

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

October 7, 2021

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application 1119 Summit Road, Cheshire CT 06801 Latitude: 41.536444 Longitude: -72.957306 Site# 801367_Crown_Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 1119 Summit Road (aka 1121 Summit Road) in Cheshire, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 5G MHz antenna and six (6) RRUs, at the 123-foot level of the existing 167foot monopole tower, one (1) Fiber cables will also be installed. Dish Wireless LLC equipment cabinets will be placed within 7x5 lease area. Included are plans by Infinigy, dated August 12, 2021 Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated June 9, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was approved by the Connecticut Siting Council in Docket No. 199 on April 12, 2001. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Mr. Robert Oris, Chairman-Town Council, for the Town of Cheshire and William S. Voelker- Town Planner, as well as the tower owner (Crown Castle) and property owner (Joanne Didomizio)

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modification will not result in an increase in the height of the existing structure. The top of the tower is 167-feet; Dish Wireless LLC proposed antennas will be located at a center line height of 123-feet.

2. The proposed modifications will not result in the increase of the site boundary as depicted on the attached site plan.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.

4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total power density of 8.43% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully indicates that the shared use of this facility satisfies these criteria.

A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.

B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this support tower in Cheshire. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.

C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 123-foot level of the existing 167-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.

D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.

E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing guyed tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Cheshire.

Sincerely,

Deníse Sabo

Denise Sabo Mobile: 203-435-3640 Fax: 413-521-0558 Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments cc:

Mr. Robert Oris, Chairman-Town Council Town of Cheshire 84 South Main Street, Cheshire, CT 06410

William S. Voelker- Town Planner Town of Cheshire 84 South Main Street, Cheshire, CT 06410

Joanne Didomizio- as property owner 1115 Summit Road Cheshire, CT 06410

Crown Castle, Tower Owner

Exhibit A

Original Facility Approval

Connecticut Siting Council assumes no responsibility for the use of documents posted on this site. For further information about the proper use of material posted on this site, please see the State of Connecticut <u>disclaimer</u>.

8. Unless otherwise approved by the Council, this Decision and Order shall be void if all construction authorized herein is not completed within three years of the effective date of this Decision and Order or within three years after all appeals to this Decision and Order have been resolved.

Pursuant to General Statutes § 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in <u>The Hartford Courant</u>, <u>The Cheshire Herald</u>, <u>The Waterbury Republican-American</u> and <u>The Record Journal</u>.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

	Robert Stanford, Project Manager Crown Atlantic Company LLC 703 Hebron Avenue Glastonbury, CT 06033
	Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597
AT&T Wireless Services, Inc.	Anthony B. Gioffre III, Esq. Cuddy & Feder & Worby 90 Maple Avenue White Plains, NY 10601

Content Last Modified on 10/9/2002 1:52:54 PM

Ten Franklin Square New Britain, CT 06051 / 860- 827-2935

Home | CT.gov Home | Send Feedback | Login | Register State of Connecticut <u>Disclaimer</u>, <u>Privacy Policy</u>, and <u>Web Site Accessibility Policy</u>. Copyright © 2002-2016 State of Connecticut.

Exhibit B

Property Card

The Assessor's office is responsible for the maintenance of records on the ownership of properties. Assessments are computed at 70% of the estimated market value of real property at the time of the last revaluation which was 2013.

Information on the Property Records for the Municipality of Cheshire was last updated on 10/27/2016.

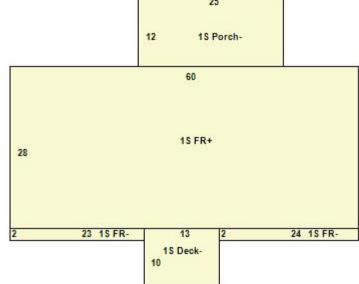
Parcel Information

Location:	1119 SUMMIT RD	Property Use:	Residential	Primary Use:	Residential
Unique ID:	00087800	Map Block Lot:	24 2	Acres:	22.52
Zone:	R-80	Volume / Page:	0798/0074	Developers Map / Lot:	15809
Census:	3432				

Value Information

	Appraised Value	70% Assessed Value
Land	377,245	264,070
Buildings	311,951	218,370

	Appraised Value	70% Assessed Value
Detached Outbuildings	6,370	4,460
Total	695,566	486,900


Owner's Information

Owner's Data	
DIDOMIZIO JOANNE M	
1115 SUMMIT RD	
CHESHIRE CT 06410	

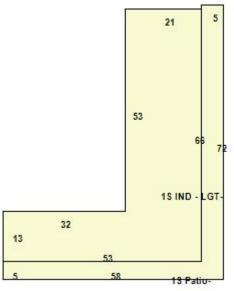
Building 1

0087800 03/08/2012

Stories:1.00Construction:Wood FrameYear Built:1990Total Rooms:7Bedrooms:2Full Baths:3Heating:FHAFireplaces:0Half Baths:1Fuel:OilCooling Percent:0%Basement Area:1,680	Building Use:	Single Family	Style:	Raised Ranch	Living Area:	1,774
Rooms:Image: CoolingImage: Cooling	Stories:	1.00	Construction:	Wood Frame	Year Built:	1990
Fuel:OilCooling0%Basement1,680		7	Bedrooms:	2	Full Baths:	3
	Heating:	FHA	Fireplaces:	0	Half Baths:	1
	Fuel:	Oil	-	0%		1,680

Basement Finished Area:	840	Basement Garages:	2	Roof Material:	Asphalt
Siding:	Clapboards				

Special Features


Whirlpool		1
-----------	--	---

Attached Components

Туре:	Year Built:	Area:
Wood Deck	1990	130
Open Porch	1990	300

Building 2	

Category:	Industrial	Use:	Light Industrial	Stories:	1.00
Above Grade:	1,802	Below Grade:	0	Below Grade Finish:	0
Construction:	Good	Year Built:	2002	Heating:	
Fuel:		Cooling Percent:	0%	Siding:	Stone
Roof Material:		Beds/Units:	0		

Special Features

Attached Components

Туре:	Year Built:	Area:
Concrete Patio	2002	625

_			_
Ru	ild	ling	זו
υu	ιιu	uniy	, ,

photo Not Available

12	1\$ IND - LGT-
	20

Category:	Industrial	Use:	Light Industrial	Stories:	1.00
Above Grade:	240	Below Grade:	0	Below Grade Finish:	0

http://www.propertyrecordcards.com/PrintPage.aspx?towncode=025&uniqueid=00087800 10/27/2016

Construction:	Good	Year Built:	2004	Heating:	
Fuel:		Cooling Percent:	0%	Siding:	Concrete Block
Roof Material:		Beds/Units:	0		

Special Features

Attached Components

Detached Outbuildings

Туре:	Year Built:	Length:	Width:	Area:
Fencing	2002			1,600

Information Published With Permission From The Assessor

1 inch = 400 feet

This map is for informational purposes only. All information is subject to verification by any user. The Town of Cheshire and its mapping contractors assume no legal responsibility for the information contained herein. Map Produced January 2016

Exhibit C

Construction Drawings

		SITE INF	ORMATION	
		PROPERTY OWNER:		AP
		ADDRESS:	1119 SUMMIT RD CHESIHIRE, CT 06410	
		TOWER TYPE:	MONOPOLE	Тс
		TOWER CO SITE ID:	801367	
	SCOPE OF WORK	TOWER APP NUMBER:	552717	
	THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIVALENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE.	COUNTY:	NEW HAVEN	sr
wireless	THE PROVED EQUIVALENT. CONTRACTOR SHALL VENIT ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL STE. THE PROVECT GENERALLY CONSISTS OF THE FOLLOWING: TOWER SCOPE OF WORK:	LATITUDE (NAD 83):	41° 32' 11.20" N 41.536444 N	
	INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR) INSTALL (1) PROPOSED PLATFORM INSTALL PROPOSED JUMPERS	LONGITUDE (NAD 83):	-72° 57' 26.30" W -72.957306 W	
DISH Wireless L.L.C. SITE ID:	INSTALL (6) PROPOSED RRUS (2 PER SECTOR) INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP)	ZONING JURISDICTION:	CT - CONNECTICUT SITING COUNCIL	sr
BOHVN00008A	INSTALL (1) PROPOSED HYBRID CABLE GROUND SCOPE OF WORK:	ZONING DISTRICT:	R-80	cd
	INSTALL (1) PROPOSED METAL PLATFORM INSTALL (1) PROPOSED ICE BRIDGE INSTALL (1) PROPOSED PPC CABINET	PARCEL NUMBER:	866-915-5600	
DISH Wireless L.L.C. SITE ADDRESS:	INSTALL (1) PROPOSED EQUIPMENT CABINET INSTALL (1) PROPOSED POWER CONDUIT INSTALL (1) PROPOSED TELCO CONDUIT	OCCUPANCY GROUP:	U	Rf
1121 SUMMIT ROAD	INSTALL (1) PROPOSED TELCO-FIBER BOX INSTALL (1) PROPOSED GPS UNIT INSTALL (1) PROPOSED CIENA BOX (IF REQUIRED)	CONSTRUCTION TYPE:	II-B	
CHESHIRE, CT 06410	INSTALL (1) PROPOSED METER SOCKET EXISTING METER SOCKET ON EXISTING H-FRAME TO BE UTILIZED	POWER COMPANY:	CONNECTICUT LIGHT & POWER	२
CHESHIKE, CT 00410	EXISTING DISCONNECT ON EXISTING H-FRAME TO BE UTILIZED	TELEPHONE COMPANY:	TBD	
CONNECTICUT CODE COMPLIANCE	SITE PHOTO		DIREC	стіс
ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO			TOURS OF DISTINCTION ARD MAXIM RD, TURN LEFT ON	
BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES: CODE TYPE CODE BUILDING 2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS MECHANICAL 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS ELECTRICAL 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS		RIGHT ONTO AIRPORT R AND HEAD TOWARD NEV MERIDEN / WATERBURY	D, TAKE THE RAMP ON THE LE V HAVEN / WETHERSFIELD, HEA HEAD RIGHT ON THE RAMP F IND CHESHIRE, TURN RIGHT ON CHESHIRE, CT 06410.	EFT FOF AD RIGH OR CT-
SHEET INDEX			VICINI	TYI
SHEET NO. SHEET TITLE	TRAIN TO THE			
T-1 TITLE SHEET				4
A-1 OVERALL AND ENLARGED SITE PLAN A-2 ELEVATION, ANTENNA LAYOUT AND SCHEDULE			*	
A-3 EQUIPMENT PLATFORM AND H-FRAME DETAILS				
A-4 EQUIPMENT DETAILS A-5 EQUIPMENT DETAILS			83	
A-6 EQUIPMENT DETAILS A-7 FENCE DETAILS	9		*	
E-1 ELECTRICAL/FIBER ROUTE PLAN AND NOTES		- DV		
E-2 ELECTRICAL DETAILS E-3 ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE		Yankee Expy		
G-1 GROUNDING PLANS AND NOTES	UNDERGROUND SERVICE ALERT CBYD 811 UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455		SITE LOCATION	
G-2 GROUNDING DETAILS G-3 GROUNDING DETAILS	WWW.CBYD.COM	0		
RF-1 RF CABLE COLOR CODE				
GN-1 LEGEND AND ABBREVIATIONS	GENERAL NOTES			
GN-2 GENERAL NOTES GN-3 GENERAL NOTES	THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON			
GN-4 GENERAL NOTES	DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.			
	11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED	\bigcirc		
	CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE			
	PROCEEDING WITH THE WORK.	NO SCALE		

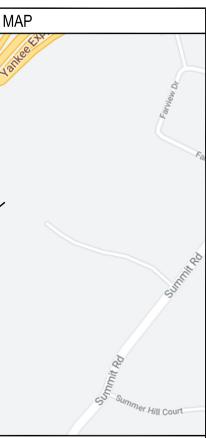
PROJECT DIRECTORY

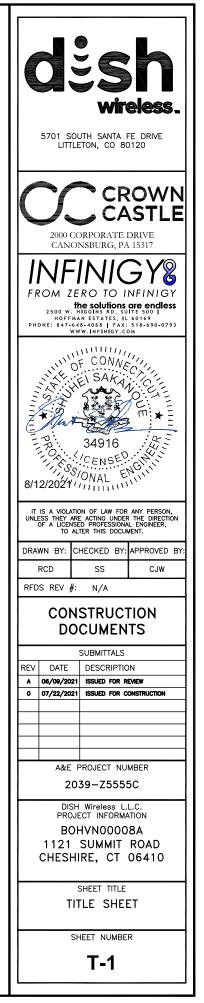
PPLICANT:	DISH WIRELESS 5701 South Santa fe Drive Littleton, co 80120
OWER OWNER:	CROWN CASTLE

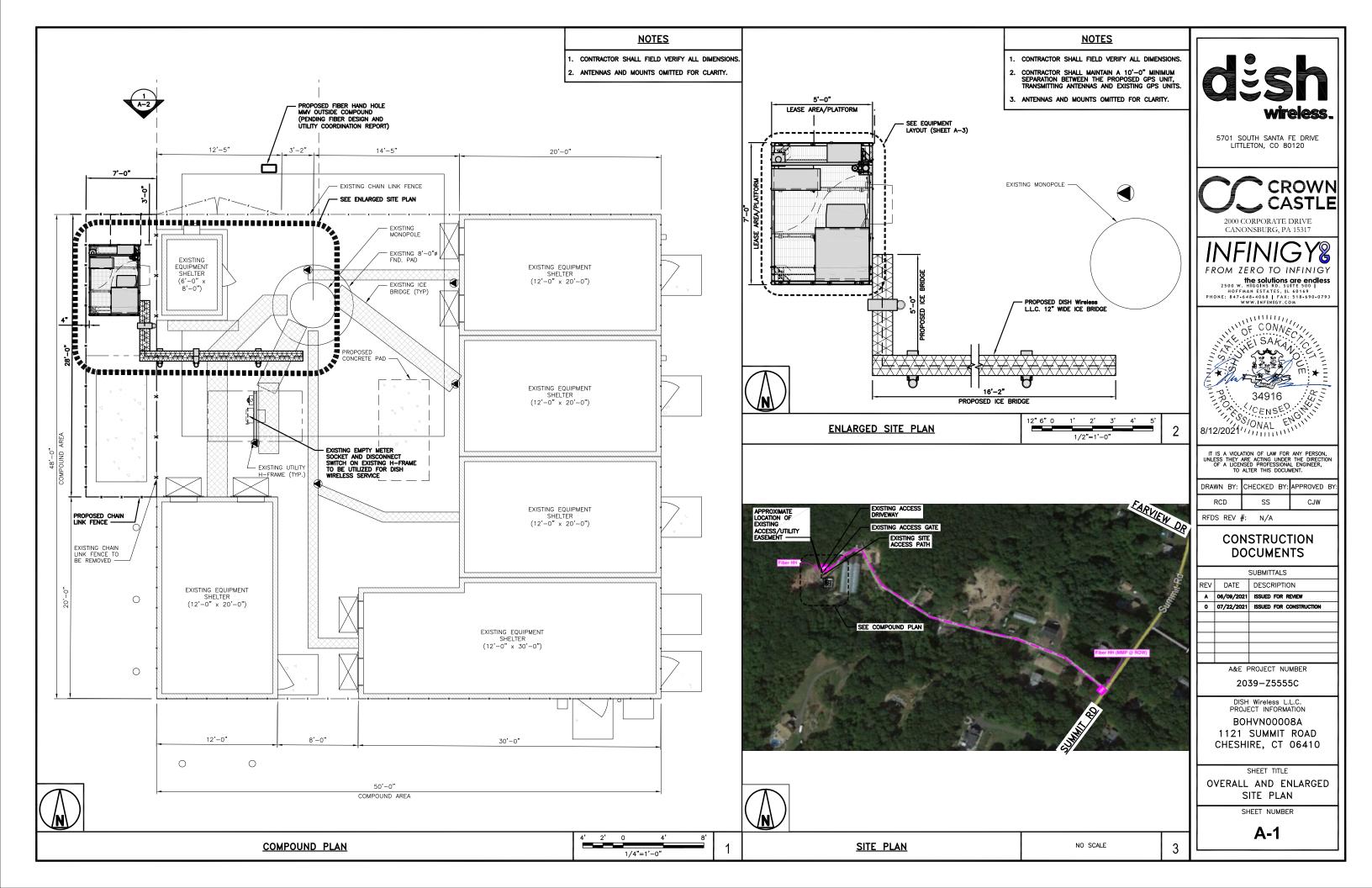
2000 CORPORATE DRIVE CANONSBURG, PA 15317

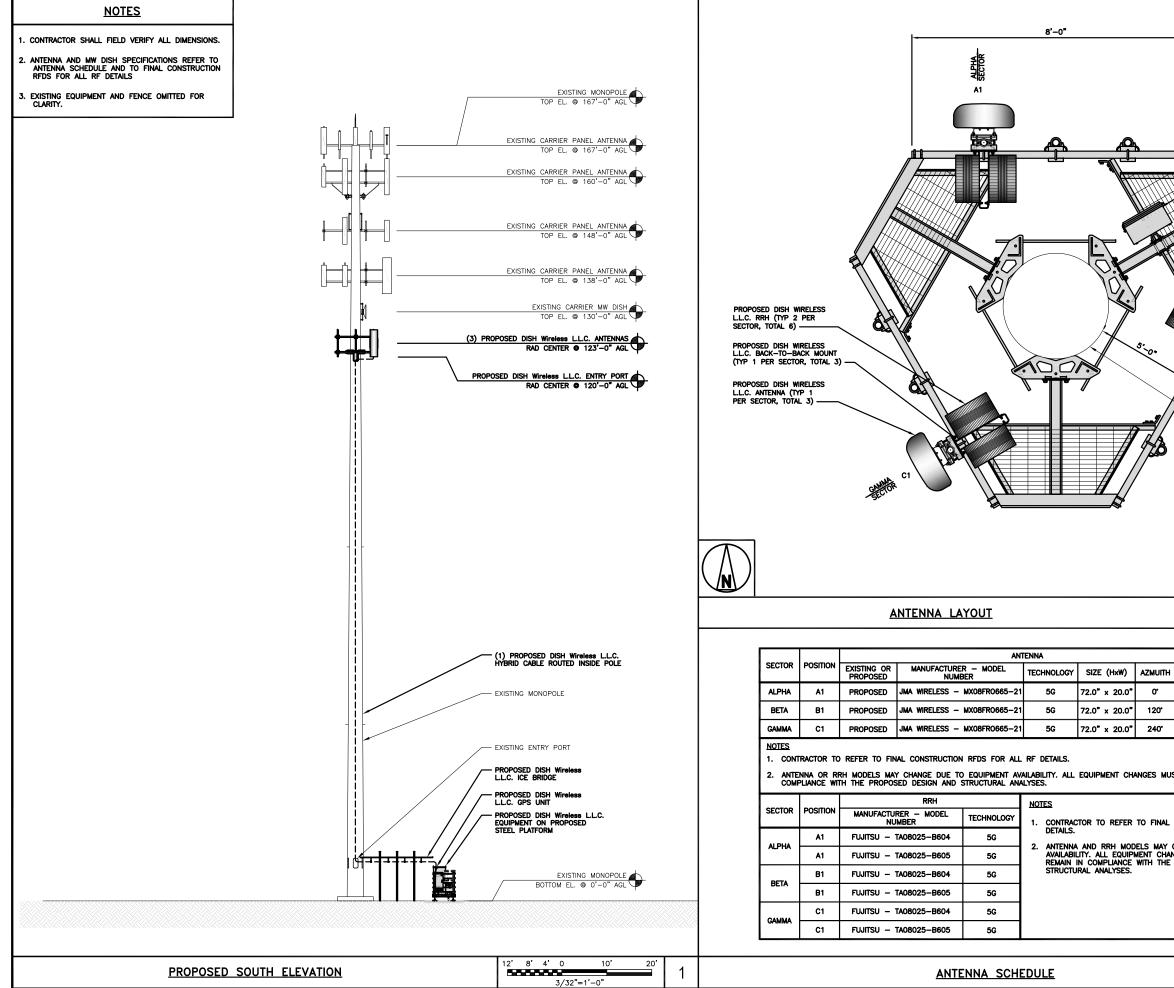
ITE DESIGNER: INFINIGY 2500 W. HIGGINS RD. STE. 500 HOFFMAN ESTATES, IL 60169 (847) 648-4068

