A	-10807.996	73.102	10715.693	.091	43	.096
75	8	R2	-4077.812	1218.289	-4153.228	.038	286	044
76	8	R2A	5561.936	50.896	5598.974	.047	358	047
77	8	R3	1710.972	827.803	-1619.2	.014	505	.016

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
78	8	R3A	2657.055	39.977	-2598.408	018	342	021
79	8	Totals:	3778.852	5475.912	-6545.76			
80	8	COG (ft):	X:763	Y: .853	Z: .277			
81	9	R4	5386.175	1386.505	4967,717	052	753	.049
82	9	R4A	-6634.624	56.448	-6712.418	06	24	.053
83	9	R1	10691,422	1942.855	-10672.359	.107	194	.000
84	9	R1A	-10407.402	71.393	10355.179	.09	269	.09
85	9	R2	-1600.573	1056.852	-1714.737	.015	092	019
86	9	R2A	4318.83	46.698	4326.527	.035	205	036
87	9	R3	1223.784	873.678	-1054.79	.011	456	.009
88	9	R3A	2954.465	41.487	-2920.097	021	196	024
89	9	Totals:	5932.077	5475.916	-3424.979	021	130	024
90	9	COG (ft):	X:763	Y: .853	Z: .277			1 2 1 10
91	10	R4	7303.229	1525.22	7140.738	073	131	.068
92	10	R4A	-7743.967	59.754	-7735.621	067	.093	The second second
93	10	R1	9342.524	1832.741	-8967.551			.065
94	10	R1A	-9554.186	68.987	9577.075	.093	.548	.085
95	10	R2	197.523	943.643	-21.972		.055	.08
96	10	R2A	3460.963	43.576	2425 507	001	.365	002
97	10	R3	-71.506	957.965	3425.567 180.466	.025	.083	029
98	10	R3A	3586.401	44.023		0	061	004
99	10	Totals:	6520.981		-3598.68	028	.094	03
100	10	COG (ft):	X:763	5475.909	.023			
101	11	R4	8734.526	Y: .853	Z: .277	200		
102	11	R4A	0734.526	1642.868	8921.37	088	.592	.084
103	11		-8647.787	62.639	-8563.218	073	.403	.076
104	11	R1	7440.393	1696.285	-6826.459	.072	1.133	.066
	11	R1A	-8467.911	66.102	8570.273	.078	.371	.069
105 106	11	R2	1562.459	850.092	1300.79	013	.725	.012
107		R2A	2765.392	40.697	2684.043	.018	.362	023
_	11	R3	-1846.499	1070.113	1847.764	017	.382	021
108	11	R3A	4435.454	47.099	-4484.448	037	.364	036
109	11	Totals:	5976.027	5475.895	3450.116			
110	11	COG (ft):	X:763	Y: .853	Z: .277			
111	12	R4	9238.907	1703.628	9708.876	092	1.05	.092
112	12	R4A	-9038.411	64.235	-8927.777	074	.502	.081
113	12	R1	4776.399	1515.608	-4121.825	.046	1.297	.041
114	12	R1A	-7028.397	62.058	7154.993	.065	.476	.055
115	12	R2	2016.36	803.081	1878.283	016	.661	.019
116	12	R2A	2453.887	39.118	2361.312	.016	.455	02
117	12	R3	-4345.131	1236.677	4326.638	04	.497	045
118	12	R3A	5731.02	51.445	-5791.244	049	.454	048
119	12	Totals:	3804.633	5475.85	6589.255			
	12	COG (ft):	X:763	Y: .853	Z: .277			1 10 10
121	13	R4	12420.725	3701.974	12618.446	121	.352	.125
122	13	R4A	-17153.087	134.482	-17157.341	142	.051	.146
123	13	R1	11259.839	3777.418	-11119.486	.109	.295	.112
24	13	R1A	-16925.72	138.654	16982.952	.142	.191	.141
25	13	R2	-9136.685	3364.645	-9192.818	.087	.183	094
26	13	R2A	14866.844	129.328	14932.21	.123	038	125
27	13	R3	-10147.491	3300.903	10181.263	097	036	147277777
	13	R3A	14815.771	126.124	-14872.866	123		104
29	13	Totals:	.196	14673.527	2372.361	120	.22	124
	13	COG (ft):	X:346	Y: .786	Z: .121			
_	14	R4	11698.98	3654.035		114	205	440
	14	R4A	-16785.159	134.124	11896.746	114	.325	.118
33	14	R1			-16778.774	139	.042	.142
	14	R1A	10877.175	3763.366	-10812.538	.106	.182	.109
	14	R2	-16769.402	138.726	16811.954	.14	.159	.14
	14	R2A	-9855.786	3408.274	-9882.014	.094	.13	101
	17	IVZA	15206.39	129.71	15289.662	.126	074	128

Feb 8, 2024 3:42 PM Checked By: PMA

<u>Joint</u>	Read	ctions (Continue	d)					
	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
137	14	R3	-10500.012	3319.031	10507.151	1	.091	107
138	14	R3A	14980.801	126.25	-15045.122	-,125	.208	-,125
139	14	Totals:	-1147.013	14673.515	1987.066			
140	14	COG (ft):	X:346	Y: .786	Z: .121		207	44
141	15	R4	10960.584	3603.522	11117.728	-,107	.227	.11
142	15	R4A	-16402.855	133.748	-16402.627	136	006	.139
143	15	R1	10955.031	3778.617	-10988.751	.107	.01	.111
144	15	R1A	-16856.115	139.003	16886.445	.14	.107	.141
145	15	R2	-10575.991	3452.777	-10580.101	.101	.056	108
146	15	R2A	15542.705	130.058	15632.117	.129	121	131
147	15	R3	-10409.61	3309.702	10398.33	∹.1	.068	106
148	15	R3A	14924.467	126.086	-14988.134	124	.165	125
149	15	Totals:	-1861.784	14673.513	1075.007			
150	15	COG (ft):	X:346	Y: .786	Z: .121			
151	16	R4	10391.008	3564.241	10475.245	:≈1	.072	.105
152	16	R4A	-16093.997	133.432	-16117.5	134	09	.135
153	16	R1	11325.586	3807.233	-11455.178	.111	177	.115
154	16	R1A	-17080.387	139.27	17090.204	.141	.026	.144
155	16	R2	-11127.999	3486.732	-11109.471	.106	048	114
156	16	R2A	15803.577	130.334	15886.424	.132	175	-,133
157	16	R3	-10045.135	3286.457	10041.291	097	014	102
	16	R3A	14743.989	125.817	-14810.988	123	.108	123
158	16	Totals:	-2083.358	14673.514	.028			
159		COG (ft):	X:346	Y: .786	Z: .121			
160	16	R4	9998.927	3534.045	9991.979	096	105	.101
161	17	R4A	-15858.114	133.099	-15902.16	132	166	.133
162	17		11895.411	3845.394	-12092.306	.117	32	.12
163	17	R1	-17384.921	139.494	17372.836	.143	052	.147
164	17	R1A	-11506.73	3512.273	-11484.579	.11	121	117
165	17	R2	15998.669	130.611	16076.775	.134	227	134
166	17	R2A		3253.104	9516.715	091	11	097
167	17	R3	-9501.156	125.5	-14559.893	12	.059	121
168	17	R3A	14486.172	14673.519	-1080.632		1,000	
169	17	Totals:	-1871.741	Y: .786	Z: .121	5 F F F	-1	
170	17	COG (ft):	X:346	3520.672	9812.252	095	244	.099
171	18	R4	9901.973		-15826.173	132	202	.131
172	18	R4A	-15772.874	132.875	-12875.443	.125	378	.127
173	18	R1	12658.353	3894.813	17754.956	.147	085	.15
174	18	R1A	-17770.064	139.736		.11	114	119
175	18	R2	-11586.617	3521.969	-11595.441	.134	255	135
176	18	R2A	16057.505	130.777	16133.419	084	16	09
177	18	R3	-8779.265	3207.625	8807.692		.027	118
178	18	R3A	14138.108	125.066	-14208.107	117	.027	-,110
179	18	Totals:	-1152.881	14673.532	-1996.845			
180	18	COG (ft):	X:346	Y: .786	Z: .121	200	200	100
181	19	R4	10270.512	3540.29	10133.381	099	302	.102
182	19	R4A	-15944.735	133.003	-16007.53	134	21	.133
183	19	R1	13404.052	3938.48	-13589.133	.131	344	.135
184	19	R1A	-18130.038	139.88	18130.18	.15	072	.154
185	19	R2	-11203.056	3501.906	-11256.304	.107	063	-,115
186	19	R2A	15884.66	130.652	15949.106	.132	245	134
187	19	R3	-8076.221	3164.707	8119.346	078	174	083
188	19	R3A	13794.817	124.631	-13851.34	113	.014	115
189	19	Totals:	009	14673.55	-2372.294			
	19	COG (ft):	X:346	Y: .786	Z: .121			
190		R4	10993.267	3588.011	10854.13	105	276	.11
191	20	R4A	-16313.259	133.406	-16385.707	138	2	.136
192	20		13786.247	3952.713	-13895.64	.135	231	.138
193	20	R1 R1A	-18286.471	139.781	18301.41	.152	04	.155
194	20		-10482.969	3458.089	-10567.895	.1	009	108
195	20	R2	-10402.303	0,00.000			11 420 -241	Page 110

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
196	20	R2A	15544.674	130.304	15592.189	.129	21	131
197	20	R3	-7724.535	3146.779	7793.994	075	183	08
198	20	R3A	13630.248	124.478	-13679.48	112	.026	114
199	20	Totals:	1147.2	14673.561	-1986.999		.020	
200	20	COG (ft):	X:346	Y: .786	Z: .121			
201	21	R4	11731.959	3638.5	11632.103	113	178	.117
202	21	R4A	-16695.893	133.786	-16761.617	141	152	.14
203	21	R1	13708.73	3937.411	-13718.035	.134	059	.136
204	21	R1A	-18199.963	139.524	18226.336	.152	.011	.153
205	21	R2	-9762.956	3413.631	-9870.889	.094	.067	101
206	21	R2A	15208.417	129.956	15250.353	.125	164	128
207	21	R3	-7814.786	3156.1	7903.918	075	161	
208	21	R3A	13686.462	124.655	-13737.109	112		081
209	21	Totals:	1861.971	14673.564	-1074.94	112	.069	114
210	21	COG (ft):	X:346	Y: .786	Z: .121			
211	22	R4	12300.778			440	000	
212	22	R4A	-17004.457	3677.905	12274.393	119	023	.122
213	22	R1		134.076	-17046.856	143	068	.143
214	22	R1A	13339.049	3908.632	-13250.727	.13	.129	.132
215	22	R2	-17975.871	139.292	18021.86	.151	.091	.151
216	22		-9212.122	3379.857	-9341.836	.088	.17	096
217	22	R2A	14948.019	129.659	14996.179	.123	11	126
	22	R3	-8178.212	3179.189	8261.544	079	08	085
218		R3A	13866.362	124.951	-13914.519	114	.127	116
219	22	Totals:	2083.545	14673.562	.039			
220	22	COG (ft):	X:346	Y: .786	Z: .121			
221	23	R4	12691.906	3708.29	12758.677	123	.155	.127
222	23	R4A	-17240.016	134.371	-17262.886	144	.007	.146
223	23	R1	12769.845	3870.328	-12614.123	.124	.272	.127
224	23	R1A	-17671.548	139.092	17739.292	.149	.17	.147
225	23	R2	-8834.325	3354.471	-8965.847	.085	.242	092
226	23	R2A	14753.471	129.352	14805.436	.121	057	124
227	23	R3	-8721.232	3212.364	8785.544	084	.016	09
228	23	R3A	14123.826	125.289	-14165.393	116	.177	118
229	23	Totals:	1871.928	14673.558	1080.699			.110
230	23	COG (ft):	X:346	Y: .786	Z: .121			
231	24	R4	12788.581	3721.754	12939.556	124	.294	.128
232	24	R4A	-17324.935	134.576	-17339.164	144	.043	.147
233	24	R1	12006.478	3820.895	-11832.325	.116	.329	.119
234	24	R1A	-17286.099	138.842	17357.674	.146	.203	
235	24	R2	-8754.23	3344.78	-8853.866	.084		.144
236	24	R2A	14694.592	129.173	14748.127	.121	.234	091
237	24	R3	-9443.341	3257.8	9493.458		028	123
238	24	R3A	14472.022			091	.067	097
239	24	Totals:	1153.068	125.723 14673.545	-14516.547	12	.208	121
40	24	COG (ft):	X:346		1996.912			
241	25	R4		Y: .786	Z: .121	666		222
242	25		3816.414	1302.205	3845.929	038	.065	.038
243	25	R4A	-5965.753	54.435	-5957.859	05	.029	.05
44		R1	6697.4	1902.332	-6681.56	.065	.052	.066
	25	R1A	-9048.479	73.904	9069.123	.077	.059	.077
45	25	R2	-5384.446	1695.966	-5444.368	.049	.099	058
46	25	R2A	7750.873	67.705	7829.753	.064	133	067
47	25	R3	-2643.245	1082.316	2645.618	025	.036	028
48	25	R3A	4777.333	46.896	-4810.527	04	.087	04
49	25	Totals:	.096	6225.76	496.108			
50	25	COG (ft):	X:43	Y: .79	Z: 1.084			DE TIVE
251	26	R4	3654.462	1290.892	3682.331	036	.058	.036
52	26	R4A	-5876.9	54.14	-5868.723	049	.027	.049
53	26	R1	6615.567	1899.281	-6614.23	.064	.031	.066
54		R1A					.001	

Feb 8, 2024 3:42 PM Checked By: PMA

Color							ctions (Continued	Rea	Joint
255 26	MZ [k-ft]	MY [k-ft]					Joint Label	LC	
257 26	059								255
257 26	067						R2A	26	
258 26	028							26	
259 26	04	.084	04				R3A	26	
260 26						-236.101	Totals:		
261 27 R4A .5787.83 35.849 .5781.757 .048 .017 262 27 R4A .5787.83 35.849 .5781.757 .048 .017 263 27 R1 .6642.741 1903.407 .6661.593 .064 .005 264 27 R1A .9037.887 73.976 .9053.687 .077 .044 265 27 R2A .5791.71 .7176.662 .5756.373 .052 .081 266 27 R2A .7911.499 68.159 .7994.416 .066 148 267 27 R3A .4794.805 46.908 .4828.897 .04 .075 268 27 Totals: .370.682 6225.757 214.06 .075 270 27 COG (ft): X: .43 Y: .79 2: 1.084 .075 271 28 R4 .373.552 1270.874 .3377.702 .034 .0 272 28	205					X:43	COG (ft):		
262 27 R4A -5787.83 53.849 -5781.767 048 .017 263 27 R1A 6642.741 1903.407 -661.593 .064 005 264 27 R1A -9037.887 73.976 9053.687 .077 .044 265 27 R2 -5701.71 1716.662 -5756.373 .052 .081 266 27 R2A 7911.499 68.159 7994.416 .066 -148 267 27 R3 -2686.142 1083.285 2678.945 .026 .036 268 27 R3A 4794.805 46.908 4828.897 .04 .075 269 27 Totals: .370.682 6255.757 214.06 .024 .075 270 27 COG (ft): X:.43 Y:.79 Z:1.084 .004 .075 271 28 R4 -5718.206 55.627 5717.786 .048 .004	.035					3493.842			
263 27 R1 6642.741 1903.407 -6661.593 .064 -005 264 27 R1A -9037.887 73.976 9053.687 .077 .044 265 27 R2 -5701.71 1716.662 -5756.373 .052 .081 266 27 R2A 7911.499 68.159 7994.416 .066 -1.48 267 27 R3 -2866.142 1083.285 2678.945 .026 .036 268 27 R3A 4794.805 46.008 -4826.897 04 .075 269 27 Totals: -370.682 6225.757 214.06 .077 270 27 COG (fft): X: -43 Y: 79 2: 1.084 .075 270 27 COG (fft): X: -43 Y: 79 2: 1.084 .004 271 28 R4 -5718.206 53.627 -5717.788 .048 .004 272 28 R1	.049					-5787.83	R4A		
264 27 R1A -9037.887 73.976 9053.687 .077 .044 265 27 R2A -5701.71 1716.662 -5756.373 .052 .081 266 27 R2A 7911.499 66.159 7994.416 .066 -148 267 27 R3A -2686.42 1083.285 2678.945 026 .036 268 27 R3A 4794.805 46.908 -826.897 04 .075 269 27 Totals: -370.682 6225.757 214.06 .036 270 27 COG (fft): X:-43 Y:.79 Z:1.084 .004 271 28 R4 -5718.206 53.627 -5717.786 .048 .004 272 28 R4A -5718.206 53.627 -5717.786 .048 .004 273 28 R1A -5718.206 53.627 -5717.786 .046 .051 274 28 <t< td=""><td>.066</td><td></td><td></td><td></td><td></td><td>6642.741</td><td></td><td></td><td></td></t<>	.066					6642.741			
R2	.077					-9037.887			
266 27 R2A 7911.499 68.159 7994.416 .066 .148 267 27 R3 -2686.142 1083.285 2678.945 026 .036 268 27 R3A 4794.805 46.908 -4826.897 04 .075 269 27 Totals: -370.682 6225.757 214.06 04 .075 270 27 COG (ft): X:-43 Y: 79 2: 1.084 04 .075 271 28 R4 3373.552 1270.874 3377.702 034 0 272 28 R4A -5718.206 53.627 -5717.786 048 004 273 28 R1 6727.25 1910.225 -676.78 .065 051 274 28 R1A -9091.059 74.13 9101.906 .077 .024 275 28 R2 -5814.764 1723.852 -5861.993 .053 .052 <	061				1716.662	-5701.71			
267 27 R3 -2686.142 1083.285 2678.945 026 .036 268 27 R3A 4794.805 46.908 -4826.897 04 .075 269 27 Totals: -370.682 6225.757 214.06 .02 270 27 COG (ft): X: -43 Y: 79 2: 1.084 .004 271 28 R4 3373.552 1270.874 3377.702 034 0 272 28 R4A -5718.206 53.627 -5717.786 048 004 273 28 R1 6727.25 1910.225 -676.7678 .065 051 274 28 R1A -9091.059 74.13 9101.906 .077 .024 275 28 R2 -5814.764 1723.852 -5861.993 .053 .052 276 28 R2A 7965.457 68.316 8050.385 .066 .166 277 28 <t< td=""><td>068</td><td></td><td></td><td>7994.416</td><td>68.159</td><td></td><td></td><td></td><td></td></t<>	068			7994.416	68.159				
268 27 R3A 4794.805 46.908 -4826.897 04 .075 269 27 Totals: -370.682 6225.757 214.06 27 270 27 COG (fft): X: -43 Y:.79 2: 1.084 0 271 28 R4 3373.552 1270.874 3377.702 034 0 272 28 R4A -5718.206 53.627 -5717.786 -048 004 273 28 R1 6727.25 1910.225 -6767.678 .065 051 274 28 R1A -9091.059 74.13 9101.906 .077 .024 275 28 R2 -5814.764 1723.852 -5861.993 .053 .052 275 28 R2 -5814.764 1723.852 -5861.993 .053 .066 .166 277 28 R3 -2604.875 68.316 8050.385 .066 .166 277	028		026	2678.945	1083.285				
Totals:	04	.075	04	-4826.897	46.908				
270 27 COG (ft): X: -43 Y: .79 Z: 1.084 Description of the control of the co				214.06					
271 28 R44 3373.552 1270.874 3377.702 -034 0 272 28 R4A -5718.206 53.627 -5717.786 -048 -004 273 28 R1 6727.25 1910.225 -6767.678 .065 051 274 28 R1A -9091.059 74.13 9101.906 .077 .024 275 28 R2 -5814.764 1723.852 -5861.993 .053 .052 276 28 R2A 7965.457 68.316 8050.385 .066 -166 277 28 R3 -2604.875 1077.976 2602.134 025 .011 278 28 R3A 4755.169 46.758 4784.676 039 .057 279 28 Totals: -407.477 6225.758 006 039 .057 280 28 COG (ft): X: -43 Y: 79 Z: 1.084 033 045	77 (2)			Z: 1.084					
271 28 R4A -5718.206 53.627 -5717.786 -048 -004 273 28 R1 6727.25 1910.225 -6767.678 .065 051 274 28 R1A -9091.059 74.13 9101.906 .077 .024 275 28 R2 -5814.764 1723.852 -5861.993 .053 .052 276 28 R2A 7965.457 68.316 8050.385 .066 -166 277 28 R3 -2604.875 1077.976 2602.134 025 .011 278 28 R3A 4755.169 46.758 4784.676 039 .057 279 28 Totals: -407.477 6225.758 006 006 280 28 COG (ft): X: -43 Y: .79 Z: 1.084 033 047 281 29 R4A -5661.431 53.426 -5666.367 047 024 281	.033	0	034	3377.702					
272 28 R1 6727.25 1910.225 -6767.678 .065 051 274 28 R1A -9091.059 74.13 9101.906 .077 .024 275 28 R2 -5814.764 1723.852 -5861.993 .053 .052 276 28 R2A 7965.457 68.316 8050.385 .066 166 277 28 R3 -2604.875 1077.976 2602.134 025 .011 278 28 R3A 4755.169 46.758 4784.676 039 .057 279 28 Totals: -407.477 6225.758 006 039 .057 279 28 COG (ft): X: -43 Y: .79 Z: 1.084 033 045 280 28 COG (ft): X: -43 Y: .79 Z: 1.084 047 024 281 29 R4A -5661.431 53.426 -5666.367 047 024	.048	004	048						
274 28 R1A -9091.059 74.13 9101.906 .077 .024 275 28 R2 -5814.764 1723.852 -5861.993 .053 .052 276 28 R2A 7965.457 68.316 8050.385 .066 -166 277 28 R3 -2604.875 1077.976 2602.134 025 .011 278 28 R3A 4755.169 46.758 -4784.676 039 .067 279 28 Totals: -407.477 6225.758 006 039 .067 280 28 COG (ft): X: -43 Y: .79 Z: 1.084 033 045 281 29 R4A -5661.431 53.426 -5666.367 047 024 281 29 R4A -5661.431 53.426 -5666.367 047 024 283 29 R1 6846.313 1918.715 -6901.749 .066 088 <	.067	051							
274 28 R2 -5814.764 1723.852 -5861.993 .053 .052 276 28 R2A 7965.457 68.316 8050.385 .066 166 277 28 R3 -2604.875 1077.976 2602.134 025 .011 278 28 R3A 4755.169 46.758 4784.676 039 .057 279 28 Totals: -407.477 6225.758 006 039 .057 280 28 COG (ft): X: -43 Y: .79 Z: 1.084 033 045 281 29 R4A 3283.558 1263.594 3266.934 033 045 281 29 R4A -5661.431 53.426 -5666.934 047 024 283 29 R1 6846.313 1918.715 -6901.749 .066 088 284 29 R1A -9158.863 74.304 9164.843 .077 .004	.077								
276 28 R2A 7965.457 68.316 8050.385 .066 166 277 28 R3 -2604.875 1077.976 2602.134 025 .011 278 28 R3A 4755.169 46.758 -4784.676 039 .057 279 28 Totals: -407.477 6225.758 006 039 .057 280 28 COG (fft): X: -43 Y: .79 Z: 1.084 033 045 281 29 R4 3283.558 1263.594 3266.934 033 045 281 29 R4A -5661.431 53.426 -5666.367 047 024 283 29 R1 6846.313 1918.715 -6901.749 .066 088 284 29 R1A -9158.863 74.304 9164.843 .077 .004 285 29 R2 -5900.553 1729.784 -5943.837 .054 .029	062			-5861 993					
R3	068								
277 28 R3A 4755.169 46.758 4784.676 039 .057 279 28 Totals: -407.477 6225.758 006 033 045 280 28 COG (ft): X:43 Y: .79 Z: 1.084 033 045 281 29 R4A 3283.558 1263.594 3266.934 033 045 282 29 R4A -5661.431 53.426 -5666.367 047 024 283 29 R1 6846.313 1918.715 -6901.749 .066 088 284 29 R1A -9158.863 74.304 9164.843 .077 .004 285 29 R2 -5900.553 1729.784 -5943.837 .054 .029 286 29 R2 -5900.553 1729.784 -5943.837 .054 .029 286 29 R3 -2493.585 1070.908 2497.683 024 017	027								
279 28	04								
280 28 COG (ft): X: -,43 Y: .79 Z: 1.084 281 29 R4 3283.558 1263.594 3266.934 -,033 -,045 282 29 R4A -5661.431 53.426 -5666.367 -,047 -,024 283 29 R1 6846.313 1918.715 -6901.749 ,066 -,088 284 29 R1A -9158.863 74.304 9164.843 ,077 ,004 285 29 R2 -5900.553 1729.784 -5943.837 ,054 ,029 286 29 R2A 8009.177 68.457 8096.019 ,067 -,182 287 29 R3 -2493.585 1070.908 2497.683 -,024 -,017 288 29 R3A 4701.956 46.57 -4729.166 -,039 ,04 289 29 Totals: -373.429 6225.759 -215.64 - -,039 ,04 299			.000						
281 29 R4 3283.558 1263.594 3266.934 033 045 282 29 R4A -5661.431 53.426 -5666.367 047 024 283 29 R1 6846.313 1918.715 -6901.749 .066 088 284 29 R1A -9158.863 74.304 9164.843 .077 .004 285 29 R2 -5900.553 1729.784 -5943.837 .054 .029 286 29 R2A 8009.177 68.457 896.019 .067 182 287 29 R3 -2493.585 1070.908 2497.683 024 017 288 29 R3A 4701.956 46.57 -4729.166 039 .04 289 29 Totals: -373.429 6225.759 -215.64 032 074 290 29 COG (ft): X: -43 Y: .79 Z: 1.084 032 291 </td <td>17: 13:11</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	17: 13:11								
281 29 R4A	.032	- 045	- 033						
283 29 R1 6846.313 1918.715 6901.749 .066088 284 29 R1A -9158.863 74.304 9164.843 .077 .004 285 29 R2 -5900.553 1729.784 -5943.837 .054 .029 286 29 R2A 8009.177 68.457 8096.019 .067182 287 29 R3 -2493.585 1070.908 2497.683024017 288 29 R3A 4701.956 46.57 -4729.166039 .04 289 29 Totals: -373.429 6225.759 -215.64 290 29 COG (ft): X: -43 Y: .79 Z: 1.084 291 30 R4A -5636.915 53.315 -5643.73304703 293 30 R1 7012.439 1929.989 -7071.209 .068098 294 30 R1A -9248.429 74.53 9253.313 .078002 295 30 R2A 8028.402 68.536 8115.5 .067188 297 30 R3A 4621.085 46.292 -4647.193032 298 30 R3A 4621.085 46.292 -4647.193038 299 30 Totals: -237.713 6225.762 -411.827 300 30 COG (ft): X: -43 Y: .79 Z: 1.084 301 31 R4 3329.681 1264.357 3288.925033081 302 31 R4A -5676.483 53.431 -5683.525048028 303 31 R4A -5676.483 53.431 -5683.525048028	.047								
284 29 R1A -9158.863 74.304 9164.843 .077 .004 285 29 R2 -5900.553 1729.784 -5943.837 .054 .029 286 29 R2A 8009.177 68.457 8096.019 .067182 287 29 R3 -2493.585 1070.908 2497.683024017 288 29 R3A 4701.956 46.57 -4729.166039 .04 289 29 Totals: -373.429 6225.759 -215.64 290 29 COG (ft): X: -43 Y: .79 Z: 1.084 291 30 R4 3252.033 1259.856 3218.34032074 292 30 R4A -5636.915 53.315 -5643.73304703 293 30 R1 7012.439 1929.989 -7071.209 .068098 294 30 R1A -9248.429 74.53 9253.313 .078002 295 30 R2 -5928.658 1732.737 -5979.176 .054 .032 296 30 R2A 8028.402 68.536 8115.5 .067188 297 30 R3 -2337.67 1060.506 2342.331022023 298 30 R3A 4621.085 46.292 -4647.193038 .034 299 30 Totals: -237.713 6225.762 -411.827 300 30 COG (ft): X: -43 Y: .79 Z: 1.084 301 31 R4 3329.681 1264.357 3288.925033081 302 31 R4A -5676.483 53.431 -5683.525048028 303 31 R1 7181.231 1940.222 -7232.949 .07088 303 31 R1 7181.231 1940.222 -7232.949 .07088	.068								
285 29 R2 -5900.553 1729.784 -5943.837 .054 .029 286 29 R2A 8009.177 68.457 8096.019 .067 182 287 29 R3 -2493.585 1070.908 2497.683 024 017 288 29 R3A 4701.956 46.57 -4729.166 039 .04 289 29 Totals: -373.429 6225.759 -215.64 -229 -229 COG (ft): X: -43 Y: .79 Z: 1.084 -229 -229 COG (ft): X: -43 Y: .79 Z: 1.084 -032 074 -032 074 -032 074 -032 074 -032 074 -032 074 032 074 032 074 032 074 032 074 032 047 032 074 032 074 032 074 032 032 034 098 098 098	.078								
286 29 R2A 8009.177 68.457 8096.019 .067 182 287 29 R3 -2493.585 1070.908 2497.683 024 017 288 29 R3A 4701.956 46.57 -4729.166 039 .04 289 29 Totals: -373.429 6225.759 -215.64	063								
286 29 R3 -2493.585 1070.908 2497.683 024 017 288 29 R3A 4701.956 46.57 -4729.166 039 .04 289 29 Totals: -373.429 6225.759 -215.64 -220 -220 29 COG (ft): X: -43 Y: .79 Z: 1.084 -221 -221 -221 -222 -222 -222 -223 -224 -222 -223 -223 -224 -222 -223	069								
287 29 R3A 4701.956 46.57 -4729.166 039 .04 289 29 Totals: -373.429 6225.759 -215.64 -2721.084 -2721	026								
288 29 Totals: -373.429 6225.759 -215.64 290 29 COG (ft): X: -43 Y: .79 Z: 1.084 291 30 R4 3252.033 1259.856 3218.34 032 074 292 30 R4A -5636.915 53.315 -5643.733 047 03 293 30 R1 7012.439 1929.989 -7071.209 .068 098 294 30 R1A -9248.429 74.53 9253.313 .078 002 295 30 R2 -5928.658 1732.737 -5979.176 .054 .032 296 30 R2A 8028.402 68.536 8115.5 .067 188 297 30 R3 -2337.67 1060.506 2342.331 022 023 298 30 R3A 4621.085 46.292 -4647.193 038 .034 299 30 Totals: -237.713 </td <td>039</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>29</td> <td>287</td>	039							29	287
290 29 COG (ft): X: -43 Y: .79 Z: 1.084 291 30 R4 3252.033 1259.856 3218.34 032 074 292 30 R4A -5636.915 53.315 -5643.733 047 03 293 30 R1 7012.439 1929.989 -7071.209 .068 098 294 30 R1A -9248.429 74.53 9253.313 .078 002 295 30 R2 -5928.658 1732.737 -5979.176 .054 .032 296 30 R2A 8028.402 68.536 8115.5 .067 188 297 30 R3 -2337.67 1060.506 2342.331 022 023 298 30 R3A 4621.085 46.292 -4647.193 038 .034 299 30 Totals: -237.713 6225.762 -411.827 300 30 COG (ft): X: -43<	039	.04	039					29	288
291 30 R4 3252.033 1259.856 3218.34 032 074 292 30 R4A -5636.915 53.315 -5643.733 047 03 293 30 R1 7012.439 1929.989 -7071.209 .068 098 294 30 R1A -9248.429 74.53 9253.313 .078 002 295 30 R2 -5928.658 1732.737 -5979.176 .054 .032 296 30 R2A 8028.402 68.536 8115.5 .067 188 297 30 R3 -2337.67 1060.506 2342.331 022 023 298 30 R3A 4621.085 46.292 -4647.193 038 .034 299 30 Totals: -237.713 6225.762 -411.827 300 30 COG (ft): X: -43 Y: .79 Z: 1.084 301 31 R4 3329.681								29	289
291 30 R4 3252.033 1259.856 3218.34 032 074 292 30 R4A -5636.915 53.315 -5643.733 047 03 293 30 R1 7012.439 1929.989 -7071.209 .068 098 294 30 R1A -9248.429 74.53 9253.313 .078 002 295 30 R2 -5928.658 1732.737 -5979.176 .054 .032 296 30 R2A 8028.402 68.536 8115.5 .067 188 297 30 R3 -2337.67 1060.506 2342.331 022 023 298 30 R3A 4621.085 46.292 -4647.193 038 .034 299 30 Totals: -237.713 6225.762 -411.827 033 081 300 30 COG (ft): X: -43 Y: .79 Z: 1.084 028 301 <td>.032</td> <td>074</td> <td>200</td> <td></td> <td></td> <td></td> <td>COG (ft):</td> <td>29</td> <td>290</td>	.032	074	200				COG (ft):	29	290
292 30 R4A -5636.915 53.315 -5643.733 047 03 293 30 R1 7012.439 1929.989 -7071.209 .068 098 294 30 R1A -9248.429 74.53 9253.313 .078 002 295 30 R2 -5928.658 1732.737 -5979.176 .054 .032 296 30 R2A 8028.402 68.536 8115.5 .067 188 297 30 R3 -2337.67 1060.506 2342.331 022 023 298 30 R3A 4621.085 46.292 -4647.193 038 .034 299 30 Totals: -237.713 6225.762 -411.827							R4	30	
293 30 R1 7012.439 1929.989 -7071.209 .068 098 294 30 R1A -9248.429 74.53 9253.313 .078 002 295 30 R2 -5928.658 1732.737 -5979.176 .054 .032 296 30 R2A 8028.402 68.536 8115.5 .067 188 297 30 R3 -2337.67 1060.506 2342.331 022 023 298 30 R3A 4621.085 46.292 -4647.193 038 .034 299 30 Totals: -237.713 6225.762 -411.827	.047						R4A	30	
294 30 R1A -9248.429 74.53 9253.313 .078 002 295 30 R2 -5928.658 1732.737 -5979.176 .054 .032 296 30 R2A 8028.402 68.536 8115.5 .067 188 297 30 R3 -2337.67 1060.506 2342.331 022 023 298 30 R3A 4621.085 46.292 -4647.193 038 .034 299 30 Totals: -237.713 6225.762 -411.827 033 .034 300 30 COG (ft): X:43 Y: .79 Z: 1.084 081 301 31 R4 3329.681 1264.357 3288.925 033 081 302 31 R4A -5676.483 53.431 -5683.525 048 028 303 31 R1 7181.231 7440.222 -7232.949 .07 088	.07					7012.439	R1		
295 30 R2 -5928.658 1732.737 -5979.176 .054 .032 296 30 R2A 8028.402 68.536 8115.5 .067 188 297 30 R3 -2337.67 1060.506 2342.331 022 023 298 30 R3A 4621.085 46.292 -4647.193 038 .034 299 30 Totals: -237.713 6225.762 -411.827	.079				74.53	-9248.429	R1A		
296 30 R2A 8028.402 68.536 8115.5 .067 188 297 30 R3 -2337.67 1060.506 2342.331 022 023 298 30 R3A 4621.085 46.292 -4647.193 038 .034 299 30 Totals: -237.713 6225.762 -411.827	063			-5979.176		-5928.658			
297 30 R3 -2337.67 1060.506 2342.331 022 023 298 30 R3A 4621.085 46.292 -4647.193 038 .034 299 30 Totals: -237.713 6225.762 -411.827 300 30 COG (ft): X:43 Y: .79 Z: 1.084 301 31 R4 3329.681 1264.357 3288.925 033 081 302 31 R4A -5676.483 53.431 -5683.525 048 028 303 31 R1 7181.231 7440.222 -7232.949 .07 088	069			8115.5	68.536	8028.402			_
298 30 R3A 4621.085 46.292 -4647.193 038 .034 299 30 Totals: -237.713 6225.762 -411.827 300 30 COG (ft): X:43 Y: .79 Z: 1.084 301 31 R4 3329.681 1264.357 3288.925 033 081 302 31 R4A -5676.483 53.431 -5683.525 048 028 303 31 R1 7181.231 7440.222 -7232.949 .07 088 303 31 R1 7147.702 -0242.077 070 001	024		022	2342.331	1060.506	-2337.67			
299 30 Totals: -237.713 6225.762 -411.827 300 30 COG (ft): X: -43 Y: .79 Z: 1.084 301 31 R4 3329.681 1264.357 3288.925 033 081 302 31 R4A -5676.483 53.431 -5683.525 048 028 303 31 R1 7181.231 7440.222 -7232.949 .07 088	039	.034	038	-4647.193	46.292				
300 30 COG (ft): X: -43 Y: .79 Z: 1.084 301 31 R4 3329.681 1264.357 3288.925 033 081 302 31 R4A -5676.483 53.431 -5683.525 048 028 303 31 R1 7181.231 7440.222 -7232.949 .07 088				-411.827	6225.762				
301 31 R4 3329.681 1264.357 3288.925 033 081 302 31 R4A -5676.483 53.431 -5683.525 048 028 303 31 R1 7181.231 1940.222 -7232.949 .07 088 303 31 R1 7187.231 747.222 -0242.077 .070 .001	of two	39207					The state of the s		
302 31 R4A -5676.483 53.431 -5683.525048028 303 31 R1 7181.231 1940.222 -7232.949 .07088	.033		033						
303 31 R1 7181.231 1940.222 -7232.949 .07088	.047	028							
303 31 17 74 700 0342 077 070 001	.072	088	.07						
1 5 1 / B 1 - 7000 - 2 10 1 7 1 20 1 90 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.08								
504 51 5240 004 4720 29 5007 112 054 047	063							31	304
303 31 1/2 5000 445 00 440 9075 504 067 -185	069								
306 31 RZA 1350. 1405.000 24.03 796 021 02	023								
307 31 R5 277 46 042 4562 924 027 036	038								
308 31 NOA 4007.21			.001						
309 31 Totals. 1994	THE PARTY.								
010 01 000 (10)	.034	- 074	- 035						
311 32 R4 3431.000 12.700 12.72.640 048 025	.048								
312 32 R4A 5700.000 4040.000 7000.000 07 066	.072								
313 32 N1 1200.002 1010.202 1000.002	Page 112						R1	32	313

