

56 Prospect Street P.O. Box 270 Hartford, CT 06103

Kathleen M. Shanley

Manager – Transmission Siting Tel: (860) 728-4527

July 6, 2018

Robert Stein, Chairman Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

Re: TS-EVER-032-180613

400 Riley Mountain Rd., Coventry

Dear Chairman Stein:

The Connecticut Light and Power Company doing business as Eversource Energy ("Eversource") submitted on June 13, 2018 a Request for Tower Sharing seeking the CT Siting Council ("Council") approval of the tower sharing of an existing telecommunications tower in Coventry, Connecticut pursuant to the exemption provided under Sections 16-50j-88 to 16-50j-90 of the Regulations of Connecticut State Agencies.

In response to correspondence dated June 20, 2018 from Ms. Melanie Bachman, Executive Director of the Council the attached are the original and 15 copies of the following:

- Updated RF Report, dated June 26, 2018 prepared by C Squared Systems, LLC that accounts for AT&T's approved equipment.
- Copy of AT&T's structural report prepared by Crown Castle, dated December 13, 2017 that includes AT&T's approved equipment and other entities that are collocated at this facility.
- Letter of Authorization from Crown Castle, dated June 25, 2018 granting Eversource the right to use AT&T's structural report, dated December 13, 2017 in its Request for Tower Sharing.
- Approval from AT&T, dated June 26, 2018 allowing Eversource to use AT&T's structural report, dated December 13, 2017 in its Request for Tower Sharing.

If you have any questions or comments, please call me at (860) 728-4527.

Sincerely.

Kathleen M. Shanley

Attachments

cc: John Elsesser, Town Manager, Town of Coventry
Trustee of James L. and Concetta Wallbeoff

C Squared Systems, LLC 65 Dartmouth Drive Auburn, NH 03032 (603) 644-2800 support@csquaredsystems.com

Calculated Radio Frequency Emissions Report

400 Riley Mountain Road Coventry, CT 06238

Table of Contents

1. Introduction1
2. FCC Guidelines for Evaluating RF Radiation Exposure Limits
3. RF Exposure Prediction Methods
4. Calculation Results
5. Conclusion4
6. Statement of Certification
Attachment A: References5
Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)6
Attachment C: Antenna Data Sheet and Electrical Pattern
<u>List of Tables</u>
Table 1: Carrier Information
Table 2: FCC Limits for Maximum Permissible Exposure (MPE)6
<u>List of Figures</u>
Figure 1: Graph of FCC Limits for Maximum Permissible Exposure (MPE)

1. Introduction

The purpose of this report is to investigate compliance with applicable FCC regulations for the proposed addition of an Eversource antenna on the existing monopole tower located at 400 Riley Mountain Road in Coventry, CT. The coordinates of the tower are 41° 47' 56.21" N, 72° 19' 55.88" W.

Eversource is proposing to install the following:

1) Install one omnidirectional antenna to accommodate two 935 MHz channels.

2. FCC Guidelines for Evaluating RF Radiation Exposure Limits

In 1985, the FCC established rules to regulate radio frequency (RF) exposure from FCC licensed antenna facilities. In 1996, the FCC updated these rules, which were further amended in August 1997 by OET Bulletin 65 Edition 97-01. These new rules include Maximum Permissible Exposure (MPE) limits for transmitters operating between 300 kHz and 100 GHz. The FCC MPE limits are based upon those recommended by the National Council on Radiation Protection and Measurements (NCRP), developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI).

The FCC general population/uncontrolled limits set the maximum exposure to which most people may be subjected. General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Public exposure to radio frequencies is regulated and enforced in units of milliwatts per square centimeter (mW/cm²). The general population exposure limits for the various frequency ranges are defined in the attached "FCC Limits for Maximum Permissible Exposure (MPE)" in Attachment B of this report.

Higher exposure limits are permitted under the occupational/controlled exposure category, but only for persons who are exposed as a consequence of their employment and who have been made fully aware of the potential for exposure, and they must be able to exercise control over their exposure. General population/uncontrolled limits are five times more stringent than the levels that are acceptable for occupational, or radio frequency trained individuals. Attachment B contains excerpts from OET Bulletin 65 and defines the Maximum Exposure Limit.

Finally, it should be noted that the MPE limits adopted by the FCC for both general population/uncontrolled exposure and for occupational/controlled exposure incorporate a substantial margin of safety and have been established to be well below levels generally accepted as having the potential to cause adverse health effects.

3. RF Exposure Prediction Methods

The emission field calculation results displayed in the following figures were generated using the following formula as outlined in FCC bulletin OET 65:

Power Density =
$$\left(\frac{1.6^2 \times EIRP}{4\pi \times R^2}\right)$$
 X Off Beam Loss

Where:

EIRP = Effective Isotropic Radiated Power

R = Radial Distance = $\sqrt{(H^2 + V^2)}$

H = Horizontal Distance from antenna in meters

V = Vertical Distance from radiation center of antenna in meters

Ground reflection factor of 1.6

Off Beam Loss is determined by the selected antenna pattern

These calculations assume that the antennas are operating at 100 percent capacity and power, and that all channels are transmitting simultaneously. Obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. The calculations assume even terrain in the area of study and do not take into account actual terrain elevations which could attenuate the signal. As a result, the predicted signal levels reported below are much higher than the actual signal levels will be from the final site configuration.

4. Calculation Results

Table 1 below outlines the power density information for the site. The proposed Eversource omnidirectional antenna has a relatively narrow vertical beamwidth which causes the majority of the RF power to be focused out towards the horizon, with respect to the vertical plane. As a result, there will be less RF power directed below the antenna relative to the horizon, and consequently lower power density levels around the base of the tower. Please refer to Attachment C for the vertical pattern of the proposed Eversource antenna. The calculated results in Table 1 include a nominal 10 dB off-beam pattern loss to account for the lower relative gain below the antenna. For clarity, Eversource's proposed parameters and contribution are highlighted in blue below.

Carrier	Antenna Height (Feet)	Operating Frequency (MHz)	Number of Trans.	ERP Per Transmitter (Watts)	Power Density (mw/cm²)	Limit	%MPE
Eversource	162	935	1	240	0.0035	0.6233	0.06%
AT&T	120	850	1	414	0.0115	0.5667	0.20%
AT&T	120	1900	1	656	0.0182	1.0000	0.18%
AT&T	120	700	4	906	0.1003	0.4667	2.15%
AT&T	120	2300	4	1181	0.1308	1.0000	1.31%
AT&T	120	700	2	627	0.0347	0.4667	0.74%
AT&T	120	1900	4	1194	0.1322	1.0000	1.32%
Pocket (now MetroPCS)	107	2130	3	631	0.0668	1.0000	0.67%
Sprint	147	1962.5	11	384	0.0764	1.0000	0.76%
T-Mobile	136	1900	6	1102	0.1408	1.0000	1.41%
T-Mobile	136	700	1	865	0.0184	0.4667	0.39%
Verizon	126	1970	11	194	0.0533	1.0000	0.53%
Verizon	126	869	9	378	0.0850	0.5793	1.47%
Verizon	126	2145	1	2302	0.0575	1.0000	0.57%
Verizon	126	746	1	850	0.0212	0.4973	0.43%
Eversource	162	935	2	240	0.0071	0.6233	0.11%
	-					Total	12.25%

Table 1: Carrier Information ^{1 2}

_

¹ The power density information for all other operators was taken directly from the CSC database dated 06/25/2018. Please note that the existing CSC filing for Eversource shown in grey italics above are not included in the total, and should be replace with the values highlighted in blue above.

² The total % MPE listed is a summation of each unrounded contribution. Therefore, summing each rounded value may not reflect the total value listed in the table.

5. Conclusion

The above analysis verifies that RF emissions at ground level from the site, after the proposed installations have been completed, will be well below the maximum power density levels as outlined by the FCC in the OET Bulletin 65 Ed. 97-01. Even when using conservative methods, the cumulative power density from the proposed antenna configuration is below the limits for the general public. The highest cumulative expected percent of Maximum Permissible Exposure at ground level is calculated to be 12.25% of the FCC General Population/Uncontrolled limit.

As noted previously, obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. As a result, the predicted signal levels are more conservative (higher) than the actual signal levels will be from the final site configuration.

6. Statement of Certification

I certify to the best of my knowledge that the statements in this report are true and accurate. The calculations follow guidelines set forth in ANSI/IEEE Std. C95.3, ANSI/IEEE Std. C95.1 and FCC OET Bulletin 65 Edition 97-01.

Report Prepared By:

Daniel Brown

RF Engineer

C Squared Systems, LLC

Staniel Bonn

June 26, 2018 Date

Keith Willante

Reviewed/Approved By:

Keith Vellante RF Manager

C Squared Systems, LLC

June 27, 2018 Date

Attachment A: References

OET Bulletin 65 - Edition 97-01 - August 1997 Federal Communications Commission Office of Engineering & Technology

<u>IEEE C95.1-2005, IEEE Standard Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz</u> <u>IEEE-SA Standards Board</u>

<u>IEEE C95.3-2002 (R2008), IEEE Recommended Practice for Measurements and Computations of Radio Frequency</u>
<u>Electromagnetic Fields With Respect to Human Exposure to Such Fields, 100 kHz-300 GHz</u> <u>IEEE-SA Standards Board</u>

Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)

(A) Limits for Occupational/Controlled Exposure³

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	$(900/f^2)*$	6
30-300	61.4	0.163	1.0	6
300-1500	-	-	f/300	6
1500-100,000	-	-	5	6

(B) Limits for General Population/Uncontrolled Exposure⁴

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	$(180/f^2)*$	30
30-300	27.5	0.073	0.2	30
300-1500	-	-	f/1500	30
1500-100,000	-	-	1.0	30

f = frequency in MHz * Plane-wave equivalent power density

Table 2: FCC Limits for Maximum Permissible Exposure (MPE)

³ Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

⁴ General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

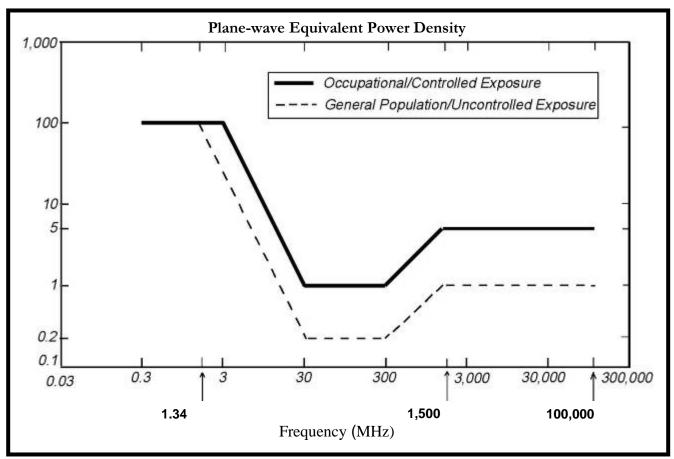


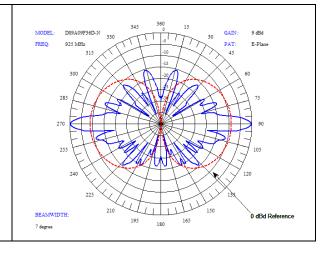
Figure 1: Graph of FCC Limits for Maximum Permissible Exposure (MPE)

Attachment C: Antenna Data Sheet and Electrical Pattern

935 MHz

Manufacturer: dbSpectra

Model #: DS9A09F36D-N


Frequency Band: 890-960 MHz

Gain: 9.0 dBd

Vertical Beamwidth: 8° Horizontal Beamwidth: 360°

Polarization: Dual-Polarization

Length: 230.4"

Date: December 13, 2017

Charles McGuirt Crown Castle 3530 Toringdon Way, Suite 300 Charlotte, NC 28277

Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 (724) 416-2000

Subject:

Structural Analysis Report

Carrier Designation:

AT&T Mobility Co-Locate

Carrier Site Number: Carrier Site Name: CT1106 Coventry - Riley Mountain

Crown Castle Designation:

Crown Castle BU Number:

876385

Crown Castle Site Name:
Crown Castle JDE Job Number:

N. COVENTRY / WALLBEOFF 474269

Crown Castle Job Number: Crown Castle Work Order Number: Crown Castle Application Number:

1497620 418267 Rev. 1

Engineering Firm Designation:

Crown Castle Project Number:

1497620

Site Data:

Reilly Mtn. Rd., COVENTRY, Tolland County, CT Latitude 41° 47′ 56.21″, Longitude -72° 19′ 55.88″

152 Foot - Monopole Tower

Dear Charles McGuirt,

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 1497620, in accordance with application 418267, revision 1.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Existing + Reserved + Proposed Equipment

Sufficient Capacity

Note: See Table I and Table II for the proposed and existing/reserved loading, respectively.