ITE ACQUISITION: JEANNE CONTRELL (203) 927-4317

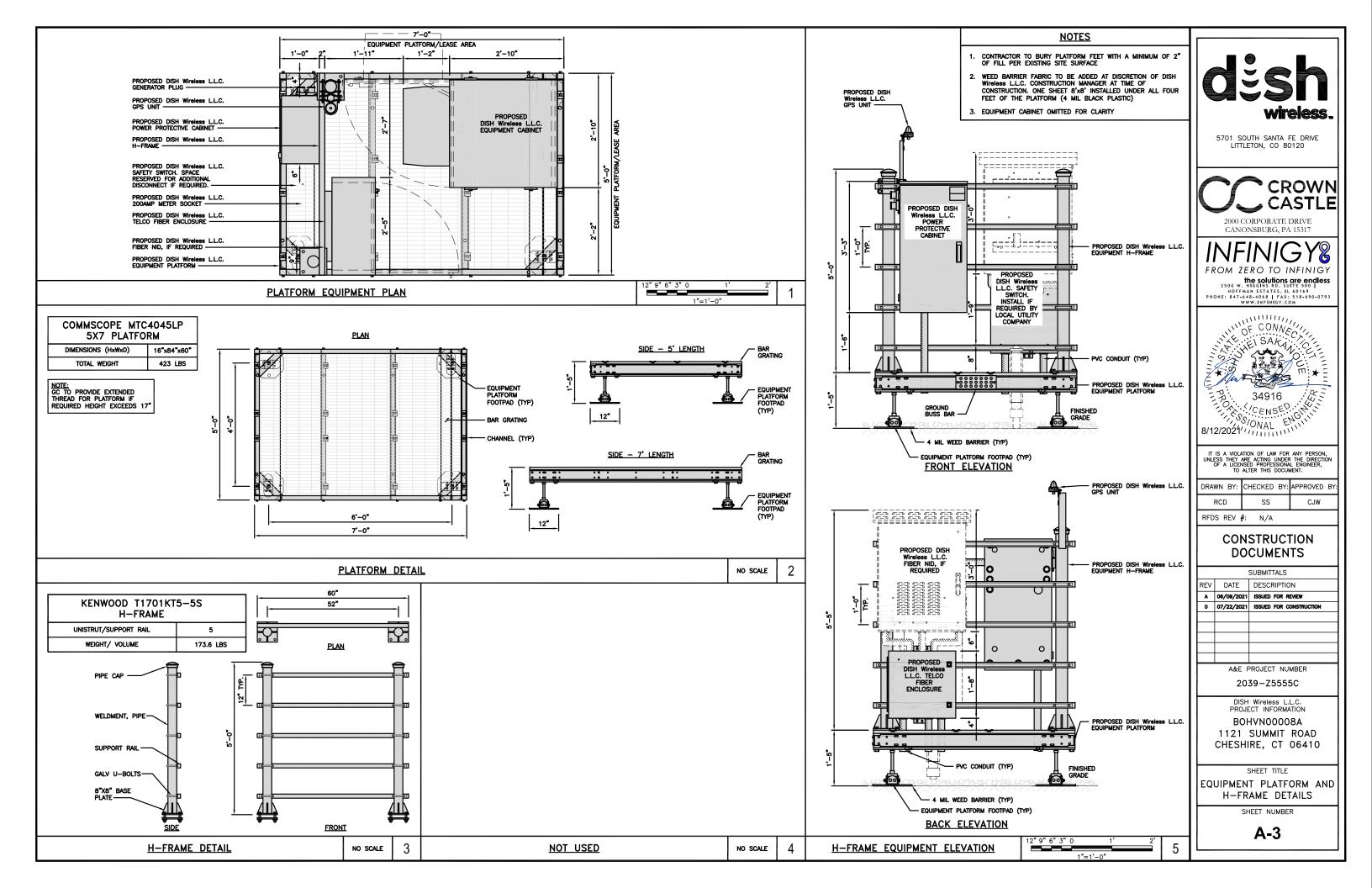

JAVIER.SOTO@DISH.COM

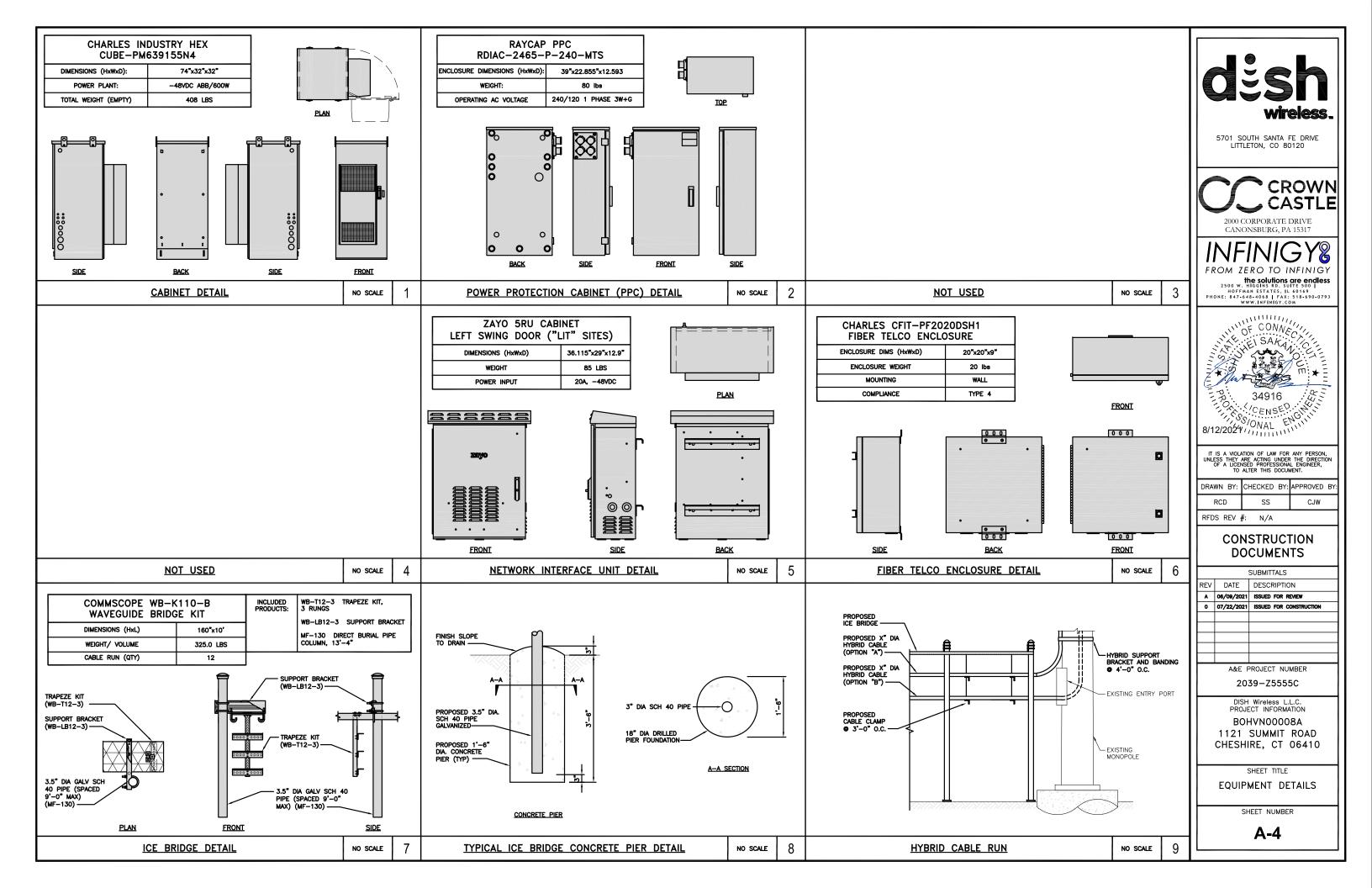

ENGINEER: SYED ZAIDI SYED.ZAIDI@DISH.COM

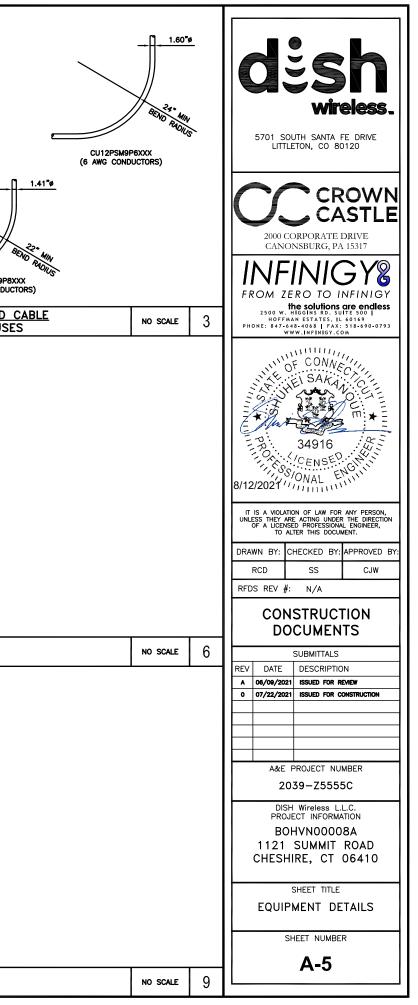

ONS

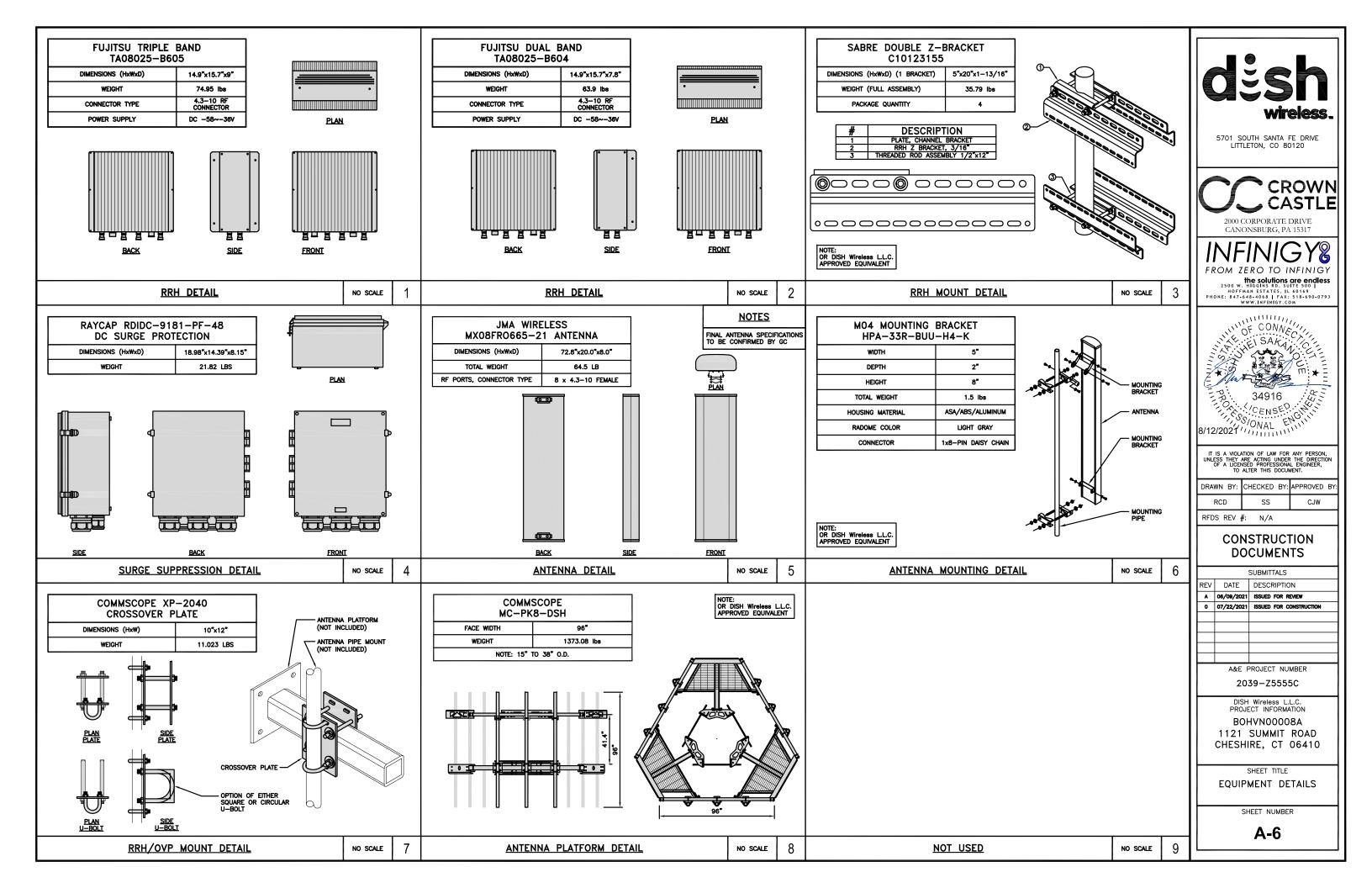

PORT:

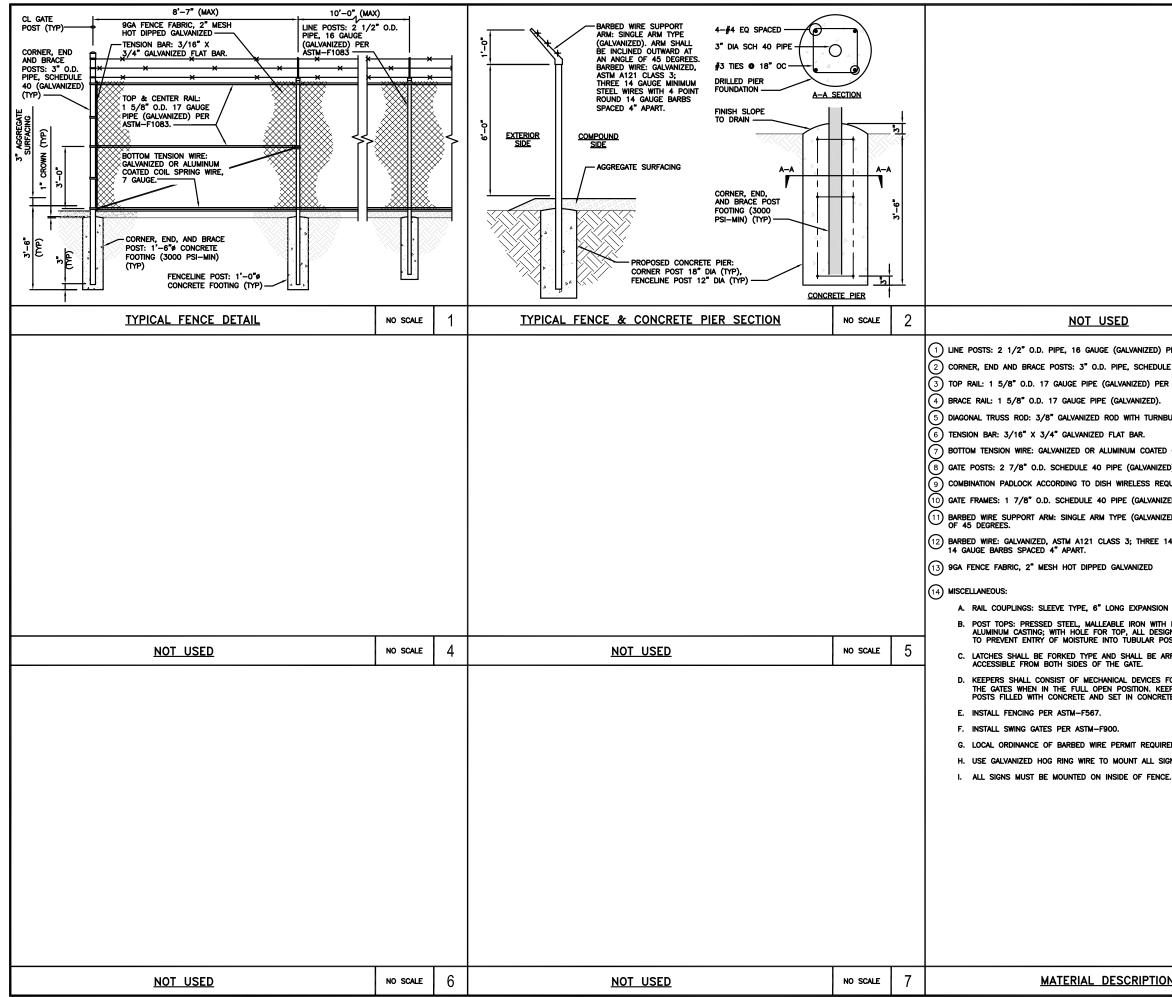
NAXIM RD, BEAR RIGHT ONTO BRAINARD RD, TURN OR CT-15 SOUTH / I-91 SOUTH / US-5 SOUTH GHT ON THE RAMP FOR I-691 WEST TOWARD T-70 TOWARD CHESHIR, TURN LEFT ONTO CT-70 IUMMIT RD, ARRIVE AT

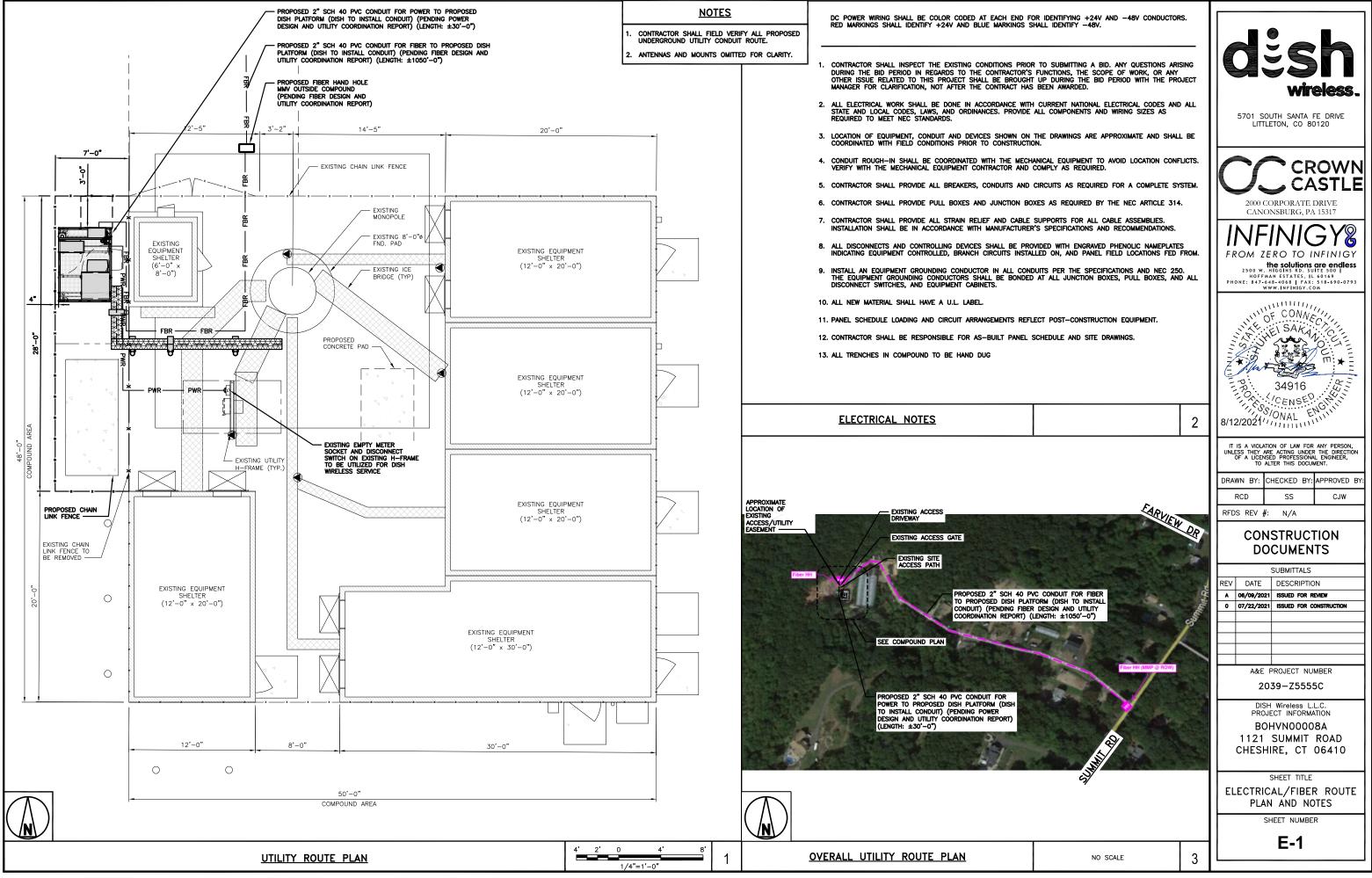


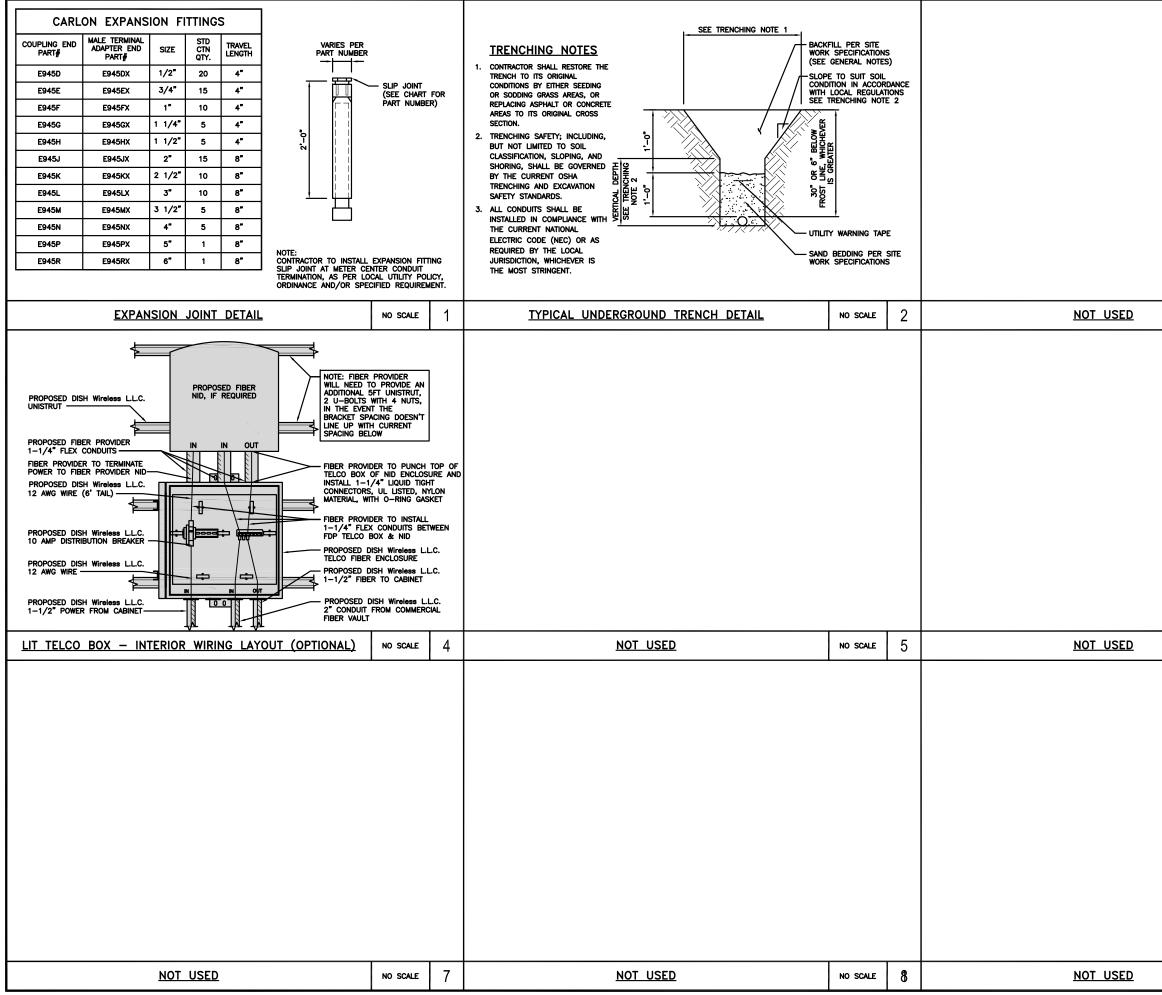


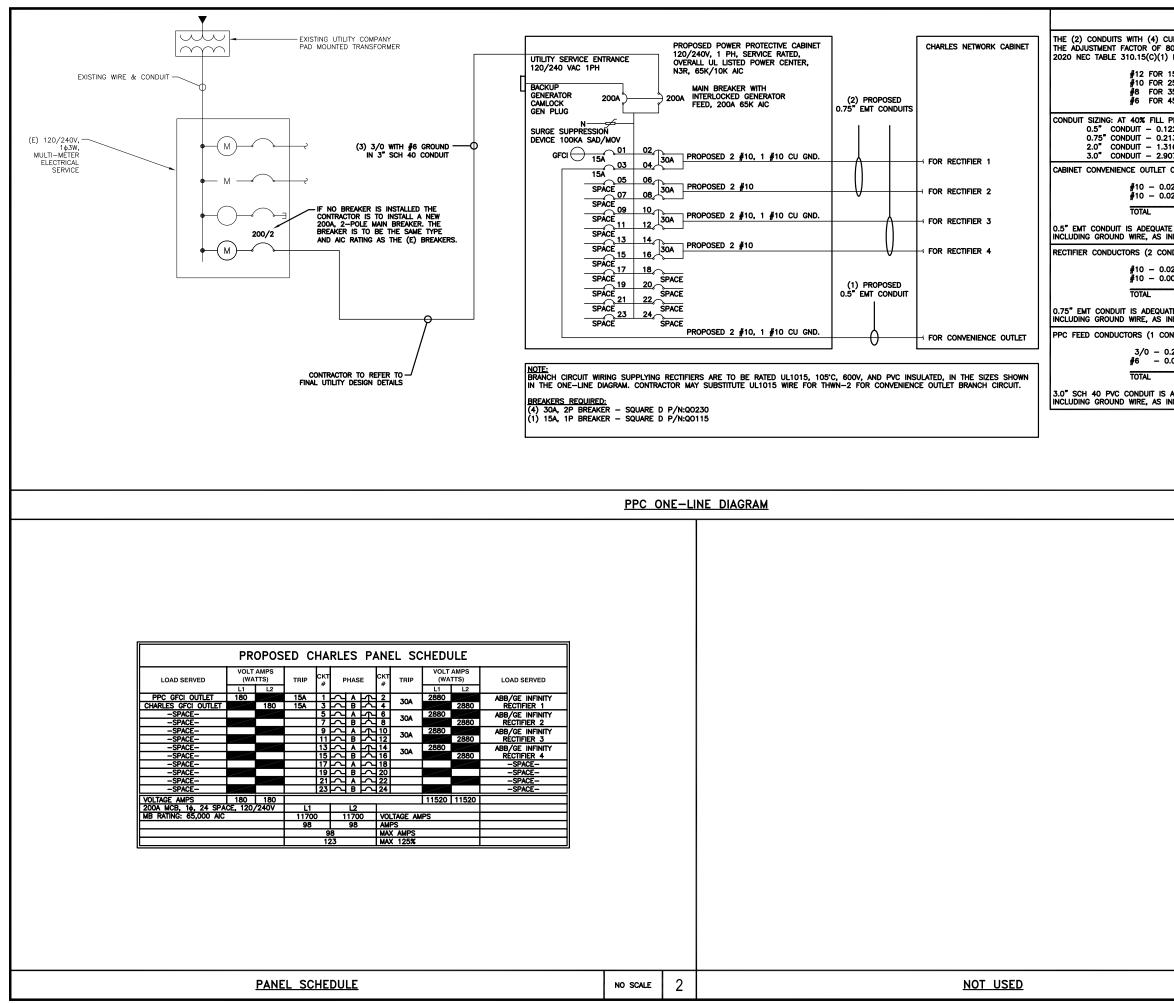



	dish Wireless L. Atform (MC-PK8 Dish Wireless Devce		5701 S	SOUTH SANTA	eless.
	ιεντις Ε		CAN FROM 2 2500 W HOTE PHONE: 847.		A 15317 Second Second Second
B1 S2 EXISTING	MONOPOLE		114 114 115 117 117 117 117 117 117 117 117 117	OF CONN EL SAKA 34916 CENSES S/ONAL E	
			UNLESS THEY OF A LICE	ATION OF LAW FOR ARE ACTING UNDED NSED PROFESSION ALTER THIS DOCU	R THE DIRECTION
			RCD	SS	CJW
			RFDS REV		
12" 6" 0 1' 3/4"=1'-0"	2' 3'	2	CO	NSTRUC [®] OCUMEN	
TRANSMISSION CAR	BLE			SUBMITTALS	
TH RAD FEED LINE TYPE CENTER AND LENGTH			REV DATE	DESCRIPTION	
123'-0"			0 07/22/20		
(1) HIGH-CAPACI 123'-0" HYBRID CABLE (168' LONG)	TY				
(168 LONG)					
NUST BE APPROVED AND REMAIN I	N			: PROJECT NU :039-2555	
	-			SH Wireless L	
AL CONSTRUCTION RFDS FOR ALL	RF			DJECT INFORM	
Y CHANGE DUE TO EQUIPMENT HANGES MUST BE APPROVED AND HE PROPOSED DESIGN AND			1121	SUMMIT HIRE, CT	ROAD
				SHEET TITLE	
				T AND SC	
				SHEET NUMBE	R
	NO SCALE	3		A-2	
	I NU SUALE				

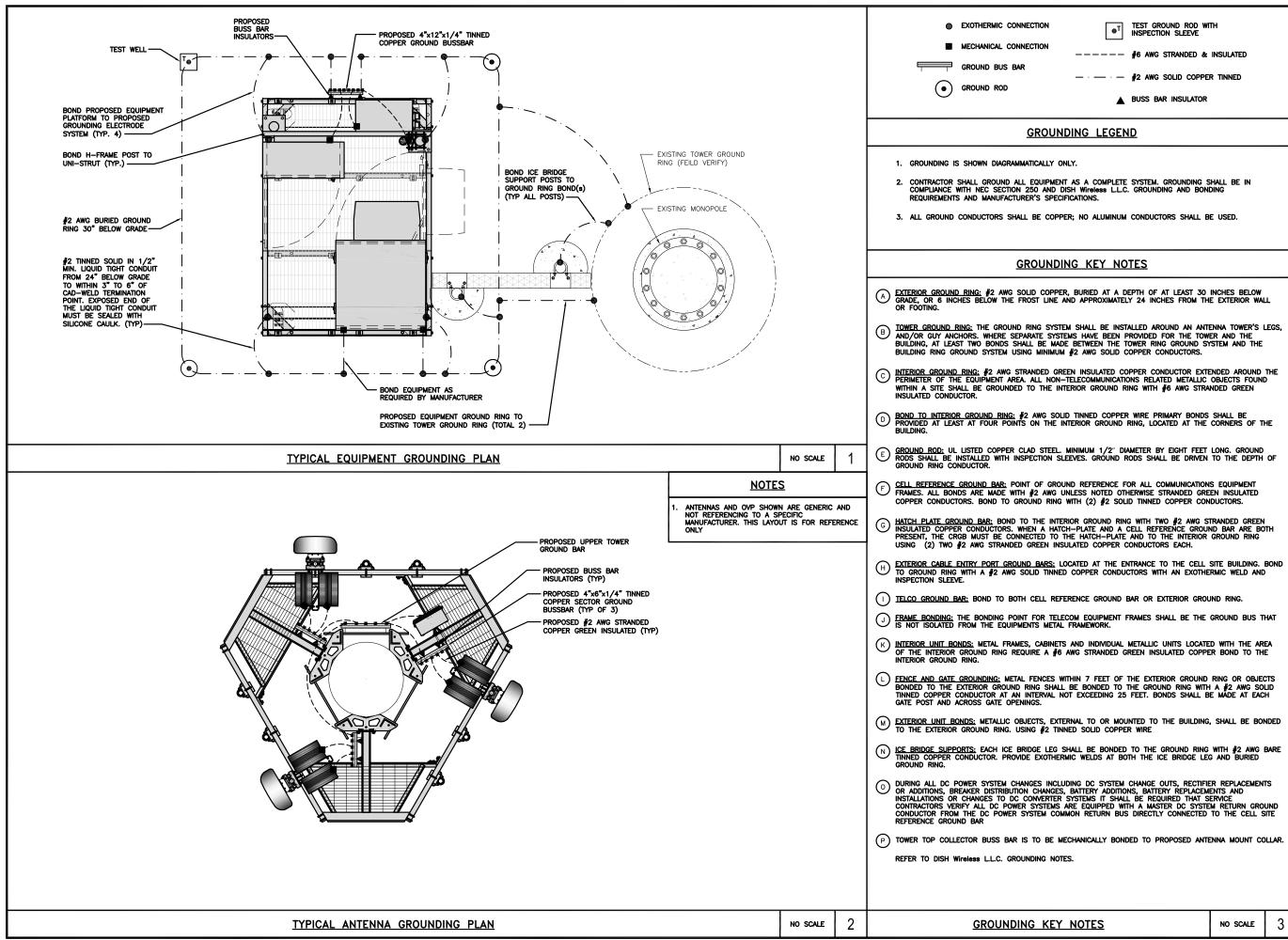


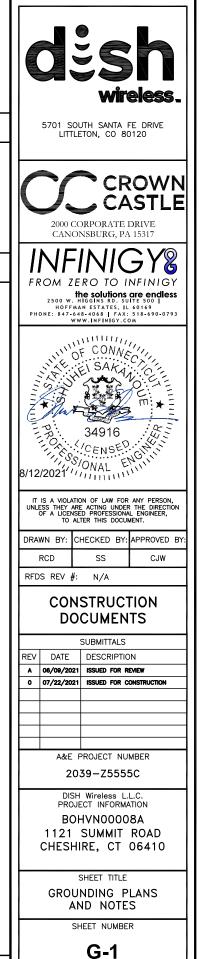

			MINIMUM OF 75% OR 270° IN ANY DIRECTION GPS GPS UNIT GPS			CU12PSM6P4XXX (4 AWG CONDUCTORS)
<u>GPS_DETAIL</u>	NO SCALE	1	GPS MINIMUM SKY VIEW REQUIREMENTS	NO SCALE	2	CABLES UNLIMITED HYBRID MINIMUM BEND RADIUSE
NOT_USED	NO SCALE	4	NOT USED	NO SCALE	5	NOT USED
NOT_USED	NO SCALE	7	NOT USED	NO SCALE	8	NOT_USED
l	1				I	1



