

March 26th, 2018

Melanie Bachman, Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification – Antenna Swap for wireless facility located at MOHAWK MOUNTAIN ROAD, LITCHFIELD (Cornwall), CT 06759 – CT72XC030 (lat. 41° 40' 16.56" N, long. - 73° 17' 47.36" W)

Dear Ms. Bachman:

Sprint Spectrum, LP ("Sprint") currently maintains wireless telecommunications antennas at the (60-foot level) on an existing (65-foot self-support tower) at the above-referenced address. The property is owned by Connecticut Department of Energy and Environmental Protection, and the tower is owned by American Tower Corporation.

Sprint's proposed work involves antenna replacement and tower work. Sprint intends to replace three (3) antennas and add six (6) new RRHs onto the tower. All the proposed work is contained within the existing fenced area. Please refer to the attached drawings for site plans prepared by Infinigy Engineering.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to GORDON RIDGWAY, FIRST SELECTMAN, and DAVID COLBERT, CHAIR of the PLANNING AND ZONING COMMISSION of the Town of CORNWALL. A copy of this letter is also being sent to JUSTINE PAUL the manager for AMERICAN TOWER CORPORATION who manages the site and to the STATE OF CONNECTICUT who owns the land.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b).

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The antennas work is a one-for-one replacement of facility components.

- 3. The proposed modifications will include the addition of ground base equipment as depicted on the attached drawings; however, the proposed equipment will not require an extension of the site boundaries.
- 4. The proposed modifications will not increase noise levels at the facility by six decibels or more.
- 5. The additional ground based equipment will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) adopted safety standard.

For the foregoing reasons, Sprint respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b).

If you have any questions or require any additional information regarding this request, please do not hesitate to give me a call at (518) 350-4222 or email me to <u>aperkowski@airosmithdevelopment.com</u>

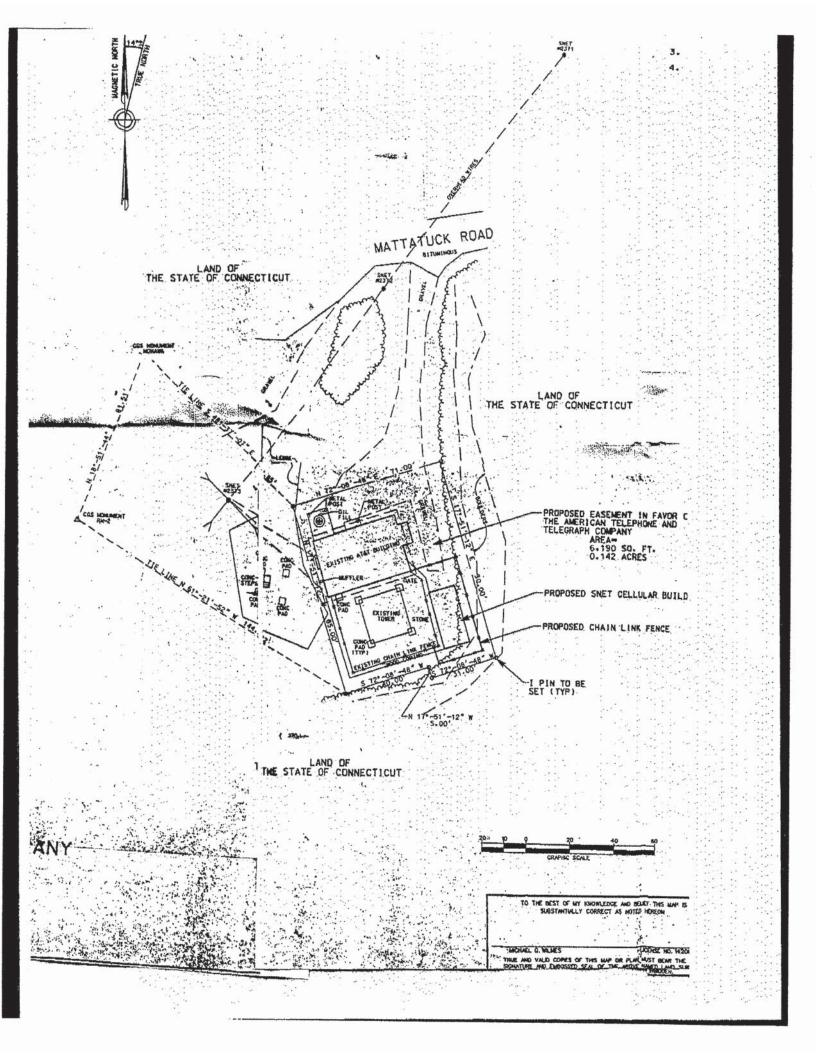
Kind Regards,

State State State

Arthur Perkowski Airosmith Development Inc. 32 Clinton Street Saratoga Springs, NY 12866 518-306-1711 desk & fax 518-871-3707 cell aperkowski@airosmithdevelopment.com

Attachment

CC: GORDON RIDWAY, (FIRST SELECTMAN, CORNWALL, CT) JUSTINE PAUL (Manager, AMERICAN TOWER CORPORATION) DAVID COLBERT (CHAIR of the PLANNING AND ZONING COMMISSION/ CORNWALL, CT) STATE of CONNECTICUT (Land Owner)



ue: 4,655,500	Total Land Value:	Tot				_			1:14/3 AC	Land Area	Parcel Lotal Land Area: 1475 AC	1,4/3.00 AC 1		Lotal Card Land Units:	10 Y		
										-							
			490:240		SKI AREA DEVELOPED SKI SLOPES		0.00	0 1.00	1.0000 0.2800 0.2800	0.28 1.00 5.00 0	336,000.00 10,000.00 10,000.00	5.00 AC 1.461.30 AC 6.70 AC			x x x 5 5 5	VAC LAND FOREST LND VAC LAND	1 5-1 VA 1 5-2 FOA 1 5-1 VA
ice Land Value	Adj. Unit Price	Special Pricing	Specie		Notes- Adj		Idx Ad	F	N	I. Factor S.A	Unit Price		Depth	D Frontage 1	Zone	Use Description	Code
							CTION	TION SE	VALUA	LAND LINE			_				_
												15,000		Addition	AD	09/15/2000	6240 6247
Purpose/Result	I. I	O DI SI	Type 1	7)	Date		Comments	Date Comp. (%(Insp. Date	Amount		Description		Issue Date	Permit ID
	1 1	VISIT/ CHANGE HISTORY	VISIT/					1 1			RECORD	BUILDING PERMIT RECORD	BUILDIN				
4,655,500		alue	Parcel V	praised	Net Total Appraised Parcel Value												
0					Adjustment:												
4,655,500 C			cel Value	ed Parc	Total Appraised Parcel Value Valuation Method:										DEP	LAND FOR SKI AREA 2009 CORR AC PER GIS & DEP	LAND FOR SKI AREA 2009 CORR AC PER G
4,091,600			ļ	Value	Special Land Value							NOTES					
563,900		0	ue (Bldg)	nd Valu	Appraised Land Value (Bldg)											**	0001/A
0		y 9	alue (Blds	Ê.V.	Appraised OB (L) Value (Bldg)		BATCH			TRACING	8	STREET INDEX NAME	STREE		NBHD NAME	UB	NBHD/
0 0		•	ue (Card) alue (Blds	dg. Val (B) V.	Appraised Bldg. Value (Card) Appraised XF (B) Value (Bldg)						RHOOD	ASSESSING NEIGHBORHOOD	SSESSIN	Total:			
	IMMARY	APPRAISED VALUE SUMMARY	PPRAISE	A													
						Comm, Int.	Amount		Number		Description	Code	Amount			ne Description	Year Type
This signature acknowledges a visit by a Data Collector or Assessor	Data Collect	s a visit by a l	nowledge	ure ack	Ч			OTHER ASSESSMENTS	ASSESS	OTHER				NS.	EXEMPTIONS		-
8,996,110	Total:	850,660	•7	Total:	527,800	<i>u</i> :-	Total:										
Assessed Value 8,802,990 193,120	Yr. Code 1007 5-1 1007 6-2	Assessed Value Yr. 656,310,2007 194,350,2007	Asses	: Code 10 5-1 10 6-2	Assessed Value Yr. 394,800[2010 133,000[2010		Yr. Code 2015 5-1 2015 6-2				10/01/1963		043/472		~	CONNECTICUT STATE OF	CONNECTIO
	RY)	PREVIOUS ASSESSMENTS (HISTORY)	SESSME	US AS	PREVIO			SALE PRICE V.C.	ALE PR		SALE DATE q/u vi		BK-VOL/PAGE	IP	WNERSH	RECORD OF OWNERSHIP	K
	•	640.300	4.655.500	4	Total					10#	ASSOC PID#			GIS ID:			
ICION													AC 2632	Other ID: CENSUS TRAC 2632 SURVEY #		nucis.	
CONTRACT, CI										TA	ENTAL DA	SUPPLEMENTAL DATA				CT 06134	HARTFORD, CT 06134
6031	38	394,800	563,900	4	6-2 6-2	EN	VAC RS LN										79 ELM ST
		Assessed Value	MENT	SSESS	CURRENT ASSESSMENT	no	Description	TION	LOCATION	240	STRT./ROAD	UTILITIES		TOPO.	ER	CURRENT OWNER	CONNECTIO
State Use: 5-1 Print Date: 08/02/2016 10:14	State Use: 5-1 rint Date: 08/07	Stat Print	of 1	1	1 Card	ame: 1 of	Bldg Name: Sec #: 1	lofl	06E/ / Bldg #:	06/ 03/ 0 B	MAP ID: E06/ 03/ 06E/ / Bldg #		Account #98106020		T HOLLO	Property Location: GREAT HOLLOW RD Vision ID: 1265	Property Location Vision ID: 1265

Property Location: GREAT HOLLOW RD MAP ID: E06/03/06E// Vision ID: 1265 Account #98106020 Bldg #: 1 of 1 S	Bldg Name: Sec #: 1 of 1 Card 1 of 1 Print Date: 08/02/2016 10:14
TRUCTION DETAIL CONSTRUCTION DETAIL (CONTI d. Ch. Description Element Cd. Ch. Description	
Model 00 Vacant	
Code Description Percentage	
VAC LAND	
COST/MARKET VALUATION Adj. Base Rate: 0.00	
Dep Code 0	
Remodel Rating Year Remodeled Dep % Functional ObsInc External ObsInc Cost Trend Factor Condition Overall % Cond	
Apprais Val Dep % Ovr Dep 0 Ovr Comment Misc Imp Ovr Comment Cost to Cure Ovr Cost to Cure Ovr Comment	
OB-OUTBUILDING & YARD ITEMS(L) / XF-BUILD	
Code Description Sub Sub Descript L/B Units Unit Price Yr Gde Dp Rt Cnd %Cnd Apr Value	
BUILDING SUB-AREA SUMMARY SECTION	No Photo On Record
Code Description Living Area Gross Area Eff. Area Unit Cost Undeprec. Value	
Til. Gross Liv/Lease Area: 0 0	

NETR

.

PROPERTY DETAIL REPORT

Prepared Exclusively for Eric Proulx

г

- r

- r

Created: 9/16/2016 Expires: 10/16/2016

•

1

TARGET PROPERTY

Owner Information						
Owner Name:	AMERICA	N TOWER MGMT I	NC			
Mailing Address:		23597 ATLANTA G	(1).T.			
Phone Number:			Vesting Codes:			
Owner Occupied Indicat	or: UNKNOW	/N	Pending Record Inc	licator:		
Corporate Owner:						
Location Information						
Legal Description:						
County:	LITCHFIE	LD	APN:		CORN-00000 F000000	04-000001-
Census Tract / Block:	2632.00		Alternate APN:		804122	
Township-Range-Sect:			Subdivision:			
Legal Book - Page:			Map Reference:		1	
Legal Lot:			Tract #:			
Legal Block:			School District:			
Market Area:			Munic / Township:		CORNWALL	
Neighbor Code:					CONTRACT	
Owner Transfer Inform	nation					
Recording / Sale Date:			Sale Price:			
Document #:			Deed Type:			
nstrument #:			1st Mtg Document	¥:		
Book - Page:			for mig boounient,			
Last Market Sale Info	rmation					
Recording / Sale Date:	/		1st Mtg Amount / Ty	(no:	1	
Sale Price:	· ·		1st Mtg Int. Rate / T		1	
Sale Type:			1st Mtg Term:	ype.	1	
Document #:				4.		
nstrument #:			1st Mtg Document			
Book - Page:			1st Mtg Instrument			
Deed Type:			1st Mtg Book - Page		,	
Fransfer Document #:			2nd Mtg Amount / T		!	
New Construction:			2nd Mtg Int. Rate / 1	lype:	1	
			2nd Mtg Term:			
Multi / Split Sale:			Price per SqFt:			
Cash Down Payment:			Stamps Amount:			
Title Company:						
_ender:						
Seller Name:						
Prior Sale Information		10				
Prior Rec / Sale Date:	/		Prior Deed Type:			
Prior Sale Price:			Prior Lender:			
Prior Sale Type:			Prior 1stMtg Amoun			
Prior Doc #:			Prior 1stMtg Int. Ra		1	
Prior Instrument #:			Prior Stamps Amou	int:		
Prior Book - Page:						
Site Information						
and Use:	COMMERCIAL BUILDING	Acres:		County L	Jse:	
lood Zone:		Lot Area:	1	State Use	e:	COMMERCIAL
lood Zone Map:		Lot Width / Depth:	1	Site Influ	ence.	
lood Panel Date:		Usable Lot:	V6	Sewer Ty		
		- JUNIO LUL		UCIVEI IY	PG.	

# of Buildings: Zoning:	1	Bldg Width / Depth: Building Class:	/	Water Type: Water District:	
Tax Information					
Total Value: Land Value:	\$36,300.00	Assessed Year:	2016	Property Tax:	\$556.00
Improvement Value:	¢26 200 00	Improve %: Dist:		Tax Area:	210
Total Taxable Value:	\$36,300.00	Fire Dist:		Tax Year:	2016
Market Value:		Garbage Dist:		Tax Exemption: Equal Rate:	
		Delinquent Date:		Equal Year:	
Property Characteris	stics	a na anala na bar na ka ka na ang na	a na sara sara	ا میں میں میں میں ایک اور	98744 (1987), 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1987, 1
Gross Area:		Parking Type:		Construction:	
Living Area:		Garage Area:		Heat Type:	
Tot Adj Area:		Garage 2 Area:		Heat Fuel:	
Above Grade:		Garage Capacity:		Parcel Fuel:	
Ground Floor Area:		Parking Spaces:		Exterior Wall:	
Base / Main Area:	1	Carport:		Interior Wall:	
Upper Area:		Basement Area:		Foundation:	
2nd Floor Area:		Finish Bsmnt Area:		Air Cond:	
3rd Floor Area:		Basement Type:		Roof Type:	
Rentable Area:		Attic Type:		Roof Shape:	
Additional Area:		Porch Type:		Roof Frame:	
Total Rooms:		Porch 1 Area:		Roof Material:	
Bedrooms:		Porch 2 Area:		Floor Type:	
Bath (F/H):	1	Patio Type:		Floor Cover:	
Total Baths / Fixtures:	/	Patio 1 Area:		Style:	
Year Built / Eff:	/	Pool:		Quality:	
Fireplace:		Pool Area:		Condition:	
Fireplace Description:				# of Stories:	
Basement Description:				Other Rooms:	
Other Improvements:					
Bldg Comments:					
Parcel Comments:				*** * * *** * * * * * * * * * *	
Extra Features					
Description:		Unit: Size / Qty: W	/idth: [Depth: Year Built:	mprovement Value:
L					

----t.

····

NETRonline and its data supplier(s) do not guarantee nor include any warranty of any kind whether expressed or implied, about the validity of all information in this report since this information is retrieved as it is recorded from the various agencies that make it available.

Copyright 2007 Nationwide Environmental Title Research, LLC

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

SPRINT Existing Facility

Site ID: CT72XC030

CT0046 ~ Ring to Existing - (R2E) PH 1A Mohawk Mountain Road Litchfield, CT 06759

March 4, 2018

EBI Project Number: 6218001769

Site Complian	ce Summary
Compliance Status:	COMPLIANT
Site total MPE% of	
FCC general	58.88 %
population	JO.00 70
allowable limit:	

March 4, 2018

SPRINT Attn: RF Engineering Manager 1 International Boulevard, Suite 800 Mahwah, NJ 07495

Emissions Analysis for Site: CT72XC030 - CT0046 ~ Ring to Existing - (R2E) PH 1A

EBI Consulting was directed to analyze the proposed SPRINT facility located at **Mohawk Mountain Road, Litchfield, CT**, for the purpose of determining whether the emissions from the Proposed SPRINT Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

General population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 850 MHz Band is approximately 567 μ W/cm². The general population exposure limit for the 1900 MHz (PCS) and 2500 MHz (BRS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over their exposure and can exercise control over the potential for exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed SPRINT Wireless antenna facility located at **Mohawk Mountain Road, Litchfield, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since SPRINT is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 1 CDMA channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.
- 2) 2 LTE channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.
- 3) 5 CDMA channels (1900 MHz (PCS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 16 Watts per Channel.
- 4) 2 LTE channels (1900 MHz (PCS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 5) 8 LTE channels (2500 MHz (BRS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.

- 6) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 7) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 8) The antennas used in this modeling are the RFS APXVSPP18-C-A20 and the Commscope DT465B-2XR for transmission in the 850 MHz, 1900 MHz (PCS) and 2500 MHz (BRS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 9) The antenna mounting height centerlines of the proposed antennas are **60 feet** above ground level (AGL) for **Sector A**, **60 feet** above ground level (AGL) for **Sector B** and **60 feet** above ground level (AGL) for **Sector C**.
- 10) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general population threshold limits.

SPRINT Site Inventory and Power Data by Antenna

-			_		
Sector:	A	Sector:	В	Sector:	С
Antenna #:	1	Antenna #:	1	Antenna #:	1
Make / Model:	RFS	Make / Model:	RFS	Make / Model:	RFS
Make / Model:	APXVSPP18-C-A20	wrake / wroder:	APXVSPP18-C-A20	wiake / wiodel:	APXVSPP18-C-A20
Gain:	13.4 / 15.9 dBd	Gain:	13.4 / 15.9 dBd	Gain:	13.4 / 15.9 dBd
Height (AGL):	60 feet	Height (AGL):	60 feet	Height (AGL):	60 feet
	850 MHz /		850 MHz /		850 MHz /
Frequency Bands	1900 MHz (PCS)	Frequency Bands	1900 MHz (PCS)	Frequency Bands	1900 MHz (PCS)
Channel Count	8	Channel Count	8	Channel Count	8
Total TX	100	Total TX	100	Total TX	
Power(W):	180 Watts	Power(W):	180 Watts	Power(W):	180 Watts
ERP (W):	6.662.27	ERP (W):	6.662.27	ERP (W):	6.662.27
Antenna A1		Antenna B1		Antenna C1	
MPE%	8.63 %	MPE%	8.63 %	MPE%	8.63 %
Antenna #:	2	Antenna #:	2	Antenna #:	2
	Commscope		Commscope		Commscope
Make / Model:	DT465B-2XR	Make / Model:	DT465B-2XR	Make / Model:	DT465B-2XR
Gain:	15.05 / 13.35 dBd	Gain:	15.05 / 13.35 dBd	Gain:	15.05 / 13.35 dBd
Height (AGL):	60 feet	Height (AGL):	60 feet	Height (AGL):	60 feet
Height (AGL).		Height (AOL).		neight (AOL).	
Frequency Bands	2500 MHz (BRS) /	Frequency Bands	2500 MHz (BRS) /	Frequency Bands	2500 MHz (BRS) /
1 2	850 MHz	1 2	850 MHz	1 2	850 MHz
Channel Count	10	Channel Count	10	Channel Count	10
Total TX	200 Watts	Total TX	200 Watts	Total TX	200 Watts
Power(W):	200 Watts	Power(W):	200 Watts	Power(W):	200 Watts
ERP (W):	5,983.32	ERP (W):	5,983.32	ERP (W):	5,983.32
Antenna A2	8.19 %	Antenna B2	8.19 %	Antenna C2	8.19 %
MPE%	0.19 70	MPE%	0.19 70	MPE%	0.19 70

Site Composite	MPE%
Carrier	MPE%
SPRINT – Max per sector	16.82 %
T-Mobile	13.71 %
AT&T	12.41 %
Verizon Wireless	14.80 %
Dept Homeland Security -	1.14 %
ICE	
Site Total MPE %:	58.88 %

SPRINT Sector A Total:	16.82 %
SPRINT Sector B Total:	16.82 %
SPRINT Sector C Total:	16.82 %
Site Total:	58.88 %

SPRINT _ Frequency Band / Technology Max Power Values (All Sectors)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
Sprint 850 MHz CDMA	1	437.55	60	5.39	850 MHz	567	0.95%
Sprint 1900 MHz (PCS) CDMA	5	622.47	60	38.37	1900 MHz (PCS)	1000	3.84%
Sprint 1900 MHz (PCS) LTE	2	1,556.18	60	38.37	1900 MHz (PCS)	1000	3.84%
Sprint 2500 MHz (BRS) LTE	8	639.78	60	63.10	2500 MHz (BRS)	1000	6.31%
Sprint 850 MHz LTE	2	432.54	60	10.67	850 MHz	567	1.88%
						Total:	16.82%

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the SPRINT facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

SPRINT Sector	Power Density Value (%)
Sector A:	16.82 %
Sector B:	16.82 %
Sector C:	16.82 %
SPRINT Maximum Total (per sector):	16.82 %
Site Total:	58.88 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **58.88** % of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Structural Analysis Report

PROFESSIONALS

Structure	: 65 ft Self Supported Tower
ATC Site Name	: Cornwall CT, CT
ATC Site Number	: 88009
Engineering Number	: OAA714883_C3_01
Proposed Carrier	: Sprint Nextel
Carrier Site Name	: CT0046 ~ Ring to Existing - (R2E) PH 1A
Carrier Site Number	: CT72XC030
Site Location	: 36 Toomey Rd. Cornwall, CT 06759-4232 41.821300,-73.296400
County	: Litchfield
Date	: October 30, 2017
Max Usage	: 93%
Result	: Pass
Prepared By: Aaron T. Rucker	Reviewed By:

Prepared By: Aaron T. Rucker TEP

Aam Th

COA: PEC.0001553

E

ONA

510/20/1)

Table of Contents

Introduction	1
Supporting Documents	1
Analysis	1
Conclusion	1
Existing and Reserved Equipment	. 2
Equipment to be Removed	2
Proposed Equipment	3
Structure Usages	3
Foundations	3
Deflection, Twist, and Sway	. 3
Standard Conditions	4
Calculations	Attached

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 65 ft self supported tower to reflect the change in loading by Sprint Nextel.

Supporting Documents

Tower Drawings	CSEI ATC Engineering #26472221, dated September 19, 2006
Foundation Drawing	TEP Project #74252-101870, dated November 22, 2016
Geotechnical Report	FDH Project #16PWAQ1600, dated November 30, 2016

Analysis

The tower was analyzed using American Tower Corporation's tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

Basic Wind Speed:	90 (3-Second Gust, Vasd) / 115 mph (3-second Gust, Vutt)
Basic Wind Speed w/ Ice:	40 mph (3-Second Gust) w/ 3/4" radial ice concurrent
Code:	ANSI/TIA-222-G / 2012 IBC / 2016 Connecticut State Building Code
Structure Class:	81
Exposure Category:	В
Topographic Category:	3
Crest Height:	214 ft
Spectral Response:	Ss = 0.18, S ₁ = 0.06
Site Class:	D - Stiff Soil

Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

Existing and Reserved Equipment

Elevatio	on ¹ (ft)		Antonio	Maximt Time	Lines	Carrier	
Mount	RAD	Qty	Antenna	Mount Type	unes		
<u></u>	75.0	1	12' Dipole			Other	
69.0	72.0	1	6' Omni	Leg	-	otrier	
		2	CCI HPA-65R-BUU-H6				
		1	Andrew SBNHH-1D65A (33.5 lbs)				
		6	Powerwave 7770.00A		(17) 1 1 /4" Conv		
(7.0	67.0	3	Ericsson RRUS 32 (50.8 lbs)	Sector Frames	(12) 1 1/4" Coax (2) 0.78" 8 AWG 6	AT&T Mobility	
67.0	1		Ericsson RRUS 11 (Band 12)	Sector Frames	(1) 0.39" Fiber Trunk	ATOTIVIODIILY	
			Raycap DC6-48-60-18-8F				
			Powerwave TT19-08BP111-001				
			Andrew ABT-DFDM-ADB				
(2.0	74.0	1	18' Omni	Lee	(2) 7/8" Coax	US Dept Of	
63.0	63.0	1	Sinclair SV228-HF2SNM	Leg	(2) 7/8 COax	Homeland Security	
		3	Alcatel-Lucent TD-RRH8x20-25 w/ Solar	· · · · ·			
		3	Shield				
60.0	60.0 60.0	3	Alcatel-Lucent 800MHz RRH	Stand-Offs	(3) 1 1/4" Hybriflex	Sprint Nextel	
00.0	3	Alcatel-Lucent RRH2x40 (700)					
		3	RFS APXVSPP18-C-A20				
59.0	59.0	1	10' Std. Dish	Leg	_	Other	
59.0	59.0	3	10' HP Dish	Leg			
		2	Commscope LNX-6515DS-A1M (50.3				
	3		lb)				
		3 RFS APX16DWV-16DWVS-E-A20			(2) 1 5/8" Hybriflex		
56.0 56.0	3	Ericsson RRUS 11 B2	T-Arms	(1) 1/2" Coax	T-Mobile		
	3 Ericsson RRUS 11 B4			(1) 1/2 (000)			
	3	Ericsson RRUS 11 B12					
		1	Symmetricom 58532A				
		3	Decibel 776QNB120EXM				
		6	Antel LPA-80063/6CF		(12) 7/8" Coax		
50.0	47.0	3	Antel BXA-70063-6CF-EDIN-X	Platfrom w/ Handrails	(12) 1 5/8" Coax	Alitei	
50.0 47.0		3	Antel BXA-171063/12CF2 FP		(3) 1/2" Coax		
		6	RFS FD9R6004/2C-3L (3.1 lbs)				
37.5	37.5	-		Access Platform		-	

Equipment to be Removed

Elevatio	on ¹ (ft)	Ohi	Antenna	Mount Type	Lines	Carrier
Mount	RAD	Qty	Ancenna	wount type		Carrier
60.0	60.0	3	RFS APXV9TM14-ALU-I20	-	(1) 1 1/4" Fiber	Sprint Nextel

Proposed Equipment

Eleva Moun	tion ¹ (ft) t RAD	-l Otv	Antenna	Mount Type	Lines	Carrier	
600		3	Commscope DT465B-2XR	Stand-Offs	(4) 1 1/4" Hybriflex	Sprint Nextel	
60.0	60.0 60.0		Alcatel-Lucent RRH2x50-08	Stand-Ons		Sprine Wexter	

¹Mount elevation is defined as height above bottom of steel structure to the bottom of mount, RAD elevation is defined as center of antenna above ground level (AGL).

