Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

July 19, 2021

Via Electronic Mail

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 11 Munn Road (a/k/a 112 Windham Avenue), Colchester, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an existing wireless telecommunications facility at the above-referenced property address (the "Property"). The facility consists of antennas and remote radio heads attached to a tower and related equipment on the ground, near the base of the tower. The Connecticut State Police ("CSP") filed an "Exempt" filing with the Siting Council in 1985 for the existing tower. My office did reach out to Siting Council staff to obtain a copy of the original CSP approval letter but, given its age, a copy of the approval letter is not available. Cellco's use of the tower was approved by the Council in May of 1990 (Metro Mobile CTS of New London, Inc.). A copy of the Council's approval of Cellco's shared use is included in <u>Attachment 1</u>.

Cellco now intends to modify its facility by adding three (3) new MT6407-77A antennas on Cellco's existing antenna mounts. A set of project plans showing Cellco's proposed facility modifications and the new antennas specifications are included in <u>Attachment 2</u>.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Colchester's Chief Elected Official and Land Use Officer.

Boston | Hartford | New York | Providence | Stamford | Albany | Los Angeles | Miami | New London | rc.com

Melanie A. Bachman, Esq. July 19, 2021 Page 2

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. Cellco's new antennas will be installed on Cellco's existing antenna mounts.

2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The installation of Cellco's new antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A cumulative General Power Density table for the modified facility is included in <u>Attachment 3</u>. Cellco's modified facility is capable of providing 5G wireless service.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. According to the attached Structural Analysis ("SA") and Mount Analysis ("MA"), the existing tower, tower foundation and antenna mounts, with certain modifications, can support Cellco's proposed antenna modifications. Copies of the SA and MA are included in <u>Attachment 4</u>.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 6</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Melanie A. Bachman, Esq. July 19, 2021 Page 3

Sincerely,

Kunie mm

Kenneth C. Baldwin

Enclosures

Copy to:

Andreas Bisbikos, Colchester First Selectman Ariel Lago, Colchester Zoning Enforcement Officer State of Connecticut, Property Owner Aleksey Tyurin

ATTACHMENT 1

Gloria Dibble Pond Chairperson

COMMISSIONERS

Energy / Telecommunications

Peter G. Boucher Leslie Carothers

Hazardous Waste/Low-level Radioactive Waste

Frederick G. Adams Bernard R. Sullivan

COUNCIL MEMBERS

Harry E. Covey Mortimer A. Gelston Daniel P. Lynch, Jr. Paulann H. Sheets William H. Smith Colin C. Tait

Joel M. Rinebold Executive Director

Stanley J. Modzelesky Executive Assistant

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

136 Main Street, Suite 401 New Britain, Connecticut 06051 Phone: 827-7682

May 1, 1990

Mr. David S. Malko, P.E. Manager, Engineering & Regulatory Services METRO MOBILE 50 Rockland Road South Norwalk, CT 06854

RE: Metro Mobile CTS of New London, Inc., Notice of Intent to Install Cellular Antennas and Related Equipment on a tower Owned by the State of Connecticut, Department of Public Safety in the Town of Colchester, Connecticut.

Dear Mr. Malko:

At a meeting on April 30, 1990, the Connecticut Siting Council acknowledged your notice of intent to install cellular antennas and related equipment on an existing tower facility owned by the State of Connecticut, Department of Public Safety, in Colchester, Connecticut, pursuant to Section 16-50j-73 of the Regulations of State Agencies (RSA).

The proposed modifications are to be implemented as specified in your notices dated April 16 and 30, 1990. As proposed, the modifications are in compliance with the exception criteria specified in RSA 16-50j-72 as changes to an existing facility site that do not increase the tower height, extend the boundaries of the tower site, increase noise levels at the tower site boundary 6 decibels, and add radio frequency sending or receiving capability which increases the total radio frequency electromagnetic radiation power density measured at the tower site boundary to or above the standard adopted by the State Department of Environmental Protection pursuant to Section 22a-162 of the Connecticut General Statutes. мі. David S. Maiko, г.н. May 1, 1990 Page 2

The Council is pleased to note that the shared use of an existing tower meets the Council's long-term goal and the public interest to avoid proliferation of additional tower structures.

Please notify the Council upon completion of construction.

Very truly yours,

selitele Four IR

Gloria Dibble Pond Chairperson

GDP/JMR/bd

4380E

,

ATTACHMENT 2

PROJECT NOTES

- SITE INFORMATION OBTAINED FROM THE FOLLOWING:
 - A. PLAN ENTITLED "850-LTE CARRIER ADD CABLE DRAWINGS" PREPARED BY ON-AIR ENGINEERING, LLC OF COLD SPRING, NY DATED 06/15/2021.
- B. POST-MODIFICATION ANTENNA MOUNT ANALYSIS REPORT PREPARED BY COLLIERS ENGINEERING & DESIGN, INC OF MOUNT LAUREL, NJ DATED 7/2/2021.
- THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE CODES, ORDINANCES, LAWS AND REGULATIONS OF ALL MUNICIPALITIES, UTILITY COMPANIES OR OTHER PUBLIC/GOVERNING AUTHORITIES.
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND INSPECTIONS THAT MAY BE REQUIRED BY ANY FEDERAL, STATE, COUNTY OR MUNICIPAL AUTHORITIES.
- THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER, IN WRITING, OF ANY CONFLICTS, ERRORS OR OMISSIONS PRIOR TO THE SUBMISSION OF BIDS OR PERFORMANCE OF WORK.
- 5 THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROTECTING ALL EXISTING SITE IMPROVEMENTS PRIOR TO COMMENCING CONSTRUCTION. THE CONTRACTOR SHALL REPAR ANY DAMAGE AS A RESULT OF CONSTRUCTION OF THIS FACILITY AT THE CONTRACTOR'S EXPENSE TO THE SATISFACTION OF THE OWNER
- 5 THE SCOPE OF WORK FOR THIS PROJECT SHALL INCLUDE PROVIDING ALL MATERIALS, EQUIPMENT AND LABOR REQUIRED TO COMPLETE THIS PROJECT. ALL EQUIPMENT SHALL BE INSTALLED IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS.
- THE CONTRACTOR SHALL VISIT THE PROJECT SITE PRIOR TO SUBMITTING THE BID TO VERIFY THAT THE PROJECT CAN BE CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS AND CONSTRUCTION DRAWINGS.
- 8 THE CONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS RRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THESE DRAWINGS WUST BE VERIFIED. THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER OF ANY DISCREDANCIES RRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.
- 9 SINCE THE CELL SITE MAY BE ACTIVE ALL SAFETY RESCUTIONS MUST BE TAKEN WHEN WORKING ARQUIDE INCH LEVELS OF ELECTROMAGNETIC RADIATION, EQUIPMENT SHOULD BE SHUTDOTHER INFORT TO FREVENING ANY WORK THAT COULD BHOSE THE MIROR TO DARGE WORK TO ALER TO FANT MONITORS ARE REQUIRED TO BE WORK TO ALER TO FANT POTENTIALLY DANGEROUS EXPOSURE LEVELS.
- THE PROPOSED FACILITY WILL CAUSE NO INCREASE IN STORM WATER RUNOFF, THEREFORE, NO DRAINAGE STRUCTURES ARE PROPOSED.
- NO NOISE, SMOKE, DUST OR ODOR WILL RESULT FROM THIS FACILITY AS TO CAUSE A NUISANCE.
- 12. THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION (NO HANDICAP ACCESS IS REQUIRED).
- 13. THE FACILITY DOES NOT REQUIRE POTABLE WATER OR SANITARY SERVICE.
- CONTRACTOR SHALL VERIFY ANTENNA ELEVATION AND AZIMUTHS WITH RF ENGINEERING PRIOR TO INSTALLATION.
- ALL STRUCTURAL ELEMENTS SHALL BE HOT DIPPED GALVANIZED STEEL
- CONTRACTOR MUST FIELD LOCATE ALL EXISTING UNDERGROUND UTILITIES PRIOR TO ANY EXCAVATION.
- CONSTRUCTION SHALL NOT COMMENCE UNTIL COMPLETION OF A PASSING STRUCTURAL ANALYSIS CERTIFIED BY A LICENSED PROFESSIONAL ENGINEER. THE STRUCTURAL ANALYSIS IS TO BE PERFORMED BY OTHERS
- CONTRACTOR SHALL CONTACT STATE SPECIFIC ONE CALL SYSTEM THREE WORKING DAYS PRIOR TO ANY EARTH MOVING ACTIVITIES.

COPYRIGHT © 2022 COLLIERS ENGINEERING & DESIGN ALL RIGHTS RESERVED

THIS DRAWING AND ALL THE INFORMATION CONTAINED HERDIN S AUTHORIZED TO BUSE ONLY SIT THE RARTY FOR WHOM THE WORK WAS CONTRACTED OR TO WHOM TIS CERTIFIED. THIS DRAWING MAY NOT BE COPIED, RAUSDA DISCLOSED, DISTRIBUTED OR RELIED UPON FOR ANY OTHER RURPOSE WITHOUT THE EXPRESS WRITTEN CONSENT OF COLLERS INGINEERING & DEGISIN CT. P.C.

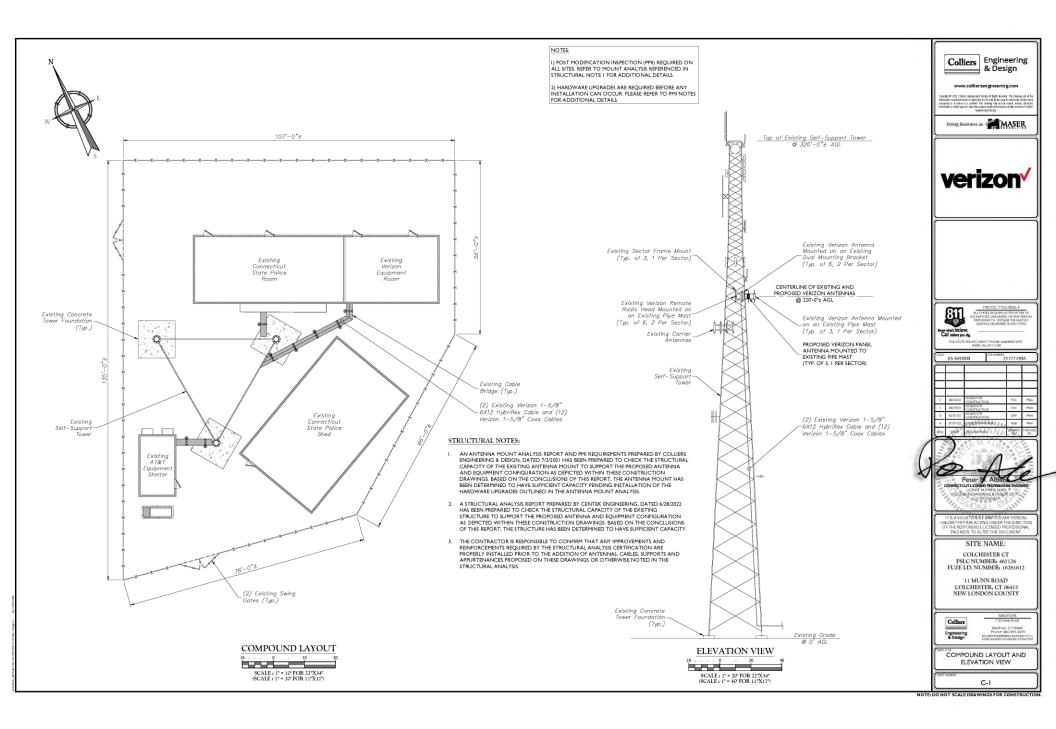
verizon

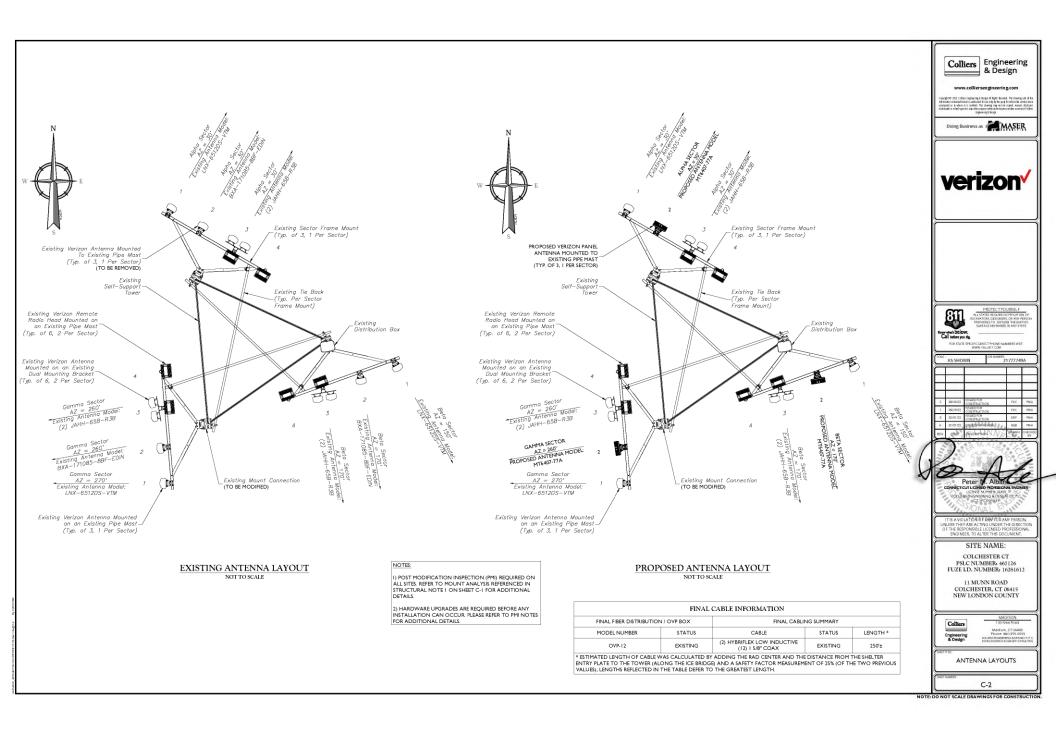
SITE NAME: COLCHESTER CT PSLC NUMBER: 467126 FUZE I.D. NUMBER: 16281612

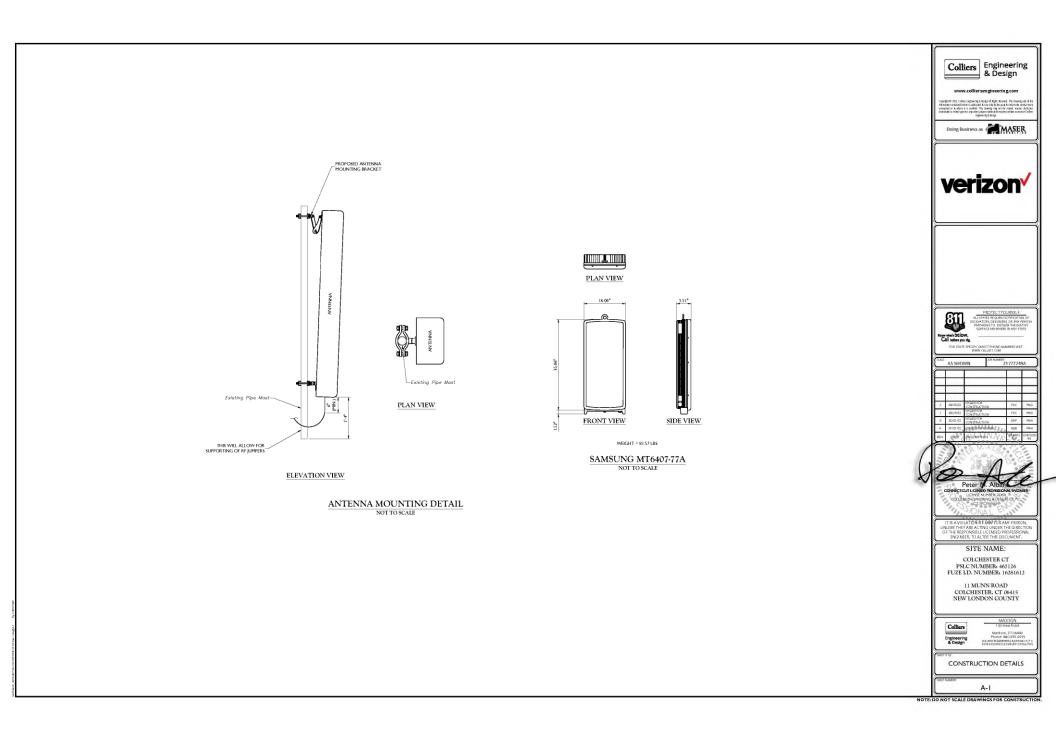
11 MUNN ROAD COLCHESTER, CT 06415 NEW LONDON COUNTY

VICIN	ITY MAP	PROJECT INFORMA	TION	PROJECT DESCRIPTION/	STOR STATE DREVIDIC TREET RAFINE NUMPERS WOT
		SITE INFORMATION		SCOPE OF WORK	WWW CALERT COM
	I du žost	LATITUDE: 41.5925° LONGITUDE: -72.321111° GROUND ELEVATION: 59152± AMSL JURISDICTION: CONNECTICUT SITING (<u>APPLICANT</u> COMPANY: VERIZON WIRELESS ADDRESS: 118 FLANDERS ROAD, TH CITY, STATE, ZIP: WESTBOROUGH, MA 015 <u>PROPERTY OWNER</u>	IND FLOOR	E PROPOSED PROJECT SCOPE INCLUDES MODIFYING TOWER JUNTED EQUIPMENT AS INDICATED PER BELOW. REMOVE (3) EXISTING ANTENNAS INSTALL (3) PROSED ANTENNAS INSTALL HARDWARE UPGRADES	XAS SHOWN Interview 21777740A 2 1001002 10040701 Fac FNA 2 1001002 10040701 Fac FNA 1 1007002 10040701 Fac FNA 1 1007002 10040700 Fac FNA 1 100702 10040700 Fac FAC FNA 1 100702 10040700 Fac FAC FAC FAC 1 100702 10040700 Fac
PROJECT LOCATION		OWNER: STATE OF CONNECTICU ADDRESS: I65 CAPITOL AVENUE CITY, STATE, ZIP: HARTFORD CT, 06106 SITE ACQUISITION	т		Programme
		COMPANY: STRUCTURE CONSULTIN ADDRESS: 49 BRATTLE STREET CITY, STATE, ZIP: ARLINGTON, MA 02474		SHEET INDEX	CONNECT CLIT LICENSIS IN DIVERSIONAL BACKER DULIESE MARRING AN ARRIVAL CONSIGNATION CONNECTION OF CONSIGNATION OF CONSIGNATION CONNECTION OF CONSIGNATION OF CONSIGNATION OF CONSIGNATION CONSIGNATION OF CONSIGNATION OF CONSIGNATION OF CONSIGNATION OF CONSIGNATION CONSIGNATION OF CONSIGNATION OF CONSIGNATION OF CONSIGNATION OF CONSIGNATION OF CONSIGNATION OF CONSIGNATION CONSIGNATION OF CONSIGNATION OF CONSIGNATIONO OF C
SOURCE: BING MAPS	N	ENGINEERING COMPANY COMPANY: COLLIERS ENGINEERING & I CONTACT: PETE ALBANO, PE PHONE (056) 797-0412	DESIGN C- A-	2 ANTENNA LAYOUTS -1 CONSTRUCTION DETAILS	IT IS A VIOLATION OF EMPIRISAN UNLESS THEY ARE ACTING UNDER THE DIRECTION OF THE RESPONSED LLCENSED PROFESSIONAL ENGINEER TO ALTER THE DOCUMENT. SITTE NAME:
CODE CO	MPLIANCE	E-MAIL: PETERALBANO@COLLIERS	ENGINEERING.COM G-		COLCHESTER CT
ALL WORK AND MATERIALS SHALL BE PERFORMED AND INSTALLED CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NO	INTERCENTION OF THE FOURIENT EDITIONS OF THE FOLLOWING DTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT HITONS OF THE FOLLOWING CODES. 8. INSTITUTE FOR ELECTRICAL AND ELECTRONICS ENGINEERS BI IEEE C2 LATEST EDITION	CONTRACTOR P REQUIREMENT		PMI REQUIREMENTS	FULC NUMBER: 467126 FUZE LD. NUMBER: 467126 FUZE LD. NUMBER: 16281612 11 MUNN ROAD COLCHESTER: CT 06415 NEW LONDON COUNTY
2. 2017 NATIONAL ELECTRICAL CODE - NFPA 70	9. TELCORDIA GR-1275	PMI LOCATION HTTPS://PMLV SMART TOOL VENDOR PROJECT #, 10058930.00	ZWSMART.COM		Ļ
3. 2015 NFPA 101	10. ANSI TI.311	VZW LOCATION CODE (PSLC): 467126			Colliers MADISON 135 New Road
4. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 360-10	11. PROPOSED USE: UNMANNED TELECOM FACILITY	ANALYSIS DATE: 7/2/2021			Matisco, CT 08443 Phote: B00395 0022
5. AMERICAN CONCRETE INSTITUTE	 HANDICAP REQUIREMENTS: FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. HANDICAPPED ACCESS NOT REQUIRED. 	*** PMI AND REQUIREMENTS ARE EMBEDDED IN N REPORT	10UNT ANALYSIS		B Design Downawskie consultation Sweet in the
6. TIA-222-H	13. CONSTRUCTION TYPE: IIB	HARDWARE UPGRADES REQUIRED : YES			TITLE SHEET
7. TIA 607 FOR GROUNDING	14. USE GROUP: U	REFER TO MOUNT MODIFICATION DRAWINGS SMART KIT APPROVED VENDOR			SHITHANNER:

NOTE: DO NOT SCALE DRAWINGS FOR CONSTRUCTION.

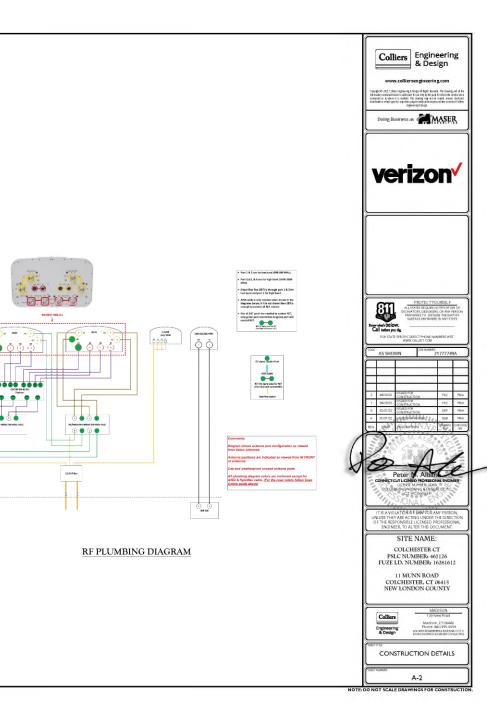

Colliers Engineering

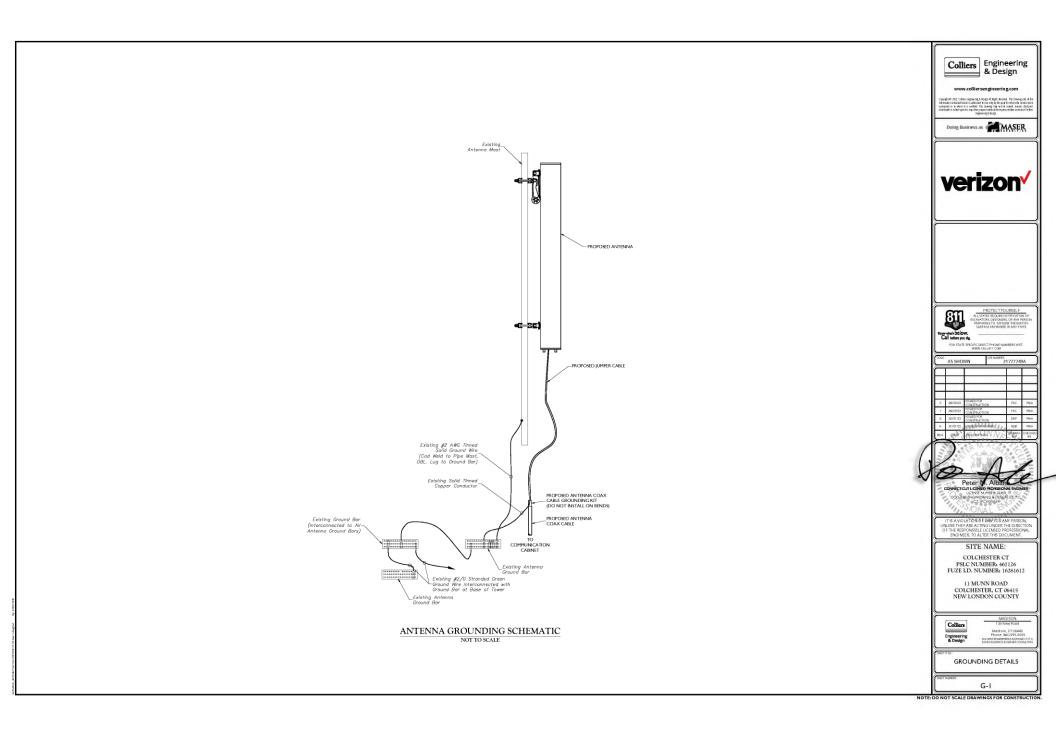

neering & Design all Right Records


verizon

& Design

senvineering.com


									Antenna S	ummary			
Added													
700	850	1900	AWS	L-Sub6	Make	Model	Centerline	Tip Height	Azimuth	RET	4xRx	Inst. Type	Quantity
				5G	Samsung	MT6407-77A	220	221.5	30(0109) 170(0110) 260(0111)	false	false	PHYSICAL	3
Remov	ed												
700	850	1900	AWS	L-Sub6	Make	Model	Centerline	Tip Height	Azimuth	RET	4xRx	Inst. Type	Quantity
					AMPHENOL	BXA-171085-88F-EDIN	220	222		false	false	SPARE	3
Retain													
700	850	1900	AWS	L-Sub6	Make	Model	Centerline	Tip Height	Azimuth	RET	4xRx	Inst. Type	Quantity
LTE	LTE 5G	LTE	LTE		ANDREW	JAHH-65B-R3B	220	223	30(01) 170(02) 260(03)	true	true	PHYSICAL	6
	CDMA				ANDREW	LNX-6512DS-VTM	220	222	30(D1) 150(D2) 270(D3)	false	false	PHYSICAL	3


Added: 3 Removed: 3 Retained: 9

Tower' Waterbanko Risoftop Centerrord Pad

	Equipment Summary											
Added									•			
Equipment Type	Location	700	850	1900	AWS	L-Sub6	Make	Model	Cable Length	Cable Size	Install Type	Quantity
RRU	Tower					5G	Samsung	MT6407-77A			PHYSICAL	3
Removed												
Equipment Type	Location	700	850	1900	AWS	L-Sub6	Make	Model	Cable Length	Cable Size	Install Type	Quantity
									No data available.			
Retained												
Equipment Type	Location	700	850	1900	AWS	L-Sub6	Make	Model	Cable Length	Cable Size	Install Type	Quantity
Mount	Tower						Commscope	BSAMNT-SBS-2-2			PHYSICAL	3
Diplexer	Tower	LTE	LTE 5G				Commscope	CBC78T-DS-43-2X			PHYSICAL	3
Coaxial Cables	Tower						N/A	1-5/8" Coax		15/8"	SPARE	6
Coaxial Cables	Tower		CDMA				N/A	1-5/8" Coax		15/8"	PHYSICAL	6
Hybrid Cable	Tower	LTE	LTE 5G	LTE	LTE	5G	N/A	6x12 Hybriflex		15/8=	PHYSICAL	2
OVP Box	Tower	LTE	LTE 5G	LTE	LTE	5G	Raycap	OVP-12			PHYSICAL	1
RRU	Tower			LTE	LTE		Samsung	B2/B66A RRH-BR049 (RFV01U-D1A)			PHYSICAL	3
RRU	Tower	LTE	LTE 5G				Samsung	B5/B13 RRH-BR04C (RFV01U-D2A)			PHYSICAL	3

ANTENNA SCHEDULE

POST-MODIFICATION INSPECTION (PMI) REQUIREMENTS

- 1. PMI REQUIRED FOR ALL SITES, REFER TO VERIZON NSTD-446 SECTION 1.5 AND 2.3 FOR MORE INFORMATION.
- 2. CONTRACTOR SHALL REFER TO THE MOUNT ANALYSIS BY COLLIERS ENGINEERING & DESIGN, INC DATED 7/2/2021 FOR ADDITIONAL DETAILS.
- 3. GENERAL CONTRACTOR SHALL PROVIDE THE BELOW DOCUMENTATION TO THE STRUCTURAL ENGINEER OF RECORD VIA EMAIL, DROPBOX, OR OTHER FILE SHARE METHOD. PROVIDE HIGH RESOLUTION PHOTO'S (DO NOT COMPRESS).
- 4. STRUCTURAL ENGINEER OF RECORD WILL CONDUCT A REVIEW OF THE PROVIDED DOCUMENTS TO PREPARE A PMI REPORT. STRUCTURAL ENGINEER OF RECORD WILL NOTIFY GENERAL CONTRACTOR IF ANY ADDITIONAL DOCUMENTATION IS REQUIRED TO COMPLETE THE PMI.
- PMI DOCUMENTATION SHALL BE SUFFICIENT TO CONFIRM THE UPGRADE WAS BUILT AS DESIGNED, INCLUDING EQUIPMENT CHANGES AND STRUCTURAL MODIFICATIONS, AND IS IN ADDITION TO ANY OTHER REQUIRED CLOSEOUT PACKAGE DOCUMENTATION.
- REQUIRED DOCUMENTATION FOR PMI INCLUDES THE FOLLOWING AT A MINIMUM. REFER TO THE MOUNT ANALYSIS FOR POSSIBLE ADDITIONAL INFORMATION. IF STRUCTURAL MODIFICATIONS ARE REQUIRED, REFER TO THE MODIFICATION DRAWINGS FOR POSSIBLE ADDITIONAL REQUIREMENTS.
 - a. PROVIDE PRE-AND-POST CONSTRUCTION PHOTOS OF EACH SECTOR FROM THE MOUNT ELEVATION AND THE GROUND. CONTRACTOR IS RESPONSIBLE FOR ENSURING THE PHOTO'S PROVIDED PROVIDE POSITIVE CONFIRMATION THAT THE MODIFICATION/UPGRADE WAS COMPLETED IN ACCORDANCE WITH THESE CONSTRUCTION DRAWINGS AND ANY STRUCTURAL/MOUNT MODIFICATION DRAWINGS. CONTRACTOR SHALL RELAY ANY DATA THAT CAN IMPACT THE PERFORMANCE OF THE MOUNT OR MOUNT MODIFICATION, INCLUDING SAFETY ISSUE, PHOTOS SHALL HAVE A DATE/TIME STAMP IN THE PHOTO. REFER TO THE MOUNT ANALYSIS FOR SCHEDULE OF REQUIRED PHOTOS. PROVIDE PHOTOS OF THE GATE SIGNS AND CARRIER SHELTER TO IDENTIFY THE TOWER OWNER, SITE NAME, SITE NUMBER, ETC.
- b. VERIFICATION OF THE MEMBER CONNECTIONS, BRACING, AND RELEVANT DIMENSIONS.
- c. VERIFICATION OF THE ANTENNA AND OTHER EQUIPMENT CONFIGURATION (PHOTOS OF MODEL NUMBERS/TAGS FOR ALL EQUIPMENT, AS WELL AS THE FEEDLINE CONFIGURATION). TAKE PHOTOS OF THE BACK SIDE OF EACH SECTOR AS WELL AS CLOSE-UPS OF ALL EQUIPMENT, PHOTOS SHOULD CONFIRM THE HORIZONTAL AND VERTICAL POSITIONING OF THE ANTENNAS AND EQUIPMENT AND SHALL HAVE TAPE MEASURES IN THE PHOTOS TO CONFIRM.
- d. FOR TIEBACKS, STRUTS, MOUNT PIPES, PHOTOS TO CONFIRM THE ANGLES AND LOCATIONS OF ATTACHMENT POINT AT BOTH ENDS OF MEMBER, AS WELL AS DIMENSIONS, THICKNESS, AND LENGTHS OF THE MEMBERS. REFER TO THE CHECKLIST IN THE MOUNT ANALYSIS OR MOUNT MOD DRAWINGS FOR ADDITIONAL INFORMATION.
- e. MATERIALS USED (TYPE, STRENGTH, DIMENSIONS, ETC.). PROVIDE BILL OF MATERIAL AND MATERIAL SPEC TO CONFIRM MATERIAL GRADES AND SIZES. PROVIDE DOCUMENTATION FOR GALVANIZATION OF MEMBERS WHETHER HOT-DIPPED OR COLD-GALVANIZED. IF MATERIALS DIFFER FROM THOSE SPECIFIED ON THESE DRAWINGS, PROVIDE DOCUMENTATION THAT THE "EQUIVALENT" MATERIAL HAS THE SAME SPECIFICATIONS.
- f. MOUNT ORIENTATION/AZIMUTH AND ELEVATION, PROVIDE TAPE DROP OF ANTENNA CENTERLINE(S) AND MOUNT ATTACHMENT POINTS TO THE SUPPORTING STRUCTURE. IF THERE ARE MULTIPLE RAD CENTERS, PROVIDE PHOTOS OF ALL ELEVATIONS.
- g. VERIFICATION THAT THE INSTALL HAS NOT CAUSED DAMAGE TO OR UNPLANNED OBSTRUCTION OF THE FOLLOWING: • CLIMBING FACILITIES
 - •SAFETY CLIMB IF PRESENT, INCLUDING PHOTOS ABOVE AND BELOW THE MOUNT
 - LIGHTING SYSTEMS

7.

•OTHER INSTALLED SYSTEMS ON THE STRUCTURE

CONTRACTOR SHALL ENSURE THE SAFETY CLIMB IS SUPPORTED AND NOT ADVERSELY AFFECTED BY THE INSTALLATION OF
 NEW COMPONENTS. THIS MAY INVOLVE THE INSTALLATION OF WIRE ROPE GUIDES OR OTHER ITEMS TO PROTECT THE WIRE
 ROPE.

OTHER ITEMS DETERMINED BY THE STRUCTURAL ENGINEER TO ENSURE THE MOUNT WILL PERFORM AS DESIGNED. PHOTOS OF RELEVANT MEASUREMENTS, WITH SUFFICIENT DETAILS TO CONFIRM CONNECTION DETAILS, PLACEMENT OF EQUIPMENT, WALL ANCHOR DETAILS, BALLAST QUANTITIES, STRUCTURAL MODIFICATION ETC. DIAMETERS AND THICKNESS OF BOLTS/THREADED RODS/ANGLES/TUBES ETC. SHALL HAVE PHOTOS CONFIRMING CALIPER MEASUREMENTS.

•CONFIRMATION THAT ALL HARDWARE WAS PROPERLY INSTALLED, AND EXISTING HARDWARE WAS INSPECTED FOR ANY ISSUES

•FOR BALLAST SLEDS, DOCUMENTATION OF THE WEIGHT OF BALLAST IN EACH SECTOR

•FOR WALL ANCHORS, PHOTOS, AND MEASUREMENTS OF OUTSIDE AND INSIDE OF CONNECTIONS, DOCUMENTATIONS OF ADHESIVE USED, SIZE AND LENGTH OF ANCHORS, EFFECTIVE EMBEDMENT DEPTH OF THE ANCHORS, GROUTING OF HOLLOW WALLS, SPACING AND EDGE DISTANCE MEASUREMENTS, AND ANY THROUGH-BOLTS OR BACKING PLATES.

•FOR STUD WELD CONNECTION, DOCUMENTATION TO CONFIRM SURFACE PREPARATION, STUD WELD SIZE, GRADE, LENGTH, AND SPACING.

•FOR FABRICATED PARTS, SHOP DRAWINGS TO BE APPROVED BY THE ENGINEER OF RECORD PRIOR TO CONSTRUCTION •FOR WELD PARTS, CERTIFIED WELD INSPECTION

•FOR BOLTED PARTS, BOLT INSTALLATION AND TOROUE

- CONTRACTOR SHALL PROVIDE, IN ADDITION TO THE ABOVE, AS-BUILT CDS WITH REDLINES IDENTIFYING ANY CHANGES. THE AS-BUILTS SHALL HAVE THE CONTRACTOR'S NAME, PREPARER'S SIGNATURE, AND DATE.
- . IF THE MODIFICATION INSTALLATION WOULD FAIL THE PMI ("FAILED PMI"), THE CONTRACTOR SHALL WORK WITH THE ENGINEER OF RECORD TO COORDINATE A REMEDIATION PLAN IN ONE OF TWO WAYS:

a. CORRECT FAILING ISSUES TO COMPLY WITH THE SPECIFICATIONS CONTAINED IN THE ORIGINAL CONTRACT DOCUMENTS AND COORDINATE A SUPPLEMENTAL PMI.

b. OR, WITH EOR'S APPROVAL, THE GC MAY WORK WITH THE EOR TO RE-ANALYZE THE MODIFICATION/REINFORCEMENT/UPGRADUSING THE AS-BUILT CONDITION

- NOTE: IF LOADING IS DIFFERENT THAN THAT SHOWN IN THESE CONSTRUCTION DRAWINGS OR STRUCTURAL/ MOUNT MODIFICATION DRAWINGS, CONTRACTOR SHALL NOTIFY THE ENGINEER OF RECORD IMMEDIATELY FOR RESOLUTION.
- 10. THE ENGINEERING FIRM PERFORMING AN ANALYSIS SHALL PROVIDE A CONTRACTOR'S PHOTO LOG AND CHECKLIST TO BE COMPLETED BY THE INSTALLING CONTRACTOR. THE CONTRACTOR SHALL THEN PROVIDE POST-INSTALLATION INFORMATION TO THE STRUCTURAL ENGINEER. THE STRUCTURAL ENGINEER SHALL REVIEW THE DOCUMENTS FOR ANY DEFICIENCIES THAT CAN BE DETERMINED FROM THE DESKTOP REVIEW OF THE DATA. THE ENGINEERING FIRM SHALL THEN PROVIDE DOCUMENTATION TO VZV THAT THE STRE IS COMPLETED, AND THE PMI REPORT IS APPROVED.

ſ
Colliers Engineering & Design
www.colliersengineering.com
Constrict C 2022 Colleging senges on a fingle of light largest in history and all the dimensional and the standards traces with the standards transmission constraint on a vision is a control of the standard rank more interfaced on effect specific any strategy of the constraint of the Dispace with the constraint of the strates is a second of the Dispace of the standard of the strates in the strates of the Dispace of the strates of the strates of the strates of the Dispace of the strates of
Doing Business as
verizon
<u> </u>
PROTECT YOURSELF ALISTATS INCOMENTATION OF EXAMATORS DESIGNED OF ANY ANY HERAENSTON DISTURB THE BATTHS SUPACE ANYWHERE IN ANY STATE
SUIFACE ANY WHERE IN ANY STATE Call before you de
FOR STATE SPECIAL DIRECT PHONE NUMBERS VISIT: WWW CALLEDT COM
AS SHOWN 21777749A
\square
2 D6/30/22 TESLED FOR FAC PNA CONSTRUCTION FAC PNA INSUED FOR
I IB/29/72 CONSTRUCTION PAC PAIA I ID/01/72 ISSUED FCR CONSTRUCTION SHIP PAIA
A III/07/22 USU/EDFON REVIEW UIB PMA
R. M. ALO
1
D +1
Peter M. Alban
UCENSE NUMBER: 35:69 BOCULESS (NIGHERING & DESGN (CT. N.) CT./IRC/XXII/30
A SONAL E
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF THE RESPONSIBLE LICENSED PROFESSIONAL ENSINEER, TO ALTER THIS DOCUMENT,
SITE NAME:
COLCHESTER CT PSLC NUMBER: 467126 FUZE I.D. NUMBER: 16281612
11 MUNN ROAD COLCHESTER, CT 06415 NEW LONDON COUNTY
NEW LONDON COUNTY
MADISON 195 Navi Road
Colliers Hotisco, CT0448 Phone: Bh02850055 collers/Harring Science 20055 collers/Harring Science 21 C
Engineering Phone 120.025.0055 & Design COLLESS PROMITING ADDISON CT // C DOWG BUSHEEDAS MALER CONSULTING
Challenge
PMI REQUIREMENTS
PMI REQUIREMENTS

SAMSUNG

SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..

Model Code : MT6407-77A


Points of Differentiation

Wide Bandwidth

With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

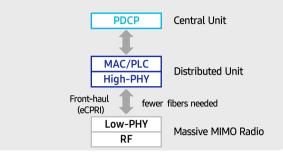
C-Band spectrum supported by Massive MIMO Radio

Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.

This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.



Technical Specifications

ltem	Specification
Tech	NR
Band	n77
Frequency Band	3700 - 3980 MHz
EIRP	78.5dBm (53.0 dBm+25.5 dBi)
IBW/OBW	280 MHz / 200 MHz
Installation	Pole/Wall
Size/ Weight	16.06 x 35.06 x 5.51 inch (50.86L)/ 79.4 lbs

Future Proof Product

Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment.

SAMSUNG

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

ATTACHMENT 3

	General	Power	Density					
Site Name: Colchester								
Tower Height: Verizon @ 220ft								
CARRIER	# OF CHAN.	WATTS ERP	HEIGHT	FREQ.	CALC. POWER DENS	MAX. PERMISS.EXP.	FRACTION MPE	Total
*Antenna no. 2 (CSP/FBI)	1	330	320	154.665	0.0001799	0.2	0.01	
*Antenna no. 3 (CSP)	1	1015	315	2141	0.0000014	1	0	
*Antenna no. 4 (SHP)	1	398	294	151.355	0.0002404	0.2	0.01	
*Antenna no. 5 (DEP)	1	175	292	44.72	0.0001103	0.2	0.01	
*Antenna no. 6	1	100	257	153.935	0.000081	0.2	0	
*Antenna no. 7 (OEM)	1	178	243	45.2	0.0001605	0.2	0.01	
*Antenna no. 8 (CSP)	1	330	227	42.04	0.000349	0.2	0.02	
*Antenna no. 9 (DEP)	1	125	138	75.5	0.0003697	0.2	0.02	
*Antenna no. 10 (CSP)	1	569	97	2138	0.0000116	1	0	
*Antenna no. 11 (CSP)	1	252	90	2133.2	0.0000087	1	0	
*Antenna no. 12 (CSP)	1	5750	105	6795	0.0004957	1	0	
*Antenna no. 13 (CSP)	1	1545	112	10567.5	0.0000115	1	0	
*Antenna no. 14	5	200	320	867.4	0.0005254	0.578266667	0.01	
*Antenna no. 15	5	200	320	867.5	0.0005303	0.578333333	0.01	
*Antenna no. 18 (FBI)	1	473	100	453.625	0.0023223	0.302416667	0.08	
*Antenna no. 31 (CTT)	1	10	100	406	0.0000562	0.270666667	0	
*Eversource	4	124	145	217	0.009232006	0.2	0.46	
*AT&T	2	414	200	850	0.00791172	0.566666667	0.001396186	
*AT&T	2	656	200	1900	0.012536445	1	0.001253644	
*AT&T	2	826	200	700	0.0158	0.4667	0.34%	
*AT&T	4	1250	200	1900	0.0478	1.0000	0.48%	
VZW 700	4	634	220	751	0.0019	0.5007	0.38%	
VZW CDMA	2	344	220	877.26	0.0005	0.5848	0.09%	
VZW Cellular	4	725	220	874	0.0022	0.5827	0.37%	
VZW PCS	4	1593	220	1975	0.0047	1.0000	0.47%	
VZW AWS	4	1633	220	2120	0.0049	1.0000	0.49%	
VZW CBAND	2	13335	220	3730.08	0.0198	1.0000	1.98%	
								68.86%
* Source: Siting Council								

ATTACHMENT 4

Centered on Solutions⁵⁴

Structural Analysis Report

320' Existing Lattice Tower

Verizon Antenna Installation

CSP Tower Ref: #50

11 Munn Road Colchester, CT

CENTEK Project No. 21007.82

Date: March 24, 2022 Rev 1: June 28, 2022

Max Stress Ratio = 95.5%

Prepared for:

Verizon Wireless 20 Alexander Drive Wallingford, CT 06492

Table of Contents

SECTION 1 - REPORT

- INTRODUCTION
- ANTENNA AND APPURTENANCE SUMMARY
- PRIMARY ASSUMPTIONS USED IN THE ANALYSIS
- ANALYSIS
- TOWER LOADING
- TOWER CAPACITY
- FOUNDATION AND ANCHORS
- CONCLUSION

SECTION 2 - CONDITIONS & SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM

SECTION 3 – CALCULATIONS

- tnxTower INPUT/OUTPUT SUMMARY
- tnxTower FEED LINE PLAN
- tnxTower FEED LINE DISTRIBUTION
- tnxTower DETAILED OUTPUT
- tnxTower INPUT/OUTPUT SUMMARY (REV.F FOR TWIST AND SWAY)
- tnxTower DETAILED OUTPUT (REV.F FOR TWIST AND SWAY)
- ANCHOR BOLT ANALYSIS
- FOUNDATION ANALYSIS

<u>Introduction</u>

The purpose of this report is to summarize the results of the non-linear, $P-\Delta$ structural analysis of the antenna installation by Verizon on the existing lattice tower located in Colchester, Connecticut.

The host tower is a 320-ft, three legged, lattice tower originally designed and manufactured by Rohn Industries. File no. 43233AE dated May 10, 2001. The tower geometry, structure member sizes and foundation information were taken from a previous structural analysis report prepared by AECOM job no. EVS-010/VZ5-217/EMP-008 60626930 dated May 21, 2020. The tower has been previously reinforced. All previous reinforcements are assumed to be installed. See Primary Assumptions Section below for detailed reinforcement reference reports.

Antenna and appurtenance inventory was taken from the aforementioned structural analysis and information provided by Verizon.

The tower consists of fifteen (15) vertical sections consisting of steel pipe legs conforming to ASTM A572-50 and steel angle/pipe lateral bracing. The vertical tower sections are connected by bolted flange plates with the diagonal and horizontal bracing to pipe legs consisting of bolted connections. The width of the tower face is 6.8-ft at the top and 40.7-ft at the bottom.

<u>Antenna and Appurtenance Summary</u>

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
(1) Lightning Rod	Tower (existing)	Leg Mount	329'	N/A
(1) Lighted Beacon	Tower (existing)	Tower Mount	325'	(1) 1/2" coax cable
(1) PD-128 Omni/Dipole Antenna	ECI-1 CSP-2 (existing)	6' Side Arm Mount	325'	(1) 7/8" coax cable (LCF78-50JA-A7)
(1) BA-1012 Omni Antenna	ECI-2 CSP-1 (existing)	6' Side Arm Mount	320'	(1) 7/8" coax cable (LCF78-50JA-A7)
(1) ANT450F6 Antenna	ECI-3 (existing)	Pipe Mounted to tower Leg	318'	(1) 7/8" coax cable (LCF78-50JA-A7)
(1) SC479-HF1LDF Omni Antenna	ECI-4 CSP-52 (existing)	6' Side Arm Mount	300'	(1) 1-5/8" coax cable (AVA7-50A)
(1) PD-340 Dipole Antenna	ECI-5 CSP-4 (existing)	6' Side Arm Mount	290'	(1) 7/8" coax cable (LCF78-50JA-A7)
(1) DB-809T3 Omni Antenna	ECI-6 CSP-14 (existing)	Shared with ECI-7 Mount	286'	(1) 1-5/8" coax cable (AVA7-50A)

The existing and proposed loads considered in the analysis consist of the following:

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
(1) (inverted) SC479- HF1LDF (D00I-E6085) Omni Antenna	ECI-7 CSP-53 (existing)	6' Side Arm Mount @ 284'	283'	(1) 1-5/8" coax cable (AVA7-50A)
(1) PD-440 Dipole Antenna	ECI-8 DEHMS-6 (existing)	6' Side Arm Mount @ 260'	264'	(1) 7/8" coax cable (LCF78-50JA-A7)
(1) SC479-HF1LDF Omni Antenna	ECI-10 DEP-5 (existing)	Shared with below T-Frame Mount	251'	(1) 1-5/8" coax cable (AVA7-50A)
(1) PD-1142 Omni Antenna	ECI-14 DEHMS-7 (existing)	6' Side Arm Mount	248'	(1) 7/8" coax cable (LCF78-50JA-A7)
(2) (inverted) SC479- HF1LDF Omni Antennas (1) TMA Unit @ 247' (EL.)	ECI- 11,12,13 CSP-16,17 (existing)	(1)T-Arm Frame Mount @ 246'	245'	(2) 1-5/8" coax cable (AVA7-50A) (1) 1/2" coax cable
(1) 531-70 Dipole Antenna	ECI-15 CSP-8 (existing)	6' Side Arm Mount	238'	(1) 7/8" coax cable (LCF78-50JA-A7)
(3) Samsung MT6407- 77A	VZW (Proposed)	See Below Mount	232'	See Below Cables
 (3) LNX-6512DS-VTM (6) JAHH-65B-R3B (3) B2/B66A RRHs (3) B5/B13 RRHs (3) CBC78T-DS-43-2X Diplexers (2) OVP-RC3DC-3315- PF-48 OVP Units 	VZW (existing)	(3) V-frames (existing)	232'	(6) 1 5/8" coax cables (existing) (2) HB158-1-08U8-S8J18 Fiber Optic Cable
 (2) CCI HPA-65R-BUU-H8 (1A, 1B) (1) CCI HPA-65R-BUU-H6 (1C) (3) RRUS-11 RRH Units (3) RRUS-32 B2 RRH Units (1) DC6-48-60-0-8C Surge Arrestor 	AT&T (existing)	(3) SitePro1 STK- U Mount Stiff-Arm Kits added to Existing Mounts (<i>indicated below</i>)	200'	See Below Cables
(3) Powerwave 7770 Panel Antennas	AT&T (existing)	(3) T-Arm mounts with (1) Stiff-Arm connected to Tower Structure	200'	 (6) 1 5/8" coax cables (1) Fiber Optic Cable & (2) DC Cables within 2" Flex Conduit

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
(1) 1151-3N Omni Antenna	ECI-50 NEU-32 (existing)	4' Side Arm Mount	179'	(1) 7/8" coax cable (LCF78-50JA-A7)
(1) DB586-Y Omni Antenna	ECI-51 NEU-48 (existing)	Shared with Below Mount	177'	(1) 7/8" coax cable (LCF78-50JA-A7)
(1) TTA Unit	ECI-52 NEU-49 (existing)	Shared with Below Mount	176'	(1) ½" coax cable (LDF4-50A)
(1) (inverted) DB586-Y Omni Antenna	ECI-53 NEU-50 (existing)	6' Side Arm Mount @ 176'	175'	(1) 7/8" coax cable (LCF78-50JA-A7)
(1) Small Lighted Tower Beacon Light	ECI-54 Tower (existing)	Mounted to Leg	168'	(1) 3/8" coax cable
(1) Small Lighted Tower Beacon Light	ECI-55 Tower (existing)	Mounted to Leg	165'	(1) 3/8" coax cable
(1) Small Lighted Tower Beacon Light	ECI-56 Tower (existing)	Mounted to Leg	164'	(1) 3/8" coax cable
(1) Telewave ANT220F2 Omni Antenna	Eversource (existing)	(1) SitePro1 USF- 4U Mount @ Elevation 160'	163'	(1) LCF78-50JA-A7
(1) ANT450F6 Antenna	ECI-57 CSP (existing)	Pipe Mounted to Leg	154'	(1) 7/8" coax cable (LCF78-50JA-A7)
(1) 6' Dish with Radome (PAR6-59W-PXA)	ECI-58 CSP (existing)	Pipe Mounted to Leg	154'	(1) EW63 elliptical cable
(1) Telewave ANT220F2 Omni Antenna	Eversource (existing)	(1) SitePro1 USF- 4U Mount @ Elevation 160'	163'	(1) LCF78-50JA-A7

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
(1) PD-156S Yagi Antenna	ECI-60 "DEAD" Carrier (existing)	Shared with ECI- 59 Mount	139'	(1) 7/8" coax cable (LCF78-50JA-A7)
(1) DB-212 Dipole Antenna	ECI-59 NEU-33 (existing)	4' Side Arm Mount	139'	(1) 7/8" coax cable (LCF78-50JA-A7)
(1) 3' Ice Shield (for ECI- 61 Dish)	ECI-61 CSP (existing)	Pipe Mounted to Leg	117'	N/A
(1) Ice Shield (for ECI-63 Dish)	ECI-63 CSP (existing)	Pipe Mounted to Leg	115'	N/A
(1) 3' Dish with Radome	ECI-61 CSP-13 (existing)	Pipe Mount to Leg	112'	(1) EW90 coax cable
(1) 8' "Drum" Dish Antenna w/ Shroud	ECI-63 CSP (existing)	Pipe mounted to Leg	107'	(1) EW63 Elliptical Cable
(1) PD-458 Omni Antenna	ECI-62 CTT-18 (existing)	4' Side Arm Mount	106'	(1) 7/8" coax cable (LCF78-50JA-A7)
(1) PD-688 Yagi Antenna	ECI-66 FBI-31 (existing)	Pipe Mount to Leg	94'	(1) 7/8" coax cable (LCF78-50JA-A7)

Primary Assumptions Used in the Analysis

- The tower structure's theoretical capacity not including any assessment of the condition of the tower.
- The tower carries the horizontal and vertical loads due to the weight of antennas, ice load and wind.
- Tower is properly installed and maintained.
- Tower is in plumb condition.
- Tower loading for antennas and mounts as listed in this report.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All welds are fabricated with ER-70S-6 electrodes.
- All members are assumed to be as specified in the original tower design documents.
- All members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.
- All member protective coatings are in good condition.
- All tower members were properly designed, detailed, fabricated, installed and have been properly maintained since erection.
- Any deviation from the analyzed antenna loading will require a new analysis for verification of structural adequacy.
- All coax cables should be routed as specified in section 3 of this report.
- All previous reinforcements per the below listed structural analysis and modification reports are assumed to be installed.
 - Structural report prepared by AECOM Corp for Verizon project no. VZ5-183 / 36917452 dated 8/6/15.
 - Structural report prepared by AECOM Corp for AT&T project no. SAI-095 / 60529362 dated 2/6/17.
- The tower geometry, structure member sizes and foundation information were taken from a previous structural analysis report prepared by AECOM job no. EVS-010/VZ5-217/EMP-008 60626930 dated May 21, 2020.
- The Verizon antenna mount information was taken from the mount analysis report prepared by Maser Consulting job no. 21777749A dated July 2, 2021

<u>Analysis</u>

The existing tower was analyzed using a comprehensive computer program entitled tnxTower. The program analyzes the tower, considering the worst case loading condition. The tower is considered as loaded by concentric forces along the tower, and the model assumes that the tower members are subjected to bending, axial, and shear forces.

The existing tower was analyzed for the controlling basic wind speed with no ice and the applicable wind and ice combination to determine stresses in members as per guidelines of TIA-222-H entitled "Structural Standard for Antenna Support Structures, Antennas and Small Wind Turbine Support Structures", the American Institute of Steel Construction (AISC) and the Manual of Steel Construction; Load and Resistance Factor Design (LRFD).

The controlling wind speed is determined by evaluating the local available wind speed data as provided in Appendix N of the CSBC¹ and the wind speed data available in the TIA-222-H Standard.

<u>Tower Loading</u>

Tower loading was determined by the basic wind speed as applied to projected surface areas with modification factors per TIA-222-H, gravity loads of the tower structure and its components, and the application of 1.0" radial ice on the tower structure and its components.

Load Cases:	Load Case 1; 140 mph (Risk Cat III) wind speed w/ no ice plus gravity load – used in calculation of tower stresses and rotation.	[Appendix N of the 2018 CT Building Code]
	Load Case 2; 50 mph wind speed w/ 1.00" radial ice plus gravity load – used in calculation of tower stresses.	[Annex B of TIA-222-H]
	Load Case 3; 90 mph wind speed w/ 0.5" radial ice plus gravity load – used in calculation of tower twist and sway.	[TIA-222-F used for calculation of tower twist and sway per the requirements of the CSP]

¹ The 2015 International Building Code as amended by the 2018 Connecticut State Building Code (CSBC).

<u>Tower Capacity</u>

Tower Section	Elevation	Stress Ratio (percentage of capacity)	Result
Leg (T16)	30.0' - 60.0'	65.1%	PASS
Diagonal (T15)	60.0' - 80.0'	95.5%	PASS
Horizontal (T16)	30.0' - 60.0'	91.6%	PASS

Calculated stresses were found to be within allowable limits.

• The tower combined deflection was found to be within allowable limits.

Deflection Criteria	Proposed (degrees)	Allowable (degrees)	Result
Sway (Tilt)	0.3591	n/a	n/a
Twist	0.2117	n/a	n/a
Combined	0.5708	0.75	PASS

TIA-222-F standard used for calculation of tower twist and sway per the requirements of the CSP.

NOTE: Per the Department of Energy Services and Public Protection (DESPP) / Connecticut State Police (CSP) directive, required twist and sway for this location is permitted to be measured from the highest service dishes @ 154-ft AGL. The DESPP / CSP reserves the right to update the requirements of tower Twist and Sway for this site and shall be coordinated with the Department prior to any antenna equipment installation.

Foundation and Anchors

The existing foundation consists of three (3) 7.5-ft diameter x 35.5-ft long reinforced concrete caissons. The base of the tower is connected to the foundation by means of (24) 1.00" \emptyset anchor bolts per leg embedded into the concrete foundation structure.

 The tower reactions developed from the governing Load Case were used in the verification of the foundation and anchor bolts:

Load Effect	Proposed Tower Reactions
Leg Shear	130 kips
Leg Compression	945 kips
Leg Tension	743 kips
Base Moment	31,307 ft-kips
Base Shear	220 kips

• The anchor bolts were found to be within allowable limits.

Tower Section	Component	Stress Ratio (percentage of capacity)	Result
Anchor Bolts	Combined Compression and Shear	53.5%	PASS

• The foundation was found to be within allowable limits.

Foundation	Design Limit	(percentage of capacity)	Result
(3) Reinforced	Uplift	82%	PASS
Concrete Caisson	Bearing	86%	PASS

<u>Conclusion</u>

This analysis shows that the subject tower **<u>is adequate</u>** to support the proposed antenna configuration.

The analysis is based, in part, on the information provided to this office by Verizon and the CSP. If the existing conditions are different than the information in this report, Centek Engineering, Inc. must be contacted for resolution of any potential issues.

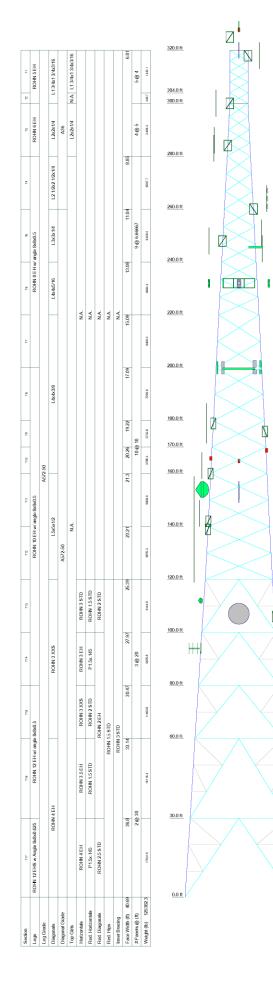
Please feel free to call with any questions or comments.

Respectfully Submitted by:

Timothy J. Lynn, PE Structural Engineer

<u>Standard Conditions for Furnishing of</u> <u>Professional Engineering Services on</u> <u>Existing Structures</u>

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:


- Information supplied by the client regarding the structure itself, its foundations, the soil
 conditions, the antenna and feed line loading on the structure and its components, or
 other relevant information.
- Information from the field and/or drawings in the possession of Centek Engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to Centek Engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an uncorroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to meet any other codes or requirements unless explicitly agreed in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement. In the absence of information to the contrary, all work will be performed in accordance with the latest revision of ANSI/ASCE10 & ANSI/EIA-222
- All services performed, results obtained, and recommendations made are in accordance with generally accepted engineering principles and practices. Centek Engineering, Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

<u>GENERAL DESCRIPTION OF STRUCTURAL</u> <u>ANALYSIS PROGRAM</u>

tnxTower, is an integrated structural analysis and design software package for Designed specifically for the telecommunications industry, tnxTower, formerly RISA Tower, automates much of the tower analysis and design required by the TIA/EIA 222 Standard.

tnxTower Features:

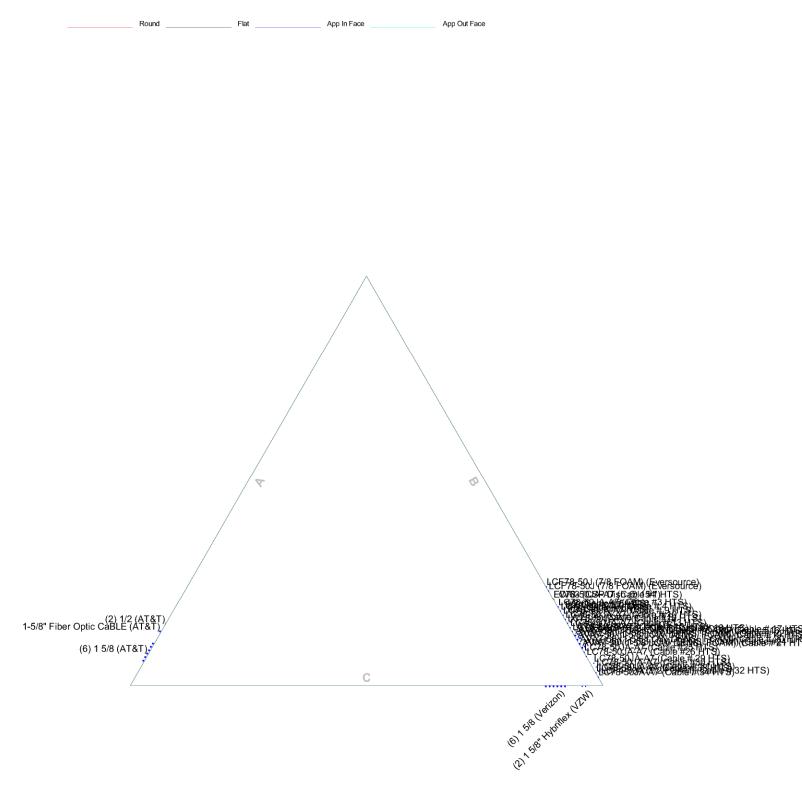
- tnxTower can analyze and design 3- and 4-sided guyed towers, 3- and 4-sided selfsupporting towers and either round or tapered ground mounted poles with or without guys.
- The program analyzes towers using the TIA-222-G (2005) standard or any of the previous TIA/EIA standards back to RS-222 (1959). Steel design is checked using the AISC ASD 9th Edition or the AISC LRFD specifications.
- Linear and non-linear (P-delta) analyses can be used in determining displacements and forces in the structure. Wind pressures and forces are automatically calculated.
- Extensive graphics plots include material take-off, shear-moment, leg compression, displacement, twist, feed line, guy anchor and stress plots.
- tnxTower contains unique features such as True Cable behavior, hog rod take-up, foundation stiffness and much more.

 \triangle

TYPE	ELEVATION	TYPE	ELEVATION
Lightning Rod 5/8x4' (Lightning Rod)	329	CBC78T-DS-43-2X Diplexer (Verizon)	232
Dual Lights (Beacon)	327	CBC78T-DS-43-2X Diplexer (Verizon)	232
PD128-1 (ECI-1)	325	PIROD 12 Lightweight T-Frame (ATI)	200
6' Side Mount Standoff (ECI-1)	325	PiROD 12' Lightweight T-Frame (ATT)	200
BA1012-0 (ECI-2)	320	PiROD 12 Lightweight T-Frame (ATT)	200
6' Side Mount Standoff (ECI-2)	320	7770.00 (ATL)	200
ANT 450F6 (ECI-3)	318	HPA-65R-BUU-H8 Panel (ATT)	200
4%4" Pipe Mount (ECI-3)	318	RRUS-32 (ATI)	200
SC479-HF1LDF (ECI-4)	300	RRUS-11 (ATL)	200
6' Side Mount Standoff (ECI-4)	300	7770.00 (ATI)	200
PD340-1 (ECI-5)	290	HPA-65R-BUU-H8 Panel (ATT)	200
6' Side Mount Standoff (ECI-5)	290	RRUS-32 (ATI)	200
DB809T3E-XC (ECI-6)	286	RRUS-11 (ATI)	200
6' Side Mount Standoff (ECI-7)	284	7770.00 (ATI)	200
SC479-HF1LDF(D00I-E6085) (Inverted) (ECI-7)	283	HPA-65R-BUU-H6 Panel (ATT)	200
PD440-2 (ECI-8)	264	RRUS-32 (ATI)	200
6' Side Mount Standoff (ECI-8)	260	RRUS-11 (ATI)	200
SC479-HF1LDF (ECI-10)	251	DC6-48-60-0-8C Squid / Surge Arrestor (ATI)	200
PD1142-1 (ECI-14)	248	STK-U Stiffener Side Arm Attachment (ATI)	200
6' Side Mount Standoff (ECI-14)	248	STK-U Stiffener Side Arm Attachment (AT1)	200
430-94C-09168-M-11048 TTA (ECI-11)	247	STK-U Stiffener Side Arm Attachment (ATT)	200
Sabre T-Boom (1) (ECI-10,11,12,13)	246	STK-U Stiffener Side Arm Attachment (ATI)	200
SC479-HF1LDF(D00I-E6085) (Inverted) (ECI-13)	245	STK-U Stiffener Side Arm Attachment (ATT)	200
SC479-HF1LDF(D00I-E6085) (Inverted) (ECI-12)	245	STK-U Stiffener Side Arm Attachment (ATT)	200
6' Side Mount Standoff (ECI-15)	238	Pirod 4' Side Mount Standoff (1) (ECI-50)	179
531-70HD Exposed Dipole Antenna (ECI-15)	238	1151-3 (ECI-50)	179
Valmont VFA-10-U V-Frame (Verizon)	232	DB586-Y (ECI-51)	177
Valmont VFA-10-U V-Frame (Verizon)	232	430-94C-09168-M-11048 TTA (ECI-52)	176
Valmont VFA-10-U V-Frame (Verizon)	232	Pirod 4 Side Mount Standoff (1) (ECI-53,52,51)	176
JAHH-65B-R3B Panel Antenna (Verizon-AWS)	232	DB586-Y (inverted) (ECI-53)	175
JAHH-65B-R3B Panel Antenna (Verizon-PCS)	232	L-810 Obstruction Lighting (1) (ECI-54)	168
LNX-6512DS-VTM (Verizon-850)	232	L-810 Obstruction Lighting (1) (ECI-55)	165
MT6407-77A (Verizon - Proposed)	232	L-810 Obstruction Lighting (1) (ECI-56)	164
BSAMNT-SBS-2-2 (JAHH Antenna Bracket (for 2)) (Verizon-PCS/AWS)	232	Telewave ANT220F2 - Omni Antenna (Eversource) Sitepro1 USF-4U Mount Assembly (Ca = 1.4	163 160
B2/B66A RRH (Verizon RRH)	232	assumed) (Eversource)	
B5/B13 RRH (Verizon RRH)	232	5'3"x4" Pipe Mount (ECI-58a (Dish Support))	154
DB-B1-6C-12AB-0Z / DC-3315-PF-48 Dist. Box	232	Commscope PAR6-59W-PXA/A (ECI-58)	154
(Verizon)		ANT450F6 (ECI-57)	153
JAHH-65B-R3B Panel Antenna (Verizon-AWS)	232	5'3"x4" Pipe Mount (ECI-57)	153
JAHH-65B-R3B Panel Antenna (Verizon-PCS)	232	Telewave ANT220F2 - Omni Antenna (Eversource)	145
LNX-6512DS-VTM (Verizon-850) MT6407-77A (Verizon - Proposed)	232	Sitepro1 USF-4U Mount Assembly (Ca = 1.4 assumed) (Eversource)	142
BSAMNT-SBS-2-2 (JAHH Antenna Bracket (for 2))	232	DB212-1 (ECI-59)	139
(Verizon-PCS/AWS)		PD1568 (ECI-60)	139
B2/B66A RRH (Verizon RRH)	232	4" Side Mount Standoff (ECI-60_59)	139
B5/B13 RRH (Verizon RRH) DB-B1-6C-12AB-0Z / DC-3315-PF-48 Dist. Box	232	3' Wide Ice Shield (for Dish Antennas) (Assume Ca=2.0) (ECI-61a)	117
(Verizon) JAHH-65B-R3B Panel Antenna (Verizon-AWS)	232	8' Wide Ice Shield (for Dish Antennas) (Assume Ca=2.0) (ECI-63a (Dish Ice Shield))	115
JAHH-65B-R3B Panel Antenna (Verizon-AWS) JAHH-65B-R3B Panel Antenna (Verizon-PCS)	232	5'3'x4" Pipe Mount (ECI-61a (Dish Support))	112
LNX-6512DS-VTM (Verizon-850)	232	Andrew 2' wRadome (ECI-61)	112
MT6407-77A (Verizon - Proposed)	232	PA8-65 (ECI-63)	107
M16407-77A (venzon - Proposed) BSAMNT-SBS-2-2 (JAHH Antenna Bracket (for 2))	232	5'3"x4" Pipe Mount (ECI-63 (Dish Support))	107
(Verizon-PCS/AWS)		Pirod 4' Side Mount Standoff (1) (ECI-62)	107
B2/B66A RRH (Verizon RRH)	232	PD458 (ECI-62)	106
B5/B13 RRH (Verizon RRH)	232	PD688S-4 (ECI-66)	94
CBC78T-DS-43-2X Diplexer (Verizon)	232	4%4" Pipe Mount (ECI-66)	94

GRADE Fy A572-50 50 ksi Fu GRADE Fy 65 ksi A36 36 ksi Fu 58 ksi

Tower designed for Exposure C to the TIA-222-H Standard.
 Tower designed for a 140 mph basic wind in accordance with the TIA-222-H Standard.
 Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
 Deflections are based upon a 60 mph wind.
 Topographic Category III.
 Topographic Category With Crest Height of 66.50 ft
 Poleta Displacement Effects are not applicable to this tower for this case (TIA-222-H Section 3.5)
 TOWER RATING: 95.5%

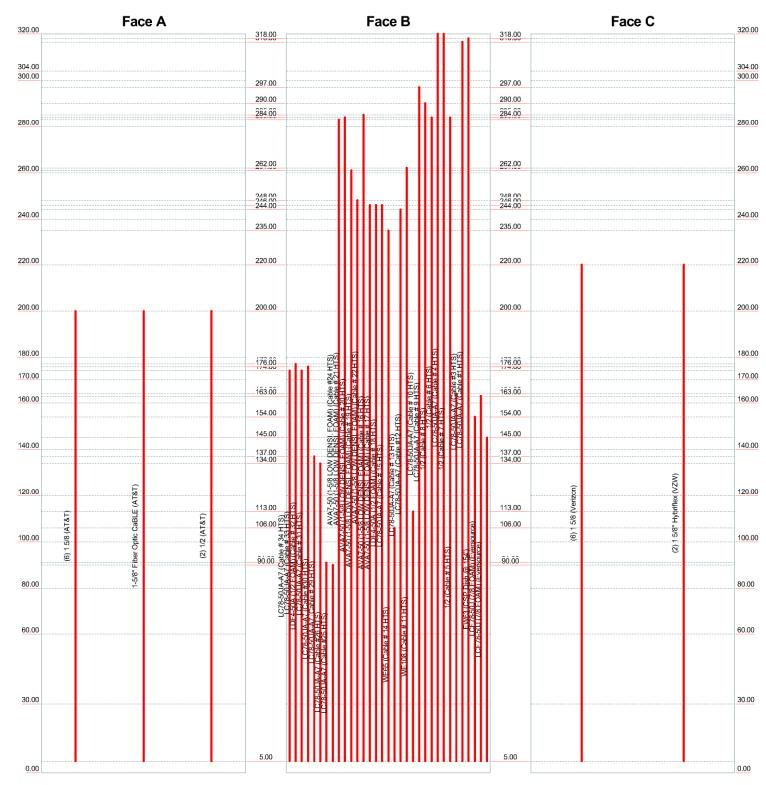

ALL REACTIONS ARE FACTORED MAX. CORNER REACTIONS AT BASE: DOWN: 944805 lb SHEAR: 129483 lb UPLIFT: -742777 lb SHEAR: 106558 lb AXIAL 324845 lb SHEAR 45988 lb_ MOMENT 6810 kip-ft .1 TORQUE 151 kip-ft 50 mph WIND - 1.0000 in ICE

50 mph WIND - 1.0000 in ICE
AXIAL 169110 lb
16911016
SHEAR 219837 lb MOMENT 31307 kip-ft
TODOUS 070 Ha

TORQUE	379 Kip-i	1
REACTIONS -	140 mph	WIND

Centek Engineering Inc.	^{Job:} 21007.82 - Colches	ter	
63-2 North Branford Rd.	Project: 320-ft Lattice Tower (0	CSP #50)	
Branford, CT 06405	Client: Verizon	Drawn by: TJL	App'd:
Phone: (203) 488-0580	Code: TIA-222-H	Date: 03/24/22	Scale: NTS
	Path: June 1070 Will Grow Chill Instanting of Dar	watering and held or in 2003 15 124 EM, aCP Update	Dwg No. E-1

Feed Line Plan



Centek Engineering Inc.	^{Job:} 21007.82 - Colch	ester	
63-2 North Branford Rd.	Project: 320-ft Lattice Towe	r (CSP #50)	
	^{Client:} Verizon	Drawn by: TJL	App'd:
Phone: (203) 488-0580	^{Code:} TIA-222-H	Date: 03/24/22	Scale: NTS
	Path: JUobe2100700 WVS2_Coldhadar CT105_Structure/Bedu	p Documentation TratowarMod Tostion 20200515_VZWEMP_wG8P Update	Dwg No. E-7

Feed Line Distribution Chart

0' - 320' App In Face _____ App Out Face

Truss Leg

Centek Engineering Inc.	^{Job:} 21007.82 - Colches	ter	
63-2 North Branford Rd.	Project: 320-ft Lattice Tower (CSP #50)		
	Client: Verizon	Drawn by: TJL	App'd:
Phone: (203) 488-0580	Code: TIA-222-H	Date: 03/24/22	Scale: NTS
FAX: (203) 488-8587	Path: J.J.obid2100700 WVS2_Coldwater CT105_Structural/Bedup Docum	entation\TrutowarMod floation 20200615_VZWEMP_wG8P Update e	Dwg No. E-7

Elevation (ft)

Round

Flat

Centek Engineering Inc. 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 320.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 6.81 ft at the top and 40.69 ft at the base.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower base elevation above sea level: 0.00 ft.

Basic wind speed of 140 mph.

Risk Category III.

Exposure Category C.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 3.

Crest Height: 66.50 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

P-Delta Displacement Effects are not applicable to this tower for this case (TIA-222-H Section 3.5).

Pressures are calculated at each section.

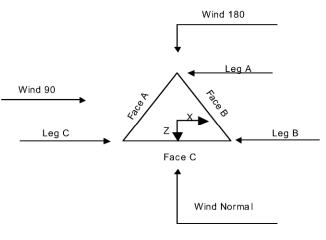
Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- Use Code Stress Ratios
- Use Code Safety Factors Guys Escalate Ice Always Use Max Kz
- Use Special Wind Profile Include Bolts In Member Capacity
- Leg Bolts Are At Top Of Section √ Secondary Horizontal Braces Leg
- Use Diamond Inner Bracing (4 Sided) √ SR Members Have Cut Ends
- SR Members Are Concentric


Distribute Leg Loads As Uniform

- Assume Legs Pinned
- $\sqrt{}$ Assume Rigid Index Plate $\sqrt{}$ Use Clear Spans For Wind Area
- $\sqrt{\text{Use Clear Spans For Wind Are}}$
- Retension Guys To Initial Tension ↓ Bypass Mast Stability Checks Use Azimuth Dish Coefficients
- Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination
- ✓ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

- Use ASCE 10 X-Brace Ly Rules
- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- $\sqrt{\text{SR Leg Bolts Resist Compression}}$
- √ All Leg Panels Have Same Allowable Offset Girt At Foundation
- ✓ Consider Feed Line Torque
- √ Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

tnxTower	Job 21007.82 - Colchester	Page 2 of 96
Centek Engineering Inc. 63-2 North Branford Rd.	Project 320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client Verizon	Designed by TJL

<u>Triangular Tower</u>

Tower Section Geometry

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	_
	ft			ft		ft
T1	320.00-304.00			6.81	1	16.00
T2	304.00-300.00			6.81	1	4.00
Т3	300.00-280.00			6.81	1	20.00
T4	280.00-260.00			8.85	1	20.00
T5	260.00-240.00			11.04	1	20.00
T6	240.00-220.00			13.08	1	20.00
T 7	220.00-200.00			15.09	1	20.00
T8	200.00-180.00			17.09	1	20.00
Т9	180.00-170.00			19.22	1	10.00
T10	170.00-160.00			20.26	1	10.00
T11	160.00-140.00			21.30	1	20.00
T12	140.00-120.00			23.21	1	20.00
T13	120.00-100.00			25.39	1	20.00
T14	100.00-80.00			27.97	1	20.00
T15	80.00-60.00			30.47	1	20.00
T16	60.00-30.00			33.14	1	30.00
T17	30.00-0.00			36.80	1	30.00

Tower Section Geometry (cont'd)

tn:

Centek 2 63-2 N Bran Phone FAX:

xTower	Job 21007.82 - Colchester	Page 3 of 96
k Engineering Inc. North Branford Rd.	Project 320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
anford, CT 06405 me: (203) 488-0580 X: (203) 488-8587	Client Verizon	Designed by TJL

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girl
Section	Elevation	Spacing	Type	K Brace	Horizontals	Ôffset	Offset
				End			
	ft	ft		Panels		in	in
T1	320.00-304.00	4.00	X Brace	No	No	0.0000	0.0000
T2	304.00-300.00	4.00	X Brace	No	No	0.0000	0.0000
Т3	300.00-280.00	5.00	X Brace	No	No	0.0000	0.0000
T4	280.00-260.00	6.67	X Brace	No	No	0.0000	0.0000
T5	260.00-240.00	6.67	X Brace	No	No	0.0000	0.0000
T6	240.00-220.00	6.67	X Brace	No	No	0.0000	0.0000
T7	220.00-200.00	10.00	X Brace	No	No	0.0000	0.0000
T8	200.00-180.00	10.00	X Brace	No	No	0.0000	0.0000
Т9	180.00-170.00	10.00	X Brace	No	No	0.0000	0.0000
T10	170.00-160.00	10.00	X Brace	No	No	0.0000	0.0000
T11	160.00-140.00	10.00	X Brace	No	No	0.0000	0.0000
T12	140.00-120.00	10.00	X Brace	No	No	0.0000	0.0000
T13	120.00-100.00	20.00	K1 Down	No	Yes	0.0000	0.0000
T14	100.00-80.00	20.00	K1 Down	No	Yes	0.0000	0.0000
T15	80.00-60.00	20.00	K1 Down	No	Yes	0.0000	0.0000
T16	60.00-30.00	30.00	K2 Down	No	Yes	0.0000	0.0000
T17	30.00-0.00	30.00	K2 Down	No	Yes	0.0000	0.0000

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation ft	Туре	Size	Grade	Type	Size	Grade
<u>л</u> Г1 320.00-304.00	Pipe	ROHN 5 EH	A572-50	Equal Angle	L1 3/4x1 3/4x3/16	A36
11 520.00 50 1.00	ripe	Rom () En	(50 ksi)	Equal Thiste	EI 5, IAI 5, IA5/10	(36 ksi)
Г2 304.00-300.00	Pipe	ROHN 5 EH	A572-50	Equal Angle	L1 3/4x1 3/4x3/16	A36
2 50 1.00 500.00	1 ipe	itolii () Eli	(50 ksi)	Equal Thighe		(36 ksi)
ГЗ 300.00-280.00	Pipe	ROHN 6 EH	A572-50	Equal Angle	L2x2x1/4	A36
	- ·F ·		(50 ksi)	-1		(36 ksi)
Г4 280.00-260.00	Arbitrary Shape	ROHN 8 EH w/ angle 8x8x0.5	A572-50	Equal Angle	L2 1/2x2 1/2x1/4	A36
			(50 ksi)	-1		(36 ksi)
F5 260.00-240.00	Arbitrary Shape	ROHN 8 EH w/ angle 8x8x0.5	À572-50	Equal Angle	L3x3x1/4	A572-50
	5 1	5	(50 ksi)	1 0		(50 ksi)
Г6 240.00-220.00	Arbitrary Shape	ROHN 8 EH w/ angle 8x8x0.5	À572-50	Equal Angle	L4x4x5/16	À572-50
	2 1	C	(50 ksi)	1 0		(50 ksi)
Г7 220.00-200.00	Arbitrary Shape	ROHN 8 EH w/ angle 8x8x0.5	A572-50	Equal Angle	L4x4x3/8	A572-50
	5 1	0	(50 ksi)	1 0		(50 ksi)
F8 200.00-180.00	Arbitrary Shape	ROHN 10 EH w/ angle	À572-50	Equal Angle	L4x4x3/8	À572-50
	<i>2</i> 1	8x8x0.5	(50 ksi)	1 0		(50 ksi)
Г9 180.00-170.00	Arbitrary Shape	ROHN 10 EH w/ angle	A572-50	Equal Angle	L4x4x3/8	A572-50
		8x8x0.5	(50 ksi)			(50 ksi)
T10	Arbitrary Shape	ROHN 10 EH w/ angle	A572-50	Equal Angle	L4x4x3/8	A572-50
170.00-160.00	•	8x8x0.5	(50 ksi)			(50 ksi)
T11	Arbitrary Shape	ROHN 10 EH w/ angle	A572-50	Equal Angle	L5x5x1/2	A572-50
160.00-140.00		8x8x0.5	(50 ksi)			(50 ksi)
T12	Arbitrary Shape	ROHN 10 EH w/ angle	A572-50	Equal Angle	L5x5x1/2	A572-50
140.00-120.00	• •	8x8x0.5	(50 ksi)			(50 ksi)
T13	Arbitrary Shape	ROHN 10 EH w/ angle	A572-50	Pipe	ROHN 3 XXS	A572-50
120.00-100.00		8x8x0.5	(50 ksi)			(50 ksi)
Г14 100.00-80.00	Arbitrary Shape	ROHN 10 EH w/ angle	A572-50	Pipe	ROHN 3 XXS	A572-50
		8x8x0.5	(50 ksi)			(50 ksi)
T15 80.00-60.00	Arbitrary Shape	ROHN 12 EH w/ angle	A572-50	Pipe	ROHN 3 XXS	A572-50
		8x8x0.5	(50 ksi)			(50 ksi)
T16 60.00-30.00	Arbitrary Shape	ROHN 12 EH w/ angle	A572-50	Pipe	ROHN 4 EH	A572-50
		8x8x0.5	(50 ksi)			(50 ksi)
T17 30.00-0.00	Arbitrary Shape	ROHN 12 EHS w Angle	A572-50	Pipe	ROHN 4 EH	A572-50

traneTowner	Job		Page
tnxTower		21007.82 - Colchester	4 of 96
Centek Engineering Inc.	Project		Date
63-2 North Branford Rd.		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon	Designed by TJL

Tower Elevation ft	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
		8x8x0.625	(50 ksi)			(50 ksi)

Tower Section Geometry (cont'd)

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 320.00-304.00	Equal Angle	L1 3/4x1 3/4x3/16	A36 (36 ksi)	Solid Round		A36 (36 ksi)
T3 300.00-280.00	Equal Angle	L2x2x1/4	A36 (36 ksi)	Solid Round		A36 (36 ksi)

Tower Section Geometry (cont'd)							
Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal
Elevation	of	Туре	Size	Grade	Type	Size	Grade
Δ	Mid Girts						
<u> </u>	None	Flat Bar		A36	Pipe	ROHN 3 STD	A572-50
120.00-100.00	None	Flat Dal		(36 ksi)	Tipe	KOIIN 5 51D	(50 ksi)
Г14 100.00-80.00	None	Flat Bar		A36	Pipe	ROHN 3 EH	A572-50
				(36 ksi)			(50 ksi)
T15 80.00-60.00	None	Flat Bar		A36	Pipe	ROHN 3 XXS	A572-50
				(36 ksi)			(50 ksi)
T16 60.00-30.00	None	Flat Bar		A36	Pipe	ROHN 3.5 EH	A572-50
				(36 ksi)			(50 ksi)
T17 30.00-0.00	None	Flat Bar		A36	Pipe	ROHN 4 EH	A572-50
				(36 ksi)			(50 ksi)

Tower	Secondary	Secondary Horizontal	Secondary	Inner Bracing	Inner Bracing Size	Inner Bracing
Elevation	Horizontal Type	Size	Horizontal Grade	Туре		Grade
ft						
T13	Pipe		A572-50	Pipe	ROHN 3 STD	A572-50
120.00-100.00	-		(50 ksi)	-		(50 ksi)
T14 100.00-80.00	Pipe		A572-50	Pipe	ROHN 3 STD	A572-50
			(50 ksi)			(50 ksi)
T15 80.00-60.00	Pipe		A572-50	Pipe	ROHN 3 STD	A572-50
			(50 ksi)	•		(50 ksi)
T16 60.00-30.00	Pipe		A572-50	Pipe	ROHN 3 STD	A572-50
	•		(50 ksi)	•		(50 ksi)
T17 30.00-0.00	Pipe		A572-50	Pipe	ROHN 3 STD	A572-50
			(50 ksi)	•		(50 ksi)

tnxTower

Job		Page
	21007.82 - Colchester	5 of 96
Project		Date
	320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
Client		Designed by
	Verizon	TJL

Tower Section Geometry (cont'd)

Tower	Redundant		Redundant	Redundant	K Factor
Elevation	Bracing		Туре	Size	
	Grade				
ft					
T13	A572-50	Horizontal (1)	Pipe	ROHN 1.5 STD	1
120.00-100.00	(50 ksi)	Diagonal (1)	Pipe	ROHN 2 STD	1
		Hip (1)	Pipe	ROHN 1.5 STD	1
		Hip Diagonal (1)	Pipe	ROHN 2.5 STD	1
T14	A572-50	Horizontal (1)	Pipe	P1.5x.145	1
100.00-80.00	(50 ksi)	Diagonal (1)	Pipe	ROHN 2 EH	1
		Hip (1)	Pipe	ROHN 1.5 STD	1
		Hip Diagonal (1)	Pipe	ROHN 2.5 STD	1
T15	A572-50	Horizontal (1)	Pipe	ROHN 2 STD	1
80.00-60.00	(50 ksi)	Diagonal (1)	Pipe	ROHN 2 EH	1
		Hip (1)	Pipe	ROHN 1.5 STD	1
		Hip Diagonal (1)	Pipe	ROHN 3 STD	1
T16	A572-50	Horizontal (1)	Pipe	ROHN 1.5 STD	1
60.00-30.00	(50 ksi)	Horizontal (2)		ROHN 2 XXS	
		Diagonal (1)	Pipe	ROHN 2 EH	1
		Diagonal (2)		ROHN 2.5 STD	
		Hip (1)	Pipe	ROHN 1.5 STD	1
		Hip (2)		ROHN 2 STD	
		Hip Diagonal (1)	Pipe	ROHN 2 STD	1
		Hip Diagonal (2)		ROHN 2 STD	1
T17	A572-50	Horizontal (1)	Pipe	P1.5x.145	1
30.00-0.00	(50 ksi)	Horizontal (2)		ROHN 2.5 EH	
		Diagonal (1)	Pipe	ROHN 2.5 STD	1
		Diagonal (2)		ROHN 2.5 STD	
		Hip (1)	Pipe	ROHN 1.5 STD	1
		Hip(2)	-	ROHN 2 STD	
		Hip Diagonal (1)	Pipe	ROHN 2.5 STD	1
		Hip Diagonal (2)	-	ROHN 2.5 STD	1

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle		Double Angle
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft^2	in					in	in	in
T1	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
320.00-304.00			(36 ksi)						
T2	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
304.00-300.00			(36 ksi)						
T3	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
300.00-280.00			(36 ksi)						
T4	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
280.00-260.00			(36 ksi)						
T5	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
260.00-240.00			(36 ksi)						
T6	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
240.00-220.00			(36 ksi)						
T 7	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
220.00-200.00			(36 ksi)						
T8	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000

tnxTower

Centek Engineering Inc. 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21007.82 - Colchester	6 of 96
Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
Client	Verizon	Designed by TJL

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft^2	in					in	in	in
200.00-180.00			(36 ksi)						
Т9	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
180.00-170.00			(36 ksi)						
T10	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
170.00-160.00			(36 ksi)						
T11	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
160.00-140.00			(36 ksi)						
T12	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
140.00-120.00			(36 ksi)						
T13	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
120.00-100.00			(36 ksi)						
T14	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
100.00-80.00			(36 ksi)						
T15	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
80.00-60.00			(36 ksi)						
T16	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
60.00-30.00			(36 ksi)						
T17 30.00-0.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						

			K Factors ¹									
Tower	Calc	Calc	Legs	Х	K	Single	Girts	Horiz.	Sec.	Inner		
Elevation	K	K		Brace	Brace	Diags			Horiz.	Brace		
	Single	Solid		Diags	Diags							
	Angles	Rounds		X	X	X	X	X	X	X		
ft				Y	Y	Y	Y	Y	Y	Y		
T1	Yes	No	1	1	1	1	1	1	1	1		
320.00-304.00				1	1	1	1	1	1	1		
T2	Yes	No	1	1	1	1	1	1	1	1		
304.00-300.00				1	1	1	1	1	1	1		
T3	Yes	No	1	1	1	1	1	1	1	1		
300.00-280.00				1	1	1	1	1	1	1		
T4	Yes	No	1	1	1	1	1	1	1	1		
280.00-260.00				1	1	1	1	1	1	1		
T5	Yes	No	1	1	1	1	1	1	1	1		
260.00-240.00				1	1	1	1	1	1	1		
T6	Yes	No	1	1	1	1	1	1	1	1		
240.00-220.00				1	1	1	1	1	1	1		
T7	Yes	No	1	1	1	1	1	1	1	1		
220.00-200.00				1	1	1	1	1	1	1		
T8	Yes	No	1	1	1	1	1	1	1	1		
200.00-180.00				1	1	1	1	1	1	1		
Т9	Yes	No	1	1	1	1	1	1	1	1		
180.00-170.00				1	1	1	1	1	1	1		
T10	Yes	No	1	1	1	1	1	1	1	1		
170.00-160.00				1	1	1	1	1	1	1		
T11	Yes	No	1	1	1	1	1	1	1	1		
160.00-140.00			_	1	1	1	1	1	1	1		
T12	Yes	No	1	1	1	1	1	1	1	1		
140.00-120.00			*	î	î	1	î	î	î	Î		
T13	No	No	1	1	1	1	1	1	ĩ	1		
120.00-100.00	1.0	1.0	1	Î	1	1	1	1	1	1		
T14	No	No	1	1	1	1	1	1	1	1		

Anna Tanu an	Job		Page
tnxTower		21007.82 - Colchester	7 of 96
Centek Engineering Inc. 63-2 North Branford Rd.	Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon	Designed by TJL

						K Fac	ctors ¹			
Tower	Calc	Calc	Legs	Х	K	Single	Girts	Horiz.	Sec.	Inner
Elevation	K	K		Brace	Brace	Diags			Horiz.	Brace
	Single	Solid		Diags	Diags					
	Angles	Rounds		X	X	X	X	X	X	X
ft				Y	Y	Y	Y	Y	Y	Y
100.00-80.00				1	1	1	1	1	1	1
T15	No	No	1	1	1	1	1	1	1	1
80.00-60.00				1	1	1	1	1	1	1
T16	No	No	1	1	1	1	1	1	1	1
60.00-30.00				1	1	1	1	1	1	1
T17	No	No	1	1	1	1	1	1	1	1
30.00-0.00				1	1	1	1	1	1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

<i>T</i>	T		D	7	C		D	<u><u> </u></u>	161	<u>a.</u>	1 11			
Tower Elevation ft	Leg		Diago	nal	Top G	firt	Botton	n Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontal
v	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 320.00-304.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T2 304.00-300.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T3 300.00-280.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T4 280.00-260.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 260.00-240.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
260.00-240.00 T6 240.00-220.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 220.00-200.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
Т8	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
200.00-180.00 T9	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
180.00-170.00 T10	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
170.00-160.00 T11	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
160.00-140.00 T12	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
140.00-120.00 T13	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
120.00-100.00 T14	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
100.00-80.00 T15	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
80.00-60.00 T16	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
60.00-30.00 T17 30.00-0.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

tnxTower

	Job		Page
•		21007.82 - Colchester	8 of 96
Inc.	Project		Date
Rd.		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
5 80 7	Client	Verizon	Designed by TJL

Tower Elevation ft	Redund Horizo		Reduna Diagoi		Redund Sub-Diag		Redur Sub-Hor		Redundan	t Vertical	Redunde	ant Hip	Redunda Diago	1
2	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
320.00-304.00 T2	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
304.00-300.00 T3 300.00-280.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T4 280.00-260.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 260.00-240.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 240.00-220.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 220.00-200.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 200.00-180.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 180.00-170.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T10 170.00-160.00 T11	0.0000	0.75 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
111 160.00-140.00 T12	0.0000	0.75	0.0000	0.75 0.75	0.0000	0.75 0.75	0.0000	0.75 0.75	0.0000	0.75 0.75	0.0000	0.75 0.75	0.0000	0.75 0.75
112 140.00-120.00 T13	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
120.00-100.00 T14	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
114 100.00-80.00 T15	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
80.00-60.00 T16	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
60.00-30.00 T17 30.00-0.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Elevation	Leg Connection	Leg		Diagona		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Hor	izontal
ft	Type														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
		in		in		in		in		in		in		in	
T1	Flange	1.0000	0	0.6250	1	0.6250	0	0.0000	0	0.6250	0	0.6250	0	0.6250	0
320.00-304.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T2	Flange	1.0000	6	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
304.00-300.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T3	Flange	1.0000	8	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
300.00-280.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T4	Flange	1.0000	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
280.00-260.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
Т5	Flange	1.0000	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
260.00-240.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	

tnxTowe

	Job		Page
er		21007.82 - Colchester	9 of 96
ing Inc.	Project		Date
ord Rd.		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
5405 2-0580 8587	Client	Verizon	Designed by TJL

Tower	Leg	Leg		Diago	nal	Top G	irt	Bottom	Girt	Mid G	irt	Long Horn	zontal	Short Hor	izontal
Elevation	Connection														
ft	Type														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T6	Flange	1.0000	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
240.00-220.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T7	Flange	1.0000	12	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
220.00-200.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T8	Flange	1.0000	12	0.8750	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
200.00-180.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
Т9	Flange	1.0000	12	0.8750	1	0.6250	0	0.0000	0	0.6250	0	0.6250	0	0.6250	0
180.00-170.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T10	Flange	1.0000	0	0.8750	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
170.00-160.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T11	Flange	1.0000	12	0.8750	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
160.00-140.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T12	Flange	1.0000	12	0.8750	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
140.00-120.00		A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T13	Flange	1.0000	12	0.7500	3	0.6250	0	0.6250	0	0.6250	0	0.7500	2	0.6250	0
120.00-100.00		A325N		A325X		A325N		A325N		A325N		A325X		A325N	
T14	Flange	1.0000	16	0.7500	3	0.6250	0	0.6250	0	0.6250	0	0.7500	2	0.6250	0
100.00-80.00		A325N		A325X		A325N		A325N		A325N		A325X		A325N	
T15	Flange	1.0000	16	0.7500	3	0.6250	0	0.6250	0	0.6250	0	0.7500	2	0.6250	0
80.00-60.00		A325N		A325X		A325N		A325N		A325N		A325X		A325N	
T16	Flange	1.0000	16	0.8750	3	0.6250	0	0.6250	0	0.6250	0	0.7500	2	0.6250	0
60.00-30.00		A325N		A325X		A325N		A325N		A325N		A325X		A325N	
T17 30.00-0.00	Flange	1.0000	24	0.8750	3	0.6250	0	0.6250	0	0.6250	0	0.7500	2	0.6250	0
		A325N		A325X		A325N		A325N		A325N		A325X		A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	17												
		Allow	Exclude	Component	Placement	Face	Lateral	#	#	Clear		Perimeter	Weight
	or	Shield	From	Туре		Offset	Offset				Diameter		
	Leg		Torque		ft	in	(Frac FW)		Row	in	in	in	plf
			Calculation										
1 5/8	А	No	No	Ar (CaAa)	200.00 -	0.0000	-0.42	6	6	1.9800	1.9800		1.04
(AT&T)					5.00								
1 5/8	С	No	No	Ar (CaAa)	220.00 -	0.0000	-0.4	6	6	1.9800	1.9800		1.04
(Verizon)					5.00								
1 5/8"	С	No	No	Ar (CaAa)	220.00 -	0.0000	-0.46	2	2	1.6000	1.6000		1.85
Hybriflex					5.00								
(VZW)													
LC78-50JA-A	В	No	No	Ar (CaAa)	174.00 -	0.0000	0.48	1	1	1.0900	1.0900		0.28
7					5.00								
(Cable # 34													
HTS)													
LC78-50JA-A	в	No	No	Ar (CaAa)	177.00 -	0.0000	0.47	1	1	1.0900	1.0900		0.28
7					5.00								
(Cable # 33													
HTS)													
LDF4-50A	В	No	No	Ar (CaAa)	174.00 -	3.0000	0.48	1	1	0.6300	0.6300		0.15
(1/2 FOAM)					5.00								
(Cable # 32													
HTS)													
LC78-50JA-A	В	No	No	Ar (CaAa)	176.00 -	3.0000	0.47	1	1	1.0900	1.0900		0.28
7					5.00								
(Cable # 31													
HTS)													

A	Job		Page
tnxTower		21007.82 - Colchester	10 of 96
Centek Engineering Inc.	Project	200 ft Lotting Towns (200 #50)	Date
63-2 North Branford Rd.		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon	Designed by TJL

Description	Face or Leg	Allow Shield	Exclude From Torque	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
			Calculation										
LC78-50JA-A 7 (Cable #30	В	No	No	Ar (CaAa)	137.00 - 5.00	3.0000	0.46	1	1	1.0900	1.0900		0.28
(Cable #30 HTS)													
LC78-50ĴA-A 7	В	No	No	Ar (CaAa)	134.00 - 5.00	3.0000	0.45	1	1	1.0900	1.0900		0.28
(Cable # 29													
HTS) LC78-50JA-A 7	в	No	No	Ar (CaAa)	91.00 - 5.00	0.0000	0.43	1	1	1.0900	1.0900		0.28
(Cable #26													
HTS)	р	Na	N	$\mathbf{A} = (\mathbf{C} = \mathbf{A} = \mathbf{c})$	00.00 5.00	0.0000	0.42	1	1	1 0000	1 0000		0.20
C78-50JA-A 7	В	No	No	Ar (CaAa)	90.00 - 5.00	0.0000	0.42	1	1	1.0900	1.0900		0.28
(Cable #25													
HTS)	Б		N		202.00	2 0000	0.41			1 0000	1.0000		0.70
AVA7-50 (1-5/8 LOW	В	No	No	Ar (CaAa)	283.00 - 5.00	3.0000	0.41	1	1	1.9800	1.9800		0.72
DENSI.					5.00								
FOAM)													
(Cable #24													
HTS) AVA7-50	В	No	No	Ar (CaAa)	284.00 -	0.0000	0.41	1	1	1.9800	1.9800		0.72
(1-5/8 LOW	-	1.0			5.00			[•]	-	10000	10000		0=
DENSI.													
FOAM) (Cable # 21													
HTS)													
AVA7-50	в	No	No	Ar (CaAa)	261.00 -	0.0000	0.4	1	1	1.9800	1.9800		0.72
(1-5/8 LOW					5.00								
DENSI. FOAM)													
(Cable # 20													
HTS)													
AVA7-50	в	No	No	Ar (CaAa)	248.00 -	0.0000	0.39	1	1	1.9800	1.9800		0.72
(1-5/8 LOW DENSI.					5.00								
FOAM)													
(Cable # 19													
HTS) AVA7-50	в	No	No	Ar (CaAa)	285.00 -	3.0000	0.39	1	1	1.9800	1.9800		0.72
(1-5/8 LOW	Б	INU	INU	AI (CaAa)	5.00	5.0000	0.59	1	1	1.9800	1.9800		0.72
DENSI.													
FOAM)													
(Cable # 22 HTS)													
AVA7-50	в	No	No	Ar (CaAa)	246.00 -	0.0000	0.38	1	1	1.9800	1.9800		0.72
(1 - 5/8 LOW					5.00								
DENSI. FOAM)													
(Cable # 16													
HTS)													
AVA7-50	В	No	No	Ar (CaAa)	246.00 -	3.0000	0.38	1	1	1.9800	1.9800		0.72
(1-5/8 LOW DENSI.					5.00								
FOAM)													
(Cable # 17													
HTS)	В	No	No	Ar (CaAa)	246.00 -	6.0000	0.38	1	1	0.6300	0.6300		0.15
LDF4-50A													

tran Torn on	Job		Page
tnxTower		21007.82 - Colchester	11 of 96
Centek Engineering Inc. 63-2 North Branford Rd.	Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
Branford, CT 06405 Phone: (203) 488-0580 F4X: (203) 488-8587	Client	Verizon	Designed by TJL

Description	Face or	Allow Shield	Exclude From	Component Type		Face Offset	Lateral Offset	#	# Per	Clear Spacing	Width or Diameter	Perimeter	Weight
	Leg		Torque Calculation		ft	in	(Frac FW)		Row	in	in	in	plf
(Cable # 18			Calculation										
HTS) LC78-50JA-A	В	No	No	Ar (CaAa)	235.00 -	0.0000	0.37	1	1	1.0900	1.0900		0.28
7 (Cable # 15					5.00								
HTS) WE65 (Cable # 14	в	No	No	Af (CaAa)	106.00 - 5.00	3.0000	0.37	1	1	1.5836	1.5836		0.53
HTS) C78-50JA-A 7	В	No	No	Ar (CaAa)	244.00 - 5.00	0.0000	0.36	1	1	1.0900	1.0900		0.28
(Cable # 13 HTS) C78-50JA-A 7	в	No	No	Ar (CaAa)	262.00 - 5.00	0.0000	0.35	1	1	1.0900	1.0900		0.28
(Cable #12 HTS) WE108 (Cable # 11	В	No	No	Af (CaAa)	113.00 - 5.00	3.0000	0.35	1	1	1.0149	1.0149		0.35
HTS) LC78-50JA-A 7	в	No	No	Ar (CaAa)	297.00 - 5.00	0.0000	0.34	1	1	1.0900	1.0900		0.28
(Cable # 10 HTS) LC78-50JA-A 7	В	No	No	Ar (CaAa)	290.00 - 5.00	0.0000	0.33	1	1	1.0900	1.0900		0.28
(Cable # 9 HTS) 1/2 (Cable # 8	В	No	No	Ar (CaAa)	284.00 - 5.00	3.0000	0.33	1	1	0.5800	0.5800		0.25
HTS) 1/2 (Cable # 6	В	No	No	Ar (CaAa)	320.00 - 5.00	6.0000	0.33	1	1	0.5800	0.5800		0.25
HTS) LC78-50JA-A 7	в	No	No	Ar (CaAa)	320.00 - 5.00	0.0000	0.32	1	1	1.0900	1.0900		0.28
(Cable # 4 HTS) 1/2 (Cable # 7	в	No	No	Ar (CaAa)	284.00 - 5.00	3.0000	0.32	1	1	0.5800	0.5800		0.25
HTS) 1/2 (Cable # 5	В	No	No	Ar (CaAa)	164.00 - 5.00	6.0000	0.32	1	1	0.5800	0.5800		0.25
HTS) C78-50JA-A 7	в	No	No	Ar (CaAa)	316.50 - 5.00	0.0000	0.31	1	1	1.0900	1.0900		0.28
(Cable #3 HTS) C78-50JA-A 7	в	No	No	Ar (CaAa)	318.00 - 5.00	0.0000	0.29	1	1	1.0900	1.0900		0.28
(Cable #1 HTS) * CSP Proposed													
Cables EW63 CSP Dish @	В	No	No	Af (CaAa)	154.00 - 5.00	0.0000	0.29	1	1	1.5742	1.5742		0.51
154') 1-5/8'' Fiber Optic CaBLE	А	No	No	Ar (CaAa)	200.00 - 5.00	0.0000	-0.37	1	1	1.9800	1.9800		1.85