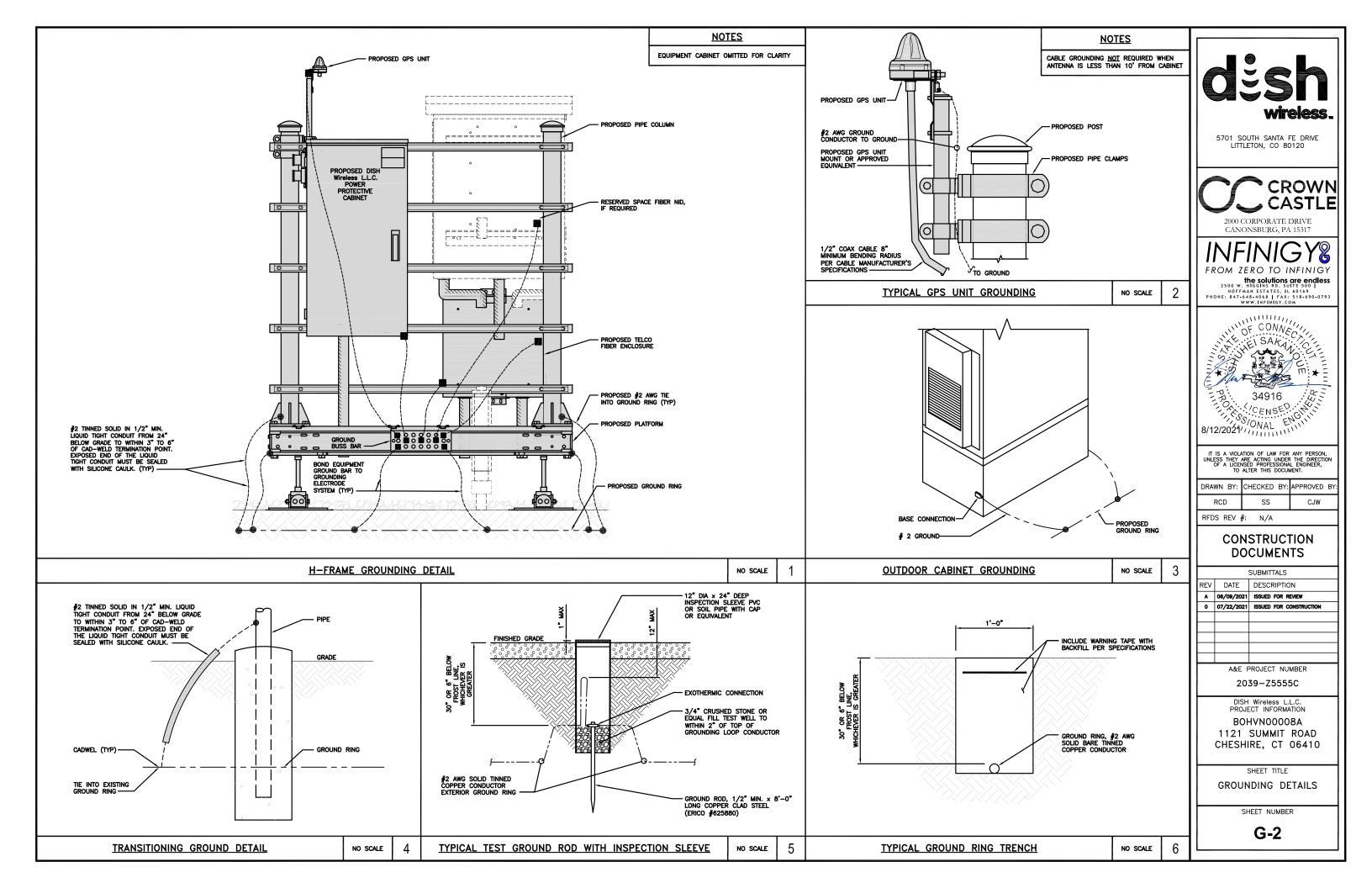


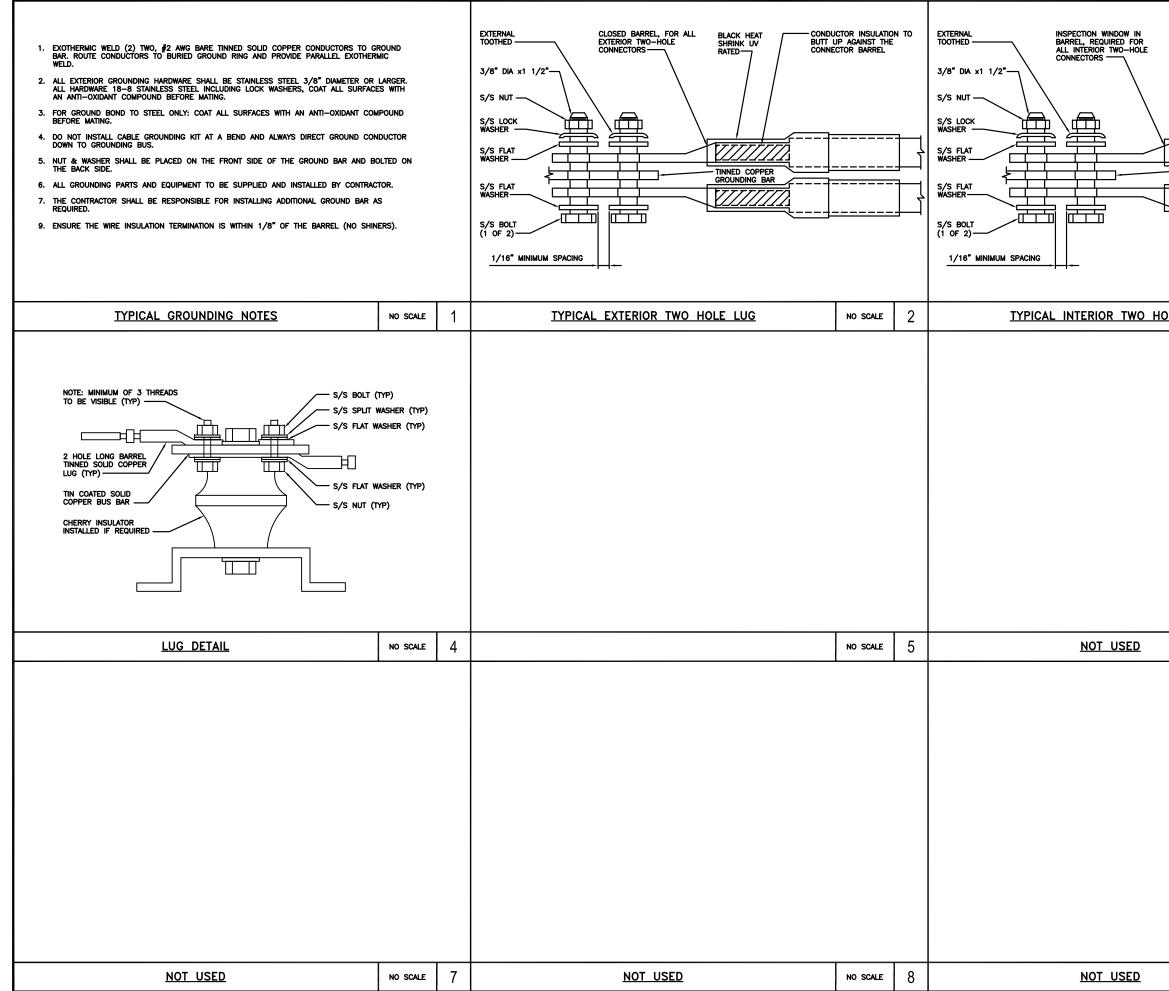
					UTH SANTA I ETON, CO 80	
			FR	2500 W.	ERO TO I he solutions HIGGINS RD. SU AN ESTATES, IL	are endless
	NO SCALE	3	PHO	DNE: 847-6	AN ESTATES, IL 48-4068 FAX: WW.INFINIGY.CO	518-690-0793
PER ASTM-F1083.						1,
LE 40 (GALVANIZED).				114	FCUNNA	Chin
ER ASTM-F1083.			:	N. F.	EISAKA	V::2:-
			Ē	2.F	31.45	
BUCKLE.			E	Mut	-3-3-5	
			11	PP:	34916	
D COIL SPRING WIRE, 7 GAUGE.			1		CENSED	
ED).				1,555	ONAL E	NOTIN
EQUIREMENTS.			8/1	2/2021/	minim	, y *
ZED).			п	IS A VIOLATI	ON OF LAW FOR	ANY PERSON.
ZED). ARM SHALL BE INCLINED OU	IIWARD AT AN A	NGLE	UNLE	ESS THEY AF	E ACTING UNDER ED PROFESSIONA LTER THIS DOCU	R THE DIRECTION
14 GAUGE MINIMUM STEEL WIRES	WITH 4 POINT I	ROUND	DPA			APPROVED BY:
						CJW
				RCD	SS	CJW
			RED	S REV #:	N/A	
IN SPRING EVERY FIFTH COUPLING. H PRESSED STEEL EXTENSION ARM IGNED TO FIT OVER THE OUTSIDE VOSTS.		E AND			STRUC	
ARRANGED FOR PADLOCKING WITH	THE PADLOCK				SUBMITTALS	
			REV	DATE	DESCRIPTIC	
FOR SECURING AND SUPPORTING EEPERS SHALL BE MOUNTED ON 2			A 0	06/09/2021		
ETE FOUNDATIONS.						
REMENT SHALL BE COMPLETED IF	REQUIRED.					
igns.	·					
DE.					PROJECT NU	
				20	39–Z555	эс
					H Wireless L. ECT INFORM	
					HVN0000	
					SUMMIT	
				CHESH	IRE, CT	06410
					SHEET TITLE MENT DE	TAILS
				S	HEET NUMBE	R
				5		
					A-7	
<u> </u>	NO SCALE	8				





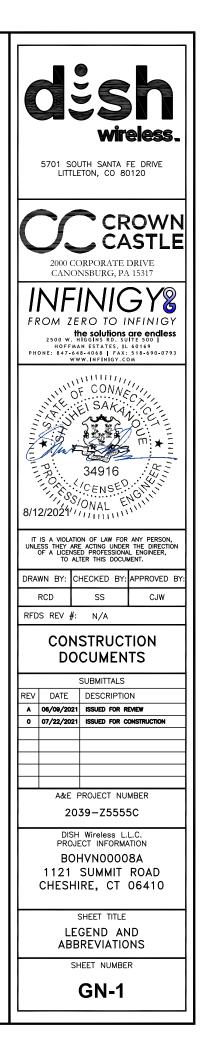
		-
		COSSINGUESSING WIRELESS. 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 COSPORATE DRIVE CANONSBURG, PA 15317 COSPORATE DRIVE CANONSBURG, PA 15317
NO SCALE	3	The solutions are endless 2500 W. HIGGINS RD. SUITE 500 HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4068 FAX: 518-690-0793 WWW.INFINIGY.COM
		IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED BY: RCD SS CJW RFDS REV #: N/A CONSTRUCTION
NO 00115	6	DOCUMENTS
NO SCALE	6	SUBMITTALS REV DATE DESCRIPTION
		A 06/09/2021 ISSUED FOR REVIEW 0 07/22/2021 ISSUED FOR CONSTRUCTION
		A&E PROJECT NUMBER
		2039-Z5555C
		DISH Wireless L.L.C. PROJECT INFORMATION
		BOHVN00008A 1121 SUMMIT ROAD CHESHIRE, CT 06410
		SHEET TITLE ELECTRICAL DETAILS
		SHEET NUMBER
		E-2
NO SCALE	9	




<u>NOTES</u>			·
CURRENT CARRYING CONDUCTORS 80% PER 2014/17 NEC TABLE 3 I) FOR UL1015 WIRE.			
15A-20A/1P BREAKER: 0.8 × 37 25A-30A/2P BREAKER: 0.8 × 44 35A-40A/2P BREAKER: 0.8 × 53 45A-60A/2P BREAKER: 0.8 × 53	0A = 32.0A 5A = 44.0A		džsn wireless.
. PER NEC CHAPTER 9, TABLE 4, 122 SQ. IN AREA 213 SQ. IN AREA 316 SQ. IN AREA 907 SQ. IN AREA	ARTICLE 358.		5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120
T CONDUCTORS (1 CONDUIT): USIN	IG THWN—2, CU		
0.0211 SQ. IN X 2 = 0.0422 SQ. 0.0211 SQ. IN X 1 = 0.0211 SQ.	IN <ground< td=""><td></td><td></td></ground<>		
= 0.0633 SQ. ATE TO HANDLE THE TOTAL OF (3) INDICATED ABOVE.			2000 CORPORATE DRIVE
ONDUITS): USING UL1015, CU.			CANONSBURG, PA 15317
$\begin{array}{rcl} 0.0266 & \text{SQ. IN X 4} = 0.1064 & \text{SQ.} \\ 0.0082 & \text{SQ. IN X 1} = 0.0082 & \text{SQ.} \\ \hline \end{array}$	IN <bare gro<="" td=""><td>UND</td><td>INFINIGY8</td></bare>	UND	INFINIGY8
= 0.1146 SQ. JATE TO HANDLE THE TOTAL OF (5 INDICATED ABOVE.			FROM ZERO TO INFINIGY the solutions are endless 2500 W. HIGGINS RD. SUITE 500 HOFFMAN ESTATES, IL 60019
CONDUIT): USING THWN, CU.			PHONE: 847-648-4068 FAX: 518-690-0793 www.infinigy.com
0.2679 SQ. IN X 3 = 0.8037 SQ 0.0507 SQ. IN X 1 = 0.0507 SQ = 0.8544 SQ	. IN <ground< td=""><td></td><td>OF CONNEC</td></ground<>		OF CONNEC
= 0.8344 SU S ADEQUATE TO HANDLE THE TOTA INDICATED ABOVE.		5,	SAF TE SAF TO COM
			* Jut the most
			34916
	NO 00017		8/12/2021, ////
	NO SCALE	1	IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.
			DRAWN BY: CHECKED BY: APPROVED BY: RCD SS CJW
			RCD SS CJW RFDS REV #: N/A
			SUBMITTALS
			REV DATE DESCRIPTION
			A 06/09/2021 ISSUED FOR REVIEW 0 07/22/2021 ISSUED FOR CONSTRUCTION
			A&E PROJECT NUMBER
			2039-Z5555C
			DISH Wireless L.L.C. PROJECT INFORMATION
			BOHVN00008A 1121 SUMMIT ROAD
			CHESHIRE, CT 06410
			SHEET TITLE ELECTRICAL ONE-LINE, FAULT
			CALCS & PANEL SCHEDULE SHEET NUMBER
			E-3
	NO SCALE	3	

<u>ES</u>	NO SCALE	3
-----------	----------	---

SHRINK / BUTT L	CTOR INSULATIO IP AGAINST THE CTOR BARREL	, ≅ √ ≅	STOL SOUTH SANTA FE DRIVE LITTLETON, CO 80120	
TINNED COPPER GROUNDING BAR		نــــل ۱		
			CC CROWN CASTLE	
			2000 CORPORATE DRIVE CANONSBURG, PA 15317	
LE_LUG	NO SCALE	3	FROM ZERO TO INFINIGY the solutions are encless 2500 W. HIGGINS RD. SUITE 500 I HOFFMAN ESTATES, IL 60169 PHONE: 847-648-068 I FAX: 518-690-0793	
			WWW.INFINIGY.COM	
			IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.	
			DRAWN BY: CHECKED BY: APPROVED BY:	
			RCD SS CJW RFDS REV #: N/A	
			CONSTRUCTION DOCUMENTS	
	NO SCALE	6	SUBMITTALS	
			REV DATE DESCRIPTION A 06/09/2021 ISSUED FOR REVIEW 0 07/22/2021 ISSUED FOR CONSTRUCTION	
			A&E PROJECT NUMBER	
			DISH Wireless L.L.C. PROJECT INFORMATION BOHVN00008A 1121 SUMMIT ROAD CHESHIRE, CT 06410	
			SHEET TITLE GROUNDING DETAILS	
			SHEET NUMBER	
	NO SCALE	9	G-3	


RF JUMPER COLOR CODING		3/4" TAPE WIDTHS WITH 3/4" SPACING						
LOW–BAND RRH – (600MHz N71 BASEBAND) + (850MHz N26 BAND) + (700MHz N29 BAND) – OPTIONAL PER MARKET	ALPHA RRH PORT 1 PORT 2 PORT 3 PORT + SLANT - SLANT - SLAN RED RED RED RED RED	JT + SLANT - SLANT + SLANT - SL	T 4 ANT + SLANT - SLA	NT + SLANT - SLANT		OPTION	DS (N71+N26) IAL – (N29) JRANGE	AWS (N66+N70+H-BLOC PURPLE
ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BANDS)	ORANGE ORANGE RED RED WHITE (-) PORT ORANGE ORANGE WHITE (-) POR		NGE (-) PC			(RS TECH 3 GHz) /ELLOW	NEGATIVE SLANT PC ON ANT/RRH WHITE
MID-BAND RRH – (AWS BANDS N66+N70)	RED RED RED RED PURPLE PURPLE PURPLE	PURPLE PURPLE BLUE BLUE	JE PURPLE PURP	LE GREEN GREEN		ALPHA SECTOR	R BETA SECTOR	GAMMA
ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BANDS)	(-) PORT PURPLE PURPLE PURPLE (-) PORT			PURPLE PURPLE WHITE (-) PORT		COLOR	IDENTIFIER	NO SCAL
HYBRID/DISCREET CABLES	EXAMPLE 1 EXAMPLE 2	EXAMPLE 3						1
INCLUDE SECTOR BANDS BEING SUPPORTED ALONG WITH FREQUENCY BANDS	RED RED BLUE BLUE	RED						
EXAMPLE 1 - HYBRID, OR DISCREET, SUPPORTS ALL SECTORS, BOTH LOW-BANDS AND MID-BANDS	GREEN	ORANGE PURPLE						
EXAMPLE 2 – HYBRID, OR DISCREET, SUPPORTS CBRS ONLY, ALL SECTORS	ORANGE YELLOW							
FIBER JUMPERS TO RRHs	LOW BAND RRH HIGH BAND RRH	LOW BAND RRH HIGH BAND RRH	LOW BAND RRH	HIGH BAND RRH				
LOW-BAND RRH FIBER CABLES HAVE SECTOR STRIPE ONLY	RED RED PURPLE	BLUE BLUE PURPLE	GREEN	GREEN PURPLE				
POWER CABLES TO RRHs	LOW BAND RRH HIGH BAND RRH	LOW BAND RRH HIGH BAND RRH	LOW BAND RRH	HIGH BAND RRH				
LOW-BAND RRH POWER CABLES HAVE SECTOR STRIPE ONLY	RED RED	BLUE BLUE	GREEN	GREEN				
	PURPLE	PURPLE		PURPLE		<u>NOT</u>	USED	no scal
RET MOTORS AT ANTENNAS	ANTENNA 1 ANTENNA 1 LOW BAND/ "IN" RED PURPLE	ANTENNA 1 LOW BAND/ HIGH BAND/ "IN" "IN" BLUE BLUE PURPLE	LOW BAND/ HIGH	IENNA 1 + BAND/ TN REEN JIPPLE				
			ORWARD AZIMUTH OF 240					
LINKS WILL HAVE A 1.5-2 INCH WHITE WRAP WITH THE AZIMUTH COLOR OVERLAPPING IN THE MIDDLE. ADD ADDITIONAL SECTOR COLOR BANDS FOR EACH ADDITIONAL MW RADIO.	PRIMARY SECONDARY WHITE WHITE	PRIMARY SECONDARY WHITE WHITE		WHITE				
MICROWAVE CABLES WILL REQUIRE P-TOUCH LABELS INSIDE THE CABINET TO IDENTIFY THE LOCAL AND REMOTE SITE ID'S	RED WHITE WHITE RED WHITE	BLUE BLUE WHITE WHITE BLUE WHITE	WHITE	REEN VHITE REEN VHITE				
DF	CABLE COLOR CODES				1		USED	10.00
<u></u>	CABLE COLOR CODES			NO SCALE			UJED	NO SCAL

LOW BANDS (N71+N26) OPTIONAL - (N29) ORANGE CBRS TECH (3 GHz) YELLOW PHA SECTOR BETA SECT RED BLUE	AWS (N66+N70+H-BLOCK) PURPLE NEGATIVE SLANT PORT ON ANT/RRH WHITE OR GAMMA SECTOR	COLORPORATE DRIVE 2000 CORPORATE DRIVE 2000 CORPORATE DRIVE 2000 CORPORATE DRIVE 2000 CORPORATE DRIVE 2000 CORPORATE DRIVE CANONSBURG, PA 15317 INFINICY
COLOR IDENTIFIER	NO SCALE	2 FROM ZERO TO INFINIGY the solutions are endless 2500 W. HiGGINS RD. SUITE 500 I HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4068 I FAX: 518-690-0793
		IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSE PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED BY: RCD SS CJW RFDS REV #: N/A CONSTRUCTION DOCUMENTS
NOT USED	NO SCALE	3 SUBMITTALS
		REV DATE DESCRIPTION A 06/09/2021 ISSUED FOR REVIEW 0 07/22/2021 ISSUED FOR CONSTRUCTION A&E PROJECT NUMBER 2039-Z5555C DISH Wireless L.L.C. PROJECT INFORMATION BOHVN00008A 1121 SUMMIT ROAD CHESHIRE, CT 06410 SHEET TITLE RF CABLE COLOR COLOR CODES SHEET NUMBER RF-1
NOT USED	NO SCALE	4
		•

EXOTHERMIC CONNECTION	•
MECHANICAL CONNECTION	
BUSS BAR INSULATOR	
CHEMICAL ELECTROLYTIC GROUNDING SYSTEM	•
TEST CHEMICAL ELECTROLYTIC GROUNDING SYSTEM	€T
EXOTHERMIC WITH INSPECTION SLEEVE	
GROUNDING BAR	───
GROUND ROD	ı⊫●
TEST GROUND ROD WITH INSPECTION SLEEVE	ı ⊨®⊤
SINGLE POLE SWITCH	\$
DUPLEX RECEPTACLE	\oplus
DUPLEX GFCI RECEPTACLE	B
FLUORESCENT LIGHTING FIXTURE (2) TWO LAMPS 48	Б-ТВ Г Г Г С Г Г Г Г Г Г Г Г Г Г Г Г Г Г Г Г
SMOKE DETECTION (DC)	SD
EMERGENCY LIGHTING (DC)	
Security Light W/Photocell Lithonia Alxw Led-1-25A400/51K-SR4-120-PE-DDBTXD	
CHAIN LINK FENCE	x x x x
WOOD/WROUGHT IRON FENCE	
WALL STRUCTURE	////////////////////////////////////</td
LEASE AREA	
PROPERTY LINE (PL)	
SETBACKS	
ICE BRIDGE	
CABLE TRAY	
WATER LINE	— w — w — w — w — w —
UNDERGROUND POWER	UGP UGP UGP UGP
UNDERGROUND TELCO	UGT UGT UGT UGT
OVERHEAD POWER	OHP OHP OHP
OVERHEAD TELCO	онт ——— онт ——— онт ———
UNDERGROUND TELCO/POWER	UGT/P UGT/P UGT/P
ABOVE GROUND POWER	AGP AGP AGP AGP
ABOVE GROUND TELCO	AGT AGT AGT AGT
ABOVE GROUND TELCO/POWER	AGT/P AGT/P AGT/P
WORKPOINT	W.P.
SECTION REFERENCE	
DETAIL REFERENCE	$\begin{pmatrix} XX \\ X-X \end{pmatrix}$

AB	ANCHOR BOLT	IN
ABV	ABOVE	INT
AC	ALTERNATING CURRENT	LB(S)
ADDL	ADDITIONAL	LF
AFF AFG	ABOVE FINISHED FLOOR ABOVE FINISHED GRADE	LTE
AGL	ABOVE FINISHED GRADE ABOVE GROUND LEVEL	MAS MAX
AIC	AMPERAGE INTERRUPTION CAPACITY	MB
ALUM	ALUMINUM	MECH
ALT	ALTERNATE	MFR
ANT	ANTENNA	MGB
APPROX ARCH	APPROXIMATE ARCHITECTURAL	MIN MISC
ATS	AUTOMATIC TRANSFER SWITCH	MISC
AWG	AMERICAN WIRE GAUGE	MTS
BATT	BATTERY	MW
BLDG	BUILDING	NEC
BLK BLKG	BLOCK BLOCKING	NM NO.
BM	BEAM	NO. #
BTC	BARE TINNED COPPER CONDUCTOR	NTS
BOF	BOTTOM OF FOOTING	oc
CAB	CABINET	OSHA
CANT CHG	CANTILEVERED CHARGING	OPNG
CLG	CEILING	P/C
CLR	CLEAR	PCS PCU
COL	COLUMN	PRC
COMM	COMMON	PP
CONC CONSTR	CONCRETE CONSTRUCTION	PSF
DBL	DOUBLE	PSI
DC	DIRECT CURRENT	PT
DEPT	DEPARTMENT	PWR QTY
DF	DOUGLAS FIR	RAD
DIA DIAG	DIAMETER	RECT
DIAG	DIAGONAL DIMENSION	REF
DWG	DRAWING	REINF
DWL	DOWEL	REQ'D
EA	EACH	RET RF
EC	ELECTRICAL CONDUCTOR	RMC
el. Elec	ELEVATION	RRH
EMT	ELECTRICAL METALLIC TUBING	RRU
ENG	ENGINEER	RWY
EQ	EQUAL	SCH SHT
EXP EXT	EXPANSION EXTERIOR	
	EXIERIOR	SIAD
	EACH WAY	SIAD SIM
EW	EACH WAY FABRICATION	SIM SPEC
EW		SIM SPEC SQ
EW FAB FF FG	FABRICATION FINISH FLOOR FINISH GRADE	SIM SPEC SQ SS
ew FAB FF FG FIF	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME	SIM SPEC SQ
ew Fab Ff Fg Fif Fin	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED)	SIM SPEC SQ SS STD
EW FAB FF FG FIF FIN FLR	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME	sim Spec SQ SS STD STL TEMP THK
ew Fab Ff Fg Fif Fin	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR	SIM SPEC SQ SS STD STL TEMP THK TMA
EW FAB FF FG FIF FIN FLR FDN	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY	sim Spec SQ SS STD STL TEMP THK TMA TN
EW FAB FF FG FIF FIN FLR FDN FOC FOM FOS	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD	SIM SPEC SQ SS STD STL TEMP THK TMA
EW FAB FF FG FIF FIN FLR FDN FOC FOM FOS FOW	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL	Sim SPEC SQ SS STD STL TEMP THK TMA TN TN TOA
EW FAB FF FG FIF FIN FLR FDN FOC FOM FOS FOW FS	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE	SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOP
EW FAB FF FG FIF FIN FLR FDN FOC FOM FOS FOW	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL	SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOP TOS
EW FAB FF FG FIF FIN FLR FON FOC FOM FOS FOW FS FT	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF STUD FACE OF SUD FACE OF WALL FINISH SURFACE FOOT	SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOA TOC TOF TOP TOS TOW
EW FAB FF FG FIF FIN FLR FON FON FOM FOS FOW FS FT FTG GA GEN	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR	SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOA TOA TOC TOF TOP TOS TOW TVSS
EW FAB FF FG FIF FIN FDN FOC FON FOC FOM FOC FOM FS FT FTG GA GEN GFCI	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER	SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOA TOC TOF TOP TOS TOW
EW FAB FF FG FIF FIN FLR FDN FOC FOM FOC FOM FS FT FTG GA GEN GELB	FABRICATION FINISH FLOOR FINISH GRADE FACLITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM	SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOA TOF TOF TOP TOS TOW TVSS TYP
EW FAB FF FG FIF FIN FDN FOC FON FOC FOM FOC FOM FS FT FTG GA GEN GFCI	FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER	SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOA TOC TOF TOP TOS TOW TVSS TYP UG UL UNO
EW FAB FF FG FIF FIN FLR FDN FOC FOM FOC FOM FS FT FTG GA GEN GELU	FABRICATION FINISH FLOOR FINISH GRADE FACLITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED	SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOA TOC TOF TOP TOS TOW TVSS TYP UG UL UNO UMTS
EW FAB FF FG FIF FIN FLR FON FOS FOM FOS FOM FS FT FTG GA GEN GFCI GLV GPS GND GSM	FABRICATION FINISH FLOOR FINISH FLOOR FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE	SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOF TOS TOW TVSS TYP UG UL UNO UL UNO UMTS UPS
EW FAB FF FG FIF FIN FLR FON FOS FOM FOS FOM FS FT FTG GA GEN GLV GPS GND GSM HDG	FABRICATION FINISH FLOOR FINISH FLOOR FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED	SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UL UNO UL UNO UMTS UPS VF
EW FAB FF FG FIF FIN FDN FOC FOM FOC FOM FOC FOM FS FT FTG GA GEN GLD GLV GPS GND GSM HDG HDR	FABRICATION FINISH FLOOR FINISH FLOOR FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF MASONRY FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED HEADER	SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOF TOS TOW TVSS TYP UG UL UNO UL UNO UMTS UPS
EW FAB FF FG FIF FIN FLR FON FOS FOM FOS FOM FS FT FTG GA GEN GLV GPS GND GSM HDG	FABRICATION FINISH FLOOR FINISH FLOOR FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED	SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UL UNO UNO UNTS UPS VF W
EW FAB FF FG FIF FIN FDN FOC FON FOC FOM FOC FOM FS FT FTG GA GEN GEN GLU GPS GND GSM HDG HDR HDR	FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACLITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED HEADER HANGER	SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF TOS TOP TOS TOP TOS TOW TVSS TYP UG UL UNO UMTS UPS VIF W W W/ WD
EW FAB FF FG FIF FIN FDN FOC FOM FOC FOM FOS FOW FS FT FTG GA GEN GEN GEN GEN GEN GEN GEN HDG HDR HDR HDR HVAC	FABRICATION FINISH FLOOR FINISH FLOOR FACLITY INTERFACE FRAME FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED HEADER HANGER HEAT/VENTILATION/AIR CONDITIONING	SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOA TOA TOF TOP TOS TOP TOS TOP TOS TOV TVSS TYP UG UL UNO UMTS UPS VIF W W/ WD

INCH INTERIOR POUND(S) LINEAR FEET LONG TERM EVOLUTION MASONRY MAXIMUM MACHINE BOLT MECHANICAL MANUFACTURER MASTER GROUND BAR MINIMUM MISCELLANEOUS METAL MANUAL TRANSFER SWITCH MICROWAVE NATIONAL ELECTRIC CODE NEWTON METERS NUMBER NUMBER NOT TO SCALE ON-CENTER OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION OPENING PRECAST CONCRETE PERSONAL COMMUNICATION SERVICES PRIMARY CONTROL UNIT PRIMARY RADIO CABINET POLARIZING PRESERVING POUNDS PER SQUARE FOOT POUNDS PER SQUARE INCH PRESSURE TREATED POWER CABINET QUANTITY RADIUS RECTIFIER REFERENCE REINFORCEMENT REQUIRED REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD WIDE WITH WOOD WEATHERPROOF WEIGHT

SITE ACTIVITY REQUIREMENTS:

1. NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTION MANAGER.

2. "LOOK UP" - DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH Wireless L.L.C. AND DISH Wireless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.

