

56 Prospect Street, P.O. Box 270 Hartford, CT 06103

Kathleen M. Shanley Manager – Transmission Siting

Tel: (860) 728-4527

September 9, 2020

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification

Eversource Site # 1900

705 West Johnson Avenue, Cheshire, CT 06410 Latitude: 41-33-21.1 N / Longitude: 72-55-1.9 W

Dear Ms. Bachman:

The Connecticut Light and Power Company doing business as Eversource Energy ("Eversource") currently maintains 2 antennas at various mounting heights on an existing 140-foot self-support tower located at 705 West Johnson Avenue in Cheshire. See Attachment A, Parcel Map and Property Card. The tower and property are owned by Eversource. Eversource plans to install one 24-foot tall omnidirectional antenna to be mounted at 137 feet above ground level ("AGL") and two 7/8-inch diameter coaxial cables. Eversource also plans to install one new 1,000-gallon propane tank and one new 24 kW generator, both on new concrete pads. There will be no changes to the area of the fenced compound, the tower, or the existing antennas and equipment. The tower and existing and proposed equipment on the tower are depicted on Attachment B, Construction Drawings, dated May 13, 2020 and Attachment C, Structural Analysis, dated March 26, 2020. The Connecticut Siting Council approved the extension of the tower at this location in Petition No. 827 in September 2007.

The proposed installation is part of Eversource's program to update the current obsolete analog voice radio communications system to a modern digital voice communications system. The new system will enable the highest level of voice communications under all operating conditions, including during critical emergency and storm restoration activities. The new radio system will also provide for remote control of distribution safety equipment.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies ("R.C.S.A.") §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this notice is being delivered to Rob Oris, Jr., Town Council Chairman for the Town of Cheshire, Sean M. Kimball, Town Manager for the Town of Cheshire and William S. Voelker, AICP, Town Planner for the Town of Cheshire, via private carrier. Proof of delivery is attached. See Attachment D, Proof of Delivery of Notice.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2):

- 1. There will be no change to the height of the existing tower; an existing-omni-directional antenna extends to 12' above the top of the tower; the proposed omni-directional (whip) antenna will extend 22' above the top of the existing tower.;
- 2. The proposed modifications will not require the extension of the site boundary;
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria;
- 4. The operation of the new antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard as shown in the attached Radio Frequency Emissions Report, dated April 7, 2020 (Attachment E Power Density Report)¹;
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.; and,
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, Eversource respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2). One original copy of this notice is enclosed.

Communications regarding this Notice of Exempt Modification should be directed to Kathleen Shanley at (860) 728-4527.

By:

Kathleen M. Shanley

Manager – Transmission Siting

cc: Honorable Rob Oris, Jr., Town Council Chairman, Town of Cheshire Sean M. Kimball, Town Manager, Town of Cheshire William S. Voelker, AICP, Town Planner, Town of Cheshire

Attachments

- A. Parcel Map and Property Card
- B. Construction Drawings
- C. Structural Analysis
- D. Proof of Delivery of Notice
- E. Power Density Report

¹ Please note that the Power Density Report denotes each channel as a transmitter. The depiction of antennas in the Structural Analysis and Construction Drawings accurately reflects the number of antennas. Also, the "Antenna Height" column on Table 1 in the Power Density Report reflects the Transmit or "TX" antenna centerline.

Map Block Lot

2-16

Building #

Unique Identifier

00001900

Property Information

Property Location	705 W JOHNSON AVE	
Mailing Address	P O BOX 270	
Mailing Address	HARTFORD CT 06141	
Land Use	Office Building	
Zoning Code	I-2	
Neighborhood	I-3C	

Land Use	Office Building	Land Class	Commercial
Zoning Code	I-2	Census Tract	3432
Neighborhood	I-3C	Acreage	19.96

Valuation Summary

(Assessed value = 70% of Appraised Value)

Item	Appraised	Assessed
Buildings	2503627	1752540
Outbuildings	133450	93420
Land	646393	452470
Total	3283470	2298430

Owner	CONN LIGHT & POWER CO
Co-Owner	
Book / Page	2227/0294
Land Class	Commercial
Census Tract	3432
Acreage	19.96
	_

Utility Information

<u> </u>	
Electric	No
Gas	No
Sewer	No
Public Water	No
Well	No

Primary Construction Details

Year Built	1978
Building Desc.	Commercial
Building Style	
Stories	1.00
Exterior Walls	Glass
Exterior Walls 2	B. V. Solid
Interior Walls	Drywall
Interior Walls 2	
Interior Floors 1	Carpet
Interior Floors 2	

Heating Fuel	Heat Pump
Heating Type	FHA
AC Type	Central
Bedrooms	0
Full Bathrooms	0
Half Bathrooms	0
Extra Fixtures	0
Total Rooms	0
Bath Style	NA
Kitchen Style	
Occupancy	0

Building Use	Office Building
Building Condition	Good
Frame Type	Average/Low
Fireplaces	0
Bsmt Gar	0
Fin Bsmt Area	
Fin Bsmt Quality	
Building Grade	-30
Roof Style	Flat
Roof Cover	Composite Built Up
eport Created On	2/27/2020

Map Block Lot 2-16

Building #

Unique Identifier

00001900

etached Outbuildings		<u> </u>		
Туре	Description	Area (sq ft)	Condition	Year Built
Paving	Paving	132780	Average	1978
Fencing	Fencing	1600	Average	1978
Canopy	Metal	5320	Average	1978
Fencing	Fencing	7200	Average	1978
Fencing	Fencing	7200	Average	1978
Shed	Metal	414	Average	2018
Attached Extra Features				
Туре	Description	Area (sq ft)	Condition	Year Built
ales History				
wner of Record		Book/ Page	Sale Date	Sale Price
ONN LIGHT & POWER CO		2227_0294	1/19/2016	0
ONNECTICUT LIGHT AND POW	ER COMPANY THE	2227_ 294	7/21/2008	790220

Map Block Lot

2-16

Building #

Unique Identifier

00001900

Primary Construction Details

Year Built	1978
Building Desc.	Warehouse
Building Style	
Stories	1.00
Exterior Walls	Concrete Block
Exterior Walls 2	
Interior Walls	Other
Interior Walls 2	
Interior Floors 1	Concrete
Interior Floors 2	

Heating Fuel	
Heating Type	Electric Baseboard
AC Type	
Bedrooms	0
Full Bathrooms	0
Half Bathrooms	0
Extra Fixtures	0
Total Rooms	0
Bath Style	NA
Kitchen Style	
Occupancy	0

Building Use	Commercial
Building Condition	Average
Frame Type	Average
Fireplaces	0
Bsmt Gar	0
Fin Bsmt Area	
Fin Bsmt Quality	
Building Grade	-10
Roof Style	
Roof Cover	

Attached Extra Features

Type	Description	Area (sq ft)	Condition	Year Built
Canopy	Canopy	16593	Average	1978

Map Block Lot

2-16

Building #

Unique Identifier

00001900

Primary Construction Details

Year Built	1978
Building Desc.	Commercial Garage
Building Style	
Stories	0.00
Exterior Walls	
Exterior Walls 2	
Interior Walls	
Interior Walls 2	
Interior Floors 1	
Interior Floors 2	

Heating Fuel	
Heating Type	
AC Type	
Bedrooms	0
Full Bathrooms	0
Half Bathrooms	0
Extra Fixtures	0
Total Rooms	0
Bath Style	NA
Kitchen Style	
Occupancy	0

Building Use	Commercial
Building Condition	Average
Frame Type	Average
Fireplaces	0
Bsmt Gar	0
Fin Bsmt Area	
Fin Bsmt Quality	
Building Grade	0
Roof Style	
Roof Cover	

Attached Extra Features

Туре	Description	Area (sq ft)	Condition	Year Built

CHESHIRE AWC 705 WEST JOHNSON AVE CHESHIRE, CT 06410

PROJECT SUMMARY

THE GENERAL SCOPE OF WORK CONSISTS OF THE FOLLOWING:

- 1. INSTALL (1) NEW RACK WITH DMR EQUIPMENT IN EXISTING RADIO SHELTER
- 2. INSTALL NEW GENERATOR AT ELEVATION 0'-0"± AGL
- 3. INSTALL NEW PROPANE TANK AT ELEVATION 0'-0"± AGL
- INSTALL (1) NEW OMNI/WHIP ANTENNA AT ELEVATION 162'-0"± AGL

GOVERNING CODES

2018 CONNECTICUT STATE BUILDING CODE (2015 IBC BASIS) 2017 NATIONAL ELECTRIC CODE TIA-222-H

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE; NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.

SITE INFORMATION

SITE NAME: SITE ID NUMBER:

CHESHIRE AWC

705 WEST JOHNSON AVE CHESHIRE, CT 06410 SITE ADDRESS:

16 173230 I-2

BLOCK: LOT: ZONE:

LATITUDE: 41° 33′ 21.1″ N LONGITUDE: 72° 55′ 1.9″ W

ELEVATION:

132'± AMSL 19.96± AC (BOOK: 2227, PAGE: 0294)

CONTACT INFORMATION

APPLICANTS: EVERSOURCE ENERGY 107 SELDEN STREET

BERLIN, CT 06037

PROPERTY OWNER: EVERSOURCE ENERGY 107 SELDEN STREET BERLIN, CT 06037

EVERSOURCE ENERGY PROJECT MANAGER: NIKOLL PRECI (860) 655-3079

(800) 286-2000

TELCO PROVIDER: FRONTIER (800) 921-8102

CALL BEFORE YOU DIG:

DESIGN TYPE

SITE UPGRADE SELF-SUPPORT TOWER

	DRAWING INDEX		
SHEET NO:	SHEET TITLE		
T-1	TITLE SHEET		
C-1	SITE PLAN		
C-2	TOWER ELEVATION		
S-1	GENERATOR & PROPANE TANK CONCRETE PAD DETAILS		
M-1	GENERATOR & PROPANE TANK EQUIPMENT DETAILS		
M-2	GENERATOR & PROPANE TANK EQUIPMENT DETAILS		
E-1	UTILITY PLAN & DETAILS		
G-1	GROUNDING PLAN		
G-2	GROUNDING DETAILS		
G-3	GROUNDING DETAILS		
G-4	GROUNDING DETAILS		
N-1	NOTES & SPECIFICATIONS		
N-2	NOTES & SPECIFICATIONS		
N-3	NOTES & SPECIFICATIONS		

DO NOT SCALE DRAWINGS

SUBCONTRACTOR SHALL VERIFY ALL PLANS & EXISTING DIMENSIONS & CONDITIONS ON THE JOB SITE & SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME

UNDERGROUND SERVICE ALERT

UTILITIES PROTECTION CENTER, INC.

48 HOURS BEFORE YOU DIG

EVERSURCE

107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286-2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

	PROJECT NO:	403093
.	DRAWN BY:	TYW
	CHECKED BY:	TH

\Box		
0	05/13/20	ISSUED FOR FILING
REV	DATE	DESCRIPTION

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

CHESHIRE AWC 705 WEST JOHNSON AVE CHESHIRE, CT 06410

SHEET TITLE

TITLE SHEET

T-1

NO SCALE

107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286-2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

PROJECT NO:	403093
DRAWN BY:	TYW
CHECKED BY:	тн
	\equiv

<u> </u>		
0	05/13/20	ISSUED FOR FILING
REV	DATE	DESCRIPTION

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

CHESHIRE AWC 705 WEST JOHNSON AVE CHESHIRE, CT 06410

SHEET TITLE

SITE PLAN

SHEET NUMBER

C-1

107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286-2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

PROJECT NO:	403093
DRAWN BY:	TYW
CHECKED BY:	TH

L			
	0	05/13/20	ISSUED FOR FILING
(F	REV	DATE	DESCRIPTION

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

CHESHIRE AWC 705 WEST JOHNSON AVE CHESHIRE, CT 06410

SHEET TITLE

TOWER ELEVATION

SHEET NUMBER

C-2

NOTES

- 1. MATCH EXISTING THICKNESS OF AGGREGATE SURFACE WHEN CONSTRUCTION IS COMPLETE.
- 2. CONTRACTOR TO REPLACE TOP SOIL WITH COMPACT SUBGRADE AND FINISH TO MATCH EXISTING GRADE.

- 3/4" CHAMFER ON EDGES

107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286-2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

PROJECT NO:	403093
DRAWN BY:	TYW
CHECKED BY:	тн

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

CHESHIRE AWC 705 WEST JOHNSON AVE CHESHIRE, CT 06410

SHEET TITLE

GENERATOR & PROPANE TANK CONCRETE PAD DETAILS

SHEET NUMBER

S-1

NO SCALE

PROPANE TANK FOUNDATION PLAN

NO SCALE

PROPANE GENERATOR SCHEMATICS

NO SCALE

NO SCALE

- ALL VALVES USED IN METALLIC PIPING SYSTEMS MUST HAVE PRESSURE CONTAINING PARTS OF STEEL, DUCTILE (NODULAR) IRON, MALLEABLE IRON OR BRASS.
- 2. ALL MATERIALS USED, INCLUDING VALVE SEAT DISCS, PACKING, SEALS AND DIAPHRAGMS MUST BE RESISTANT TO THE ACTION OF LP GAS UNDER SERVICE CONDITIONS. MANY VALVES ARE LISTED BY INDEPENDENT TESTING LABORATORIES FOR USE IN LP GAS SERVICE. THESE CAN BE USED AS RECOMMENDED BY THE MANUFACTURER. OTHER VALVES CAN BE USED, BUT MUST COMPLY WITH THE REQUIREMENTS OF NFPA 58 AND SHOULD BE RECOMMENDED BY THE MANUFACTURER FOR LP GAS SERVICE TO BE SURE THAT ALL THE COMPONENT PARTS OF THE VALVE ARE APPROVED FOR LP GAS SERVICE.
- 3. GROUND GENERATOR AND TANK TO GND RING. REFER TO SHEET G-1 FOR WIRE SIZES.
- 4. GENERATOR SHALL BE ORIENTED TO EXHAUST TOWARDS THE EASTERN FENCE.

PROPANE CONNECTION DIAGRAM

NO SCALE

RESTORE EXISTING SURFACING
AT AREAS DISTURBED BY
TRENCHING, MATCH EXISTING

UNDISTURBED/
COMPACTED EARTH

6" WIDE METAL CORE
U/G WARNING TAPE
WITH "CAUTION
BURIED UTILITY LINES"

COMPACTED SAND

1-1/4" SEMI-RIGID
COATED COPPER
TUBING GAS LINE
(SEE NOTES)

6"
6"

<u>NOTES</u>

SEMI—RIGID COATED COPPER TUBING GAS LINE INSTALLED UNDERGROUND SHALL BE INSTALLED IN ACCORDANCE WITH NFPA54. UNDERGROUND PIPING SHALL COMPLY WITH THE FOLLOWING:

- 1. THE PIPING SHALL BE MADE OF CORROSION RESISTANT MATERIAL THAT IS SUITABLE FOR BURIAL.
- 2. PIPE SHALL HAVE A FACTORY APPLIED ELECTRICALLY INSULATING COATING. FITTINGS AND JOINTS BETWEEN SECTIONS OF COATED PIPE SHALL BE COATED IN ACCORDANCE WITH COATING MANUFACTURER'S INSTRUCTIONS.
- 3. THE PIPING SHALL HAVE A DIAELECTIC UNION INSTALLED ON BOTH SIDES.

PROPANE GAS TRENCH

107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286-2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

PROJECT NO:	403093
DRAWN BY:	TYW
CHECKED BY:	TH

\subseteq		
0	05/13/20	ISSUED FOR FILING
REV	DATE	DESCRIPTION

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

CHESHIRE AWC 705 WEST JOHNSON AVE CHESHIRE, CT 06410

SHEET TITLE

GENERATOR & PROPANE TANK EQUIPMENT DETAILS

SHEET NUMBER

M-1

<u>NOTE</u>

INSTALL COMPONENTS IN ACCORDANCE WITH GENERATOR MANUFACTURER'S INSTRUCTIONS.

PROPANE CONNECTION DIAGRAM NO SCALE

<u>NOTES</u>

- 1. 1000 USWG AMSE VIII, DIV. 1 ABOVE GROUND LPG TANK AS MANUFACTURED BY ARCOSA TANK, LLC:

 - * WWW.ARCOSATANK.COM * PH: 1-214-202-9258 * WEIGHT (EMPTY) = 1729 lbs
- 2. LPG TANK TO BE BOLTED TO CONCRETE SLAB.
- 3. GROUND TANK STAND (SHEET G-1).
- PROVIDE TANK MANUFACTURER SHOP DRAWING FOR REVIEW BY ENGINEER OF RECORD PRIOR TO PURCHASE.

PROPANE TANK SCHEMATICS

NO SCALE

107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286-2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

	PROJECT NO:	403093
DRAWN BY:		TYW
	CHECKED BY:	TH

0	05/13/20	ISSUED FOR FILING
REV	DATE	DESCRIPTION

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

CHESHIRE AWC 705 WEST JOHNSON AVE CHESHIRE, CT 06410

SHEET TITLE

GENERATOR & PROPANE TANK EQUIPMENT DETAILS

SHEET NUMBER

M-2

GENERATOR TRENCH DETAIL

NO SCALE

STUB-UP CONDUIT DETAIL

NO SCALE

107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286–2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

PROJECT NO:	403093
DRAWN BY:	TYW
CHECKED BY:	ТН
-	

0	05/13/20	ISSUED FOR FILING
REV	DATE	DESCRIPTION

05/13/2020

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

CHESHIRE AWC 705 WEST JOHNSON AVE CHESHIRE, CT 06410

SHEET TITLE

UTILITY PLAN & DETAILS

SHEET NUMBER

E-1

LEGEND

- EXOTHERMIC (UNLESS NOTED OTHERWISE).
- COMPRESSION CONNECTION (TWO HOLE LUG OR EQUIVALENT).
- 1 5/8"øx10-'0" COPPER CLAD STEEL GROUND ROD.

--- GROUND WIRE.

GROUNDING PLAN

GENERATOR/TANK GROUND: EXTEND #2 TINNED CU WIRE FROM EXISTING BURIED GROUND RING TO GENERATOR/TANK AND EXOTHERMICALLY WELD.

NOTES

- ALL GROUNDING SYSTEM CONDUCTORS AND CONNECTIONS BELOW GRADE SHALL BE THERMAL WELDS AT GROUND RODS AND AT A MINIMUM OF 36" BELOW GRADE, OR 6" BELOW FROST LINE, WHICH EVER IS GREATER OF THE TWO DIMENSIONS.
- 2. ALL INSTALLATIONS SHALL BE FIELD VERIFIED.
- 3. ALL GROUND WIRE SHALL BE #2 AWG BARE COPPER TINNED UNLESS NOTED OTHERWISE.
- ALL GROUND WIRES SHALL PROVIDE A STRAIGHT DOWNWARD PATH TO GROUND WITH GRADUAL BEND AS REQUIRED. GROUND WIRES SHALL NOT BE LOOPED OR SHARPLY BENT.
- 5. THE CONTRACTOR SHALL COORDINATE INSTALLATION OF GROUND RODS AND GROUND RING WITH FOUNDATION AND UNDERGROUND CONDUIT.
- 6. EACH EQUIPMENT CABINET SHALL BE CONNECTED WITH #2 AWG INSULATED SOLID TINNED COPPER WIRE TO GROUND BAR. EQUIPMENT CABINETS SHALL EACH HAVE (2) LUG CONNECTIONS.
- KOPR-SHIELD ANTI-OXIDATION COMPOUND SHALL BE USED ON ALL COMPRESSION GROUNDING CONNECTIONS.
- 8. ALL EXOTHERMIC CONNECTIONS SHALL BE INSTALLED UTILIZING THE PROPER CONNECTION/MOLD AND MATERIALS FOR THE PARTICULAR APPLICATION.
- ALL BOLTED GROUNDING CONNECTIONS SHALL BE INSTALLED WITH AN EXTERNAL TOOTHED LOCK WASHER. GROUNDING BUS BARS MAY HAVE PRE PUNCHED HOLES OR TAPPED HOLES. ALL HARDWARE SHALL BE 3/8" STAINLESS STEEL.
- EXTERNAL GROUNDING CONDUCTOR SHALL NOT BE INSTALLED OR ROUTED THROUGH HOLES IN ANY METAL OBJECTS, CONDUITS, OR SUPPORTS TO PRECLUDE ESTABLISHING A MAGNETIC CHOKE POINT.
- 11. PLASTIC CLIPS SHALL BE USED TO FASTEN AND SUPPORT GROUNDING CONDUCTORS. FERROUS METAL CLIPS WHICH COMPLETELY SURROUND THE GROUNDING CONDUCTOR SHALL NOT BE USED.
- 12. STANDARD BUS BARS MGB, GWB, IGB, TELCO GB, FIBER GB, AND POWER GB SHALL BE FURNISHED AND INSTALLED BY THE SUBCONTRACTOR. THEY SHALL NOT BE FABRICATED OR MODIFIED IN THE FIELD. ALL GROUNDING BUSES SHALL BE IDENTIFIED WITH MINIMUM 3/4" LETTERS BY WAY OF STENCILING OR DESIGNATION PLATE.
- 13. IF COAX ON ICE BRIDGE IS MORE THAT 6' FROM THE GROUND BAR AT THE BASE OF THE TOWER, A SECOND GROUND BAR WILL BE NEEDED AT THE END OF THE ICE BRIDGE RUN TO GROUND THE COAX GROUND KIT AND THE IN-LINE SURGE ARRESTORS.

14. CONTRACTOR SHALL REPAIR/PLACE EXISTING GROUNDING SYSTEM COMPONENTS DAMAGED DURING CONSTRUCTION AT THE CONTRACTORS EXPENSE.

107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286-2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

PROJECT NO:	403093
DRAWN BY:	TYW
CHECKED BY:	ТН

\bigsqcup		
0	05/13/20	ISSUED FOR FILING
REV	DATE	DESCRIPTION

05/13/2020

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

CHESHIRE AWC 705 WEST JOHNSON AVE CHESHIRE, CT 06410

SHEET TITLE

GROUNDING PLAN

SHEET NUMBER

GROUND RING DETAIL

NO SCALE

GROUND ROD WITH INSPECTION SLEEVE

GROUND ROD

NO SCALE

CALL BEFORE YOU DIG SERVICE SHALL BE CALLED PRIOR TO EXCAVATION

1'-0"

BACKFILL PER SPECIFICATIONS

GROUND RING

<u>NOTES</u>

 ALL EXOTHERMIC WELD CONNECTIONS SHALL BE BELOW FROST LINE.

GROUND RING TRENCH

NOTES

1. REFER TO SHEET G-1 FOR WIRE SIZES.

107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286-2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

PROJECT NO:	403093
DRAWN BY:	TYW
CHECKED BY:	TH

05/13/2020

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

CHESHIRE AWC 705 WEST JOHNSON AVE CHESHIRE, CT 06410

SHEET TITLE

GROUNDING DETAILS

SHEET NUMBER

EACH GROUND CONDUCTOR TERMINATING ON ANY GROUND BAR SHALL HAVE AN IDENTIFICATION TAG ATTACHED AT EACH END THAT WILL IDENTIFY ITS ORIGIN AND DESTINATION

SECTION "P" - SURGE PROTECTORS

CELL REFERENCE GROUND BAR (IF CO-LOCATED)
GENERATOR FRAMEWORK (IF AVAILABLE) (#2)
TELCO GROUND BAR (#2)
COMMERCIAL POWER COMMON NEUTRAL/GROUND BOND (#3/0)
FIBER GROUND BAR (#2)

SECTION "A" - SURGE ABSORBERS

INTERIOR GROUND RING (#2) EXTERNAL EARTH GROUND FIELD (BURIED GROUND RING) (#2)

SECTION "N" - NON-ISOLATED GROUND ZONE EQUIPMENT

MISC NON-ISOLATED GROUND ZONE BATTERY RACK

SECTION "I" - ISOLATED GROUND ZONE

ALL ISOLATED GROUND REFERENCE GROUND WINDOW BAR

DETAIL NOTES

- EXOTHERMIC ALLY WELD #2 AWG BARE TINNED SOLID COPPER CONDUCTOR TO GROUND BAR. ROUTE CONDUCTOR TO BURIED GROUND RING AND PROVIDE EXOTHERMIC WELD.
- 2. EC SHALL USE PERMANENT MARKER TO DRAW THE LINES BETWEEN EACH SECTION AND LABEL EACH SECTION ("P", "A", "N", "1") WITH 1" HIGH LETTERS.

(MGB) REFERENCE GROUND BAR

NO SCALE

CONNECTION OF GROUND WIRE TO EXTERIOR GROUNDING BAR

NOTES

- 1. ALL LUGS SHALL BE 2-HOLE, LONG BARREL, TINNED SOLID COPPER UNLESS OTHERWISE SPECIFIED, USING THE PROPER U.L. TOOL AND CIRCUMFERENTIAL HEXAGON DIE. LUGS SHALL BE THOMAS AND BETTS SERIES 548##BE, BURNDY, ERICO OR EQUIVALENT. BOLT HOLE DIAMETER AND SPACING ON ALL GROUND LUGS SHALL MATCH HOLE DIAMETER AND SPACING OF THE GROUND BAR. ANGLE LUGS MAY BE USED IF CONSTRUCTION CONDITIONS DICTATE. REFER TO DETAIL "G".
- AN ANTI-OXIDATION COMPOUND SHALL BE APPLIED BETWEEN THE LUG AND GROUND BAR ONLY. DO NOT COVER THE LUG. THE ANTI-OXIDATION COMPOUND SHALL BE THOMAS AND BETTS "KOPR-SHIELD" OR BURNDY PENETROX-E.
- 3. GROUND BARS SHALL BE ATTACHED TO THE ANTENNA SUPPORT STRUCTURES WITH U.L. APPROVED MOUNTING DEVICES. GROUND CLAMPS MAY BE USED TO MOUNT THE GROUND BAR TO AVAILABLE FLANGES, COAX PORT RIMS, ETC. STEEL STRAPS MAY BE USED TO ATTACH GROUND BAR TO A MONOPOLE IF NO CONVENIENT CLAMPING SURFACES ARE PRESENT. ALL CONNECTING SURFACES SHALL BE CLEAN AND FREE OF DIRT, OIL AND CORROSION. GALVANIZED SURFACES SHALL BE POLISHED WITH A STEEL BRUSH. DO NOT DRILL HOLES OR USE EXOTHERMIC WELDS TO CONNECT GROUND LEADS TO A STEEL TOWER EXCEPT ON STEEL TABS OR FLANGES SPECIFICALLY DESIGNED FOR THAT PURPOSE.

NOTES

- ALL HARDWARE 18-8 STAINLESS STEEL INCLUDING LOCK WASHERS, COAT ALL SURFACES WITH AN ANTI-OXIDANT COMPOUND BEFORE MATING.
- 2. ALL HARDWARE SHALL BE S/S 3/8 INCH DIAMETER OR LARGER
- 3. FOR GROUND BOND TO STEEL ONLY: INSERT A CADMIUM FLAT WASHER BETWEEN LUG AND STEEL, COAT ALL SURFACES WITH AN ANTI-OXIDANT COMPOUND BEFORE MATING.

TWO HOLE LUG

<u>NOTE</u>

 NUT & WASHER SHALL BE PLACED ON THE FRONT SIDE OF THE GROUND BAR AND BOLTED ON THE BACK SIDE.

INSTALLATION OF GROUND WIRE
TO EXTERIOR GROUNDING BAR
NO SCALE

107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286–2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

PROJECT NO: DRAWN BY:		403093
		TYW
CHE	CKED BY:	TH
-		

(
0	05/13/20	ISSUED FOR FILING
REV	DATE	DESCRIPTION

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

CHESHIRE AWC 705 WEST JOHNSON AVE CHESHIRE, CT 06410

SHEET TITLE

GROUNDING DETAILS

SHEET NUMBER

<u>NOTE</u>

 NUMBER OF GROUND BARS MAY VARY DEPENDING ON THE TYPE OF TOWER, ANTENNA LOCATION AND CONNECTION ORIENTATION. PROVIDE AS REQUIRED.

ANTENNA CABLE GROUNDING NO SCALE

NOTES

- 1. DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO GROUND BAR.
- 2. GROUNDING KIT SHALL BE TYPE AND PART NUMBER AS SUPPLIED OR RECOMMENDED BY CABLE MANUFACTURER.
- 3. WEATHER PROOFING SHALL BE TYPE AND PART NUMBER AS SUPPLIED OR RECOMMENDED BY CABLE MANUFACTURER.

CONNECTION OF CABLE GROUND
KIT TO ANTENNA CABLE
NO SCALE

CABLE INSTALLATION WITH WALL FEED THRU ASSEMBLY
NO SCALE

ICE BRIDGE AND ANTENNA

CABLE DETAIL

NO SCALE

107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286-2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

PROJECT NO:	403093
DRAWN BY:	TYW
CHECKED BY:	TH

\subseteq		
0	05/13/20	ISSUED FOR FILING
REV	DATE	DESCRIPTION
	_	

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

CHESHIRE AWC 705 WEST JOHNSON AVE CHESHIRE, CT 06410

SHEET TITLE

GROUNDING DETAILS

SHEET NUMBER

DESIGN BASIS

1. GOVERNING CODE: 2018 CONNECTICUT STATE BUILDING CODE (2015 IBC BASIS).

GENERAL CONDITIONS

- IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO COMPLY WITH ALL APPLICABLE FEDERAL, STATE, AND LOCAL BUILDING CODES, PERMIT CONDITIONS AND SAFETY CODES DURING CONSTRUCTION.
- THE ENGINEER IS NOT: A GUARANTOR OF THE INSTALLING CONTRACTOR'S WORK; RESPONSIBLE FOR SAFETY IN, ON OR ABOUT THE WORK SITE; IN CONTROL OF THE SAFETY OR ADEQUACY OF ANY BUILDING COMPONENT, SCAFFOLDING OR SUPERINTENDING THE WORK.
- THE CONTRACTOR IS RESPONSIBLE FOR PROVIDING ALL PERMITS, INSPECTIONS, TESTING AND CERTIFICATES NEEDED FOR LEGAL OCCUPANCY OF THE FINISHED PROJECT.
- THE CONTRACTOR IS RESPONSIBLE TO REVIEW THIS COMPLETE PLAN SET AND VERIFY THE EXISTING CONDITIONS SHOWN IN THESE PLANS AS THEY RELATE TO THE WORK PRIOR TO SUBMITTING PRICE. SIGNIFICANT DEVIATIONS FROM WHAT IS SHOWN AFFECTING THE WORK SHALL BE REPORTED IMMEDIATELY TO THE CONSTRUCTION MANAGER.
- 5. DETAILS INCLUDED IN THIS PLAN SET ARE TYPICAL AND APPLY TO SIMILAR CONDITIONS.
- EXISTING ELECTRICAL AND MECHANICAL FIXTURES, PIPING, WIRING, AND EQUIPMENT OBSTRUCTING THE WORK SHALL BE REMOVED AND/OR RELOCATED AS DIRECTED BY THE CONSTRUCTION MANAGER. PORARY SERVICE INTERRUPTIONS MUST BE COORDINATED WITH OWNER.
- 7. THE CONTRACTOR SHALL DILIGENTLY PROTECT THE EXISTING BUILDING/SITE CONDITIONS AND THOSE OF ANY ADJOINING BUILDING/SITES AND RESTORE ANY DAMAGE CAUSED BY HIS ACTIVITIES TO THE
- THE CONTRACTOR SHALL SAFEGUARD AGAINST: CREATING A FIRE HAZARD, AFFECTING TENANT EGRESS OR COMPROMISING BUILDING SITE SECURITY MEASURES.
- THE CONTRACTOR SHALL REMOVE ALL DEBRIS AND CONSTRUCTION WASTE FROM THE SITE EACH DAY. WORK AREAS SHALL BE SWEPT AND MADE CLEAN AT THE END OF EACH WORK DAY.
- THE CONTRACTOR'S HOURS OF WORK SHALL BE IN ACCORDANCE WITH LOCAL CODES AND ORDINANCES AND BE APPROVED BY OWNER.
- 11. THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE CONSTRUCTION MANAGER IF ASBESTOS IS ENCOUNTERED DURING THE EXECUTION OF HIS WORK. THE CONTRACTOR SHALL CEASE ALL ACTIVITIES WHERE THE ASBESTOS MATERIAL IS FOUND UNTIL NOTIFIED BY THE CONSTRUCTION

THERMAL & MOISTURE PROTECTION

- FIRE—STOP ALL PENETRATIONS FOR ELECTRICAL CONDUITS OR WAVEGUIDE CABLING THROUGH BUILDING WALLS, FLOORS, AND CEILINGS SHALL BE FIRESTOPPED WITH ACCEPTED MATERIALS TO MAINTAIN THE FIRE RATING OF THE EXISTING ASSEMBLY. ALL FILL MATERIAL SHALL BE SHAPED, FITTED, AND PERMANENTLY SECURED IN PLACE. FIRESTOPPING SHALL BE INSTALLED IN ACCORDANCE
- 2. HILTI CP620 FIRE FOAM OR 3M FIRE BARRIER FILL, VOID OR CAVITY MATERIAL OR ACCEPTED EQUAL SHALL BE APPLIED IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS AND ASSOCIATED UNDERWRITERS LABORATORIES (UL) SYSTEM NUMBER.
- FIRESTOPPING SHALL BE APPLIED AS SOON AS PRACTICABLE AFTER PENETRATIONS ARE MADE AND EQUIPMENT INSTALLED.
- FIRESTOPPED PENETRATIONS SHALL BE LEFT EXPOSED AND MADE AVAILABLE FOR INSPECTION BEFORE CONCEALING SUCH PENETRATIONS. FIRESTOPPING MATERIAL CERTIFICATES SHALL BE MADE AVAILABLE AT THE TIME OF INSPECTION.
- ANY BUILDING ROOF PENETRATION AND/OR RESTORATION SHALL BE PERFORMED SO THAT THE ROOF WARRANTY IN PLACE IS NOT COMPROMISED. CONTRACTOR SHALL ARRANGE FOR OWNER'S ROOFING CONTRACTOR TO PERFORM ANY AND ALL ROOFING WORK IF SO REQUIRED BY EXISTING ROOF WARRANTY. OTHERWISE, ROOF SHALL BE MADE WATERTIGHT WITH LIKE CONSTRUCTION AS SOON AS PRACTICABLE AND AT COMPLETION OF CONSTRUCTION.
- ALL PENETRATIONS INTO AND/OR THROUGH BUILDING EXTERIOR WALLS SHALL BE SEALED WITH
- WHERE CONDUIT AND CABLES PENETRATES FIRE RATED WALLS AND FLOORS, FIRE GROUT ALL PENETRATIONS IN ORDER TO MAINTAIN THE FIRE RATING USING A LISTED FIRE SEALING DEVICE OR
- 8. CONTRACTOR TO REMOVE AND RE-INSTALL ALL FIRE PROOFING AS REQUIRED DURING

SUBMITTALS

- 1. CONTRACTOR TO SUBMIT SHOP DRAWINGS TO ENGINEER FOR REVIEW PRIOR TO FABRICATION.
- 2. CONTRACTOR TO NOTIFY ENGINEER FOR INSPECTION PRIOR TO CLOSING PENETRATIONS
- CONTRACTORS SHALL VERIFY ALL DIMENSIONS AND CONDITIONS IN THE FIELD PRIOR TO FABRICATION AND ERECTION OF ANY MATERIAL. THE ENGINEER SHALL BE NOTIFIED OF ANY CONDITIONS WHICH PRECLUDE COMPLETION OF THE WORK IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.
- ALL STEEL MATERIAL EXPOSED TO WEATHER SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 " ZINC (HOT-DIPPED GALVANIZED) COATINGS" ON IRON AND STEEL
- 5. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NONCONFORMING MATERIALS OR CONDITIONS FOR REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW.

CONCRETE

- 1. ALL CONCRETE CONSTRUCTION SHALL BE DONE IN ACCORDANCE WITH THE AMERICAN CONCRETE INSTITUTE (ACI) CODES 301 & 318, LATEST REVISION.
- 2. FOUNDATION WORK SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S DESIGNS AND
- 3. ALL CONCRETE USED SHALL BE 4000 PSI (28 DAY COMPRESSIVE STRENGTH) UNLESS NOTED OTHERWISE. THE CONCRETE MIX DESIGN SHALL USE THE FOLLOWING MATERIALS AND PARAMETERS:

PORTLAND CEMENT: ASTM C150, TYPE 1 AGGREGATE: ASTM C33, 1 INCH MIX

WATER: POTARI F ADMIXTURE: NON-CHLORIDE

SLUMP: 4 INCH UNLESS NOTED OTHERWISE

*ALL CONCRETE EXPOSED TO FREEZING WEATHER SHALL CONTAIN ENTRAINED AIR PER ACI 211

- 4. ALL REINFORCING STEEL SHALL BE ASTM A615, GR 60 (DEFORMED) UNLESS NOTED OTHERWISE. WELDED WIRE FABRIC SHALL CONFORM TO ASTM A185 WELDED STEEL WIRE FABRIC UNLESS NOTED OTHERWISE. SPLICES SHALL BE CLASS 'B' AND ALL HOOKS SHALL BE ACI STANDARD UNLESS NOTED OTHERWISE. REINFORCING BARS SHALL BE COLD BENT WHERE REQUIRED AND TIES (NOT WELDED).
- 5. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS

CONCRETE CAST AGAINST EARTH = 3 INCHES CONCRETE EXPOSED TO EARTH OR WEATHER: #6 AND LARGER = 2 INCHES #5 AND SMALLER AND WWF = 1 1/2 INCHES CONCRETE NOT EXPOSED TO EARTH OR WEATHER OR NOT CAST AGAINST THE GROUND: SLAB AND WALL = 3/4 INCHES BEAMS AND COLUMNS = 1 1/2 INCHES

- 6. A 3/4 INCH CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.
- 7. CONCRETE SHALL REPLACED IN A UNIFORM MANNER AND CONSOLIDATED IN PLACE.
- 8. CONCRETE FOOTINGS SHALL BE CAST AGAINST LEVEL, COMPACTED, NON-FROZEN BASE SOIL FREE OF STANDING WATER

STEEL

1. MATERIAL:

WIDE FLANGE: ASTM A572 GR 50

ASTM A500, GR C TUBING: PIPE:

ASTM A53, GR B AND ASTM 572, GR 50 ASTM A570, GR 50 AND ASTM A36

BOLTS: ASTM A325

GRATING: TYPE GW-2 (1"x3/16" BARS)

MISC. MATERIAL: ASTM A36

ALL STEEL SHAPES SHALL BE HOT-DIPPED GALVANIZED IN ACCORDANCE WITH ASTM A123 WITH A

- 2. DAMAGED GALVANIZED SURFACES SHALL BE CLEANED WITH A WIRE BRUSH AND PAINTED WITH TWO COATS OF COLD ZINC, "GALVANOX", "DRY GALV", "ZINC IT", OR APPROVED EQUIVALENT, IN ACCORDANCE WITH MANUFACTURER'S GUIDELINES. TOUCH UP DAMAGED NON GALVANIZED STEEL WITH SAME PAINT IN SHOP OR FIELD.
- 3. DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL SHALL CONFORM TO THE AISC "MANUAL OF STEEL CONSTRUCTION" 13TH EDITION.
- THE STEEL STRUCTURE IS DESIGNED TO BE SELF-SUPPORTING AND STABLE AFTER COMPLETION. IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO DETERMINE ERECTION PROCEDURE AND SEQUENCE AND TO INSURE THE SAFETY OF THE BUILDING AND ITS COMPONENT PARTS DURING ERECTION.
- 5. ALL STEEL ELEMENTS SHALL BE INSTALLED PLUMB AND LEVEL.
- 6. TOWER MANUFACTURER'S DESIGNS SHALL PREVAIL FOR TOWER.

