

Crown Castle

3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065

August 28, 2019

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification for T-Mobile:

876391 - T-Mobile Site ID: CT11503A

14 Thompson Hill Road, Columbia, CT 06237 Latitude: 41° 43′ 3.44″ / Longitude: -72° 17′ 59.09″

Dear Ms. Bachman:

T-Mobile currently maintains six (6) antennas at the 161-foot mount on the existing 180-foot Monopole Tower, located at 14 Thompson Hill Road, Columbia, CT. The tower is owned by Crown Castle and the property is owned by Joshua and Eileen Lanati. T-Mobile now intends to replace three (3) existing antennas with six (6) new 600/700 MHz antennas. The new antennas will be installed at the 161-ft level of the tower. T-Mobile is also proposing tower mount modifications. As shown on the enclosed mount analysis.

Planned Modifications:

Tower:

Remove:

(6) 1 5/8" Coax

Remove and Replace:

- (3) LNX 6515DS-A1M Antenna (**REMOVE**) (3) RFS-APXVAARR24_43-U-NA20 Antenna 600/700 MHz (**REPLACE**) & (3) AIR32_B66A_B2A Antenna 1900/2100 MHz (**REPLACE**)
- (3) RRUS11 B12 (**REMOVE**) (3) Radio 4449 B71/B12 (**REPLACE**)

Install New:

(3) 1 5/8" Hybrid Fiber Line

Existing to Remain:

- (3) TMA
- (6) 1 5/8" Coax
- (1) Fiber line
- (3) AIR21 KRC118023-1_B2A_B4P Antenna 1900/2100 MHz

Ground:

Upgrade to existing ground cabinet. (Internally)

The Foundation for a Wireless World.

CrownCastle.com

Page 2

Upgrade existing breakers.

Remove existing cabinet and replace with new RBS 6102 MU AC cabinet.

The facility was approved by the Town of Columbia Planning and Zoning Commission on November 16, 1999. This approval was given with conditions that were met.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Steven M. Everett, First Selectman for the Town of Columbia, Paula Stahl, Town Planner, Crown Castle as the tower owner, and Joshua Lanati, the property owner.

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Anne Marie Zsamba.

Sincerely,

Anne Marie Zsamba Real Estate Specialist 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 (201) 236-9224 AnneMarie.Zsamba@crowncastle.com

Attachments

Melanie A. Bachman

Page 3

cc:

Steven M. Everett, First Selectman 323 Route 87 Columbia, CT 06237

Paula Stahl, Town Planner 323 Route 87 Columbia, CT 06237

Joshua and Eileen Lanati 14 Thompson Hill Road Columbia, CT 06237

Crown Castle, Tower Owner

- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Exhibit A

Original Facility Approval

WN OF COLUMBIA

Planning & Zoning Commission P.O. Box 165 Columbia, Connecticut 06237

Telephone: (860) 228-0440

Fax: (860) 228-1952

CERTIFIED #: November 30, 1999

Sprint Spectrum L.P. 9 Barnes Industrial Road Wallingford, CT 06492

Dear Sirs,

At a meeting held on November 16, 1999, the Columbia Planning and Zoning Commission took the following action:

approved the application of Sprint Spectrum for a telecommunications facility at 14 Thompson Hill Road, property of Thomas R. Deojay, RA2 zone, based on the submitted application, including plans entitled: "Sprint PCS, Columbia, 14 Thompson Hill Road, Columbia, Connecticut CT33XC571" prepared by Goodkind & O'Dea, Inc., 59 Elm Street, Suite 101, New Haven, Connecticut 06510, consisting of 10 sheets labeled T1, S1, and Z1-Z8, with all sheets revised to 9/14/99 except sheet S1 revised 11/8/99, with the following conditions:

- 1. The tower shall be structurally capable of supporting six users.
- 2. Prior to filing the final plan in the Land Records, a bond shall be posted to assure removal of the facility according to Section 52.7.15.5. The bond amount shall be proposed by the applicant and approved by the Town Engineer. Bond form shall be cash or letter of credit.
- 3. The Town Planner shall be contacted one week prior to the start of any work associated with this approval, including site development and tree removal. At the Planner's request, a preconstruction meeting with the Planner, developer and subcontractors shall be held prior to the start of work.

4. Any additional use of the site, including and not limited to additional antennas, cabinets, or other structures, and site work, requires additional permitting by the Commission.

- 5. The location of the tower and associated compound and the proposed driveway shall be staked out by a licensed surveyor prior to excavation or construction. The tower and compound fence shall be shown on an as-built survey at the A2 level of accuracy prior to commencement of use.
- 6. Clearcutting of timber shall be prohibited in a 100-foot ring around the lease area.
- 7. The text of this approval shall be placed on the final plan.

Sprint 2 of 2

Technical Items

1. A signature block shall be placed on each sheet.

2. Plan sheets shall be numbered or otherwise indexed in the lower right corner.

3. Add to the sedimentation and erosion control notes on Z6:

1. The Planner and Wetlands Agent may modify the erosion control requirements based on field conditions so as to minimize erosion and siltation on the site.

2. Erosion controls shall be installed and inspected by the Planner prior to stump removal, grubbing, or other construction. The driveway shall be built per plan prior to development of the tower site.

3. Prior to any work including tree removal, the Planner shall be provided with the name and phone number of a contact responsible for site work and erosion control who is on call 24 hours/day.

IN ORDER FOR THE APPROVAL TO BECOME FINAL, THE ABOVE CONDITIONS MUST BE FULFILLED.

Note that this action may be appealed for a fifteen day period following publication of notice of action in the Willimantic Chronicle. (Notice was published on or about November 22, 1999.) Do not hesitate to contact me at 228-0440 if you have any questions.

Sincerely,

Martha Fraenkel

marin Inaul

Land Use Planner/Zoning Official

MF/ds

cc: Tom Regan

encl: procedures

CERTIFIED MAIL # Z 039 122 992

"SUMMARY RULING" (APPROVAL WITH CONDITIONS)

As provided for in Connecticut General Statutes Section 22a-36 through 22a-45, as amended, and in Sections 5,6.6b, 9.1 through 9.10 of the Inland Wetlands.and Watercourse Regulations of the Town of Columbia, I move that the application No. AP9899-20 and described below be approved and a permit be granted with the conditions listed below in that the proposed activity does not have a significant impact on the wetlands or watercourses as defined in Section 2.20 in the Inland Wetlands Commission Regulations.

Applicant: Sprint PCS

Address: 9 Barnes Industrial Rd. Wallingford, CT 06492

Address of Activity: 14 Thompson Hill Rd

Property owned by: Thomas R. &

Willie Jo Deojay

Maps Dated: 5/28/99

Application received on: 6/1/99

For the proposed activity: Upgrade existing gravel access drive by placing fill & 18" RCP - area of fill & disturbance in wetlands approximately 230 sq. ft.

Conditions:

- 1. The Inland Wetland Commission Agent is to be notified 48 hours before the commencement of any part of the activity approved above.
- The granting of this permit does not relieve the applicant from obtaining additional permits and/or approvals required by other agencies, federal, state and local.
- 3. If an approval or permit is granted by another agency and contains conditions affecting the wetlands and/or watercourses and the area 75 feet from their flagged boundaries not addressed by this permit, the applicant must resubmit the application for further consideration by the Inland Wetlands Commission for a decision before work on the activity is to take place.

- 4. The duration of this permit is for five (5) years unless extended; by this Agency, and shall expire upon the completion of the activity approved herein or within one year of the start of the activity; whichever is sooner.
- 5. The applicant shall not assign or transfer this permit, or any part thereof, without the written permission of the Agency.
- 6. All activities for the prevention of soil erosion, such as silt fences and hay bales shall be under the direct supervision of the Inland Wetland Agent and if he deems it necessary, a certified engineer, who shall employ the best management practices, consistent with the terms and conditions of this permit, to control storm water discharges and to prevent erosion and sedimentation, to otherwise prevent pollution of wetlands or watercourses.
- 7. A copy of this motion and conditions listed, when approved by a majority vote of the IWC members present, shall constitute a permit for the activity described in the application and accompanying data when signed and dated by the Agent.
- 8. Diversion plan in place if work undertaken during streamflow. Plan to be approved by agent.
- 9. See additional conditions dated 7/6/99 attached.

Motion by: C. Robinson Seconded by: C. Sanborn

Commission Action: Approved

Date: 7/6/99

20 ° d

te, Agent

July 6, 1999 Additional conditions for Sprint PCS

Driveway Crossing

- 1. Engineer to meet with agent and contractor.
- 2. Engineer to flag crossing and set elevations.
- 3. All silt fence to be in place prior to any work within 100' of wetlands.
- 4. Engineer to be present during initial stage of culvert installation and provide as-built certifying correct implementation of plan.

Driveway Design Outside of the Upland Review Area

- 1. Design of driveway is to prevent concentrated flows.
- 2. Any flow pattern greater than 200' to be broken up by acceptable erosion and soil measures, leak offs, grade changes or culverting.
- 3. All disturbed areas to be mulched and seeded.
- 4. All excess fill material to be deposited greater than 100' from wetlands graded, seeded and mulched.

Mitigation

- 1. Mitigation to be done under the direction of the soil scientist.
- 2. Soil scientist to provide report to Commission on implementation of plan.
- 3. Soil scientist to verify success of planting at the beginning and end of the following growing season and provide report to Commission.

"SUMMARY RULING" (APPROVAL WITH CONDITIONS)

As provided for in Connecticut General Statutes Section 22a-36 through 22a-45, as amended, and in Sections 5,6.6b, 9.1 through 9.10 of the Inland Wetlands.and Watercourse Regulations of the Town of Columbia, I move that the application No. AP9899-20 and described below be approved and a permit be granted with the conditions listed below in that the proposed activity does not have a significant impact on the wetlands or watercourses as defined in Section 2.20 in the Inland Wetlands Commission Regulations.

Applicant: Sprint PCS

Address: 9 Barnes Industrial Rd. Wallingford, CT 06492

114

Address of Activity: 14 Thompson Hill Rd

Property owned by: Thomas R. &

Willie Jo Deojay

Maps Dated: 5/28/99

Application received on: 6/1/99

For the proposed activity: Upgrade existing gravel access drive by placing fill & 18" RCP - area of fill & disturbance in wetlands approximately 230 sq. ft.

Conditions:

- 1. The Inland Wetland Commission Agent is to be notified 48 hours before the commencement of any part of the activity approved above.
- The granting of this permit does not relieve the applicant from obtaining additional permits and/or approvals required by other agencies, federal, state and local.
- 3. If an approval or permit is granted by another agency and contains conditions affecting the wetlands and/or watercourses and the area 75 feet from their flagged boundaries not addressed by this permit, the applicant must resubmit the application for further consideration by the Inland Wetlands Commission for a decision before work on the activity is to take place.

- 4. The duration of this permit is for five (5) years unless extended; by this Agency, and shall expire upon the completion of the activity approved herein or within one year of the start of the activity; whichever is sooner.
- 5. The applicant shall not assign or transfer this permit, or any part thereof, without the written permission of the Agency.
- 6. All activities for the prevention of soil erosion, such as silt fences and hay bales shall be under the direct supervision of the Inland Wetland Agent and if he deems it necessary, a certified engineer, who shall employ the best management practices, consistent with the terms and conditions of this permit, to control storm water discharges and to prevent erosion and sedimentation, to otherwise prevent pollution of wetlands or watercourses.
- 7. A copy of this motion and conditions listed, when approved by a majority vote of the IWC members present, shall constitute a permit for the activity described in the application and accompanying data when signed and dated by the Agent.
- 8. Diversion plan in place if work undertaken during streamflow. Plan to be approved by agent.
- 9. See additional conditions dated 7/6/99 attached.

Motion by: C. Robinson Seconded by: C. Sanborn

Commission Action: Approved

Date: 7/6/99

50 - 역

Ente, Agent

July 6, 1999 Additional conditions for Sprint PCS

Driveway Crossing

- 1. Engineer to meet with agent and contractor.
- 2. Engineer to flag crossing and set elevations.
- 3. All silt fence to be in place prior to any work within 100' of wetlands.
- 4. Engineer to be present during initial stage of culvert installation and provide as-built certifying correct implementation of plan.

Driveway Design Outside of the Upland Review Area

- 1. Design of driveway is to prevent concentrated flows.
- 2. Any flow pattern greater than 200' to be broken up by acceptable erosion and soil measures, leak offs, grade changes or culverting.
- 3. All disturbed areas to be mulched and seeded.
- 4. All excess fill material to be deposited greater than 100' from wetlands graded, seeded and mulched.

Mitigation

- 1. Mitigation to be done under the direction of the soil scientist.
- 2. Soil scientist to provide report to Commission on implementation of plan.
- 3. Soil scientist to verify success of planting at the beginning and end of the following growing season and provide report to Commission.

Exhibit B

Property card

14 THOMPSON HILL RD

Location 14 THOMPSON HILL RD **Mblu** 011//069//

Acct# 00054300 Owner LANATI JOSHUA & EILEEN

Assessment \$250,400 **Appraisal** \$502,300

PID 543 Building Count 1

Current Value

Appraisal					
Valuation Year Improvements Land Total					
2016	\$127,400	\$374,900	\$502,300		
	Assessment				
Valuation Year	Improvements	Land	Total		
2016	\$89,200	\$161,200	\$250,400		

Owner of Record

Owner LANATI JOSHUA & EILEEN

Co-Owner Address

14 THOMPSON HILL RD

COLUMBIA, CT 06237

Sale Price \$155,000

Certificate

Book & Page 0197/0163 **Sale Date** 04/14/2011

Instrument 28

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date
LANATI JOSHUA & EILEEN	\$155,000		0197/0163	28	04/14/2011
DEOJAY THOMAS R ESTATE OF	\$0		0122/0722	25	09/23/2010
DEOJAY THOMAS R	\$0		0122/0722		10/25/1999
DEOJAY THOMAS R & WILLIE JO	\$0		0059/0018		05/18/1982

Building Information

Building 1 : Section 1

Year Built: 1955 Living Area: 1,677 Replacement Cost: \$190,432

Building Percent

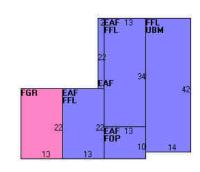
Good:

Replacement Cost

Less Depreciation: \$125,700

Building Attributes

Building Photo


66

Field	Description
Style	Conventional
Model	Residential
Grade:	Average +20
Stories:	1 1/2 Stories
Occupancy	1
Exterior Wall 1	Stucco/Masonry
Exterior Wall 2	Wood Shingle
Roof Structure:	Gable/Hip
Roof Cover	Asphalt
Interior Wall 1	Drywall/Sheet
Interior Wall 2	
Interior Flr 1	Pine/Soft Wood
Interior Flr 2	
Heat Fuel	Electric
Heat Type:	Electr Basebrd
AC Type:	None
Total Bedrooms:	3 Bedrooms
Total Bthrms:	2
Total Half Baths:	1
Total Xtra Fixtrs:	
Total Rooms:	8 Rooms
Bath Style:	Average
Kitchen Style:	Average
Whirlpool	
Fireplace(s)	1
Fndtn. Level	

(http://images.vgsi.com/photos2/ColumbiaCTPhotos//\00\00\75/76.jpg)

Building Layout

	Building Sub-Areas (sq ft) <u>Legend</u>				
Code	Description	Gross Area	Living Area		
FFL	First Floor Living	1,316	1,316		
EAF	Attic, Expansion, Finished	902	361		
FGR	Garage, Framed	286	0		
FOP	Porch, Open, Finished	130	0		
UBM	Basement, Unfinished	588	0		
		3,222	1,677		

Extra Features

Extra Features	Legend
No Data for Extra Features	

Land

Land Use		Land Line Valua	ation
Use Code	1010	Size (Acres)	29.4
Description	Single Fam	Frontage	0
Zone	RA	Depth	0
Neighborhood	12	Assessed Value	\$161,200

Alt Land Appr No Category **Appraised Value** \$374,900

Outbuildings

	Outbuildings <u>Lege</u>					<u>Legend</u>
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
BRN3	Barn 1 St. w Loft			540 S.F.	\$1,300	1
SHD1	Shed Frame			64 S.F.	\$400	1

Valuation History

Appraisal				
Valuation Year	Improvements	Land	Total	
2017	\$127,400	\$374,900	\$502,300	
2016	\$127,400	\$374,900	\$502,300	
2015	\$123,000	\$374,900	\$497,900	

Assessment				
Valuation Year Improvements Land Total				
2017	\$89,200	\$161,200	\$250,400	
2016	\$89,200	\$161,200	\$250,400	
2015	\$86,100	\$160,330	\$246,430	

(c) 2016 Vision Government Solutions, Inc. All rights reserved.

Exhibit C

Construction Drawings

SCOPE OF WORK

ITEMS TO BE INSTALLED ON & REMOVED FROM EXISTING TOWER

- REMOVE EXISTING ANTENNA MOUNTS, REMOVE (4) EXISTING ANTENNAS, AND REMOVE (2)
- INSTALL T-MOBILE ANTENNA MOUNT (VFA12-HD) (TYP. OF 1 PER SECTOR, TOTAL OF 3).
 INSTALL T-MOBILE ANTENNA (APXVAARR24_43-U-NA20) (TYP. OF 1 PER SECTOR, TOTAL OF 3).
- INSTALL T-MOBILE RADIO (4449 B71+B12) (TYP. OF 1 PER SECTOR, TOTAL OF 3).
- INSTALL T-MOBILE RADIO (4415 B25) (TYP. OF 1 PER SECTOR, TOTAL OF 3). INSTALL T-MOBILE RADIO (4415 B66A) (TYP. OF 1 PER SECTOR, TOTAL OF 3).
- INSTALL T-MOBILE ANTENNA (APX16DWV-16DWV-S-E-A20)TYP. OF 1 PER SECTOR, TOTAL OF 3)
- INSTALL T-MOBILE COAX JUMPER CABLES (TYP. OF 12 PER SECTOR, TOTAL OF 36).
- INSTALL T-MOBILE 6x12 HCS HYBRID CABLE (TOTAL OF 3).

ITEMS TO BE INSTALLED ON EXISTING EQUIPMENT PAD:

- REMOVE (1) RBS 6201 ODE
- REMOVE (1) DUS 41
- REMOVE (2) RUS01 B2
- REMOVE (4) RUS01 B12
- REMOVE (8) COAX CABLES
 INSTALL (2) ERICSSON BASEBAND 6630 UNITS
- INSTALL (1) RBS 6102 MU AC EQUIPMENT CABINET

• (1) DUG20

SITE ADDRESS:

33 JANOWSKI ROAD ASHFORD, CT 06278

LATITUDE (NAD 83):

LONGITUDE (NAD 83):

W 72° 11' 43.90" WINDHAM

JURISDICTION

LANDLORD:

CROWN CASTLE INTERNATIONAL 500 W. CUMMINGS PARK, STE 3600

SELF-SUPPORT

STRUCTURE TYPE:

STRUCTURE HEIGHT:

RAD CENTER:

CURRENT USE:

TELECOMMUNICATIONS FACILITY PROPOSED USE: TELECOMMUNICATIONS FACILITY

192'

DRAWING INDEX			
SHEET NO:	SHEET TITLE		
T-1	TITLE SHEET		
GN-1	GENERAL NOTES		
C-1	SITE PLAN		
S-1	PROPOSED TOWER ELEVATION & ANTENNA LAYOUT PLAN		
S-2	EQUIPMENT DETAILS		
S-3	MOUNT DETAIL		
RF-1	ANTENNA INFORMATION CHART		
RF-2	RF EQUIPMENT SCHEMATIC		
E-1	ONE LINE DIAGRAM		
G-1	GROUNDING RISER DIAGRAM		

CROWN CASTLE SITE ID #: 876345 **CROWN CASTLE SITE NAME: SKY HILL**

ENGINEERING

2018 CONNECTICUT STATE BUILDING CODE

2018 AMENDMENT WITH 2015 INTERNATIONAL BUILDING CODE 2009 ICC/ANSI A117.1 ACCESSIBLE AND USABLE BUILDINGS AND FACILITIES

2015 INTERNATIONAL MECHANICAL CODE

2015 INTERNATIONAL ENERGY CONSERVATION CODE 2017 NATIONAL ELECTRICAL CODE (NFPA 70 2017)

ANSI/TIA-222-G

I - Mobile

L600 PROJECT SITE NUMBER: CT11353C

SITE NAME: ASHFORD/I-84_1

CROWN SITE NAME: SKY HILL

BU#: 876345

T-MOBILE RAN TEMPLATE: 67D93D4 OUTDOOR

VICINITY MAP ASHFORD/I-84 1

84 EAST - EXIT 72, TURN RIGHT OFF RAMP, TURN RIGHT ON FRONTAGE ROAD. TURN LEFT ON JANOSKI. SELF SUPPORT TOWER IN BACK ABOUT 1/4 MILE. ACCESS RD: 41.57'19.9800", 072.11'44.9160"

GENERAL NOTES

THE FACILITY IS AN UNMANNED PRIVATE AND SECURED EQUIPMENT INSTALLATION. IT IS ONLY ACCESSED BY TRAINED TECHNICIANS FOR PERIODIC ROUTINE MAINTENANCE AND THEREFORE DOES NOT REQUIRE ANY WATER OR SANITARY SEWER SERVICE. THE FACILITY IS NOT GOVERNED BY REGULATIONS REQUIRING PUBLIC ACCESS PER ADA REQUIREMENTS


ALL CONSTRUCTION ACTIVITIES ARE TO BE COMPLETED.

DIRECTLY THROUGH CROWN. CONTRACTOR MUST HAVE CONSTRUCTION PO AND NTP FROM CROWN DIRECT IN

ORDER TO BEGIN. PRE-APPROVAL TO ENTER THE PROPERTY MUST BE OBTAINED. FOR ACCESS

AUTHORIZATION, PLEASE CONTACT CROWN.

- CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON THE JOB SITE AND SHALL IMMEDIATELY NOTIFY THE T-MOBILE REPRESENTATIVE IN WRITING OF DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME
- HANDICAP REQUIREMENTS ARE NOT REQUIRED.
- THIS EACH ITY SHALL MEET OR EXCEED ALL FAA AND ECC REGULATORY REQUIREMENTS
- ALL NEW MATERIAL SHALL BE FURNISHED AND INSTALLED BY CONTRACTOR UNLESS NOTED OTHERWISE. EQUIPMENT, ANTENNAS/RADIOS AND CABLES FURNISHED BY OWNER AND INSTALLED BY CONTRACTOR.
- NO COMMERCIAL SIGNAGE IS PROPOSED

CALL CONNECTICUT ONE CALL (800) 922-4455 CALL 3 WORKING DAYS BEFORE YOU DIG!

103 MONARCH DRIVE LIVERPOOL, NY 13088

3 CORPORATE PARK DRIVE

120 ST. JAMES AVENUE, 5TH FLOOR

CHECKED BY

SUBMITTALS

1	08/21/19	ISSUED FOR CONSTRUCTION
0	07/18/19	ISSUED FOR PERMITTING

ROPERTY AND COPYRIGHTED WORK OF T-MOBIL / DUPLICATION OR USE WITHOUT EXPRESS ITTEN CONSENT IS STRICTLY PROHIBITED. DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY

> ASHFORD/I-84 1 CT11353C SKY HILL 876345 33 JANOWSKI ROAD ASHFORD, CT 06278

TITLE SHEET

CROWN CASTLE USA INC. SITE ACTIVITY REQUIREMENTS:

- NOTICE TO PROCEED. NO WORK, SHALL COMMENCE PRIOR TO CROWN CASTLE USA INC. WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE CROWN CASTLE USA INC. NOC AT 800-788-7011 & THE CROWN CASTLE USA INC. CONSTRUCTION MANAGER.
- "LOOK UP" CROWN CASTLE USA INC. SAFETY CLIMB REQUIREMENT: THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE, ANY COMPROMISED SAFETY OF IMP, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR CROWN CASTLE USA INC. POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.
- PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES BUIT IS NOT LIMITED TO BUILDING ELECTRICAL MECHANICAL FIRE FLOOD ZONE ENVIRONMENTAL AND ZONING AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT CCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
- ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND EACCUTION OF THE WORK CUTTAINED FIEREIN, AND STALL MEET ANSISTANSE FILES (LITEST EUTION); FEDERAL, STALE, A LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED, ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND CROWN CASTLE USA INC. STANDARD CED-STO-10253, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).
- ALL SITE WORK TO COMPLY WITH QAS-STD-10068 "INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON CROWN CASTLE USA INC. TOWER SITE" AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
- IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS. THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY CROWN CASTLE USA INC. PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALL ATION
- ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES. REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

 THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S
- RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF CONSTRUCTION
- ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILLITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.
- ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND PROJECT SPECIFICATIONS.
- CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT TH COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF CONTRACTOR, TOWER OWNER, CROWN CASTLE USA INC., AND/OR LOCAL UTILITIES.
- THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
- THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER
- THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE
- THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER FOLLIPMENT OR THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.

 CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF
- REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY
- DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER
- CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED
- CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A
- NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT

GENERAL NOTES:

- FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: CONTRACTOR: GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION CARRIER: T-MOBILE TOWER OWNER: CROWN CASTLE USA INC. CONTRACTOR: CARRIER:
- TOWER OWNER: CROWN CASTLE USA INC.

 THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR COLCULITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK
- NOT EXPLICITE SHOWN.
 THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC., SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE NSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY
- INSPECTION OF THESE TIEMS AND IS FOR STROCTORAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.

 NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL

 DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR

 AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL

 NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS
- REQUIRED CONTACT THE ENGINEER OF RECORD.
 SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS. MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED
 THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION ELEMENTS. IF IT IS DETERMINED
 THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS
 TO BE NOTIFIED AS SOON AS POSSIBLE.
 PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE
- PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPUISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CROWN CASTLE.

 ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL PAPICABLE CODES, REGILATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWPUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
 UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

- NEUESSARY I D COMPLE IE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

 THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S

 RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

 IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE

 AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND CROWN CASTLE PRIOR TO PROCEEDING WITH ANY

 SUCH CHANGE OF INSTALLATION.

 CONTRACTOR IS TO PERFORM A SITE INVESTIGATION AND IS TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR

 POWER AND TEL OO AND FOR GRO! INVINING CABLE SA SCHOWN IN THE POWER TEL OO AND GRO! INVINING BY AND AND AND INSTALLATION.
- POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY
- DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF CROWN CASTLE USA INC.
 CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER
 ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED
- LOCATION.

 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A

ELECTRICAL INSTALLATION NOTES:

- ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS. NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.
- CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT
- BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
 WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPUTED BY THE REQUIREMENTS OF THE NEC.
 ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.
 ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO
- REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.
 ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE ALL OVERCURKENT DEVICES SHALL HAVE AN INITERRUPTING CORRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 20,000 ALC MINIMUM, VERYIFY AVAILABLE SHORT CIRCUIT CURRENT DODES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.

 EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND 12" PLASTIC ELECTRICAL TAPE WITH THE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 12" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL), THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
- ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE. PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e

- PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACHY RATING AND BRANCH CIRCUIT ID NUMBERS (I.E. PANEL BOARDS AND DIRCUIT IDS).

 PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.

 ALL TIE WRAPS SHALL BE CUT FLUSH WITH APPROVED CUTTING TOOL TO REMOVE SHARP EDGES.

 ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW. THWN. THWN-2, XHHW. XHHW-2, THW. THW-2, RHW. OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- OTHERWISE SPECIFIED.
 SUPPLEMENTAL FOLIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWIS
- SPECIFIED.
 POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.
- UNLESS OTHERWISE SPELIFIED:
 POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER),
 WITH TYPE THIM, THUM, THUM-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE
- ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE. COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75 $^\circ$ C (90 $^\circ$ C IF
- THOMAS AND BETT 15 (OR EQUAL), LOGS AND WINE NOTS STALE BETWEED AND STATE OF THE ST
- ANSI/IEEE AND NEC.
 ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE 15. USED FOR EXPOSED INDOOR LOCATIONS.
- USED FOR EAPOSED INDIGOR LOCATIONS.
 ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.

 LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE
- VIBRATION OCCURS OR FLEXIBILITY IS NEEDED. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED.
- SET SCREW FITTINGS ARE NOT ACCEPTABLE. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE

- AND THE NEC.

 WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).

 SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).

 CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHTE INVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALLE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEADLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEADLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.
- WALLEAGUE HON ECONOTION OF OTHER AND HONDE.
 FOULPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA
- SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3R (OR BETTER) FOR EXTERIOR LOCATIONS.

 METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA 0S 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WPO OR BETTER) FOR EXTERIOR LOCATIONS.

 NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA 0S 2 (NEWEST REVISION) AND BE
- RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR
- THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR CROWN CASTLE
- THE CONTRACTOR SHALL NOTIFY AND DISTRINGUESSARY AUTHORIZATION FROM THE CARRIER AND/OR CROWN CAS USA INC. BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "CT11353C". ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.
 - 08/21/19 ISSUED FOR CONSTRUCTION 07/18/10 ISSUED FOR PERMITTING ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY

	CONDUC	TOR COLOR	CODE
	SYSTEM	CONDUCTOR	COLOR
		A PHASE	BLACK
	120/240V, 1Ø	B PHASE	RED
	120/2407, 190	NEUTRAL	WHITE
		GROUND	GREEN
		A PHASE	BLACK
		B PHASE	RED
	120/208V, 3Ø	C PHASE	BLUE
		NEUTRAL	WHITE
		GROUND	GREEN
		A PHASE	BROWN
		B PHASE	ORANGE OR PURPLE
	277/480V, 3Ø	C PHASE	YELLOW
		NEUTRAL	GREY
		GROUND	GREEN
	DC VOLTAGE	POS (+)	RED**
	DC VOLTAGE	NEG (-)	BLACK**

* SEE NEC 210.5(C)(1) AND (2)

OLARITY MARKED AT TERMINATION

T-MOBILE NORTHEAST LLC 103 MONARCH DRIVE LIVERPOOL, NY 13088

SUITE 101 CLIFTON PARK, NY 12065

120 ST. JAMES AVENUE, 5TH FLOOR BOSTON, MA 02116

PROJECT NO FRCC0004

DRAWN BY

CHECKED BY

SUBMITTALS

DC

THIS DOCUMENT IS THE CREATION, DESIGN. PROPERTY AND COPYRIGHTED WORK OF T-MOBIL ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED. DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING

> ASHFORD/I-84 1 CT11353C SKY HILL 876345 33 JANOWSKI ROAD ASHFORD, CT 06278

GENERAL NOTES

GN-1

GROUNDING NOTES:

- ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED
- TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
 THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING
- METAL COMDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- ET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR
- OUTDOOR STS.

 CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.

 ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED. ALLUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.

- USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.

AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY).

- USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.
 EXCITERING WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.

 ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.

 COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXCITHERMIC WELD CONNECTIONS.

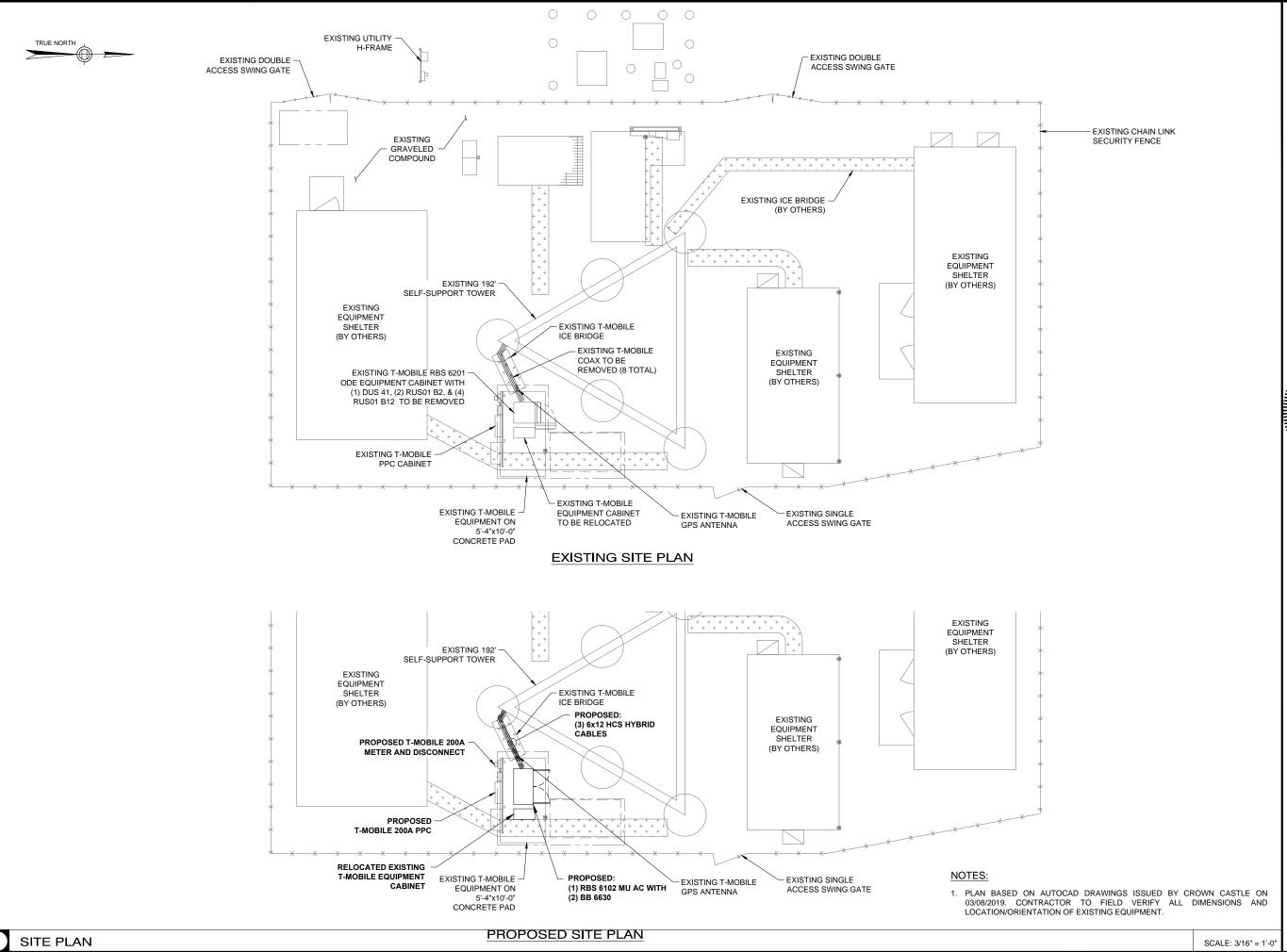
 ICE BRIDGE BONDING CONDUCTORS SHALL BE EXCITHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.

 APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.

 ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.

- ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.

 MISCELLANGOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.


 BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.

 GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT

 CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT THAT EACH END OF THE METALL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.

 ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END

 OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
- BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE. THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING. TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/0 COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM

T - Mobile

T-MOBILE NORTHEAST LLC 103 MONARCH DRIVE LIVERPOOL, NY 13088

3 CORPORATE PARK DRIVE SUITE 101 CLIFTON PARK, NY 12065

120 ST. JAMES AVENUE, 5TH FLOOR BOSTON, MA 02116

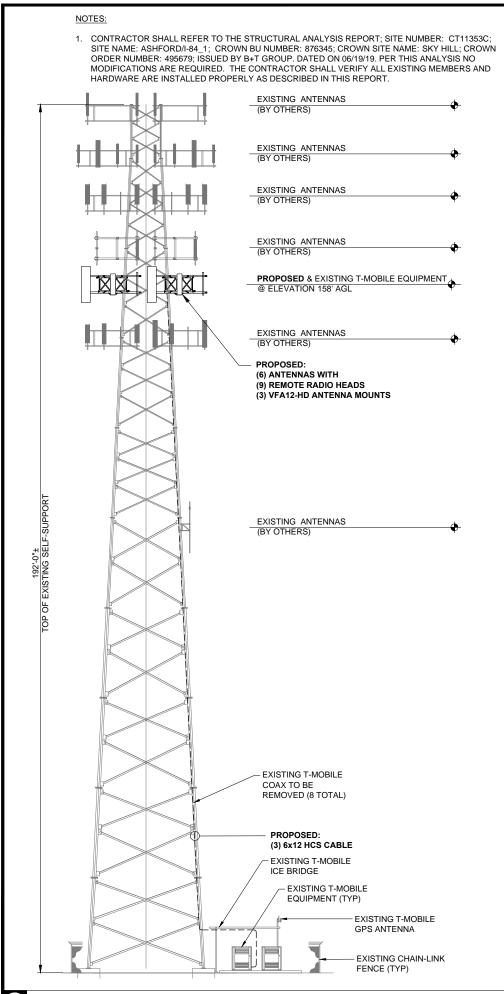
PROJECT NO: ERCC0004

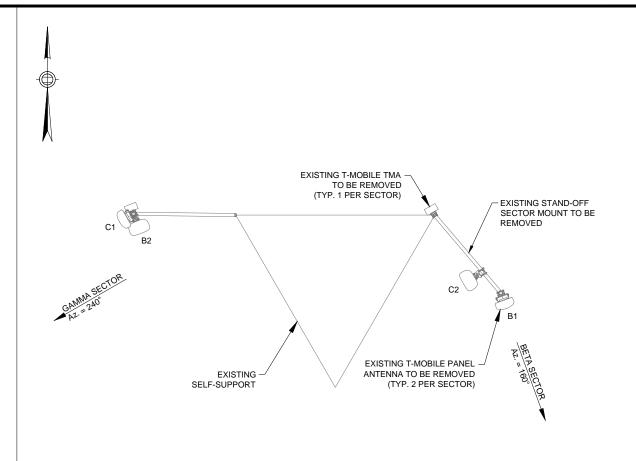
DRAWN BY:

CHECKED BY:

SUBMITTALS

0 07/18/19 ISSUED FOR PERMITTING


THIS DOCUMENT IS THE CREATION, DESIGN,
PROPERTY AND COPYRIGHTED WORK OF T-MOBIL
ANY DUPLICATION OR USE WITHOUT EXPRESS
WRITTEN CONSENT IS STRICTLY PROHIBITED.
DUPLICATION AND USE BY GOVERNMENT
AGENCIES FOR THE PURPOSES OF CONDUCTING
THEIR LAWPLUX PUTHORIZED REGULATORY AND
ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY


08/21/19 ISSUED FOR CONSTRUCTION

ASHFORD/I-84_1 CT11353C SKY HILL 876345 33 JANOWSKI ROAD ASHFORD, CT 06278

SITE PLAN

C-1

ELEVATION 158'

EXISTING ANTENNA LAYOUT

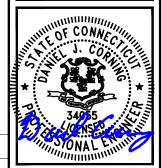
PROPOSED T-MOBILE APX16DWV-16DWV-S-E-A20 ANTENNA (TYP OF 1 PER SECTOR) (EMPTY) **EXISTING** PROPOSED T-MOBILE 4449 B71/B12 RRH (TYP OF 1 PER SECTOR) PROPOSED T-MOBILE ANTENNA SECTOR FRAME VFA12-HD (EMPTY) (TYP OF 1 PER SECTOR) (EMPTY) PROPOSED T-MOBILE 4415 B66A RRH PROPOSED T-MOBILE (TYP OF 1 PER SECTOR) 4415 B25A RRH (TYP OF 1 PER SECTOR)

NOTES:

CONTRACTOR SHALL REFER TO THE MOUNT ANALYSIS REPORT; SITE NUMBER: CT11353C; SITE NAME: ASHFORD/I-84_1; CROWN BU NUMBER: 876345; CROWN SITE NAME: SKY HILL; CROWN ORDER NUMBER: 495679; ISSUED BY MASTEC NETWORK SOLUTIONS, DATED ON 06/13/2019. PER THIS ANALYSIS NO MODIFICATIONS ARE REQUIRED FOR THE PROPOSED EQUIPMENT. CONTRACTOR SHALL CONFIRM ALL T-MOBILE EXISTING AND PROPOSED EQUIPMENT ARE INSTALLED IN ACCORDANCE WITH THIS REPORT.

SCALE: N.T.S.

- 2. CONTRACTOR TO VERIFY FINAL RF CONFIGURATION AND NOTIFY CARRIER AND ENGINEER W/ ANY DISCREPANCIES PRIOR TO THE INSTALLATION.
- CONTRACTOR SHALL NOT EXCEED MOUNTING MORE THAN (2) RRHS PER ANTENNA MOUNTING PIPE - RELOCATE TO AN ADJACENT ANTENNA MOUNTING PIPE AS NEEDED.

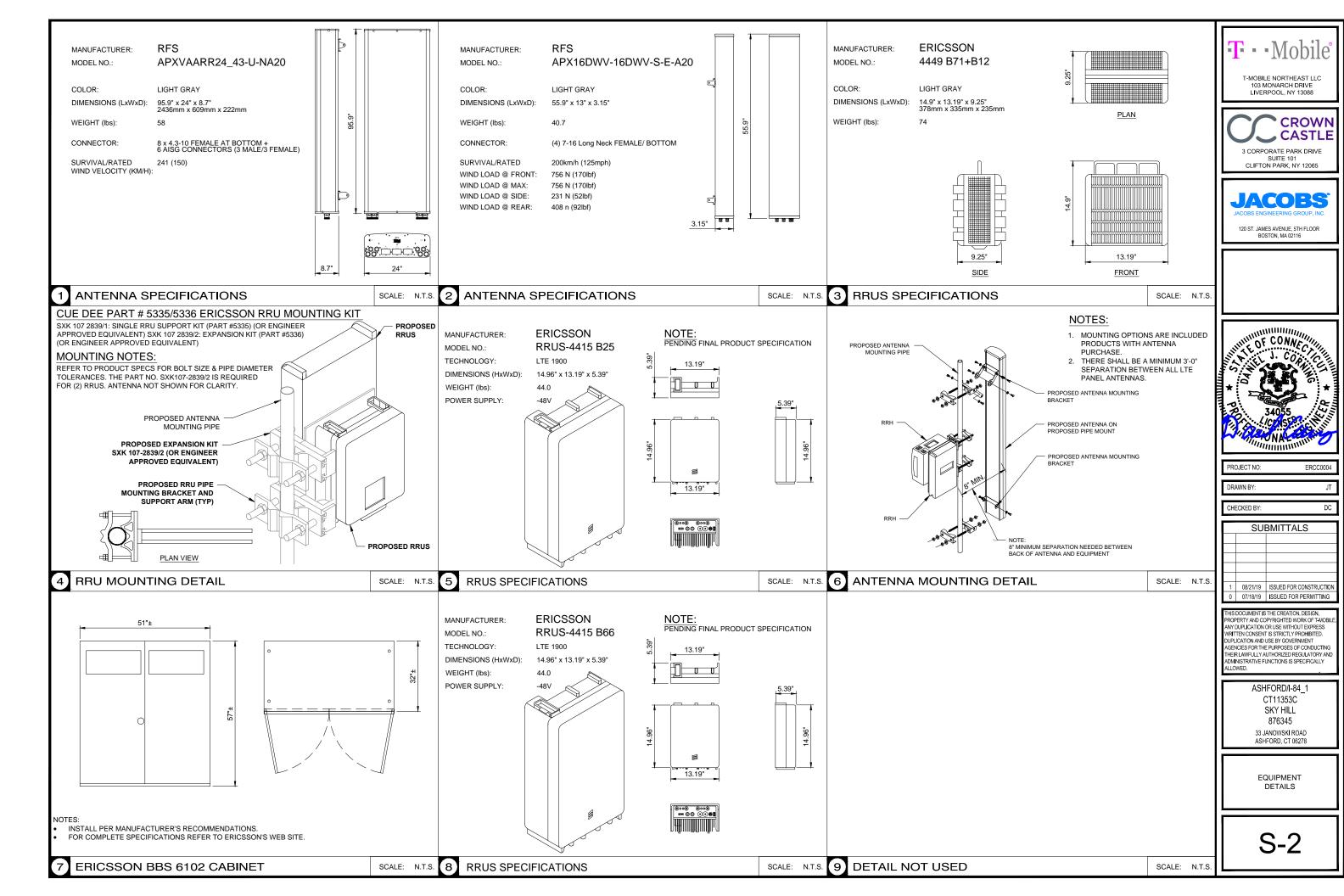

T-MOBILE NORTHEAST LLC 103 MONARCH DRIVE LIVERPOOL, NY 13088

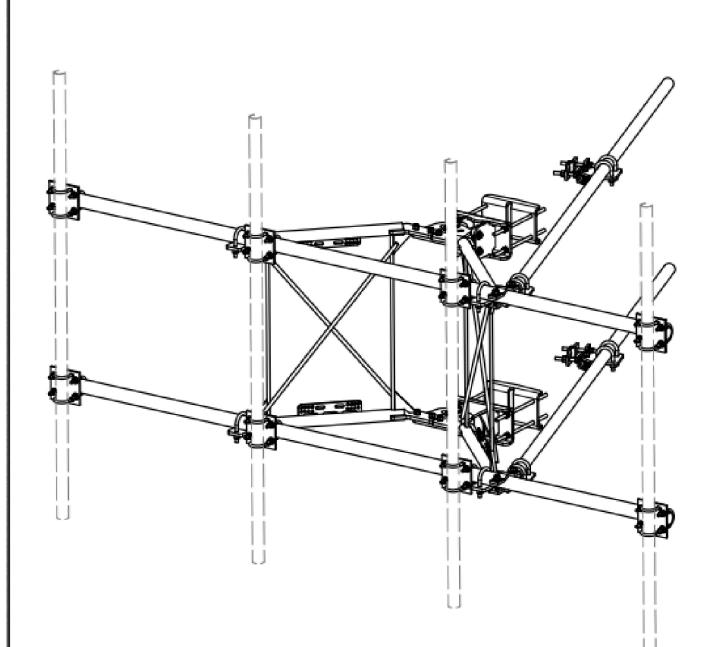
3 CORPORATE PARK DRIVE SUITE 101 CLIFTON PARK, NY 12065

120 ST. JAMES AVENUE, 5TH FLOOR BOSTON, MA 02116

PROJECT NO: ERCC0004

CHECKED BY:


SUBMITTALS									
1	08/21/19	ISSUED FOR CONSTRUCTION							
0	07/18/19	ISSUED FOR PERMITTING							


PROPERTY AND COPYRIGHTED WORK OF T-MOBIL ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED. DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY

> ASHFORD/I-84_1 CT11353C SKY HILL 876345 33 JANOWSKI ROAD ASHFORD, CT 06278

PROPOSED TOWER **ELEVATION &** ANTENNA LAYOUT PLAN

PROPOSED T-MOBILE APXVAARR24_43-U-NA20 ANTENNA (TYP OF 1 PER SECTOR) **ELEVATION 158'** PROPOSED ANTENNA LAYOUT

			PARTS LIST			
TEM	QTY	PART NO.	PART DESCRIPTION	LENGTH	UNIT WT.	NET WT.
1	2	X-VFAW	SUPPORT ARM		71.41	142.81
2	1	X-HDCAMTBW	CLAMP WELDMENT FOR BCAM-HD		33.86	33.86
3	1	X-MHTPHD	MULTI-HOLE TAPER PLATE WELDMENT		36.24	36.24
4	2	X-VFAPL4	VFA-HD PIVOT PLATE	12 in	15.88	31.77
5	2	X-LCBP4	BENT BACKING PLATE	13 in	19.00	38.01
6	1	X-HDCAMSS	ANGLE ADJUSTMENT WELDMENT FOR BCAM-HD		16.39	16.39
7	4	X-SPTB	SLIDING PIPE TIE BACK PLATE	5 1/2 in	5.87	23.49
8	1	X-HDCAMSP	POSITIONING PLATE WELDMENT FOR BCAM-HD		2.58	2.58
9	4	X-TBCA	TIE BACK CLIP ANGLE		2.01	8.02
10	8	SCX2	CROSSOVER PLATE	7 in	4.80	38.37
11	4	MCP	CLAMP HALF 1/2" THICK, 11-5/8" LONG	12 1/16 in	3.59	14.37
12	8	DCP	1/2" THICK, 5-3/4" CNTER TO CENTER CLAMP HALF	8 1/8 in	2.36	18.90
13	2	P2126	2-3/8" X 126" (2" SCH. 40) GALVANIZED PIPE	126 in	40.75	81.50
14	2	P30150	2-7/8" X 150" (2-1/2" SCH. 40) GALVANIZED PIPE	150 in	76.94	153.87
15	4	A34212	3/4" x 2-1/2" UNC HEX BOLT (A325)	2 1/2 in	0.48	1.92
16	4	G34FW	3/4" HDG USS FLATWASHER		0.06	0.24
17	4	G34LW	3/4" HDG LOCKWASHER		0.04	0.17
18	4	G34NUT	3/4" HDG HEAVY 2H HEX NUT		0.21	0.85
19	8	G58R-18	5/8" x 18" THREADED ROD (HDG.)	18 in	0.40	3.19
20	4	G58R-12	5/8" x 12" THREADED ROD (HDG.)		1.05	4.18
21	4	G58R-8	5/8" x 8" THREADED ROD (HDG.)		0.70	2.79
22	4	X-UB5300	5/8" X 3" X 5-1/4" X 2-1/2" U-BOLT (HDG.)		1.15	4.60
23	8	X-UB5258	5/8" X 2-5/8" X 4-1/2" X 2" U-BOLT (HDG.)		1.00	8.00
24	2	G5807	5/8" x 7" HDG HEX BOLT GR5 FULL THREAD	7 in	0.70	1.41
25	1	G5806	5/8" x 6" HDG HEX BOLT GR5 FULL THREAD	6 in	0.62	0.62
26	8	G5804	5/8" x 4" HDG HEX BOLT GRS		0.44	3.55
27	4	G5802	5/8" x 2" HDG HEX BOLT GRS		0.27	1.08
28	8	A582114	5/8" x 2-1/4" HDG A325 HEX BOLT	2 1/4 in	0.31	2.50
29	25	G58FW	5/8" HDG USS FLATWASHER	1/8 in	0.07	1.76
30	66	G58LW	5/8" HDG LOCKWASHER		0.03	1.72
31	71	G58NUT	5/8" HDG HEAVY 2H HEX NUT		0.13	9.22
32	32	X-UB1300	1/2" X 3" X 5" X 2" GALV U-BOLT		0.74	23.64
33	16	X-UB1212	1/2" X 2" X 3" X 1-1/4" U-BOLT (HDG.)		0.60	9.56
34	64	G12FW	1/2" HDG USS FLATWASHER	3/32 in	0.03	2.18
35	64	G12LW	1/2" HDG LOCKWASHER	1/8 in	0.01	0.89
36	64	G12NUT	1/2" HDG HEAVY 2H HEX NUT		0.07	4.58
					TOTAL WT. #	738.06

TOLERANCE NOTES

TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030°) DRILLED AND GAS CUT HOLES (± 0.030°) - NO CONING OF HOLES

ALL OTHER ASSEMBLY (± 0.060")

RESPECTANT NOTE:
THE OWA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF WALMOUT
NEEDERSES AND CONSIDERED & PRACE SECRET. MAY USE OR CISCLOSURE WITHOUT THE CONSIST OF
WALMOUT REQUESTRESS STREET, PROHESTED.

DESCRIPTION 12' 6" HEAVY DUTY V-FRAME ASSEMBLY WITH TWO STIFF ARMS

CEK 1/25/2017

CUSTOMER

IAWING USAGE

ENG. APPROVAL

CHECKED BY

BMC 12/13/2017

DRAWN BY

CPD NO.

81

02

Los Angeles, CA Plymouth, IN

VFA12-HD VFA12-HD

T-MOBILE NORTHEAST LLC 103 MONARCH DRIVE LIVERPOOL, NY 13088

3 CORPORATE PARK DRIVE SUITE 101 CLIFTON PARK, NY 12065

JACOBS

120 ST. JAMES AVENUE, 5TH FLOOR BOSTON, MA 02116

PROJECT NO:

CHECKED BY:

SUBMITTALS

08/21/19 ISSUED FOR CONSTRUCTION 07/18/19 ISSUED FOR PERMITTING

PROPERTY AND COPYRIGHTED WORK OF T-MOBIL ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED. DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY

> ASHFORD/I-84_1 CT11353C SKY HILL

876345

33 JANOWSKI ROAD

ASHFORD, CT 06278

ERCC0004

CROWN CASTLE

CEK 6/29/2018

CEK 12/7/2017

CEK 7/31/2017

CEK 2/2/2017

CPD BY DATE

LASER CUT EDGES AND HOLES (# 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE ALL OTHER MACHINING (± 0.030")

PART NO.

MOUNT DETAIL

VFA12-HD MOUNT DETAIL

REV

D UPDATED BCAM VERSION 1 TO BCAM VERSION 2

B CHANGED TIE-BACK BACK CONNECTION

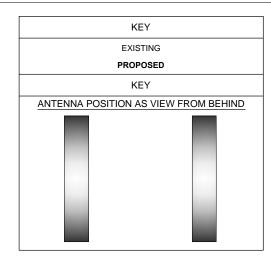
A CHANGED TIE-BACK FRONT CONNECTION

C UPDATED PIN LEG CONNECTION TO B-CAM CONNECTION

DESCRIPTION OF REVISIONS

REVISION HISTORY

SCALE: N.T.S


67D93D4 OUTDOOR - TOWER TOP EQUIPMENT SCHEDULE (RE: CT11353C_L600_3.1_DRAFT_2019-05-09)													
ANTENNA ANTENNA NUMBER				ELEC.	ANTENNA CENTERLINE	TMA/RRUS	TMA/RRUS	COAX/HYBRID CABLE			JUMPERS		
(FROM L TO R)	MODEL	AZIMUTH	TILT	TILT	FROM GROUND	MODEL	QUANTITY	SIZE/TYPE	QUANTITY	LENGTH	TYPE	QTY	LENGTH
A1	APX16DWV-16DWV-S-E-A20	20°	0°	2°	158'	RADIO 4415 B25	1	6x12 HCS	1	203'	COAX	4	10'
	APXVAARR24_43-U-NA20	20°	•	•	158'	RADIO 4449 B71+B12	1				COAX	4	10'
A2			0°	2°		RADIO 4415 B66A	1	-	-	-	COAX	4	10'
B1	APX16DWV-16DWV-S-E-A20	160°	0°	2°	158'	RADIO 4415 B25	1	6x12 HCS	1	203'	COAX	4	10'
B2	APXVAARR24_43-U-NA20	160°	0°	2°	158'	RADIO 4449 B71+B12					COAX	4	10'
В2						RADIO 4415 B66A	1	-	-	-	COAX	4	10'
C1	APX16DWV-16DWV-S-E-A20	240°	0°	2°	158'	RADIO 4415 B25	1	6x12 HCS	1	203'	COAX	4	10'
C2	APXVAARR24_43-U-NA20	240°	0°	2°	158'	RADIO 4449 B71+B12					COAX	4	10'
						RADIO 4415 B66A	1	-	-	-	COAX	4	10'

NOTES:

1. EQUIPMENT LISTED IN BOLD, DELINEATES THAT THE EQUIPMENT IS PROPOSED

EQUIPMENT INFORMATION CHART

SCALE: NONE

EQUIPMENT NOTES:

- THE HYBRID CABLE LENGTH SHOW IS ONLY AN ESTIMATE AND SHOULD NOT BE USED FOR ORDERING MATERIALS. CONFIRM THE REQUIRED HYBRID CABLE LENGTH WITH T-MOBILE PRIOR TO ORDERING OR INSTALLATION.
- 2. THE CONTRACTOR SHALL TEST THE OPTICAL FIBER AFTER INSTALLATION IN ACCORDANCE WITH T-MOBILE STANDARDS AND SUPPLY THE RESULTS TO T-MOBILE.
- 3. THE CONTRACTOR SHALL CONFIRM THE TOWER TOP EQUIPMENT LIST ABOVE WITH THE FINAL T-MOBILE RFDS PRIOR TO INSTALLATION.
- 4. ALL EXISTING AND PROPOSED ANTENNA CABLES SHALL BE COLOR CODED PER T-MOBILE STANDARDS.
- 5. REFER TO EQUIPMENT INSTALLATION STANDARDS FOR ADDITIONAL INFORMATION.
- 6. REFER TO EQUIPMENT MANUFACTURER'S SPECIFICATION SHEETS FOR ADDITIONAL INFORMATION NOT LISTED ABOVE.

67D93D	67D93D4 OUTDOOR - TOWER LOADING SUMMARY								
EQUIPMENT TYPE	EXISTING QUANTITY	QUANTITY REMOVED	QUANTITY ADDED	TOTAL QUANTITY					
PANEL ANTENNA	4	4	6	6					
COAX CABLE	8	8	0	0					
HYBRID CABLE	0	0	3	3					
FIBER JUMPER	0	0	0	0					
COAX JUMPER	0	0	36	36					
TMA	2	2	0	0					
RADIO	0	0	9	9					

T-MOBILE NORTHEAST LLC 103 MONARCH DRIVE LIVERPOOL, NY 13088

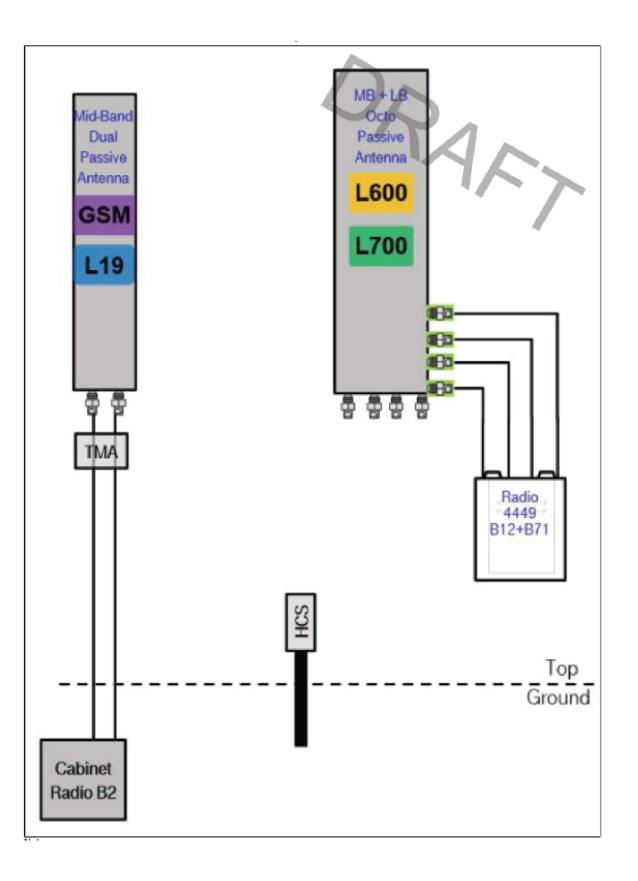
3 CORPORATE PARK DRIVE SUITE 101 CLIFTON PARK, NY 12065

120 ST. JAMES AVENUE, 5TH FLOOR BOSTON, MA 02116

PROJECT NO: ERCC0004

CHECKED BY:

SUBMITTALS


08/21/19 ISSUED FOR CONSTRUCTION 07/18/19 ISSUED FOR PERMITTING

THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF TIMOBILE ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED. DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY

> ASHFORD/I-84_1 CT11353C SKY HILL 876345 33 JANOWSKI ROAD ASHFORD, CT 06278

ANTENNA INFORMATION CHART

SITE CONFIGURATION: 67D93D4 OUTDOOR

T-MOBILE NORTHEAST LLC 103 MONARCH DRIVE LIVERPOOL, NY 13088

3 CORPORATE PARK DRIVE SUITE 101 CLIFTON PARK, NY 12065

JACOBS

120 ST. JAMES AVENUE, 5TH FLOOR BOSTON, MA 02116

PROJECT NO: ERCC0004

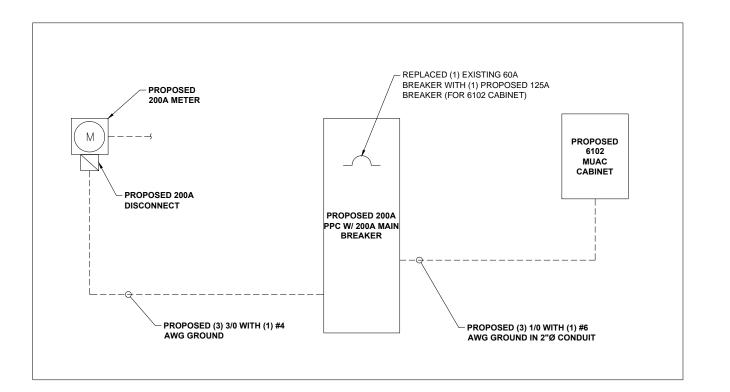
DRAWN BY:

CHECKED BY:

THIS DOCUMENT IS THE CREATION DESIGN, PROPERTY AND COPYRIGHTED WORK OF T-MOBILE ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN COSSEN IS STRICTLY PROHIBITED. DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED.

ASHFORD/I-84_1 CT11353C SKY HILL 876345 33 JANOWSKI ROAD ASHFORD, CT 06278

RF EQUIPMENT SCHEMATIC


RF-2

ONE LINE DIAGRAM NOTES:

- 1. ELECTRICAL SERVICE SHALL BE 200A, 240/120V, 1Ø, 3W
- 2. FOR COMPLETE INTERNAL WIRING AND ARRANGEMENT, REFER TO VENDOR PRINTS PROVIDED BY EQUIPMENT MANUFACTURER.

NOTES

- 1. CONTRACTOR SHALL VERIFY AVAILABLE FAULT CURRENT WITH POWER COMPANY AND ENSURE ALL ELECTRICAL EQUIPMENT IS SUITABLE FOR AVAILABLE FAULT CURRENT.
- 2. CONTRACTOR SHALL COORDINATE UTILITY SERVICES WITH LOCAL UTILITY COMPANIES. VERIFY ALL REQUIREMENTS WITH UTILITY COMPANY STANDARDS.
- 3. ONE-LINE DIAGRAM IS SCHEMATIC ONLY AND NOT INDICATIVE OF ACTUAL EQUIPMENT LAYOUT.
- 4. CONTRACTOR SHALL LABEL METER SOCKET WITH SERVICE OWNER NAMEPLATE W/ 1/2" MINIMUM LETTERS.

T-MOBILE NORTHEAST LLC 103 MONARCH DRIVE LIVERPOOL, NY 13088

3 CORPORATE PARK DRIVE SUITE 101 CLIFTON PARK, NY 12065

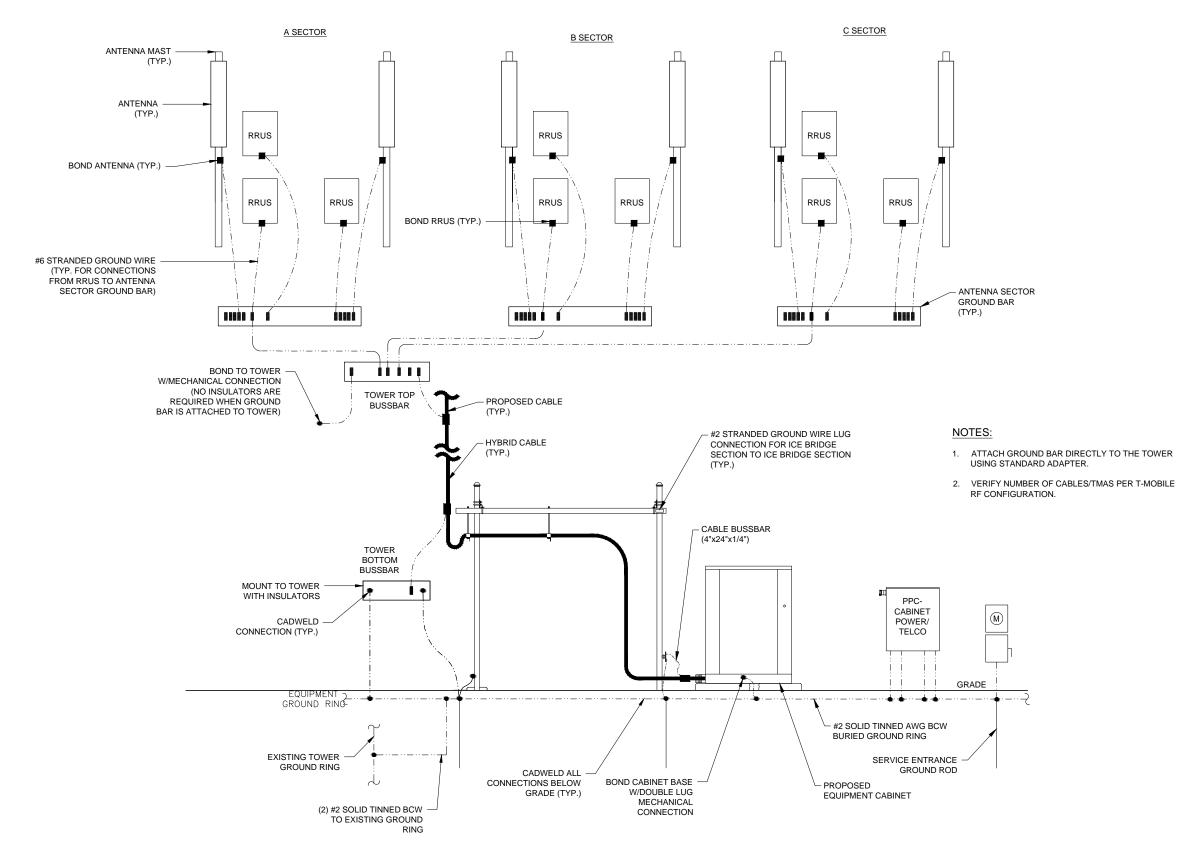
120 ST. JAMES AVENUE, 5TH FLOOR BOSTON, MA 02116

PROJECT NO: ERCC0004

RAWN BY:

CHECKED BY:

SUBMITTALS


1 08/21/19 ISSUED FOR CONSTRUCTION 0 07/18/19 ISSUED FOR PERMITTING

THIS DOCUMENT IS THE CREATION DESIGN, PROPERTY AND COPYRIGHTED WORK OF T-MOBILE ANY DUPLICATION OR USE WITHOUT EXPRESS WITTEN CONSENT IS STRICTLY PROHIBITED, DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFLUX AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED.

