May 8th, 2017 Melanie Bachman, Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051 RE: Notice of Exempt Modification – Antenna Swap & Additional Ground Based Equipment for wireless facility located at 14 THOMPSON HILL ROAD, COLUMBIA, CONNECTICUT – CT33XC571 (41°43'3.44"N, - 72°17'59.09"W) Dear Ms. Bachman: Sprint Spectrum, LP ("Sprint") currently maintains wireless telecommunications antennas at the (180-foot level) on an existing (180-foot tower) at the above-referenced address. The tower is owned by Crown Castle, and the property is owned by Lanati Joshua & Eileen Sprint's proposed work involves antenna replacement and tower work. Sprint intends to replace three (3) antennas and add six (6) RET Cables, (3) Diplexers on the tower. Sprint is also proposing to add three (3) ground based remote radio heads (RRH's) and (3) Diplexers to an existing H frame. All the proposed work is contained within the existing fenced area. Please refer to the attached drawings for site plans prepared by Infinigy Engineering. Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to CARMEN L. VANCE, First Selectman of the Town of Columbia. A copy of this letter is also being sent to LANATI JOSHUA & EILEEN the owner of the property on which the tower is located. The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b). - The proposed modifications will not result in an increase in the height of the existing tower. - 2. The antennas work is a one-for-one replacement of facility components. - The proposed modifications will include the addition of ground base equipment as depicted on the attached drawings; however, the proposed equipment will not require an extension of the site boundaries. - 4. The proposed modifications will not increase noise levels at the facility by six decibels or more. - 5. The additional ground based equipment will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) adopted safety standard. For the foregoing reasons, Sprint respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b). If you have any questions or require any additional information regarding this request, please do not hesitate to give me a call at (518) 306-1711 or email me to aperkowski@airosmithdevelopment.com Kind Regards, Arthur Perkowski Airosmith Development Inc. 32 Clinton Street Saratoga Springs, NY 12866 518-306-1711 desk & fax 518-871-3707 cell aperkowski@airosmithdevelopment.com #### Attachment CC: LANATI JOSHUA & EILEEN (Land Owner) CARMEN L. VANCE (1st Selectman, Columbia, CT) Maryellen Perrotta, Crown Castle (Tower Owner) # RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS ### **SPRINT Existing Facility** Site ID: CT33XC571 Columbia / Deojay 14 Thompson Hill Road Columbia, CT 06237 **April 26, 2017** EBI Project Number: 6217001788 | Site Compliance Summary | | | | | |-------------------------------------|-----------|--|--|--| | Compliance Status: | COMPLIANT | | | | | Site total MPE% of | | | | | | FCC general public allowable limit: | 7.19 % | | | | April 26, 2017 SPRINT Attn: RF Engineering Manager 1 International Boulevard, Suite 800 Mahwah, NJ 07495 Emissions Analysis for Site: CT33XC571 – Columbia / Deojay EBI Consulting was directed to analyze the proposed SPRINT facility located at **14 Thompson Hill Road, Columbia, CT**, for the purpose of determining whether the emissions from the Proposed SPRINT Antenna Installation located on this property are within specified federal limits. All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density. All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below. General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area. Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 850 MHz Band is approximately 567 μ W/cm². The general population exposure limit for the 1900 MHz (PCS) band is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density. Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. Additional details can be found in FCC OET 65. ### **CALCULATIONS** Calculations were done for the proposed SPRINT Wireless antenna facility located at **14 Thompson Hill Road**, Columbia, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since SPRINT is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower. For all calculations, all equipment was calculated using the following assumptions: - 1) 2 CDMA channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel. - 2) 2 CDMA channels (1900 MHz (PCS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel. - 3) 2 LTE channels (1900 MHz (PCS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel. - 4) Since the Remote Radio Heads (RRH) radios are ground mounted there are additional cabling losses accounted for. For each ground mounted RF path the following losses were calculated. 1.80 dB of additional cable loss for all ground mounted 850 MHz Channels and 2.96 dB of additional cable loss for all ground mounted 1900 MHz channels were factored into the calculations used for this analysis. This is based on manufacturers Specifications for 235 feet of 1-1/4" coax cable on each path. - 5) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous. - 6) For the following calculations the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction. - 7) The antennas used in this modeling are the **RFS APXVSPP18-C-A20** for transmission in the 850 MHz and 1900 MHz (PCS) and 2300 MHz (WCS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much
higher in this direction. - 8) The antenna mounting height centerlines of the proposed antennas are **180 feet** above ground level (AGL) for **Sector A**, **180 feet** above ground level (AGL) for **Sector B** and **180 feet** above ground level (AGL) for Sector C. - 9) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves. All calculations were done with respect to uncontrolled / general public threshold limits. ### **SPRINT Site Inventory and Power Data by Antenna** | Sector: | A | Sector: | В | Sector: | С | |-------------------|-----------------|-----------------|-----------------|-------------------|-----------------| | Antenna #: | 1 | Antenna #: | 1 | Antenna #: | 1 | | Make / Model: | RFS | Make / Model: | RFS | Make / Model: | RFS | | Make / Model. | APXVSPP18-C-A20 | Make / Model. | APXVSPP18-C-A20 | Make / Model. | APXVSPP18-C-A20 | | Gain: | 13.4 / 15.9 dBd | Gain: | 13.4 / 15.9 dBd | Gain: | 13.4 / 15.9 dBd | | Height (AGL): | 180 feet | Height (AGL): | 180 feet | Height (AGL): | 180 feet | | Emaguamari Danda | 850 MHz / | Emaguamay Danda | 850 MHz / | Frequency Bands | 850 MHz / | | Frequency Bands | 1900 MHz (PCS) | Frequency Bands | 1900 MHz (PCS) | Frequency bands | 1900 MHz (PCS) | | Channel Count | 6 | Channel Count | 6 | Channel Count | 6 | | Total TX | 240 Watts | Total TX | 240 Watts | Total TX | 240 Watts | | Power(W): | 240 waits | Power(W): | 240 Watts | Power(W): | 240 waits | | ERP (W): | 4,409.46 | ERP (W): | 4,409.46 | ERP (W): | 4,409.46 | | Antenna A1 MPE% | 0.60 % | Antenna B1 | 0.60 % | Antenna C1 MPE% | 0.60 % | | Alitellia Al MPE% | 0.00 % | MPE% | 0.00 76 | Aliteilla C1 MPE% | 0.00 76 | | Site Composite MPE% | | | | | | |-------------------------|--------|--|--|--|--| | Carrier MPE% | | | | | | | SPRINT – Max per sector | 0.60 % | | | | | | AT&T | 2.64 % | | | | | | Verizon Wireless | 2.61 % | | | | | | T-Mobile | 1.34 % | | | | | | Site Total MPE %: | 7.19 % | | | | | | SPRINT Sector A Total: | 0.60 % | |------------------------|--------| | SPRINT Sector B Total: | 0.60 % | | SPRINT Sector C Total: | 0.60 % | | | | | Site Total: | 7.19 % | | SPRINT _ Max Values per
Frequency Band / Technology | #
Channels | Watts ERP
(Per Channel) | Height (feet) | Total Power
Density
(µW/cm²) | Frequency (MHz) | Allowable
MPE
(µW/cm²) | Calculated
% MPE | |--|---------------|----------------------------|---------------|------------------------------------|-----------------|------------------------------|---------------------| | Sprint 850 MHz CDMA | 2 | 433.63 | 180 | 1.03 | 850 MHz | 567 | 0.18% | | Sprint 1900 MHz (PCS) CDMA | 2 | 590.37 | 180 | 1.40 | 1900 MHz (PCS) | 1000 | 0.14% | | Sprint 1900 MHz (PCS) LTE | 2 | 1,180.73 | 180 | 2.80 | 1900 MHz (PCS) | 1000 | 0.28% | | | | | | | | | 0.60% | 21 B Street Burlington, MA 01803 Tel: (781) 273.2500 Fax: (781) 273.3311 ### **Summary** All calculations performed for this analysis yielded results that were **within** the allowable limits for general public exposure to RF Emissions. The anticipated maximum composite contributions from the SPRINT facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here: | SPRINT Sector | Power Density Value (%) | |-------------------------|-------------------------| | Sector A: | 0.60 % | | Sector B: | 0.60 % | | Sector C: | 0.60 % | | SPRINT Maximum | 0.60 % | | Total (per sector): | | | | | | Site Total: | 7.19 % | | | | | Site Compliance Status: | COMPLIANT | The anticipated composite MPE value for this site assuming all carriers present is **7.19** % of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions. FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government. Date: January 12, 2017 Kevin Morrow Crown Castle 3530 Toringdon Way, Suite 300 Charlotte, NC 28277 (704) 405-6619 Paul J Ford and Company 250 E. Broad Street, Suite 600 Columbus, OH 43215 614.221.6679 kthorpe@pjfweb.com Subject: Structural Analysis Report Carrier Designation: Sprint PCS Co-Locate Carrier Site Number: Carrier Site Name: CT33XC571 Columbia/Deojay Crown Castle Designation: Crown Castle BU Number: 876391 COLUMBIA / DEOJAY Crown Castle Site Name: **Crown Castle JDE Job Number: Crown Castle Work Order Number:** 414996 1346596 **Crown Castle Application Number:** 373221 Rev. 1 Engineering Firm Designation: Paul J Ford and Company Project Number: 37517-0133.001.7805 Site Data: 14 Thompson Hill Rd, COLUMBIA, Tolland County, CT Latitude 41° 43' 3.44", Longitude -72° 17' 59.09" 180 Foot - Monopole Tower Dear Kevin Morrow, Paul J Ford and Company is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 988453, in accordance with application 373221, revision 1. The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be: LC7: Existing + Reserved + Proposed Equipment Note: See Table I and Table II for the proposed and existing/reserved loading, respectively. **Sufficient Capacity** This analysis has been performed in accordance with the 2016 Connecticut State Building Code based upon an ultimate 3-second gust wind speed of 130 mph converted to a nominal 3-second gust wind speed of 101 mph per Section 1609.3 and Appendix N as required for use in the ANSI/TIA-222-G-2005 Standard, "Structural Standard for Antenna Supporting Structures and Antennas", with ANSI/TIA-222-G-1-2007 and ANSI/TIA-222-G-2-2009 Addenda per Exception #5 of Section 1609.1.1. Risk Category II, Exposure Category C and Topographic Category 1 with a maximum Topographic Factor, Kzt, of 1.0 were used in this analysis. We at Paul J Ford and Company appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects OF CONNEC please give us a call. Respectfully submitted by: Kyle Thorpe, PE Project Engineer Date: January 12, 2017 Kevin Morrow Crown Castle 3530 Toringdon Way, Suite 300 Charlotte, NC 28277 (704) 405-6619 Paul J Ford and Company 250 E. Broad Street, Suite 600 Columbus, OH 43215 614.221.6679 kthorpe@pjfweb.com Subject: Structural Analysis Report Carrier Designation: Sprint PCS Co-Locate Carrier Site Number:CT33XC571Carrier Site Name:Columbia/Deojay Crown Castle Designation: Crown Castle BU Number: 876391 Crown Castle Site Name: COLUMBIA / DEOJAY Crown Castle JDE Job Number:414996Crown Castle Work Order Number:1346596Crown Castle Application Number:373221 Rev. 1 Engineering Firm Designation: Paul J Ford and Company Project Number: 37517-0133.001.7805 Site Data: 14 Thompson Hill Rd, COLUMBIA, Tolland County, CT Latitude 41° 43′ 3.44″, Longitude -72° 17′ 59.09″ 180 Foot - Monopole Tower Dear Kevin Morrow, Paul J Ford and Company is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 988453, in accordance with application 373221, revision 1. The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be: LC7: Existing + Reserved + Proposed Equipment Note: See Table I and Table II for the proposed and existing/reserved loading, respectively. **Sufficient Capacity** This analysis has been performed in accordance with the 2016 Connecticut State Building Code based upon an ultimate 3-second gust wind speed of 130 mph converted to a nominal 3-second gust wind speed of 101 mph per Section 1609.3 and Appendix N as required for use in the ANSI/TIA-222-G-2005 Standard, "Structural Standard for Antenna Supporting Structures and Antennas", with ANSI/TIA-222-G-1-2007 and ANSI/TIA-222-G-2-2009 Addenda per Exception #5 of Section 1609.1.1. Risk Category II, Exposure Category C and Topographic Category 1 with a maximum Topographic Factor, Kzt, of 1.0 were used in this analysis. We at *Paul J Ford and Company* appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call. Respectfully submitted by: Kyle Thorpe, PE Project Engineer ### **TABLE OF CONTENTS** ### 1) INTRODUCTION ### 2) ANALYSIS CRITERIA Table 1 - Proposed Antenna and Cable Information Table 2 - Existing and Reserved Antenna and Cable Information ### 3) ANALYSIS PROCEDURE Table 3 - Documents Provided - 3.1) Analysis Method - 3.2) Assumptions ### 4) ANALYSIS RESULTS Table 4 - Section Capacity (Summary) Table 5 – Tower Components vs. Capacity 4.1) Recommendations ### 5) APPENDIX A tnxTower Output #### 6) APPENDIX B Base Level Drawing ### 7) APPENDIX C **Additional Calculations** #### 1) INTRODUCTION This tower is a 180 ft Monopole tower designed by ENGINEERED ENDEAVORS, INC. in November of 1999. The
tower was originally designed for a wind speed of 90 mph per TIA/EIA-222-F. ### 2) ANALYSIS CRITERIA This analysis has been performed in accordance with the 2016 Connecticut State Building Code based upon an ultimate 3-second gust wind speed of 130 mph converted to a nominal 3-second gust wind speed of 101 mph per Section 1609.3 and Appendix N as required for use in the ANSI/TIA-222-G-2005 Standard, "Structural Standard for Antenna Supporting Structures and Antennas", with ANSI/TIA-222-G-1-2007 and ANSI/TIA-222-G-2-2009 Addenda per Exception #5 of Section 1609.1.1. Risk Category II, Exposure Category C and Topographic Category 1 with a maximum Topographic Factor, Kzt, of 1.0 were used in this analysis. **Table 1 - Proposed Antenna and Cable Information** | Mounting
Level (ft) | Elevetion | Number
of
Antennas | Antenna
Manufacturer | Antenna Model | Number
of Feed
Lines | Feed
Line
Size (in) | Note | |------------------------|-----------|--------------------------|-------------------------|----------------------------------|----------------------------|---------------------------|------| | 180.0 | 181.0 | 3 | rfs celwave | APXVSPP18-C-A20 w/
Mount Pipe | 6 (I) | 5/16 | 1 | | | | 3 | rfs celwave | FD9R6004/1C-3L | | | | | 83.0 | 83.0 | - | - | - | 2 (E) | 1/2 | 1 | #### Notes: - 1) Proposed Equipment - (E) Coax mounted externally and exposed to the wind. See coax layout in Appendix B. - (I) Coax mounted internally and shielded from the wind. See coax layout in Appendix B. Table 2 - Existing and Reserved Antenna and Cable Information | Mounting
Level (ft) | Center | Number
of
Antennas | Antenna
Manufacturer | Antenna Model | Number
of Feed
Lines | Feed
Line
Size (in) | Note | |------------------------|--------|---------------------------|-------------------------|---|----------------------------|---------------------------|------| | | 181.0 | 2 | decibel | 950F65T2ZE-M w/ Mount Pipe | _ | _ | 3 | | 180.0 | | 4 | decibel | DB980H90E-M w/ Mount Pipe | | | | | | 180.0 | 1 | tower mounts | Platform Mount [LP 601-1] | 6 (I) | 1-5/8 | 1 | | | | 3 | ericsson | ERICSSON AIR 21 B2A B4P
w/ Mount Pipe | | | | | 161.0 | 162.0 | 3 | ericsson | Ericsson Air 21 B4A B12P-B8P
4FT w/ Mount Pipe | 1 (I) | 1-5/8 | 1 | | | | 3 | ericsson | RRUS 11 B12 | | | | | | 161.0 | 1 | tower mounts | Platform Mount [LP 305-1] | | | | | | | 3 | alcatel lucent | RRH2X60-AWS | | | | | | | 3 | alcatel lucent | RRH2X60-PCS | | | | | | | 6 | andrew | HBXX-6517DS-A2M w/ Mount
Pipe | | 1/2
1-5/8 | 1 | | 147.0 | 150.0 | 6 | andrew | LNX-6514DS-A1M w/ Mount
Pipe | 1 (I)
12 (I) | | | | | 1 | lucent | KS24019-L112A | 2 (E) | 1-5/8 | | | | | 2 | rfs celwave | DB-T1-6Z-8AB-0Z | | | | | | 147.0 | | 6 | rfs celwave | FD9R6004/1C-3L | | | | | | | 1 | tower mounts | Platform Mount [LP 712-1] | | | | | 444.0 | 141.0 | 1 | tower mounts | Pipe Mount [PM 601-3] | | | | | 141.0 | 138.0 | 3 | ericsson | TME-RRUS 11 BAND 12 | - | - | 1 | | | | 3 | powerwave technologies | 1001940 | 1 (C) | 3/8 | 2 | | | | 3 | cci antennas | HPA-65R-BUU-H6 w/ Mount
Pipe | | | | | | | 3 | ericsson | RRUS 12 | | | | | | | 3 | ericsson | RRUS A2 | | | | | 140.0 | 140.0 | 6 | powerwave technologies | 7770.00 w/ Mount Pipe | 2 (C) | 7/16 | | | | | 6 | powerwave technologies | LGP 17201 | 12 (l) | 1-5/8 | 1 | | 1 raycap DC6-48-60- | | 6 | | LGP21901 | | | | | | | 1 | | DC6-48-60-18-8F | | | | | | | Platform Mount [LP 303-1] | | | | | | | 00.0 | 84.0 | 2 | kathrein | OG-860/1920/GPS-A | ٥،/٥ | 4.4.4 | | | 83.0 | 83.0 | 2 | tower mounts | Side Arm Mount [SO 701-1] | 2 (E) | 1-1/4 | 1 | | 70.0 | 79.0 | 1 | kathrein | OG-860/1920/GPS-A | 4 (5) | 1/0 | _ | | 78.0 | 78.0 | 1 | tower mounts | Side Arm Mount [SO 701-1] | 1 (E) | 1/2 | 1 | #### Notes: - **Existing Equipment** 1) - 2) - Reserved Equipment Equipment To Be Removed 3) - $\dot{\text{Coax}}$ mounted externally and exposed to the wind. See coax layout in Appendix B. (É) - Coax mounted internally and shielded from the wind. See coax layout in Appendix B. (I) (C) - Coax mounted within a 2" internally mounted conduit and shielded from the wind. See coax layout in Appendix B. ### 3) ANALYSIS PROCEDURE **Table 3 - Documents Provided** | Document | Remarks | Reference | Source | |--|---|-----------|----------| | 4-GEOTECHNICAL REPORTS | Goodkind & O'Dea, Incs.,
CT33XC519, 06/08/99 | 1613526 | CCISITES | | 4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS | EEI, 6151, 12/20/99 | 1613632 | CCISITES | | 4-TOWER MANUFACTURER DRAWINGS | EEI, 6151, 12/20/1999 | 1614546 | CCISITES | | 4-TOWER MANUFACTURER DESIGN CALCULATIONS | EEI, 99-1429, 11/22/1999 | 1440653 | CCISITES | ### 3.1) Analysis Method tnxTower (version 7.0.5.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. ### 3.2) Assumptions - 1) Tower and structures were built in accordance with the manufacturer's specifications. - 2) The tower and structures have been maintained in accordance with the manufacturer's specification. - The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings. This analysis may be affected if any assumptions are not valid or have been made in error. Paul J Ford and Company should be notified to determine the effect on the structural integrity of the tower. ### 4) ANALYSIS RESULTS **Table 4 - Section Capacity (Summary)** | Section
No. | Elevation (ft) | Component
Type | Size | Critical
Element | P (K) | SF*P_allow
(K) | %
Capacity | Pass / Fail | |----------------|-------------------|-------------------|------------------------|---------------------|--------|-------------------|---------------|-------------| | L1 | 180 - 131.75 | Pole | TP31.39x21x0.25 | 1 | -12.56 | 1686.69 | 49.2 | Pass | | L2 | 131.75 -
86.71 | Pole | TP40.46x29.921x0.375 | 2 | -22.31 | 3408.11 | 64.5 | Pass | | L3 | 86.71 - 43.16 | Pole | TP48.96x38.5229x0.4375 | 3 | -36.28 | 4767.07 | 69.5 | Pass | | L4 | 43.16 - 0 | Pole | TP57.25x46.668x0.5 | 4 | -57.81 | 6465.70 | 69.0 | Pass | | | | | | | | | Summary | | | | | | | | | Pole (L3) | 69.5 | Pass | | | | | | | | Rating = | 69.5 | Pass | Table 5 - Tower Component Stresses vs. Capacity - LC7 | | and the state of t | | | | | | | | | |-------|--|----------------|------------|-------------|--|--|--|--|--| | Notes | Component | Elevation (ft) | % Capacity | Pass / Fail | | | | | | | 1 | Anchor Rods | 0 | 74.5 | Pass | | | | | | | 1 | Base Plate | 0 | 81.3 | Pass | | | | | | | 1 | Base Foundation
Structural Steel | 0 | 77.1 | Pass | | | | | | | 1 | Base Foundation
Soil Interaction | 0 | 41.1 | Pass | | | | | | | Structure Rating (max from all components) = | 81.3% | |--|-------| |--|-------| Notes: ### 4.1) Recommendations The monopole and its foundation have sufficient capacity to carry the proposed loading configuration. No modifications are required at this time. See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed. #### **APPENDIX A** #### TNXTOWER OUTPUT ### **Tower Input Data** There is a pole section. This tower is designed using the TIA-222-G standard. The following design criteria apply: Tower is located in Tolland County, Connecticut. ASCE 7-10 Wind Data is used (wind speeds converted to nominal values). Basic wind speed of 101 mph. Structure Class II. Exposure Category C. Topographic Category 1. Crest Height 0.0000 ft. Nominal ice thickness of 1.0000 in. Ice thickness is considered to increase with
height. Ice density of 56.00 pcf. A wind speed of 50 mph is used in combination with ice. Temperature drop of 50 °F. Deflections calculated using a wind speed of 60 mph. A non-linear (P-delta) analysis was used. Pressures are calculated at each section. Stress ratio used in pole design is 1. Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered. ### **Options** Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification √ Use Code Stress Ratios Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned ✓ Assume Rigid Index Plate ✓ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension √ Bypass Mast Stability Checks √ Use Azimuth Dish Coefficients √ Project Wind Area of Appurt. √ Autocalc Torque Arm Areas Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Poles ✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Exemption ### **Tapered Pole Section Geometry** | Section | Elevation
ft | Section
Length
ft | Splice
Length
ft | Number
of
Sides | Top
Diameter
in | Bottom
Diameter
in | Wall
Thickness
in | Bend
Radius
in | Pole Grade | |---------|-----------------------|-------------------------|------------------------|-----------------------|-----------------------|--------------------------|-------------------------|----------------------|---------------------| | L1 | 180.0000-
131.7500 | 48.2500 | 4.50 | 18 | 21.0000 | 31.3900 | 0.2500 | 1.0000 | A572-65
(65 ksi) | | L2 | 131.7500-
86.7100 | 49.5400 | 5.58 | 18 | 29.9210 | 40.4600 | 0.3750 | 1.5000 | A572-65
(65 ksi) | | Section | Elevation | Section | Splice | Number | Тор | Bottom | Wall | Bend | Pole Grade | |---------|-----------|---------|--------|--------|----------|----------|-----------|--------|------------| | | | Length | Length | of | Diameter | Diameter | Thickness | Radius | | | | ft | ft | ft | Sides | in | in | in | in | | | L3 | 86.7100- | 49.1300 | 6.67 | 18 | 38.5229 | 48.9600 | 0.4375 | 1.7500 | A572-65 | | | 43.1600 | | | | | | | | (65 ksi) | | L4 | 43.1600- | 49.8300 | | 18 | 46.6680 | 57.2500 | 0.5000 | 2.0000 | A572-65 | | | 0.0000 | | | | | | | | (65 ksi) | # **Tapered Pole Properties** | Section | Tip Dia. | Area | 1, | r | С | I/C | J, | It/Q | W | w/t | |---------|----------|-----------------|-----------|---------|---------|-----------|-----------|-----------------|--------|--------| | | in | in ² | in⁴ | in | in | in³ | in⁴ | in ² | in | | | L1 | 21.3240 | 16.4651 | 895.6507 | 7.3663 | 10.6680 | 83.9568 | 1792.4800 | 8.2341 | 3.2560 | 13.024 | | | 31.8742 | 24.7096 | 3027.1937 | 11.0547 | 15.9461 | 189.8389 | 6058.3706 | 12.3571 | 5.0846 | 20.339 | | L2 | 31.3547 | 35.1671 | 3878.5647 | 10.4888 | 15.1999 | 255.1711 | 7762.2328 | 17.5869 | 4.6061 | 12.283 | | | 41.0842 | 47.7112 | 9685.4835 | 14.2302 | 20.5537 | 471.2287 | 19383.711 | 23.8601 | 6.4610 | 17.229 | | | | | | | | | 3 | | | | | L3 | 40.3209 | 52.8864 | 9691.6750 | 13.5203 | 19.5696 | 495.2402 | 19396.102 | 26.4482 | 6.0100 | 13.737 | | | | | | | | | 5 | | | | | | 49.7153 | 67.3796 | 20042.502 | 17.2255 | 24.8717 | 805.8363 | 40111.376 | 33.6962 | 7.8470 | 17.936 | | | | | 0 | | | | 5 | | | | | L4 | 48.8263 | 73.2687 | 19730.526 | 16.3897 | 23.7074 | 832.2531 | 39487.013 | 36.6413 | 7.3336 | 14.667 | | | | | 0 | | | | 9 | | | | | | 58.1332 | 90.0622 | 36644.767 | 20.1462 | 29.0830 | 1260.0065 | 73337.753 | 45.0397 | 9.1960 | 18.392 | | | | | 8 | | | | 8 | | | | | Tower
Elevation | Gusset
Area
(per face) | Gusset
Thickness | Gusset Grade Adjust. Factor
A _f | Adjust.