Anna Tanu an	Job		Page
tnxTower		21007.82 - Colchester	12 of 96
Centek Engineering Inc. 63-2 North Branford Rd.	Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon	Designed by TJL

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacing	Width or Diameter	Perimeter	Weight
	Leg		Torque Calculation		ft	in	(Frac FW)		Row	in	in	in	plf
(AT&T)													
1/2	Α	No	No	Ar (CaAa)	200.00 -	0.0000	-0.35	2	2	0.5800	0.5800		0.25
(AT&T)					5.00								
* Eversource													
LCF78-50J	в	No	No	Ar (CaAa)	163.00 -	0.0000	0.27	1	1	1.1000	1.1000		0.53
(7/8 FOAM)					5.00								
(Eversource)													
LCF78-50J	в	No	No	Ar (CaAa)	145.00 -	0.0000	0.26	1	1	1.1000	1.1000		0.53
(7/8 FOAM)					5.00								
(Eversource)													

		Feed	l Line/l	_inear A	ppurter	nances	Section
Tower Section	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	$C_A A_A$ Out Face	Weight
	ft		ft^2	ft^2	ft^2	ft^2	lb
T1	320.00-304.00	А	0.000	0.000	0.000	0.000	0.00
		в	0.000	0.000	5.561	0.000	15.90
		С	0.000	0.000	0.000	0.000	0.00
T2	304.00-300.00	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	1.540	0.000	4.36
		С	0.000	0.000	0.000	0.000	0.00
T3	300.00-280.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	13.483	0.000	40.00
		С	0.000	0.000	0.000	0.000	0.00
T4	280.00-260.00	А	0.000	0.000	0.000	0.000	0.00
		в	0.000	0.000	26.676	0.000	87.48
		С	0.000	0.000	0.000	0.000	0.00
T5	260.00-240.00	А	0.000	0.000	0.000	0.000	0.00
		в	0.000	0.000	37.174	0.000	122.62
		С	0.000	0.000	0.000	0.000	0.00
T6	240.00-220.00	А	0.000	0.000	0.000	0.000	0.00
		в	0.000	0.000	49.355	0.000	162.20
		С	0.000	0.000	0.000	0.000	0.00
T 7	220.00-200.00	A	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	49.900	0.000	163.60
		C	0.000	0.000	30.160	0.000	198.80
T8	200.00-180.00	A	0.000	0.000	30.040	0.000	171.80
		В	0.000	0.000	49.900	0.000	163.60
		С	0.000	0.000	30.160	0.000	198.80
Т9	180.00-170.00	A	0.000	0.000	15.020	0.000	85.90
		В	0.000	0.000	27.055	0.000	87.16
		С	0.000	0.000	15.080	0.000	99.40
T10	170.00-160.00	A	0.000	0.000	15.020	0.000	85.90
		В	0.000	0.000	29.412	0.000	94.29
		С	0.000	0.000	15.080	0.000	99.40
T11	160.00-140.00	Ă	0.000	0.000	30.040	0.000	171.80
		В	0.000	0.000	65.283	0.000	208.79
		Ē	0.000	0.000	30.160	0.000	198.80
T12	140.00-120.00	Ă	0.000	0.000	30.040	0.000	171.80
		В	0.000	0.000	71.886	0.000	228.48
		č	0.000	0.000	30.160	0.000	198.80
T13	120.00-100.00	Ă	0.000	0.000	30.040	0.000	171.80
		В	0.000	0.000	76.650	0.000	238.73
		Ē	0.000	0.000	30.160	0.000	198.80
T14	100.00-80.00	Ă	0.000	0.000	30.040	0.000	171.80

tnxTower

Job		Page
	21007.82 - Colchester	13 of 96
Project		Date
	320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
Client		Designed by
	Verizon	TJL

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	_
	ft		ft^2	ft^2	ft^2	ft^2	lb
		В	0.000	0.000	83.818	0.000	254.48
		С	0.000	0.000	30.160	0.000	198.80
T15	80.00-60.00	Α	0.000	0.000	30.040	0.000	171.80
		В	0.000	0.000	85.889	0.000	259.80
		С	0.000	0.000	30.160	0.000	198.80
T16	60.00-30.00	Α	0.000	0.000	45.060	0.000	257.70
		в	0.000	0.000	128.833	0.000	389.70
		С	0.000	0.000	45.240	0.000	298.20
T17	30.00-0.00	А	0.000	0.000	37.550	0.000	214.75
		в	0.000	0.000	107.361	0.000	324.75
		С	0.000	0.000	37.700	0.000	248.50

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	lb
T1	320.00-304.00	Α	1.440	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	22.405	0.000	261.85
		С		0.000	0.000	0.000	0.000	0.00
T2	304.00-300.00	Α	1.435	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	6.132	0.000	71.62
		С		0.000	0.000	0.000	0.000	0.00
T3	300.00-280.00	Α	1.429	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	49.786	0.000	592.40
		С		0.000	0.000	0.000	0.000	0.00
T4	280.00-260.00	Α	1.419	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	89.970	0.000	1098.70
		С		0.000	0.000	0.000	0.000	0.00
T5	260.00-240.00	А	1.408	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	118.862	0.000	1465.07
		С		0.000	0.000	0.000	0.000	0.00
T6	240.00-220.00	А	1.397	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	154.126	0.000	1898.59
		С		0.000	0.000	0.000	0.000	0.00
T 7	220.00-200.00	Α	1.385	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	155.138	0.000	1897.96
		С		0.000	0.000	84.362	0.000	1118.41
Т8	200.00-180.00	А	1.372	0.000	0.000	85.834	0.000	1097.47
		В		0.000	0.000	154.148	0.000	1873.34
		С		0.000	0.000	84.196	0.000	1110.86
T9	180.00-170.00	А	1.361	0.000	0.000	42.830	0.000	545.46
		В		0.000	0.000	84.506	0.000	1014.93
		С		0.000	0.000	42.033	0.000	552.45
T10	170.00-160.00	Α	1.354	0.000	0.000	42.771	0.000	543.21
		В		0.000	0.000	93.607	0.000	1112.03
		С		0.000	0.000	41.988	0.000	550.41
T11	160.00-140.00	А	1.343	0.000	0.000	85.358	0.000	1079.51
		В		0.000	0.000	204.733	0.000	2407.81
		С		0.000	0.000	83.838	0.000	1094.54
T12	140.00-120.00	Α	1.329	0.000	0.000	85.111	0.000	1070.23
		В		0.000	0.000	223.633	0.000	2603.25
		С		0.000	0.000	83.653	0.000	1086.09
T13	120.00-100.00	A	1.315	0.000	0.000	84.874	0.000	1061.34
		В		0.000	0.000	234.150	0.000	2697.30
		С		0.000	0.000	83.474	0.000	1078.00
T14	100.00-80.00	A	1.303	0.000	0.000	84.672	0.000	1053.80
		В		0.000	0.000	250.822	0.000	2860.17

	Job		Page
tnxTower		21007.82 - Colchester	14 of 96
Centek Engineering Inc.	Project		Date
63-2 North Branford Rd.		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
Branford, CT 06405	Client		Designed by
Phone: (203) 488-0580 FAX: (203) 488-8587		Verizon	TJL

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	lb
		С		0.000	0.000	83.322	0.000	1071.12
T15	80.00-60.00	А	1.295	0.000	0.000	84.548	0.000	1049.17
		В		0.000	0.000	256.871	0.000	2914.85
		С		0.000	0.000	83.229	0.000	1066.90
T16	60.00-30.00	А	1.298	0.000	0.000	126.883	0.000	1576.02
		В		0.000	0.000	385.783	0.000	4383.52
		С		0.000	0.000	124.889	0.000	1602.42
T17	30.00-0.00	А	1.303	0.000	0.000	105.842	0.000	1317.33
		В		0.000	0.000	322.322	0.000	3672.72
		С		0.000	0.000	104.154	0.000	1338.97

		F€	ed Line	Center of	f Press
Section	Elevation	CP_X	CPz	CP_X	CPz
				Ice	Ice
	ft	in	in	in	in
T1	320.00-304.00	2.5585	0.7653	5.6337	1.5661
T2	304.00-300.00	2.9423	0.8782	6.2954	1.7537
Т3	300.00-280.00	5.1084	1.7478	10.0831	3.1857
Τ4	280.00-260.00	5.9347	2.4163	13.9913	5.1998
Т5	260.00-240.00	8.6793	3.7103	19.0753	7.4793
Т6	240.00-220.00	11.2158	4.8855	24.0367	9.6748
T 7	220.00-200.00	18.8855	10.7084	35.8552	18.7814
Т8	200.00-180.00	10.5950	13.5313	20.1947	22.9925
Т9	180.00-170.00	12.1987	14.8386	23.4962	25.3656
T10	170.00-160.00	13.6862	15.8268	26.6700	27.1187
T11	160.00-140.00	14.7151	15.8660	28.9029	27.6923
T12	140.00-120.00	16.8966	17.2119	32.9481	30.0279
T13	120.00-100.00	24.6974	23.3249	42.0482	36.3965
T14	100.00-80.00	28.6992	25.8171	47.7485	39.8986
T15	80.00-60.00	29.1191	26.0771	50.1725	41.7161
T16	60.00-30.00	31.4614	28.1866	54.0369	44.9527
T17	30.00-0.00	29.4550	26.5187	52.4688	43.8449

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
T1	31	1/2	304.00 -	0.6000	0.6000
			320.00		
T1	32	LC78-50JA-A7	304.00 -	0.6000	0.6000
			320.00		
T1	35	LC78-50JA-A7	304.00 -	0.6000	0.6000
			316.50		
T1	36	LC78-50JA-A7	304.00 -	0.6000	0.6000
			318.00		
T2	31	1/2	300.00 -	0.6000	0.6000
			304.00		
T2	32	LC78-50JA-A7	300.00 -	0.6000	0.6000
			304.00		
T2	35	LC78-50JA-A7	300.00 -	0.6000	0.6000

tnxTower

Job		Page
	21007.82 - Colchester	15 of 96
Project		Date
	320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
Client	Verizon	Designed by TJL

Tower	Feed Line	Description	Feed Line	K_a	Ka
Section	Record No.	*	Segment Elev.	No Ice	Ice
	25		304.00	0.000	0.0000
T2	36	LC78-50JA-A7	300.00 - 304.00	0.6000	0.6000
Т3	14	AVA7-50 (1-5/8 LOW	280.00 -	0.6000	0.6000
		DENSI. FOAM)	283.00		
Т3	15	AVA7-50 (1-5/8 LOW	280.00 -	0.6000	0.6000
Т3	19	DENSI. FOAM) AVA7-50 (1-5/8 LOW	284.00 280.00 -	0.6000	0.6000
15	19	DENSI, FOAM)	280.00 - 285.00	0.0000	0.0000
Т3	28	LC78-50JA-A7	280.00 -	0.6000	0.6000
			297.00		
Т3	29	LC78-50JA-A7	280.00 -	0.6000	0.6000
Т3	30	1/2	290.00 280.00 -	0.6000	0.6000
10	20		284.00	010000	010000
Т3	31	1/2	280.00 -	0.6000	0.6000
T2	22		300.00	0.000	0.000
Т3	32	LC78-50JA-A7	280.00 - 300.00	0.6000	0.6000
Т3	33	1/2	280.00 -	0.6000	0.6000
			284.00		
Т3	35	LC78-50JA-A7	280.00 -	0.6000	0.6000
Т3	36	LC78-50JA-A7	300.00 280.00 -	0.6000	0.6000
15	50	LC/0-50511-11/	300.00	0.0000	0.0000
T4	14	AVA7-50 (1-5/8 LOW	260.00 -	0.6000	0.6000
		DENSI. FOAM)	280.00	0 (000	0.0000
T4	15	AVA7-50 (1-5/8 LOW DENSI. FOAM)	260.00 - 280.00	0.6000	0.6000
T4	16	AVA7-50 (1-5/8 LOW	260.00 -	0.6000	0.6000
		DENSI. FOAM)	261.00		
T4	19	AVA7-50 (1-5/8 LOW	260.00 -	0.6000	0.6000
T4	26	DENSI. FOAM) LC78-50JA-A7	280.00 260.00 -	0.6000	0.6000
14	20	LC/0-30JA-A/	262.00	0.0000	0.0000
T4	28	LC78-50JA-A7	260.00 -	0.6000	0.6000
			280.00		
T4	29	LC78-50JA-A7	260.00 - 280.00	0.6000	0.6000
T4	30	1/2	280.00	0.6000	0.6000
	50	1) 2	280.00	0.0000	010000
T4	31	1/2	260.00 -	0.6000	0.6000
T4	32	LC78-50JA-A7	280.00 260.00 -	0.6000	0.6000
14	32	LC/8-20JA-A/	260.00 - 280.00	0.0000	0.0000
T4	33	1/2	260.00 -	0.6000	0.6000
			280.00		
T4	35	LC78-50JA-A7	260.00 -	0.6000	0.6000
T4	36	LC78-50JA-A7	280.00 260.00 -	0.6000	0.6000
14	50	LC/0-JUJA-A/	280.00	0.0000	0.0000
Т5	14	AVA7-50 (1-5/8 LOW	240.00 -	0.6000	0.6000
T	1	DENSI. FOAM)	260.00	0 (000	0.000
T5	15	AVA7-50 (1-5/8 LOW DENSI. FOAM)	240.00 - 260.00	0.6000	0.6000
Т5	16	AVA7-50 (1-5/8 LOW	240.00 -	0.6000	0.6000
		DENSI. FOAM)	260.00		
Т5	18	AVA7-50 (1-5/8 LOW	240.00 -	0.6000	0.6000
Т5	19	DENSI. FOAM) AVA7-50 (1-5/8 LOW	248.00 240.00 -	0.6000	0.6000
15	19	DENSI. FOAM)	260.00	0.0000	0.0000
Т5	20	,	240.00 -	0.6000	0.6000
					-

tnxTower

	Job		Page
		21007.82 - Colchester	16 of 96
	Project		Date
•		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
	Client	N/ 1	Designed by
		Verizon	TJL

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
Τſ	- 1	DENSI. FOAM)	246.00	0.6000	0.6000
Т5	21	AVA7-50 (1-5/8 LOW DENSI. FOAM)	240.00 - 246.00	0.6000	0.6000
Т5	22	LDF4-50A (1/2 FOAM)	246.00	0.6000	0.6000
15	22	LD1 +-50A (1/2 FOAM)	246.00	0.0000	0.0000
Т5	25	LC78-50JA-A7	240.00 -	0.6000	0.6000
			244.00		
Т5	26	LC78-50JA-A7	240.00 -	0.6000	0.6000
			260.00		
Т5	28	LC78-50JA-A7	240.00 -	0.6000	0.6000
			260.00		
Т5	29	LC78-50JA-A7	240.00 -	0.6000	0.6000
Т5	30	1/2	260.00 240.00 -	0.6000	0.6000
15	50	172	240.00 - 260.00	0.0000	0.0000
Т5	31	1/2	240.00 -	0.6000	0.6000
	51		260.00	0100000	010000
Т5	32	LC78-50JA-A7	240.00 -	0.6000	0.6000
			260.00		
Т5	33	1/2	240.00 -	0.6000	0.6000
			260.00		
Т5	35	LC78-50JA-A7	240.00 -	0.6000	0.6000
	26		260.00	0.000	0.0000
Т5	36	LC78-50JA-A7	240.00 - 260.00	0.6000	0.6000
Т6	14	AVA7-50 (1-5/8 LOW	220.00 -	0.6000	0.6000
10	14	DENSI. FOAM)	240.00	0.0000	0.0000
Т6	15	AVA7-50 (1-5/8 LOW	220.00 -	0.6000	0.6000
		DENSI. FOAM)	240.00		
Т6	16	AVA7-50 (1-5/8 LOW	220.00 -	0.6000	0.6000
		DENSI. FOAM)	240.00		
Т6	18	AVA7-50 (1-5/8 LOW	220.00 -	0.6000	0.6000
	10	DENSI. FOAM)	240.00	0 (000	0 (000
Т6	19	AVA7-50 (1-5/8 LOW	220.00 -	0.6000	0.6000
T6	20	DENSI. FOAM) AVA7-50 (1-5/8 LOW	240.00 220.00 -	0.6000	0.6000
10	20	DENSI. FOAM)	240.00	0.0000	0.0000
Т6	21	AVA7-50 (1-5/8 LOW	220.00 -	0.6000	0.6000
10	21	DENSI. FOAM)	240.00	0.00000	0.0000
Т6	22	LDF4-50A (1/2 FOAM)	220.00 -	0.6000	0.6000
		、	240.00		
Т6	23	LC78-50JA-A7	220.00 -	0.6000	0.6000
_			235.00		
Т6	25	LC78-50JA-A7	220.00 -	0.6000	0.6000
T (24		240.00	0.6000	0 (000
Т6	26	LC78-50JA-A7	220.00 - 240.00	0.6000	0.6000
Т6	28	LC78-50JA-A7	240.00	0.6000	0.6000
10	20	LC/0-505A-A/	240.00	0.0000	0.0000
Т6	29	LC78-50JA-A7	220.00 -	0.6000	0.6000
10			240.00	2.30000	
Т6	30	1/2	220.00 -	0.6000	0.6000
			240.00		
T6	31	1/2	220.00 -	0.6000	0.6000
		7 050 5074 15	240.00	0 2000	0 (000
Т6	32	LC78-50JA-A7	220.00 -	0.6000	0.6000
т(22	1/2	240.00 220.00 -	0.6000	0 6000
Т6	33	1/2	220.00 - 240.00	0.0000	0.6000
Т6	35	LC78-50JA-A7	220.00 -	0.6000	0.6000
10	55	LC/0-30311-11/	240.00	0.0000	0.0000
T6	36	LC78-50JA-A7	220.00 -	0.6000	0.6000
			•		•

tnxTower

	Job		Page
		21007.82 - Colchester	17 of 96
	Project		Date
•		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
	Client	Verizon	Designed by TJL

Tower	Feed Line	Description	Feed Line	K_a	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
Τ7	2	1 5/8	240.00 200.00 - 220.00	0.6000	0.6000
Τ7	3	1 5/8" Hybriflex	200.00 - 220.00	0.6000	0.6000
Τ7	14	AVA7-50 (1-5/8 LOW DENSI. FOAM)	200.00 - 220.00	0.6000	0.6000
Τ7	15	AVA7-50 (1-5/8 LOW DENSI, FOAM)	200.00 - 220.00	0.6000	0.6000
Τ7	16	AVA7-50 (1-5/8 LOW DENSI. FOAM)	200.00 - 220.00	0.6000	0.6000
Τ7	18	AVA7-50 (1-5/8 LOW DENSI. FOAM)	200.00 - 220.00	0.6000	0.6000
Τ7	19	AVA7-50 (1-5/8 LOW DENSI. FOAM)	200.00 - 220.00	0.6000	0.6000
Τ7	20	AVA7-50 (1-5/8 LOW DENSI. FOAM)	200.00 - 220.00	0.6000	0.6000
Τ7	21	AVA7-50 (1-5/8 LOW DENSI. FOAM)	200.00 - 220.00	0.6000	0.6000
Τ7	22	LDF4-50A (1/2 FOAM)	200.00 - 220.00	0.6000	0.6000
Τ7	23	LC78-50JA-A7	200.00 - 220.00	0.6000	0.6000
Τ7	25	LC78-50JA-A7	200.00 - 220.00	0.6000	0.6000
Τ7	26	LC78-50JA-A7	200.00 - 220.00	0.6000	0.6000
Τ7	28	LC78-50JA-A7	200.00 - 220.00	0.6000	0.6000
Τ7	29	LC78-50JA-A7	200.00 - 220.00	0.6000	0.6000
Τ7	30	1/2	200.00 - 220.00	0.6000	0.6000
Τ7	31	1/2	200.00 - 220.00	0.6000	0.6000
Τ7	32	LC78-50JA-A7	200.00 - 220.00	0.6000	0.6000
Τ7	33	1/2	200.00 - 220.00	0.6000	0.6000
Τ7	35	LC78-50JA-A7	200.00 - 220.00	0.6000	0.6000
Τ7	36	LC78-50JA-A7	200.00 - 220.00	0.6000	0.6000
Т8	1	1 5/8	180.00 - 200.00	0.6000	0.6000
Т8	2	1 5/8	180.00 - 200.00	0.6000	0.6000
Т8	3	1 5/8" Hybriflex	180.00 - 200.00	0.6000	0.6000
Т8	14	AVA7-50 (1-5/8 LOW DENSI. FOAM)	180.00 - 200.00	0.6000	0.6000
Т8	15	AVA7-50 (1-5/8 LOW DENSI. FOAM)	180.00 - 200.00	0.6000	0.6000
Т8	16	AVA7-50 (1-5/8 LOW DENSI. FOAM)	180.00 - 200.00	0.6000	0.6000
Т8	18	AVA7-50 (1-5/8 LOW DENSI. FOAM)	180.00 - 200.00	0.6000	0.6000
Т8	19	AVA7-50 (1-5/8 LOW DENSI. FOAM)	180.00 - 200.00	0.6000	0.6000
Т8	20	AVA7-50 (1-5/8 LOW DENSI. FOAM)	180.00 - 200.00	0.6000	0.6000
Т8	21	AVA7-50 (1-5/8 LOW		0.6000	0.6000

tnxTower

Job		Page
	21007.82 - Colchester	18 of 96
Project		Date
	320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
Client	Verizon	Designed by TJL
		IJL

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	*	Segment Elev.	No Ice	Ice
		DENSI. FOAM)	200.00	0	0
Т8	22	LDF4-50A (1/2 FOAM)	180.00 - 200.00	0.6000	0.6000
Т8	23	LC78-50JA-A7	180.00 -	0.6000	0.6000
			200.00		
Т8	25	LC78-50JA-A7	180.00 -	0.6000	0.6000
Т8	26	LC78-50JA-A7	200.00 180.00 -	0.6000	0.6000
10	20	LC/8-30JA-A/	200.00	0.0000	0.0000
Т8	28	LC78-50JA-A7	180.00 -	0.6000	0.6000
	20		200.00	0.000	0.0000
Т8	29	LC78-50JA-A7	180.00 - 200.00	0.6000	0.6000
Т8	30	1/2	180.00 -	0.6000	0.6000
			200.00		
Т8	31	1/2	180.00 - 200.00	0.6000	0.6000
Т8	32	LC78-50JA-A7	180.00 -	0.6000	0.6000
			200.00		
Т8	33	1/2	180.00 -	0.6000	0.6000
Т8	35	LC78-50JA-A7	200.00 180.00 -	0.6000	0.6000
10	55	LC/6-50511-14/	200.00	0.0000	0.0000
Т8	36	LC78-50JA-A7	180.00 -	0.6000	0.6000
Т8	41	1-5/8" Fiber Optic CaBLE	200.00 180.00 -	0.6000	0.6000
10	41	1-5/8 Fiber Optic Cable	200.00	0.0000	0.0000
Т8	42	1/2	180.00 -	0.6000	0.6000
			200.00		
Т9	1	1 5/8	170.00 - 180.00	0.6000	0.6000
Т9	2	1 5/8	170.00 -	0.6000	0.6000
			180.00		
Т9	3	1 5/8" Hybriflex	170.00 -	0.6000	0.6000
Т9	4	LC78-50JA-A7	180.00 170.00 -	0.6000	0.6000
			174.00		
Т9	5	LC78-50JA-A7	170.00 -	0.6000	0.6000
Т9	6	LDF4-50A (1/2 FOAM)	177.00 170.00 -	0.6000	0.6000
19	0	LDI 7-30A (1/2 I OAM)	174.00	0.0000	0.0000
Т9	7	LC78-50JA-A7	170.00 -	0.6000	0.6000
Т9	14	AVA7-50 (1-5/8 LOW	176.00	0.6000	0.6000
19	14	DENSI. FOAM)	170.00 - 180.00	0.0000	0.0000
Т9	15	AVA7-50 (1-5/8 LOW	170.00 -	0.6000	0.6000
-		DENSI. FOAM)	180.00	0 (000	0.0000
Т9	16	AVA7-50 (1-5/8 LOW DENSI. FOAM)	170.00 - 180.00	0.6000	0.6000
Т9	18	AVA7-50 (1-5/8 LOW	170.00 -	0.6000	0.6000
		DENSI. FOAM)	180.00		
Т9	19	AVA7-50 (1-5/8 LOW	170.00 -	0.6000	0.6000
Т9	20	DENSI. FOAM) AVA7-50 (1-5/8 LOW	180.00 170.00 -	0.6000	0.6000
	20	DENSI. FOAM)	180.00	0.0000	
Т9	21	AVA7-50 (1-5/8 LOW	170.00 -	0.6000	0.6000
Т9	22	DENSI. FOAM) LDF4-50A (1/2 FOAM)	180.00 170.00 -	0.6000	0.6000
19	22	LD14-30A (1/2 FOAM)	170.00 -	0.0000	0.0000
Т9	23	LC78-50JA-A7	170.00 -	0.6000	0.6000
TO	25	TOTO FOTA AT	180.00	0.000	0.000
Т9	25	LC78-50JA-A7	170.00 -	0.6000	0.6000

tnxTower

Job		Page
	21007.82 - Colchester	19 of 96
Project		Date
	320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
Client	Marinan	Designed by
Verizon		TJL

Tower	Feed Line	Description	Feed Line	Ka	K_a
Section	Record No.		Segment Elev. 180.00	No Ice	Ice
Т9	26	LC78-50JA-A7	170.00 - 180.00	0.6000	0.6000
Т9	28	LC78-50JA-A7	170.00 - 180.00	0.6000	0.6000
Т9	29	LC78-50JA-A7	170.00 - 180.00	0.6000	0.6000
Т9	30	1/2	170.00 - 180.00	0.6000	0.6000
Т9	31	1/2	170.00 - 180.00	0.6000	0.6000
Т9	32	LC78-50JA-A7	170.00 - 180.00	0.6000	0.6000
Т9	33	1/2	170.00 - 180.00	0.6000	0.6000
Т9	35	LC78-50JA-A7	170.00 - 180.00	0.6000	0.6000
Т9	36	LC78-50JA-A7	170.00 - 180.00	0.6000	0.6000
Т9	41	1-5/8" Fiber Optic CaBLE	170.00 - 180.00	0.6000	0.6000
Т9	42	1/2	170.00 - 180.00	0.6000	0.6000
T10	1	1 5/8	160.00 - 170.00	0.6000	0.6000
T10	2	1 5/8	160.00 - 170.00	0.6000	0.6000
Т10	3	1 5/8" Hybriflex	160.00 - 170.00	0.6000	0.6000
T10	4	LC78-50JA-A7	160.00 - 170.00	0.6000	0.6000
T10	5	LC78-50JA-A7	160.00 - 170.00	0.6000	0.6000
T10	6	LDF4-50A (1/2 FOAM)	160.00 - 170.00	0.6000	0.6000
T10	7	LC78-50JA-A7	160.00 - 170.00	0.6000	0.6000
T10	14	AVA7-50 (1-5/8 LOW DENSI. FOAM)	160.00 - 170.00	0.6000	0.6000
T10	15	AVA7-50 (1-5/8 LOW DENSI. FOAM)	160.00 - 170.00	0.6000	0.6000
T10	16	AVA7-50 (1-5/8 LOW DENSI. FOAM)	160.00 - 170.00	0.6000	0.6000
T10	18	AVA7-50 (1-5/8 LOW DENSI. FOAM)	160.00 - 170.00	0.6000	0.6000
T10	19	AVA7-50 (1-5/8 LOW DENSI. FOAM)	160.00 - 170.00	0.6000	0.6000
T10	20	AVA7-50 (1-5/8 LOW DENSI. FOAM)	160.00 - 170.00	0.6000	0.6000
T10	21	AVA7-50 (1-5/8 LOW DENSI. FOAM)	160.00 - 170.00	0.6000	0.6000
T10	22	LDF4-50A (1/2 FOAM)	160.00 - 170.00	0.6000	0.6000
T10	23	LC78-50JA-A7	160.00 - 170.00	0.6000	0.6000
T10	25	LC78-50JA-A7	160.00 - 170.00	0.6000	0.6000
T10	26	LC78-50JA-A7	160.00 - 170.00	0.6000	0.6000
T10	28	LC78-50JA-A7	160.00 - 170.00	0.6000	0.6000
T10	29	LC78-50JA-A7		0.6000	0.6000

tnxTower

	Job		Page
		21007.82 - Colchester	20 of 96
	Project		Date
•		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
	Client	Verizon	Designed by TJL

Tower Section	Feed Line	Description	Feed Line	K _a	Ka
Section	Record No.		Segment Elev. 170.00	No Ice	Ice
Т10	30	1/2	160.00 - 170.00	0.6000	0.6000
Т10	31	1/2	160.00 - 170.00	0.6000	0.6000
T10	32	LC78-50JA-A7	160.00 - 170.00	0.6000	0.6000
Т10	33	1/2	160.00 -	0.6000	0.6000
Т10	34	1/2	170.00 160.00 -	0.6000	0.6000
Т10	35	LC78-50JA-A7	164.00 160.00 -	0.6000	0.6000
Т10	36	LC78-50JA-A7	170.00 160.00 -	0.6000	0.6000
Т10	41	1-5/8" Fiber Optic CaBLE	170.00 160.00 -	0.6000	0.6000
Т10	42	1/2	170.00 160.00 -	0.6000	0.6000
Т10	44	LCF78-50J (7/8 FOAM)	170.00 160.00 -	0.6000	0.6000
T11	1	1 5/8	163.00 140.00 -	0.6000	0.6000
T11	2	1 5/8	160.00 140.00 -	0.6000	0.6000
T11	3	1 5/8" Hybriflex	160.00 140.00 -	0.6000	0.6000
T11	4	LC78-50JA-A7	160.00 140.00 -	0.6000	0.6000
T11	5	LC78-50JA-A7	160.00 140.00 -	0.6000	0.6000
T11	6	LDF4-50A (1/2 FOAM)	160.00 140.00 -	0.6000	0.6000
T11	7	LC78-50JA-A7	160.00 140.00 -	0.6000	0.6000
Т11	14	AVA7-50 (1-5/8 LOW	160.00 140.00 -	0.6000	0.6000
Т11	15	DENSI. FOAM) AVA7-50 (1-5/8 LOW	160.00 140.00 -	0.6000	0.6000
Т11	16	DENSI. FOAM) AVA7-50 (1-5/8 LOW	160.00 140.00 -	0.6000	0.6000
T11	18	DENSI. FOAM) AVA7-50 (1-5/8 LOW	160.00 140.00 -	0.6000	0.6000
T11	19	DENSI. FOAM) AVA7-50 (1-5/8 LOW	160.00 140.00 -	0.6000	0.6000
T11	20	DENSI. FOAM) AVA7-50 (1-5/8 LOW	160.00 140.00 -	0.6000	0.6000
T11	21	DENSI. FOAM) AVA7-50 (1-5/8 LOW	160.00 140.00 -	0.6000	0.6000
T11	22	DENSI. FOAM) LDF4-50A (1/2 FOAM)	160.00 140.00 -	0.6000	0.6000
T11	23	LC78-50JA-A7	160.00 140.00 -	0.6000	0.6000
T11	25	LC78-50JA-A7	160.00 140.00 -	0.6000	0.6000
T11	26	LC78-50JA-A7	160.00 140.00 -	0.6000	0.6000
T11	28	LC78-50JA-A7	160.00 140.00 -	0.6000	0.6000
T 11	29	LC78-50JA-A7	160.00 140.00 -	0.6000	0.6000
T11	30	1/2	160.00 140.00 -	0.6000	0.6000

tnxTower

	Job		Page
		21007.82 - Colchester	21 of 96
	Project		Date
•		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
	Client	Verizon	Designed by TJL

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
T11	31	1/2	160.00 140.00 -	0.6000	0.6000
T11	32	LC78-50JA-A7	160.00 140.00 -	0.6000	0.6000
T11	32	1/2	160.00 160.00 140.00 -	0.6000	0.6000
T11	34	1/2	160.00 140.00 -	0.6000	0.6000
T11	35	LC78-50JA-A7	160.00 140.00 -	0.6000	0.6000
T11	36	LC78-50JA-A7	160.00 140.00 -	0.6000	0.6000
T11	39	EW63	160.00 140.00 -	0.6000	0.6000
T11	41	1-5/8" Fiber Optic CaBLE	154.00 140.00 -	0.6000	0.6000
T11	42	1/2	160.00 140.00 -	0.6000	0.6000
T11	44	LCF78-50J (7/8 FOAM)	160.00 140.00 -	0.6000	0.6000
Т11	45	LCF78-50J (7/8 FOAM)	160.00 140.00 -	0.6000	0.6000
T12	1	1 5/8	145.00 120.00 -	0.6000	0.6000
T12	2	1 5/8	140.00 120.00 -	0.6000	0.6000
T12	3	1 5/8" Hybriflex	140.00 120.00 -	0.6000	0.6000
T12	4	LC78-50JA-A7	140.00 120.00 -	0.6000	0.6000
T12	5	LC78-50JA-A7	140.00 120.00 -	0.6000	0.6000
T12	6	LDF4-50A (1/2 FOAM)	140.00 120.00 -	0.6000	0.6000
T12	7	LC78-50JA-A7	140.00 120.00 -	0.6000	0.6000
T12	8	LC78-50JA-A7	140.00 120.00 -	0.6000	0.6000
T12	9	LC78-50JA-A7	137.00 120.00 -	0.6000	0.6000
T12	14	AVA7-50 (1-5/8 LOW	134.00 120.00 -	0.6000	0.6000
T12	15	DENSI. FOAM) AVA7-50 (1-5/8 LOW	140.00 120.00 -	0.6000	0.6000
T12	16	DENSI. FOAM) AVA7-50 (1-5/8 LOW DENSI. FOAM)	140.00 120.00 - 140.00	0.6000	0.6000
T12	18	AVA7-50 (1-5/8 LOW DENSI, FOAM)	140.00 120.00 - 140.00	0.6000	0.6000
T12	19	AVA7-50 (1-5/8 LOW DENSI, FOAM)	120.00 - 140.00	0.6000	0.6000
T12	20	AVA7-50 (1-5/8 LOW DENSI, FOAM)	140.00 120.00 - 140.00	0.6000	0.6000
T12	21	AVA7-50 (1-5/8 LOW DENSI. FOAM)	120.00 - 140.00	0.6000	0.6000
T12	22	LDF4-50A (1/2 FOAM)	120.00 - 140.00	0.6000	0.6000
T12	23	LC78-50JA-A7	120.00 - 140.00	0.6000	0.6000
T12	25	LC78-50JA-A7	120.00 - 140.00	0.6000	0.6000
T12	26	LC78-50JA-A7		0.6000	0.6000

tnxTower

Job		Page
	21007.82 - Colchester	22 of 96
Project		Date
	320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
Client	Mariaan	Designed by
	Verizon	

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev. 140.00	No Ice	Ice
T12	28	LC78-50JA-A7	120.00 - 140.00	0.6000	0.6000
T12	29	LC78-50JA-A7	120.00 - 140.00	0.6000	0.6000
T12	30	1/2	120.00 - 140.00	0.6000	0.6000
T12	31	1/2	120.00 -	0.6000	0.6000
T12	32	LC78-50JA-A7	140.00 120.00 -	0.6000	0.6000
T12	33	1/2	140.00 120.00 -	0.6000	0.6000
T12	34	1/2	140.00 120.00 -	0.6000	0.6000
T12	35	LC78-50JA-A7	140.00 120.00 -	0.6000	0.6000
T12	36	LC78-50JA-A7	140.00 120.00 -	0.6000	0.6000
T12	39	EW63	140.00 120.00 -	0.6000	0.6000
T12	41	1-5/8" Fiber Optic CaBLE	140.00 120.00 -	0.6000	0.6000
T12	42	1/2	140.00 120.00 -	0.6000	0.6000
T12	44	LCF78-50J (7/8 FOAM)	140.00 120.00 -	0.6000	0.6000
T12	45	LCF78-50J (7/8 FOAM)	140.00 120.00 -	0.6000	0.6000
T13	1	1 5/8	140.00 100.00 -	0.6000	0.6000
T13	2	1 5/8	120.00 100.00 -	0.6000	0.6000
T13	3	1 5/8" Hybriflex	120.00 100.00 -	0.6000	0.6000
T13	4	LC78-50JA-A7	120.00 100.00 -	0.6000	0.6000
T13	5	LC78-50JA-A7	120.00 100.00 -	0.6000	0.6000
T13	6	LDF4-50A (1/2 FOAM)	120.00 100.00 -	0.6000	0.6000
Т13	7	LC78-50JA-A7	120.00 100.00 -	0.6000	0.6000
T13	8	LC78-50JA-A7	120.00 100.00 -	0.6000	0.6000
T13	9	LC78-50JA-A7	120.00 100.00 - 120.00	0.6000	0.6000
T13	14	AVA7-50 (1-5/8 LOW	100.00 -	0.6000	0.6000
T13	15	DENSI. FOAM) AVA7-50 (1-5/8 LOW DENSI. FOAM)	120.00 100.00 -	0.6000	0.6000
T13	16	DENSI. FOAM) AVA7-50 (1-5/8 LOW DENSI. FOAM)	120.00 100.00 -	0.6000	0.6000
T13	18	DENSI. FOAM) AVA7-50 (1-5/8 LOW DENSI. FOAM)	120.00 100.00 - 120.00	0.6000	0.6000
T13	19	AVA7-50 (1-5/8 LOW	120.00 100.00 - 120.00	0.6000	0.6000
T13	20	DENSI. FOAM) AVA7-50 (1-5/8 LOW DENSI. FOAM)	120.00 100.00 -	0.6000	0.6000
T13	21	DENSI. FOAM) AVA7-50 (1-5/8 LOW DENSI. FOAM)	120.00 100.00 - 120.00	0.6000	0.6000
T13	22	,		0.6000	0.6000

tnxTower

Job		Page
	21007.82 - Colchester	23 of 96
Project		Date
	320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
Client		Designed by
Verizon		TJL

