

STATE OF CONNECTICUT CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov Web Site: portal.ct.gov/csc

VIA ELECTRONIC MAIL

September 28, 2021

Denise Sabo Northeast Site Solutions 54 Main Street, Unit 3 Sturbridge, MA 01566-1359 denise@northeastsitesolutions.com

RE: **TS-DISH-027-210917 -** Dish Wireless LLC request for an order to approve tower sharing at an existing telecommunications facility located at 48 Cow Hill Road, Clinton, Connecticut.

Dear Ms. Sabo:

The Connecticut Siting Council (Council) is in receipt of your correspondence of September 28, 2021 submitted in response to the Council's September 27, 2021 notification of an incomplete request for tower sharing with regard to the above-referenced matter.

The submission renders the request for tower sharing complete and the Council will process the request in accordance with the Federal Communications Commission 60-day timeframe.

Thank you for your attention and cooperation.

Sincerely,

Melanie Bachman Executive Director

Matrid Real

MB/IN/laf

From: Victoria Masse < victoria@northeastsitesolutions.com>

Sent: Tuesday, September 28, 2021 9:38 AM

To: Robidoux, Evan <Evan.Robidoux@ct.gov>; CSC-DL Siting Council <Siting.Council@ct.gov>

Cc: Denise Sabo <denise@northeastsitesolutions.com>; Deborah Chase

<deborah@northeastsitesolutions.com>

Subject: Re: FW: Council Incomplete Letter for TS-DISH-027-210917 (Cow Hill Road, Clinton)

Good Morning Council,

Please see attached revised Tower Share filing for the site referenced below, we have included the Radio Frequency emissions analysis to Exhibit F.

TS-DISH-027-210917: Cow Hill Road, Clinton

Thank you

On Mon, Sep 27, 2021 at 9:16 PM Denise Sabo < denise @northeastsitesolutions.com > wrote:

Victoria – Can we get this resubmitted with the EME. Looks like it was left out of the package we sent.

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

September 15, 2021

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application 48 Cow Hill Road, Clinton CT 06413 Latitude: 41.288944 Longitude: -72.538472 Site# 806363 Crown Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 48 Cow Hill Road in Clinton, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 5G MHz antenna and six (6) RRUs, at the 118-foot level of the existing 212-foot monopole tower, one (1) Fiber cables will also be installed. Dish Wireless LLC equipment cabinets will be placed within 7x5 lease area. Included are plans by Infinigy, dated September 3, 2021 Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated August 21, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. This facility was approved by the CT Siting Council, Docket No. 148 on May 5, 1992. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Christine Goupil, First Selectwoman for the Town of Clinton, Eric Knapp, Zoning Enforcement Officer, as well as the tower owner (Crown Castle) and property owner (Raymond Hesser c/o Crown Castle)

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

- 1. The proposed modification will not result in an increase in the height of the existing structure. The top of the tower is 212-feet; Dish Wireless LLC proposed antennas will be located at a center line height of 118-feet.
- 2. The proposed modifications will not result in the increase of the site boundary as depicted on the attached site plan.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.

4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total power density of 14.92% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully indicates that the shared use of this facility satisfies these criteria.

A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.

B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this support tower in Clinton. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.

C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 118-foot level of the existing 212-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.

D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.

E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing guyed tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Clinton.

Sincerely,

Denise Sabo

Denise Sabo

Mobile: 203-435-3640 Fax: 413-521-0558

Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments cc Christine Goupil, First Selectwoman Town of Clinton 54 E Main Street Clinton, CT 06413

Eric Knapp, Zoning Enforcement Officer Town of Clinton 54 E Main Street Clinton, CT 06413

Raymond Hesser c/o Crown Castle 4017 Washington Rd, McMurry, PA 15317

Crown Castle - Tower Owner

WEBSTER BANK 51-7010/2111

NORTHEAST SITE SOLUTIONS, LLC 1053 FARMINGTON AVE STE G FARMINGTON, CT 06032

08/20/2021

PAY TO THE ORDER OF

Connecticut Siting Council

*625.00

EXACTLY SIX HUNDRED TWENTY-FIVE DOLLARS

DOLLARS

Connecticut Siting Council 10 Franklin Square New Britain CT 06051

MEMO

"OO4738" ::211170101:10 001060888?"

NORTHEAST SITE SOLUTIONS, LLC

4738

Check#: 4738

Date: 08/20/2021

Vendor#: 10023 Connecticut Siting ChadciTotal:

*625.00

Invoice#

806363 CSC

Invoice Date 08/20/2021

Job/Description

117 Crown Direct Z/P

Balance 625.00 Retain

Discount

This Check

625.00

NORTHEAST SITE SOLUTIONS, LLC

4738

Check#: 4738

Date: 08/20/2021

Vendor#:

10023 Connecticut Siting CoCheitk Total:

*625.00

Invoice#

Invoice Date

Job/Description

Balance

Retain

Discount

This Check

806363 CSC

08/20/2021

117 Crown Direct Z/P

625.00

625.00

Exhibit A

Original Facility Approval

DOCKET NO. 148 - An application of Metro Mobile CTS of Hartford, Inc., for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance, and operation of a cellular telephone tower and associated equipment in the Town of Clinton, Connecticut. The proposed site is located on an interior portion of a 59 acre parcel off Glenwood Road approximately 3,500 feet north of I-95. The alternate site is located on a six acre parcel off Cow Hill Road, approximately 300 feet north of I-95.

Connecticut

Siting

Council

May 5, 1992

DECISION AND ORDER

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a cellular telecommunications tower and equipment building at the proposed Clinton, Connecticut, alternate site including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application and therefore directs that a Certificate of Environmental Compatibility and Public Need as provided by section 16-50k of the Connecticut General Statutes (CGS), be issued to Metro Mobile CTS of Hartford, Inc., (Metro Mobile), for the construction, operation, and maintenance of a cellular telecommunications tower, associated equipment, and equipment building at the proposed alternate site off Cow Hill Road in Clinton, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The self-supporting lattice tower shall be no taller than necessary to provide the proposed communications service and in no event shall the tower exceed a total height of 223 feet above ground level, with antennas and appurtenances.
- 2. Prior to the commencement of construction, the Certificate Holder shall prepare a Development and Management (D&M) plan for this site in compliance with sections 16-50j-75 through 16-50j-77 of the Regulations of State Agencies. The D&M plan shall

Docket No. 148
Decision and Order
Page 2

include detailed plans of the tower, tower foundation, tower anti-climb sections, tower marking and lighting, and the locations of the equipment buildings, access road, and security fence, and all cellular antennas on the tower. In addition, the D&M plan shall include detailed plans for clearing; a site plan orienting the facility, utilities, and access road avoiding inland wetlands; and detailed plans for erosion and sedimentation control.

- 3. If and when tower marking and lighting become unnecessary pursuant to a determination by the Federal Aviation Administration, within six months of such determination, such tower marking and lighting shall be removed at the expense of the Certificate Holder.
- 4. The Certificate Holder shall comply with any existing and future radio frequency (RF) standard promulgated by State or federal regulatory agencies. Upon the establishment of any new governmental RF standards, the facility granted herein shall be brought into compliance with such standards.
- 5. The Certificate Holder shall provide the Council a recalculated report of electromagnetic radio frequency power density if and when circumstances in operation cause a change in power density above the levels originally calculated and provided in the application.
- 6. The Certificate Holder shall permit public or private entities, including Springwich Cellular Limited Partnership (Springwich) which by contract was allowed to share space on the tower, and the Town of Clinton, to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing. Provisions shall also be made for the location of a separate Springwich equipment building.
- 7. If the facility does not initially provide, or permanently ceases to provide cellular service following completion of construction, this Decision and Order shall be void, and the tower and all associated equipment shall be dismantled and removed or reapplication for any new use shall be made to the Council before any such new use is made.
- 8. Unless otherwise approved by the Council, this Decision and Order shall be void if all construction authorized herein is not completed within three

Docket No. 148
Decision and Order
Page 3

years of the effective date of this Decision and Order or within three years after all appeals to this Decision and Order have been resolved.

Pursuant to CGS Section 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in the New Haven Register, Clinton Recorder, Hartford Courant, and the Middletown Press.

By this Decision and Order, the Council disposes of the legal rights, duties and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of State Agencies.

The parties and intervenor to this proceeding are:

PARTY

Metro Mobile CTS of Hartford 20 Alexander Drive Wallingford, CT 06492 Attn: David S. Malko Mgr. Engr, & Reg. Serv.

Town of Clinton

INTERVENOR

Springwich Cellular Limited Partnership

ITS REPRESENTATIVE

Earl W. Phillips, Jr., Esq. Robinson & Cole One Commercial Plaza Hartford, CT 06103-3597 (203) 275-8200

Lynda Batter Munro Gould, Larson, Bennet and Munro 35 Plains Road P.O. Box 959 Essex, CT 06426

Peter J. Tyrrell Senior Attorney Springwich Cellular Limited Partnership 227 Church St., Rm. 1021 New Haven, CT 06506 (203) 771-7381

6055E

CERTIFICATION

The undersigned members of the Connecticut Siting Council (Council) hereby certify that they have heard this case, or read the record thereof, in DOCKET NO. 148 - An application of Metro Mobile CTS of Hartford, Inc., for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance, and operation of a cellular telephone tower and associated equipment in the Town of Clinton, Connecticut, and voted as follows to approve the proposed alternate tower site off of Cow Hill Road, approximately 300 feet north of I-95:

Council Members	Vote Cast
Martiner A. Gelston Chairman	Yes
Commissioner Clifton A. Leonhardt Designee: Commissioner Richard G. Patterson	Yes
Commissioner Timothy R.E. Keeney Designee: Brian Emerick	Absent
Harry E. dovey	Yes
Daniel P. Lynch, Jr.	Yes
Gloria Dibble Pond	Absent
Paulann H. Sheets	Absent
William H. Smith	Yes
Colin C. Tait	Absent

Dated at New Britain, Connecticut, May 5, 1992.

6060E-2

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL.

136 Main Street, Suite 401 New Britain, Connecticut 06051 Phone: 827-7682

CERTIFICATE

OF

ENVIRONMENTAL COMPATIBILITY AND PUBLIC NEED

DOCKET NO. 148

Pursuant to section 16-50k of the General Statutes of Connecticut, as amended, the Connecticut Siting Council hereby issues a Certificate of Environmental Compatibility and Public Need to Metro Mobile CTS of Hartford, Inc., for the construction, maintenance, and operation of a cellular telephone tower and associated equipment on a six acre parcel off Cow Hill Road approximately 300 feet north of I-95, in the Town of Clinton, Connecticut. This Certificate is issued in accordance with and subject to the terms and conditions set forth in the Decision and Order of the Council on May 5, 1992.

By order of the Council,

Mortimer A. Gelston, Chairman

May 5, 1992

6060E-5

Exhibit B

Property Card

49B COW HILL RD

Location 49B COW HILL RD **Mblu** 32/ 6/ 48/ H026570/A

Acct# H0265701 Owner HESER RAYMOND

Assessment \$561,600 **Appraisal** \$802,300

PID 106785 Building Count 1

Current Value

	Appraisal		
Valuation Year	Improvements	Land	Total
2016	\$160,800	\$641,500	\$802,300
	Assessment		
Valuation Year	Improvements	Land	Total
2016	\$112,500	\$449,100	\$561,600

Sale Price

Certificate

\$0

Owner of Record

Owner HESER RAYMOND

Co-Owner CROWN CASTLE ATLANTIC CO LLC

 $\textbf{Address} \qquad 4017 \text{ WASHINGTON RD PMB353} \qquad \qquad \textbf{Book \& Page} \qquad 088/\ 061$

MCMURRAY, PA 15317 Sale Date

Ownership History

	Owi	nership History		
Owner	Sale Price	Certificate	Book & Page	Sale Date
HESER RAYMOND	\$0		088/ 061	
HESER RAYMOND				

Building Information

Building 1 : Section 1

Year Built: 1993 Living Area: 1104 Replacement Cost: \$176,872

Building Percent Good:

Replacement Cost

Less Depreciation: \$153,900

Building Attributes	
Field	Description
STYLE	Telephone Bldg
MODEL	Ind/Comm

87

Building Photo

Grade Average Stories: 1 Occupancy 1 Exterior Wall 1 Brick/Masonry Exterior Wall 2 Flat Roof Structure Flat Roof Cover Tar & Gravel Interior Wall 1 Minim/Masonry Interior Wall 2 Concr-Finished Interior Floor 1 Concr-Finished Interior Floor 2 Gas Heating Fuel Gas Heating Type Hot Air-no Duc AC Type Central Bldg Use TEL X STA MDL-96 Total Rooms 00 Total Bedrms 00 Total Bedrms 0 1st Floor Use: 4300 Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE Wall Height 12		
Occupancy 1 Exterior Wall 1 Exterior Wall 2 Roof Structure Flat Roof Cover Tar & Gravel Interior Wall 1 Interior Wall 2 Interior Floor 1 Interior Floor 2 Heating Fuel Gas Heating Type Hot Air-no Duc AC Type Central Bldg Use TEL X STA MDL-96 Total Rooms Total Bedrms 00 Ist Floor Use: 4300 Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Rooms/Prtns AVERAGE Wall Height 12	Grade	Average
Exterior Wall 1 Exterior Wall 2 Roof Structure Roof Cover Interior Wall 1 Interior Wall 1 Interior Floor 1 Interior Floor 2 Heating Fuel Heating Type Central Bldg Use Total Rooms Total Baths 0 1st Floor Use: Heat/AC Frame Type Baths/Plumbing Ceilling/Wall Rooms/Prtns Wall Height Flat Roare Fl	Stories:	1
Exterior Wall 2 Roof Structure Roof Cover Tar & Gravel Interior Wall 1 Interior Wall 2 Interior Floor 1 Interior Floor 2 Heating Fuel Heating Type AC Type Central Bldg Use Total Rooms Total Bedrms 00 1st Floor Use: 4300 Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall Rooms/Prtns AVERAGE Wall Height Fare Sarael Minim/Masonry Interior Floor Concr-Finished Alinim/Masonry Interior Wall 1 Minim/Masonry Interior Wall 2 Interior Floor 1 Concr-Finished Alinim/Masonry Interior Wall 1 Minim/Masonry Interior Wall 1 Minim/Masonry Interior Wall 2 Interior Wall 1 Minim/Masonry Interior Wall 1 Minim/Masonry Interior Wall 1 Moner-Finished Interior Wall 1 Minim/Masonry Interior Wall 1 Minim/Masonry Interior Wall 2 Interior Wall 2 Interior Wall 1 Minim/Masonry Interior Wall 2 Interior Wall 1 Minim/Masonry Interior Wall 1 Minim/Masonry Interior Wall 2 Interior Wall 1 Minim/Masonry Interior Wall 2 Interior Wall 2 Interior Wall 2 Interior Wall 1 Minim/Masonry Interior Wall 2 Inte	Occupancy	1
Roof Structure Roof Cover Tar & Gravel Interior Wall 1 Interior Wall 2 Interior Floor 1 Interior Floor 2 Heating Fuel Heating Type Hot Air-no Duc AC Type Central Bldg Use TEL X STA MDL-96 Total Rooms Total Bedrms 00 Total Baths 0 1st Floor Use: 4300 Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall Rooms/Prtns AVERAGE Wall Height Interior Floor 1 Minim/Masonry Minim/Masonry Interior Ravel Minim/Masonry Interior Ravel Average Total Servel Total Seas Total Air Auterior Total Seas Total Baths O STEEL Baths/Plumbing NONE Ceiling/Wall NONE	Exterior Wall 1	Brick/Masonry
Roof Cover Interior Wall 1 Interior Wall 2 Interior Floor 1 Interior Floor 2 Heating Fuel Heating Type AC Type Central Bldg Use Total Rooms Total Bedrms 00 Total Baths 0 1st Floor Use: Heat/AC Frame Type STEEL Baths/Plumbing Ceiling/Wall Rooms/Prtns AVERAGE Wall Height Minim/Masonry Minim/Masonry Minim/Masonry Interior Floor 2 Minim/Masonry Interior Wall Alinim/Masonry Interior Wall Alinim/Masonry Interior Wall Alinim/Masonry Interior Wall Aurino Duc Contral Contral Frax STA MDL-96 TEL X STA MDL-96 Total Rooms O Total Baths O STEEL Baths/Plumbing NONE AVERAGE Wall Height 12	Exterior Wall 2	
Interior Wall 1 Interior Wall 2 Interior Floor 1 Interior Floor 2 Heating Fuel Heating Type AC Type Central Bldg Use Total Rooms Total Bedrms 00 Total Baths 0 1st Floor Use: Heat/AC Frame Type STEEL Baths/Plumbing Ceiling/Wall Rooms/Prtns Minim/Masonry Minim/Masonry Minim/Masonry Minim/Masonry Minim/Masonry Minim/Masonry Minim/Masonry Minim/Masonry Minim/Masonry Interior Wall 2 Concr-Finished Concr-Finished It Air-no Duc Central Bota X-TA MDL-96 TEL X STA MDL-96 Total Badhs 0 STEL X STA MDL-96 Total Badhs 10 NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE Wall Height	Roof Structure	Flat
Interior Wall 2 Interior Floor 1 Concr-Finished Interior Floor 2 Heating Fuel Heating Type Hot Air-no Duc AC Type Central Bldg Use TEL X STA MDL-96 Total Rooms Total Bedrms 00 Total Baths 0 1st Floor Use: 4300 Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall Rooms/Prtns AVERAGE Wall Height Cass Concr-Finished Concr-Finished Concr-Finished Interior Floor 12 Hot Air-no Duc Air-no Duc Asymmetry Average NONE	Roof Cover	Tar & Gravel
Interior Floor 1 Concr-Finished Interior Floor 2 Heating Fuel Gas Heating Type Hot Air-no Duc AC Type Central Bldg Use TEL X STA MDL-96 Total Rooms Total Bedrms 00 Total Baths 0 1st Floor Use: 4300 Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE Wall Height 12	Interior Wall 1	Minim/Masonry
Interior Floor 2 Heating Fuel Gas Heating Type Hot Air-no Duc AC Type Central Bldg Use TEL X STA MDL-96 Total Rooms Total Bedrms 00 Total Baths 0 1st Floor Use: 4300 Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE Wall Height 12	Interior Wall 2	
Heating Fuel Gas Heating Type Hot Air-no Duc AC Type Central Bldg Use TEL X STA MDL-96 Total Rooms Total Bedrms 00 Total Baths 0 1st Floor Use: 4300 Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE Wall Height 12	Interior Floor 1	Concr-Finished
Heating Type Hot Air-no Duc AC Type Central Bldg Use TEL X STA MDL-96 Total Rooms Total Bedrms 00 Total Baths 0 1st Floor Use: 4300 Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE Wall Height 12	Interior Floor 2	
AC Type Central Bldg Use TEL X STA MDL-96 Total Rooms Total Bedrms 00 Total Baths 0 1st Floor Use: 4300 Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE Wall Height 12	Heating Fuel	Gas
Bldg Use TEL X STA MDL-96 Total Rooms 00 Total Bedrms 00 Ist Floor Use: 4300 Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE Wall Height 12	Heating Type	Hot Air-no Duc
Total Rooms 00 Total Bedrms 00 Total Baths 0 1st Floor Use: 4300 Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE Wall Height 12	AC Type	Central
Total Bedrms 00 Total Baths 0 1st Floor Use: 4300 Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE Wall Height 12	Bldg Use	TEL X STA MDL-96
Total Baths 0 1st Floor Use: 4300 Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE Wall Height 12	Total Rooms	
1st Floor Use: 4300 Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE Wall Height 12	Total Bedrms	00
Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE Wall Height 12	Total Baths	0
Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE Wall Height 12	1st Floor Use:	4300
Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE Wall Height 12	Heat/AC	NONE
Ceiling/Wall NONE Rooms/Prtns AVERAGE Wall Height 12	Frame Type	STEEL
Rooms/Prtns AVERAGE Wall Height 12	Baths/Plumbing	NONE
Wall Height 12	Ceiling/Wall	NONE
	Rooms/Prtns	AVERAGE
% Comn Wall	Wall Height	12
	% Comn Wall	

 $\label{limit} $$ \left(\frac{\mbox{\com/photos/ClintonCTPhotos/}}{00\00} \) $$ (11.jpg) $$$

Building Layout

Building Sub-Areas (sq ft)		Legend	
Code	Description	Gross Area	Living Area
BAS	First Floor	1104	1104
		1104	1104

Extra Features

Extra Features	<u>Legend</u>
No Data for Extra Features	

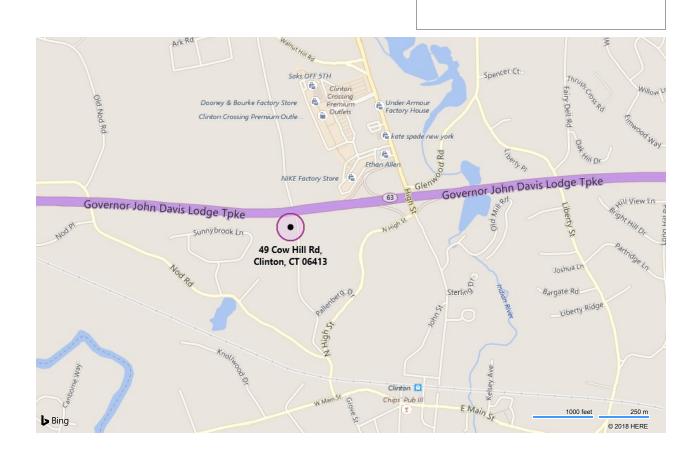
Land

Land Use		Land Line Valua	tion
Use Code	4300	Size (Acres)	0.18
Description	TEL X STA MDL-96	Frontage	
Zone	I-P	Depth	
Neighborhood	1100	Assessed Value	\$449,100
Alt Land Appr	No	Appraised Value	\$641,500
Category			

		Oı	utbuildings			Legend
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
FN4	FENCE-8' CHAIN			360 L.F.	\$900	1
PAV2	PAVING-CONC			1296 S.F.	\$2,900	1
SHD5	COMM WOOD			200 S.F.	\$3,100	1

Valuation History

	Appraisal		
Valuation Year	Improvements	Land	Total
2010	\$131,500	\$641,500	\$773,000
2009	\$203,500	\$717,300	\$920,800
2005	\$203,500	\$717,300	\$920,800


Assessment			
Valuation Year	Improvements	Land	Total
2010	\$92,200	\$449,100	\$541,300
2009	\$142,600	\$502,100	\$644,700
2005	\$142,600	\$502,100	\$644,700

(c) 2014 Vision Government Solutions, Inc. All rights reserved.

bing maps

49 Cow Hill Rd, Clinton, CT 06413

Location: 41.28688, -72.53608

Exhibit C

Construction Drawings

wireless.

DISH WIRELESS, LLC, SITE ID:

BOBDL00040A

DISH WIRELESS, LLC. SITE ADDRESS:

48 COW HILL ROAD CLINTON, CT 06413

CONNECTICUT CODE COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:

2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS MECHANICAL ELECTRICAL 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS
2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS

	SHEET INDEX
SHEET NO.	SHEET TITLE
T-1	TITLE SHEET
A-1	OVERALL AND ENLARGED SITE PLAN
A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS
A-4	EQUIPMENT DETAILS
A-5	EQUIPMENT DETAILS
A-6	EQUIPMENT DETAILS
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES
E-2	ELECTRICAL DETAILS
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE
G-1	GROUNDING PLANS AND NOTES
G-2	GROUNDING DETAILS
G-3	GROUNDING DETAILS
RF-1	RF CABLE COLOR CODE
GN-1	LEGEND AND ABBREVIATIONS
GN-2	GENERAL NOTES
GN-3	GENERAL NOTES
GN-4	GENERAL NOTES

SCOPE OF WORK

- INSTALL (1) PROPOSED CIENA BOX (IF REQUIRED)
 EXISTING METER SOCKET ON EXISTING H-FRAME TO BE UTILIZED

UNDERGROUND SERVICE ALERT CBYD 811 UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455 WWW.CBYD.COM

CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.

11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIPMENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:

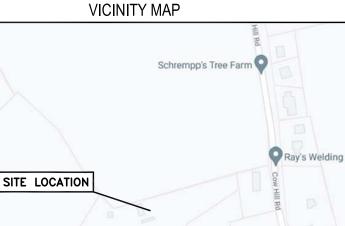
- TOWER SCOPE OF WORK:

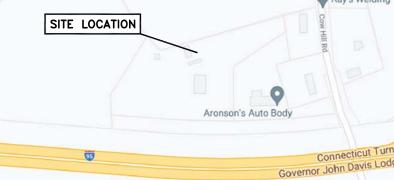
 INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR)

 INSTALL (3) PROPOSED ANTENNA MOUNTS (1 PER SECTOR)
- INSTALL PROPOSED JUMPERS
 INSTALL (6) PROPOSED RRUs (2 PER SECTOR)
- INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP) INSTALL (1) PROPOSED HYBRID CABLE

- GROUND SCOPE OF WORK:
 INSTALL (1) PROPOSED METAL PLATFORM
- INSTALL (1) PROPOSED PPC CARINET
- INSTALL (1) PROPOSED EQUIPMENT CABINET PROPOSED POWER CONDUIT
- INSTALL (1) PROPOSED TELCO CONDUIT
- INSTALL (1) PROPOSED TELCO-FIBER BOX
- INSTALL (1) PROPOSED GPS UNIT

PROPERTY OWNER: HESER FAMILY REVOCABLE TST DISH WIRELESS, LLC. ADDRESS: 116 KILLINGWORTH TPKE 5701 SOUTH SANTA FE DRIVE CLINTON, CT 06413-1353 LITTLETON, CO 80120 TOWER TYPE: SELF SUPPORT TOWER TOWER CO SITE ID: 806363 TOWER OWNER: CROWN CASTLE 2000 CORPORATE DRIVE TOWER APP NUMBER: 553394 CANONSBURG, PA 15317 (877) 486-9377 COUNTY: MIDDLESEX SITE DESIGNER: INFINIGY 2500 W. HIGGINS RD. STE. 500 LATITUDE (NAD 83): 41° 17' 20.20" N 41.288944 N HOFFMAN ESTATES, IL 60169 72° 32' 18.50" W LONGITUDE (NAD 83): (847) 648-4068 72.538472 W SITE ACQUISITION: NICHOLAS CURRY ZONING JURISDICTION: CONNECTICUT SITING COUNCIL ZONING DISTRICT: CONSTRUCTION MANAGER: JAVIER SOTO PARCEL NUMBER: CLIN-000032-000006-000048-R00000 TRD BOSSENER CHARLES OCCUPANCY GROUP: RF ENGINEER: CONSTRUCTION TYPE: II-B NORTHEAST UTILITIES TELEPHONE COMPANY: CROWN CASTLE


PROJECT DIRECTORY


DIRECTIONS

DIRECTIONS FROM TWEED NEW HAVEN AIRPORT:

SITE INFORMATION

DEPART AND HEAD (NORTHEAST),TURN LEFT, AVIS RENT A CAR ON THE CORNER, TURN RIGHT TOWARD BURR ST, BUDGET CAR RENTAL ON THE CORNER, TURN RIGHT ONTO BURR ST, KEEP STRAIGHT TO GET ONTO DODGE AVE, TURN LEFT ONTO THOMPSON AVE, KEEP STRAIGHT TO GET ONTO CT-100 / HIGH ST, TAKE THE RAMP ON THE RIGHT FOR I-95 NORTH AND HEAD TOWARD NEW LONDON, AT EXIT 63, HEAD RIGHT ON THE RAMP TOWARD CLINTON / KILLINGWORTH, TURN RIGHT ONTO N HIGH ST, TURN RIGHT ONTO PALLENBERG DR, TURN RIGHT ONTO COW HILL RD, TURN LEFT, ARRIVE AT, 48 COW HILL ROAD CLINTON, CT 06413

NO SCALE

Community Association Marine supply store

5701 SOUTH SANTA FF DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG PA 15317

INFINIGY8

HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

l	DRAWN BY:	CHECKED BY:	APPROVED B
l	RCD	SS	CJW

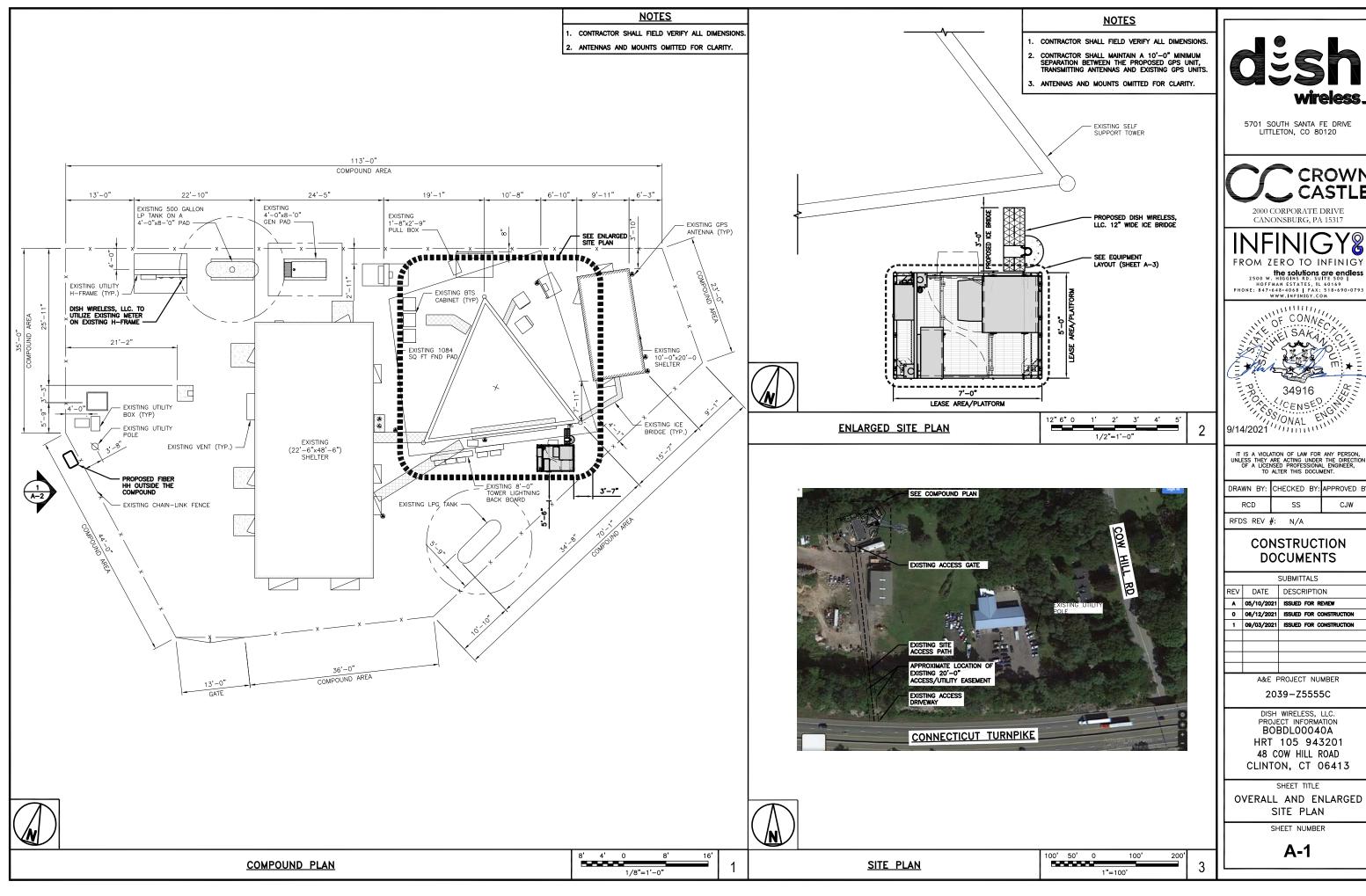
RFDS REV #: N/A

CONSTRUCTION DOCUMENTS

	SUBMITTALS	
REV	DATE	DESCRIPTION
A	05/10/2021	ISSUED FOR REVIEW
0	06/12/2021	ISSUED FOR CONSTRUCTION
1	09/03/2021	ISSUED FOR CONSTRUCTION
	A&E F	PROJECT NUMBER

2039-Z5555C

DISH WIRELESS, LLC. BOBDL00040A HRT 105 943201 48 COW HILL ROAD CLINTON, CT 06413


Connecticut Turi

Shaw Acres

SHEET TITLE TITLE SHEET

SHEET NUMBER

T-1

LITTLETON, CO 80120

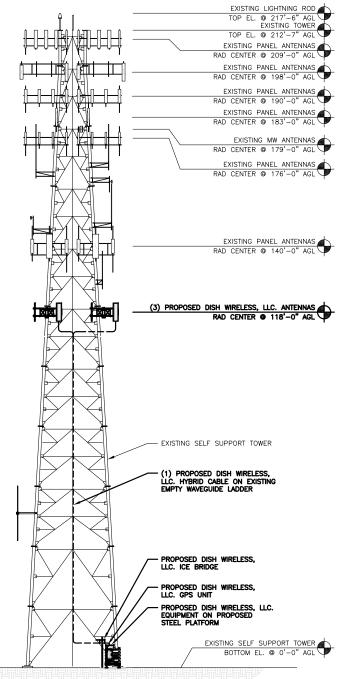
CANONSBURG, PA 15317

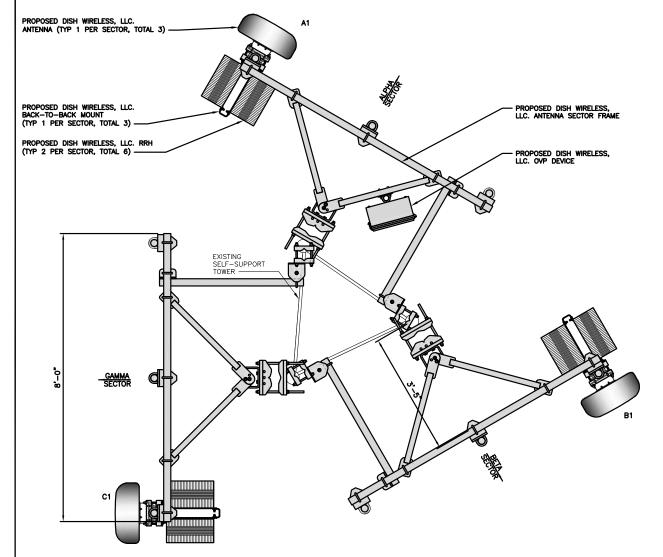
INFINIGY8

DRAWN	BY:	CHECKED	BY:	APPROVED	В
RCE)	SS		CJW	

DOCUMENTS

	SUBMITTALS		
REV	DATE	DESCRIPTION	
A	05/10/2021	ISSUED FOR REVIEW	
0	06/12/2021	ISSUED FOR CONSTRUCTION	
1	09/03/2021	ISSUED FOR CONSTRUCTION	
	∧ 9a⊑ □	DO IECT NILIMPED	


BOBDL00040A HRT 105 943201 48 COW HILL ROAD CLINTON, CT 06413


OVERALL AND ENLARGED

NOTES

- CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS.
- 2. ANTENNA AND MW DISH SPECIFICATIONS REFER TO ANTENNA SCHEDULE AND TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS
- 3. EXISTING EQUIPMENT AND FENCE OMITTED FOR CLARITY.
- INFINIGY HAS NOT EVALUATED THE TOWER OR MOUNT STRUCTURE AND ASSUMES NO RESPONSIBILITY FOR THEIR STRUCTURAL INTEGRITY REGARDING PROPOSED LOADINGS. FINAL INSTALLATION SHALL COMPLY WITH RESULTS OF PASSING STRUCTURAL ANALYSES PERFORMED BY OTHERS.

PROPOSED SOUTHWEST ELEVATION

ANTENNA LAYOUT

			AN	TENNA				TRANSMISSION CABLE
SECTOR	POSITION	EXISTING OR PROPOSED	MANUFACTURER — MODEL NUMBER	TECHNOLOGY	SIZE (HxW)	AZMUITH	RAD CENTER	FEED LINE TYPE AND LENGTH
ALPHA	A1	PROPOSED	JMA WIRELESS - MX08FR0665-21	5G	72.0" x 20.0"	30°	118'-0"	(1) HIGH-CAPACITY
BETA	B1	PROPOSED	JMA WIRELESS - MX08FR0665-21	5G	72.0" x 20.0"	150°	118'-0"	HYBRID CABLE (168' LONG)
GAMMA	C1	PROPOSED	JMA WIRELESS - MX08FR0665-21	5G	72.0" x 20.0"	270°	118'-0"	(100 LONG)

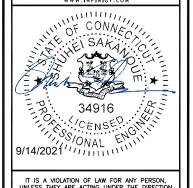
NOTES

1. CONTRACTOR TO REFER TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS.

2. ANTENNA OR RRH MODELS MAY CHANGE DUE TO EQUIPMENT AVAILABILITY. ALL EQUIPMENT CHANGES MUST BE APPROVED AND REMAIN IN COMPLIANCE WITH THE PROPOSED DESIGN AND STRUCTURAL ANALYSES.

		RRH		
SECTOR	POSITION	MANUFACTURER — MODEL NUMBER	TECHNOLOGY	
ALPHA	A1	FUJITSU - TA08025-B604	5G	١.
	A1	FUJITSU - TA08025-B605	5G	'
BETA	B1	FUJITSU - TA08025-B604	5G	
	B1	FUJITSU - TA08025-B605	5G	
GAMMA	C1	FUJITSU - TA08025-B604	5G	
	C1	FUJITSU - TA08025-B605	5G	

- CONTRACTOR TO REFER TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS.
- ANTENNA AND RRH MODELS MAY CHANGE DUE TO EQUIPMENT AVAILABILITY. ALL EQUIPMENT CHANGES MUST BE APPROVED AND REMAIN IN COMPLIANCE WITH THE PROPOSED DESIGN AND STRUCTURAL ANALYSES.


5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY 8 FROM ZERO TO INFINIGY

the solutions are endless
2500 w. HIGGINS RD. SUITE 500 |
HOFFANN ESTATES, IL 60169
PHONE: 847-648-4086 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN BY:	CHECKED BY:	APPROVED	BY
	RCD	SS	CJW	
	RFDS REV	#: N/A		

CONSTRUCTION **DOCUMENTS**

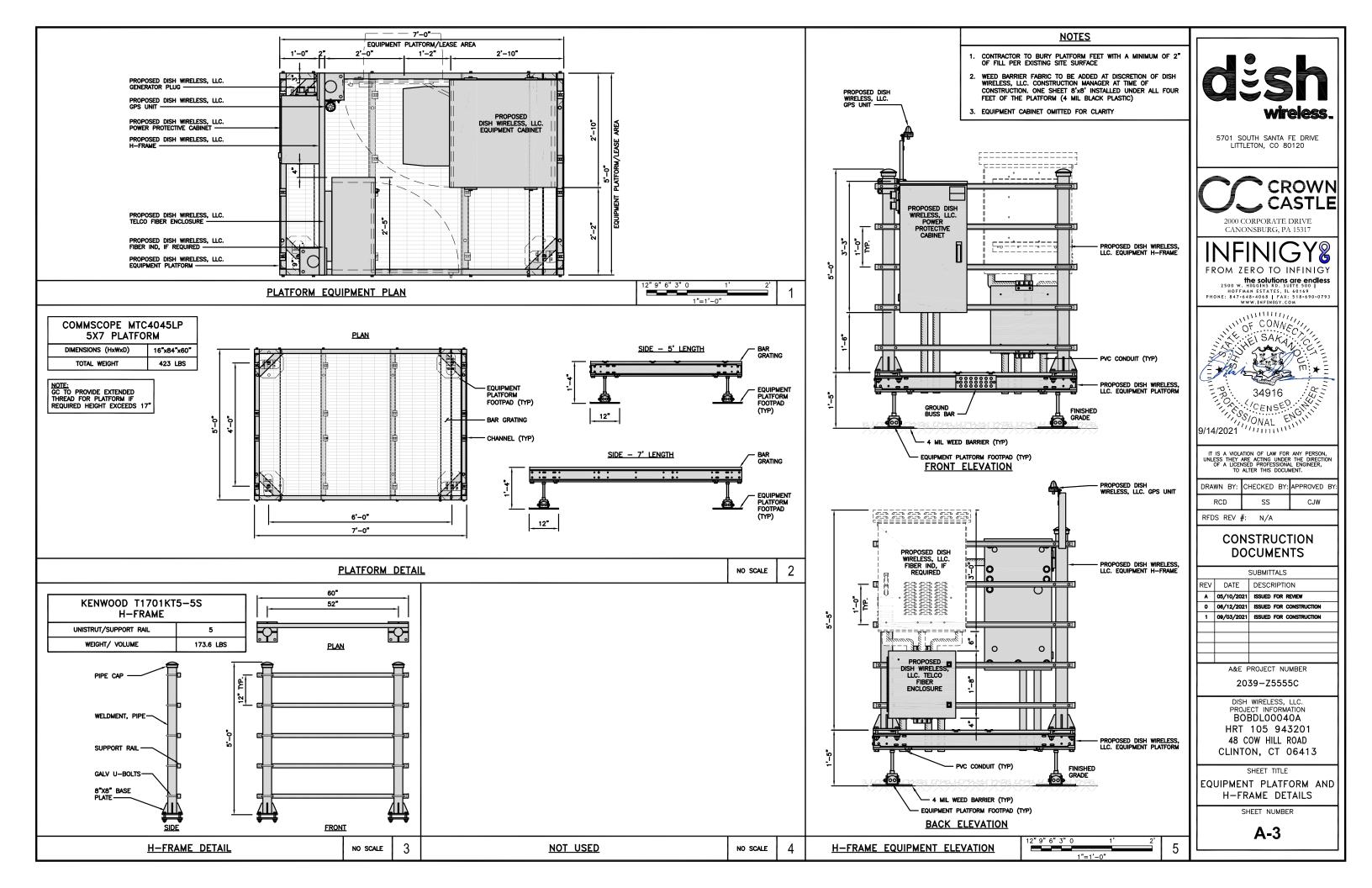
SUBMITTALS	SUBMITTALS		
A 05/10/2021 ISSUED FOR REVIEW 0 06/12/2021 ISSUED FOR CONSTRUCTION 1 09/03/2021 ISSUED FOR CONSTRUCTION			
0 06/12/2021 ISSUED FOR CONSTRUCTION 1 09/03/2021 ISSUED FOR CONSTRUCTION	REV	DATE	DESCRIPTION
1 09/03/2021 ISSUED FOR CONSTRUCTION	A	05/10/2021	ISSUED FOR REVIEW
	0	06/12/2021	ISSUED FOR CONSTRUCTION
A&E PROJECT NUMBER	1	09/03/2021	ISSUED FOR CONSTRUCTION
A&E PROJECT NUMBER			
		A&E F	PROJECT NUMBER

2039-Z5555C

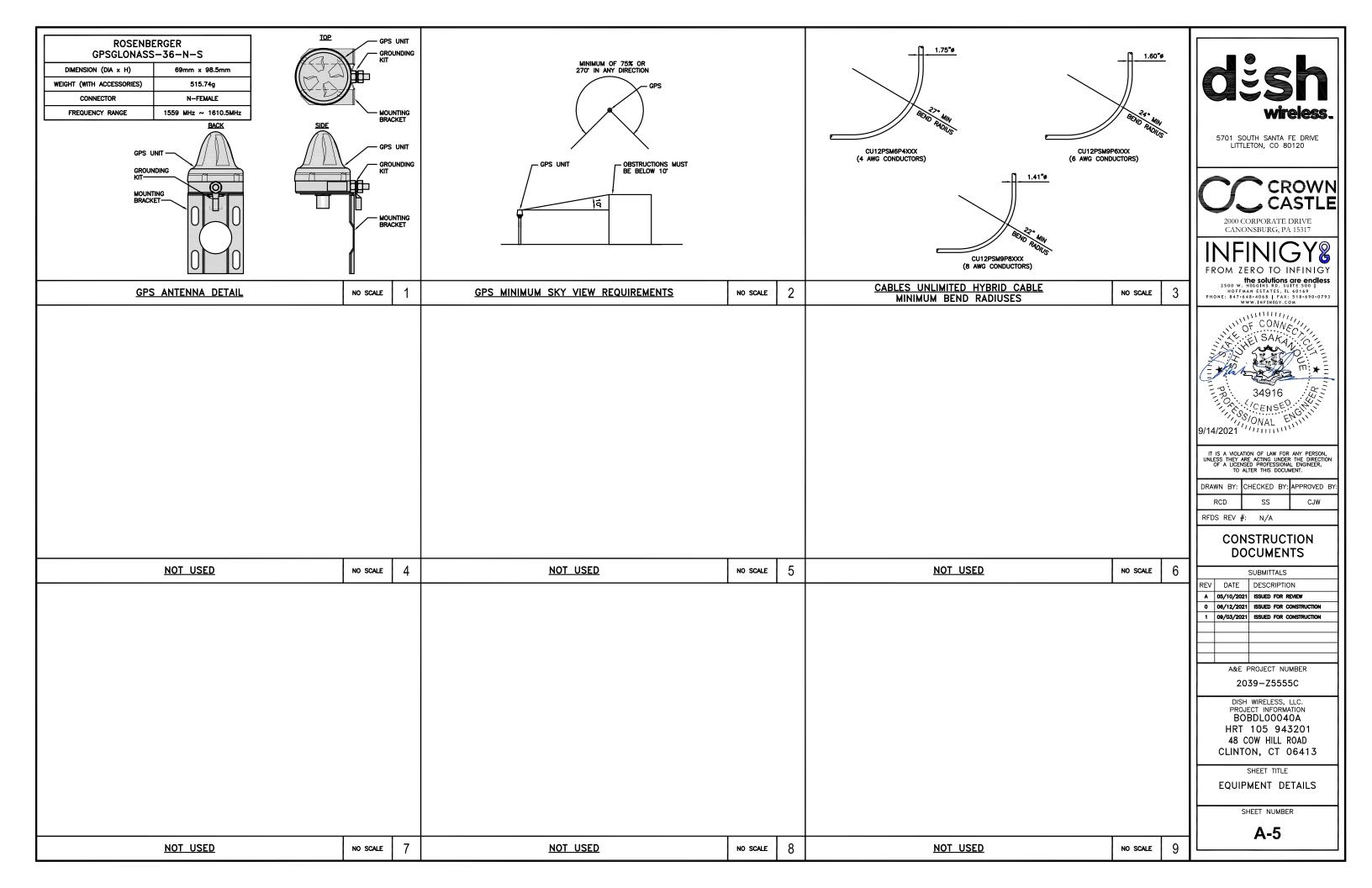
DISH WIRELESS, LLC. PROJECT INFORMATION BOBDL00040A HRT 105 943201 48 COW HILL ROAD CLINTON, CT 06413

