Filed by:
Kri Pelletier, Property Specialist - SBA Communications 134 Flanders Rd., Suite 125, Westborough, MA 01581 508.251.0720 x 3804-kpelletier@sbasite.com

September 15, 2017

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

Notice of Exempt Modification
500 Highland Avenue
Cheshire, CT 06410
Sprint Site \#: NV2.5_CT43XC809
N $41^{\circ} 30^{\prime} 40.38^{\prime \prime}$
W -72 ${ }^{\circ} 53^{\prime} 54.69^{\prime \prime}$

Dear Ms. Bachman:

Sprint currently maintains antennas at the 160-foot level of the existing 160-foot Monopole Tower at 500 Highland Avenue in Cheshire, CT. The tower is managed by SBA Site Management, LLC. The property is owned by the Town of Cheshire. Sprint now intends to add (3) newer technology cell antennas at the 160-foot level of the tower.

Please note: previous approval was given by the Siting Council on 8/22/14 under EM-SPRINT-025-140807. A Notification of Construction Not Complete was sent 13/3/15. Sprint now intends to resume construction. The proposed full scope of work is as follows:

Remove:
(3) Hybriflex

Remove and Replace:
Remove (6) 1-5/8" Lines / replace with (6) 1-1/4" lines

Install:
(3) RFS APXVTM14-C-I20 Panel Antennas
(4) RFS ACU-A20-N
(3) ALU 800 MHz Filters
(3) TD-RRH8x20-2500 MHz RRHs

Existing Equipment to Remain (Including entitlements):
(3) RFS APXVSPP18-C-A20 Panel Antennas
(3) ALU 1900 MHz RRHs
(3) ALU 800 MHz RRHs

A Site Management Agreement was made and entered into on June 12, 2003 by and between Tower Ventures II, LLC and the Town of Cheshire, CT. Assignment to SBA, as Tenant/Manager, was made October 20, 2008. The Agreement called for an existing tower to be removed and a replacement tower installed. The new tower was to house "operation of a 160 ' communications tower, including all radio equipment, equipment, foundations, cable and antenna mounts, fencing, landscaping, utilities, equipment buildings and shelters, supporting structures, guy wires and guy anchors, hangers, brackets, footing, platforms, spare parts and other equipment certain communications antennas, equipment and systems relating thereto... and the access and utilities easements to such Tower and Site Equipment..." The Town does not have record of any initial zoning decision. It has confirmed that building permits for the tower were issued in 2004, and concludes that the tower was approved under the jurisdiction of the CSC. However, we are unable to find such Decision within the Council's database. As such, all known conditions are met with this proposed modification.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. §16.50j-72(b)(2). In accordance with R.C.S.A. § $16.50 \mathrm{j}-73$, a copy of this letter is being sent to the Town of Cheshire's Town Manager and representative for the Property Owner, the Town of Cheshire, Michael A. Milone, as well as to William S. Voelker, Town Planner. (Separate notice is not being sent to tower owner, as it belongs to SBA.)

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. §16.50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modification will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modification will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, Sprint respectfully submits that the proposed modifications to the abovereferenced telecommunication facility constitute an exempt modifications under R.C.S.A. § 16-50j-72(b)(2).

Kri Pelletier
Property Specialist
SBA COMMUNICATIONS CORPORATION
134 Flanders Rd., Suite 125
Westborough, MA 01581
$508.251 .0720 \times 3804+\mathrm{T}$
$508.366 .2610+$ F
kpelletier@sbasite.com
Attachments
cc: Michael A. Milone, Town Manager and Representative for the Town as Property Owner / with attachments
Town of Cheshire, 84 South Main Street, Cheshire, CT 06410
William S. Voelker, Town Planner / with attachments
Town of Cheshire, 84 South Main Street, Cheshire, CT 06410