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

044	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
314	32	R1A	-9370.651	74.766	9379.65	.079	.006	.08
315	32	R2	-5684.289	1717.736	-5747.721	.052	.053	061
316	32	R2A	7907.091	68.209	7990.323	.066	18	068
317	32	R3	-2106.588	1046.473	2115.816	02	023	022
318	32	R3A	4501.339	45.913	-4526.751	037	.039	038
319	32	Totals:	236,249	6225.768	-409.109			
320	32	COG (ft):	X:43	Y: .79	Z: 1.084			1 10 10
321	33	R4	3652.327	1287.039	3621.131	036	055	.036
322	33	R4A	-5854.465	54.02	-5859.607	049	016	.049
323	33	R1	7235.869	1939.153	-7252.826	.07	03	.072
324	33	R1A	-9345.817	74.656	9357.499	.079	.016	.08
325	33	R2	-5529.497	1707.578	-5595.209	.051	.065	059
326	33	R2A	7829.479	67.99	7910.918	.065	17	067
327	33	R3	-2136.888	1049.332	2150.535	02	02	023
328	33	R3A	4519.823	46.001	-4546.511	037	.048	038
329	33	Totals:	370.83	6225.769	-214.069	031	.040	030
330	33	COG (ft):	X:43	Y: .79	Z: 1.084			
331	34	R4	3772.572	1295.681	3757.049	037	046	007
332	34	R4A	-5924.07	54.24			016	.037
333	34	R1		1932.328	-5923.583	05	.005	.05
334	34	R1A	7151.41		-7146.692	.069	.016	.071
335	34	R2	-9292.661	74.504	9309.24	.079	.037	.079
336	34		-5416.508	1700.396	-5489.606	.05	.094	058
337	34	R2A	7775.549	67.832	7854.957	.065	152	067
		R3	-2218.099	1054.634	2227.386	021	.005	024
38	34	R3A	4559.432	46.152	-4588.754	037	.066	038
339	34	Totals:	407.625	6225.768	003			
340	34	COG (ft):	X:43	Y: .79	Z: 1.084			
341	35	R4	3862.508	1302.97	3867.872	038	.029	.038
342	35	R4A	-5980.818	54.439	-5975.039	05	.025	.05
343	35	R1	7032.387	1923.832	-7012.652	.068	.053	.07
344	35	R1A	-9224.872	74.331	9246.308	.079	.056	.078
345	35	R2	-5330.769	1694.471	-5407.705	.049	.118	057
346	35	R2A	7731.855	67.689	7809.293	.064	135	066
347	35	R3	-2329.336	1061.694	2331.807	022	.033	025
348	35	R3A	4612.623	46.341	-4644.252	038	.082	038
49	35	Totals:	373.577	6225.767	215.631		.002	.000
350	35	COG (ft):	X:43	Y: .79	Z: 1.084			7 527 7 1
351	36	R4	3894.02	1306.713	3916.52	039	.058	.038
52	36	R4A	-6005.315	54.549	-5997.681	05	.031	.051
53	36	R1	6866.24	1912.557	-6843.263	.066	.063	.068
54	36	R1A	-9135.288	74.104	9157.865	.078	.063	
55	36	R2	-5302.646	1691.518	-5372.305			.078
56	36	R2A	7712.619			.049	.114	057
57	36	R3	-2485.269	67.609	7789.768	.064	13	066
58	36	R3A		1072.094	2487.099	024	.04	026
59	36		4693.501	46.62	-4726.186	039	.088	039
60	36	Totals:	237.861	6225.764	411.818			
		COG (ft):	X:43	Y: .79	Z: 1.084			
61	37	R4	3592.711	1264.746	3612.774	036	.042	.036
62	37	R4A	-5735.656	53.185	-5733.796	048	.013	.048
63	37	R1	8349.842	2228.373	-8344.731	.08	.037	.084
64	37	R1A	-10702.875	83.515	10751.877	.091	.113	.092
65	37	R2	-3730.117	1371.889	-3778.406	.035	.084	04
66	37	R2A	6090.844	57.128	6138.88	.05	076	052
67	37	R3	-2865.117	1118.822	2876.404	027	.015	03
68	37	R3A	5000.446	48.153	-5026.904	042	.069	042
69	37	Totals:	.078	6225.811	496.097			IJIL
70	37	COG (ft):	X:912	Y: .79	Z: 1.084			7.75
71	38	R4	3430.768	1253.447	3449.214	034	.036	.034
72	38	R4A	-5646.828	52.887	-5644.7	047	.01	.047

Feb 8, 2024 3:42 PM Checked By: PMA

	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
73	38	R1	8267.968	2225.313	-8277.434	.079	.016	.083
74	38	R1A	-10667.395	83.486	10714.345	.091	.109	042
75	38	R2	-3892.6	1382.376	-3937.918	.036	.078	052
76	38	R2A	6173.876	57.388	6224.192	.051	081	032
77	38	R3	-2938.335	1122.66	2944.42	028	.018	042
78	38	R3A	5036.427	48.252	-5063.03	042	.066	042
79	38	Totals:	-236.12	6225.809	409.089			_
80	38	COG (ft):	X:912	Y: .79	Z: 1.084	000	040	.033
81	39	R4	3270.118	1242.072	3280.53	033	.016	.033
82	39	R4A	-5557.731	52.593	-5557.739	046	0	.084
83	39	R1	8295.073	2229.479	-8324.894	.079	02	.092
84	39	R1A	-10692.151	83.591	10736.543	.091	.099	043
85	39	R2	-4047.34	1392.475	-4090.569	.038	.066	043
86	39	R2A	6251.429	57.631	6303.731	.052	091	
87	39	R3	-2908.045	1119.803	2909.779	028	.014	03
88	39	R3A	5017.946	48.165	-5043.331	042	.057	042
89	39	Totals:	-370.701	6225.809	214.049			
90	39	COG (ft):	X:912	Y: .79	Z: 1.084		000	004
91	40	R4	3149.767	1233.432	3144.595	031	023	.031
92	40	R4A	-5488.04	52.368	-5493.754	046	021	.046
93	40	R1	8379.463	2236.352	-8431.159	.08	066	.085
94	40	R1A	-10745.177	83.73	10784.921	.091	.078	.092
95	40	R2	-4160.22	1399.61	-4196.28	.039	.037	044
96	40	R2A	6305.19	57.804	6359.798	.052	108	053
97	40	R3	-2826.795	1114.495	2833.013	027	011	029
98	40	R3A	4978.316	48.017	-5001.15	041	.039	042
99	40	Totals:	-407.495	6225.809	017			
00	40	COG (ft):	X:912	Y: .79	Z: 1.084	Time Til		- 0.0
01	41	R4	3059.728	1226.153	3033.836	03	067	.03
02	41	R4A	-5431.228	52.165	-5442.346	045	041	.045
03	41	R1	8498.407	2244.896	-8565.377	.081	103	.086
04	41	R1A	-10812.844	83.885	10847.999	.091	.059	.093
05	41	R2	-4245.861	1405.494	-4278.219	.039	.014	045
06	41	R2A	6348.75	57.958	6405.543	.053	125	054
07	41	R3	-2715.508	1107.427	2728.587	026	039	028
08	41	R3A	4925.108	47.831	-4945.675	041	.022	041
09	41	Totals:	-373.447	6225.81	-215.651			
10	41	COG (ft):	X:912	Y: .79	Z: 1.084			
11	42	R4	3028.189	1222.417	2985.253	03	096	.03
12	42	R4A	-5406.712	52.052	-5419.728	045	047	.045
13	42	R1	8664.487	2256.228	-8734.866	.083	113	.087
14		R1A	-10902.358	84.084	10936.496	.092	.052	.094
15	42	R2	-4273.938	1408.418	-4313.597	.04	.017	046
16	42	R2A	6367.955	58.043	6425.087	.053	131	054
_		R3	-2559.57	1097.014	2573.2	025	045	027
17	42	R3A	4844.215	47.556	-4863.684	04	.016	041
18	42	Totals:	-237.731	6225.813	-411.838			
19		COG (ft):	X:912	Y: .79	Z: 1.084	174 - 1 -		
20	42	R4	3105.823	1226.908	3055.817	031	103	.031
21	43	R4A	-5446.264	52.17	-5459.496	046	045	.045
22	43		8833.298	2266.513	-8896.576	.084	103	.089
23	43	R1	-10989.161	84.255	11025.224	.093	.056	.095
24	43	R1A	-4192.085	1403.971	-4241.489	.039	.032	045
25	43	R2	6329.678	57.936	6385.055	.052	-:128	054
26	43	R2A		1086.783	2414.602	023	042	025
27	43	R3	-2401.616	47.28	-4779.264	039	.018	04
28	43	R3A	4760.361	6225.817	-496.128	.000	10.0	
129	43	Totals:	.033	Y: .79	Z: 1.084			
130	43	COG (ft):	X:912	1238.197	3219.337	032	097	.032
131	44	R4	3267.821 R:\\\\					Page 11

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

	LC	Joint Label	X [lb]	Y [lb]	Z [ib]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
432	44	R4A	-5535.129	52.471	-5548.58	046	042	.046
433	44	R1	8915.141	2269.581	-8963.853	.085	081	.09
434	44	R1A	-11024.641	84.283	11062.768	.093	.06	.095
435	44	R2	-4029.555	1393.475	-4082.019	.037	.039	043
436	44	R2A	6246.629	57.678	6299.778	.052	123	053
437	44	R3	-2328.438	1082.954	2346.606	022	045	024
438	44	R3A	4724.403	47.18	-4743.157	039	.021	04
439	44	Totals:	236.231	6225.819	-409.12	.000	.02	.07
440	44	COG (ft):	X:912	Y: .79	Z: 1.084			
441	45	R4	3428.489	1249.57	3387.972	034	077	.034
442	45	R4A	-5624.248	52.765	-5635.533	047	033	.047
443	45	R1	8888.047	2265.412	-8916.323	.085	045	.089
444	45	R1A	-10999.895	84.18	11040.543	.093	.07	.095
445	45	R2	-3874.822	1383.378	-3929.428	.036	.051	042
446	45	R2A	6169.083	57.435	6220.28	.051		
447	45	R3	-2358.726	1085.811			113	052
448	45	R3A	4742.884		2381.303	023	042	025
449	45	Totals:	370.812	47.268	-4762.895	039	.03	04
450	45	COG (ft):	X:912	6225.82	-214.08			
451	46	R4		Y: .79	Z: 1.084	00-		
452	46		3548.795	1258.214	3523.893	035	038	.035
453	46	R4A	-5693.92	52.989	-5699.523	048	011	.047
	46	R1	8803.706	2258.531	-8810.009	.084	0	.088
454		R1A	-10946.885	84.043	10992.126	.093	.091	.094
455	46	R2	-3762.007	1376.251	-3823.734	.035	.08	041
456	46	R2A	6115.35	57.262	6164.221	.05	095	052
457	46	R3	-2439.921	1091.112	2458.11	023	016	026
458	46	R3A	4782.487	47.417	-4805.098	039	.048	04
459	46	Totals:	407.606	6225.819	015			
460	46	COG (ft):	X:912	Y: .79	Z: 1.084			
461	47	R4	3638.775	1265.502	3634.707	036	.007	.036
462	47	R4A	-5750.705	53.19	-5750.969	048	.008	.048
463	47	R1	8684.802	2249.982	-8675.823	.083	.038	.087
464	47	R1A	-10879.233	83.889	10929.053	.093	.11	.093
465	47	R2	-3676.417	1370.374	-3741.739	.034	.103	04
466	47	R2A	6071.816	57.106	6118.446	.05	078	052
467	47	R3	-2551.154	1098.172	2562.506	024	.011	027
468	47	R3A	4835.674	47.604	-4860.561	04	.065	04
469	47	Totals:	373.558	6225.818	215.62	.04	.000	0-
470	47	COG (ft):	X:912	Y: .79	Z: 1.084	536	- 12	
471	48	R4	3670.302	1269.244	3683.345	036	.035	.036
472	48	R4A	-5775.201	53.301	-5773.594	048	.015	.036
473	48	R1	8518.701	2238.649	-8506.405	.081		
474	48	R1A	-10789.701	83.689			.048	.085
175	48	R2	-3648.321	1367.45	10840.583 -3706.3	.092	.117	.092
476	48	R2A	6052.6			.034	.099	039
177	48	R3		57.02	6098.858	.05	073	051
478	48	R3A	-2707.11 4016.572	1108.582	2717.832	026	.018	028
479	48		4916.573	47.88	-4942.512	041	.07	041
479 480	48	Totals:	237.842	6225.816	411.807			
		COG (ft):	X:912	Y: .79	Z: 1.084			N T T
181	49	R4	3769.462	1312.525	3757.938	038	018	.037
182	49	R4A	-5953.38	54.884	-5943.664	05	.016	.05
183	49	R1	8029.908	2036.278	-8028.481	.078	.002	.077
184	49	R1A	-10228.283	77.209	10214.26	.088	026	.088
185	49	R2	-2756.766	1141.366	-2782.6	.027	.038	029
186	49	R2A	4952.162	49.072	4971.972	.041	035	041
187	49	R3	-2861.271	1130.871	2873.408	028	013	029
188	49	R3A	5048.221	48.636	-5062.842	042	.029	042
189	49	Totals:	.054	5850.842	01			
90	49	COG (ft):	X: -1.115	Y: .819	Z: .706			

Feb 8, 2024 3:42 PM Checked By: PMA

C	Joint Reactions (Continued)									
491 50 R4				X [lb]				MY [k-ft] - 015		
1982 1987 1987 1988										
494 50 R1A - 6979.15										
494 50 R/A										
496 50 R2A 6006.928 55.823 8047.882 05 .079 .051 497 50 R3 .2846.639 1113.773 2856.161 .027 .008 498 50 R3A 4856.892 47.822 .4978.898 .041 .04 .042 498 50 Totals: 0.57 5850.807 .003 500 50 COG (ft): X:.714 Y. 819 2.706 .003 510 51 R4 4806.889 1548.844 4788.963 .048 .011 .04 .042 550 51 R1 6944.394 1932.857 6930.658 .069 .016 .065 503 51 R1 6944.394 1932.857 6930.658 .069 .016 .065 504 51 R1A .9275.803 75.417 9248.512 .079 .054 .076 505 51 R2 .3485.47 1319.002 .3507.468 .034 .031 .036 505 51 R2 .3485.47 1319.002 .3507.468 .094 .031 .036 506 51 R2A .5816.103 .56.003 .5831.285 .048 .029 .049 507 51 R3 .3894.807 1338.283 3708.291 .038 .016 .032 508 51 R3A .0566 .058 .055 .055 509 51 Totals: 0.056 .038.465 .005 510 51 R3A .0488.37 .56.517 .003.2132 .0.5 .03 .05 510 51 R3A .0488.37 .58.517 .003.2132 .0.5 .03 .05 510 51 R3A .0488.37 .58.517 .003.2132 .0.5 .03 .05 510 51 R3A .0488.37 .58.517 .003.2132 .0.5 .03 .05 510 51 R3A .0488.37 .58.517 .003.2132 .0.5 .03 .05 510 51 R3A .0488.37 .58.517 .005.2132 .0.5 .03 .05 510 51 R3A .0488.37 .58.517 .005.2132 .0.5 .03 .05 510 51 R3A .0566 .0588.465 .005 510 52 R3A .4488.87 .3911.23 .4502.06 .045 .062 .044 512 52 R4A .5455.151 .57.401 .6485.516 .054 .052 .054 513 52 R1A .8120.313 .67.617 .003.34 .005 514 52 R1A .8120.313 .67.617 .003.34 .005 515 52 R2 .2881.147 .1158.45 .2904.635 .028 .03 516 52 R2A .5066.83 .49.907 .577.31 .0042 .002 .042 517 52 R3A .5446.847 .50.97 .4543.383 .046 .054 .052 52 R3A .5446.847 .50.97 .5463.383 .046 .054 .052 52 R3A .5446.847 .50.97 .5463.383 .046 .054 .052 52 R3A .5446.847 .50.97 .5463.383 .046 .054 .052 52 R3A .5446.847 .50.97 .5633.393 .046 .054 .046 .054 .046 52 R3A .4551.747 .1382.362 .4376.409 .043 .055 .035 .043 528 53 R1 .5850.853 .6871.38 .5802.393 .046 .054 .046 .046 .046 .046 .046 .046 .046 .04										
499 50										
498 50 R3A 4986 962 47 982 4978 988 -041 0.4 -0.42 498 50 Totals: 0.67 8580.807 -0.03 500 50 COG (ft): X:-714 Y:-819 2:-706 501 51 R4 4806 889 1548 844 4789 .963 -0.48 502 51 R4A -4806 889 1548 844 4789 .963 -0.48 503 51 R1 6944 394 1932.857 6930 689 0.06 0.06 503 51 R1 6944 394 1932.857 6930 689 0.06 0.06 505 51 R1 6944 394 1932.857 6930 689 0.06 0.06 505 51 R1 6944 394 1932.857 6930 689 0.06 0.06 505 51 R2 -3485.47 1319.002 3507.488 0.034 0.031 -0.036 505 51 R2 -3485.47 1319.002 3507.488 0.034 0.031 -0.036 507 51 R2 -3485.47 1319.002 3507.488 0.034 0.011 -0.037 508 51 R2 -3485.47 1319.002 3507.488 0.034 0.011 -0.037 508 51 R2 -3894.807 1336.283 3708.291 -0.36 0.016 -0.037 509 57 Totals: 0.58 6388.465 0.05 509 57 Totals: 0.58 6388.465 0.05 510 52 R2 -4480.372 1331.123 4520.206 -0.45 0.062 0.44 511 52 R4 4493.972 1331.123 4520.206 -0.45 0.062 0.44 512 52 R4A -8455.151 57.401 -8435.516 -0.045 0.062 0.044 513 52 R1A -8120.313 67.617 6104.899 0.069 0.067 0.057 514 52 R1A -8120.313 67.617 6104.899 0.069 0.067 0.057 515 52 R2A 5066.83 49.907 5077.531 0.042 0.02 0.042 516 52 R2A 5066.83 49.907 5077.531 0.042 0.02 0.042 517 52 R3A 5448.477 1354.5 2.904.635 0.058 0.03 0.03 518 52 R3A 5448.477 1354.5 2.904.635 0.058 0.03 0.03 518 52 R3A 5448.477 1354.5 2.904.635 0.058 0.03 0.03 519 52 Totals: 0.076 5677.374 503.821 0.042 0.02 0.042 527 53 R4 -8384.401 57.192 4838.93 0.046 0.054 0.046 528 53 R3A 5448.847 59.97 483.83 0.046 0.054 0.046 529 53 R1A 8801.888 607.533 8002.246 0.069 0.043 0.03 520 52 COG (ft): X:-763 74.883 8002.246 0.069 0.043 0.03 520 52 R3A 5448.847 59.97 4838.93 0.069 0.043 0.03 520 52 R3A 5448.847 59.97 483.83 0.046 0.054 0.064 520 52 R3A 5448.847 59.97 5483.83 0.046 0.054 0.064 520 53 R3A 5448.847 59.97 5483.83 0.046 0.054 0.064 520 53 R3A 5448.847 59.97 5483.83 0.046 0.054 0.064 520 53 R3A 5448.847 59.97 5483.83 0.046 0.054 0.064 520 53 R3A 5448.847 59.97 5483.83 0.069 0.069 0.064 520 53 R3A 5448.847 59.97 5483.83 0.069 0.069 0.064 520 53 R3A 5448.847 59.97 5483.83 0.069 0.069 0.069 0.069 520 53 R3A 548										
498 50 RSA **9.05.02 **** **** ***										
100 50 COG (ft) X - 714 Y - 8.19 Z - 706 COG (ft) S1 R4 4806.889 518.844 4798.963 -0.48 -0.11 .0.47 .0.65 .0							0-41	.01		
150										
501 51 R4 4800.05 1 R4 1 800.05 1 R4 1 800.05 1 R4 1 6944.394 1932.857 6930.658 .069 .016 .066 .066 .054 51 R1 6944.394 1932.857 6930.658 .069 .016 .006 .056 .006 .006 .006 .006 .006 .00							- 048	- 011	047	
S1										
Solid St. RTA Sp275-803 75.417 9248.512 0.79 -0.054 0.078										
Section Sect										
Substitute										
Sub St										
Solid										
Solid State Solid Soli										
Signature							05	.03	.00	
Sit St										
511 52 R4A -6455.151 57.401 -6435.1516 .054 .052 .054 513 52 R1A 5946.613 1701.632 -5900.285 .059 .087 .057 514 52 R1A -8120.313 67.617 8104.899 .069 .014 .068 515 52 R2 -2881.147 1158.45 -2904.635 .028 .063 .03 516 52 R2A 5066.83 49.807 5077.531 .042 .002 .042 517 52 R3 .3497.476 1200.374 3505.005 .034 .023 .035 518 52 R3A 5446.847 50.97 5463.383 .046 .054 .048 519 52 Totalis .076 5677.374 503.821 .034 .023 .035 520 52 COG (ft): X: -763 Y: 853 Z: 277 .053 .044 .036 .034 .	510					Z: .Z//	045	062	044	
512 52 R4A 646,613 1701,632 -5900,285 .059 .087 .057 514 52 R1 5946,613 1701,632 -5900,285 .069 .014 .068 515 52 R2 -2881,147 1158,45 -2904,635 .028 .063 .03 516 52 R2A 5066,83 49.807 5077,531 .042 .002 .042 517 52 R3A 5446,847 50.97 5463,383 .046 .054 .046 518 52 R3A 5448,847 50.97 5463,383 .046 .054 .046 519 52 Totals: .076 5677,374 503,821 .043 .05 .043 520 52 COG (ft): X: .763 Y: .853 Z: .277 .053 .043 .05 .043 521 53 R4A 4351,747 1382,362 4376,409 .043 .05 .054 .056 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
514 52 R1A 8120,313 67,617 8104,899 .069 014 .068 515 52 R2 .2881,147 1158,45 .2904,635 .028 .063 03 516 52 R2A .5066,83 49,807 5077,531 .042 .002 .042 517 52 R3 .3497,476 1200,374 3505,005 034 .023 035 518 52 R3A .546,847 50.97 .5463,383 046 .054 .048 519 52 Totals: .076 .5677,374 503,821 043 05 .043 520 52 COG (fft): X:763 Y: .853 Z: .277 043 05 043 521 53 R4 4351,747 1382,362 4376,409 043 054 056 522 53 R4A -6384,401 57,192 -6365,919 053 043 056 024<										
514 52 R1A -02.513 1158.45 -2904.635 .028 .063 03 516 52 R2A 5066.83 49.807 5077.531 .042 .002 .042 517 52 R3 -3497.476 1200.374 3505.005 .034 .023 .035 518 52 R3A 5446.847 50.97 -5463.383 .046 .054 046 519 52 Totals: .076 5677.374 503.821 046 .054 046 519 52 Totals: .076 5677.374 503.821 046 .054 046 519 52 Totals: .076 5677.374 503.821 046 .054 .046 519 52 COG (ft): X:.763 Y:.853 Z:.277 043 .05 .043 .05 521 53 R4 4351.747 1382.362 4376.409 043 .05 .043										
516 52 R2A 5066.83 49.807 5077.531 .042 .002 .042 517 52 R3 .3497.476 1200.374 3505.005 .034 .023 .035 518 52 R3A 5446.847 50.97 -5463.383 .046 .054 .046 519 52 Totals: .076 5677.374 503.821 .076 567.374 503.821 520 52 COG (ft): X: -763 Y: .853 Z: .277 .053 .043 .055 521 53 R4 4351.747 1382.362 4376.409 .043 .05 .043 522 53 R4A 4384.401 57.192 -6385.919 .053 .043 .054 522 53 R4A 4381.688 57.533 8062.246 .069 .026 .068 523 53 R1 5850.853 1697.188 580.255 .03 .044 .031 524	514	52								
516 52 R3 -3497.476 1200.374 3505.005 034 .023 035 518 52 R3A 5446.847 50.97 -5463.383 046 .054 048 519 52 Totals: .076 5677.374 503.821 .057 520 52 COG (ft): X:-763 Y:.853 Z:.277 .043 .05 .043 521 53 R4 4351.747 1382.362 4376.409 .043 .05 .043 .056 522 53 R4A -6384.401 57.192 -6365.919 .053 .043 .056 523 53 R1A -6881.868 67.533 8062.246 .069 026 .068 524 53 R1A -8081.868 67.533 8062.246 .069 026 .068 525 53 R2 -3029.908 1166.933 .3042.613 .03 .04 031 526 5		52								
517 52 R3A 5446.847 59.97 -5463.383 046 .054 046 519 52 Totals: .076 5677.374 503.821 .05 520 52 COG (ft): X: -763 Y: .853 Z: .277 .043 .05 .043 521 53 R4 4351.747 1382.362 4376.409 043 .05 .043 .054 522 53 R4A -6384.401 57.192 -8365.919 .053 .043 .054 523 53 R1 5850.853 1697.168 -5823.503 .058 .054 .056 524 53 R1A -8081.868 67.533 8062.246 .069 .026 .068 525 53 R2 -3029.908 1166.933 -3042.613 .03 .04 .031 526 53 R2A 5133.88 50.022 5148.046 .042 .009 .043 527 53 <td>516</td> <td>52</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	516	52								
518 52 R5A 534,007 5677,374 503,821 520 52 COG (ft): X: -763 Y: .853 Z: .277 521 53 R4 4351,747 1382,362 4376,409 043 .05 .043 522 53 R4A -6384,401 57,192 -6365,919 053 .043 .054 523 53 R1 5850,853 1697,168 -5823,503 .058 .054 .056 524 53 R1A -8081,868 67,533 8062,246 .069 026 .068 524 53 R2A -3029,908 1166,933 -3042,613 .03 .04 031 526 53 R2A 5133,88 50.022 5148,046 .042 009 043 527 53 R3 -3579,328 1205,075 3588,105 035 .015 036 528 53 Totals: -251,838 5677,371 436,308 </td <td>517</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	517									
519 52 COG (ft): X: -,763 Y: .853 Z: .277 521 53 R4 4351.747 1382.362 4376.409 043 .05 .043 522 53 R4A -6384.401 57.192 -6365.919 053 .043 .054 523 53 R1 5850.853 1697.168 -5823.503 .058 .054 .056 524 53 R1A -8081.868 67.533 8062.246 .069 026 .068 525 53 R2A -3029.908 1166.933 -3042.613 .03 .04 031 526 53 R2A 5133.88 50.022 5148.046 .042 .009 .043 527 53 R3 -3579.328 1205.075 3585.105 035 .015 036 528 53 R3A 5487.188 51.087 -5503.464 046 .046 .046 529 53 Totals:	518	52					046	.004	040	
520 53 R4 4351.747 1382.362 4376.409 043 .05 .043 522 53 R4A -6384.401 57.192 -6365.919 053 .043 .054 523 53 R1 5850.853 1697.168 -5823.503 .058 .054 .056 524 53 R1A -8081.868 67.533 8062.246 .069 026 .068 525 53 R2 -3029.908 1166.933 -3042.613 .03 .04 031 526 53 R2A 5133.88 50.022 5148.046 .042 009 043 527 53 R3 -3579.328 1205.075 3585.105 035 .015 .036 528 53 R3A 5487.188 51.087 -5503.464 046 .046 .046 529 53 Totals: -251.838 5677.371 436.308 042 .022 .041	519									
521 53 R4A -6384.401 57.192 -6385.919 053 .043 .054 522 53 R1 5850.853 1697.168 -5823.503 .058 .054 .056 524 53 R1A -8081.868 67.533 8062.246 .069 026 .068 525 53 R2 -3029.908 1166.933 -3042.613 .03 .04 031 526 53 R2A 5133.88 50.022 5148.046 .042 009 043 527 53 R3 -3579.328 1205.075 3585.105 035 .015 036 528 53 R3A 5487.188 51.087 -5503.464 046 .046 046 529 53 Totals: -251.838 5677.371 436.308 046 .046 046 529 53 Totals: -251.838 5677.371 436.308 022 .041 .046 .046<	520						042	05	043	
522 53 R4A -0384,401 5850,853 1697,168 -5823,503 .058 .054 .056 524 53 R1A -8081,868 67,533 8062,246 .069 026 .068 525 53 R2A -3029,908 1166,933 -3042,613 .03 .04 031 526 53 R2A 5133,88 50.022 5148,046 .042 009 043 527 53 R3 -3579,328 1205,075 3585,105 035 .015 036 528 53 R3A 5487,188 51.087 -5503,464 046 .046 .046 529 53 Totals: -251,838 5677,371 436,308 046 .046 .046 530 53 COG (ft): X: -763 Y: .853 Z: .277 .053 .027 .053 531 54 R4 4187,887 1371,853 4202,411 042 .022 .0	521									
524 53 R1A -8081.868 67.533 8062.246 .069 026 .068 525 53 R2 -3029.908 1166.933 -3042.613 .03 .04 031 526 53 R2A 5133.88 50.022 5148.046 .042 009 043 527 53 R3 -3579.328 1205.075 3585.105 035 .015 036 528 53 R3A 5487.188 51.087 -5503.464 046 .046 046 529 53 Totals: -251.838 5677.371 436.308 046 .046 046 530 53 COG (ft): X:763 Y: .853 Z: .277 053 .027 .053 531 54 R4 4187.887 1371.853 4202.411 042 .022 .041 532 54 R4A -6299.859 56.937 -6284.775 053 .027 .053 <t< td=""><td>522</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	522									
524 53 R1A -5001.050 61.6.933 -3042.613 .03 .04 031 526 53 R2A 5133.88 50.022 5148.046 .042 009 043 527 53 R3 -3579.328 1205.075 3585.105 035 .015 036 528 53 R3A 5487.488 51.087 -5503.464 046 .046 046 529 53 Totals: -251.838 5677.371 436.308 046 .046 046 529 53 Totals: -251.838 5677.371 436.308 046 .046 046 529 53 Totals: -251.838 5677.371 436.308 046 .046 046 529 53 Totals: -251.838 5677.371 436.308 042 .022 .041 530 54 R4 4187.887 1371.853 4202.411 042 .022 .041 <td>523</td> <td>53</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	523	53								
526 53 R2A 5133.88 50.022 5148.046 .042 009 043 527 53 R3 3579.328 1205.075 3585.105 035 .015 036 528 53 R3A 5487.188 51.087 -5503.464 046 .046 046 529 53 Totals: -251.838 5677.371 436.308	524	53								
526 53 R2A 353.00 35.00 35.00 3585.105 035 .015 036 527 53 R3A 5487.188 51.087 -5503.464 046 .046 046 529 53 Totals: -251.838 5677.371 436.308	525	53								
527 53 R3A 5487.188 51.087 -5503.464 046 .046 046 529 53 Totals: -251.838 5677.371 436.308 046 .046 046 530 53 COG (ft): X:763 Y: .853 Z: .277 042 .022 .041 531 54 R4 4187.887 1371.853 4202.411 042 .022 .041 532 54 R4A -6299.859 56.937 -6284.775 053 .027 .053 533 54 R1 5840.791 1697.992 -5836.419 .058 .01 .056 534 54 R1A -8086.307 67.562 8061.182 .069 044 .068 535 54 R2 -3196.56 1176.706 -3200.289 .031 .014 033 536 54 R2A 5209.872 50.271 5227.316 .043 025 043 <tr< td=""><td>526</td><td>53</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	526	53								
528 53 Totals: -251.838 5677.371 436.308 529 53 Totals: -251.838 5677.371 436.308 530 53 COG (ft): X: -763 Y: .853 Z: .277 531 54 R4 4187.887 1371.853 4202.411 042 .022 .041 532 54 R4A -6299.859 56.937 -6284.775 053 .027 .053 533 54 R1 5840.791 1697.992 -5836.419 .058 .01 .056 534 54 R1A -8086.307 67.562 8061.182 .069 -044 .068 535 54 R2 -3196.56 1176.706 -3200.289 .031 .014 033 536 54 R2A 5209.872 50.271 5227.316 .043 025 043 537 54 R3 -3581.748 1204.967 3587.467 035 0 036	527	53								
530 53 COG (ff): X: -,763 Y: .853 Z: .277 531 54 R4 4187.887 1371.853 4202.411 042 .022 .041 532 54 R4A -6299.859 56.937 -6284.775 053 .027 .053 533 54 R1 5840.791 1697.992 -5836.419 .058 .01 .056 534 54 R1A -8086.307 67.562 8061.182 .069 044 .068 535 54 R2 -3196.56 1176.706 -3200.289 .031 .014 033 536 54 R2A 5209.872 50.271 5227.316 .043 025 043 537 54 R3 -3581.748 1204.967 3587.467 035 0 036 538 54 R3A 5489.678 51.081 -5504.982 046 .033 046 539 54 Totals:	528	53	R3A				046	.040	040	
530 53 50 (1) 1371.853 4202.411 042 .022 .041 531 54 R4A -6299.859 56.937 -6284.775 053 .027 .053 533 54 R1 5840.791 1697.992 -5836.419 .058 .01 .056 534 54 R1A -8086.307 67.562 8061.182 .069 044 .068 535 54 R2 -3196.56 1176.706 -3200.289 .031 .014 033 536 54 R2A 5209.872 50.271 5227.316 .043 025 043 537 54 R3 -3581.748 1204.967 3587.467 035 0 036 538 54 R3A 5489.678 51.081 -5504.982 046 .033 046 539 54 Totals: -436.245 5677.369 25.1911 .04 .04 .04 .04	529	53								
531 54 R4A -6299.859 56.937 -6284.775 053 .027 .053 533 54 R1 5840.791 1697.992 -5836.419 .058 .01 .056 534 54 R1A -8086.307 67.562 8061.182 .069 044 .068 535 54 R1A -8086.307 67.562 8061.182 .069 044 .068 535 54 R2 -3196.56 1176.706 -3200.289 .031 .014 033 536 54 R2A 5209.872 50.271 5227.316 .043 025 043 537 54 R3 -3581.748 1204.967 3587.467 035 0 036 538 54 R3A 5489.678 51.081 -5504.982 046 .033 046 539 54 Totals: -436.245 5677.369 251.911 .04 .04 .04 .04	530	53	COG (ft):				0.40	000	041	
532 54 R4A -6299.859 56.937 -6284.775 053 .027 .095 533 54 R1 5840.791 1697.992 -5836.419 .058 .01 .056 534 54 R1A -8086.307 67.562 8061.182 .069 044 .068 535 54 R2 -3196.56 1176.706 -3200.289 .031 .014 033 536 54 R2A 5209.872 50.271 5227.316 .043 025 043 537 54 R3 -3581.748 1204.967 3587.467 035 0 036 538 54 R3A 5489.678 51.081 -5504.982 046 .033 046 539 54 Totals: -436.245 5677.369 251.911 04 04 014 .04 540 54 COG (ft): X:763 Y: .853 Z: .277 04 014 .04										
533 54 R1 5840.791 1697.992 -5836.419 .058 .01 .056 534 54 R1A -8086.307 67.562 8061.182 .069 044 .068 535 54 R2 -3196.56 1176.706 -3200.289 .031 .014 033 536 54 R2A 5209.872 50.271 5227.316 .043 025 043 537 54 R3 -3581.748 1204.967 3587.467 035 0 036 538 54 R3A 5489.678 51.081 -5504.982 046 .033 046 539 54 Totals: -436.245 5677.369 251.911 04 04 046 540 54 COG (fft): X:763 Y: .853 Z: .277 04 014 .04 541 55 R4A 4046.168 1362.412 4044.824 04 014 .04		54	R4A							
534 54 R1A -8086.307 67.562 8061.182 .069 044 .066 535 54 R2 -3196.56 1176.706 -3200.289 .031 .014 033 536 54 R2A 5209.872 50.271 5227.316 .043 025 043 537 54 R3 -3581.748 1204.967 3587.467 035 0 036 538 54 R3A 5489.678 51.081 -5504.982 046 .033 046 539 54 Totals: -436.245 5677.369 251.911										
535 54 R2 -3196.56 1176.706 -3200.289 .031 .014 035 536 54 R2A 5209.872 50.271 5227.316 .043 025 043 537 54 R3 -3581.748 1204.967 3587.467 035 0 036 538 54 R3A 5489.678 51.081 -5504.982 046 .033 046 539 54 Totals: -436.245 5677.369 251.911										
536 54 R2A 5209.872 50.271 5227.316 .043 025 045 537 54 R3 -3581.748 1204.967 3587.467 035 0 036 538 54 R3A 5489.678 51.081 -5504.982 046 .033 046 539 54 Totals: -436.245 5677.369 251.911										
537 54 R3 -3581.748 1204.967 3587.467 035 0 036 538 54 R3A 5489.678 51.081 -5504.982 046 .033 046 539 54 Totals: -436.245 5677.369 251.911										
538 54 R3A 5489.678 51.081 -5504.982 046 .033 046 539 54 Totals: -436.245 5677.369 251.911										
539 54 Totals: -436.245 5677.369 251.911 540 54 COG (ft): X:763 Y: .853 Z: .277 541 55 R4 4046.168 1362.412 4044.824 04 014 .04 542 55 R4A -6224.162 56.706 -6213.821 052 .009 .052 543 55 R1 5919.108 1703.884 -5935.602 .059 033 .057 544 55 R1A -8132.433 67.694 8102.003 .069 062 .069 545 55 R2 -3336.471 1185.151 -3335.427 .032 009 034 546 55 R2A 5274.458 50.488 5294.107 .044 04 044 547 55 R3 -3504.097 1200.079 3511.438 034 02 035 548 55 R3A 5453.657 50.956 -5467.			R3A				046	.033	040	
540 54 COG (ft): X:763 Y: .853 Z: .277 541 55 R4 4046.168 1362.412 4044.824 04 014 .04 542 55 R4A -6224.162 56.706 -6213.821 052 .009 .052 543 55 R1 5919.108 1703.884 -5935.602 .059 033 .057 544 55 R1A -8132.433 67.694 8102.003 .069 062 .069 545 55 R2 -3336.471 1185.151 -3335.427 .032 009 034 546 55 R2A 5274.458 50.488 5294.107 .044 04 044 547 55 R3 -3504.097 1200.079 3511.438 034 02 035 548 55 R3A 5453.677 50.956 -5467.519 045 .018 046										
541 55 R4 4046.168 1362.412 4044.824 04 014 .04 542 55 R4A -6224.162 56.706 -6213.821 052 .009 .052 543 55 R1 5919.108 1703.884 -5935.602 .059 033 .057 544 55 R1A -8132.433 67.694 8102.003 .069 062 .069 545 55 R2 -3336.471 1185.151 -3335.427 .032 009 034 546 55 R2A 5274.458 50.488 5294.107 .044 04 044 547 55 R3 -3504.097 1200.079 3511.438 034 02 035 548 55 R3A 5453.677 509.56 -5467.519 045 .018 046			COG (ft):				DOL 1	044	04	
542 55 R4A -6224.162 56.706 -6213.821 052 .009 .052 543 55 R1 5919.108 1703.884 -5935.602 .059 033 .057 544 55 R1A -8132.433 67.694 8102.003 .069 062 .069 545 55 R2 -3336.471 1185.151 -3335.427 .032 009 034 546 55 R2A 5274.458 50.488 5294.107 .044 04 044 547 55 R3 -3504.097 1200.079 3511.438 034 02 035 548 55 R3A 5453.677 50.956 -5467.519 045 .018 046			R4							
543 55 R1 5919.108 1703.884 -5935.602 .059 033 .057 544 55 R1A -8132.433 67.694 8102.003 .069 062 .069 545 55 R2 -3336.471 1185.151 -3335.427 .032 009 034 546 55 R2A 5274.458 50.488 5294.107 .044 04 044 547 55 R3 -3504.097 1200.079 3511.438 034 02 035 548 55 R3A 5453.677 50.956 -5467.519 045 .018 046										
544 55 R1A -8132.433 67.694 8102.003 .069 062 .069 545 55 R2 -3336.471 1185.151 -3335.427 .032 009 034 546 55 R2A 5274.458 50.488 5294.107 .044 04 044 547 55 R3 -3504.097 1200.079 3511.438 034 02 035 548 55 R3A 5453.677 50.956 -5467.519 045 .018 046				5919.108						
545 55 R2 -3336.471 1185.151 -3335.427 .032 009 034 546 55 R2A 5274.458 50.488 5294.107 .044 04 044 547 55 R3 -3504.097 1200.079 3511.438 034 02 035 548 55 R3A 5450.957 50.956 -5467.519 045 .018 046				-8132.433						
546 55 R2A 5274.458 50.488 5294.107 .044 04 044 547 55 R3 -3504.097 1200.079 3511.438 034 02 035 548 55 R3A 5453.657 50.956 -5467.519 045 .018 046				-3336.471						
547 55 R3 -3504.097 1200.079 3511.438 034 02 035 548 55 R3A 5453.657 50.956 -5467.519 045 .018 046				5274.458						
548 55 R3A 5453.657 50.956 -5467.519045 .018046										
TOO TT 5077 200 002							045	.018	046	
	549				5677.369	.002				