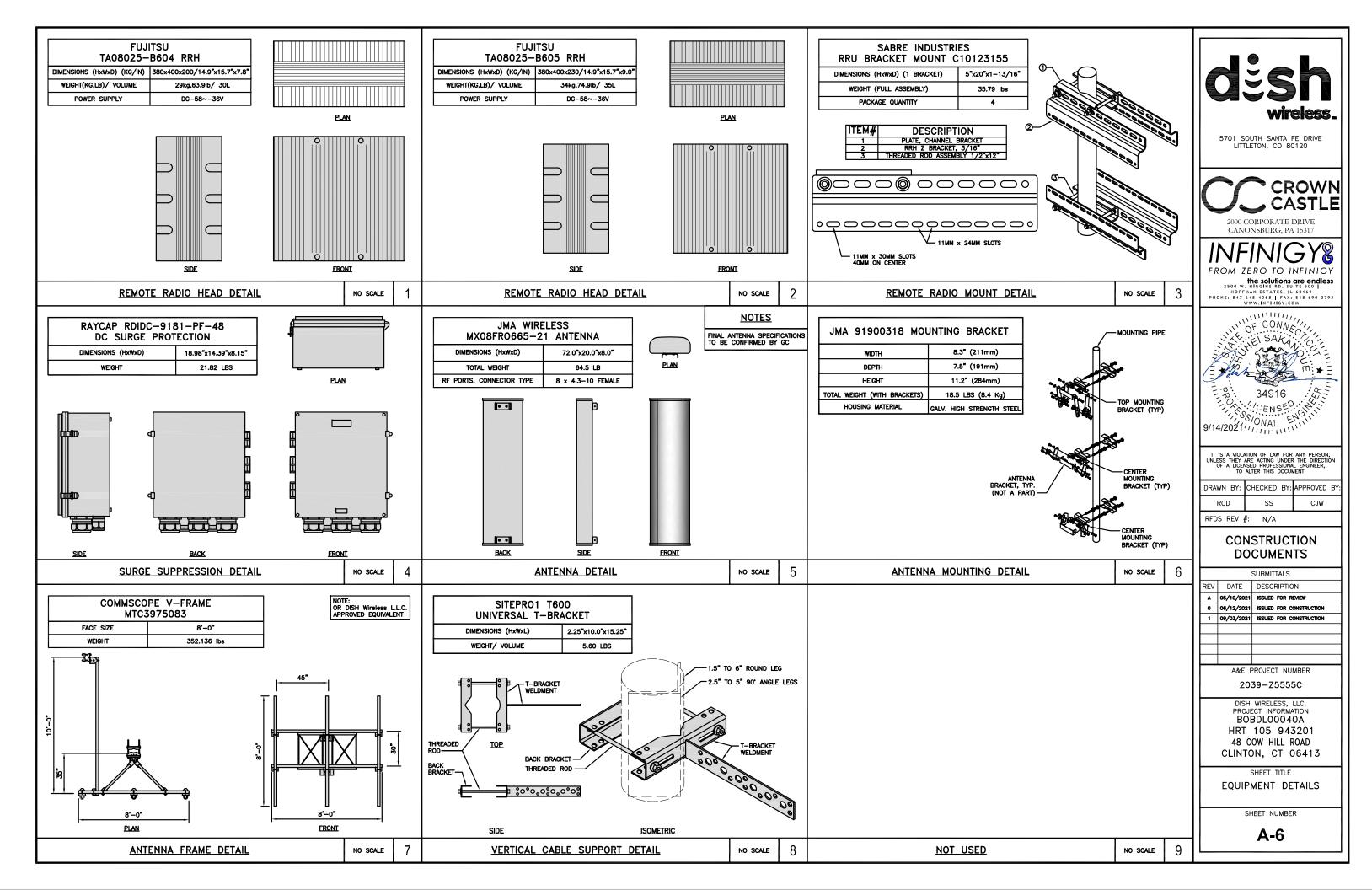
SHEET TITLE ELEVATION, ANTENNA

LAYOUT AND SCHEDULE SHEET NUMBER


A-2


6' 12' 8' 4' 0 1/16"=1'-0"


ANTENNA SCHEDULE


NO SCALE

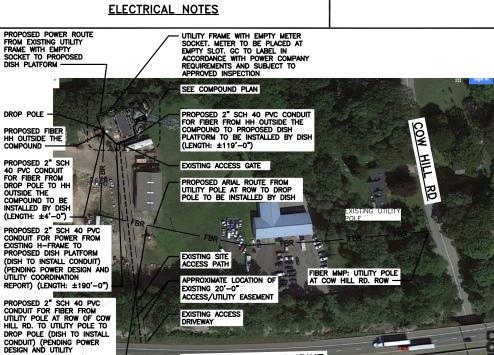
3/4"=1'-0"

- CONTRACTOR SHALL FIELD VERIFY ALL PROPOSED UNDERGROUND UTILITY CONDUIT ROUTE.
- ANTENNAS AND MOUNTS OMITTED FOR CLARITY.
- 5. THE GROUND LEASE PROVIDES BROAD/BLANKET UTILITY RIGHTS. "PWR" AND "FBR" PATH DEPICTED ON A-1 AND E-1 ARE BASED ON BEST AVAILABLE INFORMATION INCLUDING BUT NOT LIMITED TO FIELD VERIFICATION, PRIOR PROJECT DOCUMENTATION AND OTHER REAL PROPERTY RIGHTS DOCUMENTS. WHEN INSTALLING THE UTILITIES PLEASE LOCATE AND FOLLOW EXISTING PATH. IF EXISTING PATH IS NOT AN OPTION, PLEASE NOTIFY CROWN CASTLE REAL ESTATE AS FURTHER COORDINATION MAY BE NEEDED.

ANTENNA (TYP)

EXISTING

BRIDGE (TYP.)


10'-0"x20' SHELTER

9'-11"

6'-10"

DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING $\pm 24V$ and $\pm 48V$ conductors. RED MARKINGS SHALL IDENTIFY $\pm 24V$ and blue markings shall identify $\pm 48V$.

- CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
- ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS.
- 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
- CONDUIT ROUGH—IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS.
 VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
- 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
- 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
- 7. CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
- 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
- INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250.
 THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL
 DISCONNECT SWITCHES, AND EQUIPMENT CABINETS.
- 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.
- 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT.
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS.
- 13. FIBER ROUTE IS PRELIMINARY, FINAL FIBER ROUTE TO BE DETERMINED ONCE UCR (UTILITY COORDINATION REPORT) HAS BEEN FINALIZED.

CONNECTICUT TURNPIKE

DISH WIRELESS, LLC. PROJECT INFORMATION BOBDL00040A HRT 105 943201 48 COW HILL ROAD CLINTON, CT 06413

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE

CANONSBURG, PA 15317

INFINIGY8

FROM ZERO TO INFINIGY

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

OF CONVECTION SAKAN COMMENTAL SAKAN COMMENTAL

34916

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY

CONSTRUCTION

DOCUMENTS

SUBMITTALS.

REV DATE DESCRIPTION

A 05/10/2021 ISSUED FOR REVIEW

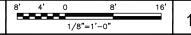
0 06/12/2021 ISSUED FOR CONSTRUCTION

1 09/03/2021 ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER

2039-Z5555C

9/14/2021


CROWN CASTLE

SHEET TITLE

ELECTRICAL/FIBER ROUTE PLAN AND NOTES

SHEET NUMBER

E-1

00' 50' 200 1"=100

- PROPOSED 2" SCH 40 PVC
CONDUIT FOR FIBER FROM
UTILITY POLE AT ROW OF COW
HILL RD. TO UTILITY POLE TO
DROP POLE (DISH TO INSTALL
CONDUIT) (PENDING POWER
DESIGN AND UTILITY
COORDINATION REPORT)
(FENCTH: +872'_OT) (LENGTH: ±874'-0")

PROPOSED FIBER HH OUTSIDE THE COMPOUND

13'-0"

- PWR[‡] EXISTING UTILITY H-FRAME (TYP.)

☑ DISH WIRELESS, LLC. TO

SUTILIZE EXISTING METER
ON EXISTING H-FRAME

BOX (TYP)

EXISTING UTILITY

EXISTING VENT (TYP.) -

EXISTING CHAIN-LINK FENCE

GATE

PROPOSED 2" SCH 40 PVC CONDUIT FOR FIBER FROM DROP POLE TO HH OUTSIDE THE COMPOUND TO BE INSTALLED BY DISH

EXISTING 500 GALLON

4'-0"x8-'0" PAD -

UTILITY ROUTE PLAN

COMPOUND AREA

113'-0"

COMPOUND AREA

19'-1"

- FXISTING 1084

SQ FT FND PAI

FYISTING

CARINET (TYP)

FXISTING 8'-0'

PROPOSED 2" SCH 40 PVC CONDUIT FOR POWER FROM EXISTING H-FRAME TO PROPOSED DISH PLATFORM

(DISH TO INSTALL CONDUIT)
(PENDING POWER DESIGN AND UTILITY COORDINATION

REPORT) (LENGTH: ±190'-0")

- PROPOSED 2" SCH 40 PVC CONDUIT FOR FIBER FROM HH OUTSIDE THE COMPOUND TO PROPOSED DISH PLATFORM TO BE INSTALLED BY DISH

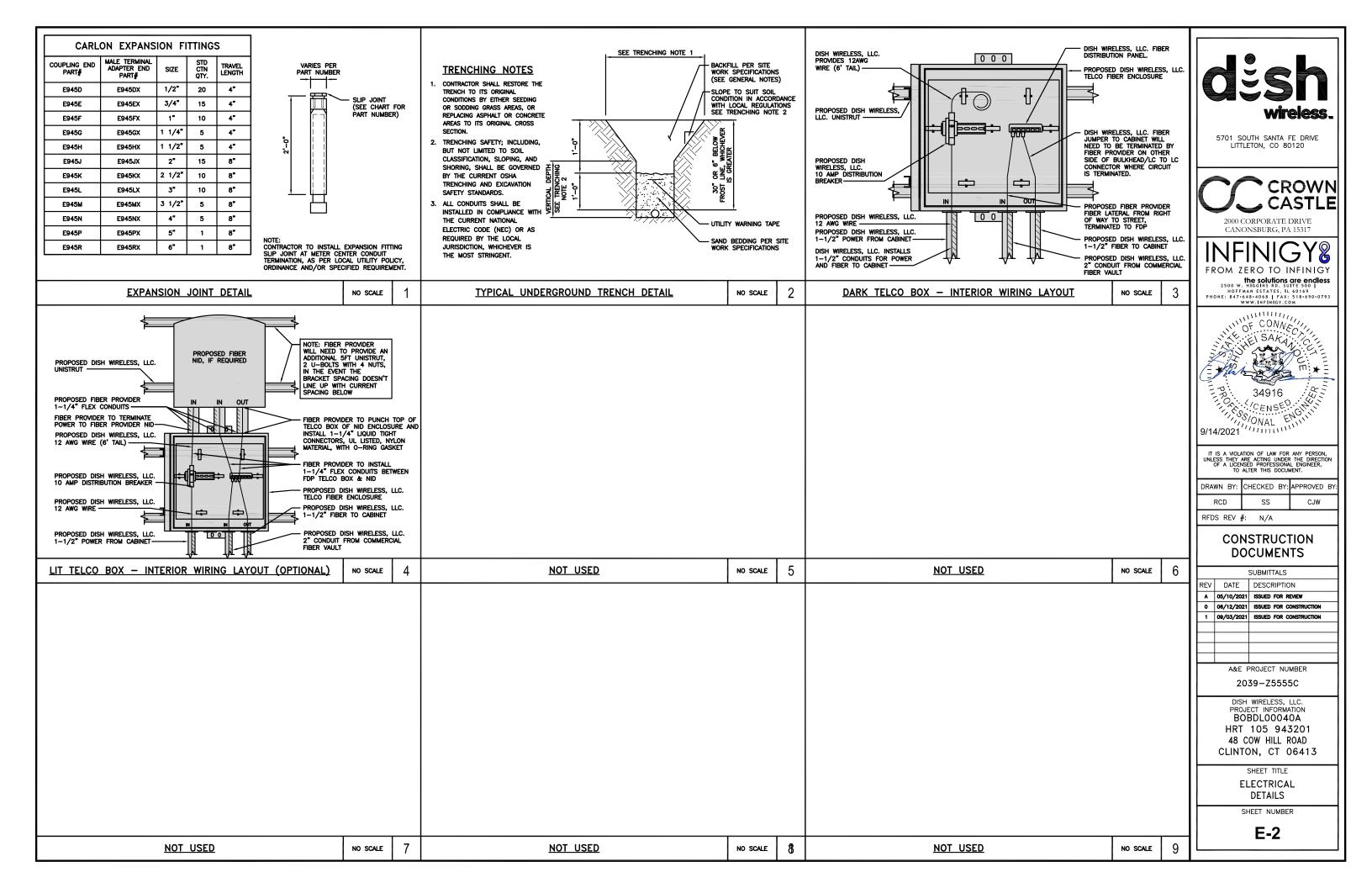
XISTING

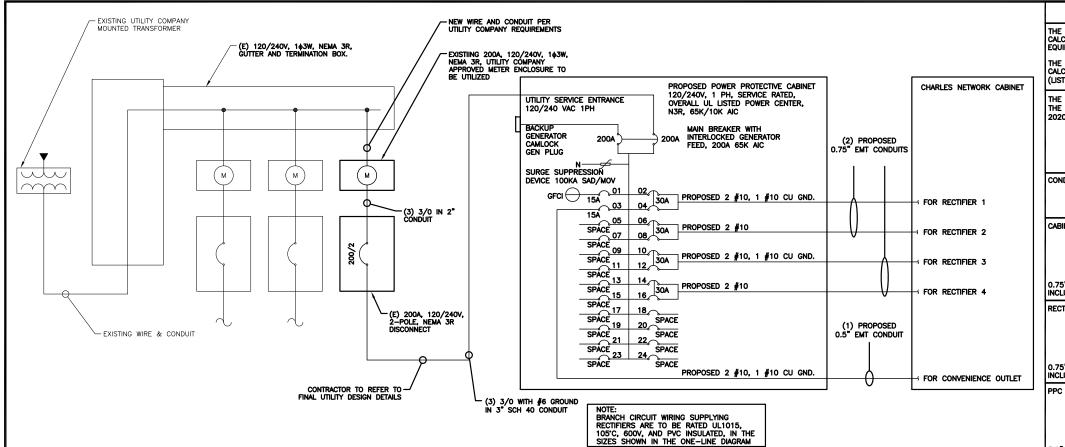
1'-8"x2'-9" PULL BOX —

10'-8"

24'-5"

EXISTING


(22'-6"x48'-6") SHELTER


EXISTING

0

4'-0"x8-'0" GEN PAD —

COORDINATION REPORT)
(LENGTH: ±874'-0") —

NOTES

THE ENGINEER OF RECORD HAS PERFORMED ALL REQUIRED SHORT CIRCUIT CALCULATIONS AND THE AIC RATINGS FOR EACH DEVICE IS ADEQUATE TO PROTECT THE EQUIPMENT AND THE ELECTRICAL SYSTEM.

THE ENGINEER OF RECORD HAS PERFORMED ALL REQUIRED VOLTAGE DROP CALCULATIONS AND ALL BRANCH CIRCUIT AND FEEDERS COMPLY WITH THE NEC (LISTED ON T-1) ARTICLE 210.19(A)(1) FPN NO. 4.

THE (2) CONDUITS WITH (4) CURRENT CARRYING CONDUCTORS EACH, SHALL APPLY THE ADJUSTMENT FACTOR OF 80% PER 2014/17 NEC TABLE 310.15(B)(3)(a) OR

#12 FOR 15A-20A/1P BREAKER: 0.8 x 30A = 24.0A #10 FOR 25A-30A/2P BREAKER: 0.8 x 40A = 32.0A FOR 35A-40A/2P BREAKER: 0.8 x 55A = 44.0A #8 FOR 35A-40A/2P BREAKER: 0.8 x 55A = 44.0A #6 FOR 45A-60A/2P BREAKER: 0.8 x 75A = 60.0A

CONDUIT SIZING: AT 40% FILL PER NEC CHAPTER 9, TABLE 4, ARTICLE 358. 0.75" CONDUIT - 0.213 SQ. IN AREA 2.0" CONDUIT - 1.316 SQ. IN AREA

CABINET CONVENIENCE OUTLET CONDUCTORS (1 CONDUIT): USING THWN-2, CU.

#10 - 0.0211 SQ. IN X 2 = 0.0422 SQ. IN #10 - 0.0211 SQ. IN X 1 = 0.0211 SQ. IN <GROUND

= 0.0633 SQ. IN

0.75" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (3) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

RECTIFIER CONDUCTORS (2 CONDUITS): USING THWN-2, CU.

3.0" CONDUIT - 2.907 SQ. IN AREA

#10 - 0.0211 SQ. IN X 4 = 0.0844 SQ. IN #10 - 0.0211 SQ. IN X 1 = 0.0211 SQ. IN <GROUND = 0.1055 SQ. IN

0.75" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (5) WIRES, INCLUDING GROUND WIRES, AS INDICATED ABOVE.

PPC FEED CONDUCTORS (1 CONDUIT): USING THWN, CU.

3/0 - 0.2679 SQ. IN X 3 = 0.8037 SQ. IN #6 - 0.0507 SQ. IN X 1 = 0.0507 SQ. IN <GROUND TOTAL = 0.8544 SQ. IN

3.0" SCH 40 PVC CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (4) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC ONE-LINE DIAGRAM

NO SCALE

PROPOSED CHARLES PANEL SCHEDULE VOLT AMP (WATTS) LOAD SERVED LOAD SERVED TRIP 180 180 ABB/GE INFINITY RECTIFIER 1 30A CHARLES GFCI OUTLE 2880 ABB/GE INFINITY RECTIFIER 2 ABB/GE INFINIT RECTIFIER 3 30A ABB/GE INFINIT 30A VULTAGE AMPS 180 180 200A MCB, 16, 24 SPACE, 120/240V MB RATING: 65,000 AIC

PANEL SCHEDULE

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG PA 15317

INFINIGY8 FROM ZERO TO INFINIGY

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	BY:
RCD SS CJW	

RFDS REV #: N/A CONSTRUCTION

SUBMITTALS		
REV	DATE	DESCRIPTION
A	05/10/2021	ISSUED FOR REVIEW
0	06/12/2021	ISSUED FOR CONSTRUCTION
1	09/03/2021	ISSUED FOR CONSTRUCTION

DOCUMENTS

A&E PROJECT NUMBER

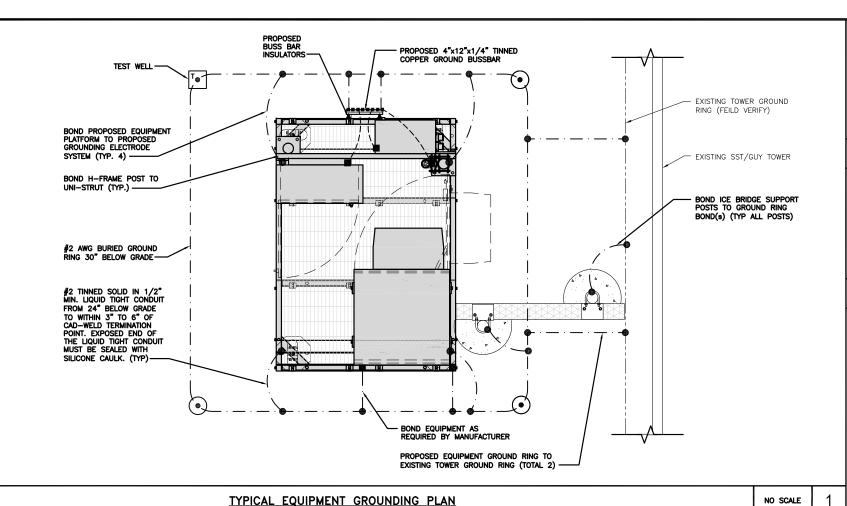
2039-Z5555C

DISH WIRELESS, LLC. PROJECT INFORMATION BOBDL00040A HRT 105 943201 48 COW HILL ROAD CLINTON, CT 06413

SHEET TITLE

ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE

SHEET NUMBER


E-3

NO SCALE

2

NOT USED

NO SCALE

NOTES

I. ANTENNAS AND OVP SHOWN ARE GENERIC AND NOT REFERENCING TO A SPECIFIC MANUFACTURER. THIS LAYOUT IS FOR REFERENCE ONLY EXOTHERMIC CONNECTION

MECHANICAL CONNECTION

GROUND BUS BAR

GROUND ROD

TEST GROUND ROD WITH INSPECTION SLEEVE

#2 AWG STRANDED & INSULATED

#2 AWG SOLID COPPER TINNED

GROUNDING LEGEND

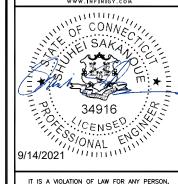
- 1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.
- CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM. GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH WIRELESS, LLC. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS.
- 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED.

GROUNDING KEY NOTES

- EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW GRADE, OR 6 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM THE EXTERIOR WALL OR FOOTING.
- B TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS, AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS.
- © INTERIOR GROUND RING: #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTOR EXTENDED AROUND THE PERIMETER OF THE EQUIPMENT AREA. ALL NON-TELECOMMUNICATIONS RELATED METALLIC OBJECTS FOUND WITHIN A SITE SHALL BE GROUNDED TO THE INTERIOR GROUND RING WITH #6 AWG STRANDED GREEN INSULATED CONDUCTOR.
- D BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS SHALL BE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE CORNERS OF THE BUILDING.
- (E) GROUND ROD: UL LISTED COPPER CLAD STEEL. MINIMUM 1/2" DIAMETER BY EIGHT FEET LONG, GROUND RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. GROUND RODS SHALL BE DRIVEN TO THE DEPTH OF GROUND RING CONDUCTOR.
- F CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GREEN INSULATED COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUCTORS.
- (3) HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH.
- (H) EXTERIOR CABLE ENTRY PORT GROUND BARS; LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING, BOND TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTORS WITH AN EXOTHERMIC WELD AND INSPECTION SLEEVE.
- J TELCO GROUND BAR: BOND TO BOTH CELL REFERENCE GROUND BAR OR EXTERIOR GROUND RING.
- K <u>Frame Bonding</u>: the Bonding Point for telecom equipment frames shall be the ground bus that is not isolated from the equipments metal framework.
- L Interior unit Bonds: Metal Frames, Cabinets and Individual Metallic Units Located with the Area of the Interior Ground Ring Require a #6 awg stranded green insulated copper Bond to the interior Ground Ring.
- M FENCE AND GATE GROUNDING: METAL FENCES WITHIN 7 FEET OF THE EXTERIOR GROUND RING OR OBJECTS BONDED TO THE EXTERIOR GROUND RING SHALL BE BONDED TO THE GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEEDING 25 FEET. BONDS SHALL BE MADE AT EACH GATE POST AND ACROSS GATE OPENINGS.
- N EXTERIOR UNIT BONDS: METALLIC OBJECTS, EXTERNAL TO OR MOUNTED TO THE BUILDING, SHALL BE BONDED TO THE EXTERIOR GROUND RING. USING #2 TINNED SOLID COPPER WIRE
- P ICE BRIDGE SUPPORTS: EACH ICE BRIDGE LEG SHALL BE BONDED TO THE GROUND RING WITH #2 AWG BARE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRIDGE LEG AND BURIED GROUND RING.
- Q DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEMENTS AND INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICE CONTRACTORS VERIEY ALL DC POWER SYSTEMS ARE EQUIPPED WITH A MASTER DC SYSTEM RETURN GROUND CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED TO THE CELL SITE REFERENCE GROUND BAR
- R TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICALLY BONDED TO PROPOSED ANTENNA MOUNT COLLAR.

 REFER TO DISH WIRELESS, LLC. GROUNDING NOTES.

dësh wireless


5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

INFINIGY FROM ZERO TO INFINIGY

CANONSBURG PA 15317

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

ı	DRAWN BY:	CHECKED BY:	APPROVED BY
	RCD	SS	CJW

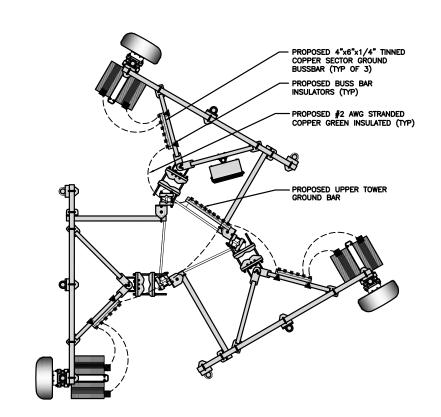
RFDS REV #: N/A

CONSTRUCTION DOCUMENTS

	SUBMITTALS		
REV	DATE	DESCRIPTION	
A	A 05/10/2021 ISSUED FOR REVIEW		
0	0 06/12/2021 ISSUED FOR CONSTRUCTION		
1	1 09/03/2021 ISSUED FOR CONSTRUCTION		
	∧ &c = =	DECT NUMBER	

&E PROJECT NUMBER

2039-Z5555C


DISH WIRELESS, LLC.
PROJECT INFORMATION
BOBDL00040A
HRT 105 943201
48 COW HILL ROAD
CLINTON, CT 06413

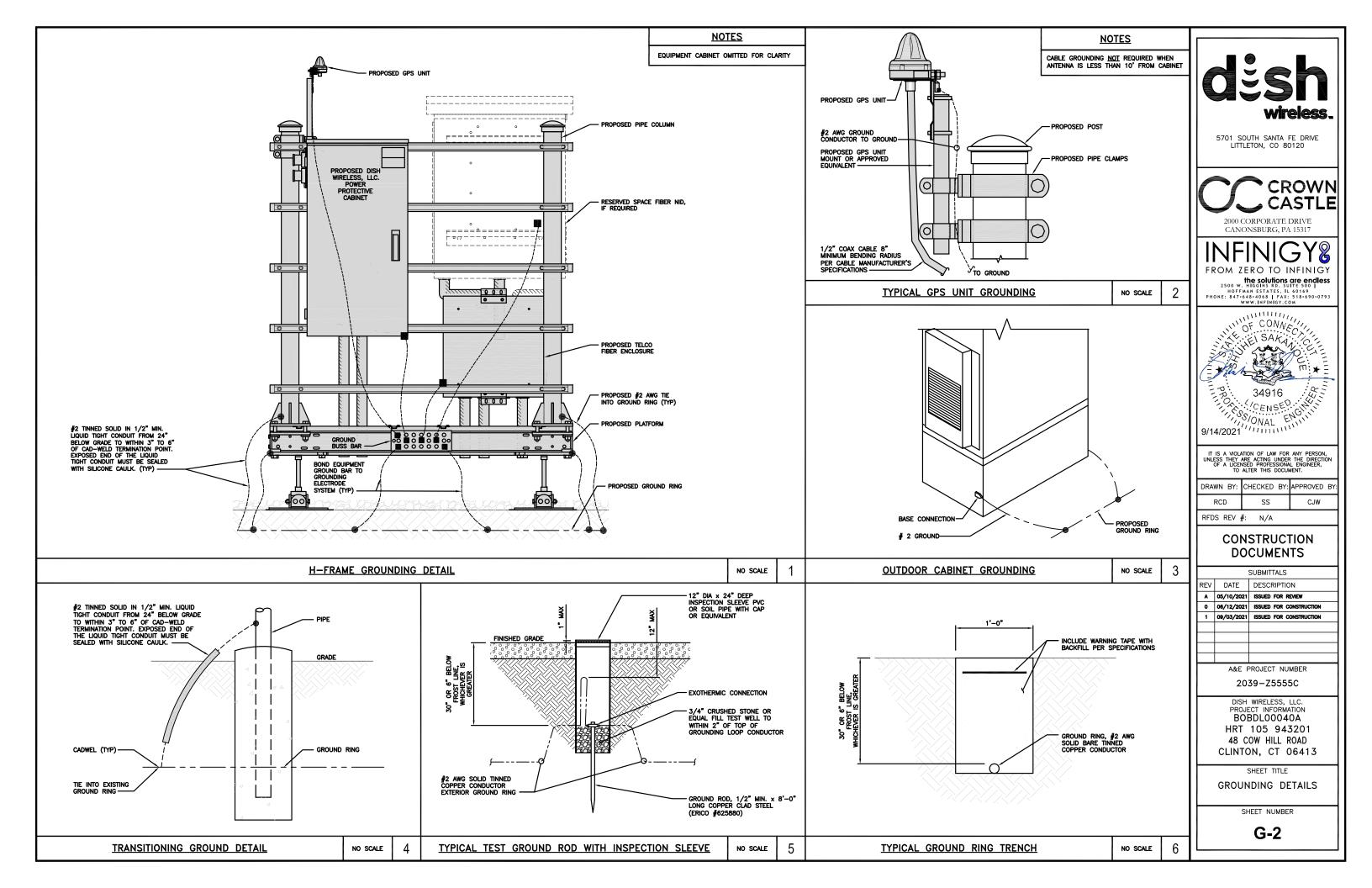
SHEET TITLE

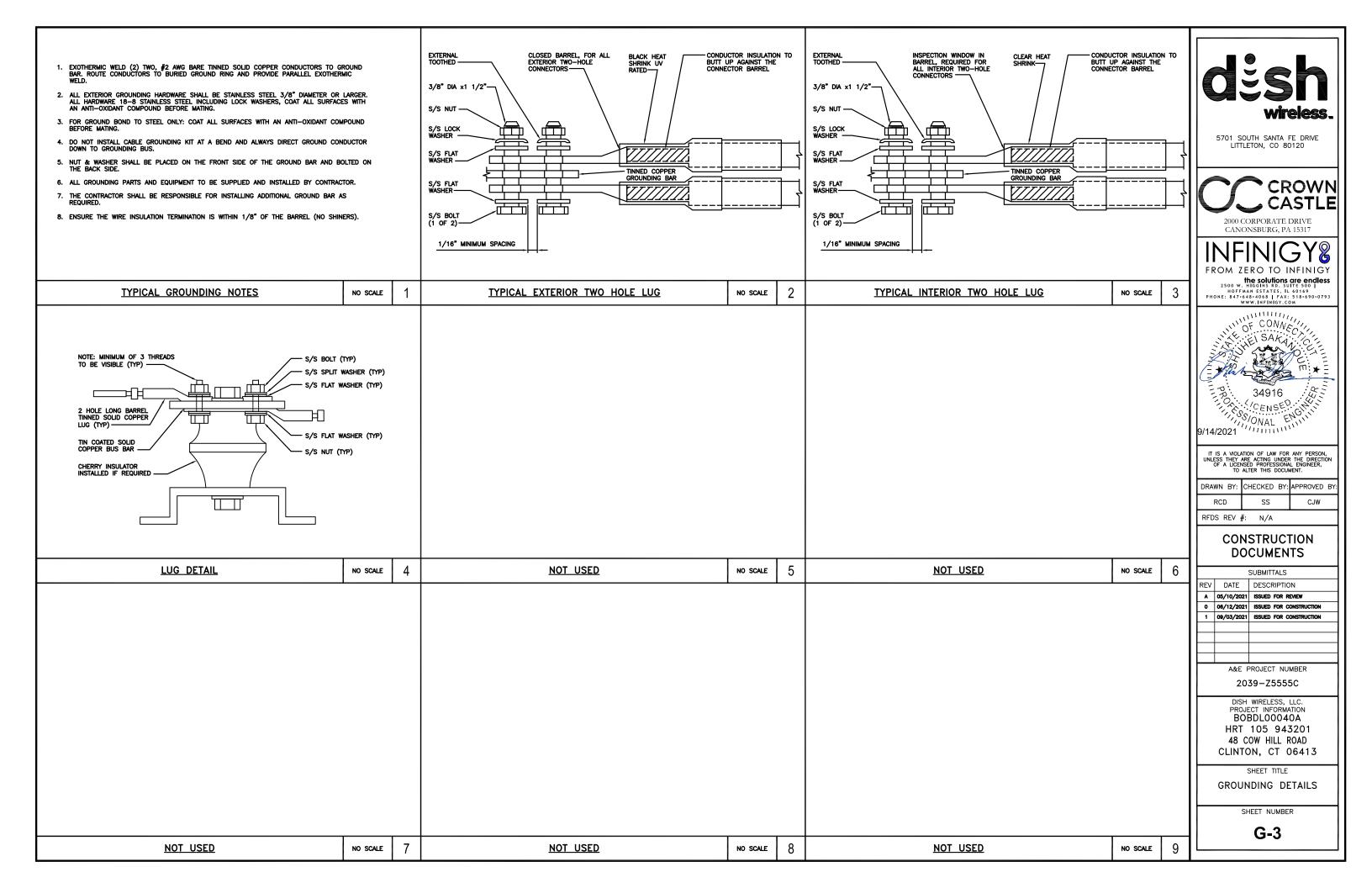
GROUNDING PLANS AND NOTES

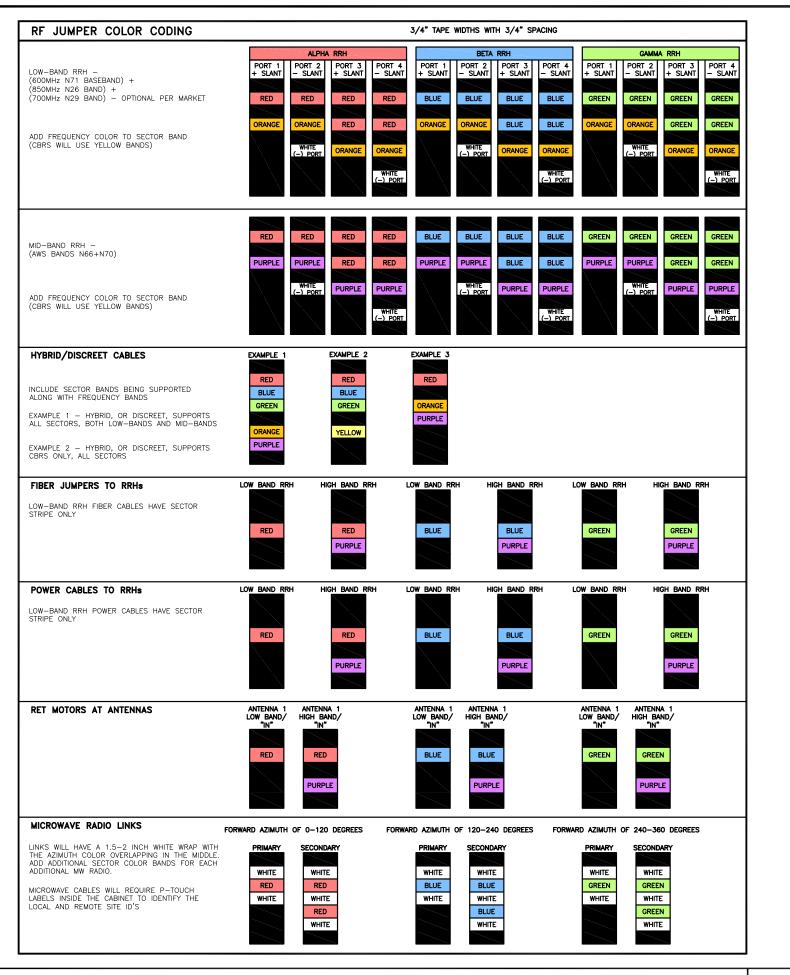
SHEET NUMBER

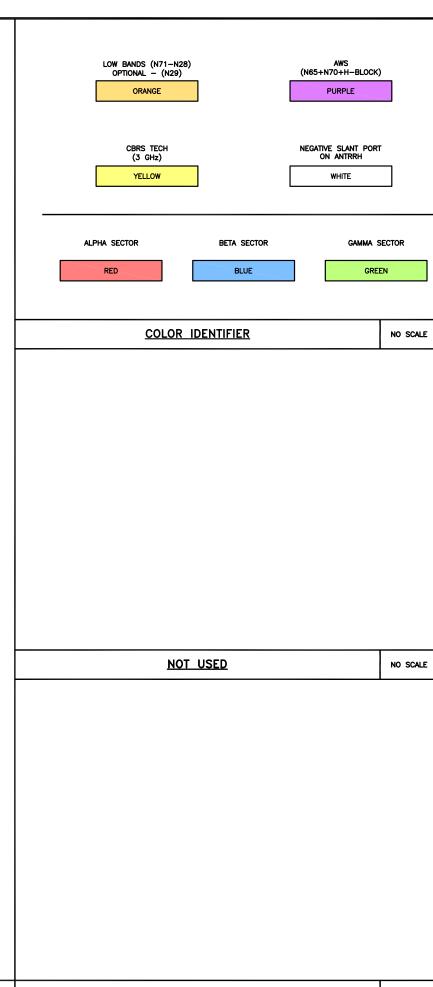
G-1

TYPICAL ANTENNA GROUNDING PLAN


NO SCALE


2


GROUNDING KEY NOTES


i I no

NO SCALE

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY FROM ZERO TO INFINIGY

the solutions are endless
2500 w. Higgins RD. Sulte 500 |
HOFFAM ESTATES, IL 60169
PHONE: 847-648-4088 | FAX: 518-690-0793
www.infinigy.com

2

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
RCD)	SS		CJW	

RFDS REV #: N/A

CONSTRUCTION DOCUMENTS

	SUBMITTALS			
REV	DATE	DESCRIPTION		
A	05/10/2021	ISSUED FOR REVIEW		
0	06/12/2021	ISSUED FOR CONSTRUCTION		
1	09/03/2021	ISSUED FOR CONSTRUCTION		
	Δ&F F	PROJECT NUMBER		

A&E PROJECT NUMBER

2039-Z5555C

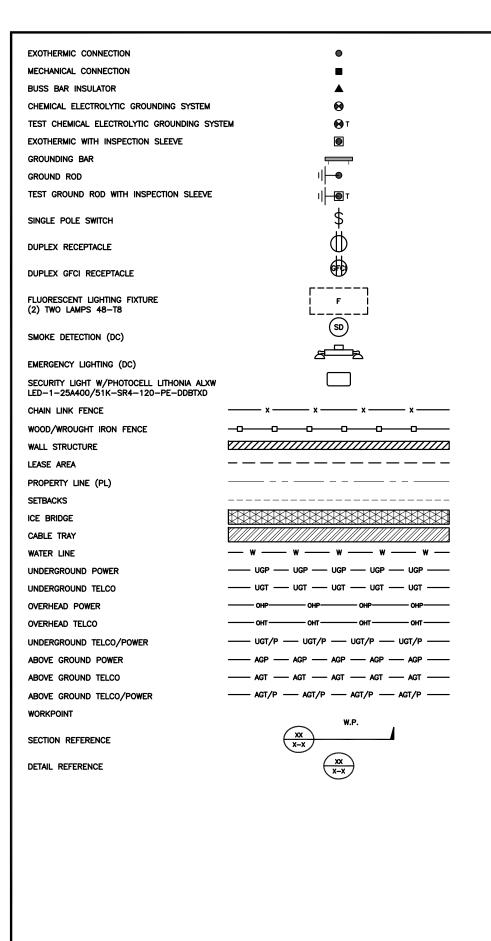
DISH WIRELESS, LLC.
PROJECT INFORMATION
BOBDL00040A
HRT 105 943201
48 COW HILL ROAD
CLINTON, CT 06413

SHEET TITLE

RF CABLE COLOR CODE

SHEET NUMBER

RF-1


RF CABLE COLOR CODES

NO SCALE

NOT USED

NO SCALE

-|| K

AB	ANCHOR BOLT	IN	INCH
ABV	ABOVE	INT	INTERIOR
AC	ALTERNATING CURRENT	LB(S)	POUND(S)
ADDL	ADDITIONAL	LF	LINEAR FEET
AFF	ABOVE FINISHED FLOOR	LTE	LONG TERM EVOLUTION
AFG	ABOVE FINISHED GRADE	MAS	
AGL	ABOVE GROUND LEVEL		MASONRY
AIC	AMPERAGE INTERRUPTION CAPACITY	MAX	MAXIMUM
		MB	MACHINE BOLT
ALUM	ALUMINUM	MECH	MECHANICAL
ALT	ALTERNATE	MFR	MANUFACTURER
ANT	ANTENNA	MGB	MASTER GROUND BAR
APPROX	APPROXIMATE	MIN	MINIMUM
ARCH	ARCHITECTURAL	MISC	MISCELLANEOUS
ATS	AUTOMATIC TRANSFER SWITCH	MTL	METAL
AWG	AMERICAN WIRE GAUGE	MTS	MANUAL TRANSFER SWITCH
BATT	BATTERY	MW	MICROWAVE
BLDG	BUILDING	NEC	NATIONAL ELECTRIC CODE
BLK	BLOCK	NM	NEWTON METERS
BLKG	BLOCKING	NO.	
BM	BEAM	_	NUMBER
BTC	BARE TINNED COPPER CONDUCTOR	#	NUMBER
		NTS	NOT TO SCALE
BOF	BOTTOM OF FOOTING	OC	ON-CENTER
CAB	CABINET	OSHA	OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION
CANT	CANTILEVERED	OPNG	OPENING
CHG	CHARGING	P/C	PRECAST CONCRETE
CLG	CEILING	PCS	PERSONAL COMMUNICATION SERVICES
CLR	CLEAR	PCU	PRIMARY CONTROL UNIT
COL	COLUMN		
COMM	COMMON	PRC	PRIMARY RADIO CABINET
CONC	CONCRETE	PP	POLARIZING PRESERVING
CONSTR	CONSTRUCTION	PSF	POUNDS PER SQUARE FOOT
DBL	DOUBLE	PSI	POUNDS PER SQUARE INCH
		PT	PRESSURE TREATED
DC	DIRECT CURRENT	PWR	POWER CABINET
DEPT	DEPARTMENT	QTY	QUANTITY
DF	DOUGLAS FIR	RAD	RADIUS
DIA	DIAMETER	RECT	RECTIFIER
DIAG	DIAGONAL	REF	REFERENCE
DIM	DIMENSION	REINF	
DWG	DRAWING		REINFORCEMENT
DWL	DOWEL	REQ'D	REQUIRED
DWL			
		RET	REMOTE ELECTRIC TILT
EA	EACH	ret Rf	REMOTE ELECTRIC TILT RADIO FREQUENCY
EA EC	EACH ELECTRICAL CONDUCTOR		
EA EC EL.	EACH ELECTRICAL CONDUCTOR ELEVATION	RF	RADIO FREQUENCY
EA EC EL. ELEC	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL	RF RMC	RADIO FREQUENCY RIGID METALLIC CONDUIT
EA EC EL. ELEC EMT	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING	RF RMC RRH RRU	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT
EA EC EL. ELEC	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER	RF RMC RRH RRU RWY	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY
EA EC EL. ELEC EMT	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING	RF RMC RRH RRU RWY SCH	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE
EA EC EL. ELEC EMT ENG	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER	RF RMC RRH RRU RWY SCH SHT	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET
EA EC EL. ELEC EMT ENG	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL	RF RMC RRH RRU RWY SCH SHT SIAD	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE
EA EC EL. ELEC EMT ENG EQ EXP	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION	RF RMC RRH RRU RWY SCH SHT SIAD SIM	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR
EA EC EL. ELEC EMT ENG EQ EXP EXT	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR	RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION
EA EC EL. ELEC EMT ENG EQ EXP EXT EW	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY	RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE
EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR	RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL
EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB FF	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE	RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE
EA EC ELL ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIF	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME	RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL
EA EC ELL ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIF	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED)	RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD
EA EC ELL ELEC EMT ENG EQ EXP EXT FAB FF FG FIF FIN FLR	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR	RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL
EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIF FIN FLR FDN	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION	RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY
EA EC ELL ELEC EMT ENG EQ EXP EXT FAB FF FG FIF FIN FLR	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE	RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS
EA EC EL. ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIF FIN FLR FDN	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION	RF RMC RRH RRU RWY SCH SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL
EA EC ELL ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIIF FIN FLR FDN FOC	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE	RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA
EA EC ELL ELEC EMT ENG EQ EXT EW FAB FF FG FIF FIN FLR FDN FOC FOM	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY	RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB
EA EC ELL ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIF FIN FOC FOM FOS	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD	RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TN TOA TOC TOF	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION
EA EC ELL ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIF FIN FOC FOM FOS FOW	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FLOOR FLOOR FLOOR FLOOR FLOOR FLOOR FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL	RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TN TOA TOC TOF TOP	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF PLATE (PARAPET)
EA EC ELL ELEC EMT ENG EQ EXP EXT EW FAB FF FG FII FIN FOC FOM FOS FOW FS	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT	RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TO SRH TH TO	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL
EA EC ELL ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIF FIN FLR FON FOC FOS FOW FS FT FTG	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING	RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TN TOA TOC TOF TOP	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF PLATE (PARAPET)
EA EC ELL ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIIF FIN FLR FDN FOC FOM FOS FT FT FTG GA	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE	RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TO SRH TH TO	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL
EA EC ELL ELEC EMT ENG EQ EXT EW FAB FF FG FIF FIN FOC FOM FOS FOW FS FT FTG GA GEN	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR	RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TO	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF STEEL TOP OF STEEL TOP OF STEEL
EA EC ELL ELEC EMT ENG EQ EXT EW FAB FF FG FIF FIN FOC FOM FOS FOW FS FT GA GEN GFCI	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER	RF RMC RRH RRU RWY SCH SIAD SIM SPEC SQ SS STD THK TIMA TN TOA TOC TOF TOP TOS TOW TVSS	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FULTE (PARAPET) TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION
EA EC ELL ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIN FOC FOM FOS FOW FS FT GGA GGEN GFCI GLB	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM	RF RMC RRH RRU RWY SCH SIAD SIM SPEC SQ SS STD THK TMA TN TOA TOC TOF TOP TOS TOW TVSS TYP	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL
EA EC ELL ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIN FOC FOM FOS FOW FS FT FG GA GGFCI GLB GLV	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED	RF RMC RRH RRU RWY SCH SIM SPEC SQ SS STD THK TMA TN TOA TOC TOF TOP TOS TOW TVSS TYP UG	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND
EA EC ELL ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIN FOC FOM FOS FOW FS FT FT G G G EN G G FC I G I B C I B	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FL	RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UL UNO	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF WILL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE
EA EC ELL ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIF FIN FOC FOM FOS FOW FS FT FT GA GEN GCLV GPS GND	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED	RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UL UNO UMTS	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM
EA EC ELL ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIN FOC FOM FOS FOW FS FT FT G G G EN G G FC I G I B C I B	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FL	RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UL UNO UMTS UPS	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT)
EA EC ELL ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIF FIN FOC FOM FOS FOW FS FT FT GA GEN GCLV GPS GND	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND	RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UL UNO UMTS UPS VIF	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNILESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD
EA EC ELL ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIIF FIN FLR FDN FOC FOM FOS FT FTG GA GEN GFCI GLB GLV GPS GND GSM	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF STU	RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UL UNO UMTS UPS	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT)
EA EC ELL ELEC EMT ENG EQ EXP EXT EW FAB FF FG FIF FIN FLR FDN FOC FOM FOS FOW FS FT FTG GA GEN GFCI GLB GLV GPS GND GSM HDG	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED	RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS STD STL TEMP THK TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UL UNO UMTS UPS VIF	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNILESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD
EA EC ELL ELEC EMT ENG EQ EXT EW FAB FF FG FIF FIN FOC FOM FOS FOW FS FT FTG GA GEN GFCI GLB GLV GPS GND GSM HDG HDR HGR	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED HEADER	RF RMC RRH RRU RWY SCH SIAD SIM SPEC SQ SS STI TEMP THK TMA TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UL UMO UMTS UPS VIF W	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF AUTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FLATE (PARAPET) TOP OF STEEL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNIESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD WIDE
EA EC ELL ELEC EMT ENG EQ EXT EW FAB FF FG FIF FIN FOC FOM FOS FOW FS FT GA GEN GFCI GLB GLV GPS GND GRSM HDG HDR HGR HVAC	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED HEADER HANGER	RF RMC RRH RRU RWY SCH SIAD SIM SPEC SQ SS STI TEMP THK TMA TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UL UMO UMTS UPS VIF W W/	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNICERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD WIDE WITH
EA EC ELL ELEC EMT ENG EQ EXT EW FAB FF FG FIF FIN FOC FOM FOS FOW FS FT FTG GA GEN GFCI GLB GLV GPS GND GSM HDG HDR HGR	EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED HEADER	RF RMC RRH RRU RWY SCH SIM SPEC SQ SS STI TEMP THK TMA TN TOA TOC TOF TOS TOW TVSS TYP UG UL UNO UMTS UPS VIF W W/ WD	RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD WIDE WITH WOOD

ANCHOR BOLT

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY FROM ZERO TO INFINIGY

the solutions are endless
2500 w. HIGGINS RD. SUITE 500 |
HOFFAMN ESTATES, LL 60169
PHONE: 847-648-4088 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
RCD)	SS		CJW	

RFDS REV #: N/A

CONSTRUCTION DOCUMENTS

		SUBMITTALS
REV	DATE	DESCRIPTION
A	05/10/2021	ISSUED FOR REVIEW
0	06/12/2021	ISSUED FOR CONSTRUCTION
1	09/03/2021	ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER

2039-Z5555C

DISH WIRELESS, LLC.
PROJECT INFORMATION
BOBDLO0040A
HRT 105 943201
48 COW HILL ROAD
CLINTON, CT 06413

SHEET TITLE

LEGEND AND ABBREVIATIONS

SHEET NUMBER

GN-1

LEGEND

ABBREVIATIONS

SITE ACTIVITY REQUIREMENTS:

- 1. NOTICE TO PROCEED NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH WIRELESS, LLC, AND TOWER OWNER NOC & THE DISH WIRELESS, LLC, AND TOWER CONSTRUCTION MANAGER.
- 2. "LOOK UP" DISH WIRELESS, LLC. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM TS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH WIRELESS, LLC. AND DISH WIRELESS, LLC. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

- 3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
- 4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELESS, LLC. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).
- 5. ALL SITE WORK TO COMPLY WITH DISH WIRELESS, LLC. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH WIRELESS, LLC. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
- 6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH WIRELESS, LLC. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.
- 11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
- 12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIRELESS, LLC. AND TOWER OWNER, AND/OR LOCAL UTILITIES.
- 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
- 15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
- 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.
- 18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.
- 22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH WIRELESS, LLC.