POWER DENSITY

SPRINT Site Inventory and Power Data by Antenna

Sector:	A	Sector:	B	Sector:	C
Antenna\#:	1	Antenna\#:	1	Antenna\#:	1
Make / Model:	RFS APXVSPP18-C-A20	Make / Model:	RFS APXVSPP18-C-A20	Make / Model:	RFS APXVSPP18-C-A20
Gain:	$13.4 / 15.9 \mathrm{dBd}$	Gain:	13.4 / 15.9 dBd	Gain:	$13.4 / 15.9 \mathrm{dBd}$
Height (AGL):	157.5 feet	Height (AGL):	157.5 feet	Height (AGL):	157.5 feet
Frequency Bands	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) } \end{gathered}$	Frequency Bands	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) } \\ \hline \end{gathered}$	Frequency Bands	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) } \\ \hline \end{gathered}$
Channel Count	10	Channel Count	10	Channel Count	10
Total TX Power(W):	220 Watts	Total TX Power(W):	220 Watts	Total TX Power(W):	220 Watts
ERP (W):	7,537.38	ERP (W):	7,537.38	ERP (W):	7,537.38
Antenna Al MPE\%	1.34 \%	Antenna B1 MPE\%	1.34 \%	Antenna C1 MPE\%	1.34 \%
Antenna\#:	2	Antenna\#:	2	Antenna\#:	2
Make / Model:	RFS APXVTM14-ALU- I20	Make / Model:	RFS APXVTM14-ALU- I20	Make / Model:	RFS APXVTM14-ALU- I20
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	157.5 feet	Height (AGL):	157.5 feet	Height (AGL):	157.5 feet
Frequency Bands	2500 MHz (BRS)	Frequency Bands	2500 MHz (BRS)	Frequency Bands	2500 MHz (BRS)
Channel Count	8	Channel Count	8	Channel Count	8
Total TX Power(W):	160 Watts	Total TX Power(W):	160 Watts	Total TX Power(W):	160 Watts
ERP (W):	6,224.72	ERP (W):	6,224.72	ERP (W):	6,224.72
Antenna A2 MPE\%	0.97 \%	Antenna B2 MPE\%	0.97 \%	Antenna C2 MPE\%	0.97 \%

Site Composite MPE\%	
Carrie r	MPE \%
SPRINT - Max per sector	$\mathbf{2 . 3 1} \%$
MetroPCS	0.70%
Town Emergency Services	0.55%
T-Mobile	2.02%
Verizon Wireless	3.35%
Site Total MPE \%:	$\mathbf{8 . 9 3} \%$

SPRINT Sector A Total:	2.31%
SPRINT Sector B Total:	2.31%
SPRINT Sector C Total:	2.31%
Site Total:	

[^0]Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, nondelivery,misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, nondelivery,misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

The Assessor's office is responsible for the maintenance of records on the ownership of properties. Assessments are computed at 70% of the estimated market value of real property at the time of the last revaluation which was 2013.

The bedding plant capital of Connecticut

Information on the Property Records for the Municipality of Cheshire was last updated on 8/31/2017.
 Property Summary Information

Value Information

	Appraised Value	70% Assessed Value
Land	$2,463,578$	$1,724,510$
Buildings	$17,288,518$	$12,101,960$
Detached Outbuildings	60,912	42,640
Total	$19,813,008$	$13,869,110$

Owner's Information

Owner's Data
CHESHIRE TOWN OF
HIGHLAND SCHOOL
POLICE STATION
CHESHIRE, CT 06410

Back To Search (JavaScript:window.history.back(1);)
Print View (PrintPage.aspx?towncode=025 \&uniqueid=00478600)

Information Published With Permission From The Assessor

Ki Pelletier

From:	Waller, Diane dwaller@cheshirect.org
Sent:	Thursday, August 31, 2017 8:52 AM
To:	Sri Pelletier
Subject:	RE: 500 Highland Ave-Property Card

The address you want to put in is 490 Highland Ave. There are four properties on that lot (Police Station, School and Aprimal shelter, and the Police garage). The Police Station is where the antenna is which uses the mailing address of 500 Highland Ave. The Map is 51 and the Lot is 2 . We do not have Blocks in Cheshire.

I just went on the website and it is there for you under the address of 490 Highland Ave.
If you need anything else let me know.