Factor
A _r | Weight Mult. | Double Angle
Stitch Bolt
Spacing
Diagonals | Double Angle
Stitch Bolt
Spacing
Horizontals | Double Angle
Stitch Bolt
Spacing
Redundants | |--------------------|------------------------------|---------------------|---|-------------------------------------|--------------|---|---|--| | ft | ft ² | in | | | | in | in | in | | L1 180.0000- | | | 1 | 1 | 1 | | | | | 131.7500 | | | | | | | | | | L2 131.7500- | | | 1 | 1 | 1 | | | | | 86.7100 | | | | | | | | | | L3 86.7100- | | | 1 | 1 | 1 | | | | | 43.1600 | | | | | | | | | | L4 43.1600- | | | 1 | 1 | 1 | | | | | 0.0000 | | | | | | | | | # Feed Line/Linear Appurtenances - Entered As Area | Description | Face | Allow | Component | Placement | Total | | $C_A A_A$ | Weight | |--------------------|------|--------|--------------|-------------------|--------|----------|-----------|--------| | , , , | or | Shield | Type | | Number | | - A A | 3 | | | Leg | | ** | ft | | | ft²/ft | plf | | LDF7-50A(1-5/8) | С | No | Inside Pole | 180.0000 - 0.0000 | 6 | No Ice | 0.0000 | 0.82 | | | | | | | | 1/2" Ice | 0.0000 | 0.82 | | | | | | | | 1" Ice | 0.0000 | 0.82 | | ATCB-B01-006(5/16) | С | No | Inside Pole | 180.0000 - 0.0000 | 6 | No Ice | 0.0000 | 0.07 | | | | | | | | 1/2" Ice | 0.0000 | 0.07 | | ** | | | | | | 1" Ice | 0.0000 | 0.07 | | MLE Hybrid | С | No | Inside Pole | 161.0000 - 0.0000 | 1 | No Ice | 0.0000 | 1.07 | | 9Power/18Fiber RL | | | | | | 1/2" Ice | 0.0000 | 1.07 | | 2(1-5/8) | | | | | | 1" Ice | 0.0000 | 1.07 | | LDF4-50A(1/2) | С | No | Inside Pole | 147.0000 - 0.0000 | 1 | No Ice | 0.0000 | 0.15 | | , | | | | | | 1/2" Ice | 0.0000 | 0.15 | | | | | | | | 1" Ice | 0.0000 | 0.15 | | LDF7-50A(1-5/8) | С | No | CaAa (Out Of | 147.0000 - 0.0000 | 12 | No Ice | 0.0000 | 0.82 | | • | | | Face) | | | 1/2" Ice | 0.0000 | 2.33 | | | | | , | | | 1" Ice | 0.0000 | 4.46 | | HB158-1-08U8- | С | No | CaAa (Out Of | 147.0000 - 0.0000 | 1 | No Ice | 0.0000 | 1.30 | | S8J18(1-5/8) | | | Face) | | | 1/2" Ice | 0.0000 | 2.81 | | , , | | | , | | | 1" Ice | 0.0000 | 4.94 | | Description | Face
or | Allow
Shield | Component
Type | Placement | Total
Number | | $C_A A_A$ | Weight | |----------------------------|------------|-----------------|-------------------|-------------------|-----------------|----------|-----------|--------| | | Leg | | 71 | ft | | | ft²/ft | plf | | HB158-1-08U8- | С | No | CaAa (Out Of | 147.0000 - 0.0000 | 1 | No Ice | 0.1980 | 1.30 | | S8J18(1-5/8) | | | Face) | | | 1/2" Ice | 0.2980 | 2.81 | | ** | | | | | | 1" Ice | 0.3980 | 4.94 | | **
FB-L98B-034-XXX(3/8) | С | No | Inside Pole | 140.0000 - 0.0000 | 1 | No Ice | 0.0000 | 0.06 | | D-L30D-034-7001(0/0) | O | 140 | moide i ole | 140.0000 - 0.0000 | | 1/2" Ice | 0.0000 | 0.06 | | | | | | | | 1" Ice | 0.0000 | 0.06 | | WR-VG122ST- | С | No | Inside Pole | 140.0000 - 0.0000 | 2 | No Ice | 0.0000 | 0.00 | | BRDA(7/16) | O | 140 | moide i ole | 140.0000 0.0000 | _ | 1/2" Ice | 0.0000 | 0.14 | | 51(5)(1710) | | | | | | 1" Ice | 0.0000 | 0.14 | | LDF7-50A(1-5/8) | С | No | Inside Pole | 140.0000 - 0.0000 | 12 | No Ice | 0.0000 | 0.82 | | 221 / 00/1(1 0/0) | • | | | | | 1/2" Ice | 0.0000 | 0.82 | | | | | | | | 1" Ice | 0.0000 | 0.82 | | ICE 200(2) | С | No | Inside Pole | 140.0000 - 0.0000 | 1 | No Ice | 0.0000 | 0.23 | | () | | | | | | 1/2" Ice | 0.0000 | 0.23 | | ** | | | | | | 1" Ice | 0.0000 | 0.23 | | LDF6-50A(1-1/4) | С | No | CaAa (Out Of | 83.0000 - 0.0000 | 1 | No Ice | 0.0000 | 0.60 | | | • | | Face) | 00.0000 | · | 1/2" Ice | 0.0000 | 1.85 | | | | | 1 400) | | | 1" Ice | 0.0000 | 3.72 | | LDF6-50A(1-1/4) | С | No | CaAa (Out Of | 83.0000 - 0.0000 | 1 | No Ice | 0.1550 | 0.60 | | | | | Face) | | | 1/2" Ice | 0.2550 | 1.85 | | | | | , | | | 1" Ice | 0.3550 | 3.72 | | LDF4-50A(1/2) | С | No | CaAa (Out Of | 83.0000 - 0.0000 | 2 | No Ice | 0.0000 | 0.15 | | (-/ | | | Face) | | | 1/2" Ice | 0.0000 | 0.84 | | | | | , | | | 1" Ice | 0.0000 | 2.14 | | ** | | | | | | | | | | LDF4-50A(1/2) | С | No | CaAa (Out Of | 78.0000 - 0.0000 | 1 | No Ice | 0.0000 | 0.15 | | , , | | | Face) | | | 1/2" Ice | 0.0000 | 0.84 | | ** | | | | | | 1" Ice | 0.0000 | 2.14 | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |----------------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|---------------------------------|--|---------------------------------------|----------------------| | | | | Vert
ft
ft
ft | ۰ | ft | | ft² | ft² | К | | APXVSPP18-C-A20 w/
Mount Pipe | Α | From Leg | 4.0000
0.00
1.00 | 0.00 | 180.0000 | No Ice
1/2"
Ice
1" Ice | 8.2619
8.8215
9.3462 | 6.9458
8.1266
9.0212 | 0.08
0.15
0.23 | | APXVSPP18-C-A20 w/
Mount Pipe | В | From Leg | 4.0000
0.00
1.00 | 0.00 | 180.0000 | No Ice
1/2"
Ice
1" Ice | 8.2619
8.8215
9.3462 | 6.9458
8.1266
9.0212 | 0.08
0.15
0.23 | | APXVSPP18-C-A20 w/
Mount Pipe | С | From Leg | 4.0000
0.00
1.00 | 0.00 | 180.0000 | No Ice
1/2"
Ice
1" Ice | 8.2619
8.8215
9.3462 | 6.9458
8.1266
9.0212 | 0.08
0.15
0.23 | | FD9R6004/1C-3L | Α | From Leg | 4.0000
0.00
1.00 | 0.00 | 180.0000 | No
Ice
1/2"
Ice
1" Ice | 0.3142
0.3862
0.4656 | 0.0762
0.1189
0.1685 | 0.00
0.00
0.01 | | FD9R6004/1C-3L | В | From Leg | 4.0000
0.00 | 0.00 | 180.0000 | No Ice
1/2" | 0.3142
0.3862 | 0.0762
0.1189 | 0.00
0.00 | 0.00 0.00 0.4656 0.3142 0.3862 0.4656 28.4700 33.5900 Ice 1" Ice No Ice 1/2" Ice 1" Ice No Ice 1/2" 180.0000 180.0000 0.1685 0.0762 0.1189 0.1685 28.4700 33.5900 0.01 0.00 0.00 0.01 1.12 1.51 1.00 4.0000 0.00 1.00 **Discrete Tower Loads** С С From Leg None FD9R6004/1C-3L Platform Mount [LP 601-1] | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |--|-------------------|----------------|-----------------------------|---------------------------|-----------|---|--|---------------------------------------|----------------------| | | - 3 | | Vert
ft
ft | 0 | ft | | ft² | ft² | К | | | | | ft | | | Ice | 38.7100 | 38.7100 | 1.91 | | 8-ft Ladder | С | From Leg | 2.0000
0.00
-2.00 | 0.00 | 180.0000 | 1" Ice
No Ice
1/2"
Ice | 7.0700
9.7300
11.1900 | 7.0700
9.7300
11.1900 | 0.04
0.07
0.08 | | (3) 2.375" OD x 6' Mount
Pipe | Α | From Leg | 4.0000
0.00
1.00 | 0.00 | 180.0000 | 1" Ice
No Ice
1/2"
Ice | 1.4250
1.9250
2.2939 | 1.4250
1.9250
2.2939 | 0.03
0.04
0.05 | | (3) 2.375" OD x 6' Mount
Pipe | В | From Leg | 4.0000
0.00
1.00 | 0.00 | 180.0000 | 1" Ice
No Ice
1/2"
Ice
1" Ice | 1.4250
1.9250
2.2939 | 1.4250
1.9250
2.2939 | 0.03
0.04
0.05 | | (3) 2.375" OD x 6' Mount
Pipe | С | From Leg | 4.0000
0.00
1.00 | 0.00 | 180.0000 | No Ice
1/2"
Ice
1" Ice | 1.4250
1.9250
2.2939 | 1.4250
1.9250
2.2939 | 0.03
0.04
0.05 | | ***
ERICSSON AIR 21 B2A
B4P w/ Mount Pipe | Α | From Leg | 4.0000
0.00 | 0.00 | 161.0000 | No Ice | 6.3292
6.7751 | 5.6424
6.4259 | 0.11
0.17 | | B4i W/ Would'i ipc | | | 1.00 | | | Ice
1" Ice | 7.2137 | 7.1313 | 0.23 | | ERICSSON AIR 21 B2A
B4P w/ Mount Pipe | В | From Leg | 4.0000
0.00
1.00 | 0.00 | 161.0000 | No Ice
1/2"
Ice
1" Ice | 6.3292
6.7751
7.2137 | 5.6424
6.4259
7.1313 | 0.11
0.17
0.23 | | ERICSSON AIR 21 B2A
B4P w/ Mount Pipe | С | From Leg | 4.0000
0.00
1.00 | 0.00 | 161.0000 | No Ice
1/2"
Ice | 6.3292
6.7751
7.2137 | 5.6424
6.4259
7.1313 | 0.11
0.17
0.23 | | Ericsson Air 21 B4A B12P-
B8P 4FT w/ Mount Pipe | Α | From Leg | 4.0000
0.00
1.00 | 0.00 | 161.0000 | 1" Ice
No Ice
1/2"
Ice | 7.8625
8.3076
8.7610 | 6.8796
7.5944
8.3255 | 0.16
0.23
0.31 | | Ericsson Air 21 B4A B12P-
B8P 4FT w/ Mount Pipe | В | From Leg | 4.0000
0.00
1.00 | 0.00 | 161.0000 | 1" Ice
No Ice
1/2"
Ice | 7.8625
8.3076
8.7610 | 6.8796
7.5944
8.3255 | 0.16
0.23
0.31 | | Ericsson Air 21 B4A B12P-
B8P 4FT w/ Mount Pipe | С | From Leg | 4.0000
0.00
1.00 | 0.00 | 161.0000 | 1" Ice
No Ice
1/2"
Ice | 7.8625
8.3076
8.7610 | 6.8796
7.5944
8.3255 | 0.16
0.23
0.31 | | RRUS 11 B12 | Α | From Leg | 4.0000
0.00
1.00 | 0.00 | 161.0000 | 1" Ice
No Ice
1/2"
Ice | 2.8333
3.0426
3.2593 | 1.1821
1.3299
1.4848 | 0.05
0.07
0.10 | | RRUS 11 B12 | В | From Leg | 4.0000
0.00
1.00 | 0.00 | 161.0000 | 1" Ice
No Ice
1/2"
Ice | 2.8333
3.0426
3.2593 | 1.1821
1.3299
1.4848 | 0.05
0.07
0.10 | | RRUS 11 B12 | С | From Leg | 4.0000
0.00
1.00 | 0.00 | 161.0000 | 1" Ice
No Ice
1/2"
Ice | 2.8333
3.0426
3.2593 | 1.1821
1.3299
1.4848 | 0.05
0.07
0.10 | | Platform Mount [LP 305-1] | С | None | | 0.00 | 161.0000 | 1" Ice
No Ice
1/2"
Ice
1" Ice | 18.0100
23.3300
28.6500 | 18.0100
23.3300
28.6500 | 1.12
1.35
1.58 | | 2.375" OD x 6' Mount Pipe | С | From Leg | 4.0000
0.00
0.00 | 0.00 | 161.0000 | No Ice
1/2"
Ice
1" Ice | 1.4250
1.9250
2.2939 | 1.4250
1.9250
2.2939 | 0.03
0.04
0.05 | | **
(2) LNX-6514DS-A1M w/ | Α | From Leg | 4.0000 | 0.00 | 147.0000 | No Ice | 8.4106 | 7.0817 | 0.06 | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |--------------------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|---|--|---------------------------------------|----------------------| | | | | Vert
ft
ft
ft | 0 | ft | | ft² | ft² | К | | Mount Pipe | | | 0.00
3.00 | | | 1/2"
Ice | 8.9745
9.5048 | 8.2729
9.1847 | 0.13
0.21 | | (2) LNX-6514DS-A1M w/
Mount Pipe | В | From Leg | 4.0000
0.00
3.00 | 0.00 | 147.0000 | 1" Ice
No Ice
1/2"
Ice | 8.4106
8.9745
9.5048 | 7.0817
8.2729
9.1847 | 0.06
0.13
0.21 | | (2) LNX-6514DS-A1M w/
Mount Pipe | С | From Leg | 4.0000
0.00
3.00 | 0.00 | 147.0000 | 1" Ice
No Ice
1/2"
Ice | 8.4106
8.9745
9.5048 | 7.0817
8.2729
9.1847 | 0.06
0.13
0.21 | | (2) HBXX-6517DS-A2M w/
Mount Pipe | Α | From Leg | 4.0000
0.00
3.00 | 0.00 | 147.0000 | 1" Ice
No Ice
1/2"
Ice | 8.7655
9.3417
9.8885 | 6.9629
8.1817
9.1436 | 0.07
0.14
0.21 | | (2) HBXX-6517DS-A2M w/
Mount Pipe | В | From Leg | 4.0000
0.00
3.00 | 0.00 | 147.0000 | 1" Ice
No Ice
1/2"
Ice | 8.7655
9.3417
9.8885 | 6.9629
8.1817
9.1436 | 0.07
0.14
0.21 | | (2) HBXX-6517DS-A2M w/
Mount Pipe | С | From Leg | 4.0000
0.00
3.00 | 0.00 | 147.0000 | 1" Ice
No Ice
1/2"
Ice | 8.7655
9.3417
9.8885 | 6.9629
8.1817
9.1436 | 0.07
0.14
0.21 | | KS24019-L112A | В | From Leg | 4.0000
0.00
3.00 | 0.00 | 147.0000 | 1" Ice
No Ice
1/2"
Ice
1" Ice | 0.1407
0.1979
0.2621 | 0.1407
0.1979
0.2621 | 0.01
0.01
0.01 | | (2) FD9R6004/1C-3L | Α | From Leg | 4.0000
0.00
3.00 | 0.00 | 147.0000 | No Ice
1/2"
Ice
1" Ice | 0.3142
0.3862
0.4656 | 0.0762
0.1189
0.1685 | 0.00
0.00
0.01 | | (2) FD9R6004/1C-3L | В | From Leg | 4.0000
0.00
3.00 | 0.00 | 147.0000 | No Ice
1/2"
Ice | 0.3142
0.3862
0.4656 | 0.0762
0.1189
0.1685 | 0.00
0.00
0.01 | | (2) FD9R6004/1C-3L | С | From Leg | 4.0000
0.00
3.00 | 0.00 | 147.0000 | 1" Ice
No Ice
1/2"
Ice | 0.3142
0.3862
0.4656 | 0.0762
0.1189
0.1685 | 0.00
0.00
0.01 | | RRH2X60-AWS | Α | From Leg | 4.0000
0.00
3.00 | 0.00 | 147.0000 | 1" Ice
No Ice
1/2"
Ice
1" Ice | 1.8775
2.0551
2.2401 | 1.2359
1.3858
1.5441 | 0.04
0.06
0.08 | | RRH2X60-AWS | В | From Leg | 4.0000
0.00
3.00 | 0.00 | 147.0000 | No Ice
1/2"
Ice | 1.8775
2.0551
2.2401 | 1.2359
1.3858
1.5441 | 0.04
0.06
0.08 | | RRH2X60-AWS | С | From Leg | 4.0000
0.00
3.00 | 0.00 | 147.0000 | 1" Ice
No Ice
1/2"
Ice | 1.8775
2.0551
2.2401 | 1.2359
1.3858
1.5441 | 0.04
0.06
0.08 | | DB-T1-6Z-8AB-0Z | Α | From Leg | 4.0000
0.00
3.00 | 0.00 | 147.0000 | 1" Ice
No Ice
1/2"
Ice | 4.8000
5.0704
5.3481 | 2.0000
2.1926
2.3926 | 0.04
0.08
0.12 | | DB-T1-6Z-8AB-0Z | В | From Leg | 4.0000
0.00
3.00 | 0.00 | 147.0000 | 1" Ice
No Ice
1/2"
Ice | 4.8000
5.0704
5.3481 | 2.0000
2.1926
2.3926 | 0.04
0.08
0.12 | | RRH2X60-PCS | Α | From Leg | 4.0000
0.00
3.00 | 0.00 | 147.0000 | 1" Ice
No Ice
1/2"
Ice | 2.2000
2.3926
2.5926 | 1.7233
1.9015
2.0870 | 0.06
0.08
0.10 | | RRH2X60-PCS | В | From Leg | 4.0000
0.00 | 0.00 | 147.0000 | 1" Ice
No Ice
1/2" | 2.2000
2.3926 | 1.7233
1.9015 | 0.06
0.08 | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral | Azimuth
Adjustmen
t | Placement | | C₄A₄
Front | C _A A _A
Side | Weight | |---------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|-----------------------|--------------------|---------------------------------------|--------------| | | - | | Vert
ft
ft
ft | 0 | ft | | ft² | ft² | К | | | | | 3.00 | | | Ice
1" Ice | 2.5926 | 2.0870 | 0.10 | | RRH2X60-PCS | С | From Leg | 4.0000 | 0.00 | 147.0000 | No Ice | 2.2000 | 1.7233 | 0.06 | | | | | 0.00
3.00 | | | 1/2"
Ice
1" Ice | 2.3926
2.5926 | 1.9015
2.0870 | 0.08
0.10 | | Platform Mount [LP 712-1] | С | None | | 0.00 | 147.0000 | No Ice | 24.5300 | 24.5300 | 1.34 | | ** | | | | | | 1/2"
Ice
1" Ice | 29.9400
35.3500 | 29.9400
35.3500 | 1.65
1.96 | | TME-RRUS 11 BAND 12 | Α | From Leg | 1.0000 | 0.00 | 141.0000 | No Ice | 2.5662 | 1.0828 | 0.05 | | | | | 0.00 | | | 1/2" | 2.7649 | 1.2260 | 0.07 | | | | | -3.00 | | | Ice