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

0011	2000	actions (Continue	uj					
[EE0	LC	Joint Label	[dl] X	Y [lb]	Z [lb]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
550	55	COG (ft):	X:763	Y: .853	Z: .277			
551	56	R4	3964.609	1356.568	3945.901	04	05	.039
552	56	R4A	-6177.612	56.56	-6172.078	052	007	.051
553	56	R1	6064.817	1713.269	-6094.501	.061	063	.058
554	56	R1A	-8207.888	67.895	8173.79	.07	077	.069
555	56	R2	-3412.101	1190.001	-3411.793	.033	023	035
556	56	R2A	5310.31	50.613	5330.512	.044	052	044
557	56	R3	-3367.185	1191.723	3377.367	033	037	034
558	56	R3A	5388.779	50.743	-5401.103	-,045	.006	045
559	56	Totals:	-436.272	5677.371	-251.906			
560	56	COG (ft):	X:763	Y: .853	Z: .277	(EX-	WIL	THE TIME
561	57	R4	3965.065	1355.883	3932.113	04	075	.039
562	57	R4A	-6172.684	56.54	-6170.711	052	016	.051
563	57	R1	6238.838	1723.632	-6270.499	.062	073	.06
564	57	R1A	-8292.441	68.109	8257.291	.07	084	.07
565	57	R2	-3403.187	1189.954	-3408.958	.033	023	035
566	57	R2A	5307.82	50.616	5326.792	.044	056	044
567	57	R3	-3207.739	1182.141	3221.216	031	049	032
568	57	R3A	5312.444	50.499	-5323.547	044	001	045
569	57	Totals:	-251.883	5677.374	-436.301			
570	57	COG (ft):	X:763	Y: .853	Z: .277	DATE I	1.0	1 01/15/12
571	58	R4	4047.413	1360.538	4007.13	04	082	.039
572	58	R4A	-6210.698	56.65	-6210.078	052	016	.052
573	58	R1	6394.588	1732.2	-6416.443	.064	059	.061
574	58	R1A	-8363.456	68.28	8330.135	.071	081	.071
575	58	R2	-3312.123	1185.024	-3327.697	.032	009	034
576	58	R2A	5267.655	50.493	5283.95	.044	052	044
577	58	R3	-3068.442	1173.901	3084.819	03	051	031
578	58	R3A	5245.086	50.29	-5255.626	043	0	044
579	58	Totals:	.024	5677.378	-503.812			.017
580	58	COG (ft):	X:763	Y: .853	Z: .277			1.45
581	59	R4	4189.587	1369.291	4150.869	042	07	.041
582	59	R4A	-6281.47	56.861	-6279.644	053	007	.052
583	59	R1	6490.327	1736.672	-6493.187	.065	026	.062
584	59	R1A	-8401.899	68.362	8372.78	.071	069	.071
585	59	R2	-3163.318	1176.534	-3189.769	.031	.014	033
586	59	R2A	5200.578	50.279	5213.456	.043	041	043
587	59	R3	-2986.624	1169.209	3004.754	029	043	03
588	59	R3A	5204.757	50.173	-5215.559	043	.008	044
589	59	Totals:	251.937	5677.38	-436.299		.000	.047
590	59	COG (ft):	X:763	Y: .853	Z: .277			
591	60	R4	4353.445	1379.797	4324.807	043	042	.042
592	60	R4A	-6366.014	57.116	-6360.766	054	.009	.053
593	60	R1	6500.423	1735.847	-6480.199	.065	.018	.062
594	60	R1A	-8397.477	68.334	8373.81	.072	052	.002
595	60	R2	-2996.686	1166.763	-3032.138	.029	.041	031
596	60	R2A	5124.585	50.03	5134.204	.042	026	043
597	60	R3	-2984.181	1169.317	3002.449	029	028	043
598	60	R3A	5202.25	50.178	-5214.069	043	.021	044
599	60	Totals:	436.345	5677.382	-251.902	0+0	.021	044
600	60	COG (ft):	X:763	Y: .853	Z: .277			The Tree
601	61	R4	4495.114	1389.244		045	006	044
602	61	R4A	-6441.692	57.346	4482.392	045	006	.044
603	61	R1	6422.162	1729.948	-6431.73 -6380.984	054	.027	.054
604	61	R1A	-8351.37			.064	.061	.061
605	61	R2		68.203	8332.962	.071	033	.07
606	61	R2A	-2856.838	1158.326	-2896.995	.028	.064	03
607	61	R3	5060.024	49.812	5067.408	.042	01	042
608	61	R3A	-3061.776	1174.198	3078.499	03	008	031
000	Ų I	NOM	5238.245	50.305	-5251.544	043	.036	044

Colliers Engineering & Design NL 23777329 Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

	LC	ions (Continue Joint Label	X [lb]	Y [lb]	Z [lb]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
09	61	Totals:	503.87	5677.382	.007			diameter .
10	61	COG (ft):	X:763	Y: .853	Z: .277			
311	62	R4	4576.625	1395.097	4581.372	046	.03	.044
12	62	R4A	-6488.22	57.49	-6473.505	055	.043	.054
313	62	R1	6276.474	1720.555	-6222.123	.062	.091	.06
614	62	R1A	-8275.915	68.004	8261.182	.071	018	.07
	62	R2	-2781.251	1153.484	-2820.579	.027	.077	029
615	62	R2A	5024.198	49.685	5030.981	.041	.001	042
616 617	62	R3	-3198.652	1182.545	3212.534	031	.009	033
	62	R3A	5303.112	50.519	-5317.947	044	.048	044
618 619	62	Totals:	436.371	5677.38	251.915			
	62	COG (ft):	X:763	Y: .853	Z: .277			
620 621	63	R4	4576.17	1395.785	4595.22	046	.055	.045
		R4A	-6493.145	57.51	-6474.894	054	.052	.055
622	63	R1	6102.418	1710.192	-6046.197	.061	.1	.058
623	63		-8191.347	67.789	8177.715	.07	011	.069
624	63	R1A R2	-2790.145	1153.529	-2823.37	.027	.077	029
625	63	R2A	5026.689	49.683	5034.684	.041	.006	042
626	63	R2A R3	-3358.122	1192.126	3368.628	032	.021	034
627	63		5379.463	50.763	-5395.476	045	.055	045
628	63	R3A	251.982	5677.377	436.31			
629	63	Totals:	X:763	Y: .853	Z: .277			
630	63	COG (ft):	3159.331	960.624	3187.471	032	.065	.031
631	64	R4	-4475.935	40.604	-4458.868	037	.046	.038
632	64	R4A	4018.782	1164.418	-3976.683	.04	.082	.038
633	64	R1		47.938	5537.526	.047	.001	.047
634	64	R1A	-5544.851	791.952	-1930.222	.019	.055	02
635	64	R2	-1913.032	34.771	3457.618	.028	.01	029
636	64	R2A	3451.462	829.118	2475.845	024	.027	025
637	64	R3	-2471.742	35.894	-3788.867	032	.046	032
638	64	R3A	3776.045	3905.32	503.819	.002		
639	64	Totals:	.06		Z: .277			
640	64	COG (ft):	X:763	Y: .853	3043.601	03	.053	.03
641	65	R4	3017.024	951.872	-4389.202	037	.037	.037
642	65	R4A	-4404.96	40.366	-3899.729	.039	.049	.038
643	65	R1	3923.041	1159.975		.047	011	.046
644	65	R1A	-5506.433	47.835	5494.659	.02	.032	021
645	65	R2	-2061.841	800.424	-2068.334	.029	001	029
646	65	R2A	3518.519	35.01	3528.282	025	.019	026
647	65	R3	-2553.69	833.812	2555.961	032	.038	032
648	65	R3A	3816.486	36.024	-3828.93	032	.000	.002
649	65	Totals:	-251.853	3905.317	436.307			
650	65	COG (ft):	X:763	Y: .853	Z: .277	000	.026	.028
651	66	R4	2852.924	941.376	2869.544	028		.036
652	66	R4A	-4320.123	40.079	-4308.026	036	.021	.038
653	66	R1	3913.128	1160.804	-3912.505	.039	029	.046
654	66	R1A	-5511.052	47.865	5493.401	.047	.005	023
655	66	R2	-2228.532	810.185	-2226.181	.022		023
656	66	R2A	3594.508	35.284	3607.755	.03	017	026
657	66	R3	-2556.184	833.704	2558.265	025	.004	
658	66	R3A	3819.07	36.019	-3830.344	032	.025	032
659	66	Totals:	-436.261	3905.315	251.909			
660	66	COG (ft):	X:763	Y: .853	Z: .277		0.11	007
661	67	R4	2710.971	931.948	2711.929	027	011	.027
662	67	R4A	-4244.14	39.818	-4237.082	036	.003	.035
		R1	3991.685	1166.682	-4011.616	.04	037	.039
663	67	R1A	-5557.464	48.02	5534.104	.047	048	.047
664		R2	-2368.466	818.621	-2361.482	.023	018	024
665 666	67	R2A	3659.08	35.522	3674.75	.03	032	031
					2482.118	024	015	025

Feb 8, 2024 3:42 PM Checked By: PMA

668	67	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
669	67	R3A	3783.109	35.881	-3792.72	032	.01	032
670	67	Totals:	-503.786	3905.315	0			
671	68	COG (ft):	X:763	Y: .853	Z: .277			
672	68	R4	2629.247	926.114	2613.017	026	047	.026
673	68	R4A	-4197.39	39.655	-4195.39	035	013	.035
674	68	R1	4137.661	1176.039	-4170.531	.041	067	.04
675	68	R1A	-5633.234	48.257	5605.877	.048	063	.048
676	68	R2	-2444.095	823.468	-2437.958	.024	031	025
		R2A	3694.914	35.66	3711.305	.031	044	031
677 678	68 68	R3	-2341.63	820.478	2347.901	023	033	024
_		R3A	3718.241	35.646	-3726.128	031	003	031
679	68	Totals:	-436.287	3905.317	-251.907			
680	68	COG (ft):	X:763	Y: .853	Z: .277		11-	
681	69	R4	2629.651	925.432	2599.275	026	071	.026
682	69	R4A	-4192.401	39.633	-4194.101	035	022	.035
683	69	R1	4311.903	1186.368	-4346.628	.043	076	.042
684	69	R1A	-5718.046	48.513	5689.474	.048	07	.049
685	69	R2	-2435.157	823.424	-2435.152	.024	031	025
686	69	R2A	3692.404	35.662	3707.641	.031	048	031
687	69	R3	-2182.116	810.911	2191.617	021	044	022
886	69	R3A	3641.864	35.377	-3648.428	03	01	031
689	69	Totals:	-251.898	3905.32	-436.303			
690	69	COG (ft):	X:763	Y: .853	Z: .277			43 1-17
691	70	R4	2712.074	930.084	2674.362	027	079	.026
692	70	R4A	-4230.509	39.759	-4233.553	036	022	.035
593	70	R1	4467.77	1194.904	-4492.729	.045	063	.043
394	70	R1A	-5789.196	48.719	5762.497	.049	067	.049
395	70	R2	-2344.052	818.502	-2353.831	.023	017	024
96	70	R2A	3652.222	35.526	3664.744	.03	045	03
697	70	R3	-2042.725	802.684	2055.133	02	046	021
398	70	R3A	3574.424	35.145	-3580.436	03	009	03
699	70	Totals:	.008	3905.324	-503.813			
700	70	COG (ft):	X:763	Y: .853	Z: .277			
701	71	R4	2854.43	938.827	2818.175	028	067	.028
702	71	R4A	-4301.506	39.998	-4303.187	036	013	.036
703	71	R1	4563.49	1199.355	-4569.643	.045	03	.044
04	71	R1A	-5827.611	48.821	5805.357	.05	055	.049
705	71	R2	-2195.2	810.023	-2215.77	.021	.006	023
706	71	R2A	3585.138	35.289	3594.102	.03	033	03
07	71	R3	-1960.811	797.999	1975.052	019	039	02
708	71	R3A	3533.993	35.014	-3540.387	029	0	03
09	71	Totals:	251.922	3905.327	-436.301			
	71	COG (ft):	X:763	Y: .853	Z: .277	110		
11	72	R4	3018.528	949.32	2992.171	03	039	.029
	72	R4A	-4386.345	40.286	-4384.342	037	.003	.037
	72	R1	4573.438	1198.526	-4556.796	.046	.014	.044
	72	R1A	-5823.009	48.791	5806.58	.05	037	.049
	72	R2	-2028.529	800.263	-2057.968	.02	.033	021
	72	R2A	3509.148	35.014	3514.647	.029	018	029
	72	R3	-1958.295	798.108	1972.805	019	023	02
	72	R3A	3531.394	35.019	-3539	029	.012	03
	72	Totals:	436.33	3905.328	-251.903			
	72	COG (ft):	X:763	Y: .853	Z: .277			F HEY SEL
	73	R4	3160.431	958.754	3149.783	032	003	.031
	73	R4A	-4462.309	40.545	-4455.296	038	.022	.037
	73	R1	4494.937	1192.64	-4457.653	.045	.057	.043
	73	R1A	-5776.616	48.638	5765.85	.049	018	.043
	73	R2	-1888.658	791.836	-1922.662	.018	.055	02
26	73	R2A	3444.6	34.775	3447.648	.028	002	029

Feb 8, 2024 3:42 PM Checked By: PMA

Joint Reactions (Continued)

		Joint Label	X IIPI	Y IIbl	Z [lb]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
727	73	R3	-2035,859	802.982	2048.972	02	004	021
728	73	R3A	3567.329	35.159	-3576.637	03	.027	03
729	73	Totals:	503.854	3905.328	.005			
730	73	COG (ft):	X:763	Y: .853	Z: .277		TO MENT	
731	74	R4	3242.107	964.598	3248.753	032	.033	.032
732	74	R4A	-4509.037	40.707	-4497.02	038	.037	.038
733	74	R1	4348.982	1183.276	-4298.776	.043	.087	.041
734	74	R1A	-5700.847	48.402	5694.084	.049	003	.048
735	74	R2	-1813.072	786.997	-1846.136	.018	.069	019
736	74	R2A	3408.794	34.636	3411.071	.028	.009	028
737	74	R3	-2172.758	811.317	2183.153	021	.013	022
738	74	R3A	3632,186	35.395	-3643.215	03	.04	03
739	74	Totals:	436.356	3905.326	251.913			
740	74	COG (ft):	X:763	Y: .853	Z: .277			
741	75	R4	3241.705	965.282	3262.555	032	.058	.032
742	75	R4A	-4514.024	40.728	-4498.33	038	.046	.038
743	75	R1	4174,705	1172.946	-4122.751	.042	.096	.04
744	75	R1A	-5616.019	48.145	5610.522	.048	.004	.047
745	75	R2	-1821.99	787.039	-1848.897	.018	.068	019
746	75	R2A	3411.305	34.634	3414.718	.028	.014	028
	75	R3	-2332.293	820.883	2339.381	022	.025	024
747	75	R3A	3708.578	35.664	-3720.888	031	.047	031
748		Totals:	251.967	3905.323	436.309			
749 750	75 75	COG (ft):	X:763	Y: .853	Z: .277			

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code C	. Loc[ft]	LC:	Shear	Loc[ft]	Dir	LC	phi*Pnc [lb]	phi*Pnt [lb]	phi*Mn y	phi*Mn z	Cb	Eqn
1	M45A	L3X3X6	.280	0	16	.200	2.914	У	22	65547.821	66465	2.243	5.174	1	H2-1
2	M68	L3X3X6	.318	2.761	7	.265	2.914	У		66460.728	66465	2.243	5.174	1	H2-1
3	M74B	L3X3X6	.438	0	13	.231	0	У		66373.078	66465	2.243	5.174	1	H2-1
4	M75B	L3X3X6	.436	0	22	.151	.377	У		66373.078	66465	2.243	5.174	2	H2-1
5	M110	L3X3X6	.280	0	13	.257	2.914	У		65547.821	66465	2.243	5.174	1,	H2-1
6	M144	L3X3X6	.313	2.761	4	.209	2.914	Z	10	66460.728	66465	2.243	5.174	1	H2-1
7	M148	L3X3X6	.445	0	22	.184	0	V		66373.078	66465	2.243	5.174	1	H2-1
8	M150	L3X3X6	.443	0	19	.167	0	z		66373.078		2.243	5.174	1	H2-1
9	M188	L3X3X6	.273	0	22	.145	2.761	У		65547.821	66465	2.243	5.174	1,	H2-1
10	M222	L3X3X6	.271	2.761	1	.239	2.914	У		66460.728	66465	2.243	5.174	1	H2-1
11	M226	L3X3X6	.392	0	19	.235	0	y	19	66373.078	66465	2.243	5.174	1	H2-1
12	M228	L3X3X6	.388	0	16	.152	.377	V	7	66373.078		2.243	5.174	2	H2-1
13	M266	L3X3X6	.247	0	20	.224	2.838			65547.821	66465	2.243	5.174	1	H2-1
14	M300	L3X3X6	.267	0	21	.140	2.914			65547.821	66465	2.243	5.174	1	H2-1
15	M304	L3X3X6	.370	0	16	.106	0			66373.078		2.243	5.174	1,	H2-1
16	M306	L3X3X6	.378	0	13	.179	0	z	13	66373.078	66465	2.243	5.174	1	H2-1
17	M54	HSS4X3X4	.147	4.021	13	.117	2.904	z	13	83040.402	91665	8.19	10.001	1	111
18	M130	HSS4X3X4	.151	4.021	22	.113	2.904			83040.402	91665	8.19	10.001	1	H1-1b
19	M208	HSS4X3X4	.133	4.021		.113	2.904			83040.402	91665	8.19	10.001	1	
20	M286	HSS4X3X4	.125	4.021	13	.102	2.904			83040.402		8.19	10.001	1	H1-1b
21	M66	PL3/8x3	.190	0	13	.116	.605	y		32152.749		.277	2.215	1	H1-1b
22	M74C	PL3/8x3	.138	0	9	.147	.605	y		32152.749		.277	2.215	1	
23	M142	PL3/8x3	.161	0	11	.106	.605	У	19	32152.749	35437.5	.277	2.215	1	H1-1b
24	M149	PL3/8x3	.167	0	19	.128	.605	У	21	32152.749	35437.5	.277	2.215	1	
25	M220	PL3/8x3	.175	0	19	.089	.605	У		32152.749		.277	2.215	1	H1-1b
26	M227	PL3/8x3	.078	0	19	.132	.605	y		32152.749		.277	2.215	2	H1-1b
27	M298	PL3/8x3	.068	0	13	.121	.605			32152.749		.277	2.215	2	
28	M305	PL3/8x3	.163	0	13	.099	.605	y	15	32152.749	35437.5	.277	2.215	1	
29	M31	PL3/8x2.375	.301	0	13	.036	0	У	16	26251.56	28054.688	.219	1.388	1	
30	M33	PL3/8x2.375	.284	0	22	.044	0	V	13	26251.56	28054.688	.219	1.388	1	H1-1b

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

		o rountooo-											10.700.0	_	
31	Member M34A	Shape PL3/8x2.375	Code C.	-					LC	phi*Pnc [lb				Cb	Eqn
32			.429	0	14		0	У			28054.688		1.388	1	H1-1b
33	M60	PL3/8x2.375	.301	0	18	.035	0	У	7		28054.688	.2.10	1.388	1	H1-1b
	M61	PL3/8x2.375	.304	0	13	.030	0	У	13		28054.688		1.388	1	H1-1b
34	M62	PL3/8x2.375	.376	0	20	.077	0	У	13		28054.688	.219	1.388	1	H1-1b
35	M103	PL3/8x2.375	317	0	14	.031	0	У	1	26251.56	28054.688	12.10	1.388	1	H1-1b
36	M104	PL3/8x2.375	.308	0	19	.032	0	У	22		28054.688	.219	1.388	1	H1-1b
37	M105	PL3/8x2.375	.404	0	23	.081	0	У	19		28054.688	.219	1.388	1,	H1-1b
38	M136	PL3/8x2.375	.330	0	18	.044	0	У	16	26251.56	28054.688	.219	1.388	1	H1-1b
39	M137	PL3/8x2.375	.283	0	22	.037	0	У	19		28054.688	.219	1.388	1	H1-1b
40	M138	PL3/8x2.375	.439	0	17	.075	0	Y	21	26251.56	28054.688	.219	1.388	1	H1-1b
41	M181	PL3/8x2.375	.270	0	20	.036	0	У	22	26251.56	28054.688	.219	1.388		H1-1b
42	M182	PL3/8x2.375	.245	0	16	.040	0	٧	19	26251.56	28054.688	.219	1.388	_	H1-1b
43	M183	PL3/8x2.375	.401	0	20	.064	0	٧	16	26251.56	28054.688	.219	1.388		H1-1b
44	M214	PL3/8x2.375	.277	0	24	.029	0	٧	1	26251.56	28054.688	.219	1.388		H1-1b
45	M215	PL3/8x2.375	.273	0	19	.029	0	v	19	26251.56	28054.688	.219	1.388	-	H1-1b
46	M216	PL3/8x2.375	.344	0	13	.070	0	v	19		28054.688	.219	1.388	-	H1-1b
47	M259	PL3/8x2.375	.270	0	20	.025	0	V	7		28054.688	.219	1.388		H1-1b
48	M260	PL3/8x2.375	.267	0	13	.026	0	-	24		28054.688	.219	1.388		H1-1b
49	M261	PL3/8x2.375	.333	0	18	.069	0	v	13		28054.688	.219	1.388	_	H1-1b
50	M292	PL3/8x2.375	.260		24	.034	0	_	22		28054.688	.219	1.388		H1-1b
51	M293	PL3/8x2.375	.235		16	.036	0	v	13		28054.688	.219	1.388		
52	M294	PL3/8x2.375	.387	-	24	.061	0	_	16		28054.688			_	H1-1b
53	MT22	PL1/2x4	.001		20	.000	.943	_	-	55152.186	63000	.219	1.388		H1-1b
54	MT23	PL3/8x4	.001		21	.000	.874	_	_	38573.215		.656	5.25		H1-1b
55	MT24	PL1/2x4	.086		13	.038				54437.008	47250	.369	3.938	_	H1-1b
56	MT25	PL1/2x4	.225	.784	_		.26	У	2		63000	.656	5.25		H1-1b
57	MT26				6	.040	.919	У	1	53800.851	63000	.656	5.25		H1-1b
58	MT27	PL1/2x4 PL1/2x4	.119	740	1	.018	.655	У	_	59083.088	63000	.656	5.25	_	H1-1b
59	MT28	PL3/8x4	.100		11	.028	.718	y	_	58324.528	63000	.656	5.25		H1-1b
60			.254	1.006		.021	1.006	У	-	36117.002	47250	.369	3.938		H1-1a
61	MT29	PL3/8x4	.314	1.045	_	.023		_	_	35344.479	47250	.369	3.938		H1-1a
62	MT30	PL3/8x4	.292		24	.026	0	_	-	41988.622	47250	.369	3.938		H1-1a
63	MT31	PL3/8x4	.334		24	.042	0	У	$\overline{}$	40816.383	47250	.369	3.938	_	H1-1a
	MT32	PL3/8X1	.001		8	.000	.943	-	24		11812.5	.092	.246		H1-1b
64	MT33	PL3/8X1	.001		9	.000	.872	У	22		11812.5	.092	.246	2	H1-1b
65	MT34	PL3/8X1	.125		24	.038	.572	У	24		11812.5	.092	.246	2	H1-1b
66	MT35	PL3/8X1		1.028		.022	.46		13	8922.461	11812.5	.092	.246	2	H1-1b
67	MT36	PL3/8X1	.098		24	.017	.655	У		10538.698	11812.5	.092	.246	2	H1-1b
68	MT37	PL3/8X1	.071		6	.013	.718	У	7	10299.381	11812.5	.092	.246	2}	H1-1b*
69	MT38	PL3/8X1		1.006		.042	.582	у	21	9029.527	11812.5	.092	.246	1	H1-1b
70	MT39	PL3/8X1		1.045	_	.029	.468	У	12	8836.412	11812.5	.092	.246	2	H1-1a
71	MT40	PL3/8X1	.304	.667	24	.025	.667	у	17	10497.297	11812.5	.092	.246		H1-1a
72	MT41	PL3/8X1	.342	.731	24	.041	.731	у	11	10249.195	11812.5	.092	.246		H1-1a
73	MT42	PL3/8X1	.123		6	.022	0	У	7	9657.416		.092	.246		H1-1b
74	MT44	PL3/8X1	.074		15	.029		v	$\overline{}$		11812.5	.092	.246		H1-1b
75	MT45	PL3/8X1	.121	0	17	.016		_	_		11812.5	.092			11-1b*
76	MT46	PL3/8X1	.092		15	.025		_	_		11812.5	.092		-	H1-1b
77	MT47	PL3/8X1	.126		18	.014					11812.5	.092			11-1b*
78	MT48	PL3/8X1	.105		24	.033		v		10146.905	11812.5	.092			H1-1b
79	MT49	PL3/8X1	.127		24	.016			12	11025.158	11812.5	.092			11-1b*
80	MT50	PL3/8X1	.097		13	.031			1	10626.842	11812.5	.092			H1-1b
81	MT51	PL3/8X1	.124		13	.022			10	11265.531	11812.5	.092			H1-1b
82	MT52	PL3/8X1	.091		24	.023		V			11812.5	.092			
83	MT53	PL3/8X1	.147		13	.027				11436.264	11012.5			_	H1-1b
84	MT54	PL3/8X1	.089		24	.018		V	1	11220.726	11012.5	.092		_	H1-1b
85	MT55	PL3/8X1	.125		24	.019		Y .	17	11556 566	11012.5	.092			H1-1b
86	MT56	PL3/8X1	.069	.353						11556.566		.092			11-1b*
87	MT58	PL3/8X1	.181	.958 2		.015		-	_		11812.5	.092			11-1b
88	MT59	PL3/8X1				.022		-	_		11812.5	.092		_	H1-1b
89	MT60		.246	.958 2		.025		ν '	_		11812.5	.092			11-1b
00	IVITUU	PL3/8X1	.301	.917 2	24	.028	.917	у Г	13	9448.941	11812.5	.092	.246	2	11-1b