This analysis has been performed in accordance with the 2016 Connecticut State Building Code based upon an ultimate 3-second gust wind speed of 130 mph converted to a nominal 3-second gust wind speed of 101 mph per Section 1609.3 and Appendix N as required for use in the TIA-222-G Standard per Exception #5 of Section 1609.1.1. Exposure Category B and Risk Category II were used in this analysis.

All modifications and equipment proposed in this report shall be installed in accordance with the attached drawings for the determined available structural capacity to be effective.

We at Crown Castle appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects, please give us a call.

Structural analysis prepared by: Carol Ng / VDL

Respectfully submitted by:

Terry P. Styran, P.E. Senior Project Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

- Table 1 Proposed Antenna and Cable Information
- Table 2 Existing and Reserved Antenna and Cable Information
- Table 3 Design Antenna and Cable Information

3) ANALYSIS PROCEDURE

- Table 4 Documents Provided
- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

- Table 5 Section Capacity (Summary)
- Table 6 Tower Component Stresses vs. Capacity LC7
- 4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 152 ft Monopole tower designed by ENGINEERED ENDEAVORS, INC. in September of 2000. The tower was originally designed for a wind speed of 90 mph per TIA/EIA-222-F.

2) ANALYSIS CRITERIA

The structural analysis was performed for this tower in accordance with the requirements of TIA-222-G Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a 3-second gust wind speed of 101 mph with no ice, 50 mph with 1 inch ice thickness and 60 mph under service loads, exposure category B.

Table 1 - Proposed Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
		2	cci antennas	HPA-65R-BUU-H6 w/ Mount Pipe		3/8 3/4 Conduit	
		1	cci antennas	HPA-65R-BUU-H8 w/ Mount Pipe			
		3	ericsson	RRUS 32			
1100	400.0	3	ericsson	RRUS 32 B2	1		
116.0	120.0	3	ericsson	RRUS 4478 B14	2		-
		2	kathrein	80010965 w/ Mount Pipe		Conduit	
		1 kathrein 80010		80010966 w/ Mount Pipe			
		6	powerwave technologies	7020.00			
		1	raycap	DC6-48-60-18-8F			

Table 2 - Existing and Reserved Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note	
	162.0	1	dbspectra	DS9A09F36D-N		1-5/8 1/2		
152.0	152.0	1	bird technologies group	430-94C-09168-M-110/48	2 1		2	
		1	tower mounts	Pipe Mount [PM 601-1]				
	152.0	152.0	3	alcatel lucent	PCS 1900MHz 4x45W- 65MHz	entra de nestana periodo a seriodo	and the second s	
			152.0	6	alcatel lucent	RRH2X50-800		
		3	alcatel lucent	TD-RRH8x20-25	4	1-1/4	2	
150.0		3	kmw communications	ETCR-654L12H6 w/ Mount Pipe	+		2	
		1	tower mounts	Miscellaneous [NA 507-1]				
And the second s	150.0	1	tower mounts	Miscellaneous [NA 509-3]				
		1	tower mounts	Platform Mount [LP 601-1]	_	_	1	
		3	commscope	ATBT-BOTTOM-24V				
133.0	136.0	3	commscope	LNX-6515DS-VTM w/ Mount Pipe	12	1-5/8	1	

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
		3	ems wireless	RR90-17-02DP w/ Mount Pipe			
		3	ericsson	KRY 112 71/2			:
	422.0	3	ericsson	KRY 112 71/2			
	133.0	1	tower mounts	Platform Mount [LP 304-1]			
		3	alcatel lucent	RRH2X60-PCS			
		3	alcatel lucent	RRH2x60-700			
		3	alcatel lucent	RRH4X45-AWS4 B66	2	1-5/8	2
	126.0	6	andrew	SBNHH-1D65B · w/ Mount Pipe		1-5/6	
124.0	120.0	2	rfs celwave	DB-T1-6Z-8AB-0Z			
		3	antel	LPA-171080-12CF-EDIN-2 w/ Mount Pipe		1-5/8	
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		6	antel	LPA-80080/6CF w/ Mount Pipe	18		1
- Company Company	124.0	1	tower mounts	Platform Mount [LP 304-1]			
	120.0	2	kmw communications	AM-X-CD-16-65-00T-RET w/ Mount Pipe			
		3	powerwave technologies	7770.00 w/ Mount Pipe	-	-	3
		1	powerwave technologies	P65-17-XLH-RR w/ Mount Pipe			
	120.0	3	powerwave technologies	7770.00 w/ Mount Pipe			
116.0		3	ericsson	RRUS-11		3/8	
		2	powerwave technologies	LGP21401	1 2 1	3/4 Conduit	1
		1	raycap	DC6-48-60-18-8F	12	1-1/4	
		4	powerwave technologies	LGP21401			
	116.0	1	tower mounts	Platform Mount [LP 1201-1]			
		6	powerwave technologies	LGP21903	-	-	3
107.0	107.0	3	kathrein	742 213	- 6	1-5/8	1
107.0	107.0	1	tower mounts	Pipe Mount [PM 601-3]	6	1-5/8	<u> </u>
	75.0	1	lucent	KS24019-L112A			
74.0	74.0	1	tower mounts	Side Arm Mount [SO 701-1]	1	1/2	1

Notes:

- Existing Equipment
 Reserved Equipment
 Equipment To Be Removed; not considered in this analysis 1) 2) 3)

Table 3 - Design Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
191.5	191.5	12	dapa	48000	-	-
181.5	181.5	12	dapa	48000	-	-
171.5	171.5	12	dapa	48000	-	-
161.5	161.5	12	dapa	48000	-	-
150.0	150.0	12	dapa	48000	-	-
140.0	140.0	12	dapa	48000	-	-
130.0	130.0	12	dapa	48000	-	-
120.0	120.0	12	dapa	48000	-	•
110.0	110.0	12	dapa	48000	-	-
100.0	100.0	12	dapa	48000	-	-

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Remarks	Reference	Source
4-GEOTECHNICAL REPORTS	Goodkind & O'Dea, Inc.	1531969	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	Engineered Endeavors, Inc.	1441268	CCISITES
4-TOWER MANUFACTURER DRAWINGS	Engineered Endeavors, Inc.	1614566	CCISITES

3.1) Analysis Method

tnxTower (version 7.0.5.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were built in accordance with the manufacturer's specifications.
- 2) The tower and structures have been maintained in accordance with the manufacturer's specification.
- 3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	152 - 137.42	Pole	TP37.31x33.03x0.313	1	-4.648	2526.220	3.1	Pass
L2	137.42 - 91.09	Pole	TP50.15x35.167x0.375	2	-26.500	3935.810	22.2	Pass
L3	91.09 - 44.79	Pole	TP62.86x47.413x0.438	3	-44.639	5613.010	31.3	Pass
L4	44.79 - 0	Pole	TP75x59.537x0.5	4	-74.281	7706.060	34.2	Pass
				İ			Summary	
***************************************						Pole (L4)	34.2	Pass
			The state of the s	İ		Rating =	34.2	Pass

Table 6 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	32.5	Pass
1	Base Plate	0	43.0	Pass
1	Base Foundation (Structure)	0	39.5	Pass
1	Base Foundation (Soil Interaction)	0	30.4	Pass

Г		
	Structure Rating (max from all components) =	43.0%
- 1		

Notes:

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

APPENDIX A TNXTOWER OUTPUT

18 0.313 5.170 33.030 137 4 ft A572-65 47.413 62.950 13.7 53.210 0.0 R Section Length (1) Number of Sides Thackness (m) Socket Length (1) Top Das (m) Bot Dre (m) TORQUE 2 kip-ft REACTIONS - 101 mph WIND

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
OS9A09F36O-N	152	RRH2x60-700	124
430-94C-09168-M-110/48	152	RRH4X45-AWS4 B66	124
Pipe Mount [PM 601-1]	152	RRH4X45-AWS4 B66	124
ETCR-654L12H6 w/ Mount Pipe	150	RRH4X45-AWS4 B66	124
ETCR-654L12H5 w/ Mount Pipe	150	RRH2X60-PCS	124
ETCR-654L12H6 w/ Mount Pipe	150	RRH2X60-PCS	124
(2) RRH2X50-800	150	RRH2X60-PCS	124
(2) RRH2X50-800	150	6' x 2' Mount Pipe	124
(2) RRH2X50-800	150	6' x 2' Mount Pipe	124
TD-RRH8x20-25	150	6' x 2" Mount Pipe	124
TD-RRH8x20-25	150	Platform Mount (LP 304-1)	124
TD-RRH8x20-25	150	7770.00 w/ Mount Pipe	116
	150	7770 00 w/ Mount Pipe	115
PCS 1900MHz 4x45W-65MHz			116
PCS 1900MHz 4x45W-65MHz	150	7770.00 w/ Mount Pipe	
PCS 1900MHz 4x45W-65MHz	150	80010965 w/ Mount Pipe	116
8' x 2' Pipe Mount	150	80010965 w/ Mount Pipe	DUDE HAR FEDERAL
8" x 2" Pipe Mount	150	80010966 w/ Mount Pipe	116
8' x 2' Pipe Mount	160	HPA-65R-BUU-H6 w/ Mount Pipe	116
Miscellaneous (NA 507-1)	150	HPA-65R-BUU-H6 w/ Mount Pipe	116
Miscellaneous (NA 509-3)	150	HPA-65R-BUU-H8 w/ Mount Pipe	116
Platform Mount (LP 601-1)	150	(2) LGP21401	116
RR90-17-02DP w/ Mount Pipe	133	(2) LGP21401	116
RR90-17-020P w/ Mount Pipe	133	(2) LGP21401	116
RR90-17-020P w/ Mount Pipe	133	RRUS-11	116
LNX-6515DS-VTM w/ Mount Pipe	133	RRUS-11	116
LNX-6515DS-VTM w/ Mount Pipe	133	RRUS-11	116
LNX-6515DS-VTM w/ Mount Pipe	133	DC6-48-60-18-8F	116
KRY 112 71/2	133	(2) 7020.00	116
KRY 112 71/2	133	(2) 7020.00	116
KRY 112 71/2	133	(2) 7020.00	116
KRY 112 71/2	133	RRUS 4478 B14	116
KRY 112 71/2	133	RRUS 4478 B14	116
KRY 112 71/2	133	RRUS 4478 B14	116
ATBT-9OTTOM-24V	133	RRUS 32	116
ATBT-BOTTOM-24V	133	RRUS 32	116
ATBT-BOTTOM-24V	133	RRUS 32	116
6' x 2' Mount Pipe	133	RRUS 32 B2	116
6' x 2' Mount Pipe	133	RRUS 32 B2	116
6 x 2 Mount Pipe	133	RRUS 32 B2	116
	133	DC6-48-60-18-8F	116
Platform Mount (LP 304-1)			116
LPA-171080-12CF-EOIN-2 w/ Mount Pipe	124	Side Arm Mount (SO 701-3) Platform Mount (LP 1201-1)	116
LPA-171080-12CF-EDIN-2 w/ Mount Pipe	124		116
LPA-171080-12CF-EDIN-2 w/ Mount Pipe	124	4' x 2' Pipe Mount	
(2) LPA-80080/6CF w/ Mount Pipe	124	4' x 2' Pipe Mount	116
(2) LPA-80080/6CF w/ Mount Pipe	124	4' x 2' Pipe Mount	116
(2) LPA-80080/6CF w/ Mount Pipe	124	742 213	107
(2) SBNHH-1D65B w/ Mount Pipe	124	742 213	107
(2) SBNHH-1D65B w/ Mount Pipe	124	742 213	107
(2) SBNHH-1D65B w/ Mount Pipe	124	Pipe Mount [PM 601-3]	107
(2) DB-T1-6Z-8AB-0Z	124	KS24019-L112A	74
RRH2x60-700	124	Side Arm Mount [SO 701-1]	74
RRH2x60-700	124		

TOWER DESIGN NOTES

MATERIAL STRENGTH

- TOWER DESIGN NOTES

 1. Tower is located in Tolland County, Connecture.

 2. Tower designed for Exposure B to the TIA-222-G Standard.

 3. Tower designed for a 101 mph basic wind in accordance with the TIA-222-G Standard.

 4. Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.