1" Ice | 2.9710 | 1.3765 | 0.09 | | TME-RRUS 11 BAND 12 | В | From Leg | 1.0000 | 0.00 | 141.0000 | No Ice | 2.5662 | 1.0828 | 0.05 | | | | | 0.00
-3.00 | | | 1/2"
Ice | 2.7649
2.9710 | 1.2260
1.3765 | 0.07
0.09 | | | | | 0.00 | | | 1" Ice | 2.07 10 | 1.0700 | | | TME-RRUS 11 BAND 12 | С | From Leg | 1.0000 | 0.00 | 141.0000 | No Ice | 2.5662
2.7649 | 1.0828 | 0.05 | | | | | 0.00
-3.00 | | | 1/2"
Ice | 2.7649 | 1.2260
1.3765 | 0.07
0.09 | | | _ | | | | | 1" Ice | | | | | Pipe Mount [PM 601-3] | С | None | | 0.00 | 141.0000 | No Ice
1/2" | 4.3900
5.4800 | 4.3900
5.4800 | 0.20
0.24 | | | | | | | | Ice
1" Ice | 6.5700 | 6.5700 | 0.28 | | ***
1001940 | Α | From Leg | 4.0000 | 0.00
| 140.0000 | No Ice | 0.1758 | 0.0833 | 0.00 | | 1001040 | , , | r rom Log | 0.00 | 0.00 | 140.0000 | 1/2" | 0.2317 | 0.1264 | 0.00 | | | | | 0.00 | | | Ice
1" Ice | 0.2950 | 0.1778 | 0.01 | | 1001940 | В | From Leg | 4.0000 | 0.00 | 140.0000 | No Ice | 0.1758 | 0.0833 | 0.00 | | | | | 0.00 | | | 1/2" | 0.2317 | 0.1264 | 0.00 | | | | | 0.00 | | | Ice
1" Ice | 0.2950 | 0.1778 | 0.01 | | 1001940 | С | From Leg | 4.0000 | 0.00 | 140.0000 | No Ice | 0.1758 | 0.0833 | 0.00 | | | | | 0.00 | | | 1/2" | 0.2317 | 0.1264 | 0.00 | | | | | 0.00 | | | Ice
1" Ice | 0.2950 | 0.1778 | 0.01 | | (2) 7770.00 w/ Mount Pipe | Α | From Leg | 4.0000 | 0.00 | 140.0000 | No Ice | 5.7981 | 4.5454 | 0.09 | | | | | 0.00
0.00 | | | 1/2"
Ice | 6.2677
6.6966 | 5.5082
6.2127 | 0.14
0.21 | | | | | | | | 1" Ice | 0.0000 | | | | (2) 7770.00 w/ Mount Pipe | В | From Leg | 4.0000
0.00 | 0.00 | 140.0000 | No Ice
1/2" | 5.7981
6.2677 | 4.5454
5.5082 | 0.09
0.14 | | | | | 0.00 | | | Ice | 6.6966 | 6.2127 | 0.14 | | (0) 7770 00 (14 15) | • | F | | 0.00 | 440.0000 | 1" Ice | | | | | (2) 7770.00 w/ Mount Pipe | С | From Leg | 4.0000
0.00 | 0.00 | 140.0000 | No Ice
1/2" | 5.7981
6.2677 | 4.5454
5.5082 | 0.09
0.14 | | | | | 0.00 | | | Ice
1" Ice | 6.6966 | 6.2127 | 0.21 | | (2) LGP 17201 | Α | From Leg | 4.0000 | 0.00 | 140.0000 | No Ice
1/2" | 1.6680
1.8289 | 0.4669 | 0.03 | | | | | 0.00
0.00 | | | lce
1" lce | 1.8289 | 0.5676
0.6752 | 0.04
0.06 | | (2) LGP 17201 | В | From Leg | 4.0000 | 0.00 | 140.0000 | No Ice | 1.6680 | 0.4669 | 0.03 | | | | | 0.00
0.00 | | | 1/2"
Ice | 1.8289
1.9973 | 0.5676
0.6752 | 0.04
0.06 | | | | | | | | 1" Ice | | | | | (2) LGP 17201 | С | From Leg | 4.0000 | 0.00 | 140.0000 | No Ice | 1.6680 | 0.4669 | 0.03 | | | | | 0.00
0.00 | | | 1/2"
Ice | 1.8289
1.9973 | 0.5676
0.6752 | 0.04
0.06 | | (0) 1 === | _ | | | | | 1" Ice | | | | | (2) LGP21901 | Α | From Leg | 4.0000 | 0.00 | 140.0000 | No Ice | 0.2310 | 0.1575 | 0.01 | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |---------------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|---|--|---------------------------------------|----------------------| | | | | Vert
ft
ft
ft | ۰ | ft | | ft² | ft² | Κ | | | | | 0.00
0.00 | | | 1/2"
Ice | 0.2941
0.3647 | 0.2129
0.2756 | 0.01
0.01 | | (2) LGP21901 | В | From Leg | 4.0000
0.00
0.00 | 0.00 | 140.0000 | 1" Ice
No Ice
1/2"
Ice | 0.2310
0.2941
0.3647 | 0.1575
0.2129
0.2756 | 0.01
0.01
0.01 | | (2) LGP21901 | С | From Leg | 4.0000
0.00
0.00 | 0.00 | 140.0000 | 1" Ice
No Ice
1/2"
Ice | 0.2310
0.2941
0.3647 | 0.1575
0.2129
0.2756 | 0.01
0.01
0.01 | | HPA-65R-BUU-H6 w/
Mount Pipe | Α | From Leg | 4.0000
0.00
0.00 | 0.00 | 140.0000 | 1" Ice
No Ice
1/2"
Ice | 9.8953
10.4700
11.0098 | 8.1125
9.3041
10.2095 | 0.08
0.16
0.25 | | HPA-65R-BUU-H6 w/
Mount Pipe | В | From Leg | 4.0000
0.00
0.00 | 0.00 | 140.0000 | 1" Ice
No Ice
1/2"
Ice | 9.8953
10.4700
11.0098 | 8.1125
9.3041
10.2095 | 0.08
0.16
0.25 | | HPA-65R-BUU-H6 w/
Mount Pipe | С | From Leg | 4.0000
0.00
0.00 | 0.00 | 140.0000 | 1" Ice
No Ice
1/2"
Ice | 9.8953
10.4700
11.0098 | 8.1125
9.3041
10.2095 | 0.08
0.16
0.25 | | RRUS 12 | Α | From Leg | 4.0000
0.00
0.00 | 0.00 | 140.0000 | 1" Ice
No Ice
1/2"
Ice | 3.1450
3.3648
3.5920 | 1.2854
1.4379
1.5998 | 0.06
0.08
0.11 | | RRUS 12 | В | From Leg | 4.0000
0.00
0.00 | 0.00 | 140.0000 | 1" Ice
No Ice
1/2"
Ice | 3.1450
3.3648
3.5920 | 1.2854
1.4379
1.5998 | 0.06
0.08
0.11 | | RRUS 12 | С | From Leg | 4.0000
0.00
0.00 | 0.00 | 140.0000 | 1" Ice
No Ice
1/2"
Ice | 3.1450
3.3648
3.5920 | 1.2854
1.4379
1.5998 | 0.06
0.08
0.11 | | RRUS A2 | Α | From Leg | 4.0000
0.00
0.00 | 0.00 | 140.0000 | 1" Ice
No Ice
1/2"
Ice
1" Ice | 2.0663
2.2451
2.4313 | 0.4988
0.6087
0.7255 | 0.02
0.03
0.05 | | RRUS A2 | В | From Leg | 4.0000
0.00
0.00 | 0.00 | 140.0000 | No Ice
1/2"
Ice | 2.0663
2.2451
2.4313 | 0.4988
0.6087
0.7255 | 0.02
0.03
0.05 | | RRUS A2 | С | From Leg | 4.0000
0.00
0.00 | 0.00 | 140.0000 | 1" Ice
No Ice
1/2"
Ice | 2.0663
2.2451
2.4313 | 0.4988
0.6087
0.7255 | 0.02
0.03
0.05 | | DC6-48-60-18-8F | С | From Leg | 4.0000
0.00
0.00 | 0.00 | 140.0000 | 1" Ice
No Ice
1/2"
Ice | 0.9167
1.4583
1.6431 | 0.9167
1.4583
1.6431 | 0.02
0.04
0.06 | | Platform Mount [LP 303-1] | С | None | | 0.00 | 140.0000 | 1" Ice
No Ice
1/2"
Ice
1" Ice | 14.6600
18.8700
23.0800 | 14.6600
18.8700
23.0800 | 1.25
1.48
1.71 | | **
OG-860/1920/GPS-A | Α | From Leg | 3.0000
0.00
1.00 | 0.00 | 83.0000 | No Ice
1/2"
Ice | 0.3077
0.3952
0.4897 | 0.3667
0.4572
0.5548 | 0.00
0.01
0.01 | | OG-860/1920/GPS-A | В | From Leg | 3.0000
0.00
1.00 | 0.00 | 83.0000 | 1" Ice
No Ice
1/2"
Ice | 0.3077
0.3952
0.4897 | 0.3667
0.4572
0.5548 | 0.00
0.01
0.01 | | Side Arm Mount [SO 701- | Α | None | | 0.00 | 83.0000 | 1" Ice
No Ice | 0.8500 | 1.6700 | 0.07 | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |-------------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|---------------------------------|--|---------------------------------------|----------------------| | | | | Vert
ft
ft
ft | ٥ | ft | | ft² | ft² | К | | 1] | | | | | | 1/2"
Ice
1" Ice | 1.1400
1.4300 | 2.3400
3.0100 | 0.08
0.09 | | Side Arm Mount [SO 701-1] | В | None | | 0.00 | 83.0000 | No Ice
1/2"
Ice
1" Ice | 0.8500
1.1400
1.4300 | 1.6700
2.3400
3.0100 | 0.07
0.08
0.09 | | OG-860/1920/GPS-A | В | From Leg | 3.0000
0.00
1.00 | 0.00 | 78.0000 | No Ice
1/2"
Ice
1" Ice | 0.3077
0.3952
0.4897 | 0.3667
0.4572
0.5548 | 0.00
0.01
0.01 | | Side Arm Mount [SO 701-
1] | В | None | | 0.00 | 78.0000 | No Ice
1/2"
Ice
1" Ice | 0.8500
1.1400
1.4300 | 1.6700
2.3400
3.0100 | 0.07
0.08
0.09 | # **Tower Pressures - No Ice** $G_H = 1.100$ | Section | Z | Kz | qz | A_{G} | F | A_F | A_R | A_{leg} | Leg | $C_A A_A$ | $C_A A_A$ | |--------------|----------|-------|-------|-----------------|---|-----------------|-----------------|-----------------|--------|-----------------|-----------------| | Elevation | | | | | а | | | | % | In | Out | | | | | | | С | _ | _ | _ | | Face | Face | | ft | ft | | psf | ft ² | е | ft ² | ft ² | ft ² | | ft ² | ft ² | | L1 180.0000- | 154.4747 | 1.387 | 34.38 | 106.95 | Α | 0.000 | 106.951 | 106.951 | 100.00 | 0.000 | 0.000 | | 131.7500 | | | | 1 | В | 0.000 | 106.951 | | 100.00 | 0.000 | 0.000 | | | | | | | С | 0.000 | 106.951 | | 100.00 | 0.000 | 3.019 | | L2 131.7500- | 108.4660 | 1.287 | 31.90 | 135.94 | Α | 0.000 | 135.944 | 135.944 | 100.00 | 0.000 | 0.000 | | 86.7100 | | | | 4 | В | 0.000 | 135.944 | | 100.00 | 0.000 | 0.000 | | | | | | | С | 0.000 | 135.944 | | 100.00 | 0.000 | 8.918 | | L3 86.7100- | 64.5656 | 1.154 | 28.53 | 163.37 | Α | 0.000 | 163.378 | 163.378 | 100.00 | 0.000 | 0.000 | | 43.1600 | | | | 8 | В | 0.000 | 163.378 | | 100.00 | 0.000 | 0.000 | | | | | | | С | 0.000 | 163.378 | | 100.00 | 0.000 | 14.798 | | L4 43.1600- | 21.8139 | 0.919 | 22.83 | 192.34 | Α | 0.000 | 192.349 | 192.349 | 100.00 | 0.000 | 0.000 | | 0.0000 | | | | 9 | В | 0.000 | 192.349 | | 100.00 | 0.000 | 0.000 | | | | | | | С | 0.000 | 192.349 | | 100.00 | 0.000 | 15.235 | # **Tower Pressure - With Ice** $G_H = 1.100$ | Section
Elevation | Z | Kz | qz | t_Z | A_{G} | F
a | A_F | A_R | A_{leg} | Leg
% | C _A A _A
In | $C_A A_A$
Out | |----------------------|----------|-------|------|--------|-----------------|--------|-------|---------|-----------|----------|-------------------------------------|------------------| | ft | ft | | psf | in | ft ² | c
e | ft² | ft² | ft² | | Face
ft² | Face
ft² | | L1 180.0000- | 154.4747 | 1.387 | 8.43 | 2.3338 | 125.718 | Α | 0.000 | 125.718 | 125.718 | 100.00 | 0.000 | 0.000 | | 131.7500 | | | | | | В | 0.000 | 125.718 | | 100.00 | 0.000 | 0.000 | | | | | | | | С | 0.000 | 125.718 | | 100.00 | 0.000 | 10.138 | | L2 131.7500- | 108.4660 | 1.287 | 7.82 | 2.2527 | 153.463 | Α | 0.000 | 153.463 | 153.463 | 100.00 | 0.000 | 0.000 | | 86.7100 | | | | | | В | 0.000 | 153.463 | | 100.00 | 0.000 | 0.000 | | | | | | | | С | 0.000 | 153.463 | | 100.00 | 0.000 | 29.941 | | L3 86.7100- | 64.5656 | 1.154 | 6.99 | 2.1388 | 179.729 | Α | 0.000 | 179.729 | 179.729 | 100.00 | 0.000 | 0.000 | | 43.1600 | | | | | | В | 0.000 | 179.729 | | 100.00 | 0.000 | 0.000 | | Section
Elevation | Z | Kz | qz | t_Z | A_G | F
a | A_F | A_R | A _{leg} | Leg
% | C _A A _A
In | $C_A A_A$
Out | |-----------------------|---------|-------|------|--------|---------|---------|----------------------------------|-------|------------------|--------------------------------------|-------------------------------------|------------------------------------| | ft | ft | | psf | in | ft² | c e | ft² | ft² | ft² | | Face
ft² | Face
ft² | | L4 43.1600-
0.0000 | 21.8139 | 0.919 | 5.60 | 1.9189 | 207.734 | C A B C | 0.000
0.000
0.000
0.000
| | 207.734 | 100.00
100.00
100.00
100.00 | 0.000
0.000 | 52.369
0.000
0.000
52.160 | # **Tower Pressure - Service** $G_H = 1.100$ | Section | Z | Kz | qz | A_{G} | F | A_F | A_R | A_{leg} | Leg | $C_A A_A$ | $C_A A_A$ | |--------------|----------|-------|-------|-----------------|---|-----------------|-----------------|-----------------|--------|-----------------|-----------------| | Elevation | | | | | а | | | | % | In | Out | | | | | | _ | С | | _ | _ | | Face | Face | | ft | ft | | psf | ft ² | e | ft ² | ft ² | ft ² | | ft ² | ft ² | | L1 180.0000- | 154.4747 | 1.387 | 10.86 | 106.95 | Α | 0.000 | 106.951 | 106.951 | 100.00 | 0.000 | 0.000 | | 131.7500 | | | | 1 | В | 0.000 | 106.951 | | 100.00 | 0.000 | 0.000 | | | | | | | С | 0.000 | 106.951 | | 100.00 | 0.000 | 3.019 | | L2 131.7500- | 108.4660 | 1.287 | 10.07 | 135.94 | Α | 0.000 | 135.944 | 135.944 | 100.00 | 0.000 | 0.000 | | 86.7100 | | | | 4 | В | 0.000 | 135.944 | | 100.00 | 0.000 | 0.000 | | | | | | | С | 0.000 | 135.944 | | 100.00 | 0.000 | 8.918 | | L3 86.7100- | 64.5656 | 1.154 | 9.01 | 163.37 | Α | 0.000 | 163.378 | 163.378 | 100.00 | 0.000 | 0.000 | | 43.1600 | | | | 8 | В | 0.000 | 163.378 | | 100.00 | 0.000 | 0.000 | | | | | | | С | 0.000 | 163.378 | | 100.00 | 0.000 | 14.798 | | L4 43.1600- | 21.8139 | 0.919 | 7.21 | 192.34 | Α | 0.000 | 192.349 | 192.349 | 100.00 | 0.000 | 0.000 | | 0.0000 | | | | 9 | В | 0.000 | 192.349 | | 100.00 | 0.000 | 0.000 | | | | | | | С | 0.000 | 192.349 | | 100.00 | 0.000 | 15.235 | # **Load Combinations** | Comb. | Description | |-------|--| | No. | | | 1 | Dead Only | | 2 | 1.2 Dead+1.6 Wind 0 deg - No Ice | | 3 | 0.9 Dead+1.6 Wind 0 deg - No Ice | | 4 | 1.2 Dead+1.6 Wind 30 deg - No Ice | | 5 | 0.9 Dead+1.6 Wind 30 deg - No Ice | | 6 | 1.2 Dead+1.6 Wind 60 deg - No Ice | | 7 | 0.9 Dead+1.6 Wind 60 deg - No Ice | | 8 | 1.2 Dead+1.6 Wind 90 deg - No Ice | | 9 | 0.9 Dead+1.6 Wind 90 deg - No Ice | | 10 | 1.2 Dead+1.6 Wind 120 deg - No Ice | | 11 | 0.9 Dead+1.6 Wind 120 deg - No Ice | | 12 | 1.2 Dead+1.6 Wind 150 deg - No Ice | | 13 | 0.9 Dead+1.6 Wind 150 deg - No Ice | | 14 | 1.2 Dead+1.6 Wind 180 deg - No Ice | | 15 | 0.9 Dead+1.6 Wind 180 deg - No Ice | | 16 | 1.2 Dead+1.6 Wind 210 deg - No Ice | | 17 | 0.9 Dead+1.6 Wind 210 deg - No Ice | | 18 | 1.2 Dead+1.6 Wind 240 deg - No Ice | | 19 | 0.9 Dead+1.6 Wind 240 deg - No Ice | | 20 | 1.2 Dead+1.6 Wind 270 deg - No Ice | | 21 | 0.9 Dead+1.6 Wind 270 deg - No Ice | | 22 | 1.2 Dead+1.6 Wind 300 deg - No Ice | | 23 | 0.9 Dead+1.6 Wind 300 deg - No Ice | | 24 | 1.2 Dead+1.6 Wind 330 deg - No Ice | | 25 | 0.9 Dead+1.6 Wind 330 deg - No Ice | | 26 | 1.2 Dead+1.0 Ice+1.0 Temp | | 27 | 1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp | | 28 | 1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp | | 29 | 1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp | | 30 | 1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp | | 31 | 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp | | 4T | an Demost America 7.0.5.4 | | Comb.