Feb 8, 2024 3:42 PM Checked By: PMA

Member Place Code C, Locifil LC Sheet Locifil Dir LC Phres Bloth Print Bloth Pri	LIIVO	ope Aloo	rounded	10/	8 233	Diversi	200	Word Learners			1 100 × 10-1	. L. INCO. A. CO. A.	abitto v	obi*Mo z	.Cb	Eqn
90 M16f1 PL3/88A1 839 986 24 307 838 y 1 925408 11812.5 .092 2.46 P. H1-18 92 MT63 PL3/88A1 839 986 24 307 838 y 1 925408 11812.5 .092 2.46 P. H1-18 92 MT63 PL3/88A1 003 0 10 000 0 y 12 967.46 11812.5 .092 2.46 P. H1-18 14 93 MT64 PL3/88A1 003 0 10 000 0 y 12 967.46 11812.5 .092 2.46 P. H1-18 14 95 MT65 PL3/88A 4 476 958 24 003 .958 y 7 97016.285 47250 .369 3.72 H1-18 14 95 MT66 PL3/88A 4 558 958 24 033 .958 y 7 97016.285 47250 .369 3.33 H. H1-18 95 MT66 PL3/88A 6 10 917 21 022 .917 y 7 97016.285 47250 .369 3.33 H. H1-18 96 MT67 PL3/88A 6 10 917 21 022 .917 y 7 97016.285 47250 .369 3.33 H. H1-18 96 MT67 PL3/88A 6 10 917 21 022 .917 y 7 97016.285 47250 .369 3.33 H. H1-18 91 07 MT66 PL3/88A 6 10 917 21 022 .917 y 7 97016.285 47250 .369 3.33 H. H1-18 91 07 MT66 PL3/88A 6 10 917 21 022 .917 y 7 97016.285 47250 .369 3.33 H. H1-18 19 09 MT70 PL1/224 .256 .958 1/2 028 .958 y 7 64016.25 (3000 .656 5.25 H. H1-10 14 072 PL3/88A1 .505 0 24 042 1.255 y 12 6500 M. MT69 PL3/8A1 .366 917 24 024 1.255 y 1 2 6564.207 (3000 .656 5.25 H. H1-10 14 072 PL3/8A1 .367 371 4 024 0 0 1 0 0 7 7 8657416 11812.5 .082 2.446 L. H1-18 10 MT73 PL3/8A1 .369 .371 4 024 0 0 1 0 7 7 8657416 11812.5 .082 2.446 L. H1-18 10 MT69 PL3/8A1 .506 1.264 24 025 1.255 y 12 5867316 11812.5 .082 2.446 L. H1-18 10 MT69 PL3/8A1 .506 1.264 24 025 1.255 y 12 5867316 11812.5 .082 2.446 L. H1-18 10 MT69 PL3/8A1 .506 1.264 24 025 0 0 7 7 8657416 11812.5 .082 2.446 L. H1-18 10 MT69 PL3/8A1 .506 1.264 24 025 0 0 7 7 8657416 11812.5 .082 2.446 L. H1-18 10 MT69 PL3/8A1 .506 1.264 24 025 0 0 7 7 7 86588 11812.5 .082 2.446 L. H1-18 10 MT69 PL3/8A1 .506 1.264 24 025 0 0 7 7 7 86588 11812.5 .082 2.466 L. H1-18 10 MT69 PL3/8A1 .506 1.264 24 0 0 0 0 3 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Member								LC	phi*Phc libit	44942 E	OQ2	246	2	
92 MT63 PL3/8X1 8.665 917 22 022 917 V 7 3794880 47250 389 3.32 L H1-1b 94 MT65 PL3/8X1 0.00	90	MT61	PL3/8X1			-		-	-	1					_	
93 MT68 P1.3/8X1 .003 0 10 .000 0 V .12 9867.4°C 1812.5 .092 .246 2 . H1-16 .94 MT65 P1.8/8X4 .476 .956 24 .050 .956 V .7 3008.286 47250 .369 3.33 . H1-16 .95 MT66 P1.3/8X4 .876 .956 24 .050 .956 V .7 3008.286 47250 .369 3.33 . H1-16 .95 MT67 P1.3/8X4 .810 .917 21 .022 .917 V .7 3078.803 .47250 .369 3.33 . H1-16 .95 MT67 .91.3/8X4 .810 .917 21 .022 .917 V .7 3078.803 .47250 .369 3.383 . H1-16 .95 MT67 .91.3/8X4 .810 .917 21 .022 .917 V .7 30788.803 .47250 .369 3.383 . H1-16 .95 MT67 .91.3/8X4 .810 .917 24 .025 .917 V .7 5086 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95	91	MT62	PL3/8X1	.639					-	_	AND ADDRESS OF THE PARTY OF THE					
MT64		MT63	PL3/8X1	.665	.917	24	.028	.917	V	_						
MT65				.003	0	10	.000	0	٧	12						
96 MT66 PL3/8k4 610 917 21 022 917 v 7 37974, 903 4250 3.99 3.83 1 H1-1a 97 MT68 PL1/2k4 610 917 21 022 917 v 7 37974, 903 47250 3.99 3.83 3 H1-1a 97 MT68 PL1/2k4 416 956 12 028 958 v 7 94919.25 63000 656 5.25 1 H1-1b 10 99 MT70 PL1/2k4 .566 586 12 028 958 v 7 94919.25 63000 656 5.25 1 H1-1b 10 99 MT70 PL1/2k4 .566 917 v 7 55564.307 63000 656 5.25 1 H1-1b 10 MT71 PL3/8k1 .565 0.22 24 0.24 0.25 917 v 7 55564.307 63000 656 5.25 1 H1-1a 100 MT72 PL3/8k1 .367 877 24 .024 0.25 v 12 5566.388 1812.5 0.992 2.46 1 H1-1a 100 MT73 PL3/8k1 .367 877 24 .024 0.04 v 7 9567.416 1812.5 0.992 2.46 1 H1-1a 103 MT74 PL3/8k1 .380 877 24 .017 0 v 7 9567.416 1812.5 .092 2.46 1 H1-1a 103 MT74 PL3/8k1 .390 877 24 .017 0 v 7 9567.416 1812.5 .092 2.46 1 H1-1a 105 MT73 PL1/2k4 .001 943 24 .000 943 z 24 55162.786 53000 .656 5.25 1 H1-1a 105 MT73 PL1/2k4 .001 943 24 .000 943 z 24 55162.786 53000 .656 5.25 1 H1-1a 106 MZ73 PL1/2k4 .256 .784 9 0.44 .919 v 6 58806.851 63000 .656 5.25 1 H1-1a 107 MZ75 PL1/2k4 .256 .784 9 0.44 .919 v 6 58806.851 63000 .656 5.25 1 H1-1a 109 MZ78 PL1/2k4 .145 0.10 0.3 0.33 .718 v 12 58834.828 63000 .656 5.25 1 H1-1a 109 MZ78 PL3/8k4 .336 .657 0.00 .657 v 12 58834.828 .000 .656 5.25 1 H1-1a 110 MZ78 PL3/8k4 .336 .657 0.00 .657 v 2 .000 .656 5.25 1 H1-1a 110 .000					958	24	.050	.958	y	7	37018.285	47250			_	
MT67	-					_		.958	٧	7	37018.285	47250	.369	3.83	1	H1-1a
99 MT09						_			v	7	37794.803	47250	.369	3.938	1	H1-1a
98 MT69 PL1/2244 256 958 12 028 958 17 7 84919.25 63000 656 5.25 1. H1-19 99 MT70 PL3/824 256 958 17 24 025 917 7 7 55584 307 63000 656 5.25 1. H1-19 100 MT71 PL3/821 505 0 24 042 1.295 1.295 1 17 7 7 55584 307 63000 656 5.25 1. H1-19 101 MT72 PL3/821 505 0 24 042 1.295 1.295 1 17 7 7 55585 307 63000 656 5.25 1. H1-19 102 MT73 PL3/821 4.896 1.795 24 025 1.295 1 17 7 55685 307 6300 656 5.25 1. H1-19 102 MT73 PL3/821 4.986 1.995 24 025 1.295 1 17 7 55685 307 6300 656 5.25 1. H1-19 103 MT74 PL3/821 5.090 2.246 2. H1-18 103 MT74 PL3/821 5.090 2.246 2. H1-18 104 MT81 PL3/821 5.090 2.246 2. H1-18 104 MT81 PL3/821 5.000 1.943 24 000 943 2 24 55152.186 63000 656 5.25 1. H1-19 106 M273 PL1/224 0.01 943 24 000 943 2 24 55152.186 63000 656 5.25 1. H1-19 106 M273 PL1/224 0.991 286 19 038 26 17 10 04437.086 63000 656 5.25 1. H1-19 109 M275 PL1/224 1.15 0 01 0.023 655 1 12 04437.086 63000 656 5.25 1. H1-19 109 M276 PL1/224 1.15 0 01 0.023 655 1 12 04437.086 63000 656 5.25 1. H1-19 109 M276 PL1/224 1.15 0 01 0.023 655 1 12 04437.086 63000 656 5.25 1. H1-19 11 0 M278 PL1/224 1.15 0 01 0.023 655 1 12 04437.086 63000 656 5.25 1. H1-19 11 0 M278 PL1/224 1.15 0 01 0.023 655 1 12 04437.086 63000 656 5.25 1. H1-19 11 0 M278 PL1/224 1.15 0 01 0.023 655 1 12 04437.086 63000 656 5.25 1. H1-19 11 0 M278 PL1/224 1.15 0 01 0.023 655 1 12 04437.086 63000 656 5.25 1. H1-19 11 0 M278 PL1/224 1.15 0 01 0.023 655 1 12 04437.086 63000 656 5.25 1. H1-19 11 0 M278 PL1/224 1.15 0 01 0.023 655 1 12 04437.086 63000 656 5.25 1. H1-19 11 0 M278 PL1/224 1.15 0 01 0.023 655 1 12 04437.086 63000 656 5.25 1. H1-19 11 0 025 0 000 656 5.25 1. H1-19 11 0 000 M278 PL1/224 1.15 0 01 0.023 655 1 12 0.024 1.005 1 12 0.024 1.005 1 12 0.024 1.005 1 12 0.024 1.005 1 12 0.024 1 12 0.025 1 12 0.024 1.005 1 12 0.024 1.005 1 12 0.024 1 12 0.025 1 12 0.024 1 12 0.025 1 12 0.024 1 12 0.025 1 12 0.025 1 12 0.025 1 12 0.025 1 12 0.025 1 12 0.025 1 12 0.025 1 12 0.025 1 12 0.025 1 12 0.025 1 12 0.025 1 12 0.025 1 12 0.025 1 12 0.025 1 12 0.025 1 12 0.025 1 12 0.025 1 12 0.0									-	_	54919.25			5.25	1	H1-1b
99 M170 PL1/224 356 917 24 025 917 V 7 55664 307 63000 656 5.25 1 H1-1a 100 M171 PL3/6K1 505 0 24 042 1.295 V 12 7566 386 11812.5 092 246 1. H1-1a 101 M172 PL3/6K1 367 871 24 024 0 V 7 7 8857416 11812.5 092 246 1. H1-1a 102 M173 PL3/6K1 367 871 24 024 0 V 7 7 8857416 11812.5 092 246 1. H1-1a 102 M173 PL3/6K1 380 871 24 017 0 V 7 8857416 11812.5 092 246 1. H1-1a 103 M174 PL3/6K1 380 871 24 017 0 V 7 8857416 11812.5 092 246 1. H1-1a 104 M174 PL3/6K1 380 871 24 017 0 V 7 8857416 11812.5 092 246 1. H1-1a 104 M174 PL3/6K1 380 871 24 017 0 V 7 8857416 11812.5 092 246 1. H1-1a 104 M174 PL3/6K1 380 871 24 017 0 V 7 8857416 11812.5 092 246 1. H1-1a 104 M174 PL3/6K1 380 871 24 017 0 V 7 8857416 11812.5 092 246 1. H1-1a 105 M273 PL1/224 001 943 24 009 943 2 245552.186 3000 656 5.25 1. H1-1b 105 M273 PL1/224 001 943 24 009 943 2 245552.186 3000 656 5.25 1. H1-1b 105 M273 PL1/224 001 943 24 009 943 2 245552.186 3000 656 5.25 1. H1-1b 105 M275 PL1/224 091 948 24 091 874 23 000 874 2 2 23673215 47250 369 3.938 1 H1-1a 105 M275 PL1/224 145 0 0 0.23 655 V 12 59683.086 3000 656 5.25 1. H1-1b 109 M277 PL1/224 145 0 0 0.23 655 V 12 59683.086 3000 656 5.25 1. H1-1b 109 M277 PL1/224 145 0 0 9 0.33 718 V 12 58324.528 83000 656 5.25 1. H1-1b 110 M279 PL3/6K4 362 1.045 20 027 868 V 6 8384478 47250 3.69 3.938 1. H1-1a 111 M279 PL3/6K4 326 1.045 20 027 868 V 6 8384478 47250 3.69 3.938 1. H1-1a 111 M279 PL3/6K4 326 1.045 20 027 868 V 6 8384478 47250 3.69 3.938 1. H1-1a 111 M279 PL3/6K4 362 0.045 872 11 000 872 V 2 989.886 11812.5 0.992 246 1. H1-1b 111 M279 PL3/6K4 362 0.045 872 11 000 872 V 2 989.886 11812.5 0.992 246 1. H1-1b 111 M279 PL3/6K4 3.05 0.045 872 V 2 989.886 11812.5 0.992 246 1. H1-1b 111 M279 PL3/6K4 3.05 0.045 872 V 2 989.886 11812.5 0.992 246 1. H1-1b 111 M279 PL3/6K4 3.05 0.045 872 V 2 989.886 11812.5 0.992 246 1. H1-1b 111 M279 PL3/6K4 3.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05						_			-	-					1	H1-1b
MITO PLJ/SZ4 505 0	98					$\overline{}$			-	-						
100 M171	99	MT 7 0							-	_					_	
1092 MT72	100	MT71	PL3/8X1	.505												
1002 MT73			PL3/8X1	.367	.871	24	.024		V	_						
103 MT74 PL3/8X1 380 871 24 017 0 v 7 96574/6 11812.5 0.992 .246 2. H1-1a 104 MT81 PL3/8X1 5.06 .268 24 021 0 v 1 7725.06 618 1812.5 0.992 .246 2. H1-1a 105 M273 PL1/2X4 .001 .943 24 .000 .943 z 24 55152.186 63000 .656 5.25 1. H1-1b 106 M274 PL3/8X4 .001 .874 23 .000 .874 z 23.98572.15 47250 .369 .3938 2. H1-1b 107 M275 PL1/2X4 .951 .926 19 .038 .26 v 10 54437.008 63000 .656 5.25 1. H1-1b 107 M276 PL1/2X4 .256 .784 9 .044 .919 v 6 .5890.881 63000 .656 5.25 1. H1-1b 109 M277 PL1/2X4 .145 0 10 .023 .655 v 12 .59983.088 63000 .656 5.25 1. H1-1b 110 M278 PL1/2X4 .119 0 9 .033 .718 v 12 .58924.588 63000 .656 5.25 1. H1-1b 111 M279 PJ.3/8X4 .364 1.006 21 .024 1.006 v 6 .58117.002 47250 .369 3.787 1. H1-1a 112 M260 PJ.3/8X4 .338 1.045 20 .027 .468 v 6 .58117.002 47250 .369 3.787 1. H1-1a 113 M281 PJ.3/8X4 .336 .045 20 .026 .667 v 8 41888.622 47250 .369 3.938 1. H1-1a 113 M281 PJ.3/8X4 .307 .667 20 .026 .667 v 8 41888.622 47250 .369 3.938 1. H1-1a 115 M283 PJ.3/8X1 .001 .943 12 .000 .943 v 4 .9324.721 11812.5 .092 .246 2. H1-1b 116 M284 PJ.3/8X1 .001 .943 12 .000 .872 v 29 .948.958 11812.5 .092 .246 2. H1-1b 116 M284 PJ.3/8X1 .001 .943 12 .000 .872 v 29 .948.958 11812.5 .092 .246 2. H1-1b 117 M265 PJ.3/8X1 .333 .028 20 .024 .46 v 19 .932481 .1812.5 .092 .246 2. H1-1b 118 .0288 PJ.3/8X1 .033 .028 .000 .667 .20 .944 .			PL3/8X1	.488	1.295	24	.025	1.295	У	12					_	
No.					.871	24	.017	0	V	7	9657.416	11812.5			_	
M273						24	.021	0	٧			11812.5	.092		_	
M274					-			.943	z	24	55152.186	63000	.656	5.25	1	H1-1b
106 M276									_	22	38573.215	47250	.369	3.938	2	H1-1b
108 M276 PL1/2x4 .256 .784 9 .044 .919 y 6 53800.851 63000 .656 5.25 4. .11-10 109 M277 PL1/2x4 .145 0 10 .023 .655 y 12 53908.388 63000 .656 5.25 4. .11-10 110 M278 PL1/2x4 .119 0 9 .033 .718 y 12 53928.388 63000 .656 5.25 4. .11-10 111 M279 PL3/8x4 .264 1.006 21 .024 1.006 y 6 36117.002 47250 .369 3.787 4. .11-11 112 M280 PL3/8x4 .328 1.045 20 .027 .468 y 6 53844.37 47250 .369 3.938 .11-11-11 113 M281 PL3/8x4 .307 .667 20 .026 .667 y 8 41898.622 47250 .369 3.938 .11-11-11 114 M282 PL3/8x4 .352 .742 20 .041 .742 y 8 40816.833 47250 .369 3.938 .1 .11-11 115 M283 PL3/8x1 .001 .943 12 .000 .943 y 49 .0342 .002 .044 .042 .002 .044 .042 .002 .044 .042 .002 .044 .042 .002 .044 .042 .002 .043 .044 .004 .044 .004 .044 .004 .044 .004 .044 .004 .044 .004 .044 .004								_	_						_	
109 M277 P1/12x4 128 0.94 9.043 173 12 12 12 13 13 11 14 17 17 17 17 17 17						-										
110 M278					-	-			_						-	
111 M279 P.3/8x4 264 1.006 21 0.24 1.006 y 6 36147.002 47250 3.69 3.787 1. H1-1a 112 M280 P.3/8x4 3.28 1.045 20 0.27 4.68 y 6 36344.79 47250 3.69 3.938 1. H1-1a 113 M281 P.3/8x4 3.52 7.42 20 0.24 6.67 y 8 47988.622 47250 3.69 3.938 1. H1-1a 114 M282 P.3/8x4 3.52 7.42 20 0.41 7.42 y 8 40816.383 47250 3.69 3.938 1. H1-1a 115 M283 P.3/8x1 0.01 9.43 12 0.00 9.43 y 24 9324.721 11812.5 0.992 2.246 1. H1-1b 116 M284 P.3/8x1 0.01 8.72 11 0.00 8.72 y 29 3649.585 11812.5 0.092 2.246 1. H1-1b 117 M285 P.3/8x1 1.33 2.86 20 0.40 5.72 y 19 9110.863 11812.5 0.092 2.246 2. H1-1b 117 M285 P.3/8x1 1.33 1.028 20 0.22 4.6 y 18 8922.481 11812.5 0.092 2.246 2. H1-1b 118 M286A P.13/8x1 1.05 6.55 20 0.16 6.55 y 17 10538.698 11812.5 0.992 2.246 2. H1-1b 119 M287 P.13/8x1 0.75 7.18 20 0.15 7.18 y 12 10299.381 11812.5 0.992 2.246 2. H1-1b 118 12	109	M277				_										
111 M280	110	M278				_			-	_						
112 M280 PL3/8x4 328 1,045 20 0.027 468 v 6 35344.7y 47250 3.69 3.938 H1-1a	_	M279	PL3/8x4							_						
113 M281				.328	1.045	20			٧	-						
114 M282 PL3/8x4 .352 .742 20 .041 .742 y 8 40816.383 47250 .3689 3.938 H1-16 .115 M283 PL3/8X1 .001 .943 12 .000 .943 v 24 9324.721 .1812.5 .092 .246 H1-16 .116 M284 PL3/8X1 .133 .266 20 .040 .572 v 19 .910.885 .1812.5 .092 .246 H1-16 .117 M285 PL3/8X1 .133 .1028 20 .022 .46 v 19 .982.481 .1812.5 .092 .246 H1-16 .118 M286A PL3/8X1 .133 .1028 20 .022 .46 v 19 .982.481 .1812.5 .092 .246 H1-16 .118 M286A PL3/8X1 .075 .718 20 .015 .718 v 17 .0538.898 .1812.5 .092 .246 H1-16 .120 M287 PL3/8X1 .075 .718 20 .015 .718 v 12 .0299.381 .1812.5 .092 .246 H1-16 .120 M289A PL3/8X1 .275 .1066 .1044 .582 v .23 .092.527 .1812.5 .092 .246 H1-16 .122 M289A PL3/8X1 .349 .1045 .006 .033 .468 v 7 .8836.412 .1812.5 .092 .246 H1-16 .122 M290A PL3/8X1 .349 .1045 .0067 .0044 .567 v 14 .0497.297 .1812.5 .092 .246 H1-16 .122 M290A PL3/8X1 .361 .731 .20 .039 .311 v 8 .0244 .95 .1812.5 .092 .246 H1-16 .126 M293A PL3/8X1 .361 .731 .20 .039 .311 v 8 .0524 .95 .1812.5 .092 .246 H1-16 .126 M293A PL3/8X1 .133 .0 .0 .0 .0 .0 .0 .0					.667	20	.026	.667	У	8	41988.622	47250				
115 M283 PL3/8X1 .001 .943 12 .000 .943 v 24 .924.721 .1812.5 .092 .246 H1-1b 116 M284 PL3/8X1 .001 .872 .11 .000 .872 v 29 .949.585 .1812.5 .092 .246 H1-1b 117 M285 PL3/8X1 .133 .268 20 .040 .572 v 19 .910.883 .1812.5 .092 .246 H1-1b 118 M286A PL3/8X1 .133 .1028 20 .022 .46 v 19 .9824.81 .1812.5 .092 .246 H1-1b 119 M287 PL3/8X1 .105 .655 .20 .016 .655 .016 .655 .026 .022 .022 .022 .024 H1-1b 120 M288 PL3/8X1 .215 .006 .21 .044 .582 v .23 .022.898 .1812.5 .092 .246 H1-1b 121 M289A PL3/8X1 .349 .1045 .20 .033 .468 v 7 .883.412 .1812.5 .092 .246 H1-1b 122 M290A PL3/8X1 .321 .667 .00 .024 .667 v .14 .0497.297 .1812.5 .092 .246 H1-1a 123 M291A PL3/8X1 .321 .667 .00 .024 .667 v .14 .0497.297 .1812.5 .092 .246 H1-1a 124 M292A PL3/8X1 .361 .731 .00 .039 .731 v .8 .0249.196 .1812.5 .092 .246 H1-1a 125 M293A PL3/8X1 .133 .0 .60 .05 .0 v .12 .0657.416 .1812.5 .092 .246 H1-1a 126 M295A PL3/8X1 .133 .0 .60 .05 .0 v .12 .0657.416 .1812.5 .092 .246 H1-1b 127 M296A PL3/8X1 .133 .0 .15 .018 .0 v .12 .032.577 .1812.5 .092 .246 H1-1b 128 M297A PL3/8X1 .103 .0 .16 .028 .0 v .1806.698 .1812.5 .092 .246 H1-1b 129 M298A PL3/8X1 .103 .0 .0 .0 .0 .0 .0 .0						20	.041	.742	٧	8	40816.383	47250	.369	3.938		
116 M284 PL3/8X1 .001 .872 11 .000 .872 v 22 .9649.885 .1812.5 .092 .246 .11-1b .117 .118 .128 .128 .128 .128						$\overline{}$			v	24	9324.721	11812.5	.092	.246	1	H1-1b
116 M285 PL3/8X1 .133 .286 20 .040 .572 V 19 9110.863 11812.5 .092 .246 H1-1b 118 M286A PL3/8X1 .133 .028 20 .022 .46 V 19 8922.481 11812.5 .092 .246 H1-1b 119 M287 PL3/8X1 .075 .718 20 .015 .718 V 12 10299.381 11812.5 .092 .246 H1-1b 120 M288 PL3/8X1 .075 .718 20 .015 .718 V 12 10299.381 11812.5 .092 .246 H1-1b 121 M289A PL3/8X1 .349 .1045 20 .033 .488 V 7 .8836.412 .11812.5 .092 .246 H1-1b 122 M290A PL3/8X1 .349 .1045 20 .033 .488 V 7 .8836.412 .11812.5 .092 .246 H1-1b 123 M291A PL3/8X1 .321 .667 20 .024 .667 V .14 .10497.297 .11812.5 .092 .246 H1-1a 124 M292A PL3/8X1 .361 .731 20 .039 .731 V .8 .10249.195 .1812.5 .092 .246 H1-1a 125 M293A PL3/8X1 .113 0 6 .025 0 V .12 .9657.416 .1812.5 .092 .246 H1-1b 126 M295A PL3/8X1 .103 0 .16 .028 0 V .12 .0953.697 .11812.5 .092 .246 H1-1b 129 M298A PL3/8X1 .103 0 .16 .028 0 V .12 .0953.697 .11812.5 .092 .246 H1-1b 130 M299A PL3/8X1 .103 0 .16 .028 0 V .14 .10688.698 .1812.5 .092 .246 H1-1b 131 M300A PL3/8X1 .108 .756 7 .034 .756 V 6 .1064.695 .1812.5 .092 .246 H1-1b 132 M301A PL3/8X1 .102 .631 19 .033 .631 V 6 .1062.682 .11812.5 .092 .246 H1-1b 133 M302A PL3/8X1 .104 .105 .034 .756 V 6 .1062.682 .11812.5 .092 .246 H1-1b 134 M303A PL3/8X1 .105 .527 .20 .024 .527 V .1162.5531 .11812.5 .092 .246 H1-1b 136 M305A PL3/8X1 .092 .444 .19 .017 .44 V 6 .1062.682 .11812.5 .092 .246 H1-1b 136 M305A PL3/8X1 .056 .565 .056 .056 .056 .05						_				_			.092	.246	2	H1-1b
117 M286						_			_	_			.092	.246	2	H1-1b
118 M286A PL3/6X1 .105 .655 20 .016 .655 V .17 .10538.698 .1812.5 .092 .246 2 H1-1b .120 M288 PL3/6X1 .075 .718 20 .015 .718 V 12 .10299.381 .1812.5 .092 .246 2 H1-1b .121 M289A PL3/6X1 .215 .1006 .21 .044 .582 V .23 .9029.381 .1812.5 .092 .246 2 H1-1b .122 M290A PL3/6X1 .349 .1045 .20 .033 .468 V 7 .8386.412 .1812.5 .092 .246 2 H1-1a .122 M290A PL3/6X1 .349 .1045 .20 .033 .468 V 7 .8386.412 .1812.5 .092 .246 2 H1-1a .123 M291A PL3/6X1 .321 .667 .20 .024 .667 V .14 .10497.297 .1812.5 .092 .246 2 H1-1a .124 M292A PL3/6X1 .361 .731 .20 .039 .731 V 8 .10249.195 .1812.5 .092 .246 2 H1-1a .125 M293A PL3/6X1 .133 0 6 .025 0 V .12 .9657.416 .1812.5 .092 .246 1 H1-1b .126 M295A PL3/6X1 .033 0 .15 .018 0 V .12 .9657.416 .1812.5 .092 .246 1 H1-1b .127 M296A PL3/6X1 .133 0 .15 .018 0 V .12 .9653.6081 .1812.5 .092 .246 2 H1-1b .128 M297A PL3/6X1 .103 0 .16 .028 0 V 6 .9536.081 .1812.5 .092 .246 2 H1-1b .129 M298A PL3/6X1 .108 .756 7 .034 .756 V 6 .0146.905 .1812.5 .092 .246 2 H1-1b .131 .030A PL3/6X1 .137 0 .20 .019 .51 V 7 .11025.158 .1812.5 .092 .246 2 H1-1b .131 .130A) .128 .132 .132 .132 .132 .132 .132 .132 .133 .132 .133 .132									-	_					2	H1-1b
119 M288 PL3/8X1 .005 .718 20 .015 .718 V 12 10299.381 11812.5 .092 .246 2 H1-1b 121 M289A PL3/8X1 .215 1.006 21 .044 .582 V 23 9029.527 11812.5 .092 .246 2 H1-1a 122 M290A PL3/8X1 .349 1.045 20 .033 .468 V 7 838.412.5 .092 .246 2 H1-1a 123 M291A PL3/8X1 .321 .667 20 .024 .667 V 14 10497.297 11812.5 .092 .246 2 H1-1a 123 M291A PL3/8X1 .361 .731 20 .039 .731 V 8 10248.195 11812.5 .092 .246 2 H1-1a 125 M292A PL3/8X1 .361 .731 20 .039 .731 V 8 10248.195 11812.5 .092 .246 2 H1-1a 125 M293A PL3/8X1 .113 0 6 .025 0 V 12 9657.416 11812.5 .092 .246 2 H1-1a 126 M295A PL3/8X1 .133 0 15 .018 0 V 12 10232.577 11812.5 .092 .246 2 H1-1b 126 M295A PL3/8X1 .133 0 15 .018 0 V 12 10232.577 11812.5 .092 .246 2 H1-1b 128 M297A PL3/8X1 .103 0 16 .028 0 V 6 9536.081 11812.5 .092 .246 2 H1-1b 129 M298A PL3/8X1 .103 0 15 .012 0 V 14 10688.696 11812.5 .092 .246 2 H1-1b 130 M299A PL3/8X1 .108 .756 7 .034 .756 V 6 10148.695 11812.5 .092 .246 2 H1-1b 131 M300A PL3/8X1 .137 0 20 .019 .51 V 7 11025.158 11812.5 .092 .246 2 H1-1b 132 M301A PL3/8X1 .092 .44 19 .033 .631 V 6 10628.42 11812.5 .092 .246 2 H1-1b 133 M302A PL3/8X1 .092 .44 19 .027 .349 V 7 11265.58 11812.5 .092 .246 2 H1-1b 136 M305A PL3/8X1 .092 .44 19 .027 .342 V 7 11265.58 11812.5 .092 .246 2 H1-1b 136 M305A PL3/8X1 .092 .44 19 .027 .349 V .344	118								_	-						
120 M288	119	M287							-						-	
121 M289A	120	M288	PL3/8X1						-	_					-	
122 M290A PL3/8X1 349 1.045 20 .034 .667 y 14 1049 297 1181.2.5 .092 .246 H1-1a 124 M292A PL3/8X1 .361 .731 20 .039 .731 y 8 10249 .181.2.5 .092 .246 H1-1a 125 M293A PL3/8X1 .082 .27 17 .030 1.028 y 6 8921.838 1181.2.5 .092 .246 H1-1b 126 M295A PL3/8X1 .082 .27 17 .030 1.028 y 6 8921.838 1181.2.5 .092 .246 H1-1b 126 M295A PL3/8X1 .082 .27 17 .030 1.028 y 6 8921.838 1181.2.5 .092 .246 H1-1b 127 M296A PL3/8X1 .133 0 15 .018 0 y 12 10232.577 1181.2.5 .092 .246 H1-1b 128 M297A PL3/8X1 .103 0 16 .028 0 y 6 9536.081 1181.2.5 .092 .246 H1-1b 129 M298A PL3/8X1 .140 0 15 .012 0 y 14 10688.698 1181.2.5 .092 .246 H1-1b 130 M299A PL3/8X1 .137 0 20 .019 .51 y 7 11025.158 1181.2.5 .092 .246 2 H1-1b 131 M300A PL3/8X1 .137 0 20 .019 .51 y 7 11025.158 1181.2.5 .092 .246 2 H1-1b 133 M302A PL3/8X1 .130 .422 19 .023 .422 y 7 11265.531 1181.2.5 .092 .246 2 H1-1b 134 M303A PL3/8X1 .094 .527 20 .024 .527 y 6 10972.087 1181.2.5 .092 .246 2 H1-1b 135 M304A PL3/8X1 .094 .527 20 .024 .527 y 6 10972.087 1181.2.5 .092 .246 2 H1-1b 136 M305A PL3/8X1 .092 .44 19 .017 .44 y 6 1120.726 1181.2.5 .092 .246 2 H1-1b 136 M305A PL3/8X1 .092 .44 19 .017 .44 y 6 1120.726 1181.2.5 .092 .246 2 H1-1b 136 M305A PL3/8X1 .092 .44 19 .017 .44 y 6 1120.726 1181.2.5 .092 .246 2 H1-1b 136 M305A PL3/8X1 .092 .44 19 .017 .44 y 6 1120.726 1181.2.5 .092 .246 2 H1-1b 136 M305A PL3/8X1 .092 .346 .002 .017 .002 .017 .002 .017 .002 .017 .002 .018	121	M289A	PL3/8X1	.215	1.006	21			У	-					_	
M291A		M290A	PL3/8X1	.349	1.045	20	.033	.468	У	7					_	
M292A				.321	.667	20	.024	.667	У	14					-	
125 M293A						20	.039	.731	У	8	10249.195	11812.5	.092		_	
126 M295A PL3/8X1 .082 .27 17 .030 1.028 y 6 8921.838 11812.5 .092 .246 H1-1b 127 M296A PL3/8X1 .133 0 15 .018 0 y 12 10232.577 11812.5 .092 .246 H1-1b 128 M297A PL3/8X1 .103 0 16 .028 0 y 6 9536.081 11812.5 .092 .246 H1-1b 129 M298A PL3/8X1 .140 0 15 .012 0 y 14 10688.698 11812.5 .092 .246 H1-1b 129 M298A PL3/8X1 .108 .756 7 .034 .756 y 6 10146.905 11812.5 .092 .246 H1-1b 130 M299A PL3/8X1 .137 0 20 .019 .51 y 7 11025.158 11812.5 .092 .246 H1-1b 131 M300A PL3/8X1 .137 0 20 .019 .51 y 7 11025.158 11812.5 .092 .246 H1-1b 132 M301A PL3/8X1 .102 .631 19 .033 .631 y 6 10626.842 11812.5 .092 .246 H1-1b 133 M302A PL3/8X1 .130 .422 19 .023 .422 y 7 11265.158 11812.5 .092 .246 H1-1b 134 M303A PL3/8X1 .152 .349 19 .027 .349 y .23 11436.264 11812.5 .092 .246 H1-1b 135 M304A PL3/8X1 .152 .349 19 .027 .349 y .23 11436.264 11812.5 .092 .246 H1-1b 136 M305A PL3/8X1 .092 .44 19 .017 .44 y 6 1120.726 11812.5 .092 .246 H1-1b 136 M305A PL3/8X1 .063 .353 18 .014 .353 y 11 11426.997 11812.5 .092 .246 H1-1b 139 M309A PL3/8X1 .063 .353 18 .014 .353 y 11 11426.997 11812.5 .092 .246 H1-1b 140 M310A PL3/8X1 .262 .958 20 .022 .958 y 18 9254.828 11812.5 .092 .246 H1-1b 141 M311A PL3/8X1 .320 .917 20 .028 .917 y 18 9448.941 11812.5 .092 .246 H1-1b 144 M314A PL3/8X1 .662 .958 20 .059 .958 y 12 .954.828 11812.5 .092 .246 H1-1b 144 M314A PL3/8X1 .603 .958 20 .059 .958 y 12 .954.828 11812.5 .092 .246 H1-1b									ν	12	9657.416	11812.5	.092	.246	1	<u>H1-1b</u>
126 M295A						_		1.028	v	6	8921.838	11812.5	.092	.246	1	H1-1b
127 M296A PL3/8X1 .193 0 16 .028 0 y 6 9536.081 11812.5 .092 .246 2 H1-1b 129 M298A PL3/8X1 .140 0 15 .012 0 y 14 10688.698 11812.5 .092 .246 2 .H1-1b* 130 M299A PL3/8X1 .108 .756 7 .034 .756 y 6 10146.905 11812.5 .092 .246 2 .H1-1b* 131 M300A PL3/8X1 .137 0 20 .019 .51 y 7 11025.158 11812.5 .092 .246 2 .H1-1b 132 M301A PL3/8X1 .102 .631 19 .033 .631 y 6 10626.842 11812.5 .092 .246 2 .H1-1b 133 M302A PL3/8X1 .130 .422 19 .023 .422 <						_		-	_	_				.246	2	H1-1b*
128 M29/A PL3/8X1 .103 0 15 .012 0 y 14 10688.698 11812.5 .092 .246 2					_	_			-	-				.246	2	H1-1b
129 M298A PL3/8X1 .140 0 13 .012 .756 V 6 10146.905 11812.5 .092 .246 2 H1-1b 131 M300A PL3/8X1 .137 0 20 .019 .51 V 7 11025.158 11812.5 .092 .246 2 H1-1b 132 M301A PL3/8X1 .102 .631 19 .033 .631 V 6 10626.842 11812.5 .092 .246 2 H1-1b 133 M302A PL3/8X1 .130 .422 19 .023 .422 V 7 11265.531 11812.5 .092 .246 2 H1-1b 134 M303A PL3/8X1 .094 .527 20 .024 .527 V 6 10972.087 11812.5 .092 .246 2 H1-1b 135 M304A PL3/8X1 .152 .349 19 .027 .349 V 23 11436.264 11812.5 .092 .246 2 H1-1b 136 M305A PL3/8X1 .092 .44 19 .017 .44 V 6 11220.726 11812.5 .092 .246 2 H1-1b 137 M306A PL3/8X1 .133 0 20 .017 0 V 15 11556.566 11812.5 .092 .246 2 H1-1b 138 M307A PL3/8X1 .063 .353 18 .014 .353 V 11 11426.997 11812.5 .092 .246 2 H1-1b 139 M309A PL3/8X1 .195 .958 20 .022 .958 V 18 9254.828 11812.5 .092 .246 2 H1-1b 140 M310A PL3/8X1 .320 .917 20 .028 .917 V 16 9448.941 11812.5 .092 .246 2 H1-1b 141 M311A PL3/8X1 .620 .958 20 .059 .958 V 12 9254.828 11812.5 .092 .246 2 H1-1a 143 M313A PL3/8X1 .675 .958 20 .059 .958 V 12 9254.828 11812.5 .092 .246 2 H1-1a 144 M314A PL3/8X1 .675 .958 20 .059 .958 V 12 9254.828 11812.5 .092 .246 2 H1-1a 144 M314A PL3/8X1 .675 .958 20 .059 .958 V 12 9254.828 11812.5 .092 .246 2 H1-1a 144 M314A PL3/8X1 .675 .958 20 .059 .958 V 12 9708.285 47250 .369 3.729 1 H1-1a 146 M316A PL3/8X4 .588 .958 19 .036 .958 V 12 37018.285 47250 .369 3.794 1 H1-1a 148 M318 PL3/8X4 .648 .917 23 .025 .917 V 12 37018.285 47250					_				-	-						
130 M299A PL3/8X1 .106 .730 7 .534 7 .155 y 7 11025.158 11812.5 .092 .246 2 H1-1b* 132 M301A PL3/8X1 .102 .631 19 .033 .631 y 6 10626.842 11812.5 .092 .246 2 H1-1b 133 M302A PL3/8X1 .130 .422 19 .023 .422 y 7 11265.531 11812.5 .092 .246 2 H1-1b 134 M303A PL3/8X1 .094 .527 20 .024 .527 y 6 10972.087 11812.5 .092 .246 2 H1-1b 135 M304A PL3/8X1 .094 .527 20 .024 .527 y 6 10972.087 11812.5 .092 .246 2 H1-1b 136 M305A PL3/8X1 .092 .44 19 .017 .44 y 6 1	129	M298A				_			-	-						
131 M300A PL3/8X1 .137 0 20 .019 .51 y 7 11025.188 11812.5 .092 .246 2	130								-	_						
132 M301A PL3/8X1 .102 .631 19 .033 .631 y 6 10926.842 11812.5 .092 .246 2 H1-1b 133 M302A PL3/8X1 .130 .422 19 .023 .422 y 7 11265.531 11812.5 .092 .246 2 H1-1b 134 M303A PL3/8X1 .094 .527 20 .024 .527 y 6 10972.087 11812.5 .092 .246 2 H1-1b 135 M304A PL3/8X1 .152 .349 19 .027 .349 y 23 11436.264 11812.5 .092 .246 2 H1-1b 136 M305A PL3/8X1 .092 .44 19 .017 .44 y 6 11220.726 11812.5 .092 .246 2 H1-1b 137 M306A PL3/8X1 .063 .353 18 .014	131	M300A		.137					V		11025.158	11012.5				
133 M302A PL3/8X1 .130 .422 19 .023 .422 y 7 11265.531 11812.5 .092 .246 2 H1-1b 134 M303A PL3/8X1 .094 .527 20 .024 .527 y 6 10972.087 11812.5 .092 .246 2 H1-1b 135 M304A PL3/8X1 .152 .349 19 .027 .349 y 23 11436.264 11812.5 .092 .246 2 H1-1b 136 M305A PL3/8X1 .092 .44 19 .017 .44 y 6 11220.726 11812.5 .092 .246 2 H1-1b 137 M306A PL3/8X1 .063 .353 18 .014 .353 y 11 11426.997 11812.5 .092 .246 2 H1-1b 138 M307A PL3/8X1 .958 20 .022 .958			PL3/8X1	.102					_							
134 M303A PL3/8X1 .094 .527 20 .024 .527 y 6 10972.087 11812.5 .092 .246 2 H1-1b 135 M304A PL3/8X1 .152 .349 19 .027 .349 y 23 11436.264 11812.5 .092 .246 2 H1-1b 136 M305A PL3/8X1 .092 .44 19 .017 .44 y 6 11220.726 11812.5 .092 .246 2 H1-1b 137 M306A PL3/8X1 .133 0 20 .017 0 y 15 11556.566 11812.5 .092 .246 2 H1-1b 138 M307A PL3/8X1 .063 .353 18 .014 .353 y 11 11426.997 11812.5 .092 .246 2 H1-1b 139 M309A PL3/8X1 .958 20 .022 .958 y 18 .9254.828 11812.5					.422	19	.023		У							
135 M304A PL3/8X1 .152 .349 19 .027 .349 y 23 11436.264 11812.5 .092 .246 2 H1-1b 136 M305A PL3/8X1 .092 .44 19 .017 .44 y 6 11220.726 11812.5 .092 .246 2 H1-1b 137 M306A PL3/8X1 .133 0 20 .017 0 y 15 11556.566 11812.5 .092 .246 2 H1-1b 138 M307A PL3/8X1 .063 .353 18 .014 .353 y 11 11426.997 11812.5 .092 .246 2 H1-1b 139 M309A PL3/8X1 .195 .958 20 .022 .958 y 18 9254.828 11812.5 .092 .246 2 H1-1b 140 M310A PL3/8X1 .320 .917 20 .028 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>20</td><td>.024</td><td>.527</td><td>y</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>						20	.024	.527	y							
136 M305A PL3/8X1 .092 .44 19 .017 .44 y 6 11220.726 11812.5 .092 .246 2 H1-1b 137 M306A PL3/8X1 .133 0 20 .017 0 y 15 11556.566 11812.5 .092 .246 2 H1-1b* 138 M307A PL3/8X1 .063 .353 18 .014 .353 y 11 11426.997 11812.5 .092 .246 2 H1-1b 139 M309A PL3/8X1 .195 .958 20 .022 .958 y 18 9254.828 11812.5 .092 .246 2 H1-1b 140 M310A PL3/8X1 .320 .917 20 .028 .917 y 16 9448.941 11812.5 .092 .246 2 H1-1b 141 M311A PL3/8X1 .620 .958 20 .059 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>.349</td><td>y</td><td>23</td><td>11436.264</td><td>11812.5</td><td>.092</td><td></td><td></td><td></td></t<>								.349	y	23	11436.264	11812.5	.092			
136 M305A PL3/8X1 .092 .14 .092 .17 0 y 15 11556.566 11812.5 .092 .246 2 H1-1b* 138 M307A PL3/8X1 .063 .353 18 .014 .353 y 11 11426.997 11812.5 .092 .246 2 H1-1b 139 M309A PL3/8X1 .195 .958 20 .022 .958 y 18 .9254.828 11812.5 .092 .246 2 H1-1b 140 M310A PL3/8X1 .262 .958 20 .025 .958 y 18 .9254.828 11812.5 .092 .246 2 H1-1b 141 M311A PL3/8X1 .320 .917 20 .028 .917 y 16 .948.941 11812.5 .092 .246 2 .H1-1b 142 M312A PL3/8X1 .620 .958 20 .059									_		11220.726	11812.5	.092			
137 M306A PL3/8X1 .133 0 20 .014 .353 y 11 11426.997 11812.5 .092 .246 2 H1-1b 138 M307A PL3/8X1 .063 .353 18 .014 .353 y 11 11426.997 11812.5 .092 .246 2 H1-1b 139 M309A PL3/8X1 .195 .958 20 .022 .958 y 18 .9254.828 11812.5 .092 .246 2 H1-1b 140 M310A PL3/8X1 .320 .917 20 .028 .917 y 16 .9448.941 11812.5 .092 .246 2 H1-1b 142 M312A PL3/8X1 .620 .958 20 .059 .958 y 12 .9254.828 11812.5 .092 .246 2 H1-1a 143 M313A PL3/8X1 .675 .958 20 .041									-	-						
138 M307A PL3/8X1 .003 .094 .094										1						
139 M309A PL3/8X1 .195 .936 20 .022 .958 y 18 9254.828 11812.5 .092 .246 2 H1-1b 140 M310A PL3/8X1 .320 .917 20 .028 .917 y 16 9448.941 11812.5 .092 .246 2 H1-1b 142 M312A PL3/8X1 .620 .958 20 .059 .958 y 12 .9254.828 11812.5 .092 .246 2 .H1-1a 143 M313A PL3/8X1 .675 .958 20 .041 .958 y 12 .9254.828 11812.5 .092 .246 2 .H1-1a 144 M313A PL3/8X1 .675 .958 20 .041 .958 y 12 .9254.828 11812.5 .092 .246 2 .H1-1a 144 M314A PL3/8X1 .003 0 10 .000																
140 M310A PL3/8X1 .202 .936 20 .923 .958 y 16 9448.941 11812.5 .092 .246 2 H1-1b 141 M311A PL3/8X1 .620 .958 20 .059 .958 y 12 9254.828 11812.5 .092 .246 2 H1-1a 143 M313A PL3/8X1 .675 .958 20 .041 .958 y 12 9254.828 11812.5 .092 .246 2 H1-1a 144 M314A PL3/8X1 .702 .917 20 .029 .917 y 18 9448.941 11812.5 .092 .246 2 H1-1a 144 M314A PL3/8X1 .702 .917 20 .029 .917 y 18 9448.941 11812.5 .092 .246 2 H1-1a 145 M315A PL3/8X1 .003 0 10 .000 0 y 9 9657.416 11812.5									Y	40	9254 828	11812.5				
141 M311A PL3/8X1 .320 .917 20 .028 .917 y 16 9448.941 11812.5 .092 .246 2 H1-1a 142 M312A PL3/8X1 .620 .958 20 .059 .958 y 12 9254.828 11812.5 .092 .246 2 H1-1a 143 M313A PL3/8X1 .675 .958 20 .041 .958 y 12 9254.828 11812.5 .092 .246 2 H1-1a 144 M314A PL3/8X1 .702 .917 20 .029 .917 y 18 9448.941 11812.5 .092 .246 2 H1-1a 145 M315A PL3/8X1 .003 0 10 .000 0 y 9 9657.416 11812.5 .092 .246 2 H1-1b 146 M316A PL3/8x4 .501 .958 20 .054	140	M310A							_	_						
142 M312A PL3/8X1 .620 .958 20 .059 .958 y 12 924-828 11812.5 .092 .246 2 H1-1a 143 M313A PL3/8X1 .675 .958 20 .041 .958 y 12 9254.828 11812.5 .092 .246 2 H1-1a 144 M314A PL3/8X1 .702 .917 20 .029 .917 y 18 9448.941 11812.5 .092 .246 2 H1-1a 145 M315A PL3/8X1 .003 0 10 .000 0 y 9 9657.416 11812.5 .092 .246 2 H1-1a 146 M316A PL3/8X4 .501 .958 20 .054 .958 y 12 37018.285 47250 .369 3.794 1 H1-1a 147 M317 PL3/8X4 .588 .958 19 .036 .958 y 12 37018.285 <td< td=""><td></td><td>M311A</td><td>PL3/8X1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		M311A	PL3/8X1													
143 M313A PL3/8X1 .675 .958 20 .041 .958 y 12 9254.828 11812.5 .092 .246 2				.620												
144 M314A PL3/8X1 .702 .917 20 .029 .917 y 18 9448.941 11812.5 .092 .246 2					.958	20	.041	.958	У	12	9254.828					
145 M315A PL3/8X1 .003 0 10 .000 0 y 9 9657.416 11812.5 .092 .246 2 H1-1b 146 M316A PL3/8x4 .501 .958 20 .054 .958 y 12 37018.285 47250 .369 3.729 1 H1-1a 147 M317 PL3/8x4 .588 .958 19 .036 .958 y 12 37018.285 47250 .369 3.794 1 H1-1a 148 M318 PL3/8x4 .648 .917 23 .025 .917 y 12 37794.803 47250 .369 3.938 1 H1-1a								.917	V							
146 M316A PL3/8x4 .501 .958 20 .054 .958 y 12 37018.285 47250 .369 3.729 1 H1-1a 147 M317 PL3/8x4 .588 .958 19 .036 .958 y 12 37018.285 47250 .369 3.794 1 H1-1a 148 M318 PL3/8x4 .648 .917 23 .025 .917 y 12 37794.803 47250 .369 3.938 1 H1-1a									V							
147 M317 PL3/8x4 .588 .958 19 .036 .958 y 12 37018.285 47250 .369 3.794 1 H1-1a 148 M318 PL3/8x4 .648 .917 23 .025 .917 y 12 37794.803 47250 .369 3.938 1 H1-1a									V	12	37018.285	47250	.369	3.729	1	H1-1a
148 M318 PL3/8x4 .648 .917 23 .025 .917 y 12 37794.803 47250 .369 3.938 1 H1-1a										12	37018.285	47250			1	H1-1a
148 M318 PL3/8X4 .646 .917 [23] .623 .517 [7] 12									V	12	37794.803	47250				
	148	M318				_										