Install proposed coax alongside existing Sprint Nextel coax.

Structure Usages

Structural Component	Controlling Usage	Pass/Fail
Legs	55%	Pass
Diagonals	93%	Pass
Horizontals	28%	Pass

Foundations

Reaction Component	Analysis Reactions	% of Usage
Overturning Moment (Kip-Ft)	2727.9	33%
Axial (Kips)	49.8	4%
Total Shear (Kips)	58.5	23%

The structure base reactions resulting from this analysis were found to be acceptable through analysis based on geotechnical and foundation information, therefore no modification or reinforcement of the foundation will be required.

Deflection, Twist and Sway*

Antenna Elevation (ft)	Antenna	Carrier	Deflection (ft)	Twist (°)	Sway (Rotation) (°)	
63.0	Sinclair SV228-HF2SNM	US Dept of Homeland	0.163	0.029	0.557	
CO O	Alcatel-Lucent RRH2x50-08	Carriet Novtol				
60.0	Commscope DT465B-2XR	Sprint Nextel	0.088	0.031	0.890	
50.0	10' HP Dish	Other	0.000	0.051	0.050	
59.0	10' Std. Dish	other				

*Deflection, Twist and Sway was evaluated considering a design wind speed of 60 mph (3-Second Gust) per ANSI/TIA-222-G

Standard Conditions

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessary limited, to:

- Information supplied by the client regarding the structure itself, antenna, mounts and feed line loading on the structure and its components, or other relevant information.
- Information from drawings in the possession of American Tower Corporation, or generated by field inspections or measurements of the structure.

It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and that their capacity has not significantly changed from the "as new" condition.

Unless explicitly agreed by both the client and American Tower Corporation, all services will be performed in accordance with the current revision of ANSI/TIA -222. The design basic wind speed will be determined based on the minimum basic wind speed as prescribed in ANSI/TIA-222. Although every effort is taken to ensure that the loading considered is adequate to meet the requirements of all applicable regulatory entities, we can provide no assurance to meet any other local and state codes or requirements. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

Job Information	Tower: 88009 Location: CORNWALL CT, CT Code: ANSI/TIA-222-G Shape: Square Base Width: 20.00 ft	Client : SPRINT NEXTEL	Sections Properties	Section Led Members	4 3 4 2 4 3	SAE 33 KBI SAE 33 KSI	Discrete Appurtenance	Elev (ft) Type Qty Description	69.00 Whip 1 6'Omni 69.00 Whip 112'Dipole 67.00 Mounting Frame 3 Round Sector Frame 67.00 Panel 2 CCI HPA-65R-BUU-H6	Panel 5 Panel 6 Panel 3	Panel 1	63.00 Whip 1 18' Omni 63.00 Dish 1 Sinclair SV228-HF2SNM 60.00 Panel 3 Commscope DT465B-2XR	Panel 33	Panel 3	Straight Arm 6 Dish 1 Dish 3	Panel 3 Panel 3 Panel 3	Panel Panel	Panel Straight Arm 3 Panel 3	Panel 6	00 Panel 00 Panel 00 Platform	╢	To Qty	67.00 67.00 7 1 1 67.00 7 1		63.00 60.00 4 1	0.00 60.00 3 11/4" Hybriflex Cab 0.00 56.00 1 Wavegulde
		© 2007 - 2017 by ATC iP LLC. All rights reserved.	Loads: 90 mph no ice 40 mmh w/ 3/4" redial ice	Site Class: D 25:0.18 S1: 0.															T		不		$\overline{\Lambda}$	T	7	
													100 W		Sect 6	50.10 20.10		24 CE 40				Seen 2				

				اگ	Job Information	on		
Tower: 88009 Code: ANSI/ Client: SPRIN	8800 ANS SPR	Ower: 88009 Code: ANSI/TIA-222-G Client: SPRINT NEXTEL	<u>ு</u> ப	Ĕ	cation : CORNV Shape : Square	Location : CORNWALL CT, CT Shape : Square	Base Wid Top Wid	Base Width:20.00 ft Top Width:7.00 ft
		0.00000	56.00 56.00 50.00 50.00	<u>+ 05 ∞5</u>	1/2" Coax 1/2" Coax 7/8" Hybrifiex Cab 7/8" Coax 1/2" Coax	k Cab		
			פֿ	oba	I Base Fou	Giobal Base Foundation Design Loads	ign Load	s
		Load Case		Mom	Moment (k-ft)	Vertical (kip)		Horizontal (kip)
		DL + WL + IL DL + WL	1		2,727.85 707.51	49.81 144.03		58.51 14.57
			Indi	Vidi	ual Base Fo	Individual Base Foundation Design Loads	sign Loa	spe
		Vertical (kip)	(kip)		Uplift (kip)	kip)	Hori	Horizontal (kip)
		108.88			87.06		24.22	22

All rights reserved.	
© 2007 - 2017 by ATC IP LLC.	

	WALL CT, CT T NEXTEL	Code: Engineering Number:	ANSI/TIA-222-G OAA714883_C3_01	© 2007 - 2017 by AT	C IP LLC. All rights reserver 10/30/2017 4:08:29 PM	
		Analysis Para	meters			
Location:	LITCHFIELD County, CT	Height (ft):		6	5	
Code:	ANSI/TIA-222-G	Base Elevation	on (ft):	0.0	0	
Shape:	Square	Bottom Face	Width (ft):	20.0	D	
Tower Manufacturer:	CSEI	Top Face Wie	dth (ft):	7.0	0	
Tower Type:	Self Support	Anchor Bolt		c		
		Ice & Wind Para	ameters			
Structure Class:	Ш	Design Wind	speed Without Ice:	90 mph	I	
Exposure Category:	В	Design Wind	speed With Ice:	40 mph	I	
Topographic Categor	ry: 3	Operational	Nindspeed:	60 mph		
Crest Height:	214.2 ft	Design Ice Ti	hickness:	0.75 in		
		Seismic Parar	neters			
Analysis Method:	Equivalent Modal Analy	sis & Equivalent Lateral Force	Methods			
Site Class:	D - St	iff Soil				
Period Based on Ray	leigh Method (sec):	0.48				
T _L (sec):	6	p: 1.	3	C _s :	0.064	
S _s : 0.1	31	S ₁ : 0.06	5	C _s , Max:	0.072	
F _a : 1.60	00	F _v : 2.40	0	C _s , Min:	0.030	
S _{ds} : 0.19	93	S _{d1} : 0.10	4			

Load Cases

1.2D + 1.6W Normal	90 mph Normal to Face with No Ice
1.2D + 1.6W 45 deg	90 mph 45 degree with No Ice
1.2D + 1.6W 90 deg	90 mph 90 degree with No Ice
1.2D + 1.6W 135 deg	90 mph 135 degree with No Ice
1.2D + 1.6W 180 deg	90 mph 180 degree with No Ice
1.2D + 1.6W 225 deg	90 mph 225 degree with No Ice
1.2D + 1.6W 270 deg	90 mph 270 degree with No Ice
1.2D + 1.6W 315 deg	90 mph 315 degree with No Ice
0.9D + 1.6W Normal	90 mph Normal to Face with No Ice (Reduced DL)
0.9D + 1.6W 45 deg	90 mph 45 deg with No Ice (Reduced DL)
0.9D + 1.6W 90 deg	90 mph 90 deg with No Ice (Reduced DL)
0.9D + 1.6W 135 deg	90 mph 135 deg with No Ice (Reduced DL)
0.9D + 1.6W 180 deg	90 mph 180 deg with No Ice (Reduced DL)
0.9D + 1.6W 225 deg	90 mph 225 deg with No Ice (Reduced DL)
0.9D + 1.6W 270 deg	90 mph 270 deg with No Ice (Reduced DL)
0.9D + 1.6W 315 deg	90 mph 315 deg with No Ice (Reduced DL)
1.2D + 1.0Di + 1.0Wi Normal	40 mph Normal with 0.75 in Radial Ice
1.2D + 1.0Di + 1.0Wi 45 deg	40 mph 45 deg with 0.75 in Radial Ice
1.2D + 1.0Di + 1.0Wi 90 deg	40 mph 90 deg with 0.75 in Radial Ice
1.2D + 1.0Di + 1.0Wi 135 deg	40 mph 135 deg with 0.75 in Radial Ice
1.2D + 1.0Di + 1.0Wi 180 deg	40 mph 180 deg with 0.75 in Radial Ice

Site Number:	88009
Site Name:	CORNWALL CT, CT
Customer:	SPRINT NEXTEL

Cod	le:	ANSI/TIA-222-G
Eng	ineering Number:	OAA714883_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserved

10/30/2017 4:08:29 PM

Analysis Parameters

1.2D + 1.0Di + 1.0Wi 225 deg	40 mph 225 deg with 0.75 in Radial Ice
1.2D + 1.0Di + 1.0Wi 270 deg	40 mph 270 deg with 0.75 in Radial Ice
1.2D + 1.0Di + 1.0Wi 315 deg	40 mph 315 deg with 0.75 in Radial Ice
(1.2 + 0.2Sds) * DL + E Normal	Seismic Normal
(1.2 + 0.2Sds) * DL + E 45 deg	Seismic 45 deg
(1.2 + 0.2Sds) * DL + E 90 deg	Seismic 90 deg
(1.2 + 0.2Sds) * DL + E 135 deg	Seismic 135 deg
(1.2 + 0.2Sds) * DL + E 180 deg	Seismic 180 deg
(1.2 + 0.2Sds) * DL + E 225 deg	Seismic 225 deg
(1.2 + 0.2Sds) * DL + E 270 deg	Seismic 270 deg
(1.2 + 0.2Sds) * DL + E 315 deg	Seismic 315 deg
(0.9 - 0.2Sds) * DL + E Normal	Seismic (Reduced DL) Normal
(0.9 - 0.2Sds) * DL + E 45 deg	Seismic (Reduced DL) 45 deg
(0.9 - 0.2Sds) * DL + E 90 deg	Seismic (Reduced DL) 90 deg
(0.9 - 0.2Sds) * DL + E 135 deg	Seismic (Reduced DL) 135 deg
(0.9 - 0.2Sds) * DL + E 180 deg	Seismic (Reduced DL) 180 deg
(0.9 - 0.2Sds) * DL + E 225 deg	Seismic (Reduced DL) 225 deg
(0.9 - 0.2Sds) * DL + E 270 deg	Seismic (Reduced DL) 270 deg
(0.9 - 0.2Sds) * DL + E 315 deg	Seismic (Reduced DL) 315 deg
1.0D + 1.0W Service Normal	Serviceability - 60 mph Wind Normal
1.0D + 1.0W Service 45 deg	Serviceability - 60 mph Wind 45 deg
1.0D + 1.0W Service 90 deg	Serviceability - 60 mph Wind 90 deg
1.0D + 1.0W Service 135 deg	Serviceability - 60 mph Wind 135 deg
1.0D + 1.0W Service 180 deg	Serviceability - 60 mph Wind 180 deg
1.0D + 1.0W Service 225 deg	Serviceability - 60 mph Wind 225 deg
1.0D + 1.0W Service 270 deg	Serviceability - 60 mph Wind 270 deg
1.0D + 1.0W Service 315 deg	Serviceability - 60 mph Wind 315 deg

Site Number: 88009

Site Name: CORNWALL CT, CT Customer: SPRINT NEXTEL Code:

ANSI/TIA-222-G

OAA714883_C3_01

© 2007 - 2017 by ATC IP LLC. All rights reserver

10/30/2017 4:08:29 PM

Tower Loading

Engineering Number:

Discrete Appurtenance Properties 1.2D + 1.6W

Elevation Description (ft)	Qty	Wt. (Ib)	EPA (sf)	Length (ft)	Width (in)	Depth (in)	K,	Orient. Factor	Vert. Ecc.(ft)	M _u (lb-ft)	Q _z (psf)	F _a (WL) F (Ib)	P _a (DL) (lb)
69.00 6' Omni	1	25	1.8	6.0	3.0	3.0	1.00	1.00	3.0	176.1	24.52	59	36
69.00 12' Dipole	1	40	4.5	12.0	3.0	3.0	1.00	1.00	6.0	903.2	24.54	151	58
67.00 Andrew ABT-DFDM-	1	1	0.1	0.3	1.7	1.6	0.80	0.50	-2.0	1.3	24.45	1	2
67.00 Powerwave Allgon	6	16	0.6	0.8	6.7	5.4	0.80	0.50	0.0	0.0	24.48	51	138
67.00 Raycap DC6-48-60-	1	20	1.1	2.0	9.7	9.7	0.80	1.00	0.0	0.0	24.48	30	29
67.00 Ericsson RRUS 11	3	50	2.6	1.5	17.3	7.2	0.80	0.50	0.0	0.0	24.48	103	216
67.00 Ericsson RRUS 32	3	51	2.7	2.2	12.1	6.7	0.80	0.50	0.0	0.0	24.48	107	219
67.00 Powerwave Allgon	6	27	5.6	4.6	11.0	4.9	0.80	0.76	0.0	0.0	24.48	675	233
67.00 Andrew SBNHH-	1	34	5.9	4.6	11.9	7.1	0.80	0.69	0.0	0.0	24.48	108	48
67.00 CCI HPA-65R-BUU-H6	52	51	9.7	6.0	14.8	9.0	0.80	0.69	0.0	0.0	24.48	355	147
67.00 Round Sector Frame	3	300	14.4	0.0	0.0	0.0	0.75	0.75	0.0	0.0	24.48	809	1296
65.01 Fire Warden Cab	1	2000	150.0	0.0	0.0	0.0	1.00	1.00	0.0	0.0	24.45	4988	2880
63.00 18' Omni	1	55	5.4	18.0	3.0	3.0	1.00	1.00	11.0	1982.2	24.54	180	79
63.00 Sinclair SV228-	1	93	15.8	6.0	116.0	62.0	1.00	1.00	0.0	0.0	24.42	526	134
60.00 Alcatel-Lucent	3	53	1.7	1.3	13.0	9.8	0.80	0.50	0.0	0.0	24.37	68	229
60.00 Alcatel-Lucent	3	50	2.1	1.7	12.2	10.6	0.80	0.50	0.0	0.0	24.37	84	216
60.00 Alcatel-Lucent 800	3	53	2.1	1.6	13.0	10.8	0.80	0.50	0.0	0.0	24.37	85	229
60.00 Stand-Off	6	100	3.0	0.0	0.0	0.0	1.00	0.67	0.0	0.0	24.37	400	864
60.00 Alcatel-Lucent TD-	3	70	4.1	2.2	18.6	6.7	0.80	0.50	0.0	0.0	24.37	161	302
60.00 RFS APXVSPP18-C-	3	57	8.0	6.0	11.8	7.0	0.80	0.69	0.0	0.0	24.37	440	246
60.00 Commscope	3	58	9.1	6.0	13.8	8.2	0.80	0.69	0.0	0.0	24.37	499	251
59.00 10' HP Dish	3	705	99.1	10.0	0.0	0.0	1.00	1.00	0.0	0.0	24.35	9846	3046
59.00 10' Std. Dish	1	512	130.7	10.0	0.0	0.0	1.00	1.00	0.0	0.0	24.35	4329	737
56.00 Symmetricom	1	0	0.2	0.5	3.5	3.5	0.80	1.00	0.0	0.0	24.29	6	1
56.00 Ericsson RRUS 11	3	51	2.8	1.6	17.0	7.2	0.80	0.50	0.0	0.0	24.29	111	219
56.00 Ericsson RRUS 11 B4	3	51	2.8	1.6	17.0	7.2	0.80	0.50	0.0	0.0	24.29	111	219
56.00 Ericsson RRUS 11 B2	3	51	2.8	1.6	17.0	7.2	0.80	0.50	0.0	0.0	24.29	111	219
56.00 RFS APX16DWV-	3	41	6.6	4.7	13.3	3.1	0.80	0.60	0.0	0.0	24.29	313	176
56.00 Commscope LNX-	3	50	11.4	8.0	11.9	7.1	0.80	0.70	0.0	0.0	24.29	635	217
56.00 Flat T-Arm	3	250	12.9	0.0	0.0	0.0	0.75	0.67	0.0	0.0	24.29	642	10 80
50.00 RFS FD9R6004/2C-3L	6	3	0.4	0.5	6.5	1.5	0.75	0.50	-3.0	79.3	24.00	26	27
50.00 Antel BXA-	3	15	4.8	6.0	6.1	4.1	0.75	0.66	-3.0	6 96 .6	24.00	232	65
50.00 Amphenol Antel BXA	- 3	17	7.6	5.9	11.2	5.2	0.75	0.76	-3.0	1267.7	24.00	423	73
50.00 Antel LPA-80063/6CF	6	27	9.6	5.9	15.0	13.1	0.75	0.59	-3.0	2493.4	24.00	831	233
50.00 Decibel	3	117	22.2	6.0	37.0	9.5	0.75	0.65	-3.0	3179.5	24.00	1060	505
50.00 Platfrom w/	1	5000	70.0	0.0	0.0	0.0	1.00	1.00	0.0	0.0	24.11	2296	7200
37.50 Access Platform	1	5000	45.0	0.0	0.0	0.0	1.00	1.00	0.0	0.0	23.50	1438	7200
Totals	101	20187	1223.9										

Discrete Appurtenance Properties 0.9D + 1.6W

Elevation Description (ft)	Qty	Wt. (Ib)	EPA (sf)	Length (ft)	Width (in)	Depth (in)	Ka	Orient. Factor	Vert. Ecc.(ft)	M _u (Ib-ft)	Q, (psf)	F _a (WL) I (lb)	P _s (DL) (lb)
69.00 6' Omni	1	25	1.8	6.0	3.0	3.0	1.00	1.00	3.0	176.1	24.52		20
69.00 12' Dipole	1	40	4.5	12.0	3.0	3.0	1.00	1.00	6.0	903.2	24.54	151	32
67.00 Andrew ABT-DFDM-	1	1	0.1	0.3	1.7	1.6	0.80	0.50	-2.0	1.3	24.45	1	1
67.00 Powerwave Allgon	6	16	0.6	0.8	6.7	5.4	0.80	0.50	0.0	0.0	24.48	51	78
67.00 Raycap DC6-48-60-	1	20	1.1	2.0	9.7	9.7	0.80	1.00	0.0	0.0	24.48		16
67.00 Ericsson RRUS 11	3	50	2.6	1.5	17.3	7.2	0.80	0.50	0.0	0.0	24.48	103	122
67.00 Ericsson RRUS 32	3	51	2.7	2.2	12.1	6.7	0.80	0.50	0.0	0.0	24.48		123
67.00 Powerwave Allgon	6	27	5.6	4.6	11.0	4.9	0.80	0.76	0.0	0.0	24.48	675	131
67.00 Andrew SBNHH-	1	34	5.9	4.6	11.9	7.1	0.80	0.69	0.0	0.0	24.48	108	27

Site Number: 88009

Code:

ANSI/TIA-222-G

OAA714883_C3_01

10/30/2017 4:08:29 PM

Site Name: CORNWALL CT, CT Customer:

SPRINT NEXTEL

Engineering Number:

Tower Loading

67.00 CCI HPA-65R-BUU-H6	2	51	9.7	6.0	14.8	9.0	0.80	0.69	0.0	0.0	24.48 24.48	355 809	83 729
67.00 Round Sector Frame	3	300	14.4	0.0	0.0	0.0	0.75	0.75	0.0	0.0		4988	1620
65.01 Fire Warden Cab	1	2000	150.0	0.0	0.0	0.0	1.00	1.00	0.0	0.0	24.45	4988	45
63.00 18' Omni	1	55	5.4	18.0	3.0	3.0	1.00	1.00	11.0	1982.2	24.54	526	45 75
63.00 Sinclair SV228-	1	93	15.8	6.0	116.0	62.0	1.00	1.00	0.0	0.0	24.42		
60.00 Alcatel-Lucent	3	53	1.7	1.3	13.0	9.8	0.80	0.50	0.0	0.0	24.37	68	129 122
60.00 Alcatel-Lucent	3	50	2.1	1.7	12.2	10.6	0.80	0.50	0.0	0.0	24.37	84	
60.00 Alcatel-Lucent 800	3	53	2.1	1.6	13.0	10.8	0.80	0.50	0.0	0.0	24.37	85	129
60.00 Stand-Off	6	100	3.0	0.0	0.0	0.0	1.00	0.67	0.0	0.0	24.37	400	486
60.00 Alcatel-Lucent TD-	3	70	4.1	2.2	18.6	6.7	0.80	0.50	0.0	0.0	24.37	161	170
60.00 RFS APXVSPP18-C-	3	57	8.0	6.0	11.8	7.0	0.80	0.69	0.0	0.0	24.37	440	139
60.00 Commscope	3	58	9.1	6.0	13.8	8.2	0.80	0.69	0.0	0.0	24.37	499	141
59.00 10' HP Dish	3	705	99.1	10.0	0.0	0.0	1.00	1.00	0.0	0.0	24.35	9846	1713
59.00 10' Std. Dish	1	512	130.7	10.0	0.0	0.0	1.00	1.00	0.0	0.0	24.35	4329	415
56.00 Symmetricom	1	0	0.2	0.5	3.5	3.5	0.80	1.00	0.0	0.0	24.29	6	0
56.00 Ericsson RRUS 11	3	51	2.8	1.6	17.0	7.2	0.80	0.50	0.0	0.0	24.29	111	123
56.00 Ericsson RRUS 11 B4	3	51	2.8	1.6	17.0	7.2	0.80	0.50	0.0	0.0	24.29	111	123
56.00 Ericsson RRUS 11 B2	3	51	2.8	1.6	17.0	7.2	0.80	0.50	0.0	0.0	24.29	111	123
56.00 RFS APX16DWV-	3	41	6.6	4.7	13.3	3.1	0.80	0.60	0.0	0.0	24.29	313	99
56.00 Commscope LNX-	3	50	11.4	8.0	11.9	7.1	0.80	0.70	0.0	0.0	24.29	635	122
56.00 Flat T-Arm	3	250	12.9	0.0	0.0	0.0	0.75	0.67	0.0	0.0	24.29	642	608
50.00 RFS FD9R6004/2C-3L	6	3	0.4	0.5	6.5	1.5	0.75	0.50	-3.0	79.3	24.00	26	15
50.00 Antel BXA-	3	15	4.8	6.0	6.1	4.1	0.75	0.66	-3.0	696.6	24.00	232	36
50.00 Amphenol Antel BXA-	3	17	7.6	5.9	11.2	5.2	0.75	0.76	-3.0	1267.7	24.00	423	41
50.00 Antel LPA-80063/6CF	6	27	9.6	5.9	15.0	13.1	0.75	0.59	-3.0	2493.4	24.00	831	131
50.00 Decibel	3	117	22.2	6.0	37.0	9.5	0.75	0.65	-3.0	3179.5	24.00	1060	284
50.00 Platfrom w/	1	5000	70.0	0.0	0.0	0.0	1.00	1.00	0.0	0.0	24.11	2296	4050
37.50 Access Platform	1	5000	45.0	0.0	0.0	0.0	1.00	1.00	0.0	0.0	23.50	1438	4050
Totals	101	20187	1223.9										