TOWER OWNER:TOWER OWNER

- 2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
- 3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.
- 4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.
- 5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.
- 6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION
- 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.
- 12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH WIRELESS, LLC. AND TOWER OWNER
- 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CANONSBURG, PA 15317

INFINICY FROM ZERO TO INFINIGY the solutions are encless

The solutions are enalless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COD

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

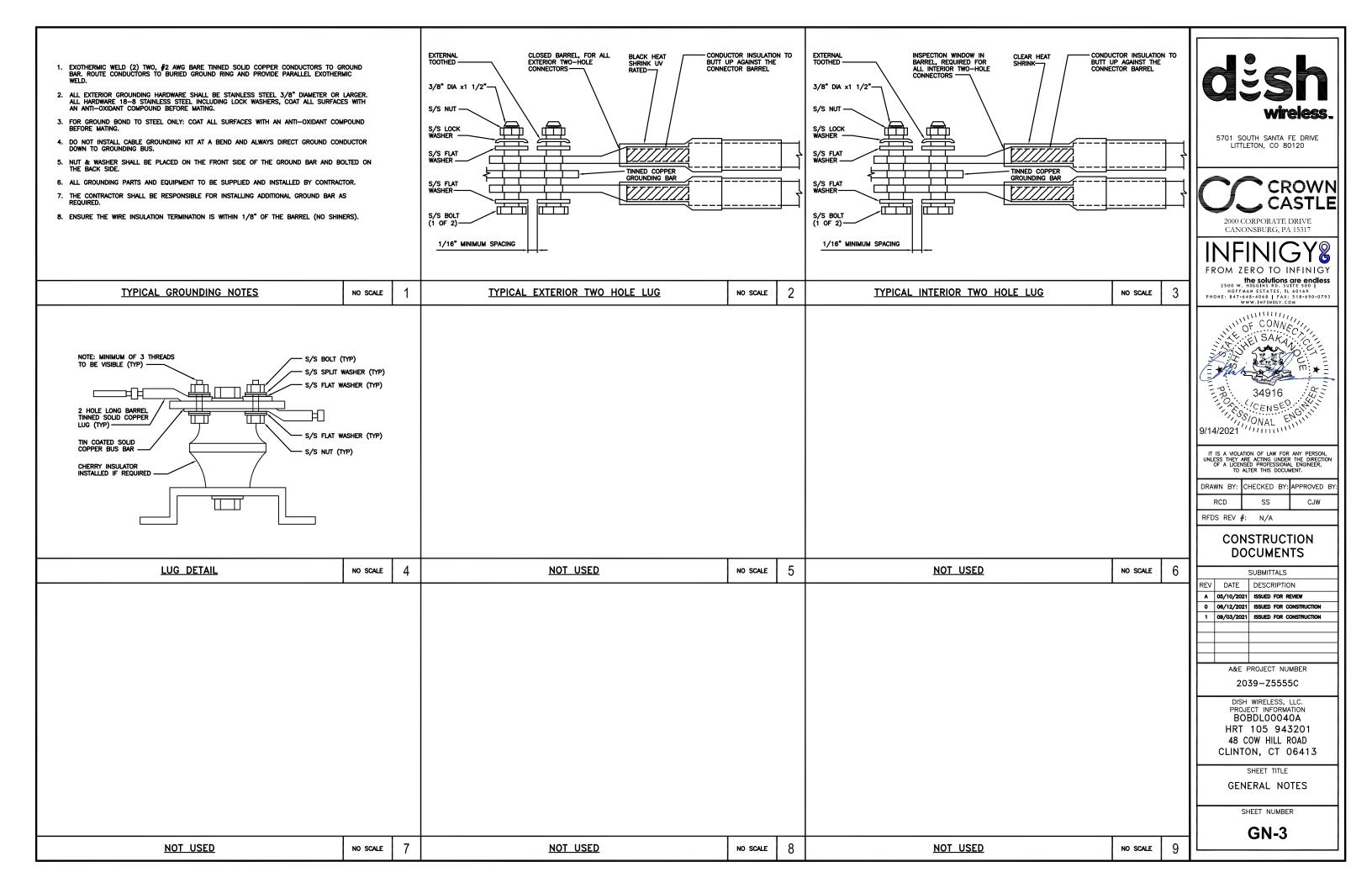
DRAWN BY: CHECKED BY: APPROVED BY:

RCD SS CJW

RFDS REV #: N/A

CONSTRUCTION DOCUMENTS

DISH WIRELESS, LLC.
PROJECT INFORMATION
BOBDL00040A
HRT 105 943201
48 COW HILL ROAD
CLINTON, CT 06413


2039-Z5555C

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GN-2

GROUNDING NOTES:

- 1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 2. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
- 4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
- 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
- 8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.
- 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
- COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND RAR.
- 15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.
- 19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
- 21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/O COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY FROM ZERO TO INFINIGY

The solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN BY:	CHECKED	BY:	APPROVED	B,
	RCD	SS		CJW	
	RFDS REV ;	#: N/A			

CONSTRUCTION

	SUBMITTALS					
REV	DESCRIPTION					
A	A 05/10/2021 ISSUED FOR REVIEW 0 06/12/2021 ISSUED FOR CONSTRUCTION 1 09/03/2021 ISSUED FOR CONSTRUCTION					
0						
1						
	A&F DPO IFCT NUMBER					

DOCUMENTS

A&E PROJECT NUMBER

2039-Z5555C

DISH WIRELESS, LLC.
PROJECT INFORMATION
BOBDL00040A
HRT 105 943201
48 COW HILL ROAD
CLINTON, CT 06413

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GN-4

Exhibit D

Structural Analysis Report

Date: August 21, 2021

Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 (724) 416-2000

Subject: Structural Analysis Report

Carrier Designation: **DISH Network Co-Locate**

> Site Number: BOBDL00040A Site Name: CT-CCI-T-806363

Crown Castle Designation: **BU Number:** 806363

> Site Name: HRT 105 943201

JDE Job Number: 645647 **Work Order Number:** 2010266 **Order Number:** 553394 Rev. 0

Engineering Firm Designation: **Crown Castle Project Number:** 2010266

Site Data: 48 COW HILL ROAD, CLINTON, MIDDLESEX County, CT

Latitude 41° 17' 20.2", Longitude -72° 32' 18.5"

212.625 Foot - Self Support Tower

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Proposed Equipment Configuration

Sufficient Capacity

This analysis has been performed in accordance with the 2018 Connecticut State Building Code based upon an ultimate 3-second gust wind speed of 130 mph. Applicable Standard references and design criteria are listed in Section 2 - "Analysis Criteria".

Structural analysis prepared by: Michael Lopienski

Respectfully submitted by:

Digitally signed by Maham Barimani 54te;,2021.08.22 11:52:28

Maham Barimani, P.E.

Senior Project Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity - LC5
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 212.625 ft Self Support tower designed by ROHN.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Wind Speed: 130 mph

Exposure Category:BTopographic Factor:1Ice Thickness:1.5 inWind Speed with Ice:50 mphService Wind Speed:60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Classatian	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)									
		3	fujitsu	TA08025-B604											
		3	fujitsu	TA08025-B605											
118.0	118.0	118.0	118.0	118.0	118.0	118.0	118.0	118.0	118.0	118.0	3	jma wireless	MX08FRO665-20 w/ Mount Pipe	1	1-1/2
		1	raycap	RDIDC-9181-PF-48											
		1 tower mounts Commscope MTC3975083 (3)													

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	andrew	SBNHH-1D65B w/ Mount Pipe		
		6	antel	LPA-80080/6CF w/ Mount Pipe		
		3	commscope	CBC1923T-DS-43		
208.0	209.0	6	commscope	JAHH-65B-R3B w/ Mount Pipe	2	1-5/8
200.0		2	rfs celwave	DB-B1-6C-12AB-0Z		1-3/6
		3	samsung telecom	RFV01U-D1A		
		3	samsung telecom	RFV01U-D2A		
	208.0	1	tower mounts	Sector Mount [SM 510-3]		
	199.0	1	tower mounts	Sector Mount [SM 505-3]		
		3	alcatel lucent	1900MHz RRH (65MHz)		
		3	alcatel lucent	800MHz 2X50W RRH W/FILTER		
199.0	198.0	3	alcatel lucent	TD-RRH8x20-25	4	1-1/4
	130.0	3	rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe		
		3	rfs celwave	APXVTM14-C-120 w/ Mount Pipe		
		6	adc	DUAL BAND 800/1900 FULL BAND MASTHEAD	2	13/16
189.0	190.0	6	andrew	SBNHH-1D65A w/ Mount Pipe	2 4	3/8 3/4
		3	andrew	SBNHH-1D65A w/ Mount Pipe	12	1-5/8
		3	ericsson	RRUS 11		. 3,6

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	ericsson	RRUS 32		
		3	ericsson	RRUS 32 B2		
		3	ericsson	RRUS 32 B66		
		3	powerwave technologies	7020.00		
		3	powerwave technologies	7770.00 w/ Mount Pipe	-	
		2	raycap	DC6-48-60-18-8F		
	189.0	1	tower mounts	Sector Mount [SM 510-3]		
183.0	183.0	3	rfs celwave	APXV18-206517LS		
103.0	103.0	1	tower mounts	Pipe Mount [PM 601-3]	_	_
		2		HPD2-23		
175.0	179.0	2	tower mounts (crown)	6' x 2" Mount Pipe	12	1-1/4
	176.0	12	decibel	DB844H90E-XY w/ Mount Pipe		
1	175.0	1	tower mounts	Sector Mount		
	173.0	1	rfs celwave	1151-3		
167.0	167.0	1	tower mounts	Side Arm Mount [SO 306-1]	1	7/8
	160.0	1	sinclair	SD310-HL		
164.0	173.0	1	rfs celwave	1151-3	1	7/8
104.0	164.0	1	tower mounts	Side Arm Mount [SO 306-1]	· I	110
147.0	153.0	1	rfs celwave	1151-3	4	7/0
147.0	147.0	1	tower mounts	Side Arm Mount [SO 306-1]	1	7/8
145.0	148.0	1	sinclair	SD310-HL	4	7/0
145.0	145.0	1	tower mounts	Side Arm Mount [SO 306-1]	1	7/8
		3	ericsson	ERICSSON AIR 21 B2A B4P w/ Mount Pipe		
	140.0	3	ericsson	ERICSSON AIR 21 B4A B2P w/ Mount Pipe	6	1-1/4
139.0	140.0	3	ericsson	KRY 112 144/1	3	1-3/8
		3	ericsson	RADIO 4449 B12/B71	9	1-5/8
		3	rfs celwave	APXVAARR24_43-U-NA20 w/ Mount Pipe		
	139.0	1		(3) Site Pro 1 VFA12-HD		
128.0	132.0	1	rfs celwave	1142-2C	1	7/8
120.0	128.0	1		Side Arm Mount	'	110
51.0	51.0	1		Side Arm Mount	1	1/2
31.0	01.0	1	gps	GPS_A	'	"~

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	262276	CCISITES
4-POST-MODIFICATION INSPECTION	2146143	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	262273	CCISITES
4-TOWER MANUFACTURER DRAWINGS	262274	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	2169576	CCISITES

3.1) Analysis Method

tnxTower (version 8.0.9.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Flevation (ff)		Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
T1	212.625 - 202.458	Leg	ROHN 2.5 STD	2	-4.854	59.463	8.2	Pass
T2	202.458 - 182.292	Leg	ROHN 3 EH	28	-23.458	98.582	23.8	Pass
Т3	182.292 - 162.104	Leg	ROHN 4 EH	69	-68.578	167.222	41.0	Pass
T4	162.104 - 141.896	Leg	ROHN 5 EH	107	-99.947	250.620	39.9	Pass
T5	141.896 - 121.688	Leg	ROHN 6 EHS	146	-126.881	255.080	49.7	Pass
T6	121.688 - 101.479	Leg	ROHN 6 EH	173	-158.665	317.349	50.0	Pass
T7	101.479 - 81.2708	Leg	ROHN 6 EH	200	-188.671	317.349	59.5	Pass
T8	81.2708 - 61	Leg	ROHN 8 EHS	227	-217.042	404.230	53.7	Pass
Т9	61 - 40.6667	Leg	ROHN 8 EHS	254	-244.630	403.942	60.6	Pass
T10	40.6667 - 20.3333	Leg	ROHN 8 EH	281	-257.392	528.398	48.7	Pass
T11	20.3333 - 0	Leg	ROHN 8 EH	314	-283.019	528.520	53.5	Pass
T1	212.625 - 202.458	Diagonal	ROHN 2 STD	12	-2.643	25.020	10.6	Pass
T2	202.458 - 182.292	Diagonal	ROHN 2 STD	38	-7.837	18.418	42.6	Pass
Т3	182.292 - 162.104	Diagonal	ROHN 2 STD	78	-8.155	15.917	51.2	Pass
T4	162.104 - 141.896	Diagonal	ROHN 2 STD	110	-7.736	13.677	56.6	Pass
T5	141.896 - 121.688	Diagonal	ROHN 2.5 STD	156	-11.004	17.101	64.3	Pass
T6	121.688 - 101.479	Diagonal	ROHN 2.5 STD	183	-11.211	14.992	74.8	Pass
T7	101.479 - 81.2708	Diagonal	ROHN 3 STD	210	-11.266	25.935	43.4	Pass

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
T8	81.2708 - 61	Diagonal	ROHN 3 STD	237	-11.166	22.903	48.8	Pass
Т9	61 - 40.6667	Diagonal	ROHN 3 STD	264	-11.969	20.104	59.5	Pass
T10	40.6667 - 20.3333	Diagonal	ROHN 3 STD	303	-16.799	32.714	51.4	Pass
T11	20.3333 - 0	Diagonal	ROHN 3 STD	336	-19.055	31.089	61.3	Pass
T1	212.625 - 202.458	Horizontal	ROHN 1.5 STD	10	-1.846	23.711	7.8	Pass
T2	202.458 - 182.292	Horizontal	ROHN 1.5 STD	37	-4.183	23.646	17.7	Pass
Т3	182.292 - 162.104	Horizontal	ROHN 1.5 STD	76	-5.220	20.100	26.0	Pass
T4	162.104 - 141.896	Horizontal	ROHN 2 STD	109	-5.375	28.570	18.8	Pass
T5	141.896 - 121.688	Horizontal	ROHN 2 STD	154	-6.543	23.772	27.5	Pass
Т6	121.688 - 101.479	Horizontal	ROHN 2 STD	181	-7.287	17.707	41.2	Pass
T7	101.479 - 81.2708	Horizontal	ROHN 2.5 STD	208	-7.767	30.294	25.6	Pass
Т8	81.2708 - 61	Horizontal	ROHN 2.5 STD	235	-8.072	23.656	34.1	Pass
Т9	61 - 40.6667	Horizontal	ROHN 2.5 STD	262	-8.961	18.711	47.9	Pass
T10	40.6667 - 20.3333	Horizontal	ROHN 3 STD	299	-9.125	33,233	27.5	Pass
T11	20.3333 - 0	Horizontal	ROHN 3 STD	332	-10.756	27.041	39.8	Pass
T1	212.625 - 202.458	Top Girt	ROHN 1.5 STD	5	-0.222	23.767	0.9	Pass
T10	40.6667 - 20.3333	Redund Horz 1 Bracing	ROHN 1.5 STD	288	-4.468	13.657	32.7	Pass
T11	20.3333 - 0	Redund Horz 1 Bracing	ROHN 1.5 STD	321	-4.909	11.606	42.3	Pass
T10	40.6667 - 20.3333	Redund Diag 1 Bracing	ROHN 2 STD	289	-4.127	9.252	44.6	Pass
T11	20.3333 - 0	Redund Diag 1 Bracing	ROHN 2 STD	326	-4.240	8.517	49.8	Pass
T10	40.6667 - 20.3333	Bracing	ROHN 1.5 STD	306	-0.044	12.533	0.4	Pass
T11	20.3333 - 0	Redund Hip 1 Bracing Redund Hip	ROHN 1.5 STD	339	-0.045	10.543	0.4	Pass
T10	40.6667 - 20.3333	Diagonal 1 Bracing	ROHN 2.5 STD	309	-0.078	10.900	0.7	Pass
T11	20.3333 - 0	Redund Hip Diagonal 1 Bracing	ROHN 2.5 STD	342	-0.072	9.815	0.7	Pass
T1	212.625 - 202.458	Inner Bracing	L2x2x1/8	16	-0.003	8.802	0.4	Pass
T2	202.458 - 182.292	Inner Bracing	L2x2x1/8	41	-0.005	8.646	0.4	Pass
Т3	182.292 - 162.104	Inner Bracing	L2x2x1/8	80	-0.005	6.373	0.5	Pass
T4	162.104 - 141.896	Inner Bracing	L2x2x1/8	120	-0.006	4.367	0.6	Pass
T5	141.896 - 121.688	Inner Bracing	L2x2x1/8	157	-0.009	3.300	0.7	Pass
Т6	121.688 - 101.479	Inner Bracing	L2 1/2x2 1/2x3/16	184	-0.010	6.951	0.5	Pass
T7	101.479 - 81.2708	Inner Bracing	L3x3x3/16	213	-0.013	9.153	0.6	Pass
T8	81.2708 - 61	Inner Bracing	L3 1/2x3 1/2x1/4	240	-0.015	14.894	0.4	Pass
Т9	61 - 40.6667	Inner Bracing	L3 1/2x3 1/2x1/4	267	-0.015	11.869	0.4	Pass
T10	40.6667 - 20.3333	Inner Bracing	ROHN 3 STD	311	-0.019	31.363	0.3	Pass
T11	20.3333 - 0	Inner Bracing	ROHN 3 STD	345	-0.016	25.662	0.4	Pass
							Summary	
						Leg (T9)	60.6	Pass
						Diagonal (T6)	74.8	Pass
						Horizontal (T9)	47.9	Pass
						Top Girt	0.9	Pass

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
						(T1)		
						Redund Horz 1 Bracing (T11)	42.3	Pass
						Redund Diag 1 Bracing (T11)	49.8	Pass
						Redund Hip 1 Bracing (T11)	0.4	Pass
						Redund Hip Diagonal 1 Bracing (T11)	0.7	Pass
						Inner Bracing (T5)	0.7	Pass
						Bolt Checks	44.5	Pass
						Rating =	74.8	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC5

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	41.9	Pass
1	Base Foundation (Structure)	0	19.8	Pass
1	Base Foundation (Soil Interaction)	0	42.5	Pass

Structure Rating (max from all components) =	74.8%
--	-------

Notes:

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

APPENDIX A TNXTOWER OUTPUT

											8.5	33		212.6 ft				
F	∢				<u>а</u>							2 @ 5.08333	9.0	202.5 ft				
12	ROHN 3 EH					ROHN 1.5 STD					8.54167	3 @ 6.72222	1.4					
T3	ROHN 4 EH		ROHN 2 STD			RC				L2x2x1/8	8.625	3 @ 6.72917	1.8	<u>182.3 ft</u>				
T4	ROHN 5 EH									2	10.7083	3 @ 6.73611	2.3	<u>162.1 ft</u>				
5T	ROHN 6 EHS		<u>P</u>		N.A.		ROHN 2 STD	ΑN	ΑN	N.A.		12.7917		2.6	<u>141.9 ft</u>			
T6		A572-50	ROHN 2.5 STD	A572-50							_	_	L2 1/2x2 1/2x3/16	15.0417	6 @ 10.1042	3.1	<u>121.7 ft</u>	
-11	ROHN 6 EH	Ą		A						L3x3x3/16	17.5417		3.8	<u>101.5 ft</u>				
T8	HS.					ROHN 2.5 STD				L3 1/2x3 1/2x1/4	20.0417	2 @ 10.1354	4.5	<u>81.3 ft</u>				
19	ROHN 8 EHS		ROHN 3 STD								22.6771	2 @ 10.1667	4.7	<u>61.0 ft</u>				
T10	H					TD.	2 6	£	1	0	TD OT:	STD	T)	25.1771	333	5.3	<u>40.7 ft</u>	
H	ROHN 8 EH					ROHN 3 STD	ROHN 1.5 STD	ROHN 2 STD	ROHN 1.5 STD	ROHN 3 STD	27.8333	2 @ 20,3333	5.5	<u>20.3 ft</u>				
				ge			tals	als			30.0417	£	35.7	<u>0.0 ft</u>	V			

SYMBOL LIST

	020		
MARK	SIZE	MARK	SIZE
Α	ROHN 2.5 STD	В	ROHN 1.5 STD

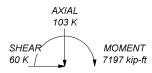
MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572 50	50 kci	65 kei			

TOWER DESIGN NOTES


- Tower is located in Middlesex County, Connecticut.
 Tower designed for Exposure B to the TIA-222-H Standard.
- Tower designed for a 130 mph basic wind in accordance with the TIA-222-H Standard.
 Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.
- 5. Deflections are based upon a 60 mph wind.
- Tower Risk Category II.
 Topographic Category 1 with Crest Height of 0.000 ft
 TIA-222-H Annex S
- 9. TOWER RATING: 74.8%

ALL REACTIONS ARE FACTORED


MAX. CORNER REACTIONS AT BASE:

DOWN: 311 K SHEAR: 36 K

UPLIFT: -250 K SHEAR: 32 K

TORQUE 20 kip-ft 50 mph WIND - 1.500 in ICE

TORQUE 61 kip-ft REACTIONS - 130 mph WIND

Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 Phone: (724) 416-2000 FAX:

	^{Job:} BU# 806869		
	Project:		
7	^{Client:} Crown Castle	, wiLopienski	App'd:
			Scale: NTS
	Path: C:\Work Area\806363\WO:	2010266 - SA\Prod\806363 RPA eri	Dwg No. E-1

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 212.625 ft above the ground line.

The base of the tower is set at an elevation of 0.000 ft above the ground line.

The face width of the tower is 8.500 ft at the top and 30.042 ft at the base.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower is located in Middlesex County, Connecticut.
- Tower base elevation above sea level: 18.950 ft.
- Basic wind speed of 130 mph.
- · Risk Category II.
- Exposure Category B.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.000 ft.
- Nominal ice thickness of 1.500 in.
- Ice thickness is considered to increase with height.
- Ice density of 56.000 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50.000 °F.
- Deflections calculated using a wind speed of 60 mph.
- TIA-222-H Annex S.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in tower member design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: Kes(Fw) = 0.95, Kes(ti) = 0.85.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- ✓ Use Code Safety Factors Guys Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section

√ Secondary Horizontal Braces Leg
Use Diamond Inner Bracing (4 Sided)
SR Members Have Cut Ends
SR Members Are Concentric

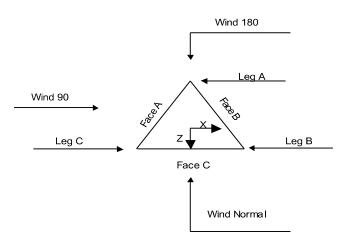
Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination

√ Sort Capacity Reports By Component
Triangulate Diamond Inner Bracing
Treat Feed Line Bundles As Cylinder
Ignore KL/ry For 60 Deg. Angle Legs


Use ASCE 10 X-Brace Ly Rules

- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- √ SR Leg Bolts Resist Compression
 All Leg Panels Have Same Allowable
 Offset Girt At Foundation
- √ Consider Feed Line Torque
- ✓ Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption

Use TIA-222-H Tension Splice Exemption

Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Triangular Tower

Tower	Section	Geometry
		

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	
	ft			ft		ft
T1	212.625-			8.500	1	10.167
	202,458					
T2	202.458-			8.542	1	20.167
	182.292					
T3	182.292-			8.625	1	20.188
	162.104					
T4	162.104-			10.708	1	20.208
	141.896					
T5	141.896-			12.792	1	20.208
	121.688					
Т6	121.688-			15.042	1	20.208
	101.479					
T7	101.479-81.271			17.542	1	20.208
Т8	81.271-61.000			20.042	1	20.271
Т9	61.000-40.667			22,677	1	20.333
T10	40.667-20.333			25.177	1	20.333
T11	20.333-0.000			27.833	1	20.333

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Type	K Brace	Horizontals	Offset	Offset
		, ,	• •	End			
	ft	ft		Panels		in	in
T1	212,625-	5.083	K Brace Down	No	Yes	0.000	0.000
	202.458						
T2	202.458-	6.722	K Brace Down	No	Yes	0.000	0.000
	182.292						
T3	182.292-	6.729	K Brace Down	No	Yes	0.000	0.000
	162.104						

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Girt Offset
	ft	ft		Panels		in	in
T4	162.104- 141.896	6.736	K Brace Down	No	Yes	0.000	0.000
T5	141.896- 121.688	10.104	K Brace Down	No	Yes	0.000	0.000
T6	121.688 - 101.479	10.104	K Brace Down	No	Yes	0.000	0.000
T7	101.479-81.271	10.104	K Brace Down	No	Yes	0.000	0.000
T8	81.271-61.000	10.135	K Brace Down	No	Yes	0.000	0.000
T9	61.000-40.667	10.167	K Brace Down	No	Yes	0.000	0.000
T10	40.667-20.333	20.333	K1 Down	No	Yes	0.000	0.000
T11	20.333-0.000	20.333	K1 Down	No	Yes	0.000	0.000

Tower Section Geometry (cont'd)	Tower	Section	Geometry	(cont'd
--	-------	----------------	----------	---------

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation ft	Type	Size	Grade	Type	Size	Grade
T1 212.625-	Pipe	ROHN 2.5 STD	A572-50	Pipe	ROHN 2 STD	A572-50
202.458	•		(50 ksi)	·		(50 ksi)
T2 202.458-	Pipe	ROHN 3 EH	À572-50	Pipe	ROHN 2 STD	À572-50
182.292	•		(50 ksi)	·		(50 ksi)
T3 182 292-	Pipe	ROHN 4 EH	A572-50	Pipe	ROHN 2 STD	A572-50
162.104	•		(50 ksi)	•		(50 ksi)
T4 162 104-	Pipe	ROHN 5 EH	A572-50	Pipe	ROHN 2 STD	A572-50
141.896	•		(50 ksi)	•		(50 ksi)
T5 141.896-	Pipe	ROHN 6 EHS	À572-50	Pipe	ROHN 2.5 STD	À572-50
121.688			(50 ksi)			(50 ksi)
T6 121.688-	Pipe	ROHN 6 EH	A572-50	Pipe	ROHN 2.5 STD	A572-50
101.479			(50 ksi)			(50 ksi)
T7 101.479-	Pipe	ROHN 6 EH	A572-50	Pipe	ROHN 3 STD	A572-50
81.271			(50 ksi)			(50 ksi)
T8 81.271-	Pipe	ROHN 8 EHS	A572-50	Pipe	ROHN 3 STD	A572-50
61.000			(50 ksi)			(50 ksi)
T9 61.000-	Pipe	ROHN 8 EHS	A572-50	Pipe	ROHN 3 STD	A572-50
40.667			(50 ksi)			(50 ksi)
T10 40.667-	Pipe	ROHN 8 EH	A572-50	Pipe	ROHN 3 STD	A572-50
20.333			(50 ksi)			(50 ksi)
T11 20.333-	Pipe	ROHN 8 EH	A572-50	Pipe	ROHN 3 STD	A572-50
0.000			(50 ksi)			(50 ksi)

Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal
Elevation	of	Type	Size	Grade	Type	Size	Grade
	Mid						
ft	Girts						
T1 212.625-	None	Single Angle		A572-50	Pipe	ROHN 1.5 STD	A572-50
202.458				(50 ksi)			(50 ksi)
T2 202.458-	None	Single Angle		A572-50	Pipe	ROHN 1.5 STD	A572-50
182.292				(50 ksi)			(50 ksi)
T3 182.292-	None	Single Angle		A572-50	Pipe	ROHN 1.5 STD	A572-50
162.104				(50 ksi)	•		(50 ksi)
T4 162.104-	None	Single Angle		A572-50	Pipe	ROHN 2 STD	A572-50
141.896				(50 ksi)			(50 ksi)
T5 141.896-	None	Single Angle		A572-50	Pipe	ROHN 2 STD	A572-50
121.688				(50 ksi)			(50 ksi)
T6 121.688-	None	Single Angle		A572-50	Pipe	ROHN 2 STD	A572-50
101.479		- 0		(50 ksi)	•		(50 ksi)
T7 101.479-	None	Single Angle		A572-50	Pipe	ROHN 2.5 STD	A572-50
81.271		- 0		(50 ksi)	•		(50 ksi)

Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal
Elevation	of	Type	Size	Grade	Type	Size	Grade
	Mid						
ft	Girts						
T8 81.271-	None	Single Angle		A572-50	Pipe	ROHN 2.5 STD	A572-50
61.000				(50 ksi)			(50 ksi)
T9 61.000-	None	Single Angle		A572-50	Pipe	ROHN 2.5 STD	A572-50
40.667				(50 ksi)			(50 ksi)
T10 40.667-	None	Single Angle		A572-50	Pipe	ROHN 3 STD	A572-50
20.333				(50 ksi)			(50 ksi)
T11 20.333-	None	Single Angle		A572-50	Pipe	ROHN 3 STD	A572-50
0.000				(50 ksi)	·		(50 ksi)

Tower	Section	Geometry	(cont'd)
-------	---------	----------	----------

Tower Elevation	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
ft			Grade			
T1 212.625-	Single Angle		A572-50	Equal Angle	L2x2x1/8	A36
202.458			(50 ksi)			(36 ksi)
T2 202.458-	Single Angle		A572-50	Equal Angle	L2x2x1/8	A36
182.292			(50 ksi)			(36 ksi)
T3 182 292-	Single Angle		A572-50	Equal Angle	L2x2x1/8	A36
162.104			(50 ksi)			(36 ksi)
T4 162.104-	Single Angle		A572-50	Equal Angle	L2x2x1/8	A36
141.896			(50 ksi)			(36 ksi)
T5 141.896-	Single Angle		A572-50	Equal Angle	L2x2x1/8	A36
121.688			(50 ksi)			(36 ksi)
T6 121.688-	Single Angle		A572-50	Equal Angle	L2 1/2x2 1/2x3/16	A36
101.479			(50 ksi)			(36 ksi)
T7 101.479-	Single Angle		A572-50	Equal Angle	L3x3x3/16	A36
81.271			(50 ksi)			(36 ksi)
T8 81.271-	Single Angle		A572-50	Equal Angle	L3 1/2x3 1/2x1/4	A572-50
61.000			(50 ksi)			(50 ksi)
T9 61.000-	Single Angle		A572-50	Equal Angle	L3 1/2x3 1/2x1/4	A572-50
40.667			(50 ksi)			(50 ksi)
T10 40 667-	Single Angle		À572-50	Pipe	ROHN 3 STD	À572-50
20.333	- -		(50 ksi)	•		(50 ksi)
T11 20.333-	Single Angle		À572-50	Pipe	ROHN 3 STD	À572-50
0.000	- -		(50 ksi)	•		(50 ksi)

Tower Elevation	Redundant Bracing Grade		Redundant Type	Redundant Size	K Factor
ft					
T10 40.667-	A36	Horizontal (1)	Pipe	ROHN 1.5 STD	1
20.333	(36 ksi)	Diagonal (1)	Pipe	ROHN 2 STD	1
		Hip (1)	Pipe	ROHN 1.5 STD	1
		Hip Diagonal (1)	Pipe	ROHN 2.5 STD	1
T11 20.333-	A36	Horizontal (1)	Pipe	ROHN 1.5 STD	1
0.000	(36 ksi)	Diagonal (1)	Pipe	ROHN 2 STD	1
	,	Hip (1)	Pipe	ROHN 1.5 STD	1
		Hip Diagónal (1)	Pipe	ROHN 2.5 STD	1

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft ²	in					in	in	in
T1 212.625-	0.000	0.000	A36	1	1	1	Mid-Pt	Mid-Pt	Mid-Pt
202.458			(36 ksi)						
T2 202.458-	0.000	0.000	A36	1	1	1	Mid-Pt	Mid-Pt	Mid-Pt
182.292			(36 ksi)						
T3 182.292-	0.000	0.000	A36	1	1	1	Mid-Pt	Mid-Pt	Mid-Pt
162.104			(36 ksi)						
T4 162.104-	0.000	0.000	A36	1	1	1	Mid-Pt	Mid-Pt	Mid-Pt
141.896			(36 ksi)						
T5 141.896-	0.000	0.000	A36	1	1	1	Mid-Pt	Mid-Pt	Mid-Pt
121.688			(36 ksi)						
T6 121.688-	0.000	0.000	A36	1	1	1	Mid-Pt	Mid-Pt	Mid-Pt
101.479			(36 ksi)						
T7 101.479-	0.000	0.000	A36	1	1	1	Mid-Pt	Mid-Pt	Mid-Pt
81.271			(36 ksi)						
T8 81.271-	0.000	0.000	A36	1	1	1	Mid-Pt	Mid-Pt	Mid-Pt
61.000			(36 ksi)						
T9 61.000-	0.000	0.000	A36	1	1	1	Mid-Pt	Mid-Pt	Mid-Pt
40.667			(36 ksi)						
T10 40.667-	0.000	0.000	A36	1	1	1	Mid-Pt	Mid-Pt	Mid-Pt
20.333			(36 ksi)						
T11 20.333-	0.000	0.000	A36	1	1	1	Mid-Pt	Mid-Pt	Mid-Pt
0.000			(36 ksi)						

						K Fac	ctors ¹			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Angles	Rounds		X	X	X	X	X	X	X
ft				Y	Υ	Υ	Y	Υ	Y	Y
T1 212.625-	Yes	No	1	1	1	1	1	1	1	1
202.458				1	1	1	1	1	1	1
T2 202 458-	Yes	No	1	1	1	1	1	1	1	1
182.292				1	1	1	1	1	1	1
T3 182 292-	Yes	No	1	1	1	1	1	1	1	1
162.104				1	1	1	1	1	1	1
T4 162.104-	Yes	No	1	1	1	1	1	1	1	1
141.896				1	1	1	1	1	1	1
T5 141 896-	Yes	No	1	1	1	1	1	1	1	1
121.688				1	1	1	1	1	1	1
T6 121.688-	Yes	No	1	1	1	1	1	1	1	1
101.479				1	1	1	1	1	1	1
T7 101.479-	Yes	No	1	1	1	1	1	1	1	1
81.271				1	1	1	1	1	1	1
T8 81.271-	Yes	No	1	1	1	1	1	1	1	1
61.000				1	1	1	1	1	1	1
T9 61 000-	Yes	No	1	1	1	1	1	1	1	1
40.667				1	1	1	1	1	1	1
T10 40.667-	No	No	1	1	1	1	1	1	1	1
20.333				1	1	1	1	1	1	1
T11 20.333-	No	No	1	1	1	1	1	1	1	1
0.000				1	1	1	1	1	1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Elevation ft	Leg		Diagoi	nal	Тор G	irt	Botton	n Girt	Mid	Girt	Long Hor	rizontal	Short Ho	orizontal
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 212 625- 202 458	0.000	1	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	1	0.000	0.75
T2 202.458- 182.292	0.000	1	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	1	0.000	0.75
T3 182.292- 162.104	0.000	1	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	1	0.000	0.75
T4 162.104- 141.896	0.000	1	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	1	0.000	0.75
T5 141.896- 121.688	0.000	1	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	1	0.000	0.75
T6 121 688- 101 479	0.000	1	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	1	0.000	0.75
T7 101.479- 81.271	0.000	1	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	1	0.000	0.75
T8 81.271- 61.000	0.000	1	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	1	0.000	0.75
T9 61 000- 40 667	0.000	1	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	1	0.000	0.75
T10 40 667- 20 333	0.000	1	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	1	0.000	0.75
T11 20.333- 0.000	0.000	1	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	1	0.000	0.75

Tower Elevation ft	Redund Horizoi		Redun Diago		Redundan Diagor		Redunda Horiz		Redui Vert		Redund	ant Hip	Redunda Diago	
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 212.625- 202.458	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T2 202.458- 182.292	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T3 182.292- 162.104	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T4 162 104- 141 896	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T5 141.896- 121.688	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T6 121.688- 101.479	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T7 101 479- 81 271	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T8 81.271- 61.000	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T9 61.000- 40.667	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T10 40.667- 20.333	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T11 20.333- 0.000	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75

Tower Elevation	Leg Connection	Leg		Diagor	nal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Shor Horizor	-
ft	Type														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T1 212.625-	Flange	0.750	4	0.625	3	0.625	0	0.625	0	0.625	0	0.625	2	0.625	0
202.458		A325N		A325N		A325N		A325X		A325X		A325N		A325X	
T2 202.458-	Flange	0.875	4	0.625	3	0.625	0	0.625	0	0.625	0	0.625	2	0.625	0
182.292		A325N		A325N		A325N		A325X		A325X		A325N		A325X	
T3 182.292-	Flange	1.000	4	0.625	3	0.625	0	0.625	0	0.625	0	0.625	2	0.625	0
162.104		A325N		A325N		A325N		A325X		A325X		A325N		A325X	
T4 162.104-	Flange	1.000	6	0.625	3	0.625	0	0.625	0	0.625	0	0.625	2	0.625	0
141.896		A325N		A325N		A325N		A325X		A325X		A325N		A325X	
T5 141.896-	Flange	1.000	6	0.625	3	0.625	0	0.625	0	0.625	0	0.625	2	0.625	0
121.688		A325N		A325N		A325N		A325X		A325X		A325N		A325X	
T6 121.688-	Flange	1.000	6	0.625	3	0.625	0	0.625	0	0.625	0	0.625	2	0.625	0
101.479		A325N		A325N		A325N		A325X		A325X		A325N		A325X	
T7 101.479-	Flange	1.000	8	0.625	3	0.625	0	0.625	0	0.625	0	0.625	2	0.625	0
81.271		A325N		A325N		A325N		A325X		A325X		A325N		A325X	
T8 81 271-	Flange	1.000	8	0.625	3	0.625	0	0.625	0	0.625	0	0.625	2	0.625	0
61.000	_	A325N		A325N		A325N		A325X		A325X		A325N		A325X	
T9 61.000-	Flange	1.000	8	0.625	3	0.625	0	0.625	0	0.625	0	0.625	2	0.625	0
40.667	_	A325N		A325N		A325N		A325X		A325X		A325N		A325X	
T10 40.667-	Flange	1.000	8	0.750	3	0.625	0	0.625	0	0.625	0	0.750	2	0.625	0
20.333	-	A325N		A325N		A325N		A325X		A325X		A325N		A325X	
T11 20.333-	Flange	1.000	0	0.750	3	0.625	0	0.625	0	0.625	0	0.750	2	0.625	0
0.000	_	A354-BC		A325N		A325N		A325X		A325X		A325N		A325X	