Diane Waller

Assessor
Town of Cheshire
Phone - 203-271-6620
Fax -203-271-6615
Email - dwaller@cheshirect.org

From: Kri Pelletier [mailto:KPelletier@sbasite.com]
Sent: Wednesday, August 30, 2017 5:14 PM
To: Waller, Diane
Subject: 500 Highland Ave - Property Card
Good Evening Diane,

On behalf of Sprint, we're readying application materials for the CT Siting Council for antenna upgrades at the existing cell site located at 500 Highland Ave. The Siting Council now requires a property card showing property owner information when we apply for their review. A search of 500 Highland Ave (which we know to be owned by the Town) does not bring up property card information (please see screenshot below.)

Could you please supply a screenshot, or information by reply email stating the town to be the property owner (along with Map, Block, Lot) so that we can include with our submission to the Siting Council.

Thank you,

Kri Pelletier

From:	Voelker, William wvoelker@cheshirect.org
Sent:	Thursday, August 31, 2017 11:32 AM
To:	Kri Pelletier
Subject:	RE: 500 Highland Avenue - Original Planning Docs (Spring CT43XC809)

Kri, we have searched extensively for a zoning file on this location, and we have none. We did check on when any building permits were issued for the electrical and the equipment structures, and these were issued in 2004. We conclude that this tower was approved under the jurisdiction of the Connecticut Siting Council. If there is anything else that you need, please give us a call at your convenience. Bill Voelker

William S. Voelker, AICP
Town Planner/Development Coordinator
Town of Cheshire
wvoelker@cheshirect.org
203 271-6670

From: Kri Pelletier [mailto:KPelletier@sbasite.com]
Sent: Monday, August 28, 2017 4:19 PM
To: Voelker, William
Subject: 500 Highland Avenue - Original Planning Docs (Spring CT43XC809)

Good Afternoon,

On behalf of Sprint, we are readying building permit application materials for minor upgrades to the existing cell site at 500 Highland Ave in Cheshire. Prior to applying for a building permit, we must secure authorization from the CT Siting Council, which now requires information on the original planning decision to allow a telecommunication site.
$>$ Could you please provide a scanned copy of the original approval for this existing telecommunication site from the Town, as it appears to pre-date the Siting Council's jurisdiction over same.

Thank you,
Ki Pelletier
Property Specialist

SBA COMMUNICATIONS CORPORATION
134 Flanders Rd., Suite 125
Westborough, MA 01581

EBI Consulting
environmental | engineering | due diligence

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

SPRINT Existing Facility

Site ID: CT43XC809
Cheshire/Tower Ventures
500 Highland Avenue
Cheshire, CT 06410
September 7, 2017
EBI Project Number: 6217003983

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{8 . 9 3 \%}$

EBI Consulting
environmental | engineering | due diligence

September 7, 2017
SPRINT
Attn: RF Engineering Manager
1 International Boulevard, Suite 800
Mahwah, NJ 07495

Emissions Analysis for Site: CT43XC809 - Cheshire/Tower Ventures

EBI Consulting was directed to analyze the proposed SPRINT facility located at $\mathbf{5 0 0}$ Highland Avenue, Cheshire, CT, for the purpose of determining whether the emissions from the Proposed SPRINT Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307 (b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limits for the 850 MHz Band is approximately $567 \mu \mathrm{~W} / \mathrm{cm}^{2}$. The general population exposure limit for the 1900 MHz (PCS) and 2500 MHz (BRS) bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

EBI Consulting
environmental | engineering | due diligence

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed SPRINT Wireless antenna facility located at $\mathbf{5 0 0}$ Highland Avenue, Cheshire, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since SPRINT is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 -foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 1 CDMA channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.
2) 2 LTE channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.
3) 5 CDMA channels ($1900 \mathrm{MHz}(\mathrm{PCS})$) were considered for each sector of the proposed installation. These Channels have a transmit power of 16 Watts per Channel.
4) 2 LTE channels ($1900 \mathrm{MHz}(\mathrm{PCS})$) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
5) 8 LTE channels ($2500 \mathrm{MHz}(\mathrm{BRS})$) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.

