Together with Nextel

10 Industrial Avenue, Suite 3
Mahwah NJ, 07430
Phone: (201)-951-3869
Tom Kincaid
Real Estate Consultant
September 16, 2014

Hand Delivered

Ms. Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051
CC Property Owner:
American Tower Company
36 Mohawk Mt.
Cornwall, CT 06753

RE: Sprint Spectrum L.P. notice of intent to modify an existing telecommunications facility located at Mohawk Mountain Road, Cornwall CT. Known to Sprint Spectrum L.P. as site CT72XC030.

Dear Ms. Bachman:
In order to accommodate technological changes, implement Code Division Multiple Access ("CDMA") and/or Long Term Evolution ("LTE") capabilities, and enhance system performance in the state of Connecticut, Sprint Spectrum L.P. plans to modify the equipment configurations at many of its existing cell sites. Please accept this letter and attachments as notification, pursuant to R.C.S.A. Section 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2). In compliance with R.C.S.A. Section 16-50j-73, a copy of this letter and its attachments is being sent to the chief elected official of the municipality in which affected cell site is located.

CDMA employs Spread-Spectrum technology and special coding scheme to allow multiple users to be multiplexed over the same physical channel.

LTE is a new high-performance air interface for cellular mobile communications. It is designed to increase the capacity and speed of mobile telephone networks.

Attached is a summary of the planned modifications, including power density calculations reflecting the change in Sprint's operations at the site. Also included is documentation of the structural sufficiency of the tower to accommodate the revised antenna configuration.

The changes to the facility do not constitute modification as defined Connecticut General Statues ("C.G.S.") Section 16-50i(d) because the general physical characteristics of the facility will not be significantly changed or altered. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for the R.C.S.A. Section 16-50j-72(b)(2).

1. The height of the overall structure will not be affected.
2. The proposed changes will not extend the site boundaries. There will be no effect on the site compound.
3. The proposed changes will not increase the noise level at the existing facility by 6 decibels or more.
4. Radio Frequency power density may increase due to the use of one or more CDMA transmissions. Moreover, LTE will utilize additional radio frequencies newly licensed by the FCC for cellular mobile communications. However, the changes will not increase the calculated "worst case" power density for the combined operations at the site to a level at or above the applicable standard for uncontrolled environments as calculated for a mixed frequency site.

For the foregoing reasons Sprint Spectrum L.P. respectfully submits that the proposed changes at the referenced site constitute exempt modifications under R.C.S.A. Section 16-50j-72(b)(2).

Please feel free to call me at (845) 499-4712 or email
JNotaro@Transcendwireless.com with questions concerning this matter.
Thank you for your consideration.
Sincerely,
Jennifer Notaro
Real Estate Consultant
environmental | engineering | due diligence

RADIO FREQUENCY FCC REGULATORY COMPLIANCE MAXIMUM PERMISSIBLE EXPOSURE (MPE) ASSESSMENT

Sprint Existing Facility
Site ID: CT72XC030
CT0046 ~ Ring to Existing - (R2E) PH 1A
Mohawk Mountain Road
Litchfield, CT 06759

September 11, 2014

EBI Project Number: 62144676

September 11, 2014

Sprint
Attn: RF Engineering Manager
1 International Boulevard, Suite 800
Mahwah, NJ 07495
Re: Radio Frequency Maximum Permissible Exposure (MPE) Assessment for Site:
CT72XC030 - CT0046 ~ Ring to Existing - (R2E) PH 1A
Site Total: $\mathbf{8 6 . 9 9 \%}$ - MPE \% in full compliance
EBI Consulting was directed to analyze the proposed upgrades to the existing Sprint facility located at Mohawk Mountain Road, Litchfield, CT, for the purpose of determining whether the radio frequency (RF) exposure levels from the proposed Sprint equipment upgrades on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm} 2$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(b)(1)-(b)(3)$, to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The general population exposure limit for the cellular band (850 MHz Band) is approximately $567 \mu \mathrm{~W} / \mathrm{cm}^{2}$, and the general population exposure limit for the 1900 MHz and 2500 MHz bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed upgrades to the existing Sprint Wireless antenna facility located at Mohawk Mountain Road, Litchfield, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. All calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all emissions were calculated using the following assumptions:

1) 2 channels in the 1900 MHz Band were considered for each sector of the proposed installation.
2) 1 channel in the 800 MHz Band was considered for each sector of the proposed installation.
3) 2 channels in the 2500 MHz Band were considered for each sector of the proposed installation.
4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
environmental | engineering | due diligence
5) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
6) The antennas used in this modeling are the RFS APXVSPP18-C-A20 and the RFS APXVTM14-C-I20. This is based on feedback from the carrier with regards to anticipated antenna selection. The RFS APXVSPP18-C-A20 has a 15.9 dBd gain value at its main lobe at 1900 MHz and 13.4 dBd at its main lobe for 850 MHz . The RFS APXVTM14-C-I20 has a 15.9 dBd gain value at its main lobe at 2500 MHz . The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
7) The antenna mounting height centerline for the proposed antennas is $\mathbf{6 0}$ feet above ground level (AGL).
8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculation were done with respect to uncontrolled / general public threshold limits

environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were well within the allowable limits for general public Maximum Permissible Exposure (MPE) to radio frequency energy.

The anticipated Maximum Composite contributions from the Sprint facility are $\mathbf{1 6 . 7 2 \%}$ ($\mathbf{5 . 5 7 \%}$ from sector $\mathbf{1 , 5 . 5 7 \%}$ from sector 2 and $\mathbf{5 . 5 7 \%}$ from sector 3) of the allowable FCC established general public limit considering all three sectors simultaneously sampled at the ground level.

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{8 6 . 9 9 \%}$ of the allowable FCC established general public limit sampled at 6 feet above ground level. This total composite site value is based upon MPE values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

EBI Consulting
21 B Street
Burlington, MA 01803

AMERICANTOWER ${ }^{\text {® }}$
CORPORATION

Structural Analysis Report

Structure	$: 65$ ft Self Supported Tower
ATC Site Name	$:$ Cornwall CT, CT
ATC Site Number	$: 88009$
Engineering Number	$: 58996621$
Proposed Carrier	$:$ Sprint Nextel
Carrier Site Name	$:$ Cornwall CT
Carrier Site Number	$:$ CT72XC030
Site Location	$:$ MOHAWK MTN.
	Cornwall, CT 06759-4232
	$: 41.821303,-73.296442$
County	$:$ Jitchfield
Date	: 96%
Max Usage	Pass
Result	

Najaf Ali

AMERICANTOWER ${ }^{\text {® }}$
 CORPORATION

Table of Contents

Introduction 1
Supporting Documents 1
Analysis 1
Conclusion 1
Existing and Reserved Equipment 2
Equipment to be Removed. 2
Proposed Equipment 2
Structure Usages 3
Foundations 3
Deflection, Twist, and Sway. 3
Standard Conditions 4
Calculations Attached

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 65 ft self supported tower to reflect the change in loading by Sprint Nextel.

Supporting Documents

Tower Drawings	CSEI ATC \#26472221 dated September 19, 2006

Analysis

The tower was analyzed using American Tower Corporation's tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/EIA-222.