Tower	Redund	dant	Redund	dant	Redundan	t Sub-	Redunda	nt Sub-	Redun	dant	Redunda	nt Hip	Redunda	ant Hip
Elevation	Horizoi	ntal	Diagoi	nal	Diagoi	nal	Horizo	ontal	Verti	cal			Diago	onal
ft														
	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
	in		in		in		in		in		in		in	
T1 212.625-	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0
202.458	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T2 202.458-	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0
182.292	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T3 182.292-	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0
162.104	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T4 162.104-	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0
141.896	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T5 141.896-	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0
121.688	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T6 121.688-	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0
101.479	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T7 101.479-	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0
81.271	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T8 81 271-	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0
61.000	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T9 61.000-	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0
40.667	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T10 40.667-	0.625	1	0.625	1	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0
20.333	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T11 20.333-	0.625	1	0.625	1	0.625	0	0.625	0	0.625	0	0.625	0	0.625	0
0.000	A325N		A325N		A325N		A325N		A325N		A325N		A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face	Allow	Exclude	Componen	Placement	Face	Lateral	#	#	Clear	Width or	Perimete	Weight
	or	Shield	From	t		Offset	Offset		Per	Spacin	Diameter	r	
	Leg		Torque	Type	ft	in	(Frac FW)		Row	g	in		klf
			Calculation							in		in	

	_	4.11			D ' (.,	.,		14" "		147 1 1 1
Description	or	Allow Shield	Exclude From Torque	Componen t Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	•	Width or Per Diameter in	rimete r	Weight klf
	Leg		Calculation	• •	n	""	(Frac FVV)		NOW	g in	111	in	KII
LDF4- 50A(1/2")	Α	No	No	Ar (CaAa)	51.000 - 0.000	0.000	0.46	1	1	0.630	0.630		0.000
HB114-1- 08U4-M5J(1 1/4")	Α	No	No	Ar (CaAa)	199.000 - 0.000	0.000	0.42	4	4	0.850 0.750	1.540		0.001
Feedline Ladder (Af)	Α	No	No	Af (CaAa)	199.000 - 0.000	0.000	0.43	1	1	3.000	3.000		800.0
LDF5- 50A(7/8")	Α	No	No	Ar (CaAa)	128.000 - 0.000	0.000	-0.4	5	5	1.000	1.090		0.000
LDF5- (50A(7/8")	Α	No	No	Ar (CaAa)	145.000 - 128.000	0.000	-0.4	4	4	1.000	1.090		0.000
LDF5- (50A(7/8")	Α	No	No	Ar (CaAa)	147.000 - 145.000	0.000	-0.4	3	3	1.000	1.090		0.000
LDF5- 50A(7/8")	Α	No	No	Ar (CaAa)	164.000 - 147.000	0.000	-0.4	2	2	1.000	1.090		0.000
LDF5- 50A(7/8")	Α	No	No	Ar (CaAa)	167.000 - 164.000	0.000	-0.4	1	1	1.000	1.090		0.000
CR 50 1873(1-5/8")	Α	No	No	Ar (CaAa)	189.000 - 0.000	0.000	-0.44	12	6	0.850 0.750	1.980		0.001
3" Conduit	Α	No	No	Ar (CaAa)	189.000 - 0.000	0.000	-0.4	1	1	3.000	3.000		0.003
PWRT-608- S(13/16)	Α	No	No	Ar (CaAa)	189.000 - 0.000	0.000	-0.36	2	1	0.850 0.750	0.820		0.001
LDF2- 50(3/8")	Α	No	No	Ar (CaAa)	189.000 - 0.000	0.000	-0.36	2	2	0.440	0.440		0.000
WR- VG86ST- BRD(3/4)	Α	No	No	Ar (CaAa)	189.000 - 0.000	0.000	-0.35	4	2	0.850 0.750	0.795		0.001
LDF1- 50A(1/4")	Α	No	No	Ar (CaAa)	175.000 - 0.000	0.000	-0.47	4	2	0.345	0.345		0.000
LDF2- 50(3/8")	Α	No	No	Ar (CaAa)	162.000 - 0.000	0.000	-0.48	1	1	0.440	0.440		0.000
Feedline Ladder (Af)	Α	No	No	Af (CaAa)	189.000 - 0.000	0.000	-0.4	1	1	3.000	3.000		0.008
Safety Line 3/8	Α	No	No	Ar (CaAa)	212.625 - 0.000	0.000	0.5	1	1	0.375	0.375		0.000
LDF6-50A(1 1/4")	В	No	No	Ar (CaAa)	139.000 - 0.000	0.000	-0.41	6	3	1.550	1.550		0.001
HCS 6X12 6AWG(1-	В	No	No	Ar (CaAa)	139.000 - 0.000	6.000	-0.41	3	3	1.380	1.380		0.002
3/8") MLE HYBRID 9POWER/18 FIBER RL 2(1-5/8)	В	No	No	Ar (CaAa)	139.000 - 0.000	0.000	-0.44	9	3	1.625	1.625		0.001
Feedline Ladder (Af)	В	No	No	Af (CaAa)	139.000 - 0.000	0.000	-0.45	1	1	3.000	3.000		0.008
Feedline Ladder (Af)	В	No	No	Af (CaAa)	175.000 - 0.000	0.000	0.4	1	1	3.000	3.000		0.008
HB158-1- 08U8-S8J18(1-5/8)	С	No	No	Ar (CaAa)	208.000 - 0.000	2.000	0.45	2	2	1.980	1.980		0.001
Feedline Ladder (Af)	С	No	No	Af (CaAa)	208.000 - 0.000	0.000	0.43	1	1	3.000	3.000		0.008
Feedline Ladder (Af)	С	No	No	Af (CaAa)	183.000 - 0.000	0.000	-0.45	1	1	3.000	3.000		0.008
LDF4-	Α	No	No	Ar (CaAa)	112.000 -	0.000	-0.49	1	1	0.300	0.630		0.000
50A(1/2") LDF4-	С	No	No	Ar (CaAa)	0.000 212.625 -	0.000	0.49	1	1	0.300	0.630		0.000

Description	Face	Allow	Exclude	Componen	Placement	Face	Lateral	#	#	Clear	Width or	Perimete	Weight
	or	Shield	From	t		Offset	Offset		Per	Spacin	Diameter	r	
	Leg		Torque	Type	ft	in	(Frac FW)		Row	g	in		klf
			Calculation							in		in	
50A(1/2")					0.000								
CU12PSM9P 6XXX(1-1/2)	С	No	No	Ar (CaAa)	118.000 - 0.000	0.000	-0.49	1	1	1.600	1.600		0.002

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_{\digamma}	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation				In Face	Out Face	
n	ft		ft ²	ft ²	ft ²	ft ²	K
T1	212.625-202.458	Α	0.000	0.000	0.381	0.000	0.002
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	5.606	0.000	0.062
T2	202.458-182.292	Α	0.000	0.000	44.532	0.000	0.384
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	19.694	0.000	0.231
Т3	182.292-162.104	Α	0.000	0.000	101.429	0.000	0.769
		В	0.000	0.000	6.448	0.000	0.108
		С	0.000	0.000	29.454	0.000	0.395
T4	162.104-141.896	Α	0.000	0.000	107.984	0.000	0.787
		В	0.000	0.000	10.104	0.000	0.170
		С	0.000	0.000	29.484	0.000	0.395
T5	141.896-121.688	Α	0.000	0.000	112.188	0.000	0.800
		В	0.000	0.000	67.348	0.000	0.639
		С	0.000	0.000	29.484	0.000	0.395
Т6	121.688-101.479	Α	0.000	0.000	114.365	0.000	0.806
		В	0.000	0.000	76.923	0.000	0.717
		С	0.000	0.000	32,127	0.000	0.434
T7	101.479-81.271	Α	0.000	0.000	114.975	0.000	0.807
		В	0.000	0.000	76.923	0.000	0.717
		С	0.000	0.000	32.717	0.000	0.443
Т8	81.271-61.000	Α	0.000	0.000	115.331	0.000	0.810
		В	0.000	0.000	77.161	0.000	0.719
		С	0.000	0.000	32.818	0.000	0.444
Т9	61.000-40.667	Α	0.000	0.000	116.337	0.000	0.814
		В	0.000	0.000	77.399	0.000	0.722
		С	0.000	0.000	32.920	0.000	0.445
T10	40.667-20.333	Α	0.000	0.000	116.967	0.000	0.815
		В	0.000	0.000	77.399	0.000	0.722
		С	0.000	0.000	32.920	0.000	0.445
T11	20.333-0.000	Α	0.000	0.000	116.968	0.000	0.815
		В	0.000	0.000	77.399	0.000	0.722
		С	0.000	0.000	32.920	0.000	0.445

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	
n	ft	Leg	in	ft²	ft ²	ft²	ft²	K
T1	212.625-202.458	Α	1.532	0.000	0.000	3.497	0.000	0.039
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	15.375	0.000	0.235
T2	202.458-182.292	Α	1.521	0.000	0.000	90.167	0.000	1.461
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	50.131	0.000	0.794
Т3	182 292-162 104	Α	1.504	0.000	0.000	196.864	0.000	3.129
		В		0.000	0.000	10.327	0.000	0.242
		С		0.000	0.000	65.528	0.000	1.152
T4	162.104-141.896	Α	1.485	0.000	0.000	225.946	0.000	3.375
		В		0.000	0.000	16.108	0.000	0.375
		С		0.000	0.000	65.242	0.000	1.141

Tower	Tower	Face	Ice	A_R	A_{\digamma}	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	
n	ft	Leg	in	ft ²	ft²	ft²	ft²	K
T5	141.896-121.688	Α	1.464	0.000	0.000	233.619	0.000	3.459
		В		0.000	0.000	115.140	0.000	2.348
		С		0.000	0.000	64.842	0.000	1.128
T6	121.688-101.479	Α	1.440	0.000	0.000	239.086	0.000	3.494
		В		0.000	0.000	131.020	0.000	2.652
		С		0.000	0.000	71.785	0.000	1.240
T7	101.479-81.271	Α	1.412	0.000	0.000	240.433	0.000	3.471
		В		0.000	0.000	130.197	0.000	2.620
		С		0.000	0.000	72.781	0.000	1.247
T8	81.271-61.000	Α	1.377	0.000	0.000	238.653	0.000	3.409
		В		0.000	0.000	129.587	0.000	2.589
		С		0.000	0.000	72.200	0.000	1.225
Т9	61.000-40.667	Α	1.331	0.000	0.000	239.493	0.000	3.360
		В		0.000	0.000	128.664	0.000	2.547
		С		0.000	0.000	71.369	0.000	1.196
T10	40.667-20.333	Α	1.265	0.000	0.000	237.714	0.000	3.254
		В		0.000	0.000	126.738	0.000	2.474
		С		0.000	0.000	69.834	0.000	1.150
T11	20.333-0.000	Α	1.133	0.000	0.000	227.660	0.000	2.987
		В		0.000	0.000	122.918	0.000	2.334
		С		0.000	0.000	66.790	0.000	1.060

Feed Line Center of Pressure

Section	Elevation	CP_X	CPz	CP _X	CPz
				Ice	Ice
	ft	in	in	in	in
T1	212.625-202.458	-5.814	2.795	-7.987	1.868
T2	202.458-182.292	-13.390	-0.764	-15.107	-1.855
T3	182.292-162.104	-16.203	5.777	-17.685	4.480
T4	162.104-141.896	-18.459	7.620	-21.364	7.048
T5	141.896-121.688	-16.450	-8.532	-20.006	-6.771
T6	121.688-101.479	-17.217	-11.023	-20.918	-8.216
T7	101.479-81.271	-18.525	-11.575	-23.249	-8.448
T8	81.271-61.000	-19.983	-12.459	-25.051	-9.170
Т9	61.000-40.667	-21.829	-13.892	-27.147	-10.981
T10	40.667-20.333	-24.397	-15.783	-29.766	-13.132
T11	20.333-0.000	-26.208	-16.925	-31.594	-14.356

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K _a	K _a
Section	Record No.		Segment	No Ice	Ice
			Elev.		
T1	21	Safety Line 3/8	202.46 -	0.6000	0.6000
			212.63		
T1	31	HB158-1-08U8-S8J18(1-	202.46 -	0.6000	0.6000
		5/8)	208.00		
T1	32	Feedline Ladder (Af)	202.46 -	0.6000	0.6000
			208.00		
T1	36	LDF4-50A(1/2")	202.46 -	0.6000	0.6000
			212.63		
T2	2	HB114-1-08U4-M5J(1 1/4")	182.29 -	0.6000	0.6000
		, ,	199.00		
T2	3	Feedline Ladder (Af)	182.29 -	0.6000	0.6000
		` '	199.00		
T2	11	CR 50 1873(1-5/8")	182.29 -	0.6000	0.6000
		`	189.00		
T2	12	3" Conduit	182.29 -	0.6000	0.6000

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	2000///	Segment	No Îce	lce
			<i>Elev.</i> 189.00		
T2	13	PWRT-608-S(13/16)	182.29 -	0.0000	0.0000
T2	14	LDF2-50(3/8")	189.00 182.29 - 189.00	0.6000	0.6000
T2	15	WR-VG86ST-BRD(3/4)	182.29 -	0.6000	0.6000
T2	19	Feedline Ladder (Af)	189.00 182.29 - 189.00	0.6000	0.6000
T2	21	Safety Line 3/8	182.29 - 202.46	0.6000	0.6000
T2	31	HB158-1-08U8-S8J18(1- 5/8)	182.29 - 202.46	0.6000	0.6000
T2	32	Feedline Ladder (Af)	182.29 -	0.6000	0.6000
T2	33	Feedline Ladder (Af)	202.46 182.29 - 183.00	0.6000	0.6000
T2	36	LDF4-50A(1/2")	182.29 - 202.46	0.6000	0.6000
Т3	2	HB114-1-08U4-M5J(1 1/4")	162.10 - 182.29	0.6000	0.6000
Т3	3	Feedline Ladder (Af)	162.29 162.10 - 182.29	0.6000	0.6000
Т3	8	LDF5-50A(7/8")	162.10 - 164.00	0.6000	0.6000
Т3	9	LDF5-50A(7/8")	164.00 - 167.00	0.6000	0.6000
Т3	11	CR 50 1873(1-5/8")	162.10 - 182.29	0.6000	0.6000
Т3	12	3" Conduit	162.10 - 182.29	0.6000	0.6000
Т3	13	PWRT-608-S(13/16)	162.10 - 182.29	0.0000	0.0000
Т3	14	LDF2-50(3/8")	162.10 - 182.29	0.6000	0.6000
Т3	15	WR-VG86ST-BRD(3/4)	162.10 - 182.29	0,6000	0.6000
Т3	17	LDF1-50A(1/4")	162.10 - 175.00	0,6000	0.6000
Т3	19	Feedline Ladder (Af)	162.10 - 182.29	0.6000	0.6000
Т3	21	Safety Line 3/8	162.10 - 182.29	0.6000	0.6000
Т3	29	Feedline Ladder (Af)	162.10 - 175.00	0.6000	0.6000
Т3	31	HB158-1-08U8-S8J18(1- 5/8)	162.10 - 182.29	0.6000	0.6000
Т3	32	Feedline Ladder (Af)	162.10 - 182.29	0.6000	0.6000
Т3	33	Feedline Ladder (Af)	162.10 - 182.29	0.6000	0.6000
Т3	36	LDF4-50A(1/2")	162.10 - 182.29	0.6000	0.6000
Т4	2	HB114-1-08U4-M5J(1 1/4")	141.90 - 162.10	0.6000	0.6000
T4	3	Feedline Ladder (Af)	141.90 - 162.10	0.6000	0.6000
T4	6	LDF5-50A(7/8")	141.90 - 145.00	0.6000	0.6000
Т4	7	LDF5-50A(7/8")	145.00 - 147.00	0.6000	0.6000
T4	8	LDF5-50A(7/8")	147.00 - 162.10	0.6000	0.6000
T4	11	CR 50 1873(1-5/8")	141.90 - 162.10	0.6000	0.6000
T4	12	3" Conduit	141.90 - 162.10	0.6000	0.6000
T4	13	PWRT-608-S(13/16)	141.90 - 162.10	0.0000	0.0000

Tower	Feed Line	Description	Feed Line	K _a	
Section	Record No.	Безоприон	Segment	K _a No Ice	lce
T4	14	LDF2-50(3/8")	<i>Elev.</i> 141.90 -	0.6000	0.6000
T4	15	WR-VG86ST-BRD(3/4)	162.10 141.90 - 162.10	0.6000	0.6000
T4	17	LDF1-50A(1/4")	141.90 -	0.6000	0.6000
T4	18	LDF2-50(3/8")	162.10 141.90 - 162.00	0.6000	0.6000
T4	19	Feedline Ladder (Af)	141.90 - 162.10	0.6000	0.6000
T4	21	Safety Line 3/8	141.90 - 162.10	0.6000	0.6000
Т4	29	Feedline Ladder (Af)	141.90 - 162.10	0.6000	0.6000
T4	31	HB158-1-08U8-S8J18(1- 5/8)	141.90 - 162.10	0.6000	0.6000
T4	32	Feedline Ladder (Af)	141.90 - 162.10	0.6000	0.6000
T4	33	Feedline Ladder (Af)	141.90 - 162.10	0.6000	0.6000
T4	36	LDF4-50A(1/2")	141.90 - 162.10	0.6000	0.6000
Т5	2	HB114-1-08U4-M5J(1 1/4")	121.69 - 141.90	0.6000	0.6000
Т5	3	Feedline Ladder (Af)	121.69 - 141.90	0.6000	0.6000
Т5	5	LDF5-50A(7/8")	121.69 - 128.00	0.6000	0.6000
Т5	6	LDF5-50A(7/8")	128.00 - 141.90	0.6000	0.6000
Т5	11	CR 50 1873(1-5/8")	121.69 - 141.90	0.6000	0.6000
Т5	12	3" Conduit	121.69 - 141.90	0.6000	0.6000
Т5	13	PWRT-608-S(13/16)	121.69 - 141.90	0.0000	0.0000
Т5	14	LDF2-50(3/8")	121.69 - 141.90	0.6000	0.6000
Т5	15	WR-VG86ST-BRD(3/4)	121.69 - 141.90	0.6000	0.6000
Т5	17	LDF1-50A(1/4")	121.69 - 141.90	0.6000	0.6000
Т5	18	LDF2-50(3/8")	121.69 - 141.90	0.6000	0.6000
Т5	19	Feedline Ladder (Af)	121.69 - 141.90	0.6000	0.6000
Т5	21	Safety Line 3/8	121.69 - 141.90	0.6000	0.6000
T5	24	LDF6-50A(1 1/4")	121.69 - 139.00	0.6000	0.6000
Т5	25	HCS 6X12 6AWG(1-3/8")	121.69 - 139.00	0.6000	0.6000
Т5	26	MLE HYBRID 9POWER/18FIBER RL	121.69 - 139.00	0.6000	0.6000
Т5	27	2(1-5/8) Feedline Ladder (Af)	121.69 - 139.00	0.6000	0.6000
Т5	29	Feedline Ladder (Af)	121.69 - 141.90	0.6000	0.6000
Т5	31	HB158-1-08U8-S8J18(1- 5/8)	121.69 - 141.90	0.6000	0.6000
T5	32	Feedline Ladder (Af)	121.69 - 141.90	0.6000	0.6000
T5	33	Feedline Ladder (Af)	121.69 - 141.90	0.6000	0.6000
T5	36	LDF4-50A(1/2")	121.69 - 141.90	0.6000	0.6000
T6	2	HB114-1-08U4-M5J(1 1/4")	101.48 - 121.69	0.6000	0.6000

Tower	Feed Line	Description	Feed Line	K _a	K _a
Section	Record No.		Segment Elev.	No Ice	Ice
Т6	3	Feedline Ladder (Af)	101.48 - 121.69	0.6000	0.6000
Т6	5	LDF5-50A(7/8")	101.48 - 121.69	0.6000	0.6000
Т6	11	CR 50 1873(1-5/8")	101.48 - 121.69	0.6000	0.6000
Т6	12	3" Conduit	101.48 - 121.69	0.6000	0.6000
Т6	13	PWRT-608-S(13/16)	101.48 - 121.69	0.0000	0.0000
Т6	14	LDF2-50(3/8")	101.48 - 121.69	0.6000	0.6000
Т6	15	WR-VG86ST-BRD(3/4)	101.48 - 121.69	0.6000	0.6000
Т6	17	LDF1-50A(1/4")	101.48 - 121.69	0.6000	0.6000
Т6	18	LDF2-50(3/8")	101.48 - 121.69	0.6000	0.6000
Т6	19	Feedline Ladder (Af)	101.48 - 121.69	0.6000	0.6000
Т6	21	Safety Line 3/8	101.48 - 121.69	0.6000	0.6000
Т6	24	LDF6-50A(1 1/4")	101.48 - 121.69	0.6000	0.6000
Т6	25	HCS 6X12 6AWG(1-3/8")	101.48 - 121.69	0.6000	0.6000
T6	26	MLE HYBRID 9POWER/18FIBER RL 2(1-5/8)	101.48 - 121.69	0.6000	0.6000
Т6	27	Feedline Ladder (Af)	101.48 - 121.69	0.6000	0.6000
Т6	29	Feedline Ladder (Af)	101.48 - 121.69	0.6000	0.6000
Т6	31	HB158-1-08U8-S8J18(1- 5/8)	101.48 - 121.69	0.6000	0.6000
Т6	32	Feedline Ladder (Af)	101.48 - 121.69	0.6000	0.6000
Т6	33	Feedline Ladder (Af)	101.48 - 121.69	0.6000	0.6000
Т6	35	LDF4-50A(1/2")	101.48 - 112.00	0.6000	0.6000
Т6	36	LDF4-50A(1/2")	101.48 - 121.69	0.6000	0.6000
Т6	38	CU12PSM9P6XXX(1-1/2)	101.48 - 118.00	0.6000	0.6000
T7	2	HB114-1-08U4-M5J(1 1/4")	81.27 - 101.48	0.6000	0.6000
Т7	3	Feedline Ladder (Af)	81.27 - 101.48	0.6000	0.6000
T7	5	LDF5-50A(7/8")	81.27 - 101.48	0.6000	0.6000
Т7	11	CR 50 1873(1-5/8")	81.27 - 101.48	0.6000	0.6000
T7	12	3" Conduit	81.27 - 101.48	0.6000	0.6000
T7	13	PWRT-608-S(13/16)	81.27 - 101.48	0.0000	0.0000
T7	14	LDF2-50(3/8")	81.27 - 101.48	0.6000	0.6000
T7	15	WR-VG86ST-BRD(3/4)	81.27 - 101.48	0.6000	0.6000
T7	17	LDF1-50A(1/4")	81.27 - 101.48	0.6000	0.6000
T7	18	LDF2-50(3/8")	81.27 - 101.48	0.6000	0.6000
T7	19	Feedline Ladder (Af)	81.27 - 101.48	0.6000	0.6000
T7	21	Safety Line 3/8	81.27 - 101.48	0.6000	0.6000

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	•	Segment Elev.	No Ice	Ice
T7	24	LDF6-50A(1 1/4")	81.27 - 101.48	0.6000	0.6000
Т7	25	HCS 6X12 6AWG(1-3/8")	81.27 - 101.48	0.6000	0.6000
T7	26	MLE HYBRID 9POWER/18FIBER RL	81.27 - 101.48	0.6000	0.6000
Т7	27	2(1-5/8) Feedline Ladder (Af)	81.27 - 101.48	0.6000	0.6000
Т7	29	Feedline Ladder (Af)	81.27 - 101.48	0.6000	0.6000
Т7	31	HB158-1-08U8-S8J18(1- 5/8)	81.27 - 101.48	0.6000	0.6000
T7	32	Feedline Ladder (Af)	81.27 -	0.6000	0.6000
T7	33	Feedline Ladder (Af)	101.48 81.27 - 101.48	0.6000	0.6000
Т7	35	LDF4-50A(1/2")	81.27 - 101.48	0.6000	0.6000
T7	36	LDF4-50A(1/2")	81.27 - 101.48	0.6000	0.6000
T7	38	CU12PSM9P6XXX(1-1/2)	81.27 - 101.48	0.6000	0.6000
Т8	2	HB114-1-08U4-M5J(1 1/4")	61.00 - 81.27	0.6000	0.6000
Т8	3	Feedline Ladder (Af)	61.00 - 81.27	0.6000	0.6000
Т8	5	LDF5-50A(7/8")	61.00 - 81.27	0.6000	0.6000
Т8	11	CR 50 1873(1-5/8")	61.00 - 81.27	0.6000	0.6000
Т8	12	3" Conduit	61.00 - 81.27	0.6000	0.6000
Т8	13	PWRT-608-S(13/16)	61.00 - 81.27	0.0000	0.0000
Т8	14	LDF2-50(3/8")	61.00 - 81.27	0.6000	0.6000
Т8	15	WR-VG86ST-BRD(3/4)	61.00 - 81.27	0.6000	0.6000
Т8	17	LDF1-50A(1/4")	61.00 - 81.27	0.6000	0.6000
Т8	18	LDF2-50(3/8")	61.00 - 81.27	0.6000	0.6000
Т8	19	Feedline Ladder (Af)	61.00 - 81.27	0.6000	0.6000
T8	21	Safety Line 3/8	61.00 - 81.27	0.6000	0.6000
T8	24	LDF6-50A(1 1/4")	61.00 - 81.27	0.6000	0.6000
T8	25	HCS 6X12 6AWG(1-3/8")	61.00 - 81.27	0.6000	0.6000
Т8	26	MLE HYBRID 9POWER/18FIBER RL 2(1-5/8)	61.00 - 81.27	0.6000	0.6000
T8	27	Feedline Ladder (Af)	61.00 - 81.27	0.6000	0.6000
Т8	29	Feedline Ladder (Af)	61.00 - 81.27	0.6000	0.6000
Т8	31	HB158-1-08U8-S8J18(1- 5/8)	61.00 - 81.27	0.6000	0.6000
Т8	32	Feedline Ladder (Af)	61.00 - 81.27	0.6000	0.6000
Т8	33	Feedline Ladder (Af)	61.00 - 81.27	0.6000	0.6000
Т8	35	LDF4-50A(1/2")	61.00 - 81.27	0.6000	0.6000
Т8	36	LDF4-50A(1/2")	61.00 - 81.27	0.6000	0.6000
Т8	38	CU12PSM9P6XXX(1-1/2)		0.6000	0.6000

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	,	Segment	No Îce	Ice
			<i>Elev.</i> 81.27		
Т9	1	LDF4-50A(1/2")	40.67 -	0.6000	0.6000
Т9	2	HB114-1-08U4-M5J(1 1/4")	51.00 40.67 - 61.00	0.6000	0.6000
Т9	3	Feedline Ladder (Af)	40.67 -	0.6000	0.6000
Т9	5	LDF5-50A(7/8")	61.00 40.67 -	0.6000	0.6000
Т9	11	CR 50 1873(1-5/8")	61.00 40.67 - 61.00	0.6000	0.6000
Т9	12	3" Conduit	40.67 -	0.6000	0.6000
Т9	13	PWRT-608-S(13/16)	61.00 40.67 -	0.0000	0.0000
Т9	14	LDF2-50(3/8")	61.00 40.67 -	0.6000	0.6000
Т9	15	WR-VG86ST-BRD(3/4)	61.00 40.67 - 61.00	0.6000	0.6000
Т9	17	LDF1-50A(1/4")	40.67 -	0.6000	0.6000
Т9	18	LDF2-50(3/8")	61.00 40.67 - 61.00	0.6000	0.6000
Т9	19	Feedline Ladder (Af)	40.67 - 61.00	0.6000	0.6000
Т9	21	Safety Line 3/8	40.67 - 61.00	0.6000	0.6000
Т9	24	LDF6-50A(1 1/4")	40.67 - 61.00	0.6000	0.6000
Т9	25	HCS 6X12 6AWG(1-3/8")	40.67 - 61.00	0.6000	0.6000
Т9	26	MLE HYBRID 9POWER/18FIBER RL	40.67 - 61.00	0.6000	0.6000
Т9	27	2(1-5/8) Feedline Ladder (Af)	40.67 - 61.00	0.6000	0.6000
Т9	29	Feedline Ladder (Af)	40.67 - 61.00	0.6000	0.6000
Т9	31	HB158-1-08U8-S8J18(1- 5/8)	40.67 - 61.00	0.6000	0.6000
Т9	32	Feedline Ladder (Af)	40.67 - 61.00	0.6000	0.6000
Т9	33	Feedline Ladder (Af)	40.67 -	0.6000	0.6000
Т9	35	LDF4-50A(1/2")	61.00 40.67 -	0.6000	0.6000
Т9	36	LDF4-50A(1/2")	61.00 40.67 -	0.6000	0.6000
Т9	38	CU12PSM9P6XXX(1-1/2)	61.00 40.67 -	0,6000	0.6000
T10	1	LDF4-50A(1/2")	61.00 20.33 -	0.6000	0.6000
T10	2	HB114-1-08U4-M5J(1 1/4")	40.67 20.33 -	0.6000	0.6000
T10	3	Feedline Ladder (Af)	40.67 20.33 -	0.6000	0.6000
T10	5	LDF5-50A(7/8")	40.67 20.33 -	0.6000	0.6000
T10	11	CR 50 1873(1-5/8")	40.67 20.33 -	0.6000	0.6000
T10	12	3" Conduit	40.67 20.33 - 40.67	0.6000	0.6000
T10	13	PWRT-608-S(13/16)	20.33 - 40.67	0.0000	0.0000
T10	14	LDF2-50(3/8")	20.33 - 40.67	0.6000	0.6000
T10	15	WR-VG86ST-BRD(3/4)	20.33 - 40.67	0.6000	0.6000
T10	17	LDF1-50A(1/4")		0.6000	0.6000

Tower	Feed Line	Description	Feed Line	K _a	K _a
Section	Record No.	Description	Segment	No Ice	Ice
			Elev.		
T40	40	LDE2 50(2/9")	40.67	0.0000	0.0000
T10	18	LDF2-50(3/8")	20.33 - 40.67	0.6000	0.6000
T10	19	Feedline Ladder (Af)	20.33 -	0.6000	0.6000
			40.67		
T10	21	Safety Line 3/8	20.33 -	0.6000	0.6000
T10	24	LDF6-50A(1 1/4")	40.67 20.33 -	0.6000	0.6000
'''	27	LDI 0 30A(1 1/4)	40.67	0.0000	0.0000
T10	25	HCS 6X12 6AWG(1-3/8")	20.33 -	0.6000	0.6000
	00	MIETNODIO	40.67	0.0000	0.0000
T10	26	MLE HYBRID 9POWER/18FIBER RL	20.33 - 40.67	0.6000	0.6000
		2(1-5/8)	40.07		
T10	27	Feedline Ladder (Af)	20.33 -	0.6000	0.6000
	20		40.67	0.0000	0.0000
T10	29	Feedline Ladder (Af)	20.33 - 40.67	0.6000	0.6000
T10	31	HB158-1-08U8-S8J18(1-	20.33 -	0.6000	0.6000
1		5/8)	40.67		
T10	32	Feedline Ladder (Af)	20.33 -	0.6000	0.6000
T10	33	Feedline Ladder (Af)	40.67 20.33 -	0.6000	0.6000
''	00	r dedinie Eddder (/ tr/	40.67	0.0000	0.0000
T10	35	LDF4-50A(1/2")	20.33 -	0.6000	0.6000
	20	LDE4 50A(4/0")	40.67	0.0000	0.0000
T10	36	LDF4-50A(1/2")	20.33 - 40.67	0.6000	0.6000
T10	38	CU12PSM9P6XXX(1-1/2)	20.33 -	0.6000	0.6000
			40.67		
T11 T11	1 2	LDF4-50A(1/2") HB114-1-08U4-M5J(1 1/4")	0.00 - 20.33 0.00 - 20.33	0.6000 0.6000	0.6000 0.6000
T11	3	Feedline Ladder (Af)	0.00 - 20.33	0.6000	0.6000
T11	5	LDF5-50A(7/8")	0.00 - 20.33	0.6000	0.6000
T11	11	CR 50 1873(1-5/8")	0.00 - 20.33	0.6000	0.6000
T11	12	3" Conduit	0.00 - 20.33	0.6000	0.6000
T11	13	PWRT-608-S(13/16)	0.00 - 20.33	0.0000	0.0000
T11	14	LDF2-50(3/8")	0.00 - 20.33	0.6000	0,6000
T11	15	WR-VG86ST-BRD(3/4)	0.00 - 20.33	0.6000	0.6000
T11	17	LDF1-50A(1/4")	0.00 - 20.33	0.6000	0.6000
T11	18	LDF2-50(3/8")	0.00 - 20.33	0.6000	0.6000
T11	19	Feedline Ladder (Af)	0.00 - 20.33	0.6000	0.6000
T11	21	Safety Line 3/8	0.00 - 20.33	0.6000	0.6000
T11	24	LDF6-50A(1 1/4")	0.00 - 20.33	0.6000	0.6000
T11	25	HCS 6X12 6AWG(1-3/8")	0.00 - 20.33	0.6000	0.6000
T11	26	MLE HYBRID	0.00 - 20.33	0.6000	0.6000
		9POWER/18FIBER RL			
T11	27	2(1-5/8) Feedline Ladder (Af)	0.00 - 20.33	0.6000	0.6000
T11	29	Feedline Ladder (Af)	0.00 - 20.33	0.6000	0.6000
T11	31	HB158-1-08U8-S8J18(1-	0.00 - 20.33	0.6000	0.6000
		5/8)		_	_
T11	32	Feedline Ladder (Af)	0.00 - 20.33	0.6000	0.6000
T11	33	Feedline Ladder (Af)	0.00 - 20.33	0.6000	0.6000
T11	35	LDF4-50A(1/2")	0.00 - 20.33	0.6000	0.6000
T11	36	LDF4-50A(1/2")	0.00 - 20.33	0.6000	0.6000
T11	38	CU12PSM9P6XXX(1-1/2)	0.00 - 20.33	0.6000	0.6000

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
	Leg		Vert ft	ι	ft		ft²	ft²	K
			ft ft	۰	,,		,,	,,	,,
Lightning Rod 5/8" x 6'	Α	From Leg	0.000	0.000	213.625	No Ice	0.375	0.375	0.006
			0.000			1/2"	0.989	0.989	0.010
			3.000			Ice	1.619	1.619	0.019
						1" I ce 2" I ce	2.464	2.464	0.047
Climb Leg Extension	Α	From Leg	0.000	0.000	212,625	No Ice	1.473	1.473	0.025
			0.000			1/2"	1.803	1.803	0.038
			2.000			Ice 1" Ice	2.119 2.780	2.119 2.780	0.054 0.098
Floris Bosson Linking	_	F	0.000	0.000	040.005	2" Ice	0.700	0.700	0.050
Flash Beacon Lighting	В	From Leg	0.000	0.000	216.625	No Ice	2.700	2.700	0.050
			0.000			1/2"	3.100	3.100	0.070 0.090
			0.500			lce 1" lce	3.500	3.500	0.090
41 011 51 14	5		0.000	0.000	040.005	2" Ice	4.300	4.300	
4' x 2" Pipe Mount	В	From Leg	0.000	0.000	212.625	No Ice	0.785	0.785	0.029
			0.000			1/2"	1.028	1.028	0.035
			2.000			Ice	1.281	1.281	0.044
						1" I ce 2" I ce	1.814	1.814	0.072
Side Lighting	Α	From Leg	0.500	0.000	112.000	No Ice	0.110	0,110	0.005
Side Lighting	^	From Leg	0.000	0.000	112.000	1/2"	0.110	0.170	0.003
			0.000			lce	0.170	0.170	0.007
			0.000			1" Ice 2" Ice	0.389	0.389	0.019
Side Lighting	В	From Leg	0.500	0.000	112.000	No Ice	0.110	0.110	0.005
Side Lighting	Ь	From Leg	0.000	0.000	112.000	1/2"	0.170	0.170	0.003
			0.000			Ice	0.170	0.170	0.010
			0.000			1" Ice	0.389	0.389	0.019
						2" Ice	0.000	0.000	0.010
Side Lighting	С	From Leg	0.500	0.000	112.000	No Ice	0.110	0.110	0.005
oldo Elgrinig	Ü	1 Tom Log	0.000	0.000	112.000	1/2"	0.170	0.170	0.007
			0.000			Ice	0.233	0.233	0.010
						1" Ice	0.389	0.389	0.019
***						2" I ce			
Sector Mount [SM 510-3]	С	None		0.000	208.000	No Ice	39.970	39.970	2.396
						1/2"	56.450	56.450	3.077
						Ice	72.590	72.590	3.960
						1" Ice	104.060	104.060	6.296
						2" Ice			
(2) LPA-80080/6CF w/	Α	From Leg	4.000	0.000	208.000	No Ice	4.564	10.259	0.046
Mount Pipe			0.000			1/2"	5.105	11.427	0.113
			1.000			Ice	5.612	12.312	0.187
						1" I ce 2" I ce	6,651	14.129	0.363
(2) LPA-80080/6CF w/	В	From Leg	4.000	0.000	208.000	No Ice	4.564	10.259	0.046
Mount Pipe		· ·	0.000			1/2"	5.105	11.427	0.113
·			1.000			Ice	5.612	12.312	0.187
						1" Ice	6.651	14.129	0.363
						2" Ice			
(2) LPA-80080/6CF w/	С	From Leg	4.000	0.000	208.000	No Ice	4.564	10.259	0.046
Mount Pipe			0.000			1/2"	5.105	11.427	0.113
			1.000			Ice	5.612	12.312	0.187
						1" Ice	6.651	14.129	0.363
(0) 141" : 055 555			4.00-	0.00-	000 000	2" Ice	F =0-	4 00-	0.00-
(2) JAHH-65B-R3B w/	Α	From Leg	4.000	0.000	208.000	No Ice	5.500	4.380	0.096
Mount Pipe			0.000			1/2"	5.970	4.840	0.169
			1.000			Ice	6.450	5.300	0.254
						1" Ice	7.440	6.260	0.457
(0) (4) (1) (55 505 ;	-		4.000	0.000	000 000	2" Ice	E E00	4.000	0.000
(2) JAHH-65B-R3B w/	В	From Leg	4.000	0.000	208.000	No Ice	5.500	4.380	0.096
Mount Pipe			0.000			1/2"	5.970	4.840	0.169
			1.000			Ice	6.450	5.300	0.254
						1" Ice	7.440	6.260	0.457

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C₄A₄ Side	Weight
			Vert ft ft ft	0	ft		ft²	ft²	К
(2) JAHH-65B-R3B w/ Mount Pipe	С	From Leg	4.000 0.000 1.000	0.000	208.000	2" Ice No Ice 1/2" Ice 1" Ice	5.500 5.970 6.450 7.440	4.380 4.840 5.300 6.260	0.096 0.169 0.254 0.457
SBNHH-1D65B w/ Mount Pipe	Α	From Leg	4.000 0.000 1.000	0.000	208.000	2" Ice No Ice 1/2" Ice 1" Ice	4.090 4.490 4.890 5.720	3.300 3.680 4.070 4.870	0.066 0.130 0.204 0.386
SBNHH-1D65B w/ Mount Pipe	В	From Leg	4.000 0.000 1.000	0.000	208.000	2" Ice No Ice 1/2" Ice 1" Ice	4.090 4.490 4.890 5.720	3.300 3.680 4.070 4.870	0.066 0.130 0.204 0.386
SBNHH-1D65B w/ Mount Pipe	С	From Leg	4.000 0.000 1.000	0.000	208.000	2" Ice No Ice 1/2" Ice 1" Ice	4.090 4.490 4.890 5.720	3.300 3.680 4.070 4.870	0.066 0.130 0.204 0.386
RFV01U-D2A	Α	From Leg	4.000 0.000 1.000	0.000	208.000	2" Ice No Ice 1/2" Ice 1" Ice	1.875 2.045 2.223 2.601	1.013 1.145 1.284 1.585	0.070 0.087 0.106 0.153
RFV01U-D2A	В	From Leg	4.000 0.000 1.000	0.000	208.000	2" Ice No Ice 1/2" Ice 1" Ice	1.875 2.045 2.223 2.601	1.013 1.145 1.284 1.585	0.070 0.087 0.106 0.153
RFV01U-D2A	С	From Leg	4.000 0.000 1.000	0.000	208.000	2" Ice No Ice 1/2" Ice 1" Ice	1.875 2.045 2.223 2.601	1.013 1.145 1.284 1.585	0.070 0.087 0.106 0.153
CBC1923T-DS-43	Α	From Leg	4.000 0.000 1.000	0.000	208.000	2" Ice No Ice 1/2" Ice 1" Ice	0.316 0.389 0.469 0.651	0.230 0.294 0.366 0.531	0.008 0.012 0.016 0.030
CBC1923T-DS-43	В	From Leg	4.000 0.000 1.000	0.000	208.000	2" Ice No Ice 1/2" Ice 1" Ice	0.316 0.389 0.469 0.651	0.230 0.294 0.366 0.531	0.008 0.012 0.016 0.030
CBC1923T-DS-43	С	From Leg	4.000 0.000 1.000	0.000	208.000	2" Ice No Ice 1/2" Ice 1" Ice	0.316 0.389 0.469 0.651	0.230 0.294 0.366 0.531	0.008 0.012 0.016 0.030
DB-B1-6C-12AB-0Z	Α	From Leg	4.000 0.000 1.000	0.000	208.000	2" Ice No Ice 1/2" Ice 1" Ice	3.364 3.597 3.838 4.343	2.192 2.395 2.606 3.049	0.021 0.050 0.082 0.158
DB-B1-6C-12AB-0Z	В	From Leg	4.000 0.000 1.000	0.000	208.000	2" Ice No Ice 1/2" Ice 1" Ice	3.364 3.597 3.838 4.343	2.192 2.395 2.606 3.049	0.021 0.050 0.082 0.158
RFV01U-D1A	Α	From Leg	4.000 0.000 1.000	0.000	208.000	2" Ice No Ice 1/2" Ice 1" Ice	1.875 2.045 2.223 2.601	1.250 1.393 1.543 1.865	0.084 0.103 0.124 0.175

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	۰	ft		ft²	ft²	К
RFV01U-D1A	В	From Leg	4.000 0.000 1.000	0.000	208.000	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	1.875 2.045 2.223 2.601	1.250 1.393 1.543 1.865	0.084 0.103 0.124 0.175
RFV01U-D1A	С	From Leg	4.000 0.000 1.000	0.000	208.000	No Ice 1/2" Ice 1" Ice 2" Ice	1.875 2.045 2.223 2.601	1.250 1.393 1.543 1.865	0.084 0.103 0.124 0.175
Sector Mount [SM 505-3]	С	None		0.000	199.000	No Ice 1/2" Ice 1" Ice 2" Ice	31.660 44.640 57.440 82.680	31.660 44.640 57.440 82.680	1.725 2.356 3.189 5.447
APXVSPP18-C-A20 w/ Mount Pipe	Α	From Leg	4.000 0.000 -1.000	0.000	199.000	No Ice 1/2" Ice 1" Ice 2" Ice	4.600 5.050 5.500 6.440	4.010 4.450 4.890 5.820	0.095 0.160 0.235 0.419
APXVSPP18-C-A20 w/ Mount Pipe	В	From Leg	4.000 0.000 -1.000	0.000	199.000	No Ice 1/2" Ice 1" Ice 2" Ice	4.600 5.050 5.500 6.440	4.010 4.450 4.890 5.820	0.095 0.160 0.235 0.419
APXVSPP18-C-A20 w/ Mount Pipe	С	From Leg	4.000 0.000 -1.000	0.000	199.000	No Ice 1/2" Ice 1" Ice 2" Ice	4.600 5.050 5.500 6.440	4.010 4.450 4.890 5.820	0.095 0.160 0.235 0.419
APXVTM14-C-120 w/ Mount Pipe	Α	From Leg	4.000 0.000 -1.000	0.000	199.000	No Ice 1/2" Ice 1" Ice 2" Ice	4.090 4.480 4.880 5.710	2.860 3.230 3.610 4.400	0.077 0.127 0.185 0.331
APXVTM14-C-120 w/ Mount Pipe	В	From Leg	4.000 0.000 -1.000	0.000	199.000	No Ice 1/2" Ice 1" Ice 2" Ice	4.090 4.480 4.880 5.710	2.860 3.230 3.610 4.400	0.077 0.127 0.185 0.331
APXVTM14-C-120 w/ Mount Pipe	С	From Leg	4.000 0.000 -1.000	0.000	199.000	No Ice 1/2" Ice 1" Ice	4.090 4.480 4.880 5.710	2.860 3.230 3.610 4.400	0.077 0.127 0.185 0.331
800MHz 2X50W RRH W/FILTER	Α	From Leg	4.000 0.000 -1.000	0.000	199.000	2" Ice No Ice 1/2" Ice 1" Ice	2.058 2.240 2.429 2.829	1.932 2.109 2.293 2.684	0.064 0.086 0.111 0.172
800MHz 2X50W RRH W/FILTER	В	From Leg	4.000 0.000 -1.000	0.000	199.000	2" Ice No Ice 1/2" Ice 1" Ice	2.058 2.240 2.429 2.829	1.932 2.109 2.293 2.684	0.064 0.086 0.111 0.172
800MHz 2X50W RRH W/FILTER	С	From Leg	4.000 0.000 -1.000	0.000	199.000	2" Ice No Ice 1/2" Ice 1" Ice	2.058 2.240 2.429 2.829	1.932 2.109 2.293 2.684	0.064 0.086 0.111 0.172
1900MHz RRH (65MHz)	Α	From Leg	4.000 0.000 -1.000	0.000	199.000	2" Ice No Ice 1/2" Ice	2.313 2.517 2.728	2.375 2.581 2.794	0.060 0.084 0.111