 5. Deflections are based upon a 60 mph wind.

 6. Tower Structure Class II.

 7. Topographic Category 1 with Crest Height of 0.000 ft.

 8. TOWER RATING: 34.2%

GRADE A572-65

ALL REACTIONS
ARE FACTORED
AXIAL
133 K
4
SHEAR MOMENT
10 K 1129 kip-ft
-
TORQUE 1 kip-ft
50 mph WIND - 1,000 in ICE
AXIAI.
74 K
SHEAR MOMENT
37 K / 3930 kip-ft
<u>-</u>
TOROUF 2 kin/ft

Tower Input Data

There is a pole section.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

- 4) Tower is located in Tolland County, Connecticut.
- 5) Basic wind speed of 101 mph.
- 6) Structure Class II.
- Exposure Category B.
- 8) Topographic Category 1.
- 9) Crest Height 0.000 ft.
- 10) Nominal ice thickness of 1.000 in.
- 11) Ice thickness is considered to increase with height.
- 12) Ice density of 56.000 pcf.
- 13) A wind speed of 50 mph is used in combination with ice.
- 14) Temperature drop of 50.000 °F.
- Deflections calculated using a wind speed of 60 mph.
- 16) A non-linear (P-delta) analysis was used.
- 17) Pressures are calculated at each section.
- 18) Stress ratio used in pole design is 1.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

√ Use Code Stress Ratios

√ Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- V Use Azimuth Dish Coefficients

 → Brainet Wind Area of Amount
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination

√ Sort Capacity Reports By Component
Triangulate Diamond Inner Bracing
Treat Feed Line Bundles As Cylinder

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

√ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption

Poles
Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets

Tapered Pole Section Geometry

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	152.000-	14.580	5.170	18	33.030	37.310	0.313	1.250	A572-65
	137.420	14.000	5.170	10	33.030	37.310	0.515	1.250	(65 ksi)
L2	137.420- 91.090	51.500	6.830	18	35.167	50.150	0.375	1.500	À572-65 (65 ksi)
L3	91.090-44.790	53.130	8.420	18	47.413	62.860	0.438	1.750	À572-65
									(65 ksi)
L4	44.790-0.000	53.210		18	59.537	75.000	0.500	2.000	A572-65 (65 ksi)

Section	Tip Dia.	Area	1	r	С	I/C	J	It/Q	W	w/t
	in .	in²	in⁴	in	in	in³	in⁴	in²	in	
L1	33.540	32.452	4388.688	11.615	16.779	261.555	8783.151	16.229	5.263	16.842
	37.886	36.697	6346.168	13.134	18.953	334.829	12700.685	18.352	6.017	19.253
L2	37.237	41.412	6333.245	12.351	17.865	354.506	12674.822	20.710	5.529	14.745
	50.924	59,245	18544.257	17.670	25.476	727.905	37112.916	29.628	8.166	21.777
L3	50.161	65.231	18185.953	16.676	24.086	755.049	36395.835	32.622	7.575	17.314
	63.830	86.681	42672.286	22,160	31.933	1336.312	85400.720	43.349	10.293	23.528
L4	62.940	93.692	41255.943	20.958	30.245	1364.068	82566,172	46.855	9.599	19.197
- 1	76.157	118.232	82905.472	26,448	38,100	2175.997	165920.03	59.127	12.320	24.64
							3			

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Factor Aı	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft ²	in				in	in	in
L1 152.000-			1	1	1			
137.420								
L2 137.420-			1	1	1			
91.090								
L3 91.090-			1	1	1			
44.790								
L4 44.790-			1	1	1			
0.000								

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Secto r	Component Type	Placement	Total Number	Number Per Row	Start/En d	Width or Diamete	Perimete r	Weight
		,	ft			Position	r in	in	klf
*** 152 ***				·····					
FLC 12-50J(1/2)	Α	Surface Ar (CaAa)	152.000 - 0.000	1	1	-0.080 -0.075	0.640		0.000
FLC 158-50J(1-5/8)	Α	Surface Ar (CaAa)	152.000 - 0.000	2	2	-0.100 -0.040	2.015		0.001
*** 124 ***		, ,							
HB158-1-08U8-S8J18(1-5/8)	Α	Surface Ar (CaAa)	124.000 - 0.000	2	2	-0.210 -0.190	1.980		0.001

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Component Type	Placement	Total Number		C _A A _A	Weight
	Leg	Cinola	,,,,,	ft	1101111001		ft²/ft	klf
*** 150 ***								
HB114-1-0813U4-	Α	No	Inside Pole	150.000 - 0.000	4	No Ice	0.000	0.001
M5J(1-1/4)						1/2" Ice	0.000	0.001
` ,						1" lce	0.000	0.001
*** 133 ***								
AVA7-50(1-5/8)	С	No	Inside Pole	133.000 - 0.000	6	No Ice	0.000	0.001
, 55(1 51-)	_					1/2" Ice	0.000	0.001
						1" Ice	0.000	0.001
LDF7-50A(1-5/8)	С	No	Inside Pole	133.000 - 0.000	6	No Ice	0.000	0.001
221 7 007 ((1 070)	-				-	1/2" Ice	0.000	0.001
						1" Ice	0.000	0.001
LDF7-50A(1-5/8)	Α	No	Inside Pole	124.000 - 0.000	18	No Ice	0.000	0.001

Description	Face or	Allow Shield	Component Type	Placement	Total Number		CAAA	Weight
	Leg		. 77-	ft	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ft²/ft	klf
						1/2" lce	0.000	0.001
						1" Ice	0.000	0.001
*** 116 ***								
HCC 78-50J(1-1/4")	Α	No	Inside Pole	116.000 - 0.000	12	No Ice	0.000	0.001
						1/2" lce	0.000	0.001
						1" Ice	0.000	0.001
FB-L98B-002-	Α	No	Inside Pole	116.000 - 0.000	2	No Ice	0.000	0.000
75000(3/8)						1/2" Ice	0.000	0.000
						1" Ice	0.000	0.000
NR-VG86ST-BRD(3/4)	Α	No	Inside Pole	116.000 - 0.000	4	No Ice	0.000	0.001
						1/2" Ice	0.000	0.001
						1" Ice	0.000	0.001
2" Rigid Conduit	Α	No	Inside Pole	116.000 - 0.000	2	No Ice	0.000	0.003
						1/2" Ice	0.000	0.003
						1" Ice	0.000	0.003
*** 107 ***								
AVA7-50(1-5/8)	В	No	Inside Pole	107.000 - 0.000	6	No Ice	0.000	0.001
						1/2" Ice	0.000	0.001
						1" Ice	0.000	0.001
*** 74 ***								
LDF4-50A(1/2)	Α	No	Inside Pole	74.000 - 0.000	1	No Ice	0.000	0.000
						1/2" Ice	0.000	0.000
						1" Ice	0.000	0.000

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	Ar	C_AA_A	CaAa	Weight
Sectio	Elevation				In Face	Out Face	
n	ft		ft²	ft ²	ft²	ft²	κ
L1	152.000-137.420	Α	0.000	0.000	6.809	0.000	0.090
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	0.000	0.000
L2	137.420-91.090	Α	0.000	0.000	34.668	0.000	1.246
		В	0.000	0.000	0.000	0.000	0.067
		С	0.000	0.000	0.000	0.000	0.382
L3	91.090-44.790	Α	0.000	0.000	39.957	0.000	1.791
		В	0.000	0.000	0.000	0.000	0.194
		С	0.000	0.000	0.000	0.000	0.422
L4	44.790-0.000	Α	0.000	0.000	38.654	0.000	1.735
		В	0.000	0.000	0.000	0.000	0.188
		С	0.000	0.000	0.000	0.000	0.408

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Sectio	Tower Elevation	Face or	lce Thickness	A R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft	Leg	in	ft ²	ft²	ft²	ft²	K
L1	152.000-137.420	Α	2.318	0.000	0.000	23.489	0.000	0.449
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	0.000	0.000
L2	137.420-91.090	Α	2.263	0.000	0.000	110.003	0.000	2.916
		В		0.000	0.000	0.000	0.000	0.067
		С		0.000	0.000	0.000	0.000	0.382
L3	91.090-44.790	Α	2.149	0.000	0.000	122.541	0.000	3.609
		В		0.000	0.000	0.000	0.000	0.194
		С		0.000	0.000	0.000	0.000	0.422
L4	44.790-0.000	Α	1.919	0.000	0.000	114.967	0.000	3.367
		В		0.000	0.000	0.000	0.000	0.188
		С		0.000	0.000	0.000	0.000	0.408

Feed Line Center	r of Pressure
------------------	---------------

Section	Elevation	CP _X	CPz	CP _X Ice	CPz Ice
	ft	in	in	in	in
L1	152.000-137.420	-0.584	-0.230	-1.187	-0.463
L2	137.420-91.090	-0.930	-0.258	-1.646	-0.479
L3	91.090-44.790	-1.071	-0.274	-1.948	-0.528
L4	44.790-0.000	-1.095	-0.280	-2.095	-0.567

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment	No Ice	ice
			Elev.		
L1	2	FLC 12-50J(1/2)	137.42 -	1.0000	1.0000
			152.00		
L1	3	FLC 158-50J(1-5/8)	137.42 -	1.0000	1.0000
1			152.00		
L1	10	HB158-1-08U8-S8J18(1-	137.42 -	1.0000	1.0000
	_	5/8)	124.00		
L2	2	FLC 12-50J(1/2)	91.09 -	1.0000	1.0000
			137.42		4 0000
L2	3	FLC 158-50J(1-5/8)	91.09 -	1.0000	1.0000
	40	LID450 4 00LI0 00 I40/4	137.42	4 0000	4 0000
L2	10	HB158-1-08U8-S8J18(1-	91.09 -	1.0000	1.0000
L3	2	5/8)	124.00	1.0000	1.0000
Lo		FLC 12-50J(1/2)	44.79 - 91.09	1.0000	1.0000
L3	3	FLC 158-50J(1-5/8)	91.09 44.79 -	1.0000	1.0000
Lo	ا	FEC 196-903(1-9/6)	91.09	1.0000	1.0000
L3	10	HB158-1-08U8-S8J18(1-	44.79 -	1.0000	1.0000
	"	5/8)	91.09	1.0000	1.0000
L		3/0)	31.03		

		To			

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	0.047 0.088 0.142 0.020 0.030 0.042
			ft ft ft	o	ft		ft²	ft²	K

*** 152 ***									
DS9A09F36D-N	Α	From Leg	1.000	0.000	152.000	No ice	5.760	5.760	
			0.000			1/2"	7.713	7.713	
			10.000			Ice 1" Ice	9.683	9.683	0.142
430-94C-09168-M-110/48	Α	From Leg	1.000	0.000	152.000	No Ice	1.031	1.031	0.020
		ū	0.000			1/2"	1.174	1.174	0.030
			0.000			lce 1" lce	1.323	1.323	0.042
Pipe Mount [PM 601-1]	Α	From Leg	0.500	0.000	152.000	No Ice	3.000	0.900	0.065
i the module [E-M-001-1]		- 3	0.000			1/2"	3.740	1.120	0.079
			0.000			Ice 1" Ice	4.480	1.340	0.093