4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELESS L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).

5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."

6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.

10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.

11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.

12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.

13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIRELESS LL.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.

14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.

15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.

16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.

17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.

18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.

19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.

20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER:TOWER OWNER

2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.

3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.

4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.

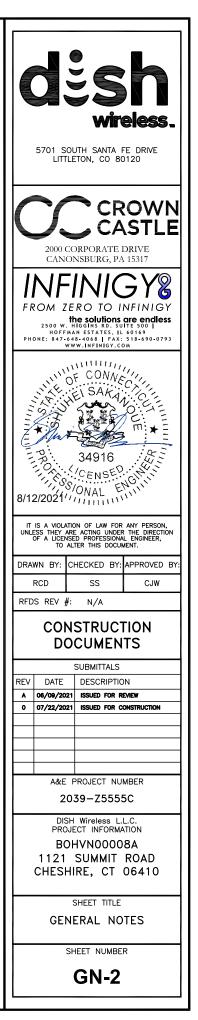
5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.

6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.


10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.

12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER

13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE.

UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.

ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE, NO 3. MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90'F AT TIME OF PLACEMENT.

CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES, AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.

ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON 6. DRAWINGS:

- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- · CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2*

A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.

CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.

- WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC. 3.
- ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.

ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.

ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.

EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL), THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.

ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).

7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.

TIE WRAPS ARE NOT ALLOWED.

ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW. THWN. THWN-2. XHHW. XHHW-2. THW. THW-2. RHW. OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.

POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH 12 TYPE THHW. THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND 13 BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75" C (90" C IF AVAILABLE).

RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.

ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR 15 EXPOSED INDOOR LOCATIONS.

ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS. 16.

17 SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.

LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION 18. OCCURS OR FLEXIBILITY IS NEEDED.

CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET 19. SCREW FITTINGS ARE NOT ACCEPTABLE.

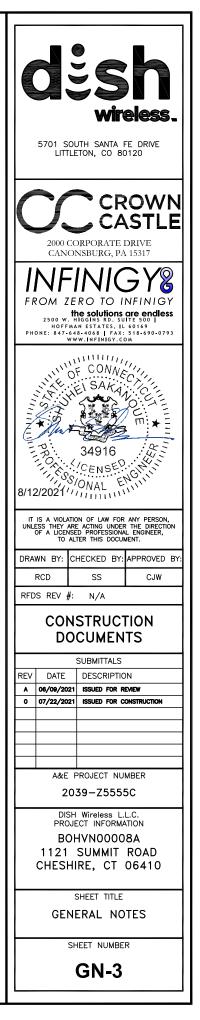
CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE 20 NEC.

21 WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER. DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).

22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).

23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.

EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET 24. STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS.


25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.

NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED 26. NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.

THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND 27 TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.

THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE 28 WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.

- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.".
- 30. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

GROUNDING NOTES:

1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.

2. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.

3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.

4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.

5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.

6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.

7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.

8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.

9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.

10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.

11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.

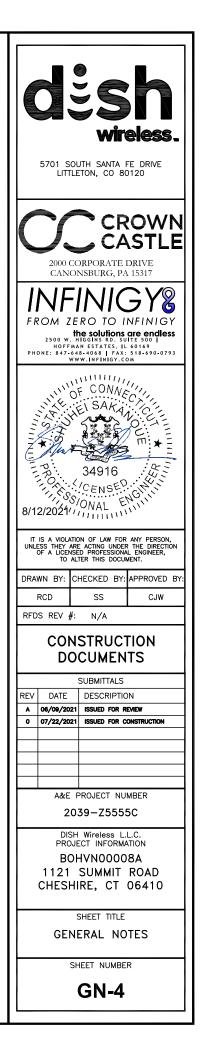
12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.

13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.

14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.

15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.

16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.


17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.

18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.

19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.

20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).

21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/0 COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

Exhibit D

Structural Analysis Report

Date: June 09, 2021

Crown Castle 2000 Corporate Drive Canonsburg. PA 15317 (724) 416-2000

Subject:	Structural Analysis Report			
Carrier Designation:	<i>DISH Network</i> Co-Locate Site Number: Site Name:	BOHVN00008A CT-CCI-T-801367		
Crown Castle Designation:	BU Number: Site Name: JDE Job Number: Work Order Number: Order Number:	801367 CT NHV-2075 CAC 801367 644585 1967612 552717 Rev. 1		
Engineering Firm Designation:	Crown Castle Project Number:	1967612		
Site Data:	1121 Summit Road, Cheshire, New Haven County, CT Latitude <i>41° 32' 11.2"</i> , Longitude -72° 57′ 26.3″ 167 Foot - Monopole Tower			

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity-72.6%

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - "Analysis Criteria".

Structural analysis prepared by: Kibreab Gebremariam

Respectfully submitted by:

Maribel Dentinger, P.E.

Senior Project Engineer

Maribel

Digitally signed by Maribe Dentinger Dentinger Date: 2021.06.10 08:35:56 -04'00'

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) Table 5 - Tower Component Stresses vs. Capacity - LC7 4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 167 ft Monopole tower designed by SUMMIT. The tower has been modified multiple times to accommodate additional loading in the past and the modification has been considered ineffective in this analysis.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	II
Wind Speed:	 125 mph
Exposure Category:	B
Topographic Factor:	1
Ice Thickness:	1.5 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Elovation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	fujitsu	TA08025-B604		
		3	fujitsu	TA08025-B605		
123.0	123.0	3	jma wireless	MX08FRO665-21 w/ Mount Pipe	1	1-3/8
		1	raycap	RDIDC-9181-PF-48		
		1	tower mounts	Commscope MC-PK8-DSH		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	
	169.0	1	gps	GPS_A w/ Mount Pipe			
	109.0	1	rfi antennas	FSA10-41-DIN			
	168.0	1	rfi antennas	FSA10-67-DIN			
		6	antel	LPA-80063-6CF-EDIN w/ Mount Pipe			
	167.0		6	jma wireless	MX06FRO660-03 w/ Mount Pipe	19	1-5/8
167.0		1	raycap	RVZDC-6627-PF-48	2	7/8	
		3	samsung telecommunications	MT6407-77A w/ Mount Pipe	1	1/2	
		3	samsung telecommunications	RFV01U-D1A			
		3	samsung telecommunications	RFV01U-D2A			
		1	tower mounts	Platform Mount [LP 1201-1]			
	162.0	3	powerwave technologies	7770.00 w/ Mount Pipe	12	1-5/8	
160.0	102.0	6	powerwave technologies	LGP21401	4 2	3/4 3/8	
	161.0	3	cci antennas	TPA-65R-LCUUUU-H8 w/			

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	
				Mount Pipe			
		3	ericsson	RRUS 32 B30			
		6	kaelus	DBC0061F1V51-2			
		3	kathrein	78211056			
		1	raycap	DC6-48-60-18-8F			
		3	andrew	SBNH-1D6565C w/ Mount Pipe			
		3	ericsson	RRUS 11 B12			
	160.0	3	ericsson	RRUS 32 B2			
	100.0	1	raycap	DC6-48-60-18-8F			
		1	tower mounts	Platform Mount [LP 1201- 1_KCKR-HR-1]			
		3	alcatel lucent	800MHz 2X50W RRH W/FILTER			
150.0	150.0	3	alcatel lucent	PCS 1900MHz 4x45W-65MHz	-	-	
		2	cci tower mounts (v2.1)	Pipe Mount [PM 601-3]			
) 148.0	3	alcatel lucent	TD-RRH8x20-25			
		1	cci tower mounts (v2.1)	Platform Mount [LP 1201-1]			
148.0		148.0	3	rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe	4	1-1/4
		3	rfs celwave	APXVTM14-ALU-I20 w/ Mount Pipe			
		1		commscope - HRK 14-U			
		1		site pro1 - PRK 1245L			
		1	cci tower mounts (v2.1)	Platform Mount [LP 1201- 1_KCKR-HR-1]			
		3	ericsson	AIR -32 B2A/B66AA w/ Mount Pipe	13	1-1/4	
138.0	138.0	3	ericsson	KRY 112 134/1	4	1-5/8 1-3/8	
		3	ericsson	KRY 112 89/5	1	1-3/0	
		3	ericsson	RADIO 4449 B71/B85A			
		3	rfs celwave	APX16DWV-16DWV-S-E-A20 w/ Mount Pipe			
		3	rfs celwave	APXVAARR24_43-U-NA20 w/ Mount Pipe			
130.0	130.0	1	cci tower mounts (v2.1)	Pipe Mount [PM 601-1]	1	EW90	
		1	rfs celwave	SC3-W100AC			

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	3461318	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	3245562	CCISITES
4-GEOTECHNICAL REPORTS	445076	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	842573	CCISITES
4-TOWER MANUFACTURER DRAWINGS	799210	CCISITES
4-POST-MODIFICATION INSPECTION	3847627	CCISITES
4-POST-MODIFICATION INSPECTION	3379750	CCISITES

3.1) Analysis Method

tnxTower (version 8.0.9.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

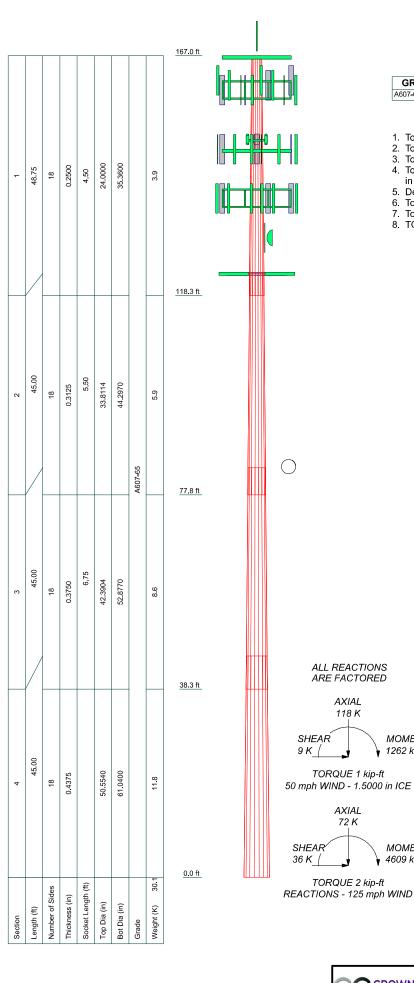
Section No.	Elevation (ft)	Component Type	Size	Critical Element	Р (К)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	167 - 118.25	Pole	TP35.36x24x0.25	1	-27.01	1660.18	57.0	Pass
L2	118.25 - 77.75	Pole	TP44.297x33.8114x0.3125	2	-37.41	2601.71	72.6	Pass
L3	77.75-38.25	Pole	TP52.877x42.3904x0.375	3	-51.67	3723.48	70.1	Pass
L4	38.25-0	Pole	TP61.04x50.554x0.4375	4	-71.89	5169.17	64.6	Pass
							Summary	
						Pole (L2)	72.6	Pass
						Rating =	72.6	Pass

Table 5 - Tower Component	t Stresses vs	Capacity - LC7
Tuble o Tower component		. Oupdoily Lor

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	62.1	Pass
1	Base Plate	0	50.1	Pass
1	Base Foundation (Structure)	0	41.0	Pass
1	Base Foundation (Soil Interaction)	0	62.6	Pass

Structure Rating (max from all components) =	72.6%
--	-------

Notes:


1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity. Rating per TIA-222-H Section 15.5.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

MATERIAL STRENGTH						
GRADE	Fy	Fu	GRADE	Fy	Fu	
A607-65	65 ksi	80 ksi				

TOWER DESIGN NOTES

- Tower is located in New Haven County, Connecticut.
 Tower designed for Exposure B to the TIA-222-H Standard.

Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard.
 Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.

5. Deflections are based upon a 60 mph wind.
 6. Tower Risk Category II.

Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 72.6%

ALL REACTIONS ARE FACTORED

AXIAL 118 K

Ĵ

TORQUE 1 kip-ft

AXIAL 72 K

TORQUE 2 kip-ft

MOMENT

MOMENT

4609 kip-ft

1262 kip-ft

		^{Job:} BU# 801367		
CROWN		Project:		
	Canonsburg. PA 15317	^{Client:} Crown Castle	^{Drawn by:} KGebremariam	App'd:
The pathway to Possible	Phone: (724) 416-2000	^{Code:} TIA-222-H		^{Scale:} NTS
	FAX:	Path: C:\Users\KGebremariam\Desktop\Work	< Area\801367\WO 1967612 - SA\Prod\801367 unmod.ei	Dwg No. E-1

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower is located in New Haven County, Connecticut.
- Tower base elevation above sea level: 616.00 ft.
- Basic wind speed of 125 mph.
- Risk Category II.
- Exposure Category B.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.00 ft.
- Nominal ice thickness of 1.5000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60 mph.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: K_{es}(F_w) = 0.95, K_{es}(t_i) = 0.85.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- Use Code Stress Ratios
- ✓ Use Code Safety Factors Guys Escalate Ice Always Use Max Kz Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- $\sqrt{}$ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
- ✓ Bypass Mast Stability Checks
- $\sqrt{}$ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice

Exemption

 ✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Comer Radii Are Known

Tapered Pole Section Geometry

167 Ft Monopole Tower Structural Analysis Project Number 1967612, Order 552717, Revision 1

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
L1	167.00-118.25	48.75	4.50	18	24.0000	35.3600	0.2500	1.0000	A607-65 (65 ksi)
L2	118.25-77.75	45.00	5.50	18	33.8114	44.2970	0.3125	1.2500	A607-65 (65 ksi)
L3	77.75-38.25	45.00	6.75	18	42.3904	52.8770	0.3750	1.5000	A607-65 (65 ksi)
L4	38.25-0.00	45.00		18	50.5540	61.0400	0.4375	1.7500	A607-65 (65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	1	r	С	I/C	J	lt/Q	W	w/t
	in	in²	in⁴	in	in	in³	in⁴	in²	in	
L1	24.3317	18.8456	1342.9976	8.4313	12.1920	110.1540	2687.7623	9.4246	3.7840	15.136
	35.8669	27.8598	4338.8723	12.4641	17.9629	241.5466	8683.4538	13.9325	5.7834	23.133
L2	35.3495	33.2267	4710.6999	11.8921	17.1762	274.2577	9427.5982	16.6165	5.4008	17.283
	44.9321	43.6271	10663.342 8	15.6145	22.5029	473.8658	21340.716 8	21.8177	7.2463	23.188
L3	44.2880	50.0089	11153.262 3	14.9155	21.5343	517.9292	22321.200 4	25.0092	6.8007	18.135
	53.6349	62.4905	21762.219 3	18.6382	26.8615	810.1635	43553.074 0	31.2512	8.6464	23.057
L4	52.8636	69.5930	22083.351 6	17.7914	25.6814	859.8954	44195.761 0	34.8031	8.1275	18.577
	61.9141	84.1541	39047.573 5	21.5139	31.0083	1259.2612	78146.526	42.0851	9.9730	22.796

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset GradeAdjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft^2	in				in	in	in
L1 167.00-			1	1	1			
118.25								
L2 118.25-			1	1	1			
77.75								
L3 77.75-			1	1	1			
38.25								
L4 38 25-0.00			1	1	1			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From	Componen	Placement	Total Numbor	Number Per Row	Start/En d	Width or Diamete	Perimete r	Weight
		Torque Calculation	Туре	ft	Number	FerRow	Position	r in	in	plf
C		Galodiation								
561(1-5/8)	С	No	Surface Ar (CaAa)	167.00 - 0.00	8	8	0.058 0.350	1.6250		1.35
FLC 158-50J(1-5/8)	С	No	Surface Ar (CaAa)	138.00 - 0.00	6	3	0.374 0.500	2.0150		0.92
Aero MP3-03	А	No	Surface Af (CaAa)	91.50 - 81.50	1	1	0.000 0.000	4.0600	11.2600	9.90
Aero MP3-03	С	No	Surface Af (CaAa)	91.50 - 81.50	1	1	0.000 0.000	4.0600	11.2600	9.90
Aero MP3-03 *	В	No	Surface Af (CaAa)	91.50 - 81.50	1	1	0.000 0.000	4.0600	11.2600	9.90
Aero MP3-04	А	No	Surface Af	53.00 -	1	1	0.000	4.7800	12.7800	14.10

. . .

/= -

Description	Sector	Exclude From	Componen t	Placement	Total Number	Number Per Row	Start/En d	Width or Diamete	Perimete r	Weigh
		Torque Calculatior	Туре	ft			Position	ŗ	in	plf
		Calculation						in		
Aero MP3-04	С	No	(CaAa) Surface Af	43.00 53.00 -	1	1	0.000 0.000	4.7800	12.7800	14.10
			(CaAa)	43.00			0.000			
Aero MP3-04	В	No	Surface Af (CaAa)	53.00 - 43.00	1	1	0.000 0.000	4.7800	12.7800	14.10
***			(ouria)	40.00			0.000			
Aero MP3-04	А	No	Surface Af (CaAa)	65.50 - 50.50	1	1	0.000 0.000	4.7800	12.7800	14.10
Aero MP3-04	В	No	Surface Af (CaAa)	65.50 - 50.50	1	1	0.000 0.000	4.7800	12.7800	14.10
Aero MP3-04	С	No	Surface Af (CaAa)	65.50 - 50.50	1	1	0.000 0.000	4.7800	12.7800	14.10
*****			(

4

. .

.

Feed Line/Linear Appurtenances - Entered As Area											
Description	or	Allow Shield	Exclude From	Componen t		Total Number		$C_A A_A$	Weight		
	Leg		Torque Calculation	Туре	ft			ft²/ft	plf		
A LDF5-50A(7/8)	А	No	No	Inside Pole	167.00-0.00	2	No Ice	0.00	0.33		
· · · ·							1/2" Ice	0.00	0.33		
							1" Ice	0.00	0.33		
							2" Ice	0.00	0.33		
LDF4-50A(1/2)	Α	No	No	Inside Pole	167.00-0.00	1	No Ice	0.00	0.15		
							1/2" Ice	0.00	0.15		
							1" Ice	0.00	0.15		
							2" Ice	0.00	0.15		
561(1-5/8)	Α	No	No	Inside Pole	167.00-0.00	11	No Ice	0.00	1.35		
							1/2" Ice	0.00	1.35		
							1" Ice	0.00	1.35		
*							2" Ice	0.00	1.35		
EW90(ELLIPTICA	А	No	No	Inside Pole	130.00-0.00	1	No Ice	0.00	0.32		
L)							1/2" Ice	0.00	0.32		
							1" Ice	0.00	0.32		
B							2" Ice	0.00	0.32		
FB-L98B-002-	В	No	No	Inside Pole	160.00-0.00	1	No Ice	0.00	0.06		
75000(3/8)							1/2" Ice	0.00	0.06		
							1"Ice	0.00	0.06		
							2" Ice	0.00	0.06		
FB-L98B-034-	В	No	No	Inside Pole	160.00-0.00	1	No Ice	0.00	0.06		
XXX(3/8)							1/2" Ice	0.00	0.06		
							1" Ice	0.00	0.06		
							2" Ice	0.00	0.06		
WR-VG86ST-	В	No	No	Inside Pole	160.00-0.00	4	No Ice	0.00	0.58		
BRD(3/4)							1/2" Ice	0.00	0.58		
							1" Ice	0.00	0.58		
	_						2" Ice	0.00	0.58		
LDF7-50A(1-5/8)	В	No	No	Inside Pole	160.00-0.00	12	No Ice	0.00	0.82		
							1/2" Ice	0.00	0.82		
							1" Ice	0.00	0.82		
	_						2" Ice	0.00	0.82		
2" innerduct	В	No	No	Inside Pole	160.00-0.00	3	No Ice	0.00	0.20		
conduit							1/2" Ice	0.00	0.20		
							1" Ice	0.00	0.20		
*							2" Ice	0.00	0.20		
MLE HYBRID	С	No	No	Inside Pole	148.00-0.00	4	No Ice	0.00	0.68		
3POWER/6FIBER							1/2" Ice	0.00	0.68		
RL 2(1-1/4)							1"Ice	0.00	0.68		
							2" Ice	0.00	0.68		
*											

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation	Туре	ft			ft²/ft	plf
FLC 158-50J(1- 5/8)	С	No	No	Inside Pole	138.00-0.00	13	No Ice 1/2" Ice	0.00 0.00	0.92 0.92
******							1" Ice 2" Ice	0.00 0.00	0.92 0.92
	С	No	No	Inside Pole	123.00-0.00	1	No Ice 1/2" Ice	0.00	1.66
(1-3/8)							1" Ice	0.00 0.00	1.66 1.66
*****							2" Ice	0.00	1.66

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	AF	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation		0		In Face	Out Face	
n	ft		ft^2	ft^2	ft^2	ft^2	ĸ
L1	167.00-118.25	А	0.000	0.000	0.000	0.000	0.77
		В	0.000	0.000	0.000	0.000	0.54
		С	0.000	0.000	75.314	0.000	0.96
L2	118.25-77.75	А	0.000	0.000	6.767	0.000	0.75
		В	0.000	0.000	6.767	0.000	0.62
		С	0.000	0.000	83.899	0.000	1.42
L3	77.75-38.25	А	0.000	0.000	19.756	0.000	0.98
		В	0.000	0.000	19.756	0.000	0.86
		С	0.000	0.000	94.984	0.000	1.64
L4	38.25-0.00	А	0.000	0.000	0.000	0.000	0.61
		В	0.000	0.000	0.000	0.000	0.49
		С	0.000	0.000	72.847	0.000	1.25

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A _F	C _A A _A	C _A A _A	Weight
Sectio	Elevation	or	Thickness	- 2	- 2	In Face	Out Face	
n	ft	Leg	in	ft^2	ft^2	ft^2	ft ²	ĸ
L1	167.00-118.25	А	1.475	0.000	0.000	0.000	0.000	0.77
		В		0.000	0.000	0.000	0.000	0.54
		С		0.000	0.000	119.396	0.000	2.24
L2	118.25-77.75	А	1.421	0.000	0.000	8.664	0.000	0.84
		В		0.000	0.000	8.664	0.000	0.72
		С		0.000	0.000	134.941	0.000	2.94
L3	77.75-38.25	А	1.349	0.000	0.000	25.473	0.000	1.23
		В		0.000	0.000	25.473	0.000	1.11
		С		0.000	0.000	147.570	0.000	3.23
L4	38.25-0.00	А	1.204	0.000	0.000	0.000	0.000	0.61
		В		0.000	0.000	0.000	0.000	0.49
		С		0.000	0.000	116.852	0.000	2.47

Feed Line Center of Pressure

Section	Elevation	CP _x	CPz	CP _X	CPz
				Ice	lce
	ft	in	in	in	in
L1	167.00-118.25	-3.5641	6.3058	-2.9841	5.1010
L2	118.25-77.75	-4.4446	6.6860	-3.9405	5.6569
L3	77.75-38.25	-4.0685	6.1343	-3.8302	5.5189

Section	Elevation	CP _X	CPz	CP _X Ice	CP _z Ice
	ft	in	in	in	in
L4	38.25-0.00	-5.5971	8.4521	-4.9110	7.1003

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

		S	hielding	g Facto	or Ka
Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	Ka Ice
L1	14	561(1-5/8)	118.25 - 167.00	1.0000	1.0000
L1	21	FLC 158-50J(1-5/8)	118.25 - 138.00	1.0000	1.0000
L2	14	561(1-5/8)	77.75 - 118.25	1.0000	1.0000
L2	21	FLC 158-50J(1-5/8)	77.75 - 118.25	1.0000	1.0000
L2	25	Aero MP3-03	81.50 - 91.50	1.0000	1.0000
L2	26	Aero MP3-03	81.50 - 91.50	1.0000	1.0000
L2	27	Aero MP3-03	81.50 - 91.50	1.0000	1.0000
L3	14	561(1-5/8)	38.25 - 77.75	1.0000	1.0000
L3	21	FLC 158-50J(1-5/8)	38.25 77.75	1.0000	1.0000
L3	29	Aero MP3-04	43.00- 53.00	1.0000	1.0000
L3	30	Aero MP3-04	43.00 - 53.00	1.0000	1.0000
L3	31	Aero MP3-04	43.00 - 53.00	1.0000	1.0000
L3	33	Aero MP3-04	50.50 - 65.50	1.0000	1.0000
L3	34	Aero MP3-04	50.50 - 65.50	1.0000	1.0000
L3	35	Aero MP3-04	50.50 65.50	1.0000	1.0000
L4 L4	14 21	561(1-5/8) FLC 158-50J(1-5/8)	0.00 - 38.25 0.00 - 38.25	1.0000 1.0000	1.0000 1.0000

Effective Width of Flat Linear Attachments / Feed Lines

Tower Section	Attachment Record No.	Description	Attachment Segment Elev.	Ratio Calculatio n Method	Effective Width Ratio
L2	25	Aero MP3-03	81.50 - 91.50	Auto	0.0000
L2	26	Aero MP3-03	81.50 - 91.50	Auto	0.0000
L2	27	Aero MP3-03	81.50 - 91.50	Auto	0.0000

ſ	Tower Section	Attachment Record No.	Description	Attachment Segment	Ratio Calculatio	Effective Width
				Elev.	n Method	Ratio
Ì	L3	29	Aero MP3-04	43.00 - 53.00	Auto	0.0000
	L3	30	Aero MP3-04	43.00 - 53.00	Auto	0.0000
	L3	31	Aero MP3-04	43.00 - 53.00	Auto	0.0000
	L3	33	Aero MP3-04	50.50 - 65.50	Auto	0.0000
	L3	34	Aero MP3-04	50.50 - 65.50	Auto	0.0000
	L3	35	Aero MP3-04	50.50 - 65.50	Auto	0.0000