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	Description	Segment Elev.	No Ice	Ice
~~~~~			120.00		
T13	23	LC78-50JA-A7	100.00 -	0.6000	0.6000
			120.00		
T13	24	WE65	100.00 -	0.6000	0.6000
			106.00		
T13	25	LC78-50JA-A7	100.00 -	0.6000	0.6000
			120.00		
T13	26	LC78-50JA-A7	100.00 -	0.6000	0.6000
			120.00		
T13	27	WE108	100.00 -	0.6000	0.6000
			113.00		
T13	28	LC78-50JA-A7	100.00 -	0.6000	0.6000
	•		120.00	0 < 0 0 0	0.0000
T13	29	LC78-50JA-A7	100.00 -	0.6000	0.6000
<b>T12</b>	20	1/2	120.00	0 (000	0 (000
T13	30	1/2	100.00 -	0.6000	0.6000
Т13	31	1/2	120.00 100.00 -	0.6000	0.6000
115	51	1/2	120.00	0.0000	0.6000
T13	32	LC78-50JA-A7	100.00 -	0.6000	0.6000
115	52	LC/8-50JA-A/	120.00	0.0000	0.0000
T13	33	1/2	100.00 -	0.6000	0.6000
115	55	1/2	120.00	0.0000	0.0000
T13	34	1/2	100.00 -	0.6000	0.6000
115	21	., <u>-</u>	120.00	0.00000	0.0000
T13	35	LC78-50JA-A7	100.00 -	0.6000	0.6000
			120.00		
T13	36	LC78-50JA-A7	100.00 -	0.6000	0.6000
			120.00		
T13	39	EW63	100.00 -	0.6000	0.6000
			120.00		
T13	41	1-5/8" Fiber Optic CaBLE	100.00 -	0.6000	0.6000
			120.00		
T13	42	1/2	100.00 -	0.6000	0.6000
			120.00		
T13	44	LCF78-50J (7/8 FOAM)	100.00 -	0.6000	0.6000
<b>T12</b>	4.5		120.00	0 (000	0.0000
T13	45	LCF78-50J (7/8 FOAM)	100.00 -	0.6000	0.6000
T14	1	1.5/0	120.00 80.00 - 100.00	0.6000	0.6000
T14 T14	1	1 5/8		0.6000	0.6000
T14 T14	2 3	1 5/8" Hybriflex		0.6000	0.6000
T14 T14	3 4	LC78-50JA-A7	80.00 - 100.00	0.6000	0.6000
T14	5	LC78-50JA-A7	80.00 - 100.00	0.6000	0.6000
T14	6	LDF4-50A (1/2 FOAM)		0.6000	0.6000
T14	7	LC78-50JA-A7		0.6000	0.6000
T14	8	LC78-50JA-A7		0.6000	0.6000
T14	9	LC78-50JA-A7	80.00 - 100.00	0.6000	0.6000
T14	12	LC78-50JA-A7	80.00 - 91.00	0.6000	0.6000
T14	13	LC78-50JA-A7	80.00 - 90.00	0.6000	0.6000
T14	14	AVA7-50 (1-5/8 LOW	80.00 - 100.00	0.6000	0.6000
		DENSI. FOAM)			
T14	15	AVA7-50 (1-5/8 LOW	80.00 - 100.00	0.6000	0.6000
		DENSI. FOAM)			
T14	16	AVA7-50 (1-5/8 LOW	80.00 - 100.00	0.6000	0.6000
		DENSI. FOAM)			
T14	18	AVA7-50 (1-5/8 LOW	80.00 - 100.00	0.6000	0.6000
		DENSI. FOAM)			
T14	19	AVA7-50 (1-5/8 LOW	80.00 - 100.00	0.6000	0.6000
		DENSI. FOAM)			
T14	20	AVA7-50 (1-5/8 LOW		0.6000	0.6000
I I	I I	DENSI. FOAM)			I

tnxTower

Job		Page
	21007.82 - Colchester	24 of 96
Project		Date
	320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
Client	Marinar	Designed by
Verizon		TJL

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
T14	21	AVA7-50 (1-5/8 LOW	80.00 - 100.00	0.6000	0.6000
		DENSI. FOAM)			
T14	22	LDF4-50A (1/2 FOAM)		0.6000	0.6000
T14	23	LC78-50JA-A7	80.00 - 100.00	0.6000	0.6000
T14	24	WE65		0.6000	0.6000
T14	25	LC78-50JA-A7		$0.6000 \\ 0.6000$	0.6000
T14 T14	26 27	LC78-50JA-A7 WE108		0.6000	$0.6000 \\ 0.6000$
T14	28	LC78-50JA-A7		0.6000	0.6000
T14	29	LC78-50JA-A7		0.6000	0.6000
T14	30	1/2		0.6000	0.6000
T14	31	1/2		0.6000	0.6000
T14	32	LC78-50JA-A7		0.6000	0.6000
T14	33	1/2		0.6000	0.6000
T14	34	1/2		0.6000	0.6000
T14	35	LC78-50JA-A7		0.6000	0.6000
T14 T14	36 39	LC78-50JA-A7 EW63	80.00 - 100.00 80.00 - 100.00	$0.6000 \\ 0.6000$	$0.6000 \\ 0.6000$
T14	41	1-5/8" Fiber Optic CaBLE		0.6000	0.6000
T14	41	1-5/8 Fiber Optic Cable 1/2	80.00 - 100.00	0.6000	0.6000
T14	44	LCF78-50J (7/8 FOAM)	80.00 - 100.00	0.6000	0.6000
T14	45	LCF78-50J (7/8 FOAM)	80.00 - 100.00	0.6000	0.6000
T15	1	1 5/8	60.00 - 80.00	0.6000	0.6000
T15	2	1 5/8	60.00 - 80.00	0.6000	0.6000
T15	3	1 5/8" Hybriflex	60.00 - 80.00	0.6000	0.6000
T15	4	LC78-50JA-A7	60.00 - 80.00	0.6000	0.6000
T15	5	LC78-50JA-A7	60.00 - 80.00	0.6000	0.6000
T15 T15	6 7	LDF4-50A (1/2 FOAM) LC78-50JA-A7	60.00 - 80.00 60.00 - 80.00	$0.6000 \\ 0.6000$	$0.6000 \\ 0.6000$
T15	8	LC78-50JA-A7	60.00 - 80.00	0.6000	0.6000
T15	9	LC78-50JA-A7	60.00 - 80.00	0.6000	0.6000
T15	12	LC78-50JA-A7	60.00 - 80.00	0.6000	0.6000
T15	13	LC78-50JA-A7	60.00 - 80.00	0.6000	0.6000
T15	14	AVA7-50 (1-5/8 LOW	60.00 - 80.00	0.6000	0.6000
		DENSI. FOAM)			
T15	15	AVA7-50 (1-5/8 LOW	60.00 - 80.00	0.6000	0.6000
		DENSI. FOAM)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 5000	
T15	16	AVA7-50 (1-5/8 LOW	60.00 - 80.00	0.6000	0.6000
T15	10	DENSI. FOAM) AVA7-50 (1-5/8 LOW	60.00 - 80.00	0.6000	0.6000
115	18	DENSI. FOAM)	60.00 - 80.00	0.0000	0.0000
T15	19	AVA7-50 (1-5/8 LOW	60.00 - 80.00	0.6000	0.6000
115	15	DENSI. FOAM)	00.00 - 00.00	0.0000	0.0000
T15	20	AVA7-50 (1-5/8 LOW	60.00 - 80.00	0.6000	0.6000
		DENSI. FOAM)			
T15	21	AVA7-50 (1-5/8 LOW	60.00 - 80.00	0.6000	0.6000
		DENSI. FOAM)			
T15	22	LDF4-50A (1/2 FOAM)	60.00 - 80.00	0.6000	0.6000
T15	23	LC78-50JA-A7	60.00 - 80.00	0.6000	0.6000
T15	24	WE65	60.00 - 80.00	0.6000	0.6000
T15 T15	25 26	LC78-50JA-A7 LC78-50JA-A7	60.00 - 80.00 60.00 - 80.00	$0.6000 \\ 0.6000$	$0.6000 \\ 0.6000$
T15 T15	20 27	UC/8-50JA-A/ WE108	60.00 - 80.00	0.6000	0.6000
T15	28	LC78-50JA-A7	60.00 - 80.00	0.6000	0.6000
T15	29	LC78-50JA-A7	60.00 - 80.00	0.6000	0.6000
T15	30	1/2	60.00 - 80.00	0.6000	0.6000
T15	31	1/2	60.00 - 80.00	0.6000	0.6000
T15	32	LC78-50JA-A7	60.00 - 80.00	0.6000	0.6000
T15	33	1/2	60.00 - 80.00	0.6000	0.6000
T15	34	1/2	60.00 - 80.00	0.6000	0.6000
T15	35	LC78-50JA-A7	60.00 - 80.00	0.6000	0.6000
T15	36	LC78-50JA-A7	60.00 - 80.00	0.6000	0.6000

tnxTower

	Job		Page
		21007.82 - Colchester	25 of 96
	Project		Date
•		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
	Client	Verizon	Designed by TJL

Tower	Feed Line	Description	Feed Line	$K_a$	$K_a$
Section	Record No.	*	Segment Elev.	No Ice	Ice
T15	39	EW63	60.00 - 80.00	0.6000	0.6000
T15	41	1-5/8" Fiber Optic CaBLE	60.00 - 80.00	0.6000	0.6000
T15	42	1/2	60.00 - 80.00	0.6000	0.6000
T15	44	LCF78-50J (7/8 FOAM) LCF78-50J (7/8 FOAM)	60.00 - 80.00 60.00 - 80.00	0.6000	0.6000
T15 T16	45	( )	60.00 - 80.00 30.00 - 60.00	0.6000 0.6000	$0.6000 \\ 0.6000$
T16	1 2	1 5/8 1 5/8	30.00 - 60.00	0.6000	0.6000
T16	3	1 5/8" Hybriflex	30.00 - 60.00	0.6000	0.6000
T16	4	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
T16	5	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
T16	6	LDF4-50A (1/2 FOAM)	30.00 - 60.00	0.6000	0.6000
T16	7	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
T16	8	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
T16	9	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
T16	12	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
T16	13	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
T16	14	AVA7-50 (1-5/8 LOW	30.00 - 60.00	0.6000	0.6000
		DENSI. FOAM)		0 < 0 0 0	0.0000
T16	15	AVA7-50 (1-5/8 LOW	30.00 - 60.00	0.6000	0.6000
-T12	17	DENSI. FOAM)	30.00 - 60.00	0.6000	0.6000
T16	16	AVA7-50 (1-5/8 LOW DENSI. FOAM)	50.00 - 60.00	0.6000	0.6000
T16	18	AVA7-50 (1-5/8 LOW	30.00 - 60.00	0.6000	0.6000
110	10	DENSI. FOAM)	50.00 - 00.00	0.0000	0.0000
T16	19	AVA7-50 (1-5/8 LOW	30.00 - 60.00	0.6000	0.6000
110		DENSI. FOAM)	20.00 00.00	0.0000	0.0000
T16	20	AVA7-50 (1-5/8 LOW	30.00 - 60.00	0.6000	0.6000
		DENSI. FOAM)			
T16	21	AVA7-50 (1-5/8 LOW	30.00 - 60.00	0.6000	0.6000
		DENSI. FOAM)			
T16	22	LDF4-50A (1/2 FOAM)	30.00 - 60.00	0.6000	0.6000
T16	23	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
T16	24	WE65	30.00 - 60.00	0.6000	0.6000
T16	25	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
T16 T16	26 27	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
T16	27	WE108 LC78-50JA-A7	30.00 - 60.00 30.00 - 60.00	$0.6000 \\ 0.6000$	$0.6000 \\ 0.6000$
T16	28	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
T16	30	1/2	30.00 - 60.00	0.6000	0.6000
T16	31	1/2	30.00 - 60.00	0.6000	0.6000
T16	32	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
T16	33	1/2	30.00 - 60.00	0.6000	0.6000
T16	34	1/2	30.00 - 60.00	0.6000	0.6000
T16	35	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
T16	36	LC78-50JA-A7	30.00 - 60.00	0.6000	0.6000
T16	39	EW63	30.00 - 60.00	0.6000	0.6000
T16	41	1-5/8" Fiber Optic CaBLE	30.00 - 60.00	0.6000	0.6000
T16	42	1/2 LCE78 501 (7/8 EO AM)	30.00 - 60.00	0.6000	0.6000
T16 T16	44 45	LCF78-50J (7/8 FOAM) LCF78-50J (7/8 FOAM)	30.00 - 60.00 30.00 - 60.00	$0.6000 \\ 0.6000$	$0.6000 \\ 0.6000$
T10 T17	45 1	1 5/8	5.00 - 30.00	0.6000	0.6000
T17	2	1 5/8	5.00 - 30.00	0.6000	0.6000
T17	3	1 5/8" Hybriflex	5.00 - 30.00	0.6000	0.6000
T17	4	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
T17	5	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
T17	6	LDF4-50A (1/2 FOAM)	5.00 - 30.00	0.6000	0.6000
T17	7	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
T17	8	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
T17	9	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
T17	12	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
T17	13	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
T17	14	AVA7-50 (1-5/8 LOW	5.00 - 30.00	0.6000	0.6000

*tnxT* 

**Centek Engi** 63-2 North E Branford, Phone: (202 FAX: (203)

Tower	Job	21007.82 - Colchester	Page 26 of 96
<b>gineering Inc.</b> h Branford Rd.	Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
d, CT 06405 203) 488-0580 23) 488-8587	Client	Verizon	Designed by TJL

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	-	Segment Elev.	No Ice	Ice
		DENSI. FOAM)			
T17	15	AVA7-50 (1-5/8 LOW	5.00 - 30.00	0.6000	0.6000
		DENSI. FOAM)			
T17	16	AVA7-50 (1-5/8 LOW	5.00 - 30.00	0.6000	0.6000
		DENSI. FOAM)			
T17	18	AVA7-50 (1-5/8 LOW	5.00 - 30.00	0.6000	0.6000
		DENSI. FOAM)			
T17	19	AVA7-50 (1-5/8 LOW	5.00 - 30.00	0.6000	0.6000
		DENSI. FOAM)			
T17	20	AVA7-50 (1-5/8 LOW	5.00 - 30.00	0.6000	0.6000
		DENSI. FOAM)			
T17	21	AVA7-50 (1-5/8 LOW	5.00 - 30.00	0.6000	0.6000
		DENSI. FOAM)			
T17	22	LDF4-50A (1/2 FOAM)	5.00 - 30.00	0.6000	0.6000
T17	23	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
T17	24	WE65	5.00 - 30.00	0.6000	0.6000
T17	25	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
T17	26	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
T17	27	WE108	5.00 - 30.00	0.6000	0.6000
T17	28	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
T17	29	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
T17	30	1/2	5.00 - 30.00	0.6000	0.6000
T17	31	1/2	5.00 - 30.00	0.6000	0.6000
T17	32	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
T17	33	1/2	5.00 - 30.00	0.6000	0.6000
T17	34	1/2	5.00 - 30.00	0.6000	0.6000
T17	35	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
T17	36	LC78-50JA-A7	5.00 - 30.00	0.6000	0.6000
T17	39	EW63	5.00 - 30.00	0.6000	0.6000
T17	41	1-5/8" Fiber Optic CaBLE	5.00 - 30.00	0.6000	0.6000
T17	42	1/2	5.00 - 30.00	0.6000	0.6000
T17	44	LCF78-50J (7/8 FOAM)	5.00 - 30.00	0.6000	0.6000
T17	45	LCF78-50J (7/8 FOAM)	5.00 - 30.00	0.6000	0.6000

### **Discrete Tower Loads**

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft	O	ft		ft ²	ft ²	lb
CSP Antenna Inventory - a Eastern Communications Climb/Mapping									
PD688S-4 (ECI-66)	С	From Leg	0.50 0.00 0.00	0.0000	94.00	No Ice 1/2" Ice 1" Ice	0.35 0.63 0.91	0.35 0.63 0.91	3.75 4.88 6.00
4'x4" Pipe Mount (ECI-66)	С	From Leg	$0.00 \\ 0.00 \\ 0.00$	0.0000	94.00	No Ice 1/2" Ice 1" Ice	1.03 1.58 1.84	1.03 1.58 1.84	44.00 56.99 73.03
rirod 4' Side Mount Standoff (1) (ECI-62)	В	From Leg	$0.00 \\ 0.00 \\ 0.00$	0.0000	106.00	No Ice 1/2" Ice 1" Ice	2.72 4.91 7.10	2.72 4.91 7.10	50.00 89.00 128.00

*tnx* 

Centek Er 63-2 Nor Branfo Phone: ( FAX: (2

Tana	Job		Page
cTower		27 of 96	
Engineering Inc. Forth Branford Rd.	Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
ford, CT 06405 : (203) 488-0580 (203) 488-8587	Client	Verizon	Designed by TJL

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Lateral						
			Vert	0	G		c2	$ft^2$	11.
			ft ft	-	ft		$ft^2$	Jt	lb
			ft						
PD458	в	From Leg	3.00	0.0000	106.00	No Ice	2.88	2.88	20.00
(ECI-62)			0.00			1/2" Ice	4.34	4.34	46.22
5'3"x4" Pipe Mount	А	From Leg	$0.00 \\ 0.00$	0.0000	107.00	1" Ice No Ice	5.83 1.39	5.83 1.39	77.59 57.00
(ECI-63 (Dish Support))	A	FIOII Leg	0.00	0.0000	107.00	1/2" Ice	2.21	2.21	73.81
(Let-05 (Dian Support))			0.00			1" Ice	2.54	2.54	94.43
8' Wide Ice Shield (for Dish	А	From Leg	0.00	0.0000	115.00	No Ice	8.34	4.76	400.00
Antennas) (Assume Ca=2.0)		U	0.00			1/2" Ice	11.01	6.71	756.25
(ECI-63a (Dish Ice Shield))			0.00			1" Ice	13.59	8.62	1103.65
3' Wide Ice Shield (for Dish	С	From Leg	0.00	0.0000	117.00	No Ice	8.34	4.76	400.00
Antennas) (Assume Ca=2.0)			0.00			1/2" Ice	11.01	6.71	756.25
(ECI-61a)	a	<b>D</b>	0.00	0.0000	110.00	1" Ice	13.59	8.62	1103.65
5'3"x4" Pipe Mount	С	From Leg	0.00	0.0000	112.00	No Ice	1.39	1.39	57.00
(ECI-61a (Dish Support))			$0.00 \\ 0.00$			1/2" Ice 1" Ice	2.21 2.54	2.21 2.54	73.81 94.43
DB212-1	С	From Leg	6.00	0.0000	139.00	No Ice	4.40	4.40	31.00
(ECI-59)	C	110m Leg	0.00	0.0000	159.00	1/2" Ice	8.42	8.42	70.21
			0.00			1" Ice	12.45	12.45	134.11
4' Side Mount Standoff	С	From Leg	0.00	0.0000	139.00	No Ice	6.50	6.50	100.00
(ECI-60 & 59)		C	0.00			1/2" Ice	8.50	8.50	170.00
			0.00			1" Ice	10.50	10.50	240.00
PD156S	С	From Leg	6.00	0.0000	139.00	No Ice	0.44	0.44	5.00
(ECI-60)			0.00			1/2" Ice	0.79	0.79	6.50
	~		0.00			1" Ice	1.14	1.14	8.00
5'3"x4" Pipe Mount	С	From Leg	0.00	0.0000	154.00	No Ice	1.37	1.37	57.00
(ECI-58a (Dish Support))			$0.00 \\ 0.00$			1/2" Ice 1" Ice	2.21 2.54	2.21 2.54	73.81 94.43
ANT450F6	А	From Leg	0.00	0.0000	153.00	No Ice	2.34 1.90	2.34	8.00
(ECI-57)	А	From Leg	0.00	0.0000	155.00	1/2" Ice	2.73	2.73	22.34
			0.00			1" Ice	3.40	3.40	41.96
5'3"x4" Pipe Mount	А	From Leg	0.00	0.0000	153.00	No Ice	1.37	1.37	57.00
(ECI-57)		C	0.00			1/2" Ice	2.21	2.21	73.81
			0.00			1" Ice	2.54	2.54	94.43
L-810 Obstruction Lighting	А	From Leg	0.25	0.0000	164.00	No Ice	0.36	0.36	6.65
(1)			0.00			1/2" Ice	0.52	0.52	12.44
(ECI-56)			0.00			1" Ice	0.70	0.70	19.93
L-810 Obstruction Lighting	В	From Leg	0.25	0.0000	168.00	No Ice 1/2'' Ice	0.36	0.36	6.65
(1) (ECI-54)			$0.00 \\ 0.00$			172 Ice	0.52 0.70	0.52 0.70	12.44 19.93
L-810 Obstruction Lighting	С	From Leg	0.00	0.0000	165.00	No Ice	0.36	0.36	6.65
(1)	C	110m Leg	0.00	0.0000	105.00	1/2" Ice	0.50	0.52	12.44
(ECI-55)			0.00			1" Ice	0.70	0.70	19.93
DB586-Y (inverted)	в	From Leg	4.00	0.0000	175.00	No Ice	1.01	1.01	8.25
(ECI-53)			0.00			1/2" Ice	1.28	1.28	16.59
			0.00			1" Ice	1.56	1.56	28.01
Pirod 4' Side Mount Standoff	В	From Leg	0.00	0.0000	176.00	No Ice	2.72	2.72	50.00
(1)			0.00			1/2" Ice	4.91	4.91	89.00
(ECI-53,52,51) 430-94C-09168-M-11048	р	Erom Log	0.00	0.0000	176.00	1" Ice No Ice	7.10	7.10	128.00
430-94C-09168-M-11048 TTA	В	From Leg	2.00 0.00	0.0000	176.00	No Ice 1/2'' Ice	1.63 1.81	0.95 1.09	30.00 37.44
(ECI-52)			0.00			172 Ice	1.81	1.09	52.22
(ECI-52) DB586-Y	В	From Leg	4.00	0.0000	177.00	No Ice	1.01	1.01	8.25
(ECI-51)		110111 1108	0.00	0.0000	~	1/2" Ice	1.28	1.28	16.59
( /			0.00			1" Ice	1.56	1.56	28.01
1151-3	С	From Leg	3.00	0.0000	179.00	No Ice	4.18	4.18	16.00
(ECI-50)		2	0.00			1/2" Ice	5.73	5.73	46.53
			0.00			1" Ice	7.30	7.30	86.79

*tn*3

**Centek** 1 63-2 N Bran Phone FAX:

xTower	Job 21007.82 - Colchester	Page 28 of 96
<b>k Engineering Inc.</b> North Branford Rd.	Project 320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
anford, CT 06405 ne: (203) 488-0580 X: (203) 488-8587	Client Verizon	Designed by TJL

LegPirod 4' Side Mount Standoff (1) (ECI-50)C (1) (ECI-50) $531-70HD$ Exposed Dipole A Antenna (ECI-15)A (ECI-15)6' Side Mount Standoff (ECI-14)C (ECI-14)6' Side Mount Standoff (ECI-14)C (ECI-14)6' Side Mount Standoff (ECI-14)C (ECI-13)SC479-HF1LDF(D00I-E6085 (ECI-13)B (ECI-12) Sabre T-Boom (1) (ECI-10,11,12,13)430-94C-09168-M-11048 (ECI-10)B (ECI-10)6' Side Mount Standoff (ECI-10)B (ECI-10)6' Side Mount Standoff (ECI-10)B SC479-HF1LDF (ECI-10)6' Side Mount Standoff (ECI-8)B (ECI-8)9D440-2 (ECI-8)B (ECI-8)SC479-HF1LDF(D00I-E6085 (Inverted) (ECI-70)C C (Inverted)	From Leg From Leg From Leg From Leg From Leg From Leg From Leg From Leg	Lateral Vert ft ft ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	<ul> <li>0.0000</li> <li>0.0000</li> <li>0.0000</li> <li>0.0000</li> <li>0.0000</li> <li>0.0000</li> <li>0.0000</li> <li>0.0000</li> <li>0.0000</li> </ul>	<i>ft</i> 179.00 238.00 238.00 248.00 248.00 245.00 245.00	No Ice 1/2" Ice 1" Ice No Ice 1/2" Ice 1" Ice	$ft^2$ 2.72 4.91 7.10 5.91 7.68 9.47 6.50 8.50 10.50 1.32 3.21 5.12 6.50 8.50 10.50 5.06 6.54 8.04 5.06	$ft^2$ 2.72 4.91 7.10 5.91 7.68 9.47 6.50 8.50 10.50 1.32 3.21 5.12 6.50 8.50 10.50 5.06 6.54 8.04	<i>lb</i> 50.00 89.00 128.00 50.00 79.03 125.80 100.00 170.00 240.00 10.00 23.85 49.42 100.00 170.00 240.00 34.00 69.82 114.98
(1) (ECI-50) 531-70HD Exposed Dipole A Antenna (ECI-15) 6' Side Mount Standoff A (ECI-15) 6' Side Mount Standoff C (ECI-14) 6' Side Mount Standoff C (ECI-14) 6' Side Mount Standoff C (ECI-14) SC479-HF1LDF(D00I-E6085 B ) (Inverted) (ECI-13) SC479-HF1LDF(D00I-E6085 B ) (Inverted) (ECI-12) Sabre T-Boom (1) B (ECI-10,11,12,13) 430-94C-09168-M-11048 B TTA (ECI-11) SC479-HF1LDF B (ECI-10) 6' Side Mount Standoff B (ECI-8) PD440-2 B (ECI-8) SC479-HF1LDF(D00I-E6085 C ) (Inverted)	From Leg From Leg From Leg From Leg From Leg From Leg	$\begin{array}{c} ft\\ft\\ft\\0.00\\0.00\\0.00\\0.00\\0.00\\0.00\\0$	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	179.00 238.00 238.00 248.00 248.00 245.00	1/2" Ice 1" Ice No Ice 1/2" Ice	2.72 4.91 7.10 5.91 7.68 9.47 6.50 8.50 10.50 1.32 3.21 5.12 6.50 8.50 10.50 5.06 6.54 8.04	$\begin{array}{c} 2.72 \\ 4.91 \\ 7.10 \\ 5.91 \\ 7.68 \\ 9.47 \\ 6.50 \\ 8.50 \\ 10.50 \\ 1.32 \\ 3.21 \\ 5.12 \\ 6.50 \\ 8.50 \\ 10.50 \\ 5.06 \\ 6.54 \end{array}$	50.00 89.00 128.00 50.00 79.03 125.80 100.00 170.00 240.00 10.00 23.85 49.42 100.00 170.00 240.00 34.00 69.82
(1) (ECI-50) 531-70HD Exposed Dipole A Antenna (ECI-15) 6' Side Mount Standoff A (ECI-15) 6' Side Mount Standoff C (ECI-14) 6' Side Mount Standoff C (ECI-14) 6' Side Mount Standoff C (ECI-14) SC479-HF1LDF(D00I-E6085 B ) (Inverted) (ECI-13) SC479-HF1LDF(D00I-E6085 B ) (Inverted) (ECI-12) Sabre T-Boom (1) B (ECI-10,11,12,13) 430-94C-09168-M-11048 B TTA (ECI-11) SC479-HF1LDF B (ECI-10) 6' Side Mount Standoff B (ECI-8) PD440-2 B (ECI-8) SC479-HF1LDF(D00I-E6085 C ) (Inverted)	From Leg From Leg From Leg From Leg From Leg From Leg	ft           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00	0.0000 0.0000 0.0000 0.0000 0.0000	238.00 238.00 248.00 248.00 245.00	1/2" Ice 1" Ice No Ice 1/2" Ice	$\begin{array}{c} 4.91 \\ 7.10 \\ 5.91 \\ 7.68 \\ 9.47 \\ 6.50 \\ 8.50 \\ 10.50 \\ 1.32 \\ 3.21 \\ 5.12 \\ 6.50 \\ 8.50 \\ 10.50 \\ 5.06 \\ 6.54 \\ 8.04 \end{array}$	$\begin{array}{c} 4.91 \\ 7.10 \\ 5.91 \\ 7.68 \\ 9.47 \\ 6.50 \\ 8.50 \\ 10.50 \\ 1.32 \\ 3.21 \\ 5.12 \\ 6.50 \\ 8.50 \\ 10.50 \\ 5.06 \\ 6.54 \end{array}$	89.00 128.00 50.00 79.03 125.80 100.00 170.00 240.00 10.00 23.85 49.42 100.00 170.00 240.00 34.00 69.82
(1) (ECI-50) 531-70HD Exposed Dipole A Antenna (ECI-15) 6' Side Mount Standoff A (ECI-15) 6' Side Mount Standoff C (ECI-14) 6' Side Mount Standoff C (ECI-14) 6' Side Mount Standoff C (ECI-14) SC479-HF1LDF(D00I-E6085 B ) (Inverted) (ECI-12) Sabre T-Boom (1) B (ECI-10,11,12,13) 430-94C-09168-M-11048 B TTA (ECI-11) SC479-HF1LDF B (ECI-10) 6' Side Mount Standoff B (ECI-8) PD440-2 B (ECI-8) SC479-HF1LDF(D00I-E6085 C ) (Inverted)	From Leg From Leg From Leg From Leg From Leg From Leg	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 3.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\$	0.0000 0.0000 0.0000 0.0000 0.0000	238.00 238.00 248.00 248.00 245.00	1/2" Ice 1" Ice No Ice 1/2" Ice	$\begin{array}{c} 4.91 \\ 7.10 \\ 5.91 \\ 7.68 \\ 9.47 \\ 6.50 \\ 8.50 \\ 10.50 \\ 1.32 \\ 3.21 \\ 5.12 \\ 6.50 \\ 8.50 \\ 10.50 \\ 5.06 \\ 6.54 \\ 8.04 \end{array}$	$\begin{array}{c} 4.91 \\ 7.10 \\ 5.91 \\ 7.68 \\ 9.47 \\ 6.50 \\ 8.50 \\ 10.50 \\ 1.32 \\ 3.21 \\ 5.12 \\ 6.50 \\ 8.50 \\ 10.50 \\ 5.06 \\ 6.54 \end{array}$	89.00 128.00 50.00 79.03 125.80 100.00 170.00 240.00 10.00 23.85 49.42 100.00 170.00 240.00 34.00 69.82
$\begin{array}{c c} (ECI-50) \\ 531-70HD Exposed Dipole \\ Antenna \\ (ECI-15) \\ 6' Side Mount Standoff \\ (ECI-15) \\ \hline \\ PD1142-1 \\ (ECI-14) \\ \hline \\ 6' Side Mount Standoff \\ (ECI-14) \\ \hline \\ 6' Side Mount Standoff \\ (ECI-14) \\ \hline \\ SC479-HF1LDF(D00I-E6085 \\ ) (Inverted) \\ (ECI-13) \\ SC479-HF1LDF(D00I-E6085 \\ ) (Inverted) \\ (ECI-12) \\ Sabre T-Boom (1) \\ (ECI-12) \\ Sabre T-Boom (1) \\ (ECI-10) \\ \hline \\ (ECI-10) \\ \hline \\ 430-94C-09168-M-11048 \\ TTA \\ (ECI-11) \\ SC479-HF1LDF \\ (ECI-10) \\ \hline \\ 6' Side Mount Standoff \\ (ECI-8) \\ \hline \\ PD440-2 \\ (ECI-8) \\ \hline \\ SC479-HF1LDF(D00I-E6085 \\ ) (Inverted) \\ \hline \\ \end{array}$	From Leg From Leg From Leg From Leg From Leg	0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.0000 0.0000 0.0000 0.0000 0.0000	238.00 248.00 248.00 245.00	1" Ice No Ice 1/2" Ice 1" Ice No Ice	$\begin{array}{c} 7.10\\ 5.91\\ 7.68\\ 9.47\\ 6.50\\ 8.50\\ 10.50\\ 1.32\\ 3.21\\ 5.12\\ 6.50\\ 8.50\\ 10.50\\ 5.06\\ 6.54\\ 8.04 \end{array}$	$\begin{array}{c} 7.10\\ 5.91\\ 7.68\\ 9.47\\ 6.50\\ 8.50\\ 10.50\\ 1.32\\ 3.21\\ 5.12\\ 6.50\\ 8.50\\ 10.50\\ 5.06\\ 6.54\end{array}$	$\begin{array}{c} 128.00\\ 50.00\\ 79.03\\ 125.80\\ 100.00\\ 170.00\\ 240.00\\ 10.00\\ 23.85\\ 49.42\\ 100.00\\ 170.00\\ 240.00\\ 34.00\\ 69.82 \end{array}$
$\begin{array}{c} 531-70 \mbox{HD} \mbox{Exposed Dipole} \\ Antenna \\ (ECI-15) \\ 6' \mbox{Side Mount Standoff} \\ (ECI-15) \\ \hline PD1142-1 \\ (ECI-14) \\ 6' \mbox{Side Mount Standoff} \\ (ECI-14) \\ 6' \mbox{Side Mount Standoff} \\ (ECI-14) \\ \hline SC479-\mbox{HF}1\mbox{LDF}(D001-\mbox{E6085} \mbox{B} \\ ) (Inverted) \\ (ECI-13) \\ \hline SC479-\mbox{HF}1\mbox{LDF}(D001-\mbox{E6085} \mbox{B} \\ ) (Inverted) \\ (ECI-12) \\ \mbox{Sabre T-Boom (1)} \\ (ECI-10) \\ \hline SC479-\mbox{HF}1\mbox{LDF}(D001-\mbox{E6085} \mbox{B} \\ ) (Inverted) \\ (ECI-10) \\ \hline SC479-\mbox{HF}1\mbox{LDF}(\mbox{D01-}\mbox{B} \\ \hline SC479-\mbox{HF}1\mbox{LDF} \\ \hline B \\ (ECI-10) \\ \hline 6' \mbox{Side Mount Standoff} \\ (ECI-8) \\ \hline PD440-2 \\ (ECI-8) \\ \hline SC479-\mbox{HF}1\mbox{LDF}(\mbox{D001-}\mbox{E6085} \mbox{C} \\ ) (Inverted) \\ \hline SC479-\mbox{HF}1\mbox{LDF}(\mbox{D001-}\mbox{E6085} \mbox{B} \\ \hline SC479-\mbox{HF}1\mbox{LDF}(\mbox{D001-}\mbox{E6085} \mbox{B} \\ \hline SC479-\mbox{HF}1\mbox{LDF}(\mbox{D001-}\mbox{E6085} \mbox{B} \\ \hline SC479-\mbox{HF}1\mbox{LDF}(\mbox{D001-}\mbox{E6085} \mbox{B} \\ \hline SC479-\mbox{HF}1\mbox{LDF}(\mbox{D001-}\mbox{E6085} \mbox{C} \\ \hline SC479-\mbox{HF}1\mbox{LDF}(\mbox{D001-}\mbox{E6085} \mbox{LF} \\ \hline SC479-\mbox{HF}1\mbox{LDF}(\mbox{LDF}(\mbox{LDF}(\mbox{LDF}(\mbox{LDF}(\mbox{LDF}(\mbox{LDF}(\mbox{LDF}(\mbox{LDF}(\m$	From Leg From Leg From Leg From Leg From Leg	$ \begin{array}{c} 6.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 3.00\\ 0.00\\ 3.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00$	0.0000 0.0000 0.0000 0.0000 0.0000	238.00 248.00 248.00 245.00	No Ice 1/2" Ice 1" Ice No Ice	5.917.689.476.50 $8.5010.501.323.215.126.508.5010.505.066.548.04$	$5.91 \\ 7.68 \\ 9.47 \\ 6.50 \\ 8.50 \\ 10.50 \\ 1.32 \\ 3.21 \\ 5.12 \\ 6.50 \\ 8.50 \\ 10.50 \\ 5.06 \\ 6.54 \\ $	$\begin{array}{c} 50.00\\ 79.03\\ 125.80\\ 100.00\\ 170.00\\ 240.00\\ 10.00\\ 23.85\\ 49.42\\ 100.00\\ 170.00\\ 240.00\\ 34.00\\ 69.82 \end{array}$
Antenna (ECI-15) 6' Side Mount Standoff (ECI-15) PD1142-1 (ECI-14) 6' Side Mount Standoff (ECI-14) 6' Side Mount Standoff (ECI-14) SC479-HF1LDF(D001-E6085 B ) (Inverted) (ECI-12) Sabre T-Boom (1) (ECI-10,11,12,13) 430-94C-09168-M-11048 B TTA (ECI-10) 6' Side Mount Standoff (ECI-10) 6' Side Mount Standoff (ECI-8) PD440-2 (ECI-8) SC479-HF1LDF(D001-E6085 C ) (Inverted)	From Leg From Leg From Leg From Leg From Leg	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.0000 0.0000 0.0000 0.0000 0.0000	238.00 248.00 248.00 245.00	1/2" Ice 1" Ice No Ice 1/2" Ice 1" Ice No Ice 1/2" Ice 1" Ice No Ice 1/2" Ice 1" Ice No Ice 1/2" Ice 1" Ice No Ice	$\begin{array}{c} 7.68\\ 9.47\\ 6.50\\ 8.50\\ 10.50\\ 1.32\\ 3.21\\ 5.12\\ 6.50\\ 8.50\\ 10.50\\ 5.06\\ 6.54\\ 8.04 \end{array}$	$7.68 \\ 9.47 \\ 6.50 \\ 8.50 \\ 10.50 \\ 1.32 \\ 3.21 \\ 5.12 \\ 6.50 \\ 8.50 \\ 10.50 \\ 5.06 \\ 6.54 $	$\begin{array}{c} 79.03 \\ 125.80 \\ 100.00 \\ 170.00 \\ 240.00 \\ 10.00 \\ 23.85 \\ 49.42 \\ 100.00 \\ 170.00 \\ 240.00 \\ 34.00 \\ 69.82 \end{array}$
$\begin{array}{c} (\mathrm{ECI}\text{-}15) \\ 6' \operatorname{Side} \operatorname{Mount} \operatorname{Standoff} \\ (\mathrm{ECI}\text{-}15) \end{array} \qquad A \\ \begin{array}{c} \mathrm{PD1142}\text{-}1 \\ (\mathrm{ECI}\text{-}14) \end{array} \qquad C \\ \end{array} \\ \begin{array}{c} \mathrm{PD1142}\text{-}1 \\ (\mathrm{ECI}\text{-}14) \end{array} \qquad C \\ \end{array} \\ \begin{array}{c} \mathrm{G}' \operatorname{Side} \operatorname{Mount} \operatorname{Standoff} \\ (\mathrm{ECI}\text{-}14) \end{array} \qquad C \\ \end{array} \\ \begin{array}{c} \mathrm{G}' \operatorname{Side} \operatorname{Mount} \operatorname{Standoff} \\ (\mathrm{ECI}\text{-}14) \end{array} \qquad B \\ \end{array} \\ \begin{array}{c} \mathrm{SC479}\text{-}\mathrm{HF1LDF}(\mathrm{D001}\text{-}\mathrm{E6085} \ B \\ ) (\mathrm{Inverted}) \\ (\mathrm{ECI}\text{-}13) \\ \mathrm{SC479}\text{-}\mathrm{HF1LDF}(\mathrm{D001}\text{-}\mathrm{E6085} \ B \\ ) (\mathrm{Inverted}) \\ (\mathrm{ECI}\text{-}12) \\ \mathrm{Sabre} \ T\text{-}\mathrm{Boom} \ (1) \qquad B \\ \end{array} \\ \begin{array}{c} \mathrm{GECI}\text{-}10 \\ \mathrm{GECI}\text{-}11) \\ \mathrm{SC479}\text{-}\mathrm{HF1LDF} \\ \mathrm{GECI}\text{-}10 \\ \mathrm{G}' \operatorname{Side} \operatorname{Mount} \operatorname{Standoff} \\ (\mathrm{ECI}\text{-}8) \\ \end{array} \\ \begin{array}{c} \mathrm{B} \\ \mathrm{GECI}\text{-}8 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathrm{GECI}\text{-}8 \\ \mathrm{GECI}\text$	From Leg From Leg From Leg From Leg	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.0000 0.0000 0.0000 0.0000	248.00 248.00 245.00	1" Ice No Ice 1/2" Ice 1" Ice No Ice 1/2" Ice 1" Ice No Ice 1/2" Ice No Ice 1/2" Ice No Ice 1/2" Ice	9.47 6.50 8.50 10.50 1.32 3.21 5.12 6.50 8.50 10.50 5.06 6.54 8.04	$\begin{array}{c} 9.47 \\ 6.50 \\ 8.50 \\ 10.50 \\ 1.32 \\ 3.21 \\ 5.12 \\ 6.50 \\ 8.50 \\ 10.50 \\ 5.06 \\ 6.54 \end{array}$	$\begin{array}{c} 125.80\\ 100.00\\ 170.00\\ 240.00\\ 10.00\\ 23.85\\ 49.42\\ 100.00\\ 170.00\\ 240.00\\ 34.00\\ 69.82 \end{array}$
6' Side Mount Standoff (ECI-15)       A         PD1142-1 (ECI-14)       C         6' Side Mount Standoff (ECI-14)       C         6' Side Mount Standoff (ECI-14)       C         5C479-HF1LDF(D00I-E6085       B         ) (Inverted) (ECI-13)       B         SC479-HF1LDF(D00I-E6085       B         ) (Inverted) (ECI-12)       Sabre T-Boom (1)         Sabre T-Boom (1) (ECI-10,11,12,13)       B         430-94C-09168-M-11048       B         TTA (ECI-11) SC479-HF1LDF       B         (ECI-10)       6' Side Mount Standoff (ECI-8)       B         PD440-2 (ECI-8)       B         SC479-HF1LDF(D00I-E6085       C         ) (Inverted)       C	From Leg From Leg From Leg From Leg	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.0000 0.0000 0.0000 0.0000	248.00 248.00 245.00	No Ice 1/2" Ice 1" Ice No Ice 1/2" Ice 1" Ice No Ice 1/2" Ice No Ice 1/2" Ice No Ice 1/2" Ice	$\begin{array}{c} 6.50\\ 8.50\\ 10.50\\ 1.32\\ 3.21\\ 5.12\\ 6.50\\ 8.50\\ 10.50\\ 5.06\\ 6.54\\ 8.04 \end{array}$	$\begin{array}{c} 6.50 \\ 8.50 \\ 10.50 \\ 1.32 \\ 3.21 \\ 5.12 \\ 6.50 \\ 8.50 \\ 10.50 \\ 5.06 \\ 6.54 \end{array}$	$\begin{array}{c} 100.00\\ 170.00\\ 240.00\\ 10.00\\ 23.85\\ 49.42\\ 100.00\\ 170.00\\ 240.00\\ 34.00\\ 69.82 \end{array}$
(ECI-15) PD1142-1 (ECI-14) 6' Side Mount Standoff (ECI-14) SC479-HF1LDF(D001-E6085 B ) (Inverted) (ECI-13) SC479-HF1LDF(D001-E6085 B ) (Inverted) (ECI-12) Sabre T-Boom (1) B (ECI-10,11,12,13) 430-94C-09168-M-11048 B TTA (ECI-11) SC479-HF1LDF B (ECI-10) 6' Side Mount Standoff (ECI-8) PD440-2 B (ECI-8) SC479-HF1LDF(D001-E6085 C ) (Inverted)	From Leg From Leg From Leg From Leg	0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 0.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.0000 0.0000 0.0000 0.0000	248.00 248.00 245.00	1/2" Ice 1" Ice No Ice 1/2" Ice 1" Ice No Ice 1/2" Ice No Ice 1/2" Ice No Ice 1/2" Ice	8.50 10.50 1.32 3.21 5.12 6.50 8.50 10.50 5.06 6.54 8.04	$\begin{array}{c} 8.50 \\ 10.50 \\ 1.32 \\ 3.21 \\ 5.12 \\ 6.50 \\ 8.50 \\ 10.50 \\ 5.06 \\ 6.54 \end{array}$	$\begin{array}{c} 170.00\\ 240.00\\ 10.00\\ 23.85\\ 49.42\\ 100.00\\ 170.00\\ 240.00\\ 34.00\\ 69.82 \end{array}$
PD1142-1 (ECI-14)       C         6' Side Mount Standoff (ECI-14)       C         6' Side Mount Standoff (ECI-14)       C         SC479-HF1LDF(D001-E6085       B         ) (Inverted) (ECI-13)       B         SC479-HF1LDF(D001-E6085       B         ) (Inverted) (ECI-12)       B         Sabre T-Boom (1)       B         (ECI-10,11,12,13)       B         430-94C-09168-M-11048       B         TTA (ECI-11)       SC479-HF1LDF         SC479-HF1LDF       B         (ECI-8)       PD440-2 (ECI-8)         SC479-HF1LDF(D001-E6085       C         ) (Inverted)       C	From Leg From Leg From Leg	0.00 6.00 0.00 0.00 0.00 0.00 3.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.0000 0.0000 0.0000	248.00 245.00	1" Ice No Ice 1/2" Ice 1" Ice No Ice 1/2" Ice No Ice 1/2" Ice 1/2" Ice No Ice	10.50 1.32 3.21 5.12 6.50 8.50 10.50 5.06 6.54 8.04	10.50 1.32 3.21 5.12 6.50 8.50 10.50 5.06 6.54	240.00 10.00 23.85 49.42 100.00 170.00 240.00 34.00 69.82
(ECI-14)         6' Side Mount Standoff (ECI-14)       C         SC479-HF1LDF(D00I-E6085       B         ) (Inverted) (ECI-13)       B         SC479-HF1LDF(D00I-E6085       B         ) (Inverted) (ECI-12)       B         Sabre T-Boom (1)       B         (ECI-10,11,12,13)       B         430-94C-09168-M-11048       B         TTA       (ECI-11)         SC479-HF1LDF       B         (ECI-10)       6' Side Mount Standoff         6' Side Mount Standoff       B         (ECI-8)       PD440-2         SC479-HF1LDF(D00I-E6085       C         ) (Inverted)       C	From Leg From Leg From Leg	6.00 0.00 0.00 0.00 0.00 3.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.0000 0.0000 0.0000	248.00 245.00	1/2" Ice 1" Ice No Ice 1/2" Ice 1" Ice No Ice 1/2" Ice 1" Ice No Ice	$     \begin{array}{r}       1.32 \\       3.21 \\       5.12 \\       6.50 \\       8.50 \\       10.50 \\       5.06 \\       6.54 \\       8.04 \\     \end{array} $	1.32 3.21 5.12 6.50 8.50 10.50 5.06 6.54	$10.00 \\ 23.85 \\ 49.42 \\ 100.00 \\ 170.00 \\ 240.00 \\ 34.00 \\ 69.82$
6' Side Mount Standoff (ECI-14) SC479-HF1LDF(D001-E6085 B ) (Inverted) (ECI-13) SC479-HF1LDF(D001-E6085 B ) (Inverted) (ECI-12) Sabre T-Boom (1) B (ECI-10,11,12,13) 430-94C-09168-M-11048 B TTA (ECI-10,11,12,13) 430-94C-09168-M-11048 B CECI-10) 6' Side Mount Standoff (ECI-10) 6' Side Mount Standoff (ECI-8) PD440-2 B (ECI-8) SC479-HF1LDF(D001-E6085 C ) (Inverted)	From Leg From Leg	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 3.00\\ 0.00\\ 3.00\\ 0.00\\ 3.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\$	0.0000 0.0000	245.00	1" Ice No Ice 1/2" Ice 1" Ice No Ice 1/2" Ice 1" Ice No Ice	5.12 6.50 8.50 10.50 5.06 6.54 8.04	5.12 6.50 8.50 10.50 5.06 6.54	49.42 100.00 170.00 240.00 34.00 69.82
(ECI-14) SC479-HF1LDF(D00I-E6085 B ) (Inverted) (ECI-13) SC479-HF1LDF(D00I-E6085 B ) (Inverted) (ECI-12) Sabre T-Boom (1) B (ECI-10,11,12,13) 430-94C-09168-M-11048 B TTA (ECI-11) SC479-HF1LDF B (ECI-10) 6' Side Mount Standoff B (ECI-8) PD440-2 B (ECI-8) SC479-HF1LDF(D00I-E6085 C ) (Inverted)	From Leg From Leg	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 3.00\\ 0.00\\ 3.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$	0.0000 0.0000	245.00	No Ice 1/2" Ice 1" Ice No Ice 1/2" Ice 1" Ice No Ice	6.50 8.50 10.50 5.06 6.54 8.04	6.50 8.50 10.50 5.06 6.54	100.00 170.00 240.00 34.00 69.82
(ECI-14) SC479-HF1LDF(D00I-E6085 B ) (Inverted) (ECI-13) SC479-HF1LDF(D00I-E6085 B ) (Inverted) (ECI-12) Sabre T-Boom (1) B (ECI-10,11,12,13) 430-94C-09168-M-11048 B TTA (ECI-11) SC479-HF1LDF B (ECI-10) 6' Side Mount Standoff B (ECI-8) PD440-2 B (ECI-8) SC479-HF1LDF(D00I-E6085 C ) (Inverted)	From Leg From Leg	0.00 0.00 3.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00	0.0000 0.0000	245.00	1/2" Ice 1" Ice No Ice 1/2" Ice 1" Ice No Ice	8.50 10.50 5.06 6.54 8.04	8.50 10.50 5.06 6.54	170.00 240.00 34.00 69.82
SC479-HF1LDF(D00I-E6085 B ) (Inverted) (ECI-13) SC479-HF1LDF(D00I-E6085 B ) (Inverted) (ECI-12) Sabre T-Boom (1) B (ECI-10,11,12,13) 430-94C-09168-M-11048 B TTA (ECI-11) SC479-HF1LDF B (ECI-10) 6' Side Mount Standoff B (ECI-8) PD440-2 B (ECI-8) SC479-HF1LDF(D00I-E6085 C ) (Inverted)	From Leg	0.00 3.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00	0.0000		1" Ice No Ice 1/2" Ice 1" Ice No Ice	10.50 5.06 6.54 8.04	10.50 5.06 6.54	240.00 34.00 69.82
) (Inverted) (ECI-13) SC479-HF1LDF(D00I-E6085 B ) (Inverted) (ECI-12) Sabre T-Boom (1) B (ECI-10,11,12,13) 430-94C-09168-M-11048 B TTA (ECI-11) SC479-HF1LDF B (ECI-10) 6' Side Mount Standoff B (ECI-8) PD440-2 B (ECI-8) SC479-HF1LDF(D00I-E6085 C ) (Inverted)	From Leg	$\begin{array}{c} 3.00\\ 0.00\\ 0.00\\ 3.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$	0.0000		No Ice 1/2" Ice 1" Ice No Ice	5.06 6.54 8.04	5.06 6.54	34.00 69.82
) (Inverted) (ECI-13) SC479-HF1LDF(D00I-E6085 B ) (Inverted) (ECI-12) Sabre T-Boom (1) B (ECI-10,11,12,13) 430-94C-09168-M-11048 B TTA (ECI-11) SC479-HF1LDF B (ECI-10) 6' Side Mount Standoff B (ECI-8) PD440-2 B (ECI-8) SC479-HF1LDF(D00I-E6085 C ) (Inverted)	From Leg	$\begin{array}{c} 0.00\\ 0.00\\ 3.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$	0.0000		1/2" Ice 1" Ice No Ice	6.54 8.04	6.54	69.82
(ECI-13)         SC479-HF1LDF(D00I-E6085       B         ) (Inverted)       (ECI-12)         Sabre T-Boom (1)       B         (ECI-10,11,12,13)       B         430-94C-09168-M-11048       B         TTA       (ECI-11)         SC479-HF1LDF       B         (ECI-10)       6' Side Mount Standoff         6' Side Mount Standoff       B         (ECI-8)       PD440-2         SC479-HF1LDF(D00I-E6085       C         ) (Inverted)       C	-	$\begin{array}{c} 0.00\\ 3.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00 \end{array}$		245.00	1" Ice No Ice	8.04		
SC479-HF1LDF(D00I-E6085 B ) (Inverted) (ECI-12) Sabre T-Boom (1) B (ECI-10,11,12,13) 430-94C-09168-M-11048 B TTA (ECI-11) SC479-HF1LDF B (ECI-10) 6' Side Mount Standoff B (ECI-8) PD440-2 B (ECI-8) SC479-HF1LDF(D00I-E6085 C ) (Inverted)	-	3.00 0.00 0.00 0.00 0.00		245.00	No Ice			114.20
) (Inverted) (ECI-12) Sabre T-Boom (1) B (ECI-10,11,12,13) 430-94C-09168-M-11048 B TTA (ECI-11) SC479-HF1LDF B (ECI-10) 6' Side Mount Standoff B (ECI-8) PD440-2 B (ECI-8) SC479-HF1LDF(D00I-E6085 C ) (Inverted)	-	$0.00 \\ 0.00 \\ 0.00 \\ 0.00$		245.00			5.06	34.00
(ECI-12)         Sabre T-Boom (1)         (ECI-10,11,12,13)         430-94C-09168-M-11048         TTA         (ECI-11)         SC479-HF1LDF         6' Side Mount Standoff         (ECI-8)         PD440-2         (ECI-8)         SC479-HF1LDF(D00I-E6085)         C         ) (Inverted)	From Leg	0.00 0.00 0.00	0.0000			6.54	6.54	69.82
Sabre T-Boom (1) (ECI-10,11,12,13)         B           430-94C-09168-M-11048 TTA (ECI-11) SC479-HF1LDF (ECI-10)         B           6' Side Mount Standoff (ECI-8)         B           PD440-2 (ECI-8)         B           SC479-HF1LDF(D00I-E6085 ) (Inverted)         C	From Leg	$0.00 \\ 0.00$	0.0000		1" Ice	8.04	8.04	114.98
(ECI-10,11,12,13) 430-94C-09168-M-11048 B TTA (ECI-11) SC479-HF1LDF B (ECI-10) 6' Side Mount Standoff B (ECI-8) PD440-2 B (ECI-8) SC479-HF1LDF(D00I-E6085 C ) (Inverted)	0	0.00	0.0000	246.00	No Ice	35.40	35.40	471.00
TTA (ECI-11) SC479-HF1LDF B (ECI-10) 6' Side Mount Standoff B (ECI-8) PD440-2 B (ECI-8) SC479-HF1LDF(D00I-E6085 C ) (Inverted)					1/2" Ice	46.90	46.90	690.00
TTA (ECI-11) SC479-HF1LDF B (ECI-10) 6' Side Mount Standoff B (ECI-8) PD440-2 B (ECI-8) SC479-HF1LDF(D00I-E6085 C ) (Inverted)		0.00			1" Ice	58.40	58.40	909.00
(ECI-11) SC479-HF1LDF (ECI-10) 6' Side Mount Standoff (ECI-8) PD440-2 (ECI-8) SC479-HF1LDF(D00I-E6085 ) (Inverted)	From Leg	2.00	0.0000	247.00	No Ice	1.63	0.95	30.00
SC479-HFILDF B (ECI-10) 6' Side Mount Standoff B (ECI-8) PD440-2 B (ECI-8) SC479-HFILDF(D00I-E6085 C ) (Inverted)		0.00			1/2" Ice	1.81	1.09	37.44
(ECI-10) 6' Side Mount Standoff B (ECI-8) PD440-2 B (ECI-8) SC479-HF1LDF(D00I-E6085 C ) (Inverted)		0.00			1" Ice	1.99	1.24	52.22
6' Side Mount Standoff (ECI-8) PD440-2 (ECI-8) SC479-HF1LDF(D00I-E6085 ) (Inverted)	From Leg	3.00	0.0000	251.00	No Ice	3.90	3.90	34.00
(ECI-8) PD440-2 B (ECI-8) SC479-HF1LDF(D00I-E6085 C ) (Inverted)		0.00			1/2" Ice	6.54	6.54	69.82
(ECI-8) PD440-2 B (ECI-8) SC479-HF1LDF(D00I-E6085 C ) (Inverted)	Enom Log	$0.00 \\ 0.00$	0.0000	260.00	1" Ice No Ice	8.04 6.50	8.04 6.50	114.98 100.00
PD440-2 B (ECI-8) SC479-HF1LDF(D00I-E6085 C ) (Inverted)	From Leg	0.00	0.0000	200.00	1/2" Ice	8.50	8.50	170.00
(ECI-8) SC479-HF1LDF(D00I-E6085 C ) (Inverted)		0.00			1" Ice	10.50	10.50	240.00
(ECI-8) SC479-HF1LDF(D00I-E6085 C ) (Inverted)	From Leg	6.00	0.0000	264.00	No Ice	1.38	1.38	19.00
SC479-HF1LDF(D00I-E6085 C ) (Inverted)	110111219	0.00	010000	201100	1/2" Ice	2.48	2.48	24.70
) (Inverted)		0.00			1" Ice	3.59	3.59	30.40
	From Leg	6.00	0.0000	283.00	No Ice	5.06	5.06	34.00
(ECL 7)		0.00			1/2" Ice	6.54	6.54	69.82
(ECI-7)		0.00			1" Ice	8.04	8.04	114.98
6' Side Mount Standoff C	From Leg	0.00	0.0000	284.00	No Ice	6.50	6.50	100.00
(ECI-7)		0.00			1/2" Ice	8.50	8.50	170.00
DB809T3E-XC C	From Leg	0.00 6.00	0.0000	286.00	1" Ice No Ice	10.50 3.77	10.50 3.77	240.00 39.00
(ECI-6)	From Leg	0.00	0.0000	286.00	1/2'' Ice	5.70	5.77	59.00 69.70
(ECI-0)		0.00			172 Ice	7.17	7.17	109.50
PD340-1 A	From Leg	6.00	0.0000	290.00	No Ice	3.30	3.30	40.00
(ECI-5)	riom Deg	0.00	010000	290100	1/2" Ice	5.94	5.94	52.00
		0.00			1" Ice	8.58	8.58	64.00
6' Side Mount Standoff A	From Leg	0.00	0.0000	290.00	No Ice	6.50	6.50	100.00
(ECI-5)		0.00			1/2" Ice	8.50	8.50	170.00
	_	0.00			1" Ice	10.50	10.50	240.00
SC479-HF1LDF C	From Leg	6.00	0.0000	300.00	No Ice	3.82	3.82	34.00
(ECI-4)		0.00			1/2" Ice	6.54	6.54	69.82
(1014) Marriet Cr. 1. CC. C.		0.00	0.0000	200.00	1" Ice	8.04	8.04	114.98
6' Side Mount Standoff C	р. т.	0.00	0.0000	300.00	No Ice	6.50	6.50	100.00
(ECI-4)	From Leg	$0.00 \\ 0.00$			1/2" Ice 1" Ice	8.50 10.50	8.50 10.50	170.00 240.00

tnx

Centek E 63-2 Not Branfo Phone: FAX: (.

xTower	Job	21007.82 - Colchester	Page 29 of 96
Engineering Inc. Jorth Branford Rd.	Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
1ford, CT 06405 2: (203) 488-0580 • (203) 488-8587	Client	Verizon	Designed by TJL

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg	• •	Lateral						
			Vert	0	G		0 ²	c ²	11
			ft ft	0	ft		$ft^2$	$ft^2$	lb
			ft						
ANT450F6	В	From Leg	5.00	0.0000	318.00	No Ice	1.90	1.90	8.00
(ECI-3)			0.00			1/2" Ice 1" Ice	2.73	2.73	22.34
4'x4" Pipe Mount	в	From Leg	$0.00 \\ 0.00$	0.0000	318.00	No Ice	3.40 0.98	3.40 0.98	41.96 44.00
(ECI-3)	Б	FIOII Leg	0.00	0.0000	516.00	1/2" Ice	1.58	1.58	56.99
(ECI-5)			0.00			1" Ice	1.84	1.84	73.03
BA1012-0	А	From Leg	6.00	0.0000	320.00	No Ice	0.47	0.47	2.20
(ECI-2)		r tom Leg	0.00	0.0000	520.00	1/2" Ice	0.96	0.96	6.61
(= == =)			0.00			1" Ice	1.31	1.31	14.14
6' Side Mount Standoff	Α	From Leg	0.00	0.0000	320.00	No Ice	6.50	6.50	100.00
(ECI-2)		U	0.00			1/2" Ice	8.50	8.50	170.00
			0.00			1" Ice	10.50	10.50	240.00
PD128-1	С	From Leg	6.00	0.0000	325.00	No Ice	1.00	1.00	13.00
(ECI-1)			0.00			1/2" Ice	1.80	1.80	16.90
			0.00			1" Ice	2.60	2.60	20.80
6' Side Mount Standoff	С	From Leg	0.00	0.0000	325.00	No Ice	6.50	6.50	100.00
(ECI-1)			0.00			1/2" Ice	8.50	8.50	170.00
			0.00			1" Ice	10.50	10.50	240.00
Dual Lights	Α	None		0.0000	327.00	No Ice	4.00	4.00	250.00
(Beacon)						1/2" Ice	4.80	4.80	400.00
T. I D. 15/0 4/	G	N		0.0000	220.00	1" Ice	5.60	5.60	550.00
Lightning Rod 5/8x4'	С	None		0.0000	329.00	No Ice	0.25	0.25	31.00
(Lightning Rod)						1/2" Ice	0.66	0.66	33.82
VZW Proposed 12/07/2018						1" Ice	0.97	0.97	39.29
VZW Proposed 12/07/2018 almont VFA-10-U V-Frame	А	None		0.0000	232.00	No Ice	7.95	4.45	285.00
(Verizon)	A	none		0.0000	232.00	1/2" Ice	8.33	4.43	343.57
(verizon)						172 Ice	8.71	5.04	407.08
/almont VFA-10-U V-Frame	В	None		0.0000	232.00	No Ice	7.95	4.45	285.00
(Verizon)	D	rtone		0.0000	252.00	1/2" Ice	8.33	4.74	343.57
(verizon)						1" Ice	8.71	5.04	407.08
/almont VFA-10-U V-Frame	С	None		0.0000	232.00	No Ice	7.95	4.45	285.00
(Verizon)						1/2" Ice	8.33	4.74	343.57
						1" Ice	8.71	5.04	407.08
JAHH-65B-R3B Panel	А	From Leg	5.00	0.0000	232.00	No Ice	9.66	5.98	126.30
Antenna		e	6.00			1/2" Ice	10.22	6.44	184.38
(Verizon-AWS)			0.00			1" Ice	10.79	6.91	248.75
JAHH-65B-R3B Panel	Α	From Leg	5.00	0.0000	232.00	No Ice	9.66	5.98	126.30
Antenna			5.50			1/2" Ice	10.22	6.44	184.38
(Verizon-PCS)			0.00			1" Ice	10.79	6.91	248.75
LNX-6512DS-VTM	А	From Leg	5.00	0.0000	232.00	No Ice	5.61	3.30	30.00
(Verizon-850)			-3.00			1/2" Ice	6.01	3.66	63.32
			0.00			1" Ice	6.41	4.04	102.51
MT6407-77A	А	From Leg	5.00	0.0000	232.00	No Ice	4.71	1.84	0.09
(Verizon - Proposed)			0.00			1/2" Ice	5.00	2.06	29.40
			0.00			1" Ice	5.29	2.29	62.58
BSAMNT-SBS-2-2 (JAHH	А	From Leg	5.00	0.0000	232.00	No Ice	3.78	3.56	116.83
Antenna Bracket (for 2))			6.00			1/2" Ice	4.84	4.62	175.06
(Verizon-PCS/AWS)	٨	Erom Las	0.00	0.0000	222.00	1" Ice	5.64	5.41	240.44
B2/B66A RRH	А	From Leg	5.00	0.0000	232.00	No Ice 1/2'' Ice	2.54	1.61	60.00
(Verizon RRH)			0.00			1/2" Ice	2.75	1.79	80.12
B5/B13 RRH	٨	From Leg	0.00 5.00	0.0000	232.00	No Ice	2.97 1.87	1.98 1.02	103.35 70.00
	А	From Leg	0.00	0.0000	252.00	1/2" Ice	2.03	1.02	86.42
(Verizon DDU)			0.00					1.15	00.42
(Verizon RRH)			0.00			1" Ico	2 21	1 20	105 50
(Verizon RRH) DB-B1-6C-12AB-0Z /	А	From Leg	0.00 5.00	0.0000	232.00	1" Ice No Ice	2.21 4.42	1.29 2.90	105.50 32.00

*tn*3

Centek 63-2 N Brar Phone FAX.

ıxTower	Job 21007.82 - Colchester	Page 30 of 96
<b>k Engineering Inc.</b> 2 North Branford Rd.	Project 320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
ranford, CT 06405 me: (203) 488-0580 X: (203) 488-8587	Client Verizon	Designed by TJL

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
	Leg	-	Lateral						
			Vert	0	0		c2	c2	
			ft	0	ft		$ft^2$	$ft^2$	lb
			ft ft						
(Verizon)			0.00			1" Ice	5.02	3.43	98.72
JAHH-65B-R3B Panel	в	From Leg	5.00	0.0000	232.00	No Ice	9.66	5.98	126.3
Antenna		C	6.00			1/2" Ice	10.22	6.44	184.3
(Verizon-AWS)			0.00			1" Ice	10.79	6.91	248.7
JAHH-65B-R3B Panel	в	From Leg	5.00	0.0000	232.00	No Ice	9.66	5.98	126.3
Antenna			5.50			1/2" Ice	10.22	6.44	184.3
(Verizon-PCS)			0.00			1" Ice	10.79	6.91	248.7
LNX-6512DS-VTM	в	From Leg	5.00	0.0000	232.00	No Ice	5.61	3.30	30.00
(Verizon-850)			-3.00			1/2" Ice	6.01	3.66	63.32
			0.00			1" Ice	6.41	4.04	102.5
MT6407-77A	в	From Leg	5.00	0.0000	232.00	No Ice	4.71	1.84	0.09
(Verizon - Proposed)			0.00			1/2" Ice	5.00	2.06	29.40
	Б		0.00	0.0000	222.00	1" Ice	5.29	2.29	62.5
SAMNT-SBS-2-2 (JAHH	В	From Leg	5.00	0.0000	232.00	No Ice	3.78	3.56	116.8
Antenna Bracket (for 2))			6.00			1/2" Ice	4.84	4.62	175.0
(Verizon-PCS/AWS)	D	<b>F</b>	0.00	0.0000	222.00	1" Ice	5.64	5.41	240.4
B2/B66A RRH	В	From Leg	5.00 0.00	0.0000	232.00	No Ice 1/2'' Ice	2.54 2.75	1.61 1.79	60.0
(Verizon RRH)			0.00			1/2 Ice	2.73	1.79	80.11 103.3
B5/B13 RRH	В	From Leg	5.00	0.0000	232.00	No Ice	1.87	1.98	70.0
(Verizon RRH)	Б	From Leg	0.00	0.0000	252.00	1/2" Ice	2.03	1.02	86.4
(Verizon KKII)			0.00			172 Ice	2.03	1.15	105.5
DB-B1-6C-12AB-0Z /	в	From Leg	5.00	0.0000	232.00	No Ice	4.42	2.90	32.0
DD-D1-0C-12AD-027 DC-3315-PF-48 Dist. Box	Б	FIOII Leg	0.00	0.0000	252.00	1/2" Ice	4.72	3.16	63.4
(Verizon)			0.00			1" Ice	5.02	3.43	98.7
JAHH-65B-R3B Panel	С	From Leg	5.00	0.0000	232.00	No Ice	9.66	5.98	126.3
Antenna		110111 218	6.00	0.0000		1/2" Ice	10.22	6.44	184.3
(Verizon-AWS)			0.00			1" Ice	10.79	6.91	248.7
JAHH-65B-R3B Panel	С	From Leg	5.00	0.0000	232.00	No Ice	9.66	5.98	126.3
Antenna		C	5.50			1/2" Ice	10.22	6.44	184.3
(Verizon-PCS)			0.00			1" Ice	10.79	6.91	248.7
LNX-6512DS-VTM	С	From Leg	5.00	0.0000	232.00	No Ice	5.61	3.30	30.0
(Verizon-850)			-3.00			1/2" Ice	6.01	3.66	63.3
			0.00			1" Ice	6.41	4.04	102.5
MT6407-77A	С	From Leg	5.00	0.0000	232.00	No Ice	4.71	1.84	0.09
(Verizon - Proposed)			0.00			1/2" Ice	5.00	2.06	29.4
			0.00			1" Ice	5.29	2.29	62.5
BSAMNT-SBS-2-2 (JAHH	С	From Leg	5.00	0.0000	232.00	No Ice	3.78	3.56	116.8
Antenna Bracket (for 2))			6.00			1/2" Ice	4.84	4.62	175.0
(Verizon-PCS/AWS)	~		0.00			1" Ice	5.64	5.41	240.4
B2/B66A RRH	С	From Leg	5.00	0.0000	232.00	No Ice	2.54	1.61	60.0
(Verizon RRH)			0.00			1/2" Ice	2.75	1.79	80.1
D5/D12 DD11	C	Energy Law	0.00	0.0000	222.00	1" Ice	2.97	1.98	103.3
B5/B13 RRH	С	From Leg	5.00	0.0000	232.00	No Ice	1.87	1.02	70.0
(Verizon RRH)			0.00			1/2" Ice	2.03	1.15	86.4
BC78T-DS-43-2X Diplexer	٨	From Leg	$0.00 \\ 5.00$	0.0000	232.00	1" Ice No Ice	2.21 0.37	1.29 0.51	105.5 22.0
(Verizon)	А	FIOII Leg	0.00	0.0000	252.00	1/2" Ice	0.37	0.51	22.0
(venzon)			0.00			1/2 Ice	0.43	0.80	26.3
BC78T-DS-43-2X Diplexer	в	From Leg	5.00	0.0000	232.00	No Ice	0.33	0.70	22.0
(Verizon)	Б	riom Leg	0.00	0.0000	232.00	1/2" Ice	0.37	0.51	22.0
( venzon)			0.00			172 Ice	0.45	0.70	36.3
BC78T-DS-43-2X Diplexer	С	From Leg	5.00	0.0000	232.00	No Ice	0.37	0.51	22.0
(Verizon)	~	110m Deg	0.00	0.0000	202.00	1/2" Ice	0.45	0.60	28.34
( , and buy			0.00			172 Tee	0.53	0.70	36.3
VZW Proposed 12/07/2018 *** EMP-005 AT&T									2012

<b>T</b>	Job		Page
tnxTower		31 of 96	
Centek Engineering Inc.	Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
63-2 North Branford Rd. Branford, CT 06405	Client		Designed by
Phone: (203) 488-0580 FAX: (203) 488-8587		Verizon	TJL

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
	Leg		Vert ft	D	ft		ft²	ft²	lb
			ft ft						
Inventory 08/2019 Updates			jı						
PiROD 12' Lightweight	Α	None		0.0000	200.00	No Ice	10.20	10.20	253.00
T-Frame						1/2" Ice	16.20	16.20	355.00
(AT&T)	D			0.0000	200.00	1" Ice	22.20	22.20	457.00
PiROD 12' Lightweight	в	None		0.0000	200.00	No Ice	10.20	10.20	253.00
T-Frame (AT&T)						1/2" Ice 1" Ice	16.20 22.20	16.20 22.20	355.00 457.00
PiROD 12' Lightweight	С	None		0.0000	200.00	No Ice	10.20	10.20	253.00
T-Frame	C	Wone		0.0000	200.00	1/2" Ice	16.20	16.20	355.00
(AT&T)						1" Ice	22.20	22.20	457.00
7770.00	А	From Leg	3.00	0.0000	200.00	No Ice	5.51	2.93	35.00
(AT&T)			-6.00		200000	1/2" Ice	5.87	3.27	67.63
			0.00			1" Ice	6.23	3.63	105.00
HPA-65R-BUU-H8 Panel	Α	From Leg	3.00	0.0000	200.00	No Ice	12.99	7.48	68.00
(AT&T)		c	6.00			1/2" Ice	13.69	8.06	140.4
			0.00			1" Ice	14.40	8.64	220.4
RRUS-32	Α	From Leg	3.00	0.0000	200.00	No Ice	3.31	2.42	77.00
(AT&T)			6.00			1/2" Ice	3.56	2.64	104.9
			1.50			1" Ice	3.81	2.86	136.4
RRUS-11	А	From Leg	3.00	0.0000	200.00	No Ice	2.57	1.07	50.00
(AT&T)			6.00			1/2" Ice	2.76	1.21	69.57
			-1.50			1" Ice	2.97	1.36	92.08
7770.00	в	From Leg	3.00	0.0000	200.00	No Ice	5.51	2.93	35.00
(AT&T)			-6.00			1/2" Ice	5.87	3.27	67.63
			0.00			1" Ice	6.23	3.63	105.0
HPA-65R-BUU-H8 Panel	в	From Leg	3.00	0.0000	200.00	No Ice	12.99	7.48	68.00
(AT&T)			6.00			1/2" Ice	13.69	8.06	140.4
DDUG 22	D	р I	0.00	0.0000	200.00	1" Ice	14.40	8.64	220.4
RRUS-32	В	From Leg	3.00	0.0000	200.00	No Ice	3.31	2.42	77.00
(AT&T)			6.00			1/2" Ice	3.56	2.64	104.9
DDUC 11	в	Enom Las	1.50	0.0000	200.00	1" Ice	3.81 2.57	2.86	136.4
RRUS-11 (AT&T)	Б	From Leg	3.00 6.00	0.0000	200.00	No Ice 1/2'' Ice	2.57	1.07 1.21	50.00 69.57
(AI&I)			-1.50			172 Ice	2.97	1.21	92.08
7770.00	С	From Leg	3.00	0.0000	200.00	No Ice	5.51	2.93	35.00
(AT&T)	C	FIOII Leg	-6.00	0.0000	200.00	1/2" Ice	5.87	3.27	67.63
(mar)			0.00			172 1ee 1" Ice	6.23	3.63	105.0
HPA-65R-BUU-H6 Panel	С	From Leg	3.00	0.0000	200.00	No Ice	10.12	5.49	48.00
(AT&T)		110111218	6.00			1/2" Ice	10.69	5.94	105.3
			0.00			1" Ice	11.26	6.41	168.9
RRUS-32	В	From Leg	3.00	0.0000	200.00	No Ice	3.31	2.42	77.00
(AT&T)		U	6.00			1/2" Ice	3.56	2.64	104.9
			1.50			1" Ice	3.81	2.86	136.4
RRUS-11	в	From Leg	3.00	0.0000	200.00	No Ice	2.57	1.07	50.00
(AT&T)			6.00			1/2" Ice	2.76	1.21	69.57
			-1.50			1" Ice	2.97	1.36	92.08
DC6-48-60-0-8C Squid /	С	None		0.0000	200.00	No Ice	1.79	1.79	27.00
Surge Arrestor						1/2" Ice	2.02	2.02	47.39
(AT&T)						1" Ice	2.27	2.27	70.57
STK-U Stiffener Side Arm	Α	None		0.0000	200.00	No Ice	0.07	4.01	63.79
Attachment						1/2" Ice	0.11	5.00	95.84
(AT&T)	~			0.000-		1" Ice	0.16	6.01	138.1
STK-U Stiffener Side Arm	В	None		0.0000	200.00	No Ice	0.07	4.01	63.79
Attachment						1/2" Ice	0.11	5.00	95.84
(AT&T)	C	N		0.0000	200.00	1" Ice	0.16	6.01	138.1
STK-U Stiffener Side Arm	С	None		0.0000	200.00	No Ice	0.07	4.01	63.79
Attachment						1/2" Ice	0.11	5.00	95.84

tnxTower	Job 21007.82 - Colchester	Page 32 of 96
<b>Centek Engineering Inc.</b> 63-2 North Branford Rd.	Project 320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client Verizon	Designed by TJL

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg	V I	Lateral	5					
			Vert ft	0	ft		$ft^2$	$ft^2$	lb
			ft		Ji		Ji	Ji	lD
			ft						
(AT&T)						1" Ice	0.16	6.01	138.17
STK-U Stiffener Side Arm	А	None		0.0000	200.00	No Ice	0.07	4.01	63.79
Attachment						1/2" Ice	0.11	5.00	95.84
(AT&T)						1" Ice	0.16	6.01	138.17
STK-U Stiffener Side Arm	в	None		0.0000	200.00	No Ice	0.07	4.01	63.79
Attachment						1/2" Ice	0.11	5.00	95.84
(AT&T)						1" Ice	0.16	6.01	138.17
STK-U Stiffener Side Arm	С	None		0.0000	200.00	No Ice	0.07	4.01	63.79
Attachment						1/2" Ice	0.11	5.00	95.84
(AT&T)						1" Ice	0.16	6.01	138.17
*** EMP-005 AT&T									
Inventory 08/2019 Updates									
* Eversource Proposed									
Telewave ANT220F2 - Omni	С	From Leg	4.00	0.0000	163.00	No Ice	1.03	1.03	14.00
Antenna			0.00			1/2" Ice	1.29	1.29	22.80
(Eversource)			0.00			1" Ice	1.56	1.56	34.62
Sitepro1 USF-4U Mount	С	From Leg	0.00	0.0000	160.00	No Ice	2.48	5.14	165.00
Assembly ( $Ca = 1.4$ assumed)			0.00			1/2" Ice	3.25	6.91	318.00
(Eversource)			0.00			1" Ice	4.03	8.67	474.00
Telewave ANT220F2 - Omni	С	From Leg	4.00	0.0000	145.00	No Ice	1.03	1.03	14.00
Antenna			0.00			1/2" Ice	1.29	1.29	22.80
(Eversource)			0.00			1" Ice	1.56	1.56	34.62
Sitepro1 USF-4U Mount	С	From Leg	0.00	0.0000	142.00	No Ice	2.48	5.14	165.00
Assembly ( $Ca = 1.4$ assumed)		e e	0.00			1/2" Ice	3.25	6.91	318.00
(Eversource)			0.00			1" Ice	4.03	8.67	474.00

Dishes											
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	D	ft	ft		$ft^2$	lb
* CSP Inventory from HighTower Solutions Climb											
PA8-65 (ECI-63)	Α	Paraboloid w/Shroud (HP)	From Leg	0.50 0.00	Worst		107.00	8.00	No Ice 1/2" Ice	50.27 51.29	285.00 548.30
Andrew 2' w/Radome	С	Paraboloid	From	$0.00 \\ 0.50$	Worst		112.00	2.00	1" Ice No Ice	52.31 3.14	811.60 70.00
(ECI-61)	C	w/Radome	Leg	0.00			112.00	2.00	1/2" Ice 1" Ice	3.41 3.68	282.00 494.00
* CSP Proposed											
Commscope PAR6-59W-PXA/A	С	Paraboloid w/Radome	From Leg	$0.50 \\ 0.00$	Worst		154.00	6.00	No Ice 1/2" Ice	28.27 29.07	310.00 460.00
(ECI-58)			0	0.00					1" Ice	29.86	610.00

Project Date	33 of 96
· · · · · ·	:33 03/24/22
Client Design	ned by TJL

Constant	Value
K _d	0.85
Ice Thickness Importance Factor	1.15
$Z_{g}$	900
α	9.5
K _{zmin}	0.85
K _s	1
K	0.53
f	2
Ke	1

## 222-H Section Verification ArRr By Element

Section	Elem.	Size	С	С	F	е	е	$A_r$	$A_r$	$A_r R_r$	$A_r R_r$
Elevation	Num.			w/Ice	а		w/Ice		w/Ice		w/Ice
					с						
ft					е			$ft^2$	ft ²	$ft^2$	$ft^2$
T1	1	ROHN 5 EH	82.308	44.611	С	0.209	0.397	7.417	11.257	3.346	7.145
320.00-304.00											
	1	ROHN 5 EH	82.308	44.611	Α	0.209	0.397	7.417	11.257	3.346	7.145
	2	ROHN 5 EH	82.308	44.611	C	0.209	0.397	7.417	11.257	3.346	7.145
	2	ROHN 5 EH	82.308	44.611	В	0.209	0.397	7.417	11.257	3.346	7.145
	3	ROHN 5 EH	82.308	44.611	В	0.209	0.397	7.417	11.257	3.346	7.145
	3	ROHN 5 EH	82.308	44.611	A	0.209	0.397	7.417	11.257	3.346	7.145
					A		Sum:	14.835	22.513	6.692	14.291
					B			14.835	22.513	6.692	14.291
<b>T</b> 2	21	DOIN 5 EU	02 020	44 41	C C	0.201	0.276	14.835	22.513	6.692	14.291
T2 304.00-300.00	31	ROHN 5 EH	82.028	44.41	C	0.201	0.376	1.854	2.811	0.828	1.760
304.00-300.00	31	ROHN 5 EH	82.028	44.41	А	0.201	0.376	1.854	2.811	0.828	1.760
	31	ROHN 5 EH	82.028	44.41	C A	0.201	0.376		2.811	0.828	1.760
	32	ROHN 5 EH	82.028	44.41	B	0.201	0.376		2.811	0.828	1.760
	32	ROHN 5 EH	82.028	44.41	B	0.201	0.376		2.811	0.828	1.760
	33	ROHN 5 EH	82.028	44.41	A	0.201	0.376		2.811	0.828	1.760
	55	KOIIN J EII	02.020	44.41	A	0.201	Sum:	3.709	5.622	1.656	3.520
					B		Sum.	3.709	5.622	1.656	3.520
					C			3.709	5.622	1.656	3.520
Т3	40	ROHN 6 EH	97.274	49.73	č	0.207	0.361	11.061	15.833	4.974	9.818
300.00-280.00	10	Rome o En	57.271	19.75	C	0.207	0.501	11.001	15.055		2.010
200.00 200.00	40	ROHN 6 EH	97.274	49.73	Α	0.207	0.361	11.061	15.833	4.974	9.818
	41	ROHN 6 EH	97.274	49.73	ĉ	0.207	0.361	11.061	15.833	4.974	9.818
	41	ROHN 6 EH	97.274	49.73	B	0.207	0.361	11.061	15.833	4.974	9.818
	42	ROHN 6 EH	97.274	49.73	в	0.207	0.361	11.061	15.833	4.974	9.818
	42	ROHN 6 EH	97.274	49.73	Α	0.207	0.361	11.061	15.833	4.974	9.818
					Α		Sum:	22.122	31.667	9.949	19.637
					В			22.122	31.667	9.949	19.637
					С			22.122	31.667	9.949	19.637
T4					Α		Sum:	0.000	0.000	0.000	0.000
280.00-260.00					В			0.000	0.000	0.000	0.000
					С			0.000	0.000	0.000	0.000
T5					Α		Sum:	0.000	0.000	0.000	0.000
260.00-240.00					В			0.000	0.000	0.000	0.000
					С			0.000	0.000	0.000	0.000
Т6					Α		Sum:	0.000	0.000	0.000	0.000
240.00-220.00					В			0.000	0.000	0.000	0.000
					C		~	0.000	0.000	0.000	0.000
T7					A		Sum:	0.000	0.000	0.000	0.000
220.00-200.00					B			0.000	0.000	0.000	0.000
					C		C	0.000	0.000	0.000	0.000
T8			I	I	A	I	Sum:	0.000	0.000	0.000	0.000

*tnxTow* 

	Job		Page
ver		21007.82 - Colchester	34 of 96
ering Inc.	Project		Date
ford Rd.		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
06405	Client	Malaa	Designed by
88-0580 8-8587		Verizon	TJL

Section	Elem.	Size	С	С	F	е	е	$A_r$	$A_r$	$A_r R_r$	$A_r R_r$
Elevation	Num.	5120		w/Ice	a	č	w/Ice		w/Ice		w/Ice
					с			22	.2	.2	.2
<i>ft</i>					e			$ft^2$	$ft^2$	$ft^2$	$ft^2$
200.00-180.00					B C			0.000 0.000	0.000 0.000	0.000 0.000	$0.000 \\ 0.000$
Т9					A		Sum:	0.000	0.000	0.000	0.000
180.00-170.00					B		Sum.	0.000	0.000	0.000	0.000
100.00 170.00					Č			0.000	0.000	0.000	0.000
T10					А		Sum:	0.000	0.000	0.000	0.000
170.00-160.00					В			0.000	0.000	0.000	0.000
					С			0.000	0.000	0.000	0.000
T11					A		Sum:	0.000	0.000	0.000	0.000
160.00-140.00					B C			0.000	0.000	$0.000 \\ 0.000$	0.000
T12					A		Sum:	0.000 0.000	0.000 0.000	0.000	$0.000 \\ 0.000$
140.00-120.00					B		Sum.	0.000	0.000	0.000	0.000
110.00 120.00					č			0.000	0.000	0.000	0.000
T13	214	ROHN 3 STD	47.3	29.584	С	0.131	0.181	7.130	12.487	3.797	7.135
120.00-100.00											
	215	ROHN 3 XXS	47.3	29.584	С	0.131	0.181	6.882	12.051	3.664	6.886
	216	ROHN 1.5 STD	25.677	21.861	C	0.131	0.181	0.930	2.218	0.526	1.267
	217	ROHN 2 STD	32.097	24.154	C	0.131	0.181	2.092	4.407	1.183	2.518
	218 219	ROHN 3 XXS ROHN 1.5 STD	47.3 25.677	29.584 21.861	C C	0.131 0.131	$0.181 \\ 0.181$	6.882 0.930	12.051 2.218	3.664 0.526	6.886 1.267
	219	ROHN 2 STD	32.097	24.154	c	0.131	0.181	2.092	4.407	1.183	2.518
	220	ROHN 3 STD	47.3	29.584	B	0.131	0.181	7.130	12.487	3.797	7.135
	222	ROHN 3 XXS	47.3	29.584	B	0.131	0.181	6.882	12.051	3.664	6.886
	223	ROHN 1.5 STD	25.677	21.861	В	0.131	0.181	0.930	2.218	0.526	1.267
	224	ROHN 2 STD	32.097	24.154	В	0.131	0.181	2.092	4.407	1.183	2.518
	225	ROHN 3 XXS	47.3	29.584	В	0.131	0.181	6.882	12.051	3.664	6.886
	226	ROHN 1.5 STD	25.677	21.861	B	0.131	0.181	0.930	2.218	0.526	1.267
	227	ROHN 2 STD	32.097	24.154	B	0.131	0.181	2.092	4.407	1.183 3.797	2.518
	230 231	ROHN 3 STD ROHN 3 XXS	47.3 47.3	29.584 29.584	A A	0.131 0.131	$0.181 \\ 0.181$	7.130 6.882	12.487 12.051	3.664	7.135 6.886
	231	ROHN 1.5 STD	25.677	29.364	A	0.131	0.181	0.882	2.218	0.526	1.267
	233	ROHN 2 STD	32.097	24.154	A	0.131	0.181	2.092	4.407	1.183	2.518
	234	ROHN 3 XXS	47.3	29.584	А	0.131	0.181	6.882	12.051	3.664	6.886
	235	ROHN 1.5 STD	25.677	21.861	Α	0.131	0.181	0.930	2.218	0.526	1.267
	236	ROHN 2 STD	32.097	24.154	Α	0.131	0.181	2.092	4.407	1.183	2.518
					Α		Sum:	26.937	49.840	14.546	28.479
					B			26.937	49.840	14.546	28.479
T14	247	ROHN 3 EH	47.029	20.205	C C	0.122	0.17	26.937 7.883	49.840	14.546 4.196	28.479
100.00-80.00	247	KUHN 5 EH	47.038	29.305	C	0.122	0.17	/.005	13.751	4.190	7.837
100.00 00.00	248	ROHN 3 XXS	47.038	29.305	С	0.122	0.17	7.109	12.401	3.784	7.068
	249	P1.5x.145		21.625	Č	0.122	0.17	1.033	2.448	0.584	1.395
	250	ROHN 2 EH	31.986	23.929	С	0.122	0.17	2.178	4.563	1.232	2.601
	251	ROHN 3 XXS		29.305	С	0.122	0.17	7.109	12.401	3.784	7.068
	252	P1.5x.145	25.535	21.625	C	0.122	0.17		2.448	0.584	1.395
	253	ROHN 2 EH	31.986	23.929	C	0.122	0.17	2.178	4.563	1.232	2.601
	254 255	ROHN 3 EH ROHN 3 XXS	47.038 47.038	29.305 29.305	B B	0.122 0.122	$0.17 \\ 0.17$		13.751 12.401	4.196 3.784	7.837 7.068
	255	P1.5x.145	25.535	29.303	B	0.122	0.17		2.448	0.584	1.395
	250	ROHN 2 EH	31.986	23.929	B	0.122	0.17		4.563	1.232	2.601
	258	ROHN 3 XXS	47.038	29.305	B	0.122	0.17	7.109	12.401	3.784	7.068
	259	P1.5x.145	25.535	21.625	В	0.122	0.17	1.033	2.448	0.584	1.395
	260	ROHN 2 EH	31.986	23.929	В	0.122	0.17	2.178	4.563	1.232	2.601
	263	ROHN 3 EH	47.038	29.305	A	0.122	0.17	7.883	13.751	4.196	7.837
	264	ROHN 3 XXS	47.038	29.305	A	0.122	0.17	7.109	12.401	3.784	7.068
	265	P1.5x.145	25.535	21.625 23.929	A	0.122 0.122	0.17		2.448 4.563	0.584 1.232	1.395 2.601
	266 267	ROHN 2 EH ROHN 3 XXS		23.929	A A	0.122	$0.17 \\ 0.17$		4.563	1.232 3.784	
	268	P1.5x.145		29.303		0.122					
• •	200		1	21.020		0.122	0.17	1.055	210	0.201	1.275

tn

*Centek* 63-2 Bri Phoi FA

Tormore	Job		Page
nxTower		21007.82 - Colchester	35 of 96
<b>ek Engineering Inc.</b> -2 North Branford Rd.	Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
Branford, CT 06405 hone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon	Designed by TJL

Section	Elem.	Size	С	С	F	е	е	$A_r$	$A_r$	$A_r R_r$	$A_r R_r$
Elevation	Num.	5120		w/Ice	a	, c	w/Ice		w/Ice	,,	w/Ice
					с			- 2	-2	- 2	- 2
ft	2.0	DOIDIADU	21.007	22.020	e	0.122	0.17	$ft^2$	$ft^2$	$ft^2$	$ft^2$
	269	ROHN 2 EH	31.986	23.929	A A	0.122	0.17 Sum:	2.178 28.523	4.563 52.577	1.232 15.395	2.601 29.965
					B		Sum.	28.523	52.577	15.395	29.905
					č			28.523	52.577	15.395	29.965
T15 80.00-60.00	280	ROHN 3 XXS	47.101	29.273	С	0.127	0.173	8.577	14.926	4.570	8.511
	281	ROHN 3 XXS	47.101	29.273	С	0.127	0.173	7.336	12.766	3.908	7.280
	282	ROHN 2 STD	31.961	23.866	C	0.127	0.173	1.402	2.932	0.793	1.672
	283	ROHN 2 EH	32.029	23.89	C	0.127	0.173	2.232	4.662	1.262	2.658
	284 285	ROHN 3 XXS ROHN 2 STD	47.101 31.961	29.273 23.866	C C	0.127 0.127	0.173 0.173	7.336 1.402	12.766 2.932	3.908 0.793	7.280 1.672
	285	ROHN 2 EH	32.029	23.89	č	0.127	0.173	2.232	4.662	1.262	2.658
	287	ROHN 3 XXS	47.101	29.273	B	0.127	0.173	8.577	14.926	4.570	8.511
	288	ROHN 3 XXS	47.101	29.273	В	0.127	0.173	7.336	12.766	3.908	7.280
	289	ROHN 2 STD	31.961	23.866	В	0.127	0.173	1.402	2.932	0.793	1.672
	290	ROHN 2 EH	32.029	23.89	В	0.127	0.173	2.232	4.662	1.262	2.658
	291	ROHN 3 XXS	47.101	29.273	B	0.127	0.173	7.336	12.766	3.908	7.280
	292 293	ROHN 2 STD ROHN 2 EH	31.961 32.029	23.866 23.89	B B	0.127 0.127	0.173 0.173	1.402 2.232	2.932 4.662	0.793 1.262	1.672 2.658
	295	ROHN 3 XXS	47.101	29.273	A	0.127	0.173	8.577	14.926	4.570	8.511
	290	ROHN 3 XXS	47.101	29.273	A	0.127	0.173	7.336	12.766	3.908	7.280
	298	ROHN 2 STD	31.961	23.866	Α	0.127	0.173	1.402	2.932	0.793	1.672
	299	ROHN 2 EH	32.029	23.89	Α	0.127	0.173	2.232	4.662	1.262	2.658
	300	ROHN 3 XXS	47.101	29.273	Α	0.127	0.173	7.336	12.766	3.908	7.280
	301	ROHN 2 STD	31.961	23.866	A	0.127	0.173	1.402	2.932	0.793	1.672
	302	ROHN 2 EH	32.029	23.89	A	0.127	0.173	2.232	4.662	1.262	2.658
					A B		Sum:	30.518 30.518	55.645 55.645	16.498 16.498	31.731 31.731
					C			30.518	55.645	16.498	31.731
T16 60.00-30.00	313	ROHN 3.5 EH	54.877	32.316	č	0.122	0.165	10.693	17.630	5.348	10.036
	314	ROHN 4 EH	61.736	34.766	С	0.122	0.165	12.823	20.219	6.052	11.509
	315	ROHN 1.5 STD	26.067	22.026	С	0.122	0.165	0.790	1.870	0.447	1.065
	316	ROHN 2 XXS	32.583	24.354	C	0.122	0.165	2.081	4.356	1.176	2.479
	317	ROHN 2 EH	32.652	24.378	C	0.122	0.165	1.972	4.123	1.115	2.347
	318 319	ROHN 2.5 STD ROHN 4 EH	39.443 61.736	26.804 34.766	C C	0.122 0.122	0.165 0.165	3.288 12.823	6.256 20.219	1.853 6.052	3.561 11.509
	319	ROHN 1.5 STD	26.067	22.026	c	0.122	0.165	0.790	1.870	0.032	1.065
	321	ROHN 2 XXS	32.583	24.354	č	0.122	0.165	2.081	4.356	1.176	2.479
	322	ROHN 2 EH	32.652	24.378	С	0.122	0.165	1.972	4.123	1.115	2.347
	323	ROHN 2.5 STD	39.443	26.804	С	0.122	0.165	3.288	6.256	1.853	3.561
	324	ROHN 3.5 EH	54.877	32.316	В	0.122	0.165	10.693	17.630	5.348	10.036
	325	ROHN 4 EH	61.736	34.766	B	0.122	0.165	12.823	20.219	6.052	11.509
	326 327	ROHN 1.5 STD ROHN 2 XXS	26.067 32.583	22.026 24.354	B B	0.122 0.122	0.165 0.165	0.790 2.081	1.870 4.356	0.447 1.176	1.065 2.479
	327	ROHN 2 ZAS		24.334	B	0.122	0.165	1.972			2.479
	329	ROHN 2.5 STD	39.443		B	0.122	0.165	3.288		1.853	3.561
	330	ROHN 4 EH	61.736	34.766	В	0.122	0.165	12.823	20.219	6.052	11.509
	331	ROHN 1.5 STD	26.067	22.026	В	0.122	0.165	0.790	1.870	0.447	1.065
	332	ROHN 2 XXS	32.583	24.354	В	0.122	0.165	2.081	4.356	1.176	2.479
	333	ROHN 2 EH	32.652	24.378	B	0.122	0.165	1.972	4.123	1.115	2.347
	334 339	ROHN 2.5 STD ROHN 3.5 EH	39.443 54.877	26.804 32.316	B	0.122 0.122	0.165 0.165	3.288 10.693	6.256 17.630	1.853 5.348	3.561 10.036
	340	ROHN 3.5 EH	61.736		A A	0.122	0.165	12.823	20.219	6.052	11.509
	340	ROHN 1.5 STD	26.067	22.026	A	0.122	0.165	0.790	1.870	0.052	1.065
	342	ROHN 2 XXS	32.583	24.354	A	0.122	0.165	2.081	4.356	1.176	2.479
	343	ROHN 2 EH	32.652	24.378	Α	0.122	0.165	1.972	4.123	1.115	2.347
	344	ROHN 2.5 STD	39.443		A	0.122	0.165	3.288		1.853	3.561
	345	ROHN 4 EH	61.736	34.766	A	0.122	0.165	12.823	20.219	6.052	11.509
	346 347	ROHN 1.5 STD ROHN 2 XXS	26.067 32.583		A	0.122 0.122	0.165 0.165	0.790 2.081		0.447 1.176	1.065 2.479
	347	ROHN 2 XXS ROHN 2 EH		24.354	A A	0.122					
I I	540	ROIN 2 EII	152.052	27.570	11	0.122	0.105	1.972	7.123	1.115	2.547

tn

*Centek* 63-2 Bro Phor FAX

nxTower	Job	21007.82 - Colchester	Page 36 of 96
ek Engineering Inc. -2 North Branford Rd.	Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
Branford, CT 06405 100ne: (203) 488-0580 AX: (203) 488-8587	Client	Verizon	Designed by TJL

Section	Elem.	Size	С	С	F	е	е	$A_r$	$A_r$	$A_r R_r$	$A_r R_r$
Elevation	Num.			w/Ice	а		w/Ice	-	w/Ice		w/Ice
					с						
ft					е			$ft^2$	ft ²	$ft^2$	$ft^2$
	349	ROHN 2.5 STD	39.443	26.804	Α	0.122	0.165	3.288	6.256	1.853	3.561
					Α		Sum:	52.602	91.278		51.957
					В			52.602	91.278		51.957
					C			52.602	91.278		51.957
T17 30.00-0.00	364	ROHN 4 EH	64.741	36.51	C	0.117	0.158	13.402	21.161	6.136	12.028
	365	ROHN 4 EH	64.741	36.51	C	0.117	0.158	13.245	20.914		11.887
	366	P1.5x.145	27.335	23.151	C	0.117	0.158	0.887	2.103		1.196
	367	ROHN 2.5 EH	41.363	28.16	C	0.117	0.158	2.812	5.360	1.561	3.046
	368	ROHN 2.5 STD	41.363	28.16	C	0.117	0.158	2.470	4.708	1.371	2.676
	369	ROHN 2.5 STD	41.363	28.16	C	0.117	0.158	3.506	6.683		3.799
	370	ROHN 4 EH	64.741	36.51	C	0.117	0.158	13.245	20.914		11.887
	371	P1.5x.145	27.335	23.151	C	0.117	0.158	0.887	2.103		1.196
	372	ROHN 2.5 EH	41.363	28.16	C	0.117	0.158	2.812	5.360	1.561	3.046
	373	ROHN 2.5 STD	41.363	28.16	C	0.117	0.158	2.470	4.708	1.371	2.676
	374	ROHN 2.5 STD	41.363	28.16	C	0.117	0.158	3.506			3.799
	375	ROHN 4 EH	64.741	36.51	B	0.117	0.158	13.402	21.161	6.136	12.028
	376 377	ROHN 4 EH P1.5x.145	64.741 27.335	36.51 23.151	B B	0.117 0.117	0.158 0.158	13.245 0.887	20.914 2.103		11.887 1.196
	378	ROHN 2.5 EH	41.363	25.151	-		0.158	2.812			3.046
	378 379				B	0.117			5.360	1.561	2.676
	379	ROHN 2.5 STD ROHN 2.5 STD	41.363 41.363	$28.16 \\ 28.16$	B B	0.117 0.117	0.158 0.158	2.470 3.506	4.708 6.683		2.676
	380	ROHN 2.5 STD	64.741	36.51	B	0.117	0.158	13.245	20.914		11.887
	382	P1.5x.145	27.335	23.151	B	0.117	0.158	0.887	20.914		1.196
	383	ROHN 2.5 EH	41.363	23.151	B	0.117	0.158	2.812	5.360	1.561	3.046
	383	ROHN 2.5 STD	41.363	28.10	B	0.117	0.158	2.812	4.708		2.676
	385	ROHN 2.5 STD	41.363	28.16	B	0.117	0.158	3.506	6.683		3.799
	390	ROHN 2.5 STD	64.741	36.51	A	0.117	0.158	13.402	21.161	6.136	12.028
	391	ROHN 4 EH	64.741	36.51	A	0.117	0.158	13.245	20.914		11.887
	392	P1.5x.145	27.335	23.151	A	0.117	0.158	0.887	20.014		1.196
	393	ROHN 2.5 EH	41.363	28.16	A	0.117	0.158	2.812	5.360	1.561	3.046
	394	ROHN 2.5 STD	41.363	28.16	A	0.117	0.158	2.812	4.708		2.676
	395	ROHN 2.5 STD	41.363	28.16	A	0.117	0.158	3.506	6.683		3.799
	396	ROHN 4 EH	64.741	36.51	A	0.117	0.158	13.245	20.914		11.887
	397	P1.5x.145	27.335	23.151	A	0.117	0.158	0.887	2.103		1.196
	398	ROHN 2.5 EH	41.363	28.16	A	0.117	0.158	2.812	5.360	1.561	3.046
	399	ROHN 2.5 STD	41.363	28.16	A	0.117	0.158	2.470	4.708		2.676
	400	ROHN 2.5 STD	41.363	28.16	A	0.117	0.158	3.506		1.946	3.799
	.50	1.511, 20 515	11.505	20.10	A	0.117	Sum:	59.240	100.698		57.236
					B		,	59.240	100.698		57.236
					č			59.240	100.698		57.236
								231210	200.090	251020	571250

	222-H Section Verification Tables - No Ice											
Section	$Z_{wind}$	Z _{ice}	Kz	$K_h$	K _{zt}	$t_z$	$q_z$	F	е	$A_r R_r$		
Elevation	Ĥ	Ĥ				in	nef	a c e		ft ²		
T1 320.00-304.00	312.00	ji	1.608	11890.1	1	in	<i>psf</i> 69	A B	0.209	6.692 6.692		
T2 304.00-300.00	302.00		1.597	8801.76	1		68	C A	0.209 0.209 0.201	6.692 1.656		
								B C	0.201 0.201	1.656 1.656		

*tnxTower* 

	Job		Page
•		37 of 96	
Inc.	Project		Date
Rd.		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
5 80 7	Client	Verizon	Designed by TJL

Section	$Z_{wind}$	$Z_{ice}$	Kz	$K_h$	$K_{zt}$	$t_z$	$q_z$	F	е	$A_r R_r$
Elevation			~	**	24	~	1-	а		
								с		
ft	ft	ft				in	psf	е		$ft^2$
T3 300.00-280.00	290.00		1.584	6135.24	1		68	Α	0.207	9.949
								В	0.207	9.949
								С	0.207	9.949
T4 280.00-260.00	270.00		1.56	3362.03	1		67	Α	0.237	0.000
								В	0.237	0.000
								С	0.237	0.000
T5 260.00-240.00	250.00		1.535	1842.35	1.001		66	А	0.219	0.000
								В	0.219	0.000
								С	0.219	0.000
T6 240.00-220.00	230.00		1.508	1009.58	1.001		64	Α	0.223	0.000
								В	0.223	0.000
								С	0.223	0.000
T7 220.00-200.00	210.00		1.48	553.239	1.002		63	Α	0.181	0.000
								В	0.181	0.000
								С	0.181	0.000
T8 200.00-180.00	190.00		1.449	303.168	1.003		62	А	0.187	0.000
								В	0.187	0.000
								С	0.187	0.000
T9 180.00-170.00	175.00		1.424	193.09	1.005		61	Α	0.177	0.000
								В	0.177	0.000
								С	0.177	0.000
T10 170.00-160.00	165.00		1.406	142.937	1.007		60	A	0.171	0.000
								B	0.171	0.000
<b>THE 1 CO OO 1 10 00</b>	1 50 00		1 2 5 0	01.000				С	0.171	0.000
T11 160.00-140.00	150.00		1.378	91.038	1.012		59	A	0.181	0.000
								B	0.181	0.000
T12 140 00 120 00	120.00		1 2 2 7	40.000	1 001		50	C	0.181	0.000
T12 140.00-120.00	130.00		1.337	49.888	1.021		58	A	0.173	0.000
								B C	0.173 0.173	0.000 0.000
T13 120.00-100.00	110.00		1.291	27.338	1.039		57	A	0.173	14.546
115 120.00-100.00	110.00		1.291	27.330	1.039		57	B	0.131	14.546
								C	0.131	14.546
T14 100.00-80.00	90.00		1.238	14.981	1.072		57	A	0.131	15.395
114 100.00-80.00	90.00		1.2.30	14.201	1.072		57	B	0.122	15.395
								C	0.122	15.395
T15 80.00-60.00	70.00		1.174	8.209	1.133		57	A	0.122	16.498
115 80.00-00.00	70.00		1.1/4	0.209	1.155		57	B	0.127	16.498
								C	0.127	16.498
T16 60.00-30.00	45.00		1.07	3.87	1.293		59	A	0.127	26.633
110 00.00-50.00	45.00		1.07	5.07	1.295		59	B	0.122	26.633
								C	0.122	26.633
T17 30.00-0.00	15.00		0.85	1.57	1.789		65	A	0.122	29.025
11/ 50.00-0.00	15.00		0.05	1.57	1.707		55	B	0.117	29.025
								Č	0.117	29.025
								- V	U.11/	27.025

	222-H Section Verification Tables - Ice											
Section	$Z_{wind}$	Z _{ice}	Kz	$K_h$	K _{zt}	t _z	$q_z$	F	е	$A_r R_r$		
Elevation	G	A				in	f	a c		$c^2$		
T1 320.00-304.00	312.00	312.00	1.608	11890.1	1	1.4397	<i>psf</i> 9	e A D	0.397	24.226		
								B C	0.397 0.397	24.226 24.226		
T2 304.00-300.00	302.00	302.00	1.597	8801.76	1	1.4350	9	A B	0.376 0.376	5.724 5.724		

*tnxTower* 

	Job		Page
•		21007.82 - Colchester	38 of 96
Inc.	Project		Date
Rd.		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
30 7	Client	Verizon	Designed by TJL

Section Elevation	$Z_{wind}$	Z _{ice}	Kz	$K_h$	K _{zt}	t _z	$q_z$	F a	е	$A_r R_r$
ft	ft	ft				in	psf	с e		ft ²
								С	0.376	5.724
T3 300.00-280.00	290.00	290.00	1.584	6135.24	1	1.4293	9	Α	0.361	30.771
1								В	0.361	30.771
1								С	0.361	30.771
T4 280.00-260.00	270.00	270.00	1.56	3362.03	1	1.4192	8	Α	0.33	9.387
1								В	0.33	9.387
								С	0.33	9.387
T5 260.00-240.00	250.00	250.00	1.535	1842.35	1.001	1.4084	8	Α	0.307	10.777
1								В	0.307	10.777
TC 940 00 990 00		220.00	1 500	1000 50	1 001	1 20 40		С	0.307	10.777
T6 240.00-220.00	230.00	230.00	1.508	1009.58	1.001	1.3969	8	A	0.307	12.230
1								B	0.307	12.230
TT 220 00 200 00	210.00	210.00	1.40	552 220	1.002	1 20 47	0	C	0.307	12.230
T7 220.00-200.00	210.00	210.00	1.48	553.239	1.002	1.3847	8	A	0.245	9.623
1								B	0.245	9.623 9.623
TR 200 00 180 00	190.00	100.00	1 4 4 0	202 1 69	1.002	1.3717	8	C A	0.245 0.246	9.623
T8 200.00-180.00	190.00	190.00	1.449	303.168	1.003	1.3/1/	8	A B	0.246	10.497
1								Б С	0.246	10.497
T9 180.00-170.00	175.00	175.00	1.424	193.09	1.005	1.3614	8	A	0.246	5.560
19 180.00-170.00	175.00	175.00	1.424	195.09	1.005	1.5014	0	B	0.235	5.560
1								C	0.235	5.560
T10 170.00-160.00	165.00	165.00	1.406	142.937	1.007	1.3543	8	Ă	0.233	5.765
110 170.00-100.00	105.00	105.00	1.400	172.757	1.007	1.5545	0	B	0.228	5.765
1								Č	0.228	5.765
T11 160.00-140.00	150.00	150.00	1.378	91.038	1.012	1.3434	8	Ă	0.236	12.176
111 100.00 110.00	120.00	120.00	1.570	91.050	1.012	1.5 1.5 1	0	B	0.236	12.176
1								Ċ	0.236	12.176
T12 140.00-120.00	130.00	130.00	1.337	49.888	1.021	1.3288	7	Ā	0.226	12.970
								В	0.226	12.970
1								С	0.226	12.970
T13 120.00-100.00	110.00	110.00	1.291	27.338	1.039	1.3147	7	Α	0.181	28.479
I								в	0.181	28.479
								С	0.181	28.479
T14 100.00-80.00	90.00	90.00	1.238	14.981	1.072	1.3027	7	Α	0.17	29.965
1								В	0.17	29.965
1								С	0.17	29.965
T15 80.00-60.00	70.00	70.00	1.174	8.209	1.133	1.2953	7	А	0.173	31.731
I I								В	0.173	31.731
I								С	0.173	31.731
T16 60.00-30.00	45.00	45.00	1.07	3.87	1.293	1.2977	8	A	0.165	51.957
I I								В	0.165	51.957
			0.6-		1			С	0.165	51.957
T17 30.00-0.00	15.00	15.00	0.85	1.57	1.789	1.3028	8	A	0.158	57.236
I								B	0.158	57.236
								С	0.158	57.236

# 222-H Section Verification Tables - Service

Section	$Z_{wind}$	Z _{ice}	Kz	$K_h$	$K_{zt}$	$t_z$	$q_z$	F	е	$A_r R_r$
Elevation								а		
								С		- 2
ft	ft	ft				in	psf	е		ft*
T1 320.00-304.00	312.00		1.608	11890.1	1		13	А	0.209	8.547
								В	0.209	8.547
								С	0.209	8.547
T2 304.00-300.00	302.00		1.597	8801.76	1		13	Α	0.201	2.131

tnxTowe

	Job		Page
er		21007.82 - Colchester	39 of 96
ing Inc.	Project		Date
rd Rd.		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
405 -0580 8587	Client	Verizon	Designed by TJL

Section Elevation	$Z_{wind}$	Z _{ice}	Kz	$K_h$	Kzt	tz	$q_z$	F a	е	$A_r R_r$
ft	ft	ft				in	psf	С		$ft^2$
Ji	Ji	ji				in	psj	e B	0.201	2.131
									0.201	
T2 200 00 280 00	290.00		1.584	6135.24	1		12	C		2.131 12.544
T3 300.00-280.00	290.00		1.584	0155.24	1		12	A	0.207	12.544
								B C	0.207 0.207	12.544
T4 280.00-260.00	270.00		1.56	3362.03	1		12	A	0.207	0.000
14 280.00-200.00	270.00		1.50	5502.05	1		12	B	0.237	0.000
								C	0.237	0.000
T5 260.00-240.00	250.00		1.535	1842.35	1.001		12	Ă	0.219	0.000
15 200.00-240.00	250.00		1.555	1042.55	1.001		12	B	0.219	0.000
								Č	0.219	0.000
T6 240.00-220.00	230.00		1.508	1009.58	1.001		12	Ă	0.223	0.000
	220100		1.000	1005100	11001			В	0.223	0.000
								č	0.223	0.000
T7 220.00-200.00	210.00		1.48	553.239	1.002		12	Ă	0.181	0.000
								В	0.181	0.000
								C	0.181	0.000
T8 200.00-180.00	190.00		1.449	303.168	1.003		11	Α	0.187	0.000
								в	0.187	0.000
								С	0.187	0.000
T9 180.00-170.00	175.00		1.424	193.09	1.005		11	Α	0.177	0.000
								В	0.177	0.000
								С	0.177	0.000
T10 170.00-160.00	165.00		1.406	142.937	1.007		11	Α	0.171	0.000
								В	0.171	0.000
								С	0.171	0.000
T11 160.00-140.00	150.00		1.378	91.038	1.012		11	Α	0.181	0.000
								в	0.181	0.000
								С	0.181	0.000
T12 140.00-120.00	130.00		1.337	49.888	1.021		11	Α	0.173	0.000
								В	0.173	0.000
								С	0.173	0.000
T13 120.00-100.00	110.00		1.291	27.338	1.039		11	A	0.131	15.243
<b>I</b> 1								B	0.131	15.243
T14 400 00 00 00	00.00		1 220	11001	1 0 7 9		10	С	0.131	15.243
T14 100.00-80.00	90.00		1.238	14.981	1.072		10	A	0.122	16.124
								B	0.122	16.124
T15 80 00 (0.00	70.00		1 1 7 4	0.000	1 1 2 2		10	C	0.122	16.124
T15 80.00-60.00	70.00		1.174	8.209	1.133		10	A	0.127	17.261
								B	0.127	17.261
T16 60.00-30.00	45.00		1.07	3.87	1.293		11	C A	0.127 0.122	17.261 29.736
110 00.00-50.00	45.00		1.07	5.8/	1.293		11	A B	0.122	29.736
<b>I</b> 1								В С	0.122	29.736
T17 30.00-0.00	15.00		0.85	1.57	1.789		12	A	0.122	33.471
117 50.00-0.00	15.00		0.05	1.57	1.707		12	B	0.117	33.471
								C	0.117	33.471
								Ç	0.11/	55,471

# **Tower Pressures - No Ice**

 $G_H = \theta.85\theta$ 

Section	Ζ	$K_Z$	$q_z$	$A_G$	F	$A_F$	$A_R$	$A_{leg}$	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
				. 2	С	.2	. 2	.2		Face	Face
ft	ft		psf	ft²	е	$ft^2$	ft²	ft²		ft²	fť

*tnxT* 

**Centek Engi** 63-2 North E Branford, Phone: (202 FAX: (203)

Connon	Job		Page
Tower		21007.82 - Colchester	40 of 96
gineering Inc.	Project		Date
h Branford Rd.		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
d, CT 06405 03) 488-0580 03) 488-8587	Client	Verizon	Designed by TJL

Section	Ζ	Kz	$q_z$	$A_G$	F	$A_F$	$A_R$	$A_{leg}$	Leg	$C_A A_A$	$C_A A_A$
Elevation		Ľ	1*	0	a	1	л	1.5	%	In	Out
					c				, 0	Face	Face
ft	ft		psf	$ft^2$	e	$ft^2$	$ft^2$	ft ²		$ft^2$	$ft^2$
T1	312.00	1.608	69	116.377	Α	9.512	14.835	14.835	60.93	0.000	0.000
320.00-304.00					В	9.512	14.835		60.93	5.561	0.000
					C	9.512	14.835		60.93	0.000	0.000
T2	302.00	1.597	68	29.094	Α	2.147	3.709	3.709	63.34	0.000	0.000
304.00-300.00					В	2.147	3.709		63.34	1.540	0.000
					C	2.147	3.709		63.34	0.000	0.000
T3	290.00	1.584	68	167.656	Α	12.563	22.122	22.122	63.78	0.000	0.000
300.00-280.00					В	12.563	22.122		63.78	13.483	0.000
					С	12.563	22.122		63.78	0.000	0.000
T4	270.00	1.56	67	216.829	Α	51.368	0.000	37.788	73.56	0.000	0.000
280.00-260.00					B	51.368	0.000		73.56	26.676	0.000
					С	51.368	0.000		73.56	0.000	0.000
T5	250.00	1.535	66	259.126	Α	56.868	0.000	37.778	66.43	0.000	0.000
260.00-240.00					B	56.868	0.000		66.43	37.174	0.000
	220.00	1 500		000 (07	C	56.868	0.000	25.55	66.43	0.000	0.000
T6	230.00	1.508	64	299.625	A	66.901	0.000	37.776	56.46	0.000	0.000
240.00-220.00					B	66.901	0.000		56.46	49.355	0.000
T7	210.00	1 40	0	220 725	C	66.901	0.000	27 775	56.46	0.000	0.000
T7	210.00	1.48	63	339.725	A	61.588	0.000	37.775	61.34	0.000	0.000
220.00-200.00					B C	61.588	0.000		61.34	49.900 30.160	$0.000 \\ 0.000$
т8	190.00	1 4 4 0	62	295 076		61.588	0.000 0.000	15 622	61.34		0.000
200.00-180.00	190.00	1.449	62	385.076	A B	71.839 71.839	0.000	45.633	63.52 63.52	30.040 49.900	0.000
200.00-180.00					C	71.839	0.000		63.52	30.160	0.000
Т9	175.00	1.424	61	208.387	A	36.864	0.000	22.815	61.89	15.020	0.000
180.00-170.00	175.00	1.424	01	200.307	B	36.864	0.000	22.015	61.89	27.055	0.000
180.00-170.00					C	36.864	0.000		61.89	15.080	0.000
т10	165.00	1.406	60	218.787	A	37.492	0.000	22.815	60.85	15.020	0.000
170.00-160.00	105.00	1.400	00	210.707	B	37.492	0.000	22.015	60.85	29.412	0.000
170.00-100.00					C	37.492	0.000		60.85	15.080	0.000
Т11	150.00	1.378	59	467.070	Ă	84.562	0.000	45.617	53.94	30.040	0.000
160.00-140.00	120100	11270	5,	10/10/0	B	84.562	0.000	101017	53.94	65.283	0.000
100000 10000					Ĉ	84.562	0.000		53.94	30.160	0.000
T12	130.00	1.337	58	507.978	Ā	87.738	0.000	45.637	52.02	30.040	0.000
140.00-120.00					В	87.738	0.000		52.02	71.886	0.000
					C	87.738	0.000		52.02	30.160	0.000
T13	110.00	1.291	57	555.591	Α	45.673	26.937	45.673	62.90	30.040	0.000
120.00-100.00					В	45.673	26.937		62.90	76.650	0.000
					С	45.673	26.937		62.90	30.160	0.000
T14	90.00	1.238	57	606.388	Α	45.666	28.523	45.666	61.55	30.040	0.000
100.00-80.00					В	45.666	28.523		61.55	83.818	0.000
					C	45.666	28.523		61.55	30.160	0.000
T15	70.00	1.174	57	662.098	Α	53.708	30.518	53.708	63.77	30.040	0.000
80.00-60.00					В	53.708	30.518		63.77	85.889	0.000
					C	53.708	30.518		63.77	30.160	0.000
T16	45.00	1.07	59	1088.08	Α	80.523	52.602	80.523	60.49	45.060	0.000
60.00-30.00				3	В	80.523	52.602		60.49	128.833	0.000
					С	80.523	52.602		60.49	45.240	0.000
T17 30.00-0.00	15.00	0.85	65	1202.12	Α	81.480	59.240	81.480	57.90	37.550	0.000
				2	В	81.480	59.240		57.90	107.361	0.000
					С	81.480	59.240		57.90	37.700	0.000

# **Tower Pressure - With Ice**

 $G_H = 0.850$ 

tnx1

Centek Eng 63-2 North Branford Phone: (20 FAX: (20

Tana	Job		Page
Tower		21007.82 - Colchester	41 of 96
ngineering Inc. th Branford Rd.	Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
ord, CT 06405 (203) 488-0580 203) 488-8587	Client	Verizon	Designed by TJL

Section	Ζ	Kz	$q_z$	$t_Z$	$A_G$	F	$A_F$	$A_R$	$A_{leg}$	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Out
					.2	С	a ²	.2	.2		Face	Face
ft	ft	1 (00)	psf	in 1 1207	$ft^2$	е	ft ²	$ft^2$	ft ²	17.00	$ft^2$	$ft^2$
T1	312.00	1.608	9	1.4397	120.217	A	9.512	38.165	22.513	47.22	0.000	0.000
320.00-304.00						B	9.512	38.165		47.22	22.405 0.000	0.000
Т2	302.00	1.597	9	1 4250	30.051	C	9.512 2.147	38.165 9.143	5.622	47.22 49.80	0.000	0.000
304.00-300.00	302.00	1.397	9	1.4350	50.051	A B	2.147	9.143	5.622	49.80	6.132	$0.000 \\ 0.000$
304.00-300.00						C	2.147	9.143		49.80	0.132	0.000
Т3	290.00	1.584	9	1.4293	172.426	Ă	12.563	49.623	31.667	50.92	0.000	0.000
300.00-280.00	290.00	1.501		1.1275	172.120	В	12.563	49.623	51.007	50.92	49.786	0.000
						Ċ	12.563	49.623		50.92	0.000	0.000
T4	270.00	1.56	8	1.4192	221.567	Α	57.688	15.419	44.108	60.33	0.000	0.000
280.00-260.00						в	57.688	15.419		60.33	89.970	0.000
						С	57.688	15.419		60.33	0.000	0.000
T5	250.00	1.535	8	1.4084	263.827	А	63.139	17.925	44.048	54.34	0.000	0.000
260.00-240.00						В	63.139	17.925		54.34	118.862	0.000
				4 4 4 4 4		С	63.139	17.925	10.00	54.34	0.000	0.000
T6	230.00	1.508	8	1.3969	304.288	A	73.120	20.343	43.995	47.07	0.000	0.000
240.00-220.00						B C	73.120	20.343		47.07 47.07	154.126	0.000
Т7	210.00	1.48	8	1.3847	344.347	A	73.120 67.752	20.343 16.487	43.940	52.16	$0.000 \\ 0.000$	$0.000 \\ 0.000$
220.00-200.00	210.00	1.40	0	1.3047	544.547	B	67.752	16.487	45.940	52.16	155.138	0.000
220.00-200.00						C	67.752	16.487		52.16	84.362	0.000
Т8	190.00	1.449	8	1.3717	389.655	Ă	77.947	17.973	51.741	53.94	85.834	0.000
200.00-180.00	190100		Ũ	1.2717	2021000	B	77.947	17.973	011111	53.94	154.148	0.000
						С	77.947	17.973		53.94	84.196	0.000
Т9	175.00	1.424	8	1.3614	210.660	А	39.895	9.563	25.845	52.26	42.830	0.000
180.00-170.00						В	39.895	9.563		52.26	84.506	0.000
						С	39.895	9.563		52.26	42.033	0.000
T10	165.00	1.406	8	1.3543	221.048	А	40.507	9.939	25.830	51.20	42.771	0.000
170.00-160.00						в	40.507	9.939		51.20	93.607	0.000
	1.50.00	1 2 7 0		1 2 4 2 4	471 554	С	40.507	9.939	51.504	51.20	41.988	0.000
T11	150.00	1.378	8	1.3434	471.554	A	90.542	20.928	51.596	46.29 46.29	85.358	0.000
160.00-140.00						B C	90.542 90.542	20.928 20.928		46.29	204.733 83.838	$0.000 \\ 0.000$
T12	130.00	1.337	7	1.3288	512.414	A	93.655	20.928	51.555	44.43	85.111	0.000
140.00-120.00	150.00	1.557	'	1.5200	512.414	B	93.655	22.377	51.555	44.43	223.633	0.000
110.00 120.00						Č	93.655	22.377		44.43	83.653	0.000
T13	110.00	1.291	7	1.3147	559.982	Ă	51.533	49.840	51.533	50.83	84.874	0.000
120.00-100.00						в	51.533	49.840		50.83	234.150	0.000
						С	51.533	49.840		50.83	83.474	0.000
T14	90.00	1.238	7	1.3027	610.739	Α	51.471	52.577	51.471	49.47	84.672	0.000
100.00-80.00						в	51.471	52.577		49.47	250.822	0.000
						С	51.471	52.577		49.47	83.322	0.000
T15 80.00-60.00	70.00	1.174	7	1.2953	666.426	Α	59.482	55.645	59.482	51.67	84.548	0.000
						B	59.482	55.645		51.67	256.871	0.000
T1 ( (0 00 00 00 00	1.00	1.07	~	1 0000	1004 50 1	C	59.482	55.645	00.105	51.67	83.229	0.000
T16 60.00-30.00	45.00	1.07	8	1.2977	1094.584	A	89.196	91.278	89.196	49.42	126.883	0.000
						B	89.196	91.278		49.42	385.783	0.000
T17 20 00 0 00	15.00	0.05	8	1 2020	1208 640	C	89.196	91.278	00.100	49.42 47.25	124.889	0.000
T17 30.00-0.00	15.00	0.85	8	1.3028	1208.649	A B	90.189 90.189	100.698 100.698	90.189	47.25 47.25	105.842 322.322	0.000 0.000
						В С	90.189	100.698		47.25	522.522 104.154	0.000
						U	20.102	100.098		77.23	104.134	0.000

# **Tower Pressure - Service**

 $G_H = 0.850$ 

*tnxTo*w

wer	Job	21007.82 - Colchester	Page 42 of 96
eering Inc. unford Rd.	Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
T 06405 488-0580 88-8587	Client	Verizon	Designed by TJL

Section	Ζ	Kz	$q_z$	$A_G$	F	$A_F$	$A_R$	$A_{leg}$	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
				- 2	с		. 2	- 2		Face	Face
ft	ft		psf	ft²	е	$ft^2$	$ft^2$	$ft^2$		$ft^2$	$ft^2$
T1	312.00	1.608	13	116.377	Α	9.512	14.835	14.835	60.93	0.000	0.000
320.00-304.00					В	9.512	14.835		60.93	5.561	0.000
					С	9.512	14.835		60.93	0.000	0.000
T2	302.00	1.597	13	29.094	Α	2.147	3.709	3.709	63.34	0.000	0.000
304.00-300.00					В	2.147	3.709		63.34	1.540	0.000
					C	2.147	3.709		63.34	0.000	0.000
T3	290.00	1.584	12	167.656	Α	12.563	22.122	22.122	63.78	0.000	0.000
300.00-280.00					B	12.563	22.122		63.78	13.483	0.000
	270.00	1.50	10	216.020	C	12.563	22.122	27.700	63.78	0.000	0.000
T4	270.00	1.56	12	216.829	A	51.368	0.000	37.788	73.56	0.000	0.000
280.00-260.00					B	51.368	0.000		73.56	26.676	0.000
7.5	250.00	1 5 2 5	10	250 120	C	51.368	0.000	27 770	73.56	0.000	0.000
T5 260.00-240.00	250.00	1.535	12	259.126	A B	56.868 56.868	$0.000 \\ 0.000$	37.778	66.43 66.43	0.000 37.174	$0.000 \\ 0.000$
200.00-240.00					C	56.868	0.000		66.43	0.000	0.000
Т6	230.00	1.508	12	299.625	A	66.901	0.000	37.776	56.46	0.000	0.000
240.00-220.00	230.00	1.508	12	299.023	B	66.901	0.000	57.770	56.46	49.355	0.000
240.00-220.00					C	66.901	0.000		56.46	0.000	0.000
Т7	210.00	1.48	12	339.725	A	61.588	0.000	37.775	61.34	0.000	0.000
220.00-200.00	210.00	1.40	12	559.125	B	61.588	0.000	51.115	61.34	49.900	0.000
220.00-200.00					c	61.588	0.000		61.34	30.160	0.000
Т8	190.00	1.449	11	385.076	Ă	71.839	0.000	45.633	63.52	30.040	0.000
200.00-180.00	190.00	1.772		505.070	B	71.839	0.000	45.055	63.52	49.900	0.000
200.00 100.00					č	71.839	0.000		63.52	30.160	0.000
Т9	175.00	1.424	11	208.387	Ă	36.864	0.000	22.815	61.89	15.020	0.000
180.00-170.00	1,2100			200.207	В	36.864	0.000	221010	61.89	27.055	0.000
					C	36.864	0.000		61.89	15.080	0.000
T10	165.00	1.406	11	218.787	Α	37.492	0.000	22.815	60.85	15.020	0.000
170.00-160.00					в	37.492	0.000		60.85	29.412	0.000
					С	37.492	0.000		60.85	15.080	0.000
T11	150.00	1.378	11	467.070	Α	84.562	0.000	45.617	53.94	30.040	0.000
160.00-140.00					В	84.562	0.000		53.94	65.283	0.000
					C	84.562	0.000		53.94	30.160	0.000
T12	130.00	1.337	11	507.978	Α	87.738	0.000	45.637	52.02	30.040	0.000
140.00-120.00					В	87.738	0.000		52.02	71.886	0.000
					C	87.738	0.000		52.02	30.160	0.000
T13	110.00	1.291	11	555.591	Α	45.673	26.937	45.673	62.90	30.040	0.000
120.00-100.00					В	45.673	26.937		62.90	76.650	0.000
					С	45.673	26.937		62.90	30.160	0.000
T14	90.00	1.238	10	606.388	Α	45.666	28.523	45.666	61.55	30.040	0.000
100.00-80.00					В	45.666	28.523		61.55	83.818	0.000
					C	45.666	28.523		61.55	30.160	0.000
T15	70.00	1.174	10	662.098	A	53.708	30.518	53.708	63.77	30.040	0.000
80.00-60.00					B	53.708	30.518		63.77	85.889	0.000
	17.00	1.07		1000.00	C	53.708	30.518	00.702	63.77	30.160	0.000
T16	45.00	1.07	11	1088.08	A	80.523	52.602	80.523	60.49	45.060	0.000
60.00-30.00				3	B	80.523	52.602		60.49	128.833	0.000
T17 20 00 0 00	15.00	0.05	10	1202.12	C	80.523	52.602	01.400	60.49	45.240	0.000
T17 30.00-0.00	15.00	0.85	12	1202.12 2	A B	81.480 81.480	59.240 59.240	81.480	57.90 57.90	37.550 107.361	$0.000 \\ 0.000$
				2	В С	81.480 81.480	59.240 59.240		57.90 57.90	37.700	0.000
					U	01.400	59.240		57.90	57.700	0.000

# Tower Forces - No Ice - Wind Normal To Face

tnxTowe

er	Job	21007.82 - Colchester	Page 43 of 96