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			Vert ft ft ft	۰	ft		ft²	ft²	K
						1" Ice 2" Ice	3.174	3.243	0.176
1900MHz RRH (65MHz)	В	From Leg	4.000	0.000	199.000	No Ice	2.313	2.375	0.060
		_	0.000			1/2"	2.517	2.581	0.084
			-1.000			Ice 1" Ice 2" Ice	2.728 3.174	2.794 3.243	0.111 0.176
1900MHz RRH (65MHz)	С	From Leg	4.000	0.000	199.000	No Ice	2.313	2.375	0.060
			0.000 -1.000			1/2"	2.517 2.728	2.581 2.794	0.084 0.111
			-1.000			Ice 1" Ice	2.728 3.174	3.243	0.111
						2" Ice	01171	01210	01110
TD-RRH8x20-25	Α	From Leg	4.000	0.000	199.000	No Ice	4.045	1.535	0.070
			0.000			1/2"	4.298 4.557	1.714	0.097 0.128
			-1.000			lce 1" lce	4.557 5.098	1.901 2.295	0.128
						2" Ice	0.000	2.200	0.201
TD-RRH8x20-25	В	From Leg	4.000	0.000	199.000	No Ice	4.045	1.535	0.070
			0.000			1/2"	4.298	1.714	0.097
			-1.000			lce 1" lce	4.557 5.098	1.901 2.295	0.128 0.201
						2" Ice	0.000	2.233	0.201
TD-RRH8x20-25	С	From Leg	4.000	0.000	199.000	No Ice	4.045	1.535	0.070
			0.000			1/2"	4.298	1.714	0.097
			-1.000			Ice 1" Ice 2" Ice	4.557 5.098	1.901 2.295	0.128 0.201
(3) Empty Mount Pipes	Α	From Leg	4.000	0.000	199.000	No Ice	0.785	0.785	0.029
			0.000			1/2"	1.028	1.028	0.035
			0.000			Ice 1" Ice	1.281 1.814	1.281 1.814	0.044 0.072
						2" Ice	1.014	1.014	0.072
(3) Empty Mount Pipes	В	From Leg	4.000	0.000	199.000	No Ice	0.785	0.785	0.029
			0.000			1/2"	1.028	1.028	0.035
			0.000			Ice 1" Ice 2" Ice	1.281 1.814	1.281 1.814	0.044 0.072
(3) Empty Mount Pipes	С	From Leg	4.000	0.000	199.000	No Ice	0.785	0.785	0.029
			0.000			1/2"	1.028	1.028	0.035
			0.000			Ice 1" Ice	1.281 1.814	1.281 1.814	0.044 0.072
***						2" I ce	1.014	1.014	0.072
Sector Mount [SM 510-3]	С	None		0.000	189.000	No Ice	39.970	39.970	2.396
						1/2"	56.450	56.450	3.077
						Ice	72.590	72.590	3.960
						1" I ce 2" I ce	104.060	104.060	6.296
7770.00 w/ Mount Pipe	Α	From Leg	4.000	0.000	189.000	No Ice	5.746	4.254	0.055
			0.000	0.000		1/2"	6.179	5.014	0.103
			1.000			Ice	6.607	5.711	0.157
						1" Ice 2" Ice	7.488	7.155	0.287
7770.00 w/ Mount Pipe	В	From Leg	4.000	0.000	189.000	No Ice	5.746	4.254	0.055
			0.000			1/2"	6.179	5.014	0.103
			1.000			Ice 1" Ice	6.607 7.488	5.711 7.155	0.157 0.287
						2" I ce	1.400	1.100	0.207
7770.00 w/ Mount Pipe	С	From Leg	4.000	0.000	189.000	No Ice	5.746	4.254	0.055
			0.000			1/2"	6.179	5.014	0.103
			1.000			Ice 1" Ice	6.607 7.488	5.711 7.155	0.157 0.287
						2" Ice	1.700	7.100	0.201
(2) SBNHH-1D65A w/	Α	From Leg	4.000	0.000	189.000	No Ice	3.040	2.450	0.054
Mount Pipe			0.000			1/2"	3.340	2.750	0.104

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	0	ft		ft²	ft²	К
			1.000			Ice	3.650	3.050	0.162
			1.000			1" Ice 2" Ice	4.310	3.680	0.307
(2) SBNHH-1D65A w/	В	From Leg	4.000	0.000	189.000	No Ice	3.040	2.450	0.054
Mount Pipe		· ·	0.000			1/2"	3.340	2.750	0.104
·			1.000			Ice	3.650	3.050	0.162
						1" I ce 2" I ce	4.310	3.680	0.307
(2) SBNHH-1D65A w/	С	From Leg	4.000	0.000	189.000	No Ice	3.040	2.450	0.054
Mount Pipe			0.000			1/2"	3.340	2.750	0.104
			1.000			Ice	3.650	3.050	0.162
						1" Ice 2" Ice	4.310	3.680	0.307
7020.00	Α	From Leg	4.000	0.000	189.000	No Ice	0.102	0.175	0.002
			0.000			1/2"	0.147	0.239	0.005
			1.000			Ice	0.199	0.311	0.009
						1" I ce 2" I ce	0.326	0.476	0.022
7020.00	В	From Leg	4.000	0.000	189.000	No Ice	0.102	0.175	0.002
			0.000			1/2"	0.147	0.239	0.005
			1.000			Ice	0.199	0.311	0.009
						1" Ice 2" Ice	0.326	0.476	0.022
7020.00	С	From Leg	4.000	0.000	189.000	No Ice	0.102	0.175	0.002
			0.000			1/2"	0.147	0.239	0.005
			1.000			Ice	0.199	0.311	0.009
						1" Ice 2" Ice	0.326	0.476	0.022
(2) DUAL BAND 800/1900	Α	From Leg	4.000	0.000	189.000	No Ice	1.328	0.693	0.027
FULL BAND MASTHEAD			0.000			1/2"	1.473	0.808	0.038
			1.000			Ice	1.625	0.930	0.052
						1" I ce 2" I ce	1.951	1.197	0.086
(2) DUAL BAND 800/1900	В	From Leg	4.000	0.000	189.000	No Ice	1.328	0.693	0.027
FULL BAND MASTHEAD			0.000			1/2"	1.473	0.808	0.038
			1.000			Ice	1.625	0.930	0.052
	_					1" Ice 2" Ice	1.951	1.197	0.086
(2) DUAL BAND 800/1900	С	From Leg	4.000	0.000	189.000	No Ice	1.328	0.693	0.027
FULL BAND MASTHEAD			0.000			1/2"	1.473	0.808	0.038
			1.000			Ice	1.625	0.930	0.052
						1" Ice 2" Ice	1.951	1.197	0.086
RRUS 11	Α	From Leg	4.000	0.000	189.000	No Ice	2.784	1.187	0.048
			0.000			1/2"	2.992	1.334	0.068
			1.000			Ice	3.207	1.490	0.092
						1" Ice 2" Ice	3.658	1.833	0.150
RRUS 11	В	From Leg	4.000	0.000	189.000	No Ice	2.784	1.187	0.048
			0.000			1/2"	2.992	1.334	0.068
			1.000			Ice	3.207	1.490	0.092
						1" Ice 2" Ice	3.658	1.833	0.150
RRUS 11	С	From Leg	4.000	0.000	189.000	No Ice	2.784	1.187	0.048
			0.000			1/2"	2.992	1.334	0.068
			1.000			Ice	3.207	1.490	0.092
	_	_				1" Ice 2" Ice	3.658	1.833	0.150
DC6-48-60-18-8F	Α	From Leg	1.000	0.000	189.000	No Ice	1.212	1.212	0.020
			0.000			1/2"	1.892	1.892	0.042
			1.000			Ice	2.105	2.105	0.067
		_				1" Ice 2" Ice	2.570	2.570	0.126
DC6-48-60-18-8F	С	From Leg	1.000	0.000	189.000	No Ice	1.212	1.212	0.020
			0.000			1/2"	1.892	1.892	0.042

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft ²	ft ²	K
			1.000			Ice 1" Ice	2.105 2.570	2.105 2.570	0.067 0.126
ODNIIII 4D054 /44 /			4.000	0.000	100 000	2" I ce			
SBNHH-1D65A w/ Mount Pipe	Α	From Leg	4.000 0.000	0.000	189.000	No Ice 1/2"	3.040 3.340	2.450 2.750	0.054 0.104
i ipc			1.000			lce	3.650	3.050	0.162
						1" I ce	4.310	3.680	0.307
SBNHH-1D65A w/ Mount	В	From Leg	4.000	0.000	189.000	2" Ice No Ice	3.040	2.450	0.054
Pipe	Ь	i ioni Leg	0.000	0.000	109.000	1/2"	3.340	2.750	0.104
50			1.000			lce	3.650	3.050	0.162
						1" I ce	4.310	3.680	0.307
0001111140054 /44	0		4.000	0.000	400.000	2" Ice	0.040	0.450	0.054
SBNHH-1D65A w/ Mount	С	From Leg	4.000 0.000	0.000	189.000	No Ice 1/2"	3.040 3.340	2.450 2.750	0.054 0.104
Pipe			1.000			lce	3.650	3.050	0.104
			1.000			1" Ice	4.310	3.680	0.307
						2" Ice		0.000	
RRUS 32	Α	From Leg	4.000	0.000	189.000	No Ice	2.857	1.777	0.055
			0.000			1/2"	3.083	1.968	0.077
			1.000			Ice	3.316	2.166	0.103
						1" Ice 2" Ice	3.805	2.583	0.165
RRUS 32	В	From Leg	4.000	0.000	189,000	No Ice	2.857	1.777	0.055
	_		0.000			1/2"	3.083	1 968	0.077
			1.000			Ice	3.316	2.166	0.103
						1" Ice	3.805	2.583	0.165
DDUC 22	0	Гиото I от	4.000	0.000	100 000	2" Ice	2.057	1 777	0.055
RRUS 32	С	From Leg	4.000 0.000	0.000	189.000	No Ice 1/2"	2.857 3.083	1.777 1.968	0.055 0.077
			1.000			lce	3.316	2.166	0.103
						1" Ice	3.805	2.583	0.165
						2" I ce			
RRUS 32 B66	Α	From Leg	4.000	0.000	189.000	No Ice	2.743	1.668	0.053
			0.000			1/2"	2.965 3.194	1.855	0.074 0.098
			1.000			Ice 1" Ice	3.194	2.049 2.458	0.098
						2" Ice	0.070	2.400	0.107
RRUS 32 B66	В	From Leg	4.000	0.000	189.000	No Ice	2.743	1.668	0.053
			0.000			1/2"	2.965	1.855	0.074
			1.000			Ice	3.194	2.049	0.098
						1" Ice 2" Ice	3.675	2.458	0.157
RRUS 32 B66	С	From Leg	4.000	0.000	189.000	No Ice	2.743	1.668	0.053
			0.000			1/2"	2.965	1.855	0.074
			1.000			Ice	3.194	2.049	0.098
						1" Ice	3.675	2.458	0.157
RRUS 32 B2	Α	Erom Log	4.000	0.000	189.000	2" Ice No Ice	2.731	1.668	0.053
KKUS 32 B2	A	From Leg	0.000	0.000	109.000	1/2"	2.731	1.855	0.033
			1.000			Ice	3.182	2.049	0.098
						1" I ce	3.663	2.458	0.157
	_	_				2" Ice			
RRUS 32 B2	В	From Leg	4.000	0.000	189.000	No Ice	2.731	1.668	0.053
			0.000 1.000			1/2" I ce	2.953 3.182	1.855 2.049	0.074 0.098
			1.000			1" Ice	3.663	2.458	0.098
						2" Ice	21000		31.37
RRUS 32 B2	С	From Leg	4.000	0.000	189.000	No Ice	2.731	1.668	0.053
			0.000			1/2''	2.953	1.855	0.074
			1.000			Ice	3.182	2.049	0.098
						1" Ice 2" Ice	3.663	2.458	0.157

Pipe Mount [PM 601-3]	С	None		0.000	183.000	No Ice	3.170	3.170	0.195

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
	Leg		Vert ft ft	۰	ft		ft²	ft²	K
			ft			1/2"	3,790	3.790	0.232
						lce 1" lce 2" lce	4.420 5.760	4.420 5.760	0.232 0.279 0.401
APXV18-206517LS	Α	From Leg	1.000 0.000	0.000	183.000	No Ice 1/2"	3.830 4.430	1.810 2.380	0.028 0.054
			0.000			Ice 1" Ice 2" Ice	5.050 6.320	2.970 4.180	0.085 0.166
APXV18-206517LS	В	From Leg	1.000	0.000	183.000	No Ice	3.830	1.810	0.028
7 11 X 10 2000 11 20		r rom Log	0.000	0.000	100.000	1/2"	4.430	2.380	0.054
			0.000			Ice	5.050	2.970	0.085
						1" Ice 2" Ice	6.320	4.180	0.166
APXV18-206517LS	С	From Leg	1.000	0.000	183.000	No Ice	3.830	1.810	0.028
			0.000 0.000			1/2"	4.430 5.050	2.380 2.970	0.054 0.085
***			0.000			Ice 1" Ice 2" Ice	6.320	4.180	0.166
Sector Mount	С	None		0.000	175.000	No Ice	40.100	40.100	2.396
Cooler Wedne	Ŭ	140110		0.000	170.000	1/2"	57.330	57.330	3.089
						lce	74.560	74.560	3.782
						1" Ice 2" Ice	109.020	109.020	5.167
(4) DB844H90E-XY w/	Α	From Leg	4.000	0.000	175.000	No Ice	2.240	3.340	0.043
Mount Pipe			0.000			1/2"	2.610	3.730	0.079
			1.000			Ice 1" Ice 2" Ice	2.990 3.780	4.130 4.970	0.122 0.232
(4) DB844H90E-XY w/	В	From Leg	4.000	0.000	175,000	No Ice	2.240	3.340	0.043
Mount Pipe		Ü	0.000			1/2"	2.610	3.730	0.079
			1.000			Ice 1" Ice 2" Ice	2.990 3.780	4.130 4.970	0.122 0.232
(4) DB844H90E-XY w/	С	From Leg	4.000	0.000	175.000	No Ice	2,240	3,340	0.043
Mount Pipe	C	i ioni Leg	0.000	0.000	173.000	1/2"	2.610	3.730	0.043
Would Tipo			1.000			lce	2.990	4.130	0.122
						1" Ice 2" Ice	3.780	4.970	0.232
6' x 2" Mount Pipe	С	From Face	2.000	0.000	175.000	No Ice	1.425	1.425	0.022
			0.000			1/2"	1.925	1.925	0.033
			4.000			Ice 1" Ice 2" Ice	2.294 3.060	2.294 3.060	0.048 0.090
6' x 2" Mount Pipe	С	From Face	2.000	0.000	175.000	No Ice	1.425	1.425	0.022
·			0.000			1/2"	1.925	1.925	0.033
			4.000			Ice 1" Ice 2" Ice	2.294 3.060	2.294 3.060	0.048 0.090
***		-	0.000	0.000	407.000		0.445	0.000	0.040
Side Arm Mount [SO 306- 1]	Α	From Leg	3.000 0.000 0.000	0.000	167.000	No Ice 1/2" Ice	0.410 0.810 1.230	2.260 3.830 5.480	0.042 0.062 0.094
			0.000			1" Ice 2" Ice	2.080	9.370	0.187
1151-3	Α	From Leg	4.000	0.000	167.000	No Ice	4.180	4.180	0.016
			0.000			1/2"	5.731	5.731	0.047
			6.000			Ice	7.299	7.299	0.087
6D340 III	٨	Erom I	4.000	0.000	167 000	1" Ice 2" Ice	10.485	10.485	0.197
SD310-HL	Α	From Leg	4.000 0.000	0.000	167.000	No Ice 1/2"	1.078 1.357	1.078 1.357	6.500 6.510
			-7.000			Ice	1.617	1.617	6.524
						1" Ice	2.163	2.163	6.559

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	۰	ft		ft ²	ft²	K
***						2" I ce			
Side Arm Mount [SO 306- 1]	В	From Leg	3.000 0.000 0.000	0.000	164.000	No Ice 1/2" Ice 1" Ice	0.410 0.810 1.230 2.080	2.260 3.830 5.480 9.370	0.042 0.062 0.094 0.187
1151-3	В	From Leg	4.000 0.000 9.000	0.000	164.000	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	4.180 5.731 7.299 10.485	4.180 5.731 7.299 10.485	0.016 0.047 0.087 0.197
Side Arm Mount [SO 306-1]	Α	From Leg	3.000 0.000 0.000	0.000	147.000	No Ice 1/2" Ice 1" Ice	0.410 0.810 1.230 2.080	2.260 3.830 5.480 9.370	0.042 0.062 0.094 0.187
1151-3	Α	From Leg	4.000 0.000 6.000	0.000	147.000	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	4.180 5.731 7.299 10.485	4.180 5.731 7.299 10.485	0.016 0.047 0.087 0.197
Side Arm Mount [SO 306-1]	В	From Leg	3.000 0.000 0.000	0.000	145.000	No Ice 1/2" Ice 1" Ice	0.410 0.810 1.230 2.080	2.260 3.830 5.480 9.370	0.042 0.062 0.094 0.187
SD310-HL	В	From Leg	4.000 0.000 3.000	0.000	145.000	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	1.093 1.357 1.617 2.163	1.093 1.357 1.617 2.163	6.500 6.510 6.524 6.559
*** (3) Site Pro 1 VFA12-HD	С	None		0.000	139.000	No Ice 1/2" Ice 1" Ice	33.640 48.170 62.700 91.760	33.640 48.170 62.700 91.760	1.690 2.255 2.820 3.949
ERICSSON AIR 21 B2A B4P w/ Mount Pipe	Α	From Leg	4.000 0.000 1.000	0.000	139.000	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	3.140 3.450 3.770 4.430	2.590 2.880 3.190 3.840	0.112 0.164 0.225 0.375
ERICSSON AIR 21 B2A B4P w/ Mount Pipe	В	From Leg	4.000 0.000 1.000	0.000	139.000	No Ice 1/2" Ice 1" Ice	3.140 3.450 3.770 4.430	2.590 2.880 3.190 3.840	0.112 0.164 0.225 0.375
ERICSSON AIR 21 B2A B4P w/ Mount Pipe	С	From Leg	4.000 0.000 1.000	0.000	139.000	2" Ice No Ice 1/2" Ice 1" Ice	3.140 3.450 3.770 4.430	2.590 2.880 3.190 3.840	0.112 0.164 0.225 0.375
ERICSSON AIR 21 B4A B2P w/ Mount Pipe	Α	From Leg	4.000 0.000 1.000	0.000	139.000	2" Ice No Ice 1/2" Ice 1" Ice	3.140 3.450 3.770 4.430	2.590 2.880 3.190 3.840	0.111 0.163 0.224 0.374
ERICSSON AIR 21 B4A B2P w/ Mount Pipe	В	From Leg	4.000 0.000 1.000	0.000	139.000	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	3.140 3.450 3.770 4.430	2.590 2.880 3.190 3.840	0.111 0.163 0.224 0.374

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C₄A₄ Front	C _A A _A Side	Weight
			Vert ft ft ft	۰	ft		ft²	ft²	K
ERICSSON AIR 21 B4A	С	From Leg	4.000	0.000	139.000	No Ice	3.140	2.590	0.111
B2P w/ Mount Pipe	Ū		0.000	0.000	1001000	1/2"	3.450	2.880	0.163
·			1.000			Ice	3.770	3.190	0.224
						1" Ice 2" Ice	4.430	3.840	0.374
APXVAARR24_43-U-NA20	Α	From Leg	4.000	0.000	139.000	No Ice	14.690	6.870	0.186
w/ Mount Pipe			0.000			1/2"	15.460	7.550	0.315
			1.000			Ice 1" Ice 2" Ice	16.230 17.820	8.250 9.670	0.458 0.788
APXVAARR24_43-U-NA20	В	From Leg	4.000	0.000	139.000	No Ice	14.690	6.870	0.186
w/ Mount Pipe		_	0.000			1/2"	15.460	7.550	0.315
			1.000			Ice	16.230	8.250	0.458
						1" Ice 2" Ice	17.820	9.670	0.788
APXVAARR24_43-U-NA20	С	From Leg	4.000	0.000	139.000	No Ice	14.690	6.870	0.186
w/ Mount Pipe			0.000			1/2"	15.460	7.550	0.315
			1.000			Ice	16.230	8.250	0.458
						1" Ice 2" Ice	17.820	9.670	0.788
KRY 112 144/1	Α	From Leg	4.000	0.000	139.000	No Ice	0.350	0.175	0.011
1001 112 144/1		1 Tolli Leg	0.000	0.000	133.000	1/2"	0.426	0.173	0.014
			1.000			lce	0.509	0.301	0.019
						1" Ice 2" Ice	0.698	0.456	0.032
KRY 112 144/1	В	From Leg	4.000	0.000	139.000	No Ice	0.350	0.175	0.011
1112 177/1		1 Tom Log	0.000	0.000	100.000	1/2"	0.426	0.234	0.014
			1.000			Ice	0.509	0.301	0.019
						1" Ice 2" Ice	0.698	0.456	0.032
KRY 112 144/1	С	From Leg	4.000	0.000	139.000	No Ice	0.350	0.175	0.011
		ū	0.000			1/2"	0.426	0.234	0.014
			1.000			Ice	0.509	0.301	0.019
						1" Ice 2" Ice	0.698	0.456	0.032
RADIO 4449 B12/B71	Α	From Leg	4.000	0.000	139.000	No Ice	1.650	1.163	0.074
			0.000			1/2"	1.810	1.301	0.090
			1.000			ce	1.978	1.447	0.109
						1" Ice 2" Ice	2.336	1.762	0.155
RADIO 4449 B12/B71	В	From Leg	4.000	0.000	139.000	No Ice	1.650	1.163	0.074
10.510 1110 512,511		i ioni Log	0.000	0.000	1001000	1/2"	1.810	1.301	0.090
			1.000			Ice	1.978	1.447	0.109
						1" Ice 2" Ice	2.336	1.762	0.155
RADIO 4449 B12/B71	С	From Leg	4.000	0.000	139.000	No Ice	1.650	1.163	0.074
		Ü	0.000			1/2"	1.810	1.301	0.090
			1.000			Ice	1.978	1.447	0.109
						1" Ice 2" Ice	2.336	1.762	0.155
***	Λ	Гио I	2.000	0.000	100.000	NI= I	0.000	2.000	0.050
Side Arm Mount	Α	From Leg	3.000	0.000	128.000	No Ice 1/2"	0.980 1.700	3.030	0.053 0.079
			0.000 0.000			lce	2.420	5.220 7.410	0.079
			0.000			1" Ice	3.860	11.790	0.105
						2" Ice	3.000	. 1.1 00	3.100
1142-2C	Α	From Leg	6.000	0.000	128.000	No Ice	2.092	2.092	0.024
		3	0.000			1/2"	3.374	3.374	0.041
			4.000			Ice	4.673	4.673	0.066
						1" Ice 2" Ice	7.320	7.320	0.140

Side Arm Mount	С	From Leg	1.000	0.000	51.000	No Ice	0.850	1.670	0.065
			0.000			1/2"	1.140	2.340	0.079
			0.000			Ice	1.430	3.010	0.093

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C₄A₄ Front	C _A A _A Side	Weight
			Vert ft ft ft	٥	ft		ft²	ft²	К
						1" Ice 2" Ice	2.010	4.350	0.121
GPS_A	С	From Leg	2.000	0.000	51,000	No Ice	0.255	0.255	0.001
0. 0 <u>.</u> ,	Ü	1 Tom Log	0.000	0.000	01.000	1/2"	0.320	0.320	0.005
			0.000			Ice	0.393	0.393	0.010
***						1" Ice 2" Ice	0.561	0.561	0.025
MX08FRO665-20 w/	Α	From Leg	4.000	0.000	118.000	No Ice	8.010	4.230	0.098
Mount Pipe		3	0.000			1/2"	8.520	4.690	0.184
·			0.000			Ice	9.040	5.160	0.281
						1" Ice	10.110	6.120	0.512
	_					2" Ice			
MX08FRO665-20 w/	В	From Leg	4.000 0.000	0.000	118.000	No Ice 1/2"	8.010 8.520	4.230	0.098 0.184
Mount Pipe			0.000			lce	9.040	4.690 5.160	0.184
			0.000			1" Ice	10.110	6.120	0.512
						2" Ice	10.110	0.120	0.012
MX08FRO665-20 w/	С	From Leg	4.000	0.000	118.000	No Ice	8.010	4.230	0.098
Mount Pipe		_	0.000			1/2"	8.520	4.690	0.184
			0.000			Ice	9.040	5.160	0.281
						1" Ice	10.110	6.120	0.512
TA08025-B604	Α	From Leg	4.000	0.000	118,000	2" Ice No Ice	1,964	0.981	0.064
1A08023-B004	^	From Leg	0.000	0.000	110.000	1/2"	2.138	1.112	0.081
			0.000			Ice	2.320	1.250	0.100
						1" Ice	2.705	1.548	0.148
						2" Ice			
TA08025-B604	В	From Leg	4.000	0.000	118.000	No Ice	1.964	0.981	0.064
			0.000			1/2"	2.138	1.112	0.081
			0.000			Ice 1" Ice	2.320 2.705	1.250 1.548	0.100 0.148
						2" Ice	2,703	1,340	0.140
TA08025-B604	С	From Leg	4.000	0.000	118.000	No Ice	1.964	0.981	0.064
		ū	0.000			1/2"	2.138	1.112	0.081
			0.000			Ice	2.320	1.250	0.100
						1" Ice	2.705	1.548	0.148
TA08025-B605	Α	From Leg	4.000	0.000	118.000	2" Ice No Ice	1.964	1.129	0.075
1A08023-B003	A	From Leg	0.000	0.000	110.000	1/2"	2.138	1.129	0.073
			0.000			Ice	2.320	1.411	0.114
						1" Ice	2.705	1.723	0.164
						2" Ice			
TA08025-B605	В	From Leg	4.000	0.000	118.000	No Ice	1.964	1.129	0.075
			0.000			1/2"	2.138	1.267	0.093
			0.000			lce 1" lce	2.320 2.705	1.411 1.723	0.114 0.164
						2" Ice	2.703	1.725	0.104
TA08025-B605	С	From Leg	4.000	0.000	118.000	No Ice	1.964	1.129	0.075
		3	0.000			1/2"	2.138	1.267	0.093
			0.000			Ice	2.320	1.411	0.114
						1" Ice	2.705	1.723	0.164
RDIDC-9181-PF-48	۸	From Leg	4.000	0.000	118.000	2" Ice No Ice	2.312	1.293	0.022
RDIDC-9161-PF-46	Α	From Leg	0.000	0.000	110.000	1/2"	2.502	1.448	0.022
			0.000			Ice	2.700	1.610	0.063
			2.300			1" Ice	3.118	1.957	0.117
						2" Ice			
(2) 8' x 2" Mount Pipe	Α	From Leg	4.000	0.000	118.000	No Ice	1.900	1.900	0.029
			0.000			1/2"	2.728	2.728	0.044
			0.000			Ice 1" Ice	3.401 4.396	3.401 4.396	0.063 0.119
						2" Ice	4.330	4.390	0.119
(2) 8' x 2" Mount Pipe	В	From Leg	4.000	0.000	118.000	No Ice	1.900	1.900	0.029
, ,			0.000			1/2"	2.728	2.728	0.044

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	0	ft		ft²	ft²	К
			0.000			Ice 1" Ice 2" Ice	3.401 4.396	3.401 4.396	0.063 0.119
(2) 8' x 2" Mount Pipe	С	From Leg	4.000 0.000 0.000	0.000	118.000	No Ice 1/2" Ice 1" Ice 2" Ice	1.900 2.728 3.401 4.396	1.900 2.728 3.401 4.396	0.029 0.044 0.063 0.119
Commscope MTC3975083 (3)	С	None		0.000	118.000	No Ice 1/2" Ice 1" Ice 2" Ice	23.850 34.120 44.390 64.930	23.850 34.120 44.390 64.930	1.260 1.803 2.345 3.431
*									

					Dishe	es					
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				Vert ft	0	0	ft	ft		ft²	K
HPD2-23	С	Paraboloid w/Shroud (HP)	From Leg	2.000 0.000 4.000	50.000		175.000	2.000	No Ice 1/2" Ice 1" Ice 2" Ice	3.142 3.409 3.676 4.211	0.027 0.044 0.062 0.097
HPD2-23	С	Paraboloid w/Shroud (HP)	From Leg	2.000 0.000 4.000	-90.000		175.000	2.000	No Ice 1/2" Ice 1" Ice 2" Ice	3.142 3.409 3.676 4.211	0.027 0.044 0.062 0.097
*_*_*									_ 100		3,301

Load Combinations

		_
Comb.	Description	
No.		
1	Dead Only	
2	1.2 Dead+1.0 Wind 0 deg - No Ice	
3	0.9 Dead+1.0 Wind 0 deg - No Ice	
4	1.2 Dead+1.0 Wind 30 deg - No Ice	
5	0.9 Dead+1.0 Wind 30 deg - No Ice	
6	1.2 Dead+1.0 Wind 60 deg - No Ice	
7	0.9 Dead+1.0 Wind 60 deg - No Ice	
8	1.2 Dead+1.0 Wind 90 deg - No Ice	
9	0.9 Dead+1.0 Wind 90 deg - No Ice	
10	1,2 Dead+1,0 Wind 120 deg - No Ice	
11	0.9 Dead+1.0 Wind 120 deg - No Ice	
12	1.2 Dead+1.0 Wind 150 deg - No Ice	
13	0,9 Dead+1.0 Wind 150 deg - No Ice	
14	1.2 Dead+1.0 Wind 180 deg - No Ice	
15	0,9 Dead+1.0 Wind 180 deg - No Ice	
16	1.2 Dead+1.0 Wind 210 deg - No Ice	
17	0.9 Dead+1.0 Wind 210 deg - No Ice	
18		
	1.2 Dead+1.0 Wind 240 deg - No Ice	
19	0.9 Dead+1.0 Wind 240 deg - No Ice	

Comb.	Description
No.	·
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 lce+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 lce+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 lce+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
T1	212.625 - 202.458	Leg	Max Tension	7	0.077	-0.000	-0.000
			Max. Compression	31	-4.854	0.054	-0.003
			Max. Mx	2	-2.126	-0.377	-0.002
			Max. My	8	-1.660	-0.002	-0.393
			Max. Vý	22	1.341	-0.237	-0.001
			Max. Vx	8	-1.347	-0.002	0.223
		Diagonal	Max Tension	24	2.570	0.000	0.000
		-	Max. Compression	24	-2.643	0.000	0.000
			Max. Mx	38	0.564	0.042	0.000
			Max. My	2	-0.090	0.000	0.000
			Max Vy	38	-0.025	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
		Horizontal	Max Tension	14	1.889	-0.009	0.002
			Max. Compression	3	-1.846	-0.007	-0.002
			Max. Mx	29	-0.143	-0.027	-0.001
			Max. My	22	-0.784	-0.010	-0.005
			Max. Vy	29	-0.027	-0.027	-0.001
			Max. Vx	22	0.001	-0.010	-0.005
		Top Girt	Max Tension	14	0.223	-0.007	0.000
			Max. Compression	2	-0.222	-0.008	-0.000
			Max. Mx	29	-0.027	-0.022	-0.000
			Max. My	6	-0.080	-0.009	-0.001
			Max. Vy	29	-0.026	-0.022	-0.000
			Max. Vx	6	0.000	-0.009	-0.001
		Inner Bracing	Max Tension	2	0.003	0.000	0.000
			Max. Compression	22	-0.003	0.000	0.000
			Max. Mx	26	-0.000	-0.023	0.000
			Max. My	27	0.001	0.000	-0.000
			Max. Vy	26	0.022	0.000	0.000

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
T2	202.458 - 182.292	Leg	Max. Vx Max Tension	27 23	0.000 15.002	0.000 0.095	0.000 0.006
	102.292		Max. Compression	18	-23.458	0.228	-0.024
			Max. Mx	6	0.692	1.085	0.016
			Max. My	24	-3.270	-0.001	-1.095
			Max. Vy	6	-1.126	0.094	0.011
		5	Max. Vx	12	-1.146	-0.000	0.087
		Diagonal	Max Tension	4	7.763	0.000	0.000
			Max. Compression Max. Mx	4 38	-7.837 1.922	0.000 0.050	0.000 0.000
			Max. My	2	-0.034	0.000	0.000
			Max. Vy	38	-0.025	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
		Horizontal	Max Tension	4	4.220	-0.012	-0.000
			Max. Compression	4	-4.183	-0.012	-0.000
			Max. Mx	37	-0.123	-0.035	-0.003
			Max. My	22	-0.765	-0.020	-0.010
			Max. Vy	37 22	-0.029 0.002	-0.035 -0.020	-0.003
		Inner Bracing	Max. Vx Max Tension	10	0.002	0.020	-0.010 0.000
		Inner bracing	Max. Compression	22	-0.005	0.000	0.000
			Max. Mx	26	-0.000	-0.023	0.000
			Max. My	27	0.001	0.000	-0.000
			Max. Vy	26	0.022	0.000	0.000
			Max. Vx	27	0.000	0.000	0.000
Т3	182.292 - 162.104	Leg	Max Tension	23	45.841	-0.200	-0.004
			Max. Compression	2	-68.578	-0.055	-0.007
			Max. Mx Max. My	14 12	41.766 -6.173	0.637 -0.048	-0.013 -0.383
			Max. Vy	6	-0.173	-0.304	-0.363 -0.042
			Max. Vx	12	-0.828	-0.048	-0.383
		Diagonal	Max Tension	16	8.065	0.000	0.000
		· ·	Max. Compression	16	-8.155	0.000	0.000
			Max. Mx	38	1.571	0.067	0.000
			Max. My	2	0.405	0.000	0.000
			Max. Vy	38	-0.031	0.000	0.000
		Horizontal	Max. Vx Max Tension	2 8	-0.000 4.937	0.000 -0.013	0.000 -0.000
		Horizontal	Max. Compression	16	-5.220	-0.015 -0.015	0.000
			Max. Mx	37	-0.284	-0.041	-0.002
			Max. My	22	-1.064	-0.021	-0.010
			Max. Vý	37	-0.032	-0.041	-0.002
			Max. Vx	10	-0.002	-0.002	0.009
		Inner Bracing	Max Tension	25	0.004	0.000	0.000
			Max. Compression	22	-0.006	0.000	0.000
			Max. Mx Max. My	26 27	-0.004 -0.002	-0.031 0.000	0.000 -0.000
			Max. Vy	26	0.025	0.000	0.000
			Max. Vx	27	0.000	0.000	0.000
T4	162.104 - 141.896	Leg	Max Tension	23	75.403	-0.318	-0.001
			Max. Compression	10	-99.947	0.859	-0.075
			Max. Mx	22	62.977	-1.638	0.027
			Max. My	12	-7.315	-0.062	-1.266
			Max. Vy	22	0.647	-1.638	0.027
		Diagonal	Max. Vx Max Tension	13 16	0.262 7.925	-0.046 0.000	-1.260
		Diagonal	Max. Compression	16	-8.031	0.000	0.000 0.000
			Max. Mx	38	1.572	0.085	0.000
			Max. My	2	0.540	0.000	0.000
			Max. Vy	38	0.037	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
		Horizontal	Max Tension	8	5.261	-0.021	-0.001
			Max. Compression	20	-5.375	-0.024	-0.000
			Max. Mx Max. My	29 10	0.121 0.787	-0.068 -0.006	-0.003 0.013
			Max. Vy	29	-0.046	-0.006 -0.068	-0.003
			WIGA. V y	20	J.U-TU	0.000	0.000

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.		• •		Comb.	K	kip-ft	kip-ft
			Max. Vx	10	-0.003	-0.006	0.013
		Inner Bracing	Max Tension	11	0.005	0.000	0.000
			Max. Compression	22	-0.007	0.000	0.000
			Max. Mx	26	-0.004	-0.045	0.000
			Max. My	27	-0.003	0.000	-0.000
			Max. Vy	26	-0.030	0.000	0.000
T5	141.896 -	Leg	Max. Vx Max Tension	27 7	0.000 94.325	0.000 -0.890	0.000 0.130
13	121.688	Leg	Max Telision	,	94.323	-0.090	0.130
			Max. Compression	10	-126.881	0.822	-0.010
			Max. Mx	22	72.118	-1.638	0.027
			Max. My	12	-7.893	-0.062	-1.265
			Max. Vy	22	-0.787	-1.638	0.027
		Diamenal.	Max. Vx	12	-0.740	-0.062	-1.265
		Diagonal	Max Tension	16 16	10.822 -11.004	0.000 0.000	0.000 0.000
			Max. Compression Max. Mx	38	2.460	0.175	0.000
			Max. My	2	1.230	0.000	0.000
			Max. Vy	38	-0.056	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
		Horizontal	Max Tension	22	6.538	-0.021	0.006
			Max. Compression	16	-6.543	-0.033	-0.000
			Max. Mx	29	0.038	-0.090	-0.003
			Max, My	22	-1.126	-0.053	-0.014
			Max. Vy	29	-0.052	-0.090	-0.003
			Max. Vx	22	0.002	-0.053	-0.014
		Inner Bracing	Max Tension	13	0.004	0.000	0.000
			Max. Compression Max. Mx	37 26	-0.009 -0.007	0.000 -0.058	0.000 0.000
			Max. My	37	-0.007	0.000	0.000
			Max. Vy	26	-0.003	0.000	0.000
			Max. Vx	27	0.000	0.000	0.000
Т6	121.688 - 101.479	Leg	Max Tension	7	119.448	-0.916	0.079
			Max. Compression	10	-158.665	0.748	-0.068
			Max, Mx	6	116,192	-0.940	0.079
			Max. My	8	-20.336	-0.045	0.945
			Max. Vy	14	-0.484	-0.898	-0.076
		Diagonal	Max. Vx	20	-0.477	-0.043	-0.913
		Diagonal	Max Tension Max. Compression	16 16	10.982 -11.211	0.000 0.000	0.000 0.000
			Max. Mx	38	2.346	0.214	0.000
			Max. My	2	1.275	0.000	0.000
			Max. Vy	38	-0.064	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
		Horizontal	Max Tension	16	7.206	-0.041	-0.000
			Max. Compression	16	-7.287	-0.041	-0.000
			Max. Mx	29	0.143	-0.107	-0.003
			Max. My	22	-1.190	-0.054	-0.014
			Max Vy	29	-0.058	-0.107	-0.003
			Max. Vx	22	0.002	-0.054	-0.014
		Inner Bracing	Max Tension	25	0.002	0.000	0.000
			Max. Compression	37	-0.010	0.000	0.000
			Max. Mx Max. My	26 10	-0.008 0.000	-0.103 0.000	0.000 -0.000
			Max. Vy	26	0.000	0.000	0.000
			Max. Vx	10	0.000	0.000	0.000
Т7	101.479 - 81.2708	Leg	Max Tension	23	145.899	-0.542	0.013
	01.2700		Max. Compression	10	-188.671	0.687	-0.044
			Max. Mx	10	-173.600	0.748	-0.068
			Max. My	24	-16.379	-0.017	0.876
			Max. Vý	14	-0.107	-0.715	-0.116
			Max. Vx	12	-0.154	-0.022	-0.874
		Diagonal	Max Tension	16	10.921	0.000	0.000
			Max. Compression	16	-11.266	0.000	0.000
			Max. Mx	38	2.153	0.314	0.000
			Max. My	6	-1.122	0.000	0.001
			Max. Vy	38	-0.088	0.000	0.000

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.	п	Туре		Comb.	Κ	kip-ft	kip-ft
			Max. Vx	6	-0.000	0.000	0.000
		Horizontal	Max Tension	16	7.767	-0.086	-0.000
			Max. Compression	16	-7.767	-0.086	-0.000
			Max. Mx	37	0.005	-0.187	-0.005
			Max. My	22	-0.673	-0.114	-0.018
			Max. Vy Max. Vx	37 22	-0.087 0.002	-0.187 -0.114	-0.005 -0.018
		Inner Bracing	Max Tension	25	0.001	0.000	0.000
			Max. Compression	37	-0.013	0.000	0.000
			Max, Mx	26	-0.011	-0.157	0.000
			Max. My	10	-0.001	0.000	-0.000
			Max. Vy	26	0.067	0.000	0.000
Т8	81,2708 - 61	Log	Max. Vx	10 23	0.000 170.775	0.000 -1.107	0.000
10	01.2700-01	Leg	Max Tension Max. Compression	23 10	217.042	0.645	0.007 -0.040
			Max. Mx	10	-203.275	1,114	-0.040
			Max, My	24	-19.895	-0.038	1.079
			Max. Vý	14	0.143	-1.077	-0.038
			Max. Vx	24	-0.167	-0.038	1.079
		Diagonal	Max Tension	17	10.699	0.000	0.000
			Max. Compression	16	-11.166	0.000	0.000
			Max. Mx Max. My	38 6	1.932 -1.316	0.374 0.000	0.000 0.000
			Max. Vy	38	-0.098	0.000	0.000
			Max. Vx	6	-0.000	0.000	0.000
		Horizontal	Max Tension	16	8.151	-0.105	-0.000
			Max. Compression	16	-8.072	-0.105	-0.000
			Max. Mx	37	0.097	-0.222	-0.004
			Max. My	22 37	-0.893	-0.124 -0.222	-0.016
			Max. Vy Max. Vx	22	-0.096 0.002	-0.222 -0.124	-0.004 -0.016
		Inner Bracing	Max Tension	1	0.002	0.000	0.000
		g	Max. Compression	37	-0.015	0.000	0.000
			Max. Mx	26	-0.014	-0.250	0.000
			Max. My	10	-0.002	0.000	-0.000
			Max. Vy	26	0.094	0.000	0.000
Т9	61 - 40,6667	Leg	Max. Vx Max Tension	10 23	-0.000 194.543	0.000 -1.538	0.000 -0.015
19	01-40,0007	L e g	Max. Compression	10	-244.630	-1.538 -2.473	-0.013 -0.142
			Max. Mx	10	-244.630	-2.473	-0.142
			Max. My	24	-24.713	-0.640	3.158
			Max. Vy	10	0.493	1.843	-0.008
			Max. Vx	24	-0.379	-0.640	3.158
		Diagonal	Max Tension	17	11.448	0.000	0.000
			Max. Compression Max. Mx	16 38	-11.969 2.056	0.000 0.432	0.000 0.000
			Max. My	6	-1.471	0.000	0.000
			Max. Vy	38	-0.107	0.000	0.000
			Max. Vx	6	-0.000	0.000	0.000
		Horizontal	Max Tension	16	9.183	-0.130	-0.000
			Max. Compression	17	-8.961	-0.098	-0.000
			Max. Mx	37	0.428	-0.267	-0.004
			Max. My Max. Vy	22 37	-0.444 -0.105	-0.143 -0.267	-0.016 -0.004
			Max. Vx	22	0.001	-0.143	-0.016
		Inner Bracing	Max Tension	1	0.000	0.000	0.000
		· ·	Max. Compression	37	-0.015	0.000	0.000
			Max. Mx	26	-0.014	-0.306	0.000
			Max. My	10	-0.003	0.000	-0.000
			Max. Vy	26 10	0.102	0.000	0.000
T10	40.6667 -	Leg	Max. Vx Max Tension	10 23	0.000 204.382	0.000 1.108	0.000 0.112
1 10	20.3333	Leg	MIGN TOTISION	20	207,002	1.100	0.112
			Max. Compression	10	-257.392	-7.187	-0.279
			Max. Mx	10	-257 144	8.191	0.204
			Max. My	24	-26.953	-1.338	5.176
			Max. Vy	10	1.562	8.191	0.204
		Diagonal	Max. Vx Max Tension	24 17	-0.900 15.902	-1.338 -0.123	5.176 0.083
		Diagonal	IVIAX TEHSIOH	17	10.802	-0.123	0.083