Discrete Appurtenance Properties 1.2D + 1.0Di + 1.0Wi

Elevation Description (ft)	Qty	Ice Wt I (Ib)	ce EPA (sf)	Length (ft)	Width (in)	Depth (in)	K,	Orient. Factor	Vert. Ecc.(ft)	M _u (lb-ft)	Q, F (psf)	(WL) F (lb)	2, (DL) (lb)
69.00 6' Omni	1	116	3.2	6.0	3.0	3.0	1.00	1.00	3.0	39.3	4.84	13	146
69.00 12' Dipole	1	217	7.8	12.0	3.0	3.0	1.00	1.00	6.0	194.0	4.85	32	270
67.00 Andrew ABT-DFDM-	1	4	0.3	0.3	1.7	1.6	0.80	0.50	-2.0	0.8	4.83	0	4
67.00 Powerwave Allgon	6	38	1.3	0.8	6.7	5.4	0.80	0.50	0.0	0.0	4.83	13 6	296 97
67.00 Raycap DC6-48-60-	1	77	1.7	2.0	9.7	9.7	0.80	1.00	0.0	0.0	4.83	-	-
67.00 Ericsson RRUS 11	3	124	3.7	1.5	17.3	7.2	0.80	0.50	0.0	0.0	4.83	18 17	481 558
67.00 Ericsson RRUS 32	3	145	3.5	2.2	12.1	6.7	0.80	0.50	0.0	0.0	4.83		1121
67.00 Powerwave Allgon	6	150	7.9	4.6	11.0	4.9	0.80	0.76	0.0	0.0	4.83 4.83	118 19	224
67.00 Andrew SBNHH-	1	180	8.2	4.6	11.9	7.1	0.80	0.69	0.0	0.0		57	716
67.00 CCI HPA-65R-BUU-H6	2	288	12.7	6.0	14.8	9.0	0.80	0.69	0.0	0.0	4.83 4.83	224	2728
67.00 Round Sector Frame	3	698	32.3	0.0	0.0	0.0	0.75	0.75	0.0	0.0 0.0	4.83	3168	8305
65.01 Fire Warden Cab	1	6521	771.6	0.0	0.0	0.0	1.00	1.00	0.0	561.6	4.85	51	395
63.00 18' Omni	1	318	12.4	18.0	3.0	3.0	1.00	1.00	11.0	0.0	4.83	263	755
63.00 Sinclair SV228-	1	610	64.1	6.0	116.0	62.0	1.00	1.00	0.0 0.0	0.0	4.82	11	512
60.00 Alcatel-Lucent	3	132	2.3	1.3	13.0	9.8	0.80	0.50	0.0	0.0	4.81	16	502
60.00 Alcatel-Lucent	3	129	3.2	1.7	12.2	10.6	0.80	0.50 0.50	0.0	0.0	4.81	16	516
60.00 Alcatel-Lucent 800	3	133	3.2	1.6	13.0	10.8	0.80	0.50	0.0	0.0	4.81	77	1244
60.00 Stand-Off	6	153	4.7	0.0	0.0	0.0	1.00	0.67	0.0	0.0	4.81	27	670
60.00 Alcatel-Lucent TD-	3	172	5.5	2.2	18.6	6.7			0.0	0.0	4.81	75	918
60.00 RFS APXVSPP18-C-	3	244	11.0	6.0	11.8	7.0	0.80	0.69	0.0	0.0	4.81	71	1157
60.00 Commscope	3	310	10.6	6.0	13.8	8.2	0.80		0.0	0.0	4.81	1293	10626
59.00 10' HP Dish	3	2811	105.4	10.0	0.0	0.0	1.00	1.00	0.0	0.0	7,01	1200	IVOLU

Site Number: 88009 Code: ANSI/TIA-222-G © 2007 - 2017 Site Name: CORNWALL CT, CT Engineering Number: OAA714883_C3_01 Customer: SPRINT NEXTEL

Tower Loading

59.00 10' Std. Dish	1	2379	140.5	10.0	0.0	0.0	1.00	1.00	0.0	0.0	4.81	575	2978
56.00 Symmetricom	1	9	0.6	0.5	3.5	3.5	0.80	1.00	0.0	0.0	4.80	2	11
56.00 Ericsson RRUS 11	3	146	3.5	1.6	17.0	7.2	0.80	0.50	0.0	0.0	4.80	17	561
56.00 Ericsson RRUS 11 B4	_	146	3.5	1.6	17.0	7.2	0.80	0.50	0.0	0.0	4.80	17	561
56.00 Ericsson RRUS 11 B2		146	3.5	1.6	17.0	7.2	0.80	0.50	0.0	0.0	4.80	17	561
56.00 RFS APX16DWV-	3	193	7.8	4.7	13.3	3.1	0.80	0.60	0.0	0.0	4.80	46	723
56.00 Commscope LNX-	3	339	13.2	8.0	11.9	7.1	0.80	0.70	0.0	0.0	4.80	91	1256
56.00 Flat T-Arm	3	476	21.7	0.0	0.0	0.0	0.75	0.67	0.0	0.0	4.80	134	1894
50.00 RFS FD9R6004/2C-3L	-	12	0.8	0.5	6.5	1.5	0.75	0.50	-3.0	22.7	4.74	8	89
50.00 Antel BXA-	3	118	7.3	6.0	6.1	4.1	0.75	0.66	-3.0	131.5	4.74	44	435
50.00 Amphenol Antel BXA	-	176	10.5	5.9	11.2	5.2	0.75	0.76	-3.0	217.8	4.74	73	646
50.00 Antel LPA-80063/6CF		339	11.1	5.9	15.0	13.1	0.75	0.59	-3.0	354.9	4.74	118	2480
50.00 Decibel	3	621	24.3	6.0	37.0	9.5	0.75	0.65	-3.0	428.8	4.74	143	2320
50.00 Platfrom w/	1	18097	331.9	0.0	0.0	0.0	1.00	1.00	0.0	0.0	4.76		22916
37.50 Access Platform	1	18296	211.2	0.0	0.0	0.0	1.00	1.00	0.0	0.0	4.64	833	23155
Totals	101	73318	2561.5										

Discrete Appurtenance Properties 1.0D + 1.0W Service

Elevation Description (ft)	Qty	Wt. (Ib)	EPA (sf)	Length (ft)	Width (in)	Depth (in)	Ka	Orient. Factor	Vert. Ecc.(ft)	M (lb-ft)	Q, F (psf)	(WL) (Ib)	2, (DL) (lb)
69.00 6' Omni	1	25	1.8	6.0	3.0	3.0	1.00	1.00	3.0	48.9	10.90	16 42	25 40
69.00 12' Dipole	1	40	4.5	12.0	3.0	3.0	1.00	1.00	6.0	250.9	10.91		40
67.00 Andrew ABT-DFDM-	1	1	0.1	0.3	1.7	1.6	0.80	0.50	-2.0	0.4	10.87 10.88	0 14	96
67.00 Powerwave Allgon	6	16	0.6	0.8	6.7	5.4	0.80	0.50	0.0	0.0		8	20
67.00 Raycap DC6-48-60-	1	20	1.1	2.0	9.7	9.7	0.80	1.00	0.0	0.0	10.88	29	150
67.00 Ericsson RRUS 11	3	50	2.6	1.5	17.3	7.2	0.80	0.50	0.0	0.0	10.88		150
67.00 Ericsson RRUS 32	3	51	2.7	2.2	12.1	6.7	0.80	0.50	0.0	0.0	10.88	30	162
67.00 Powerwave Allgon	6	27	5.6	4.6	11.0	4.9	0.80	0.76	0.0	0.0	10.88	188	
67.00 Andrew SBNHH-	1	34	5. 9	4.6	11.9	7.1	0.80	0.69	0.0	0.0	10.88	30	34
67,00 CCI HPA-65R-BUU-H6	2	51	9.7	6.0	14.8	9.0	0.80	0.69	0.0	0.0	10.88	99	102
67.00 Round Sector Frame	3	300	14.4	0.0	0.0	0.0	0.75	0.75	0.0	0.0	10.88	225	900
65.01 Fire Warden Cab	1	2000	150.0	0.0	0.0	0.0	1.00	1.00	0.0	0.0	10.87	1386	2000
63.00 18' Omni	1	55	5.4	18.0	3.0	3.0	1.00	1.00	11.0	550.6	10.91	50	55
63.00 Sinclair SV228-	1	93	15.8	6.0	116.0	62.0	1.00	1.00	0.0	0.0	10.85	146	93
60.00 Alcatel-Lucent	3	53	1.7	1.3	13.0	9.8	0.80	0.50	0.0	0.0	10.83	19	159
60.00 Alcatel-Lucent	3	50	2.1	1.7	12.2	10.6	0.80	0.50	0.0	0.0	10.83	23	150
60.00 Alcatel-Lucent 800	3	53	2.1	1.6	13.0	10.8	0.80	0.50	0.0	0.0	10.83	24	159
60.00 Stand-Off	6	100	3.0	0.0	0.0	0.0	1.00	0.67	0.0	0.0	10.83	111	600
60.00 Alcatel-Lucent TD-	3	70	4.1	2.2	18.6	6.7	0.80	0.50	0.0	0.0	10.83	45	210
60.00 RFS APXVSPP18-C-	3	57	8.0	6.0	11.8	7.0	0.80	0.69	0.0	0.0	10.83	122	171
60.00 Commscope	3	58	9.1	6.0	13.8	8.2	0.80	0.69	0.0	0.0	10.83	139	174
59.00 10' HP Dish	3	705	99.1	10.0	0.0	0.0	1.00	1.00	0.0	0.0	10.82	2735	2115
59.00 10' Std. Dish	1	512	130.7	10.0	0.0	0.0	1.00	1.00	0.0	0.0	10.82	1202	512
56.00 Symmetricom	1	0	0.2	0.5	3.5	3.5	0.80	1.00	0.0	0.0	10.79	2	0
56.00 Ericsson RRUS 11	3	51	2.8	1.6	17.0	7.2	0.80	0.50	0.0	0.0	10.79	31	152
56.00 Ericsson RRUS 11 B4	3	51	2.8	1.6	17.0	7.2	0.80	0.50	0.0	0.0	10.79	31	152
56.00 Ericsson RRUS 11 B2	3	51	2.8	1.6	17.0	7.2	0.80	0.50	0.0	0.0	10.79	31	152
56.00 RFS APX16DWV-	3	41	6.6	4.7	13.3	3.1	0.80	0.60	0.0	0.0	10.79	87	122
56.00 Commscope LNX-	3	50	11.4	8.0	11.9	7.1	0.80	0.70	0.0	0.0	10.79	176	151
56.00 Flat T-Arm	3	250	12.9	0.0	0.0	0.0	0.75	0.67	0.0	0.0	10.79	178	750
50.00 RFS FD9R6004/2C-3L	6	3	0.4	0.5	6.5	1.5	0.75	0.50	-3.0	22.0	10.67	7	19
50.00 Antel BXA-	3	15	4.8	6.0	6.1	4.1	0.75	0.66	-3.0	193.5	10.67	64	45
50.00 Amphenol Antel BXA-	-	17	7.6	5.9	11.2	5.2	0.75	0.76	-3.0	352.1	10.67	117	51
50.00 Antel LPA-80063/6CF	6	27	9.6	5.9	15.0	13.1	0.75	0.59	-3.0	692.6	10.67	231	162
50.00 Decibel	3	117	22.2	6.0	37.0	9.5	0.75	0.65	-3.0	883.2	10.67	294	351

10/30/2017 4:08:29 PM

Site Number: Site Name: Customer:	88009 CORNWALL C SPRINT NEXT	•			Code: Engineerin	g Number		ANSI/TIA	-222-G 83_C3_01	I	@007 - 201		ights reserved. 7 4:08:29 PM
					Tov	ver Loa	ading						
50.00 Platfro 37.50 Acces		1 1	5000 5000	70.0 45.0	0.0 0.0	0.0 0.0	0.0 0.0	1.00 1.00	1.00 1.00	0.0 0.0	0.0 0.0	 638 399	5000 5000
Tota	s	101	20187	1223.9									

Site Number:	88009	Code:	ANSI/TIA-222-G	©2007 - 2017 by ATC IP LLC. All rights reserved.
Site Name:	CORNWALL CT, CT	Engineering Number:	OAA714883_C3_01	10/30/2017 4:08:29 PM
Customer:	SPRINT NEXTÉL			

Tower Loading

Linear Appurtenance Properties

Elev From (ft)	Elev To (ft)	Description	Qty	Width (in)		Pct In Block	Spread On Faces	Bundling Arrangement	Cluster Dia (in)	Out Of Zone		Orientation Factor	Ka Override
0.00	67.00	0.39" (10mm) Fiber	1	0.39	0.06	0	1	Individual	0.00	Ν	1.00		0.01
0.00	67.00	0.78" (19.7mm) 8	2	0.78	0.59	0	1	Individual	0.00	Ν	1.00		0.01
0.00	67.00	1 1/4" Coax	12	1.55	0.63	33	1	Block	0.00	N	0.00		0.00
0.00	67.00	Climbing Ladder	1	2.00	6.90	0	Lin App	Individual	0.00	N	1.00		0.00
0.00	67.00	Waveguide	1	2.00	6.00	0	1	Individual	0.00	N	1.00	1.00	0.00
0.00	63.00	7/8" Coax	1	1.09	0.33	0	1	Individual	0.00	Ν	1.00	1.00	0.00
0.00	63.00	7/8" Coax	1	1.09	0.33	Õ	Lin App	Individual	0.00	Ν	1.00	1.00	0.00
0.00	60.00	1 1/4" Hybriflex	3	1.54	1.00	Ō	1	Individual	0.00	Ν	0.00	1.00	0.00
0.00	60.00	1 1/4" Hybriflex	4	1.54	1.00	50	1	Block	0.00	Ν	0.00	1.00	0.00
0.00	56.00	1 5/8" Hybriflex	2	1.98	1.30	ŏ	Lin App	Individual	0.00	N	1.00	1.00	0.00
0.00	56.00	1/2" Coax	1	0.63	0.15	Ō	Lin App	Individual	0.00	Ν	1.00	1.00	0.00
-			4	2.00	6.00	ŏ	Lin App	Individual	0.00	N	1.00		0.00
0.00	56.00	Waveguide 1 5/8" Coax	12	2.00	0.82	33	1	Block	0.00	Ň	0.00		0.00
0.00	50.00					0	1	Individual	0.00	N	1.00		0.00
0.00 0.00	50.00 50.00	1/2" Coax 7/8" Coax	3 12	0.63 1.09	0.15 0.33	33	1	Block	0.00	N	0.00		0.00

Site Number: 88009

Code: Engineering Number: ANSI/TIA-222-G OAA714883_C3_01 @007 - 2017 by ATC IP LLC. All rights reserved.

10/30/2017 4:08:29 PM

Site Name: CORNWALL CT, CT Customer: SPRINT NEXTEL

Force/Stress Summary

Section: 1 1		Bot Elev (ft): 0.0	0	ŀ	Heig	ht (ft): 12	.500						
	_			D	! 0/			E.	Phic Pn	Num	Num	Shear phiRnv	Bear phiRn	Use	
	Pu		Len		ing %			-			Holes	(kip)	(kip)	%	Controls
Max Compression Member	(kip)	Load Case	(ft)	<u>×</u>	Y	z	KL/R	(KSI)	(kip)	DUILS					
EG SAE - 6X6X0.625	-96.93	1.2D + 1.6W 45	12.57	50	50	50		33.0			0	0.00	0.00 0.00		Member Z Member Y
IORIZ DAL - 3X2.5X0.25	-4.22	0.9D + 1.6W	18.12	50	100		199.8	36.0			0	0.00			
DIAG SAU - 4X3X0.25	-11.12	2 1.2D + 1.6W	22.81	47	47	47	179.2	36.0	11.89) 0	0	0.00	0.00	93	Member Z
									She		Bear		Shear	1.100	
Max Tension Member	Pu (kip)	Load Case	Fy (ksi)	Fu (ksi)	Phi (ki		Num Bolts	Nurr Hole			phiRn (kip)	-	t Pn «ip)	Use %	Controls
EG SAE - 6X6X0.625	77.54	0.9D + 1.6W 45	33	45	21	1.17	0	0		0.00	0.0	00		36	Member
LEG SAE - 0000.025	5.33	1.2D + 1.6W	36	58		5.21	0	0		0.00	0.0	00	0.00		Member
DIAG SAU - 4X3X0.25		0.9D + 1.6W	36	58	5	4.76	0	0		0.00	0.0	00	0.00	18	Member
Section: 2 1		Bot Elev (ft): 12	.50		Heig	ght (fi): 12	.500						
												Shear			
	Pu		Len	Brad	ing %	6		F'y	Phic Pn		Num	phiRnv		Use	
Max Compression Member	(kip)	Load Case	(ft)	х	Y	Z	KL/R	(ksi)	(kip)	Bolts	Holes	(kip)	(kip)	%	Controls
	-78.6	3 1.2D + 1.6W 45	12.57	50	50	50	63.9	33.0) 173.3	3 0	0	0.00	0.00	45	Member Z
		5 0.9D + 1.6W 90		50	50		106.7				0	0.00	0.00	6	Member Y
HORIZ DAL - 3X2.5X0.25 DIAG SAU - 4X3X0.25		9 1.2D + 1.6W	21.27	47	47	47	169.0	36.0) 13.3	60	0	0.00	0.00	87	Member Z
									She	ear	Bear		Shear		
	Pu		Fy	Fu	Phi	it Pn	Num	Nun	n phiF	Rnv	phiRr	· • .	it Pn	Use	Controls
Max Tension Member	(kip)	Load Case	(ksi)	(ksi)	(k	ip)	Bolts	Hole	es (ki	<u>p)</u>	(kip)) (kip)	%	
LEG SAE - 6X6X0.625	60.58	0.9D + 1.6W 45	33	4	5 21	1.17	0	(-	0.00		00			Member
HORIZ DAL - 3X2.5X0.25	3.55	1.2D + 1.6W	36	5	88	35.21	0	()	0.00		.00	0.00		Member
DIAG SAU - 4X3X0.25	10.43	1.2D + 1.6W	36	58	85	54.76	0	()	0.00	0.	00	0.00	19	Member
Section: 3 1		Bot Elev	(ft): 25	5.00		Hei	ght (f	t): 12	2.500						
												Shear			
	Pu		Len	Bra	cing 9	%		Fy	Phic Pr	Num			/ phiRn	Use	
Max Compression Member	(kip)	Load Case	(ft)	х	Y	z	KL/R	(ksi)	(kip)	Bolts	Holes	; (kip)	(kip)	%	Controls
	-56 3	7 1.2D + 1.6W 45	5 12.57	50	50	50	63.9	33.	0 140.2	2 0	0	0.00	0.00	40	Member Z
LEG SAE - 6X6X0.5 HORIZ DAL - 3.5X3X0.3125		0 0.9D + 1.6W	14.37		100		136.1		0 47.2	2 0	0	0.00			Member Y
DIAG SAU - 3.5X3X0.25		6 1.2D + 1.6W	19.78		·			4 36.	0 13.2	0 0	0	0.00	0.00	92	Member Z
UING 3AU-3.0A3AU.20	- 14. 1	- (ime - 11017													
									Sh	ear	Bea	r Blk	Shear		
	Pu		Fy	Fu	Ph	it Pn	Num	Nur		Rnv	phiR		nit Pn	Use	Controlo
Max Tension Member	(kip)	Load Case	(ksi)	(ksi)		cip)	Bolts		-	ip)	(kip)	(kip)	%	Controls
		0.9D + 1.6W 45				70.77	0		0	0.00	0	.00		24	Member
LEG SAE - 6X6X0.5		1.2D + 1.6W	36			25.39			0	0.00		.00	0.00	4	Member
HORIZ DAL - 3.5X3X0.3125	0.00	1.20 . 1.000												-	B. 4
DIAG SAU - 3.5X3X0.25	10 74	1.2D + 1.6W 90	36	55	8 !	50.54	F 0	F I	0	0.00	0	.00	0.00	- 21	Member

Site Number: 88009

Code:

Engineering Number:

ANSI/TIA-222-G

OAA714883_C3_01

@2007 - 2017 by ATC IP LLC. All rights reserved.

10/30/2017 4:08:29 PM

Site Name: CORNWALL CT, CT Customer: SPRINT NEXTEL

Force/Stress Summary

Section: 4 1		Bot Elev (ft): 37	'.50		Hei	ght (ft	:): 12.	500						
May Operation Marshar	Pu (kip)	Load Case	Len (ft)	Bra X	cing % Y		KL/R	F'y ∣ (ksi)	Phic Pn (kip)		Num Holes	Shear phiRnv (kip)		Use %	Controls
Max Compression Member		3 1.2D + 1.6W 45	12.57		50		63.9	. ,	140.22		0	0.00	0.00	23	Member Z
HORIZ DAL - 3.5X3X0.3125		1.2D + 1.6W 90			100		136.4		47.0		Ō	0.00	0.00		Member X
DIAG SAE - 3.5x3.5x0.25	-11.47	7 1.2D + 1.6W	18.37	47	47	47	143.4	36.0	18.5	70	0	0.00	0.00	61	Member Z
			_						She		Bear		Shear		
Max Tension Member	Pu (kip)	Load Case	Fy (ksi)	Fu (ksi)		it Pn iip)	Num Bolts	Num Holes	phiF (kij		phiRn (kip)	· · ·	t Pn (ip)	Use %	Controls
 LEG SAE - 6X6X0.5		0.9D + 1.6W 45	33			0.77	0	0		0.00	0.				Member
HORIZ DAL - 3.5X3X0.3125		1.2D + 1.6W	36			5.39	0	0		0.00	0.0		0.00		Member Member
DIAG SAE - 3.5x3.5x0.25	9.93	1.2D + 1.6W	36	5	8 5	4.76	0	0		0.00	0.0		0.00	10	
Section: 5 1		Bot Elev (ft): 50	0.0		Hei	ght (ft	:): 0.1	00						
	Pu		Len	Bra	cing %	%		F'y I	Phic Pn	Num	Num	Shear phiRnv	Bear phiRn	Use	
Max Compression Member	(kip)	Load Case	(ft)	X	Y Y		KL/R	•	(kip)		Holes		(kip)	%	Controls
LEG SAE - 6X6X0.5	-12.44	1.2D + 1.6W 45	0.39	50	50	50	2.0	33.0	170.74		0	0.00	0.00		Member Z
HORIZ	0.00		0.000	0	0	0			0.00		0	0.00	0.00		
DIAG	0.00)	0.000	0	0	0	0.0	0.0	0.00	0 0	0	0.00	0.00		
			_	_					She		Bear		Shear	Llaa	
Max Tension Member	Pu (kip)	Load Case	Fy (ksi)	Fu (ksi)		it Pn ip)	Num Bolts	Num Holes	phiF (kip		phiRn (kip)	• •	tPn <ip)< td=""><td>Use %</td><td>Controls</td></ip)<>	Use %	Controls
LEG SAE - 6X6X0.5	17.22	1.2D + 1.6W 45	33			0.77	0	0		0.00	0.0		0.00		Member
HORIZ DIAG	0.00		0			0.00	0	0		0.00 0.00	0.0 0.0		0.00 0.00	0	
DIAG	0.00		0		0	0.00	0			0.00			0.00		
Section: 6 1		Bot Elev (ft): 50	0.10		Hei	ght (ft	:): 14.	900						
	-			Dee	-in - 0	4		EV.	Phic Pn	Alum	Num	Shear phiRnv	Bear	Use	
Mar Oswana ala Marakan	Pu (kip)	Load Case	Len (ft)	Bra X	¢ cing ۲	⁄₀ Ζ	KL/R	-	(kip)		Holes	-	(kip)	- 03 6 %	Controls
Max Compression Member		3 1.2D + 1.6W 45		100			75.8	. ,			0	0.00	0.00	12	Member Z
HORIZ DAL - 2.5X2X0.25		3 1.2D + 1.6W 90					133.7				0	0.00	0.00	16	Member Y
DIAG SAU - 3X2X0.25	-5.76	6 1.2D + 1.6W	10.22	50	50	50	136.0	36.0	14.5	20	0	0.00	0.00	39	Member Z
									She	ar	Bear		Shear		
Max Tension Member	Pu (kip)	Load Case	Fy (ksi)	Fu (ksi)		it Pn iip)	Num Bolts	Num Holes	phiF ; (kij		phiRn (kip)		it Pn kip)	Use %	Controls
LEG SAE - 6X6X0.5		1.2D + 1.6W 45	33			0.77	0	0		0.00	0.	00			Member
HORIZ DAL - 2.5X2X0.25		1.2D + 1.6W 90	36			9.01		0		0.00	0.0		0.00		Member
DIAG SAU - 3X2X0.25	10.09	1.2D + 1.6W 45	36	5	83	8.56	0	0		0.00	0.0	00	0.00	20	Member

Site Number:88009Site Name:CORNWALL CT, CTCustomer:SPRINT NEXTEL

Code: Engineering Number: ANSI/TIA-222-G

OAA714883_C3_01

@2007 - 2017 by ATC IP LLC. All rights reserved.