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
	_09		Vert	•					
			ft ft	•	ft		ft²	ft²	K
			ft						
ETCR-654L12H6 w/ Mount	Α	From Leg	4.000	0.000	150.000	No Ice	13.271	6.537	0.105
Pipe			0.000 2.000			1/2"	13.877	7.714	0.195
			2.000			Ice 1" Ice	14.448	8.605	0.293
ETCR-654L12H6 w/ Mount	В	From Leg	4.000	0.000	150.000	No Ice	13.271	6.537	0.105
Pipe			0.000			1/2"	13.877	7.714	0.195
			2.000			lce	14.448	8.605	0.293
ETCR-654L12H6 w/ Mount	С	From Leg	4.000	0.000	150.000	1" Ice No Ice	13.271	6.537	0.105
Pipe	•	om Log	0.000	0.000	100.000	1/2"	13.877	7.714	0.105
·			2.000			Ice	14.448	8.605	0.293
(2) DDI 12V50 800	•	5	4.000	0.000	4=0.000	1" Ice			
(2) RRH2X50-800	Α	From Leg	4.000 0.000	0.000	150.000	No Ice 1/2"	1.701 1.864	1.282 1.428	0.053 0.070
			2.000			Ice	2.035	1.420	0.070
						1" Ice	2.000	1.000	0.000
(2) RRH2X50-800	В	From Leg	4.000	0.000	150.000	No Ice	1.701	1.282	0.053
			0.000			1/2"	1.864	1.428	0.070
			2.000			lce 1" lce	2.035	1.580	0.090
(2) RRH2X50-800	С	From Leg	4.000	0.000	150.000	No Ice	1.701	1.282	0.053
• •			0.000			1/2"	1.864	1.428	0.070
			2.000			Ice	2.035	1.580	0.090
TD-RRH8x20-25	Α	Erom Log	4.000	0.000	450,000	1" Ice	4.045	4 505	0.070
1D-RRH0X20-25	А	From Leg	4.000 0.000	0.000	150.000	No Ice 1/2"	4.045 4.298	1.535 1.714	0.070 0.097
			2.000			lce	4.557	1.714	0.097
						1" Ice			323
TD-RRH8x20-25	В	From Leg	4.000	0.000	150.000	No Ice	4.045	1.535	0.070
			0.000			1/2"	4.298	1.714	0.097
			2.000			Ice 1" Ice	4.557	1.901	0.128
TD-RRH8x20-25	С	From Leg	4.000	0.000	150.000	No Ice	4.045	1.535	0.070
			0.000			1/2"	4.298	1.714	0.097
			2.000			lce	4.557	1.901	0.128
PCS 1900MHz 4x45W-	Α	From Leg	4.000	0.000	150.000	1" Ice No Ice	2.322	2.238	0.060
65MHz			0.000	0.000	100.000	1/2"	2.527	2.441	0.083
			2.000			Ice	2.739	2.651	0.110
PCS 1900MHz 4x45W-	В	From Los	4.000	0.000	450,000	1" Ice	0.000	0.000	2 222
65MHz	ь	From Leg	4.000 0.000	0.000	150.000	No Ice 1/2"	2.322 2.527	2.238 2.441	0.060 0.083
332			2.000			Ice	2.739	2.651	0.003
	_					1" Ice			
PCS 1900MHz 4x45W- 65MHz	С	From Leg	4.000	0.000	150.000	No Ice	2.322	2.238	0.060
ZUINICO			0.000 2.000			1/2" Ice	2.527 2.739	2.441 2.651	0.083
			2.000			1" Ice	2.139	2.031	0.110
8' x 2" Pipe Mount	Α	From Leg	4.000	0.000	150.000	No Ice	1.900	1.900	0.029
			0.000			1/2"	2.728	2.728	0.044
			0.000			Ice	3.401	3.401	0.063
8' x 2" Pipe Mount	В	From Leg	4.000	0.000	150.000	1" Ice No Ice	1.900	1.900	0.029
p	-	09	0.000	000	. 55.550	1/2"	2.728	2.728	0.029
			0.000			lce	3.401	3.401	0.063
8' x 2" Pipe Mount	C	Erom I on	4.000	0.000	450.000	1" Ice	4.000	4.000	0.000
o x 2 Pipe Wount	С	From Leg	4.000 0.000	0.000	150.000	No Ice 1/2"	1.900 2.728	1.900 2.728	0.029 0.044
			0.000			lce	2.728 3.401	2.728 3.401	0.044
						1" Ice	2.101	5. 10 1	5.000
Miscellaneous [NA 507-1]	С	None		0.000	150.000	No Ice	4.800	4.800	0.245
						1/2"	6.700	6.700	0.294
						lce 1" lce	8.600	8.600	0.343
Miscellaneous [NA 509-3]	С	None		0.000	150.000	No Ice	11.840	11.840	0.275
-									- : •

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	•	ft		ft²	ft²	κ
***************************************						1/2"	16.960	16.960	0.296
						Ice	22.080	22.080	0.317
Platform Mount [LP 601-1]	С	None		0.000	150.000	1" Ice No Ice	28.470	28.470	1.122
r lationn would [El OO1-1]	C	None		0.000	130.000	1/2"	33.590	33.590	1.514
						Ice 1" Ice	38.710	38.710	1.905
*** 133***									
RR90-17-02DP w/ Mount	Α	From Leg	4.000	0.000	133.000	No Ice	4.593	3.319	0.034
Pipe			0.000 3.000			1/2" Ice	5.018 5.436	4.089 4.784	0.072 0.115
			3.000			1" Ice	5.430	4.704	0.115
RR90-17-02DP w/ Mount	В	From Leg	4.000	0.000	133.000	No Ice	4.593	3.319	0.034
Pipe			0.000			1/2"	5.018	4.089	0.072
			3.000			Ice 1" Ice	5.436	4.784	0.115
RR90-17-02DP w/ Mount	С	From Leg	4.000	0.000	133.000	No Ice	4.593	3.319	0.034
Pipe			0.000			1/2"	5.018	4.089	0.072
			3.000			lce	5.436	4.784	0.115
LNX-6515DS-VTM w/	Α	From Leg	4.000	0.000	133.000	1" Ice No Ice	11.683	9.842	0.083
Mount Pipe		1 Tolli Leg	0.000	0.000	133.000	1/2"	12.404	11.366	0.173
			3.000			Ice 1" Ice	13.135	12.914	0.273
LNX-6515DS-VTM w/	В	From Leg	4.000	0.000	133.000	No Ice	11.683	9.842	0.083
Mount Pipe		J	0.000			1/2"	12.404	11.366	0.173
			3.000			lce 1" lce	13.135	12.914	0.273
LNX-6515DS-VTM w/	С	From Leg	4.000	0.000	133,000	No Ice	11.683	9.842	0.083
Mount Pipe			0.000			1/2"	12.404	11.366	0.173
			3.000			Ice 1" Ice	13.135	12.914	0.273
KRY 112 71/2	Α	From Leg	4.000	0.000	133.000	No Ice	0.583	0.398	0.013
1441 1127 112	, ,		0.000	0.000	100.000	1/2"	0.688	0.488	0.018
			0.000			lce 1" lce	0.799	0.586	0.025
KRY 112 71/2	В	From Leg	4.000	0.000	133.000	No Ice	0.583	0.398	0.013
			0.000			1/2"	0.688	0.488	0.018
			0.000			Ice 1" Ice	0.799	0.586	0.025
KRY 112 71/2	С	From Leg	4.000	0.000	133.000	No Ice	0.583	0.398	0.013
1000 1127 172	Ü	i ioni Leg	0.000	0.000	100.000	1/2"	0.688	0.488	0.018
			0.000			Ice	0.799	0.586	0.025
1/0// 440 74/0	•	F1	4.000	0.000	400.000	1" Ice	0.500	0.000	0.040
KRY 112 71/2	Α	From Leg	4.000 0.000	0.000	133.000	No Ice 1/2"	0.583 0.688	0.398 0.488	0.013 0.018
			3.000			lce	0.799	0.586	0.025
						1" Ice			
KRY 112 71/2	В	From Leg	4.000	0.000	133.000	No Ice	0.583	0.398	0.013
			0.000			1/2"	0.688 0.799	0.488 0.586	0.018 0.025
			3.000			lce 1" Ice	0.799	0.560	0.025
KRY 112 71/2	С	From Leg	4.000	0.000	133.000	No Ice	0.583	0.398	0.013
			0.000			1/2"	0.688	0.488	0.018
			3.000			lce 1" lce	0.799	0.586	0.025
ATBT-BOTTOM-24V	Α	From Leg	4.000	0.000	133.000	No Ice	0.104	0.065	0.003
			0.000			1/2"	0.148	0.102	0.004
			3.000			Ice 1" Ice	0.199	0.147	0.006
ATBT-BOTTOM-24V	В	From Leg	4.000	0.000	133.000	No Ice	0.104	0.065	0.003
		-	0.000			1/2"	0.148	0.102	0.004
			3.000			lce	0.199	0.147	0.006
ATBT-BOTTOM-24V	С	From Leg	4.000	0.000	133.000	1" Ice No Ice	0.104	0.065	0.003
	_			2.000			.		

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft	o	ft		ft²	ft²	κ
			ft						
			0.000 3.000			1/2" Ice 1" Ice	0.148 0.199	0.102 0.147	0.004 0.006
6' x 2" Mount Pipe	Α	From Leg	4.000 0.000 2.000	0.000	133.000	No Ice 1/2" Ice 1" Ice	1.425 1.925 2.294	1.425 1.925 2.294	0.022 0.033 0.048
6' x 2" Mount Pipe	В	From Leg	4.000 0.000 2.000	0.000	133.000	No Ice 1/2" Ice 1" Ice	1.425 1.925 2.294	1.425 1.925 2.294	0.022 0.033 0.048
6' x 2" Mount Pipe	С	From Leg	4.000 0.000 2.000	0.000	133.000	No Ice 1/2" Ice 1" Ice	1.425 1.925 2.294	1.425 1.925 2.294	0.022 0.033 0.048
Platform Mount [LP 304-1]	С	None		0.000	133.000	No Ice 1/2" Ice 1" Ice	17.460 22.440 27.420	17.460 22.440 27.420	1.349 1.625 1.900
*** 124*** LPA-171080-12CF-EDIN-2 w/ Mount Pipe	Α	From Leg	4.000 0.000 2.000	0.000	124.000	No Ice 1/2" Ice 1" Ice	3.956 4.508 5.029	7.095 8.302 9.242	0.037 0.086 0.143
LPA-171080-12CF-EDIN-2 w/ Mount Pipe	В	From Leg	4.000 0.000 2.000	0.000	124.000	No Ice 1/2" Ice	3.956 4.508 5.029	7.095 8.302 9.242	0.037 0.086 0.143
LPA-171080-12CF-EDIN-2 w/ Mount Pipe	С	From Leg	4.000 0.000 2.000	0.000	124.000	1" Ice No Ice 1/2" Ice	3.956 4.508 5.029	7.095 8.302 9.242	0.037 0.086 0.143
(2) LPA-80080/6CF w/ Mount Pipe	Α	From Leg	4.000 0.000 2.000	0.000	124.000	1" Ice No Ice 1/2" Ice	4.564 5.105 5.612	10.259 11.427 12.312	0.046 0.113 0.187
(2) LPA-80080/6CF w/ Mount Pipe	В	From Leg	4.000 0.000 2.000	0.000	124.000	1" Ice No Ice 1/2" Ice	4.564 5.105 5.612	10.259 11.427 12.312	0.046 0.113 0.187
(2) LPA-80080/6CF w/ Mount Pipe	С	From Leg	4.000 0.000 2.000	0.000	124.000	1" Ice No Ice 1/2" Ice	4.564 5.105 5.612	10.259 11.427 12.312	0.046 0.113 0.187
(2) SBNHH-1D65B w/ Mount Pipe	Α	From Leg	4.000 0.000 2.000	0.000	124.000	1" Ice No Ice 1/2" Ice	8.386 8.950 9.480	7.084 8.275 9.188	0.076 0.146 0.223
(2) SBNHH-1D65B w/ Mount Pipe	В	From Leg	4.000 0.000 2.000	0.000	124.000	1" Ice No Ice 1/2" Ice	8.386 8.950 9.480	7.084 8.275 9.188	0.076 0.146 0.223
(2) SBNHH-1D65B w/ Mount Pipe	С	From Leg	4.000 0.000 2.000	0.000	124.000	1" Ice No Ice 1/2" Ice	8.386 8.950 9.480	7.084 8.275 9.188	0.076 0.146 0.223
(2) DB-T1-6Z-8AB-0Z	Α	From Leg	4.000 0.000 2.000	0.000	124.000	1" Ice No Ice 1/2" Ice 1" Ice	4.800 5.070 5.348	2.000 2.193 2.393	0.044 0.080 0.120
RRH2x60-700	Α	From Leg	4.000 0.000 2.000	0.000	124.000	No Ice 1/2" Ice	3.500 3.761 4.029	1.816 2.052 2.289	0.060 0.083 0.109
RRH2x60-700	В	From Leg	4.000	0.000	124.000	1" Ice No Ice	3.500	1.816	0.060