No. | Description | |--------------|--| | 32 | 1.2 Dead+1.0 Wind 150 deg+1.0 lce+1.0 Temp | | 33 | 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp | | 34 | 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp | | 35 | 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp | | 36 | 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp | | 37 | 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp | | 38 | 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp | | 39 | Dead+Wind 0 deg - Service | | 40 | Dead+Wind 30 deg - Service | | 41 | Dead+Wind 60 deg - Service | | 42 | Dead+Wind 90 deg - Service | | 43 | Dead+Wind 120 deg - Service | | 44 | Dead+Wind 150 deg - Service | | 45 | Dead+Wind 180 deg - Service | | 46 | Dead+Wind 210 deg - Service | | 47 | Dead+Wind 240 deg - Service | | 48 | Dead+Wind 270 deg - Service | | 49 | Dead+Wind 300 deg - Service | | 50 | Dead+Wind 330 deg - Service | # **Maximum Member Forces** | Sectio | Elevation | Component | Condition | Gov. | Axial | Major Axis | Minor Axis | |--------|-------------------|-----------|------------------|-------|---------|------------|------------| | n | ft | Type | | Load | | Moment | Moment | | No. | | | | Comb. | K | kip-ft | kip-ft | | L1 | 180 - 131.75 | Pole | Max Tension | 1 | 0.00 | 0.00 | 0.00 | | | | | Max. Compression | 26 | -43.32 | 3.98 | -2.44 | | | | | Max. Mx | 20 | -12.58 | 504.62 | 0.65 | | | | | Max. My | 14 | -12.56 | -0.56 | -505.52 | | | | | Max. Vy | 20 | -25.25 | 504.62 | 0.65 | | | | | Max. Vx | 14 | 25.32 | -0.56 | -505.52 | | | | | Max. Torque | 24 | | | 1.85 | | L2 | 131.75 -
86.71 | Pole | Max Tension | 1 | 0.00 | 0.00 | 0.00 | | | | | Max. Compression | 26 | -64.97 | 16.36 | -9.61 | | | | | Max. Mx | 20 | -22.32 | 1731.88 | 2.83 | | | | | Max. My | 14 | -22.31 | -2.36 | -1735.65 | | | | | Max. Vy | 8 | 30.60 | -1729.64 | -4.29 | | | | | Max. Vx | 14 | 30.68 | -2.36 | -1735.65 | | | | | Max. Torque | 24 | | | 2.28 | | L3 | 86.71 -
43.16 | Pole | Max Tension | 1 | 0.00 | 0.00 | 0.00 | | | | | Max. Compression | 26 | -93.03 | 32.92 | -19.32 | | | | | Max. Mx | 20 | -36.29 | 3161.23 | 4.69 | | | | | Max. My | 14 | -36.28 | -3.74 | -3167.65 | | | | | Max. Vy | 8 | 36.42 | -3156.87 | -7.47 | | | | | Max. Vx | 14 | 36.49 | -3.74 | -3167.65 | | | | | Max. Torque | 24 | | | 3.38 | | L4 | 43.16 - 0 | Pole | Max Tension | 1 | 0.00 | 0.00 | 0.00 | | | | | Max. Compression | 26 | -130.53 | 53.90 | -31.44 | | | | | Max. Mx | 20 | -57.81 | 5120.32 | 6.63 | | | | | Max. My | 14 | -57.81 | -5.02 | -5129.67 | | | | | Max. Vy | 8 | 41.77 | -5112.93 | -11.23 | | | | | Max. Vx | 14 | 41.83 | -5.02 | -5129.67 | | | | | Max. Torque | 24 | | | 4.94 | # **Maximum Reactions** | Location | Condition | Gov.
Load
Comb. | Vertical
K | Horizontal, X
K | Horizontal, Z
K | |----------|---------------------|-----------------------|---------------|--------------------|--------------------| | Pole | Max. Vert | 26 | 130.53 | -0.00 | 0.00 | | | Max. H _√ | 21 | 43.38 | 41.72 | 0.06 | | Location | Condition | Gov.
Load | Vertical
K | Horizontal, X
K | Horizontal, Z
K | |----------|---------------------|--------------|---------------|--------------------|--------------------| | | | Comb. | | | | | | Max. H _z | 3 | 43.38 | 0.06 | 41.79 | | | Max. M _x | 2 | 5125.06 | 0.06 | 41.79 | | | Max. M _z | 8 | 5112.93 | -41.72 | -0.06 | | | Max. Torsion | 24 | 4.94 | 20.91 | 36.22 | | | Min. Vert | 15 | 43.38 | -0.06 | -41.79 | | | Min. H _x | 8 | 57.84 | -41.72 | -0.06 | | | Min. H _z | 14 | 57.84 | -0.06 | -41.79 | | | Min. M _x | 14 | -5129.67 | -0.06 | -41.79 | | | Min. M _z | 20 | -5120.32 | 41.72 | 0.06 | | | Min. Torsion | 12 | -4.94 | -20.91 | -36.22 | # **Tower Mast Reaction Summary** | Load
Combination | Vertical | Shear _x | Shear _z | Overturning
Moment, M _x | Overturning
Moment, M₂ | Torque | |---------------------------------------|----------|--------------------|--------------------|---------------------------------------|---------------------------|---------| | | K | K | K | kip-ft | kip-ft | kip-ft | | Dead Only | 48.20 | 0.00 | -0.00 | 1.85 | 3.15 | -0.00 | | 1.2 Dead+1.6 Wind 0 deg -
No Ice | 57.84 | -0.06 | -41.79 | -5125.06 | 12.84 | -4.22 | | 0.9 Dead+1.6 Wind 0 deg - | 43.38 | -0.06 | -41.79 | -5068.92 | 11.72 | -4.22 | | No Ice | 40.00 | 0.00 | 41.70 | 0000.02 | 11.72 | 7.22 | | 1.2 Dead+1.6 Wind 30 deg - | 57.84 | 20.81 | -36.16 | -4433.96 | -2546.93 | -2.37 | | No Ice | | | | | | | | 0.9 Dead+1.6 Wind 30 deg - | 43.38 | 20.81 | -36.16 | -4385.38 | -2519.68 | -2.37 | | No Ice | E7 04 | 36.10 | -20.85 | 2552.02 | 4402.00 | 0.11 | | 1.2 Dead+1.6 Wind 60 deg -
No Ice | 57.84 | 36.10 | -20.65 | -2553.83 | -4423.22 | 0.11 | | 0.9 Dead+1.6 Wind 60 deg - | 43.38 | 36.10 | -20.85 | -2526.10 | -4375.17 | 0.11 | | No Ice | .0.00 | 33 | _0.00 | | | | | 1.2 Dead+1.6 Wind 90 deg - | 57.84 | 41.72 | 0.06 | 11.23 | -5112.93 | 2.56 | | No Ice | | | | | | | | 0.9 Dead+1.6 Wind 90 deg - | 43.38 | 41.72 | 0.06 | 10.53 | -5057.04 | 2.56 | | No Ice | E7 04 | 26.16 | 20.04 | 2572.06 | 4422.00 | 4.22 | | 1.2 Dead+1.6 Wind 120 deg - No Ice | 57.84 | 36.16 | 20.94 | 2573.86 | -4432.09 | 4.33 | | 0.9 Dead+1.6 Wind 120 deg | 43.38 | 36.16 | 20.94 | 2544.76 | -4383.94 | 4.32 | | - No Ice | .0.00 | 33 | _0.0. | 20 0 | | | | 1.2 Dead+1.6 Wind 150 deg | 57.84 | 20.91 | 36.22 | 4447.43 | -2562.37 | 4.94 | | - No Ice | | 22.21 | | | | | | 0.9 Dead+1.6 Wind 150 deg | 43.38 | 20.91 | 36.22 | 4397.57 | -2534.93 | 4.94 | | - No Ice
1.2 Dead+1.6 Wind 180 deg | 57.84 | 0.06 | 41.79 | 5129.67 | -5.02 | 4.23 | | - No Ice | 37.04 | 0.00 | 41.73 | 3123.07 | -3.02 | 7.20 | | 0.9 Dead+1.6 Wind 180 deg | 43.38 | 0.06 | 41.79 | 5072.05 | -5.92 | 4.23 | | - No Ice | | | | | | | | 1.2 Dead+1.6 Wind 210 deg | 57.84 | -20.81 | 36.16 | 4438.58 | 2554.76 | 2.38 | | - No Ice
0.9 Dead+1.6 Wind 210 deg | 43.38 | -20.81 | 36.16 | 4388.81 | 2525.49 | 2.38 | | - No Ice | 45.50 | -20.01 | 30.10 | 4300.01 | 2323.49 | 2.50 | | 1.2 Dead+1.6 Wind 240 deg | 57.84 | -36.10 | 20.85 | 2558.45 | 4431.07 | -0.11 | | - No Ice | | | | | | | | 0.9 Dead+1.6 Wind 240 deg | 43.38 | -36.10 | 20.85 | 2529.52 | 4380.99 | -0.11 | | - No Ice | 57.04 | 44.70 | 0.00 | 0.00 | 5400.00 | 0.55 | | 1.2 Dead+1.6 Wind 270 deg - No Ice | 57.84 | -41.72 | -0.06 | -6.63 | 5120.32 | -2.57 | | 0.9 Dead+1.6 Wind 270 deg | 43.38 | -41.72 | -0.06 | -7.12 | 5062.86 | -2.57 | | - No Ice | 40.00 | -41.72 | -0.00 | -1.12 | 3002.00 | -2.01 | | 1.2 Dead+1.6 Wind 300 deg | 57.84 | -36.16 | -20.94 | -2569.27 | 4439.92 | -4.34 | | - No Ice | | | | | | | | 0.9 Dead+1.6 Wind 300 deg | 43.38 | -36.16 | -20.94 | -2541.36 | 4389.75 | -4.34 | | - No Ice | E7 0 A | 20.04 | 26.20 | 4440.00 | 2570 40 | -4.94 | | 1.2 Dead+1.6 Wind 330 deg
- No Ice | 57.84 | -20.91 | -36.22 | -4442.83 | 2570.18 | -4.94 | | 0.9 Dead+1.6 Wind 330 deg | 43.38 | -20.91 | -36.22 | -4394.16 | 2540.73 | -4.94 | | - No Ice | | | | | | | |
Load
Combination | Vertical | Shear _x | Shearz | Overturning
Moment, M _x | Overturning
Moment, M₂ | Torque | |----------------------------|----------|--------------------|--------|---------------------------------------|---------------------------|--------| | | K | K | K | kip-ft | kip-ft | kip-ft | | 1.2 Dead+1.0 Ice+1.0 Temp | 130.53 | 0.00 | -0.00 | 31.44 | 53.90 | 0.00 | | 1.2 Dead+1.0 Wind 0 | 130.53 | -0.01 | -12.58 | -1579.36 | 55.70 | -2.10 | | deg+1.0 Ice+1.0 Temp | | | | | | | | 1.2 Dead+1.0 Wind 30 | 130.53 | 6.27 | -10.89 | -1362.71 | -748.97 | -1.19 | | deg+1.0 Ice+1.0 Temp | | | | | | | | 1.2 Dead+1.0 Wind 60 | 130.53 | 10.88 | -6.28 | -772.47 | -1338.48 | 0.04 | | deg+1.0 Ice+1.0 Temp | | | | | | | | 1.2 Dead+1.0 Wind 90 | 130.53 | 12.57 | 0.01 | 33.19 | -1554.87 | 1.26 | | deg+1.0 Ice+1.0 Temp | | | | | | | | 1.2 Dead+1.0 Wind 120 | 130.53 | 10.89 | 6.30 | 838.40 | -1340.16 | 2.14 | | deg+1.0 Ice+1.0 Temp | | | | | | | | 1.2 Dead+1.0 Wind 150 | 130.53 | 6.29 | 10.90 | 1427.40 | -751.88 | 2.45 | | deg+1.0 Ice+1.0 Temp | | | | | | | | 1.2 Dead+1.0 Wind 180 | 130.53 | 0.01 | 12.58 | 1642.37 | 52.34 | 2.10 | | deg+1.0 Ice+1.0 Temp | | | | | | | | 1.2 Dead+1.0 Wind 210 | 130.53 | -6.27 | 10.89 | 1425.71 | 857.00 | 1.19 | | deg+1.0 Ice+1.0 Temp | | | | | | | | 1.2 Dead+1.0 Wind 240 | 130.53 | -10.88 | 6.28 | 835.48 | 1446.50 | -0.04 | | deg+1.0 Ice+1.0 Temp | | | | | | | | 1.2 Dead+1.0 Wind 270 | 130.53 | -12.57 | -0.01 | 29.83 | 1662.88 | -1.26 | | deg+1.0 Ice+1.0 Temp | | | | | | | | 1.2 Dead+1.0 Wind 300 | 130.53 | -10.89 | -6.30 | -775.38 | 1448.18 | -2.14 | | deg+1.0 Ice+1.0 Temp | | | | | | | | 1.2 Dead+1.0 Wind 330 | 130.53 | -6.29 | -10.90 | -1364.38 | 859.91 | -2.45 | | deg+1.0 Ice+1.0 Temp | | | | | | | | Dead+Wind 0 deg - Service | 48.20 | -0.01 | -8.25 | -1004.45 | 5.01 | -0.21 | | Dead+Wind 30 deg - Service | 48.20 | 4.11 | -7.14 | -868.75 | -497.37 | -0.11 | | Dead+Wind 60 deg - Service | 48.20 | 7.12 | -4.11 | -499.75 | -865.61 | 0.02 | | Dead+Wind 90 deg - Service | 48.20 | 8.23 | 0.01 | 3.67 | -1001.03 | 0.15 | | Dead+Wind 120 deg - | 48.20 | 7.14 | 4.13 | 506.62 | -867.36 | 0.23 | | Service | | | | | | | | Dead+Wind 150 deg - | 48.20 | 4.13 | 7.15 | 874.34 | -500.40 | 0.26 | | Service | | | | | | | | Dead+Wind 180 deg - | 48.20 | 0.01 | 8.25 | 1008.29 | 1.51 | 0.21 | | Service | | | | | | | | Dead+Wind 210 deg - | 48.20 | -4.11 | 7.14 | 872.59 | 503.89 | 0.11 | | Service | | | | | | | | Dead+Wind 240 deg - | 48.20 | -7.12 | 4.11 | 503.59 | 872.13 | -0.02 | | Service | | | | | | | | Dead+Wind 270 deg - | 48.20 | -8.23 | -0.01 | 0.17 | 1007.56 | -0.15 | | Service | | | | | | | | Dead+Wind 300 deg - | 48.20 | -7.14 | -4.13 | -502.78 | 873.89 | -0.23 | | Service | | | | | | | | Dead+Wind 330 deg - | 48.20 | -4.13 | -7.15 | -870.50 | 506.93 | -0.26 | | Service | | | | | | | # **Solution Summary** | | Sun | n of Applied Force | es | | Sum of Reactio | ns | | |-------|-------|--------------------|--------|--------|----------------|--------|---------| | Load | PX | PY | PZ | PX | PY | PZ | % Error | | Comb. | K | K | K | K | K | K | | | 1 | 0.00 | -48.20 | 0.00 | -0.00 | 48.20 | 0.00 | 0.000% | | 2 | -0.06 | -57.84 | -41.79 | 0.06 | 57.84 | 41.79 | 0.003% | | 3 | -0.06 | -43.38 | -41.79 | 0.06 | 43.38 | 41.79 | 0.002% | | 4 | 20.81 | -57.84 | -36.16 | -20.81 | 57.84 | 36.16 | 0.000% | | 5 | 20.81 | -43.38 | -36.16 | -20.81 | 43.38 | 36.16 | 0.000% | | 6 | 36.10 | -57.84 | -20.85 | -36.10 | 57.84 | 20.85 | 0.000% | | 7 | 36.10 | -43.38 | -20.85 | -36.10 | 43.38 | 20.85 | 0.000% | | 8 | 41.72 | -57.84 | 0.06 | -41.72 | 57.84 | -0.06 | 0.003% | | 9 | 41.72 | -43.38 | 0.06 | -41.72 | 43.38 | -0.06 | 0.006% | | 10 | 36.16 | -57.84 | 20.94 | -36.16 | 57.84 | -20.94 | 0.000% | | 11 | 36.16 | -43.38 | 20.94 | -36.16 | 43.38 | -20.94 | 0.000% | | 12 | 20.91 | -57.84 | 36.22 | -20.91 | 57.84 | -36.22 | 0.000% | | 13 | 20.91 | -43.38 | 36.22 | -20.91 | 43.38 | -36.22 | 0.000% | | 14 | 0.06 | -57.84 | 41.79 | -0.06 | 57.84 | -41.79 | 0.003% | | 15 | 0.06 | -43.38 | 41.79 | -0.06 | 43.38 | -41.79 | 0.006% | | | Sur | n of Applied Force | s | | Sum of Reaction | ns | | |-------|--------|--------------------|--------|--------|-----------------|--------|---------| | Load | PX | PY | PZ | PX | PY | PZ | % Error | | Comb. | K | K | K | K | K | K | | | 16 | -20.81 | -57.84 | 36.16 | 20.81 | 57.84 | -36.16 | 0.000% | | 17 | -20.81 | -43.38 | 36.16 | 20.81 | 43.38 | -36.16 | 0.000% | | 18 | -36.10 | -57.84 | 20.85 | 36.10 | 57.84 | -20.85 | 0.000% | | 19 | -36.10 | -43.38 | 20.85 | 36.10 | 43.38 | -20.85 | 0.000% | | 20 | -41.72 | -57.84 | -0.06 | 41.72 | 57.84 | 0.06 | 0.007% | | 21 | -41.72 | -43.38 | -0.06 | 41.72 | 43.38 | 0.06 | 0.006% | | 22 | -36.16 | -57.84 | -20.94 | 36.16 | 57.84 | 20.94 | 0.000% | | 23 | -36.16 | -43.38 | -20.94 | 36.16 | 43.38 | 20.94 | 0.000% | | 24 | -20.91 | -57.84 | -36.22 | 20.91 | 57.84 | 36.22 | 0.000% | | 25 | -20.91 | -43.38 | -36.22 | 20.91 | 43.38 | 36.22 | 0.000% | | 26 | 0.00 | -130.53 | 0.00 | -0.00 | 130.53 | 0.00 | 0.000% | | 27 | -0.01 | -130.53 | -12.58 | 0.01 | 130.53 | 12.58 | 0.001% | | 28 | 6.28 | -130.53 | -10.89 | -6.27 | 130.53 | 10.89 | 0.001% | | 29 | 10.88 | -130.53 | -6.28 | -10.88 | 130.53 | 6.28 | 0.001% | | 30 | 12.57 | -130.53 | 0.01 | -12.57 | 130.53 | -0.01 | 0.001% | | 31 | 10.89 | -130.53 | 6.30 | -10.89 | 130.53 | -6.30 | 0.001% | | 32 | 6.29 | -130.53 | 10.90 | -6.29 | 130.53 | -10.90 | 0.001% | | 33 | 0.01 | -130.53 | 12.58 | -0.01 | 130.53 | -12.58 | 0.001% | | 34 | -6.28 | -130.53 | 10.89 | 6.27 | 130.53 | -10.89 | 0.001% | | 35 | -10.88 | -130.53 | 6.28 | 10.88 | 130.53 | -6.28 | 0.001% | | 36 | -12.57 | -130.53 | -0.01 | 12.57 | 130.53 | 0.01 | 0.001% | | 37 | -10.89 | -130.53 | -6.30 | 10.89 | 130.53 | 6.30 | 0.001% | | 38 | -6.29 | -130.53 | -10.90 | 6.29 | 130.53 | 10.90 | 0.001% | | 39 | -0.01 | -48.20 | -8.25 | 0.01 | 48.20 | 8.25 | 0.002% | | 40 | 4.11 | -48.20 | -7.14 | -4.11 | 48.20 | 7.14 | 0.002% | | 41 | 7.13 | -48.20 | -4.11 | -7.12 | 48.20 | 4.11 | 0.002% | | 42 | 8.23 | -48.20 | 0.01 | -8.23 | 48.20 | -0.01 | 0.002% | | 43 | 7.14 | -48.20 | 4.13 | -7.14 | 48.20 | -4.13 | 0.002% | | 44 | 4.13 | -48.20 | 7.15 | -4.13 | 48.20 | -7.15 | 0.002% | | 45 | 0.01 | -48.20 | 8.25 | -0.01 | 48.20 | -8.25 | 0.002% | | 46 | -4.11 | -48.20 | 7.14 | 4.11 | 48.20 | -7.14 | 0.002% | | 47 | -7.13 | -48.20 | 4.11 | 7.12 | 48.20 | -4.11 | 0.002% | | 48 | -8.23 | -48.20 | -0.01 | 8.23 | 48.20 | 0.01 | 0.002% | | 49 | -7.14 | -48.20 | -4.13 | 7.14 | 48.20 | 4.13 | 0.002% | | 50 | -4.13 | -48.20 | -7.15 | 4.13 | 48.20 | 7.15 | 0.002% | # **Non-Linear Convergence Results** | Load | Converged? | Number | Displacement | Force | |-------------|------------|-----------|--------------|------------| | Combination | | of Cycles | Tolerance | Tolerance | | 1 | Yes | 6 | 0.0000001 | 0.0000001 | | 2 | Yes | 15 | 0.00003911 | 0.00008700 | | 3 | Yes | 15 | 0.00002563 | 0.00006789 | | 4 | Yes | 18 | 0.0000001 | 0.00012194 | | 5 | Yes | 18 | 0.0000001 | 0.00008634 | | 6 | Yes | 18 | 0.0000001 | 0.00012326 | | 7 | Yes | 18 | 0.0000001 | 0.00008732 | | 8 | Yes | 15 | 0.00003913 | 0.00006799 | | 9 | Yes | 14 | 0.00006153 | 0.00012208 | | 10 | Yes | 18 | 0.0000001 | 0.00012752 | | 11 | Yes | 18 | 0.0000001 | 0.00009034 | | 12 | Yes | 18 | 0.0000001 | 0.00012184 | | 13 | Yes | 18 | 0.0000001 | 0.00008614 | | 14 | Yes | 15 | 0.00003911 | 0.00007642 | | 15 | Yes | 14 | 0.00006149 | 0.00013567 | | 16 | Yes | 18 | 0.0000001 | 0.00012552 | | 17 | Yes | 18 | 0.0000001 | 0.00008885 | | 18 | Yes | 18 | 0.0000001 | 0.00012399 | | 19 | Yes | 18 | 0.0000001 | 0.00008774 | | 20 | Yes | 14 | 0.00009200 | 0.00013549 | | 21 | Yes | 14 | 0.00006152 | 0.00010953 | | 22 | Yes | 18 | 0.0000001 | 0.00012228 | | 23 | Yes | 18 | 0.0000001 | 0.00008645 | | 24 | Yes | 18 | 0.0000001 | 0.00012818 | | 25 | Yes | 18 | 0.0000001 | 0.00009078 | | | | | | | | 26 | Yes | 13 | 0.0000001 | 0.00001886 | |----|-----|----|------------|------------| | 27 | Yes | 16 | 0.00012275 | 0.00008169 | | 28 | Yes | 16 | 0.00012250 | 0.00012335 | | 29 | Yes | 16 | 0.00012250 | 0.00012516 | | 30 | Yes | 16 | 0.00012279 | 0.00007930 | | 31 | Yes | 16 | 0.00012241 | 0.00013631 | | 32 | Yes | 16 | 0.00012240 | 0.00012835 | | 33 | Yes | 16 | 0.00012266 | 0.00008468 | | 34 | Yes | 16 | 0.00012226 | 0.00014616 | | 35 | Yes | 16 | 0.00012226 | 0.00014384 | | 36 | Yes | 16 | 0.00012262 | 0.00008441 | | 37 | Yes | 16 | 0.00012234 | 0.00013347 | | 38 | Yes | 16 | 0.00012235 | 0.00014196 | | 39 | Yes | 14 | 0.0000001 | 0.00003165 | | 40 | Yes | 14 | 0.0000001 | 0.00002837 | | 41 | Yes | 14 | 0.0000001 | 0.00002921 | | 42 | Yes | 14 | 0.0000001 | 0.00003140 | | 43 | Yes | 14 | 0.0000001 | 0.00003195 | | 44 | Yes | 14 | 0.0000001 | 0.00002763 | | 45 | Yes | 14 | 0.0000001 | 0.00003174 | | 46 | Yes | 14 | 0.0000001 | 0.00003105 | | 47 | Yes | 14 | 0.0000001 | 0.00002994 | | 48 | Yes | 14 | 0.0000001 | 0.00003158 | | 49 | Yes | 14 | 0.0000001 | 0.00002790 | | 50 | Yes | 14 | 0.0000001 | 0.00003248 | # **Maximum Tower Deflections - Service Wind** | Section
No. | Elevation | Horz.