Basic Wind Speed:	80 mph (Fastest Mile)
Basic Wind Speed w/ Ice:	69 mph (Fastest Mile)w/ 1/2" radial ice concurrent
Code:	ANSI/TIA/EIA-222-F / 2003 IBC , Sec. 1609.1.1, Exception (5) \& Sec. 3108.4 w/ 2005 CT Supplement \& 2009 CT Amendment

Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

Existing and Reserved Equipment

Elevation ${ }^{1}$ (ft)		Qty	Antenna	Mount Type	Lines	Carrier
Mount	RAD					
72.0	76.0	1	8' Dipole	Leg	(2) 7/8" Coax	--
	72.0	1	8' Yagi			
65.0	65.0	3	KMW AM-X-CD-16-65-00T-RET	Leg	(2) 0.78 " AWG 6 (12) 1 1/4" Coax (1) $3^{\prime \prime}$ Conduit (1) 0.39" Cable	AT\&T Mobility
		6	Ericsson RRUS 11 (Band 12)			
		6	Powerwave TT19-08BP111-001			
		1	Andrew ABT-DMDF-ADB			
		6	Allgon 7770.00A			
62.0		1	Sinclair SV228-HF2SNM	Leg	(1) 7/8" Coax	US Treasury
57.0	60.0	3	RFS APXVSPP18-C-A20	Leg	(1) $11 / 4$ " Fiber	Sprint Nextel
	57.0	3	Alcatel-Lucent 800 MHz RRH			
		3	Alcatel-Lucent RRH2x40 (700)			
50.0	50.0	4	10' HP Dish	Large Platform	-	--
48.0	48.0	3	Decibel 776QNB120EXM	Leg	(12) 7/8" Coax (3) 1/2" Coax	Alltel
46.5	46.5	6	Antel LPA-80063/6CF	Leg	(12) 1 5/8" Coax	
		3	Antel BXA-70063/6CF-EDIN-X			
		3	Antel BXA-171063/12CF			
		6	RFS FD9R6004/2C-3L			
37.5	37.5	-	-	Platform	-	--

Equipment to be Removed

Elevation ${ }^{1}(\mathrm{ft})$		Qty	Antenna	Mount Type	Lines	Carrier
Mount	RAD					
75.0	75.0	3	EMS RR65-19-02DP		(6) $7 / 8$ " Coax	Sprint Nextel
64.0	70.0	3	Decibel DB809KE-XT			

Proposed Equipment

Elevation ${ }^{1}$ (ft)		Qty	Antenna	Mount Type	Lines	Carrier
Mount	RAD					
57.0	60.0	3	RFS APXv9TM14-ALU-I20	Leg	(1) $11 / 4$ " Hybriflex	Sprint Nextel
		3	Alcatel-Lucent TD-RRH8x20-25 w/ S. S.			

${ }^{1}$ Mount elevation is defined as height above bottom of steel structure to the bottom of mount, RAD elevation is defined as center of antenna above ground level (AGL).

Install proposed coax alongside existing Sprint Nextel coax.

CORPORATION

Structure Usages

Structural Component	Controlling Usage	Pass/Fail
Legs	43%	Pass
Diagonals	96%	Pass
Horizontals	8%	Pass

Foundations

Reaction Component	Original Design Reactions	Analysis Reactions	\% of Design
Uplift (Kips)	60.0	55.7	93%
Axial (Kips)	113.9	71.9	63%

The structure base reactions resulting from this analysis are acceptable when compared to those shown on the original structure drawings, therefore no modification or reinforcement of the foundation will be required.

Deflection, Twist and Sway*

Antenna Elevation (ft)	Deflection (ft)	Twist $\left({ }^{\circ}\right)$	Sway (Rotation) $\left({ }^{\circ}\right)$
57.0	0.066	0.003	0.600

*Deflection, Twist and Sway was evaluated considering a design wind speed of 50 mph (Fastest Mile) per ANSI/TIA/EIA-222-F.

CORPORATION

Standard Conditions

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessary limited, to:
-- Information supplied by the client regarding the structure itself, antenna, mounts and feed line loading on the structure and its components, or other relevant information.
-- Information from drawings in the possession of American Tower Corporation, or generated by field inspections or measurements of the structure.

It is the responsibility of the client to ensure that the information provided to ATC Tower Services, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and that their capacity has not significantly changed from the "as new" condition.

Unless explicitly agreed by both the client and American Tower Corporation, all services will be performed in accordance with the current revision of ANSI/TIA -222. The design basic wind speed will be determined based on the minimum basic wind speed as prescribed in ANSI/TIA-222. Although every effort is taken to ensure that the loading considered is adequate to meet the requirements of all applicable regulatory entities, we can provide no assurance to meet any other local and state codes or requirements. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. ATC Tower Services, Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.
© 2007-2014 by ATC IP LLC. All rights reserved.
Loads: 80 mph no ice
69 mph w / 1/2" radial ice
50 mph no ice

Job Information

Job Information		
Tower: 88009	Location : Cornwall CT, CT	
Code: TIA/EA-222 Rev F	Shape : Square	Base Width : 19.72 ft Client : Sprint NexteI

Sections Properties				
Section	Leg Mem bers	Diagonal Members	Horizontal Mem bers	
$\mathbf{1 - 2}$	SAE 33 ksi	6X6X0.625	SAU 36 ksi 3X4X0.25	DAL 36 ksi 3X2.5X0.25
$\mathbf{3}$	SAE 33 ksi	6X6X0.5	SAU 36 ksi 3.5X3X0.25	DAL 36 ksi 3.53X0.3125
4	SAE 33 ksi	6X6X0.5	SAE 36 ksi 3.5X3.5X0.25	DAL 36 ksi 3.5X3X0.3125
5	SAE 33 ksi	6X6X0.5		
SAE 33 ksi	6X6X0.5	SAU 36 ksi 3X2X0.25	DAL 36 ksi 2.5X2X0.25	

Discrete Appurtenance				
Elev				
72.00	Yagi			8' Yagi
72.00	Whip			8^{8} Dipole
65.01	Panel			Fire Warden Cab
65.00	Panel			KMW AM-X-CD-16-65-00T-RET
65.00	Panel		6	Ericsson RRUS 11
65.00	Panel		6	Powerwave TT19-08BP111-001
65.00	Panel		1	Andrew ABT-DMDF-ADBH
65.00	Panel		6	Algon 7770.00A
62.00	Dish		1	Sinclair SV228-HF2SNM
57.00	Panel		3	RFS APXv9TM14-ALU-I20
57.00	Panel		3	Acatel-Lucent TD-RRH8x20-25 w
57.00	Panel		3	RFS APXVSPP18-C-A20
57.00	Panel		3	Acatel-Lucent 800 MHz RRH
57.00	Panel		3	Alcatel-Lucent RRH2x40 (700)
50.00	Dish		4	10' HP Dish
50.00	Platform		1	Large Flat Platform
48.00	Panel		3	Decibel 776QNB120EXM
46.50	Panel		6	Antel LPA80063/6CF
46.50	Panel		3	Antel BXA70063/6CF-EDIN-X
46.50	Panel		3	Antel BXA171063/12CF
46.50 37.50				RFS FD9R6004/2C-3L
	Platform			Platform
Linear Appurtenance				
Elev (ft)				
From	To	Qty	Des	cription
0.000	72.000	2	7/8"	Coax
0.000	65.000	1	Wav	e Guide
0.000	65.000	1	Clim	bing Ladder
0.000	65.000	1	3 C	onduit
0.000	65.000	12	$11 / 4$	" Coax
0.000	65.000	2	0.78	AWG 6
0.000	65.000	1	0.39	Cable
0.000	62.000	1	7/8"	Coax
0.000	57.000	3	1 1/4	" Hybriflex
0.000	57.000	1	$11 / 4$	" Fiber
0.000	48.000	12	7/8"	Coax
0.000 0.000	48.000 46.500	12	$1 / 2^{\prime \prime}$	Coax