10/30/2017 4:08:29 PM

Detailed Reactions

Load Case	Node	FX (kip)	FY (kip)	FZ (kip)	(-) = Uplift (+) = Down
1.2D + 1.6W Normal	1	-8.79	78.24	-15.35	
	1a	6.02	-53.34	-12.62	
	1b	-6.02	-53.34	-12.62	
	1c	8.79	78.24	-15.35	
1.2D + 1.6W 45 deg	1	-17.10	108.88	-17.15	
1120 1.000 10 003	1a	-6.32	12.64	-3.50	
	1b	-14.41	-84.00	-14.43	
	1c	-3.53	12.29	-6.29	
1.2D + 1.6W 90 deg	1	-15.34	78.49	-8.84	
1.2D + 1.6W 90 deg	ta	-15.34	78.49	8.84	
	1b	-12.63	-53.59	-6.05	
	10 10	-12.63	-53.59	6.05	
	4	6.00	40.64	3 50	
1.2D + 1.6W 135 deg	1	-6.32	12.64	3.50	
	1a	-17.10	108.88 12.29	17.15 6.29	
	1b 1c	-3.53 -14.41	-84.00	14.43	
	10		01100		
1.2D + 1.6W 180 deg	1	6.02	-53.34	12.62	
-	1a	-8.79	78.24	15.35	
	1b	8.79	78.24	15.35	
	1c	-6.02	-53.34	12.62	
1.2D + 1.6W 225 deg	1	14.41	-84.00	14.43	
1.2.5 · 1.017 LEO dog	1a	3.53	12.29	6.29	
	1b	17.10	108.88	17.15	
	10	6.32	12.64	3.50	
1.2D + 1.6W 270 deg	1	12.63	-53.59	6.05	
1.20 · 1.00 270 dog	1a	12.63	-53.59	-6.05	
	1b	15.34	78.49	8.84	
	10	15.34	78.49	-8.84	
		0.50	40.00	6.00	
1.2D + 1.6W 315 deg	1	3.53	12.29	-6.29 -14.43	
	1a 1b	14.41 6.32	-84.00 12.64	-3.50	
	10 1c	17.10	108.88	-17.15	
	<u>,</u>		75.00	45.00	
0.9D + 1.6W Normal	1	-8.44	75.09	-15.00 -12.97	
	1a	6.36 -6.36	-56.41 -56.41	-12.97	
	1b 1c	-6.36 8.44	-36.41 75.09	-15.00	
0.9D + 1.6W 45 deg	1	-16.75	105.72	-16.80	
	1a	-5.98	9.53	-3.85	
	1b	-14.76	-87.06	-14.78	
	1c	-3.88	9.18	-5.95	
0.9D + 1.6W 90 deg	1	-14.99	75.34	-8.49	
•	1a	-14.99	75.34	8.49	
	1b	-12.98	-56.66	-6.40	
	1c	-12.98	-56.66	6.40	
0.9D + 1.6W 135 deg	1	-5.98	9.53	3.85	
.	1a	-16.75	105.72	16.80	
	1b	-3.88	9.18	5.95	
	1c	-14.76	-87.06	14.78	

Site Number:	88009		Code:		ANSI/TIA-222-G	@2007 - 2017 by ATC IP LLC. All rights reserved.
Site Name:	CORNWALL CT, CT		Engineering	Number:	OAA714883_C3_01	10/30/2017 4:08:29 PM
Customer:	SPRINT NEXTEL					
0.9D + 1.6W 1	80 dea	1	6.36	-56.41	12.97	
0.00 - 1.011 1		1a	-8.44	75.09	15.00	
		1b 1c	8.44 -6.36	75.09 -56.41	15.00 12.97	
			-0.50	-50.41	12,51	
0.9D + 1.6W 2	25 deg	1	14.76	-87.06	14.78	
		1a	3.88	9.18	5.95	
		1b 1c	16.75 5.98	105.72 9.53	16.80 3.85	
0.9D + 1.6W 2	70 deg	1	12.98	-56.66	6.40	
		1a 1b	12.98 14.99	-56.66 75.34	-6.40 8.49	
		10	14.99	75.34	-8.49	
0.9D + 1.6W 3	15 deg	1 1a	3.88 14.76	9.18 -87.06	-5.95 -14.78	
		1b	5.98	9.53	-3.85	
		1c	16.75	105.72	-16.80	
1.2D + 1.0Di +	1.0Wi Normal	1 1a	-3.90 -0.03	53.17 18.85	-5.47 -1.51	
		16	0.03	18.85	-1.51	
		1c	3.90	53.17	-5.47	
1.2D + 1.0Di +	1 0\%i 45 deg	1	-5.95	61.02	-5.97	
1.20 1 1.001 1	1.0441 40 009	1a	-3.13	36.03	0.83	
		1b	-2.02	10.99	-2.01	
		1c	0.80	35.99	-3.15	
1.2D + 1.0Di +	1.0Wi 90 dea	1	-5.45	53.21	-3.93	
		1a	-5.45	53.21	3.93	
		1b	-1.52 -1.52	18.81 18.81	0.04 -0.04	
		1c	-1.52	10.01	-0.04	
1.2D + 1.0Di +	1.0Wi 135 deg	1	-3.13	36.03	-0.83	
		1a	-5.95	61.02	5.97	
		1b 1c	0.80 -2.02	35.99 10.99	3.15 2.01	
		10	2.02	10.00	2107	
1.2D + 1.0Di +	1.0Wi 180 deg	1	-0.03	18.85	1.51	
		1a 1b	-3.90 3.90	53.17 53.17	5.47 5.47	
		10	0.03	18.85	1.51	
1.2D + 1.0Di +	1.0Wi 225 deg	1	2.02	10.99	2.01	
		1a 15	-0.80 5.95	35.99 61.02	3.15 5.97	
		1c	3.13	36.03	-0.83	
		4	4 50	40.04	0.04	
1.20 + 1.001 +	1.0Wi 270 deg	1 1a	1.52 1.52	18.81 18.81	-0.04 0.04	
		1b	5.45	53.21	3.93	
		1c	5.45	53.21	-3.93	
1 2D + 1 0Di +	1.0Wi 315 deg	1	-0.80	35.99	-3.15	
		1a	2.02	10.99	-2.01	
		1b	3.13	36.03	0.83	
		1c	5.95	61.02	-5.97	
(1.2 + 0.2Sds)	* DL + E Normal M1	1	-1.83	15.63	-2.19	
(0.1000)		1a	-0.92	7.56	0.58	
		1b 1c	0.92 1.83	7.56 15.63	0.58 -2.19	
		1c	1.03	10.00	-2.13	

Site Number: 88009		Code:		ANSI/TIA-222-G	@2007 - 2017 by ATC IP LLC. All rights reserved.
Site Name: CORNWALL CT, CT		Engineering	Numbow		10/20/2017 4:09:20 DM
		Engineering	number.	OAA714883_C3_01	10/30/2017 4:08:29 PM
Customer: SPRINT NEXTEL					
(1.2 + 0.2Sds) * DL + E Normal M2	1	-1.82	15.50	-2.11	
	1a 1b	-0.94 0.94	7.69 7.69	0.66 0.66	
	10	1.82	15.50	-2.11	
(1.2 + 0.2Sds) * DL + E 45 deg M1	1	-2.27	17.30	-2.27	
	1a 15	-1.62	11.60	1.14	
	1b 1c	0.49 1.13	5.88 11.59	0.49 -1.63	
(1.2 + 0.2Sds) * DL + E 45 deg M2	1	-2.20	17.12	-2.21	
	18	-1.58	11.60	1.18	
	1b 1c	0.55 1.18	6.07 11 <i>.</i> 59	0.56 -1.58	
			11.00	1.00	
(1.2 + 0.2Sds) * DL + E 90 deg M1	1	-2.18	15.63	-1.84	
	1a	-2.18	15.63	1.84	
	1b 1c	0.58 0.58	7.56 7.56	0.93 -0.93	
	10	0.00	1.00	-0.50	
(1.2 + 0.2Sds) * DL + E 90 deg M2	1	-2.10	15.50	-1.83	
· · · ·	1a	-2.10	15.50	1.83	
	1b	0.65	7.69	0.94	
	1c	0.65	7.69	-0. 9 4	
(1.2 + 0.2Sds) * DL + E 135 deg M1	1	-1.62	11.60	-1.14	
	1a	-2.27	17.30	2.27	
	1b	1.13	11.59	1.63	
	1c	0.49	5.88	-0.49	
(1.2 + 0.2Sds) * DL + E 135 deg M2	1	-1.58	11.60	-1.18	
· · · · / · · · · · · · · · · · ·	1a	-2.20	17.12	2.21	
	1b	1.18	11.59	1.58	
	1c	0.55	6.07	-0.56	
(1.2 + 0.2Sds) * DL + E 180 deg M1	1	-0.92	7.56	-0.58	
	1a	-1.83	15.63	2.19	
	1b	1.83	15.63	2.19	
	1c	0.92	7.56	-0.58	
(1.2 + 0.2Sds) * DL + E 180 deg M2	1	-0.94	7.69	-0.66	
(1.2 + 0.2003) DE + E 100 deg M2	1a	-0.94 -1.82	15.50	-0.00 2.11	
	1b	1.82	15.50	2.11	
	1c	0.94	7.69	-0.66	
(1.2 + 0.2Sds) * DL + E 225 deg M1	1	-0.49	5.88	-0.49	
(1.2 ° 0.2003) DE + E 220 deg M1	י 1a	-0.49	11.59	-0.49	
	1b	2.27	17.30	2.27	
	1c	1.62	11.60	-1.14	
(1.2 ± 0.28da) * DL ± E 225 dag M2		0.55	0.07	0.50	
(1.2 + 0.2Sds) * DL + E 225 deg M2	1 1a	-0.55 -1.18	6.07 11.59	-0.56 1.58	
	1b	2.20	17.12	2.21	
	1c	1.58	11.60	-1.18	
(1.2 + 0.2Sds) * DL + E 270 deg M1	1	-0.58	7.56	-0.93	
(1.2 · 0.2003) DE + E 270 deg MT	1a	-0.58	7.56	0.93	
	1b	2.18	15.63	1.84	
	1c	2.18	15.63	-1.84	
		0.05	7 00		
(1.2 + 0.2Sds) * DL + E 270 deg M2	1 1a	-0.65 -0.65	7.69 7.69	-0.94 0.94	
	1b	2.10	15.50	1.83	
	1¢	2.10	15.50	-1.83	
$(1.2 \pm 0.28 d_{\rm D}) \pm D = 1.5 245 d_{\rm c} = 144$		4.40	44.50	4.00	
(1.2 + 0.2Sds) * DL + E 315 deg M1	1	-1.13	11.59	-1.63	

Site Number:	88009		Code:		ANSI/TIA-222-G	@2007 - 2017 by ATC IP LLC. All rights reserved.
Site Name:	CORNWALL CT, CT		Engineering l	Number:	OAA714883_C3_01	10/30/2017 4:08:29 PM
Customer:	SPRINT NEXTEL					
		1a 1b	-0.49 1.62	5.88 11.60	0.49 1.14	
		1c	2.27	17.30	-2.27	
(1.2 + 0.2Sds)	* DL + E 315 deg M2	1	-1.18	11.59	-1.58	
		1a 1b	-0.55 1.58	6.07 11.60	0.56 1.18	
		1c	2.20	17.12	-2.21	
(0.9 - 0.2Sds)	* DL + E Normal M1	1	-1.41	12.10	-1.76	
		1a 1b	-0.50 0.50	4.03 4.03	0.16 0.16	
		1c	1.41	12.10	-1.76	
(0.9 - 0.2Sds)	* DL + E Normal M2	1 1a	-1.40 -0.52	11.97 4.16	-1.69 0.24	
		1b	0.52	4.16	0.24	
		1c	1.40	11.97	-1.69	
(0.9 - 0.2Sds)	* DL + E 45 deg M1	1	-1.85 -1.20	13.77 8.06	-1.85 0.72	
		1a 1b	0.07	2.36	0.07	
		1c	0.71	8.06	-1.21	
(0.9 - 0.2Sds)	* DL + E 45 deg M2	1 1a	-1.78 -1.16	13.58 8.06	-1.79 0.76	
		1b	0.13	2.54	0.14 -1.16	
		1c	0.76	8.06		
(0.9 - 0.2Sds)	* DL + E 90 deg M1	1 1a	-1.76 -1.76	12.10 12.10	-1.42 1.42	
		1b 1c	0.16 0.16	4.03 4.03	0.51 -0.51	
		10				
(0.9 - 0.2Sds)	* DL + E 90 deg M2	1 1a	-1.68 -1.68	11.97 11.97	-1.40 1.40	
		1b 1c	0.23 0.23	4.16 4.16	0.52 -0.52	
(0.9 - 0.2Sds)	* DL + E 135 deg M1	1 1a	-1.20 -1.85	8.06 13.77	-0.72 1.85	
		1b 1c	0.71 0.07	8.06 2.36	1.21 -0.07	
(0.0.0.0.1.)					-0.76	
(0.9 - 0.25ds)	* DL + E 135 deg M2	1 1a	-1.16 -1.78	8.06 13.58	1.7 9	
		1b 1c	0.76 0.13	8.06 2.54	1.16 -0.14	
(0.0.0.004-)	+ DL + E 400 day M4	4	-0.50	4.03	-0.16	
(0.9 - 0.25ds)	* DL + E 180 deg M1	1 1a	-1.41	12.10	1.76	
		1b 1c	1.41 0.50	12.10 4.03	1.76 -0.16	
(0.9 - 0.25ds)	* DL + E 180 deg M2	1	-0.52	4.16	-0.24	
(0.0 0.2000)	52 · 2 100 dog mil	1a 1b	-1.40 1.40	11.97 11.97	1.69 1.69	
		10 10	0.52	4.16	-0.24	
(0.9 - 0.2Sds)	* DL + E 225 deg M1	1	-0.07	2.36	-0.07	
, <i>,</i>		1a 1b	-0.71 1.85	8.06 13.77	1.21 1.85	
		1c	1.20	8.06	-0.72	
(0.9 - 0.2Sds)	* DL + E 225 deg M2	1	-0.13	2.54	-0.14	
,		1a	-0.76	8.06	1.16	

Site Number:	88009		Code:		ANSI/TIA-222-G	@2007 - 2017 by ATC IP LLC. All rights reserved.
Site Name:	CORNWALL CT, CT		Engineering	Number:	OAA714883_C3_01	10/30/2017 4:08:29 PM
Customer:	SPRINT NEXTEL					
		1b 1c	1.78 1.16	13.58 8.06	1.79 -0.76	
(0.9 - 0.2Sds) *	' DL + E 270 deg M1	1	-0.16	4.03	-0.51	
		1a 1b	-0.16 1.76	4.03 12.10	0.51 1.42	
		10 1c	1.76	12.10	-1.42	
(0.0 - 0.25de) *	' DL + E 270 deg M2	1	-0.23	4.16	-0.52	
(0.3 - 0.2003)	DE · E 210 deg M2	1a	-0.23	4.16	0.52	
		1b	1.68	11.97	1.40	
		1c	1.68	11.97	-1.40	
(0.9 - 0.2Sds) *	* DL + E 315 deg M1	1	-0.71	8.06	-1.21	
. ,	5	1a	-0.07	2.36	0.07	
		1b	1.20	8.06	0.72	
		1c	1.85	13.77	-1.85	
(0.9 - 0.2Sds) *	DL + E 315 deg M2	1	-0.76	8.06	-1.16	
. ,		1a	-0.13	2.54	0.14	
		1b	1.16	8.06	0.76	
		1c	1.78	13.58	-1.79	
1.0D + 1.0W Se	ervice Normal	1	-3.22	28.65	-5.05	
		1a	0.90	-7.89	-2.72	
		1b	-0.90	-7.89	-2.72	
		1c	3.22	28.65	-5.05	
1.0D + 1.0W Se	ervice 45 deg	1	-5.53	37.16	-5.55	
	•	1a	-2.53	10.43	-0.19	
		1b	-3.22	-16.41	-3.22	
		10	-0.21	10.33	-2.53	
1.0D + 1.0W Se	ervice 90 dea	1	-5.04	28.71	-3.23	
		1a	-5.04	28.71	3.23	
		1b	-2.73	-7.96	-0.90	
		1c	-2.73	-7.96	0.90	
1.0D + 1.0W Se	ervice 135 deg	1	-2.53	10.43	0.19	
	-	1a	-5.53	37.16	5.55	
		1b	-0.21	10.33	2.53	
		1c	-3.22	-16.41	3.22	
1.0D + 1.0W Se	ervice 180 deg	1	0.90	-7.89	2.72	
		1a	-3.22	28.65	5.05	
		1b	3.22	28.65	5.05	
		10	-0.90	-7.89	2.72	
1.0D + 1.0W Se	ervice 225 deg	1	3.22	-16.41	3.22	
	-	1a	0.21	10.33	2.53	
		1b	5.53	37.16	5.55	
		1c	2.53	10.43	0.19	
1.0D + 1.0W Se	ervice 270 deg	1	2.73	-7.96	0.90	
		1a	2.73	-7.96	-0.90	
		1b 1 -	5.04	28.71	3.23	
		1c	5.04	28.71	-3.23	
1.0D + 1.0W Se	ervice 315 deg	1	0.21	10.33	-2.53	
		1a	3.22	-16.41	-3.22	
		1b	2.53	10.43	-0.19	
		1c	5.53	37.16	-5.55	

Site Number:	88009		Code:	4	ANSI/TIA-222-G	@2007 - 2017 by ATC IP LLC. All rights reserved.
Site Name:	CORNWALL CT, C	ст	Engineering	Number:	OAA714883_C3_01	10/30/2017 4:08:29 PM
Customer:	SPRINT NEXTEL					
Max Uplift: Max Down: Max Shear:	87.06 (kip) 108.88 (kip) 24.22 (kip)	Moment Ice: Total Down Ice: Total Shear Ice:	707.51 (kip-ft) 144.03 (kip) 14.57 (kip)	Moment: Total Down: Total Shear:	: 49.81 (kip)	1.2D + 1.6W 225 deg

Site Number: 88009

CORNWALL CT, CT

SPRINT NEXTEL

Site Name:

Customer:

Code:

ANSI/TIA-222-G

@2007 - 2017 by ATC IP LLC. All rights reserved.

Engineering Number:

OAA714883_C3_01

10/30/2017 4:08:29 PM

Deflections and Rotations

	Elevation	Deflection	Twist	Sway	Resultant
Load Case	(ft)	(ft)	(deg)	(deg)	(deg)
90 mph Normal to Face with No Ice	37.50	0.035	0.0316	0.7628	0.7629
90 mph Normal to Face with No Ice	50.00	0.053	0.0637	2.6629	2.6636
90 mph Normal to Face with No Ice	57.55	0.303	0.1796	2.2981	2.3052
90 mph Normal to Face with No Ice	65.00	0.551	0.1535	1.8317	1.8318
90 mph 45 degree with No Ice	37.50	0.037	-0.0699	1.0211	1.0235
90 mph 45 degree with No Ice	50.00	0.055	-0.0621	3.4722	3.4728
90 mph 45 degree with No Ice	57.55	0.329	-0.0205	3.0080	3.0081
90 mph 45 degree with No Ice	65.00	0.597	-0.0312	1.9828	1.9917
90 mph 90 degree with No Ice	37.50	0.035	0.0132	0.7706	0.7708
90 mph 90 degree with No Ice	50.00	0.053	0.0289	2.6534	2.6534
90 mph 90 degree with No Ice	57.55	0.328	0.0841	2.8427	2.8439
90 mph 90 degree with No Ice	65.00	0.600	0.0692	1.8095	1.8095
90 mph 135 degree with No Ice	37.50	0.037	0.1006	1.0211	1.0235
90 mph 135 degree with No Ice	50.00	0.055	0.1619	3.4722	3.4728
90 mph 135 degree with No Ice	57.55	0.329	0.1945	3.0080	3.0081
90 mph 135 degree with No Ice	65.00	0.597	0.1877	1.9828	1.9917
90 mph 180 degree with No Ice	37.50	0.035	0.0316	0.7628	0.7629
90 mph 180 degree with No Ice	50.00	0.053	0.0637	2.6629	2.6636
90 mph 180 degree with No Ice	57.55	0.303	0.1796	2.2981	2.3052
90 mph 180 degree with No Ice	65.00	0.551	0.1535	1.8317	1.8318
90 mph 225 degree with No Ice	37.50	0.037	-0.0590	1.0211	1.0235
90 mph 225 degree with No Ice	50.00	0.055	-0.1000	3.4722	3.4728
90 mph 225 degree with No Ice	57.55	0.329	-0.0754	3.0080	3.0081
90 mph 225 degree with No Ice	65.00	0.597	-0.0807	1.9828	1.9917
90 mph 270 degree with No Ice	37.50	0.035	0.0132	0.7706	0.7708
90 mph 270 degree with No Ice	50.00	0.053	0.0289	2.6534	2.6534
90 mph 270 degree with No Ice	57.55	0.328	0.0841	2.8427	2.8439
90 mph 270 degree with No Ice	65.00	0.600	0.0692	1.8095	1.8095 1.0235
90 mph 315 degree with No Ice	37.50	0.037	0.1006	1.0211	3.4728
90 mph 315 degree with No ice	50.00	0.055	0.1619	3.4722 3.0080	3.0081
90 mph 315 degree with No Ice	57.55	0.329	0.1945		1.9917
90 mph 315 degree with No Ice	65.00	0.597 0.035	0.1877 0.0406	1.9828 0.7113	0.7115
90 mph Normal to Face with No Ice (Reduced DL)	37.50	0.053	0.0400	2.4708	2,4714
90 mph Normal to Face with No Ice (Reduced DL)	50.00 57.55	0.301	0.0508	2.2594	2.2650
90 mph Normal to Face with No Ice (Reduced DL) 90 mph Normal to Face with No Ice (Reduced DL)	65.00	0.547	0.1350	1.8118	1.8120
•	37.50	0.037	-0.0653	0.9676	0.9698
90 mph 45 deg with No Ice (Reduced DL) 90 mph 45 deg with No Ice (Reduced DL)	50.00	0.055	-0.0578	3.2702	3.2708
90 mph 45 deg with No Ice (Reduced DL)	57.55	0.326	-0.0176	2.9509	2.9510
90 mph 45 deg with No Ice (Reduced DL)	65.00	0.592	-0.0276	1,9607	1.9671
90 mph 90 deg with No Ice (Reduced DL)	37.50	0.035	0.0178	0.7187	0.7189
90 mph 90 deg with No Ice (Reduced DL)	50.00	0.053	0.0226	2.4595	2.4595
90 mph 90 deg with No Ice (Reduced DL)	57.55	0.325	0.0741	2.7874	2.7884
90 mph 90 deg with No Ice (Reduced DL)	65.00	0.595	0.0603	1.7792	1.7792
90 mph 135 deg with No Ice (Reduced DL)	37.50	0.037	0.1029	0.9676	0.9698
90 mph 135 deg with No Ice (Reduced DL)	50.00	0.055	0.1383	3.2702	3.2708
90 mph 135 deg with No Ice (Reduced DL)	57.55	0.326	0.1634	2.9509	2.9510
90 mph 135 deg with No Ice (Reduced DL)	65.00	0.592	0.1584	1.9607	1.9671
90 mph 180 deg with No Ice (Reduced DL)	37.50	0.035	0.0406	0.7113	0.7115
90 mph 180 deg with No Ice (Reduced DL)	50.00	0.053	0.0506	2.4708	2.4714
90 mph 180 deg with No Ice (Reduced DL)	57.55	0.301	0.1591	2.2594	2.2650
90 mph 180 deg with No Ice (Reduced DL)	65.00	0.547	0.1350	1.8118	1.8120
90 mph 225 deg with No Ice (Reduced DL)	37.50	0.037	-0.0478	0.9676	0.9698
90 mph 225 deg with No Ice (Reduced DL)	50.00	0.055	-0.0862	3.2702	3.2708
90 mph 225 deg with No Ice (Reduced DL)	57.55	0.326	-0.0610	2.9509	2.9510
· - · ·					

Site Number: 88009	Code:	ANSI/TIA-222-G		@007 - 2017 by ATC	IP LLC. All rights reserved.
Site Name: CORNWALL CT, CT	Engineering Number:	OAA714883_C3 01			- 10/30/2017 4:08:29 PM
Customer: SPRINT NEXTEL		0.01.11.14000_00_0	•		
90 mph 225 deg with No Ice (Reduced DL)	65.00	0.592	-0.0667	1.9607	1.9671
90 mph 270 deg with No Ice (Reduced DL)	37.50	0.035	0.0178		0.7189
90 mph 270 deg with No Ice (Reduced DL)	50.00	0.053	0.0226		2.4595
90 mph 270 deg with No Ice (Reduced DL)	57.55	0.325	0.0741	2.7874	2.7884
90 mph 270 deg with No Ice (Reduced DL)	65.00	0.595	0.0603		1.7792
90 mph 315 deg with No Ice (Reduced DL)	37.50	0.037	0.1029	0.9676	0.9698
90 mph 315 deg with No Ice (Reduced DL) 90 mph 315 deg with No Ice (Reduced DL)	50.00 57.55	0.055	0.1383	3.2702	3.2708
90 mph 315 deg with No Ice (Reduced DL)	65.00	0.326 0.592	0.1634 0.1584	2.9509 1.9607	2.9510 1.9671
40 mph Normal with 0.75 in Radial Ice	37.50	0.010	0.0116	0.7257	0.7257
40 mph Normal with 0.75 in Radial Ice	50.00	0.015	0.0498	2.6796	2.6801
40 mph Normal with 0.75 in Radial Ice	57.55	0.092	0.0841	0.9892	0.9927
40 mph Normal with 0.75 in Radial Ice	65.00	0.169	0.0765	0.6595	0.6601
40 mph 45 deg with 0.75 in Radial Ice	37.50	0.011	-0.0472	0.8048	0.8061
40 mph 45 deg with 0.75 in Radial Ice 40 mph 45 deg with 0.75 in Radial Ice	50.00 57.55	0.016	-0.0338	2.9417	2.9419
40 mph 45 deg with 0.75 in Radial Ice	65.00	0.102 0.186	-0.0249 -0.0275	1.2913 0.7124	1.2916 0.7256
40 mph 90 deg with 0.75 in Radial Ice	37.50	0.010	0.0068	0.7349	0.7350
40 mph 90 deg with 0.75 in Radial Ice	50.00	0.015	0.0271	2.7050	2.7050
40 mph 90 deg with 0.75 in Radial Ice	57.55	0.102	0.0411	1.2529	1.2530
40 mph 90 deg with 0.75 in Radial Ice	65.00	0.189	0.0391	0.7464	0.7474
40 mph 135 deg with 0.75 in Radial Ice	37.50	0.011	0.0554	0.8048	0.8061
40 mph 135 deg with 0.75 in Radial Ice	50.00	0.016	0.1140	2.9417	2.9419
40 mph 135 deg with 0.75 in Radial Ice 40 mph 135 deg with 0.75 in Radial Ice	57.55 65.00	0.102 0.186	0.1463 0.1400	1.2913 0.7124	1.2916 0.7256
40 mph 180 deg with 0.75 in Radial Ice	37.50	0.010	0.0116	0.7257	0.7257
40 mph 180 deg with 0.75 in Radial Ice	50.00	0.015	0.0498	2.6796	2.6801
40 mph 180 deg with 0.75 in Radial Ice	57.55	0.092	0.0841	0.9892	0.9927
40 mph 180 deg with 0.75 in Radial Ice	65.00	0.169	0.0765	0.6595	0.6601
40 mph 225 deg with 0.75 in Radial Ice	37.50	0.011	-0.0554	0.8048	0.8061
40 mph 225 deg with 0.75 in Radial Ice	50.00		-0.0647	2.9417	2.9419
40 mph 225 deg with 0.75 in Radiał Ice 40 mph 225 deg with 0.75 in Radial Ice	57.55 65.00	0.102	-0.0658	1.2913	1.2916
40 mph 270 deg with 0.75 in Radial Ice	37.50	0.186 0.010	-0.0648 0.0068	0.7124 0.7349	0.7256 0.7350
40 mph 270 deg with 0.75 in Radial Ice	50.00	0.015	0.0271	2.7050	2.7050
40 mph 270 deg with 0.75 in Radial Ice	57.55	0.102	0.0411	1.2529	1.2530
40 mph 270 deg with 0.75 in Radial Ice	65.00	0.189	0.0391	0.7464	0.7474
40 mph 315 deg with 0.75 in Radial Ice	37.50	0.011	0.0554	0.8048	0.8061
40 mph 315 deg with 0.75 in Radial Ice 40 mph 315 deg with 0.75 in Radial Ice	50.00	0.016	0.1140	2.9417	2.9419
40 mph 315 deg with 0.75 in Radial Ice	57.55 65.00	0.102 0.186	0.1463 0.1400	1.2913 0.7124	1.2916 0.7256
Seismic Normal M1	37.50	0.002	0.0071	0.1973	0.1975
Seismic Normal M1	50.00	0.003	0.0008	0.7299	0.7299
Seismic Normal M1	57.55	0.016	0.0035	0.2154	0.2154
Seismic Normal M1	65.00	0.028	0.0032	0.1272	0.1272
Seismic Normal M2	37.50	0.002	0.0077	0.2036	0.2037
Seismic Normal M2 Seismic Normal M2	50.00 57.65	0.003	0.0008	0.7534	0.7534
Seismic Normal M2	57.55 65.00	0.019 0.034	0.0042 0.0038	0.2402 0.1473	0.2402 0.1473
Seismic 45 deg M1	37.50	0.002	0.0070	0.2108	0.2109
Seismic 45 deg M1	50.00	0.003	0.0004	0.7726	0.7726
Seismic 45 deg M1	57.55	0.017	0.0020	0.2705	0.2705
Seismic 45 deg M1	65.00	0.030	0.0019	0.1472	0.1472
Seismic 45 deg M2 Seismic 45 deg M2	37.50	0.002	0.0075	0.2201	0.2202
Seismic 45 deg M2 Seismic 45 deg M2	50.00 57.55	0.003 0.020	0.0003	0.8072	0.8072 0.3063
Seismic 45 deg M2	65.00	0.020	0.0023 0.0021	0.3063 0.1681	0.3063
Seismic 90 deg M1	37.50	0.002	0.0058	0.2002	0.2002
Seismic 90 deg M1	50.00	0.003	0.0003	0.7381	0.7381
Seismic 90 deg M1	57.55		0.0016	0.2657	0.2657
Seismic 90 deg M1	65.00	0.032	0.0015	0.1547	0.1547
Seismic 90 deg M2	37.50	0.002	0.0061	0.2070	0.2071