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

	969 8	o rountage.		ND			20 0170	-		Conuni	icu,			_	
	Member	Shape		Loc[ft]	LC	Shear	Loc[ft]	Dir	LC	phi*Pnc [lb]phi*Pnt [lb]	phi*Mn y	.phi*Mn z-	Cb	Egn
149	M319	PL1/2x4	.182	.958	7	.033	.958	y				.656	5.25	1	
150	M320	PL1/2x4	.268	.958	7	.032	.958	V	12	54919.25	63000	.656	5.25	1	H1-1b
151	M321	PL1/2x4	.380	.917	19	.028	.917	V	12	55564.307		.656	5.25	1	H1-1a
152	M322	PL3/8X1	.536	0	20	.043	1.295	-	6	7566.368	11812.5	.092	.246	2	H1-1a
153	M323	PL3/8X1	.389	.871	20	.027	0	v	12		11812.5	.092	.246	1	
154	M324	PL3/8X1	.518	1.295	20	.027	1.295	-	6	7566.368	11812.5			_	H1-1a
155	M325	PL3/8X1	.402	.871	20	.019	0	-	12			.092	.246	2	H1-1a
156	M332	PL3/8X1						У			11812.5	.092	.246	1	H1-1a
157	M356	PL1/2x4	.537	1.264		.024	1.264	_	6	7725.066	11812.5	.092	.246	2	H1-1a
			.001	.943	21	.000	.943	_	-	55152.186		.656	5.25	1	H1-1b
158	M357	PL3/8x4	.001	.874	20	,000	.874	Z	19	38573.215	11200	.369	3.938	2	H1-1b
159	M358	PL1/2x4	.080	.286	7	.047	.26	У	7	54437.008	63000	.656	5.25	1	H1-1b
160	M359	PL1/2x4	.237	.784	12	.035	.784	ν		53800.851	63000	.656	5.25	3	H1-1b
161	M360	PL1/2x4	.135	0	7	.026	.655	У	35	59083.088	63000	.656	5.25	1	H1-1b
162	M361	PL1/2x4	.125	0	1	.022	.718	v	35	58324.528	63000	.656	5.208	1	H1-1b
163	M362	PL3/8x4	.184	1.006	18	.017	.609	v	_	36117.002	47250	.369	3.938		H1-1b*
164	M363	PL3/8x4	.286	1.045		.024	.495	v	-	35344.479		.369	3.938		H1-1a
165	M364	PL3/8x4	.262		15	.037	0	V	7	41988.622	47250	.369	3.938		H1-1a
166	M365	PL3/8x4	.313		18	.061	0	V	7	40816.383	47250			-	
167	M366	PL3/8X1	.001	.943	9	.000	.943	_	_	9324.721		.369	3.938		H1-1a
168	M367	PL3/8X1	.001					У	24		11812.5	.092	.246		H1-1b
169	M368			.872	8	.000	.872	_	19	9649.585	11812.5	.092	.246		H1-1b
		PL3/8X1	.114		18	.035	.572	_	17	9110.863	11812.5	.092	.246	2	H1-1b
170	M369	PL3/8X1		1.028	$\overline{}$.022	_	-	18	8922.461	11812.5	.092	.246	2	H1-1b
171	M370	PL3/8X1	.093		12	.023	.655	_		10538.698	11812.5	.092	.246	2	H1-1b*
172	M371	PL3/8X1	.079		12	.018	.718	y	23	10299.381	11812.5	.092	.246	2	H1-1b*
173	M372	PL3/8X1	.191	1.006	18	.044	.582	V	18	9029.527	11812.5	.092	.246		H1-1b
174	M373	PL3/8X1	.307	1.045	18	.032	.468	٧	18	8836.412	11812.5	.092	.246	_	H1-1a
175	M374	PL3/8X1	.288		18	.032	.667	v	7	10497.297	11812.5	.092	.246	11/200	H1-1a
176	M375	PL3/8X1	.322		18	.058	.731	y	7	10249.195		.092	.246	_	H1-1a
177	M376	PL3/8X1	.143		12	.015	0		23	9657.416	11812.5	.092	.246		H1-1b
178	M378	PL3/8X1	.075		23	.030	0	V	6		11812.5	.092	.246	_	
179	M379	PL3/8X1	.121		23	.018	0		22	10232.577				_	H1-1b
180	M380	PL3/8X1	.093		23	.019		_	_		11812.5	.092	.246		H1-1b*
181	M381	PL3/8X1					.898	У	6	9536.081	11812.5	.092	.246	_	H1-1b
182	M382		.127		24	.019	0	У	$\overline{}$	10688.698	11812.5	.092	.246		H1-1b*
		PL3/8X1	.087		17	.017	.756	У	_		11812.5	.092	.246		H1-1b
183	M383	PL3/8X1	.118		18	.018	.51			11025.158	11812.5	.092	.246	2	H1-1b*
184	M384	PL3/8X1	.087		17	.015				10626.842		.092	.246	2	H1-1b
185	M385	PL3/8X1	.109		17	.025	.422	У	18	11265.531	11812.5	.092	.246	2	H1-1b
186	M386	PL3/8X1	.080	.527	18	.009	.527	У	28	10972.087	11812.5	.092	.246	_	H1-1b
187	M387	PL3/8X1	.131	.349	18	.031	.349	У	18	11436.264	11812.5	.092	.246		H1-1b
188	M388	PL3/8X1	.083	.44	18	.010	0	V	7		11812.5	.092	.246	_	H1-1b
189	M389	PL3/8X1	.115		19	.022			19	11556.566		.092	.246		H1-1b
190	M390	PL3/8X1	.066		19	.015				11426.997		.092	.246	-	H1-1b
191	M392	PL3/8X1	.170	.958		.026		,	10	9254.828	11812.5	.092	.246		
192	M393	PL3/8X1	.229		18	.029		y							H1-1b
193	M394	PL3/8X1	.279		18						11812.5	.092	.246		H1-1b
194	M395	PL3/8X1	.547			.030		У	19		11812.5	.092	.246		H1-1b
195	M396				18	.042					11812.5	.092	.246		H1-1a
		PL3/8X1	.598		18	.034		У			11812.5	.092	.246		H1-1a
196	M397	PL3/8X1	.625		18	.026		у	$\overline{}$		11812.5	.092	.246		H1-1a
197	M398	PL3/8X1	.003		10	.000				9657.416	11812.5	.092	.246	2	H1-1b
198	M399	PL3/8x4	.460		18	.039				37018.285	47250	.369	3.938		H1-1a
199	M400	PL3/8x4	.552	.958	18	.021	.958			37018.285	47250	.369	3.938		H1-1a
200	M401	PL3/8x4	.612	.917	18	.013	.917	y	11	37794.803	47250	.369	3.938		H1-1a
201	M402	PL1/2x4	.164		6	.019		_	-	54919.25	63000	.656	5.25		H1-1b
202	M403	PL1/2x4	.198		6	.017				54919.25	63000	.656	5.25		H1-1b
203	M404	PL1/2x4	.237		5	.015				55564.307	63000	.656	5.25	_	H1-1b
204	M405	PL3/8X1	.472		18		1.295		\rightarrow		11812.5				
205	M406	PL3/8X1	.353		18	.015	-		_			.092	.246		H1-1a
206	M407	PL3/8X1		1.295			1.295		=		11812.5	.092	.246		H1-1a
207	M408	PL3/8X1							_		11812.5	.092	.246		H1-1a
201	IVITUU	r LU/OA I	.365	.871	18	.011	0	y 2	23	9657.416	11812.5	.092	.246	1	H1-1a

Feb 8, 2024 3:42 PM Checked By: PMA

Number N	LIIVO	lope Aloc		W	55 93055		7-	WO THOSHAU	755-0	nones			Little Oh Fee
209 M449		Member	Shape	Code C							phi*Pnc [ib] phi*Pnt [ib]	phi Mn v	phi*Mn zCb Eqn
200 MA39	208	M415	PL3/8X1	.477					V				100 100 200 200 200
1911 M444		M439	PL1/2x4	.001	.943	23	.000	,943	Z	24	55152.186 63000		
141		The second secon	PI 3/8x4	.001	.874	24	.000	.874	Z			.369	
M4442					286	1	.044	.26	V	12	54437.008 63000	.656	
						_		1.028	z	20	53800.851 63000	.656	5.25 3 H1-1b
1941 1942 1941 19						-				21	59083.088 63000	.656	5.25 1 H1-1b
175 176 177 178						-							
18						_			-				
217 M447	215					_			-				
17	216	M446						_	-	_			
19 M449	217	M447	PL3/8x4			-			У	_			
290 M449 P1.3/8X1 .001 .943 11 .000 .943 Y .24 .924-77 11812.5 .092 .246 .2 H1-1b .221 M451 P1.3/8X1 .016 .286 14 .032 .572 Y .15 .911.683 .1812.5 .092 .246 .2 .2 .111-1b .222 M452 P1.3/8X1 .006 .286 14 .032 .572 Y .15 .911.683 .1812.5 .092 .246 .2 .111-1b .223 M453 P1.3/8X1 .088 .655 .8 .021 .028 .04 .020 .028 .04 .022 .028 .028 .028 .028 .022 .246 .04 .024 .022 .028	218	M448	PL3/8x4	.288		14			У	-			
P13/8X1 P13/		M449	PL3/8X1	.001	.943	11	.000	.943	У	_			
P1-38 P1-3				.001	.872	12	.000	.872	У	16			
222 M453				.106	.286	14	.032	.572	y	15	9110.863 11812.5	.092	
M453				.102	1.028	14	.020	1.028	y			.092	
M454 PL3/8X1 .074 .718 8 .016 .718 y .21 10299.381 1812.5 .092 .246 2 .111-15 .226 M455 PL3/8X1 .776 .006 14 .041 .682 y .14 .9025.27 .1812.5 .092 .246 2 .111-15 .226 M456 PL3/8X1 .283 .1045 14 .029 .468 y .14 .838.412 .1812.5 .092 .246 2 .111-15 .228 M457 PL3/8X1 .214 .371 14 .029 .468 y .14 .838.412 .1812.5 .092 .246 2 .111-15 .228 M458 PL3/8X1 .214 .371 14 .059 .331 .712 .00497.287 .1812.5 .092 .246 2 .111-15 .229 .0485 PL3/8X1 .072 .46 .21 .029 .1028 y .12 .00497.287 .1812.5 .092 .246 .111-15 .231 .0462 .029 .028 y .12 .00497.287 .1812.5 .092 .246 .111-15 .231 .0462 .029 .028 y .12 .00497.287 .1812.5 .092 .246 .111-15 .231 .0462 .029 .028 y .12 .00497.287 .1812.5 .092 .246 .111-15 .231 .0462 .029 .028 y .12 .00497.287 .1812.5 .092 .246 .111-15 .231 .0462 .029 .028 .029 .028 .029 .028 .1812.5 .092 .246 .241 .111-15 .233 .0464 .028 .017 .009 .00								.655	ν	20	10538.698 11812.5	.092	.246 2 H1-1b*
M455						_			v	21	10299.381 11812.5	.092	.246 2 H1-1b*
M456	_					_				_			.246 1 H1-1b
M457						_			110	_			
228 M458 PL3/8X1 .214 .731 M .059 .731 V 12 10249 195 11812.5 .092 .246 L H1-1b .239 M459 PL3/8X1 .378 .46 21 .029 .028 V 12 9857 M 1812.5 .092 .246 L . H1-1b .230 M461 PL3/8X1 .072 .46 21 .029 .028 V 12 9807 M 1812.5 .092 .246 L . H1-1b .231 M462 PL3/8X1 .072 .46 21 .029 .028 V 12 9807 M 1812.5 .092 .246 L . H1-1b .231 M462 PL3/8X1 .069 0 .21 .018 0 V 12 9360 M 1812.5 .092 .246 L . H1-1b .233 M464 PL3/8X1 .240 20 .017 0 V 21 9836 M 1812.5 .092 .246 L . H1-1b .233 M464 PL3/8X1 .079 .756 15 .012 .756 V 3 10148.98 11812.5 .092 .246 L . H1-1b .234 M465 PL3/8X1 .079 .756 15 .012 .756 V 3 10148.98 11812.5 .092 .246 L . H1-1b .236 M M66 PL3/8X1 .011 .014 .015 .51 V 15 10626.842 11812.5 .092 .246 L . H1-1b .237 M M68 PL3/8X1 .081 .631 15 .016 .331 V 15 10626.842 11812.5 .092 .246 L . H1-1b .238 M M69 PL3/8X1 .075 .527 14 .006 .527 X .006								_	-	_			
PL3/6X1 1.214 1.		The second secon				_			-		111111		
230 M461 P.J.3/8X1 .072 .46 21 .029 .1,028 v 12 8821.838 1812.5 .092 .246 2 H1-1b 231 M462 P.J.3/8X1 .117 0 20 .015 0 v 22 10232.577 11812.5 .092 .246 2 H1-1b 232 M463 P.J.3/8X1 .124 0 20 .017 0 v 22 1038.638 1812.5 .092 .246 2 H1-1b 233 M464 P.J.3/8X1 .079 .756 15 .012 .756 v 3 10146.905 11812.5 .092 .246 2 H1-1b 234 M465 P.J.3/8X1 .079 .756 15 .012 .756 v 3 10146.905 11812.5 .092 .246 2 H1-1b 235 M466 P.J.3/8X1 .081 .631 15 .010 .631 v 15 1025.158 11812.5 .092 .246 2 H1-1b 236 M467 P.J.3/8X1 .081 .631 15 .010 .631 v 15 1025.158 11812.5 .092 .246 2 H1-1b 237 M468 P.J.3/8X1 .081 .631 15 .010 .631 v 15 1025.158 11812.5 .092 .246 2 H1-1b 238 M469 P.J.3/8X1 .011 .422 15 .022 .422 v 13 1165.531 11812.5 .092 .246 2 H1-1b 239 M470 P.J.3/8X1 .075 .527 14 .006 .527 v 3 10972.097 11812.5 .092 .246 2 H1-1b 240 M471 P.J.3/8X1 .076 .44 14 .008 .02 .14 11812.5 .092 .246 2 H1-1b 241 M472 P.J.3/8X1 .060 .353 13 .013 .353 v 12 11426.997 11812.5 .092 .246 2 H1-1b 243 M475 P.J.3/8X1 .060 .353 13 .013 .353 v 12 11426.997 11812.5 .092 .246 2 H1-1b 244 M476 P.J.3/8X1 .559 .958 14 .026 .958 v 13 .924.828 11812.5 .092 .246 2 H1-1b 245 M477 P.J.3/8X1 .559 .958 14 .023 .958 v 13 .924.828 11812.5 .092 .246 2 H1-1b 246 M478 P.J.3/8X1 .559 .958 14 .023 .958 v 13 .924.828 11812.5 .092 .246 2 H1-1b 250 M482 P.J.3/8X1 .559 .958 14 .033 .958 v 13 .948.891 11812.5 .092 .246 2 H1-1b 250 M489 P.J.3/8X1 .559 .958 14 .03						_			-	_			
231 M462 PL3/8X1 .089 O 21 .018 O y 22 10232.577 1812.5 .092 .246 Z. H1-1b*	229	M459				_			_	-			
232 M463 PL3/8X1 .089 0 21 .018 0 v 12 9536.88 1812.5 .092 .246 2 H1-1b .234 M465 PL3/8X1 .124 0 20 .017 0 v 22 .0836.89 1812.5 .092 .246 2 H1-1b .235 M466 PL3/8X1 .079 .756 15 .012 .756 v 3 .0148.905 1812.5 .092 .246 2 H1-1b .235 M466 PL3/8X1 .011 .001 .0	230	M461	PL3/8X1	.072	.46			_	_				
232 M463	231	M462	PL3/8X1	.117				0	У	-			12 10
233 M465		M463	PL3/8X1	.089	0	21	.018	0	У				
M465			PL3/8X1	.124	0	20	.017		У	22			
M466				.079	.756	15	.012	.756	У				12.10
M467		1000 HORSES				_	.015	.51	У	15	11025.158 11812.5	.092	12.10
M468						-	010		v	15	10626.842 11812.5	.092	.246 2 H1-1b
238 M469 PL3/8X1 .075 .527 14 .006 .527 V 3 10972.087 11812.5 .092 .246 2 H1-1b								_	v	13	11265.531 11812.5	.092	.246 2 H1-1b
238 MAFO PL3/8X1 .121 .349 14 .028 .349 y 13 .1436.264 .11812.5 .092 .246 2 .11-1b .240 M471 PL3/8X1 .076 .44 .14 .008 0 y 1 .11220.726 .11812.5 .092 .246 2 .11-1b .241 M472 PL3/8X1 .106 .287 13 .021 .287 y .24 .11565.566 .11812.5 .092 .246 2 .11-1b .242 M473 PL3/8X1 .106 .353 13 .013 .353 y .21 .1426.997 .11812.5 .092 .246 2 .11-1b .242 M473 PL3/8X1 .156 .998 14 .023 .958 y .24 .9264.828 .11812.5 .092 .246 2 .11-1b .244 M476 PL3/8X1 .156 .998 14 .026 .958 y .24 .9264.828 .11812.5 .092 .246 2 .11-1b .245 M477 PL3/8X1 .259 .9917 14 .028 .9917 y .13 .9448.91 .11812.5 .092 .246 2 .11-1b .246 M478 PL3/8X1 .559 .958 14 .040 .958 y .13 .9264.828 .1812.5 .092 .246 2 .11-1b .248 M480 PL3/8X1 .559 .958 14 .031 .958 y .18 .9264.828 .1812.5 .092 .246 2 .11-1a .248 M480 PL3/8X1 .559 .958 14 .031 .958 y .18 .9264.828 .1812.5 .092 .246 2 .11-1a .248 M480 PL3/8X1 .559 .958 14 .031 .958 y .18 .9264.828 .1812.5 .092 .246 2 .11-1a .248 M480 PL3/8X1 .559 .958 14 .037 .000 .871 y .9667.416 .11812.5 .092 .246 2 .11-1a .249 M481 PL3/8X1 .509 .958 14 .016 .000 .871 y .9667.416 .11812.5 .092 .246 .2 .11-1a .251 M483 PL3/8X4 .565 .917 14 .009 .000 .871 y .9667.416 .11812.5 .092 .246 .2 .11-1a .252 .484 .284 .284 .284 .284 .284 .284 .225 .24919.25 .3690 .3938 .1 .11-1a .255 .486 PL1/2x4 .150 .958 1 .015 .958 y .255656.307 .3690 .3938 .1 .11-1a .255 .486 PL1/2x4 .150 .958 1 .015 .958 y .255656.307 .3690 .3938 .1 .11-1a .255 .488 PL3/8X1 .344 .295 14 .012						-		-		-		.092	.246 2 H1-1b
240 M471						-			-				
241 M472 PL3/6X1 .106 .287 13 .021 .287 y .24 11556.566 11812.5 .092 .246 2 H1-1b								-	100	-			
241 M472 PL3/8X1 .060 .353 13 .013 .353 y 12 11426.997 11812.5 .092 .246 2 H1-1b	240					-			1	-			
242 M475	241	M472							-				
244 M476 PL3/6X1 .21 .958 14 .026 .958 y 13 .9254.828 !1812.5 .092 .246 2 H1-1b 244 M477 PL3/8X1 .259 .917 !4 .028 .917 y 13 .9448.941 !1812.5 .092 .246 2 .H1-1b 246 M478 PL3/8X1 .510 .958 !4 .040 .958 y 6 .9254.828 !1812.5 .092 .246 2 .H1-1a 247 M479 PL3/8X1 .559 .958 !4 .031 .958 y 18 .9254.828 !1812.5 .092 .246 2 .H1-1a 248 M480 PL3/8X1 .030 0 10 .000 .871 y 9 9657.416 !1812.5 .092 .246 2 .H1-1a 250 M482 PL3/8X4 .509 .958 !4 .016 0	242	M473							-	-			
244 M476 PL3/8X1 .211 .958 14 .026 .958 y 13 9248.88 11812.5 .092 .246	243	M475	PL3/8X1	.156		14			У	-			
245 M477 PL3/8X1 .510 .958 14 .040 .958 y 6 9254.828 11812.5 .092 .246 2 H1-1a 247 M479 PL3/8X1 .559 .958 14 .031 .958 y 18 9254.828 11812.5 .092 .246 2 H1-1a 248 M480 PL3/8X1 .584 .917 14 .023 .917 y 21 9448.941 11812.5 .092 .246 2 H1-1a 249 M481 PL3/8X1 .003 0 10 .000 .871 y 9 9657.416 11812.5 .092 .246 2 H1-1a 249 M481 PL3/8X4 .424 .958 14 .037 0 y 6 9677.416 11812.5 .092 .246 2 H1-1a 250 M482 PL3/8X4 .565 .917 14 .007 0		M476	PL3/8X1	.211	.958	14			У	-			
246 M478 PL3/8X1 .510 .958 14 .040 .958 y 6 9254.828 11812.5 .092 .246 2 H1-1a 247 M479 PL3/8X1 .559 .958 14 .031 .958 y 18 9254.828 11812.5 .092 .246 2 H1-1a 248 M480 PL3/8X1 .584 .917 14 .023 .917 y 21 9448.941 11812.5 .092 .246 2 H1-1a 249 M481 PL3/8X4 .003 0 10 .000 .871 y 9 9657.416 11812.5 .092 .246 2 H1-1b 250 M482 PL3/8X4 .509 .958 14 .016 0 y 6 37018.285 47250 .369 3.938 1 H1-1a 251 M484 PL3/8X4 .565 .917 14 .009 0 y	245	M477	PL3/8X1	.259	.917	14	.028	-	У	_			
247 M479 PL3/8X1 .559 .958 14 .031 .958 y 18 9254.828 11812.5 .092 .246 2 H1-1a 248 M480 PL3/8X1 .584 .917 14 .023 .917 y 21 9448.941 .1812.5 .092 .246 2 H1-1a 249 M481 PL3/8X1 .003 0 10 .000 .871 y 9 9657.416 .1812.5 .092 .246 2 H1-1a 250 M482 PL3/8x4 .424 .958 14 .016 0 y 6 37018.285 47250 .369 .3938 1 H1-1a 251 M484 PL3/8x4 .565 .917 14 .009 0 y 8 37794.803 47250 .369 3.938 1 H1-1a 253 M484 PL3/8x4 .565 .917 14 .009 0			PL3/8X1	.510	.958	14	.040	.958	У	6	9254.828 11812.5		
248 M480 PL3/8X1 .584 .917 14 .023 .917 y 21 9448.941 11812.5 .092 .246 2 H1-1a 249 M481 PL3/8X1 .003 0 10 .000 .871 y 9 9657.416 11812.5 .092 .246 2 H1-1b 250 M482 PL3/8x4 .424 .958 14 .016 0 y 6 37018.285 47250 .369 3.938 1 H1-1a 251 M483 PL3/8x4 .565 .917 14 .009 0 y 8 37794.803 47250 .369 3.938 1 H1-1a 252 M484 PL3/8x4 .150 .958 1 .015 .958 y 22 54919.25 63000 .656 5.108 1 H1-1a 254 M486 PL1/2x4 .178 .958 2 .014 .958						14	.031	.958	У	18	9254.828 11812.5		
249 M481 PL3/8X1 .003 0 10 .000 .871 y 9 9657.416 11812.5 .092 .246 2 H1-1b 250 M482 PL3/8x4 .424 .958 14 .016 0 y 6 37018.285 47250 .369 3.938 1 H1-1a 251 M483 PL3/8x4 .565 .917 14 .009 0 y 8 37794.803 47250 .369 3.938 1 H1-1a 252 M484 PL3/8x4 .565 .917 14 .009 0 y 8 37794.803 47250 .369 3.938 1 H1-1a 253 M485 PL1/2x4 .150 .958 1 .015 .958 y 22 54919.25 63000 .656 5.25 1 H1-1b 254 M486 PL1/2x4 .178 .958 2 .014 .958 <						-			V	21	9448.941 11812.5		
250 M482 PL3/8x4 .424 958 14 .037 0 y 6 37018.285 47250 .369 3.938 1 H1-1a 251 M483 PL3/8x4 .509 .958 14 .016 0 y 6 37018.285 47250 .369 3.938 1 H1-1a 252 M484 PL3/8x4 .565 .917 14 .009 0 y 8 37794.803 47250 .369 3.938 1 H1-1a 253 M485 PL1/2x4 .150 .958 1 .015 .958 y 22 54919.25 63000 .656 5.108 1 H1-1b 254 M486 PL1/2x4 .178 .958 2 .014 .958 y 22 54919.25 63000 .656 5.25 1 H1-1b 255 M487 PL1/2x4 .208 .917 2 .011 .917 y 22 55564.307 63000 .656 5.25 1 H1-1b 256 M488 PL3/8X1 .444 0 17 .042 1.295 y 12 7566.368 11812.5 .092 .246 2 H1-1a 257 M489 PL3/8X1 .331 .871 14 .012 0 y 21 9657.416 11812.5 .092 .246 2 H1-1a 259 M491 PL3/8X1 .342 .871 14 .009 0 y 21 9657.416 11812.5 .092 .246 2 H1-1a 259 M491 PL3/8X1 .342 .871 14 .009 0 y 21 9657.416 11812.5 .092 .246 2 H1-1a 260 M498 PL3/8X1 .449 1.264 14 .014 1.264 y 12 7725.066 11812.5 .092 .246 2 H1-1a 260 M498 PL3/8X1 .449 1.264 14 .014 1.264 y 12 7725.066 11812.5 .092 .246 2 H1-1a 261 M504A PIPE 2.0 .237 4 23 .090 4 7 14916.096 32130 1.872 1.872 1 H1-1b 263 MP3A PIPE 2.0 .413 4 12 .080 1.895 10 14916.096 32130 1.872 1.872 1 H1-1b 264 MP2A PIPE 2.0 .399 4 1 .071 4 5 14916.096 32130 1.872 1.872 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b 266 M69						_			v	9	9657.416 11812.5	.092	.246 2 H1-1b
250 M483 PL3/8x4 .509 .958 14 .016 0 y 6 37018.285 47250 .369 3.938 1 H1-1a 252 M484 PL3/8x4 .565 .917 14 .009 0 y 8 37794.803 47250 .369 3.938 1.1 H1-1a 253 M485 PL1/2x4 .150 .958 1 .015 .958 y 22 54919.25 63000 .656 5.108 1 H1-1b 254 M486 PL1/2x4 .208 .917 2 .011 .917 y 22 55564.307 63000 .656 5.25 1 H1-1b 256 M488 PL3/8X1 .444 0 17 .042 1.295 y 12 7566.368 11812.5 .092 .246 2 H1-1a 257 M489 PL3/8X1 .331 .871 14 .012 0 y 21 9657.416 11812.5 .092 .246 1 H1-1a 258 M490 PL3/8X1 .434 1.295 14 .022 1.295 y 12 7566.368 11812.5 .092 .246 2 H1-1a 259 M491 PL3/8X1 .342 .871 14 .009 0 y 21 9657.416 11812.5 .092 .246 2 H1-1a 259 M491 PL3/8X1 .342 .871 14 .009 0 y 21 9657.416 11812.5 .092 .246 2 H1-1a 260 M498 PL3/8X1 .449 1.264 14 .014 1.264 y 12 7725.066 11812.5 .092 .246 2 H1-1a 261 M504A PIPE 2.5 .169 .658 23 .147 .329 7 29547.045 50715 3.596 3.596 1 H1-1b 263 MP3A PIPE 2.0 .339 4 1 .071 4 5 14916.096 32130 1.872 1.872 1 H1-1b 264 MP2A PIPE 2.0 .399 4 1 .071 4 5 14916.096 32130 1.872 1.872 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1								_	-		37018.285 47250		
251 M484 PL3/8x4 .565 .917 14 .009 0 y 8 37794.803 47250 .369 3.938 11 H1-1a 253 M485 PL1/2x4 .150 .958 1 .015 .958 y 22 54919.25 63000 .656 5.108 1 H1-1b 254 M486 PL1/2x4 .178 .958 2 .014 .958 y 22 54919.25 63000 .656 5.25 1 H1-1b 255 M487 PL1/2x4 .208 .917 2 .011 .917 y 22 55564.307 63000 .656 5.25 1 H1-1b 256 M488 PL3/8X1 .444 0 17 .042 1.295 y 12 7566.368 11812.5 .092 .246 2 H1-1a 257 M489 PL3/8X1 .331 .871 14 .012 0 y 21 9657.416 11812.5 .092 .246 1 H1-1a 258 M490 PL3/8X1 .342 .871 14 .009 0 y 21 9657.416 11812.5 .092 .246 2 H1-1a 259 M491 PL3/8X1 .342 .871 14 .009 0 y 21 9657.416 11812.5 .092 .246 1 H1-1a 260 M498 PL3/8X1 .449 1.264 14 .014 1.264 y 12 7725.066 11812.5 .092 .246 1 H1-1a 261 M504A PIPE 2.5 .169 .658 23 .147 .329 7 29547.045 50715 3.596 3.596 1 H1-1b 263 MP3A PIPE 2.0 .237 4 23 .090 4 7 14916.096 32130 1.872 1.872 1 H1-1b 264 MP2A PIPE 2.0 .399 4 1 .071 4 5 14916.096 32130 1.872 1.872 1 H1-1b 265 MP1A PIPE 2.0 .289 4 1 .064 4 6 14916.096 32130 1.872 1.872 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b									_	1			
252 M485 PL1/2x4 .150 .958 1 .015 .958 y 22 54919.25 63000 .656 5.108 1 H1-1b 254 M486 PL1/2x4 .178 .958 2 .014 .958 y 22 54919.25 63000 .656 5.25 1 H1-1b 255 M487 PL1/2x4 .208 .917 2 .011 .917 y 22 55564.307 63000 .656 5.25 1 H1-1b 256 M488 PL3/8X1 .444 0 17 .042 1.295 y 12 7566.368 11812.5 .092 .246 2 H1-1a 257 M489 PL3/8X1 .331 .871 14 .012 0 y 21 9657.416 11812.5 .092 .246 1 H1-1a 258 M490 PL3/8X1 .434 1.295 14 .022 1.295 y 12 7566.368 11812.5 .092 .246 2 H1-1a 259 M491 PL3/8X1 .342 .871 14 .009 0 y 21 9657.416 11812.5 .092 .246 1 H1-1a 260 M498 PL3/8X1 .449 1.264 14 .014 1.264 y 12 7725.066 11812.5 .092 .246 1 H1-1a 261 M504A PIPE 2.5 .169 .658 23 .147 .329 7 29547.045 50715 3.596 3.596 1 H1-1b 262 MP4A PIPE 2.0 .237 4 23 .090 4 7 14916.096 32130 1.872 1.872 1 H1-1b 263 MP3A PIPE 2.0 .399 4 1 .071 4 5 14916.096 32130 1.872 1.872 1 H1-1b 264 MP2A PIPE 2.0 .289 4 1 .064 4 6 14916.096 32130 1.872 1.872 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b							2000000	_	1000				
253 M486 PL1/2x4 .150 .350 1 .916 .958 y 22 54919.25 63000 .656 5.25 1 H1-1b 254 M486 PL1/2x4 .208 .917 2 .011 .917 y 22 55564.307 63000 .656 5.25 1 H1-1b 255 M487 PL1/2x4 .208 .917 2 .011 .917 y 22 55564.307 63000 .656 5.25 1 H1-1b 256 M488 PL3/8X1 .444 0 17 .042 1.295 y 12 7566.368 11812.5 .092 .246 2 H1-1a 257 M489 PL3/8X1 .434 1.295 14 .022 1.295 y 12 7566.368 11812.5 .092 .246 2 H1-1a 259 M491 PL3/8X1 .434 1.295 14 .002 1.295						- 1			-				
254 M486 PL1/2x4 .208 .917 2 .011 .917 y 22 55564.307 63000 .656 5.25 1 H1-1b 256 M488 PL3/8X1 .444 0 17 .042 1.295 y 12 7566.368 11812.5 .092 .246 2 H1-1a 257 M489 PL3/8X1 .331 .871 14 .012 0 y 21 9657.416 11812.5 .092 .246 1 H1-1a 258 M490 PL3/8X1 .434 1.295 14 .022 1.295 y 12 7566.368 11812.5 .092 .246 2 H1-1a 259 M491 PL3/8X1 .342 .871 14 .009 0 y 21 9657.416 11812.5 .092 .246 1 H1-1a 260 M498 PL3/8X1 .449 1.264 14 .014 1.264 y 12 7725.066 11812.5 .092 .246 2 H1-1a 261 M504A PIPE 2.5 .169 .658 23 .147 .329 7 29547.045 50715 3.596 3.596 1 H1-1b 262 MP4A PIPE 2.0 .237 4 23 .090 4 7 14916.096 32130 1.872 1.872 1 H1-1b 263 MP3A PIPE 2.0 .413 4 12 .080 1.895 10 14916.096 32130 1.872 1.872 1 H1-1b 264 MP2A PIPE 2.0 .399 4 1 .071 4 5 14916.096 32130 1.872 1.872 1 H1-1b 265 MP1A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b						_							
256 M487 PE1/244 .200 .311 2 .111 .112 .511 .114 .012 .042 1.295 y 12 .7566.368 11812.5 .092 .246 2 H1-1a 257 M489 PL3/8X1 .331 .871 14 .012 0 y 21 9657.416 11812.5 .092 .246 1 H1-1a 258 M490 PL3/8X1 .434 1.295 14 .002 1.295 y 12 7566.368 11812.5 .092 .246 2 H1-1a 259 M491 PL3/8X1 .434 1.295 14 .002 1.295 y 12 7566.368 11812.5 .092 .246 2 H1-1a 259 M491 PL3/8X1 .449 1.264 14 .009 0 y 21 9657.416 11812.5 .092 .246 1									У	22	55564 307 63000		
256 M488 PL3/8X1 .331 .871 14 .012 0 y 21 9657.416 11812.5 .092 .246 1 H1-1a 258 M490 PL3/8X1 .434 1.295 14 .022 1.295 y 12 7566.368 11812.5 .092 .246 2 H1-1a 259 M491 PL3/8X1 .342 .871 14 .009 0 y 21 9657.416 11812.5 .092 .246 1 H1-1a 260 M498 PL3/8X1 .449 1.264 14 .014 1.264 y 12 7725.066 11812.5 .092 .246 2 H1-1a 261 M504A PIPE 2.5 .169 .658 23 .147 .329 7 29547.045 50715 3.596 3.596 1 H1-1b 262 MP4A PIPE 2.0 .237 4 23 .090 4 7 14916.096 32130 1.872 1.872 1 H1-1b 263 MP3A PIPE 2.0 .413 4 12 .080 1.895 10 14916.096 32130 1.872 1.872 1 H1-1b 264 MP2A PIPE 2.0 .399 4 1 .071 4 5 14916.096 32130 1.872 1.872 2 H1-1b 265 MP1A PIPE 2.0 .289 4 1 .064 4 6 14916.096 32130 1.872 1.872 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b	255	M487											
257 M489 PL3/8X1 .331 .871 14 .012 0 y 21 965/.416 11812.5 .092 .246 1 H1-1a 258 M490 PL3/8X1 .434 1.295 14 .022 1.295 y 12 7566.368 11812.5 .092 .246 2 H1-1a 259 M491 PL3/8X1 .342 .871 14 .009 0 y 21 9657.416 11812.5 .092 .246 1 H1-1a 260 M498 PL3/8X1 .449 1.264 14 .014 1.264 y 12 7725.066 11812.5 .092 .246 2 H1-1a 261 M504A PIPE 2.5 .169 .658 23 .147 .329 7 29547.045 50715 3.596 3.596 1 H1-1b 262 MP4A PIPE 2.0 .237 4 23 .090 4 7	256	M488	PL3/8X1						_	+-			
258 M490 PL3/8X1 .434 1.295 14 .022 1.295 y 12 7566.368 11812.5 .092 .246 2 H1-1a 259 M491 PL3/8X1 .342 .871 14 .009 0 y 21 9657.416 11812.5 .092 .246 1 H1-1a 260 M498 PL3/8X1 .449 1.264 14 .014 1.264 y 12 7725.066 11812.5 .092 .246 2 H1-1a 261 M504A PIPE 2.5 .169 .658 23 .147 .329 7 29547.045 50715 3.596 3.596 1 H1-1b 262 MP4A PIPE 2.0 .237 4 23 .090 4 7 14916.096 32130 1.872 1.872 1 H1-1b 263 MP3A PIPE 2.0 .413 4 12 .080 1.895 10 <t< td=""><td></td><td></td><td>PL3/8X1</td><td>.331</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			PL3/8X1	.331									
259 M491 PL3/8X1 .342 .871 14 .009 0 y 21 9657.416 11812.5 .092 .246 1 H1-1a 260 M498 PL3/8X1 .449 1.264 14 .014 1.264 y 12 7725.066 11812.5 .092 .246 2 H1-1a 261 M504A PIPE 2.5 .169 .658 23 .147 .329 7 29547.045 50715 3.596 3.596 1 H1-1b 262 MP4A PIPE 2.0 .237 4 23 .090 4 7 14916.096 32130 1.872 1.872 1 H1-1b 263 MP3A PIPE 2.0 .413 4 12 .080 1.895 10 14916.096 32130 1.872 1.872 1 H1-1b 264 MP2A PIPE 2.0 .399 4 1 .064 4 6 14916.096 <t< td=""><td></td><td></td><td>PL3/8X1</td><td>.434</td><td>1.295</td><td>14</td><td>.022</td><td>1.295</td><td></td><td></td><td></td><td></td><td></td></t<>			PL3/8X1	.434	1.295	14	.022	1.295					
260 M498 PL3/8X1 .449 1.264 14 .014 1.264 y 12 7725.066 11812.5 .092 .246 2 H1-1a 261 M504A PIPE 2.5 .169 .658 23 .147 .329 7 29547.045 50715 3.596 3.596 1 H1-1b 262 MP4A PIPE 2.0 .237 4 23 .090 4 7 14916.096 32130 1.872 1.872 1 H1-1b 263 MP3A PIPE 2.0 .413 4 12 .080 1.895 10 14916.096 32130 1.872 1.872 1 H1-1b 264 MP2A PIPE 2.0 .399 4 1 .071 4 5 14916.096 32130 1.872 1.872 1 H1-1b 265 MP1A PIPE 2.0 .289 4 1 .064 4 6 14916.096 32130 <													
261 M504A PIPE 2.5 .169 .658 23 .147 .329 7 29547.045 50715 3.596 3.596 1 H1-1b 262 MP4A PIPE 2.0 .237 4 23 .090 4 7 14916.096 32130 1.872 1.872 1 H1-1b 263 MP3A PIPE 2.0 .413 4 12 .080 1.895 10 14916.096 32130 1.872 1.872 1 H1-1b 264 MP2A PIPE 2.0 .399 4 1 .071 4 5 14916.096 32130 1.872 1.872 1 H1-1b 265 MP1A PIPE 2.0 .289 4 1 .064 4 6 14916.096 32130 1.872 1.872 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596					1.264	14	.014	1.264	У				
262 MP4A PIPE 2.0 .237 4 23 .090 4 7 14916.096 32130 1.872 1.872 1 H1-1b 263 MP3A PIPE 2.0 .413 4 12 .080 1.895 10 14916.096 32130 1.872 1.872 1 H1-1b 264 MP2A PIPE 2.0 .399 4 1 .071 4 5 14916.096 32130 1.872 1.872 2 H1-1b 265 MP1A PIPE 2.0 .289 4 1 .064 4 6 14916.096 32130 1.872 1.872 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b												3.596	
263 MP3A PIPE 2.0 .413 4 12 .080 1.895 10 14916.096 32130 1.872 1.872 1 H1-1b 264 MP2A PIPE 2.0 .399 4 1 .071 4 5 14916.096 32130 1.872 1.872 2 H1-1b 265 MP1A PIPE 2.0 .289 4 1 .064 4 6 14916.096 32130 1.872 1.872 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b										7		1.872	1.872 1 H1-1b
263 MP3A FIFE 2.0 .415 4 12 .300 1.872 1.872 1.872 2 H1-1b 264 MP2A PIPE 2.0 .399 4 1 .071 4 5 14916.096 32130 1.872 1.872 1 H1-1b 265 MP1A PIPE 2.0 .289 4 1 .064 4 6 14916.096 32130 1.872 1.872 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 .29547.045 50715 3.596 3.596 1 H1-1b								_					
264 MP2A PIPE 2.0 .399 4 1 .064 4 6 14916.096 32130 1.872 1.872 1 H1-1b 265 MP1A PIPE 2.0 .289 4 1 .064 4 6 14916.096 32130 1.872 1.872 1 H1-1b 266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b		THE STREET CONTRACTOR OF THE STREET											
266 M696A PIPE 2.5 .265 9.539 7 .194 9.539 7 29547.045 50715 3.596 3.596 1 H1-1b													
266 M696A PIPE 2.5 .265 9.559 7 .194 9.555 7 .74						-							
	266	MD96A			_	_							