Site Number: 88009
Location: Cornwall CT, CT

Code: TIA/EIA-222 Rev F

Section Forces

LoadCase Normal No Ice

80.00 mph Wind Normal To Face with No Ice

Allow Stress Inc: 1.333
Dead LF: 1.000
Wind LF: 1.000

Sect Seq	Wind Height (ft)	$\begin{gathered} q z \\ (p s f) \end{gathered}$	Total Flat Area (sqft)	Total Round Area (sqft)	Ice Round Area (sqft)	Sol Ratio	Cf	Df	Dr	Rr		Linear Area (sqft)	Ice Linear Area (sqft)	Total Weight (lb)	Weight Ice (lb)	Struct Force (lb)	Linear Force (lb)	Total Force (lb)	Eff Face
6	57.55	19.21	33.79	14.73	0.00	0.47	2.12	1.00	1.00	0.68	43.81	3.72	0.00	2,886.1	0.0	2,131.93	170.93	2,302.86	1
5	50.05	18.45	4.30	0.11	0.00	1.00	2.10	1.00	1.00	1.00	4.42	0.02	0.00	338.5	0.0	204.52	1.10	42.99	1 **
4	43.75	17.76	35.82	28.52	0.00	0.39	2.31	1.00	1.00	0.65	54.26	3.13	0.00	4,054.5	0.0	2,664.71	132.59	2,797.31	1
3	31.25	16.38	37.66	33.03	0.00	0.38	2.35	1.00	1.00	0.64	58.87	3.13	0.00	4,290.8	0.0	2,702.87	122.33	2,825.20	1
2	18.75	16.38	40.90	33.03	0.00	0.35	2.43	1.00	1.00	0.63	61.79	3.13	0.00	4,403.8	0.0	2,932.97	122.33	3,055.30	1
1	6.25	16.38	43.06	33.03	0.00	0.32	2.51	1.00	1.00	0.62	63.66	3.13	0.00	4,649.4	0.0	3,124.78	122.33	3,247.11	1
** $=$	QzGh	Ag Con												20,623.2	0.0			14,270.76	

LoadCase Normal Ice
69.28 mph Wind Normal To Face with Ice

Allow Stress Inc: 1.333
Dead LF: 1.000
Wind LF: 1.000

Sect Seq	Wind Height (ft)	$\begin{gathered} q z \\ (p s f) \end{gathered}$	Total Flat Area (sqft)	Total Round Area (sqft)	Ice Round Area (sqft)	Sol Ratio	Cf	Df	Dr	Rr	Eff Area (sqft)	Linear Area (sqft)	Ice Linear Area (sqft)	Total Weight (lb)	Weight Ice (lb)	Struct Force (lb)	Linear Force (lb)	Total Force (lb)	Eff Face
6	57.55	14.40	33.79	32.08	16.65	0.63	1.87	1.00	1.00	0.77	58.60	3.72	1.24	4,353.9	1,467.8	1,884.89	153.83	2,038.72	1
5	50.05	13.84	4.30	0.90	0.72	1.00	2.10	1.00	1.00	1.00	5.21	0.02	0.01	425.9	87.4	180.75	0.99	32.24	1 **
4	43.75	13.32	35.82	55.32	26.18	0.55	1.97	1.00	1.00	0.72	75.84	3.13	1.04	6,197.7	2,143.2	2,373.61	119.33	2,492.94	1
3	31.25	12.29	37.66	63.13	29.45	0.54	1.99	1.00	1.00	0.72	82.92	3.13	1.04	6,604.5	2,313.6	2,416.58	110.09	2,526.67	1
2	18.75	12.29	40.90	63.57	29.85	0.49	2.06	1.00	1.00	0.69	85.07	3.13	1.04	6,800.3	2,396.5	2,572.85	110.09	2,682.94	1
1	6.25	12.29	43.06	64.03	30.26	0.46	2.14	1.00	1.00	0.68	86.35	3.13	1.04	7,158.5	2,509.1	2,713.76	110.09	2,823.85	1
** $=$	2QzGh	Ag Con												31,540.810,917.6				12,597.35	

LoadCase 45 deg No Ice
80.00 mph Wind at 45 deg From Face with No Ice

Allow Stress Inc: 1.333
Dead LF: 1.000
Wind LF: 1.000

Sect Seq	Wind Height (ft)	$\begin{gathered} q z \\ (p s f) \end{gathered}$	Total Flat Area (sqft)	Total Round Area (sqft)	Ice Round Area (sqft)	Sol Ratio	Cf	Df	Dr	Rr	Eff Area (sqft)	Linear Area (sqft)	Ice Linear Area (sqft)	Total Weight (lb)	Weight Ice (lb)	Struct Force (lb)	Linear Force (lb)	Total Force (lb)	Eff Face
6	57.55	19.21	33.79	14.73	0.00	0.47	2.12	1.20	1.20	0.68	52.57	3.72	0.00	2,886.1	0.0	2,558.32	170.93	2,729.25	1
5	50.05	18.45	4.30	0.11	0.00	1.00	2.10	1.20	1.20	1.00	5.30	0.02	0.00	338.5	0.0	245.42	1.10	42.99	1 **
4	43.75	17.76	35.82	28.52	0.00	0.39	2.31	1.20	1.20	0.65	65.11	3.13	0.00	4,054.5	0.0	3,197.65	132.59	3,330.25	1
3	31.25	16.38	37.66	33.03	0.00	0.38	2.35	1.20	1.20	0.64	70.65	3.13	0.00	4,290.8	0.0	3,243.45	122.33	3,365.78	1
2	18.75	16.38	40.90	33.03	0.00	0.35	2.43	1.20	1.20	0.63	74.15	3.13	0.00	4,403.8	0.0	3,519.56	122.33	3,641.89	1
1	6.25	16.38	43.06	33.03	0.00	0.32	2.51	1.20	1.20	0.62	76.39	3.13	0.00	4,649.4	0.0	3,749.74	122.33	3,872.07	1
** $=$	2QzGhA	Ag Con												20,623.2	0.0			16,982.22	