Site Number:	88009	Code:	ANSI/TIA-222-G	¢	≌007 - 2017 by ATC	CIPLLC. All rights reserved.
Site Name:	CORNWALL CT, CT	Engineering Number:	OAA714883_C3_01			10/30/2017 4:08:29 PM
Customer:	SPRINT NEXTEL	• •				
Seismic 90 de		50.00	0.003	0.0004	0.7639	0.7639
Seismic 90 de		57.55	0.021	0.0017	0.3009	0.3009
Seismic 90 de		65.00	0.039	0.0015	0.1781	0.1781
Seismic 135 d		37.50	0.002	0.0060	0.2108	0.2109
Seismic 135 de		50.00	0.003	0.0008	0.7726	0.7726
Seismic 135 d	eg M1	57.55	0.017	0.0033	0.2705	0.2705
Seismic 135 d	eg M1	65.00	0.030	0.0029	0.1472	0.1472
Seismic 135 d		37.50	0.002	0.0063	0.2201 0.8072	0.2202 0.8072
Seismic 135 d		50.00	0.003	0.0010	0.3063	0.3063
Seismic 135 d	-	57.55 65.00	0.020 0.037	0.0039 0.0035	0.1681	0.1681
Seismic 135 d	-	37.50	0.002	0.0071	0.1973	0.1975
Seismic 180 d	•	50.00	0.002	-0.0008	0.7299	0.7299
Seismic 180 d Seismic 180 d	-	57.55	0.016	0.0035	0.2154	0.2154
Seismic 180 d	•	65.00	0.028	0.0032	0.1272	0.1272
Seismic 180 d		37.50	0.002	0.0077	0.2036	0.2037
Seismic 180 d		50.00	0.003	-0.0008	0.7534	0.7534
Seismic 180 d	-	57.55	0.019	0.0042	0.2402	0.2402
Seismic 180 d		65.00	0.034	0.0038	0.1473	0.1473
Seismic 225 d		37.50	0.002	0.0070	0.2108	0.2109
Selsmic 225 d		50.00	0.003	-0.0008	0.7726	0.7726
Seismic 225 d		57.55	0.017	0.0020	0.2705	0.2705
Seismic 225 d	eg M1	65.00	0.030	0.0019	0.1472	0.1472
Seismic 225 d	eg M2	37.50	0.002	0.0075	0.2201	0.2202
Seismic 225 d	eg M2	50.00	0.003	-0.0010	0.8072	0.8072
Seismic 225 d	•	57.55	0.020	0.0023	0.3063 0.1681	0.3063 0.1681
Seismic 225 d	-	65.00	0.037	0.0021	0.2002	0.2002
Seismic 270 d	-	37.50	0.002 0.003	-0.0058 -0.0003	0.7381	0.7381
Seismic 270 d	-	50.00	0.003	0.0016	0.2657	0.2657
Seismic 270 d	-	57.55 65.00	0.032	0.0015	0.1547	0.1547
Seismic 270 d	-	37.50	0.002	0.0061	0.2070	0.2071
Seismic 270 d	•	50.00	0.003	0.0004	0.7639	0.7639
Seismic 270 d Seismic 270 d		57.55	0.021	0.0017	0.3009	0.3009
Seismic 270 d		65.00	0.039	0.0015	0.1781	0.1781
Seismic 315 d	-	37.50	0.002	-0.0070	0.2108	0.2109
Seismic 315 d		50.00	0.003	8000.0	0.7726	0.7726
Seismic 315 d		57.55	0.017	0.0033	0.2705	0.2705
Seismic 315 d		65.00	0.030	0.0029	0.1472	0.1472
Seismic 315 d	eg M2	37.50	0.002	-0.0075	0.2201	0.2202
Seismic 315 d	eg M2	50.00	0.003	0.0010		0.8072
Seismic 315 d	-	57.55	0.020	0.0039 0.0035		0.3063 0.1681
Seismic 315 d	-	65.00	0.037	0.0055		0.1451
	uced DL) Normal M1	37.50 50.00	0.002 0.003	0.0005		0.5324
	uced DL) Normal M1	57.55	0.016	0.0018		0.1794
	uced DL) Normal M1 uced DL) Normal M1	65.00	0.028	0.0016		0.1127
•	uced DL) Normal M2	37.50	0.002	0.0070		0.1513
	uced DL) Normal M2	50.00	0.003	0.0006		0.5557
	uced DL) Normal M2	57.55	0.019	0.0023	0.2051	0.2051
	uced DL) Normal M2	65.00	0.034	0.0020		0.1336
	uced DL) 45 deg M1	37.50	0.002	0.0062		0.1583
•	uced DL) 45 deg M1	50.00	0.003	0.0008		0.5743
	uced DL) 45 deg M1	57.55	0.016	0.0011		0.2300
	uced DL) 45 deg M1	65.00	0.030	0.0010		0.1272
	uced DL) 45 deg M2	37.50	0.002	0.0069		0.1675 0.6086
	uced DL) 45 deg M2	50.00	0.003	0.0009		0.2654
	uced DL) 45 deg M2	57.55	0.020	0.0013		0.2654
	uced DL) 45 deg M2	65.00 27.50	0.036 0.002	0.0012		0.1478
•	uced DL) 90 deg M1	37.50 50.00	0.002	0.0048		0.5404
	uced DL) 90 deg M1	57.55	0.005	0.0004		0.2260
Seismic (red	uced DL) 90 deg M1	01.00				
		Dece 10				

Site Number: 88009	Code:	ANSI/TIA-222-G	@0	07 - 2017 by ATC	IP LLC. All rights reserved.
Site Name: CORNWALL CT, CT	Engineering Number:	OAA714883_C3_01			10/30/2017 4:08:29 PM
Customer: SPRINT NEXTEL					
Seismic (Reduced DL) 90 deg M1	65.00	0.032	0.0003	0.1354	0.1354
Seismic (Reduced DL) 90 deg M2	37.50	0.002	0.0051	0.1545	0.1546
Seismic (Reduced DL) 90 deg M2	50.00	0.003	0.0011	0.5660	0.5660
Seismic (Reduced DL) 90 deg M2	57.55	0.021	0.0003	0.2610	0.2610
Seismic (Reduced DL) 90 deg M2	65.00	0.039	0.0002	0.1587	0.1587
Seismic (Reduced DL) 135 deg M1	37.50	0.002	0.0049	0.1582	0.1583
Seismic (Reduced DL) 135 deg M1	50.00	0.003	0.0009	0.5743 0.2300	0.5743 0.2300
Seismic (Reduced DL) 135 deg M1 Seismic (Reduced DL) 135 deg M1	57.55 65.00	0.016 0.030	0.0015 0.0012	0.1272	0.1272
Seismic (Reduced DL) 135 deg M2	37.50	0.002	0.0052	0.1674	0.1675
Seismic (Reduced DL) 135 deg M2	50.00	0.003	0.0010	0.6086	0.6086
Seismic (Reduced DL) 135 deg M2	57.55	0.020	0.0018	0.2654	0.2654
Seismic (Reduced DL) 135 deg M2	65.00	0.036	0.0015	0.1480	0.1480
Seismic (Reduced DL) 180 deg M1	37.50	0.002	0.0063	0.1449	0.1451
Seismic (Reduced DL) 180 deg M1	50.00	0.003	0.0005	0.5324	0.5324
Seismic (Reduced DL) 180 deg M1	57.55	0.016	0.0018	0.1794	0.1794
Seismic (Reduced DL) 180 deg M1	65.00	0.028	0.0016	0.1127	0.1127
Seismic (Reduced DL) 180 deg M2 Seismic (Reduced DL) 180 deg M2	37.50 50.00	0.002 0.003	0.0070 0.0006	0.1511 0.5557	0.1513 0.5557
Seismic (Reduced DL) 180 deg M2 Seismic (Reduced DL) 180 deg M2	57.55	0.019	0.0023	0.2051	0.2051
Seismic (Reduced DL) 180 deg M2 Seismic (Reduced DL) 180 deg M2	65.00	0.034	0.0020	0.1336	0.1336
Seismic (Reduced DL) 225 deg M1	37.50	0.002	0.0062	0.1582	0.1583
Seismic (Reduced DL) 225 deg M1	50.00		-0.0009	0.5743	0.5743
Seismic (Reduced DL) 225 deg M1	57.55	0.016	0.0011	0.2300	0.2300
Seismic (Reduced DL) 225 deg M1	65.00	0.030	0.0010	0.1272	0.1272
Selsmic (Reduced DL) 225 deg M2	37.50	0.002	0.0069	0.1674	0.1675
Seismic (Reduced DL) 225 deg M2	50.00		-0.0010	0.6086	0.6086
Seismic (Reduced DL) 225 deg M2	57.55	0.020	0.0013	0.2654	0.2654 0.1480
Seismic (Reduced DL) 225 deg M2	65.00	0.036 0.002	0.0012 -0.0048	0.1480 0.1477	0.1478
Seismic (Reduced DL) 270 deg M1 Seismic (Reduced DL) 270 deg M1	37.50 50.00	0.002	0.0048	0.5404	0.5404
Seismic (Reduced DL) 270 deg M1	57.55	0.017	0.0004	0.2260	0.2260
Seismic (Reduced DL) 270 deg M1	65.00	0.032	0.0003	0.1354	0.1354
Seismic (Reduced DL) 270 deg M2	37.50	0.002	0.0051	0.1545	0.1546
Seismic (Reduced DL) 270 deg M2	50.00		-0.0011	0.5660	0.5660
Seismic (Reduced DL) 270 deg M2	57.55	0.021	0.0003	0.2610	0.2610
Selsmic (Reduced DL) 270 deg M2	65.00	0.039	0.0002	0.1587	0.1587
Seismic (Reduced DL) 315 deg M1	37.50		-0.0062	0.1582	0.1583
Seismic (Reduced DL) 315 deg M1	50.00	0.003 0.016	0.0009 0.0015	0.5743 0.2300	0.5743 0.2300
Seismic (Reduced DL) 315 deg M1 Seismic (Reduced DL) 315 deg M1	57.55 65.00	0.030	0.0012	0.1272	0.1272
Seismic (Reduced DL) 315 deg M2	37.50	0.002	-0.0069	0.1674	0.1675
Seismic (Reduced DL) 315 deg M2	50.00	0.003	0.0010	0.6086	0.6086
Seismic (Reduced DL) 315 deg M2	57.55	0.020	0.0018	0.2654	0.2654
Seismic (Reduced DL) 315 deg M2	65.00	0.036	0.0015	0.1480	0.1480
Serviceability - 60 mph Wind Normal	37.50	0.010	0.0116	0.3128	0.3130
Serviceability - 60 mph Wind Normal	50.00	0.015	0.0082	1.1175	1.1175
Serviceability - 60 mph Wind Normal	57.55	0.084 0.153	0.0239 0.0209	0.6955 0.5276	0.6959 0.5276
Serviceability - 60 mph Wind Normal	65.00 37.50		-0.0166	0.3832	0.3836
Serviceability - 60 mph Wind 45 deg Serviceability - 60 mph Wind 45 deg	50.00		-0.0091	1.3396	1.3396
Serviceability - 60 mph Wind 45 deg	57.55		-0.0037	0.9096	0.9096
Serviceability - 60 mph Wind 45 deg	65.00		-0.0048	0.5703	0.5711
Serviceability - 60 mph Wind 90 deg	37.50	0.010	0.0082	0.3152	0.3152
Serviceability - 60 mph Wind 90 deg	50.00	0.015	0.0025	1.1152	1.1152
Serviceability - 60 mph Wind 90 deg	57.55		-0.0103	0.8690	0.8691
Serviceability - 60 mph Wind 90 deg	65.00		-0.0086	0.5411	0.5411
Serviceability - 60 mph Wind 135 deg	37.50	0.010	0.0166	0.3832	0.3836 1.3396
Serviceability - 60 mph Wind 135 deg	50.00	0.015 0.090	0.0211 0.0318	1.3396 0.9096	0.9096
Serviceability - 60 mph Wind 135 deg Serviceability - 60 mph Wind 135 deg	57.55 65.00	0.090	0.0318	0.5703	0.5711
Serviceability - 60 mph Wind 189 deg	37.50	0.010	0.0116	0.3128	0.3130
contracting of their traine low wog					

		Code:	ANSI/TIA-222-G	@007 -	2017 by ATC	IP LLC. All rights reserved.
Site Number:	88009 CORNIWALL CT. CT	Engineering Number:	OAA714883_C3_01			10/30/2017 4:08:29 PM
Serviceability - Serviceability -	CORNWALL CT, CT SPRINT NEXTEL 60 mph Wind 180 deg 60 mph Wind 180 deg 60 mph Wind 180 deg 60 mph Wind 225 deg 60 mph Wind 225 deg 60 mph Wind 225 deg 60 mph Wind 225 deg 60 mph Wind 270 deg 60 mph Wind 270 deg 60 mph Wind 270 deg 60 mph Wind 270 deg 60 mph Wind 315 deg	50.00 57.55 65.00 37.50 50.00 57.55 65.00 37.50 50.00 57.55 65.00 37.50 50.00 57.55 65.00 37.50 50.00 57.55 65.00	0.015 0.084 0.153 0.010 0.015 0.090 0.165 0.010 0.015 0.091 0.167 0.010 0.015 0.091 0.167 0.010 0.015 0.090 0.165	0.0082 0.0239 0.0209 -0.0107 -0.0162 -0.0146 -0.0147 -0.0082 0.0025 0.0103 0.0086 0.0166 0.0211 0.0318 0.0301	1.1175 0.6955 0.5276 0.3832 1.3396 0.9096 0.5703 0.3152 1.1152 0.8690 0.5411 0.3832 1.3396 0.9096 0.5703	1.1175 0.6959 0.5276 0.3836 1.3396 0.9096 0.5711 0.3152 1.1152 0.8691 0.5411 0.3836 1.3396 0.9096 0.5711

Site Name: Site Number: Engineering Number: Engineer: Date: Tower Type:	Cornwall, CT 88009 OAA714883 Aaron.Rucker 10/30/17 SST w/4 Legs		Program Last Upda	nted: #REF!
Design Loads (Factored) - Analys	sis per TIA-222-G Standard	<u>s</u>	~	·V / L
Design / Analysis / Mapping:		Mapping		
Compression/Leg:		108.9 k		
Uplift/Leg:		87.1 k		
Total Shear:		58.5 k		
Moment:		2727.9 k-ft		
Tower + Appurtenance Weight:		49.8 k		
Depth to Base of Foundation (I +	t – h):	4.92 ft		
Diameter of Pier (d):		4.00 ft		
Height of Pier above Ground (h):		0.50		
Width of Pad (W):		30.00 ft		
Length of Pad (L):		30.00 ft		
Thickness of Pad (t):		2.92 ft		
Tower Leg Center to Center:		20.00 ft		
Number of Tower Legs:		4.0 (1 if MP or GT)		
Tower Center from Mat Center:		0.00 ft		
Depth Below Ground Surface to N	Water Table:	99.00 ft		
Unit Weight of Concrete:		150.0 pcf		
Unit Weight of Soil Above Water	Table:	110.0 pcf		
Unit Weight of Water:		62.4 pcf		
Unit Weight of Soil Below Water	Table:	67.0 pcf		
Friction Angle of Uplift:		35.0 Degrees		
Ultimate Coefficient of Shear Fric	tion:	0.30		
Ultimate Compressive Bearing Pr		40000.0 psf		
Ultimate Passive Pressure on Pad	Face:	1914.0 psf		
∲Soil and Concrete Weight		0.9		
φ _{Soil} :		0.75		
Overturning Moment Usage				
Design OTM:		30	944.7 k-ft	
OTM Resistance:			.44.9 k-ft	
Design OTM / OTM Resistance:			0.33 Result: OK	
Soil Bearing Pressure Usage				
Net Bearing Pressure:			1163 psf	
Factored Nominal Bearing Pressu	re:		0000 psf	
Net Bearing Pressure/Factored N			0.04 Result: OK	
Load Direction Controling Design		Diagonal to Pad		
Sliding Factor of Safety	-		-	
		-		
Total Factored Sliding Resistance: Sliding Design / Sliding Resistance			57.3 k	
Sharing Design / Shuring Resistance	5.		0.23 Result: OK	

Cnrint	PROJECT: SITE NAME: SITE CASCADE:	DO MACRO UPGRADE CT0046 ~ RING TO EXIS (R2E) PH 1A CT72XC030
SPIIIC	SITE ADDRESS: SITE TYPE: MARKET:	MOHAWK MOUNTAIN RO LITHCFIELD, CT 06759 LATTICE TOWER NORTHERN CONNECTIO

SITE INFORMATION	AREA MAP	PROJECT DESCRIPTION		DRAWING
IOWER OWNER:	Alterior Carlson	SPRINT PROPOSES TO MODIFY AN EXISTING UNMANNED TELECOMMUNICATIONS FACILITY.	SHEET NO.	SHEET
AMERICAN TOWER CORPORATION 10 PRESIDENTIAL WAY WOBURN, MA 01801	Lower City	INSTALL (3) PANEL ANTENNAS	<u>T-1</u>	TITLE SHEET & PROJECT DA
LATITUDE (NAD83):	A Martin S A Come MA	INSTALL (3) 800 MHz RRH'S BEHIND ANTENNAS	SP-1 SP-2	SPRINT SPECIFICATIONS SPRINT SPECIFICATIONS
41° 49' 16.56" N 41.82126666	Shargen . West Commaß . Vely Corner . Burngle	INSTALL (3) 2.5 GHz RRH'S BEHIND ANTENNAS INSTALL (30) JUMPER CABLES	SP-3	SPRINT SPECIFICATIONS
	venia		A-1	SITE PLAN
LONGITUDE (NAD83): 73' 17' 47.36" W	Illwarth	• INSTALL (1) HYBRID CABLE	A-2 A-3	TOWER ELEVATION ANTENNA LAYOUT & MOUNTIN
-73.29648888	Antenia Union	INSTALL 2.5 EQUIPMENT INSIDE EXISTING N.V. MMBS CABINET	A-4	EQUIPMENT & MOUNTING DET
	Torrington		A-5	CIML DETAILS
COUNTY:	Hesterry Const		A-6	PLUMBING DIAGRAM
LITCHFIELD	Kent Falls			
	I wanted and the second second		E-1	ELECTRICAL & GROUNDING P
ZONING JURISDICTION:	Mandana () and and a line of the line of	THESE PLANS HAVE BEEN DEVELOPED FOR THE MODIFICATION OF AN	E-2	ELECTRICAL & GROUNDING D
CONNECTICUT SITING COUNCIL	Warren Warren	THESE PLANS HAVE BEEN DEVELOPED FOR THE MODIFICATION OF AN EXISTING UNMANNED TELECOMMUNICATIONS FACILITY OWNED OR LEASED BY		
ZONING DISTRICT:	Sintain Kent	SPRINT IN ACCORDANCE WITH THE SCOPE OF WORK PROVIDED BY SPRINT. INFINIGY HAS INCORPORATED THIS SCOPE OF WORK IN THE PLANS, THESE PLANS ARE NOT FOR CONSTRUCTION UNLESS ACCOMPANIED BY A PASSING		
TBD	Woodville	PLANS ARE NOT FOR CONSTRUCTION UNLESS ACCOMPANIED BY A PASSING		
		STRUCTURAL STABILITY ANALYSIS PREPARED BY A LICENSED STRUCTURAL ENGINEER. STRUCTURAL ANALYSIS MUST INCLUDE BOTH TOWER AND MOUNT.		
POWER COMPANY:		APPLICABLE CODES		
CL&P	A REPORT OF THE REPORT OF T			
PHONE: (800) 286-2000	Tyler Lake Heights	ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALL IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING		
AAV PROVIDER:	jes is work (i)	CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES.		
AT&T	the second s	NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES.		
PHONE: (800) 288-2020	A Mohave Mountain State Park	1. INTERNATIONAL BUILDING CODE (2015 IBC)		
PROJECT MANAGER:	Monaya Mountain State Pork	2. TIA-222-G OR LATEST EDITION		
AIROSMITH DEVELOPMENT	A Marrier	3. NFPA 780 - LIGHTNING PROTECTION CODE 4. 2011 NATIONAL ELECTRIC CODE OR LATEST EDITION		
TERRI BURKHOLDER		5. ANY OTHER NATIONAL OR LOCAL APPLICABLE CODES, MOST RECENT EDITIONS		
(315) 719–2928 TBURKHOLDER G AIROSMITHDEVELOPMENT.COM		6. CT BUILDING CODE		
		7. LOCAL BUILDING CODE	· · · · · · · · · · · · · · · · · · ·	
	SITE	8. CITY/COUNTY ORDINANCES		
	East Comwall			
		Know what's below.		
		Call before you dig.		
		www.call811.com		

		PLANS PREPARED FOR:			
ISTING -		Sprint	t	y r	
ROAD	14	PLANS PREPARED BY: INFINITION FROM ZERO TO the solution 1033 Watervilet Shaker Rd Phone: 518-690-0790 P www.infinisy JOB NUMBER 52	INFI ns are e Albany, ax: 518-6 com	NIC endle	GY ess 12205
ſICUT		PROJECT MANAGER: AIROSSA DEVE 32 CLINTON ST SRATOGA SPRINGS, OFFICE#. (518) 308 ENGINEERING LICENSE:	LOPA NY 12866	FF Med	JT
WING INDEX HEET TITLE JECT DATA VS VS VS VS MOUNTING DETAILS TING DETAILS	REV. 0 0 0 0 0 0 0 0 0 0 0 0 0	DRAWING NOTICE: THESE DOCUMENTS ARE CON THE SOLE PROPERTY OF SPRIN REPRODUCED, DESEMINATED WITHOUT THE EXPRESS WRT SPRINT.	SED LENG FIDENTIAL T AND MA OR REDIST	Y NO RIBU	T BE
NDING DETAILS	0	REVISIONS:		_	
		DESCRIPTION	DATE	BY	REV.
					\square
					\vdash
		ISSUED FOR PERMIT	1/30/18	ETC	0
		SITE NAME:	-		4
		CT0046 ~ RI	NG T	0	
		EXISTING - (R			АI
					^ ^
		SITE NUMBER:		_	
		CT72XC	030		
		MOHAWK MC	TINT		T
				Alf	N
		ROAD			
		LITCHFIELD,	CT 06	75	9
		SHEET DESCRIPTION:			
		TITLE SHI			
		& PROJECT	DATA		
		SHEET NUMBER:			=
		T 1			
		T-1			
				-	_

THESE OUTLINE SPECIFICATIONS IN CONJUNCTION WITH THE SPRINT STANDARD CONSTRUCTION SPECIFICATIONS, INCLUDING CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.