<b>ng Inc.</b> d Rd.	Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
105 1580 587	Client	Verizon	Designed by TJL

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	w	Ctrl.
Elevation	Weight	Weight	a	č	$C_{F}$	$q_z$	$D_{T}$	$D_{R}$	11E	1	**	Face
Literation	,, eight	,, eight	c			psf						1 400
ft	lb	lb	е			1-5			$ft^2$	lb	plf	
T1	15.90	1442.07	Α	0.209	2.566	69	1	1	16.204	2618.40	163.65	С
320.00-304.00			В	0.209	2.566		1	1	16.204			
			C	0.209	2.566		1	1	16.204			
T2	4.36	349.72	Α	0.201	2.592	68	1	1	3.803	624.23	156.06	С
304.00-300.00			В	0.201	2.592		1	1	3.803			
			С	0.201	2.592		1	1	3.803			
T3	40.00	2496.34	Α	0.207	2.573	68	1	1	22.512	3790.64	189.53	С
300.00-280.00			B	0.207	2.573		1	1	22.512			
	07.40		C	0.207	2.573	(7	1	1	22.512	0104.45	105.00	G
T4 280.00-260.00	87.48	5067.66	A B	0.237 0.237	2.477 2.477	67	1	1	51.368	8104.45	405.22	С
280.00-260.00			Б С	0.237	2.477		1	1	51.368 51.368			
Т5	122.62	5409.17	A	0.237	2.477	66	1	1	56.868	9259.42	462.97	С
260.00-240.00	122.02	5409.17	B	0.219	2.532	00	1	1	56.868	9239.42	402.97	C
200.00-240.00			č	0.219	2.532		1	1	56.868			
Т6	162.20	6484.36	Ă	0.223	2.52	64	1	1	66.901	10848.52	542.43	С
240.00-220.00	102.20	0.0.00	В	0.223	2.52	0.	1	1	66.901	10010.02	0.2.10	Ŭ
			Ĉ	0.223	2.52		1	1	66.901			
T7	362.40	6406.00	A	0.181	2.66	63	1	1	61.588	11384.48	569.22	С
220.00-200.00			В	0.181	2.66		1	1	61.588			
			C	0.181	2.66		1	1	61.588			
Т8	534.20	7298.65	Α	0.187	2.642	62	1	1	71.839	13482.76	674.14	С
200.00-180.00			В	0.187	2.642		1	1	71.839			
			C	0.187	2.642		1	1	71.839			
Т9	272.46	3730.84	Α	0.177	2.675	61	1	1	36.864	6897.89	689.79	С
180.00-170.00			В	0.177	2.675		1	1	36.864			
			С	0.177	2.675		1	1	36.864			
T10	279.59	3785.29	Α	0.171	2.694	60	1	1	37.492	7022.55	702.26	С
170.00-160.00			В	0.171	2.694		1	1	37.492			
	570.20	0.000 50	C	0.171	2.694	50	1	1	37.492	15150 50	750.00	
T11	579.39	9608.59	A	0.181	2.661	59	1	1	84.562	15179.59	758.98	С
160.00-140.00			B C	0.181 0.181	2.661 2.661		1	1	84.562 84.562			
T12	599.08	9975.29	A	0.131	2.601	58	1	1	87.738	15611.31	780.57	С
140.00-120.00	399.00	3973.29	B	0.173	2.69	50	1	1	87.738	15011.51	/80.5/	C
140.00-120.00			C	0.173	2.69		1	1	87.738			
Т13	609.33	9144.95	Ă	0.131	2.844	57	1	1	60.219	12324.59	616.23	С
120.00-100.00	009.22	5111.55	B	0.131	2.844	51	1	1	60.219	12521.05	010.25	Ũ
			Ċ	0.131	2.844		1	1	60.219			
T14	625.08	9675.54	Ā	0.122	2.876	57	1	1	61.061	12604.51	630.23	С
100.00-80.00			в	0.122	2.876		1	1	61.061			
			C	0.122	2.876		1	1	61.061			
T15	630.40	11450.50	Α	0.127	2.857	57	1	1	70.206	13903.45	695.17	С
80.00-60.00			В	0.127	2.857		1	1	70.206			
			С	0.127	2.857		1	1	70.206			
T16	945.60	15115.36	Α	0.122	2.876	59	1	1	107.156	22039.49	734.65	С
60.00-30.00			В	0.122	2.876		1	1	107.156			
			С	0.122	2.876		1	1	107.156			
T17	788.00	17941.94	Α	0.117	2.896	65	1	1	110.505	23685.38	789.51	С
30.00-0.00			B	0.117	2.896		1		110.505			
	<pre>////////////////////////////////////</pre>	107000.00	С	0.117	2.896		1		110.505	100001 (7		
Sum Weight:	6658.09	125382.28						ОТМ	25538.10	189381.67		
									kip-ft			

# Tower Forces - No Ice - Wind 45 To Face

*tnxTov* 

wer	Jop	21007.82 - Colchester	Page 44 of 96
e <b>ering Inc.</b> mford Rd.	Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
T 06405 488-0580 88-8587	Client	Verizon	Designed by TJL

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	W	Ctrl.
Elevation	Weight	Weight	а			_						Face
ft	lb	lb	с e			psf			$ft^2$	lb	plf	
<u>j</u> i T1	15.90	1442.07	A	0.209	2.566	69	0.825	1	14.539	2369.39	148.09	С
320.00-304.00	15.90	1112.07	B	0.209	2.566	07	0.825	1	14.539	2507.57	110.09	Č
			Ē	0.209	2.566		0.825	ĩ	14.539			
T2	4.36	349.72	Ā	0.201	2.592	68	0.825	1	3.427	567.84	141.96	С
304.00-300.00			В	0.201	2.592		0.825	1	3.427			
			С	0.201	2.592		0.825	1	3.427			
Т3	40.00	2496.34	Α	0.207	2.573	68	0.825	1	20.313	3465.81	173.29	С
300.00-280.00			В	0.207	2.573		0.825	1	20.313			
			С	0.207	2.573		0.825	1	20.313			
T4	87.48	5067.66	А	0.237	2.477	67	0.825	1	42.379	6844.62	342.23	С
280.00-260.00			В	0.237	2.477		0.825	1	42.379			
			С	0.237	2.477		0.825	1	42.379			~
T5	122.62	5409.17	A	0.219	2.532	66	0.825	1	46.916	7856.34	392.82	С
260.00-240.00			B	0.219	2.532		0.825	1	46.916			
T	1(2.20	(494.2)	C	0.219	2.532	()	0.825	1	46.916	0000 (7	461.60	C
T6 240.00-220.00	162.20	6484.36	A B	0.223 0.223	2.52 2.52	64	0.825 0.825	1	55.194 55.194	9233.67	461.68	С
240.00-220.00			Б С	0.223	2.52		0.825	-	55.194			
Т7	362.40	6406.00	A	0.225	2.52	63	0.825	1 1	50.810	9843.96	492.20	с
220.00-200.00	502.40	0400.00	B	0.181	2.66	05	0.825	1	50.810	9645.90	492.20	C
220.00-200.00			C	0.181	2.66		0.825	1	50.810			
Т8	534.20	7298.65	Ă	0.181	2.642	62	0.825	1	59.267	11732.56	586.63	С
200.00-180.00	554.20	7290.05	B	0.187	2.642	02	0.825	1	59.267	11752.50	500.05	Č
200.00 100.00			č	0.187	2.642		0.825	1	59.267			
Т9	272.46	3730.84	Ă	0.177	2.675	61	0.825	1	30.413	6002.24	600.22	С
180.00-170.00		2,20101	В	0.177	2.675		0.825	1	30.413	0002121	000.22	Ũ
			С	0.177	2.675		0.825	1	30.413			
T10	279.59	3785.29	Α	0.171	2.694	60	0.825	1	30.931	6114.55	611.46	С
170.00-160.00			В	0.171	2.694		0.825	1	30.931			
			С	0.171	2.694		0.825	1	30.931			
T11	579.39	9608.59	Α	0.181	2.661	59	0.825	1	69.763	13189.24	659.46	С
160.00-140.00			В	0.181	2.661		0.825	1	69.763			
			С	0.181	2.661		0.825	1	69.763			
T12	599.08	9975.29	Α	0.173	2.69	58	0.825	1	72.384	13566.16	678.31	С
140.00-120.00			В	0.173	2.69		0.825	1	72.384			
			C	0.173	2.69		0.825	1	72.384			~
T13	609.33	9144.95	A	0.131	2.844	57	0.825	1	52.226	11218.90	560.95	С
120.00-100.00			B C	0.131	2.844		0.825	1	52.226			
T14	625.08	9675.54	A	0.131 0.122	2.844 2.876	57	0.825 0.825	1	52.226 53.069	11498.90	574.95	с
100.00-80.00	025.08	9075.54	B	0.122	2.876	57	0.825	1	53.069	11498.90	5/4.95	C
100.00-80.00			C	0.122	2.876		0.825	1	53.069			
T15	630.40	11450.50	Ă	0.122	2.870	57	0.825	1	60.807	12608.13	630.41	С
80.00-60.00	050.40	11450.50	B	0.127	2.857	57	0.825	1	60.807	12000.15	050.41	Č
00.00-00.00			C	0.127	2.857		0.825	1	60.807			
T16	945.60	15115.36	Ă	0.127	2.876	59	0.825	1	93.064	20007.96	666.93	С
60.00-30.00	2.2.00		B	0.122	2.876		0.825	1	93.064	22507.00	220000	~
			č	0.122	2.876		0.825	1	93.064			
T17	788.00	17941.94	Ă	0.117	2.896	65	0.825		96.246	21408.56	713.62	С
30.00-0.00			В	0.117	2.896	'	0.825	ĩ	96.246			
			С	0.117	2.896		0.825	1	96.246			
Sum Weight:	6658.09	125382.28						OTM	22322.43	167528.83		
									kip-ft			

# tnxTower

**Centek Engineering Inc.** 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21007.82 - Colchester	45 of 96
Project		Date
	320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
Client		Designed by
	Verizon	TJL

						5 11	0 100			TO Face		
Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	w	Ctrl.
Elevation	Weight	Weight	a	-	-1	72	-1	- 1	2	-	,,	Face
	U	2	с			psf						
ft	lb	lb	е						$ft^2$	lb	plf	
T1	15.90	1442.07	Α	0.209	2.566	69	0.8	1	14.302	2333.81	145.86	С
320.00-304.00			В	0.209	2.566		0.8	1	14.302			
			C	0.209	2.566		0.8	1	14.302			
T2	4.36	349.72	A	0.201	2.592	68	0.8	1	3.373	559.79	139.95	С
304.00-300.00			B	0.201	2.592		0.8	1	3.373			
T2	10.00	2406.24	C	0.201	2.592	(0)	0.8	1	3.373	2410.40	170.07	C
T3 300.00-280.00	40.00	2496.34	A	0.207 0.207	2.573 2.573	68	0.8 0.8	1	19.999 19.999	3419.40	170.97	С
500.00-280.00			B C	0.207	2.573		0.8	1	19.999			
T4	87.48	5067.66	A	0.207	2.373	67	0.8	1	41.095	6664.65	333.23	С
280.00-260.00	07.40	5007.00	B	0.237	2.477	07	0.8	1	41.095	0004.05	555.25	C
200.00-200.00			C	0.237	2.477		0.8	1	41.095			
Т5	122.62	5409.17	Ă	0.219	2.532	66	0.8	1	45.494	7655.90	382.79	С
260.00-240.00	122.02	2.00/11/	B	0.219	2.532	00	0.8		45.494	, 000190	202119	č
			č	0.219	2.532		0.8	1	45.494			
Т6	162.20	6484.36	Ă	0.223	2.52	64	0.8	1	53.521	9002.97	450.15	С
240.00-220.00	•		В	0.223	2.52		0.8	1	53.521	/		-
			С	0.223	2.52		0.8	1	53.521			
T7	362.40	6406.00	Α	0.181	2.66	63	0.8	1	49.270	9623.88	481.19	С
220.00-200.00			В	0.181	2.66		0.8	1	49.270			
			С	0.181	2.66		0.8	1	49.270			
Т8	534.20	7298.65	Α	0.187	2.642	62	0.8	1	57.471	11482.53	574.13	С
200.00-180.00			В	0.187	2.642		0.8	1	57.471			
			С	0.187	2.642		0.8	1	57.471			
Т9	272.46	3730.84	Α	0.177	2.675	61	0.8	1	29.491	5874.29	587.43	С
180.00-170.00			В	0.177	2.675		0.8	1	29.491			
			С	0.177	2.675		0.8	1	29.491			
T10	279.59	3785.29	Α	0.171	2.694	60	0.8	1	29.994	5984.84	598.48	С
170.00-160.00			В	0.171	2.694		0.8	1	29.994			
			C	0.171	2.694		0.8	1	29.994			
T11	579.39	9608.59	A	0.181	2.661	59	0.8	1	67.649	12904.91	645.25	С
160.00-140.00			В	0.181	2.661		0.8	1	67.649			
	500.00	0075.00	C	0.181	2.661	-	0.8	1	67.649	1225100		0
T12	599.08	9975.29	A	0.173	2.69	58	0.8		70.190	13274.00	663.70	С
140.00-120.00			B	0.173	2.69		0.8		70.190			
T12	600.22	0144.05	C	0.173	2.69	57	0.8		70.190	11060.05	552 05	C
T13 120.00-100.00	609.33	9144.95	A B	0.131 0.131	2.844 2.844	57	0.8 0.8	1	51.085 51.085	11060.95	553.05	С
120.00-100.00			Б С	0.131	2.844		0.8	1	51.085			
T14	625.08	9675.54	Ă	0.131	2.844	57	0.8	1	51.085	11340.96	567.05	С
100.00-80.00	025.08	9075.54	B	0.122	2.876	57	0.8	1	51.928	11540.90	507.05	C
100.00-80.00			C	0.122	2.876		0.8	1	51.928			
T15	630.40	11450.50		0.122		57		1	59.464	12423.09	621.15	С
80.00-60.00	050.40	11450.50	B	0.127	2.857	57	0.8	1	59.464	12423.03	021.13	C
30.00-00.00			C	0.127	2.857		0.8		59.464			
Т16	945.60	15115.36	A	0.127	2.857	59	0.8		91.051	19717.74	657.26	С
60.00-30.00	245.00	15115.50	B	0.122	2.876	57	0.8		91.051	12/1/./4	057.20	C
50.00-50.00			C	0.122	2.876		0.8		91.051			
T17	788.00	17941.94	Ă	0.122	2.896	65	0.8		94.209	21083.30	702.78	С
30.00-0.00	, 50100		B	0.117	2.896	00	0.8		94.209	21000.00		÷
20100 0100			Č	0.117	2.896		0.8	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	94.209			
Sum Weight:	6658.09	125382.28						OTM	21863.05	164406.99		
									kip-ft			

# Tower Forces - No Ice - Wind 60 To Face

tnxTowe

	Job		Page
		21007.82 - Colchester	46 of 96
Inc.	Project		Date
п.		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
	Client	Mada	Designed by
		Verizon	TJL

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-	Το	wer Fo	orce	s - N	o Ice	e - W	ind 90	To Face	;	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	W	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Elevation	Weight	Weight				nef						Face
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ft	lb	lb				psj			$ft^2$	lb	plf	
320.00-304.00					0.209	2.566	69	0.85	1				С
1         34.3         349.7         A         0.00         2.50         6.85         1         3.481         575.90         143.97         C           304.00-30.00         -         0.200         2.502         0.85         1         3.481         -         -           300.00-280.00         -         0.200         2.573         6         0.85         1         2.0627         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	320.00-304.00			В	0.209			0.85	1	14.777			
304.00-30.00         -         B         0.201         2.592         0.85         1         3.481         -         -         -           300.00-280.00         -         -         0.0217         2.573         0.85         1         20.027         351.2.1         1.75.61         C           300.00-280.00         -         0.027         2.573         0.85         1         20.027         -         351.2.1         1.75.61         C           280.00-260.00         -         0.237         2.477         7         0.85         1         43.663         -         -           260.00-260.00         -         C         0.237         2.477         0.85         1         48.338         8056.78         402.84         C           260.00-20.00         -         B         0.212         2.52         0.85         1         48.338         8056.78         402.84         C           260.00-20.00         -         B         0.212         2.52         0.85         1         56.866         -         303.20         C           220.00-20.00         -         C         0.223         2.52         0.85         1         56.866         -         30.32 </td <td></td> <td></td> <td></td> <td>С</td> <td>0.209</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>				С	0.209				1				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4.36	349.72	Α			68		1		575.90	143.97	С
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	304.00-300.00												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<b>T</b> 2	10.00	2406.24				(0)				2512.21	175 (1	
14         8         8         6         0.207         2.477         67         0.85         1         4.3.663         7024.60         51.23         C           280.00-260.00         -         -         C         0.237         2.477         0.85         1         43.663         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         0.85         1         43.633         -         -         -         -         -         0.00         -         -         0.00         -         0.00         -         0.00         -         0.00         -         0.00         -         0.00         -         0.00         -         0.00         -         0.00         -         0.00         -         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00		40.00	2496.34				68				3512.21	1/5.61	C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	300.00-280.00												
280.00-260.00         P         P         P         C         0.237         2.477         0.85         1         43.663         P         P         P           260.00-240.00         P         122.62         5409.17         A         0.219         2.532         0.85         1         48.338         8056.78         402.84         C         P           260.00-240.00         P         6484.36         A         0.223         2.52         0.85         1         55.866         9464.36         473.22         C           240.00-220.00         P         P         C         0.223         2.52         0.85         1         55.866         9464.36         473.22         C           220.00-200.00         P         P         C         0.181         2.66         0.85         1         52.350         10064.03         503.20         C           200.00-180.00         P         C         0.187         2.642         0.85         1         61.063         P         P         2.64         0.85         1         31.334         6130.19         61.30.2         C         P         P         P         P         P         P         P         P         P	т4	87 48	5067.66				67				7024.60	351 23	C
state         c         C         0.237         2.47         state         1         43.663         state		07.70	5007.00				07				/024.00	551.25	C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	200.00 200.00								1				
260.00-240.00         P         B         0.219         2.332         0.85         1         48.338         P         P         P         P           240.00-220.00         -         6484.36         A         0.223         2.52         64         0.85         1         56.866         9464.36         473.22         C         C           220.00-200.00         -         0         0.233         2.52         0.85         1         56.866         9464.36         503.20         C         C           220.00-200.00         -         0         0.85         1         52.350         10064.03         503.20         C         C           220.00-200.00         -         C         0.181         2.66         0.85         1         52.350         10064.03         503.20         C           200.00-180.00         -         C         0.181         2.642         0.85         1         61.063         11982.59         599.13         C         C           100.00-170.00         -         C         0.187         2.675         6.85         1         31.344         613.019         63.02         C         0.177         2.675         0.85         1         31.3	Т5	122.62	5409.17				66		1		8056.78	402.84	С
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									1				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				С	0.219	2.532			1	48.338			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		162.20	6484.36	Α			64		1		9464.36	473.22	С
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	240.00-220.00							0.85	1				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		362.40	6406.00				63				10064.03	503.20	С
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	220.00-200.00												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TO	524.20	7209 (5				()				11092.50	500.12	C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		554.20	/298.03				62				11982.59	599.15	C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	200.00-180.00												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	тө	272 46	3730.84				61				6130.19	613.02	C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2/2:10	5750101				01				0150.15	015.02	Ũ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	100.00 170.00							0.85					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T10	279.59	3785.29	Α			60		1		6244.27	624.43	С
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	170.00-160.00			В	0.171	2.694		0.85	1	31.869			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				С	0.171	2.694			1				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		579.39	9608.59				59		1		13473.58	673.68	С
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	160.00-140.00												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							-						~
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		599.08	9975.29				58				13858.33	692.92	С
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	140.00-120.00												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	т13	609 33	0144 05				57				11376.86	568 84	C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		009.55	9144.95				57				11570.80	500.04	C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	120.00-100.00												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T14	625.08	9675.54				57		1		11656.85	582.84	С
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		020100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						ĩ				-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								0.85	1				
T16       945.60       15115.36       C       0.127       2.857       0.85       1       62.150       20298.18       676.61       C         60.00-30.00       15115.36       A       0.122       2.876       59       0.85       1       95.078       20298.18       676.61       C         60.00-30.00       B       0.122       2.876       0.85       1       95.078       20298.18       676.61       C         717       788.00       17941.94       A       0.117       2.896       65       0.85       1       98.283       21733.82       724.46       C         30.00-0.00       B       0.117       2.896       65       0.85       1       98.283       21733.82       724.46       C         Sum Weight:       6658.09       125382.28       Image: Colored and the second and the	T15	630.40	11450.50	Α			57		1		12793.18	639.66	С
T16       945.60       15115.36       A       0.122       2.876       59       0.85       1       95.078       20298.18       676.61       C         60.00-30.00       B       0.122       2.876       0.85       1       95.078       20298.18       676.61       C         788.00       17941.94       A       0.117       2.896       65       0.85       1       98.283       21733.82       724.46       C         30.00-0.00       B       0.117       2.896       65       0.85       1       98.283       21733.82       724.46       C         Sum Weight:       6658.09       125382.28       V       V       V       OTM       22781.81       170650.66       V       V	80.00-60.00			В	0.127	2.857			1	62.150			
60.00-30.00       B       0.122       2.876       0.85       1       95.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5.078       5									1				
T17         788.00         17941.94         A         0.117         2.896         65         0.85         1         95.078         21733.82         724.46         C           30.00-0.00         B         0.117         2.896         65         0.85         1         98.283         21733.82         724.46         C           30.00-0.00         B         0.117         2.896         0.85         1         98.283         21733.62         724.46         C           Sum Weight:         6658.09         125382.28         C         0.117         2.896         0.85         1         98.283         170650.66         C		945.60	15115.36				59				20298.18	676.61	С
T17         788.00         17941.94         A         0.117         2.896         65         0.85         1         98.283         21733.82         724.46         C           30.00-0.00         B         0.117         2.896         0.85         1         98.283         21733.82         724.46         C           30.00-0.00         C         0.117         2.896         0.85         1         98.283	60.00-30.00												
30.00-0.00         B         0.117         2.896         0.85         1         98.283           Sum Weight:         6658.09         125382.28         0         1         98.283         000000000000000000000000000000000000	<b>T</b> 17	700.00	17041.04				15				01700.00	704.44	
Sum Weight:         6658.09         125382.28         C         0.117         2.896         0.85         1         98.283         0           Sum Weight:         6658.09         125382.28         0         0         0         0         1         98.283         170650.66		/88.00	1/941.94				65				21733.82	/24.46	C
Sum Weight:         6658.09         125382.28         OTM         22781.81         170650.66	50.00-0.00												
	Sum Weight	6658.09	125382.28		0.11/	2.090		0.65			170650.66		
	Sum weight.	0050.09	125502.20						<b>U</b> I M	kip-ft	170050.00		

### \A/: ... .

tnxTo

'ower	Job	21007.82 - Colchester	Page 47 of 96
<b>ineering Inc.</b> Branford Rd.	Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
, CT 06405 3) 488-0580 3) 488-8587	Client	Verizon	Designed by TJL

		Том	Wind Normal To Face											
Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	w	Ctrl.		
Elevation	Weight	Weight	a			naf						Face		
ft	lb	lb	с е			psf			ft ²	lb	plf			
	261.85	3479.11	A	0.397	2.071	9	1	1	33.738	619.55	38.72	С		
320.00-304.00			В	0.397	2.071	-	1	1	33.738					
			C	0.397	2.071		1	1	33.738					
T2	71.62	821.79	Α	0.376	2.114	9	1	1	7.871	150.08	37.52	С		
304.00-300.00			В	0.376	2.114		1	1	7.871					
			C	0.376	2.114		1	1	7.871					
T3	592.40	5152.34	A	0.361	2.147	9	1	1	43.335	900.25	45.01	С		
300.00-280.00			B	0.361	2.147				43.335					
T4	1098.70	9553.22	C	0.361 0.33	2.147 2.219	8		1	43.335 67.075	1463.66	73.18	С		
280.00-260.00	1096.70	9333.22	A B	0.33	2.219	0	1	1	67.075	1405.00	/5.10	C		
280.00-200.00			C	0.33	2.219		1	1	67.075					
Т5	1465.07	10434.30	A	0.307	2.219	8	1		73.915	1701.59	85.08	С		
260.00-240.00			B	0.307	2.277	5	Î	Î	73.915					
			С	0.307	2.277		1	1	73.915					
Т6	1898.59	12452.94	Α	0.307	2.277	8	1	1	85.350	2002.42	100.12	С		
240.00-220.00			В	0.307	2.277		1	1	85.350					
			С	0.307	2.277		1	1	85.350					
T7	3016.37	11683.11	Α	0.245	2.454	8	1	1	77.376	2286.43	114.32	С		
220.00-200.00			B	0.245	2.454		1	1	77.376					
<b>T</b> 0	1001 (7	12202.41	C	0.245	2.454	0	1		77.376	27(2)(4	120.10	C		
T8 200.00-180.00	4081.67	13202.41	A	0.246 0.246	2.449	8			88.444	2763.64	138.18	С		
200.00-180.00			B C	0.246	2.449 2.449		1	1	88.444 88.444					
Т9	2112.84	6756.36	A	0.240	2.449	8	1	1	45.455	1420.22	142.02	С		
180.00-170.00	2112.04	0750.50	B	0.235	2.484	0	1	1	45.455	1420.22	142.02	C		
100.00 170.00			Č	0.235	2.484		1	1	45.455					
T10	2205.64	6858.43	A	0.228	2.504	8	1	1	46.272	1460.30	146.03	С		
70.00-160.00			В	0.228	2.504		1	1	46.272					
			C	0.228	2.504		1	1	46.272					
T11	4581.87	16563.91	Α	0.236	2.479	8	1	1	102.718	3088.60	154.43	С		
160.00-140.00			В	0.236	2.479		1	1	102.718					
			С	0.236	2.479		1	1	102.718					
T12	4759.58	17156.52	A	0.226	2.51	7	1	1	106.625	3177.75	158.89	С		
140.00-120.00			B	0.226	2.51		1		106.625					
T12	1076 64	15024.42	C	0.226	2.51	7			106.625	2010.22	140.07	с		
T13 120.00-100.00	4836.64	15024.43	A B	0.181 0.181	2.661 2.661	7		1	80.012 80.012	2819.23	140.96	C		
120.00-100.00			C	0.181	2.661		1		80.012					
T14	4985.09	15674.17	Ă	0.181	2.698	7	1	1	81.435	2890.06	144.50	С		
100.00-80.00	4705.07	15074.17	B	0.17	2.698		1	1	81.435	2090.00	144.50	Č		
100.00 00.00			Ĉ	0.17			1	1	81.435					
T15	5030.92	18017.30	Ā	0.173	2.69	7	1	1	91.214	3076.92	153.85	С		
80.00-60.00			B	0.173	2.69		1	Î	91.214					
			С	0.173	2.69		1	1	91.214					
T16	7561.96	25360.00	Α	0.165	2.717	8	1	1	141.153	4898.66	163.29	С		
60.00-30.00			В	0.165	2.717		1	1	141.153					
			C	0.165	2.717		1	1	141.153			~		
T17	6329.02	28872.58	A	0.158	2.743	8	1		147.426	5088.95	169.63	С		
30.00-0.00			B	0.158	2.743		1	1	147.426					
Sum Walaht	51000 00	217062.04	С	0.158	2.743		1		147.426	20000 22				
Sum Weight:	54889.82	217062.94						OTM	5234.35	39808.33				
									kip-ft					

*tnxTo* 

awan	Job		Page
ower		21007.82 - Colchester	48 of 96
ineering Inc.	Project		Date
Branford Rd.		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
. CT 06405 3) 488-0580 8) 488-8587	Client	Verizon	Designed by TJL

		Т	ow	er Fo	rces	- Wi	th Ic	e - V	Vind 45	To Fac	е	
Santian	Add	$\mathbf{r}_{c}$	F	6	C	~	D	D		F		Cul
Section Elevation	Aaa Weight	Self Weight	r a	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	r	W	Ctrl. Face
Lievanon	neigni	neigni	c u			psf						Tuce
ft	lb	lb	e			P-J			$ft^2$	lb	plf	
T1	261.85	3479.11	Α	0.397	2.071	9	0.825	1	32.074	593.92	37.12	С
320.00-304.00			В	0.397	2.071		0.825	1	32.074			
			C	0.397	2.071		0.825	1	32.074			
T2	71.62	821.79	Α	0.376	2.114	9	0.825	1	7.495	144.22	36.05	С
304.00-300.00			В	0.376	2.114		0.825	1	7.495			
			C	0.376	2.114		0.825	1	7.495			
T3	592.40	5152.34	Α	0.361	2.147	9	0.825	1	41.136	865.67	43.28	С
300.00-280.00			В	0.361	2.147		0.825	1	41.136			
			C	0.361	2.147		0.825	1	41.136			_
T4	1098.70	9553.22	A	0.33	2.219	8	0.825	1	56.980	1301.99	65.10	С
280.00-260.00			B	0.33	2.219		0.825	1	56.980			
	1465.05	10 10 1 00	C	0.33	2.219	0	0.825		56.980	1500.04	26.15	a
T5	1465.07	10434.30	A	0.307	2.277	8	0.825		62.866	1522.94	76.15	С
260.00-240.00			B	0.307	2.277		0.825		62.866			
	1000 50	10450.01	C	0.307	2.277		0.825		62.866	1500.00	00.05	~
T6	1898.59	12452.94	A	0.307	2.277	8	0.825		72.554	1799.00	89.95	С
240.00-220.00			B	0.307	2.277		0.825		72.554			
	2016.05	11.000.11	C	0.307	2.277	0	0.825		72.554	2005.01	104.25	G
T7	3016.37	11683.11	A	0.245	2.454	8	0.825		65.519	2087.01	104.35	С
220.00-200.00			B	0.245	2.454		0.825		65.519			
	1001 (5	10000 11	C	0.245	2.454		0.825		65.519		10/07	~
T8	4081.67	13202.41	A	0.246	2.449	8	0.825	1	74.803	2539.07	126.95	С
200.00-180.00			B	0.246	2.449		0.825		74.803			
<b>T</b> 0	2112.04	(77)	C	0.246	2.449	0	0.825		74.803	1205 41	100 54	a
T9	2112.84	6756.36	A	0.235	2.484	8	0.825		38.473	1305.41	130.54	С
80.00-170.00			B	0.235	2.484		0.825		38.473			
710	2205 (4	6050 40	C	0.235	2.484	0	0.825		38.473	1244.00	124.40	G
T10	2205.64	6858.43	A	0.228	2.504	8	0.825		39.183	1344.00	134.40	С
70.00-160.00			B	0.228	2.504		0.825		39.183			
<b>T</b> 11	4501.07	16562.01	C	0.228	2.504	0	0.825		39.183	2025.22	141 77	G
T11	4581.87	16563.91	A	0.236	2.479	8	0.825		86.873	2835.33	141.77	С
160.00-140.00			B	0.236	2.479		0.825		86.873			
<b>T12</b>	1750 50	17156 50	C	0.236	2.479	-	0.825		86.873	2017.00	145.00	G
T12 40.00-120.00	4759.58	17156.52	A	0.226	2.51	7	0.825		90.235	2917.89	145.89	С
40.00-120.00			B C	0.226 0.226	2.51 2.51		0.825 0.825		90.235 90.235			
T13	4836.64	15024.43	A	0.226	2.51	7	0.825		90.235 70.994	2670.36	133.52	С
20.00-100.00	+030.04	15024.45	B	0.181	2.661	/	0.825		70.994	20/0.30	155,52	
20.00-100.00			Б С	0.181	2.661		0.825		70.994			
Т14	4985.09	15674.17	Ă	0.181	2.698	7	0.825	1	72.428	2740.95	137.05	С
100.00-80.00	4985.09	150/4.17	B	0.17	2.698	/	0.825	1	72.428	2740.95	157.05	C
100.00-00.00			Б С	0.17	2.698		0.825		72.428			
T15	5030.92	18017.30	A	0.17	2.698	7	0.825		80.804	2904.68	145.23	С
80.00-60.00	5050.92	10017.50	B	0.173	2.69		0.825		80.804	2904.08	143.23	C
30.00-00.00			Б С	0.173	2.69		0.825		80.804			
T16	7561.96	25360.00	A	0.175	2.09	8	0.825		125.544	4627.43	154.25	С
60.00-30.00	/ 501.90	25500.00	B	0.165	2.717	0	0.825		125.544	4027.43	154.23	
00.00-50.00			Б С		2.717		0.825		125.544			
T17	6329.02	28872.58		$0.165 \\ 0.158$	2.717	8	0.825		125.544	4784.58	159.49	С
30.00-0.00	0329.02	200/2.38	A B	0.158	2.743	0	0.825		131.643	4/04.38	159.49	L L
50.00-0.00			В С		2.743		0.825		131.643			
Sum Weight:	54889.82	217062.04		0.158	2.743		0.823	OTM	4825.22	36984.43		
sum weight:	34089.82	217062.94							4825.22 kip-ft	20984.43		
									кір-п			

tnxTower

Job	Page
21007.82 - Colchester	49 of 96
Project 320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
Client Verizon	Designed by TJL

		Т	ow	er Fo	rces	- Wi	th Ic	e - V	Vind 60	To Fac	е	
											-	
Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	W	Ctrl.
Elevation	Weight	Weight	a c			nef						Face
ft	lb	lb	e			psf			$ft^2$	lb	plf	
	261.85	3479.11	A	0.397	2.071	9	0.8	1	31.836	590.25	36.89	С
320.00-304.00			В	0.397	2.071		0.8	1	31.836			
			С	0.397	2.071		0.8	1	31.836			
T2	71.62	821.79	A	0.376	2.114	9	0.8	1	7.441	143.38	35.84	С
304.00-300.00			B	0.376 0.376	2.114 2.114		0.8	1	7.441 7.441			
Т3	592.40	5152.34	C A	0.376	2.114	9	0.8 0.8	1	40.822	860.73	43.04	С
300.00-280.00	392.40	5152.54	B	0.361	2.147	9	0.8	1	40.822	800.75	45.04	C
500.00-200.00			č	0.361	2.147		0.8	1	40.822			
T4	1098.70	9553.22	Ă	0.33	2.219	8	0.8	î	55.538	1278.90	63.94	С
280.00-260.00			В	0.33	2.219		0.8	1	55.538			
			С	0.33	2.219		0.8	1	55.538			
T5	1465.07	10434.30	Α	0.307	2.277	8	0.8	1	61.287	1497.42	74.87	С
260.00-240.00			B	0.307	2.277		0.8	1	61.287			
<b></b>	1000 50	10150.01	C	0.307	2.277	0	0.8	1	61.287	17/0.04	00.50	
T6 240.00-220.00	1898.59	12452.94	A	0.307	2.277	8	0.8		70.726	1769.94	88.50	С
240.00-220.00			B C	0.307 0.307	2.277 2.277		0.8 0.8	1	70.726 70.726			
T7	3016.37	11683.11	Ă	0.307	2.454	8	0.8	1	63.825	2058.52	102.93	С
220.00-200.00	5010.57	11005.11	B	0.245	2.454	0	0.8	1	63.825	2050.52	102.95	Ŭ
			Ĉ	0.245	2.454		0.8	1	63.825			
Т8	4081.67	13202.41	Ă	0.246	2.449	8	0.8	1	72.855	2506.99	125.35	С
200.00-180.00			в	0.246	2.449		0.8	1	72.855			
			С	0.246	2.449		0.8	1	72.855			
Т9	2112.84	6756.36	Α	0.235	2.484	8	0.8	1	37.476	1289.01	128.90	С
180.00-170.00			В	0.235	2.484		0.8	1	37.476			
710	2202 64	60.50 10	C	0.235	2.484	0	0.8	1	37.476	1227.20	100 74	
T10 170.00-160.00	2205.64	6858.43	A	0.228	2.504	8	0.8	1	38.171	1327.38	132.74	С
1/0.00-160.00			B C	0.228 0.228	2.504 2.504		0.8 0.8	1	38.171 38.171			
T11	4581.87	16563.91	Ă	0.228	2.304	8	0.8	1	84.609	2799.14	139.96	С
160.00-140.00	4501.07	10505.51	B	0.236	2.479	0	0.8	1	84.609	2799.14	157.70	Ŭ
100100 1 10100			Ĉ	0.236	2.479		0.8	1	84.609			
T12	4759.58	17156.52	A	0.226	2.51	7	0.8	1	87.894	2880.76	144.04	С
140.00-120.00			В	0.226	2.51		0.8	1	87.894			
			С	0.226	2.51		0.8	1	87.894			
T13	4836.64	15024.43	А	0.181	2.661	7	0.8	1	69.705	2649.09	132.45	С
120.00-100.00			B	0.181	2.661		0.8	1	69.705			
714	10.95.00	15(74.17	C	0.181	2.661	7	0.8		69.705	2710 (5	125.00	C
T14 100.00-80.00	4985.09	15674.17	A B	0.17 0.17	2.698 2.698	7	0.8 0.8	1	71.141 71.141	2719.65	135.98	С
100.00-80.00			Б С	0.17	2.698		0.8	1	71.141			
T15	5030.92	18017.30	Ă	0.17	2.098	7	0.8		79.317	2880.07	144.00	С
80.00-60.00	5050.92	10017.50	B	0.173	2.69	,	0.8	1	79.317	2000.07	144.00	Č
			č	0.173	2.69		0.8	Î	79.317			
T16	7561.96	25360.00	A	0.165	2.717	8	0.8	1	123.314	4588.69	152.96	С
60.00-30.00			В	0.165	2.717		0.8	1	123.314			
			С	0.165	2.717		0.8	1	123.314			
T17	6329.02	28872.58	A	0.158	2.743	8	0.8	1	129.388	4741.10	158.04	С
30.00-0.00			B	0.158	2.743		0.8	1	129.388			
Come Weitele	54000.00	2170(2.04	С	0.158	2.743		0.8		129.388	26501.01		
Sum Weight:	54889.82	217062.94						OTM	4766.78	36581.01		

21007.82 - Colchester     50 of 96       Project     Date       320-ft Lattice Tower (CSP #50)     14:04:33 03/24/22       Client     Verizon       Verizon     TJL	Job		Page
320-ft Lattice Tower (CSP #50)         14:04:33 03/24/22           Client         Designed by		21007.82 - Colchester	50 of 96
Client Designed by	Project		Date
Vorizon		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
	Client	Verizon	

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			с			psf						
ft	lb	lb	е						$ft^2$	lb	plf	
									kip-ft			

# Tower Forces - With Ice - Wind 90 To Face

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	w	Ctrl.
Elevation	Weight	Weight	a	č	$C_{F}$	92	$D_{T}$	$D_{R}$	112	1		Face
1.0.0		n eight	c			psf						1 000
ft	lb	lb	e			PSJ			$ft^2$	lb	plf	
T1	261.85	3479.11	А	0.397	2.071	9	0.85	1	32.312	597.58	37.35	С
320.00-304.00			в	0.397	2.071		0.85	1	32.312			
			С	0.397	2.071		0.85	1	32.312			
T2	71.62	821.79	Ā	0.376	2.114	9	0.85	1	7.549	145.05	36.26	С
304.00-300.00			в	0.376	2.114		0.85	1	7.549			
			C	0.376	2.114		0.85	1	7.549			
Т3	592.40	5152.34	Á	0.361	2.147	9	0.85	1	41.450	870.61	43.53	С
300.00-280.00			в	0.361	2.147		0.85	1	41.450			
			С	0.361	2.147		0.85	1	41.450			
T4	1098.70	9553.22	Α	0.33	2.219	8	0.85	1	58.422	1325.09	66.25	С
280.00-260.00			в	0.33	2.219		0.85	1	58.422			
			С	0.33	2.219		0.85	1	58.422			
T5	1465.07	10434.30	A	0.307	2.277	8	0.85	1	64.444	1548.46	77.42	С
260.00-240.00			в	0.307	2.277		0.85	1	64.444			
			С	0.307	2.277		0.85	1	64.444			
Т6	1898.59	12452.94	Α	0.307	2.277	8	0.85	1	74.382	1828.06	91.40	С
240.00-220.00			в	0.307	2.277		0.85	1	74.382			
			С	0.307	2.277		0.85	1	74.382			
T7	3016.37	11683.11	Α	0.245	2.454	8	0.85	1	67.213	2115.49	105.77	С
220.00-200.00			в	0.245	2.454		0.85	1	67.213			
			С	0.245	2.454		0.85	1	67.213			
Т8	4081.67	13202.41	Α	0.246	2.449	8	0.85	1	76.752	2571.15	128.56	С
200.00-180.00			В	0.246	2.449		0.85	1	76.752			
			С	0.246	2.449		0.85	1	76.752			
Т9	2112.84	6756.36	Α	0.235	2.484	8	0.85	1	39.471	1321.81	132.18	С
180.00-170.00			В	0.235	2.484		0.85	1	39.471			
			С	0.235	2.484		0.85	1	39.471			
T10	2205.64	6858.43	Α	0.228	2.504	8	0.85	1	40.196	1360.61	136.06	С
170.00-160.00			в	0.228	2.504		0.85	1	40.196			
			С	0.228	2.504		0.85	1	40.196			
T11	4581.87	16563.91	Α	0.236	2.479	8	0.85	1	89.136	2871.51	143.58	С
160.00-140.00			В	0.236	2.479		0.85	1	89.136			
			С	0.236	2.479		0.85	1	89.136			
T12	4759.58	17156.52	Α	0.226	2.51	7	0.85	1	92.577	2955.01	147.75	С
140.00-120.00			В	0.226	2.51		0.85	1	92.577			
			С	0.226	2.51		0.85	1	92.577			
T13	4836.64	15024.43	Α	0.181	2.661	7	0.85	1	72.282	2691.62	134.58	С
120.00-100.00			В	0.181	2.661		0.85	1	72.282			
			С	0.181	2.661		0.85	1	72.282			
T14	4985.09	15674.17	А	0.17	2.698	7	0.85	1	73.715	2762.25	138.11	С
100.00-80.00			В	0.17	2.698		0.85	1	73.715			
			С	0.17	2.698		0.85	1	73.715			
T15	5030.92	18017.30	Α	0.173	2.69	7	0.85	1	82.291	2929.28	146.46	С
80.00-60.00			В	0.173	2.69		0.85	1	82.291			
			С	0.173	2.69		0.85	1	82.291			
T16	7561.96	25360.00	А	0.165	2.717	8	0.85	1	127.774	4666.18	155.54	С

Job	Page
21007.82 - Colches	ter 51 of 96
Project 320-ft Lattice Tower (CS	Date           SP #50)         14:04:33 03/24/22
Client Verizon	Designed by TJL

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			с			psf						
ft	lb	lb	е						$ft^2$	lb	plf	
60.00-30.00			В	0.165	2.717		0.85	1	127.774			
			C	0.165	2.717		0.85	1	127.774			
T17	6329.02	28872.58	Α	0.158	2.743	8	0.85	1	133.898	4828.06	160.94	C
30.00-0.00			В	0.158	2.743		0.85	1	133.898			
			C	0.158	2.743		0.85	1	133.898			
Sum Weight:	54889.82	217062.94						OTM	4883.67	37387.84		
									kip-ft			

Tower Forces - Service - Wind Normal To Face												
Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	w	Ctrl.
Elevation	Weight	Weight	a	c	$C_F$	$q_z$	$D_F$	$D_R$	21E	1	rv	Face
2101411011	, eign		c			psf						1 400
ft	lb	lb	e			P			$ft^2$	lb	plf	
	15.90	1442.07	Α	0.209	2.566	13	1	1	18.059	531.91	33.24	С
320.00-304.00			В	0.209	2.566		1	1	18.059			
			С	0.209	2.566		1	1	18.059			
T2	4.36	349.72	Α	0.201	2.592	13	1	1	4.278	127.76	31.94	С
304.00-300.00			В	0.201	2.592		1	1	4.278			
			С	0.201	2.592		1	1	4.278			
Т3	40.00	2496.34	Α	0.207	2.573	12	1	1	25.107	766.66	38.33	С
300.00-280.00			В	0.207	2.573		1	1	25.107			
			С	0.207	2.573		1	1	25.107			
T4	87.48	5067.66	Α	0.237	2.477	12	1	1	51.368	1488.57	74.43	С
280.00-260.00			В	0.237	2.477		1	1	51.368			
			С	0.237	2.477		1	1	51.368			
Т5	122.62	5409.17	Α	0.219	2.532	12	1	1	56.868	1700.71	85.04	С
260.00-240.00			В	0.219	2.532		1	1	56.868			
			С	0.219	2.532		1	1	56.868			
Т6	162.20	6484.36	Α	0.223	2.52	12	1	1	66.901	1992.59	99.63	С
240.00-220.00			В	0.223	2.52		1	1	66.901			
			С	0.223	2.52		1	1	66.901			
T7	362.40	6406.00	Α	0.181	2.66	12	1	1	61.588	2091.03	104.55	С
220.00-200.00			В	0.181	2.66		1	1	61.588			
			С	0.181	2.66		1	1	61.588			
Т8	534.20	7298.65	Α	0.187	2.642	11	1	1	71.839	2476.43	123.82	С
200.00-180.00			В	0.187	2.642		1	1	71.839			
			С	0.187	2.642		1	1	71.839			
Т9	272.46	3730.84	Α	0.177	2.675	11	1	1	36.864	1266.96	126.70	С
180.00-170.00			В	0.177	2.675		1	1	36.864			
			С	0.177	2.675		1	1	36.864			
T10	279.59	3785.29	Α	0.171	2.694	11	1	1	37.492	1289.86	128.99	С
70.00-160.00			В	0.171	2.694		1	1	37.492			
			С	0.171	2.694		1	1	37.492			
T11	579.39	9608.59	Α	0.181	2.661	11	1	1	84.562	2788.09	139.40	С
160.00-140.00			В	0.181	2.661		1	1	84.562			
			С	0.181	2.661		1	1	84.562			
T12	599.08	9975.29	Α	0.173	2.69	11	1	1	87.738	2867.38	143.37	С
140.00-120.00			В	0.173	2.69		1	1	87.738			
			С	0.173	2.69		1	1	87.738			
T13	609.33	9144.95	Α	0.131	2.844	11	1	1	60.916	2281.41	114.07	С
120.00-100.00			В	0.131	2.844		1	1	60.916			
			С	0.131	2.844		1	1	60.916			
T14	625.08	9675.54	Α	0.122	2.876	10	1	1	61.790	2333.65	116.68	С

**Centek** 63-2 N Bra Phone FAX

nxTower	Job	21007.82 - Colchester	Page 52 of 96
<b>k Engineering Inc.</b> 2 North Branford Rd.	Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
ranford, CT 06405 one: (203) 488-0580 4X: (203) 488-8587	Client	Verizon	Designed by TJL

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			с			psf						
ft	lb	lb	е						$ft^2$	lb	plf	
100.00-80.00			В	0.122	2.876		1	1	61.790			
			C	0.122	2.876		1	1	61.790			
T15	630.40	11450.50	Α	0.127	2.857	10	1	1	70.970	2573.03	128.65	С
80.00-60.00			В	0.127	2.857		1	1	70.970			
			C	0.127	2.857		1	1	70.970			
T16	945.60	15115.36	Α	0.122	2.876	11	1	1	110.259	4130.24	137.67	С
60.00-30.00			В	0.122	2.876		1	1	110.259			
			C	0.122	2.876		1	1	110.259			
T17	788.00	17941.94	Α	0.117	2.896	12	1	1	114.951	4480.77	149.36	С
30.00-0.00			В	0.117	2.896		1	1	114.951			
			C	0.117	2.896		1	1	114.951			
Sum Weight:	6658.09	125382.28						OTM	4741.58	35187.03		
									kip-ft			

		Т	้อง	ver Fo	rces	- Se	rvice	e - W	ind 45	To Face	;	
Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	W	Ctrl.
Elevation	Weight	Weight	a									Face
			с			psf						
ft	lb	lb	e						$ft^2$	lb	plf	
T1	15.90	1442.07	Α	0.209	2.566	13	0.825	1	16.395	486.17	30.39	С
320.00-304.00			В	0.209	2.566		0.825	1	16.395			
			C	0.209	2.566		0.825	1	16.395			
T2	4.36	349.72	Α	0.201	2.592	13	0.825	1	3.902	117.41	29.35	С
304.00-300.00			В	0.201	2.592		0.825	1	3.902			
			С	0.201	2.592		0.825	1	3.902			
Т3	40.00	2496.34	Α	0.207	2.573	12	0.825	1	22.908	707.00	35.35	С
300.00-280.00			В	0.207	2.573		0.825	1	22.908			
			C	0.207	2.573		0.825	1	22.908			
T4	87.48	5067.66	Α	0.237	2.477	12	0.825	1	42.379	1257.18	62.86	С
280.00-260.00			В	0.237	2.477		0.825	1	42.379			
			С	0.237	2.477		0.825	1	42.379			
T5	122.62	5409.17	Α	0.219	2.532	12	0.825	1	46.916	1443.00	72.15	С
260.00-240.00			В	0.219	2.532		0.825	1	46.916			
			C	0.219	2.532		0.825	1	46.916			
Т6	162.20	6484.36	Α	0.223	2.52	12	0.825	1	55.194	1695.98	84.80	С
240.00-220.00			В	0.223	2.52		0.825	1	55.194			
			C	0.223	2.52		0.825	1	55.194			
T7	362.40	6406.00	Α	0.181	2.66	12	0.825	1	50.810	1808.07	90.40	С
220.00-200.00			В	0.181	2.66		0.825	1	50.810			
			С	0.181	2.66		0.825	1	50.810			
Т8	534.20	7298.65	A	0.187	2.642	11	0.825	1	59.267	2154.96	107.75	С
200.00-180.00			В	0.187	2.642		0.825	1	59.267			
			С	0.187	2.642		0.825	1	59.267			
Т9	272.46	3730.84	Α	0.177	2.675	11	0.825	1	30.413	1102.45	110.25	С
180.00-170.00			В	0.177	2.675		0.825	1	30.413			
			C	0.177	2.675		0.825	1	30.413			
T10	279.59	3785.29	Α	0.171	2.694	11	0.825	1	30.931	1123.08	112.31	С
170.00-160.00			В	0.171	2.694		0.825	1	30.931			
			С	0.171	2.694		0.825	1	30.931			
T11	579.39	9608.59	A	0.181	2.661	11	0.825	1	69.763	2422.51	121.13	С
160.00-140.00			В	0.181	2.661		0.825	1	69.763			
			Ċ	0.181	2.661		0.825	1 I	69.763			
T12	599.08	9975.29	Α	0.173	2.69	11	0.825	1	72.384	2491.74	124.59	С

Centek Eng 63-2 North Branford, Phone: (20 FAX: (203

Гознан	Job		Page
Tower		21007.82 - Colchester	53 of 96
gineering Inc.	Project		Date
h Branford Rd.		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
·d, CT 06405 203) 488-0580 03) 488-8587	Client	Verizon	Designed by TJL

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						$ft^2$	lb	plf	
140.00-120.00			В	0.173	2.69		0.825	1	72.384			
			С	0.173	2.69		0.825	1	72.384			
T13	609.33	9144.95	Α	0.131	2.844	11	0.825	1	52.923	2078.32	103.92	С
120.00-100.00			В	0.131	2.844		0.825	1	52.923			
			С	0.131	2.844		0.825	1	52.923			
T14	625.08	9675.54	Α	0.122	2.876	10	0.825	1	53.799	2130.58	106.53	С
100.00-80.00			В	0.122	2.876		0.825	1	53.799			
			С	0.122	2.876		0.825	1	53.799			
T15	630.40	11450.50	Α	0.127	2.857	10	0.825	1	61.571	2335.11	116.76	С
80.00-60.00			В	0.127	2.857		0.825	1	61.571			
			С	0.127	2.857		0.825	1	61.571			
T16	945.60	15115.36	Α	0.122	2.876	11	0.825	1	96.168	3757.10	125.24	С
60.00-30.00			В	0.122	2.876		0.825	1	96.168			
			С	0.122	2.876		0.825	1	96.168			
T17	788.00	17941.94	Α	0.117	2.896	12	0.825	1	100.692	4062.58	135.42	С
30.00-0.00			В	0.117	2.896		0.825	1	100.692			
			С	0.117	2.896		0.825	1	100.692			
Sum Weight:	6658.09	125382.28						OTM	4150.95	31173.24		
Ĵ									kip-ft			

	Tower Forces - Service - Wind 60 To Face													
Section Elevation	Add Weight	Self Weight	F a	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	w	Ctrl. Face		
ft	lb	lb	с е			psf			ft ²	lb	plf			
T1	15.90	1442.07	Α	0.209	2.566	13	0.8	1	16.157	479.64	29.98	С		
320.00-304.00			В	0.209	2.566		0.8	1	16.157					
			Ē	0.209	2.566		0.8	1	16.157					
T2	4.36	349.72	Ă	0.201	2.592	13	0.8	ĩ	3.849	115.93	28.98	С		
304.00-300.00			В	0.201	2.592		0.8	- Î	3.849		2010 0	-		
			Ĉ	0.201	2.592		0.8	î	3.849					
Т3	40.00	2496.34	Ă	0.207	2.573	12	0.8	1	22.594	698.48	34.92	С		
300.00-280.00		2130101	B	0.207	2.573		0.8	Î	22.594	0,0110	0.001	Ũ		
200.00 200.00			Ĉ	0.207	2.573		0.8	1	22.594					
T4	87.48	5067.66	Ă	0.237	2.477	12	0.8	1	41.095	1224.12	61.21	С		
280.00-260.00			В	0.237	2.477		0.8	1	41.095			-		
			Ē	0.237	2.477		0.8	il	41.095					
Т5	122.62	5409.17	Ă	0.219	2.532	12	0.8	1	45.494	1406.19	70.31	С		
260.00-240.00			В	0.219	2.532		0.8	- Î	45.494	1.000.00		-		
200.00 2 10.00			Ĉ	0.219	2.532		0.8	î	45.494					
Т6	162.20	6484.36	Ă	0.223	2.52	12	0.8	1	53.521	1653.61	82.68	С		
240.00-220.00	102.20	0.10.100	B	0.223	2.52		0.8	Î	53.521	1000101	02.00	Ũ		
210.00 220.00			Ĉ	0.223	2.52		0.8	1	53.521					
Т7	362.40	6406.00	Ă	0.181	2.66	12	0.8	1	49.270	1767.65	88.38	С		
220.00-200.00	202110	0100100	В	0.181	2.66		0.8	1	49.270	1,0,102	00.20	Ũ		
			Ē	0.181	2.66		0.8	1	49.270					
Т8	534.20	7298.65	Ă	0.187	2.642	11	0.8	1	57.471	2109.04	105.45	С		
200.00-180.00			B	0.187	2.642		0.8	1 Î	57.471	2105101	100.10	Ĩ		
200100 100100			Č	0.187	2.642		0.8	1 i l	57.471					
Т9	272.46	3730.84	Ă	0.177	2.675	11	0.8	i l	29.491	1078.95	107.90	С		
180.00-170.00	272.10	2,20101	B	0.177	2.675		0.8	1	29.491	10/0.50	10700	Ũ		
100.00 170.00			Č	0.177	2.675		0.8	i l	29.491					
T10	279.59	3785.29	Ă	0.171	2.694	11	0.8	i l	29.994	1099.26	109.93	С		

**Centek Engi** 63-2 North E Branford, Phone: (20. FAX: (203)

T	Job		Page
Tower		21007.82 - Colchester	54 of 96
gineering Inc.	Project		Date
h Branford Rd.		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
d, CT 06405 203) 488-0580 03) 488-8587	Client	Verizon	Designed by TJL

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	W	Ctrl.
Elevation	Weight	Weight	a									Face
			с			psf						
ft	lb	lb	е						$ft^2$	lb	plf	
170.00-160.00			В	0.171	2.694		0.8	1	29.994			
			С	0.171	2.694		0.8	1	29.994			
T11	579.39	9608.59	Α	0.181	2.661	11	0.8	1	67.649	2370.29	118.51	С
160.00-140.00			В	0.181	2.661		0.8	1	67.649			
			С	0.181	2.661		0.8	1	67.649			
T12	599.08	9975.29	Α	0.173	2.69	11	0.8	1	70.190	2438.08	121.90	С
140.00-120.00			В	0.173	2.69		0.8	1	70.190			
			С	0.173	2.69		0.8	1	70.190			
T13	609.33	9144.95	Α	0.131	2.844	11	0.8	1	51.781	2049.31	102.47	С
120.00-100.00			В	0.131	2.844		0.8	1	51.781			
			С	0.131	2.844		0.8	1	51.781			
T14	625.08	9675.54	Α	0.122	2.876	10	0.8	1	52.657	2101.57	105.08	С
100.00-80.00			В	0.122	2.876		0.8	1	52.657			
			С	0.122	2.876		0.8	1	52.657			
T15	630.40	11450.50	Α	0.127	2.857	10	0.8	1	60.228	2301.12	115.06	С
80.00-60.00			В	0.127	2.857		0.8	1	60.228			
			С	0.127	2.857		0.8	1	60.228			
T16	945.60	15115.36	Α	0.122	2.876	11	0.8	1	94.154	3703.79	123.46	С
60.00-30.00			В	0.122	2.876		0.8	1	94.154			
			С	0.122	2.876		0.8	1	94.154			
T17	788.00	17941.94	Α	0.117	2.896	12	0.8	1	98.655	4002.84	133.43	С
30.00-0.00			В	0.117	2.896		0.8	1	98.655			
			С	0.117	2.896		0.8	1	98.655			
Sum Weight:	6658.09	125382.28						OTM	4066.57	30599.85		
									kip-ft			

# Tower Forces - Service - Wind 90 To Face

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	W	Ctrl.
Elevation	Weight	Weight	а			-						Face
			с			psf						
ft	lb	lb	е						$ft^2$	lb	plf	
T1	15.90	1442.07	Α	0.209	2.566	13	0.85	1	16.633	492.70	30.79	С
320.00-304.00			В	0.209	2.566		0.85	1	16.633			
			С	0.209	2.566		0.85	1	16.633			
T2	4.36	349.72	Α	0.201	2.592	13	0.85	1	3.956	118.89	29.72	С
304.00-300.00			В	0.201	2.592		0.85	1	3.956			
			С	0.201	2.592		0.85	1	3.956			
Т3	40.00	2496.34	Α	0.207	2.573	12	0.85	1	23.222	715.52	35.78	С
300.00-280.00			В	0.207	2.573		0.85	1	23.222			
			С	0.207	2.573		0.85	1	23.222			
T4	87.48	5067.66	Α	0.237	2.477	12	0.85	1	43.663	1290.23	64.51	С
280.00-260.00			В	0.237	2.477		0.85	1	43.663			
			С	0.237	2.477		0.85	1	43.663			
T5	122.62	5409.17	Α	0.219	2.532	12	0.85	1	48.338	1479.82	73.99	С
260.00-240.00			В	0.219	2.532		0.85	1	48.338			
			С	0.219	2.532		0.85	1	48.338			
Т6	162.20	6484.36	Α	0.223	2.52	12	0.85	1	56.866	1738.35	86.92	С
240.00-220.00			В	0.223	2.52		0.85	1	56.866			
			С	0.223	2.52		0.85	1	56.866			
<b>T</b> 7	362.40	6406.00	Α	0.181	2.66	12	0.85	1	52.350	1848.50	92.42	С
220.00-200.00			в	0.181	2.66		0.85	1	52.350			
			С	0.181	2.66		0.85	1	52.350			
Т8	534.20	7298.65	Α	0.187	2.642	11	0.85	1	61.063	2200.88	110.04	С

tnxT

Centek Eng 63-2 North Branford, Phone: (20 FAX: (203

Tower	Job	21007.82 - Colchester	Page 55 of 96
<b>igineering Inc.</b> Ih Branford Rd.	Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
rd, CT 06405 203) 488-0580 03) 488-8587	Client	Verizon	Designed by TJL

Section	Add	Self	F	е	$C_F$	$q_z$	$D_F$	$D_R$	$A_E$	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			с			psf						
ft	lb	lb	е						$ft^2$	lb	plf	
200.00-180.00			В	0.187	2.642		0.85	1	61.063			
			С	0.187	2.642		0.85	1	61.063			
Т9	272.46	3730.84	Α	0.177	2.675	11	0.85	1	31.334	1125.95	112.60	С
180.00-170.00			В	0.177	2.675		0.85	1	31.334			
			С	0.177	2.675		0.85	1	31.334			
T10	279.59	3785.29	Α	0.171	2.694	11	0.85	1	31.869	1146.91	114.69	С
170.00-160.00			В	0.171	2.694		0.85	1	31.869			
			С	0.171	2.694		0.85	1	31.869			
T11	579.39	9608.59	Α	0.181	2.661	11	0.85	1	71.877	2474.74	123.74	С
160.00-140.00			В	0.181	2.661		0.85	1	71.877			
			С	0.181	2.661		0.85	1	71.877			
T12	599.08	9975.29	Α	0.173	2.69	11	0.85	1	74.577	2545.41	127.27	С
140.00-120.00			В	0.173	2.69		0.85	1	74.577			
			С	0.173	2.69		0.85	1	74.577			
T13	609.33	9144.95	Α	0.131	2.844	11	0.85	1	54.065	2107.33	105.37	С
120.00-100.00			В	0.131	2.844		0.85	1	54.065			
			С	0.131	2.844		0.85	1	54.065			
T14	625.08	9675.54	Α	0.122	2.876	10	0.85	1	54.940	2159.59	107.98	С
100.00-80.00			В	0.122	2.876		0.85	1	54.940			
			С	0.122	2.876		0.85	1	54.940			
T15	630.40	11450.50	Α	0.127	2.857	10	0.85	1	62.913	2369.10	118.45	С
80.00-60.00			В	0.127	2.857		0.85	1	62.913			
			С	0.127	2.857		0.85	1	62.913			
T16	945.60	15115.36	Α	0.122	2.876	11	0.85	1	98.181	3810.40	127.01	С
60.00-30.00			В	0.122	2.876		0.85	1	98.181			
			С	0.122	2.876		0.85	1	98.181			
T17	788.00	17941.94	Α	0.117	2.896	12	0.85	1	102.729	4122.32	137.41	С
30.00-0.00			в	0.117	2.896		0.85	1	102.729			
			С	0.117	2.896		0.85	1	102.729			
Sum Weight:	6658.09	125382.28						OTM	4235.32	31746.64		
									kip-ft			

Force	Tota	s
-------	------	---

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Ζ	Moments, $M_x$	Moments, $M_z$	
	lb	lb	lb	kip-ft	kip-ft	kip-ft
Leg Weight	73044.53					
Bracing Weight	52337.75					
Total Member Self-Weight	125382.28			41.33	-24.48	
Total Weight	140925.07			41.33	-24.48	
Wind 0 deg - No Ice		0.00	-219836.84	-31830.29	-24.48	299.8
Wind 30 deg - No Ice		100552.92	-174162.76	-25173.29	-14582.15	377.8
Wind 45 deg - No Ice		139995.83	-139995.83	-20221.49	-20287.30	379.1
Wind 60 deg - No Ice		168755.59	-97431.08	-14056.96	-24443.43	354.5
Wind 90 deg - No Ice		201105.84	0.00	41.33	-29139.82	236.3
Wind 120 deg - No Ice		190384.29	109918.42	15977.14	-27626.11	54.7
Wind 135 deg - No Ice		148825.71	148825.71	21603.48	-21586.62	-44.9
Wind 150 deg - No Ice		100552.92	174162.76	25255.95	-14582.15	-141.5
Wind 180 deg - No Ice		0.00	194862.17	28237.91	-24.48	-299.8
Wind 210 deg - No Ice		-100552.92	174162.76	25255.95	14533.19	-377.8
Wind 225 deg - No Ice		-139995.83	139995.83	20304.15	20238.34	-379.1
Wind 240 deg - No Ice		-190384.29	109918.42	15977.14	27577.15	-354.5

*tnxT* 

n	Job		Page
ower		21007.82 - Colchester	56 of 96
gineering Inc.	Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
Branford Rd. I. CT 06405	Client	SZO-IT LATTICE TOWER (CSF #50)	
1, C1 00405 03) 488-0580 3) 488-8587	Client	Verizon	Designed by TJL

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	· .
		X	Ζ	Moments, $M_x$	Moments, $M_z$	
	lb	lb	lb	kip-ft	kip-ft	kip-ft
Wind 270 deg - No Ice		-201105.84	0.00	41.33	29090.86	-236.30
Wind 300 deg - No Ice		-168755.59	-97431.08	-14056.96	24394.47	-54.70
Wind 315 deg - No Ice		-139995.83	-139995.83	-20221.49	20238.34	44.95
Wind 330 deg - No Ice		-100552.92	-174162.76	-25173.29	14533.19	141.55
Member Ice	91680.66					
Total Weight Ice	296659.59			304.26	-322.50	
Wind 0 deg - Ice		0.00	-45988.09	-6242.83	-322.50	118.08
Wind 30 deg - Ice		21783.80	-37730.65	-5061.99	-3420.71	149.70
Wind 45 deg - Ice		30521.69	-30521.69	-4035.93	-4662.70	150.59
Wind 60 deg - Ice		37031.91	-21380.39	-2735.50	-5587.52	141.21
Wind 90 deg - Ice		43567.60	0.00	304.26	-6518.91	94.88
Wind 120 deg - Ice		39826.85	22994.04	3577.80	-5992.45	23.12
Wind 135 deg - Ice		31662.72	31662.72	4809.76	-4828.01	-16.41
Wind 150 deg - Ice		21783.80	37730.65	5670.50	-3420.71	-54.83
Wind 180 deg - Ice		0.00	42760.77	6383.77	-322.50	-118.08
Wind 210 deg - Ice		-21783.80	37730.65	5670.50	2775.70	-149.70
Wind 225 deg - Ice		-30521.69	30521.69	4644.45	4017.69	-150.59
Wind 240 deg - Ice		-39826.85	22994.04	3577.80	5347.44	-141.21
Wind 270 deg - Ice		-43567.60	0.00	304.26	5873.90	-94.88
Wind 300 deg - Ice		-37031.91	-21380.39	-2735.50	4942.51	-23.12
Wind 315 deg - Ice		-30521.69	-30521.69	-4035.93	4017.69	16.41
Wind 330 deg - Ice		-21783.80	-37730.65	-5061.99	2775.70	54.83
Total Weight	140925.07			41.33	-24.48	
Wind 0 deg - Service		0.00	-40835.43	-5914.76	10.56	54.89
Wind 30 deg - Service		18697.52	-32385.05	-4683.59	-2694.85	69.29
Wind 45 deg - Service		26036.83	-26036.83	-3764.05	-3755.80	69.58
Wind 60 deg - Service		31391.90	-18124.12	-2618.72	-4529.20	65.13
Wind 90 deg - Service		37395.04	0.00	2.31	-5400.26	43.52
Wind 120 deg - Service		35364.52	20417.71	2960.85	-5113.77	10.24
Wind 135 deg - Service		27658.65	27658.65	4007.33	-3994.45	-8.04
Wind 150 deg - Service		18697.52	32385.05	4688.22	-2694.85	-25.77
Wind 180 deg - Service		0.00	36248.24	5244.38	10.56	-54.89
Wind 210 deg - Service		-18697.52	32385.05	4688.22	2715.97	-69.29
Wind 225 deg - Service		-26036.83	26036.83	3768.68	3776.93	-69.58
Wind 240 deg - Service		-35364.52	20417.71	2960.85	5134.90	-65.13
Wind 270 deg - Service		-37395.04	0.00	2.31	5421.38	-43.52
Wind 300 deg - Service		-31391.90	-18124.12	-2618.72	4550.33	-10.24
Wind 315 deg - Service		-26036.83	-26036.83	-3764.05	3776.93	8.04
Wind 330 deg - Service		-18697.52	-32385.05	-4683.59	2715.97	25.77
mind 550 deg - bervice		-10077.52	-52505.05		2113.71	23.11

# Load Combinations

Comb.		Description
No.		
1	Dead Only	
2	1.2 Dead+1.0 Wind 0 deg - No Ice	
3	0.9 Dead+1.0 Wind 0 deg - No Ice	
4	1.2 Dead+1.0 Wind 30 deg - No Ice	
5	0.9 Dead+1.0 Wind 30 deg - No Ice	
6	1.2 Dead+1.0 Wind 45 deg - No Ice	
7	0.9 Dead+1.0 Wind 45 deg - No Ice	
8	1.2 Dead+1.0 Wind 60 deg - No Ice	
9	0.9 Dead+1.0 Wind 60 deg - No Ice	
10	1.2 Dead+1.0 Wind 90 deg - No Ice	
11	0.9 Dead+1.0 Wind 90 deg - No Ice	
12	1.2 Dead+1.0 Wind 120 deg - No Ice	

*tnxTower* 

## Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21007.82 - Colchester	57 of 96
Project		Date
	320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
Client	Verizon	Designed by
	Vonzon	TJL

Comb.	Description	_
No.	*	
13	0.9 Dead+1.0 Wind 120 deg - No Ice	
14	1.2 Dead+1.0 Wind 135 deg - No Ice	
15	0.9 Dead+1.0 Wind 135 deg - No Ice	
16	1.2 Dead+1.0 Wind 150 deg - No Ice	
17	0.9 Dead+1.0 Wind 150 deg - No Ice	
18	1.2 Dead+1.0 Wind 180 deg - No Ice	
19	0.9 Dead+1.0 Wind 180 deg - No Ice	
20	1.2 Dead+1.0 Wind 210 deg - No Ice	
21	0.9 Dead+1.0 Wind 210 deg - No Ice	
22	1.2 Dead+1.0 Wind 225 deg - No Ice	
23	0.9 Dead+1.0 Wind 225 deg - No Ice	
24	1.2 Dead+1.0 Wind 240 deg - No Ice	
25	0.9 Dead+1.0 Wind 240 deg - No Ice	
26	1.2 Dead+1.0 Wind 270 deg - No Ice	
27	0.9 Dead+1.0 Wind 270 deg - No Ice	
28	1.2 Dead+1.0 Wind 300 deg - No Ice	
29	0.9 Dead+1.0 Wind 300 deg - No Ice	
30	1.2 Dead+1.0 Wind 315 deg - No Ice	
31	0.9 Dead+1.0 Wind 315 deg - No Ice	
32	1.2 Dead+1.0 Wind 330 deg - No Ice	
33	0.9 Dead+1.0 Wind 330 deg - No Ice	
34	1.2 Dead+1.0 Ice+1.0 Temp	
35	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	
36	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	
37	1.2 Dead+1.0 Wind 45 deg+1.0 Ice+1.0 Temp	
38	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	
39	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	
40	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	
41	1.2 Dead+1.0 Wind 135 deg+1.0 Ice+1.0 Temp	
42	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	
43	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	
44	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	
45	1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp	
46	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	
47	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	
48	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	
49	1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp	
50	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	
51	Dead+Wind 0 deg - Service	
52	Dead+Wind 30 deg - Service	
53	Dead+Wind 45 deg - Service	
54	Dead+Wind 60 deg - Service	
55	Dead+Wind 90 deg - Service	
56	Dead+Wind 120 deg - Service	
57	Dead+Wind 135 deg - Service	
58	Dead+Wind 150 deg - Service	
59	Dead+Wind 180 deg - Service	
60	Dead+Wind 210 deg - Service	
61	Dead+Wind 225 deg - Service	
62	Dead+Wind 240 deg - Service	
63	Dead+Wind 270 deg - Service	
64	Dead+Wind 300 deg - Service	
65	Dead+Wind 315 deg - Service	
66	Dead+Wind 330 deg - Service	

# **Maximum Member Forces**

*tnxT* 

**Centek Engi** 63-2 North E Branford, Phone: (203 FAX: (203)

Tower	Job	21007.82 - Colchester	Page 58 of 96
<b>gineering Inc.</b> 1 Branford Rd.	Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
1, CT 06405 03) 488-0580 3) 488-8587	Client	Verizon	Designed by TJL

T1	<i>ft</i> 320 - 304	<i>Type</i> Leg Diagonal	Max Tension Max. Compression Max. Mx Max. My Max. Vy Max. Vy Max. Vx	Comb. 29 24 24 3	<i>lb</i> 5560.46 -7158.49 -1514.77	<i>kip-ft</i> 0.04 -0.01	kip-ft 0.02 -0.00
T1	320 - 304	-	Max. Compression Max. Mx Max. My Max. Vy	24 24	-7158.49	-0.01	
		-	Max. Compression Max. Mx Max. My Max. Vy	24	-7158.49		-0.00
		Diagonal	Max. Mx Max. My Max. Vy		-1514.77		0.00
		Diagonal	Max. Vy			-0.14	-0.00
		Diagonal	Max. Vy		328.14	-0.01	-0.17
		Diagonal		10	-475.10	0.00	0.00
		Diagonal	1,100,111 1,11	3	536.64	0.00	0.00
		Diagonai	Max Tension	20	1340.52	0.00	0.00
			Max. Compression	4	-1332.75	0.00	0.00
			Max. Max	40	327.19	0.00	-0.00
			Max. My	20	-702.07	0.02	-0.00
				40	-20.09	0.00	-0.00
			Max. Vy Max. Vx	20		0.02	-0.00
		Tan Cint			0.12		
		Top Girt	Max Tension	13	182.33	0.00	0.00
			Max. Compression	8	-193.77	0.00	0.00
			Max. Mx	34	-30.30	-0.05	0.00
		_	Max. Vy	34	-32.08	0.00	0.00
T2	304 - 300	Leg	Max Tension	29	7856.86	0.01	0.00
			Max. Compression	24	-9868.91	0.32	-0.07
			Max. Mx	24	-9868.91	0.32	-0.07
			Max. My	2	-9842.29	0.09	0.31
			Max. Vy	24	-136.99	0.32	-0.07
			Max. Vx	2	-138.63	0.09	0.31
		Diagonal	Max Tension	4	1558.05	0.00	0.00
		-	Max. Compression	4	-1579.71	0.00	0.00
			Max. Mx	40	332.54	0.02	-0.00
			Max. My	20	-826.43	0.00	-0.00
			Max. Vy	40	-20.08	0.02	-0.00
			Max. Vx	20	0.04	0.00	0.00
Т3	300 - 280	Leg	Max Tension	29	21872.21	-0.16	-0.01
10	200 200	208	Max. Compression	24	-27177.62	0.53	-0.00
			Max. Mx	3	-26377.34	0.53	0.14
			Max. My	32	-2347.87	-0.00	0.57
			Max. Vy	2	331.63	0.31	-0.09
			Max. Vx	16	-518.81	0.02	0.11
		Diagonal	Max Tension	4	3066.10	0.02	0.00
		Diagonal	Max. Compression	2	-3093.64	0.00	0.00
			Max. Mx	48	472.86	0.03	0.00
			Max. My	35	402.97	0.03	0.00
			Max. Vy	48	31.15	0.03	0.00
			Max. Vx	35	-1.72	0.00	0.00
		Top Girt	Max Tension	23	47.65	0.00	0.00
			Max. Compression	28	-67.63	0.00	0.00
			Max. Mx	34	-22.49	-0.07	0.00
			Max. My	34	-20.75	0.00	0.00
			Max. Vy	34	-38.34	0.00	0.00
			Max. Vx	34	-1.13	0.00	0.00
T4	280 - 260	Leg	Max Tension	29	40928.19	-0.33	0.00
			Max. Compression	24	-51714.53	0.81	-0.11
			Max. Mx	13	-50439.58	0.82	-0.03
			Max. My	2	19420.16	-0.43	0.81
			Max. Vy	3	-365.89	0.81	0.14
			Max. Vx	20	-352.06	-0.02	0.56
		Diagonal	Max Tension	10	4723.82	0.00	0.00
		0	Max. Compression	12	-4792.84	0.00	0.00
			Max. Mx	43	755.44	0.06	-0.01
			Max. My	39	-1168.66	0.06	-0.01
			Max. Vy	43	46.35	0.06	-0.01
			Max. Vx	39	2.72	0.00	0.00
Т5	260 - 240	Leg	Max Tension	19	67795.49	-0.32	-0.36
15	200-240	Leg	Max Tension Max. Compression		-87438.51	-0.32	-0.08
			Max. Compression Max. Mx	12 24	-87458.51 -86808.41	2.34	-0.08 0.48

*tnxT* 

**Centek Engi** 63-2 North E Branford, Phone: (202 FAX: (203)

	Job		Page
ower		21007.82 - Colchester	59 of 96
gineering Inc.	Project		Date
n Branford Rd.		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
d, CT 06405	Client		Designed by
03) 488-0580 )3) 488-8587		Verizon	TJL

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axi Moment
110.	<i>Ji</i>	Type		Comb.	lb	kip-ft	kip-ft
			Max. My	20	-7153.71	-0.00	3.01
			Max. Vy	28	-759.14	-0.32	-0.05
			Max. Vy Max. Vx	4	-1306.69	-0.02	0.45
		Diagonal	Max. vx Max Tension	4 26	8216.26	0.00	0.45
		Diagonal					0.00
			Max. Compression	24	-8474.57	0.00	0.00
			Max. Mx	43	928.53	0.09	
			Max. My	37	-1548.20	0.09	-0.01
			Max. Vy	43	63.73	0.09	0.01
T	2.10 220	T	Max. Vx	37	3.58	0.00	0.00
T6	240 - 220	Leg	Max Tension	9	109324.21	-1.10	0.02
			Max. Compression	12	-141250.86	2.50	0.02
			Max. Mx	3	-137986.27	2.50	-0.28
			Max. My	20	-7376.52	-0.00	3.01
			Max. Vy	28	-2468.93	-1.20	-0.07
			Max. Vx	4	-2416.31	-0.06	-0.51
		Diagonal	Max Tension	32	13662.75	0.00	0.00
			Max. Compression	32	-13647.81	0.00	0.00
			Max. Mx	38	1535.49	0.17	-0.02
			Max. My	36	-1386.01	0.15	-0.02
			Max. Vy	38	102.65	0.17	-0.02
			Max. Vx	36	5.65	0.00	0.00
T7	220 - 200	Leg	Max Tension	9	156018.46	-1.02	-0.19
			Max. Compression	12	-198631.19	2.25	-0.05
			Max. Mx	3	-162856.11	2.50	-0.28
			Max. My	4	-12152.60	-0.12	-2.69
			Max. Vy	25	577.37	2.50	0.26
			Max. Vx	4	-828.69	-0.12	-2.69
		Diagonal	Max Tension	32	16907.21	0.00	0.00
		U	Max. Compression	2	-17543.47	0.00	0.00
			Max. Mx	37	2025.43	0.25	-0.04
			Max. My	36	2465.57	0.24	-0.04
			Max. Vy	37	126.23	0.25	-0.04
			Max. Vx	36	7.24	0.00	0.00
Т8	200 - 180	Leg	Max Tension	9	213001.13	-2.18	-0.12
		.0	Max. Compression	12	-269962.60	3.22	-0.02
			Max. Mx	12	-269962.60	3.22	-0.02
			Max. My	4	-16740.14	-0.10	-3.12
			Max. Vy	28	-2724.85	-1.84	0.05
			Max. Vx	4	-2843.57	0.04	-0.02
		Diagonal	Max Tension	32	21084.82	0.00	0.00
		Diagonai	Max. Compression	2	-21374.32	0.00	0.00
			Max. Max	38	2313.21	0.31	-0.05
			Max. My	44	-2446.83	0.27	0.05
			Max. Vy	38	-2440.85	0.27	-0.05
			Max. Vy Max. Vx	58 44	-8.18	0.31	-0.05
Т9	180 - 170	I aa	Max. vx Max Tension				
19	100 - 170	Leg		19	242911.13	-2.83	0.15
			Max. Compression	12	-306831.06	2.09	-0.03
			Max. Mx	12	-305564.53	3.22	-0.02
			Max. My	20	-18366.23	0.00	2.17
			Max. Vy	3	790.47	3.21	-0.14
		- · ·	Max. Vx	25	834.16	-1.60	2.11
		Diagonal	Max Tension	26	22598.47	0.00	0.00
			Max. Compression	24	-22988.66	0.00	0.00
			Max. Mx	43	2521.17	0.34	0.05
			Max. My	44	-3780.51	0.32	0.05
			Max. Vy	43	147.90	0.34	0.05
			Max. Vx	44	-8.28	0.00	0.00
T10	170 - 160	Leg	Max Tension	19	273215.21	-2.05	0.03
			Max. Compression	12	-344042.23	7.48	-0.24
			Max. Mx	12	-344042.23	7.48	-0.24
			Max. My	4	-21170.55	0.15	-5.30

*tnxTo* 

ower	Job	21007.82 - Colchester	Page 60 of 96
neering Inc. Branford Rd.	Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
CT 06405 3) 488-0580 ) 488-8587	Client	Verizon	Designed by TJL

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Ax
No.	ft	Туре		Load		Moment	Moment
				Comb.	lb	kip-ft	kip-ft
			Max. Vy	2	-1057.51	7.48	-0.46
			Max. Vx	25	-938.38	-3.55	5.12
		Diagonal	Max Tension	26	23312.68	0.00	0.00
			Max. Compression	24	-23844.34	0.00	0.00
			Max. Mx	43	2507.58	0.37	0.05
			Max. My	36	-2811.08	0.33	-0.05
			Max. Vy	43	155.09	0.37	0.05
			Max. Vx	36	8.56	0.00	0.00
T11	160 - 140	Leg	Max Tension	19	336997.86	-2.32	-0.26
		e	Max. Compression	12	-423691.94	5.99	-0.06
			Max. Mx	12	-381842.58	7.48	-0.24
			Max. My	4	-22013.01	0.15	-5.30
			Max. Vy	2	1312.90	7.48	-0.46
			Max. Vx	15	-1006.10	-1.70	-4.75
		Diagonal	Max Tension	26	28338.40	0.00	0.00
		Diagonai	Max. Compression	24	-29186.23	0.00	0.00
			Max. Max	43	2928.98	0.62	0.08
			Max. My	45	4034.10	0.62	0.08
			Max. My Max. Vy	43	241.63	0.61	0.08
			-	45		0.02	0.08
F12	140 120	I.a.a	Max. Vx May Tension	45 19	-12.19		
Г12	140 - 120	Leg	Max Tension		401102.57	-2.98	0.08
			Max. Compression	12	-504778.08	-2.51	0.32
			Max. Mx	12	-464344.75	5.99	-0.06
			Max. My	10	-27219.80	-1.05	6.98
			Max. Vy	2	1036.34	3.08	-0.08
			Max. Vx	20	-1142.89	-0.20	5.75
		Diagonal	Max Tension	26	30048.77	0.00	0.00
			Max. Compression	24	-30934.66	0.00	0.00
			Max. Mx	42	4907.40	0.73	-0.10
			Max. My	45	4365.72	0.71	0.11
			Max. Vy	42	263.07	0.73	-0.10
			Max. Vx	45	-14.93	0.00	0.00
Г13	120 - 100	Leg	Max Tension	19	411852.79	0.51	0.18
			Max. Compression	12	-521185.73	-15.38	0.46
			Max. Mx	12	-519866.60	22.32	-0.10
			Max. My	20	-32360.09	-2.48	14.27
			Max. Vy	24	4937.90	22.29	-0.86
			Max. Vx	20	-2837.92	-2.48	14.27
		Diagonal	Max Tension	27	48160.92	-0.23	-0.04
		Diagonai	Max. Compression	24	-50810.41	0.00	0.00
			Max. Mx	26	16570.04	-0.37	0.03
			Max. My	26	-47109.86	-0.15	-0.19
			Max. Vy	42	-131.64	-0.32	-0.00
			Max. Vy	26	15.24	-0.15	-0.19
		Horizontal	Max Tension	26	26790.67	-0.13	0.00
		HOLIZOIIIAI					
			Max. Compression	25	-27071.48	-0.19	-0.03
			Max. Mx	43	-1325.34	-0.37	-0.01
			Max. My	2	3483.47	-0.11	0.06
			Max. Vy	43	136.23	-0.37	-0.01
		<b>n</b> 1 1 1	Max. Vx	2	-4.92	0.00	0.00
		Redund Horz 1 Bracing	Max Tension	24	5184.61	0.00	0.00
			Max. Compression	11	-4313.34	0.00	0.00
			Max. Mx	34	826.19	0.04	0.00
			Max. Vy	34	-26.75	0.00	0.00
		Redund Diag 1 Bracing	Max Tension	11	4162.41	0.00	0.00
			Max. Compression	24	-4465.48	0.00	0.00
			Max. Mx	34	-137.31	0.08	0.00
					-29.47	0.00	0.00
			Max. Vy	34	-29.4/	0.00	0.00

*tnxTower* 

JobPage<br/>61 of 96eering Inc.<br/>anford Rd.ProjectDate<br/>14:04:33 03/24/22T 06405<br/>488-0580<br/>188-8587ClientDesigned by<br/>TJL

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Ax Moment
	<i>J</i> *	-570		Comb.	lb	kip-ft	kip-ft
		Bracing					
			Max. Compression	10	-49.16	0.00	0.00
			Max. Mx	34	-20.79	0.04	0.00
			Max. Vy	34	26.75	0.00	0.00
		Redund Hip Diagonal 1 Bracing	Max Tension	2	98.47	0.00	0.00
		Diagonal I Diachig	Max. Compression	18	-96.91	0.00	0.00
			Max. Mx	34	63.17	0.30	0.00
			Max. Vy	34	77.92	0.00	0.00
		Inner Bracing	Max Tension	27	7.49	0.00	0.00
		c	Max. Compression	2	-27.73	0.00	0.00
			Max. Mx	34	-19.45	0.34	0.00
			Max. Vy	34	-106.85	0.00	0.00
T14	100 - 80	Leg	Max Tension	19	466530.20	9.67	1.49
		U	Max. Compression	12	-591467.34	-17.80	-0.33
			Max. Mx	12	-590313.25	25.60	0.12
			Max. My	20	-36383.88	-2.71	14.88
			Max. Vy	12	4721.29	25.60	0.12
			Max. Vx	20	-2730.59	-2.71	14.88
		Diagonal	Max Tension	27	49617.02	-0.27	-0.04
			Max. Compression	24	-53229.81	0.00	0.00
			Max. Mx	26	23040.12	-0.42	0.05
			Max. My	26	-51276.32	-0.16	-0.18
			Max. Vy	43	143.18	-0.36	0.01
			Max. Vx	26	-14.40	-0.16	-0.18
		Horizontal	Max Tension	26	29257.68	-0.31	0.00
			Max. Compression	24	-30472.23	-0.36	-0.03
			Max. Mx	43	730.22	-0.53	-0.01
			Max. My	2	126.51	-0.22	0.06
			Max. Vy	43	-177.29	-0.53	-0.01
			Max. Vx	2	-4.57	0.00	0.00
		Redund Horz 1	Max Tension	16	5925.57	0.00	0.00
		Bracing	Man Camanaian	15	5096 50	0.00	0.00
			Max. Compression	15	-5086.50	0.00	0.00
			Max. Mx	34	1126.94	0.05	0.00
		Redund Diag 1	Max. Vy Max Tension	34 15	29.23 4566.62	0.00 0.00	$0.00 \\ 0.00$
		Bracing					
			Max. Compression	32	-4792.90	0.00	0.00
			Max. Mx	34	-298.39	0.11	0.00
			Max. Vy	34	37.97	0.00	0.00
		Redund Hip I Bracing	Max Tension	27	21.18	0.00	0.00
		-	Max. Compression	2	-48.04	0.00	0.00
			Max. Mx	34	-21.46	0.05	0.00
			Max. Vy	34	-29.23	0.00	0.00
		Redund Hip Diagonal 1 Bracing	Max Tension	2	91.32	0.00	0.00
		Singenni i Dinving	Max. Compression	18	-90.97	0.00	0.00
			Max. Mx	34	62.80	0.34	0.00
			Max. Vy	34	-84.96	0.00	0.00
		Inner Bracing	Max Tension	27	3.98	0.00	0.00
		June Drucing	Max. Compression	2	-27.51	0.00	0.00
			Max. Mx	34	-21.08	0.41	0.00
			Max. Vy	34	-117.08	0.00	0.00
T15	80 - 60	Leg	Max Tension	19	522694.47	11.51	1.72
	00-00	LUE	Max. Compression	12	-663079.42	-24.47	-0.30
			Max. Max	12	-661779.45	33.50	0.23
			Max. My	20	-40982.06	-3.86	20.57
			Max. Vy	12	6245.00	33.50	0.23

tnxTower

# JobPage<br/>62 of 96ProjectDate<br/>14:04:33 03/24/226405<br/>8-0580<br/>-8587ClientDesigned by<br/>TJL

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axi Moment
	5	51		Comb.	lb	kip-ft	kip-ft
		Diagonal	Max Tension	27	48528.51	-0.30	-0.04
		Diagonai	Max. Compression	24	-53169.30	0.00	0.00
			Max. Max	24	17207.38	-0.43	0.00
						-0.43	
			Max. My	26	-47667.86		-0.16
			Max. Vy	43	155.53	-0.41	0.00
			Max. Vx	26	-12.69	0.00	0.00
		Horizontal	Max Tension	27	29934.23	-0.49	0.00
			Max. Compression	24	-31434.28	-0.72	-0.03
			Max. Mx	43	737.77	-0.92	-0.01
			Max. My	2	6143.52	-0.54	0.05
			Max. Vy	43	-287.97	-0.92	-0.01
			Max. Vx	2	-3.32	0.00	0.00
		Redund Horz 1	Max Tension	26	7472.60	0.00	0.00
		Bracing					
			Max. Compression	27	-6293.69	0.00	0.00
			Max. Mx	34	1441.55	0.07	0.00
			Max. Vy	34	38.83	0.00	0.00
		Redund Diag 1 Bracing	Max Tension	11	5325.69	0.00	0.00
		8	Max. Compression	10	-5744.39	0.00	0.00
			Max. Mx	34	-409.69	0.13	0.00
			Max. Vy	34	-41.29	0.00	0.00
		Redund Hip 1	Max. vy Max Tension	27	15.77	0.00	0.00
		Bracing	Max. Compression	2	-47.05	0.00	0.00
			Max. Mx	34	-25.16	0.06	0.00
			Max. Vy	34	31.69	0.00	0.00
		Redund Hip Diagonal 1 Bracing	Max Tension	2	93.67	0.00	0.00
		2 ingenin i 2 ine ing	Max. Compression	47	-102.10	0.00	0.00
			Max. Mx	34	76.38	0.48	0.00
			Max. Vy	34	-113.44	0.00	0.00
		Inner Bracing	Max Tension	1	0.00	0.00	0.00
		miler Bracing		2	-31.22	0.00	0.00
			Max. Compression				
			Max. Mx	34	-27.89	0.48	0.00
		-	Max. Vy	34	-127.12	0.00	0.00
T16	60 - 30	Leg	Max Tension	19	578357.93	15.54	1.81
			Max. Compression	12	-735094.70	6.19	0.33
			Max. Mx	12	-724874.36	37.70	0.40
			Max. My	4	-46805.52	-5.58	-36.88
			Max. Vy	12	6875.72	37.70	0.40
			Max. Vx	4	5536.51	-5.58	-36.88
		Diagonal	Max Tension	27	68386.48	-0.38	-0.08
		0	Max. Compression	24	-75058.87	0.00	0.00
			Max. Mx	18	50503.95	-0.51	0.39
			Max. My	26	-67824.83	0.25	-0.68
			Max. Vy	24	-113.89	-0.33	0.43
		TT 1 1	Max. Vx	24	93.32	-0.33	0.43
		Horizontal	Max Tension	10	34966.71	0.00	0.00
			Max. Compression	25	-35100.22	-0.49	-0.04
			Max. Mx	43	-1765.77	-0.88	-0.01
			Max. My	3	-1774.17	-0.23	0.08
			Max. Vy	43	246.93	-0.88	-0.01
			Max. Vx	3	-4.75	0.00	0.00
		Redund Horz 1 Bracing	Max Tension	10	6860.84	0.00	0.00
		Drueing	Max. Compression	25	-5785.23	0.00	0.00
			Max. Mx	34	1069.43	0.03	0.00
		D 1 1	Max. Vy	34	23.02	0.00	0.00
		Redund Horz 2 Bracing	Max Tension	30	4577.85	0.00	0.00

*tnxTower* 

Job

Project

Client

# 21007.82 - Colchester

Page 63 of 96 Date 14:04:33 03/24/22 Designed by

**Centek Engineering Inc.** 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Verizon

320-ft Lattice Tower (CSP #50)

gned by TJL

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axi Moment
	·	~ 1		Comb.	lb	kip-ft	kip-ft
			Max. Compression	25	-4510.22	0.00	0.00
			Max. Mx	34	603.59	0.25	0.00
			Max. Vy	34	-92.06	0.00	0.00
		Redund Diag 1 Bracing	Max Tension	27	6083.04	0.00	0.00
		28	Max. Compression	10	-6900.02	0.00	0.00
			Max. Mx	34	-397.33	0.08	0.00
			Max. Vy	34	29.25	0.00	0.00
		Redund Diag 2 Bracing	Max Tension	25	4122.67	0.00	0.00
		Didenig	Max. Compression	18	-3789.39	0.00	0.00
			Max. Mx	34	-11.31	0.26	0.00
			Max. Vy	34	70.87	0.00	0.00
		Redund Hip 1 Bracing	Max Tension	25	170.55	0.00	0.00
		Diaeing	Max. Compression	10	-176.09	0.00	0.00
			Max. Max	34	-9.42	0.03	0.00
			Max. Vy	34	23.02	0.00	0.00
		Redund Hip 2 Bracing	Max Tension	25	70.61	0.00	0.00
		Diacing	Max. Compression	10	-95.53	0.00	0.00
			Max. Compression Max. Mx	34	-26.66	0.16	0.00
			Max. Vy	34	56.40	0.00	0.00
		Redund Hip Diagonal 1 Bracing	Max. vy Max Tension	2	355.36	0.00	0.00
		Diagonal I Diaenig	Max. Compression	26	-361.06	0.00	0.00
			Max. Mx	34	44.35	0.18	0.00
			Max. Wx Max. Vy	34	-50.73	0.18	0.00
		Redund Hip Diagonal 2 Bracing	Max. Vy Max Tension	8	121.98	0.00	0.00
		Diagonal 2 Bracing	May Compression	24	-143.06	0.00	0.00
			Max. Compression	24 34			0.00
			Max. Mx Max. Vy	34	42.80 -75.86	0.34 0.00	0.00
		In an Dan sin a	Max. vy Max Tension	25		0.00	0.00
		Inner Bracing			44.23		
			Max. Compression	8	-60.21	0.00	0.00
			Max. Mx	34	-21.10	0.57	0.00
T17	20 0	T	Max. Vy	34	-138.41	0.00	0.00
T17	30 - 0	Leg	Max Tension	19	662277.10	14.61	4.97
			Max. Compression	12	-842732.67	4.58	0.41
			Max. Mx	12	-837678.30	33.64	0.57
			Max. My	4	-50782.94	-5.57	-36.87
			Max. Vy	12	3865.98	33.64	0.57
			Max. Vx	4	-5372.15	-5.57	-36.87
		Diagonal	Max Tension	27	69647.20	-0.30	-0.07
			Max. Compression	24	-74010.73	0.00	0.00
			Max. Mx	18	44152.65	-0.47	0.32
			Max. My	26	-68786.25	0.14	-0.62
			Max. Vy	47	114.83	-0.27	0.07
			Max. Vx	24	82.35	-0.35	0.40
		Horizontal	Max Tension	11	37621.82	0.00	0.00
			Max. Compression	24	-41666.82	-0.89	-0.06
			Max. Mx	43	63.32	-1.17	-0.02
			Max. My	2	10881.00	-0.59	0.11
			Max. Vy	43	-313.92	-1.17	-0.02
		Redund Horz 1	Max. Vx Max Tension	2 24	6.14 4384.22	-0.59 0.00	$\begin{array}{c} 0.11 \\ 0.00 \end{array}$
		Bracing	Max. Compression	9	-3469.37	0.00	0.00
			Max. Mx	34	598.04	0.04	0.00
			Max. Vy	34	-25.64	0.00	0.00

*tnxTower* 

# JobPage<br/>64 of 96Pering Inc.<br/>Imford Rd.ProjectDate<br/>14:04:33 03/24/22Coldons<br/>488-0580<br/>88-8587ClientDesigned by<br/>TJL

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axi.
No.	ft	Туре		Load		Moment	Moment
				Comb.	lb	kip-ft	kip-ft
		Bracing					
			Max. Compression	25	-3980.81	0.00	0.00
			Max. Mx	34	308.22	0.30	0.00
			Max. Vy	34	-97.22	0.00	0.00
		Redund Diag 1 Bracing	Max Tension	18	3507.76	0.00	0.00
			Max. Compression	2	-4021.45	0.00	0.00
			Max. Mx	34	2.32	0.11	0.00
			Max. Vy	34	37.41	0.00	0.00
		Redund Diag 2 Bracing	Max Tension	24	3569.54	0.00	0.00
		0	Max. Compression	19	-3076.86	0.00	0.00
			Max. Mx	34	348.29	0.30	0.00
			Max. Vy	34	-79.09	0.00	0.00
		Redund Hip 1 Bracing	Max Tension	25	147.19	0.00	0.00
		C	Max. Compression	10	-157.59	0.00	0.00
			Max. Mx	34	-13.26	0.04	0.00
			Max. Vy	34	-25.64	0.00	0.00
		Redund Hip 2 Bracing	Max Tension	25	61.61	0.00	0.00
		0	Max. Compression	10	-89.80	0.00	0.00
			Max. Mx	34	-29.27	0.19	0.00
			Max. Vv	34	-62.81	0.00	0.00
		Redund Hip Diagonal 1 Bracing	Max Tension	2	322.27	0.00	0.00
		0	Max. Compression	26	-327.60	0.00	0.00
			Max. Mx	34	60.79	0.28	0.00
			Max. Vy	34	-74.96	0.00	0.00
		Redund Hip Diagonal 2 Bracing	Max Tension	8	118.03	0.00	0.00
			Max. Compression	24	-140.45	0.00	0.00
			Max. Mx	34	57.40	0.54	0.00
			Max. Vy	34	-112.18	0.00	0.00
		Inner Bracing	Max Tension	25	40.14	0.00	0.00
		inner Brueing	Max. Compression	8	-62.57	0.00	0.00
			Max. Mx	34	-26.37	0.71	0.00
			Max. Vy	34	-154.05	0.00	0.00

# **Maximum Reactions**

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	lb	lb	lb
		Comb.			
Leg C	Max. Vert	24	943360.99	114642.46	-60345.64
	Max. H _x	24	943360.99	114642.46	-60345.64
	Max. H _z	7	-727458.28	-90518.50	52051.13
	Min. Vert	9	-741734.81	-94696.74	48889.42
	Min. H _x	9	-741734.81	-94696.74	48889.42
	Min. Hz	24	943360.99	114642.46	-60345.64
Leg B	Max. Vert	12	944804.96	-112528.98	-64056.23
-	Max. H _x	29	-740651.84	92557.97	52555.89
	Max. H _z	33	-657918.37	75971.85	57914.40
	Min. Vert	29	-740651.84	92557.97	52555.89
	Min. H _x	12	944804.96	-112528.98	-64056.23
	Min. Hz	14	877268.14	-100942.16	-65336.91
Leg A	Max. Vert	2	941971.75	4267.72	129430.11

toos Toos or	Job		Page
tnxTower		65 of 96	
Centek Engineering Inc.	Project		Date
63-2 North Branford Rd.		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
Branford, CT 06405	Client		Designed by
Phone: (203) 488-0580 FAX: (203) 488-8587		Verizon	TJL

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	lb	lb	lb
		Comb.			
	Max. H _x	26	54962.54	16961.50	4986.47
	Max. H _z	2	941971.75	4267.72	129430.11
	Min. Vert	19	-742776.74	-4242.44	-106473.56
	Min. H _x	13	-402282.69	-18364.58	-58480.49
	Min. H _z	19	-742776.74	-4242.44	-106473.56

# Tower Mast Reaction Summary

Load	Vertical	Shearx	Shear _z	Ou outumin o	Ou oute un in a	Tongua
Combination	veriicai	Snear _x	Snearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
Combination	lb	lb	lb			Lin Q
<b>D</b> 10.1				kip-ft	kip-ft	kip-ft
Dead Only	140925.07	0.00	0.00	41.33	-24.48	0.00
1.2 Dead+1.0 Wind 0 deg - No	169110.08	-0.00	-219836.86	-31207.34	-29.38	299.88
Ice	10(000 0)	0.00	<b>21</b> 0026.06			• • • • • •
0.9 Dead+1.0 Wind 0 deg - No	126832.56	-0.00	-219836.86	-31219.74	-22.03	299.88
Ice	1(0110.00	100552.02	1511(0.50	24((1.00	1 120 ( (2	255.05
1.2 Dead+1.0 Wind 30 deg - No	169110.08	100552.93	-174162.78	-24661.99	-14296.62	377.85
	12(022.5(	100552.02	1241 (2.20)	24(74.20	1 4200 27	277.05
0.9 Dead+1.0 Wind 30 deg - No	126832.56	100552.93	-174162.78	-24674.39	-14289.27	377.85
Ice	1 (0110.00	120005.04	100005.01	1000 < 10	10005.44	250.12
1.2 Dead+1.0 Wind 45 deg - No	169110.08	139995.84	-139995.84	-19806.48	-19885.46	379.13
Ice	10(000 5)	120005.04	120005.04	10010.00	10050 11	250.12
0.9 Dead+1.0 Wind 45 deg - No	126832.56	139995.84	-139995.84	-19818.88	-19878.11	379.13
Ice	1.0110.00		07404.00	125/200		
1.2 Dead+1.0 Wind 60 deg - No	169110.08	168755.60	-97431.09	-13763.90	-23955.06	354.58
Ice	10/000 5/		0.5404.00	(055)	<b>A</b> AA ( <b>F F</b> (	
0.9 Dead+1.0 Wind 60 deg - No	126832.56	168755.60	-97431.09	-13776.30	-23947.71	354.58
	1(0110.00	201105.05	0.00	10 (0	205(2.0)	226.20
1.2 Dead+1.0 Wind 90 deg - No	169110.08	201105.85	-0.00	49.60	-28563.86	236.30
Ice	10/000 5/	201105.05	0.00	25.20	20224 21	224.20
0.9 Dead+1.0 Wind 90 deg - No	126832.56	201105.85	-0.00	37.20	-28556.51	236.30
Ice	1 (0110.00	100204.21	100010 40	15(50.05	27000 (0	54.50
1.2 Dead+1.0 Wind 120 deg -	169110.08	190384.31	109918.43	15678.07	-27098.68	54.70
No Ice	10(000.5(	100204.21	100010 42	15//5/7	27001.04	54.50
0.9 Dead+1.0 Wind 120 deg -	126832.56	190384.31	109918.43	15665.67	-27091.34	54.70
No Ice	1 (0110.00	140005 50	1 4000 5 50	21100.07	<b>211</b> (0.04	11.04
1.2 Dead+1.0 Wind 135 deg -	169110.08	148825.72	148825.72	21189.06	-21168.84	-44.96
No Ice	10(000 5(	140005 70	140005 70	21176.66	211(1.40	11.07
0.9 Dead+1.0 Wind 135 deg -	126832.56	148825.72	148825.72	21176.66	-21161.49	-44.96
No Ice	1 (0110.00	100552 02	154160.50	247(1.10	14206.62	1 4 1 5 5
1.2 Dead+1.0 Wind 150 deg -	169110.08	100552.93	174162.78	24761.18	-14296.62	-141.55
No Ice	10/000 5/	100550.00	154460 50		1 1200 25	
0.9 Dead+1.0 Wind 150 deg -	126832.56	100552.93	174162.78	24748.78	-14289.27	-141.55
No Ice			101010 10			
1.2 Dead+1.0 Wind 180 deg -	169110.08	0.00	194862.18	27676.59	-29.38	-299.88
No Ice						
0.9 Dead+1.0 Wind 180 deg -	126832.56	0.00	194862.18	27664.19	-22.03	-299.88
No Ice						
1.2 Dead+1.0 Wind 210 deg -	169110.08	-100552.93	174162.78	24761.18	14237.86	-377.85
No Ice						
0.9 Dead+1.0 Wind 210 deg -	126832.56	-100552.93	174162.78	24748.78	14245.21	-377.85
No Ice	1/0//0 00	10000-01	12000 - 0 -	1000	1000-1-0	2=2.42
1.2 Dead+1.0 Wind 225 deg -	169110.08	-139995.84	139995.84	19905.68	19826.70	-379.13
No Ice	10/000	10000501	10000 - 0 -		1000105	
0.9 Dead+1.0 Wind 225 deg -	126832.56	-139995.84	139995.84	19893.28	19834.05	-379.13
No Ice	1/0//0 00	10020100	100010 10			<b>a</b> - 4 - 6
1.2 Dead+1.0 Wind 240 deg -	169110.08	-190384.30	109918.43	15678.07	27039.93	-354.58

# tnxTower

	Job		Page
er		21007.82 - Colchester	66 of 96
ing Inc.	Project		Date
ord Rd.		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
5405 -0580 8587	Client	Verizon	Designed by TJL

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	lb	lb	lb	kip-ft	kip-ft	kip-ft
No Ice 0.9 Dead+1.0 Wind 240 deg - No Ice	126832.56	-190384.30	109918.43	15665.67	27047.27	-354.58
1.2 Dead+1.0 Wind 270 deg - No Ice	169110.08	-201105.85	0.00	49.60	28505.10	-236.30
0.9 Dead+1.0 Wind 270 deg - No Ice	126832.56	-201105.85	0.00	37.20	28512.45	-236.30
1.2 Dead+1.0 Wind 300 deg - No Ice	169110.08	-168755.60	-97431.09	-13763.90	23896.30	-54.70
0.9 Dead+1.0 Wind 300 deg - No Ice	126832.56	-168755.60	-97431.09	-13776.30	23903.65	-54.70
1.2 Dead+1.0 Wind 315 deg - No Ice	169110.08	-139995.84	-139995.84	-19806.48	19826.70	44.96
0.9 Dead+1.0 Wind 315 deg - No Ice	126832.56	-139995.84	-139995.84	-19818.88	19834.05	44.96
1.2 Dead+1.0 Wind 330 deg - No Ice	169110.08	-100552.93	-174162.78	-24661.99	14237.86	141.55
0.9 Dead+1.0 Wind 330 deg - No Ice	126832.56	-100552.93	-174162.78	-24674.39	14245.21	141.55
1.2 Dead+1.0 Ice+1.0 Temp	324844.61	0.00	0.00	312.52	-327.41	0.00
1.2 Dead+1.0 Wind 0 deg+1.0	324844.61	0.00	-45988.09	-6056.40	-327.41	118.09
Ice+1.0 Temp 1.2 Dead+1.0 Wind 30 deg+1.0	324844.61	21783.80	-37730.65	-4904.46	-3339.44	149.70
Ice+1.0 Temp 1.2 Dead+1.0 Wind 45 deg+1.0 Ice+1.0 Temp	324844.61	30521.69	-30521.69	-3906.49	-4546.42	150.59
1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	324844.61	37031.92	-21380.39	-2642.03	-5444.84	141.21
1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	324844.61	43567.60	0.00	312.52	-6351.47	94.88
1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	324844.61	39826.86	22994.05	3496.99	-5843.06	23.12
1.2 Dead+1.0 Wind 135 deg+1.0 Ice+1.0 Temp	324844.61	31662.72	31662.72	4694.11	-4708.99	-16.41
1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	324844.61	21783.80	37730.65	5529.51	-3339.44	-54.83
1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	324844.61	0.00	42760.77	6221.63	-327.41	-118.09
1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	324844.61	-21783.80	37730.65	5529.51	2684.62	-149.70
1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp	324844.61	-30521.69	30521.69	4531.54	3891.60	-150.59
1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	324844.61	-39826.86	22994.05	3496.99	5188.24	-141.21
1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	324844.61	-43567.60	0.00	312.52	5696.65	-94.88
1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	324844.61	-37031.92	-21380.39	-2642.03	4790.03	-23.12
1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp	324844.61	-30521.69	-30521.69	-3906.49	3891.60	16.41
1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	324844.61	-21783.80	-37730.65	-4904.46	2684.62	54.83
Dead+Wind 0 deg - Service	140925.07	-0.00	-40835.43	-5761.33	-24.48	54.89
Dead+Wind 30 deg - Service	140925.07 140925.07	18697.52 26036.83	-32385.06 -26036.84	-4550.87 -3649.25	-2675.79 -3715.07	69.29 69.58
Dead+Wind 45 deg - Service						
Dead+Wind 60 deg - Service Dead+Wind 90 deg - Service	140925.07 140925.07	31391.90	-18124.12	-2526.64 41.33	-4472.33 -5327.10	65.13 43.52
Dead+Wind 120 deg - Service		37395.04 35364.52	-0.00 20417.72	2942.66	-5049.73	43.52
Dead+Wind 120 deg - Service	140925.07 140925.07	35364.52 27658.65	27658.65	2942.66 3967.64	-3049.73 -3950.79	-8.04
Dead+Wind 155 deg - Service	140925.07	18697.52	32385.06	4633.53	-2675.79	-25.78
Dead+Wind 180 deg - Service	140925.07	0.00	36248.25	5177.27	-24.48	-54.89
2 call while roo deg Dervice	1.0920.07	0.00	562 10.25	5177.27	21.10	51.09

<b>A T</b>	Job		Page
tnxTower		21007.82 - Colchester	67 of 96
Centek Engineering Inc.	Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
63-2 North Branford Rd. Branford, CT 06405	Client		
Phone: (203) 488-0580		Verizon	Designed by TJL
FAX: (203) 488-8587			I JL

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	lb	lb	lb	kip-ft	kip-ft	kip-ft
Dead+Wind 210 deg - Service	140925.07	-18697.52	32385.06	4633.53	2626.83	-69.29
Dead+Wind 225 deg - Service	140925.07	-26036.83	26036.84	3731.92	3666.10	-69.58
Dead+Wind 240 deg - Service	140925.07	-35364.52	20417.72	2942.66	5000.77	-65.13
Dead+Wind 270 deg - Service	140925.07	-37395.04	0.00	41.33	5278.13	-43.52
Dead+Wind 300 deg - Service	140925.07	-31391.90	-18124.12	-2526.64	4423.37	-10.24
Dead+Wind 315 deg - Service	140925.07	-26036.84	-26036.83	-3649.25	3666.10	8.04
Dead+Wind 330 deg - Service	140925.07	-18697.52	-32385.06	-4550.87	2626.83	25.78

# **Solution Summary**

		m of Applied Forces			Sum of Reaction		
Load	PX	PY	PZ	PX	PY	PZ	% Erroi
Comb.	lb	lb	lb	lb	lb	lb	
1	0.00	-140925.07	0.00	-0.00	140925.07	-0.00	0.000%
2	0.00	-169110.08	-219836.84	0.00	169110.08	219836.86	0.000%
3	0.00	-126832.56	-219836.84	0.00	126832.56	219836.86	0.000%
4	100552.92	-169110.08	-174162.76	-100552.93	169110.08	174162.78	0.000%
5	100552.92	-126832.56	-174162.76	-100552.93	126832.56	174162.78	0.000%
6	139995.83	-169110.08	-139995.83	-139995.84	169110.08	139995.84	0.000%
7	139995.83	-126832.56	-139995.83	-139995.84	126832.56	139995.84	0.000%
8	168755.59	-169110.08	-97431.08	-168755.60	169110.08	97431.09	0.000%
9	168755.59	-126832.56	-97431.08	-168755.60	126832.56	97431.09	0.000%
10	201105.84	-169110.08	0.00	-201105.85	169110.08	0.00	0.000%
11	201105.84	-126832.56	0.00	-201105.85	126832.56	0.00	0.000%
12	190384.29	-169110.08	109918.42	-190384.31	169110.08	-109918.43	0.000%
13	190384.29	-126832.56	109918.42	-190384.31	126832.56	-109918.43	0.000%
14	148825.71	-169110.08	148825.71	-148825.72	169110.08	-148825.72	0.000%
15	148825.71	-126832.56	148825.71	-148825.72	126832.56	-148825.72	0.000%
16	100552.92	-169110.08	174162.76	-100552.93	169110.08	-174162.78	0.000%
17	100552.92	-126832.56	174162.76	-100552.93	126832.56	-174162.78	0.000%
18	-0.00	-169110.08	194862.17	-0.00	169110.08	-194862.18	0.000%
19	-0.00	-126832.56	194862.17	-0.00	126832.56	-194862.18	0.000%
20	-100552.92	-169110.08	174162.76	100552.93	169110.08	-174162.78	0.000%
21	-100552.92	-126832.56	174162.76	100552.93	126832.56	-174162.78	0.000%
22	-139995.83	-169110.08	139995.83	139995.84	169110.08	-139995.84	0.000%
23	-139995.83	-126832.56	139995.83	139995.84	126832.56	-139995.84	0.000%