Site Number: 88009
Location: Cornwall CT, CT

Code: TIA/EIA-222 Rev F

Section Forces

LoadCase 45 deg Ice

Allow Stress Inc: 1.333
Dead LF: 1.000
Wind LF: 1.000

LoadCase Normal

50.00 mph Wind Normal To Face with No Ice

Dead LF: 1.000
Wind LF: 1.000

Sect Seq	Wind Height (ft)	$\begin{gathered} q z \\ (p s f) \end{gathered}$	Total Flat Area (sqft)	Total Round Area (sqft)	Ice Round Area (sqft)	Sol Ratio	Cf	Df	Dr	Rr	Eff Area (sqft)	Linear Area (sqft)	Ice Linear Area (sqft)	Total Weight (lb)	Weight Ice (lb)	Struct Force (lb)	Linear Force (lb)	Total Force (lb)	Eff Face
6	57.55	7.50	33.79	14.73	0.00	0.47	2.12		1.00	0.68	43.81	3.72	0.00	2,886.1	0.0	832.79	66.77	899.55	1
5	50.05	7.21	4.30	0.11	0.00	1.00	2.10	1.00	1.00	1.00	4.42	0.02	0.00	338.5	0.0	79.89	0.43	16.79	1 **
4	43.75	6.94	35.82	28.52	0.00	0.39	2.31	1.00	1.00	0.65	54.26	3.13	0.00	4,054.5	0.0	1,040.90	51.79	1,092.70	1
3	31.25	6.40	37.66	33.03	0.00	0.38	2.35	1.00	1.00	0.64	58.87	3.13	0.00	4,290.8	0.0	1,055.81	47.78	1,103.59	1
2	18.75	6.40	40.90	33.03	0.00	0.35	2.43	1.00	1.00	0.63	61.79	3.13	0.00	4,403.8	0.0	1,145.69	47.78	1,193.48	1
1	6.25	6.40	43.06	33.03	0.00	0.32	2.51	1.00	1.00	0.62	63.66	3.13	0.00	4,649.4	0.0	1,220.62	47.78	1,268.40	1
** $=$	QzGhA	g Cont												20,623.2	0.0			5,574.52	

LoadCase 45 deg
50.00 mph Wind at 45 deg From Face with No Ice

Allow Stress Inc: 1.333
Dead LF: 1.000
Wind LF: 1.000

Sect Seq	Wind Height (ft)	$\begin{gathered} q z \\ \text { (psf) } \end{gathered}$	Total Flat Area (sqft)	Total Round Area (sqft)	Ice Round Area (sqft)	Sol Ratio	Cf	Df	Dr	Rr	Eff Area (sqft)	Linear Area (sqft)	Ice Linear Area (sqft)	Total Weight (lb)	Weight Ice (lb)	Struct Force (Ib)	Linear Force (lb)	Total Force (lb)	Eff Face
6	57.55	7.50	33.79	14.73	0.00	0.47	2.12	1.20	1.20	0.68	52.57	3.72	0.00	2,886.1	0.0	999.34	66.77	1,066.11	1
5	50.05	7.21	4.30	0.11	0.00	1.00	2.10	1.20	1.20	1.00	5.30	0.02	0.00	338.5	0.0	95.87	0.43	16.79	1 **
4	43.75	6.94	35.82	28.52	0.00	0.39	2.31	1.20	1.20	0.65	65.11	3.13	0.00	4,054.5	0.0	1,249.08	51.79	1,300.88	1
3	31.25	6.40	37.66	33.03	0.00	0.38	2.35	1.20	1.20	0.64	70.65	3.13	0.00	4,290.8	0.0	1,266.97	47.78	1,314.76	1
2	18.75	6.40	40.90	33.03	0.00	0.35	2.43	1.20	1.20	0.63	74.15	3.13	0.00	4,403.8	0.0	1,374.83	47.78	1,422.61	1
1	6.25	6.40	43.06	33.03	0.00	0.32	2.51	1.20	1.20	0.62	76.39	3.13	0.00	4,649.4	0.0	1,464.74	47.78	1,512.53	1
** $=$	2QzGhA	g Cont												20,623.2	0.0			6,633.68	

Site Number: 88009
Location: Cornwall CT, CT

Code: TIA/EIA-222 Rev F

Tower Loading

Discrete Appurtenance Properties

Attach Elev (ft)	Description	Qty	Weight (lb)	No Ice CaAa (st)	CaAa Factor	Weight (lb)	Ice СаАа (sf)	CaAa Factor	Distance From Face (ft)	X Angle (deg)	Vert Ecc (ft)
72.00	8' Yagi	1	30.00	12.000	1.00	127.20	21.590	1.00	0.000	0.00	0.000
72.00	8' Dipole	1	25.00	3.010	1.00	50.60	4.340	1.00	0.000	0.00	4.000
65.01	Fire Warden Cab	1	1500.00	218.40	1.00	2000.00	320.00	1.00	0.000	0.00	0.000
65.00	KMW AM-X-CD-16-65-00T-	3	48.50	8.260	0.79	95.00	9.080	0.79	0.000	0.00	0.000
65.00	Ericsson RRUS 11	6	50.00	2.990	0.67	69.90	3.340	0.67	0.000	0.00	0.000
65.00	Powerwave TT19-08BP111-	6	16.00	0.640	0.50	21.80	0.820	0.50	0.000	0.00	0.000
65.00	Andrew ABT-DMDF-ADBH	1	1.10	0.050	1.00	1.80	0.110	1.00	0.000	0.00	0.000
65.00	Allgon 7770.00A	6	35.00	5.920	0.76	68.00	6.430	0.76	0.000	0.00	0.000
62.00	Sinclair SV228-HF2SNM	1	93.00	15.830	1.00	347.20	48.370	1.00	0.000	0.00	3.000
57.00	RFS APXv9TM14-ALU-I20	3	55.10	6.890	0.78	56.06	5.240	0.78	0.000	0.00	3.000
57.00	Alcatel-Lucent TD-RRH8x20-	3	70.00	4.720	0.67	82.70	4.430	0.67	0.000	0.00	3.000
57.00	RFS APXVSPP18-C-A20	3	57.00	8.260	0.83	106.50	9.080	0.83	0.000	0.00	3.000
57.00	Alcatel-Lucent 800 MHz RRH	3	53.00	2.490	0.67	74.10	2.820	0.67	0.000	0.00	0.000
57.00	Alcatel-Lucent RRH2x40 (700)	3	50.00	2.480	0.67	71.08	2.810	0.67	0.000	0.00	0.000
50.00	10' HP Dish	4	705.00	99.100	0.90	1310.00	100.75	0.90	0.000	0.00	0.000
50.00	Large Fat Platform	1	4000.00	75.000	1.00	4700.00	95.000	1.00	0.000	0.00	0.000
48.00	Decibel 776QNB120EXM	3	117.00	25.900	0.65	240.76	26.970	0.65	0.000	0.00	0.000
46.50	Antel LPA-80063/6CF	6	27.00	10.340	0.95	101.00	11.180	0.95	0.000	0.00	0.000
46.50	Antel BXA-70063/6CF-EDIN-X	3	17.00	7.730	0.77	58.00	8.540	0.77	0.000	0.00	0.000
46.50	Antel BXA-171063/12CF	3	15.00	4.790	0.88	42.40	5.460	0.88	0.000	0.00	0.000
46.50	RFS FD9R6004/2C-3L	6	2.00	0.360	0.50	6.00	0.570	0.50	0.000	0.00	0.000
37.50	Platform	1	1200.00	25.000	1.00	1500.00	32.000	1.00	0.000	0.00	0.000
	Totals	68	11896.90			18046.80	Number of Appurtenances : 22				

