Transcend Wireless

August 15, 2019

Members of the Siting Council
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

RE: Notice of Exempt Modification
600 Old Hartford Road, Colchester, CT 06415
Latitude: 41.5867000000
Longitude: -72.2782611200
T-Mobile Site\#: CTNL250A - L600

Dear Ms. Bachman:

T-Mobile currently maintains six (6) antennas at the 150-foot level of the existing 180-foot guyed tower at 600 Old Hartford Road, Colchester, CT. The 180-foot guyed tower is owned by Cordless Data Transfer. The property is owned by AT\&T Mobility. T-Mobile now intends to replace three (3) of its existing antennas with three (3) new $600 / 700 \mathrm{MHz}$ antennas. The new antennas will be installed at the same 150 -foot level of the tower.

Planned Modifications:

Tower:

Remove
N/A

Remove and Replace:
(3) LNX-6515DS (Remove) - APXVAARR24_43-U-NA20 Antenna (Replace) 600/700 MHz

Install New:

(1) 1-3/8" Hybrid Cables
(3) Radio 4449 B71+B12

Existing to Remain:
(3) RFS APXV18-206516S Antenna 1900/2100 MHz
(3) TMA
(12) 1-5/8" Coax

Ground:

This facility was approved by the CSC for T-Mobile use in TS-T-Mobile-028-170818 dated September 14, 2017. This modification complies with this approval.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies§ 16-SOj-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.SA. § 16-SOj-73, a copy of this letter is being sent to First Selectman -Arthur Shilosky, Elected Official, and Kamey Cavanaugh, Land Use Assistant for the Town of Colchester, as well as the tower owner and property owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S;A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under
R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Kyle Richers

Transcend Wireless
Cell: 908-447-4716
Email: krichers@transcendwireless.com
Attachments
cc: Arthur Shilosky - Town of Colchester First Selectman
Kamey Cavanaugh- Town of Colchester Land Use Assistant
Cordless Data Transfer - tower owner
AT\&T Mobility- property owner

Kyle Richers

From:
Sent:
To:
Subject:

UPS Quantum View pkginfo@ups.com
Wednesday, August 7, 2019 4:26 PM
krichers@transcendwireless.com
UPS Ship Notification, Reference Number 1: CTNL250A UPS PO

x

You have a package coming.

Scheduled Delivery Date: Monday, 08/12/2019

This message was sent to you at the request of TRANSCEND WIRELESS to notify you that the shipment information below has been transmitted to UPS. The physical package may or may not have actually been tendered to UPS for shipment. To verify the actual transit status of your shipment, click on the tracking link below.

Shipment Details

From:	TRANSCEND WIRELESS
Tracking Number:	1ZV257424296088478
Ship To:	AT\&T Mobility 909 Chestnut Street SAINT LOUIS, MO 631012017 US
UPS Service:	UPS GROUND
Number of Packages:	1
Scheduled Delivery:	08/12/2019
Signature Required:	A signature is required for package delivery
Weight:	1.0 LBS
Reference Number 1:	CTNL250A UPS PO
	\square
x Download the UPS mobile app	

From:

Sent:
To:
Subject:

UPS Quantum View pkginfo@ups.com
Wednesday, August 7, 2019 4:29 PM
krichers@transcendwireless.com
UPS Ship Notification, Reference Number 1: CTNL250A CSC TO

x

You have a package coming.

Scheduled Delivery Date: Thursday, 08/08/2019

This message was sent to you at the request of TRANSCEND WIRELESS to notify you that the shipment information below has been transmitted to UPS. The physical package may or may not have actually been tendered to UPS for shipment. To verify the actual transit status of your shipment, click on the tracking link below.

Shipment Details

From:	TRANSCEND WIRELESS
Tracking Number:	1ZV257424298058489
	Mark LeGault Cordless Data Transfer
Ship To:	600 Old Hartford Road COLCHESTER, CT 064152417 US
UPS Service:	UPS GROUND
Number of Packages:	1
Scheduled Delivery:	A signature is required for package delivery
Signature Required:	1.0 LBS
Weight:	CTNL250A CSC TO
Reference Number 1:	

From:

Sent:
To:
Subject:

UPS Quantum View pkginfo@ups.com
Wednesday, August 7, 2019 4:32 PM
krichers@transcendwireless.com
UPS Ship Notification, Reference Number 1: CTNL250A CSC ZO

x

You have a package coming.

Scheduled Delivery Date: Thursday, 08/08/2019

This message was sent to you at the request of TRANSCEND WIRELESS to notify you that the shipment information below has been transmitted to UPS. The physical package may or may not have actually been tendered to UPS for shipment. To verify the actual transit status of your shipment, click on the tracking link below.

Shipment Details

From:	TRANSCEND WIRELESS
Tracking Number:	1ZV257424297058507
Ship To:	Kamey Cavanaugh Town of Colchester 127 Norwich Ave. COLCHESTER, CT 064151230 US
UPS Service:	UPS GROUND
Number of Packages:	1
Scheduled Delivery:	08/08/2019
Signature Required:	A signature is required for package delivery
Weight:	1.0 LBS
Reference Number 1:	CTNL250A CSC ZO
x Download the UPS mobile app	

From:

Sent:
To:
Subject:

UPS Quantum View pkginfo@ups.com
Wednesday, August 7, 2019 4:32 PM
krichers@transcendwireless.com
UPS Ship Notification, Reference Number 1: CTNL250A CSC EO

x

You have a package coming.

Scheduled Delivery Date: Thursday, 08/08/2019

This message was sent to you at the request of TRANSCEND WIRELESS to notify you that the shipment information below has been transmitted to UPS. The physical package may or may not have actually been tendered to UPS for shipment. To verify the actual transit status of your shipment, click on the tracking link below.

Shipment Details

From:	TRANSCEND WIRELESS
Tracking Number:	1ZV257424295048496
Ship To:	Art Shilosky Town of Colchester 127 Norwich Avenue COLCHESTER, CT 064151230 US
UPS Service:	UPS GROUND
Number of Packages:	1
Scheduled Delivery:	08/08/2019
Signature Required:	A signature is required for package delivery
Weight:	1.0 LBS
Reference Number 1:	CTNL250A CSC EO
x Download the UPS mobile app	

Location	600 OLD HARTFORD RD	Mblu	$06-10 / / 051-000 /$ TWR/
Acct\#	11 AT0006	Owner	AT\&T MOBILITY
Assessment $\$ 345,300$	Appraisal	$\$ 493,400$	
PID 105116	Building Count	1	

Current Value

Appraisal				
Valuation Year	Improvements		Land	Total
2016		\$493,400	\$0	\$493,400
Assessment				
Valuation Year	Improvements		Land	Total
2016		\$345,300	\$0	\$345,300

Owner of Record

Owner	AT\&T MOBILITY	Sale Price	$\$ 0$
Co-Owner	ATTN TAX MANAGER	Certificate	
Address	909 CHESTNUT ST	Book \& Page	$000 / 000$
	ST LOUIS, MO 63101	Sale Date	$10 / 01 / 2011$

Ownership History

Ownership History						
Owner	Sale Price	Certificate	Book \& Page	Sale Date		
AT\&T MOBILITY		$\$ 0$		$000 / 000$	$10 / 01 / 2011$	

Building Information

Building 1 : Section 1

Year Built:	
Living Area:	0
Replacement Cost:	$\$ 0$
Building Percent Good:	
Replacement Cost Less Depreciation:	$\$ 0$

Building Attributes	
Field	Description

Style	Outbuildings
Model	
Grade:	
Stories:	
Occupancy	
Exterior Wall 1	
Exterior Wall 2	
Roof Structure:	
Roof Cover	
Interior Wall 1	
Interior Wall 2	
Interior Flr 1	
Interior Flr 2	
Heat Fuel	
Heat Type:	
AC Type:	
Total Bedrooms:	
Total Bthrms:	
Total Half Baths:	
Total Xtra Fixtrs:	
Total Rooms:	
Bath Style:	
Kitchen Style:	

Building Photo

(http://images.vgsi.com/photos2/colchesterCTPhotos//default.jps

Building Layout

Building Layout

Building Sub-Areas (sq ft)	Legend
No Data for Building Sub-Areas	

Extra Features

| Extra Features | Legend |
| :--- | :--- | :--- |
| No Data for Extra Features | |

Land

Land Use

Use Code 4310
Description Tel Rel Tw
Zone
Neighborhood
Alt Land Appr No

Category

Land Line Valuation

Size (Acres) 0
Frontage
Depth
Assessed Value $\$ 0$
Appraised Value $\$ 0$

Outbuildings

Code	Description	Sub Code	Sub Description	Size	Value	Bldg \#
TWR2	Cell Tower			2 SITES	$\$ 420,000$	
SHD9	Cell Shed			312 S.F.	$\$ 70,200$	
FN4	Fence 8' Chain			360 L.F.	1	

Valuation History

Appraisal			
Valuation Year	Improvements	Land	Total
2015	\$554,000	\$0	\$554,000

Assessment			
Valuation Year	Improvements	Land	Total
2015	\$387,800	\$0	\$387,800

(c) 2016 Vision Government Solutions, Inc. All rights reserved.

Town of Colchester

Geographic Information System (GIS)

Date Printed: 5/29/2019

MAP DISCLAIMER - NOTICE OF LIABILITY
This map is for assessment purposes only. It is not for legal description or conveyances. All information is subject to verification by any user. The Town of Colchester and its mapping contractors assume no legal responsibility for the information contained herein.

Approximate Scale: 1 inch = 50 feet

STATEOF CONNECTICUT

CONNECTICUT SITING COUNCIL
Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
www.ct.gov/csc

September 14, 2017
Denise Sabo
Northeast Site Solutions
199 Brickyard Road
Farmington, CT 06032
RE: TS-T-MOBILE-028-170818 - T-Mobile request for an order to approve tower sharing at an existing telecommunications facility located at 600 Old Hartford Road, Colchester, Connecticut.

Dear Ms. Sabo:

At a public meeting held on September 14, 2017, the Connecticut Siting Council (Council) ruled that the shared use of this existing tower site is technically, legally, environmentally, and economically feasible and meets public safety concerns, and therefore, in compliance with General Statutes $\$ 16-50 \mathrm{aa}$, the Council has ordered the shared use of this facility to avoid the unnecessary proliferation of tower structures with the following conditions:

1. Any deviation from the proposed installation as specified in the original tower share request and supporting materials with the Council shall render this decision invalid;
2. Any material changes to the proposed installation as specified in the original tower share request and supporting materials filed with the Council shall require an explicit request for modification to the Council pursuant to Connecticut General Statutes $\S 16-50 \mathrm{aa}$, including all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65;
3. Not less than 45 days after completion of the proposed installation, the Council shall be notified in writing that the installation has been completed;
4. Any nonfunctioning antenna and associated antenna mounting equipment on this facility owned and operated by T-Mobile shall be removed within 60 days of the date the antenna ceased to function;
5. The validity of this action shall expire one year from the date of this letter; and
6. The applicant may file a request for an extension of time beyond the one year deadline provided that such request is submitted to the Council not less than 60 days prior to the expiration.

This decision is under the exclusive jurisdiction of the Council and applies only to this request for tower sharing dated August 10, 2017 and supplemental information submitted September 8, 2017. This facility has been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower. Any deviation from the approved tower sharing request is enforceable under the provisions of Connecticut General Statutes § 16-50u.

The proposed shared use is to be implemented as specified in your letter dated August 10, 2017 and supplemental information submitted September 8, 2017, including the placement of all necessary equipment and shelters within the tower compound.

Please be advised that the validity of this action shall expire one year from the date of this letter.
Thank you for your attention and cooperation.

Very truly yours,

Robert Stein
Chairman
RS/MAB/bm
c: The Honorable Arthur P. Shilosky, First Selectman, Town of Colchester
Randall Benson, Town Planner, Town of Colchester
Cordless Data Transfer, Inc., Tower and Property Owner

WIRELESS COMMUNICATIONS FACILITY
 CTNL250A
 SITE ID: CTNL250A 600 OLD HARTFORD ROAD COLCHESTER, CT 06415

T-MOBILE RF CONFIGURATION
67D04G_SIMO

GENERAL NOTES

Contracton shill rever vil orawn

 5. Contractor shal seuir ivo pay for all repurs AND All

MANAGE FOR REIW,

PROJECT SUMMARY

PROJECT INFORMATION			
SITE NAME SITE ID: SITE ADDR APPLICANT CONTACT ENGINEER PROJECT	ESS: PERSON: COORDINATES	${ }^{\text {CTNL } 250 A}$ ${ }^{T} \mathrm{~T}$ - HO Oill BLoouflelo, ct O6 CENTEK ENONGES Cill LATITUDE: $41^{\circ}-35^{\prime}-$ LONGITUDE: 720-22' GROUND ELEVATION: 	
SHEET INDEX			
SHT. no.	DESCRIPTION		
$\mathrm{T}^{\text {-1 }}$	TTLE SHET		
N-1	desion aais and stre notes		
c-1	Stie locaton plan		
c-2	Compouno plan and elieation		
c-3	ANEENA MOUNTING Configuation		
E-1	Tpical electrical dealls		

design basis

1. Design critera:

GENERAL NOTES:

ALL constructon Shall ee in complance wit the governig buloung

4. DIMENSIONS AND DETALS SHALL QE CHECKED AGANST ExSTING RELD CoNotrons.

8. THE Contacior siml

 NoEsisast unimes

3. no drluing weling or tring on eversurae owned eaurmen.
3. No drLung melong or tanc on evesource omme eaurmen

STRUCTURAL STEEL

IEL Is desined ar allowable stress desin (aso)

11. CONNEGTON ANLLES SHALL HAVE A MMMUM THCKNESS OF $1 / 4$ MCHESS.

13. Lock washer are not permitio for az35 stel assemules.
.
16. FABRRCATE EEAMS WTH MLL CAMEER UP.

Mark LeGault
Cordless Data Transfer, Inc.
600 Old Hartford Road
Colchester, CT 06415
August 13, 2019

Nudd Job Number: 119-23103

Site Location: 600 Old Hartford Road, Colchester, CT 06415, New London County (Latitude and Longitude: 41-3512, -72-22-40)

Subject: Structural Analysis of an existing 180 ft Guyed Tower

Fred A. Nudd Corporation has completed a three-dimensional, finite element model structural analysis of the above noted guyed tower. This tower was analyzed considered appurtenance loads noted in the appurtenance loading table on the following page. The design loading criteria and strength design are per the TIA-222-G standard, which is the recommended design standard per the 2015 International Building Code and is the basis of the 2018 Connecticut State Building Code. Tower and foundation dimensions have been taken from original design drawings by Fred A. Nudd Corporation (Drawing Number 00-7265-1 \& 00-7265-2, March 10, 2000). Onsite soil conditions were taken from a geotechnical report by Coneco Engineers (dated March 15, 2000). The tower is assumed to be in good, undamaged and equivalent to as new condition and has been maintained / inspected per criteria by TIA-222.

The purpose of this analysis is to determine the structure's ability to support new T-Mobile equipment installed at a rad center of 150 ft above ground level (AGL). The new equipment to be installed, which includes antennas, and associated hardware are listed on the following page in the appurtenance loading table.

Results of the analysis indicate the tower will be able to the support the design loads noted in the appurtenance loading table on the following page. Specific section design loads, capacities and stress ratios are provided on the following pages. Maximum member usage was found to be 79%.

The tower base foundation and anchors were analyzed considering onsite soil information from the aforementioned geotechnical report. Based on this analysis, the foundation and anchors will be able support the proposed appurtenance loading, in addition to the existing wireless equipment and tower superstructure. Specific design loads, capacities and stress ratios are provided on the following pages.

In conclusion, the tower superstructure and substructure can support the listed existing and proposed appurtenance loading.

We trust this report satisfies your needs. Please contact us with any questions or concerns regarding this report.
Best Regards,

Fred A. Nudd Corporation

Code Design Criteria

TIA/EIA-222-G
Windspeed $=99 \mathrm{mph}, \mathrm{V}_{\text {asd }} / 128 \mathrm{mph}, \mathrm{V}_{\mathrm{ult}}, 3$-Second Gust
Radial Ice $=0.75$ inch
Ice Windspeed $=50 \mathrm{mph}, \mathrm{V}_{\text {asd }}$, 3-Second Gust
Exposure = B
Topographic Category = 1
Structure Class = II
Seismic Accelerations are less than 1.0g, thus seismic loading can be ignored

Appurtenance Loading - Existing / Remaining

Height (ft)	Carrier	Appurtenance	Mount	Coax (in)
180	Sprint	(3) RFS APXV9ERR18-C-A20 (3) Alcatel Lucent $4 \times 45 \mathrm{~W}, 1900 \mathrm{MHz}$ (3) Alcatel Lucent TD-RRH8×200-25 (6) Alcatel Lucent $2 \times 50,800 \mathrm{MHz}$ (3) Commscope DT465B-2XR	(3) 12 ft Boom / Frame	(4) 1-1/4 Hybrid
170	AT\&T	(3) Powerwave 7770.00 (6) Kathrein 800-10966 (3) Ericsson RRUS 4478 B14 (3) Ericsson 4449 B5/B12 (3) Ericsson RRUS 8843 B2/B66A (6) Powerwave LGP 21401 (6) Powerwave LGP 21901	(3) Nudd NSTD 44512 ft Booms	(12) 1-1/4 (3) 1.34 Fiber (6) 0.65 DC

- Height measurement taken as distance from top of base foundation to center of appurtenance.

Appurtenance Loading - Final Configuration for T-Mobile

Height (ft)	Carrier	Appurtenance	Mount	Coax (in)
150	T-Mobile	(3) RFS APXV18-206516S-C-A20 (3) RFS APXVAARR24_43-U-NA20 (3) Ericsson 4449 B71 B12 (3) Ericsson KRY 112	(3) 12 ft Boom / Frame	(12) 1-5/8 (1) 1-3/8 Hybrid

- Height measurement taken as distance from top of base foundation to center of appurtenance.
- T-Mobile's additional coax may be installed alongside or in the same location as their existing coax.

Maximum Member Usage

Member	Percentage
Leg	70
Diagonal	74
Horizontal	79
Bolts	34
Guys	53
Anchor Rod	57

- Percentage less than 100% denote member stress levels are satisfactory for loading
- Percentage greater than 100% indicates member strengthening is required

Foundation Usage

Design Load	Capacity (kips)	Analysis (kips)	Percentage
Base Axial	216.0	160.9	74
Anchor Uplift	80.3	33.6	42
Anchor Shear	78.1	39.5	50

- Percentage less than 100% denote foundation is satisfactory for loading
- Percentage greater than 100% indicates foundation analysis is required
80.0 ft

180.0 ft
180.0
$\underline{160.0 \mathrm{ft}}$
140.0 ft
120.0 ft
116.4 ft
100.0 ft

0.0 ft

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A500M-63	63 ksi	80 ksi	A500M-60	60 ksi	75 ksi
A36	36 ksi	58 ksi			

TOWER DESIGN NOTES

1. Tower is located in New London County, Connecticut.
. Tower designed for Exposure B to the TIA-222-G Standard.
2. Tower designed for a 99 mph basic wind in accordance with the TIA-222-G Standard.
3. Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
4. Deflections are based upon a 60 mph wind.
5. Tower Structure Class II.
6. Topographic Category 1 with Crest Height of 0.00 ft
7. Weld together tower sections have flange connections.
8. TOWER RATING: 79.3\%

ALL REACTIONS ARE FACTORED

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{array}{ll} \hline \text { Page } \\ & 1 \text { of } 45 \end{array}$
	Project	Colchester, CT	$\begin{aligned} & \text { Date } \\ & \text { 22:39:02 08/13/19 } \end{aligned}$
	Client	CDT	Designed by FAN

Tower Input Data

The main tower is a 3 x guyed tower with an overall height of 180.00 ft above the ground line.
The base of the tower is set at an elevation of 0.00 ft above the ground line.
The face width of the tower is 3.50 ft at the top and tapered at the base.
This tower is designed using the TIA-222-G standard.
The following design criteria apply:
Tower is located in New London County, Connecticut.
Basic wind speed of 99 mph .
Structure Class II.
Exposure Category B.
Topographic Category 1.
Crest Height 0.00 ft .
Nominal ice thickness of 0.7500 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf.
A wind speed of 50 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
Weld together tower sections have flange connections..
Tension only take-up is 0.0313 in .
Pressures are calculated at each section.
Safety factor used in guy design is 1 .
Stress ratio used in tower member design is 1 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

[^0]Use ASCE 10 X-Brace Ly Rules
$\sqrt{ }$ Calculate Redundant Bracing Forces
Ignore Redundant Members in FEA
SR Leg Bolts Resist Compression
$\sqrt{ }$ All Leg Panels Have Same Allowable Offset Girt At Foundation
$\sqrt{ }$ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption Poles
Include Shear-Torsion Interaction
Always Use Sub-Critical Flow Use Top Mounted Sockets
Pole Without Linear Attachments
Pole With Shroud Or No Appurtenances
Outside and Inside Corner Radii Are
Known

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job 119-23103		$\begin{aligned} & \text { Page } \\ & \\ & 2 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	Date 22:39:02 08/13/19
	Client	CDT	Designed by FAN

Corner \& Starmount Guyed Tower

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } \\ & \\ & 3 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 22:39:02 08/13/19 } \end{array}$
	Client	CDT	Designed by FAN

Face Guyed

Tower Section Geometry

Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of Sections	Section Length
	$f t$			$f t$		$f t$
T1	180.00-160.00			3.50	1	20.00
T2	160.00-140.00			3.50	1	20.00
T3	140.00-120.00			3.50	1	20.00
T4	120.00-100.00			3.50	1	20.00
T5	100.00-80.00			3.50	1	20.00
T6	80.00-60.00			3.50	1	20.00
T7	60.00-40.00			3.50	1	20.00
T8	40.00-20.00			3.50	1	20.00
T9	20.00-5.00			3.50	1	15.00
T10	5.00-0.00			3.50	1	5.00

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } \\ & \\ & 4 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	Date 22:39:02 08/13/19
	Client	CDT	Designed by FAN

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Girt Offset
	$f t$	$f t$				Panels	
in		No	Yes	4.5000	4.5000		
T1	$180.00-160.00$	3.21	TX Brace	No	Yes	4.5000	4.5000
T2	$160.00-140.00$	3.21	TX Brace	No	Yes	4.5000	4.5000
T3	$140.00-120.00$	3.21	TX Brace	No	Yes	4.5000	4.5000
T4	$120.00-100.00$	3.21	TX Brace	No	Yes	4.5000	4.5000
T5	$100.00-80.00$	3.21	TX Brace	No	Yes	4.5000	4.5000
T6	$80.00-60.00$	3.21	TX Brace	No	Yes	4.5000	4.5000
T7	$60.00-40.00$	3.21	TX Brace	No	Yes	4.5000	4.5000
T8	$40.00-20.00$	3.21	TX Brace	No	Yes	4.5000	4.5000
T9	$20.00-5.00$	3.56	TX Brace	No	Yes	4.5000	0.0000
T10	$5.00-0.00$	4.63	TX Brace	No	Yo		

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
T1 180.00-160.00	Pipe	P2.5x. 203	$\begin{aligned} & \text { A500M-63 } \\ & (63 \mathrm{ksi}) \end{aligned}$	Solid Round	5/8	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T2 160.00-140.00	Pipe	P2.5x. 203	$\begin{aligned} & \text { A500M-63 } \\ & (63 \mathrm{ksi}) \end{aligned}$	Solid Round	5/8	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T3 140.00-120.00	Pipe	P2.5x. 203	$\begin{aligned} & \text { A500M-60 } \\ & (60 \mathrm{ksi}) \end{aligned}$	Solid Round	5/8	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T4 120.00-100.00	Pipe	P2.5x. 203	$\begin{aligned} & \text { A500M-60 } \\ & (60 \mathrm{ksi}) \end{aligned}$	Solid Round	5/8	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T5 100.00-80.00	Pipe	P2.5x. 203	$\begin{aligned} & \text { A500M-63 } \\ & (63 \mathrm{ksi}) \end{aligned}$	Solid Round	5/8	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T6 80.00-60.00	Pipe	P2.5x. 203	$\begin{aligned} & \text { A500M-63 } \\ & (63 \mathrm{ksi}) \end{aligned}$	Solid Round	5/8	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T7 60.00-40.00	Pipe	P2.5x. 203	$\begin{aligned} & \text { A500M-60 } \\ & (60 \mathrm{ksi}) \end{aligned}$	Solid Round	5/8	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T8 40.00-20.00	Pipe	P2.5x. 203	$\begin{gathered} \text { A500M-63 } \\ (63 \mathrm{ksi}) \end{gathered}$	Solid Round	5/8	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T9 20.00-5.00	Pipe	P2.5x. 203	$\begin{aligned} & \text { A500M-63 } \\ & (63 \mathrm{ksi}) \end{aligned}$	Solid Round	5/8	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T10 5.00-0.00	Pipe	P2.5x. 203	$\begin{aligned} & \text { A500M-63 } \\ & (63 \mathrm{ksi}) \end{aligned}$	Solid Round	5/8	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$

Tower Section Geometry (cont'd)

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 180.00-160.00	Equal Angle	L1 3/4x1 3/4x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Equal Angle	L1 3/4x1 3/4x3/16	$\begin{gathered} \text { A36 } \\ \text { (36 ksi) } \end{gathered}$
T2 160.00-140.00	Equal Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Equal Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T3 140.00-120.00	Equal Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Equal Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T4 120.00-100.00	Equal Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Equal Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T5 100.00-80.00	Equal Angle	L1 1/2x1 1/2x3/16	A36	Equal Angle	L1 1/2x1 1/2x3/16	A36

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } \\ & 5 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	Date 22:39:02 08/13/19
	Client	CDT	Designed by FAN

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
			(36 ksi)			(36 ksi)
T6 80.00-60.00	Equal Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Equal Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T7 60.00-40.00	Equal Angle	L1 $1 / 2 \times 11 / 2 \times 3 / 16$	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Equal Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T8 40.00-20.00	Equal Angle	L1 1/2x1 $1 / 2 \times 3 / 16$	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Equal Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T9 20.00-5.00	Equal Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Equal Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T10 5.00-0.00	Equal Angle	L1 1/2x1 $1 / 2 \times 3 / 16$	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Equal Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$

Tower Section Geometry (cont'd)

Tower Elevation ft	No. of Mid Girts	Mid Girt Type	Mid Girt Size	Mid Girt Grade	Horizontal Type	Horizontal Size	Horizontal Grade
T1 180.00-160.00	None	Flat Bar		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Single Angle	L1 3/4x1 3/4x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T2 160.00-140.00	None	Flat Bar		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Single Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T3 140.00-120.00	None	Flat Bar		$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Single Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T4 120.00-100.00	None	Flat Bar		$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Single Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T5 100.00-80.00	None	Flat Bar		$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Single Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T6 80.00-60.00	None	Flat Bar		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Single Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T7 60.00-40.00	None	Flat Bar		$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Single Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T8 40.00-20.00	None	Flat Bar		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Single Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T9 20.00-5.00	None	Flat Bar		$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Single Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T10 5.00-0.00	None	Flat Bar		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \\ \hline \end{gathered}$	Single Angle	L1 1/2x1 1/2x3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \\ \hline \end{gathered}$

Tower Section Geometry (cont'd)

Tower Elevation ft	Gusset Area (per face) $f t^{2}$	Gusset Thickness in	Gusset Grade	Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
T1	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
180.00-160.00			(36 ksi)						
T2	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
160.00-140.00			(36 ksi)						
T3	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000

tnxTower Fred A. Nudd Corporation 1743 Route 104	Job		$\text { Page } 6 \text { of } 45$
	Project	Colchester, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 22:39:02 08/13/19 } \\ \hline \end{array}$
Ontario, NY 14519 Phone: 315.524 .2531 FAX: 315.524 .4249	Client	CDT	Designed by FAN

Tower Elevation ft	Gusset Area (per face) $f t^{2}$	Gusset Thickness in	Gusset Grade	Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
140.00-120.00			(36 ksi)						
T4	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
120.00-100.00			(36 ksi)						
T5	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
100.00-80.00			(36 ksi)						
T6 80.00-60.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T7 60.00-40.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T8 40.00-20.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T9 20.00-5.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T10 5.00-0.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						

Tower Section Geometry (cont'd)

			K Factors ${ }^{1}$							
Tower	Calc	Calc	Legs	X	K	Single	Girts	Horiz.	Sec.	Inner
Elevation	K	K		Brace	Brace	Diags			Horiz.	Brace
	Single	Solid		Diags	Diags					
	Angles	Rounds		X	X	X	X	X	X	X
$f t$				Y	Y	Y	Y	Y	Y	Y
T1	Yes	Yes	1	1	1	1	1	1	1	1
180.00-160.00				1	1	1	1	1	1	1
T2	Yes	Yes	1	1	1	1	1	1	1	1
160.00-140.00				1	1	1	1	1	1	1
T3	Yes	Yes	1	1	1	1	1	1	1	1
140.00-120.00				1	1	1	1	1	1	1
T4	Yes	Yes	1	1	1	1	1	1	1	1
120.00-100.00				1	1	1	1	1	1	1
T5	Yes	Yes	1	1	1	1	1	1	1	1
$100.00-80.00$				1	1	1	1	1	1	1
T6	Yes	Yes	1	1	1	1	1	1	1	1
80.00-60.00				1	1	1	1	1	1	1
T7	Yes	Yes	1	1	1	1	1	1	1	1
$60.00-40.00$				1	1	1	1	1	1	1
T8	Yes	Yes	1	1	1	1	1	1	1	1
40.00-20.00				1	1	1	1	1	1	1
T9 20.00-5.00	Yes	Yes	1	1	1	1	1	1	1	1
				1	1	1	1	1	1	1
T10 5.00-0.00	Yes	Yes	0.33	1	1	1	1	1	1	1
				1	1	1	1	1	1	1

[^1]| tnxTower
 Fred A. Nudd Corporation
 1743 Route 104 | Job | 119-23103 | $\text { Page } 7 \text { of } 45$ |
| :---: | :---: | :---: | :---: |
| | Project | Colchester, CT | Date 22:39:02 08/13/19 |
| Ontario, NY 14519
 Phone: 315.524.2531
 FAX: 315.524.4249 | Client | CDT | Designed by FAN |

Tower Elevation $f t$	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
	Net Width Deduct in	U	Net Width Deduct in		Net Width Deduct in		Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
$\begin{gathered} \hline \text { T1 } \\ 180.00-160.00 \end{gathered}$	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
$\begin{gathered} \mathrm{T} 2 \\ 160.00-140.00 \end{gathered}$	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
$\begin{gathered} \text { T3 } \\ 140.00-120.00 \end{gathered}$	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
T4 120.00-100.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
$\begin{gathered} \text { T5 } \\ 100.00-80.00 \end{gathered}$	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
T6 80.00-60.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
T7 60.00-40.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
T8 40.00-20.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
T9 20.00-5.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75
T10 5.00-0.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75

Tower Section Geometry (cont'd)

Tower Elevation $f t$	Leg Connection Type	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
		Bolt Size in	No.												
T1	Flange	0.7500	4	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
180.00-160.00		A325N													
T2	Flange	0.7500	4	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
160.00-140.00		A325N													
T3	Flange	0.7500	4	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
140.00-120.00		A325N													
T4	Flange	0.7500	4	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
120.00-100.00		A325N		A 325 N		A325N		A325N		A325N		A 325 N		A325N	
T5	Flange	0.7500	4	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
100.00-80.00		A325N		A 325 N		A325N									
T6 80.00-60.00	Flange	0.7500	4	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N													
T7 60.00-40.00	Flange	0.7500	4	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A 325 N		A325N									
T8 40.00-20.00	Flange	0.7500	4	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N													
T9 20.00-5.00	Flange	0.7500	4	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A 325 N		A325N									
T10 5.00-0.00	Flange	0.7500	4	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N													

tnxTower Fred A. Nudd Corporation 1743 Route 104	Job	119-23103	$\begin{aligned} & \text { Page } \\ & 8 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	Date 22:39:02 08/13/19
Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Client	CDT	Designed by FAN

$\left.\begin{array}{ccccccccccccc}\hline \begin{array}{c}\text { Guy } \\ \text { Elevation }\end{array} & \begin{array}{c}\text { Guy } \\ \text { Grade }\end{array} & & \begin{array}{c}\text { Guy } \\ \text { Size }\end{array} & \begin{array}{c}\text { Initial } \\ \text { Tension }\end{array} & \% & \begin{array}{c}\text { Guy } \\ \text { Modulus }\end{array} & \begin{array}{c}\text { Guy } \\ \text { Weight }\end{array} & L_{u} & \begin{array}{c}\text { Anchor } \\ \text { Radius }\end{array} & \begin{array}{c}\text { Anchor } \\ \text { Azimuth }\end{array} & \begin{array}{c}\text { Anchor } \\ \text { Elevation }\end{array} & \begin{array}{c}\text { End } \\ \text { Fitting }\end{array} \\ \text { Efficiency }\end{array}\right]$

Guy Data(cont'd)

Guy Elevation $f t$	Mount Type	Torque-Arm Spread $f t$	Torque-Arm Leg Angle \circ	Torque-Arm Style	Torque-Arm Grade	Torque-Arm Type	Torque-Arm Size
160.375	Torque Arm	7.00	30.0000	Dog Ear	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Single Angle	$\begin{gathered} \mathrm{L} 2 \times 2 \times 5 / 16 \\ \mathrm{~L} 3 \times 3 \times 1 / 4 \end{gathered}$
116.417 60.375	Torque Arm Corner	7.00	30.0000	Dog Ear	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Single Angle	$\begin{gathered} \mathrm{L} 2 \times 2 \times 5 / 16 \\ \mathrm{~L} 3 \times 3 \times 1 / 4 \end{gathered}$

Guy Data (cont'd)

Guy Elevation $f t$	Diagonal Grade	Diagonal Type	Upper Diagonal Size	Lower Diagonal Size	Is Strap.	Pull-Off Grade	Pull-Off Type	Pull-Off Size
160.38	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Solid Round			No	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Equal Angle	L1 1/2x1 1/2x3/16
116.42	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Solid Round			No	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Equal Angle	L1 1/2x1 1/2x3/16
60.38	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Solid Round			No	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Equal Angle	L1 1/2x1 1/2x3/16

Guy Data (cont'd)

Guy	Cable	Cable	Cable	Cable	Tower	Tower	Tower	Tower
Elevation	Weight	Weight	Weight	Weight	Intercept	Intercept	Intercept	Intercept
	A	B	C	D	A	B	C	D
$f t$	$l b$	$l b$	$l b$	$l b$	ft	$f t$	$f t$	$f t$
160.375	174.48	174.48	174.48		2.92	2.92	2.92	
					$2.9 \mathrm{sec} / \mathrm{pulse}$	$2.9 \mathrm{sec} / \mathrm{pulse}$	$2.9 \mathrm{sec} / \mathrm{pulse}$	
116.417	123.58	123.58	123.58		2.15	2.15	2.15	
					$2.5 \mathrm{sec} / \mathrm{pulse}$	$2.5 \mathrm{sec} / \mathrm{pulse}$	$2.5 \mathrm{sec} / \mathrm{pulse}$	
60.375	104.01	104.01	104.01		1.53	1.53	1.53	
					$2.1 \mathrm{sec} /$ pulse	$2.1 \mathrm{sec} / \mathrm{pulse}$	$2.1 \mathrm{sec} / \mathrm{pulse}$	