24	-190384.29	-169110.08	109918.42	190384.30	169110.08	-109918.43	0.000%
25	-190384.29	-126832.56	109918.42	190384.30	126832.56	-109918.43	0.000%
26	-201105.84	-169110.08	0.00	201105.85	169110.08	-0.00	0.000%
27	-201105.84	-126832.56	0.00	201105.85	126832.56	-0.00	0.000%
28	-168755.59	-169110.08	-97431.08	168755.60	169110.08	97431.09	0.000%
29	-168755.59	-126832.56	-97431.08	168755.60	126832.56	97431.09	0.000%
30	-139995.83	-169110.08	-139995.83	139995.84	169110.08	139995.84	0.000%
31	-139995.83	-126832.56	-139995.83	139995.84	126832.56	139995.84	0.000%
32	-100552.92	-169110.08	-174162.76	100552.93	169110.08	174162.78	0.000%
33	-100552.92	-126832.56	-174162.76	100552.93	126832.56	174162.78	0.000%
34	0.00	-324844.61	0.00	-0.00	324844.61	-0.00	0.000%
35	-0.00	-324844.61	-45988.09	-0.00	324844.61	45988.09	0.000%
36	21783.80	-324844.61	-37730.65	-21783.80	324844.61	37730.65	0.000%
37	30521.69	-324844.61	-30521.69	-30521.69	324844.61	30521.69	0.000%
38	37031.91	-324844.61	-21380.39	-37031.92	324844.61	21380.39	0.000%
39	43567.60	-324844.61	0.00	-43567.60	324844.61	-0.00	0.000%
40	39826.85	-324844.61	22994.04	-39826.86	324844.61	-22994.05	0.000%
40	31662.72	-324844.61	31662.72	-31662.72	324844.61	-31662.72	0.000%
42	21783.80	-324844.61	37730.65	-21783.80	324844.61	-37730.65	0.000%
43	0.00	-324844.61	42760.77	-0.00	324844.61	-42760.77	0.000%
43	-21783.80	-324844.61	37730.65	21783.80	324844.61	-37730.65	0.000%
44	-30521.69	-324844.61	30521.69	30521.69	324844.61	-30521.69	0.000%

	Job		Page
tnxTower		21007.82 - Colchester	68 of 96
<b>Centek Engineering Inc.</b> 63-2 North Branford Rd.	Project	320-ft Lattice Tower (CSP #50)	<b>Date</b> 14:04:33 03/24/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon	Designed by TJL

	Su	m of Applied Forces	1		Sum of Reaction	\$	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	lb	lb	lb	lb	lb	lb	
46	-39826.85	-324844.61	22994.04	39826.86	324844.61	-22994.05	0.000%
47	-43567.60	-324844.61	0.00	43567.60	324844.61	-0.00	0.000%
48	-37031.91	-324844.61	-21380.39	37031.92	324844.61	21380.39	0.000%
49	-30521.69	-324844.61	-30521.69	30521.69	324844.61	30521.69	0.000%
50	-21783.80	-324844.61	-37730.65	21783.80	324844.61	37730.65	0.000%
51	0.00	-140925.07	-40835.43	0.00	140925.07	40835.43	0.000%
52	18697.52	-140925.07	-32385.05	-18697.52	140925.07	32385.06	0.000%
53	26036.83	-140925.07	-26036.83	-26036.83	140925.07	26036.84	0.000%
54	31391.90	-140925.07	-18124.12	-31391.90	140925.07	18124.12	0.000%
55	37395.04	-140925.07	0.00	-37395.04	140925.07	0.00	0.000%
56	35364.52	-140925.07	20417.71	-35364.52	140925.07	-20417.72	0.000%
57	27658.65	-140925.07	27658.65	-27658.65	140925.07	-27658.65	0.000%
58	18697.52	-140925.07	32385.05	-18697.52	140925.07	-32385.06	0.000%
59	-0.00	-140925.07	36248.24	-0.00	140925.07	-36248.25	0.000%
60	-18697.52	-140925.07	32385.05	18697.52	140925.07	-32385.06	0.000%
61	-26036.83	-140925.07	26036.83	26036.83	140925.07	-26036.84	0.000%
62	-35364.52	-140925.07	20417.71	35364.52	140925.07	-20417.72	0.000%
63	-37395.04	-140925.07	0.00	37395.04	140925.07	-0.00	0.000%
64	-31391.90	-140925.07	-18124.12	31391.90	140925.07	18124.12	0.000%
65	-26036.83	-140925.07	-26036.83	26036.84	140925.07	26036.83	0.000%
66	-18697.52	-140925.07	-32385.05	18697.52	140925.07	32385.06	0.000%

# **Maximum Tower Deflections - Service Wind**

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	D
T1	320 - 304	4.596	56	0.1049	0.0346
T2	304 - 300	4.241	56	0.1040	0.0351
Т3	300 - 280	4.152	56	0.1035	0.0352
T4	280 - 260	3.715	56	0.1004	0.0364
T5	260 - 240	3.286	56	0.0985	0.0371
T6	240 - 220	2.861	56	0.0955	0.0351
T7	220 - 200	2.450	56	0.0910	0.0322
T8	200 - 180	2.062	56	0.0848	0.0298
Т9	180 - 170	1.693	56	0.0784	0.0267
T10	170 - 160	1.518	56	0.0748	0.0251
T11	160 - 140	1.350	56	0.0709	0.0234
T12	140 - 120	1.048	56	0.0621	0.0214
T13	120 - 100	0.782	56	0.0525	0.0192
T14	100 - 80	0.562	56	0.0430	0.0160
T15	80 - 60	0.384	56	0.0331	0.0135
T16	60 - 30	0.250	51	0.0241	0.0112
T17	30 - 0	0.091	51	0.0109	0.0057

# Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
329.00	Lightning Rod 5/8x4'	56	4.596	0.1049	0.0346	Inf
327.00	Dual Lights	56	4.596	0.1049	0.0346	Inf

tnxTowe

ver	Job	21007.82 - Colchester	Page 69 of 96
<b>ring Inc.</b> ord Rd.	Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
6405 3-0580 -8587	Client	Verizon	Designed by TJL

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load		O	o	Curvature
ft		Comb.	in			ft
325.00	PD128-1	56	4.596	0.1049	0.0346	Inf
320.00	BA1012-0	56	4.596	0.1049	0.0346	Inf
318.00	ANT450F6	56	4.552	0.1048	0.0347	Inf
300.00	SC479-HF1LDF	56	4.152	0.1035	0.0352	362777
290.00	PD340-1	56	3.932	0.1019	0.0357	387559
286.00	DB809T3E-XC	56	3.845	0.1012	0.0359	468220
284.00	6' Side Mount Standoff	56	3.802	0.1009	0.0361	522488
283.00	SC479-HF1LDF(D00I-E6085) (Inverted)	56	3.780	0.1008	0.0362	550965
264.00	PD440-2	56	3.371	0.0989	0.0372	Inf
260.00	6' Side Mount Standoff	56	3.286	0.0985	0.0371	Inf
251.00	SC479-HF1LDF	56	3.094	0.0974	0.0364	676535
248.00	PD1142-1	56	3.030	0.0969	0.0361	560054
247.00	430-94C-09168-M-11048 TTA	56	3.009	0.0968	0.0360	529662
246.00	Sabre T-Boom (1)	56	2.988	0.0966	0.0359	502396
245.00	SC479-HF1LDF(D00I-E6085) (Inverted)	56	2.966	0.0964	0.0357	477800
238.00	531-70HD Exposed Dipole Antenna	56	2.819	0.0952	0.0348	341555
232.00	Valmont VFA-10-U V-Frame	56	2.694	0.0940	0.0339	259302
200.00	PiROD 12' Lightweight T-Frame	56	2.062	0.0848	0.0298	276766
179.00	1151-3	56	1.676	0.0780	0.0266	190999
177.00	DB586-Y	56	1.640	0.0773	0.0262	196816
176.00	Pirod 4' Side Mount Standoff (1)	56	1.623	0.0770	0.0261	201092
175.00	DB586-Y (inverted)	56	1.605	0.0766	0.0259	205928
168.00	L-810 Obstruction Lighting (1)	56	1.484	0.0740	0.0248	167672
165.00	L-810 Obstruction Lighting (1)	56	1.433	0.0729	0.0242	123255
164.00	L-810 Obstruction Lighting (1)	56	1.416	0.0725	0.0241	112667
163.00	Telewave ANT220F2 - Omni	56	1.399	0.0721	0.0239	104223
	Antenna					
160.00	Siteprol USF-4U Mount Assembly (Ca = 1.4 assumed)	56	1.350	0.0709	0.0234	90426
154.00	Commscope PAR6-59W-PXA/A	56	1.254	0.0684	0.0227	99217
153.00	ANT450F6	56	1.239	0.0680	0.0226	102405
145.00	Telewave ANT220F2 - Omni Antenna	56	1.119	0.0644	0.0218	137840
142.00	Sitepro1 USF-4U Mount Assembly (Ca = 1.4 assumed)	56	1.076	0.0630	0.0215	155829
139.00	DB212-1	56	1.034	0.0616	0.0213	161416
117.00	3' Wide Ice Shield (for Dish Antennas) (Assume Ca=2.0)	56	0.746	0.0510	0.0187	96267
115.00	8' Wide Ice Shield (for Dish Antennas) (Assume Ca=2.0)	56	0.723	0.0501	0.0184	99475
112.00	Andrew 2' w/Radome	56	0.689	0.0487	0.0180	105099
107.00	PA8-65	56	0.635	0.0464	0.0171	116032
106.00	Pirod 4' Side Mount Standoff (1)	56	0.624	0.0459	0.0170	118497
94.00	PD688S-4	56	0.504	0.0400	0.0152	117120

# **Maximum Tower Deflections - Design Wind**

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	0
T1	320 - 304	24.439	12	0.5540	0.1883
T2	304 - 300	22.563	12	0.5495	0.1912
T3	300 - 280	22.094	12	0.5466	0.1918
T4	280 - 260	19.790	12	0.5306	0.1978

*tnx* 

Centek En 63-2 Nor Branfo Phone: FAX: (.

_

xTower	Job	21007.82 - Colchester	Page 70 of 96
Engineering Inc. Jorth Branford Rd.	Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
nford, CT 06405 2: (203) 488-0580 (203) 488-8587	Client	Verizon	Designed by TJL

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T5	260 - 240	17.522	12	0.5210	0.2014
Т6	240 - 220	15.275	12	0.5058	0.1908
Τ7	220 - 200	13.094	12	0.4828	0.1751
T8	200 - 180	11.031	12	0.4505	0.1619
Т9	180 - 170	9.071	12	0.4170	0.1454
T10	170 - 160	8.136	12	0.3980	0.1367
T11	160 - 140	7.237	12	0.3776	0.1277
T12	140 - 120	5.624	12	0.3311	0.1164
T13	120 - 100	4.206	12	0.2800	0.1045
T14	100 - 80	3.027	12	0.2297	0.0873
T15	80 - 60	2.069	12	0.1769	0.0734
T16	60 - 30	1.346	2	0.1285	0.0609
T17	30 - 0	0.488	2	0.0583	0.0307

# Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
329.00	Lightning Rod 5/8x4'	12	24.439	0.5540	0.1883	Inf
327.00	Dual Lights	12	24.439	0.5540	0.1883	Inf
325.00	PD128-1	12	24.439	0.5540	0.1883	Inf
320.00	BA1012-0	12	24.439	0.5540	0.1883	Inf
318.00	ANT450F6	12	24.205	0.5538	0.1887	Inf
300.00	SC479-HF1LDF	12	22.094	0.5466	0.1918	71611
290.00	PD340-1	12	20.935	0.5382	0.1943	79606
286.00	DB809T3E-XC	12	20.475	0.5349	0.1957	98776
284.00	6' Side Mount Standoff	12	20.247	0.5334	0.1964	112265
283.00	SC479-HF1LDF(D00I-E6085)	12	20.132	0.5327	0.1967	120247
	(Inverted)					
264.00	PD440-2	12	17.974	0.5230	0.2018	273362
260.00	6' Side Mount Standoff	12	17.522	0.5210	0.2014	294078
251.00	SC479-HF1LDF	12	16.506	0.5152	0.1983	147762
248.00	PD1142-1	12	16.169	0.5128	0.1966	120001
247.00	430-94C-09168-M-11048 TTA	12	16.057	0.5120	0.1959	112928
246.00	Sabre T-Boom (1)	12	15.945	0.5112	0.1952	106643
245.00	SC479-HF1LDF(D001-E6085)	12	15.833	0.5103	0.1946	101021
	(Inverted)					
238.00	531-70HD Exposed Dipole Antenna	12	15.053	0.5039	0.1893	69931
232.00	Valmont VFA-10-U V-Frame	12	14.390	0.4977	0.1844	51474
200.00	PiROD 12' Lightweight T-Frame	12	11.031	0.4505	0.1619	55094
179.00	1151-3	12	8.976	0.4152	0.1446	36769
177.00	DB586-Y	12	8.787	0.4115	0.1428	37950
176.00	Pirod 4' Side Mount Standoff (1)	12	8.693	0.4096	0.1420	38822
175.00	DB586-Y (inverted)	12	8.599	0.4077	0.1411	39813
168.00	L-810 Obstruction Lighting (1)	12	7.952	0.3941	0.1348	32098
165.00	L-810 Obstruction Lighting (1)	12	7.680	0.3880	0.1320	23315
164.00	L-810 Obstruction Lighting (1)	12	7.590	0.3860	0.1311	21252
163.00	Telewave ANT220F2 - Omni	12	7.501	0.3839	0.1302	19614
	Antenna					
160.00	Sitepro1 USF-4U Mount Assembly	12	7.237	0.3776	0.1277	16952
	(Ca = 1.4  assumed)					
154.00	Commscope PAR6-59W-PXA/A	12	6.728	0.3645	0.1235	18614
153.00	ANT450F6	12	6.646	0.3622	0.1229	19222
145.00	Telewaye ANT220F2 - Omni	12	6.008	0.3434	0.1187	26013
115.00	Antenna	12	0.000	0.5 15 1	0.1107	20012
142.00	Sitepro1 USF-4U Mount Assembly	12	5.777	0.3361	0.1173	29495
1 12.00	Sheptor Cor To Mount Assembly	14	0.111	0.2201	0.11/2	47175

<b>A</b>	Job		Page
tnxTower		21007.82 - Colchester	71 of 96
Centek Engineering Inc. 63-2 North Branford Rd.	Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon	Designed by TJL

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
	(Ca = 1.4  assumed)					
139.00	DB212-1	12	5.549	0.3286	0.1159	30621
117.00	3' Wide Ice Shield (for Dish	12	4.013	0.2724	0.1021	18232
	Antennas) (Assume Ca=2.0)					
115.00	8' Wide Ice Shield (for Dish	12	3.888	0.2674	0.1004	18814
	Antennas) (Assume Ca=2.0)					
112.00	Andrew 2' w/Radome	12	3.706	0.2600	0.0978	19833
107.00	PA8-65	12	3.413	0.2475	0.0934	21802
106.00	Pirod 4' Side Mount Standoff (1)	12	3.357	0.2450	0.0925	22243
94.00	PD688S-4	12	2.715	0.2138	0.0826	21835

# Bolt Design Data

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft	1)PC	0,000	in	Bolts	per Bolt lb	per Bolt lb	Allowable		
T1	320	Diagonal	A325X	0.6250	1	1340.52	5811.33	0.231 🖌	1	Member Block Shear
T2	304	Leg	A325N	1.0000	6	1309.48	54517.00	0.024 🖌	1	Bolt Tension
		Diagonal	A325X	0.6250	1	1558.05	5811.33	0.268 🖌	1	Member Block Shear
Т3	300	Leg	A325N	1.0000	8	2734.03	54517.00	0.050 🖌	1	Bolt Tension
		Diagonal	A325X	0.6250	1	3066.10	9107.81	0.337 🖌	1	Member Block Shear
Τ4	280	Leg	A325N	1.0000	8	5116.02	54517.00	0.094 🖌	1	Bolt Tension
		Diagonal	A325X	0.7500	1	4723.82	11962.50	0.395 🖌	1	Member Block Shear
Т5	260	Leg	A325N	1.0000	8	8474.44	54517.00	0.155 🖌	1	Bolt Tension
		Diagonal	A325X	0.7500	1	8216.26	14137.50	0.581 🖌	1	Member Bearing
T6	240	Leg	A325N	1.0000	8	13665.50	54517.00	0.251 🖌	1	Bolt Tension
		Diagonal	A325X	0.7500	1	13662.80	17671.90	0.773 🖌	1	Member Bearin
T7	220	Leg	A325N	1.0000	12	13001.50	54517.00	0.238 🖌	1	Bolt Tension
		Diagonal	A325X	0.7500	1	16907.20	21206.30	0.797 🖌	1	Member Bearin
T8	200	Leg	A325N	1.0000	12	17750.10	54517.00	0.326 🖌	1	Bolt Tension
		Diagonal	A325X	0.8750	1	21084.80	24862.50	0.848 🖌	1	Member Bearin
Т9	180	Leg	A325N	1.0000	12	20242.60	54517.00	0.371 🖌	1	Bolt Tension
		Diagonal	A325X	0.8750	1	22598.50	24862.50	0.909 🖌	1	Member Bearin
T10	170	Diagonal	A325X	0.8750	1	23312.70	24862.50	0.938 🖌	1	Member Bearin
T11	160	Leg	A325N	1.0000	12	28083.20	54517.00	0.515 🖌	1	Bolt Tension
		Diagonal	A325X	0.8750	1	29186.20	33824.30	0.863 🖌	1	Bolt Shear
T12	140	Leg	A325N	1.0000	12	33425.20	54517.00	0.613 🖌	1	Bolt Tension
		Diagonal	A325X	0.8750	1	30934.70	33824.30	0.915 🖌	1	Bolt Shear
T13	120	Leg	A325N	1.0000	12	34203.90	54517.00	0.627	1	Bolt Tension
		Diagonal	A325X	0.7500	3	16936.80	24850.50	0.682	1	Bolt Shear
		Horizontal	A325X	0.7500	2	13535.70	24850.50	0.545 🗸	1	Bolt Shear

tnxTower	Job	21007.82 - Colchester	Page 72 of 96
<b>Centek Engineering Inc.</b> 63-2 North Branford Rd.	Project	320-ft Lattice Tower (CSP #50)	<b>Date</b> 14:04:33 03/24/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon	Designed by TJL

Section	Elevation	Component	Bolt	Bolt Size	Number	Maximum	Allowable	Ratio	Allowable	Criteria
No.	G	Туре	Grade	÷	Of	Load	Load	Load	Ratio	
	ft			in	Bolts	per Bolt lb	per Bolt lb	Allowable		
T14	100	Leg	A325N	1.0000	16	29089.20	54517.00	0.534 🖌	1	Bolt Tension
		Diagonal	A325X	0.7500	3	17743.30	24850.50	0.714 🖌	1	Bolt Shear
		Horizontal	A325X	0.7500	2	15236.10	24850.50	0.613 🖌	1	Bolt Shear
T15	80	Leg	A325N	1.0000	16	32582.70	54517.00	0.598	1	Bolt Tension
		Diagonal	A325X	0.7500	3	17723.10	24850.50	0.713 🖌	1	Bolt Shear
		Horizontal	A325X	0.7500	2	15717.10	24850.50	0.632	1	Bolt Shear
T16	60	Leg	A325N	1.0000	16	35494.50	54517.00	0.651	1	Bolt Tension
		Diagonal	A325X	0.8750	3	25019.60	33824.30	0.740 🖌	1	Bolt Shear
		Horizontal	A325X	0.7500	2	17550.10	24850.50	0.706 🖌	1	Bolt Shear
T17	30	Leg	A325N	1.0000	24	27252.00	54517.00	0.500 🖌	1	Bolt Tension
		Diagonal	A325X	0.8750	3	24670.20	33824.30	0.729	1	Bolt Shear
		Horizontal	A325X	0.7500	2	20833.40	24850.50	0.838	1	Bolt Shear

# Compression Checks

# Leg Design Data (Compression)

Section No.	Elevation	Size	L	$L_u$	Kl/r	Α	$P_u$	$\phi P_n$	Ratio $P_u$
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$
T1	320 - 304	ROHN 5 EH	16.00	4.00	26.1 K=1.00	6.1120	-7158.49	261674.00	0.027 1
T2	304 - 300	ROHN 5 EH	4.00	4.00	26.1 K=1.00	6.1120	-9868.91	261674.00	0.038 1
Т3	300 - 280	ROHN 6 EH	20.03	5.01	27.4 K=1.00	8.4049	-27177.60	358043.00	0.076 1
T4	280 - 260	ROHN 8 EH w/ angle 8x8x0.5	20.04	6.68	27.0 K=1.00	20.5036	-51714.50	874859.00	0.059 1
T5	260 - 240	ROHN 8 EH w/ angle 8x8x0.5	20.03	6.68	27.0 K=1.00	20.5036	-87438.50	874884.00	0.100 1
T6	240 - 220	ROHN 8 EH w/ angle 8x8x0.5	20.03	6.68	27.0 K=1.00	20.5036	-141251.00	874888.00	0.161 1
<b>T</b> 7	220 - 200	ROHN 8 EH w/ angle 8x8x0.5	20.03	10.02	40.4 K=1.00	20.5036	-198631.00	818638.00	0.243 1
T8	200 - 180	ROHN 10 EH w/ angle 8x8x0.5	20.04	10.02	34.6 K=1.00	23.8453	-269963.00	982914.00	0.275 1
Т9	180 - 170	ROHN 10 EH w/ angle 8x8x0.5	10.02	10.02	34.6 K=1.00	23.8453	-306831.00	982929.00	0.312 1
T10	170 - 160	ROHN 10 EH w/ angle 8x8x0.5	10.02	10.02	34.6 K=1.00	23.8453	-344042.00	982929.00	0.350 1
T11	160 - 140	ROHN 10 EH w/ angle 8x8x0.5	20.03	10.02	34.6 K=1.00	23.8453	-423692.00	982978.00	0.431 1
T12	140 - 120	ROHN 10 EH w/ angle	20.04	10.02	34.6	23.8453	-504778.00	982899.00	$0.514^{-1}$

Job		Page
	21007.82 - Colchester	73 of 96
Project		Date
	320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
Client	Verizon	Designed by TJL

Section No.	Elevation	Size	L	$L_u$	Kl/r	Α	$P_u$	$\phi P_n$	Ratio P _u
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$
		8x8x0.5			K=1.00				1
T13	120 - 100	ROHN 10 EH w/ angle 8x8x0.5	20.06	10.03	34.7 K=1.00	23.8453	-521186.00	982763.00	0.530 1
T14	100 - 80	ROHN 10 EH w/ angle 8x8x0.5	20.05	10.03	34.7 K=1.00	23.8453	-591467.00	982792.00	0.602 1
T15	80 - 60	ROHN 12 EH w/ angle 8x8x0.5	20.06	10.03	29.9 K=1.00	26.9670	-663079.00	1136630.00	0.583
T16	60 - 30	ROHN 12 EH w/ angle 8x8x0.5	30.07	10.02	29.9 K=1.00	26.9670	-735095.00	1136700.00	0.647 ¹
T17	30 - 0	ROHN 12 EHS w Angle 8x8x0.625	30.08	10.03	30.2 K=1.00	33.3120	-842733.00	1402320.00	0.601 ¹

¹  $P_u \neq \phi P_n$  controls

T15

80 - 60

ROHN 3 XXS

		Diagor	nal Des	sign [	Data (O	Comp	ression	)	
Section No.	Elevation	Size	L	$L_u$	Kl/r	A	$P_u$	$\phi P_n$	Ratio P _u
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$
T1	320 - 304	L1 3/4x1 3/4x3/16	7.90	3.56	124.4 K=1.00	0.6211	-1332.75	11479.60	0.116
T2	304 - 300	L1 3/4x1 3/4x3/16	7.90	3.56	124.4 K=1.00	0.6211	-1579.71	11479.60	0.138
Т3	300 - 280	L2x2x1/4	9.94	4.68	143.7 K=1.00	0.9380	-3093.64	13009.80	0.238
T4	280 - 260	L2 1/2x2 1/2x1/4	12.59	5.83	142.4 K=1.00	1.1900	-4792.84	16785.10	0.286
T5	260 - 240	L3x3x1/4	14.38	6.72	136.3 K=1.00	1.4400	-8474.57	22180.60	0.382
T6	240 - 220	L4x4x5/16	16.19	7.64	116.9 K=1.01	2.4000	-13647.80	50268.80	0.271
T7	220 - 200	L4x4x3/8	19.37	9.30	141.7 K=1.00	2.8600	-17543.50	40783.20	0.430
Т8	200 - 180	L4x4x3/8	21.20	10.21	155.6 K=1.00	2.8600	-21374.30	33828.90	0.632
Т9	180 - 170	L4x4x3/8	22.13	10.68	162.6 K=1.00	2.8600	-22988.70	30962.40	0.742
T10	170 - 160	L4x4x3/8	23.06	11.15	169.7 K=1.00	2.8600	-23844.30	28413.70	0.839
T11	160 - 140	L5x5x1/2	24.84	12.01	146.6 K=1.00	4.7500	-29186.20	63217.20	0.462
T12	140 - 120	L5x5x1/2	26.78	13.03	159.0 K=1.00	4.7500	-30934.70	53762.80	0.575
T13	120 - 100	ROHN 3 XXS	24.42	12.21	139.9 K=1.00	5.4664	-50810.40	63081.40	0.805
T14	100 - 80	ROHN 3 XXS	25.15	12.58	144.1	5.4664	-53229.80	59442.80	0.895

25.98

12.99

K=1.00

148.9

K=1.00

5.4664

-53169.30

0.955¹

55698.10

Anna Tanu an	Job		Page
tnxTower		21007.82 - Colchester	74 of 96
Centek Engineering Inc.	Project		Date
63-2 North Branford Rd.		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
Branford, CT 06405	Client		Designed by
Phone: (203) 488-0580 FAX: (203) 488-8587		Verizon	TJL

Section	Elevation	Size	L	$L_u$	Kl/r	A	$P_u$	$\phi P_n$	Ratio
No.	ft		ft	ft		in ²	lb	lb	$\frac{P_u}{\phi P_n}$
T16	60 - 30	ROHN 4 EH	35.21	11.74	95.4 K=1.00	4.4074	-75058.90	101988.00	0.736 1
T17	30 - 0	ROHN 4 EH	36.27	12.09	98.2 K=1.00	4.4074	-74010.70	97939.00	0.756 ¹

¹  $P_u \neq \phi P_n$  controls

### Horizontal Design Data (Compression)

Section No.	Elevation	Size	L	$L_u$	Kl/r	A	$P_u$	$\phi P_n$	Ratio P
100.	ft		ft	ft		$in^2$	lb	lb	$\frac{P_u}{\phi P_n}$
T13	120 - 100	ROHN 3 STD	25.39	12.22	126.1 K=1.00	2.2285	-27071.50	31679.40	0.855 1
T14	100 - 80	ROHN 3 EH	27.97	13.51	142.7 K=1.00	3.0159	-30472.20	33455.50	0.911 ¹
T15	80 - 60	ROHN 3 XXS	30.47	14.70	168.5 K=1.00	5.4664	-31434.30	43484.00	0.723 ¹
T16	60 - 30	ROHN 3.5 EH	33.14	16.04	147.3 K=1.00	3.6784	-35100.20	38300.30	0.916 ¹
T17	30 - 0	ROHN 4 EH	36.80	17.87	145.2 K=1.00	4.4074	-41666.80	47220.90	0.882 1

¹  $P_u \neq \phi P_n$  controls

#### Top Girt Design Data (Compression) Elevation Kl/r $P_u$ Section Size L $L_u$ Α $\phi P_n$ Ratio $P_u$ No. $in^2$ ft ft ft lb lb $\phi P_n$ T1 320 - 304 L1 3/4x1 3/4x3/16 6.81 6.35 182.6 0.6211 -193.77 5333.23 0.036 1 1 K=0.82 Т3 300 - 280 L2x2x1/4 6.81 6.26 164.3 0.9380 -471.34 9943.51 0.047 1 K=0.86 V

¹  $P_u / \phi P_n$  controls

		<b>Redundant Hor</b>	izonta	ul (1) [	Desig	n Data	ı (Comp	pressior	ו)
Section	Elevation	Size	L	L _u	Kl/r	A	$P_u$	$\phi P_n$	Ratio
No.	ft		ft	ft		in ²	lb	lb	$\frac{P_u}{\phi P_n}$
T13	120 - 100	ROHN 1.5 STD	6.35	5.88	113.3	0.7995	-9045.93	14083.10	0.642 1

K=1.00

tnxTower	Job	21007.82 - Colchester	Page 75 of 96
Centek Engineering Inc. 63-2 North Branford Rd.	Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon	Designed by TJL

Section No.	Elevation	Size	L	$L_u$	Kl/r	Α	$P_u$	$\phi P_n$	Ratio $P_u$
110.	ft		ft	ft		$in^2$	lb	lb	$\frac{1}{\phi P_n}$
T14	100 - 80	P1.5x.145	6.99	6.52	125.7 K=1.00	0.7995	-10264.50	11432.70	0.898 ¹
T15	80 - 60	ROHN 2 STD	7.62	7.09	108.0 K=1.00	1.0745	-11510.40	20598.10	0.559 ¹
T16	60 - 30	ROHN 1.5 STD	5.52	4.99	96.2 K=1.00	0.7995	-12755.90	18282.30	0.698 ¹
T17	30 - 0	P1.5x.145	6.13	5.60	108.0 K=1.00	0.7995	-14627.20	15339.00	0.954 ¹

¹  $P_u / \phi P_n$  controls

### Redundant Horizontal (2) Design Data (Compression)

Section No.	Elevation	Size	L	$L_u$	Kl/r	Α	$P_u$	$\phi P_n$	Ratio Pu
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$
T16	60 - 30	ROHN 2 XXS	11.05	10.52	179.6 K=1.00	2.6559	-12755.90	18604.80	0.686 1
T17	30 - 0	ROHN 2.5 EH	12.27	11.74	152.4 K=1.00	2.2535	-14627.20	21919.90	0.667 1

¹  $P_u \neq \phi P_n$  controls

### Redundant Diagonal (1) Design Data (Compression)

Section No.	Elevation	Size	L	$L_u$	Kl/r	A	$P_u$	$\phi P_n$	Ratio $P_u$
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$
T13	120 - 100	ROHN 2 STD	11.52	10.57	161.1 K=1.00	1.0745	-8207.03	9352.65	0.878 1
T14	100 - 80	ROHN 2 EH	11.86	10.98	171.6 K=1.00	1.4807	-8705.29	11364.10	0.766 ¹
T15	80 - 60	ROHN 2 EH	12.18	11.25	175.8 K=1.00	1.4807	-9205.33	10825.00	0.850 1
T16	60 - 30	ROHN 2 EH	11.15	9.95	155.3 K=1.00	1.4807	-12872.20	13862.10	0.929 ¹
T17	30 - 0	ROHN 2.5 STD	11.41	10.31	130.6 K=1.00	1.7040	-13607.60	22579.60	0.603 1

¹  $P_u \neq \phi P_n$  controls

### Redundant Diagonal (2) Design Data (Compression)

to a transferred	Job		Page
tnxTower		21007.82 - Colchester	76 of 96
Centek Engineering Inc.	Project		Date
63-2 North Branford Rd.		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
Branford, CT 06405	Client		Designed by
Phone: (203) 488-0580 FAX: (203) 488-8587		Verizon	TJL

Section No.	Elevation	Size	L	$L_u$	Kl/r	Α	$P_u$	$\phi P_n$	Ratio $P_{\mu}$
	ft		ft	ft		$in^2$	lb	lb	$\frac{1}{\Phi P_n}$
T16	60 - 30	ROHN 2.5 STD	14.46	13.72	173.8 K=1.00	1.7040	-8347.79	12742.30	0.655 1
T17	30 - 0	ROHN 2.5 STD	15.33	14.63	185.3 K=1.00	1.7040	-9142.26	11206.60	0.816 1

¹  $P_u \neq \phi P_n$  controls

## Redundant Hip (1) Design Data (Compression)

Section	Elevation	Size	L	$L_u$	Kl/r	A	$P_u$	$\phi P_n$	Ratio
No.									$P_u$
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$
T13	120 - 100	ROHN 1.5 STD	6.35	6.35	122.3	0.7995	-49.16	12066.60	0.004 1
					K=1.00				<ul> <li>✓</li> </ul>
T14	100 - 80	ROHN 1.5 STD	6.99	6.99	134.8	0.7995	-48.04	9943.20	$0.005^{-1}$
					K=1.00				<ul> <li>✓</li> </ul>
T15	80 - 60	ROHN 1.5 STD	7.62	7.62	146.8	0.7995	-47.05	8378.50	$0.006^{-1}$
					K=1.00				<ul> <li>✓</li> </ul>
T16	60 - 30	ROHN 1.5 STD	5.52	5.52	106.5	0.7995	-176.09	15708.50	$0.011^{-1}$
					K=1.00				×
T17	30 - 0	ROHN 1.5 STD	6.13	6.13	118.2	0.7995	-157.59	12924.00	$0.012^{-1}$
					K=1.00				<b>1</b>

¹  $P_u / \phi P_n$  controls

# Redundant Hip (2) Design Data (Compression)

Section No.	Elevation	Size	L	L _u	Kl/r	A	$P_u$	$\phi P_n$	Ratio P _u
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$
T16	60 - 30	ROHN 2 STD	11.05	11.05	168.4 K=1.00	1.0745	-95.53	8559.02	0.011
T17	30 - 0	ROHN 2 STD	12.27	12.27	187.0 K=1.00	1.0745	-89.80	6941.18	0.013 1

Redundant Hip Diagonal (1) Design Data (Compression)											
Section	Elevation	Size	L	L _u	Kl/r	A	$P_u$	$\phi P_n$	Ratio		
No.	ft		ft	ft		in ²	lb	lb	$\frac{P_u}{\phi P_n}$		
T13	120 - 100	ROHN 2.5 STD	15.15	15.15	191.9	1.7040	-96.91	10450.60	$0.009^{-1}$		

Tomor	Job		Page
tnxTower		21007.82 - Colchester	77 of 96
Centek Engineering Inc. 63-2 North Branford Rd.	Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon	Designed by TJL

Section No.	Elevation	Size	L	$L_u$	Kl/r	Α	$P_u$	$\phi P_n$	Ratio P _u
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$
					K=1.00				~
T14	100 - 80	ROHN 2.5 STD	16.00	16.00	202.6 K=1.00	1.7040	-90.97	9375.46	0.010 1
T15	80 - 60	ROHN 3 STD	16.88	16.88	174.1 K=1.00	2.2285	-102.10	16617.70	0.006 1
T16	60 - 30	ROHN 2 STD	14.10	14.10	214.9 K=1.00	1.0745	-361.06	5254.92	0.069 1
T17	30 - 0	ROHN 2.5 STD	14.88	14.88	188.4 K=1.00	1.7040	-327.60	10840.00	0.030 1

¹  $P_u \neq \phi P_n$  controls

## Redundant Hip Diagonal (2) Design Data (Compression)

Section No.	Elevation	Size	L	$L_u$	Kl/r	Α	$P_u$	$\phi P_n$	Ratio $P_u$
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$
T16	60 - 30	ROHN 2 STD	17.91	17.91	273.1 K=1.00	1.0745	-143.06	3255.91	0.044 1
T17	30 - 0	KL/R > 250 (C) - 357 ROHN 2.5 STD	19.28	19.28	244.2 K=1.00	1.7040	-140.45	6453.40	0.022

¹  $P_u \neq \phi P_n$  controls

	Inner Bracing Design Data (Compression)											
Section No.	Elevation	Size	L	$L_u$	Kl/r	A	$P_u$	$\phi P_n$	Ratio P _u			
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$			
T13	120 - 100	ROHN 3 STD	12.69	12.69	130.9 K=1.00	2.2285	-27.73	29370.40	0.001 1			
T14	100 - 80	ROHN 3 STD	13.99	13.99	144.2 K=1.00	2.2285	-27.51	24201.90	0.001 1			
T15	80 - 60	ROHN 3 STD	15.24	15.24	157.1 K=1.00	2.2285	-31.22	20393.40	0.002 1			
T16	60 - 30	ROHN 3 STD	16.57	16.57	170.9 K=1.00	2.2285	-60.21	17239.70	0.003 1			
T17	30 - 0	ROHN 3 STD	18.40	18.40	189.8 K=1.00	2.2285	-62.57	13981.00	0.004 1			

## tnxTower

**Centek Engineering Inc.** 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21007.82 - Colchester	78 of 96
Project		Date
	320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
Client	Verizon	Designed by TJL
	Project	21007.82 - Colchester Project 320-ft Lattice Tower (CSP #50) Client

### **Tension Checks**

### Leg Design Data (Tension)

Section No.	Elevation	Size	L	$L_u$	Kl/r	A	$P_u$	$\phi P_n$	Ratio P _u
110.	ft		ft	ft		$in^2$	lb	lb	$\frac{1}{\phi P_n}$
T1	320 - 304	ROHN 5 EH	16.00	4.00	26.1	6.1120	5560.46	275039.00	0.020
T2	304 - 300	ROHN 5 EH	4.00	4.00	26.1	6.1120	7856.86	275039.00	0.029
Т3	300 - 280	ROHN 6 EH	20.03	5.01	27.4	8.4049	21872.20	378222.00	0.058
T4	280 - 260	ROHN 8 EH w/ angle 8x8x0.5	20.04	6.68	27.0	20.5036	40928.20	922662.00	0.044
T5	260 - 240	ROHN 8 EH w/ angle 8x8x0.5	20.03	6.68	27.0	20.5036	67795.50	922662.00	0.073
Т6	240 - 220	ROHN 8 EH w/ angle 8x8x0.5	20.03	6.68	27.0	20.5036	109324.00	922662.00	0.118
<b>T</b> 7	220 - 200	ROHN 8 EH w/ angle 8x8x0.5	20.03	10.02	40.4	20.5036	156018.00	922662.00	0.169
Т8	200 - 180	ROHN 10 EH w/ angle 8x8x0.5	20.04	10.02	34.6	23.8453	213001.00	1073040.00	0.199
Т9	180 - 170	ROHN 10 EH w/ angle 8x8x0.5	10.02	10.02	34.6	23.8453	242911.00	1073040.00	0.226
T10	170 - 160	ROHN 10 EH w/ angle 8x8x0.5	10.02	10.02	34.6	23.8453	273215.00	1073040.00	0.255
Т11	160 - 140	ROHN 10 EH w/ angle 8x8x0.5	20.03	10.02	34.6	23.8453	336998.00	1073040.00	0.314
T12	140 - 120	ROHN 10 EH w/ angle 8x8x0.5	20.04	10.02	34.6	23.8453	401103.00	1073040.00	0.374
T13	120 - 100	ROHN 10 EH w/ angle 8x8x0.5	20.06	10.03	34.7	23.8453	411853.00	1073040.00	0.384
T14	100 - 80	ROHN 10 EH w/ angle 8x8x0.5	20.05	10.03	34.7	23.8453	466530.00	1073040.00	0.435
T15	80 - 60	ROHN 12 EH w/ angle 8x8x0.5	20.06	10.03	29.9	26.9670	522694.00	1213520.00	0.431
T16	60 - 30	ROHN 12 EH w/ angle 8x8x0.5	30.07	10.02	29.9	26.9670	578358.00	1213520.00	0.477
T17	30 - 0	ROHN 12 EHS w Angle 8x8x0.625	30.08	10.03	30.2	33.3120	662277.00	1499040.00	0.442

	Diagonal Design Data (Tension)										
Section	Elevation	Size	L	Lu	Kl/r	A	$P_u$	$\phi P_n$	Ratio		
No.	ft		ft	ft		in ²	lb	lb	$\frac{P_u}{\phi P_n}$		
T1	320 - 304	L1 3/4x1 3/4x3/16	7.90	3.56	82.2	0.3604	1340.52	15675.30	$0.086^{-1}$		

**Centek Engineering Inc.** 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

ower	Job	21007.82 - Colchester	Page 79 of 96
neering Inc. Franford Rd.	Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
CT 06405 ) 488-0580 488-8587	Client	Verizon	Designed by TJL

Section No.	Elevation	Size	L	$L_u$	Kl/r	Α	$P_u$	$\phi P_n$	Ratio P _u
140.	ft		ft	ft		in ²	lb	lb	$\frac{\Gamma_u}{\phi P_n}$
T2	304 - 300	L1 3/4x1 3/4x3/16	7.90	3.56	82.2	0.3604	1558.05	15675.30	0.099
T3	300 - 280	L2x2x1/4	9.94	4.68	94.6	0.5629	3066.10	24485.10	0.125
T4	280 - 260	L2 1/2x2 1/2x1/4	12.59	5.83	93.1	0.7284	4723.82	31687.00	0.149
T5	260 - 240	L3x3x1/4	14.38	6.72	88.5	0.9159	8216.26	44652.00	0.184
T6	240 - 220	L4x4x5/16	16.19	7.64	75.2	1.5949	13662.80	77752.40	0.176
<b>T</b> 7	220 - 200	L4x4x3/8	19.37	9.30	92.1	1.8989	16907.20	92571.70	0.183
Т8	200 - 180	L4x4x3/8	21.20	10.21	101.1	1.8637	21084.80	90857.80	0.232
Т9	180 - 170	L4x4x3/8	22.13	10.68	105.6	1.8637	22598.50	90857.80	0.249
T10	170 - 160	L4x4x3/8	23.06	11.15	110.2	1.8637	23312.70	90857.80	0.257
T11	160 - 140	L5x5x1/2	24.84	12.01	94.8	3.1875	28338.40	155391.00	0.182
T12	140 - 120	L5x5x1/2	26.78	13.03	102.7	3.1875	30048.80	155391.00	0.193
T13	120 - 100	ROHN 3 XXS	24.42	12.21	139.9	5.4664	48160.90	245987.00	0.196
T14	100 - 80	ROHN 3 XXS	25.15	12.58	144.1	5.4664	49617.00	245987.00	0.202
T15	80 - 60	ROHN 3 XXS	25.98	12.99	148.9	5.4664	48528.50	245987.00	0.197
T16	60 - 30	ROHN 4 EH	35.21	11.74	95.4	4.4074	68386.50	198335.00	0.345
T17	30 - 0	ROHN 4 EH	36.27	12.09	98.2	4.4074	69647.20	198335.00	0.351

¹  $P_u \neq \phi P_n$  controls

## Horizontal Design Data (Tension)

Section No.	Elevation	Size	L	$L_u$	Kl/r	A	$P_u$	$\phi P_n$	Ratio P _u
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$
T13	120 - 100	ROHN 3 STD	25.39	12.22	126.1	2.2285	26790.70	100281.00	0.267 1
T14	100 - 80	ROHN 3 EH	27.97	13.51	142.7	3.0159	29257.70	135717.00	0.216 ¹
T15	80 - 60	ROHN 3 XXS	30.47	14.70	168.5	5.4664	29934.20	245987.00	$0.122^{-1}$
T16	60 - 30	ROHN 3.5 EH	33.14	16.04	147.3	3.6784	34966.70	165529.00	0.211

Anna Tanu an	Job	Page
tnxTower	21007.82 - Colchester	80 of 96
Centek Engineering Inc.	Project	Date
63-2 North Branford Rd.	320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client Verizon	Designed by TJL

Section	Elevation	Size	L	Lu	Kl/r	Α	$P_u$	$\phi P_n$	Ratio
No.	ft		ft	ft		$in^2$	lb	lb	$\frac{P_u}{\phi P_n}$
T17	30 - 0	ROHN 4 EH	36.80	17.87	145.2	4.4074	37621.80	198335.00	0.190 ¹

¹  $P_u \neq \phi P_n$  controls

	Top Girt Design Data (Tension)								
Section No.	Elevation	Size	L	$L_u$	Kl/r	Α	$P_u$	$\phi P_n$	Ratio $P_{\mu}$
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$
T1	320 - 304	L1 3/4x1 3/4x3/16	6.81	6.35	141.8	0.6211	182.33	20123.40	0.009 1
Т3	300 - 280	L2x2x1/4	6.81	6.26	123.3	0.9380	471.34	30391.20	0.016 1

¹  $P_u \neq \phi P_n$  controls

# Redundant Horizontal (1) Design Data (Tension)

Section	Elevation	Size	L	$L_u$	Kl/r	Α	$P_u$	$\phi P_n$	Ratio
No.	ft		ft	ft		$in^2$	lb	lb	$\frac{P_u}{\phi P_n}$
T13	120 - 100	ROHN 1.5 STD	6.35	5.88	113.3	0.7995	9045.93	35975.60	0.251 1
T14	100 - 80	P1.5x.145	6.99	6.52	125.7	0.7995	10264.50	35975.60	0.285 1
T15	80 - 60	ROHN 2 STD	7.62	7.09	108.0	1.0745	11510.40	48353.90	0.238 1
T16	60 - 30	ROHN 1.5 STD	5.52	4.99	96.2	0.7995	12755.90	35975.60	0.355 1
T17	30 - 0	P1.5x.145	6.13	5.60	108.0	0.7995	14627.20	35975.60	0.407 1

	Redundant Horizontal (2) Design Data (Tension)										
Section No.	Elevation	Size	L	L _u	Kl/r	A	Pu	$\phi P_n$	Ratio		
NO.	ft		ft	ft		in ²	lb	lb	$\frac{P_u}{\phi P_n}$		
T16	60 - 30	ROHN 2 XXS	11.05	10.52	179.6	2.6559	12755.90	119516.00	0.107 1		
T17	30 - 0	ROHN 2.5 EH	12.27	11.74	152.4	2.2535	14627.20	101409.00	$0.144^{-1}$		

i	tnxTower	Job		21007	7.82 - Co	lchester			Page 81 of 96		
	tek Engineering Inc. 3-2 North Branford Rd.	Project	Project 320-ft Lattice Tower (CSP #50) Client Verizon							03/24/22	
	Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client								Designed by TJL	
Section No.	Elevation	Size	L	L _u	Kl/r	A	$P_u$	$\phi P_n$	Ratio		
140.	ft		ft	ft		in ²	lb	lb	$P_u$ $\phi P_n$		

¹  $P_u \neq \phi P_n$  controls

### Redundant Diagonal (1) Design Data (Tension)

Section No.	Elevation	Size	L	$L_u$	Kl/r	Α	$P_u$	$\phi P_n$	Ratio P _u
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$
T13	120 - 100	ROHN 2 STD	11.52	10.57	161.1	1.0745	8207.03	48353.90	0.170
T14	100 - 80	ROHN 2 EH	11.86	10.98	171.6	1.4807	8705.29	66630.70	0.131
T15	80 - 60	ROHN 2 EH	12.18	11.25	175.8	1.4807	9205.33	66630.70	0.138
T16	60 - 30	ROHN 2 EH	11.15	9.95	155.3	1.4807	12872.20	66630.70	0.193
T17	30 - 0	ROHN 2.5 STD	11.41	10.31	130.6	1.7040	13607.60	76682.30	0.177

¹  $P_u \neq \phi P_n$  controls

## Redundant Diagonal (2) Design Data (Tension)

Section No.	Elevation	Size	L	L _u	Kl/r	A	Pu	$\phi P_n$	Ratio P _u
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$
T16	60 - 30	ROHN 2.5 STD	14.46	13.72	173.8	1.7040	8347.79	76682.30	0.109 1
T17	30 - 0	ROHN 2.5 STD	15.33	14.63	185.3	1.7040	9142.26	76682.30	0.119 1

		Redunda	ant Hip	) (1) D	esign	n Data	(Tensi	on)	
Section No.	Elevation	Size	L	L _u	Kl/r	Α	$P_u$	$\phi P_n$	Ratio P _u
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$
T13	120 - 100	ROHN 1.5 STD	6.35	6.35	122.3	0.7995	23.32	35975.60	0.001 1
T14	100 - 80	ROHN 1.5 STD	6.99	6.99	134.8	0.7995	21.18	35975.60	0.001 1

Anna Tanu an	Job		Page
tnxTower		21007.82 - Colchester	82 of 96
Centek Engineering Inc.	Project		Date
63-2 North Branford Rd.		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
Branford, CT 06405	Client		Designed by
Phone: (203) 488-0580 FAX: (203) 488-8587		Verizon	TJL

Section No.	Elevation	Size	L	$L_u$	Kl/r	Α	$P_u$	$\phi P_n$	Ratio P _u
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$
T15	80 - 60	ROHN 1.5 STD	7.62	7.62	146.8	0.7995	15.77	35975.60	0.000 1
T16	60 - 30	ROHN 1.5 STD	5.52	5.52	106.5	0.7995	170.54	35975.60	0.005 1
T17	30 - 0	ROHN 1.5 STD	6.13	6.13	118.2	0.7995	147.19	35975.60	0.004 1

¹  $P_u / \phi P_n$  controls

## Redundant Hip (2) Design Data (Tension)

Section No.	Elevation	Size	L	L _u	Kl/r	A	Pu	$\phi P_n$	Ratio P _u
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$
T16	60 - 30	ROHN 2 STD	11.05	11.05	168.4	1.0745	70.61	48353.90	0.001
T17	30 - 0	ROHN 2 STD	12.27	12.27	187.0	1.0745	61.61	48353.90	0.001 1

¹  $P_u \neq \phi P_n$  controls

### Redundant Hip Diagonal (1) Design Data (Tension)

Section	Elevation	Size	L	$L_u$	Kl/r	Α	$P_u$	$\phi P_n$	Ratio
No.	ft		ft	ft		in ²	lb	lb	$\frac{P_u}{\Phi P_n}$
T13	120 - 100	ROHN 2.5 STD	15.15	15.15	191.9	1.7040	98.47	76682.30	$\frac{\varphi_n}{0.001^{-1}}$
T14	100 - 80	ROHN 2.5 STD	16.00	16.00	202.6	1.7040	91.32	76682.30	0.001 1
T15	80 - 60	ROHN 3 STD	16.88	16.88	174.1	2.2285	93.67	100281.00	0.001 1
T16	60 - 30	ROHN 2 STD	14.10	14.10	214.9	1.0745	355.36	48353.90	$0.007^{-1}$
T17	30 - 0	ROHN 2.5 STD	14.88	14.88	188.4	1.7040	322.27	76682.30	0.004 1

¹  $P_u \neq \phi P_n$  controls

### Redundant Hip Diagonal (2) Design Data (Tension)

trees Tools on	Job		Page
tnxTower		21007.82 - Colchester	83 of 96
Centek Engineering Inc. 63-2 North Branford Rd.	Project	320-ft Lattice Tower (CSP #50)	Date 14:04:33 03/24/22
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon	Designed by TJL

Elevation	Size	L	$L_u$	Kl/r	Α	$P_u$	$\phi P_n$	Ratio
					. 2			$P_u$
ft		ft	ft		in ²	lb	lb	$\phi P_n$
60 - 30	ROHN 2 STD	17.91	17.91	273.1	1.0745	121.98	48353.90	$0.003^{-1}$
								<ul> <li>✓</li> </ul>
30 - 0	ROHN 2.5 STD	19.28	19.28	244.2	1.7040	118.03	76682.30	$0.002^{-1}$
								<ul> <li>V</li> </ul>
	<i>ft</i> 60 - 30	<i>ft</i> 60 - 30 ROHN 2 STD	<i>ft ft</i> 60 - 30 ROHN 2 STD 17.91	<i>ft ft ft</i> 60 - 30 ROHN 2 STD 17.91 17.91	<i>ft ft ft</i> 60 - 30 ROHN 2 STD 17.91 17.91 273.1	<i>ft ft ft in</i> ² 60 - 30 ROHN 2 STD 17.91 17.91 273.1 1.0745	ft         ft         in²         lb           60 - 30         ROHN 2 STD         17.91         17.91         273.1         1.0745         121.98	ft         ft         ft         in ² lb         lb           60 - 30         ROHN 2 STD         17.91         17.91         273.1         1.0745         121.98         48353.90

¹  $P_u \neq \phi P_n$  controls

## Inner Bracing Design Data (Tension)

Section No.	Elevation	Size	L	$L_u$	Kl/r	A	$P_u$	$\phi P_n$	Ratio $P_u$
	ft		ft	ft		$in^2$	lb	lb	$\phi P_n$
T13	120 - 100	ROHN 3 STD	12.69	12.69	130.9	2.2285	7.49	100281.00	0.000 1
T14	100 - 80	ROHN 3 STD	13.99	13.99	144.2	2.2285	3.98	100281.00	$0.000^{-1}$
T16	60 - 30	ROHN 3 STD	16.57	16.57	170.9	2.2285	44.23	100281.00	$0.000^{-1}$
T17	30 - 0	ROHN 3 STD	18.40	18.40	189.8	2.2285	40.14	100281.00	0.000 1

¹  $P_u \neq \phi P_n$  controls

## Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	${}^{  heta P_{allow}}_{lb}$	% Capacity	Pass Fail
T1	320 - 304	Leg	ROHN 5 EH	1	-7158.49	261674.00	2.7	Pass
		Leg	ROHN 5 EH	2	-7090.15	261674.00	2.7	Pass
		Leg	ROHN 5 EH	3	-7130.20	261674.00	2.7	Pass
T2	304 - 300	Leg	ROHN 5 EH	31	-9868.91	261674.00	3.8	Pass
		Leg	ROHN 5 EH	32	-9805.77	261674.00	3.7	Pass
		Leg	ROHN 5 EH	33	-9842.29	261674.00	3.8	Pass
T3	300 - 280	Leg	ROHN 6 EH	40	-27177.60	358043.00	7.6	Pass
		Leg	ROHN 6 EH	41	-26683.20	358043.00	7.5	Pass
		Leg	ROHN 6 EH	42	-26893.20	358043.00	7.5	Pass
T4	280 - 260	Leg	ROHN 8 EH w/ angle 8x8x0.5	70	-51714.50	874859.00	5.9	Pass
							9.3 (b)	
		Leg	ROHN 8 EH w/ angle 8x8x0.5	71	-51445.10	874859.00	5.9	Pass
			-				9.4 (b)	
		Leg	ROHN 8 EH w/ angle 8x8x0.5	72	-51499.80	874859.00	5.9	Pass
							9.4 (b)	
T5	260 - 240	Leg	ROHN 8 EH w/ angle 8x8x0.5	91	-86808.40	874884.00	9.9	Pass
							15.5 (b)	
		Leg	ROHN 8 EH w/ angle 8x8x0.5	92	-87438.50	874884.00	10.0	Pass
							15.5 (b)	
		Leg	ROHN 8 EH w/ angle 8x8x0.5	93	-86513.70	874884.00	9.9	Pass
							15.5 (b)	
T6	240 - 220	Leg	ROHN 8 EH w/ angle 8x8x0.5	112	-140478.00	874888.00	16.1	Pass

tnxTower

**Centek Engineering Inc.** 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21007.82 - Colchester	84 of 96
Project		Date
	320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
Client	., .	Designed by
	Verizon	TJL

Section	Elevation	Component	Size	Critical	Р		%	Pass
No.	ft	Туре		Element	lb	lb	Capacity	Fail
							25.1 (b)	
		Leg	ROHN 8 EH w/ angle 8x8x0.5	113	-141251.00	874888.00	16.1	Pass
							24.9 (b)	-
		Leg	ROHN 8 EH w/ angle 8x8x0.5	114	-140514.00	874888.00	16.1	Pass
<b>m</b> 7	220 200	Ŧ		100	107502.00	010/00 00	25.1 (b)	P
T7	220 - 200	Leg	ROHN 8 EH w/ angle 8x8x0.5	133	-197583.00	818638.00	24.1	Pass
		Leg	ROHN 8 EH w/ angle 8x8x0.5	134	-198631.00	818638.00	24.3	Pass
TO	200 - 180	Leg	ROHN 8 EH w/ angle 8x8x0.5	135	-197623.00	818638.00	24.1	Pass
Т8	200 - 180	Leg	ROHN 10 EH w/ angle 8x8x0.5	148	-268445.00	982914.00	27.3	Pass
		Las	ROHN 10 EH w/ angle 8x8x0.5	149	-269963.00	982914.00	32.6 (b) 27.5	Dasa
		Leg	KOHN TO EH w/ aligle 8x8x0.5	149	-209903.00	962914.00	32.4 (b)	Pass
		Leg	ROHN 10 EH w/ angle 8x8x0.5	150	-268385.00	982914.00	27.3	Pass
		Leg	KOTIN TO EIT w/ angle 8x8x0.5	150	-208585.00	902914.00	32.6 (b)	1 455
Т9	180 - 170	Leg	ROHN 10 EH w/ angle 8x8x0.5	163	-305251.00	982929.00	31.1	Pass
17	100 - 170	Leg	Rolliv to Ell w/ angle 0x0x0.5	105	-505251.00	902929.00	37.1 (b)	1 435
		Leg	ROHN 10 EH w/ angle 8x8x0.5	164	-306831.00	982929.00	31.2	Pass
		105	reem, to En as angle oxoxolo	101	200021.00	,02,2,.00	37.0 (b)	1 400
		Leg	ROHN 10 EH w/ angle 8x8x0.5	165	-305032.00	982929.00	31.0	Pass
		205	iterit i i i i i i i i i i i i i i i i i i	100	202022100	,02,2,1,00	37.1 (b)	1 400
T10	170 - 160	Leg	ROHN 10 EH w/ angle 8x8x0.5	172	-342454.00	982929.00	34.8	Pass
110	170 100	Leg	ROHN 10 EH w/ angle 8x8x0.5	173	-344042.00	982929.00	35.0	Pass
		Leg	ROHN 10 EH w/ angle 8x8x0.5	174	-342144.00	982929.00	34.8	Pass
T11	160 - 140	Leg	ROHN 10 EH w/ angle 8x8x0.5	181	-422854.00	982978.00	43.0	Pass
		8		201			51.4 (b)	2 1100
		Leg	ROHN 10 EH w/ angle 8x8x0.5	182	-423692.00	982978.00	43.1	Pass
		8					51.3 (b)	
		Leg	ROHN 10 EH w/ angle 8x8x0.5	183	-421657.00	982978.00	42.9	Pass
		e	e				51.5 (b)	
T12	140 - 120	Leg	ROHN 10 EH w/ angle 8x8x0.5	196	-503937.00	982899.00	51.3	Pass
		e	e				61.2 (b)	
		Leg	ROHN 10 EH w/ angle 8x8x0.5	197	-504778.00	982899.00	51.4	Pass
							61.1 (b)	
		Leg	ROHN 10 EH w/ angle 8x8x0.5	198	-502521.00	982899.00	51.1	Pass
							61.3 (b)	
T13	120 - 100	Leg	ROHN 10 EH w/ angle 8x8x0.5	211	-520657.00	982763.00	53.0	Pass
							62.6 (b)	
		Leg	ROHN 10 EH w/ angle 8x8x0.5	212	-521186.00	982763.00	53.0	Pass
							62.5 (b)	
		Leg	ROHN 10 EH w/ angle 8x8x0.5	213	-519429.00	982763.00	52.9	Pass
							62.7 (b)	
T14	100 - 80	Leg	ROHN 10 EH w/ angle 8x8x0.5	244	-590748.00	982792.00	60.1	Pass
		Leg	ROHN 10 EH w/ angle 8x8x0.5	245	-591467.00	982792.00	60.2	Pass
		Leg	ROHN 10 EH w/ angle 8x8x0.5	246	-589431.00	982792.00	60.0	Pass
T15	80 - 60	Leg	ROHN 12 EH w/ angle 8x8x0.5	277	-662123.00	1136630.00	58.3	Pass
							59.7 (b)	
		Leg	ROHN 12 EH w/ angle 8x8x0.5	278	-663079.00	1136630.00	58.3	Pass
							59.6 (b)	
		Leg	ROHN 12 EH w/ angle 8x8x0.5	279	-660769.00	1136630.00	58.1	Pass
							59.8 (b)	
T16	60 - 30	Leg	ROHN 12 EH w/ angle 8x8x0.5	310	-734048.00	1136700.00	64.6	Pass
		_					65.0 (b)	_
		Leg	ROHN 12 EH w/ angle 8x8x0.5	311	-735095.00	1136700.00	64.7	Pass
		_					64.9 (b)	_
		Leg	ROHN 12 EH w/ angle 8x8x0.5	312	-732712.00	1136700.00	64.5	Pass
<b>T</b> 15			B 0 1 B 1 B 1 B 1 B 1 B 1 B 1 B 1 B 1 B		0.0000000		65.1 (b)	-
T17	30 - 0	Leg	ROHN 12 EHS w Angle	361	-841386.00	1402320.00	60.0	Pass
		Ŧ	8x8x0.625		0.40500.00	1 40 0 0 0 0 0 0 0	<i>(</i> <b>)</b> <i>:</i>	
		Leg	ROHN 12 EHS w Angle	362	-842733.00	1402320.00	60.1	Pass
		I	8x8x0.625	262	820078 00	1403230.00	50.0	<b>D</b>
		Leg	ROHN 12 EHS w Angle	363	-0599/8.00	1402320.00	59.9	Pass

tnxTower

**Centek Engineering I** 63-2 North Branford Rd Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

	Page
21007.82 - Colchester	85 of 96
	Date
320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
	Designed by
Verizon	TJL

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	${{\mathscr OP}_{allow}}\ lb$	% Capacity	Pass Fail
Т1	320 - 304	Diagonal	8x8x0.625 L1 3/4x1 3/4x3/16	7	-1318.91	11479.60	11.5	Pass
		Diagonal	L1 3/4x1 3/4x3/16	8	-1318.07	11479.60	22.8 (b) 11.5	Pass
		Diagonal	L1 3/4x1 3/4x3/16	9	-1307.14	11479.60	22.8 (b) 11.4 22.4 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	10	-1293.15	11479.60	22.4 (b) 11.3 22.4 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	11	-1332.75	11479.60	11.6 23.1 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	12	-1332.10	11479.60	11.6 23.1 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	13	-1077.19	11479.60	9.4 18.5 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	14	-1077.56	11479.60	9.4 18.5 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	15	-1056.56	11479.60	9.2 18.0 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	16	-1046.75	11479.60	9.1 18.0 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	17	-1116.23	11479.60	9.7 19.2 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	18	-1116.51	11479.60	9.7 19.2 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	19	-852.75	11479.60	7.4 14.7 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	20	-852.57	11479.60	7.4 14.7 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	21	-828.17	11479.60	7.2 14.1 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	22	-815.61	11479.60	7.1 14.1 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	23	-901.57	11479.60	7.9 15.6 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	24	-901.58	11479.60	7.9 15.6 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	25	-538.76	11479.60	4.7 9.2 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	26	-593.81	11479.60	5.2 9.9 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	27	-543.59	11479.60	4.7 9.0 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	28	-495.27	11479.60	4.3 8.4 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	29	-707.27	11479.60	6.2 12.1 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	30	-707.15	11479.60	6.2 12.1 (b)	Pass
T2	304 - 300	Diagonal	L1 3/4x1 3/4x3/16	34	-1523.17	11479.60	13.3 25.9 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	35	-1523.25	11479.60	13.3 25.8 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	36	-1544.03	11479.60	13.5 25.6 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	37	-1506.94	11479.60	13.1 25.6 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	38	-1579.71	11479.60	13.8 26.8 (b)	Pass
		Diagonal	L1 3/4x1 3/4x3/16	39	-1578.78	11479.60	13.8 26.8 (b)	Pass

tnxTower

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

_

	Page
21007.82 - Colchester	86 of 96
	Date
320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
	Designed by
Verizon	TJL

Section	Elevation	Component	Size	Critical	Р	øP _{allow}	%	Pass
No.	ft	Type		Element	lb	lb	Capacity	Fail
T3	300 - 280	Diagonal	L2x2x1/4	46	-2796.65	13009.80	21.5 30.6 (b)	Pass
		Diagonal	L2x2x1/4	47	-2935.07	13009.80	22.6	Pass
		Diagonal	L2x2x1/4	48	-2339.39	13009.80	30.4 (b) 18.0	Pass
		Diagonal	L2X2X1/4	40	-2339.39	15009.80	24.3 (b)	1 455
		Diagonal	L2x2x1/4	49	-2233.05	13009.80	17.2 24.4 (b)	Pass
		Diagonal	L2x2x1/4	50	-3093.64	13009.80	23.8	Pass
		Diagonal	L2x2x1/4	51	-3082.89	13009.80	33.6 (b) 23.7	Pass
		0					33.7 (b)	
		Diagonal	L2x2x1/4	52	-2265.20	14300.60	15.8 24.9 (b)	Pass
		Diagonal	L2x2x1/4	53	-2278.07	14300.60	15.9	Pass
		Diagonal	L2x2x1/4	54	-2265.34	14300.60	24.8 (b) 15.8	Pass
							23.8 (b)	
		Diagonal	L2x2x1/4	55	-2180.97	14300.60	15.3 23.9 (b)	Pass
		Diagonal	L2x2x1/4	56	-2577.82	14300.60	18.0	Pass
		Diagonal	L2x2x1/4	57	-2578.29	14300.60	28.1 (b) 18.0	Pass
		Diagonal				157(2.10	28.1 (b)	Dese
		Diagonal	L2x2x1/4	58	-2107.84	15762.10	13.4 23.2 (b)	Pass
		Diagonal	L2x2x1/4	59	-2133.85	15762.10	13.5	Pass
		Diagonal	L2x2x1/4	60	-1704.38	15762.10	23.1 (b) 10.8	Pass
		Diagonal	L2x2x1/4	61	-1668.31	15762.10	18.2 (b) 10.6	Pass
							18.3 (b)	
		Diagonal	L2x2x1/4	62	-2121.59	15762.10	13.5 22.9 (b)	Pass
		Diagonal	L2x2x1/4	63	-2086.14	15762.10	13.2	Pass
		Diagonal	L2x2x1/4	64	-1981.43	17400.80	22.9 (b) 11.4	Pass
		0					21.4 (b)	
		Diagonal	L2x2x1/4	65	-2052.85	17400.80	11.8 21.3 (b)	Pass
		Diagonal	L2x2x1/4	66	-1453.52	17400.80	8.4	Pass
		Diagonal	L2x2x1/4	67	-1434.54	17400.80	15.2 (b) 8.2	Pass
		Diagonal	L2x2x1/4	68	-2006.22	17400.80	15.2 (b) 11.5	Pass
		Diagonal					20.4 (b)	1 455
		Diagonal	L2x2x1/4	69	-1901.22	17400.80	10.9 20.5 (b)	Pass
T4	280 - 260	Diagonal	L2 1/2x2 1/2x1/4	73	-4743.78	16785.10	28.3	Pass
		Diagonal	L2 1/2x2 1/2x1/4	74	-4792.84	16785.10	39.5 (b) 28.6	Pass
		0					39.4 (b)	
		Diagonal	L2 1/2x2 1/2x1/4	75	-4291.59	16785.10	25.6 34.5 (b)	Pass
		Diagonal	L2 1/2x2 1/2x1/4	76	-4199.97	16785.10	25.0	Pass
		Diagonal	L2 1/2x2 1/2x1/4	77	-4697.90	16785.10	34.5 (b) 28.0	Pass
					1507 01	16795 10	38.1 (b)	Dage
		Diagonal	L2 1/2x2 1/2x1/4	78	-4583.84	16785.10	27.3 38.1 (b)	Pass
		Diagonal	L2 1/2x2 1/2x1/4	79	-4200.47	18668.80	22.5	Pass

tnxTower

Project

Client

21007.82 - Colchester

320-ft Lattice Tower (CSP #50)

87 of 96

Page

Date 14:04:33 03/24/22

**Centek Engineering Inc.** 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Designed by TJL

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	øP _{allow} lb	% Capacity	Pass Fail
							34.9 (b)	_
		Diagonal	L2 1/2x2 1/2x1/4	80	-4329.69	18668.80	23.2 34.8 (b)	Pass
		Diagonal	L2 1/2x2 1/2x1/4	81	-3660.45	18668.80	19.6	Pass
		Diagonal	L2 1/2x2 1/2x1/4	82	-3521.81	18668.80	29.1 (b) 18.9	Pass
		Diagonal	LZ 1/2X2 1/2X1/4	02	-5521.81	18008.80	29.2 (b)	1 455
		Diagonal	L2 1/2x2 1/2x1/4	83	-4354.00	18668.80	23.3	Pass
		Diagonal	L2 1/2x2 1/2x1/4	84	-4251.73	18668.80	35.2 (b) 22.8	Pass
		-	T 0 1 /00 1 /01 /4	0.5	2652.07	20825 20	35.3 (b)	Dese
		Diagonal	L2 1/2x2 1/2x1/4	85	-3653.87	20825.20	17.5 30.4 (b)	Pass
		Diagonal	L2 1/2x2 1/2x1/4	86	-3834.75	20825.20	18.4	Pass
		Diagonal	L2 1/2x2 1/2x1/4	87	-2946.99	20825.20	30.3 (b) 14.2	Pass
							23.3 (b)	
		Diagonal	L2 1/2x2 1/2x1/4	88	-2821.79	20825.20	13.5 23.4 (b)	Pass
		Diagonal	L2 1/2x2 1/2x1/4	89	-3938.46	20825.20	18.9	Pass
		Diagonal	L2 1/2x2 1/2x1/4	90	-3845.22	20825.20	31.9 (b) 18.5	Pass
		-					32.0 (b)	
T5	260 - 240	Diagonal	L3x3x1/4	94	-8474.57	22180.60	38.2 58.0 (b)	Pass
		Diagonal	L3x3x1/4	95	-8259.49	22180.60	37.2	Pass
		Diagonal	L3x3x1/4	96	-7643.59	22180.60	58.1 (b) 34.5	Pass
							53.9 (b)	
		Diagonal	L3x3x1/4	97	-8127.94	22180.60	36.6 53.6 (b)	Pass
		Diagonal	L3x3x1/4	98	-6471.42	22180.60	29.2	Pass
		Diagonal	L3x3x1/4	99	-6226.32	22180.60	43.7 (b) 28.1	Pass
		-					43.8 (b)	
		Diagonal	L3x3x1/4	100	-6713.91	24277.90	27.7 47.0 (b)	Pass
		Diagonal	L3x3x1/4	101	-6687.45	24277.90	27.5	Pass
		Diagonal	L3x3x1/4	102	-6264.57	24277.90	47.0 (b) 25.8	Pass
		Diagonai	LJXJX1/4	102	-0204.57	24277.90	43.4 (b)	1 455
		Diagonal	L3x3x1/4	103	-6418.99	24277.90	26.4 43.3 (b)	Pass
		Diagonal	L3x3x1/4	104	-5998.47	24277.90	24.7	Pass
		Diagonal	L 22.1/4	105	5000 40	24277.00	40.8 (b)	Daga
		Diagonal	L3x3x1/4	105	-5800.48	24277.90	23.9 40.9 (b)	Pass
		Diagonal	L3x3x1/4	106	-5799.52	26649.70	21.8	Pass
		Diagonal	L3x3x1/4	107	-5803.68	26649.70	40.8 (b) 21.8	Pass
		Diagonal	T 2-2-1/4	109	5404 09	26640 70	40.8 (b) 20.3	Pass
		Diagonal	L3x3x1/4	108	-5404.08	26649.70	20.5 37.1 (b)	Pass
		Diagonal	L3x3x1/4	109	-5412.13	26649.70	20.3	Pass
		Diagonal	L3x3x1/4	110	-5473.52	26649.70	37.1 (b) 20.5	Pass
		Diagonal				26640 70	37.5 (b)	D
		Diagonal	L3x3x1/4	111	-5328.11	26649.70	20.0 37.5 (b)	Pass
Т6	240 - 220	Diagonal	L4x4x5/16	115	-13418.30	50268.80	26.7 75.8 (b)	Pass

tnxTower

Project

Client

21007.82 - Colchester

Page 88 of 96 Date

320-ft Lattice Tower (CSP #50)

**Centek Engineering Inc.** 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Designed by TJL

14:04:33 03/24/22

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	${\it {\it o}P_{allow}}\ lb$	% Capacity	Pass Fail
		Diagonal	L4x4x5/16	116	-13381.80	50268.80	26.6 76.0 (b)	Pass
		Diagonal	L4x4x5/16	117	-13622.00	50268.80	27.1	Pass
		Diagonal	L4x4x5/16	118	-13647.80	50268.80	77.3 (b) 27.1	Pass
		Diagonal	L4x4x5/16	119	-11232.30	50268.80	77.2 (b) 22.3	Pass
		Diagonal	L4x4x5/16	120	-11233.40	50268.80	63.6 (b) 22.3	Pass
		Diagonal	L4x4x5/16	121	-12796.90	53365.30	63.6 (b) 24.0	Pass
		Diagonal	L4x4x5/16	122	-12397.60	53365.30	69.6 (b) 23.2	Pass
		Diagonal	L4x4x5/16	123	-12582.60	53365.30	69.7 (b) 23.6	Pass
		Diagonal	L4x4x5/16	124	-12903.30	53365.30	70.7 (b) 24.2	Pass
		Diagonal	L4x4x5/16	125	-10299.10	53365.30	70.6 (b) 19.3	Pass
		Diagonal	L4x4x5/16	126	-10347.20	53365.30	57.7 (b) 19.4	Pass
		Diagonal	L4x4x5/16	127	-10447.50	56723.40	57.7 (b) 18.4	Pass
		Diagonal	L4x4x5/16	128	-9849.96	56723.40	55.3 (b) 17.4	Pass
		Diagonal	L4x4x5/16	129	-9596.34	56723.40	55.5 (b) 16.9	Pass
		Diagonal	L4x4x5/16	130	-10305.60	56723.40	54.0 (b) 18.2	Pass
		Diagonal	L4x4x5/16	131	-7842.71	56723.40	53.9 (b) 13.8	Pass
		Diagonal	L4x4x5/16	132	-7691.40	56723.40	41.9 (b) 13.6	Pass
T7	220 - 200	Diagonal	L4x4x3/8	136	-17354.10	40783.20	41.9 (b) 42.6	Pass
		Diagonal	L4x4x3/8	137	-16637.40	40783.20	78.0 (b) 40.8	Pass
		Diagonal	L4x4x3/8	138	-16967.20	40783.20	78.2 (b) 41.6	Pass
		Diagonal	L4x4x3/8	139	-17543.50	40783.20	79.7 (b) 43.0	Pass
		Diagonal	L4x4x3/8	140	-13546.40	40783.20	79.6 (b) 33.2	Pass
		Diagonal	L4x4x3/8	141	-13738.00	40783.20	63.4 (b) 33.7	Pass
		Diagonal	L4x4x3/8	142	-15959.60	44725.40	63.4 (b) 35.7 73.4 (b)	Pass
		Diagonal	L4x4x3/8	143	-15659.70	44725.40	35.0 73.6 (b)	Pass
		Diagonal	L4x4x3/8	144	-15956.10	44725.40	35.7 75.0 (b)	Pass
		Diagonal	L4x4x3/8	145	-16129.30	44725.40	75.0 (b) 36.1 74.8 (b)	Pass
		Diagonal	L4x4x3/8	146	-12946.70	44725.40	28.9 60.7 (b)	Pass
		Diagonal	L4x4x3/8	147	-12947.90	44725.40	28.9 60.6 (b)	Pass
Т8	200 - 180	Diagonal	L4x4x3/8	151	-21292.10	33828.90	62.9 84.0 (b)	Pass
		Diagonal	L4x4x3/8	152	-20936.70	33828.90	84.0 (b) 61.9	Pass

tnxTower

Project

Client

21007.82 - Colchester

320-ft Lattice Tower (CSP #50)

89 of 96

Page

Date 14:04:33 03/24/22

**Centek Engineering Inc.** 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Designed by TJL

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	øP _{allow} lb	% Capacity	Pass Fail
		Diagonal	L4x4x3/8	153	-21080.20	33828.90	84.2 (b) 62.3	Pass
		Diagonal	L4x4x3/8	154	-21374.30	33828.90	84.8 (b) 63.2	Pass
		Diagonal	L4x4x3/8	155	-16815.90	33828.90	84.6 (b) 49.7	Pass
		Diagonal	L4x4x3/8	156	-16814.50	33828.90	67.4 (b) 49.7 67.4 (b)	Pass
		Diagonal	L4x4x3/8	157	-20463.20	37111.10	55.1 78.6 (b)	Pass
		Diagonal	L4x4x3/8	158	-19695.50	37111.10	53.1 78.8 (b)	Pass
		Diagonal	L4x4x3/8	159	-20043.10	37111.10	54.0 80.2 (b)	Pass
		Diagonal	L4x4x3/8	160	-20662.40	37111.10	55.7 80.0 (b)	Pass
		Diagonal Diagonal	L4x4x3/8 L4x4x3/8	161 162	-15825.80 -15933.90	37111.10 37111.10	42.6 63.1 (b) 42.9	Pass Pass
Т9	180 - 170	Diagonal	L4x4x3/8	162	-22988.70	30962.40	63.1 (b) 74.2	Pass
		Diagonal	L4x4x3/8	167	-22593.50	30962.40	90.7 (b) 73.0	Pass
		Diagonal	L4x4x3/8	168	-22354.10	30962.40	90.9 (b) 72.2	Pass
		Diagonal	L4x4x3/8	169	-22855.90	30962.40	90.0 (b) 73.8 89.7 (b)	Pass
		Diagonal	L4x4x3/8	170	-18036.40	30962.40	58.3 72.3 (b)	Pass
		Diagonal	L4x4x3/8	171	-18029.70	30962.40	58.2 72.4 (b)	Pass
T10	170 - 160	Diagonal	L4x4x3/8	175	-23844.30	28413.70	83.9 93.5 (b)	Pass
		Diagonal	L4x4x3/8	176	-23430.40	28413.70	82.5 93.8 (b)	Pass
		Diagonal Diagonal	L4x4x3/8 L4x4x3/8	177 178	-23039.20 -23625.40	28413.70 28413.70	81.1 92.2 (b) 83.1	Pass Pass
		Diagonal	L4x4x3/8	178	-18638.90	28413.70	92.0 (b) 65.6	Pass
		Diagonal	L4x4x3/8	180	-18630.30	28413.70	74.2 (b) 65.6	Pass
T11	160 - 140	Diagonal	L5x5x1/2	184	-29186.20	63217.20	74.3 (b) 46.2	Pass
		Diagonal	L5x5x1/2	185	-28622.40	63217.20	86.3 (b) 45.3	Pass
		Diagonal	L5x5x1/2	186	-27051.80	63217.20	85.5 (b) 42.8 80.9 (b)	Pass
		Diagonal	L5x5x1/2	187	-28308.10	63217.20	44.8 83.7 (b)	Pass
		Diagonal	L5x5x1/2	188	-23760.30	63217.20	37.6 70.2 (b)	Pass
		Diagonal	L5x5x1/2	189	-23147.00	63217.20	36.6 69.0 (b)	Pass
		Diagonal	L5x5x1/2	190	-27021.50	68040.50	39.7 81.0 (b)	Pass
		Diagonal	L5x5x1/2	191	-26914.40	68040.50	39.6 81.1 (b)	Pass

tnxTower

Project

Client

21007.82 - Colchester

Page 90 of 96 Date

**Centek Engineering Inc.** 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Verizon	

320-ft Lattice Tower (CSP #50)

Designed by TJL

14:04:33 03/24/22

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	${\it {\it o}P_{allow}}\ lb$	% Capacity	Pass Fail
		Diagonal	L5x5x1/2	192	-25920.30	68040.50	38.1 78.2 (b)	Pass
		Diagonal	L5x5x1/2	193	-26462.70	68040.50	38.9 78.2 (b)	Pass
		Diagonal	L5x5x1/2	194	-21588.20	68040.50	31.7 64.8 (b)	Pass
		Diagonal	L5x5x1/2	195	-21562.30	68040.50	31.7 64.9 (b)	Pass
T12	140 - 120	Diagonal	L5x5x1/2	199	-30934.70	53762.80	57.5 91.5 (b)	Pass
		Diagonal	L5x5x1/2	200	-30206.20	53762.80	56.2 90.6 (b)	Pass
		Diagonal	L5x5x1/2	201	-28024.90	53762.80	52.1 84.2 (b)	Pass
		Diagonal	L5x5x1/2	202	-29708.50	53762.80	55.3 87.8 (b)	Pass
		Diagonal	L5x5x1/2	203	-25007.90	53762.80	46.5 73.9 (b)	Pass
		Diagonal	L5x5x1/2	204	-23970.50	53762.80	44.6 71.9 (b)	Pass
		Diagonal	L5x5x1/2	205	-28425.40	58159.10	48.9 85.6 (b)	Pass
		Diagonal	L5x5x1/2	206	-28396.50	58159.10	48.8 85.6 (b)	Pass
		Diagonal	L5x5x1/2	207	-26366.20	58159.10	45.3 81.3 (b)	Pass
		Diagonal	L5x5x1/2	208	-26813.10	58159.10	46.1 79.4 (b)	Pass
		Diagonal	L5x5x1/2	209	-22598.20	58159.10	38.9 67.9 (b)	Pass
		Diagonal	L5x5x1/2	210	-22541.50	58159.10	38.8 68.1 (b)	Pass
T13	120 - 100	Diagonal	ROHN 3 XXS	215	-50810.40	63081.40	80.5	Pass
		Diagonal	ROHN 3 XXS	218	-49731.70	63081.40	78.8	Pass
		Diagonal	ROHN 3 XXS	222	-47710.40	63081.40	75.6	Pass
		Diagonal	ROHN 3 XXS	225	-49732.90	63081.40	78.8	Pass
		Diagonal	ROHN 3 XXS	231	-41617.90	63081.40	66.0	Pass
		Diagonal	ROHN 3 XXS	234	-40707.30	63081.40	64.5	Pass
T14	100 - 80	Diagonal	ROHN 3 XXS	248	-53229.80	59442.80	89.5	Pass
		Diagonal	ROHN 3 XXS	251	-51505.90	59442.80	86.6	Pass
		Diagonal	ROHN 3 XXS	255	-50737.10	59442.80	85.4	Pass
		Diagonal	ROHN 3 XXS	258	-52683.50	59442.80	88.6	Pass
		Diagonal	ROHN 3 XXS	264	-43898.40	59442.80	73.8	Pass
		Diagonal	ROHN 3 XXS	267	-43251.70	59442.80	72.8	Pass
T15	80 - 60	Diagonal	ROHN 3 XXS	281	-53169.30	55698.10	95.5	Pass
		Diagonal	ROHN 3 XXS	284	-50932.70	55698.10	91.4	Pass
		Diagonal	ROHN 3 XXS	288	-49999.80	55698.10	89.8	Pass
		Diagonal	ROHN 3 XXS	291	-52497.00	55698.10	94.3	Pass
		Diagonal	ROHN 3 XXS	297	-43103.20	55698.10	77.4	Pass
		Diagonal	ROHN 3 XXS	300	-42329.10	55698.10	76.0	Pass
T16	60 - 30	Diagonal	ROHN 4 EH	314	-75058.90	101988.00	73.6 74.0 (b)	Pass
		Diagonal	ROHN 4 EH	319	-71344.50	101988.00	70.0 70.3 (b)	Pass
		Diagonal	ROHN 4 EH	325	-70410.10	101988.00	69.0 69.4 (b)	Pass
		Diagonal	ROHN 4 EH	330	-74250.90	101988.00	72.8 73.2 (b)	Pass
		Diagonal	ROHN 4 EH	340	-61616.10	101988.00	60.4 60.7 (b)	Pass
		Diagonal	ROHN 4 EH	345	-60713.90	101988.00	59.5	Pass

tnxTower

**Centek Engineering Inc.** 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

	Job		Page
		21007.82 - Colchester	91 of 96
nc.	Project		Date
<i>.</i>		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
	Client		Designed by
		Verizon	TJL

Section	Elevation	Component	Size	Critical	Р		%	Pass
No.	ft	Type		Element	lb	lb	Capacity	Fail
							59.8 (b)	
T17	30 - 0	Diagonal	ROHN 4 EH	365	-74010.70	97939.00	75.6	Pass
		Diagonal	ROHN 4 EH	370	-71980.40	97939.00	73.5	Pass
		Diagonal	ROHN 4 EH	376	-69434.10	97939.00	70.9	Pass
		Diagonal	ROHN 4 EH	381	-72899.60	97939.00	74.4	Pass
		Diagonal	ROHN 4 EH	391	-57740.90	97939.00	59.0	Pass
		Diagonal	ROHN 4 EH	396	-56722.90	97939.00	57.9	Pass
T13	120 - 100	Horizontal	ROHN 3 STD	214	-27071.50	31679.40	85.5	Pass
		Horizontal	ROHN 3 STD	221	-26155.70	31679.40	82.6	Pass
-		Horizontal	ROHN 3 STD	230	-21437.30	31679.40	67.7	Pass
T14	100 - 80	Horizontal	ROHN 3 EH	247	-30472.20	33455.50	91.1	Pass
		Horizontal	ROHN 3 EH	254	-30135.30	33455.50	90.1	Pass
T15	80 - 60	Horizontal	ROHN 3 EH	263	-24583.70	33455.50	73.5	Pass
115	80 - 60	Horizontal Horizontal	ROHN 3 XXS ROHN 3 XXS	280 287	-31434.30 -30934.20	$43484.00 \\ 43484.00$	72.3 71.1	Pass Pass
		Horizontal	ROHN 3 XXS	287	-24624.90	43484.00	56.6	Pass
T16	60 - 30	Horizontal	ROHN 3.5 EH	313	-35100.20	38300.30	91.6	Pass
110	00-50	Horizontal	ROHN 3.5 EH	324	-34512.40	38300.30	90.1	Pass
		Horizontal	ROHN 3.5 EH	339	-27337.30	38300.30	71.4	Pass
T17	30 - 0	Horizontal	ROHN 4 EH	364	-41666.80	47220.90	88.2	Pass
117	50 0	Horizontal	ROHN 4 EH	375	-40931.30	47220.90	86.7	Pass
		Horizontal	ROHN 4 EH	390	-32052.40	47220.90	67.9	Pass
T1	320 - 304	Top Girt	L1 3/4x1 3/4x3/16	4	-193.61	5333.23	3.6	Pass
		Top Girt	L1 3/4x1 3/4x3/16	5	-193.77	5333.23	3.6	Pass
		Top Girt	L1 3/4x1 3/4x3/16	6	-193.10	5333.23	3.6	Pass
T3	300 - 280	Top Girt	L2x2x1/4	43	-462.77	9943.51	4.7	Pass
		Top Girt	L2x2x1/4	44	-466.41	9943.51	4.7	Pass
		Top Girt	L2x2x1/4	45	-471.34	9943.51	4.7	Pass
T13	120 - 100	Redund Horz 1 Bracing	ROHN 1.5 STD	216	-9036.76	14083.10	64.2	Pass
		Redund Horz 1 Bracing	ROHN 1.5 STD	219	-9045.93	14083.10	64.2	Pass
		Redund Horz 1 Bracing	ROHN 1.5 STD	223	-9045.93	14083.10	64.2	Pass
		Redund Horz 1 Bracing	ROHN 1.5 STD	226	-9015.44	14083.10	64.0	Pass
		Redund Horz 1 Bracing	ROHN 1.5 STD	232	-9015.44	14083.10	64.0	Pass
		Redund Horz 1 Bracing	ROHN 1.5 STD	235	-9036.76	14083.10	64.2	Pass
T14	100 - 80	Redund Horz 1 Bracing	P1.5x.145	249	-10252.00	11432.70	89.7	Pass
		Redund Horz 1 Bracing	P1.5x.145	252	-10264.50	11432.70	89.8	Pass
		Redund Horz 1 Bracing	P1.5x.145	256	-10264.50	11432.70	89.8	Pass
		Redund Horz 1 Bracing	P1.5x.145	259	-10229.10	11432.70	89.5	Pass
		Redund Horz 1 Bracing	P1.5x.145	265	-10229.10	11432.70	89.5	Pass
		Redund Horz 1 Bracing	P1.5x.145	268	-10252.00	11432.70	89.7	Pass
T15	80 - 60	Redund Horz 1 Bracing	ROHN 2 STD	282	-11493.80	20598.10	55.8	Pass
		Redund Horz 1 Bracing	ROHN 2 STD	285	-11510.40	20598.10	55.9	Pass
		Redund Horz 1 Bracing	ROHN 2 STD	289	-11510.40	20598.10	55.9	Pass
		Redund Horz 1 Bracing	ROHN 2 STD	292	-11470.30	20598.10	55.7	Pass
		Redund Horz 1	ROHN 2 STD	298	-11470.30	20598.10	55.7	Pass

tnxTower

Centek Engineering Inc. 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job 92 of 96 21007.82 - Colchester Project Date 320-ft Lattice Tower (CSP #50) 14:04:33 03/24/22 Client

Verizon

Designed by TJL

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	${}^{  heta P_{allow}}_{lb}$	% Capacity	Pass Fail
		Bracing Redund Horz 1	ROHN 2 STD	301	-11493.80	20598.10	55.8	Pass
T16	60 - 30	Bracing Redund Horz 1	ROHN 1.5 STD	315	-12737.70	18282.30	69.7	Pass
		Bracing Redund Horz 1	ROHN 1.5 STD	320	-12755.90	18282.30	69.8	Pass
		Bracing Redund Horz 1	ROHN 1.5 STD	326	-12755.90	18282.30	69.8	Pass
		Bracing Redund Horz 1 Bracing	ROHN 1.5 STD	331	-12714.50	18282.30	69.5	Pass
		Redund Horz 1 Bracing	ROHN 1.5 STD	341	-12714.50	18282.30	69.5	Pass
		Redund Horz 1 Bracing	ROHN 1.5 STD	346	-12737.70	18282.30	69.7	Pass
<b>T</b> 17	30 - 0	Redund Horz 1 Bracing	P1.5x.145	366	-14603.80	15339.00	95.2	Pass
		Redund Horz 1 Bracing	P1.5x.145	371	-14627.20	15339.00	95.4	Pass
		Redund Horz 1 Bracing	P1.5x.145	377	-14627.20	15339.00	95.4	Pass
		Redund Horz 1 Bracing	P1.5x.145	382	-14579.30	15339.00	95.0	Pass
		Redund Horz 1 Bracing	P1.5x.145	392	-14579.30	15339.00	95.0	Pass
		Redund Horz 1 Bracing	P1.5x.145	397	-14603.80	15339.00	95.2	Pass
T16	60 - 30	Redund Horz 2 Bracing	ROHN 2 XXS	316	-12737.70	18604.80	68.5	Pass
		Redund Horz 2 Bracing	ROHN 2 XXS	321	-12755.90	18604.80	68.6	Pass
		Redund Horz 2 Bracing	ROHN 2 XXS	327	-12755.90	18604.80	68.6	Pass
		Redund Horz 2 Bracing	ROHN 2 XXS	332	-12714.50	18604.80	68.3	Pass
		Redund Horz 2 Bracing	ROHN 2 XXS	342	-12714.50	18604.80	68.3	Pass
		Redund Horz 2 Bracing	ROHN 2 XXS	347	-12737.70	18604.80	68.5	Pass
Т17	30 - 0	Redund Horz 2 Bracing	ROHN 2.5 EH	367	-14603.80	21919.90	66.6	Pass
		Redund Horz 2 Bracing	ROHN 2.5 EH	372	-14627.20	21919.90	66.7	Pass
		Redund Horz 2 Bracing	ROHN 2.5 EH	378	-14627.20	21919.90	66.7	Pass
		Redund Horz 2 Bracing	ROHN 2.5 EH	383	-14579.30	21919.90	66.5	Pass
		Redund Horz 2 Bracing	ROHN 2.5 EH	393	-14579.30	21919.90	66.5	Pass
		Redund Horz 2 Bracing	ROHN 2.5 EH	398	-14603.80	21919.90	66.6	Pass
Т13	120 - 100	Redund Diag 1 Bracing	ROHN 2 STD	217	-8198.71	9352.65	87.7	Pass
		Redund Diag 1 Bracing	ROHN 2 STD	220	-8207.03	9352.65	87.8	Pass
		Redund Diag 1 Bracing	ROHN 2 STD	224	-8207.03	9352.65	87.8	Pass
		Redund Diag 1 Bracing	ROHN 2 STD	227	-8179.37	9352.65	87.5	Pass
		Redund Diag 1 Bracing	ROHN 2 STD	233	-8179.37	9352.65	87.5	Pass

Page

tnxTower

21007.82 - Colchester
Project

Job

Client

Page

**Centek Engineering Inc.** 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Verizon	

320-ft Lattice Tower (CSP #50)

14:04:33 03/24/22 Designed by TJL

93 of 96

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	${}^{  heta P_{allow}}_{lb}$	% Capacity	Pass Fail
		Redund Diag 1	ROHN 2 STD	236	-8198.71	9352.65	87.7	Pass
T14	100 - 80	Bracing Redund Diag 1	ROHN 2 EH	250	-8694.71	11364.10	76.5	Pass
		Bracing Redund Diag 1	ROHN 2 EH	253	-8705.29	11364.10	76.6	Pass
		Bracing Redund Diag 1	ROHN 2 EH	257	-8705.29	11364.10	76.6	Pass
		Bracing Redund Diag 1 Bracing	ROHN 2 EH	260	-8675.32	11364.10	76.3	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	266	-8675.32	11364.10	76.3	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	269	-8694.71	11364.10	76.5	Pass
T15	80 - 60	Redund Diag 1 Bracing	ROHN 2 EH	283	-9192.05	10825.00	84.9	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	286	-9205.33	10825.00	85.0	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	290	-9205.33	10825.00	85.0	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	293	-9173.25	10825.00	84.7	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	299	-9173.25	10825.00	84.7	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	302	-9192.05	10825.00	84.9	Pass
T16	60 - 30	Redund Diag 1 Bracing	ROHN 2 EH	317	-12853.90	13862.10	92.7	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	322	-12872.20	13862.10	92.9	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	328	-12872.20	13862.10	92.9	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	333	-12830.50	13862.10	92.6	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	343	-12830.50	13862.10	92.6	Pass
		Redund Diag 1 Bracing	ROHN 2 EH	348	-12853.90	13862.10	92.7	Pass
T17	30 - 0	Redund Diag 1 Bracing	ROHN 2.5 STD	368	-13585.80	22579.60	60.2	Pass
		Redund Diag 1 Bracing	ROHN 2.5 STD	373	-13607.60	22579.60	60.3	Pass
		Redund Diag 1 Bracing	ROHN 2.5 STD	379	-13607.60	22579.60	60.3	Pass
		Redund Diag 1 Bracing	ROHN 2.5 STD	384	-13563.10	22579.60	60.1	Pass
		Redund Diag 1 Bracing	ROHN 2.5 STD	394	-13563.10	22579.60	60.1	Pass
		Redund Diag 1 Bracing	ROHN 2.5 STD	399	-13585.80	22579.60	60.2	Pass
T16	60 - 30	Redund Diag 2 Bracing	ROHN 2.5 STD	318	-8335.90	12742.30	65.4	Pass
		Redund Diag 2 Bracing	ROHN 2.5 STD	323	-8347.79	12742.30	65.5	Pass
		Redund Diag 2 Bracing	ROHN 2.5 STD	329	-8347.79	12742.30	65.5	Pass
		Redund Diag 2 Bracing	ROHN 2.5 STD	334	-8320.73	12742.30	65.3	Pass
		Redund Diag 2 Bracing	ROHN 2.5 STD	344	-8320.73	12742.30	65.3	Pass
		Redund Diag 2	ROHN 2.5 STD	349	-8335.90	12742.30	65.4	Pass

tnxTower

**Centek Engineering Inc.** 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

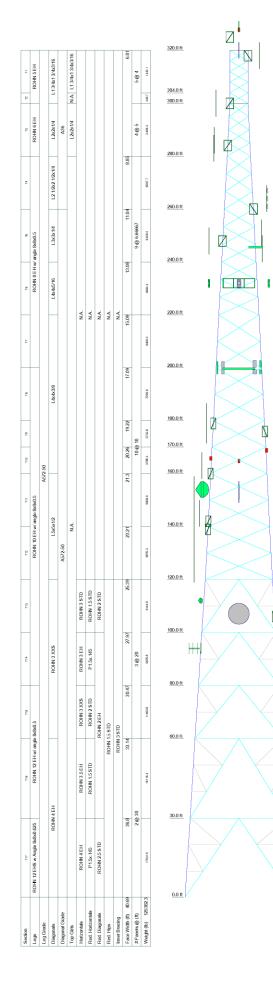
	Job		Page
		21007.82 - Colchester	94 of 96
	Project		Date
•		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
	Client		Designed by
		Verizon	TJL

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	${\it  extsf{@P_{allow}}\ lb}$	% Capacity	Pass Fail
T17	30 - 0	Bracing Redund Diag 2	ROHN 2.5 STD	369	-9127.65	11206.60	81.4	Pass
		Bracing Redund Diag 2	ROHN 2.5 STD	374	-9142.26	11206.60	81.6	Pass
		Bracing Redund Diag 2	ROHN 2.5 STD	380	-9142.26	11206.60	81.6	Pass
		Bracing Redund Diag 2 Bracing	ROHN 2.5 STD	385	-9112.37	11206.60	81.3	Pass
		Redund Diag 2 Bracing	ROHN 2.5 STD	395	-9112.37	11206.60	81.3	Pass
		Redund Diag 2 Bracing	ROHN 2.5 STD	400	-9127.65	11206.60	81.4	Pass
T13	120 - 100	Redund Hip 1 Bracing	ROHN 1.5 STD	228	-48.77	12066.60	0.4	Pass
		Redund Hip 1 Bracing	ROHN 1.5 STD	237	-40.90	12066.60	0.3	Pass
		Redund Hip 1 Bracing	ROHN 1.5 STD	239	-49.16	12066.60	0.4	Pass
T14	100 - 80	Redund Hip 1 Bracing	ROHN 1.5 STD	261	-48.04	9943.20	0.5	Pass
		Redund Hip 1 Bracing	ROHN 1.5 STD	270	-41.57	9943.20	0.4	Pass
		Redund Hip 1 Bracing	ROHN 1.5 STD	272	-48.03	9943.20	0.5	Pass
T15	80 - 60	Redund Hip 1 Bracing	ROHN 1.5 STD	294	-47.05	8378.50	0.6	Pass
		Redund Hip 1 Bracing	ROHN 1.5 STD	303	-39.88	8378.50	0.5	Pass
		Redund Hip 1 Bracing	ROHN 1.5 STD	305	-46.65	8378.50	0.6	Pass
T16	60 - 30	Redund Hip 1 Bracing	ROHN 1.5 STD	335	-171.64	15708.50	1.1	Pass
		Redund Hip 1 Bracing	ROHN 1.5 STD	350	-144.44	15708.50	0.9	Pass
		Redund Hip 1 Bracing	ROHN 1.5 STD	354	-176.09	15708.50	1.1	Pass
T17	30 - 0	Redund Hip 1 Bracing	ROHN 1.5 STD	386	-152.90	12924.00	1.2	Pass
		Redund Hip 1 Bracing	ROHN 1.5 STD	401	-125.74	12924.00	1.0	Pass
		Redund Hip 1 Bracing	ROHN 1.5 STD	405	-157.59	12924.00	1.2	Pass
T16	60 - 30	Redund Hip 2 Bracing	ROHN 2 STD	336	-93.30	8559.02	1.1	Pass
		Redund Hip 2 Bracing	ROHN 2 STD	351	-78.65	8559.02	0.9	Pass
		Redund Hip 2 Bracing	ROHN 2 STD	355	-95.53	8559.02	1.1	Pass
T17	30 - 0	Redund Hip 2 Bracing	ROHN 2 STD	387	-87.54	6941.18	1.3	Pass
		Redund Hip 2 Bracing	ROHN 2 STD	402	-73.06	6941.18	1.1	Pass
		Redund Hip 2 Bracing	ROHN 2 STD	406	-89.80	6941.18	1.3	Pass
T13	120 - 100	Redund Hip Diagonal 1 Bracing	ROHN 2.5 STD	229	-96.91	10450.60	0.9	Pass
		Redund Hip Diagonal 1 Bracing	ROHN 2.5 STD	238	-80.69	10450.60	0.8	Pass
		Redund Hip Diagonal 1 Bracing	ROHN 2.5 STD	240	-96.85	10450.60	0.9	Pass

*tnxTow* 

**Centek Engineering Inc.** 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

ver	Job		Page
		21007.82 - Colchester	95 of 96
ring Inc.	Project		Date
ford Rd.		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
06405 88-0580 8-8587	Client	Verizon	Designed by TJL


Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	${}^{  heta P_{allow}}_{lb}$	% Capacity	Pass Fail
T14	100 - 80	Redund Hip Diagonal	ROHN 2.5 STD	262	-90.97	9375.46	1.0	Pass
		1 Bracing Redund Hip Diagonal 1 Bracing	ROHN 2.5 STD	271	-79.57	9375.46	0.8	Pass
		Redund Hip Diagonal 1 Bracing	ROHN 2.5 STD	273	-88.26	9375.46	0.9	Pass
T15	80 - 60	Redund Hip Diagonal 1 Bracing	ROHN 3 STD	295	-102.06	16617.70	0.6	Pass
		Redund Hip Diagonal 1 Bracing	ROHN 3 STD	304	-95.74	16617.70	0.6	Pass
		Redund Hip Diagonal 1 Bracing	ROHN 3 STD	306	-102.10	16617.70	0.6	Pass
T16	60 - 30	Redund Hip Diagonal 1 Bracing	ROHN 2 STD	337	-348.52	5254.92	6.6	Pass
		Redund Hip Diagonal 1 Bracing	ROHN 2 STD	352	-279.76	5254.92	5.3	Pass
		Redund Hip Diagonal 1 Bracing	ROHN 2 STD	356	-361.06	5254.92	6.9	Pass
T17	30 - 0	Redund Hip Diagonal 1 Bracing	ROHN 2.5 STD	388	-315.01	10840.00	2.9	Pass
		Redund Hip Diagonal 1 Bracing	ROHN 2.5 STD	403	-249.83	10840.00	2.3	Pass
		Redund Hip Diagonal 1 Bracing	ROHN 2.5 STD	407	-327.60	10840.00	3.0	Pass
T16	60 - 30	Redund Hip Diagonal 2 Bracing	ROHN 2 STD	338	-141.66	3255.91	4.4	Pass
		Redund Hip Diagonal 2 Bracing	ROHN 2 STD	353	-141.17	3255.91	4.3	Pass
		Redund Hip Diagonal 2 Bracing	ROHN 2 STD	357	-143.06	3255.91	4.4	Pass
T17	30 - 0	Redund Hip Diagonal 2 Bracing	ROHN 2.5 STD	389	-139.42	6453.40	2.2	Pass
		Redund Hip Diagonal 2 Bracing	ROHN 2.5 STD	404	-139.18	6453.40	2.2	Pass
		Redund Hip Diagonal 2 Bracing	ROHN 2.5 STD	408	-140.45	6453.40	2.2	Pass
T13	120 - 100	Inner Bracing	ROHN 3 STD	241	-27.73	29370.40	0.4	Pass
		Inner Bracing	ROHN 3 STD	242	-23.50	29370.40	0.4	Pass
		Inner Bracing	ROHN 3 STD	243	-27.36	29370.40	0.4	Pass
T14	100 - 80	Inner Bracing	ROHN 3 STD	274	-27.51	24201.90	0.4	Pass
		Inner Bracing	ROHN 3 STD	275	-23.85	24201.90	0.4	Pass
		Inner Bracing	ROHN 3 STD	276	-26.44	24201.90	0.4	Pass
T15	80 - 60	Inner Bracing	ROHN 3 STD	307	-31.22	20393.40	0.4	Pass
		Inner Bracing	ROHN 3 STD	308	-28.68	20393.40	0.4	Pass
		Inner Bracing	ROHN 3 STD	309	-29.93	20393.40	0.4	Pass
T16	60 - 30	Inner Bracing	ROHN 3 STD	358	-59.88	17239.70	0.5	Pass
		Inner Bracing	ROHN 3 STD	359	-59.50	17239.70	0.5	Pass
		Inner Bracing	ROHN 3 STD	360	-60.21	17239.70	0.5	Pass
T17	30 - 0	Inner Bracing	ROHN 3 STD	409	-62.36	13981.00	0.5	Pass
		Inner Bracing	ROHN 3 STD	410	-62.04	13981.00	0.5	Pass
		Inner Bracing	ROHN 3 STD	411	-62.57	13981.00	0.6	Pass
							Summary	
						Leg (T16)	65.1	Pass
						Diagonal	95.5	Pass
						(T15)		

LUS(IIU)	05.1	1 433
Diagonal	95.5	Pass
(T15)		
Horizontal	91.6	Pass
(T16)		
Top Girt	4.7	Pass
(T3)		
Redund	95.4	Pass
Horz 1		

tran Torn on	Job		Page
tnxTower		21007.82 - Colchester	96 of 96
Centek Engineering Inc.	Project		Date
63-2 North Branford Rd.		320-ft Lattice Tower (CSP #50)	14:04:33 03/24/22
Branford, CT 06405	Client	Marinan	Designed by
Phone: (203) 488-0580 FAX: (203) 488-8587		Verizon	TJL

Section	Elevation	Component	Size	Critical	Р		%	Pass
No.	ft	Type		Element	lb	lb	Capacity	Fail
						Bracing		
						(T17)		
						Redund	68.6	Pass
						Horz 2		
						Bracing		
						(T16)		
						Redund	92.9	Pass
						Diag 1		
						Bracing		
						(T16)		
						Redund	81.6	Pass
						Diag 2		
						Bracing		
						(T17)		
						Redund Hip	1.2	Pas
						1 Bracing		
						(T17)		
						Redund Hip	1.3	Pas
						2 Bracing		
						(T17)		
						Redund Hip	6.9	Pas
						Diagonal 1		
						Bracing		
						(T16)		
						Redund Hip	4.4	Pas
						Diagonal 2		
						Bracing		
						(T16)		
						Inner	0.6	Pas
						Bracing		
						(T17)		
						Bolt Checks	93.8	Pass
						RATING =	95.5	Pas

Program Version 8.1.1.0 - 6/3/2021 File:J:/Jobs/2100700.WI/82_Colchester CT/05_Structural/Backup Documentation/Tnxtower/Modification 20200515_VZW-EMP_wCSP Update.eri



TYPE	ELEVATION	TYPE	ELEVATION
Lightning Rod 5/8x4" (Lightning Rod)	329	CBC78T-DS-43-2X Diplexer (Verizon)	232
Dual Lights (Beacon)	327	CBC78T-DS-43-2X Diplexer (Verizon)	232
PD128-1 (ECI-1)	325	PIROD 12 Lightweight T-Frame (ATI)	200
6' Side Mount Standoff (ECI-1)	325	PiROD 12' Lightweight T-Frame (ATT)	200
BA1012-0 (ECI-2)	320	PiROD 12 Lightweight T-Frame (ATT)	200
6' Side Mount Standoff (ECI-2)	320	7770.00 (ATI)	200
ANT 450F6 (ECI-3)	318	HPA-65R-BUU-H8 Panel (ATT)	200
4%4" Pipe Mount (ECI-3)	318	RRUS-32 (ATI)	200
SC479-HF1LDF (ECI-4)	300	RRUS-11 (ATI)	200
6' Side Mount Standoff (ECI-4)	300	7770.00 (ATI)	200
PD340-1 (ECI-5)	290	HPA-65R-BUU-H8 Panel (ATT)	200
6' Side Mount Standoff (ECI-5)	290	RRUS-32 (ATI)	200
DB809T3E-XC (ECI-6)	286	RRUS-11 (ATI)	200
6' Side Mount Standoff (ECI-7)	284	7770.00 (ATI)	200
SC479-HF1LDF(D00I-E6085) (Inverted) (ECI-7)	283	HPA-65R-BUU-H6 Panel (ATT)	200
	264	RRUS-32 (ATI)	200
6' Side Mount Standoff (ECI-8)	260	RRUS-11 (ATI)	200
SC479-HF1LDF (ECI-10)	251	DC6-48-60-0-8C Squid / Surge Arrestor (ATI)	200
PD1142-1 (ECI-14)	248	STK-U Stiffener Side Arm Attachment (ATI)	200
6' Side Mount Standoff (ECI-14)	248	STK-U Stiffener Side Arm Attachment (ATI)	200
430-94C-09168-M-11048 TTA (ECI-11)	247	STK-U Stiffener Side Arm Attachment (ATT)	200
Sabre T-Boom (1) (ECI-10,11,12,13)	246	STK-U Stiffener Side Arm Attachment (ATI)	200
SC479-HF1LDF(D00I-E6085) (Inverted) (ECI-13)	245	STK-U Stiffener Side Arm Attachment (AT1)	200
SC479-HF1LDF(D00I-E6085) (Inverted) (ECI-12)	245	STK-U Stiffener Side Arm Attachment (ATT)	200
6' Side Mount Standoff (ECI-15)	238	Pirod 4' Side Mount Standoff (1) (ECI-50)	179
531-70HD Exposed Dipole Antenna (ECI-15)	238	1151-3 (ECI-50)	179
Valmont VFA-10-U V-Frame (Verizon)	232	DB586-Y (ECI-51)	177
Valmont VFA-10-U V-Frame (Verizon)	232	430-94C-09168-M-11048 TTA (ECI-52)	176
Valmont VFA-10-U V-Frame (Verizon)	232	Pirod 4' Side Mount Standoff (1) (ECI-53,52,51)	176
JAHH-65B-R3B Panel Antenna (Verizon-AWS)	232	DB586-Y (inverted) (ECI-53)	175
JAHH-65B-R3B Panel Antenna (Verizon-PCS)	232	L-810 Obstruction Lighting (1) (ECI-54)	168
LNX-6512DS-VTM (Verizon-850)	232	L-810 Obstruction Lighting (1) (ECI-55)	165
MT6407-77A (Verizon - Proposed)	232	L-810 Obstruction Lighting (1) (ECI-56)	164
	232	Telewave ANT220F2 - Omni Antenna (Eversource)	163
(Verizon-PCS/AWS)	200	Sitepro1 USF-4U Mount Assembly (Ca = 1.4 assumed) (Eversource)	160
	232		
	232	5'3"x4" Pipe Mount (ECI-58a (Dish Support))	154
DB-B1-6C-12AB-0Z / DC-3315-PF-48 Dist. Box (Verizon)	232	Commscope PAR6-59W-PXA/A (ECI-58)	154
(* ======)	232	ANT450F6 (ECI-57)	153
	232	5'3*x4" Pipe Mount (ECI-57)	153
	10 N	Telewave ANT220F2 - Omni Antenna (Eversource)	145
	232	Sitepro1 USF-4U Mount Assembly (Ca = 1.4 assumed) (Eversource)	142
	232		490
BSAMNT-SBS-2-2 (JAHH Antenna Bracket (for 2)) (Verizon-PCS/AWS)	232	DB212-1 (ECI-59)	139
	232	PD156S (ECI-60)	139
	232	4" Side Mount Standoff (ECI-60_59)	139
	232	3" Wide Ice Shield (for Dish Antennas) (Assume Ca=2.0) (ECI-61a)	117
<u>, , , , , , , , , , , , , , , , , , , </u>	232	8' Wide Ice Shield (for Dish Antennas) (Assume Ca=2.0) (ECI-63a (Dish Ice Shield))	115
JAHH-65B-R3B Panel Antenna (Verizon-AVVS) JAHH-65B-R3B Panel Antenna (Verizon-PCS)	232	5'3"x4" Pipe Mount (ECI-61a (Dish Support))	112
	232	Andrew 2" wRadome (ECI-61)	112
	232	PA8-65 (ECI-63)	107
BSAMNT-SBS-2-2 (JAHH Antenna Bracket (for 2)) (Verizon-PCS/AWS)	232	5'3"x4" Pipe Mount (ECI-63 (Dish Support)) Pirod 4" Side Mount Standoff (1) (ECI-62)	107
B2/B66A RRH (Verizon RRH)	232	PD458 (ECI-62)	106
	232	PD688S-4 (ECI-66)	94
B5/B13 RRH (Verizon RRH)			

		MATERIAL	STRENGTH		
GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi

TOWER DESIGN NOTES

MAX. CORNER REACTIONS AT BASE: DOWN: 932737 lb SHEAR: 122027 lb

MOMENT 30645 kip-ft

MOMENT 24339 kip-ft

UPLIFT: -734186 lb SHEAR: 101814 lb

AXIAL 189255 lb

.1

TORQUE 577 kip-ft 90 mph WIND - 0.5000 in ICE

AXIAL 140925 lb

TORQUE 343 kip-ft REACTIONS - 90 mph WIND

SHEAR 202328 lb_

SHEAR 159086 lb_

 $\bigtriangleup$ 

Tower designed for a 90 mph basic wind in accordance with the TIA/EIA-222-F Standard.
 Tower is also designed for a 90 mph basic wind with 0.50 in ice.
 Sueflections are based upon a 90 mph wind.
 PoPetra Displacement Effects are not applicable to this tower for this case (TIA-222-H Section 3.5)
 TOWER RATING: 137.5%

Centek Engineering Inc.	^{Job:} 21007.82 - Colche	ster	
63-2 North Branford Rd.	Project: 320-ft Lattice Tower	CSP #50)	
Branford, CT 06405	Client: Verizon	Drawn by: TJL	App'd:
Phone: (203) 488-0580	Code: TIA/EIA-222-F	Date: 03/24/22	Scale: NTS
FAX: (203) 488-8587	Path: Junit107101918 Colours 07/5 Instantiadaptics	and the second state of th	Dwg No. E-1

*tnxTower* 

#### **Centek Engineering Inc.** 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21007.82 - Colchester	1 of 4
Project	320-ft Lattice Tower (CSP #50)	Date 14:11:22 03/24/22
Client	Verizon	Designed by TJL

### Load Combinations

Comb.	Description
No.	<i>T</i>
1	Dead Only
2	Dead+Wind 0 deg - No Ice
3	Dead+Wind 30 deg - No Ice
4	Dead+Wind 45 deg - No Ice
5	Dead+Wind 60 deg - No Ice
6	Dead+Wind 90 deg - No Ice
7	Dead+Wind 120 deg - No Ice
8	Dead+Wind 135 deg - No Ice
9	Dead+Wind 150 deg - No Ice
10	Dead+Wind 180 deg - No Ice
11	Dead+Wind 210 deg - No Ice
12	Dead+Wind 225 deg - No Ice
13	Dead+Wind 240 deg - No Ice
14	Dead+Wind 270 deg - No Ice
15	Dead+Wind 300 deg - No Ice
16	Dead+Wind 315 deg - No Ice
17	Dead+Wind 330 deg - No Ice
18	Dead+Ice+Temp
19	Dead+Wind 0 deg+Ice+Temp
20	Dead+Wind 30 deg+Ice+Temp
21	Dead+Wind 45 deg+Ice+Temp
22	Dead+Wind 60 deg+Ice+Temp
23	Dead+Wind 90 deg+Ice+Temp
24	Dead+Wind 120 deg+Ice+Temp
25	Dead+Wind 135 deg+Ice+Temp
26	Dead+Wind 150 deg+Ice+Temp
27	Dead+Wind 180 deg+Ice+Temp
28	Dead+Wind 210 deg+Ice+Temp
29	Dead+Wind 225 deg+Ice+Temp
30	Dead+Wind 240 deg+Ice+Temp
31	Dead+Wind 270 deg+Ice+Temp
32	Dead+Wind 300 deg+Ice+Temp
33	Dead+Wind 315 deg+Ice+Temp
34	Dead+Wind 330 deg+Ice+Temp
35	Dead+Wind 0 deg - Service
36	Dead+Wind 30 deg - Service
37	Dead+Wind 45 deg - Service
38	Dead+Wind 60 deg - Service
39	Dead+Wind 90 deg - Service
40	Dead+Wind 120 deg - Service
41	Dead+Wind 135 deg - Service
42	Dead+Wind 150 deg - Service
43	Dead+Wind 180 deg - Service
44	Dead+Wind 210 deg - Service
45	Dead+Wind 225 deg - Service
46	Dead+Wind 240 deg - Service
47	Dead+Wind 270 deg - Service
48	Dead+Wind 300 deg - Service
49	Dead+Wind 315 deg - Service
50	Dead+Wind 330 deg - Service

tn

*Centek* 63-2 Bra Phor FA2

nxTower	Job	21007.82 - Colchester	Page 2 of 4
ek Engineering Inc. -2 North Branford Rd.	Project	320-ft Lattice Tower (CSP #50)	Date 14:11:22 03/24/22
Branford, CT 06405 tone: (203) 488-0580 AX: (203) 488-8587	Client	Verizon	Designed by TJL

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	O
T1	320 - 304	19.277	40	0.4393	0.2011
T2	304 - 300	17.789	40	0.4358	0.2020
Т3	300 - 280	17.417	40	0.4334	0.2021
T4	280 - 260	15.588	40	0.4205	0.2022
Т5	260 - 240	13.790	40	0.4125	0.2000
T6	240 - 220	12.012	40	0.4000	0.1876
T7	220 - 200	10.289	40	0.3814	0.1747
T8	200 - 180	8.661	40	0.3557	0.1632
Т9	180 - 170	7.114	40	0.3292	0.1480
T10	170 - 160	6.377	40	0.3142	0.1395
T11	160 - 140	5.667	40	0.2981	0.1308
T12	140 - 120	4.395	40	0.2614	0.1191
T13	120 - 100	3.276	40	0.2210	0.1065
T14	100 - 80	2.345	40	0.1814	0.0876
T15	80 - 60	1.590	40	0.1397	0.0721
T16	60 - 30	1.020	35	0.1016	0.0587
T17	30 - 0	0.352	35	0.0462	0.0284

### **Critical Deflections and Radius of Curvature - Service Wind**

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
329.00	Lightning Rod 5/8x4'	40	19.277	0.4393	0.2011	Inf
327.00	Dual Lights	40	19.277	0.4393	0.2011	Inf
325.00	PD128-1	40	19.277	0.4393	0.2011	Inf
320.00	BA1012-0	40	19.277	0.4393	0.2011	Inf
318.00	ANT450F6	40	19.091	0.4391	0.2012	Inf
300.00	SC479-HF1LDF	40	17.417	0.4334	0.2021	91951
290.00	PD340-1	40	16.497	0.4266	0.2022	97847
286.00	DB809T3E-XC	40	16.132	0.4240	0.2022	118949
284.00	6' Side Mount Standoff	40	15.951	0.4227	0.2022	133294
283.00	SC479-HF1LDF(D00I-E6085)	40	15.860	0.4221	0.2022	141608
	(Inverted)					
264.00	PD440-2	40	14.148	0.4141	0.2011	299212
260.00	6' Side Mount Standoff	40	13.790	0.4125	0.2000	317572
251.00	SC479-HF1LDF	40	12.986	0.4077	0.1953	164246
248.00	PD1142-1	40	12.719	0.4058	0.1933	134969
247.00	430-94C-09168-M-11048 TTA	40	12.630	0.4051	0.1926	127399
246.00	Sabre T-Boom (1)	40	12.542	0.4044	0.1919	120633
245.00	SC479-HF1LDF(D00I-E6085)	40	12.453	0.4037	0.1912	114550
	(Inverted)					
238.00	531-70HD Exposed Dipole Antenna	40	11.836	0.3985	0.1862	81854
232.00	Valmont VFA-10-U V-Frame	40	11.313	0.3935	0.1822	62732
200.00	PiROD 12' Lightweight T-Frame	40	8.661	0.3557	0.1632	68208
179.00	1151-3	40	7.040	0.3278	0.1472	47064
177.00	DB586-Y	40	6.891	0.3248	0.1455	48557
176.00	Pirod 4' Side Mount Standoff (1)	40	6.816	0.3233	0.1447	49650
175.00	DB586-Y (inverted)	40	6.743	0.3219	0.1438	50887
168.00	L-810 Obstruction Lighting (1)	40	6.232	0.3110	0.1377	40804
165.00	L-810 Obstruction Lighting (1)	40	6.017	0.3063	0.1350	29594
164.00	L-810 Obstruction Lighting (1)	40	5.946	0.3047	0.1342	26966
163.00	Telewave ANT220F2 - Omni Antenna	40	5.875	0.3030	0.1333	24881
160.00	Sitepro1 USF-4U Mount Assembly (Ca = 1.4 assumed)	40	5.667	0.2981	0.1308	21485
154.00	Commscope PAR6-59W-PXA/A	40	5.266	0.2877	0.1266	23519

Centek Engineering Inc. 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.82 - Colchester	3 of 4
Project	Date
320-ft Lattice Tower (CSP #50)	14:11:22 03/24/22
Client	Designed by
Verizon	TJL

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
153.00	ANT450F6	40	5.201	0.2859	0.1260	24270
145.00	Telewave ANT220F2 - Omni	40	4.697	0.2711	0.1217	32593
	Antenna					
142.00	Sitepro1 USF-4U Mount Assembly	40	4.515	0.2653	0.1202	36821
	(Ca = 1.4  assumed)					
139.00	DB212-1	40	4.335	0.2594	0.1186	38256
117.00	3' Wide Ice Shield (for Dish	40	3.124	0.2151	0.1039	23417
	Antennas) (Assume Ca=2.0)					
115.00	8' Wide Ice Shield (for Dish	40	3.026	0.2111	0.1021	24104
	Antennas) (Assume Ca=2.0)					
112.00	Andrew 2' w/Radome	40	2.881	0.2052	0.0992	25298
107.00	PA8-65	40	2.650	0.1954	0.0943	27575
106.00	Pirod 4' Side Mount Standoff (1)	40	2.606	0.1934	0.0934	28080
94.00	PD688S-4	40	2.099	0.1689	0.0824	27410

### **Maximum Tower Deflections - Design Wind**

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	320 - 304	24.109	24	0.5508	0.3322
T2	304 - 300	22.244	24	0.5461	0.3330
T3	300 - 280	21.777	24	0.5431	0.3329
T4	280 - 260	19.486	24	0.5262	0.3316
T5	260 - 240	17.236	24	0.5158	0.3264
T6	240 - 220	15.014	24	0.4998	0.3074
T7	220 - 200	12.866	24	0.4761	0.2868
T8	200 - 180	10.838	24	0.4438	0.2685
T9	180 - 170	8.911	24	0.4107	0.2451
T10	170 - 160	7.992	24	0.3921	0.2319
T11	160 - 140	7.107	24	0.3720	0.2183
T12	140 - 120	5.520	24	0.3264	0.1999
T13	120 - 100	4.122	24	0.2761	0.1797
T14	100 - 80	2.958	24	0.2267	0.1486
T15	80 - 60	2.011	24	0.1749	0.1219
T16	60 - 30	1.296	19	0.1272	0.0992
T17	30 - 0	0.453	19	0.0580	0.0479

### **Critical Deflections and Radius of Curvature - Design Wind**

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	o	o	ft
329.00	Lightning Rod 5/8x4'	24	24.109	0.5508	0.3322	Inf
327.00	Dual Lights	24	24.109	0.5508	0.3322	Inf
325.00	PD128-1	24	24.109	0.5508	0.3322	Inf
320.00	BA1012-0	24	24.109	0.5508	0.3322	Inf
318.00	ANT450F6	24	23.876	0.5506	0.3324	Inf
300.00	SC479-HF1LDF	24	21.777	0.5431	0.3329	71434
290.00	PD340-1	24	20.624	0.5342	0.3323	74612
286.00	DB809T3E-XC	24	20.167	0.5308	0.3321	89057
284.00	6' Side Mount Standoff	24	19.939	0.5291	0.3319	98583

*tnx* 

Centek En 63-2 Nort Branfor Phone: (2 FAX: (2)

T	Job		Page
:Tower		21007.82 - Colchester	4 of 4
E <b>ngineering Inc.</b> orth Branford Rd.	Project	320-ft Lattice Tower (CSP #50)	Date 14:11:22 03/24/22
ford, CT 06405 (203) 488-0580 (203) 488-8587	Client	Verizon	Designed by TJL

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
283.00	SC479-HF1LDF(D00I-E6085)	24	19.826	0.5284	0.3318	103974
	(Inverted)					
264.00	PD440-2	24	17.684	0.5179	0.3286	213257
260.00	6' Side Mount Standoff	24	17.236	0.5158	0.3264	226095
251.00	SC479-HF1LDF	24	16.231	0.5096	0.3192	118744
248.00	PD1142-1	24	15.897	0.5071	0.3162	98439
247.00	430-94C-09168-M-11048 TTA	24	15.787	0.5063	0.3152	93130
246.00	Sabre T-Boom (1)	24	15.676	0.5054	0.3141	88365
245.00	SC479-HF1LDF(D00I-E6085)	24	15.565	0.5045	0.3130	84064
	(Inverted)					
238.00	531-70HD Exposed Dipole Antenna	24	14.795	0.4977	0.3051	61383
232.00	Valmont VFA-10-U V-Frame	24	14.143	0.4913	0.2983	48359
200.00	PiROD 12' Lightweight T-Frame	24	10.838	0.4438	0.2685	54651
179.00	1151-3	24	8.818	0.4089	0.2438	38333
177.00	DB586-Y	24	8.632	0.4053	0.2412	39601
176.00	Pirod 4' Side Mount Standoff (1)	24	8.540	0.4035	0.2399	40521
175.00	DB586-Y (inverted)	24	8.448	0.4016	0.2386	41563
168.00	L-810 Obstruction Lighting (1)	24	7.811	0.3882	0.2291	33168
165.00	L-810 Obstruction Lighting (1)	24	7.543	0.3822	0.2249	23915
164.00	L-810 Obstruction Lighting (1)	24	7.455	0.3802	0.2235	21761
163.00	Telewave ANT220F2 - Omni	24	7.367	0.3782	0.2222	20057
	Antenna					
160.00	Sitepro1 USF-4U Mount Assembly	24	7.107	0.3720	0.2183	17288
	(Ca = 1.4  assumed)					
154.00	Commscope PAR6-59W-PXA/A	24	6.606	0.3591	0.2117	18937
153.00	ANT450F6	24	6.525	0.3569	0.2108	19548
145.00	Telewave ANT220F2 - Omni	24	5.897	0.3384	0.2039	26340
	Antenna					
142.00	Sitepro1 USF-4U Mount Assembly	24	5.669	0.3312	0.2015	29807
	(Ca = 1.4  assumed)					
139.00	DB212-1	24	5.445	0.3239	0.1991	30982
117.00	3' Wide Ice Shield (for Dish	24	3.932	0.2687	0.1755	18831
	Antennas) (Assume Ca=2.0)					