> ASHFORD/I-84_1 CT11353C SKY HILL 876345 33 JANOWSKI ROAD ASHFORD, CT 06278

> > ONE LINE DIAGRAM

F-1

GROUNDING NOTES:

- 1. BELOW GROUND ALL GROUNDING CONDUCTORS TO BE #2 AWG SOLID TINNED BARE COPPER WIRE (BCW) U.O.N.
- 2. ABOVE GROUND ALL GROUNDING CONDUCTORS TO BE #2 AWG STRANDED INSULATED COPPER WIRE U.O.N.
- 3. PROVIDE BONDING AND GROUNDING CONDUCTORS WITH GREEN TYPE THWN INSULATION, U.O.N.
- 4. LEAVE 4' EXCESS GROUND WIRE COILED UP ABOVE GRADE. SEAL/WEATHERPROOF CONDUIT.

T - - Mobile

T-MOBILE NORTHEAST LLC 103 MONARCH DRIVE LIVERPOOL, NY 13088

3 CORPORATE PARK DRIVE SUITE 101 CLIFTON PARK, NY 12065

120 ST. JAMES AVENUE, 5TH FLOOR BOSTON, MA 02116

TO F CONNECTION OF CONNECTION

PROJECT NO: ERCC0004

DDAWN BV-

CHECKED BY:

SUBMITTALS

1 08/21/19 ISSUED FOR CONSTRUCTION
0 07/18/19 ISSUED FOR PERMITTING

THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF T-MOBIL ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSEIN IS STRICTLY PROHIBITED. DUPLICATION AND USE BY GOVERNMENT AGENICIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED.

ASHFORD/I-84_1 CT11353C SKY HILL 876345 33 JANOWSKI ROAD ASHFORD, CT 06278

GROUNDING RISER DIAGRAM

G-1

Exhibit D

Structural Analysis Report

Date: June 26, 2019

Heather Simeone Crown Castle 3530 Toringdon Way Suite 300 Charlotte, NC 28277

AW Solutions 300 Crown Oak Centre Drive Longwood, FL 32750 (407) 260-0231

Subject: Structural Analysis Report

Carrier Designation: T-Mobile Co-Locate

Carrier Site Number: CT11503A

Carrier Site Name: Sprint Columbia Rt 6

Crown Castle Designation: Crown Castle BU Number: 876391

Crown Castle Site Name: COLUMBIA / DEOJAY

Crown Castle JDE Job Number: 559338
Crown Castle Work Order Number: 1728254
Crown Castle Order Number: 479837 Rev. 1

Engineering Firm Designation: AW Solutions Project Number: 876391

Site Data: 14 Thompson Hill Rd, COLUMBIA, Tolland County, CT

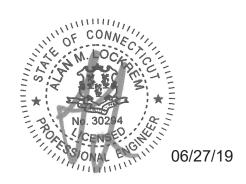
Latitude 41° 43′ 3.44″, Longitude -72° 17′ 59.09″

180 Foot - Monopole Tower

Ms. Simeone,

AW Solutions is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:


LC7: Proposed Equipment Configuration

Sufficient Capacity - 96.7%

This analysis utilizes an ultimate 3-second gust wind speed of 130 mph as required by the 2018 Connecticut State Building Code (2015 IBC). Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Charles Springer, E.I. / AL

Respectfully submitted by:

Alan Lockrem, P.E. Director of Engineering

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 180 ft Monopole tower designed by ENGINEERED ENDEAVORS, INC.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Wind Speed: 130 mph

Exposure Category: C
Topographic Factor: 1
Ice Thickness: 1.5 in
Wind Speed with Ice: 50 mph
Service Wind Speed: 60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	
	161.0	3	ericsson	AIR 32 B2A B66AA w/ Mount Pipe		1-5/8	
		3	ericsson	ERICSSON AIR 21 B2A B4P w/ Mount Pipe			
		3	ericsson	KRY 112 144/2	10		
161.0		3	ericsson	RADIO 4449 B12/B71			
		3	rfs celwave	APXVAARR24_43-U- NA20 w/ Mount Pipe			
		1	tower mounts	Platform Mount [LP 305-1]			
			1	Site Pro1	Site Pro1 PRK-SFS-L Reinforcement Kit		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)			
	181.0	3	alcatel lucent	PCS 1900MHZ 4X45W- 65MHZ	4	1-1/4			
		6	alcatel lucent	RRH2X50-800					
180.0		3	alcatel lucent	TD-RRH8X20-25					
					3	commscope	mscope NNVV-65B-R4		
		3	rfs celwave	APXVTM14-ALU-I20					
	180.0	1	tower mounts	Platform Mount [LP 301-1]					

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	alcatel lucent	RRH2X60-AWS		
		3	alcatel lucent	RRH2X60-PCS		
		6	andrew	HBXX-6517DS-A2M w/ Mount Pipe		
147.0	150.0	6	Mount Pipe		1 14	1/2 1-5/8
		1	lucent	KS24019-L112A		
		2	rfs celwave			
		6	rfs celwave			
	147.0	1	tower mounts Platform Mount [LP 712-1]			
141.0	141.0	3	ericsson			
141.0	141.0	1	tower mounts	Pipe Mount [PM 601-3]	_	-
		3	cci antennas	HPA-65R-BUU-H6		
		3	ericsson	RRUS 32		
		3	ericsson	RRUS 32 B2		
			ericsson	RRUS 4478 B14		
1		3	kmw communications	EPBQ-654L8H6-L2		
		3	powerwave technologies	1001983	2	2/9
140.0	140.0	12	powerwave technologies	7020.00	4 12	3/8 7/16 1-5/8 2
		6	powerwave technologies	7770.00	1	
		6	powerwave technologies	LGP 17201		
		6	powerwave technologies	LGP21901		
		2	raycap	DC6-48-60-18-8F		
	1		tower mounts	Platform Mount [LP 1301-		
	84.0	2	kathrein	OG-860/1920/GPS-A	2	1/0
83.0	83.0	2	tower mounts	Side Arm Mount [SO 701-	2 2	1/2 1-1/4
	79.0	1	kathrein	OG-860/1920/GPS-A		
78.0	78.0	1	tower mounts	Side Arm Mount [SO 701-	1	1/2

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
4-GEOTECHNICAL REPORTS	Goodkind & O'Dea, Inc	1613526	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	EEI	1613632	CCISITES
4-TOWER MANUFACTURER DRAWINGS	EEI	1614546	CCISITES

3.1) Analysis Method

tnxTower (version 8.0.5.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were built and maintained in accordance with the manufacturer's specifications.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. AW Solutions should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

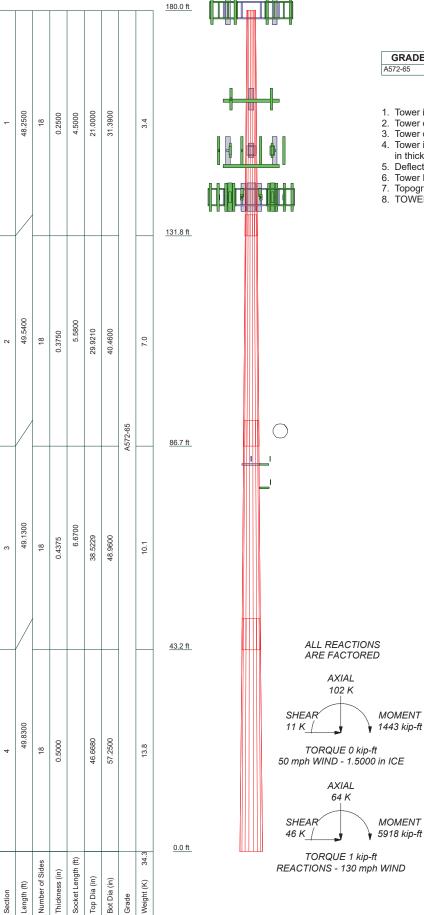
Table 4 - Section Capacity (Summary) (Monopole Tower)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	180 - 131.75	Pole	TP31.39x21x0.25	1	-15.96	1470.56	56.6	Pass
L2	131.75 - 86.71	Pole	TP40.46x29.921x0.375	2	-26.61	2843.87	74.7	Pass
L3	86.71 - 43.16	Pole	TP48.96x38.5229x0.4375	3	-41.54	4017.93	79.2	Pass
L4	43.16 - 0	Pole	TP57.25x46.668x0.5	4	-64.11	5532.07	77.0	Pass
							Summary	
						Pole (L3)	79.2	Pass
						Rating =	79.2	Pass

Table 5 - Tower Component Stresses vs. Capacity (Monopole Tower) - LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	85.4	Pass
1	Base Plate	0	89.2	Pass
1	Base Foundation Structural	0	92.8	Pass
1	Base Foundation Soil Interaction	0	96.7	Pass

Structure Rating (max from all components) = 96.7%
--


Notes:

See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A TNXTOWER OUTPUT

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu	
A572-65	65 ksi	80 ksi				

TOWER DESIGN NOTES

- 1. Tower is located in Tolland County, Connecticut.
- Tower designed for Exposure C to the TIA-222-H Standard.
- Tower designed for a 130 mph basic wind in accordance with the TIA-222-H Standard.
- 4. Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase 1. Tower is also designed for a 50 mph basic wind with 1. in thickness with height.
 5. Deflections are based upon a 60 mph wind.
 6. Tower Risk Category II.
 7. Topographic Category 1 with Crest Height of 0.0000 ft
 8. TOWER RATING: 79.2%

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- 1) Tower is located in Tolland County, Connecticut.
- 2) Tower base elevation above sea level: 561.0000 ft.
- 3) Basic wind speed of 130 mph.
- 4) Risk Category II.
- Exposure Category C.
- 6) Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- 7) Topographic Category: 1.
- 8) Crest Height: 0.0000 ft.
- 9) Nominal ice thickness of 1.5000 in.
- 10) Ice thickness is considered to increase with height.
- 11) Ice density of 56.00 pcf.
- 12) A wind speed of 50 mph is used in combination with ice.
- 13) Temperature drop of 50 °F.
- 14) Deflections calculated using a wind speed of 60 mph.
- 15) A non-linear (P-delta) analysis was used.
- 16) Pressures are calculated at each section.
- 17) Stress ratio used in pole design is 1.05.
- 18) Tower analysis based on target reliabilities in accordance with Annex S.
- 19) Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.
- 20) Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
Use Code Stress Ratios
Use Code Safety Factors - Guys
Escalate Ice
Always Use Max Kz

Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- ✓ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

 ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption

Poles

✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	180.0000- 131.7500	48.2500	4.50	18	21.0000	31.3900	0.2500	1.0000	A572-65 (65 ksi)

Section	Elevation ft	Section Length	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
		11							
L2	131.7500- 86.7100	49.5400	5.58	18	29.9210	40.4600	0.3750	1.5000	A572-65 (65 ksi)
L3	86.7100- 43.1600	49.1300	6.67	18	38.5229	48.9600	0.4375	1.7500	A572-65 (65 ksi)
L4	43.1600- 0.0000	49.8300		18	46.6680	57.2500	0.5000	2.0000	A572-65 (65 ksi)

				Taper	ed Po	le Prop	erties			
Section	Tip Dia.	Area	1	r	C	I/C	J :4	It/Q	W	w/t
	in	in ²	in⁴	in	in	in ³	in⁴	in ²	in	
L1	21.2854	16.4651	895.6507	7.3663	10.6680	83.9568	1792.4800	8.2341	3.2560	13.024
	31.8357	24.7096	3027.1937	11.0547	15.9461	189.8389	6058.3706	12.3571	5.0846	20.339
L2	31.2968	35.1671	3878.5647	10.4888	15.1999	255.1711	7762.2328	17.5869	4.6061	12.283
	41.0263	47.7112	9685.4835	14.2302	20.5537	471.2287	19383.711	23.8601	6.4610	17.229
							3			
L3	40.2534	52.8864	9691.6750	13.5203	19.5696	495.2402	19396.102	26.4482	6.0100	13.737
							5			
	49.6478	67.3796	20042.502	17.2255	24.8717	805.8363	40111.376	33.6962	7.8470	17.936
			0				5			
L4	48.7491	73.2687	19730.526	16.3897	23.7074	832.2531	39487.013	36.6413	7.3336	14.667
			0				9			
	58.0560	90.0622	36644.767	20.1462	29.0830	1260.0065	73337.753	45.0397	9.1960	18.392
			8				8			

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Factor A _f	Adjust. Factor Ar	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft ²	in				in	in	in
L1 180.0000-			1	1	1			
131.7500								
L2 131.7500-			1	1	1			
86.7100								
L3 86.7100-			1	1	1			
43.1600								
L4 43.1600-			1	1	1			
0.0000								

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude	Componen	Placement	Total	Number	Start/En	Width or	Perimete	Weight
		From	t		Number	Per Row	d	Diamete	r	
		Torque	Type	ft			Position	r		plf
		Calculation						in	in	
LCF158-50J(1-5/8)	В	No	Surface Ar	161.0000 -	9	9	-0.250	2.0100		0.92
, ,			(CaAa)	0.0000			0.000			
HB158-1-08U8-	Α	No	Surface Ar	147.0000 -	2	2	0.000	1.9800		1.30
S8J18(1-5/8) ***83***			(CaAa)	0.0000			0.100			
LDF4-50A(1/2)	С	No	Surface Ar (CaAa)	83.0000 - 0.0000	2	2	-0.500 -0.480	0.6250		0.15
LDF6-50A(1-1/4) ***78***	С	No	Surface Ar (CaAa)	83.0000 - 0.0000	2	2	-0.480 -0.450	1.5500		0.60
LDF4-50A(1/2)	В	No	Surface Ar (CaAa)	78.0000 - 0.0000	1	1	-0.480 -0.480	0.6250		0.15

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Total Number		C _A A _A	Weight
	Leg		Torque Calculation	Туре	ft			ft²/ft	plf
180									
HB114-1-0813U4-	Α	No	No	Inside Pole	180.0000 -	4	No Ice	0.0000	1.20
M5J(1-1/4)					0.0000		1/2" Ice	0.0000	1.20
							1" Ice	0.0000	1.20
							2" Ice	0.0000	1.20
161									
MLE HYBRID	В	No	No	Inside Pole	161.0000 -	1	No Ice	0.0000	1.07
9POWER/18FIBE					0.0000		1/2" Ice	0.0000	1.07
R RL 2(1-5/8)							1" Ice	0.0000	1.07
							2" Ice	0.0000	1.07
147				5 .	4.47.0000	4		0.0000	0.45
LDF4-50A(1/2)	Α	No	No	Inside Pole	147.0000 -	1	No Ice	0.0000	0.15
					0.0000		1/2" Ice	0.0000	0.15
							1" Ice	0.0000	0.15
							2" Ice	0.0000	0.15
LDF7-50A(1-5/8)	Α	No	No	Inside Pole	147.0000 -	12	No Ice	0.0000	0.82
					0.0000		1/2" Ice	0.0000	0.82
							1" Ice	0.0000	0.82
*** 4 4 0 ***							2" Ice	0.0000	0.82
140	0	NIa	NI-	Inside Dale	140.0000 -	4	Na las	0.0000	2.80
2" Rigid Conduit	С	No	No	Inside Pole		1	No Ice		
					0.0000		1/2" Ice 1" Ice	0.0000 0.0000	2.80 2.80
							2" Ice	0.0000	2.80
FB-L98B-034-	С	No	No	Inside Pole	140.0000 -	1	No Ice	0.0000	0.06
	C	INO	NO	Iliside Pole	0.0000	'	1/2" Ice	0.0000	0.06
XXX(3/8)					0.0000		1" Ice	0.0000	0.06
							2" Ice		0.06
WR-VG122ST-	С	No	No	Inside Pole	140,0000	2		0.0000	
	C	INO	No	inside Pole	140.0000 - 0.0000	2	No Ice 1/2" Ice	0.0000 0.0000	0.14 0.14
BRDA(7/16)					0.0000		1/2 ice 1" lce		
							2" Ice	0.0000	0.14 0.14
ED 1 00D 024	С	No	No	Inside Pole	140,0000	1		0.0000	
FB-L98B-034-	C	INO	No	mside Pole	140.0000 -	1	No Ice 1/2" Ice	0.0000 0.0000	0.06 0.06
XXX(3/8)					0.0000		1/2 ice 1" lce	0.0000	0.06
							2" Ice		
WR-VG122ST-	С	No	No	Inside Pole	140 0000	2	No Ice	0.0000	0.06 0.14
	C	INO	No	mside Pole	140.0000 -	2	1/2" Ice	0.0000 0.0000	0.14
BRDA(7/16)					0.0000		1/2 ice 1" lce	0.0000	0.14
LDE7 504/4 5/9\	С	No	No	Inside Pole	140.0000 -	12	2" Ice No Ice	0.0000 0.0000	0.14 0.82
LDF7-50A(1-5/8)	C	INO	INU	IIISIUE FOIE	0.0000 -	12	1/2" Ice	0.0000	0.82
					0.0000				
							1" Ice	0.0000	0.82
ICE 200(0)	0	NI-	NI-	Incide Dala	140 0000	4	2" Ice	0.0000	0.82
ICE 200(2)	С	No	No	Inside Pole	140.0000 -	1	No Ice	0.0000	0.23
					0.0000		1/2" Ice	0.0000	0.23
							1" Ice	0.0000	0.23
							2" Ice	0.0000	0.23

Feed Line/Linear Appurtenances Section Areas

Tower Sectio	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft		ft ²	ft²	ft ²	ft ²	K
L1	180.0000-	Α	0.000	0.000	6.039	0.000	0.42
	131.7500	В	0.000	0.000	52.913	0.000	0.27
		С	0.000	0.000	0.000	0.000	0.11
L2	131.7500-	Α	0.000	0.000	17.836	0.000	0.78
	86.7100	В	0.000	0.000	81.477	0.000	0.42

Tower Sectio	Tower Elevation	Face	AR	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft		ft ²	ft ²	ft ²	ft ²	K
		С	0.000	0.000	0.000	0.000	0.61
L3	86.7100-43.1600	Α	0.000	0.000	17.246	0.000	0.76
		В	0.000	0.000	80.959	0.000	0.41
		С	0.000	0.000	17.330	0.000	0.65
L4	43.1600-0.0000	Α	0.000	0.000	17.091	0.000	0.75
		В	0.000	0.000	80.774	0.000	0.41
		С	0.000	0.000	18.775	0.000	0.65

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Sectio	Tower Elevation	Face or	lce Thickness	A _R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft	Leg	in	ft ²	ft ²	ft ²	ft ²	K
L1	180.0000-	Α	1.488	0.000	0.000	13.221	0.000	0.56
	131.7500	В		0.000	0.000	77.021	0.000	1.08
		С		0.000	0.000	0.000	0.000	0.11
L2	131.7500-	Α	1.436	0.000	0.000	39.047	0.000	1.19
	86.7100	В		0.000	0.000	118.599	0.000	1.67
		С		0.000	0.000	0.000	0.000	0.61
L3	86.7100-43.1600	Α	1.364	0.000	0.000	37.193	0.000	1.13
		В		0.000	0.000	126.297	0.000	1.70
		С		0.000	0.000	50.270	0.000	1.11
L4	43.1600-0.0000	Α	1.223	0.000	0.000	36.076	0.000	1.10
		В		0.000	0.000	126.775	0.000	1.65
		С		0.000	0.000	52.893	0.000	1.11

Feed Line Center of Pressure

Section	Elevation	CPx	CPz	CP _X Ice	CPz Ice
	ft	in	in	in	in
L1	180.0000- 131.7500	3.5673	-4.5447	2.5115	-3.6365
L2	131.7500-86.7100	4.1018	-6.4657	2.5270	-5.1604
L3	86.7100-43.1600	5.5528	-5.7811	4.1831	-3.9407
L4	43.1600-0.0000	6.0637	-6.1409	4.6965	-4.2909

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment	No Ice	Ice
			Elev.		
L1	6	LCF158-50J(1-5/8)	131.75 -	1.0000	1.0000
			161.00		
L1	11	HB158-1-08U8-S8J18(1-	131.75 -	1.0000	1.0000
		5/8)	147.00		
L2	6	LCF158-50J(1-5/8)	86.71 -	1.0000	1.0000
			131.75		
L2	11	HB158-1-08U8-S8J18(1-	86.71 -	1.0000	1.0000
		5/8)	131.75		
L2	21	LDF4-50A(1/2)	86.71 -	1.0000	1.0000
			83.00		
L2	22	LDF6-50A(1-1/4)	86.71 -	1.0000	1.0000

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment	No Ice	Ice
			Elev.		
			83.00		
L2	24	LDF4-50A(1/2)	86.71 -	1.0000	1.0000
			78.00		
L3	6	LCF158-50J(1-5/8)	43.16 -	1.0000	1.0000
			86.71		
L3	11	HB158-1-08U8-S8J18(1-	43.16 -	1.0000	1.0000
		5/8)	86.71		
L3	21	LDF4-50A(1/2)	43.16 -	1.0000	1.0000
			83.00		
L3	22	LDF6-50A(1-1/4)	43.16 -	1.0000	1.0000
		, ,	83.00		
L3	24	LDF4-50A(1/2)	43.16 -	1.0000	1.0000
		` ,	78.00		

			Disc	rete Tov	wer Loa	ds			
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	۰	ft		ft²	ft²	К
180									
APXVTM14-ALU-I20	Α	From Leg	4.0000 0.00 1.00	0.00	180.0000	No Ice 1/2" Ice 1" Ice	4.1200 4.5200 4.9300 5.8000	2.0600 2.4200 2.8000 3.6000	0.06 0.10 0.14 0.25
APXVTM14-ALU-I20	В	From Leg	4.0000 0.00 1.00	0.00	180.0000	2" Ice No Ice 1/2" Ice 1" Ice	4.1200 4.5200 4.9300 5.8000	2.0600 2.4200 2.8000 3.6000	0.06 0.10 0.14 0.25
APXVTM14-ALU-I20	С	From Leg	4.0000 0.00 1.00	0.00	180.0000	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	4.1200 4.5200 4.9300 5.8000	2.0600 2.4200 2.8000 3.6000	0.06 0.10 0.14 0.25
NNVV-65B-R4	А	From Leg	4.0000 0.00 1.00	0.00	180.0000	No Ice 1/2" Ice 1" Ice 2" Ice	12.2711 12.7660 13.2679 14.2927	5.7500 6.2069 6.6713 7.6222	0.08 0.15 0.23 0.41
NNVV-65B-R4	В	From Leg	4.0000 0.00 1.00	0.00	180.0000	No Ice 1/2" Ice 1" Ice 2" Ice	12.2711 12.7660 13.2679 14.2927	5.7500 6.2069 6.6713 7.6222	0.08 0.15 0.23 0.41
NNVV-65B-R4	С	From Leg	4.0000 0.00 1.00	0.00	180.0000	No Ice 1/2" Ice 1" Ice 2" Ice	12.2711 12.7660 13.2679 14.2927	5.7500 6.2069 6.6713 7.6222	0.08 0.15 0.23 0.41
PCS 1900MHZ 4X45W- 65MHZ	Α	From Leg	4.0000 0.00 1.00	0.00	180.0000	No Ice 1/2" Ice 1" Ice 2" Ice	2.3218 2.5266 2.7388 3.1855	2.2381 2.4407 2.6507 3.0929	0.06 0.08 0.11 0.17
PCS 1900MHZ 4X45W- 65MHZ	В	From Leg	4.0000 0.00 1.00	0.00	180.0000	No Ice 1/2" Ice	2.3218 2.5266 2.7388	2.2381 2.4407 2.6507	0.06 0.08 0.11

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	۰	ft		ft²	ft ²	K
						1" Ice 2" Ice	3.1855	3.0929	0.17
PCS 1900MHZ 4X45W-	С	From Leg	4.0000	0.00	180.0000	No Ice	2.3218	2.2381	0.06
65MHZ		3	0.00			1/2"	2.5266	2.4407	0.08
			1.00			Ice	2.7388	2.6507	0.11
						1" Ice 2" Ice	3.1855	3.0929	0.17
(2) RRH2X50-800	Α	From Leg	4.0000	0.00	180.0000	No Ice	1.7008	1.2822	0.05
			0.00			1/2"	1.8640	1.4275	0.07
			1.00			Ice 1" Ice	2.0345 2.3979	1.5803 1.9081	0.09 0.14
						2" Ice	2.0070	1.0001	0.14
(2) RRH2X50-800	В	From Leg	4.0000	0.00	180.0000	No Ice	1.7008	1.2822	0.05
			0.00			1/2"	1.8640	1.4275	0.07
			1.00			Ice	2.0345	1.5803	0.09
						1" Ice	2.3979	1.9081	0.14
(2) BBH2VE0 900	С	From Leg	4.0000	0.00	180.0000	2" Ice	1.7008	1.2822	0.05
(2) RRH2X50-800	C	Fiolii Leg	0.00	0.00	100.0000	No Ice 1/2"	1.8640	1.4275	0.03
			1.00			Ice	2.0345	1.5803	0.07
						1" Ice	2.3979	1.9081	0.14
						2" Ice			
TD-RRH8X20-25	Α	From Leg	4.0000	0.00	180.0000	No Ice	4.0455	1.5345	0.07
			0.00			1/2"	4.2975	1.7142	0.10
			1.00			Ice 1" Ice	4.5570 5.0981	1.9008 2.2951	0.13 0.20
						2" Ice	3.0301	2.2931	0.20
TD-RRH8X20-25	В	From Leg	4.0000	0.00	180.0000	No Ice	4.0455	1.5345	0.07
		ū	0.00			1/2"	4.2975	1.7142	0.10
			1.00			Ice	4.5570	1.9008	0.13
						1" Ice 2" Ice	5.0981	2.2951	0.20
TD-RRH8X20-25	С	From Leg	4.0000	0.00	180.0000	No Ice	4.0455	1.5345	0.07
		J	0.00			1/2"	4.2975	1.7142	0.10
			1.00			Ice	4.5570	1.9008	0.13
						1" Ice 2" Ice	5.0981	2.2951	0.20
Platform Mount [LP 301-1]	С	None		0.00	180.0000	No Ice	30.1000	30.1000	1.59
riation mount [Er oo r r]	O	140110		0.00	100.0000	1/2"	40.8000	40.8000	2.03
						Ice	51.5000	51.5000	2.47
						1" Ice	72.9000	72.9000	3.35
161						2" Ice			
ERICSSON AIR 21 B2A	Α	From Leg	4.0000	0.00	161.0000	No Ice	6.3292	5.6424	0.11
B4P w/ Mount Pipe		1 Tolli Log	0.00	0.00	101.0000	1/2"	6.7751	6.4259	0.17
•			0.00			Ice	7.2137	7.1313	0.23
						1" Ice	8.1168	8.5907	0.38
EDIOCOCKI AID OF DOA	-		4 0000	0.00	101 0000	2" Ice	0.0000	50404	0.44
ERICSSON AIR 21 B2A	В	From Leg	4.0000 0.00	0.00	161.0000	No Ice 1/2"	6.3292 6.7751	5.6424 6.4259	0.11 0.17
B4P w/ Mount Pipe			0.00			lce	7.2137	7.1313	0.17
			0.00			1" Ice	8.1168	8.5907	0.28
						2" Ice			
ERICSSON AIR 21 B2A	С	From Leg	4.0000	0.00	161.0000	No Ice	6.3292	5.6424	0.11
B4P w/ Mount Pipe			0.00			1/2"	6.7751	6.4259	0.17
			0.00			Ice 1" Ice	7.2137	7.1313	0.23
						2" Ice	8.1168	8.5907	0.38
KRY 112 144/2	Α	From Leg	4.0000	0.00	161.0000	No Ice	0.4794	0.2317	0.01
		3	0.00			1/2"	0.5681	0.2994	0.01
			0.00			Ice	0.6642	0.3763	0.02
						1" Ice	0.8786	0.5523	0.04
KRY 112 144/2	В	From Leg	4.0000	0.00	161.0000	2" Ice No Ice	0.4794	0.2317	0.01
MN 112 144/2	ט	i ioni Leg	0.00	0.00	101.0000	1/2"	0.4794	0.2317	0.01

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	•	ft		ft²	ft²	К
			0.00			Ice 1" Ice 2" Ice	0.6642 0.8786	0.3763 0.5523	0.02 0.04
KRY 112 144/2	С	From Leg	4.0000 0.00 0.00	0.00	161.0000	No Ice 1/2" Ice	0.4794 0.5681 0.6642	0.2317 0.2994 0.3763	0.01 0.01 0.02
						1" Ice 2" Ice	0.8786	0.5523	0.04
Platform Mount [LP 305-1]	С	None		0.00	161.0000	No Ice 1/2" Ice 1" Ice	18.0100 23.3300 28.6500 39.2900	18.0100 23.3300 28.6500 39.2900	1.12 1.35 1.58 2.05
Site Pro1 PRK-SFS-L	С	None		0.00	161.0000	2" Ice No Ice	4.0250	1.6334	0.64
Reinforcement Kit						1/2" Ice 1" Ice 2" Ice	4.9668 5.9086 7.7922	2.0438 2.4542 3.2750	0.83 1.03 1.41
APXVAARR24_43-U-NA20 w/ Mount Pipe	Α	From Leg	4.0000 0.00 0.00	0.00	161.0000	No Ice 1/2" Ice 1" Ice	14.6900 15.4600 16.2300 17.8200	6.8700 7.5500 8.2500 9.6700	0.19 0.31 0.46 0.79
APXVAARR24 43-U-NA20	В	From Leg	4.0000	0.00	161.0000	2" Ice No Ice	14.6900	6.8700	0.79
w/ Mount Pipe	Б	Trom Log	0.00	0.00	101.0000	1/2" Ice	15.4600 16.2300	7.5500 8.2500	0.31 0.46
						1" Ice 2" Ice	17.8200	9.6700	0.79
APXVAARR24_43-U-NA20 w/ Mount Pipe	С	From Leg	4.0000 0.00 0.00	0.00	161.0000	No Ice 1/2" Ice 1" Ice	14.6900 15.4600 16.2300 17.8200	6.8700 7.5500 8.2500 9.6700	0.19 0.31 0.46 0.79
AIR 32 B2A B66AA w/ Mount Pipe	Α	From Leg	4.0000 0.00	0.00	161.0000	2" Ice No Ice 1/2"	7.0872 7.5606	6.3736 7.2305	0.16 0.23
·			0.00			Ice 1" Ice 2" Ice	8.0206 8.9662	7.9731 9.5071	0.30 0.46
AIR 32 B2A B66AA w/ Mount Pipe	В	From Leg	4.0000 0.00 0.00	0.00	161.0000	No Ice 1/2" Ice	7.0872 7.5606 8.0206	6.3736 7.2305 7.9731	0.16 0.23 0.30
AID 20 DOA DOCAA/	С		4.0000	0.00	404 0000	1" Ice 2" Ice	8.9662	9.5071	0.46
AIR 32 B2A B66AA w/ Mount Pipe	C	From Leg	4.0000 0.00 0.00	0.00	161.0000	No Ice 1/2" Ice 1" Ice	7.0872 7.5606 8.0206 8.9662	6.3736 7.2305 7.9731 9.5071	0.16 0.23 0.30 0.46
RADIO 4449 B12/B71	Α	From Leg	4.0000	0.00	161.0000	2" Ice No Ice 1/2"	1.6500 1.8104	1.3000 1.4448	0.08 0.09
B.B.O. / / / B / / / / B	_		0.00		404.000	lce 1" lce 2" lce	1.9781 2.3359	1.5970 1.9237	0.11 0.16
RADIO 4449 B12/B71	В	From Leg	4.0000 0.00 0.00	0.00	161.0000	No Ice 1/2" Ice 1" Ice 2" Ice	1.6500 1.8104 1.9781 2.3359	1.3000 1.4448 1.5970 1.9237	0.08 0.09 0.11 0.16
RADIO 4449 B12/B71	С	From Leg	4.0000 0.00 0.00	0.00	161.0000	No Ice 1/2" Ice 1" Ice	1.6500 1.8104 1.9781 2.3359	1.3000 1.4448 1.5970 1.9237	0.08 0.09 0.11 0.16
147 (2) LNX-6514DS-A1M w/	Α	From Leg	4.0000	0.00	147.0000	2" Ice No Ice	8.4106	7.0817	0.06