Linear Appurtenance Properties

Elev From (ft)	$\begin{aligned} & \text { Elev } \\ & \text { To } \\ & \text { (TT) } \end{aligned}$	Description	Qty	Width (in)	Weight (lb/ft)	Pct In Wind	Spread On Faces	Bundling Arrangement
0.00	72.00	7/8" Coax	2	1.09	0.33	0.00	1	Separate
0.00	65.00	0.39" Cable	1	0.39	0.07	0.00	1	Separate
0.00	65.00	0.78" AWG 6	2	0.78	0.59	0.00	1	Separate
0.00	65.00	11/4" Coax	12	1.55	0.63	33.30	1	Separate
0.00	65.00	3" Conduit	1	3.50	7.58	100.00	1	Separate
0.00	65.00	Climbing Ladder	1	3.00	4.00	100.00	Lin App	Separate
0.00	65.00	Wave Guide	1	3.00	5.00	100.00	1	Separate
0.00	62.00	7/8" Coax	1	1.09	0.33	100.00	1	Separate
0.00	57.00	1 1/4" Fiber	1	1.25	1.05	100.00	1	Separate
0.00	57.00	1 1/4" Hybriflex	3	1.54	1.00	33.30	1	Separate
0.00	48.00	1/2" Coax	3	0.63	0.15	100.00	1	Separate
0.00	48.00	7/8" Coax	12	1.09	0.33	33.30	1	Separate
0.00	46.50	15/8" Coax	12	1.98	0.82	50.00	1	Separate

Site Number: 88009
Location: Cornwall CT, CT

Code: TIA/EIA-222 Rev F

Force/Stress Summary

Section: 11	Bot Elev (ft): 0.00					eight (ft): 12.500					Shear Bear Cap Cap (kip) (kip)		Use \%	Controls
Max Compression Member	Force (kip)	Load Case	Len (ft)	$\begin{aligned} & \text { Bracing \% } \\ & \text { X Y Z } \end{aligned}$		$\begin{array}{cc} & \mathrm{Fa} \\ \mathrm{KL} / \mathrm{R} & (\mathrm{ksi}) \end{array}$			ber Num Bolts	Num Holes				
LEG SAE-6X6X0.625	-65.50	45 deg Ice	12.57	5050	5050	5063.9	21.2	150.46	460	0	0.00	0.00	43	Member Z
HORIZ DAL - 3X2.5X0.25	-3.47	Normal Ice	17.84	5050	5025	25113.3	15.0	39.37	37	0	0.00	0.00	8	Member X
DIAG SAU-3X4X0.25	-7.22	Normal No Ice	22.57	5050	5050	5212.0	4.4	7.49	- 0	0	0.00	0.00	96	Member Z
Max Tension Member	Force (Kıp)	Load Case	$\begin{gathered} \mathrm{Fy} \\ (\mathrm{ksi}) \end{gathered}$	Cap (kip)	Num Bolts	Num Holes	Shea		Bear Cap (kip)	$\begin{gathered} \text { Use } \\ \% \end{gathered}$	Con	trols		
LEG SAE-6X6X0.625	49.54	45 deg No Ice	33	187.70	0	00		0.00	0.00	26	Mem	ber		
HORIZ DAL - 3X2.5X0.25	3.49	Normal No Ice	36	675.74	40	0 0		0.00	0.00		Mem			
DIAG SAU-3X4X0.25	7.94	Normal Ice	36	648.67	70	00		0.00	0.00	16	Mem	ber		
Max Splice Forces	Force (kip)	Load Case		Capacity (kip)		Use \%	Num Bolts	Bolt T	Type					
Top Tension	44.33	45 deg No Ice		0.00		0								
Top Compression	59.39	45 deg No Ice		0.00		0								
Bot Tension	57.33	45 deg No Ice		0.00		0								
Bot Compression	72.59	45 deg No Ice		0.00		0								

Force/Stress Summary

Site Number: 88009
Location: Cornwall CT, CT

Code: TIA/EIA-222 Rev F

Force/Stress Summary

Section: $61 \quad$ Bot Elev (ft): $50.10 \quad$ Height (ft): 14.900

Site Number: 88009
Location: Cornwall CT, CT

Code: TIA/EIA-222 Rev F

Support Forces Summary

Load Case	Node	$\begin{aligned} & \text { FX } \\ & \text { (kip) } \end{aligned}$	$\begin{gathered} \text { FY } \\ \text { (kip) } \end{gathered}$	$\begin{aligned} & \text { FZ } \\ & (\mathrm{k} \mid p) \end{aligned}$			$(-)=$ Uplift ($\quad()^{\text {a }}$ Dow n
45 deg	1c	-0.35	8.20	-2.17			
	1b	-3.19	-16.79	-3.18			
	1a	-2.16	8.07	-0.35			
	1	-5.00	33.05	-5.00			
Norm al	1c	2.81	24.89	-4.42			
	1b	-1.00	-8.63	-2.61			
	1a	1.00	-8.63	-2.61			
	1	-2.81	24.89	-4.42			
45 deg Ice	1c	-3.49	12.59	-2.15			
	1b	-10.15	-45.82	-10.13			
	1a	-2.13	12.22	-3.50			
	1	-8.76	70.60	-8.75			
45 deg No Ice	1c	-2.30	8.30	-4.13			
	1b	-9.59	-55.68	-9.58			
	1a	-4.12	7.97	-2.32			
	1	-11.37	71.93	-11.36			
Normal Ice	1c	3.78	51.63	-7.39			
	1b	-5.15	-26.83	-8.76			
	1a	5.15	-26.83	-8.76			
	1	-3.78	51.63	-7.39			
Normal No Ice	1c	5.78	51.04	-9.90			
	1b	-3.97	-34.78	-8.11			
	1a	3.97	-34.78	-8.11			
	1	-5.78	51.04	-9.90			
Max Uplift:				ent:	1,779.43 (ft-kip)	45 deg No Ice	
Max Down:			Tot		32.52 (kip)		
Max Shear:			Tota	ar:	38.73 (kip)		

Site Number: 88009
Location: Cornwall CT, CT

Code: TIA/EIA-222 Rev F

Deflections and Rotations

Load Case	Elevation (ft)	Deflection (ft)	Twist (deg)	Sway (deg)
50.00 mph Wind at 45 deg From Face with No Ice	37.50	0.0097	0.0126	0.2424
	50.00	0.0143	0.0072	0.8136
	57.55	0.0659	0.0022	0.5997
	65.00	0.1186	0.0015	0.4034
50.00 mph Wind Normal To Face with No Ice	37.50	0.0091	0.0114	0.1893
	50.00	0.0136	0.0065	0.6569
	57.55	0.0619	0.0027	0.4775
	65.00	0.1111	0.0015	0.3698
69.28 mph Wind at 45 deg From Face w ith Ice	37.50	0.0241	0.0236	0.5519
	50.00	0.0349	0.0074	1.8493
	57.55	0.1727	0.0156	1.5429
	65.00	0.3143	0.0097	1.0596
69.28 mph Wind Normal To Face with Ice	37.50	0.0223	0.0287	0.4137
	50.00	0.0329	0.0180	1.4351
	57.55	0.1629	0.0187	1.2319
	65.00	0.2956	0.0076	0.9945
80.00 mph Wind at 45 deg From Face with No Ice	37.50	0.0247	0.0257	0.4983
	50.00	0.0366	0.0126	1.6221
	57.55	0.1688	0.0126	1.4383
	65.00	0.3034	0.0080	1.0139
80.00 mph Wind Normal To Face with No Ice	37.50	0.0232	0.0306	0.3627
	50.00	0.0349	0.0213	1.2289
	57.55	0.1586	0.0152	1.1590
	65.00	0.2845	0.0076	0.9260
		0.0000	0.0000	0.0000

THESE OUULINE SPECIFICATIONS IN CONJUNCTION WITH THE SPRINT STANDARD CONSTRUCTION SPECIFICATIONS, INCLUDING CONTRACT DOCUMENTS