115.00	8' Wide Ice Shield (for Dish	24	3.809	0.2638	0.1725	19396
	Antennas) (Assume Ca=2.0)					
112.00	Andrew 2' w/Radome	24	3.629	0.2565	0.1679	20380
107.00	PA8-65	24	3.340	0.2442	0.1598	22262
106.00	Pirod 4' Side Mount Standoff (1)	24	3.284	0.2418	0.1582	22681
94.00	PD688S-4	24	2.650	0.2112	0.1397	22116

Program Version 8.1.1.0 - 6/3/2021 File:J:/Jobs/2100700.WI/82_Colchester CT/05_Structural/Backup Documentation/Tnxtower/Twist and Sway/Colchester #50 TIA-222-F.eri



Location:

Rev. 0: 3/24/22

#### Anchor Bolt Analysis

320-ft Lattice Tower Colchester, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 21007.82

#### Anchor Bolt Analysis:

#### Input Data:

Tower Reactions:

Tension Force =	Tension := 743 kips	(Input From tnxTower)
Compression Force =	Compression := 945 kips	(Input From tnxTower)
Shear Force =	Shear := 130 kips	(Input From tnxTower)

#### Anchor Bolt Data:

ASTMA354 Grade BC	Per ROHN Drawing A971600 date	d 9/23/1999
Number of Anc hor Bolts =	N := 24	(User Input)
Bolt Ultimate Strength =	F _u := 125⋅ksi	(User Input)
Bolt Yield Strength =	F _y ≔ 109 ksi	(User Input)
Bolt Modulus =	E := 29000 ksi	(User Input)
Diameter of Anchor Bolts =	D := 1.00 in	(User Input)
Threads per Inch =	n:= 8	(User Input)
Length from Top of Pier to Bottom of Leveling Nut =	L _{ar} := 0 in	(User Input)



Location:

Rev. 0: 3/24/22

Anchor Bolt Analysis

320-ft Lattice Tower Colchester, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 21007.82

#### Anchor Bolt Analysis:

Calculated Anchor Bolt Properties:

GrossArea of Bolt=

NetArea of Bdt =

 $A_g := \frac{\pi}{4} \cdot D^2 = 0.785 \cdot in^2$  $A_n := \frac{\pi}{4} \cdot \left( D - \frac{0.9743 \cdot in}{n} \right)^2 = 0.606 \cdot in^2$  $\mathsf{D}_{\mathsf{n}} \coloneqq \frac{2 \cdot \sqrt{\mathsf{A}_{\mathsf{n}}}}{\sqrt{\pi}} = 0.878 \cdot \mathsf{in}$ 

Net Diameter =

Radius of Gyration of Bolt =

Elastic Section Modulus of Bolt =

$$r := \frac{D_{n}}{4} = 0.22 \cdot in$$

$$S_{x} := \frac{\pi \cdot D_{n}^{3}}{32} = 0.066 \cdot in^{3}$$

$$Z_{x} := \frac{D_{n}^{3}}{6} = 0.113 \cdot in^{3}$$

Plastic Section Modulus of Bolt =

#### Anchor Bolt Design Strength:

Resistance Factor for Flexure =	$\phi_{f} \coloneqq 0.9$
Resistance Factor for Compression =	$\phi_{c} \coloneqq 0.9$
Resistance Factor for Tension =	$\phi_t \coloneqq 0.75$
Resistance Factor for Shear =	$\phi_{V} \coloneqq 0.75$
Design Tensile Strength =	$\Phi R_{nt} := \varphi_t \cdot F_u \cdot A_n = 56.8 \cdot k$
Design Compression Strength =	$\Phi R_{nc} \coloneqq \varphi_c \cdot F_y \cdot A_g = 77 \cdot k$
Design Shear Strength (Tension) =	$\Phi R_{nv} := \varphi_v \cdot 0.5 F_u \cdot A_g = 36.8 \cdot k$
Design Shear Strength (Compression) =	$\Phi R_{nvc} \coloneqq \varphi_c \cdot 0.6F_y \cdot A_g \cdot 0.75 = 34.7 \cdot k$



Branford, CT 06405 F: (203) 488-8587

Location:

Rev. 0: 3/24/22

Anchor Bolt Analysis

320-ft Lattice Tower Colchester, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 21007.82

Check Anc hor Bolt Tension Force:

Maximum Tensile Force =

$$P_{ut} := \frac{Tension}{N} = 31 \cdot kips$$

Maximum Compressive Force =

$$P_{uc} := \frac{Compression}{N} = 39.4 \text{ kips}$$

Maximum Shear Force =

Condition1 =

$$\text{Condition1} := \text{ if} \left[ \left( \frac{\mathsf{P}_{ut}}{\Phi\mathsf{R}_{nt}} \right)^2 + \left( \frac{\mathsf{V}_u}{\Phi\mathsf{R}_{nv}} \right)^2 \right] \le 1.00, "\mathsf{OK"}, "\mathsf{Overstressed"} \right]$$

Condition1 = "OK"

 $V_u := \frac{Shear}{N} = 5.4 \cdot kips$ 

Condition2 =

Condition2 := if  $\left[ \left( \frac{P_{uc}}{\Phi R_{nc}} \right) + \left( \frac{V_u}{\Phi R_{nvc}} \right)^2 \right] \le 1.00, "OK", "Overstressed"$ 

Condition2 = "OK"

 $max \!\!\left[\!\left(\frac{\mathsf{P}_{ut}}{\Phi\mathsf{R}_{nt}}\!\right)^{2} + \left(\frac{\mathsf{V}_{u}}{\Phi\mathsf{R}_{nv}}\!\right)^{2}, \!\left(\frac{\mathsf{P}_{uc}}{\Phi\mathsf{R}_{nc}}\right) + \left(\frac{\mathsf{V}_{u}}{\Phi\mathsf{R}_{nvc}}\!\right)^{2}\!\right] = 53.5 \cdot \%$ 

Bolt % of Capacity =



#### Location:

Rev. 0: 3/24/22

#### FOUNDATION ANALYSIS

320-ft Lattice Tower Colchester, MA

Prepared by: T.J.L Checked by: C.F.C. Job no. 21007.82

Caisson Foundation:		
Input Data:		
Tower Data		
Uplift=	Uplift:= 743 kips	(User Input)
Compression =	Comp := 945 kips	(User Input)
Shear Force =	Shear := 130 kips	(User Input)
Tower Height =	$H_t := 320 \cdot ft$	(User Input)
Footing Data:		
Length of Caisson =	$L_c := 35.5 \cdot ft$	(User Input)
Extension of Caisson Above Grade =	$L_{cag} := 0.5 \cdot ft$	(User Input)
Diameter of Caisson =	$d_{c} := 7.5 \cdot ft$	(User Input)
Length of Caisson Above Wate Table =	$L_{c.AWT} := 10.5 \text{ ft}$	(User Input)
Length of Caisson Above Wate Table =	$L_{c.BWT} := 25 \cdot ft$	(User Input)
Conrete Pad Width =	Pad _w := 12⋅ft	(User Input - URS Mod 7/13/12)
Conrete Pad Depth =	Pad _d := 4⋅ft	(User Input - URS Mod 7/13/12)
Material Properties:		
Concrete Compressive Strength =	f _c := 4000 ⋅ psi	(User Input)
Steel Reinforcment Yield Strength =	f _y ≔ 60000 psi	(User Input)
Ultimate Skin Friction (Above WaterTable) =	$\mu_1 := 0.76 \cdot ksf$	(User Input)
Ultimate Skin Friction (Below Water Table) =	$\mu_2 := 1.4 \cdot ksf$	(User Input)
Ultimate Soil Bearing Capacity (at Bot of Caisson) =	q _{u1} := 13400 psf	(User Input)
Ultimate Soil Bearing Capacity (at Bot of Pad) =	$q_{u2} := 4000 \cdot psf$	(User Input)
Unit Weight of Soil =	γ _{soil} ∶= 120 pcf	(User Input)
Unit Weight of Concrete =	$\gamma_{conc} := 150 \text{ pcf}$	(User Input)
Depth to Neglect =	n := 4∙ft	(User Input)
Resistance Factor for Bearing =	$^{\Phi}$ sBearing := 0.75	(TIA-222-H 9.7)
Resistance Factor for Friction =	$\Phi_{sFriction} \coloneqq 0.75$	(TIA-222-H 9.7)



Branford, CT 06405 F: (203) 488-8587

Location:

Rev. 0: 3/24/22

#### FOUNDATION ANALYSIS

320-ft Lattice Tower Colchester, MA

Prepared by: T.J.L Checked by: C.F.C. Job no. 21007.82

#### **Calculated Properties:**

Adjusted Concrete Unit Weight =

Weight of Concrete Caisson (no water) =

Weight of Concrete Caisson (water) =

Weight of Concrete Pad =

Bearing Area of Concrete Pad =

$$WT_{c.comp} := \frac{\pi}{4} \cdot \left( d_{c}^{2}L_{c} \right) \cdot \gamma_{conc} = 235.251 \cdot kip$$

$$WT_{c.uplift} := \frac{\pi}{4} \cdot \left[ \left( d_{c}^{2}L_{c.AWT} \right) \cdot \gamma_{conc} + \left( d_{c}^{2}L_{c.BWT} \right) \cdot \gamma_{c} \right] = 166.333 \cdot kip$$

$$WT_{pad} := \left[ Pad_{w}^{2} - \frac{\pi}{4} \cdot \left( d_{c}^{2} \right) \right] \cdot Pad_{d'}\gamma_{conc} = 59.893 \cdot kip$$

$$A_{pad} :- \left[ Pad_{w}^{2} - \frac{\pi}{4} \cdot \left( d_{c}^{2} \right) \right] - 99.821$$

**Check Uplift:** 

Uplift Resistance from Concrete Weight =

Uplift Resistance from Skin Friction =

Total Uplift Resistance =

Uplift Check =

 $Uplift_{conc} := (WT_{c.uplift} + WT_{pad}) \cdot 0.9 = 203.603 \cdot kips$  $\text{Uplift}_{SF} \coloneqq \Phi_{sFriction} \cdot \pi \cdot d_{c} \cdot \left[ \left( L_{c,AWT} - L_{cag} - n \right) \cdot \mu_{1} + L_{c,BWT} \cdot \mu_{2} \right] = 699 \cdot \text{kips}$  $\text{Uplift}_{R} := \text{Uplift}_{conc} + \text{Uplift}_{SF} = 902.686 \cdot \text{kips}$ 

 $\frac{\text{Uplift}}{\text{Uplift}_{R}} = 82.31 \cdot \%$ 

 $\gamma_{c} \coloneqq \gamma_{conc} - 62.4 pcf = 87.6 \cdot pcf$ 

$$Uplift_Check := if\left(\frac{Uplift}{Uplift} \ge 1.0, "Okay", "No Good"\right)$$

Total Compression Force =

Compression Resistance from Bearing =

Compression Resistance from Skin Friction =

$$\begin{split} & \text{Comp}_{tot} \coloneqq \text{WT}_{c.\,comp} + \text{Comp} + \text{WT}_{pad} = 1240 \cdot \text{kips} \\ & \text{Comp}_{bearing} \coloneqq \Phi_{sBearing} \cdot \left(\frac{\pi}{4} \cdot d_c^{-2} \cdot q_{u1} + A_{pad} \cdot q_{u2}\right) = 743 \cdot \text{kips} \\ & \text{Comp}_{SF} \coloneqq \Phi_{sFriction} \cdot \pi \cdot d_c \cdot \left[ \left( L_{c.AWT} - L_{cag} - n \right) \cdot \mu_1 + L_{c.BWT} \cdot \mu_2 \right] = 699 \cdot \text{kips} \\ & \text{Comp}_{R} \coloneqq \text{Comp}_{bearing} + \text{Comp}_{SF} = 1443 \cdot \text{kips} \end{split}$$

Total Compression Resistance =

 $\frac{\text{Comp}_{\text{tot}}}{2} = 85.97 \cdot \%$ CompR

Compression_Check := if  $\left( \frac{Comp_R}{Comp_{tot}} \ge 1.0, "Okay", "No Good" \right)$ Compression_Check = "Okay"





Maser Consulting Connecticut 20 Alexander Drive, 2nd Floor Wallingford, CT 06492 860.395.0055 peter.albano@colliersengineering.com

### **Antenna Mount Analysis Report and PMI Requirements**

Mount Analysis

SMART Tool Project #: 10058930 Maser Consulting Connecticut Project #: 21777749A

July 2, 2021

Site Information

Site ID: Site Name: Carrier Name: Address: 467126-VZW / COLCHESTER CT COLCHESTER CT Verizon Wireless 11 Munn Road Colchester, Connecticut 06415 New London County 41.592500° -72.321111°

Latitude: Longitude:

Structure Information

*Tower Type: Mount Type:*  300-Ft Self Support 12.00-Ft Sector Frame

FUZE ID # 16281612

### Analysis Results

Sector Frame: 62.8% Pass*

*Results valid after hardware upgrades noted in the PMI Requirements are installed.

***Contractor PMI Requirements:

Included at the end of this MA report Available & Submitted via portal at https://pmi.vzwsmart.com Contractor - Please Review Specific Site PMI Requirements Upon Award Requirements also Noted on Mount Modification Drawings Requirements may also be Noted on A & E drawings

Report Prepared By: Frank Centone



### Executive Summary:

The objective of this report is to determine the capacity of the antenna support mount at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards. Any modification listed under Sources of Information was assumed completed and was included in this analysis.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

### Sources of Information:

Document Type	Remarks
Radio Frequency Data Sheet (RFDS)	Verizon RFDS, Site ID: 323606, dated June 11, 2021
Mount Mapping Report	Elite ICT, Site ID: 50, dated April 22, 2021

### Analysis Criteria:

Codes and Standards:	ANSI/TIA-222-H	
Wind Parameters:	Basic Wind Speed (Ultimate 3-sec. Gust), V _{ULT} : Ice Wind Speed (3-sec. Gust): Design Ice Thickness: Risk Category: Exposure Category: Topographic Category: Topographic Feature Considered: Topographic Method: Ground Elevation Factor, K _e :	121 mph 50 mph 1.00 in II B 1 N/A N/A 0.979
Seismic Parameters:	S _S : S ₁ :	0.204 0.055
Maintenance Parameters:	Wind Speed (3-sec. Gust): Maintenance Live Load, Lv: Maintenance Live Load, Lm:	30 mph 250 lbs. 500 lbs.
Analysis Software:	RISA-3D (V17)	

### Final Loading Configuration:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status
		3	Samsung	MT6407-77A	Added
		6	Commscope	JAHH-65B-R3B	
		3	Andrew	LNX-6512DS-VTM	
219.50	220.00	3	Commscope	CBC78T-DS-43-2X	Botained
		1	Raycap	RHSDC-6627-PF-48*	Retained
		3	Samsung	B2/B66A RRH-BR049	
		3	Samsung	B5/B13 RHH-BR04C	

The following equipment has been considered for the analysis of the mounts:

* Equipment to be flush mounted directly to the Self Support. They are not mounted on the sector mounts and are not included in this mount analysis.

The recent mount mapping reported existing OVP units. It is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required unless replacing an existing OVP.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

### **Standard Conditions:**

- All engineering services are performed on the basis that the information provided to Maser Consulting Connecticut and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation. Any deviation from the loading locations specified in this report shall be communicated to Maser Consulting Connecticut to verify deviation will not adversely impact the analysis.
- 2. Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

- 3. For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped by Maser Consulting Connecticut, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- 4. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.

- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.
- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Maser Consulting Connecticut is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.
- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:
  - Channel, Solid Round, Angle, Plate
  - HSS (Rectangular)
  - o Pipe
  - Threaded Rod
  - Bolts

ASTM 500 (Gr. B-46) ASTM A53 (Gr. B-35) F1554 (Gr. 36) ASTM A325

ASTM A36 (Gr. 36)

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Maser Consulting Connecticut.

### Analysis Results:

Component	Utilization %	Pass/Fail
Tie Back	62.8%	Pass
Standoff Vertical	21.0%	Pass
Standoff Diagonal	26.0%	Pass
Standoff Mast Pipe	39.8%	Pass
Standoff Plate	52.9%	Pass
Standoff Horizontal	25.0%	Pass
Mast Pipe	15.9%	Pass
Antenna Pipe	17.4%	Pass
Face Horizontal	17.2%	Pass
Connection Check	49.9%	Pass

Structure Rating – (Controlling Utilization of all Components)

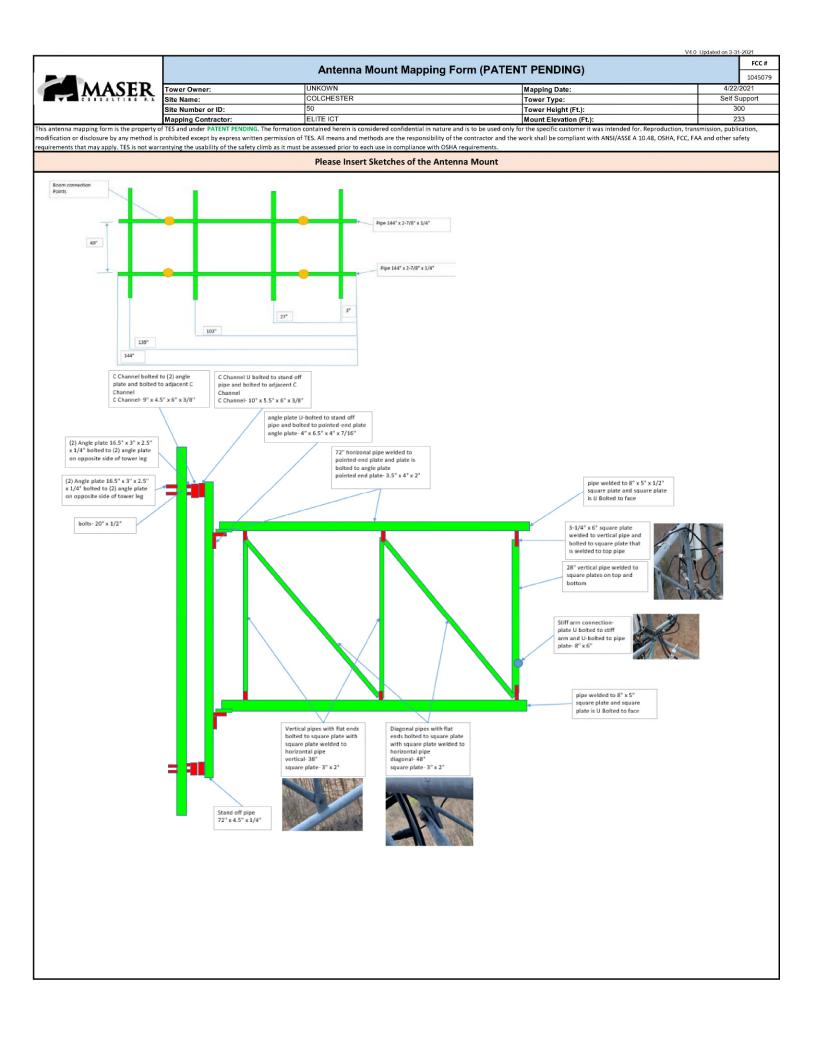
;) |

62.8%

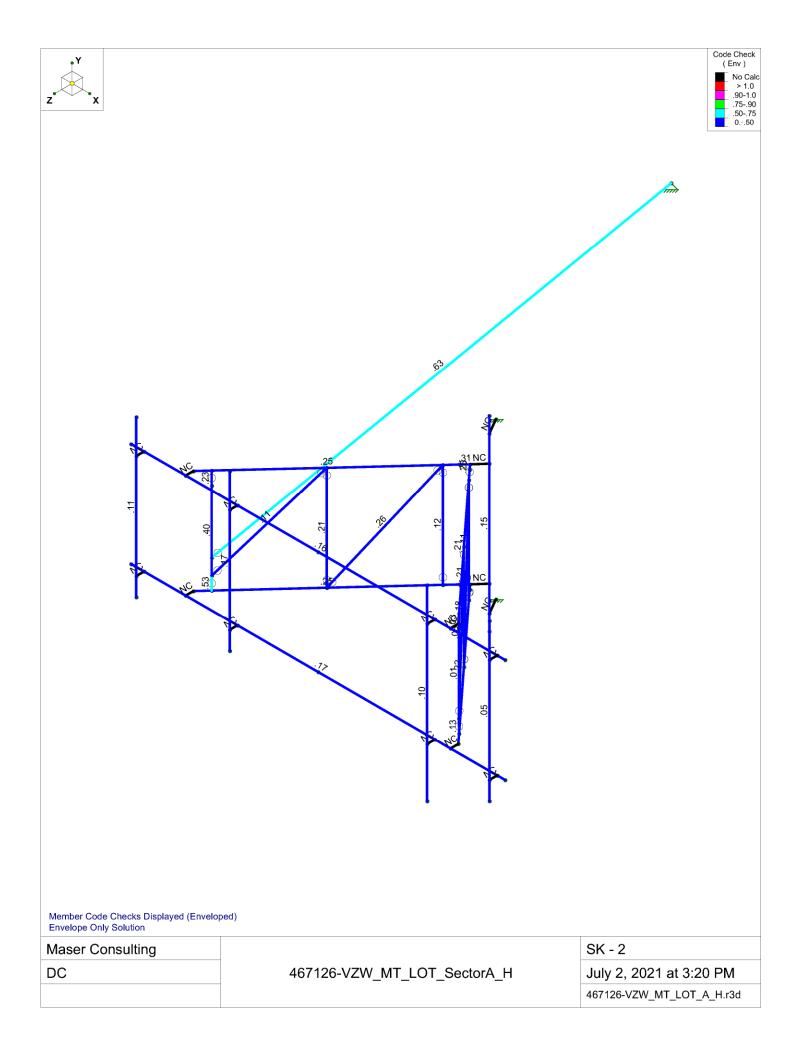
#### **Recommendation:**

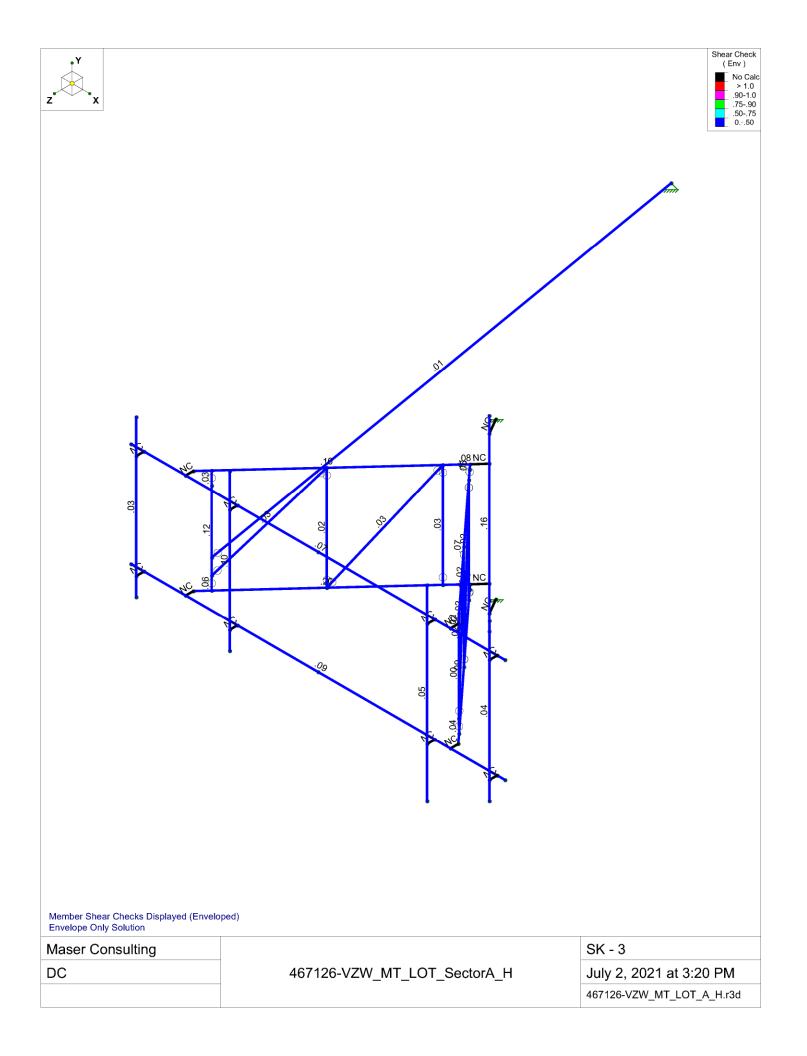
The existing mounts are **SUFFICIENT** for the final loading configuration upon the completion of the recommendations listed in the Special instructions section of the below referenced PMI document.

ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other, if required. Separate review fees will apply.


#### Attachments:

- 1. Mount Photos
- 2. Mount Mapping Report (for reference only)
- 3. Analysis Calculations
- 4. Contractor Required Post Installation Inspection (PMI) Report Deliverables
- 5. Antenna Placement Diagrams

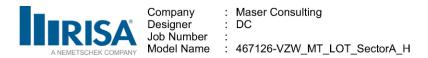




		Ante	enna Mount Ma	pping	Form (	PATEN		DING)				FCC #			
MASER	Tower Owner:	UNKOWN			_		Mapping [	Dato:			4/22	2021			
MASER	Site Name:	COLCHES					Tower Typ					upport			
	Site Number or ID:	50					Tower Hei					00			
	Mapping Contractor:	ELITE ICT					Mount Ele		):			33			
This antenna mapping form is the property o				tial in natu	re and is to b	e used only fo				duction, tran					
modification or disclosure by any method is requirements that may apply. TES is not ware					SHA requiren	nents.				DSHA, FCC, FA	A and other sa	fety			
			1		Vertical	e Configurat	tion and Ge	eometries (	[Unit = Inches]		Vertical	1			
		Sector / Position	Mount Pipe Size & L	ength.	Offset Dimension "u"	Horizontal Offset "C1, C2, C3, etc."	Sector / Position		Mount Pipe Size & Leng	gth	Offset Dimension "u"	Horizontal Offset "C1, C2, C3, etc.			
		Al	A1 60 X 2.38 STD P			3.00	C1	60 X 2.38 S			53.00	3.00			
		A2	72 X 2.38 STD P		55.00	27.00	C2		72 X 2.38 STD P		55.00	27.00			
		A3	A3 60 X 2.38 STD P			103.00	C3	60 X 2.38 S			53.00	103.00			
		A4	60 X 2.38 STD P		53.00	139.00	C4	60 X 2.38 S	2.38 STD P		53.00	139.00			
		A5					C5								
Disease in the last	-false	A6			53.00		C6								
	of the antenna mount from the		B1 60 X 2.38 STD P			3.00	D1								
Sketches" tab with din	nensions and members here.	B2	72 X 2.38 STD P		55.00	27.00	D2								
		B3	60 X 2.38 STD P		53.00	103.00	D3								
		B4	60 X 2.38 STD P		53.00	139.00	D4								
		B5					D5								
		B6	Distance between	hetter	all and mer	unt CL alarra	D6	4) 11m ² 1 1 1	nehos foo hteres ri	ou Doft to !	fordatalla				
								,	nches. See 'Mount El			20.00			
									ant./eqpt. of Carrier a						
			Distan	ce from t	-				ant./eqpt. of Carrier b	below. (N/A	h = 10  ft.				
			Please enter additional infomation or comments below.												
		-				-									
	Tower Face Width at Mount Elev. (ft.):         14         Tower Leg Size or Pole Shaft Diameter at Mou           For T-Arms/Platforms on monopoles, report the weld size from the main standoff to the plate bolting is         14         Tower Leg Size or Pole Shaft Diameter at Mou									n 1-		105			
												10.5 8-Mar			
SECTOR B	SECTOR C			es, report	the weld siz	e from the n	nain stando	ff to the pla	ate bolting into the coll	lar mount.					
	SECTOR C	For T-Arm	s/Platforms on monopole	es, report	the weld siz	e from the n	nain stando Unknown''	ff to the pla	ate bolting into the coll Mountin [Units are incl	lar mount. Ig Locations hes and dep	grees]	8-Mar Photos c			
		For T-Arm	s/Platforms on monopole	es, report	the weld siz	e from the n	nain stando Unknown" Coax	ff to the pla Antenna	ate bolting into the coll Mountin [Units are incl Vertical	lar mount. g Location: hes and dep Horiz. Offset "h" (Use "-"	grees] Antenna	8-Mar			
FACE B		For T-Arm	s/Platforms on monopole Enter antenr	es, report	the weld siz If not labe	e from the n	nain stando Unknown'' Coax Size and	ff to the pla Antenna Center-	Ate bolting into the coll Mountin [Units are inch Vertical Distances"b _{1a} , b _{2a} ,	lar mount. g Locations hes and dep Horiz. Offset "h" (Use "-" if Ant. is	grees] Antenna Azimuth	8-Mar Photos d antenna			
FACE B		For T-Arm	s/Platforms on monopole Enter antenr Antenna Models if	es, report na model. Width	the weld siz If not labe Depth	e from the n led, enter " Height	nain stando Unknown" Coax	ff to the pla Antenna	ate bolting into the coll Mountin [Units are incl Vertical	lar mount. g Location: hes and dep Horiz. Offset "h" (Use "-"	grees] Antenna	8-Mar Photos antenna Photo			
FACE B		For T-Arm	s/Platforms on monopole Enter antenr Antenna Models if	es, report na model. Width	the weld siz If not labe Depth	e from the n led, enter " Height	nain stando Unknown'' Coax Size and	ff to the pla Antenna Center- line (Ft.)	Ate bolting into the coll Mountin [Units are inch Vertical Distances"b _{1a} , b _{2a} ,	lar mount. g Locations hes and dep Horiz. Offset "h" (Use "-" if Ant. is	grees] Antenna Azimuth	8-Mar Photos antenna Photo			
LEC B	LEG C	For T-Arm Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Subjects Su	s/Platforms on monopole Enter antenr Antenna Models if Known	es, report na model. Width	the weld siz If not labe Depth (in.)	led, enter " Height (in.)	unknown" Coax Size and Qty	ff to the pla Antenna Center- line (Ft.)	Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches)	lar mount. g Locations hes and dep Horiz. Offset "h" (Use "-" if Ant. is	grees] Antenna Azimuth	8-Mar Photos antenna Photo Numbe			
FACE B	LEG C	For T-Arm	s/Platforms on monopole Enter antenr Antenna Models if	width	the weld siz If not labe Depth	e from the n led, enter " Height	unknown" Coax Size and Qty	ff to the pla Antenna Center- line (Ft.)	Ate bolting into the coll Mountin [Units are inch Vertical Distances"b _{1a} , b _{2a} ,	lar mount. ng Locations hes and dep Horiz. Offset "h" (Use "-" if Ant. is behind)	Antenna Azimuth (Degrees)	8-Mar Photos antenna Photo			
LEC B	LEG C	For T-Arm	s/Platforms on monopole Enter antenr Antenna Models if Known	width	the weld siz If not labe Depth (in.)	led, enter " Height (in.)	unknown" Coax Size and Qty	ff to the pla Antenna Center- line (Ft.)	Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches)	lar mount. ng Locations hes and dep Horiz. Offset "h" (Use "-" if Ant. is behind)	Antenna Azimuth (Degrees)	8-Mar Photos antenna Photo Numbe			
LEC B		For T-Arm	S/Platforms on monopole Enter antenr Antenna Models if Known LNX-6512DS-A1M	Width (in.)	the weld siz If not labe Depth (in.) 7.00	e from the n led, enter " Height (in.) 48.00	unknown" Coax Size and Qty	ff to the pla Antenna Center- line (Ft.) 233.583	Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 26.00	lar mount. g Locations hes and dep Horiz. Offset "h" (Use "-" if Ant. is behind) 10.00	grees] Antenna Azimuth (Degrees) 130.00	8-Mar Photos antenn: Photo Numbe			
LEC B		For T-Arm	s/Platforms on monopole Enter antenr Antenna Models if Known	width	the weld siz If not labe Depth (in.)	led, enter " Height (in.)	unknown" Coax Size and Qty	ff to the pla Antenna Center- line (Ft.)	Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches)	lar mount. ng Locations hes and dep Horiz. Offset "h" (Use "-" if Ant. is behind)	Antenna Azimuth (Degrees)	8-Mar Photos antenna Photo Numbe			
LEC B		For T-Arm support signature izontal izontal Ant _{1a} Ant _{1b} Ant _{1c} Ant _{1c}	S/Platforms on monopole Enter antenr Antenna Models if Known LNX-6512DS-A1M	Width (in.)	the weld siz If not labe Depth (in.) 7.00	e from the n led, enter " Height (in.) 48.00	unknown" Coax Size and Qty	ff to the pla Antenna Center- line (Ft.) 233.583	Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 26.00	lar mount. g Locations hes and dep Horiz. Offset "h" (Use "-" if Ant. is behind) 10.00	grees] Antenna Azimuth (Degrees) 130.00	8-Mar Photos antenn: Photo Numbe			
LEC B		For T-Arm Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support S	S/Platforms on monopole Enter antenr Antenna Models if Known LNX-6512DS-A1M	Width (in.)	the weld siz If not labe Depth (in.) 7.00	e from the n led, enter " Height (in.) 48.00	unknown" Coax Size and Qty	ff to the pla Antenna Center- line (Ft.) 233.583	Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 26.00	lar mount. g Locations hes and dep Horiz. Offset "h" (Use "-" if Ant. is behind) 10.00	grees] Antenna Azimuth (Degrees) 130.00	8-Mar Photos antenn: Photo Numbe			
LEC B		For T-Arm	S/Platforms on monopole Enter antenr Antenna Models if Known LNX-6512DS-A1M UNKNOWN	Width (in.) 11.00	the weld siz	e from the n led, enter " Height (in.) 48.00 72.00	unknown" Coax Size and Qty	ff to the pla Antenna Center- line (Ft.) 233.583 232.917	Ate bolting into the coll Mountin [Units are inch Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 26.00 36.00	lar mount. Ig Locations hes and dep Horiz. Offset "h" (Use "." if Ant. is behind) 10.00 12.00	Antenna Azimuth (Degrees) 130.00 85.00	8-Mar Photos antenna Photo Numbe 282 282			
LEC B	LEG C	For T-Arm	SPlatforms on monopole Enter antenr Antenna Models if Known LNX-6512DS-A1M UNKNOWN SBNHH-1D65B	es, report Width (in.) 11.00 11.00	the weld siz	e from the n led, enter " Height (in.) 48.00 72.00	unknown" Coax Size and Qty	ff to the pla Antenna Center- line (Ft.) 233.583 232.917 234.083	Ate bolting into the coll Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 26.00 36.00 20.00	lar mount. Ig Locations hes and def Horiz. Offset "h" (Use "." if Ant. is behind) 10.00 12.00 9.00	grees] Antenna Azimuth (Degrees) 130.00	8-Mar Photos antenn: Photo Numbe			
LEC B	LEG C	For T-Arm	S/Platforms on monopole Enter antenr Antenna Models if Known LNX-6512DS-A1M UNKNOWN	Width (in.) 11.00	the weld siz	e from the n led, enter " Height (in.) 48.00 72.00	unknown" Coax Size and Qty	ff to the pla Antenna Center- line (Ft.) 233.583 232.917	Ate bolting into the coll Mountin [Units are inch Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 26.00 36.00	lar mount. Ig Locations hes and dep Horiz. Offset "h" (Use "." if Ant. is behind) 10.00 12.00	Antenna Azimuth (Degrees) 130.00 85.00	8-Mar Photos antenna Photo Numbe 282 282			
LEG B	Antso	For T-Arm	SPlatforms on monopole Enter antenr Antenna Models if Known LNX-6512DS-A1M UNKNOWN SBNHH-1D65B	es, report Width (in.) 11.00 11.00	the weld siz	e from the n led, enter " Height (in.) 48.00 72.00	unknown" Coax Size and Qty	ff to the pla Antenna Center- line (Ft.) 233.583 232.917 234.083	Ate bolting into the coll Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 26.00 36.00 20.00	lar mount. Ig Locations hes and def Horiz. Offset "h" (Use "." if Ant. is behind) 10.00 12.00 9.00	Antenna Azimuth (Degrees) 130.00 85.00	8-Mar Photos antenna Photo Numbe 282 282			
LEC B	LEG C	For T-Arm	SPlatforms on monopole Enter antenr Antenna Models if Known LNX-6512DS-A1M UNKNOWN SBNHH-1D65B	es, report Width (in.) 11.00 11.00	the weld siz	e from the n led, enter " Height (in.) 48.00 72.00	unknown" Coax Size and Qty	ff to the pla Antenna Center- line (Ft.) 233.583 232.917 234.083	Ate bolting into the coll Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 26.00 36.00 20.00	lar mount. Ig Locations hes and def Horiz. Offset "h" (Use "." if Ant. is behind) 10.00 12.00 9.00	Antenna Azimuth (Degrees) 130.00 85.00	8-Mai Photos antenn Photo Numbe 282 286			
LEG B	Antso	For T-Arm	SPlatforms on monopole Enter antenr Antenna Models if Known LNX-6512DS-A1M UNKNOWN SBNHH-1D65B B13-RRH	width (in.) 11.00 11.00 11.00	the weld siz	e from the n led, enter " Height (in.) 48.00 72.00 72.00 20.00	unknown" Coax Size and Qty	ff to the pla Antenna Center- line (Ft.) 233.583 232.917 234.083 233.583	Ate bolting into the coll Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 26.00 36.00 20.00 26.00	lar mount. Ig Locations hes and def Horiz. Offset "h" (Use "." if Ant. is behind) 10.00 12.00 9.00 10.00	Antenna Azimuth (Degrees) 130.00 85.00	8-Mai Photos antenn Photo Numbe 282 282 286 286			
LEG B	Antso	For T-Arm Subject of the set of	SPlatforms on monopole Enter antenr Antenna Models if Known LNX-6512DS-A1M UNKNOWN SBNHH-1D65B B13-RRH	width (in.) 11.00 11.00 11.00	the weld siz	e from the n led, enter " Height (in.) 48.00 72.00 72.00 20.00	unknown" Coax Size and Qty	ff to the pla Antenna Center- line (Ft.) 233.583 232.917 234.083 233.583	Ate bolting into the coll Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 26.00 36.00 20.00 26.00	lar mount. Ig Locations hes and def Horiz. Offset "h" (Use "." if Ant. is behind) 10.00 12.00 9.00 10.00	Antenna Azimuth (Degrees) 130.00 85.00	8-Mai Photos antenn Photo Numbe 282 282 286 286			
LEG B	Antso	For T-Arm	SPlatforms on monopole Enter antenr Antenna Models if Known LNX-6512DS-A1M UNKNOWN SBNHH-1D65B B13-RRH	width (in.) 11.00 11.00 11.00	the weld siz	e from the n led, enter " Height (in.) 48.00 72.00 72.00 20.00	unknown" Coax Size and Qty	ff to the pla Antenna Center- line (Ft.) 233.583 232.917 234.083 233.583	Ate bolting into the coll Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 26.00 36.00 20.00 26.00	lar mount. Ig Locations hes and def Horiz. Offset "h" (Use "." if Ant. is behind) 10.00 12.00 9.00 10.00	Antenna Azimuth (Degrees) 130.00 85.00	8-Mai Photos antenn Photo Numbe 282 282 286 286			
LEG B	Antso	For T-Arm Subject of the set of	SPlatforms on monopole Enter antenr Antenna Models if Known LNX-6512DS-A1M UNKNOWN SBNHH-1D65B B13-RRH	width (in.) 11.00 11.00 11.00	the weld siz	e from the n led, enter " Height (in.) 48.00 72.00 72.00 20.00	unknown" Coax Size and Qty	ff to the pla Antenna Center- line (Ft.) 233.583 232.917 234.083 233.583	Ate bolting into the coll Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 26.00 36.00 20.00 26.00	lar mount. Ig Locations hes and def Horiz. Offset "h" (Use "." if Ant. is behind) 10.00 12.00 9.00 10.00	Antenna Azimuth (Degrees) 130.00 85.00	8-Mar Photos antenna Photo Numbe 282 282 286 286			
LEG B	Antso	Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso	SPlatforms on monopole Enter antenr Antenna Models if Known LNX-6512DS-A1M UNKNOWN SBNHH-1D65B B13-RRH	width (in.) 11.00 11.00 11.00	the weld siz	e from the n led, enter " Height (in.) 48.00 72.00 72.00 20.00	unknown" Coax Size and Qty	ff to the pla Antenna Center- line (Ft.) 233.583 232.917 234.083 233.583	Ate bolting into the coll Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 26.00 36.00 20.00 26.00	lar mount. Ig Locations hes and def Horiz. Offset "h" (Use "." if Ant. is behind) 10.00 12.00 9.00 10.00	Antenna Azimuth (Degrees) 130.00 85.00	8-Mar Photos antenna Photo Numbe 282 286 286 292			
LEG B	Antso	Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso	SPlatforms on monopole Enter antenr Antenna Models if Known LNX-6512DS-A1M UNKNOWN SBNHH-1D65B B13-RRH	width (in.) 11.00 11.00 11.00	the weld siz	e from the n led, enter " Height (in.) 48.00 72.00 72.00 20.00	unknown" Coax Size and Qty	ff to the pla Antenna Center- line (Ft.) 233.583 232.917 234.083 233.583	Ate bolting into the coll Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 26.00 36.00 20.00 26.00	lar mount. Ig Locations hes and def Horiz. Offset "h" (Use "." if Ant. is behind) 10.00 12.00 9.00 10.00	Antenna Azimuth (Degrees) 130.00 85.00	8-Mar Photos antenna Photo Numbe 282 282 286 286			
LEG B	Antso	Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso	SPlatforms on monopole Enter antenr Antenna Models if Known LNX-6512DS-A1M UNKNOWN SBNHH-1D65B B13-RRH	width (in.) 11.00 11.00 11.00	the weld siz	e from the n led, enter " Height (in.) 48.00 72.00 72.00 20.00	unknown" Coax Size and Qty	ff to the pla Antenna Center- line (Ft.) 233.583 232.917 234.083 233.583	Ate bolting into the coll Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 26.00 36.00 20.00 26.00	lar mount. Ig Locations hes and def Horiz. Offset "h" (Use "." if Ant. is behind) 10.00 12.00 9.00 10.00	Antenna Azimuth (Degrees) 130.00 85.00	8-Mar Photos antenn: Photo Numbe 282 282 286 286			
LEG B FACE B	Antas Antes Antes Antes Antas	Antso	SPlatforms on monopole Enter antenr Antenna Models if Known LNX-6512DS-A1M UNKNOWN SBNHH-1D65B B13-RRH	width (in.) 11.00 11.00 11.00	the weld siz	e from the n led, enter " Height (in.) 48.00 72.00 72.00 20.00	unknown" Coax Size and Qty	ff to the pla Antenna Center- line (Ft.) 233.583 232.917 234.083 233.583	Ate bolting into the coll Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 26.00 36.00 20.00 26.00	lar mount. Ig Locations hes and def Horiz. Offset "h" (Use "." if Ant. is behind) 10.00 12.00 9.00 10.00	Antenna Azimuth (Degrees) 130.00 85.00	8-Mai Photos antenn Photo Numbe 282 282 286 286			
LEG B FACE B FACE B FACE B SECTOR A LEG Antas Antas Antas Antas Antas Antas Antas Antas	Antas Antes Antes Antes Antas	Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso Antso	SPlatforms on monopole Enter antenr Antenna Models if Known LNX-6512DS-A1M UNKNOWN SBNHH-1D65B B13-RRH	width (in.) 11.00 11.00 11.00	the weld siz	e from the n led, enter " Height (in.) 48.00 72.00 72.00 20.00	unknown" Coax Size and Qty	ff to the pla Antenna Center- line (Ft.) 233.583 232.917 234.083 233.583	Ate bolting into the coll Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 26.00 36.00 20.00 26.00	lar mount. Ig Locations hes and def Horiz. Offset "h" (Use "." if Ant. is behind) 10.00 12.00 9.00 10.00	Antenna Azimuth (Degrees) 130.00 85.00	8-Mai Photos antenn Photo Numbe 282 282 286 286			
LEG B FACE B	Antas Antes Antes Antes Antas	Antse Antse Antse Antse Antse Antse Antse Antse	SPlatforms on monopole Enter antenr Antenna Models if Known LNX-6512DS-A1M UNKNOWN SBNHH-1D65B B13-RRH	width (in.) 11.00 11.00 11.00	the weld siz	e from the n led, enter " Height (in.) 48.00 72.00 72.00 20.00	unknown" Coax Size and Qty	ff to the pla Antenna Center- line (Ft.) 233.583 232.917 234.083 233.583	Ate bolting into the coll Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 26.00 36.00 20.00 26.00	lar mount. Ig Locations hes and def Horiz. Offset "h" (Use "." if Ant. is behind) 10.00 12.00 9.00 10.00	Antenna Azimuth (Degrees) 130.00 85.00	8-Mar Photos antenna Photo Numbe 282 282 286 286			
LEG B FACE B	Antas Antes Antes Antes Antas	Antse	SPlatforms on monopole Enter antenr Antenna Models if Known LNX-6512DS-A1M UNKNOWN SBNHH-1D65B B13-RRH	width (in.) 11.00 11.00 11.00	the weld siz	e from the n led, enter " Height (in.) 48.00 72.00 72.00 20.00	unknown" Coax Size and Qty	ff to the pla Antenna Center- line (Ft.) 233.583 232.917 234.083 233.583	Ate bolting into the coll Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 26.00 36.00 20.00 26.00	lar mount. Ig Locations hes and def Horiz. Offset "h" (Use "." if Ant. is behind) 10.00 12.00 9.00 10.00	Antenna Azimuth (Degrees) 130.00 85.00	8-Mar Photos antenna Photo Numbe 282 286 286 292			
LEG B FACE B	Antas Antes Antes Antes Antas	Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse Antse	SPlatforms on monopole Enter antenr Antenna Models if Known LNX-6512DS-A1M UNKNOWN SBNHH-1D65B B13-RRH	width (in.) 11.00 11.00 11.00	the weld siz	e from the n led, enter " Height (in.) 48.00 72.00 72.00 20.00	unknown" Coax Size and Qty	ff to the pla Antenna Center- line (Ft.) 233.583 232.917 234.083 233.583	Ate bolting into the coll Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 26.00 36.00 20.00 26.00	lar mount. Ig Locations hes and def Horiz. Offset "h" (Use "." if Ant. is behind) 10.00 12.00 9.00 10.00	Antenna Azimuth (Degrees) 130.00 85.00	8-Mar Photos antenn: Photo Numbe 282 282 286 286			
LEG B FACE B	Antse	Antse	SPlatforms on monopole Enter antenr Antenna Models if Known LNX-6512DS-A1M UNKNOWN SBNHH-1D65B B13-RRH	width (in.) 11.00 11.00 11.00	the weld siz	e from the n led, enter " Height (in.) 48.00 72.00 72.00 20.00	unknown" Coax Size and Qty	ff to the pla Antenna Center- line (Ft.) 233.583 232.917 234.083 233.583	Ate bolting into the coll Mountin [Units are incl Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 26.00 36.00 20.00 26.00	lar mount. Ig Locations hes and def Horiz. Offset "h" (Use "." if Ant. is behind) 10.00 12.00 9.00 10.00	Antenna Azimuth (Degrees) 130.00 85.00	8-Mar Photos antenna Photo Numbe 282 282 286 286			


Mou	nt Azir	nuth (Deg	ree)	Tower Leg Ar	imuth (Degree)						Sector E					
		ch Sector		-	ch Sector	Ant _{1a}	LNX-6512DS-A1M	11.00	7.00	48.00		233.583	26.00	10.00	140.00	16
Sector A:	60		g Leg A:		Deg	Ant _{1b}										
Sector B:	90				Deg	Ant _{1c}										
Sector C:	320				0	Ant _{2a}	UNKNOWN	11.00	4.00	72.00		232.917	36.00	9.00	130.00	32
Sector D:		De			Deg	Ant _{2b}										
	60		-	cility Information		Ant _{2c}	CONULL 1DCCD	11.00	7.00	72.00		224.092	20.00	9.00	85.00	62
Location:		Corrosion T	-	Sector A Good condition.		Ant _{3a} Ant _{3b}	SBNHH-1D65B SBNHH-1D65B	11.00	7.00 7.00	72.00 72.00		234.083 234.083	20.00	9.00	85.00 85.00	5
Climbing		Access		Climbing path was	unobstructed	Ant _{3b}	B13-RRH	11.00	7.50	20.00		234.085	26.00	-7.00	83.00	77
Facility		Conditio		Good condition.	anobstracted.	Ant _{3c}	B66A-RRH	12.00	7.00	25.00		233.417	28.00	-6.00		90
		conditio		Sood condition		Ant _{4b}	DODA-INIT	12.00	7.00	25.00		233.417	20.00	-0.00		50
						Ant _{4c}										
						Ant _{5a}										
						Ant _{sb}										
						Ant _{5c}										
						Ant on										
						Standoff Ant on										
						Standoff										
Plaz	see ince	art a nhote	of the m	ount centerline meas	urement here	Ant on	RHSDC-6627-PF-48	15.00	9.00	18.00						
1 icu	150 11150	circu prioco	or the m	oune centerine med.	urement here.	Tower Ant on										
						Tower										
											Sector C					
						Ant _{1a}	LNX-6512DS-A1M	11.00	7.00	48.00		233.083	32.00	10.00	335.00	131
						Ant _{1b}										
						Ant _{1c}										
						Ant _{2a}	UNKNOWN	11.00	4.00	72.00		232.917	36.00	9.00	320.00	134
						Ant _{2b}		-								
						Ant _{2c}		11.00	7.00	70.00		222.017	22.00	0.00	270.00	455
1	a	а Ш	111.	p.		Ant _{3a} Ant _{3b}	SBNHH-1D65B B13-RRH	11.00 11.00	7.00 5.00	72.00 20.00		233.917 233.833	22.00 23.00	9.00 10.00	270.00	155
Γ	1					Ant _{3b}	DIS-KKH	11.00	5.00	20.00		233.833	23.00	10.00		
						Ant _{4a}	B66A-RRH	12.00	7.00	25.00		233.417	28.00	6.00		278
٩,			ffii L		NT	Ant _{4b}		12.00	7.00	25.00		200.417	20.00	0.00		270
				-	1	Ant _{4c}										
Г			ШШг		DISTRUCE FROM TOP OF MAIN PLATFORM MEMORER TO LOWEST THE OF ANT./EDFT. OF CARRIER ABOVE											
-			+++++		(N/A IF > 10 PT.)	Ant _{5b}										
_					Ļ	Ant _{Sc}										
STING PLATFORM	<u></u>	7	1110	r 'e'	DISTRUCT FROM TOP OF MAN PLATFORM MEDIATE TO HECHEST TO OF ANT./EDPT. OF CARRIEN DELOW (N/A IF > 10 FT.)	Ant on										
	n			THE OF COLUMN		Standoff Ant on										
ſ	1	ΠШ	1111	ר ר		Standoff										
						Ant on										
d		= 677	94 H	====		Tower Ant on				<u> </u>						
Ļ	لن	ᆔШ	105	니 나니		Tower										
-		<u>F0R</u> (	LATEORMS	~							Sector D			1		
	]	Π	Ē	-		Ant _{1a}										
4				-		Ant _{1b}										
4				<u> </u>		Ant _{1c}										
5		Ч	ľ	T TP OF EQUIPME	<u>m</u>	Ant _{2a}										
						Ant _{2b} Ant _{2c}										
Γ	7		КП		DISTANCE FROM TOP OF BOTTOM SUPPORT RAR, TO LOWEST TP O ANT./EOPT. OF CARREN ABOVE. (N/A IF > 10 FT.)	Ant _{2c}										
-	-				(N/A # > 10 FT.)	Ant _{3a}										
				<u>*</u>		Ant _{3b}										
-L _e	1	L L	1	L.	DETANCE FROM TOP OF BOTTOM SUPPORT RAL TO MODELT TO											
ING SECTOR FRM	N		$\leftarrow$	-	DESTANCE FROM TOP OF BOTTOM SUPPORT RAE, TO HIGHEST TP ( ANT_/ROPT, OF CARREN BELOW, (N/A IF > 10 FT.)	Ant _{4b}										
ر م	1	rën.	1 AL	TP OF EQUIPME	<u>271</u>	Ant _{4c}										
						Ant _{5a}										
			P			Ant _{5b}										
4		╸	71			Ant _{5c}										
_			U ²	-0		Ant on Standoff										
or T-Arms/	Platfor	ms on mon	opoles, ree	cord the weld size from	n the main standoff	Ant on										
				lar. See below for refe		Standoff										
//		$\sim$		-	//	Ant on										
T				_ \	$\checkmark$	Tower Ant on										
Т	_				7	Tower										
P	P		The second se	T I												
				REPORT W	ELD SIZE FROM TO PLATE BOLTING LAR MOUNT.											
			11	INTE COLU	LAR MOUNT.											



Maser Consulting         SK - 1           DC         467126-VZW_MT_LOT_SectorA_H         July 2, 2021 at 3:19 PM           467126-VZW_MT_LOT_SectorA_H         467146 VZW_MT_LOT_A H r34	Envelope Only Solution		
46/126-VZW MI LOT A Hr3d		407 120-VZVV_WI1_LU1_SECIORA_H	JUIY 2, 2021 at 3:19 PM 467126-VZW_MT_LOT_A_H.r3d








## **Basic Load Cases**

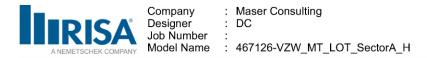
	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Antenna D	None					33			
2	Antenna Di	None					33			
3	Antenna Wo (0 Deg)	None					33			
4	Antenna Wo (30 Deg)	None					33			
5	Antenna Wo (60 Deg)	None					33			
6	Antenna Wo (90 Deg)	None					33			
7	Antenna Wo (120 Deg)	None					33			
8	Antenna Wo (150 Deg)	None					33			
9	Antenna Wo (180 Deg)	None					33			
	Antenna Wo (210 Deg)	None					33			
11	Antenna Wo (240 Deg)	None					33			
12	Antenna Wo (270 Deg)	None					33			
13	Antenna Wo (300 Deg)	None					33			
14	Antenna Wo (330 Deg)	None					33			
15	Antenna Wi (0 Deg)	None					33			
16	Antenna Wi (30 Deg)	None					33			
17	Antenna Wi (60 Deg)	None					33			
18	Antenna Wi (90 Deg)	None					33			
19	Antenna Wi (120 Deg)	None					33			
20	Antenna Wi (150 Deg)	None					33			
21	Antenna Wi (180 Deg)	None					33			
22	Antenna Wi (210 Deg)	None					33			
23	Antenna Wi (240 Deg)	None					33			
24	Antenna Wi (270 Deg)	None					33			
25	Antenna Wi (300 Deg)	None					33			
26	Antenna Wi (330 Deg)	None					33			
27	Antenna Wm (0 Deg)	None					33			
28	Antenna Wm (30 Deg)	None					33			
20	Antenna Wm (60 Deg)	None					33			
30	Antenna Wm (00 Deg)	None					33			
	Antenna Wm (30 Deg)	None					33			
	Antenna Wm (120 Deg)	None					33			
	Antenna Wm (180 Deg)	None					33			
	Antenna Wm (100 Deg)						33			
	Antenna Wm (240 Deg)	None								
	Antenna Wm (240 Deg)	None					33			
		None					33			
	Antenna Wm (300 Deg)	None					33			
	Antenna Wm (330 Deg)	None					33			
39	Structure D	None		-1				00		
40	Structure Di	None						30		
41	Structure Wo (0 Deg)	None						60		
	Structure Wo (30 Deg)	None						60		
43	Structure Wo (60 Deg)	None						60		
44	Structure Wo (90 Deg)	None						60		
45	Structure Wo (120 D	None						60		
	Structure Wo (150 D	None						60		
47	Structure Wo (180 D	None						60		
48	Structure Wo (210 D	None						60		
49	Structure Wo (240 D	None						60		
	Structure Wo (270 D	None						60		
51	Structure Wo (300 D	None						60		
52	Structure Wo (330 D	None						60		
53	Structure Wi (0 Deg)	None						60		
54	Structure Wi (30 Deg)	None						60		
55	Structure Wi (60 Deg)	None						60		
56	Structure Wi (90 Deg)	None						60		
DIC	SA-3D Version 17.0.4	I/ / / /				1467106 1	/7\A/ NAT		1 -2 -1	Page 1



## Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
57	Structure Wi (120 De	None	•					60		
58	Structure Wi (150 De	None						60		
59	Structure Wi (180 De	None						60		
60	Structure Wi (210 De	None						60		
61	Structure Wi (240 De	None						60		
62	Structure Wi (270 De	None						60		
63	Structure Wi (300 De	None						60		
64	Structure Wi (330 De	None						60		
65	Structure Wm (0 Deg)	None						60		
66	Structure Wm (30 De	None						60		
67	Structure Wm (60 De	None						60		
68	Structure Wm (90 De	None						60		
69	Structure Wm (120 D	None						60		
70	Structure Wm (150 D	None						60		
71	Structure Wm (180 D	None						60		
72	Structure Wm (210 D	None						60		
73	Structure Wm (240 D	None						60		
74	Structure Wm (270 D	None						60		
75	Structure Wm (300 D	None						60		
76	Structure Wm (330 D	None						60		
77	Lm1	None					1			
78	Lm2	None					1			
79	Lv1	None					1			
80	Lv2	None					1			

# Load Combinations


	Description SolPD	.SRBLO	CFact.	BLC	Fact.	.BLC	Fact.	.BLC	Fact.	.BLC	Fact.										
1	1.2D+1.0WoYes Y	1	1.2	39	1.2	3	1	41	1												
2	1.2D+1.0WoYes Y	1	1.2	39	1.2	4	1	42	1												
3	1.2D+1.0WoYes Y	1	1.2	39	1.2	5	1	43	1												
4	1.2D+1.0WoYes Y	1	1.2	39	1.2	6	1	44	1												
5	1.2D+1.0WoYes Y	1	1.2	39	1.2	7	1	45	1												
6	1.2D+1.0WoYes Y	1	1.2	39	1.2	8	1	46	1												
7	1.2D+1.0WoYes Y	1	1.2	39	1.2	9	1	47	1												
8	1.2D+1.0WoYes Y	1	1.2	39	1.2	10	1	48	1												
9	1.2D+1.0WoYes Y	1	1.2	39	1.2	11	1	49	1												
10	1.2D+1.0WoYes Y	1	1.2	39	1.2	12	1	50	1												
11	1.2D+1.0WoYes Y	1	1.2	39	1.2	13	1	51	1												
12	1.2D+1.0WoYes Y	1	1.2	39	1.2	14	1	52	1												
13	1.2D + 1.0DiYes Y	1	1.2	39	1.2	2	1	40	1	15	1	53	1								
14	1.2D + 1.0DiYes Y	1	1.2	39	1.2	2	1	40	1	16	1	54	1								
15	1.2D + 1.0DiYes Y	1	1.2	39	1.2	2	1	40	1	17	1	55	1								
16	1.2D + 1.0DiYes Y	1	1.2	39	1.2	2	1	40	1	18	1	56	1								
17	1.2D + 1.0DiYes Y	1	1.2	39	1.2	2	1	40	1	19	1	57	1								
18	1.2D + 1.0DiYes Y	1	1.2	39	1.2	2	1	40	1	20	1	58	1								
19	1.2D + 1.0DiYes Y	1	1.2	39	1.2	2	1	40	1	21	1	59	1								
20	1.2D + 1.0DiYes Y	1	1.2	39	1.2	2	1	40	1	22	1	60	1								
21	1.2D + 1.0DiYes Y	1	1.2	39	1.2	2	1	40	1	23	1	61	1								
22	1.2D + 1.0DiYes Y	1	1.2	39	1.2	2	1	40	1	24	1	62	1								
23	1.2D + 1.0DiYes Y	1	1.2	39	1.2	2	1	40	1	25	1	63	1								
24	1.2D + 1.0DiYes Y	1	1.2	39	1.2	2	1	40	1	26	1	64	1								
25	1.2D + 1.5L Yes Y	1	1.2	39	1.2	77	1.5	27	1	65	1										
26	1.2D + 1.5L Yes Y	1	1.2	39	1.2	77	1.5	28	1	66	1										
27	1.2D + 1.5L Yes Y	1	1.2	39	1.2	77	1.5	29	1	67	1										
28	1.2D + 1.5L Yes Y	1	1.2	39	1.2	77	1.5	30	1	68	1										

### Load Combinations (Continued)

29 ^r			.OIE		гасі	DLU	ract.	BLC	Fact	BLC	⊢act.	.BLC	Fact.	BLC	Fact								
23	1.2D + 1.5L Yes	Υ		1	1.2	39	1.2	77	1.5	31	1	69	1										
<b>30</b> 1	1.2D + 1.5L Yes	Y		1	1.2	39	1.2	77	1.5	32	1	70	1										
31 1	1.2D + 1.5L Yes	Υ		1	1.2	39	1.2	77	1.5	33	1	71	1										
32 1	1.2D + 1.5L Yes	Y		1	1.2	39	1.2	77	1.5	34	1	72	1										
33 1	1.2D + 1.5L Yes	Y		1	1.2	39	1.2	77	1.5	35	1	73	1										
34 1	1.2D + 1.5L Yes	Y		1	1.2	39	1.2	77	1.5	36	1	74	1										
35 1	1.2D + 1.5L Yes	Y		1	1.2	39	1.2	77	1.5	37	1	75	1										
36 1	1.2D + 1.5L Yes	Y		1	1.2	39	1.2	77	1.5	38	1	76	1										
37 1	1.2D + 1.5L Yes	Y		1	1.2	39	1.2	78	1.5	27	1	65	1										
38 1	1.2D + 1.5L Yes	Y		1	1.2	39	1.2	78	1.5	28	1	66	1										
39	1.2D + 1.5L Yes	Y		1	1.2	39	1.2	78	1.5	29	1	67	1										
40 [°]	1.2D + 1.5L Yes	Y		1	1.2	39	1.2	78	1.5	30	1	68	1										
41 1	1.2D + 1.5L Yes	Y		1	1.2	39	1.2	78	1.5	31	1	69	1										
42 1	1.2D + 1.5L Yes	Y		1	1.2	39	1.2	78	1.5	32	1	70	1										
43	1.2D + 1.5L Yes	Y		1	1.2	39	1.2	78	1.5	33	1	71	1										
44 ⁻	1.2D + 1.5L Yes	Y		1	1.2	39	1.2	78	1.5	34	1	72	1										
45 [°]	1.2D + 1.5L Yes	Υ		1	1.2	39	1.2	78	1.5	35	1	73	1										
46 [°]	1.2D + 1.5L Yes	Y		1	1.2	39	1.2	78	1.5	36	1	74	1										
47 1	1.2D + 1.5L Yes	Y		1	1.2	39	1.2	78	1.5	37	1	75	1										
48 ⁻	1.2D + 1.5L Yes	Y		1	1.2	39	1.2	78		38	1	76	1										
49 [°]	1.2D + 1.5Lv1 Yes	Y		1	1.2	39	1.2		1.5														
50 1	1.2D + 1.5Lv2 Yes	Y		1	1.2		1.2		1.5														
51	1.4D Yes	Y		1	1.4	39	1.4																
52	Seismic Mass	Y		1	1	39	1																
53	1.2D + 1.0Ev	Y		1	1.2	39	1.2	SX		SY	1	SZ	-1										
54	1.2D + 1.0Ev	Y		1	1.2	39	1.2		.5	SY	1		866										
55	1.2D + 1.0Ev	Y		1	1.2	39			.866		1	SZ											
56	1.2D + 1.0Ev	Y		1	1.2	39	1.2		1	SY	1	SZ											
57	1.2D + 1.0Ev	Y		1	1.2	39			.866		1	SZ	.5										
	1.2D + 1.0Ev	Ŷ		1	1.2	39	1.2			SY	1		.866										
	1.2D + 1.0Ev	Ŷ		1	1.2	39	1.2			SY	1	SZ	1										
	1.2D + 1.0Ev	Ŷ		1	1.2	39			5		1		.866										
	1.2D + 1.0Ev	Ŷ		1	1.2	39			866		1	SZ	.5										
	1.2D + 1.0Ev	Ŷ		1	1.2	39	1.2			SY	1	SZ											
~-	1.2D + 1.0Ev	Ŷ		1	1.2						1	SZ	5										
	1.2D + 1.0Ev	Ŷ		1	1.2				5		1		866										

# Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
1	N1	0	0	0	Ó	
2	N2	0	3.333333	0	0	
3	N3	6	0	0	0	
4	N4	6	3.333333	0	0	
5	N5	-6	0	0	0	
6	N6	-6	3.333333	0	0	
7	N7	5.75	0	0	0	
8	N8	5.75	3.333333	0	0	
9	N9	3.75	0	0	0	
10	N10	3.75	3.333333	0	0	
11	N11	-2.583333	0	0	0	
12	N12	-2.583333	3.333333	0	0	
13	N13	-5.583333	0	0	0	
14	N14	-5.583333	3.333333	0	0	
15	N15	5.75	0	.25	0	
16	N16	5.75	3.333333	.25	0	



# Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
17	N17	3.75	0	.25	0	
18	N18	3.75	3.333333	.25	0	
19	N19	-2.583333	0	.25	0	
20	N20	-2.583333	3.333333	.25	0	
21	N21	-5.583333	0	.25	0	
22	N22	-5.583333	3.333333	.25	0	
23	N23	5.75	4.416667	.25	0	
24	N24	3.75	4.416667	.25	0	
25	N25	-5.583333	4.416667	.25	0	
26	N26	5.75	-0.583333	.25	0	
20	N27	3.75	-1.583333	.25	0	
28	N28	-5.583333	-0.583333	.25	0	
20	N29	-2.583333	4.416667	.25	0	
30	N30	-2.583333	-0.583333	.25	0	
31	N31	4.25	0.000000	0	0	
32	N32	4.25	3.333333	0	0	
33	N33	-4.25	0	0	0	
34	N34	-4.25	3.333333	0	0	
35	N35	0	0	-4.875	0	
36	N36		3.333333	-4.875	0	
37	N37	4.25	0	25	0	
38	N38	4.25	3.333333	25	0	
39	N39	-4.25	0 3.333333	25	0	
40	N40	-4.25		25	0	
41	N41	0.150366	3.333333	-4.714315	0	
42	N42	-0.150366	3.333333	-4.714315	0	
43	N43	-0.150366	0	-4.714315	0	
44	N44	0.150366	0	-4.714315	0	
45	N45	0.291667	0	-5.203152	0	
46	N46	0.291667	3.333333	-5.203152	0	
47	N47	0.291667	4.666667	-5.203152	0	
48	N48	0.291667	-1.333333	-5.203152	0	
49	N49	0.291667	4.166667	-5.203152	0	
50	N50	0.291667	-0.833333	-5.203152	0	
51	N51	0	4.166667	-5.708333	0	
52	N52	0	-0.833333	-5.708333	0	
53	N53	3.970617	3.333333	-0.554235	0	
54	N54	-3.970617	3.333333	-0.554235	0	
55	N55	-3.970617	0	-0.554235	0	
56	N56	3.970617	0	-0.554235	0	
57	N57	3.965303	2.916667	-0.554235	0	
58	N58	-3.965303	2.916667	-0.554235	0	
59	N59	-3.965303	0.416667	-0.554235	0	
60	N60	3.965303	0.416667	-0.554235	0	
61	N69	-3.965303	0.916667	-0.554235	0	
62	N73	-7.000372	0.916667	-18.333333	0	
63	N71	2.200183	3.333333	-2.482157	0	
64	N72	-2.200183	3.333333	-2.482157	0	
65	N73A	-2.200183	0	-2.482157	0	
66	N74	2.200183	0	-2.482157	0	
67	N75	0.417164	3.333333	-4.423784	0	
68	N76	-0.417164	3.333333	-4.423784	0	
69	N77	-0.417164	0	-4.423784	0	
70	N78	0.417164	0	-4.423784	0	

## Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design R	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Antenna Pipe	PIPE 2.0	Column	Pipe	A53 Gr. B	Typical	1.02	.627	.627	1.25
2	Face Horizontal	PIPE_2.5	Column	Pipe	A53 Gr. B	Typical	1.61	1.45	1.45	2.89
3	Standoff Horizontal	PIPE 2.0	Column	Pipe	A53 Gr. B	Typical	1.02	.627	.627	1.25
4	Standoff Vertical	1.5x0.06	Column	Pipe	A53 Gr. B	Typical	.271	.07	.07	.141
5	Standoff Diagonal	1.5x0.06	Column	Pipe	A53 Gr. B	Typical	.271	.07	.07	.141
6	Standoff Mast Pipe	PIPE_2.0	Column	Pipe	A53 Gr. B	Typical	1.02	.627	.627	1.25
7	Mast Pipe	PIPE 4.0	Column	Pipe	A53 Gr. B	Typical	2.96	6.82	6.82	13.6
8	Tie Back	PIPE 2.0	Column	Pipe	A53 Gr. B	Typical	1.02	.627	.627	1.25
9	Standoff Plate	PL1/2X3	Column	RECT	A36 Gr.36	Typical	1.5	.031	1.125	.112
10	Back Angle	L4X3X6	Column	Single Angle	A36 Gr.36	Typical	2.49	1.89	3.94	.123

# Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E	.Density[k/ft	. Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A53 Gr. B	29000	11154	.3	.65	.49	35	1.5	60	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
5	A500 Gr. B 42	29000	11154	.3	.65	.49	42	1.4	58	1.3
6	A500 Gr. B 46	29000	11154	.3	.65	.49	46	1.4	58	1.3

### Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)		Туре	Design List	Material	Design Rules
1	M1	N6	N4			Face Horizontal	Column	Pipe	A53 Gr. B	Typical
2	M2	N5	N3			Face Horizontal	Column	Pipe	A53 Gr. B	Typical
3	M3	N14	N22			RIGID	None	None	RIGID	Typical
4	M4	N12	N20			RIGID	None	None	RIGID	Typical
5	M5	N13	N21			RIGID	None	None	RIGID	Typical
6	M6	N11	N19			RIGID	None	None	RIGID	Typical
7	M7	N10	N18			RIGID	None	None	RIGID	Typical
8	M8	N9	N17			RIGID	None	None	RIGID	Typical
9	M9	N8	N16			RIGID	None	None	RIGID	Typical
10	M10	N7	N15			RIGID	None	None	RIGID	Typical
11	MP4A	N25	N28			Antenna Pipe	Column	Pipe	A53 Gr. B	Typical
12	MP3A	N29	N30			Antenna Pipe	Column	Pipe	A53 Gr. B	Typical
13	MP2A	N24	N27			Antenna Pipe	Column	Pipe	A53 Gr. B	Typical
14	MP1A	N23	N26			Antenna Pipe	Column	Pipe	A53 Gr. B	Typical
15	M15	N34	N40			RIGID	None	None	RIGID	Typical
16	M16	N33	N39			RIGID	None	None	RIGID	Typical
17	M17	N32	N38			RIGID	None	None	RIGID	Typical
18	M18	N31	N37			RIGID	None	None	RIGID	Typical
19	M23	N41	N36		90	Standoff Plate	Column	RECT	A36 Gr.36	Typical
20	M24	N42	N36		90	Standoff Plate	Column	RECT	A36 Gr.36	Typical
21	M25	N43	N35		90	Standoff Plate	Column	RECT	A36 Gr.36	Typical
22	M26	N44	N35		90	Standoff Plate	Column	RECT	A36 Gr.36	Typical
23	M27	N36	N46			RIGID	None	None	RIGID	Typical
24	M28	N35	N45			RIGID	None	None	RIGID	Typical
25	M29	N47	N48			Mast Pipe	Column	Pipe	A53 Gr. B	Typical
26	M30	N49	N51			RIGID	None	None	RIGID	Typical
27	M31	N50	N52			RIGID	None	None	RIGID	Typical
28	M32	N38	N41			Standoff Horiz	Column	Pipe	A53 Gr. B	Typical
29	M33	N40	N42			Standoff Horiz	Column	Pipe	A53 Gr. B	Typical
30	M34	N39	N43			Standoff Horiz	Column	Pipe	A53 Gr. B	Typical
31	M35	N37	N44			Standoff Horiz	Column	Pipe	A53 Gr. B	Typical

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\...\...\Rev 0\RISA\467126-VZW_MT_LOT_A_H.r3d] Page 5

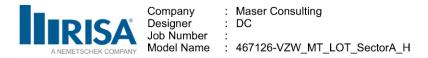
#### Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Desian List	Material	Design Rules
32	M36	N54	N58		135	Standoff Plate	Column	RECT	A36 Gr.36	Typical
33	M37	N53	N57		230	Standoff Plate	Column	RECT	A36 Gr.36	Typical
34	M38	N60	N56		230	Standoff Plate	Column	RECT	A36 Gr.36	Typical
35	M39	N59	N55		135	Standoff Plate	Column	RECT	A36 Gr.36	Typical
36	M40	N59	N58			Standoff Mast	Column	Pipe	A53 Gr. B	Typical
37	M41	N60	N57				001011111	Pipe	A53 Gr. B	
38	M42	N75	N74			Standoff Diago		Pipe	A53 Gr. B	Typical
39	M43	N71	N60			Standoff Diago		Pipe	A53 Gr. B	Typical
40	M44	N72	N59			Standoff Diago	.Column	Pipe	A53 Gr. B	Typical
41	M45	N76	N73A			Standoff Diago		Pipe	A53 Gr. B	Typical
42	M46	N72	N73A			Standoff Vertical		Pipe	A53 Gr. B	Typical
43	M47	N76	N77			Standoff Vertical	Column	Pipe	A53 Gr. B	Typical
44	M48	N75	N78			Standoff Vertical		Pipe	A53 Gr. B	Typical
45	M49	N71	N74			Standoff Vertical	Column	Pipe	A53 Gr. B	
46	M50	N69	N73			Tie Back	Column	Pipe	A53 Gr. B	Typical

### Member Advanced Data

					100	<b>T</b> /0 <b>C</b> ·				
	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only		Defl RatAnalysis	Inactive	Seismic
1	M1						Yes	** NA **		None
2	M2						Yes	** NA **		None
3	M3						Yes	** NA **		None
4	M4						Yes	** NA **		None
5	M5						Yes	** NA **		None
6	M6						Yes	** NA **		None
7	M7						Yes	** NA **		None
8	M8						Yes	** NA **		None
9	M9						Yes	** NA **		None
10	M10						Yes	** NA **		None
11	MP4A						Yes	** NA **		None
12	MP3A						Yes	** NA **		None
13	MP2A						Yes	** NA **		None
14	MP1A						Yes	** NA **		None
15	M15						Yes	** NA **		None
16	M16						Yes	** NA **		None
17	M17						Yes	** NA **		None
18	M18						Yes	** NA **		None
19	M23		BenPIN				Yes	** NA **		None
20	M24		BenPIN				Yes	** NA **		None
21	M25		BenPIN				Yes	** NA **		None
22	M26		BenPIN				Yes	** NA **		None
23	M27						Yes	** NA **		None
24	M28						Yes	** NA **		None
25	M29						Yes	** NA **		None
26	M30						Yes	** NA **		None
27	M31						Yes	** NA **		None
28	M32						Yes	** NA **		None
29	M33						Yes	** NA **		None
30	M34						Yes	** NA **		None
31	M35						Yes	** NA **		None
32	M36		000000				Yes	** NA **		None
33	M30		000000				Yes	** NA **		None
34	M38	00000X	000000				Yes	** NA **		None
35	M39	00000X					Yes	** NA **		None
36	M40	00000					Yes	** NA **		
										None
37	M41						Yes	** NA **		None

#### Member Advanced Data (Continued)

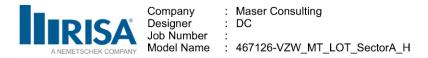

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl RatAnalysis	. Inactive	Seismic
38	M42	BenPIN	BenPIN				Yes	** NA **		None
39	M43	BenPIN	BenPIN				Yes	** NA **		None
40	M44	BenPIN	BenPIN				Yes	** NA **		None
41	M45	BenPIN	BenPIN				Yes	** NA **		None
42	M46	BenPIN	BenPIN				Yes	** NA **		None
43	M47	BenPIN	BenPIN				Yes	** NA **		None
44	M48	BenPIN	BenPIN				Yes	** NA **		None
45	M49	BenPIN	BenPIN				Yes	** NA **		None
46	M50	0000X0					Yes	** NA **		None

# Member Point Loads (BLC 1 : Antenna D)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Y	-43.55	2.25
2	MP2A	My	022	2.25
3	MP2A	Mz	0	2.25
4	MP2A	Y	-43.55	4.25
5	MP2A	My	022	4.25
6	MP2A	Mz	0	4.25
7	MP3A	Y	-31.65	.25
8	MP3A	My	016	.25
9	MP3A	Mz	021	.25
10	MP3A	Y	-31.65	4.75
11	MP3A	My	016	4.75
12	MP3A	Mz	021	4.75
13	MP3A	Y	-31.65	.25
14	MP3A	My	016	.25
15	MP3A	Mz	.021	.25
16	MP3A	Y	-31.65	4.75
17	MP3A	My	016	4.75
18	MP3A	Mz	.021	4.75
19	MP1A	Y	-13.9	.5
20	MP1A	My	007	.5
21	MP1A	Mz	0	.5
22	MP1A	Y	-13.9	4
23	MP1A	My	007	4
24	MP1A	Mz	0	4
25	M32	Y	-10.4	2
26	M32	My	0	2
27	M32	Mz	0	2
28	MP4A	Y	-84.4	2.5
29	MP4A	My	.042	2.5
30	MP4A	Mz	0	2.5
31	MP3A	Y	-70.3	2.5
32	MP3A	My	.03	2.5
33	MP3A	Mz	.018	2.5

## Member Point Loads (BLC 2 : Antenna Di)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Y	-37.5	2.25
2	MP2A	My	019	2.25
3	MP2A	Mz	0	2.25
4	MP2A	Y	-37.5	4.25
5	MP2A	My	019	4.25
6	MP2A	Mz	0	4.25
7	MP3A	Y	-73.585	.25




# Member Point Loads (BLC 2 : Antenna Di) (Continued)

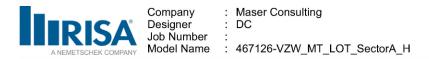
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
8	MP3A	My	037	.25
9	MP3A	Mz	049	.25
10	MP3A	Y	-73.585	4.75
11	MP3A	My	037	4.75
12	MP3A	Mz	049	4.75
13	MP3A	Y	-73.585	.25
14	MP3A	My	037	.25
15	MP3A	Mz	.049	.25
16	MP3A	Y	-73.585	4.75
17	MP3A	My	037	4.75
18	MP3A	Mz	.049	4.75
19	MP1A	Y	-44.542	.5
20	MP1A	My	022	.5
21	MP1A	Mz	0	.5
22	MP1A	Y	-44.542	4
23	MP1A	My	022	4
24	MP1A	Mz	0	4
25	M32	Y	-11.392	2
26	M32	My	0	2
27	M32	Mz	0	2
28	MP4A	Y	-47.315	2.5
29	MP4A	My	.024	2.5
30	MP4A	Mz	0	2.5
31	MP3A	Y	-42.568	2.5
32	MP3A	My	.018	2.5
33	MP3A	Mz	.011	2.5

## Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	0	2.25
2	MP2A	Z	-91.192	2.25
3	MP2A	Mx	0	2.25
4	MP2A	Х	0	4.25
5	MP2A	Z	-91.192	4.25
6	MP2A	Mx	0	4.25
7	MP3A	Х	0	.25
8	MP3A	Z	-176.757	.25
9	MP3A	Mx	.118	.25
10	MP3A	Х	0	4.75
11	MP3A	Z	-176.757	4.75
12	MP3A	Mx	.118	4.75
13	MP3A	Х	0	.25
14	MP3A	Z	-176.757	.25
15	MP3A	Mx	118	.25
16	MP3A	Х	0	4.75
17	MP3A	Z	-176.757	4.75
18	MP3A	Mx	118	4.75
19	MP1A	Х	0	.5
20	MP1A	Z	-98.759	.5
21	MP1A	Mx	0	.5
22	MP1A	Х	0	4
23	MP1A	Z	-98.759	4
24	MP1A	Mx	0	4
25	M32	Х	0	2
26	M32	Z	-13.252	2
27	M32	Mx	0	2



## Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

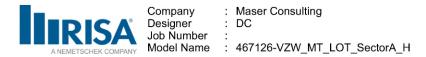

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
28	MP4A	X	0	2.5
29	MP4A	Z	-72.565	2.5
30	MP4A	Mx	0	2.5
31	MP3A	Х	0	2.5
32	MP3A	Z	-64.247	2.5
33	MP3A	Mx	016	2.5

#### Member Point Loads (BLC 4 : Antenna Wo (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	38.66	2.25
2	MP2A	Z	-66.96	2.25
3	MP2A	Mx	019	2.25
4	MP2A	Х	38.66	4.25
5	MP2A	Z	-66.96	4.25
6	MP2A	Mx	019	4.25
7	MP3A	Х	80.795	.25
8	MP3A	Z	-139.942	.25
9	MP3A	Mx	.053	.25
10	MP3A	Х	80.795	4.75
11	MP3A	Z	-139.942	4.75
12	MP3A	Mx	.053	4.75
13	MP3A	Х	80.795	.25
14	MP3A	Z	-139.942	.25
15	MP3A	Mx	134	.25
16	MP3A	Х	80.795	4.75
17	MP3A	Z	-139.942	4.75
18	MP3A	Mx	134	4.75
19	MP1A	Х	45.111	.5
20	MP1A	Z	-78.134	.5
21	MP1A	Mx	023	.5
22	MP1A	Х	45.111	4
23	MP1A	Z	-78.134	4
24	MP1A	Mx	023	4
25	M32	Х	5.52	2
26	M32	Z	-9.561	2
27	M32	Mx	0	2
28	MP4A	X	33.275	2.5
29	MP4A	Z	-57.635	2.5
30	MP4A	Mx	.017	2.5
31	MP3A	X	36.283	2.5
32	MP3A	Z	-62.844	2.5
33	MP3A	Mx	0	2.5

# Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	42.932	2.25
2	MP2A	Z	-24.787	2.25
3	MP2A	Mx	021	2.25
4	MP2A	Х	42.932	4.25
5	MP2A	Z	-24.787	4.25
6	MP2A	Mx	021	4.25
7	MP3A	X	113.673	.25
8	MP3A	Z	-65.629	.25
9	MP3A	Mx	013	.25
10	MP3A	X	113.673	4.75
11	MP3A	Z	-65.629	4.75




# Member Point Loads (BLC 5 : Antenna Wo (60 Deg)) (Continued)

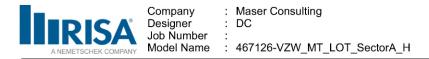
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
12	MP3A	Mx	013	4.75
13	MP3A	Х	113.673	.25
14	MP3A	Z	-65.629	.25
15	MP3A	Mx	101	.25
16	MP3A	Х	113.673	4.75
17	MP3A	Z	-65.629	4.75
18	MP3A	Mx	101	4.75
19	MP1A	Х	63.346	.5
20	MP1A	Z	-36.573	.5
21	MP1A	Mx	032	.5
22	MP1A	Х	63.346	4
23	MP1A	Z	-36.573	4
24	MP1A	Mx	032	4
25	M32	Х	8.603	2
26	M32	Z	-4.967	2
27	M32	Mx	0	2
28	MP4A	Х	47.217	2.5
29	MP4A	Z	-27.261	2.5
30	MP4A	Mx	.024	2.5
31	MP3A	Х	55.639	2.5
32	MP3A	Z	-32.123	2.5
33	MP3A	Mx	.016	2.5

## Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

1	LADOA	Direction	Magnitude[lb,k-ft]	Location[ft,%]
	MP2A	Х	35.701	2.25
2	MP2A	Z	0	2.25
3	MP2A	Mx	018	2.25
4	MP2A	Х	35.701	4.25
5	MP2A	Z	0	4.25
6	MP2A	Mx	018	4.25
7	MP3A	Х	116.092	.25
8	MP3A	Z	0	.25
9	MP3A	Mx	058	.25
10	MP3A	Х	116.092	4.75
11	MP3A	Z	0	4.75
12	MP3A	Mx	058	4.75
13	MP3A	Х	116.092	.25
14	MP3A	Z	0	.25
15	MP3A	Mx	058	.25
16	MP3A	Х	116.092	4.75
17	MP3A	Z	0	4.75
18	MP3A	Mx	058	4.75
19	MP1A	Х	64.608	.5
20	MP1A	Z	0	.5
21	MP1A	Mx	032	.5
22	MP1A	Х	64.608	4
23	MP1A	Z	0	4
24	MP1A	Mx	032	4
25	M32	Х	11.04	2
26	M32	Z	0	2
27	M32	Mx	0	2
28	MP4A	Х	48.506	2.5
29	MP4A	Z	0	2.5
30	MP4A	Mx	.024	2.5
31	MP3A	Х	47.609	2.5



#### Member Point Loads (BLC 6 : Antenna Wo (90 Deg)) (Continued)

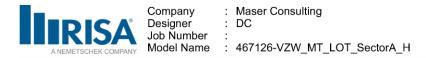

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
32	MP3A	Z	0	2.5
33	MP3A	Mx	.021	2.5

### Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	42.932	2.25
2	MP2A	Z	24.787	2.25
3	MP2A	Mx	021	2.25
4	MP2A	X	42.932	4.25
5	MP2A	Z	24.787	4.25
6	MP2A	Mx	021	4.25
7	MP3A	X	113.673	.25
8	MP3A	Z	65.629	.25
9	MP3A	Mx	101	.25
10	MP3A	X	113.673	4.75
11	MP3A	Z	65.629	4.75
12	MP3A	Mx	101	4.75
13	MP3A	X	113.673	.25
14	MP3A	Z	65.629	.25
15	MP3A	Mx	013	.25
16	MP3A	X	113.673	4.75
17	MP3A	Z	65.629	4.75
18	MP3A	Mx	013	4.75
19	MP1A	X	63.346	.5
20	MP1A	Z	36.573	.5
21	MP1A	Mx	032	.5
22	MP1A	X	63.346	4
23	MP1A	Z	36.573	4
24	MP1A	Mx	032	4
25	M32	X	11.477	2
26	M32	Z	6.626	2
27	M32	Mx	0	2
28	MP4A	X	47.217	2.5
29	MP4A	Z	27.261	2.5
30	MP4A	Mx	.024	2.5
31	MP3A	X	34.026	2.5
32	MP3A	Z	19.645	2.5
33	MP3A	Mx	.02	2.5

#### Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	38.66	2.25
2	MP2A	Z	66.96	2.25
3	MP2A	Mx	019	2.25
4	MP2A	Х	38.66	4.25
5	MP2A	Z	66.96	4.25
6	MP2A	Mx	019	4.25
7	MP3A	Х	80.795	.25
8	MP3A	Z	139.942	.25
9	MP3A	Mx	134	.25
10	MP3A	Х	80.795	4.75
11	MP3A	Z	139.942	4.75
12	MP3A	Mx	134	4.75
13	MP3A	Х	80.795	.25
14	MP3A	Z	139.942	.25
15	MP3A	Mx	.053	.25

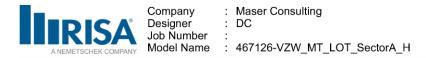



## Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
16	MP3A	Х	80.795	4.75
17	MP3A	Z	139.942	4.75
18	MP3A	Mx	.053	4.75
19	MP1A	Х	45.111	.5
20	MP1A	Z	78.134	.5
21	MP1A	Mx	023	.5
22	MP1A	Х	45.111	4
23	MP1A	Z	78.134	4
24	MP1A	Mx	023	4
25	M32	Х	7.179	2
26	M32	Z	12.434	2
27	M32	Mx	0	2
28	MP4A	Х	33.275	2.5
29	MP4A	Z	57.635	2.5
30	MP4A	Mx	.017	2.5
31	MP3A	Х	23.804	2.5
32	MP3A	Z	41.231	2.5
33	MP3A	Mx	.021	2.5

#### Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	0	2.25
2	MP2A	Z	91.192	2.25
3	MP2A	Mx	0	2.25
4	MP2A	Х	0	4.25
5	MP2A	Z	91.192	4.25
6	MP2A	Mx	0	4.25
7	MP3A	Х	0	.25
8	MP3A	Z	176.757	.25
9	MP3A	Mx	118	.25
10	MP3A	Х	0	4.75
11	MP3A	Z	176.757	4.75
12	MP3A	Mx	118	4.75
13	MP3A	Х	0	.25
14	MP3A	Z	176.757	.25
15	MP3A	Mx	.118	.25
16	MP3A	Х	0	4.75
17	MP3A	Z	176.757	4.75
18	MP3A	Mx	.118	4.75
19	MP1A	Х	0	.5
20	MP1A	Z	98.759	.5
21	MP1A	Mx	0	.5
22	MP1A	Х	0	4
23	MP1A	Z	98.759	4
24	MP1A	Mx	0	4
25	M32	Х	0	2
26	M32	Z	13.252	2
27	M32	Mx	0	2
28	MP4A	X	0	2.5
29	MP4A	Z	72.565	2.5
30	MP4A	Mx	0	2.5
31	MP3A	X	0	2.5
32	MP3A	Z	64.247	2.5
33	MP3A	Mx	.016	2.5




## Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	-38.66	2.25
2	MP2A	Z	66.96	2.25
3	MP2A	Mx	.019	2.25
4	MP2A	Х	-38.66	4.25
5	MP2A	Z	66.96	4.25
6	MP2A	Mx	.019	4.25
7	MP3A	Х	-80.795	.25
8	MP3A	Z	139.942	.25
9	MP3A	Mx	053	.25
10	MP3A	Х	-80.795	4.75
11	MP3A	Z	139.942	4.75
12	MP3A	Mx	053	4.75
13	MP3A	Х	-80.795	.25
14	MP3A	Z	139.942	.25
15	MP3A	Mx	.134	.25
16	MP3A	Х	-80.795	4.75
17	MP3A	Z	139.942	4.75
18	MP3A	Mx	.134	4.75
19	MP1A	Х	-45.111	.5
20	MP1A	Z	78.134	.5
21	MP1A	Mx	.023	.5
22	MP1A	Х	-45.111	4
23	MP1A	Z	78.134	4
24	MP1A	Mx	.023	4
25	M32	Х	-5.52	2
26	M32	Z	9.561	2
27	M32	Mx	0	2
28	MP4A	Х	-33.275	2.5
29	MP4A	Z	57.635	2.5
30	MP4A	Mx	017	2.5
31	MP3A	Х	-36.283	2.5
32	MP3A	Z	62.844	2.5
33	MP3A	Mx	0	2.5

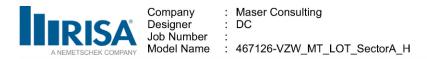
# Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	-42.932	2.25
2	MP2A	Z	24.787	2.25
3	MP2A	Mx	.021	2.25
4	MP2A	Х	-42.932	4.25
5	MP2A	Z	24.787	4.25
6	MP2A	Mx	.021	4.25
7	MP3A	Х	-113.673	.25
8	MP3A	Z	65.629	.25
9	MP3A	Mx	.013	.25
10	MP3A	Х	-113.673	4.75
11	MP3A	Z	65.629	4.75
12	MP3A	Mx	.013	4.75
13	MP3A	Х	-113.673	.25
14	MP3A	Z	65.629	.25
15	MP3A	Mx	.101	.25
16	MP3A	Х	-113.673	4.75
17	MP3A	Z	65.629	4.75
18	MP3A	Mx	.101	4.75
19	MP1A	Х	-63.346	.5
20	MP1A	Z	36.573	.5



# Member Point Loads (BLC 11 : Antenna Wo (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
21	MP1A	Mx	.032	.5
22	MP1A	Х	-63.346	4
23	MP1A	Z	36.573	4
24	MP1A	Mx	.032	4
25	M32	Х	-8.603	2
26	M32	Z	4.967	2
27	M32	Mx	0	2
28	MP4A	Х	-47.217	2.5
29	MP4A	Z	27.261	2.5
30	MP4A	Mx	024	2.5
31	MP3A	Х	-55.639	2.5
32	MP3A	Z	32.123	2.5
33	MP3A	Mx	016	2.5

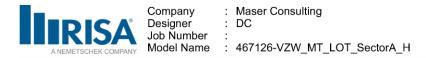

# Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	-35.701	2.25
2	MP2A	Z	0	2.25
3	MP2A	Mx	.018	2.25
4	MP2A	Х	-35.701	4.25
5	MP2A	Z	0	4.25
6	MP2A	Mx	.018	4.25
7	MP3A	Х	-116.092	.25
8	MP3A	Z	0	.25
9	MP3A	Mx	.058	.25
10	MP3A	Х	-116.092	4.75
11	MP3A	Z	0	4.75
12	MP3A	Mx	.058	4.75
13	MP3A	Х	-116.092	.25
14	MP3A	Z	0	.25
15	MP3A	Mx	.058	.25
16	MP3A	Х	-116.092	4.75
17	MP3A	Z	0	4.75
18	MP3A	Mx	.058	4.75
19	MP1A	Х	-64.608	.5
20	MP1A	Z	0	.5
21	MP1A	Mx	.032	.5
22	MP1A	Х	-64.608	4
23	MP1A	Z	0	4
24	MP1A	Mx	.032	4
25	M32	Х	-11.04	2
26	M32	Z	0	2
27	M32	Mx	0	2
28	MP4A	Х	-48.506	2.5
29	MP4A	Z	0	2.5
30	MP4A	Mx	024	2.5
31	MP3A	Х	-47.609	2.5
32	MP3A	Z	0	2.5
33	MP3A	Mx	021	2.5

### Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-42.932	2.25
2	MP2A	Z	-24.787	2.25
3	MP2A	Mx	.021	2.25
4	MP2A	Х	-42.932	4.25

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\...\...\Rev 0\RISA\467126-VZW_MT_LOT_A_H.r3d] Page 14




## Member Point Loads (BLC 13 : Antenna Wo (300 Deg)) (Continued)

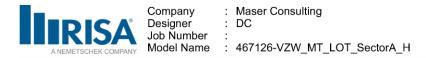
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
5	MP2A	Z	-24.787	4.25
6	MP2A	Mx	.021	4.25
7	MP3A	Х	-113.673	.25
8	MP3A	Z	-65.629	.25
9	MP3A	Mx	.101	.25
10	MP3A	Х	-113.673	4.75
11	MP3A	Z	-65.629	4.75
12	MP3A	Mx	.101	4.75
13	MP3A	Х	-113.673	.25
14	MP3A	Z	-65.629	.25
15	MP3A	Mx	.013	.25
16	MP3A	Х	-113.673	4.75
17	MP3A	Z	-65.629	4.75
18	MP3A	Mx	.013	4.75
19	MP1A	Х	-63.346	.5
20	MP1A	Z	-36.573	.5
21	MP1A	Mx	.032	.5
22	MP1A	Х	-63.346	4
23	MP1A	Z	-36.573	4
24	MP1A	Mx	.032	4
25	M32	Х	-11.477	2
26	M32	Z	-6.626	2
27	M32	Mx	0	2
28	MP4A	Х	-47.217	2.5
29	MP4A	Z	-27.261	2.5
30	MP4A	Mx	024	2.5
31	MP3A	Х	-34.026	2.5
32	MP3A	Z	-19.645	2.5
33	MP3A	Mx	02	2.5

### Member Point Loads (BLC 14 : Antenna Wo (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	-38.66	2.25
2	MP2A	Z	-66.96	2.25
3	MP2A	Mx	.019	2.25
4	MP2A	Х	-38.66	4.25
5	MP2A	Z	-66.96	4.25
6	MP2A	Mx	.019	4.25
7	MP3A	Х	-80.795	.25
8	MP3A	Z	-139.942	.25
9	MP3A	Mx	.134	.25
10	MP3A	Х	-80.795	4.75
11	MP3A	Z	-139.942	4.75
12	MP3A	Mx	.134	4.75
13	MP3A	Х	-80.795	.25
14	MP3A	Z	-139.942	.25
15	MP3A	Mx	053	.25
16	MP3A	Х	-80.795	4.75
17	MP3A	Z	-139.942	4.75
18	MP3A	Mx	053	4.75
19	MP1A	Х	-45.111	.5
20	MP1A	Z	-78.134	.5
21	MP1A	Mx	.023	.5
22	MP1A	Х	-45.111	4
23	MP1A	Z	-78.134	4
24	MP1A	Mx	.023	4



## Member Point Loads (BLC 14 : Antenna Wo (330 Deg)) (Continued)

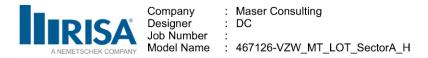

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
25	M32	Х	-7.179	2
26	M32	Z	-12.434	2
27	M32	Mx	0	2
28	MP4A	Х	-33.275	2.5
29	MP4A	Z	-57.635	2.5
30	MP4A	Mx	017	2.5
31	MP3A	Х	-23.804	2.5
32	MP3A	Z	-41.231	2.5
33	MP3A	Mx	021	2.5

## Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	0	2.25
2	MP2A	Z	-17.689	2.25
3	MP2A	Mx	0	2.25
4	MP2A	Х	0	4.25
5	MP2A	Z	-17.689	4.25
6	MP2A	Mx	0	4.25
7	MP3A	Х	0	.25
8	MP3A	Z	-33.216	.25
9	MP3A	Mx	.022	.25
10	MP3A	Х	0	4.75
11	MP3A	Z	-33.216	4.75
12	MP3A	Mx	.022	4.75
13	MP3A	Х	0	.25
14	MP3A	Z	-33.216	.25
15	MP3A	Mx	022	.25
16	MP3A	Х	0	4.75
17	MP3A	Z	-33.216	4.75
18	MP3A	Mx	022	4.75
19	MP1A	Х	0	.5
20	MP1A	Z	-19.085	.5
21	MP1A	Mx	0	.5
22	MP1A	Х	0	4
23	MP1A	Z	-19.085	4
24	MP1A	Mx	0	4
25	M32	Х	0	2
26	M32	Z	-3.436	2
27	M32	Mx	0	2
28	MP4A	Х	0	2.5
29	MP4A	Z	-14.948	2.5
30	MP4A	Mx	0	2.5
31	MP3A	Х	0	2.5
32	MP3A	Z	-13.385	2.5
33	MP3A	Mx	003	2.5

## Member Point Loads (BLC 16 : Antenna Wi (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	7.579	2.25
2	MP2A	Z	-13.128	2.25
3	MP2A	Mx	004	2.25
4	MP2A	X	7.579	4.25
5	MP2A	Z	-13.128	4.25
6	MP2A	Mx	004	4.25
7	MP3A	Х	15.293	.25
8	MP3A	Z	-26.489	.25




## Member Point Loads (BLC 16 : Antenna Wi (30 Deg)) (Continued)

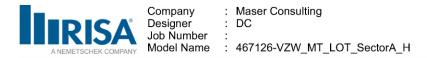
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
9	MP3A	Mx	.01	.25
10	MP3A	Х	15.293	4.75
11	MP3A	Z	-26.489	4.75
12	MP3A	Mx	.01	4.75
13	MP3A	Х	15.293	.25
14	MP3A	Z	-26.489	.25
15	MP3A	Mx	025	.25
16	MP3A	Х	15.293	4.75
17	MP3A	Z	-26.489	4.75
18	MP3A	Mx	025	4.75
19	MP1A	Х	8.779	.5
20	MP1A	Z	-15.205	.5
21	MP1A	Mx	004	.5
22	MP1A	Х	8.779	4
23	MP1A	Z	-15.205	4
24	MP1A	Mx	004	4
25	M32	Х	1.491	2
26	M32	Z	-2.583	2
27	M32	Mx	0	2
28	MP4A	Х	6.908	2.5
29	MP4A	Z	-11.964	2.5
30	MP4A	Mx	.003	2.5
31	MP3A	Х	7.474	2.5
32	MP3A	Z	-12.945	2.5
33	MP3A	Mx	0	2.5

# Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	8.744	2.25
2	MP2A	Z	-5.048	2.25
3	MP2A	Mx	004	2.25
4	MP2A	Х	8.744	4.25
5	MP2A	Z	-5.048	4.25
6	MP2A	Mx	004	4.25
7	MP3A	Х	21.934	.25
8	MP3A	Z	-12.664	.25
9	MP3A	Mx	003	.25
10	MP3A	Х	21.934	4.75
11	MP3A	Z	-12.664	4.75
12	MP3A	Mx	003	4.75
13	MP3A	Х	21.934	.25
14	MP3A	Z	-12.664	.25
15	MP3A	Mx	019	.25
16	MP3A	Х	21.934	4.75
17	MP3A	Z	-12.664	4.75
18	MP3A	Mx	019	4.75
19	MP1A	Х	12.559	.5
20	MP1A	Z	-7.251	.5
21	MP1A	Mx	006	.5
22	MP1A	Х	12.559	4
23	MP1A	Z	-7.251	4
24	MP1A	Mx	006	4
25	M32	Х	2.387	2
26	M32	Z	-1.378	2
27	M32	Mx	0	2
28	MP4A	Х	10.003	2.5



### Member Point Loads (BLC 17 : Antenna Wi (60 Deg)) (Continued)

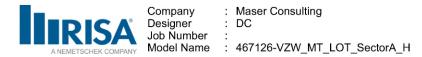

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
29	MP4A	Z	-5.775	2.5
30	MP4A	Mx	.005	2.5
31	MP3A	Х	11.592	2.5
32	MP3A	Z	-6.692	2.5
33	MP3A	Mx	.003	2.5

#### Member Point Loads (BLC 18 : Antenna Wi (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	7.565	2.25
2	MP2A	Z	0	2.25
3	MP2A	Mx	004	2.25
4	MP2A	Х	7.565	4.25
5	MP2A	Z	0	4.25
6	MP2A	Mx	004	4.25
7	MP3A	Х	22.698	.25
8	MP3A	Z	0	.25
9	MP3A	Mx	011	.25
10	MP3A	Х	22.698	4.75
11	MP3A	Z	0	4.75
12	MP3A	Mx	011	4.75
13	MP3A	Х	22.698	.25
14	MP3A	Z	0	.25
15	MP3A	Mx	011	.25
16	MP3A	Х	22.698	4.75
17	MP3A	Z	0	4.75
18	MP3A	Mx	011	4.75
19	MP1A	Х	12.974	.5
20	MP1A	Z	0	.5
21	MP1A	Mx	006	.5
22	MP1A	Х	12.974	4
23	MP1A	Z	0	4
24	MP1A	Mx	006	4
25	M32	Х	2.983	2
26	M32	Z	0	2
27	M32	Mx	0	2
28	MP4A	Х	10.417	2.5
29	MP4A	Z	0	2.5
30	MP4A	Mx	.005	2.5
31	MP3A	Х	10.259	2.5
32	MP3A	Z	0	2.5
33	MP3A	Mx	.004	2.5

#### Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	8.744	2.25
2	MP2A	Z	5.048	2.25
3	MP2A	Mx	004	2.25
4	MP2A	X	8.744	4.25
5	MP2A	Z	5.048	4.25
6	MP2A	Mx	004	4.25
7	MP3A	Х	21.934	.25
8	MP3A	Z	12.664	.25
9	MP3A	Mx	019	.25
10	MP3A	X	21.934	4.75
11	MP3A	Z	12.664	4.75
12	MP3A	Mx	019	4.75




## Member Point Loads (BLC 19 : Antenna Wi (120 Deg)) (Continued)

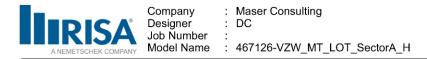
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
13	MP3A	Х	21.934	.25
14	MP3A	Z	12.664	.25
15	MP3A	Mx	003	.25
16	MP3A	Х	21.934	4.75
17	MP3A	Z	12.664	4.75
18	MP3A	Mx	003	4.75
19	MP1A	Х	12.559	.5
20	MP1A	Z	7.251	.5
21	MP1A	Mx	006	.5
22	MP1A	Х	12.559	4
23	MP1A	Z	7.251	4
24	MP1A	Mx	006	4
25	M32	Х	2.975	2
26	M32	Z	1.718	2
27	M32	Mx	0	2
28	MP4A	Х	10.003	2.5
29	MP4A	Z	5.775	2.5
30	MP4A	Mx	.005	2.5
31	MP3A	Х	7.531	2.5
32	MP3A	Z	4.348	2.5
33	MP3A	Mx	.004	2.5

## Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

1         MP2A         X         7.579         2.25           2         MP2A         Z         13.128         2.25           3         MP2A         Mx        004         2.25           4         MP2A         X         7.579         4.25           5         MP2A         Z         13.128         4.25           6         MP2A         X         15.293         .25           7         MP3A         X         15.293         .25           8         MP3A         Z         26.489         .25           9         MP3A         X         15.293         4.75           11         MP3A         X         15.293         4.75           12         MP3A         X         15.293         4.75           13         MP3A         X         15.293         .25           14         MP3A         Z         26.489         .25           15         MP3A         X         15.293         4.75           14         MP3A         Z         26.489         4.75           16         MP3A         X         15.293         4.75           18         MP3		Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
2         MP2A         Z         13.128         2.25           3         MP2A         Mx        004         2.25           4         MP2A         X         7.579         4.25           5         MP2A         Z         13.128         4.25           6         MP2A         X         15.293         .25           7         MP3A         X         15.293         .25           8         MP3A         Z         26.489         .25           9         MP3A         X         15.293         4.75           11         MP3A         Z         26.489         4.75           12         MP3A         X         15.293         4.75           13         MP3A         Z         26.489         .25           14         MP3A         X         15.293         .25           14         MP3A         Z         26.489         .25           15         MP3A         MX         .01         .25           16         MP3A         X         15.293         4.75           18         MP3A         X         .01         4.75           20         MP1A <td>1</td> <td>MP2A</td> <td>Х</td> <td></td> <td></td>	1	MP2A	Х		
4         MP2A         X         7.579         4.25           5         MP2A         Z         13.128         4.25           6         MP2A         Mx        004         4.25           7         MP3A         X         15.293         .25           8         MP3A         Z         26.489         .25           9         MP3A         Mx        025         .25           10         MP3A         X         15.293         4.75           11         MP3A         X         15.293         4.75           11         MP3A         Z         26.489         4.75           12         MP3A         X         15.293         .25           14         MP3A         Z         26.489         .25           15         MP3A         Z         26.489         .25           15         MP3A         Z         26.489         .25           16         MP3A         X         15.293         4.75           18         MP3A         X         .01         .4.75           19         MP1A         X         8.779         .5           20         MP1A </td <td>2</td> <td>MP2A</td> <td>Z</td> <td>13.128</td> <td>2.25</td>	2	MP2A	Z	13.128	2.25
4         MP2A         X         7.579         4.25           5         MP2A         Z         13.128         4.25           6         MP2A         Mx        004         4.25           7         MP3A         X         15.293         .25           8         MP3A         Z         26.489         .25           9         MP3A         Mx        025         .25           10         MP3A         X         15.293         4.75           11         MP3A         X         15.293         4.75           12         MP3A         X         15.293         .25           14         MP3A         Z         26.489         .25           15         MP3A         X         15.293         .25           14         MP3A         Z         26.489         .25           15         MP3A         X         15.293         .4.75           16         MP3A         X         15.293         .4.75           18         MP3A         Z         26.489         .5           20         MP1A         X         8.779         .5           21         MP1A	3	MP2A	Mx	004	2.25
5         MP2A         Z         13.128         4.25           6         MP2A         Mx        004         4.25           7         MP3A         X         15.293         .25           8         MP3A         Z         26.489         .25           9         MP3A         Mx        025         .25           10         MP3A         X         15.293         4.75           11         MP3A         Z         26.489         4.75           12         MP3A         X         15.293         4.75           13         MP3A         Z         26.489         4.75           13         MP3A         X         15.293         .25           14         MP3A         Z         26.489         .25           15         MP3A         X         15.293         4.75           16         MP3A         X         15.293         4.75           18         MP3A         X         15.205         .5           20         MP1A         Z         15.205         .5           21         MP1A         X         8.779         4           23         MP1A<	4	MP2A	Х	7.579	4.25
7         MP3A         X         15.293         .25           8         MP3A         Z         26.489         .25           9         MP3A         Mx        025         .25           10         MP3A         X         15.293         4.75           11         MP3A         Z         26.489         4.75           12         MP3A         Mx        025         4.75           13         MP3A         X         15.293         .25           14         MP3A         Z         26.489         .25           14         MP3A         Z         26.489         .25           15         MP3A         X         15.293         .4.75           16         MP3A         X         15.293         4.75           17         MP3A         X         15.293         4.75           18         MP3A         X         15.205         .5           20         MP1A         X         8.779         .4           23         MP1A         Z         15.205         .5           21         MP1A         X         8.779         4           23         MP1A </td <td>5</td> <td>MP2A</td> <td>Z</td> <td>13.128</td> <td>4.25</td>	5	MP2A	Z	13.128	4.25
7         MP3A         X         15.293         .25           8         MP3A         Z         26.489         .25           9         MP3A         Mx        025         .25           10         MP3A         X         15.293         4.75           11         MP3A         Z         26.489         4.75           12         MP3A         MX        025         4.75           13         MP3A         X         15.293         .25           14         MP3A         Z         26.489         .25           14         MP3A         Z         26.489         .25           15         MP3A         Z         26.489         .25           16         MP3A         X         15.293         4.75           17         MP3A         Z         26.489         4.75           18         MP3A         Mx         .01         .4.75           19         MP1A         X         8.779         .5           20         MP1A         Z         15.205         .5           21         MP1A         X         8.779         4           23         MP1A <td>6</td> <td>MP2A</td> <td>Mx</td> <td>004</td> <td>4.25</td>	6	MP2A	Mx	004	4.25
9         MP3A         Mx        025         .25           10         MP3A         X         15.293         4.75           11         MP3A         Z         26.489         4.75           12         MP3A         Mx        025         4.75           13         MP3A         X         15.293         .25           14         MP3A         Z         26.489         .25           14         MP3A         X         15.293         .25           15         MP3A         Z         26.489         .25           16         MP3A         Z         26.489         .25           16         MP3A         X         15.293         4.75           17         MP3A         Z         26.489         4.75           18         MP3A         Mx         .01         4.75           19         MP1A         X         8.779         .5           20         MP1A         Z         15.205         .5           21         MP1A         X         8.779         4           23         MP1A         Z         15.205         4           24         MP1A <td>7</td> <td>MP3A</td> <td>Х</td> <td>15.293</td> <td>.25</td>	7	MP3A	Х	15.293	.25
10         MP3A         X         15.293         4.75           11         MP3A         Z         26.489         4.75           12         MP3A         Mx        025         4.75           13         MP3A         X         15.293         .25           14         MP3A         Z         26.489         .25           14         MP3A         Z         26.489         .25           15         MP3A         Mx         .01         .25           16         MP3A         X         15.293         4.75           17         MP3A         X         15.293         4.75           18         MP3A         Z         26.489         4.75           18         MP3A         X         .01         4.75           19         MP1A         X         8.779         .5           20         MP1A         X         8.779         4           23         MP1A         X         8.779         4           23         MP1A         Z         15.205         4           24         MP1A         X         8.779         4           25         M32	8	MP3A	Z	26.489	.25
11         MP3A         Z         26.489         4.75           12         MP3A         Mx        025         4.75           13         MP3A         X         15.293         .25           14         MP3A         Z         26.489         .25           15         MP3A         X         15.293         .25           16         MP3A         X         15.293         4.75           16         MP3A         Z         26.489         4.75           17         MP3A         Z         26.489         4.75           18         MP3A         Z         26.489         4.75           19         MP1A         X         8.779         .5           20         MP1A         Z         15.205         .5           21         MP1A         X         8.779         4           23         MP1A         Z         15.205         4           24         MP1A         X         8.779         4           25         M32         X         1.831         2           26         M32         Z         3.172         2           27         M32	9	MP3A	Mx	025	.25
12         MP3A         Mx        025         4.75           13         MP3A         X         15.293         .25           14         MP3A         Z         26.489         .25           15         MP3A         Mx         .01         .25           16         MP3A         X         15.293         4.75           16         MP3A         X         15.293         4.75           17         MP3A         Z         26.489         4.75           18         MP3A         X         15.293         4.75           18         MP3A         X         .01         4.75           19         MP1A         X         8.779         .5           20         MP1A         Z         15.205         .5           21         MP1A         X         8.779         4           23         MP1A         Z         15.205         4           24         MP1A         Z         15.205         4           25         M32         X         1.831         2           26         M32         Z         3.172         2           26         M32 <td< td=""><td>10</td><td>MP3A</td><td>Х</td><td>15.293</td><td>4.75</td></td<>	10	MP3A	Х	15.293	4.75
13         MP3A         X         15.293         .25           14         MP3A         Z         26.489         .25           15         MP3A         Mx         .01         .25           16         MP3A         X         15.293         4.75           17         MP3A         Z         26.489         4.75           17         MP3A         Z         26.489         4.75           18         MP3A         Mx         .01         4.75           19         MP1A         X         8.779         .5           20         MP1A         Z         15.205         .5           21         MP1A         Mx        004         .5           22         MP1A         X         8.779         4           23         MP1A         Z         15.205         .4           24         MP1A         Z         15.205         4           25         M32         X         1.831         2           26         M32         Z         3.172         2         2           27         M32         Mx         0         2         2           28	11	MP3A	Z	26.489	4.75
14         MP3A         Z         26.489         .25           15         MP3A         Mx         .01         .25           16         MP3A         X         15.293         4.75           17         MP3A         Z         26.489         4.75           18         MP3A         Z         26.489         4.75           18         MP3A         Mx         .01         4.75           19         MP1A         X         8.779         .5           20         MP1A         Z         15.205         .5           21         MP1A         X         8.779         4           22         MP1A         X         8.779         4           23         MP1A         X         8.779         4           24         MP1A         X         8.779         4           25         M32         X         15.205         4           24         MP1A         Z         15.205         4           25         M32         X         1.831         2           26         M32         Z         3.172         2           27         M32         Mx	12	MP3A	Mx	025	4.75
15MP3AMx.01.2516MP3AX15.2934.7517MP3AZ26.4894.7518MP3AMx.014.7519MP1AX8.779.520MP1AZ15.205.521MP1AMx004.522MP1AX8.779423MP1AZ15.205424MP1AX8.779425M32X1.831226M32Z3.172227M32Mx0228MP4AZ11.9642.530MP4AMx.0032.5	13	MP3A	Х	15.293	.25
16MP3AX15.2934.7517MP3AZ26.4894.7518MP3AMx.014.7519MP1AX8.779.520MP1AZ15.205.521MP1AMx004.522MP1AX8.779423MP1AZ15.205424MP1AX8.779425M32X1.831226M32Z3.172227M32Mx0228MP4AX6.9082.530MP4AMx.0032.5	14	MP3A	Z	26.489	.25
17MP3AZ26.4894.7518MP3AMx.014.7519MP1AX8.779.520MP1AZ15.205.521MP1AMx004.522MP1AX8.779423MP1AZ15.205424MP1AMx004425M32X1.831226M32Z3.172227M32Mx0228MP4AX6.9082.530MP4AMx.0032.5		MP3A	Mx	.01	.25
18MP3AMx.014.7519MP1AX8.779.520MP1AZ15.205.521MP1AMx004.522MP1AX8.779423MP1AZ15.205424MP1AMx004425M32X1.831226M32Z3.172227M32Mx0228MP4AX6.9082.530MP4AMx.0032.5	16	MP3A		15.293	4.75
19         MP1A         X         8.779         .5           20         MP1A         Z         15.205         .5           21         MP1A         Mx        004         .5           22         MP1A         X         8.779         4           23         MP1A         X         8.779         4           23         MP1A         Z         15.205         4           24         MP1A         Z         15.205         4           25         M32         X         1.831         2           26         M32         Z         3.172         2           27         M32         Mx         0         2           28         MP4A         X         6.908         2.5           29         MP4A         Z         11.964         2.5           30         MP4A         Mx         .003         2.5	17	MP3A	Z	26.489	4.75
20         MP1A         Z         15.205         .5           21         MP1A         Mx        004         .5           22         MP1A         X         8.779         4           23         MP1A         Z         15.205         4           24         MP1A         Mx        004         4           25         M32         X         1.831         2           26         M32         Z         3.172         2           27         M32         Mx         0         2           28         MP4A         X         6.908         2.5           29         MP4A         Z         11.964         2.5           30         MP4A         Mx         .003         2.5	18	MP3A	Mx	.01	4.75