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
	_09		Vert ft ft ft	0	ft		ft²	ft²	К
Mount Pipe			0.00			1/2"	8.9745	8.2729	0.13
			3.00			Ice 1" Ice 2" Ice	9.5048 10.5853	9.1847 11.0232	0.21 0.39
(2) LNX-6514DS-A1M w/	В	From Leg	4.0000	0.00	147.0000	No Ice	8.4106	7.0817	0.06
Mount Pipe			0.00			1/2"	8.9745	8.2729	0.13
			3.00			Ice 1" Ice 2" Ice	9.5048 10.5853	9.1847 11.0232	0.21 0.39
(2) LNX-6514DS-A1M w/	С	From Leg	4.0000	0.00	147.0000	No Ice	8.4106	7.0817	0.06
Mount Pipe			0.00			1/2"	8.9745	8.2729	0.13
			3.00			lce 1" lce	9.5048	9.1847	0.21
						2" Ice	10.5853	11.0232	0.39
(2) HBXX-6517DS-A2M w/	Α	From Leg	4.0000	0.00	147.0000	No Ice	7.9700	5.9900	0.08
Mount Pipe		J	0.00			1/2"	8.7300	6.7200	0.14
			3.00			Ice	9.5100	7.4700	0.21
(0) (10) (1) (1)	_					1" Ice 2" Ice	11.1100	9.0200	0.40
(2) HBXX-6517DS-A2M w/	В	From Leg	4.0000	0.00	147.0000	No Ice	7.9700	5.9900	0.08
Mount Pipe			0.00 3.00			1/2" Ice	8.7300 9.5100	6.7200 7.4700	0.14 0.21
			3.00			1" Ice 2" Ice	11.1100	9.0200	0.40
(2) HBXX-6517DS-A2M w/	С	From Leg	4.0000	0.00	147.0000	No Ice	7.9700	5.9900	0.08
Mount Pipe			0.00			1/2"	8.7300	6.7200	0.14
			3.00			Ice 1" Ice 2" Ice	9.5100 11.1100	7.4700 9.0200	0.21 0.40
KS24019-L112A	В	From Leg	4.0000	0.00	147.0000	No Ice	0.1407	0.1407	0.01
			0.00			1/2"	0.1979	0.1979	0.01
			3.00			Ice 1" Ice	0.2621 0.4148	0.2621 0.4148	0.01 0.02
(2) ED0B6004/1C 3I	۸	From Log	4.0000	0.00	147.0000	2" Ice	0.3142	0.0762	0.00
(2) FD9R6004/1C-3L	Α	From Leg	0.00	0.00	147.0000	No Ice 1/2"	0.3142	0.0762	0.00
			3.00			lce	0.4656	0.1685	0.01
						1" Ice 2" Ice	0.6468	0.2940	0.02
(2) FD9R6004/1C-3L	В	From Leg	4.0000	0.00	147.0000	No Ice	0.3142	0.0762	0.00
			0.00			1/2"	0.3862	0.1189	0.01
			3.00			Ice 1" Ice	0.4656 0.6468	0.1685 0.2940	0.01 0.02
						2" Ice	0.0400	0.2940	0.02
(2) FD9R6004/1C-3L	С	From Leg	4.0000	0.00	147.0000	No Ice	0.3142	0.0762	0.00
,		Ū	0.00			1/2"	0.3862	0.1189	0.01
			3.00			Ice	0.4656	0.1685	0.01
DDUOYOO AMA			4 0000	0.00	4.47.0000	1" Ice 2" Ice	0.6468	0.2940	0.02
RRH2X60-AWS	Α	From Leg	4.0000 0.00	0.00	147.0000	No Ice 1/2"	3.5002 3.7609	1.8157	0.06 0.08
			3.00			Ice	4.0285	2.0519 2.2894	0.08
			0.00			1" Ice 2" Ice	4.5849	2.7852	0.17
RRH2X60-AWS	В	From Leg	4.0000	0.00	147.0000	No Ice	3.5002	1.8157	0.06
		-	0.00			1/2"	3.7609	2.0519	0.08
			3.00			Ice	4.0285	2.2894	0.11
DDI IOVOO AMIC	0	From Law	4.0000	0.00	147 0000	1" Ice 2" Ice	4.5849	2.7852	0.17
RRH2X60-AWS	С	From Leg	4.0000 0.00	0.00	147.0000	No Ice 1/2"	3.5002 3.7609	1.8157 2.0519	0.06 0.08
			3.00			lce	4.0285	2.0519	0.06
			3.00			1" Ice 2" Ice	4.5849	2.7852	0.17
DB-T1-6Z-8AB-0Z	Α	From Leg	4.0000	0.00	147.0000	No Ice	4.8000	2.0000	0.04

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	۰	ft		ft²	ft²	К
			0.00			1/2"	5.0704	2.1926	0.08
			3.00			lce 1" lce 2" lce	5.3481 5.9259	2.3926 2.8148	0.12 0.21
DB-T1-6Z-8AB-0Z	В	From Leg	4.0000	0.00	147.0000	No Ice	4.8000	2.0000	0.04
22	_		0.00	0.00		1/2"	5.0704	2.1926	0.08
			3.00			Ice	5.3481	2.3926	0.12
						1" Ice 2" Ice	5.9259	2.8148	0.21
RRH2X60-PCS	Α	From Leg	4.0000	0.00	147.0000	No Ice	2.2000	1.7233	0.06
			0.00 3.00			1/2" Ice	2.3926 2.5926	1.9015 2.0870	0.08 0.10
			3.00			1" Ice	3.0148	2.4804	0.16
						2" Ice	0.0140	2.4004	0.10
RRH2X60-PCS	В	From Leg	4.0000	0.00	147.0000	No Ice	2.2000	1.7233	0.06
			0.00			1/2"	2.3926	1.9015	0.08
			3.00			Ice	2.5926	2.0870	0.10
						1" Ice	3.0148	2.4804	0.16
RRH2X60-PCS	С	From Leg	4.0000	0.00	147.0000	2" Ice No Ice	2.2000	1.7233	0.06
RRH2X00-PC3	C	Fiolii Leg	0.00	0.00	147.0000	1/2"	2.3926	1.7233	0.08
			3.00			Ice	2.5926	2.0870	0.10
						1" Ice 2" Ice	3.0148	2.4804	0.16
Platform Mount [LP 712-1]	С	None		0.00	147.0000	No Ice	24.5300	24.5300	1.34
						1/2"	29.9400	29.9400	1.65
						Ice	35.3500	35.3500	1.96
141						1" Ice 2" Ice	46.1700	46.1700	2.58
Pipe Mount [PM 601-3]	С	None		0.00	141.0000	No Ice	4.3900	4.3900	0.20
	•			0.00		1/2"	5.4800	5.4800	0.24
						Ice	6.5700	6.5700	0.28
22.00						1" Ice 2" Ice	8.7500	8.7500	0.36
RRUS 11	Α	From Leg	1.0000	0.00	141.0000	No Ice 1/2"	2.7845 2.9919	1.1872	0.05
			0.00			I/2	3.2066	1.3342 1.4897	0.07 0.10
			0.00			1" Ice	3.6584	1.8326	0.15
						2" Ice	0.000		00
RRUS 11	В	From Leg	1.0000	0.00	141.0000	No Ice	2.7845	1.1872	0.05
			0.00			1/2"	2.9919	1.3342	0.07
			0.00			Ice	3.2066	1.4897	0.10
						1" Ice 2" Ice	3.6584	1.8326	0.15
RRUS 11	С	From Leg	1.0000	0.00	141.0000	No Ice	2.7845	1.1872	0.05
11100 11	Ü	1 10111 209	0.00	0.00	111.0000	1/2"	2.9919	1.3342	0.07
			0.00			Ice	3.2066	1.4897	0.10
						1" Ice 2" Ice	3.6584	1.8326	0.15
140	_								
(2) 7770.00	Α	From Leg	4.0000	0.00	140.0000	No Ice	5.5085	2.9282	0.04
			0.00 0.00			1/2" Ice	5.8673 6.2332	3.2730 3.6252	0.07 0.11
			0.00			1" Ice	6.9859	4.3517	0.11
						2" Ice	0.0000	7.0017	0.20
(2) 7770.00	В	From Leg	4.0000	0.00	140.0000	No Ice	5.5085	2.9282	0.04
• •		3	0.00			1/2"	5.8673	3.2730	0.07
			0.00			Ice	6.2332	3.6252	0.11
						1" Ice	6.9859	4.3517	0.20
(0) 7770 00	_	Erom I	4.0000	0.00	140 0000	2" Ice	5 500F	2 0202	0.04
(2) 7770.00	С	From Leg	4.0000 0.00	0.00	140.0000	No Ice 1/2"	5.5085 5.8673	2.9282 3.2730	0.04 0.07
			0.00			Ice	6.2332	3.6252	0.07
			3.00			1" Ice	6.9859	4.3517	0.20

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	۰	ft		ft²	ft²	K
HPA-65R-BUU-H6	Α	From Leg	4.0000 0.00	0.00	140.0000	2" Ice No Ice 1/2"	9.2200 10.0000	4.6500 5.3600	0.05 0.11
			0.00			Ice 1" Ice 2" Ice	10.7900 12.4300	6.0900 7.6000	0.17 0.32
HPA-65R-BUU-H6	В	From Leg	4.0000	0.00	140.0000	No Ice	9.2200	4.6500	0.05
			0.00			1/2"	10.0000	5.3600	0.11
			0.00			Ice 1" Ice 2" Ice	10.7900 12.4300	6.0900 7.6000	0.17 0.32
HPA-65R-BUU-H6	С	From Leg	4.0000	0.00	140.0000	No Ice	9.2200	4.6500	0.05
			0.00			1/2" Ice	10.0000 10.7900	5.3600 6.0900	0.11 0.17
						1" Ice 2" Ice	12.4300	7.6000	0.32
(2) LGP 17201	Α	From Leg	4.0000	0.00	140.0000	No Ice	1.6680	0.4669	0.03
			0.00 0.00			1/2" Ice	1.8289 1.9973	0.5676 0.6752	0.04 0.06
						1" Ice 2" Ice	2.3561	0.9115	0.09
(2) LGP 17201	В	From Leg	4.0000	0.00	140.0000	No Ice	1.6680	0.4669	0.03
			0.00			1/2" Ice	1.8289 1.9973	0.5676 0.6752	0.04 0.06
						1" Ice 2" Ice	2.3561	0.9115	0.09
(2) LGP 17201	С	From Leg	4.0000	0.00	140.0000	No Ice	1.6680	0.4669	0.03
			0.00			1/2" Ice	1.8289 1.9973	0.5676 0.6752	0.04 0.06
			0.00			1" Ice 2" Ice	2.3561	0.9115	0.09
RRUS 32 B2	В	From Leg	4.0000	0.00	140.0000	No Ice	2.7313	1.6681	0.05
			0.00 0.00			1/2" Ice	2.9531 3.1823	1.8552 2.0493	0.07 0.10
						1" Ice 2" Ice	3.6628	2.4585	0.16
RRUS 32 B2	С	From Leg	4.0000	0.00	140.0000	No Ice	2.7313	1.6681	0.05
			0.00			1/2" Ice	2.9531 3.1823	1.8552 2.0493	0.07 0.10
			0.00			1" Ice 2" Ice	3.6628	2.4585	0.16
1001983	Α	From Leg	4.0000	0.00	140.0000	No Ice	0.0524	0.1757	0.00
			0.00 0.00			1/2" Ice	0.0861 0.1272	0.2317 0.2950	0.01 0.01
						1" Ice 2" Ice	0.2317	0.4439	0.02
1001983	В	From Leg	4.0000	0.00	140.0000	No Ice	0.0524	0.1757	0.00
			0.00 0.00			1/2" Ice	0.0861 0.1272	0.2317 0.2950	0.01 0.01
						1" Ice 2" Ice	0.2317	0.4439	0.02
1001983	С	From Leg	4.0000	0.00	140.0000	No Ice	0.0524	0.1757	0.00
			0.00 0.00			1/2" Ice	0.0861 0.1272	0.2317 0.2950	0.01 0.01
			0.00			1" Ice 2" Ice	0.1272	0.4439	0.02
(2) LGP21901	Α	From Leg	4.0000	0.00	140.0000	No Ice	0.2310	0.1575	0.01
			0.00			1/2"	0.2941	0.2129	0.01
			0.00			Ice 1" Ice 2" Ice	0.3647 0.5280	0.2756 0.4234	0.01 0.02
(2) LGP21901	В	From Leg	4.0000	0.00	140.0000	No Ice	0.2310	0.1575	0.01
			0.00 0.00			1/2" Ice	0.2941 0.3647	0.2129 0.2756	0.01 0.01
			0.00			1" Ice	0.3647	0.4234	0.01

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	0	ft		ft²	ft²	К
(2) LGP21901	С	From Leg	4.0000 0.00 0.00	0.00	140.0000	2" Ice No Ice 1/2" Ice 1" Ice	0.2310 0.2941 0.3647 0.5280	0.1575 0.2129 0.2756 0.4234	0.01 0.01 0.01 0.02
EPBQ-654L8H6-L2	Α	From Leg	4.0000 0.00 0.00	0.00	140.0000	2" Ice No Ice 1/2" Ice 1" Ice	13.2369 13.7443 14.2587 15.3085	4.9596 5.4142 5.8761 6.8223	0.08 0.16 0.23 0.41
EPBQ-654L8H6-L2	В	From Leg	4.0000 0.00 0.00	0.00	140.0000	2" Ice No Ice 1/2" Ice 1" Ice	13.2369 13.7443 14.2587 15.3085	4.9596 5.4142 5.8761 6.8223	0.08 0.16 0.23 0.41
EPBQ-654L8H6-L2	С	From Leg	4.0000 0.00 0.00	0.00	140.0000	2" Ice No Ice 1/2" Ice 1" Ice	13.2369 13.7443 14.2587 15.3085	4.9596 5.4142 5.8761 6.8223	0.08 0.16 0.23 0.41
(4) 7020.00	Α	From Leg	4.0000 0.00 0.00	0.00	140.0000	2" Ice No Ice 1/2" Ice 1" Ice	0.1021 0.1469 0.1991 0.3258	0.1750 0.2393 0.3109 0.4765	0.00 0.01 0.01 0.02
(4) 7020.00	В	From Leg	4.0000 0.00 0.00	0.00	140.0000	2" Ice No Ice 1/2" Ice 1" Ice	0.1021 0.1469 0.1991 0.3258	0.1750 0.2393 0.3109 0.4765	0.00 0.01 0.01 0.02
(4) 7020.00	С	From Leg	4.0000 0.00 0.00	0.00	140.0000	2" Ice No Ice 1/2" Ice 1" Ice	0.1021 0.1469 0.1991 0.3258	0.1750 0.2393 0.3109 0.4765	0.00 0.01 0.01 0.02
RRUS 4478 B14	Α	From Leg	4.0000 0.00 0.00	0.00	140.0000	2" Ice No Ice 1/2" Ice 1" Ice	1.8425 2.0123 2.1895 2.5662	1.0588 1.1969 1.3425 1.6558	0.06 0.08 0.09 0.14
RRUS 4478 B14	В	From Leg	4.0000 0.00 0.00	0.00	140.0000	2" Ice No Ice 1/2" Ice 1" Ice	1.8425 2.0123 2.1895 2.5662	1.0588 1.1969 1.3425 1.6558	0.06 0.08 0.09 0.14
RRUS 4478 B14	С	From Leg	4.0000 0.00 0.00	0.00	140.0000	2" Ice No Ice 1/2" Ice 1" Ice	1.8425 2.0123 2.1895 2.5662	1.0588 1.1969 1.3425 1.6558	0.06 0.08 0.09 0.14
RRUS 32	Α	From Leg	4.0000 0.00 0.00	0.00	140.0000	2" Ice No Ice 1/2" Ice 1" Ice	2.8571 3.0830 3.3163 3.8052	1.7766 1.9677 2.1658 2.5829	0.06 0.08 0.10 0.16
RRUS 32	В	From Leg	4.0000 0.00 0.00	0.00	140.0000	2" Ice No Ice 1/2" Ice 1" Ice	2.8571 3.0830 3.3163 3.8052	1.7766 1.9677 2.1658 2.5829	0.06 0.08 0.10 0.16
RRUS 32	С	From Leg	4.0000 0.00 0.00	0.00	140.0000	2" Ice No Ice 1/2" Ice 1" Ice	2.8571 3.0830 3.3163 3.8052	1.7766 1.9677 2.1658 2.5829	0.06 0.08 0.10 0.16

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	0	ft		ft²	ft²	K
RRUS 32 B2	А	From Leg	4.0000 0.00 0.00	0.00	140.0000	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	2.7313 2.9531 3.1823 3.6628	1.6681 1.8552 2.0493 2.4585	0.05 0.07 0.10 0.16
(2) DC6-48-60-18-8F	Α	From Leg	4.0000 0.00 0.00	0.00	140.0000	No Ice 1/2" Ice 1" Ice 2" Ice	0.7915 1.2743 1.4503 1.8314	0.7915 1.2743 1.4503 1.8314	0.02 0.04 0.05 0.10
Platform Mount [LP 1301- 1]	С	None		0.00	140.0000	No Ice 1/2" Ice 1" Ice 2" Ice	51.7000 62.7000 73.7000 95.7000	51.7000 62.7000 73.7000 95.7000	2.26 2.94 3.61 4.95
83 OG-860/1920/GPS-A	Α	From Leg	3.0000 0.00 1.00	0.00	83.0000	No Ice 1/2" Ice 1" Ice	0.3077 0.3952 0.4897 0.6997	0.3667 0.4572 0.5548 0.7708	0.00 0.01 0.01 0.03
OG-860/1920/GPS-A	В	From Leg	3.0000 0.00 1.00	0.00	83.0000	2" Ice No Ice 1/2" Ice 1" Ice	0.3077 0.3952 0.4897 0.6997	0.3667 0.4572 0.5548 0.7708	0.00 0.01 0.01 0.03
Side Arm Mount [SO 701- 1]	Α	From Leg	1.5000 0.00 0.00	0.00	83.0000	2" Ice No Ice 1/2" Ice 1" Ice	0.8500 1.1400 1.4300 2.0100	1.6700 2.3400 3.0100 4.3500	0.07 0.08 0.09 0.12
Side Arm Mount [SO 701- 1]	В	From Leg	1.5000 0.00 0.00	0.00	83.0000	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	0.8500 1.1400 1.4300 2.0100	1.6700 2.3400 3.0100 4.3500	0.07 0.08 0.09 0.12
78 OG-860/1920/GPS-A	В	From Leg	3.0000 0.00 1.00	0.00	78.0000	No Ice 1/2" Ice 1" Ice	0.3077 0.3952 0.4897 0.6997	0.3667 0.4572 0.5548 0.7708	0.00 0.01 0.01 0.03
Side Arm Mount [SO 701- 1]	В	From Leg	1.5000 0.00 0.00	0.00	78.0000	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	0.8500 1.1400 1.4300 2.0100	1.6700 2.3400 3.0100 4.3500	0.07 0.08 0.09 0.12

Load Combinations

Comb. No.		Description	
1	Dead Only		
2	1.2 Dead+1.0 Wind 0 deg - No Ice		
3	0.9 Dead+1.0 Wind 0 deg - No Ice		
4	1.2 Dead+1.0 Wind 30 deg - No Ice		
5	0.9 Dead+1.0 Wind 30 deg - No Ice		
6	1.2 Dead+1.0 Wind 60 deg - No Ice		

Comb.	Description
No.	·
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment	Minor Axis Moment
						kip-ft	kip-ft
L1	180 - 131.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-40.23	-1.96	2.16
			Max. Mx	8	-15.98	-594.50	-0.31
			Max. My	2	-15.96	0.36	595.54
			Max. Vy	8	30.93	-594.50	-0.31
			Max. Vx	2	-31.00	0.36	595.54
			Max. Torque	11			0.73
L2	131.75 - 86.71	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-54.64	-3.83	4.14
			Max. Mx	8	-26.62	-2069.04	-2.43
			Max. My	2	-26.61	2.49	2073.12
			Max. Vy	8	36.12	-2069.04	-2.43
			Max. Vx	2	-36.19	2.49	2073.12
			Max. Torque	11			0.73
L3	86.71 - 43.16	Pole	Max Tension	1	0.00	0.00	0.00

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	K	kip-ft	kip-ft
			Max. Compression	26	-74.12	-6.81	5.53
			Max. Mx	8	-41.54	-3720.76	-3.28
			Max. My	2	-41.54	2.84	3727.08
			Max. Vy	8	41.35	-3720.76	-3.28
			Max. Vx	2	-41.42	2.84	3727.08
			Max. Torque	13			1.20
L4	43.16 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-101.99	-9.47	6.94
			Max. Mx	8	-64.11	-5908.16	-3.65
			Max. My	2	-64.11	3.07	5917.66
			Max. Vy	8	46.01	-5908.16	-3.65
			Max. Vx	2	-46.07	3.07	5917.66
			Max. Torque	13			1.20

Maximum Reactions

Location	Condition	Gov. Load	Vertical K	Horizontal, X K	Horizontal, 2 K
		Comb.	K	K	K
Pole	Max. Vert	30	101.99	-10.83	0.00
	Max. H _x	21	48.11	45.95	0.02
	Max. H _z	3	48.11	0.02	46.01
	Max. M _x	2	5917.66	0.02	46.01
	$Max. M_z$	8	5908.16	-45.95	-0.02
	Max. Torsion	13	1.19	-22.99	-39.86
	Min. Vert	23	48.11	39.80	23.02
	Min. H _x	9	48.11	-45.95	-0.02
	Min. H _z	15	48.11	-0.02	-46.01
	Min. M _x	14	-5913.59	-0.02	-46.01
	Min. M _z	20	-5902.92	45.95	0.02
	Min. Torsion	25	-1.19	22.99	39.86

Tower Mast Reaction Summary

Load Combination	Vertical	Shearx	Shearz	Overturning Moment, M _x	Overturning Moment, M₂	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	53.46	0.00	0.00	-1.61	-2.07	0.00
1.2 Dead+1.0 Wind 0 deg - No Ice	64.15	-0.02	-46.01	-5917.66	3.07	1.05
0.9 Dead+1.0 Wind 0 deg - No Ice	48.11	-0.02	-46.01	-5834.99	3.65	1.05
1.2 Dead+1.0 Wind 30 deg - No Ice	64.15	22.96	-39.84	-5122.32	-2950.46	0.62
0.9 Dead+1.0 Wind 30 deg - No Ice	48.11	22.96	-39.84	-5050.72	-2908.88	0.62
1.2 Dead+1.0 Wind 60 deg - No Ice	64.15	39.78	-22.99	-2954.97	-5114.15	0.03
0.9 Dead+1.0 Wind 60 deg - No Ice	48.11	39.78	-22.99	-2913.46	-5042.52	0.02
1.2 Dead+1.0 Wind 90 deg - No Ice	64.15	45.95	0.02	3.65	-5908.16	-0.58
0.9 Dead+1.0 Wind 90 deg - No Ice	48.11	45.95	0.02	4.08	-5825.48	-0.58
1.2 Dead+1.0 Wind 120 deg - No Ice	64.15	39.80	23.02	2960.71	-5119.77	-1.02
0.9 Dead+1.0 Wind 120 deg - No Ice	48.11	39.80	23.02	2920.09	-5048.04	-1.03
1.2 Dead+1.0 Wind 150 deg - No Ice	64.15	22.99	39.86	5123.87	-2960.28	-1.19
0.9 Dead+1.0 Wind 150 deg	48.11	22.99	39.86	5053.23	-2918.52	-1.19

Load Combination	Vertical	Shearx	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
No loo	K	K	K	kip-ft	kip-ft	kip-ft
- No Ice 1.2 Dead+1.0 Wind 180 deg - No Ice	64.15	0.02	46.01	5913.59	-8.32	-1.03
0.9 Dead+1.0 Wind 180 deg - No Ice	48.11	0.02	46.01	5831.99	-7.53	-1.04
1.2 Dead+1.0 Wind 210 deg - No Ice	64.15	-22.96	39.84	5118.25	2945.22	-0.61
0.9 Dead+1.0 Wind 210 deg - No Ice	48.11	-22.96	39.84	5047.72	2905.01	-0.61
1.2 Dead+1.0 Wind 240 deg - No Ice	64.15	-39.78	22.99	2950.89	5108.91	-0.02
0.9 Dead+1.0 Wind 240 deg - No Ice	48.11	-39.78	22.99	2910.45	5038.65	-0.02
1.2 Dead+1.0 Wind 270 deg - No Ice	64.15	-45.95	-0.02	-7.73	5902.92	0.57
0.9 Dead+1.0 Wind 270 deg - No Ice	48.11	-45.95	-0.02	-7.09	5821.61	0.57
1.2 Dead+1.0 Wind 300 deg - No Ice	64.15	-39.80	-23.02	-2964.79	5114.52	1.01
0.9 Dead+1.0 Wind 300 deg - No Ice	48.11	-39.80	-23.02	-2923.10	5044.17	1.01
1.2 Dead+1.0 Wind 330 deg - No Ice	64.15	-22.99	-39.86	-5127.94	2955.03	1.19
0.9 Dead+1.0 Wind 330 deg - No Ice	48.11	-22.99	-39.86	-5056.24	2914.64	1.19
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0	101.99 101.99	0.00 0.00	-0.00 -10.84	-6.94 -1439.72	-9.47 -9.23	0.00 0.27
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 30	101.99	5.42	-9.39	-1247.61	-724.78	0.16
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 60	101.99	9.38	-5.42	-723.05	-1248.72	0.01
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 90	101.99	10.83	-0.00	-6.66	-1440.61	-0.14
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 120	101.99	9.38	5.42	709.63	-1249.14	-0.26
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150	101.99	5.41	9.38	1233.87	-725.52	-0.30
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 180	101.99	-0.00	10.84	1425.56	-10.08	-0.27
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 210	101.99	-5.42	9.39	1233.45	705.47	-0.16
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 240	101.99	-9.38	5.42	708.89	1229.40	-0.01
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	101.99	-10.83	0.00	-7.51	1421.29	0.14
1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	101.99	-9.38	-5.42	-723.79	1229.83	0.26
1.2 Dead+1.0 Wind 330	101.99	-5.41	-9.38	-1248.03	706.20	0.30
deg+1.0 Ice+1.0 Temp Dead+Wind 0 deg - Service	53.46	-0.00	-9.23	-1180.90	-1.05	0.21
Dead+Wind 30 deg - Service	53.46	4.61	-7.99	-1022.35	-589.79	0.13
Dead+Wind 60 deg - Service	53.46	7.98	-4.61	-590.32	-1021.09	0.00
Dead+Wind 90 deg - Service	53.46	9.22	0.00	-0.56	-1179.36	-0.12
Dead+Wind 120 deg - Service	53.46	7.99	4.62	588.89	-1022.22	-0.21
Dead+Wind 150 deg - Service	53.46	4.61	8.00	1020.09	-591.76	-0.24
Dead+Wind 180 deg - Service	53.46	0.00	9.23	1177.51	-3.32	-0.21
Dead+Wind 210 deg - Service	53.46	-4.61	7.99	1018.96	585.43	-0.12
Dead+Wind 240 deg - Service	53.46	-7.98	4.61	586.92	1016.72	-0.00
Dead+Wind 270 deg - Service	53.46	-9.22	-0.00	-2.83	1175.00	0.12
Dead+Wind 300 deg - Service	53.46	-7.99	-4.62	-592.28	1017.85	0.21
Dead+Wind 330 deg -	53.46	-4.61	-8.00	-1023.48	587.39	0.24

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft

Solution Summary

	Sur	n of Applied Force	20		Sum of Reaction	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	ĸ	ĸ	K	70 E1101
1	0.00	-53.46	0.00	0.00	53.46	0.00	0.000%
2	-0.02	-64.15	-46.01	0.02	64.15	46.01	0.000%
3	-0.02	-48.11	-46.01	0.02	48.11	46.01	0.000%
4	22.96	-64.15	-39.84	-22.96	64.15	39.84	0.000%
5	22.96	-48.11	-39.84	-22.96	48.11	39.84	0.000%
6	39.78	-64.15	-22.99	-39.78	64.15	22.99	0.000%
7	39.78	-48.11	-22.99	-39.78	48.11	22.99	0.000%
8	45.95	-64.15	0.02	-45.95	64.15	-0.02	0.000%
9	45.95	-48.11	0.02	-45.95	48.11	-0.02	0.000%
10	39.80	-64.15	23.02	-39.80	64.15	-23.02	0.000%
11	39.80	-48.11	23.02	-39.80	48.11	-23.02	0.000%
12	22.99	-64.15	39.86	-22.99	64.15	-39.86	0.000%
13	22.99	-48.11	39.86	-22.99	48.11	-39.86	0.000%
14	0.02	-64.15	46.01	-0.02	64.15	-46.01	0.000%
15	0.02	-48.11	46.01	-0.02	48.11	-46.01	0.000%
16	-22.96	-64.15	39.84	22.96	64.15	-39.84	0.000%
17	-22.96	-48.11	39.84	22.96	48.11	-39.84	0.000%
18	-39.78	-64.15	22.99	39.78	64.15	-22.99	0.000%
19	-39.78	-48.11	22.99	39.78	48.11	-22.99	0.000%
20	-45.95	-40.11 -64.15	-0.02	45.95	64.15	0.02	0.000%
21	-45.95 -45.95	-04.13 -48.11	-0.02	45.95	48.11	0.02	0.000%
22	-39.80	-46.11 -64.15	-0.02 -23.02	39.80	64.15	23.02	0.000%
23		-04.15 -48.11	-23.02 -23.02	39.80	48.11	23.02	0.000%
23 24	-39.80 -22.99	-46.11 -64.15	-23.02 -39.86	22.99	46.11 64.15	39.86	0.000%
25	-22.99 -22.99	-04.15 -48.11	-39.86	22.99	48.11	39.86	0.000%
25 26	0.00	-46.11 -101.99	-39.66 0.00	-0.00	101.99	0.00	0.000%
27	0.00	-101.99	-10.84	-0.00	101.99	10.84	0.000%
28	5.42	-101.99 -101.99	-9.39 -5.42	-5.42	101.99 101.99	9.39	0.000%
29	9.38			-9.38		5.42	0.000%
30	10.83	-101.99	-0.00	-10.83	101.99	0.00	0.000%
31	9.38	-101.99	5.42	-9.38	101.99	-5.42	0.000%
32	5.41	-101.99	9.38	-5.41	101.99	-9.38	0.000%
33	-0.00	-101.99	10.84	0.00	101.99	-10.84	0.000%
34	-5.42	-101.99	9.39	5.42	101.99	-9.39	0.000%
35	-9.38	-101.99	5.42	9.38	101.99	-5.42	0.000%
36	-10.83	-101.99	0.00	10.83	101.99	-0.00	0.000%
37	-9.38	-101.99	-5.42	9.38	101.99	5.42	0.000%
38	-5.41	-101.99	-9.38	5.41	101.99	9.38	0.000%
39	-0.00	-53.46	-9.23	0.00	53.46	9.23	0.000%
40	4.61	-53.46	-7.99	-4.61	53.46	7.99	0.000%
41	7.98	-53.46	-4.61	-7.98	53.46	4.61	0.000%
42	9.22	-53.46	0.00	-9.22	53.46	-0.00	0.000%
43	7.99	-53.46	4.62	-7.99	53.46	-4.62	0.000%
44	4.61	-53.46	8.00	-4.61	53.46	-8.00	0.000%
45	0.00	-53.46	9.23	-0.00	53.46	-9.23	0.000%
46	-4.61	-53.46	7.99	4.61	53.46	-7.99	0.000%
47	-7.98	-53.46	4.61	7.98	53.46	-4.61	0.000%
48	-9.22	-53.46	-0.00	9.22	53.46	0.00	0.000%
49	-7.99	-53.46	-4.62	7.99	53.46	4.62	0.000%
50	-4.61	-53.46	-8.00	4.61	53.46	8.00	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination	•	of Cycles	Tolerance	Tolerance

1	Yes	4	0.0000001	0.00000001
2	Yes	5	0.00000001	0.00003608
3	Yes	4	0.00000001	0.00054007
4	Yes	6	0.00000001	0.00022795
5	Yes	6	0.00000001	0.00006481
6	Yes	6	0.00000001	0.00022745
7	Yes	6	0.00000001	0.00022745
8	Yes	5	0.00000001	0.00000403
9	Yes	4	0.0000001	0.00002827
10	Yes	6	0.00000001	0.00022613
11	Yes	6	0.00000001	0.00006407
12	Yes	6	0.0000001	0.00022959
13	Yes	6	0.0000001	0.00006526
14	Yes	5	0.0000001	0.00005796
15	Yes	4	0.0000001	0.00069883
16	Yes	6	0.0000001	0.00022615
17	Yes	6	0.0000001	0.00006428
18	Yes	6	0.0000001	0.00022655
19	Yes	6	0.0000001	0.00006443
20	Yes	5	0.0000001	0.00004910
21	Yes	4	0.0000001	0.00062956
22	Yes	6	0.0000001	0.00022936
23	Yes	6	0.0000001	0.00006520
24	Yes	6	0.00000001	0.00022599
25	Yes	6	0.00000001	0.00006402
26	Yes	4	0.00000001	0.00005760
27	Yes	5	0.00000001	0.00073544
28	Yes	6	0.00000001	0.00014839
29	Yes	6	0.00000001	0.00014818
30	Yes	5	0.00000001	0.00073506
31	Yes	6	0.00000001	0.00073300
32	Yes	6	0.00000001	0.00014533
33	Yes	5	0.0000001	0.00072554
34				
	Yes	6	0.00000001	0.00014267
35	Yes	6	0.0000001	0.00014275
36	Yes	5	0.0000001	0.00072386
37	Yes	6	0.0000001	0.00014631
38	Yes	6	0.0000001	0.00014502
39	Yes	4	0.0000001	0.00010186
40	Yes	4	0.0000001	0.00082322
41	Yes	4	0.0000001	0.00081768
42	Yes	4	0.0000001	0.00009921
43	Yes	4	0.0000001	0.00079752
44	Yes	4	0.0000001	0.00083570
45	Yes	4	0.0000001	0.00010282
46	Yes	4	0.0000001	0.00079463
47	Yes	4	0.0000001	0.00079862
48	Yes	4	0.00000001	0.00009981
49	Yes	4	0.0000001	0.00083258
50	Yes	4	0.00000001	0.00079595
	. 55	•	3.55555551	0.000,0000