Discrete Tower Loads						
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement	
			ft ft ft	٥	ft	
14" x 2' Top Hat Lightning Rod 5/8"x6' ***	C C	None None		0.0000 0.0000	168.00 171.00	
(2) MX06FRO660-03 w/ Mount Pipe	A	From Leg	4.00 0.00 0.00	0.0000	167.00	
(2) MX06FRO660-03 w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	167.00	
(2) MX06FRO660-03 w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	167.00	
2) LPA-80063-6CF-EDIN w/ Mount Pipe	A	From Leg	4.00 0.00 0.00	0.0000	167.00	
2) LPA-80063-6CF-EDIN w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	167.00	
2) LPA-80063-6CF-EDIN w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	167.00	
MT6407-77A w/ Mount Pipe	A	From Leg	4.00 0.00 0.00	0.0000	167 <u>.</u> 00	
MT6407-77A w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	167.00	
MT6407-77A w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	167.00	
GPS_A w/ Mount Pipe	А	From Leg	4.00 0.00 2.00	0.0000	167.00	
RVZDC-6627-PF-48	A	From Leg	4.00 0.00 0.00	0.0000	167.00	
RFV01U-D2A	A	From Leg	4.00 0.00	0.0000	167.00	

Description	Face	Offset Type	Offsets: Horz	Azimuth	Placement
	or Leg	Туре	Lateral	Adjustment	
	3		Vert		
			ft ft	٥	ft
			n ft		
(3) RFV01U-D1A	С	From Leg	4.00	0.0000	167.00
			0.00		
(2) RFV01U-D2A	В	From Leg	0.00 4.00	0.0000	167.00
	D	riom Log	0.00	0.0000	107.00
	•		0.00	0.0000	407.00
FSA10-41-DIN	A	From Leg	4.00 0.00	0.0000	167.00
			2.00		
FSA10-67-DIN	А	From Leg	4.00	0.0000	167.00
			0.00 1.00		
Platform Mount [LP 1201-1]	С	None	1.00	0.0000	167.00
*					
Platform Mount [LP 1201-1 KCKR-HR-1]	С	None		0.0000	160.00
6'x2" Mount Pipe	Ă	From Leg	4.00	0.0000	160.00
·		0	-2.33		
Ch/Oll Mount Dine	Р		0.00	0.0000	160.00
6'x2" Mount Pipe	В	From Leg	4.00 -2.33	0.0000	160.00
			0.00		
6'x2" Mount Pipe	С	From Leg	4.00	0.0000	160.00
			-2.33 0.00		
SBNH-1D6565C w/ Mount Pipe	А	From Leg	4.00	0.0000	160.00
			-7.00		
SBNH-1D6565C w/ Mount Pipe	В	From Leg	0.00 4.00	0.0000	160.00
	D	1 Iom Log	-7.00	0.0000	100.00
	-	_ .	0.00		
SBNH-1D6565C w/ Mount Pipe	С	From Leg	4.00 -7.00	0.0000	160.00
			0.00		
TPA-65R-LCUUUU-H8 w/ Mount Pipe	А	From Leg	4.00	0.0000	160.00
			2.33 1.00		
TPA-65R-LCUUUU-H8 w/ Mount Pipe	В	From Leg	4.00	0.0000	160.00
		0	2.33		
TPA-65R-LCUUUU-H8 w/ Mount Pipe	С	From Leg	1.00 4.00	0.0000	160.00
	0	TIOINLEG	2.33	0.0000	100.00
			1.00		
7770.00 w/ Mount Pipe	A	From Leg	4.00 7.00	0.0000	160.00
			2.00		
7770.00 w/ Mount Pipe	В	From Leg	4.00	0.0000	160.00
			7.00 2.00		
7770.00 w/ Mount Pipe	С	From Leg	4.00	0.0000	160.00
		5	7.00		
RRUS 11 B12	А	From Leg	2.00 4.00	0.0000	160.00
	~	rion Leg	0.00	0.0000	100.00
	_	_ .	0.00		
RRUS 11 B12	В	From Leg	4.00 0.00	0.0000	160.00
			0.00		
RRUS 11 B12	С	From Leg	4.00	0.0000	160.00
			0.00 0.00		
RRUS 32 B2	А	From Leg	4.00	0.0000	160.00
			0.00		
	В	From Leg	0.00 4.00	0.0000	160.00
RRUS 32 B2					

167 Ft Monopole Tower Structural Analysis Project Number 1967612, Order 552717, Revision 1

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement
	Leg		Lateral		
			Vert ft	0	ft
			ft		п
			ft		
			0.00 0.00		
RRUS 32 B2	С	From Leg	4.00	0.0000	160.00
		•	0.00		
70044050	٨		0.00	0.0000	400.00
78211056	A	From Leg	4.00 0.00	0.0000	160.00
			1.00		
78211056	В	From Leg	4.00	0.0000	160.00
			0.00		
78211056	С	From Leg	1.00 4.00	0.0000	160.00
10211000	Ũ	Tiom Log	0.00	0.0000	100.00
			1.00		
RRUS 32 B30	А	From Leg	4.00	0.0000	160.00
			0.00 1.00		
RRUS 32 B30	В	From Leg	4.00	0.0000	160.00
		Ū.	0.00		
	0	En la la la	1.00	0.0000	100.00
RRUS 32 B30	С	From Leg	4.00 0.00	0.0000	160.00
			1.00		
(2) DBC0061F1V51-2	А	From Leg	4.00	0.0000	160.00
			0.00		
(2) DBC0061F1V51-2	В	From Leg	1.00 4.00	0.0000	160.00
(2) DBC0001F1031-2	В	FIOIIILeg	0.00	0.0000	100.00
			1.00		
(2) DBC0061F1V51-2	С	From Leg	4.00	0.0000	160.00
			0.00		
(2) LGP21401	А	From Leg	1.00 4.00	0.0000	160.00
		Tiom Log	0.00	0.0000	100.00
			2.00		
(2) LGP21401	В	From Leg	4.00	0.0000	160.00
			0.00 2.00		
(2) LGP21401	С	From Leg	4.00	0.0000	160.00
		Ū.	0.00		
			2.00	0.0000	100.00
DC6-48-60-18-8F	A	From Leg	1.00 0.00	0.0000	160.00
			1.00		
DC6-48-60-18-8F	С	From Leg	1.00	0.0000	160.00
			0.00		
***			0.00		
(2) Pipe Mount [PM 601-3]	С	None		0.0000	150.00
PCS 1900MHz 4x45W-65MHz	A	From Leg	1.00	0.0000	150.00
			0.00		
PCS 1900MHz 4x45W-65MHz	В	From Leg	0.00 1.00	0.0000	150.00
	D	i ioni Leg	0.00	0.0000	100.00
			0.00		
PCS 1900MHz 4x45W-65MHz	С	From Leg	1.00	0.0000	150.00
			0.00		
800MHz 2X50W RRH W/FILTER	А	From Leg	0.00 1.00	0.0000	150.00
		. Join Log	0.00	0.0000	100.00
			0.00		
800MHz 2X50W RRH W/FILTER	В	From Leg	1.00	0.0000	150.00
			0.00 0.00		
800MHz 2X50W RRH W/FILTER	С	From Leg	1.00	0.0000	150.00
	2		1.00	0.0000	

167 Ft Monopole Tower Structural Analysis Project Number 1967612, Order 552717, Revision 1

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement
	Leg		Lateral Vert		
			ft	٥	ft
			ft ft		
			0.00		
***			0.00		
Platform Mount [LP 1201-1]	С	None	4.00	0.0000	148.00
6'x2" Mount Pipe	A	From Leg	4.00 7.00	0.0000	148.00
			0.00		
6'x2" Mount Pipe	В	From Leg	4.00	0.0000	148.00
			7.00 0.00		
6'x2" Mount Pipe	С	From Leg	4.00	0.0000	148.00
		-	7.00		
APXVTM14-ALU-I20 w/ Mount Pipe	А	From Log	0.00 4.00	0.0000	148.00
AFXV INIT4-ALO-IZO W/ Mount Fipe	A	From Leg	-7.00	0.0000	140.00
			0.00		
APXVTM14-ALU-I20 w/ Mount Pipe	В	From Leg	4.00	0.0000	148.00
			-7.00 0.00		
APXVTM14-ALU-I20 w/ Mount Pipe	С	From Leg	4.00	0.0000	148.00
		0	-7.00		
APXVSPP18-C-A20 w/ Mount Pipe	A	From Leg	0.00 4.00	0.0000	148.00
AFXVSFF16-C-A20W/Mount Fipe	A	FIOIIILeg	0.00	0.0000	146.00
			0.00		
APXVSPP18-C-A20 w/ Mount Pipe	В	From Leg	4.00	0.0000	148.00
			0.00 0.00		
APXVSPP18-C-A20 w/ Mount Pipe	С	From Leg	4.00	0.0000	148.00
· · · · · · · · · · · · · · · · · · ·			0.00		
			0.00		4.4.0.00
TD-RRH8x20-25	A	From Leg	4.00 0.00	0.0000	148.00
			0.00		
TD-RRH8x20-25	В	From Leg	4.00	0.0000	148.00
			0.00 0.00		
TD-RRH8x20-25	С	From Leg	4.00	0.0000	148.00
	U	Field Log	0.00	010000	110100
***			0.00		
Platform Mount [LP 1201-1 KCKR-HR-1]	С	None		0.0000	138.00
commscope - HRK 14-U	С	None		0.0000	138.00
site pro1 - PRK 1245L	С	None		0.0000	138.00
APXVAARR24_43-U-NA20 w/ Mount Pipe	А	From Leg	4.00 -7.00	0.0000	138.00
			0.00		
APXVAARR24_43-U-NA20 w/ Mount Pipe	В	From Leg	4.00	0.0000	138.00
			-7.00		
APXVAARR24_43-U-NA20 w/ Mount Pipe	С	From Leg	0.00 4.00	0.0000	138.00
	0	r totti Log	-7.00	0.0000	100.00
	_		0.00		
APX16DWV-16DWV-S-E-A20w/MountPipe	A	From Leg	4.00 2.33	0.0000	138.00
			0.00		
APX16DWV-16DWV-S-E-A20w/MountPipe	В	From Leg	4.00	0.0000	138.00
			2.33		
APX16DWV-16DWV-S-E-A20w/ Mount Pipe	С	From Leg	0.00 4.00	0.0000	138.00
A A 100 W V-100 W V-0-E-A20 W/ Would Pipe	U	r tom Ley	2.33	0.0000	130.00
			0.00		
AIR -32 B2A/B66AAw/ Mount Pipe	A	From Leg	4.00 7.00	0.0000	138.00
-					

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placemen
	LUg		Vert ft ft	o	ft
AIR -32 B2A/B66AA w/ Mount Pipe	В	From Leg	ft4.00 7.00	0.0000	138.00
AIR -32 B2A/B66AA w/ Mount Pipe	С	From Leg	0.00 4.00 7.00	0.0000	138.00
KRY 112 89/5	A	From Leg	0.00 4.00 0.00	0.0000	138.00
KRY 112 89/5	В	From Leg	0.00 4.00 0.00	0.0000	138.00
KRY 112 89/5	С	From Leg	0.00 4.00 0.00 0.00	0.0000	138.00
KRY 112 134/1	A	From Leg	4.00 0.00 0.00	0.0000	138.00
KRY 112 134/1	В	From Leg	4.00 0.00 0.00	0.0000	138.00
KRY 112 134/1	С	From Leg	4.00 0.00 0.00	0.0000	138.00
RADIO 4449 B71/B85A	A	From Leg	4.00 0.00 0.00	0.0000	138.00
RADIO 4449 B71/B85A	В	From Leg	4.00 0.00 0.00	0.0000	138.00
RADIO 4449 B71/B85A	С	From Leg	4.00 0.00 0.00	0.0000	138.00
*** Pipe Mount [PM 601-1]	В	From Leg	0.50	0.0000	130.00
******			0.00		
Commscope MC-PK8-DSH (2) 8' x 2'' Mount Pipe	C A	None From Leg	4.00 0.00	0.0000 0.0000	123.00 123.00
(2) 8' x 2" Mount Pipe	В	From Leg	0.00 4.00 0.00	0.0000	123.00
(2) 8' x 2" Mount Pipe	С	From Leg	0.00 4.00 0.00	0.0000	123.00
MX08FRO665-21 w/ Mount Pipe	A	From Leg	0.00 4.00 0.00 0.00	0.0000	123.00
MX08FRO665-21 w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	123.00
MX08FRO665-21 w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	123.00
TA08025-B604	A	From Leg	4.00 0.00 0.00	0.0000	123.00
TA08025-B604	В	From Leg	4.00 0.00 0.00	0.0000	123.00
TA08025-B604	С	From Leg	4.00 0.00	0.0000	123.00

Description	Face	Offset	Offsets:	Azimuth	Placemen
	or	Туре	Horz	Adjustment	
	Leg		Lateral		
			Vert		-
			ft	0	ft
			ft		
			ft		
			0.00		
TA08025-B605	А	From Leg	4.00	0.0000	123.00
		-	0.00		
			0.00		
TA08025-B605	В	From Leg	4.00	0.0000	123.00
		Ū.	0.00		
			0.00		
TA08025-B605	С	From Leg	4.00	0.0000	123.00
	-		0.00		
			0.00		
RDIDC-9181-PF-48	А	From Leg	4.00	0.0000	123.00
			0.00		
			0.00		
******			0.00		

Dishes								
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter
				ft	0	0	ft	ft
SC3-W100AC	В	Paraboloid w/o Radome	From Leg	1.00 0.00 0.00	-27.0000		130.00	3.29
******				0100				

Load Combinations

Comb. No.		Description
1	Dead Only	
2	1.2 Dead+1.0 Wind 0 deg - No Ice	
3	0.9 Dead+1.0 Wind 0 deg - No Ice	
4	1.2 Dead+1.0 Wind 30 deg-No Ice	
5	0.9 Dead+1.0 Wind 30 deg-No Ice	
6	1.2 Dead+1.0 Wind 60 deg-No Ice	
7	0.9 Dead+1.0 Wind 60 deg-No Ice	
8	1.2 Dead+1.0 Wind 90 deg-No Ice	
9	0.9 Dead+1.0 Wind 90 deg-No Ice	
10	1.2 Dead+1.0 Wind 120 deg - No Ice	
11	0.9 Dead+1.0 Wind 120 deg - No Ice	
12	1.2 Dead+1.0 Wind 150 deg - No Ice	
13	0.9 Dead+1.0 Wind 150 deg - No Ice	
14	1.2 Dead+1.0 Wind 180 deg - No Ice	
15	0.9 Dead+1.0 Wind 180 deg - No Ice	
16	1.2 Dead+1.0 Wind 210 deg - No Ice	
17	0.9 Dead+1.0 Wind 210 deg - No Ice	
18	1.2 Dead+1.0 Wind 240 deg - No Ice	
19	0.9 Dead+1.0 Wind 240 deg - No Ice	
20	1.2 Dead+1.0 Wind 270 deg - No Ice	
21	0.9 Dead+1.0 Wind 270 deg - No Ice	
22	1.2 Dead+1.0 Wind 300 deg - No Ice	
23	0.9 Dead+1.0 Wind 300 deg - No Ice	
24	1.2 Dead+1.0 Wind 330 deg - No Ice	

tnxTower Report - version 8.0.9.0

Comb. No.	Description
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg-Service
44	Dead+Wind 150 deg-Service
45	Dead+Wind 180 deg-Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg-Service
48	Dead+Wind 270 deg-Service
49	Dead+Wind 300 deg-Service
50	Dead+Wind 330 deg-Service

Maximum Member Forces

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Туре		Load		Moment	Moment
No.				Comb.	ĸ	kip-ft	kip-ft
L1	167 - 118.25	Pole	Max Tension	48	0.00	-0.00	-0.00
			Max. Compression	26	-59.26	0.61	-0.40
			Max. Mx	20	-27.00	729.39	-1.18
			Max. My	14	-27.05	0.14	-727.31
			Max. Vy	20	-26.65	729.39	-1.18
			Max. Vx	14	26.27	0.14	-727.31
			Max. Torque	9			1.89
L2	118.25 - 77.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-73.69	0.67	-4.53
			Max. Mx	20	-37.41	1847.09	-1.27
			Max. My	14	-37.45	-1.37	-1830.91
			Max. Vy	20	-29.88	1847.09	-1.27
			Max. Vx	14	29.49	-1.37	-1830.91
			Max. Torque	11			1.71
L3	77.75 - 38.25	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-92.74	0.69	-9.09
			Max, Mx	20	-51.68	3049.86	-1.66
			Max. My	14	-51.70	-2.82	-3020.44
			Max Vy	20	-32.88	3049.86	-1.66
			Max. Vx	14	32.49	-2.82	-3020.44
			Max. Torque	11			1.70
L4	38.25-0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-118.10	0.69	-14.71
			Max. Mx	20	-71.89	4597.96	-2.42
			Max. My	14	-71.89	-4.48	-4553.68
			Max. Vy	20	-35.80	4597.96	-2.42
			Max. Vx	2	-35.44	9.69	4540.85
			Max. Torque	11			1.70

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, 2
		Load	K	K	ĸ
		Comb.			
Pole	Max. Vert	34	118.10	4.74	-8.05
	Max. H _x	20	71.91	35.76	0.03
	Max. H _z	3	53.93	0.07	35.39
	Max. M _x	2	4540.85	0.07	35.39
	Max. M _z	8	4571.99	-35.58	-0.00
	Max. Torsion	11	1.69	-30.95	-17.88
	Min. Vert	5	53.93	-17.78	30.69
	Min. H _x	8	71.91	-35.58	-0.00
	Min. H _z	15	53.93	-0.04	-35.39
	Min. M _x	14	-4553.68	-0.04	-35.39
	Min. M _z	20	-4597.96	35.76	0.03
	Min. Torsion	21	-1.49	35.76	0.03

Tower Mast Reaction Summary

Combination			Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	59.93	0.00	0.00	5.20	0.30	0.00
1.2 Dead+1.0 Wind 0 deg - No Ice	71.91	-0.07	-35.39	-4540.85	9.69	-0.02
).9 Dead+1.0 Wind 0 deg - No Ice	53.93	-0.07	-35.39	-4469.38	9.44	-0.01
1.2 Dead+1.0 Wind 30 deg- No Ice	71.91	17.78	-30.69	-3936.82	-2284.77	-0.65
).9 Dead+1.0 Wind 30 deg- No Ice	53.93	17.78	-30.69	-3875.10	-2248.13	-0.65
1.2 Dead+1.0 Wind 60 deg- No Ice	71.91	30.76	-17.76	-2276.55	-3952.34	-1.24
).9 Dead+1.0 Wind 60 deg- No Ice	53.93	30.76	-17.76	-2241.55	-3888.88	-1.24
1.2 Dead+1.0 Wind 90 deg- No Ice	71.91	35.58	0.00	6.58	-4571.99	-1.61
).9 Dead+1.0 Wind 90 deg- No Ice	53.93	35.58	0.00	4.86	-4498.59	-1.62
1.2 Dead+1.0 Wind 120 deg No Ice	71.91	30.95	17.88	2301.06	-3972.48	-1.68
).9 Dead+1.0 Wind 120 deg No Ice	53.93	30.95	17.88	2262.50	-3908.80	-1.69
1.2 Dead+1.0 Wind 150 deg No Ice	71.91	17.96	31.06	3982.54	-2299.07	-1.06
).9 Dead+1.0 Wind 150 deg No Ice	53.93	17.96	31.06	3917.06	-2262.31	-1.08
1.2 Dead+1.0 Wind 180 deg	71.91	0.04	35.39	4553.68	-4.48	-0.03
).9 Dead+1.0 Wind 180 deg	53.93	0.04	35.39	4478.80	-4.52	-0.04
1.2 Dead+1.0 Wind 210 deg	71.91	-18.17	30.62	3940.34	2338.64	0.58
).9 Dead+1.0 Wind 210 deg No Ice	53.93	-18.17	30.62	3875.35	2301.00	0.57
1.2 Dead+1.0 Wind 240 deg	71.91	-31.05	17.60	2266.79	3993.19	1.42
).9 Dead+1.0 Wind 240 deg No Ice	53.93	-31.05	17.60	2228.70	3928.92	1.42
1.2 Dead+1.0 Wind 270 deg	71.91	-35.76	-0.03	2.42	4597.96	1.48
).9 Dead+1.0 Wind 270 deg No Ice	53.93	-35.76	-0.03	0.75	4523.97	1.49
1.2 Dead+1.0 Wind 300 deg No Ice).9 Dead+1.0 Wind 300 deg	71.91 53.93	-31.23 -31.23	-17.75 -17.75	-2270.56 -2235.70	4010.58 3946.12	0.95 0.96
No Ice	55.85	-31.23	-17.75	-2233.70	3940.12	0.96

tnxTower Report - version 8.0.9.0

167 Ft Monopole Tower Structural Analysis Project Number 1967612, Order 552717, Revision 1

Load Combination	Vertical	Shear _x	Shear₂	Overturning Moment, M _x	Overturning Moment, M₂	Torque
	К	ĸ	К	kip-ft	kip-ft	kip-ft
- No Ice						
0.9 Dead+1.0 Wind 330 deg - No Ice	53.93	-18.39	-30.99	-3897.79	2320.38	0.18
1.2 Dead+1.0 Ice+1.0 Temp	118.10	-0.00	0.00	14.71	0.69	0.00
1.2 Dead+1.0 Wind 0	118.10	-0.01	-9.30	-1228.38	2.53	-0.03
deg+1.0 lce+1.0 Temp						
1.2 Dead+1.0 Wind 30	118.10	4.67	-8.06	-1062.82	-623.29	-0.35
deg+1.0 lce+1.0 Temp						
1.2 Dead+1.0 Wind 60	118.10	8.08	-4.66	-608.54	-1079.05	-0.60
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90	118.10	9.34	0.00	15.00	-1247.69	-0.71
deg+1.0 Ice+1.0 Temp			4.07			
1.2 Dead+1.0 Wind 120	118.10	8.08	4.67	638.69	-1079.39	-0.66
deg+1.0 lce+1.0 Temp	110.10	4.00	0.07	4000.00	000.00	0.00
1.2 Dead+1.0 Wind 150	118.10	4.66	8.07	1093.32	-622.69	-0.38
deg+1.0 lce+1.0 Temp	440.40	0.04	0.00	4050.00	0.05	0.00
1.2 Dead+1.0 Wind 180	118.10	0.01	9.30	1258.32	-0.25	0.02
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 210	118.10	-4.74	8.05	1090.95	635.10	0.34
deg+1.0 Ice+1.0 Temp	110.10	-4.74	0.05	1090.95	035.10	0.34
1.2 Dead+1.0 Wind 240	118.10	-8.13	4.63	634.06	1088.32	0.64
deg+1.0 [ce+1.0 Temp	110.10	-0.15	4.05	034.00	1000.52	0.04
1.2 Dead+1.0 Wind 270	118.10	-9.37	-0.01	14.19	1254.05	0.69
deg+1.0 Ice+1.0 Temp	110.10	0.07	0.01	14.10	1204.00	0.00
1.2 Dead+1.0 Wind 300	118.10	-8.13	-4.64	-605.29	1088.13	0.52
deg+1.0 Ice+1.0 Temp	110,10	0,110	1.01	000,20	1000110	0.02
1.2 Dead+1.0 Wind 330	118.10	-4.74	-8.05	-1061.43	635.54	0.21
dea+1.0 ce+1.0 Temp						
Dead+Wind 0 deg - Service	59.93	-0.01	-7.68	-972,84	2,32	-0.00
Dead+Wind 30 deg - Service	59.93	3.86	-6.66	-842.91	-491.27	-0.15
Dead+Wind 60 deg - Service	59.93	6.68	-3.86	-485.76	-850.00	-0.28
Dead+Wind 90 deg - Service	59.93	7.72	0.00	5.39	-983.31	-0.36
Dead+Wind 120 deg-	59.93	6.72	3.88	499.00	-854.36	-0.37
Service						
Dead+Wind 150 deg-	59.93	3.90	6.74	860.74	-494.37	-0.23
Service						
Dead+Wind 180 deg-	59.93	0.01	7.68	983.57	-0.73	-0.01
Service						
Dead+Wind 210 deg-	59.93	-3.94	6.65	851.64	503.33	0.13
Service						
Dead+Wind 240 deg-	59.93	-6.74	3.82	491.62	859.27	0.32
Service						
Dead+Wind 270 deg-	59.93	-7.76	-0.01	4.50	989.38	0.33
Service						
Dead+Wind 300 deg-	59.93	-6.78	-3.85	-484.49	863.02	0.21
Service	50.00	0.00	0.70	0.47.07	F07 50	
Dead+Wind 330 deg-	59.93	-3.99	-6.73	-847.87	507.56	0.04
Service						

Solution Summary

	Sun	n of Applied Force	es		Sum of Reactio	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-59.93	0.00	0.00	59.93	-0.00	0.000%
2	-0.07	-71.91	-35.39	0.07	71.91	35.39	0.000%
3	-0.07	-53.93	-35.39	0.07	53.93	35.39	0.000%
4	17.78	-71.91	-30.69	-17.78	71.91	30.69	0.000%
5	17.78	-53.93	-30.69	-17.78	53.93	30.69	0.000%
6	30.76	-71.91	-17.76	-30.76	71.91	17.76	0.000%
7	30.76	-53.93	-17.76	-30.76	53.93	17.76	0.000%
8	35.58	-71.91	0.00	-35.58	71.91	-0.00	0.000%
9	35.58	-53.93	0.00	-35.58	53.93	-0.00	0.000%
10	30.95	-71.91	17.88	-30.95	71.91	-17.88	0.000%
11	30.95	-53.93	17.88	-30.95	53.93	-17.88	0.000%
12	17.96	-71.91	31.06	-17.96	71.91	-31.06	0.000%

		n of Applied Force	s		Sum of Reaction		
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	К	
13	17.96	-53.93	31.06	-17.96	53.93	-31.06	0.000%
14	0.04	-71.91	35.39	-0.04	71.91	-35.39	0.000%
15	0.04	-53.93	35.39	-0.04	53.93	-35.39	0.000%
16	-18.17	-71.91	30.62	18.17	71.91	-30.62	0.000%
17	-18.17	-53.93	30.62	18.17	53.93	-30.62	0.000%
18	-31.05	-71.91	17.60	31.05	71.91	-17.60	0.000%
19	-31.05	-53.93	17.60	31.05	53.93	-17.60	0.000%
20	-35.76	-71.91	-0.03	35.76	71.91	0.03	0.000%
21	-35.76	-53.93	-0.03	35.76	53.93	0.03	0.000%
22	-31.23	-71.91	-17.75	31.23	71.91	17.75	0.000%
23	-31.23	-53.93	-17.75	31.23	53.93	17.75	0.000%
24	-18.39	-71.91	-30.99	18.39	71.91	30.99	0.000%
25	-18.39	-53.93	-30.99	18.39	53.93	30.99	0.000%
26	0.00	-118.10	0.00	0.00	118.10	-0.00	0.000%
27	-0.01	-118.10	-9.30	0.01	118.10	9.30	0.000%
28	4.67	-118.10	-8.06	-4.67	118.10	8.06	0.000%
29	8.08	-118.10	-4.66	-8.08	118.10	4.66	0.000%
30	9.34	-118.10	0.00	-9.34	118.10	-0.00	0.000%
31	8.08	-118.10	4.67	-8.08	118.10	-4.67	0.000%
32	4.66	-118.10	8.07	-4.66	118.10	-8.07	0.000%
33	0.01	-118.10	9.30	-0.01	118.10	-9.30	0.000%
34	-4.74	-118.10	8.05	4.74	118.10	-8.05	0.000%
35	-8.13	-118.10	4.63	8.13	118.10	-4.63	0.000%
36	-9.37	-118.10	-0.01	9.37	118.10	0.01	0.000%
37	-8.13	-118.10	-4.64	8.13	118.10	4.64	0.000%
38	-4.74	-118.10	-8.05	4.74	118.10	8.05	0.000%
39	-0.01	-59.93	-7.68	0.01	59.93	7.68	0.000%
40	3.86	-59.93	-6.66	-3.86	59.93	6.66	0.000%
41	6.68	-59.93	-3.86	-6.68	59.93	3.86	0.000%
42	7.72	-59.93	0.00	-7.72	59.93	-0.00	0.000%
43	6.72	-59.93	3.88	-6.72	59.93	-3.88	0.000%
44	3.90	-59.93	6.74	-3.90	59.93	-6.74	0.000%
45	0.01	-59.93	7.68	-0.01	59.93	-7.68	0.000%
46	-3.94	-59.93	6.65	3.94	59.93	-6.65	0.000%
47	-6.74	-59.93	3.82	6.74	59.93	-3.82	0.000%
48	7.76	-59.93	-0.01	7.76	59.93	0.01	0.000%
49	6.78	-59.93	-3.85	6.78	59.93	3.85	0.000%
50	-3.99	-59.93	-6.73	3.99	59.93	6.73	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	5	0.00000001	0.00005402
3	Yes	4	0.00000001	0.00062741
4	Yes	6	0.00000001	0.00025930
5	Yes	6	0.00000001	0.00008779
6	Yes	6	0.00000001	0.00026584
7	Yes	6	0.00000001	0.00009024
8	Yes	5	0.00000001	0.00011898
9	Yes	5	0.00000001	0.00005909
10	Yes	6	0.00000001	0.00026009
11	Yes	6	0.00000001	0.00008763
12	Yes	6	0.00000001	0.00026785
13	Yes	6	0.00000001	0.00009064
14	Yes	5	0.00000001	0.00004960
15	Yes	4	0.00000001	0.00060641
16	Yes	6	0.00000001	0.00026962
17	Yes	6	0.00000001	0.00009110
18	Yes	6	0.00000001	0.00025941
19	Yes	6	0.00000001	0.00008744
20	Yes	5	0.00000001	0.00011851
21	Yes	5	0.00000001	0.00005863
22	Yes	6	0.0000001	0.00026762