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } \\ & \\ & 9 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	Date 22:39:02 08/13/19
	Client	CDT	Designed by FAN

Guy Data (cont'd)

			Torque Arm									Pull Off		Diagonal	
Guy	Calc	Calc		K_{x}	K_{y}	K_{x}	K_{y}	K_{x}	K_{y}						
Elevation	K	K													
$f t$	Single	Solid													
	Angles	Rounds													
160.375	No	No	1	1	0.65	0.65	1	1							
116.417	No	No	1	1	0.65	0.65	1	1							
60.375	No	No			0.65	0.65	1	1							

Guy Data (cont'd)

GuyElevation$f t$	Torque-Arm				Pull Off				Diagonal			
	Bolt Size in	Number	Net Width Deduct in	U	Bolt Size in	Number	Net Width Deduct in	U	Bolt Size in	Number	Net Width Deduct in	U
160.375	0.7500	2	0.0000	1	0.6250	0	0.0000	1	0.6250	0	0.0000	1
	A325N				A 325 N				A325N			
116.417	0.7500	2	0.0000	1	0.6250	0	0.0000	1	0.6250	0	0.0000	1
	A325N				A325N				A325N			
60.375	0.6250	0	0.0000	0.75	0.6250	0	0.0000	1	0.6250	0	0.0000	1
	A325N				A325N				A325N			

Guy Pressures

Guy Elevation $f t$	Guy Location	z	q_{z}	q_{z} Ice psf	Ice Thickness in
160.375		$f t$	$p s f$	5	1.6393
	A	80.19	20	5	1.6393
	B	80.19	20	5	1.6393
116.417	C	58.21	18	5	1.5876
	A	58.21	18	5	1.5876
	B	58.21	18	5	1.5876
60.375	C	30.19	15	4	1.4867
	A	30.19	15	4	1.4867
	B	30.19	15	4	1.4867

	Guy-Mast Forces (Excluding Wind) - No lce								
Guy Elevation	Guy Location	Chord Angle	Guy Tension Top	F_{x}	F_{y}	F_{z}	M_{x}	M_{y}	M_{z}
$f t$		-	Bottom $l b$	$l b$	$l b$	$l b$	$l b-f t$	$l b-f t$	$l b-f t$
160.375	A	48.2735	6490.22	-104.64	4882.39	-4274.84	-9865.97	15173.38	-17088.36
	A	48.2735	$\begin{aligned} & 6360.00 \\ & 6490.22 \end{aligned}$	104.64	4882.39	-4274.84	-9865.97	-15173.38	17088.36

tnxTower Fred A. Nudd Corporation 1743 Route 104	Job	119-23103	$\begin{aligned} & \text { Page } \\ & \\ & 10 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	Date 22:39:02 08/13/19
Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Client	CDT	Designed by FAN

Guy Elevation	Guy Location	Chord Angle	Guy Tension Top Bottom $l b$	F_{x}	F_{y}	F_{z}	M_{x}	M_{y}	M_{z}
$f t$		-		$l b$	$l b$	$l b$	$l b-f t$	$l b-f t$	$l b-f t$
			6360.00						
	B	48.2735	6490.22	3754.44	4882.39	2046.79	19731.94	15173.38	0.00
			6360.00						
	B	48.2735	6490.22	3649.79	4882.39	2228.04	-9865.97	-15173.38	-17088.36
			6360.00						
	C	48.2735	6490.22	-3649.79	4882.39	2228.04	-9865.97	15173.38	17088.36
			6360.00						
	C	48.2735	6490.22	-3754.44	4882.39	2046.79	19731.94	-15173.38	0.00
			6360.00						
			Sum:	0.00	29294.33	-0.00	-0.00	0.00	0.00
116.417	A	39.1448	5328.01	-100.37	3400.60	-4100.44	-6871.68	14554.35	-11902.11
			5250.00						
	A	39.1448	5328.01	100.37	3400.60	-4100.44	-6871.68	-14554.35	11902.11
			5250.00						
	B	39.1448	5328.01	3601.27	3400.60	1963.29	13743.37	14554.35	0.00
			5250.00						
	B	39.1448	5328.01	3500.89	3400.60	2137.14	-6871.68	-14554.35	-11902.11
			5250.00						
	C	39.1448	5328.01	-3500.89	3400.60	2137.14	-6871.68	14554.35	11902.11
			5250.00						
	C	39.1448	5328.01	-3601.27	3400.60	1963.29	13743.37	-14554.35	0.00
			5250.00						
			Sum:	0.00	20403.61	-0.00	-0.00	0.00	0.00
60.375	A	22.8926	5290.46	0.00	2102.12	-4854.90	-4247.81	0.00	0.00
			5250.00						
	B	22.8926	5290.46	4204.47	2102.12	2427.45	2123.90	0.00	-3678.71
			5250.00						
	C	22.8926	5290.46	-4204.47	2102.12	2427.45	2123.90	-0.00	3678.71
			5250.00						
			Sum:	0.00	6306.36	0.00	0.00	0.00	0.00

Guy-Mast Forces (Excluding Wind) - Ice

Guy Elevation	Guy Location	Chord Angle	Guy Tension Top Bottom $l b$	F_{x}	F_{y}	F_{z}	M_{x}	M_{y}	M_{z}
$f t$		-		$l b$	$l b$	$l b$	$l b-f t$	$l b-f t$	$l b-f t$
160.375	A	48.2735	9780.14	-152.09	7551.53	-6213.09	-15259.56	22053.13	-26430.34
			8923.84						
	A	48.2735	9780.14	152.09	7551.53	-6213.09	-15259.56	-22053.13	26430.34
			8923.84						
	B	48.2735	9780.14	5456.74	7551.53	2974.83	30519.13	22053.13	0.00
			8923.84						
	B	48.2735	9780.14	5304.65	7551.53	3238.26	-15259.56	-22053.13	-26430.34
			8923.84						
	C	48.2735	9780.14	-5304.65	7551.53	3238.26	-15259.56	22053.13	26430.34
			8923.84						
	C	48.2735	9780.14	-5456.74	7551.53	2974.83	30519.13	-22053.13	0.00
			8923.84						
			Sum:	0.00	45309.15	0.00	-0.00	0.00	0.00
116.417	A	39.1448	8161.99	-149.36	5419.13	-6101.54	-10950.57	21657.20	-18966.95
			7599.28						
	A	39.1448	8161.99	149.36	5419.13	-6101.54	-10950.57	-21657.20	18966.95

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } 11 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	Date 22:39:02 08/13/19
	Client	CDT	Designed by FAN

Guy Elevation	Guy Location	Chord Angle	Guy Tension Top Bottom $l b$	F_{x}	F_{y}	F_{z}	M_{x}	M_{y}	M_{z}
$f t$		-		$l b$	$l b$	$l b$	$l b-f t$	$l b-f t$	$l b-f t$
			7599.28						
	B	39.1448	8161.99	5358.77	5419.13	2921.42	21901.14	21657.20	0.00
			7599.28						
	B	39.1448	8161.99	5209.41	5419.13	3180.12	-10950.57	-21657.20	-18966.95
			7599.28						
	C	39.1448	8161.99	-5209.41	5419.13	3180.12	-10950.57	21657.20	18966.95
			7599.28						
	C	39.1448	8161.99	-5358.77	5419.13	2921.42	21901.14	-21657.20	0.00
			7599.28						
			Sum:	0.00	32514.76	-0.00	-0.00	0.00	0.00
60.375	A	22.8926	7815.32	0.00	3328.32	-7071.17	-6725.63	0.00	0.00
			7550.50						
	B	22.8926	7815.32	6123.81	3328.32	3535.58	3362.82	0.00	-5824.57
			7550.50						
	C	22.8926	7815.32	-6123.81	3328.32	3535.58	3362.82	-0.00	5824.57
			7550.50						
			Sum:	0.00	9984.97	-0.00	0.00	0.00	0.00

Guy-Mast Forces (Excluding Wind) - Service

Guy Elevation	Guy Location	Chord Angle	Guy Tension Top Bottom lb	F_{x}	F_{y}	F_{z}	M_{x}	M_{y}	M_{z}
$f t$		-		$l b$	$l b$	$l b$	$l b-f t$	$l b-f t$	$l b-f t$
160.375	A	48.2735	6490.22	-104.64	4882.39	-4274.84	-9865.97	15173.38	-17088.36
			6360.00						
	A	48.2735	6490.22	104.64	4882.39	-4274.84	-9865.97	-15173.38	17088.36
			6360.00						
	B	48.2735	6490.22	3754.44	4882.39	2046.79	19731.94	15173.38	0.00
			6360.00						
	B	48.2735	6490.22	3649.79	4882.39	2228.04	-9865.97	-15173.38	-17088.36
			6360.00						
	C	48.2735	6490.22	-3649.79	4882.39	2228.04	-9865.97	15173.38	17088.36
			6360.00						
	C	48.2735	6490.22	-3754.44	4882.39	2046.79	19731.94	-15173.38	0.00
			6360.00						
			Sum:	0.00	29294.33	-0.00	-0.00	0.00	0.00
116.417	A	39.1448	5328.01	-100.37	3400.60	-4100.44	-6871.68	14554.35	-11902.11
			5250.00						
	A	39.1448	5328.01	100.37	3400.60	-4100.44	-6871.68	-14554.35	11902.11
			5250.00						
	B	39.1448	5328.01	3601.27	3400.60	1963.29	13743.37	14554.35	0.00
			5250.00						
	B	39.1448	5328.01	3500.89	3400.60	2137.14	-6871.68	-14554.35	-11902.11
			5250.00						
	C	39.1448	5328.01	-3500.89	3400.60	2137.14	-6871.68	14554.35	11902.11
			5250.00						
	C	39.1448	5328.01	-3601.27	3400.60	1963.29	13743.37	-14554.35	0.00
			5250.00						
			Sum:	0.00	20403.61	-0.00	-0.00	0.00	0.00
60.375	A	22.8926	5290.46	0.00	2102.12	-4854.90	-4247.81	0.00	0.00
			5250.00						
	B	22.8926	5290.46	4204.47	2102.12	2427.45	2123.90	0.00	-3678.71

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } 12 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	Date 22:39:02 08/13/19
	Client	CDT	Designed by FAN

Guy Elevation	Guy Location	Chord Angle	Guy Tension Top Bottom $l b$	F_{x}	F_{y}	F_{z}	M_{x}	M_{y}	M_{z}
$f t$		-		$l b$	$l b$	$l b$	$l b-f t$	$l b-f t$	$l b-f t$
			5250.00						
	C	22.8926	5290.46	-4204.47	2102.12	2427.45	2123.90	-0.00	3678.71
			5250.00						
			Sum:	0.00	6306.36	0.00	0.00	0.00	0.00

Guy-Tensioning Information

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Exclude From Torque Calculation	Component Type	Placement $f t$	Face Offset in	Lateral Offset (Frac FW)	\#	$\begin{gathered} \# \\ \text { Per } \\ \text { Row } \end{gathered}$	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
$\begin{gathered} \hline \text { LDF6-50A } \\ (1-1 / 4 \text { FOAM }) \\ \text { (Sprint) } \end{gathered}$	A	No	No	Ar (CaAa)	$\begin{gathered} 180.00- \\ 0.00 \end{gathered}$	0.0000	0.25	4	4	0.5000	1.5500		0.66
Safety Line 3/8	B	No	No	Ar (CaAa)	$\begin{gathered} 180.00- \\ 0.00 \end{gathered}$	0.0000	0.25	1	1	0.5000	0.3750		0.22
$\begin{gathered} \text { LDF6-50A } \\ (1-1 / 4 \text { FOAM }) \\ \text { (AT\&T) } \end{gathered}$	A	No	No	$\mathrm{Ar}(\mathrm{CaAa})$	$\begin{gathered} 170.00- \\ 0.00 \end{gathered}$	0.0000	-0.25	12	6	0.5000	1.5500		0.66
1.34 in Fiber (AT\&T)	A	No	No	Ar (CaAa)	$\begin{gathered} 170.00- \\ 0.00 \end{gathered}$	0.0000	-0.25	3	3	0.5000	1.3400		0.15
$\begin{aligned} & 0.65 \mathrm{DC} \\ & \text { (AT\&T) } \end{aligned}$	A	No	No	$\mathrm{Ar}(\mathrm{CaAa})$	$\begin{gathered} 170.00- \\ 0.00 \end{gathered}$	0.0000	-0.25	6	6	0.5000	0.6500		0.10
$\begin{aligned} & \text { LDF7-50A } \\ & (1-5 / 8 \text { FOAM }) \end{aligned}$	B	No	No	$\operatorname{Ar}(\mathrm{CaAa})$	$\begin{gathered} 150.00- \\ 0.00 \end{gathered}$	0.0000	0	12	6	0.5000	1.9800		0.82
(T-Mobile) 1-3/8 in Hybrid (T-Mobile)	B	No	No	Ar (CaAa)	$\begin{gathered} 150.00- \\ 0.00 \end{gathered}$	0.0000	0	1	1	1.5800	1.5800		0.70

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	Page 13 of 45
	Project	Colchester, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 22:39:02 08/13/19 } \end{array}$
	Client	CDT	Designed by FAN

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Tower Section \& Tower Elevation $f t$ \& Face \& A_{R}

$f t^{2}$ \& A_{F}

$f t^{2}$ \& | $C_{A} A_{A}$ |
| :--- |
| In Face |
| $f t^{2}$ | \& $C_{A} A_{A}$ Out Face $f t^{2}$ \& | Weight |
| :--- |
| $l b$ |

\hline \multirow[t]{3}{*}{T1} \& \multirow[t]{3}{*}{180.00-160.00} \& A \& 0.000 \& 0.000 \& 38.920 \& 0.000 \& 142.50

\hline \& \& B \& 0.000 \& 0.000 \& 0.750 \& 0.000 \& 4.40

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{T2} \& \multirow[t]{3}{*}{160.00-140.00} \& A \& 0.000 \& 0.000 \& 65.440 \& 0.000 \& 232.20

\hline \& \& B \& 0.000 \& 0.000 \& 26.090 \& 0.000 \& 109.80

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{T3} \& \multirow[t]{3}{*}{140.00-120.00} \& A \& 0.000 \& 0.000 \& 65.440 \& 0.000 \& 232.20

\hline \& \& B \& 0.000 \& 0.000 \& 51.430 \& 0.000 \& 215.20

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{T4} \& \multirow[t]{3}{*}{120.00-100.00} \& A \& 0.000 \& 0.000 \& 65.440 \& 0.000 \& 232.20

\hline \& \& B \& 0.000 \& 0.000 \& 51.430 \& 0.000 \& 215.20

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{T5} \& \multirow[t]{3}{*}{100.00-80.00} \& A \& 0.000 \& 0.000 \& 65.440 \& 0.000 \& 232.20

\hline \& \& B \& 0.000 \& 0.000 \& 51.430 \& 0.000 \& 215.20

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{T6} \& \multirow[t]{3}{*}{80.00-60.00} \& A \& 0.000 \& 0.000 \& 65.440 \& 0.000 \& 232.20

\hline \& \& B \& 0.000 \& 0.000 \& 51.430 \& 0.000 \& 215.20

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{T7} \& \multirow[t]{3}{*}{60.00-40.00} \& A \& 0.000 \& 0.000 \& 65.440 \& 0.000 \& 232.20

\hline \& \& B \& 0.000 \& 0.000 \& 51.430 \& 0.000 \& 215.20

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{T8} \& \multirow[t]{3}{*}{40.00-20.00} \& A \& 0.000 \& 0.000 \& 65.440 \& 0.000 \& 232.20

\hline \& \& B \& 0.000 \& 0.000 \& 51.430 \& 0.000 \& 215.20

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{T9} \& \multirow[t]{3}{*}{20.00-5.00} \& A \& 0.000 \& 0.000 \& 49.080 \& 0.000 \& 174.15

\hline \& \& B \& 0.000 \& 0.000 \& 38.572 \& 0.000 \& 161.40

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{T10} \& \multirow[t]{3}{*}{5.00-0.00} \& A \& 0.000 \& 0.000 \& 16.360 \& 0.000 \& 58.05

\hline \& \& B \& 0.000 \& 0.000 \& 12.858 \& 0.000 \& 53.80

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline
\end{tabular}

Feed Line/Linear Appurtenances Section Areas - With Ice

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Tower Section \& Tower Elevation $f t$ \& Face or Leg \& Ice
Thickness
in \& A_{R}
$f t^{2}$ \& A_{F}

$f t^{2}$ \& $C_{A} A_{A}$ In Face $f t^{2}$ \& \[
$$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
\text { ft }^{2}
\end{gathered}
$$

\] \& | Weight |
| :--- |
| $l b$ |

\hline \multirow[t]{3}{*}{T1} \& \multirow[t]{3}{*}{180.00-160.00} \& A \& \multirow[t]{3}{*}{1.767} \& 0.000 \& 0.000 \& 77.751 \& 0.000 \& 1065.91

\hline \& \& B \& \& 0.000 \& 0.000 \& 7.819 \& 0.000 \& 96.90

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{T2} \& \multirow[t]{3}{*}{160.00-140.00} \& A \& \multirow[t]{3}{*}{1.745} \& 0.000 \& 0.000 \& 124.089 \& 0.000 \& 1716.80

\hline \& \& B \& \& 0.000 \& 0.000 \& 37.250 \& 0.000 \& 654.97

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{T3} \& \multirow[t]{3}{*}{140.00-120.00} \& A \& \multirow[t]{3}{*}{1.720} \& 0.000 \& 0.000 \& 123.429 \& 0.000 \& 1694.56

\hline \& \& B \& \& 0.000 \& 0.000 \& 66.408 \& 0.000 \& 1200.71

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{T4} \& \multirow[t]{3}{*}{120.00-100.00} \& A \& \multirow[t]{3}{*}{1.692} \& 0.000 \& 0.000 \& 122.671 \& 0.000 \& 1669.15

\hline \& \& B \& \& 0.000 \& 0.000 \& 65.992 \& 0.000 \& 1184.24

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{T5} \& \multirow[t]{3}{*}{100.00-80.00} \& A \& \multirow[t]{3}{*}{1.658} \& 0.000 \& 0.000 \& 121.779 \& 0.000 \& 1639.39

\hline \& \& B \& \& 0.000 \& 0.000 \& 65.501 \& 0.000 \& 1164.97

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{T6} \& \multirow[t]{3}{*}{80.00-60.00} \& A \& \multirow[t]{3}{*}{1.617} \& 0.000 \& 0.000 \& 120.687 \& 0.000 \& 1603.24

\hline \& \& B \& \& 0.000 \& 0.000 \& 64.901 \& 0.000 \& 1141.61

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{T7} \& \multirow[t]{3}{*}{60.00-40.00} \& A \& \multirow[t]{3}{*}{1.564} \& 0.000 \& 0.000 \& 119.270 \& 0.000 \& 1556.75

\hline \& \& B \& \& 0.000 \& 0.000 \& 64.121 \& 0.000 \& 1111.60

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline
\end{tabular}

tnxTower Fred A. Nudd Corporation 1743 Route 104	Job 119-23103		$\begin{aligned} & \text { Page } \\ & \\ & 14 \text { of } 45 \end{aligned}$
	Project Colchester, CT		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 22:39:02 08/13/19 } \end{array}$
Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Client	CDT	Designed by FAN

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Tower Section \& Tower Elevation \(f t\) \& \begin{tabular}{l}
Face \\
or \\
Leg
\end{tabular} \& Ice
Thickness
in \& \(A_{R}\)

$f t^{2}$ \& A_{F}

$f t^{2}$ \& $C_{A} A_{A}$ In Face $f t^{2}$ \& $C_{A} A_{A}$ Out Face $f t^{2}$ \& Weight
$l b$

\hline \multirow[t]{3}{*}{T8} \& \multirow[t]{3}{*}{40.00-20.00} \& A \& \multirow[t]{3}{*}{1.486} \& 0.000 \& 0.000 \& 117.212 \& 0.000 \& 1490.08

\hline \& \& B \& \& 0.000 \& 0.000 \& 62.986 \& 0.000 \& 1068.69

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{T9} \& \multirow[t]{3}{*}{20.00-5.00} \& A \& \multirow[t]{3}{*}{1.361} \& 0.000 \& 0.000 \& 85.449 \& 0.000 \& 1039.44

\hline \& \& B \& \& 0.000 \& 0.000 \& 45.880 \& 0.000 \& 751.42

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{T10} \& \multirow[t]{3}{*}{5.00-0.00} \& A \& \multirow[t]{3}{*}{1.159} \& 0.000 \& 0.000 \& 27.159 \& 0.000 \& 305.79

\hline \& \& B \& \& 0.000 \& 0.000 \& 14.558 \& 0.000 \& 224.55

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline
\end{tabular}

Feed Line Center of Pressure

Section	Elevation	$C P_{X}$	$C P_{Z}$	$C P_{X}$ Ice	$C P_{Z}$ Ice in
T1	ft	in	in	in	in
T2	$180.00-160.00$	-4.2047	-1.8918	-2.4532	-0.9833
T3	$160.00-140.00$	-4.4672	-1.9077	-3.4136	-1.0014
T4	$120.00-120.00$	-2.7848	-2.5798	-2.5244	-1.4571
T5	$100.00-80.00$	-2.7848	-2.5798	-2.5587	-1.4762
T6	$80.00-60.00$	-2.7848	-2.5798	-2.5989	-1.4986
T7	$60.00-40.00$	-2.7848	-2.5798	-2.6478	-1.5257
T8	$40.00-20.00$	-2.7848	-2.5798	-2.7110	-1.5607
T9	$20.00-5.00$	-2.7848	-2.5798	-2.8021	-1.6109
T10	$5.00-0.00$	-2.5674	-2.5954	-3.0471	-1.7403

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{a} \\ \text { No Ice } \end{gathered}$	$\begin{gathered} \hline K_{a} \\ I c e \end{gathered}$
T1	1	LDF6-50A (1-1/4 FOAM)	$\begin{array}{r} 160.00- \\ 180.00 \end{array}$	0.6000	0.3843
T1	2	Safety Line 3/8	$160.00-$ 180.00	0.6000	0.3843
T1	3	LDF6-50A (1-1/4 FOAM)	$160.00-$ 170.00	0.6000	0.3843
T1	5	1.34 in Fiber	$\begin{array}{r} 160.00- \\ 170.00 \end{array}$	0.6000	0.3843
T1	6	0.65 DC	$160.00-$ 170.00	0.6000	0.3843
T2	1	LDF6-50A (1-1/4 FOAM)	$\begin{array}{r} 140.00- \\ 160.00 \end{array}$	0.6000	0.3932
T2	2	Safety Line 3/8	$140.00-$ 160.00	0.6000	0.3932
T2	3	LDF6-50A (1-1/4 FOAM)	$\begin{array}{r} 140.00- \\ 160.00 \end{array}$	0.6000	0.3932
$\mathrm{T} 2$	5	1.34 in Fiber	$\begin{array}{r} 140.00- \\ 160.00 \end{array}$	0.6000	0.3932
T2	6	0.65 DC	$140.00-$ 160.00	0.6000	0.3932
T2	7	LDF7-50A (1-5/8 FOAM)	140.00-\|	0.6000	0.3932

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } \\ & 15 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	$\begin{aligned} & \text { Date } \\ & \text { 22:39:02 08/13/19 } \end{aligned}$
	Client	CDT	Designed by FAN

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{a} \\ \text { No Ice } \end{gathered}$	$\begin{aligned} & \hline K_{a} \\ & I c e \end{aligned}$
T2	8	1-3/8 in Hybrid	150.00 $140.00-$ 150.00	0.6000	0.3932
T3	1	LDF6-50A (1-1/4 FOAM)	$120.00-$ 140.00	0.6000	0.3985
T3	2	Safety Line 3/8	$120.00-$ 140.00	0.6000	0.3985
T3	3	LDF6-50A (1-1/4 FOAM)	$120.00-$ 140.00	0.6000	0.3985
T3	5	1.34 in Fiber	$120.00-$ 140.00	0.6000	0.3985
T3	6	0.65 DC	$120.00-$ 140.00	0.6000	0.3985
T3	7	LDF7-50A (1-5/8 FOAM)	$120.00-$ 140.00	0.6000	0.3985
T3	8	1-3/8 in Hybrid	$120.00-$ 140.00	0.6000	0.3985
T4	1	LDF6-50A (1-1/4 FOAM)	$100.00-$ 120.00	0.6000	0.4047
T4	2	Safety Line 3/8	$100.00-$ 120.00	0.6000	0.4047
T4	3	LDF6-50A (1-1/4 FOAM)	$100.00-$ 120.00	0.6000	0.4047
T4	5	1.34 in Fiber	$100.00-$ 120.00	0.6000	0.4047
T4	6	0.65 DC	$100.00-$ 120.00	0.6000	0.4047
T4	7	LDF7-50A (1-5/8 FOAM)	$100.00-$ 120.00	0.6000	0.4047
T4	8	1-3/8 in Hybrid	$100.00-$ 120.00	0.6000	0.4047
T5	1	LDF6-50A (1-1/4 FOAM)	80.00-100.00	0.6000	0.4119
T5	2	Safety Line 3/8	80.00-100.00	0.6000	0.4119
T5	3	LDF6-50A (1-1/4 FOAM)	80.00-100.00	0.6000	0.4119
T5	5	1.34 in Fiber	80.00-100.00	0.6000	0.4119
T5	6	0.65 DC	80.00-100.00	0.6000	0.4119
T5	7	LDF7-50A (1-5/8 FOAM)	80.00-100.00	0.6000	0.4119
T5	8	1-3/8 in Hybrid	80.00-100.00	0.6000	0.4119
T6	1	LDF6-50A (1-1/4 FOAM)	60.00-80.00	0.6000	0.4208
T6	2	Safety Line 3/8	60.00-80.00	0.6000	0.4208
T6	3	LDF6-50A (1-1/4 FOAM)	60.00-80.00	0.6000	0.4208
T6	5	1.34 in Fiber	60.00-80.00	0.6000	0.4208
T6	6	0.65 DC	60.00-80.00	0.6000	0.4208
T6	7	LDF7-50A (1-5/8 FOAM)	60.00-80.00	0.6000	0.4208
T6	8	1-3/8 in Hybrid	60.00-80.00	0.6000	0.4208
T7	1	LDF6-50A (1-1/4 FOAM)	40.00-60.00	0.6000	0.4325
T7	2	Safety Line 3/8	40.00-60.00	0.6000	0.4325
T7	3	LDF6-50A (1-1/4 FOAM)	40.00-60.00	0.6000	0.4325
T7	5	1.34 in Fiber	40.00-60.00	0.6000	0.4325
T7	6	0.65 DC	40.00-60.00	0.6000	0.4325
T7	7	LDF7-50A (1-5/8 FOAM)	40.00-60.00	0.6000	0.4325
T7	8	1-3/8 in Hybrid	40.00-60.00	0.6000	0.4325
T8	1	LDF6-50A (1-1/4 FOAM)	20.00-40.00	0.6000	0.4495
T8	2	Safety Line 3/8	20.00-40.00	0.6000	0.4495
T8	3	LDF6-50A (1-1/4 FOAM)	20.00-40.00	0.6000	0.4495
T8	5	1.34 in Fiber	20.00-40.00	0.6000	0.4495
T8	6	0.65 DC	20.00-40.00	0.6000	0.4495
T8	7	LDF7-50A (1-5/8 FOAM)	20.00-40.00	0.6000	0.4495
T8	8	1-3/8 in Hybrid	20.00-40.00	0.6000	0.4495
T9	1	LDF6-50A (1-1/4 FOAM)	5.00-20.00	0.6000	0.4939
T9	2	Safety Line 3/8	5.00-20.00	0.6000	0.4939
T9	3	LDF6-50A (1-1/4 FOAM)	5.00-20.00	0.6000	0.4939

tnxTower Fred A. Nudd Corporation 1743 Route 104	Job		Page
	119-23103		16 of 45
	Colchester, CT		Date 22:39:02 08/13/19
Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Client	CDT	Designed by FAN

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{a} \\ \text { No Ice } \end{gathered}$	$\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$
T9	5	1.34 in Fiber	5.00-20.00	0.6000	0.4939
T9	6	0.65 DC	5.00-20.00	0.6000	0.4939
T9	7	LDF7-50A (1-5/8 FOAM)	5.00-20.00	0.6000	0.4939
T9	8	1-3/8 in Hybrid	5.00-20.00	0.6000	0.4939
T10	1	LDF6-50A (1-1/4 FOAM)	0.00-5.00	0.6000	0.4910
T10	2	Safety Line 3/8	0.00-5.00	0.6000	0.4910
T10	3	LDF6-50A (1-1/4 FOAM)	0.00-5.00	0.6000	0.4910
T10	5	1.34 in Fiber	0.00-5.00	0.6000	0.4910
T10	6	0.65 DC	0.00-5.00	0.6000	0.4910
T10	7	LDF7-50A (1-5/8 FOAM)	0.00-5.00	0.6000	0.4910
T10	8	1-3/8 in Hybrid	0.00-5.00	0.6000	0.4910

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& Face or Leg \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& | $C_{A} A_{A}$ Front |
| :--- |
| $f t^{2}$ | \& $C_{A} A_{A}$

Side

$f t^{2}$ \& Weight

\hline \multirow[t]{3}{*}{Low Profile Platform (Sprint)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{None} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{180.00} \& No Ice \& 26.30 \& 26.30 \& 1950.00

\hline \& \& \& \& \& \& 1/2" Ice \& 35.60 \& 35.60 \& 2340.00

\hline \& \& \& \& \& \& $1{ }^{1 \prime}$ Ice \& 44.90 \& 44.90 \& 2730.00

\hline RFS \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{150.00} \& No Ice \& 3.62 \& 2.01 \& 18.70

\hline APXV18-206516S-C-A20 \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.29 \& 2.72 \& 63.10

\hline (T-Mobile) \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 4.97 \& 3.38 \& 125.50

\hline RFS \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{150.00} \& No Ice \& 3.62 \& 2.01 \& 18.70

\hline APXV18-206516S-C-A20 \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.29 \& 2.72 \& 63.10

\hline (T-Mobile) \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 4.97 \& 3.38 \& 125.50

\hline RFS \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{150.00} \& No Ice \& 3.62 \& 2.01 \& 18.70

\hline APXV18-206516S-C-A20 \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.29 \& 2.72 \& 63.10

\hline (T-Mobile) \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 4.97 \& 3.38 \& 125.50

\hline RFS \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{150.00} \& No Ice \& 20.27 \& 8.90 \& 153.30

\hline APXVAARR24_43-U-NA20 \& \& \& 0.00 \& \& \& 1/2" Ice \& 20.88 \& 9.54 \& 266.00

\hline (T-Mobile) \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 21.50 \& 10.16 \& 387.20

\hline RFS \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{150.00} \& No Ice \& 20.27 \& 8.90 \& 153.30

\hline APXVAARR24_43-U-NA20 \& \& \& 0.00 \& \& \& 1/2" Ice \& 20.88 \& 9.54 \& 266.00

\hline (T-Mobile) \& \& \& 0.00 \& \& \& 1" Ice \& 21.50 \& 10.16 \& 387.20

\hline RFS \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{150.00} \& No Ice \& 20.27 \& 8.90 \& 153.30

\hline APXVAARR24_43-U-NA20 \& \& \& 0.00 \& \& \& 1/2" Ice \& 20.88 \& 9.54 \& 266.00

\hline (T-Mobile) \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 21.50 \& 10.16 \& 387.20

\hline TMA \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{150.00} \& No Ice \& 2.06 \& 0.50 \& 22.00

\hline (T-Mobile) \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.39 \& 0.72 \& 49.80

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 2.75 \& 0.97 \& 88.20

\hline TMA \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{150.00} \& No Ice \& 2.06 \& 0.50 \& 22.00

\hline (T-Mobile) \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.39 \& 0.72 \& 49.80

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 2.75 \& 0.97 \& 88.20

\hline TMA \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{150.00} \& No Ice \& 2.06 \& 0.50 \& 22.00

\hline (T-Mobile) \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.39 \& 0.72 \& 49.80

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 2.75 \& 0.97 \& 88.20

\hline RFS APXV9ERR18-C-A20 \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{180.00} \& No Ice \& 8.02 \& 5.81 \& 62.00

\hline (Sprint) \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.48 \& 6.27 \& 114.00

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 8.93 \& 6.73 \& 172.10

\hline RFS APXV9ERR18-C-A20 \& B \& From Leg \& 3.00 \& 0.0000 \& 180.00 \& No Ice \& 8.02 \& 5.81 \& 62.00

\hline
\end{tabular}

tnxTOWer	Job	Page	
	Project	$119-23103$	17 of 45
	Client		Colchester, CT

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) \\
Front \\
\(f t^{2}\)
\end{tabular} \& \begin{tabular}{l}
\(C_{A} A_{A}\) \\
Side \\
\(f t^{2}\)
\end{tabular} \& Weight

$l b$

\hline \multirow[t]{2}{*}{(Sprint)} \& \multirow{4}{*}{C} \& \multirow{5}{*}{From Leg} \& 0.00 \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{180.00} \& 1/2" Ice \& 8.48 \& 6.27 \& 114.00

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 8.93 \& 6.73 \& 172.10

\hline \multirow[t]{3}{*}{| RFS APXV9ERR18-C-A20 |
| :--- |
| (Sprint) |} \& \& \& 3.00 \& \& \& No Ice \& 8.02 \& 5.81 \& 62.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.48 \& 6.27 \& 114.00

\hline \& \multirow{4}{*}{A} \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 8.93 \& 6.73 \& 172.10

\hline \multirow[t]{3}{*}{Commscope DT465B-2XR (Sprint)} \& \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{180.00} \& No Ice \& 9.22 \& 5.87 \& 50.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 9.68 \& 6.33 \& 108.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 10.14 \& 6.79 \& 172.40

\hline \multirow[t]{3}{*}{Commscope DT465B-2XR (Sprint)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{180.00} \& No Ice \& 9.22 \& 5.87 \& 50.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 9.68 \& 6.33 \& 108.00

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 10.14 \& 6.79 \& 172.40

\hline \multirow[t]{3}{*}{Commscope DT465B-2XR (Sprint)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{180.00} \& No Ice \& 9.22 \& 5.87 \& 50.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 9.68 \& 6.33 \& 108.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 10.14 \& 6.79 \& 172.40

\hline \multirow[t]{3}{*}{Alcatel Lucent 4x45W (Sprint)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{180.00} \& No Ice \& 2.54 \& 1.61 \& 51.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.72 \& 1.78 \& 71.10