Compression Checks

Pole Design Data

Section	Elevation	Size	L	Lu	KI/r	Α	P_u	ϕP_n	Ratio
No.	-								Pu
	Ħ		tt	Ħ		in²	K	K	ϕP_n
L1	180 - 131.75	TP31.39x21x0.25	48.250	0.0000	0.0	23.940	-15.96	1400.53	0.011
	(1)		0			7			
L2	131.75 -	TP40.46x29.921x0.375	49.540	0.0000	0.0	46.298	-26.61	2708.45	0.010
	86.71 (2)		0			3			
L3	86.71 - 43.16	TP48.96x38.5229x0.4375	49.130	0.0000	0.0	65.411	-41.54	3826.60	0.011
	(3)		0			9			
L4	43.16 - 0 (4)	TP57.25x46.668x0.5	49.830	0.0000	0.0	90.062	-64.11	5268.64	0.012

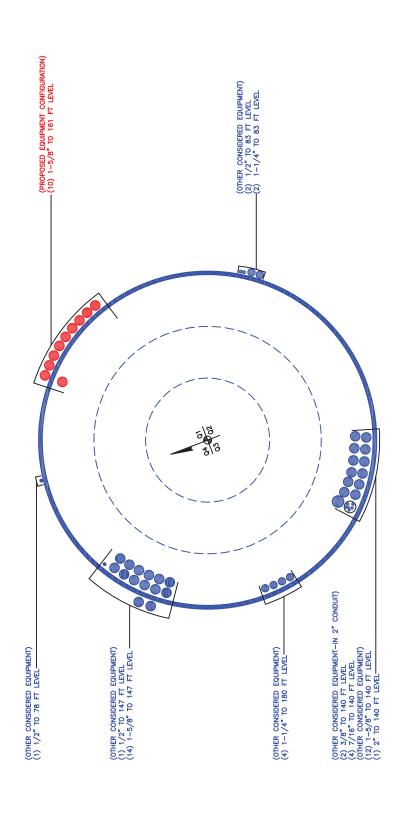
Section No.	Elevation	Size	L	Lu	KI/r	Α	Pu	ϕP_n	Ratio P _u
	ft		ft	ft		in²	K	K	φ P _n
			0			2			

Pole Bending Design Data

Section No.	Elevation	Size	M _{ux}	φM _{nx}	Ratio M _{ux}	M _{uy}	ф М пу	Ratio M _{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	180 - 131.75 (1)	TP31.39x21x0.25	595.68	1032.18	0.577	0.00	1032.18	0.000
L2	131.75 - 86.71 (2)	TP40.46x29.921x0.375	2074.48	2686.80	0.772	0.00	2686.80	0.000
L3	86.71 - 43.16	TP48.96x38.5229x0.4375	3728.32	4552.13	0.819	0.00	4552.13	0.000
L4	43.16 - 0 (4)	TP57.25x46.668x0.5	5918.45	7440.33	0.795	0.00	7440.33	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual Vu	φVn	Ratio Vu	Actual T _u	φTn	Ratio Tu
	ft		K	K	ϕV_n	kip-ft	kip-ft	ϕT_n
L1	180 - 131.75 (1)	TP31.39x21x0.25	31.03	420.16	0.074	0.66	1110.15	0.001
L2	131.75 - 86.71 (2)	TP40.46x29.921x0.375	36.22	812.53	0.045	0.66	2767.88	0.000
L3	86.71 - 43.16 (3)	TP48.96x38.5229x0.4375	41.42	1147.98	0.036	1.19	4735.72	0.000
L4	43.16 - 0 (4)	TP57.25x46.668x0.5	46.07	1580.59	0.029	1.19	7855.36	0.000


Pole Interaction Design Data

Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio Vu	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	φ <i>M</i> _{nx}	ϕM_{ny}	φVn	φ <i>T</i> _n	Ratio	Ratio	
L1	180 - 131.75 (1)	0.011	0.577	0.000	0.074	0.001	0.594	1.050	4.8.2
L2	131.75 - 86.71 (2)	0.010	0.772	0.000	0.045	0.000	0.784	1.050	4.8.2
L3	86.71 - 43.16 (3)	0.011	0.819	0.000	0.036	0.000	0.831	1.050	4.8.2
L4	43.16 - 0 (4)	0.012	0.795	0.000	0.029	0.000	0.808	1.050	4.8.2

Section Capacity Table

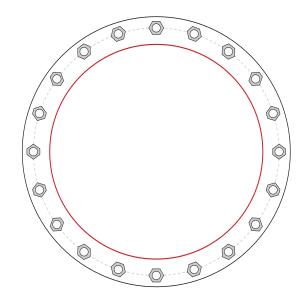
Section	Elevation	Component	Size	Critical	Р	øP _{allow}	%	Pass
No.	ft	Type		Element	K	K	Capacity	Fail
L1	180 - 131.75	Pole	TP31.39x21x0.25	1	-15.96	1470.56	56.6	Pass
L2	131.75 - 86.71	Pole	TP40.46x29.921x0.375	2	-26.61	2843.87	74.7	Pass
L3	86.71 - 43.16	Pole	TP48.96x38.5229x0.4375	3	-41.54	4017.93	79.2	Pass
L4	43.16 - 0	Pole	TP57.25x46.668x0.5	4	-64.11	5532.07	77.0	Pass
							Summary	
						Pole (L3)	79.2	Pass
						RATING =	79.2	Pass

APPENDIX B BASE LEVEL DRAWING

BUSINESS UNIT: 876391 TOWER ID: C_BASELEVEL

APPENDIX C ADDITIONAL CALCULATIONS

Monopole Base Plate Connection

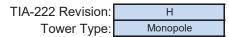


Site Info		
	BU#	876391
Sit	e Name	COLUMBIA / DEOJAY
	Order#	479837 R1

Analysis Considerations					
TIA-222 Revision	Н				
Grout Considered:	No				
l _{ar} (in)	0.5				

Applied Loads					
Moment (kip-ft)	5918.45				
Axial Force (kips)	64.11				
Shear Force (kips)	46.07				

57.25" x 0.5" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)


Connection Properties	Analysis Results				
Anchor Rod Data	Anchor Rod Summary	(uı	nits of kips, kip-in)		
(20) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 66" BC	Pu_c = 218.32	φPn_c = 243.75	Stress Rating		
	Vu = 2.3	φVn = 73.13	85.4%		
Base Plate Data	Mu = n/a	φMn = n/a	Pass		
72" OD x 2.25" Plate (A572-60; Fy=60 ksi, Fu=75 ksi)					
	Base Plate Summary				
Stiffener Data	Max Stress (ksi):	50.58	(Flexural)		
N/A	Allowable Stress (ksi):	54			
	Stress Rating:	89.2%	Pass		
Polo Data					

CCIplate - version 3.6.0 Analysis Date: 6/26/2019

^{*}TIA-222-H Section 15.5 Applied

Pier and Pad Foundation

BU #: 876391 Site Name: COLUMBIA / DEO. App. Number: 479837 R1

Block Foundation?:

Superstructure Analysis Reactions							
Compression, P _{comp} :	64	kips					
Base Shear, Vu_comp:	46	kips					
Moment, M _u :	5918	ft-kips					
Tower Height, H :	180	ft					
BP Dist. Above Fdn, bp _{dist} :	2.75	in					

Pier Properties					
Pier Shape:	Square				
Pier Diameter, dpier :	7	ft			
Ext. Above Grade, E :	1	ft			
Pier Rebar Size, Sc :	9				
Pier Rebar Quantity, mc :	39				
Pier Tie/Spiral Size, St :	4				
Pier Tie/Spiral Quantity, mt :	6				
Pier Reinforcement Type:	Tie				
Pier Clear Cover, cc _{pier} :	3	in			

Pad Properties					
Depth, D :	7	ft			
Pad Width, W :	26	ft			
Pad Thickness, T :	3	ft			
Pad Rebar Size (Bottom), Sp :	9				
Pad Rebar Quantity (Bottom), mp :	35				
Pad Clear Cover, cc _{pad} :	3	in			

Material Properties				
Rebar Grade, Fy :	60	ksi		
Concrete Compressive Strength, F'c:	4	ksi		
Dry Concrete Density, δ c :	150	pcf		

Soil Properties					
Total Soil Unit Weight, γ :	100	pcf			
Ultimate Gross Bearing, Qult:	12.000	ksf			
Cohesion, Cu:	0.000	ksf			
Friction Angle, $oldsymbol{arphi}$:	30	degrees			
SPT Blow Count, N _{blows} :	20				
Base Friction, μ :					
Neglected Depth, N:	3.50	ft			
Foundation Bearing on Rock?	No				
Groundwater Depth, gw :	5	ft			

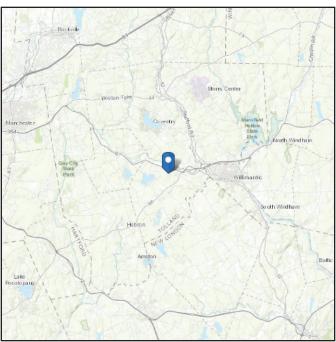
	Foundation Analysis Checks				
ĺ		Capacity	Demand	Rating*	Check
	Lateral (Sliding) (kips)	229.93	46.00	19.1%	Pass
	Bearing Pressure (ksf)	9.00	6.61	73.5%	Pass
	Overturning (kip*ft)	6514.10	6296.54	96.7%	Pass
	Pier Flexure (Comp.) (kip*ft)	6306.92	6148.00	92.8%	Pass
	Pier Compression (kip)	31187.52	108.10	0.3%	Pass
	Pad Flexure (kip*ft)	4775.11	3764.52	75.1%	Pass
	Pad Shear - 1-way (kips)	926.68	425.16	43.7%	Pass
	Pad Shear - 2-way (Comp) (ksi)	0.190	0.000	0.0%	Pass
	Flexural 2-way (Comp) (kip*ft)	5843.75	3688.80	60.1%	Pass

*Rating per TIA-222-H Section 15.5

Soil Rating*:	96.7%
Structural Rating*:	92.8%

<--Toggle between Gross and Net

Address:


No Address at This Location

ASCE 7 Hazards Report

ASCE/SEI 7-10 Elevation: 560.51 ft (NAVD 88) Standard:

Risk Category: ^Ⅱ Latitude: 41.717622 D - Stiff Soil Soil Class: Longitude: -72.299747

Wind

Results:

127 Vmph 130 mph per City of Columbia requirements Wind Speed:

10-year MRI 78 Vmph 25-year MRI 88 Vmph 50-year MRI 95 Vmph 100-year MRI 104 Vmph

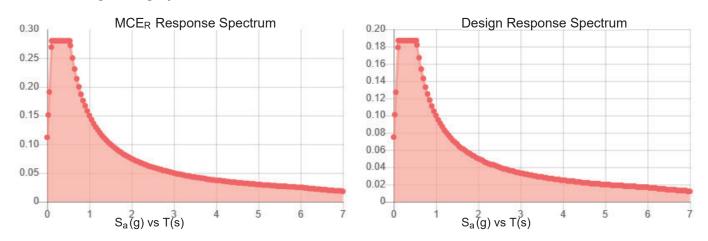
Data Source: ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1-CC-4, incorporating errata of

March 12, 2014

Date Accessed: Mon Jun 24 2019

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.


Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Seismic

Site Soil Class: Results:	D - Stiff Soil		
S _s :	0.175	S _{DS} :	0.187
S ₁ :	0.062	S _{D1} :	0.1
F _a :	1.6	T _L :	6
F _v :	2.4	PGA:	0.088
S _{MS} :	0.28	PGA _M :	0.14
S _{M1} :	0.15	F _{PGA} :	1.6
		l _e :	1

Seismic Design Category B

Data Accessed: Mon Jun 24 2019

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating

Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with

Mon Jun 24 2019

ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 5 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Mon Jun 24 2019

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Date: June 19, 2019

Kevin Morrow Crown Castle 3530 Toringdon Way Charlotte, NC 28277 Paul J Ford and Company 250 E. Broad Street, Suite 600

Columbus, OH 43215 614.221.6679

Subject: Mount Modification Report

Carrier Designation: T-Mobile Equipment Change-out

Carrier Site Number: CT11503A

Carrier Site Name: Sprint Columbia Rt 6

Crown Castle Designation: Crown Castle BU Number: 876391

Crown Castle Site Name: Columbia / Deojay

Crown Castle JDE Job Number:559338Crown Castle Purchase Order Number:1395161Crown Castle Order Number:479837 Rev. 1

Engineering Firm Designation: Paul J Ford and Company Project Number: A37519-1593.003.7191

Site Data: 14 Thompson Hill Rd, Columbia, Tolland County, CT

Latitude 41.717622°, Longitude -72.299747°

Structure Information: Tower Height & Type: 180 Foot Monopole

Mount Elevation: 161 Foot

Mount Type: (1) 12.5 Foot Platform

Dear Kevin Morrow,

Paul J Ford and Company is pleased to submit this "Mount Modification Report" to determine the structural integrity of the T-Mobile antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

12.5' Platform 54.9% SUFFICIENT*

*The mount has sufficient capacity once the modifications, as described in Section 4.1 Recommendations of this report, are completed.

This analysis utilizes an ultimate 3-second gust wind speed of 130 mph as required by the 2018 Connecticut State Building Code and Appendix N. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount Modification prepared by: Sean Connaughton

Respectfully submitted by:

Swa Pry

Steven Pozz, E.I. Structural Designer spozz@pauliford.com

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Capacity

4.1) Recommendations

5) STANDARD CONDITIONS

6) APPENDIX A

WIRE FRAME AND RENDERED MODELS

7) APPENDIX B

SOFTWARE INPUT CALCULATIONS

8) APPENDIX C

SOFTWARE ANALYSIS OUTPUT

9) APPENDIX D

SUPPLEMENTAL MODIFICATION INFORMATION

10) APPENDIX E

MANUFACTURER DRAWINGS (FOR REFERENCE ONLY)

1) INTRODUCTION

The existing mount under consideration is (1) 12.5' Platform mount mapped by RKS on 04/01/2019.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Ultimate Wind Speed: 130 mph

Exposure Category:

Topographic Factor at Base:
1.000
Topographic Factor at Mount:
1.5 in
Wind Speed with Ice:
50 mph
Live Loading Wind Speed:
30 mph
Man Live Load at Mid/End-Points:
500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
	162	3	Ericsson	KRY 112 144/2	
161		3	Ericsson	AIR 32 B2A B66AA	
	161	3	Ericsson	ERICSSON AIR 21 B2A B4P	(1) 12.5' Platform
	101	3	RFS/Celwave	APXVAARR24_43-U-NA20	
		3	Ericsson	RADIO 4449 B12/B71	

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Mount Mapping	876391 Dated: 04/22/2019	8352757	CCISites
Order	ID: 479837 Rev. 1 Dated: 04/15/2019	-	CCISites

3.1) Analysis Method

RISA-3D (version 17.0.2), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision C).

3.2) Assumptions

- 1) The analysis of the existing tower or the effect of the mount attachment to the tower is not within the current scope of work.
- 2) The antenna mounting system was properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications and all bolts are tightened as specified by the manufacturer and AISC requirements.
- 3) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1.
- 4) All member connections have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report. All U-Bolt connections have been properly tightened. This analysis will be required to be revised if the existing conditions in the field differ from those shown in the above referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Steel grades are as follows, unless noted otherwise:

a) Channel, Solid Round, Angle, Plate, Unistrut
b) Pipe
c) HSS (Rectangular)
d) HSS (Round)
e) Threaded Rods
f) Connection Bolts
g) U-Bolts

ASTM A36 (GR 36)
ASTM 500 (GR B-46)
ASTM 500 (GR B-42)
ASTM F1554 (GR 36)
ASTM A325
SAE J429 (GR 2)

- 6) Proposed equipment is to be installed in the locations specified in Appendix A. Any changes to the proposed equipment locations will render this report invalid.
- 7) Existing mount pipes will be replaced with 8-ft tall x P2.5 STD (2.88" O.D. x 0.189") pipes to accommodate the proposed antennas where required

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J Ford and Company should be notified to determine the effect on the structural integrity of the mount.

4) ANALYSIS RESULTS

Table 3- Mount Component Capacity

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Face Horizontals		29.3	Pass
1	Bracing Members		31.1	Pass
1	Grating Support Members		26.0	Pass
1	Standoff Members	161	18.9	Pass
1	Ring Plate	161	Suffi	cient
1	Corner Plates		46.0	Pass
1	Mount Pipes		54.9	Pass
1	Mount to Tower Connection		21.7	Pass

Mount Rating (max from all components) =	54.9%
--	-------

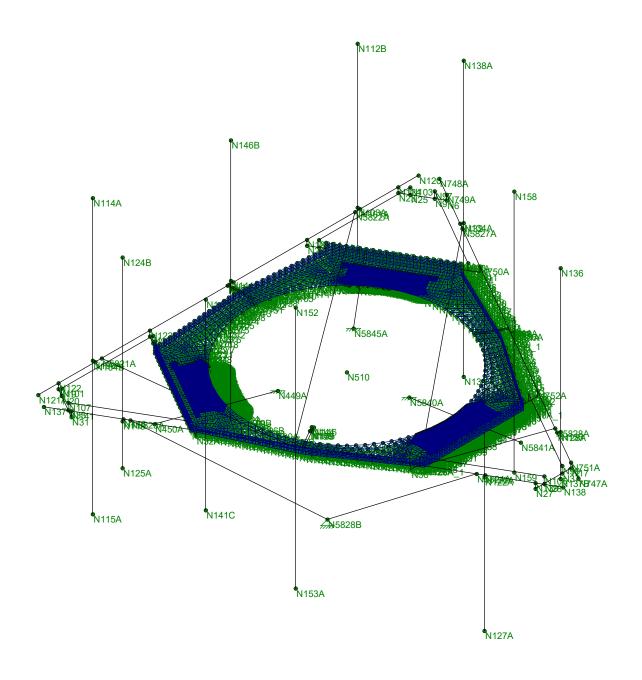
Notes:

4.1) Recommendations

The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the structural modifications listed below must be completed.

- Install SitePro1 PRK-SFS-L Platform Reinforcement Kit or EOR approved equivalent as indicated in "Appendix D – Supplemental Modification Information" and in conformance with the attached manufacturer drawings.
- Install RFS/Celwave APXVAARR24_43-U-NA20 antennas on 8-ft long, P2.5 STD (2.88" O.D. x 0.189) mount pipes. See Appendix D details.

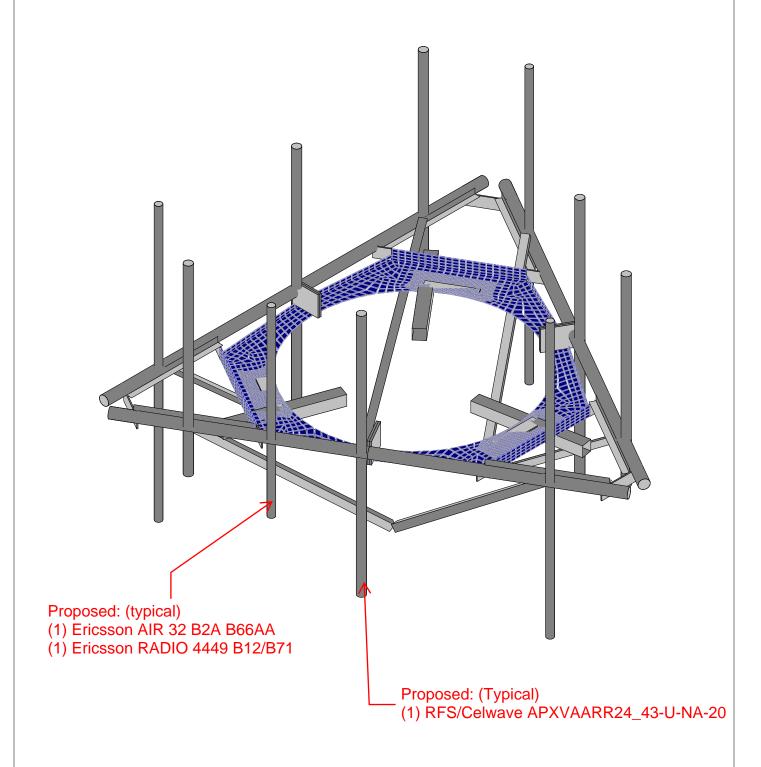
Connection from the mount to the tower and local stresses on the tower are sufficient.


¹⁾ See additional documentation in "Appendix C – Software Analysis Output" for calculations supporting the % capacity consumed.

STANDARD CONDITIONS FOR FURNISHING OF PROFESSIONAL ENGINEERING SERVICES ON EXISTING MOUNTS BY PAUL J. FORD AND COMPANY

- 1) It is the responsibility of the client to ensure that the information provided to Paul J. Ford and Company is accurate and complete. Paul J. Ford and Company will rely on the accuracy and completeness of such information in performing or furnishing services under this project.
- 2) If the existing conditions are not as represented on the referenced drawings and/or documents, Paul J. Ford and Company should be contacted immediately to evaluate the significance of the deviation.
- 3) The mount has been analyzed according to the minimum design loads recommended by the Reference Standard. If additional design loads are required, Paul J. Ford and Company should be made aware of this prior to the start of the project.
- 4) The standard of care for all Professional Engineering Services performed or furnished by Paul J. Ford and Company under this project will be the skill and care used by members of the Consultant's profession practicing under similar circumstances at the same time and in the same locality.
- 5) All Services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Paul J. Ford and Company is not responsible for the conclusions, opinions and/or recommendations made by others based on the information supplied herein.

APPENDIX A WIRE FRAME AND RENDERED MODELS



Envelope Only Solution

Paul J. Ford & Company		SK - 1	
SPC	BU 876391 / Columbia/Deojay	June 18, 2019 at 10:55 AM	
37519-1593.003.7191		37519-1593.003.7191_WindLoad.r	

Envelope Only Solution

Paul J. Ford & Company		SK - 2	
SPC	BU 876391 / Columbia/Deojay	June 18, 2019 at 11:10 AM	
37519-1593.003.7191		37519-1593.003.7191_WindLoad.r	

APPENDIX B SOFTWARE INPUT CALCULATION

37519-1593.003.7191 Project # Ву SPC Analysis 30 degrees

Page 1 of 1 Date: 06/18/19

v1.2, Effective 4/18/19

Mount Loading per TIA-222-H

Structure Information

Mount Type = Mount Elev. z = Ground Elev, z_s =

Wind Speed =

Ice Wind Speed =

Ice Thickness =

Exposure Cat =

Crest Height =

Structure Class =

Topographic Cat =

3 Sectors 161 560.51 ft 130 50

mph mph 1.5

 $\frac{\text{Velocity Pressure Coefficients}}{z_{q}} = \frac{900}{\text{ft}}$

z_q = a = 9.50 0.85 K_{zmin} = K_z = 1.40 Ke = 0.98 K_z = 1.40 K_{zt} = 1.00 Gh = 1.00 K_d = 0.95 K_a = 0.90 50.71

Calculated Value **Ground Elevation Factor** Velocity Press Coef (Section 2.6.5.2) Topographic Factor (Section 2.6.6.4) Gust Effect Factor (Section 2.6.7) Wind Dir Probability Factor (Table 2-2) Shielding factor (Section 16.6) Velocity Pressure (Section 2.6.9.6)

Ice Loading 1.00 li = lwi = 1.00 q_z= 8 51 1.17 T_{iz} = 1.76 in 1.00 $W_i =$ 12.87

Ice Importance Factor (Table 2-3) Wind Ice Importance Factor (Table 2-3) Ice Velocity Pressure (Section 2.6.9.6) Ice Escalation Factor (Section 2.6.8) Factored Ice Thickness (Section 2.6.8) Bar Grating Height Grating Ice Weight

Wind Pressures 50.714 psf Pressure = Ice Pressure = 8.506 psf

Antenna Attachment Labels & Elevations (inches with Respect to Bottom of Member)

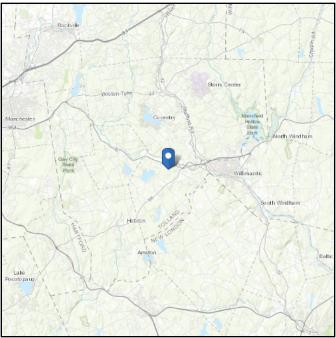
Face	Label	Top Elev (in)	Bot Elev (in)	Length, in	Face	Label	Top Elev (in)	Bot Elev (in)	Length, in	Face	Label	Top Elev (in)	Bot Elev (in)	Length, in	Face	Label	Top Elev (in)	Bot Elev (in)
Α	A1	75.0	30	108.0	В	B1	75.0	30	108.0	С	C1	75.0	30	108.0	D			
Α	A2	90.0	6	96.0	В	B2	90.0	6	96.0	С	C2	90.0	6	96.0	D			
Α	A3	54.0	6	72.0	В	B3	54.0	6	72.0	С	C3	54.0	6	72.0	D			
A (2)	A1	74.0	74	108.0	B (2)	B1	74.0	74	108.0	C (2)	C1	74.0	74	108.0	D			
A (2)	A3	36	36	72.0	B (2)	B3	36	36	72.0	C (2)	C3	36	36	72.0	D			
Α					В					С					D			
Α					В					С					D			
Α					В					С					D			
Α					В					С					D			
Α					В					С					D			

Antennas

									Ante	nna Attach	ment Loca	ations	
Item	Manufacturer	Antenna	Height (in)	Width (in)	Depth (in)	Flat or Round	Weight (lbs)	Label	Label	Label	Label	Label	Label
1	ERICSSON	AIR 32 B2A B66AA	59.25	12.87	8.66	Flat	143	A3	B3	C3			
2	ERICSSON	ERICSSON AIR 21 B2A B4P	56	12.1	7.87	Flat	91.5	A1	B1	C1			
3	RFS CELWAVE	APXVAARR24_43-U-NA20	95.9	24	8.7	Flat	128	A2	B2	C2			
4	ERICSSON	KRY 112 144/2	8.65	6.65	3.19	Flat	9.7	A1(2)	B1(2)	C1(2)			
5	ERICSSON	RADIO 4449 B12/B71	15	13.2	9.3	Flat	74	A3(2)	B3(2)	C3(2)			
6													
7													
8													
9													
10													
11													
12													
13													
14													
15													

Address:

No Address at This Location


ASCE 7 Hazards Report

ASCE/SEI 7-10 Standard: Elevation: 560.51 ft (NAVD 88)

Risk Category: || Latitude: 41.717622

D - Stiff Soil Soil Class: Longitude: -72.299747

Wind

Results:

Wind Speed: 127 Vmph 10-year MRI 78 Vmph 25-year MRI 88 Vmph 50-year MRI 95 Vmph 100-year MRI 104 Vmph

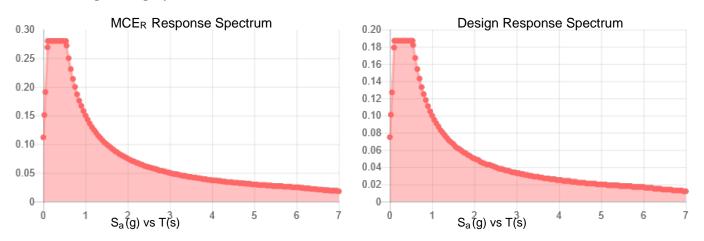
Data Source: ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1-CC-4, incorporating errata of

March 12, 2014

Date Accessed: Tue Apr 30 2019

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.


Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Seismic

Site Soil Class: Results:	D - Stiff Soil		
S _S :	0.175	S _{DS} :	0.187
S ₁ :	0.062	S_{D1} :	0.1
Fa:	1.6	T _L :	6
F _v :	2.4	PGA:	0.088
S _{MS} :	0.28	PGA _M :	0.14
S _{M1} :	0.15	F _{PGA} :	1.6
		L ·	1

Seismic Design Category B

Data Accessed: Tue Apr 30 2019

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating

Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with

ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 5 F

Gust Speed: 50 mph

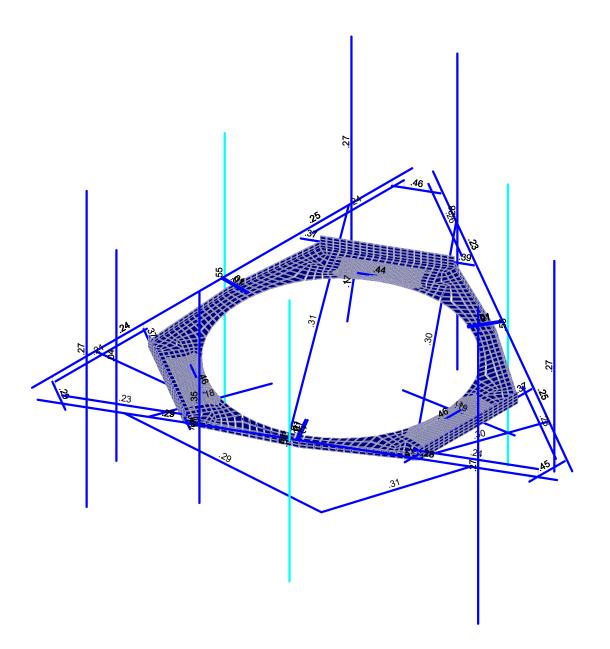
Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Tue Apr 30 2019

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

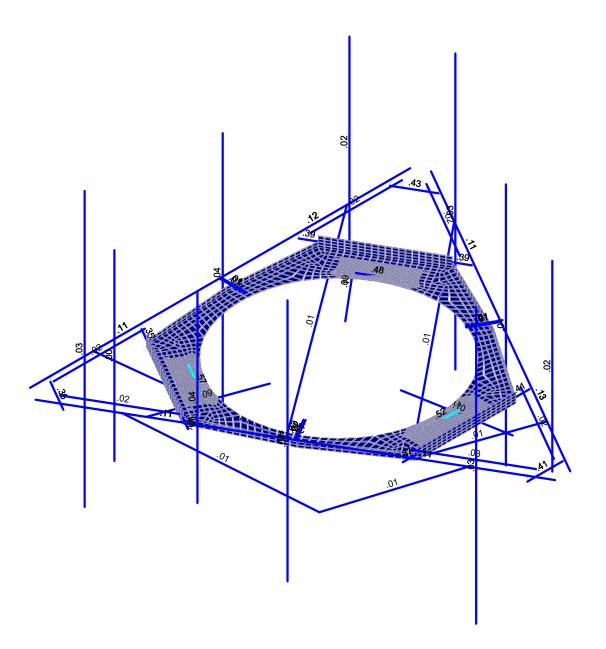
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.


ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

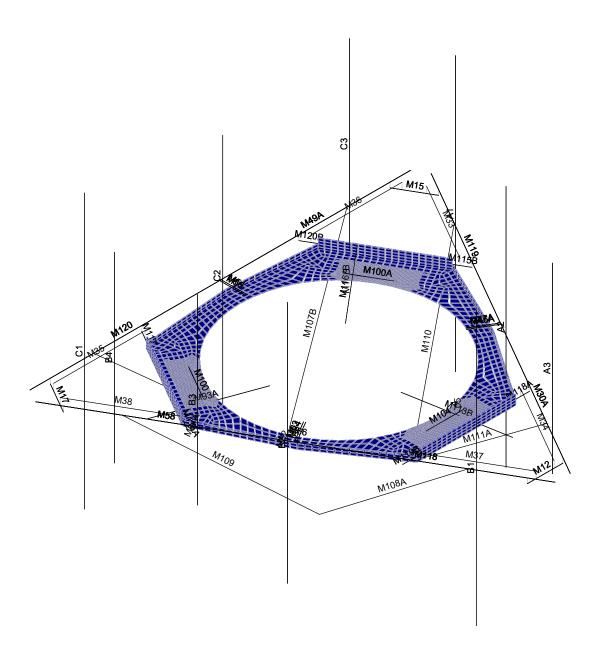
In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

APPENDIX C SOFTWARE ANALYSIS OUTPUT



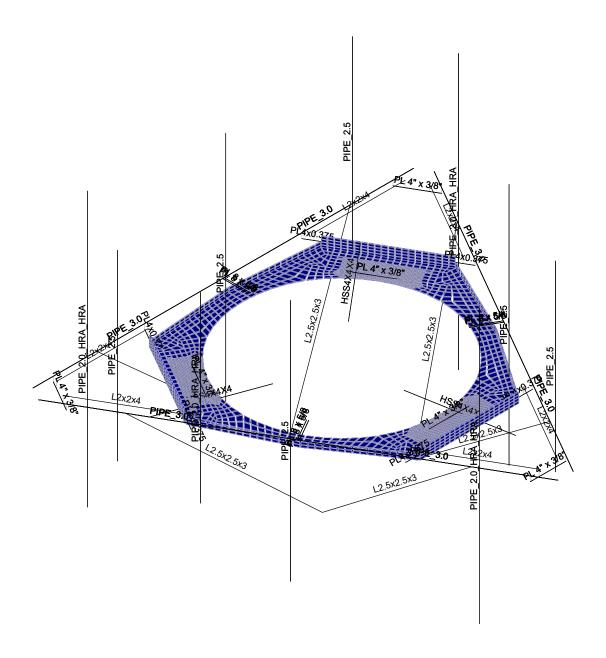
Member Code Checks Displayed (Enveloped) Envelope Only Solution

Paul J. Ford & Company		SK - 3
SPC	BU 876391 / Columbia/Deojay	June 18, 2019 at 11:18 AM
37519-1593.003.7191		37519-1593.003.7191_WindLoad.r



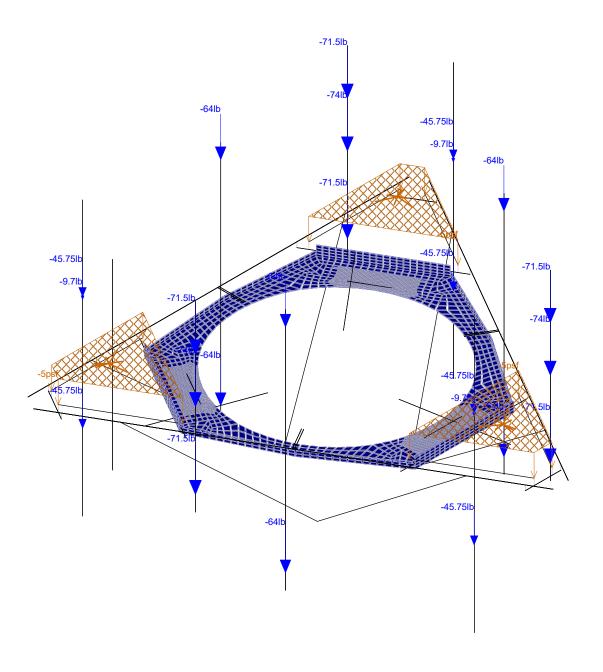
Member Shear Checks Displayed (Enveloped) Envelope Only Solution

Paul J. Ford & Company		SK - 4
SPC	BU 876391 / Columbia/Deojay	June 18, 2019 at 11:19 AM
37519-1593.003.7191		37519-1593.003.7191_WindLoad.r

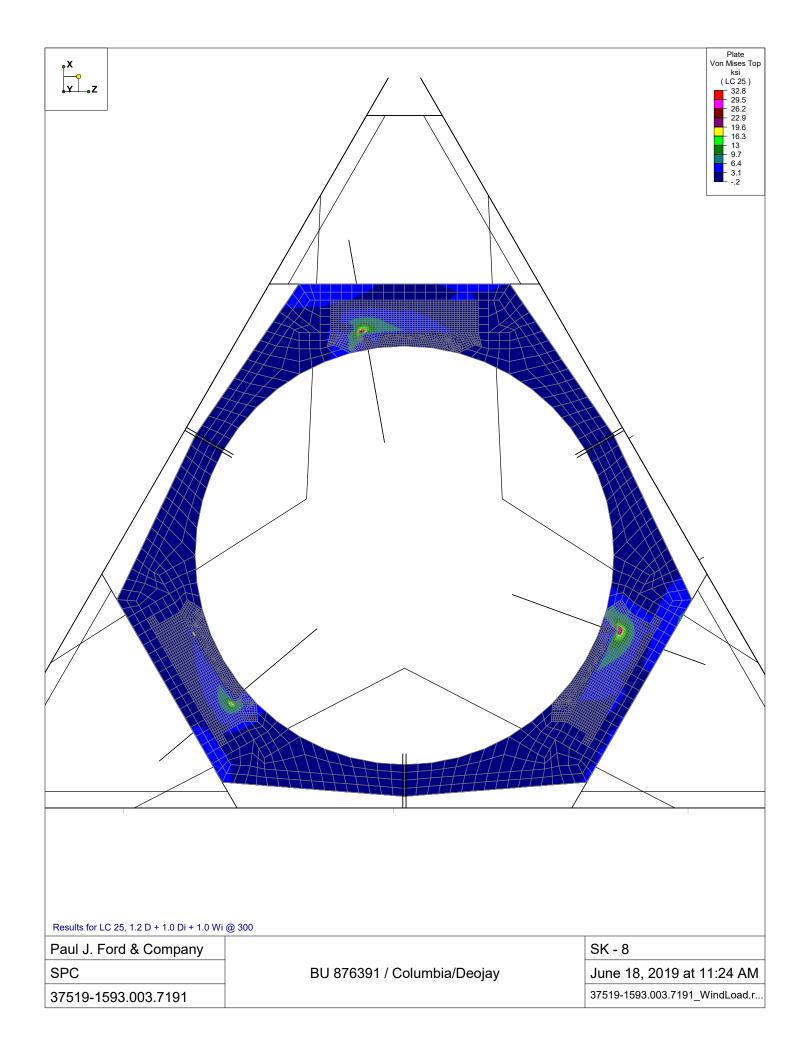


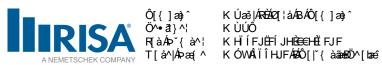
Envelope Only Solution

Paul J. Ford & Company		SK - 5	
SPC	BU 876391 / Columbia/Deojay	June 18, 2019 at 11:20 AM	
37519-1593.003.7191		37519-1593.003.7191_WindLoad.r	

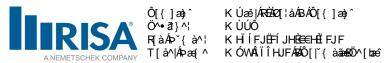


Envelope Only Solution


Paul J. Ford & Company		SK - 6	
SPC	BU 876391 / Columbia/Deojay	June 18, 2019 at 11:21 AM	
37519-1593.003.7191		37519-1593.003.7191_WindLoad.r	



Loads: BLC 1, Dead Envelope Only Solution


Paul J. Ford & Company		SK - 7
SPC	BU 876391 / Columbia/Deojay	June 18, 2019 at 11:22 AM
37519-1593.003.7191		37519-1593.003.7191_WindLoad.r

fţ `cVUŁ'A cXY `GYltijb[g

Öãa] æ ÁU^&cãi } • ÁI; ¦ÁT^{ à^¦ÁÔæ;&•	Í Á
Tæ¢ÁQ¢'}æÁÛ^&cã} • Á[¦ÁT^{ à^¦ÁÔæ}&•	JÏÁ
Q8 å^ AU @ æ AÖ^-{ { æ a } } Ñ	Ϋ́Λ•
Q&\^æ^Abæaja * AOæjæ&ãc Aj \AY aj åN	Ÿ^•
Q& a^A æ a * N	Ϋ́Λ•
V: a) • AS[aåAOc, } AQc^: • ^ & a] * AY [[åAY al N	ΫΛ•
OH^æ/Š[æå/ĀT^•@/G] â@D	FII
T^!*^A/[^!æ} &^A(2 D	ĖG
ÚEÖ^ cæÁOE; æf • ã Á/[^ æ} &^	€É €Ã
Q& å^ÁÚÉÖ^ œÁ[¦Á/æ •Ñ	ΫΛ•
OE ({ assasal \(^\)AQ\(^\)ass^\AU\(^2\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ΫΛ•
Tæ¢Á@^¦æ@a[}•Á[¦ÁYæ ÁÙ@~}^••	Н
Ö læçãc Á0888 lægā } ÁÇā Ð 10 8 â GD	HÌÏÈ
YællÁT^•@ÁUã^ÁÇÃDÍ	G
Óat^}•[`ata } ÁÔ[j ç^¦*^} &^ ÁV[ÉAGFEÒËD	1
X^¦caBæl/AOt¢ã	Ϋ
Õ [[àæþÁT^{{à^¦ÁU¦ã^}}cææã[}ÁÚ æ}^	ÝZ
Ùœæã&ÁÙ[ç^	Ù]æ•^ÁOB&^ ^¦æe^å
Ö^}æ{ æ\$ÁÛ[ç^	OB&^ ^ ae^åAÛ[ç^
P[cÁÜ[^åÁÛc^^ ÁÔ[å^	OEDÙÔÁFÍc@QH΀ËFÎDMÁŠÜØÖ
Œabi • œÛcã-} ^••Ñ	Ÿ^• @ \¦æaç^D
ÜQÜQEÔ[}}^&ca[}ÁÔ[å^	Þ[}^
Ô[åÁØ[{ ^åÁÛ¢^ ÁÔ[å^	Þ[}^
Y [[å ÁÔ[å^	Þ[}^
Y [[åÁv^{] ^{aeč	ŁÁF€€Ø
Ô[}&\^&\\^()[å^	Þ[}^
Tæ[}¦^#Ô[å^	Þ[}^
O#*{	Þ[}^ÆÖ ãåã;*
Ùæ a , ^••ÂÛc^^ ÂÔ[å^	OEDIÔÁTI cOQHÍ EÉFEDHÁCHIÓ
Œabio oÂĴcã-} ^••Ñ	Ÿ^• @ 0\¦æaaç^D
Þ`{ à^¦Á; Âù@^æ;ÁÜ^* ã[} •	1
Ü^* [4] } AÛ] æ&a} * AQ &¦^{ ^} cAQ D	Į,
Óãæ¢ãæ4Ô[ˇ{} ÀT^coQ!å	Ó¢æ8cÁQ; c^* ¦æaã[}
Úæl{^ÁÓ^œÁØæ&@;\ÁÇÚÔŒD	ÊÍ
Ô[}&\^&\AUG^•• AŬ [&\	Ü^&ca) *
W•^ÁÔ¦æ&\^åÁÙ^&ǽ{}}•Ñ	ΫΛ•
W•^ÁÔ¦æ&\^åÁÙ^&aã[}•ÁÛ æàÑ	ΫΛ•
ÓæåÁØlæ{ā,*Áyæ}}ã,*•Ñ	Þ[
W} ઁ • ^ å ÁØ[¦ &^ ÁY æ d } ∄ * • Ñ	ΫΛ•
ŢāļÁFÁÓæiÁÖæe(EÁÚ]æ&āj*Ñ	Þ[
Ô[} &\^&\AU^à\\\A\\^c	ÜÒӌܴÙÒV´ŒÙVTŒÎFÍ
T 3 A AUC^ Á[¦ÁÔ[´ { }	F
Tæ¢ÁÃÁÚ&^ Á[¦ÁÔ[ˇ{}	

fţ`cVUŁAcXY`GYIIjb[gž7cbl]bi YX

Ù^ã{ ã&ÁÔ[å^	ŒÙÔÒÄ ËF€
Û^ã{ 88.40æ ^ AO ^çæ a } AQ D	Þ[🐠 c^\^å
OfaåÁÓæ•^Á/ ^ð @N	Ϋ́Λ•
ÔœÝ	È€G
ÔÁZ	ÆG
VÄÝÁÇI^&D	Þ[🕬 & \^å
VÆÆG^&D	Þ[ðÔ} &\^å
ÜÄ	H
ÜÆ	H
ԜԢ] ÀÝ	ËÍ
Ô¢Ô¢] ÀZ	ËÍ
ÙÖF	F
ÙÖÙ	F
ÙF	F
VŠÁÇ^&D	ĺ
Üã√ÁÔæ	CÁN HÁOQ
Ö¦ãøÆÖæc	U @\
U{ ÁZ	F
U{ Ĥ	F
	F
ÔåÃÝ	F
ÜQÆ	F
Ü @ Ř	F

<chFc``YX'GhYY`DfcdYff]Yg

	Šæ•••̀^	ÒÆŽ•ãã	ÕÆX•ãã	þř	V@N¦ ÁÇEFÒÈ	BÖ^}•ãĉŽÐdÌ	ÈŸã∧¦åŽ∙ãã	Ü^	ØĭŽ∙ãã	Üc
F	ŒJG	GJ€€€	FFFÍ I	È	ĒÍ	ÈΙ	Í€	FÈ	ÎÍ	FÈ
G	OEHÎ ÁÕ¦ÈHÎ	GJ€€€	FFFÍ I	È	ÊÍ	ÈJ	HÎ	FĚ	ĺĺĺ	FÈG
Н	OÉÏGÁÕ¦Ě€	GJ€€€	FFFÍ I	È	ĒÍ	ÈJ	Í€	FÈ	ÎÍ	FÈ
1	OÉ €€ÁÕ¦ÈÓÁ G	GJ€€€	FFFÍ I	È	Ēĺ	ÈJ	ΙG	FÈ	ĺĺ	FÈH
ĺ	OÉ €€ÁÕ¦ÈÓÁ Î	GJ€€€	FFFÍ I	È	Ēĺ	ÈJ	ΙÎ	FÈ	ĺĺ	FÈH
Î	OÉ HÁÕ¦ ÈÓ	GJ€€€	FFFÍ I	ÈH	ÊÍ	ÈJ	HÍ	F₿	΀	FÈG
Ϊ	OEF€ÌÍ	GJ€€€	FFFÍ I	ÈH	ÊÍ	ÈJ	Í€	FÈ	ÎÍ	FÈH

A Ya VYf Df Ja Ufmi8 UHU

	Šæà^	OÁR[ãjc	RÁR[ã}c	SÁR[ã]c	Ü[ææ^ @^* E)Ù^&ca[}ÐÙ@æ}^	V^]^	Ö^∙ãt}ÁŠãc	Tæe^∖ãæ⇔	Ö^• ã } ÁÜ* ^•
F	TFG	ÞFÏ	ÞĞ			ÚŠÁ ÄÁ¢ÁHÐ Ä	Þ[}^	Þ[}^	OHÎ ÁÕI ÈHÎ	V^]ã&æ;
G	T FÍ	þÎ	Ð			ÚŠÁ ÄÁ¢ÁHÐÄ	þ[}^	Þ[}^	OHÎ ÁÕI ÈHÎ	V^]
Н	ΤFΪ	ÞÆ	건			ÚŠÁ ÄÁ¢ÁHÐÄ	þ[}^	Þ[}^	OHÎ ÁÕI ÈHÎ	V^]
1	T H€Œ	ÞÏIÏŒ	ÐÌÌŒ			ÚŒÚÒ´HÈ€	þ[}^	Þ[}^	OÉ HÁÕ¦ ÈÓ	V^]
ĺĺ	ΤĠÓ	ÞFÏ	ÞÏÍ FŒ			ÜÕÖÖ	þ[}^	Þ[}^	ÜÕÖÖ	V^]
Î	T GJŒ	ÞHG	ÞÏÍŒ			ÜÕÖÖ	þ[}^	Þ[}^	ÜÕÖÖ	V^]ã&æ
Ï	T H€Ó	ÞFF	ÞÏÍ€Œ			ÜÕÖÖ	þ[}^	Þ[}^	ÜÕÖÖ	V^]
Ì	T HFŒ	þÎ	ÐÜ JŒ			ÜÕÖÖ	þ[}^	Þ[}^	ÜÕÖÖ	V^]ã&æ
J	THH	ĺLÞ	Ϊd		Ğ	ŠG¢G¢I	Þ[}^	Þ[}^	OHÎ ÁÕI ÈHÎ	V^]
F€	TH	þIJ	ÞF€€		Ğ	ŠG¢G¢I	þ[}^	Þ[}^	OHÎ ÁÕI ÈHÎ	V^]ã&æ
FF	ΤHÍ	ÞF€G	ÞF€F		GÏ€	ŠG¢G¢I	Þ[}^	Þ[}^	OHÎ ÁÕI ÈHÎ	V^]
FG	ΤHÎ	ÞF€H	ÞF€l		GÏ€	ŠG¢G¢I	Þ[}^	Þ[}^	OHÎ ÁÕI ÈHÎ	V^]
FH	ΤHΪ	ÞF€Î	ÞF€Í	•	GÏ€	ŠŒ¢ŒI	Þ[}^	Þ[}^	OHÎ ÁÕI ÈHÎ	V^]
FI	ΤHÌ	ÞF€Ï	ÞF€Ì		GÏ€	ŠG¢G¢I	Þ[}^	Þ[}^	OHÎ ÁÕI ÈHÎ	V^]ã&æ ;

A Ya VYf Df]a Ufmi8 UfU ff7 cbf]bi YXŁ

	Šæà^	OÁR[ãjc	RÁR[ā}c	SÁR[ã]c	Ü[cæe^Gå^*DÙ^&cā[} £Dù@æ}^	V^]^	Ö^∙ã}Æšãc	Tæe^¦ãæ⊜	Ö^• ã } ÁÜ* ^•
FÍ	THJ	ÞHÏ	ÞJJ	O/nq gro	ÜÕÖÖ	₽[}^	Þ[}^	ÜÕÕ	V^] a8ae
FÎ	TI€	ÞH	ÞF€€		ÜÕÖÖ	Þ[}^	Þ[}^	ÜÕÖÖ	V^] a8aa
FΪ	TIF	ÞÀ	ÞF€Í		ÜÕÖÖ	þ[}^	۰{]ط ۱	ÜÕÖÖ	V^]
FÌ	TIG	ÞGJ	ÞF€Î	_	ÜÕÖÖ	þ[}^	Þ[}^	ÜÕÖÖ	V^] a8ae
FJ	TIH	ÞΗ	ÞF€Ì		ÜÕÖÖ	þ[}^	Þ[}^	ÜÕÖÖ	V^]
G€	TII	ÞН	ÞF€Ï		ÜÕÖÖ	Þ[}^	Þ[}^	ÜÕÖÖ	V^] a8a
Œ	TIÍ	ÞŒ	ÞF€F		ÜÕÖÖ	þ[}^	Þ[}^	ÜÕÖÖ	V^ 88æ
GG	ΤΙΪ	ÞŒ	ÞF€G		ÜÕÖÖ	þ[}^	Þ[}^	ÜÕÖÖ	V^]
GН	TTÏ	ÞĜ	ÞF€l		ÜÕÖÖ	Þ[}^	Þ[}^	ÜÕÖÖ	V^]
G	TIÌ	ÞĞ	ÞF€H		ÜÕÖÖ	Þ[}^	Þ[}^	ÜÕÖÖ	V^]
GÍ	TIJ	ÞJ	ÞJÏ		ÜÕÖÖ	Þ[}^	Þ[}^	ÜÕÖÖ	V^]
GÎ	TÍ€	ÞF€	ÞJÌ		ÜÕÖÖ	þ[}^	Þ[}^	ÜÕÖÖ	V^1 88æ
GÏ	TIÎŒ	ÞF€J	ÞFF€		ÚŠĀ Á¢Á Đ	þ[}^	Þ[}^	OHÎ ÁÕI ÈHÎ	V^1 88æ
GÌ	TIÏŒ	ÞFFF	ÞFFG		ÚŠĀ Á¢Á Đ	þ[}^	Þ[}^	OHÎ ÁÕI ÈHÎ	V^]
GJ	TIJŒ	ÞFŒ	ÞIÌJŒ		ÚŒÓ HÈ€	þ[}^	Þ[}^	CÉ HÁÕ¦ ÈÓ	V^]
H€	TÍ€Œ	ÞGH	ÞFG		ÜÕÖÖ	þ[}^	Þ[}^	ÜÕÖÖ	V^]
HF	ΤĺF	ÞG	ÞFGÍ		ÜÕÖÖ	þ[}^	Þ[}^	ÜÕÖÖ	V^]
HG	ΤÍG	ÞŒ	ÞFGH		ÜÕÖÖ	þ[}^	Þ[}^	ÜÕÖÖ	V^]
HH	ΤÍΗ	ÞFJ	ÞFGG		ÜÕÖÖ	þ[}^	Þ[}^	ÜÕÖÖ	V^]
Н	ΤĺΙ	ÞFGÎ	ÞFGÏ		ÚŠÀ Á¢Á Đ	þ[}^	Þ[}^	OHÎ ÁÕ¦ ÈHÎ	V^]
HÍ	ΤÍÍ	ÞFGÌ	ÞFGJ		ÚŠÁ Á¢Á ĐÌ	þ[}^	Þ[}^	OHÎ ÁÕI ÈHÎ	V^]
HÎ	ΤĺÌ	ÞFHÏ	ÞÌÌÏŒ		ÚQÚÒ′ HÈ€	þ[}^	Þ[}^	CÉ HỚC ÈÓ	V^]
ΗÏ	ΤĺJ	ÞÆ	ÞFIF		ÜÕÖÖ	Þ[}^	Þ[}^	ÜÕÖÖ	V^] ã&æ
HÌ	T΀	ÞHŒ	ÞFIG		ÜÕÖÖ	Þ[}^	Þ[}^	ÜÕÖÖ	V^] ã&æ
HJ	ΤÎF	ÞÆ	ÞFI€		ÜÕÖÖ	Þ[}^	Þ[}^	ÜÕÖÖ	V^]ã&æ ;
I€	ΤĴG	ÞĞ	ÞFHJ		ÜÕÖÖ	þ[}^	Þ[}^	ÜÕÖÖ	V^]ã&æ ;
IF	ΤĴΗ	ÞFIH	ÞFI		ÚŠÁ Á¢Á Đ	þ[}^	Þ[}^	OHÎ ÁÕI ÈHÎ	V^]
IG	ΤĴΙ	ÞFLÍ	ÞFLÍ		ÚŠÁ Á¢Á Đ	þ[}^	Þ[}^	OHÎ ÁÕI ÈHÎ	V^]
ΙH	TÍÌŒ	ÞFHÌÓ	ÞFHÏ Œ		ÜÕÖÖ	Þ[}^	Þ[}^	ÜÕÖÖ	V^]
11	TÍJŒ	ÞFI FŒ	ÞFI €Œ		ÜÕÕ	Þ[}^	Þ[}^	ÜÕÖÖ	V^]
11	<u>T Î COE</u>	ÞFIĴŒ	ÞFIÍŒ		ÜÕÕÖ	Þ[}^	Þ[}^	ÜÕÕÖ	V^]
ΙÎ	<u>T Î HŒ</u>	ÞFJÌ	ÞŖÏ		ÜÕÕÖ	Þ[}^	Þ[}^	ÜÕÖÖ	V^]
ΙΪ	<u>TÎÎ</u>	ÞFÍI	ÞĘĤ		ÜÕÕ	þ[}^	Þ[}^	ÜÕÖÖ	V^]
ΙÌ	ΤÎΪŒ	ÞĘĹĴ	ÞFÍ Ĺ		ÜÕÖ	Þ[}^	Þ[}^	ÜÕÕ	V^]
IJ	T FFÌ	ÞÌÌÏŒ	ÞFHÌ		ÚŒÓ HÈ€	þ[}^	Þ[}^	OÉ HỐ LỚ	
Í€	T FFJ	ÞIÌÌŒ	ÞÏIÌŒ		ÚQÚÒ′ HÈE	Þ[}^	þ[}^	OÉ HỐ LỚ	
ÍF	TFŒ	ÞIÌ JŒ	ÞFGFŒ		ÚQÚÒ′ HÈ€	Þ[}^	Þ[}^	OÉ HŐ ÉÓ	
IG	TÍÌÓ	ÞF€HŒ	ÞF€FŒ		ÜÕÖ	Þ[}^	þ[}^	ÜÕÕ	V^]
ÍΗ	<u>T΀Œ</u>	ÞF€ÎŒ	ÞF€IÓ		ÜÕÖ	Þ[}^	þ[}^	ÜÕÖ	V^]
ÍI	<u>TÎIŒ</u>	ÞFFI	ÞFFGŒ		ÜÕÕ	Þ[}^	þ[}^	ÜÕÕ	V^]
ÍÍ	ÔH ÔF	ÞFFHŒ	ÞFFGÓ		ÚQÚÒ′GĚ ÚQÓ°GÈ′PÜÈ	Þ[}^	Þ[}^	OÉ HỐ LỚ	
ÍÎ	ÔF TÎÎOT	ÞFFÍŒ	ÞFFI Œ		ÜÕÖÖ		þ[}^	OÉ HỐ ÈÓ	
ÍÏ	TÎÎŒ TÎÌ	ÞFFÌ	ÞFFÎ			Þ[}^	þ[}^	ÜÕÖ	V^]
ÍÌ	TÎÌ	ÞFGGE	ÞFŒŒ		ÜÕÖ	Þ[]^	Þ[]^	ÜÕÖ	V^]
ÍJ	Ól ÓF	ÞFGÍ Œ	ÞFG Ó		ÚQÚÒ′GĚ ÚQÍÒ′GÈ€′PÜÈË	Þ[}^	Þ[]^	OÉ HỐ LỚ	
΀	<u>ÓF</u>	ÞFGÏŒ	ÞFG Œ			- 1	Þ[]^	OÉ HỐ ÈÓ	
ÎF	<u>TÏG</u>	ÞFH€	ÞFGÌŒ		ÜÕÖ	Þ[]^	Þ[]^	ÜÕÖ	V^] 88æ
ÎG	TÏI	ÞFHIŒ	ÞFHG		ÜÕÖ ÚÓÓ GĚ	Þ[]^	Þ[]^	ÜÕÕ	V^] 88æ
ÎΗ	OEH	ÞFHÏÓ	ÞFHÎ FEUÌ Œ		ÚÓÓ GÈ PÜÈ	Þ[}^	þ[}^	OÉ HỐ LÝ	V^] 88æ
Îl	OF ÓH	ÞFHJŒ	ÞFHÌŒ		ÚÓJÓ GÈ PÜÈ		Þ[]^		
	<u>ÓH</u>	ÞFIFÔ	ÞFI€Ó				Þ[]^	CÉ HỐ È	
ÎÎ	ΤÏJ	ÞFIIŒ	ÞFI CŒ		ÜÕÖÖ	þ[}^	Þ[}^	ÜÕÖÖ	V^]

A Ya VYf Df Ja Ufm8 UfU fl7 cbl bi YXŁ

	_		561j61 12			- 1\10 m = \-	107	Ö. 7. E-	-	B. a. Five
îï	Šæè^	OÁR[ãiα	RÁR[ã]c	SAR[ā]c	U[cæe^ Çà^* [) Ù^&ca[} ĐÙ@æ}^	V^]^	Ö^•ã*}ÁŠãc	Tæð¦æþ	Ö^• ã} ÁÜ* ^•
	<u>ÔG</u>	ÞFIÏŒ	ÞFIÍÓ			ÚQÚÒ´GĚ	Þ[}^	Þ[}^	OÉ HÁŐ ÉÓ	
ÎÌ	<u>TÌG</u>	ÞFÍ€	ÞFI ÌŒ			ÜÕÖ	þ[}^	Þ[}^	ÜÕÖ	V^]
ÎJ	ÓĞ	ÞŁÍ HŒ	ÞFÍG			ÚQÚÒ´ĢĚ	þ[}^	Þ[}^	OÉ HÁŐ LÉÓ	1
Ï€	TÌÍ	ÞFÍĴŒ	ÞFÍĮŒ			ÜÕÖ	þ[}^	Þ[}^	ÜÕÖ	V^] ã&æ
ΪF	Œ	ÞFÍJ	ÞFÍÌ			ήσήο, α ‡	Þ[}^	Þ[}^	CHÉ HÁÕI ÈÓ	
ΪG	TJHŒ	ÞIIJŒ	ÞIÍ€Œ			PÙÙI ÝI ÝI	Þ[}^	Þ[}^	OÉ €€ÁÕ¦ÈÓÈ	
ΪΗ	T FFHÓ	ÞÍÌI€Œ	ÞÍÌ I FŒ			PÙÙI ÝI ÝI	Þ[}^	Þ[}^	ŒÉÆÕ¦ÈÓÈ	.] 5554
ΪΙ	T FFÎ Ó	ÞÍÌIÍŒ	ÞÍÌIÎŒ			PÙÙI ÝI ÝI	Þ[}^	Þ[}^	ŒÉÃÕ¦ÈÓÈ	.]
ΪÍ	T F€Î	ÞÍÌ ŒŒ	ÞÍÌ G€Œ		J€	ŠŒĬ¢ŒĬ¢H	Þ[}^	Þ[}^	OHÎ ÁÕI ÌHÎ	V^]ã&æ
ΪÎ	TF€ÖÓ	ÞÍÌ ŒŒ	ÞÍÌ G€Œ		FÌ€	ŠŒĬ¢ŒĬ¢H	Þ[}^	þ[}^	OEHÎ ÁÕI ÈHÎ	V^]ã&æ ;
ΪΪ	T F€Ì Œ	ÞÍÌŒ	ÞÍÌĠÓ		J€	ŠŒĬ¢ŒĬ¢H	Þ[}^	Þ[}^	OHÎ ÁÕI ÌHÎ	V^]
ΪÌ	TF€J	ÞÍÌŒ	ÞÍÌĠÓ		FÌ€	ŠŒĬ¢ŒĬ¢H	Þ[}^	Þ[}^	OHÎ ÁÕI ÈHÎ	V^]ã&æ
ΪJ	T FF€	ÞÍÌŒ	ÞÍÌGÍŒ		J€	ŠŒĬ¢ŒĬ¢H	Þ[}^	Þ[}^	OEHÎ ÁÕ¦ ÈHÎ	V^]ã&æ
Ì €	T FFFŒ	ÞÍÌĠŒ	ÞÍÌGÍŒ		FÌ€	ŠŒĬ¢ŒĬ¢H	Þ[}^	þ[}^	OHÎ ÁÕI ÈHÎ	V^]
ÌF	THG	ÞÏÍÎÓ	ÞHJ			ÜÕÖÜ	Þ[}^	Þ[}^	ÜÕÖÖ	V^]
ÌG	T F€€Œ	ÞІЇ€	ÞIÎJ		J€	ÚŠÁLÄÁ¢ÁHÐÌÄ	Þ[}^	þ[}^	OHÎ ÁÕI ÈHÎ	V^]
ìΗ	TF€G	ÞIÍ€	ÞHÏ			Ü ÕÖ Ö	Þ[}^	Þ[}^	ÜÕÖÖ	V^]
ÌΙ	TF€H	ÞŒH	ÞIÎIŒ			ÜÕÖÖ	þ[}^	Þ[}^	ÜÕÖÖ	V^]
ÌÍ	TF€Í	ÞHGÏ	ÞIÎÌÓ			ÜÕÖÖ	Þ[}^	Þ[}^	ÜÕÖÖ	V^]
ÌÎ	TF€Ï	ÞIÍ€	ÞIÏŒÓ			ÜÕÖÖ	Þ[}^	þ[}^	ÜÕÖÖ	V^]
ÌΪ	TF€Ì	ÞHÏ	ÞIÏFÓ			ÜÕÖÖ	Þ[}^	Þ[}^	ÜÕÖÖ	V^]
ìì	T FFF	ÞIIÎŒ	ÞÍÌHÏŒ			ÜÕÖÖ	Þ[}^	þ[}^	ÜÕÖÖ	V^1
ÌJ	T FFG	ÞÍÌHÌŒ	ÞÍÌHÏŒ			ÜÕÖÖ	Þ[}^	Þ[}^	ÜÕÖÖ	V^1
J€	T FFI	ÞÍÌHJŒ	ÞÍÌI Œ			ÜÕÖÖ	Þ[}^	Þ[}^	ÜÕÖÖ	V^1
JF	T FFÍ Œ	ÞÍÌIHŒ	ÞÍÌ I Œ			ÜÕÖÖ	Þ[}^	þ[}^	ÜÕÖÖ	V^1
JG	T FFÏ Ó	ÞÍÌIIŒ	ÞÍÌIÏŒ			ÜÕÖÖ	Þ[}^	þ[}^	ÜÕÖÖ	V^1 88æ
JH	T FFÌ Ô	ÞÍÌIÌŒ	ÞÍÌIÏŒ			ÜÕÖÖ	Þ[}^	Þ[}^	ÜÕÖÖ	V^1 88æ
JI	TF€€	ÞIIÌŒ	ÞIIÏŒ		J€	ÚŠÁ ÄÁ¢ÁHÐÄ	Þ[}^	Þ[}^	CEHÎ ÁÕI ÈHÎ	V^]
JÍ	TF€F	ÞŒH	ÞŒ€			ÜÕÖÖ	Þ[}^	Þ[}^	ÜÕÖÖ	V^]
JÎ	T F€HŒ	ÞŒ€	ÞIÎHŒ			ÜÕÖÖ	Þ[}^	Þ[}^	ÜÕÖÖ	V^]
JΪ	TF€	ÞIÍJŒ	ÞÍÍÌŒ		J€	ÚŠÁ ÄÁ¢ÁHÐÄ	Þ[}^	Þ[}^	OHÎ ÁÕI ÈHÎ	V^]
JÌ	T F€Í Œ	ÞHGÏ	ÞHG			ÜÕÖ	Þ[}^	þ[}^	ÜÕÖÖ	V^1 a8æ
JJ	T F€Ï Œ	ÞHG	ÞIÎÏÓ			ÜÕÖÖ	Þ[}^	þ[}^	ÜÕÖÖ	V^1
F€€	T FFÍ Ó	ÞIÌÍ	ÞFF			ÚŠI ¢ ŒÌ Ï Í	۰{۱ط	þ[}^	OHÎ ÁÕI ÈĤ	V^1 a8as
F€F	T FFÎ Œ	ތό	ÞHŒ			ÚŠI ¢ ŒÌ Ï Í	b[}^	Þ[}^	OHÎ ÁÕ¦ ÌHÎ	V^]
F€G	T FFÏ	ÞÍH	ÞŒ			ÚŠI ¢ ŒH Ï Í	Þ[}^	Þ[}^	OHÎ ÁÕ¦ ÈHÎ	V^]
F€H	T FFÌ Œ	ÞHÍ€	ÞHG			ÚŠI ¢ ŒH Ï Í	<u>- []</u>	Þ[}^	OHÎ ÁÕ¦ ÌHÎ	V^1 a8as
F€	T FFJÓ	ÞĤG	ÞH€			ÚŠI ¢ŒĤÏ Í	Þ[}^	Þ[}^	OHÎ ÁÕI ÈHÎ	V^] a8æ
F€Í	T FŒÓ	ÞIÏH	ÞG			ÚŠI ¢ ŒÌ Ï Í	þ[}^	þ[}^	OHÎ ÁÕI ÈHÎ	V^] 88æ
		F 1 1 1 1			1	30, y car i	- []	- 1		, 1 arch