Sectio	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
n No.	п	Type		Comb.	Κ	kip-ft	kip-ft
770.			Max. Compression	16	-16.799	0.000	0.000
			Max. Mx	6	11.695	-0.179	0.051
			Max. My	4	-16.336	-0.011	-0.099
			Max. Vy	37	-0.071	-0.171	0.003
			Max. Vx	4	-0.008	0.000	0.000
		Horizontal	Max Tension	16	8.802	-0.196	-0.000
		Honzontai	Max. Compression	16	-9.125	-0.198	-0.000
			Max. Mx	37	-0.425	-0.381	-0.006
			Max. My	10	1.516	-0.126	0.023
			Max. Vy	37	0.134	-0.381	-0.006
			Max. Vx	10	-0.002	-0.126	0.023
		Redund Horz 1	Max Tension	22	1.746	0.000	0.023
		Bracing					
			Max. Compression	5	-1.521	0.000	0.000
			Max. Mx	26	0.402	0.040	0.000
		D 1 15: 4	Max. Vy	26	-0.026	0.000	0.000
		Redund Diag 1 Bracing	Max Tension	5	1.538	0.000	0.000
			Max. Compression	22	-1.490	0.000	0.000
			Max. Mx	38	-0.199	0.082	0.000
			Max. My	16	-1.361	0.000	-0.000
			Max. Vy	38	-0.028	0.000	0.000
			Max. Vx	16	0.000	0.000	0.000
		Redund Hip 1 Bracing	Max Tension	1	0.000	0.000	0.000
		•	Max. Compression	16	-0.044	0.000	0.000
			Max. Mx	26	-0.013	0.040	0.000
			Max. Vy	26	-0.026	0.000	0.000
		Redund Hip Diagonal 1 Bracing	Max Tension	16	0.085	0.000	0.000
		9	Max. Compression	38	-0.078	0.000	0.000
			Max. Mx	38	0.067	0.287	0.000
			Max, My	24	0.029	0.000	0.000
			Max. Vy	38	-0.076	0.000	0.000
			Max. Vx	24	-0.000	0.000	0.000
		Inner Bracing	Max Tension	17	0.000	0.000	0.000
		Inner Braeing	Max. Compression	34	-0.019	0.000	0.000
			Max. Mx	26	-0.016	0.326	0.000
			Max. My	10	-0.004	0.000	0.000
			Max. Vy	26	-0.104	0.000	0.000
			Max. Vx	10		0.000	0.000
T11	20,3333 - 0	Log	Max Tension	23	-0.000 225.276	4.209	0.000
111	20.3333 - 0	Leg					
			Max. Compression	10	-283.019	-0.000 7.401	0.000
			Max. Mx	10	-282.715	7.491	0.185
			Max. My	24	-29.188	-1.339	5.174
			Max. Vy	10	-1.498	7.491	0.185
		Diaman	Max. Vx	24	0.876	-1.339	5.174
		Diagonal	Max Tension	17	18.184	-0.120	0.081
			Max. Compression	16	-19.055	0.000	0.000
			Max. Mx	6	13.384	-0.180	0.050
			Max. My	4	-18.676	-0.034	-0.098
			Max. Vy	37	-0.072	-0.178	0.003
			Max. Vx	4	-0.008	0.000	0.000
		Horizontal	Max Tension	16	10.803	-0.234	-0.000
			Max. Compression	17	-10.756	-0.178	-0.000
			Max. Mx	37	0.444	-0.394	-0.006
			Max. My	22	-0.432	-0.297	-0.023
			Max. Vy	37	-0.136	-0.394	-0.006
			Max. Vx	22	0.002	-0.297	-0.023
		Redund Horz 1 Bracing	Max Tension	22	1.288	0.000	0.000
		ŭ	Max. Compression	5	-1.267	0.000	0.000
			Max. Mx	34	0.409	0.045	0.000
			Max. Vy	34	-0.026	0.000	0.000
		Redund Diag 1 Bracing	Max Tension	8	1.253	0.000	0.000
		2.30119	Max. Compression	23	-0.989	0.000	0.000
			Max. Mx	27	-0.203	0.089	0.000
			Max. My	18	-0.724	0.000	-0.000
			wax. wy	.0	0.7 Z-T	0.000	3.000

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	K	kip-ft	kip-ft
			Max. Vy	27	-0.030	0.000	0.000
			Max. Vx	18	0.000	0.000	0.000
		Redund Hip 1 Bracing	Max Tension	1	0.000	0.000	0.000
			Max. Compression	16	-0.045	0.000	0.000
			Max. Mx	26	-0.010	0.045	0.000
			Max. Vy	26	-0.026	0.000	0.000
		Redund Hip	Max Tension	16	0.088	0.000	0.000
		Diagonal 1 Bracing					
			Max. Compression	38	-0.072	0.000	0.000
			Max. Mx	37	0.063	0.310	0.000
			Max. My	2	0.042	0.000	0.000
			Max. Vy	37	-0.077	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000
		Inner Bracing	Max Tension	17	0.002	0.000	0.000
		_	Max. Compression	16	-0.018	0.000	0.000
			Max. Mx	26	-0.013	0.376	0.000
			Max. My	2	-0.004	0.000	0.000
			Max. Vý	26	-0.108	0.000	0.000
			Max. Vx	2	-0.000	0.000	0.000

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Leg C	Max. Vert	18	293.798	28.970	-18.033
•	Max. H _x	18	293.798	28.970	-18.033
	Max. H _z	7	-237.792	-25.501	16.050
	Min. Vert	7	-237.792	-25.501	16.050
	Min. H _x	7	-237.792	-25.501	16.050
	Min. H _z	18	293.798	28.970	-18.033
Leg B	Max. Vert	10	310.904	-31.517	-17.670
	Max. H _x	23	-250.148	28.066	15.556
	Max. H _z	23	-250.148	28.066	15.556
	Min. Vert	23	-250.148	28.066	15.556
	Min. H _x	10	310.904	-31.517	-17.670
	Min. H _z	10	310,904	-31.517	-17.670
Leg A	Max. Vert	2	296.917	-1.062	33.864
	Max. H _x	21	27.815	6.462	1.935
	Max. H _z	2	296.917	-1.062	33.864
	Min. Vert	15	-232.439	1.162	-29.705
	Min. H _x	9	27.096	-6.423	1.875
	Min. H _z	15	-232.439	1.162	-29.705

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M ₂	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	85.713	-0.000	0.000	-48.416	-32.879	-0.000
1.2 Dead+1.0 Wind 0 deg - No Ice	102.856	-0.047	-55.339	-6832.840	-30.706	-58.212
0.9 Dead+1.0 Wind 0 deg - No Ice	77.142	-0.047	-55.344	-6808.237	-20.652	-58.313
1.2 Dead+1.0 Wind 30 deg - No Ice	102.856	26.703	-46.257	-5754.050	-3326.159	-54.045
0.9 Dead+1.0 Wind 30 deg - No Ice	77.142	26.705	-46.261	-5730.994	-3311.256	-54.083
1.2 Dead+1.0 Wind 60 deg - No Ice	102.856	48.513	-27.901	-3453.257	-5952.462	-59.284

Load Combination	Vertical v	Shear _x	Shear₂ v	Overturning Moment, M_x	Overturning Moment, M _z	Torque
0.9 Dead+1.0 Wind 60 deg -	<i>K</i> 77.142	<i>K</i> 48.518	<i>K</i> -27.904	kip-ft -3433.625	kip-ft _5933.748	kip-ft -59.249
No Ice	77.142	40.510	-27.904	-3433.023	-0900.740	-59.249
1.2 Dead+1.0 Wind 90 deg -	102.856	58.609	0.040	-50.629	-7117.406	-32.307
No Ice 0.9 Dead+1.0 Wind 90 deg -	77,142	58.614	0.040	-35.965	-7097.059	-32.207
No Ice	77.1.12		0.010		7007.000	02.201
1.2 Dead+1.0 Wind 120 deg	102.856	51.589	29.758	3534.771	-6269.272	26.568
- No Ice 0.9 Dead+1.0 Wind 120 deg	77.142	51.594	29.760	3544.245	-6250.181	26.708
- No Ice	100.050	00.007	50.450	2222 524	0570.044	00.400
1.2 Dead+1.0 Wind 150 deg - No Ice	102.856	29.037	50.153	6038.501	-3573.614	60.482
0.9 Dead+1.0 Wind 150 deg	77.142	29.040	50.158	6044.302	-3558.434	60.620
- No Ice 1.2 Dead+1.0 Wind 180 deg	102.856	0.053	55.314	6711.553	-49.890	58.032
- No Ice						
0.9 Dead+1.0 Wind 180 deg - No Ice	77.142	0.054	55.319	6716.331	-39.841	58.133
1.2 Dead+1.0 Wind 210 deg	102.856	-26.729	46.240	5634.151	3251.332	53.828
- No Ice	77.142	-26.731	46,244	5640.478	3256.521	53,867
0.9 Dead+1.0 Wind 210 deg - No Ice	77.142	-20.731	40.244	5040.476	3230.321	33.007
1.2 Dead+1.0 Wind 240 deg	102.856	-48.480	27.930	3341.520	5866.957	59.603
- No Ice 0.9 Dead+1.0 Wind 240 deg	77.142	-48.484	27.932	3351.252	5868.353	59.569
- No Ice	400.050	50 500	0.057	00.000	7000 005	00.000
1.2 Dead+1.0 Wind 270 deg - No Ice	102.856	-58.588	-0.057	-69.388	7033.925	32.320
0.9 Dead+1.0 Wind 270 deg	77.142	-58.592	-0.057	-54.675	7033.683	32.220
No Ice1.2 Dead+1.0 Wind 300 deg	102.856	-51.583	-29.768	-3653.293	6188.609	-26.591
- No Ice						
0.9 Dead+1.0 Wind 300 deg - No Ice	77.142	-51.587	-29.771	-3633.390	6189.619	-26.732
1.2 Dead+1.0 Wind 330 deg	102.856	-29.031	-50.162	-6156.676	3493.111	-60.539
- No Ice 0.9 Dead+1.0 Wind 330 deg	77,142	-29.034	-50,166	-6133,103	3498.033	-60.676
- No Ice	77.142	20.004			0400,000	00.010
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0	213.078 213.078	0.000 0.004	0.001 -15.267	-125.720 -2005.686	112.747 112.564	0.002 -19.690
deg+1.0 Ice+1.0 Temp	213.076	0.004	-13.207	-2003.000	112.304	-13.030
1.2 Dead+1.0 Wind 30	213.078	7.529	-13.000	-1728.599	-815.347	-18.031
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 60	213.078	13.325	-7.664	-1064.081	-1519.415	-16.261
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	213.078	15.960	-0.005	-126.971	-1827.372	-7.696
1.2 Dead+1.0 Wind 120	213.078	14.042	8.079	854.180	-1592.508	7.755
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150	213.078	7.945	13.719	1549.236	-858.018	18.595
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	213.078	-0.003	15.257	1751.218	113.337	19.657
1.2 Dead+1.0 Wind 210	213.078	-7.534	12.998	1475.489	1042.380	17.992
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 240	213.078	-13.318	7.670	812.527	1744.450	16.321
deg+1.0 Ice+1.0 Temp	210.070	-13.510	7.070	012.527	1744.430	10.521
1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	213.078	-15.956	0.003	-126.128	2052.773	7.696
1.2 Dead+1.0 Wind 300	213.078	-14.041	-8.080	-1106.944	1818.326	-7.759
deg+1.0 Ice+1.0 Temp	242.070	7.040	10 700	1000 000	1002.044	40.600
1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	213.078	-7.943	-13.720	-1802.039	1083.941	-18.608
Dead+Wind 0 deg - Service	85.713	-0.011	-12.908	-1604.196	-30.996	-13.073
Dead+Wind 30 deg - Service Dead+Wind 60 deg - Service	85.713 85.713	6.237 11.311	-10.805 -6.506	-1357.425 -828.097	-788.271 -1390.555	-12.127 -13.298
Dead+Wind 90 deg - Service	85.713	13.641	0.009	-46.799	-1656.615	-7.235
Dead+Wind 120 deg -	85.713	12.000	6.923	775.402	-1461.515	5.976
Service						

Load Combination	Vertical	Shear _x	Shear₂	Overturning Moment, M _v	Overturning Moment. M ₂	Torque
Combination	K	K	K	kip-ft	kip-ft	kip-ft
Dead+Wind 150 deg - Service	85.713	6.761	11.679	1350.202	-843.748	13.583
Dead+Wind 180 deg - Service	85.713	0.012	12.903	1506.072	-35.331	13.029
Dead+Wind 210 deg - Service	85.713	-6.243	10.801	1259.620	723.229	12.079
Dead+Wind 240 deg - Service	85.713	-11.304	6.513	732.096	1323.098	13.366
Dead+Wind 270 deg - Service	85.713	-13.637	-0.013	-50.994	1589.638	7.238
Dead+Wind 300 deg - Service	85.713	-11.999	-6.924	-872.903	1395.160	-5.983
Dead+Wind 330 deg - Service	85.713	-6.760	-11.680	-1447.640	777.384	-13.595

Solution Summary

		n of Applied Force		Sum of Reactions				
Load	PX	PY	PZ	PX	PY	PZ	% Error	
Comb.	K	K	K	K	K	K		
1	0.000	-85.713	0.000	0.000	85.713	-0.000	0.000%	
2	-0.047	-102.856	-55.358	0.047	102.856	55.339	0.016%	
3	-0.047	-77.142	-55.358	0.047	77.142	55.344	0.015%	
4	26.712	-102.856	-46.273	-26.703	102.856	46.257	0.016%	
5	26.712	-77.142	-46.273	-26.705	77.142	46.261	0.014%	
6	48.529	-102.856	-27.910	-48.513	102.856	27.901	0.016%	
7	48.529	-77.142	-27.910	-48.518	77.142	27.904	0.014%	
8	58.628	-102.856	0.040	-58.609	102.856	-0.040	0.016%	
9	58.628	-77.142	0.040	-58.614	77.142	-0.040	0.015%	
10	51.606	-102.856	29.767	-51.589	102.856	-29.758	0.016%	
11	51.606	-77.142	29.767	-51.594	77.142	-29.760	0.015%	
12	29.047	-102.856	50.169	-29.037	102.856	-50.153	0.016%	
13	29.047	-77 142	50.169	-29.040	77.142	-50.158	0.014%	
14	0.054	-102.856	55.332	-0.053	102.856	-55.314	0.015%	
15	0.054	-77.142	55.332	-0.054	77.142	-55.319	0.014%	
16	-26.738	-102.856	46.255	26.729	102.856	-46.240	0.015%	
17	-26.738	-77.142	46.255	26.731	77.142	-46.244	0.014%	
18	-48.496	-102.856	27.939	48.480	102.856	-27.930	0.015%	
19	-48.496	-77.142	27.939	48.484	77.142	-27.932	0.014%	
20	-58.606	-102.856	-0.057	58.588	102.856	0.057	0.016%	
21	-58.606	-77.142	-0.057	58.592	77.142	0.057	0.014%	
22	-51.599	-102.856	-29.778	51.583	102.856	29.768	0.016%	
23	-51.599	-77.142	-29.778	51.587	77.142	29.771	0.014%	
24	-29.040	-102.856	-50.179	29.031	102.856	50.162	0.016%	
25	-29.040	-77.142	-50.179	29.034	77.142	50.166	0.015%	
26	0.000	-213.078	0.000	-0.000	213.078	-0.001	0.000%	
27	0.004	-213.078	-15.272	-0.004	213.078	15.267	0.002%	
28	7.531	-213,078	-13.005	-7.529	213.078	13,000	0.002%	
29	13.328	-213.078	-7.666	-13.325	213.078	7.664	0.002%	
30	15.965	-213.078	-0.006	-15.960	213.078	0.005	0.002%	
31	14.046	-213.078	8.081	-14.042	213.078	-8.079	0.002%	
32	7.947	-213,078	13,723	-7.945	213.078	-13.719	0.002%	
33	-0.003	-213.078	15.267	0.003	213.078	-15.257	0.005%	
34	-7.536	-213.078	13.001	7.534	213.078	-12.998	0.002%	
35	-13.322	-213.078	7.672	13.318	213.078	-7.670	0.002%	
36	-15.961	-213.078	0.002	15.956	213.078	-0.003	0.002%	
37	-14.045	-213.078	-8.083	14.041	213.078	8.080	0.002%	
38	-7.946	-213.078	-13.725	7.943	213.078	13.720	0.002%	
39	-0.010	-85.713	-12.912	0.011	85.713	12.908	0.004%	
40	6.239	-85.713	-10.808	6.237	85.713	10,805	0.004%	
41	11,314	-85.713	-6.508	-11,311	85.713	6.506	0.004%	
42	13.645	-85.713	0.009	-13,641	85.713	-0.009	0.004%	
43	12.004	-85.713	6.924	-12.000	85.713	-6.923	0.004%	
44	6.763	-85.713	11.682	-6.761	85.713	-11.679	0.004%	
45	0.012	-85.713	12.906	-0.012	85.713	-12.903	0.004%	
46	-6.245	-85.713	10.804	6.243	85.713	-10.801	0.003%	

	Sun	n of Applied Force	es		Sum of Reaction	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
47	-11.306	-85.713	6.514	11.304	85.713	-6.513	0.004%
48	-13.640	-85.713	-0.013	13.637	85.713	0.013	0.004%
49	-12.002	-85.713	-6.927	11.999	85.713	6.924	0.004%
50	-6.761	-85.713	-11.684	6.760	85.713	11.680	0.004%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination	o o o . g o u .	of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00008149
2	Yes	4	0.00036003	0.00088966
3	Yes	4	0.00036003	0.00067269
4	Yes	4	0.00020303	0.00087389
5	Yes	4	0.00033338	0.00067369
6	Yes	4	0.00034494	0.00085297
7	Yes	4	0.00025412	0.00063551
8	Yes	4	0.00035196	0.00086953
9	Yes	4	0.00026120	0.00065243
10	Yes	4	0.00035929	0.00088677
11	Yes	4	0.00026865	0.00067052
12	Yes	4	0.00035062	0.00086468
13	Yes	4	0.00026043	0.00064992
14	Yes	4	0.00034223	0.00084308
15	Yes	4	0.00025237	0.00062972
16	Yes	4	0,00035100	0,00086374
17	Yes	4	0.00026085	0.00065065
18	Yes	4	0.00035929	0.00088364
19	Yes	4	0.00026885	0.00066991
20	Yes	4	0.00035072	0.00086321
21	Yes	4	0.00035072	0.00064945
22	Yes	4	0.00020003	0.00084176
23		4	0.00034142	
	Yes			0.00062763
24	Yes	4	0.00035055	0.00086550
25	Yes	4	0.00026022	0.00064988
26	Yes	4	0.00000001	0.00011352
27	Yes	5	0.00000001	0.00045816
28	Yes	5	0.00000001	0.00044881
29	Yes	5	0.00000001	0.00043858
30	Yes	5	0.0000001	0.00043042
31	Yes	5	0.0000001	0.00041999
32	Yes	5	0.00000001	0.00040532
33	Yes	4	0.00070195	0.00099524
34	Yes	5	0.00000001	0.00040103
35	Yes	5	0.00000001	0.00041861
36	Yes	5	0.00000001	0,00043778
37	Yes	5	0.00000001	0.00045210
38	Yes	5	0.00000001	0.00045968
39	Yes	4	0.00000001	0.00043363
40	Yes	4	0.00000001	0.00061257
41		4	0.0000001	
41 42	Yes Yes	4		0.00061325
			0.00000001	0.00061521
43	Yes	4	0.00000001	0.00061019
44	Yes	4	0.0000001	0.00059103
45	Yes	4	0.0000001	0.00056798
46	Yes	4	0.00000001	0.00055815
47	Yes	4	0.00000001	0.00056737
48	Yes	4	0.00000001	0.00057694
49	Yes	4	0.00000001	0.00058745
50	Yes	4	0.00000001	0.00060250

	_			
Mavimum	TOWOR	Deflections	- Sarvica	Wind
IVIAXIIIIUIII	IUVVEI	Delierions	- OCI VICE	vviiiu

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	212.625 -	3.361	42	0.140	0.032
	202.458				
T2	202.458 -	3.067	42	0.139	0.032
	182.292				
T3	182.292 -	2.479	42	0.133	0.031
	162.104				
T4	162.104 -	1.927	42	0.119	0.026
	141.896				
T5	141.896 -	1.435	42	0.103	0.021
	121.688				
T6	121.688 -	1.035	42	0.083	0.017
	101.479				
T7	101.479 -	0.704	42	0.067	0.013
	81.2708				
T8	81.2708 - 61	0.451	43	0.050	0.010
T9	61 - 40.6667	0.258	43	0.036	0.008
T10	40.6667 -	0.122	49	0.021	0.005
	20.3333				
T11	20.3333 - 0	0.041	49	0.011	0.003

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
216.625	Flash Beacon Lighting	42	3.361	0.140	0.032	340128
213.625	Lightning Rod 5/8" x 6'	42	3.361	0.140	0.032	340128
212.625	Climb Leg Extension	42	3.361	0.140	0.032	340128
208,000	Sector Mount [SM 510-3]	42	3.228	0.140	0.032	340128
199.000	Sector Mount [SM 505-3]	42	2.966	0.139	0.032	332936
189.000	Sector Mount [SM 510-3]	42	2.673	0.136	0.032	176315
183.000	Pipe Mount [PM 601-3]	42	2.499	0.134	0.031	98068
179.000	HPD2-23	42	2.386	0.132	0.031	85756
175.000	Sector Mount	42	2.274	0.129	0.030	72437
167.000	Side Arm Mount [SO 306-1]	42	2.056	0.123	0.028	54862
164.000	Side Arm Mount [SO 306-1]	42	1.977	0.121	0.027	50626
147.000	Side Arm Mount [SO 306-1]	42	1.551	0.107	0.022	50235
145,000	Side Arm Mount [SO 306-1]	42	1.505	0.105	0.022	48577
139.000	(3) Site Pro 1 VFA12-HD	42	1.372	0.100	0.021	48105
128.000	Side Arm Mount	42	1.151	0.089	0.018	67981
118.000	MX08FRO665-20 w/ Mount Pipe	42	0.969	0.080	0.016	78888
112.000	Side Lighting	42	0.867	0.075	0.015	69535
51.000	Side Arm Mount	49	0.184	0.028	0.007	84857

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	212.625 -	14.140	10	0.570	0.142
	202.458				
T2	202.458 -	12.920	10	0.569	0.143
	182.292				
T3	182.292 -	10.474	10	0.541	0.139
	162.104				
T4	162.104 -	8.193	10	0.484	0.117
	141.896				
T5	141.896 -	6.160	10	0.421	0.095

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	•
	121.688				
T6	121.688 -	4.469	10	0.347	0.076
	101.479				
T7	101.479 -	3.051	10	0.283	0.058
	81.2708				
T8	81.2708 - 61	1.955	10	0.215	0.046
Т9	61 - 40.6667	1.117	10	0.154	0.035
T10	40.6667 -	0.523	22	0.092	0.023
	20.3333				
T11	20.3333 - 0	0.175	23	0.046	0.011

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
216.625	Flash Beacon Lighting	10	14.140	0.570	0.142	77912
213.625	Lightning Rod 5/8" x 6'	10	14.140	0.570	0.142	77912
212,625	Climb Leg Extension	10	14.140	0.570	0.142	77912
208,000	Sector Mount [SM 510-3]	10	13,587	0.570	0.142	77912
199.000	Sector Mount [SM 505-3]	10	12.500	0.567	0.143	74684
189,000	Sector Mount [SM 510-3]	10	11.280	0.554	0.142	42229
183.000	Pipe Mount [PM 601-3]	10	10.558	0.543	0.140	22884
179.000	HPD2-23	10	10.087	0.533	0.137	20490
175.000	Sector Mount	10	9.625	0.523	0.133	19145
167.000	Side Arm Mount [SO 306-1]	10	8.726	0.499	0.123	16975
164.000	Side Arm Mount [SO 306-1]	10	8.398	0.490	0.120	16295
147.000	Side Arm Mount [SO 306-1]	10	6.642	0.438	0.100	13478
145.000	Side Arm Mount [SO 306-1]	10	6.450	0.431	0.098	12937
139.000	(3) Site Pro 1 VFA12-HD	10	5.897	0.411	0.092	13005
128.000	Side Arm Mount	10	4.965	0.370	0.081	17672
118.000	MX08FRO665-20 w/ Mount Pipe	10	4.190	0.335	0.072	19903
112.000	Side Lighting	10	3.753	0.316	0.067	16961
51.000	Side Arm Mount	22	0.794	0.122	0.029	19696

Bolt Design Data

Section	Elevation	Component	Bolt	Bolt Size	Number	Maximum	Allowable	Ratio	Allowable	Criteria
No.		Type	Grade		Of	Load	Load	Load	Ratio	
	ft			in	Bolts	per Bolt	per Bolt	Allowable		
						K	K			
T1	212.625	Leg	A325N	0.750	4	0.405	30.101	0.013	1.05	Bolt Tension
		Diagonal	A325N	0.625	3	0.881	13.806	0.064	1.05	Bolt Shear
		Horizontal	A325N	0.625	2	0.945	13,806	0.068	1.05	Bolt Shear
T2	202.458	Leg	A325N	0.875	4	3.751	41.556	0.090	1.05	Bolt Tension
		Diagonal	A325N	0.625	3	2.612	13.806	0.189	1.05	Bolt Shear
		Horizontal	A325N	0.625	2	2.110	13.806	0.153	1.05	Bolt Shear
Т3	182,292	Leg	A325N	1.000	4	11.460	54.517	0.210	1.05	Bolt Tension
		Diagonal	A325N	0.625	3	2.718	13.806	0.197	1.05	Bolt Shear
		Horizontal	A325N	0.625	2	2.610	13.806	0.189	1.05	Bolt Shear
T4	162.104	Leg	A325N	1.000	6	12.567	54.517	0.231	1.05	Bolt Tension
		Diagonal	A325N	0.625	3	2.677	13.806	0.194	1.05	Bolt Shear
		Horizontal	A325N	0.625	2	2.688	13.806	0.195	1.05	Bolt Shear
T5	141.896	Leg	A325N	1.000	6	15.721	54.517	0.288	1.05	Bolt Tension
		Diagonal	A325N	0.625	3	3.668	13.806	0.266	1.05	Bolt Shear
		Horizontal	A325N	0.625	2	3.272	13.806	0.237	1.05	Bolt Shear
Т6	121.688	Leg	A325N	1.000	6	19.908	54.517	0.365	1.05	Bolt Tension
		Diagonal	A325N	0.625	3	3.737	13.806	0.271	1.05	Bolt Shear
		Horizontal	A325N	0.625	2	3.643	13.806	0.264	1.05	Bolt Shear
T7	101.479	Leg	A325N	1.000	8	18.237	54.517	0.335	1.05	Bolt Tension
		Diagonal	A325N	0.625	3	3.755	13.806	0.272	1.05	Bolt Shear

Section	Elevation	Component	Bolt	Bolt Size	Number	Maximum	Allowable	Ratio	Allowable	Criteria
No.		Type	Grade		Of	Load	Load	Load	Ratio	
	ft			in	Bolts	per Bolt	per Bolt	Allowable	='	
						K	K			
		Horizontal	A325N	0.625	2	3.883	13.806	0.281	1.05	Bolt Shear
T8	81.2708	Leg	A325N	1.000	8	21.347	54.517	0.392	1.05	Bolt Tension
		Diagonal	A325N	0.625	3	3.722	13.806	0.270	1.05	Bolt Shear
		Horizontal	A325N	0.625	2	4.076	13.806	0.295	1.05	Bolt Shear
T9	61	Leg	A325N	1.000	8	24.318	54.517	0.446	1.05	Bolt Tension
		Diagonal	A325N	0.625	3	3.990	13.806	0.289	1.05	Bolt Shear
		Horizontal	A325N	0.625	2	4.591	13.806	0.333	1.05	Bolt Shear
T10	40.6667	Leg	A325N	1.000	8	25.492	54.517	0.468	1.05	Bolt Tension
		Diagonal	A325N	0.750	3	5.600	19.880	0.282	1.05	Bolt Shear
		Horizontal	A325N	0.750	2	4.563	19.880	0.229	1.05	Bolt Shear
		Redund Horz 1	A325N	0.625	1	4.468	12.110	0.369	1.05	Member
		Bracing								Bearing
		Redund Diag 1	A325N	0.625	1	4.127	12.862	0.321	1.05	Member
		Bracing								Bearing
T11	20.3333	Diagonal	A325N	0.750	3	6.352	19.880	0.319	1.05	Bolt Shear
		Horizontal	A325N	0.750	2	5.402	19.880	0.272	1.05	Bolt Shear
		Redund Horz 1	A325N	0.625	1	4.909	12.110	0.405	1.05	Member
		Bracing								Bearing
		Redund Diag 1	A325N	0.625	1	4.240	12.862	0.330	1.05	Member
		Bracing								Bearing
		Bracing								Bearir

Compression Checks

		Leg D	esign l	Data (Comp	ressi	on)		
Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	φP _n	Ratio P _u
	ft		ft	ft		in²	K	K	ΦP_n
T1	212.625 - 202.458	ROHN 2.5 STD	10.167	5.083	64.4 K=1.00	1.704	-4.854	56,631	0.086 1
T2	202.458 - 182.292	ROHN 3 EH	20.167	6.722	71.0 K=1.00	3.016	-23.458	93.888	0.250 ¹
T3	182.292 - 162.104	ROHN 4 EH	20.223	6.741	54.8 K=1.00	4.407	-68.578	159.259	0.431 ¹
T4	162 104 - 141 896	ROHN 5 EH	20.244	6.748	44.0 K=1.00	6.112	-99.947	238.686	0.419 ¹
T5	141.896 - 121.688	ROHN 6 EHS	20.250	10.125	54.6 K=1.00	6.713	-126.881	242.933	0.522 ¹
Т6	121.688 - 101.479	ROHN 6 EH	20.260	10.130	55.4 K=1.00	8.405	-158.665	302.237	0.525 ¹
T7	101.479 - 81.2708	ROHN 6 EH	20.260	10.130	55.4 K=1.00	8.405	-188.671	302.237	0.624 ¹
T8	81.2708 - 61	ROHN 8 EHS	20.328	10.164	41.8 K=1.00	9.719	-217.042	384.981	0.564 ¹
Т9	61 - 40.6667	ROHN 8 EHS	20.384	10.192	41.9 K=1.00	9.719	-244.630	384.707	0.636 ¹
T10	40.6667 - 20.3333	ROHN 8 EH	20.391	10.196	42.5 K=1.00	12.763	-257.392	503.236	0.511 ¹
T11	20.3333 - 0	ROHN 8 EH	20.373	10.187	42.5 K=1.00	12.763	-283.019	503.352	0.562 ¹

¹ P_u / ϕP_n controls

Diagonal Design Data (Compression)

Section No.	Elevation	Size	L	L_u	KI/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	K	K	$\overline{\phi P_n}$
T1	212.625 - 202.458	ROHN 2 STD	6.639	6.453	98.4 K=1.00	1.075	-2.643	23.829	0.111 ¹
T2	202.458 - 182.292	ROHN 2 STD	7.987	7.717	117.6 K=1.00	1.075	-7.837	17.541	0.447 1
Т3	182.292 - 162.104	ROHN 2 STD	8.602	8.301	126.5 K=1.00	1.075	-8.155	15.159	0.538 ¹
T4	162.104 - 141.896	ROHN 2 STD	9.291	8.954	136.5 K=1.00	1.075	-7.736	13.026	0.594 ¹
T5	141.896 - 121.688	ROHN 2.5 STD	12.600	12.138	153.7 K=1.00	1.704	-11.004	16.287	0.676 ¹
Т6	121.688 - 101.479	ROHN 2.5 STD	13.385	12.964	164.2 K=1.00	1.704	-11.211	14.278	0.785 ¹
T7	101.479 - 81.2708	ROHN 3 STD	14.235	13.843	142.8 K=1.00	2.228	-11.266	24.700	0.456 ¹
Т8	81.2708 - 61	ROHN 3 STD	15.213	14.731	151.9 K=1.00	2.228	-11.166	21.813	0.512 ¹
Т9	61 - 40.6667	ROHN 3 STD	16.185	15.723	162.2 K=1.00	2.228	-11.969	19.146	0.625 ¹
T10	40.6667 - 20.3333	ROHN 3 STD	24.652	12.326	127.1 K=1.00	2.228	-16.799	31.156	0.539 ¹
T11	20.3333 - 0	ROHN 3 STD	25.288	12.644	130.4 K=1.00	2.228	-19.055	29.608	0.644 ¹

¹ P_u / ϕP_n controls

Horizontal Design Data (Compression)										
Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	φP _n	Ratio P _u	
	ft		ft	ft		in ²	K	K	ΦP_n	
T1	212.625 - 202.458	ROHN 1.5 STD	8.521	4.141	79.8 K=1.00	0.799	-1.846	22.582	0.082 1	
T2	202.458 - 182.292	ROHN 1.5 STD	8.597	4.153	80.0 K=1.00	0.799	-4.183	22.520	0.186 ¹	
Т3	182.292 - 162.104	ROHN 1.5 STD	10.014	4.819	92.9 K=1.00	0.799	-5.220	19.143	0.273 ¹	
T4	162.104 - 141.896	ROHN 2 STD	12.097	5.817	88.7 K=1.00	1.075	-5.375	27.209	0.198 ¹	
T5	141.896 - 121.688	ROHN 2 STD	13.917	6.682	101.9 K=1.00	1.075	-6.543	22.640	0.289 ¹	
Т6	121.688 - 101.479	ROHN 2 STD	16.292	7.870	120.0 K=1.00	1.075	-7.287	16.864	0.432 1	
T7	101.479 - 81.2708	ROHN 2.5 STD	18.792	9.120	115.5 K=1.00	1.704	-7.767	28.852	0.269 ¹	
T8	81.2708 - 61	ROHN 2.5 STD	21.359	10.320	130.7 K=1.00	1.704	-8.072	22.530	0.358 ¹	
Т9	61 - 40.6667	ROHN 2.5 STD	23.927	11.604	147.0 K=1.00	1.704	-8.961	17.820	0.503 ¹	
T10	40.6667 - 20.3333	ROHN 3 STD	25.177	12.229	126.1 K=1.00	2.228	-9.125	31.651	0.288 ¹	
T11	20.3333 - 0	ROHN 3 STD	27.833	13.557	139.8 K=1.00	2.228	-10.756	25.753	0.418 ¹	

¹ P_u / ϕP_n controls

		Top Gir	t Desig	n Dat	a (Coı	npres	sion)		
Section	Elevation	Size	L	Lu	KI/r	Α	P_u	ϕP_n	Ratio
No.	ft		ft	ft		in²	К	К	$\frac{P_u}{\phi P_n}$

Section	Elevation	Size	L	Lu	KI/r	Α	P_u	ϕP_n	Ratio
No.									P_u
	ft		ft	ft		in²	K	K	${\Phi P_n}$
T1	212.625 - 202.458	ROHN 1.5 STD	8.500	4.130	79.6 K=1.00	0.799	-0.222	22.635	0.010 1

¹ P_u / ϕP_n controls

	Rec	lundant Horiz	ontal ((1) De	sign [Data (0	Compre	ession)	
Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	φPn	Ratio P _u
	ft		ft	ft		in²	K	K	${\Phi P_n}$
T10	40.6667 - 20.3333	ROHN 1.5 STD	6.294	5.935	114.4 K=1.00	0.799	-4.468	13.007	0.343 1
T11	20.3333 - 0	ROHN 1.5 STD	6.958	6.599	127.2 K=1.00	0.799	-4.909	11.053	0.444 1

¹ P_u / ϕP_n controls

	Red	dundant Diaç	gonal (1	I) Des	sign D	ata (C	ompres	ssion)	
Section No.	Elevation	Size	L	L_u	KI/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	K	K	$\overline{\Phi P_n}$
T10	40.6667 - 20.3333	ROHN 2 STD	11.628	10.887	166.0 K=1.00	1.075	-4.127	8.811	0.468 ¹
T11	20.3333 - 0	ROHN 2 STD	12.021	11.347	173.0 K=1.00	1.075	-4.240	8.111	0.523 ¹

¹ P_u / ϕP_n controls

		Redundant H	ip (1) [)esig	n Data	(Con	npressi	on)	
Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	φ <i>P</i> _n	Ratio P _u
	ft		ft	ft		in²	K	K	ΦP_n
T10	40.6667 - 20.3333	ROHN 1.5 STD	6.294	6.294	121.3 K=1.00	0.799	-0.044	11.936	0.004 ¹
T11	20.3333 - 0	ROHN 1.5 STD	6.958	6.958	134.1 K=1.00	0.799	-0.045	10.041	0.004 1

¹ P_u / ϕP_n controls

	Redu	ındant Hip Di	agonal	(1) D	esign	Data	(Compr	ession)
Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	φPn	Ratio P _u
	ft		ft	ft		in ²	K	Κ	${\phi P_n}$
T10	40.6667 - 20.3333	ROHN 2.5 STD	15.204	15.204	192.6 K=1.00	1.704	-0.078	10.381	0.008 1
T11	20.3333 - 0	ROHN 2.5 STD	16.022	16.022	202.9 K=1.00	1.704	-0.072	9.348	0.008 1

No. ft ft ft in ² K	Section	Elevation	Size	L	L_u	KI/r	Α	P_u	ϕP_n	Ratio
ft ft ft ft in^2 K	No.						_			P_u
κ		ft		ft	ft		in ²	K	K	ΦP_n

¹ P_u / ϕP_n controls

		Inner Brac	ing De	sign l	Data (Comp	ression	1)	
Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	K	K	ΦP_n
T1	212.625 - 202.458	L2x2x1/8	4.260	4.260	128.6 K=1.00	0.484	-0.003	8.383	0.000 1
T2	202.458 - 182.292	L2x2x1/8	4.299	4.299	129.8 K=1.00	0.484	-0.005	8.234	0.001 1
Т3	182.292 - 162.104	L2x2x1/8	5.007	5.007	151.1 K=1.00	0.484	-0.006	6.069	0.001 1
T4	162.104 - 141.896	L2x2x1/8	6.049	6.049	182.6 K=1.00	0.484	-0.006	4.159	0.001 1
T5	141.896 - 121.688	L2x2x1/8	6.958	6.958	210.0 K=1.00	0.484	-0.009	3.142	0.003 1
T6	121.688 - 101.479	L2 1/2x2 1/2x3/16	8.146	8.146	197.5 K=1.00	0.902	-0.010	6.620	0.002 1
T7	101.479 - 81.2708	L3x3x3/16	9.396	9.396	189.2 K=1.00	1.090	-0.013	8.717	0.002 1
T8	81.2708 - 61	L3 1/2x3 1/2x1/4	10.680	10.680	184.7 K=1.00	1.690	-0.015	14.185	0.001 1
Т9	61 - 40.6667	L3 1/2x3 1/2x1/4	11.964	11.964	206.9 K=1.00	1.690	-0.015	11.304	0.001 1
T10	40.6667 - 20.3333	ROHN 3 STD	12.589	12.589	129.8 K=1.00	2.228	-0.019	29.869	0.001 1
T11	20.3333 - 0	ROHN 3 STD	13.917	13.917	143.5 K=1.00	2.228	-0.018	24.440	0.001 1

¹ P_u / ϕP_n controls

Tension Checks

		Leg	g Desig	ın Dat	a (Te	nsion)			
Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	K	K	$\frac{}{\phi P_n}$
T1	212.625 - 202.458	ROHN 2.5 STD	10.167	5.083	64.4	1.704	0.078	76.682	0.001 1
T2	202.458 - 182.292	ROHN 3 EH	20.167	6.722	71.0	3.016	15.002	135.717	0.111 ¹
Т3	182.292 - 162.104	ROHN 4 EH	20.223	6.741	54.8	4.407	45.841	198.335	0.231 ¹
T4	162.104 - 141.896	ROHN 5 EH	20.244	6.748	44.0	6.112	75.403	275.039	0.274 ¹
T5	141.896 - 121.688	ROHN 6 EHS	20.250	10.125	54.6	6.713	94.325	302.097	0.312 1
Т6	121.688 - 101.479	ROHN 6 EH	20.260	10.130	55.4	8.405	119.448	378.222	0.316 ¹
T7	101.479 - 81.2708	ROHN 6 EH	20.260	10.130	55.4	8.405	145.899	378.222	0.386 ¹
T8	81.2708 - 61	ROHN 8 EHS	20.328	10.164	41.8	9.719	170.775	437.369	0.390 ¹
Т9	61 - 40.6667	ROHN 8 EHS	20.384	10.192	41.9	9.719	194.543	437.369	0.445 1
T10	40.6667 -	ROHN 8 EH	20.391	10.196	42.5	12.763	204.382	574.322	0.356 ¹

Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	K	K	$\overline{\phi P_n}$
T11	20.3333 20.3333 - 0	ROHN 8 EH	20.373	10.187	42.5	12.763	225.276	574.322	0.392 ¹

¹ P_u / ϕP_n controls

Diagonal Design Data	(Tension)
----------------------	-----------

Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in ²	K	K	ΦP_n
T1	212.625 - 202.458	ROHN 2 STD	6.639	6.453	98.4	1.075	2.570	48.354	0.053 1
T2	202.458 - 182.292	ROHN 2 STD	7.987	7.717	117.6	1.075	7.763	48.354	0.161 ¹
Т3	182.292 - 162.104	ROHN 2 STD	8.602	8.301	126.5	1.075	8.065	48.354	0.167 ¹
T4	162.104 - 141.896	ROHN 2 STD	8.827	8.491	129.4	1.075	7.925	48.354	0.164 ¹
T5	141.896 - 121.688	ROHN 2.5 STD	12.600	12.138	153.7	1.704	10.822	76.682	0.141 ¹
Т6	121.688 - 101.479	ROHN 2.5 STD	13.385	12.964	164.2	1.704	10.982	76.682	0.143 ¹
T7	101.479 - 81.2708	ROHN 3 STD	13.802	13.410	138.3	2.228	10.921	100.281	0.109 ¹
T8	81.2708 - 61	ROHN 3 STD	15.213	14.731	151.9	2.228	10.699	100.281	0.107 1
T9	61 - 40.6667	ROHN 3 STD	16.185	15.723	162.2	2.228	11.448	100.281	0.114 1
T10	40.6667 - 20.3333	ROHN 3 STD	24.652	12.326	127.1	2.228	15.902	100.281	0.159 ¹
T11	20.3333 - 0	ROHN 3 STD	25.288	12.644	130.4	2.228	18.184	100.281	0.181 ¹

¹ P_u / ϕP_n controls

Horizontal Design Data (Tension)

Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	K	K	ΦP_n
T1	212.625 - 202.458	ROHN 1.5 STD	8.521	4.141	79.8	0.799	1.889	35.976	0.053 ¹
T2	202.458 - 182.292	ROHN 1.5 STD	8.597	4.153	0.08	0.799	4.220	35.976	0.117 ¹
Т3	182.292 - 162.104	ROHN 1.5 STD	10.014	4.819	92.9	0.799	4.937	35.976	0.137 ¹
T4	162.104 - 141.896	ROHN 2 STD	11.403	5.470	83.4	1.075	5.261	48.354	0.109 ¹
T5	141.896 - 121.688	ROHN 2 STD	13.917	6.682	101.9	1.075	6.538	48.354	0.135 ¹
T6	121.688 - 101.479	ROHN 2 STD	16.292	7.870	120.0	1.075	7.206	48.354	0.149 ¹
T7	101.479 - 81.2708	ROHN 2.5 STD	18.792	9.120	115.5	1.704	7.767	76.682	0.101 ¹
T8	81.2708 - 61	ROHN 2.5 STD	21.359	10.320	130.7	1.704	8.151	76.682	0.106 ¹
Т9	61 - 40.6667	ROHN 2.5 STD	23.927	11.604	147.0	1.704	9.183	76.682	0.120 ¹
T10	40.6667 - 20.3333	ROHN 3 STD	25.177	12.229	126.1	2.228	8.802	100.281	0.088 ¹
T11	20.3333 - 0	ROHN 3 STD	27.833	13.557	139.8	2.228	10.803	100.281	0.108 ¹

¹ P_u / ϕP_n controls

	Top Girt Design Data (Tension)										
Section No.	Elevation	Size	L	Lu	KI/r	Α	Pu	ϕP_n	Ratio P _u		
	ft		ft	ft		in ²	K	K	${\Phi P_n}$		
T1	212.625 - 202.458	ROHN 1.5 STD	8.500	4.130	79.6	0.799	0.223	35.976	0.006 ¹		

¹ P_u / ϕP_n controls

Redundant Horizontal (1) Design Data (Tension)												
Section Elevation Size L L_u KI/r A P_u ϕP_n Ratio No .												
	ft		ft	ft		in²	K	K	${\phi P_n}$			
T10	40.6667 - 20.3333	ROHN 1.5 STD	6.294	5.935	114.4	0.799	4.468	25.902	0.172 ¹			
T11	20.3333 - 0	ROHN 1.5 STD	6.958	6.599	127.2	0.799	4.909	25.902	0.190 ¹			

¹ P_u / ϕP_n controls

	Redundant Diagonal (1) Design Data (Tension)											
Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	ϕP_n	Ratio P _u			
	ft		ft	ft		in²	K	K	${\Phi P_n}$			
T10	40.6667 - 20.3333	ROHN 2 STD	11.628	10.887	166.0	1.075	4.127	34.815	0.119 1			
T11	20,3333 - 0	ROHN 2 STD	12.021	11,347	173.0	1.075	4.240	34.815	0.122 ¹			