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 2.92 \& 1.96 \& 94.30

\hline \multirow[t]{3}{*}{Alcatel Lucent 4x45W (Sprint)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{180.00} \& No Ice \& 2.54 \& 1.61 \& 51.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.72 \& 1.78 \& 71.10

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 2.92 \& 1.96 \& 94.30

\hline \multirow[t]{3}{*}{Alcatel Lucent 4x45W (Sprint)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{180.00} \& No Ice \& 2.54 \& 1.61 \& 51.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.72 \& 1.78 \& 71.10

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 2.92 \& 1.96 \& 94.30

\hline \multirow[t]{3}{*}{Alcatel Lucent 8x200-25 (Sprint)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{180.00} \& No Ice \& 4.05 \& 1.53 \& 70.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.27 \& 1.70 \& 97.10

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 4.50 \& 1.88 \& 127.80

\hline \multirow[t]{3}{*}{Alcatel Lucent 8x200-25 (Sprint)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{180.00} \& No Ice \& 4.05 \& 1.53 \& 70.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.27 \& 1.70 \& 97.10

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 4.50 \& 1.88 \& 127.80

\hline \multirow[t]{3}{*}{Alcatel Lucent $8 \times 200-25$ (Sprint)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{180.00} \& No Ice \& 4.05 \& 1.53 \& 70.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.27 \& 1.70 \& 97.10

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 4.50 \& 1.88 \& 127.80

\hline \multirow[t]{3}{*}{(2) Alcatel Lucent 2×50 (Sprint)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{180.00} \& No Ice \& 2.27 \& 1.35 \& 42.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.45 \& 1.51 \& 59.30

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.64 \& 1.68 \& 79.60

\hline \multirow[t]{3}{*}{(2) Alcatel Lucent 2×50 (Sprint)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{180.00} \& No Ice \& 2.27 \& 1.35 \& 42.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.45 \& 1.51 \& 59.30

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.64 \& 1.68 \& 79.60

\hline \multirow[t]{3}{*}{(2) Alcatel Lucent 2×50 (Sprint)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{180.00} \& No Ice \& 2.27 \& 1.35 \& 42.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.45 \& 1.51 \& 59.30

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 2.64 \& 1.68 \& 79.60

\hline \multirow[t]{3}{*}{12 ft Boom / Sector Mount (AT\&T)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 0.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{170.00} \& No Ice \& 17.50 \& 8.50 \& 450.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 22.50 \& 11.00 \& 700.00

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 28.00 \& 14.00 \& 900.00

\hline \multirow[t]{3}{*}{12 ft Boom / Sector Mount (AT\&T)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 0.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{170.00} \& No Ice \& 17.50 \& 8.50 \& 450.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 22.50 \& 11.00 \& 700.00

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 28.00 \& 14.00 \& 900.00

\hline \multirow[t]{3}{*}{12 ft Boom / Sector Mount (AT\&T)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 0.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{170.00} \& No Ice \& 17.50 \& 8.50 \& 450.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 22.50 \& 11.00 \& 700.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 28.00 \& 14.00 \& 900.00

\hline \multirow[t]{3}{*}{| Powerwave 7770.00 |
| :--- |
| (AT\&T) |} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{170.00} \& No Ice \& 5.51 \& 2.93 \& 35.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.86 \& 3.29 \& 67.60

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 6.21 \& 3.64 \& 105.10

\hline \multirow[t]{3}{*}{| Powerwave 7770.00 |
| :--- |
| (AT\&T) |} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{170.00} \& No Ice \& 5.51 \& 2.93 \& 35.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.86 \& 3.29 \& 67.60

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 6.21 \& 3.64 \& 105.10

\hline Powerwave 7770.00 \& C \& From Leg \& 3.00 \& 0.0000 \& 170.00 \& No Ice \& 5.51 \& 2.93 \& 35.00

\hline
\end{tabular}

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } 18 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	$\begin{aligned} & \text { Date } \\ & \text { 22:39:02 08/13/19 } \end{aligned}$
	Client	CDT	Designed by FAN

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \begin{tabular}{l}
Face \\
or \\
Leg
\end{tabular} \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
。
\end{tabular} \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

$$
f t^{2}
$$ \& $C_{A} A_{A}$

Side

$f t^{2}$ \& Weight

\hline \multirow[t]{2}{*}{(AT\&T)} \& \multirow{4}{*}{A} \& \multirow{4}{*}{From Leg} \& 0.00 \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{170.00} \& 1/2" Ice \& 5.86 \& 3.29 \& 67.60

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 6.21 \& 3.64 \& 105.10

\hline \multirow[t]{3}{*}{(2) Powerwave LGP21401 (AT\&T)} \& \& \& 3.00 \& \& \& No Ice \& 1.67 \& 0.47 \& 31.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.81 \& 0.57 \& 42.00

\hline \& \multirow{3}{*}{B} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{170.00} \& $1{ }^{1 \prime}$ Ice \& 1.96 \& 0.67 \& 55.30

\hline (2) Powerwave LGP21401 \& \& \& 3.00 \& \& \& No Ice \& 1.67 \& 0.47 \& 31.00

\hline (AT\&T) \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.81 \& 0.57 \& 42.00

\hline \multirow{4}{*}{(2) Powerwave LGP21401 (AT\&T)} \& \multirow{3}{*}{C} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{170.00} \& $1{ }^{1 \prime}$ Ice \& 1.96 \& 0.67 \& 55.30

\hline \& \& \& 3.00 \& \& \& No Ice \& 1.67 \& 0.47 \& 31.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.81 \& 0.57 \& 42.00

\hline \& \multirow{3}{*}{A} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{170.00} \& $1{ }^{1 \prime}$ Ice \& 1.96 \& 0.67 \& 55.30

\hline \multirow[t]{3}{*}{(2) Kathrein 80010966 (AT\&T)} \& \& \& 3.00 \& \& \& No Ice \& 17.36 \& 4.39 \& 125.70

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 17.97 \& 5.05 \& 217.90

\hline \& \multirow{3}{*}{B} \& \multirow{4}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{170.00} \& $1{ }^{\prime \prime}$ Ice \& 18.58 \& 5.68 \& 318.20

\hline \multirow[t]{3}{*}{(2) Kathrein 80010966 (AT\&T)} \& \& \& 3.00 \& \& \& No Ice \& 17.36 \& 4.39 \& 125.70

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 17.97 \& 5.05 \& 217.90

\hline \& \multirow{4}{*}{C} \& \& 0.00 \& \multirow{4}{*}{0.0000} \& \multirow{3}{*}{170.00} \& $1{ }^{\prime \prime}$ Ice \& 18.58 \& 5.68 \& 318.20

\hline \multirow[t]{3}{*}{(2) Kathrein 80010966 (AT\&T)} \& \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \& \& No Ice \& 17.36 \& 4.39 \& 125.70

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 17.97 \& 5.05 \& 217.90

\hline \& \& \& 0.00 \& \& \multirow{4}{*}{170.00} \& $1{ }^{\prime \prime}$ Ice \& 18.58 \& 5.68 \& 318.20

\hline \multirow[t]{3}{*}{| Ericsson RRUS 4478 B14 |
| :--- |
| (AT\&T) |} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \& No Ice \& 2.02 \& 1.25 \& 55.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.18 \& 1.38 \& 72.60

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 2.35 \& 1.52 \& 93.00

\hline \multirow[t]{3}{*}{| Ericsson RRUS 4478 B14 |
| :--- |
| (AT\&T) |} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{170.00} \& No Ice \& 2.02 \& 1.25 \& 55.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.18 \& 1.38 \& 72.60

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 2.35 \& 1.52 \& 93.00

\hline \multirow[t]{3}{*}{| Ericsson RRUS 4478 B14 |
| :--- |
| (AT\&T) |} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{170.00} \& No Ice \& 2.02 \& 1.25 \& 55.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.18 \& 1.38 \& 72.60

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.35 \& 1.52 \& 93.00

\hline \multirow[t]{3}{*}{| Ericsson 4449 B5/B12 |
| :--- |
| (AT\&T) |} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{170.00} \& No Ice \& 1.65 \& 1.30 \& 20.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.79 \& 1.43 \& 37.20

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 1.94 \& 1.57 \& 57.10

\hline \multirow[t]{3}{*}{| Ericsson 4449 B5/B12 |
| :--- |
| (AT\&T) |} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{170.00} \& No Ice \& 1.65 \& 1.30 \& 20.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.79 \& 1.43 \& 37.20

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.94 \& 1.57 \& 57.10

\hline \multirow[t]{3}{*}{| Ericsson 4449 B5/B12 |
| :--- |
| (AT\&T) |} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{170.00} \& No Ice \& 1.65 \& 1.30 \& 20.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.79 \& 1.43 \& 37.20

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 1.94 \& 1.57 \& 57.10

\hline \multirow[t]{3}{*}{| Ericsson RRUS 8843 |
| :--- |
| (AT\&T) |} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{170.00} \& No Ice \& 1.64 \& 1.35 \& 20.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.78 \& 1.48 \& 37.60

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 1.93 \& 1.62 \& 57.90

\hline \multirow[t]{3}{*}{| Ericsson RRUS 8843 |
| :--- |
| (AT\&T) |} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{170.00} \& No Ice \& 1.64 \& 1.35 \& 20.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.78 \& 1.48 \& 37.60

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.93 \& 1.62 \& 57.90

\hline \multirow[t]{3}{*}{Ericsson RRUS 8843 (AT\&T)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{170.00} \& No Ice \& 1.64 \& 1.35 \& 20.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.78 \& 1.48 \& 37.60

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.93 \& 1.62 \& 57.90

\hline \multirow[t]{3}{*}{(2) Powerwave LGP21901 (AT\&T)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{170.00} \& No Ice \& 0.23 \& 0.11 \& 10.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.29 \& 0.15 \& 12.40

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.35 \& 0.20 \& 15.90

\hline \multirow[t]{3}{*}{(2) Powerwave LGP21901 (AT\&T)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{170.00} \& No Ice \& 0.23 \& 0.11 \& 10.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.29 \& 0.15 \& 12.40

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.35 \& 0.20 \& 15.90

\hline \multirow[t]{3}{*}{(2) Powerwave LGP21901 (AT\&T)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{170.00} \& No Ice \& 0.23 \& 0.11 \& 10.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.29 \& 0.15 \& 12.40

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 0.35 \& 0.20 \& 15.90

\hline Ericsson 4449 B71 B12 \& A \& From Leg \& 3.00 \& 0.0000 \& 150.00 \& No Ice \& 1.64 \& 0.67 \& 50.00

\hline
\end{tabular}

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \hline \text { Page } 19 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 22:39:02 08/13/19 } \end{array}$
	Client	CDT	Designed by FAN

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
。
\end{tabular} \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

$$
f t^{2}
$$ \& $C_{A} A_{A}$ Side

$$
f t^{2}
$$ \& Weight

$l b$

\hline \multirow[t]{2}{*}{(T-Mobile)} \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.78 \& 0.80 \& 66.10

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 1.93 \& 0.93 \& 84.80

\hline \multirow[t]{3}{*}{Ericsson 4449 B71 B12 (T-Mobile)} \& B \& From Leg \& 3.00 \& 0.0000 \& 150.00 \& No Ice \& 1.64 \& 0.67 \& 50.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.78 \& 0.80 \& 66.10

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.93 \& 0.93 \& 84.80

\hline \multirow[t]{3}{*}{Ericsson 4449 B71 B12 (T-Mobile)} \& C \& From Leg \& 3.00 \& 0.0000 \& 150.00 \& No Ice \& 1.64 \& 0.67 \& 50.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.78 \& 0.80 \& 66.10

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.93 \& 0.93 \& 84.80

\hline
\end{tabular}

Tower Pressures - No Ice
$G_{H}=0.850$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
$$
f t
$$ \& z
$f t$ \& K_{Z} \& q_{z}
$p s f$ \& A_{G}

$f t^{2}$ \& F
a
c
e \& A_{F}

$f t^{2}$ \& A_{R}

$f t^{2}$ \& $A_{l e g}$

$f t^{2}$ \& \[
$$
\begin{gathered}
\text { Leg } \\
\%
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
C_{A} A_{A} \\
\text { In } \\
\text { Face } \\
f t^{2} \\
\hline
\end{gathered}
$$

\] \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f t^{2}$ |

\hline T1 \& \multirow[t]{3}{*}{170.00} \& \multirow[t]{3}{*}{1.15} \& \multirow[t]{3}{*}{25} \& \multirow[t]{3}{*}{74.792} \& A \& 3.192 \& 12.348 \& \multirow[t]{3}{*}{9.583} \& 61.67 \& 38.920 \& 0.000

\hline \multirow[t]{2}{*}{180.00-160.00} \& \& \& \& \& B \& 3.192 \& 12.348 \& \& 61.67 \& 0.750 \& 0.000

\hline \& \& \& \& \& C \& 3.192 \& 12.348 \& \& 61.67 \& 0.000 \& 0.000

\hline T2 \& \multirow[t]{3}{*}{150.00} \& \multirow[t]{3}{*}{1.11} \& \multirow[t]{3}{*}{24} \& \multirow[t]{3}{*}{74.792} \& A \& 2.853 \& 12.348 \& \multirow[t]{3}{*}{9.583} \& 63.05 \& 65.440 \& 0.000

\hline \multirow[t]{2}{*}{160.00-140.00} \& \& \& \& \& B \& 2.853 \& 12.348 \& \& 63.05 \& 26.090 \& 0.000

\hline \& \& \& \& \& C \& 2.853 \& 12.348 \& \& 63.05 \& 0.000 \& 0.000

\hline T3 \& \multirow[t]{3}{*}{130.00} \& \multirow[t]{3}{*}{1.065} \& \multirow[t]{3}{*}{23} \& \multirow[t]{3}{*}{74.792} \& A \& 2.853 \& 12.348 \& \multirow[t]{3}{*}{9.583} \& 63.05 \& 65.440 \& 0.000

\hline \multirow[t]{2}{*}{140.00-120.00} \& \& \& \& \& B \& 2.853 \& 12.348 \& \& 63.05 \& 51.430 \& 0.000

\hline \& \& \& \& \& C \& 2.853 \& 12.348 \& \& 63.05 \& 0.000 \& 0.000

\hline T4 \& \multirow[t]{3}{*}{110.00} \& \multirow[t]{3}{*}{1.016} \& \multirow[t]{3}{*}{22} \& \multirow[t]{3}{*}{74.792} \& A \& 2.853 \& 12.348 \& \multirow[t]{3}{*}{9.583} \& 63.05 \& 65.440 \& 0.000

\hline \multirow[t]{2}{*}{120.00-100.00} \& \& \& \& \& B \& 2.853 \& 12.348 \& \& 63.05 \& 51.430 \& 0.000

\hline \& \& \& \& \& C \& 2.853 \& 12.348 \& \& 63.05 \& 0.000 \& 0.000

\hline T5 \& \multirow[t]{3}{*}{90.00} \& \multirow[t]{3}{*}{0.959} \& \multirow[t]{3}{*}{20} \& \multirow[t]{3}{*}{74.792} \& A \& 2.853 \& 12.348 \& \multirow[t]{3}{*}{9.583} \& 63.05 \& 65.440 \& 0.000

\hline 100.00-80.00 \& \& \& \& \& B \& 2.853 \& 12.348 \& \& 63.05 \& 51.430 \& 0.000

\hline \& \& \& \& \& C \& 2.853 \& 12.348 \& \& 63.05 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{T6 80.00-60.00} \& \multirow[t]{3}{*}{70.00} \& \multirow[t]{3}{*}{0.892} \& \multirow[t]{3}{*}{19} \& \multirow[t]{3}{*}{74.792} \& A \& 2.853 \& 12.348 \& \multirow[t]{3}{*}{9.583} \& 63.05 \& 65.440 \& 0.000

\hline \& \& \& \& \& B \& 2.853 \& 12.348 \& \& 63.05 \& 51.430 \& 0.000

\hline \& \& \& \& \& C \& 2.853 \& 12.348 \& \& 63.05 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{T7 60.00-40.00} \& \multirow[t]{3}{*}{50.00} \& \multirow[t]{3}{*}{0.811} \& \multirow[t]{3}{*}{17} \& \multirow[t]{3}{*}{74.792} \& A \& 2.853 \& 12.348 \& \multirow[t]{3}{*}{9.583} \& 63.05 \& 65.440 \& 0.000

\hline \& \& \& \& \& B \& 2.853 \& 12.348 \& \& 63.05 \& 51.430 \& 0.000

\hline \& \& \& \& \& C \& 2.853 \& 12.348 \& \& 63.05 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{T8 40.00-20.00} \& \multirow[t]{3}{*}{30.00} \& \multirow[t]{3}{*}{0.701} \& \multirow[t]{3}{*}{15} \& \multirow[t]{3}{*}{74.792} \& A \& 2.853 \& 12.348 \& \multirow[t]{3}{*}{9.583} \& 63.05 \& 65.440 \& 0.000

\hline \& \& \& \& \& B \& 2.853 \& 12.348 \& \& 63.05 \& 51.430 \& 0.000

\hline \& \& \& \& \& C \& 2.853 \& 12.348 \& \& 63.05 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{T9 20.00-5.00} \& \multirow[t]{3}{*}{12.50} \& \multirow[t]{3}{*}{0.7} \& \multirow[t]{3}{*}{15} \& \multirow[t]{3}{*}{56.094} \& A \& 2.038 \& 9.126 \& \multirow[t]{3}{*}{7.188} \& 64.38 \& 49.080 \& 0.000

\hline \& \& \& \& \& B \& 2.038 \& 9.126 \& \& 64.38 \& 38.572 \& 0.000

\hline \& \& \& \& \& C \& 2.038 \& 9.126 \& \& 64.38 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{T10 5.00-0.00} \& \multirow[t]{3}{*}{2.50} \& \multirow[t]{3}{*}{0.7} \& \multirow[t]{3}{*}{15} \& \multirow[t]{3}{*}{10.019} \& A \& 0.375 \& 2.584 \& \multirow[t]{3}{*}{2.584} \& 87.33 \& 16.360 \& 0.000

\hline \& \& \& \& \& B \& 0.375 \& 2.584 \& \& 87.33 \& 12.858 \& 0.000

\hline \& \& \& \& \& C \& 0.375 \& 2.584 \& \& 87.33 \& 0.000 \& 0.000

\hline
\end{tabular}

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } 20 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	Date 22:39:02 08/13/19
	Client	CDT	Designed by FAN

Tower Pressure - With Ice

$G_{H}=0.850$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\qquad \& z
$f t$ \& K_{Z} \& $$
q_{z}
$$
$$
p s f
$$ \& t_{Z}
in \& A_{G}

$f t^{2}$ \& F
a
c
e \& A_{F}

$f t^{2}$ \& A_{R}

$f t^{2}$ \& $A_{l e g}$

$f t^{2}$ \& \[
$$
\begin{gathered}
L e g \\
\%
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
C_{A} A_{A} \\
\text { In } \\
\text { Face } \\
{f t^{2}}^{2}
\end{gathered}
$$

\] \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f t^{2}$ |

\hline T1 \& \multirow[t]{3}{*}{170.00} \& \multirow[t]{3}{*}{1.15} \& \multirow[t]{3}{*}{6} \& \multirow[t]{3}{*}{1.7672} \& \multirow[t]{3}{*}{80.682} \& A \& 3.192 \& 46.484 \& \multirow[t]{3}{*}{21.365} \& 43.01 \& 77.751 \& 0.000

\hline 180.00-160.00 \& \& \& \& \& \& B \& 3.192 \& 46.484 \& \& 43.01 \& 7.819 \& 0.000

\hline \& \& \& \& \& \& C \& 3.192 \& 46.484 \& \& 43.01 \& 0.000 \& 0.000

\hline T2 \& \multirow[t]{3}{*}{150.00} \& \multirow[t]{3}{*}{1.11} \& \multirow[t]{3}{*}{6} \& \multirow[t]{3}{*}{1.7452} \& \multirow[t]{3}{*}{80.609} \& A \& 2.853 \& 46.059 \& \multirow[t]{3}{*}{21.218} \& 43.38 \& 124.089 \& 0.000

\hline 160.00-140.00 \& \& \& \& \& \& B \& 2.853 \& 46.059 \& \& 43.38 \& 37.250 \& 0.000

\hline \& \& \& \& \& \& C \& 2.853 \& 46.059 \& \& 43.38 \& 0.000 \& 0.000

\hline T3 \& \multirow[t]{3}{*}{130.00} \& \multirow[t]{3}{*}{1.065} \& \multirow[t]{3}{*}{6} \& \multirow[t]{3}{*}{1.7204} \& \multirow[t]{3}{*}{80.526} \& A \& 2.853 \& 45.580 \& \multirow[t]{3}{*}{21.053} \& 43.47 \& 123.429 \& 0.000

\hline 140.00-120.00 \& \& \& \& \& \& B \& 2.853 \& 45.580 \& \& 43.47 \& 66.408 \& 0.000

\hline \& \& \& \& \& \& C \& 2.853 \& 45.580 \& \& 43.47 \& 0.000 \& 0.000

\hline T4 \& \multirow[t]{3}{*}{110.00} \& \multirow[t]{3}{*}{1.016} \& \multirow[t]{3}{*}{6} \& \multirow[t]{3}{*}{1.6919} \& \multirow[t]{3}{*}{80.431} \& A \& 2.853 \& 45.030 \& \multirow[t]{3}{*}{20.863} \& 43.57 \& 122.671 \& 0.000

\hline 120.00-100.00 \& \& \& \& \& \& B \& 2.853 \& 45.030 \& \& 43.57 \& 65.992 \& 0.000

\hline \& \& \& \& \& \& C \& 2.853 \& 45.030 \& \& 43.57 \& 0.000 \& 0.000

\hline T5 100.00-80.00 \& \multirow[t]{3}{*}{$$
90.00
$$} \& \multirow[t]{3}{*}{0.959} \& \multirow[t]{3}{*}{5} \& \multirow[t]{3}{*}{1.6583} \& \multirow[t]{3}{*}{80.319} \& A \& 2.853 \& 44.380 \& \multirow[t]{3}{*}{20.639} \& 43.70 \& 121.779 \& 0.000

\hline \& \& \& \& \& \& B \& 2.853 \& 44.380 \& \& 43.70 \& 65.501 \& 0.000

\hline \& \& \& \& \& \& C \& 2.853 \& 44.380 \& \& 43.70 \& 0.000 \& 0.000

\hline T6 80.00-60.00 \& \multirow[t]{3}{*}{70.00} \& \multirow[t]{3}{*}{0.892} \& \multirow[t]{3}{*}{5} \& \multirow[t]{3}{*}{1.6171} \& \multirow[t]{3}{*}{80.182} \& A \& 2.853 \& 43.585 \& \multirow[t]{3}{*}{20.364} \& 43.85 \& 120.687 \& 0.000

\hline \& \& \& \& \& \& B \& 2.853 \& 43.585 \& \& 43.85 \& 64.901 \& 0.000

\hline \& \& \& \& \& \& C \& 2.853 \& 43.585 \& \& 43.85 \& 0.000 \& 0.000

\hline T7 60.00-40.00 \& \multirow[t]{3}{*}{50.00} \& \multirow[t]{3}{*}{0.811} \& \multirow[t]{3}{*}{4} \& \multirow[t]{3}{*}{1.5636} \& \multirow[t]{3}{*}{80.004} \& A \& 2.853 \& 42.552 \& \multirow[t]{3}{*}{20.008} \& 44.07 \& 119.270 \& 0.000

\hline \& \& \& \& \& \& B \& 2.853 \& 42.552 \& \& 44.07 \& 64.121 \& 0.000

\hline \& \& \& \& \& \& C \& 2.853 \& 42.552 \& \& 44.07 \& 0.000 \& 0.000

\hline T8 40.00-20.00 \& \multirow[t]{3}{*}{30.00} \& \multirow[t]{3}{*}{0.701} \& \multirow[t]{3}{*}{4} \& \multirow[t]{3}{*}{1.4858} \& \multirow[t]{3}{*}{79.744} \& A \& 2.853 \& 41.048 \& \multirow[t]{3}{*}{19.488} \& 44.39 \& 117.212 \& 0.000

\hline \& \& \& \& \& \& B \& 2.853 \& 41.048 \& \& 44.39 \& 62.986 \& 0.000

\hline \& \& \& \& \& \& C \& 2.853 \& 41.048 \& \& 44.39 \& 0.000 \& 0.000

\hline T9 20.00-5.00 \& \multirow[t]{3}{*}{12.50} \& \multirow[t]{3}{*}{0.7} \& \multirow[t]{3}{*}{4} \& \multirow[t]{3}{*}{1.3612} \& \multirow[t]{3}{*}{59.497} \& A \& 2.038 \& 28.074 \& \multirow[t]{3}{*}{13.994} \& 46.47 \& 85.449 \& 0.000

\hline \& \& \& \& \& \& B \& 2.038 \& 28.074 \& \& 46.47 \& 45.880 \& 0.000

\hline \& \& \& \& \& \& C \& 2.038 \& 28.074 \& \& 46.47 \& 0.000 \& 0.000

\hline T10 5.00-0.00 \& \multirow[t]{3}{*}{2.50} \& \multirow[t]{3}{*}{0.7} \& \multirow[t]{3}{*}{4} \& \multirow[t]{3}{*}{1.1589} \& \multirow[t]{3}{*}{11.042} \& A \& 0.375 \& 5.246 \& \multirow[t]{3}{*}{4.667} \& 83.03 \& 27.159 \& 0.000

\hline \& \& \& \& \& \& B \& 0.375 \& 5.246 \& \& 83.03 \& 14.558 \& 0.000

\hline \& \& \& \& \& \& C \& 0.375 \& 5.246 \& \& 83.03 \& 0.000 \& 0.000

\hline
\end{tabular}

Tower Pressure - Service

$$
G_{H}=0.850
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\qquad \& z
$f t$ \& K_{Z} \& $$
q_{z}
$$
$$
p s f
$$ \& A_{G}

$f t^{2}$ \& | F |
| :--- |
| a |
| c |
| e | \& A_{F}

$f t^{2}$ \& A_{R}

$f t^{2}$ \& $A_{l e g}$

$f t^{2}$ \& \[
$$
\begin{gathered}
\text { Leg } \\
\%
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
C_{A} A_{A} \\
\text { In } \\
\text { Face } \\
{f t^{2}}^{2}
\end{gathered}
$$
\] \& $C_{A} A_{A}$ Out Face $f t^{2}$

\hline T1 \& \multirow[t]{3}{*}{170.00} \& \multirow[t]{3}{*}{1.15} \& \multirow[t]{3}{*}{9} \& \multirow[t]{3}{*}{74.792} \& A \& 3.192 \& 12.348 \& \multirow[t]{3}{*}{9.583} \& 61.67 \& 38.920 \& 0.000

\hline \multirow[t]{2}{*}{180.00-160.00} \& \& \& \& \& B \& 3.192 \& 12.348 \& \& 61.67 \& 0.750 \& 0.000

\hline \& \& \& \& \& C \& 3.192 \& 12.348 \& \& 61.67 \& 0.000 \& 0.000

\hline T2 \& \multirow[t]{3}{*}{150.00} \& \multirow[t]{3}{*}{1.11} \& \multirow[t]{3}{*}{9} \& \multirow[t]{3}{*}{74.792} \& A \& 2.853 \& 12.348 \& \multirow[t]{3}{*}{9.583} \& 63.05 \& 65.440 \& 0.000

\hline 160.00-140.00 \& \& \& \& \& B \& 2.853 \& 12.348 \& \& 63.05 \& 26.090 \& 0.000

\hline \& \& \& \& \& C \& 2.853 \& 12.348 \& \& 63.05 \& 0.000 \& 0.000

\hline T3 \& \multirow[t]{3}{*}{130.00} \& \multirow[t]{3}{*}{1.065} \& \multirow[t]{3}{*}{8} \& \multirow[t]{3}{*}{74.792} \& A \& 2.853 \& 12.348 \& \multirow[t]{3}{*}{9.583} \& 63.05 \& 65.440 \& 0.000

\hline 140.00-120.00 \& \& \& \& \& B \& 2.853 \& 12.348 \& \& 63.05 \& 51.430 \& 0.000

\hline \& \& \& \& \& C \& 2.853 \& 12.348 \& \& 63.05 \& 0.000 \& 0.000

\hline T4 \& \multirow[t]{2}{*}{110.00} \& \multirow[t]{2}{*}{1.016} \& \multirow[t]{2}{*}{8} \& \multirow[t]{2}{*}{74.792} \& A \& 2.853 \& 12.348 \& \multirow[t]{2}{*}{9.583} \& 63.05 \& 65.440 \& 0.000

\hline 120.00-100.00 \& \& \& \& \& B \& 2.853 \& 12.348 \& \& 63.05 \& 51.430 \& 0.000

\hline
\end{tabular}

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } 21 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	Date 22:39:02 08/13/19
	Client	CDT	Designed by FAN

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\[
f t
\] \& \(z\)
\(f t\) \& \(K_{Z}\) \& \begin{tabular}{l}
\(q z\) \\
\(p s f\)
\end{tabular} \& \[
\overline{A_{G}}
\]
\[
f t^{2}
\] \& \(F\)
\(a\)
\(c\)
\(e\) \& \(A_{F}\)

$f t^{2}$ \& A_{R}

$f t^{2}$ \& $A_{l e g}$

$f t^{2}$ \& \[
$$
\begin{gathered}
\mathrm{Leg} \\
\%
\end{gathered}
$$

\] \& | $C_{A} A_{A}$ |
| :--- |
| In |
| Face |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f t^{2}$ |

\hline \& \& \& \& \& C \& 2.853 \& 12.348 \& \& 63.05 \& 0.000 \& 0.000

\hline T5 \& 90.00 \& 0.959 \& 8 \& 74.792 \& A \& 2.853 \& 12.348 \& 9.583 \& 63.05 \& 65.440 \& 0.000

\hline 100.00-80.00 \& \& \& \& \& B \& 2.853 \& 12.348 \& \& 63.05 \& 51.430 \& 0.000

\hline \& \& \& \& \& C \& 2.853 \& 12.348 \& \& 63.05 \& 0.000 \& 0.000

\hline T6 80.00-60.00 \& 70.00 \& 0.892 \& 7 \& 74.792 \& A \& 2.853 \& 12.348 \& 9.583 \& 63.05 \& 65.440 \& 0.000

\hline \& \& \& \& \& B \& 2.853 \& 12.348 \& \& 63.05 \& 51.430 \& 0.000

\hline \& \& \& \& \& C \& 2.853 \& 12.348 \& \& 63.05 \& 0.000 \& 0.000

\hline T7 60.00-40.00 \& 50.00 \& 0.811 \& 6 \& 74.792 \& A \& 2.853 \& 12.348 \& 9.583 \& 63.05 \& 65.440 \& 0.000

\hline \& \& \& \& \& B \& 2.853 \& 12.348 \& \& 63.05 \& 51.430 \& 0.000

\hline \& \& \& \& \& C \& 2.853 \& 12.348 \& \& 63.05 \& 0.000 \& 0.000

\hline T8 40.00-20.00 \& 30.00 \& 0.701 \& 5 \& 74.792 \& A \& 2.853 \& 12.348 \& 9.583 \& 63.05 \& 65.440 \& 0.000

\hline \& \& \& \& \& B \& 2.853 \& 12.348 \& \& 63.05 \& 51.430 \& 0.000

\hline \& \& \& \& \& C \& 2.853 \& 12.348 \& \& 63.05 \& 0.000 \& 0.000

\hline T9 20.00-5.00 \& 12.50 \& 0.7 \& 5 \& 56.094 \& A \& 2.038 \& 9.126 \& 7.188 \& 64.38 \& 49.080 \& 0.000

\hline \& \& \& \& \& B \& 2.038 \& 9.126 \& \& 64.38 \& 38.572 \& 0.000

\hline \& \& \& \& \& C \& 2.038 \& 9.126 \& \& 64.38 \& 0.000 \& 0.000

\hline T10 5.00-0.00 \& 2.50 \& 0.7 \& 5 \& 10.019 \& A \& 0.375 \& 2.584 \& 2.584 \& 87.33 \& 16.360 \& 0.000

\hline \& \& \& \& \& B \& 0.375 \& 2.584 \& \& 87.33 \& 12.858 \& 0.000

\hline \& \& \& \& \& C \& 0.375 \& 2.584 \& \& 87.33 \& 0.000 \& 0.000

\hline
\end{tabular}

Tower Forces - No Ice - Wind Normal To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section \\
Elevation \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Add \\
Weight \\
lb
\end{tabular} \& Self Weight
\(\qquad\) lb \& \[
\begin{aligned}
\& F \\
\& a \\
\& c \\
\& c \\
\& e
\end{aligned}
\] \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline T1 \& 146.90 \& 674.99 \& A \& 0.208 \& 2.57 \& 25 \& 1 \& 1 \& 10.303 \& 1000.13 \& 50.01 \& A

\hline 180.00-160.00 \& \& TA 214.38 \& B \& 0.208 \& 2.57 \& \& 1 \& 1 \& 10.303 \& \& \&

\hline \& \& \& C \& 0.208 \& 2.57 \& \& 1 \& 1 \& 10.303 \& \& \&

\hline T2 \& 342.00 \& 658.24 \& A \& 0.203 \& 2.585 \& 24 \& 1 \& 1 \& 9.953 \& 1347.28 \& 67.36 \& A

\hline 160.00-140.00 \& \& \& B \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline T3 \& 447.40 \& 658.24 \& A \& 0.203 \& 2.585 \& 23 \& 1 \& 1 \& 9.953 \& 1412.11 \& 70.61 \& A

\hline 140.00-120.00 \& \& \& B \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline T4 \& 447.40 \& 658.24 \& A \& 0.203 \& 2.585 \& 22 \& 1 \& 1 \& 9.953 \& 1346.29 \& 67.31 \& A

\hline 120.00-100.00 \& \& TA 214.38 \& B \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline T5 \& 447.40 \& 658.24 \& A \& 0.203 \& 2.585 \& 20 \& 1 \& 1 \& 9.953 \& 1271.28 \& 63.56 \& A

\hline 100.00-80.00 \& \& \& B \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline \& 447.40 \& 658.24 \& A \& 0.203 \& 2.585 \& 19 \& 1 \& 1 \& 9.953 \& 1183.19 \& 59.16 \& A

\hline 80.00-60.00 \& \& \& B \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline T7 \& 447.40 \& 658.24 \& A \& 0.203 \& 2.585 \& 17 \& 1 \& 1 \& 9.953 \& 1074.74 \& 53.74 \& A

\hline 60.00-40.00 \& \& \& B \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline T8 \& 447.40 \& 658.24 \& A \& 0.203 \& 2.585 \& 15 \& 1 \& 1 \& 9.953 \& 928.79 \& 46.44 \& A