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	0	ft		ft²	ft²	К
			0.000 2.000			1/2" lce 1" lce	3.761 4.029	2.052 2.289	0.083 0.109
RRH2x60-700	С	From Leg	4.000 0.000 2.000	0.000	124.000	No Ice 1/2" Ice 1" Ice	3.500 3.761 4.029	1.816 2.052 2.289	0.060 0.083 0.109
RRH4X45-AWS4 B66	Α	From Leg	4.000 0.000 2.000	0.000	124.000	No Ice 1/2" Ice	2.660 2.878 3.104	1.586 1.769 1.959	0.064 0.084 0.108
RRH4X45-AWS4 B66	В	From Leg	4.000 0.000 2.000	0.000	124.000	1" Ice No Ice 1/2" Ice 1" Ice	2.660 2.878 3.104	1.586 1.769 1.959	0.064 0.084 0.108
RRH4X45-AWS4 B66	С	From Leg	4.000 0.000 2.000	0.000	124.000	No Ice 1/2" Ice 1" Ice	2.660 2.878 3.104	1.586 1.769 1.959	0.064 0.084 0.108
RRH2X60-PCS	Α	From Leg	4.000 0.000 2.000	0.000	124.000	No Ice 1/2" Ice 1" Ice	2.200 2.393 2.593	1.723 1.901 2.087	0.055 0.075 0.099
RRH2X60-PCS	В	From Leg	4.000 0.000 2.000	0.000	124.000	No Ice 1/2" Ice 1" Ice	2.200 2.393 2.593	1.723 1.901 2.087	0.055 0.075 0.099
RRH2X60-PCS	С	From Leg	4.000 0.000 2.000	0.000	124.000	No Ice 1/2" Ice 1" Ice	2.200 2.393 2.593	1.723 1.901 2.087	0.055 0.075 0.099
6' x 2" Mount Pipe	Α	From Leg	4.000 0.000 2.000	0.000	124.000	No Ice 1/2" Ice 1" Ice	1.425 1.925 2.294	1.425 1.925 2.294	0.022 0.033 0.048
6' x 2" Mount Pipe	В	From Leg	4.000 0.000 2.000	0.000	124.000	No Ice 1/2" Ice 1" Ice	1.425 1.925 2.294	1.425 1.925 2.294	0.022 0.033 0.048
6' x 2" Mount Pipe	С	From Leg	4.000 0.000 2.000	0.000	124.000	No Ice 1/2" Ice 1" Ice	1.425 1.925 2.294	1.425 1.925 2.294	0.022 0.033 0.048
Platform Mount [LP 304-1] *** 116***	С	None		0.000	124.000	No Ice 1/2" Ice 1" Ice	17.460 22.440 27.420	17.460 22.440 27.420	1.349 1.625 1.900
7770.00 w/ Mount Pipe	Α	From Leg	4.000 0.000 4.000	0.000	116.000	No Ice 1/2" Ice 1" Ice	5.746 6.179 6.607	4.254 5.014 5.711	0.055 0.103 0.157
7770.00 w/ Mount Pipe	В	From Leg	4.000 0.000 4.000	0.000	116.000	No Ice 1/2" Ice 1" Ice	5.746 6.179 6.607	4.254 5.014 5.711	0.055 0.103 0.157
7770.00 w/ Mount Pipe	С	From Leg	4.000 0.000 4.000	0.000	116.000	No Ice 1/2" Ice 1" Ice	5.746 6.179 6.607	4.254 5.014 5.711	0.055 0.103 0.157
(2) LGP21401	Α	From Leg	4.000 0.000 0.000	0.000	116.000	No Ice 1/2" Ice 1" Ice	1.104 1.239 1.381	0.207 0.274 0.348	0.014 0.021 0.030
(2) LGP21401	В	From Leg	4.000	0.000	116.000	No Ice	1.104	0.207	0.014

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	o	ft		ft²	ft²	К
			0.000 0.000		377 (IIIIMMS)(IIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1/2" Ice 1" Ice	1.239 1.381	0.274 0.348	0.021 0.030
(2) LGP21401	С	From Leg	4.000 0.000 4.000	0.000	116.000	No Ice 1/2" Ice	1.104 1.239 1.381	0.207 0.274 0.348	0.014 0.021 0.030
RRUS-11	Α	From Leg	4.000 0.000 4.000	0.000	116.000	1" Ice No Ice 1/2" Ice	2.784 2.992 3.207	1.187 1.334 1.490	0.048 0.068 0.092
RRUS-11	В	From Leg	4.000 0.000 4.000	0.000	116.000	1" Ice No Ice 1/2" Ice	2.784 2.992 3.207	1.187 1.334 1.490	0.048 0.068 0.092
RRUS-11	С	From Leg	4.000 0.000 4.000	0.000	116.000	1" Ice No Ice 1/2" Ice	2.784 2.992 3.207	1.187 1.334 1.490	0.048 0.068 0.092
DC6-48-60-18-8F	Α	From Leg	2.000 0.000 4.000	0.000	116.000	1" Ice No Ice 1/2" Ice	0.791 1.274 1.450	0.791 1.274 1.450	0.020 0.035 0.053
80010965 w/ Mount Pipe	Α	From Leg	4.000 0.000 4.000	0.000	116.000	1" Ice No Ice 1/2" Ice	14.051 14.688 15.303	7.628 8.903 9.963	0.125 0.222 0.327
80010965 w/ Mount Pipe	В	From Leg	4.000 0.000 4.000	0.000	116.000	1" Ice No Ice 1/2" Ice	14.051 14.688 15.303	7.628 8.903 9.963	0.125 0.222 0.327
80010966 w/ Mount Pipe	С	From Leg	4.000 0.000 4.000	0.000	116.000	1" Ice No Ice 1/2" Ice	17.600 18.331 19.071	9.637 11.155 12.696	0.147 0.263 0.390
HPA-65R-BUU-H6 w/ Mount Pipe	Α	From Leg	4.000 0.000 4.000	0.000	116.000	1" Ice No Ice 1/2" Ice	9.895 10.470 11.010	8.113 9.304 10.209	0.077 0.158 0.248
HPA-65R-BUU-H6 w/ Mount Pipe	В	From Leg	4.000 0.000 4.000	0.000	116.000	1" Ice No Ice 1/2" Ice	9.895 10.470 11.010	8.113 9.304 10.209	0.077 0.158 0.248
HPA-65R-BUU-H8 w/ Mount Pipe	С	From Leg	4.000 0.000 4.000	0.000	116.000	1" Ice No Ice 1/2" Ice	13.213 13.899 14.587	9.582 11.052 12.496	0.100 0.196 0.303
(2) 7020.00	Α	From Leg	4.000 0.000 4.000	0.000	116.000	1" Ice No Ice 1/2" Ice	0.102 0.147 0.199	0.175 0.239 0.311	0.002 0.005 0.009
(2) 7020.00	В	From Leg	4.000 0.000 4.000	0.000	116.000	1" Ice No Ice 1/2" Ice	0.102 0.147 0.199	0.175 0.239 0.311	0.002 0.005 0.009
(2) 7020.00	С	From Leg	4.000 0.000 4.000	0.000	116.000	1" Ice No Ice 1/2" Ice	0.102 0.147 0.199	0.175 0.239 0.311	0.002 0.005 0.009
RRUS 4478 B14	Α	From Leg	4.000 0.000 4.000	0.000	116.000	1" Ice No Ice 1/2" Ice	1.8 4 3 2.012 2.190	1.059 1.197 1.342	0.060 0.076 0.094
RRUS 4478 B14	В	From Leg	4.000 0.000	0.000	116.000	1" Ice No Ice 1/2"	1.843 2.012	1.059 1.197	0.060 0.076

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft	o	ft		ft²	ft²	К
			ft 4.000			lce	2.190	1.342	0.094
						1" Ice			
RRUS 4478 B14	С	From Leg	4.000	0.000	116.000	No Ice	1.843	1.059	0.060
			0.000 4.000			1/2" Ice 1" Ice	2.012 2.190	1.197 1.342	0.076 0.094
RRUS 32	Α	From Leg	4.000	0.000	116.000	No Ice	2.857	1.777	0.055
			0.000 4.000			1/2" Ice 1" Ice	3.083 3.316	1.968 2.166	0.077 0.103
RRUS 32	В	From Leg	4.000	0.000	116.000	No Ice	2.857	1.777	0.055
		Ü	0.000			1/2"	3.083	1.968	0.077
DDUG 00	0	F I	4.000	0.000	440.000	lce 1" lce	3.316	2.166	0.103
RRUS 32	С	From Leg	4.000 0.000	0.000	116.000	No Ice 1/2"	2.857 3.083	1.777 1.968	0.055 0.077
			4.000			Ice 1" Ice	3.316	2.166	0.103
RRUS 32 B2	Α	From Leg	4.000	0.000	116.000	No Ice	2.731	1.668	0.053
			0.000			1/2"	2.953	1.855	0.074
RRUS 32 B2	В	From Leg	4.000 4.000	0.000	116.000	Ice 1" Ice No Ice	3.182 2.731	2.0 4 9 1.668	0.098 0.053
KK03 32 B2	ь	From Leg	0.000	0.000	110.000	1/2"	2.953	1.855	0.033
			4.000			Ice 1" Ice	3.182	2.049	0.098
RRUS 32 B2	С	From Leg	4.000	0.000	116.000	No Ice	2.731	1.668	0.053
			0.000 4.000			1/2" Ice 1" Ice	2.953 3.182	1.855 2.049	0.074 0.098
DC6-48-60-18-8F	Α	From Leg	4.000	0.000	116.000	No Ice	0.791	0.791	0.020
			0.000 4.000			1/2" Ice 1" Ice	1.274 1.450	1.274 1.450	0.035 0.053
4' x 2" Pipe Mount	Α	From Leg	4.000	0.000	116.000	No Ice	0.785	0.785	0.029
1 X = 1 .pooo	, ,		0.000	0.000	110.000	1/2"	1.028	1.028	0.035
	_		0.000			Ice 1" Ice	1.281	1.281	0.044
4' x 2" Pipe Mount	В	From Leg	4.000	0.000	116.000	No Ice 1/2"	0.785 1.028	0.785	0.029 0.035
			0.000 0.000			Ice 1" Ice	1.026	1.028 1.281	0.035
4' x 2" Pipe Mount	С	From Leg	4.000	0.000	116.000	No Ice	0.785	0.785	0.029
·			0.000 0.000			1/2" Ice	1.028 1.281	1.028 1.281	0.035 0.044
Side Arm Mount [SO 701-	С	None		0.000	116.000	1" Ice No Ice	2.830	2.830	0.195
3]	O	None		0.000	110.000	1/2"	3.920	3.920	0.133
-						Ice 1" Ice	5.010	5.010	0.279
Platform Mount [LP 1201-	С	None		0.000	116.000	No Ice	23.100	23.100	2.100
1]						1/2" Ice 1" Ice	26.800 30.500	26.800 30.500	2.500 2.900
*** 107***								_	
742 213	Α	From Leg	1.000	0.000	107.000	No Ice	5.135	2.869	0.022
			0.000 0.000			1/2" Ice 1" Ice	5.609 6.090	3.483 3.946	0.047 0.078
742 213	В	From Leg	1.000	0.000	107.000	No Ice	5.135	2.869	0.022
	_	3	0.000			1/2" Ice	5.609 6.090	3.483 3.946	0.047 0.078
740.040	_	F==1	4.000	0.000	407.000	1" Ice	E 40"	0.000	0.000
742 213	С	From Leg	1.000 0.000	0.000	107.000	No Ice 1/2"	5.135 5.609	2.869 3.483	0.022 0.047