21         MP1A         Mx        004         .5           22         MP1A         X         8.779         4           23         MP1A         Z         15.205         4           24         MP1A         Mx        004         4           25         M32         X         1.831         2           26         M32         Z         3.172         2           27         M32         Mx         0         2           28         MP4A         X         6.908         2.5           29         MP4A         X         0.003         2.5	19	MP1A	Х		.5
22         MP1A         X         8.779         4           23         MP1A         Z         15.205         4           24         MP1A         Mx        004         4           25         M32         X         1.831         2           26         M32         Z         3.172         2           27         M32         Mx         0         2           28         MP4A         X         6.908         2.5           29         MP4A         Z         11.964         2.5           30         MP4A         Mx         .003         2.5		MP1A			
23         MP1A         Z         15.205         4           24         MP1A         Mx        004         4           25         M32         X         1.831         2           26         M32         Z         3.172         2           27         M32         Mx         0         2           28         MP4A         X         6.908         2.5           29         MP4A         Z         11.964         2.5           30         MP4A         Mx         .003         2.5	21	MP1A	Mx	004	.5
24         MP1A         Mx        004         4           25         M32         X         1.831         2           26         M32         Z         3.172         2           27         M32         Mx         0         2           28         MP4A         X         6.908         2.5           29         MP4A         Z         11.964         2.5           30         MP4A         Mx         .003         2.5	22	MP1A	Х	8.779	4
25         M32         X         1.831         2           26         M32         Z         3.172         2           27         M32         Mx         0         2           28         MP4A         X         6.908         2.5           29         MP4A         Z         11.964         2.5           30         MP4A         Mx         .003         2.5	23	MP1A	Z	15.205	
26         M32         Z         3.172         2           27         M32         Mx         0         2           28         MP4A         X         6.908         2.5           29         MP4A         Z         11.964         2.5           30         MP4A         Mx         .003         2.5		MP1A			
27         M32         Mx         0         2           28         MP4A         X         6.908         2.5           29         MP4A         Z         11.964         2.5           30         MP4A         Mx         .003         2.5			Х		2
28         MP4A         X         6.908         2.5           29         MP4A         Z         11.964         2.5           30         MP4A         Mx         .003         2.5		M32		3.172	
29         MP4A         Z         11.964         2.5           30         MP4A         Mx         .003         2.5				-	
30 MP4A Mx .003 2.5	28	MP4A		6.908	
30 MP4A Mx .003 2.5	29	MP4A		11.964	
		MP4A			
31 MP3A X 5.129 2.5		MP3A			
32 MP3A Z 8.884 2.5	32	MP3A	Z	8.884	2.5



#### Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)


	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
33	MP3A	Mx	.004	2.5

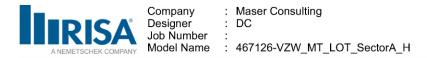
### Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	0	2.25
2	MP2A	Z	17.689	2.25
3	MP2A	Mx	0	2.25
4	MP2A	Х	0	4.25
5	MP2A	Z	17.689	4.25
6	MP2A	Mx	0	4.25
7	MP3A	X	0	.25
8	MP3A	Z	33.216	.25
9	MP3A	Mx	022	.25
10	MP3A	X	0	4.75
11	MP3A	Z	33.216	4.75
12	MP3A	Mx	022	4.75
13	MP3A	Х	0	.25
14	MP3A	Z	33.216	.25
15	MP3A	Mx	.022	.25
16	MP3A	X	0	4.75
17	MP3A	Z	33.216	4.75
18	MP3A	Mx	.022	4.75
19	MP1A	Х	0	.5
20	MP1A	Z	19.085	.5
21	MP1A	Mx	0	.5
22	MP1A	Х	0	4
23	MP1A	Z	19.085	4
24	MP1A	Mx	0	4
25	M32	Х	0	2
26	M32	Z	3.436	2
27	M32	Mx	0	2
28	MP4A	X	0	2.5
29	MP4A	Z	14.948	2.5
30	MP4A	Mx	0	2.5
31	MP3A	Х	0	2.5
32	MP3A	Z	13.385	2.5
33	MP3A	Mx	.003	2.5

# Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	-7.579	2.25
2	MP2A	Z	13.128	2.25
3	MP2A	Mx	.004	2.25
4	MP2A	Х	-7.579	4.25
5	MP2A	Z	13.128	4.25
6	MP2A	Mx	.004	4.25
7	MP3A	Х	-15.293	.25
8	MP3A	Z	26.489	.25
9	MP3A	Mx	01	.25
10	MP3A	Х	-15.293	4.75
11	MP3A	Z	26.489	4.75
12	MP3A	Mx	01	4.75
13	MP3A	Х	-15.293	.25
14	MP3A	Z	26.489	.25
15	MP3A	Mx	.025	.25
16	MP3A	Х	-15.293	4.75



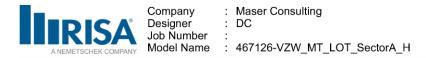

# Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
17	MP3A	Z	26.489	4.75
18	MP3A	Mx	.025	4.75
19	MP1A	Х	-8.779	.5
20	MP1A	Z	15.205	.5
21	MP1A	Mx	.004	.5
22	MP1A	Х	-8.779	4
23	MP1A	Z	15.205	4
24	MP1A	Mx	.004	4
25	M32	Х	-1.491	2
26	M32	Z	2.583	2
27	M32	Mx	0	2
28	MP4A	Х	-6.908	2.5
29	MP4A	Z	11.964	2.5
30	MP4A	Mx	003	2.5
31	MP3A	Х	-7.474	2.5
32	MP3A	Z	12.945	2.5
33	MP3A	Mx	0	2.5

### Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

1		Direction	Magnitude[lb,k-ft]	Location[ft,%]
	MP2A	Х	-8.744	2.25
2	MP2A	Z	5.048	2.25
3	MP2A	Mx	.004	2.25
4	MP2A	Х	-8.744	4.25
5	MP2A	Z	5.048	4.25
6	MP2A	Mx	.004	4.25
7	MP3A	Х	-21.934	.25
8	MP3A	Z	12.664	.25
9	MP3A	Mx	.003	.25
10	MP3A	Х	-21.934	4.75
11	MP3A	Z	12.664	4.75
12	MP3A	Mx	.003	4.75
13	MP3A	Х	-21.934	.25
14	MP3A	Z	12.664	.25
15	MP3A	Mx	.019	.25
16	MP3A	Х	-21.934	4.75
17	MP3A	Z	12.664	4.75
18	MP3A	Mx	.019	4.75
19	MP1A	Х	-12.559	.5
20	MP1A	Z	7.251	.5
21	MP1A	Mx	.006	.5
22	MP1A	Х	-12.559	4
23	MP1A	Z	7.251	4
24	MP1A	Mx	.006	4
25	M32	Х	-2.387	2
26	M32	Z	1.378	2
27	M32	Mx	0	2
28	MP4A	X	-10.003	2.5
29	MP4A	Z	5.775	2.5
30	MP4A	Mx	005	2.5
31	MP3A	Х	-11.592	2.5
32	MP3A	Z	6.692	2.5
33	MP3A	Mx	003	2.5

## Member Point Loads (BLC 24 : Antenna Wi (270 Deg))




## Member Point Loads (BLC 24 : Antenna Wi (270 Deg)) (Continued)

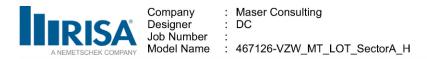
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	-7.565	2.25
2	MP2A	Z	0	2.25
3	MP2A	Mx	.004	2.25
4	MP2A	Х	-7.565	4.25
5	MP2A	Z	0	4.25
6	MP2A	Mx	.004	4.25
7	MP3A	Х	-22.698	.25
8	MP3A	Z	0	.25
9	MP3A	Mx	.011	.25
10	MP3A	Х	-22.698	4.75
11	MP3A	Z	0	4.75
12	MP3A	Mx	.011	4.75
13	MP3A	Х	-22.698	.25
14	MP3A	Z	0	.25
15	MP3A	Mx	.011	.25
16	MP3A	Х	-22.698	4.75
17	MP3A	Z	0	4.75
18	MP3A	Mx	.011	4.75
19	MP1A	Х	-12.974	.5
20	MP1A	Z	0	.5
21	MP1A	Mx	.006	.5
22	MP1A	Х	-12.974	4
23	MP1A	Z	0	4
24	MP1A	Mx	.006	4
25	M32	Х	-2.983	2
26	M32	Z	0	2
27	M32	Mx	0	2
28	MP4A	Х	-10.417	2.5
29	MP4A	Z	0	2.5
30	MP4A	Mx	005	2.5
31	MP3A	Х	-10.259	2.5
32	MP3A	Z	0	2.5
33	MP3A	Mx	004	2.5

# Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	-8.744	2.25
2	MP2A	Z	-5.048	2.25
3	MP2A	Mx	.004	2.25
4	MP2A	Х	-8.744	4.25
5	MP2A	Z	-5.048	4.25
6	MP2A	Mx	.004	4.25
7	MP3A	Х	-21.934	.25
8	MP3A	Z	-12.664	.25
9	MP3A	Mx	.019	.25
10	MP3A	Х	-21.934	4.75
11	MP3A	Z	-12.664	4.75
12	MP3A	Mx	.019	4.75
13	MP3A	Х	-21.934	.25
14	MP3A	Z	-12.664	.25
15	MP3A	Mx	.003	.25
16	MP3A	Х	-21.934	4.75
17	MP3A	Z	-12.664	4.75
18	MP3A	Mx	.003	4.75
19	MP1A	Х	-12.559	.5
20	MP1A	Z	-7.251	.5



## Member Point Loads (BLC 25 : Antenna Wi (300 Deg)) (Continued)

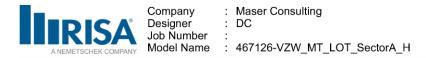

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
21	MP1A	Mx	.006	.5
22	MP1A	Х	-12.559	4
23	MP1A	Z	-7.251	4
24	MP1A	Mx	.006	4
25	M32	Х	-2.975	2
26	M32	Z	-1.718	2
27	M32	Mx	0	2
28	MP4A	Х	-10.003	2.5
29	MP4A	Z	-5.775	2.5
30	MP4A	Mx	005	2.5
31	MP3A	Х	-7.531	2.5
32	MP3A	Z	-4.348	2.5
33	MP3A	Mx	004	2.5

# Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X Z	-7.579	2.25
2	MP2A	Z	-13.128	2.25
3	MP2A	Mx	.004	2.25
4	MP2A	Х	-7.579	4.25
5	MP2A	Z	-13.128	4.25
6	MP2A	Mx	.004	4.25
7	MP3A	X	-15.293	.25
8	MP3A	Z	-26.489	.25
9	MP3A	Mx	.025	.25
10	MP3A	Х	-15.293	4.75
11	MP3A	Z	-26.489	4.75
12	MP3A	Mx	.025	4.75
13	MP3A	Х	-15.293	.25
14	MP3A	X Z	-26.489	.25
15	MP3A	Mx	01	.25
16	MP3A	Х	-15.293	4.75
17	MP3A	Z	-26.489	4.75
18	MP3A	Mx	01	4.75
19	MP1A	Х	-8.779	.5
20	MP1A	Z	-15.205	.5
21	MP1A	Mx	.004	.5
22	MP1A	Х	-8.779	4
23	MP1A	Z	-15.205	4
24	MP1A	Mx	.004	4
25	M32	Х	-1.831	2
26	M32	Z	-3.172	2
27	M32	Mx	0	2
28	MP4A	Х	-6.908	2.5
29	MP4A	Z	-11.964	2.5
30	MP4A	Mx	003	2.5
31	MP3A	Х	-5.129	2.5
32	MP3A	Z	-8.884	2.5
33	MP3A	Mx	004	2.5

### Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	0	2.25
2	MP2A	Z	-5.606	2.25
3	MP2A	Mx	0	2.25
4	MP2A	Х	0	4.25




## Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

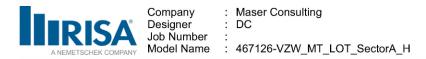
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
5	MP2A	Z	-5.606	4.25
6	MP2A	Mx	0	4.25
7	MP3A	Х	0	.25
8	MP3A	Z	-10.865	.25
9	MP3A	Mx	.007	.25
10	MP3A	Х	0	4.75
11	MP3A	Z	-10.865	4.75
12	MP3A	Mx	.007	4.75
13	MP3A	Х	0	.25
14	MP3A	Z	-10.865	.25
15	MP3A	Mx	007	.25
16	MP3A	Х	0	4.75
17	MP3A	Z	-10.865	4.75
18	MP3A	Mx	007	4.75
19	MP1A	Х	0	.5
20	MP1A	Z	-6.071	.5
21	MP1A	Mx	0	.5
22	MP1A	Х	0	4
23	MP1A	Z	-6.071	4
24	MP1A	Mx	0	4
25	M32	Х	0	2
26	M32	Z	815	2
27	M32	Mx	0	2
28	MP4A	Х	0	2.5
29	MP4A	Z	-4.461	2.5
30	MP4A	Mx	0	2.5
31	MP3A	Х	0	2.5
32	MP3A	Z	-3.949	2.5
33	MP3A	Mx	000987	2.5

### Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	2.376	2.25
2	MP2A	Z	-4.116	2.25
3	MP2A	Mx	001	2.25
4	MP2A	Х	2.376	4.25
5	MP2A	Z	-4.116	4.25
6	MP2A	Mx	001	4.25
7	MP3A	Х	4.967	.25
8	MP3A	Z	-8.602	.25
9	MP3A	Mx	.003	.25
10	MP3A	Х	4.967	4.75
11	MP3A	Z	-8.602	4.75
12	MP3A	Mx	.003	4.75
13	MP3A	Х	4.967	.25
14	MP3A	Z	-8.602	.25
15	MP3A	Mx	008	.25
16	MP3A	X	4.967	4.75
17	MP3A	Z	-8.602	4.75
18	MP3A	Mx	008	4.75
19	MP1A	Х	2.773	.5
20	MP1A	Z	-4.803	.5
21	MP1A	Mx	001	.5
22	MP1A	Х	2.773	4
23	MP1A	Z	-4.803	4
24	MP1A	Mx	001	4



## Member Point Loads (BLC 28 : Antenna Wm (30 Deg)) (Continued)

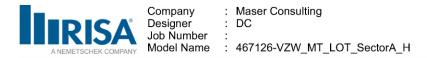

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
25	M32	X	.339	2
26	M32	Z	588	2
27	M32	Mx	0	2
28	MP4A	Х	2.045	2.5
29	MP4A	Z	-3.543	2.5
30	MP4A	Mx	.001	2.5
31	MP3A	Х	2.23	2.5
32	MP3A	Z	-3.863	2.5
33	MP3A	Mx	0	2.5

#### Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	2.639	2.25
2	MP2A	Z	-1.524	2.25
3	MP2A	Mx	001	2.25
4	MP2A	X	2.639	4.25
5	MP2A	Z	-1.524	4.25
6	MP2A	Mx	001	4.25
7	MP3A	X	6.988	.25
8	MP3A	Z	-4.034	.25
9	MP3A	Mx	000805	.25
10	MP3A	X	6.988	4.75
11	MP3A	Z	-4.034	4.75
12	MP3A	Mx	000805	4.75
13	MP3A	X	6.988	.25
14	MP3A	Z	-4.034	.25
15	MP3A	Mx	006	.25
16	MP3A	X	6.988	4.75
17	MP3A	Z	-4.034	4.75
18	MP3A	Mx	006	4.75
19	MP1A	X	3.894	.5
20	MP1A	Z	-2.248	.5
21	MP1A	Mx	002	.5
22	MP1A	X	3.894	4
23	MP1A	Z	-2.248	4
24	MP1A	Mx	002	4
25	M32	Х	.529	2
26	M32	Z	305	2
27	M32	Mx	0	2
28	MP4A	X	2.902	2.5
29	MP4A	Z	-1.676	2.5
30	MP4A	Mx	.001	2.5
31	MP3A	Х	3.42	2.5
32	MP3A	Z	-1.975	2.5
33	MP3A	Mx	.000987	2.5

# Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	Magnitude[lb,k-ft] 2.195	2.25
2	MP2A	Z	0	2.25
3	MP2A	Mx	001	2.25
4	MP2A	X	2.195	4.25
5	MP2A	Z	0	4.25
6	MP2A	Mx	001	4.25
7	MP3A	Х	7.136	.25
8	MP3A	Z	0	.25




## Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

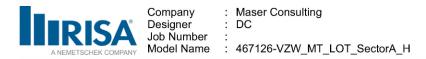
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
9	MP3A	Mx	004	.25
10	MP3A	Х	7.136	4.75
11	MP3A	Z	0	4.75
12	MP3A	Mx	004	4.75
13	MP3A	Х	7.136	.25
14	MP3A	Z	0	.25
15	MP3A	Mx	004	.25
16	MP3A	Х	7.136	4.75
17	MP3A	Z	0	4.75
18	MP3A	Mx	004	4.75
19	MP1A	Х	3.972	.5
20	MP1A	Z	0	.5
21	MP1A	Mx	002	.5
22	MP1A	Х	3.972	4
23	MP1A	Z	0	4
24	MP1A	Mx	002	4
25	M32	Х	.679	2
26	M32	Z	0	2
27	M32	Mx	0	2
28	MP4A	Х	2.982	2.5
29	MP4A	Z	0	2.5
30	MP4A	Mx	.001	2.5
31	MP3A	Х	2.927	2.5
32	MP3A	Z	0	2.5
33	MP3A	Mx	.001	2.5

# Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	2.639	2.25
2	MP2A	Z	1.524	2.25
3	MP2A	Mx	001	2.25
4	MP2A	Х	2.639	4.25
5	MP2A	Z	1.524	4.25
6	MP2A	Mx	001	4.25
7	MP3A	Х	6.988	.25
8	MP3A	Z	4.034	.25
9	MP3A	Mx	006	.25
10	MP3A	Х	6.988	4.75
11	MP3A	Z	4.034	4.75
12	MP3A	Mx	006	4.75
13	MP3A	Х	6.988	.25
14	MP3A	Z	4.034	.25
15	MP3A	Mx	000805	.25
16	MP3A	Х	6.988	4.75
17	MP3A	Z	4.034	4.75
18	MP3A	Mx	000805	4.75
19	MP1A	Х	3.894	.5
20	MP1A	Z	2.248	.5
21	MP1A	Mx	002	.5
22	MP1A	Х	3.894	4
23	MP1A	Z	2.248	4
24	MP1A	Mx	002	4
25	M32	Х	.705	2
26	M32	Z	.407	2
27	M32	Mx	0	2
28	MP4A	Х	2.902	2.5



### Member Point Loads (BLC 31 : Antenna Wm (120 Deg)) (Continued)

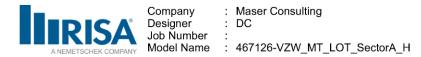

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
29	MP4A	Z	1.676	2.5
30	MP4A	Mx	.001	2.5
31	MP3A	Х	2.092	2.5
32	MP3A	Z	1.208	2.5
33	MP3A	Mx	.001	2.5

#### Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	2.376	2.25
2	MP2A	Z	4.116	2.25
3	MP2A	Mx	001	2.25
4	MP2A	Х	2.376	4.25
5	MP2A	Z	4.116	4.25
6	MP2A	Mx	001	4.25
7	MP3A	Х	4.967	.25
8	MP3A	Z	8.602	.25
9	MP3A	Mx	008	.25
10	MP3A	Х	4.967	4.75
11	MP3A	Z	8.602	4.75
12	MP3A	Mx	008	4.75
13	MP3A	Х	4.967	.25
14	MP3A	Z	8.602	.25
15	MP3A	Mx	.003	.25
16	MP3A	Х	4.967	4.75
17	MP3A	Z	8.602	4.75
18	MP3A	Mx	.003	4.75
19	MP1A	Х	2.773	.5
20	MP1A	Z	4.803	.5
21	MP1A	Mx	001	.5
22	MP1A	Х	2.773	4
23	MP1A	Z	4.803	4
24	MP1A	Mx	001	4
25	M32	Х	.441	2
26	M32	Z	.764	2
27	M32	Mx	0	2
28	MP4A	Х	2.045	2.5
29	MP4A	Z	3.543	2.5
30	MP4A	Mx	.001	2.5
31	MP3A	Х	1.463	2.5
32	MP3A	Z	2.534	2.5
33	MP3A	Mx	.001	2.5

#### Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	0	2.25
2	MP2A	Z	5.606	2.25
3	MP2A	Mx	0	2.25
4	MP2A	X	0	4.25
5	MP2A	Z	5.606	4.25
6	MP2A	Mx	0	4.25
7	MP3A	Х	0	.25
8	MP3A	Z	10.865	.25
9	MP3A	Mx	007	.25
10	MP3A	X	0	4.75
11	MP3A	Z	10.865	4.75
12	MP3A	Mx	007	4.75




## Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

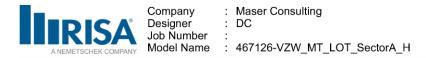
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
13	MP3A	Х	0	.25
14	MP3A	Z	10.865	.25
15	MP3A	Mx	.007	.25
16	MP3A	Х	0	4.75
17	MP3A	Z	10.865	4.75
18	MP3A	Mx	.007	4.75
19	MP1A	Х	0	.5
20	MP1A	Z	6.071	.5
21	MP1A	Mx	0	.5
22	MP1A	Х	0	4
23	MP1A	Z	6.071	4
24	MP1A	Mx	0	4
25	M32	Х	0	2
26	M32	Z	.815	2
27	M32	Mx	0	2
28	MP4A	Х	0	2.5
29	MP4A	Z	4.461	2.5
30	MP4A	Mx	0	2.5
31	MP3A	Х	0	2.5
32	MP3A	Z	3.949	2.5
33	MP3A	Mx	.000987	2.5

## Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	-2.376	2.25
2	MP2A	Z	4.116	2.25
3	MP2A	Mx	.001	2.25
4	MP2A	Х	-2.376	4.25
5	MP2A	Z	4.116	4.25
6	MP2A	Mx	.001	4.25
7	MP3A	Х	-4.967	.25
8	MP3A	Z	8.602	.25
9	MP3A	Mx	003	.25
10	MP3A	Х	-4.967	4.75
11	MP3A	Z	8.602	4.75
12	MP3A	Mx	003	4.75
13	MP3A	Х	-4.967	.25
14	MP3A	Z	8.602	.25
15	MP3A	Mx	.008	.25
16	MP3A	Х	-4.967	4.75
17	MP3A	Z	8.602	4.75
18	MP3A	Mx	.008	4.75
19	MP1A	Х	-2.773	.5
20	MP1A	Z	4.803	.5
21	MP1A	Mx	.001	.5
22	MP1A	Х	-2.773	4
23	MP1A	Z	4.803	4
24	MP1A	Mx	.001	4
25	M32	Х	339	2
26	M32	Z	.588	2
27	M32	Mx	0	2
28	MP4A	Х	-2.045	2.5
29	MP4A	Z	3.543	2.5
30	MP4A	Mx	001	2.5
31	MP3A	X	-2.23	2.5
32	MP3A	Z	3.863	2.5



#### Member Point Loads (BLC 34 : Antenna Wm (210 Deg)) (Continued)


	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
33	MP3A	Mx	0	2.5

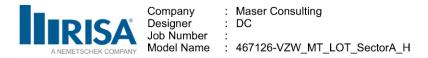
#### Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	-2.639	2.25
2	MP2A	Z	1.524	2.25
3	MP2A	Mx	.001	2.25
4	MP2A	Х	-2.639	4.25
5	MP2A	Z	1.524	4.25
6	MP2A	Mx	.001	4.25
7	MP3A	Х	-6.988	.25
8	MP3A	Z	4.034	.25
9	MP3A	Mx	.000805	.25
10	MP3A	Х	-6.988	4.75
11	MP3A	Z	4.034	4.75
12	MP3A	Mx	.000805	4.75
13	MP3A	Х	-6.988	.25
14	MP3A	Z	4.034	.25
15	MP3A	Mx	.006	.25
16	MP3A	Х	-6.988	4.75
17	MP3A	Z	4.034	4.75
18	MP3A	Mx	.006	4.75
19	MP1A	Х	-3.894	.5
20	MP1A	Z	2.248	.5
21	MP1A	Mx	.002	.5
22	MP1A	Х	-3.894	4
23	MP1A	Z	2.248	4
24	MP1A	Mx	.002	4
25	M32	Х	529	2
26	M32	Z	.305	2
27	M32	Mx	0	2
28	MP4A	Х	-2.902	2.5
29	MP4A	Z	1.676	2.5
30	MP4A	Mx	001	2.5
31	MP3A	Х	-3.42	2.5
32	MP3A	Z	1.975	2.5
33	MP3A	Mx	000987	2.5

# Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	-2.195	2.25
2	MP2A	Z	0	2.25
3	MP2A	Mx	.001	2.25
4	MP2A	Х	-2.195	4.25
5	MP2A	Z	0	4.25
6	MP2A	Mx	.001	4.25
7	MP3A	Х	-7.136	.25
8	MP3A	Z	0	.25
9	MP3A	Mx	.004	.25
10	MP3A	Х	-7.136	4.75
11	MP3A	Z	0	4.75
12	MP3A	Mx	.004	4.75
13	MP3A	Х	-7.136	.25
14	MP3A	Z	0	.25
15	MP3A	Mx	.004	.25
16	MP3A	Х	-7.136	4.75




# Member Point Loads (BLC 36 : Antenna Wm (270 Deg)) (Continued)

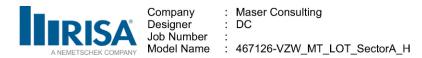
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
17	MP3A	Z	0	4.75
18	MP3A	Mx	.004	4.75
19	MP1A	Х	-3.972	.5
20	MP1A	Z	0	.5
21	MP1A	Mx	.002	.5
22	MP1A	Х	-3.972	4
23	MP1A	Z	0	4
24	MP1A	Mx	.002	4
25	M32	Х	679	2
26	M32	Z	0	2
27	M32	Mx	0	2
28	MP4A	Х	-2.982	2.5
29	MP4A	Z	0	2.5
30	MP4A	Mx	001	2.5
31	MP3A	Х	-2.927	2.5
32	MP3A	Z	0	2.5
33	MP3A	Mx	001	2.5

#### Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	-2.639	2.25
2	MP2A	Z	-1.524	2.25
3	MP2A	Mx	.001	2.25
4	MP2A	Х	-2.639	4.25
5	MP2A	Z	-1.524	4.25
6	MP2A	Mx	.001	4.25
7	MP3A	Х	-6.988	.25
8	MP3A	Z	-4.034	.25
9	MP3A	Mx	.006	.25
10	MP3A	Х	-6.988	4.75
11	MP3A	Z	-4.034	4.75
12	MP3A	Mx	.006	4.75
13	MP3A	Х	-6.988	.25
14	MP3A	Z	-4.034	.25
15	MP3A	Mx	.000805	.25
16	MP3A	Х	-6.988	4.75
17	MP3A	Z	-4.034	4.75
18	MP3A	Mx	.000805	4.75
19	MP1A	Х	-3.894	.5
20	MP1A	Z	-2.248	.5
21	MP1A	Mx	.002	.5
22	MP1A	Х	-3.894	4
23	MP1A	Z	-2.248	4
24	MP1A	Mx	.002	4
25	M32	Х	705	2
26	M32	Z	407	2
27	M32	Mx	0	2
28	MP4A	Х	-2.902	2.5
29	MP4A	Z	-1.676	2.5
30	MP4A	Mx	001	2.5
31	MP3A	Х	-2.092	2.5
32	MP3A	Z	-1.208	2.5
33	MP3A	Mx	001	2.5

## Member Point Loads (BLC 38 : Antenna Wm (330 Deg))



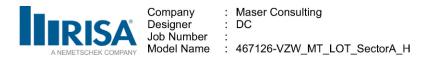

#### Member Point Loads (BLC 38 : Antenna Wm (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	-2.376	2.25
2	MP2A	Z	-4.116	2.25
3	MP2A	Mx	.001	2.25
4	MP2A	Х	-2.376	4.25
5	MP2A	Z	-4.116	4.25
6	MP2A	Mx	.001	4.25
7	MP3A	Х	-4.967	.25
8	MP3A	Z	-8.602	.25
9	MP3A	Mx	.008	.25
10	MP3A	Х	-4.967	4.75
11	MP3A	Z	-8.602	4.75
12	MP3A	Mx	.008	4.75
13	MP3A	Х	-4.967	.25
14	MP3A	Z	-8.602	.25
15	MP3A	Mx	003	.25
16	MP3A	Х	-4.967	4.75
17	MP3A	Z	-8.602	4.75
18	MP3A	Mx	003	4.75
19	MP1A	Х	-2.773	.5
20	MP1A	Z	-4.803	.5
21	MP1A	Mx	.001	.5
22	MP1A	Х	-2.773	4
23	MP1A	Z	-4.803	4
24	MP1A	Mx	.001	4
25	M32	Х	441	2
26	M32	Z	764	2
27	M32	Mx	0	2
28	MP4A	Х	-2.045	2.5
29	MP4A	Z	-3.543	2.5
30	MP4A	Mx	001	2.5
31	MP3A	Х	-1.463	2.5
32	MP3A	Z	-2.534	2.5
33	MP3A	Mx	001	2.5

# Member Point Loads (BLC 77 : Lm1)

1	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]				
	M8	Y	-500	0				
Merr	Member Point Loads (BLC 78 : Lm2)							

1	Member Label M6	Direction	Magnitude[lb,k-ft] -500	Location[ft,%]
			-300	0
<u>Member</u>	<u>Point Loads (BLC 79</u>	: Lv1)		
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M2	Y	-250	%50
Member	Point Loads (BLC 80	: Lv2)		
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1				
	M2	Y	-250	0
	M2	Y	-250	0
Member	M2 Distributed Loads (B	LC 40 : Structure Di)		0
Member				

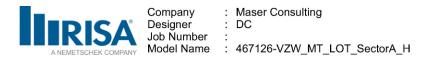



## Member Distributed Loads (BLC 40 : Structure Di) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
2	M2	Y	-6.03	-6.03	0	%100
3	MP4A	Y	-5.292	-5.292	0	%100
4	MP3A	Y	-5.292	-5.292	0	%100
5	MP2A	Y	-5.292	-5.292	0	%100
6	MP1A	Y	-5.292	-5.292	0	%100
7	M23	Y	-6.276	-6.276	0	%100
8	M24	Y	-6.276	-6.276	0	%100
9	M25	Y	-6.276	-6.276	0	%100
10	M26	Y	-6.276	-6.276	0	%100
11	M29	Y	-8.429	-8.429	0	%100
12	M32	Y	-5.292	-5.292	0	%100
13	M33	Y	-5.292	-5.292	0	%100
14	M34	Y	-5.292	-5.292	0	%100
15	M35	Y	-5.292	-5.292	0	%100
16	M36	Y	-6.276	-6.276	0	%100
17	M37	Υ	-6.276	-6.276	0	%100
18	M38	Y	-6.276	-6.276	0	%100
19	M39	Y	-6.276	-6.276	0	%100
20	M40	Y	-5.292	-5.292	0	%100
21	M41	Y	-5.292	-5.292	0	%100
22	M42	Y	-4.236	-4.236	0	%100
23	M43	Y	-4.236	-4.236	0	%100
24	M44	Y	-4.236	-4.236	0	%100
25	M45	Y	-4.236	-4.236	0	%100
26	M46	Y	-4.236	-4.236	0	%100
27	M47	Y	-4.236	-4.236	0	%100
28	M48	Y	-4.236	-4.236	0	%100
29	M49	Y	-4.236	-4.236	0	%100
30	M50	Y	-5.292	-5.292	0	%100

#### Member Distributed Loads (BLC 41 : Structure Wo (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	-11.156	-11.156	0	%100
3	M2	Х	0	0	0	%100
4	M2	Z	-11.156	-11.156	0	%100
5	MP4A	Х	0	0	0	%100
6	MP4A	Z	-9.216	-9.216	0	%100
7	MP3A	Х	0	0	0	%100
8	MP3A	Z	-9.216	-9.216	0	%100
9	MP2A	Х	0	0	0	%100
10	MP2A	Z	-9.216	-9.216	0	%100
11	MP1A	Х	0	0	0	%100
12	MP1A	Z	-9.216	-9.216	0	%100
13	M23	Х	0	0	0	%100
14	M23	Z	906	906	0	%100
15	M24	Х	0	0	0	%100
16	M24	Z	906	906	0	%100
17	M25	Х	0	0	0	%100
18	M25	Z	906	906	0	%100
19	M26	Х	0	0	0	%100
20	M26	Z	906	906	0	%100
21	M29	Х	0	0	0	%100
22	M29	Z	-12.074	-12.074	0	%100
23	M32	Х	0	0	0	%100
24	M32	Z	-4.216	-4.216	0	%100

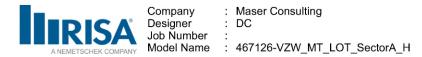



# Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
25	M33	Х	0	0	0	%100
26	M33	Z	-4.216	-4.216	0	%100
27	M34	Х	0	0	0	%100
28	M34	Z	-4.216	-4.216	0	%100
29	M35	Х	0	0	0	%100
30	M35	Z	-4.216	-4.216	0	%100
31	M36	Х	0	0	0	%100
32	M36	Z	-11.642	-11.642	0	%100
33	M37	Х	0	0	0	%100
34	M37	Z	-11.642	-11.642	0	%100
35	M38	Х	0	0	0	%100
36	M38	Z	-11.642	-11.642	0	%100
37	M39	Х	0	0	0	%100
38	M39	Z	-11.642	-11.642	0	%100
39	M40	Х	0	0	0	%100
40	M40	Z	-7.105	-7.105	0	%100
41	M41	Х	0	0	0	%100
42	M41	Z	-7.105	-7.105	0	%100
43	M42	Х	0	0	0	%100
44	M42	Z	-5.097	-5.097	0	%100
45	M43	Х	0	0	0	%100
46	M43	Z	-4.881	-4.881	0	%100
47	M44	Х	0	0	0	%100
48	M44	Z	-4.881	-4.881	0	%100
49	M45	Х	0	0	0	%100
50	M45	Z	-5.097	-5.097	0	%100
51	M46	X	0	0	0	%100
52	M46	Z	-6.334	-6.334	0	%100
53	M47	Х	0	0	0	%100
54	M47	Z	-6.334	-6.334	0	%100
55	M48	Х	0	0	0	%100
56	M48	Z	-6.334	-6.334	0	%100
57	M49	Х	0	0	0	%100
58	M49	Z	-6.334	-6.334	0	%100
59	M50	Х	0	0	0	%100
60	M50	Z	261	261	0	%100

# Member Distributed Loads (BLC 42 : Structure Wo (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	4.184	4.184	0	%100
2	M1	Z	-7.246	-7.246	0	%100
3	M2	Х	4.184	4.184	0	%100
4	M2	Z	-7.246	-7.246	0	%100
5	MP4A	Х	4.608	4.608	0	%100
6	MP4A	Z	-7.981	-7.981	0	%100
7	MP3A	Х	4.608	4.608	0	%100
8	MP3A	Z	-7.981	-7.981	0	%100
9	MP2A	Х	4.608	4.608	0	%100
10	MP2A	Z	-7.981	-7.981	0	%100
11	MP1A	Х	4.608	4.608	0	%100
12	MP1A	Z	-7.981	-7.981	0	%100
13	M23	Х	.888	.888	0	%100
14	M23	Z	-1.538	-1.538	0	%100
15	M24	Х	.05	.05	0	%100
16	M24	Z	086	086	0	%100
17	M25	Х	.05	.05	0	%100

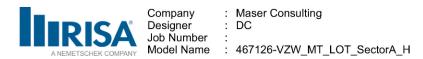



# Member Distributed Loads (BLC 42 : Structure Wo (30 Deg)) (Continued)

	Member Label	Direction	Start MagnitudeIlb/ft	.End Magnitude[lb/ft,F	. Start Location[ft.%]	End Location[ft,%]
18	M25	Z	086	086	0	%100
19	M26	Х	.888	.888	0	%100
20	M26	Z	-1.538	-1.538	0	%100
21	M29	Х	6.037	6.037	0	%100
22	M29	Z	-10.457	-10.457	0	%100
23	M32	Х	4.194	4.194	0	%100
24	M32	Z	-7.265	-7.265	0	%100
25	M33	Х	.218	.218	0	%100
26	M33	Z	378	378	0	%100
27	M34	Х	.218	.218	0	%100
28	M34	Z	378	378	0	%100
29	M35	Х	4.194	4.194	0	%100
30	M35	Z	-7.265	-7.265	0	%100
31	M36	Х	4.669	4.669	0	%100
32	M36	Z	-8.086	-8.086	0	%100
33	M37	Х	4.669	4.669	0	%100
34	M37	Z	-8.086	-8.086	0	%100
35	M38	X	4.669	4.669	0	%100
36	M38	Z	-8.086	-8.086	0	%100
37	M39	Х	4.669	4.669	0	%100
38	M39	Z	-8.086	-8.086	0	%100
39	M40	X	3.553	3.553	0	%100
40	M40	Z	-6.153	-6.153	0	%100
41	M41	X	3.553	3.553	0	%100
42	M41	Z	-6.153	-6.153	0	%100
43	M42	X	3.11	3.11	0	%100
44	M42	Z	-5.386	-5.386	0	%100
45	M43	X	3.091	3.091	0	%100
46	M43	Z	-5.353	-5.353	0	%100
47	M44	X	1.853	1.853	0	%100
48	M44	Z	-3.21	-3.21	0	%100
49	M45	Х	2.04	2.04	0	%100
50	M45	Z	-3.534	-3.534	0	%100
51	M46	X	3.167	3.167	0	%100
52	M46	Z	-5.485	-5.485	0	%100
53	M47	X	3.167	3.167	0	%100
54	M47	Z	-5.485	-5.485	0	%100
55	M48	X	3.167	3.167	0	%100
56	M48	Z	-5.485	-5.485	0	%100
57	M49	X	3.167	3.167	0	%100
58	M49	Z	-5.485	-5.485	0	%100
59	M50	X	1.879	1.879	0	%100
60	M50	Z	-3.255	-3.255	0	%100

# Member Distributed Loads (BLC 43 : Structure Wo (60 Deg))

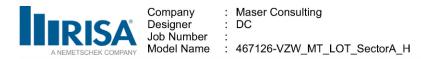
	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	2.415	2.415	0	%100
2	M1	Z	-1.395	-1.395	0	%100
3	M2	Х	2.415	2.415	0	%100
4	M2	Z	-1.395	-1.395	0	%100
5	MP4A	Х	7.981	7.981	0	%100
6	MP4A	Z	-4.608	-4.608	0	%100
7	MP3A	Х	7.981	7.981	0	%100
8	MP3A	Z	-4.608	-4.608	0	%100
9	MP2A	Х	7.981	7.981	0	%100
10	MP2A	Z	-4.608	-4.608	0	%100




#### Member Distributed Loads (BLC 43 : Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F		End Location[ft,%]
11	MP1A	X	7.981	7.981	0	%100
12	MP1A	Z	-4.608	-4.608	0	%100
13	M23	X	1.594	1.594	0	%100
14	M23	Z	92	92	0	%100
15	M23	X	.142	.142	0	%100
16	M24	Z	082	082	0	%100
17	M25	X	.142	.142	0	%100
18	M25	Z	082	082	0	%100
19	M26	X	1.594	1.594	0	%100
20	M26	Z	92	92	0	%100
21	M20	X	10.457	10.457	0	%100
22	M29	Z	-6.037	-6.037	0	%100
23	M32	X	7.604	7.604	0	%100
24	M32	Z	-4.39	-4.39	0	%100
25	M33	X	.717	.717	0	%100
26	M33	Z	414	414	0	%100
27	M34	X	.717	.717	0	%100
28	M34	Z	414	414	0	%100
29	M35	x	7.604	7.604	0	%100
30	M35	Z	-4.39	-4.39	0	%100
31	M36	x	4.096	4.096	0	%100
32	M36	Z	-2.365	-2.365	Ő	%100
33	M37	x	4.096	4.096	0	%100
34	M37	Z	-2.365	-2.365	0	%100
35	M38	X	4.096	4.096	0	%100
36	M38	Z	-2.365	-2.365	0	%100
37	M39	X	4.096	4.096	0	%100
38	M39	Z	-2.365	-2.365	0	%100
39	M40	Х	6.153	6.153	0	%100
40	M40	Z	-3.553	-3.553	0	%100
41	M41	Х	6.153	6.153	0	%100
42	M41	Z	-3.553	-3.553	0	%100
43	M42	Х	5.477	5.477	0	%100
44	M42	Z	-3.162	-3.162	0	%100
45	M43	Х	5.463	5.463	0	%100
46	M43	Z	-3.154	-3.154	0	%100
47	M44	Х	3.319	3.319	0	%100
48	M44	Z	-1.916	-1.916	0	%100
49	M45	X	3.625	3.625	0	%100
50	M45	Z	-2.093	-2.093	0	%100
51	M46	X	5.485	5.485	0	%100
52	M46	Z	-3.167	-3.167	0	%100
53	M47	X	5.485	5.485	0	%100
54	M47	Z	-3.167	-3.167	0	%100
55	M48	X	5.485	5.485	0	%100
56	M48	Z	-3.167	-3.167	0	%100
57	M49	X	5.485	5.485	0	%100
58	M49	Z	-3.167	-3.167	0	%100
59	M50	<u> </u>	7.02	7.02	0	%100
60	M50	Z	-4.053	-4.053	0	%100

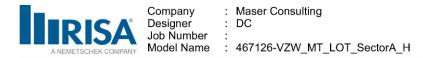
#### Member Distributed Loads (BLC 44 : Structure Wo (90 Deg))


	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	Х	0	0	0	%100



# Member Distributed Loads (BLC 44 : Structure Wo (90 Deg)) (Continued)

	Member Label	Direction	_	End Magnitude[lb/ft,F	-	End Location[ft,%
4	M2	Z	0	0	0	%100
5	MP4A	X	9.216	9.216	0	%100
6	MP4A	Z	0	0	0	%100
7	MP3A	X	9.216	9.216	0	%100
8	MP3A	Z	0	0	0	%100
9	MP2A	Х	9.216	9.216	0	%100
10	MP2A	Z	0	0	0	%100
11	MP1A	Х	9.216	9.216	0	%100
12	MP1A	Z	0	0	0	%100
13	M23	X	1.034	1.034	0	%100
14	M23	Z	0	0	0	%100
15	M24	X	1.034	1.034	0	%100
16	M24	Z	0	0	0	%100
17	M25	X	1.034	1.034	0	%100
18	M25	Z	0	0	0	%100
19	M26	X	1.034	1.034	0	%100
20	M26	Z	0	0	0	%100
20	M29	X	12.074	12.074	0	%100
22	M29	Z	0	0	0	%100
			-			
23	M32	X	5	5	0	%100
24	M32	Z	0	0	0	%100
25	M33	X	5	5	0	%100
26	M33	Z	0	0	0	%100
27	M34	X	5	5	0	%100
28	M34	Z	0	0	0	%100
29	M35	X	5	5	0	%100
30	M35	Z	0	0	0	%100
31	M36	X	2.425	2.425	0	%100
32	M36	Z	0	0	0	%100
33	M37	X	2.425	2.425	0	%100
34	M37	Z	0	0	0	%100
35	M38	X	2.425	2.425	0	%100
36	M38	Z	0	0	0	%100
37	M39	X	2.425	2.425	0	%100
38	M39	Z	0	0	0	%100
39	M40	X	7.105	7.105	0	%100
40	M40	Z	0	0	0	%100
41	M41	X	7.105	7.105	0	%100
42	M41	Z	0	0	0	%100
43	M42	Х	5.308	5.308	0	%100
44	M42	Z	0	0	0	%100
45	M43	X	5.133	5.133	0	%100
46	M43	Z	0	0	0	%100
47	M44	×	5.133	5.133	0	%100
48	M44	Z	0	0	0	%100
49	M45	X	5.308	5.308	0	%100
50	M45	Z	0	0	0	%100
51	M46	X	6.334	6.334	0	%100
52	M46	Z	0.334	0.334	0	%100
53	M40	X	6.334	6.334	0	%100
54	M47	Z	0.334	0.334	0	%100
55	M48	X	6.334	6.334	0	%100
		Z	0.334			
56	M48		*	0	0	%100
57	M49	X	6.334	6.334	0	%100
58	M49	Z	0	0	0	%100
59	M50	X	8.955	8.955	0	%100
60	M50	Z	0	0	0	%100

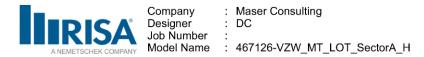

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\...\...\Rev 0\RISA\467126-VZW_MT_LOT_A_H.r3d] Page 36



# Member Distributed Loads (BLC 45 : Structure Wo (120 Deg))

1 2 3 4 5 6 7 8 9 10 11 12 13 14	M1 M1 M2 M2 MP4A MP4A MP3A MP3A MP3A MP2A MP2A MP1A MP1A	X Z X Z X Z X Z X Z X Z	2.415 1.395 2.415 1.395 7.981 4.608 7.981 4.608 7.981	2.415 1.395 2.415 1.395 7.981 4.608 7.981	0 0 0 0 0 0	%100 %100 %100 %100 %100
3 4 5 6 7 8 9 10 11 12 13	M2 MP4A MP4A MP3A MP3A MP2A MP2A MP1A MP1A	X Z X Z X Z X	2.415 1.395 7.981 4.608 7.981 4.608	2.415 1.395 7.981 4.608	0 0 0 0	%100 %100 %100
4 5 6 7 8 9 10 11 12 13	M2 MP4A MP3A MP3A MP3A MP2A MP2A MP1A MP1A	Z X Z X Z X	1.395 7.981 4.608 7.981 4.608	1.395 7.981 4.608	0 0 0	%100 %100
5 6 7 8 9 10 11 12 13	MP4A MP4A MP3A MP3A MP2A MP2A MP1A MP1A	X Z X Z X	7.981 4.608 7.981 4.608	7.981 4.608	0	%100
6 7 8 9 10 11 12 13	MP4A MP3A MP3A MP2A MP2A MP1A MP1A	Z X Z X	4.608 7.981 4.608	4.608	0	
7 8 9 10 11 12 13	MP3A MP3A MP2A MP2A MP1A MP1A	X Z X	7.981 4.608			0/ 400
8 9 10 11 12 13	MP3A MP2A MP2A MP1A MP1A	ZX	4.608	7.981		%100
9 10 11 12 13	MP2A MP2A MP1A MP1A	ZX			0	%100
10 11 12 13	MP2A MP1A MP1A	X	7.004	4.608	0	%100
11 12 13	MP2A MP1A MP1A	7	7.981	7.981	0	%100
11 12 13	MP1A MP1A		4.608	4.608	0	%100
12 13	MP1A	X	7.981	7.981	0	%100
13		Z	4.608	4.608	0	%100
	M23	X	.142	.142	0	%100
	M23	Z	.082	.082	0	%100
15	M24	X	1.594	1.594	0	%100
16	M24	Z	.92	.92	0	%100
17	M25					
		X	1.594	1.594	0	%100
18	M25	Z	.92	.92	0	%100
19	M26	X	.142	.142	0	%100
20	M26	Z	.082	.082	0	%100
21	M29	X	10.457	10.457	0	%100
22	M29	Z	6.037	6.037	0	%100
23	M32	X	.717	.717	0	%100
24	M32	Z	.414	.414	0	%100
25	M33	X	7.604	7.604	0	%100
26	M33	Z	4.39	4.39	0	%100
27	M34	Х	7.604	7.604	0	%100
28	M34	Z	4.39	4.39	0	%100
29	M35	X	.717	.717	0	%100
30	M35	Z	.414	.414	0	%100
31	M36	X	4.096	4.096	0	%100
32	M36	Z	2.365	2.365	0	%100
33	M37	X	4.096	4.096	0	%100
34	M37	Z	2.365	2.365	0	%100
35	M38	X	4.096	4.096	0	%100
36	M38	Z	2.365	2.365	0	%100
37	M39	X	4.096	4.096	0	%100
38	M39	Z	2.365	2.365	0	%100
39	M40	X	6.153	6.153	0	%100
40	M40	Z	3.553	3.553	0	%100
41	M41	X	6.153	6.153	0	%100
42	M41	Z	3.553	3.553	0	%100
43	M42	Х	3.625	3.625	0	%100
44	M42	Z	2.093	2.093	0	%100
45	M43	X	3.319	3.319	0	%100
46	M43	Z	1.916	1.916	0	%100
47	M44	X	5.463	5.463	0	%100
48	M44	Z	3.154	3.154	0	%100
40	M45	X	5.477	5.477	0	%100
50		Z	3.162	3.162	0	%100
	M45					
51	M46	X	5.485	5.485	0	%100
52	M46	Z	3.167	3.167	0	%100
53	M47	X	5.485	5.485	0	%100
54	M47	Z	3.167	3.167	0	%100
55	M48	X	5.485	5.485	0	%100
56	M48	Z	3.167	3.167	0	%100
57	M49	X	5.485	5.485	0	%100

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\...\...\Rev 0\RISA\467126-VZW_MT_LOT_A_H.r3d] Page 37

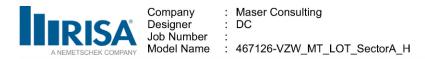



#### Member Distributed Loads (BLC 45 : Structure Wo (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
58	M49	Z	3.167	3.167	0	%100
59	M50	Х	4.727	4.727	0	%100
60	M50	Z	2.729	2.729	0	%100

#### Member Distributed Loads (BLC 46 : Structure Wo (150 Deg))

Member Label         Direction         Start Magnitudel[b/t,E., End Magnitudel[b/t,E., Start Localion[ft,%]         End Localion[ft,%]           2         M1         Z         7.246         7.246         0         %100           3         M2         X         4.184         0         %100           4         M2         Z         7.246         7.246         0         %100           5         MP4A         X         4.608         4.608         0         %100           6         MP4A         Z         7.981         7.981         0         %100           7         MP3A         X         4.608         4.608         0         %100           9         MP2A         Z         7.981         7.981         0         %100           11         MP1A         Z         7.981         7.981         0         %100           13         M23         X         0.5         0.5         0         %100           14         M23         X         0.5         0.5         0         %100           14         M24         X         .888         .888         0         %100           15         M24							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Member Label	Direction				End Location[ft,%]
$  \begin{array}{c cccccccccccccccccccccccccccccccccc$			X				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			X				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
14M23Z.086.086.0 $\%100$ 15M24X.888.888.0 $\%100$ 16M24Z1.538.15380 $\%100$ 17M25X.888.888.0 $\%100$ 18M25Z1.5381.5380 $\%100$ 19M26X.05.050 $\%100$ 20M26Z.086.0860 $\%100$ 21M29X.6.0376.0370 $\%100$ 22M29Z10.45710.4570 $\%100$ 23M32X.218.2180 $\%100$ 24M32Z.72657.2650 $\%100$ 25M33X4.1944.1940 $\%100$ 26M33Z7.2657.2650 $\%100$ 27M34X4.1944.1940 $\%100$ 28M34Z7.2657.2650 $\%100$ 30M35Z.378.3780 $\%100$ 31M36X4.6694.6690 $\%100$ 33M37X4.6694.6690 $\%100$ 34M37Z8.0868.0860 $\%100$ 35M38X4.6694.6690 $\%100$ 36M38Z8.0868.0860 $\%100$ 37M39X4.669<							
15M24X.888.8880 $\%100$ 16M24Z1.5381.5380 $\%100$ 17M25X.888.8880 $\%100$ 18M25Z1.5381.5380 $\%100$ 19M26X.05.050 $\%100$ 20M26Z.086.0860 $\%100$ 21M29X6.0376.0370 $\%100$ 23M32X.218.2180 $\%100$ 24M32Z.378.3780 $\%100$ 25M33X4.1944.1940 $\%100$ 26M33Z7.2657.2650 $\%100$ 27M34X4.1944.1940 $\%100$ 28M34Z7.2657.2650 $\%100$ 29M35X.218.2180 $\%100$ 30M35Z.378.3780 $\%100$ 31M36X4.6694.6690 $\%100$ 32M36Z8.0868.0860 $\%100$ 33M37X4.6694.6690 $\%100$ 34M37Z8.0868.0860 $\%100$ 35M38X4.6694.6690 $\%100$ 36M38Z8.0868.0860 $\%100$ 37M39X4.6694.669							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18	M25	Z	1.538	1.538	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		M26	X			0	%100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20	M26	Z	.086	.086	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	21	M29	Х	6.037	6.037	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		M29				0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	M32	Х	.218	.218	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Х				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Z				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Х				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
32         M36         Z         8.086         8.086         0         %100           33         M37         X         4.669         4.669         0         %100           34         M37         Z         8.086         8.086         0         %100           35         M38         X         4.669         4.669         0         %100           36         M38         Z         8.086         8.086         0         %100           37         M39         X         4.669         4.669         0         %100           38         M39         Z         8.086         8.086         0         %100           39         M40         X         3.553         3.553         0         %100           41         M41         X         3.553         3.553         0         %100           42         M41         Z         6.153         6.153         0         %100           43         M42         X         2.04         2.04         0         %100           44         M42         Z         3.21         3.21         0         %100           45         M43							
33         M37         X         4.669         4.669         0         %100           34         M37         Z         8.086         8.086         0         %100           35         M38         X         4.669         4.669         0         %100           36         M38         Z         8.086         8.086         0         %100           37         M39         X         4.669         4.669         0         %100           38         M39         Z         8.086         8.086         0         %100           39         M40         X         3.553         3.553         0         %100           41         M41         X         3.553         3.553         0         %100           42         M41         Z         6.153         6.153         0         %100           43         M42         X         2.04         2.04         0         %100           44         M42         Z         3.534         3.534         0         %100           45         M43         Z         3.21         3.21         0         %100           46         M43							
34         M37         Z         8.086         8.086         0         %100           35         M38         X         4.669         4.669         0         %100           36         M38         Z         8.086         8.086         0         %100           37         M39         X         4.669         4.669         0         %100           38         M39         Z         8.086         8.086         0         %100           39         M40         X         3.553         3.553         0         %100           41         M41         X         3.553         0         %100           42         M41         Z         6.153         6.153         0         %100           43         M42         X         2.04         2.04         0         %100           44         M42         Z         3.534         3.534         0         %100           45         M43         X         1.853         1.853         0         %100           46         M43         Z         3.21         3.21         0         %100           47         M44         X <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
35         M38         X         4.669         4.669         0         %100           36         M38         Z         8.086         8.086         0         %100           37         M39         X         4.669         4.669         0         %100           38         M39         Z         8.086         8.086         0         %100           39         M40         X         3.553         3.553         0         %100           40         M40         Z         6.153         6.153         0         %100           41         M41         X         3.553         3.553         0         %100           42         M41         Z         6.153         6.153         0         %100           43         M42         X         2.04         2.04         0         %100           44         M42         Z         3.534         3.534         0         %100           45         M43         X         1.853         1.853         0         %100           46         M43         Z         3.21         3.21         0         %100           47         M44							
36         M38         Z         8.086         8.086         0         %100           37         M39         X         4.669         4.669         0         %100           38         M39         Z         8.086         8.086         0         %100           39         M40         X         3.553         3.553         0         %100           40         M40         Z         6.153         6.153         0         %100           41         M41         X         3.553         3.553         0         %100           42         M41         Z         6.153         6.153         0         %100           43         M42         X         2.04         2.04         0         %100           44         M42         Z         3.534         3.534         0         %100           45         M43         X         1.853         1.853         0         %100           46         M43         Z         3.21         3.21         0         %100           47         M44         X         3.091         3.091         0         %100           48         M44							
37         M39         X         4.669         4.669         0         %100           38         M39         Z         8.086         8.086         0         %100           39         M40         X         3.553         3.553         0         %100           40         M40         Z         6.153         6.153         0         %100           41         M41         X         3.553         3.553         0         %100           42         M41         Z         6.153         6.153         0         %100           43         M42         X         2.04         2.04         0         %100           44         M42         Z         3.534         3.534         0         %100           45         M43         X         1.853         1.853         0         %100           46         M43         Z         3.21         3.091         0         %100           48         M44         Z         5.353         5.353         0         %100           49         M45         X         3.11         3.11         0         %100							
38         M39         Z         8.086         8.086         0         %100           39         M40         X         3.553         3.553         0         %100           40         M40         Z         6.153         6.153         0         %100           41         M41         X         3.553         3.553         0         %100           42         M41         Z         6.153         6.153         0         %100           43         M42         X         2.04         2.04         0         %100           44         M42         Z         3.534         3.534         0         %100           45         M43         X         1.853         1.853         0         %100           46         M43         Z         3.21         3.21         0         %100           47         M44         X         3.091         3.091         0         %100           48         M44         Z         5.353         5.353         0         %100           49         M45         X         3.11         3.11         0         %100							
39         M40         X         3.553         3.553         0         %100           40         M40         Z         6.153         6.153         0         %100           41         M41         X         3.553         3.553         0         %100           42         M41         Z         6.153         6.153         0         %100           43         M42         X         2.04         2.04         0         %100           44         M42         Z         3.534         3.534         0         %100           45         M43         X         1.853         1.853         0         %100           46         M43         Z         3.21         3.21         0         %100           47         M44         X         3.091         3.091         0         %100           48         M44         Z         5.353         5.353         0         %100           49         M45         X         3.11         3.11         0         %100							
40M40Z6.1536.1530%10041M41X3.5533.5530%10042M41Z6.1536.1530%10043M42X2.042.040%10044M42Z3.5343.5340%10045M43X1.8531.8530%10046M43Z3.213.210%10047M44X3.0913.0910%10048M44Z5.3535.3530%10049M45X3.113.110%100							
41         M41         X         3.553         3.553         0         %100           42         M41         Z         6.153         6.153         0         %100           43         M42         X         2.04         2.04         0         %100           44         M42         Z         3.534         3.534         0         %100           45         M43         X         1.853         1.853         0         %100           46         M43         Z         3.21         3.21         0         %100           47         M44         X         3.091         3.091         0         %100           48         M44         Z         5.353         5.353         0         %100           49         M45         X         3.11         3.11         0         %100							
42         M41         Z         6.153         6.153         0         %100           43         M42         X         2.04         2.04         0         %100           44         M42         Z         3.534         3.534         0         %100           45         M43         X         1.853         1.853         0         %100           46         M43         Z         3.21         3.21         0         %100           47         M44         X         3.091         3.091         0         %100           48         M44         Z         5.353         5.353         0         %100           49         M45         X         3.11         3.11         0         %100							
43         M42         X         2.04         2.04         0         %100           44         M42         Z         3.534         3.534         0         %100           45         M43         X         1.853         1.853         0         %100           46         M43         Z         3.21         3.21         0         %100           47         M44         X         3.091         3.091         0         %100           48         M44         Z         5.353         5.353         0         %100           49         M45         X         3.11         3.11         0         %100			7				
44         M42         Z         3.534         3.534         0         %100           45         M43         X         1.853         1.853         0         %100           46         M43         Z         3.21         3.21         0         %100           47         M44         X         3.091         3.091         0         %100           48         M44         Z         5.353         5.353         0         %100           49         M45         X         3.11         3.11         0         %100							
45M43X1.8531.8530%10046M43Z3.213.210%10047M44X3.0913.0910%10048M44Z5.3535.3530%10049M45X3.113.110%100							
46         M43         Z         3.21         3.21         0         %100           47         M44         X         3.091         3.091         0         %100           48         M44         Z         5.353         5.353         0         %100           49         M45         X         3.11         3.11         0         %100							
47M44X3.0913.0910%10048M44Z5.3535.3530%10049M45X3.113.110%100							
48         M44         Z         5.353         5.353         0         %100           49         M45         X         3.11         3.11         0         %100							
49 M45 X 3.11 3.11 0 %100							
00 IVI40 ∠ 0.380 0.380 0 %100							
	50	10140	Z	0.380	0.380	0	70100

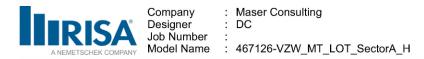



# Member Distributed Loads (BLC 46 : Structure Wo (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
51	M46	X	3.167	3.167	0	%100
52	M46	Z	5.485	5.485	0	%100
53	M47	X	3.167	3.167	0	%100
54	M47	Z	5.485	5.485	0	%100
55	M48	Х	3.167	3.167	0	%100
56	M48	Z	5.485	5.485	0	%100
57	M49	X	3.167	3.167	0	%100
58	M49	Z	5.485	5.485	0	%100
59	M50	X	.555	.555	0	%100
60	M50	Z	.962	.962	0	%100

# Member Distributed Loads (BLC 47 : Structure Wo (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	11.156	11.156	0	%100
3	M2	Х	0	0	0	%100
4	M2	Z	11.156	11.156	0	%100
5	MP4A	Х	0	0	0	%100
6	MP4A	Z	9.216	9.216	0	%100
7	MP3A	X	0	0	0	%100
8	MP3A	Z	9.216	9.216	0	%100
9	MP2A	X	0	0	0	%100
10	MP2A	Z	9.216	9.216	0	%100
11	MP1A	X	0	0	0	%100
12	MP1A	Z	9.216	9.216	0	%100
13	M23	X	0	0	0	%100
14	M23	Z	.906	.906	0	%100
15	M24	X	0	0	0	%100
16	M24	Z	.906	.906	0	%100
17	M25	X	0	0	0	%100
18	M25	Z	.906	.906	0	%100
19	M26	Χ	0	0	0	%100
20	M26	Z	.906	.906	0	%100
21	M29	Χ	0	0	0	%100
22	M29	Z	12.074	12.074	0	%100
23	M32	X	0	0	0	%100
24	M32	Z	4.216	4.216	0	%100
25	M33	X	0	0	0	%100
26	M33	Z	4.216	4.216	0	%100
27	M34	X	0	0	0	%100
28	M34	Z	4.216	4.216	0	%100
29	M35	X	0	0	0	%100
30	M35	Z	4.216	4.216	0	%100
31	M36	Х	0	0	0	%100
32	M36	Z	11.642	11.642	0	%100
33	M37	Х	0	0	0	%100
34	M37	Z	11.642	11.642	0	%100
35	M38	X	0	0	0	%100
36	M38	Z	11.642	11.642	0	%100
37	M39	X	0	0	0	%100
38	M39	Z	11.642	11.642	0	%100
39	M40	X	0	0	0	%100
40	M40	Z	7.105	7.105	0	%100
41	M41	X	0	0	0	%100
42	M41	Z	7.105	7.105	0	%100
43	M42	Х	0	0	0	%100

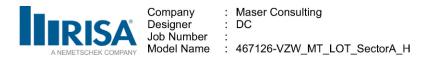



# Member Distributed Loads (BLC 47 : Structure Wo (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
44	M42	Z	5.097	5.097	0	%100
45	M43	Х	0	0	0	%100
46	M43	Z	4.881	4.881	0	%100
47	M44	Х	0	0	0	%100
48	M44	Z	4.881	4.881	0	%100
49	M45	Х	0	0	0	%100
50	M45	Z	5.097	5.097	0	%100
51	M46	Х	0	0	0	%100
52	M46	Z	6.334	6.334	0	%100
53	M47	Х	0	0	0	%100
54	M47	Z	6.334	6.334	0	%100
55	M48	Х	0	0	0	%100
56	M48	Z	6.334	6.334	0	%100
57	M49	Х	0	0	0	%100
58	M49	Z	6.334	6.334	0	%100
59	M50	Х	0	0	0	%100
60	M50	Z	.261	.261	0	%100

# Member Distributed Loads (BLC 48 : Structure Wo (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	-4.184	-4.184	0	%100
2	M1	Z	7.246	7.246	0	%100
3	M2	Х	-4.184	-4.184	0	%100
4	M2	Z	7.246	7.246	0	%100
5	MP4A	Х	-4.608	-4.608	0	%100
6	MP4A	Z	7.981	7.981	0	%100
7	MP3A	Х	-4.608	-4.608	0	%100
8	MP3A	Z	7.981	7.981	0	%100
9	MP2A	Х	-4.608	-4.608	0	%100
10	MP2A	Z	7.981	7.981	0	%100
11	MP1A	X	-4.608	-4.608	0	%100
12	MP1A	Z	7.981	7.981	0	%100
13	M23	X	888	888	0	%100
14	M23	Z	1.538	1.538	0	%100
15	M24	X	05	05	0	%100
16	M24	Z	.086	.086	0	%100
17	M25	X	05	05	0	%100
18	M25	Z	.086	.086	0	%100
19	M26	Х	888	888	0	%100
20	M26	Z	1.538	1.538	0	%100
21	M29	X	-6.037	-6.037	0	%100
22	M29	Z	10.457	10.457	0	%100
23	M32	Х	-4.194	-4.194	0	%100
24	M32	Z	7.265	7.265	0	%100
25	M33	Х	218	218	0	%100
26	M33	Z	.378	.378	0	%100
27	M34	Χ	218	218	0	%100
28	M34	Z	.378	.378	0	%100
29	M35	Х	-4.194	-4.194	0	%100
30	M35	Z	7.265	7.265	0	%100
31	M36	X	-4.669	-4.669	0	%100
32	M36	Z	8.086	8.086	0	%100
33	M37	X	-4.669	-4.669	0	%100
34	M37	Z	8.086	8.086	0	%100
35	M38	Х	-4.669	-4.669	0	%100
36	M38	Z	8.086	8.086	0	%100

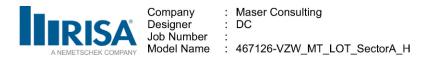



## Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
37	M39	Х	-4.669	-4.669	0	%100
38	M39	Z	8.086	8.086	0	%100
39	M40	Х	-3.553	-3.553	0	%100
40	M40	Z	6.153	6.153	0	%100
41	M41	Х	-3.553	-3.553	0	%100
42	M41	Z	6.153	6.153	0	%100
43	M42	X	-3.11	-3.11	0	%100
44	M42	Z	5.386	5.386	0	%100
45	M43	Х	-3.091	-3.091	0	%100
46	M43	Z	5.353	5.353	0	%100
47	M44	X	-1.853	-1.853	0	%100
48	M44	Z	3.21	3.21	0	%100
49	M45	Х	-2.04	-2.04	0	%100
50	M45	Z	3.534	3.534	0	%100
51	M46	Х	-3.167	-3.167	0	%100
52	M46	Z	5.485	5.485	0	%100
53	M47	Х	-3.167	-3.167	0	%100
54	M47	Z	5.485	5.485	0	%100
55	M48	Х	-3.167	-3.167	0	%100
56	M48	Z	5.485	5.485	0	%100
57	M49	Х	-3.167	-3.167	0	%100
58	M49	Z	5.485	5.485	0	%100
59	M50	Х	-1.879	-1.879	0	%100
60	M50	Z	3.255	3.255	0	%100

# Member Distributed Loads (BLC 49 : Structure Wo (240 Deg))

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		M1	X	-2.415	-2.415	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	M1		1.395	1.395	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	M2		-2.415	-2.415	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	M2	Z	1.395	1.395	0	%100
7         MP3A         X         -7.981         -7.981         0         %100           8         MP3A         Z         4.608         4.608         0         %100           9         MP2A         X         -7.981         -7.981         0         %100           10         MP2A         Z         4.608         4.608         0         %100           11         MP1A         X         -7.981         -7.981         0         %100           12         MP1A         Z         4.608         4.608         0         %100           13         M23         X         -1.594         -1.594         0         %100           14         M23         Z         .92         .92         0         %100           15         M24         X        142         .082         .082         0         %100           17         M25         X        142         .142         0         %100           18         M25         Z         .082         .082         0         %100           20         M26         Z         .92         .92         0         %100          21 <td< td=""><td>5</td><td>MP4A</td><td></td><td>-7.981</td><td>-7.981</td><td>0</td><td>%100</td></td<>	5	MP4A		-7.981	-7.981	0	%100
8         MP3A         Z         4.608         4.608         0         %100           9         MP2A         X         -7.981         -7.981         0         %100           10         MP2A         Z         4.608         4.608         0         %100           11         MP1A         X         -7.981         -7.981         0         %100           12         MP1A         Z         4.608         4.608         0         %100           13         M23         X         -1.594         -0         %100           14         M23         Z         .92         .92         0         %100           15         M24         X        142        142         0         %100           16         M24         Z         .082         .082         0         %100           18         M25         Z         .082         .0         %100         %100           21         M29         X         -10.457         -10.457         0         %100           22         M29         Z         6.037         6.037         0         %100           22         M29         Z	6	MP4A		4.608	4.608	0	%100
9         MP2A         X         -7.981         -7.981         0         %100           10         MP2A         Z         4.608         4.608         0         %100           11         MP1A         X         -7.981         -7.981         0         %100           12         MP1A         Z         4.608         4.608         0         %100           13         M23         X         -1.594         -1.594         0         %100           14         M23         Z         .92         .92         0         %100           15         M24         X        142         .1594         0         %100           16         M24         Z         .082         .082         0         %100           17         M25         X        142         .142         0         %100           18         M25         Z         .082         .082         0         %100           20         M26         X         -1.594         -1.594         0         %100           21         M29         X         -10.457         -10.457         0         %100           22         M29 </td <td>7</td> <td>MP3A</td> <td></td> <td>-7.981</td> <td>-7.981</td> <td>0</td> <td>%100</td>	7	MP3A		-7.981	-7.981	0	%100
10         MP2A         Z         4.608         4.608         0         %100           11         MP1A         X         -7.981         -7.981         0         %100           12         MP1A         Z         4.608         4.608         0         %100           13         M23         X         -1.594         -1.594         0         %100           14         M23         Z         .92         .92         0         %100           15         M24         X        142        142         0         %100           16         M24         Z         .082         .082         0         %100           18         M25         Z         .082         .082         0         %100           20         M26         Z         .92         .0         %100         %100           21         M29         X        142         .1594         -1.594         0         %100           22         M26         Z         .92         .92         0         %100           23         M32         X         .7.604         .7.604         0         %100           24	8	MP3A	Z	4.608	4.608	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	MP2A		-7.981	-7.981	0	%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	MP2A		4.608	4.608	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		MP1A		-7.981	-7.981	0	%100
14         M23         Z         .92         .92         0         %100           15         M24         X        142        142         0         %100           16         M24         Z         .082         .082         0         %100           17         M25         X        142        142         0         %100           18         M25         Z         .082         .082         0         %100           19         M26         X         -1.594         -1.594         0         %100           20         M26         Z         .92         .92         0         %100           21         M29         X         -10.457         -10.457         0         %100           23         M32         X         -7.604         -7.604         0         %100           24         M32         Z         4.39         4.39         0         %100           25         M33         X        717        717         0         %100           26         M33         Z         .414         .414         0         %100           28         M34 <t< td=""><td>12</td><td>MP1A</td><td>Z</td><td>4.608</td><td>4.608</td><td>0</td><td>%100</td></t<>	12	MP1A	Z	4.608	4.608	0	%100
15         M24         X        142        142         0         %100           16         M24         Z         .082         .082         0         %100           17         M25         X        142        142         0         %100           18         M25         Z         .082         .082         0         %100           19         M26         X         -1.594         -1.594         0         %100           20         M26         Z         .92         .92         0         %100           21         M29         X         -10.457         -10.457         0         %100           23         M32         X         -7.604         -7.604         0         %100           24         M32         Z         4.39         4.39         0         %100           25         M33         X        717        717         0         %100           26         M33         Z         .414         .414         0         %100           28         M34         Z         .414         .414         0         %100	13	M23	X	-1.594	-1.594	0	%100
16M24Z.082.0820%10017M25X1421420%10018M25Z.082.0820%10019M26X-1.594-1.5940%10020M26Z.92.920%10021M29X-10.457-10.4570%10023M32X-7.604-7.6040%10024M32Z4.394.390%10025M33X7177170%10026M33Z.414.4140%10028M34Z.414.4140%100		M23		.92	.92	0	%100
17         M25         X        142        142         0         %100           18         M25         Z         .082         .082         0         %100           19         M26         X         -1.594         -1.594         0         %100           20         M26         Z         .92         .92         0         %100           21         M29         X         -10.457         -10.457         0         %100           22         M29         Z         6.037         6.037         0         %100           23         M32         X         -7.604         -7.604         0         %100           24         M32         Z         4.39         4.39         0         %100           25         M33         X        717        717         0         %100           26         M33         Z         .414         .414         0         %100           28         M34         Z         .414         .414         0         %100		M24		142	142	0	%100
18         M25         Z         .082         .082         0         %100           19         M26         X         -1.594         -1.594         0         %100           20         M26         Z         .92         .92         0         %100           21         M29         X         -10.457         -10.457         0         %100           22         M29         Z         6.037         6.037         0         %100           23         M32         X         -7.604         -7.604         0         %100           24         M32         Z         4.39         4.39         0         %100           24         M32         Z         4.39         4.39         0         %100           25         M33         X        717        717         0         %100           26         M33         Z         .414         .414         0         %100           27         M34         X        717        717         0         %100           28         M34         Z         .414         .414         0         %100		M24		.082	.082		%100
19         M26         X         -1.594         -1.594         0         %100           20         M26         Z         .92         .92         0         %100           21         M29         X         -10.457         -10.457         0         %100           22         M29         Z         6.037         6.037         0         %100           23         M32         X         -7.604         -7.604         0         %100           24         M32         Z         4.39         4.39         0         %100           25         M33         X        717        717         0         %100           26         M33         Z         .414         .414         0         %100           27         M34         X        717         0         %100           28         M34         Z         .414         .414         0         %100	17	M25	X	142	142	0	%100
20         M26         Z         .92         .92         0         %100           21         M29         X         -10.457         -10.457         0         %100           22         M29         Z         6.037         6.037         0         %100           23         M32         X         -7.604         -7.604         0         %100           24         M32         Z         4.39         4.39         0         %100           25         M33         X        717        717         0         %100           26         M33         Z         .414         .414         0         %100           27         M34         X        717         .717         0         %100           28         M34         Z         .414         .414         0         %100	18	M25	Z	.082	.082	0	%100
21         M29         X         -10.457         -10.457         0         %100           22         M29         Z         6.037         6.037         0         %100           23         M32         X         -7.604         -7.604         0         %100           24         M32         Z         4.39         4.39         0         %100           25         M33         X        717        717         0         %100           26         M33         Z         .414         .414         0         %100           27         M34         X        717         .717         0         %100           28         M34         Z         .414         .414         0         %100	19	M26		-1.594	-1.594	0	%100
22         M29         Z         6.037         6.037         0         %100           23         M32         X         -7.604         -7.604         0         %100           24         M32         Z         4.39         4.39         0         %100           25         M33         X        717        717         0         %100           26         M33         Z         .414         .414         0         %100           27         M34         X        717        717         0         %100           28         M34         Z         .414         .414         0         %100		M26		.92	.92	0	%100
23         M32         X         -7.604         -7.604         0         %100           24         M32         Z         4.39         4.39         0         %100           25         M33         X        717        717         0         %100           26         M33         Z         .414         .414         0         %100           27         M34         X        717        717         0         %100           28         M34         Z         .414         .414         0         %100				-10.457			
24M32Z4.394.390%10025M33X7177170%10026M33Z.414.4140%10027M34X7177170%10028M34Z.414.4140%100		M29		6.037	6.037	0	%100
25         M33         X        717        717         0         %100           26         M33         Z         .414         .414         0         %100           27         M34         X        717        717         0         %100           28         M34         Z         .414         .414         0         %100		M32	X	-7.604	-7.604		%100
26         M33         Z         .414         .414         0         %100           27         M34         X        717        717         0         %100           28         M34         Z         .414         .414         0         %100		M32		4.39	4.39	0	%100
27         M34         X        717        717         0         %100           28         M34         Z         .414         .414         0         %100		M33	X				
28 M34 Z .414 .414 0 %100		M33		.414	.414	0	%100
		M34		717	717		
29 M35 X -7 604 -7 604 0 %100				.414	.414		
	29	M35	X	-7.604	-7.604	0	%100

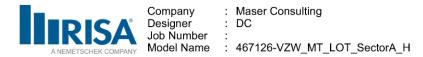



## Member Distributed Loads (BLC 49 : Structure Wo (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
30	M35	Z	4.39	4.39	0	%100
31	M36	Х	-4.096	-4.096	0	%100
32	M36	Z	2.365	2.365	0	%100
33	M37	Х	-4.096	-4.096	0	%100
34	M37	Z	2.365	2.365	0	%100
35	M38	Х	-4.096	-4.096	0	%100
36	M38	Z	2.365	2.365	0	%100
37	M39	Х	-4.096	-4.096	0	%100
38	M39	Z	2.365	2.365	0	%100
39	M40	Х	-6.153	-6.153	0	%100
40	M40	Z	3.553	3.553	0	%100
41	M41	Х	-6.153	-6.153	0	%100
42	M41	Z	3.553	3.553	0	%100
43	M42	Х	-5.477	-5.477	0	%100
44	M42	Z	3.162	3.162	0	%100
45	M43	Х	-5.463	-5.463	0	%100
46	M43	Z	3.154	3.154	0	%100
47	M44	Х	-3.319	-3.319	0	%100
48	M44	Z	1.916	1.916	0	%100
49	M45	Х	-3.625	-3.625	0	%100
50	M45	Z	2.093	2.093	0	%100
51	M46	Х	-5.485	-5.485	0	%100
52	M46	Z	3.167	3.167	0	%100
53	M47	Х	-5.485	-5.485	0	%100
54	M47	Z	3.167	3.167	0	%100
55	M48	Х	-5.485	-5.485	0	%100
56	M48	Z	3.167	3.167	0	%100
57	M49	Х	-5.485	-5.485	0	%100
58	M49	Z	3.167	3.167	0	%100
59	M50	Х	-7.02	-7.02	0	%100
60	M50	Z	4.053	4.053	0	%100

# Member Distributed Loads (BLC 50 : Structure Wo (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	Х	0	0	0	%100
4	M2	Z	0	0	0	%100
5	MP4A	Х	-9.216	-9.216	0	%100
6	MP4A	Z	0	0	0	%100
7	MP3A	Х	-9.216	-9.216	0	%100
8	MP3A	Z	0	0	0	%100
9	MP2A	Х	-9.216	-9.216	0	%100
10	MP2A	Z	0	0	0	%100
11	MP1A	Х	-9.216	-9.216	0	%100
12	MP1A	Z	0	0	0	%100
13	M23	Х	-1.034	-1.034	0	%100
14	M23	Z	0	0	0	%100
15	M24	Х	-1.034	-1.034	0	%100
16	M24	Z	0	0	0	%100
17	M25	Х	-1.034	-1.034	0	%100
18	M25	Z	0	0	0	%100
19	M26	Х	-1.034	-1.034	0	%100
20	M26	Z	0	0	0	%100
21	M29	Х	-12.074	-12.074	0	%100
22	M29	Z	0	0	0	%100

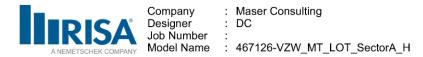



# Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
23	M32	Х	-5	-5	0	%100
24	M32	Z	0	0	0	%100
25	M33	Х	-5	-5	0	%100
26	M33	Z	0	0	0	%100
27	M34	Х	-5	-5	0	%100
28	M34	Z	0	0	0	%100
29	M35	Х	-5	-5	0	%100
30	M35	Z	0	0	0	%100
31	M36	Х	-2.425	-2.425	0	%100
32	M36	Z	0	0	0	%100
33	M37	Х	-2.425	-2.425	0	%100
34	M37	Z	0	0	0	%100
35	M38	Х	-2.425	-2.425	0	%100
36	M38	Z	0	0	0	%100
37	M39	Х	-2.425	-2.425	0	%100
38	M39	Z	0	0	0	%100
39	M40	Х	-7.105	-7.105	0	%100
40	M40	Z	0	0	0	%100
41	M41	Х	-7.105	-7.105	0	%100
42	M41	Z	0	0	0	%100
43	M42	Х	-5.308	-5.308	0	%100
44	M42	Z	0	0	0	%100
45	M43	Х	-5.133	-5.133	0	%100
46	M43	Z	0	0	0	%100
47	M44	Х	-5.133	-5.133	0	%100
48	M44	Z	0	0	0	%100
49	M45	Х	-5.308	-5.308	0	%100
50	M45	Z	0	0	0	%100
51	M46	Х	-6.334	-6.334	0	%100
52	M46	Z	0	0	0	%100
53	M47	X	-6.334	-6.334	0	%100
54	M47	Z	0	0	0	%100
55	M48	X	-6.334	-6.334	0	%100
56	M48	Z	0	0	0	%100
57	M49	X	-6.334	-6.334	0	%100
58	M49	Z	0	0	Ő	%100
59	M50	X	-8.955	-8.955	0	%100
60	M50	Z	0	0	0	%100

#### Member Distributed Loads (BLC 51 : Structure Wo (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	-2.415	-2.415	0	%100
2	M1	Z	-1.395	-1.395	0	%100
3	M2	Х	-2.415	-2.415	0	%100
4	M2	Z	-1.395	-1.395	0	%100
5	MP4A	Х	-7.981	-7.981	0	%100
6	MP4A	Z	-4.608	-4.608	0	%100
7	MP3A	Х	-7.981	-7.981	0	%100
8	MP3A	Z	-4.608	-4.608	0	%100
9	MP2A	Х	-7.981	-7.981	0	%100
10	MP2A	Z	-4.608	-4.608	0	%100
11	MP1A	Х	-7.981	-7.981	0	%100
12	MP1A	Z	-4.608	-4.608	0	%100
13	M23	Х	142	142	0	%100
14	M23	Z	082	082	0	%100
15	M24	Х	-1.594	-1.594	0	%100



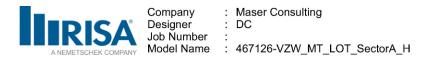

# Member Distributed Loads (BLC 51 : Structure Wo (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
16	M24	Z	92	92	0	%100
17	M25	Х	-1.594	-1.594	0	%100
18	M25	Z	92	92	0	%100
19	M26	X	142	142	0	%100
20	M26	Z	082	082	0	%100
21	M29	×	-10.457	-10.457	0	%100
22	M29	Z	-6.037	-6.037	0	%100
23	M32	Х	717	717	0	%100
24	M32	Z	414	414	0	%100
25	M33	X	-7.604	-7.604	0	%100
26	M33	Z	-4.39	-4.39	0	%100
27	M34	X	-7.604	-7.604	0	%100
28	M34	Z	-4.39	-4.39	0	%100
29	M35	X	717	717	0	%100
30	M35	Z	414	414	0	%100
31	M36	Х	-4.096	-4.096	0	%100
32	M36	Z	-2.365	-2.365	0	%100
33	M37	Х	-4.096	-4.096	0	%100
34	M37	Z	-2.365	-2.365	0	%100
35	M38	Х	-4.096	-4.096	0	%100
36	M38	Z	-2.365	-2.365	0	%100
37	M39	Х	-4.096	-4.096	0	%100
38	M39	Z	-2.365	-2.365	0	%100
39	M40	Х	-6.153	-6.153	0	%100
40	M40	Z	-3.553	-3.553	0	%100
41	M41	Х	-6.153	-6.153	0	%100
42	M41	Z	-3.553	-3.553	0	%100
43	M42	Х	-3.625	-3.625	0	%100
44	M42	Z	-2.093	-2.093	0	%100
45	M43	Х	-3.319	-3.319	0	%100
46	M43	Z	-1.916	-1.916	0	%100
47	M44	Х	-5.463	-5.463	0	%100
48	M44	Z	-3.154	-3.154	0	%100
49	M45	X	-5.477	-5.477	0	%100
50	M45	Z	-3.162	-3.162	0	%100
51	M46	Х	-5.485	-5.485	0	%100
52	M46	Z	-3.167	-3.167	0	%100
53	M47	X	-5.485	-5.485	0	%100
54	M47	Z	-3.167	-3.167	0	%100
55	M48	Χ	-5.485	-5.485	0	%100
56	M48	Z	-3.167	-3.167	0	%100
57	M49	Χ	-5.485	-5.485	0	%100
58	M49	Z	-3.167	-3.167	0	%100
59	M50	Χ	-4.727	-4.727	0	%100
60	M50	Z	-2.729	-2.729	0	%100

## Member Distributed Loads (BLC 52 : Structure Wo (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	-4.184	-4.184	0	%100
2	M1	Z	-7.246	-7.246	0	%100
3	M2	X	-4.184	-4.184	0	%100
4	M2	Z	-7.246	-7.246	0	%100
5	MP4A	Х	-4.608	-4.608	0	%100
6	MP4A	Z	-7.981	-7.981	0	%100
7	MP3A	Х	-4.608	-4.608	0	%100
8	MP3A	Z	-7.981	-7.981	0	%100

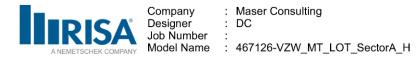



#### Member Distributed Loads (BLC 52 : Structure Wo (330 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F		End Location[ft,%]
9	MP2A	X	-4.608	-4.608	0	%100
10	MP2A	Z	-7.981	-7.981	0	%100
11	MP1A	X	-4.608	-4.608	0	%100
12	MP1A	Z	-7.981	-7.981	0	%100
13	M23	X	05	05	0	%100
14	M23	Z	086	086	0	%100
15	M24	X	888	888	0	%100
16	M24	Z	-1.538	-1.538	0	%100
17	M25	X	888	888	0	%100
18	M25	Z	-1.538	-1.538	0	%100
19	M26	<u> </u>	05	05	0	%100
20	M26	Z	086	086	0	%100
21	M29	<u>X</u>	-6.037	-6.037	0	%100
22	M29	Z	-10.457	-10.457	0	%100
23	M32	<u> </u>	218	218	0	%100
24	M32	Z	378	378	0	%100
25	M33	<u>X</u>	-4.194	-4.194	0	%100
26	M33	Z	-7.265	-7.265	0	%100
27	M34	<u> </u>	-4.194	-4.194	0	%100
28	M34	Z	-7.265	-7.265	0	%100
29	M35	X	218	218	0	%100
30	M35	Z	378	378	0	%100
31	M36	<u> </u>	-4.669	-4.669	0	%100
32	M36	Z	-8.086	-8.086	0	%100
33	M37	X	-4.669	-4.669	0	%100
34	M37	Z	-8.086	-8.086	0	%100
35	M38	X	-4.669	-4.669	0	%100
36	M38	Z	-8.086	-8.086	0	%100
37	M39	X	-4.669	-4.669	0	%100
38	M39	Z	-8.086	-8.086	0	%100
39	M40	X	-3.553	-3.553	0	%100
40	M40	Z	-6.153	-6.153	0	%100
41	M41	X	-3.553	-3.553	0	%100
42	M41	Z	-6.153	-6.153	0	%100
43	M42	X	-2.04	-2.04	0	%100
44	M42	Z	-3.534	-3.534	0	%100
45	M43	Х	-1.853	-1.853	0	%100
46	M43	Z	-3.21	-3.21	0	%100
47	M44	X	-3.091	-3.091	0	%100
48	M44	Z	-5.353	-5.353	0	%100
49	M45	X	-3.11	-3.11	0	%100
50	M45	Z	-5.386	-5.386	0	%100
51	M46	X	-3.167	-3.167	0	%100
52	M46	Z	-5.485	-5.485	0	%100
53	M47	X	-3.167	-3.167	0	%100
54	M47	Z	-5.485	-5.485	0	%100
55	M48	X	-3.167	-3.167	0	%100
56	M48	Z	-5.485	-5.485	0	%100
57	M49	X	-3.167	-3.167	0	%100
58	M49	Z	-5.485	-5.485	0	%100
59	M50	X	555	555	0	%100
60	M50	Z	962	962	0	%100
		_			2	

# Member Distributed Loads (BLC 53 : Structure Wi (0 Deg))

=

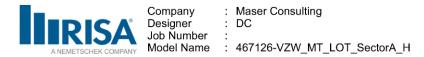

		Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
	1	M1	Х	0	0	0	%100
_			-	·			
_							



# Member Distributed Loads (BLC 53 : Structure Wi (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,		_	End Location[ft,%
2	M1	Z	-3.507	-3.507	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	-3.507	-3.507	0	%100
5	MP4A	X	0	0	0	%100
6	MP4A	Z	-3.17	-3.17	0	%100
7	MP3A	X	0	0	0	%100
8	MP3A	Z	-3.17	-3.17	0	%100
9	MP2A	X	0	0	0	%100
10	MP2A	Z	-3.175	-3.175	0	%100
11	MP1A	X	0	0	0	%100
12		Z	-3.17			
	MP1A			-3.17	0	%100
13	M23	X	0	0	0	%100
14	M23	Z	591	591	0	%100
15	M24	X	0	0	0	%100
16	M24	Z	591	591	0	%100
17	M25	X	0	0	0	%100
18	M25	Z	591	591	0	%100
19	M26	X	0	0	0	%100
20	M26	Z	591	591	0	%100
21	M29	Х	0	0	0	%100
22	M29	Z	-4.086	-4.086	0	%100
23	M32	X	0	0	0	%100
24	M32	Z	-1.453	-1.453	0	%100
25	M33	X	0	0	0 0	%100
26	M33	Z	-1.453	-1.453	0	%100
27	M34	X	0	0	0	%100
28		Z	*	-	0	
	M34		-1.453	-1.453		%100
29	M35	X	0	0	0	%100
30	M35	Z	-1.453	-1.453	0	%100
31	M36	X	0	0	0	%100
32	M36	Z	-2.922	-2.922	0	%100
33	M37	X	0	0	0	%100
34	M37	Z	-2.922	-2.922	0	%100
35	M38	X	0	0	0	%100
36	M38	Z	-2.922	-2.922	0	%100
37	M39	X	0	0	0	%100
38	M39	Z	-2.922	-2.922	0	%100
39	M40	Х	0	0	0	%100
40	M40	Z	-2.442	-2.442	0	%100
41	M41	X	0	0	0	%100
42	M41	Z	-2.442	-2.442	0	%100
43	M42	X	0	0	0	%100
43	M42	Z	-2.046	-2.046	0	%100
45	M43	X	0	0	0	%100
46	M43	Z	-1.922	-1.922	0	%100
47	M44	X	0	0	0	%100
48	M44	Z	-1.922	-1.922	0	%100
49	M45	X	0	0	0	%100
50	M45	Z	-2.046	-2.046	0	%100
51	M46	X	0	0	0	%100
52	M46	Z	-2.433	-2.433	0	%100
53	M47	X	0	0	0	%100
54	M47	Z	-2.433	-2.433	0	%100
55	M48	X	0	0	0	%100
56	M48	Z	-2.433	-2.433	0	%100
57	M49	X	0	0	0	%100
58	M49	Z	-2.433	-2.433	0	%100
.10	10149	<b>_</b>	-2.400	-2.400	U	70100

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\...\...\Rev 0\RISA\467126-VZW_MT_LOT_A_H.r3d] Page 46

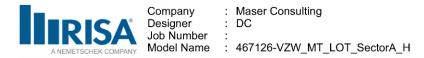



#### Member Distributed Loads (BLC 53 : Structure Wi (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
59	M50	Х	0	0	0	%100
60	M50	Z	09	09	0	%100

# Member Distributed Loads (BLC 54 : Structure Wi (30 Deg))

	ber Distributed Lo					
1	Member Label M1	Direction X	Start Magnitude[lb/ft, 1.315	.End Magnitude[lb/ft,F 1.315	. Start Location[ft,%] 0	End Location[ft,%] %100
2	M1	Z	-2.278	-2.278	0	%100
3	M2	X				%100
	M2	Z	1.315 -2.278	1.315 -2.278	0	%100
4					0	
5 6	MP4A	X Z	1.585	1.585	0	%100
0 7	MP4A MP3A		-2.745	-2.745		%100 %100
8	MP3A	X Z	1.585 -2.745	1.585 -2.745	0	%100
0 9	MP3A MP2A	X	1.588	1.588	0	%100
10	MP2A MP2A	Z	-2.75	-2.75	0	%100
11	MP1A	X	1.585	1.585	0	%100
12	MP1A MP1A	Z	-2.745	-2.745	0	%100
13	MPTA M23	X	.579	.579	0	%100
14	M23	Z	-1.003	-1.003	0	%100
14		X	.033	.033		
16	M24 M24	Z	056	056	0	%100 %100
17	M25	X	.033	.033		%100
18	M25	Z	056	056	0	%100
19	M25	X	.579	.579	0	%100
20	M26	Z	-1.003	-1.003	0	%100
20	M29	X	2.043	2.043	0	%100
22	M29	Z	-3.539	-3.539	0	%100
22	M32	X	1.445	1.445	0	%100
23	M32	Z	-2.503	-2.503	0	
24						%100
25	M33 M33	X Z	.075 13	.075 13	0	%100 %100
26	M33	X	.075	.075		
27	M34	Z	13	13	0	%100 %100
20	M35	X	1.445	1.445	0	%100
30	M35	Z	-2.503	-2.503	0	%100
31	M36	X	1.264	1.264	0	%100
32	M36	Z	-2.19	-2.19	0	%100
33	M37	X	1.264	1.264	0	%100
34	M37	Z	-2.19	-2.19	0	%100
35	M38	X	1.264	1.264	0	%100
36	M38	Z		-2.19	0	%100
30	M39	X	-2.19 1.264	1.264	0	%100
38	M39	Z	-2.19	-2.19	0	%100
39	M39 M40	X	1.221	1.221	0	%100
40	M40	Z	-2.114	-2.114	0	%100
40	M40	X	1.221	1.221	0	%100
41	M41	Z	-2.114	-2.114	0	%100
42	M42	X	1.248	1.248	0	%100
43	M42	Z	-2.162	-2.162	0	%100
44	M43	X	1.217	1.217	0	%100
46	M43	Z	-2.108	-2.108	0	%100
40	M43	X	.73	.73	0	%100
47	M44	Z	-1.264	-1.264	0	%100
40	M45	X	.819	.819	0	%100
50	M45	Z	-1.419	-1.419	0	%100
50	M45	X	1.216	1.216	0	%100
51			1.210	1.210		/0100

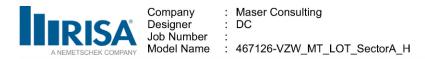



# Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
52	M46	Z	-2.107	-2.107	0	%100
53	M47	X	1.216	1.216	0	%100
54	M47	Z	-2.107	-2.107	0	%100
55	M48	X	1.216	1.216	0	%100
56	M48	Z	-2.107	-2.107	0	%100
57	M49	X	1.216	1.216	0	%100
58	M49	Z	-2.107	-2.107	0	%100
59	M50	X	.647	.647	0	%100
60	M50	Z	-1.121	-1.121	0	%100

# Member Distributed Loads (BLC 55 : Structure Wi (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.759	.759	0	%100
2	M1	Z	438	438	0	%100
3	M2	Х	.759	.759	0	%100
4	M2	Z	438	438	0	%100
5	MP4A	Х	2.745	2.745	0	%100
6	MP4A	Z	-1.585	-1.585	0	%100
7	MP3A	Х	2.745	2.745	0	%100
8	MP3A	Z	-1.585	-1.585	0	%100
9	MP2A	Х	2.75	2.75	0	%100
10	MP2A	Z	-1.588	-1.588	0	%100
11	MP1A	Х	2.745	2.745	0	%100
12	MP1A	Z	-1.585	-1.585	0	%100
13	M23	Х	1.04	1.04	0	%100
14	M23	Z	6	6	0	%100
15	M24	Х	.093	.093	0	%100
16	M24	Z	053	053	0	%100
17	M25	X	.093	.093	0	%100
18	M25	Z	053	053	0	%100
19	M26	X	1.04	1.04	0	%100
20	M26	Z	6	6	0	%100
21	M29	X	3.539	3.539	0	%100
22	M29	Z	-2.043	-2.043	0	%100
23	M32	X	2.62	2.62	0	%100
24	M32	Z	-1.513	-1.513	0	%100
25	M33	X	.247	.247	0	%100
26	M33	Z	143	143	0	%100
27	M34	X	.247	.247	0	%100
28	M34	Z	143	143	0	%100
29	M35	X	2.62	2.62	0	%100
30	M35	Z	-1.513	-1.513	0	%100
31	M36	X	1.508	1.508	0	%100
32	M36	Z	871	871	0	%100
33	M37	X	1.508	1.508	0	%100
34	M37	Z	871	871	0	%100
35	M38	X	1.508	1.508	0	%100
36	M38	Z	871	871	0	%100
37	M39	X	1.508	1.508	0	%100
38	M39	Z	871	871	0	%100
39	M40	X	2.114	2.114	0	%100
40	M40	Z	-1.221	-1.221	0	%100
41	M41	X	2.114	2.114	0	%100
42	M41	Z	-1.221	-1.221	0	%100
43	M42	X	2.199	2.199	0	%100
44	M42	Z	-1.269	-1.269	0	%100

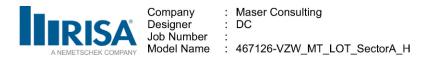



# Member Distributed Loads (BLC 55 : Structure Wi (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
45	M43	Х	2.151	2.151	0	%100
46	M43	Z	-1.242	-1.242	0	%100
47	M44	Х	1.307	1.307	0	%100
48	M44	Z	755	755	0	%100
49	M45	Х	1.455	1.455	0	%100
50	M45	Z	84	84	0	%100
51	M46	X	2.107	2.107	0	%100
52	M46	Z	-1.216	-1.216	0	%100
53	M47	Х	2.107	2.107	0	%100
54	M47	Z	-1.216	-1.216	0	%100
55	M48	Х	2.107	2.107	0	%100
56	M48	Z	-1.216	-1.216	0	%100
57	M49	Х	2.107	2.107	0	%100
58	M49	Z	-1.216	-1.216	0	%100
59	M50	Х	2.419	2.419	0	%100
60	M50	Z	-1.396	-1.396	0	%100

#### Member Distributed Loads (BLC 56 : Structure Wi (90 Deg))

1         M1         X         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         1         1         1         1	tion[ft,%]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00
7         MP3A         X         3.17         3.17         0         %1           8         MP3A         Z         0         0         0         %1           9         MP2A         X         3.175         3.175         0         %1           10         MP2A         Z         0         0         0         %1           11         MP1A         X         3.17         3.17         0         %1           12         MP1A         Z         0         0         0         %1           13         M23         X         .675         .675         0         %1           14         M23         Z         0         0         0         %1           15         M24         X         .675         .675         0         %1           16         M24         Z         0         0         0         %1           18         M25         Z         0         0         %1         %1           20         M26         Z         0         0         %1         %1           21         M29         Z         0         0         %1	00
8         MP3A         Z         0         0         0         %1           9         MP2A         X         3.175         3.175         0         %1           10         MP2A         Z         0         0         0         %1           11         MP1A         X         3.17         3.17         0         %1           11         MP1A         X         3.17         3.17         0         %1           12         MP1A         Z         0         0         0         %1           13         M23         X         .675         .675         0         %1           14         M23         Z         0         0         0         %1           15         M24         X         .675         .675         0         %1           16         M24         Z         0         0         %1         %1           18         M25         Z         0         0         %1         %1           20         M26         Z         0         0         %1         %1           21         M29         Z         0         0         %1	00
9         MP2A         X         3.175         3.175         0         %1           10         MP2A         Z         0         0         0         0         %1           11         MP1A         X         3.17         3.17         0         %1           12         MP1A         Z         0         0         0         0         %1           13         M23         X         .675         .675         0         %1           14         M23         Z         0         0         0         %1           15         M24         X         .675         .675         0         %1           15         M24         Z         0         0         0         %1           16         M24         Z         0         0         0         %1           18         M25         Z         0         0         0         %1           20         M26         Z         0         0         %1         %1           21         M29         Z         0         0         %1         %1           23         M32         X         1.723 <td< td=""><td>00</td></td<>	00
10         MP2A         Z         0         0         0         %1           11         MP1A         X         3.17         3.17         0         %1           12         MP1A         Z         0         0         0         %1           13         M23         X         .675         .675         0         %1           14         M23         Z         0         0         0         %1           15         M24         X         .675         .675         0         %1           16         M24         Z         0         0         0         %1           16         M24         Z         0         0         0         %1           18         M25         Z         0         0         0         %1           20         M26         Z         0         0         0         %1           21         M29         X         4.086         4.086         0         %1           23         M32         X         1.723         1.723         0         %1           25         M33         X         1.723         1.723         0	00
11         MP1A         X         3.17         3.17         0         %1           12         MP1A         Z         0         0         0         0         %1           13         M23         X         .675         .675         0         %1           14         M23         Z         0         0         0         %1           15         M24         X         .675         .675         0         %1           16         M24         Z         0         0         0         %1           17         M25         X         .675         .675         0         %1           18         M25         Z         0         0         0         %1           20         M26         Z         0         0         0         %1           21         M29         X         4.086         4.086         0         %1           22         M29         Z         0         0         0         %1           22         M29         Z         0         0         %1         %1           23         M32         X         1.723         1.723	00
12         MP1A         Z         0         0         0         %1           13         M23         X         .675         .675         0         %1           14         M23         Z         0         0         0         0         %1           14         M23         Z         0         0         0         0         %1           15         M24         X         .675         .675         0         %1           16         M24         Z         0         0         0         %1           17         M25         X         .675         .675         0         %1           18         M25         Z         0         0         0         %1           19         M26         X         .675         .675         0         %1           20         M26         Z         0         0         0         %1           21         M29         X         4.086         4.086         0         %1           22         M29         Z         0         0         0         %1           24         M32         Z         0         0	00
13         M23         X         .675         .675         0         %1           14         M23         Z         0         0         0         0         %1           15         M24         X         .675         .675         0         %1           16         M24         Z         0         0         0         %1           16         M24         Z         0         0         0         %1           17         M25         X         .675         .675         0         %1           18         M25         Z         0         0         0         %1           19         M26         X         .675         .675         0         %1           20         M26         Z         0         0         0         %1           21         M29         X         4.086         4.086         0         %1           22         M29         Z         0         0         %1           23         M32         X         1.723         1.723         0         %1           24         M32         Z         0         0         %1	00
14         M23         Z         0         0         0         %1           15         M24         X         .675         .675         0         %1           16         M24         Z         0         0         0         0         %1           16         M24         Z         0         0         0         0         %1           17         M25         X         .675         .675         0         %1           18         M25         Z         0         0         0         %1           19         M26         X         .675         .675         0         %1           20         M26         Z         0         0         0         %1           21         M29         X         4.086         4.086         0         %1           23         M32         X         1.723         1.723         0         %1           24         M32         Z         0         0         0         %1           25         M33         X         1.723         1.723         0         %1           26         M33         Z         0	00