PART 1 - GENERAL

1.2 REATED DOCUMENS:

A THE REQUREMENTS OF THIS SECTON APPLY TO AL SECTONS IN THIS
-. SPRRN STANDORD CONSTRUCTON DERALS FOR WIRELISSS STESSARE INCLUDED IN

. 4 NATIONALY RECOGNIZD CODES AND STANDARDS

1. Gr-63-CORE Nebs requiremens: phrsical protection
2. GR-78-CORE GENERIC REQUREMENTS FOR THE PHYSICAL DESIGN AND
3. GR-1089 CORE EECCROMAGNEECC COMPATBUTY AND ELECTRICAL SAFETY
 a AErican society for tesing of materalis (astu)
4. INSTIUTE of ELECTRONIC AND aECTRICAL ENGINERS (IEEE)
5. AMERICAN CONCRETE INSTIUTE (ACI)
a. AMERICAN WIRE PRODUCERS ASSOCIATON (AWPA)
6. CONCREEE RENFORCING SIEEL INSTTUTE (CRSI)
7. AMERECCN ASSOCLITON OF STATE HICHWAY AND TRANSPORTATON OFFICLLLS
8. Portiand cement associaton (PCA)
9. NATONAL CONCREEE MASONRY ASSOCIATION (NCMA)
10. ERICK INDUSTRY ASSOCIATON (BA)
11. AMERICAN WEDING SOCIIET (AWS)
12. NATONAL ROORNG CONTRACTORS ASSOCATON (NRCA)
13. Shet metal and ar conomoning contractors' natonal association
14. DOOR AND HARDWARE INSTTUTE (DHI)
15. occupational safery and healt act (osha)
16. APPLCABE BUILING CODES INCLUDING UNFFRM BULDING CODE, SOUTHERN 1.5 DEfnTmons:
A. WORK: THE SUM OF TASKS AND RESPONSIIIIIES IDENIFED IN THE CONTRACT
B. COMPANV: SPRINT CORPORATON

D. CONTRACTOR: CONSTRUCGON CONTACTOR; CONSTRUCTON YENOOR; INDMOUA OR

F. OFCl: OWNER FURNISHED, CONTRACTOR INSTALLED EQUIPMENT.

B. DETALS ARE INENDED TO SHOW DESSON INTENT. MOOIFCATONS MMY BE

1.10 USE OF JOE STEE THE CONTRACTOR SHAL CONNINE AL CONSTRUCTION AND
REATEP OPERATONS INCLUDING STAGING AND STORAGE OF MAIRRALS AND

 1.15 USE OF ELECTRONIC PROUECT MANAGEMENT STSTEMS:

PART 2 - PRODUCTS (Not USED)
ART 3 - EXECUTION

3.2 ACCESS TO WORK: THE CONTRACTOR SHAL PROMDE ACCESS TO THE JO日 STE FOR
AUTHORIZED COMPANY PERSONNEL ANO AHHORNED REPRESNATVES OF THE AUHHORZED COMPANY PERSONNEL AND AUHHORIZED REER
ARCHIECT/ENGGEER DURING AL PHASES OF THE WORK.

SECTION OI COMPANY FURNISHED MATERIAL AND EQUIPMEN PART 1 - GENERAL

1.2 RELATED DOCUMENS
A. THE REQUIREMENTS OF THIS SECTON APPLY TO ALL SECTONS IN THIS
 PART 2 - PRODUCTS (NOT USED)
3.1 RECEIPT OF MATERAL AND EQUIPMEN:
A. A COMPAN FURNSHHD MATRRAL AND EQUIPMENT IS IDENTIEED ON THE RF DATA
B. THE CONTRACTOR IS RESPONSILEL FOR SPRINT PROVIDED MATERAL AND

1 ACCEPT DELNERES AS SHIPPED AND TAKE RECEIPT.
2. VERIF COMPLETENESS AND CONOTON OF ALL DELIERESS.
3. TAAK RESPONSIBLITY FOR EOUIPMEN AND PROMDE INSURANCE PROTECTION
 5. PRONDE SECURE AND NECESSARY WEATHER PROTECTED WAREHOUSING.
6. COORDMATE SAEE AND SECURE TRNSPORTATON OF MATERML AND
3.2 delinerables:
A. COMPLIEE SHIPPING AND RECEPT DOCUMENATION IN ACCORDANCE WTH COMPAN

C. UPLOAD DOCUMENAAON INTO SPRNT SIT MANAGEMENT STSTEM (SMS) ANO/OR SECTION 01300 - CELL SITE CONSTRUCTION CO.
 1.2 REATED DOCUMENTS:
A. THE REQUIREMENTS OF THIS SECTON APPLY TO ALL SECTONS IN THIS
B. SRRIN STANDARD CONSTRUCTIN DEGALS FOR MiRELIESS STES ARE INCLUDED IN . 3 NOTCE TO PROCEED
A. NN HORK SHAL COMMENCE PRIOR TO COMPAN'S WRITIEN NOTCE TO PROCEE

PART 2 - PRODUCTS (NOT USED) PART 3 - EXEUTION

3.1 Inctow imion
A. THE ACTMTIES DESCRIEDD IN THIS PARAGRAPH REPRESEN MINMUM ACIONS AND
 COMP YUNCTOONGG WRIELISSS FACIIUTY AT THE STE IN ACCOROANCE WTH
B. SUEMI SPRCIICC DOCUMENATON AS NDOCACARD HEREN. AND OBTAN REQUIRED
c. MaNage And CONDUCT ALL FED CONSTRUCTON SERMCE RELATED ACTVITES

Sprint
6verand Ppant, Pansesas 6251

INFINIGY8管

AMERICAN

TOMNERR
116 HUNTINGTON AVENEE. 11TH FLOOR

CT0046-RING TO EXISTING
(R2E) PH1A
CT72XC030
MOHAWK MOUNTAIN ROAD LITCHFIELD, CT 06757

SPRINT SPECIFICATIONS

CONTINUE FROM SP－1
2．PREPARE GROUND SITES；PRONDE DE－GRUBING；AND ROUGH AND FNNL
3．MANAGE AND CONDUCT AL ACTMIIES For instalaton of UIUTES
4．INSTAL UNDERGROUND FACIULES INCLUDING UNDERGROUND POWER AND
5．INSTAL ABOVE GROUND GROUNOING SYSTEMS．
6．PROUDE NEW HVAC INSTALATIONS AND MODIFCATIONS．
7．INSTALI＂H－rRaMES＂，Cabinets and shelitrs as indicated．
8．INSTALL roads，access wars，cures and drans as indicated．
9．AcComplish require modicanon of exstnc facilmes．
10．PROMDE ANENNA SUPPORT STRUCTURE FOUNDATONS．
11．PROVDE SLABS AND EOUPMENT PLATTORMS．
12．INSTAL COMPOUND FENCING，SIGHT SHHEDING，LANDSCAPING AND ACCESS
13．Perform inspection and materil testng as required hereinatter． 14．CONDUCT STIE RESISTANCE TO EARTH TESTNG AS REQUIRED HERENAFTER 15．INSTALL FXED GENERATOR SETS AND OTHER STANDEY POWER SOLUTONS．
16．INSTAL TOWERS，ANTENA SUPPORT STRUCTURES AND PLATITORMS ON

19．PERFORM ANIENNAL AND COAX SWEEP TESTNG AND MAKE ANY AND ALL

3．2 GENERAL REQUIEMENTS FOR CML CONSTRUCTION：

B．Equpment rooms shall at all tume be mantaned tiroom clean and
c．CONRACTOR SHAL TAAE AL REASONABLE PRECAUTONS TO DISCOVER AND