\hline 40.00-20.00 \& \& \& B \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline T9 20.00-5.00 \& 335.55 \& 480.27 \& A \& 0.199 \& 2.599 \& 15 \& 1 \& 1 \& 7.279 \& 691.20 \& 46.08 \& A

\hline \& \& \& B \& 0.199 \& 2.599 \& \& 1 \& 1 \& 7.279 \& \& \&

\hline \& \& \& C \& 0.199 \& 2.599 \& \& 1 \& 1 \& 7.279 \& \& \&

\hline T10 5.00-0.00 \& 111.85 \& 111.24 \& A \& 0.295 \& 2.309 \& 15 \& 1 \& 1 \& 1.919 \& 206.58 \& 41.32 \& A

\hline \& \& \& B \& 0.295 \& 2.309 \& \& 1 \& 1 \& 1.919 \& \& \&

\hline \& \& \& C \& 0.295 \& 2.309 \& \& 1 \& 1 \& 1.919 \& \& \&

\hline Sum Weight: \& 3620.70 \& 6302.97 \& \& \& \& \& \& \& \& 10461.59 \& \&

\hline
\end{tabular}

tnxTower Fred A. Nudd Corporation 1743 Route 104	Job	119-23103	$\begin{aligned} & \text { Page } 22 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	Date 22:39:02 08/13/19
Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Client	CDT	Designed by FAN

Tower Forces - No Ice - Wind 60 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\[
f t
\] \& \begin{tabular}{l}
Add Weight \\
lb
\end{tabular} \& \begin{tabular}{l}
Self \\
Weight \\
\(l b\)
\end{tabular} \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\[
q_{z}
\] \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline T1 \& \multirow[t]{3}{*}{146.90} \& 674.99 \& A \& 0.208 \& 2.57 \& 25 \& 0.8 \& 1 \& 9.665 \& 965.91 \& 48.30 \& B

\hline \multirow[t]{2}{*}{180.00-160.00} \& \& \multirow[t]{2}{*}{TA 214.38} \& B \& 0.208 \& 2.57 \& \& 0.8 \& 1 \& 9.665 \& \& \&

\hline \& \& \& C \& 0.208 \& 2.57 \& \& 0.8 \& 1 \& 9.665 \& \& \&

\hline T2 \& \multirow[t]{3}{*}{342.00} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& 24 \& 0.8 \& 1 \& 9.383 \& 1317.61 \& 65.88 \& B

\hline \multirow[t]{2}{*}{160.00-140.00} \& \& \& B \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline T3 \& \multirow[t]{3}{*}{447.40} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& 23 \& 0.8 \& 1 \& 9.383 \& 1383.63 \& 69.18 \& B

\hline \multirow[t]{2}{*}{140.00-120.00} \& \& \& B \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline T4 \& \multirow[t]{3}{*}{447.40} \& 658.24 \& A \& 0.203 \& 2.585 \& 22 \& 0.8 \& 1 \& 9.383 \& 1319.14 \& 65.96 \& B

\hline \multirow[t]{2}{*}{120.00-100.00} \& \& \multirow[t]{2}{*}{TA 214.38} \& B \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline T5 \& \multirow[t]{3}{*}{447.40} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& 20 \& 0.8 \& 1 \& 9.383 \& 1245.63 \& 62.28 \& B

\hline \multirow[t]{2}{*}{100.00-80.00} \& \& \& B \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline T6 \& \multirow[t]{3}{*}{447.40} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& 19 \& 0.8 \& 1 \& 9.383 \& 1159.33 \& 57.97 \& B

\hline \multirow[t]{2}{*}{80.00-60.00} \& \& \& B \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline T7 \& \multirow[t]{3}{*}{447.40} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& 17 \& 0.8 \& 1 \& 9.383 \& 1053.07 \& 52.65 \& B

\hline \multirow[t]{2}{*}{60.00-40.00} \& \& \& B \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline T8 \& \multirow[t]{3}{*}{447.40} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& 15 \& 0.8 \& 1 \& 9.383 \& 910.06 \& 45.50 \& B

\hline \multirow[t]{2}{*}{40.00-20.00} \& \& \& B \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \multirow[t]{3}{*}{T9 20.00-5.00} \& \multirow[t]{3}{*}{335.55} \& \multirow[t]{3}{*}{480.27} \& A \& 0.199 \& 2.599 \& 15 \& 0.8 \& 1 \& 6.871 \& 677.76 \& 45.18 \& B

\hline \& \& \& B \& 0.199 \& 2.599 \& \& 0.8 \& 1 \& 6.871 \& \& \&

\hline \& \& \& C \& 0.199 \& 2.599 \& \& 0.8 \& 1 \& 6.871 \& \& \&

\hline \multirow[t]{3}{*}{T10 5.00-0.00} \& \multirow[t]{3}{*}{111.85} \& \multirow[t]{3}{*}{111.24} \& A \& 0.295 \& 2.309 \& 15 \& 0.8 \& 1 \& 1.844 \& 204.38 \& 40.88 \& B

\hline \& \& \& B \& 0.295 \& 2.309 \& \& 0.8 \& 1 \& 1.844 \& \& \&

\hline \& \& \& C \& 0.295 \& 2.309 \& \& 0.8 \& 1 \& 1.844 \& \& \&

\hline Sum Weight: \& 3620.70 \& 6302.97 \& \& \& \& \& \& \& \& 10236.52 \& \&

\hline
\end{tabular}

Tower Forces - No Ice - Wind 90 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Add Weight \\
lb
\end{tabular} \& \begin{tabular}{l}
Self Weight \\
lb
\end{tabular} \& \[
\begin{aligned}
\& F \\
\& a \\
\& c \\
\& e \\
\& e
\end{aligned}
\] \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline T1 \& \multirow[t]{3}{*}{146.90} \& 674.99 \& A \& 0.208 \& 2.57 \& 25 \& 0.85 \& 1 \& 9.824 \& 942.41 \& 47.12 \& C

\hline \multirow[t]{2}{*}{180.00-160.00} \& \& \multirow[t]{2}{*}{TA 214.38} \& B \& 0.208 \& 2.57 \& \& 0.85 \& 1 \& 9.824 \& \& \&

\hline \& \& \& C \& 0.208 \& 2.57 \& \& 0.85 \& 1 \& 9.824 \& \& \&

\hline T2 \& \multirow[t]{3}{*}{342.00} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& 24 \& 0.85 \& 1 \& 9.526 \& 1338.00 \& 66.90 \& C

\hline \multirow[t]{2}{*}{160.00-140.00} \& \& \& B \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline T3 \& \multirow[t]{2}{*}{447.40} \& \multirow[t]{2}{*}{658.24} \& A \& 0.203 \& 2.585 \& 23 \& 0.85 \& 1 \& 9.526 \& 1475.03 \& 73.75 \& C

\hline 140.00-120.00 \& \& \& B \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline
\end{tabular}

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } \\ & 23 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	Date 22:39:02 08/13/19
	Client	CDT	Designed by FAN

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation \(f t\) \& Add Weight
\[
l b
\] \& \begin{tabular}{l}
Self Weight \\
lb
\end{tabular} \& \[
\begin{aligned}
\& \hline F \\
\& a \\
\& c \\
\& e
\end{aligned}
\] \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\[
q_{z}
\] \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline \& \multirow{4}{*}{447.40} \& \& C \& 0.203 \& 2.585 \& \multirow{4}{*}{22} \& 0.85 \& 1 \& 9.526 \& \multirow{4}{*}{1406.28} \& \multirow{3}{*}{70.31} \& \multirow{3}{*}{C}

\hline T4 \& \& 658.24 \& A \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline \multirow[t]{2}{*}{120.00-100.00} \& \& \multirow[t]{2}{*}{TA 214.38} \& B \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \multirow{4}{*}{66.40} \&

\hline T5 \& \multirow[t]{3}{*}{447.40} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& \multirow[t]{3}{*}{20} \& 0.85 \& 1 \& 9.526 \& \multirow[t]{3}{*}{1327.92} \& \& \multirow[t]{3}{*}{C}

\hline 100.00-80.00 \& \& \& B \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline T6 \& \multirow[t]{3}{*}{447.40} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& \multirow[t]{3}{*}{19} \& 0.85 \& 1 \& 9.526 \& \multirow[t]{3}{*}{1235.92} \& \multirow[t]{3}{*}{61.80} \& \multirow[t]{3}{*}{C}

\hline 80.00-60.00 \& \& \& B \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline T7 \& \multirow[t]{3}{*}{447.40} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& \multirow[t]{3}{*}{17} \& 0.85 \& 1 \& 9.526 \& \multirow[t]{3}{*}{1122.63} \& \multirow[t]{3}{*}{56.13} \& \multirow[t]{3}{*}{C}

\hline 60.00-40.00 \& \& \& B \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline T8 \& \multirow[t]{3}{*}{447.40} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& \multirow[t]{3}{*}{15} \& 0.85 \& 1 \& 9.526 \& \multirow[t]{3}{*}{970.18} \& \multirow[t]{3}{*}{48.51} \& \multirow[t]{3}{*}{C}

\hline 40.00-20.00 \& \& \& B \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.85 \& 1 \& 9.526 \& \& \&

\hline T9 20.00-5.00 \& \multirow[t]{3}{*}{335.55} \& \multirow[t]{3}{*}{480.27} \& A \& 0.199 \& 2.599 \& \multirow[t]{3}{*}{15} \& 0.85 \& 1 \& 6.973 \& \multirow[t]{3}{*}{722.66} \& \multirow[t]{3}{*}{48.18} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 0.199 \& 2.599 \& \& 0.85 \& 1 \& 6.973 \& \& \&

\hline \& \& \& C \& 0.199 \& 2.599 \& \& 0.85 \& 1 \& 6.973 \& \& \&

\hline T10 5.00-0.00 \& \multirow[t]{3}{*}{111.85} \& \multirow[t]{3}{*}{111.24} \& A \& 0.295 \& 2.309 \& \multirow[t]{4}{*}{15} \& 0.85 \& 1 \& 1.862 \& \multirow[t]{3}{*}{218.78} \& \multirow[t]{3}{*}{43.76} \& \multirow[t]{4}{*}{C}

\hline \& \& \& B \& 0.295 \& 2.309 \& \& 0.85 \& 1 \& 1.862 \& \& \&

\hline \& \& \& C \& 0.295 \& 2.309 \& \& 0.85 \& 1 \& 1.862 \& \& \&

\hline Sum Weight: \& 3620.70 \& 6302.97 \& \& \& \& \& \& \& \& 10759.82 \& \&

\hline
\end{tabular}

Tower Forces - With Ice - Wind Normal To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation ft \& Add Weight lb \& Self Weight lb \& \[
\begin{aligned}
\& F \\
\& a \\
\& c \\
\& e \\
\& \hline
\end{aligned}
\] \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
psf
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline T1 \& 1162.81 \& 2816.31 \& A \& 0.616 \& 1.795 \& 6 \& 1 \& 1 \& 38.232 \& \multirow[t]{3}{*}{530.18} \& \multirow[t]{3}{*}{26.51} \& \multirow[t]{3}{*}{A}

\hline 180.00-160.00 \& \& TA 769.52 \& B \& 0.616 \& 1.795 \& \& 1 \& 1 \& 38.232 \& \& \&

\hline \& \& \& C \& 0.616 \& 1.795 \& \& 1 \& 1 \& 38.232 \& \& \&

\hline T2 \& 2371.77 \& 2719.08 \& A \& 0.607 \& 1.8 \& 6 \& 1 \& 1 \& 37.308 \& \multirow[t]{3}{*}{633.69} \& \multirow[t]{3}{*}{31.68} \& \multirow[t]{3}{*}{A}

\hline 160.00-140.00 \& \& \& B \& 0.607 \& 1.8 \& \& 1 \& 1 \& 37.308 \& \& \&

\hline \& \& \& C \& 0.607 \& 1.8 \& \& 1 \& 1 \& 37.308 \& \& \&

\hline T3 \& 2895.27 \& 2673.93 \& A \& 0.601 \& 1.803 \& 6 \& 1 \& 1 \& 36.795 \& \multirow[t]{3}{*}{641.86} \& \multirow[t]{3}{*}{32.09} \& \multirow[t]{3}{*}{A}

\hline 140.00-120.00 \& \& \& B \& 0.601 \& 1.803 \& \& 1 \& 1 \& 36.795 \& \& \&

\hline \& \& \& C \& 0.601 \& 1.803 \& \& 1 \& 1 \& 36.795 \& \& \&

\hline T4 \& 2853.39 \& 2622.61 \& A \& 0.595 \& 1.807 \& 6 \& 1 \& 1 \& 36.211 \& \multirow[t]{3}{*}{610.31} \& \multirow[t]{3}{*}{30.52} \& \multirow[t]{3}{*}{A}

\hline 120.00-100.00 \& \& TA 738.18 \& B \& 0.595 \& 1.807 \& \& 1 \& 1 \& 36.211 \& \& \&

\hline \& \& \& C \& 0.595 \& 1.807 \& \& 1 \& 1 \& 36.211 \& \& \&

\hline T5 \& 2804.36 \& 2562.85 \& A \& 0.588 \& 1.812 \& 5 \& 1 \& 1 \& 35.529 \& \multirow[t]{3}{*}{574.51} \& \multirow[t]{3}{*}{28.73} \& \multirow[t]{3}{*}{A}

\hline 100.00-80.00 \& \& \& B \& 0.588 \& 1.812 \& \& 1 \& 1 \& 35.529 \& \& \&

\hline \& \& \& C \& 0.588 \& 1.812 \& \& 1 \& 1 \& 35.529 \& \& \&

\hline T6 \& 2744.85 \& 2490.82 \& A \& 0.579 \& 1.818 \& 5 \& 1 \& 1 \& 34.703 \& \multirow[t]{3}{*}{532.69} \& \multirow[t]{3}{*}{26.63} \& \multirow[t]{3}{*}{A}

\hline 80.00-60.00 \& \& \& B \& 0.579 \& 1.818 \& \& 1 \& 1 \& 34.703 \& \& \&

\hline \& \& \& C \& 0.579 \& 1.818 \& \& 1 \& 1 \& 34.703 \& \& \&

\hline T7 \& 2668.35 \& 2399.07 \& A \& 0.568 \& 1.828 \& 4 \& 1 \& 1 \& 33.646 \& \multirow[t]{3}{*}{481.52} \& \multirow[t]{3}{*}{24.08} \& \multirow[t]{3}{*}{A}

\hline 60.00-40.00 \& \& \& B \& 0.568 \& 1.828 \& \& 1 \& 1 \& 33.646 \& \& \&

\hline \& \& \& C \& 0.568 \& 1.828 \& \& 1 \& 1 \& 33.646 \& \& \&

\hline T8 \& 2558.77 \& 2269.35 \& A \& 0.551 \& 1.843 \& 4 \& 1 \& 1 \& 32.141 \& \multirow[t]{3}{*}{413.23} \& \multirow[t]{3}{*}{20.66} \& \multirow[t]{3}{*}{A}

\hline 40.00-20.00 \& \& \& B \& 0.551 \& 1.843 \& \& 1 \& 1 \& 32.141 \& \& \&

\hline \& \& \& C \& 0.551 \& 1.843 \& \& 1 \& 1 \& 32.141 \& \& \&

\hline
\end{tabular}

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } 24 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	Date 22:39:02 08/13/19
	Client	CDT	Designed by FAN

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation \(f t\) \& \begin{tabular}{l}
Add Weight \\
lb
\end{tabular} \& \begin{tabular}{l}
Self Weight \\
\(l b\)
\end{tabular} \& \(F\)
\(a\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\[
q_{z}
\] \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F

$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline \multirow[t]{3}{*}{T9 20.00-5.00} \& \multirow[t]{3}{*}{1790.86} \& \multirow[t]{3}{*}{1497.28} \& A \& 0.506 \& 1.892 \& \multirow[t]{3}{*}{4} \& 1 \& 1 \& 21.362 \& 307.67 \& 20.51 \& A

\hline \& \& \& B \& 0.506 \& 1.892 \& \& 1 \& 1 \& 21.362 \& \& \&

\hline \& \& \& C \& 0.506 \& 1.892 \& \& 1 \& 1 \& 21.362 \& \& \&

\hline \multirow[t]{3}{*}{T10 5.00-0.00} \& \multirow[t]{3}{*}{530.34} \& \multirow[t]{3}{*}{248.75} \& A \& 0.509 \& 1.889 \& \multirow[t]{4}{*}{4} \& 1 \& 1 \& 3.994 \& 75.06* \& 15.01 \& B

\hline \& \& \& B \& 0.509 \& 1.889 \& \& 1 \& 1 \& 3.994 \& \& \&

\hline \& \& \& C \& 0.509 \& 1.889 \& \& 1 \& 1 \& 3.994 \& \& \&

\hline Sum Weight: \& 22380.78 \& 23807.75 \& \& \& $$
{ }^{*} 2.1 \mathrm{~A}_{\mathrm{g}}
$$ \& \& \& \& \& 4800.72 \& \&

\hline
\end{tabular}

Tower Forces - With Ice - Wind 60 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation ft \& \begin{tabular}{l}
Add Weight \\
lb
\end{tabular} \& \begin{tabular}{l}
Self Weight \\
\(l b\)
\end{tabular} \& \(F\)
\(a\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline T1 \& \multirow[t]{3}{*}{1162.81} \& 2816.31 \& A \& 0.616 \& 1.795 \& 6 \& 0.8 \& 1 \& 37.593 \& 524.09 \& 26.20 \& B

\hline \multirow[t]{2}{*}{180.00-160.00} \& \& \multirow[t]{2}{*}{TA 769.52} \& B \& 0.616 \& 1.795 \& \& 0.8 \& 1 \& 37.593 \& \& \&

\hline \& \& \& C \& 0.616 \& 1.795 \& \& 0.8 \& 1 \& 37.593 \& \& \&

\hline T2 \& \multirow[t]{3}{*}{2371.77} \& \multirow[t]{3}{*}{2719.08} \& A \& 0.607 \& 1.8 \& 6 \& 0.8 \& 1 \& 36.738 \& 628.42 \& 31.42 \& B

\hline \multirow[t]{2}{*}{160.00-140.00} \& \& \& B \& 0.607 \& 1.8 \& \& 0.8 \& 1 \& 36.738 \& \& \&

\hline \& \& \& C \& 0.607 \& 1.8 \& \& 0.8 \& 1 \& 36.738 \& \& \&

\hline T3 \& \multirow[t]{3}{*}{2895.27} \& \multirow[t]{3}{*}{2673.93} \& A \& 0.601 \& 1.803 \& 6 \& 0.8 \& 1 \& 36.225 \& 636.80 \& 31.84 \& B

\hline \multirow[t]{2}{*}{140.00-120.00} \& \& \& B \& 0.601 \& 1.803 \& \& 0.8 \& 1 \& 36.225 \& \& \&

\hline \& \& \& C \& 0.601 \& 1.803 \& \& 0.8 \& 1 \& 36.225 \& \& \&

\hline T4 \& \multirow[t]{3}{*}{2853.39} \& 2622.61 \& A \& 0.595 \& 1.807 \& 6 \& 0.8 \& 1 \& 35.641 \& 605.47 \& 30.27 \& B

\hline \multirow[t]{2}{*}{120.00-100.00} \& \& \multirow[t]{2}{*}{TA 738.18} \& B \& 0.595 \& 1.807 \& \& 0.8 \& 1 \& 35.641 \& \& \&

\hline \& \& \& C \& 0.595 \& 1.807 \& \& 0.8 \& 1 \& 35.641 \& \& \&

\hline T5 \& \multirow[t]{3}{*}{2804.36} \& \multirow[t]{3}{*}{2562.85} \& A \& 0.588 \& 1.812 \& 5 \& 0.8 \& 1 \& 34.958 \& 569.93 \& 28.50 \& B

\hline \multirow[t]{2}{*}{100.00-80.00} \& \& \& B \& 0.588 \& 1.812 \& \& 0.8 \& 1 \& 34.958 \& \& \&

\hline \& \& \& C \& 0.588 \& 1.812 \& \& 0.8 \& 1 \& 34.958 \& \& \&

\hline T6 \& \multirow[t]{3}{*}{2744.85} \& \multirow[t]{3}{*}{2490.82} \& A \& 0.579 \& 1.818 \& 5 \& 0.8 \& 1 \& 34.133 \& 528.40 \& 26.42 \& B

\hline \multirow[t]{2}{*}{80.00-60.00} \& \& \& B \& 0.579 \& 1.818 \& \& 0.8 \& 1 \& 34.133 \& \& \&

\hline \& \& \& C \& 0.579 \& 1.818 \& \& 0.8 \& 1 \& 34.133 \& \& \&

\hline T7 \& \multirow[t]{3}{*}{2668.35} \& \multirow[t]{3}{*}{2399.07} \& A \& 0.568 \& 1.828 \& 4 \& 0.8 \& 1 \& 33.076 \& 477.61 \& 23.88 \& B

\hline \multirow[t]{2}{*}{60.00-40.00} \& \& \& B \& 0.568 \& 1.828 \& \& 0.8 \& 1 \& 33.076 \& \& \&

\hline \& \& \& C \& 0.568 \& 1.828 \& \& 0.8 \& 1 \& 33.076 \& \& \&

\hline T8 \& \multirow[t]{3}{*}{2558.77} \& \multirow[t]{3}{*}{2269.35} \& A \& 0.551 \& 1.843 \& 4 \& 0.8 \& 1 \& 31.571 \& 409.82 \& 20.49 \& B

\hline \multirow[t]{2}{*}{40.00-20.00} \& \& \& B \& 0.551 \& 1.843 \& \& 0.8 \& 1 \& 31.571 \& \& \&

\hline \& \& \& C \& 0.551 \& 1.843 \& \& 0.8 \& 1 \& 31.571 \& \& \&

\hline \multirow[t]{3}{*}{T9 20.00-5.00} \& \multirow[t]{3}{*}{1790.86} \& \multirow[t]{3}{*}{1497.28} \& A \& 0.506 \& 1.892 \& 4 \& 0.8 \& 1 \& 20.954 \& 305.17 \& 20.34 \& B

\hline \& \& \& B \& 0.506 \& 1.892 \& \& 0.8 \& 1 \& 20.954 \& \& \&

\hline \& \& \& C \& 0.506 \& 1.892 \& \& 0.8 \& 1 \& 20.954 \& \& \&

\hline \multirow[t]{3}{*}{T10 5.00-0.00} \& \multirow[t]{3}{*}{530.34} \& \multirow[t]{3}{*}{248.75} \& A \& 0.509 \& 1.889 \& 4 \& 0.8 \& 1 \& 3.919 \& 75.06* \& 15.01 \& C

\hline \& \& \& B \& 0.509 \& 1.889 \& \& 0.8 \& 1 \& 3.919 \& \& \&

\hline \& \& \& C \& 0.509 \& 1.889 \& \& 0.8 \& 1 \& 3.919 \& \& \&

\hline Sum Weight: \& 22380.78 \& 23807.75 \& \& \& $* 2.1 \mathrm{~A}_{\mathrm{g}}$
limit \& \& \& \& \& 4760.77 \& \&

\hline
\end{tabular}

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } \\ & 25 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	$\begin{aligned} & \text { Date } \\ & \text { 22:39:02 08/13/19 } \end{aligned}$
	Client	CDT	Designed by FAN

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) \& Add Weight
\[
l b
\] \& \begin{tabular}{l}
Self Weight \\
\(l b\)
\end{tabular} \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline T1 \& 1162.81 \& 2816.31 \& A \& 0.616 \& 1.795 \& 6 \& 0.85 \& 1 \& 37.753 \& 512.52 \& 25.63 \& C

\hline \multirow[t]{2}{*}{180.00-160.00} \& \& TA 769.52 \& B \& 0.616 \& 1.795 \& \& 0.85 \& 1 \& 37.753 \& \& \&

\hline \& \& \& C \& 0.616 \& 1.795 \& \& 0.85 \& 1 \& 37.753 \& \& \&

\hline T2 \& 2371.77 \& 2719.08 \& A \& 0.607 \& 1.8 \& 6 \& 0.85 \& 1 \& 36.880 \& 624.15 \& 31.21 \& C

\hline \multirow[t]{2}{*}{160.00-140.00} \& \& \& B \& 0.607 \& 1.8 \& \& 0.85 \& 1 \& 36.880 \& \& \&

\hline \& \& \& C \& 0.607 \& 1.8 \& \& 0.85 \& 1 \& 36.880 \& \& \&

\hline T3 \& 2895.27 \& 2673.93 \& A \& 0.601 \& 1.803 \& 6 \& 0.85 \& 1 \& 36.368 \& 644.80 \& 32.24 \& C

\hline \multirow[t]{2}{*}{140.00-120.00} \& \& \& B \& 0.601 \& 1.803 \& \& 0.85 \& 1 \& 36.368 \& \& \&

\hline \& \& \& C \& 0.601 \& 1.803 \& \& 0.85 \& 1 \& 36.368 \& \& \&

\hline T4 \& 2853.39 \& 2622.61 \& A \& 0.595 \& 1.807 \& 6 \& 0.85 \& 1 \& 35.783 \& 613.20 \& 30.66 \& C

\hline \multirow[t]{2}{*}{120.00-100.00} \& \& TA 738.18 \& B \& 0.595 \& 1.807 \& \& 0.85 \& 1 \& 35.783 \& \& \&

\hline \& \& \& C \& 0.595 \& 1.807 \& \& 0.85 \& 1 \& 35.783 \& \& \&

\hline T5 \& 2804.36 \& 2562.85 \& A \& 0.588 \& 1.812 \& 5 \& 0.85 \& 1 \& 35.101 \& 577.34 \& 28.87 \& C

\hline \multirow[t]{2}{*}{100.00-80.00} \& \& \& B \& 0.588 \& 1.812 \& \& 0.85 \& 1 \& 35.101 \& \& \&

\hline \& \& \& C \& 0.588 \& 1.812 \& \& 0.85 \& 1 \& 35.101 \& \& \&

\hline T6 \& 2744.85 \& 2490.82 \& A \& 0.579 \& 1.818 \& 5 \& 0.85 \& 1 \& 34.275 \& 535.43 \& 26.77 \& C

\hline \multirow[t]{2}{*}{80.00-60.00} \& \& \& B \& 0.579 \& 1.818 \& \& 0.85 \& 1 \& 34.275 \& \& \&

\hline \& \& \& C \& 0.579 \& 1.818 \& \& 0.85 \& 1 \& 34.275 \& \& \&

\hline T7 \& 2668.35 \& 2399.07 \& A \& 0.568 \& 1.828 \& 4 \& 0.85 \& 1 \& 33.218 \& 484.15 \& 24.21 \& C

\hline \multirow[t]{2}{*}{60.00-40.00} \& \& \& B \& 0.568 \& 1.828 \& \& 0.85 \& 1 \& 33.218 \& \& \&

\hline \& \& \& C \& 0.568 \& 1.828 \& \& 0.85 \& 1 \& 33.218 \& \& \&

\hline \multirow[t]{3}{*}{T8} \& 2558.77 \& 2269.35 \& A \& 0.551 \& 1.843 \& 4 \& 0.85 \& 1 \& 31.713 \& 415.67 \& 20.78 \& C

\hline \& \& \& B \& 0.551 \& 1.843 \& \& 0.85 \& 1 \& 31.713 \& \& \&

\hline \& \& \& C \& 0.551 \& 1.843 \& \& 0.85 \& 1 \& 31.713 \& \& \&

\hline \multirow[t]{3}{*}{T9 20.00-5.00} \& 1790.86 \& 1497.28 \& A \& 0.506 \& 1.892 \& 4 \& 0.85 \& 1 \& 21.056 \& 309.91 \& 20.66 \& C

\hline \& \& \& B \& 0.506 \& 1.892 \& \& 0.85 \& 1 \& 21.056 \& \& \&

\hline \& \& \& C \& 0.506 \& 1.892 \& \& 0.85 \& 1 \& 21.056 \& \& \&

\hline \multirow[t]{3}{*}{T10 5.00-0.00} \& 530.34 \& 248.75 \& A \& 0.509 \& 1.889 \& 4 \& 0.85 \& 1 \& 3.938 \& 75.06* \& 15.01 \& C

\hline \& \& \& B \& 0.509 \& 1.889 \& \& 0.85 \& 1 \& 3.938 \& \& \&

\hline \& \& \& C \& 0.509 \& 1.889 \& \& 0.85 \& 1 \& 3.938 \& \& \&

\hline Sum Weight: \& 22380.78 \& 23807.75 \& \& \& $$
\begin{array}{r}
{ }^{*} 2.1 \mathrm{~A}_{\mathrm{g}} \\
\text { limit } \\
\hline
\end{array}
$$ \& \& \& \& \& 4792.23 \& \&

\hline
\end{tabular}

Tower Forces - Service - Wind Normal To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
ft
\end{tabular} \& \begin{tabular}{l}
Add Weight \\
\(l b\)
\end{tabular} \& Self Weight lb \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline T1 \& \multirow[t]{3}{*}{146.90} \& 674.99 \& A \& 0.208 \& 2.57 \& \multirow[t]{3}{*}{9} \& 1 \& 1 \& 10.303 \& \multirow[t]{2}{*}{367.36} \& \multirow[t]{2}{*}{18.37} \& \multirow[t]{2}{*}{A}

\hline \multirow[t]{2}{*}{180.00-160.00} \& \& \multirow[t]{2}{*}{TA 214.38} \& B \& 0.208 \& 2.57 \& \& 1 \& 1 \& 10.303 \& \& \&

\hline \& \& \& C \& 0.208 \& 2.57 \& \& 1 \& 1 \& 10.303 \& \& \&

\hline T2 \& \multirow[t]{3}{*}{342.00} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& \multirow[t]{3}{*}{9} \& 1 \& 1 \& 9.953 \& \multirow[t]{3}{*}{494.87} \& \multirow[t]{3}{*}{24.74} \& \multirow[t]{3}{*}{A}

\hline 160.00-140.00 \& \& \& B \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline T3 \& \multirow[t]{3}{*}{447.40} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& \multirow[t]{3}{*}{8} \& 1 \& 1 \& 9.953 \& \multirow[t]{3}{*}{518.68} \& \multirow[t]{3}{*}{25.93} \& \multirow[t]{3}{*}{A}

\hline 140.00-120.00 \& \& \& B \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline T4 \& \multirow[t]{3}{*}{447.40} \& 658.24 \& A \& 0.203 \& 2.585 \& \multirow[t]{3}{*}{8} \& 1 \& 1 \& 9.953 \& \multirow[t]{3}{*}{494.51} \& \multirow[t]{3}{*}{24.73} \& \multirow[t]{3}{*}{A}

\hline 120.00-100.00 \& \& TA 214.38 \& B \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline T5 \& \multirow[t]{2}{*}{447.40} \& \multirow[t]{2}{*}{658.24} \& A \& 0.203 \& 2.585 \& \multirow[t]{2}{*}{8} \& 1 \& 1 \& 9.953 \& \multirow[t]{2}{*}{466.95} \& \multirow[t]{2}{*}{23.35} \& \multirow[t]{2}{*}{A}

\hline 100.00-80.00 \& \& \& B \& 0.203 \& 2.585 \& \& 1 \& 1 \& 9.953 \& \& \&

\hline
\end{tabular}

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } 26 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	Date 22:39:02 08/13/19
	Client	CDT	Designed by FAN

Tower Forces - Service - Wind 60 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) \& Add Weight
\(\qquad\)
\[
l b
\] \& Self Weight
\(\qquad\)
\[
l b
\] \& \[
\begin{aligned}
\& F \\
\& a \\
\& c \\
\& c \\
\& e
\end{aligned}
\] \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline T1 \& \multirow[t]{3}{*}{146.90} \& 674.99 \& A \& 0.208 \& 2.57 \& 9 \& 0.8 \& 1 \& 9.665 \& 354.79 \& 17.74 \& B

\hline \multirow[t]{2}{*}{180.00-160.00} \& \& \multirow[t]{2}{*}{TA 214.38} \& B \& 0.208 \& 2.57 \& \& 0.8 \& 1 \& 9.665 \& \& \&

\hline \& \& \& C \& 0.208 \& 2.57 \& \& 0.8 \& 1 \& 9.665 \& \& \&

\hline T2 \& \multirow[t]{3}{*}{342.00} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& \multirow[t]{3}{*}{9
8} \& 0.8 \& 1 \& 9.383 \& 483.97 \& 24.20 \& B

\hline \multirow[t]{2}{*}{160.00-140.00} \& \& \& B \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline T3 \& \multirow[t]{3}{*}{447.40} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& \multirow[t]{3}{*}{8} \& 0.8 \& 1 \& 9.383 \& 508.22 \& 25.41 \& B

\hline \multirow[t]{2}{*}{140.00-120.00} \& \& \& B \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline T4 \& \multirow[t]{3}{*}{447.40} \& \& A \& 0.203 \& 2.585 \& 8 \& 0.8 \& 1 \& 9.383 \& 484.53 \& 24.23 \& B

\hline \multirow[t]{2}{*}{120.00-100.00} \& \& \multirow[t]{2}{*}{TA 214.38} \& B \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline T5 \& \multirow[t]{3}{*}{447.40} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& \multirow[t]{3}{*}{8} \& 0.8 \& 1 \& 9.383 \& 457.53 \& 22.88 \& B

\hline \multirow[t]{2}{*}{100.00-80.00} \& \& \& B \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline T6 \& \multirow[t]{3}{*}{447.40} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& \multirow[t]{3}{*}{7} \& 0.8 \& 1 \& 9.383 \& 425.83 \& 21.29 \& B

\hline \multirow[t]{2}{*}{80.00-60.00} \& \& \& B \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline T7 \& \multirow[t]{3}{*}{447.40} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& \multirow[t]{3}{*}{6} \& 0.8 \& 1 \& 9.383 \& 386.80 \& 19.34 \& B

\hline \multirow[t]{2}{*}{60.00-40.00} \& \& \& B \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline T8 \& \multirow[t]{3}{*}{447.40} \& \multirow[t]{3}{*}{658.24} \& A \& 0.203 \& 2.585 \& \multirow[t]{3}{*}{5} \& 0.8 \& 1 \& 9.383 \& 334.27 \& 16.71 \& B

\hline \multirow[t]{2}{*}{40.00-20.00} \& \& \& B \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \& \& \& C \& 0.203 \& 2.585 \& \& 0.8 \& 1 \& 9.383 \& \& \&

\hline \multirow[t]{3}{*}{T9 20.00-5.00} \& \multirow[t]{3}{*}{335.55} \& \multirow[t]{3}{*}{480.27} \& A \& 0.199 \& 2.599 \& \multirow[t]{3}{*}{5} \& 0.8 \& 1 \& 6.871 \& 248.95 \& 16.60 \& B