Deflection | Gov.
Load | Tilt | Twist | |----------------|----------------|---------------------|--------------|------|-------| | | ft | in | Comb. | • | ۰ | | L1 | 180 - 131.75 | 29.07 | 45 | 1.42 | 0.00 | | L2 | 136.25 - 86.71 | 16.76 | 45 | 1.20 | 0.00 | | L3 | 92.29 - 43.16 | 7.44 | 45 | 0.79 | 0.00 | | L4 | 49.83 - 0 | 2.12 | 45 | 0.39 | 0.00 | ### **Critical Deflections and Radius of Curvature - Service Wind** | Elevation | Appurtenance | Gov.
Load | Deflection | Tilt | Twist | Radius of
Curvature | |-----------|--|--------------|------------|------|-------|------------------------| | ft | | Comb. | in | • | • | ft | | 180.0000 | APXVSPP18-C-A20 w/ Mount
Pipe | 45 | 29.07 | 1.42 | 0.00 | 56160 | | 161.0000 | ERICSSON AIR 21 B2A B4P w/
Mount Pipe | 45 | 23.51 | 1.34 | 0.00 |
14778 | | 147.0000 | (2) LNX-6514DS-A1M w/ Mount
Pipe | 45 | 19.59 | 1.27 | 0.00 | 8508 | | 141.0000 | TME-RRUS 11 BAND 12 | 45 | 17.99 | 1.23 | 0.00 | 7199 | | 140.0000 | 1001940 | 45 | 17.72 | 1.23 | 0.00 | 7021 | | 83.0000 | OG-860/1920/GPS-A | 45 | 5.95 | 0.69 | 0.00 | 5881 | | 78.0000 | OG-860/1920/GPS-A | 45 | 5.23 | 0.64 | 0.00 | 5798 | # **Maximum Tower Deflections - Design Wind** | Section | Elevation | Horz. | Gov. | Tilt | Twist | |---------|----------------|------------|-------|------|-------| | No. | | Deflection | Load | | | | | ft | in | Comb. | ۰ | | | L1 | 180 - 131.75 | 147.76 | 14 | 7.21 | 0.03 | | L2 | 136.25 - 86.71 | 85.26 | 14 | 6.12 | 0.01 | | L3 | 92.29 - 43.16 | 37.87 | 12 | 4.00 | 0.01 | | Section
No. | Elevation | Horz.
Deflection | Gov.
Load | Tilt | Twist | |----------------|-----------|---------------------|--------------|------|-------| | | ft | in | Comb. | 0 | ٥ | | L4 | 49.83 - 0 | 10.79 | 12 | 1.99 | 0.00 | # **Critical Deflections and Radius of Curvature - Design Wind** | Elevation | Appurtenance | Gov.
Load | Deflection | Tilt | Twist | Radius of
Curvature | |-----------|--|--------------|------------|------|-------|------------------------| | ft | | Comb. | in | ۰ | ٥ | ft | | 180.0000 | APXVSPP18-C-A20 w/ Mount
Pipe | 14 | 147.76 | 7.21 | 0.03 | 11372 | | 161.0000 | ERICSSON AIR 21 B2A B4P w/
Mount Pipe | 14 | 119.55 | 6.83 | 0.02 | 2989 | | 147.0000 | (2) LNX-6514DS-A1M w/ Mount
Pipe | 14 | 99.64 | 6.48 | 0.01 | 1717 | | 141.0000 | TME-RRUS 11 BAND 12 | 14 | 91.49 | 6.29 | 0.01 | 1451 | | 140.0000 | 1001940 | 14 | 90.16 | 6.26 | 0.01 | 1415 | | 83.0000 | OG-860/1920/GPS-A | 12 | 30.31 | 3.53 | 0.00 | 1163 | | 78.0000 | OG-860/1920/GPS-A | 12 | 26.61 | 3.28 | 0.00 | 1146 | # **Compression Checks** ### **Pole Design Data** | Section
No. | Elevation | Size | L | L_u | KI/r | Α | P_u | ϕP_n | Ratio
Pu | |----------------|-----------------------|------------------------|-------------|--------|------|-----------------|--------|------------|-------------| | | ft | | ft | ft | | in ² | K | K | ΦP_n | | L1 | 180 - 131.75
(1) | TP31.39x21x0.25 | 48.250
0 | 0.0000 | 0.0 | 23.940
7 | -12.56 | 1686.69 | 0.007 | | L2 | 131.75 -
86.71 (2) | TP40.46x29.921x0.375 | 49.540
0 | 0.0000 | 0.0 | 46.298
3 | -22.31 | 3408.11 | 0.007 | | L3 | 86.71 - 43.16
(3) | TP48.96x38.5229x0.4375 | 49.130
0 | 0.0000 | 0.0 | 65.411
9 | -36.28 | 4767.07 | 0.008 | | L4 | 43.16 - 0 (4) | TP57.25x46.668x0.5 | 49.830
0 | 0.0000 | 0.0 | 90.062
2 | -57.81 | 6465.70 | 0.009 | # Pole Bending Design Data | Section
No. | Elevation | Size | M _{ux} | φ M _{nx} | Ratio
M _{ux} | M _{uy} | ф <i>М_{пу}</i> | Ratio
M _{uy} | |----------------|-----------------------|------------------------|-----------------|--------------------------|--------------------------|-----------------|-------------------------|--------------------------| | | ft | | kip-ft | kip-ft | ϕM_{nx} | kip-ft | kip-ft | ϕM_{nv} | | L1 | 180 - 131.75
(1) | TP31.39x21x0.25 | 505.83 | 1046.01 | 0.484 | 0.00 | 1046.01 | 0.000 | | L2 | 131.75 -
86.71 (2) | TP40.46x29.921x0.375 | 1737.10 | 2721.23 | 0.638 | 0.00 | 2721.23 | 0.000 | | L3 | 86.71 - 43.16 | TP48.96x38.5229x0.4375 | 3169.97 | 4611.06 | 0.687 | 0.00 | 4611.06 | 0.000 | | L4 | 43.16 - 0 (4) | TP57.25x46.668x0.5 | 5132.77 | 7538.14 | 0.681 | 0.00 | 7538.14 | 0.000 | # Pole Shear Design Data | Section
No. | Elevation | Size | Actual | ϕV_n | Ratio | Actual
T | ϕT_n | Ratio | |----------------|---------------|------------------------|--------|------------|------------|-------------|------------|------------| | NO. | • | | V_u | | V_u | T_u | | T_u | | | ft | | K | K | ϕV_n | kip-ft | kip-ft | ϕT_n | | L1 | 180 - 131.75 | TP31.39x21x0.25 | 25.36 | 843.35 | 0.030 | 1.62 | 2094.57 | 0.001 | | | (1) | | | | | | | | | L2 | 131.75 - | TP40.46x29.921x0.375 | 30.72 | 1704.05 | 0.018 | 2.28 | 5449.12 | 0.000 | | | 86.71 (2) | | | | | | | | | L3 | 86.71 - 43.16 | TP48.96x38.5229x0.4375 | 36.53 | 2383.53 | 0.015 | 3.38 | 9233.42 | 0.000 | | | (3) | | | | | | | | | L4 | 43.16 - 0 (4) | TP57.25x46.668x0.5 | 41.87 | 3232.85 | 0.013 | 4.94 | 15094.75 | 0.000 | | | ` ' | | | | | | | | | Pole Interaction Design Data | | | | | | | | | | |------------------------------|-----------------------|-------------------------|--------------------------|--------------------------|-------------------------|-------------------------|-----------------|------------------|----------| | Section
No. | Elevation | Ratio
P _u | Ratio
M _{ux} | Ratio
M _{uy} | Ratio
V _u | Ratio
T _u | Comb.
Stress | Allow.
Stress | Criteria | | | ft | ϕP_n | φ <i>M</i> _{nx} | ϕM_{nv} | $\overline{\phi V_n}$ | ϕT_n | Ratio | Ratio | | | L1 | 180 - 131.75
(1) | 0.007 | 0.484 | 0.000 | 0.030 | 0.001 | 0.492 | 1.000 | 4.8.2 | | L2 | 131.75 -
86.71 (2) | 0.007 | 0.638 | 0.000 | 0.018 | 0.000 | 0.645 | 1.000 | 4.8.2 🖊 | | L3 | 86.71 - 43.16
(3) | 0.008 | 0.687 | 0.000 | 0.015 | 0.000 | 0.695 | 1.000 | 4.8.2 🖊 | | L4 | 43.16 - 0 (4) | 0.009 | 0.681 | 0.000 | 0.013 | 0.000 | 0.690 | 1.000 | 4.8.2 🖊 | | Section Capacity Table | | | | | | | | | |------------------------|-----------------|-------------------|------------------------|---------------------|--------|--------------------------|-------------------|--------------| | Section
No. | Elevation
ft | Component
Type | Size | Critical
Element | P
K | øP _{allow}
K | %
Capacity | Pass
Fail | | L1 | 180 - 131.75 | Pole | TP31.39x21x0.25 | 1 | -12.56 | 1686.69 | 49.2 | Pass | | L2 | 131.75 - 86.71 | Pole | TP40.46x29.921x0.375 | 2 | -22.31 | 3408.11 | 64.5 | Pass | | L3 | 86.71 - 43.16 | Pole | TP48.96x38.5229x0.4375 | 3 | -36.28 | 4767.07 | 69.5 | Pass | | L4 | 43.16 - 0 | Pole | TP57.25x46.668x0.5 | 4 | -57.81 | 6465.70 | 69.0 | Pass | | | | | | | | | Summary | | | | | | | | | Pole (L3) | 69.5 [°] | Pass | | | | | | | | RATING = | 69.5 | Pass | # APPENDIX B BASE LEVEL DRAWING # APPENDIX C ADDITIONAL CALCULATIONS #### **DESIGNED APPURTENANCE LOADING** | TYPE | ELEVATION | TYPE | ELEVATION | | |--|-----------|------------------------------|-----------|--| | APXVSPP18-C-A20 w/ Mount Pipe | 180 | RRH2X60-AWS | 147 | | | APXVSPP18-C-A20 w/ Mount Pipe | 180 | DB-T1-6Z-8AB-0Z | 147 | | | APXVSPP18-C-A20 w/ Mount Pipe | 180 | DB-T1-6Z-8AB-0Z | 147 | | | FD9R6004/1C-3L | 180 | RRH2X60-PCS | 147 | | | FD9R6004/1C-3L | 180 | RRH2X60-PCS | 147 | | | FD9R6004/1C-3L | 180 | RRH2X60-PCS | 147 | | | Platform Mount [LP 601-1] | 180 | Platform Mount [LP 712-1] | 147 | | | 8-ft Ladder | 180 | TME-RRUS 11 BAND 12 | 141 | | | (3) 2.375" OD x 6' Mount Pipe | 180 | TME-RRUS 11 BAND 12 | 141 | | | (3) 2.375" OD x 6' Mount Pipe | 180 | TME-RRUS 11 BAND 12 | 141 | | | (3) 2.375" OD x 6' Mount Pipe | 180 | Pipe Mount [PM 601-3] | 141 | | | ERICSSON AIR 21 B2A B4P w/ Mount | 161 | 1001940 | 140 | | | Pipe | | 1001940 | 140 | | | ERICSSON AIR 21 B2A B4P w/ Mount | 161 | 1001940 | 140 | | | Pipe | | (2) 7770.00 w/ Mount Pipe | 140 | | | ERICSSON AIR 21 B2A B4P w/ Mount
Pipe | 161 | (2) 7770.00 w/ Mount Pipe | 140 | | | Ericsson Air 21 B4A B12P-B8P 4FT w/ | 161 | (2) 7770.00 w/ Mount Pipe | 140 | | | Mount Pipe | 101 | (2) LGP 17201 | 140 | | | Ericsson Air 21 B4A B12P-B8P 4FT w/ | 161 | (2) LGP 17201 | 140 | | | Mount Pipe | | (2) LGP 17201 | 140 | | | Ericsson Air 21 B4A B12P-B8P 4FT w/ | 161 | (2) LGP21901 | 140 | | | Mount Pipe | | (2) LGP21901 | 140 | | | RRUS 11 B12 | 161 | (2) LGP21901 | 140 | | | RRUS 11 B12 | 161 | HPA-65R-BUU-H6 w/ Mount Pipe | 140 | | | RRUS 11 B12 | 161 | HPA-65R-BUU-H6 w/ Mount Pipe | 140 | | | Platform Mount [LP 305-1] | 161 | HPA-65R-BUU-H6 w/ Mount Pipe | 140 | | | 2.375" OD x 6' Mount Pipe | 161 | RRUS 12 | 140 | | | (2) LNX-6514DS-A1M w/ Mount Pipe | 147 | RRUS 12 | 140 | | | (2) LNX-6514DS-A1M w/ Mount Pipe | 147 | RRUS 12 | 140 | | | (2) LNX-6514DS-A1M w/ Mount Pipe | 147 | RRUS A2 | 140 | | | (2) HBXX-6517DS-A2M w/ Mount Pipe | 147 | RRUS A2 | 140 | | | (2) HBXX-6517DS-A2M w/ Mount Pipe | 147 | RRUS A2 | 140 | | | (2) HBXX-6517DS-A2M w/ Mount Pipe | 147 | DC6-48-60-18-8F | 140 | | | KS24019-L112A | 147 | Platform Mount [LP 303-1] | 140 | | | (2) FD9R6004/1C-3L | 147 | OG-860/1920/GPS-A | 83 | | | (2) FD9R6004/1C-3L | 147 | OG-860/1920/GPS-A | 83 | | | (2) FD9R6004/1C-3L | 147 | Side Arm Mount [SO 701-1] | 83 | | | RRH2X60-AWS | 147 | Side Arm Mount [SO 701-1] | 83 | | | RRH2X60-AWS | 147 | OG-860/1920/GPS-A | 78 | | | | | Side Arm Mount [SO 701-1] | 78 | | #### **MATERIAL STRENGTH** | GRADE | Fy | Fu | GRADE | Fy | Fu | |---------|--------|--------|-------|----|----| | A572-65 | 65 ksi | 80 ksi | | | | #### **TOWER DESIGN NOTES** - Tower is located in Tolland County, Connecticut. Tower designed for Exposure C to the TIA-222-G Standard. Tower designed for a 101 mph basic wind in accordance with the TIA-222-G Standard. - Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height. - 1. Deflections are based upon a 60 mph wind. 2. Tower Structure Class II. 3. Topographic Category 1 with Crest Height of 0.0000 ft 4. TOWER RATING: 69.5% | Paul J Ford and Company | | ^{Job:} 180' Monopole / Co | olumbia/Deojay | | | | |-------------------------|--------------------|--|---|-------------|--|--| | | Columbus, OH 43215 | Project: PJF 37516-0222 / BU 876391 | | | | | | | | ^{Client:} Crown Castle | Drawn by: Kyle Thorpe | App'd: | | | | | | Code: TIA-222-G | Date: 01/12/17 | Scale: NTS | | | | FAX: 614.448.4105 | | Path: G:TOWER\375 Crown Castle\2017\37517-0133 876391 CC | DLUMBIA - DEOJAY:37517-0133.001.7805 SA,
1346596:37517-0133.001.780 | Dwg No. E-1 | | | ### Stiffened or Unstiffened, Ungrouted, Circular Base Plate - Any Rod Material TIA Rev G Assumption: Clear space between bottom of leveling nut and top of concrete not exceeding (1)*(Rod Diameter) Site Data BU#: 876391 Site Name: Columbia / Deojay App #: Config: Width: Height: Thick: Notch: Grade: Weld str.: Reinf. Fillet Weld Weld Type: Groove Depth: Groove Angle: Fillet H. Weld: Fillet V. Weld: Pole Manufacturer: Other | Reactions | | | | | | |---------------|------|------------------|--|--|--| | Mu: | 5133 | ft-kips | | | | | Axial, Pu: | 58 | kips | | | | | Shear, Vu: | 42 | kips | | | | | Eta Factor, η | 0.5 | TIA G (Fig. 4-4) | | | | | | | | | | | If No stiffeners, Criteria: AISC LRFD <-Only Applicable to Unstiffened Cases Qty: 20 2.25 Diam: Rod Material: A615-J 100 Strength (Fu): ksi **Anchor Rod Data** Yield (Fy): 75 ksi **Bolt Circle:** 66 in **Anchor Rod Results** Max Rod (Cu+ Vu/ή): 193.8 Kips Allowable Axial, Φ*Fu*Anet: 260.0 Kips Anchor Rod Stress Ratio: 74.5% Pass Flexural Check Rigid AISC LRFD Plate Data Diam: 72 in 2.25 Thick: in Grade: 60 ksi Single-Rod B-eff: 9.09 in Stiffener Data (Welding at both sides) in ** in lin lin in in ksi ksi "0" if N<u>one</u> degrees <-- Disregard **Base Plate Results** Base Plate Stress: 43.9 ksi Allowable Plate Stress: 54.0 ksi Base Plate Stress Ratio: 81.3% Pass φ*Tn Rigid AISC LRFD φ*Fy Y.L. Length: 32.84 <u>n/a</u> Stiffener Results Horizontal Weld: n/a Vertical Weld: n/a Plate Flex+Shear, fb/Fb+(fv/Fv)^2: n/a Plate Tension+Shear, ft/Ft+(fv/Fv)^2: n/a Plate Comp. (AISC Bracket): Pole Punching Shear Check: n/a **Pole Results** **Pole Data** Diam: 57.25 in Thick: 0.5 in Grade: 65 ksi # of Sides: 18 "0" IF Round Fu 80 ksi 0 Analysis Date: 1/12/2017 ^{* 0 =} none, 1 = every bolt, 2 = every 2 bolts, 3 = 2 per bolt ^{**} Note: for complete joint penetration groove welds the groove depth must be exactly 1/2 the stiffener thickness for calculation purposes PJF Job No. **37517-0133.001.7805** Project Name: BU 876391 / Columbia / Deojay page 1 **Factored Foundation Loads:** Factored Axial Load (+Comp, -Ten) = Factored Horiz. Load at Top of Pier = Factored OTM at Top of Pier = | LC1 | LC2 | | |-----------|------|------| | 58 | 43.5 | kips | | 42 | 42 | kips | | 5133 | 5133 | kips | Engineer: KAT # **LRFD Resistance and Load Factors:** | Φ | |------| | 0.75 | | 0.75 | | 0.75 | | Dead Loa | d Factors | |----------|-----------| | | | | 1.2 | 0.9 | |-----|-----| | 1.2 | 0.9 | # Concrete Weight = **Soil Properties:** Soil Bearing = Soil Weight = | Depth to Water Table = | | |------------------------|--| | Uplift Cone from | | | 5 | ft | |-----|------------| | Тор | of footing | # Soil Wedges have been included to counteract overturning. | Layer | Soil | Cohesion | Friction | Ult | Depth | |-------|---------|----------|----------|---------|-------| | Thk | Density | | Angle | Bearing | | | ft | pcf | ksf | degrees | ksf | ft | | 7 | 100 | 0 | 30 | 12 | 7.00 | # Dimensions: | Pier Shape = | Square | _ | |------------------------------|--------|-----------| | Pier Width = | 7 | ft Square | | Pier Height above Grade = | 1 | ft | | Depth to Bottom of Footing = | 7 | ft | | Footing Thickness = | 3 | ft | | Footing Width, B = | 26 | ft | | Footing Length, L = | 26 | ft | # Concrete: | oncicle. | | | |---------------------|----|-----| | Concrete Strength = | 4 | ksi | | Rebar Strength = | 60 | ksi | # **Summary Results:** | | Required | | Available | | |-------------------------------|----------|------|-----------|------| | Maximum Net Soil Bearing = | 3.701 | ksf | 9.000 | ksf | | Uplift = | 0.0 | kips | 418.7 | kips | | Punching Shear Stress = | 0.054 | ksi | 0.190 | ksi | | Bending Shear Stress = | 378.4 | kips | 926.7 | kips | | Bending Moment = | 2635.4 | k-ft | 4775.1 | k-ft | | Conc Pier Reinforcing Steel = | 5343.0 | k-ft | 6933.3 | k-ft | | Total Pad Reinf Stl = | 70.00 | _in^2 >= 20.22 in^2 = Min Stl, OK | |------------------------|-------|-----------------------------------| | Total Pier Reinf Stl = | 39.00 | in^2 >= 35.28 in^2 = Min Stl, OK | | Footing Thickness = | 3.00 | ft >= 1.5 ft = Min Ftg Thk, OK | | Stress Ratio = | 41.1% | in Soil Bearing | |----------------|-------|-------------------| | Stress