SECTION 01 100 - SCOPE OF WORK

- PART 1 GENERAL
- 1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE SPRINT CONSTRUCTION STANDARDS FOR WIRELESS SITES, CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.
- 1.2 RELATED DOCUMENTS:
- A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION.
- B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH.
- 1.3 PRECEDENCE: SHOULD CONFLICTS OCCUR BETWEEN THE STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES INCLUDING THE STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES AND THE CONSTRUCTION DRAWINGS, INFORMATION ON THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE. NOTIFY SPRINT CONSTRUCTION MANAGER IF THIS OCCURS.
- 1.4 NATIONALLY RECOGNIZED CODES AND STANDARDS:
- A. THE WORK SHALL COMPLY WITH APPLICABLE NATIONAL AND LOCAL CODES AND STANDARDS, LATEST EDITION, AND PORTIONS THEREOF, INCLUDED BUT NOT LIMITED TO THE FOLLOWING:
- 1. GR-63-CORE NEBS REQUIREMENTS: PHYSICAL PROTECTION
- 5. GR-78-CORE GENERIC REQUIREMENTS FOR THE PHYSICAL DESIGN AND MANUFACTURE OF TELECOMMUNICATIONS EQUIPMENT.
- 3. GR-1089 CORE, ELECTROMAGNETIC COMPATIBILITY AND ELECTRICAL SAFETY -GENERIC CRITERIA FOR NETWORK TELECOMMUNICATIONS EQUIPMENT.
- 4. NATIONAL FIRE PROTECTION ASSOCIATION CODES AND STANDARDS (NFPA) INCLUDING NFPA 70 (NATIONAL ELECTRICAL CODE - "NEC") AND NFPA 101 (LIFE SAFETY CODE).
- 5. AMERICAN SOCIETY FOR TESTING OF MATERIALS (ASTM)
- 6. INSTITUTE OF ELECTRONIC AND ELECTRICAL ENGINEERS (IEEE)
- 7. AMERICAN CONCRETE INSTITUTE (ACI)
- 8. AMERICAN WIRE PRODUCERS ASSOCIATION (AWPA)
- 9. CONCRETE REINFORCING STEEL INSTITUTE (CRSI)
- 10. AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)
- 11. PORTLAND CEMENT ASSOCIATION (PCA)
- 12. NATIONAL CONCRETE MASONRY ASSOCIATION (NCMA)
- 13. BRICK INDUSTRY ASSOCIATION (BIA)
- 14. AMERICAN WELDING SOCIETY (AWS)
- 15. NATIONAL ROOFING CONTRACTORS ASSOCIATION (NRCA)
- 16. SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)
- 17. DOOR AND HARDWARE INSTITUTE (DHI)
- 18. OCCUPATIONAL SAFETY AND HEALTH ACT (OSHA)
- 19. APPLICABLE BUILDING CODES INCLUDING UNIFORM BUILDING CODE, SOUTHERN BUILDING CODE, BOCA, AND THE INTERNATIONAL BUILDING CODE.
- 1.5 DEFINITIONS
- A. WORK: THE SUM OF TASKS AND RESPONSIBILITIES IDENTIFIED IN THE CONTRACT DOCUMENTS.
- B. COMPANY: SPRINT CORPORATION
- C. ENGINEER: SYNONYMOUS WITH ARCHITECT & ENGINEER AND 'A&E". THE DESIGN PROFESSIONAL HAVING PROFESSIONAL RESPONSIBILITY FOR DESIGN OF THE PROJECT.
- CONTRACTOR: CONSTRUCTION CONTRACTOR; CONSTRUCTION VENDOR; INDIVIDUAL OR ENTITY WHO AFTER EXECUTION OF A CONTRACT IS BOUND TO ACCOMPLISH THE
- E. THIRD PARTY VENDOR OR AGENCY: A VENDOR OR AGENCY ENGAGED SEPARATELY BY THE COMPANY, A&E, OR CONTRACTOR TO PROVIDE MATERIALS OR TO ACCOMPLISH SPECIFIC TASKS RELATED TO BUT NOT INCLUDED IN THE WORK.
- F. OFCI: OWNER FURNISHED, CONTRACTOR INSTALLED EQUIPMENT.
- G. CONSTRUCTION MANAGER ALL PROJECTS RELATED COMMUNICATION TO FLOW THROUGH SPRINT REPRESENTATIVE IN CHARGE OF PROJECT...

- 1.6 SITE FAMILLARITY: CONTRACTOR SHALL BE RESPONSIBLE FOR FAMILLARIZING HIMSELF WITH ALL CONTRACT DOCUMENTS, FIELD CONDITIONS AND DIMENSIONS PRIOR TO PROCEEDING WITH CONSTRUCTION. ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE SPRINT CONSTRUCTION MANAGER PRIOR TO THE COMMENCEMENT OF WORK. NO COMPENSATION WILL BE AWARDED BASED ON CLAIM OF LACK OF KNOWLEDGE OR FIELD CONDITIONS.
- 1.7 POINT OF CONTACT: COMMUNICATION BETWEEN SPRINT AND THE CONTRACTOR SHALL FLOW THROUGH THE SINGLE SPRINT CONSTRUCTION MANAGER APPOINTED TO MANAGE THE PROJECT FOR SPRINT.
- 1.8 ON-SITE SUPERVISION: THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE RESPONSIBLE FOR CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES IN ACCORDANCE WITH THE CONTRACT DOCUMENTS. THE CONTRACTOR SHALL EMPLOY A COMPETENT SUPERINTENDENT WHO SHALL BE IN ATTENDANCE AT THE SITE AT ALL TIMES DURING PERFORMANCE OF THE WORK.
- 1.9 DRAWINGS, SPECIFICATIONS AND DETAILS REQUIRED AT JOBSITE: THE CONSTRUCTION CONTRACTOR SHALL MAINTAIN A FULL SET OF THE CONSTRUCTION DRAWINGS, STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES AND THE STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES AT THE JOBSITE FROM MOBILIZATION THROUGH CONSTRUCTION COMPLETION.
- A. THE JOBSITE DRAWINGS, SPECIFICATIONS AND DETAILS SHALL BE CLEARLY MARKED DAILY IN RED PENCIL WITH ANY CHANGES IN CONSTRUCTION OVER WHAT IS DEPICTED IN THE DOCUMENTS. AT CONSTRUCTION COMPLETION, THIS JOBSITE MARKUP SET SHALL BE DELIVERED TO THE COMPANY OR COMPANY'S DESIGNATED REPRESENTATIVE TO BE FORWARDED TO THE COMPANY'S A&E VENDOR FOR PRODUCTION OF "AS-BUILT" DRAWINGS.
- B. DETAILS ARE INTENDED TO SHOW DESIGN INTENT. MODIFICATIONS MAY BE REQUIRED TO SUIT JOB DIMENSIONS OR CONDITIONS, AND SUCH MODIFICATIONS SHALL BE INCLUDED AS PART OF THE WORK. CONTRACTOR SHALL NOTIFY SPRINT CONSTRUCTION MANAGER OF ANY VARIATIONS PRIOR TO PROCEEDING WITH THE
- C. DIMENSIONS SHOWN ARE TO FINISH SURFACES UNLESS NOTED OTHERWISE. SPACING BETWEEN EQUIPMENT IS THE REQUIRED CLEARANCE. SHOULD THERE BE ANY QUESTIONS REGARDING THE CONTRACT DOCUMENTS, EXISTING CONDITIONS AND/OR DESIGN INTENT, THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING A CLARIFICATION FROM THE SPRINT CONSTRUCTION MANAGER PRIOR TO PROCEEDING WITH THE WORK.
- 1.10 USE OF JOB SITE: THE CONTRACTOR SHALL CONFINE ALL CONSTRUCTION AND RELATED OPERATIONS INCLUDING STAGING AND STORAGE OF MATERIALS AND EQUIPMENT, PARKING, TEMPORARY FACILITIES, AND WASTE STORAGE TO THE LEASE PARCEL UNLESS OTHERWISE PERMITTED BY THE CONTRACT DOCUMENTS.
- 1.11 UTILITIES SERVICES: WHERE NECESSARY TO CUT EXISTING PIPES, ELECTRICAL WIRES, CONDUITS, CABLES, ETC., OF UTILITY SERVICES, OR OF FIRE PROTECTION OR COMMUNICATIONS SYSTEMS, THEY SHALL BE CUT AND CAPPED AT SUITABLE PLACES OR WHERE SHOWN, ALL SUCH ACTIONS SHALL BE COORDINATED WITH THE UTILITY COMPANY INVOLVED
- 1.12 PERMITS / FEES: WHEN REQUIRED THAT A PERMIT OR CONNECTION FEE BE PAID TO A PUBLIC UTILITY PROVIDER FOR NEW SERVICE TO THE CONSTRUCTION PROJECT, PAYMENT OF SUCH FEE SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR.
- 1.13 CONTRACTOR SHALL TAKE ALL MEASURES AND PROVIDE ALL MATERIAL NECESSARY FOR PROTECTING EXISTING EQUIPMENT AND PROPERTY.
- 1.14 METHODS OF PROCEDURE (MOPS) FOR CONSTRUCTION: CONTRACTOR SHALL PERFORM WORK AS DESCRIBED IN THE FOLLOWING INSTALLATION AND COMMISSIONING

NOTE: IN SHORT-FORM SPECIFICATIONS ON THE DRAWINGS, A/E TO INSERT LIST OF APPLICABLE MOPS INCLUDING EN-2012-001, EN-2013-002, EL-0568, AND TS-0193

1.15 USE OF ELECTRONIC PROJECT MANAGEMENT SYSTEMS:

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

- 3.1 TEMPORARY UTILITIES AND FACILITIES: THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL TEMPORARY UTILITIES AND FACILITIES NECESSARY EXCEPT AS OTHERWISE INDICATED IN THE CONSTRUCTION DOCUMENTS. TEMPORARY UTILITIES AND FACILITIES INCLUDE POTABLE WATER, HEAT, HVAC, ELECTRICITY, SANITARY FACILITIES, WASTE DISPOSAL FACILITIES, AND TELEPHONE/COMMUNICATION SERVICES. PROVIDE TEMPORARY UTILITIES AND FACILITIES IN ACCORDANCE WITH OSHA AND THE AUTHORITY HAVING JURISDICTION. CONTRACTOR MAY UTILIZE THE COMPANY ELECTRICAL SERVICE IN THE COMPLETION OF THE WORK WHEN IT BECOMES AVAILABLE. USE OF THE LESSORS OR SITE OWNER'S UTILITIES OR FACILITIES IS EXPRESSLY FORBIDDEN EXCEPT AS OTHERWISE ALLOWED IN THE CONTRACT DOCUMENTS.
- 3.2 ACCESS TO WORK: THE CONTRACTOR SHALL PROVIDE ACCESS TO THE JOB SITE FOR AUTHORIZED COMPANY PERSONNEL AND AUTHORIZED REPRESENTATIVES OF THE ARCHITECT/ENGINEER DURING ALL PHASES OF THE WORK.
- 3.3 TESTING: REQUIREMENTS FOR TESTING BY THIS CONTRACTOR SHALL BE AS INDICATED HEREWITH, ON THE CONSTRUCTION DRAWINGS, AND IN THE INDIVIDUAL SECTIONS OF THESE SPECIFICATIONS. SHOULD COMPANY CHOOSE TO ENGAGE ANY THIRD-PARTY TO CONDUCT ADDITIONAL TESTING, THE CONTRACTOR SHALL COOPERATE WITH AND PROVIDE A WORK AREA FOR COMPANY'S TEST AGENCY.
- 3.4 DIMENSIONS: VERIFY DIMENSIONS INDICATED ON DRAWINGS WITH FIELD DIMENSIONS BEFORE FABRICATION OR ORDERING OF MATERIALS. DO NOT SCALE DRAWINGS.

3.5 EXISTING CONDITIONS: NOTIFY THE SPRINT CONSTRUCTION MANAGER OF EXISTING CONDITIONS DIFFERING FROM THOSE INDICATED ON THE DRAWINGS. DO NOT REMOVE OR ALTER STRUCTURAL COMPONENTS WITHOUT PRIOR WRITTEN APPROVAL FROM THE ARCHITECT AND ENGINEER.

SECTION 01 200 - COMPANY FURNISHED MATERIAL AND EQUIPMENT PART 1 - GENERAL

- 1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.
- 1.2 RELATED DOCUMENTS:
 - A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION.
- SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES' ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH.
- PART 2 PRODUCTS (NOT USED)

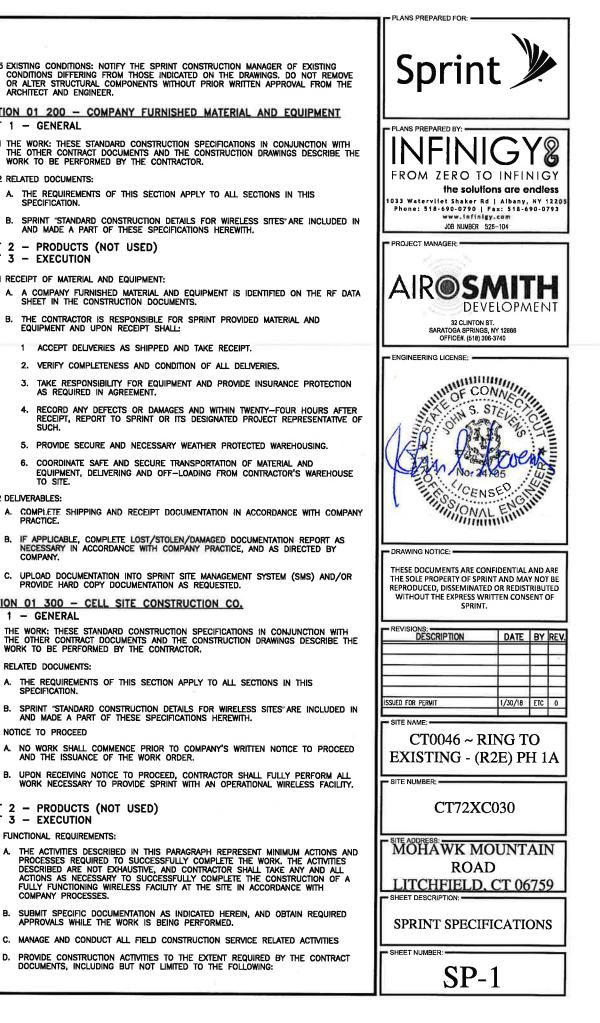
PART 3 - EXECUTION

3.1 RECEIPT OF MATERIAL AND EQUIPMENT:

SHEET IN THE CONSTRUCTION DOCUMENTS.

- B. THE CONTRACTOR IS RESPONSIBLE FOR SPRINT PROVIDED MATERIAL AND EQUIPMENT AND UPON RECEIPT SHALL:
- 1 ACCEPT DELIVERIES AS SHIPPED AND TAKE RECEIPT.
- 2. VERIFY COMPLETENESS AND CONDITION OF ALL DELIVERIES.
- 3. TAKE RESPONSIBILITY FOR EQUIPMENT AND PROVIDE INSURANCE PROTECTION AS REQUIRED IN AGREEMENT.
- 4. RECORD ANY DEFECTS OR DAMAGES AND WITHIN TWENTY-FOUR HOURS AFTER RECEIPT, REPORT TO SPRINT OR ITS DESIGNATED PROJECT REPRESENTATIVE OF
- 5. PROVIDE SECURE AND NECESSARY WEATHER PROTECTED WAREHOUSING
- 6. COORDINATE SAFE AND SECURE TRANSPORTATION OF MATERIAL AND EQUIPMENT, DELIVERING AND OFF-LOADING FROM CONTRACTOR'S WAREHOUSE

3.2 DELIVERABLES:


- A. COMPLETE SHIPPING AND RECEIPT DOCUMENTATION IN ACCORDANCE WITH COMPANY PRACTICE.
- B. IF APPLICABLE, COMPLETE LOST/STOLEN/DAMAGED DOCUMENTATION REPORT AS NECESSARY IN ACCORDANCE WITH COMPANY PRACTICE, AND AS DIRECTED BY COMPANY
- C. UPLOAD DOCUMENTATION INTO SPRINT SITE MANAGEMENT SYSTEM (SMS) AND/OR PROVIDE HARD COPY DOCUMENTATION AS REQUESTED.

SECTION 01 300 - CELL SITE CONSTRUCTION CO. PART 1 - GENERAL

1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.

1.2 RELATED DOCUMENTS:

- A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION.
- B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH.
- 1.3 NOTICE TO PROCEED
- A. NO WORK SHALL COMMENCE PRIOR TO COMPANY'S WRITTEN NOTICE TO PROCEED AND THE ISSUANCE OF THE WORK ORDER.
- B. UPON RECEIVING NOTICE TO PROCEED, CONTRACTOR SHALL FULLY PERFORM ALL WORK NECESSARY TO PROVIDE SPRINT WITH AN OPERATIONAL WIRELESS FACILITY.
- PART 2 PRODUCTS (NOT USED)
- PART 3 EXECUTION
- 3.1 FUNCTIONAL REQUIREMENTS:
 - PROCESSES REQUIRED TO SUCCESSFULLY COMPLETE THE WORK. THE ACTIVITIES DESCRIBED ARE NOT EXHAUSTIVE, AND CONTRACTOR SHALL TAKE ANY AND ALL ACTIONS AS NECESSARY TO SUCCESSFULLY COMPLETE THE CONSTRUCTION OF A FULLY FUNCTIONING WIRELESS FACILITY AT THE SITE IN ACCORDANCE WITH COMPANY PROCESSES.
 - B. SUBMIT SPECIFIC DOCUMENTATION AS INDICATED HEREIN, AND OBTAIN REQUIRED APPROVALS WHILE THE WORK IS BEING PERFORMED.
 - C. MANAGE AND CONDUCT ALL FIELD CONSTRUCTION SERVICE RELATED ACTIVITIES
 - D. DOCUMENTS, INCLUDING BUT NOT LIMITED TO THE FOLLOWING:

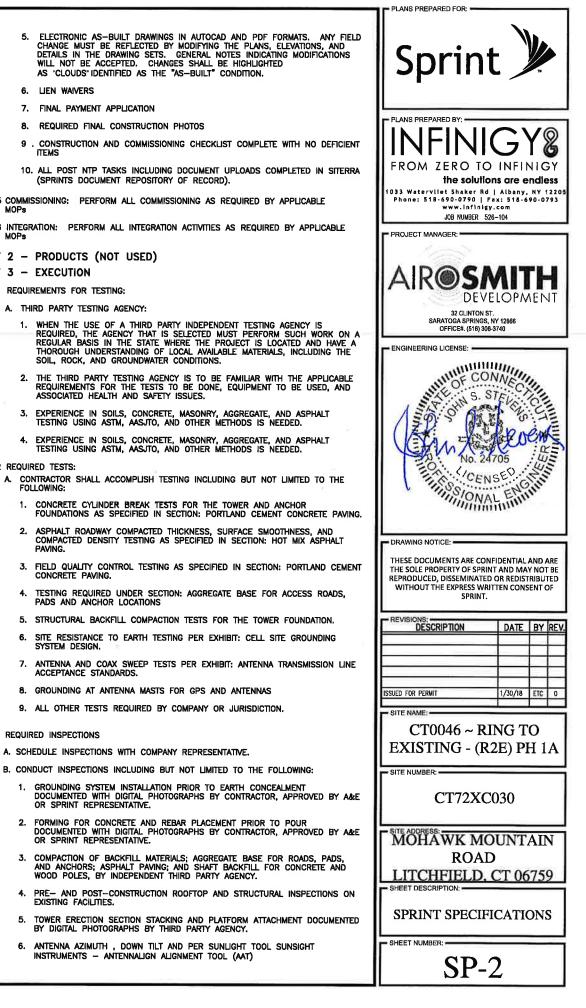
CONTINUE FROM SP-1

- 1. PERFORM ANY REQUIRED SITE ENVIRONMENTAL MITIGATION.
- 2. PREPARE GROUND SITES; PROVIDE DE-GRUBBING; AND ROUGH AND FINAL GRADING, AND COMPOUND SURFACE TREATMENTS.
- 3. MANAGE AND CONDUCT ALL ACTIVITIES FOR INSTALLATION OF UTILITIES INCLUDING ELECTRICAL AND TELCO BACKHAUL.
- 4. INSTALL UNDERGROUND FACILITIES INCLUDING UNDERGROUND POWER AND COMMUNICATIONS CONDUITS, AND UNDERGROUND GROUNDING SYSTEM.
- 5. INSTALL ABOVE GROUND GROUNDING SYSTEMS.
- 6. PROVIDE NEW HVAC INSTALLATIONS AND MODIFICATIONS.
- 7. INSTALL "H-FRAMES", CABINETS AND SHELTERS AS INDICATED.
- 8. INSTALL ROADS, ACCESS WAYS, CURBS AND DRAINS AS INDICATED.
- 9. ACCOMPLISH REQUIRED MODIFICATION OF EXISTING FACILITIES
- 10. PROVIDE ANTENNA SUPPORT STRUCTURE FOUNDATIONS
- 11. PROVIDE SLABS AND EQUIPMENT PLATFORMS
- 12. INSTALL COMPOUND FENCING, SIGHT SHIELDING, LANDSCAPING AND ACCESS BARRIERS.
- 13. PERFORM INSPECTION AND MATERIAL TESTING AS REQUIRED HEREINAFTER.
- 14. CONDUCT SITE RESISTANCE TO EARTH TESTING AS REQUIRED HEREINAFTER
- 15. INSTALL FIXED GENERATOR SETS AND OTHER STANDBY POWER SOLUTIONS.
- 16. INSTALL TOWERS, ANTENNA SUPPORT STRUCTURES AND PLATFORMS ON EXISTING TOWERS AS REQUIRED.
- 17. INSTALL CELL SITE RADIOS, MICROWAVE, GPS, COAXIAL MAINLINE, ANTENNAS, CROSS BAND COUPLERS, TOWER TOP AMPLIFIERS, LOW NOISE AMPLIFIERS AND RELATED EQUIPMENT.
- 18. PERFORM, DOCUMENT, AND CLOSE OUT ANY CONSTRUCTION CONTROL DOCUMENTS THAT MAY BE REQUIRED BY GOVERNMENT AGENCIES AND LANDLORDS
- 19. PERFORM ANTENNAL AND COAX SWEEP TESTING AND MAKE ANY AND ALL NECESSARY CORRECTIONS.
- 20. REMAIN ON SITE MOBILIZED THROUGHOUT HAND-OFF AND INTEGRATION TO ASSIST AS NEEDED UNTIL SITE IS DEEMED SUBSTANTIALLY COMPLETE AND PLACED "ON AIR."
- 3.2 GENERAL REQUIREMENTS FOR CIVIL CONSTRUCTION:
 - A. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH. AT THE COMPLETION OF THE WORK, CONTRACTOR SHALL REMOVE FROM THE SITE ALL REMAINING RUBBISH, IMPLEMENTS, TEMPORARY FACILITIES, AND SURPLUS MATERIALS.
- B. EQUIPMENT ROOMS SHALL AT ALL TIMES BE MAINTAINED "BROOM CLEAN" AND CLEAR OF DEBRIS.
- C. CONTRACTOR SHALL TAKE ALL REASONABLE PRECAUTIONS TO DISCOVER AND LOCATE ANY HAZARDOUS CONDITION.
- 1. IN THE EVENT CONTRACTOR ENCOUNTERS ANY HAZARDOUS CONDITION WHICH HAS NOT BEEN ABATED OR OTHERWISE MITIGATED, CONTRACTOR AND ALL OTHER PERSONS SHALL IMMEDIATELY STOP WORK IN THE AFFECTED AREA AND NOTIFY COMPANY IN WRITING, THE WORK IN THE AFFECTED AREA SHALL NOT BE RESUMED EXCEPT BY WRITTEN NOTIFICATION BY COMPANY.
- CONTRACTOR AGREES TO USE CARE WHILE ON THE SITE AND SHALL NOT TAKE ANY ACTION THAT WILL OR MAY RESULT IN OR CAUSE THE HAZARDOUS CONDITION TO BE FURTHER RELEASED IN THE ENVIRONMENT, OR TO FURTHER EXPOSE INDMIDUALS TO THE HAZARD.
- D. CONTRACTOR'S ACTIVITIES SHALL BE RESTRICTED TO THE PROJECT LIMITS. SHOULD AREAS OUTSIDE THE PROJECT LIMITS BE AFFECTED BY CONTRACTOR'S ACTIVITIES, CONTRACTOR SHALL IMMEDIATELY RETURN THEM TO ORIGINAL CONDITION
- E. CONDUCT TESTING AS REQUIRED HEREIN.
- 3.3 DELIVERABLES:
 - CONTRACTOR SHALL REVIEW, APPROVE, AND SUBMIT TO SPRINT SHOP DRAWINGS, PRODUCT DATA, SAMPLES, AND SIMILAR SUBMITTALS AS REQUIRED HEREINAFTER
- B. PROVIDE DOCUMENTATION INCLUDING, BUT NOT LIMITED TO, THE FOLLOWING. DOCUMENTATION SHALL BE FORWARDED IN ORIGINAL FORMAT AND/OR UPLOADED
- 1. ALL CORRESPONDENCE AND PRELIMINARY CONSTRUCTION REPORTS.
- 2. PROJECT PROGRESS REPORTS.
- 3. CIVIL CONSTRUCTION START DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- 4. ELECTRICAL SERVICE COMPLETION DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).