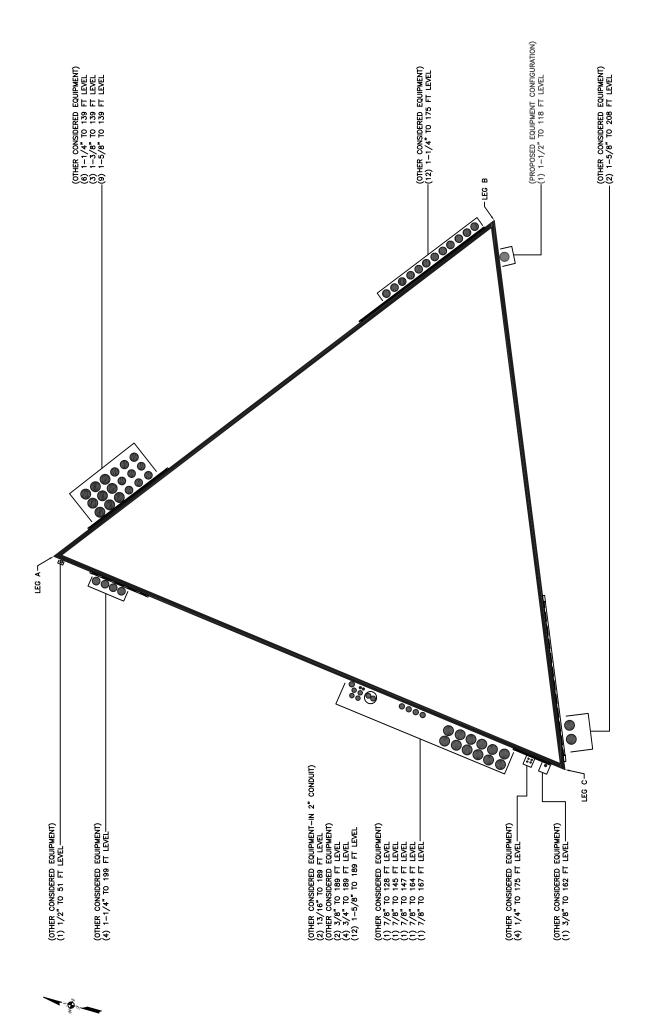
¹ P_u / ϕP_n controls

	Redundant Hip Diagonal (1) Design Data (Tension)											
Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	φPn	Ratio			
	ft		ft	ft		in ²	K	K	${\phi P_n}$			
T10	40.6667 - 20.3333	ROHN 2.5 STD	15.204	15.204	192.6	1.704	0.085	55.211	0.002 1			
T11	20.3333 - 0	ROHN 2.5 STD	16.022	16.022	202.9	1.704	880.0	55.211	0.002 1			

¹ P_u / ϕP_n controls

	Inner Bracing Design Data (Tension)										
Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	φPn	Ratio		
NO.	ft		ft	ft		in²	К	K	$\frac{P_u}{\phi P_n}$		
T1	212.625 - 202.458	L2x2x1/8	4.260	4.260	81.6	0.484	0.003	15.694	0.000 ¹		

Section No.	Elevation	Size	L	L_u	KI/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	K	K	ΦP_n
T2	202.458 - 182.292	L2x2x1/8	4.299	4.299	82.4	0.484	0.005	15.694	0.000 ¹
Т3	182.292 - 162.104	L2x2x1/8	4.660	4.660	89.3	0.484	0.004	15.694	0.000 1
T4	162.104 - 141.896	L2x2x1/8	5.354	5.354	102.6	0.484	0.005	15.694	0.000 1
T5	141.896 - 121.688	L2x2x1/8	6.396	6.396	122.6	0.484	0.004	15.694	0.000 1
Т6	121.688 - 101.479	L2 1/2x2 1/2x3/16	7.521	7.521	116.0	0.902	0.002	29.225	0.000 1
Т7	101.479 - 81.2708	L3x3x3/16	8.771	8.771	112.1	1.090	0.001	35.316	0.000 1
T10	40.6667 - 20.3333	ROHN 3 STD	12.589	12.589	129.8	2,228	0.000	100.281	0.000 1
T11	20.3333 - 0	ROHN 3 STD	13.917	13.917	143.5	2,228	0.002	100.281	0.000 1


¹ P_u / ϕP_n controls

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øΡ _{allow} Κ	% Capacity	Pass Fail
			DOUN 2 5 OTD					
T1	212.625 -	Leg	ROHN 2.5 STD	2	-4.854	59.463	8.2	Pass
	202,458							_
T2	202.458 -	Leg	ROHN 3 EH	28	-23.458	98.582	23.8	Pass
	182.292							
Т3	182.292 -	Leg	ROHN 4 EH	69	-68.578	167.222	41.0	Pass
	162.104							
T4	162.104 -	Leg	ROHN 5 EH	107	-99.947	250.620	39.9	Pass
	141.896							
T5	141.896 -	Leg	ROHN 6 EHS	146	-126.881	255.080	49.7	Pass
	121.688	-						
T6	121.688 -	Leg	ROHN 6 EH	173	-158.665	317.349	50.0	Pass
	101.479	· ·						
T7	101,479 -	Leg	ROHN 6 EH	200	-188,671	317,349	59.5	Pass
	81,2708	· ·						
Т8	81,2708 - 61	Leg	ROHN 8 EHS	227	-217.042	404.230	53.7	Pass
T9	61 - 40.6667	Leg	ROHN 8 EHS	254	-244.630	403.942	60.6	Pass
T10	40.6667 -	Leg	ROHN 8 EH	281	-257.392	528,398	48.7	Pass
	20.3333	3						
T11	20.3333 - 0	Lea	ROHN 8 EH	314	-283.019	528,520	53.5	Pass
T1	212.625 -	Diagonal	ROHN 2 STD	12	-2.643	25.020	10.6	Pass
	202.458	Diagonal	NOTIN 2 61B	12	2.040	20.020	10.0	1 455
T2	202.458 -	Diagonal	ROHN 2 STD	38	-7.837	18,418	42,6	Pass
12	182.292	Diagonal	NOTIN 2 OTB	30	7.007	10,410	72.0	1 433
T3	182.292 -	Diagonal	ROHN 2 STD	78	-8.155	15.917	51.2	Pass
13	162.104	Diagonal	NOTIN 2 STD	70	-0.100	13.317	31.2	1 033
T4	162.104	Diagonal	ROHN 2 STD	110	-7.736	13.677	56.6	Pass
14	141,896	Diagonal	ROHN 2 STD	110	-1.130	13.077	36.6	Pass
T5	141.896 -	Diagonal	DOUN 2 F CTD	156	-11.004	17.101	64.2	Pass
15		Diagonal	ROHN 2.5 STD	156	-11.004	17.101	64.3	Pass
т.	121.688	Diamond	DOLIN O F OTD	400	44.044	44.000	74.0	D
T6	121.688 -	Diagonal	ROHN 2.5 STD	183	-11.211	14.992	74.8	Pass
	101.479	D: 1	DOUBLE OFF	040	44.000	05.005	40.4	_
T7	101.479 -	Diagonal	ROHN 3 STD	210	-11.266	25.935	43.4	Pass
	81.2708							_
T8	81.2708 - 61	Diagonal	ROHN 3 STD	237	-11.166	22.903	48.8	Pass
T9	61 - 40.6667	Diagonal	ROHN 3 STD	264	-11.969	20.104	59.5	Pass
T10	40.6667 - 20.3333	Diagonal	ROHN 3 STD	303	-16.799	32.714	51.4	Pass
T11	20.3333 - 0	Diagonal	ROHN 3 STD	336	-19.055	31.089	61.3	Pass
T1	212.625 - 202.458	Horizontal	ROHN 1.5 STD	10	-1.846	23.711	7.8	Pass
T2	202.458 - 182.292	Horizontal	ROHN 1.5 STD	37	-4.183	23.646	17.7	Pass

Section	Elevation	Component	Size	Critical	P	øP _{allow}	%	Pass
No.	ft	Type		Element	K	K	Capacity	Fail
Т3	182.292 - 162.104	Horizontal	ROHN 1.5 STD	76	-5.220	20.100	26.0	Pass
T4	162.104 - 141.896	Horizontal	ROHN 2 STD	109	-5.375	28.570	18.8	Pass
T5	141.896 - 121.688	Horizontal	ROHN 2 STD	154	-6.543	23.772	27.5	Pass
Т6	121.688 - 101.479	Horizontal	ROHN 2 STD	181	-7.287	17.707	41.2	Pass
T 7	101.479 - 81.2708	Horizontal	ROHN 2.5 STD	208	-7.767	30.294	25.6	Pass
Т8	81.2708 - 61	Horizontal	ROHN 2.5 STD	235	-8.072	23.656	34.1	Pass
T9	61 - 40.6667	Horizontal	ROHN 2.5 STD	262	-8.961	18.711	47.9	Pass
T10	40.6667 -	Horizontal	ROHN 3 STD	299	-9.125	33.233	27.5	Pass
- 44	20.3333		DOUN A OTD	000	40.750	07.044	00.0	Б
T11	20.3333 - 0	Horizontal	ROHN 3 STD	332	-10.756	27.041	39.8	Pass
T1	212.625 - 202.458	Top Girt	ROHN 1.5 STD	5	-0.222	23.767	0.9	Pass
T10	40.6667 - 20.3333	Redund Horz 1 Bracing	ROHN 1.5 STD	288	-4.468	13.657	32.7	Pass
T11	20.3333 - 0	Redund Horz 1 Bracing	ROHN 1.5 STD	321	-4.909	11.606	42.3	Pass
T10	40.6667 - 20.3333	Redund Diag 1 Bracing	ROHN 2 STD	289	-4.127	9.252	44.6	Pass
T11	20.3333 - 0	Redund Diag 1 Bracing	ROHN 2 STD	326	-4.240	8.517	49.8	Pass
T10	40,6667 - 20,3333	Redund Hip 1 Bracing	ROHN 1.5 STD	306	-0.044	12,533	0.4	Pass
T11	20.3333 - 0	Redund Hip 1 Bracing	ROHN 1.5 STD	339	-0.045	10.543	0.4	Pass
T10	40.6667 - 20.3333	Redund Hip Diagonal 1 Bracing	ROHN 2.5 STD	309	-0.078	10.900	0.7	Pass
T11	20.3333 - 0	Redund Hip Diagonal 1 Bracing	ROHN 2.5 STD	342	-0.072	9.815	0.7	Pass
T1	212.625 - 202.458	Inner Bracing	L2x2x1/8	16	-0.003	8.802	0.4	Pass
T2	202.458 - 182.292	Inner Bracing	L2x2x1/8	41	-0.005	8.646	0.4	Pass
Т3	182.292 - 162.104	Inner Bracing	L2x2x1/8	80	-0.005	6.373	0.5	Pass
T4	162.104 - 141.896	Inner Bracing	L2x2x1/8	120	-0.006	4.367	0.6	Pass
T5	141.896 - 121.688	Inner Bracing	L2x2x1/8	157	-0.009	3.300	0.7	Pass
Т6	121.688 - 101.479	Inner Bracing	L2 1/2x2 1/2x3/16	184	-0.010	6.951	0.5	Pass
T7	101.479 - 81.2708	Inner Bracing	L3x3x3/16	213	-0.013	9.153	0.6	Pass
T8	81.2708 - 61	Inner Bracing	L3 1/2x3 1/2x1/4	240	-0.015	14.894	0.4	Pass
Т9	61 - 40.6667	Inner Bracing	L3 1/2x3 1/2x1/4	267	-0.015	11.869	0.4	Pass
T10	40.6667 - 20.3333	Inner Bracing	ROHN 3 STD	311	-0.019	31.363	0.3	Pass
T11	20.3333 - 0	Inner Bracing	ROHN 3 STD	345	-0.016	25.662	0.4 Summary	Pass
						Leg (T9)	60.6	Pass
						Diagonal	74.8	Pass
						(T6) Horizontal	47.9	Pass
						(T9) Top Girt	0.9	Pass
						(T1) Redund	42.3	Pass
						Horz 1 Bracing		
						(T11) Redund	49.8	Pass
						Diag 1 Bracing		
						(T11) Redund	0.4	Pass
						Hip 1		

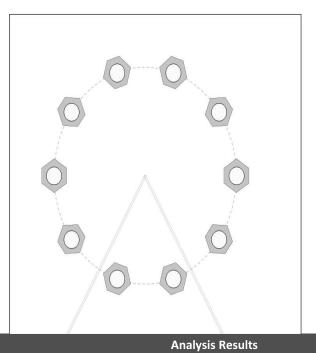
Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
						Bracing (T11) Redund Hip	0.7	Pass
						Diagonal 1 Bracing (T11) Inner	0.7	Pass
						Bracing (T5)		
						Bolt Checks	44.5	Pass
						RATING =	74.8	Pass

APPENDIX B BASE LEVEL DRAWING

APPENDIX C ADDITIONAL CALCULATIONS

Self Support Anchor Rod Capacity

Site Info						
	BU#	806363				
	Site Name	HRT 105 943201				
	Order#	553394 Rev. 0				


Analysis Considerations					
TIA-222 Revision	Н				
Grout Considered:	Yes				
l _{ar} (in)	1.25				

Applied Loads						
	Comp.	Uplift				
Axial Force (kips)	310.90	250.15				
Shear Force (kips)	36.13	32.09				

^{*}TIA-222-H Section 15.5 Applied

Considered Eccentricity					
Leg Mod Eccentricity (in)	0.000				
Anchor Rod N.A Shift (in)	0.000				
Total Eccentricity (in)	0.000				

^{*}Anchor Rod Eccentricity Applied

Anchor Rod Summary		(units of kips, kip-in)
Pu_t = 25.01	φPn_t = 56.81	Stress Rating
Vu = 3.21	φVn = 36.82	41.9%
Mu = n/a	φMn = n/a	Pass

Anchor Rod Data
(10) 1" ø bolts (A354-BC N; Fy=109 ksi, Fu=125 ksi)
I _{ar} (in): 1.25

CCIplate - Version 4.1.2 Analysis Date: 8/21/2021

SST Unit Base Foundation

BU # : 806363 Site Name: HRT 105 943201 App. Number: 553394 Rev. 0

TIA-222 Revision:

Superstructure Analysis Reactions					
Global Moment, M :	7197.11	ft-kips			
Global Axial, P :	102.86	kips			
Global Shear, V :	59.56	kips			
Leg Compression, P _{comp} :	310.9	kips			
Leg Comp. Shear, V _{u_comp} :	36.13	kips			
Leg Uplift, P _{uplift} :		kips			
Leg Uplift. Shear, V u_uplift:	32.09	kips			
Tower Height, H :	212.62	ft			
Base Face Width, BW :	30.04	ft			
BP Dist. Above Fdn, bp_{dist}:	3	in			
Anchor Bolt Circle, BC :	12	in			

Foundation Analysis Checks				
	Capacity	Demand	Rating*	Check
Lateral (Sliding) (kips)	336.38	59.56	16.9%	Pass
Bearing Pressure (ksf)	6.00	1.28	20.4%	Pass
Overturning (kip*ft)	17584.41	7480.02	42.5%	Pass
Pad Flexure (kip*ft)	7259.23	1512.31	19.8%	Pass
Pad Shear - 1-way (kips)	1971.72	173.98	8.4%	Pass
Pad Shear - Comp 2-way (ksi)	0.164	0.032	18.4%	Pass
Flexural 2-way (Comp) (kip*ft)	3668.31	0.00	0.0%	Pass
Pad Shear - Tension 2-way (ksi)	0.164	0.026	14.8%	Pass
Flexural 2-way (Tension) (kip*ft)	3668.31	0.00	0.0%	Pass

*Rating per TIA-222-H Section 15.5

Structural Rating*:	19.8%
Soil Rating*:	42.5%

Pad Properties				
Depth, D :	4.00	ft		
Pad Width, W ₁:	40.25	ft		
Pad Thickness, T :	4.50	ft		
Pad Rebar Size (Bottom dir. 2), Sp ₂ :	7			
Pad Rebar Quantity (Bottom dir. 2), mp ₂ :	55			
Pad Clear Cover, cc_{pad}:	3	in		

Material Properties		
Rebar Grade, Fy:	60	ksi
Concrete Compressive Strength, F'c:	3	ksi
Dry Concrete Density, δ c :	150	pcf

Soil Properties		
Total Soil Unit Weight, γ:	120	pcf
Ultimate Gross Bearing, Qult:	8.000	ksf
Cohesion, Cu:	0.000	ksf
Friction Angle, $oldsymbol{arphi}$:	35	degrees
SPT Blow Count, N _{blows} :	11	
Base Friction, μ :		
Neglected Depth, N:	3.5	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw :	3	ft

<-- Toggle between Gross and Net

Address:

No Address at This Location

ASCE 7 Hazards Report

ASCE/SEI 7-10 Elevation: 18.95 ft (NAVD 88) Standard:

Risk Category: □ Latitude: 41.288944

Soil Class: D - Stiff Soil Longitude: -72.538472

Wind

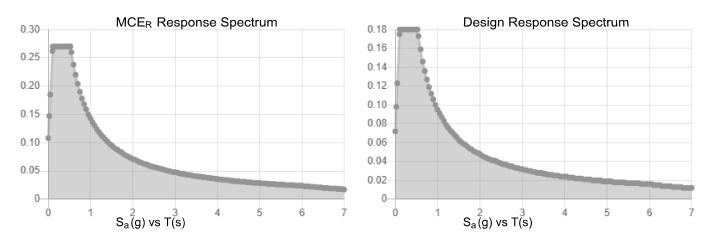
Results:

Wind Speed: 130 Vmph 10-year MRI 78 Vmph 25-year MRI 88 Vmph 50-year MRI 97 Vmph 100-year MRI 106 Vmph

ASCE (88 B B 72 0 2 1 Fig. 26.5-1 A and Figs. CC-1 – CC-4, and Section 26.5.2, Date & ocessed:

incorporating errata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.169	S _{DS} :	0.18	
S_1 :	0.059	S _{D1} :	0.095	
F _a :	1.6	T_L :	6	
F _v :	2.4	PGA :	0.085	
S _{MS} :	0.27	PGA _M :	0.137	
S _{M1} :	0.143	F _{PGA} :	1.6	
		1 .	1	

Seismic Design Category B

Data Accessed: Tue Apr 13 2021

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating

Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with

ASCE/SEI 7-10 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Tue Apr 13 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Date: August 4, 2021

Darcy Tarr Crown Castle 3530 Toringdon Way, Suite 300 Charlotte, NC 28277 704-405-6589

Trylon 1825 W. Walnut Hill Lane, Suite 302 Irving, TX 75038 214-930-1730

Subject: Mount Replacement Analysis Report

Carrier Designation: Dish Network Equipment Change Out

Carrier Site Number: BOBDL00040A Carrier Site Name: CT-CCI-T-806363

Crown Castle Designation: Crown Castle BU Number: 806363

Crown Castle Site Name: HRT 105 943201

Crown Castle JDE Job Number: 645647 **Crown Castle Order Number:** 553394 Rev. 0

Engineering Firm Designation: Trylon Report Designation: 188193

Site Data: 48 Cow Hill Road, Clinton, Middlesex County, CT, 06413

Latitude 41°17'20.20" Longitude -72°32'18.50"

Structure Information: Tower Height & Type: 212.0 ft Self Support Tower

Mount Elevation: 118.0 ft

Mount Type: 8.0 ft Sector Frames

Dear Darcy Tarr,

Trylon is pleased to submit this "Mount Replacement Analysis Report" to determine the structural integrity of Dish Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Sector Frames Sufficient*
*Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis utilizes an ultimate 3-second gust wind speed of 135 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Steve Mustaro, P.E.

Respectfully Submitted by: Cliff Abernathy, P.E.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

Table 4 - Tieback End Reactions

4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

9) APPENDIX E

Supplemental Drawings

1) INTRODUCTION

This is a proposed three sector 8.0 ft Sector Frames, designed by Commscope.

2) ANALYSIS CRITERIA

Building Code: 2015 IBC / 2018 CTSBC

TIA-222 Revision: TIA-222-H

Risk Category:

Ultimate Wind Speed: 135 mph

Exposure Category: В Topographic Factor at Base: 1.0 **Topographic Factor at Mount:** 1.0 Ice Thickness: 1.5 in Wind Speed with Ice: 50 mph Seismic S_s: 0.169 Seismic S₁: 0.059 Live Loading Wind Speed: 30 mph Man Live Load at Mid/End-Points: 250 lb Man Live Load at Mount Pipes: 500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
	118.0	3	JMA WIRELESS	MX08FRO665-20	0.0 ft Contain Frances
118.0		3	FUJITSU	TA08025-B604	8.0 ft Sector Frames
110.0		3	FUJITSU	TA08025-B605	[Commscope MTC3975083]
		1	RAYCAP	RDIDC-9181-PF-48	W1C3973063]

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source	
Crown Application	Dish Network Application	553394 Rev. 0	CCI Sites	
Construction Drawings	Infinigy	BOBDL00040A	TSA	
Mount Manufacturer Drawings	Commscope	MTC3975083	Trylon	

3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed, using Microsoft Excel, by Trylon was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate

HSS (Rectangular)

Pipe

ASTM A36 (GR 36)

ASTM A500 (GR B-46)

ASTM A53 (GR 35)

Connection Bolts

ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Trylon should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Sector Frames, Worst Case Sector)

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
	Mount Pipe(s)	MP3		18.6	Pass
	Horizontal(s)	H1		16.4	Pass
1, 2	Standoff(s)	M4	118.0	20.6	Pass
1, 2	Bracing(s)	M24	110.0	37.6	Pass
	Tieback(s)	M31A		8.6	Pass
	Mount Connection(s)	-		16.1	Pass

Structure Rating (max from all components) =	37.6%
--	-------

Notes:

- 1) See additional documentation in "Appendix C Software Analysis Output" for calculations supporting the % capacity consumed.
- 2) Rating per TIA-222-H, Section 15.5

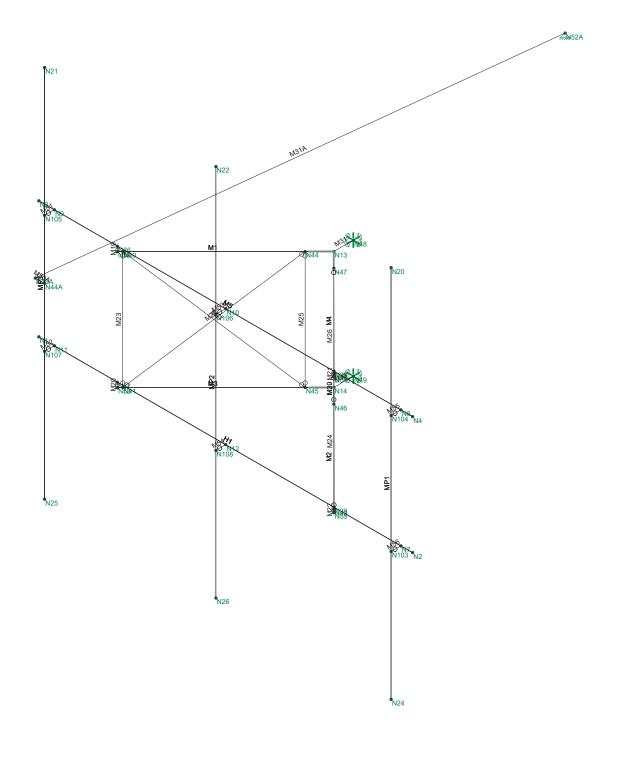
Table 4 - Tieback Connection Data Table

Tower Connection Node No.	Existing / Proposed	Resultant End Reaction (lb)	Connected Member Type	Connected Member Size	Member Compressive Capacity (lb) ³	Notes
N52A	Proposed	796.1	Leg	ROHN 6 EH	4,533.6	2

Notes:

- 1) Tieback connection point is within 25% of either end of the connected tower member
- Tieback connection point is NOT within 25% of either end of the connected tower member
- Reduced member compressive capacity according to CED-STD-10294 Standard for Installation of Mounts and Appurtenances

4.1) Recommendations


The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed.

1. Commscope MTC3975083.

No structural modifications are required at this time, provided that the above-listed changes are implemented.


APPENDIX A WIRE FRAME AND RENDERED MODELS

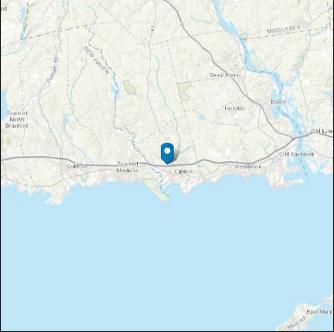
Trylon		Wireframe
SMM	806363	Aug 4, 2021 at 12:26 PM
188193		806363_loaded.r3d

Trylon		Render	
SMM	806363	Aug 4, 2021 at 12:26 PM	
188193		806363_loaded.r3d	

APPENDIX B SOFTWARE INPUT CALCULATIONS

Address:

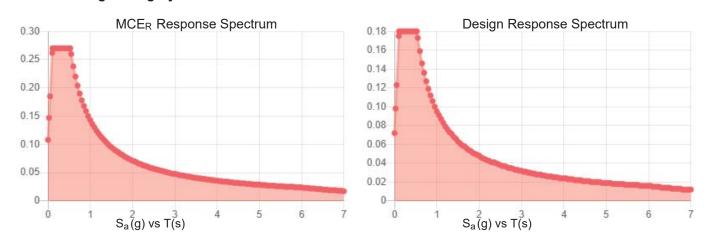

No Address at This Location


ASCE 7 Hazards Report

ASCE/SEI 7-10 Elevation: 18.95 ft (NAVD 88) Standard:

Risk Category: **□** Latitude: 41.288944

Longitude: -72.538472 Soil Class: D - Stiff Soil



Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.169	S _{DS} :	0.18	
S_1 :	0.059	S _{D1} :	0.095	
Fa:	1.6	T_L :	6	
F _v :	2.4	PGA:	0.085	
S _{MS} :	0.27	PGA _M :	0.137	
S _{M1} :	0.143	F _{PGA} :	1.6	
		l _e :	1	

Seismic Design Category B

Data Accessed: Wed Jul 21 2021

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Wed Jul 21 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

CONNECTICUT DESIGN CRITERIA - STATE

7/2/2021

R-397

Revison:

CT is NOT a Home Rule State; Tab added only for Design Criteria

MUNICIPALITY - SPECIFIC STRUCTURAL DESIGN PARAMETERS Wind Design Parameters Wind Design Parameters
Nominal Design W Speeds, V asd (mpl sk Cat. Risk Cat. Ris III-III-III-III-III-III-III-III-III-II
Wind Wind-Borne Debris Regions¹ Risk Cat. II Risk Cat III II-IV & III except Occup I-2 & Occup I-2 & Occup I-2 & Type A

1. Wind-Borne Debris Regions:

Type A: Full Municipality.

Type B: Areas south of Interstate 95.

Exception: Areas that are more than one mile from the coastal mean high-water line as certified by a registered design professional may be classified as being outside a wind-

Yes

-Hurricane-Prone Regions

borne debris region.

Areas south of Metro North/Amtrak Railroad to the west of the Quinnipiac River and areas south of Interstate 95 to the east of the Quinnipiac River. Type C:

Exception: Areas that are more than one mile from the coastal mean high-water line as certified by a registered design professional may be classified as being outside a windborne debris region.

TIA LOAD CALCULATOR 2.0

PROJECT DATA		
Job Code:	188193	
Carrier Site ID:	BU# 806363	
Carrier Site Name:	HRT 105 943201	

CODES AND STANDARDS		
Building Code:	2015 IBC	
Local Building Code:	2018 CSBC	
Design Standard:	TIA-222-H	

STRUCTURE DETAILS		
Mount Type:	Sector Frame	
Mount Elevation:	118.0	ft.
Number of Sectors:	3	
Structure Type:	Self Support Tower	
Structure Height:	212.0	ft.

ANALYSIS CRITERIA			
Structure Risk Category:	II		
Exposure Category:	В		
Site Class:	D - Default		
Ground Elevation:	18.95	ft.	

TOPOGRAPHIC DATA			
Topographic Category:	1.00		
Topographic Feature:	N/A		
Crest Point Elevation:	0.00	ft.	
Base Point Elevation:	0.00	ft.	
Crest to Mid-Height (L/2):	0.00	ft.	
Distance from Crest (x):	0.00	ft.	
Base Topo Factor (K _{zt}):	1.00		
Mount Topo Factor (K _{zt}):	1.00		

WIND PARAMETERS			
Design Wind Speed:	135	mph	
Wind Escalation Factor (K _s):	1.00		
Velocity Coefficient (K _z):	1.04		
Directionality Factor (K _d):	0.95		
Gust Effect Factor (Gh):	1.00		
Shielding Factor (K _a):	0.90		
Velocity Pressure (q _z):	45.89	psf	

ICE PARAMETERS			
Design Ice Wind Speed:	50	mph	
Design Ice Thickness (t _i):	1.50	in	
Importance Factor (I _i):	1.00		
Ice Velocity Pressure (qzi):	45.89	psf	
Mount Ice Thickness (t _{iz}):	1.70	in	

WIND STRUCTURE CALCULATIONS			
Flat Member Pressure:	82.60	psf	
Round Member Pressure:	49.56	psf	
Ice Wind Pressure:	7.45	psf	

SEISMIC PARA	METERS	
Importance Factor (I _e):	1.00	
Short Period Accel .(S _s):	0.17	g
1 Second Accel (S ₁):	0.06	g
Short Period Des. (S _{DS}):	0.18	g
1 Second Des. (S _{D1}):	0.09	g
Short Period Coeff. (F _a):	1.60	
1 Second Coeff. (F _v):	2.40	
Response Coefficient (Cs):	0.09	
Amplification Factor (A _S):	1.20	

LOAD COMBINATIONS [LRFD]

#	Description
1	1.4DL
2	1.2DL + 1WL 0 AZI
3	1.2DL + 1WL 30 AZI
4	1.2DL + 1WL 45 AZI
5	1.2DL + 1WL 60 AZI
6	1.2DL + 1WL 90 AZI
7	1.2DL + 1WL 120 AZI
8	1.2DL + 1WL 135 AZI
9	1.2DL + 1WL 150 AZI
10	1.2DL + 1WL 180 AZI
11	1.2DL + 1WL 210 AZI
12	1.2DL + 1WL 225 AZI
13	1.2DL + 1WL 240 AZI
14	1.2DL + 1WL 270 AZI
15	1.2DL + 1WL 300 AZI
16	1.2DL + 1WL 315 AZI
17	1.2DL + 1WL 330 AZI
18	0.9DL + 1WL 0 AZI
19	0.9DL + 1WL 30 AZI
20	0.9DL + 1WL 45 AZI
21	0.9DL + 1WL 60 AZI
22	0.9DL + 1WL 90 AZI
23	0.9DL + 1WL 120 AZI
24	0.9DL + 1WL 135 AZI
25	0.9DL + 1WL 150 AZI
26	0.9DL + 1WL 180 AZI
27	0.9DL + 1WL 210 AZI
28	0.9DL + 1WL 225 AZI
29	0.9DL + 1WL 240 AZI
30	0.9DL + 1WL 270 AZI
31	0.9DL + 1WL 300 AZI
32	0.9DL + 1WL 315 AZI
33	0.9DL + 1WL 330 AZI
34	1.2DL + 1DLi + 1WLi 0 AZI
35	1.2DL + 1DLi + 1WLi 30 AZI
36	1.2DL + 1DLi + 1WLi 45 AZI
37	1.2DL + 1DLi + 1WLi 60 AZI
38	1.2DL + 1DLi + 1WLi 90 AZI
39	1.2DL + 1DLi + 1WLi 120 AZI
40	1.2DL + 1DLi + 1WLi 135 AZI
41	1.2DL + 1DLi + 1WLi 150 AZI

#	Description
42	1.2DL + 1DLi + 1WLi 180 AZI
43	1.2DL + 1DLi + 1WLi 210 AZI
44	1.2DL + 1DLi + 1WLi 225 AZI
45	1.2DL + 1DLi + 1WLi 240 AZI
46	1.2DL + 1DLi + 1WLi 270 AZI
47	1.2DL + 1DLi + 1WLi 300 AZI
48	1.2DL + 1DLi + 1WLi 315 AZI
49	1.2DL + 1DLi + 1WLi 330 AZI
50	(1.2+0.2Sds) + 1.0E 0 AZI
51	(1.2+0.2Sds) + 1.0E 30 AZI
52	(1.2+0.2Sds) + 1.0E 45 AZI
53	(1.2+0.2Sds) + 1.0E 60 AZI
54	(1.2+0.2Sds) + 1.0E 90 AZI
55	(1.2+0.2Sds) + 1.0E 120 AZI
56	(1.2+0.2Sds) + 1.0E 135 AZI
57	(1.2+0.2Sds) + 1.0E 150 AZI
58	(1.2+0.2Sds) + 1.0E 180 AZI
59	(1.2+0.2Sds) + 1.0E 210 AZI
60	(1.2+0.2Sds) + 1.0E 225 AZI
61	(1.2+0.2Sds) + 1.0E 240 AZI
62	(1.2+0.2Sds) + 1.0E 270 AZI
63	(1.2+0.2Sds) + 1.0E 300 AZI
64	(1.2+0.2Sds) + 1.0E 315 AZI
65	(1.2+0.2Sds) + 1.0E 330 AZI
66	(0.9-0.2Sds) + 1.0E 0 AZI
67	(0.9-0.2Sds) + 1.0E 30 AZI
68	(0.9-0.2Sds) + 1.0E 45 AZI
69	(0.9-0.2Sds) + 1.0E 60 AZI
70	(0.9-0.2Sds) + 1.0E 90 AZI (0.9-0.2Sds) + 1.0E 120 AZI
71 72	(0.9-0.25ds) + 1.0E 120 AZI (0.9-0.25ds) + 1.0E 135 AZI
73 74	(0.9-0.2Sds) + 1.0E 150 AZI (0.9-0.2Sds) + 1.0E 180 AZI
75	(0.9-0.2Sds) + 1.0E 100 AZI
76	(0.9-0.2Sds) + 1.0E 225 AZI
77	(0.9-0.2Sds) + 1.0E 240 AZI
78	(0.9-0.2Sds) + 1.0E 270 AZI
79	(0.9-0.2Sds) + 1.0E 300 AZI
80	(0.9-0.2Sds) + 1.0E 315 AZI
81	(0.9-0.2Sds) + 1.0E 330 AZI
82-88	1.2D + 1.5 Lv1

#	Description
#	Description
89	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP1
90	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP1
91	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP1
92	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP1
93	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP1
94	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP1
95	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP1
96	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP1
97	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP1
98	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP1
99	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP1
100	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP1
101	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP1
102	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1
103	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1
104	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP1
105	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2
106	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2
107	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2
108	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2
109	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2
110	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2
111	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2
112	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2
113	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP2
114	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2
115	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2
116	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2
117	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2
118	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2
119	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2
120	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2

#	Description
121	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3
122	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3
123	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3
124	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3
125	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3
126	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3
127	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3
128	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3
129	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3
130	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3
131	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3
132	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3
133	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3
134	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3
135	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3
136	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP3
137	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP4
138	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP4
139	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP4
140	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP4
141	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP4
142	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP4
143	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP4
144	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP4
145	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP4
146	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP4
147	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP4
148	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP4
149	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP4
150	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP4
151	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP4
152	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP4

^{*}This page shows an example of maintenance loads for (4) pipes, the number of mount pipe LCs may vary per site

EQUIPMENT LOADING

Appurtenance Name/Location	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
MX08FRO665-20	1	118	No Ice	8.01	3.21	82.50
MP1, 0			w/ Ice	9.63	4.63	281.99
TA08025-B604	1	118	No Ice	1.96	0.98	63.90
MP1, 90			w/ Ice	2.38	1.31	68.51
TA08025-B605	1	118	No Ice	1.96	1.13	75.00
MP1, 90			w/ Ice	2.38	1.47	73.00
RDIDC-9181-PF-48	1	118	No Ice	2.01	1.17	21.85
MP1, 45			w/ Ice	2.43	1.52	71.94
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

EQUIPMENT WIND CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	K _{zt}	K _z	K _d	t _d	q _z [psf]	q _{zi} [psf]
MX08FRO665-20	1	118	1.00	1.04	0.95	1.70	45.89	6.30
TA08025-B604	1	118	1.00	1.04	0.95	1.70	45.89	6.30
TA08025-B605	1	118	1.00	1.04	0.95	1.70	45.89	6.30
RDIDC-9181-PF-48	1	118	1.00	1.04	0.95	1.70	45.89	6.30

EQUIPMENT LATERAL WIND FORCE CALCULATIONS

Appurtenance Name	Qty.		0°	30°	60°	90°	120°	150°
rippur conunce riamo	α.y.		180°	210°	240°	270°	300°	330°
MX08FRO665-20	1	No Ice	330.83	182.14	281.27	132.58	281.27	182.14
MP1, 0		w/ Ice	54.58	33.33	47.49	26.25	47.49	33.33
TA08025-B604	1	No Ice	81.10	50.67	70.95	40.52	70.95	50.67
MP1, 90		w/ Ice	13.49	8.92	11.96	7.39	11.96	8.92
TA08025-B605	1	No Ice	81.10	55.26	72.48	46.65	72.48	55.26
MP1, 90		w/ Ice	13.49	9.61	12.19	8.31	12.19	9.61
RDIDC-9181-PF-48	1	No Ice	83.09	56.96	74.38	48.25	74.38	56.96
MP1, 45		w/ Ice	13.80	9.91	12.50	8.61	12.50	9.91
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						

EQUIPMENT SEISMIC FORCE CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	Weight [lbs]	F _p [lbs]
MX08FRO665-20	1	118	82.5	8.92
TA08025-B604	1	118	63.9	6.91
TA08025-B605	1	118	75	8.11
RDIDC-9181-PF-48	1	118	21.85	2.36

APPENDIX C SOFTWARE ANALYSIS OUTPUT

(Global) Model Settings

, ,	
Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (in/sec^2)	386.4
Wall Mesh Size (in)	24
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Υ
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 15th(360-16): LRFD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 15th(360-16): LRFD
Cold Formed Steel Code	AISI S100-16: LRFD
Wood Code	AWC NDS-15: ASD
Wood Temperature	< 100F
Concrete Code	ACI 318-14
Masonry Code	ACI 530-13: Strength
Aluminum Code	AA ADM1-10: LRFD - Building
Stainless Steel Code	AISC 14th(360-10): ASD
Adjust Stiffness?	Yes(Iterative)

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

Aug 4, 2021 12:31 PM Checked By:__

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (in)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
RX	3
RZ	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	l or II
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	1
Cd X	1
Rho Z	1
Rho X	1

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5 F)	Density[k	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.4	65	1.3
8	A500 Gr. C - 46	29000	11154	.3	.65	.49	46	1.3	62	1.4
9	A529 Gr. 50	29000	11154	.3	.65	.49	50	1.3	65	1.4

Cold Formed Steel Properties

		Label	E [ksi]	G [ksi]	Nu	Therm (/1E5 F)	Density[k/ft^3]	Yield[ksi]	Fu[ksi]
	1	A653 SS Gr33	29500	11346	.3	.65	.49	33	45
4	2	A653 SS Gr50/1	29500	11346	.3	.65	.49	50	65

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design R	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	Horizontals	PIPE_2.5	Beam	None	A500 Gr. C - 46	Typical	1.61	1.45	1.45	2.89
2	Standoffs	PIPE_1.5	Beam	None	A500 Gr. C - 46	Typical	.749	.293	.293	.586
3	Tie Backs	PIPE 2.0	Beam	None	A500 Gr. C - 46	Typical	1.02	.627	.627	1.25
4	Mount Pipes	PIPE 2.0	Beam	None	A500 Gr. C - 46	Typical	1.02	.627	.627	1.25
5	Standoff Bracin	SR 5/8_HRA	Beam	None	A529 Gr. 50	Typical	.307	.007	.007	.015

Company Designer Job Number : Trylon : SMM : 188193

: 806363

Aug 4, 2021 12:31 PM Checked By:___

Hot Rolled Steel Section Sets (Continued)

	Label	Shape	Type	Design List	Material	Design R	A [in2]	lyy [in4]	Izz [in4]	J [in4]
6	Vertical pipes	PIPE 3.0	Beam	None	A500 Gr. C - 46	Typical	2.07	2.85	2.85	5.69
7	Standoff Bracin	SR 1/2"	Beam	None	A529 Gr. 50	Typical	.196	.003	.003	.006

Cold Formed Steel Section Sets

	Label	Shape	Type	Design List	Material	Design Rules	A [in2]	lyy [in4]	Izz [in4]	J [in4]	
1	CF1A	8CU1.25X0	Beam	None	A653 SS Gr33	Typical	.581	.057	4.41	.00063	

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N13						
2	N14						
3	N48	Reaction	Reaction	Reaction	Reaction		Reaction
4	N49	Reaction	Reaction	Reaction	Reaction		Reaction
5	N52A	Reaction	Reaction	Reaction			

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Self Weight	DL		-1			5			
2	Structure Wind Z	WLZ						18		
3	Structure Wind X	WLX						18		
4	Wind Load 0 AZI	WLZ					5			
5	Wind Load 30 AZI	None					10			
6	Wind Load 45 AZI	None					10			
7	Wind Load 60 AZI	None					10			
8	Wind Load 90 AZI	WLX					5			
9	Wind Load 120 AZI	None					10			
10	Wind Load 135 AZI	None					10			
11	Wind Load 150 AZI	None					10			
12	Ice Weight	OL1					5	18		
13	Ice Structure Wind Z	OL2						18		
14	Ice Structure Wind X	OL3						18		
15	Ice Wind Load 0 AZI	OL2					5			
16	Ice Wind Load 30 AZI	None					10			
17	Ice Wind Load 45 AZI	None					10			
18	Ice Wind Load 60 AZI	None					10			
19	Ice Wind Load 90 AZI	OL3					5			
20	Ice Wind Load 120 AZI	None					10			
21	Ice Wind Load 135 AZI	None					10			
22	Ice Wind Load 150 AZI	None					10			
23	Seismic Load Z	ELZ			108		5			
24	Seismic Load X	ELX	108				5			
25	Live Load 1 (Lv)	None					1			
26	Live Load 2 (Lv)	None					1			
27	Live Load 3 (Lv)	None					1			
	Maintenance Load 1 (None					1			
29	Maintenance Load 2 (None					1			
30	Maintenance Load 3 (None					1			

Aug 4, 2021 12:31 PM Checked By:____

Load Combinations

	a combinations																							
	Des cription	So	P	S	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac.
1	1.4DL	Yes	Υ		DL	1.4																		
2	1.2DL + 1WL 0 AZI	Yes	Υ		DL	1.2	2	1	3		4	1												
3	1.2DL + 1WL 30 AZI	Yes	Υ			1.2	2	.866	3	.5	5	1												
4	1.2DL + 1WL 45 AZI	_				1.2	2	.707	3	.707	6	1												
5	1.2DL + 1WL 60 AZI		_			1.2	2	.5	3	.866	7	1												
6	1.2DL + 1WL 90 AZI					1.2	2		3	1	8	1												
7	1.2DL + 1WL 120 AZI	_				1.2	2	5	3	.866		1												
	1.2DL + 1WL 135 AZI						_	707			_	-												
8		_	-			1.2			3	.707	10	1												
9	1.2DL + 1WL 150 AZI					1.2		866		.5	11	1												
10	1.2DL + 1WL 180 AZI	_				1.2	2	-1	3		4	-1												
11	1.2DL + 1WL 210 AZI	_	-			1.2		866	_	5	5	-1												
12	1.2DL + 1WL 225 AZI	_	-			1.2		707	_	707	6	-1												
13	1.2DL + 1WL 240 AZI					1.2	2	5	3	866	7	-1												
14	1.2DL + 1WL 270 AZI		-		DL	1.2	2		3	-1	8	-1												
15	1.2DL + 1WL 300 AZI				DL	1.2	2	.5	3	866	9	-1												
16	1.2DL + 1WL 315 AZI	Yes	Υ		DL	1.2	2	.707	3	707	10	-1												
17	1.2DL + 1WL 330 AZI	Yes	Υ		DL	1.2	2	.866	3	5	11	-1												
18	0.9DL + 1WL 0 AZI	Yes	Υ		DL	.9	2	1	3		4	1												
19	0.9DL + 1WL 30 AZI	Yes	Υ		DL	.9	2	.866	3	.5	5	1												
20	0.9DL + 1WL 45 AZI	Yes	Υ		DL	.9	2	.707	3	.707	6	1												
21	0.9DL + 1WL 60 AZI	_	-		DL	.9	2	.5	3	.866	7	1												
22	0.9DL + 1WL 90 AZI	Yes	Υ		DL	.9	2		3	1	8	1												
	0.9DL + 1WL 120 AZI	_	_		DL	.9	2	5	3	.866		1												
	0.9DL + 1WL 135 AZI				DL	.9		707	3	.707	10	1												
	0.9DL + 1WL 150 AZI				DL	.9		866		.5	11	1												
	0.9DL + 1WL 180 AZI				DL	.9	2	-1	3	.0	4	-1												
	0.9DL + 1WL 210 AZI	_			DL	<u>.9</u> .9		866		5	5	-1												
	0.9DL + 1WL 225 AZI				DL			707	_	707	6	-1												
	0.9DL + 1WL 240 AZI	_	_			.9	_	_																
					DL	.9	2	5	3	866	-	-1												
	0.9DL + 1WL 270 AZI	_	_		DL	.9	2	_	3	-1	8	-1												
31	0.9DL + 1WL 300 AZI		<u> </u>		DL	.9	2	.5	3	866	_	-1												
	0.9DL + 1WL 315 AZI		-		DL	.9	2	.707	_	707	_	-1												
- 00	0.9DL + 1WL 330 AZI				DL	.9	2	.866	3	5	11	-1											\longrightarrow	
34	1.2DL + 1DLi + 1W L	_			DL			_	13		14		15	1_										
35	1.2DL + 1DLi + 1W L		<u> </u>		-	1.2	_		13			.5	16	1_										
36	1.2DL + 1DLi + 1W L	_	-		_	1.2	_		13			.707		1										
37	1.2DL + 1DLi + 1W L					1.2			13	.5	14	.866	18	1										
38	1.2DL + 1DLi + 1W L					1.2			13		14	1	19	1										
	1.2DL + 1DLi + 1W L				DL	1.2	OL1	1	13	5	14	.866	20	1										
	1.2DL + 1DLi + 1W L	Yes	Υ		DL	1.2	OL1	1		707				1										
41	1.2DL + 1DLi + 1W L	Yes	Υ			1.2				866			22	1										
	1.2DL + 1DLi + 1W L	Yes				1.2			13		14		15											
	1.2DL + 1DLi + 1W L					1.2				866		5												
44	1.2DL + 1DLi + 1W L		_			1.2				707														
45	1.2DL + 1DLi + 1W L					1.2			13			866												
	1.2DL + 1DLi + 1W L					1.2			13			-1	19											
47	1.2DL + 1DLi + 1W L					1.2			13			866												
						1.2				.707														
	1.2DL + 1DLi + 1W L				_		_																	
	(1.2+0.2Sds)DL + 1				-	1.2	_	_		.866	14	5	22	-1										
		_	-			1.2			24															
51	(1.2+0.2Sds)DL + 1	Y es	Υ		IJL	1.2	23	.866	24	.5														