\hline \& \& \& B \& 0.199 \& 2.599 \& \& 0.8 \& 1 \& 6.871 \& \& \&

\hline \& \& \& C \& 0.199 \& 2.599 \& \& 0.8 \& 1 \& 6.871 \& \& \&

\hline \multirow[t]{3}{*}{T10 5.00-0.00} \& \multirow[t]{3}{*}{111.85} \& \multirow[t]{3}{*}{111.24} \& A \& 0.295 \& 2.309 \& \multirow[t]{3}{*}{5} \& 0.8 \& 1 \& 1.844 \& \multirow[t]{3}{*}{75.07} \& \multirow[t]{3}{*}{15.01} \& \multirow[t]{3}{*}{B}

\hline \& \& \& B \& 0.295 \& 2.309 \& \& 0.8 \& 1 \& 1.844 \& \& \&

\hline \& \& \& C \& 0.295 \& 2.309 \& \& 0.8 \& 1 \& 1.844 \& \& \&

\hline
\end{tabular}

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } \\ & 27 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	Date 22:39:02 08/13/19
	Client	CDT	Designed by FAN

Section Elevation ft	Add Weight $l b$	Self Weight $l b$	F a c c e	e	C_{F}	q_{z} psf	D_{F}	D_{R}	A_{E} $f t^{2}$	F lb	w plf	Ctrl. Face
Sum Weight:	3620.70	6302.97								3759.97		

Tower Forces - Service - Wind 90 To Face

Force Totals (Does not include forces on guys)

| $\begin{array}{c}\text { Load } \\ \text { Case }\end{array}$ | $\begin{array}{c}\text { Vertical } \\ \text { Forces }\end{array}$ | $\begin{array}{c}\text { Sum of } \\ \text { Forces } \\ X\end{array}$ | $\begin{array}{c}\text { Sum of } \\ \text { Forces } \\ Z\end{array}$ | Sum of Torques |
| :--- | :---: | :---: | :---: | :---: |$]$

tnxTower Fred A. Nudd Corporation 1743 Route 104	Job	119-23103	$\begin{aligned} & \text { Page } 28 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	Date 22:39:02 08/13/19
Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Client	CDT	Designed by FAN

Load Case	Vertical Forces lb	Sum of Forces X $l b$	Sum of Forces Z $l b$	Sum of Torques $l b-f t$
Guy Weight	2100.38			
Total Weight	18397.26			
Wind 0 deg - No Ice		-20.53	-14245.98	-1860.56
Wind 30 deg - No Ice		7038.42	-12281.15	-1190.90
Wind 60 deg - No Ice		13236.02	-7670.22	-2669.08
Wind 90 deg - No Ice		16200.63	20.53	-2951.31
Wind 120 deg - No Ice		13782.15	8009.23	-46.36
Wind 150 deg - No Ice		7440.55	12936.59	2217.10
Wind 180 deg - No Ice		20.53	14020.90	1860.56
Wind 210 deg - No Ice		-7038.42	12281.15	1190.90
Wind 240 deg - No Ice		-13430.94	7782.75	2669.08
Wind 270 deg - No Ice		-16200.63	-20.53	2951.31
Wind 300 deg - No Ice		-13587.23	-7896.69	46.36
Wind 330 deg - No Ice		-7440.55	-12936.59	-2217.10
Member Ice	17504.78			
Guy Ice	12178.48			
Total Weight Ice	88007.46			
Wind 0 deg - Ice		-6.30	-7069.19	-862.82
Wind 30 deg - Ice		3514.49	-6112.48	-787.18
Wind 60 deg - Ice		6275.08	-3630.20	-940.02
Wind 90 deg - Ice		7452.95	6.30	-816.47
Wind 120 deg - Ice		6464.94	3747.09	-37.43
Wind 150 deg - Ice		3613.05	6270.60	730.33
Wind 180 deg - Ice		6.30	7028.78	862.82
Wind 210 deg - Ice		-3514.49	6112.48	787.18
Wind 240 deg - Ice		-6309.68	3650.17	939.81
Wind 270 deg - Ice		-7452.95	-6.30	816.47
Wind 300 deg - Ice		-6430.34	-3727.11	37.46
Wind 330 deg - Ice		-3613.05	-6270.60	-730.33
Total Weight	18397.26			
Wind 0 deg - Service		-7.54	-5232.68	-683.40
Wind 30 deg - Service		2585.28	-4510.98	-437.43
Wind 60 deg - Service		4861.72	-2817.34	-980.38
Wind 90 deg - Service		5950.65	7.54	-1084.04
Wind 120 deg - Service		5062.31	2941.87	-17.03
Wind 150 deg - Service		2732.98	4751.73	814.36
Wind 180 deg - Service		7.54	5150.01	683.40
Wind 210 deg - Service		-2585.28	4510.98	437.43
Wind 240 deg - Service		-4933.31	2858.68	980.38
Wind 270 deg - Service		-5950.65	-7.54	1084.04
Wind 300 deg - Service		-4990.72	-2900.53	17.03
Wind 330 deg - Service		-2732.98	-4751.73	-814.36

Load Combinations

Comb. No.		Description
1	Dead Only	
2	1.2 Dead+1.6 Wind 0 deg - No Ice+1.0 Guy	
3	1.2 Dead+1.6 Wind 30 deg - No Ice+1.0 Guy	
4	1.2 Dead+1.6 Wind 60 deg - No Ice+1.0 Guy	
5	1.2 Dead+1.6 Wind 90 deg - No Ice +1.0 Guy	
6	1.2 Dead+1.6 Wind 120 deg - No Ice+1.0 Guy	
7	1.2 Dead+1.6 Wind 150 deg - No Ice+1.0 Guy	

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } 29 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	Date 22:39:02 08/13/19
	Client	CDT	Designed by FAN

Comb. No.	Description
8	1.2 Dead+1.6 Wind 180 deg - No Ice+1.0 Guy
9	1.2 Dead+1.6 Wind 210 deg - No Ice+1.0 Guy
10	1.2 Dead+1.6 Wind 240 deg - No Ice+1.0 Guy
11	1.2 Dead+1.6 Wind 270 deg - No Ice+1.0 Guy
12	1.2 Dead+1.6 Wind 300 deg - No Ice+1.0 Guy
13	1.2 Dead+1.6 Wind 330 deg - No Ice+1.0 Guy
14	1.2 Dead+1.0 Ice+1.0 Temp+Guy
15	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp+1.0 Guy
16	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp+1.0 Guy
17	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp+1.0 Guy
18	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp+1.0 Guy
19	1.2 Dead+1.0 Wind $120 \mathrm{deg}+1.0$ Ice+1.0 Temp+1.0 Guy
20	1.2 Dead+1.0 Wind $150 \mathrm{deg}+1.0$ Ice+1.0 Temp+1.0 Guy
21	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp+1.0 Guy
22	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp+1.0 Guy
23	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp+1.0 Guy
24	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp+1.0 Guy
25	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp+1.0 Guy
26	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp+1.0 Guy
27	Dead+Wind 0 deg - Service+Guy
28	Dead+Wind 30 deg - Service+Guy
29	Dead+Wind 60 deg - Service+Guy
30	Dead+Wind 90 deg - Service+Guy
31	Dead+Wind 120 deg - Service+Guy
32	Dead+Wind 150 deg - Service+Guy
33	Dead+Wind 180 deg - Service+Guy
34	Dead+Wind 210 deg - Service+Guy
35	Dead+Wind 240 deg - Service+Guy
36	Dead+Wind 270 deg - Service+Guy
37	Dead+Wind 300 deg - Service+Guy
38	Dead+Wind 330 deg - Service+Guy

		Maximum Reactions			
Location	Condition	Gov. Load Comb.	Vertical $l b$	$\begin{gathered} \text { Horizontal, } X \\ l b \end{gathered}$	$\begin{gathered} \text { Horizontal, Z } \\ l b \end{gathered}$
Mast	Max. Vert	15	155447.56	-31.59	398.99
	Max. H_{x}	11	79121.27	1987.36	-17.56
	Max. H_{z}	2	78517.56	-1.85	1599.20
	Max. M_{x}	1	0.00	-2.82	-7.82
	Max. M_{z}	1	0.00	-2.82	-7.82
	Max. Torsion	1	0.00	-2.82	-7.82
	Min. Vert	1	72296.75	-2.82	-7.82
	Min. H_{x}	5	79155.26	-1994.23	-18.84
	Min. H_{z}	8	78825.85	-3.25	-1551.94
	Min. M_{x}	1	0.00	-2.82	-7.82
	Min. M_{z}	1	0.00	-2.82	-7.82
	Min. Torsion	1	0.00	-2.82	-7.82
Guy C@145 ft Elev 0 ft Azimuth 240 deg	Max. Vert	10	-4738.70	-5367.82	3090.95
	Max. H_{x}	10	-4738.70	-5367.82	3090.95
	Max. H_{z}	4	-33089.36	-33678.48	19458.35
	Min. Vert	4	-33089.36	-33678.48	19458.35
	Min. H_{x}	4	-33089.36	-33678.48	19458.35
	Min. H_{z}	10	-4738.70	-5367.82	3090.95
Guy B @ 145 ft Elev 0 ft	Max. Vert	6	-4479.35	5129.64	2962.36

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } \\ & \\ & 30 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	Date 22:39:02 08/13/19
	Client	CDT	Designed by FAN

Location	Condition	Gov. Load Comb.	Vertical $l b$	Horizontal, X $l b$	Horizontal, Z $l b$
Azimuth 120 deg					
	Max. H_{x}	12	-33577.73	34094.75	19685.17
	Max. H_{z}	12	-33577.73	34094.75	19685.17
	Min. Vert	12	-33577.73	34094.75	19685.17
	Min. H_{x}	6	-4479.35	5129.64	2962.36
Guy A @ 145 ft	Min. H_{z}	6	-4479.35	5129.64	2962.36
Elev 0 ft	Max. Vert	2	-5455.84	-5.59	-7349.38
Azimuth 0 deg					
	Max. H_{x}	11	-19091.13	748.11	-22713.55
	Max. H_{z}	2	-5455.84	-5.59	-7349.38
	Min. Vert	8	-32333.87	8.17	-37679.11
	Min. H_{x}	5	-19161.98	-748.30	-22770.40
	Min. H_{z}	8	-32333.87	8.17	-37679.11

Tower Mast Reaction Summary

Load Combination	Vertical lb	Shear $_{x}$ $l b$	Shear $l b$	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M_{z} $l b-f t$	Torque $l b-f t$
Dead Only	72296.75	2.82	7.82	0.00	0.00	0.00
1.2 Dead+1.6 Wind 0 deg - No	78517.56	1.85	-1599.20	0.00	0.00	0.00
Ice+1.0 Guy						
1.2 Dead+1.6 Wind 30 deg - No	78683.85	802.12	-1398.60	0.00	0.00	0.00
Ice+1.0 Guy						
1.2 Dead+1.6 Wind 60 deg - No	78926.03	1586.27	-907.23	0.00	0.00	0.00
Ice+1.0 Guy						
1.2 Dead+1.6 Wind 90 deg - No	79155.26	1994.23	18.84	0.00	0.00	0.00
Ice+1.0 Guy						
1.2 Dead+1.6 Wind 120 deg -	79003.09	1670.45	973.45	0.00	0.00	0.00
No Ice+1.0 Guy						
1.2 Dead+1.6 Wind 150 deg -	79050.54	861.40	1479.22	0.00	0.00	0.00
No Ice+1.0 Guy						
1.2 Dead+1.6 Wind 180 deg -	78825.85	3.25	1551.94	0.00	0.00	0.00
No Ice+1.0 Guy						
1.2 Dead+1.6 Wind 210 deg -	78609.92	-814.11	1406.48	0.00	0.00	0.00
No Ice+1.0 Guy						
1.2 Dead+1.6 Wind 240 deg -	78482.82	-1644.39	960.11	0.00	0.00	0.00
No Ice+1.0 Guy						
1.2 Dead+1.6 Wind 270 deg -	79121.27	-1987.36	17.56	0.00	0.00	0.00
No Ice+1.0 Guy						
1.2 Dead+1.6 Wind 300 deg -	79068.06	-1600.20	-918.24	0.00	0.00	0.00
No Ice+1.0 Guy						
1.2 Dead+1.6 Wind 330 deg -	79106.26	-839.32	-1469.22	0.00	0.00	0.00
No Ice+1.0 Guy						
1.2 Dead+1.0 Ice+1.0	154263.65	31.79	37.79	0.00	0.00	0.00
Temp+Guy						
1.2 Dead+1.0 Wind 0 deg+1.0	155447.56	31.59	-398.99	0.00	0.00	0.00
Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 30 deg+1.0	155060.14	235.14	-342.71	0.00	0.00	0.00
Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind $60 \mathrm{deg}+1.0$	154719.23	415.51	-184.96	0.00	0.00	0.00
Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 90 deg+1.0	155068.82	502.40	50.33	0.00	0.00	0.00
Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 120	155445.42	444.88	275.78	0.00	0.00	0.00
deg+1.0 Ice+1.0 Temp+1.0 Guy						

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } 31 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	Date 22:39:02 08/13/19
	Client	CDT	Designed by FAN

Load Combination	Vertical lb	Shear $_{x}$ lb	Shear lb	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M_{z} $l b-f t$	Torque $l b-f t$
$\begin{aligned} & \text { 1.2 Dead }+1.0 \text { Wind } 150 \\ & \text { deg+1.0 Ice+1.0 Temp+1.0 Guy } \end{aligned}$	155059.65	265.90	415.89	0.00	0.00	0.00
1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp+1.0 Guy	154705.60	32.15	450.17	0.00	0.00	0.00
1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp+1.0 Guy	155052.11	-194.39	403.17	0.00	0.00	0.00
1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp+1.0 Guy	155443.08	-370.89	269.60	0.00	0.00	0.00
$\begin{aligned} & \text { 1.2 Dead }+1.0 \text { Wind } 270 \\ & \text { deg+1.0 Ice }+1.0 \text { Temp+1.0 Guy } \end{aligned}$	155076.55	-438.31	49.78	0.00	0.00	0.00
1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp+1.0 Guy	154739.22	-361.56	-190.81	0.00	0.00	0.00
1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp+1.0 Guy	155075.73	-178.99	-355.14	0.00	0.00	0.00
Dead+Wind 0 deg - Service+Guy	72418.81	2.64	-360.08	0.00	0.00	0.00
Dead+Wind 30 deg Service+Guy	72382.13	188.64	-316.10	0.00	0.00	0.00
Dead+Wind 60 deg Service+Guy	72347.74	371.42	-205.23	0.00	0.00	0.00
Dead+Wind 90 deg - Service+Guy	72381.32	462.64	8.68	0.00	0.00	0.00
Dead+Wind 120 deg Service+Guy	72416.86	384.06	228.30	0.00	0.00	0.00
Dead+Wind 150 deg Service+Guy	72381.71	199.68	347.71	0.00	0.00	0.00
Dead+Wind 180 deg Service+Guy	72347.41	2.99	366.61	0.00	0.00	0.00
Dead+Wind 210 deg Service+Guy	72382.51	-184.17	331.01	0.00	0.00	0.00
Dead+Wind 240 deg Service+Guy	72418.13	-373.72	225.39	0.00	0.00	0.00
Dead+Wind 270 deg Service+Guy	72381.40	-456.95	8.35	0.00	0.00	0.00
Dead+Wind 300 deg Service+Guy	72347.80	-370.42	-208.06	0.00	0.00	0.00
Dead+Wind 330 deg Service+Guy	72381.43	-192.83	-332.76	0.00	0.00	0.00

Solution Summary

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	PX	PY	PZ	PX	PY	PZ	
Comb.	$l b$						
1	0.00	-18396.80	0.00	-0.40	18396.80	-2.27	0.013\%
2	-32.85	-21830.35	-25487.44	32.94	21827.73	25429.59	0.173\%
3	12605.03	-21656.17	-21976.94	-12595.78	21654.03	21907.77	0.209\%
4	23510.61	-21481.99	-13619.29	-23379.06	21479.76	13543.05	0.439\%
5	28608.13	-21656.17	32.85	-28541.32	21653.77	-1.87	0.205\%
6	24384.41	-21830.35	14161.71	-24332.45	21827.47	-14131.72	0.168\%
7	13248.44	-21656.17	23025.66	-13193.14	21653.85	-22987.18	0.197\%
8	32.85	-21481.99	25127.32	-30.93	21479.88	-24992.20	0.409\%
9	-12605.03	-21656.17	21976.94	12539.41	21653.73	-21923.48	0.254\%
10	-23822.48	-21830.35	13799.35	23772.30	21827.87	-13770.25	0.165\%
11	-28608.13	-21656.17	-32.85	28524.24	21653.28	69.85	0.256\%
12	-24072.54	-21481.99	-13981.65	23938.29	21479.55	13900.91	0.446\%
13	-13248.44	-21656.17	-23025.66	13242.81	21653.71	22956.17	0.204\%
14	0.00	-91263.74	0.00	-7.88	91263.73	-12.93	0.017\%

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	Page 32 of 45
	Project	Colchester, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 22:39:02 08/13/19 } \end{array}$
	Client	CDT	Designed by FAN

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	PX	PY	PZ	PX	PY	PZ	
Comb.	$l b$						
15	-6.30	-91441.96	-9811.99	6.34	91441.67	9739.17	0.079\%
16	4882.43	-91263.74	-8481.83	-4845.00	91263.42	8422.68	0.076\%
17	8650.42	-91085.51	-5001.60	-8586.94	91085.12	4964.51	0.080\%
18	10188.84	-91263.74	6.30	-10113.16	91263.41	-8.34	0.082\%
19	8840.28	-91441.96	5118.49	-8771.17	91441.68	-5078.34	0.087\%
20	4981.00	-91263.74	8639.95	-4947.54	91263.43	-8576.06	0.079\%
21	6.30	-91085.51	9771.58	-6.47	91085.15	-9700.99	0.077\%
22	-4882.43	-91263.74	8481.83	4850.30	91263.45	-8419.61	0.076\%
23	-8685.02	-91441.96	5021.57	8618.26	91441.69	-4982.75	0.084\%
24	-10188.84	-91263.74	-6.30	10112.94	91263.40	4.45	0.083\%
25	-8805.68	-91085.51	-5098.51	8740.53	91085.08	5060.61	0.082\%
26	-4981.00	-91263.74	-8639.95	4942.87	91263.39	8578.48	0.079\%
27	-7.54	-18436.79	-5851.11	7.52	18436.76	5802.36	0.252\%
28	2893.72	-18396.80	-5045.21	-2868.20	18396.76	5002.84	0.256\%
29	5397.29	-18356.81	-3126.56	-5360.15	18356.76	3105.09	0.221\%
30	6567.52	-18396.80	7.54	-6522.32	18396.76	-8.21	0.231\%
31	5597.89	-18436.79	3251.08	-5560.19	18436.76	-3229.28	0.223\%
32	3041.42	-18396.80	5285.96	-3016.26	18396.76	-5240.41	0.269\%
33	7.54	-18356.81	5768.44	-7.51	18356.76	-5719.27	0.256\%
34	-2893.72	-18396.80	5045.21	2869.89	18396.76	-5001.89	0.256\%
35	-5468.89	-18436.79	3167.89	5431.92	18436.76	-3146.53	0.219\%
36	-6567.52	-18396.80	-7.54	6522.31	18396.76	6.84	0.231\%
37	-5526.29	-18356.81	-3209.74	5488.42	18356.76	3187.83	0.225\%
38	-3041.42	-18396.80	-5285.96	3014.59	18396.76	5241.33	0.269\%

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	50	0.00000001	0.00001445
2	Yes	77	0.00136108	0.00048717
3	Yes	74	0.00128703	0.00041671
4	Yes	69	0.00140368	0.00041351
5	Yes	75	0.00125287	0.00043318
6	Yes	78	0.00136724	0.00052960
7	Yes	75	0.00126736	0.00043661
8	Yes	69	0.00138908	0.00039978
9	Yes	73	0.00146341	0.00046274
10	Yes	77	0.00127801	0.00046755
11	Yes	74	0.00147359	0.00050082
12	Yes	69	0.00142393	0.00043167
13	Yes	75	0.00131748	0.00045666
14	Yes	50	0.00056549	0.00008168
15	Yes	71	0.00145608	0.00011099
16	Yes	71	0.00134628	0.00010458
17	Yes	71	0.00131719	0.00010315
18	Yes	71	0.00134993	0.00010256
19	Yes	71	0.00145990	0.00010658
20	Yes	71	0.00132582	0.00009986
21	Yes	71	0.00128983	0.00009943
22	Yes	71	0.00131225	0.00009874
23	Yes	71	0.00143825	0.00010495
24	Yes	71	0.00010435	
25	Yes	Yes	71	0.00010675
26	Yes	66	0.00010797	
27			0.000013724	
			0.0013769393	

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } 33 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	$\begin{aligned} & \text { Date } \\ & \text { 22:39:02 08/13/19 } \end{aligned}$
	Client	CDT	Designed by FAN

28	Yes	66	0.00145714	0.00013800
29	Yes	67	0.00122410	0.00012304
30	Yes	67	0.00125062	0.00013063
31	Yes	67	0.00122350	0.00012543
32	Yes	66	0.00149303	0.00014490
33	Yes	66	0.00146602	0.00013797
34	Yes	66	0.00145644	0.00013757
35	Yes	67	0.00121358	0.00012344
36	Yes	67	0.00125066	0.00013064
37	Yes	67	0.00123401	0.00012523
38	Yes	66	0.00149385	0.00014542

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	\circ

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist 。	Radius of Curvature $f t$
180.00	Low Profile Platform	37	1.687	0.1515	0.0480	58018
170.00	$12 \mathrm{ft} \mathrm{Boom} /$ Sector Mount	37	1.370	0.1355	0.0383	29009
160.38	Guy	37	1.103	0.1184	0.0333	15747
150.00	RFS APXV18-206516S-C-A20	37	0.887	0.0969	0.0351	24417
116.42	Guy	36	0.483	0.0299	0.0383	21986
60.38	Guy	30	0.419	0.0066	0.1090	96599

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	\circ

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } \\ & 34 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	$\begin{aligned} & \text { Date } \\ & \text { 22:39:02 08/13/19 } \end{aligned}$
	Client	CDT	Designed by FAN

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	o

Critical Deflections and Radius of Curvature - Design Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist 。	Radius of Curvature ft
180.00	Low Profile Platform	6	8.755	0.7498	0.2846	13443
170.00	$12 \mathrm{ft} \mathrm{Boom} \mathrm{/} \mathrm{Sector} \mathrm{Mount}$	6	7.146	0.6826	0.2437	6721
160.38	Guy	6	5.759	0.6089	0.2196	3641
150.00	RFS APXV18-206516S-C-A20	6	4.573	0.5154	0.2194	5441
116.42	Guy	5	2.275	0.1776	0.2007	4106
60.38	Guy	11	1.822	0.0314	0.5010	21717

Bolt Design Data

Section No.	Elevation $f t$	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt lb	Allowable Load per Bolt lb	Ratio Load Allowable	Allowable Ratio	Criteria
T1	180	Leg	A325N	0.7500	4	264.86	29820.60	0.009	1	Bolt Tension
		Torque Arm Top@160.375	A325N	0.7500	2	6142.34	17892.40	0.343	1	Bolt Shear
		Torque Arm Bottom@160.37 5	A325N	0.7500	2	4925.56	17892.40	0.275	1	Bolt Shear
T2	160	Leg	A325N	0.7500	4	3090.41	29820.60	0.104	1	Bolt Tension
T3	140	Leg	A325N	0.7500	4	2597.68	29820.60	0.087	1	Bolt Tension
T4	120	Leg	A325N	0.7500	4	3209.63	29820.60	-	1	Bolt Tension
		Torque Arm Top@116.417	A325N	0.7500	2	3971.59	17892.40	0.222	1	Bolt Shear
		Torque Arm Bottom@116.41 7	A325N	0.7500	2	2544.80	17892.40	0.142	1	Bolt Shear
T5	100	Leg	A325N	0.7500	4	3516.84	29820.60	0.118	1	Bolt Tension
T6	80	Leg	A325N	0.7500	4	3526.27	29820.60	0.118	1	Bolt Tension
T7	60	Leg	A325N	0.7500	4	3917.54	29820.60	. 11	1	Bolt Tension
T8	40	Leg	A325N	0.7500	4	4308.81	29820.60	0.144	1	Bolt Tension
T9	20	Leg	A325N	0.7500	4	4451.14	29820.60		1	Bolt Tension
T10	5	Leg	A325N	0.7500	4	4397.37	29820.60	0.147	1	Bolt Tension

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } \\ & 35 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	$\begin{aligned} & \text { Date } \\ & \text { 22:39:02 08/13/19 } \end{aligned}$
	Client	CDT	Designed by FAN

Guy Design Data

Section No.	Elevation $f t$	Size	Initial Tension lb	Breaking Load lb	Actual T_{u} $l b$	Allowable ϕT_{n} $l b$	Required S.F.	Actual S.F.
T1	$\begin{gathered} 160.38(\mathrm{~A}) \\ (541) \end{gathered}$	5/8 EHS	6360.00	42399.99	13183.60	25440.00	1.000	1.930
	$\begin{gathered} 160.38(\mathrm{~A}) \\ (542) \end{gathered}$	5/8 EHS	6360.00	42399.99	13324.10	25440.00	1.000	1.909
	$\begin{gathered} 160.38 \text { (B) } \\ (535) \end{gathered}$	5/8 EHS	6360.00	42399.99	13514.50	25440.00	1.000	1.882
	$\begin{gathered} 160.38(\mathrm{~B}) \\ (536) \end{gathered}$	5/8 EHS	6360.00	42399.99	13569.20	25440.00	1.000	1.875
	$\begin{gathered} 160.38(\mathrm{C}) \\ (529) \end{gathered}$	5/8 EHS	6360.00	42399.99	13396.50	25440.00	1.000	1.899
	$\begin{gathered} 160.38(\mathrm{C}) \\ (530) \end{gathered}$	5/8 EHS	6360.00	42399.99	13141.80	25440.00	1.000	1.936
T4	$\begin{gathered} 116.42(\mathrm{~A}) \\ (559) \end{gathered}$	9/16 EHS	5250.00	35000.04	8231.94	21000.00	1.000	2.551
	$\begin{gathered} 116.42(\mathrm{~A}) \\ (560) \end{gathered}$	9/16 EHS	5250.00	35000.04	8292.77	21000.00	1.000	2.532
	$\begin{gathered} 116.42(\mathrm{~B}) \\ (553) \end{gathered}$	9/16 EHS	5250.00	35000.04	8526.95	21000.00	1.000	2.463
	$\begin{gathered} 116.42(\mathrm{~B}) \\ (554) \end{gathered}$	9/16 EHS	5250.00	35000.04	8481.27	21000.00	1.000	2.476
	$\begin{gathered} 116.42(\mathrm{C}) \\ (547) \end{gathered}$	9/16 EHS	5250.00	35000.04	8599.41	21000.00	1.000	2.442
	$\begin{gathered} 116.42(\mathrm{C}) \\ (548) \end{gathered}$	9/16 EHS	5250.00	35000.04	8286.58	21000.00	1.000	2.534
T6	$\begin{gathered} 60.38(\mathrm{~A}) \\ (567) \end{gathered}$	9/16 EHS	5250.00	35000.04	8330.94	21000.00	1.000	2.521
	60.38 (B) (566)	9/16 EHS	5250.00	35000.04	8753.35	21000.00	1.000	2.399
	60.38 (C) (565)	9/16 EHS	5250.00	35000.04	8738.03	21000.00	1.000	2.403

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	Mast Stability	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
	$f t$		$f t$	$f t$		in^{2}	Index	$l b$	$l b$	ϕP_{n}
T1	180-160	P2.5x. 203	20.00	3.21	$\begin{gathered} 40.6 \\ \mathrm{~K}=1.00 \end{gathered}$	1.7040	1.00	-40940.10	82983.90	0.493^{1}
T2	160-140	P2.5x. 203	20.00	3.21	$\begin{gathered} 40.6 \\ \mathrm{~K}=1.00 \end{gathered}$	1.7040	1.00	-39487.40	82983.90	0.476^{1}
T3	140-120	P2.5x. 203	20.00	3.21	$\begin{gathered} 40.6 \\ \mathrm{~K}=1.00 \end{gathered}$	1.7040	1.00	-40986.00	79606.90	0.515^{1}
T4	120-100	P2.5x. 203	20.00	3.21	$\begin{gathered} 40.6 \\ \mathrm{~K}=1.00 \end{gathered}$	1.7040	1.00	-47780.40	79606.90	0.600^{1}
T5	100-80	P2.5x. 203	20.00	3.21	$\begin{gathered} 40.6 \\ \mathrm{~K}=1.00 \end{gathered}$	1.7040	1.00	-44397.00	82983.90	0.535^{1}

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } \\ & 36 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	Date 22:39:02 08/13/19
	Client	CDT	Designed by FAN

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	Mast Stability	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		$i n^{2}$	Index	$l b$	$l b$	ϕP_{n}
T6	80-60	P2.5x. 203	20.00	3.21	$\begin{gathered} 40.6 \\ \mathrm{~K}=1.00 \end{gathered}$	1.7040	1.00	-47003.40	82983.90	0.566^{1}
T7	60-40	P2.5x. 203	20.00	3.21	$\begin{gathered} 40.6 \\ \mathrm{~K}=1.00 \end{gathered}$	1.7040	0.98	-53057.00	78158.60	$0^{0.679^{1}}$
T8	40-20	P2.5x. 203	20.00	3.21	$\begin{gathered} 40.6 \\ \mathrm{~K}=1.00 \end{gathered}$	1.7040	0.98	-54953.50	81406.40	0.675^{1}
T9	20-5	P2.5x. 203	15.00	3.56	$\begin{gathered} 45.1 \\ \mathrm{~K}=1.00 \end{gathered}$	1.7040	1.00	-54436.90	80094.30	0.680^{1}
T10	5-0	P2.5x. 203	5.39	4.99	$\begin{gathered} 20.9 \\ \mathrm{~K}=0.33 \end{gathered}$	1.7040	0.88	-56819.70	81531.20	0.697^{1}

${ }^{1} P_{u} / \phi P_{n}$ controls

Horizontal Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	Kl / r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		$i n^{2}$	$l b$	$l b$	ϕP_{n}
T1	180-160	L1 3/4x1 3/4x3/16	3.50	3.26	$\begin{gathered} 117.0 \\ K=1.03 \end{gathered}$	0.6211	-6075.11	9793.71	0.620^{1}
T2	160-140	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 128.2 \\ \mathrm{~K}=0.96 \end{gathered}$	0.5273	-5299.11	7190.10	0.737^{1}
T3	140-120	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 128.2 \\ \mathrm{~K}=0.96 \end{gathered}$	0.5273	-5255.38	7190.10	0.731^{1}
T4	120-100	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 128.2 \\ \mathrm{~K}=0.96 \end{gathered}$	0.5273	-4377.86	7190.10	0.609^{1}
T5	100-80	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 128.2 \\ \mathrm{~K}=0.96 \end{gathered}$	0.5273	-4037.22	7190.10	0.561^{1}
T6	80-60	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 128.2 \\ \mathrm{~K}=0.96 \end{gathered}$	0.5273	-4238.77	7190.10	0.590^{1}
T7	60-40	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 128.2 \\ \mathrm{~K}=0.96 \end{gathered}$	0.5273	-3997.67	7190.10	0.556^{1}
T8	40-20	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 128.2 \\ \mathrm{~K}=0.96 \end{gathered}$	0.5273	-4128.76	7190.10	0.574^{1}
T9	20-5	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 128.2 \\ \mathrm{~K}=0.96 \end{gathered}$	0.5273	-3583.42	7190.10	0.498^{1}

${ }^{1} P_{u} / \phi P_{n}$ controls

Top Girt Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		$i n^{2}$	$l b$	$l b$	ϕP_{n}
T1	180-160	L1 3/4x1 3/4x3/16	3.50	3.26	$\begin{gathered} 117.0 \\ \mathrm{~K}=1.03 \end{gathered}$	0.6211	-3603.19	9793.71	0.368^{1}
T2	160-140	L1 1/2x1 1/2x3/16	3.50	3.26	128.2	0.5273	-3556.56	7190.10	$0.495{ }^{1}$

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } \\ & 37 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	Date 22:39:02 08/13/19
	Client	CDT	Designed by FAN

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		$i n^{2}$	$l b$	$l b$	ϕP_{n}
		$\mathrm{K}=0.96$							\checkmark
T3	140-120	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 128.2 \\ \mathrm{~K}=0.96 \end{gathered}$	0.5273	-2676.29	7190.10	$0^{0.372^{1}}$
T5	100-80	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 128.2 \\ \mathrm{~K}=0.96 \end{gathered}$	0.5273	-2479.94	7190.10	0.345^{1}
T6	80-60	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 128.2 \\ \mathrm{~K}=0.96 \end{gathered}$	0.5273	-2122.12	7190.10	0.295^{1}
T7	60-40	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 128.2 \\ \mathrm{~K}=0.96 \end{gathered}$	0.5273	-2015.35	7190.10	0.280^{1}
T8	40-20	L1 $1 / 2 \times 11 / 2 \times 3 / 16$	3.50	3.26	$\begin{gathered} 128.2 \\ \mathrm{~K}=0.96 \end{gathered}$	0.5273	-2019.27	7190.10	0.281^{1}
T9	20-5	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 128.2 \\ \mathrm{~K}=0.96 \end{gathered}$	0.5273	-1944.27	7190.10	0.270^{1}

${ }^{1} P_{u} / \phi P_{n}$ controls

Bottom Girt Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		$i n^{2}$	$l b$	$l b$	ϕP_{n}
T2	160-140	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 128.2 \\ \mathrm{~K}=0.96 \end{gathered}$	0.5273	-2742.61	7190.10	0.381^{1}
T3	140-120	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 128.2 \\ \mathrm{~K}=0.96 \end{gathered}$	0.5273	-3329.47	7190.10	0.463^{1}
T4	120-100	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 128.2 \\ \mathrm{~K}=0.96 \end{gathered}$	0.5273	-2255.98	7190.10	0.314^{1}
T5	100-80	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 128.2 \\ \mathrm{~K}=0.96 \end{gathered}$	0.5273	-2107.51	7190.10	0.293^{1}
T7	60-40	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 128.2 \\ \mathrm{~K}=0.96 \end{gathered}$	0.5273	-2271.62	7190.10	0.316^{1}
T8	40-20	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 128.2 \\ \mathrm{~K}=0.96 \end{gathered}$	0.5273	-2026.95	7190.10	0.282^{1}

${ }^{1} P_{u} / \phi P_{n}$ controls

Top Guy Pull-Off Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		in^{2}	$l b$	$l b$	ϕP_{n}
T1	180-160	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 86.7 \\ \mathrm{~K}=0.65 \end{gathered}$	0.5273	-9127.07	11503.00	$0.793{ }^{1}$
T4	120-100	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 86.7 \\ \mathrm{~K}=0.65 \end{gathered}$	0.5273	-3344.92	11503.00	$0.291{ }^{1}$
T6	80-60	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 86.7 \\ \mathrm{~K}=0.65 \end{gathered}$	0.5273	-717.34	11503.00	0.062^{1}