Ratio = | 0.0% | in Uplift | | Stress Ratio = | 28.6% | in Punching Shear | | Stress Ratio = | 40.8% | in Bending Shear | | Stress Ratio = | 55.2% | in Bending Moment | | Stress Ratio = | 77.1% | in Pier Rebar | # 14 THOMPSON HILL RD **Location** 14 THOMPSON HILL RD **Mblu** 011/ / 069/ / Acct# 00054300 Owner LANATI JOSHUA & EILEEN **Assessment** \$250,400 **Appraisal** \$502,300 PID 543 Building Count 1 # **Current Value** | Appraisal | | | | | |----------------|--------------|-----------|-----------|--| | Valuation Year | Improvements | Land | Total | | | 2016 | \$127,400 | \$374,900 | \$502,300 | | | | Assessment | | | | | Valuation Year | Improvements | Land | Total | | | 2016 | \$89,200 | \$161,200 | \$250,400 | | # **Owner of Record** **Owner** LANATI JOSHUA & EILEEN Sale Price \$155,000 Co-Owner Certificate Address 14 THOMPSON HILL RD Book & Page 0197/0163 COLUMBIA, CT 06237 Sale Date 04/14/2011 DLUMBIA, CT 06237 Sale Date 04/14/2011 **Instrument** 28 # **Ownership History** | Ownership History | | | | | | |-----------------------------|------------|-------------|-------------|------------|------------| | Owner | Sale Price | Certificate | Book & Page | Instrument | Sale Date | | LANATI JOSHUA & EILEEN | \$155,000 | | 0197/0163 | 28 | 04/14/2011 | | DEOJAY THOMAS R ESTATE OF | \$0 | | 0122/0722 | 25 | 09/23/2010 | | DEOJAY THOMAS R | \$0 | | 0122/0722 | | 10/25/1999 | | DEOJAY THOMAS R & WILLIE JO | \$0 | | 0059/0018 | | 05/18/1982 | # **Building Information** # **Building 1: Section 1** Year Built: 1955 Living Area: 1,677 Replacement Cost: \$190,432 Building Percent 66 Good: # **Replacement Cost** **Less Depreciation:** \$125,700 | Build | ling Attributes | |--------------------|-----------------| | Field | Description | | Style | Conventional | | Model | Residential | | Grade: | Average +20 | | Stories: | 1 1/2 Stories | | Occupancy | 1 | | Exterior Wall 1 | Stucco/Masonry | | Exterior Wall 2 | Wood Shingle | | Roof Structure: | Gable/Hip | | Roof Cover | Asphalt | | Interior Wall 1 | Drywall/Sheet | | Interior Wall 2 | | | Interior Flr 1 | Pine/Soft Wood | | Interior Flr 2 | | | Heat Fuel | Electric | | Heat Type: | Electr Basebrd | | AC Type: | None | | Total Bedrooms: | 3 Bedrooms | | Total Bthrms: | 2 | | Total Half Baths: | 1 | | Total Xtra Fixtrs: | | | Total Rooms: | 8 Rooms | | Bath Style: | Average | | Kitchen Style: | Average | | Whirlpool | | | Fireplace(s) | 1 | | Fndtn. Level | | # **Building Photo** $(http://images.vgsi.com/photos2/ColumbiaCTPhotos//\00\00\75/$ # **Building Layout** | Building Sub-Areas (sq ft) | | | <u>Legend</u> | |----------------------------|----------------------------|---------------|----------------| | Code | Description | Gross
Area | Living
Area | | FFL | First Floor Living | 1,316 | 1,316 | | EAF | Attic, Expansion, Finished | 902 | 361 | | FGR | Garage, Framed | 286 | 0 | | FOP | Porch, Open, Finished | 130 | 0 | | UBM | Basement, Unfinished | 588 | 0 | | | | 3,222 | 1,677 | # **Extra Features** | Extra Features | <u>Legend</u> | |----------------------------|---------------| | No Data for Extra Features | | ### Land I and IIse Luna OSC Luna Line Talaudon Use Code1010DescriptionSingle FamZoneRA Neighborhood 12 Alt Land Appr No Category Size (Acres) 29.4 Frontage 0 Depth 0 **Assessed Value** \$161,200 **Appraised Value** \$374,900 # Outbuildings | Outbuildings | | | | <u>Legend</u> | | | |--------------|-------------------|----------|-----------------|---------------|---------|--------| | Code | Description | Sub Code | Sub Description | Size | Value | Bldg # | | BRN3 | Barn 1 St. w Loft | | | 540 S.F. | \$1,300 | 1 | | SHD1 | Shed Frame | | | 64 S.F. | \$400 | 1 | # **Valuation History** | Appraisal | | | | | |----------------|--------------|-----------|-----------|--| | Valuation Year | Improvements | Land | Total | | | 2015 | \$123,000 | \$374,900 | \$497,900 | | | 2014 | \$123,000 | \$374,900 | \$497,900 | | | 2013 | \$123,000 | \$374,900 | \$497,900 | | | Assessment | | | | | |----------------|--------------|-----------|-----------|--| | Valuation Year | Improvements | Land | Total | | | 2015 | \$86,100 | \$160,330 | \$246,430 | | | 2014 | \$86,100 | \$160,330 | \$246,430 | | | 2013 | \$86,100 | \$160,330 | \$246,430 | | (c) 2016 Vision Government Solutions, Inc. All rights reserved. CRCOG May 10, 2017 # 14 Thompson Hill Road, Columbia Map ### **Property Information** Property ID 09013030-011-069 Location Owner 14 THOMPSON HILL RD CROWN CABLE TOWERS 09 LLC # MAP FOR REFERENCE ONLY NOT A LEGAL DOCUMENT CRCOG makes no claims and no warranties, expressed or implied, concerning the validity or accuracy of the GIS data presented on this map. PROJECT: DO ESS GROUND MOUNT OPTION 2 SITE NAME: **COLUMBIA / DEOJAY** SITE CASCADE: CT33XC571 SITE ADDRESS: 14 THOMPSON HILL RD COLUMBIA, CT 06237 SITE TYPE: MONOPOLE TOWER MARKET: NORTHERN CONNECTICUT the solutions are endless 033 Watervilet Shaker Rd | Albany, NY 1220: Phone: 518-690-0790 | Fax: 518-690-0793 www.infinigy.com JOB NUMBER 514-000 SARATOGA SPRINGS, NY 12866 OFFICE#. (518) 306-3740 THESE DOCUMENTS ARE CONFIDENTIAL AND ARE THE SOLE PROPERTY OF SPRINT AND MAY NOT BE REPRODUCED, DISSEMINATED OR REDISTRIBUTED WITHOUT THE EXPRESS WRITTEN CONSENT OF | DESCRIPTION | DATE | BY | REV. | |-------------------|---------|-----|--------------| | | | | | | | | _ | \mathbf{L} | | | | _ | _ | | issued for permit | 2/13/17 | JLM | 0 | | ISSUED FOR REVIEW | 1/18/17 | SKB | A | | | | | | COLUMBIA / DEOJAY CT33XC571 14 THOMPSON HILL RD COLUMBIA, CT 06237 TITLE SHEET & PROJECT DATA - SHEET NUMBER: T-1 THESE OUTLINE SPECIFICATIONS IN CONJUNCTION WITH THE SPRINT STANDARD CONSTRUCTION
SPECIFICATIONS, INCLUDING CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR. ### SECTION 01 100 - SCOPE OF WORK ### PART 1 - GENERAL - 1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE SPRINT CONSTRUCTION STANDARDS FOR WIRELESS SITES, CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR. - 1.2 RELATED DOCUMENTS: - A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION - B. SPRINT 'STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES' ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH. - 1.3 PRECEDENCE: SHOULD CONFLICTS OCCUR BETWEEN THE STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES INCLUDING THE STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES AND THE CONSTRUCTION DRAWINGS, INFORMATION ON THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE. NOTIFY SPRINT CONSTRUCTION MANAGER IF THIS OCCURS. - 1.4 NATIONALLY RECOGNIZED CODES AND STANDARDS: - A. THE WORK SHALL COMPLY WITH APPLICABLE NATIONAL AND LOCAL CODES AND STANDARDS, LATEST EDITION, AND PORTIONS THEREOF, INCLUDED BUT NOT LIMITED TO THE FOIL OWING: - 1. GR-63-CORE NEBS REQUIREMENTS: PHYSICAL PROTECTION - 5. GR-78-CORE GENERIC REQUIREMENTS FOR THE PHYSICAL DESIGN AND MANUFACTURE OF TELECOMMUNICATIONS EQUIPMENT. - 3.—GR-1089 CORE, ELECTROMAGNETIC COMPATIBILITY AND ELECTRICAL SAFETY —GENERIC CRITERIA FOR NETWORK TELECOMMUNICATIONS EQUIPMENT. - NATIONAL FIRE PROTECTION ASSOCIATION CODES AND STANDARDS (NFPA) INCLUDING NFPA 70 (NATIONAL ELECTRICAL CODE — "NEC") AND NFPA 101 (LIFE SAFETY CODE). - 5. AMERICAN SOCIETY FOR TESTING OF MATERIALS (ASTM) - 6. INSTITUTE OF ELECTRONIC AND ELECTRICAL ENGINEERS (IEEE) - 7. AMERICAN CONCRETE INSTITUTE (ACI) - 8. AMERICAN WIRE PRODUCERS ASSOCIATION (AWPA) - 9. CONCRETE REINFORCING STEEL INSTITUTE (CRSI) - 10. AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO) - 11. PORTLAND CEMENT ASSOCIATION (PCA) - 12. NATIONAL CONCRETE MASONRY ASSOCIATION (NCMA) - 13. BRICK INDUSTRY ASSOCIATION (BIA) - 14. AMERICAN WELDING SOCIETY (AWS) - 15. NATIONAL ROOFING CONTRACTORS ASSOCIATION (NRCA) - 16. SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA) - 17. DOOR AND HARDWARE INSTITUTE (DHI) - 18. OCCUPATIONAL SAFETY AND HEALTH ACT (OSHA) - 19. APPLICABLE BUILDING CODES INCLUDING UNIFORM BUILDING CODE, SOUTHERN BUILDING CODE, BOCA, AND THE INTERNATIONAL BUILDING CODE. ### 1.5 DEFINITIONS - A. WORK: THE SUM OF TASKS AND RESPONSIBILITIES IDENTIFIED IN THE CONTRACT DOCUMENTS. - B. COMPANY: SPRINT CORPORATION - C. ENGINEER: SYNONYMOUS WITH ARCHITECT & ENGINEER AND "A&E". THE DESIGN PROFESSIONAL HAVING PROFESSIONAL RESPONSIBILITY FOR DESIGN OF THE PROJECT. - D. CONTRACTOR: CONSTRUCTION CONTRACTOR; CONSTRUCTION VENDOR; INDIVIDUAL OR ENTITY WHO AFTER EXECUTION OF A CONTRACT IS BOUND TO ACCOMPLISH THE WORK - E. THIRD PARTY VENDOR OR AGENCY: A VENDOR OR AGENCY ENGAGED SEPARATELY BY THE COMPANY, A&E, OR CONTRACTOR TO PROVIDE MATERIALS OR TO ACCOMPLISH SPECIFIC TASKS RELATED TO BUT NOT INCLUDED IN THE WORK. - F. OFCI: OWNER FURNISHED, CONTRACTOR INSTALLED EQUIPMENT. - G. CONSTRUCTION MANAGER ALL PROJECTS RELATED COMMUNICATION TO FLOW THROUGH SPRINT REPRESENTATIVE IN CHARGE OF PROJECT... - 1.6 SITE FAMILIARITY: CONTRACTOR SHALL BE RESPONSIBLE FOR FAMILIARIZING HIMSELF WITH ALL CONTRACT DOCUMENTS, FIELD CONDITIONS AND DIMENSIONS PRIOR TO PROCEEDING WITH CONSTRUCTION. ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE SPRINT CONSTRUCTION MANAGER PRIOR TO THE COMMENCEMENT OF WORK. NO COMPENSATION WILL BE AWARDED BASED ON CLAIM OF LACK OF KNOWLEDGE OR FIELD CONDITIONS. - 1.7 POINT OF CONTACT: COMMUNICATION BETWEEN SPRINT AND THE CONTRACTOR SHALL FLOW THROUGH THE SINGLE SPRINT CONSTRUCTION MANAGER APPOINTED TO MANAGE THE PROJECT FOR SPRINT. - 1.8 ON-SITE SUPERVISION: THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE RESPONSIBLE FOR CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES IN ACCORDANCE WITH THE CONTRACT DOCUMENTS. THE CONTRACTOR SHALL EMPLOY A COMPETENT SUPERINTENDENT WHO SHALL BE IN ATTENDANCE AT THE SITE AT ALL TIMES DURING PERFORMANCE OF THE WORK. - 1.9 DRAWINGS, SPECIFICATIONS AND DETAILS REQUIRED AT JOBSITE: THE CONSTRUCTION CONTRACTOR SHALL MAINTAIN A FULL SET OF THE CONSTRUCTION DRAWINGS, STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES AND THE STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES AT THE JOBSITE FROM MOBILIZATION THROUGH CONSTRUCTION COMPLETION. - A. THE JOBSITE DRAWINGS, SPECIFICATIONS AND DETAILS SHALL BE CLEARLY MARKED DAILY IN RED PENCIL WITH ANY CHANGES IN CONSTRUCTION OVER WHAT IS DEPICTED IN THE DOCUMENTS. AT CONSTRUCTION COMPLETION, THIS JOBSITE MARKUP SET SHALL BE DELIVERED TO THE COMPANY OR COMPANY'S DESIGNATED REPRESENTATIVE TO BE FORWARDED TO THE COMPANY'S A&E VENDOR FOR PRODUCTION OF "AS—BUILT" DRAWINGS. - B. DETAILS ARE INTENDED TO SHOW DESIGN INTENT. MODIFICATIONS MAY BE REQUIRED TO SUIT JOB DIMENSIONS OR CONDITIONS, AND SUCH MODIFICATIONS SHALL BE INCLUDED AS PART OF THE WORK. CONTRACTOR SHALL NOTIFY SPRINT CONSTRUCTION MANAGER OF ANY VARIATIONS PRIOR TO PROCEEDING WITH THE WORK. - C. DIMENSIONS SHOWN ARE TO FINISH SURFACES UNLESS NOTED OTHERWISE. SPACING BETWEEN EQUIPMENT IS THE REQUIRED CLEARANCE. SHOULD THERE BE ANY QUESTIONS REGARDING THE CONTRACT DOCUMENTS, EXISTING CONDITIONS AND/OR DESIGN INTENT, THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING A CLARIFICATION FROM THE SPRINT CONSTRUCTION MANAGER PRIOR TO PROCEPTUING WITH THE WORK. - 1.10 USE OF JOB SITE: THE CONTRACTOR SHALL CONFINE ALL CONSTRUCTION AND RELATED OPERATIONS INCLUDING STAGING AND STORAGE OF MATERIALS AND EQUIPMENT, PARKING, TEMPORARY FACILITIES, AND WASTE STORAGE TO THE LEASE PARCEL UN - 1.11 UTILITIES SERVICES: WHERE NECESSARY TO CUT EXISTING PIPES, ELECTRICAL WIRES, CONDUITS, CABLES, ETC., OF UTILITY SERVICES, OR OF FIRE PROTECTION OR COMMUNICATIONS SYSTEMS, THEY SHALL BE CUT AND CAPPED AT SUITABLE PLACES OR WHERE SHOWN. ALL SUCH ACTIONS SHALL BE COORDINATED WITH THE UTILITY COMPANY INVOLVED: - 1.12 PERMITS / FEES: WHEN REQUIRED THAT A PERMIT OR CONNECTION FEE BE PAID TO A PUBLIC UTILITY PROVIDER FOR NEW SERVICE TO THE CONSTRUCTION PROJECT, PAYMENT OF SUCH FEE SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR. - 1.13 CONTRACTOR SHALL TAKE ALL MEASURES AND PROVIDE ALL MATERIAL NECESSARY FOR PROTECTING EXISTING EQUIPMENT AND PROPERTY. - 1.14 METHODS OF PROCEDURE (MOPS) FOR CONSTRUCTION: CONTRACTOR SHALL PERFORM WORK AS DESCRIBED IN THE FOLLOWING INSTALLATION AND COMMISSIONING MOPS. NOTE: IN SHORT-FORM SPECIFICATIONS ON THE DRAWINGS, A/E TO INSERT LIST OF APPLICABLE MOPS INCLUDING EN-2012-001, EN-2013-002, EL-0568, AND TS-0193 1.15 USE OF ELECTRONIC PROJECT MANAGEMENT SYSTEMS: PART 2 - PRODUCTS (NOT USED) ### PART 3 - EXECUTION - 3.1 TEMPORARY UTILITIES AND FACILITIES: THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL TEMPORARY UTILITIES AND FACILITIES INCESSARY EXCEPT AS OTHERWISE INDICATED IN THE CONSTRUCTION DOCUMENTS. TEMPORARY UTILITIES AND FACILITIES INCLUDE POTABLE WATER, HEAT, HVAC, ELECTRICITY, SANITARY FACILITIES, WASTE DISPOSAL FACILITIES, AND TELEPHONE/COMMUNICATION SERVICES. PROVIDE TEMPORARY UTILITIES AND FACILITIES IN ACCORDANCE WITH OSHA AND THE AUTHORITY HAVING JURISDICTION. CONTRACTOR MAY UTILIZE THE COMPANY ELECTRICAL SERVICE IN THE COMPLETION OF THE WORK WHEN IT BECOMES AVAILABLE. USE OF THE LESSORS OR SITE OWNER'S UTILITIES OR FACILITIES IS EXPRESSLY FORBIDDEN EXCEPT AS OTHERWISE ALLOWED IN THE CONTRACT DOCUMENTS. - 3.2 ACCESS TO WORK: THE CONTRACTOR SHALL PROVIDE ACCESS TO THE JOB SITE FOR AUTHORIZED COMPANY PERSONNEL AND AUTHORIZED REPRESENTATIVES OF THE ARCHITECT/ENGINEER DURING ALL PHASES OF THE WORK. - 3.3 TESTING: REQUIREMENTS FOR TESTING BY THIS CONTRACTOR SHALL BE AS INDICATED HEREWITH, ON THE CONSTRUCTION DRAWINGS, AND IN THE INDIVIDUAL SECTIONS OF THESE SPECIFICATIONS. SHOULD COMPANY CHOOSE TO ENGAGE ANY THIRD-PARTY TO CONDUCT ADDITIONAL TESTING, THE CONTRACTOR SHALL COOPERATE WITH AND PROVIDE A WORK AREA FOR COMPANY'S TEST AGENCY. - 3.4 DIMENSIONS: VERIFY DIMENSIONS INDICATED ON DRAWINGS WITH FIELD DIMENSIONS BEFORE FABRICATION OR ORDERING OF MATERIALS. DO NOT SCALE DRAWINGS. 3.5 EXISTING CONDITIONS: NOTIFY THE SPRINT CONSTRUCTION MANAGER OF EXISTING CONDITIONS DIFFERING FROM THOSE INDICATED ON THE DRAWINGS. DO NOT REMOVE OR ALTER STRUCTURAL COMPONENTS WITHOUT PRIOR WRITTEN APPROVAL FROM THE ARCHITECT AND ENGINEER. # SECTION 01 200 - COMPANY FURNISHED MATERIAL AND EQUIPMENT PART 1 - GENERAL - 1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR. - 1.2 RELATED DOCUMENTS: - A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION. - B, SPRINT 'STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH. PART 2 - PRODUCTS (NOT USED) ### PART 3 - EXECUTION - 3.1 RECEIPT OF MATERIAL AND EQUIPMENT: - A COMPANY FURNISHED MATERIAL AND EQUIPMENT IS IDENTIFIED ON THE RF DATA SHEET IN THE CONSTRUCTION DOCUMENTS. - B. THE CONTRACTOR IS RESPONSIBLE FOR SPRINT PROVIDED MATERIAL AND EQUIPMENT AND UPON RECEIPT SHALL: - 1 ACCEPT DELIVERIES AS SHIPPED AND TAKE RECEIPT. - 2. VERIFY COMPLETENESS AND CONDITION OF ALL DELIVERIES. - TAKE RESPONSIBILITY FOR EQUIPMENT AND PROVIDE INSURANCE PROTECTION AS REQUIRED IN AGREEMENT. - RECORD ANY DEFECTS OR DAMAGES AND WITHIN TWENTY—FOUR HOURS AFTER— RECEIPT, REPORT TO SPRINT OR ITS DESIGNATED PROJECT REPRESENTATIVE OF SUCH. - 5. PROVIDE SECURE AND NECESSARY WEATHER PROTECTED WAREHOUSING. - COORDINATE SAFE AND SECURE TRANSPORTATION OF MATERIAL AND EQUIPMENT, DELIVERING AND OFF—LOADING FROM CONTRACTOR'S WAREHOUSE TO SITE. ### 3.2 DELIVERABLES: - A. COMPLETE SHIPPING AND RECEIPT DOCUMENTATION IN ACCORDANCE WITH COMPANY PRACTICE. - B. IF