- 5. LINES AND ANTENNA INSTALL DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- 6. POWER INSTALL DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- 7. TELCO READY DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- 8. PPC (OR SHELTER) INSTALL DATE (POPULATE FIELD IN SMS AND/OR FORWARD
- 9. TOWER CONSTRUCTION START DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- 10. TOWER CONSTRUCTION COMPLETE DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION)
- 11. BTS AND RADIO EQUIPMENT DELIVERED AT SITE DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- 12. NETWORK OPERATIONS HANDOFF CHECKLIST (HOC WALK) COMPLETE (UPLOAD FORM IN SMS)
- 13. CIVIL CONSTRUCTION COMPLETE DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION).
- 14. SITE CONSTRUCTION PROGRESS PHOTOS UNLOADED INTO SMS.
- SECTION 01 400 SUBMITTALS & TESTS
- PART 1 GENERAL
- 1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.
- 1.2 RELATED DOCUMENTS:
 - A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION.
 - B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH.
- 1.3 SUBMITTALS:
 - A. THE WORK IN ALL ASPECTS SHALL COMPLY WITH THE CONSTRUCTION DRAWINGS AND THESE SPECIFICATIONS.
 - B. SUBMIT THE FOLLOWING TO COMPANY REPRESENTATIVE FOR APPROVAL.
 - 1. CONCRETE MIX-DESIGNS FOR TOWER FOUNDATIONS, ANCHORS PIERS, AND
 - 2. CONCRETE BREAK TESTS AS SPECIFIED HEREIN.
 - 3. SPECIAL FINISHES FOR INTERIOR SPACES, IF ANY.
 - 4. ALL EQUIPMENT AND MATERIALS SO IDENTIFIED ON THE CONSTRUCTION
 - 5. CHEMICAL GROUNDING DESIGN
 - D. ALTERNATES: AT THE COMPANY'S REQUEST, ANY ALTERNATIVES TO THE MATERIALS OR METHODS SPECIFIED SHALL BE SUBMITTED TO SPRINT'S CONSTRUCTION MANAGER FOR APPROVAL PRIOR TO BEING SHIPPED TO SITE. SPRINT WILL REVIEW AND APPROVE ONLY THOSE REQUESTS MADE IN WRITING. NO VERBAL APPROVALS WILL BE CONSIDERED. SUBMITTAL FOR APPROVAL SHALL INCLUDE A STATEMENT OF COST REDUCTION PROPOSED FOR USE OF ALTERNATE PRODUCT.

1.4 TESTS AND INSPECTIONS:

- A. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL CONSTRUCTION TESTS, INSPECTIONS AND PROJECT DOCUMENTATION.
- B. CONTRACTOR SHALL ACCOMPLISH TESTING INCLUDING BUT NOT LIMITED TO THE
 - 1. COAX SWEEPS AND FIBER TESTS PER TS-0200 REV 4 ANTENNA LINE
 - 2. AGL, AZIMUTH AND DOWNTILT USING ELECTRONIC COMMERCIAL MADE-FOR-THE-PURPOSE ANTENNA ALIGNMENT TOOL.
 - 3. CONTRACTOR SHALL BE RESPONSIBLE FOR ANY AND ALL CORRECTIONS TO ANY WORK IDENTIFIED AS UNACCEPTABLE IN SITE INSPECTION ACTIVITIES AND/OR AS A RESULT OF TESTING.
- C. REQUIRED CLOSEOUT DOCUMENTATION INCLUDES, BUT IS NOT LIMITED TO THE FOLLOWING
- AZIMUTH, DOWNTILT, AGL UPLOAD REPORT FROM ANTENNA ALIGNMENT TOOL TO SITERRA TASK 465. INSTALLED AZIMUTH, DOWNTILT, AND AGL MUST CONFORM TO THE RF DATA SHEETS. SWEEP AND FIBER TESTS
- 2. SCANABLE BARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSIBLE SERIALIZED EQUIPMENT
- 3. ALL AVAILABLE JURISDICTIONAL INFORMATION
- 4. PDF SCAN OF REDLINES PRODUCED IN FIELD


- 5. ELECTRONIC AS-BUILT DRAWINGS IN AUTOCAD AND PDF FORMATS. ANY FIELD CHANGE MUST BE REFLECTED BY MODIFYING THE PLANS, ELEVATIONS, AND DETAILS IN THE DRAWING SETS. GENERAL NOTES INDICATING MODIFICATIONS WILL NOT BE ACCEPTED. CHANGES SHALL BE HIGHLIGHTED AS "CLOUDS" IDENTIFIED AS THE "AS-BUILT" CONDITION.
- 6. LIEN WAIVERS
- 7. FINAL PAYMENT APPLICATION
 - 8. REQUIRED FINAL CONSTRUCTION PHOTOS
 - 9 . CONSTRUCTION AND COMMISSIONING CHECKLIST COMPLETE WITH NO DEFICIENT
 - 10. ALL POST NTP TASKS INCLUDING DOCUMENT UPLOADS COMPLETED IN SITERRA (SPRINTS DOCUMENT REPOSITORY OF RECORD).
- 1.5 COMMISSIONING: PERFORM ALL COMMISSIONING AS REQUIRED BY APPLICABLE
- 1.6 INTEGRATION: PERFORM ALL INTEGRATION ACTIVITIES AS REQUIRED BY APPLICABLE
- PART 2 PRODUCTS (NOT USED)
- PART 3 EXECUTION
- 3.1 REQUIREMENTS FOR TESTING
 - A. THIRD PARTY TESTING AGENCY
 - 1. WHEN THE USE OF A THIRD PARTY INDEPENDENT TESTING AGENCY IS REQUIRED, THE AGENCY THAT IS SELECTED MUST PERFORM SUCH WORK ON A REQUIRED AS IN THE STATE WHERE THE PROJECT IS LOCATED AND HAVE A THOROUGH UNDERSTANDING OF LOCAL AVAILABLE MATERIALS, INCLUDING THE SOIL, ROCK, AND GROUNDWATER CONDITIONS.
 - 2. THE THIRD PARTY TESTING AGENCY IS TO BE FAMILIAR WITH THE APPLICABLE REQUIREMENTS FOR THE TESTS TO BE DONE, EQUIPMENT TO BE USED, AND ASSOCIATED HEALTH AND SAFETY ISSUES.
 - 3. EXPERIENCE IN SOILS, CONCRETE, MASONRY, AGGREGATE, AND ASPHALT TESTING USING ASTM, AASJTO, AND OTHER METHODS IS NEEDED.
- 4. EXPERIENCE IN SOILS, CONCRETE, MASONRY, AGGREGATE, AND ASPHALT TESTING USING ASTM, AASJTO, AND OTHER METHODS IS NEEDED.
- 3.2 REQUIRED TESTS:
- A. CONTRACTOR SHALL ACCOMPLISH TESTING INCLUDING BUT NOT LIMITED TO THE FOLLOWING:
 - CONCRETE CYLINDER BREAK TESTS FOR THE TOWER AND ANCHOR FOUNDATIONS AS SPECIFIED IN SECTION: PORTLAND CEMENT CONCRETE PAVING.
 - 2. ASPHALT ROADWAY COMPACTED THICKNESS, SURFACE SMOOTHNESS, AND COMPACTED DENSITY TESTING AS SPECIFIED IN SECTION: HOT MIX ASPHALT
 - 3. FIELD QUALITY CONTROL TESTING AS SPECIFIED IN SECTION: PORTLAND CEMENT CONCRETE PAVING
 - 4. TESTING REQUIRED UNDER SECTION: AGGREGATE BASE FOR ACCESS ROADS, PADS AND ANCHOR LOCATIONS
- 5. STRUCTURAL BACKFILL COMPACTION TESTS FOR THE TOWER FOUNDATION.
 - 6. SITE RESISTANCE TO EARTH TESTING PER EXHIBIT: CELL SITE GROUNDING
 - 7. ANTENNA AND COAX SWEEP TESTS PER EXHIBIT: ANTENNA TRANSMISSION LINE ACCEPTANCE STANDARDS.
 - 8. GROUNDING AT ANTENNA MASTS FOR GPS AND ANTENNAS
 - 9. ALL OTHER TESTS REQUIRED BY COMPANY OR JURISDICTION.

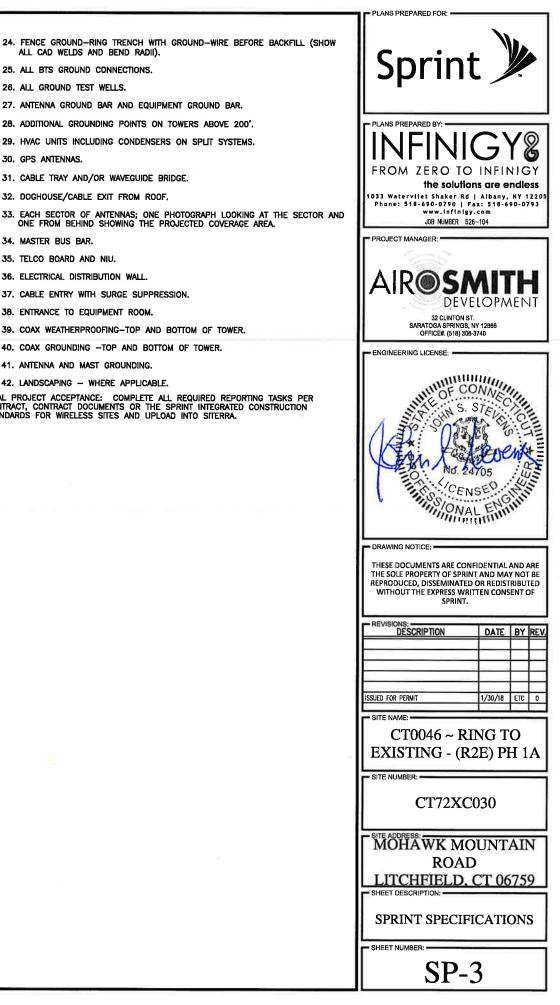
OR SPRINT REPRESENTATIVE.

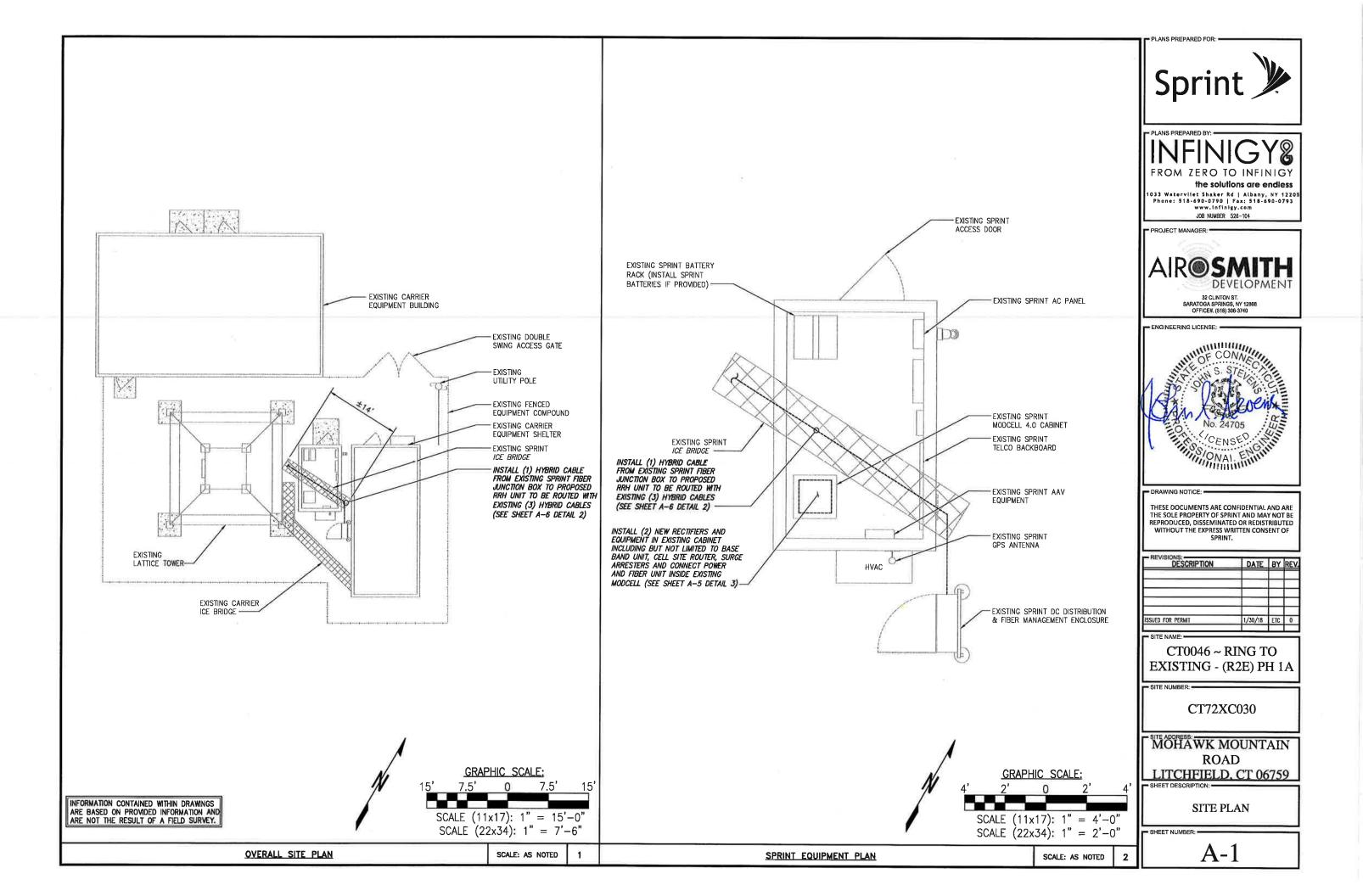
SPRINT REPRESENTATIVE.

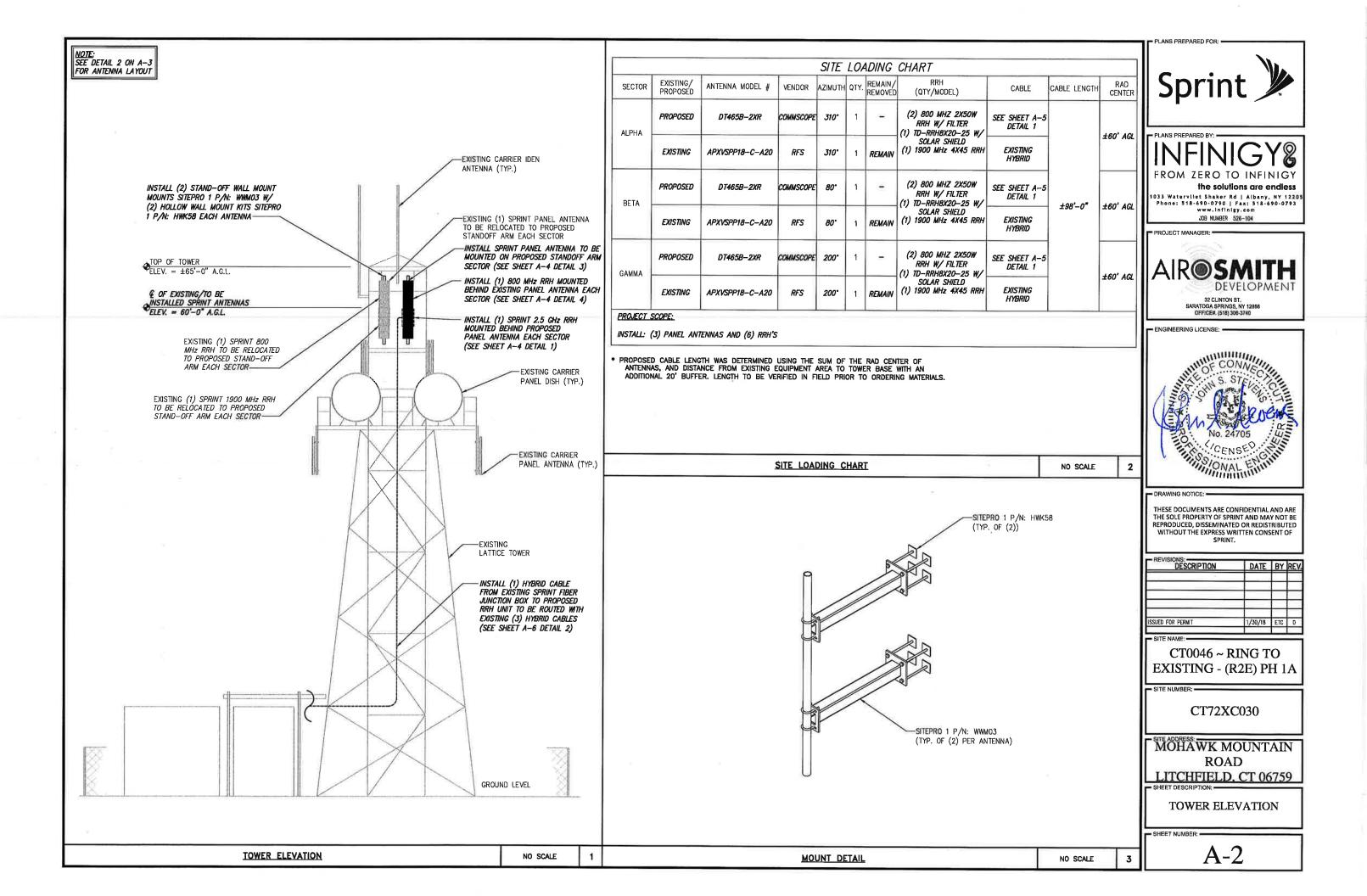
EXISTING FACILITIES.