: Colliers Engineering & Design : NL : 23777329 : Mount Analysis

Feb 8, 2024 3:42 PM Checked By: PMA

	Member	Shape	Code C.	Loc[ft]	LC	Shear	Locift	Dir	.10	phi*Pnc [lb	Inhi*Pot (lh)	nhi*Mn v-	.phi*Mn z Cb	Ean
267	M698A	PIPE 2.5	.201	2.961		.288	9.539	T	16	29547.045	50715	3.596		1-1b
268	M700A	PIPE 2.5	.258	2.961	1	.183	2.961		1	29547.045		3.596		1-1b
269	M505A	PIPE 2.0	.166	8.553	30	.086	.987		7	14559.939		1.872	1.872 2 H	_
270	M510A	PIPE 2.0	.113	.658	7	.100	.329		7	14559.939		1.872		1-1b
271	M515	PIPE 2.0	.153	12.171	24	.069	.987		1	14559.939		1.872		1-1b
272	M520	PIPE 2.0	137	6.25	11	.112	4.276		1	14559.939		1.872		1-1b
273	MP4D	PIPE 2.0	.254	4	7	.085	4		7	14916.096		1.872		1-1b
274	MP3D	PIPE 2.0	.247	4	7	.087	4		7	14916.096		1.872		1-1b
275	MP2D	PIPE 2.0	.238	4	1	.080	4		1	14916.096	32130	1.872	1.872 1 H	_
276	MP1D	PIPE 2.0	.220	4	1	.077	4	9	1	14916.096		1.872		1-1b
277	MP4C	PIPE 2.0	.247	4	17	.070	4		1	14916.096	32130	1.872		1-1b
278	MP3C	PIPE 2.0	.376	4	7	.072	4	U.S	5	14916.096	32130	1.872		1-1b
279	MP2C	PIPE 2.0	.460	4	7	.079	1.895		10	14916.096	32130	1.872		1-1b
280	MP1C	PIPE 2.0	.315	4	7	.086	4	Deg.	12	14916.096	32130	1.872		1-1b
281	MP4B	PIPE 2.0	.286	4	1	.080	4		1	14916.096	32130	1.872		1-1b
282	MP3B	PIPE 2.0	.355	4	2	.110	1.895		1	14916.096	32130	1.872		1-1b
283	MATSING-1	PIPE 2.0	.244	4	7	.156	4		7	14916.096	32130	1.872		1-1b
284	MP1B	PIPE 2.0	.260	4	7	.067	1.895		7	14916.096	32130	1.872		1-1b
285	M557	WT2.5X8	.042	.915	8	.031	0	z	10	71103.057	76140	6.156		1-1b
286	M558	WT2.5X8	.049	1.19	1	.042	0	z	13	71103.057	76140	6.156		1-1b
287	M559	WT2.5X8	.037	.641	1	.037	1.739	z	13	71103.057	76140	6.156		1-1b
288	M560	WT2.5X8	.044	1.235	7	.052	0	z	19	71103.057	76140	6.156		1-1b
289	OVP	PIPE 2.0	.146	3.908	7	.063	3.908		7	25203.807	32130	1.872		1-1b
290	M564	PIPE 1.5	.180	3.392	19	.016	0		16	16356.78	23593.5	1.105		1-1b
291	M565	PIPE 1.5	.187	3.392	19	.013	0		22	16356.78	23593.5	1,105		1-1b
292	M566	PIPE 1.5	.254	3.392	13	.025	6.784		22	16356.78	23593.5	1.105		1-1b
293	M567	PIPE 1.5	.262	3.392	13	.023	6.784		22	16356.78	23593.5	1.105		1-1b
294	M568	PIPE 1.5	.161	3.392	16	.020	6.784	Ti	1	16356.78	23593.5	1.105		-1b
295	M569	PIPE 1.5	.193	3.392	16	.015	6.784		21	16356.78	23593.5	1.105		1-1b
296	M570	PIPE 1.5	.230	3.392	22	.022	6.784		19	16356.78	23593.5	1,105		-1b
297	M571	PIPE 1.5	.267		22	.020	6.784		15	16356.78	23593.5	1.105		I-1b
298	MP2B	PIPE 2.0	.337	4	4	.152	4		7	14916.096	32130	1.872		
299	M575	PIPE 2.0	.192	3.684	1	.092	3.684		1	26521.4	32130	1.872		-1b

VzW SMART Tool® Vendor

Client:	Verizon Wireless	Date:	2/8/2024
Site Name:	CROMWELL N 2 CT - Cromwell Concrete		
MDG #:	5000234399		
Fuze ID #:	17152965	Page:	1
1 422 12 11			Version 2.00

I. Mount-to-Tower Connection Check - 120' Mount

Custom	Orientation R	equired
1		

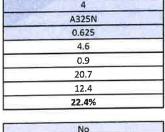
Tower Connection Bolt Checks

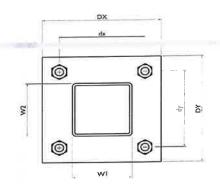
Bolt Orientation

Bolt Quantity per Reaction: d_x (in) (Delta X of typ. bolt config. sketch): d_y (in) (Delta Y of typ. bolt config. sketch): Bolt Type:

Bolt Diameter (in):

Required Tensile Strength / bolt (kips): Required Shear Strength / bolt (kips):

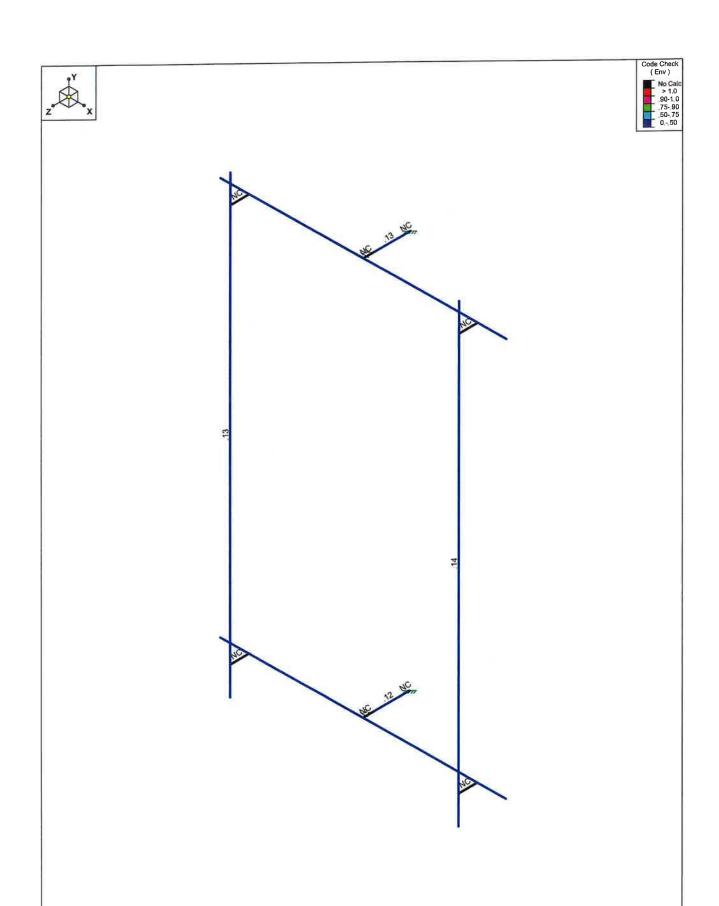

Tensile Capacity / bolt (kips): Shear Capacity / bolt (kips):


Bolt Overall Utilization:

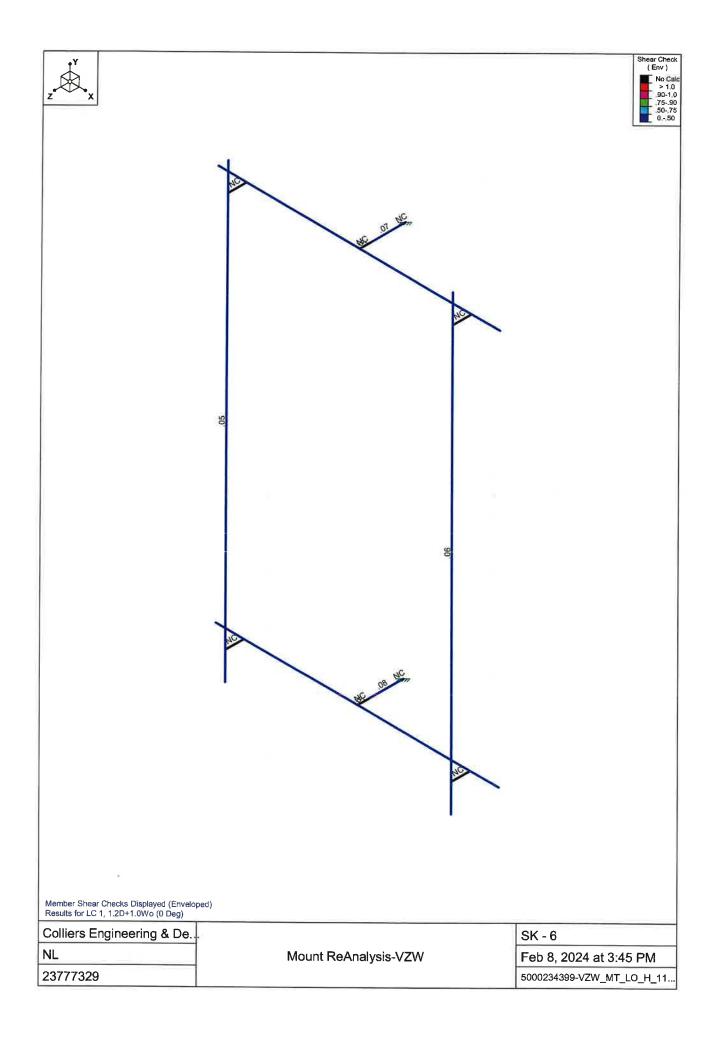
Tower Connection Baseplate Checks

 110	11
Yes	163

4	95-0
6	Total Day
4	
A325N	
0.625	
4.6	
0.9	
20.7	
12.4	
22.4%	
	4 A325N 0.625 4.6 0.9 20.7 12.4



NL 23777329


Mount ReAnalysis-VZW

Feb 8, 2024 at 3:45 PM 5000234399-VZW_MT_LO_H_11...

Member Code Checks Displayed (Enveloped) Results for LC 1, 1.2D+1.0Wo (0 Deg)

Colliers Engineering & De.		SK - 5
NL	Mount ReAnalysis-VZW	Feb 8, 2024 at 3:45 PM
23777329	8	5000234399-VZW_MT_LO_H_11
20111020		

Feb 8, 2024 3:46 PM Checked By: PMA

Basic Load Cases

Dasi	C Load Cases							D. 1.7	A(14-	Curfocol
	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point 18	Distribut.	.Area(Me.	.Surrace(
1	Antenna D	None	+				18			
2	Antenna Di	None		-			18			
3	Antenna Wo (0 Deg)	None	100				18			
4	Antenna Wo (30 Deg)	None			-		18	_		
5	Antenna Wo (60 Deg)	None					18			
6	Antenna Wo (90 Deg)	None	-				18			
7	Antenna Wo (120 Deg)	None	-			-	18			
8	Antenna Wo (150 Deg)	None	-		_		18			
9	Antenna Wo (180 Deg)	None	-	-			18			
10	Antenna Wo (210 Deg)	None	_				18	1		
11	Antenna Wo (240 Deg)	None	-				18			
12	Antenna Wo (270 Deg)	None					18			
13	Antenna Wo (300 Deg)	None	-				18			
14	Antenna Wo (330 Deg)	None	_				18			
15	Antenna Wi (0 Deg)	None	-		_	1	18			
16	Antenna Wi (30 Deg)	None	-				18			
17	Antenna Wi (60 Deg)	None	-				18	1		
18	Antenna Wi (90 Deg)	None	-			0315	18			
19	Antenna Wi (120 Deg)	None					18			
20	Antenna Wi (150 Deg)	None					18			
21	Antenna Wi (180 Deg)	None	-	-			18			
22	Antenna Wi (210 Deg)	None		-	-		18			
23	Antenna Wi (240 Deg)	None					18	755		
24	Antenna Wi (270 Deg)	None	+		-		18			
25	Antenna Wi (300 Deg)	None	-		-		18			
26	Antenna Wi (330 Deg)	None	-		-		18			
27	Antenna Wm (0 Deg)	None	-		-		18	-		
28	Antenna Wm (30 Deg)	None					18			
29	Antenna Wm (60 Deg)	None	+				18	and the same		The Delivery
30	Antenna Wm (90 Deg)	None					18			
31	Antenna Wm (120 Deg)	None			F 11 T 12	1 1 1 1 1	18		PL FL	
32	Antenna Wm (150 Deg)	None	_				18			
33	Antenna Wm (180 Deg)	None					18	-		
34	Antenna Wm (210 Deg)	None	_				18			
35	Antenna Wm (240 Deg)	None	-				18	0.15.1		
36	Antenna Wm (270 Deg)	None			-		18			
37	Antenna Wm (300 Deg)	None			Contract of the Contract of th		18	1	200	
38	Antenna Wm (330 Deg)	None		-1			10			
39	Structure D	None				13		6		
40	Structure Di	None		-			-	12		
41	Structure Wo (0 Deg)	None						12	-	
42	Structure Wo (30 Deg)	None	-					12		
43	Structure Wo (60 Deg)	None			5 38			12		
44	Structure Wo (90 Deg)	None						12		
45	Structure Wo (120 Deg)	None	-				(AXIIII	12		
46	Structure Wo (150 Deg)	None	+					12		
47	Structure Wo (180 Deg)	None	-				1 1 1 1	12		
48	Structure Wo (210 Deg)	None						12		
49	Structure Wo (240 Deg)	None	-					12		
50	Structure Wo (270 Deg)	None		-				12		
51	Structure Wo (300 Deg)	None						12		DIA .
52	Structure Wo (330 Deg)	None	+		The state of			12		
53	Structure Wi (0 Deg)	None			I VI I I			12		
54	Structure Wi (30 Deg)	None	4				-	12		
55	Structure Wi (60 Deg)	None		-				12		10 1 2 7
56	Structure Wi (90 Deg)	None						12		
57	Structure Wi (120 Deg)	None				raine.	17-20-	12		10-10
58	Structure Wi (150 Deg)	None						1 12		

: Colliers Engineering & Design : NL : 23777329 : Mount ReAnalysis-VZW

Feb 8, 2024 3:46 PM Checked By: PMA

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Dietribut	Area(Me.	Surfacel
59	Structure Wi (180 Deg)	None		T GIGING	I Didvity	DOME	TOTAL	12	Area(ivie.	Surrace(,
60	Structure Wi (210 Deg)	None						12		
61	Structure Wi (240 Deg)	None						12		
62	Structure Wi (270 Deg)	None						12	ACT OF	
63	Structure Wi (300 Deg)	None						12		
64	Structure Wi (330 Deg)	None					Table 1	12		1 3
65	Structure Wm (0 Deg)	None						12		
66	Structure Wm (30 Deg)	None						12		
67	Structure Wm (60 Deg)	None						12		
68	Structure Wm (90 Deg)	None						12		
69	Structure Wm (120 Deg)	None						12		
70	Structure Wm (150 Deg)	None					1,500	12		7 5 5
71	Structure Wm (180 Deg)	None						12		
72	Structure Wm (210 Deg)	None						12		
73	Structure Wm (240 Deg)	None						12		
74	Structure Wm (270 Deg)	None						12		
75	Structure Wm (300 Deg)	None						12		
76	Structure Wm (330 Deg)	None					1,548	12		
77	Lm1	None					1			
78	Lm2	None					1			
79	Lv1	None					1			
80	Lv2	None					1			
81	Antenna Ev	None					18			
82	Antenna Eh (0 Deg)	None					12	The sec		
83	Antenna Eh (90 Deg)	None					12			
84	Structure Ev	ELY		043				Private 1		
85	Structure Eh (0 Deg)	ELZ			108					
86	Structure Eh (90 Deg)	ELX	.108				14.00			

Load Combinations

1	1.2D+1.0Wo (0 Deg) Yes	V	100000	1	12	20	1.2	3	1	111	1	- DEC	Tau.	TOLC	Tac.	DLC	Pac.	DLC	rat.	BLU	Fac.,	BLC	rac
2	1.2D+1.0Wo (30 D Yes			1	1.2	39		4	1	41	1	-	-			-		-		-	_	\vdash	_
3	1.2D+1.0Wo (60 D., Yes			1	1.2	39	_	5	1	43	1	-	-	\vdash		-		-				\vdash	_
4	1.2D+1.0Wo (90 D., Yes	V		1			1.2	6	1	44	1	\vdash		-						-	_	\vdash	_
5	1.2D+1.0Wo (120 Yes	Y		1	1.2	39	1.2	7	1	45	1	-	-	-		-	_			-			
6	1.2D+1.0Wo (150 Yes			1	1.2	39		8	1	46	1			-				-	-			\vdash	
7	1.2D+1.0Wo (180 Yes			1	1.2	_	_	9	1	47	1			-				-		-		\vdash	
8	1.2D+1.0Wo (210 Yes	V		1	1.2	39	_	10	1	48	4				-	-							
9	1.2D+1.0Wo (240 Yes			1	1.2	39	_	11	1	49	1	\vdash		+					-		_		
10	1.2D+1.0Wo (270 Yes			1	1.2	39	1.2	12	1	50	1							15.77		-			
11	1.2D+1.0Wo (300 Yes			1	1.2	39	1.2	13	1	51	1	+		-					-	-	_		-
12	1.2D+1.0Wo (330 Yes	-		1	1.2	_	1.2	14	1	52	1	-	11.15										_
13	1.2D + 1.0Di + 1.0 Yes			1	1.2	39	1.2	2	1	40	1	15	1	53	1						_		
14	1.2D + 1.0Di + 1.0 Yes			1	1.2	39	1.2	2	1	40	1	16	1	54	1		II B						
15	1.2D + 1.0Di + 1.0 Yes			1	1.2	39	1.2	2	1	40	1	17	1	55	1			-	-				_
16	1.2D + 1.0Di + 1.0 Yes			1		39	1.2	2	1	40	1	18	1	56	1	100							
17	1.2D + 1.0Di + 1.0 Yes			1		39	1.2	2	1	40	1	19	1	57	1					-			-
18	1.2D + 1.0Di + 1.0 Yes			1	1.2	_	1.2	2	1	40	1	20	1	58	1								
19	1.2D + 1.0Di + 1.0 Yes	Y		1		39	1.2	2	1	40	1	21	1	59	1								
20	1.2D + 1.0Di + 1.0 Yes	Y		1		39	1.2	2	1	40	1	22	1	60	1	150	341	20.5	UIQ.				
21	1.2D + 1.0Di + 1.0 Yes	Y		1	_	39	1.2	2	1	40	1	23	1	61	1								_
22	1.2D + 1.0Di + 1.0 Yes	Y		1		39	1.2	2	1	40	1	24	4	62	1		100					-3	20
23	1.2D + 1.0Di + 1.0 Yes	Y		1	1.2	39	1.2	2	1	40	1	25	1	63	1							\vdash	_
24	1.2D + 1.0Di + 1.0 Yes	Y		1		39	1.2	2	1	40	1	26	1	64	1			900-		14 2			=
25	1.2D + 1.5Lm1 + 1 Yes	Ÿ		1	_	39	1.2	77	1.5	27	1	65	1	07			-						
26	1.2D + 1.5Lm1 + 1 Yes	Y		1	_	39	1.2	77	1.5	28	1	66	1										

: Colliers Engineering & Design : NL

23777329

Mount ReAnalysis-VZW

Feb 8, 2024 3:46 PM Checked By: PMA

Load Combinations (Continued)

Load	Combination						_	_				_												_
	Description	So	P	S	BLC	Fac	BLC	Fac	BLC	Fac.	BLC	Fac.	BLC	Fac	BLC	Fac	BLC	Fac.,	BLC	Fac.	BLC	Fac	BLC	Fac
27	1.2D + 1.5Lm1 + 1.				1	1.2	39	1.2	77	1.5	29	_1	67	1	_						-			
	1.2D + 1.5Lm1 + 1.				1	1.2	39	1.2	77	1.5	30	1	68	1		-								
	1.2D + 1.5Lm1 + 1.				1	1.2				1.5	31	1	69	1							-			
	1.2D + 1.5Lm1 + 1.				1	1.2					32	1	70	1										
-	1.2D + 1.5Lm1 + 1.	_	_	1	1	1.2				-	33	1	71	1										
U .		-			1	1.2		1.2		Transmitted in	34	1	72	1										
J-0-	1.2D + 1.5Lm1 + 1.	_		6	-	1.2					35	1	73	1										
100	1.2D + 1.5Lm1 + 1.				1						-	1	74	1										
34	1.2D + 1.5Lm1 + 1.	_	_		1	1.2					36	_	75	1			-			_				
	1.2D + 1.5Lm1 + 1.				1	1.2		1.2			37	1	1											
36	1.2D + 1.5Lm1 + 1.	. Yes	Y		1					1.5	38	1	76	1			-	-		_	1	-		
37	1.2D + 1.5Lm2 + 1,	Yes	Y		1					1.5		1	65	1_	_	-					+			
38	1.2D + 1.5Lm2 + 1.	Yes	Y		1	1.2	39	1.2	78	1.5	28	1	66	1		-	-			_		-	-	
	1.2D + 1.5Lm2 + 1.	Yes	Y		1	1.2	39	1.2	78	1.5	29	1	67	1						_	-	_		
	1.2D + 1.5Lm2 + 1.	Yes	Y		1	1.2	39	1.2	78	1.5	30	1	68	1					H					
41	1.2D + 1.5Lm2 + 1.	_	-		1	1.2		1.2		1.5	31	1	69	1										
	1.2D + 1.5Lm2 + 1.				1			1.2		_	32	1	70	1										
42	1.2D + 1.5Lm2 + 1.	_	_		1	1.2				1.5	_	1	71	1										
43		_	_		1			1.2		1.5		1	72	1				Be						
1	1.2D + 1.5Lm2 + 1.	_		-	-		20	1.2		1.5		1	73	1										
	1.2D + 1.5Lm2 + 1.				1	1.2						1	74	1		7								
	1.2D + 1.5Lm2 + 1.		_		1	1.2						-	-											
	1.2D + 1.5Lm2 + 1.				1	1.2				1.5		1	75	1			7				+			20
48	1.2D + 1.5Lm2 + 1.	. Yes	Y		1						38	1	76	1	-	_	-			_	1		-	
49	1.2D + 1.5Lv1	Yes	Y		1			1.2							_	_				_	+-	-	-	
50	1.2D + 1.5Lv2	Yes	Y		1	1.2	39	1.2	80	1.5				77							-		-	
51	1.4D	Yes	Y		1	1.4	39	1.4													_	_	_	
52	1.2D + 1.0Ev + 1.0	. Yes	Y		1			1.2	81	1	ELY	1	82	1	83		ELZ		ELX		-		_	
53	1.2D + 1.0Ev + 1.0.				1			1.2	81	1	ELY	1	82	.866	83	.5	ELZ	.866	ELX	.5				
110 2 3 U	1.2D + 1.0Ev + 1.0				1			1.2	81	1	ELY	1	82	.5	83	.866	ELZ	.5	ELX	.866				
54	1.2D + 1.0Ev + 1.0				1			1.2	81	1	ELY	1	82		83	1	ELZ		ELX	1				
55					1			1.2	81	<u> </u>	ELY	_	82	- 5		.866	ELZ	5	ELX	.866	5	100		
	1.2D + 1.0Ev + 1.0		_	-	_				_	-	ELY	_	_	866	_	5	ELZ	866	ELX	.5				
	1.2D + 1.0Ev + 1.0				1					_	ELY	_	82	_	83				ELX			199		
58	1.2D + 1.0Ev + 1.0		_		1			1.2		,	-	_	-	866	+			866						
59	1.2D + 1.0Ev + 1.0		-	_	1			1.2	81	_	ELY		82		_	866					3			
60	1.2D + 1.0Ev + 1.0	Yes	Y		1	1.2		1.2	81	1	ELY	_	82	5	_		ELZ		ELX		1	-	1	
61	1.2D + 1.0Ev + 1.0	. Yes	Y		1	1.2	39		81	1	ELY		82		83						-	-	-	
62	1.2D + 1.0Ev + 1.0	Yes	Y		1	1.2	39	1.2	81	1	ELY	1	82	_	_	866	ELZ	.5	ELA	000	7		-	
63	1.2D + 1.0Ev + 1.0				1	1.2	39	1.2	81	1	ELY	1	82	.866	83	5	-	.866			₩	_		-
	0.9D - 1.0Ev + 1.0.		_		1	.9	39	.9	81	-1	ELY	-1	82	1	83		ELZ	-	ELX	100	-			
	0.9D - 1.0Ev + 1.0.				1	.9	39		81	-1	ELY	-1	82	.866		1.7		.866	_	_	_			
	0.9D - 1.0Ev + 1.0.				1	.9	39	.9	81	-1	ELY	-1	82	.5	83	.866	ELZ	.5	ELX	.866	j			
				-	1	.9	39		81	-1	ELY	-	82		83	1	ELZ		ELX					
67	0.9D - 1.0Ev + 1.0.			-	-				81			-1	82	- 5	83	.866	ELZ	5	ELX	.866	3			
68	0.9D - 1.0Ev + 1.0.	res	Y	-	1	-	39				ELY		82	866	83	5	EL Z	866	ELX	-5				
69	0.9D - 1.0Ev + 1.0.	Yes	Y	-	1	.9	39		81	-				-	83	_		-1			1			
70	0.9D - 1.0Ev + 1.0.	Yes	Y	_	1	.9	39		81			-1	82	900	03	5					1	1		
71	0.9D - 1.0Ev + 1.0.	Yes	Y		1	.9	39		81	_	ELY	+		-,000	03	5	EL Z	.000	ELV	5	8		1	
72	0.9D - 1.0Ev + 1.0.	Yes	Y		1	.9	39		81			-1		5		866	ICL 2	5				-	-	
73	0.9D - 1.0Ev + 1.0.	Yes	Y		1	.9	39	.9	81		ELY		82		83	-1	ELZ			-1			-	
71	0.9D - 1.0Ev + 1.0.	Yes	Y		1	.9	39		81	-1	ELY	-1	82	.5	83	866	ELZ	.5	ELX	86)	-	-	-
75	0.9D - 1.0Ev + 1.0.	Yes	Y		1	.9	39		81	-1	ELY	-1	82	.866	83	5	ELZ	.866	ELX	5				
13	D.00 1.0E4 1.0.			-	-		-																	