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	•	ft		ft²	ft²	Κ
			0.000			Ice 1" Ice	6.090	3.946	0.078
Pipe Mount [PM 601-3]	С	None		0.000	107.000	No Ice	4.390	4.390	0.195
						1/2"	5.480	5.480	0.237
						Ice 1" Ice	6.570	6.570	0.280
*** 74***									
KS24019-L112A	С	From Leg	3.000	0.000	74.000	No Ice	0.100	0.100	0.005
		_	0.000			1/2"	0.180	0.180	0.006
			1.000			Ice 1" Ice	0.260	0.260	0.008
Side Arm Mount [SO 701-	С	From Leg	1.500	0.000	74.000	No Ice	0.850	1.670	0.065
1]		3	0.000	2.200	550	1/2"	1.140	2.340	0.003
-			0.000			Ice 1" Ice	1.430	3.010	0.093
*****						1 100			

Load Combinations

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice
3	0.9 Dead+1.6 Wind 0 deg - No Ice
4	1.2 Dead+1.6 Wind 30 deg - No Ice
5	0.9 Dead+1.6 Wind 30 deg - No Ice
6	1.2 Dead+1.6 Wind 60 deg - No Ice
7	0.9 Dead+1.6 Wind 60 deg - No Ice
8	1.2 Dead+1.6 Wind 90 deg - No Ice
9	0.9 Dead+1.6 Wind 90 deg - No Ice
10	1.2 Dead+1.6 Wind 120 deg - No Ice
11	0.9 Dead+1.6 Wind 120 deg - No Ice
12	1.2 Dead+1.6 Wind 150 deg - No Ice
13	0.9 Dead+1.6 Wind 150 deg - No Ice
14	1.2 Dead+1.6 Wind 180 deg - No Ice
15 16	0.9 Dead+1.6 Wind 180 deg - No Ice
16 17	1.2 Dead+1.6 Wind 210 deg - No Ice
18	0.9 Dead+1.6 Wind 210 deg - No Ice
19	1.2 Dead+1.6 Wind 240 deg - No Ice
20	0.9 Dead+1.6 Wind 240 deg - No Ice
21	1.2 Dead+1.6 Wind 270 deg - No Ice
22	0.9 Dead+1.6 Wind 270 deg - No Ice
23	1.2 Dead+1.6 Wind 300 deg - No Ice 0.9 Dead+1.6 Wind 300 deg - No Ice
24	1.2 Dead+1.6 Wind 330 deg - No Ice
25	0.9 Dead+1.6 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 lce+1.0 Temp

Comb.	Description
No.	
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Type		Load		Moment	Moment
No.				Comb.	K	kip-ft	kip-ft
L1	152 - 137.42	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-12.120	0.376	1.527
			Max. Mx	20	-4.653	51.564	0.327
			Max. My	2	-4.648	0.033	52.853
			Max. Vy	20	-6.163	51.564	0.327
			Max. Vx	2	-6.266	0.033	52.853
			Max. Torque	20			-0.889
L2	137.42 - 91.09	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-63.958	4.939	5.962
			Max. Mx	20	-26.512	821.116	-0.215
			Max. My	2	-26.500	-0.658	831.603
			Max. Vý	20	-25.756	821.116	-0.215
			Max. Vx	2	-26.009	-0.658	831.603
			Max. Torque	18			-1.740
L3	91.09 - 44.79	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-91.464	10.025	6.965
			Max. Mx	20	-44.646	2091.135	-2.372
			Max. My	2	-44.639	-1.955	2112.397
			Max. Vy	20	-30.981	2091.135	-2.372
			Max. Vx	2	-31.249	-1.955	2112.397
			Max. Torque	18			-1.740
L4	44.79 - 0	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-132.872	16.167	8.599
			Max. Mx	20	-74.281	3895.101	-4.314
			Max. My	2	-74.281	-3.264	3929.900
			Max. Vý	20	-36.721	3895.101	-4.314
			Max. Vx	2	-36.984	-3.264	3929.900
			Max. Torque	18			-1.739

Maximum Reactions

Location	Condition	Gov. Load	Vertical K	Horizontal, X K	Horizontal, Z K
		Comb.			
Pole	Max. Vert	26	132.872	0.000	0.000
	Max. H _x	20	74.291	36.700	-0.040
	Max. H _z	2	74.291	-0.040	36.963
	Max. M _x	2	3929.900	-0.040	36.963
	Max. M _z	8	3890.406	-36.700	0.040
	Max. Torsion	6	1.738	-31.803	18.516
	Min. Vert	11	55.718	-31.764	-18.447
	Min. H _x	8	74.291	-36.700	0.040
	Min, H ₂	14	74.291	0.040	-36.963

Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, 2 K
	Min. M _x	14	-3927.303	0.040	-36.963
	Min. M _z	20	-3895.101	36.700	-0.040
	Min. Torsion	18	-1.739	31.803	-18.516

Tower Mast Reaction Summary

Load Combination	Vertical	Shearx	Shear₂	Overturning	Overturning	Torque
Combination	κ	κ	К	Moment, M _x kip-ft	Moment, Mz kip-ft	kip-ft
Dead Only	61.909	0.000	0.000	-1.052	1.919	0.000
1.2 Dead+1.6 Wind 0 deg - No Ice	74.291	0.040	-36.963	-3929.900	-3.264	-0.870
0.9 Dead+1.6 Wind 0 deg - No Ice	55.718	0.040	-36.963	-3912.313	-3.833	-0.870
1.2 Dead+1.6 Wind 30 deg - No Ice	74.291	18.384	-32.031	-3406.374	-1948.885	-1.506
0.9 Dead+1.6 Wind 30 deg - No Ice	55.718	18.384	-32.031	-3391.085	-1940.916	-1.504
1.2 Dead+1.6 Wind 60 deg - No Ice	74.291	31.803	-18.516	-1970.461	-3371.679	-1.738
0.9 Dead+1.6 Wind 60 deg - No Ice	55.718	31.803	-18.516	-1961.479	-3357.467	-1.734
1.2 Dead+1.6 Wind 90 deg - No Ice	74.291	36.700	-0.040	-6.909	-3890.406	-1.505
0.9 Dead+1.6 Wind 90 deg - No Ice	55.718	36.700	-0.040	-6.551	-3873.919	-1.501
1.2 Dead+1.6 Wind 120 deg - No Ice	74.291	31.764	18.447	1958.149	-3366.069	-0.869
0.9 Dead+1.6 Wind 120 deg - No Ice	55.718	31.764	18.447	1949.875	-3351.884	-0.866
1.2 Dead+1.6 Wind 150 deg - No Ice	74.291	18.316	31.991	3398.169	-1939.166	-0.001
0.9 Dead+1.6 Wind 150 deg - No Ice	55.718	18.316	31.991	3383.570	-1931.243	0.001
1.2 Dead+1.6 Wind 180 deg - No Ice	74.291	-0.040	36.963	3927.303	7.959	0.868
0.9 Dead+1.6 Wind 180 deg - No Ice	55.718	-0.040	36.963	3910.379	7.336	0.867
1.2 Dead+1.6 Wind 210 deg - No Ice	74.291	-18.384	32.031	3403.778	1953.578	1.505
0.9 Dead+1.6 Wind 210 deg - No Ice	55.718	-18.384	32.031	3389.152	1944.418	1.503
1.2 Dead+1.6 Wind 240 deg - No Ice	74.291	-31.803	18.516	1967.866	3376.372	1.739
0.9 Dead+1.6 Wind 240 deg - No Ice	55.718	-31.803	18.516	1959.547	3360.969	1.736
1.2 Dead+1.6 Wind 270 deg - No Ice	74.291	-36.700	0.040	4.314	3895.101	1.507
0.9 Dead+1.6 Wind 270 deg - No Ice	55.718	-36.700	0.040	4.619	3877.422	1.503
1.2 Dead+1.6 Wind 300 deg - No Ice	74.291	-31.764	-18.447	-1960.744	3370.764	0.870
0.9 Dead+1.6 Wind 300 deg - No ice	55.718	-31.764	-18.447	-1951.808	3355.388	0.867
1.2 Dead+1.6 Wind 330 deg - No Ice	74.291	-18.316	-31.991	-3400.765	1943.861	-0.000
0.9 Dead+1.6 Wind 330 deg - No Ice	55.718	-18.316	-31.991	-3385.503	1934.747	-0.002
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0	132.872 132.872	-0.000 -0.002	-0.000 -10.434	-8.599 -1124.382	16.167 16.386	0.000
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 30	132.872	5.179	-9.035	-974.960		-0.272 0.475
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 60	132.872	8.973	-9.035 -5.215	-974.960 -566.649	-536.433 -941.103	-0.475 -0.551
deg+1.0 Ice+1.0 Temp				200.0.0	511.100	3.501

Load Combination	Vertical	Shear _x	Shear₂	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 90	132.872	10.363	0.002	-8.857	-1089.194	-0.480
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	132.872	8.975	5.219	548.956	-941.023	-0.279
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	132.872	5.183	9.037	957.325	-536.295	-0.004
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	132.872	0.002	10.434	1106.827	16.546	0.272
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	132.872	-5.179	9.035	957.405	569.364	0.476
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	132.872	-8.973	5.215	549.094	974.034	0.552
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	132.872	-10.363	-0.002	-8.697	1122.125	0.480
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	132.872	-8.975	-5.219	-566.511	973.954	0.280
deg+1.0 Ice+1.0 Temp	.02.072	0.0.0	5.2.75			
1.2 Dead+1.0 Wind 330	132.872	-5.183	-9.037	-974.880	569.226	0.005
dea+1.0 Ice+1.0 Temp	102.012	000	0.007	V	****	
Dead+Wind 0 deg - Service	61.909	0.008	-7.295	-774,205	0.846	-0.172
Dead+Wind 30 deg - Service	61.909	3.628	-6.321	-671.178	-382.042	-0.297
Dead+Wind 60 deg - Service	61.909	6.276	-3.654	-388.597	-662.040	-0.343
Dead+Wind 90 deg - Service	61.909	7.243	-0.008	-2.181	-764,122	-0.297
Dead+Wind 120 deg -	61.909	6.269	3.641	384.530	-660.936	-0.171
Service	01.000	0.200	0.011	001.000	555.555	• • • • • • • • • • • • • • • • • • • •
Dead+Wind 150 deg -	61.909	3.615	6.313	667,919	-380.130	0.000
Service	01.000	0.010	0.0.0	3311313		
Dead+Wind 180 deg -	61.909	-0.008	7.295	772.050	3.054	0.172
Service	07.000	0.000	7.200			
Dead+Wind 210 deg -	61.909	-3.628	6.321	669.023	385.943	0.297
Service	31.555	0.00	v.v=.	***************************************		
Dead+Wind 240 deg -	61.909	-6.276	3.654	386.442	665.941	0.343
Service	01.000	0.270	0.001	000.112	555.5.7	
Dead+Wind 270 deg -	61.909	-7.243	0.008	0.027	768.023	0.297
Service	01.000	7.240	0.000	0.021		
Dead+Wind 300 deg -	61.909	-6.269	-3.641	-386.685	664.837	0.171
Service	01.000	0.200	0.041	000.000	551.567	5.171
Dead+Wind 330 deg -	61.909	-3.615	-6.313	-670.074	384.031	-0.000
Service	01.000	0.010	0.010	0,0.014	55 1.561	5.500