15         M24         X         .675         .675         0         %1           16         M24         Z         0         0         0         0         %1           17         M25         X         .675         .675         0         %1           18         M25         Z         0         0         0         %1           19         M26         X         .675         .675         0         %1           20         M26         Z         0         0         0         %1           21         M29         X         4.086         4.086         0         %1           23         M32         X         1.723         1.723         0         %1           24         M32         Z         0         0         0         %1           26         M33         Z         0         0         %1         %1           27         M34         X         1.723         1.723         0         %1           28         M34         Z         0         0         %1         %1	00
16         M24         Z         0         0         0         %1           17         M25         X         .675         .675         0         %1           18         M25         Z         0         0         0         %1           19         M26         X         .675         .675         0         %1           20         M26         Z         0         0         0         %1           21         M29         X         4.086         4.086         0         %1           23         M32         X         1.723         1.723         0         %1           25         M33         X         1.723         1.723         0         %1           26         M33         Z         0         0         0         %1           27         M34         X         1.723         1.723         0         %1           28         M34         Z         0         0         0         %1	00
17         M25         X         .675         .675         0         %1           18         M25         Z         0         0         0         %1           19         M26         X         .675         .675         0         %1           20         M26         Z         0         0         0         %1           21         M29         X         4.086         4.086         0         %1           22         M29         Z         0         0         0         %1           23         M32         X         1.723         1.723         0         %1           24         M32         Z         0         0         0         %1           25         M33         X         1.723         1.723         0         %1           26         M33         Z         0         0         %1         %1           27         M34         X         1.723         1.723         0         %1           28         M34         Z         0         0         %1         %1	00
18         M25         Z         0         0         0         %1           19         M26         X         .675         .675         0         %1           20         M26         Z         0         0         0         %1           21         M29         X         4.086         4.086         0         %1           22         M29         Z         0         0         0         %1           23         M32         X         1.723         1.723         0         %1           24         M32         Z         0         0         0         %1           25         M33         X         1.723         1.723         0         %1           26         M33         Z         0         0         %1         %1           27         M34         X         1.723         1.723         0         %1           28         M34         Z         0         0         %1	00
19         M26         X         .675         .675         0         %1           20         M26         Z         0         0         0         0         %1           21         M29         X         4.086         4.086         0         %1           22         M29         Z         0         0         0         %1           23         M32         X         1.723         1.723         0         %1           24         M32         Z         0         0         0         %1           25         M33         X         1.723         1.723         0         %1           26         M33         Z         0         0         0         %1           27         M34         X         1.723         1.723         0         %1           28         M34         Z         0         0         0         %1	
20         M26         Z         0         0         0         %1           21         M29         X         4.086         4.086         0         %1           22         M29         Z         0         0         0         %1           23         M32         X         1.723         1.723         0         %1           24         M32         Z         0         0         0         %1           25         M33         X         1.723         1.723         0         %1           26         M33         Z         0         0         0         %1           27         M34         X         1.723         1.723         0         %1           28         M34         Z         0         0         0         %1	
21         M29         X         4.086         4.086         0         %1           22         M29         Z         0         0         0         %1           23         M32         X         1.723         1.723         0         %1           24         M32         Z         0         0         0         %1           25         M33         X         1.723         1.723         0         %1           26         M33         Z         0         0         0         %1           27         M34         X         1.723         1.723         0         %1           28         M34         Z         0         0         0         %1	00
22         M29         Z         0         0         %1           23         M32         X         1.723         1.723         0         %1           24         M32         Z         0         0         0         %1           25         M33         X         1.723         1.723         0         %1           26         M33         Z         0         0         0         %1           27         M34         X         1.723         1.723         0         %1           28         M34         Z         0         0         0         %1	
23         M32         X         1.723         1.723         0         %1           24         M32         Z         0         0         0         %1           25         M33         X         1.723         1.723         0         %1           26         M33         Z         0         0         0         %1           27         M34         X         1.723         1.723         0         %1           28         M34         Z         0         0         0         %1	
24         M32         Z         0         0         %1           25         M33         X         1.723         1.723         0         %1           26         M33         Z         0         0         0         %1           27         M34         X         1.723         1.723         0         %1           28         M34         Z         0         0         0         %1	
25M33X1.7231.7230%126M33Z000%127M34X1.7231.7230%128M34Z000%1	
26         M33         Z         0         0         %1           27         M34         X         1.723         1.723         0         %1           28         M34         Z         0         0         %1	00
27         M34         X         1.723         1.723         0         %1           28         M34         Z         0         0         0         %1	
28 M34 Z 0 0 0 %1	00
20 M2E V 1700 1700 0 0/4	00
	00
30 M35 Z 0 0 0 %1	
31 M36 X 1.348 1.348 0 %1	
32 M36 Z 0 0 0 %1	
33 M37 X 1.348 1.348 0 %1	
34 M37 Z 0 0 0 %1	
35 M38 X 1.348 1.348 0 %1	
36 M38 Z 0 0 0 %1	
37         M39         X         1.348         1.348         0         %1	00

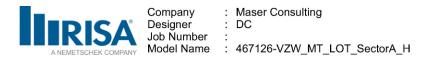



# Member Distributed Loads (BLC 56 : Structure Wi (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
38	M39	Z	0	0	0	%100
39	M40	Х	2.442	2.442	0	%100
40	M40	Z	0	0	0	%100
41	M41	Х	2.442	2.442	0	%100
42	M41	Z	0	0	0	%100
43	M42	Х	2.131	2.131	0	%100
44	M42	Z	0	0	0	%100
45	M43	Х	2.022	2.022	0	%100
46	M43	Z	0	0	0	%100
47	M44	Х	2.022	2.022	0	%100
48	M44	Z	0	0	0	%100
49	M45	Х	2.131	2.131	0	%100
50	M45	Z	0	0	0	%100
51	M46	Х	2.433	2.433	0	%100
52	M46	Z	0	0	0	%100
53	M47	Х	2.433	2.433	0	%100
54	M47	Z	0	0	0	%100
55	M48	Х	2.433	2.433	0	%100
56	M48	Z	0	0	0	%100
57	M49	Х	2.433	2.433	0	%100
58	M49	Z	0	0	0	%100
59	M50	Х	3.085	3.085	0	%100
60	M50	Z	0	0	0	%100

## Member Distributed Loads (BLC 57 : Structure Wi (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.759	.759	0	%100
2	M1	Z	.438	.438	0	%100
3	M2	Х	.759	.759	0	%100
4	M2	Z	.438	.438	0	%100
5	MP4A	Х	2.745	2.745	0	%100
6	MP4A	Z	1.585	1.585	0	%100
7	MP3A	Х	2.745	2.745	0	%100
8	MP3A	Z	1.585	1.585	0	%100
9	MP2A	Х	2.75	2.75	0	%100
10	MP2A	Z	1.588	1.588	0	%100
11	MP1A	Х	2.745	2.745	0	%100
12	MP1A	Z	1.585	1.585	0	%100
13	M23	Х	.093	.093	0	%100
14	M23	Z	.053	.053	0	%100
15	M24	Х	1.04	1.04	0	%100
16	M24	Z	.6	.6	0	%100
17	M25	Х	1.04	1.04	0	%100
18	M25	Z	.6	.6	0	%100
19	M26	Х	.093	.093	0	%100
20	M26	Z	.053	.053	0	%100
21	M29	Х	3.539	3.539	0	%100
22	M29	Z	2.043	2.043	0	%100
23	M32	X	.247	.247	0	%100
24	M32	Z	.143	.143	0	%100
25	M33	Х	2.62	2.62	0	%100
26	M33	Z	1.513	1.513	0	%100
27	M34	Х	2.62	2.62	0	%100
28	M34	Z	1.513	1.513	0	%100
29	M35	Х	.247	.247	0	%100
30	M35	Z	.143	.143	0	%100

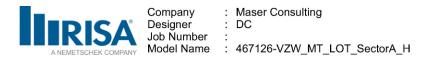



# Member Distributed Loads (BLC 57 : Structure Wi (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
31	M36	Х	1.508	1.508	0	%100
32	M36	Z	.871	.871	0	%100
33	M37	Х	1.508	1.508	0	%100
34	M37	Z	.871	.871	0	%100
35	M38	Х	1.508	1.508	0	%100
36	M38	Z	.871	.871	0	%100
37	M39	X	1.508	1.508	0	%100
38	M39	Z	.871	.871	0	%100
39	M40	X	2.114	2.114	0	%100
40	M40	Z	1.221	1.221	0	%100
41	M41	X	2.114	2.114	0	%100
42	M41	Z	1.221	1.221	0	%100
43	M42	X	1.455	1.455	0	%100
44	M42	Z	.84	.84	0	%100
45	M43	X	1.307	1.307	0	%100
46	M43	Z	.755	.755	0	%100
47	M44	X	2.151	2.151	0	%100
48	M44	Z	1.242	1.242	0	%100
49	M45	X	2.199	2.199	0	%100
50	M45	Z	1.269	1.269	0	%100
51	M46	X	2.107	2.107	0	%100
52	M46	Z	1.216	1.216	0	%100
53	M47	X	2.107	2.107	0	%100
54	M47	Z	1.216	1.216	0	%100
55	M48	X	2.107	2.107	0	%100
56	M48	Z	1.216	1.216	0	%100
57	M49	Х	2.107	2.107	0	%100
58	M49	Z	1.216	1.216	0	%100
59	M50	Х	1.629	1.629	0	%100
60	M50	Z	.94	.94	0	%100

#### Member Distributed Loads (BLC 58 : Structure Wi (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	1.315	1.315	0	%100
2	M1	Z	2.278	2.278	0	%100
3	M2	X	1.315	1.315	0	%100
4	M2	Z	2.278	2.278	0	%100
5	MP4A	Х	1.585	1.585	0	%100
6	MP4A	Z	2.745	2.745	0	%100
7	MP3A	Х	1.585	1.585	0	%100
8	MP3A	Z	2.745	2.745	0	%100
9	MP2A	Х	1.588	1.588	0	%100
10	MP2A	Z	2.75	2.75	0	%100
11	MP1A	Х	1.585	1.585	0	%100
12	MP1A	Z	2.745	2.745	0	%100
13	M23	Х	.033	.033	0	%100
14	M23	Z	.056	.056	0	%100
15	M24	Х	.579	.579	0	%100
16	M24	Z	1.003	1.003	0	%100
17	M25	Х	.579	.579	0	%100
18	M25	Z	1.003	1.003	0	%100
19	M26	Х	.033	.033	0	%100
20	M26	Z	.056	.056	0	%100
21	M29	Х	2.043	2.043	0	%100
22	M29	Z	3.539	3.539	0	%100
23	M32	Х	.075	.075	0	%100

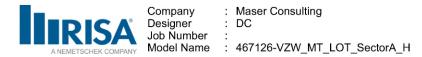



# Member Distributed Loads (BLC 58 : Structure Wi (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
24	M32	Z	.13	.13	0	%100
25	M33	Х	1.445	1.445	0	%100
26	M33	Z	2.503	2.503	0	%100
27	M34	Х	1.445	1.445	0	%100
28	M34	Z	2.503	2.503	0	%100
29	M35	Х	.075	.075	0	%100
30	M35	Z	.13	.13	0	%100
31	M36	Х	1.264	1.264	0	%100
32	M36	Z	2.19	2.19	0	%100
33	M37	Х	1.264	1.264	0	%100
34	M37	Z	2.19	2.19	0	%100
35	M38	Х	1.264	1.264	0	%100
36	M38	Z	2.19	2.19	0	%100
37	M39	Х	1.264	1.264	0	%100
38	M39	Z	2.19	2.19	0	%100
39	M40	Х	1.221	1.221	0	%100
40	M40	Z	2.114	2.114	0	%100
41	M41	Х	1.221	1.221	0	%100
42	M41	Z	2.114	2.114	0	%100
43	M42	Χ	.819	.819	0	%100
44	M42	Z	1.419	1.419	0	%100
45	M43	Χ	.73	.73	0	%100
46	M43	Z	1.264	1.264	0	%100
47	M44	X	1.217	1.217	0	%100
48	M44	Z	2.108	2.108	0	%100
49	M45	X	1.248	1.248	0	%100
50	M45	Z	2.162	2.162	0	%100
51	M46	X	1.216	1.216	0	%100
52	M46	Z	2.107	2.107	0	%100
53	M47	Х	1.216	1.216	0	%100
54	M47	Z	2.107	2.107	0	%100
55	M48	Х	1.216	1.216	0	%100
56	M48	Z	2.107	2.107	0	%100
57	M49	Х	1.216	1.216	0	%100
58	M49	Z	2.107	2.107	0	%100
59	M50	Х	.191	.191	0	%100
60	M50	Z	.331	.331	0	%100

# Member Distributed Loads (BLC 59 : Structure Wi (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	3.507	3.507	0	%100
3	M2	Х	0	0	0	%100
4	M2	Z	3.507	3.507	0	%100
5	MP4A	Х	0	0	0	%100
6	MP4A	Z	3.17	3.17	0	%100
7	MP3A	Х	0	0	0	%100
8	MP3A	Z	3.17	3.17	0	%100
9	MP2A	Х	0	0	0	%100
10	MP2A	Z	3.175	3.175	0	%100
11	MP1A	Х	0	0	0	%100
12	MP1A	Z	3.17	3.17	0	%100
13	M23	Х	0	0	0	%100
14	M23	Z	.591	.591	0	%100
15	M24	Х	0	0	0	%100
16	M24	Z	.591	.591	0	%100

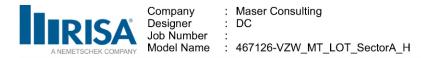



# Member Distributed Loads (BLC 59 : Structure Wi (180 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F		End Location[ft,%]
17	M25	<u> </u>	0	0	0	%100
18	M25	Z	.591	.591	0	%100
19	M26	X	0	0	0	%100
20	M26	Z	.591	.591	0	%100
21	M29	X	0	0	0	%100
22	M29	Z	4.086	4.086	0	%100
23	M32	X	0	0	0	%100
24	M32	Z	1.453	1.453	0	%100
25	M33	X	0	0	0	%100
26	M33	Z	1.453	1.453	0	%100
27	M34	X	0	0	0	%100
28	M34	Z	1.453	1.453	0	%100
29	M35	X	0	0	0	%100
30	M35	Z	1.453	1.453	0	%100
31	M36	Х	0	0	0	%100
32	M36	Z	2.922	2.922	0	%100
33	M37	Χ	0	0	0	%100
34	M37	Z	2.922	2.922	0	%100
35	M38	X	0	0	0	%100
36	M38	Z	2.922	2.922	0	%100
37	M39	X	0	0	0	%100
38	M39	Z	2.922	2.922	0	%100
39	M40	X	0	0	0	%100
40	M40	Z	2.442	2.442	0	%100
41	M41	X	0	0	0	%100
42	M41	Z	2.442	2.442	0	%100
43	M42	X	0	0	0	%100
44	M42	Z	2.046	2.046	0	%100
45	M43	Х	0	0	0	%100
46	M43	Z	1.922	1.922	0	%100
47	M44	Х	0	0	0	%100
48	M44	Z	1.922	1.922	0	%100
49	M45	X	0	0	0	%100
50	M45	Z	2.046	2.046	0	%100
51	M46	Х	0	0	0	%100
52	M46	Z	2.433	2.433	0	%100
53	M47	Х	0	0	0	%100
54	M47	Z	2.433	2.433	0	%100
55	M48	Х	0	0	0	%100
56	M48	Z	2.433	2.433	0	%100
57	M49	Х	0	0	0	%100
58	M49	Z	2.433	2.433	0	%100
59	M50	Х	0	0	0	%100
60	M50	Z	.09	.09	0	%100

# Member Distributed Loads (BLC 60 : Structure Wi (210 Deg))

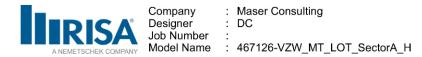
Label Direction Sta		ection	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
X	1	Х	-1.315	-1.315	0	%100
Z	2	Z	2.278	2.278	0	%100
Х	3	Х	-1.315	-1.315	0	%100
Z	4	Z	2.278	2.278	0	%100
A X	5	Х	-1.585	-1.585	0	%100
A Z	6	Z	2.745	2.745	0	%100
A X	7	Х	-1.585	-1.585	0	%100
A Z	8	Z	2.745	2.745	0	%100
A X	9	X	-1.588	-1.588	0	%100
A Z A X A Z	6 7 8	× Z X Z X	2.745 -1.585 2.745	2.745 -1.585 2.745	0 0 0 0	%10 %10 %10




# Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

				[210 Deg]/ [00]		
1.0	Member Label	Direction		End Magnitude[lb/ft,F		End Location[ft,%]
10	MP2A	Z	2.75	2.75	0	%100
11	MP1A	<u> </u>	-1.585	-1.585	0	%100
12	MP1A	Z	2.745	2.745	0	%100
13	M23	<u> </u>	579	579	0	%100
14	M23	Z	1.003	1.003	0	%100
15	M24	<u> </u>	033	033	0	%100
16	M24	Z	.056	.056	0	%100
17	M25	X	033	033	0	%100
18	M25	Z	.056	.056	0	%100
19	M26	X	579	579	0	%100
20	M26	Z	1.003	1.003	0	%100
21	M29	X	-2.043	-2.043	0	%100
22	M29	Z	3.539	3.539	0	%100
23	M32	X	-1.445	-1.445	0	%100
24	M32	Z	2.503	2.503	0	%100
25	M33	X	075	075	0	%100
26	M33	Z	.13	.13	0	%100
27	M34	Χ	075	075	0	%100
28	M34	Z	.13	.13	0	%100
29	M35	Χ	-1.445	-1.445	0	%100
30	M35	Z	2.503	2.503	0	%100
31	M36	X	-1.264	-1.264	0	%100
32	M36	Z	2.19	2.19	0	%100
33	M37	Χ	-1.264	-1.264	0	%100
34	M37	Z	2.19	2.19	0	%100
35	M38	X	-1.264	-1.264	0	%100
36	M38	Z	2.19	2.19	0	%100
37	M39	X	-1.264	-1.264	0	%100
38	M39	Z	2.19	2.19	0	%100
39	M40	X	-1.221	-1.221	0	%100
40	M40	Z	2.114	2.114	0	%100
41	M41	Х	-1.221	-1.221	0	%100
42	M41	Z	2.114	2.114	0	%100
43	M42	X	-1.248	-1.248	0	%100
44	M42	Z	2.162	2.162	0	%100
45	M43	X	-1.217	-1.217	0	%100
46	M43	Z	2.108	2.108	0	%100
47	M44	Х	73	73	0	%100
48	M44	Z	1.264	1.264	0	%100
49	M45	X	819	819	0	%100
50	M45	Z	1.419	1.419	0	%100
51	M46	Х	-1.216	-1.216	0	%100
52	M46	Z	2.107	2.107	0	%100
53	M47	Х	-1.216	-1.216	0	%100
54	M47	Z	2.107	2.107	0	%100
55	M48	Х	-1.216	-1.216	0	%100
56	M48	Z	2.107	2.107	0	%100
57	M49	X	-1.216	-1.216	0	%100
58	M49	Z	2.107	2.107	0	%100
59	M50	X	647	647	0	%100
60	M50	Z	1.121	1.121	0	%100

## Member Distributed Loads (BLC 61 : Structure Wi (240 Deg))

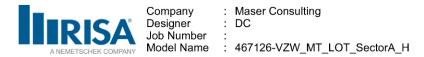

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	759	759	0	%100
2	M1	Z	.438	.438	0	%100



## Member Distributed Loads (BLC 61 : Structure Wi (240 Deg)) (Continued)

3	Member Label M2	Direction X	Start Magnitude[lb/ft, 759	.End Magnitude[lb/ft,F.	Start Location[ft,%] 0	End Location[ft,% %100
4	M2	Z	.438	.438	0	%100
5	MP4A	x	-2.745	-2.745	0	%100
6	MP4A	Z	1.585	1.585	0	%100
7	MP3A	X	-2.745	-2.745	0	%100
8	MP3A	Z	1.585	1.585	0	%100
9	MP2A	X	-2.75	-2.75	0	%100
10	MP2A	Z	1.588	1.588	0	%100
11	MP1A	X	-2.745	-2.745	0	%100
12	MP1A	Z	1.585	1.585	0	%100
13	M23	X	-1.04	-1.04	0	%100
14	M23	Z	.6	.6	0	%100
15	M24	X	093	093	0	%100
16	M24	Z	.053	.053	0	%100
17	M25	X	093	093	0	%100
18	M25	Z	.053	.053	0	%100
19	M26	X	-1.04	-1.04	0	%100
20	M26	Z	.6	.6	0	%100
21	M29	X	-3.539	-3.539	0	%100
22	M29	Z	2.043	2.043	0	%100
23	M32	X	-2.62	-2.62	0	%100
24	M32	Z	1.513	1.513	0	%100
25	M33	X	247	247	0	%100
26	M33	Z	.143	.143	0	%100
27	M34	X	247	247	0	%100
28	M34	Z	.143	.143	0	%100
29	M35	X	-2.62	-2.62	0	%100
30	M35	Z	1.513	1.513	0	%100
31	M36	X	-1.508	-1.508	0	%100
32	M36	Z	.871	.871	0	%100
33	M37	X	-1.508	-1.508	0	%100
34	M37	Z	.871	.871	0	%100
35	M38	X	-1.508	-1.508	0	%100
36	M38	Z	.871	.871	0	%100
37	M39	X	-1.508	-1.508	0	%100
38	M39	Z	.871	.871	0	%100
39	M40	X	-2.114	-2.114	0	%100
40	M40	Z	1.221	1.221	0	%100
41	M41	X	-2.114	-2.114	0	%100
42	M41	Z	1.221	1.221	0	%100
43	M42	X	-2.199	-2.199	0	%100
44	M42	Z	1.269	1.269	0	%100
44	M43	X	-2.151	-2.151	0	%100
46	M43	Z	1.242	1.242	0	%100
40	M44	X	-1.307	-1.307	0	%100
48	M44	Z	.755	.755	0	%100
49	M45	X	-1.455	-1.455	0	%100
50	M45	Z	.84	.84	0	%100
50	M45	X	-2.107	-2.107	0	%100
52	M46	Z	1.216	1.216	0	%100
53	M40	X	-2.107	-2.107	0	%100
53	M47	Z	1.216	1.216	0	%100
55	M48	X	-2.107	-2.107	0	%100
56	N48 M48	Z	1.216	1.216	0	%100
57	M49	X	-2.107	-2.107	0	%100
57	M49 M49	Z	1.216	1.216	0	%100
59	M49 M50	X	-2.419	-2.419	0	%100
	IVIOU	· · ∧	-2.419	-2.419	U	70 100

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\...\...\Rev 0\RISA\467126-VZW_MT_LOT_A_H.r3d] Page 55

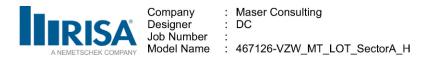



#### Member Distributed Loads (BLC 61 : Structure Wi (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
60	M50	Z	1.396	1.396	0	%100

#### Member Distributed Loads (BLC 62 : Structure Wi (270 Deg))

	<u>Nel Distributed Lot</u>			· · · · · · · · · · · · · · · · · · ·	<b>O</b> ( )	<b>E</b> 11 <b>B B B B B B B B B B</b>
4	Member Label	Direction		End Magnitude[lb/ft,F		End Location[ft,%]
1	<u>M1</u>	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	0	%100
5	MP4A	<u>X</u>	-3.17	-3.17	0	%100
6	MP4A	Z	0	0	0	%100
7	MP3A	Х	-3.17	-3.17	0	%100
8	MP3A	Z	0	0	0	%100
9	MP2A	Χ	-3.175	-3.175	0	%100
10	MP2A	Z	0	0	0	%100
11	MP1A	X	-3.17	-3.17	0	%100
12	MP1A	Z	0	0	0	%100
13	M23	Х	675	675	0	%100
14	M23	Z	0	0	0	%100
15	M24	Х	675	675	0	%100
16	M24	Z	0	0	0	%100
17	M25	Х	675	675	0	%100
18	M25	Z	0	0	0	%100
19	M26	x	675	675	0	%100
20	M26	Z	0	0	Ő	%100
21	M29	x	-4.086	-4.086	0	%100
22	M29	Z	0	0	0	%100
23	M32	X	-1.723	-1.723	0	%100
24	M32	Z	0	0	0	%100
25	M32	X	-1.723	-1.723	0	%100
26	M33	Z	-1.725	0	0	%100
20	M34	X	-1.723	-1.723	0	%100
27	M34	Z	-1.725	-1.723	0	%100
			÷			
29	M35	X	-1.723	-1.723	0	%100
30	M35	Z	0	0	0	%100
31	M36	X	-1.348	-1.348	0	%100
32	M36	Z	0	0	0	%100
33	M37	<u> </u>	-1.348	-1.348	0	%100
34	M37	Z	0	0	0	%100
35	M38	X	-1.348	-1.348	0	%100
36	M38	Z	0	0	0	%100
37	M39	X	-1.348	-1.348	0	%100
38	M39	Z	0	0	0	%100
39	M40	Х	-2.442	-2.442	0	%100
40	M40	Z	0	0	0	%100
41	M41	Х	-2.442	-2.442	0	%100
42	M41	Z	0	0	0	%100
43	M42	Х	-2.131	-2.131	0	%100
44	M42	Z	0	0	0	%100
45	M43	X	-2.022	-2.022	0	%100
46	M43	Z	0	0	0	%100
47	M44	x	-2.022	-2.022	0	%100
48	M44	Z	0	0	0	%100
49	M45	X	-2.131	-2.131	0	%100
50	M45	Z	0	0	0	%100
51	M46	X	-2.433	-2.433	0	%100
52	M40	Z	-2.433	0	0	%100
52	WI <del>-I</del> U	2	U	U	U	70100

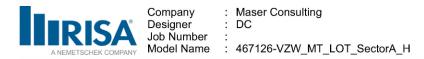



# Member Distributed Loads (BLC 62 : Structure Wi (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
53	M47	X	-2.433	-2.433	0	%100
54	M47	Z	0	0	0	%100
55	M48	Х	-2.433	-2.433	0	%100
56	M48	Z	0	0	0	%100
57	M49	Х	-2.433	-2.433	0	%100
58	M49	Z	0	0	0	%100
59	M50	X	-3.085	-3.085	0	%100
60	M50	Z	0	0	0	%100

#### Member Distributed Loads (BLC 63 : Structure Wi (300 Deg))

	Member Label	Direction		End Magnitude[lb/ft,F		End Location[ft,%]
1	M1	Χ	759	759	0	%100
2	M1	Z	438	438	0	%100
3	M2	X	759	759	0	%100
4	M2	Z	438	438	0	%100
5	MP4A	X	-2.745	-2.745	0	%100
6	MP4A	Z	-1.585	-1.585	0	%100
7	MP3A	X	-2.745	-2.745	0	%100
8	MP3A	Z	-1.585	-1.585	0	%100
9	MP2A	X	-2.75	-2.75	0	%100
10	MP2A	Z	-1.588	-1.588	0	%100
11	MP1A	X	-2.745	-2.745	0	%100
12	MP1A	Z	-1.585	-1.585	0	%100
13	M23	X	093	093	0	%100
14	M23	Z	053	053	0	%100
15	M24	<u> </u>	-1.04	-1.04	0	%100
16	M24	Z	6	6	0	%100
17	M25	Х	-1.04	-1.04	0	%100
18	M25	Z	6	6	0	%100
19	M26	Х	093	093	0	%100
20	M26	Z	053	053	0	%100
21	M29	Х	-3.539	-3.539	0	%100
22	M29	Z	-2.043	-2.043	0	%100
23	M32	Χ	247	247	0	%100
24	M32	Z	143	143	0	%100
25	M33	X	-2.62	-2.62	0	%100
26	M33	Z	-1.513	-1.513	0	%100
27	M34	X	-2.62	-2.62	0	%100
28	M34	Z	-1.513	-1.513	0	%100
29	M35	X	247	247	0	%100
30	M35	Z	143	143	0	%100
31	M36	X	-1.508	-1.508	0	%100
32	M36	Z	871	871	0	%100
33	M37	X	-1.508	-1.508	0	%100
34	M37	Z	871	871	0	%100
35	M38	X	-1.508	-1.508	0	%100
36	M38	Z	871	871	0	%100
37	M39	<u> </u>	-1.508	-1.508	0	%100
38	M39	Z	871	871	0	%100
39	M40	<u> </u>	-2.114	-2.114	0	%100
40	M40	Z	-1.221	-1.221	0	%100
41	M41	<u> </u>	-2.114	-2.114	0	%100
42	M41	Z	-1.221	-1.221	0	%100
43	M42	<u> </u>	-1.455	-1.455	0	%100
44	M42	Z	84	84	0	%100
45	M43	Х	-1.307	-1.307	0	%100

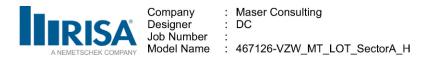



# Member Distributed Loads (BLC 63 : Structure Wi (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
46	M43	Z	755	755	0	%100
47	M44	Х	-2.151	-2.151	0	%100
48	M44	Z	-1.242	-1.242	0	%100
49	M45	Х	-2.199	-2.199	0	%100
50	M45	Z	-1.269	-1.269	0	%100
51	M46	Х	-2.107	-2.107	0	%100
52	M46	Z	-1.216	-1.216	0	%100
53	M47	Х	-2.107	-2.107	0	%100
54	M47	Z	-1.216	-1.216	0	%100
55	M48	Х	-2.107	-2.107	0	%100
56	M48	Z	-1.216	-1.216	0	%100
57	M49	Х	-2.107	-2.107	0	%100
58	M49	Z	-1.216	-1.216	0	%100
59	M50	Х	-1.629	-1.629	0	%100
60	M50	Z	94	94	0	%100

## Member Distributed Loads (BLC 64 : Structure Wi (330 Deg))

memoc						
	Member Label	Direction		End Magnitude[lb/ft,F.,	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	-1.315	-1.315	0	%100
2	M1	Z	-2.278	-2.278	0	%100
3	M2	X	-1.315	-1.315	0	%100
4	M2	Z	-2.278	-2.278	0	%100
5	MP4A	X	-1.585	-1.585	0	%100
6	MP4A	Z	-2.745	-2.745	0	%100
7	MP3A	X	-1.585	-1.585	0	%100
8	MP3A	Z	-2.745	-2.745	0	%100
9	MP2A	X	-1.588	-1.588	0	%100
10	MP2A	Z	-2.75	-2.75	0	%100
11	MP1A	X	-1.585	-1.585	0	%100
12	MP1A	Z	-2.745	-2.745	0	%100
13	M23	X	033	033	0	%100
14	M23	Z	056	056	0	%100
15	M24	X	579	579	0	%100
16	M24	Z	-1.003	-1.003	0	%100
17	M25	X	579	579	0	%100
18	M25	Z	-1.003	-1.003	0	%100
19	M26	X	033	033	0	%100
20	M26	Z	056	056	0	%100
21	M29	X	-2.043	-2.043	0	%100
22	M29	Z	-3.539	-3.539	0	%100
23	M32	X	075	075	0	%100
24	M32	Z	13	13	0	%100
25	M33	X	-1.445	-1.445	0	%100
26	M33	Z	-2.503	-2.503	0	%100
27	M34	X	-1.445	-1.445	0	%100
28	M34	Z	-2.503	-2.503	0	%100
29	M35	X	075	075	0	%100
30	M35	Z	13	13	0	%100
31	M36	X	-1.264	-1.264	0	%100
32	M36	Z	-2.19	-2.19	0	%100
33	M37	X	-1.264	-1.264	0	%100
34	M37	Z	-2.19	-2.19	0	%100
35	M38	Х	-1.264	-1.264	0	%100
36	M38	Z	-2.19	-2.19	0	%100
37	M39	X	-1.264	-1.264	0	%100
38	M39	Z	-2.19	-2.19	0	%100

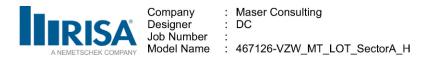



## Member Distributed Loads (BLC 64 : Structure Wi (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
39	M40	Х	-1.221	-1.221	0	%100
40	M40	Z	-2.114	-2.114	0	%100
41	M41	Х	-1.221	-1.221	0	%100
42	M41	Z	-2.114	-2.114	0	%100
43	M42	Х	819	819	0	%100
44	M42	Z	-1.419	-1.419	0	%100
45	M43	Х	73	73	0	%100
46	M43	Z	-1.264	-1.264	0	%100
47	M44	Х	-1.217	-1.217	0	%100
48	M44	Z	-2.108	-2.108	0	%100
49	M45	Х	-1.248	-1.248	0	%100
50	M45	Z	-2.162	-2.162	0	%100
51	M46	Х	-1.216	-1.216	0	%100
52	M46	Z	-2.107	-2.107	0	%100
53	M47	Х	-1.216	-1.216	0	%100
54	M47	Z	-2.107	-2.107	0	%100
55	M48	Х	-1.216	-1.216	0	%100
56	M48	Z	-2.107	-2.107	0	%100
57	M49	Х	-1.216	-1.216	0	%100
58	M49	Z	-2.107	-2.107	0	%100
59	M50	Х	191	191	0	%100
60	M50	Z	331	331	0	%100

#### Member Distributed Loads (BLC 65 : Structure Wm (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	686	686	0	%100
3	M2	Х	0	0	0	%100
4	M2	Z	686	686	0	%100
5	MP4A	Х	0	0	0	%100
6	MP4A	Z	567	567	0	%100
7	MP3A	Х	0	0	0	%100
8	MP3A	Z	567	567	0	%100
9	MP2A	Х	0	0	0	%100
10	MP2A	Z	567	567	0	%100
11	MP1A	Х	0	0	0	%100
12	MP1A	Z	567	567	0	%100
13	M23	X	0	0	0	%100
14	M23	Z	056	056	0	%100
15	M24	X	0	0	0	%100
16	M24	Z	056	056	0	%100
17	M25	X	0	0	0	%100
18	M25	Z	056	056	0	%100
19	M26	X	0	0	0	%100
20	M26	Z	056	056	0	%100
21	M29	Х	0	0	0	%100
22	M29	Z	742	742	0	%100
23	M32	Х	0	0	0	%100
24	M32	Z	259	259	0	%100
25	M33	Χ	0	0	0	%100
26	M33	Z	259	259	0	%100
27	M34	X	0	0	0	%100
28	M34	Z	259	259	0	%100
29	M35	X	0	0	0	%100
30	M35	Z	259	259	0	%100
31	M36	X	0	0	0	%100

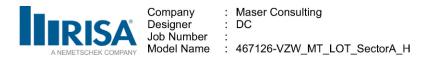



## Member Distributed Loads (BLC 65 : Structure Wm (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
32	M36	Z	716	716	0	%100
33	M37	Х	0	0	0	%100
34	M37	Z	716	716	0	%100
35	M38	Х	0	0	0	%100
36	M38	Z	716	716	0	%100
37	M39	Х	0	0	0	%100
38	M39	Z	716	716	0	%100
39	M40	Х	0	0	0	%100
40	M40	Z	437	437	0	%100
41	M41	Х	0	0	0	%100
42	M41	Z	437	437	0	%100
43	M42	Х	0	0	0	%100
44	M42	Z	313	313	0	%100
45	M43	Х	0	0	0	%100
46	M43	Z	3	3	0	%100
47	M44	Χ	0	0	0	%100
48	M44	Z	3	3	0	%100
49	M45	Х	0	0	0	%100
50	M45	Z	313	313	0	%100
51	M46	X	0	0	0	%100
52	M46	Z	389	389	0	%100
53	M47	Х	0	0	0	%100
54	M47	Z	389	389	0	%100
55	M48	X	0	0	0	%100
56	M48	Z	389	389	0	%100
57	M49	X	0	0	0	%100
58	M49	Z	389	389	0	%100
59	M50	Х	0	0	0	%100
60	M50	Z	016	016	0	%100

#### Member Distributed Loads (BLC 66 : Structure Wm (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.257	.257	0	%100
2	M1	Z	445	445	0	%100
3	M2	Х	.257	.257	0	%100
4	M2	Z	445	445	0	%100
5	MP4A	Х	.283	.283	0	%100
6	MP4A	Z	491	491	0	%100
7	MP3A	Х	.283	.283	0	%100
8	MP3A	Z	491	491	0	%100
9	MP2A	X	.283	.283	0	%100
10	MP2A	Z	491	491	0	%100
11	MP1A	X	.283	.283	0	%100
12	MP1A	Z	491	491	0	%100
13	M23	Х	.055	.055	0	%100
14	M23	Z	095	095	0	%100
15	M24	Х	.003	.003	0	%100
16	M24	Z	005	005	0	%100
17	M25	X	.003	.003	0	%100
18	M25	Z	005	005	0	%100
19	M26	X	.055	.055	0	%100
20	M26	Z	095	095	0	%100
21	M29	X	.371	.371	0	%100
22	M29	Z	643	643	0	%100
23	M32	Х	.258	.258	0	%100
24	M32	Z	447	447	0	%100

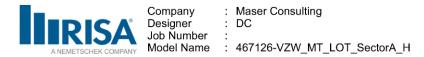



#### Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
25	M33	Х	.013	.013	0	%100
26	M33	Z	023	023	0	%100
27	M34	Х	.013	.013	0	%100
28	M34	Z	023	023	0	%100
29	M35	Х	.258	.258	0	%100
30	M35	Z	447	447	0	%100
31	M36	X	.287	.287	0	%100
32	M36	Z	497	497	0	%100
33	M37	X	.287	.287	0	%100
34	M37	Z	497	497	0	%100
35	M38	X	.287	.287	0	%100
36	M38	Z	497	497	0	%100
37	M39	Х	.287	.287	0	%100
38	M39	Z	497	497	0	%100
39	M40	Х	.218	.218	0	%100
40	M40	Z	378	378	0	%100
41	M41	X	.218	.218	0	%100
42	M41	Z	378	378	0	%100
43	M42	X	.191	.191	0	%100
44	M42	Z	331	331	0	%100
45	M43	X	.19	.19	0	%100
46	M43	Z	329	329	0	%100
47	M44	X	.114	.114	0	%100
48	M44	Z	197	197	0	%100
49	M45	X	.125	.125	0	%100
50	M45	Z	217	217	0	%100
51	M46	X	.195	.195	0	%100
52	M46	Z	337	337	0	%100
53	M47	Х	.195	.195	0	%100
54	M47	Z	337	337	0	%100
55	M48	Х	.195	.195	0	%100
56	M48	Z	337	337	0	%100
57	M49	Х	.195	.195	0	%100
58	M49	Z	337	337	0	%100
59	M50	Х	.116	.116	0	%100
60	M50	Z	2	2	0	%100

# Member Distributed Loads (BLC 67 : Structure Wm (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.148	.148	0	%100
2	M1	Z	086	086	0	%100
3	M2	Х	.148	.148	0	%100
4	M2	Z	086	086	0	%100
5	MP4A	Х	.491	.491	0	%100
6	MP4A	Z	283	283	0	%100
7	MP3A	Х	.491	.491	0	%100
8	MP3A	Z	283	283	0	%100
9	MP2A	Х	.491	.491	0	%100
10	MP2A	Z	283	283	0	%100
11	MP1A	Х	.491	.491	0	%100
12	MP1A	Z	283	283	0	%100
13	M23	Х	.098	.098	0	%100
14	M23	Z	057	057	0	%100
15	M24	Х	.009	.009	0	%100
16	M24	Z	005	005	0	%100
17	M25	Х	.009	.009	0	%100

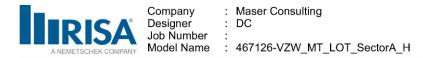



## Member Distributed Loads (BLC 67 : Structure Wm (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
18	M25	Z	005	005	0	%100
19	M26	Х	.098	.098	0	%100
20	M26	Z	057	057	0	%100
21	M29	Х	.643	.643	0	%100
22	M29	Z	371	371	0	%100
23	M32	Х	.467	.467	0	%100
24	M32	Z	27	27	0	%100
25	M33	Х	.044	.044	0	%100
26	M33	Z	025	025	0	%100
27	M34	Х	.044	.044	0	%100
28	M34	Z	025	025	0	%100
29	M35	Х	.467	.467	0	%100
30	M35	Z	27	27	0	%100
31	M36	Х	.252	.252	0	%100
32	M36	Z	145	145	0	%100
33	M37	Х	.252	.252	0	%100
34	M37	Z	145	145	0	%100
35	M38	Х	.252	.252	0	%100
36	M38	Z	145	145	0	%100
37	M39	Х	.252	.252	0	%100
38	M39	Z	145	145	0	%100
39	M40	Х	.378	.378	0	%100
40	M40	Z	218	218	0	%100
41	M41	Х	.378	.378	0	%100
42	M41	Z	218	218	0	%100
43	M42	Х	.337	.337	0	%100
44	M42	Z	194	194	0	%100
45	M43	Х	.336	.336	0	%100
46	M43	Z	194	194	0	%100
47	M44	X	.204	.204	0	%100
48	M44	Z	118	118	0	%100
49	M45	Х	.223	.223	0	%100
50	M45	Z	129	129	0	%100
51	M46	X	.337	.337	0	%100
52	M46	Z	195	195	0	%100
53	M47	X	.337	.337	0	%100
54	M47	Z	195	195	0	%100
55	M48	X	.337	.337	0	%100
56	M48	Z	195	195	0	%100
57	M49	X	.337	.337	0	%100
58	M49	Z	195	195	0	%100
59	M50	X	.432	.432	0	%100
60	M50	Z	249	249	0	%100

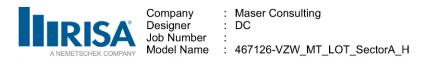
# Member Distributed Loads (BLC 68 : Structure Wm (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	Х	0	0	0	%100
4	M2	Z	0	0	0	%100
5	MP4A	Х	.567	.567	0	%100
6	MP4A	Z	0	0	0	%100
7	MP3A	Х	.567	.567	0	%100
8	MP3A	Z	0	0	0	%100
9	MP2A	Х	.567	.567	0	%100
10	MP2A	Z	0	0	0	%100




## Member Distributed Loads (BLC 68 : Structure Wm (90 Deg)) (Continued)

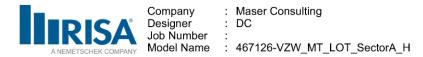
11         MP1A         X         .567         .567         0         %100           12         MP1A         Z         0         0         0         %100           13         M23         X         .064         .064         0         %100           14         M23         Z         0         0         0         %100           16         M24         Z         0         0         0         %100           16         M24         Z         0         0         0         %100           18         M25         Z         0         0         %100         %100           20         M26         Z         0         0         %100         %100           21         M29         Z         0         0         0         %100           23         M32         Z         0         0         %100         %100           24         M32         Z         0         0         %100         %100           24         M32         Z         0         0         %100         %100           25         M33         X         307         307		Member Label	Direction		End Magnitude[lb/ft E		End Location[ft,%]
12         MP1A         Z         0         0         0         %100           13         M23         X         064         064         0         %100           14         M23         Z         0         0         0         %100           15         M24         X         .064         .064         0         %100           17         M25         X         .064         .064         0         %100           18         M25         Z         0         0         0         %100           20         M26         X         .064         .064         0         %100           21         M29         X         .742         .742         0         %100           23         M32         X         .307         .307         0         %100           24         M32         Z         0         0         0         %100           25         M33         X         .307         .307         0         %100           26         M34         Z         0         0         0         %100           29         M35         X         .307         .30	11						
13         M23         X         .064         .064         0         %100           15         M24         X         .064         .064         0         %100           16         M24         Z         0         0         0         %100           16         M24         Z         0         0         0         %100           17         M25         X         .064         .064         0         %100           19         M26         X         .064         .064         0         %100           20         M26         Z         0         0         0         %100           21         M29         X         .742         .742         .0         %100           23         M32         X         .307         .307         0         %100           24         M32         Z         0         0         0         %100           26         M33         Z         0         0         0         %100           27         M34         X         .307         .307         0         %100           30         M35         Z         0         0 <td></td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td>			7				
14         M23         Z         0         0         0         %100           15         M24         X         064         064         0         %100           16         M24         Z         0         0         0         %100           17         M25         X         .064         .064         0         %100           19         M26         X         .064         .064         0         %100           20         M26         Z         0         0         0         %100           21         M29         X         .742         .742         .0         %100           23         M32         X         .307         .307         0         %100           24         M32         Z         0         0         0         %100           26         M33         X <t.307< td="">         .307         0         %100           27         M34         X         .307         .307         0         %100           29         M35         X         .149         .149         0         %100           30         M35         Z         0         0&lt;</t.307<>							
15         M24         X         064         064         0 $\%$ 100           16         M25         X         064         064         0 $\%$ 100           18         M25         Z         0         0         0 $\%$ 100           19         M26         X         .064         .064         0 $\%$ 100           20         M26         Z         0         0         0 $\%$ 100           21         M29         X         .742         .742         0 $\%$ 100           23         M32         X         .307         .307         0 $\%$ 100           24         M32         Z         0         0         0 $\%$ 100           25         M33         X         .307         .307         0 $\%$ 100           26         M33         Z         0         0         0 $\%$ 100           28         M34         Z         0         0         0 $\%$ 100           29         M35         X         .307         .307         0 $\%$ 100           30         M37         X         .149							
16         M24         Z         0         0         0 $\%$ 100           17         M25         X         .064         .064         0 $\%$ 100           19         M26         X         .064         .064         0 $\%$ 100           20         M26         Z         0         0         0 $\%$ 100           21         M29         X         .742         .742         0         0 $\%$ 100           22         M32         X         .307         .307         0 $\%$ 100           24         M32         Z         0         0         0 $\%$ 100           26         M33         X         .307         .307         0 $\%$ 100           26         M33         Z         0         0         0 $\%$ 100           28         M34         Z         0         0         0 $\%$ 100           30         M35         Z         0         0         0 $\%$ 100           31         M36         X         .149         .149         0 $\%$ 100           33         M37         Z				÷			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			7				
18         M25         Z         0         0         0 $\%$ 100           19         M26         X         .064         .064         0 $\%$ 100           20         M26         Z         0         0         0 $\%$ 100           21         M29         X         .742         .742         0 $\%$ 100           22         M29         Z         0         0         0 $\%$ 100           23         M32         X         .307         .307         0 $\%$ 100           24         M32         Z         0         0         0 $\%$ 100           26         M33         X         .307         .307         0 $\%$ 100           28         M34         Z         0         0         0 $\%$ 100           29         M35         X         .307         .307         0 $\%$ 100           31         M36         Z         0         0         0 $\%$ 100           32         M36         Z         0         0         0 $\%$ 100           34         M37         Z         0							%100
19M26X006400640 $\%100$ 20M26Z000 $\%100$ 21M29X.742.7420 $\%100$ 22M29Z000 $\%100$ 23M32X.307.3070 $\%100$ 24M32Z000 $\%100$ 25M33X.307.3070 $\%100$ 26M33Z000 $\%100$ 27M34X.307.3070 $\%100$ 28M35X.307.3070 $\%100$ 29M35X.307.3070 $\%100$ 30M35Z000 $\%100$ 31M36X.149.1490 $\%100$ 32M36Z000 $\%100$ 34M37Z000 $\%100$ 35M38X.149.1490 $\%100$ 36M38Z000 $\%100$ 37M39X.149.1490 $\%100$ 38M39Z000 $\%100$ 38M39Z000 $\%100$ 44M42Z000 $\%100$ 43M42X.326.3260 $\%100$ 44M44Z00							
20         M26         Z         0         0         0 $\%100$ 21         M29         X         .742         .742         0 $\%100$ 22         M32         X         .307         .307         0 $\%100$ 23         M32         X         .307         .307         0 $\%100$ 24         M32         Z         0         0         0 $\%100$ 26         M33         X         .307         .307         0 $\%100$ 26         M33         Z         0         0         0 $\%100$ 27         M34         X         .307         .307         0 $\%100$ 28         M34         Z         0         0         0 $\%100$ 30         M35         Z         0         0         0 $\%100$ 31         M36         X         .149         .149         0 $\%100$ 33         M37         X         .149         .149         0 $\%100$ 35         M38         X							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
22         M29         Z         0         0         0 $\%$ 100           23         M32         X         .307         .307         0 $\%$ 100           24         M32         Z         0         0         0 $\%$ 100           25         M33         X         .307         .307         0 $\%$ 100           26         M33         Z         0         0         0 $\%$ 100           27         M34         X         .307         .307         0 $\%$ 100           28         M34         Z         0         0         0 $\%$ 100           29         M35         X         .307         .307         0 $\%$ 100           30         M35         Z         0         0         0 $\%$ 100           31         M36         X         .149         .149         0 $\%$ 100           33         M37         X         .149         .149         0 $\%$ 100           34         M37         Z         0         0         0 $\%$ 100           36         M38         Z         0							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
24         M32         Z         0         0         0 $\%100$ 25         M33         X         .307         .307         0 $\%100$ 26         M33         Z         0         0         0 $\%100$ 27         M34         X         .307         .307         0 $\%100$ 28         M34         Z         0         0         0 $\%100$ 29         M35         X         .307         .307         0 $\%100$ 30         M35         Z         0         0         0 $\%100$ 31         M36         X         .149         .149         0 $\%100$ 32         M36         Z         0         0         0 $\%100$ 34         M37         Z         0         0         0 $\%100$ 35         M38         X         .149         .149         0 $\%100$ 36         M38         Z         0         0         0 $\%100$ 36         M38         Z         0							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
26         M33         Z         0         0         0         %100           27         M34         X         .307         .307         0         %100           28         M34         Z         0         0         0         %100           29         M35         X         .307         .307         0         %100           30         M35         Z         0         0         0         %100           31         M36         X         .149         .149         0         %100           33         M37         X         .149         .149         0         %100           34         M37         Z         0         0         0         %100           35         M38         Z         0         0         0         %100           36         M38         Z         0         0         0         %100           38         M39         X         .149         .149         0         %100           39         M40         X         .437         .437         0         %100           41         M41         Z         0         0					-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			7				
28M34Z000%10029M35X.307.3070%10030M35Z000%10031M36X.149.1490%10032M36Z000%10034M37X.1149.1490%10035M38X.149.1490%10036M38Z000%10037M39X.149.1490%10038M39Z000%10039M40X.437.4370%10041M41Z000%10042M41Z000%10043M42X.326.3260%10044M43Z000%10045M43X.316.3160%10048M44Z000%10050M45X.326.3260%10051M46X.389.3890%10054M47Z000%10055M48X.339.3890%10056M48Z000%10058M49Z000%10059							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
30M35Z000 $\%100$ 31M36X.149.1490 $\%100$ 32M36Z000 $\%100$ 33M37X.149.1490 $\%100$ 34M37Z000 $\%100$ 35M38X.149.1490 $\%100$ 36M38Z000 $\%100$ 37M39X.149.1490 $\%100$ 38M39Z000 $\%100$ 39M40X.437.4370 $\%100$ 40M40Z000 $\%100$ 41M41X.437.4370 $\%100$ 43M42X.326.3260 $\%100$ 44M42Z000 $\%100$ 45M43Z000 $\%100$ 46M43Z000 $\%100$ 47M44X.316.3160 $\%100$ 48M44Z000 $\%100$ 50M45Z000 $\%100$ 51M46X.389.3890 $\%100$ 52M46Z000 $\%100$ 54M47Z000 $\%100$ 55M48X.389.3890<							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
32M36Z000 $%100$ 33M37X.149.1490 $%100$ 34M37Z000 $%100$ 35M38X.149.1490 $%100$ 36M38Z000 $%100$ 37M39X.149.1490 $%100$ 38M39Z000 $%100$ 39M40X.437.4370 $%100$ 40M40Z000 $%100$ 41M41X.437.4370 $%100$ 42M41Z000 $%100$ 43M42X.326.3260 $%100$ 44M42Z000 $%100$ 45M43X.316.3160 $%100$ 46M43Z000 $%100$ 47M44X.326.3260 $%100$ 48M44Z000 $%100$ 50M45Z000 $%100$ 51M46X.389.3890 $%100$ 52M46Z000 $%100$ 55M48X.389.3890 $%100$ 56M48Z000 $%100$ 56M48Z00							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			7				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			7				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
42M41Z000%10043M42X.326.3260%10044M42Z000%10045M43X.316.3160%10046M43Z000%10047M44X.316.3160%10048M44Z000%10049M45X.326.3260%10050M45Z000%10051M46X.389.3890%10052M46Z000%10053M47X.389.3890%10054M48X.389.3890%10055M48Z000%10056M48Z000%10057M49X.389.3890%10058M49Z000%10059M50X.55.550%100							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
44         M42         Z         0         0         0         %100           45         M43         X         .316         .316         0         %100           46         M43         Z         0         0         0         %100           47         M44         X         .316         .316         0         %100           48         M44         Z         0         0         0         %100           49         M45         X         .326         .326         0         %100           50         M45         Z         0         0         0         %100           51         M46         X         .389         .389         0         %100           52         M46         Z         0         0         0         %100           53         M47         X         .389         .389         0         %100           54         M47         Z         0         0         %100         %100           55         M48         X         .389         .389         0         %100           55         M48         Z         0         0							
45M43X.316.3160%10046M43Z000%10047M44X.316.3160%10048M44Z000%10049M45X.326.3260%10050M45Z000%10051M46X.389.3890%10052M46Z000%10053M47X.389.3890%10054M47Z000%10055M48X.389.3890%10056M48Z000%10057M49X.389.3890%10058M49Z000%10059M50X.55.550%100							
46         M43         Z         0         0         0         %100           47         M44         X         .316         .316         0         %100           48         M44         Z         0         0         0         %100           49         M45         X         .326         .326         0         %100           50         M45         Z         0         0         0         %100           51         M46         X         .389         .389         0         %100           52         M46         Z         0         0         0         %100           53         M47         X         .389         .389         0         %100           54         M47         Z         0         0         0         %100           55         M48         X         .389         .389         0         %100           56         M48         Z         0         0         0         %100           57         M49         X         .389         .389         0         %100           58         M49         Z         0         0					.316		
47M44X.316.3160%10048M44Z000%10049M45X.326.3260%10050M45Z000%10051M46X.389.3890%10052M46Z000%10053M47X.389.3890%10054M47Z000%10055M48X.389.3890%10056M48Z000%10057M49X.389.3890%10058M49Z000%10059M50X.55.550%100							
48         M44         Z         0         0         %100           49         M45         X         .326         .326         0         %100           50         M45         Z         0         0         0         %100           51         M46         X         .389         .389         0         %100           52         M46         Z         0         0         0         %100           53         M47         X         .389         .389         0         %100           54         M47         Z         0         0         0         %100           55         M48         X         .389         .389         0         %100           56         M48         Z         0         0         0         %100           57         M48         Z         0         0         %100         %100           57         M49         X         .389         .389         0         %100           58         M49         Z         0         0         %100         %100           59         M50         X         .555         .55         0					-		
49         M45         X         .326         .326         0         %100           50         M45         Z         0         0         0         %100           51         M46         X         .389         .389         0         %100           52         M46         Z         0         0         0         %100           53         M47         X         .389         .389         0         %100           54         M47         Z         0         0         0         %100           55         M48         X         .389         .389         0         %100           56         M48         Z         0         0         0         %100           57         M49         X         .389         .389         0         %100           57         M49         X         .389         .389         0         %100           58         M49         Z         0         0         %100         %100           59         M50         X         .55         .55         0         %100							
50         M45         Z         0         0         %100           51         M46         X         .389         .389         0         %100           52         M46         Z         0         0         0         %100           53         M47         X         .389         .389         0         %100           54         M47         Z         0         0         0         %100           55         M48         X         .389         .389         0         %100           56         M48         Z         0         0         0         %100           57         M49         X         .389         .389         0         %100           57         M48         Z         0         0         0         %100           58         M49         Z         0         0         %100         %100           59         M50         X         .55         .55         0         %100				÷	<u> </u>		
51         M46         X         .389         .389         0         %100           52         M46         Z         0         0         0         %100           53         M47         X         .389         .389         0         %100           54         M47         Z         0         0         0         %100           55         M48         X         .389         .389         0         %100           56         M48         Z         0         0         0         %100           57         M49         X         .389         .389         0         %100           58         M49         Z         0         0         0         %100           59         M50         X         .55         .55         0         %100					_		
52         M46         Z         0         0         %100           53         M47         X         .389         .389         0         %100           54         M47         Z         0         0         0         %100           55         M48         X         .389         .389         0         %100           56         M48         Z         0         0         0         %100           57         M49         X         .389         .389         0         %100           58         M49         Z         0         0         %100         %100           59         M50         X         .55         .55         0         %100	51		Х			0	
53M47X.389.3890%10054M47Z000%10055M48X.389.3890%10056M48Z000%10057M49X.389.3890%10058M49Z000%10059M50X.55.550%100	52		Z				
54         M47         Z         0         0         %100           55         M48         X         .389         .389         0         %100           56         M48         Z         0         0         0         %100           57         M49         X         .389         .389         0         %100           58         M49         Z         0         0         0         %100           59         M50         X         .55         .55         0         %100			Х	.389	.389	0	
55         M48         X         .389         .389         0         %100           56         M48         Z         0         0         0         %100           57         M49         X         .389         .389         0         %100           58         M49         Z         0         0         0         %100           59         M50         X         .55         .55         0         %100							
56         M48         Z         0         0         %100           57         M49         X         .389         .389         0         %100           58         M49         Z         0         0         %100           59         M50         X         .55         .55         0         %100			Х		.389		
57M49X.389.3890%10058M49Z000%10059M50X.55.550%100			Z				
58         M49         Z         0         0         %100           59         M50         X         .55         .55         0         %100			Х	.389	.389		
59 M50 X .55 .55 0 %100					-		
	59		X	.55	.55		%100
	60	M50	Z	0	0	0	%100


#### Member Distributed Loads (BLC 69 : Structure Wm (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.148	.148	0	%100
2	M1	Z	.086	.086	0	%100
3	M2	Х	.148	.148	0	%100



#### Member Distributed Loads (BLC 69 : Structure Wm (120 Deg)) (Continued)

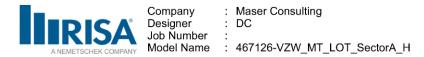

4	Member Label	Direction		End Magnitude[lb/ft,F.		End Location[ft,%]
4	M2	Z	.086	.086	0	%100
5	MP4A	X	.491	.491	0	%100
6	MP4A	Z	.283	.283	0	%100
7	MP3A	X	.491	.491	0	%100
8	MP3A	Z	.283	.283	0	%100
9	MP2A	X	.491	.491	0	%100
10	MP2A	Z	.283	.283	0	%100
11	MP1A	X	.491	.491	0	%100
12	MP1A	Z	.283	.283	0	%100
13	M23	X	.009	.009	0	%100
14	M23	Z	.005	.005	0	%100
15	M24	X	.098	.098	0	%100
16	M24	Z	.057	.057	0	%100
17	M25	Х	.098	.098	0	%100
18	M25	Z	.057	.057	0	%100
19	M26	Х	.009	.009	0	%100
20	M26	Z	.005	.005	0	%100
21	M29	X	.643	.643	0	%100
22	M29	Z	.371	.371	0	%100
23	M32	X	.044	.044	0	%100
24	M32	Z	.025	.025	0	%100
25	M33	X	.467	.467	0	%100
26	M33	Z	.27	.27	0	%100
27	M34	x	.467	.467	0	%100
28	M34	Z	.27	.27	0	%100
29	M35	×	.044	.044	0	%100
30	M35	Z	.025	.025	0	%100
31	M36	X	.252	.252	0	%100
32	M36	Z	.145	.145	0	%100
33	M37	X	.252	.252	0	%100
34	M37	Z	.145	.145	0	%100
35	M38	X	.252	.252	0	%100
36	M38	Z	.145	.145	0	%100
37	M39	X	.252	.252	0	%100
38	M39	Z	.145	.145	0	%100
39	M39 M40	X	.143	.378	0	%100
40	M40	Z	.218	.218	0	%100
40	M40	X	.378	.378	0	%100
42	M41	Z		.218	0	%100
			.218			
43 44	M42 M42	X	.223	.223 .129	0	%100 %100
44		Z	.129			
	M43	X Z	.204	.204	0	%100
46	M43		.118	.118	0	%100
47	M44	X	.336	.336	0	%100
48	M44	Z	.194	.194	0	%100
49	M45	X	.337	.337	0	%100
50	M45	Z	.194	.194	0	%100
51	M46	X	.337	.337	0	%100
52	M46	Z	.195	.195	0	%100
53	M47	X	.337	.337	0	%100
54	M47	Z	.195	.195	0	%100
55	M48	X	.337	.337	0	%100
56	M48	Z	.195	.195	0	%100
57	M49	X	.337	.337	0	%100
58	M49	Z	.195	.195	0	%100
					-	0/ / 00
59 60	M50 M50	X Z	.291 .168	.291 .168	0	%100 %100



#### Member Distributed Loads (BLC 70 : Structure Wm (150 Deg))

1	Member Label	Direction		.End Magnitude[lb/ft,F		End Location[ft,%]
1	<u>M1</u>	X	.257	.257	0	%100
2	<u>M1</u>	Z	.445	.445	0	%100
3	M2	X	.257	.257	0	%100
4	M2	Z	.445	.445	0	%100
5	MP4A	X	.283	.283	0	%100
6	MP4A	Z	.491	.491	0	%100
7	MP3A	X	.283	.283	0	%100
8	MP3A	Z	.491	.491	0	%100
9	MP2A	X	.283	.283	0	%100
10	MP2A	Z	.491	.491	0	%100
11	MP1A	X	.283	.283	0	%100
12	MP1A	Z	.491	.491	0	%100
13	M23	x	.003	.003	0	%100
14	M23	Z	.005	.005	0	%100
15	M23	X	.055	.055	0	%100
16	M24	Z	.095	.095	0	%100
17	M25	X Z	.055	.055	0	%100
18	M25		.095	.095	0	%100
19	M26	X	.003	.003	0	%100
20	M26	Z	.005	.005	0	%100
21	M29	X	.371	.371	0	%100
22	M29	Z	.643	.643	0	%100
23	M32	X	.013	.013	0	%100
24	M32	Z	.023	.023	0	%100
25	M33	X	.258	.258	0	%100
26	M33	Z	.447	.447	0	%100
27	M34	Х	.258	.258	0	%100
28	M34	Z	.447	.447	0	%100
29	M35	X	.013	.013	0	%100
30	M35	Z	.023	.023	0	%100
31	M36	X	.287	.287	0	%100
32	M36	Z	.497	.497	0	%100
33	M37	X	.287	.287	0	%100
		Z			0	
34	M37		.497	.497		%100
35	M38	X	.287	.287	0	%100
36	M38	Z	.497	.497	0	%100
37	M39	X	.287	.287	0	%100
38	M39	Z	.497	.497	0	%100
39	M40	X	.218	.218	0	%100
40	M40	Z	.378	.378	0	%100
41	M41	X	.218	.218	0	%100
42	M41	Z	.378	.378	0	%100
43	M42	X	.125	.125	0	%100
44	M42	Z	.217	.217	0	%100
45	M43	x	.114	.114	0 0	%100
46	M43	Z	.197	.197	0	%100
47	M44	X	.19	.19	0	%100
48	M44	Z	.329	.329	0	%100
40	M45	X	.191	.191	0	%100
		Z				
50	M45		.331	.331	0	%100
51	M46	X	.195	.195	0	%100
52	M46	Z	.337	.337	0	%100
53	M47	X	.195	.195	0	%100
54	M47	Z	.337	.337	0	%100
			405	.195	0	%100
55	M48	X	.195			
	M48 M48	Z	.337	.337	0	%100

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\...\...\Rev 0\RISA\467126-VZW_MT_LOT_A_H.r3d] Page 65

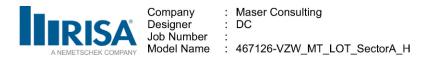



#### Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
58	M49	Z	.337	.337	0	%100
59	M50	Х	.034	.034	0	%100
60	M50	Z	.059	.059	0	%100

#### Member Distributed Loads (BLC 71 : Structure Wm (180 Deg))

memo	er Distributed Loo					
1	Member Label M1	Direction X	Start Magnitude[lb/ft, 0	.End Magnitude[lb/ft,F 0	. Start Location[ft,%] 0	End Location[ft,%] %100
2	M1	Z	.686	.686	0	%100
3	M2	X	000	0	0	%100
4	M2	Z	.686	.686	0	%100
5	MP4A	X	000	0	0	%100
6	MP4A MP4A	Z	.567	.567	0	%100
7			0.007	.567		
	MP3A	X Z	.567	.567	0	%100
8	MP3A		0.567		0	%100
9 10	MP2A	X Z	.567	0 .567	0	%100
	MP2A					%100
11	MP1A MP1A	X Z	0	0	0	%100
12			.567	.567	0	%100
13	M23	X	0	0	0	%100
14	M23	Z	.056	.056	0	%100
15	M24	X	0	0	0	%100
16	M24	Z	.056	.056	0	%100
17	M25	X	0	0	0	%100
18	M25	Z	.056	.056	0	%100
19	M26	X	0	0	0	%100
20	M26	Z	.056	.056	0	%100
21	M29	X	0	0	0	%100
22	M29	Z	.742	.742	0	%100
23	M32	Х	0	0	0	%100
24	M32	Z	.259	.259	0	%100
25	M33	X	0	0	0	%100
26	M33	Z	.259	.259	0	%100
27	M34	X	0	0	0	%100
28	M34	Z	.259	.259	0	%100
29	M35	X	0	0	0	%100
30	M35	Z	.259	.259	0	%100
31	M36	X	0	0	0	%100
32	M36	Z	.716	.716	0	%100
33	M37	X	0	0	0	%100
34	M37	Z	.716	.716	0	%100
35	M38	Х	0	0	0	%100
36	M38	Z	.716	.716	0	%100
37	M39	Х	0	0	0	%100
38	M39	Z	.716	.716	0	%100
39	M40	X	0	0	0	%100
40	M40	Z	.437	.437	0	%100
41	M41	x	0	0	0	%100
42	M41	Z	.437	.437	0	%100
43	M42	X	0	0	0	%100
44	M42	Z	.313	.313	0	%100
45	M43	×	0	0	0	%100
46	M43	Z	.3	.3	0	%100
47	M40	X	0	0	0	%100
48	M44	Z	.3	.3	0	%100
49	M45	X	0	0	0	%100
50	M45	Z	.313	.313	0	%100
00	WI-TU	<u> </u>	.010	.010	J	70100

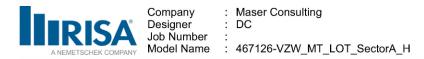



#### Member Distributed Loads (BLC 71 : Structure Wm (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
51	M46	X	0	0	0	%100
52	M46	Z	.389	.389	0	%100
53	M47	X	0	0	0	%100
54	M47	Z	.389	.389	0	%100
55	M48	Х	0	0	0	%100
56	M48	Z	.389	.389	0	%100
57	M49	Х	0	0	0	%100
58	M49	Z	.389	.389	0	%100
59	M50	X	0	0	0	%100
60	M50	Z	.016	.016	0	%100

### Member Distributed Loads (BLC 72 : Structure Wm (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	257	257	0	%100
2	M1	Z	.445	.445	0	%100
3	M2	Х	257	257	0	%100
4	M2	Z	.445	.445	0	%100
5	MP4A	Х	283	283	0	%100
6	MP4A	Z	.491	.491	0	%100
7	MP3A	Х	283	283	0	%100
8	MP3A	Z	.491	.491	0	%100
9	MP2A	Х	283	283	0	%100
10	MP2A	Z	.491	.491	0	%100
11	MP1A	Х	283	283	0	%100
12	MP1A	Z	.491	.491	0	%100
13	M23	Х	055	055	0	%100
14	M23	Z	.095	.095	0	%100
15	M24	Х	003	003	0	%100
16	M24	Z	.005	.005	0	%100
17	M25	Х	003	003	0	%100
18	M25	Z	.005	.005	0	%100
19	M26	Х	055	055	0	%100
20	M26	Z	.095	.095	0	%100
21	M29	Х	371	371	0	%100
22	M29	Z	.643	.643	0	%100
23	M32	Х	258	258	0	%100
24	M32	Z	.447	.447	0	%100
25	M33	Х	013	013	0	%100
26	M33	Z	.023	.023	0	%100
27	M34	X	013	013	0	%100
28	M34	Z	.023	.023	0	%100
29	M35	X	258	258	0	%100
30	M35	Z	.447	.447	0	%100
31	M36	X	287	287	0	%100
32	M36	Z	.497	.497	0	%100
33	M37	Х	287	287	0	%100
34	M37	Z	.497	.497	0	%100
35	M38	Х	287	287	0	%100
36	M38	Z	.497	.497	0	%100
37	M39	X	287	287	0	%100
38	M39	Z	.497	.497	0	%100
39	M40	X	218	218	0	%100
40	M40	Z	.378	.378	0	%100
41	M41	X	218	218	0	%100
42	M41	Z	.378	.378	0	%100
43	M42	Х	191	191	0	%100

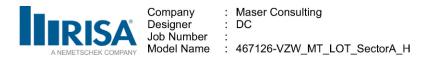



#### Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
44	M42	Z	.331	.331	0	%100
45	M43	Х	19	19	0	%100
46	M43	Z	.329	.329	0	%100
47	M44	Х	114	114	0	%100
48	M44	Z	.197	.197	0	%100
49	M45	Х	125	125	0	%100
50	M45	Z	.217	.217	0	%100
51	M46	Х	195	195	0	%100
52	M46	Z	.337	.337	0	%100
53	M47	Х	195	195	0	%100
54	M47	Z	.337	.337	0	%100
55	M48	Х	195	195	0	%100
56	M48	Z	.337	.337	0	%100
57	M49	Х	195	195	0	%100
58	M49	Z	.337	.337	0	%100
59	M50	Х	116	116	0	%100
60	M50	Z	.2	.2	0	%100

### Member Distributed Loads (BLC 73 : Structure Wm (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	148	148	0	%100
2	M1	Z	.086	.086	0	%100
3	M2	Х	148	148	0	%100
4	M2	Z	.086	.086	0	%100
5	MP4A	Х	491	491	0	%100
6	MP4A	Z	.283	.283	0	%100
7	MP3A	Х	491	491	0	%100
8	MP3A	Z	.283	.283	0	%100
9	MP2A	Х	491	491	0	%100
10	MP2A	Z	.283	.283	0	%100
11	MP1A	X	491	491	0	%100
12	MP1A	Z	.283	.283	0	%100
13	M23	X	098	098	0	%100
14	M23	Z	.057	.057	0	%100
15	M24	X	009	009	0	%100
16	M24	Z	.005	.005	0	%100
17	M25	X	009	009	0	%100
18	M25	Z	.005	.005	0	%100
19	M26	Х	098	098	0	%100
20	M26	Z	.057	.057	0	%100
21	M29	X	643	643	0	%100
22	M29	Z	.371	.371	0	%100
23	M32	X	467	467	0	%100
24	M32	Z	.27	.27	0	%100
25	M33	Х	044	044	0	%100
26	M33	Z	.025	.025	0	%100
27	M34	X	044	044	0	%100
28	M34	Z	.025	.025	0	%100
29	M35	Χ	467	467	0	%100
30	M35	Z	.27	.27	0	%100
31	M36	X	252	252	0	%100
32	M36	Z	.145	.145	0	%100
33	M37	Х	252	252	0	%100
34	M37	Z	.145	.145	0	%100
35	M38	X	252	252	0	%100
36	M38	Z	.145	.145	0	%100

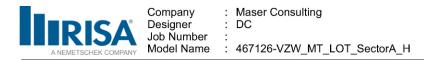



#### Member Distributed Loads (BLC 73 : Structure Wm (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
37	M39	Х	252	252	0	%100
38	M39	Z	.145	.145	0	%100
39	M40	Х	378	378	0	%100
40	M40	Z	.218	.218	0	%100
41	M41	Х	378	378	0	%100
42	M41	Z	.218	.218	0	%100
43	M42	X	337	337	0	%100
44	M42	Z	.194	.194	0	%100
45	M43	X	336	336	0	%100
46	M43	Z	.194	.194	0	%100
47	M44	X	204	204	0	%100
48	M44	Z	.118	.118	0	%100
49	M45	X	223	223	0	%100
50	M45	Z	.129	.129	0	%100
51	M46	X	337	337	0	%100
52	M46	Z	.195	.195	0	%100
53	M47	X	337	337	0	%100
54	M47	Z	.195	.195	0	%100
55	M48	X	337	337	0	%100
56	M48	Z	.195	.195	0	%100
57	M49	X	337	337	0	%100
58	M49	Z	.195	.195	0	%100
59	M50	X	432	432	0	%100
60	M50	Z	.249	.249	0	%100

#### Member Distributed Loads (BLC 74 : Structure Wm (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	Х	0	0	0	%100
4	M2	Z	0	0	0	%100
5	MP4A	Х	567	567	0	%100
6	MP4A	Z	0	0	0	%100
7	MP3A	Х	567	567	0	%100
8	MP3A	Z	0	0	0	%100
9	MP2A	Х	567	567	0	%100
10	MP2A	Z	0	0	0	%100
11	MP1A	Х	567	567	0	%100
12	MP1A	Z	0	0	0	%100
13	M23	Х	064	064	0	%100
14	M23	Z	0	0	0	%100
15	M24	Х	064	064	0	%100
16	M24	Z	0	0	0	%100
17	M25	Х	064	064	0	%100
18	M25	Z	0	0	0	%100
19	M26	Х	064	064	0	%100
20	M26	Z	0	0	0	%100
21	M29	Х	742	742	0	%100
22	M29	Z	0	0	0	%100
23	M32	Х	307	307	0	%100
24	M32	Z	0	0	0	%100
25	M33	Х	307	307	0	%100
26	M33	Z	0	0	0	%100
27	M34	Х	307	307	0	%100
28	M34	Z	0	0	0	%100
29	M35	Х	307	307	0	%100

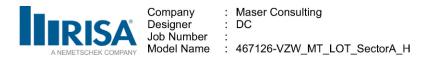



#### Member Distributed Loads (BLC 74 : Structure Wm (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
30	M35	Z	0	0	0	%100
31	M36	Х	149	149	0	%100
32	M36	Z	0	0	0	%100
33	M37	Х	149	149	0	%100
34	M37	Z	0	0	0	%100
35	M38	Х	149	149	0	%100
36	M38	Z	0	0	0	%100
37	M39	Х	149	149	0	%100
38	M39	Z	0	0	0	%100
39	M40	Х	437	437	0	%100
40	M40	Z	0	0	0	%100
41	M41	Х	437	437	0	%100
42	M41	Z	0	0	0	%100
43	M42	Х	326	326	0	%100
44	M42	Z	0	0	0	%100
45	M43	Х	316	316	0	%100
46	M43	Z	0	0	0	%100
47	M44	Х	316	316	0	%100
48	M44	Z	0	0	0	%100
49	M45	Х	326	326	0	%100
50	M45	Z	0	0	0	%100
51	M46	Х	389	389	0	%100
52	M46	Z	0	0	0	%100
53	M47	Х	389	389	0	%100
54	M47	Z	0	0	0	%100
55	M48	Х	389	389	0	%100
56	M48	Z	0	0	0	%100
57	M49	Х	389	389	0	%100
58	M49	Z	0	0	0	%100
59	M50	Х	55	55	0	%100
60	M50	Z	0	0	0	%100

#### Member Distributed Loads (BLC 75 : Structure Wm (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	148	148	0	%100
2	M1	Z	086	086	0	%100
3	M2	X	148	148	0	%100
4	M2	Z	086	086	0	%100
5	MP4A	Х	491	491	0	%100
6	MP4A	Z	283	283	0	%100
7	MP3A	Х	491	491	0	%100
8	MP3A	Z	283	283	0	%100
9	MP2A	Х	491	491	0	%100
10	MP2A	Z	283	283	0	%100
11	MP1A	Х	491	491	0	%100
12	MP1A	Z	283	283	0	%100
13	M23	Х	009	009	0	%100
14	M23	Z	005	005	0	%100
15	M24	Х	098	098	0	%100
16	M24	Z	057	057	0	%100
17	M25	Х	098	098	0	%100
18	M25	Z	057	057	0	%100
19	M26	Х	009	009	0	%100
20	M26	Z	005	005	0	%100
21	M29	Х	643	643	0	%100
22	M29	Z	371	371	0	%100




#### Member Distributed Loads (BLC 75 : Structure Wm (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
23	M32	Х	044	044	0	%100
24	M32	Z	025	025	0	%100
25	M33	X	467	467	0	%100
26	M33	Z	27	27	0	%100
27	M34	Х	467	467	0	%100
28	M34	Z	27	27	0	%100
29	M35	Х	044	044	0	%100
30	M35	Z	025	025	0	%100
31	M36	Χ	252	252	0	%100
32	M36	Z	145	145	0	%100
33	M37	X	252	252	0	%100
34	M37	Z	145	145	0	%100
35	M38	X	252	252	0	%100
36	M38	Z	145	145	0	%100
37	M39	Х	252	252	0	%100
38	M39	Z	145	145	0	%100
39	M40	X	378	378	0	%100
40	M40	Z	218	218	0	%100
41	M41	X	378	378	0	%100
42	M41	Z	218	218	0	%100
43	M42	X	223	223	0	%100
44	M42	Z	129	129	0	%100
45	M43	X	204	204	0	%100
46	M43	Z	118	118	0	%100
47	M44	X	336	336	0	%100
48	M44	Z	194	194	0	%100
49	M45	X	337	337	0	%100
50	M45	Z	194	194	0	%100
51	M46	X	337	337	0	%100
52	M46	Z	195	195	0	%100
53	M47	X	337	337	0	%100
54	M47	Z	195	195	0	%100
55	M48	Χ	337	337	0	%100
56	M48	Z	195	195	0	%100
57	M49	Χ	337	337	0	%100
58	M49	Z	195	195	0	%100
59	M50	X	291	291	0	%100
60	M50	Z	168	168	0	%100

#### Member Distributed Loads (BLC 76 : Structure Wm (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	257	257	0	%100
2	M1	Z	445	445	0	%100
3	M2	Х	257	257	0	%100
4	M2	Z	445	445	0	%100
5	MP4A	Х	283	283	0	%100
6	MP4A	Z	491	491	0	%100
7	MP3A	Х	283	283	0	%100
8	MP3A	Z	491	491	0	%100
9	MP2A	Х	283	283	0	%100
10	MP2A	Z	491	491	0	%100
11	MP1A	Х	283	283	0	%100
12	MP1A	Z	491	491	0	%100
13	M23	Х	003	003	0	%100
14	M23	Z	005	005	0	%100
15	M24	Х	055	055	0	%100



#### Member Distributed Loads (BLC 76 : Structure Wm (330 Deg)) (Continued)

16M24Z0950950%1017M25X0550%1018M25Z.0950.095019M26X0030030%1020M26Z0050.0050%1021M29X3713710%61022M29Z6436430%1023M32X0130130%1024M32Z023.0230%1025M33X2582580%1026M33Z4474470%1027M34X2582580%1028M34Z0130130%1030M35X0130130%1031M36X2872870%1033M37X2872870%1034M37Z4974970%1035M38X2872870%1036M38Z4974970%1037M39X2872870%1036M38Z4974970%1037M39X2872870%1038M39Z <td< th=""><th>on[ft.%]</th></td<>	on[ft.%]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
38         M39         Z        497        497         0         %10           39         M40         X        218        218         0         %10           40         M40         Z        378        378         0         %10           41         M41         X        218        218         0         %10           42         M41         Z        378        378         0         %10           43         M42         X        218        217         0         %10           44         M42         Z        125        125         0         %10           45         M43         X        114        114         0         %10           46         M43         Z        197        197         0         %10           47         M44         X        19        19         0         %10           48         M44         Z        329        329         0         %10           49         M45         X        191        191         0         %10	
39         M40         X        218        218         0         %10           40         M40         Z        378        378         0         %10           41         M41         X        218        218         0         %10           42         M41         Z        378        218         0         %10           43         M42         X        125        125         0         %10           44         M42         Z        217        217         0         %10           45         M43         X        114        114         0         %10           46         M43         Z        197        197         0         %10           47         M44         X        19        19         0         %10           48         M44         Z        329        329         0         %10           49         M45         X        191        191         0         %10	
40         M40         Z        378        378         0         %10           41         M41         X        218        218         0         %10           42         M41         Z        378        218         0         %10           43         M42         X        125        125         0         %10           44         M42         Z        217        217         0         %10           45         M43         X        114        114         0         %10           46         M43         Z        197        197         0         %10           47         M44         X        19        19         0         %10           48         M44         Z        329        329         0         %10           49         M45         X        191        191         0         %10	
41         M41         X        218        218         0         %10           42         M41         Z        378        378         0         %10           43         M42         X        125        125         0         %10           44         M42         Z        217        217         0         %10           45         M43         X        114        114         0         %10           46         M43         Z        197        197         0         %10           47         M44         X        19        19         0         %10           48         M44         Z        329        329         0         %10           49         M45         X        191        191         0         %10	
42         M41         Z        378        378         0         %10           43         M42         X        125        125         0         %10           44         M42         Z        217        217         0         %10           45         M43         X        114        114         0         %10           46         M43         Z        197         0.197         0         %10           47         M44         X        19        19         0         %10           48         M44         Z        329        329         0         %10           49         M45         X        191        191         0         %10	
43         M42         X        125        125         0         %10           44         M42         Z        217        217         0         %10           45         M43         X        114        114         0         %10           46         M43         Z        197        197         0         %10           47         M44         X        19        19         0         %10           48         M44         Z        329        329         0         %10           49         M45         X        191        191         0         %10	
44         M42         Z        217        217         0         %10           45         M43         X        114        114         0         %10           46         M43         Z        197        197         0         %10           47         M44         X        19        197         0         %10           48         M44         Z        329        329         0         %10           49         M45         X        191        191         0         %10	
45         M43         X        114        114         0         %10           46         M43         Z        197        197         0         %10           47         M44         X        19        197         0         %10           48         M44         Z        329        329         0         %10           49         M45         X        191         0         %10	
46         M43         Z        197        197         0         %10           47         M44         X        19        19         0         %10           48         M44         Z        329        329         0         %10           49         M45         X        191         0         %10	
47         M44         X        19        19         0         %10           48         M44         Z        329        329         0         %10           49         M45         X        191        191         0         %10	
48         M44         Z        329        329         0         %10           49         M45         X        191        191         0         %10	
49 M45 X191191 0 %10	
50 M45 Z331331 0 %10	
51 M46 X195195 0 %10	
52 M46 Z337337 0 %10	
53 M47 X195195 0 %10	
54 M47 Z337337 0 %10	
55 M48 X195195 0 %10	
56 M48 Z337337 0 %10	
57 M49 X195195 0 %10	
58 M49 Z337337 0 %10	
59 M50 X034034 0 %10	
60 M50 Z059059 0 %10	

#### Member Area Loads

Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
		N	o Data to Print .			

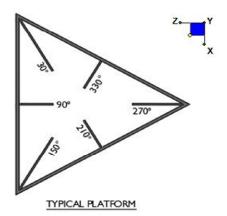
### Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N51	max	916.459	10	1167.495	21	49.757	2	1.076	8	.784	10	.675	10
2		min	-498.643	28	492.081	2	-2771.027	20	542	2	303	4	24	4
3	N52	max	488.347	34	1092.352	14	2840.839	14	1.238	2	.245	34	.595	40
4		min	-807.396	50	465.389	8	-300.452	8	654	8	734	40	161	10
5	N73	max	310.752	10	66.274	15	1427.937	11	0	51	0	51	0	51
6		min	-311.493	4	27.76	9	-1427.772	5	0	1	0	1	0	1
7	Totals:	max	1531.122	10	2309.036	23	2099.394	1						
8		min	-1531.123	4	1051.084	5	-2099.393	7						

#### Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[ft]	LC	SheaLoc	Dir	LC	phi*Pncphi*Pn	phi*Mn y	. phi*Mn z-z [.	Eqn
1	M1	PIPE_2.5	.163	3.5	8	.072 1.75		20	15797.3 50715	3.596	3.596	2H1-1b
2	M2	PIPE_2.5	.172	3.5	8	.086 10.25		29	15797.3 50715	3.596	3.596	2H1-1b
3	MP4A	PIPE_2.0	.112	4.375	50	.030 4.375		11	23808.54 32130	1.872	1.872	1H1-1b
4	MP3A	PIPE_2.0	.174	1.042	7	.097 1.042		5	23808.54 32130	1.872	1.872	1H1-1b
5	MP2A	PIPE_2.0	.100	4.375	41	.047 4.375		3	20866.732130	1.872	1.872	2H1-1b
6	MP1A	PIPE_2.0	.052	1.094	18	.036 4.375		9	23808.54 32130	1.872	1.872	1H1-1b
7	M23	PL1/2X3	.264	0	30	.055 .22	У	11	47751.05 48600	.506	3.038	1H1-1b
8	M24	PL1/2X3	.310	0	21	.081 .22	У	41	47751.05 48600	.506	3.038	1H1-1b
9	M25	PL1/2X3	.290	0	13	.073 .22	ý	45	47751.05 48600	.506	3.038	1H1-1b
10	M26	PL1/2X3	.250	0	27	.052 0	У	11	47751.05 48600	.506	3.038	1H1-1b
11	M29	PIPE_4.0	.148	5.5	2	.159 5.5		14	83097.993240	10.631	10.631	3H1-1b
12	M32	PIPE_2.0	.210	5.682	30	.065 6.061		33	20683.13 32130	1.872	1.872	2H1-1b
13	M33	PIPE_2.0	.246	5.682	21	.101 .379		11	20683.13 32130	1.872	1.872	2H1-1b
14	M34	PIPE_2.0	.250	5.619	14	.197 .379		5	20683.13 32130	1.872	1.872	2H1-1b
15	M35	PIPE_2.0	.217	5.619	27	.093 .379		27	20683.13 32130	1.872	1.872	2H1-1b
16	M36	PL1/2X3	.233	0	5	.034 0	У	5	45624.248600	.506	3.038	1H1-1b
17	M37	PL1/2X3	.026	0	42	.016 0	ý	11	45624.248600	.506	3.038	1H1-1b
18	M38	PL1/2X3	.127	.417	27	.043 0	У	27	45624.248600	.506	3.038	1H1-1b
19	M39	PL1/2X3	.529	.417	5	.064 .417	ý	3	45624.248600	.506	3.038	1H1-1b
20	M40	PIPE_2.0	.398	.521	5	.121 .495		11	29810.232130	1.872	1.872	1H1-1b
21	M41	PIPE_2.0	.012	0	30	.005 0		5	29810.232130	1.872	1.872	2H1-1b
22	M42	1.5x0.06	.209	2.081	26	.020 0		9	5120.784 8550.1	.327	.327	1H1-1a
23	M43	1.5x0.06	.078	1.958	14	.021 3.917		8	5531.923 8550.1	.327	.327	1H1-1b
24	M44	1.5x0.06	.107	1.958	24	.034 3.917		7	5531.923 8550.1	.327	.327	1H1-1b
25	M45	1.5x0.06	.260	2.081	24	.026 0		12	5120.784 8550.1	.327	.327	1H1-1a
26	M46	1.5x0.06	.210	1.806	22	.018 0		11	6237.37 8550.1	.327	.327	1H1-1a
27	M47	1.5x0.06	.122	3.333	24	.026 0		11	6237.37 8550.1	.327	.327	1H1-1b*
28	M48	1.5x0.06	.107	3.333	27	.018 0		11	6237.37 8550.1	.327	.327	1H1-1b*
29	M49	1.5x0.06	.179	3.333	29	.016 0		11	6237.37 8550.1	.327	.327	1H1-1b*
30	M50	PIPE_2.0	.628	9.394	10	.011 0		22	3023.78 32130	1.872	1.872	2H1-1a




Client:	Verizon	Date: 7/2/202	1
Site Name:	Colchester CT		
Project No.	21777749A		
Title:	Mount Analysis	Page: 1	

Version 3.1

#### I. Mount-to-Tower Connection Check

#### <u>RISA Model Data</u>

Nodes (labeled per RISA)	Orientation (per graphic of typical platform)
N51	120
N52	120



#### Tower Connection Bolt Checks

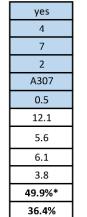
Any moment resistance?:

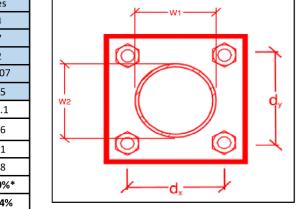
Bolt Quantity per Reaction:

d_x (in) (Delta X of typ. bolt config. sketch) : d_y (in) (Delta Y of typ. bolt config. sketch) : Bolt Type:

Bolt Diameter (in):

Required Tensile Strength (kips):


Required Shear Strength (kips):


Tensile Strength / bolt (kips):

Shear Strength / bolt (kips):

Tensile Capacity Overall:

Shear Capacity Overall:





*Note: Tension reduction not required if tension or shear capacity < 30%

## Mount Desktop – Post Modification Inspection (PMI) Report Requirements

### **Documents & Photos Required from Contractor – Passing Mount Analysis**

<u>**Purpose**</u> – to provide Maser Consulting Connecticut the proper documentation in order to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the installation was completed in accordance with this Passing Mount Analysis.
- Contractor shall relay any data that can impact the performance of the mount, this includes safety issues.

#### **Base Requirements:**

- Any special photos outside of the standard requirements will be indicated on the passing MA
- Verification that loading is as communicated in the Passing Mount Analysis. NOTE If loading is different than what is conveyed contact Maser Consulting Connecticut immediately.
- Each photo should be time and date stamped
- Photos should be high resolution and submitted in a Zip File and should be organized in the file structure as depicted in Schedule A attached.
- Contractor shall ensure that the safety climb wire rope is supported and not adversely impacted by the install of the modification components. This may involve the install of wire rope guides, or other items to protect the wire rope.
- The photos in the file structure should be uploaded to *https://pmi.vzwsmart.com* as depicted on the drawings

#### Photo Requirements:

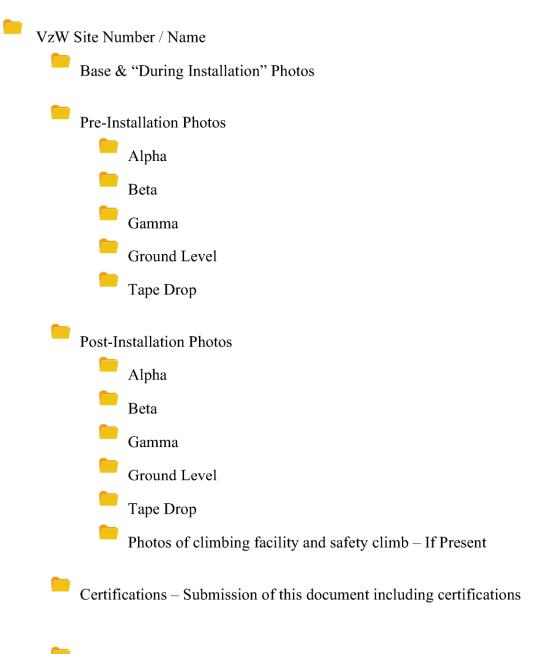
- Base and "During Installation Photos"
  - o Base pictures include
    - Photo of Gate Signs showing the tower owner, site name, and number
    - Photo of carrier shelter showing the carrier site name and number if available
    - Photos of the galvanizing compound and/or paint used (if applicable), clearly showing the label and name
  - o "During Installation Photos if provided must be placed only in this folder
- <u>Photos taken at ground level</u>
  - Overall tower structure before and after installation of the equipment modifications
  - Photos of the appropriate mount before and after installation of the modifications; if the mounts are at different rad elevations, pictures must be provided for all elevations that the modifications were installed
- Photos taken at Mount Elevation
  - Photos showing each individual sector before and also after installation of equipment.
    - These photos should also certify that the placement and geometry of the equipment on the mount is as depicted on the sketch and table in the mount analysis

- Photos showing the safety climb wire rope above and below the mount prior to modification.
- Photos showing the climbing facility and safety climb if present.

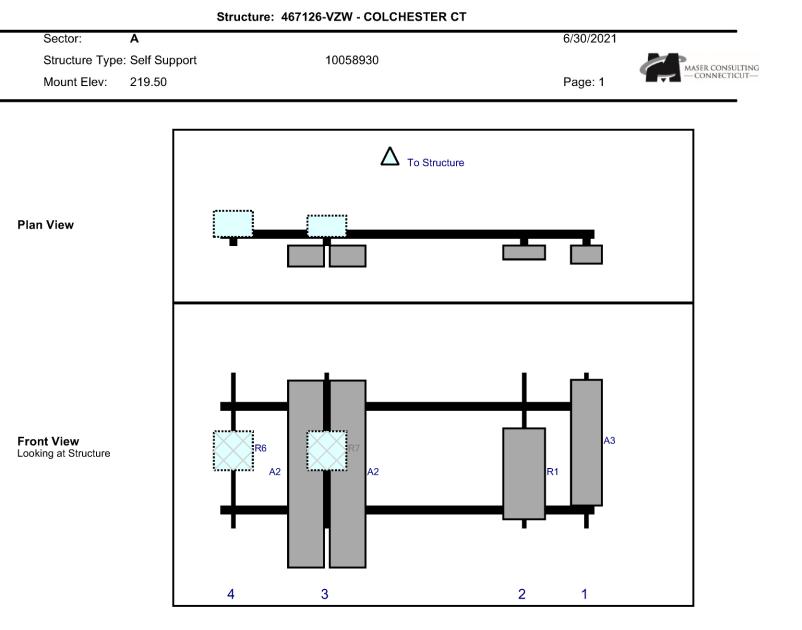
#### Antenna & equipment placement and Geometry Confirmation:

- The contractor must certify that the antenna & equipment placement and geometry is in accordance with the antenna placement diagrams as included in this mount analysis.
- □ The contractor certifies that the photos support and the equipment on the mount is as depicted on the antenna placement diagrams as included in this mount analysis.
- □ The contractor notes that the equipment on the mount is not in accordance with the antenna placement diagrams and has accordingly marked up the diagrams or provided a diagram outlining the differences.

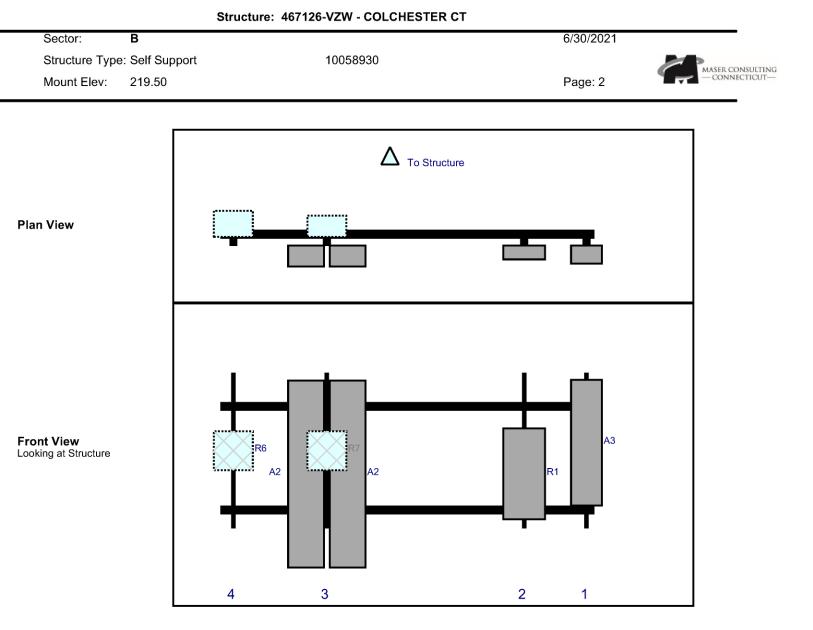
Certifying Individual:	Company	
	Name	
	Signature	


#### <u>Special Instructions / Validation as required from the MA or any other information the contractor</u> <u>deems necessary to share that was identified:</u>

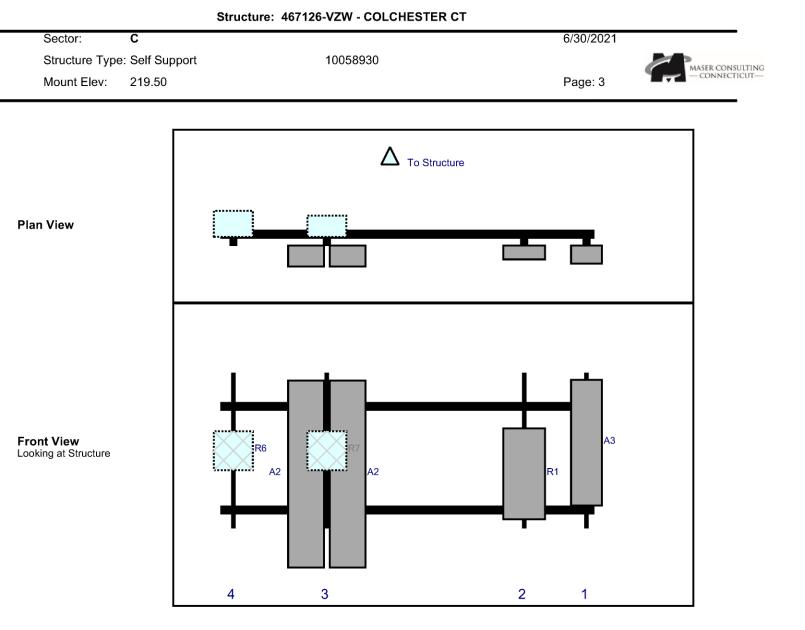
Issue:


1. Contractor shall reinforce the Channel connection connecting the Mast pipe and the tower leg with Pipe Mount Reinforcement Kit (Site Pro 1 Part #: R5-REINF or EOR approved equivalent).

#### **Response:**

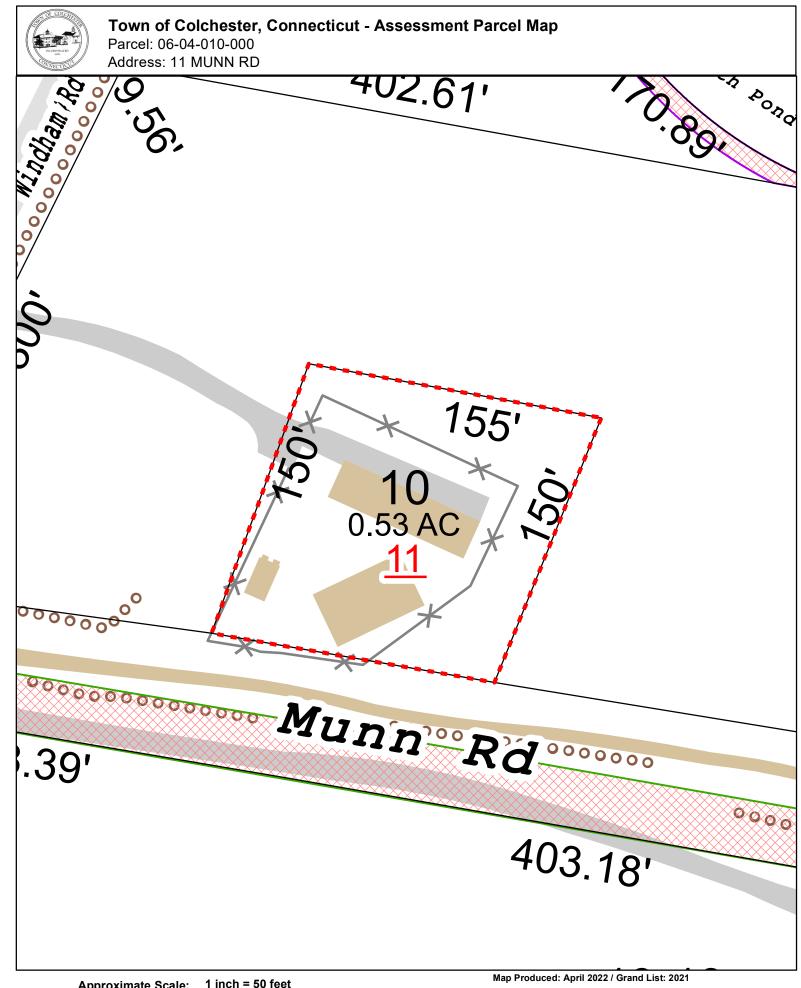

### <u>Schedule A – Photo & Document File Structure</u>




Specific Required Additional Photos



		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A3	LNX-6512DS-VTM	48.5	11.9	141	1	а	Front	27	0	Retained	04/22/2021
R1	MT6407-77A	35.1	16.1	117	2	а	Front	39	0	Added	
A2	JAHH-65B-R3B	72	13.8	41	3	а	Front	39	-8	Retained	04/22/2021
A2	JAHH-65B-R3B	72	13.8	41	3	b	Front	39	8	Retained	04/22/2021
R7	B5/B13 RHH-BR04C	15	15	41	3	а	Behind	30	0	Retained	04/22/2021
R6	B2/B66A RRH-BR049	15	15	5	4	а	Behind	30	0	Retained	04/22/2021




		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A3	LNX-6512DS-VTM	48.5	11.9	141	1	а	Front	27	0	Retained	04/22/2021
R1	MT6407-77A	35.1	16.1	117	2	а	Front	39	0	Added	
A2	JAHH-65B-R3B	72	13.8	41	3	а	Front	39	-8	Retained	04/22/2021
A2	JAHH-65B-R3B	72	13.8	41	3	b	Front	39	8	Retained	04/22/2021
R7	B5/B13 RHH-BR04C	15	15	41	3	а	Behind	30	0	Retained	04/22/2021
R6	B2/B66A RRH-BR049	15	15	5	4	а	Behind	30	0	Retained	04/22/2021



		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A3	LNX-6512DS-VTM	48.5	11.9	141	1	а	Front	27	0	Retained	04/22/2021
R1	MT6407-77A	35.1	16.1	117	2	а	Front	39	0	Added	
A2	JAHH-65B-R3B	72	13.8	41	3	а	Front	39	-8	Retained	04/22/2021
A2	JAHH-65B-R3B	72	13.8	41	3	b	Front	39	8	Retained	04/22/2021
R7	B5/B13 RHH-BR04C	15	15	41	3	а	Behind	30	0	Retained	04/22/2021
R6	B2/B66A RRH-BR049	15	15	5	4	а	Behind	30	0	Retained	04/22/2021

# **ATTACHMENT 5**



Approximate Scale: 100 25 50 75 Feet

0

Disclaimer: This map is for informational purposes only All information is subject to verification by any user. The Town of Colchester and its mapping contractors assume no legal responsibility for the information contained herein.

NCORPORT INCOMPANY

Town of Colchester, CT

Property Report Map Block Lot 06-0

Lot 06-04/010-000

PID 5602

Building # 1 Section # 1 Account

ant **C0515000** 

## **Property Information**

Property Location	11 MUNN R	D		
Owner	CONNECTI	CUT STA	TE OF	
Co-Owner	na			
Mailing Address	165 CAPITO	DL AVE		
	HARTFOR	)	СТ	06106
Land Use	901V	State M	/DL-00	
Land Class	E			
Zoning Code	R60			
Census Tract				

Neighborhood		
Acreage	0.53	
Utilities	UNKNOWN	
Lot Setting/Desc	UNKNOWN	UNKNOWN
Additional Info		



Sketch



#### **Primary Construction Details**

Year Built	0
Stories	
Building Style	UNKNOWN
Building Use	Vacant
Building Condition	
Interior Floors 1	
Interior Floors 2	NA
Total Rooms	0
Basement Garages	
Occupancy	
Building Grade	

Bedrooms	0
Full Bathrooms	0
Half Bathrooms	0
Extra Fixtures	0
Bath Style	
Kitchen Style	
Roof Style	
Roof Cover	
АС Туре	
Fireplaces	0

Exterior Walls	
Exterior Walls 2	NA
Interior Walls	
Interior Walls 2	NA
Heating Type	
Heating Fuel	
Sq. Ft. Basement	
Fin BSMT Quality	
Extra Kitchens	
	1

Proper	ty Report	Map Block Lo	t06-04/010-000	PID 5602	Building #	Section # 1 Acc	count C0515000
Valuation Sum	mary (As	ssessed value = 70%	o of Appraised Value)	Sub Areas			
Item	Appraised		Assessed	Subarea Type		Gross Area (sq ft)	Living Area (sq ft)
Buildings	0		0				
Extras	0		0				
Improvements							
Outbuildings	0		0				
Land	62800		44000				
Fotal	62800		44000				
				Total Area			0

CONNECTICUT STATE OF

0082/0250

0

1/7/2022

# **ATTACHMENT 6**

Kenneth C. Baldwin, Esq.	TOTAL NO. of Pieces Listed by Sender Of Pieces Received at Post Office™	Postmark with Date of Receipt. neopost ³⁴ 07/19/2022 US POSTAGE \$003.090 ZIP 06103 041L12203937				
Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	eusn (					
	Postmaster, per (name of receiving employee)					
USPS® Tracki <b>ng</b> Number	Address					
Firm-specific Identifier	(Name, Street, City, State, and ZIP Code™)	Postage	Fee	Special Handling	Parcel Airlift	
	Andreas Bisbikos, First Selectman					
	Town of Colchester	-				
	127 Norwich Avenue	- 1				
	Colchester, CT 06415					
	Ariel Lago, Zoning Enforcement Officer					
	Town of Colchester	4				
	127 Norwich Avenue					
	Colchester, CT 06415					
	State of Connecticut					
	Attn: Brian Benito Department of Emergency Services and Public Protection 1111 Country Club Road Middletown, CT 06457	-				
	Middelown, CT (045)					
	$\land$					
		]				
				_		
		-				
	N N	-				
				_		
		1				

. . . . . . . .

PS Form **3665,** January 2017 (Page _____ of ____ ) PSN 7530-17-000-5549

1