SITE GENERAL

- CONTRACTOR SHALL FOLLOW CONDITIONS OF ALL APPLICABLE PERMITS AND WORK IN ACCORDANCE WITH OSHA REGULATIONS.
- THESE PLANS DEPICT KNOWN UNDERGROUND STRUCTURES, CONDUITS, AND/OR PIPELINES. THE LOCATIONS FOR THESE ELEMENTS ARE BASED UPON THE VARIOUS RECORD DRAWINGS AVAILABLE. THE CONTRACTOR IS HEREBY ADVISED THAT THESE DRAWINGS MAY NOT ACCURATELY DEPICT AS-BUILT LOCATIONS AND OTHER UNKNOWN STRUCTURES. THE CONTRACTOR SHALL THEREFORE DETERMINE THE EXACT LOCATION OF EXISTING UNDERGROUND FLEMENTS AND EXCAVATE WITH CARE AFTER CALLING MARKOUT SERVICE AT 1-800-272-4480 48 HOURS BEFORE DIGGING, DRILLING OR
- ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, FIBER OPTIC, AND OTHER UTILITIES WHERE ENCOUNTERED, SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION, SHALL BE RELOCATED AS DIRECTED BY ENGINEER. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR PIER DRILLING AROUND OR NEAR UTILITIES. CONTRACTOR SHALL HAND DIG UTILITIES AS NEEDED, CONTRACTOR SHALL PROVIDE BUT IS NOT LIMITED TO, APPROPRIATE A) FALL PROTECTION, B) CONFINED SPACE ENTRY, C) ELECTRICAL SAFETY, AND D) TRENCHING AND EXCAVATION
- IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES, AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC, FIBER OPTIC, OR OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED, AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT THE POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF THE CONSTRUCTION MANAGER.
- 6. CONTRACTOR IS RESPONSIBLE FOR REPAIRING OR REPLACING STRUCTURES OR UTILITIES DAMAGED
- CONTRACTOR SHALL PROTECT EXISTING PAVED AND GRAVEL SURFACES, CURBS, LANDSCAPE AND STRUCTURES AND RESTORE SITE OR PRE-CONSTRUCTION CONDITION WITH AS GOOD, OR BETTER, MATERIALS. NEW MATERIALS SHALL MATCH EXISTING THICKNESS AND TYPE.
- THE CONTRACTOR SHALL SHORE ALL TRENCH EXCAVATIONS GREATER THAN 5 FEET IN DEPTH OR LESS WHERE SOIL CONDITIONS ARE DEEMED UNSTABLE. ALL SHEETING AND/OR SHORING METHODS SHALL BE DESIGNED BY A PROFESSIONAL ENGINEER.
- THE CONTRACTOR IS RESPONSIBLE FOR MANAGING GROUNDWATER LEVELS IN THE VICINITY OF EXCAVATIONS TO PROTECT ADJACENT PROPERTIES AND NEW WORK, GROUNDWATER SHALL BE DRAINED IN ACCORDANCE WITH LOCAL SEDIMENTATION AND EROSION CONTROL GUIDELINES.

107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286-2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

40.309.3

DRA	WN BY:		TYW
CHE	CKED BY:		TH
\equiv			
	<u> </u>	DRAWN BY: CHECKED BY:	

0 05/13/20 ISSUED FOR FILING

REV

PROJECT NO:

IT IS A VIOLATION OF LAW FOR ANY PERSON. UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

CHESHIRE AWC 705 WEST JOHNSON AVE CHESHIRE, CT 06410

SHEET TITLE

NOTES & SPECIFICATIONS

SHEET NUMBER

N-1

EXCAVATION

- CONTRACTOR SHALL GRADE ONLY AREAS SHOWN TO BE MODIFIED HEREIN AND ONLY TO THE EXTENT REQUIRED TO SHED OVERLAND WATER FLOW AWAY FROM SITE. SLOPES SHALL NOT BE STEEPER THAN 3:1 (HORIZONTAL:VERITICAL), UNLESS NOTED OTHERWISE. SEDIMENTATION AND EROSION CONTROLS SHOWN AND SPECIFIED SHALL BE ESTABLISHED BEFORE STRIPPING EXISTING VEGETATION.
- ORGANIC MATERIAL AND DEBRIS SHALL BE STRIPPED AND STOCKPILED BEFORE ADDING FILL
- NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.
- ALL FILL SHALL BE PLACED IN ONE FOOT LIFTS AND COMPACTED IN PLACE. STRUCTURAL FILL SHALL BE COMPACTED TO 95% OF ITS MAXIMUM DRY UNIT WEIGHT TESTED IN ACCORDANCE WITH ASTM D1557.
- 5. EXCAVATIONS FOR FOOTINGS SHALL BE CUT LEVEL TO THE REQUIRED DEPTH AND TO UNDISTURBED SOIL. REPORT UNSUITABLE SOIL CONDITIONS TO THE CONSTRUCTION MANAGER.
- 6. TRENCH EXCAVATIONS SHALL BE BACKFILLED AT THE END OF EACH DAY
- 7. SURPLUS MATERIAL SHALL BE REMOVED FROM THE SITE.
- TOWER FOUNDATION EXCAVATION, BACKFILL AND COMPACTION SHALL BE IN ACCORDANCE WITH THE TOWER MANUFACTURER'S DESIGNS AND SPECIFICATIONS.

MATERIAL

- NATIVE GENERAL MATERIAL MAY BE USED FOR TRENCH BACKFILL WHERE SELECT MATERIAL IS NOT SPECIFIED. GRAVEL MATERIAL FOR CONDUIT TRENCH BACKFILL SHALL NOT CONTAIN ROCK GREATER THAN 2 INCHES IN DIAMETER.
- BANK OR CRUSHED GRAVEL SHALL CONSIST OF TOUGH, DURABLE PARTICLES OF CRUSHED OR UNCRUSHED GRAVEL FREE OF SOFT, THIN, ELONGATED OR LAMINATED PIECES AND MEET THE GRADATION REQUIREMENTS
- PROCESSED AGGREGATE BASE SHALL CONSIST OF COURSE AND FINE AGGREGATES COMBINED AND MIXED SO THAT THE RESULTING MATERIAL CONFORMS TO THE GRADATION REQUIREMENTS. COURSE AGGREGATE SHALL BE EITHER GRAVEL OR BROKEN STONE AND FINE AGGREGATE SHALL CONSIST OF

SAND.			
	PERCE	NT PASSING	BY WEIGHT
SQUARE	BANK GRAVE	L BANK GR	AVEL PROCESSED
MESH	<u>FILL</u>	BASE	AGG BASE
SIEVES		100	
PASS 5"		100	90-100
PASS 3 1/2"		100	
PASS 2 1/4"		95-100	
,		55-100	
PASS 2"			
PASS 1 1/2"			
PASS 1"			
PASS 3/4"			50-75
PASS 1/4"	25-60	25-60	25-45
PASS #10	15-45		20 40
"	2-25		5-20
PASS #40	0-10	0-10	2-12
PASS #100	0-5	0-5	
PASS #200			

- 4. FILL MATERIAL SHALL BE FREE OR ORGANIC MATERIAL, ICE, TRASH AND DEBRIS.
- REFER TO MOST CURRENT GEOTECHNICAL ENGINEERING REPORT FOR ALL FILL MATERIAL REQUIREMENTS.

ELECTRICAL

- CONTRACTOR SHALL VERIFY EXISTING ELECTRIC SERVICE TYPE AND CAPACITY AND ORDER NEW ELECTRIC SERVICE FROM LOCAL ELECTRIC UTILITY, WHERE APPLICABLE.
- 2. ALL ELECTRICAL WORK SHALL BE IN ACCORDANCE WITH ALL APPLICABLE CODES, AND SHALL BE ACCEPTABLE TO ALL AUTHORITIES HAVING JURISDICTION. WHERE A CONFLICT EXISTS BETWEEN CODES, PLAN AND SPECIFICATIONS, OR AUTHORITIES HAVING JURISDICTION, THE MORE STRINGENT AUTHORITIES SHALL APPLY.
- CONTRACTOR SHALL PROVIDE ALL LABOR, MATERIALS, INSURANCE, EQUIPMENT, INSTALLATION, CONSTRUCTION TOOLS, TRANSPORTATION, ETC. FOR A COMPLETE AND PROPERLY OPERATIVE SYSTEM ENERGIZED THROUGHOUT AND AS INDICATED ON THE DRAWINGS AND AS SPECIFIED HEREIN AND/OR OTHERWISE REQUIRED.
- 4. ALL ELECTRICAL CONDUCTORS SHALL BE 100% COPPER AND SHALL HAVE TYPE THHN INSULATION UNLESS INDICATED OTHERWISE.
- CONDUIT SHALL BE THREADED RIGID GALVANIZED STEEL OR EMT WITH ONLY COMPRESSION TYPE COUPLINGS AND CONNECTORS, ALL MADE UP WRENCH TIGHT
- ALL BURIED CONDUIT SHALL BE MINIMUM SCH 40 PVC UNLESS NOTED OTHERWISE, OR AS PER
- PROVIDE FLEXIBLE STEEL CONDUIT OR LIQUID TIGHT FLEXIBLE STEEL CONDUIT TO ALL VIBRATING EQUIPMENT, INCLUDING HVAC UNITS, TRANSFORMERS, MOTORS, ETC., OR WHERE EQUIPMENT IS PLACED UPON A SLAB ON GRADE.
- 8. ALL BRANCH CIRCUITS AND FEEDERS SHALL HAVE A SEPARATE GREEN INSULATED EQUIPMENT GROUNDING CONDUCTOR BONDED TO ALL ENCLOSURES, PULLBOXES, ETC.
- CONDUIT AND CABLE WITHIN CORRIDORS SHALL BE CONCEALED AND EXPOSED ELSEWHERE, UNLESS NOTED OTHERWISE.
- 10. ELECTRICAL MATERIALS INSTALLED ON ROOFTOP SHALL BE LISTED FOR NEMA 3R USE. —AND ALL WIRING WITHIN A VENTILATION DUCT SHALL BE LISTED FOR SUCH USE. IN GENERAL WIRING METHODS WITHIN A DUCT SHALL BE AN MC CABLE WITH SMOOTH OR CORRUGATED METAL JACKET AND HAVE NO OUTER COVERING OVER THE METAL JACKET. INTERLOCKED ARMOR TYPE OF MC CABLE IS NOT ACCEPTABLE FOR THIS APPLICATION. CONTRACTOR CAN ALSO USE TYPE MI CABLE IN THE VENTILATION DUCT PROVIDED IT DOES NOT HAVE ANY OUTER COVERINGS OVER THE METAL EXTERIOR.
- 11. WIRING DEVICES SHALL BE SPECIFICATION GRADE, AND WIRING DEVICE COVER PLATES SHALL BE PLASTIC WITH ENGRAVING AS SPECIFIED.

- 12. GROUNDING SYSTEM RESISTANCE SHALL BE MEASURED, RECORDED, AND DATED USING MEGGER DET14 OR SIMILAR INSTRUMENT. GROUND RESISTANCE SHALL NOT EXCEED 5 OHMS. IF THE RESISTANCE VALUE IS EXCEEDED, NOTIFY CONSTRUCTION MANAGER FOR FURTHER INSTRUCTION.
- 1.3 COORDINATE WITH BUILDING MANAGEMENT BEFORE PERFORMING ANY WORK INVOLVING EXISTING SYSTEMS OR EQUIPMENT IN ORDER TO DETERMINE THE EFFECT, IF ANY, ON OTHER TENANTS WITHIN THE BUILDING, AND TO DETERMINE THE APPROPRIATE TIME FOR PERFORMING THIS WORK.
- 14. THE CONTRACTOR SHALL BE REQUIRED TO VISIT THE SITE PRIOR TO SUBMITTING BID IN ORDER TO DETERMINE THE EXTENT OF THE EXISTING CONDITIONS.
- 15. ALL CONDUCTOR ENDS SHALL BE TAGGED AND ELECTRICAL EQUIPMENT LABELED WITH ENGRAVED IDENTIFICATION PLATES.
- 16. CONTRACTOR IS RESPONSIBLE FOR ALL CONTROL WIRING AND ALARM TIE-INS.

GROUNDING

- 1. #6 THWN SHALL BE STRANDED #6 COPPER WITH GREEN THWN INSULATION SUITABLE FOR WET
- #2 THWN SHALL BE STRANDED #2 COPPER WITH THWN INSULATION SUITABLE FOR WET INSTALLATIONS.
- 3. #2 BARE TINNED SHALL BE SOLID COPPER TINNED. ALL BURIED WIRE SHALL MEET THIS CRITERIA.
- ALL LUGS SHALL BE 2-HOLE, LONG BARREL, TINNED SOLID COPPER UNLESS OTHERWISE SPECIFIED, LUGS SHALL BE THOMAS AND BETTS SERIES 548##BE OR EQUIVALENT (IE #2 THWN - 54856BE, #2 SOLID - 54856BE, AND #6 THWN - 54852BE).
- 5. ALL HARDWARE, BOLTS, NUTS, AND WASHERS SHALL BE 18-8 STAINLESS STEEL. EVERY CONNECTION SHALL BE BOLT-FLAT WASHER-BUSS-LUG-FLAT WASHER-BELLEVILLE WASHER-NUT IN THAT EXACT ORDER. BACK-TO-BACK LUGGING, BOLT-FLAT WASHER-LUG-FLAT WASHER-BELLEVILLE WASHER-NUT, IN THAT EXACT ORDER, IS ACCEPTED WHERE NECESSARY TO CONNECT MANY LUGS TO A BUSS BAR, STACKING OF LUGS, BUSS-LUG-LUG, IS NOT ACCEPTABLE.
- WHERE CONNECTIONS ARE MADE TO STEEL OR DISSIMILAR METALS, A THOMAS AND BETTS DRAGON TOOTH WASHER MODEL DTWXXX SHALL BE USED BETWEEN THE LUG AND THE STEEL, BOLT-FLAT WASHER-STEEL-DRAGON TOOTH WASHER-LUG-FLAT WASHER-BELEVILE WASHER-NUT.
- ALL CONNECTIONS, INTERIOR AND EXTERIOR, SHALL BE MADE WITH THOMAS AND BETTS KPOR—SHIELD. COAT ALL WIRES BEFORE LUGGING AND COAT ALL SURFACES BEFORE CONNECTING.
- 8. THE MINIMUM BEND RADIUS SHALL BE 8 INCHES FOR #6 WIRE AND SMALLER AND 12 INCHES FOR
- 9. ALL CONNECTIONS TO THE GROUND RING SHALL BE EXOTHERMIC WELD.
- 10. BOND THE FENCE TO THE GROUND RING AT EACH CORNER, AND AT EACH GATE POST WITH #2 SOLID TINNED WIRE. EXOTHERMIC WELD BOTH ENDS.
- 11. GROUND KITS SHALL BE SOLID COPPER STRAP WITH #6 WIRE 2—HOLE COMPRESSION CRIMPED LUGS AND SHALL BE SEALED ACCORDING TO MANUFACTURER INSTRUCTIONS.
- 12. FERROUS METAL CLIPS WHICH COMPLETELY SURROUND THE GROUNDING CONDUCTOR SHALL BE
- 13. GROUND BARS SHALL BE FURNISHED AND INSTALLED WITH PRE-DRILLED HOLE DIAMETERS AND SPACINGS. GROUND BARS SHALL NEITHER BE FIELD FABRICATED NOR NEW HOLES DRILLED. GROUND LUGS SHALL MATCH THE SPACING ON THE BAR. HARDWARE DIAMETER SHALL BE MINIMUM 3.8 INCH.
- 14. MGB GROUND CONNECTION SHALL BE EXOTHERMIC WELDED TO THE GROUND SYSTEM.
- 15. ALL CABLE TRAY AND/OR PLATFORM STEEL SHALL BE BONDED TOGETHER WITH JUMPERS (#6 IN EQUIPMENT ROOM, #2 ELSEWHERE AND HOMERUN)

ANTENNA & CABLE NOTES

- THE CONTRACTOR SHALL FURNISH AND INSTALL ALL TRANSMISSION CABLES, JUMPERS, CONNECTORS, GROUNDING STRAPS, ANTENNAS, MOUNTS AND HARDWARE. ALL MATERIALS SHALL BE INSPECTED BY THE CONTRACTOR FOR DAMAGE UPON DELIVERY, JUMPERS SHALL BE SUPPLIED AT ANTENNAS AND EQUIPMENT INSIDE SHELTER COORDINATE LENGTH OF JUMP CABLES WITH EVERSOURCE. COORDINATE AND VERIFY ALL OF THE MATERIALS TO BE PROVIDED WITH EVERSOURCE PRIOR TO SUBMITTING BID
- 2. AFTER INSTALLATION, THE TRANSMISSION LINE SYSTEM SHALL BE PIM/SWEEP TESTED FOR PROPER INSTALLATION AND DAMAGE WITH ANTENNAS CONNECTED. CONTRACTOR TO OBTAIN LATEST TESTING PROCEDURES FROM EVERSOURCE PRIOR TO BIDDING.
- 3. ANTENNA CABLES SHALL BE COLOR CODED AT THE FOLLOWING LOCATIONS:
 - AT THE ANTENNAS.
 - AT THE WAVEGUIDE ENTRY PLATE ON BOTH SIDES OF THE EQUIPMENT SHELTER WALL.
 JUMPER CABLES AT THE EQUIPMENT ENTER.
- 4. SYSTEM INSTALLATION:
 - THE CONTRACTOR SHALL INSTALL ALL CABLES AND ANTENNAS TO THE MANUFACTURER'S SPECIFICATIONS. THE CONTRACTOR IS RESPONSIBLE FOR THE PROCUREMENT AND INSTALLATION OF
 - ALL CONNECTORS, ASSOCIATED CABLE MOUNTING, AND GROUNDING HARDWARE.
 WALL MOUNTS, STANDOFFS, AND ASSOCIATED HARDWARE.

 - 1/2 INCH HELIAX ANTENNA JUMPERS OF APPROPRIATE LENGTHS.
- 5. MINIMUM BENDING RADIUS FOR COAXIAL CABLES:
 - 7/8 INCH, RMIN = 15 INCHES
- 1 5/8 INCH, RMIN = 25 INCHES
- 6. CABLE SHALL BE INSTALLED WITH A MINIMUM NUMBER OF BENDS WHERE POSSIBLE. CABLE SHALL NOT BE LEFT UNTERMINATED AND SHALL BE SEALED IMMEDIATELY AFTER BEING INSTALLED.
- 7. ALL CABLE CONNECTIONS OUTSIDE SHALL BE COVERED WITH WATERPROOF SPLICING KIT.
- 8. CONTRACTOR SHALL VERIFY EXACT LENGTH AND DIRECTION OF TRAVEL IN FIELD PRIOR TO
- 9. CABLE SHALL BE FURNISHED WITHOUT SPLICES AND WITH CONNECTORS AT EACH END.

107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286-2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

PROJECT NO:	403093
DRAWN BY:	TYW
CHECKED BY:	TH

			_
0	05/13/20	ISSUED FOR FILING	
REV	DATE	DESCRIPTION	
			_

IT IS A VIOLATION OF LAW FOR ANY PERSON UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

CHESHIRE AWC 705 WEST JOHNSON AVE CHESHIRE, CT 06410

SHEET TITLE

NOTES & SPECIFICATIONS

SHEET NUMBER

N-2

<u>SYMBOLS</u>

EXOTHERMIC CONNECTION COMPRESSION CONNECTION ıI| ● 5/8"øx10-'0" COPPER CLAD STEEL GROUND ROD. TEST GROUND ROD WITH INSPECTION SLEEVE ıI**├** GROUNDING CONDUCTOR \bigcirc A KEY NOTES CHAINLINK FENCE WOOD FENCE LEASE AREA ICE BRIDGE CABLE TRAY GAS LINE UNDERGROUND ELECTRICAL/TELCO UNDERGROUND ELECTRICAL/CONTROL UNDERGROUND UNDERGROUND TELCO PROPERTY LINE (PL)

ABBREVIATIONS

LTE LONG TERM EVOLUTION

	<u></u>		
AC	ALTERNATING CURRENT	MGB	MASTER GROUNDING BAR
AIC	AMPERAGE INTERRUPTION CAPACITY	MIN	МІЛІМИМ
ANI	AUXILIARY NETWORK INTERFACE	MW	MICROWAVE
АТМ	ASYNCHRONOUS TRANSFER MODE	MTS	MANUAL TRANSFER SWITCH
ATS	AUTOMATIC TRANSFER SWITCH	NEC	NATIONAL ELECTRICAL CODE
AWG	AMERICAN WIRE GAUGE	ОС	ON CENTER
AWS	ADVANCED WIRELESS SERVICES	PP	POLARIZING PRESERVING
BATT	BATTERY	PCU	PRIMARY CONTROL UNIT
BBU	BASEBAND UNIT	PDU	PROTOCOL DATA UNIT
BTC	BARE TINNED COPPER CONDUCTOR	PWR	POWER
BTS	BASE TRANSCEIVER STATION	RECT	RECTIFIER
CCU	CLIMATE CONTROL UNIT	RET	REMOTE ELECTRICAL TILT
CDMA	CODE DIVISION MULTIPLE ACCESS	RMC	RIGID METALLIC CONDUIT
CHG	CHARGING	RF	RADIO FREQUENCY
CLU	CLIMATE UNIT	RUC	RACK USER COMMISSIONING
СОММ	COMMON	RRH	REMOTE RADIO HEAD
DC	DIRECT CURRENT	RRU	REMOTE RADIO UNIT
DIA	DIAMETER	RWY	RACEWAY
DWG	DRAWING	SFP	SMALL FORM-FACTOR PLUGGABLE
EC	ELECTRICAL CONDUCTOR	SIAD	SMART INTEGRATED ACCESS DEVICE
EMT	ELECTRICAL METALLIC TUBING	SSC	SITE SOLUTIONS CABINET
FIF	FACILITY INTERFACE FRAME	T1	1544KBPS DIGITAL LINE
GEN	GENERATOR	TDMA	TIME-DIVISION MULTIPLE ACCESS
GPS	GLOBAL POSITIONING SYSTEM	TMA	TOWER MOUNT AMPLIFIER
GSM	GLOBAL SYSTEM FOR MOBILE	TVSS	TRANSIENT VOLTAGE SUPPRESSION SYSTEM
HVAC	HEAT/VENTILATION/AIR CONDITIONING	TYP	TYPICAL
ICF	INTERCONNECTION FRAME	UMTS	UNIVERSAL MOBILE TELECOMMUNICATION SYSTEM
IGR	INTERIOR GROUNDING RING (HALO)	UPS	UNINTERRUPTIBLE POWER SUPPLY (DC POWER PLANT)
I TC	LONG TERM EVALUTION		

107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286–2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

PROJECT NO:	403093
DRAWN BY:	TYW
CHECKED BY:	TH

Í			`
	0	05/13/20	ISSUED FOR FILING
ļ	REV	DATE	DESCRIPTION

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

CHESHIRE AWC 705 WEST JOHNSON AVE CHESHIRE, CT 06410

SHEET TITLE

NOTES & SPECIFICATIONS

SHEET NUMBER

N-3

REFERENCE CUTSHEETS

DS2C03F36D-D

VHF Omni Antennas (160-222 MHz)

			1	60-17	4 MH	z		217-222 MHz										
	Model Number	DS1G03F36U-N	DS1G03F36U-D	DS1G06F36U-N	DS1G06F36U-D	DS1G03F36D-N	DS1G03F36D-D	DS2C00F36U-N	DS2C00F36U-D	DS2C03F36U-N	DS2C03F36U-D	DS2C06F36U-N	DS2C06F36U-D	DS2C00F36D-N	DS2C00F36D-D	DS2C03F36D-N	DS2C03F36D-D	
	Input Connector	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	
	Туре	Sin	gle	Sin	gle	Dι	ıal	Sin	gle	Sin	gle	Sin	gle	Dι	ıal	Dυ	ıal	
	Bandwidth, MHz	1	4	1	4	1	4		5	5	5	5	5	5	5	5	5	
اب	Power, Watts	50	00	50	00	35	50	50	00	50	00	50	00	35	50	35	50	
SICA	Gain, dBd	3	3	6	3	3	3	()	3	3	6	3	C)	3		
CH C	Horizontal Beamwidth, degrees	360		36	30	360		36	30	360		360		360		360		
DIMENSIONS MECHANICAL ELECTRICAL	Vertical Beamwidth, degrees	30		16		30		6	60		30		16		60		30	
	Beam Tilt, degrees	0		0		0		(0		0		0		0)	
	Isolation (minimum), dB	N/A		N/A		30		N/A		N/A		N/A		30		3	0	
DIMENSIONS MECHANICAL ELECTRICAL	Number of Connectors	1	l	1		2	2		1	-	1	-	1	2	2	2	2	
	Flat Plate Area, ft ² (m ²)	2.53 (0.24)		4.38 (0.41)		4.5 (0.42)		1.9 (1.9 (0.18)		1.9 (0.18)		2.58 (0.24)		2.4 (0.22)		0.38)	
	Lateral Windload Thrust, Ibf(N)	95 (423)		164 (730) 169 (752)		(752)	53 (53 (236) 69 (307)		108 (480)		90 (400)		169 (752)			
	Survival Wind Speed without ice, mph(kph) with 0.5" radial ice, mph(kph)	110 (177) 75 (121) 93 (150) 60 (97)		75 (65 (121) 105)		(357) (311)	172 (150 (110 (96 (,	130 (115 (75 (<i>*</i> 65 (<i>*</i>	,			
	Mounting Hardware included	DSH:	3V3R	DSH:	3V3N	DSH:	3V3N	DSH:	2V3R	DSH	2V3R	DSH:	3V3N	DSH	3V3R	DSH3	3V3N	
<u>ග</u>	Length, ft(m)	12.7	(3.9)	21.9	(6.7)	22.3	(6.8)	7.7	(2.3)	9.9	(3)	18.1	(5.5)	13.6	(4.1)	24.3	(7.4)	
ON O	Radome O.D., in(cm)	3 (7	7.6)	3 (7	7.6)	3 (7	7.6)	3 (7.6)	3 (7	7.6)	3 (7	7.6)	3 (7	7.6)	3 (7	7.6)	
ENS	Mast O.D., in(cm)	2.5 ((6.4)	2.5 ((6.4)	2.5 ((6.4)	2.5	2.5 (6.4)		2.5 (6.4)		2.5 (6.4)		(6.4)	2.5 ((6.4)	
M	Net Weight w/o bracket, lb(kg)	37 (1	16.8)	60 (2	27.2)	63 (2	28.6)	19 (8.6)	26 (*	26 (11.8)) 47 (21.3)		40 (18.1)		31.8)	
	Shipping Weight, lb(kg)	67 (3	30.4)	90 (4	10.8)	93 (4	12.2)	39 (17.7)	56 (2	25.4)	77 (3	34.9)	70 (3	31.8)	100 (45.4)	

			PARTS LIST			
ITEM	QTY	PART NO.	PART DESCRIPTION	LENGTH	UNIT WT.	NET WT.
1	2	X-154463	UNIVERSAL PIPE MOUNTING PLATE (INNER)	PART DESCRIPTION	21.03	
2	2	X-155561	UNIVERSAL PIPE MOUNTING PLATE (OUTER)	20 9/32 in	13.16	26.31
3	2	X-159999	BACKING PLATE	5.73	11.46	
4	4 G5802 5/8" x 2" HDG HEX BOLT GR5					1.08
5	4 G58FW 5/8" HDG USS FLATWASHER				0.07	0.28
6	4	G58LW 5/8" HDG LOCKWASHER 5/32 in 0.03			0.10	
7	4	G58NUT	5/8" HDG HEAVY 2H HEX NUT	5/8 in	0.13	0.52
8	1	P472	4-1/2" X 72" SCH. 40 GALVANIZED PIPE 64.89			64.89
9	4	X-UB1458	1/2" X 4-5/8" X 7" X 3" GALV U-BOLT		0.97	3.89
10	8	G1204	1/2" x 4" HDG HEX BOLT GR5 FULL THREAD	4 in	0.27	2.16
10	8	G12065	1/2" x 6-1/2" HDG HEX BOLT GR5 FULL THREAD	6 1/2 in	0.41	3.28
11	16	G12FW	1/2" HDG USS FLATWASHER	3/32 in	0.03	0.55
12	16	G12LW	1/2" HDG LOCKWASHER	1/8 in	0.01	0.22
13	16	G12NUT	1/2" HDG HEAVY 2H HEX NUT		0.07	1.15
					TOTAL WT. #	136.92

THE MAXIMUM TAPER ADJUSTMENT IS 5.7° BASED UPON 30" SPACING OF ADJUSTABLE MOUNTING BRACKETS.

THE MAXIMUM TAPER ADJUSTMENT IS 3.8° BASED UPON 45" SPACING OF ADJUSTABLE MOUNTING BRACKET.

TOLERANCE NOTES

TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (\$ 0.030") ORILLED AND GAS CUT HOLES (\$ 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (\$ 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE

ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")

PROPRIETARY NOTE:
THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALIMONT
INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF
VALIMONT INDUSTRIES IS STRICTLY PROMISITED.

DESCRIPTION

R5 UNIVERSAL PIPE MOUNT KIT WITH 4-1/2" PIPE

Engineering Support Team: 1-888-753-7446

Locations: New York, NY Atlanta, GA Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX

CPD NO. D		DRAWN BY	ENG. APPROVAL	PART NO.	_
47	18	RH18 3/29/2010		R5	0
CLASS	SUB	DRAWING USAGE	CHECKED BY	DWG. NO.	Π.
81	01	CUSTOMER	BMC 11/12/2015	R5	_

			PARTS LIST			
ITEM	QTY	PART NO.	PART DESCRIPTION	LENGTH	UNIT WT.	NET WT.
1	8	DCP	CLAMP HALF, 1/2" THICK, 8-3/8"		2.40	19.20
2	В	С	5/8" THREADED ROD	D	E	F
3	16	G58NUT	5/8" HDG HEAVY 2H HEX NUT		0.13	2.08
4	16	G58LW	5/8" HDG LOCKWASHER		0.03	0.42
5	16	G58FW	5/8" HDG USS FLATWASHER		0.07	1.13

	VARIABLE PARTS TABLE									
ASSEMBLY "A"	QTY "B"	PART "C"	LENGTH "D"	UNIT WT. "E"	NET WT. "F"	TOTAL WEIGHT				
DCP12K	4	G58R-12	12"	1.05	4.18	27.01				
DCP18K	4	G58R-18	18"	1.57	6.27	29.10				

TOLERANCE NOTES

TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (\$ 0.030") DRILLED AND GAS CUT HOLES (\$ 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (\$ 0.010") - NO CONING OF HOLES

BENDS ARE ± 1/2 DEGREE
ALL OTHER MACHINING (± 0.030")
ALL OTHER ASSEMBLY (± 0.060")

PROPRIETARY NOTE:	
THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT	
INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF	

DESCRIPTION

PIPE TO PIPE CLAMP SET 1-1/2" TO 5" PIPE 1/2" THICK CLAMP

Engineering Support Team: 1-888-753-7446

Locations: New York, NY Atlanta, GA Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX

CPD NO. DRAWN BY KC8 8/21/2012 ENG. APPROVAL PART NO. SEE ASSEMBLY "A"	_
KC8 8/21/2012 SEF ASSEMBLY "A"	
OLE AGGEMBET A	0 }
CLASS SUB DRAWING USAGE CHECKED BY DWG. NO.	TI G
81 01 CUSTOMER CEK 1/22/2013	

Model: 24RCL

Multi-Fuel Natural Gas/LPG

The Kohler® Advantage

High Quality Power

Kohler home generators provide advanced voltage and frequency regulation along with ultra-low levels of harmonic distortion for excellent generator power quality to protect your valuable electronics.

Extraordinary Reliability

Kohler is known for extraordinary reliability and performance and backs that up with a premium five-year or 2000 hour limited warranty.

All-Aluminum Sound Enclosure

Quiet Operation

Kohler home generators provide quiet, neighborhoodfriendly performance.

Standard Features

- Kohler Co. provides one-source responsibility for the generating system and accessories.
- The generator set and its components are prototype-tested, factory-built, and production-tested.
- The generator set accepts rated load in one step.
- A standard five-year or 2000 hour limited warranty covers all systems and components.
- Quick-ship (QS) models with selected features are available.
 See your Kohler distributor for details.
- Meets 291 kph (181 mph) wind load rating.
- RDC2 Controller
 - One digital controller manages both the generator set and transfer switch functions (with optional Model RXT transfer switch).
 - Designed for today's most sophisticated electronics.
 - Electronic speed control responds quickly to varying household demand.
 - Digital voltage regulation protects your valuable electronics from harmonic distortion and unstable power quality.
 - Two-line, backlit LCD screen is easy to read in all lighting conditions, including direct sunlight and low light.
- Engine Features
 - o Powerful and reliable 2.2 L liquid-cooled engine
 - o Electronic engine management system.
 - Simple field conversion between natural gas and LPG fuels while maintaining emission certification.
- Innovative Cooling System
 - Electronically controlled fan speeds minimize generator set sound signature.
- Certifications
 - The 60 Hz generator set engine is certified by the Environmental Protection Agency (EPA) to conform to the New Source Performance Standard (NSPS) for stationary spark-ignited emissions.
 - UL 2200/cUL listing is available (60 Hz only).
 - o CSA certification is available (60 Hz only).
 - Accepted by the Massachusetts Board of Registration of Plumbers and Gas Fitters.
- Approved for stationary standby applications in locations served by a reliable utility source.

Generator Set Ratings

					Standby	/ Ratings	
				Natura	al Gas	LP	G
Alternator	Voltage	Ph	Hz	kW/kVA	Amps	kW/kVA	Amps
4E5.0	120/240	1	60	21/21	87	24/24	100
	120/208	3	60	21/26	73	23/28	80
	127/220	3	60	21/26	69	23/28	75
	120/240	3	60	21/26	63	23/28	69
4D5.0	277/480	3	60	21/26	32	23/28	35
-	220/380*	3	50	16/20	30	17/22	33
	230/400	3	50	16/21	30	18/23	33
	240/416*	3	50	16/21	29	18/23	32

^{* 50} Hz models are factory-connected as 230/400 volts. Field-adjustable to 220/380 or 240/416 volts by an authorized service technician.

RATINGS: All three-phase units are rated at 0.8 power factor. All single-phase units are rated at 1.0 power factor. Due to manufacturing variations, the ratings tolerance is ±5%. Standby Ratings: Standby ratings apply to installations served by a reliable utility source. The standby rating is applicable to varying loads with an average load factor of 80% for the duration of a power outage. No overload capacity is specified for this rating. Ratings are in accordance with ISO-3046/1, BS 5514, AS 278, and DIN 6271. GENERAL GUIDELINES FOR DERATING: Altitude: Derate 1.3% per 10° to m (328 ft.) elevation above 20° m (656 ft.). Temperature: Derate 3.0% per 10° C (18°F) temperature above 25° C (77°F). Availability is subject to change without notice. The generator set manufacturer reserves the right to change the design or specifications without notice and without any obligation or liability whatsoever. Contact your local Kohler generator distributor for availability.

Alternator Specifications

Specifications	Alternator		
Manufacturer	Kohler		
Туре	4-Pole, Rotating Field		
Exciter type	Brushless, Wound-Field		
Leads: quantity, type			
4E5.0	4, 120/240		
4D5.0	12, Reconnectable		
Voltage regulator	Solid State, Volts/Hz		
Insulation:	NEMA MG1		
Material	Class H		
Temperature rise	130°C, Standby		
Bearing: quantity, type	1, Sealed		
Coupling	Flexible Disc		
Voltage regulation, no-load to full-load	±1.0% Maximum		
Unbalanced load capability	100% of Rated Standby		
	Current		
One-step load acceptance	100% of Rating		
Peak motor starting kVA:	(35% dip for voltages below)		
240 V 4E5.0 (4 lead)	37 (60 Hz)		
480 V, 400 V 4D5.0 (12 lead)	59 (60 Hz) 44 (50 Hz)		
, ()	(· · · - / · · · (· · - /		

- NEMA MG1, IEEE, and ANSI standards compliance for temperature rise and motor starting.
- Sustained short-circuit current of up to 300% of the rated current for up to 10 seconds.
- Sustained short-circuit current enabling downstream circuit breakers to trip without collapsing the alternator field.
- Self-ventilated and drip-proof construction.
- Windings are vacuum-impregnated with epoxy varnish for dependability and long life.
- Superior voltage waveform from a two-thirds pitch stator and skewed rotor.
- Total harmonic distortion (THD) from no load to full load with a linear load is less than 5%.

Application Data

Engine

g				
Engine Specifications	60 Hz	50 Hz		
Manufacturer	Kohler			
Engine: model, type	Residential	Residential Powertrain		
	KG2204, 2.2 L, 4-Cycle			
	Natural Aspiration			
Cylinder arrangement	In-lir	ne 4		
Displacement, L (cu. in.)	2.2 (13	34.25)		
Bore and stroke, mm (in.)	91 x 86 (3	3.5 x 3.4)		
Compression ratio	10.	5:1		
Piston speed, m/min. (ft./min.)	310 (1016)	258 (847)		
Main bearings: quantity, type	5, plain a	lloy steel		
Rated rpm	1800	1500		
Max. power at rated rpm, kW (HP)				
LPG	30 (40)	NA		
Natural Gas	27 (36)	NA		
Cylinder head material	Cast Iron			
Piston type and material	High Silicon Aluminum			
Crankshaft material	Nodular Iron			
Valve (exhaust) material	Forged Steel			
Governor type	Electronic			
Frequency regulation, no-load to				
full-load	Isochronous			
Frequency regulation, steady state	±1.0%			
Frequency	Fixed			
Air cleaner type	Dry			

Engine Electrical

Engine Electrical System	
Ignition system	Electronic
Battery charging alternator:	
Ground (negative/positive)	Negative
Volts (DC)	14
Ampere rating	90
Starter motor rated voltage (DC)	12
Battery, recommended rating for -18°C (0°F):	
Qty., cold cranking amps (CCA)	One, 630
Battery voltage (DC)	12
Battery group size	24

Exhaust

Exhaust System	60 Hz	50 Hz
Exhaust manifold type	Dry	
Exhaust temperature at rated kW, dry exhaust, °C (°F)	633 (1171)	
Maximum allowable back pressure, kPa (in. Hg)	7.5 (2.2)	

Fuel

Fuel System	
Fuel type	Natural Gas or LPG
Fuel supply line inlet	1 in. NPT
Natural gas fuel supply pressure, kPa	~0.18 psi
(in. H ₂ O)	1.24-2.74 (5-11)
LPG vapor withdrawal fuel supply	0.4 psi
pressure, kPa (in. H ₂ O)	1.24-2.74 (5-11)

Fuel Composition Limits *	Nat. Gas	LP Gas	
Methane, % by volume	90 min.		
Ethane, % by volume	4.0 max.	_	
Propane, % by volume	1.0 max.	85 min.	
Propene, % by volume	0.1 max.	5.0 max.	
C ₄ and higher, % by volume	0.3 max.	2.5 max.	
Sulfur, ppm mass	25 max.		
Lower heating value,			
MJ/m ³ (Btu/ft ³), min.	33.2 (890)	84.2 (2260)	

* Fuels with other compositions may be acceptable. If your fuel is outside the listed specifications, contact your local distributor for further analysis and advice.

Lubrication

Lubricating System					
Full Pressure					
4.2 (4.4)					
3.3 (3.5)					
1, Cartridge					

Application Data

Cooling

Radiator System	60 Hz	50 Hz
Ambient temperature, °C (°F)	45 (*	113)
Engine jacket water capacity, L (gal.)	2.65	(0.7)
Radiator system capacity, including		
engine, L (gal.)	13.2	
Water pump type	Centr	ifugal
Fan diameter, mm (in.)	qty. 3 @	406 (16)
Fan power requirements (powered by engine battery charging alternator)	12VDC, 18	amps each

Operation Requirements

Air Requirements	60 Hz	50 Hz
Radiator-cooled cooling air,		
m ³ /min. (scfm)†	51 (1800)	51 (1800)
Combustion air, m ³ /min. (cfm)	1.4 (49)	1.2 (42)
Air over engine, m ³ /min. (cfm)	25 (900)	25 (900)
† Air density = 1.20 kg/m 3 (0.075 lbm/ft 3)		

Fuel Consumption:

Natural Gas, m ³ /hr. (cfh) at % load	60 Hz	50 Hz	
100%	8.5 (301)	7.8 (275)	
75%	6.3 (223)	6.4 (225)	
50%	5.6 (199)	5.4 (192)	
25%	4.0 (140)	3.3 (116)	
Exercise	2.8 (97)	2.9 (103)	

LP Gas, m ³ /hr. (cfh) at % load	60 Hz	Hz 50 Hz	
100%	3.2 (113)	2.7 (96)	
75%	2.8 (97)	2.3 (81)	
50%	2.4 (84)	2.0 (72)	
25%	1.8 (63)	1.7 (60)	
Exercise	1.4 (51)	1.4 (48)	

* Nominal Fuel Rating: Natural gas, 37 MJ/m³ (1000 Btu/ft³) LP Vapor, 93 MJ/m³ (2500 Btu/ft³)

LP vapor conversion factors:

 $8.58 \text{ ft.}^3 = 1 \text{ lb.}$ $0.535 \text{ m}^3 = 1 \text{ kg.}$ $36.39 \text{ ft.}^3 = 1 \text{ gal.}$

Sound Enclosure Features

- Sound-attenuating enclosure uses acoustic insulation that meets UL 94 HF1 flammability classification and repels moisture absorption.
- Internally mounted critical silencer.
- Skid-mounted, aluminum construction with two removable access panels.
- Fade-, scratch-, and corrosion-resistant Kohler® cashmere powder-baked finish.

Sound Data

Model 24RCL 8 point logarithmic average sound levels are 54 dB(A) during weekly engine exercise and 61 dB(A) during full-speed generator diagnostics and normal operation. For comparison to competitor ratings, the lowest point sound levels are 52 dB(A) and 60 dB(A) respectively.*

All sound levels are measured at 7 meters with no load.

* Lowest of 8 points measured around the generator. Sound levels at other points around generator may vary depending on installation parameters.

RDC2 Controller

The RDC2 controller provides integrated control for the generator set, Kohler® Model RXT transfer switch, programmable interface module (PIM), and load management.

The RDC2 controller's 2-line LCD screen displays status messages and system settings that are clear and easy to read, even in direct sunlight or low light.