APPLICABLE, COMPLETE LOST/STOLEN/DAMAGED DOCUMENTATION REPORT AS NECESSARY IN ACCORDANCE WITH COMPANY PRACTICE, AND AS DIRECTED BY COMPANY. - C. UPLOAD DOCUMENTATION INTO SPRINT SITE MANAGEMENT SYSTEM (SMS) AND/OR PROVIDE HARD COPY DOCUMENTATION AS REQUESTED. # SECTION 01 300 - CELL SITE CONSTRUCTION CO. ### PART 1 - GENERAL - 1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR. - 1.2 RELATED DOCUMENTS: - A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION. - B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH. ### 1.3 NOTICE TO PROCEED - A. NO WORK SHALL COMMENCE PRIOR TO COMPANY'S WRITTEN NOTICE TO PROCEED AND THE ISSUANCE OF THE WORK ORDER. - B. UPON RECEIVING NOTICE TO PROCEED, CONTRACTOR SHALL FULLY PERFORM ALL WORK NECESSARY TO PROVIDE SPRINT WITH AN OPERATIONAL WIRELESS FACILITY ### TOWER OWNER NOTIFICATION ONCE THE CONTRACTOR HAS RECEIVED AND ACCEPTED THE NOTICE TO PROCEED, CONTRACTOR MILL CONTACT THE CROWN CASTLE CONSTRUCTION MANAGER OF RECORD (NOTED ON THE FIRST PAGE ON THIS CONSTRUCTION DRAWING) A MINIMUM OF 48 HOURS PRIOR TO WORK START. UPON ARRIVAL TO THE JOB SITE, CONTRACTOR CREW IS REQUIRED CALL 1-800-788-7011 TO NOTIFY THE CROWN CASTLE NOC WORK HAS BEGUN. PART 2 - PRODUCTS (NOT USED) PART 3 - EXECUTION - 3.1 FUNCTIONAL REQUIREMENTS: - A. THE ACTIVITIES DESCRIBED IN THIS PARAGRAPH REPRESENT MINIMUM ACTIONS AND PROCESSES REQUIRED TO SUCCESSFULLY COMPLETE THE WORK. THE ACTIVITIES DESCRIBED ARE NOT EXHAUSTIVE, AND CONTRACTOR SHALL TAKE ANY AND ALL ACTIONS AS NECESSARY TO SUCCESSFULLY COMPLETE THE CONSTRUCTION OF A FULLY FUNCTIONING WIRELESS FACILITY AT THE SITE IN ACCORDANCE WITH COMPANY PROCESSES. - B. SUBMIT SPECIFIC DOCUMENTATION AS INDICATED HEREIN, AND OBTAIN REQUIRED APPROVALS WHILE THE WORK IS BEING PERFORMED. - C. MANAGE AND CONDUCT ALL FIELD CONSTRUCTION SERVICE RELATED ACTIVITIES - D. PROVIDE CONSTRUCTION ACTIVITIES TO THE EXTENT REQUIRED BY THE CONTRACT DOCUMENTS, INCLUDING BUT NOT LIMITED TO THE FOLLOWING: - PLANS PREPARED FOR: - FROM ZERO TO INFINIG the solutions are endless 1033 Watervilet Shaker Rd | Albany, NY 1220 Phone: 518-690-0790 | Fax: 518-690-0793 www.infinigy.com .KOR NUMPR 514-000 AIROSMITH 32 CLINTON ST. SARATOGA SPRINGS, NY 12866 OFFICE#. (518) 306-3740 - DRAWING NOTICE THESE DOCUMENTS ARE CONFIDENTIAL AND ARE THE SOLE PROPERTY OF SPRINT AND MAY NOT BE REPRODUCED, DISSEMINATED OR REDISTRIBUTED WITHOUT THE EXPRESS WRITTEN CONSENT OF SPRINT | - REVISIONS: | | | _ | |-------------------|---------|-----|-----| | DESCRIPTION | DATE | BY | REV | | | | | _ | | | | | | | ISSUED FOR PERMIT | 2/13/17 | JLM | 0 | | issued for review | 1/18/17 | SKB | Α | | | | | | SITE NAME: COLUMBIA / DEOJAY SITE NUMBER: CT33XC571 14 THOMPSON HILL RD COLUMBIA, CT 06237 SHEET DESCRIPTION: **SPRINT SPECIFICATIONS** SHEET NUMBER: SP-1 ### CONTINUE FROM SP-1 - 1. PERFORM ANY REQUIRED SITE ENVIRONMENTAL MITIGATION. - PREPARE GROUND SITES; PROVIDE DE—GRUBBING; AND ROUGH AND FINAL GRADING, AND COMPOUND SURFACE TREATMENTS. - 3. MANAGE AND CONDUCT ALL ACTIVITIES FOR INSTALLATION OF UTILITIES INCLUDING ELECTRICAL AND TELCO BACKHAUL. - 4. INSTALL UNDERGROUND FACILITIES INCLUDING UNDERGROUND POWER AND COMMUNICATIONS CONDUITS, AND UNDERGROUND GROUNDING SYSTEM. - 5. INSTALL ABOVE GROUND GROUNDING SYSTEMS. - 6. PROVIDE NEW HVAC INSTALLATIONS AND MODIFICATIONS. - 7. INSTALL "H-FRAMES", CABINETS AND SHELTERS AS INDICATED. - 8. INSTALL ROADS, ACCESS WAYS, CURBS AND DRAINS AS INDICATED. - 9. ACCOMPLISH REQUIRED MODIFICATION OF EXISTING FACILITIES. - 10. PROVIDE ANTENNA SUPPORT STRUCTURE FOUNDATIONS. - 11. PROVIDE SLABS AND EQUIPMENT PLATFORMS. - 12. INSTALL COMPOUND FENCING, SIGHT SHIELDING, LANDSCAPING AND ACCESS -BARRIERS. - 13. PERFORM INSPECTION AND MATERIAL TESTING AS REQUIRED HEREINAFTER. - 14. CONDUCT SITE RESISTANCE TO EARTH TESTING AS REQUIRED HEREINAFTER - 15. INSTALL FIXED GENERATOR SETS AND OTHER STANDBY POWER SOLUTIONS. - 16. INSTALL TOWERS, ANTENNA SUPPORT STRUCTURES AND PLATFORMS ON - INSTALL CELL SITE RADIOS, MICROWAVE, GPS, COAXIAL MAINLINE, ANTENNAS, CROSS BAND COUPLERS, TOWER TOP AMPLIFIERS, LOW NOISE AMPLIFIERS AND RELATED FOLIPMENT. - PERFORM, DOCUMENT, AND CLOSE OUT ANY CONSTRUCTION CONTROL DOCUMENTS THAT MAY BE REQUIRED BY GOVERNMENT AGENCIES AND LANDLORDS. - PERFORM ANTENNAL AND COAX SWEEP TESTING AND MAKE ANY AND ALL NECESSARY CORRECTIONS. - 20. REMAIN ON SITE MOBILIZED THROUGHOUT HAND-OFF AND INTEGRATION TO ASSIST AS NEEDED UNTIL SITE IS DEEMED SUBSTANTIALLY COMPLETE AND PLACED "ON AIR." ### 3.2 GENERAL REQUIREMENTS FOR CML CONSTRUCTION: - A. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH. AT THE COMPLETION OF THE WORK, CONTRACTOR SHALL REMOVE FROM THE SITE ALL REMAINING RUBBISH, IMPLEMENTS, TEMPORARY EARLY THE SAME SAM - B. EQUIPMENT ROOMS SHALL AT ALL TIMES BE MAINTAINED "BROOM CLEAN" AND CLEAR OF DEBRIS. - C. CONTRACTOR SHALL TAKE ALL REASONABLE PRECAUTIONS TO DISCOVER AND LOCATE ANY HAZARDOUS CONDITION. - IN THE EVENT CONTRACTOR ENCOUNTERS ANY HAZARDOUS CONDITION WHICH HAS NOT BEEN ABATED OR OTHERWISE MITIGATED, CONTRACTOR AND ALL OTHER PERSONS SHALL IMMEDIATELY STOP WORK IN THE AFFECTED AREA AND NOTIFY COMPANY IN WRITING. THE WORK IN THE AFFECTED AREA SHALL NOT BE RESUMED EXCEPT BY WRITTEN NOTIFICATION BY COMPANY. - CONTRACTOR AGREES TO USE CARE WHILE ON THE SITE AND SHALL NOT TAKE ANY ACTION THAT WILL OR MAY RESULT IN OR CAUSE THE HAZARDOUS CONDITION TO BE FURTHER RELEASED IN THE ENVIRONMENT, OR TO FURTHER EXPOSE INDIMIDUALS TO THE HAZARD. - D. CONTRACTOR'S ACTIVITIES SHALL BE RESTRICTED TO THE PROJECT LIMITS. SHOULD AREAS OUTSIDE THE PROJECT LIMITS BE AFFECTED BY CONTRACTOR'S ACTIVITIES, CONTRACTOR SHALL IMMEDIATELY RETURN THEM TO ORIGINAL CONDITION - E. CONDUCT TESTING AS REQUIRED HEREIN. ### 3.3 DELIVERABLES: - A. CONTRACTOR SHALL REVIEW, APPROVE, AND SUBMIT TO SPRINT SHOP DRAWINGS, PRODUCT DATA, SAMPLES, AND SIMILAR SUBMITTALS AS REQUIRED HEREINAFTER - B. PROVIDE DOCUMENTATION INCLUDING, BUT NOT LIMITED TO, THE FOLLOWING. DOCUMENTATION SHALL BE FORWARDED IN ORIGINAL FORMAT AND/OR UPLOADED - 1. ALL CORRESPONDENCE AND PRELIMINARY CONSTRUCTION REPORTS. - 2. PROJECT PROGRESS REPORTS. - 3. CIVIL CONSTRUCTION START DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION). - ELECTRICAL SERVICE COMPLETION DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION). - LINES AND ANTENNA INSTALL DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION). - POWER INSTALL DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION). - TELCO READY DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION). - PPC (OR SHELTER) INSTALL DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION). - TOWER CONSTRUCTION START DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION). - TOWER CONSTRUCTION COMPLETE DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION). - BTS AND RADIO EQUIPMENT DELIVERED AT SITE DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION). - 12. NETWORK OPERATIONS HANDOFF CHECKLIST (HOC WALK) COMPLETE (UPLOAD FORM IN SMS) - 13. CIVIL CONSTRUCTION COMPLETE DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTIFICATION). - 14. SITE CONSTRUCTION PROGRESS PHOTOS UNLOADED INTO SMS. ### SECTION 01 400 - SUBMITTALS & TESTS ### PART 1 - GENERAL 1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK_TO_BE_PERFORMED_BY_THE_CONTRACTOR. ### 1.2 RELATED DOCUMENTS: - A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION. - B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH. ### 1.3 SUBMITTALS - A. THE WORK IN ALL ASPECTS SHALL COMPLY WITH THE CONSTRUCTION DRAWINGS AND THESE SPECIFICATIONS. - B. SUBMIT THE FOLLOWING TO COMPANY REPRESENTATIVE FOR APPROVAL. - CONCRETE MIX-DESIGNS FOR TOWER FOUNDATIONS, ANCHORS PIERS, AND CONCRETE PAYING. - 2. CONCRETE BREAK TESTS AS SPECIFIED HEREIN. - 3. SPECIAL FINISHES FOR INTERIOR SPACES, IF ANY. - 4. ALL EQUIPMENT AND MATERIALS SO IDENTIFIED ON THE CONSTRUCTION DRAWINGS. - 5. CHEMICAL GROUNDING DESIGN - D. ALTERNATES: AT THE COMPANY'S REQUEST, ANY ALTERNATIVES TO THE MATERIALS OR METHODS SPECIFIED SHALL BE SUBMITTED TO SPRINT'S CONSTRUCTION MANAGER FOR APPROVAL PRIOR TO BEING SHIPPED TO SITE. SPRINT WILL REVIEW AND APPROVE ONLY THOSE REQUESTS MADE IN WRITING. NO VERBAL APPROVALS WILL BE CONSIDERED. SUBMITTAL FOR APPROVAL SHALL INCLUDE A STATEMENT OF COST REDUCTION PROPOSED FOR USE OF ALTERNATE PRODUCT. ### 1.4 TESTS AND INSPECTIONS: - A. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL CONSTRUCTION TESTS, INSPECTIONS AND PROJECT DOCUMENTATION. - B. CONTRACTOR SHALL ACCOMPLISH TESTING INCLUDING BUT NOT LIMITED TO THE FOLLOWING: - COAX SWEEPS AND FIBER TESTS PER TS-0200 REV 4 ANTENNA LINE ACCEPTANCE STANDARDS. - 2. AGL, AZIMUTH AND DOWNTILT USING ELECTRONIC COMMERCIAL MADE-FOR-THE-PURPOSE ANTENNA ALIGNMENT TOOL. - CONTRACTOR SHALL BE RESPONSIBLE FOR ANY AND ALL CORRECTIONS TO ANY WORK IDENTIFIED AS UNACCEPTABLE IN SITE INSPECTION ACTIVITIES AND/OR AS A RESULT OF TESTING. - REQUIRED CLOSEOUT DOCUMENTATION INCLUDES, BUT IS NOT LIMITED TO THE FOLLOWING; - AZIMUTH, DOWNTILT, AGL UPLOAD REPORT FROM ANTENNA ALIGNMENT TOOL TO SITERRA TASK 485. INSTALLED AZIMUTH, DOWNTILT, AND AGL MUST CONFORM TO THE RF DATA SHEETS. SWEEP AND FIBER TESTS - 2. SCANABLE BARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSIBLE SERIALIZED EQUIPMENT - 3. ALL AVAILABLE JURISDICTIONAL INFORMATION - 4. PDF SCAN OF REDLINES PRODUCED IN FIELD 5. ELECTRONIC AS—BUILT DRAWINGS IN AUTOCAD AND PDF FORMATS. ANY FIELD CHANGE MUST BE REFLECTED BY MODIFYING THE PLANS, ELEVATIONS, AND DETAILS IN THE DRAWING SETS. GENERAL NOTES INDICATING MODIFICATIONS WILL
NOT BE ACCEPTED. CHANGES SHALL BE HIGHLIGHTED AS "CLOUDS" IDENTIFIED AS THE "AS—BUILT" CONDITION. 6. LIEN WAIVERS 7. FINAL PAYMENT APPLICATION - B. REQUIRED FINAL CONSTRUCTION PHOTOS - 9 . CONSTRUCTION AND COMMISSIONING CHECKLIST COMPLETE WITH NO DEFICIENT ITEMS - ALL POST NTP TASKS INCLUDING DOCUMENT UPLOADS COMPLETED IN SITERRA (SPRINTS DOCUMENT REPOSITORY OF RECORD). - 1.5 COMMISSIONING: PERFORM ALL COMMISSIONING AS REQUIRED BY APPLICABLE - 1.6 INTEGRATION: PERFORM ALL INTEGRATION ACTIVITIES AS REQUIRED BY APPLICABLE PART 2 - PRODUCTS (NOT USED) PART 3 - EXECUTION 3.1 REQUIREMENTS FOR TESTING: A. THIRD PARTY TESTING AGENCY: - 1. WHEN THE USE OF A THIRD PARTY INDEPENDENT TESTING AGENCY IS REQUIRED, THE AGENCY THAT IS SELECTED MUST PERFORM SUCH WORK ON A REGULAR BASIS IN THE STATE WHERE THE PROJECT IS LOCATED AND HAVE A THOROUGH UNDERSTANDING OF LOCAL AVAILABLE MATERIALS, INCLUDING THE SOIL, ROCK, AND GROUNDWATER CONDITIONS. - THE THIRD PARTY TESTING AGENCY IS TO BE FAMILIAR WITH THE APPLICABLE REQUIREMENTS FOR THE TESTS TO BE DONE, EQUIPMENT TO BE USED, AND ASSOCIATED HEALTH AND SAFETY ISSUES. - 3. EXPERIENCE IN SOILS, CONCRETE, MASONRY, AGGREGATE, AND ASPHALT TESTING USING ASTM, AASJTO, AND OTHER METHODS IS NEEDED. - 4. EXPERIENCE IN SOILS, CONCRETE, MASONRY, AGGREGATE, AND ASPHALT TESTING USING ASTM, AASJTO, AND OTHER METHODS IS NEEDED. ### 3.2 REQUIRED TESTS: - A. CONTRACTOR SHALL ACCOMPLISH TESTING INCLUDING BUT NOT LIMITED TO THE FOLLOWING: - CONCRETE CYLINDER BREAK TESTS FOR THE TOWER AND ANCHOR FOUNDATIONS AS SPECIFIED IN SECTION: PORTLAND CEMENT CONCRETE PAVING. - ASPHALT ROADWAY COMPACTED THICKNESS, SURFACE SMOOTHNESS, AND COMPACTED DENSITY TESTING AS SPECIFIED IN SECTION: HOT MIX ASPHALT PAVING. - FIELD QUALITY CONTROL TESTING AS SPECIFIED IN SECTION: PORTLAND CEMENT CONCRETE PAYING. - 4. TESTING REQUIRED UNDER SECTION: AGGREGATE BASE FOR ACCESS ROADS, PADS AND ANCHOR LOCATIONS - 5. STRUCTURAL BACKFILL COMPACTION TESTS FOR THE TOWER FOUNDATION. - 6. SITE RESISTANCE TO EARTH TESTING PER EXHIBIT: CELL SITE GROUNDING SYSTEM DESIGN. - ANTENNA AND COAX SWEEP TESTS PER EXHIBIT: ANTENNA TRANSMISSION LINE ACCEPTANCE STANDARDS. - 8. GROUNDING AT ANTENNA MASTS FOR GPS AND ANTENNAS - 9. ALL OTHER TESTS REQUIRED BY COMPANY OR JURISDICTION. ### 3.3 REQUIRED INSPECTIONS - A. SCHEDULE INSPECTIONS WITH COMPANY REPRESENTATIVE. - B. CONDUCT INSPECTIONS INCLUDING BUT NOT LIMITED TO THE FOLLOWING: - GROUNDING SYSTEM INSTALLATION PRIOR TO EARTH CONCEALMENT DOCUMENTED WITH DIGITAL PHOTOGRAPHS BY CONTRACTOR, APPROVED BY A&E OR SPRINT REPRESENTATIVE. - FORMING FOR CONCRETE AND REBAR PLACEMENT PRIOR TO POUR DOCUMENTED WITH DIGITAL PHOTOGRAPHS BY CONTRACTOR, APPROVED BY A&E OR SPRINT REPRESENTATIVE. - COMPACTION OF BACKFILL MATERIALS; AGGREGATE BASE FOR ROADS, PADS, AND ANCHORS; ASPHALT PAVING; AND SHAFT BACKFILL FOR CONCRETE AND WOOD POLES, BY INDEPENDENT THIRD PARTY AGENCY. - 4. PRE— AND POST—CONSTRUCTION ROOFTOP AND STRUCTURAL INSPECTIONS ON EXISTING FACILITIES. - 5. TOWER ERECTION SECTION STACKING AND PLATFORM ATTACHMENT DOCUMENTED BY DIGITAL PHOTOGRAPHS BY THIRD PARTY AGENCY. - ANTENNA AZIMUTH , DOWN TILT AND PER SUNLIGHT TOOL SUNSIGHT INSTRUMENTS — ANTENNALIGN ALIGNMENT TOOL (AAT) PLANS PREPARED FOR: PLANS PREPARED BY: FROM ZERO TO INFINIGY 033 Watervliet Shaker Rd | Albany, NY 12205 Phone: 518-690-0790 | Fax: 518-690-0793 www.infinigy.com JOB NUMBER 514-000 the solutions are endless PROJECT MANAGER: = 32 CLINTON ST. ARATOGA SPRINGS, NY 12866 OFFICE#. (518) 305-3740 PRAWING NOTICE: THESE DOCUMENTS ARE CONFIDENTIAL AND ARE THE SOLE PROPERTY OF SPRINT AND MAY NOT BE REPRODUCED, DISSEMINATED OR REDISTRIBUTED WITHOUT THE EXPRESS WRITTEN CONSENT OF SPRINT. | DESCRIPTION | DATE | BY | REV | |-------------------|---------|-----|-----| | | | | | | | | | | | ISSUED FOR PERMIT | 2/13/17 | JJJ | 0 | | ISSUED FOR REVIEW | 1/18/17 | SKB | Α | | | | | | SITE NAME COLUMBIA / DEOJAY - SITE NUMBER: - CT33XC571 COLUMBIA, CT 06237 - SHEET DESCRIPTION: - SPRINT SPECIFICATIONS HEET NUMBER: SP-2 ### CONTINUE FROM SP-2 - VERIFICATION DOCUMENTED WITH THE ANTENNA CHECKLIST REPORT, BY A&E, SITE DEVELOPMENT REP, OR RF REP. - 8. FINAL INSPECTION CHECKLIST AND HANDOFF WALK (HOC.). SIGNED FORM SHOWING ACCEPTANCE BY FIELD OPS IS TO BE UPLOADED INTO SMS. - 9. COAX SWEEP AND FIBER TESTING DOCUMENTS SUBMITTED VIA SMS FOR RF APPROVAL. - 10. SCAN-ABLE BARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSIBLE SERIALIZED EQUIPMENT - 11. ALL AVAILABLE JURISDICTIONAL INFORMATION - 12. PDF SCAN OF REDLINES PRODUCED IN FIELD - C. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY AND ALL CORRECTIONS TO ANY WORK IDENTIFIED AS UNACCEPTABLE IN SITE INSPECTION ACTIVITIES AND/OR AS A RESULT OF TESTING. - D. CONSTRUCTION INSPECTIONS AND CORRECTIVE MEASURES SHALL BE DOCUMENTED BY THE CONTRACTOR WITH WRITTEN REPORTS AND PHOTOGRAPHS. PHOTOGRAPHS MUST BE DIGITAL AND OF SUFFICIENT QUALITY TO CLEARLY SHOW THE SITE CONSTRUCTION, PHOTOGRAPHS MUST CLEARLY IDENTIFY THE PHOTOGRAPHED ITEM AND BE LABELED WITH THE SITE CASCADE NUMBER, SITE NAME, DESCRIPTION, AND DATE. - 3.4 DELIVERABLES: TEST AND INSPECTION REPORTS AND CLOSEOUT DOCUMENTATION SHALL BE UPLOADED TO THE SMS AND/OR FORWARDED TO SPRINT FOR INCLUSION INTO THE PERMANENT SITE FILES. - A. THE FOLLOWING TEST AND INSPECTION REPORTS SHALL BE PROVIDED AS APPLICABLE. - 1. CONCRETE MIX AND CYLINDER BREAK REPORTS. - 2. STRUCTURAL BACKFILL COMPACTION REPORTS. - 3. SITE RESISTANCE TO EARTH TEST. - 4. ANTENNA AZIMUTH AND DOWN TILT VERIFICATION - TOWER ERECTION INSPECTIONS AND MEASUREMENTS DOCUMENTING TOWER INSTALLED PER SUPPLIER'S REQUIREMENTS AND THE APPLICABLE SECTIONS HEREIN. - COAX CABLE SWEEP TESTS PER COMPANY'S "ANTENNA LINE ACCEPTANCE STANDARDS". - B. REQUIRED CLOSEOUT DOCUMENTATION INCLUDES THE FOLLOWING; - TEST WELLS AND TRENCHES: PHOTOGRAPHS OF ALL TEST WELLS; PHOTOGRAPHS SHOWING ALL OPEN EXCAVATIONS AND TRENCHING PRIOR TO BACKFILLING SHOWING A TAPE MEASURE VISIBLE IN THE EXCAVATIONS INDICATING DEPTH. - CONDUITS, CONDUCTORS AND GROUNDING: PHOTOGRAPHS SHOWING TYPICAL INSTALLATION OF CONDUCTORS AND CONNECTORS: PHOTOGRAPHS SHOWING TYPICAL BEND RADIUS OF INSTALLED GROUND WIRES AND GROUND ROD SPACING: - 3. CONCRETE FORMS AND REINFORCING: CONCRETE FORMING AT TOWER AND EQUIPMENT/SHELTER PAD/FOUNDATIONS — PHOTOGRAPHS SHOWING ALL REINFORCING STEEL, UTILITY AND CONDUIT STUB OUTS; PHOTOGRAPHS SHOWING CONCRETE POUR OF SHELTER SLAB/FOUNDATION, TOWER FOUNDATION AND GUY ANCHORS WITH VIBRATOR IN USE; PHOTOGRAPHS SHOWING EACH ANCHOR ON GUYED TOWERS, BEFORE CONCRETE POUR. - 4. TOWER, ANTENNAS AND MAINLINE: INSPECTION AND PHOTOGRAPHS OF SECTION STACKING; INSPECTION AND PHOTOGRAPHS OF PLATFORM COMPONENT ATTACHMENT POINTS; PHOTOGRAPHS OF TOWER TOP GROUNDING; PHOTOS OF TOWER COAX LINE COLOR CODING AT THE TOP AND AT GROUND LEVEL; INSPECTION AND PHOTOGRAPHS OF OPERATIONAL OF TOWER LIGHTING, AND PLACEMENT OF FAA REGISTRATION SIGN; PHOTOGRAPHS SHOWING ADDITIONAL GROUNDING POINTS FOR TOWERS GREATER THAN 200 FEET.; PHOTOS OF ANTENNA GROUND BAR, EQUIPMENT GROUND BAR, AND MASTER GROUND BAR; PHOTOS OF FOR ANTENNAS; ONE PHOTOGRAPH LOOKING AT THE SECTOR AND ONE FROM BEHIND SHOWING THE PROJECTED COVERAGE AREA; PHOTOS OF COAX WEATHERPROOFING TOP AND BOTTOM; PHOTOS OF COAX GROUNDING—TOP AND BOTTOM; PHOTOS OF COAX GROUNDING—TOP AND BOTTOM; PHOTOS OF COAX GROUNDING; PHOTOS OF COAX CABLE ENTRY INTO SHELTER; PHOTOS OF PLATFORM MECHANICAL CONNECTIONS TO TOWER MONOPOLE. - ROOF TOPS: PRE-CONSTRUCTION AND POST-CONSTRUCTION VISUAL INSPECTION AND PHOTOGRAPHS OF THE ROOF AND INTERIOR TO DETERMINE AND DOCUMENT CONDITIONS; ROOF TOP CONSTRUCTION INSPECTIONS AS REQUIRED BY THE JURISDICTION; PHOTOGRAPHS OF CABLE TRAY AND/OR ICE BRIDGE; PHOTOGRAPHS OF DOGHOUSE/CABLE EXIT FROM ROOF; - 8. SITE LAYOUT PHOTOGRAPHS OF THE OVERALL COMPOUND, INCLUDING EQUIPMENT PLATFORM FROM ALL FOUR CORNERS. - 7. FINISHED UTILITIES: CLOSE—UP PHOTOGRAPHS OF THE PPC BREAKER PANEL; CLOSE—UP PHOTOGRAPH OF THE INSIDE OF THE TELCO PANEL AND NIU; CLOSE—UP PHOTOGRAPH OF THE POWER METER AND DISCONNECT; PHOTOS OF POWER AND TELCO ENTRANCE TO COMPANY ENCLOSURE; PHOTOGRAPHS AT METER BOX AND/OR FACILITY DISTRIBUTION PANEL. - 8. REQUIRED MATERIALS CERTIFICATIONS: CONCRETE MIX DESIGNS; MILL CERTIFICATION FOR ALL REINFORCING AND STRUCTURAL STEEL; AND ASPHALT PAVING MIX DESIGN. - 9. ANY AND ALL SUBMITTALS BY THE JURISDICTION OR COMPANY. ### SECTION 01 400 - SUBMITTALS & TESTS ### PART 1 - GENERAL - 1.1 THE WORK: THESE STANDARD CONSTRUCTION SPECIFICATIONS IN CONJUNCTION WITH THE OTHER CONTRACT DOCUMENTS AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR. - 1.2 RELATED DOCUMENTS: - A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION. - B. SPRINT "STANDARD CONSTRUCTION DETAILS FOR WIRELESS SITES" ARE INCLUDED IN AND MADE A PART OF THESE SPECIFICATIONS HEREWITH. ### PART 2 - PRODUCTS (NOT USED) ### PART 3 - EXECUTION ### 3.1 WEEKLY REPORTS: - A. CONTRACTOR SHALL PROVIDE SPRINT WITH WEEKLY REPORTS SHOWING PROJECT STATUS. THIS STATUS REPORT FORMAT WILL BE PROVIDED TO THE CONTRACTOR BY SPRINT. THE REPORT WILL CONTAIN SITE ID NUMBER, THE MILESTONES FOR EACH SITE, INCLUDING THE BASELINE DATE, ESTIMATED COMPLETION DATE AND ACTUAL COMPLETION DATE. - B. REPORT INFORMATION WILL BE TRANSMITTED TO SPRINT VIA ELECTRONIC MEANS AS REQUIRED. THIS INFORMATION WILL PROVIDE A BASIS FOR PROGRESS MONITORING AND PAYMENT. ### 3.2 PROJECT CONFERENCE CALLS: A. SPRINT MAY HOLD WEEKLY PROJECT CONFERENCE CALLS. CONTRACTOR WILL BE REQUIRED TO COMMUNICATE SITE STATUS, MILESTONE COMPLETIONS AND UPCOMING MILESTONE PROJECTIONS, AND ANSWER ANY OTHER SITE STATUS QUESTIONS AS NECESSARY. ### -3.3 PROJECT-TRACKING-IN-SMS:- A. CONTRACTOR SHALL PROVIDE SCHEDULE UPDATES AND PROJECTIONS IN THE SMS SYSTEM ON A WEEKLY BASIS. ### 3.4 ADDITIONAL REPORTING: A. ADDITIONAL OR ALTERNATE REPORTING REQUIREMENTS MAY BE ADDED TO THE REPORT AS DETERMINED TO BE REASONABLY NECESSARY BY COMPANY. ### 3.5 PROJECT PHOTOGRAPHS: - A.
FILE DIGITAL PHOTOGRAPHS OF COMPLETED SITE IN JPEG FORMAT IN THE SMS PHOTO LIBRARY FOR THE RESPECTIVE SITE. PHOTOGRAPHS SHALL BE CLEARLY LABELED WITH SITE NUMBER, NAME AND DESCRIPTION, AND SHALL INCLUDE AT A MINIMUM THE FOLLOWING AS APPLICABLE: - 1. 1SHELTER AND TOWER OVERVIEW. - TOWER FOUNDATION(S) FORMS AND STEEL BEFORE POUR (EACH ANCHOR ON GUYED TOWERS). - 3. TOWER FOUNDATION(S) POUR WITH VIBRATOR IN USE (EACH ANCHOR ON GUYED TOWERS). - TOWER STEEL AS BEING INSTALLED INTO HOLE (SHOW ANCHOR STEEL ON GUYED TOWERS). - 5. PHOTOS OF TOWER SECTION STACKING. - 6. CONCRETE TESTING / SAMPLES. - 7. PLACING OF ANCHOR BOLTS IN TOWER FOUNDATION. - 8. BUILDING/WATER TANK FROM ROAD FOR TENANT IMPROVEMENTS OR COMMENTS. - 9. SHELTER FOUNDATION--FORMS AND STEEL BEFORE POURING. - 10. SHELTER FOUNDATION POUR WITH VIBRATOR IN USE. - 11. COAX CABLE ENTRY INTO SHELTER. - 12. PLATFORM MECHANICAL CONNECTIONS TO TOWER/MONOPOLE. - ROOFTOP PRE AND POST CONSTRUCTION PHOTOS TO INCLUDE PENETRATIONS AND INTERIOR CEILING. - 14. PHOTOS OF TOWER TOP COAX LINE COLOR CODING AND COLOR CODING AT GROUND LEVEL. - 15. PHOTOS OF ALL APPROPRIATE COMPANY OR REGULATORY SIGNAGE. - 16. PHOTOS OF EQUIPMENT BOLT DOWN INSIDE SHELTER. - 17. POWER AND TELCO ENTRANCE TO COMPANY ENCLOSURE AND POWER AND TELCO SUPPLY LOCATIONS INCLUDING METER/DISCONNECT. - 18. ELECTRICAL TRENCH(S) WITH ELECTRICAL / CONDUIT BEFORE BACKFILL. - 19. ELECTRICAL TRENCH(S) WITH FOIL-BACKED TAPE BEFORE FURTHER BACKFILL - 20, TELCO TRENCH WITH TELEPHONE / CONDUIT BEFORE BACKFILL. - 21. TELCO TRENCH WITH FOIL-BACKED TAPE BEFORE FURTHER BACKFILL - SHELTER GROUND-RING TRENCH WITH GROUND-WIRE BEFORE BACKFILL (SHOW ALL CAD WELDS AND BEND RADII). - 23. TOWER GROUND-RING TRENCH WITH GROUND-WIRE BEFORE BACKFILL (SHOW ALL CAD WELDS AND BEND RADII). - 24. FENCE GROUND-RING TRENCH WITH GROUND-WIRE BEFORE BACKFILL (SHOW ALL CAD WELDS AND BEND RADII). - 25. ALL BTS GROUND CONNECTIONS. - 26. ALL GROUND TEST WELLS. - 27. ANTENNA GROUND BAR AND EQUIPMENT GROUND BAR. - 28. ADDITIONAL GROUNDING POINTS ON TOWERS ABOVE 200'. - 29. HVAC UNITS INCLUDING CONDENSERS ON SPLIT SYSTEMS. - 30. GPS ANTENNAS. - 31. CABLE TRAY AND/OR WAVEGUIDE BRIDGE. - 32. DOGHOUSE/CABLE EXIT FROM ROOF. - 33, EACH SECTOR OF ANTENNAS; ONE PHOTOGRAPH LOOKING AT THE SECTOR AND ONE FROM BEHIND SHOWING THE PROJECTED COVERAGE AREA. - 34. MASTER BUS BAR. - 35. TELCO BOARD AND NIU. - 36. ELECTRICAL DISTRIBUTION WALL. - 37. CABLE ENTRY WITH SURGE SUPPRESSION. - 38. ENTRANCE TO EQUIPMENT ROOM. - 39. COAX WEATHERPROOFING-TOP AND BOTTOM OF TOWER. - 40. COAX GROUNDING -TOP AND BOTTOM OF TOWER. - 41. ANTENNA AND MAST GROUNDING - 42. LANDSCAPING WHERE APPLICABLE. - 3,6 FINAL PROJECT ACCEPTANCE: COMPLETE ALL REQUIRED REPORTING TASKS PER CONTRACT, CONTRACT DOCUMENTS OR THE SPRINT INTEGRATED CONSTRUCTION STANDARDS FOR WIRELESS SITES AND UPLOAD INTO SITERRA. (SHOW PLANS PREPARED BY: PLANS PREPARED FOR: # INFINIGY& the solutions are endless 1033 Watervilet Shaker Rd | Albany, NY 1220 Phone: 518-690-0790 | Fax: 518-690-0793 www.infinigy.com JOB NUMBER 514-000 ROJECT MANAGER: - 32 CLINTON ST. SARATOGA SPRINGS, NY 12866 OFFICE#. (518) 306-3740 - DRAWING NOTICE: THESE DOCUMENTS ARE CONFIDENTIAL AND ARE THE SOLE PROPERTY OF SPRINT AND MAY NOT BE REPRODUCED, DISSEMINATED OR REDISTRIBUTED WITHOUT THE EXPRESS WRITTEN CONSENT OF SPRINT. | DESCRIPTION | DATE | BY | RE | |-------------------|---------|-----|----| | | | | | | | 1010 | | | | ISSUED FOR PERMIT | 2/13/17 | JUN | 0 | | ISSUED FOR REVIEW | 1/18/17 | SKB | A | | | | | | SITE NAME: COLUMBIA / DEOJAY SITE NUMBER: = CT33XC571 COLUMBIA, CT 06237 14 THOMPSON HILL RD SHEET DESCRIPTION: SPRINT SPECIFICATIONS SHEET NUMBER: SP-3 INFORMATION CONTAINED WITHIN DRAWINGS ARE BASED ON PROVIDED INFORMATION AND ARE NOT THE RESULT OF A FIELD SURVEY. Sprint Sprint PLANS PREPARED FOR: INFINICY FROM ZERO TO INFINIGY the solutions are endless 1033 Watervilet Shaker Rd | Albany, NY 12205 Phone: 518-690-0790 | Fax: 518-690-0793 www.inflinigy.com JOB NUMBER 514-000 PROJECT MANAGER: 32 CLINTON ST. SARATOGA SPRINGS, NY 12866 OFFICE#. (518) 306-3740 - DRAWING NOTICE: THESE DOCUMENTS ARE CONFIDENTIAL AND ARE THE SOLE PROPERTY OF SPRINT AND MAY NOT BE REPRODUCED, DISSEMINATED OR REDISTRIBUTED WITHOUT THE EXPRESS WRITTEN CONSENT OF SPRINT. | DESCRIPTION | DATE | BY | RE | |-------------------|---------|-----|----| | | | | | | ISSUED FOR PERMIT | 2/13/17 | JUM | 0 | | ISSUED FOR REVIEW | 1/18/17 | SKB | Α | - SITE NAME: - COLUMBIA / DEOJAY - SITE NUMB CT33XC571 SITE ADDRES 14 THOMPSON HILL RD COLUMBIA, CT 06237 - SHEET DESCRIPTION: SITE PLAN - SHEET NUMBER: • SCALE (22x34): 1" = 2'-0" SCALE: AS NOTED A-2 SPRINT SITE PLAN | | | EXI | STING AND PR | OPOSED | ANTE | NNA AND RRH MODEL NU | IMBERS | | | |---------------------------------------|--------------------------------|--------------------|--------------------------------|---|---------|---|--------------------------|---|-----------------| | SECTOR | EXISTING/
PROPOSED | BAND | ANTENNA | ANTENNA
© HEIGHT | AZIMUTH | RRH | JUNCTION CYLINDERS | CABLE | CABLE
LENGTH | | | FUTURE | | | | :50.50 | | | | | | ALPHA PROPOSED 800MHZ / 1900MHZ APXV | RFS/CELWAVE
APXVSPP18-C-A20 | 180'-0" | 330° | (P) GROUND MOUNTED 800 MHZ RRH
(E) GROUND MOUNTED 1900 MHZ RRH | | (2) (P) RET CABLES
(2) (E) 1-1/4" COAX | ±235'
EXISTING | | | | | FUTURE | (****) | | | | | | | | | PROPOSEL | PROPOSED | 800MHZ / 1900MHZ | RFS/CELWAVE
APXVSPP18-C-A20 | 180'-0" | 90. | (P) GROUND MOUNTED 800 MHZ RRH
(E) GROUND MOUNTED 1900 MHZ RRH | | (2) (P) RET CABLES
(2) (E) 1-1/4" COAX | | | GAMMA FUTURE | FUTURE | (100) | | === | | | 22 | | | | | PROPOSED | 800MHZ / 1900MHZ | RFS/CELWAVE
APXVSPP18-C-A20 | 180'-0" | 210* | (P) GROUND MOUNTED 800 MHZ RRH
(E) GROUND MOUNTED 1900 MHZ RRH | | (2) (P) RET CABLES
(2) (E) 1-1/4" COAX | | | SECTOR | CABLE | FIRST RING | SECOND RING | THIRD RI | |---------|-------|---------------------------|-----------------|----------| | 1 ALPHA | 1 | GREEN | NO TAPE | NO TAP | | 1 | 2 | SINE | NO TAPE | NO TAP | | 1 | 3 | BROWN | NO TAPE | NO TAP | | 1 | 4 | WHITE | NO TAPE | NO TAP | | 1 | 5 | Mark a territ | NO TAPE | NO TAP | | 1 | 6 | SLATE | NO TAPE | NO TAP | | 1 | 7 | PURPLE | NO TAPE | NO TAP | | 1 | 8 | ORANGE | NO TAPE | NO TAP | | 2 BETA | 1 | GREEN | OREEN | NO TAP | | 2 | 2 | BLUE | BLUE | NO TAP | | 2 | 3 | BROWN | BROWN | NO TAP | | 2 | 4 | | | NO TAP | | 2 | 5 | of the track to the first | The Board | NO TAP | | 2 | 6 | SLATE | SLATE | NO TAP | | 2 | 7 | PURPLE | PURPLE | NO TAP | | 2 | 6 | ORANGE | ORANGE | NO TAP | | 3 GAMMA | 1 | GREEN | GREEN | GREEN | | 3 | 2 | BLUE | BCUE | BLUE | | 3 | 3 | BROWN | BROWN | BROWN | | 3 | 4 | | | | | 3 | 5 | 国际的现在分 | E TOWN SET WELL | STORY. | | 3 | 6 | SLATE | SLATE | SLATE | | 3 | 7 | PURPLE | PURPLE | PURPLE | | 3 | 8 | ORANGE | ORANGE | ORANG | | FREQUE | NCY COLOR | CODE | |----------------|-----------|--------| | FREQUENCY | INDICATOR | ID | | B00 # 1 | YELLOW | | | 19CO#1 | YET TOM. | RED | | 1900#2 | YELLOW | | | RESERVED | YET TOM. | | | RESERVED | YELLOW | K V.H. | | RESERVED | YELLOW | | | RESERVED | YELLOW | WHITE | | 1600€1 | YELLOW | | EXAMPLE - SECTOR 2, CABLE 2, BOOMHZ RACID #1 COLOR CODING CHARTS NO SCALE 1033 Watervilet Shaker Rd | Albany, NY 12205 Phone: 518-690-0790 | Fax: 518-690-0793 w.w.infinigy.com JOB NUMBER 514-000 32 CLINTON ST. SARATOGA SPRINGS, NY 12866 OFFICE#. (618) 306-3740 DRAWING NOTICE: - THESE DOCUMENTS ARE CONFIDENTIAL AND ARE THE SOLE PROPERTY OF SPRINT AND MAY NOT BE REPRODUCED, DISSEMINATED OR REDISTRIBUTED WITHOUT THE EXPRESS WRITTEN CONSENT OF SPRINT. | REVISIONS: | 0.00 | T _{DM} | loc | |-------------------|---------|-----------------|-----| | DESCRIPTION | DATE | BA | N. | | | | | 1 | | | | - | Н | | | _ | - | Н | | ISSUED FOR PERMIT | 2/13/17 | JLM | 0 | | ISSUED FOR REVIEW | 1/18/17 | SKB | A | | | | | | COLUMBIA / DEOJAY CT33XC571 14 THOMPSON HILL RD COLUMBIA, CT 06237 ANTENNA LOADING & COLOR CODING CHARTS A-4 SCENARIO 354 V2.5 SPECIFICATIONS 033 Waterviiet Shaker Rd | Albany, NY 12205 Phone: 518-690-0790 | Fax: 518-690-0793 www.lnfinigy.com DEVELOPMENT 32 CLINTON ST. SARATOGA SPRINGS, NY 12866 OFFICE#. (518) 306-3740 - DRAWING NOTICE: THESE DOCUMENTS ARE CONFIDENTIAL AND ARE THE SOLE PROPERTY OF SPRINT AND MAY NOT BE REPRODUCED, DISSEMINATED OR REDISTRIBUTED WITHOUT THE EXPRESS WRITTEN CONSENT OF | REVISIONS: DESCRIPTION | DATE | BY | RE | |------------------------|---------|-----|----| | | | | | | ISSUED FOR PERMIT | 2/13/17 | JUN | 0 | | ISSUED FOR REVIEW | 1/18/17 | SKB | Α | | | | | | COLUMBIA / DEOJAY CT33XC571 14 THOMPSON HILL RD COLUMBIA, CT 06237 SCENARIO 354 V2.5 **SPECIFICATIONS** SHEET NUMBER: - NO SCALE A-6