Solution Summary

	Sun	of Applied Force	es		Sum of Reaction	ns	
Load	PX	· · PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.000	-61.909	0.000	0.000	61.909	0.000	0.000%
2	0.040	-74.291	-36.963	-0.040	74.291	36.963	0.000%
3	0.040	-55.718	-36.963	-0.040	55.718	36.963	0.000%
4	18.384	-74.291	-32.031	-18.384	74.291	32.031	0.000%
5	18.384	-55.718	-32.031	-18.384	55.718	32.031	0.000%
6	31.803	-74.291	-18.516	-31.803	74.291	18.516	0.000%
7	31.803	-55.718	-18.516	-31.803	55.718	18.516	0.000%
8	36.700	-74.291	-0.040	-36.700	74.291	0.040	0.000%
9	36.700	-55.718	-0.040	-36.700	55.718	0.040	0.000%
10	31.764	-74.291	18.447	-31.764	74.291	-18.447	0.000%
11	31.764	-55.718	18.447	-31.764	55.718	-18.447	0.000%
12	18.316	-74.291	31.991	-18.316	74.291	-31.991	0.000%
13	18.316	-55.718	31.991	-18.316	55.718	-31.991	0.000%
14	-0.040	-74.291	36.963	0.040	74.291	-36.963	0.000%
15	-0.040	-55.718	36.963	0.040	55.718	-36.963	0.000%
16	-18.384	-74.291	32.031	18.384	74.291	-32.031	0.000%
17	-18.384	-55.718	32.031	18.384	55.718	-32.031	0.000%
18	-31.803	-74.291	18.516	31.803	74.291	-18.516	0.000%
19	-31.803	-55.718	18.516	31.803	55.718	-18.516	0.000%
20	-36.700	-74.291	0.040	36.700	74.291	-0.040	0.000%
21	-36.700	-55.718	0.040	36.700	55.718	-0.040	0.000%
22	-31.764	-74.291	-18.447	31.764	74.291	18.447	0.000%

	Sun	n of Applied Force	S		Sum of Reaction	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
23	-31.764	-55.718	-18.447	31.764	55.718	18.447	0.000%
24	-18.316	-74.291	-31.991	18.316	74.291	31.991	0.000%
25	-18.316	-55.718	-31.991	18.316	55.718	31.991	0.000%
26	0.000	-132.872	0.000	0.000	132.872	0.000	0.000%
27	-0.002	-132.872	-10.434	0.002	132.872	10.434	0.000%
28	5.179	-132.872	-9.035	-5.179	132,872	9.035	0.000%
29	8.973	-132.872	-5.215	-8.973	132.872	5.215	0.000%
30	10.363	-132.872	0.002	-10.363	132.872	-0.002	0.000%
31	8.975	-132.872	5.219	-8.975	132.872	-5.219	0.000%
32	5.183	-132.872	9.037	-5.183	132.872	-9.037	0.000%
33	0.002	-132.872	10.434	-0.002	132.872	-10.434	0.000%
34	-5.179	-132.872	9.035	5.179	132.872	-9.035	0.000%
35	-8.973	-132.872	5.215	8.973	132.872	-5.215	0.000%
36	-10.363	-132.872	-0.002	10.363	132.872	0.002	0.000%
37	-8.975	-132.872	-5.219	8.975	132.872	5.219	0.000%
38	-5.183	-132.872	-9.037	5.183	132.872	9.037	0.000%
39	0.008	-61.909	-7.295	-0.008	61.909	7.295	0.000%
40	3.628	-61.909	-6.321	-3.628	61.909	6.321	0.000%
41	6.276	-61.909	-3.654	-6.276	61.909	3.654	0.000%
42	7.243	-61.909	-0.008	-7.243	61.909	0.008	0.000%
43	6.269	-61.909	3.641	-6.269	61.909	-3.641	0.000%
44	3.615	-61.909	6.313	-3.615	61,909	-6.313	0.000%
45	-0.008	-61.909	7.295	0.008	61.909	-7.295	0.000%
46	-3.628	-61.909	6.321	3.628	61.909	-6.321	0.000%
47	-6.276	-61.909	3.654	6.276	61.909	-3.654	0.000%
48	-7.243	-61.909	0.008	7.243	61.909	-0.008	0.000%
49	-6.269	-61.909	-3.641	6.269	61.909	3.641	0.000%
50	-3.615	-61.909	-6.313	3.615	61.909	6.313	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination	_0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
	Yes	4	0.00000001	0.00003332
2 3	Yes	4	0.00000001	0.00002002
4	Yes	4	0.00000001	0.00049168
5	Yes	4	0.00000001	0.00032483
6	Yes	4	0.0000001	0.00056098
7	Yes	4	0.00000001	0.00037234
8	Yes	4	0.0000001	0.00008438
9	Yes	4	0.0000001	0.00005599
10	Yes	4	0.0000001	0.00048689
11	Yes	4	0.00000001	0.00032229
12	Yes	4	0.00000001	0.00052240
13	Yes	4	0.00000001	0.00034625
14	Yes	4	0.00000001	0.00003601
15	Yes	4	0.00000001	0.00002202
16	Yes	4	0.00000001	0.00055278
17	Yes	4	0.00000001	0.00036651
18	Yes	4	0.0000001	0.00048332
19	Yes	4	0.0000001	0.00031942
20	Yes	4	0.00000001	0.00008110
21	Yes	4	0.0000001	0.00005373
22	Yes	4	0.00000001	0.00054368
23	Yes	4	0.00000001	0.00036041
24	Yes	4	0.00000001	0.00050830
25	Yes	4	0.00000001	0.00033602
26	Yes	4	0.00000001	0.00001242
27	Yes	4	0.0000001	0.00058298
28	Yes	4	0.00000001	0.00060148
29	Yes	4	0.0000001	0.00059539
30	Yes	4	0.0000001	0.00056033
31	Yes	4	0.00000001	0.00058334
32	Yes	4	0.0000001	0.00058720

33	Yes	4	0.0000001	0.00056786
34	Yes	4	0.0000001	0.00060102
35	Yes	4	0.0000001	0.00060193
36	Yes	4	0.0000001	0.00057982
37	Yes	4	0.0000001	0.00061301
38	Yes	4	0.0000001	0.00061424
39	Yes	4	0.0000001	0.00000393
40	Yes	4	0.00000001	0.00000631
41	Yes	4	0.0000001	0.00000808
42	Yes	4	0.0000001	0.00000485
43	Yes	4	0.0000001	0.00000623
44	Yes	4	0.0000001	0.00000676
45	Yes	4	0.0000001	0.00000391
46	Yes	4	0.0000001	0.00000768
47	Yes	4	0.00000001	0.00000641
48	Yes	4	0.0000001	0.00006009
49	Yes	4	0.00000001	0.00000754
50	Yes	4	0.00000001	0.00000647

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	•	•
L1	152 - 137.42	6.242	39	0.334	0.001
L2	142.59 - 91.09	5.585	39	0.332	0.001
L3	97.92 - 44.79	2.719	39	0.261	0.000
L4	53.21 - 0	0.806	39	0.137	0.000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
152.000	DS9A09F36D-N	39	6.242	0.334	0.001	215096
150.000	ETCR-654L12H6 w/ Mount Pipe	39	6.102	0.334	0.001	215096
133.000	RR90-17-02DP w/ Mount Pipe	39	4.925	0.324	0.001	62691
124.000	LPA-171080-12CF-EDIN-2 w/	39	4.321	0.313	0.000	44034
	Mount Pipe					
116.000	7770.00 w/ Mount Pipe	39	3.803	0.300	0.000	34823
107.000	742 213	39	3.246	0.282	0.000	28189
74.000	KS24019-L112A	39	1.541	0.196	0.000	19133

Maximum Tower Deflections - Design Wind

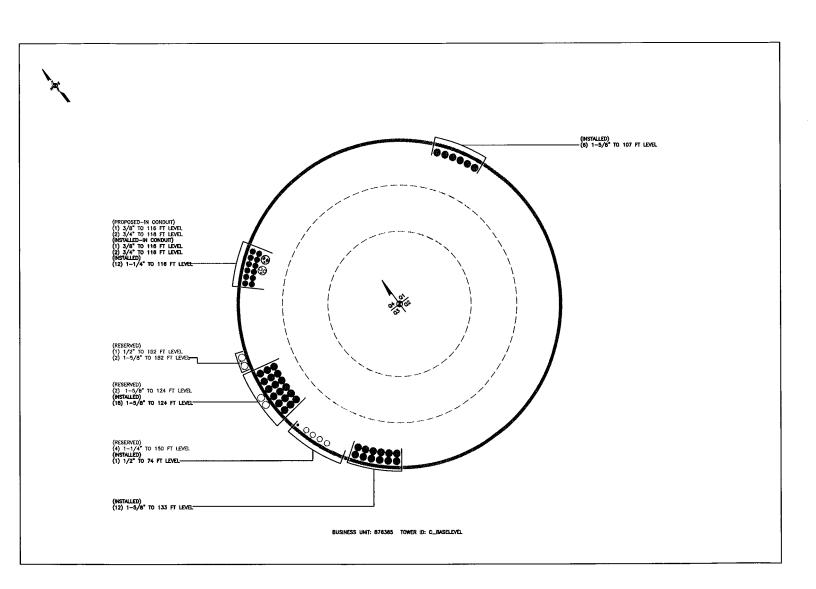
Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	•	0
L1	152 - 137.42	31.668	2	1.694	0.004
L2	142.59 - 91.09	28.338	2	1.681	0.003
L3	97.92 - 44.79	13.806	2	1.323	0.002
L4	53.21 - 0	4.092	2	0.695	0.001

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	۰	o	ft
152.000	DS9A09F36D-N	2	31.668	1.694	0.004	43345
150.000	ETCR-654L12H6 w/ Mount Pipe	2	30.958	1.692	0.004	43345
133.000	RR90-17-02DP w/ Mount Pipe	2	24.991	1.645	0.003	12501
124.000	LPA-171080-12CF-EDIN-2 w/ Mount Pipe	2	21.929	1.588	0.002	8747
116.000	7770.00 w/ Mount Pipe	2	19.301	1.521	0.002	6904
107.000	742 213	2	16.477	1.429	0.002	5581
74.000	KS24019-L112A	2	7.825	0.996	0.001	3774

Compression Checks

•••	Pole Design Data								
Section No.	Elevation	Size	L	Lu	KI/r	Α	Pu	φPn	Ratio Pu
	ft		ft	ft		in²	K	K	$\overline{\phi P_n}$
L1	152 - 137.42 (1)	TP37.31x33.03x0.313	14.580	0.000	0.0	35.192	-4.648	2526.220	0.002
L2	137.42 - 91.09 (2)	TP50.15x35.167x0.375	51.500	0.000	0.0	56.880	-26.500	3935.810	0.007
L3	91.09 - 44.79 (3)	TP62.86x47.413x0.438	53.130	0.000	0.0	83.282	-44.639	5613.010	0.008
L4	44.79 - 0 (4)	TP75x59.537x0.5	53.210	0.000	0.0	118.23 1	-74.281	7706.060	0.010


	Pole Bending Design Data										
Section No.	Elevation	Size	Mux	ф <i>М</i> _{nx}	Ratio M _{ux}	Muy	ϕM_{ny}	Ratio M _{uy}			
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	φMny			
L1	152 - 137.42 (1)	TP37.31x33.03x0.313	52.853	1841.350	0.029	0.000	1841.350	0.000			
L2	137.42 - 91.09 (2)	TP50.15x35.167x0.375	831.602	3867.683	0.215	0.000	3867.683	0.000			
L3	91.09 - 44.79 (3)	TP62.86x47.413x0.438	2112.400	6926.250	0.305	0.000	6926.250	0.000			
L4	44.79 - 0 (4)	TP75x59.537x0.5	3929.900	11818.916	0.333	0.000	11818.916	0.000			