A Ya VYf 5 X j Ub WYX 8 UHJ

	Šæà^	QÁÜ^ ^æ•^	RÁÜ^ ^æ•^	QÁJ~•^cŽ∄á	RÁU~•^cŽajá	VÐÔÁU} ^	Ú@• 3 8æ	Ö^-¦ÁÜææ⊞€E; æ∳•ã• Á⊞	Q:a&cã;^	Ù^ãa{ã&ÈÈ
F	T FG							HEÁÞORÁH		þ[}^
G	T FÍ						γ۸۰	HEÁÞORÁH		þ[}^
Н	T FÏ						Ϋ́Λ∙	HEÁÞORÁH		þ[}^
I	T H€Œ						Ϋ́Λ∙	HEÁÞORÁH		þ[}^
ĺ	ΤĠÓ						Ϋ́Λ∙	HEÁÞOEÁH		þ[}^
Î	TGJŒ						Ϋ́Λ∙	HEÁÞORÁH		þ[}^
Ϊ	T H€Ó						Ϋ́Λ∙	HEÁÞOEÁH		þ[}^
Ì	T HFŒ						Ϋ́Λ∙	HEÁÞORÁH		þ[}^

A Ya VYf 5 Xj UbWYX 8 UHU fl7 c bhilbi YXL

	Šæà^	ØÜ^ ^æ.^		RÁU⊶^cŽajá	V E ÔÁJ}I^	Ú@• & æl	Ö^- ÁÜæe⊞CB;æ∳•ã;ÁEE	Q) æ&cãç^	Ù^ã{ & ÈÈ
J	THH			,	/ 1	Ϋ́Λ∙	HEÁÞ CHÁH	7	Þ[}^
F€	ΤHI					ΫΛ∙	HEÁÞORÁH		þ[}^
FF	ΤHÍ					ΫΛ∙	HEÁÞOFÁH		þ[}^
FG	ΤHÎ						HÁÞOÐÁH		Þ[}^
FH	ΤHΪ					Ÿ۸۰	HEÁÞOFÁH		þ[}^
FI	ΤHÌ						HEÁÞ OZÁH		þ[}^
FÍ	THJ					ΫΛ∙	HÁÞOÐÁH		þ[}^
FÎ	TI€					ΫΛ∙	HEÁÞOÐÁH		Þ[}^
FΪ	TIF					Ϋ́Λ∙	HEÁÞOFÁH		Þ[}^
FÌ	TIG					ΫΛ∙	HÁÞOÐÁH		Þ[}^
FJ	TIH					ΫΛ∙	HÁÞOÐÁH		þ[}^
G€	TII					ΫΛ∙	HEÁÞOÐÁH		Þ[}^
GF	TIÍ					Ϋ́Λ∙	HEÁÞOFÁH		þ[}^
GG	TIÎ					ΫΛ∙	HEÁÞOEÁH		Þ[}^
GH	ΤΙΪ					Ϋ́Λ∙	HÁÞOÐÁH		Þ[}^
G	TIÌ					ΫΛ∙	HÁÞOÐÁH		þ[}^
GÍ	TIJ					Ϋ́Λ∙	HEÁÞOÐÁH		Þ[}^
Ĝ	TÍ€					Ϋ́Λ∙	HEÁÞOÐÁH		þ[}^
GÏ	TIÎŒ						HEÁÞOFÁH		þ[}^
GÌ	TIÏŒ						HEÁÞ OFÁH		þ[}^
GJ	TIJŒ					Ϋ́Λ∙	HEÁÞORÁH		þ[}^
H€	TÍ€Œ						HEÁÞOÐÁH		þ[}^
HF	TÍF						HEÁÞOFÁH		þ[}^
HG	ΤÍG						HEÁÞOÐÁH		þ[}^
HH	ΤÍΗ					Ϋ́Λ∙	HEÁÞOÐÁH		þ[}^
Н	ΤÍΙ					Ϋ́Λ∙	HEÁÞOÐÁH		þ[}^
HÍ	ΤÍÍ					Ϋ́Λ∙	EEÁÞOEÁEE		Þ[}^
HÎ	ΤĺÌ						EEÁÞOEÁEE		Þ[}^
HÏ	ΤĺJ					ΫΛ∙	HEÁÞ CEÁH		þ[}^
HÌ	T΀						HEÁÞORÁH		Þ[}^
HJ	ΤÎΕ					Ÿ ∧•	HEÁÞORÁH		þ[}^
I€	ΤĴG					Ϋ́Λ∙	HEÁÞORÁH		Þ[}^
IF	ΤĴΗ					Ϋ́Λ∙	HEÁÞ OBÁH		Þ[}^
IG	ΤĴΙ					Ÿ۸•	HÁÞOÐÁH		þ[}^
IH	TĺÌŒ					Ÿ۸•	HEÁÞ OEÁH		þ[}^
Ιļ	TÍJŒ						HEÁÞ OEÁH		þ[}^
ΙÍ	T Î CŒE						⊞ĄÞOÆÁ⊞		Þ[}^
11	<u>TÎHŒ</u>						HEÁÞ OBÁH		Þ[}^
H	<u>TÎÎ</u>						HEÁÞ OEÁH		þ[}^
	TÎÏŒ						HEÁÞ OZÁH		þ[}^
ļЈ	T FFÌ					Ÿ^•	HEÁÞ OZÁH		þ[}^
Í€	T FFJ						HÉ CHÁT		þ[}^
ÍF	T FŒ					Ϋ́Λ•	HÁ OÁH		þ[}^
ÍG	TÍÌÓ						HÁ OÁH		þ[}^
ĺΗ	T΀Œ					Ϋ́Λ•	HÁ OÁH		þ[}^
	TÎIŒ						HÁÞOÁH		þ[}^
ÍÍ	<u>ÔH</u>					Ϋ́Λ•	HÁÞOÐÁH		þ[}^
ÍÎ	ÔF TÎÎŒ					Ϋ́Λ• Ϋ́Λ•	HÁÞOÐÁH TVÁÞOÐÁH		þ[}^
ÍÏ	TÎÌ					γ∧• ÿ∧•			Þ[}^ Þ[}^
	<u> </u>					γ∧• Ÿ∧•			Þ[}^
ÍJ ΀	<u>OI</u> ÓF						ETÁPOTÁEE ETÁPOTÁEE		
ı€	UF					ΥΛ.	TTH UTHE		þ[}^

A Ya VYf 5 Xj UbWYX 8 UHU fl7 c bhilbi YXL

	Šæà^	QÄÜ^ ^æ•^	RÁÜ^ ^æ•^	OÁJ~•^cŽajá	RÁU~•^cŽajá	VÐÔÁU} ^	Ú@• & æ	Ö^-¦ÁÜæœ⊞€£;æ∳•ã Æ	Q) æ\$cã;^	Ù^ã{ & ÈÈ
ÎF	ΤΪG						Ϋ́Λ∙	EEÁÞOEÁEE		Þ[}^
ÎG	ΤÏΙ						Ϋ́Λ∙	HEÁÞORÁH		þ[}^
ÎН	O II H						Ϋ́Λ∙	HEÁÞORÁH		þ[}^
ÎΙ	Œ						Ϋ́Λ∙	EÉPOÉE		þ[}^
ÎÍ	ÓH						Ϋ́Λ∙	EEÁÞOEÁEE		þ[}^
ÎÎ	ΤΪJ						Ϋ́Λ∙	HEÁÞOÐÁH		þ[}^
ÎΪ	ÔG						Ϋ́Λ∙	HEÁÞOÐÁH		þ[}^
ÎÌ	ΤÌG						Ϋ́Λ∙	HEÁÞOÐÁH		þ[}^
ÎJ	ÓG						Ϋ́Λ∙	HEÁÞOÐÁH		þ[}^
Ï€	ΤÌÍ						Ϋ́Λ∙	HEÁÞOÐÁH		þ[}^
ΪF	Œ						Ϋ́Λ∙	HEÁÞOFÁH		þ[}^
ΪG	TJHŒ						Ϋ۸۰	HEÁÞOEÁH		þ[}^
ΪH	T FFHÓ						Ϋ́Λ∙	HEÁÞOFÁH		þ[}^
ΪΙ	T FFÎ Ó						ΫΛ∙	HEÁÞOEÁH		þ[}^
ΪÍ	T F€Î	Ó^} Ú Q Þ					Ϋ́Λ∙	HEÁÞOFÁH		þ[}^
ΪÎ	TF€ÖÓ	Ó^}ÚΦ					Ϋ́Λ∙	HEÁÞOEÁH		þ[}^
ΪΪ	T F€ Œ	Ó^}ÚŒ					Ϋ́Λ•			þ[}^
ΪÌ	TF€J	Ó^}ÚŒ					Ϋ́Λ∙			þ[}^
ΪJ	T FF€	Ó^}ÚŒ					Ϋ́Λ•			þ[}^
Ì€	T FFFŒ	Ó^}Ú Q Þ					Ÿ۸∙			þ[}^
ÌF	THG	o jou					Ϋ́Λ•			þ[}^
ÌG	T F€€Œ						Ÿ۸∙			þ[}^
ÌН	T F€G						Ϋ́Λ•			þ[}^
ÌI	TF€H						Ϋ́Λ∙			þ[}^
ìí	TF€						Ϋ́Λ•	HEÁÞ CEÁH		þ[}^
ìî	TF€Ï						Ϋ́Λ∙			þ[}^
ÌÏ	TF€						Ϋ́Λ•	HEÁÞ CEÁH		þ[}^
ìì	T FFF						Ϋ́Λ∙			þ[}^
ÌJ	T FFG						Ϋ́Λ•	HEÁÞ CEÁH		þ[}^
J€	T FFI						Ÿ۸∙			þ[}^
JF	T FFÍ Œ						Ϋ́Λ•	HEÁÞ CEÁH		þ[}^
JG	T FFÏ Ó						Ÿ۸∙			þ[}^
JH	T FFÌ Ô						Ϋ́Λ•	HEÁÞ OZÁH		þ[}^
JI	TF€€						Ÿ۸∙			þ[}^
JÍ	T F€F						Ϋ́Λ•	HEÁÞ CEÁH		þ[}^
JÎ	T F (I HOE						Ÿ۸•			þ[}^
JÏ	T F€						Ϋ́Λ•	HEÁÞ CEÁH		þ[}^
JÌ	T F€Í Œ									Þ[}^
JJ	TF€ÏŒ							HÁP OZÁH		Þ[}^
F€€							Ÿ۸۰	HÁP OZÁH		Þ[}^
F€F	T FFÎ Œ						Ϋ́Λ•	HÁP OZÁH		Þ[}^
F€G							Ÿ۸۰	HÁP OZÁH		Þ[}^
F€H	T FFÌ Œ						Ϋ́Λ•			Þ[}^
F€	TFFJÓ						Ϋ́Λ•			Þ[}^
F€Í	T FŒÓ						Ϋ́Λ•			Þ[}^
ГÐ	I FŒU						1,,,	ITH CHIT		

<chFc``YX`GhYY`8 Yg][b`DUfUa YhYfg</pre>

	Šæà^	Ù@ ≱ ^	Š^}*c@Ž j á	Šà^^Žajá	Šà∷Žājá	Š&[{]Áq[]Žð;á	áŠ&[{]Áà[cŽ5)á	iŠËq¦~~È	È S^^	S::	Ôà	Ø"}&ca[i}
F	TFG	ÚŠÁLÄÁÇÁHÐÌÄ	FI									Šæe^\læ
G	T FÍ	ÚŠÁLÄÁÇÁHÐÌÄ	FI									Šæe^\læ

<chFc``YX'GhYY`8 Yg][b'DUfUa YhYfg'f7 cbh]bi YXŁ</pre>

		ii o igili					<u> </u>	v				
	Šæà^	Ù@ ≱ ^		Šà^^Žajá	Šà∷Žājá	_Š&[{]Áq[]Žajá	iŠ&[{]Aà[cŽajá	ŠĒq¦∵ĭŒË	S^^	S::	Öà	Ø" }&ca[1}
Н	T FÏ	ÚŠÁ ÄĶÁHÐÄ										Šæe^læ
l	T HECE	ÚQÚÒ′ HÌ€										Šæe^læ
I	THH	ŠG¢G¢I	HÎ									Šæe^læ¢
Ţ	<u> </u>	ŠG¢G¢I	HÎ									Šæe^læ¢
I	<u>T Hĺ</u>	Š@¢@¢I	HÎ									Šæe^læ¢
I	<u>T HÎ</u>	ŠG¢G¢I	HÎ									Šæe^læ¢
J	<u>T H</u> į	ŠG¢G¢I	HÎ									Šæe^læ¢
F€	<u>T HÌ</u>	ŠG¢G¢I	HÎ									Šæe^læ¢
FF	TIÎŒ	ÚŠÁ Á¢Á Đ	F€									Šæe^læ¢
FG	TIÏŒ	ÚŠÁ Á¢Á Đ	F€									Šæe^læ¢
FH	TIJŒ	ÚŒÓ HÈ€	ΪÍ									Šæe^læ¢
Fļ	<u>TÍI</u>	ÚŠĀ Á¢Á Đ	F€									Šæe^læ¢
FÍ	<u>TÍÍ</u>	ÚŠÁ Á¢Á Đ	F€									Šæe^læ¢
FÎ	ΤĺÌ	ÚQÚÒ′ HÌ€	ΪÍ									Šæe^læ¢
ΕÏ	<u>TÎH</u>	ÚŠÁ Á¢Á ĐÌ	F€									Šæe^¦æ
FÌ	ΤÎĮ	ÚŠÁ Á¢Á Đ	F€									Šæe^læ¢
FJ	T FFÌ	ÚŒÓ HÈE										Šæe^¦æ¢
G€	T FFJ	ÚŒÓ HÈ€										Šæe^læ¢
GF	T FŒ	ÚŒÓ'HÈ€										Šæe^¦æ¢
GG	ÔН	ÚQÚÒ′ ŒĚ	ΪĢ									Šæe^læ¢
GH	ÔF	ÚÓJÒ′GÈÉ′ÈÈ										Šæe^¦æ¢
G	Ól	ÚŒÓ ŒĚ	ΪG									Šæe^læ¢
GÍ	ÓF	ÚÓJÒ′GÈɰÈÈ										Šæe^¦æ¢
Ĝ	ŒH	ÚŒÓ ŒĚ	ΪĢ									Šæe^læ¢
GÏ	Œ	ÚÓJÒ′GÈÉ′ÈÈ										Šæe^¦æ
GÌ	ÓH	ÚÓJÒ′GÈɰÈÈ										Šæe^læ¢
GJ	ÔG	ÚŒÓ GÉ	JÎ									Šæe^¦æ¢
H€	ÓG	ÚQÚÒ′ ŒĚ	JÎ									Šæe^læ¢
HF	Œ	ÚQÚÒ, CHỆ	JÎ									Šæe^¦æ
HG	TJHŒ	PÙÙI ÝI ÝI	HÌ									Šæe^læ¢
HH	T FFHÓ	PÙÙI ÝI ÝI	HÌ									Šæe^¦æ
H	T FFÎ Ó	PÙÙI ÝI ÝI	HÌ									Šæe^læ¢
HÍ	T F€Î	ŠŒĬ¢ŒĬ¢H	Ï∰ÍÌ									Šæe^¦æ¢
HÎ	TF€ÖÓ	ŠŒĬ¢ŒĬ¢H	Ï∰ÎÎ									Šæe^læ¢
ΗÏ	T F€Ì Œ	ŠŒĬ¢ŒĬ¢H	Ï∰ÍÌ									Šæe^¦æ¢
HÌ	T F€J	ŠŒĬ¢ŒĬ¢H	Ï∰ÍÌ									Šæe^læ
HJ	T FF€	ŠŒĬ¢ŒĬ¢H	Ï∰ÍÌ									Šæe^¦æ¢
I€	T FFFŒ	ŠŒĬ¢ŒĬ¢H	Ï∰ÍÌ									Šæe^læ
IF	T F€€Œ	ÚŠÁLÄKÁHÐÄ										Šæe^¦æ
IG	T F€€	ÚŠÁ ÄÁÁHÐÄ										Šæe^læ¢
ΙH	TF€	ÚŠÁ ÄÁÁHÐÄ										Šæe^læ¢
H	T FFÍ Ó	ÚŠI ¢ ŒÌ Ï Í	ĺĚ									Šæe^læ¢
ΙÍ		ÚŠI ¢ ŒÌ Ï Í	ĺĚ									Šæe^¦æ
ΙÎ	T FĘÏ	ÚŠI ¢ ŒÌ Ï Í	ĺĚ									Šæe^læ¢
ΙÏ		ÚŠI ¢ ŒÌ Ï Í	ĺĚ									Šæe^læ¢
ΙÌ		ÚŠI ¢ ŒÌ Ï Í	ĺĚ									Šæe^læ¢
IJ	T FŒÓ	ÚŠI ¢ ⊞ Í	ĺĚ									Šæe^¦æ

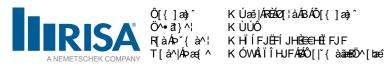
6 Ug]W@UX'7 UgYg

	ÓŠÔÁÖ^•&¦ājcā[}	Ôæ:^*[¦^	Ý ÁÕ¦æçãcî	ŸÁÕ¦æçãcî ËFÈF	ZÁÕ¦æçãcî	R[ã]c	Ú[ặc	Öã dãa čo^å	Œ^æÇT^ÈÈ	Ùĭ¦æ&∧ ÇÚ ⊞
F	Ö^æå	Þ[}^		ËÈ			H€		Н	
G	Šãç^	Þ[}^								
Н	YąåÆ	Þ[}^					΀	Ì€		
1	Yā¦åÁH€	Þ[}^					΀	Ì€		
ĺ	Y ajåÂ΀	Þ[}^					΀	Ì€		
Î	Y aj åÁJ€	Þ[}^					΀	Ì€		
Ϊ	YajåÁFG€	Þ[}^					΀	Ì€		
ì	YajåÁFÍ€	Þ[}^					΀	Ì€		
J	Qa^ÁŠ[æå	Þ[}^					H€	I€	Н	
F€	Q ^Æ	Þ[}^					΀	Ì€		
FF	Q3^ÁH€	Þ[}^					΀	Ì€		
FG	Q .^Â.€	Þ[}^					΀	Ì€		
FH	Q ^ÁJ€	Þ[}^					΀	Ì€		
FI	Q\^ÁFG€	Þ[}^					΀	Ì€		
FÍ	Q\^ÁFÍ €	Þ[}^					΀	Ì€		
FÎ	Š{	Þ[}^				F				
FΪ	Šc	Þ[}^				F				
FÌ	ÓŠÔÁFÁ/¦æ) • ã/} cÁŒ^æ							H€		
FJ	ÓŠÔÁJÁV¦æ),•ãN} œÆP^æÆE	Þ[}^						H€		

@UX'7ca V]bUhjcbg

	Ö^∙ &¦āj cāj}	ٌڌŬ	ÉÓÈ	ÈØæ ŧ ÌÌ	ŰÓĞ	ÈØæ È È	ÉÓÈÈ	ØæLL	ÉÓÈ	Øæ	É	Ze ti	ÉÖË	200 1111	É	Ze elii	∰Ğ	Øæ tii	₩Ğ	Øæŧiii	ÓЩ	ØæŧÈÈ
F	FÈ ÁÖ	ŸĦŸ	F	FÈ																		
G	FÌGÁÖÁEÁFÍÐÁŠ	Ϋ́ЩΫ́	F	FÈG	G	FÈ																
Н	FÈCÁÖÆÆÆÁY[ÁOÆ	ŸĦŸ	F	Ą		F																
	FÈAÖÆÆÆÆÝ [ÁOÆÆ	Ϋ́ЩΫ́	F	FÈ	1	F																
ĺ	FÈAÖÆÆÆÆÝ [ÁOÂI€	Ϋ́ЩΫ́	F	FÈ	ĺ	F																
Î	FÈGÁÖÆÆÆÉÁY [ÁOÁJ€	Ϋ́ЩΫ́	F	FÈG		F																
Ϊ	FÈGÄÖÆÆÆÆÝ [ÁOÆG€	Ϋ́ЩΫ́	F	FÈG	Ϊ	F																
ì	FÈGÁÖÁÉÁFÈEÁY [ÁOÁFÍ€	Ϋ́ЩΫ́	F	FÈG		F																
J	FÈCÁÖÁÉÁFÈEÁY [ÁOÁFÌ€	Ϋ́ЩΫ́	F	FÈ	Н	Ë																
F€	FÈGÄÖÆÆÆÆÆ [ÁOÆGF€	Ϋ́ЩΫ́	F	FÈ	1	Ë																
FF	FÈGÁÖÁÉÁFÈEÁY [ÁOÁGI€	Ϋ́ЩΫ́	F	FÈG		Ë																
FG	FÈGÁÖÁÉÁFÈEÁY [ÁOÁGÏ€	Ϋ́ЩΫ́	F	FÈ	Î	Ë																
FH	FÈGÄÖÆÆÆEÁY [ÁOÆH€€	Ϋ́ЩΫ́	F	FÈG	Ϊ	Ë																
FI	FÈGÄÖÆÆÆÆÝ [ÁOÆHE	Ϋ́ЩΫ́	F	FÈ		Ë																
FÍ	FÈAÖÆÆÆEÄÖÆÆÆEÁY ÆÓÆ	Ϋ́ЩΫ́	F	FÈG		F	F€	F														
FÎ	FÈGÄÖÆÆÆÆÄÖÆÆÆÆÁ ÆÓÆ	ŸЩΫ́	F	FÈG		F	FF	F														
FΪ	FÈGÁÖÆÆÆÆÆÆÆÆÆÆÆÆÆÆ	Ϋ́ЩΫ́	F	FÈG		F	FG	F														
FÌ	FÈGÁÖÆÆÆÆÆÆÆÆÆÆÆÆÆÆ	Ϋ́ЩΫ́	F	FÈG	J	F	FΗ	F														
FJ	FÈGAÖÁÉÁFÈEÁÖÁÉÁFÈEÁY ÁFOSE	ŸЩŸ	F	FÈ	J	F	FI	F														
G€	FÈGÁÖÁÉÁFÈEÁÖÃÁÉÁFÈEÁY ÃHOÁFÍ€	Ϋ́ЩΫ́	F	FÈ		F	Fί	F														
GF	FÈGÁÖÁÉÁFÈEÁÖÃÁÉÁFÈEÁY ÃÁOÁFÌ€	Ϋ́ЩΫ́	F	FÈ		F	F€	Ë														
GG	FÈGÁÖÁÉÁFÈEÁÖÄÉÁFÈEÁY ÄYOÁGF€	Ϋ́ЩΫ́	F	FÈ		F	FF	Ë														
GH	FÈGÁÖÁÉÁFÈEÁÖÃÁÉÁFÈEÁ ÃFOÁG €	Ϋ́ЩΫ́	F	FÈ		F	FG															
G	FÈGÁÖÁÉÁFÈEÁÖÆÉÁFÈEÁY ÆÍOÁGÍ€	Ϋ́ЩΫ́	F	FÈ		F	FΗ	Ë														
GÍ	FÈGÁÖÁÉÁFÈEÁÖÆÉÁFÈEÁY ÆÓÁH€€	ŸЩΫ	F	FÈG	J	F	FL	Ë														
GÎ	FÈGÁÖÁÉÁFÈEÁÖÆÉÁFÈEÁY ÆYOÁHH€	Ϋ́ЩΫ́	F	FÈG		F	Fί	Ë														
GÏ	FÈSÁÖÁEÁFĚÁS{ÁEÁFÈEÁY{ÁOÁE	Ϋ́ЩΫ́	F	FÈ	Н	ÈÉÍ⊦	FÎ	FĚ														

@UX'7ca V]bUh]cbg'ff'cbh]bi YXŁ


	Ö^∙ &¦āj cāj}	ٌڌÙĖ	ΪΈÓĒ	ÉØæÈÉÓĤ	<u> </u>	ÉÓĤ		iiioetiii	ÓŒŒ	ÉÉÓÉÉ	ΪØæ i Ϊ	ΉŒ	Øætii	ΉĞ	Øæ	Ш̈́С	Zea llit	źШĊ	Zee i ÌÈ
Ġ	FÈSAÖÆÆÆĚÆ§ ÆÆÆÈEÆY { ÆØÆH€	Ϋ́ЩΫ́	F	FÈG I			FĚ												
GJ	FÈSÁÖÆÆFĚÆŠ{ÆÆÆÈEÁY{ÆOÂ.€	ŸЩŸ	F	. 🗠 .			FĚ												
H€	FÈSÁÖÁEÁFÉÁS{ÁEÁFÈ€ÁY{ÁOÁJ€	ŸĚŸ	F		È€Í⊦		FĚ												
HF	FÈSAÖÆÆÆĚÆÄ{ ÆÆÆÈEÁY { ÁOÆFGE	ŸĚŸ	F	FÈĠΪ	È€Í⊦		FĚ												
HG	FÈSÁÖÆÆFĚÆ{ÆÆÆÈÆY{ÆOÆFÍ€	Ϋ́ЩΫ́	F	FÉG Ì			FĚ												
HH	FÈCAÖÆÆÆĚÆ{ÆÆÆÈÆY{ÆOÆFÌ€	ŸЩΫ́	F	. —	ËÈÈÈ		FĚ											\perp	
H	FÈSÁÖÆÆÆĚÆ{ÆÆÆEAY {ÁOÁGF€	ŸЩŸ	F		ÜŒÙ		FĚ												
HÍ	FÈSÁÖÁÉÁFĚÁŠ{ÁÉÁFÈEÁY {ÁOÁGI€	ŸĚŸ	F	FÈGÍ	ËÈÈÌ		FĚ												
HÎ	FÈSÁÖÁÉÁFĚÁŠ{ÁÉÁFÈEÁY {ÁOÁGÏ€	ŸЩŸ	F	FÈG Î	ÜŒÙ		FĚ												
ΗÏ	FÈSÁÖÁÉÁFĚÁŠ{ÁÉÁFÈEÁY {ÁOÁH€€	ŸЩŸ	F	FÈGΪ	ËÈÈÌ		FĚ												
HÌ	FÈSAÖÆÆÆĚÆÄ ÆÆÆÈÆY { ÁO ÁHHE	ŸЩŸ	F	FÈG Ì	Ë€È	ŧî	FĚ												
HJ	FÈGÁÖÆÆÆĚÆĞÇ	ŸЩŸ	F	FÈGFÏ	FĚ														
I€	FÈSÁÖÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ	ŸЩŸ	F	FÈG J	F	F€	F												

9bj YcdY'>c]bhFYUMjcbg

	R[ã]c	ÝÆjaá	ŠÔ	ŸÆjàá	ŠÔ	ZÆ∏àá	ŠÔ	ΤΎΑΣ̈́Β̈́já	ŠÔ	ΤΫÆΧ̈́Εijāá	ŠÔ	TZÁŽËĄá	ŠÔ
F	ÞIIJŒ	{æ¢,GFÍÎÈÎGÏ	FG	ÎÏFĚÏJ	I€	HHÍËÎF		ËΉΪ		GIÈÏG	FH	F₿I	Î
G		{ a} EGIGGEIE	Î	FÎ Î 🗎 FÎ	J	ËGHÏ Ï È€ÈÈÈ	F€	ËFÈG	Œ	ËĠĚÍI	Ϊ	ÉÉÏJ	FG
Н	ÞÍÌI€Œ	{æ¢Hì€G£ÎIÍ	FG	ÎGHËGÍ	ŒН	GHÏÌ ÈHFJ	Н	ΙÈĖFΪ	Н	HFĚÌÎ	J	FÎ ÈJFÎ	HJ
1		{ a} ËHEÏGLĚ	Î	ΪJÈG	ĺ	EGÎ €Ï ÈD EE	J	ËĒFÌ	J	ËGIĚÍI	Н	ËJF	FG
ĺ	ÞÍÌIÍŒ	{æ¢ G€HÈH€F	FG	ÍÌGÈÌFI	G€	GÎHÌÈEÍÍ	FI	JĒJÎ	Ĝ	GJĚÍF	ĺ	FÈ FJ	ĺ
Î		{ a lici i dice	Î	ÌÍÈŒ€Ì	FH	ËHF€Ì Ě ÈÈ	Ì	È€FG	Ì	ËĞİÈJÌ	FF	ÉÈÌÌ	G
Ϊ	ÞÍÌ ŒŒ	{æ¢ ÍÌ∄HF	Î	GHGÎËÎÌ	G	HHFÈÍÎ	ĺ	€	I€	€	I€	€	I€
ì		{ a if hofti iii	ď	ËGIË	Î	ĒĠÈÍÏ	FF	€	F	€	F	€	F
J	ÞÍÌ GÎŒ	{æ¢ JîJÈîî	Н	GIFÈÎÍ	FÎ	G I 🖺 FÌ	FF	€	I€	€	I€	€	I€
F€		{ a} EHÎÌ EGÌ I	J	ËIJÌÈÌF	F€	EFGHÌ È È	FΪ	€	F	€	F	€	F
FF	ÞÍÌĠÓ	{æ¢ JÍÍÈEF	J	GÎ FHÈ I G	Œ	FGJGÉGÌ Í	FJ	€	I€	€	I€	€	I€
FG		{ a} EHIGEDHI	Н	ËG€GĚHÍ	FI	ËÎĖÍJ	FH	€	F	€	F	€	F
FH	V[œ ∳ K	{æ¢ <mark>ÏÎÏ€ÈEHG</mark>	FG	ÌGHÏÈÍ	I€	ÏIFÍÈGÍÌ	Н						
FI		{ aj lĒîï eir iii	Î	HI FHÐÏÏ	J	ĒIFÍÈGĖĖ	J						

9bj YcdY5=G7 % h fl *\$!% L @F: 8 GhYY 7cXY7\ YWg

	T^{ à^¦	Ù@a}^	Ô[å^ÆÔ@E	ÈŠ[&Žajá	ŠÔ	Ù@ækÁÔ@ À	Éğ &Ê	ÈÖã	ŠÔ]@aEÚ}&Aã(àá]@3HÚ}oÁŽ(àá]@aET}ÁËÈE	Èj@aET}Á.ËÆŽ	ÉÉÔà Ò˘}_
F	Œ	ÚÓJÓ GÉ	ĚΙJ	ΙÌ	FF	È€HÌ	ΙÌ		FF	H€€HÌÈÎF	Í ∉ Ï FÍ	Ť Ť	l HÉFÍ Í	FÉHÌÎ PFËFÀ
G	ÔG	ÚÓJÓ ŒĚ	ĚIJ	l lì	Ϊ	È€HÌ	HÌ		ΙÏ	H€€HÌÈÎF	Í ∉ Ï FÍ	THE T	l HÉFÍ Í	FÉHÌÎ PFËFÀ
Н	ÓG	ÚÓJÓ ŒĚ	ĚIJ	ΙÌ	Н	È€HÌ	ΙÌ		Н	H€€HÌÈÎF	Í ∉ Ï FÍ	l HÉTÍ Í	l HÉFÍ Í	FİHFÎ PFËFà
	T FÍ	ÚŠÁ ÄĶÁHÌÌ		F€Ĭ	FF	ÈGJ	HĚ	^	ĺ	ŒFIÌÈHH	IÌ΀€	ΙĚÍÎ	ΙÌË	FÈ HGPFËà
ĺ	TF€	ÚŠÁ ÄĶÁHÈ		ÈHH	Н	ĚFÏ	ÈHH			FÍÍFŒŒÍÍ	IÌ΀€	ΙĚÍÎ	ΙÌË	ŒÎÏFPFËà
Î	TF€€	ÚŠÁ ÄĶÁHÌÌ		ÈHH	Ϊ	ĚÎÎ	ÈHH	^	I€	FÍÍFŒŒÍÍ	IÌ΀€	ΙĚÍÎ	ΙÌË	ŒÎÍÏ PFËà
Ϊ	T FG	ÚŠÁ ÄĶÁHÌÌ		HĚ	Н	È€J	HĚ	^	Н	ŒFIÌÈHH	IÌ΀€	ΙĚÍÎ	ΙÌË	FĒ ÍÏ PFĒà
ì	T F€€Œ	ÚŠÁ ÄĶÁHÌÌ	ÈIH	ÈHH	FF	ÈÏÍ	ÈHH	^	FJ	FÍÍFŒŒÍÍ	IÌ΀€	ΙĚÍÎ	ΙÌË	ŒÎ Ï HPFË à
J	T FFJÓ	ÚŠI ¢€ÈHÏ Í	ÈFI	ÍĚ	-	ÈHÏG	€	^	Н	I G G È Í Ï	IÌ΀€	ΙĚÍÎ	ΙÌË	FÈGÌ J PFËFà
F€	T FFÎ Œ	ÚŠI ¢€ÈHÏ Í	ÈUÍ	ÍĚ	FG	ÈÍG	€	^	Ĝ	I G G È Í Ï	IÌ΀€	ΙĚÍÎ	ΙÌË	FÈHÎ FPFË à
FF	T FFÍ Ó	ÚŠI ¢€ÈHÏ Í	ÈÀÏ	ÍĚ	FG	ÈUG	€	^	FF	I G G È Í Ï	IÌ΀€	ΙĚÍÎ	ΙÌË	FÉGÌ F P FËF à
FG	TFŒÓ	ÚŠI ¢€ÈHÏ Í	ÈHÏI	ÍĚ	FI	ÈÙJ	€	^	Ϊ	I G G È Í Ï	IÌ΀€	ΙĚÍÎ	ΙÌË	FİHF PF ÜF à
FH	T FFÌŒ	ÚŠI ¢€ÈHÏ Í	ÈΗΪΗ	ÍĚ	Î	ÈF€	€	^	FF	I G G È Í Ï	IÌ΀€	ΙĚÍÎ	ΙÌË	FÈHÉ PFËà
FI	T FFÏ	ÚŠI ¢€ÈHÏ Í	ÈÜF	ÍĚ	ì	ÈHÍ€	€	^	Ϊ	I G G È Í Ï	IÌ΀€	ΙĚÍÎ	ΙÌΒ̈́	FÈHGHPFË à
FÍ	ÓH	ÚÓÓÓ′ GIIII	ÈHÍ€	GÎ ÈĞÍ	Н	È€HÏ	G̈⊞		Н	ŒÌÎÎËH	HŒH€	GOÈÍ J	GOÈÍ J	FËÌÌÎ PFËà
FÎ	TF€ÖÓ	ŠGĚ¢GĚ¢H	ÈFF	HHËÎF	FF	È€FÍ	Ï€ ⊞	:	FF	JÍGÍËÌ	GJFJŒÌ	F∰ÏF	FÌÈÌÌ	FÈH PŒ