23	Yes	6	0.0000001	0.00009060
24	Yes	6	0.0000001	0.00026826
25	Yes	6	0.00000001	0.00009049
26	Yes	4	0.0000001	0.00005599
27	Yes	6	0.00000001	0.00017838
28	Yes	6	0.00000001	0.00022619
29	Yes	6	0.0000001	0.00022874
30	Yes	6	0.0000001	0.00018071
31	Yes	6	0.0000001	0.00023059
32	Yes	6	0.0000001	0.00023230
33	Yes	6	0.0000001	0.00018159
34	Yes	6	0.0000001	0.00023468
35	Yes	6	0.0000001	0.00023172
36	Yes	6	0.0000001	0.00018189
37	Yes	6	0.0000001	0.00022994
38	Yes	6	0.0000001	0.00022900
39	Yes	4	0.0000001	0.00013256
40	Yes	4	0.00000001	0.00056024
41	Yes	4	0.0000001	0.00060304
42	Yes	4	0.00000001	0.00015247
43	Yes	4	0.0000001	0.00056542
44	Yes	4	0.0000001	0.00061399
45	Yes	4	0.0000001	0.00013421
46	Yes	4	0.00000001	0.00061423
47	Yes	4	0.0000001	0.00056590
48	Yes	4	0.0000001	0.00015162
49	Yes	4	0.0000001	0.00060582
50	Yes	4	0.0000001	0.00059145

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	٥	٥
L1	167 - 118.25	24.878	47	1.3685	0.0040
L2	122.75 - 77.75	13.100	44	1.0890	0.0011
L3	83.25 - 38.25	5.682	44	0.6752	0.0005
L4	45 - 0	1.601	44	0.3260	0.0002

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	٥	0	ft
171.00	Lightning Rod 5/8''x6'	47	24.878	1.3685	0.0041	45671
168.00	14" x 2' Top Hat	47	24.878	1.3685	0.0041	45671
167.00	(2) MX06FRO660-03 w/ Mount Pipe	47	24.878	1.3685	0.0041	45671
160.00	Platform Mount [LP 1201- 1_KCKR-HR-1]	47	22.897	1.3328	0.0036	32622
150.00	(2) Pipe Mount [PM 601-3]	47	20.104	1.2791	0.0028	13432
148.00	Platform Mount [LP 1201-1]	47	19.554	1.2677	0.0027	12018
138.00	Platform Mount [LP 1201- 1_KCKR-HR-1]	47	16.874	1.2059	0.0020	7873
130.00	SC3-W100AC	47	14.838	1.1486	0.0016	6171
123.00	Commscope MC-PK8-DSH	44	13.158	1.0912	0.0013	5287

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	o
L1	167 - 118.25	115.622	20	6.3584	0.0186
L2	122.75-77.75	60.970	22	5.0719	0.0051
L3	83.25 - 38.25	26.439	22	3.1465	0.0021
L4	45-0	7.443	22	1.5168	0.0008

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
171.00	Lightning Rod 5/8''x6'	20	115.622	6.3584	0.0187	10071
168.00	14" x 2' Top Hat	20	115.622	6.3584	0.0187	10071
167.00	(2) MX06FRO660-03 w/ Mount Pipe	20	115.622	6.3584	0.0187	10071
160.00	Platform Mount [LP 1201- 1_KCKR-HR-1]	20	106.429	6.1949	0.0163	7193
150.00	(2) Pipe Mount [PM 601-3]	22	93.474	5.9490	0.0128	2960
148.00	Platform Mount [LP 1201-1]	22	90.925	5.8968	0.0122	2647
138.00	Platform Mount [LP 1201- 1 KCKR-HR-1]	22	78.496	5.6122	0.0091	1732
130.00	SC3-W100AC	22	69.045	5.3479	0.0071	1355
123.00	Commscope MC-PK8-DSH	22	61.240	5.0821	0.0058	1159

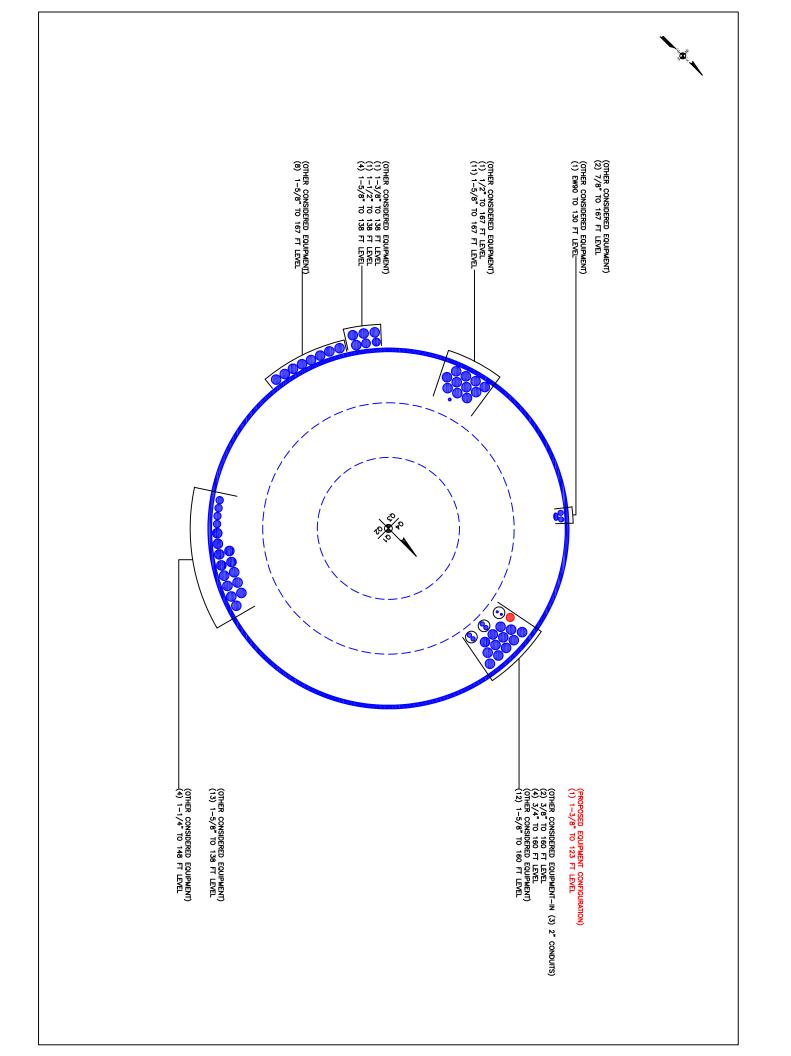
Compression Checks

Pole Design Data									
Section No.	Elevation	Size	L	Lu	Kl/r	А	Pu	φP _n	Ratio P _u
	ft		ft	ft		in²	К	К	$\frac{1}{\Phi P_n}$
L1	167 - 118.25 (1)	TP35.36x24x0.25	48.75	0.00	0.0	27.027 7	-27.01	1581.12	0.017
L2	118.25 77.75 (2)	TP44.297x33.8114x0.312 5	45.00	0.00	0.0	42.356 0	-37.41	2477.82	0.015
L3	77.75-38.25 (3)	TP52.877x42.3904x0.375	45.00	0.00	0.0	60.618 3	-51.67	3546.17	0.015
L4	38.25 -0 (4)	TP61.04x50.554x0.4375	45.00	0.00	0.0	84.154 1	-71.89	4923.02	0.015

Pole Bending Design Data

Section No.	Elevation	Size	M _{ux}	φ Μ _{nx}	Ratio M _{ux}	M _{uy}	φ Μ _{ny}	Ratio M _{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	167 - 118.25 (1)	TP35.36x24x0.25	729.51	1261.85	0.578	0.00	1261.85	0.000
L2	118 25 - 77 75 (2)	TP44.297x33.8114x0.312 5	1847.08	2476.44	0.746	0.00	2476.44	0.000
L3	77.75-38.25 (3)	TP52.877x42.3904x0.375	3054.55	4236.66	0.721	0.00	4236.66	0.000
L4	38.25-0 (4)	TP61.04x50.554x0.4375	4608.74	6946.78	0.663	0.00	6946.78	0.000

Section No.	Elevation	Size	Actual V _u	ϕV_n	Ratio V _u	Actual T _u	ϕT_n	Ratio T _u
	ft		K	K	φV _n	kip-ft	kip-ft	ϕT_n
L1	167 - 118.25	TP35.36x24x0.25	26.58	474.34	0.056	1.43	1414.91	0.001
	(1)							
L2	118.25 -	TP44.297x33.8114x0.312	29.88	743.35	0.040	1.49	2779.90	0.001
	77.75(2)	5						
L3	77.75-38.25	TP52.877x42.3904x0.375	33.04	1063.85	0.031	0.95	4744.88	0.000
	(3)							
L4	38.25 - 0 (4)	TP61.04x50.554x0.4375	36.08	1476.91	0.024	0.16	7838.32	0.000


Pole Interaction Design Data									
Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio Muy	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	φ M _{nx}	φM _{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	167 - 118.25 (1)	0.017	0.578	0.000	0.056	0.001	0.598	1.050	4.8.2
L2	118 25 - 77 75 (2)	0.015	0.746	0.000	0.040	0.001	0.763	1.050	4.8.2
L3	77.75-38.25 (3)	0.015	0.721	0.000	0.031	0.000	0.737	1.050	4.8.2
L4	38.25 - 0 (4)	0.015	0.663	0.000	0.024	0.000	0.679	1.050	4.8.2

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L1	167 - 118.25	Pole	TP35.36x24x0.25	1	-27.01	1660.18	57.0	Pass
L2	118 25 - 77 75	Pole	TP44.297x33.8114x0.3125	2	-37.41	2601.71	72.6	Pass
L3	77.75-38.25	Pole	TP52.877x42.3904x0.375	3	-51.67	3723.48	70.1	Pass
L4	38.25-0	Pole	TP61.04x50.554x0.4375	4	-71.89	5169.17	64.6	Pass
							Summary	
						Pole (L2)	72.6	Pass
						RATING =	72.6	Pass

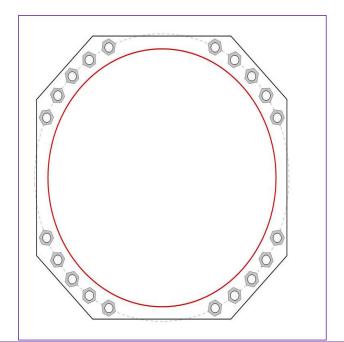
APPENDIX B

BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS

Monopole Base Plate Connection


CCCROWN

Site Info					
BU #	801367				
Site Name					
Order #	552717 rev# 1				

Analysis Considerations				
TIA-222 Revision	Н			
Grout Considered:	No			
l _{ar} (in)	1.0625			

Applied Loads				
Moment (kip-ft)	4608.74			
Axial Force (kips)	71.89			
Shear Force (kips)	36.08			

*TIA-222-H Section 15.5 Applied

	(units of kips, kip-in)
φPn_t = 243.75	Stress Rating
φVn = 149.1	62.1%
φMn = n/a	Pass
26.03	(Flexural)
26.03 49.5	(Flexural)
	φVn = 149.1

Analysis Results

Connection Properties

Anchor Rod Data

(20) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 68" BC Anchor Spacing: 6 in

Base Plate Data

67" W x 3" Plate (A572-55; Fy=55 ksi, Fu=70 ksi); Clip: 15 in

Stiffener Data

N/A

Pole Data

61.04" x 0.4375" 18-sided pole (A607-65; Fy=65 ksi, Fu=80 ksi)

Pier and Pad Foundation

	801367
Site Name:	
App. Number:	552717

TIA-222 Revision: Н

Top & Bot. Pad Rein. Different?:	
Block Foundation?:	
Rectangular Pad?:	

Tower Type: Monopole

	Found	lation Anal	ysis Chec	ks	
		Capacity	Demand	Rating*	Check
	Lateral (Sliding) (kips)	418.80	36.00	8.2%	Pass
	Bearing Pressure (ksf)	12.00	3.80	31.7%	Pass
os	Overturning (kip*ft)	7826.86	4897.75	62.6%	Pass
	Pier Flexure (Comp.) (kip*ft)	10992.95	4735.00	41.0%	Pass
	Pier Compression (kip)	23994.73	103.67	0.4%	Pass
	Pad Flexure (kip*ft)	8284.82	1668.07	19.2%	Pass
	Pad Shear - 1-way (kips)	1104.67	230.11	19.8%	Pass
	Pad Shear - 2-way (Comp) (ksi)	0.164	0.025	14.4%	Pass
	Flexural 2-way (Comp) (kip*ft)	12679.86	2841.00	21.3%	Pass

Superstructure Analysis Reactions			
Compression, P _{comp} :	72	kips	
Base Shear, Vu_comp:	36	kips	
Moment, M _u :	4609	ft-kips	
Tower Height, H:	167	ft	
BP Dist. Above Fdn, bp_{dist} :	6.25	in	

Pier Properties		
Pier Shape:	Circular	
Pier Diameter, dpier :	8	ft
Ext. Above Grade, E:	0.5	ft
Pier Rebar Size, Sc :	11	
Pier Rebar Quantity, mc :	40	
Pier Tie/Spiral Size, St :	4	
Pier Tie/Spiral Quantity, mt:	12	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc_{pier}:	3	in

Pad Properties		
Depth, D:	7	ft
Pad Width, W ₁ :	26	ft
Pad Thickness, T :	4	ft
Pad Rebar Size (Bottom dir. 2), Sp ₂ :	10	
Pad Rebar Quantity (Bottom dir. 2), mp ₂ :	35	
Pad Clear Cover, cc _{pad} :	3	in

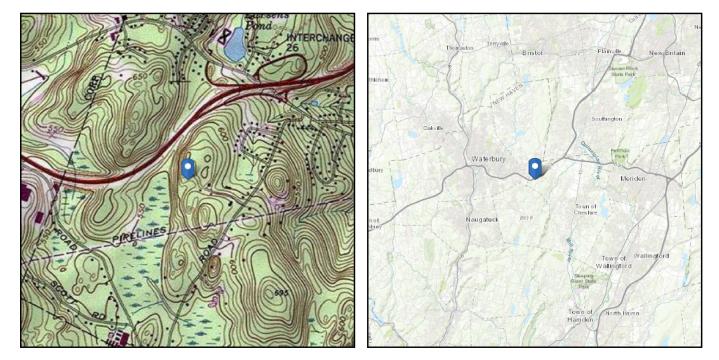
Material Properties	;	
Rebar Grade, Fy :	60	ksi
Concrete Compressive Strength, F'c:	3	ksi
Dry Concrete Density, δc :	150	pcf

Soil Properties		
Total Soil Unit Weight, $oldsymbol{\gamma}$:	135 pcf	
Ultimate Gross Bearing, Qult:	, Qult: 16.000 ksf	
Cohesion, Cu: ksf		ksf
Friction Angle, $oldsymbol{arphi}$:	on Angle, φ : 35 degrees	
SPT Blow Count, N _{blows} : 100		
Base Friction, μ :		
Neglected Depth, N: 2.00 ft		ft
Foundation Bearing on Rock?		
Groundwater Depth, gw:	N/A	ft

*Rating per TIA-222-H Section 15.5

Structural Rating*:	41.0%
Soil Rating*:	62.6%

<--Toggle between Gross and Net


No Address at This

Location

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

Elevation: 615.93 ft (NAVD 88) Latitude: 41.536444 Longitude: -72.957306

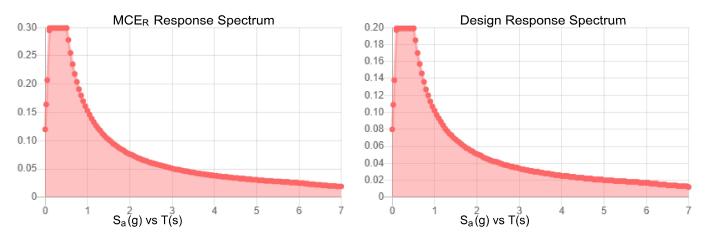
Wind

Results:

122 Vmph
76 Vmph
86 Vmph
92 Vmph
99 Vmph

Date Socessed:

ABCE/BE27200,1Fig. 26.5-1A and Figs. CC-1–CC-4, and Section 26.5.2, incorporating errata of March 12, 2014


Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class:	D - Stiff Soil			
Results:				
S _S :	0.187	S _{DS} :	0.199	
S ₁ :	0.064	S _{D1} :	0.102	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA :	0.097	
S _{MS} :	0.299	PGA M:	0.154	
S _{M1} :	0.153	F _{PGA} :	1.6	
			1	

Seismic Design Category B

Data Accessed: Date Source:

Thu Apr 22 2021

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:	0.75 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Thu Apr 22 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

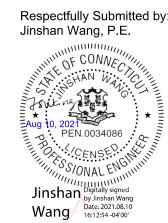
Exhibit E

Mount Analysis

Darcy Tarr **Crown Castle** 3530 Toringdon Way, Suite 300 Trylon Charlotte. NC 28277 1825 W. Walnut Hill Lane. 704-405-6589 Suite 302 Irving, TX 75038 214-930-1730 Subject: Mount Replacement Analysis Report Carrier Designation: **Dish Network Dish 5G** Carrier Site Number: BOHVN00008A Carrier Site Name: CT-CCI-T-801367 Crown Castle BU Number: Crown Castle Designation: 801367 Crown Castle Site Name: CT NHV-2075 CAC 801367 Crown Castle JDE Job Number: 644585 **Crown Castle Order Number:** 552717 Rev. 1 189625 **Engineering Firm Designation:** Trylon Report Designation: Site Data: 1121 Summit Road, Cheshire, New Haven County, CT, 06410 Latitude 41°32'11.20" Longitude -72°57'26.30" Structure Information: Tower Height & Type: 167.0 ft Monopole Mount Elevation: 123.0 ft Mount Type: 8.0 ft Platform

Dear Darcy Tarr,

Trylon is pleased to submit this "Mount Replacement Analysis Report" to determine the structural integrity of Dish Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.


The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Sufficient* Platform *Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Marius Balan

Respectfully Submitted by:

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity 4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B Software Input Calculations

7) APPENDIX C Software Analysis Output

8) APPENDIX D

Additional Calculations

9) APPENDIX E

Supplemental Drawings

1) INTRODUCTION

This is a proposed 3 sector 8.0 ft Platform, designed by Commscope.

2) ANALYSIS CRITERIA

Building Code:	2015 IBC
TIA-222 Revision:	TIA-222-H
Risk Category:	П
Ultimate Wind Speed:	125 mph
Exposure Category:	В
Topographic Factor at Base:	1.0
Topographic Factor at Mount:	1.0
Ice Thickness:	1.5 in
Wind Speed with Ice:	50 mph
Seismic S₅:	0.186
Seismic S₁:	0.063
Live Loading Wind Speed:	30 mph
Man Live Load at Mid/End-Points:	250 lb
Man Live Load at Mount Pipes:	500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details	
		3	JMA WIRELESS	MX08FRO665-21	0.0 ft Diatform	
123.0 123.0		3	3 FUJITSU TA08025-B60	TA08025-B604	8.0 ft Platform [Commscope MC-	
123.0 123.0	123.0	3	FUJITSU	TA08025-B605	PK8-C]	
		1	RAYCAP	RDIDC-9181-PF-48	FR0-C]	

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Crown Application	Dish Network Application	552717, Rev. 1	CCI Sites
Mount Manufacturer Drawings	Commscope	MC-PK8-C	Trylon
Structural Analysis Report	Crown Castle	9820663	CCI Sites

3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a threedimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed, using Microsoft Excel, by Trylon was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate	ASTM A36 (GR 36)
HSS (Rectangular)	ASTM A500 (GR B-46)
Pipe	ASTM A53 (GR 35)
Connection Bolts	ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Trylon should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
	Mount Pipe(s)	MP1		31.8	Pass
	Horizontal(s)	H2		11.8	Pass
1, 2	Standoff(s)	M2	123.0	59.7	Pass
	Bracing(s)	M1		38.3	Pass
	Plate(s)	M5		22.1	Pass
	Handrail(s)	M19		15.9	Pass
	Mount Connection(s)	-		24.0	Pass

Table 3 - Mount Component Stresses vs. Capacity (Platform, All Sectors)

Structure Rating (max from all components) =	
--	--

59.7%

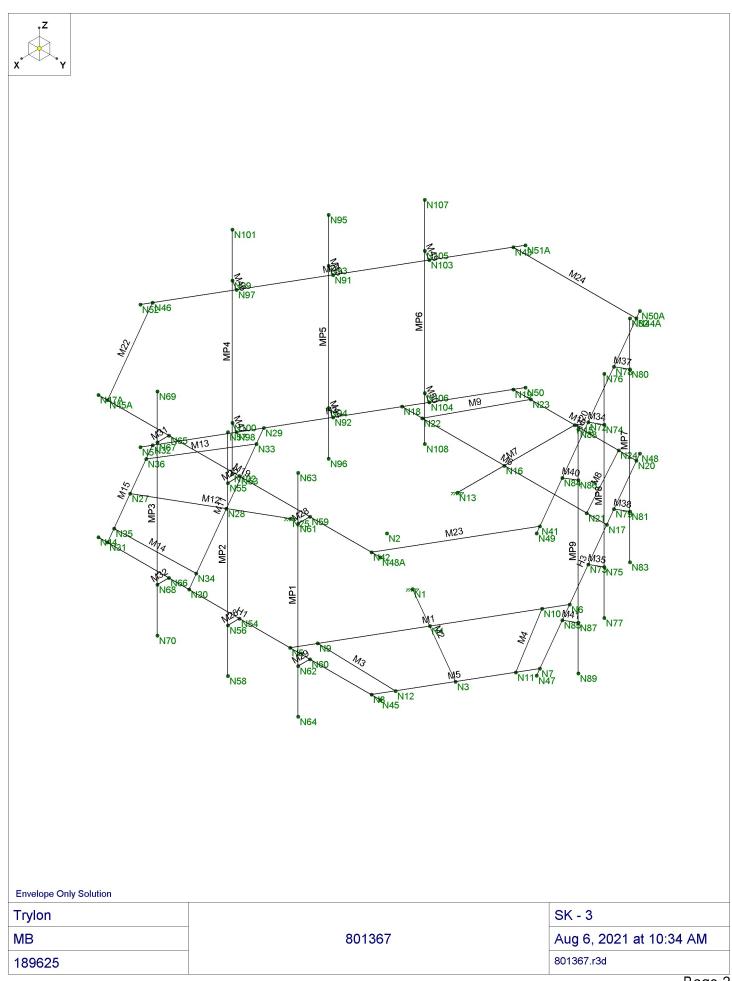
Notes:

1) See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.

2) Rating per TIA-222-H, Section 15.5

4.1) Recommendations

The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed.


1. Commscope, part no MC-PK8-C.

No structural modifications are required at this time, provided that the above-listed changes are implemented.

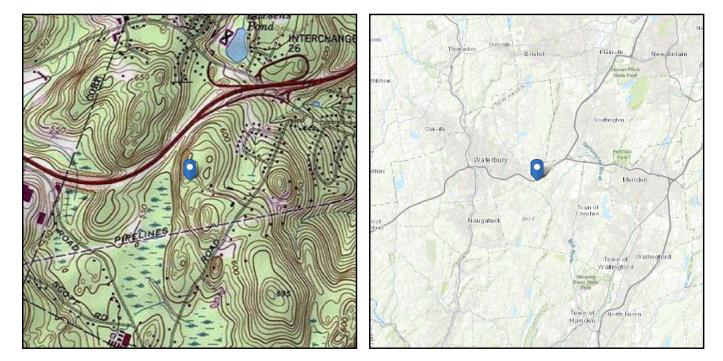
APPENDIX A

WIRE FRAME AND RENDERED MODELS

Image: constraint of the second se		
Trylon		SK - 2
MB	801367	Aug 6, 2021 at 10:33 AM
189625		801367.r3d

APPENDIX B

SOFTWARE INPUT CALCULATIONS


No Address at This

Location

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

Elevation: 615.93 ft (NAVD 88) Latitude: 41.536444 Longitude: -72.957306

lce

Results:

Ice Thickness:	0.75 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Fri Aug 06 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

TIA LOAD CALCULATOR 2.0

PROJECT DATA			
Job Code:	189625		
Carrier Site ID:	BOHVN00008A		
Carrier Site Name:	CT-CCI-T-801367		

CODES AND STANDARDS		
Building Code:	2015 IBC	
Local Building Code:	2018 CSBC	
Design Standard:	TIA-222-H	

STRUCTURE DETAILS			
Mount Type:	Platform		
Mount Elevation:	123.0	ft.	
Number of Sectors:	3		
Structure Type:	Monopole		
Structure Height:	167.0	ft.	

ANALYSIS CRITERIA			
Structure Risk Category:	I		
Exposure Category:	В		
Site Class:	D - Stiff Soil		
Ground Elevation:	615.93	ft.	