2．CONTRACTOR AGRES TO USE CARE WHILE ON THE STE AND SHAL NOT TAKE

D．CONTRACTOR＇S ACTMTES SHAL 日E RESTRICTED TO THE PROECCT LMMTS．SHOULD

E．Conduct testng as required herein．
3.3 denerables：

A．CONIRACTOR SHAL REMEW，APPROVE，AND SUBMT TO SPRINT SHOP DRAWMGS，
B．PROMOE DOCUMENAATON INCLUDING，BUT NOT LMITED TO．THE FOLOWING．
1．AL CORRESPONDENCE AND PRELIMINAFY CONSTRUCTON REFORTS．
2．PROUECT PROGRESS REPORTS．
3．CML CONSTTUUCTON START DATE（POPULATE FEL IN SMS AND／OR FORWARD
NOTFCATIN）．
4．ELECCRRCCL SERNCE COMPLETION DATE（POPULATE FED IN SMS AND／OR

5．LINES AND ANTENNA INSTALL DATE（POPULATE RELD IN SMS AND／OR
6．POWER INSTAL DATE（POPULATE REL IN SMS AND／OR FORMARD
7．TELCO REAOY DATE（POPULATE FEL IN SMS AND／OR FORWARD
8．PPC（OR SHELTER）INSTAL DATE（POPULATE HEL IN SMS AND／OR FORWARD
NOTRCATON）．
9．TOWER CONSTRUCTON START DATE（POPULATE RED IN SMS AND／OR
10．TOOLR CONSTRUCTIN COMPLLIE DATE（POPULATE FEL IN SMS AND／OR
11．BTS AND RADIO EQQUPMENT DELNERED AT STE DATE（POPULATE FIEL IN
SMS AND／OR FORWARD NOTIFCATON）．
12．NETUORK OPERATONS HANDOFF CHECKLST（HOC WALK）COMPLETE（UPLOAD
FORM IN SMS）
13．COLL CONSTIUCCTON COMPLETE DATE（POPULATE FED IN SMS AND／OR
14．STIE CONSTRUCTON PROGRESS PHOTOS UNLOADED INTO SMS．
SECTION 01400 －SUBMITTALS \＆TESTS
1．1 THE WORK THESE STANARD CONSTRUCTON SPEGIICATONS IN CONUNCTON WIT
12 REATED DOCuMENS．
A THE RECUIREMENTS OF THIS SECTION APPLY TO AL SECTIONS IN THIS

b．SUBMT THE FOLLOWING TO COMPANT Representative for approval
1．CONCREIE MXXDEEIINS FOR TOWER FOUNDATIONS，ANCHORS PIERS，AND
2．CONCREIE areak tests as specifed hrran．
3．SPECIAL FNISHES FOR INIEROR SPACES，IF ANT
4．ALL EOUIPMEN AND MATERNLS SO IDENITED ON THE CONSTRUCTON
5．CHEMCAL GROUNDING DESIGN
D．ALIERNATES：AT TTE COMPAM＇S REQUEST，ANY ALTERNTITES TT THE MAITRLLS

TESTS AND INSPECTONS：
A．THE CONTRACTOR SHAL EE RESPONSIBE FOR AL CONSTRUCTON TESTS，
B．CORTRACTOR SHAL ACCOMPUSH TESING INCLUDING BUT NOT UMITED TO THE
1．COAX SWEEPS AND REER TESTS PER TS－0200 REV 4 ANTENNA LNE
2．AGL AZIMUTH AND DOWNLT USING ELECTRONC COMMERCML

c．REOURED CLLOSEOUT DOCUMENATON INCLUDES，BUT IS NOT UMITED TO THE

2．SCAMABLE EARCOER PHOTOGRAPHS OF TOWER TOP AND INACCESSIBLE
3．Al AVALABLE JURISICTTONAL INFORMATION
3．AL AVALABLE JURISOICTOONLL INFORMATION
4．PDF SCAN OF REDINES PRODCED IN FEL

6．Len wavers

Sprint
Overand Spint Parkway
Ovark，
Kansas 6251
7．final pamment applcation
8．ReQuired final construction photos
9 ．constructon and commissioning checklst complete wit no dercient
10．AL POST NTP TAKS INCLUDNG DOCUMEN UPLOADS COMPLITED IN SITERA
（SPRINTS DOCUMENT REPOSTIORY OF RECORD）．
1.5 COMMISSIONING：PERFORM ALL COMMISSIONNG AS REQUIRED EY APPLCABLE
1.6 integraton：perform all integraton actimes as required by applcable

PART 2 －Products（Not used）
PART 3 －EXECUTION
3．1 REOUIREMENTS FOR TESTNG：
THRD PARTY TESTING AGENCY：

2．THE THIRD PARTY TESTNG AGENCY IS TO BE FAMUAR WTH THE APPUCABLE
3．EXPERIENCE IN SOLLS，CONCREIE MASONTY，AGGREGAE，AND ASPHALT
4．EXPERIENGE IN SOILS，CONCREEE，MSSONRY，AGGREGATE AND ASPHALT
3.2 REQuIRED TESTS：

A．CONRRACTOR SHAL ACCOMPUSH TESTNG INCLUDING BUT NOT LMITED TO THE
1．CONCREE CYUNDER BREAK TESTS FOR THE TOWER AND ANCHOR
2．ASPHAL ROADWY COMPACTED THICKNESS，SUNRACE SMOOTNNESS，AND
3．FIED qualt conirol tesing as specired in secton：portand cemen
4．TESING REEUURD UNOER SECTON：AGGREGATE BASE FOR ACCESS ROADS，
5．STRUCTURAL BACKFLL COMPACTIN TESTS FOR THE TOWER FOUNDATON．
6．SIIE RESIITANCE TO EARTH TESTING PER EXHBIT：CEL STIE GROUNDING
7．ANLENA AND COAX SWEEP TESTS PER EXHIBT：ANTIENNA TRANSMISSION LINE
8．Grounding at antenna masts for gps and antennas
g．All OTHER TESTS REQURED BY COMPANY OR JURISICITION．
3．3 REQURED INSPECTONS
A．SCHEDULE INSPECTONS WIH COMPANT REPRESENTATVE
b．CONDUCT INSPECTONS INCLUDING BUT NOT UMITED TO THE FOLOWING：

4．PRE－AND POSST－CONSTRUCTON ROOFTOP AND STRUCTURAL INSPECTONS ON
5．TOWER ERECTON SECTION STACKING AND PLATFORM ATACHMENT DOCUMENTED
6．ANTINNA AZIUMTH，DOWN TIT ANO PER SUNLGCH TOOL SUNSIGHT

INFINIGY\％
 ※ニ：シix
 vog Numer 30 （0000

AMERICAN

TOMNER
116 HUNTINGTONAVENEE， 1 THF FLOOR

CT0046－RING TO EXISTING
－（R2E）PH1A
CT72XC030
MOHAWK MOUNTAIN ROAD LITCHFIELD，CT 06757

SPRINT SPECIFICATIONS
SP－2

CONIINUE EROM SP-2

7. VERIICCIONO DOCUMENIED WITH THE ANTENNA CHECKUST REPORT, GY ALE,

8. COAX SWEEP AND FIEER TESTNG DOCUMENTS SUEMITIED VA SMS FOR RF
9. SCAN-AABE EARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSIILE
10. AL AVALABLE JURISICTONAL INFORMATON
11. pDF SCAN of redunes produced in fed
c. THE CONRACTOR SHAL QE RESPONSILLI FOR ANY AND AL CORRECTONS TO
D. CONSTRUCTON INSPECTONS AND CORRECTVE MEASURES SHAL EE DOCUMENTHD