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design L	Material	Design	A [in2]	lyy [in4]	Izz [in4]	J [in4]
	Mount Pipe	PIPE 2.5	Beam	HSS Pipe	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
		PIPE 3.0	Beam	Pipe	A53 Gr.B	Typical	2.07	2.85	2.85	5.69
2	Face Horizontal Standoff	HSS4X4X3	Beam		A500 Gr.B Rec	Typical	2.58	6.21	6.21	10

Feb 8, 2024 3:46 PM Checked By: PMA

Member Primary Data

	Label	1 Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
1	M1	N16	N3			Standoff	Beam	Tube	A500 Gr.B.	Typical
2	M2	N3	N4			RIGID	None	None	RIGID	Typical
3	M3	N5	N6			Face Horizontal	Beam	Pipe	A53 Gr.B	
4	M4	N7	N8			RIGID	None	None	RIGID	Typical
5	MP1	N10	N11			Mount Pipe	Beam	HSS Pipe	A53 Gr.B	
6	M8	N16	N2		N EL TE	RIGID	None	None	RIGID	Typical
7	M9	N28	N29			RIGID	None	None	RIGID	Typical
8	MP2	N31	N32			Mount Pipe	Beam	HSS Pipe	A53 Gr.B	
9	M9A	N22	N16A			Standoff	Beam	Tube	A500 Gr.B.,	Typical
10	M10	N16A	N17			RIGID	None	None	RIGID	Typical
11	M11	N18	N19			Face Horizontal	Beam	Pipe	A53 Gr.B	Typical
12	M12	N20	N21	7 2 7 7 7		RIGID	None	None	RIGID	Typical
13	M13	N22	N15			RIGID	None	None	RIGID	Typical
14	M14	N23	N24			RIGID	None	None	RIGID	Typical

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat. Analysis	Inactive	Seismic
1	M1		1				Yes	Default	madave	None
2	M2						Yes	** NA **		None
3	M3						Yes			None
4	M4						Yes	** NA **	1	None
5	MP1						Yes	Default		None
6	M8						Yes	** NA **		None
7	M9						Yes	** NA **		None
8	MP2						Yes	Default		None
9	M9A						Yes	Default		None
10	M10						Yes	** NA **		None
11	M11						Yes			None
12	M12						Yes	** NA **		None
13	M13						Yes	** NA **		None
14	M14					45,0	Yes	** NA **		None

Member Point Loads (BLC 1 : Antenna D)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1	Y	-90.67	1.25
2	MP1	Mv	0	1.25
3	MP1	Mz	0	1.25
4	MP1	Y	-90.67	3.75
5	MP1	My	0	3.75
6	MP1	Mz		3.75
7	MP1	Y	-90.67	6.25
8	MP1	My	0	6.25
9	MP1	Mz	0	6.25
10	MP2	Y	-90.67	1.25
11	MP2	My	0	1.25
12	MP2	Mz	o o	1.25
13	MP2	Y	-90.67	3.75
14	MP2	Mv	0	3.75
15	MP2	Mz	0	3.75
16	MP2	Y	-90.67	6.25
17	MP2	My	0	6.25
18	MP2	Mz	0	6.25

Member Point Loads (BLC 2 : Antenna Di)

Member Lahr		Direction	Magnitude[]h k-ft]	Location	nift %1
RISA-3D Version 17.0.1	[R:\\\\	\Rev 1\RISA	A\5000234399-VZW_MT_LO_	H_110.r3d]	Page 4

: Colliers Engineering & Design : NL

23777329

Mount ReAnalysis-VZW

Feb 8, 2024 3:46 PM Checked By: PMA

Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1	Y	-712.201	1.25
2	MP1	My	0	1.25
3	MP1	Mz	0	1.25
4	MP1	Y	-123.041	3.75
5	MP1	My	0	3.75
6	MP1	Mz	0	3.75
7	MP1	Y	-123.041	6.25
8	MP1	My	0	6.25
9	MP1	Mz	0	6.25
10	MP2	Y	-712.201	1.25
11	MP2	My	0	1.25
12	MP2	Mz	0	1.25
13	MP2	Y	-123.041	3.75
14	MP2	Mv	0	3.75
15	MP2	Mz	0	3.75
	MP2	Y	-123.041	6.25
16	MP2	My	0	6.25
18	MP2	Mz	0	6.25

Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
1	MP1	X	0	1.25
2	MP1	Z	-236.157	1.25
3	MP1	Mx	0	1.25
4	MP1	X	0	3.75
5	MP1	Z	-161.737	3.75
6	MP1	Mx	0	3.75
7	MP1	X	0	6.25
8	MP1	Z	-161.737	6.25
9	MP1	Mx	0	6.25
10	MP2	X	0	1.25
11	MP2	Z	-236.157	1.25
12	MP2	Mx	0	1.25
13	MP2	X	0	3.75
14	MP2	Z	-161.737	3.75
	MP2	Mx	0	3.75
15	MP2	X	0	6.25
16	MP2	7	-161.737	6.25
17	MP2	Mx	0	6.25

Member Point Loads (BLC 4 : Antenna Wo (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1	X	224.504	1.25
2	MP1	Z	-388.852	1.25
3	MP1	Mx	0	1.25
4	MP1	X	37.839	3.75
5	MP1	Z	-65.54	3.75
6	MP1	Mx	0	3.75
7	MP1	X	37.839	6.25
8	MP1	Z	-65.54	6.25
9	MP1	Mx	0	6.25
10	MP2	X	224.504	1.25
11	MP2	Z	-388.852	1.25
12	MP2	Mx	0	1.25
	MP2	X	37.839	3.75
13	MP2	Z	-65.54	3.75
14	MP2	Mx	0	3.75
15 16	MP2	X	37.839	6.25

: Colliers Engineering & Design : NL : 23777329 : Mount ReAnalysis-VZW

Feb 8, 2024 3:46 PM

Checked By: PMA

Member Point Loads (BLC 4: Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft.%]
17	MP2	Z	-65.54	6.25
18	MP2	Mx	0	6.25

Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1	X	539.122	1.25
2	MP1	Z	-311.262	1.25
3	MP1	Mx	0	1.25
4	MP1	X	4.783	3.75
5	MP1	Z	-2.762	3.75
6	MP1	Mx	0	3.75
7	MP1	X	4.783	6.25
8	MP1	Z	-2.762	6.25
9	MP1	Mx	0	6.25
10	MP2	X	539.122	1.25
11	MP2	Z	-311.262	1.25
12	MP2	Mx	0	1.25
13	MP2	X	4.783	3.75
14	MP2	Z	-2.762	3.75
15	MP2	Mx	0	3.75
16	MP2	X	4.783	6.25
17	MP2	Z	-2.762	6.25
18	MP2	Mx	0	6.25

Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1	X	583.191	1.25
2	MP1	Z	0	1.25
3	MP1	Mx	0	1.25
4	MP1	X	21.426	3.75
5	MP1	Z	0	3.75
6	MP1	Mx	0	3.75
7	MP1	X	21.426	6.25
8	MP1	Z	0	6.25
9	MP1	Mx	0	6.25
10	MP2	X	583.191	1.25
11	MP2	Z	0	1.25
12	MP2	Mx	0	1.25
13	MP2	X	21.426	3.75
14	MP2	Z	0	3.75
15	MP2	Mx	0	3.75
16	MP2	X	21.426	6.25
17	MP2	Z	0	6.25
18	MP2	Mx	Ö	6.25

Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1	X	320.725	1.25
2	MP1	Z	185.17	1.25
3	MP1	Mx	0	1.25
4	MP1	X	93.085	3.75
5	MP1	Z	53.742	3.75
6	MP1	Mx	0	3.75
7	MP1	X	93.085	6.25
8	MP1	Z	53.742	6.25
9	MP1	Mx	0	6.25
10	MP2	X	320.725	1.25

: Colliers Engineering & Design

. NL

23777329

Mount ReAnalysis-VZW

Feb 8, 2024 3:46 PM Checked By: PMA

Member Point Loads (BLC 7 : Antenna Wo (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
11	MP2	Z	185.17	1.25
12	MP2	Mx	0	1.25
13	MP2	X	93.085	3.75
14	MP2	Z	53.742	3.75
15	MP2	Mx	0	3.75
16	MP2	X	93.085	6.25
17	MP2	7	53,742	6.25
18	MP2	Mx	0	6.25

Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
1	MP1	X	98.412	1.25
2	MP1	Z	170.454	1.25
3	MP1	Mx	0	1.25
4	MP1	X	88.82	3.75
5	MP1	Z	153.841	3.75
6	MP1	Mx	0	3.75
7	MP1	X	88.82	6.25
8	MP1	Z	153.841	6.25
9	MP1	Mx	0	6.25
10	MP2	X	98.412	1.25
11	MP2	Z	170.454	1.25
12	MP2	Mx	0	1.25
13	MP2	X	88.82	3.75
14	MP2	Z	153.841	3.75
15	MP2	Mx	0	3.75
16	MP2	X	88.82	6.25
17	MP2	Z	153.841	6.25
18	MP2	Mx	0	6.25

Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1	X	0	1.25
2	MP1	Z	236.157	1.25
3	MP1	Mx	0	1.25
4	MP1	X	0	3.75
5	MP1	Z	161.737	3.75
6	MP1	Mx	0	3,75
7	MP1	X	0	6.25
8	MP1	Z	161.737	6.25
9	MP1	Mx	0	6.25
10	MP2	X	0	1.25
11	MP2	Z	236.157	1.25
12	MP2	Mx	0	1.25
13	MP2	X	0	3.75
14	MP2	Z	161.737	3.75
15	MP2	Mx	0	3.75
16	MP2	X	0	6.25
17	MP2	Z	161.737	6.25
18	MP2	Mx	0	6.25

Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
1	MP1	X	-224.504	1.25
2	MP1	7	388.852	1.25
2	MP1	Mx	0	1.25
4	MP1	X	-37.839	3.75

: Colliers Engineering & Design: NL: 23777329: Mount ReAnalysis-VZW

Feb 8, 2024 3:**46** PM Checked By: PMA

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
5	MP1	Z	65.54	3.75
6	MP1	Mx	0	3.75
7	MP1	X	-37.839	6.25
8	MP1	Z	65.54	6.25
9	MP1	Mx	0	6.25
10	MP2	X	-224.504	1.25
11	MP2	Z	388.852	1.25
12	MP2	Mx	0	1.25
13	MP2	X	-37.839	3.75
14	MP2	Z	65.54	3.75
15	MP2	Mx	0	3.75
16	MP2	X	-37.839	6.25
17	MP2	Z	65.54	6.25
18	MP2	Mx	0	6.25

Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

	Member Label	Direction	Magnitude[[b,k-ft]	Location[ft,%]
1	MP1	X	-539.122	1,25
2	MP1	Z	311.262	1.25
3	MP1	Mx	0	1.25
4	MP1	X	-4.783	3.75
5	MP1	Z	2.762	3.75
6	MP1	Mx	0	3.75
7	MP1	X	-4.783	6.25
8	MP1	Z	2.762	6.25
9	MP1	Mx	0	6.25
10	MP2	X	-539.122	1.25
11	MP2	Z	311.262	1.25
12	MP2	Mx	0	1.25
13	MP2	X	-4.783	3.75
14	MP2	Z	2.762	3.75
15	MP2	Mx	0	3.75
16	MP2	X	-4.783	6.25
17	MP2	Z	2.762	6.25
18	MP2	Mx	0	6.25

Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

	Member Label	Direction	Magnitude[ib,k-ft]	Location(ft,%)
1	MP1	X	-583.191	1.25
2	MP1	Z	0	1.25
3	MP1	Mx	0	1.25
4	MP1	X	-21.426	3.75
5	MP1	Z	0	3.75
6	MP1	Mx	0	3.75
7	MP1	X	-21.426	6.25
8	MP1	Z	0	6.25
9	MP1	Mx	0	6.25
10	MP2	X	-583.191	1.25
11	MP2	Z	0	1.25
12	MP2	Mx	0	1.25
13	MP2	X	-21.426	3.75
14	MP2	Z	0	3.75
15	MP2	Mx	0	3.75
16	MP2	X	-21.426	6.25
17	MP2	Z	0	6.25
18	MP2	Mx	0	6.25

Colliers Engineering & Design

NL 23777329 Mount ReAnalysis-VZW

Feb 8, 2024 3:46 PM Checked By: PMA

Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1	X	-320.725	1.25
2	MP1	Z	-185.17	1.25
3	MP1	Mx	0	1.25
4	MP1	X	-93.085	3.75
5	MP1	Z	-53.742	3.75
6	MP1	Mx	0	3.75
7	MP1	X	-93.085	6.25
8	MP1	Z	-53.742	6.25
9	MP1	Mx	0	6.25
10	MP2	X	-320.725	1.25
11	MP2	Z	-185.17	1.25
12	MP2	Mx	0	1.25
13	MP2	X	-93.085	3.75
14	MP2	Z	-53.742	3.75
15	MP2	Mx	0	3.75
16	MP2	X	-93.085	6.25
17	MP2	Z	-53.742	6.25
18	MP2	Mx	0	6.25

Member Point Loads (BLC 14: Antenna Wo (330 Deg))

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
1	MP1	X	-98.412	1.25
2	MP1	Z	-170.454	1.25
3	MP1	Mx	0	1.25
4	MP1	X	-88.82	3.75
5	MP1	Z	-153.841	3.75
6	MP1	Mx	0	3.75
7	MP1	X	-88.82	6.25
8	MP1	Z	-153.841	6.25
9	MP1	Mx	0	6.25
10	MP2	X	-98.412	1.25
11	MP2	Z	-170.454	1.25
12	MP2	Mx	0	1.25
13	MP2	X	-88.82	3.75
14	MP2	Z	-153.841	3.75
15	MP2	Mx	0	3.75
16	MP2	X	-88.82	6.25
17	MP2	Z	-153.841	6.25
18	MP2	Mx	0	6.25

Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1	X	0	1.25
2	MP1	Z	-70.421	1.25
3	MP1	Mx	0	1.25
4	MP1	X	0	3.75
5	MP1	Z	-56.251	3.75
6	MP1	Mx	0	3.75
7	MP1	X	0	6.25
8	MP1	Z	-56.251	6.25
9	MP1	Mx	0	6.25
10	MP2	X	0	1.25
11	MP2	Z	-70.421	1.25
12	MP2	Mx	0	1.25
	MP2	X	0	3.75
13	MP2	7	-56.251	3.75
14	MP2	Mx	0	3.75
15 16	MP2	X	Ö	6.25

Company Designer Job Number

Colliers Engineering & Design

: NL : 23777329

Mount ReAnalysis-VZW

Feb 8, 2024 3:46 PM Checked By: PMA

Member Point Loads (BLC 15 : Antenna Wi (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft %]
17	MP2	Z	-56.251	6.25
18	MP2	Mx	0	6.25

Member Point Loads (BLC 16 : Antenna Wi (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1	X	49.68	1.25
2	MP1	Z	-86.048	1.25
3	MP1	Mx	0	1.25
4	MP1	X	14.138	3.75
5	MP1	Z	-24.487	3.75
6	MP1	Mx	0	3.75
7	MP1	X	14.138	6.25
8	MP1	Z	-24.487	6.25
9	MP1	Mx	0	6.25
10	MP2	X	49.68	1.25
11	MP2	Z	-86.048	1.25
12	MP2	Mx	0	1.25
13	MP2	X	14.138	3.75
14	MP2	Z	-24,487	3.75
15	MP2	Mx	0	3.75
16	MP2	X	14.138	6.25
17	MP2	Z	-24.487	6.25
18	MP2	Mx	0	6.25

Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1	X	106.478	1.25
2	MP1	Z	-61.475	1.25
3	MP1	Mx	0	1.25
4	MP1	X	4.737	3.75
5	MP1	Z	-2.735	3.75
6	MP1	Mx	0	3.75
7	MP1	X	4.737	6.25
8	MP1	Z	-2.735	6.25
9	MP1	Mx	0	6.25
10	MP2	X	106,478	1.25
11	MP2	Z	-61.475	1.25
12	MP2	Mx	0	1.25
13	MP2	X	4.737	3.75
14	MP2	Z	-2.735	3.75
15	MP2	Mx	0	3.75
16	MP2	X	4.737	6.25
17	MP2	Z	-2.735	6.25
18	MP2	Mx	0	6.25

Member Point Loads (BLC 18 : Antenna Wi (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1	X	117.602	1.25
2	MP1	Z	0	1.25
3	MP1	Mx	0	1.25
4	MP1	X	10.639	3.75
5	MP1	Z	0	3.75
6	MP1	Mx	0	3.75
7	MP1	X	10.639	6.25
8	MP1	Z	0	6.25
9	MP1	Mx	0	6.25
10	MP2	X	117.602	1.25

: Colliers Engineering & Design : NL

23777329

Mount ReAnalysis-VZW

Feb 8, 2024 3:46 PM Checked By: PMA

Member Point Loads (BLC 18: Antenna Wi (90 Deg)) (Continued)

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
	Z	0	1.25
	Mx	0	1.25
	X	10.639	3.75
	7	0	3.75
	Mx	0	3.75
	X	10.639	6.25
	7	0	6.25
	My	Ů	6.25
	Member Label MP2	MP2 Z MP2 Mx MP2 X MP2 Z MP2 Mx MP2 X MP2 X MP2 Z	MP2 Z 0 MP2 Mx 0 MP2 X 10.639 MP2 Z 0 MP2 D

Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1	X	76.786	1.25
2	MP1	Z	44.332	1.25
3	MP1	Mx	0	1.25
4	MP1	X	33.442	3.75
5	MP1	Z	19.307	3.75
6	MP1	Mx	0	3.75
7	MP1	X	33.442	6.25
8	MP1	Z	19.307	6.25
9	MP1	Mx	0	6.25
10	MP2	X	76.786	1.25
11	MP2	Z	44.332	1.25
12	MP2	Mx	0	1.25
13	MP2	X	33.442	3.75
14	MP2	Z	19.307	3.75
15	MP2	Mx	0	3.75
16	MP2	X	33.442	6.25
17	MP2	Z	19.307	6.25
18	MP2	Mx	0	6.25

Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1	X	32.537	1.25
2	MP1	Z	56.356	1.25
3	MP1	Mx	0	1.25
4	MP1	X	30.711	3.75
5	MP1	Z	53.192	3.75
6	MP1	Mx	0	3.75
7	MP1	X	30.711	6.25
8	MP1	Z	53.192	6.25
9	MP1	Mx	0	6.25
10	MP2	X	32.537	1.25
11	MP2	Z	56.356	1.25
12	MP2	Mx	0	1.25
13	MP2	X	30.711	3.75
14	MP2	Z	53.192	3.75
15	MP2	Mx	0	3.75
	MP2	X	30.711	6.25
16	MP2	Z	53.192	6.25
17 18	MP2	Mx	0	6.25

Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1	X	0	1.25
2	MP1	7	70.421	1.25
2	MP1	Mx	0	1.25
3		X	0	3.75
4	MP1	X	0	_

: Colliers Engineering & Design : NL : 23777329 : Mount ReAnalysis-VZW

Feb 8, 2024 3:46 PM Checked By: PMA

Member Point Loads (BLC 21 : Antenna Wi (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
5	MP1	Z	56.251	3.75
6	MP1	Mx	0	3.75
7	MP1	X	0	6.25
8	MP1	Z	56,251	6.25
9	MP1	Mx	0	6.25
10	MP2	X	0	1.25
11	MP2	Z	70.421	1.25
12	MP2	Mx	0	1.25
13	MP2	X	0	3.75
14	MP2	Z	56.251	3.75
15	MP2	Mx	0	3.75
16	MP2	X	0	6.25
17	MP2	Z	56.251	6.25
18	MP2	Mx	0	6.25

Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1	X	-49.68	1.25
2	MP1	Z	86,048	1.25
3	MP1	Mx	0	1.25
4	MP1	X	-14.138	3.75
5	MP1	Z	24.487	3.75
6	MP1	Mx	0	3.75
7	MP1	X	-14.138	6.25
8	MP1	Z	24.487	6.25
9	MP1	Mx	0	6.25
10	MP2	X	-49.68	1.25
11	MP2	Z	86,048	1.25
12	MP2	Mx	0	1.25
13	MP2	X	-14.138	3.75
14	MP2	Z	24.487	3.75
15	MP2	Mx	0	3.75
16	MP2	X	-14.138	6.25
17	MP2	Z	24.487	6.25
18	MP2	Mx	0	6.25

Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

	Member Label	Direction	Magnitude[jb,k-ft]	Location[ft,%]
1	MP1	X	-106.478	1,25
2	MP1	Z	61.475	1.25
3	MP1	Mx	0	1.25
4	MP1	X	-4.737	3.75
5	MP1	Z	2.735	3.75
6	MP1	Mx	0	3.75
7	MP1	X	-4.737	6.25
8	MP1	Z	2.735	6.25
9	MP1	Mx	0	6.25
10	MP2	X	-106,478	1.25
11	MP2	Z	61.475	1.25
12	MP2	Mx	0	1.25
13	MP2	X	-4.737	3.75
14	MP2	Z	2.735	3.75
15	MP2	Mx	0	3.75
16	MP2	X	-4.737	6.25
17	MP2	Z	2.735	6.25
18	MP2	Mx	0	6.25

Colliers Engineering & Design

NL 23777329 Mount ReAnalysis-VZW

Feb 8, 2024 3:46 PM Checked By: PMA

Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
	MP1	X	-117.602	1.25
1		Ž	0	1.25
2	MP1	Mx	0	1.25
3	MP1	X	-10.639	3.75
4	MP1	Z	0	3.75
5	MP1	Mx	0	3.75
6	MP1	X	-10.639	6.25
7	MP1	Ž	0	6.25
8	MP1	Mx	0	6.25
9	MP1	X	-117.602	1.25
10	MP2		0	1.25
11	MP2	Z	0	1.25
12	MP2	Mx	-10.639	3.75
13	MP2	X		3.75
14	MP2	Z	0	3.75
15	MP2	Mx	0	6.25
16	MP2	X	-10.639	6.25
17	MP2	Z	0	6.25
18	MP2	Mx	0	0.20

Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

	Point Loads (BLC 25 :	Direction	Magnitude[lb,k-ft]	Location[ft.%]
4	Member Label MP1	X	-76.786	1.25
0	MP1	Z	-44.332	1.25
2	MP1	Mx	0	1.25
3	MP1	X	-33.442	3.75
4	MP1	Z	-19.307	3.75
5	MP1	Mx	0	3.75
6	MP1	X	-33.442	6.25
7		7	-19.307	6.25
8	MP1	Mx	0	6.25
9	MP1 MP2	X	-76.786	1.25
10		7	-44.332	1.25
11	MP2	Mx	0	1.25
12	MP2	Y	-33.442	3.75
13	MP2	7	-19.307	3.75
14	MP2	Mx	0	3.75
15	MP2	X	-33.442	6.25
16	MP2	Z	-19.307	6.25
17	MP2		0	6.25
18	MP2	Mx		

Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

sa b I abol	24000 F 00 00 00 00 00 00 00 00 00 00 00 0	Magnitude[lb,k-ft]	Location[ft,%]
Member Label MP1	X	-32.537	1.25
	Z	-56.356	1.25
MP1	Mx	0	1.25
3 MP1	X	-30.711	3.75
4 MP1	7	-53,192	3.75
5 MP1		-55.192	3.75
6 MP1	Mx	-30.711	6.25
7 MP1	X		6.25
8 MP1	Z	-53.192	6.25
9 MP1	Mx	0	1.25
10 MP2	X	-32.537	
11 MP2	Z	-56.356	1.25
12 MP2	Mx	0	1.25
13 MP2	X	-30.711	3.75
	Z	-53.192	3.75
1400	Mx	0	3.75
15 MP2 16 MP2	X	-30.711	6.25

: Colliers Engineering & Design : NL : 23777329

Mount ReAnalysis-VZW

Feb 8, 2024 3:46 PM Checked By: PMA

Member Point Loads (BLC 26 : Antenna Wi (330 Deg)) (Continued)

47 1	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1/	MP2	Z	-53.192	6.25
18	MP2	Mx	0	6.25

Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location ## 0/1
1	MP1	X	0	Location[ft,%] 1.25
2	MP1	Z	-15.009	1.25
3	MP1	Mx	0	1.25
4	MP1	X	Ö	3.75
5	MP1	7	-10.279	3.75
6	MP1	Mx	0	3.75
7	MP1	X	0	6.25
8	MP1	Z	-10.279	
9	MP1	Mx	0	6.25
10	MP2	X	0	6.25
11	MP2	7	-15,009	1.25
12	MP2	Mx		1.25
13	MP2	X	0	1.25
14	MP2	Z	0	3.75
15	MP2		-10.279	3.75
16	MP2	Mx	0	3.75
17	MP2	X	0	6.25
18	MP2	Z	-10.279	6.25
10	IVIPZ	Mx	0	6.25

Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1	X	14.268	1.25
2	MP1	Z	-24.713	1.25
3	MP1	Mx	0	1.25
4	MP1	X	2.405	3.75
5	MP1	Z	-4.165	3.75
6	MP1	Mx	0	3.75
7	MP1	X	2.405	6.25
8	MP1	Z	-4.165	6.25
9	MP1	Mx	0	6.25
10	MP2	X	14.268	1.25
11	MP2	Z	-24.713	1.25
12	MP2	Mx	0	1.25
13	MP2	X	2.405	3.75
14	MP2	Z	-4.165	3.75
15	MP2	Mx	0	
16	MP2	X	2.405	3.75
17	MP2	Z	-4.165	6.25
18	MP2	Mx	-4.165	6.25 6.25

Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1	X	34.264	1.25
2	MP1	Z	-19.782	1.25
3	MP1	Mx	0	1.25
4	MP1	X	.304	3.75
5	MP1	7	176	3.75
6	MP1	Mx	0	3.75
7	MP1	X	.304	6.25
8	MP1	Z	176	
9	MP1	Mx	170	6.25
10	MP2	X	34.264	6.25 1.25

Colliers Engineering & Design

NL 23777329

Mount ReAnalysis-VZW

Feb 8, 2024 3:46 PM Checked By: PMA

Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

Member Label MP2	Direction	Magnitude[lb,k-ft]	
		-19.782	1.25
MP2	Mx	0	1.25
MP2	X	.304	3.75
MP2	Z	-,176	3.75
	Mx	0	3.75
	X	.304	6.25
	7	176	6.25
	Mx	0	6.25
	MP2 MP2 MP2 MP2 MP2	MP2 Mx MP2 X MP2 Z	MP2 Mx 0 MP2 X .304 MP2 Z 176

Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1	X	37.065	1.25
2	MP1	Z	0	1.25
3	MP1	Mx	0	1.25
4	MP1	X	1.362	3.75
5	MP1	Z	0	3.75
6	MP1	Mx	0	3.75
7	MP1	X	1.362	6.25
8	MP1	Z	0	6.25
9	MP1	Mx	0	6.25
10	MP2	X	37.065	1.25
11	MP2	Z	0	1.25
12	MP2	Mx	0	1.25
13	MP2	X	1.362	3.75
14	MP2	Z	0	3.75
15	MP2	Mx	0	3.75
	MP2	X	1.362	6.25
16	MP2	Z	0	6.25
17	MP2	Mx	0	6.25

Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

Member Lab	el Direction	Magnitude[lb.k-ft]	Location[ft,%]
1 MP1	X	20.384	1.25
2 MP1	Z	11.768	1.25
3 MP1	Mx	0	1.25
4 MP1	X	5.916	3.75
5 MP1	Z	3.416	3.75
0	Mx	0	3.75
6 MP1 7 MP1	X	5.916	6.25
	7	3.416	6.25
8 MP1 9 MP1	Mx	0	6.25
	X	20.384	1.25
1.0	Ž	11.768	1.25
	Mx	0	1.25
	X	5.916	3.75
	Ž	3.416	3.75
	Mx	0	3.75
020000520	X	5.916	6.25
16 MP2	Z	3.416	6.25
17 MP2 18 MP2	Mx	0	6.25

Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1 1	MP1	X	6.255	1.25
^	MP1	7	10.833	1.25
2		Mx	0	1.25
3	MP1	V	5.645	3.75
4	MP1		0,010	

Colliers Engineering & Design NL

23777329

: Mount ReAnalysis-VZW

Feb 8, 2024 3:46 PM Checked By: PMA

Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
5	MP1	Z	9,777	3.75
6	MP1	Mx	0	3.75
7	MP1	X	5.645	6.25
8	MP1	Z	9.777	6.25
9	MP1	Mx	0	6.25
10	MP2	X	6,255	1.25
11	MP2	Z	10.833	1.25
12	MP2	Mx	0	1.25
13	MP2	X	5.645	3,75
14	MP2	Z	9.777	3.75
15	MP2	Mx	0	3.75
16	MP2	X	5.645	6.25
17	MP2	Z	9.777	6.25
18	MP2	Mx	0	6.25

Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1	X	0	1.25
2	MP1	Z	15.009	1.25
3	MP1	Mx	0	1.25
4	MP1	X	0	3.75
5	MP1	Z	10,279	3.75
6	MP1	Mx	0	3.75
7	MP1	X	0	6.25
8	MP1	Z	10.279	6.25
9	MP1	Mx	0	6.25
10	MP2	X	0	1.25
11	MP2	Z	15.009	1.25
12	MP2	Mx	0	1.25
13	MP2	X	0	3.75
14	MP2	Z	10.279	3.75
15	MP2	Mx	0	3.75
16	MP2	X	0	6.25
17	MP2	Z	10.279	6.25
18	MP2	Mx	0	6.25

Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

	Member Label	Direction	Magnitude[ib,k-ft]	Location[ft,%]
1	MP1	X	-14.268	1.25
2	MP1	Z	24.713	1.25
3	MP1	Mx	0	1.25
4	MP1	X	-2.405	3.75
5	MP1	Z	4.165	3.75
6	MP1	Mx	0	3.75
7	MP1	X	-2.405	6.25
8	MP1	Z	4.165	6.25
9	MP1	Mx	0	6.25
10	MP2	X	-14.268	1.25
11	MP2	Z	24.713	1.25
12	MP2	Mx	0	1.25
13	MP2	X	-2.405	3.75
14	MP2	Z	4.165	3.75
15	MP2	Mx	0	3.75
16	MP2	X	-2.405	6.25
17	MP2	Z	4.165	6.25
18	MP2	Mx	0	6.25

: Colliers Engineering & Design : NL : 23777329

Mount ReAnalysis-VZW

Feb 8, 2024 3:46 PM Checked By: PMA

Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1	X	-34.264	1.25
2	MP1	Z	19.782	1.25
3	MP1	Mx	0	1.25
4	MP1	X	304	3.75
5	MP1	Z	.176	3.75
6	MP1	Mx	0	3.75
7	MP1	X	304	6.25
8	MP1	Z	.176	6.25
9	MP1	Mx	0	6.25
10	MP2	X	-34.264	1.25
11	MP2	Z	19.782	1.25
12	MP2	Mx	0	1.25
13	MP2	X	304	3.75
14	MP2	Z	,176	3.75
15	MP2	Mx	0	3.75
16	MP2	X	304	6.25
17	MP2	Z	.176	6.25
18	MP2	Mx	0	6.25

Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
1	MP1	X	-37.065	1.25
2	MP1	Z	0	1.25
3	MP1	Mx	0	1.25
4	MP1	X	-1.362	3.75
5	MP1	Z	0	3.75
6	MP1	Mx	0	3.75
7	MP1	X	-1.362	6.25
8	MP1	Z	0	6.25
9	MP1	Mx	0	6.25
10	MP2	X	-37.065	1.25
11	MP2	Z	0	1.25
12	MP2	Mx	0	1.25
13	MP2	X	-1.362	3.75
	MP2	Z	0	3.75
14 15	MP2	Mx	0	3.75
	MP2	X	-1.362	6.25
16	MP2	7	0	6.25
17	MP2	Mx	0	6.25

Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

RISA-3D Version 17.0.1

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1	X	-20.384	1.25
2	MP1	Z	-11.768	1.25
3	MP1	Mx	0	1.25
4	MP1	X	-5.916	3.75
5	MP1	Z	-3.416	3.75
6	MP1	Mx	0	3.75
7	MP1	X	-5.916	6.25
8	MP1	Z	-3.416	6.25
9	MP1	Mx	0	6.25
10	MP2	X	-20.384	1.25
1	MP2	Z	-11.768	1.25
12	MP2	Mx	0	1.25
13	MP2	X	-5.916	3.75
14	MP2	Z	-3.416	3.75
15	MP2	Mx	0	3.75
16	MP2	X	-5.916	6.25

Colliers Engineering & Design

23777329

Mount ReAnalysis-VZW

Feb 8, 2024 3:46 PM Checked By: PMA

Member Point Loads (BLC 37 : Antenna Wm (300 Deg)) (Continued)

	Member Label	Direction	Magnitude(lb.k-ft)	Location(ft %)
17	MP2	Z	-3.416	6.25
18	MP2	Mx	0	6.25

Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1	X	-6.255	1.25
2	MP1	Z	-10.833	1.25
3	MP1	Mx	0	1.25
4	MP1	X	-5.645	3.75
5	MP1	Z	-9.777	3.75
6	MP1	Mx	0	3.75
7	MP1	X	-5.645	6.25
8	MP1	Z	-9.777	6.25
9	MP1	Mx	0	6.25
10	MP2	X	-6.255	1.25
11	MP2	Z	-10.833	1.25
12	MP2	Mx	0	1.25
13	MP2	X	-5.645	3.75
14	MP2	Z	-9.777	3.75
15	MP2	Mx	0	3.75
16	MP2	X	-5.645	6.25
17	MP2	Z	-9.777	6.25
18	MP2	Mx	0	6.25

Member Point Loads (BLC 77: Lm1)

	Member Label	Direction	Magnitude(ib.k-ft)	Location(ft %)
1	M4	Y	-500	0

Member Point Loads (BLC 78 : Lm2)

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]	
M9	Y	-500	0	

Member Point Loads (BLC 79 : Lv1)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
1 1	M3	Y	-250	0

Member Point Loads (BLC 80 : Lv2)