RDC2 Controller Features

- Membrane keypad
 - OFF, AUTO, and RUN push buttons
 - Select and arrow buttons for access to system configuration and adjustment menus
- · LED indicators for OFF, AUTO, and RUN modes
- LED indicators for utility power and generator set source availability and ATS position (Model RXT transfer switch required)
- LCD screen
 - o Two lines x 16 characters per line
 - Backlit display with adjustable contrast for excellent visibility in all lighting conditions
- Scrolling system status display
 - o Generator set status
 - Voltage and frequency
 - o Engine temperature
 - o Oil pressure
 - Battery voltage
 - o Engine runtime hours
- Date and time displays
- Smart engine cooldown senses engine temperature
- Digital isochronous governor to maintain steady-state speed at all loads
- ullet Digital voltage regulation: $\pm 1.0\%$ RMS no-load to full-load
- · Automatic start with programmed cranking cycle
- Programmable exerciser can be set to start automatically on any future day and time, and to run every week or every two weeks
- Exercise modes
 - Unloaded exercise with complete system diagnostics
 - Unloaded full-speed exercise
 - Loaded full-speed exercise (Model RXT ATS required)
- Front-access mini USB connector for SiteTech™ connection
- Integral Ethernet connector for Kohler® OnCue® Plus
- · Built-in 2.5 amp battery charger
- Remote two-wire start/stop capability for optional connection of a Model RDT transfer switch

See additional controller features on the next page.

KOHLER CO., Kohler, Wisconsin 53044 USA Phone 920-457-4441, Fax 920-459-1646 For the nearest sales and service outlet in the US and Canada, phone 1-800-544-2444 KOHLERPower.com

Additional RDC2 Controller Features

- Diagnostic messages
 - Displays diagnostic messages for the engine, generator, Model RXT transfer switch, programmable interface module (PIM), and load management device
 - Over 70 diagnostic messages can be displayed
- Maintenance reminders
- · System settings
 - o System voltage, frequency, and phase
 - Voltage adjustment
 - o Measurement system, English or metric
- ATS status (Model RXT ATS required)
 - Source availability
 - ATS position (normal/utility or emergency/generator)
 - Source voltage and frequency
- ATS control (Model RXT ATS required)
 - o Source voltage and frequency settings
 - Engine start time delay
 - Transfer time delays
 - Fixed pickup and dropout settings
 - Voltage calibration
- Programmable interface module (PIM) status displays
 - Input status (active/inactive)
 - o Output status (active/inactive)
- · Load control menus
 - Load status
 - Test function

Generator Set Standard Features

- Aluminum sound enclosure with enclosed silencer
- Battery rack and cables
- Electronic, isochronous governor
- Flexible fuel line
- Gas fuel system (includes fuel mixer, electronic secondary gas regulator, two gas solenoid valves, and flexible fuel line between the engine and the skid-mounted fuel system components)
- Integral vibration isolation
- Line circuit breaker
- Oil drain extension
- OnCue® Plus Generator Management System
- Operation and installation literature
- RDC2 controller with built-in battery charger
- Standard five-year or 2000 hour limited warranty

Available Options

Approvals and Listings

- ☐ UL 2200/cUL Listing (60 Hz only)
- ☐ CSA Approval (60 Hz only)

Controller Accessories

- ☐ Lockable Emergency Stop (lockout/tagout)
- Programmable Interface Module (PIM)
 (provides 2 digital inputs and 6 relay outputs)

Electrical System

- Battery
- Battery Heater

Available Options, Continued

Starting Aids

- Oil Pan Heater, 120 V, 1 Ph
- Oil Pan Heater, 240 V, 1 Ph

Recommended for ambient temperatures below 0°C (32°F).

Automatic Transfer Switches and Accessories

- Model RXT Automatic Transfer Switch with Combined Interface/Load Management Board
- Load Shed Kit for RDT or RXT
- ☐ Power Relay Modules (use up to 4 relay modules for each load management device)

Miscellaneous

☐ Rated Power Factor Testing

Literature

- ☐ General Maintenance Literature Kit
- Overhaul Literature Kit
- □ Production Literature Kit

Warranty

Extended 5-Year/2000 Hour Comprehensive Limited Warranty

Other Options

Dimensions and Weights

Overall Size, L x W x H, mm (in.):

1880 x 836 x 1169 (74 x 32.9 x 46.0)

Shipping Weight, wet, kg (lb.):

572 (1260)

Weight includes generator set with engine fluids, sound enclosure, silencer, and packaging.

NOTE: This drawing is provided for reference only and should not be used for planning installation. Contact your local distributor for more detailed information.

DISTRIBUTED BY:

Date: March 26, 2020

Black & Veatch Corp. 6800 W 115th St. Suite 2292 Overland Park, KS 66211 (913) 458-2522

Subject: Structural Analysis Report

Eversource Designation: Site Number: ES-001

Site Name: CheshireAWC

Engineering Firm Designation: Black & Veatch Corp. Project Number: 403093

Site Data: 705 West Johnson Avenue, Cheshire, New Haven County, CT

Latitude 41° 33' 21.1", Longitude -72° 55' 1.9"

140 Foot - Self Support Tower

Black & Veatch Corp. is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC1: Proposed Equipment Configuration

Sufficient Capacity - 88.7%

This analysis utilizes an ultimate 3-second gust wind speed of 135 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Changzhi Zang / Teddy Haile-Mariam

Respectfully submitted by:

Joshua J. Riley, P.E. Professional Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Table 5 - Tower Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 140 ft Self Support tower manufactured by Central Tower in October of 2004.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Wind Speed: 135 mph ultimate

Exposure Category:

C
Topographic Factor:

Ice Thickness:

Wind Speed with Ice:

Seismic Ss:

Seismic S₁:

0.064

Service Wind Speed:

60 mph

Table 1 – Proposed Equipment Configuration

Mounting Level (ft)	Elevetion	Number of Antennas	Antenna Manufacturer		Number of Feed Lines	Feed Line Size (in)	Note
127.0	150.0	1	dbspectra	DS2C03F36D-D	2	7/8	
137.0	137.0	1	site pro 1	R5-LL [PM 601-1]		1/0	_

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
140.0	146.0	1	celwave	PD1142-2C	1 2	1 5/8 7/8	1
		6	andrew	SBNHH-1D65B w/Mount Pipe	14	1 5/8	
		3	antel	BXA-70063/6CF w/ Mount Pipe			1
		1	tower mounts	Sector Mount [SM 409-3]			
138.0	138.0	3	decibel	DB854DG65ESX w/Mount Pipe			
		6	rfs celwave	FD9R6004/2C-3L			
		3	alcatel lucent	RRH2x60-700			
		3	alcatel lucent	RRH2x60-AWS			1
		1	rfs miscl	DB-T1-6Z-8AB-0Z			
		6	cci antennas	DTMABP7819VG12A			
	98.0	3	cci antennas	HPA-65R-BUU-H6 w/ Mount Pipe		1-5/8 Conduit 1/4	
000		1	tower mounts	Sector Mount [SM 409-3]	12 1 1 1		
98.0		3	ericsson	RRUS 11			
		3	ericsson	RRUS 12		1/-	
		3	ericsson	RRUS A2 MODULE			
		6	kmw	AM-X-CD-16-65-00T-RET			

Mounting Level (ft)	Elevation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
			communications	mmunications w/ Mount Pipe			
	1		raycap	DC6-48-60-18-8F			
93 N	3.0 83.0 1		andrew	PL4-107		EW90	1
03.0			tower mounts	Pipe Mount [PM 602-1]	= =		1

Note:

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
GEOTECHNICAL REPORTS	Dr. Clarence Welti, P.E., P.C., dated 09/20/2004	-	Eversource
TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	URS Corp., dated 10/26/2004	-	Eversource
TOWER MANUFACTURER DRAWINGS	Central Tower, dated 10/3/2004	-	Eversource
TOWER STRUCTURAL ANALYSIS REPORTS	Centek Engineering, dated 3/16/2017	-	Eversource
TOWER STRUCTURAL ANALYSIS REPORTS	All-Points Technology Corp. dated 03/20/2018	-	Eversource

3.1) Analysis Method

tnxTower (version 8.0.5.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were built and maintained in accordance with the manufacturer's specifications.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 3) The existing tower loading is based on 2018 drone mapping photos and the previous tower analysis.
- 4) This analysis was performed under the assumption that all information provided to Black & Veatch is current and correct. This is to include site data, appurtenance loading, tower/foundation details, and geotechnical data.

This analysis may be affected if any assumptions are not valid or have been made in error. Black & Veatch Corp. should be notified to determine the effect on the structural integrity of the tower.

¹⁾ Existing Equipment

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
T1	140 - 120	Leg	1 3/4	3	-28.60	62.31	45.9	Pass
T2	120 - 100	Leg	2 1/2	48	-72.49	172.77	42.0	Pass
T3	100 - 80	Leg	3 1/2	93	-107.72	246.30	43.7	Pass
T4	80 - 60	Leg	3 3/4	114	-143.06	305.99	46.8	Pass
T5	60 - 40	Leg	4	135	-176.74	371.39	47.6	Pass
T6	40 - 20	Leg	4 1/4	156	-209.56	442.35	47.4	Pass
T7	20 - 0	Leg	4 1/2	177	-241.10	518.69	46.5	Pass
T1	140 - 120	Diagonal	3/4	15	-3.31	3.73	88.7	Pass
T2	120 - 100	Diagonal	7/8	60	-4.37	7.09	61.6	Pass
Т3	100 - 80	Diagonal	L2x2x1/4	98	-5.23	14.95	35.0 41.0 (b)	Pass
T4	80 - 60	Diagonal	L2 1/2x2 1/2x3/16	119	-5.70	17.53	32.5 48.2 (b)	Pass
T5	60 - 40	Diagonal	L2 1/2x2 1/2x3/16	140	-6.25	13.51	46.3 52.6 (b)	Pass
T6	40 - 20	Diagonal	L2 1/2x2 1/2x1/4	161	-6.82	13.74	49.7	Pass
T7	20 - 0	Diagonal	L3x3x3/16	182	-7.39	14.80	50.0 55.4 (b)	Pass
T1	140 - 120	Top Girt	3/4	5	-0.34	2.22	15.5	Pass
T2	120 - 100	Top Girt	7/8	50	-0.02	4.21	0.5	Pass
T1	140 - 120	Bottom Girt	3/4	7	-0.29	2.22	12.9	Pass
T2	120 - 100	Bottom Girt	7/8	52	-0.64	4.21	15.2	Pass
							Summary	
						Leg (T5)	47.6	Pass
						Diagonal (T1)	88.7	Pass
						Top Girt (T1)	15.5	Pass
						Bottom Girt (T2)	15.2	Pass
						Bolt Checks	55.4	Pass
						Rating =	88.7	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC1

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	52.1	Pass
	Base Foundation		51.6	Pass
1	Base Foundation Soil Interaction	0	40.5	Pass

Structure Rating (max from all components) =	88.7%
--	-------

Notes:

1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity. Rating per TIA-222-H Section 15.5.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

Maximum Tower Deflections - Service Wind

				-		
Section	Elevation	Horz.	Gov.	Tilt	Twist	Check*
No.		Deflection	Load			
	ft	in	Comb.	0	0	
T1	140 - 120	1.903	45	0.13	0.0509	OK
T2	120 - 100	1.361	39	0.1144	0.0484	OK
T3	100 - 80	0.913	39	0.0857	0.0406	OK
T4	80 - 60	0.582	39	0.0647	0.0317	OK
T5	60 - 40	0.333	39	0.0457	0.0232	OK
T6	40 - 20	0.157	39	0.0287	0.0143	OK

- *Limit State Deformation (TIA-222-H Section 2.8.2)

 1) Maximum Rotation = 4 Degrees

 2) Maximum Deflection = 0.03 * Tower Height = 50 in.

Critical Deflections of Tower at the MW Dish Elevations - Service Wind

Elevation (ft)	MW Dish	Tilt (°)	Twist (°)	Diameter, D (ft)	Frequency, α (GHz)	Decibel Points	Deformation Limit $(\theta)^*$	Deformation Limit Exceeded?
83	PL4-107	0.0675	0.033	4	10	10 dB	1.328	Not Exceeded

^{*}Limit per TIA-222-H Annex D

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist	Combined	Check*
No.		Deflection	Load			Max	
	ft	in	Comb.	0	0		
T1	140 - 120	5.835	39	0.3956	0.1559	0.425	OK
T2	120 - 100	4.18	39	0.3491	0.1481	0.379	OK
T3	100 - 80	2.805	39	0.2623	0.1244	0.290	OK
T4	80 - 60	1.788	39	0.1988	0.0971	0.221	OK
T5	60 - 40	1.023	39	0.1405	0.071	0.157	OK
T6	40 - 20	0.482	39	0.0883	0.0439	0.099	OK

^{*}Up to 0.5 degree is considered acceptable per SUB090 Section 7

Critical Deflections of Tower at the MW Dish Elevations - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of Curvature
		Load				ft
ft		Comb.	in	0	0	
83	PL4-107	39	1.922	0.2073	0.1011	19408.000

APPENDIX A TNXTOWER OUTPUT

SR 3/4 6.0 120.0 ft SR 2 1/2 SR 7/8 SR 3 1/2 80.0 ft A36 \triangle L2 1/2x2 1/2x3/16 9.0 SR 4 A. A. 40.0 ft ALL REACTIONS ARE FACTORED SR 4 1/4 MAX. CORNER REACTIONS AT BASE: DOWN: 246 K SHEAR: 22 K UPLIFT: -220 K SHEAR: 20 K 20.0 ft 12.2 SHEAR 9 K TORQUE 7 kip-ft 50 mph WIND - 1.5000 in ICE 4.4 AXIAL 0.0 ft TORQUE 34 kip-ft REACTIONS - 135 mph WIND 19.8 Face Width (ft) Diagonal Grade Top Girts

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
PD1142-2C	140	6' x 2" Mount Pipe	98
Sector Mount [SM 409-3]	138	(2) AM-X-CD-16-65-00T-RET w/ Mount Pipe	98
(2) SBNHH-1D65B_TIA w/ Mount Pipe	138	(2) AM-X-CD-16-65-00T-RET w/ Mount Pipe	98
(2) SBNHH-1D65B_TIA w/ Mount Pipe	138	(2) AM-X-CD-16-65-00T-RET w/ Mount Pipe	98
(2) SBNHH-1D65B_TIA w/ Mount Pipe	138	HPA-65R-BUU-H4 w/ Mount Pipe	98
BXA-70063/6CF w/ Mount Pipe	138	HPA-65R-BUU-H4 w/ Mount Pipe	98
BXA-70063/6CF w/ Mount Pipe	138	HPA-65R-BUU-H4 w/ Mount Pipe	98
BXA-70063/6CF w/ Mount Pipe	138	(2) DTMABP7819VG12A	98
DB854DG65ESX w/Mount Pipe	138	(2) DTMABP7819VG12A	98
DB854DG65ESX w/Mount Pipe	138	(2) DTMABP7819VG12A	98
DB854DG65ESX w/Mount Pipe	138	RRUS 11	98
(2) FD9R6004/2C-3L	138	RRUS 11	98
(2) FD9R6004/2C-3L	138	RRUS 11	98
(2) FD9R6004/2C-3L	138	RRUS 12	98
RRH2x60-700	138	RRUS 12	98
RRH2x60-700	138	RRUS 12	98
RRH2x60-700	138	RRUS A2 MODULE	98
RRH2x60-AWS	138	RRUS A2 MODULE	98
RRH2x60-AWS	138	RRUS A2 MODULE	98
RRH2x60-AWS	138	DC6-48-60-18-8F	98
DB-T1-6Z-8AB-0Z	138	Sector Mount [SM 409-3]	98
DS2C03F36D-D	137	6' x 2" Mount Pipe	98
R5-LL (Pipe Mount [PM 601-1])	137	Pipe Mount [PM 602-1]	83
6' x 2" Mount Pipe	98	PL4-107	83

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu			
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi			

- TOWER DESIGN NOTES

 1. Tower is located in New Haven County, Connecticut.
 2. Tower designed for Exposure C to the TIA-222-H Standard.
 3. Tower designed for a 135 mph basic wind in accordance with the TIA-222-H Standard.
 4. Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.
 5. Deflections are based upon a 60 mph wind.
 6. Tower Risk Category III.
 7. Topographic Category 1 with Crest Height of 0.00 ft
 8. TOWER RATING: 88.7%

MOMENT

MOMENT 2836 kip-ft

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 140.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 5.00 ft at the top and 14.00 ft at the base.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- 1) Tower is located in New Haven County, Connecticut.
- 2) Tower base elevation above sea level: 132.00 ft.
- 3) Basic wind speed of 135 mph.
- 4) Risk Category III.
- 5) Exposure Category C.
- 6) Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- 7) Topographic Category: 1.
- 8) Crest Height: 0.00 ft.
- 9) Nominal ice thickness of 1.5000 in.
- 10) Ice thickness is considered to increase with height.
- 11) Ice density of 56 pcf.
- 12) A wind speed of 50 mph is used in combination with ice.
- 13) Temperature drop of 50 °F.
- 14) Deflections calculated using a wind speed of 60 mph.
- 15) Pressures are calculated at each section.
- 16) Stress ratio used in tower member design is 1.05.
- 17) Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios

 ✓ Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile

- √ Include Bolts In Member Capacity
- Leg Bolts Are At Top Of Section
 √ Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)
- √ SR Members Have Cut Ends
 SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination

✓ Sort Capacity Reports By Component
Triangulate Diamond Inner Bracing
Treat Feed Line Bundles As Cylinder
Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules
√ Calculate Redundant Bracing Forces

- Ignore Redundant Members in FEA

 √ SR Leg Bolts Resist Compression

 All Leg Bonds Hove Same Allowable
- All Leg Panels Have Same Allowable
 Offset Girt At Foundation
- √ Consider Feed Line Torque
- ✓ Include Angle Block Shear Check Use TIA-222-H Bracing Resist.
 Exemption
 Use TIA-222-H Tension Splice
 Exemption

Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Triangular Tower

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	
	ft			ft		ft
T1	140.00-120.00			5.00	1	20.00
T2	120.00-100.00			5.00	1	20.00
Т3	100.00-80.00			5.00	1	20.00
T4	80.00-60.00			6.80	1	20.00
T5	60.00-40.00			8.60	1	20.00
T6	40.00-20.00			10.40	1	20.00
T7	20.00-0.00			12.20	1	20.00

Tower Section Geometry (cont'd)

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Girt Offset
	ft	ft		Panels		in	in
T1	140.00-120.00	3.31	X Brace	No	No	1.0000	1.0000
T2	120.00-100.00	3.31	X Brace	No	No	1.0000	1.0000
Т3	100.00-80.00	6.67	X Brace	No	No	0.0000	0.0000
T4	80.00-60.00	6.67	X Brace	No	No	0.0000	0.0000
T5	60.00-40.00	6.67	X Brace	No	No	0.0000	0.0000
Т6	40.00-20.00	6.67	X Brace	No	No	0.0000	0.0000
T7	20.00-0.00	6.67	X Brace	No	No	0.0000	0.0000

Tower Section Geometry (cont'd)										
Tower Elevation ft	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade				
T1 140.00- 120.00	Solid Round	1 3/4	A572-50 (50 ksi)	Solid Round	3/4	A36 (36 ksi)				
T2 120.00- 100.00	Solid Round	2 1/2	À572-50 (50 ksi)	Solid Round	7/8	` A36 [′] (36 ksi)				
T3 100.00- 80.00	Solid Round	3 1/2	À572-50 (50 ksi)	Equal Angle	L2x2x1/4	`A36 ´ (36 ksi)				
T4 80.00-60.00	Solid Round	3 3/4	À572-50 (50 ksi)	Equal Angle	L2 1/2x2 1/2x3/16	` A36 ´ (36 ksi)				
T5 60.00-40.00	Solid Round	4	À572-50 (50 ksi)	Equal Angle	L2 1/2x2 1/2x3/16	` A36 ´ (36 ksi)				
T6 40.00-20.00	Solid Round	4 1/4	À572-50 (50 ksi)	Equal Angle	L2 1/2x2 1/2x1/4	` A36 [′] (36 ksi)				
T7 20.00-0.00	Solid Round	4 1/2	À572-50 (50 ksi)	Equal Angle	L3x3x3/16	`A36 [′] (36 ksi)				

Tower Section Geometry (cont'd)											
Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade					
T1 140.00- 120.00	Solid Round	3/4	A36 (36 ksi)	Solid Round	3/4	A36 (36 ksi)					
T2 120.00- 100.00	Solid Round	7/8	`A36 [′] (36 ksi)	Solid Round	7/8	`A36 [′] (36 ksi)					

Tower Section Geometry (cont'd)												
Tower Elevation ft	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A _f	Adjust. Factor A,	Weight Mult.	Stitch Bolt Spacing Diagonals	Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants			
		in	420	4			in	in	<u>in</u>			
T1 140.00- 120.00	0.00	0.0000	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000			
T2 120.00- 100.00	0.00	0.0000	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000			
T3 100.00- 80.00	0.00	0.0000	(36 ksi) A36 (36 ksi)	1.05	1	1.05	36.0000	36.0000	36.0000			
T4 80.00- 60.00	0.00	0.0000	A36 (36 ksi)	1.05	1	1.05	36.0000	36.0000	36.0000			
T5 60.00- 40.00	0.00	0.0000	`A36 ´ (36 ksi)	1.05	1	1.05	36.0000	36.0000	36.0000			
T6 40.00- 20.00	0.00	0.0000	` A36 [′] (36 ksi)	1.05	1	1.05	36.0000	36.0000	36.0000			
T7 20.00-0.00	0.00	0.0000	A36 (36 ksi)	1.05	1	1.05	36.0000	36.0000	36.0000			

Tower Section Geometry (cont'd)

						K Fad	ctors1			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Angles	Rounds		X	X	X	X	X	X	X
ft				Y	Y	Υ	Y	Υ	Y	Y
T1 140.00-	Yes	Yes	1	1	1	1	1	1	1	1
120.00				1	1	1	1	1	1	1
T2 120.00-	Yes	Yes	1	1	1	1	1	1	1	1
100.00				1	1	1	1	1	1	1
T3 100.00-	Yes	Yes	1	1	1	1	1	1	1	1
80.00				1	1	1	1	1	1	1
T4 80.00-	Yes	Yes	1	1	1	1	1	1	1	1
60.00				1	1	1	1	1	1	1
T5 60.00-	Yes	Yes	1	1	1	1	1	1	1	1
40.00				1	1	1	1	1	1	1
T6 40.00-	Yes	Yes	1	1	1	1	1	1	1	1
20.00				1	1	1	1	1	1	1
T7 20.00-	Yes	Yes	1	1	1	1	1	1	1	1
0.00				1	1	1	1	1	1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg		Diago	nal	Тор С	Girt	Bottor	n Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontal
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 140.00- 120.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75
T2 120.00- 100.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75
T3 100.00- 80.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T4 80.00- 60.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 60.00- 40.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 40.00- 20.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 20.00-0.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg Connection Type	Leg		Diagor	nal	Top G	irt	t Bottom Girt		Mid Girt		Mid Girt Long Horizont		Shor Horizor	
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
		in		in		in		in		in		in		in	
T1 140.00-	Flange	1.0000	4	0.7500	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
120.00	_	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T2 120.00-	Flange	1.0000	6	0.7500	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
100.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T3 100.00-	Flange	1.1250	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
80.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T4 80.00-	Flange	1.1250	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
60.00	_	A325N		A325N		A325N		A325N		A325N		A325N		A325N	

Tower Elevation ft	Leg Connection Type	Leg		Diagor	Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		t ntal
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
		in		in		in		in		in		in		in	
T5 60.00-	Flange	1.2500	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
40.00	_	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T6 40.00-	Flange	1.2500	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
20.00	_	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T7 20.00-0.00	Flange	1.2500	0	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
	_	A449		A325N		A325N		A325N		A325N		A325N		A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacin	Width or Diameter	Perimete r	Weight
	Leg		Torque	Type	ft	in	(Frac FW)		Row	g	in		plf
0.64.1:			Calculation	A (O A)	1.10.00	0.0000				in	0.0750	in	0.00
Safety Line 3/8	С	No	No	Ar (CaAa)	140.00 - 0.00	0.0000	0.5	1	1	0.3750	0.3750		0.22
Feedline Ladder (Af)	С	No	No	Af (CaAa)	138.00 - 0.00	0.0000	0.4	1	1	3.0000	3.0000		8.40
Feedline (Ladder (Af)	Α	No	No	Af (CaAa)	98.00 - 0.00	0.0000	-0.4	1	1	3.0000	3.0000		8.40
Feedline Ladder (Af)	В	No	No	Af (CaAa)	140.00 - 0.00	0.0000	-0.4	1	1	3.0000	3.0000		8.40
LDF7-50A(1- 5/8)	В	No	No	Ar (CaAa)	140.00 - 8.00	0.0000	-0.42	1	1	0.5000	1.9800		0.82
VXL5-50(7/8)	В	No	No	Ar (CaAa)	140.00 - 8.00	0.0000	-0.4	2	2	0.5000	1.0800		0.29
LDF7-50A(1- 5/8) ***	С	No	No	Ar (CaAa)	138.00 - 8.00	0.0000	0.38	14	7	0.5000	1.9800		0.82
LDF7-50A(1- 5/8)	Α	No	No	Ar (CaAa)	98.00 - 8.00	0.0000	-0.35	12	6	0.5000	1.9800		0.82
2" innerduct conduit	Α	No	No	Ar (CaAa)	98.00 - 8.00	0.0000	-0.42	1	1	0.5000	2.0000		0.20
LDF1- 50A(1/4)	Α	No	No	Ar (CaAa)	98.00 - 8.00	0.0000	-0.4	1	1	0.3450	0.3450		0.06
EW90	В	No	No	Ar (CaAa)	83.00 - 8.00	0.0000	-0.35	1	1	0.5000	0.9869		0.32
** Proposed for Discrete Loads					0.00								
LDF5- 50A(7/8)	В	No	No	Ar (CaAa)	137.00 - 0.00	0.0000	-0.44	2	2	0.5000	1.0300		0.33

Feed Line/Linear Appurtenances Section Areas

Tower Sectio	Tower Elevation	Face	A_R	A_F	C₄A₄ In Face	C_AA_A Out Face	Weight
n	ft		ft ²	ft ²	ft ²	ft ²	K
T1	140.00-120.00	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	21.782	0.000	0.21
		С	0.000	0.000	59.646	0.000	0.36
T2	120.00-100.00	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	22.400	0.000	0.21
		С	0.000	0.000	66.190	0.000	0.40
T3	100.00-80.00	Α	0.000	0.000	55.989	0.000	0.33
		В	0.000	0.000	22.696	0.000	0.21
		С	0.000	0.000	66.190	0.000	0.40

Tower	Tower	Face	A_R	A_{F}	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation		0	- 0	In Face	Out Face	
n	ft		ft ²	ft ²	ft²	ft ²	K
T4	80.00-60.00	Α	0.000	0.000	62.210	0.000	0.37
		В	0.000	0.000	24.374	0.000	0.22
		С	0.000	0.000	66.190	0.000	0.40
T5	60.00-40.00	Α	0.000	0.000	62.210	0.000	0.37
		В	0.000	0.000	24.374	0.000	0.22
		С	0.000	0.000	66.190	0.000	0.40
Т6	40.00-20.00	Α	0.000	0.000	62.210	0.000	0.37
		В	0.000	0.000	24.374	0.000	0.22
		С	0.000	0.000	66.190	0.000	0.40
T7	20.00-0.00	Α	0.000	0.000	41.326	0.000	0.29
		В	0.000	0.000	20.272	0.000	0.20
		С	0.000	0.000	44.014	0.000	0.31

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Sectio	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft	Leg	in	ft²	ft²	ft ²	ft ²	K
T1	140.00-120.00	A	1.978	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	68.016	0.000	1.07
		С		0.000	0.000	75.308	0.000	1.62
T2	120.00-100.00	Α	1.946	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	70.372	0.000	1.08
		С		0.000	0.000	82.238	0.000	1.76
T3	100.00-80.00	Α	1.907	0.000	0.000	78.788	0.000	1.59
		В		0.000	0.000	70.961	0.000	1.08
		С		0.000	0.000	81.677	0.000	1.73
T4	80.00-60.00	Α	1.860	0.000	0.000	86.661	0.000	1.73
		В		0.000	0.000	77.892	0.000	1.16
		С		0.000	0.000	80.991	0.000	1.70
T5	60.00-40.00	Α	1.798	0.000	0.000	85.516	0.000	1.68
		В		0.000	0.000	76.292	0.000	1.12
		С		0.000	0.000	80.100	0.000	1.66
T6	40.00-20.00	Α	1.709	0.000	0.000	83.850	0.000	1.61
		В		0.000	0.000	73.964	0.000	1.05
		С		0.000	0.000	78.803	0.000	1.59
T7	20.00-0.00	Α	1.531	0.000	0.000	54.777	0.000	1.04
		В		0.000	0.000	55.010	0.000	0.77
		С		0.000	0.000	54.939	0.000	1.07

Feed Line Center of Pressure

Section	Elevation	CP _X	CPz	CP_X	CPz
				Ice	Ice
	ft	in	in	in	in
T1	140.00-120.00	-10.5308	-3.7823	-6.1674	-4.2979
T2	120.00-100.00	-10.2980	-3.0747	-6.3239	-3.9908
T3	100.00-80.00	-13.1347	0.9841	-12.3501	-1.0781
T4	80.00-60.00	-15.3579	1.0325	-14.7944	-1.8970
T5	60.00-40.00	-17.7709	1.2157	-17.2892	-2.1628
T6	40.00-20.00	-19.8669	1.3747	-19.5012	-2.3554
T7	20.00-0.00	-15.4025	0.2455	-16.7796	-2.5553

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	Description	Segment Elev.	No Ice	Ice
T1	1	Safety Line 3/8	120.00 - 140.00	0.6000	0.5414
T1	2	Feedline Ladder (Af)	120.00 - 138.00	0.6000	0.5414
T1	4	Feedline Ladder (Af)	120.00 - 140.00	0.6000	0.5414
T1	6	LDF7-50A(1-5/8)	120.00 - 140.00	0.6000	0.5414
T1	7	VXL5-50(7/8)	120.00 - 140.00	0.6000	0.5414
T1	9	LDF7-50A(1-5/8)	120.00 - 138.00	0.6000	0.5414
T1	18	LDF5-50A(7/8)	120.00 - 137.00	0.6000	0.5414
T2	1	Safety Line 3/8	100.00 - 120.00	0.6000	0.5256
T2	2	Feedline Ladder (Af)	100.00 - 120.00	0.6000	0.5256
T2	4	Feedline Ladder (Af)	100.00 - 120.00	0.6000	0.5256
T2	6	LDF7-50A(1-5/8)	100.00 - 120.00	0.6000	0.5256
T2	7	VXL5-50(7/8)	100.00 - 120.00	0.6000	0.5256
T2	9	LDF7-50A(1-5/8)	100.00 - 120.00	0.6000	0.5256
T2	18	LDF5-50A(7/8)	100.00 - 120.00	0.6000	0.5256
Т3	1	Safety Line 3/8	80.00 - 100.00	0.6000	0.6000
Т3	2	Feedline Ladder (Af)	80.00 - 100.00	0.6000	0.6000
Т3	3	Feedline Ladder (Af)	80.00 - 98.00	0.6000	0.6000
Т3	4	Feedline Ladder (Af)	80.00 - 100.00	0.6000	0.6000
Т3	6	LDF7-50A(1-5/8)	80.00 - 100.00	0.6000	0.6000
Т3	7	VXL5-50(7/8)	80.00 - 100.00	0.6000	0.6000
Т3	9	LDF7-50A(1-5/8)	80.00 - 100.00	0.6000	0.6000
Т3	11	LDF7-50A(1-5/8)	80.00 - 98.00	0.6000	0.6000
Т3	12	2" innerduct conduit	80.00 - 98.00	0.6000	0.6000
Т3	13	LDF1-50A(1/4)	80.00 - 98.00	0.6000	0.6000
Т3	15	EW90	80.00 - 83.00	0.6000	0.6000
Т3	18	LDF5-50A(7/8)	80.00 - 100.00	0.6000	0.6000
T4	1	Safety Line 3/8	60.00 - 80.00	0.6000	0.6000
T4	2	Feedline Ladder (Af)	60.00 - 80.00	0.6000	0.6000
T4	3	Feedline Ladder (Af)	60.00 - 80.00	0.6000	0.6000
T4	4	Feedline Ladder (Af)	60.00 - 80.00	0.6000	0.6000
T4	6	LDF7-50A(1-5/8)	60.00 - 80.00	0.6000	0.6000
T4	7	VXL5-50(7/8)	60.00 - 80.00	0.6000	0.6000
T4	9	LDF7-50A(1-5/8)	60.00 - 80.00	0.6000	0.6000

Tower	Feed Line	Description	Feed Line	Ka	K _a
Section	Record No.	2000.,p.1.07.	Segment Elev.	No Îce	Ice
T4	11	LDF7-50A(1-5/8)	60.00 - 80.00	0.6000	0.6000
T4	12	2" innerduct conduit	60.00 - 80.00	0.6000	0.6000
T4	13	LDF1-50A(1/4)	60.00 - 80.00	0.6000	0.6000
T4	15	EW90	60.00 - 80.00	0.6000	0.6000
T4	18	LDF5-50A(7/8)	60.00 - 80.00	0.6000	0.6000
T5	1	Safety Line 3/8	40.00 - 60.00	0.6000	0.6000
T5	2	Feedline Ladder (Af)	40.00 - 60.00	0.6000	0.6000
T5	3	Feedline Ladder (Af)	40.00 - 60.00	0.6000	0.6000
T5	4	Feedline Ladder (Af)	40.00 - 60.00	0.6000	0.6000
T5	6	LDF7-50A(1-5/8)	40.00 - 60.00	0.6000	0.6000
T5	7	VXL5-50(7/8)	40.00 - 60.00	0.6000	0.6000
T5	9	LDF7-50A(1-5/8)	40.00 - 60.00	0.6000	0.6000
T5	11	LDF7-50A(1-5/8)	40.00 - 60.00	0.6000	0.6000
T5	12	2" innerduct conduit	40.00 - 60.00	0.6000	0.6000
T5	13	LDF1-50A(1/4)	40.00 - 60.00	0.6000	0.6000
T5	15	EW90	40.00 - 60.00	0.6000	0.6000
T5	18	LDF5-50A(7/8)	40.00 - 60.00	0.6000	0.6000
Т6	1	Safety Line 3/8	20.00 - 40.00	0.6000	0.6000
Т6	2	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.6000
Т6	3	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.6000
Т6	4	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.6000
Т6	6	LDF7-50A(1-5/8)	20.00 - 40.00	0.6000	0.6000
Т6	7	VXL5-50(7/8)	20.00 - 40.00	0.6000	0.6000
Т6	9	LDF7-50A(1-5/8)	20.00 - 40.00	0.6000	0.6000
Т6	11	LDF7-50A(1-5/8)	20.00 - 40.00	0.6000	0.6000
Т6	12	2" innerduct conduit	20.00 - 40.00	0.6000	0.6000
Т6	13	LDF1-50A(1/4)	20.00 - 40.00	0.6000	0.6000
Т6	15	EW90	20.00 - 40.00	0.6000	0.6000
Т6	18	LDF5-50A(7/8)	20.00 - 40.00	0.6000	0.6000
T7 T7	1 2	Safety Line 3/8 Feedline Ladder (Af)	0.00 - 20.00 0.00 - 20.00	0.6000 0.6000	0.6000 0.6000
T7	2	Feedline Ladder (Af)	0.00 - 20.00	0.6000	0.6000
T7	4	Feedline Ladder (Af)	0.00 - 20.00	0.6000	0.6000
T7 T7	6 7	LDF7-50A(1-5/8) VXL5-50(7/8)	8.00 - 20.00 8.00 - 20.00	0.6000 0.6000	0.6000 0.6000
T7	9	LDF7-50A(1-5/8)	8.00 - 20.00	0.6000	0.6000
T7	11	LDF7-50A(1-5/8)	8.00 - 20.00	0.6000	0.6000
T7 T7	12 13	2" innerduct conduit LDF1-50A(1/4)	8.00 - 20.00 8.00 - 20.00	0.6000 0.6000	0.6000 0.6000
T7			8.00 - 20.00		

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
T7	18	LDF5-50A(7/8)	0.00 - 20.00	0.6000	0.6000

Discrete Tower Loads											
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight		
			ft ft ft	0	ft		ft²	ft ²	К		
PD1142-2C	A	From Leg	0.00 0.00 6.00	0.0000	140.00	No Ice 1/2" Ice 1" Ice 2" Ice	2.39 3.36 3.83 4.79	2.39 3.36 3.83 4.79	0.01 0.03 0.06 0.13		
Sector Mount [SM 409-3]	С	None		0.0000	138.00	No Ice 1/2" Ice 1" Ice 2" Ice	22.33 31.79 41.13 59.78	22.33 31.79 41.13 59.78	1.03 1.48 2.07 3.67		
(2) SBNHH-1D65B_TIA w/ Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	138.00	No Ice 1/2" Ice 1" Ice 2" Ice	8.44 9.00 9.53 10.62	7.10 8.30 9.21 11.06	0.07 0.14 0.21 0.40		
(2) SBNHH-1D65B_TIA w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	138.00	No Ice 1/2" Ice 1" Ice	8.44 9.00 9.53 10.62	7.10 8.30 9.21 11.06	0.07 0.14 0.21 0.40		
(2) SBNHH-1D65B_TIA w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	138.00	2" Ice No Ice 1/2" Ice 1" Ice	8.44 9.00 9.53 10.62	7.10 8.30 9.21 11.06	0.07 0.14 0.21 0.40		
BXA-70063/6CF w/ Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	138.00	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	7.82 8.37 8.89 9.94	5.41 6.56 7.42 9.20	0.04 0.10 0.17 0.33		
BXA-70063/6CF w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	138.00	No Ice 1/2" Ice 1" Ice 2" Ice	7.82 8.37 8.89 9.94	5.41 6.56 7.42 9.20	0.04 0.10 0.17 0.33		
BXA-70063/6CF w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	138.00	No Ice 1/2" Ice 1" Ice 2" Ice	7.82 8.37 8.89 9.94	5.41 6.56 7.42 9.20	0.04 0.10 0.17 0.33		
DB854DG65ESX w/Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	138.00	No Ice 1/2" Ice 1" Ice	6.00 6.64 7.16 8.23	4.41 5.45 6.20 7.70	0.04 0.10 0.15 0.29		
DB854DG65ESX w/Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	138.00	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	6.00 6.64 7.16 8.23	4.41 5.45 6.20 7.70	0.04 0.10 0.15 0.29		
DB854DG65ESX w/Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	138.00	No Ice 1/2" Ice	6.00 6.64 7.16	4.41 5.45 6.20	0.04 0.10 0.15		

Description	Face	Offset Type	Offsets: Horz	Azimuth Adjustmen	Placement		C _A A _A Front	C _A A _A Side	Weight
	Leg		Lateral Vert ft	t	ft		ft²	ft²	K
			ft ft	۰					
						1" Ice 2" Ice	8.23	7.70	0.29
(2) FD9R6004/2C-3L	Α	From Leg	4.00	0.0000	138.00	No Ice	0.31	0.08	0.00
()		3	0.00			1/2"	0.39	0.12	0.01
			0.00			Ice	0.47	0.17	0.01
						1" Ice 2" Ice	0.65	0.29	0.02
(2) FD9R6004/2C-3L	В	From Leg	4.00	0.0000	138.00	No Ice	0.31	0.08	0.00
			0.00			1/2"	0.39	0.12	0.01
			0.00			Ice	0.47	0.17	0.01
						1" Ice 2" Ice	0.65	0.29	0.02
(2) FD9R6004/2C-3L	С	From Leg	4.00	0.0000	138.00	No Ice	0.31	0.08	0.00
(2) 1 20110004/20 02	Ü	1 Tom Log	0.00	0.0000	100.00	1/2"	0.39	0.12	0.01
			0.00			Ice	0.47	0.17	0.01
						1" Ice	0.65	0.29	0.02
	_	_				2" Ice			
RRH2x60-700	Α	From Leg	4.00	0.0000	138.00	No Ice	3.50	1.82	0.06
			0.00 0.00			1/2" Ice	3.76 4.03	2.05 2.29	0.08 0.11
			0.00			1" Ice	4.58	2.79	0.11
						2" Ice	4.00	2.75	0.17
RRH2x60-700	В	From Leg	4.00	0.0000	138.00	No Ice	3.50	1.82	0.06
			0.00			1/2"	3.76	2.05	0.08
			0.00			Ice	4.03	2.29	0.11
						1" Ice 2" Ice	4.58	2.79	0.17
RRH2x60-700	С	From Leg	4.00	0.0000	138.00	No Ice	3.50	1.82	0.06
14412200 700	Ü	1 Tom Log	0.00	0.0000	100.00	1/2"	3.76	2.05	0.08
			0.00			Ice	4.03	2.29	0.11
						1" Ice	4.58	2.79	0.17
DDU2×60 AVVC	^	From Log	4.00	0.0000	120.00	2" Ice	2.50	2.40	0.06
RRH2x60-AWS	Α	From Leg	4.00 0.00	0.0000	138.00	No Ice 1/2"	3.50 3.76	2.10 2.34	0.06 0.08
			0.00			Ice	4.03	2.58	0.00
			0.00			1" Ice	4.58	3.09	0.18
						2" Ice			
RRH2x60-AWS	В	From Leg	4.00	0.0000	138.00	No Ice	3.50	2.10	0.06
			0.00			1/2"	3.76 4.03	2.34	0.08 0.11
			0.00			Ice 1" Ice	4.03 4.58	2.58 3.09	0.11
						2" Ice	4.00	0.00	0.10
RRH2x60-AWS	С	From Leg	4.00	0.0000	138.00	No Ice	3.50	2.10	0.06
			0.00			1/2"	3.76	2.34	0.08
			0.00			Ice	4.03	2.58	0.11
						1" Ice 2" Ice	4.58	3.09	0.18
DB-T1-6Z-8AB-0Z	С	From Leg	4.00	0.0000	138.00	No Ice	4.80	2.00	0.04
55 11 62 6/15 62	Ü	1 10m 20g	0.00	0.0000	100.00	1/2"	5.07	2.19	0.08
			0.00			Ice	5.35	2.39	0.12
						1" Ice	5.93	2.81	0.21
***						2" Ice			
Sector Mount [SM 409-3]	С	None		0.0000	98.00	No Ice	22.33	22.33	1.03
Oction Mount [OM 403-3]	C	140116		0.0000	30.00	1/2"	31.79	31.79	1.48
						Ice	41.13	41.13	2.07
						1" Ice	59.78	59.78	3.67
	_					2" Ice			
6' x 2" Mount Pipe	Α	From Leg	4.00	0.0000	98.00	No Ice	1.43	1.43	0.02
			2.00			1/2"	1.92	1.92 2.29	0.03 0.05
			0.00			Ice 1" Ice	2.29 3.06	2.29 3.06	0.05
						2" Ice	0.00	0.00	0.00
6' x 2" Mount Pipe	В	From Leg	4.00	0.0000	98.00	No Ice	1.43	1.43	0.02
		-	2.00			1/2"	1.92	1.92	0.03