A. THE FOLOWNG TEST AND INSPECTON REPORTS SHALL be Pronded as
12. CONCREIE MIX AND CYUNDER BREAK REPORTS.
13. STRUCTURAL BACKIL COMPACTIN REPORTS.
14. STIE RESIITANCE TO EARTH TEST.
15. ANTENNA AZMMUTH AND DOWN TLT VERFICATION
16. TOWER ERECTON NSPECTONS AND MEAUUEMENT DOCUMENNG TOWER
17. COAX CCBELI SWEEP TESTS PER COMPANr's "ANTENNA LNE ACCEPTANCE
s. REQURED CLOSEOUT DOCUMENATON INCLUDES THE FOLOWING:
 INOICAING DEPTH.
18. CoNDUITS, CONDUCTORS AND GROUNDING: PHOTOGRPHS SHOWNG MPICAL

19. CONCREE FORMS AND RENFORCCG: CONCREE FORMNG AT TOWER AND

20. TOWER ANIENAS AND MANLNE INSPECTON AND PHOTOGAPHS OF SECTIN

21. ROOF THPS: PRE-CONSTRUCTION AND POST-CONTTRUCTOON NIVUAL INSPECTON

22. STIL LAYOUT - PHOTOORRPHS OF THE OVERLL COMPOUND, INCLUOING
23. RNISHED UTMIES: CLOSE-UP PHOTOGRAPH OF THE PPC RREAKER PANEL

24. REQUIRED MATERMLS CERTHCAOONS: CONCREE MIX DESIGNS: MIL
25. ANY AND AL SUBMTTALS BY THE JURISOCCTION OR COMPANY.

SECTION 01400 - SUBMITTALS \& TESTS

1.2 RERATED DOCUMENTS:
A. THE REQQIIREMENTS OF THIS SECTON APPLY TO ALL SECTONS IN THIS
B. SPRIT STANDARD CONSTRUCTON DGAALS FOR HRELESS STES'ARE INCLUDED IN PART 2 - PRODUCTS (NOT USED)
PART 3 - EXECUTION
3.1 WEELI REPORTS:

 3.2 PROJECT CONFERENCE CALS:
 NECESSAFY.
PROUECT TRACKING IN SMS:
3.3 PROUECT TRACKING IN SMS:
A. CONTRACTR SHALS
STSTEM ON A WEEKLYOOMOEE SCIS. 3.4 ADDITONAL REPORTNG:
A. ADDTONAL OR ALERNATE REPORTNG REQUREMENTS MAY BE ADDED TO THE
REPORT AS DEIERMNED TO EE REASONABUY NECESSARYY BY COMPANY. 3.5 PROUECT PHOTOCRAPHS:
 MINIUM THE FOLLOWING AS APMLCABLE
2. TOWER ROUNDANON(S) - FORMS AND SteE berore pour (EACH ANCHO
3. TOWER FOUNDATON(S) POUR WTH MBRATOR IN USE (EACH ANCHOR ON
4. TOWER Ster as aing installeo into hole (show anchor stert on
5. PHOTOS OF TOWER SECTION STACKINC.
6. CONCRETE TESTNG / SAMPLES.
7. PLacing of anchor bolts in tower foundation
a. BuILING/WATER TANK FROM ROAD FOR TENAN IMPROVEMENTS OR COMMENTS
9. SHETtER FOUNDATON--FORMS AND Ster aefore pouring.
10. SHEITER FOUNDATON POUR wTH MBrator in USE.
11. coad cable entry into shettr.
12. PLATOORM MECHANCAL CONNECTONS TO TOWER/MONOPOLE
13. ROOFTIO PREE AND POST CONSTRUCTION PHOTOS TO INCLLDE PENETRATIONS
14. prootos of tower top coax une color cooing and color cooing at
15. photos of all approprate company or reglatory signage.
16. PHotos of Equipment bolt down inside sheltr.
17. POWER AND TELCO ENTRANCE TO COMPANY ENCLOSURE AND POWER AND 18. EECTRICAL TRENCH(S) WTH EECTRICAL / CONOUT BEFORE BACKFLL 19. EECCRICAL TRENCH(s) WITH FOLL-BACKED TAPE BEFORE FURTHER BACKFLL 20. TLLCO TRENCH WTH TELEPHONE / CONDUT OEFORE EACKFL 21. TELCO TRENCH WTH FOLL-BACKED TAPE BEFORE FURTHER BACKFLL
22. SHEITER GROUND-RNG TRENCH WTH GROUND-WIRE BEFORE BACKFL (SHOW
23. TOWER GROUND-RNG TRENCH WTH GROUND-WIRE Before BackFl (SHOW
AL CAD WELDS AND BENO RAOII).
24. FENCE GROUND-RNG TRENCH WITH GROUND-WIRE EEFORE BACKFIL (SHOW
25. all ats ground connectons.
26. ALL GROUND TEST WELS.
27. ANtenna ground bar and equipment grouno bar.
28. ADOTIONAL GROUNING POINTS ON TOWERS ABOVE 200
29. HIAC UNITS INCLUDING CONDENSERS ON SPLT STSTEMS.
30. GPS ANIENNAS.
31. cable tray and/or waveguide brige
32. DOGHOUSE/CABLE EXT FROM ROOF
33. EACH SECTOR OF ATENNAS: ONE PHOTOGRAPH LOOKING AT HE SECTOR AND 34. master bus bar.
35. TLLCO BOARD AND NIU
36. ELECTRICAL DISTRBUTION WAL
37. CABLE ENTRY WITH SURGE SUPPRESSION
38. ENTRANCE TO EQUIPMENT ROOM
39. COAX WEATHERPROOFNG-TOP AND Botton of TOWER
4. coax grounding -top and botto of tow
41. ANIENNA AND MAST GROUNDING.
42. LaNosCaping - Where applcable

Sprint
6580
Overand Ppant Park, सannsas 66251

INFINIGY8

vos numer zat-000

AMERICAN

TONNER
gorporation
116 HUNTINGTON AVENUE. 11TH FLOOR
BOSTON, MA 02116

THESEDCUMENSARE CONDIDNTIAL AND ARE

CT0046-RING TO EXISTING
-(R2E) PH1A
CT72XC030
MOHAWK MOUNTAIN ROAD LITCHFIELD, CT 06757

SPRINT SPECIFICATIONS

ALU 2.5 ALU SCENARIO 1

RAN WIRING DIAGRAM

THESE DCCUMENTS ARE CONFIDENTAL AND ARE

$$
\Gamma^{\text {REUSION: }}
$$

$$
\begin{aligned}
& \text { SIE NAME: } \\
& \text { CT0046-RING TO EXISTING }
\end{aligned}
$$ (R2E) PH1A

$$
\text { SITEAODRES: } \begin{aligned}
& \text { MOHAWK MOUNTAIN ROAD }
\end{aligned}
$$ LITCHFIELD, CT 06757

PLUMBING DIAGRAM

RF 2.5 ALU SCENARIO