	Pole Shear Design Data								
Section No.	Elevation	Size	Actual Vu	φVn	Ratio Vu	Actual Tu	φTn	Ratio Tu	
	ft		K	K	ϕV_n	kip-ft	kip-ft	ϕT_n	
L1	152 - 137.42 (1)	TP37.31x33.03x0.313	6.266	1255.380	0.005	0.000	3687.208	0.000	
L2	137.42 - 91.09 (2)	TP50.15x35.167x0.375	26.009	1967.910	0.013	0.635	7744.825	0.000	
L3	91.09 - 44.79 (3)	TP62.86x47.413x0.438	31.249	2806.510	0.011	0.870	13869.416	0.000	
L4	44.79 - 0 (4)	TP75x59.537x0.5	36.984	3853.030	0.010	0.870	23666.667	0.000	

	Pole Interaction Design Data								
Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio Muy	Ratio Vu	Ratio Tu	Comb. Stress	Allow. Stress	Criteria
	ft	φ <i>P</i> _n	φM _{nx}	ϕM_{ny}	φV _n	$\overline{\phi T_n}$	Ratio	Ratio	
L1	152 - 137.42 (1)	0.002	0.029	0.000	0.005	0.000	0.031	1.000	4.8.2
L2	137.42 - 91.09 (2)	0.007	0.215	0.000	0.013	0.000	0.222	1.000	4.8.2
L3	91.09 - 44 .79 (3)	0.008	0.305	0.000	0.011	0.000	0.313	1.000	4.8.2
L4	44.79 - 0 (4)	0.010	0.333	0.000	0.010	0.000	0.342	1.000	4.8.2

	Section Capacity Table								
Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail	
L1	152 - 137.42	Pole	TP37.31x33.03x0.313	1	-4.648	2526.220	3.1	Pass	
L2	137.42 - 91.09	Pole	TP50.15x35.167x0.375	2	-26.500	3935.810	22.2	Pass	
L3	91.09 - 44.79	Pole	TP62.86x47.413x0.438	3	-44.639	5613.010	31.3	Pass	
L4	44.79 - 0	Pole	TP75x59.537x0.5	4	-74.281	7706.060	34.2	Pass	
							Summary		
						Pole (L4)	34.2	Pass	
						RATING =	34.2	Pass	

APPENDIX B BASE LEVEL DRAWING

APPENDIX C ADDITIONAL CALCULATIONS

Stiffened or Unstiffened, Ungrouted, Circular Base Plate - Any Rod Material

TIA Rev G Assumption: Clear space between bottom of leveling nut and top of concrete not exceeding (1)*(Rod Diameter)

Site Data

BU#: 876385

Site Name: N. COVENTRY / WALLBEOFF

App #: 418267 Rev. 1

Pole Manufacturer: Other

	Anchor Rod Data					
Qty:	28					
Diam:	2.25]in				
Rod Material:	A615-J	1				
Strength (Fu):	100	ksi				
Yield (Fy):	Yield (Fy): 75 ksi					
Bolt Circle:	85	in				

Plate Data							
Diam:	91	in					
Thick:	2.25	∏in					
Grade:	60	ksi					
Single-Rod B-eff: 8.50 in							

Stiffener	Stiffener Data (Welding at both sides)								
Config:	0	*							
Weld Type:									
Groove Depth:		< Disregard							
Groove Angle:		< Disregard							
Fillet H. Weld:		in							
Fillet V. Weld:		in							
Width:		in							
Height:		in							
Thick:		in							
Notch:		in							
Grade:		ksi							
Weld str.:		ksi							

Pole Data							
Diam:	75	in					
Thick:	0.5	in					
Grade:	65	ksi					
# of Sides:	18	"0" IF Round					
Fu	80	ksi					
Reinf. Fillet Weld	0	"0" if None					

Reactions						
Mu:	3930	ft-kips				
Axial, Pu:	74	kips				
Shear, Vu:	37	kips				
Eta Factor, η	0.5	TIA G (Fig. 4-4				

If No stiffeners, Criteria: AISC LRFD <-Only Applicable to Unstiffened Cases

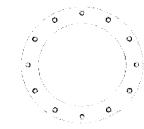
Anchor Rod Results

Max Rod (Cu+ Vu/ή): Allowable Axial, Φ*Fu*Anet: Anchor Rod Stress Ratio: 84.6 Kips 260.0 Kips 32.5% ନିଜ୍ଞ Rigid AISC LRFD φ*Tn

Base Plate ResultsFlexural CheckBase Plate Stress:23.2 ksiAllowable Plate Stress:54.0 ksiBase Plate Stress Ratio:43.0% Plates

Rigid
AISC LRFD
φ*Fy
Y.L. Length:
40.00

n/a


Stiffener Results

Horizontal Weld: n/a
Vertical Weld: n/a
Plate Flex+Shear, fb/Fb+(fv/Fv)^2: n/a
Plate Tension+Shear, ft/Ft+(fv/Fv)^2: n/a
Plate Comp. (AISC Bracket): n/a

Pole Results

Pole Punching Shear Check:

n/a

CCIplate v2.0 Analysis Date: 12/13/2017

^{* 0 =} none, 1 = every bolt, 2 = every 2 bolts, 3 = 2 per bolt

^{**} Note: for complete joint penetration groove welds the groove depth must be exactly 1/2 the stiffener thickness for calculation purposes

Pier and Pad Foundation

BU # : 876385 Site Name: N. COVENTRY / W App. Number: 418267 Rev. 1

TIA-222 Revision: G
Tower Type: Monopole

Block Foundation?:	

Superstructure Analysis	Reactio	ns	1
Compression, P _{comp} :	74	kips	
Base Shear, Vu_comp:	37	kips]
Moment, M _u :	3930	ft-kips	
Tower Height, H:	152	ft	
BP Dist. Above Fdn, bp _{dist} :	3	in	

·	Capacity	Demand	Rating	Check
		ľ		
Lateral (Sliding) (kips)	637.01	37.00	5.8%	Pass
Bearing Pressure (ksf)	12.00	2.13	17.7%	Pass
Overturning (kip*ft)	14037.39	4272.25	30.4%	Pass
Pier Flexure (Comp.) (kip*ft)	10504.59	4152.00	39.5%	Pass
Pier Compression (kip)	51554.88	161.48	0.3%	Pass
Pad Flexure (kip*ft)	3450.84	1343.13	38.9%	Pass
Pad Shear - 1-way (kips)	1033.61	192.91	18.7%	Pass
Pad Shear - 2-way (ksi)	0.19	0.03	17.2%	Pass

Foundation Analysis Checks

Pier Properties	;	
Pier Shape:	Square	
Pier Diameter, dpier :	9.0	ft
Ext. Above Grade, E :	1.00	ft
Pier Rebar Size, Sc :	8	
Pier Rebar Quantity, mc:	62	
Pier Tie/Spiral Size, St :	4	
Pier Tie/Spiral Quantity, mt:	20	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc _{pier} :	3	in

Soil Rating:	30.4%
Structural Rating:	39.5%

Pad Properties		
Depth, D:	8.0	ft
Pad Width, W :	29.0	ft
Pad Thickness, T :	3.0	ft
Pad Rebar Size, Sp :	9	
Pad Rebar Quantity, mp:	25	
Pad Clear Cover, cc _{pad} :	3	in

Material Properties		
Rebar Grade, Fy:	60000	psi
Concrete Compressive Strength, F'c:	4000	psi
Dry Concrete Density, δc:	150	pcf

Soil Properties	;	
Total Soil Unit Weight, γ :	130	pcf
Ultimate Gross Bearing, Qult:	16.000	ksf
Cohesion, Cu:	0.000	ksf
Friction Angle, $oldsymbol{arphi}$:	40	degrees
SPT Blow Count, Notows:	98	
Base Friction, μ :	0.55	
Neglected Depth, N:	4.50	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw:	None	ft

<--Toggle between Gross and Net

CCISeismic - Design Category

Site BU: 876385 Work Order: 1497620
Application: 418267 Rev. 1

Analysis Date: 12/13/2017

		T	T = -	1	
	Degrees	Minutes	Seconds		_
Site Latitude =	41	47	56.20	41.7989	degrees
Site Longitude =	-72	19	55.88	-72.3322	degrees
Ground Supported Structure =		Yes			
Structure Class =		II		(Table 2-1)	
Site Class =	I) - Stiff So	il	(Table 2-11)	
Charteral recognition and a service of C		0.176		1	1
Spectral response acceleration short periods, S _S =				USGS Seismic	ΓοοΙ
Spectral response acceleration 1 s period, $S_1 =$		0.063			
Importance Factor, I =		1.0		(Table 2-3)	
Acceleration-based site coefficient, F _a =		1.6		(Table 2-12)	
Velocity-based site coefficient, F_v =	ent, $F_v = $ 2.4 (Table		2.4		
				•	
Design spectral response acceleration short period, $S_{DS} =$		0.188		(2.7.6)	
Design spectral response acceleration 1 s period, S_{D1} =		0.101		(2.7.6)	
Seismic Design Category - Short Period Response =		В		ASCE 7-05 Table 11	6-1
Seismic Design Category - 1s Period Response =		В		ASCE 7-05 Table 11	
				-	
Worst Case Seismic Design Category =		В		ASCE 7-05 Tables 1	1.6-1 and 6-

3530 Toringdon Way Suite 300 Charlotte, NC 28277

Phone: (704) 405-6552 Fax: (724) 416-6297 www.crowncastle.com

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Re: Application for Zoning/Building Permit

Crown Castle telecommunications site at: REILLY MTN. RD., COVENTRY, CT 6238

GLOBAL SIGNAL ACQUISITIONS II LLC ("Crown Castle") hereby authorizes THE CONNECTICUT LIGHT AND POWER COMPANY d/b/a EVERSOURCE ENERGY, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below. EVERSOURCE ENERGY shall have the right to use AT&T's structural analysis dated 12/13/17 for all filings with the CT - CONNECTICUT SITING COUNCIL.

Crown Site ID/Name: 876385/N. COVENTRY / WALLBEOFF

Date: _6/25/18

Customer Site ID: /Coventry

Site Address: Reilly Mtn. Rd., COVENTRY, CT 6238

APN:

Crown Castle

Zachary Plummer

Real Estate Specialist

From: Florio, Steven J
To: Bellion, Susan J

Subject: FW: AT&T Site ID: CT1106 - Coventry - Riley Mountain

Date: Tuesday, June 26, 2018 10:43:53 AM **Attachments:** 876385 - Crown LOA 386809.pdf

ATT Structural - CT-1106 - Coventry CT.pdf

Sue, Below is the approval email from AT&T.

From: BRADY, SARA [mailto:SB368E@att.com]

Sent: Tuesday, June 26, 2018 9:25 AM

To: Gelinas, Christopher <christopher.gelinas@eversource.com>; Florio, Steven J

<steven.florio@eversource.com>

Cc: RINCON, JESSICA < JR7293@att.com>

Subject: FW: AT&T Site ID: CT1106 - Coventry - Riley Mountain

EVERSOURCE IT NOTICE - EXTERNAL EMAIL SENDER: Do not click on links or attachments if sender is unknown or if the email is unexpected from someone you know, and never provide a user ID or password. Forward suspicious emails to **SpamFeedback@eversource.com**

Good Morning Chris:

RE: 400 Riley Mountain Rd in Coventry, CT (AT&T Site CT1106)

The Connecticut Light and Power Company dba Eversource Energy is approved to use the AT&T structural dated 12-13-17 for 400 Riley Mountain Rd, Coventry, CT for their filings with the Connecticut Siting Council.

Thank you,

Lynn Brady

Sr. Manager, Real Estate & Construction AT&T Mobility New England

550 Cochituate Rd. Suite 13 and 14 Framingham, MA 01701

508-494-6078 (cell)

mailto:sb368e@att.com

"This email and any files transmitted with it are AT&T property, are confidential, and are intended solely for the use of the individual or entity to whom this email is addressed. If you are not one of the named recipient(s) or otherwise have reason to believe that you have