Aug 4, 2021 12:31 PM Checked By:___

Load Combinations (Continued)

Section Sect		Des cription	So	P	S	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLCFa	cBL0	CFac.	BLC	Fac	BLC	Fac	BLC	Fac
Sag (1.2+0.25ds)DL+1 Ves Y DL 1.2 23 5.2 4 866	52																							
Section Sect	53	(1.2+0.2Sds)DL + 1	Yes	Υ						_														
55 (1.2+0.25ds)D.L+1Ves Y DL.122350.24.866 S.12+0.25ds)D.L+1Ves Y DL.1223866 245 S.	54	(1.2+0.2Sds)DL + 1	Yes	Υ																				
Section Sect	55	(1.2+0.2Sds)DL + 1	Yes	Υ																				
57 1.2+0.256(s)D. + 1 Yes Y DL 12 23 366 24 -5		(1.2+0.2Sds)DL + 1	Yes	Υ																				
See 12-02-Seb)DL +1 Yes Y DL 12 23 1 24		1	_																					
Sep (1.2+0.256s)DL +1Yes Y DL 1.2 23 .866 24 .5		<u> </u>	_							_														
60 (1.2+0.2Sds)DL + 1 Yes Y DL 12 23 -707 24 -707		1	_																					
61 (1.2+0.2Sds)DL + 1 Yes Y DL 12 235 24866																								
62 (1.2+0.2Sds)Dt.+1 Yes Y Dt. 12 23																								
63 (1.2+0.2Sds)DL+1 Yes Y DL 12 23 5 24 886 64 (1.2+0.2Sds)DL+1 Yes Y DL 12 23 707 24 707 65 (1.2+0.2Sds)DL+1 Yes Y DL 12 23 866 24 5 66 (0.9+0.2Sds)DL+1E Yes Y DL 1.84 23 866 24 5 68 (0.9+0.2Sds)DL+1E Yes Y DL 1.84 23 866 24 5 68 (0.9+0.2Sds)DL+1E Yes Y DL 1.84 23 866 24 5 69 (0.9+0.2Sds)DL+1E Yes Y DL 1.86 23 707 24 707 69 (0.9+0.2Sds)DL+1E Yes Y DL 1.86 23 5 24 866 70 (0.9+0.2Sds)DL+1E Yes Y DL 1.86 23 5 24 866 71 (0.9+0.2Sds)DL+1E Yes Y DL 1.86 23 5 24 866 72 (0.9+0.2Sds)DL+1E Yes Y DL 1.86 23 5 24 866 73 (0.9+0.2Sds)DL+1E Yes Y DL 1.86 23 70 24 .707 74 (0.9+0.2Sds)DL+1E Yes Y DL 1.86 23 70 24 .707 75 (0.9+0.2Sds)DL+1E Yes Y DL 1.86 23 70 24 .707 76 (0.9+0.2Sds)DL+1E Yes Y DL 1.86 23 70 24 .707 77 (0.9+0.2Sds)DL+1E Yes Y DL 1.86 23 70 24 .707 77 (0.9+0.2Sds)DL+1E Yes Y DL 1.86 23 70 24 .707 78 (0.9+0.2Sds)DL+1E Yes Y DL 1.86 23 5 24 86 80 (0.9+0.2Sds)DL+1E Yes Y DL 1.86 23 5 24 86 80 (0.9+0.2Sds)DL+1E Yes Y DL 1.86 23 5 24 86 81 (0.9+0.2Sds)DL+1E Yes Y DL 1.86 23 70 24 707 82 (1.2DL+1.LU Yes Y DL 1.2 25 1.5 83 (1.2DL+1.LU Yes Y DL 1.2 25 1.5 84 (1.2DL+1.LU Yes Y DL 1.2 25 1.5 85 (1.2DL+1.LU Yes Y DL 1.2 28 1.5 2 .0.43 3 .0.45 86 (1.2DL+1.LU Yes Y DL 1.2 28 1.5 2 .0.43 3 .0.45 87 (1.2DL+1.LU Yes Y DL 1.2 28 1.5 2 .0.43 3 .0.45 88 (1.2DL+1.LU Yes Y DL 1.2 28 1.5 2 .0.43 3 .0.45 89 (1.2DL+1.LU Yes Y DL 1.2 28 1.5 2 .0.43 3 .0.45 80 (1.2DL+1.LU Yes Y DL 1.2 28 1.5 2 .0.43 3 .0.45 80 (1.2DL+1.LU Yes Y DL 1.2 28 1.5 2 .0.43 3		1	_	_																				
684 (1.2+0.2Sds)DL + 1 Yes Y DL 12 23 707 24 707		1	$\overline{}$																					
65 (1.2+0.2Sds)DL+1E Yes Y DL 12 23 866 24 5 66 (0.9+0.2Sds)DL+1E Yes Y DL 864 23 1 24 67 (0.9+0.2Sds)DL+1E Yes Y DL 864 23 866 24 5 68 (0.9+0.2Sds)DL+1E Yes Y DL 864 23 866 24 5 69 (0.9+0.2Sds)DL+1E Yes Y DL 864 23 5 24 866 70 (0.9+0.2Sds)DL+1E Yes Y DL 864 23 5 24 866 71 (0.9+0.2Sds)DL+1E Yes Y DL 864 23 5 24 866 72 (0.9+0.2Sds)DL+1E Yes Y DL 864 23 5 24 866 73 (0.9+0.2Sds)DL+1E Yes Y DL 864 23 5 24 866 74 (0.9+0.2Sds)DL+1E Yes Y DL 864 23 5 24 866 75 (0.9+0.2Sds)DL+1E Yes Y DL 864 23 5 24 866 76 (0.9+0.2Sds)DL+1E Yes Y DL 864 23 6 24 5 76 (0.9+0.2Sds)DL+1E Yes Y DL 864 23 86 24 5 76 (0.9+0.2Sds)DL+1E Yes Y DL 864 23 86 24 5 76 (0.9+0.2Sds)DL+1E Yes Y DL 864 23 86 24 5 77 (0.9+0.2Sds)DL+1E Yes Y DL 864 23 5 24 866 77 (0.9+0.2Sds)DL+1E Yes Y DL 864 23 5 24 866 80 (0.9+0.2Sds)DL+1E Yes Y DL 864 23 5 24 866 80 (0.9+0.2Sds)DL+1E Yes Y DL 864 23 5 24 5 81 (1.9+0.2Sds)DL+1E Yes Y DL 864 23 5 5 82 (1.2DL+1LV1 Yes Y DL 864 23 5 5 83 (1.2DL+1LSM+1 Yes Y DL 1.2 26 1.5 84 (1.2DL+1.Sm+1 Yes Y DL 1.2 26 1.5 85 (1.2DL+1.Sm+1 Yes Y DL 1.2 28 1.5 2 049 3 4 049 86 (1.2DL+1.Sm+1 Yes Y DL 1.2 28 1.5 2 035 3 035 5 049 87 (1.2DL+1.Sm+1 Yes Y DL 1.2 28 1.5 2 035 3 035 5 049 88 (1.2DL+1.Sm+1 Yes Y DL 1.2 28 1.5 2 043 3 025 5 049 99 (1.2DL+1.Sm+1 Yes Y DL 1.2 28 1.5 2 043 3 025 5 049 91 (1.2DL+1.Sm+1 Yes Y DL 1.2 28 1.5 2 043 3 025 5 049 91 (1.2DL+1.Sm+1 Yes Y DL 1.2 28 1.5 2 043 3 025 5 049 91 (1.2DL+1.Sm+1 Y																								
66 (0.9-0.28ds)DL + 1EYes Y DL .864 23 .1 24		1	$\overline{}$																					
67 (0.9-0.2Sds)DL + 1E., Yes Y DL 884 23 .866 24 .5																								
68 (0.9-0.28ds)DL + 1E. Yes Y DL 884 23 .707 24 .707																								
69 (0.9-0.2Sds)DL+ 1E. Yes Y DL 864 23 .5 24 .866 70 (0.9-0.2Sds)DL+ E. Yes Y DL .864 23 .5 24 .866 71 (0.9-0.2Sds)DL+ E. Yes Y DL .864 23 .5 .5 .24 .866 72 (0.9-0.2Sds)DL+ E. Yes Y DL .864 23 .707 .24 .707 73 (0.9-0.2Sds)DL+ E. Yes Y DL .864 23 .866 24 .5 74 (0.9-0.2Sds)DL+ E. Yes Y DL .864 23 .866 24 .5 75 (0.9-0.2Sds)DL+ E. Yes Y DL .864 23 .866 24 .5 76 (0.9-0.2Sds)DL+ E. Yes Y DL .864 23 .866 24 .5 77 (0.9-0.2Sds)DL+ E. Yes Y DL .864 23 .866 24 .5 78 (0.9-0.2Sds)DL+ E. Yes Y DL .864 23 .5 24 .866 79 (0.9-0.2Sds)DL+ E. Yes Y DL .864 23 .5 24 .866 79 (0.9-0.2Sds)DL+ E. Yes Y DL .864 23 .707 24 .707 81 (0.9-0.2Sds)DL+ E. Yes Y DL .864 23 .707 24 .707 81 (0.9-0.2Sds)DL+ E. Yes Y DL .864 23 .707 24 .707 82 1.2DL+ 1LV1 Yes Y DL .864 23 .707 24 .707 83 1.2DL+ 1.5LW+ Yes Y DL .26 1.5 84 1.2DL+ 1.5LW+ Yes Y DL 1.2 25 1.5 85 1.2DL+ 1.5LW+ 1 Yes Y DL 1.2 25 1.5 86 1.2DL+ 1.5LW+ 1 Yes Y DL 1.2 28 1.5 2 .049 3 4 .049 87 1.2DL+ 1.5LW+ 1 Yes Y DL 1.2 28 1.5 2 .049 3 4 .049 88 1.2DL+ 1.5LW+ 1 Yes Y DL 1.2 28 1.5 2 .049 3 4 .049 89 1.2DL+ 1.5LW+ 1 Yes Y DL 1.2 28 1.5 2 .049 3 4 .049 90 1.2DL+ 1.5LW+ 1 Yes Y DL 1.2 28 1.5 2 .049 3 4 .049 91 1.2DL+ 1.5LW+ 1 Yes Y DL 1.2 28 1.5 2 .049 3 4 .049 92 1.2DL+ 1.5LW+ 1 Yes Y DL 1.2 28 1.5 2 .049 3 .049 91 1.2DL+ 1.5LW+ 1 Yes Y DL 1.2 28 1.5 2 .049 3		, ,																						
70	_																							
T1 (0.9-0.25ds)DL + 1E., Yes Y DL .864 23 5 24 .866		, ,																						
T2 (0.9-0.25ds)DL + 1E Yes Y DL. 864 23 - 707 24 707 73 (0.9-0.25ds)DL + 1E Yes Y DL. 864 23 - 866 24 .5 76 (0.9-0.25ds)DL + 1E Yes Y DL. 864 23 - 866 24 .5 76 (0.9-0.25ds)DL + 1E Yes Y DL. 864 23 - 866 24 .5 76 (0.9-0.25ds)DL + 1E Yes Y DL. 864 23 - 707 24 - 707 77 (0.9-0.25ds)DL + 1E Yes Y DL. 864 23 - 5 24 - 866 78 (0.9-0.25ds)DL + 1E Yes Y DL. 864 23 - 5 24 - 866 78 (0.9-0.25ds)DL + 1E Yes Y DL. 864 23 24 - 1 79 (0.9-0.25ds)DL + 1E Yes Y DL. 864 23 707 24 - 707 79 79 (0.9-0.25ds)DL + 1E Yes Y DL. 864 23 707 24 - 707 70 70 70 70 70 70 7	_																							
73 (0.9-0.2Sds)DL + 1E. Yes Y DL .864 23 .866 24 .5																								
T4 (0.9-0.28ds)DL + 1E. Yes Y DL .864 23 -1 24		(0.9-0.2Sds)DL + 1E.	.Yes	Υ																				
T5 (0.9-0.2Sds)DL + 1E Yes Y DL .864 23 .866 24 5		(0.9-0.2Sds)DL + 1E.	.Yes	Υ						_	-													
Triangle Triangle																								
77 (0.9-0.2Sds)DL + 1E., Yes Y DL .864 23 .5 24 .866		(0.9-0.2Sds)DL + 1E.	.Yes	Υ																				
78 (0.9-0.2Sds)DL + 1EYes Y DL		(0.9-0.2Sds)DL + 1E.	.Yes	Υ		DL	.864	23	5	24														
79 (0.9-0.2Sds)DL + 1EYes Y DL .864 23 .5 24 .866		(0.9-0.2Sds)DL + 1E.	.Yes	Υ																				
80 (0.9-0.2Sds)DL + 1E Yes Y DL. 864 23. 707 24. 707 81 (0.9-0.2Sds)DL + 1E Yes Y DL. 864 23. 866 245 82 1.2DL + 1LV1 Yes Y DL. 1.2 25. 1.5 83 1.2DL + 1LV2 Yes Y DL. 1.2 26. 1.5 84 1.2DL + 1.5Lm + 1 Yes Y DL. 1.2 27. 1.5 85 1.2DL + 1.5Lm + 1 Yes Y DL. 1.2 28. 1.5 2. 049 3. 4. 049 86 1.2DL + 1.5Lm + 1 Yes Y DL. 1.2 28. 1.5 2. 049 3. 049 87 1.2DL + 1.5Lm + 1 Yes Y DL. 1.2 28. 1.5 2. 035 3. 035 6. 049 88 1.2DL + 1.5Lm + 1 Yes Y DL. 1.2 28. 1.5 2. 025 3. 043 7. 049 89 1.2DL + 1.5Lm + 1 Yes Y DL. 1.2 28. 1.5 2. 025 3. 043 9. 049 90 1.2DL + 1.5Lm + 1 Yes Y DL. 1.2 28. 1.5 2. 025 3. 043		(0.9-0.2Sds)DL + 1E.	.Yes	Υ																				
81 (0.9-0.2Sds)DL + 1EYes Y DL .864 23 .866 245		(0.9-0.2Sds)DL + 1E.	.Yes	Υ																				
82		(0.9-0.2Sds)DL + 1E.	.Yes	Υ																				
83		1.2DL + 1Lv1	Yes	Υ																				
84 1.2DL + 1Lv3 Yes Y DL 1.2 27 1.5 0.49 3 4 .049 85 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .049 3 4 .049 86 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3 .025 5 .049 87 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 7 .049 88 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 7 .049 89 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 90 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 91 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3 .025 11 .049 92 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3 .025 11 .049 93 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3 .025 5 .049			_																					
85 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .049 3 4 .049 86 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3 .025 5 .049 87 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .035 3 .035 6 .049 88 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 7 .049 89 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 90 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 91 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 92 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .035 3 .035 10 .049 92 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3 .025 11 .049 93 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .049 3 4 .049 95 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .049 3 .025 5 .049 95 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .035 3 .035 6 .049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .049 3 .025 5 .049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 9 .049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 9 .049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 9 .049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3 .025 11 .049 100 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .049 3 4 .049 100 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 .049 3 4 .049 100 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 .049 3 4 .049 100 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 .049 3 4 .049 100 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 .049 3 5 .049 5 .049 100 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 .049 3 5 .049 5 .049 100 1.2DL + 1.5Lm + 1 Ye			Yes	_																				
86 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3 .025 5 .049 87 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .035 3 .035 6 .049 88 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 7 .049 89 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 90 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 91 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .035 3 .035 10 .049 92 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3 .025 11 .049 93 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .049 3 4 .049 94 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .048 3 .025 5 .049 95 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .048 3 .025 5 .049 96 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .048 3 .035 6 .049 97 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .035 3 .035 6 .049 98 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 7 .049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .035 3 .043 7 .049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .049 8 .049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .035 3 .035 10 .049 100 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3 .025 11 .049 101 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .044 3 .049 102 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 .044 3 .025 5 .049			Yes							2	.049	3		4	.049									
87 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .035 3 .035 6 .049 88 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 7 .049 89 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 7 .049 90 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 91 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .035 3 .035 10 .049 92 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3 .025 11 .049 93 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3 .025 11 .049 94 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .049 3 4 .049 95 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3 .025 5 .049 96 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .035 3 .035 6 .049 97 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 7 .049 98 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 7 .049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 90 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 100 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3 .025 11 .049 101 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .044 3 .025 5 .049		1.2DL + 1.5Lm + 1	Yes								.043		.025		.049									
88 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 7 .049 89 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 90 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 91 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .035 3 .035 10 .049 92 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3 .025 11 .049 93 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .049 3 4 .049 94 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .049 3 .025 5 .049 95 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3 .025 5 .049 96 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .049 3 .035 6 .049 97 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 7 .049 97 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 7 .049 98 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 90 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .043 9 .049 100 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3 .025 11 .049 101 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .049 3 4 .049 102 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 .049 3 4 .049 102 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 .043 3 .025 5 .049															.049									
89 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 3 .049 8 .049 90 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .049 9 .049 91 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .035 3 .035 10 .049 92 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3 .025 11 .049 93 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .049 3 4 .049 94 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3 -025 5 .049 95 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3 .049 9 .049											.025		.043	_	.049									
90 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2025 3 .043 9 .049 91 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2035 3 .035 10 .049 92 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2043 3 .025 11 .049 93 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2049 3 4049 94 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2043 3025 5049 95 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2035 3035 6049 96 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2025 3043 7049 97 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 3049 8049 98 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3043 9049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .035 3035 10049 100 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3025 11049 101 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3025 11049 101 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3025 11049 102 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 .049 3 4 .049 102 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 .049 3 4 .049 102 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 .043 3 .025 5 .049		1.2DL + 1.5Lm + 1	Yes	Υ		_	_	_				3	.049	8	.049									
91 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2035 3 .035 10 .049 92 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2043 3 .025 11 .049 93 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2049 3 4049 94 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2043 3025 5049 95 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2035 3035 6049 96 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2025 3043 7049 97 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3043 7049 98 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3043 9049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3043 9049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .035 3035 10049 100 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3025 11049 101 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .049 3 4 .049 102 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 .049 3 4 .049 102 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 .049 3 4 .049			_								025	_		_	_									
92 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2043 3 .025 11 .049 93 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2049 3 4049 94 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2043 3025 5049 95 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2035 3035 6049 96 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2025 3043 7049 97 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 0.25 3043 7049 98 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 0.25 3043 9049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 0.25 3043 9049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 0.35 3035 10049 100 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 0.43 3025 11049 101 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 0.43 3 0.25 5 0.49			_					_						_	_									
93 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 -0.49 3 4 -0.49 94 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 -0.43 3 -0.25 5 -0.49 95 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 -0.35 3 -0.35 6 -0.49 96 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 -0.25 3 -0.43 7 -0.49 97 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 3 -0.43 7 -0.49 98 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 0.25 3 -0.43 9 -0.49 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 0.25 3 -0.43 9 -0.49 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 0.35 3 -0.35 10 -0.49 100 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 0.43 3 -0.25 11 -0.49 101 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 0.43 3 -0.25 5 0.49	_	1.2DL + 1.5Lm + 1	_											_	_									
94 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2043 3025 5049 95 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2035 3035 6049 96 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2025 3043 7049 97 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 3049 8049 98 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 0.25 3043 9049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 0.025 3035 10049 100 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 0.043 3025 11049 101 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 0.049 3 4 0.049 102 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 0.043 3 0.025 5 0.049			_												_									
95 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 -0.035 3 -0.045 6 -0.049 96 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 -0.025 3 -0.043 7 -0.049 97 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 3 -0.049 8 -0.049 98 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 0.025 3 -0.043 9 -0.049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 0.035 3 -0.035 10 -0.049 100 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 0.043 3 -0.025 11 -0.049 101 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 0.049 3 4 0.049 102 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 0.043 3 0.025 5 0.049		1.2DL + 1.5Lm + 1	Yes									_	025	5	049									
96 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2025 3049 7049 97 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 3049 8049 98 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3043 9049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .035 3035 10049 100 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3025 11049 101 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .049 3 4 .049 102 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 .049 3 4 .049 102 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 .043 3 .025 5 .049			_											_	_									
97 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 3049 8049 98 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3043 9049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .035 3035 10049 100 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3025 11049 101 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 .049 3 4 .049 102 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 .043 3 .025 5 .049			_	_											_									
98 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .025 3043 9049 99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .035 3035 10049 100 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3025 11049 101 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 .049 3 4 .049 102 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 .043 3 .025 5 .049			_	Υ						_			049	8	049									
99 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .035 3035 10049 100 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3025 11049 101 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 .049 3 4 .049 102 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 .043 3 .025 5 .049	98	1.2DL + 1.5Lm + 1	Yes	Υ						_	.025				_									
100 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 28 1.5 2 .043 3 025 11049 101 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 .049 3 4 .049 102 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 .043 3 .025 5 .049											.035		035	10	049									
101 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 .049 3 4 .049 102 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 .043 3 .025 5 .049														_	_									
102 1.2DL + 1.5Lm + 1 Yes Y DL 1.2 29 1.5 2 .043 3 .025 5 .049						_		_																
											.043		.025	5	.049									
														_	.049									

Aug 4, 2021 12:31 PM Checked By:___

Load Combinations (Continued)

	Des cription	So	P	S	BLCFa	icB	LCF	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac
104	1.2DL + 1.5Lm + 1	Yes	Υ		DL 1	.2 2	29	1.5	2	.025	3	.043	7	.049										
105	1.2DL + 1.5Lm + 1	Yes	Υ		DL 1	.2 2	29	1.5	2		3	.049	8	.049										
106	1.2DL + 1.5Lm + 1	Yes	Υ		DL 1	.2 2	29	1.5	2	025	3	.043	9	.049										
107	1.2DL + 1.5Lm + 1	Yes	Υ		DL 1	.2 2	29	1.5	2	035	3	.035	10	.049										
108	1.2DL + 1.5Lm + 1	Yes	Υ		DL 1	.2 2	29	1.5	2	043	3	.025	11	.049										
109	1.2DL + 1.5Lm + 1	Yes	Υ		DL 1	.2 2	29	1.5	2	049	3		4	049										
110	1.2DL + 1.5Lm + 1	Yes	Υ		DL 1	.2 2	29	1.5	2	043	3	025	5	049										
111	1.2DL + 1.5Lm + 1	Yes	Υ		DL 1	.2 2	29	1.5	2	035	3	035	6	049										
112	1.2DL + 1.5Lm + 1	Yes	Υ		DL 1	.2 2	29	1.5	2	025	3	043	7	049										
113	1.2DL + 1.5Lm + 1	Yes	Υ		DL 1	.2 2	29	1.5	2		3	049	8	049										
114	1.2DL + 1.5Lm + 1	Yes	Υ		DL 1	.2 2	29	1.5	2	.025	3	043	9	049										
115	1.2DL + 1.5Lm + 1	Yes	Υ		DL 1	.2 2	29	1.5	2	.035	3	035	10	049										
116	1.2DL + 1.5Lm + 1	Yes	Υ		DL 1	.2 2	29	1.5	2	.043	3	025	11	049										
117	1.2DL + 1.5Lm + 1	Yes	Υ		DL 1	.2 3	30	1.5	2	.049	3		4	.049										
118	1.2DL + 1.5Lm + 1	Yes	Υ		DL 1	.2 3	30	1.5	2	.043	3	.025	5	.049										
119	1.2DL + 1.5Lm + 1	Yes	Υ		DL 1	.2 3	30	1.5	2	.035	3	.035	6	.049										
120	1.2DL + 1.5Lm + 1	Yes	Υ		DL 1	.2 3	30	1.5	2	.025	3	.043	7	.049										
121	1.2DL + 1.5Lm + 1	Yes	Υ		DL 1	.2 3	30	1.5	2		3	.049	8	.049										
122	1.2DL + 1.5Lm + 1	Yes	Υ		DL 1	.2 3	30	1.5	2	025	3	.043	9	.049										
123	1.2DL + 1.5Lm + 1	Yes	Υ		DL 1	.2 3	30	1.5	2	035	3	.035	10	.049										
124	1.2DL + 1.5Lm + 1	Yes	Υ		DL 1	.2 3	30	1.5	2	043	3	.025	11	.049										
	1.2DL + 1.5Lm + 1	_			DL 1	.2 3	30	1.5	2	049	3		4	049										
126	1.2DL + 1.5Lm + 1	Yes	Υ		DL 1	.2 3	30	1.5	2	043	3	025	5	049										
127	1.2DL + 1.5Lm + 1	Yes	Υ		DL 1	.2 3	30	1.5	2	035	3	035	6	049										
	1.2DL + 1.5Lm + 1	_			DL 1	.2 3	30	1.5	2	025	3	043	7	049										
	1.2DL + 1.5Lm + 1	_			DL 1	.2 3	30	1.5	2		3	049	8	049										
	1.2DL + 1.5Lm + 1	_			DL 1	.2 3	30	1.5	2	.025		043		049										
	1.2DL + 1.5Lm + 1	_			DL 1	.2 3	30	1.5	2	.035		035			_									
132	1.2DL + 1.5Lm + 1	Yes	Υ		DL 1	.2 3	30	1.5	2	.043	3	025	11	049										

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N48	max	566.517	89	1520.231	41	596.952	33	-92.347	33	0	132	651.75	131
2		min	-1196.568	129	135.457	33	-1607.408	41	-1051.392	40	0	1	-185.609	91
3	N49	max	1189.013	121	667.718	116	1546.996	49	113.763	124	0	132	282.289	84
4		min	-558.595	97	-53.53	124	-299.524	25	-521.456	116	0	1	-187.082	91
5	N52A	max	58.7	17	65.042	39	775.99	8	0	132	0	132	0	132
6		min	-59.598	9	15.394	79	-779.704	16	0	1	0	1	0	1
7	Totals:	max	782.219	22	1743.37	40	1032.402	2						
8		min	-782.228	14	431.927	71	-1032.397	26						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[in]	LC	Shea	.Loc	L.	.phi*Pn	.phi*Pn	phi*Mn	phi*Mn	Eqn	1
1	M24	SR 5/8_H	.395	27.099	124	.019	0	16	1849.1	13805	143.808	143.808	1 H1-1	la
2	M29	SR 1/2"	.346	22.427	37	.011	44	15	1432.0	.8835.75	73.632	73.632	1 H1-1	la
3	M4	PIPE_1.5	.216	34.81	129	.198	34.81	1.	. 23485	31008.6	1452.45	1452.45	1 H1-1	Ιb
4	MP3	PIPE_2.0	.195	48	16	.130	33	16	15369	42228	2459.85	2459.85	1 <mark>.H1-1</mark>	Ιb
5	M2	PIPE_1.5	.193	34.81	120	.123	.725	1.	. 23485	31008.6	1452.45	1452.45	1 <mark>.H1-1</mark>	Ιb
6	M3	PIPE_1.5	.183	34.81	122	.084	34.81	1.	. 23485	31008.6	1452.45	1452.45	1 H1-1	Ιb

Company Designer Job Number : Trylon : SMM

: 188193 : 806363 Aug 4, 2021 12:31 PM Checked By:__

Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)

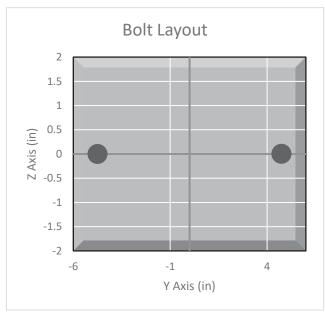
	Member	Shape	Code Check	Loc[in]	LC	Shea	Loc	L.	.phi*Pn	.phi*Pn	phi*Mn	phi*Mn		Eqn
7	H1	PIPE_2.5	.172	76	132	.056	76	1.	.45255	66654	4726.5	4726.5	1	.H1-1b
8	M1	PIPE_1.5	.171	34.81	130	.083	34.81	90	23485	31008.6	1452.45	1452.45	1	H1-1b
9	MP1	PIPE_2.0	.168	33	2	.092	33	16	15369	42228	2459.85	2459.85	1	.H1-1b
10	M5	PIPE_2.5	.165	21	16	.053	76	1.	.45255	66654	4726.5	4726.5	1	H1-1b
11	M28	SR 1/2"	.135	22.427	48	.014	0	16	1432.0	8835.75	73.632	73.632	1	H1-1b
12	M31A	PIPE_2.0	.090	61.625	7	.005	123	46	9324.69	42228	2459.85	2459.85	1	.H1-1b
13	M26	SR 5/8_H	.034	30.25	41	.056	0	1.	.1849.1	13805	143.808	143.808	1	H1-1b*
14	M23	SR 5/8_H	.029	30.25	8	.019	0	16	1849.1	13805	143.808	143.808	1	H1-1b*
15	MP2	PIPE_2.0	.025	63	108	.100	33	1.	.15369	42228	2459.85	2459.85	1	H1-1b*
16	M25	SR 5/8_H	.015	15.44	10	.056	0	1.	.1849.1	13805	143.808	143.808	1	H1-1b
17	M27	SR 1/2"	.001	44.854	24	.010	0	1.	.1432.0	8835.75	73.632	73.632	1	H1-1b*
18	M30	SR 1/2"	.000	0	132	.007	0	1.	.1432.0	8835.75	73.632	73.632	1	H1-1a

Envelope AISI S100-16: LRFD Cold Formed Steel Code Checks

Mem Shape	Code Check	Loc[in] Loc	SheLo	phi*	phi*Tphi*	. phi*	phiphi Cl	b Eqn
No Data to Print								

APPENDIX D ADDITIONAL CALCUATIONS

Analysis date: 8/4/2021



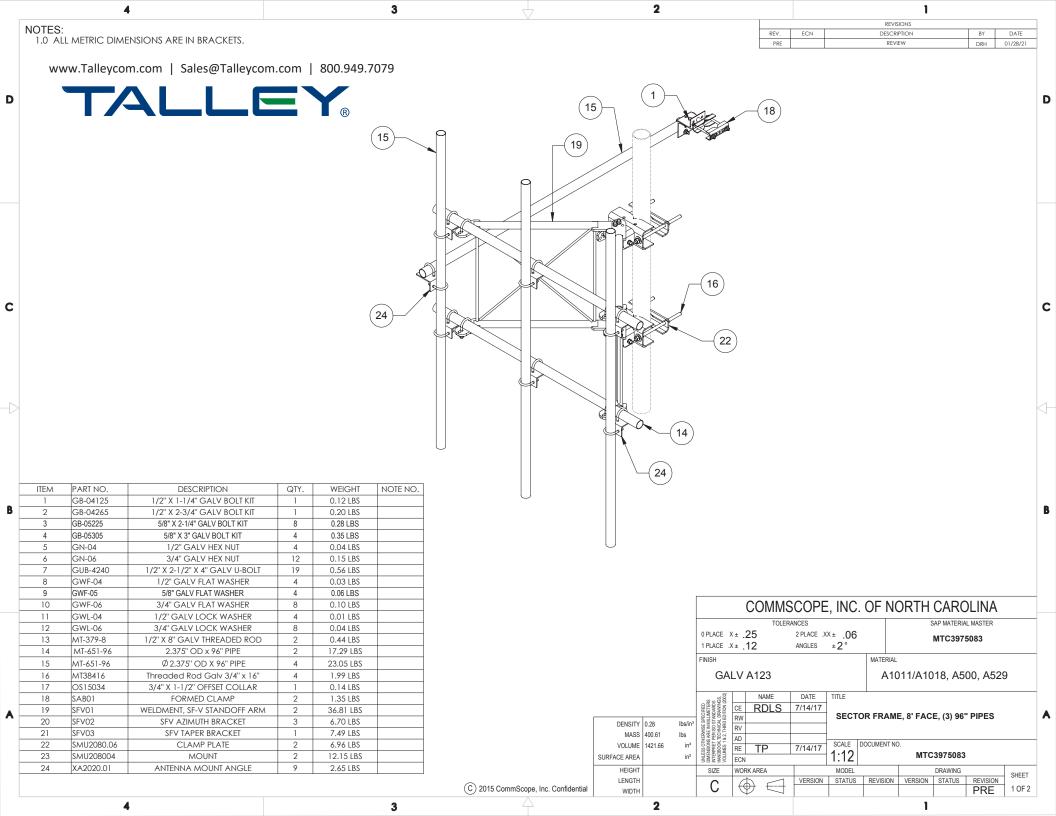
BOLT TOOL 1.5.2

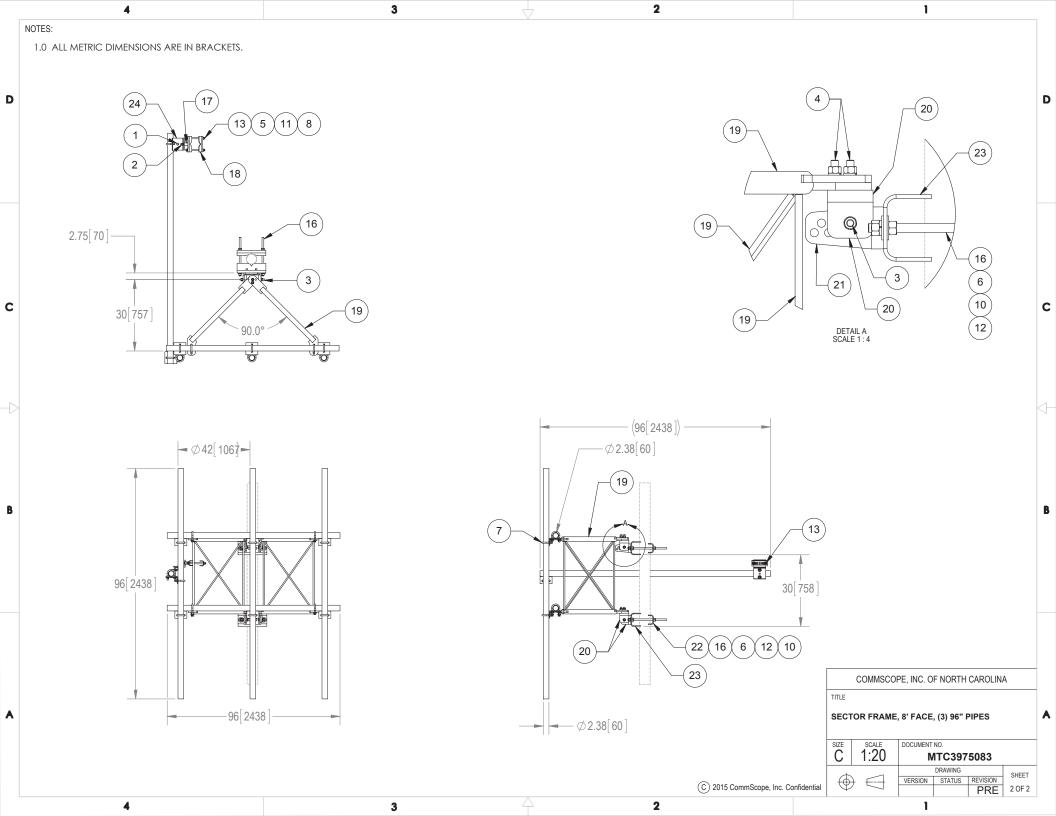
Project Data					
Job Code:	188193				
Carrier Site ID:	BU# 806363				
Carrier Site Name:	HRT 105 943201				

Code					
Design Standard:	TIA-222-H				
Slip Check:	Yes				
Pretension Standard:	TIA-222-H				

Bolt Properties					
Connection Type:	Threaded Rod				
Diameter:	0.75	in			
Grade:	A36				
Yield Strength (Fy):	36	ksi			
Ultimate Strength (Fu):	58	ksi			
Number of Bolts:	2				
Threads Included:	Yes				
Double Shear:	No				
Connection Pipe Size:	9.5	in			

Connection Description	
Standoff to Leg Connection	


Bolt Check*					
Tensile Capacity (ϕT_n) :		lbs			
Shear Capacity (φV _n):		lbs			
Tension Force (T _u):		lbs			
Shear Force (V _u):	1622.7	lbs			
Tension Usage:	3.8%				
Shear Usage:	16.1%				
Interaction:	16.1%	Pass			
Controlling Member:	M31				
Controlling LC:	130				


*Rating per TIA-222-H Section 15.5

Slip Check*					
Sliding Capacity (φR _{ns}):		lbs			
Torsion Capacity (φR _{nr}):		lb-ft			
Sliding Force (V _{us}):		lbs			
Torsional Force (T _{ur}):	0.0	lb-ft			
Sliding Usage:	15.0%				
Torsion Usage:	0.0%				
Interaction:	15.0%	Pass			
Controlling Member:	M31				
Controlling LC:	41				

^{*}Rating per TIA-222-H Section 15.5

APPENDIX E SUPPLEMENTAL DRAWINGS

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOBDL00040A

806363 48 Cow Hill Road Clinton, Connecticut 06413

August 31, 2021

EBI Project Number: 6221004808

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of FCC general population allowable limit:	14.92%			

August 31, 2021

Dish Wireless

Emissions Analysis for Site: BOBDL00040A - 806363

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **48 Cow Hill Road** in **Clinton, Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 48 Cow Hill Road in Clinton, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 4) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 5) The antennas used in this modeling are the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz channel(s) in Sector A, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz channel(s) in Sector B, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 6) The antenna mounting height centerline of the proposed antennas is 118 feet above ground level (AGL).
- 7) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 8) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	Α	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665- 20	Make / Model:	JMA MX08FRO665- 20	Make / Model:	JMA MX08FRO665- 20
Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz
Gain:	17.45 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd
Height (AGL):	II8 feet	Height (AGL):	II8 feet	Height (AGL):	II8 feet
Channel Count:	8	Channel Count:	8	Channel Count:	8
Total TX Power (W):	280 Watts	Total TX Power (W):	280 Watts	Total TX Power (W):	280 Watts
ERP (W):	3,065.51	ERP (W):	3,065.51	ERP (W):	3,065.51
Antenna A1 MPE %:	1.26%	Antenna B1 MPE %:	1.26%	Antenna C1 MPE %:	1.26%

environmental | engineering | due diligence

Site Composite MPE %					
Carrier	MPE %				
Dish Wireless (Max at Sector A):	1.26%				
AT&T	1.13%				
T-Mobile	3.15%				
Metro PCS	0.22%				
Sprint	0.41%				
Verizon	1.36%				
Town	0.76%				
MediaFLO	6.63%				
Site Total MPE % :	14.92%				

Dish Wireless MPE % Per Sector				
Dish Wireless Sector A Total:	1.26%			
Dish Wireless Sector B Total:	1.26%			
Dish Wireless Sector C Total:	1.26%			
Site Total MPE % :	14.92%			

Dish Wireless Maximum MPE Power Values (Sector A)								
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (μW/cm²)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE	
Dish Wireless 600 MHz n71	4	223.68	118.0	2.56	600 MHz n71	400	0.64%	
Dish Wireless 1900 MHz n70	4	542.70	118.0	6.22	1900 MHz n70	1000	0.62%	
			•			Total:	1.26%	

[•] NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)
Sector A:	1.26%
Sector B:	1.26%
Sector C:	1.26%
Dish Wireless Maximum MPE % (Sector A):	1.26%
Site Total:	14.92%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **14.92**% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320 West Henrietta, NY 14586

Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

Crown Castle Letter of Authorization

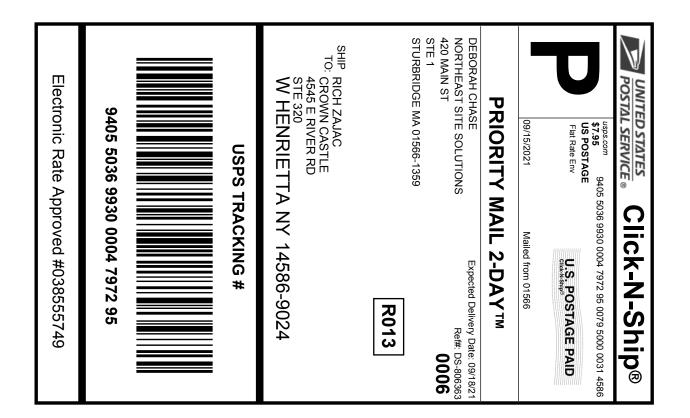
CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Tower Share Application

Crown Castle telecommunications site at: 48 COW HILL ROAD, CLINTON, CT 06413

CROWN ATLANTIC COMPANY LLC ("Crown Castle") hereby authorizes DISH WIRELESS, LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:


Crown Site ID/Name: 806363/HRT 105 943201 Customer Site ID: BOBDL00040A/CT-CCI-T-806363 Site Address: 48 COW HILL ROAD, CLINTON, CT 06413

By:

Richard Zajac
Site Acquisition Specialist

Exhibit H

Recipient Mailings

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0004 7972 95

543668305 09/15/2021 Trans. #: Print Date: Ship Date: 09/15/2021 09/18/2021 Delivery Date:

Priority Mail® Postage: \$7.95 \$7.95 Total:

Ref#: DS-806363

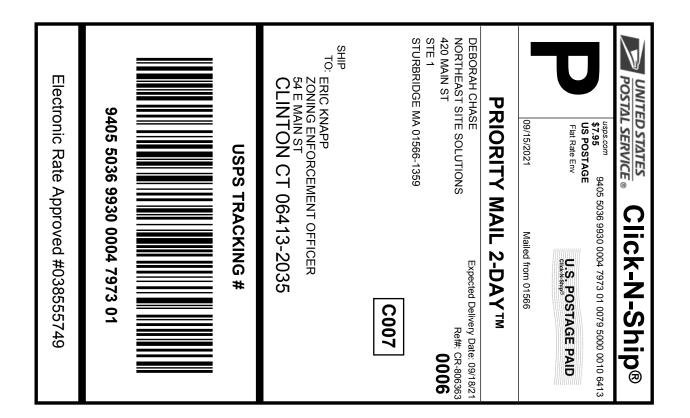
From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


RICH ZAJAC

CROWN CASTLE 4545 E RIVER RD

STE 320

W HENRIETTA NY 14586-9024

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0004 7973 01

543668305 09/15/2021 Trans. #: Print Date: Ship Date: 09/15/2021 09/18/2021 Delivery Date:

Priority Mail® Postage: Total:

\$7.95 \$7.95

Ref#: CR-806363

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

ERIC KNAPP

ZONING ENFORCEMENT OFFICER

54 E MAIN ST

CLINTON CT 06413-2035

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0004 7973 18

543668305 09/15/2021 Trans. #: Print Date: Ship Date: 09/15/2021 09/18/2021 Delivery Date:

Priority Mail® Postage: Total:

Ref#: CR-806363

\$7.95 \$7.95

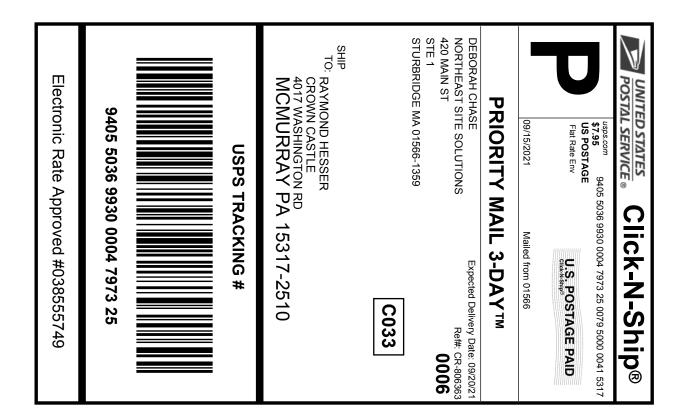
From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


CHRISTINE GOUPIL

FIRST SELECTWOMAN

54 E MAIN ST

CLINTON CT 06413-2035

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0004 7973 25

543668305 09/15/2021 Trans. #: Print Date: Ship Date: 09/15/2021 09/20/2021 Delivery Date:

Priority Mail® Postage: \$7.95 \$7.95 Total:

Ref#: CR-806363 DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

From:

STURBRIDGE MA 01566-1359

RAYMOND HESSER **CROWN CASTLE**

4017 WASHINGTON RD MCMURRAY PA 15317-2510

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

804343

FISKDALE 458 MAIN ST E, MA 01518-9998

FISKDALE, MA 01518-9998 (800)275-8777						
00 110 10001			03:17 PM			
Product	Qty	Unit Price	Price			
Prepaid Mail Clinton, CT 0 Weight: 1 lb Acceptance Da Thu 09/16 Tracking #:	1 6413 8.10 oz)4 7973 1	\$ 0.00			
Prepaid Mail West Henriett Weight: O lb Acceptance Da Thu 09/10 Tracking #: 9405 5030	ta, NY 145 2.10 oz ate: 5/2021		\$0.00 95			
Prepaid Mail Canonsburg, Description of the Canonsburg, Description of the Canonsburg of the Canonsbur	8.30 oz ate:	04 7973	\$0.00 25			
	06413 8.20 oz ate: 6/2021 86 9930 00	004 7973				
Grand Total:			\$0.00			