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	۰	ft		ft²	ft²	K
			0.00			Ice 1" Ice	2.29 3.06	2.29 3.06	0.05 0.09
						2" Ice	0.00	0.00	0.00
6' x 2" Mount Pipe	С	From Leg	4.00	0.0000	98.00	No Ice	1.43	1.43	0.02
			2.00			1/2"	1.92	1.92	0.03
			0.00			Ice 1" Ice	2.29 3.06	2.29 3.06	0.05 0.09
						2" Ice	0.00	0.00	0.00
(2) AM-X-CD-16-65-00T-	Α	From Leg	4.00	0.0000	98.00	No Ice	4.63	3.27	0.07
RET w/ Mount Pipe			0.00			1/2"	5.06	3.69	0.13
			0.00			Ice	5.51	4.12	0.20
						1" Ice 2" Ice	6.43	5.00	0.38
(2) AM-X-CD-16-65-00T-	В	From Leg	4.00	0.0000	98.00	No Ice	4.63	3.27	0.07
RET w/ Mount Pipe	_		0.00	0.000	00.00	1/2"	5.06	3.69	0.13
			0.00			Ice	5.51	4.12	0.20
						1" Ice	6.43	5.00	0.38
(2) AMA V CD 46 CE 00T	0	Гиана I ан	4.00	0.0000	00.00	2" Ice	4.00	2.07	0.07
(2) AM-X-CD-16-65-00T- RET w/ Mount Pipe	С	From Leg	4.00 0.00	0.0000	98.00	No Ice 1/2"	4.63 5.06	3.27 3.69	0.07 0.13
TCT W/ Wount 1 ipc			0.00			Ice	5.51	4.12	0.10
						1" Ice	6.43	5.00	0.38
		_				2" Ice			
HPA-65R-BUU-H4 w/	Α	From Leg	4.00	0.0000	98.00	No Ice	5.90	4.02	0.06
Mount Pipe			-2.00 0.00			1/2" Ice	6.42 6.96	4.50 5.00	0.11 0.16
			0.00			1" Ice	8.08	6.04	0.10
						2" lce	0.00	0.01	0.01
HPA-65R-BUU-H4 w/	В	From Leg	4.00	0.0000	98.00	No Ice	5.90	4.02	0.06
Mount Pipe			-2.00			1/2"	6.42	4.50	0.11
			0.00			Ice 1" Ice	6.96 8.08	5.00	0.16
						2" Ice	0.00	6.04	0.31
HPA-65R-BUU-H4 w/	С	From Leg	4.00	0.0000	98.00	No Ice	5.90	4.02	0.06
Mount Pipe		J	-2.00			1/2"	6.42	4.50	0.11
			0.00			Ice	6.96	5.00	0.16
						1" Ice 2" Ice	8.08	6.04	0.31
(2) DTMABP7819VG12A	Α	From Leg	4.00	0.0000	98.00	No Ice	0.98	0.34	0.02
(2) 2 1111 (21 70 10 70 12) (,,	1 10m 20g	0.00	0.0000	00.00	1/2"	1.10	0.42	0.03
			0.00			Ice	1.23	0.51	0.04
						1" Ice	1.52	0.71	0.06
(2) DTMABP7819VG12A	В	From Leg	4.00	0.0000	98.00	2" Ice No Ice	0.98	0.34	0.02
(2) DTWABI 7019VO12A	Ь	1 Tolli Leg	0.00	0.0000	90.00	1/2"	1.10	0.42	0.02
			0.00			Ice	1.23	0.51	0.04
						1" Ice	1.52	0.71	0.06
(2) DTMADD7040\(C42A	0	Гиана I ан	4.00	0.0000	00.00	2" Ice	0.00	0.04	0.00
(2) DTMABP7819VG12A	С	From Leg	4.00 0.00	0.0000	98.00	No Ice 1/2"	0.98 1.10	0.34 0.42	0.02 0.03
			0.00			lce	1.23	0.51	0.03
						1" Ice	1.52	0.71	0.06
		_				2" Ice			
RRUS 11	Α	From Leg	4.00	0.0000	98.00	No Ice	2.78	1.19	0.05
			0.00 0.00			1/2" Ice	2.99 3.21	1.33 1.49	0.07 0.10
			0.00			1" Ice	3.66	1.83	0.15
						2" lce			2
RRUS 11	В	From Leg	4.00	0.0000	98.00	No Ice	2.78	1.19	0.05
			0.00			1/2"	2.99	1.33	0.07
			0.00			Ice 1" Ice	3.21 3.66	1.49 1.83	0.10 0.15
						2" Ice	3.00	1.03	0.10
RRUS 11	С	From Leg	4.00	0.0000	98.00	No Ice	2.78	1.19	0.05
		,	0.00			1/2"	2.99	1.33	0.07

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	۰	ft		ft²	ft²	K
			0.00			Ice	3.21	1.49	0.10
						1" Ice 2" Ice	3.66	1.83	0.15
RRUS 12	Α	From Leg	4.00	0.0000	98.00	No Ice	3.15	1.29	0.06
		J	0.00			1/2"	3.36	1.44	0.08
			0.00			Ice	3.59	1.60	0.11
						1" Ice 2" Ice	4.07	1.95	0.17
RRUS 12	В	From Leg	4.00	0.0000	98.00	No Ice	3.15	1.29	0.06
			0.00			1/2"	3.36	1.44	0.08
			0.00			Ice	3.59	1.60	0.11
						1" Ice 2" Ice	4.07	1.95	0.17
RRUS 12	С	From Leg	4.00	0.0000	98.00	No Ice	3.15	1.29	0.06
			0.00			1/2"	3.36	1.44	0.08
			0.00			Ice	3.59	1.60	0.11
						1" Ice 2" Ice	4.07	1.95	0.17
RRUS A2 MODULE	Α	From Leg	4.00	0.0000	98.00	No Ice	1.60	0.39	0.02
			0.00			1/2"	1.76	0.48	0.03
			0.00			Ice	1.92	0.58	0.04
						1" Ice 2" Ice	2.28	0.80	0.07
RRUS A2 MODULE	В	From Leg	4.00	0.0000	98.00	No Ice	1.60	0.39	0.02
			0.00			1/2"	1.76	0.48	0.03
			0.00			Ice	1.92	0.58	0.04
						1" Ice 2" Ice	2.28	0.80	0.07
RRUS A2 MODULE	С	From Leg	4.00	0.0000	98.00	No Ice	1.60	0.39	0.02
			0.00			1/2"	1.76	0.48	0.03
			0.00			Ice	1.92	0.58	0.04
						1" Ice 2" Ice	2.28	0.80	0.07
DC6-48-60-18-8F	С	From Leg	1.00	0.0000	98.00	No Ice	0.92	0.92	0.02
			0.00			1/2"	1.46	1.46	0.04
			0.00			Ice	1.64	1.64	0.06
***						1" Ice 2" Ice	2.04	2.04	0.11
Pipe Mount [PM 602-1]	Α	From Leg	0.00	0.0000	83.00	No Ice	2.78	2.78	0.09
			0.00			1/2"	3.21	3.21	0.11
			0.00			Ice	3.64	3.64	0.14
						1" Ice	4.54	4.54	0.21
*** PROPOSED ***						2" Ice			
DS2C03F36D-D	В	From Leg	0.00	-45.0000	137.00	No Ice	7.26	7.26	0.07
		_	0.00			1/2"	9.75	9.75	0.12
			13.00			Ice	12.23	12.23	0.19
						1" Ice 2" Ice	17.24	17.24	0.37
R5-LL (Pipe Mount [PM	В	From Leg	0.00	0.0000	137.00	No Ice	1.32	1.32	0.07
601-1])		3	0.00			1/2"	1.58	1.58	0.08
- -			0.00			Ice	1.84	1.84	0.09
						1" Ice 2" Ice	2.40	2.40	0.13

Dishes											
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	۰	۰	ft	ft		ft ²	K
PL4-107	Α	Paraboloid w/Radome	From Leg	1.00 0.00 0.00	0.0000		83.00	4.00	No Ice 1/2" Ice 1" Ice 2" Ice	12.60 13.09 13.58 14.56	0.10 0.17 0.24 0.37

Load Combinations

Comb.	Description
No	D. 101
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15 16	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17 18	0.9 Dead+1.0 Wind 210 deg - No Ice
19	1.2 Dead+1.0 Wind 240 deg - No Ice 0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

No. Leg	Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
Max. Compression 2	No.					K	kip-ft	kip-ft
Max. My	T1	140 - 120	Leg	Max Tension	15	29.51		0.11
Diagonal Max. Wy				Max. Compression				
Diagonal Max. Vy 18				Max. Mx	8	-2.26		-0.01
Diagonal Max Vx 2				Max. My				
Diagonal Max Tension 5 3.29 0.00 0.00 0.00 Max Max Charles Max Compression 16 -3.31 0.00 0.00 0.00 Max Mw 35 0.68 -0.01 -0.00 0.00 Max My 8 -2.82 -0.00 0.00 0.00 Max Vy 35 0.01 -0.01 -0.00 0.00 Max Vx 8 -0.00 -0.00 0.00 0.00 0.00 Max Vx 8 -0.00 -0.00 0.00 0.00 Max Mx Wx 26 -0.04 0.03 0.00 0.00 Max Mx Wx 26 -0.04 0.03 0.00 0.00 0.00 Max Mx Wx 26 0.02 0.00 0.00 0.00 Max Mx Wx 26 0.02 0.00 0.00 0.00 Max Mx Wx 26 0.02 0.03 0.00 0.00 Max Mx Wx 26 0.02 0.03 0.00 0.00 Max Mx Wx 26 0.02 0.03 0.00 0.00 Max Mx Wx 26 0.02 0.00 0.00 0.00 0.00 Max Mx Wx 26 0.02 0.00								
Max. Compression								
Max Mx			Diagonal					
Max. Wy								
Max Vy								
Max Vis				•				
Top Girt								
Max. Compression 18			T 0:1					
Bottom Girt			Top Girt					
Max. Vy				•				
Bottom Girt								
Max. Compression 3			Dattaus Cint	•				
Max. My			Bottom Girt					
T2 120 - 100								
T2								
Max. Compression 2	TO	120 100	Log	•				
Max. Mx	12	120 - 100	Leg					
Max My				•				
Diagonal Max. Vý 10 5.01 -0.80 -0.41 0.94								
Diagonal Max Tension 5								
Diagonal Max Tension 5				,				
Max. Compression			Diagonal		5			
Max. My			214901141					
Max. My				•				
Max. Vy								
Max. Vix					34	0.01	-0.01	0.00
Max. Compression 19				Max. Vx	24	-0.00	0.00	0.00
Bottom Girt			Top Girt	Max Tension		0.03	0.00	0.00
Bottom Girt				Max. Compression		-0.02		
Bottom Girt								
Max. Compression				•				
T3 100 - 80 Leg Max. Mx 26 -0.13 0.03 0.00			Bottom Girt					
T3 100 - 80								
T3								
Max. Compression 2 -107.72 0.29 0.07 Max. Mx 14 77.06 -0.95 -0.11 Max. My 12 -3.98 -0.05 1.06 Max. Vy 14 -0.88 -0.95 -0.11 Max. Vx 12 -0.82 -0.00 -0.50 Diagonal Max Tension 15 5.10 0.00 0.00 Max. Compression 2 -5.23 0.00 0.00 Max. Mx 37 0.87 0.03 0.00 Max. My 14 -3.87 -0.01 -0.01 Max. Vy 37 0.03 0.03 0.00 Max. Vx 14 0.00 0.00 0.00 T4 80 - 60 Leg Max Tension 15 131.89 -0.23 -0.08 Max. Compression 2 -143.06 0.22 0.07 Max. Mx 14 109.59 -0.34 -0.08 Max. Mx 14 109.59 -0.34 -0.08 Max. Wy 18 48.58 -0.18 -0.39 Max. Vy 14 -0.08 -0.34 -0.08 Max. Vy 12 -0.15 -0.02 -0.39 Diagonal Max Tension 15 5.53 0.00 0.00 Max. Mx 37 0.97 0.05 -0.01 Max. My 2 -5.48 -0.00 0.01 Max. My 2 -5.48 -0.00 0.01 Max. Wy 37 0.04 0.05 -0.01 Max. Wy 37 0.04 0.05 -0.01 Max. Vy 37 0.04 0.05 -0.01 Max. Vy 37 0.04 0.05 -0.01	To	100 00	1					
Max. Mx	13	100 - 60	Leg					
Max. My 12 -3.98 -0.05 1.06 Max. Vy 14 -0.88 -0.95 -0.11 Max. Vx 12 -0.82 -0.00 -0.50 Max Tension 15 5.10 0.00 0.00 Max. Mx 37 0.87 0.03 0.00 Max. My 14 -3.87 -0.01 -0.01 Max. Vy 37 0.03 0.03 0.00 Max. Vy 37 0.03 0.03 0.00 Max. Vx 14 0.00 0.00 0.00 Max. Vx 14 0.00 0.00 0.00 T4 80 - 60 Leg Max Tension 15 131.89 -0.23 -0.08 Max. Compression 2 -143.06 0.22 0.07 Max. Mx 14 109.59 -0.34 -0.08 Max. My 18 48.58 -0.18 -0.39 Max. Wy 14 -0.08 -0.34 -0.08 Max. Vy 14 -0.08 -0.34 -0.08 Max. Vx 12 -0.15 -0.02 -0.39 Max. Vx 12 -0.15 -0.02 -0.39 Max. Compression 2 -5.70 0.00 0.00 Max. Mx 37 0.97 0.05 -0.01 Max. My 2 -5.48 -0.00 0.01 Max. My 2 -5.48 -0.00 0.01 Max. Wy 37 0.04 0.05 -0.01 Max. Wy 37 0.04 0.05 -0.01 Max. Vy 37 0.04 0.05 -0.01 Max. Vy 37 0.04 0.05 -0.01 Max. Vy 37 0.04 0.05 -0.01								
Max. Vy								
Diagonal Max. Vx 12 -0.82 -0.00 -0.50 Max Tension 15 5.10 0.00 0.00 Max. Compression 2 -5.23 0.00 0.00 Max. Mx 37 0.87 0.03 0.00 Max. My 14 -3.87 -0.01 -0.01 Max. Vy 37 0.03 0.03 0.00 Max. Vx 14 0.00 0.00 0.00 Max. Vx 14 0.00 0.00 0.00 Max. Compression 15 131.89 -0.23 -0.08 Max. Compression 2 -143.06 0.22 0.07 Max. Mx 14 109.59 -0.34 -0.08 Max. My 18 48.58 -0.18 -0.39 Max. Wy 14 -0.08 -0.34 -0.08 Max. Vy 14 -0.08 -0.34 -0.08 Max. Vx 12 -0.15 -0.02 -0.39 Max. Compression 2 -5.70 0.00 0.00 Max. Compression 2 -5.70 0.00 0.00 Max. Mx 37 0.97 0.05 -0.01 Max. My 2 -5.48 -0.00 0.01 Max. Wy 37 0.04 0.05 -0.01 Max. Vy 33 0.00 0.00 0.00 Max. Vy 33 0.00 0.00 Max. Vy 33 0.00 0.00 Max. Vy 33 0.00 0.00 Max. Vy 37 0.04 0.05 -0.01 Max. Vy 38 0.00 0.00 Max. Vy 37 0.04 0.05 -0.01 Max. Vy 37 0.								
Diagonal Max Tension 15 5.10 0.00 0.00 0.00 Max. Compression 2 -5.23 0.00 0.00 0.00 Max. Mx 37 0.87 0.03 0.00 0.00 Max. My 14 -3.87 -0.01 -0.01 Max. Vy 37 0.03 0.03 0.00 0.0								
Max. Compression 2 -5.23 0.00 0.00 Max. Mx 37 0.87 0.03 0.00 Max. My 14 -3.87 -0.01 -0.01 Max. Vy 37 0.03 0.03 0.00 Max. Vx 14 0.00 0.00 0.00 Max. Tension 15 131.89 -0.23 -0.08 Max. Mx 14 109.59 -0.34 -0.08 Max. My 18 48.58 -0.18 -0.39 Max. Vy 14 -0.08 -0.34 -0.08 Max. Vy 14 -0.08 -0.34 -0.08 Max. Vy 14 -0.08 -0.34 -0.08 Max. Vx 12 -0.15 -0.02 -0.39 Diagonal Max Tension 15 5.53 0.00 0.00 Max. Compression 2 -5.70 0.00 0.00 Max. Mx 37 0.97 0.05 -0.01 Max. My 2 -5.48 -0.00 0.01 Max. Wy 37 0.04 0.05 -0.01 Max. Vy 37 0.04 0.05 -0.01			Diagonal					
Max. Mx 37 0.87 0.03 0.00 Max. My 14 -3.87 -0.01 -0.01 Max. Vy 37 0.03 0.03 0.00 Max. Vx 14 0.00 0.00 0.00 Max Tension 15 131.89 -0.23 -0.08 Max. Mx 14 109.59 -0.34 -0.08 Max. My 18 48.58 -0.18 -0.39 Max. Vy 14 -0.08 -0.34 -0.08 Max. Vx 12 -0.15 -0.02 -0.39 Diagonal Max Tension 15 5.53 0.00 0.00 Max. Compression 2 -5.70 0.00 0.00 Max. Mx 37 0.97 0.05 -0.01 Max. My 2 -5.48 -0.00 0.01 Max. Vy 37 0.04 0.05 -0.01			3.					
Max. Vý 37 0.03 0.03 0.00 Max. Vx 14 0.00 0.00 0.00 Max Tension 15 131.89 -0.23 -0.08 Max. Compression 2 -143.06 0.22 0.07 Max. Mx 14 109.59 -0.34 -0.08 Max. My 18 48.58 -0.18 -0.39 Max. Vx 12 -0.15 -0.02 -0.39 Max. Vx 12 -0.15 -0.02 -0.39 Max Tension 15 5.53 0.00 0.00 Max. Mx 37 0.97 0.05 -0.01 Max. Mx 37 0.97 0.05 -0.01 Max. My 2 -5.48 -0.00 0.01 Max. Vy 37 0.04 0.05 -0.01 Max. Vy 37 0.04 0.05 -0.01 Max. Vx 33 0.00 0.00								
T4 80 - 60 Leg Max. Vx 14 0.00 0.00 0.00 0.00 Max Tension 15 131.89 -0.23 -0.08 Max. Compression 2 -143.06 0.22 0.07 Max. Mx 14 109.59 -0.34 -0.08 Max. My 18 48.58 -0.18 -0.39 Max. Vy 14 -0.08 -0.34 -0.08 Max. Vx 12 -0.15 -0.02 -0.39 Max Tension 15 5.53 0.00 0.00 Max. Tension 15 5.53 0.00 0.00 Max. Compression 2 -5.70 0.00 0.00 Max. Mx 37 0.97 0.05 -0.01 Max. My 2 -5.48 -0.00 0.01 Max. Wy 37 0.04 0.05 -0.01 Max. Vy 37 0.04 0.05 -0.01 Max. Vx 33 0.00 0.00 0.00				Max. My	14	-3.87	-0.01	-0.01
T4 80 - 60 Leg Max Tension 15 131.89 -0.23 -0.08 Max. Compression 2 -143.06 0.22 0.07 Max. Mx 14 109.59 -0.34 -0.08 Max. My 18 48.58 -0.18 -0.39 Max. Vy 14 -0.08 -0.34 -0.08 Max. Vx 12 -0.15 -0.02 -0.39 Max Tension 15 5.53 0.00 0.00 Max. Compression 2 -5.70 0.00 0.00 Max. Mx 37 0.97 0.05 -0.01 Max. My 2 -5.48 -0.00 0.01 Max. Vy 37 0.04 0.05 -0.01 Max. Vy 37 0.04 0.05 -0.01 Max. Vx 33 0.00 0.00				Max. Vy	37	0.03	0.03	0.00
Max. Compression 2 -143.06 0.22 0.07 Max. Mx 14 109.59 -0.34 -0.08 Max. My 18 48.58 -0.18 -0.39 Max. Vy 14 -0.08 -0.34 -0.08 Max. Vx 12 -0.15 -0.02 -0.39 Max Tension 15 5.53 0.00 0.00 Max. Compression 2 -5.70 0.00 0.00 Max. Mx 37 0.97 0.05 -0.01 Max. My 2 -5.48 -0.00 0.01 Max. Vy 37 0.04 0.05 -0.01 Max. Vy 37 0.04 0.05 -0.01 Max. Vx 33 0.00 0.00				Max. Vx	14	0.00	0.00	0.00
Max. Mx 14 109.59 -0.34 -0.08 Max. My 18 48.58 -0.18 -0.39 Max. Vy 14 -0.08 -0.34 -0.08 Max. Vx 12 -0.15 -0.02 -0.39 Diagonal Max Tension 15 5.53 0.00 0.00 Max. Compression 2 -5.70 0.00 0.00 Max. Mx 37 0.97 0.05 -0.01 Max. My 2 -5.48 -0.00 0.01 Max. Vy 37 0.04 0.05 -0.01 Max. Vy 37 0.04 0.05 -0.01 Max. Vx 33 0.00 0.00	T4	80 - 60	Leg	Max Tension	15	131.89	-0.23	-0.08
Max. My 18 48.58 -0.18 -0.39 Max. Vy 14 -0.08 -0.34 -0.08 Max. Vx 12 -0.15 -0.02 -0.39 Diagonal Max Tension 15 5.53 0.00 0.00 Max. Compression 2 -5.70 0.00 0.00 Max. Mx 37 0.97 0.05 -0.01 Max. My 2 -5.48 -0.00 0.01 Max. Vy 37 0.04 0.05 -0.01 Max. Vx 33 0.00 0.00				Max. Compression				
Max. Vy 14 -0.08 -0.34 -0.08 Max. Vx 12 -0.15 -0.02 -0.39 Diagonal Max Tension 15 5.53 0.00 0.00 Max. Compression 2 -5.70 0.00 0.00 Max. Mx 37 0.97 0.05 -0.01 Max. My 2 -5.48 -0.00 0.01 Max. Vy 37 0.04 0.05 -0.01 Max. Vx 33 0.00 0.00				Max. Mx		109.59		
Diagonal Max. Vx 12 -0.15 -0.02 -0.39 Max Tension 15 5.53 0.00 0.00 Max. Compression 2 -5.70 0.00 0.00 Max. Mx 37 0.97 0.05 -0.01 Max. My 2 -5.48 -0.00 0.01 Max. Vy 37 0.04 0.05 -0.01 Max. Vx 33 0.00 0.00				3				
Diagonal Max Tension 15 5.53 0.00 0.00 Max. Compression 2 -5.70 0.00 0.00 Max. Mx 37 0.97 0.05 -0.01 Max. My 2 -5.48 -0.00 0.01 Max. Vy 37 0.04 0.05 -0.01 Max. Vx 33 0.00 0.00 0.00				•				
Max. Compression 2 -5.70 0.00 0.00 Max. Mx 37 0.97 0.05 -0.01 Max. My 2 -5.48 -0.00 0.01 Max. Vy 37 0.04 0.05 -0.01 Max. Vx 33 0.00 0.00 0.00			Б					
Max. Mx 37 0.97 0.05 -0.01 Max. My 2 -5.48 -0.00 0.01 Max. Vy 37 0.04 0.05 -0.01 Max. Vx 33 0.00 0.00 0.00			Diagonal					
Max. My 2 -5.48 -0.00 0.01 Max. Vy 37 0.04 0.05 -0.01 Max. Vx 33 0.00 0.00 0.00				•				
Max. Vy 37 0.04 0.05 -0.01 Max. Vx 33 0.00 0.00 0.00								
Max. Vx 33 0.00 0.00 0.00								
10 00 70 Log Max religion 10 101.70 -0.21 -0.00	T5	60 - 40	Lea					
		55 TO	-09	max renoier	.0	101.70	V. <u>L</u> 1	0.00

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
			Max. Compression	2	-176.74	0.34	0.10
			Max. Mx	3	-174.81	0.34	0.10
			Max. My	13	-6.83	-0.01	-0.41
			Max. Vy	6	0.08	-0.32	0.03
			Max. Vx	25	-0.14	-0.01	0.41
		Diagonal	Max Tension	2	6.03	0.00	0.00
		3.	Max. Compression	2	-6.25	0.00	0.00
			Max. Mx	37	1.12	0.06	-0.01
			Max. My	33	1.08	0.06	-0.01
			Max. Vý	37	0.05	0.06	-0.01
			Max. Vx	33	0.00	0.00	0.00
T6	40 - 20	Leg	Max Tension	15	189.92	-0.28	-0.07
		Ü	Max. Compression	2	-209.56	0.19	0.03
			Max. Mx	31	-71.80	0.68	0.00
			Max. My	13	-6.97	-0.01	-0.41
			Max. Vy	29	-0.19	-0.48	0.01
			Max. Vx	12	-0.13	-0.01	-0.41
		Diagonal	Max Tension	2	6.66	0.00	0.00
		ŭ	Max. Compression	2	-6.82	0.00	0.00
			Max. Mx	37	0.72	0.10	-0.01
			Max. My	33	-1.79	0.08	-0.01
			Max. Vý	37	0.06	0.10	-0.01
			Max. Vx	33	0.00	0.00	0.00
T7	20 - 0	Leg	Max Tension	15	216.39	-0.29	-0.04
		•	Max. Compression	2	-241.10	0.00	-0.00
			Max. Mx	31	-83.95	1.23	0.00
			Max. My	13	-9.78	-0.03	-0.61
			Max. Vy	29	-0.36	-1.12	0.00
			Max. Vx	13	-0.18	-0.03	-0.61
		Diagonal	Max Tension	2	6.95	0.00	0.00
		•	Max. Compression	2	-7.39	0.00	0.00
			Max. Mx	37	-0.08	0.13	0.01
			Max. My	27	2.26	0.06	0.01
			Max. Vy	37	0.07	0.13	0.01
			Max. Vx	27	-0.00	0.00	0.00

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Leg C	Max. Vert	18	227.27	17.06	-10.39
•	Max. H _x	18	227.27	17.06	-10.39
	Max. H _z	5	-181.68	-13.19	9.95
	Min. Vert	7	-197.17	-15.13	9.25
	Min. H _x	7	-197.17	-15.13	9.25
	Min. H _z	16	206.30	14.42	-10.68
Leg B	Max. Vert	10	230.91	-18.38	-9.74
	Max. H _x	23	-205.33	16.49	8.67
	Max. H _z	23	-205.33	16.49	8.67
	Min. Vert	23	-205.33	16.49	8.67
	Min. H _x	10	230.91	-18.38	-9.74
	Min. H _z	10	230.91	-18.38	-9.74
Leg A	Max. Vert	2	245.99	-1.37	21.86
-	Max. H _x	19	-98.29	2.46	-9.07
	Max. H _z	2	245.99	-1.37	21.86
	Min. Vert	15	-220.43	1.34	-19.80
	Min. H _x	6	115.44	-2.35	9.89
	Min. H _z	15	-220.43	1.34	-19.80

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shear₂	Overturning Moment, M_x	Overturning Moment, M _z	Torque
De ed Oak	K 20.00	K 0.00	K	kip-ft	kip-ft	kip-ft
Dead Only 1.2 Dead+1.0 Wind 0 deg - No Ice	30.38 36.45	0.00 0.05	0.00 -35.55	2.94 -2835.11	15.05 11.22	0.00 -32.82
0.9 Dead+1.0 Wind 0 deg - No Ice	27.34	0.05	-35.55	-2835.99	6.71	-32.82
1.2 Dead+1.0 Wind 30 deg - No Ice	36.45	16.47	-28.45	-2316.86	-1328.38	-20.89
0.9 Dead+1.0 Wind 30 deg - No Ice	27.34	16.47	-28.45	-2317.74	-1332.90	-20.89
1.2 Dead+1.0 Wind 60 deg - No Ice	36.45	26.60	-15.34	-1252.36	-2159.92	-10.99
0.9 Dead+1.0 Wind 60 deg - No Ice	27.34	26.60	-15.34	-1253.24	-2164.43	-10.99
1.2 Dead+1.0 Wind 90 deg - No Ice	36.45	31.10	0.02	2.36	-2486.62	-0.72
0.9 Dead+1.0 Wind 90 deg - No Ice	27.34	31.10	0.02	1.48	-2491.14	-0.72
1.2 Dead+1.0 Wind 120 deg - No Ice	36.45	29.30	16.93	1334.84	-2291.94	18.02
0.9 Dead+1.0 Wind 120 deg - No Ice	27.34	29.30	16.93	1333.95	-2296.46	18.02
1.2 Dead+1.0 Wind 150 deg - No Ice	36.45	17.12	29.68	2383.10	-1354.51	34.42
0.9 Dead+1.0 Wind 150 deg - No Ice	27.34	17.12	29.68	2382.21	-1359.03	34.42
1.2 Dead+1.0 Wind 180 deg - No Ice	36.45	-0.05	34.19	2783.95	24.91	32.82
0.9 Dead+1.0 Wind 180 deg - No Ice	27.34	-0.05	34.19	2783.07	20.39	32.82
1.2 Dead+1.0 Wind 210 deg - No Ice	36.45	-16.54	28.58	2334.27	1370.35	20.90
0.9 Dead+1.0 Wind 210 deg - No Ice	27.34	-16.54	28.58	2333.38	1365.83	20.90
1.2 Dead+1.0 Wind 240 deg - No Ice	36.45	-27.94	16.20	1303.05	2259.33	11.04
0.9 Dead+1.0 Wind 240 deg - No Ice	27.34	-27.94	16.20	1302.17	2254.81	11.04
1.2 Dead+1.0 Wind 270 deg - No Ice	36.45	-31.10	0.12	16.05	2522.75	0.72
0.9 Dead+1.0 Wind 270 deg - No Ice	27.34	-31.10	0.12	15.16	2518.23	0.72
1.2 Dead+1.0 Wind 300 deg - No Ice	36.45	-27.97	-16.07	-1284.15	2264.79	-18.06
0.9 Dead+1.0 Wind 300 deg - No Ice	27.34	-27.97	-16.07	-1285.03	2260.27	-18.06
1.2 Dead+1.0 Wind 330 deg - No Ice	36.45	-17.05	-29.56	-2365.69	1384.80	-34.43
0.9 Dead+1.0 Wind 330 deg - No Ice	27.34	-17.05	-29.56	-2366.57	1380.29	-34.43
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0	90.93 90.93	-0.00 0.01	0.00 -8.93	9.29 -724.93	66.28 65.24	0.00 -7.47
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 30	90.93	4.33	-7.48	-612.80	-293.91	-6.11
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 60	90.93	7.28	-4.20	-340.74	-540.41	-4.29
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 90	90.93	8.42	0.00	9.12	-630.10	-1.42
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 120	90.93	7.54	4.36	365.34	-551.03	3.00
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 150	90.93	4.39	7.61	636.28	-295.52	6.73
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 180 deg+1.0 lce+1.0 Temp	90.93	-0.01	8.77	737.37	67.32	7.47
1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	90.93	-4.34	7.50	632.97	427.37	6.11

Load	Vertical	Shear _x	Shearz	Overturning	Overturning	Torque
Combination				Moment, M_x	Moment, Mz	
	K	K	K	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 240	90.93	-7.44	4.30	364.63	680.28	4.29
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	90.93	-8.42	0.02	11.21	762.67	1.42
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	90.93	-7.39	-4.25	-341.45	676.28	-3.01
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	90.93	-4.38	-7.59	-616.11	427.18	-6.73
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	30.38	0.01	-7.02	-557.77	13.70	-6.48
Dead+Wind 30 deg - Service	30.38	3.25	-5.62	-455.40	-250.91	-4.13
Dead+Wind 60 deg - Service	30.38	5.25	-3.03	-245.13	-415.17	-2.17
Dead+Wind 90 deg - Service	30.38	6.14	0.00	2.71	-479.70	-0.14
Dead+Wind 120 deg -	30.38	5.79	3.34	265.92	-441.24	3.56
Service						
Dead+Wind 150 deg -	30.38	3.38	5.86	472.98	-256.07	6.80
Service						
Dead+Wind 180 deg -	30.38	-0.01	6.75	552.16	16.40	6.48
Service						
Dead+Wind 210 deg -	30.38	-3.27	5.64	463.34	282.17	4.13
Service						
Dead+Wind 240 deg -	30.38	-5.52	3.20	259.64	457.77	2.18
Service						
Dead+Wind 270 deg -	30.38	-6.14	0.02	5.42	509.81	0.14
Service						
Dead+Wind 300 deg -	30.38	-5.52	-3.17	-251.41	458.85	-3.57
Service						
Dead+Wind 330 deg -	30.38	-3.37	-5.84	-465.05	285.03	-6.80
Service						

_		
Sol	luti∩n	Summary
	IGLIVII	Cullillai V

	Sun	n of Applied Force	es		Sum of Reactio	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-30.38	0.00	0.00	30.38	0.00	0.000%
2	0.05	-36.45	-35.55	-0.05	36.45	35.55	0.000%
3	0.05	-27.34	-35.55	-0.05	27.34	35.55	0.000%
4	16.47	-36.45	-28.45	-16.47	36.45	28.45	0.000%
5	16.47	-27.34	-28.45	-16.47	27.34	28.45	0.000%
6	26.60	-36.45	-15.34	-26.60	36.45	15.34	0.000%
7	26.60	-27.34	-15.34	-26.60	27.34	15.34	0.000%
8	31.10	-36.45	0.02	-31.10	36.45	-0.02	0.000%
9	31.10	-27.34	0.02	-31.10	27.34	-0.02	0.000%
10	29.30	-36.45	16.93	-29.30	36.45	-16.93	0.000%
11	29.30	-27.34	16.93	-29.30	27.34	-16.93	0.000%
12	17.12	-36.45	29.68	-17.12	36.45	-29.68	0.000%
13	17.12	-27.34	29.68	-17.12	27.34	-29.68	0.000%
14	-0.05	-36.45	34.19	0.05	36.45	-34.19	0.000%
15	-0.05	-27.34	34.19	0.05	27.34	-34.19	0.000%
16	-16.54	-36.45	28.58	16.54	36.45	-28.58	0.000%
17	-16.54	-27.34	28.58	16.54	27.34	-28.58	0.000%
18	-27.94	-36.45	16.20	27.94	36.45	-16.20	0.000%
19	-27.94	-27.34	16.20	27.94	27.34	-16.20	0.000%
20	-31.10	-36.45	0.12	31.10	36.45	-0.12	0.000%
21	-31.10	-27.34	0.12	31.10	27.34	-0.12	0.000%
22	-27.97	-36.45	-16.07	27.97	36.45	16.07	0.000%
23	-27.97	-27.34	-16.07	27.97	27.34	16.07	0.000%
24	-17.05	-36.45	-29.56	17.05	36.45	29.56	0.000%
25	-17.05	-27.34	-29.56	17.05	27.34	29.56	0.000%
26	0.00	-90.93	0.00	0.00	90.93	0.00	0.000%
27	0.01	-90.93	-8.93	-0.01	90.93	8.93	0.000%
28	4.33	-90.93	-7.48	-4.33	90.93	7.48	0.000%
29	7.28	-90.93	-4.20	-7.28	90.93	4.20	0.000%
30	8.42	-90.93	0.00	-8.42	90.93	-0.00	0.000%
31	7.54	-90.93	4.36	-7.54	90.93	-4.36	0.000%
32	4.39	-90.93	7.61	-4.39	90.93	-7.61	0.000%

	Sur	n of Applied Force	s		Sum of Reaction	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
33	-0.01	-90.93	8.77	0.01	90.93	-8.77	0.000%
34	-4.34	-90.93	7.50	4.34	90.93	-7.50	0.000%
35	-7.44	-90.93	4.30	7.44	90.93	-4.30	0.000%
36	-8.42	-90.93	0.02	8.42	90.93	-0.02	0.000%
37	-7.39	-90.93	-4.25	7.39	90.93	4.25	0.000%
38	-4.38	-90.93	-7.59	4.38	90.93	7.59	0.000%
39	0.01	-30.38	-7.02	-0.01	30.38	7.02	0.000%
40	3.25	-30.38	-5.62	-3.25	30.38	5.62	0.000%
41	5.25	-30.38	-3.03	-5.25	30.38	3.03	0.000%
42	6.14	-30.38	0.00	-6.14	30.38	-0.00	0.000%
43	5.79	-30.38	3.34	-5.79	30.38	-3.34	0.000%
44	3.38	-30.38	5.86	-3.38	30.38	-5.86	0.000%
45	-0.01	-30.38	6.75	0.01	30.38	-6.75	0.000%
46	-3.27	-30.38	5.64	3.27	30.38	-5.64	0.000%
47	-5.52	-30.38	3.20	5.52	30.38	-3.20	0.000%
48	-6.14	-30.38	0.02	6.14	30.38	-0.02	0.000%
49	-5.52	-30.38	-3.17	5.52	30.38	3.17	0.000%
50	-3.37	-30.38	-5.84	3.37	30.38	5.84	0.000%

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	•	۰
T1	140 - 120	1.903	45	0.1300	0.0509
T2	120 - 100	1.361	39	0.1144	0.0484
T3	100 - 80	0.913	39	0.0857	0.0406
T4	80 - 60	0.582	39	0.0647	0.0317
T5	60 - 40	0.333	39	0.0457	0.0232
T6	40 - 20	0.157	39	0.0287	0.0143
T7	20 - 0	0.051	39	0.0134	0.0074

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
140.00	PD1142-2C	45	1.903	0.1300	0.0509	178127
138.00	Sector Mount [SM 409-3]	45	1.846	0.1288	0.0508	178127
137.00	DS2C03F36D-D	45	1.818	0.1282	0.0507	178127
98.00	Sector Mount [SM 409-3]	39	0.875	0.0831	0.0397	37957
83.00	PL4-107	39	0.626	0.0675	0.0330	59258

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	۰	•
T1	140 - 120	9.653	3	0.6542	0.2577
T2	120 - 100	6.914	3	0.5777	0.2448
T3	100 - 80	4.639	3	0.4339	0.2056
T4	80 - 60	2.958	3	0.3288	0.1605
T5	60 - 40	1.692	3	0.2324	0.1174
T6	40 - 20	0.797	3	0.1460	0.0726
T7	20 - 0	0.257	3	0.0684	0.0374

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	۰	۰	ft
140.00	PD1142-2C	3	9.653	0.6542	0.2577	35897
138.00	Sector Mount [SM 409-3]	3	9.370	0.6486	0.2570	35897
137.00	DS2C03F36D-D	3	9.229	0.6458	0.2567	35897
98.00	Sector Mount [SM 409-3]	3	4.446	0.4209	0.2012	7543
83.00	PL4-107	3	3.180	0.3429	0.1671	11745