TOPOGRAPHIC DATA							
Topographic Category:	1.00						
Topographic Feature:	N/A						
Crest Point Elevation:	0.00	ft.					
Base Point Elevation:	0.00	ft.					
Crest to Mid-Height (L/2):	0.00	ft.					
Distance from Crest (x):	0.00	ft.					
Base Topo Factor (K _{zt}):	1.00						
Mount Topo Factor (K _{zt}):	1.00						

WIND PARAMETERS								
Design Wind Speed:	125	mph						
Wind Escalation Factor (K _s):	1.00							
Velocity Coefficient (Kz):	1.05							
Directionality Factor (K _d):	0.95							
Gust Effect Factor (Gh):	1.00							
Shielding Factor (K _a):	0.90							
Velocity Pressure (q _z):	38.96	psf						
Ground Elevation Factor (K _e):	0.98							

ICE PARAMETERS								
Design Ice Wind Speed:	50	mph						
Design Ice Thickness (t _i):	1.50	in						
Importance Factor (I _i):	1.00							
Ice Velocity Pressure (q _{zi}):	38.96	psf						
Mount Ice Thickness (t _{iz}):	1.71	in						

WIND STRUCTURE CALCULATIONS							
Flat Member Pressure: 70.13							
Round Member Pressure:	42.08	psf					
Ice Wind Pressure:	7.32	psf					

SEISMIC PARAMETERS						
Importance Factor (I _e):	1.00					
Short Period Accel .(S _s):	0.186	g				
1 Second Accel (S ₁):	0.063	g				
Short Period Des. (S _{DS}):	0.20	g				
1 Second Des. (S _{D1}):	0.10	g				
Short Period Coeff. (F _a):	1.60					
1 Second Coeff. (F_v):	2.40					
Response Coefficient (Cs):	0.10					
Amplification Factor (A _S):	1.20					

LOAD COMBINATIONS [LRFD]

#	Description
1	1.4DL
2	1.2DL + 1WL 0 AZI
3	1.2DL + 1WL 30 AZI
4	1.2DL + 1WL 45 AZI
5	1.2DL + 1WL 60 AZI
6	1.2DL + 1WL 90 AZI
7	1.2DL + 1WL 120 AZI
8	1.2DL + 1WL 135 AZI
9	1.2DL + 1WL 150 AZI
10	1.2DL + 1WL 180 AZI
11	1.2DL + 1WL 210 AZI
12	1.2DL + 1WL 225 AZI
13	1.2DL + 1WL 240 AZI
14	1.2DL + 1WL 270 AZI
15	1.2DL + 1WL 300 AZI
16	1.2DL + 1WL 315 AZI
17	1.2DL + 1WL 330 AZI
18	0.9DL + 1WL 0 AZI
19	0.9DL + 1WL 30 AZI
20	0.9DL + 1WL 45 AZI
21	0.9DL + 1WL 60 AZI
22	0.9DL + 1WL 90 AZI
23	0.9DL + 1WL 120 AZI
24	0.9DL + 1WL 135 AZI
25	0.9DL + 1WL 150 AZI
26	0.9DL + 1WL 180 AZI
27	0.9DL + 1WL 210 AZI
28 29	0.9DL + 1WL 225 AZI
<u>29</u> 30	0.9DL + 1WL 240 AZI 0.9DL + 1WL 270 AZI
30	0.9DL + 1WL 270 AZI
31	0.9DL + 1WL 300 AZI
32	0.9DL + 1WL 330 AZI
33	1.2DL + 1DLi + 1WLi 0 AZI
35	1.2DL + 1DLi + 1WLi 30 AZI
-	
36	1.2DL + 1DLi + 1WLi 45 AZI
37	1.2DL + 1DLi + 1WLi 60 AZI
38	1.2DL + 1DLi + 1WLi 90 AZI
39	1.2DL + 1DLi + 1WLi 120 AZI
40	1.2DL + 1DLi + 1WLi 135 AZI
41	1.2DL + 1DLi + 1WLi 150 AZI

#	Description
42	1.2DL + 1DLi + 1WLi 180 AZI
43	1.2DL + 1DLi + 1WLi 210 AZI
44	1.2DL + 1DLi + 1WLi 225 AZI
45	1.2DL + 1DLi + 1WLi 240 AZI
46	1.2DL + 1DLi + 1WLi 270 AZI
47	1.2DL + 1DLi + 1WLi 300 AZI
48	1.2DL + 1DLi + 1WLi 315 AZI
49	1.2DL + 1DLi + 1WLi 330 AZI
50	(1.2+0.2Sds) + 1.0E 0 AZI
51	(1.2+0.2Sds) + 1.0E 30 AZI
52	(1.2+0.2Sds) + 1.0E 45 AZI
53	(1.2+0.2Sds) + 1.0E 60 AZI
54	(1.2+0.2Sds) + 1.0E 90 AZI
55	(1.2+0.2Sds) + 1.0E 120 AZI
56	(1.2+0.2Sds) + 1.0E 135 AZI
57	(1.2+0.2Sds) + 1.0E 150 AZI
58	(1.2+0.2Sds) + 1.0E 180 AZI
59	(1.2+0.2Sds) + 1.0E 210 AZI
60	(1.2+0.2Sds) + 1.0E 225 AZI
61	(1.2+0.2Sds) + 1.0E 240 AZI
62	(1.2+0.2Sds) + 1.0E 270 AZI
63	(1.2+0.2Sds) + 1.0E 300 AZI
64	(1.2+0.2Sds) + 1.0E 315 AZI
65	(1.2+0.2Sds) + 1.0E 330 AZI
66 67	(0.9-0.2Sds) + 1.0E 0 AZI (0.9-0.2Sds) + 1.0E 30 AZI
68	(0.9-0.2Sds) + 1.0E 30 AZI (0.9-0.2Sds) + 1.0E 45 AZI
69	(0.9-0.2Sds) + 1.0E 43 AZI (0.9-0.2Sds) + 1.0E 60 AZI
70	(0.9-0.2Sds) + 1.0E 90 AZI
71	(0.9-0.2Sds) + 1.0E 120 AZI
72	(0.9-0.2Sds) + 1.0E 135 AZI
73	(0.9-0.2Sds) + 1.0E 150 AZI
74	(0.9-0.2Sds) + 1.0E 180 AZI
75	(0.9-0.2Sds) + 1.0E 210 AZI
76	(0.9-0.2Sds) + 1.0E 225 AZI
77	(0.9-0.2Sds) + 1.0E 240 AZI
78	(0.9-0.2Sds) + 1.0E 270 AZI
79	(0.9-0.2Sds) + 1.0E 300 AZI
80	(0.9-0.2Sds) + 1.0E 315 AZI
81	(0.9-0.2Sds) + 1.0E 330 AZI
82-88	1.2D + 1.5 Lv1

#	Description	#	Description
89	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP1	121	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3
90	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP1	122	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3
91	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP1	123	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3
92	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP1	124	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3
93	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP1	125	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3
94	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP1	126	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3
95	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP1	127	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3
96	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP1	128	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3
97	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP1	129	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3
98	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP1	130	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3
99	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP1	131	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3
100	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP1	132	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3
101	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP1	133	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3
102	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1	134	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3
103	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1	135	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3
104	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP1	136	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP3
105	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2	137	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP4
106	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2	138	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP4
107	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2	139	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP4
108	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2	140	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP4
109	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2	141	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP4
110	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2	142	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP4
111	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2	143	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP4
112	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2	144	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP4
113	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP2	145	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP4
114	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2	146	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP4
115	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2	147	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP4
116	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2	148	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP4
117	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2	149	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP4
118	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2	150	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP4
119	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2	151	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP4
120	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2	152	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP4

*This page shows an example of maintenance loads for (4) pipes, the number of mount pipe LCs may vary per site

EQUIPMENT LOADING

Appurtenance Name/Location	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
MX08FRO665-21			No Ice	8.01	3.21	82.50
MP1/MP5/MP9, 0/120/240			w/ Ice	9.62	4.62	280.55
TA08025-B604 3		123	No Ice	1.96	0.98	63.90
MP1/MP5/MP9, 0/120/240			w/ Ice	2.38	1.31	68.87
TA08025-B605	3	123	No Ice	1.96	1.13	75.00
MP1/MP5/MP9, 0/120/240	-		w/ Ice	2.38	1.47	73.37
RDIDC-9181-PF-48	1	123	No Ice	2.01	1.17	21.85
MP1/MP/MP, 0/120/240			w/ Ice	2.44	1.52	72.31
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
	-		w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
	_		w/ Ice			
			No Ice			
			w/ Ice			

EQUIPMENT LOADING [CONT.]

Appurtenance Name/Location	Qty.	Elevation [ft]		EPA _N (ft2)	EPA ₇ (ft2)	Weight (lbs)
			No Ice			
			w/ Ice			
			No Ice			
	-		w/ Ice			
			No Ice			
	1		w/ Ice			
			No Ice			
	1		w/ Ice			
			No Ice			
	1		w/ Ice			
			No Ice			
	-		w/ Ice			
			No Ice			
	1		w/ Ice			
			No Ice			
	1		w/ Ice			
			No Ice			
	1		w/ Ice			
			No Ice			
	-		w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

EQUIPMENT WIND CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	K _{zt}	Kz	κ_{d}	t _d	q _z [psf]	q _{zi} [psf]
MX08FRO665-21	3	123	1.00	1.05	0.95	1.71	38.96	6.23
TA08025-B604	3	123	1.00	1.05	0.95	1.71	38.96	6.23
TA08025-B605	3	123	1.00	1.05	0.95	1.71	38.96	6.23
RDIDC-9181-PF-48	1	123	1.00	1.05	0.95	1.71	38.96	6.23

EQUIPMENT LATERAL WIND FORCE CALCULATIONS

Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
MX08FRO665-21	3	No Ice	280.88	154.64	238.80	112.56	238.80	154.64
MP1/MP5/MP9, 0/120/240		w/ Ice	53.98	32.95	46.97	25.94	46.97	32.95
TA08025-B604	3	No Ice	68.85	43.02	60.24	34.40	60.24	43.02
MP1/MP5/MP9, 0/120/240		w/ Ice	13.37	8.84	11.86	7.33	11.86	8.84
TA08025-B605	3	No Ice	68.85	46.92	61.54	39.61	61.54	46.92
MP1/MP5/MP9, 0/120/240		w/ Ice	13.37	9.52	12.08	8.24	12.08	9.52
RDIDC-9181-PF-48	1	No Ice	70.55	48.36	63.15	40.96	63.15	48.36
MP1/MP/MP, 0/120/240		w/ Ice	13.67	9.82	12.39	8.53	12.39	9.82
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						

EQUIPMENT LATERAL WIND FORCE CALCULATIONS [CONT.]

Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						

EQUIPMENT SEISMIC FORCE CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	Weight [lbs]	F _p [lbs]
MX08FRO665-21	3	123	82.5	9.82
TA08025-B604	3	123	63.9	7.61
TA08025-B605	3	123	75	8.93
RDIDC-9181-PF-48	1	123	21.85	2.60

APPENDIX C

SOFTWARE ANALYSIS OUTPUT

(Global) Model Settings

Diaplay Castiana far Mambar Calas	5
Display Sections for Member Calcs	-
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include W arping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P - Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (in/sec [^] 2)	386.4
Wall Mesh Size (in)	24
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Z
Global Member Orientation Plane	XY
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 15th(360-16): LRFD
Adjust Stiffness?	Yes(Iterative)
R ISAC onnection Code	AISC 15th(360-16): LRFD
Cold Formed Steel Code	None
Wood Code	None
Wood Temperature	< 100F
Concrete Code	None
Masonry Code	None
Aluminum Code	None - Building
Stainless Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	No
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

(Global) Model Settings, Continued

Seismic Code	ASCE 7-16
Seismic Base Elevation (in)	Not Entered
Add Base W eight?	Yes
Ct X	.02
CtZ	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
R X	3
RZ	3
CtExp. X	.75
CtExp.Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	l or ll
Drift Cat	Other
O m Z	1
Om X	1
CdZ	1
CdX	1
R ho Z	1
R ho X	1

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E	Density[k/ft	Yield[psi]	Ry	Fu[psi]	Rt
1	A992	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36000	1.5	58000	1.2
3	A572 G r.50	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42000	1.4	58000	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46000	1.4	58000	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35000	1.6	60000	1.2
7	A1085	29000	11154	.3	.65	.49	50000	1.4	65000	1.3

Cold Formed Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5F)	Density[k/ft ^3]	Yie l d[psi]	Fu[psi]
1	A653 S S G r33	29500	11346	.3	.65	.49	33000	45000
2	A653 S S G r50/1	29500	11346	.3	.65	.49	50000	65000

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Materia	Design	. A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	6.5"x0.37" Plate	6.5"x0.37" Plate	Beam	RECT	A36 Gr.36	Typical	2.405	.027	8.468	.106
2	L2x2x3	L2x2x3	Beam	Single Angle	A36 Gr.36	Typical	.722	.271	.271	.009
3	PIPE 3.5	PIPE 3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04
4	C 3X 5	C 3X 5	Beam	Channel	A36 Gr.36	Typical	1.47	.241	1.85	.043
5	PIPE 2.0	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
6	L6.6"X4.46"X0.25"	L6.6"X4.46"X0.25"	Beam	Single Angle	A36 Gr.36	Typical	2.703	4.759	12.473	.055

Cold Formed Steel Section Sets

	Label	Shape	Туре	Des ign Li	Material	Design R	. A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	CF1A	8CU1.25X057	Beam	None	A653 S S G r33	Typical	.581	.057	4.41	.00063

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N25	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N 13	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Basic Load Cases

1 Self Weight DL -1 20 2 Structure Wind X WLX 33 33 3 Structure Wind Y WLY 33 33 4 Wind Load 0 AZI WLX 20 33 5 Wind Load 30 AZI None 40 40 6 Wind Load 45 AZI None 40 40 7 Wind Load 60 AZI None 40 40 8 Wind Load 90 AZI WLY 20 40 9 Wind Load 120 AZI None 40 40 10 Wind Load 135 AZI None 40 40 11 Wind Load 150 AZI None 40 40	3
3 Structure Wind Y WLY 33 4 Wind Load 0 AZI WLX 20 5 Wind Load 30 AZI None 40 6 Wind Load 45 AZI None 40 7 Wind Load 60 AZI None 40 8 Wind Load 90 AZI WLY 20 9 Wind Load 120 AZI None 40 10 Wind Load 135 AZI None 40	
4 Wind Load 0 AZI WLX 20 5 Wind Load 30 AZI None 40 6 Wind Load 45 AZI None 40 7 Wind Load 60 AZI None 40 8 Wind Load 90 AZI WLY 20 9 Wind Load 120 AZI None 40 10 Wind Load 135 AZI None 40	
5 Wind Load 30 AZI None 40 6 Wind Load 45 AZI None 40 7 Wind Load 60 AZI None 40 8 Wind Load 90 AZI WLY 20 9 Wind Load 120 AZI None 40 10 Wind Load 135 AZI None 40	
6 Wind Load 45 AZI None 40 7 Wind Load 60 AZI None 40 8 Wind Load 90 AZI WLY 20 9 Wind Load 120 AZI None 40 10 Wind Load 135 AZI None 40	
7 Wind Load 60 AZI None 40 8 Wind Load 90 AZI WLY 20 9 Wind Load 120 AZI None 40 10 Wind Load 135 AZI None 40	
8 Wind Load 90 AZI WLY 20 9 Wind Load 120 AZI None 40 10 Wind Load 135 AZI None 40	
9 Wind Load 120 AZI None 40 10 Wind Load 135 AZI None 40	
10 Wind Load 135 AZI None 40	
11 Wind load 150 AZI None 40	
12 Ice Weight OL1 20 33	3
13 Structure Ice Wind X OL2 33	
14 Structure Ice Wind Y OL3 33	
15 Ice Wind Load 0 AZI OL2 20	
16 Ice Wind Load 30 AZI None 40	
17 Ice Wind Load 45 AZI None 40	
18 Ice Wind Load 60 AZI None 40	
19 Ice Wind Load 90 AZI OL3 20	
20 Ice Wind Load 120 AZI None 40	
21 Ice Wind Load 135 AZI None 40	
22 Ice Wind Load 150 AZI None 40	
23 Seismic Load X ELX119 20	
24 Seismic Load Y ELY119 20	
25 Live Load 1 (Lv) LL 1	
26 Live Load 2 (Lv) LL 1	
27 Live Load 3 (Lv) LL 1	
28 Live Load 4 (Lv) LL 1	
29 Live Load 5 (Lv) LL 1	
30 Live Load 6 (Lv) LL 1	
31 Maintenance Load 1 (Lm) None 1	
32 Maintenance Load 2 (Lm) None 1	
33 Maintenance Load 3 (Lm) None 1	
34 Maintenance Load 4 (Lm) None 1	
35 Maintenance Load 5 (Lm) None 1	
36 Maintenance Load 6 (Lm) None 1	
37 Maintenance Load 7 (Lm) None 1	
38 Maintenance Load 8 (Lm) None 1	

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z G ravity	Joint	Point	Distributed	Area (Me	Surface(
39	Maintenance Load 9 (Lm)	None				1				
40	BLC 1 Transient Area Loads	None						9		
41	BLC 12 Transient Area Loa	None						9		

Load Combinations

4		Yes Y				1 40	D	1 ac	D	г aс	D	i ac	D	1 ac.	D	rac.	. D	Fac.	D	T ac	D	Fac
3 4		100 1	DL	1.4																		
4	1.2DL +1WL 0 AZI	Yes Y	DL	1.2	2	1	3		4	1												
	1.2DL +1WL 30 AZI	Yes Y	DL	1.2	2	.866	3	.5	5	1												
_	1.2DL +1WL 45 AZ	Yes Y	DL	1.2	2	.707	3	.707	6	1												
5	1.2DL +1WL 60 AZI	Yes Y	DL	1.2	2	.5	3	.866	7	1												
6	1.2DL +1WL 90 AZI	Yes Y	DL	1.2	2		3	1	8	1												
7	1.2DL + 1WL 120 AZI	Yes Y	DL	1.2	2	5	3	.866	9	1												
8		Yes Y	DL	1.2	2	707	3	.707	10	1												
9	1.2DL + 1WL 150 AZI	Yes Y	DL	1.2	2	866	3	.5	11	1												
10	1.2DL + 1WL 180 AZI	Yes Y	DL	1.2	2	-1	3		4	-1												
11	1.2DL + 1WL 210 AZI	Yes Y	DL	1.2	2	866	3	5	5	-1												
12	1.2DL + 1WL 225 AZI	Yes Y	DL	1.2	2	707	3	707	6	-1												
13	1.2DL + 1WL 240 AZI	Yes Y	DL	1.2	2	5	3	866	7	-1												
14		Yes Y	DL	1.2	2		3	-1	8	-1												
15		Yes Y	DL	1.2	2	.5		866		-1												
16		Yes Y	DL	1.2	2	.707	3	707	10	-1												
17	1.2DL + 1WL 330 AZI	Yes Y	DL	1.2	2	.866	3	5	11	-1												
18	0.9DL +1WL 0 AZI	Yes Y	DL	.9	2	1	3		4	1												
19	0.9DL +1WL 30 AZI	Yes Y	DL	.9	2	.866	3	.5	5	1												
	0.9DL + 1WL 45 AZI		DL	.9	2	.707	3	.707	6	1												
21	0.9DL +1WL 60 AZI	Yes Y	DL	.9	2	.5	3	.866	7	1												
22	0.9DL +1WL 90 AZI	Yes Y	DL	.9	2		3	1	8	1												
23	0.9DL + 1WL 120 AZI	Yes Y	DL	.9	2	5	3	.866	9	1												
24	0.9DL + 1WL 135 AZI	Yes Y	DL	.9	2	707	3	.707	10	1												
25	0.9DL + 1WL 150 AZI	Yes Y	DL	.9	2	866	3	.5	11	1												
26	0.9DL + 1WL 180 AZI	Yes Y	DL	.9	2	-1	3		4	-1												
27	0.9DL + 1WL 210 AZI	Yes Y	DL	.9	2	866	3	5		-1												
28	0.9DL + 1WL 225 AZI	Yes Y	DL	.9	2	707	3	707	6	-1												
29	0.9DL + 1WL 240 AZI	Yes Y	DL	.9	2	5	3	866	7	-1												
30	0.9DL + 1WL 270 AZI	Yes Y	DL	.9	2		3	-1	8	-1												
31	0.9DL + 1WL 300 AZI	Yes Y	DL	.9	2	.5	3	866	9	-1												
32	0.9DL + 1WL 315 AZI	Yes Y	DL	.9	2	.707	3	707	10	-1												
33	0.9DL + 1WL 330 AZI	Yes Y	DL	.9	2	.866	3	5	11	-1												
34	1.2DL + 1DLi + 1W Li 0 A	Yes Y	DL		0	1	13	1	14		15	1										
35	1.2DL + 1DLi + 1W Li 30	Yes Y	DL	1.2	0	1	13	.866	14	.5	16	1										
36	1.2DL + 1DLi + 1W Li 45	Yes Y	DL		0	1		.707			17	1										
37	1.2DL + 1DLi + 1W Li 60	Yes Y		1.2	0		13			.866		1										
38	1.2DL + 1DLi + 1W Li 90	Yes Y		1.2			13		14		19											
	1.2DL + 1DLi + 1W Li 12				0			5														
	1.2DL + 1DLi + 1W Li 13	Yes Y		1.2				707														
	1.2DL + 1DLi + 1W Li 15	Yes Y			0			866			22	1										
	1.2DL + 1DLi + 1W Li 18			1.2					14		15											
	1.2DL + 1DLi + 1W Li 21				0			866			16											
-	1.2DL + 1DLi + 1W Li 22			1.2				707														

Load Combinations (Continued)

Description S P S B Factor B Factor B FacB FacFacB FacB Fac	гасв	<u> rac</u> .
46 1.2DL + 1DLi + 1W Li 27 Yes Y DL 1.2 O 1 13 14 -1 19 -1		
47 1.2DL + IDLI + IW LI 30 res Y DL 1.2 0 1 13 .5 14F.000 20 -1		
48 1.2DL + 1DLi + 1WLi 31Yes Y DL 1.2 0 1 13 .707 14 .707 21 -1		
49 1.2DL + 1DLi + 1W Li 33Yes Y DL 1.2 0 1 13 .866 145 22 -1		
50 (1.2+0.2Sds) + 1.0E 0 AZIYes Y DL 1.24 E 1 E		
51 (1.2+0.2Sds) + 1.0E 30 Yes Y DL 1.24 E866 E5		_
52 (1.2+0.2Sds) + 1.0E 45 Yes Y DL 1.24 E707 E707		
53 (1.2+0.2Sds) + 1.0E 60 Yes Y DL 1.24 E5 E866		
54 (1.2+0.2Sds) + 1.0E 90 Yes Y DL 1.24 E E 1		
55 (1.2+0.2Sds) + 1.0E 120Yes Y DL 1.24 E 5 E .866		
56 (1.2+0.2Sds) + 1.0E 135Yes Y DL 1.24 E 707 E .707		
57 (1.2+0.2Sds) + 1.0E 150Yes Y DL 1.24 E866 E5		
58 (1.2+0.2Sds) + 1.0E 180Yes Y DL 1.24 E -1 E		
59 (1.2+0.2Sds) + 1.0E 210 Y DL 1.24 E 866 E 5		
60 (1.2+0.2Sds) + 1.0E 225Yes Y DL 1.24 E707 E707		
61 (1.2+0.2Sds) + 1.0E 240Yes Y DL 1.24 E5 E866		
62 (1.2+0.2Sds) + 1.0E 270Yes Y DL 1.24 E E1		
63 (1.2+0.2Sds) + 1.0E 300Yes Y DL 1.24 E5 E866		
64 (1.2+0.2Sds) + 1.0E 315Yes Y DL 1.24 E707 E707		
65 (1.2+0.2Sds) + 1.0E 330Yes Y DL 1.24 E866 E5		
66 (0.9-0.2Sds) + 1.0E 0 AZIYes Y DL .86 E 1 E		
67 (0.9-0.2Sds) + 1.0E 30 AYes Y DL .86 E866 E5		
68 (0.9-0.2Sds) + 1.0E 45 AYes Y DL .86 E707 E707		
69 (0.9-0.2Sds) + 1.0E 60 AYes Y DL .86 E5 E866		
70 (0.9-0.2Sds) + 1.0E 90 AYes Y DL .86 E E 1		
71 (0.9-0.2Sds) + 1.0E 120Yes Y DL 86 E 5 E 866		
72 (0.9-0.2Sds) + 1.0E 135Yes Y DL 86 E707 E 707		
73 (0.9-0.2Sds) + 1.0E 150Yes Y DL 86 E866 E 5		
74 (0.9-0.2Sds) + 1.0E 180Yes Y DL .86 E1 E		
75 (0.9-0.2Sds) + 1.0E 210Yes Y DL .86 E866 E5		
76 (0.9-0.2Sds) + 1.0E 225Yes Y DL .86 E 707		
70 (0.9-0.2Sds) + 1.0E 240 Yes Y DL .86 E 5 E 866		
77 (0.9-0.2Sds) + 1.0E 270 Y DL .86 E E -1		-
78 (0.9 0.2803) + 1.02 270, 160 71 71 71 79 (0.9-0.28ds) + 1.02 300, Yes Y DL .86 E .5 E .866 Image: Second secon		
80 (0.9-0.2Sds) + 1.0E 315Yes Y DL .86 E .707 Image: Constraint of the second		-
80 (0.9-0.25ds) + 1.0E 313 res Y DL .86 E107 E7.07		-
		-
		-
		+
86 1.2D + 1.5 Lv5 Yes Y DL 1.2 29 1.5		
87 1.2D + 1.5 Lv6 Yes Y DL 1.2 30 1.5		-
88 1.2D + 1.5Lm + 1.0Wm Yes Y DL 1.2 31 1.5 4 .058 2 .058 3		
89 1.2D + 1.5Lm + 1.0Wm Yes Y DL 1.2 31 1.5 5 .058 2 .05 3 .029		-
90 1.2D + 1.5Lm + 1.0Wm Yes Y DL 1.2 31 1.5 6 .058 2 .041 3 .041		
91 1.2D + 1.5Lm + 1.0Wm Yes Y DL 1.2 31 1.5 7 .058 2 .029 3 .05		+
92 1.2D + 1.5Lm + 1.0Wm Yes Y DL 1.2 31 1.5 8 .058 2 3.5 3 .058		
93 1.2D + 1.5Lm + 1.0Wm Yes Y DL 1.2 31 1.5 9 .058 2029 3 .05		
94 1.2D + 1.5Lm + 1.0Wm Yes Y DL 1.2 31 1.5 10 .058 2041 3 .041		4
95 1.2D + 1.5Lm + 1.0Wm Yes Y DL 1.2 31 1.5 11 .058 205 3 .029		
96 1.2D + 1.5Lm + 1.0Wm Yes Y DL 1.2 31 1.5 4 .058 2058 3 7.0		

Aug 6, 2021 10:35 AM Checked By: CA

Load Combinations (Continued)

Description S P S	. B Factor B FacB FacB	Fac B Fac B F	ar B. Far	B Fac	B Eac	B Eac
97 1.2D + 1.5Lm + 1.0Wm Yes Y		05 3029				
98 1.2D + 1.5Lm + 1.0Wm Yes Y		041 3041				
99 1.2D + 1.5Lm + 1.0Wm Yes Y		029 305				
100 1.2D + 1.5Lm + 1.0Wm Yes Y		-1 3058				
101 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 31 1.5 9 .058 2	.029 305				
102 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 31 1.5 10 .058 2	.041 3041				
103 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 31 1.5 11 .058 2	.05 3029				
104 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 32 1.5 4 .058 2	.058 3				
105 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 32 1.5 5 .058 2	.05 3 .029				
106 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 32 1.5 6 .058 2	.041 3 .041				
107 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 32 1.5 7 .058 2	.029 3 .05				
108 1.2D + 1.5Lm + 1.0Wm Yes Y		3.5 3 .058				
		-				
109 1.2D + 1.5Lm + 1.0Wm Yes Y 110 1.2D + 1.5Lm + 1.0Wm Yes Y						
	DL 1.2 32 1.5 10 .058 2					
111 1.2D + 1.5Lm + 1.0Wm Yes Y 112 1.2D + 1.5Lm + 1.0Wm Yes Y		05 3 .029 058 3 7.0				
		05 3029 041 3041				
	DL 1.2 32 1.5 9 .058 2					
	DL 1.2 32 1.5 10 .058 2	.041 3041				
	DL 1.2 32 1.5 11 .058 2	.05 3029				
120 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 33 1.5 4 .058 2	.058 3				
121 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 33 1.5 5 .058 2	.05 3 .029				
122 1.2D + 1.5Lm + 1.0Wm Y es Y 123 1.2D + 1.5Lm + 1.0Wm Y es Y	DL 1.2 33 1.5 6 .058 2	.041 3 .041				
	DL 1.2 33 1.5 7 .058 2	.029 3 .05				
124 1.2D + 1.5Lm + 1.0Wm Yes Y		3.5 3 .058				
125 1.2D + 1.5Lm + 1.0Wm Yes Y		029 3 .05				
126 1.2D + 1.5Lm + 1.0Wm Yes Y		041 3 .041				
127 1.2D + 1.5Lm + 1.0Wm Yes Y		05 3 .029				
128 1.2D + 1.5Lm + 1.0Wm Yes Y		058 3 7.0				
129 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 33 1.5 5 .058 2	05 3029				
130 1.2D + 1.5Lm + 1.0Wm Yes Y		041 3041				
131 1.2D + 1.5Lm + 1.0Wm Yes Y		029 305				
132 1.2D + 1.5Lm + 1.0Wm Yes Y		-1 3058				
133 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 33 1.5 9 .058 2	.029 305				
134 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 33 1.5 10 .058 2					
135 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 33 1.5 11 .058 2					
136 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 34 1.5 4 .058 2					
137 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 34 1.5 5 .058 2	.05 3 .029				
138 1.2D + 1.5Lm + 1.0Wm Yes Y		.041 3 .041				
139 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 34 1.5 7 .058 2	.029 3 .05				
140 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 34 1.5 8 .058 2					
141 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 34 1.5 9 .058 2					
142 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 34 1.5 10 .058 2					
143 1.2D + 1.5Lm + 1.0Wm Yes Y		05 3 .029				
144 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 34 1.5 4 .058 2					
145 1.2D + 1.5Lm + 1.0Wm Yes Y		05 3029				
146 1.2D + 1.5Lm + 1.0Wm Yes Y		041 3041				
147 1.2D + 1.5Lm + 1.0Wm Yes Y		029 305				
148 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 34 1.5 8 .058 2	-1 3058				