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } 38 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	Date 22:39:02 08/13/19
	Client	CDT	Designed by FAN

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \end{gathered}$
	$f t$		$f t$	$f t$		$i n^{2}$	$l b$	$l b$	ϕP_{n}

${ }^{1} P_{u} / \phi P_{n}$ controls

Top Guy Pull-Off Bending Design Data

Section No.	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	$\begin{gathered} \text { Ratio } \\ M_{u x} \\ \hline \end{gathered}$	$M_{u y}$	$\phi M_{n y}$	$\begin{gathered} \text { Ratio } \\ M_{u y} \\ \hline \end{gathered}$
	$f t$		$l b-f t$	$l b-f t$	$\phi M_{n x}$	$l b-f t$	$l b-f t$	$\phi M_{n y}$
T1	180-160	L1 1/2x1 1/2x3/16	0.00	711.05	0.000	0.00	368.03	0.000
T4	120-100	L1 1/2x1 1/2x3/16	0.00	711.05	0.000	0.00	368.03	0.000
T6	80-60	L1 1/2x1 1/2x3/16	0.00	711.05	0.000	0.00	368.03	0.000

Top Guy Pull-Off Interaction Design Data

Section No.	Elevation $f t$	Size	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \phi P_{n} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ M_{u x} \\ \hline \phi M_{n x} \end{gathered}$	$\begin{gathered} \text { Ratio } \\ M_{u y} \\ \hline \phi M_{n y} \end{gathered}$	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
T1	180-160	L1 1/2x1 1/2x3/16	0.793	0.000	0.000	0.793^{1}	1.000	4.8.1
T4	120-100	L1 1/2x1 $1 / 2 \times 3 / 16$	0.291	0.000	0.000		1.000	4.8.1
T6	80-60	L1 1/2x1 1/2x3/16	0.062	0.000	0.000	0.062^{1}	1.000	4.8.1

${ }^{1} P_{u} / \phi P_{n}$ controls

Bottom Guy Pull-Off Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		$i n^{2}$	$l b$	$l b$	ϕP_{n}
T1	180-160	L1 1/2x1 1/2x3/16	3.50	3.26	$\begin{gathered} 86.7 \\ K=0.65 \end{gathered}$	0.5273	-4326.88	11503.00	$0.376{ }^{1}$
T4	120-100	L1 $1 / 2 \times 11 / 2 \times 3 / 16$	3.50	3.26	$\begin{gathered} 86.7 \\ \mathrm{~K}=0.65 \end{gathered}$	0.5273	-6723.78	11503.00	$0.585{ }^{1}$

[^2]
Bottom Guy Pull-Off Bending Design Data

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } 39 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	Date 22:39:02 08/13/19
	Client	CDT	Designed by FAN

Section No.	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	$\begin{gathered} \text { Ratio } \\ M_{u x} \end{gathered}$	$M_{u y}$	$\phi M_{n y}$	Ratio $M_{u v}$
$f t$			$l b-f t$	$l b-f t$	$\phi M_{n x}$	$l b-f t$	$l b-f t$	$\phi M_{n y}$
T1	180-160	L1 1/2x1 1/2x3/16	0.00	711.05	0.000	0.00	368.03	0.000
T4	120-100	L1 1/2x1 1/2x3/16	0.00	711.05	0.000	0.00	368.03	0.000

Bottom Guy Pull-Off Interaction Design Data

Section No.	Elevation $f t$	Size	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \phi P_{n} \\ \hline \end{gathered}$	Ratio $M_{u x}$ $\phi M_{n x}$	Ratio $M_{u y}$ $\phi M_{n y}$	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
T1	180-160	L1 1/2x1 1/2x3/16	0.376	0.000	0.000	0.376^{1}	1.000	4.8 .1
T4	120-100	L1 1/2x1 1/2x3/16	0.585	0.000	0.000	0.585^{1}	1.000	4.8.1

${ }^{1} P_{u} / \phi P_{n}$ controls

Torque-Arm Bottom Design Data

Section No.	Elevation	Size	L	L_{u}	$K l / r$	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		$i n^{2}$	$l b$	$l b$	ϕP_{n}
T1	180-160 (533)	L3x3x1/4	3.50	3.38	$\begin{gathered} 68.5 \\ \mathrm{~K}=1.00 \end{gathered}$	1.4400	-9632.57	36439.50	0.264^{1}
T1	180-160 (534)	L3x $3 \times 1 / 4$	3.50	3.38	$\begin{gathered} 68.5 \\ \mathrm{~K}=1.00 \end{gathered}$	1.4400	-9620.00	36439.50	0.264^{1}
T1	180-160 (539)	L3x $3 \times 1 / 4$	3.50	3.38	$\begin{gathered} 68.5 \\ \mathrm{~K}=1.00 \end{gathered}$	1.4400	-9622.95	36439.50	0.264^{1}
T1	180-160 (540)	L3x $3 \times 1 / 4$	3.50	3.38	$\begin{gathered} 68.5 \\ \mathrm{~K}=1.00 \end{gathered}$	1.4400	-9851.13	36439.50	0.270^{1}
T1	180-160 (545)	L3x $3 \times 1 / 4$	3.50	3.38	$\begin{gathered} 68.5 \\ \mathrm{~K}=1.00 \end{gathered}$	1.4400	-9757.82	36439.50	0.268^{1}
T1	180-160 (546)	L3x3x1/4	3.50	3.38	$\begin{gathered} 68.5 \\ \mathrm{~K}=1.00 \end{gathered}$	1.4400	-9527.63	36439.50	0.261^{1}
T4	120-100 (551)	L3x3x1/4	3.50	3.38	$\begin{gathered} 68.5 \\ \mathrm{~K}=1.00 \end{gathered}$	1.4400	-4947.45	36439.50	0.136^{1}
T4	120-100 (552)	L3x $3 \times 1 / 4$	3.50	3.38	$\begin{gathered} 68.5 \\ \mathrm{~K}=1.00 \end{gathered}$	1.4400	-4811.71	36439.50	0.132^{1}
T4	120-100 (557)	L3x $3 \times 1 / 4$	3.50	3.38	$\begin{gathered} 68.5 \\ \mathrm{~K}=1.00 \end{gathered}$	1.4400	-5087.29	36439.50	0.140^{1}
T4	120-100 (558)	L3x $3 \times 1 / 4$	3.50	3.38	$\begin{gathered} 68.5 \\ \mathrm{~K}=1.00 \end{gathered}$	1.4400	-5089.60	36439.50	0.140^{1}
T4	120-100 (563)	L3x $3 \times 1 / 4$	3.50	3.38	$\begin{gathered} 68.5 \\ \mathrm{~K}=1.00 \end{gathered}$	1.4400	-4800.21	36439.50	0.132^{1}
T4	120-100 (564)	L3x $3 \times 1 / 4$	3.50	3.38	$\begin{gathered} 68.5 \\ \mathrm{~K}=1.00 \end{gathered}$	1.4400	-4706.37	36439.50	0.129^{1}

[^3]| tnxTower
 Fred A. Nudd Corporation
 1743 Route 104
 Ontario, NY 14519
 Phone: 315.524.2531
 FAX: 315.524.4249 | Job | 119-23103 | $\begin{aligned} & \text { Page } \\ & 40 \text { of } 45 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| | Project | Colchester, CT | $\begin{aligned} & \text { Date } \\ & \text { 22:39:02 08/13/19 } \end{aligned}$ |
| | Client | CDT | Designed by FAN |

Tension Checks

Leg Design Data (Tension)									
Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		in ${ }^{2}$	$l b$	$l b$	ϕP_{n}
T1	180-160	P2.5x. 203	20.00	3.21	40.6	1.7040	14622.20	96619.60	0.151^{1}
T2	160-140	P2.5x. 203	20.00	3.21	40.6	1.7040	10436.70	96619.60	0.108^{1}
T3	140-120	P2.5x. 203	20.00	3.21	40.6	1.7040	6097.81	92018.70	0.066^{1}
T4	120-100	P2.5x. 203	20.00	3.21	40.6	1.7040	6096.06	92018.70	0.066^{1}

${ }^{1} P_{u} / \phi P_{n}$ controls

Diagonal Design Data (Tension)									
Section No.	$f t$		L	L_{u}	Kl/r	A	P_{u}	${ }_{\phi} P_{n}$	Ratio P_{u}
			$f t$	$f t$		$i n^{2}$	$l b$	$l b$	ϕP_{n}
T1	180-160	5/8	4.75	4.42	339.7	0.3068	7316.10	9940.20	$0.736{ }^{1}$
T2	160-140	5/8	4.75	4.42	339.7	0.3068	5200.47	9940.20	0.523^{1}
T3	140-120	5/8	4.75	4.42	339.7	0.3068	4445.17	9940.20	0.447^{1}
T4	120-100	5/8	4.75	4.42	339.7	0.3068	4415.79	9940.20	0.444^{1}
T5	100-80	5/8	4.75	4.42	339.7	0.3068	4033.56	9940.20	0.406^{1}
T6	80-60	5/8	4.75	4.42	339.7	0.3068	3928.85	9940.20	0.395^{1}
T7	60-40	5/8	4.75	4.42	339.7	0.3068	4018.78	9940.20	0.404^{1}
T8	40-20	5/8	4.75	4.42	339.7	0.3068	3262.09	9940.20	0.328^{1}
T9	20-5	5/8	4.99	4.65	357.3	0.3068	3574.07	9940.20	0.360^{1}

[^4]| tnxTower
 Fred A. Nudd Corporation 1743 Route 104
 Ontario, NY 14519
 Phone: 315.524.2531
 FAX: 315.524.4249 | Job | 119-23103 | $\begin{aligned} & \text { Page } \\ & 41 \text { of } 45 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| | Project | Colchester, CT | Date 22:39:02 08/13/19 |
| | Client | CDT | Designed by FAN |

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
	$f t$		$f t$	$f t$		in^{2}	$l b$	$l b$	ϕP_{n}
T1	180-160	L1 3/4x1 3/4x3/16	3.50	3.26	72.9	0.6211	709.10	20123.40	0.035^{1}
T2	160-140	L1 1/2x1 $1 / 2 \times 3 / 16$	3.50	3.26	85.7	0.5273	683.94	17085.90	0.040^{1}
T3	140-120	L1 1/2x1 $1 / 2 \times 3 / 16$	3.50	3.26	85.7	0.5273	709.90	17085.90	0.042^{1}
T4	120-100	L1 $1 / 2 \times 11 / 2 \times 3 / 16$	3.50	3.26	85.7	0.5273	827.58	17085.90	$048{ }^{1}$
T5	100-80	L1 1/2x1 1/2x3/16	3.50	3.26	85.7	0.5273	768.98	17085.90	0.045^{1}
T6	80-60	L1 $1 / 2 \times 11 / 2 \times 3 / 16$	3.50	3.26	85.7	0.5273	805.60	17085.90	$0.047{ }^{1}$
T7	60-40	L1 1/2x1 1/2x3/16	3.50	3.26	85.7	0.5273	918.97	17085.90	0.054^{1}
T8	40-20	L1 1/2x1 1/2x3/16	3.50	3.26	85.7	0.5273	951.82	17085.90	$0.056{ }^{1}$
T9	20-5	L1 1/2x1 1/2x3/16	3.50	3.26	85.7	0.5273	942.87	17085.90	0.055^{1}

${ }^{1} P_{u} / \phi P_{n}$ controls

Top Girt Design Data (Tension)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		$i n^{2}$	$l b$	$l b$	ϕP_{n}
T10	5-0	L1 1/2x1 1/2x3/16	3.24	3.00	78.8	0.5273	6159.47	17085.90	0.361^{1}

${ }^{1} P_{u} / \phi P_{n}$ controls

Bottom Girt Design Data (Tension)

Section No.	Elevation ft	Size	L	L_{u}	Kl/r	A $i n^{2}$	$\begin{gathered} P_{u} \\ l b \end{gathered}$	ϕP_{n} lb	Ratio P_{u}
T9	20-5	L1 1/2x1 1/2x3/16	3.50	3.26	85.7	0.5273	5398.03	17085.90	0.316^{1}

${ }^{1} P_{u} / \phi P_{n}$ controls

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } \\ & 42 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	Date 22:39:02 08/13/19
	Client	CDT	Designed by FAN

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
$f t$			$f t$	$f t$		$i n^{2}$	$l b$	$l b$	ϕP_{n}
T6	80-60	L1 1/2x1 1/2x3/16	3.50	3.26	85.7	0.5273	2503.92	17085.90	$0.147{ }^{1}$

${ }^{1} P_{u} / \phi P_{n}$ controls

Top Guy Pull-Off Bending Design Data

Section No.	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	$\begin{gathered} \text { Ratio } \\ M_{u x} \\ \hline \end{gathered}$	$M_{u y}$	$\phi M_{n y}$	$\begin{gathered} \text { Ratio } \\ M_{u y} \\ \hline \end{gathered}$
$f t$			$l b-f t$	$l b-f t$	$\phi M_{n x}$	$l b-f t$	$l b-f t$	$\phi M_{n y}$
T6	80-60	L1 1/2x1 1/2x3/16	0.00	711.05	0.000	0.00	368.03	0.000

Top Guy Pull-Off Interaction Design Data

Section No.	Elevation	Size	Ratio P_{u}	$\begin{gathered} \text { Ratio } \\ M_{u x} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ M_{u y} \\ \hline \end{gathered}$	Comb. Stress	Allow. Stress	Criteria
$f t$			ϕP_{n}	$\phi M_{n x}$	$\phi M_{n y}$	Ratio	Ratio	
T6	80-60	L1 1/2x1 1/2x3/16	0.147	0.000	0.000	0.147^{1}	1.000	4.8.1

${ }^{1} P_{u} / \phi P_{n}$ controls

Torque-Arm Top Design Data									
Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \end{gathered}$
	$f t$		$f t$	$f t$		in^{2}	$l b$	$l b$	ϕP_{n}
T1	180-160 (531)	L2x2x5/16	4.75	4.59	91.6	1.1500	11956.60	37260.00	0.321^{1}
T1	180-160 (532)	L2x2x5/16	4.75	4.59	91.6	1.1500	12284.70	37260.00	$0.330{ }^{1}$
T1	180-160 (537)	L2 $2 \times \times 5 / 16$	4.75	4.59	91.6	1.1500	11900.00	37260.00	$.319^{1}$
T1	180-160 (538)	L2x $2 \times 5 / 16$	4.75	4.59	91.6	1.1500	11869.70	37260.00	0.319^{1}
T1	180-160 (543)	L2x $2 \times 5 / 16$	4.75	4.59	91.6	1.1500	11666.10	37260.00	0.313^{1}
T1	180-160 (544)	L2 $2 \times \times 5 / 16$	4.75	4.59	91.6	1.1500	11989.90	37260.00	0.322^{1}
T4	120-100 (549)	L2x2x5/16	4.75	4.59	91.6	1.1500	7931.51	37260.00	0.213^{1}
T4	120-100 (550)	L2x $2 \times 5 / 16$	4.75	4.59	91.6	1.1500	7900.50	37260.00	0.212^{1}
T4	120-100 (555)	L2x $2 \times 5 / 16$	4.75	4.59	91.6	1.1500	7864.22	37260.00	0.211^{1}

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } \\ & 43 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	Date 22:39:02 08/13/19
	Client	CDT	Designed by FAN

Section No.	Elevation	Size	L	L_{u}	$K l / r$	A	P_{u}	ϕP_{n}	$f t$

${ }^{1} P_{u} / \phi P_{n}$ controls

Torque-Arm Bottom Design Data

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		$i n^{2}$	$l b$	$l b$	ϕP_{n}
T1	180-160 (533)	L3x $3 \times 1 / 4$	3.50	3.38	43.6	1.4400	3009.81	46656.00	$0.065{ }^{1}$
T1	180-160 (534)	L3x $3 \times 1 / 4$	3.50	3.38	43.6	1.4400	3077.25	46656.00	$0.066{ }^{1}$
T1	180-160 (539)	L3x3x1/4	3.50	3.38	43.6	1.4400	3131.44	46656.00	$0.067{ }^{1}$
T1	180-160 (540)	L3x $3 \times 1 / 4$	3.50	3.38	43.6	1.4400	3219.33	46656.00	$0.069{ }^{1}$
T1	180-160 (545)	L3x $3 \times 1 / 4$	3.50	3.38	43.6	1.4400	3083.39	46656.00	$0.066{ }^{1}$
T1	180-160 (546)	L3x $3 \times 1 / 4$	3.50	3.38	43.6	1.4400	3033.99	46656.00	$065{ }^{1}$
T4	120-100 (551)	L3x $3 \times 1 / 4$	3.50	3.38	43.6	1.4400	2182.43	46656.00	. $047{ }^{1}$
T4	120-100 (552)	L3x $3 \times 1 / 4$	3.50	3.38	43.6	1.4400	1863.74	46656.00	$0.040{ }^{1}$
T4	120-100 (557)	L3x $3 \times 1 / 4$	3.50	3.38	43.6	1.4400	2187.92	46656.00	$0.047{ }^{1}$
T4	120-100 (558)	L3x $3 \times 1 / 4$	3.50	3.38	43.6	1.4400	2152.19	46656.00	$0.046{ }^{1}$
T4	120-100 (563)	L3x $3 \times 1 / 4$	3.50	3.38	43.6	1.4400	2092.51	46656.00	0.045^{1}
T4	120-100 (564)	L3x $3 \times 1 / 4$	3.50	3.38	43.6	1.4400	1782.17	46656.00	0.038^{1}

${ }^{1} P_{u} / \phi P_{n}$ controls

Section Capacity Table

Section	Elevation	Component	Size	Critical	P	$\emptyset P_{\text {allow }}$	\%	Pass
No.	$f t$	Type		Element	$l b$	lb	Capacity	Fail
T1	$180-160$	Leg	P2.5x.203	2	-40940.10	82983.90	49.3	Pass
		$5 / 8$	22	7316.10	9940.20	73.6	Pass	

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } \\ & 44 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	Date 22:39:02 08/13/19
	Client	CDT	Designed by FAN

Section No.	Elevation $f t$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} ø P_{\text {allow }} \\ l b \end{gathered}$	\% Capacity	Pass Fail
		Horizontal	L1 3/4x1 3/4x3/16	52	-6075.11	9793.71	62.0	Pass
		Top Girt	L1 3/4x1 3/4x3/16	4	-3603.19	9793.71	36.8	Pass
		Guy A@160.375	5/8	542	13324.10	25440.00	52.4	Pass
		Guy B@160.375	5/8	536	13569.20	25440.00	53.3	Pass
		Guy C@160.375	5/8	529	13396.50	25440.00	52.7	Pass
		Top Guy Pull-Off@160.375	L1 1/2x1 1/2x3/16	18	-9127.07	11503.00	79.3	Pass
		Bottom Guy Pull-Off@160.375	L1 1/2x1 1/2x3/16	9	-4326.88	11503.00	37.6	Pass
		Torque Arm	L2x $2 \times 5 / 16$	532	12284.70	37260.00	33.0	Pass
		Top@160.375					34.3 (b)	
		Torque Arm	L3x $3 \times 1 / 4$	540	-9851.13	36439.50	27.0	Pass
		Bottom@160.375					27.5 (b)	
T2	160-140	Leg	P2.5x. 203	63	-39487.40	82983.90	47.6	Pass
		Diagonal	5/8	115	5200.47	9940.20	52.3	Pass
		Horizontal	L1 1/2x1 1/2x3/16	112	-5299.11	7190.10	73.7	Pass
		Top Girt	L1 1/2x1 1/2x3/16	66	-3556.56	7190.10	49.5	Pass
		Bottom Girt	L1 1/2x1 1/2x3/16	67	-2742.61	7190.10	38.1	Pass
T3	140-120	Leg	P2.5x. 203	122	-40986.00	79606.90	51.5	Pass
		Diagonal	5/8	132	4445.17	9940.20	44.7	Pass
		Horizontal	L1 1/2x1 1/2x3/16	136	-5255.38	7190.10	73.1	Pass
		Top Girt	L1 1/2x1 1/2x3/16	124	-2676.29	7190.10	37.2	Pass
		Bottom Girt	L1 1/2x1 1/2x3/16	129	-3329.47	7190.10	46.3	Pass
T4	120-100	Leg	P2.5x. 203	182	-47780.40	79606.90	60.0	Pass
		Diagonal	5/8	230	4415.79	9940.20	44.4	Pass
		Horizontal	L1 1/2x1 1/2x3/16	216	-4377.86	7190.10	60.9	Pass
		Bottom Girt	L1 1/2x1 1/2x3/16	188	-2255.98	7190.10	31.4	Pass
		Guy A@116.417	9/16	560	8292.77	21000.00	39.5	Pass
		Guy B@116.417	9/16	553	8526.95	21000.00	40.6	Pass
		Guy C@116.417	9/16	547	8599.41	21000.00	40.9	Pass
		Top Guy Pull-Off@116.417	L1 1/2x1 1/2x3/16	186	-3344.92	11503.00	29.1	Pass
		Bottom Guy Pull-Off@116.417	L1 1/2x1 1/2x3/16	234	-6723.78	11503.00	58.5	Pass
		Torque Arm	L2x $2 \times 5 / 16$	561	7943.19	37260.00	21.3	Pass
		Top@116.417					22.2 (b)	
		Torque Arm	L3x $3 \times 1 / 4$	558	-5089.60	36439.50	14.0	Pass
		Bottom@116.417					14.2 (b)	
T5	100-80	Leg	P2.5x. 203	243	-44397.00	82983.90	53.5	Pass
		Diagonal	5/8	299	4033.56	9940.20	40.6	Pass
		Horizontal	L1 1/2x1 1/2x3/16	292	-4037.22	7190.10	56.1	Pass
		Top Girt	L1 $1 / 2 \times 11 / 2 \times 3 / 16$	246	-2479.94	7190.10	34.5	Pass
		Bottom Girt	L1 1/2x1 1/2x3/16	248	-2107.51	7190.10	29.3	Pass
T6	80-60	Leg	P2.5x. 203	301	-47003.40	82983.90	56.6	Pass
		Diagonal	5/8	310	3928.85	9940.20	39.5	Pass
		Horizontal	L1 1/2x1 1/2x3/16	317	-4238.77	7190.10	59.0	Pass
		Top Girt	L1 1/2x1 1/2x3/16	305	-2122.12	7190.10	29.5	Pass
		Guy A@60.375	9/16	567	8330.94	21000.00	39.7	Pass
		Guy B@60.375	9/16	566	8753.35	21000.00	41.7	Pass
		Guy C@60.375	9/16	565	8738.03	21000.00	41.6	Pass
		Top Guy Pull-Off@60.375	L1 1/2x1 1/2x3/16	309	2503.92	17085.90	14.7	Pass
T7	60-40	Leg	P2.5x. 203	362	-53057.00	78158.60	67.9	Pass
		Diagonal	5/8	420	4018.78	9940.20	40.4	Pass
		Horizontal	L1 $1 / 2 \times 11 / 2 \times 3 / 16$	377	-3997.67	7190.10	55.6	Pass
		Top Girt	L1 $1 / 2 \times 11 / 2 \times 3 / 16$	365	-2015.35	7190.10	28.0	Pass
		Bottom Girt	L1 1/2x1 1/2x3/16	369	-2271.62	7190.10	31.6	Pass
T8	40-20	Leg	P2.5x. 203	422	-54953.50	81406.40	67.5	Pass
		Diagonal	5/8	480	3262.09	9940.20	32.8	Pass
		Horizontal	L1 $1 / 2 \times 11 / 2 \times 3 / 16$	474	-4128.76	7190.10	57.4	Pass
		Top Girt	L1 1/2x1 1/2x3/16	425	-2019.27	7190.10	28.1	Pass

tnxTower Fred A. Nudd Corporation 1743 Route 104 Ontario, NY 14519 Phone: 315.524.2531 FAX: 315.524.4249	Job	119-23103	$\begin{aligned} & \text { Page } \\ & 45 \text { of } 45 \end{aligned}$
	Project	Colchester, CT	Date 22:39:02 08/13/19
	Client	CDT	Designed by FAN

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Section No. \& Elevation \(f t\) \& Component Type \& Size \& Critical Element \& \[
\begin{aligned}
\& P \\
\& l b
\end{aligned}
\] \& \[
\begin{gathered}
ø P_{\text {allow }} \\
l b
\end{gathered}
\] \& \(\%\) Capacity \& \begin{tabular}{l}
Pass \\
Fail
\end{tabular} \\
\hline \multirow[b]{7}{*}{T9

T10} \& \multirow{6}{*}{20-5} \& Bottom Girt \& L1 1/2x1 1/2x3/16 \& 429 \& -2026.95 \& 7190.10 \& 28.2 \& Pass

\hline \& \& Leg \& P2.5x. 203 \& 481 \& -54436.90 \& 80094.30 \& 68.0 \& Pass

\hline \& \& Diagonal \& 5/8 \& 490 \& 3574.07 \& 9940.20 \& 36.0 \& Pass

\hline \& \& Horizontal \& L1 $1 / 2 \times 11 / 2 \times 3 / 16$ \& 497 \& -3583.42 \& 7190.10 \& 49.8 \& Pass

\hline \& \& Top Girt \& L1 1/2x1 1/2x3/16 \& 486 \& -1944.27 \& 7190.10 \& 27.0 \& Pass

\hline \& \& Bottom Girt \& L1 1/2x1 1/2x3/16 \& 487 \& 5398.03 \& 17085.90 \& 31.6 \& Pass

\hline \& \multirow[t]{18}{*}{5-0} \& Leg \& P2.5x. 203 \& 525 \& -56819.70 \& 81531.20 \& 69.7 \& Pass

\hline \multirow{17}{*}{T10} \& \& \multirow[t]{17}{*}{Top Girt} \& \multirow[t]{17}{*}{L1 $1 / 2 \times 11 / 2 \times 3 / 16$} \& \multirow[t]{17}{*}{528} \& \multirow[t]{17}{*}{6159.47} \& 17085.90 \& 36.1 \& Pass

\hline \& \& \& \& \& \& \& \multicolumn{2}{|l|}{Summary}

\hline \& \& \& \& \& \& Leg (T10) \& 69.7 \& Pass

\hline \& \& \& \& \& \& Diagonal (T1) \& 73.6 \& Pass

\hline \& \& \& \& \& \& | Horizontal |
| :--- |
| (T2) | \& 73.7 \& Pass

\hline \& \& \& \& \& \& | Top Girt |
| :--- |
| (T2) | \& 49.5 \& Pass

\hline \& \& \& \& \& \& | Bottom Girt |
| :--- |
| (T3) | \& 46.3 \& Pass

\hline \& \& \& \& \& \& Guy A (T1) \& 52.4 \& Pass

\hline \& \& \& \& \& \& Guy B (T1) \& 53.3 \& Pass

\hline \& \& \& \& \& \& Guy C (T1) \& 52.7 \& Pass

\hline \& \& \& \& \& \& Top Guy \& 79.3 \& Pass

\hline \& \& \& \& \& \& | Pull-Off |
| :--- |
| (T1) | \& \&

\hline \& \& \& \& \& \& Bottom Guy Pull-Off (T4) \& 58.5 \& Pass

\hline \& \& \& \& \& \& Torque Arm Top (T1) \& 34.3 \& Pass

\hline \& \& \& \& \& \& Torque Arm Bottom (T1) \& 27.5 \& Pass

\hline \& \& \& \& \& \& Bolt Checks \& 34.3 \& Pass

\hline \& \& \& \& \& \& RATING = \& 79.3 \& Pass

\hline
\end{tabular}

Site Name:
Client:
Job Number:
Date:

Colchester
CDT
119-23103
8/13/2019

Design Base Loads (Factored) per TIA-222-G

Moment (M_{u}):
Shear/Leg (V_{u}):
Compression/Leg (P_{u}):
Uplift/Leg (T_{u}):
Diameter of Prismatic Portion of Pier (d):
Depth to Base of Foundation:
Pier Height Above Ground (h):
Length / Width of Pad (w):
Thickness of Pad (t):
Depth Below Ground Surface to Water Table (w):
Unit Weight of Concrete:
Unit Weight of Water:
Unit Weight of Soil Above Water Table:
Unit Weight of Soil Below Water Table:
Friction Angle of Uplift from Top of Pad:
Friction Angle of Uplift from Base of Pad:
Uplift Angle Started at Top or Base of Pad (T/B):
Ultimate Skin Friction:
Ultimate Compressive Bearing Pressure:
Capacity Increase (Due to Transient Loads):
Bearing Strength Reduction Factor $\left(\phi_{s}\right)$:
Uplift Strength Reduction Factor $\left(\phi_{s}\right)$:
0.60
$0.0 \mathrm{k}-\mathrm{ft}$
2.0 k
155.4 k
0.0 k
1.0 ft
2.0 ft
2.0 ft
6.0 ft
4.0 ft
20.0 ft
150.0 pcf
62.4 pcf
120.0 pcf
65.0 pcf
30 Degrees
30 Degrees
T
0 psf
10000 psf
1.00

Axial Capacities

Nominal Uplift Capacity per Leg $\left(\phi_{\mathrm{s}} \mathrm{T}_{\mathrm{n}}\right)$:
Nominal Compressive Capacity per Leg $\left(\phi_{s} P_{n}\right)$:
P_{u} :
$T_{u} / \phi_{s} T_{n}:$
$\mathrm{P}_{\mathrm{u}} / \phi_{\mathrm{s}} \mathrm{P}_{\mathrm{n}}$:
12.0 k
216.0 k
160.9 k
0.00 Result: OK
0.74 Result: OK

Site Name: Client: Job Number: Date:

Colchester
CDT 119-23103
8/13/2019

Design Standard per TIA-222-G

Anchor Radius:	145.0 ft
Uplift (Factored - P_{u}):	33.6 k
Shear (Factored - V_{u}):	39.4 k
Anchor Base Depth (d):	7.5 ft
Width of Anchor (W):	5.5 ft
Length of Anchor (L):	11.5 ft
Thickness of Anchor (t):	2.0 ft
Depth Below Ground Surface to Water Table (w):	20.0 ft
Soil Uplift at Base / Top of Anchor (B/T):	T
Unit Weight of Concrete:	150.0 pcf
Unit Weight of Soil Above Water Table:	120.0 pcf
Unit Weight of Water:	62.4 pcf
Submerged Soil Unit Weight:	65.0 pcf
Internal Angle of Friction:	30 Degrees
Cohesion:	500 psf
Ultimate Skin Friction of Pad Sides to Soil:	0 psf
Ultimate Coefficient of Shear Friction:	0.30
Maximum Top Conical Failure Angle:	30 Degrees
Maximum Base Conical Failure Angle:	30 Degrees
Allowable Capacity Increase:	1.00 (Due to Transient Loads)
Uplift Strength Reduction Factor (ϕ_{u}):	0.75
Shear Strength Reduction Factor (ϕ_{v}):	0.75
Concrete Uplift Strength Reduction Factor (ϕ_{u}):	0.90

Uplift

Weight of Concrete (Buoyancy Effect Considered):	19.0 k
Weight of Soil (Buoyancy Effect Considered):	84.3 k
Ultimate Uplift Resistance from Skin Friction:	0.0 k
Nominal Factored Uplift Resistance $\left(\phi_{\mathrm{u}} \mathrm{P}_{\mathrm{n}}\right)::$	80.3 k
$\mathrm{P}_{\mathrm{u}} / \phi_{\mathrm{u}} \mathrm{P}_{\mathrm{n}}:$	0.42 Result: OK

Shear

Ultimate Shear Friction Resistance Due to Normal Force - Uplift:
Passive Pressure:
Ultimate Passure Pressure Resistance:
Nominal Shear Resistance ($\phi_{\mathrm{v}} \mathrm{V}_{\mathrm{n}}$):
$\mathrm{V}_{\mathrm{u}} / \phi_{\mathrm{v}} \mathrm{V}_{\mathrm{n}}$:
10.7 k

4072 psf
93.7 k
78.2 k
0.50 Result: OK

Anchor Rod Capacity

\# of Anchor Rods:
Anchor Rod Gross Area:
Anchor Rod Net Area:
Resultant Tensile Load (T_{u}):
Anchor Rod Tensile Resistance $\left(\phi T_{n}\right):$:
$\mathrm{T}_{\mathrm{u}} / \phi \mathrm{T}_{\mathrm{n}}$:

1	Rod $\mathrm{F}_{\mathrm{y}}:$	47 ksi
$2.41 \mathrm{in}^{2}$	Rod $\mathrm{F}_{\mathrm{u}}:$	62 ksi
$2.41 \mathrm{in}^{2}$	$\phi_{\mathrm{y}}:$	0.80
51.7 k	$\phi_{\mathrm{t}}:$	0.65
90.4 k		
0.57 Result: OK		

Strength Analysis of Reinforced Concrete

Concrete Compressive Srength (f_{c}):
Longitudinal Rebar Yield Strength:
\# Longitudinal Rebar (Top):
\# Longitudinal Rebar (1 Side):
Rebar Size:
3000 psi
60000 psi
9
3
4
Strength Reduction Factor for Shear $\left(\phi_{\mathrm{v}}\right)$:
0.75

Strength Reduction Factor for Flexure (ϕ_{b}): 0.9

Compression Zone Factor $\left(\beta_{1}\right): \quad 0.85$
Area of Single Rebar:

One Way Shear due to Shear Load $\left(\mathrm{V}_{\mathrm{u}}\right)$:
Nominal One Way Shear Capacity for Shear Load $\left(\phi_{\mathrm{c}} \mathrm{V}_{\mathrm{n}}\right)$:
$V_{u} / \phi_{v} V_{n}$:
One Way Shear due to Uplift $\left(\mathrm{V}_{\mathrm{u}}\right)$:
Nominal One Way Shear Capacity for Uplift $\left(\phi_{c} V_{n}\right)$:
$\mathrm{V}_{\mathrm{u}} / \phi_{\mathrm{v}} \mathrm{V}_{\mathrm{n}}$:

Pad Flexure due to Shear Load $\left(\mathrm{M}_{\mathrm{u}}\right)$:
Nominal Flexural Capacity for Shear Load ($\phi_{b} \mathrm{M}_{\mathrm{n}}$):
Pad Flexure due to Uplift (M_{u}):
Nominal Flexural Capacity for Uplift $\left(\phi_{b} M_{n}\right)$:
$\mathrm{M}_{\mathrm{u}} / \phi_{\mathrm{b}} \mathrm{M}_{\mathrm{n}}$ (Max.):
$0.20 \mathrm{in}^{2}$
10.8 k
122.3 k
0.09 Result: OK
14.4 k
108.4 k
0.13 Result: OK
56.6 k-ft
167.4 k-ft
48.3 k-ft
161.9 k-ft
0.34 Result: OK

Structural Analysis Report

Antenna Mount Analysis

T-Mobile Site \#: CTNL250A

600 Old Hartford Road
Colchester, CT

Centek Project No. 19027.18

Date: May 03,2019

Max Stress Ratio=87.6\%

Prepared for:
T-Mobile USA
35 Griffin Road Bloomfield, CT 06002

Table of Contents

SECTION 1 - REPORT

- ANTENNA AND APPURTENANCE SUMMARY
- STRUCTURE LOADING
- CONCLUSION

SECTION 2 - CALCULATIONS

- WIND LOAD ON APPURTENANCES
- RISA3D OUTPUT REPORT

SECTION 3 - REFERENCE MATERIALS (NOT INCLUDED WITHIN REPORT)

- RF DATA SHEET, DATED 04/17/2019

Centered on Solutions" ${ }^{\text {"" }}$

May 03, 2019
M r. Dan Reid
Transcend Wireless
10 Industrial Ave
M ahwah, NJ 07430
Re: Structural Letter ~Antenna Mount
T-Mobile - Site Ref: CTNL250A
600 Old Hartford Road
Coldhester, CT 06415

Centek Project No. 19027.18

Dear Mr. Reid,
Centek Engineering, Inc. has reviewed the T-M obile antenna installation at the above referenced site. The purpose of the review is to determine the structural adequacy of the existing mount, consisting of three (3) Vframe sector mounts with stiff arms to support the proposed equipment configuration. The review considered the effects of wind load, dead load and ice load in accordance with the 2015 International Building Code as modified by the 2018 Connecticut State Building Code (CTBC) including ASCE 7-10 and ANSI/TIA-222-G
Structural Standards for Steel Antenna Towers and Supporting Structures.
The loads considered in this analysis consist of the following:

- T-Mobile:

V-Frame: Three (3) RFS-APXV18-206516S-C-A20 panel antennas, three (3) RFS APXVAARR24-43-UNA20 panel antennas, three (3) KRY112 TM As and three (3) Ericsson 4449 B71_B12 remote radio units mounted on three (3) V-Arms with a RAD center elevation of $150-\mathrm{ft}+/$ - AGL.