Bolt Design Data

Section	Elevation	Component	Bolt	Bolt Size	Number	Maximum	Allowable	Ratio	Allowable	Criteria
No.		Type	Grade		Of	Load	Load	Load	Ratio	
	ft			in	Bolts	per Bolt	per Bolt	Allowable	-	
						K	K			
T1	140	Leg	A325N	1.0000	4	7.38	54.52	0.135	1.05	Bolt Tension
T2	120	Leg	A325N	1.0000	6	12.15	54.52	0.223	1.05	Bolt Tension
T3	100	Leg	A325N	1.1250	6	16.65	68.69	0.242	1.05	Bolt Tension
		Diagonal	A325N	0.7500	1	5.10	11.85	0.430	1.05	Member Block Shear
T4	80	Leg	A325N	1.1250	6	21.98	68.69	0.320	1.05	Bolt Tension
		Diagonal	A325N	0.7500	1	5.53	10.92	0.507	1.05	Member Block Shear
T5	60	Leg	A325N	1.2500	6	26.96	87.22	0.309	1.05	Bolt Tension
		Diagonal	A325N	0.7500	1	6.03	10.92	0.552	1.05	Member Block Shear
T6	40	Leg	A325N	1.2500	6	31.65	87.22	0.363	1.05	Bolt Tension
		Diagonal	A325N	0.7500	1	6.66	14.56	0.457	1.05	Member Block Shear
T7	20	Diagonal	A325N	0.7500	1	6.95	11.94	0.582	1.05	Member Block Shear

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in²	K	K	ϕP_n
T1	140 - 120	1 3/4	20.00	3.31	90.7 K=1.00	2.4053	-28.60	59.34	0.482 1
T2	120 - 100	2 1/2	20.00	3.31	63.5 K=1.00	4.9087	-72.49	164.54	0.441 ¹
Т3	100 - 80	3 1/2	20.03	6.68	91.6 K=1.00	9.6211	-107.72	234.57	0.459 ¹
T4	80 - 60	3 3/4	20.03	6.68	85.4 K=1.00	11.044 7	-143.06	291.42	0.491 ¹
T5	60 - 40	4	20.03	6.68	80.1 K=1.00	12.566 4	-176.74	353.71	0.500 ¹
T6	40 - 20	4 1/4	20.03	6.68	75.4 K=1.00	14.186 3	-209.56	421.28	0.497 ¹
T7	20 - 0	4 1/2	20.03	6.68	71.2 K=1.00	15.904 3	-241.10	493.99	0.488 1

¹ P_u / ϕP_n controls

Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in²	K	K	ϕP_n
T1	140 - 120	3/4	5.99	2.91	167.6 K=0.90	0.4418	-3.31	3.55	0.931 ¹
T2	120 - 100	7/8	5.99	2.87	141.8 K=0.90	0.6013	-4.37	6.76	0.647 ¹
Т3	100 - 80	L2x2x1/4	9.31	4.47	137.3 K=1.00	0.9380	-5.23	14.23	0.368 ¹
T4	80 - 60	L2 1/2x2 1/2x3/16	10.65	5.13	124.3 K=1.00	0.9020	-5.70	16.69	0.342 1
T5	60 - 40	L2 1/2x2 1/2x3/16	12.10	5.84	141.7 K=1.00	0.9020	-6.25	12.86	0.486 ¹
T6	40 - 20	L2 1/2x2 1/2x1/4	13.64	6.60	161.4 K=1.00	1.1900	-6.82	13.08	0.522 ¹
T7	20 - 0	L3x3x3/16	15.24	7.39	148.8 K=1.00	1.0900	-7.39	14.09	0.525 ¹

 $^{^{1}}$ P $_{u}$ / $_{\varphi}$ P $_{n}$ controls

	Top Girt Design Data (Compression)									
Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	φ P _n	Ratio P _u	
	ft		ft	ft		in²	Κ	Κ	${\Phi P_n}$	
T1	140 - 120	3/4	5.00	4.85	217.5 K=0.70	0.4418	-0.34	2.11	0.163 ¹	
T2	120 - 100	KL/R > 200 (C) - 5 7/8	5.00	4.79	184.0 K=0.70	0.6013	-0.02	4.01	0.005 ¹	

¹ P_u / ϕP_n controls

	Bottom Girt Design Data (Compression)									
Section No.	Elevation	Size	L	Lu	KI/r	Α	Pu	φ P _n	Ratio P _u	
	ft		ft	ft		in²	Κ	K	${\Phi P_n}$	
T1	140 - 120	3/4	5.00	4.85	217.5 K=0.70	0.4418	-0.29	2.11	0.136 ¹	
T2	120 - 100	KL/R > 200 (C) - 7 7/8	5.00	4.79	184.0 K=0.70	0.6013	-0.64	4.01	0.160 ¹	

¹ P_u / ϕP_n controls

Tension Checks

		Le	eg Desig	n Dat	a (Te	nsion)			
Section No.	Elevation	Size	L	Lu	KI/r	Α	Pu	φPn	Ratio P _u
	ft		ft	ft		in²	K	K	ϕP_n
T1	140 - 120	1 3/4	20.00	0.08	2.3	2.4053	29.51	108.24	0.273 1
T2	120 - 100	2 1/2	20.00	0.08	1.6	4.9087	72.91	220.89	0.330 1
T3	100 - 80	3 1/2	20.03	6.68	91.6	9.6211	99.88	432.95	0.231 ¹
T4	80 - 60	3 3/4	20.03	6.68	85.4	11.044 7	131.89	497.01	0.265 ¹
T5	60 - 40	4	20.03	6.68	80.1	12.566 4	161.73	565.49	0.286 ¹
T6	40 - 20	4 1/4	20.03	6.68	75.4	14.186 3	189.92	638.38	0.298 ¹
T7	20 - 0	4 1/2	20.03	6.68	71.2	15.904 3	216.39	715.69	0.302 ¹

¹ P_u / ϕP_n controls

	Diagonal Design Data (Tension)								
Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	φPn	Ratio P _u
	ft		ft	ft		in²	K	K	ϕP_n
T1	140 - 120	3/4	5.99	2.91	186.2	0.4418	3.29	14.31	0.230 ¹
T2	120 - 100	7/8	5.99	2.87	157.6	0.6013	4.34	19.48	0.223 ¹
T3	100 - 80	L2x2x1/4	9.31	4.47	91.9	0.5394	5.10	23.47	0.217 ¹
T4	80 - 60	L2 1/2x2 1/2x3/16	10.65	5.13	82.0	0.5535	5.53	24.08	0.230 ¹
T5	60 - 40	L2 1/2x2 1/2x3/16	12.10	5.84	93.0	0.5535	6.03	24.08	0.250 ¹
T6	40 - 20	L2 1/2x2 1/2x1/4	13.64	6.60	105.9	0.7284	6.66	31.69	0.210 ¹
T7	20 - 0	L3x3x3/16	14.70	7.12	93.4	0.6945	6.95	30.21	0.230 1

¹ P_u / ϕP_n controls

	Top Girt Design Data (Tension)									
Section No.	Elevation	Size	L	Lu	KI/r	Α	Pu	φP _n	Ratio Pu	
	ft		ft	ft		in²	K	K	$\frac{1}{\Phi P_n}$	
T1	140 - 120	3/4	5.00	4.85	310.7	0.4418	0.33	14.31	0.023 ¹	
T2	120 - 100	7/8	5.00	4.79	262.9	0.6013	0.03	19.48	0.002 1	

¹ P_u / ϕP_n controls

Bottom Girt Design Data (Tension)									
Section No.	Elevation	Size	L	Lu	KI/r	Α	Pu	φP _n	Ratio P _u
	ft		ft	ft		in²	K	K	$\frac{P_u}{\phi P_n}$
T1 T2	140 - 120 120 - 100	3/4 7/8	5.00 5.00	4.85 4.79	310.7 262.9	0.4418 0.6013	0.30 0.57	14.31 19.48	0.021 ¹ 0.029 ¹

¹ P_u / ϕP_n controls

Section	Elevation	Component	Size	Critical	Р	$ olimits olimits P_{allow} $	%	Pass
No.	ft	Type		Element	K	K	Capacity	Fail
T1	140 - 120	Leg	1 3/4	3	-28.60	62.31	45.9	Pass
T2	120 - 100	Leg	2 1/2	48	-72.49	172.77	42.0	Pass
T3	100 - 80	Leg	3 1/2	93	-107.72	246.30	43.7	Pass
T4	80 - 60	Leg	3 3/4	114	-143.06	305.99	46.8	Pass
T5	60 - 40	Leg	4	135	-176.74	371.39	47.6	Pass
T6	40 - 20	Leg	4 1/4	156	-209.56	442.35	47.4	Pass
T7	20 - 0	Leg	4 1/2	177	-241.10	518.69	46.5	Pass
T1	140 - 120	Diagonal	3/4	15	-3.31	3.73	88.7	Pass
T2	120 - 100	Diagonal	7/8	60	-4.37	7.09	61.6	Pass
T3	100 - 80	Diagonal	L2x2x1/4	98	-5.23	14.95	35.0	Pass
		· ·					41.0 (b)	
T4	80 - 60	Diagonal	L2 1/2x2 1/2x3/16	119	-5.70	17.53	32.5	Pass
		· ·					48.2 (b)	
T5	60 - 40	Diagonal	L2 1/2x2 1/2x3/16	140	-6.25	13.51	46.3	Pass
		· ·					52.6 (b)	
T6	40 - 20	Diagonal	L2 1/2x2 1/2x1/4	161	-6.82	13.74	49.7	Pass
T7	20 - 0	Diagonal	L3x3x3/16	182	-7.39	14.80	50.0	Pass
		•					55.4 (b)	
T1	140 - 120	Top Girt	3/4	5	-0.34	2.22	15.Š [′]	Pass
T2	120 - 100	Top Girt	7/8	50	-0.02	4.21	0.5	Pass
T1	140 - 120	Bottom Girt	3/4	7	-0.29	2.22	12.9	Pass
T2	120 - 100	Bottom Girt	7/8	52	-0.64	4.21	15.2	Pass
							Summary	
						Leg (T5)	47.6	Pass
						Diagonal	88.7	Pass
						(Ť1)		
						Top Girt	15.5	Pass
						(T1)		
						Bottom Girt	15.2	Pass
						(T2)		
						Bolt	55.4	Pass
						Checks		
						RATING =	88.7	Pass

APPENDIX B BASE LEVEL DRAWING

	Black & Veatch Corp.
	6800 W. 115th St., Suite 2292
,	Overland Park, KS 66211
	Phone: (913) 458-6909
	FAX:

^{∞:} ES-001 Ch	eshireAWC	
Project: 403093		
	^{Drawn by:} Preechaya Sirisuwan	
Code: TIA-222-H	Date: 02/20/20	Scale: NTS
Path:	ourneld Charbins MC Structural Day LICharbins MMC Structural Anabele and	Dwg No. E-

APPENDIX C ADDITIONAL CALCULATIONS

Designed By: CHG Checked By:

Date: 3/2/2020

▶ References

ANCHOR ROD ANALYSIS

Project TIA Revision:

Rev-G Rev-H

Information Site Name: ES-001 Cheshire AWC

TIA-222-G 105% Allowable?

No Yes

Max Leg Reactions

Apply TIA-222-H Section 15.5?

Νo Yes

Compression

Uplift

Axial C := 246·kip

Axial U := 220·kip Shear U := 20·kip

Shear $C := 22 \cdot kip$

Anchor Rod Data

Diameter of Anchor Rod:

No

Yes

 $D := 1.25 \cdot in$

Anchor Rod Grade:

Number of Anchor Rods:

N := 6

Length from top of concrete to bottom of anchor rod leveling nut:

lar := 1.25·in

Threads in Shear Plane?:

Thread Series:

Coarse Fine 8-Thread

Consider Base Plate Grout?

Grout Factor n:

0.90 0.70 0.550.50

Threads per Inch:

n = 7

(Thread selection invalid if n = 0)

Rod Ultimate Strength:

 $Fu = 105 \cdot ksi$

Rod Yield Strength:

 $Fy = 81 \cdot ksi$

Anchor Rod Plastic

Section Modulus: (based on tension root

 $Z := \frac{1}{6} \cdot \left(D - \frac{0.9743 \text{in}}{n} \right)^3 = 0.228 \cdot \text{in}^3$

diameter)

Radius of Gyration:

 $r := \left(\frac{1}{4}\right) \cdot \left(D - \frac{0.9743 \text{ in}}{n}\right) = 0.278 \cdot \text{in}$

Net Area of Anchor Rod:

An := $\frac{\pi}{4} \cdot \left(D - \frac{0.9743 \text{ in}}{n} \right)^2 = 0.969 \cdot \text{in}^2$

Nominal Unthreaded

Area of Anchor Rod:

 $Ab := \frac{\pi}{4} \cdot (D)^2 = 1.227 \cdot in^2$

F1554-105 A687 A354-BC A354-BD A449 A572-42 A572-50 A572-55 A572-60 A572-65 A588-42 A588-46 A588-50 A36M-42 A36M-45 A36M-50 A36M-55 A500-50 A514-GR100 A53-B-35 A53-B-42 A607-60 A607-65 S-128

S-22

TIA-222-G/H Section 4.9.6.1

Date: 3/2/2020

TIA-222-G/H Section 4.9.6.1

TIA-222-H Section 4.5.4.2

Anchor Rod Design Capacities

Design Tension Strength:

$$Rnt := Fu \cdot An = 101.756 \cdot kip$$

$$\phi t = 0.75$$

$$\phi Rnt := \phi t \cdot Rnt = 76.317 \cdot kip$$

Design Compression Strength:

$$Rnc := Fy \cdot An = 78.498 \cdot kip$$

$$\phi c = 1$$

$$\Phi Rnc := \Phi c \cdot Rnc = 78.498 \cdot kip$$

Design Buckling Strength:

$$K_0 := 1.2$$

$$Fcr = 80.721 \cdot ksi$$

$$Rnb := Fcr \cdot An = 78.227 \cdot kip$$

$$\phi c = 1$$

$$\phi$$
Rnb := ϕ c·Rnb = 78.227·kip

Design Shear Strength:

 $Rnv = 64.427 \cdot kip$

$$Rnvc := 0.6 \cdot Fy \cdot 0.5 \cdot An = 23.549 \cdot kip$$

TIA-222-G/H Section 4.9.6.3

$$\phi v = 0.75$$
 $\phi c = 1$

$$\phi Rnv := \phi v \cdot Rnv = 48.32 \cdot kip$$

$$\phi Rnvc := \phi c \cdot Rnvc = 23.549 \cdot kip$$

Design Flexural Strength:

$$Rmn := Fy \cdot Z = 18.504 \cdot kip \cdot in$$

$$\phi f = 0.9$$

$$\phi Rmn := \phi f \cdot Rmn = 16.653 \cdot kip \cdot in$$

TIA-222-G/H Section 4.7.1

Date: 3/2/2020

Anchor Rod Loading Demands

Tension Demand:

$$Put := \frac{Axial_U}{N} = 36.667 \cdot kip$$

Compression Demand:

$$Puc := \frac{Axial_C}{N} = 41 \cdot kip$$

Shear Demand:

$$Vut := \frac{Shear_U}{N} = 3.333 \cdot kip$$

$$Vuc := \frac{Shear_C}{N} = 3.667 \cdot kip$$

Moment Demand:

$$Mut := 0.65 \cdot lar \cdot Vut = 2.708 \cdot kip \cdot in$$

$$Muc := 0.65 \cdot lar \cdot Vuc = 2.979 \cdot kip \cdot in$$

 $SR_g = 0.633$

Anchor Rod Interaction Check

TIA-222-G Section 4.9.9

$$\begin{split} SR_g := & \begin{array}{l} \frac{Put + \dfrac{Vut}{\eta}}{\varphi Rnt} & \text{if } \eta > 0.50 \\ \\ \dfrac{Put + \dfrac{Vut}{\eta}}{\varphi Rnt} & \text{if } \eta = 0.50 \land lar \leq D \land Put > Puc \\ \\ \dfrac{Puc + \dfrac{Vuc}{\eta}}{\varphi Rnt} & \text{if } \eta = 0.50 \land lar \leq D \land Put < Puc \\ \\ & \frac{\left(\dfrac{Vut}{\varphi Rnv}\right)^2 + \left(\dfrac{Put}{\varphi Rnt} + \dfrac{Mut}{\varphi Rmn}\right)^2 & \text{if } \eta = 0.5 \land lar > D \land Put < Puc \\ \\ & \frac{\left(\dfrac{Vuc}{\varphi Rnv}\right)^2 + \left(\dfrac{Puc}{\varphi Rnt} + \dfrac{Muc}{\varphi Rmn}\right)^2 & \text{if } \eta = 0.5 \land lar > D \land Put < Puc \\ \\ \end{array} \end{split}$$

Date: 3/2/2020

Anchor Rod Interaction Check

TIA-222-H Section 4.9.9

$$SR_Pt := \left[\left(\frac{Put}{\varphi Rnt} \right)^2 + \left(\frac{Vut}{\varphi Rnv} \right)^2 \text{ if } lar \le D \right]$$

$$\left(\frac{Put}{\varphi Rnt} \right)^2 + \left(\frac{Vut}{\varphi Rnv} \right)^2 \text{ if } D < lar \le 3 \cdot in \land Grout = "Yes"$$

$$\left(\frac{Put}{\varphi Rnt} + \frac{Mut}{\varphi Rmn} \right)^2 + \left(\frac{Vut}{\varphi Rnv} \right)^2 \text{ if } 3 \cdot in < lar \land Grout = "Yes"$$

$$\left(\frac{Put}{\varphi Rnt} + \frac{Mut}{\varphi Rmn} \right)^2 + \left(\frac{Vut}{\varphi Rnv} \right)^2 \text{ if } D < lar \land Grout = "No"$$

$$SR Pt = 0.236$$

$$\begin{split} SR_Pc := & \left(\frac{Puc}{\varphi Rnc} \right) + \left(\frac{Vuc}{\varphi Rnvc} \right)^2 \quad \text{if } lar \leq D \\ & \left(\frac{Puc}{\varphi Rnc} \right) + \left(\frac{Vuc}{\varphi Rnvc} \right)^2 \quad \text{if } D < lar \leq 3 \cdot \text{in} \wedge \text{Grout} = "Yes" \\ & \left(\frac{Puc}{\varphi Rnc} + \frac{Muc}{\varphi Rmn} \right) + \left(\frac{Vuc}{\varphi Rnvc} \right)^2 \quad \text{if } 3 \cdot \text{in} < lar \wedge \text{Grout} = "Yes" \\ & \left(\frac{Puc}{\varphi Rnc} + \frac{Muc}{\varphi Rmn} \right) + \left(\frac{Vuc}{\varphi Rnvc} \right)^2 \quad \text{if } D < lar \leq 4 \cdot D \wedge \text{Grout} = "No" \\ & \left(\frac{Puc}{\varphi Rnb} + \frac{Muc}{\varphi Rmn} \right) + \left(\frac{Vuc}{\varphi Rnvc} \right)^2 \quad \text{if } lar > 4 \cdot D \wedge \text{Grout} = "No" \end{split}$$

$$SR Pc = 0.547$$

$$SR := \begin{cases} SR_g & \text{if TIA} = "Rev-G" &= 0.521 \\ max(SR_Pt, SR_Pc) & \text{if TIA} = "Rev-H" \land S15 = "No" \\ \hline \frac{max(SR_Pt, SR_Pc)}{1.05} & \text{if TIA} = "Rev-H" \land S15 = "Yes" \end{cases}$$

Eversource #: ES-001 Site Name:CheshireAWC Designed By: CHG Checked By:

Date: 3/2/2020

Anchor Rod Results

Axial Tension Demand: Put = $36.667 \cdot \text{kip}$

Axial Tension Capacity: $\phi Rnt = 76.317 \cdot kip$

Axial Compression Demand: $Puc = 41 \cdot kip$

Axial Compression Capacity: $\phi Rnc = 78.498 \cdot kip$

Shear Tension Demand: $Vut = 3.333 \cdot kip$

Tension Shear Capacity: $\phi Rnv = 48.32 \cdot kip$

Shear Compression Demand: $Vuc = 3.667 \cdot kip$

Compresison Shear Capacity: $\phi R_{nvc} = 23.549 \cdot kip$

Moment Tension Demand: $M_{uf} = \text{"Moment Not Considered"} \cdot \text{kip} \cdot \text{in}$

Moment Compression Demand: $M_{HC} = \text{"Moment Not Considered"} \cdot \text{kip} \cdot \text{in}$

Moment Capacity: $\phi R_{mn} = \text{"Moment Not Considered"} \cdot \text{kip} \cdot \text{in}$

Governing Stress Ratio

 $SR = 52.052 \cdot \%$

Check_{SR} = "Passing"

SST Unit Base Foundation

ES-001 CheshireAWC

TIA-222 Revision:

Top & Bot. Pad Rein. Different?:	
Tower Centroid Offset?:	
Block Foundation?:	

Superstructure Analysis Reactions			
Global Moment, M:	2836	ft-kips	
Global Axial, P :	36	kips	
Global Shear, V:	36	kips	
Leg Compression, P _{comp} :	246	kips	
Leg Comp. Shear, V _{u_comp} :	22	kips	
Leg Uplift, P _{uplift} :	220	kips	
Leg Uplift. Shear, V _{u_uplift} :	20	kips	
Tower Height, H :	140	ft	
Base Face Width, BW :	14	ft	
BP Dist. Above Fdn, bp _{dist} :	4	in	

Pier Properties			
Pier Shape:	Circular		
Pier Diameter, dpier :	4.0	ft	
Ext. Above Grade, E :	0.50	ft	
Pier Rebar Size, Sc :	7		
Pier Rebar Quantity, mc:	26		
Pier Tie/Spiral Size, St :	4		
Pier Tie/Spiral Quantity, mt:	9		
Pier Reinforcement Type:	Tie		
Pier Clear Cover, cc _{pier} :	3	in	

Pad Properties		
Depth, D:	5.50	ft
Pad Width, W :	32.00	ft
Pad Thickness, T :	1.50	ft
Pad Rebar Size (Bottom), Sp :	9	
Pad Rebar Quantity (Bottom), mp :	32	
Pad Clear Cover, cc_{pad}:	3	in

Material Properties		
Rebar Grade, Fy :	60	ksi
Concrete Compressive Strength, F'c:	3	ksi
Dry Concrete Density, δ c :	150	pcf

Soil Properties			
Total Soil Unit Weight, γ :	125	pcf	
Ultimate Gross Bearing, Qult:	6.000	ksf	
Cohesion, Cu :	0.000	ksf	
Friction Angle, $oldsymbol{arphi}$:	34	degrees	
SPT Blow Count, Noblows:			
Base Friction, μ :	0.6		
Neglected Depth, N:	3.5	ft	
Foundation Bearing on Rock?	No		
Groundwater Depth, gw:	1.5	ft	

Foundation Analysis Checks				
	Capacity	Demand	Rating*	Check
Lateral (Sliding) (kips)	266.99	36.00	12.8%	Pass
Bearing Pressure (ksf)	4.50	1.01	21.3%	Pass
Overturning (kip*ft)	7557.25	3064.00	40.5%	Pass
Pier Flexure (Comp.) (kip*ft)	1555.30	99.00	6.1%	Pass
Pier Flexure (Tension) (kip*ft)	1028.72	90.00	8.3%	Pass
Pier Compression (kip)	5998.68	253.83	4.0%	Pass
Pad Flexure (kip*ft)	1775.18	796.77	42.7%	Pass
Pad Shear - 1-way (kips)	419.85	131.37	29.8%	Pass
Pad Shear - Comp 2-way (ksi)	0.164	0.089	51.6%	Pass
Flexural 2-way (Comp) (kip*ft)	931.83	59.40	6.1%	Pass
Pad Shear - Tension 2-way (ksi)	0.164	0.087	50.7%	Pass
Flexural 2-way (Tension) (kip*ft)	931.83	54.00	5.5%	Pass

*Rating per TIA-222-H Section 15.5

Soil Rating*:	40.5%
Structural Rating*:	51.6%

<-- Toggle between Gross and Net

TIA-222- H ACI: 2014

	PHYSICAL PARAMETERS			
Pier Height Above Water Table:	$h_{pler_above} = (MIN(gw,D-T) + E)$	h _{pier_above} =	2	ft
Pier Height Below Water Table:	$h_{pler_below} = ((D-T) - MIN(gw,D-T))$	h _{pier_below} =	2.5	ft
Buoyant Weight of Pier:	$W_{pier} = \frac{(\pi/4) * (dpier^2) * hpier_above * \delta c / 1000 + (\pi/4) * (dpier^2) * hpier_below * (\delta c-62.4) / 1000}{(\delta c-62.4) / 1000}$	W _{pier} =	6.52	kips
Pad Height Above Water Table: Pad Height Below Water Table:	h _{pad_above} = IF(gw<=D-T,0,IF(gw>D,T,T-(D-gw)))	h _{pad_above} =	0	ft
rau neight below Water Table.	$h_{pad_below} = (T-IF(gw <= D-T, 0, IF(gw > D, T, T-(D-gw))))$	h _{pad_below} =	1.5	ft
Buoyant Weight of Pad:	W _{pad} = (W^2) * hpad_above * δc / 1000 + (W^2) * hpad_below * (δc-62.4) / 1000	W _{pad} =	134.55	kips
Concrete weight:	$W_c = V * \delta c$	W _c =	154.1	kips
Soil weight:	$W_s = (D - T) * (W^2 - 3*(dpier^2 / 4 * \pi)) * \gamma$	W _s =	339.3	kips
EIA/TIA-222 Load Factor:	LF = 1	LF =	1.00	
	LATERAL RESISTANCE			
Total Nominal Pp Resistance:	P _{p_total} = Pp_pier *Ap_piers + Pp_pad * Ap_pad	$P_{p_total} =$	73.34	kips
Factored Total Weight for Compression:	$P_{factored_comp} = \phi D * (Wc + Ws + P / 1.2)$	$P_{factored_comp} =$	471.07	kips
Nominal Base Friction Resistance (Comp):	$R_{s_comp} = P * \mu$	$R_{s_comp} =$	282.64	kips
Lateral Resistance (Comp): Check	$\Phi Vn = \Phi s * (Pp_total + Rs_comp)$ 266.99 kips >= Vu = 36.00 kips	ΦVn =	266.99 13.48%	kips OK
CHECK THE	200.33 kips /- Vu - 30.00 kips	iorino.	13.40 /	OK.
	PIER REINFORCEMENT			
Diar Crass Sectional Areas	Pier / Column Compression	۸ -	4000.50	:-2
Pier Cross-Sectional Area: Support Area (2H:1V Slope):	$A_1 = dpier^2 * \pi/4$ $A_2 = (MIN((2^*(W/2-(2/3)^*BW^*cos(30^\circ)+Offset)),(W-BW),dpier+4*T))^{2*}(\pi/4)$	A ₁ =	1809.56 11309.73	in² in²
Compressive Resistance (H/D < 3):	$R_2 = \text{(min((2 (w/2-(2/3) BW COS(30)+Oliset)),(W-BW),upler+4 1))}^- \text{(ii/4)}$ $\Phi P_{n1} = 0.65^{\circ}0.85^{\circ} \text{Fc}^{\circ} \text{A} 1 * Min(\(\lambda\)(\\lambda\)(\(\lambda\)(\\lambda\)(\(\lambda\)(\\\lambda\)(\(\lambda\)(\\\lambda\)(\(\lambda\)(\\\lambda\)(\(\lambda\)(\\\lambda\)(\(\lambda\)(\\\lambda\)(\(\lambda\)(\\\lambda\)(\(\lambda\)(\\\lambda\)(\\\lambda\)(\(\lambda\)(\\\lambda\)(\\\\lambda\)(\\\\lambda\)(\\\\lambda\)(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\$	A ₂ = ΦP _{n1} =	5998.68	kips
Rebar:	s _{_pier} = 7	₹ n1	3330.00	кіро
	$m_{pier} = 26$ $A_{b,pier} = 0.6$ in^2			
Provided area of steel:	A _{s_pier} = Ab_pier * m_pier	$A_{s_pier} =$	15.60	in ²
Compressive Resistance (H/D >= 3):	$\Phi P_{n2} = 0.65 * 0.8 * (0.85 * (F/c) * (A_1 - As_pier) + ((Fy) * As_pier))$	ΦP _{n2} =	2865.51	kips
	H/D = (D - T + E) / dpier	H/D =	1.13	
Utilized Compressive Resistance:	$\Phi P_n = Pn1$	ΦP _n =	5998.68	kips
Applied Compressive Force:	P _u = Pcomp + 1.2 * Wpier	P _u =	253.83	kips
Check $\Phi P_n =$	5998.68 kips >= P _u = 253.83 kips	RATING:	4.23%	ОК
	Pier Flexure			
Cross-sectional area:	$A_g = dpier^2 * \pi / 4$	$A_g =$	1809.56	in²
Min. area of steel (pier):	$A_{emin_pier} = Ag * 0.005$	A _{smin_pier} =	9.05	in ²
Cage Diameter:	$d_o = dpier - 2 * cc - 2 * tie - d_b$	d _o =	40.13	in
Check $A_{s_pier} =$	15.60 in^2 >= $A_{smin_pler} = 9.05 in^2$			OK
Applied Moment to DSMC (Compression):	$M_{u_comp} = IF(T>D,E,(D-T+E)) * Vu_comp$	M _{u_comp} =	99.00	ft-kips
Pier Moment Capacity (Compression):	$\Phi M_{n_comp} = from DSMC$	ФМ _{п_comp} =	1555.30	ft-kips
Check M _{u_comp} =	99.00 ft-kips >= ΦM _{n_comp} = 1555.30 ft-kips	RATING:	6.37%	OK
Applied Moment to DSMC (Tension):	$M_{u_tension} = IF(T>D,E,(D-T+E)) * Vu_uplift$	$M_{u_tension} =$	90.00	ft-kips
Pier Moment Capacity (Tension):	ΦM _{n_tension} = from DSMC	ΦM _{n_tension} =	1028.72	ft-kips
Check M _{u_comp} =	90.00 ft-kips \rightarrow $\Phi M_{n_{comp}} = 1028.72$ ft-kips	RATING:	8.75%	ОК
	PAD REINFORCEMENT			

PHYSICAL PARAMETERS

PAD REINFORCEMENT

Tower Cetroid offset from Fdn Centroid	t: Offset = 0	Offset =	0.00	ft	
Distance from Leg to Edge of Pac	$L_{\text{edge}} = (1/2)^*W - \text{Offset} - (1/3)^*BW^*\sin(60^\circ)$	L _{edge} =	11.96	ft	
Overturning Moment (0.9*D LC)	$M_{o_0.0.9} = M + V * (D + E + bpdist/12) + (0.9/1.2)*(P+3*Wpier*1.2)*Offset$	M _{o_0.9} =	3058.00	ft-kips	
Overturning Moment (1.2*D LC)	$M_{o_{-}1.2} = M + V * (D + E + bpdist/12) + (1.2/1.2)*(P+3*Wpier*1.2)*Offset$	$M_{o_{-}1.2} =$	3058.00	ft-kips	
Compressive Load for Bearing	$P_{\text{bearing}} = Wc + Ws + P / 1.2$	P _{bearing} =	523.41	kips	
Load Eccentricity (0.9*D LC	$e_{c_{0.9}} = Mo / 0.9$ *Pbearing	e _{c_0.9} =	6.49	ft	L/6 < e <= L/
Load Eccentricity (1.2*D LC	$e_{c_{-1}.2} = Mo / 1.2$ *Pbearing	e _{c_1.2} =	4.87	ft	e <= L/6
Elastic Section Modulus	$S = W^2 / 6$	S =	5461.33	ft³	
Positive Pressure (0.9*D LC)	P _{pos_st_0.9} = 0.9*Pbearing / Area + Mo / S	P _{pos_st_0.9} =	1.02	ksf	
Positive Pressure (1.2*D LC)	P _{pos_st_1.2} = 1.2*Pbearing / Area + Mo / S	P _{pos_st_1.2} =	1.17	ksf	
Negative Pressure (0.9*D LC)	Pneg.st_0.9 = 0.9*Pbearing / Area - Mo / S Note: The stress resultant is NOT within the kern. Bearing area has been adjusted below.	P _{neg_st_0.9} =	-0.10	ksf	
Negative Pressure (1.2*D LC,		P _{neg_st_1.2} =	0.05	ksf	
Adjusted Pressure (0.9*D LC)		$P_{adj_0.9} =$	1.03	ksf	
Adjusted Pressure (1.2*D LC)	$P_{adj_{1,2}} = (2 * 1.2 * Pbearing) / (3 * W * (W / 2 - ec_1.2))$	P _{adj_1.2} =	1.18	ksf	
Maximum Pressure (0.9*D LC	$q_{u_st_0.9} = IF(Pneg \ge 0, Ppos, Padj)$	$q_{u_st_0.9} =$	1.03	ksf	
Maximum Pressure (1.2*D LC	$q_{u_st_1.2} = IF(Pneg \ge 0, Ppos, Padj)$	q _{u_st_1.2} =	1.17	ksf	
	One-Way Shear				
Rebai	$s_{pad} = 9$ Equally spaced, top and $d_{b_pad} = 1.128$ in $m_{pad} = 32$ bottom, both directions. $A_{b_pad} = 1$ in e^2				
Effective depth	$d_c = T - cc - 1.5 * db$	d _c =	13.3	in	
Distance from Edge of Pad to Column Face	d' = Ledge - dpier/2	d' =	10.0	ft	
Distance from Edge of Pad to dc from Colum Face		d" =	8.85	ft	
Distance to qs (0.9D LC)	L'_0.9 = (W/2-ec_0.9)*3	L' _0.9 =	28.53	ft	
Distance to qs (1.2D LC)	L'_12 = $(W/2 - ec_1.2) * 3$	L'_ _{1.2} =	33.39	ft	
Slope of qs (0.9*D LC)	sq _{s_0.9} = $IF(L' > W, (Ppos - Pneg) / W, qu / L')$	sq _{s_0.9} =	0.04	kcf	
Slope of qs (1.2*D LC)	sq _{s_1,2} = $IF(L' > W, (Ppos - Pneg) / W, qu / L')$	$sq_{s_1.2} =$	0.03	kcf	
Nominal Shear Strength	$V_{n1} = 2 * W * \sqrt{(F'c*1000)} * dc$	V _{n1} =	559.80	kips	
Shear Reduction Factor	$\varphi_{\text{shear}} = 0.75$	ϕ_{shear} =	0.75		
Design Shear Strength	$\phi V_{n1} = \phi shear * V_{n1}$	$\phi V_{n1} =$	419.85	kips	
Resisting Weight above Critical Section	1: Thickness (ft) Unit Weight (kip) (0.9*D LC) (1.2*D LC) Soil Above Water Table: 1.5 0.125 47.79 63.72 Soil Below Water Table: 2.5 0.063 39.89 53.18 Pad Above Water Table: 0 0.150 0.00 0.00 Pad Below Water Table: 1.5 0.088 33.49 44.65 Total: 161.55				
Applied Shear (0.9*D LC): V _{u1_0.9} = 'Pad Shear and Moment Diagrams'\\$AY\\$21	V _{u1_0.9} =	129.00	kips	
Applied Shear (1.2*D LC): V _{u1_12} = 'Pad Shear and Moment Diagrams'!\$CG\$21	$V_{u1_{1.2}} =$	131.15	kips	
Check ϕV_{n1}	= 419.85 kips >= V _{u1} = 131.15 kips	RATING:	31.24%		OK
	Two-Way Shear (Compression)				
Avg. Effective Depth for Punching Shea	$d_{c,2} = T - cc - AVERAGE(0.5 * db, 1.5 * db)$	d _{c_2} =	13.87	in	
Radius of Two-Way Shear Plane	r _{2way} = 0.5*(dpier + dc_2/12)	r _{2way} =	2.58	ft	
Length to Edge of Pad from Pier Centroid		L _{edge2} =	7.92	ft	
Length of Shear Perimeter to Deduc	t: $s = r_{2way} * (2 * ACOS(((r_{2way} - MAX(r_{2way} - L_{edge}, 0))/r_{2way}))$	s =	0.00	ft	
Pier Shape		Pier Shape:	Circular		
Pier Diamete.	·	d _{pier1} =	48.00	in	

 $d_{pier_sq} = \sqrt{\pi} / 2 * dpier$

Equivalent Square Pier Diameter:

d_{pier_sq} = 42.54 in

Factor of transfer of Moment:	$Y_f = 1/(1+(2/3)^* \sqrt{(dpier1/dpier1)})$	$Y_f =$	0.60	
Factor of transfer of eccentricity of Shear:	$Y_v = 1 - Y_f$	Y _v =	0.40	
Moment applied at base of Pier:	$M_v = M_{u_comp} * 12 in / ft$	M _v =	1188.00	kip*in
Circular Critical Perimeter:	P _{crit_cir} = (dpier+dc_2/12)*PI() - \$L\$171)*12	P _{crit_cir} =	194.38	in
Equivalent Square Critical Perimeter 1:	P _{crit_sq_1} = 4*(dpier_sq+dc_2)	P _{crit_sq_1} =	225.64	in
Equivalent Square Critical Perimeter 2:	$P_{crit_sq_2} = 2*(dpier_sq + dc_2) + (W*12-BW*12)$	$P_{crit_sq_2} =$	328.82	in
Equivalent Square Critical Perimeter 3:	$P_{crit_sq_3} = 2*(dpier_sq + dc_2 + (W - BW*COS(RADIANS(30)) - Ledge2)*12)$	P _{crit_sq_3} =	399.83	in
Equivalent Square Critical Perimeter 4:	$P_{crit_sq_4} = 2 * (dpier_sq + dc_2 + Ledge2 * 12)$	$P_{crit_sq_4} =$	302.83	in
Equivalent Square Critical Perimeter 5:	$P_{\text{crit_sq_5}} = \text{dpier_sq} + \text{dc_2} + 0.5^*(\text{W-BW})^*12 + (\text{W - BW * COS(RADIANS(30))} - \text{Ledge}$	P _{crit_sq_5} =	307.91	in
Area of Concrete in Shear:	$A_c = ((dpier1 + dc_2)^*PI())^* dc_2$	A _c =	2696.39	in²
Eq. Square Area of Concrete in Shear (1):	$A_{c_sq_1} = P_{orit_sq_1} * d_{c_2}$	$A_{c_sq_1} =$	3130.13	in²
Eq. Square Area of Concrete in Shear (2):	$A_{c_2q_2} = P_{crit_2q_2} * d_{c_2}$	$A_{c_sq_2} =$	4561.42	in ²
Eq. Square Area of Concrete in Shear (3):	$A_{c_2q_23} = P_{crit_2q_23} * d_{c_2}$	$A_{c_sq_3} =$	5546.40	in²
Eq. Square Area of Concrete in Shear (4):	$A_{c_sq_4} = P_{cnt_sq_4} * d_{c_2}$	$A_{c_sq_4} =$	4200.89	in ²
Eq. Square Area of Concrete in Shear (5):	$A_{c_2q_25} = P_{crit_2q_25} * d_{c_2}$	$A_{c_sq_5} =$	4271.38	in²
Polar Moment of Inertia at assumed Critical Section:	$\label{eq:Jc_cir} J_{c_cir} = \frac{dc_2*(dpier1+dc_2)^3/6 \ + ((dpier1+dc_2)^*(dc_2^3))/6 \ + \\ (dc_2*(dpier1+dc_2))^*(dpier1+dc_2)^2/(IF(\$L\$169=0,2,4))}$	J _{c_cir} =	2217961.65	in ⁴
Eq. Square Polar Moment of Inertia at assumed Critical Section 1:	$J_{c_sq_1} = \frac{(dc_2*(dpier_sq+dc_2)^3)/6 + ((dpier_sq+dc_2)*(dc_2^3))/6 + (dc_2*(dpier_sq+dc_2)*(dpier_sq+dc_2)^2)/2}{(dc_2*(dpier_sq+dc_2)*(dpier_sq+dc_2)^2)/2}$	J _{c_sq_1} =	1685206.90	in⁴
Eq. Square Polar Moment of Inertia at assumed Critical Section:	$J_{c_sq_2} = \frac{(dc_2^*(dpier_sq+dc_2)^3)/12 + ((dpier_sq+dc_2)^*(dc_2^3))/12 + ((dc_2^*(dpier_sq+dc_2)^*(dpier_sq+dc_2)^2)/2}{(dc_2^*(dpier_sq+dc_2)^*(dpier_sq+dc_2)^2)/2}$	$J_{c_sq_2} =$	1465144.51	in ⁴
Eq. Square Polar Moment of Inertia at assumed Critical Section:	$\label{eq:Jc_sq_3} J_{c_sq_3} = \frac{(dc_2*(dpier_sq+dc_2)^3)/6 + ((dpier_sq+dc_2)*(dc_2^3))/6 + (dc_2*(dpier_sq+dc_2)*(dpier_sq+dc_2)^2)/4}{(dc_2*(dpier_sq+dc_2)*(dpier_sq+dc_2)^2)/4}$	J _{c_sq_3} =	1062665.84	in⁴
Eq. Square Polar Moment of Inertia at assumed Critical Section:	$\label{eq:Jcsq4} J_{c_sq_4} = \frac{(dc_2*(dpier_sq+dc_2)^3)/6 + ((dpier_sq+dc_2)*(dc_2^3))/6 + (dc_2*(dpier_sq+dc_2)^*(dpier_sq+dc_2)^2)/4}{(dc_2*(dpier_sq+dc_2)^*(dpier_sq+dc_2)^2)/4}$	J _{c_sq_4} =	1062665.84	in ⁴
Eq. Square Polar Moment of Inertia at assumed Critical Section:	$J_{c_sq_5} = \frac{(dc_2*(dpier_sq+dc_2)^3)/12 + ((dpier_sq+dc_2)*(dc_2^3))/12 + ((dc_2*(dpier_sq+dc_2)*(dpier_sq+dc_2)^2)/4}{(dc_2*(dpier_sq+dc_2)*(dpier_sq+dc_2)^2)/4}$	J _{c_sq_5} =	842603.45	in⁴
Applied Shear Force (1.2*D LC):	$V_{u_{\perp}1.2}$ = 1.2*W _{pler} + 1.2 * IF(OR(\$B\$1="G",\$B\$1="H"), P _{comp} / 1.2, P _{comp})	V _{u_1.2} =	253.83	kip
Controlling Shear Stress (1.2*D LC):	$V_{u_{12,controlling}} = V_{u_{12}} / A_c + (Y_v * M_v * (d_{pler1} + dc_2)/2) / J_{c_1}$	V _{u_1.2_controlling} =	0.101	ksi
Eq. Sq. Controlling Shear Stress (1.2*D LC):	$V_{u_{12}_controlling_sq} = V_{u_{12}} / A_c + (Y_v * M_v * (d_{pler_sq} + dc_2)/2) / J_c$	$V_{u_1.2_controlling_sq} =$	0.089	ksi
Shear Stress Capacity:	$\Phi v_n = \varphi s * 4 * (\sqrt{F'}c*1000) / 1000$	$\Phi v_n =$	0.164	ksi