EBI Consulting
environmental | engineering | due diligence
6) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
7) For the following calculations, the sample point was the top of a 6 -foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
8) The antennas used in this modeling are the RFS APXVSPP18-C-A20 and the RFS APXVTM14-ALU-I20 for transmission in the $850 \mathrm{MHz}, 1900 \mathrm{MHz}$ (PCS) and 2500 MHz (BRS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
9) The antenna mounting height centerlines of the proposed antennas are $\mathbf{1 5 7 . 5}$ feet above ground level (AGL) for Sector A, 157.5 feet above ground level (AGL) for Sector B and 157.5 feet above ground level (AGL) for Sector C.
10) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general population threshold limits.

EBI Consulting

environmental | engineering | due diligence

SPRINT Site Inventory and Power Data by Antenna

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	1	Antenna \#:	1	Antenna \#:	1
Make / Model:	RFS APXVSPP18-C-A20	Make / Model:	RFS APXVSPP18-C-A20	Make / Model:	RFS APXVSPP18-C-A20
Gain:	13.4 / 15.9 dBd	Gain:	13.4 / 15.9 dBd	Gain:	13.4 / 15.9 dBd
Height (AGL):	157.5 feet	Height (AGL):	157.5 feet	Height (AGL):	157.5 feet
Frequency Bands	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) } \end{gathered}$	Frequency Bands	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) } \end{gathered}$	Frequency Bands	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) } \end{gathered}$
Channel Count	10	Channel Count	10	Channel Count	10
Total TX Power(W):	220 Watts	Total TX Power(W):	220 Watts	Total TX Power(W):	220 Watts
ERP (W):	7,537.38	ERP (W):	7,537.38	ERP (W):	7,537.38
Antenna A1 MPE\%	1.34 \%	Antenna B1 MPE\%	1.34 \%	Antenna C1 MPE\%	1.34 \%
Antenna \#:	2	Antenna \#:	2	Antenna \#:	2
Make / Model:	RFS APXVTM14-ALU- I20 15.9	Make / Model:	RFS APXVTM14-ALU- I20 15.9	Make / Model:	RFS APXVTM14-ALU- I20 15.9
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	157.5 feet	Height (AGL):	157.5 feet	Height (AGL):	157.5 feet
Frequency Bands	2500 MHz (BRS)	Frequency Bands	2500 MHz (BRS)	Frequency Bands	2500 MHz (BRS)
Channel Count	8	Channel Count	8	Channel Count	8
Total TX Power(W):	160 Watts	Total TX Power(W):	160 Watts	Total TX Power(W):	160 Watts
ERP (W):	6,224.72	ERP (W):	6,224.72	ERP (W):	6,224.72
Antenna A2 MPE\%	0.97 \%	Antenna B2 MPE\%	0.97 \%	Antenna C2 MPE\%	0.97 \%
Site Composite MPE\%			SPRINT Sector A Total:		2.31 \%
Carrier	- MPE\%		SPRINT Sector B Total:		2.31 \%
SPRINT - Max per sector	2.31 \%		SPRINT Sector C Total:		2.31 \%
$\frac{\text { MetroPCS }}{\text { Town Emergency Services }}$	0.70 \%				
	0.55 \%			Site Total:	8.93 \%

EBI Consulting
environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the SPRINT facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

SPRINT Sector	Power Density Value (\%)
Sector A:	2.31%
Sector B:	2.31%
Sector C:	2.31%
SPRINT Maximum	2.31%
Total (per sector):	
Site Total:	8.93%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{8 . 9 3} \%$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5\% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

STRUCTURAL ANALYSIS REPORT

160' Monopole Tower
500 Highland Avenue
Cheshire, CT 06410
SBA Site Name: Cheshire
SBA Site Number: CT33762-M
Sprint Site Number: CT43XC809
Sprint Site Name: Cheshire/Tower Ventures
GPD Project Number: 2014778.33762.03

Analysis Results

Tower Components	76.7%	Sufficient
Foundation	42.8%	Sufficient

July 17, 2014
Respectfully submitted by:

John N. Kabak, P.E.
Connecticut \#: 28836

TABLE OF CONTENTS

APPENDICES

1.TNXTOWER OUTPUT
2. ADDITIONAL CALCULATIONS

Executive Summary

The purpose of this analysis is to verify whether the existing monopole tower is structurally capable of carrying the proposed antenna and coax loads as specified by Sprint to SBA. This report was commissioned by Mr. Rick Woods of SBA Site Management.