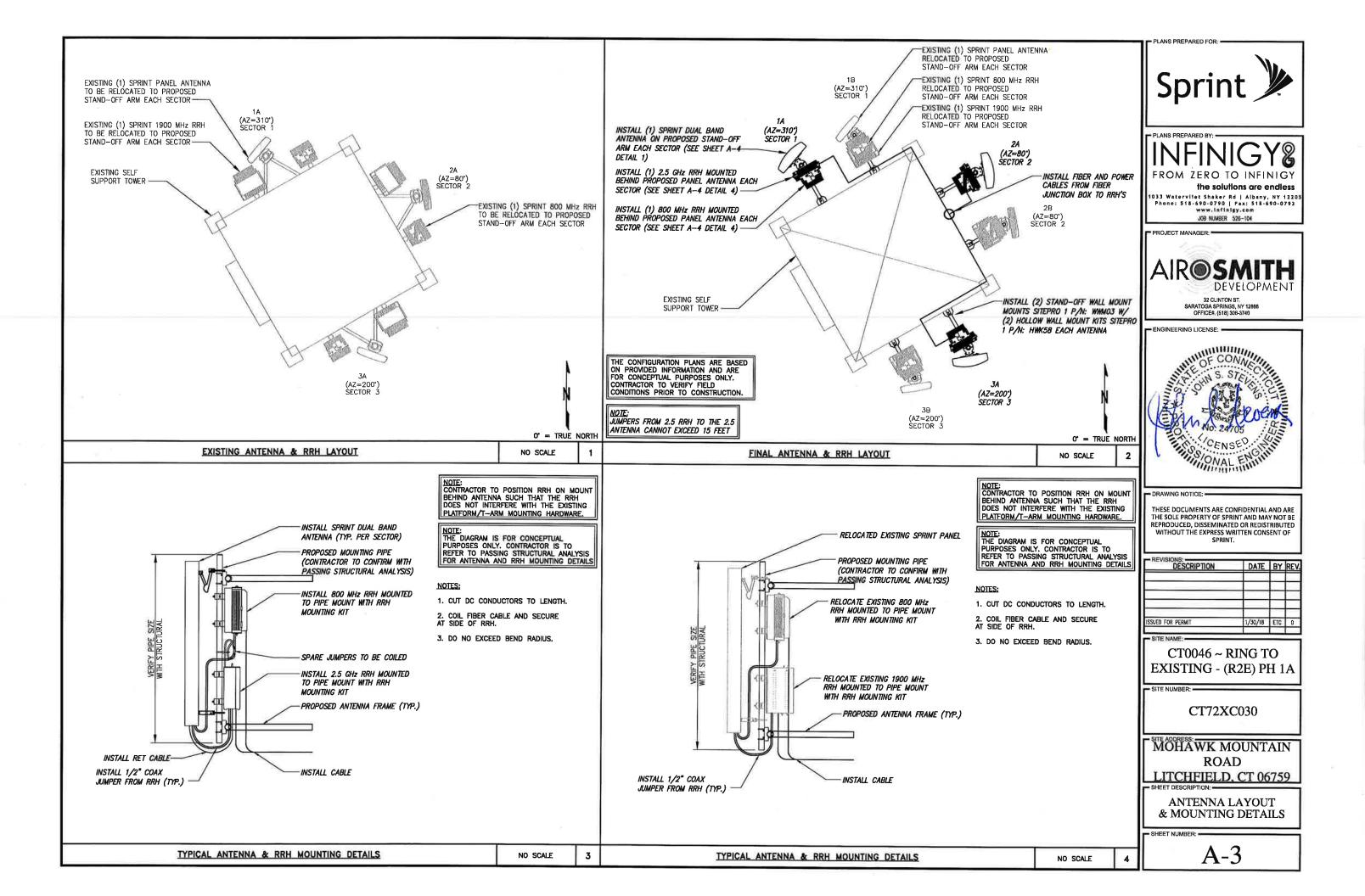
3.3 REQUIRED INSPECTIONS

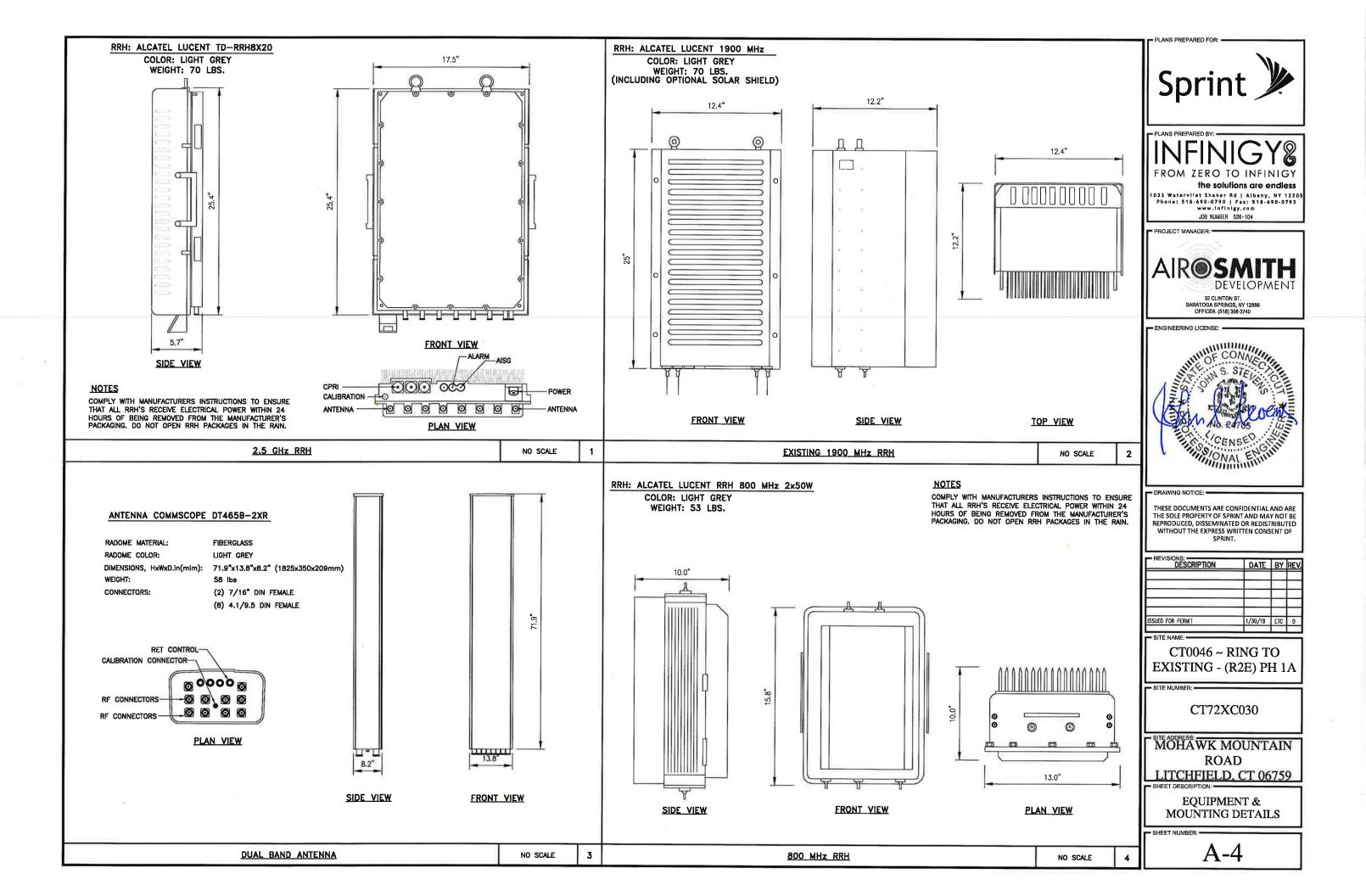
CONTINUE FROM SP-2

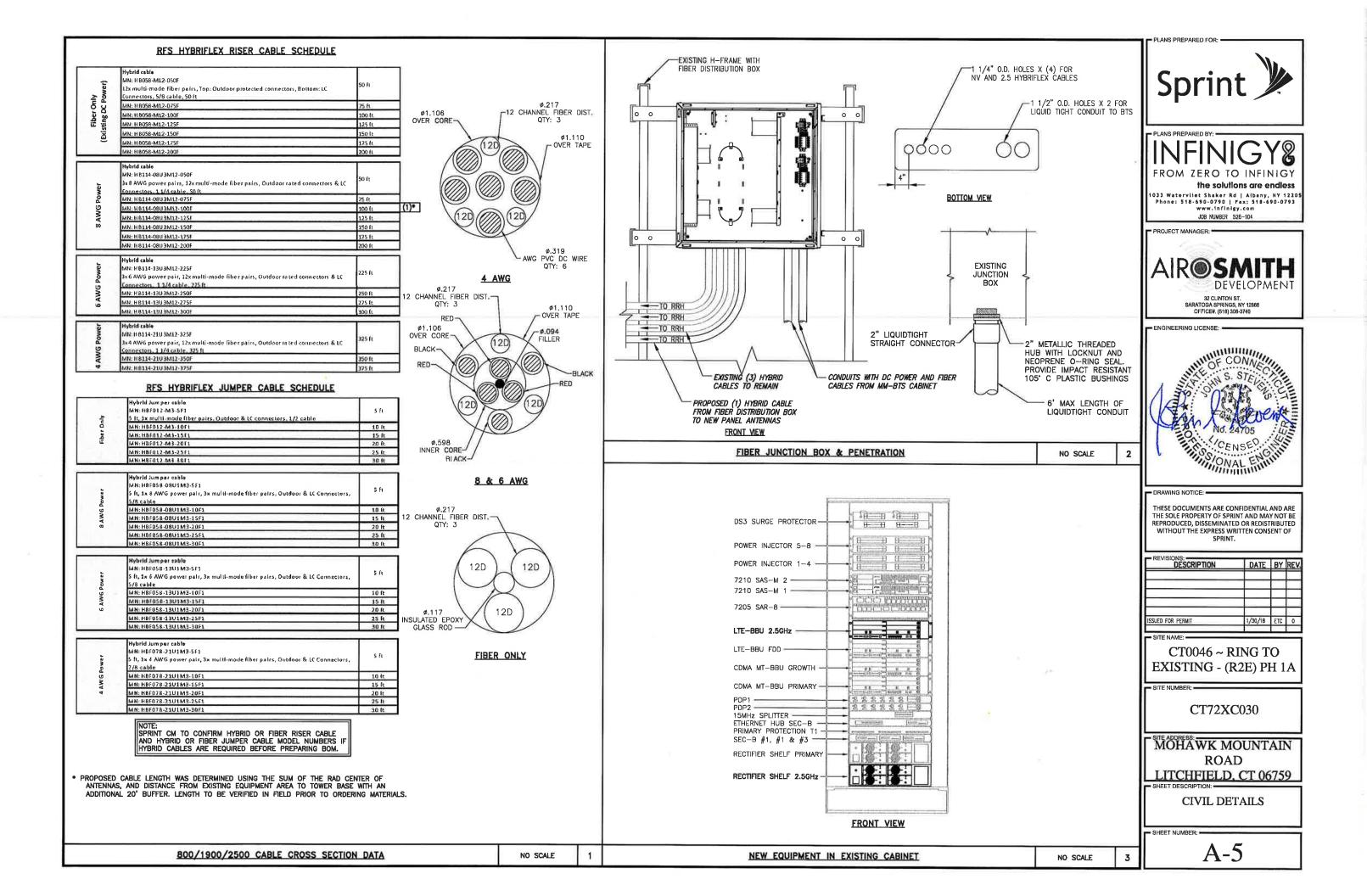

- VERIFICATION DOCUMENTED WITH THE ANTENNA CHECKLIST REPORT, BY A&E, 7. SITE DEVELOPMENT REP. OR RF REP.
- 8. FINAL INSPECTION CHECKLIST AND HANDOFF WALK (HOC.). SIGNED FORM SHOWING ACCEPTANCE BY FIELD OPS IS TO BE UPLOADED INTO SMS.
- 9. COAX SWEEP AND FIBER TESTING DOCUMENTS SUBMITTED VIA SMS FOR RF
- 10. SCAN-ABLE BARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSIBLE SERIALIZED EQUIPMENT
- 11. ALL AVAILABLE JURISDICTIONAL INFORMATION
- 12. PDF SCAN OF REDLINES PRODUCED IN FIELD
- C. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY AND ALL CORRECTIONS TO ANY WORK IDENTIFIED AS UNACCEPTABLE IN SITE INSPECTION ACTIVITIES AND/OR AS A RESULT OF TESTING.
- D. CONSTRUCTION INSPECTIONS AND CORRECTIVE MEASURES SHALL BE DOCUMENTED BY THE CONTRACTOR WITH WRITTEN REPORTS AND PHOTOGRAPHS. PHOTOGRAPHS MUST BE DIGITAL AND OF SUFFICIENT QUALITY TO CLEARLY SHOW THE SITE CONSTRUCTION. PHOTOGRAPHS MUST CLEARLY IDENTIFY THE PHOTOGRAPHED TEM AND BE LABELED WITH THE SITE CASCADE NUMBER, SITE NAME, DESCRIPTION, AND
- 3.4 DELIVERABLES: TEST AND INSPECTION REPORTS AND CLOSEOUT DOCUMENTATION SHALL BE UPLOADED TO THE SMS AND/OR FORWARDED TO SPRINT FOR INCLUSION INTO THE PERMANENT SITE FILES.
 - A. THE FOLLOWING TEST AND INSPECTION REPORTS SHALL BE PROVIDED AS APPLICABLE.
 - 1. CONCRETE MIX AND CYLINDER BREAK REPORTS.
 - 2. STRUCTURAL BACKFILL COMPACTION REPORTS.
 - 3. SITE RESISTANCE TO EARTH TEST.
 - 4. ANTENNA AZIMUTH AND DOWN TILT VERIFICATION
 - 5. TOWER ERECTION INSPECTIONS AND MEASUREMENTS DOCUMENTING TOWER INSTALLED PER SUPPLIER'S REQUIREMENTS AND THE APPLICABLE SECTIONS
 - 6. COAX CABLE SWEEP TESTS PER COMPANY'S "ANTENNA LINE ACCEPTANCE STANDARDS'
 - REQUIRED CLOSEOUT DOCUMENTATION INCLUDES THE FOLLOWING:
 - 1. TEST WELLS AND TRENCHES: PHOTOGRAPHS OF ALL TEST WELLS; PHOTOGRAPHS SHOWING ALL OPEN EXCAVATIONS AND TRENCHING PRIOR TO BACKFILLING SHOWING A TAPE MEASURE VISIBLE IN THE EXCAVATIONS INDICATING DEPTH.
 - 2. CONDUITS, CONDUCTORS AND GROUNDING: PHOTOGRAPHS SHOWING TYPICAL INSTALLATION OF CONDUCTORS AND CONNECTORS; PHOTOGRAPHS SHOWING TYPICAL BEND RADIUS OF INSTALLED GROUND WIRES AND GROUND ROD SPACING:
 - 3. CONCRETE FORMS AND REINFORCING: CONCRETE FORMING AT TOWER AND EQUIPMENT/SHELTER PAD/FOUNDATIONS - PHOTOGRAPHS SHOWING ALL REINFORCING STEEL, UTILITY AND CONDUIT STUB OUTS; PHOTOGRAPHS SHOWING CONCRETE POUR OF SHELTER SLAB/FOUNDATION, TOWER FOUNDATION AND GUY ANCHORS WITH VIBRATOR IN USE; PHOTOGRAPHS SHOWING EACH ANCHOR ON GUYED TOWERS, BEFORE CONCRETE POUR.
 - TOWER, ANTENNAS AND MAINLINE: INSPECTION AND PHOTOGRAPHS OF SECTION STACKING; INSPECTION AND PHOTOGRAPHS OF PLATFORM COMPONENT ATTACHMENT POINTS; PHOTOGRAPHS OF TOWER TOP GROUNDING; PHOTOS OF TOWER COAX LINE COLOR CODING AT THE TOP AND AT GROUND LEVEL; TOWER COAX LINE COLOR CODING AT THE TOP AND AT GROUND LEVEL; INSPECTION AND PHOTOGRAPHS OF OPERATIONAL OF TOWER LIGHTING, AND PLACEMENT OF FAA REGISTRATION SIGN; PHOTOGRAPHS SHOWING ADDITIONAL GROUNDING POINTS FOR TOWERS GREATER THAN 200 FEET.; PHOTOS OF ANTENNA GROUND BAR, EQUIPMENT GROUND BAR, AND MASTER GROUND BAR; PHOTOS OF GPS ANTENNA(S); PHOTOS OF EACH SECTOR OF ANTENNAS; ONE PHOTOGRAPH LOOKING AT THE SECTOR AND ONE FROM BEHIND SHOWING THE PROJECTED COVERAGE AREA; PHOTOS OF COAX WEATHERROOFING - TOP AND BOTTOM; PHOTOS OF COAX GROUNDING, -TOP AND BOTTOM; PHOTOS OF ANTENNA AND MAST GROUNDING; PHOTOS OF COAX CABLE ENTRY INTO SHELTER; PHOTOS OF PLATFORM MECHANICAL CONNECTIONS TO TOWER (MONOPOL F. TOWER/MONOPOLE.
 - 5. ROOF TOPS: PRE-CONSTRUCTION AND POST-CONSTRUCTION VISUAL INSPECTION AND PHOTOGRAPHS OF THE ROOF AND INTERIOR TO DETERMINE AND DOCUMENT CONDITIONS; ROOF TOP CONSTRUCTION INSPECTIONS AS REQUIRED BY THE JURISDICTION; PHOTOGRAPHS OF CABLE TRAY AND/OR ICE BRIDGE; PHOTOGRAPHS OF DOGHOUSE/CABLE EXIT FROM ROOF:
 - 6. SITE LAYOUT PHOTOGRAPHS OF THE OVERALL COMPOUND, INCLUDING EQUIPMENT PLATFORM FROM ALL FOUR CORNERS.
 - 7. FINISHED UTILITIES: CLOSE-UP PHOTOGRAPHS OF THE PPC BREAKER PANEL; CLOSE-UP PHOTOGRAPH OF THE INSIDE OF THE TELCO PANEL AND NIU; CLOSE-UP PHOTOGRAPH OF THE POWER METER AND DISCONNECT; PHOTOS OF POWER AND TELCO ENTRANCE TO COMPANY ENCLOSURE; PHOTOGRAPHS AT METER BOX AND/OR FACILITY DISTRIBUTION PANEL.
 - 8. REQUIRED MATERIALS CERTIFICATIONS: CONCRETE MIX DESIGNS: MILL CERTIFICATION FOR ALL REINFORCING AND STRUCTURAL STEEL; AND ASPHALT PAVING MIX DESIGN.
 - 9. ANY AND ALL SUBMITTALS BY THE JURISDICTION OR COMPANY.


SECTION 01 400 - SUBMITTALS & TESTS


- PART 1 -- GENERAL
 - 1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.
 - 1.2 RELATED DOCUMENTS:
 - A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION.
 - B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH.
- PART 2 PRODUCTS (NOT USED)
- PART 3 EXECUTION
- 3.1 WEEKLY REPORTS:
- A. CONTRACTOR SHALL PROVIDE SPRINT WITH WEEKLY REPORTS SHOWING PROJECT STATUS. THIS STATUS REPORT FORMAT WILL BE PROVIDED TO THE CONTRACTOR BY SPRINT. THE REPORT WILL CONTAIN SITE ID NUMBER, THE MILESTONES FOR EACH SITE, INCLUDING THE BASELINE DATE, ESTIMATED COMPLETION DATE AND ACTUAL COMPLETION DATE.
- B. REPORT INFORMATION WILL BE TRANSMITTED TO SPRINT VIA ELECTRONIC MEANS AS REQUIRED. THIS INFORMATION WILL PROVIDE A BASIS FOR PROGRESS MONITORING AND PAYMENT.
- 3.2 PROJECT CONFERENCE CALLS:
- A. SPRINT MAY HOLD WEEKLY PROJECT CONFERENCE CALLS, CONTRACTOR WILL BE REQUIRED TO COMMUNICATE SITE STATUS, MILESTONE COMPLETIONS AND UPCOMING MILESTONE PROJECTIONS, AND ANSWER ANY OTHER SITE STATUS QUESTIONS AS NECESSARY
- 3.3 PROJECT TRACKING IN SMS:
- A. CONTRACTOR SHALL PROVIDE SCHEDULE UPDATES AND PROJECTIONS IN THE SMS SYSTEM ON A WEEKLY BASIS.
- 3.4 ADDITIONAL REPORTING:
- A. ADDITIONAL OR ALTERNATE REPORTING REQUIREMENTS MAY BE ADDED TO THE REPORT AS DETERMINED TO BE REASONABLY NECESSARY BY COMPANY.
- 3.5 PROJECT PHOTOGRAPHS:
- A. FILE DIGITAL PHOTOGRAPHS OF COMPLETED SITE IN JPEG FORMAT IN THE SMS PHOTO LIBRARY FOR THE RESPECTIVE SITE. PHOTOGRAPHS SHALL BE CLEARLY LABELED WITH SITE NUMBER, NAME AND DESCRIPTION, AND SHALL INCLUDE AT A MINIMUM THE FOLLOWING AS APPLICABLE:
 - 1. 1SHELTER AND TOWER OVERVIEW.
- 2. TOWER FOUNDATION(S) FORMS AND STEEL BEFORE POUR (EACH ANCHOR ON GUYED TOWERS).
- 3. TOWER FOUNDATION(S) POUR WITH VIBRATOR IN USE (EACH ANCHOR ON GUYED TOWERS).
- 4. TOWER STEEL AS BEING INSTALLED INTO HOLE (SHOW ANCHOR STEEL ON GUYED TOWERS).
- 5. PHOTOS OF TOWER SECTION STACKING.
- 6. CONCRETE TESTING / SAMPLES.
- 7. PLACING OF ANCHOR BOLTS IN TOWER FOUNDATION.
- 8. BUILDING/WATER TANK FROM ROAD FOR TENANT IMPROVEMENTS OR COMMENTS.
- 9. SHELTER FOUNDATION -- FORMS AND STEEL BEFORE POURING.
- 10. SHELTER FOUNDATION POUR WITH VIBRATOR IN USE.
- 11. COAX CABLE ENTRY INTO SHELTER.
- 12. PLATFORM MECHANICAL CONNECTIONS TO TOWER/MONOPOLE.
- 13. ROOFTOP PRE AND POST CONSTRUCTION PHOTOS TO INCLUDE PENETRATIONS
- 14. PHOTOS OF TOWER TOP COAX LINE COLOR CODING AND COLOR CODING AT GROUND LEVEL
- 15. PHOTOS OF ALL APPROPRIATE COMPANY OR REGULATORY SIGNAGE.
- 16. PHOTOS OF EQUIPMENT BOLT DOWN INSIDE SHELTER
- 17. POWER AND TELCO ENTRANCE TO COMPANY ENCLOSURE AND POWER AND TELCO SUPPLY LOCATIONS INCLUDING METER/DISCONNECT.
- 18. ELECTRICAL TRENCH(S) WITH ELECTRICAL / CONDUIT BEFORE BACKFILL.
- 19. ELECTRICAL TRENCH(S) WITH FOIL-BACKED TAPE BEFORE FURTHER BACKFILL
- 20. TELCO TRENCH WITH TELEPHONE / CONDUIT BEFORE BACKFILL.
- 21. TELCO TRENCH WITH FOIL-BACKED TAPE BEFORE FURTHER BACKFILL
- 22. SHELTER GROUND-RING TRENCH WITH GROUND-WIRE BEFORE BACKFILL (SHOW ALL CAD WELDS AND BEND RADII).
- 23. TOWER GROUND-RING TRENCH WITH GROUND-WIRE BEFORE BACKFILL (SHOW ALL CAD WELDS AND BEND RADII).


- 24. FENCE GROUND-RING TRENCH WITH GROUND-WIRE BEFORE BACKFILL (SHOW ALL CAD WELDS AND BEND RADII).
- 25. ALL BTS GROUND CONNECTIONS.
- 26. ALL GROUND TEST WELLS.
- 27. ANTENNA GROUND BAR AND EQUIPMENT GROUND BAR.
- 28. ADDITIONAL GROUNDING POINTS ON TOWERS ABOVE 200'.
- 30. GPS ANTENNAS.
- 31. CABLE TRAY AND/OR WAVEGUIDE BRIDGE.
- 32. DOGHOUSE/CABLE EXIT FROM ROOF
- 33. EACH SECTOR OF ANTENNAS; ONE PHOTOGRAPH LOOKING AT THE SECTOR AND ONE FROM BEHIND SHOWING THE PROJECTED COVERAGE AREA.
- 34. MASTER BUS BAR.
- 35. TELCO BOARD AND NIU.
- 36. ELECTRICAL DISTRIBUTION WALL
- 37. CABLE ENTRY WITH SURGE SUPPRESSION
- 38. ENTRANCE TO EQUIPMENT ROOM.
- 40. COAX GROUNDING -TOP AND BOTTOM OF TOWER
- 42. LANDSCAPING WHERE APPLICABLE.
- 41. ANTENNA AND MAST GROUNDING.


3.6 FINAL PROJECT ACCEPTANCE: COMPLETE ALL REQUIRED REPORTING TASKS PER CONTRACT, CONTRACT DOCUMENTS OR THE SPRINT INTEGRATED CONSTRUCTION STANDARDS FOR WIRELESS SITES AND UPLOAD INTO SITERRA.



ALU 211 DT465B-2XR & APXVSPP18-C-A20 wo Filters Note The RET ports can either be dairy channed at shown, or conserted individus ty to the \$00 and 2500 rad or ***** \$**********)-CIB)-**** 1900 RRH 800 RRH-(4) 6 000 .0.0.0 Q 800 RRH-2 (Top) 800 RRH-2 --

CITO

Ascio 1

御客 (……)

itional Color Case hypermotion can be found in the Sprint 75-0200 Document

RRH 1900

RRH 800

RRH 2500

Sector Number

Frequency/Radio

DCUD

Radio 2

1999年1月

RET Control Cable

Optic Cable

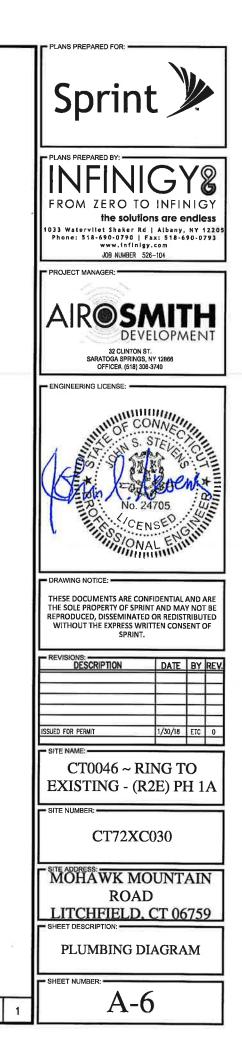
Mer Cable

Coas Jumper Cabl

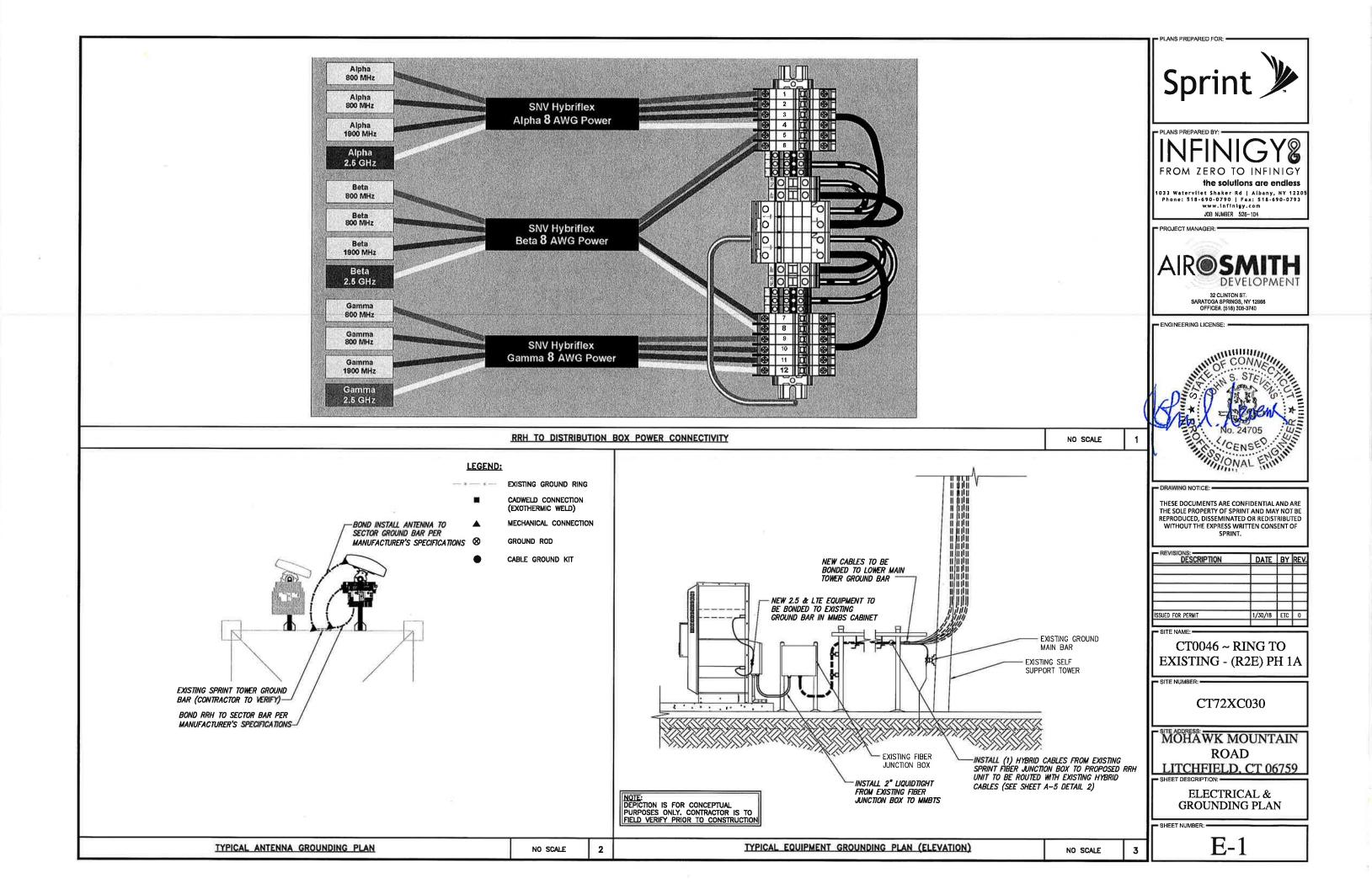
Not to Scale

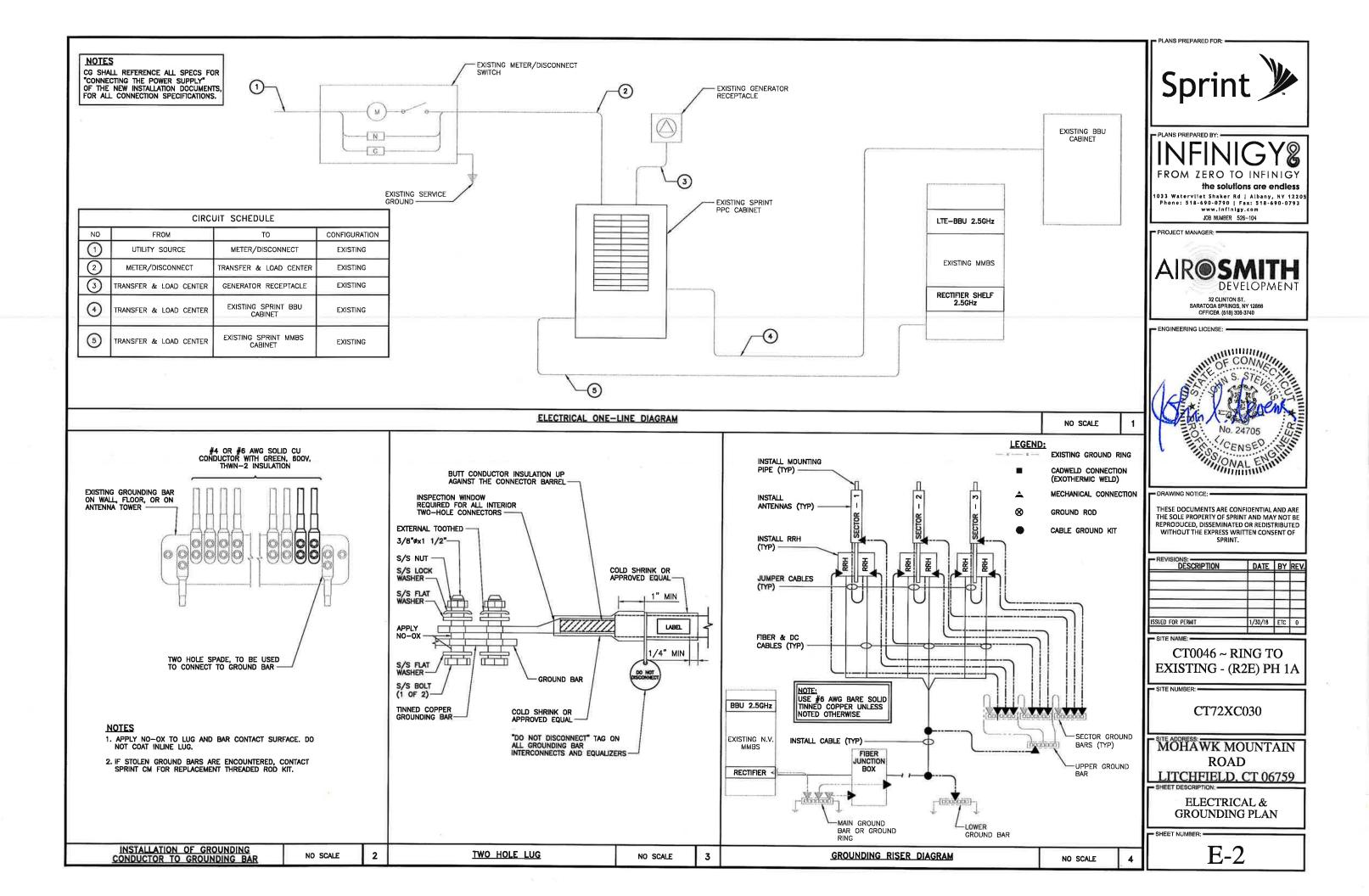
Calibration Cable

PLUMBING DIAGRAM


.

- 3


Ċ.


-

NO SCALE