	Two-way Stiear (Compression, Flexural Component) [BOTTOM REINFORCEME	IN I J		
Distance To Outside Edge:	dist_outside = MIN((W-BW)/2,BW/2)*2	dist_outside =	14	ft
Effective Pad Width:	b_pad = MIN(dpier+3*T,W,dist_outside)	b_pad =	8.50	ft
Bar Spacing:	B_{s_pad} = Bs_pad (see design checks below)	$B_{s_pad} =$	12.16	in
Fraction of Bars in Effective Width:	m_effective = IF(b_pad=W,mp,12*b_pad/Bs_pad)	m_ _{effective} =	8.39	
Area of Steel in Effective Width:	$A_{\text{2_effective}} = \text{VLOOKUP(Sp,ReflA2:C12,3,0)*m_slab}$	$A_{s_effective} =$	8.39	in²
Depth of Equivalent Rectangular Stress Block:	a_effective = A _{s_effective} * Fy / (0.85 * F'c * b_ _{slab} *12)	a_effective =	1.94	in
	β_{pad} = β_{pad} (see design checks below)	β_{pad} =	0.85	
Distance from Top to Nuetral Axis:	$c_{\text{effective}} = a_{\text{effective}} / \beta_{\text{pad}}$	$c_{\text{_effective}} =$	2.28	
Effective depth:	dc = dc (see One-Way Shear check above)	dc =	13.308	in
Modulus of Elasticity of Steel:	$E_s = 29000 \text{ ksi}$	E _s =	29000	ksi

	Two-Way Shear (Uplift)			
Check $\phi M_{n_{effective}}$	= 931.83 ksi >= Yf*M _{u_comp} = 59.40 ksi	RATING:	6.37%	ОК
Applied Moment	$Yf^*M_{u_comp} = Yf^*M_{u_comp}$	$Yf^*M_{u_comp} =$	59.4	ft-kips
Design Flexural Strength	$\phi M_{n_effective_top} = \phi flex_effective * Mn_effective$	$\phi M_{n_effective_top} =$	465.91	ft-kips
Nominal Flexural Strength	$M_{n_effective_top} = A_{s_effective_top} * (F_y) * (dc_top - a_effective_top / 2) * (1/12)$	$M_{n_effective_top} =$	517.68	ft-kips
Flexure Strength Reduction Factor	$\phi flex_{_effective_top} = \ \ F(\epsilon s >= \epsilon t, 0.9, F(\epsilon s <= \epsilon c, 0.65, 0.65 + (0.9 - 0.65)^*((\epsilon s - \epsilon c)/(\epsilon t - \epsilon c)))) $	φflex_ _{effective_top} =	0.9	
Strain in Steel	$\epsilon_{s_effective_top} = 0.003 * (dc_top-c_effective_top) / c_effective_top$	$\epsilon_{s_effective_top} \! = \!$	0.01453	in/in
Effective depth	dc_top = T*12 - ccpad - 1.5 * VLOOKUP(sptop,Refl\$A\$2:\$C\$12,2,0)	d _{c_top} =	13.308	in
Distance from Top to Nuetral Axis	C_effective_top = a_effective_top / βpad	C_effective_top =	2.28	
Depth of Equivalent Rectangular Stress Block	: a_effective_top = As_effective_top * Fy / (0.85 * F'c * b_siab *12)	a_effective_top =	1.94	in
Area of Steel in Effective Width	A _{s_effective_top} = VLOOKUP(Sptop,Refl\$A\$2:\$C\$12,3,0)*m_slab	$A_{s_effective_top} =$	8.39	in²
Fraction of Bars in Effective Width	m_effective_top = IF(b_pad=W,mp,12*b_pad/Bs_pad_top)	m_effective_top =	8.39	
Bar Spacing	$B_{s_pad_lop} = IF(Input!\$S\$6=TRUE,(W*12-2*ccpad-VLOOKUP(sptop,Ref!\$A\$2:\$C\$12*Ccpad-VLOOKUP(sptop,Ref!\$A\$2:\C*Ccpad-VLOOKUP(sptop,Ref!\$A\$2:\C*Ccpad-VLOOKUP(sptop,Ref!\$A\$2:\C*Ccpad-VLOOKUP(sptop,Ref!\$A\$2:\C*Ccpad-VLOOKUP(sptop,Ref!\$A\$2:\C*Ccpad-VLOOKUP(sptop,Ref!\$A\$2:\C*Ccpad-VLOOKUP(sptop,Ref!\$A\$2:\C*Ccpad-VLOOKUP(sptop,Ref!A*Ccpad-VLOOKUP(sptop,Ref!$A$$	B _{s_pad_top} =	8.50	in
	Two-Way Shear (Compression, Flexural Component) [TOP REINFORCEMENT]			
Design Flexural Strength	$\phi M_{n_effective}$ = $\phi flex_effective * Mn_effective$	$\phi M_{n_effective} =$	465.91	ft-kips
Nominal Flexural Strength	$M_{n_effective} = A_{s_effective} * (F_y) * (dc - a_{effective} / 2) * (1/12)$	M _{n_effective} =	517.68	ft-kips
Flexure Strength Reduction Factor	$\phi flex_{\tt effective} = \ \ F(\epsilon s >= \epsilon t, 0.9, F(\epsilon s <= \epsilon c, 0.65, 0.65 + (0.9 - 0.65)^*((\epsilon s - \epsilon c)/(\epsilon t - \epsilon c)))) $	φflex_ _{effective} =	0.9	
Tension-Controlled Strain Limit.	$\epsilon_t = 0.005$	$\epsilon_{\rm t}$ =	0.00500	in/in
Compression-Controlled Strain Limit.	: $\epsilon_c = F_y / E_s$	ε _c =	0.00207	in/in
Strain in Steel	$\epsilon_{s_effective} = 0.003 * (dc-c) / c$	$\epsilon_{s_effective} =$	0.01453	in/in

Two-Way Shear (Uplift)							
Moment applied at base of Pier:	$M_{v_tens} = M_{u_tension} * 12 in / ft$	M _{v_tens} =	1080.00	kip*in			
Diameter of Longitudinal Rebar Cage:	$\label{eq:d_cage} \begin{split} \textbf{d}_{_\text{cage}} &= \text{dpier*12-2*(ccpier+VLOOKUP(St,Refl\$A\$2:\$C\$12,2,0))-} \\ \textbf{VLOOKUP(Sc,Refl\$A\$2:\$C\$12,2,0)} \end{split}$	d_cage=	40.13	in			
Eq. Sq. Diameter of Longitudinal Rebar Cage:	d_cage_sq = SQRT(Pl())/2*d_cage	d_cage_sq=	35.56	in			
Steel Embedment Length:	L _{embed} = dc_2 (see One-Way Shear check above)	L _{embed} =	13.87	in			
Radius of Two-Way Shear Plane:	$r_{2way_lens} = 0.5*(d_cage/12 + Lembed/12)$	r _{2way_tens} =	2.25	ft			
	$r_{2way_tens_sq} = 0.5*(SQRT(PI())/2*d_cage/12 + Lembed/12)$	r _{2way_tens_sq} =	2.06	ft			
Length of Shear Perimeter to Deduct:	$s_{tens} = \frac{r_tens*RADIANS(2*ACOS(((r_tens-MAX(r_tens-Ledge,0))/r_tens))*180/PI())}{tens-MAX(r_t$	s _{tens} =	0.00	ft			
Eq. Sq. Length of Shear Perimeter to Deduct:	$s_{tens_sq} = 0$	$s_{tens_sq} =$	0.00	ft			
Circular Critical Perimeter:	P _{crit_tens} = ((d_cage/12+Lembed/12)*PI() - stens)*12	P _{crit_tens} =	169.64	in			
Equivalent Square Critical Perimeter 1:	P _{crit_tene_sq_1} = 4*(d_cage_sq+Lembed)	P _{crit_tens_sq_1} =	197.73	in			
Equivalent Square Critical Perimeter 2:	$P_{crit_tens_sq_2} = 2*(d_cage_sq + Lembed) + (W*12-BW*12)$	P _{crit_tens_sq_2} =	314.86	in			
Equivalent Square Critical Perimeter 3:	$P_{\text{crit_tens_sq_3}} = 2*(d_\text{cage_sq} + \text{Lembed}) + (\text{W - BW * COS(RADIANS(30))} - \text{Ledge2})*12)$	P _{crit_tens_sq_3} =	385.87	in			
Equivalent Square Critical Perimeter 4:	P _{crit_tens_sq_4} = 2 * (d_cage_sq + Lembed + Ledge2 * 12)	P _{crit_tens_sq_4} =	288.87	in			
Equivalent Square Critical Perimeter 5:	$P_{\text{crit_tens_sq_5}} = \text{d_cage_sq} + \text{Lembed} + 0.5^*(\text{W-BW})^*12 + (\text{W - BW * COS(RADIANS(30))} - 0.0000000000000000000000000000000000$	P _{crit_tens_sq_5} =	300.93	in			
Area of Concrete in Shear:	A _{c_tens} = Pcrit_tens*Lembed	A _{c_tens} =	2353.20	in ²			
Equivalent Square Area of Concrete in Shear:	A _{c_tens_sq1} = Pcrit_tens_sq1*Lembed	$A_{c_tens_sq1} =$	2742.87	in²			
	A _{c_tens_sq2} = 'Pcrit_tens_sq2*Lembed	A _{c_tens_sq2} =	4367.79	in ²			
	A _{c_tens_sq3} = Pcrit_tens_sq3*Lembed	$A_{c_tens_sq3} =$	5352.77	in²			
	A _{c_tens_sq4} = Pcrit_tens_sq4*Lembed	A _{c_tens_sq4} =	4007.26	in²			
	A _{c_tens_sq5} = Pcrit_tens_sq5*Lembed	$A_{c_tens_sq5} =$	4174.56	in ²			

Polar Moment of Inertia at assumed Critical Section:	$J_{c_tens} = \frac{\text{Lembed*}(d_cage+Lembed)^3/6 + ((d_cage+Lembed)^2/(Lembed^3))/6 + (Lembed*(d_cage+Lembed))^*(d_cage+Lembed)^2/(IF(Ledge2=0,2,4))}{\text{Lembed*}(d_cage+Lembed))^*(d_cage+Lembed)^2/(IF(Ledge2=0,2,4))}$	J_{c_tens} =	934013.70	in ⁴
Eq. Square Polar Moment of Inertia at assumed Critical Section 1:	$ (Lembed^*(d_cage_sq+Lembed)^3)/6 + \\ J_{c_tens_sq_1} = ((d_cage_sq+Lembed)^*(Lembed^3))/6 + \\ (Lembed^*(d_cage_sq+Lembed)^*(d_cage_sq+Lembed)^2)/2 $	$J_{c_tens_sq_1} =$	1139031.98	in ⁴
Eq. Square Polar Moment of Inertia at assumed Critical Section:		J _{c_tens_sq_2} =	988405.83	in ⁴
Eq. Square Polar Moment of Inertia at assumed Critical Section:		J _{c_tens_sq_3} =	720142.14	in ⁴
Eq. Square Polar Moment of Inertia at assumed Critical Section:	$ J_{c_tens_sq_4} = $	J _{c_tens_sq_4} =	720142.14	in ⁴
Eq. Square Polar Moment of Inertia at assumed Critical Section:	$ J_{c_lens_sq_5} = $	J _{c_tens_sq_5} =	569515.99	in ⁴
Applied Shear Force (0.9*D LC):	$V_{u_0.9_tens} = MAX(-0.9"Wpier + 0.9 * IF(OR(\$B\$1="G",\$B\$1="H"), Puplift / 0.9, Puplift), 0) + (-0.9 * IF(OR(\$B\$1="G",\$B\$1="H"), Puplift / 0.9, Puplift), 0) + (-0.9 * IF(OR(\$B\$1="G",\$B\$1="H"), Puplift / 0.9, Puplift), 0) + (-0.9 * IF(OR(\$B\$1="G",\$B\$1="H"), Puplift / 0.9, Puplift), 0) + (-0.9 * IF(OR(\$B\$1="G",\$B\$1="H"), Puplift / 0.9, Puplift), 0) + (-0.9 * IF(OR(\$B\$1="G",\$B\$1="H"), Puplift / 0.9, Puplift), 0) + (-0.9 * IF(OR(\$B\$1="G",\$B\$1="H"), Puplift / 0.9, Puplift), 0) + (-0.9 * IF(OR(\$B\$1="G",\$B\$1="H"), Puplift / 0.9, Puplift), 0) + (-0.9 * IF(OR(\$B\$1="G",\$B\$1="H"), Puplift / 0.9, Puplift), 0) + (-0.9 * IF(OR(\$B\$1="G",\$B\$1="H"), Puplift / 0.9, Puplift), 0) + (-0.9 * IF(OR(\$B\$1="G",\$B\$1="H"), Puplift / 0.9, Puplift), 0) + (-0.9 * IF(OR(\$B\$1="G",\$B\$1="H"), Puplift / 0.9, Puplift), 0) + (-0.9 * IF(OR(\$B\$1="G",\$B\$1="H"), Puplift / 0.9, Puplift), 0) + (-0.9 * IF(OR(\$B\$1="G",\$B\$1="H"), Puplift / 0.9, Puplift), 0) + (-0.9 * IF(OR(\$B\$1="G",\$B\$1="H"), Puplift / 0.9, Puplift), 0) + (-0.9 * IF(OR(\$B\$1="G",\$B\$1="H"), Puplift / 0.9, Puplift), 0) + (-0.9 * IF(OR(\$B\$1="G",\$B\$1="H"), Puplift / 0.9, Puplift), 0) + (-0.9 * IF(OR(\$B\$1="G",\$B\$1="H"), Puplift / 0.9, Puplift), 0) + (-0.9 * IF(OR(\$B\$1="G",\$B\$1="H"), Puplift / 0.9, Puplift), 0) + (-0.9 * IF(OR(\$B\$1="G",\$B\$1="H"), Puplift / 0.9, Puplift), 0) + (-0.9 * IF(OR(BB\$1="G",\$B\$1="H"), Puplift / 0.9, Puplift), 0) + (-0.9 * IF(OR(BB\$1="G",BR1="$	$V_{u_0.9_tens} =$	214.13	kip
Controlling Shear Stress (0.9*D LC):	$v_{u_0.9_controlling_tens} = V_{u_0.9} / A_{c_tens} + (Y_v * M_v * (d_{cage} + Lembed)/2) / J_{c_tens}$	v _{u_0.9_controlling_tens} =	0.103	ksi
Equivalent Square Shear Stress (0.9*D LC):	$v_{u_0.9_tens_sq} = Vu_0.9_tens/Ac_tens_sq1 + (Yv*Mv_tens*(d_cage_sq + Lembed)/2) / Jc$	$v_{u_0.9_tens_sq} =$	0.087	ksi
Shear Stress Capacity:	$\Phi v_n = \varphi s * 4 * (\sqrt{F'}c*1000) / 1000$	$\Phi v_n =$	0.164	ksi

	Two-Way Shear (Uplift, F	Flexural Component)
	Applied Moment: Yf*M _{u_tension} = Yf*M _{u_tension}	Yf*M _{u_tension} = 54
Check	$\phi M_{n_effective} = 931.83$ ksi >= 'f*M _{u_tension} =	54.00 ksi RATING: 5.80% OK

Pad Flexure (Net Bearing Pressure)								
	$\beta_{\text{pad}} = \text{IF(F'c} \le 4, 0.85, \text{IF(F'c} \ge 8, 0.65, 0.85 - (\text{F'c} - 4) * 0.05))}$ $\beta_{\text{pad}} = 0.85$							
Provided Steel:	$A_{s,pad} = A_{b_pad} * m_{pad}$ $A_{s,pad} = 32.00 in^2$							
Depth of Equivalent Rectangular Stress Block:	a = A _{s_pad} *Fy/(0.85 *F'c *W) a = 1.96 in							
Distance from Top to Nuetral Axis:	$c = a/\beta_{pad}$ $c = 2.31$ in							
Modulus of Elasticity of Steel:	$E_{s} = 29000 \text{ ksi}$ $E_{s} = 29000 \text{ ksi}$							
Strain in Steel:	ϵ_{s} = 0.003 * (dc-c) / c ϵ_{s} = 0.01431 in/in							
Compression-Controlled Strain Limit::	$\epsilon_c = \ F_y / E_s \qquad \qquad \epsilon_c = 0.00207 \ in/in \label{epsilon}$							
Tension-Controlled Strain Limit::	ϵ_t = 0.00500 in/in							
Flexure Strength Reduction Factor:	$\phi \text{flex} = \text{IF}(\epsilon \text{s} \text{>=} \epsilon \text{t}, 0.9, \text{IF}(\epsilon \text{s} \text{<=} \epsilon \text{c}, 0.65, 0.65 + (0.9 - 0.65)^*((\epsilon \text{s} \text{-} \epsilon \text{c})/(\epsilon \text{t} \text{-} \epsilon \text{c}))))) \\ \phi \text{flex} = 0.9$							
Nominal Flexural Strength:	$M_n = As_{pad} * (F_y) * (dc - a / 2) * (1/12)$ $M_n = 1972.42$ ft-kips							
Design Flexural Strength:	ϕM_n = $\phi flex * Mn$ ϕM_n = 1775.18 ft-kips							
Bearing Press. at Crit. Section (0.9*D LC):	qmid_0.9 = qu_st_0.9 - sqs_0.9 * d' qmid_0.9 = 0.67 ksf							
Bearing Press. at Crit. Section (1.2*D LC):	qmid_1.2 = qu_st_1.2 - sqs_1.2 * d' qmid_1.2 = 0.82 ksf							
Resisting Weight above Critical Section:	Thickness (ft) Unit Weight (kcf) Weight (kip) Weight (kip) (0.9*D LC) (1.2*D LC) Moment Arm (ft) Resisting Moment (ft-kips) (0.9*D kg) (0.9*D kg) (0.9*D kg) (0.9*D kg) (0.2*D kg)							
	Soil Above Water Table: 1.5 0.125 53.78 71.70 4.979274058 267.77 357.02 Soil Below Water Table: 2.5 0.063 44.89 59.85 4.979274058 223.50 297.99							
	Soil Below Water Table: 2.5 0.063 44.89 59.85 4.979274058 223.50 297.90 Pad Above Water Table: 0 0.150 0.00 0.00 4.979274058 0.00 0.00							
	Pad Below Water Table: 1.5 0.088 37.69 50.25 4.979274058 187.65 250.20							
	Total: 136.35 181.80 678.91 905.22	2						

Check $\phi M_n = \ 1775.18 \ \ \text{ft-kips} \qquad \qquad >= \qquad \qquad M_{u_pad} = \quad 795.39 \qquad \text{ft-kips}$

RATING: 44.81% OK

PIER DESIGN CHECKS

Bar Spacing						
Bar separation	B _{s_pier} = (do * π) / m_pier - db_pier	B _{s_pier} =	3.97	in		
Check	18.00 in >= B _{s_pier} = 3.97 in	RATING:	22.07%	ОК		
	Vertical Rebar Development Length					
Reinforcement location.	$\alpha_{\rm c}\!=\!\!\!$ if space under bar > 12", 1.3, else use 1.0	$\alpha_{\rm c}$ =	1.3			
Epoxy coating:	$\beta_{\rm c}$ = for non- epoxy coated, use 1.0	$\beta_c =$	1.0			
Max term:	$\alpha \beta_c$ = product of a x β not to exceed 1.7	$\alpha \beta_c =$	1.3			
Reinforcement size.	$\gamma_{\rm c}$ = $$ if bar size is 6 or less, 0.8, else use 1.0 $$	γ _c =	1			
Light weight concrete:	$\lambda_c = 1.0$	λ_{c} =	1.0			
Spacing/cover:	$c_{_{\mathcal{C}}}$ = use smaller of half of bar spacing or concrete cover	c_c =	2.4	in		
Transverse bars:	$k_{tr_c} = 0$ in (per simplification)	k _{tr_c} =	0	in		
Max term:	$c_c' = MIN(2.5, (c_c + ktr_c) / db_c)$	c _c ' =	2.500			
Excess reinforcement:	$R_c = Ast_c / As_c$	R _c =	0.58			
Development (tensile):	$L_{dt_{c}^{\prime}} = \; (3 / 40) * (Fy*1000 / \sqrt{(F'c*1000))} * \alpha \beta_{c} c * \gamma_{c} * \lambda_{c} c * R_{c} * db_{c} / c_{c} c'$	L _{dt_c} =	21.68	in		
Minimum length.	L _{d_min} = 12 inches	$L_{d_min} =$	12.0	in		
Development length:	$L_{dt_c} = MAX(Ld_min, Ldt_c)$	$L_{dt_c} =$	21.68	in		
Development (comp.):	$L_{dc_c} = 0.02 * db_c * Fy*1000 / \sqrt{(F'c*1000)}$	L _{dc} '_c =	19.17	in		
	$L_{dc"_c} = 0.0003 * db_c * Fy*1000$	L _{dc} "_c =	15.75	in		
Development length:	L _{dc_c} = MAX(8, Ldc'_c, Ldc"_c)	L _{dc_c} =	19.17	in		
Length available in pier	$L_{vc} = D - T + E - cc$	L _{vc} =	51.0	in		
Check L _{vc} =	51.00 in \Rightarrow L _{dl_c} = 21.68 in			ОК		
Check L _{vc} =	51.00 in >= L _{dc_c} = 19.17 in			ОК		

	Vertical Rebar Hook Ending			
Bar size & clear cover:	$\alpha_{\rm h}$ = =if bar <= 11, and cc >= 2.5", use 0.7, else use 1.0	$\alpha_{\rm h}$ =	0.7	
Epoxy coating:	β_{h} = for non- epoxy coated, use 1.0	β_h =	1.0	
Light weight concrete:	$\lambda_{\rm h}=~1.0$	λ_h =	1.0	
Development (hook):	$L_{dh}' = 0.02 * \alpha h * \beta h * \lambda h * Fy*1000 / \sqrt{(F'c*1000) * db_c}$	L _{dh} ' =	13.4	in
Minimum length:	L_{dh_min} = the larger of: 8 * d_b or 6 in	L _{dh_min} =	7.0	in
Development length:	$L_{dh} = MAX(Ldh_min, Ldh')$	L _{dh} =	13.4	in
Check $L_{vp} =$	15.00 in >= L _{dh} = 13.42 in			ОК
Hook tail length:	$L_{h_L taii}$ = 12 * db beyond the bend radius	L _{h_tail} =	14.0	in
Length available in pad:	$L_{h_pad} = \begin{array}{l} -12*MIN((W/2-(2/3)*BW*cos(30°)+Offset-dpier/2),(W-BW-dpier)/2) + ccpier \\ -ccpad \end{array}$	L _{h_pad} =	71.0	in
Check L _{h_pad} =	71.01 in >= L _{dh_tail} = 14.00 in			OK

Pier Ties

Minimum size: [ACI 7.10.5.1]	s _{_t_min} =IF(s_c <= 10, 3, 4)				S_t_min =	3	
z factor:	z_seismic = 0.5 if the SDC is A, B, or C, else 1.0				z_seismic =	0.5	
Tie parameters:	s _{_t} = 4 m _{_t} = 9	$d_{b_{\underline{t}}} = A_{b_{\underline{t}}} =$	0.5 0.2	in in²			
Allowable tie spacing per vertical rebar:	$B_{s_t_max1} = 8/z*db_c$				B _{s_t_max1} =	14	in
per tie size:	$B_{s_{t_max2}} = 24 / z * db_t$				$B_{s_t_max2} =$	24	in

	per pier diameter:	$B_{s_t_max3} = di / (4 * z^2)$	$B_{s_t_max3} =$	48	in
	per seismic zone:	B _{s_t_max4} = 12" in active seismic zones, else 18"	$B_{s_t_max4} =$	18	in
	Maximum tie spacing:	B _{s_t_max} = MIN(Bs_t_max1, Bs_t_max2, Bs_t_max3, Bs_t_max4)	B _{s_t_max} =	14	in
	Minimum required ties:	m_t_min = (D - T + E) / Bs_t_max + 2	m_t_min =	6.00	
Check	m _{_t} = 9.00	>=			ОК

Check	$\mathbf{m}_{\underline{}_{t}}$ =	9.00	>=	m _t_min =	6.00					ок
				PAD DESIG	N CHECKS					
			Minir	num Steel Requ	uired for Sh	rinkage				
	Shrinkage:		$ ho_{ m sh}$ = IF(Fy >= 60, 0.0	0018, 0.002)			$ ho_{ m sh}$ =	0.0018		
	Min. Required Shrinkage Steel:		$A_{st_p_sh} = \rho sh * W * T$				$A_{st_p_sh} =$	12.442	in²	
Check	A _{s_p} =	32.00	in ² >=	$\mathbf{A}_{\mathrm{st_p}}$ =	12.44 i	n²				ОК
				Bar Sepa	aration					
	Bar separation:		$B_{s_pad} = (W - 2 * cc - db)$) / (m - 1)			B _{s_pad} =	12.16	in	
Check	18"	>=	B _{s_p} = 12.16	in	>=	2"				ОК
				Pad Developm	nent Length	1				
	Reinforcement location:		$\alpha_{\rm p}$ = if space under t	oar > 12", 1.3, el	se use 1.0		α_{p} =	1		
	Epoxy coating:		β_p = for non- epoxy	coated, use 1.0			β_{p} =	1.0		
	Max term:		$\alpha \beta_p = \text{product of } \alpha \times \beta$	not to exceed 1	.7		$\alpha \beta_p =$	1		
	Reinforcement size:		$\gamma_{\rm p}$ = if bar size is 6 c	or less, 0.8, else	use 1.0		γ_{p} =	1		
	Light weight concrete:		$\lambda_p = 1.0$				$\lambda_p =$	1.0		
	Spacing/cover:		c _p = use smaller of h	nalf of bar spacin	ng or concret	e cover	c _p =	3.56	in	
	Transverse bars:		$k_{tr_p} = 0$ in (per simp	lification)			$k_{tr_p} =$	0	in	
	Max term:		$c_p' = MIN(2.5, (c + k))$	tr) / db)			c _p ' =	2.500		
	Required moment ($\varphi t = 0.9$):		M _{nr} = Mu_pad / φflex				M _{nr} =	883.8	ft-kips	
	Steel estimate:		A _{st_p} ' = Mn / (φt * Fy * c	ic)			A _{st_p} ' =	14.758	in²	
			$a_p = Ast' * Fy / (\beta * F)$	"c * W)			a _p =	0.90	in	
	Required steel:		$A_{st_p_st} = M_{nr} / (Fy * (dc -$	ap / 2))			$A_{st_p_st} =$	13.749	in²	
	Excess reinforcement:		R _p = Ast_p / As_p				R _p =	0.43		
	Development (tensile):		$L_d = (3/40) * (Fy*10)$	000 / √(F'c*1000))) * αβ * γ * λ	x * R * db / c'	L _d =	15.93	in	
	Minimum length:		L _{d_min} = 12 inches				L _{d_min} =	12.0	in	
	Development length:		L _{dp} = MAX(Ld_min, I	_dp')			L_{dp} =	15.93	in	
	Length available in pad:		L _{pad} = 12*MIN((W/2-(2	/3)*BW*cos(30°)	+Offset-dpie	er/2),(W-BW-dpier)/2)- ccpad	L _{pad} =	116.50	in	
Check	L _{pad} =	116.50	in >=	\mathbf{L}_{dp} =	15.93	in				OK

Moment Capacity of Drilled Concrete Shaft (Caisson) for TIA Rev F, G, or H

Note: Shaft assumed to have ties, not spiral, transverse reinforcing

Site Data

ES-001 CheshireAWC

Loads Already Factored				
For M (WL):	1.00			
For P (DL):	1.00			

Pier Properties					
Concrete:		_			
Pier Diameter =	4.0	ft			
Concrete Area =	1809.6	in ²			
Reinforcement:		_			
Clear Cover to Tie =	3.00	in			
Horiz. Tie Bar Size=	4	1			
Vert. Cage Diameter =	3.34	ft			
Vert. Cage Diameter =	40.13	in			
Vertical Bar Size =	7				
Bar Diameter =	0.88	in			
Bar Area =	0.6	_in²			
Number of Bars =	26				
As Total=	15.6	in ²			
A s/ Aconc, Rho:	0.0086	0.86%			

ACI 10.5, ACI 21.10.4, and IBC 1810. Min As for Flexural, Tension Controlled, Shafts:

> (3)*(Sqrt(f'c)/Fy: 0.0027 200 / Fy: 0.0033

Minimum Rho Check:

Assumed Min. Rho: 0.50% Provided Rho: 0.86% OK

Ref. Shaft Max Axial Capacities, φ Max(Pn or Tn):									
Max Pu = $(\phi=0.65)$ Pn. Pn									
per ACI 318 (10-2)	2865.51	kips							
at Mu=(φ=0.65)Mn=	970.31	ft-kips							
Max Tu, (φ=0.9) Tn =	842.4	kips							
at Mu=φ=(0.90)Mn=	0.00	ft-kips							

Maximum Shaft Superimposed Forces									
TIA Revision:	Н								
Max. Factored Shaft Mu:	90	ft-kips (* Note)							
Max. Factored Shaft Pu:	220	kips							
Max Axial Force Type:	Tension								

(*) Note: Max Shaft Superimposed Moment does not necessarily equal to the shaft top reaction moment

equal to the chart top reaction memorit								
Load Factor	Sha	aft Factore	ed Loads					
1.00	Mu:	90	ft-kips					
1.00	Pu:	220	kips					

Material Properties									
Concrete Comp. strength, f'c =	3000	psi							
Reinforcement yield strength, Fy =	60	ksi							
Reinforcing Modulus of Elasticity, E =	29000	ksi							
Reinforcement yield strain =	0.00207	•							
Limiting compressive strain =	0.003								
ACI 318 Code									
Select Analysis ACI Code=	2014								

Results:

Governing Orientation Case: 2

Case 1 Case 2

Dist. From Edge to Neutral Axis: 7.80 in
Extreme Steel Strain, et: 0.0139

et > 0.0050, Tension Controlled

Reduction Factor,φ: **0.900**

Output Note: Negative Pu=Tension

For Axial Compression, ϕ Pn = Pu: -198.00 kips Drilled Shaft Moment Capacity, ϕ Mn: 1028.72 ft-kips Drilled Shaft Superimposed Mu: 90.00 ft-kips

(Mu/φMn, Drilled Shaft Flexure CSR: 8.7%

Maximum Allowable Moment of a Circular Pier Pu: 220 kips (from Results Tab) Axial Force type: Tension (from Results Tab) For Internal Calculations: Axial Load (Negative for Compression) = 220.00 kips Case 1: Single Bar Near the Extreme Fiber Case 2: (2) Equidistant Bars Near the Extreme Fiber Case 3: = Case 1, but Pu set at Max Axial Compression per ACI 318 (10-2) and phi=0.65. General Sketch (Variables) for both cases Neutral Axis Distance from extreme edge to neutral axis, h = CQuivalent compression zone factor = 0.55 Distance from extreme edge to equivalent compression zone factor, a = 6.66 in Distance from centrol to neutral axis = 16.17 in 1 Neutral Axis Al Axis Distance from extreme edge to neutral axis, h = 44.27 in Equivalent compression zone factor = 0.85 Distance from extreme edge to equivalent compression zone factor, a = 37.63 in Distance from centroid to neutral axis = -20.27 in Compression Zone Compression Zone Compression Zone Compression Zone Angle from centroid of pier to intersection or equivalent compression zone, Asc = 11.40 in² Angle from centroid of pier to intersection of equivalent compression zone and edge of pier = 124.61 deg Area of concrete in compression, Acc = 152.195 in² Force in concrete = 0.85 f (c* Acc, C* = 380.08, kips Area of steel in compression zone, Asc = 2.40 in² Angle from centroid of pier to intersection of equivalent compression zone and edge of pier = 43.63 deg Area of concrete in compression, Acc = Force in concrete = 0.85 * f c * Acc. Fc = 150.92 384.85 <-- φ Not Involved = Concrete Pn <-- φ Not Involved = Total Steel Pn <-- φ Not Involved = Concrete Pn <-- φ Not Involved = Total Steel Pn ree in concrete = 0.85 * fc * Acc, fc = 387.27 kips Total reinforcement forces fs = -607.27 kips Case 1, # - 0.900 kips Axial (comp="negative), Pu = 220.00 kips Balance Force in concrete, Fs+fu = -387.27 kips Shaft Comp. Capacity, #Pn= -198.00 kips Total reinforcement forces, Fs = 527.49 kips 1-ual rentorcement forces, Fs = \$27.49 \$27.49 \$69.89 Magnified, Max Axial Comp. Pn. per ACI 318 (10-2)/(\$\pi\$-0.65)\$ = 4408.47 \$65.59 Balance Force in connecte, Fs = \$\pi\$ = 4.408.87 \$80.98 \$80.98 Shaft Comp. Capacity, (\$\pi\$-0.65)Pn= 285.51 \$80.98 \$80.98 <-- Pu <-- Pu <--φ Pn=Pu <--φ Pn=Pu Sum of the axial forces in the shaft = 0.00 kips OK Sum of the axial forces in concrete in the shaft= 0.00 kips OK Sum of the axial forces in the shaft = 0.00 kips OK Maximum Moment First moment of the concrete Maximum Moment Maximum Moment First moment of the concrete First moment of the concrete First moment of the concrete area in compression about the centroid = 3043.55 in² Distance between centroid of concrete in compression and centroid of pier = 20.04 in inkps Moment of concrete in compression = 7761.06 in inkps Moment Gazel enforcement = 5963.56 inkps Moment Gazel of Drifted Shaft Min = 13724.62 inkps Moment Gazeloy of Drifted Shaft, Minh = 12522-16 inkps First moment of the concrete area in compression about the centroid = Distance between centroid of concrete in compression and centroid of pier = 100 Moment of concrete in compression = 20.06 in Moment of concrete in compression = 7719.13 in-large Nominal Moment alteright of Diffied Shalf Mar = 13716.25 in-large Moment Capacity of Diffied Shalf Mar = 13716.25 in-large Moment Capacity of Diffied Shalf Mar = 13716.25 in-large 13716.25 in-larg First moment of the concrete area in compression about the centrol of Distance between certroid of concrete in compression and certroid of pier Moment of concrete in compression of 13103.12 in inkps 13103.12 in inkps 13103.12 in inkps 13103.13 in

Final Results			i
Governing Orientation Case=	2		l
phi, φ=	0.900		l
Shaft φ*Mn=		ft-kips	
Distance from Edge of Shaft to N.A.=	7.80	in	l
Shaft Beta=	0.85		
Maximum Tensile Strain=	-0.01390	<	et > 0.0050, Tension Controlled
Shaft Tension Cap., φTn= (φ=0.9)*(Total As)(Fy)=	842.40	kips	
Shaft Max Comp, (q=0.65)(0.80)[0.85*fc*(Aq-Ast)+Ast*Fy]=	2865.51	kips	

646.755 ft-kips 496.9632 ft-kips

Individual Bars

	Angle	Distance	Distance	Distance to		Area of steel in			
	from first	to center	to neutral	equivalent		compressi			
Bar	har	of shaft	axis	comp. zone	Strain	on	Stress	Axial force	Momen
#	(dea)	(in)	(in)	(in)	Strain	(in^2)	(ksi)	(kips)	(in-kips
1	0.00	20.06	3.89	2.72	0.00149	0.60	43.26	24.42	490.00
2	13.85	19.48	3.31	2.12	0.00149	0.60	36.78	20.54	490.00
3	27.69	17.76	1.60	0.42	0.00061	0.60	17.73	9.11	161.75
4	41.54	15.02	-1.15	-2.33	-0.00044	0.00	-12.80	-7.68	-115.3
5	55.38	11.40	-4.77	-5.95	-0.00183	0.00	-53.02	-31.81	-362.5
6	69.23	7.11	-9.05	-10.23	-0.00347	0.00	-60.00	-36.00	-256.1
7	83.08	2.42	-13.75	-14.93	-0.00527	0.00	-60.00	-36.00	-87.0€
8	96.92	-2.42	-18.59	-19.76	-0.00712	0.00	-60.00	-36.00	87.06
9	110.77	-7.11	-23.28	-24.46	-0.00892	0.00	-60.00	-36.00	256.11
10	124.62	-11.40	-27.57	-28.74	-0.01056	0.00	-60.00	-36.00	410.28
11	138.46	-15.02	-31.19	-32.36	-0.01195	0.00	-60.00	-36.00	540.61
12	152.31	-17.76	-33.93	-35.11	-0.01300	0.00	-60.00	-36.00	639.52
13	166.15	-19.48	-35.65	-36.82	-0.01366	0.00	-60.00	-36.00	701.26
14	180.00	-20.06	-36.23	-37.41	-0.01388	0.00	-60.00	-36.00	722.25
15	193.85	-19.48	-35.65	-36.82	-0.01366	0.00	-60.00	-36.00	701.26
16	207.69	-17.76	-33.93	-35.11	-0.01300	0.00	-60.00	-36.00	639.52
17	221.54	-15.02	-31.19	-32.36	-0.01195	0.00	-60.00	-36.00	540.61
18	235.38	-11.40	-27.57	-28.74	-0.01056	0.00	-60.00	-36.00	410.28
19	249.23	-7.11	-23.28	-24.46	-0.00892	0.00	-60.00	-36.00	256.11
20	263.08	-2.42	-18.59	-19.76	-0.00712	0.00	-60.00	-36.00	87.06
21	276.92	2.42	-13.75	-14.93	-0.00527	0.00	-60.00	-36.00	-87.0E
22	290.77	7.11	-9.05	-10.23	-0.00347	0.00	-60.00	-36.00	-256.1
23	304.62	11.40	-4.77	-5.95	-0.00183	0.00	-53.02	-31.81	-362.5
24	318.46	15.02	-1.15	-2.33	-0.00044	0.00	-12.80	-7.68	-115.3
25	332.31	17.76	1.60	0.42	0.00061	0.60	17.73	9.11	161.75
26	346.15	19.48	3.31	2.14	0.00007	0.60	36.78	20.54	400.00
			2.01	2.14		2.00		22.04	0.00
				Min>	-0.01388	3.00		-607.27	5963.5