	Member Label 1 M3	Direction	Magnitude(lb.k-ft)	Location(ft %)	
1		Y	-250	%50	

Member Point Loads (BLC 81 : Antenna Ev)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1	Υ	-3.927	1.25
2	MP1	My	0	1.25
3	MP1	Mz	0	1.25
4	MP1	Υ	-3.927	3.75
5	MP1	My	0	3.75
6	MP1	Mz	0	3.75
7	MP1	Y	-3.927	6.25
8	MP1	My	0	6.25
9	MP1	Mz	0	6.25
10	MP2	Y	-3.927	1.25
11	MP2	My	0	1.25
12	MP2	Mz	0	1.25
13	MP2	Y	-3.927	3.75
14	MP2	My	0	3.75

Colliers Engineering & Design NL

NL 23777329

Mount ReAnalysis-VZW

Feb 8, 2024 3:46 PM Checked By: PMA

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
	Mz	0	3.75
	Y	-3.927	6.25
	Mv	0	6.25
		0	6.25
	Member Label MP2 MP2 MP2 MP2 MP2 MP2	MP2 Mz MP2 Y MP2 My	MP2 Mz 0 MP2 Y -3.927 MP2 My 0

Member Point Loads (BLC 82 : Antenna Eh (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1	Z	-9.817	1.25
2	MP1	Mx	0	1.25
3	MP1	Z	-9.817	3.75
4	MP1	Mx	0	3.75
5	MP1	7	-9.817	6.25
6	MP1	Mx	0	6.25
7	MP2	Z	-9.817	1.25
8	MP2	Mx	0	1.25
9	MP2	Z	-9.817	3.75
10	MP2	Mx	0	3.75
11	MP2	Z	-9.817	6.25
12	MP2	Mx	0	6.25

Member Point Loads (BLC 83 : Antenna Eh (90 Deg))

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft.%]
1	MP1	X	9.817	1.25
2	MP1	Mx	0	1.25
3	MP1	X	9.817	3.75
4	MP1	Mx	0	3.75
5	MP1	X	9.817	6.25
6	MP1	Mx	0	6.25
7	MP2	X	9.817	1.25
0	MP2	Mx	0	1.25
8	MP2	X	9.817	3.75
9	MP2	Mx	0	3.75
10	MP2	X	9.817	6.25
11 12	MP2	Mx	0	6.25

Member Area Loads

Joint A	Joint B	Joint C Joint D No Data to Print		Direction	Distribution	Magnitude[ksf]
Joine A	CONKE					

Envelope Joint Reactions

	laint		X [ib]	10	Y [lb]	IC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	Joint N2	may	376.766	11	1575.109	13	624.625	1	093	1	.453	11	.541	34
	INZ		-376.775		232.92		-575.141		-1.462	19	454	5	541	40
	NIAE				1591.121	_	880.569	2	084	7	1.282	10	.472	30
3					233.501		-930.06	a	-1.479	13	-1.282	4	472	48
4			-1189.266				1388.843	1	1.770		1.202			
5			1416.557											
6		min	-1416.557	4	610.933	70	-1300.043	1						

Joint Reactions

	10	Joint Label	X [lb]	Y [ib]	Z [lb]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	1 1	N2	0	622,254	624.625	093	0	0
2	1	N15	0	233.501	764.219	682	0	0
3	1	Totals:	0	855.755	1388.843			

: Colliers Engineering & Design : NL : 23777329 : Mount ReAnalysis-VZW

Feb 8, 2024 3:46 PM Checked By: PMA

	LC	Joint Label	X [lb]	Y [lb]	Z [ib]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
4	1	COG (ft):	X: 0	Y: .191	Z: 1.597			
5	2	N2	-194.695	572.48	370.002	206	239	089
6	2	N15	-527.321	283.275	880.569	644	569	.008
7	2	Totals:	-722.016	855.755	1250.57		.500	.000
8	2	COG (ft):	X: 0	Y: .191	Z: 1.597			
9	3	N2	-177.063	500.129	134.299	315	261	19
10	3	N15	-1085.506	355.626	594.646	534	-1.164	045
11	3	Totals:	-1262.57	855.754	728.945	00-	-1.104	045
12	3	COG (ft):	X: 0	Y: .191	Z: 1.597			
13	4	N2	-227.291	427.613	24.773	202	225	04
14	4	N15	-1189.266	428.142		382	325	21
15	4	Totals:	-1416.557	855.754	-24.775	383	-1.282	036
16	4	COG (ft):	X: 0		002			
17	5	N2		Y: .191	Z: 1.597			فاعلمهمه
18	5		-376.775	338.845	-196.191	5	454	138
		N15	-802.208	516.909	-484.493	233	878	.04
19	5	Totals:	-1178.984	855.754	-680.684			
20	5	COG (ft):	X: 0	Y: .191	Z: 1.597			
21	6	N2	-309.998	254.609	-513.49	646	35	059
22	6	N15	-363.758	601.145	-653.49	125	404	.056
23	6	Totals:	-673.756	855.754	-1166.98			
24	6	COG (ft):	X: 0	Y: .191	Z: 1.597			
25	7	N2	0	232.92	-575.141	671	0	0
26	7	N15	0	622.835	-813.702	084	0	0
27	7	Totals:	0	855.754	-1388.843			
28	7	COG (ft):	X: 0	Y: .191	Z: 1.597			
29	8	N2	194.707	282.68	-320.511	559	.239	.089
30	8	N15	527.309	573.074	-930.06	123	.571	008
31	8	Totals:	722.016	855.754	-1250.571	120	.571	-,006
32	8	COG (ft):	X: 0	Y: .191	Z: 1.597			
33	9	N2	177.081	355.11	-84.769	4.E	201	40
34	9	N15	1085.488			45	.261	.19
35	9	Totals:	1262.57	500.645	-644.176	232	1.166	.045
36	9	COG (ft):	X: 0	855.755	-728.945			
37	10	N2		Y: .191	Z: 1.597			
38	10		227.291	427.613	24.773	382	.325	.21
		N15	1189.266	428.142	-24.771	383	1.282	.036
39	10	Totals:	1416.557	855.755	.002			
40	10	COG (ft):	X: 0	Y: .191	Z: 1.597			
41	11	N2	376.766	516.269	245.707	265	.453	.138
42	11	N15	802.217	339.486	434.976	533	.876	04
43	11	Totals:	1178.984	855.755	680.684			
44	11	COG (ft):	X: 0	Y: .191	Z: 1.597			
45	12	N2	309.996	600.537	562.98	119	.35	.059
46	12	N15	363.76	255.218	604	641	.403	056
47	12	Totals:	673.756	855.755	1166.98			
48	12	COG (ft):	X: 0	Y: .191	Z: 1.597			
49	13	N2	0	1575.109	303.672	-1.26	0	0
50	13	N15	0	1456.758	168.554	-1.479	0	0
51	13	Totals:	0	3031.867	472.225	1		
52	13	COG (ft):	X: 0	Y: 1.183	Z: 1.613			
53	14	N2	-69.088	1551.73	212.006	-1.302	081	022
54	14	N15	-135.306	1480.137	142.011	-1.451	147	
55	14	Totals:	-204.394	3031.867	354.016	-1.451	147	.007
56	14	COG (ft):	X: 0	Y: 1.183	Z: 1.613	1000		
57	15	N2	-62.521			4.044	000	0.17
58	15	N15		1526.45	128.262	-1.341	082	041
59	15		-237.046	1505.418	44.693	-1.413	255	004
	15	Totals:	-299.567	3031.867	172.955			
60		COG (ft):	X: 0	Y: 1.183	Z: 1.613			
61	16 16	N2 N15	-80.305 -266.169	1507.923 1523.945	90.777	-1.361	104	047
62				4500 045	-90.778	-1.377	289	0

Feb 8, 2024 3:46 PM Checked By: PMA

Join	t Rea	ctions (Continued	<u> </u>					constantings
	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
63	16	Totals:	-346.474	3031.867	0			
64	16	COG (ft):	X: 0	Y: 1.183	Z: 1.613			
65	17	N2	-133.716	1479.564	12.89	-1.401	157	038
66	17	N15	-221.287	1552.304	-217.847	-1.331	244	.019
67	17	Totals:	-355.003	3031.867	-204.958			
68	17	COG (ft):	X: 0	Y: 1.183	Z: 1.613			
69	18	N2	-110.192	1447.089	-100.436	-1.454	124	021
70	18	N15	-126.207	1584.778	-309.017	-1.286	14	.02
71	18	Totals:	-236.4	3031.867	-409.453			
72	18	COG (ft):	X: 0	Y: 1.183	Z: 1.613			() () () () ()
73	19	N2	0	1440.746	-122.121	-1.462	0	_ 0
74	19	N15	0	1591.121	-350.104	-1.275	0	0
75	19	Totals:	0	3031.867	-472.226			
		COG (ft):	X: 0	Y: 1.183	Z: 1.613	V	TI O'LL	
76	19	N2	69.088	1464.118	-30.455	-1.419	.081	.022
77	20		135.305	1567.75	-323.562	-1.303	.147	007
78	20	N15	204.394	3031.867	-354.016	11000		
79	20	Totals:	X: 0	Y: 1.183	Z: 1.613			
80	20	COG (ft):		1489.397	53.291	-1.381	.082	.041
81	21	N2	62.522	1542.471	-226.246	-1.341	.255	.004
82	21	N15	237.045		-172.955	-1.541	.200	.00 /
83	21	Totals:	299.567	3031.867	Z: 1.613			
84	21	COG (ft):	X: 0	Y: 1.183	90.777	-1.361	.104	.047
85	22	N2	80.305	1507.923	-90.777	-1.377	.289	0
86	22	N15	266.169	1523.945		-1.311	.203	
87	22	Totals:	346.474	3031.867	0			
88	22	COG (ft):	X: 0	Y: 1.183	Z: 1.613	4.004	157	.038
89	23	N2	133.715	1536.281	168.663	-1.321	.157	
90	23	N15	221.287	1495.586	36.294	-1.423	.244	019
91	23	Totals:	355.003	3031.867	204.957		-	
92	23	COG (ft):	X: 0	Y: 1.183	Z: 1.613	1.000	404	004
93	24	N2	110.192	1568.764	281.987	-1.268	.124	.021
94	24	N15	126.207	1463.103	127.465	-1.468	.14	02
95	24	Totals:	236.4	3031.867	409.453			
96	24	COG (ft):	X: 0	Y: 1.183	Z: 1.613			F00
97	25	N2	71.937	855.791	68.661	601	.072	.528
98	25	N15	-71.937	749.964	19.606	734	072	.469
99	25	Totals:	0	1605.755	88.267			
100	25	COG (ft):	X: .934	Y: -1.533	Z: 1.464			
101	26	N2	59.56	852.623	52.482	608	.056	.522
102	26	N15	-105.448	753.132	26.995	732	108	.469
103	26	Totals:	-45.888	1605.755	79.477			
103		COG (ft):	X: .934	Y: -1.533	Z: 1.464	AN L. II		
105	27	N2	60.679	848.014	37.505	615	.055	.516
	27	N15	-140.922	757.741	8.824	725	146	.466
106	27	Totals:	-80.243	1605.755	46.329			
107		COG (ft):	X: .934	Y: -1.533	Z: 1.464			THE THE
108	27	N2	57.487	843,404	30,539	619	.051	.514
109	28	N2 N15	-147.518	762.351	-30.539	715	153	.466
110	28		-90.031	1605.755	0			
111	28	Totals:	X: .934	Y: -1.533	Z: 1.464		Total T	
112	28	COG (ft):		837.773	16.492	627	.043	.519
113	29	N2	47.989	767.982	-59.753	705	127	.471
114	29	N15	-122.919	1605.755	-43.262	.,,,,,		
115	29	Totals:	-74.931		Z: 1.464			
116	29	COG (ft):	X: .934	Y: -1.533		636	.049	.524
117	30	N2	52.233	832.424	-3.672		097	.472
118	30	N15	-95.055	773.33	-70.494	699	09/	.4/2
119	30	Totals:	-42.822	1605.755	-74.166		20,000	or expression
120	30	COG (ft):	X: .934	Y: -1.533	Z: 1.464	620	.072	.528
121	31	N2	71.937	831.045	-7.592	638	.072	.020
				ADAM ANDICAL		CHALLET LO	11 440 -041	Page 21

Company
Designer
Job Number
Model Name

: Colliers Engineering & Design
: NL
: 23777329
: Mount ReAnalysis-VZW

Feb 8, 2024 3:46 PM Checked By: PMA

100	LC	Joint Label	X [lb]	Y [16]	Z [lb]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
122	31	N15	-71.937	774.71	-80.676	696	072	.469
123	31	Totals:	0	1605.755	-88.267			
124	31	COG (ft):	X: .934	Y: -1.533	Z: 1.464		and the	117
125	32	N2	84.314	834.213	8.588	63	.087	.533
126	32	N15	-38.427	771.542	-88.065	698	035	.468
127	32	Totals:	45.888	1605.755	-79.477			
128	32	COG (ft):	X: .934	Y: -1.533	Z: 1.464			
129	33	N2	83.196	838.822	23.565	623	.088	.54
130	33	N15	-2.953	766.933	-69.894	705	.002	.472
131	33	Totals:	80.243	1605.755	-46.329			
133		COG (ft):	X: .934	Y: -1.533	Z: 1.464		7	I RI LIX
134	34	N2	86.388	843.432	30.531	619	.092	.541
135	34	N15	3.643	762.323	-30.531	715	.01	.471
		Totals:	90.031	1605.755	0			
136 137	34 35	COG (ft):	X: .934	Y: -1.533	Z: 1.464			- ST 171
138	35	N2	95.886	849.062	44.578	612		.537
139	35	N15 Totals:	-20.955	756.693	-1.317	724	016	.466
140	35	COG (ft):	74.931	1605.755	43.262			
141	36	N2	X: .934	Y: -1.533	Z: 1.464	000	004	
142	36	N15	91.641	854.411	64.742	602	.094	.531
143	36	Totals:	-48.819 42.822	751.344	9.424	731	046	.465
144	36	COG (ft):		1605.755	74.165	-		
145	37	N2	X: .934	Y: -1.533	Z: 1.464	004	070	500
146	37	N15	-71.937 71.937	855.79	68.661	601	072	528
147	37	Totals:	0	749.964	19.606	734	.072	469
148	37	COG (ft):	X:934	1605.754	88.267			
149	38	N2	-84.313	Y: -1.533	Z: 1.464	000	207	700
150	38	N15	38.426	852.632 753.122	52.479	608	087	533
151	38	Totals:	-45.888		26.998	732	.035	468
152	38	COG (ft):	X:934	1605.754 Y: -1.533	79.477			
153	39	N2	-83.194	848.04	Z: 1.464	C1E	000	5 4
154	39	N15	2.951	757.714	37.498 8.832	615	088	54
155	39	Totals:	-80.243	1605.754	46.329	725	002	472
156	39	COG (ft):	X:934	Y: -1.533	Z: 1.464			
157	40	N2	-86.388	843.432	30.531	640	000	F44
158	40	N15	-3.643	762.323	-30.531	619	092	541
159	40	Totals:	-90.031	1605.754	0	715	01	471
160	40	COG (ft):	X:934	Y: -1.533	Z: 1.464			1.00
161	41	N2	-95.886	837.784	16.488	627	4	F07
162	41	N15	20.955	767.97	-59.749	705	1 .016	537
163	41	Totals:	-74.931	1605.754	-43.262	705	.016	466
164	41	COG (ft):	X:934	Y: -1.533	Z: 1.464			
165	42	N2	-91.641	832.424	-3.673	636	094	531
166	42	N15	48.819	773.33	-70.493	699	.046	465
167	42	Totals:	-42.822	1605.754	-74.165	033	.040	400
168	42	COG (ft):	X:934	Y: -1.533	Z: 1.464	55-		
169	43	N2	-71.937	831.045	-7.592	638	072	528
170	43	N15	71.937	774.71	-80.676	696	.072	469
171	43	Totals:	0	1605.754	-88.267	.000	.012	7.403
172	43	COG (ft):	X:934	Y: -1.533	Z: 1.464			
173	44	N2	-59.561	834.203	8.59	63	056	522
174	44	N15	105.449	771.551	-88.068	698	.108	469
175	44	Totals:	45.888	1605.754	-79.477	.030	.100	408
176	44	COG (ft):	X:934	Y: -1.533	Z: 1.464			
177	45	N2	-60.68	838.795	23.572	623	055	516
178	45	N15	140.923	766.959	-69.901	705	.146	466
179	45	Totals:	80.243	1605.754	-46.329	100	. 140	400
1131				I I V V V I I V T	TU.UZU			

Feb 8, 2024 3:46 PM Checked By: PMA

Joint	Rea	ctions (Continued	1)					(L=121/2±1)
	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
181	46	N2	-57.487	843.404	30.539	619	051 .153	514 466
182	46	N15	147.518	762.351	-30.539	715	100	400
183	46	Totals:	90.031	1605.754	0		100000	
184	46	COG (ft):	X:934	Y: -1.533	Z: 1.464 44.582	612	043	519
185	47	N2	-47.988	849.051	-1.32	725	.127	471
186	47	N15	122.919	756.704 1605.754	43.262	125	.121	
187	47	Totals:	74.931	Y: -1.533	Z: 1.464			
188	47	COG (ft):	X:934	854.41	64.742	602	049	524
189	48	N2	-52.234 95.055	751.344	9.423	731	.097	-,472
190	48	N15	42.822	1605.754	74.166			
191	48	Totals:	X:934	Y: -1.533	Z: 1.464			
192	48	COG (ft): N2	-50.277	584.181	27.742	448	05	292
193	49	N15	50.277	646.573	-27.742	601	.05	294
194	49	Totals:	0	1230.754	0			
195	49 49	COG (ft):	X:762	Y:934	Z: 1.51			
196	50	N2	0	787.111	27.434	657	0	0
197	50	N15	0	443.643	-27.434	394	0	0
198	50	Totals:	0	1230.755	0			
200	50	COG (ft):	X: 0	Y:934	Z: 1.51			10-
201	51	N2	0	498.753	28.871	446	0	0
202	51	N15	0	499.627	-28.871	447	0	0
203	51	Totals:	0	998.38	0			
204	51	COG (ft):	X: 0	Y: .191	Z: 1.597			
205	52	N2	0	453.927	62.23	379	0	0
206	52	N15	0	432.711	14.978	413	0	0
207	52	Totals:	0	886.638	77.208			
208	52	COG (ft):	X: 0	Y: .191	Z: 1.597		00	000
209	53	N2	-18.266	452.454	57.327	381	02	003
210	53	N15	-20.338	434.184	9.536	411	022	.003
211	53	Totals:	-38.604	886.638	66.862			
212	53	COG (ft):	X: 0	Y: .191	Z: 1.597	200	035	005
213	54	N2	-31.637	448.43	43.935	388 405	038	.006
214	54	N15	-35.225	438.208	-5.331	405	030	.000.
215	54	Totals:	-66.862	886.638	38.604 Z: 1.597		The second second	THE PLANT
216	54	COG (ft):	X: 0	Y: .191	25.639	396	04	006
217	55	N2	-36.532	442.934	-25.639	397	044	.006
218	55	N15	-40.676	443.704 886.638	-25.659	001	.011	1000
219	55	Totals:	-77.208	Y: .191	Z: 1.597			
220	55	COG (ft):	X: 0	437.437	7.344	404	035	005
221	56	N2	-31.637 -35.225	449.201	-45.948	389	038	.006
222	56	N15	-66.862	886.638	-38.604			
223	56	Totals:	X: 0	Y: .191	Z: 1.597	-		
224	56	COG (ft): N2	-18.266	433.413	-6.048	411	02	003
225	57	N2 N15	-20.338	453.225	-60.814	383	022	.003
226	57	Totals:	-38.604	886.638	-66.862			
227	57	COG (ft):	X: 0	Y: .191	Z: 1.597			
228	57	N2	0	431.94	-10.951	413	0	0
229	58	N15	0	454.698	-66.257	381	0	0
230	58	Totals:	0	886.638	-77.208			
231	58 58	COG (ft):	X: 0	Y: .191	Z: 1.597			
233	59	N2	18.266	433.413	-6.048	411	.02	.003
234	59	N15	20.338	453.225	-60.814	383	.022	003
235	59	Totals:	38.604	886.638	-66.862			
236	59	COG (ft):	X: 0	Y: .191	Z: 1.597			
237	60	N2	31.637	437.437	7.344	404	.035	.005
238	60	N15	35.225	449.201	-45.948	389	.038	006
239	60	Totals:	66.862	886.638	-38.604			
L 200	- 00				E000224200 V	CONTRACT LO	11 440 -O-I	Page 23

Feb 8, 2024 3:46 PM Checked By: PMA

240	60	Joint Label COG (ft):	X [ib]	Y [lb] Y: .191	Z [lb] Z: 1.597	MX [k-ft]	MY [k-ft]	MZ [k-ft]
241	61	N2	36.533	442.934		200	0.4	000
242	61	N15	40.676		25.639	396	.04	.006
243	61	Totals:	77.208	443.704	-25.639	397	.044	006
244	61	COG (ft):	X: 0	886.638	0			,
245	62	N2		Y: .191	Z: 1.597	000		
246	62	N15	31.637	448.43	43.935	388	.035	.005
247	62		35.225	438.208	-5.33	405	.038	006
248	62	Totals:	66.862	886.638	38.604			
		COG (ft):	X: 0	Y: .191	Z: 1.597		556	
249	63	N2	18.266	452.454	57.327	381	.02	.003
250	63	N15	20.338	434.184	9.536	411	.022	003
251	63	Totals:	38.604	886.638	66.862			
252	63	COG (ft):	X: 0	Y: .191	Z: 1.597		91	
253	64	N2	0	316.198	54.257	256	0	0
254	64	N15	0	294.734	22.951	29	0	0
255	64	Totals:	0	610.933	77.208			
256	64	COG (ft):	X: 0	Y: .191	Z: 1.597			
257	65	N2	-18.266	314.725	49.354	258	02	003
258	65	N15	-20.338	296.207	17.508	288	022	.003
259	65	Totals:	-38.604	610.933	66.862		.022	.005
260	65	COG (ft):	X: 0	Y: .191	Z: 1.597			1 20 11 12
261	66	N2	-31.636	310.702	35.962	264	025	005
262	66	N15	-35.226	300.231	2.642		035	005
263	66	Totals:	-66.862	610.933		282	038	.006
264	66	COG (ft):	X: 0		38.604			
265	67	N2		Y: .191	Z: 1.597		- 57	
266	67	N15	-36.532	305.205	17.667	273	04	006
267	67		-40.677	305.728	-17.667	273	044	.006
		Totals:	-77.208	610.933	0			
268	67	COG (ft):	X: 0	Y: .191	Z: 1.597			
269	68	N2	-31.636	299.708	629	281	035	005
270	68	N15	-35.226	311.225	-37.976	265	038	.006
271	68	Totals:	-66.862	610.933	-38.604			
272	68	COG (ft):	X: 0	Y: .191	Z: 1.597			TO DESCRIPTION
273	69	N2	-18.266	295.685	-14.021	288	02	003
274	69	N15	-20.338	315.248	-52.842	259	022	.003
275	69	Totals:	-38.604	610.933	-66.862			
276	69	COG (ft):	X: 0	Y: .191	Z: 1.597			18 199
277	70	N2	0	294.212	-18.924	29	0	0
278	70	N15	0	316.721	-58.284	257	0	0
79	70	Totals:	0	610.933	-77.208	.201		- 0
280	70	COG (ft):	X: 0	Y: .191	Z: 1.597			
281	71	N2	18.266	295.685	-14.021	200	00	000
82	71	N15	20.338	315.248		288	.02	.003
83	71	Totals:	38.604		-52.842	259	.022	003
84	71	COG (ft):		610.933	-66.862			
85	72	N2	X: 0	Y: .191	Z: 1.597			
86	72		31.636	299.708	629	281	.035	.005
87	72	N15	35.226	311.225	-37.975	265	.038	006
		Totals:	66.862	610.933	-38.604			
88	72	COG (ft):	X: 0	Y: .191	Z: 1.597			
89	73	N2	36.532	305.205	17.667	273	.04	.006
90	73	N15	40.677	305.728	-17.667	273	.044	006
91	73	Totals:	77.208	610.933	0			
92	73	COG (ft):	X: 0	Y: .191	Z: 1.597	ACTO I		100 110
93	74	N2	31.636	310.702	35.962	264	.035	.005
94	74	N15	35.226	300.231	2.642	282	.038	006
- I	74	Totals:	66.862	610.933	38.604		.000	.000
95				>/ 404				
	74	COG (III):	X: []	Y 141	/' 1 hu/ 1			
	74 75	COG (ft): N2	X: 0 18.266	Y: .191 314.725	Z: 1.597 49.354	258	.02	.003

Feb 8, 2024 3:46 PM Checked By: PMA

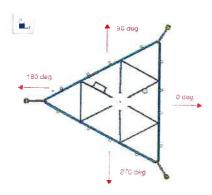
Joint Reactions (Continued)

	10	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
299	75	Totals:	38.604	610.933	66.862			
300	75	COG (ft):	X: 0	Y: .191	Z: 1.597			

Envelope AISC 15th(360-16): LRFD Steel Code Checks

		Shape	Code C	Locifti	LC	Shear	Locifti	Dir	LC	phi*Pnc [lb]	phi*Pnt [lb]	phi*Mn y	phi*Mn z	Cb	Eqn
4	Member M1	HSS4X4X3		0	18	.079	0	v	39	106665.8	106812	12.662	12.662	1	H1-1b
2		PIPE 3.0	.212	2.5	24	.068	2.5			57037.472		5.749	5.749	1	H1-1b
	M3		.143	7.5	24	.057	.5			30038.461	50715	3,596	3.596	2	H1-1b
3	MP1	PIPE 2.5		7.5	14	.048	.5			30038.461		3.596	3.596	2	H1-1b
4	MP2	PIPE 2.5	.133	7.5	1		0			106665.8		12.662	12.662	1	H1-1b
5	M9A	HSS4X4X3		U	3	.071	0.5	1 y		57037.472		5.749		1	H1-1b
6	M11	PIPE 3.0	.215	2.5	18	.069	2.5	_		37037.472	03203	3.749	0.743		111 10

VzW SMART Tool[©] Vendor


Client:	Verizon Wireless	Date:	2/8/2024
Site Name:	CROMWELL N 2 CT - Cromwell Concrete		
MDG #:	5000234399		
Fuze ID #:	17152965	Page:	1
			Version 2,00

I. Mount-to-Tower Connection Check - 110' Mount

Custom Orientation Required

	 _
Voc	П
1.62	

lodes labeled per Risa)	Orientation (per graphic of typical platform)			
N2	0			
N15	0			
Mark Valley				
LEEDEN IN				
	CONTRACTOR OF THE			

Tower Connection Bolt Checks

Bolt Orientation

Bolt Quantity per Reaction:

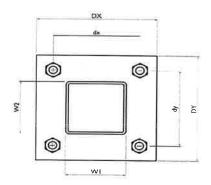
 $\begin{array}{l} d_x\,(in)\;(\mbox{\it Delta}\;\mbox{\it X}\;\mbox{\it of}\;\mbox{\it typ.}\;\mbox{\it bolt}\;\mbox{\it config.}\;\mbox{\it sketch});\\ d_y\,(in)\;(\mbox{\it Delta}\;\mbox{\it Y}\;\mbox{\it of}\;\mbox{\it typ.}\;\mbox{\it bolt}\;\mbox{\it config.}\;\mbox{\it sketch}); \end{array}$

Bolt Type:

Bolt Diameter (in):

Required Tensile Strength / bolt (kips): Required Shear Strength / bolt (kips):

Tensile Capacity / bolt (kips):


Shear Capacity / bolt (kips):

Bolt Overall Utilization:

	Yes

Parallel

4
6
6
A325N
0.625
1.7
0.4
20.7
12.4
8.2%

Tower Connection Baseplate Checks

Connecting Standoff Member Shape:

Weld Stiffener Configuration:

Plate Width, Dx (in):

Plate Height, Dy (in):

W1(in):

W2 (in):

Member Thickness (in):

Stiffener location a₁ (in):

Stiffener location b1 (in):

Stiffener location a₂ (in):

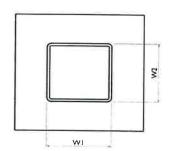
Stiffener location b₂ (in):

Fy (ksi, plate):

Plate Thickness (in):

Length of Yield Line, Ly (in):

Bolt Eccentricity, e (in):


Mu (kip-in):

Phi*Mn (kip-in):

Plate Bending Utilization:

YPS

Rect Tube
No Stiffeners
8
8
4
4
0.25
36
0.5
5.85
1.65
2.78
11.85
23.5%

Client:	Verizon Wireless	Date:	2/8/2024
Site Name:	CROMWELL N 2 CT - Cromwell Concrete		
PSLC #:	5000234399		
Fuze ID #:	17152965	Page:	2
The state of the s			

Version 2.00

Tower Connection Weld Checks

Weld Shape:

Weld Stiffener Configuration:

Stiffener Notch Length, n (in):

Weld Size (1/16 in):

W1 (in):

W2 (in):

Weld Total Length (in):

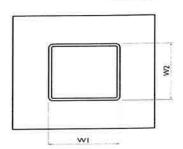
Z_x (in³/in):

 Z_y (in³/in):

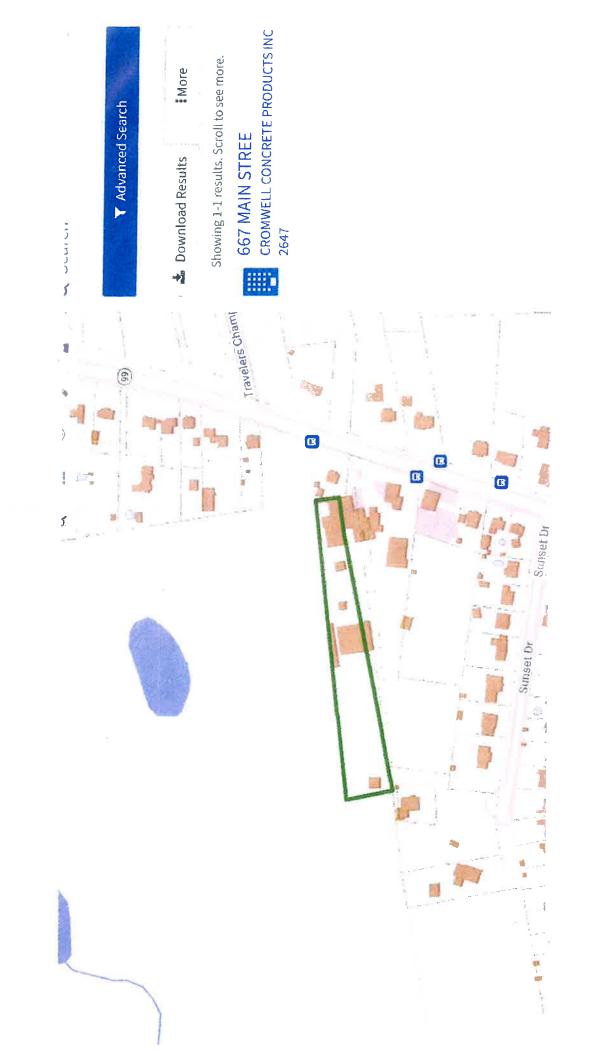
 J_p (in⁴/in):

c_x (in)

c_y (in)


Required combined strength (kip/in):

Weld Capacity (kip/in):


Weld Utilization:

Ye	S		100

Rectangle	
None	
4	
4	
4	
16.00	
21.33	
21.33	
85.33	
2.25	
2.25	
0.65	
5.57	
11.7%	

ATTACHMENT 5

TOWN	TOWN OF CROMWELL						Printed By:	Shawna		11/04/2022	3:41:16PM
Parcel I	Parcel ID: 00285900 Loca	Location: 667 MAIN	667 MAIN STREET		Map-Lot	t 48-28C	22	Last	Revaluation	Last Revaluation - October 1, 2022	
CE	Current Owner	Percent	Current V	Current Value Information Use Code Land Value	PA 490 Value	Mkt Adj Cost Building Value	<u>e</u>	Outbuildings	Total Value	lue To	Total Assessed
NAIO PO	FELL CONCRETE PRODUCT.		201	211,400	0	20	501,300	102,500	815,200	200	570,640
9	667 MAIN STREET		TOTAL	211,400	0	2	501,300	102,500	815,200	200	570,640
CROMWELL	CT	06416									
			Previous	Previous Value Information	tion						
Divosió			Tax Yr	Land Value	Bidg Value		Outbuildings	SE	Total Value	Total A	Total Assessment
LIENT	us Owner(s)		2021	184,000	344,900		008'66	0	628,700		440,090
			2020	184,000	344,900		008'66	0	628,700		440,090
			2019	184,000	344,900		008'66	0	628,700		440,090
General Notes	Notes		2018	184,000	344,900	_	008'66	0	628,700		440,090
CROMMEN	CROMME! CONCRETE		2017	184,000	324,500	_	008'66	0	608,300		425,810
			2016	213,470	328,340	_	41,800	0	583,610		408,520
8Q SHED(18	8Q SHED(15X32) IS OFFICE W/ 2PC LAV; 3(1		Sales Inf	Sales Information	1	1					
4X12) OHD'S;	46		Grantee		Vol-Page Type	SaleDate	SalePrice	Sale Verif		GeneralNotes	
			CROMWELL	CROMWELL CONCRETE PRO 4;	42-487	10/24/1950	0				
Commercial (Commercial Garage for fixing company vechicles										
	Activity information	HOU				Buil	Building Permit Information	it Inforr	nation		
Date	Results	Visited By	Date	Permit # Description	tion Amount		% Comp Visit Date		CO Date	GeneralNotes	
08/15/2022	Change - Value Change Company	MO	07/16/2021			19,000			14-Sep-2021	CELL SITE	
09/09/2017	Change - Value Change Company	John Valente	10/29/2015	-		10,000	_	2018		Cold Storage Building	Building
06/15/2017	Permit - Measure Exterior	Mike Mordarski	03/25/2013	_	Tank	1,000	• •	2013		120gal	
05/19/2017	No Change - Field Review	Dave Stannard	04/30/2012			1,000		2012		For propane filling stati	ling stati
09/13/2016	Permit - Walk Exterior	Mike Mordarski	03/15/2012	20592 Propane Tank	Tank	1,000	100 12-Sep-2012		26-Mar-2013	1000gal ag tank/pump stat	ık/pump stat

Zoning Data

Paved

Street Topo:

Dev. Map VV-11

Dev. Map

130.00

Desc. BP

%

UtilitiesPublic Water

BAA

07K

Dave Stannard Mike Mordarski Assessor Office

No Change - Field Review Permil - Walk Exterior Permit- Miscellaneous Permit- Miscellaneous Permit- Miscellaneous

05/19/2017 10/28/2015 09/13/2016 03/25/2013

Property Factors Properties Inc.

5702

Census

Flood:

Patriot

				,		5,5,5,5,5,5,5
			Notes	1		0.000.0
					SITE	
		Neigh	Asmt Order	4240	4240	
				0	0	100000
		Appraised	Value	185,100	26,300	
		Special	Land Calc			Assessed Value: 147,980
	Land Data					Assessed
	Lai		Land Adjustments			Total Appraised: 211.400
ffice ffice ffice			lgh	GF	-jo	PA 490 Use Asmt: 0
Assessor Office Assessor Office Assessor Office		Unit	Type Neigh	SF	AC	0
			Units		1.000	Total Area: 2.00
03/25/2013 Permit- Miscellaneous 09/12/2012 Permit- Miscellaneous 09/12/2012 Permit- Miscellaneous			Use Description	Commercial	201 Commercial	
03/25/2013 09/12/2012 09/12/2012			Use	201	201	

ATTACHMENT 6

Verizon/Cromwell North 2 (.5556) Certificate of Mailing — Firm

FOSIZE SERVICE ®					
Name and Address of Sender	TOTAL NO. TOTAL NO. Of Pieces Listed by Sender of Pieces Received at Post Office TM	Affix Stamp Here Postmark with Date of Receipt.	of Receipt.		
Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Harfford, CT 06103	Postmaster, per (name of receiving employee)		- W 1	quadient correction IMI	39AT2O9
			8 000	CIDS	sn
USPS® Tracking Number Firm-specific Identifier	Address (Name, Street, City, State, and ZIP Code™)	Postage	ee Co	Special Handling	Parcel Airlift
	Anthony Salvatore, Town Manger Town of Cromwell		SE SATIONOS.	Salva Se S	
	41 West Street Cromwell CT 06416			ï	
2.	Stuart Popper, Director of Planning and Development	pment			
	41 West Street Cromwell CT 06416				
, co	Cromwell Concrete Products, Inc.				
i de la companya de	667 Main Street Cromwell, CT 06416				
4,					
5.					
Ö					
26 Form 3665 Insulation 2017 (Dag 1 of 1) DSN 753) PSN 7530-17_000-5540			S. C.	See Reverse for Instructions