RISA-3D Version 17.0.4 [C:\...\..\Engineering\MRA_08.06.2021\01.RISA\801367.r3d]

Aug 6, 2021 10:35 AM Checked By: CA

Load Combinations (Continued)

Description S P S		B Eac
149 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 34 1.5 9 .058 2 .029 305	
150 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 34 1.5 10 .058 2 .041 3041	
151 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 34 1.5 11 .058 2 .05 3029	
152 1.2D + 1.5Lm + 1.0Wm Yes Y		
155 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 35 1.5 7 .058 2 .029 3 .05	
156 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 35 1.5 8 .058 2 3.5 3 .058	
157 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 35 1.5 9 .058 2029 3 .05	
158 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 35 1.5 10 .058 2041 3 .041	
159 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 35 1.5 11 .058 205 3 .029	
160 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 35 1.5 4 .058 2058 3 7.0	
161 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 35 1.5 5 .058 205 3029	
162 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 35 1.5 6 .058 2041 3041	
163 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 35 1.5 7 .058 2029 305	
164 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 35 1.5 8 .058 2 -1 3058	
165 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 35 1.5 9 .058 2 .029 305	
166 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 35 1.5 10 .058 2 .041 3041	
167 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 35 1.5 11 .058 2 .05 3029	
168 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 36 1.5 4 .058 2 .058 3	
169 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 36 1.5 5 .058 2 .05 3 .029	
170 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 36 1.5 6 .058 2 .041 3 .041	
171 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 36 1.5 7 .058 2 .029 3 .05	
172 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 36 1.5 8 .058 2 3.5 3 .058	
173 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 36 1.5 9 .058 2 .029 3 .05	
174 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 36 1.5 10 .058 2 .041 3 .041	
175 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 36 1.5 11 058 205 3 029	
	DL 1.2 36 1.5 4 .058 2 .058 3 7.0	
177 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 36 1.5 5 .058 205 3029	
178 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 36 1.5 6 .058 2041 3041	
179 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 36 1.5 7 .058 2 .029 3 .05	
180 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 36 1.5 8 .058 2 -1 3058	
181 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 36 1.5 9 .058 2 .029 305	
182 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 36 1.5 10 .058 2 .041 3041	
183 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 36 1.5 11 .058 2 .05 3029	
184 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 37 1.5 4 .058 2 .058 3	
185 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 37 1.5 5 .058 2 .05 3 .029	
186 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 37 1.5 6 .058 2 .041 3 .041	
187 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 37 1.5 7 .058 2 .029 3 .05	
188 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 37 1.5 8 .058 2 3.5 3 .058	
189 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 37 1.5 9 .058 2029 3 .05	
190 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 37 1.5 10 .058 2041 3 .041	
191 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 37 1.5 11 .058 205 3 .029	
192 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 37 1.5 4 .058 2 .058 3 7.0	
193 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 37 1.5 5 .058 205 3029	
194 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 37 1.5 6 .058 2 .041 3 .041	
195 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 37 1.5 7 .058 2 .029 3 .05	
196 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 37 1.5 8 .058 2 -1 3058	
197 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 37 1.5 9 .058 2 .029 305	
198 1.2D + 1.5Lm + 1.0Wm Yes Y		
199 1.2D + 1.5Lm + 1.0Wm Yes Y		
200 1.2D + 1.5Lm + 1.0Wm Yes Y		
	DL 1.2 38 1.5 4 .058 2 .058 3	

RISA-3D Version 17.0.4 [C:\...\..\Engineering\MRA_08.06.2021\01.RISA\801367.r3d]

Load Combinations (Continued)

	Des cription	S	Ρ	S B	Fa	actor	в	Fac.	.в	Fac	В	Fac	В	Fac	В	Fac	в	Fac.	В	Fac.	В	Fac.	.В	Fac
201	1.2D + 1.5Lm + 1.0Wm .	Yes	Υ	D	L	1.2	38	1.5	5	.058	2	.05	3	.029										
202	1.2D + 1.5Lm + 1.0Wm .	Yes	Υ	D	L	1.2	38	1.5	6	.058	2	.041	3	.041										
203	1.2D + 1.5Lm + 1.0Wm .	Yes	Υ	C	L	1.2	38	1.5	7	.058	2	.029	3	.05										
204	1.2D + 1.5Lm + 1.0Wm .	Yes	Y	D	L	1.2	38	1.5	8	.058	2	3.5	3	.058										
205	1.2D + 1.5Lm + 1.0Wm .	Yes	Υ	C	L	1.2	38	1.5	9	.058	2	029	3	.05										
206	1.2D + 1.5Lm + 1.0Wm .	Yes	Υ	C	L	1.2	38	1.5	10	.058	2	041	3	.041										
207	1.2D + 1.5Lm + 1.0Wm .	Yes	Υ	D	L	1.2	38	1.5	11	.058	2	05	3	.029										
208	1.2D + 1.5Lm + 1.0Wm .	Yes	Υ	D	L	1.2	38	1.5	4	.058	2	058	3	7.0										
209	1.2D + 1.5Lm + 1.0Wm .	Yes	Υ	D	L	1.2	38	1.5	5	.058	2	05	3	029										
210	1.2D + 1.5Lm + 1.0Wm .	Yes	Υ	D	L	1.2	38	1.5	6	.058	2	041	3	041										
211	1.2D + 1.5Lm + 1.0Wm .	Yes	Υ	D	L	1.2	38	1.5	7	.058	2	029	3	05										
212	1.2D + 1.5Lm + 1.0Wm .	Yes	Υ	D	L	1.2	38	1.5	8	.058	2	-1	3	058										
213	1.2D + 1.5Lm + 1.0Wm .	Yes	Y	D	L	1.2	38	1.5	9	.058	2	.029	3	05										
214	1.2D + 1.5Lm + 1.0Wm .	Yes	Y	D	L	1.2	38	1.5	10	.058	2	.041	3	041										
215	1.2D + 1.5Lm + 1.0Wm .	Yes	Υ	D	L	1.2	38	1.5	11	.058	2	.05	3	029										
	1.2D + 1.5Lm + 1.0Wm .				L	1.2	39	1.5	4	.058	2	.058	3											
	1.2D + 1.5Lm + 1.0Wm .			D	L	1.2	39	1.5	5	.058	2	.05	3	.029										
218	1.2D + 1.5Lm + 1.0Wm .	Yes	Y		L	1.2	39	1.5	6	.058	2	.041	3	.041										
219	1.2D + 1.5Lm + 1.0Wm .	Yes	Y	D	L	1.2	39	1.5	7	.058	2	.029	3	.05										
220	1.2D + 1.5Lm + 1.0Wm .	Yes	Y	D	L	1.2	39	1.5	8	.058	2	3.5	3	.058										
221	1.2D + 1.5Lm + 1.0Wm .	Yes	Y	D	L	1.2	39	1.5	9	.058	2	029	3	.05										
	1.2D + 1.5Lm + 1.0Wm .			D	L	1.2	39	1.5	10	.058	2	041	3	.041										
	1.2D + 1.5Lm + 1.0Wm .			D	L	1.2	39	1.5	11	.058	2	05	3	.029										
	1.2D + 1.5Lm + 1.0Wm .			D	L	1.2	39	1.5	4	.058	2	058	3	7.0										
	1.2D + 1.5Lm + 1.0Wm .			D	L	1.2	39	1.5	5	.058	2	05	3	029										
	1.2D + 1.5Lm + 1.0Wm .			D	L	1.2	39	1.5	6	.058	2	041	3	041										
	1.2D + 1.5Lm + 1.0Wm .			D	L	1.2	39	1.5	7	.058	2	029	3	05										
228	1.2D + 1.5Lm + 1.0Wm .	Yes	Y	D	L	1.2	39	1.5	8	.058	2	-1	3	058										
220	1.2D + 1.5Lm + 1.0Wm .			D	L	1.2	39	1.5	9	.058	2	.029	3	05										
	1.2D + 1.5Lm + 1.0Wm .			D	L	1.2	39	1.5	10	.058	2	.041	3	041										
231	1.2D + 1.5Lm + 1.0Wm .	Yes	Y		L	1.2	39	1.5	11	.058	2	.05	3	029										

Envelope Joint Reactions

	Joint		X [b]	LC	Y [b]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N25	max	1260.324	19	810.132	20	1684.644	39	261.872	31	389.128	33	1444.964	19
2		min	-1262.82	11	-815.724	12	-11.464	31	-2903.512	38	-1791.151	127	-1453.691	11
3	N1	max	1493.235	17	918.186	8	2270.561	45	4269.882	46	148.795	19	1786.256	25
4		min	-1486.159	25	-906.763	32	148.516	21	121.356	22	-2605.779	43	-1787 <u>.</u> 224	17
5	N13	max	346.921	18	1267.78	22	1638.386	34	540.147	192	3235.709	34	1206.096	14
6		min	-351.655	10	-1273.495	14	-43.746	26	-654.129	172	-413.368	26	-1196.51	22
7	Totals:	max	2712.667	2	2535.708	6	5366.148	41						
8		min	-2712.667	10	-2535.706	30	1364.668	81						

Envelope A ISC 15th (360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[in]	LC	ShearCheck	Lo		. phi*P .	phi*P	.phi*M	.phi*M	Eqn
1	M2	PIPE 3.5	.627	0	45	.164	0	Ş	6449	. 78750	7953	.7953	H1-1b
2	M12	PIPE 3.5	.419	0	39	.148	0	1	3 6449	. 78750	7953	.7953	H1-1b
3	M7	PIPE 3.5	.407	0	34	.142	0		. 6449	. 78750	7953	.7953	H1-1b
4	M1	C 3X 5	.403	34.856	46	.144	63	y 4	03710	. 47628	981.2	4104	H1-1b

Envelope A ISC 15th (360-16): LRFD Steel Code Checks (Continued)

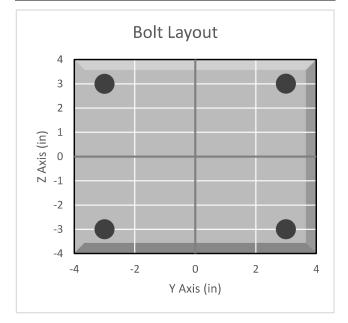
	Member	Shape	Code Check	Loc[in]	LC	Shear Check Lophi*Pphi*Pphi*Mphi*M Eqn
5	M11	C 3X 5	.353	34.856	40	127 63y 34 3710 47628 981.2 4104 H1-1b
6	M6	C 3X 5	.345	34.856	34	.123 6.5y 39 3710 47628 981.2 4104H1-1b
7	MP1	PIPE 2.0	.334	57	16	.037 57 8 2086 32130 18711871H1-1b
8	MP9	PIPE_2.0	.329	57	2	.043 57 17 2086 32130 1871 1871 1 H1-1b
9	MP2	PIPE_2.0	.304	57	6	.052 57 8 2086 32130 1871 1871 1 H1-1b
10	MP3	PIPE_2.0	.297	57	5	.041 57 9 2086 32130 1871 1871 1 H1-1b
11	MP8	PIPE 2.0	.295	57	2	.052 57 17 2086 32130 1871 1871 1 H1-1b
12	MP4	PIPE 2.0	.280	57	10	.026 57 5 2086 32130 1871 1871 1 H1-1b
13	MP7	PIPE 2.0	.270	57	3	.037 57 17 2086 32130 1871 1871 1 H1-1b
14	MP5	PIPE 2.0	.258	57	10	.037 57 11 2086 32 130 1871 1871 1 H1-1b
15	MP6	PIPE 2.0	.250	57	15	.035 57 4 2086 32130 18711871H1-1b
16	M5	6.5"x0.37" PI	.232	21	13	.098 21 y 42 3513 77922 600.66385H1-1b
17	M15	6.5"x0.37" PI	.220	21	8	<u>.079</u> 21 y 37 3513, 77922 600.66335H1-1b
18	M10	6.5"x0.37" Pl	.219	21	2	.078 21 y 37 3513 77922 600.66134H1-1b
19	M19	PIPE 2.0	.167	72	10	.145 72 2 1491 32130 18711871H1-1b
20	M4	L2x2x3	.159	0	30	.031 0 y 41 2096 2339 557.711821 H2-1
21	M3	L2x2x3	.152	0	3	.031 0 z 49 2096 2339 557.711821 H2-1
22	M20	PIPE 2.0	.148	24	16	.127 24 7 1491 32130 18711871H1-1b
23	M13	L2x2x3	.134	0	15	.027 0 z 43 2096 2339 557.711821 H2-1
24	H2	PIPE 3.5	.124	48	159	.074 72 5 6066 78750 7953 7953 1 H1-1b
25	M9	L2x2x3	.119	0	18	.026 0 y 46 2096 2339 557.711821 H2-1
26	H1	PIPE 3.5	.114	72	88	.092 24 10 6066 78750 7953 7953 1 H1-1b
27	M8	L2x2x3	.112	0	2	.027 0 z 38 2096 2339 557.7 1239 H2-1
28	H3	PIPE 3.5	.111	24	223	.084 24 16 6066 78750 7953 7953 1 H1-1b
29	M21	PIPE 2.0	.107	72	4	.107 24 12 1491 32130 18711871H1-1b
30	M14	L2x2x3	.102	0	7	.027 0 y 35 2096 2339 557.711821 H2-1
31	M23	L6.6"X4.46"X	.080	42	33	.041 0 z 9 5117 87561 2464 7125 1 H2-1
32	M24	L6.6"X4.46"X	.039	19.25	18	.030 0 y 14 51 17 87561 2464 7125 1 H2-1
33	M22	L6.6"X4.46"X	.036	3.5	22	.033 42 y 11 51 17 87561 2464 7125 1 H2-1

Envelope None Cold Formed Steel Code Checks

Member Shape	Code Check	Loc[in]LC SheaLoc[iDirLC	Pn[lb]	Tn [b] Mnyy	/[l Mnzz[l	Cb	Cmyy Cmzz	Eqn
		No Data to Print.	••					

APPENDIX D

ADDITIONAL CALCUATIONS



BOLT TOOL 1.5.2

Projec	et Data
Job Code:	189625
Carrier Site ID:	BOHVN00008A
Carrier Site Name:	CT-CCI-T-801367

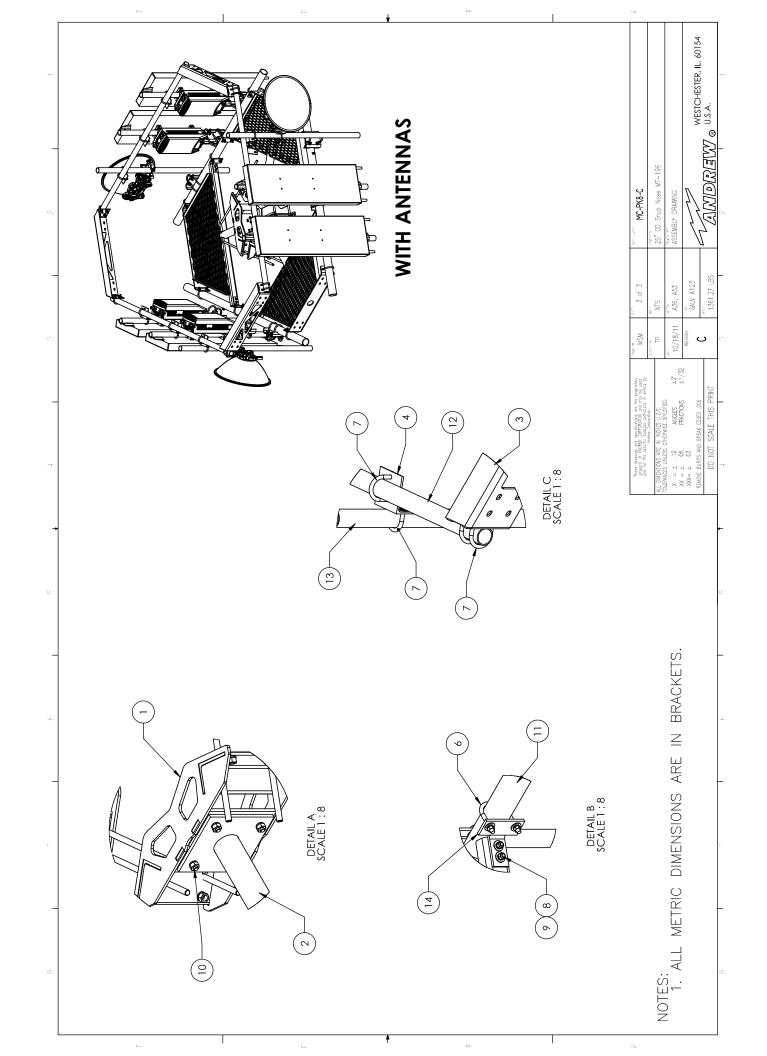
Co	de
Design Standard:	TIA-222-H
Slip Check:	No
Pretension Standard:	AISC

Bolt Properties						
Connection Type:	Bolt					
Diameter:	0.625	in				
Grade:	A325					
Yield Strength (Fy):	92	ksi				
Ultimate Strength (Fu):		ksi				
Number of Bolts:	4					
Threads Included:	Yes					
Double Shear:	No					
Connection Pipe Size:	-	in				

Connection Description

Standoff to Collar


Bolt Check*						
Tensile Capacity (φT _n):		lbs				
Shear Capacity (φV _n):		lbs				
Tension Force (T _u):		lbs				
Shear Force (V _u):	469.6	lbs				
Tension Usage:	24.0%					
Shear Usage:	3.2%					
Interaction:	24.0%	Pass				
Controlling Member:	M2					
Controlling LC:	42					


*Rating per TIA-222-H Section 15.5

APPENDIX E

SUPPLEMENTAL DRAWINGS

		<u>(</u>	1	C	ŧ	<u>p.</u>		4		
~ =	BY DATE DRR 12/27/11 MSM 11/25/14 RJC 04/07/15		1		v				WESTCHESTER, IL. 60154 U.S.A.	-
٥	REVISIONS DESCRPTION NITAL RELEASE CHANGE NOSE CORNER BRKT, ADD GUB-4240 NEW RINGMOUNT WELIDMENT DESIGN							APT-JATA MC-PKB-C JOW PROFILE PLATFORM KIT 8' FACE	ASSURING ASSURING WE WE WE WE	- a_
0.	REV. ECN A 8000005979 CHA C 8000007579 CHA					7		MAN W SIN 1 OF 3 MSM SIN 1 OF 3 COTOT BIN 101 3	то 10/18/11 Каб, А500 Кацу А123 С 1410.14 LBS	e;
4								These drafting and specifications are the provided property of the process dispectations and the pro- print of the specific propersion advector of the wing by advector dispectations of the specific process advector of the advector dispectation of the specific process of the specific process advector of the advector dispectation of advector dispectation	X = ± 12 A0LIS ±2 XX = ± 06 FRACTIONS ±1/32 XX0 = ± 03 EBLORC ±1/32 PRUORE ±1/32 ±2 ±2 DD NOT ±1/42 ±2 ±2	4
-	NOTE NO.	Δ							-	⊢ LC
- U	QTY. WEIGHT 1 402.64 LBS 1 464.27 LBS 1 543.22 LBS	Υ ΟΝLΥ							Ň	-
_	DESCRIPTION STEEL BUNDLE FOR SNUB NOSE PLATFORM PIPE STEEL BUNDLE FOR MC-PK8-C HARDWARE KIT FOR MC-PK8-C	FOR BOM ENTRY ONLY							1. CUSTOMER ASSEMBLY SHEETS 2-3.	_
Γ.	DESCI STEEL BUNDLE FOR S PIPE STEEL BUND HARDWARE KIT	OR BO/							OMER ASSEMBL	7
συ	ITEM PART NO. 1 MTC3006SB 2 MCPK8CSB 3 MCPK8CHWK	يلًا.						NOTE S.	1. CUSTC	00
		\vdash	I	<u> </u>	ŧ	<u>n:</u>	I.	~L		

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOHVN00008A

801367 1121 Summit Road Cheshire, Connecticut 06410

September 28, 2021

EBI Project Number: 6221005706

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of FCC general population allowable limit:	8.43%			

environmental | engineering | due diligence

September 28, 2021

Dish Wireless

Emissions Analysis for Site: BOHVN00008A - 801367

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **1121 Summit Road** in **Cheshire, Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 1121 Summit Road in Cheshire, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 4) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

environmental | engineering | due diligence

- 5) The antennas used in this modeling are the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz channel(s) in Sector A, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz channel(s) in Sector B, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 6) The antenna mounting height centerline of the proposed antennas is 123 feet above ground level (AGL).
- 7) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 8) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	А	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665- 20	Make / Model:	JMA MX08FRO665- 20	Make / Model:	JMA MX08FRO665- 20
Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz
Gain:	17.45 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd
Height (AGL):	123 feet	Height (AGL):	123 feet	Height (AGL):	123 feet
Channel Count:	8	Channel Count:	8	Channel Count:	8
Total TX Power (W):	280 Watts	Total TX Power (W):	280 Watts	Total TX Power (W):	280 Watts
ERP (VV):	3,065.51	ERP (VV):	3,065.51	ERP (VV):	3,065.51
Antenna AI MPE %:	1.16%	Antenna BI MPE %:	1.16%	Antenna CI MPE %:	1.16%

environmental | engineering | due diligence

Site Composite MPE %				
Carrier	MPE %			
Dish Wireless (Max at Sector A):	1.16%			
T-Mobile	3.64%			
Verizon	1.41%			
Sprint	0.77%			
AT&T	I.45%			
Site Total MPE % :	8.43%			

Dish Wireless MPE % Per Sector				
Dish Wireless Sector A Total:	1.16%			
Dish Wireless Sector B Total:	1.16%			
Dish Wireless Sector C Total:	1.16%			
Site Total MPE % :	8.43%			

Dish Wireless Maximum MPE Power Values (Sector A)

Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
Dish Wireless 600 MHz n71	4	223.68	123.0	2.35	600 MHz n71	400	0.59%
Dish Wireless 1900 MHz n70	4	542.70	123.0	5.70	1900 MHz n70	1000	0.57%
			*	010/		Total:	1.16%

• NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)
Sector A:	1.16%
Sector B:	1.16%
Sector C:	1.16%
Dish Wireless Maximum MPE % (Sector A):	1.16%
Site Total:	8.43%
	0.1070
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **8.43**% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320 West Henrietta, NY 14586 Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

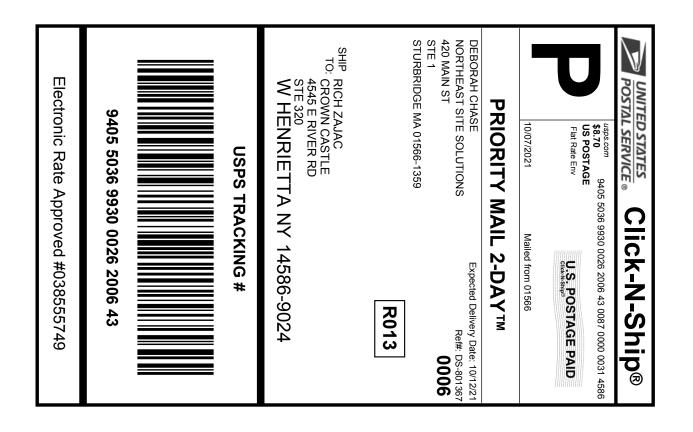
Re: Tower Share Application Crown Castle telecommunications site at: 1121 SUMMIT ROAD, CHESHIRE, CT 06410

CROWN ATLANTIC COMPANY LLC ("Crown Castle") hereby authorizes DISH Wireless, LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name: 801367/CT NHV-2075 CAC 801367 Customer Site ID: BOHVN00008A/CT-CCI-T-801367 Site Address: 1121 Summit Road, Cheshire, CT 06410

Crown Castle

By:


10/4/2021

Date:

Richard Zajac Site Acquisition Specialist

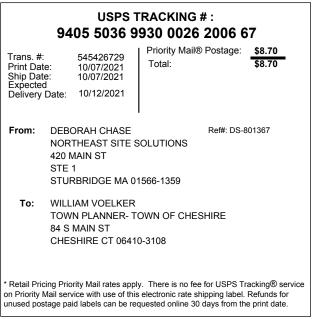
Exhibit H

Recipient Mailings

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

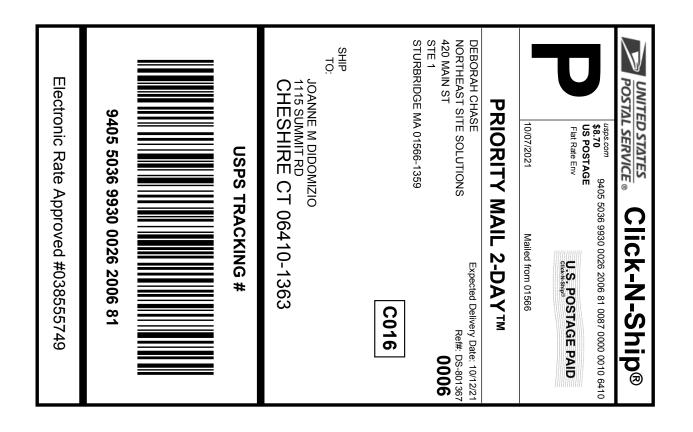




Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

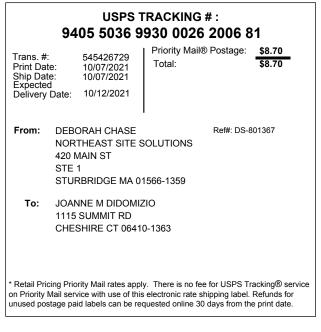
Click-N-Ship® Label Record



Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record



Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

UNITED STATES POSTAL SERVICE.

801367

UNIONVILLE 24 MILL ST UNIONVILLE, CT 06085-9998 (800)275-8777

Product	0tv	Unit	Price
		Price	11106
Prepaid Mail West Henrietta Weight: 0 lb Acceptance Dat Fri 10/08/ Tracking #: 9405 5036	n, NY 145 2.00 oz ie: 2021		\$0.00
Prepaid Mail Cheshire, CT O Weight: O lb Acceptance Dat Fri 10/08/ Tracking #: 9405 5036	6410 11.60 oz e: 2021		\$0.00
Prepaid Mail Cheshire, CT O Weight: O Ib Acceptance Dat Fri 10/08/ Tracking #: 9405 5036	6410 11.50 oz e: 2021		\$0.00
Prepaid Mail Cheshire, CT O Weight: O lb Acceptance Dat Fri 10/08/ Tracking #: 9405 5036 s	e: 2021		\$0 .00
Grand Total:			 \$0.00

VSPS is experiencing unprecedented volume