Case 1, φMn = 1029.35 ft-kips

				Distance					
				to		Area of			
		Distance		equivalent		steel in			
	Angle from	to center	Distance to	comp.		compressi			
Bar	first bar	of shaft	neutral axis	zone	Strain	on	Stress	Axial force	Moment
#	(deg)	(in)	(in)	(in)		(in^2)	(ksi)	(kips)	(in-kips)
1	6.92	19.92	3.71	2.54	0.00143	0.60	41.44	23.33	464.67
2	20.77	18.76	2.56	1.39	0.00098	0.60	28.52	15.58	292.31
3	34.62	16.51	0.31	-0.86	0.00012	0.00	3.44	2.07	34.11
4	48.46	13.30	-2.90	-4.07	-0.00112	0.00	-32.34	-19.41	-258.16
5	62.31	9.32	-6.88	-8.05	-0.00265	0.00	-60.00	-36.00	-335.65
6	76.15	4.80	-11.40	-12.57	-0.00439	0.00	-60.00	-36.00	-172.85
7	90.00	0.00	-16.20	-17.37	-0.00623	0.00	-60.00	-36.00	0.00
8	103.85	-4.80	-21.00	-22.17	-0.00808	0.00	-60.00	-36.00	172.85
9	117.69	-9.32	-25.53	-26.70	-0.00982	0.00	-60.00	-36.00	335.65
10	131.54	-13.30	-29.51	-30.68	-0.01135	0.00	-60.00	-36.00	478.94
11	145.38	-16.51	-32.71	-33.88	-0.01259	0.00	-60.00	-36.00	594.40
12	159.23	-18.76	-34.96	-36.13	-0.01345	0.00	-60.00	-36.00	675.32
13	173.08	-19.92	-36.12	-37.29	-0.01390	0.00	-60.00	-36.00	716.98
14	186.92	-19.92	-36.12	-37.29	-0.01390	0.00	-60.00	-36.00	716.98
15	200.77	-18.76	-34.96	-36.13	-0.01345	0.00	-60.00	-36.00	675.32
16	214.62	-16.51	-32.71	-33.88	-0.01259	0.00	-60.00	-36.00	594.40
17	228.46	-13.30	-29.51	-30.68	-0.01135	0.00	-60.00	-36.00	478.94
18	242.31	-9.32	-25.53	-26.70	-0.00982	0.00	-60.00	-36.00	335.65
19	256.15	-4.80	-21.00	-22.17	-0.00808	0.00	-60.00	-36.00	172.85
20	270.00	0.00	-16.20	-17.37	-0.00623	0.00	-60.00	-36.00	0.00
21	283.85	4.80	-11.40	-12.57	-0.00439	0.00	-60.00	-36.00	-172.85
22	297.69	9.32	-6.88	-8.05	-0.00265	0.00	-60.00	-36.00	-335.65
23	311.54	13.30	-2.90	-4.07	-0.00112	0.00	-32.34	-19.41	-258.16
24	325.38	16.51	0.31	-0.86	0.00012	0.00	3.44	2.07	34.11
25	339.23	18.76	2.56	1.39	0.00098	0.60	28.52	15.58	292.31
26	353.08	19.92	3.71	2.54	0.00143	0.60	41.44	23.33	464.67
				Min>	-0.01390	2.40		-604.85	5997.12

Case 2, φMn = 1028.72 ft-kips

TC

Individual Bars

				Distance to		Area of			
	Angle	Distance	Distance			steel in			
_	from first	to center	to neutral	comp.		compressi			
Bar	bar	of shaft	axis	zone	Strain	on	Stress	Axial force	Momen
#	(deg)	(in)	(in)	(in)		(in^2)	(ksi)	(kips)	(in-kips)
1	0.00	20.06	40.33	33.69	0.00273	0.60	60.00	34.47	691.55
2	13.85	19.48	39.75	33.11	0.00269	0.60	60.00	34.47	671.46
3	27.69	17.76	38.04	31.40	0.00258	0.60	60.00	34.47	612.34
4	41.54	15.02	35.29	28.65	0.00239	0.60	60.00	34.47	517.64
5	55.38	11.40	31.67	25.03	0.00215	0.60	60.00	34.47	392.85
6	69.23	7.11	27.39	20.75	0.00186	0.60	53.82	30.76	218.84
7	83.08	2.42	22.69	16.05	0.00154	0.60	44.59	25.22	61.00
8	96.92	-2.42	17.85	11.21	0.00121	0.60	35.08	19.52	-47.21
9	110.77	-7.11	13.16	6.52	0.00089	0.60	25.86	13.98	-99.48
10	124.62	-11.40	8.87	2.23	0.00060	0.60	17.44	8.93	-101.82
11	138.46	-15.02	5.25	-1.39	0.00036	0.00	10.33	6.20	-93.04
12	152.31	-17.76	2.51	-4.13	0.00017	0.00	4.93	2.96	-52.52
13	166.15	-19.48	0.79	-5.85	0.00005	0.00	1.56	0.93	-18.20
14	180.00	-20.06	0.21	-6.43	0.00001	0.00	0.41	0.25	-4.95
15	193.85	-19.48	0.79	-5.85	0.00005	0.00	1.56	0.93	-18.20
16	207.69	-17.76	2.51	-4.13	0.00017	0.00	4.93	2.96	-52.52
17	221.54	-15.02	5.25	-1.39	0.00036	0.00	10.33	6.20	-93.04
18	235.38	-11.40	8.87	2.23	0.00060	0.60	17.44	8.93	-101.82
19	249.23	-7.11	13.16	6.52	0.00089	0.60	25.86	13.98	-99.48
20	263.08	-2.42	17.85	11.21	0.00121	0.60	35.08	19.52	-47.21
21	276.92	2.42	22.69	16.05	0.00154	0.60	44.59	25.22	61.00
22	290.77	7.11	27.39	20.75	0.00186	0.60	53.82	30.76	218.84
23	304.62	11.40	31.67	25.03	0.00215	0.60	60.00	34.47	392.85
24	318.46	15.02	35.29	28.65	0.00239	0.60	60.00	34.47	517.64
25	332.31	17.76	38.04	31.40	0.00258	0.60	60.00	34.47	612.34
26	346.15	19.48	39.75	33.11	0.00269	0.60	60.00	34.47	671.46
				Min>	0.00001	11.40		527.49	4810.31
									400.85

Case 3, at Pmax, (φ=0.65)Mn = 970.31 ft-kips

<-- φ Not Involved = Concrete Pn <-- φ Not Involved = Total Steel Pn

<- (Pn per ACI 10-2V&

1091.926 ft-kips 400.8591 ft-kips

TIA-222- H		FACTORE	D LOADS					
Axial Load 0.9D:		P _{0.9D} = 0.9 * P / 1	1.2		P _{0.9D} =	27.00	kip	
Axial Load 1.2D:		P_1.2D = 1.2 * P / 1	1.2		P_1.20 =	36.00	kip	
Shear Load:		$V_u = V$			V _u =	36.00	kip	
Moment:		$M_u = Mu$			M _u =	2836.00	kip*ft	
		PASSIVE PRESSUI	RE RESISTANCE					
Force of Pp Applied on Pier:		Force _{pier} = MIN(Vu,			Force _{pier} =	6.97	kip	
Moment Arm of Pp on Pier:		M _{arm pier} = D-T-Pp!0			M _{arm_pier} =	1.75	ft	
Force of Pp Applied on Pad:		_	Forcepier,SUM(Pp!M8:M13))		Force _{pad} =	29.03	kip	
Moment Arm of Pp on Pad:		M _{arm pad} = D-Pp!O8			M _{arm_pad} =	0.72	ft	
Unfactored Moment Resistance due to Passive Pressure:		_	*M _{arm pier} +Force _{pad} *M _{arm pad}		M _{R Pp} =	33.07	kip*ft	
Factored Moment Resistance due to Passive Pressure:		$\Phi M_{R_Pp} = \Phi s^* M R_$	_Pp		$\Phi M_{R_Pp} =$	24.80	kip*ft	
		PLASTIC BEARING PRESSURE	E & OVERTURNING MOMENT					
Compressive Load for Bearing (0.9*D LC):		P _{bearing_0.9} = P_0.9D+	+0.9*(Ws+Wc)+0.75*Wwedge	es_0.9_bearing	P _{bearing_0.9} =	471.07	kip	
Compressive Load for Bearing (1.2*D LC):		P _{bearing_1.2} = P_1.2D+	+1.2*(Ws+Wc)+0.75*Wwedge	es_1.2_bearing	P _{bearing_1.2} =	628.09	kip	
Factored Overturning Moment (0.9*D LC):		$M_{overturning_0.9} = M + V * (0.9)*(P/$	(MAX(T,D) + E + bpdist/12) + /1.2+3*Wpier)*Offset		M _{overturning_0.9} =	3058.00	kip*ft	
Factored Overturning Moment (1.2*D LC):		$M_{overturning_1.2} = M + V * (1.2)*(P/$	(MAX(T,D) + E + bpdist/12) + /1.2+3*Wpier)*Offset		$M_{overturning_1.2} =$	3058.00	kip*ft	
Area of Pad:		Area = W²			Area =	1024.00	ft ²	
Plastic Section Modulus of Pad:		Z = W ³ / 4			Z =	8192	ft³	
Preliminary Load Eccentricity (0.9*D LC):		$pre_ec_{0.9_p} = M_{overturnin}$	ng/P _{bearing_0.9}		pre_ec_ _{0.9_p} =	6.49	ft	
Preliminary Load Eccentricity (1.2*D LC):		$pre_ec_{1.2_p} = M_{overturnin}$	ng/P _{bearing_1.2}		pre_ec_ _{1.2_p} =	4.87	ft	
[Goal Seek] Load Eccentricity Iteration (0.9*D LC):		ec_0.9_p = goal see	ek		ec_ _{0.9_p} =	6.44	ft	e <=
[Goal Seek] Load Eccentricity Iteration (1.2*D LC):		ec_ _{1.2_p} = goal see	ek		ec_ _{1.2_p} =	4.83	ft	e <=
Non-Bearing Length (0.9*D LC):		$NBL_{0.9} = 0$			NBL_0.9 =	0.00	ft	
Non-Bearing Length (1.2*D LC):		NBL_1.2 = 0			NBL_ _{1.2} =	0.00	ft	
Total Factored Resisting Moment due to Pp and Soil Wedges / Shear (0.9*D LC):		$\Phi M_{Resisting_0.9} = \Phi M_{R_Pp}$	+ SUM(ΦM _{R_wedges_0.9} ,ΦM _{R_shi}	_{lear_0.9})	ΦM _{Resisting_0.9} =	24.80	kip*ft	
Total Factored Resisting Moment due to Pp and Soil Wedges / Shear (1.2*D LC):		$\Phi M_{Resisting_1.2} = \Phi M_{R_Pp}$	+ SUM(ΦM _{R_wedges_1.2} ,ΦM _{R_shi}	mear_1.2)	ΦM _{Resisting_1.2} =	24.80	kip*ft	
Adjusted Overturning Moment (0.9*D LC):		M _{overturning_adj_0.9} = M _{overturnin}	ng - ΦM _{Resisting_0.9}		M _{overturning_0.9} =	3033.20	kip*ft	
Adjusted Overturning Moment (1.2*D LC):		M _{overturning_adj_1.2} = M _{overturnin}	ng - ΦM _{Resisting_1.2}		M _{overturning_1.2} =	3033.20	kip*ft	
Total Resistance to Overturning (0.9*D LC):		ΦM _{Resisting_qu_0.9} = P _{bearing_0}	.9*ec_0.9_p + ФМ _{Resisting_0.9}		$\Phi M_{Resisting_qu_0.9} =$	3058.00	kip*ft	
Total Resistance to Overturning (1.2*D LC):		$\Phi M_{Resisting_qu_1.2} = P_{bearing_1.2}$	₂ *ec _{_1.2_p} + ΦM _{Resisting_1.2}		$\Phi M_{Resisting_qu_1.2} =$	3058.00	kip*ft	
[Goal Seek] Moment Comparison Iteration (0.9D LC):		$\Delta M_{0.9} = M_{overturnin}$	ng-ФМ _{Resisting_qu_0.9}		ΔM_ _{0.9} =	0.00	ft	
[Goal Seek] Moment Comparison Iteration (1.2D LC):		$\Delta M_{1.2} = M_{overturnin}$	ng-ФМ _{Resisting_qu_1.2}		ΔM _{_1.2} =	0.00	ft	
		Bearing Pr	ressures					
Orthogonal Bearing Pressure (0.9*D LC):		$q_{u_orth_0.9} = \frac{MAX(Pb)}{Pbearing}$	pearing_0.9/Area + Moverturni g_0.9/Area - Moverturning_0.9	ing_0.9/Z, 9/Z)	q _{u_orth_0.9} =	0.83	ksf	
Orthogonal Bearing Pressure (1.2*D LC):		$q_{u_orth_1.2} = \frac{MAX(Pb)}{Pbearing}$	pearing_1.2/Area + Moverturni g_1.2/Area - Moverturning_1.2	ing_1.2/Z, 2/Z)	q _{u_orth_1.2} =	0.98	ksf	
		Q _{ult} = Qult			Q _{ult} =	6.00	ksf	
Ultimate Gross Bearing Pressure:		ΦQult = φs * Qult			Qa =	4.50	ksf	
Ultimate Gross Bearing Pressure: Factored Ultimate Gross Bearing Pressure:		Tack 40 aux						
-	4.50	ksf >:		ksf	RATING:	21.86%		OK
Factored Ultimate Gross Bearing Pressure: Check	4.50	ksf >: Soil Wedges (Coh	= q _u = 0.98	ksf				OK
Factored Ultimate Gross Bearing Pressure:	4.50	ksf >:	= q _u = 0.98 nesionless Soil)	ksf	RATING: soilht =	21.86% 4.00 2.50	ft ft	OK

Soil Wedge Pr	rojection at	Water	Table:

 $Wedge_{proj_gw} = TAN(\phi*PI()/180)*(soilht_gw)$

Wedge_proj_gw = 1.69 ft

Soil Wedges	Cohesionless	Soil)	(0.9*D.L.C	۲:

Soil	Volume (ft³)	Soil Weight (kips)	Moment Arm (ft)	Unfactored Resisting Moment (kip*ft)		
(2) End Prisms (above Water Table)	0.00	0.00	32.00	0.00		
(2) End Prisms (below Water Table)	0.00	0.00	32.63	0.00		
(2) Partial Sides (above Water Table)	0.00	0.00	32.00	0.00		
(2) Partial Sides (below Water Table)	0.00	0.00	32.00	0.00	Wedge Eccentricity relative	to W/2:
(1) Rear (above Water Table)	0.00	0.00	33.12	0.00	Total Moment	0.00
(1) Rear (below Water Table)	0.00	0.00	32.56	0.00	Arm (ft) =	0.00
Total	0.00	0.00		0.00	Soil Wedge Wt (kip)=	0.00

Unfactored Resisting Moment of Wedges (0.9*D LC):

 $M_{R_wedges_0.9}$ = Total Moment Arm * Soil Wedge Wt

0.00 $M_{R_wedges_0.9} =$

Factored Resisting Moment of Wedges (0.9*D LC):

 $\Phi M_{R_wedges_0.9} = 0.75*MR_wedges_0.9$

 $\Phi M_{R_wedges_0.9} =$ 0.00 kip*ft

Soil Wedges (Cohesionless Soil) (1.2*D LC)

Soil	Volume (ft³)	Soil Weight (kips)	Moment Arm (ft)	Unfactored Resisting Moment (kip*ft)		
(2) End Prisms (above Water Table)	0.00	0.00	32.00	0.00		
(2) End Prisms (below Water Table)	0.00	0.00	32.63	0.00		
(2) Partial Sides (above Water Table)	0.00	0.00	32.00	0.00		
(2) Partial Sides (below Water Table)	0.00	0.00	32.00	0.00	Wedge Eccentricity relative	to W/2:
(1) Rear (above Water Table)	0.00	0.00	33.12	0.00	Total Moment	0.00
(1) Rear (below Water Table)	0.00	0.00	32.56	0.00	Arm (ft) =	5.00
Total	0.00	0.00		0.00	Soil Wedge Wt (kip)=	0.00

Unfactored Resisting Moment of Wedges (1.2*D LC):

 $M_{R_wedges_1.2}$ = Total Moment Arm * Soil Wedge Wt

0.00 kip*ft $M_{R_wedges_1.2} =$

Factored Resisting Moment of Wedges (1.2*D LC):

 $\Phi M_{R_wedges_1.2} = 0.75*MR_wedges_1.2$

0.00 kip*ft

Soil Shear Strength (Cohesive Soil)

0.0860 kcf

Effective Soil Unit Weight: Depth to Mid-Laver of Soil:

 $H_{shear} = ((D - T) - N) / 2 + N$

3.75

ft

Cohesion at Mid-Layer of Soil:

 $S_u = 0$

0.00

Soil Shear Strength (Cohesive Soil) (0.9*D LC)

Plane	Area (ft²)	Resistance (kip)	Moment Arm (ft)	Unfactored Resisting		
Flatie	Alea (IL)	Resistance (kip)	Woment Am (it)	Moment (kip*ft)	Wedge Eccentricity relative to	to W/2:
Rear	0.00	0.00	32.00	0.00	Total Moment	0.00
(2) Partial Sides	0.00	0.00	32.00	0.00	Arm (ft) =	0.00
Total		0.00		0.00	Soil Shear Strength (kin)=	0.00

Unfactored Resisting Moment of Soil Shear (0.9*D LC):

 $M_{R_shear_0.9}$ = Total Moment Arm * Soil Shear Strength

0.00 kip*ft

Factored Resisting Moment of Soil Shear (0.9*D LC):

ΦM_{R shear 0.9} = 0.75 * (Total Moment Arm * Soil Shear Strength)

0.00 kip*ft $\Phi M_{R \text{ shear } 0.9} =$

Soil Shear Strength (Cohesive Soil) (1.2*D LC)

Plane	Area (ft²)	Resistance (kip)	Moment Arm (ft)	Unfactored Resisting Moment (kip*ft)	Wedge Eccentricity relative	to W/2:
Rear	0.00	0.00	32.00	0.00	Total Moment	0.00
(2) Partial Sides	0.00	0.00	32.00	0.00	Arm (ft) =	0.00
Total		0.00		0.00	Soil Shear Strength (kip)=	0.00

Unfactored Resisting Moment of Soil Shear (1.2*D LC):

M_{R shear 1.2} = Total Moment Arm * Soil Shear Strength

 $M_{R_shear_1.2} =$ 0.00 kip*ft

Factored Resisting Moment of Soil Shear (1.2*D LC):

 $\Phi M_{R_shear_1.2}$ = 0.75 * (Total Moment Arm * Soil Shear Strength)

0.00 kip*ft

DETERMINE MOMENT THAT WOULD CAUSE 100% OVERTURNING (ORTHOGONAL)

 $P_{100} = P_{0.9D+0.9}(Ws+Wc)+0.75Wwedges_{100}$ Compressive Load for Bearing (0.9*D LC): $pre_M_{overturning_100} = (W/2 - (P_{_{100}}/\Phi Qult)/(2*W))*P_{_{100}}$ Preliminary Factored Overturning Moment:

P_{_100} = 508.80 $pre_M_{overturning_100} = 7241.94 \quad kip*ft$

ec_₁₀₀ =

Preliminary Load Eccentricity (0.9*D LC): [Goal Seek] Load Eccentricity Iteration (0.9*D LC):

pre_ec_₁₀₀ = pre_M_{overturning_100} / P_₁₀₀

14.23 pre_ec_₁₀₀ = 14.18 ft

L/4 < e <= I

Non-Bearing Length (0.9*D LC):

ec_100 = goal seek NBL_100 = 2*ec_100

NBL_100 = 28.37

Total Factored Resisting Moment due to Pp and Soil Wedges / Shear (0.9*D LC):

 $\Phi M_{Resisting_100} = 315.31 \text{ kip*ft}$

Moment Created by Shear:

 $M_{\text{shear}} = V_{\text{II}} * (D+E+bp_{\text{dist}}/12)$

 $M_{shear} = 222.00 \text{ kip*ft}$

Adjusted Overturning Moment (0.9*D LC):

 $M_{overturning_100} = M_{u_max_100} - \Phi M_{R_Pp}$

 $M_{overturning_100} = 7532.45 \text{ kip*ft}$

Total Resistance to Overturning (0.9*D LC):

[Goal Seek] Moment Comparison Iteration (0.9D LC):

 $\Phi M_{Resisting_qu_100} = P_{_100}^*ec_{_100} + \Phi M_{Resisting_100}$ $\Delta M_{100} = M_{overturning} - \Phi M_{Resisting_qu_100}$

 $\Phi M_{Resisting_qu_100} = 7532.45 \text{ kip*ft}$ $\Delta M_{100} = 0.00$ ft

Maximum Applied Moment from Superstructure Analysis:

 $\mathsf{M}_{\mathsf{u_max_100}} = \mathsf{pre_Moverturning_100} + \mathsf{\Phi}\mathsf{MResisting_100}$

 $\Phi \mathsf{M}_{\mathsf{Resisting_100}} = \Phi \mathsf{M}_{\mathsf{R_Pp}} + \mathsf{SUM}(\Phi \mathsf{M}_{\mathsf{R_wedges_100}}, \Phi \mathsf{M}_{\mathsf{R_shear_100}})$