9bj YcdY5=G7 % h fl *\$!% L @F: 8 GhYY 7cXY7\ YWg ff cbh]bi YXL

	T^{ à^¦		Ô[å^ÁÔ@Œ	ÈŠ[&Ž5]á	ŠÔ	Ù@ækAÔ@ <u>#</u>		ŠÔ]@AEÚ}&AÄ(jàá]@aEÚ}oÁŽ(àá]@aET}ÁËÈÈ	È)@aET}Á.ËÆŽ	
FΪ		ŠŒŤ¢ŒŤ¢H	ÈÆJ	HHÈÎF	J	ÈFH	Ï € ∰ ^	HJÍGÍÈFI	GJFJŒÌ	F∰İÏF	FÌÈÌÏ	FÈH PŒ
FÌ	T FFFŒ	ŠŒŤ¢ŒŤ¢H	ÈH€Í	HHËÎF	Н	È€FI	Ï € ### :	H JÍ GÍ Ë JI	GJFJŒÌ	F€ÈÏF	FÌÈÌÌ	FEH POE
FJ	T FF€	ŠŒŤ¢ŒŤ¢H	ÈGJÏ	HHÈÌF	ĺ	ÈEFH	Ï € ∰ ^	FF JÍ GÍ ËÏ J	GJFJŒÌ	F€ÈÏF	FÌÈÌÍ	FEH POF
G€	ΤĺÌ	ÚÓÚÒ′HÈ€	ÈGJH	ΪŒΪÍÎ	FÎ	ÈFÍ	I HEE	J ÍGJ€FÈHF	ÎÍG€Í	ÎÌÈÌÍ	ÎÌÈÌÍ	ŒFFF PFË à
Œ	TF€J	ŠGHĚ¢GHĚ¢H	ÈĠÏ	HHÈÏÎF	Ϊ	È€FG	ï € ## :	Ϊ JÍGÍËÎÍ	GJFJŒÌ	F€ÈÏF	FÌÈÌJ	FÈH PŒ
GG	T FÏ	ÚŠÁ ÄÁÁHÍ	ĒĠÏ	HĚ	Ϊ	ÈHÍÏ	F€Ě ^	FH ŒFIÌÈHH	IÌ΀€	ΙĚÍÎ	ΙÌË	ŒĠÌÌ PFËFà
GH	T FFÌ	ÚÓÚÒ′HÈ€	ÈĞİ	€	I€	ÈFF	НЕШ	Ϊ Í GJ€FÈÌ HF	ÎÍG€Í	ÎÌÈÌÍ	ÎÌÈÌÍ	ŒÎÏJPFËËà
G	Œ	ÚÓÓÓ′ GIIII	ÈÄÍ	ÍŒÈÏÍ	ĺ	È€GÏ	Í GIIII	Í FGFIHÈJIΪ	HŒH€	GOÈÍ J	GOÈLÍ J	FÊ Ï HPFËà
GÍ	ÓF	ÚÓJÓ CHÌÌÌÌ	ÈÄÍ	ÍŒÈÏÍ	J	È€GÏ	Í GĦ	J FGFIHÈIIÏ	HŒFH€	GOÈÍJ	GOÈLÍ J	FÎHÎ Î PFËFÀ
GÎ	ÔF	ÚÓÓÓ′GIIII	ÈÄÍ	ÍŒÈÏÍ	ĺ	È€GÏ	Í GIIII	Í FGFIHÈJIΪ	HŒH€	GOÈÍ J	GOÈLÍ J	FÎ Ï GPFË à
GÏ	ŒH	ÚÓJÓ ŒĚ	ÈÄF	FÎΕ̈́	FF	ÈEGÍ	FÎ Ě	FF HÏÏHE FÌ	Í €Ï FÍ	l HÉFÍ Í	l HÉFÍ Í	FË JF PFË à
GÌ	ÔH	ÚÓJÓ GÉ	ÈÄF	FÎΕ̈́	Ϊ	ÈEGÍ	FÎ Ě	¡ Hiii HEÈFÌ	Í €Ï FÍ	l HÉTÍ Í	l HÉFÍ Í	FË J PFË à
GJ	TF€Î	ŠŒŤ¢ŒŤ¢H	ÈGÎG	HHËÎF	FH	ÈEFG	Ï € ∰ ^	i Jí Gí Ē Ì i	GJFJŒÌ	F⊕ÈÏF	FÌÈÌÍ	FEH POE
H€	THH	ŠG¢G¢I	ÈG΀	€	FF	ÈEGH	€ ^	FI FJHJIÈHFG	HeÍÌÍËÌ	ÌÈGJF	FÌ∄HÎ	FÈGÏ GPŒË
HF	TIJŒ	ÚÓÚÒ′HÈ€	ÈÉÍF	ΪŒΪÍÎ	G€	ÈGΗ	ìĚĦ	FH Í GJ€FÈ HF	ÎÍG€Í	îìÈìí	ÎÌÈÌÍ	ŒĬ ŒPFË à
HG	T HECE	ÚÓÚÒ′HÈ€	ÈΘΪ	ΪŒΪÍÎ	G H	ÈHH	ÌĚĦ	Í ÚGJ€FÉLHF	ÎÍG€Í	ÎÌÈÌÍ	ÎÌÈÌÍ	ŒĬ Ï J PFË à
HH	ΤHΪ	ŠŒ¢ŒI	ĖΒΗ	€	Н	ÈEGÍ	€ ^	Î FJHJIÈHFG	HeÍÌÍËÌ	ÌÈGJF	FÌÈÌÎ	FÉGJÎ PŒË
Н	TFŒ	ÚÓÚÒ′HÈ€	ÈCHU	€	FJ	ÈFG	HЩ	FF Í GJ€FÈ HF	ÎÍG€Í	ÎÌÈÌÍ	ÎÌÈÌÍ	ŒÎ FÏ PFË à
HÍ	ΤHÎ	ŠG¢G¢I	ÈGHÎ	HÎ	FI	ÈEFJ	€ :	€ FJHJIÈHFG	HeÍÌÍËÌ	ÌÈGJF	FÌ ÈIGG	FÉ JF PŒ
HÎ	T FFJ	ÚÓÚÒ′HÈ€	ÈCH	€	GH	ÌE€Ì	HF∰	H Í GJ€FÈLHF	ÎÍG€Í	ÎÌÈÌÍ	ÎÌÈÌÍ	ŒÏIÏ PFËFà
ΗÏ	TH	ŠG¢G¢I	ÈCH	HÎ	Î	ÈFÌ	HÎ ^	Í FJHJIÈHFG	HeÍÌÍËÌ	ÌÈGF	FÌ ÈIGG	FĚH PŒ
HÌ	THÌ	ŠG¢G¢I	ÈGÍ	HÎ	F€	ÈEG	€ :	GH FJHJI ÈHFG	HeÍÌÍËÌ	ÌÈGF	FÌ ÈIGG	FĒ Ġ PŒ
HJ	THÍ	ŠG¢G¢I	ÈG€Ì	€	Ϊ	ÈEGG	€ ^	F€ FJHJIÈHFG	HeÍÌÍËÌ	ÌÈGJF	FÌ ÈIGG	FÈHÍ PŒË
I€	T FFHÓ	PÙÙI ÝI 🛗		€	J	ÌF€€	€ :	J FHHÏÌHÈÏÌ	FHJÍ FÌ	FJI ÈÎ Î	FJI ÈÎ Î	HÈ€Í GPFËFà
IF	TJHŒ	PÙÙI ÝI 🛗		€	FΗ	HL€	€ :	FH FHHÏÌHÈÏÌ	FHJÍ FÌ	FJI ÈÎ Î	FJI È ÎÎ	ŒDÌFPFËFà
IG		PÙÙI ÝI 🛗		€	ĺ	ÆJH	€ :	Í HHÏÌHÐÏÌ	FHJÍ FÌ	FJI ÈÎ Î	FJI È ÎÎ	ŒDÍÍ PFËFà
ΙH	Ól	ÚÓJÓ GĚ	ÈII	FÎΕ̈́	Н	È€	fÎΕ̈́	HHÏÏHÈFÌ	Í ु ff FÍ	<u>I HÉ</u> TÍ Í	l HÉTÍ Í	FÈUF PFË à
11		ÚŠÂ ÁŞÃ ĐÌ	È€FI	€	FG	ÈFÍ	ŒŒ ^	FJFHÏÌ€JÈÌJ	FÎ G€€€	G ÈFH	HG	IË Í JPFË à
ΙÍ	TÍÍ	ÚŠÁ ÁSÁ ĐÌ	È€FI	€	ĺ	ÈFH	€ ^	FJFHÏÌ€JÈÌJ	FÎ G€€€	GÉFH	HG	IË ÎÎ PFË
ΙÎ	ΤĴΙ	ÚŠÁ ÁSÁ ĐÌ	È€FH	€	FG	ÈEFÍ	€ ^	€ FHÏÌ€JÈÌJ	FÎ G€€€	<u>G</u> ÈFH	HG	l Ë fÎ PFËà
ΙÏ	ΤÎΗ	ÚŠÁÁÁÁÐ	È€FH	€	Ϊ	ÈFÌ	GÈEÈÈ ^	HÌ FHÏÌ€JÈÌJ	FÎ G€€€	GÉFH	HG	I E HPFEà
ΙÌ		ÚŠÁ ÁSÁ ĐÌ	È€FG	€	J	ÈFH	€ ^	GH LHI J €N JE J N	FÎ G€€€	<u>G</u> ÈFH	HG	IË€JPFËà
IJ	TIÎŒ	ÚŠÁ ÁŞÁ ĐÌ	È€FG	€	Н	È€FÍ	ŒŒ î	GH tHị j €ì j j	FÎ G€€€	GÉFH	HG	IËÏI PFËà

Project # **A37519-1593.003.7191**

Date: 06/18/19

By SPC

v0.1, Effective 07/10/18

MOUNT TO TOWER CONNECTION CHECKS

REACTIONS - LC9 N5840A

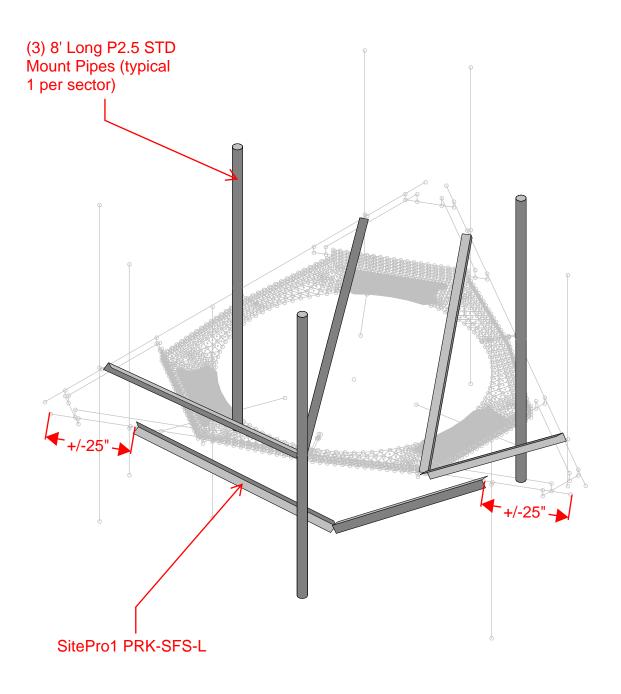
Px= 2.60792 Kip
Py= 0.26812 Kip
(Axial)Pz= 0.19607 Kip
Mx= 5.576 Kip-in
My= 31.586 Kip-in
(Torque)Mz= 4.618 Kip-in

WELD CHECKS

(1010)							
Number of Bolts	4		Standoff Member	Туре	Square		
Plate Size	b=	10	in	Width	=	4	in
Plate Size	d=	10	in	Depth (only for square me	embers) =	4	in
Edge distance for Bolts	=	1.5	in	Assumed Weld Size	=	0.3750	
Bolt group centroid y-coordi	nate, Yc	5	in	Total Forces in X direction	=	0.434	kips
Bolt group centroid x-coordi	nate, Xc	5	in	Total Forces in Y direction	=	0.142	kips
Load eccentricity in x-direct	ion, ex	0	in	Total Forces in Z direction	=	1.75	kips
Load eccentricity in y-direct	ion, ey	0	in	Resultant	=	1.81	kips
Total Moment including load eccent	ricityΣMx=	5.576	Kips-in	Ф*Fw (Kip/in)/16" w	eld =	1.392	_
Total Moment including load eccent	ricityΣMy=	31.586	Kips-in	Capacity used		21.70%	
Total Moment including load eccent	ricityΣMz=	4.618	Kips-in				

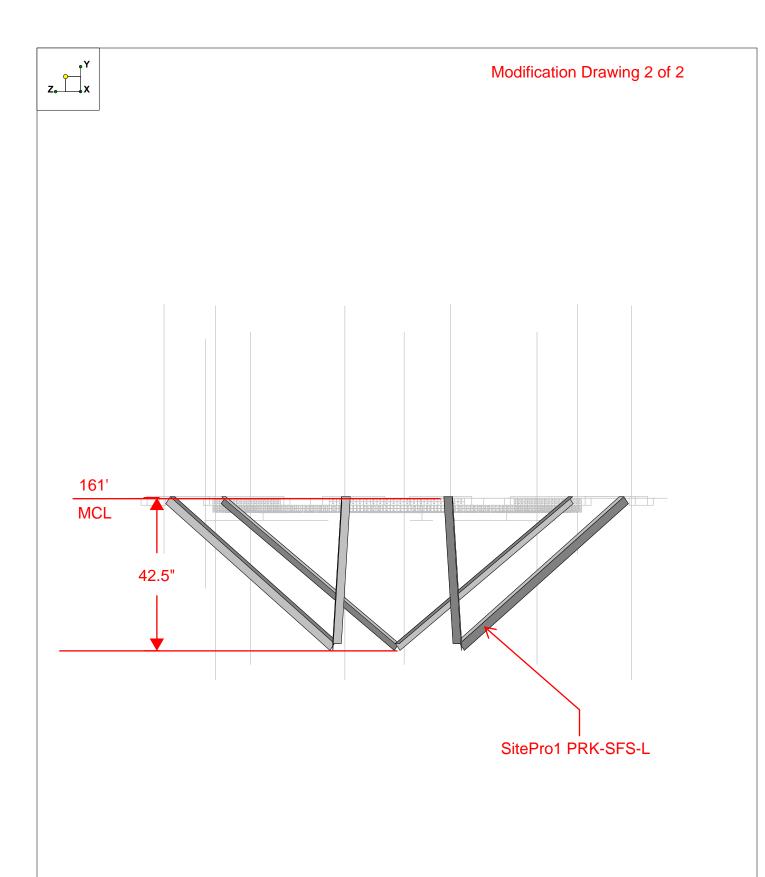
BOLT CHECKS

Tension Reaction	2.70	kip
Shear Reaction	0.85	kip
Bolt Type	A325N	
Bolt Diameter	0.625	in
Tensile Strength	20.7	kips
Shear Strength	12.4	kips
Reduced Tensile Strength	-	kips


Tensile Capacity Used Shear Capacity Used 13.1% 6.8%

Note: Tension reduction not required if tension or shear capacity < 30%

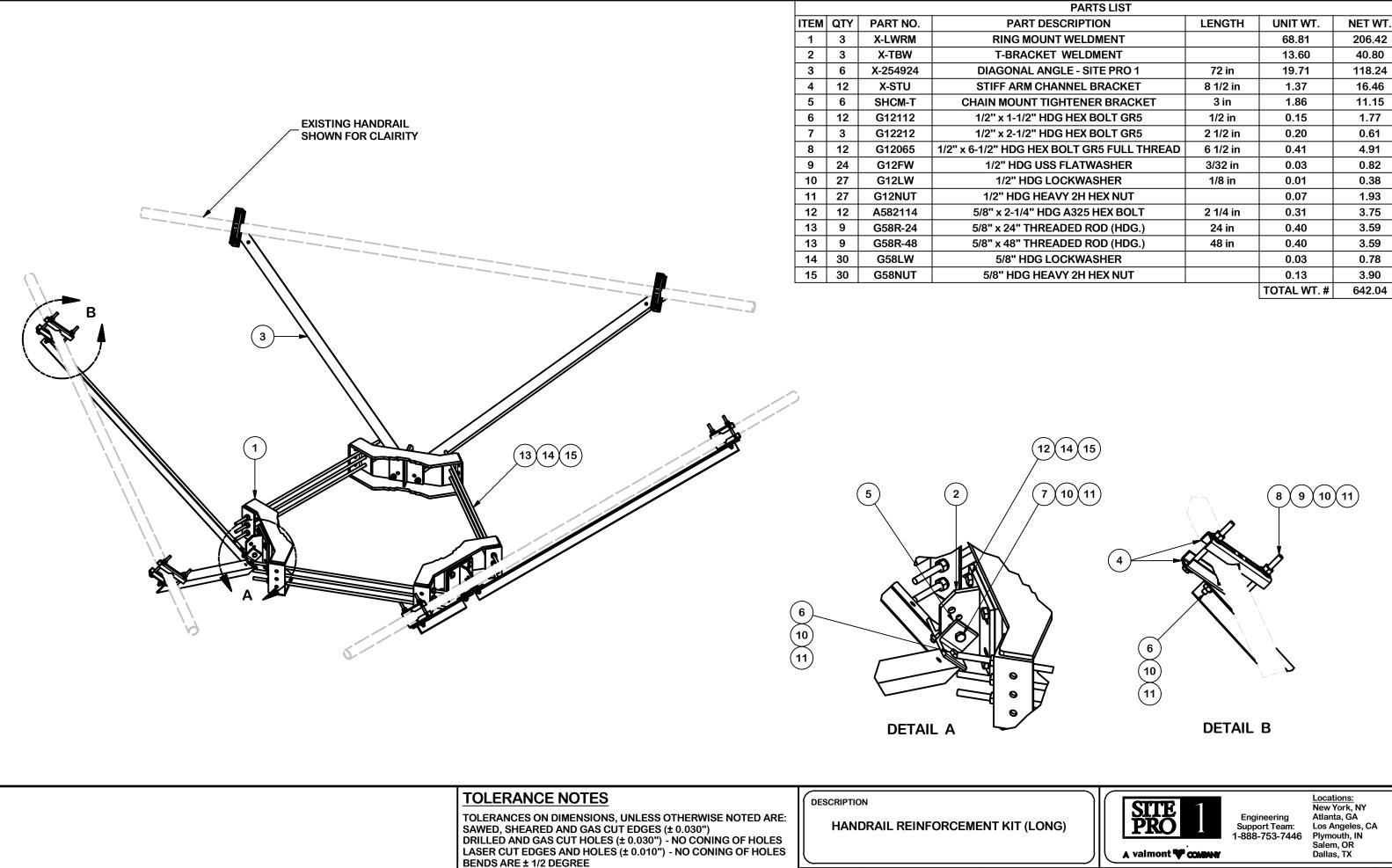
APPENDIX D SUPPLEMENTAL MODIFICATION INFORMATION



Modification Drawing 1 of 2

Envelope Only Solution

Paul J. Ford & Company		SK - 9	
SPC	BU 876391 / Columbia/Deojay	June 19, 2019 at 9:25 AM	
37519-1593.003.7191		37519-1593.003.7191_WindLoad.r	

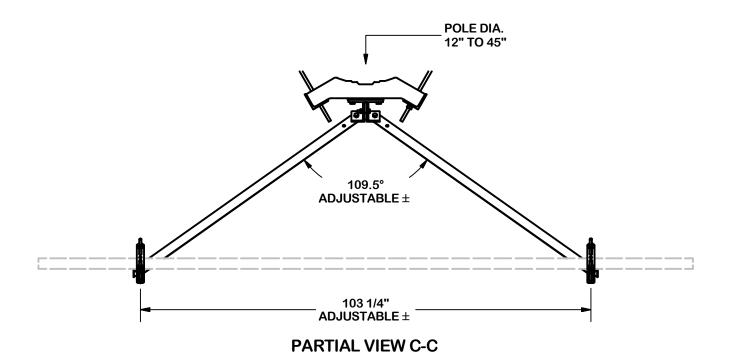


Envelope Only Solution

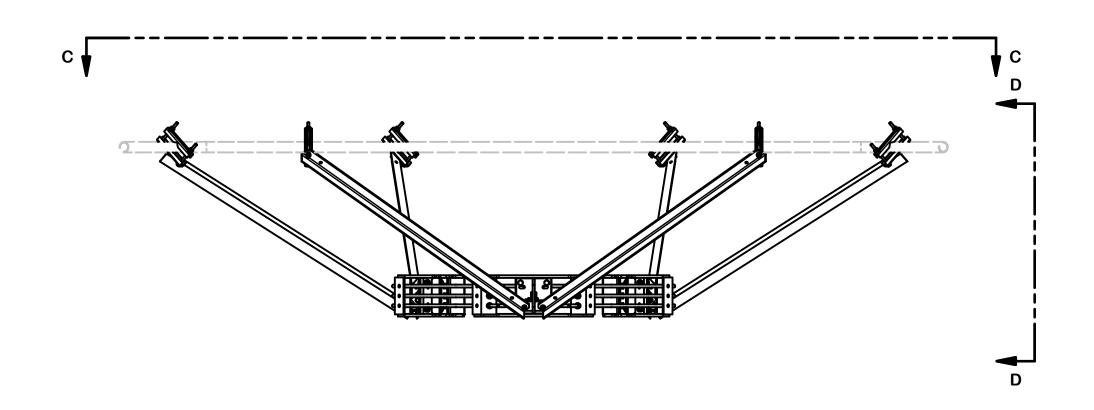
Paul J. Ford & Company		SK - 10
SPC	BU 876391 / Columbia/Deojay	June 18, 2019 at 11:36 AM
37519-1593.003.7191		37519-1593.003.7191_WindLoad.r

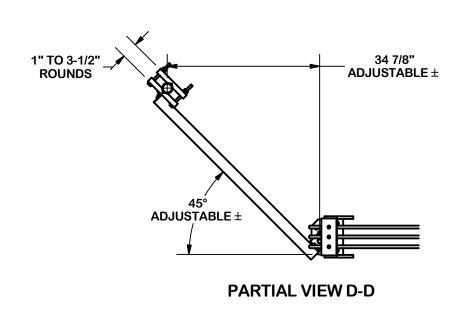
APPENDIX E

MANUFACTURER DRAWINGS (FOR REFERENCE ONLY)


A CHANGED MAX. DIA. FOR HANDRAIL CONNECTION SP1 BC 10/25/2017 REV **DESCRIPTION OF REVISIONS** CPD BY DATE **REVISION HISTORY**

ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")


PROPRIETARY NOTE:
THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT
INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF


CPD NO.			DRAWN B	Y	ENG. APPROVAL					
SP1			CSL3	2/23/2017	3RD PA	ARTY				
	CLASS	SUB	DRAWING	USAGE	CHECKED	BY				
	81	02	8	SHOP	BMC	9/8/2017				

PRK-SFS-L

VERTICAL POSITION

TOLERANCE NOTES

TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES ($\pm\,0.030$ ") DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE

ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")

SP1 BC 10/25/2017

DATE

CPD BY

A CHANGED MAX. DIA. FOR HANDRAIL CONNECTION

DESCRIPTION OF REVISIONS

REVISION HISTORY

REV

PROPRIETARY NOTE:
THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT
INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF
VALMONT INDUSTRIES IS STRICTLY PROHIBITED.

DESCRIPTION

CPD NO.

81

SP1

CLASS SUB

02

HANDRAIL REINFORCEMENT KIT (LONG)

DRAWN BY

DRAWING USAGE

CSL3 2/23/2017

SHOP

Engineering Support Team: 1-888-753-7446

Locations: New York, NY Atlanta, GA Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX

	C. Francisco V California
ENG. APPROVAL	PART NO.
3RD PARTY	PRK-SFS-L
CHECKED BY	DWG. NO.
BMC 9/8/2017	PRK-SFS-L

Exhibit F

Power Density/RF Emissions Report

Wireless Network Design and Deployment

Radio Frequency Emissions Analysis Report

T-MOBILE Existing Facility

Site ID: CT11503A

Sprint Columbia Rt 6 14 Thompson Hill Road Columbia, CT 06237

May 23, 2019

Transcom Engineering Project Number: 737001-0037

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of FCC general population allowable limit:	10.96 %			

Wireless Network Design and Deployment

May 23, 2019

T-MOBILE Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, CT 6009

Emissions Analysis for Site: CT11503A – Sprint Columbia Rt 6

Transcom Engineering, Inc ("Transcom") was directed to analyze the proposed upgrades to the T-MOBILE facility located at **14 Thompson Hill Road, Columbia, CT**, for the purpose of determining whether the emissions from the Proposed T-MOBILE Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 & 700 MHz bands are approximately 400 μ W/cm² and 467 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Wireless Network Design and Deployment

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

Wireless Network Design and Deployment

CALCULATIONS

Calculations were performed for the proposed upgrades to the T-MOBILE antenna facility located at **14 Thompson Hill Road, Columbia, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-MOBILE is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in *Table 1*:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
LTE	1900 MHz (PCS)	4	40
LTE	2100 MHz (AWS)	2	60
GSM	1900 MHz (PCS)	1	15
UMTS	2100 MHz (AWS)	1	40
LTE / 5G NR	600 MHz	2	40
LTE	700 MHz	2	20

Table 1: Channel Data Table

Wireless Network Design and Deployment

The following antennas listed in *Table 2* were used in the modeling for transmission in the 600, 700 MHz, 1900 MHz (PCS) and 2100 MHz (AWS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

			Antenna
	Antenna		Centerline
Sector	Number	Antenna Make / Model	(ft)
A	1	Ericsson AIR32 B66A / B2A	160
A	2	Ericsson AIR21 B2A/B4P	160
A	3	RFS APXVAARR24_43-U-NA20	160
В	1	Ericsson AIR32 B66A / B2A	160
В	2	Ericsson AIR21 B2A/B4P	160
В	3	RFS APXVAARR24_43-U-NA20	160
С	1	Ericsson AIR32 B66A / B2A	160
С	2	Ericsson AIR21 B2A/B4P	160
C	3	RFS APXVAARR24_43-U-NA20	160

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

Cable losses were factored in the calculations for this site. Since all **2100 MHz** (**AWS**) **UMTS** radios are ground mounted the following cable loss values were used. For each ground mounted **2100 MHz** (**AWS**) **UMTS** radio there was **2.23 dB** of cable loss calculated into the system gains / losses for this site. These values were calculated based upon the manufacturers specifications for **210 feet** of **1-5/8**" coax.

Wireless Network Design and Deployment

RESULTS

Per the calculations completed for the proposed T-MOBILE configurations *Table 3* shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

Antenna			Antenna Gain	Channel	Total TX Power		
ID	Antenna Make / Model	Frequency Bands	(dBd)	Count	(W)	ERP (W)	MPE %
Antenna	Ericsson	1900 MHz (PCS) /					
A1	AIR32 B66A / B2A	2100 MHz (AWS)	15.85	6	280	10,768.57	1.63
Antenna	Ericsson	1900 MHz (PCS) /					
A2	AIR21 B2A/B4P	2100 MHz (AWS)	15.9	2	55	1,514.80	0.23
Antenna	RFS						
A3	APXVAARR24_43-U-NA20	600 MHz / 700 MHz	12.95 / 13.35	4	120	2,443.03	0.88
				Sec	tor A Compo	site MPE%	2.74
Antenna	Ericsson	1900 MHz (PCS) /					
B1	AIR32 B66A / B2A	2100 MHz (AWS)	15.85	6	280	10,768.57	1.63
Antenna	Ericsson	1900 MHz (PCS) /					
B2	AIR21 B2A/B4P	2100 MHz (AWS)	15.9	2	55	1,514.80	0.23
Antenna	RFS						
B3	APXVAARR24_43-U-NA20	600 MHz / 700 MHz	12.95 / 13.35	4	120	2,443.03	0.88
	Sector B Composite MPE%			2.74			
Antenna	Ericsson	1900 MHz (PCS) /					
C1	AIR32 B66A / B2A	2100 MHz (AWS)	15.85	6	280	10,768.57	1.63
Antenna	Ericsson	1900 MHz (PCS) /					
C2	AIR21 B2A/B4P	2100 MHz (AWS)	15.9	2	55	1,514.80	0.23
Antenna	RFS						
C3	APXVAARR24_43-U-NA20	600 MHz / 700 MHz	12.95 / 13.35	4	120	2,443.03	0.88
Sector C Composite MPE%					2.74		

Table 3: T-MOBILE Emissions Levels

Wireless Network Design and Deployment

The Following table (*table 4*) shows all additional carriers on site and their MPE% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum T-MOBILE MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. *Table 5* below shows a summary for each T-MOBILE Sector as well as the composite MPE value for the site.

Site Composite MPE%				
Carrier	MPE%			
T-MOBILE – Max Per Sector Value	2.74 %			
AT&T	3.79 %			
Sprint	1.82 %			
Verizon Wireless	2.61 %			
Site Total MPE %:	10.96 %			

Table 4: All Carrier MPE Contributions

T-MOBILE Sector A Total:	2.74 %
T-MOBILE Sector B Total:	2.74 %
T-MOBILE Sector C Total:	2.74 %
Site Total:	10.96 %

Table 5: Site MPE Summary

Wireless Network Design and Deployment

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. *Table* 6 below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated T-MOBILE sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

T-MOBILE _ Frequency Band / Technology Max Power Values (Per Sector)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
T-Mobile 1900 MHz (PCS) UMTS	4	1,538.37	160	9.33	1900 MHz (PCS)	1000	0.93%
T-Mobile 2100 MHz (AWS) LTE	2	2,307.55	160	7.00	2100 MHz (AWS)	1000	0.70%
T-Mobile 1900 MHz (PCS) GSM	1	583.57	160	0.88	1900 MHz (PCS)	1000	0.09%
T-Mobile 2100 MHz (AWS) UMTS	1	931.24	160	1.41	2100 MHz (AWS)	1000	0.14%
T-Mobile 600 MHz LTE / 5G NR	2	788.97	160	2.39	600 MHz	400	0.60%
T-Mobile 700 MHz LTE	2	432.54	160	1.31	700 MHz	467	0.28%
						Total:	2.74%

Table 6: T-MOBILE Maximum Sector MPE Power Values

Wireless Network Design and Deployment

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-MOBILE facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-MOBILE Sector	Power Density Value (%)		
Sector A:	2.74 %		
Sector B:	2.74 %		
Sector C:	2.74 %		
T-MOBILE Maximum	2.74 %		
Total (per sector):	2.74 %		
Site Total:	10.96 %		
Site Compliance Status:	COMPLIANT		

The anticipated composite MPE value for this site assuming all carriers present is **10.96** % of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

Transcom Engineering, Inc

PO Box 1048

Sterling, MA 01564