The antenna mount was analyzed per the requirements of the 2015 International Building Code as modified by the 2018 Connecticut State Building Code considering a nominal design wind speed of 101 mph for Colchester as required in Appendix N of the 2018 Connecticut State Building Code.

A structural analysis of tower and foundation needs to be completed prior to any work.
Based on our review of the installation, it is our opinion that the subject antenna mount has sufficient capacity to support the aforementioned antenna configuration. If there are any questions regarding this matter, please feel free to call.

Fernando J. Palacios
Engineer

Section2 - Calculations

Colchester, CT
Prepared by: F.J.P Checked by: C.A.G. Job No. 19027.18

Development of Design Heights, Exposure Coefficients,

and Velocity Pressures Per TIA-222-G

Wind Speeds

Basic Wind Speed	$\mathrm{V}:=101$	mph
Basic Wind Speed with Ice	$\mathrm{V}_{\mathrm{i}}:=50$	mph

Input
Structure Type =
Structure Category =
Structure Type:= Lattice
(User Input)

Exposure Category =
SC:=11
mph
(User Input - 2018 CSBC Appendix N)
(User Input per Annex B of TIA-222-G)

Structure Type $=$	Structure_Type:= Lattice	
Structure Category $=$	$\mathrm{SC}:=\mathrm{II}$	
(User Input)		
Exposure Category $=$	$\mathrm{Exp}:=\mathrm{C}$	
(User Input)		
Structure Height $=$	$\mathrm{h}:=180$	ft
(User Input)		
(User Input)		
Height to Center of Antennas $=$	$\mathrm{Z}:=150$	ft
Radial Ice Thickness $=$	$\mathrm{t}_{\mathrm{i}}:=0.75$	in
Radial Ice Density $=$	$\mathrm{Id}:=56.00$	pcf
(User Input)	(User Input per Annex B of TIA-222-G)	(User Input)
Topograpic Factor $=$	$\mathrm{K}_{\mathrm{zt}}:=1.0$	
	$\mathrm{~K}_{\mathrm{a}}:=1.0$	
(User Input)		
Gust Response Factor $=$	$\mathrm{G}_{\mathrm{H}}=1.12$	

Output

Wind Direction Probability Factor =

Importance Factors =

$$
\mathrm{K}_{\mathrm{iz}}:=\left(\frac{\mathrm{z}}{33}\right)^{0.1}=1.163
$$

Velocity Pressure Coefficient Antennas =

Velocity Pressure w/o Ice Antennas =

Velocity Pressure with Ice Antennas =
$\mathrm{t}_{\mathrm{iz}}:=2.0 \cdot \mathrm{t}_{\mathrm{i}} \cdot \mathrm{I}_{\text {ice }} \cdot \mathrm{K}_{\text {izz }} \cdot \mathrm{K}_{\mathrm{zt}}{ }^{0.35}=1.745$
$\mathrm{Kz}:=2.01 \cdot\left(\left(\frac{\mathrm{z}}{\mathrm{zg}}\right)\right)^{\bar{\alpha}}=1.378$

$\mathrm{K}_{\mathrm{d}}: \left.=\|$| if Structure_Type $=$ Pole |
| :--- |
| $\\| 0.95$ |
| if Structure_Type $=$ Lattice |
| $\\| 0.85$ | \right\rvert\,$=0.85$

I Wind $: \left.=\| \begin{gathered}\text { if } \mathrm{SC}=1 \\ \left.\| \begin{array}{l}\| .87 \\ \text { if } \mathrm{SC}=2 \\ \| \\ \| \\ \text { 1.00 } \\ \text { if } \mathrm{SC}=3 \\ \| \\ 1.15\end{array} \right\rvert\,\end{gathered} \right\rvert\,=1$
I Wind_w_Ice: $=\left|\begin{array}{c}\text { if } \mathrm{SC}=1 \\ \| \\ 0 \\ \text { if } \mathrm{SC}=2 \\ \| 1.00 \\ \text { if } \mathrm{SC}=3 \\ \| 1.00\end{array}\right|=1$
$I_{\text {ice }}: \left.=\| \begin{gathered}\text { if } S C=1 \\ \| 0 \\ \text { if } S C=2 \\ \| 1.00 \\ \text { if } \mathrm{SC}=3 \\ \| 1.25\end{gathered} \right\rvert\,=1$

$$
q z:=0.00256 \cdot K_{d} \cdot K z \cdot V^{2} \cdot I_{\text {Wind }}=30.597 \mathrm{psf}
$$

Location: Colchester, CT

Development of Wind \& Ice Load on Antennas

Antenna Data:

Antenna Model $=$	RFS APXVAARR24_43-U-NA20		
Antenna Shape $=$	Flat	(User Input)	
Antenna Height $=$	$\mathrm{L}_{\text {ant }}:=95.9$	in	(User Input)
Antenna Width $=$	$\mathrm{W}_{\text {ant }}:=19.7$	in	(User Input)
Antenna Thickness $=$	$\mathrm{T}_{\text {ant }}:=8.7$	in	(User Input)
Antenna Weight $=$	$\mathrm{WT}_{\text {ant }}:=133.4$	Ibs	(User Input)

Wind Load (without ice)

Surface Area for One Antenna $=$	$\mathrm{SA}_{\text {antF }}:=\frac{\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{W}_{\mathrm{ant}}}{144}=13.1$	sf
Total Antenna Wind Force Front $=$	$\mathrm{F}_{\mathrm{ant}}:=\mathrm{qZ} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{ant}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {antF }}=587$	lbs
Surface Area for One Antenna $=$	$\mathrm{SA}_{\text {ants }}:=\frac{\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{T}_{\mathrm{ant}}}{144}=5.8$	sf

Wind Load (with ice)

Surface Area for One Antenna w/ Ice =	$\mathrm{SA}_{\text {ICEantF }}:=\frac{\left(\mathrm{L}_{\text {ant }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=16$	sf
Total Antenna Wind Force w/ Ice Front =	$\mathrm{Fi}_{\text {ant }}:=\mathrm{qz}_{\text {ice }} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {ant }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {ICE antF }}=175$	lbs
Surface Area for One Antenna w/ Ice =	$\mathrm{SA}_{\text {ICEants }}:=\frac{\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=8.4$	sf
Total Antenna Wind Force w/ Ice Side =	$\mathrm{Fi}_{\text {ant }}:=\mathrm{qz}_{\mathrm{ice}} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {ant }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {ICEantS }}=92$	lbs

Gravity Load (without ice)

Weight of All Antennas =
$W T_{\text {ant }} \cdot N_{\text {ant }}=133$
lbs

Gravity Loads (ice only)

Volume of Each Antenna =
$\mathrm{V}_{\text {ant }}:=\mathrm{L}_{\text {ant }} \cdot \mathrm{W}_{\text {ant }} \cdot \mathrm{T}_{\text {ant }}=2 \cdot 10^{4}$
cu in

Volume of Ice on Each Antenna =
$\mathrm{V}_{\text {ice }}:=\left(\mathrm{L}_{\text {ant }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\text {ant }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\text {ant }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)-\mathrm{V}_{\text {ant }}=1 \cdot 10^{4}$
cu in
Weight of Ice on Each Antenna =

Weight of Ice on All Antennas =
$W_{\text {ICEant }}:=\frac{V_{\text {ice }}}{1728} \cdot 1 d=378$
$W_{\text {ICEant }} \cdot N_{\text {ant }}=378$
lbs
lbs

Development of Wind \& Ice Load on Antennas

Antenna Data:

Antenna Model =	RFS - APXV18-206516S-C-A20		
Antenna Shape =	Flat		(User Input)
Antenna Height =	$\mathrm{L}_{\text {ant }}:=53.1$	in	(User Input)
Antenna Width =	$\mathrm{W}_{\text {ant }}:=6.9$	in	(User Input)
Antenna Thickness =	$\mathrm{T}_{\text {ant }}:=3.15$	in	(User Input)
Antenna Weight =	$W T_{\text {ant }}:=18.7$	lbs	(User Input)
Number of Antennas =	$\mathrm{Nant}_{\text {a }}:=1$		(User Input)
Antenna Aspect Ratio =	$\mathrm{Ar}_{\mathrm{ant}}:=\frac{\mathrm{L}_{\mathrm{ant}}}{\mathrm{~W}_{\mathrm{ant}}}=7.7$		
Antenna Force Coefficient $=$	$\mathrm{Ca}_{\text {ant }}=1.42$		

Wind Load (without ice)

Surface Area for One Antenna $=\quad \mathrm{SA}_{\text {antF }}:=\frac{\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{W}_{\mathrm{ant}}}{144}=2.5 \quad$ sf
Total Antenna Wind Force Front $=\quad \mathrm{F}_{\mathrm{ant}}:=\mathrm{qz} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{ant}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {antF }}=124 \quad$ Ibs

Surface Area for One Antenna $=\quad \mathrm{SA}_{\text {ants }}:=\frac{\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{T}_{\mathrm{ant}}}{144}=1.2 \quad \mathrm{sf}$
Total Antenna Wind Force Side $=\quad \mathrm{F}_{\mathrm{ant}}:=\mathrm{qz} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{ant}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\mathrm{ants}}=57 \quad$ lbs

Wind Load (with ice)

Surface Area for One Antenna w/ Ice =	$\mathrm{SA}_{\text {ICE antF }}:=\frac{\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=4.1$	sf
Total Antenna Wind Force w/ Ice Front =	$\mathrm{Fi}_{\text {ant }}:=\mathrm{qZ} \mathrm{i}_{\text {ce }} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca} \mathrm{antr} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA} \mathrm{I}_{\text {ICEantF }}=49$	lbs
Surface Area for One Antenna w/ Ice =	$\mathrm{SA}_{\text {ICEantS }}:=\frac{\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=2.6$	sf
Total Antenna Wind Force w/ Ice Side =	$\mathrm{Fi}_{\text {ant }}:=\mathrm{qZ} \mathrm{i}_{\text {ce }} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {ant }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {ICEantS }}=31$	lbs

Gravity Load (without ice)

Weight of All Antennas =
$W T_{\text {ant }} \cdot N_{\text {ant }}=19 \quad \mathrm{lbs}$
Gravity Loads (ice only)
Volume of Each Antenna =
$\mathrm{V}_{\text {ant }}:=\mathrm{L}_{\text {ant }} \cdot \mathrm{W}_{\text {ant }} \cdot \mathrm{T}_{\text {ant }}=1154$
cu in
$\mathrm{V}_{\text {ice }}:=\left(\mathrm{L}_{\text {ant }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\text {ant }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\text {ant }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)-\mathrm{V}_{\text {ant }}=2750$
cu in
Weight of Ice on Each Antenna =

Weight of Ice on All Antennas =
$W_{\text {ICEant }}:=\frac{V_{\text {ice }}}{1728} \cdot 1 \mathrm{~d}=89$
$W_{\text {ICEant }} \cdot N_{\text {ant }}=89$
lbs

Rev. 0: 04/25/19

Colchester, CT
Prepared by: F.J.P Checked by: C.A.G. Job No. 19027.18

Development of Wind \& Ice Load on RRUS's

RRUS Data:

RRUS Model = RRUS Shape = RRUS Height = RRUS Width = RRUS Thickness = RRUS Weight = Number of RRUS's =

RRUS Aspect Ratio $=\quad \operatorname{Ar}_{\text {RRUS }}:=\frac{L_{\text {RRUS }}}{W_{\text {RRUS }}}=1.1$
RRUS Force Coefficient =

Wind Load (without ice)

Surface Area for One RRUS
Total RRUS Wind Force =

Surface Area for One RRUS =
Total RRUS Wind Force =

Wind Load (with ice)

Surface Area for One RRUS w/ Ice =

Total RRUS Wind Force w/ Ice =

Surface Area for One RRUS w/ Ice =

Total RRUS Wind Force w/ Ice =

Ericsson 4449 B71B12

Flat	
$L_{\text {RRUS }}:=14.9$	in
$W_{\text {RRUS }}:=13.2$	in
$T_{\text {RRUS }}:=10.4$	in
$W_{\text {RRUS }}:=74$	ibs
$N_{\text {RRUS }}:=1$	
Ar $_{\text {RRUS }}:=\frac{L_{\text {RRUS }}}{W_{\text {RRUS }}}=1.1$	

$C a_{\text {RRUS }}=1.2$
$\mathrm{SA}_{\text {RRUSF }}:=\frac{\mathrm{L}_{\text {RRUS }} \cdot \mathrm{W}_{\text {RRUS }}}{144}=1.4 \quad \mathrm{sf}$
$\mathrm{F}_{\text {RRUS }}:=\mathrm{qz} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {RRUS }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {RRUSF }}=56 \quad \mathrm{lbs}$
$\mathrm{SA}_{\text {RRUSS }}:=\frac{\mathrm{L}_{\text {RRUS }} \cdot T_{\text {RRUS }}}{144}=1.1 \quad \mathrm{sf}$
$\mathrm{F}_{\text {RRUS }}:=\mathrm{qz} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {RRUS }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {RRUSS }}=44 \mathrm{lbs}$
$\mathrm{SA}_{\text {ICERRUSF }}:=\frac{\left(\mathrm{L}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=2.1 \mathrm{sf}$
$\mathrm{Fi}_{\text {RRUS }}:=\mathrm{qZ}_{\mathrm{ice}} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {RRUS }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {ICERRUSF }}=21 \quad \mathrm{lbs}$
$\mathrm{SA}_{\text {ICERRUSS }}:=\frac{\left(\mathrm{L}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=1.8 \quad \mathrm{sf}$
$\mathrm{Fi}_{\text {RRUS }}:=\mathrm{qZ} \mathrm{Z}_{\mathrm{ie}} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{C} \mathrm{a}_{\text {RRUS }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {ICERRUSS }}=18 \quad \mathrm{lbs}$

Gravity Load (without ice)

Weight of All RRUSs $=\quad W T_{\text {RRUS }} \cdot N_{\text {RRUS }}=74 \quad$ lbs
Gravity Loads (ice only)
Volume of Each RRUS $=\quad V_{\text {RRUS }}:=L_{\text {RRUS }} \cdot W_{\text {RRUS }} \cdot T_{\text {RRUS }}=2045 \quad c u$ in

Volume of Ice on Each RRUS
$\mathrm{V}_{\text {ice }}:=\left(\mathrm{L}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)-\mathrm{V}_{\text {RRUS }}=2218$
cu in
Weight of Ice on Each RRUS $=\quad W_{\text {ICERRUS }}:=\frac{V_{\text {ice }}}{1728} \cdot 1 d=72 \quad$ Ibs

Weight of Ice on All RRUSs =
$W_{\text {ICERRUS }} \cdot N_{\text {RRUS }}=72$
lbs

Colchester, CT
Prepared by: F.J.P Checked by: C.A.G. Job No. 19027.18

Development of Wind \& Ice Load on TMA's

TMA Data:

TMA Model $=\quad$ Ericsson KRY112 TMA
TMA Shape $=\quad$ Flat \quad in \quad (User Input)
TMA Height $=\quad L_{\text {TMA }}:=6.9 \quad$ in \quad (User Input)
TMA Width $=\quad W_{\text {TMA }}:=6.1 \quad$ in \quad (User Input)
TMA Thickness $=\quad \mathrm{T}_{\text {TMA }}:=2.8 \quad$ lbs (User Input)
TMA Weight $=\quad \mathrm{WT}_{\text {тмА }}:=11 \quad$ (User Input)
Number of TMA's $=\quad \mathrm{N}_{\text {TMA }}:=1 \quad$ (User Input)
TMA Aspect Ratio $=\quad \operatorname{Ar}_{\text {TMA }}:=\frac{\mathrm{L}_{\text {TMA }}}{\mathrm{W}_{\text {TMA }}}=1.1$
TMA Force Coefficient $=\quad$ Са тм $=1.2$

Wind Load (without ice)

Surface Area for One TMA $=$	$\mathrm{SA}_{\text {TMAF }}:=\frac{\mathrm{L}_{\text {TMA }} \cdot \mathrm{W}_{\text {TMA }}}{144}=0.3$	sf
Total TMA Wind Force $=$	$\mathrm{F}_{\text {TMA }}:=\mathrm{qZ} \cdot \mathrm{G}_{H} \cdot \mathrm{Ca} \mathrm{TMA} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {TMAF }}=12$	lbs
Surface Area for One TMA $=$	$\mathrm{SA}_{\text {TMAS }}:=\frac{\mathrm{L}_{\text {TMA }} \cdot \mathrm{T}_{\text {TMA }}}{144}=0.1$	sf
Total TMA Wind Force $=$	$\mathrm{F}_{\text {TMA }}:=\mathrm{qZ} \cdot \mathrm{G}_{H} \cdot \mathrm{Ca}_{\text {TMA }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {TMAS }}=6$	lbs

Wind Load (with ice)

Surface Area for One TMA w/ Ice =	$\mathrm{SA}_{\text {ICETMAF }}:=\frac{\left(\mathrm{L}_{\text {TMA }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\text {TMA }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=0.7$	sf
Total TMA Wind Force w/ Ice =	$\mathrm{Fi}_{\text {TMA }}:=\mathrm{qZ} \mathrm{i}_{\text {ce }} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{C} \mathrm{C}_{\text {TMA }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA} \mathrm{ICETMAF}=7$	lbs
Surface Area for One TMA w/ Ice =	$\mathrm{SA}_{\text {ICETMAS }}:=\frac{\left(\mathrm{L}_{\text {TMA }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\text {TMA }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=0.5$	sf
Total TMA Wind Force w/ Ice =	$\mathrm{Fi}_{\text {TMA }}:=\mathrm{qZ} \mathrm{i}_{\text {ice }} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca} \mathrm{T}_{\text {TMA }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA} \mathrm{I}_{\text {ICETMAS }}=5$	lbs

Gravity Load (without ice)

$$
\text { Weight of All TMAs }=\quad W T_{T M A} \cdot N_{T M A}=11
$$

Gravity Loads (ice only)

Volume of Each TMA $=\quad \mathrm{V}_{\text {TMA }}:=\mathrm{L}_{\text {TMA }} \cdot \mathrm{W}_{\text {TMA }} \cdot \mathrm{T}_{\text {TMA }}=118 \quad$ cu in

Volume of Ice on Each TMA
$\mathrm{V}_{\text {ice }}:=\left(\mathrm{L}_{\text {TMA }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\text {TMA }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\text {TMA }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)-\mathrm{V}_{\text {TMA }}=\underset{\mathrm{cu}}{509}$

Weight of Ice on Each TMA $=\quad W_{\text {ICETMA }}:=\frac{V_{\text {ice }}}{1728} \cdot I d=16 \quad$ lb

Weight of Ice on All TMAs
$W_{\text {ICETMA }} \cdot N_{\text {TMA }}=16$
lbs

Centek		
THC	CTNL250A - Mount	May 3, 2019 at 3:36 PM
19027.18	Member Framing	CTNL250A_AMA.r3d

Eqo rcp\{ < Egpıgm
Oc\{"5."423;
Fgukipgt < VJE
Lqd"Pwo dgt < 3; 2496B:
Oqf gitPcog < EVPN472C"/"Oqupv

558"RO
Ej gengf " $\mathrm{D}\{2 \mathrm{E} E \mathrm{Cl}$

(Global) Model Settings

F kur re\{ "Ugevapu"rat"Ogo dgt"Ecreu	7"	
Ocz"\|¢ıgtpcr'Ugevqpu"kqt"Ogo dgt"Ecreu	; 9"	
1perwf g"Uj gct "F ghqto ckqpA	[gu	
1petgcug"Pckkpi "Ecr cek\{ "rott"Y lof A	[gu	
\oerwig'Y ctr lpi A	[gu	
Vtcpu"Nacf "Dwy p"\|¢ogtugekpi 'Y qqf "Y cmA	[gu	
Ctgc"Nqcf "Oguj "*\|p $4+$	366	
Ogti g"Vqrgtcpeg"*\|p+	CB4	
R/F gruc"Cpcra uku'Vargtc peg	202'	
Kerwf g"R/Fgnc"lqt"Y cmuA	[gu	
Cmqo cvec nff "Kgtcıg"UVłthpguu"hqt'Y cmuA	[gu	
Ocz"Kgtcvoqpu"lot"Y crn'Ukthpguu	5	
I tcxk\{ "Ceegrotckqp"*h/uge‘ 4+	5404	
Y cn'Oguj "Uk g"*p+	34	
Gki gpuqrwkpp"Eqpxgti gpeg"Vqı*30G/+	6	
Xgtheern'Czku	[
I rqder'Ogo dgt"Qtlgpvev*p"Rrepg	Z	
Uvcle"Uqixgt	Ur ctug"Ceegrgtcvgf	
F \{ pco le"Uqıxgt	Ceegrgtcugf "Uquggt	
J qVT qumf "Uvggn'Eqf g	CKUE"36i *582/32+2NT HF	
Cf luuv"UlkipguuA	[gu*Kgtckxg+	
	CKE"36i *582/32+2CUF	
Eqrif "Hqto gf "UıgghEqf g	CKUKU322/32<2CUF	
Y qqf "Eqf g	CY E"PF U/34<̌CUF	
Y qqf "Vgo r gtcutg	>"322H	
Eqpetgrg"Eqf g	CE K53: /33	
Ocuqpt\{ "Eqf g	CEK752/33<CCUF	
Crwo kpwo "Eqf g	CC"CFO3/32<'CUF"/"Dwit kpi	
Uvclprguu"Uvggn'Eqf g	CKE"36i *582/32+2CUF	
Cf Inuv"UlkipguuA	[gu*Kgtc ${ }^{\text {kxg }}+$	
Puo dgt"qh'Uj gct"T gi lqpu	6	
T gi kpp"Ur celpi "\|petgo gpv*	p+	6
DlczlenEqrwo p"Ogy qf	Gzcev'lovgi tcvop	
Rcto g"Dgce"Hcevqt"*REC+	© 87	
Eqpetgvg"Utguu"Drqem	T gevcpi wret	
Wg"Etcengf "UgevapuA	[gu	
Wug"Etcengf "Ugevqpu"UradA	[gu	
Dcf "Htco hpi "Y ctplpi uA	Pq	
Wpwugf "Hqteg"Y ctplpi uA	[gu	
Olp"3"Dct"F lco O'Ur celpi A	Pq	
Eqpetgug'Tgdct"Ugv	TGDCT aUGVaCUVOC837	
Olp" "Uvggrihqt"Eqruo p	3	
Ocz"' "Urggnthqt"Eqrwo p	.	

二	engineering	Eqo rcp\{ Fguk pgt	$\begin{aligned} & \text { < Egpvgm } \\ & \text { < VJE } \end{aligned}$	$\begin{aligned} & \text { Oc\{"5."423; } \\ & 558 " R O \end{aligned}$
Centered on Solutions ${ }^{\text {m" }}$	www.centekeng.com	Lqd"Pwo dgt	< 3; 24906:	Ej gengf "D\{2ECI
63-2 North Branford Road Branford, CTO6405	P: $(203) 488$ - 4 -580 $\mathrm{F:}:(203) 488-8587$	Oqf gr'Pco g	< EVP N472C"/"Oqupv	

(Global) Model Settings, Continued

Ugko le"Eqf g	CUEG'9/32
Ugko le"Dcug"Grgxc*qp"*h/	PqV'Gpıgtgf
Cf f "Dcug'Y gk j vA	[gu
Ev゙Z	C24
Evil	C24
V'Z"*uge+	PqV'Gpıgtgf
V"I "*uge+	PqV'Gpıgtgf
T"Z	5
T"	5
Ev"Gzr OZ	(97
EviGzr O	(97
UF3	3
UFU	3
U3	3
VN**uge+	7
TkumiEcv	Kqt"KK
FtkV'Ecv	Qẏ gt
Qo "	3
Qo "Z	3
Ef " 1	6
Ef "Z	6
Tjq"	3
Tjq"Z	3

Hot Rolled Steel Properties

	N ${ }^{\text {dgn }}$	G"]muk	\| "]muk	Pw	Vj gto "*3G7"H+	Fgpuk []mill 5	[lgif]mak	T\{	Hw]muk	Tv
3	C58"I t058	4;222	33376	(5)	©87	Cb;	58	30	7:	304
4	C794"1 t072	4;222	33376	5	C87	C\%;	72	3CB	7:	304
5	C; ; 4	4;222	33376	(5)	C87	C\%;	72	3CB	7:	304
6	C722"I t064	4;222	33376	(5)	87	Cb;	64	35	7:	3CB
7	C722'l t068	4;222	33376	(5)	C87	C6;	68	304	7:	3CB
8	C75"I tcf g"D	4;222	33376	Б5	©87	Cb;	57	30	7:	304

Hot Rolled Steel Design Parameters

	Ncdgn	Ujcrg N	Ngpi ij l _	Na\{ $\{$]hw	$\mathrm{Nd} \\| \mathrm{l}$] l -	Neqo r "var]m	areqo r "dqyum	morvatsm	M \{	M \|	Ed	Huperem
3	O3	N5z4z7	C889	Ugi o gpv	Ugi 0 gpv	Ugi 0 gpv	Ugi o gpv	Ugio 0				Nevgten
4	O4	N5z4z7	3894			$\mathrm{Nd}\{$ \{						Nugten
5	O5	N5z4z7	30794			Nd\{ \{						Nugten
6	O6	Jqtkqpicn	34	Ugi o gpv	Ugi o gpv	Ugi o gpv	Ugi o gpv	Ugio 0				Nevgten
7	O7	N5z4z7	889	Ugi o gpv	Ugi o gpv	Ugi o gpv	Ugi o gpv	Ugio 0				Nevgten
8	O8	N5z4z7	30794			Nd \{ \{						Nugten
9	O9	N5z4z7	30794			Nd\{ \{						Nugtcn
:	O:	Jatkqpicn	34	Ugi 0 gpv	Ugi o gpv	Ugi o gpv	Ugi o gpv	Ugio 0				Nugten
;	O;	Rkg g3047	5			Nd\{ \{						Nugtcn
32	032	Rk g3047	5			Nd\{ \{						Nugten
33	033	Cpvgppc"O~00	D 5			Nd\{ \{						Nevgten
34	O34	Cpvgppc"O 0	(1) 5			Nd\{ \{						Nugten
35	O35	Cpvgppc"O 00	D 5			Nd\{ \{						Nugten
36	036	Cpvgppc"O ©	- 5			Nd\{ \{						Nugtcn
37	037	Cprgppc"O 00	(1) 5			Nd\{ \{						Nugten

TKC/5F "Xgtulqp"39C2CB""""""JL<

Hot Rolled Steel Design Parameters (Continued)

	N c dgn	Uj crg Nb	gpi ij]h_	Na\{ $\{$] l /		Neqo r "var j00	aleqo r "dqy 0	OON vatsm	M \{	M \|	Ed	Hupevow
38	O38	Uvcding gt "Com	34			Nd\{ \{						Nevgten
39	O39	N5z4z7	C889	Ugi o gpv	Ugi o gpv	Ugi o gpv	Ugi o gpv	Ugio 0				Nevgten
3:	O3:	N5z4z7	889	Ugi o gpv	Ugi o gpv	Ugi o gpv	Ugi o gpv	Ugio 0				Nevgten
3;	O3;	Xgtkecn	6			Nd \{ \{						Nevgten
42	O42	Qutki i gt	307			Nd\{ \{						Nevgten
43	O43	Qutk i gt	307			Nd\{ \{						Nevgtcn
44	O44	Cpugppc"O ©	32	Ugi o gpv	Ugi o gpv	Ugi o gpv	Ugi o gpv	Ugio 0 0				Nevgten
45	O45	Cpvgppc"O@	:	Ugi o gpv	Ugi o gpv	Ugi o gpv	Ugi o gpv	Ugio 0				Nevgten

Hot Rolled Steel Section Sets

Nedgn		Uj cr g	V 2 rg	Fgukp"Nav	Ocrgticn	Fguk 以C"]p4 K \{ ["\|
3	Cpıgppc"Ocuv	RIRGa4C2	Eqramol	Rkg	C75"l tcf g"D	V rlecn3C24 C849 C849 3047
4	Qutk i gt	J UU5Z5Z4	Dgco	Vndg	C722"l t068	Virleen 35 309: 309: 406
5	J qtk qpicn	RKRGa4C2	Dgco	Rkg	C75"l tcf g"D	V rlecn3C24 C849 ©849 3047
6	Xgtkecn	RKRGa4\%	Eqramos	Rkg	C75"l tcf g"D	V\{rlecn3¢83 3С7 367 40;
7	N5z4z7	N5Z4Z7	Dgco	Ulpi ry"Cpom	C58"I tob8	V rlecn36: ©89 3 54 C273
8	Uvcdrlik gt"Cto	RKRGa4C2	Dgco	Rkg	C75"l tcf g"D	V rlecn3024 84988493047
9	Rk g397	RKRGa3G7	Eqramo	Rkg	C75"l tcf g"D	Vi rlecn(847 Cb: 6 CB: 6 (58:

Member Primary Data

	Ncdgn	K-qıp	L"Lqkov	M'Lqıpv	Tqucıg*f gi +	Ugevap 1Uj crg	V rg	Fguki p"Nuı	Ocigtlen	Fguk p"Twgu
3	O3	P6	P3;			N5z4z7	Dgco	Ulpi rg"Cpi rg	C58"I t68	V $\{$ rlecn
4	O4	P5	P8			N5z4z7	Dgco	Ulpi rg"Cpirg	C58"I tc58	V r reen
5	O5	P6	P7		492	N5z4z7	Dgco	Ulpi rg"Cpirg	C58"I tc58	V , rlecn
6	O6	P9	P :			J qtk qpion	Dgco	Rkg	C75"I tcf 00	V \{ rlecn
7	O7	P;	P42		; 2	N5z4z7	Dgco	Ulpi rg"Cpi rg	C58"I t¢58	V $\{$ rlecn
8	O8	P32	P34		; 2	N5z4z7	Dgco	Ulpi rg"Cpi rg	C58"I t68	V \{ rlecn
9	O9	P ;	P33		3:2	N5z4z7	Dgco	Ukpi rg"Cpi rg	C58"I tc58	V r recn
:	O:	P35	P36		; 2	J qtł qpion	Dgco	Rkg	C75"I tcf 00	V \{ rlecn
;	O;	P6	P;		2	Rk g3047	Eqrwo p	Rkg	C75"I tcf 00	V $\{$ rlecn
32	032	P32	P5		492	Rkr g3047	Eqrwo p	Rkg	C75"I tcf 00	V $\{$ rlecn
33	033	P35	P9			Cpıgppc"Ocuv	Eqrwo p	Rkg	C75"I tcf 0	V \{ rlecn
34	034	P33	P7			Cpıgppc"Ocuv	Eqrwo p	Rkg	C75"I tcf 00	V \{rlecn
35	O35	P34	P8			Cpugppc"Ocuv	Eqrwo p	Rkg	C75"I tcf 00	V , rlecn
36	O36	P36	P :			Cpugppc"Ocuv	Eqrwo p	Rkg	C75"I tcf 00	V 亿rlecn
37	O37	P37	P38			Cpugppc"Ocuv	Eqrwo p	Rkg	C75"I tcf 0	V r recn
38	O38	P39	P3:			Uvcdink gt"Cto	Dgco	Rkg	C75"I tcf 00	V [rlecn
39	O39	P3;	P5			N5z4z7	Dgco	Ukpi rg"Cpi rg	C58"I t68	V $\{$ rlecn
3:	O3:	P42	P32		; 2	N5z4z7	Dgco	Ulpi rg"Cpi rg	C58"I t68	V $\{$ rlecn
3;	O3;	P43	P44			Xgtvecn	Eqrwo p	Rkg	C75"I tcf 00	V r reen
42	042	P4	P43			Quxtk i gt	Dgco	Vndg	C722"I t68	V \{rlecn
43	043	P3	P44			Quxtk i gt	Dgco	Vudg	C722"I t68	V r reen
44	O44	P45	P46			Cpıgppc"Ocuv	Eqrwo p	Rkg	C75"I tcf 00	V r leen
45	O45	P47	P48			Cpugppc"Ocuv	Eqrwo p	Rkg	C75"I tcf 0	V r recn

Joint Coordinates and Temperatures

	N 6 dgn	Z＂］h	［＂］h／	$\ \mathrm{l} \mathrm{l} \mathrm{h}$	Vgor ${ }^{\text {］}} \mathrm{H}$	Fgucej＂Htqo＂Flcrj tci o
3	P3	2	2	2Ф78； 9	2	
4	P4	2	6	2Ф78； 9	2	
5	P5	28889	\square	4才28； 89	2	
6	P6	／28889	\square	4028； 89	2	
7	P7	14	\square	5ら6	2	
8	P8	4	\square	5ら6	2	
9	P9	／8	\square	5ら6	2	
：	P ：	8	∇	5ら6	2	
；	P；	／28889	50	4ه28； 89	2	
32	P32	28889	50	4才28； 89	2	
33	P33	／4	5%	5Б6	2	
34	P34	4	5%	5ら6	2	
35	P35	18	50	5ら6	2	
36	P36	8	50	5ら6	2	
37	P37	2	50	5ら6	2	
38	P38	2	∇	556	2	
39	P39	18	4	5ら6	2	
3：	P3：	16	∇	1：நூ； 89	2	
3；	P3；	2	\square	4才28； 89	2	
42	P42	2	50	4028； 89	2	
43	P43	2	6	4才28； 89	2	
44	P44	2	2	4028； 89	2	
45	P45	／5	9	5ら6	2	
46	P46	15	15	5ら6	2	
47	P47	50	8	5ら6	2	
48	P48	50	14	5Б6	2	
49	P49	15	58	5ら6	2	
4：	P4：	15	∇	5ら6	2	
4；	P4；	50	50	5ら6	2	
52	P52	50	∇	5Б6	2	