 $M_{u_{max}_{100}} = 7557.25 \text{ kip*ft}$

Check		Mu_max_100 =	7557.25	kip*ft	>=	Mu = 3	3058.00	kip*ft	RATING:	40.46%		OK
Soil Wedges (Cohesio	onless Soil) (0.9	9*D LC)			_							
Soil	Volume (ft³)	Soil Weight (kips)	Moment Arm (ft)	Unfactored Resisting Moment (kip*ft)								
(2) End Prisms (above Water Table)	14.67	1.83	33.13	60.77								
(2) End Prisms (below Water Table)	4.74	0.30	32.63	9.68								
(2) Partial Sides	186.57	23.32	17.82	415.47								
(above Water Table) (2) Partial Sides	119.60	7.49	17.82	133.38								
(below Water Table) (1) Rear (above Water					Wedge Eccentricity rel	lative to	W/2:	1				
Table) (1) Rear (below Water	105.22	13.15	33.12	435.57	Total Moment Arm (ft) =		7.70					
Table) Total	67.45 498.25	4.22 50.31	32.56	137.49 1192.36	Soil Wedge Wt (kip	o)=	50.31					
	•	Vedges (0.9*D LC):	l		Total Moment Arm * S			J	M=	387.34	kip*ft	
	-						je vvi		M _{R_wedges_100} =			
Factored Resisti	ing Moment of V	Wedges (0.9*D LC):		ΦM _{R_wedges_100} =	0.75*MR_wedges_100	0			ΦM _{R_wedges_100} =	290.51	kip*ft	
Soil Shear Strength (C				Unfactored Resisting	1							
Plane	Area (ft²) 16.00	Resistance (kip) 0.00	Moment Arm (ft) 32.00	Moment (kip*ft) 0.00	Wedge Eccentricity rel Total Moment	lative to		1				
(2) Partial Sides Total	28.37	0.00	17.82	0.00	Arm (ft) = Soil Shear Strength (I	kin\-	0.00					
			l .									
Unfactored Resisting	Moment of Sol	ii Shear (0.9°D LC):		M _{R_shear_100} =	Total Moment Arm * S	soil Shear	r Strengt	n	M _{R_shear_100} =	0.00	kip*ft	
Factored Resisting	Moment of So	il Shear (0.9*D LC):		$\Phi M_{R_shear_100} =$	0.75 * (Total Moment A	Arm * So	il Shear	Strength)	$\Phi M_{R_shear_100} =$	0.00	kip*ft	
				PASSIVE PRESSURE	RESISTANCE (DIAGONA	AL DIREC	CTION)					
	5	-f.D- Ali-d Di					JIION)		Force -	6.07	lein	
	r-orce o	of Pp Applied on Pier:			MIN(Vu,Sum(Pp!M2:N	лт)))			Force _{pier} =	6.97	kip	
	Mome	ent Arm of Pp on Pier:		M _{arm_pier} =	D-T-Pp!O2 + T				M _{arm_pier} =	1.75	ft	
	Force of	of Pp Applied on Pad:		Force _{pad_dia} =	MIN(V _u -Force _{pier} ,SUM	(Pp!M8:N	/13))		Force _{pad_dia} =	29.03	kip	
	Mome	ent Arm of Pp on Pad:		$M_{arm_pad} =$	D-Pp!O8				M _{arm_pad} =	0.72	ft	
Unfactored Momen	nt Resistance due	to Passive Pressure:		M _{R Pp dia} =	Force _{pier} *M _{arm pier} +Forc	ce _{pad} *M _{ar}	m pad		M _{R_Pp_dia} =	33.07	kip*ft	
Factored Momen	nt Resistance due	to Passive Pressure:		ΦM _{R Pp dia} =	Ф.*Ма.а. г				ΦM _{R_Pp_dia} =	24.80	kip*ft	
				····R_Pp_dia	· s ····R_rp_dia				· ····R_rp_dia	21.00	inp it	
			PLASTIC B	EARING PRESSURE &	OVERTURNING MOMEN	NT (DIAG	ONAL DI	RECTION)				
Con	npressive Load fo	or Bearing (0.9*D LC):	PLASTIC B		OVERTURNING MOMEN P_0.9D+0.9*(Ws+Wc)				P _{bearing_0.9_dia} =	493.60	kip	
		or Bearing (0.9*D LC): or Bearing (1.2*D LC):	PLASTIC B	P _{bearing_0.9_dia} =)+0.75*W	wedges	_0.9_bearing_dia	P _{bearing_0.9_dia} = P _{bearing_1.2_dia} =	493.60 628.09	kip kip	
	npressive Load fo	or Bearing (1.2*D LC):	PLASTIC B	P _{bearing_0.9_dia} = P _{bearing_1.2_dia} =	P_0.9D+0.9*(Ws+Wc) P_1.2D+1.2*(Ws+Wc))+0.75*W)+0.75*W	wedges	_0.9_bearing_dia	P _{bearing_1.2_dia} =	628.09	kip	
	npressive Load fo	or Bearing (1.2*D LC): Overturning Moment:	PLASTIC B	$P_{bearing_0.9_dia} =$ $P_{bearing_1.2_dia} =$ $M_{overturning} =$	P_0.9D+0.9*(Ws+Wc) P_1.2D+1.2*(Ws+Wc) M _u + V _u * (D+E+bp _{dist} /)+0.75*W)+0.75*W	wedges	_0.9_bearing_dia	$P_{bearing_1.2_dia} = M_{overturning} =$	628.09 3058.00	kip kip*ft	
	npressive Load fo	or Bearing (1.2*D LC): Overturning Moment: Area of Pad:	PLASTIC B	P _{bearing_0.9_dia} = P _{bearing_1.2_dia} = M _{overturning} = Area =	P_0.9D+0.9*(Ws+Wc) P_1.2D+1.2*(Ws+Wc) M _u + V _u * (D+E+bp _{dist} /· W ²)+0.75*W)+0.75*W	wedges	_0.9_bearing_dia	$P_{bearing_1.2_dia} =$ $M_{overturning} =$ Area =	628.09 3058.00 1024.00	kip kip*ft ft ²	
Con	ppressive Load for Factored Plastic Sec	or Bearing (1.2*D LC): Overturning Moment: Area of Pad: ction Modulus of Pad:	PLASTIC B	$\begin{aligned} &P_{bearing_0.9_dia} = \\ &P_{bearing_12_dia} = \\ &M_{overturning} = \\ &Area = \\ &Z_{_dia} = \end{aligned}$	P_0.9D+0.9*(Ws+Wc) P_1.2D+1.2*(Ws+Wc) M _u + V _u * (D+E+bp _{dist} /- W ² W ³ / (3*SQRT(2)))+0.75*W)+0.75*W 12)	wedges	_0.9_bearing_dia	$P_{bearing_12_dia} =$ $M_{overturning} =$ $Area =$ $Z_{_dia} =$	628.09 3058.00 1024.00 7723.49	kip kip*ft ft² ft³	
Con	ppressive Load for Factored Plastic Sec	or Bearing (1.2*D LC): Overturning Moment: Area of Pad:	PLASTIC B	$\begin{aligned} &P_{bearing_0.9_dia} = \\ &P_{bearing_12_dia} = \\ &M_{overturning} = \\ &Area = \\ &Z_{_dia} = \end{aligned}$	P_0.9D+0.9*(Ws+Wc) P_1.2D+1.2*(Ws+Wc) M _u + V _u * (D+E+bp _{dist} /· W ²)+0.75*W)+0.75*W 12)	wedges	_0.9_bearing_dia	$P_{bearing_1.2_dia} =$ $M_{overturning} =$ Area =	628.09 3058.00 1024.00	kip kip*ft ft ²	
Con	pressive Load for Factored Plastic Sec	or Bearing (1.2*D LC): Overturning Moment: Area of Pad: ction Modulus of Pad:	PLASTIC E	P _{bearing_0.9_dia} = P _{bearing_1.2_dia} = M _{overturning} = Area = Z_dia = pre_ec_0.9_p_dia =	P_0.9D+0.9*(Ws+Wc) P_1.2D+1.2*(Ws+Wc) M _u + V _u * (D+E+bp _{dist} /- W ² W ³ / (3*SQRT(2)))+0.75*W)+0.75*W 12)	wedges	_0.9_bearing_dia	$P_{bearing_12_dia} =$ $M_{overturning} =$ $Area =$ $Z_{_dia} =$	628.09 3058.00 1024.00 7723.49	kip kip*ft ft² ft³	
Con Pre Pre	Plastic Sei eliminary Load Ed	or Bearing (1.2*D LC): Overturning Moment: Area of Pad: ction Modulus of Pad: ccentricity (0.9*D LC):	PLASTIC B	P _{bearing_0.9_dia} = P _{bearing_1.2_dia} = M _{overturning} = Area = Z_dia = pre_ec_0.9_p_dia =	$\begin{split} P_0.9D+0.9*(Ws+Wc) \\ P_1.2D+1.2*(Ws+Wc) \\ M_u+V_u*(D+E+bp_{dist}/2) \\ W^2 \\ W^3/(3*SQRT(2)) \\ M_{overturning}/P_{bearing_0.9_dist} \\ M_{overturning}/P_{bearing_1.2_dist} \end{split}$)+0.75*W)+0.75*W 12)	wedges	_0.9_bearing_dia	$P_{bearing_12_dia} =$ $M_{overturning} =$ $Area =$ $Z_{_dia} =$ $pre_ec_{_0.9_p_dia} =$	628.09 3058.00 1024.00 7723.49 6.20	kip*ft ft² ft³ ft	(L/4)*SQR1
Con Pro [Goal Seek]	Plastic See eliminary Load Ed Load Eccentricity	or Bearing (1.2*D LC): Overturning Moment: Area of Pad: ction Modulus of Pad: ccentricity (0.9*D LC): ccentricity (1.2*D LC):	PLASTIC B	$\begin{aligned} &P_{bearing_0.9_dia} = \\ &P_{bearing_1.2_dia} = \\ &M_{overturming} = \\ &Area = \\ &Z_{_dia} = \\ ⪯_ec_{_{0.9_p_dia}} = \\ ⪯_ec_{_{12_p_dia}} = \end{aligned}$	P_0.9D+0.9*(Ws+Wc) P_1.2D+1.2*(Ws+Wc) M _u + V _u * (D+E+bp _{dist} /- W ² W ³ / (3*SQRT(2)) Moverturning/P _{bearing_0.9_dis} Moverturning/P _{bearing_1.2_dis} goal seek)+0.75*W)+0.75*W 12)	wedges	_0.9_bearing_dia	$P_{bearing_12_dia} =$ $M_{overturning} =$ $Area =$ $Z_{_dia} =$ $pre_ec_{_0.9_p_dia} =$ $pre_ec_{_1.2_p_dia} =$	628.09 3058.00 1024.00 7723.49 6.20 4.87	kip kip*ft ft² ft³ ft	(L/4)*SQR1 e <= (L/4)*\$
Con Pro [Goal Seek]	pressive Load for Factored Plastic Seiliminary Load Ecteliminary Load Ectentricity Load Eccentricity	or Bearing (1.2*D LC): Overturning Moment: Area of Pad: contricity (0.9*D LC): contricity (1.2*D LC): y Iteration (0.9*D LC):	PLASTIC B	Pbearing_0.9_dia = Pbearing_1.2_dia = Moverturning = Area = Z_dia = pre_ec_0.9_p_dia = pre_ec_1.2_p_dia = ec_0.9_p_dia = ec_1.2_p_dia =	P_0.9D+0.9*(Ws+Wc) P_1.2D+1.2*(Ws+Wc) M_u + V_u * (D+E+bp _{dist} /* W² W³ / (3*SQRT(2)) Moverturning/Pbearing_0.9_dis Moverturning/Pbearing_1.2_dis goal seek goal seek)+0.75*W)+0.75*W 12)	wedges	_0.9_bearing_dia	$P_{bearing_12_dia} = \\ M_{overturning} = \\ Area = \\ Z__{dia} = \\ pre_ec\{0.9_p_dia} = \\ pre_ec\{1.2_p_dia} = \\ ec\{0.9_p_dia} = \\ ec\{1.2_p_dia} = \\ ec\{1.2_p_$	628.09 3058.00 1024.00 7723.49 6.20 4.87 5.83	kip*ft ft² ft ft ft	
Con Pro [Goal Seek]	Plastic See aliminary Load Ec Load Eccentricity Non-Bearin	or Bearing (1.2*D LC): Overturning Moment: Area of Pad: ction Modulus of Pad: ccentricity (0.9*D LC): ccentricity (1.2*D LC): y Iteration (0.9*D LC): y Iteration (1.2*D LC): ng Length (0.9*D LC):	PLASTIC B	P _{bearing_0.9_dia} = P _{bearing_1.2_dia} = M _{overturning} = Area = Z _{_dia} = pre_ec_ _{0.9_p_dia} = pre_ec_ _{1.2_p_dia} = ec_ _{0.9_p_dia} = ec_ _{1.2_p_dia} = NBL _{_0.9_dia} =	P_0.9D+0.9*(Ws+Wc) P_1.2D+1.2*(Ws+Wc) M_u + V_u * (D+E+bp _{dist} /- W² W³ / (3*SQRT(2)) Moverturning/P _{bearing_0.9} _dia Moverturning/P _{bearing_1.2} _dia goal seek goal seek SQRT(2)*ec_0.9_p_di)+0.75*W)+0.75*W 12)	wedges	_0.9_bearing_dia	P _{bearing_12_dia} = M _{overturning} = Area = Z_dia = pre_ec_0_0_p_dia = pre_ec_1_2_p_dia = ec0_p_dia = NBL_0_0_dia =	628.09 3058.00 1024.00 7723.49 6.20 4.87 5.83 4.83	kip*ft ft² ft ft ft ft	
Con Pro [Goal Seek] [Goal Seek]	Plastic See eliminary Load Ec eliminary Load Ec Load Eccentricity Non-Bearin	or Bearing (1.2*D LC): Overturning Moment: Area of Pad: ction Modulus of Pad: ccentricity (0.9*D LC): ccentricity (1.2*D LC): y Iteration (0.9*D LC): ng Length (0.9*D LC): ng Length (1.2*D LC):	PLASTIC B	Pbearing_0.9_dia = Pbearing_1.2_dia = Moverturning = Area = Z_dia = pre_ec_0.9_p.dia = pre_ec_1.2_p.dia = ec_0.9_p.dia = NBL_0.9_dia = NBL_1.2_dia =	P_0.9D+0.9*(Ws+Wc) P_1.2D+1.2*(Ws+Wc) M _u + V _u * (D+E+bp _{dist} /- W ² W ³ / (3*SQRT(2)) M _{overturning} /P _{bearing_0.9_dis} M _{overturning} /P _{bearing_1.2_dis} goal seek goal seek SQRT(2)*ec_0.9_p_di 0)+0.75*W)+0.75*W 12)	/wedges	_0.9_bearing_dia _1.2_bearing_dia	$P_{bearing_12_dia} = \\ M_{overturning} = \\ Area = \\ Z__{dia} = \\ pre_ec\{0.9_p_dia} = \\ pre_ec\{1.2_p_dia} = \\ ec\{0.9_p_dia} = \\ ec\{1.2_p_dia} = \\ ec\{1.2_p_$	628.09 3058.00 1024.00 7723.49 6.20 4.87 5.83	kip*ft ft² ft ft ft	
Pre Pre [Goal Seek] [Goal Seek]	Plastic Sei Plastic Sei eliminary Load Ec Eliminary Load Ec Load Eccentricity Non-Bearin Non-Bearin Non-Bearing Wortnern	or Bearing (1.2*D LC): Overturning Moment: Area of Pad: controlly (0.9*D LC): controlly (1.2*D LC): y Iteration (0.9*D LC): y Iteration (1.2*D LC): ng Length (1.2*D LC): ng Length (1.2*D LC): ng Length (1.2*D LC):	PLASTIC B	Pbearing_0.9_dia = Pbearing_1.2_dia = Moverturning = Area = Z_dia = pre_ec_0.9_p.dia = pre_ec_1.2_p.dia = ec_0.9_p.dia = NBL_0.9_dia = NBL_1.2_dia =	P_0.9D+0.9*(Ws+Wc) P_1.2D+1.2*(Ws+Wc) M_u + V_u * (D+E+bp _{dist} /- W² W³ / (3*SQRT(2)) Moverturning/P _{bearing_0.9} _dia Moverturning/P _{bearing_1.2} _dia goal seek goal seek SQRT(2)*ec_0.9_p_di)+0.75*W)+0.75*W 12)	/wedges	_0.9_bearing_dia _1.2_bearing_dia	P _{bearing_12_dia} = M _{overturning} = Area = Z_dia = pre_ec_0_0_p_dia = pre_ec_1_2_p_dia = ec0_p_dia = NBL_0_0_dia =	628.09 3058.00 1024.00 7723.49 6.20 4.87 5.83 4.83	kip*ft ft² ft ft ft ft	
Pre Pre [Goal Seek] [Goal Seek]	Plastic Sec eliminary Load Ec eliminary Load Ec Load Eccentricity Non-Bearin Non-Bearing Wedness esisting moment	or Bearing (1.2°D LC): Overturning Moment: Area of Pad: cocentricity (0.9°D LC): y Iteration (0.9°D LC): y Iteration (0.9°D LC): ng Length (1.2°D LC):	PLASTIC B	Pbearing_0.9_dia = Pbearing_1.2_dia = Moverturning = Area = Z_dia = pre_ec_0.9_p_dia = pre_ec_1.2_p_dia = ec_0.9_p_dia = ec_1.2_p_dia = NBL_0.9_dia = NBL_1.2_dia = ΦMResisting_0.9 =	P_0.9D+0.9*(Ws+Wc) P_1.2D+1.2*(Ws+Wc) M _u + V _u * (D+E+bp _{dist} /- W ² W ³ / (3*SQRT(2)) M _{overturning} /P _{bearing_0.9_dis} M _{overturning} /P _{bearing_1.2_dis} goal seek goal seek SQRT(2)*ec_0.9_p_di 0)+0.75*W)+0.75*W 12) a a a	/wedges /wedges /wedges	_0.9_bearing_dia _1.2_bearing_dia	P _{bearing_12_dia} = Moverturning = Area = Z_dia = pre_ec_0.9_p_dia = pre_ec_1.2_p_dia = ec_0.9_p_dia = NBL_0.9_dia = NBL_12_dia =	628.09 3058.00 1024.00 7723.49 6.20 4.87 5.83 4.83 8.25	kip*ft ft² ft ft ft ft	
Pro [Goal Seek] [Goal Seek] ! Otal Pactored Re	Plastic Sec eliminary Load Ec eliminary Load Ec Load Eccentricity Non-Bearin Non-Bearin Wedness esisting moment Wedness	or Bearing (1.2*D LC): Overturning Moment: Area of Pad: cocentricity (0.9*D LC): cocentricity (1.2*D LC): y Iteration (0.9*D LC): y Iteration (1.2*D LC): ng Length (0.9*D LC): to use to rp ant soil to use to rp ant soil	PLASTIC B	Pbearing_0.9_dia = Pbearing_1.2_dia = Moverturning = Area = Z_dia = pre_ec_0.9_p_dia = pre_ec_1.2_p_dia = ec_0.9_p_dia = ec_1.2_p_dia = NBL_0.9_dia = NBL_0.9_dia = OMResisting_0.9 = ΦMResisting_1.2 =	P_0.9D+0.9*(Ws+Wc) P_1.2D+1.2*(Ws+Wc) M_u + V_u * (D+E+bp _{dist} /- W² W³ / (3*SQRT(2)) Moverturning/P _{bearing_0.9_dia} Moverturning/P _{bearing_1.2_dia} goal seek goal seek SQRT(2)*ec_0.9_p_di 0 ΦM _{R_Pp_dia} + SUM(ΦM)+0.75*W)+0.75*W 12) a a a	/wedges /wedges /wedges	_0.9_bearing_dia _1.2_bearing_dia	P _{bearing_12_dia} = M _{overturning} = Area = Z _{_dia} = pre_ec_ _{0.9_0.dia} = pre_ec_ _{1.2_0.dia} = ec_ _{0.9_0.dia} = NBL _{_0.9_dia} = NBL _{_0.9_dia} = NBL _{_0.9_dia} =	628.09 3058.00 1024.00 7723.49 6.20 4.87 5.83 4.83 8.25 0.00 179.16 24.80	kip kip*ft ft² ft ft ft ft ft ft kip*ft	
Pre Pre [Goal Seek] [Goal Seek] Lotal Factorea Re Lotal Factorea Re Adjuste	Plastic Sei eliminary Load Ec eliminary Load Ec Load Eccentricity Non-Bearin Non-Bearin Wednes esisting women Wednes ed Overturning M	or Bearing (1.2*D LC): Overturning Moment: Area of Pad: ction Modulus of Pad: ccentricity (0.9*D LC): ccentricity (1.2*D LC): y Iteration (0.9*D LC): y Iteration (1.2*D LC): ng Length (0.9*D LC): t due to rp and soil / Shear (1.9*D LC): t due to rp and soil / Shear (1.2*D LC):	PLASTIC B	Pbearing_0.9_dia = Pbearing_1.2_dia = Moverturning = Area = Z_dia = pre_ec_0.9_p_dia = pre_ec_1.2_p_dia = ec_0.9_p_dia = ec_1.2_p_dia = NBL_0.9_dia = NBL_1.2_dia = ФMResisting_0.9 = ФMResisting_0.9 = Moverturning_0.9_dia =	P_0.9D+0.9*(Ws+Wc) P_1.2D+1.2*(Ws+Wc) M _u + V _u * (D+E+bp _{dist} /- W ² W ³ / (3*SQRT(2)) M _{overturning} /P _{bearing_0.9_dis} M _{overturning} /P _{bearing_1.2_dis} goal seek goal seek SQRT(2)*ec_0.9_p_di 0 ΦM _{R_Pp_dia} + SUM(ΦM ΦM _{R_Pp_dia} + SUM(ΦM)+0.75*W)+0.75*W 12) a a ia	/wedges /wedges /wedges	_0.9_bearing_dia _1.2_bearing_dia	P _{bearing_12_dia} = Moverturning = Area = Z_dia = pre_ec_0.9_p_dia = pre_ec_1.2_p_dia = ec_0.9_p_dia = NBL_0.0_dia = NBL_12_dia = ΦM _{Resisting_0.9_dia} = ΦM _{Resisting_1.2_dia} =	628.09 3058.00 1024.00 7723.49 6.20 4.87 5.83 4.83 8.25 0.00 179.16 24.80	kip kip*ft ft² ft ft ft ft ft kip*ft kip*ft	
Pro Pro [Goal Seek] [Goal Seek] Lotal Factored Re Lotal Factored Re Adjuste	Plastic Set eliminary Load Ed eliminary Load Ed Load Eccentricity Non-Bearin Non-Bearin Wedness ed Overturning N	or Bearing (1.2*D LC): Overturning Moment: Area of Pad: ction Modulus of Pad: ccentricity (0.9*D LC): ccentricity (1.2*D LC): y Iteration (0.9*D LC): y Iteration (1.2*D LC): ng Length (0.9*D LC): tuue to "p arra Soir / Shear (1.2*D LC): Moment (0.9*D LC): Moment (1.2*D LC):	PLASTIC B	Pbearing_0.9_dia = Pbearing_1.2_dia = Moverturning = Area = Z_dia = pre_ec_0.9_p_dia = pre_ec_1.2_p_dia = ec_0.9_p_dia = ec_1.2_p_dia = NBL_0.9_dia = NBL_1.2_dia = ФMResisting_0.9 = ФMResisting_1.2 = Moverturning_0.9_dia = Moverturning_0.9_dia =	P_0.9D+0.9*(Ws+Wc) P_1.2D+1.2*(Ws+Wc) M_u + V_u * (D+E+bpdist/- W² W³ / (3*SQRT(2)) Moverturning/Pbearing_0.9_dia Moverturning/Pbearing_1.2_dia goal seek SQRT(2)*ec_0.9_p_di 0 ΦM _{R_Pp_dia} + SUM(ΦM ΦM _{R_Pp_dia} + SUM(ΦM Moverturning - ΦM _{Resisting_})+0.75*W)+0.75*W 12) a a a ia A _{R_wedges_1} _0.9_dia	/wedges /wedges / wedges / wedges / wedges	_0.9_bearing_dia _1.2_bearing_dia _1.8_shear_0.9_dia) _1.8_shear_1.2_dia)	Pearing_12_dia = Moverturning = Area = Z_dia = pre_ec_0_9_p_dia = pre_ec_1_2_p_dia = ec_1_2_p_dia = NBL_0_0_dia = NBL_1_2_dia = DMResisting_0_9_dia = Moverturning_0_9_dia = Moverturning_1_1_2_dia = Moverturning_1_1_2_dia =	628.09 3058.00 1024.00 7723.49 6.20 4.87 5.83 4.83 8.25 0.00 179.16 24.80 2878.84	kip kip*ft ft² ft ft ft ft ft kip*ft kip*ft kip*ft	
Pro Pro [Goal Seek] [Goal Seek] Lotal Factored Re Lotal Factored Re Adjuste Adjuste	Plastic Sec eliminary Load Ec eliminary Load Ec Load Eccentricity Non-Bearin Non-Bearin Wednes essisting women Wednes ed Overturning Med Overturning Med Overturning Med Ned ed Overturning Med Overturning Med Overturning Med Ned ed Overturning Med Overtur	or Bearing (1.2*D LC): Overturning Moment: Area of Pad: controlly (0.9*D LC): overtricity (1.2*D LC):	PLASTIC B	Pbearing_0.9_dia = Pbearing_1.2_dia = Moverturning = Area = Z_dia = pre_ec_0.9_p_dia = pre_ec_1.2_p_dia = ec_0.9_p_dia = ec_1.2_p_dia = NBL_0.9_dia = NBL_0.9_dia = AMResisting_0.9 = ФМяевізтіпд_0.9_dia = Moverturning_1.2_dia = Moverturning_1.2_dia =	P_0.9D+0.9*(Ws+Wc) P_1.2D+1.2*(Ws+Wc) M _u + V _u * (D+E+bp _{dist} /- W ² W ³ / (3*SQRT(2)) M _{overturning} /P _{bearing_0.9_dis} M _{overturning} /P _{bearing_1.2_dis} goal seek goal seek SQRT(2)*ec_0.9_p_di 0 ΦM _{R_Pp_dia} + SUM(ΦM ΦM _{R_Pp_dia} + SUM(ΦM M _{overturning} - ΦM _{Resisting_} M _{overturning} - ΦM _{Resisting_} P _{bearing_0.9_dia} *ec_0.9_p_di)+0.75*W)+0.75*W 12) a a ia iR_wedges_0 1-2_dia 1-2_dia + ΦM _E	wedges, vedges, vedge	_0.9_bearing_dia _1.2_bearing_dia _1.2_bearing_dia _1.2_bear_0.9_dia _1.2_dia	P _{bearing_12_dia} = Moverturning = Area = Z_dia = pre_ec_0.9_p_dia = pre_ec_1.2_p_dia = ec_0.9_p_dia = ec_1.2_p_dia = NBL_0.9_dia = NBL_1.2_dia = ФMResisting_0.9_dia = Moverturning_0.9_dia = Moverturning_1.2_dia = Moverturning_1.2_dia = Moverturning_1.2_dia =	628.09 3058.00 1024.00 7723.49 6.20 4.87 5.83 4.83 8.25 0.00 179.16 24.80 2878.84 3033.20 3058.00	kip kip*ft ft² ft ft ft ft ft kip*ft kip*ft kip*ft kip*ft	
Pro Pro [Goal Seek] [Goal Seek] Fotal ractored re Fotal ractored re Adjuste Adjuste	Plastic Sec eliminary Load Ec eliminary Load Ec Load Eccentricity Non-Bearin Non-Bearin Wednes essisting women Wednes ed Overturning Med Overturning Med Overturning Med Ned ed Overturning Med Overturning Med Overturning Med Ned ed Overturning Med Overtur	or Bearing (1.2*D LC): Overturning Moment: Area of Pad: ction Modulus of Pad: ccentricity (0.9*D LC): ccentricity (1.2*D LC): y Iteration (0.9*D LC): y Iteration (1.2*D LC): ng Length (0.9*D LC): tuue to "p arra Soir / Shear (1.2*D LC): Moment (0.9*D LC): Moment (1.2*D LC):	PLASTIC B	Pbearing_0.9_dia = Pbearing_1.2_dia = Moverturning = Area = Z_dia = Pre_ec_0.9_p_dia = pre_ec_1.2_p_dia = ec_0.9_p_dia = ec_1.2_p_dia = NBL_0.9_dia = NBL_0.9_dia = MResisting_0.9 = MNResisting_0.9 = Moverturning_0.9_dia = Moverturning_1.2_dia = Moverturning_1.2_dia = DMResisting_qu_0.9_dia = DMResisting_qu_0.9_dia =	P_0.9D+0.9*(Ws+Wc) P_1.2D+1.2*(Ws+Wc) M _u + V _u * (D+E+bp _{dist} /* W² W³ / (3*SQRT(2)) Moverturning/P _{bearing_0.9_dis} Moverturning/P _{bearing_1.2_dis} goal seek goal seek SQRT(2)*ec_0.9_p_di 0 ΦM _{R_Pp_dis} + SUM(ΦM ΦM _{R_Pp_dis} + SUM(ΦM Moverturning - ΦM _{Resisting_} Moverturning - ΦM _{Resisting_} P _{bearing_0.9_dis} *ec_0.9_p_di P _{bearing_0.9_dis} *ec_0.9_p_di)+0.75*W)+0.75*W 12) a a ia M _{R_wedges_1} 0.9_dia 1.2_dia + ΦM _R dia + ΦM _R	wedges, vedges, vedge	_0.9_bearing_dia _1.2_bearing_dia _1.2_bearing_dia _1.2_bear_0.9_dia _1.2_dia	P _{bearing_12_dia} = Moverturning = Area = Z_dia = pre_ec_0_9_p_dia = ec0_9_p_dia = ec12_p_dia = NBL0_9_dia = NBL0_9_dia = DMResisting_0_9_dia = Moverturning_12_dia = Moverturning_12_dia = DMResisting_0_9_dia = Amoverturning_12_dia = DMResisting_0_9_dia = DMResisting_0_9_dia = DMResisting_0_9_dia = DMResisting_0_9_dia =	628.09 3058.00 1024.00 7723.49 6.20 4.87 5.83 8.25 0.00 179.16 24.80 2878.84 3033.20 3058.00	kip kip*ft ft² ft ft ft ft ft kip*ft kip*ft kip*ft kip*ft kip*ft	
Pre Pre [Goal Seek] [Goal Seek] Total Factorea Ree Adjuste Total Res	Plastic Set Plast	or Bearing (1.2*D LC): Overturning Moment: Area of Pad: controlly (0.9*D LC): overtricity (1.2*D LC):	PLASTIC B	Pbearing_0.9_dia = Pbearing_1.2_dia = Moverturning = Area = Z_dia = Pre_ec_0.9_p_dia = pre_ec_1.2_p_dia = ec_0.9_p_dia = ec_1.2_p_dia = NBL_0.9_dia = NBL_0.9_dia = MResisting_0.9 = MNResisting_0.9 = Moverturning_0.9_dia = Moverturning_1.2_dia = Moverturning_1.2_dia = DMResisting_qu_0.9_dia = DMResisting_qu_0.9_dia =	P_0.9D+0.9*(Ws+Wc) P_1.2D+1.2*(Ws+Wc) M _u + V _u * (D+E+bp _{dist} /- W ² W ³ / (3*SQRT(2)) M _{overturning} /P _{bearing_0.9_dis} M _{overturning} /P _{bearing_1.2_dis} goal seek goal seek SQRT(2)*ec_0.9_p_di 0 ΦM _{R_Pp_dia} + SUM(ΦM ΦM _{R_Pp_dia} + SUM(ΦM M _{overturning} - ΦM _{Resisting_} M _{overturning} - ΦM _{Resisting_} P _{bearing_0.9_dia} *ec_0.9_p_di)+0.75*W)+0.75*W 12) a a ia M _{R_wedges_1} 0.9_dia 1.2_dia + ΦM _R dia + ΦM _R	wedges, vedges, vedge	_0.9_bearing_dia _1.2_bearing_dia _1.2_bearing_dia _1.2_bear_0.9_dia _1.2_dia	P _{bearing_12_dia} = Moverturning = Area = Z_dia = pre_ec_0.9_p_dia = pre_ec_1.2_p_dia = ec_0.9_p_dia = ec_1.2_p_dia = NBL_0.9_dia = NBL_1.2_dia = ФMResisting_0.9_dia = Moverturning_0.9_dia = Moverturning_1.2_dia = Moverturning_1.2_dia = Moverturning_1.2_dia =	628.09 3058.00 1024.00 7723.49 6.20 4.87 5.83 4.83 8.25 0.00 179.16 24.80 2878.84 3033.20 3058.00	kip kip*ft ft² ft ft ft ft ft kip*ft kip*ft kip*ft kip*ft	
Pro Pro [Goal Seek] [Goal Seek] Total Factored res Adjuste Adjuste Total Res Total Res Goal Seek] Mo	Plastic Sec eliminary Load Ec eliminary Load Ec eliminary Load Ec Load Eccentricity Non-Bearin Non-Bearin Wednes esistang women Wednes ed Overturning N ed Overturning N esistance to Over	or Bearing (1.2*D LC): Overturning Moment: Area of Pad: ction Modulus of Pad: ccentricity (0.9*D LC): ccentricity (1.2*D LC): y Iteration (0.9*D LC): y Iteration (1.2*D LC): ture to rp aria soii t / Shear (1.2*D LC): ture to rp aria soii t / Shear (1.2*D LC): Moment (0.9*D LC): turning (0.9*D LC): turning (0.9*D LC): turning (0.9*D LC):	PLASTIC B	P _{bearing_0.9_dia} = P _{bearing_1.2_dia} = Noverturning = Area = Z_dia = pre_ec_ _{0.9_p_dia} = pre_ec_ _{1.2_p_dia} = ec_ _{0.9_p_dia} = ec_ _{1.2_p_dia} = NBL_ _{0.9_dia} = NBL_ _{1.2_dia} = Moverturning_0.9 = Moverturning_0.9 = Moverturning_1.2_dia = Moverturning_1.2_dia = ΦM _{Resisting_0.9_dia} =	P_0.9D+0.9*(Ws+Wc) P_1.2D+1.2*(Ws+Wc) M _u + V _u * (D+E+bp _{dist} /* W² W³ / (3*SQRT(2)) Moverturning/P _{bearing_0.9_dis} Moverturning/P _{bearing_1.2_dis} goal seek goal seek SQRT(2)*ec_0.9_p_di 0 ΦM _{R_Pp_dis} + SUM(ΦM ΦM _{R_Pp_dis} + SUM(ΦM Moverturning - ΦM _{Resisting_} Moverturning - ΦM _{Resisting_} P _{bearing_0.9_dis} *ec_0.9_p_di P _{bearing_0.9_dis} *ec_0.9_p_di	ia In the second of the secon	wedges, vedges, vedge	_0.9_bearing_dia _1.2_bearing_dia _1.2_bearing_dia _1.2_bear_0.9_dia _1.2_dia	P _{bearing_12_dia} = Moverturning = Area = Z_dia = pre_ec_0_9_p_dia = ec0_9_p_dia = ec12_p_dia = NBL0_9_dia = NBL0_9_dia = DMResisting_0_9_dia = Moverturning_12_dia = Moverturning_12_dia = DMResisting_0_9_dia = Amoverturning_12_dia = DMResisting_0_9_dia = DMResisting_0_9_dia = DMResisting_0_9_dia = DMResisting_0_9_dia =	628.09 3058.00 1024.00 7723.49 6.20 4.87 5.83 8.25 0.00 179.16 24.80 2878.84 3033.20 3058.00	kip kip*ft ft² ft ft ft ft ft kip*ft kip*ft kip*ft kip*ft kip*ft	
Pro Pro [Goal Seek] [Goal Seek] Total Factored res Adjuste Adjuste Total Res Total Res Goal Seek] Mo	Plastic Sec eliminary Load Ec eliminary Load Ec eliminary Load Ec Load Eccentricity Non-Bearin Non-Bearin Wednes esistang women Wednes ed Overturning N ed Overturning N esistance to Over	or Bearing (1.2*D LC): Overturning Moment: Area of Pad: controlly (0.9*D LC): overturicity (0.9*D LC): overturicity (1.2*D LC): overturicity (PLASTIC B	P _{bearing_0.9_dia} = P _{bearing_1.2_dia} = N _{overturning} = Area = Z_dia = pre_ec_0.9_p_dia = pre_ec_1.2_p_dia = ec_0.9_p_dia = ec_0.9_p_dia = NBL_0.9_dia = NBL_0.9_dia = MResisting_0.9 = ΦM _{Resisting_1.2} = Moverturning_0.9_dia = Moverturning_1.2_dia = ΦM _{Resisting_qu_0.9_dia} = ΦM _{Resisting_qu_0.9_dia} = ΦM _{Resisting_qu_0.9_dia} = ΔM_0.9_dia = ΔM_0.9_dia =	P_0.9D+0.9*(Ws+Wc) P_1.2D+1.2*(Ws+Wc) M _u + V _u * (D+E+bp _{dist} /- W ² W ³ / (3*SQRT(2)) M _{overturning} /P _{bearing_0.9_dis} M _{overturning} /P _{bearing_1.2_dis} goal seek goal seek SQRT(2)*ec_0.9_p_di 0 ΦM _{R_Pp_dia} + SUM(ΦM ΦM _{R_Pp_dia} + SUM(ΦM M _{overturning} - ΦM _{Resisting_} M _{overturning} - ΦM _{Resisting_} P _{bearing_0.9_dis} *ec_0.9_p_di P _{bearing_1.2_dis} *ec_0.9_p_di	ia In the second of the secon	wedges, vedges, vedge	_0.9_bearing_dia _1.2_bearing_dia _1.2_bearing_dia _1.2_bear_0.9_dia _1.2_dia	P _{bearing_12_dia} = M _{overturning} = Area = Z_dia = pre_ec_0_0_p_dia = pre_ec_1_2_p_dia = ec_1_2_p_dia = NBL_0_0_dia = NBL_12_dia = ΦMResisting_0_9_dia = ΦMResisting_12_dia = Moverturning_0_9_dia = ΦMResisting_12_dia = ΦMResisting_1_12_dia = ΔM_0_0_dia =	628.09 3058.00 1024.00 7723.49 6.20 4.87 5.83 4.83 8.25 0.00 179.16 24.80 2878.84 3033.20 3058.00 0.00	kip kip*ft ft² ft ft ft ft ft kip*ft kip*ft kip*ft kip*ft kip*ft kip*ft	
Free Pre [Goal Seek] [Goal Seek] [Goal Seek] [Total Factored Res Adjuste Adjuste Total Res [Goal Seek] Mc	Plastic Set Plast	or Bearing (1.2*D LC): Overturning Moment: Area of Pad: controlly (0.9*D LC): overturicity (0.9*D LC): overturicity (1.2*D LC): overturicity (PLASTIC B	Pbearing_0.9_dia = Pbearing_1.2_dia = Moverturning = Area = Z_dia = pre_ec_0.9_p_dia = ec_0.9_p_dia = ec_1.2_p_dia = NBL_0.9_dia = NBL_1.2_dia = DMResisting_0.9 = DMResisting_1.2 = Moverturning_0.9_dia = Moverturning_1.2_dia = DMResisting_qu_0.9_dia = DMResisting_qu_0.9_dia = DMResisting_qu_1.2_dia = DMResisting_qu_1.2_dia = DMResisting_qu_1.2_dia = DMResisting_qu_1.2_dia =	P_0.9D+0.9*(Ws+Wc) P_1.2D+1.2*(Ws+Wc) M _u + V _u * (D+E+bp _{dist} /- W² W³ / (3*SQRT(2)) M _{overturning} /P _{bearing_0.9_dis} M _{overturning} /P _{bearing_1.2_dis} goal seek goal seek SQRT(2)*ec_0.9_p_di 0 ΦM _{R_Pp_dia} + SUM(ΦM ΦM _{R_Pp_dia} + SUM(ΦM M _{overturning} - ΦM _{Resisting_} M _{overturning} - ΦM _{Resisting_} P _{bearing_0.9_dia} *eC_0.9_p_di M _{overturning} - ΦM _{Resisting_qi})+0.75*W)+0.75*W 12) a a a ia MR_wedges_1 0.9_dia 1.2_dia 4	wedges, we will well a weak of the weak of the weak of the wedges, we will will well a weak of the we	_0.9_bearing_dia _1.2_bearing_dia _1.2_bearing_dia _1.2_dia _1.2_dia	P _{bearing_12_dia} = M _{overturning} = Area = Z_dia = pre_ec_0_0_p_dia = pre_ec_1_2_p_dia = ec_1_2_p_dia = NBL_0_0_dia = NBL_12_dia = ΦMResisting_0_9_dia = ΦMResisting_12_dia = Moverturning_0_9_dia = ΦMResisting_12_dia = ΦMResisting_1_12_dia = ΔM_0_0_dia =	628.09 3058.00 1024.00 7723.49 6.20 4.87 5.83 4.83 8.25 0.00 179.16 24.80 2878.84 3033.20 3058.00 0.00	kip kip*ft ft² ft ft ft ft ft kip*ft kip*ft kip*ft kip*ft kip*ft kip*ft	
Pro [Goal Seek] [Goal Seek] [Goal Seek] I otal ractored ree Adjuste Adjuste Total Res [Goal Seek] Mo	Plastic Sec Plastic Sec eliminary Load Ec eliminary Load Ec eliminary Load Ec Load Eccentricity Non-Bearin Non-Bearin Wednes esistung wornen Wednes esistance to Over sistance to Over coment Comparisco coment Comparisco	or Bearing (1.2*D LC): Overturning Moment: Area of Pad: cition Modulus of Pad: ccentricity (0.9*D LC): ccentricity (1.2*D LC): y Iteration (0.9*D LC): y Iteration (1.2*D LC): ng Length (0.9*D LC): ng Length (1.2*D LC): tuue to "p and soil / Shear /1 2*D LC): Moment (0.9*D LC): rturning (0.9*D LC): rturning (0.9*D LC): criturning (1.2*D LC): on Iteration (0.9D LC): on Iteration (1.2D LC):	PLASTIC B	P _{bearing_0.9_dia} = P _{bearing_1.2_dia} = M _{overturning} = Area = Z_dia = pre_ec_ _{0.9_p_dia} = pre_ec_ _{1.2_p_dia} = ec_ _{0.9_p_dia} = ec_ _{0.9_p_dia} = NBL_ _{0.9_dia} = NBL_ _{0.9_dia} = M _{overturning_0.9} = dM _{Resisting_0.9} = dM _{Resisting_0.9} = dM _{Resisting_0.9} = dM _{Resisting_0.9} = dM _{Resisting_0.9_dia} = Am _{0.9_dia} = DM _{Resisting_0.9_dia} = dM _{Resisting_0.9_dia} = dM _{0.9_dia} =	P_0.9D+0.9*(Ws+Wc) P_1.2D+1.2*(Ws+Wc) M_u + V_u * (D+E+bpdist/- W² W³ / (3*SQRT(2)) Moverturning/Pbearing_0.9_dia Moverturning/Pbearing_1.2_dia goal seek SQRT(2)*ec_0.9_p_di 0 ΦM _{R_Pp_dia} + SUM(ΦM ΦM _{R_Pp_dia} + SUM(ΦM Moverturning - ΦM _{Resisting_} Moverturning - ΦM _{Resisting_} Moverturning - ΦM _{Resisting_qu} earing Pressures	ia IR_wedges_0 AR_wedges_0 I_2_dia 1_2_dia 1_2_dia 4_M_wedges_1 0_9_dia 1_2_dia 4_M_wedges_1 1_2_dia 4_M_wedges_1 1_2_dia	wedges, we will well as well-weight and we will well as well-weight with the weight with the weight well-weight with the weight with the weight well-weight with the weight with the	_0.9_bearing_dia _1.2_bearing_dia _1.2_bearing_dia _1.2_bearing_dia _1.2_dia)diadiadia9_p_dia))^2	Pbearing_12_dia = Moverturning = Area = Z_dia = pre_ec_0_0_9_dia = pre_ec_1_2_p_dia = ec_1_2_p_dia = ec_1_2_p_dia = NBL_0_9_dia = NBL_1_2_dia = Moverturning_0_9_dia = Moverturning_0_9_dia = Moverturning_0_9_dia = DMResisting_qu_0_9_dia = DMResisting_qu_0_9_dia = DMResisting_qu_0_9_dia = DMResisting_qu_0_9_dia = DMResisting_qu_0_9_dia =	628.09 3058.00 1024.00 7723.49 6.20 4.87 5.83 4.83 8.25 0.00 179.16 24.80 2878.84 3033.20 3058.00 0.00	kip kip*ft ft² ft ft ft ft ft ft kip*ft kip*ft kip*ft kip*ft kip*ft kip*ft kip*ft kip*ft kip*ft	

Plane	Area (ft²)	Resistance (kip)	Moment Arm (ft)	Unfactored Resisting Moment (kip*ft)	Eccentricity relative to W/2*S	SQRT(2):
(2) Rear	32.00	0.00	33.94	0.00	Total Moment	0.00
(2) Partial Sides	8.25	0.00	19.71	0.00	Arm (ft) =	0.00
Total		0.00		0.00	Soil Shear Strength (kip)=	0.00

M_{R shear 0.9} = Total Moment Arm * Soil Shear Strength Unfactored Resisting Moment of Soil Shear (0.9*D LC): $M_{R_shear_0.9_dia} =$ 0.00

Factored Resisting Moment of Soil Shear (0.9*D LC): $\Phi M_{R_shear_0.9}$ = 0.75 * (Total Moment Arm * Soil Shear Strength) $\Phi M_{R_shear_0.9_dia} =$ 0.00 kip*ft

kip*ft

Soil Shear Strength (Cohesive Soil) (1.2*D LC)

Plane	Area (ft²)	Resistance (kip)	Moment Arm (ft)	Moment (kip*ft)	Eccentricity relative to W/2*S	SQRT(2):
(2) Rear	0.00	0.00	33.94	0.00	Total Moment	0.00
(2) Partial Sides	0.00	0.00	22.63	0.00	Arm (ft) =	0.00
Total		0.00		0.00	Soil Shear Strength (kip)=	0.00

Unfactored Resisting Moment of Soil Shear (1.2*D LC): $M_{R_shear_1.2}$ = Total Moment Arm * Soil Shear Strength $M_{R_shear_1.2_dia} =$ 0.00 kip*ft Factored Resisting Moment of Soil Shear (1.2*D LC): $\Phi M_{R_shear_1.2}$ = 0.75 * (Total Moment Arm * Soil Shear Strength) ΦM_{R shear 1.2 dia} = 0.00 kip*ft

DETERMINE MOMENT THAT WOULD CAUSE 100% OVERTURNING (DIAGONAL)

Compressive Load for Bearing (0.9*D LC): $P_{100_{dia}} = P_{0.9D+0.9}(Ws+Wc)+0.75*Wwedges_100_{dia}$ P_100_dia = 504.26 kip

 $pre_M_{overturning_100_dia} = \frac{(P_100_dia/(SQRT(2)))^*(W-SQRT(P_100_dia/\PhiQult))}{SQRT(P_100_dia/\PhiQult))}$ Preliminary Factored Overturning Moment: pre_Moverturning 100 dia = 7635.64 kip*ft

Preliminary Load Eccentricity (0.9*D LC): pre_ec__{100_dia} = pre_M_{overturning_100_dia} / P_{bearing_0.9} $pre_ec_{_100_dia} = \quad 15.14 \quad ft$

ec_100_dia = goal seek (L/4)*SQR7 [Goal Seek] Load Eccentricity Iteration (0.9*D LC): ec__{100_dia} = 15.09 ft

Maximum Applied Moment from Superstructure Analysis:	$M_{u_max_100_dia}$ = pre_Moverturning_100_dia + Φ MResisting_100_dia	$M_{u_{max_{100}dia}} = 7696.16 \text{ kip*ft}$
[Goal Seek] Moment Comparison Iteration (0.9D LC):	$\Delta M_{_100_dia} = M_{overturning} - \Phi M_{Resisting_qu_100_dia}$	$\Delta M_{100_{dia}} = \frac{0.00}{ft}$
Total Resistance to Overturning (0.9*D LC):	$\Phi M_{Resisting_qu_100_dia} = P_{bearing_0.9} * ec_{_100_dia} + \Phi M_{Resisting_100_dia}$	$\Phi M_{Resisting_qu_100_dia} = 7671.36 kip*ft$
Adjusted Overturning Moment (0.9*D LC):	$M_{overturning_100_dia} = M_{u_max_100_dia} - \Phi M_{R_Pp_dia}$	$M_{overturning_100_dia} = 7671.36 \text{ kip*ft}$
Moment Created by Shear:	$M_{shear} = V_u * (D+E+bp_{dis}/12)$	$M_{shear} = 222.00 \text{ kip*ft}$
rotal Factored Resisting Montent due to Fp and Soil Wednes / Shear (0.0*D.L.C):	$\Phi M_{Resisting_100_dia} = \Phi M_{R_Pp_dia} + SUM(\Phi M_{R_wedges_100_dia}, \Phi M_{R_shear_100_dia})$	$\Phi M_{Resisting_100_dia} = 60.52 kip*ft$
Non-Bearing Length (0.9*D LC):	NBL_ _{100_dia} = SQRT(2)*ec_100_dia	NBL_ _{100_dia} = 21.34 ft

Soil Wedges (Cohesionless Soil) (0.9*D LC)

Soil	Volume (ft³)	Soil Weight (kips)	Moment Arm (ft)	Unfactored Resisting Moment (kip*ft)		
(2) End Prisms (above Water Table)	14.67	1.83	22.63	41.50		
(2) End Prisms (below Water Table)	4.74	0.30	22.63	6.71		
(1) End Prism (above Water Table)	7.34	0.92	46.80	42.92		
(1) End Prisms (below Water Table)	2.37	0.15	45.85	6.80		
(2) Partial Sides (above Water Table)	140.37	17.55	14.31	251.02		
(2) Partial Sides (below Water Table)	89.98	5.63	14.78	83.27	Eccentricity relative to W/2*	SQRT(2):
(2) Rear (above Water Table)	75.54	9.44	34.72	327.83	Total Moment	1.08
(2) Rear (below Water Table)	134.90	8.44	34.24	289.14	Arm (ft) =	
Total	469.92	44.26		1049.20	Soil Wedge Wt (kip)=	44.26

Unfactored Resisting Moment of Wedges (0.9*D LC): M_{R_wedges_100_dia} = Total Moment Arm * Soil Wedge Wt

Factored Resisting Moment of Wedges (0.9*D LC): $\Phi M_{R_wedges_100_dia} = 0.75*MR_wedges_100_dia \qquad \Phi M_{R_wedges_100_dia} = 35.72 \quad kip*ft$

 $M_{R_wedges_100_dia} = 47.63 \text{ kip*ft}$

Soil Shear Strength (Cohesive Soil) (0.9*D LC)

2) Rear 32.00 0.00 33.94 0.00 Total Moment (kg/rt) Eccentricity relative to W/2*SQR1(2): 2) Partial Sides 21.34 0.00 15.08 0.00 Arm (ft) = 0.00	Plane	Area (ft²)	Desistance (kin)	Mamont Arm (ft)	Unfactored Resisting	1	
2) Partial Sides 21.34 0.00 15.08 0.00 Arm (ft) =	Plane	Alea (II-)	Resistance (kip)	Moment Am (it)	Moment (kip*ft)	Eccentricity relative to W/2*S	SQRT(2):
2) Partial Sides 21.34 0.00 15.08 0.00 Arm (tt) =	(2) Rear	32.00	0.00	33.94	0.00	Total Moment	0.00
Total 0.00 Soil Shear Strength (kin)= 0.00	(2) Partial Sides	21.34	0.00	15.08	0.00	Arm (ft) =	0.00
0.00 Coll Orical Oricingth (htp)= 0.00	Total		0.00		0.00	Soil Shear Strength (kip)=	0.00

Unfactored Resisting Moment of Soil Shear $(0.9^*D LC)$: $M_{R_shear_100_dia} = Total$ Moment Arm * Soil Shear Strength $M_{R_shear_100_dia} = 0.00$ kip*ft

Factored Resisting Moment of Soil Shear $(0.9^*D LC)$: $\Phi M_{R_shear_100_dia} = 0.75$ * (Total Moment Arm * Soil Shear Strength) $\Phi M_{R_shear_100_dia} = 0.00$ kip*ft

After printing this label:

- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

After printing this label:

- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

After printing this label:

- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

ATTACHMENT E - POWER DENSITY REPORT

Calculated Radio Frequency Emissions Report

ES-001

705 West Johnson Ave

Cheshire, CT 06410

Table of Contents

1. Introduction	1
2. FCC Guidelines for Evaluating RF Radiation Exposure Limits	1
3. Power Density Calculation Methods	2
4. Calculated % MPE Results	3
5. Conclusion	4
6. Statement of Certification	4
Attachment A: References	5
Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)	6
Attachment C: Eversource Antenna Data Sheets and Electrical Patterns	8
List of Tables	
Table 1: Proposed Tower % MPE	3
Table 2: FCC Limits for Maximum Permissible Exposure (MPE)	6
List of Figures	
Figure 1: Graph of ECC Limits for Maximum Permissible Exposure (MPE)	7

1. Introduction

The purpose of this report is to investigate compliance with applicable FCC regulations for the proposed Eversource installation to be located at 705 West Johnson Ave in Cheshire, CT.

Eversource is proposing to install an omnidirectional antenna as part of its 220 MHz communications system.

This report considers the planned and existing antenna configuration as provided by Eversource along with power density information of the other existing operators to calculate the cumulative % MPE (Maximum Permissible Exposure) of the proposed facility at ground level.

2. FCC Guidelines for Evaluating RF Radiation Exposure Limits

In 1985, the FCC established rules to regulate radio frequency (RF) exposure from FCC licensed antenna facilities. In 1996, the FCC updated these rules, which were further amended in August 1997 by OET Bulletin 65 Edition 97-01. These new rules include Maximum Permissible Exposure (MPE) limits for transmitters operating between 300 kHz and 100 GHz. The FCC MPE limits are based upon those recommended by the National Council on Radiation Protection and Measurements (NCRP), developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI).

The FCC general population/uncontrolled limits set the maximum exposure to which most people may be subjected. General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Public exposure to radio frequencies is regulated and enforced in units of milliwatts per square centimeter (mW/cm²). The general population exposure limits for the various frequency ranges are defined in the attached "FCC Limits for Maximum Permissible Exposure (MPE)" in Attachment B of this report.

Higher exposure limits are permitted under the occupational/controlled exposure category, but only for persons who are exposed as a consequence of their employment and who have been made fully aware of the potential for exposure, and they must be able to exercise control over their exposure. General population/uncontrolled limits are five times more stringent than the levels that are acceptable for occupational, or radio frequency trained individuals. Attachment B contains excerpts from OET Bulletin 65 and defines the Maximum Exposure Limit.

Finally, it should be noted that the MPE limits adopted by the FCC for both general population/uncontrolled exposure and for occupational/controlled exposure incorporate a substantial margin of safety and have been established to be well below levels generally accepted as having the potential to cause adverse health effects.

3. Power Density Calculation Methods

The power density calculation results were generated using the following formula as outlined in FCC bulletin OET 65, and Connecticut Siting Council recommendations:

Power Density =
$$\left(\frac{1.6^2 \times 1.64 \times ERP}{4\pi \times R^2}\right)$$
 X Off Beam Loss

Where:

EIRP = Effective Isotropic Radiated Power = 1.64 x ERP

R = Radial Distance = $\sqrt{(H^2 + V^2)}$

H = Horizontal Distance from antenna

V = Vertical Distance from radiation center of antenna

Ground reflection factor of 1.6

Off Beam Loss is determined by the selected antenna pattern

These calculations assume that the antennas are operating at 100 percent capacity and full power, and that all antenna channels are transmitting simultaneously. Obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. The calculations assume even terrain in the area of study and do not consider actual terrain elevations which could attenuate the signal. As a result, the calculated power density and corresponding % MPE levels reported below are much higher than the actual levels will be from the final installation.

4. Calculated % MPE Results

Table 1 below outlines the power density information for the site. The proposed Eversource omnidirectional antenna has a relatively narrow vertical beamwidth of 30°; therefore, the majority of the RF power is focused out towards the horizon. Please refer to Attachment C for the vertical pattern of the proposed Eversource antenna. Likewise, the other transmit antennas exhibit similar directionality of varying vertical beamwidths. As a result, there will be less RF power directed below the antennas relative to the horizon, and consequently lower power density levels around the base of the facility. The calculated results in Table 1 include a nominal of 10 dB off-beam pattern loss for the omnidirectional and panel antennas, and 30 dB off-beam pattern loss for the highly directional microwave dish to account for the lower relative gain below the antennas. Any inactive or receive-only antennas are not listed in the table unless specified otherwise, as they are irrelevant in terms of the % MPE calculations.

Carrier	Antenna Height (Feet)	Operating Frequency (MHz)	Number of Trans.	ERP Per Transmitter (Watts)	Power Density (mw/cm²)	Limit	%MPE
CL&P whip	103	low band	1	120	0.0046	1.0000	0.05%
CL&P whip	103	150	1	120	0.0046	0.2000	0.23%
CL&P microwave	78	very str	ongly direction	nal & horizontal -	no significant RF to	reach the g	round
Future CL&P whip	85	450	1	250	0.0144	0.3000	0.48%
MetroPCS CDMA	120	2135	3	727	0.0060	1.0000	0.60%
MetroPCS LTE	120	2130	1	1200	0.0033	1.0000	0.33%
AT&T-UMTS	98	850	2	728	0.0062	0.5667	1.09%
AT&T-PCS-UMTS	98	1900	2	1005	0.0085	1.0000	0.85%
AT&T-GSM	98	850	2	728	0.0062	0.5667	1.09%
AT&T-PCS-LTE	98	1900	2	1791	0.0152	1.0000	1.52%
AT&T-LTE	98	700	2	940	0.0080	0.4667	1.71%
Verizon	138	1970	4	1406	0.0116	1.0000	1.16%
Verizon	138	880	1	588	0.0012	0.5867	0.21%
Verizon	138	869	4	364	0.0030	0.5793	0.52%
Verizon	138	2145	4	1414	0.0117	1.0000	1.17%
Verizon	138	746	4	1039	0.0086	0.4973	1.72%
Eversource	146	37.76	1	120	0.0002	0.2000	0.11%
Eversource	83	10835	1	473	0.0000	1.0000	0.00%
Eversource	143	217	4	124	0.0010	0.2000	0.48%
						Total	12.57%

Table 1: Proposed Tower % MPE 1 2 3

The CT Siting Council power density database reflects entries for existing CL&P (now Eversource), which are shown as grey in the table above. These entries have been replaced by the green shaded entries in the calculations and are based upon updated operating parameters provided by Eversource through its agents as part of this project. The blue entry reflects the parameters of the proposed Eversource transmit antenna. Therefore, the total % MPE calculated is based upon only the unshaded, green shaded, and blue shaded entries in the table. Please note that the MetroPCS antennas have not been installed per the Structural Analysis Report but have been retained in the cumulative % MPE calculations, nonetheless.

¹The power density information for operators other than Eversource was taken directly from the CSC power density database dated 12/13/2019. Please note that % MPE values listed are rounded to two decimal points and the total % MPE listed is a summation of each unrounded contribution. Therefore, summing each rounded value may not identically match the total value reflected in the table.

²The antenna heights listed are in reference to Black & Veatch Structural Analysis Report dated March 26, 2020. The height for the MetroPCS antennas is based on the CSC database since they are not shown in Structure Analysis Report.

³ The proposed Eversource antenna consists of two internally stacked antennas – the upper antenna is intended for receive-only, whereas the lower internal antenna is for transmit. The transmit antenna height listed in the table has been adjusted accordingly based on the overall physical antenna centerline listed in the Black & Veatch Structural Analysis Report dated March 26, 2020.

5. Conclusion

The above analysis concludes that RF exposure at ground level with the proposed antenna installation will be below the maximum power density limits as outlined by the FCC in the OET Bulletin 65 Ed. 97-01. Using the conservative calculation methods discussed herein, the highest expected percent of Maximum Permissible Exposure at ground level with the proposed installation is 12.57% of the FCC General Population/Uncontrolled limit.

As noted previously, the calculated % MPE levels are more conservative (higher) than the actual levels will be from the finished installation.

6. Statement of Certification

I certify to the best of my knowledge that the statements in this report are true and accurate. The calculations follow guidelines set forth in FCC OET Bulletin 65 Edition 97-01, IEEE Std. C95.1, and IEEE Std. C95.3.

Report Prepared By: Sokol Andoni

RF Engineer

C Squared Systems, LLC

April 7, 2020

Date

Keith Willante

Reviewed/Approved By: Keith Vellante

Director of RF Services C Squared Systems, LLC April 7, 2020

Date

Attachment A: References

OET Bulletin 65 - Edition 97-01 - August 1997 Federal Communications Commission Office of Engineering & Technology

<u>IEEE C95.1-2005, IEEE Standard Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz</u> <u>IEEE-SA Standards Board</u>

IEEE C95.3-2002 (R2008), IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, 100 kHz-300 GHz IEEE-SA Standards Board

Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)

(A) Limits for Occupational/Controlled Exposure⁴

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	$(900/f^2)*$	6
30-300	61.4	0.163	1.0	6
300-1500	-	-	f/300	6
1500-100,000	-	-	5	6

(B) Limits for General Population/Uncontrolled Exposure⁵

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	$(180/f^2)*$	30
30-300	27.5	0.073	0.2	30
300-1500	-	-	f/1500	30
1500-100,000	-	-	1.0	30

f = frequency in MHz * Plane-wave equivalent power density

Table 2: FCC Limits for Maximum Permissible Exposure (MPE)

ES-001 6 April 7, 2020

⁴ Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure

⁵ General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure

Figure 1: Graph of FCC Limits for Maximum Permissible Exposure (MPE)

Attachment C: Eversource Antenna Data Sheets and Electrical Patterns

217 MHz

Manufacturer: dbSpectra

Model #: DS2C03F36D Frequency Band: 217-222 MHz

inequency Bund. 21, 222

Gain: 3.0 dBd

Vertical Beamwidth:

30°

Horizontal Beamwidth:

360°

Polarization:

Vertical-Polarization

Length: 24.3'