Joint Boundary Conditions

	Lqlpv＂Nedgn	Z＂］milp	［＂］milp	\＂］nlip	Z＂Tqugmhnltcf＿	［＂Tqugminhtcf＿	\＂Tqugnthttcf＿
3	P4	Tgcevap	Tgcekqp	Tgcekqp		Tgcekap	
4	P3	Tgcekqp	Tgcekqp	Tgcekqp		Tgcevap	
5	P3：	Tgcekqp	Tgcekqp	Tgcekqp			

Member Point Loads（BLC 2 ：Equipment Weight）

	Ogo dgt＂ l dgn	Fig gevap	Oci pkent g］mmilv	Nqeckap］lv．
3	O44	［	／＠89	\square
4	044	［	／＠89	30
5	045	［	／®2；	4
6	045	［	／®22；	8
7	044	［	／0296	7
8	045	［	／®33	6

Member Point Loads（BLC 3：Ice Weight）

C三NT三Kengineering		Eqo rcp\{ Fgukipgt	< Egpvgm < VJE	Oc\{"5."423; 558"RO
Centered on Solutions ${ }^{\text {c/ }}$	wwicentereng.com	Lqd"Pwo dgt	< 3; 24903:	Ej gengf "D\{2ECI
63-2 North Branford Road Brantord, Toobas		Oqf griPcog	< EVPN472C"/"Oqupv	

Member Point Loads (BLC 3 : Ice Weight)(Continued)

	Ogo dgt"Nedgn	Fitgevap	Oci pkewf g]mmh	Naeckap]lv.'
3	O44	[/@: ;	38
4	O44	[/@: ;	: 0
5	045	[/0266	8
6	O45	[/0266	4
7	O44	[/@94	7
8	O45	[/0338	6

Member Point Loads (BLC 4 : Wind w/ Ice X)

	Ogo dgt"Ncdgn	Fligevap	Oci pkenf g]mminv	Naecvap]lv.'
3	O44	Z	C268	30
4	O44	Z	C268	: 0
5	O45	Z	C237	8
6	O45	Z	C237	4
7	O44	Z	[23:	7
8	O45	Z	(227	6

Member Point Loads (BLC 5 : Wind X)

	Ogo dgt"Ncdgn	Fitgevap	Oci pkewf g]mmin	Naeckap]lv.'
3	O44	Z	C35	30
4	O44	Z	C35	: 7
5	O45	Z	C24;	8
6	O45	Z	(24;	4
7	O44	Z	C266	7
8	O45	Z	[228	6

Member Point Loads (BLC 6: Wind w/ Ice Z)

	Ogo dgt"Ncdgn	Fltgevap	Oci pkenf g]mmin_	Ngeckap]lv.'
3	O44	1	Q: 9	: $\bar{\square}$
4	O44	1	Q: 9	38
5	O45	1	Q247	4
6	O45	1	C247	8
7	O44	1	C243	7
8	O45	1	¢29	6

Member Point Loads (BLC 7 : Wind Z)

	Ogo dgt"N ldgn	Fitgevap	Oci pkewf g]mman	Naecuap]lv.'
3	O44	1	O; 5	30
4	O44	1	O; 5	: $\overline{7}$
5	O45	1	C284	4
6	O45	1	C284	8
7	O44	1	C278	7
8	O45	1	[234	6

Joint Loads and Enforced Displacements

二N	ngineering	Eqo rcp\{ Fguk pgt	$\begin{aligned} & \text { < Egpugm } \\ & \text { < VJE } \end{aligned}$	Oc\{"5."423; 558"RO
Centered on Solutions 63-2 North Branford Road Branford, पT 06405	$\frac{\text { www.centekeng.com }}{P:(203) 488-0580}$ F. (203) 488-8587	Lqd"Puo dgt Oqf gHPco g	$\begin{aligned} & \text { < 3; 2490B: } \\ & \text { < EVP N472C"/"Oqupv } \end{aligned}$	Ej gengf "D\{ 2 E ECI

Member Distributed Loads (BLC 4 : Wind w/ Ice X)

	Ogo dgt"Nedgn	Fitgevap	Uvctv"Oci pkenf g]ndlv. H.mun	Gpf "Oci planf g]ndlr.H.muh	Uxctv"Ngecvapp]lv.'	Gpf "Nqee kqp]h.'
3	O38	Z	Q24	(224	2	2
4	O44	Z	C224	[224	2	2
5	O42	Z	C224	Q24	2	2
6	O33	Z	C224	(224	2	2
7	O34	Z	C224	Q24	2	2
8	O;	Z	C224	Q24	2	2
9	O37	Z	Q24	Q24	2	2
:	O3;	Z	Q24	(224	2	2
;	O32	Z	Q24	Q24	2	2
32	O35	Z	[224	C224	2	2
33	O45	Z	Q24	Q24	2	2
34	O36	Z	Q24	Q24	2	2
35	O9	Z	Q24	Q24	2	2
36	O5	Z	Q24	(224	2	2
37	O4	Z	Q24	Q24	2	2
38	O8	Z	Q24	C224	2	2
39	O43	Z	Q24	Q24	2	2

Member Distributed Loads (BLC 5 : Wind X)

3	O38	Z	C22:	C2:	2	2
4	O33	Z	(22:	(22:	2	2
5	O44	Z	(22:	(22:	2	2
6	O34	Z	(22:	(22:	2	2
7	O;	Z	(22:	(22:	2	2
8	O37	Z	(22:	(22)	2	2
9	O3;	Z	(22:	(22:	2	2
:	O42	Z	(22:	(22:	2	2
;	O32	Z	(22:	(22:	2	2
32	O43	Z	(22:	(22:	2	2
33	O35	Z	(22:	(22:	2	2
34	O45	Z	(22)	(22)	2	2
35	O36	Z	(22:	(22:	2	2
36	O4	Z	(22:	(22:	2	2
37	O5	Z	(22:	(22:	2	2
38	09	Z	(22:	(22:	2	2
39	O8	Z	(22)	(22)	2	2

Member Distributed Loads (BLC 6 : Wind w/ Ice Z)

	Ogo dgt"Nedgn	Fitgevap	Usctv"Oci pkexf g] milv.H.muh	Gpf "Oci pkuf g]milr.H.muh	Uuctv'Naeckiqp]lv.'	Gpf "Nqee ${ }^{\text {kap] }} \mathrm{l}$.'
3	O38	1	C224	C224	2	2
4	O44	1	Q24	Q24	2	2
5	O:	1	Q24	Q22	2	2
6	O33	1	C224	C224	2	2
7	O6	1	Q24	Q24	2	2
8	O34	1	Q24	C224	2	2
9	09	1	Q24	C224	2	2
:	O5	1	C224	C224	2	2
;	O;	1	C224	C224	2	2
32	037	1	C224	C224	2	2

C=NT =	ngineering	Eqo rcp\{ Fguk pgt	$\begin{aligned} & \text { < Egpvgm } \\ & \text { < VJE } \end{aligned}$	$\begin{aligned} & \text { Oc\{"5."423; } \\ & 558 " R O \end{aligned}$
Centered on Solutions ${ }^{\text {" }}$	www.centekeng.com	Lqd"Puo dgt	< 3; 24903:	Ej gengf "D\{2ECI
63-2 North Branford Road Branford, CT 06405	P: (203) 488-0580 F: (203) 488-8587	Oqf gr'Pco g	< EVPN472C"/"Oqupv	

Member Distributed Loads (BLC 6 : Wind w/ Ice Z) (Continued)

	Ogo dgt"kldgn	Figevap	Usctv'Oci pkan g]miv.H.mun	Gpf "Oci pkwf g]nlw. H.mun	Usctv'Nqeckap]lw.'	Gpf "Npee vap]h.'
33	O3;	1	Q24	(224	2	2
34	O3	1	C224	(224	2	2
35	O39	1	C224	(224	2	2
36	O32	1	C224	C224	2	2
37	O35	1	C224	(224	2	2
38	O4	1	C224	C224	2	2
39	O8	1	C224	C224	2	2
3:	O3:	1	C224	C224	2	2
3;	07	1	C224	(224	2	2
42	045	1	C224	C224	2	2
43	O36	1	(224	C224	2	2

Member Distributed Loads (BLC 7 : Wind Z)

	Ogo dgt"1kdgn	Fitgevap	Usctv'Oci pkenf g]miv.H.mun	Gpf "Oci pkwf g]ndw. H.muh	Uvctv'Maeckap]lv.'	
3	O44	1	(22:	C22:	2	2
4	O45	1	C22:	C22:	2	2
5	O3;	1	C22:	C22:	2	2
6	O;	1	C22:	C22:	2	2
7	O32	1	C22:	C22:	2	2
8	O35	1	C22:	C22:	2	2
9	O34	1	C22:	C22:	2	2
:	O33	1	C22:	(22:	2	2
	O36	1	C22:	C22:	2	2
32	O:	1	C22:	(22:	2	2
33	06	1	C22:	C22:	2	2
34	09	1	(22:	©2:	2	2
35	O5	1	C22:	C22:	2	2
36	O3	1	(22:	(22:	2	2
37	O4	1	C22:	(22:	2	2
38	O8	1	(22:	(22:	2	2
39	07	1	C22:	C22:	2	2
3:	O3:	1	C22:	©2:	2	2
3;	O38	1	C22:	C22:	2	2
42	O39	1	C22:	©2:	2	2
43	037	1	C22:	C22:	2	2

Basic Load Cases

DNE"Fguet k vap		Ecrgi q $\{$ \{	Z"I t@ol "I tool "I toolqhov		Rqłpv		
3	Ugrin'Y gk j v	FN	/3				
4	Gswk o gpviY gk j v	FN			8		
5	leg"Y gli j v	FN			8		
6	Y lof "y 1"leg"Z	Y N			8	39	
7	Y lpf "Z	Y N			8	39	
8	Y lpf "y 1"1/eg"	Y M			8	43	
9	Y lpf "	Y M			8	43	

	engineering	Eqo rcp\{ Fguk pgt	$\begin{aligned} & \text { < Egpvgm } \\ & \text { < VJE } \end{aligned}$	$\begin{aligned} & \text { Oc\{"5."423; } \\ & 558 \text { RO } \end{aligned}$
Centered on Solutions ${ }^{\text {" }}$	uww.centekeng.com	Lqd"Pwo dgt	< 3; 24903:	Ej gengf "D $2<2 \mathrm{ECl}$
63-2 North Branford Road Branford, CT 06405	P: (203) 488-0580 F: (203) 488-8587	Oqf gr'Pco g	< EVPN472C"/"Oqupv	

Load Combinations

	Fguetk vqp	Uqıxg	ROD	UTm	DNE	HOWDE	Hcmo	DD	amotc					comb	OH_{H}	ODD		como	WHCOO	ODOM	Hcmod	$\mathrm{OOH}_{\mathrm{Hc} 0 \mathrm{O}}$
3	304F"- "368Y "XZ/f Hgevap+	[gu	[3	3004	304	7														
4	20, F"- "388Y "X/f Hgevap+	[gu	[3	04	0	7														
5	304F"- "3@2FK- "3@Y K゙Z®0	gu			3	3004	304	5	3	6		3										
6	304F"- "3C8Y "^/ /f Hgevap+	[gu			3	3004	304	9														
7	20, F"- "368Y "^ / f Hgevap+	[gu			3	04	0	9	368													
8		[gu	[3	3004	304	5	3	8		3										

Envelope Joint Reactions

Lqłpv			$\begin{aligned} & \mathrm{Z} " \mathrm{~m} \mathrm{~m} \\ & \operatorname{C657} \end{aligned}$	$\begin{gathered} N E \\ 8 \end{gathered}$	$\begin{aligned} & \text { ["]m } \\ & \text { © } 86 ; \end{aligned}$	$\begin{gathered} N E \\ 8 \end{gathered}$	$\begin{aligned} & \text { \"]m } \\ & \text { /@85 } \end{aligned}$	$\begin{gathered} \mathrm{NE} \\ 4 \end{gathered}$	OZ"]mah_NE		$\begin{gathered} \text { O["]malv } \\ 2 \end{gathered}$	NE8	$\begin{gathered} 0 \backslash \text { " } \mathrm{mmh} / \\ 2 \end{gathered}$	NE8
3	P4	O cz							2	8				
4		0 lp	/066:	4	644;	4	/3546	6	2	3	2	3	2	3
5	P3	O cz	10495	7	© 845	5	053	5	2	8	2	8	2	8
6		0 lo	10; ;	3	C323	7	10766	7	2	3	2	3	2	3
7	P3:	O cz	© 2	6	Q337	8	/@; 6	8	2	8	2	8	2	8
8		0 p	(22;	5	/0275	4	10799	3	2	3	2	3	2	3
9	Vqucru<	O Cz	2	8	30463	8	2	5						
.		O po	/359:	3	ه37	4	/4544	6						

Envelope Joint Displacements

Lqłp			$\begin{gathered} \text { Z"l\|p_ } \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{NE} \\ 8 \end{gathered}$	$\begin{gathered} {["!\mid p-} \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{NE} \\ 8 \end{gathered}$	$\begin{gathered} \backslash \text { "]lp_ } \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{NE} \\ 8 \end{gathered}$	Z"Tquckqp"JOONE		["Tqucvap"]00NE		\ "Tquckqp"]m0NE	
3	P3	O cz							2	8	2	8	7CB48g/25	8
4		O po	2	3	2	3	2	3	2	3	2	3	4CB97g/25	4
5	P4	O cz	2	8	2	8	2	8	2	8	2	8	8C254g/25	3
6		0 p	2	3	2	3	2	3	2	3	2	3	4077g/25	7
7	P5	O Cz	8894	3	/024	4	/1049	8	5078: g/25	3	30 69g/24	3	7883: g/25	5
8		0 p	C38	8	10887	8	/038;	3	3048g/25	7	50; g/25	8	$4074 \mathrm{~g} / 25$	7
9	P6	O cz	(894	3	/0298	7	C88:	3	: ¢b; 5g/26	8	30956g/24	3	9885; g/25	5
:		0 p	C38	8	10385	5	C265	8	/30739g/25	4	5CB4: g/25	8	$5043 \mathrm{~g} / 25$	7
;	P7	o cz	047	3	/037	7	©33	3	5CB94g/26	4	30; g/24	3	$9034 \mathrm{~g} / 25$	5
32		0 p	CB: :	8	/053	5	(2) 9	8	$150995 \mathrm{~g} / 25$	6	59123g/25	8	6016; g/25	7
33	P8	O cz	048	3	Q53	4	/0293	8	3CB; 5g/25	5	38388/24	3	7С็89g/25	5
34		0 p	CB: 9	8	2	8	10639	3	: $88 ; 8 \mathrm{~g} / 27$	7	4C239g/25	8	5063g/25	7
35	P9	O cz	047	3	/056:	7	6775	3	/4096; g/25	5	4073: g/26	8	80495g/25	5
36		0 p	CB: :	8	/0888	5	CB69	8	170645g/25	6	/3C35g/24	4	5683g/25	7
37	P:	O cz	048	3	968	5	/ ©3;	8	3Б3g/25	5	3823g/24	3	70 5; g/25	5
38		0 p	CB: 9	8	C374	7	/303: :	3	7013; g/26	7	/36699g/25	7	5CB2; g/25	7
39	P;	O Cz	83	4	/0298	7	C364	4	40: $4 \mathrm{~g} / 25$	3	$3049 \mathrm{~g} / 24$	3	: C226g/25	5
3:		0 p	10255	8	/0386	5	2	8	8ந553g/26	7	3639g/25	8	$5088 \mathrm{~g} / 25$	7
3;	P32	O cz	(72;	4	/@4	4	/0235	8	3123; g/25	8	3887g/24	3	7CB63g/25	5
42		0 p	10254	8	10288	8	/037	3	/30739g/25	4	; [228g/26	8	4039g/25	7
43	P33	O cz	C883	4	/037	7	Б็: 6	3	4C27g/25	7	3C27: g/24	3	: CB7g/25	5
44		0 p	/023;	8	1053	5	(244	8	/: $0773 \mathrm{~g} / 26$	3	3C338g/25	8	588: $7 \mathrm{~g} / 25$	7
45	P34	O cz	C885	4	Q2	4	/@55	8	35546g/25	6	30; 6g/24	3	70759g/25	5
46		0 p	1024	8	2	8	/06; :	3	3696g/26	4	35็76g/25	8	40 3; g/25	7
47	P35	O cz	888	4	/056:	7	CB; ;	3	40154g/25	7	59173g/26	8	80768g/25	5
48		0 p	/024	8	/0888	5	C285	8	/307g/25	5	/3C35g/24	4	596g/25	7
49	P36	O Cz	C885	4	968	5	/0293	8	3ธ557g/25	8	30; ; g/24	3	$70: \mathrm{g} / 25$	5
4:		O po	/024	8	C374	7	/3CB87	3	6627g/26	4	/30696g/25	7	50; 4g/25	7

＜Egpvgm
＜VJE
＜3；2490B
＜EVP N472C＂／＂Oqupv

Oc\｛＂5．＂423；
558＂RO
Ej gengf＂ $\mathrm{D}\{2 \mathrm{E} \mathrm{ECl}$

Envelope Joint Displacements（Continued）

Lapov			$\begin{aligned} & z^{\prime \prime} \\| p_{-} \\ & \text {C884 } \end{aligned}$	NE		NE7	$\begin{aligned} & \backslash \text { "Itp } \\ & \text { C247 } \end{aligned}$	NE	z＂Tquavap＂］cone		［＂Tquakgp＂］mone		\＂Tqucvap＂］ 00 N 8G；8g／25	
4；	P37	ocz							；¢67g／26	7	3（9） $5 \mathrm{~g} / 24$	3		
52		0 po	1 ¢ 4	8	10359	5	1026	8	170；9g／27	3	30493g／25	8	5¢58：g／25	7
53	P38	ocz	048	3	／®85	7	C239	3	60997g／26	4	30 6：g／24	3	8Б598g／25	5
54		O po	（B）：	8	10359	5	2	8	／3＠23g／25	6	56646g／25	8	5CB；；g／25	7
55	P39	o cz	©73	3	／056：	7	© ${ }^{\text {c }} 7$	3	／30459g／25	4	40：7g／26	8	$7039 \mathrm{~g} / 25$	5
56		0 lp	（R： 7	8	10888	5	（12） 4	7	146599g／25	8	13 CB5g／24	4	40：；g／25	7
57	P3：	ocz	2	8	2	8	2	8	80779／25	8	$36647 \mathrm{~g} / 24$	3	80 56g／25	8
58		0 p	2	3	2	3	2	3	60日：9g／25	－	3C86：g／25	8	36：8g／25	
59	P3；	ocz	694	3	1066	7	© 234	6	$3644 \mathrm{~g} / 25$	6	4『2：g／24	3	76623g／25	
5：		0 ¢p	C38	8	／032：	5	C225	4	$30: 3 \mathrm{~g} / 26$	4	76853g／25	8	4C894g／25	4
$5 ;$	P42	ocz	ه2；	4	／®6：	7	C224	7	30233g／25	5	30 59g／24	4	70 53g／25	3
62		0 p	／®54	8	10329	5	／®3	5	160473g／26	7	5（55；g／26	8	40 7：g／25	
63	P43	o cz	6699	4	／®6：	7	2	6	$4096 \mathrm{~g} / 25$	5	4CB29g／24	4	8C254g／25	3
64		0 po	／＠884	8	10329	5	2	4	80257g／26	7	／36779g／25	8	$4077 \mathrm{~g} / 25$	7
65	P44	ocz	（8）	3	／®6：	7	2	7	$4077 \mathrm{~g} / 25$	8	$4025 \mathrm{~g} / 24$		7C348g／25	8
66		0 p	CB； 3	8	／032：	5	2	5	3CB2：g／25		962；g／25	8	4C397g／25	
67	P45	o cz	C886	4	／＠；；	7	（988	7	3ه；7g／24	7	4®999／25	6	9434g／25	
68		－po	10544	8	／062：	5	Q25	5	／30846g／25	5	3c32：g／25		／3®25g／25	
69	P46	ocz	349	3	／ 0 ；；	7	056	6	1： $046 \mathrm{~g} / 26$	4	54：g／25	6	$3 C B 77 \mathrm{~g} / 24$	3
6 ：		0 p	©3：	7	／062：	5	977：	5	130 73g／24	，	$3024 \mathrm{~g} / 25$	5	$50: 3 \mathrm{~g} / 25$	
6；	P47	o cz	\％85	4	（B3：	3	／®233	8	$304 \mathrm{~g} / 25$	6	37； $8 \mathrm{~g} / 24$	3	7¢27g／25	5
72		－lp	1039：	8	（295	7	1094：	3	$5687 \mathrm{~g} / 26$	4	1：095：9／26	7	40：；g／25	
73	P48	ocz	093	3	（B3：	3	10353	8	3048；g／25	5	3627g／24	3	7（837g／25	5
74		0 ¢p	（563	7	（295	7	109： 9	3	16巛：4g／26	7	1：© ： $\mathrm{g} / 26$	7	40 59g／25	
75	P49	ocz	C884	4	／＠；；	7	C675	3	70883g／25	7	4099g／25	，	9436g／25	
76		－po	104	8	／062：	5	Q25：	8	／3083g／25	5	3c32：g／25	5	$5066 \mathrm{~g} / 25$	
77	P4：	o cz	047	3	103 ；	7	©； 9	3	1： $0664 \mathrm{~g} / 26$	4	504：g／25	6	9866：g／25	
78		－lp	CB：	8	／062：	5	C33：	8	1：©；5g／25		$3024 \mathrm{~g} / 25$	5	50：；g／25	
79	P4；	ocz	C885	4	C33：	3	／1275	8	366：3g／25	6	36； $8 \mathrm{~g} / 24$	3	7¢699／25	5
7：		0 p	104	8	C295	7	10965	3	56886g／26	4	1：045：g／26	7	40：： $\mathrm{g} / 25$	
7；	P52	ocz	048	3	CB3：	3		8	3049g／25	5	36827g／24	3	$7075 \mathrm{~g} / 25$	
82		0 p	CB： 9	8	C295	7	10987	3	$4983 \mathrm{~g} / 27$	7	／：©：： $\mathrm{g} / 26$	7	40 5：g／25	

Envelope AISC 14th（360－10）：LRFD Steel Code Checks

	Og凶	Uj cr g	Eqf g＂Emaraemone0980889			Uj gct＂EConvajlv－		FH		rj kRpmom	mom j R Com	j kOpm	moj k $\times 0$	Ed	Gsp
3	O3	N5Z4Z7				C2： 6	C229		3	69®9：	：690 74	3С22：	$5<247$	4CB67	J 4／3
4	O4	N5Z4Z7	¢：	2	3	C285	3094		3	6504；	69074	3С22：	5 5247	40139	J 4／3
5	O5	N5Z4Z7	¢ ${ }_{\text {¢ }}$	30700	3	C27：	2		6	6504；	690 74	3С22：	$5 ¢ 47$	3¢5：4	J 4／3
6	O6	RKRGa4C2	（B） 2	6	3	（535	6		6	53069	54035	3094	3094	4 C249	J3／3d
7	O7	N5Z4Z7	（562	C889	4	C279	C889		6	69＠9：	：690 74	3С22：	$5 ¢ 247$	3044	J 4／3
8	08	N5Z4Z7	（548	2	4	C268	3094		4	6504；	690 74	3C22：	$5 ¢ 47$	4C39：	J 4／3
9	09	N5Z4Z7	©67	30700	4	C265	2	\｛	5	6504；	690 74	3С22：	5¢4	3CP： 4	J 4／3
：	O：	RKRGa4C2	『； 9	6	4	048 ；	6		7	53069	54035	3094	3094	3 B26	J 3／3d
	O；	RKRGa3017	9478	5	5	C267	5		8	37038	3；©：：	023	023	40159	J 3／3d
32	O32	RKRGa3017	C333	5	3	Q2；	2		8	37038	3；©：	023	023	36；	J3／3d
33	O33	RRRGa4C2	9336	38	6	C258	5		3	4：065	54035	3094	3094	3095	J3／3d
34	O34	RKRGa4C2	946：	2	8	（297	5		5	4：065	54035	3094	3094	49188	J3／3d
35	O35	RRRGa4C2	C284	5	5	C243	2		5	4： 065	54035	3094	3094	40949	J3／3d
36	O36	RRRGa4C2	C237	5	6	C226	2		3	4：065	54035	3094	3094	49183	J3／3d
37	O37	R1RGa4®2	C265	2	6	Q668			8	4： 065	54035	3094	3094	40129	J

二N	ngineering	Eqo rcp\｛ Fguk pgt	$\begin{aligned} & \text { < Egpugm } \\ & \text { < VJE } \end{aligned}$	$\begin{aligned} & \text { Oc\{"5."423; } \\ & 558 \text { RO } \end{aligned}$
Centered on Solutions 63－2 North Brantord R Road Brantord．©TO 06405	$\frac{\text { www．centekeng．com }}{\text { P：（203）488－0580 }}$ $F:(203) 488-8587$	Lqd＂Puo dgt Oqf gHPco g	$\begin{aligned} & \text { < 3; 2496B: } \\ & \text { < EVP N472C"/"Oqupv } \end{aligned}$	Ej gengf＂D\｛2ECI

Envelope AISC 14th（360－10）：LRFD Steel Code Checks（Continued）

	Ogm	Uj cr g	Eqf g＂ECongemone			Uj gct＂EComadhr		FH		rj kRpm	m j ¢ Roor	j kOp0	mj kom	Ed	Gsp
38	O38	RIRGa4®2	C353	8	3	（22：	34		3	8053	54035	3094	3094	3C358	J 3／3d
39	O39	N5Z4Z7	857	2	3	©297	2		3	69C29：	690 74	3С22：	$5 ¢ 247$	31238	J 4／3
3：	O3：	N5Z4Z7	067	2	4	¢85	2		3	69®2：	69074	3122：	5 ¢247	308	J 4／3
3；	O3；	R1RGa4 ${ }^{\text {a }}$	\％：2	6	3	C862	6		3	6606； 3	720937	5『； 8	507；	30； 6	J 5／8
42	O42	J UU5Z5Z4	Б「； 9	3097	8	C264	2	\｛	8	74C889	750.4	605	605	38885	J 3／3d
43	O43	J UU5Z5Z4	『47	3097	3	Q889	2		3	740889	750.4	605	605	38883	J 3／3d
44	O44	RKRGa4®2	© 4 ：	50600	6	Q275	565：		6	490063	54035	3094	3094	3023	J 3／3d
45	045	RKRGa4®	Q278	78	6	Q336	40		6	4： 065	54035	3094	3094	40183	J 3／3d

| Menber Code Checks Displayed (Enveloped)
 Envelope Only
 Centution | | |
| :--- | :--- | :--- | :--- |
| THC | CTNL250A - Mount | May 3, 2019 at 3:35 PM |
| 19027.18 | Member Unity Check | CTNL250A_AMA.r3d |

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility
Site ID: CTNL250A
600 Old Hartford Road Colchester, Connecticut 064I5

May 17, 2019
EBI Project Number: 6219001693

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{5 . 8} \mathbf{1 \%}$

environmental | engineering | due diligence

May 17, 2019
T-Mobile
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, Connecticut 06002

Emissions Analysis for Site: CTNL250A -

EBI Consulting was directed to analyze the proposed T-Mobile facility located at $\mathbf{6 0 0}$ Old Hartford Road in Colchester, Connecticut for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-Oland ANSI/IEEE Std C95.I. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR I.I307(b)(I) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately $400 \mu \mathrm{~W} / \mathrm{cm}^{2}$ and $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$, respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and II GHz frequency bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.
environmental | engineering | due diligence

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 600 Old Hartford Road in Colchester, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6 -foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 2 LTE channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
2) 2 LTE channels (700 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
3) 4 GSM channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
4) 2 LTE channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
5) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-OI recommendations to achieve the maximum anticipated
environmental | engineering | due diligence
value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
6) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
7) The antennas used in this modeling are the RFS APXVI8-2065I6S-C-A20 for the 1900 MHz / 1900 MHz channel(s), the RFS APXVAARR24_43-U-NA20 for the $600 \mathrm{MHz} / 700 \mathrm{MHz}$ channel(s) in Sector A, the RFS APXVI8-2065I6S-C-A20 for the $1900 \mathrm{MHz} / 1900 \mathrm{MHz}$ channel(s), the RFS APXVAARR24_43-U-NA20 for the $600 \mathrm{MHz} / 700 \mathrm{MHz}$ channel(s) in Sector B, the RFS APXVI8-2065I6S-C-A20 for the $1900 \mathrm{MHz} / 1900 \mathrm{MHz}$ channel(s), the RFS APXVAARR24_43-U-NA20 for the $600 \mathrm{MHz} / 700 \mathrm{MHz}$ channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
8) The antenna mounting height centerline of the proposed antennas is I50 feet above ground level (AGL).
9) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
10) All calculations were done with respect to uncontrolled / general population threshold limits.

EBI Consulting
environmental | engineering | due diligence

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	I	Antenna \#:	I	Antenna \#:	1
Make / Model:	$\begin{gathered} \text { RFS APXVI8-2065I6S-C- } \\ \text { A20 } \end{gathered}$	Make / Model:	$\begin{gathered} \text { RFS APXVI8-2065I6S-C- } \\ \text { A20 } \end{gathered}$	Make / Model:	$\begin{gathered} \hline \text { RFS APXVI8-2065I6S-C- } \\ \text { A20 } \end{gathered}$
Frequency Bands:	$1900 \mathrm{MHz} / 1900 \mathrm{MHz}$	Frequency Bands:	$1900 \mathrm{MHz} / 1900 \mathrm{MHz}$	Frequency Bands:	$1900 \mathrm{MHz} / 1900 \mathrm{MHz}$
Gain:	16.3 dBd / 16.3 dBd	Gain:	16.3 dBd / 16.3 dBd	Gain:	16.3 dBd / 16.3 dBd
Height (AGL):	150 feet	Height (AGL):	150 feet	Height (AGL):	150 feet
Channel Count:	6	Channel Count:	6	Channel Count:	6
Total TX Power (W):	240 Watts	Total TX Power (W):	240 Watts	Total TX Power (W):	240 Watts
ERP (W):	10,237.91	ERP (W):	10,237.91	ERP (W):	10,237.9 I
Antenna AI MPE \%:	1.64\%	Antenna BI MPE \%:	1.64\%	Antenna CI MPE \%:	1.64\%
Antenna \#:	2	Antenna \#:	2	Antenna \#:	2
Make / Model:	RFS APXVAARR24_43-UNA2O	Make / Model:	RFS APXVAARR24_43-UNA2O	Make / Model:	RFS APXVAARR24_43-U- NA20
Frequency Bands:	$600 \mathrm{MHz} / 700 \mathrm{MHz}$	Frequency Bands:	$600 \mathrm{MHz} / 700 \mathrm{MHz}$	Frequency Bands:	$600 \mathrm{MHz} / 700 \mathrm{MHz}$
Gain:	12.95 dBd / 13.35 dBd	Gain:	$12.95 \mathrm{dBd} / 13.35 \mathrm{dBd}$	Gain:	12.95 dBd / 13.35 dBd
Height (AGL):	150 feet	Height (AGL):	150 feet	Height (AGL):	150 feet
Channel Count:	4	Channel Count:	4	Channel Count:	4
Total TX Power (W):	120 Watts	Total TX Power (W):	120 Watts	Total TX Power (W):	120 Watts
ERP (W):	2,481.08	ERP (W):	2,481.08	ERP (W):	2,481.08
Antenna A2 MPE \%:	0.92\%	Antenna B2 MPE \%:	0.92\%	Antenna C2 MPE \%:	0.92\%

environmental | engineering | due diligence

Site Composite MPE \%	
Carrier	MPE \%
T-Mobile (Max at Sector A):	2.55%
Town	0.59%
AT\&T	1.28%
Sprint	1.39%
Site Total MPE \%:	5.81%

T-Mobile Sector A Total:	2.55%
T-Mobile Sector B Total:	2.55%
T-Mobile Sector C Total:	2.55%
Site Total:	
$5.8 .81 \%$	

T-Mobile Maximum MPE Power Values (Sector A)

T-Mobile Frequency Band / Technology (Sector A)	Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Frequency (MHz)	Allowable MPE ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Calculated \% MPE
T-Mobile 1900 MHz GSM	4	1279.74	150.0	8.18	1900 MHz GSM	1000	0.82\%
T-Mobile 1900 MHz LTE	2	2559.48	150.0	8.18	1900 MHz LTE	1000	0.82\%
T-Mobile 600 MHz LTE	2	591.73	150.0	1.89	600 MHz LTE	400	0.47\%
T-Mobile 700 MHz LTE	2	648.82	150.0	2.07	700 MHz LTE	467	0.44\%
						Total:	2.55\%

environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (\%)
Sector A:	2.55%
Sector B:	2.55%
Sector C:	2.55%
T-Mobile Maximum MPE \% (Sector A):	2.55%
Site Total:	
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{5 . 8 1} \%$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

[^0]: Consider Moments - Legs
 Consider Moments - Horizontals
 Consider Moments - Diagonals
 Use Moment Magnification
 $\sqrt{ }$ Use Code Stress Ratios
 $\sqrt{ }$ Use Code Safety Factors - Guys
 Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile
 $\sqrt{ }$ Include Bolts In Member Capacity
 $\sqrt{ }$ Leg Bolts Are At Top Of Section
 $\sqrt{ }$ Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric

 Distribute Leg Loads As Uniform Assume Legs Pinned
 $\sqrt{ }$ Assume Rigid Index Plate
 $\sqrt{ }$ Use Clear Spans For Wind Area
 $\sqrt{ }$ Use Clear Spans For KL/r
 $\sqrt{ }$ Retension Guys To Initial Tension Bypass Mast Stability Checks
 $\sqrt{ }$ Use Azimuth Dish Coefficients
 $\sqrt{ }$ Project Wind Area of Appurt.
 $\sqrt{ }$ Autocalc Torque Arm Areas Add IBC .6D+W Combination Sort Capacity Reports By Component
 $\sqrt{ }$ Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

[^1]: ${ }^{l}$ Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

[^2]: ${ }^{1} P_{u} / \phi P_{n}$ controls

[^3]: ${ }^{1} P_{u} / \phi P_{n}$ controls

[^4]: ${ }^{1} P_{u} / \phi P_{n}$ controls