The existing structure and its foundations have been analyzed using the following requirements:

Governing Code/s	TIA-222-G \& 2005 CTBC
Wind Speed	105 MPH 3-Second Gust
Wind Speed w/ Ice	50 MPH 3-Second Gust
Radial Ice Thickness	$3 / 4^{\prime \prime}$
Structure Class	II
Exposure Class	B
Topographic Category	1

Conclusions \& Recommendations

The designs of the tower and its foundation are sufficient for the proposed loading configuration considering the above analysis criteria and will not require modification.

Tower Description

The existing 160^{\prime} Monopole Tower is located in Cheshire, Connecticut. The tower was originally designed by Sabre in September of 2003. All structural information was obtained from a previous analysis performed by URS. The original design load for the tower was not available at the time of analysis.

Documents Provided:

Document Type	Remarks	Source
Previous Structural Analysis	URS Corporation Job \#: 36917370, dated 10/10/2012	SBA
Previous Structural Analysis	Hudson Design Group dated 05/06/2013	SBA
Previous Structural Analysis	GPD Job \#: 2014778.33762.02, dated 3/13/2014	SBA
Foundation Calculations	URS Corporation Job \#: 36917370, dated 10/10/2012	SBA
Construction Drawings	Hudson Design Group, reviewed by SBA 7/10/2014	SBA

Tower Materials:

Structural Components	Material Strength
Pole	ASTM A572 (65 KSI Yield Strength)
Base Plate	ASTM A572 (60 KSI Yield Strength)
Anchor Rods	ASTM A615 (75 KSI Yield Strength)

Tower Loading

The following data shows the major loading that the tower supports. All existing/leased and proposed loading was provided by SBA.

Existing/Leased Loading

Carrier	Mounting Level (ft)	Center Line Elevation (ft)	\# of Antenna s	Antenna Manufact.	Antenna/Mount Model	\# of Coax	Coax Size (in)	Note
Town of Cheshire	160	170	1		20' Omni	4	1/2	
		168	2	Decibel	DB224			
		166.17	1		6 ' Omni			
		160	3		T-Arm			
Sprint	160	162	3	RFS	APXVSPP18-C-A20	63	$\begin{gathered} 1-5 / 8 \\ \text { Hybriflex } \end{gathered}$	
		160	1		LP Platform			
		158	6		RRH			
T-Mobile	152	149	3	Ericsson	AIR21 B2A/B4P	18	1-5/8	
			3	Ericsson	AIR21 B4A/B2P			
			3	RFS	APX16-PV-6PVL-C			
			3	Ericsson	KRY 112			
			3	RFS	ATMAA1412D			
		152	1		LP Platform			
Pocket	141.08	141.08	3	RFS	APXV18-206517S-C	6	1-5/8	1
			3		T-Arm			
AT\&T	132	132	3	Kathrein	80010121	12	1-5/8	
			2	Powerwave	P65-16-XL-2			
			2	KMW	AM-X-CD-16-65-00T-RET			
			2	Andrew	SBNM-1D6565C			
			12		TMA			
			1		LP Platform			
	125	125	6		RRH	1	3" Conduit	2
			1	Raycap	DC6-48-60-18-8F			
			1		Universal Ring Mount			
Verizon	122.5	122.5	3	Antel	BXA 70063/6CF	121	$\begin{gathered} 1-5 / 8 \\ 1-5 / 8 \text { Fiber } \end{gathered}$	
			3	Antel	BXA 185063/8CF			
			3	Andrew	HBX-6517DS-VTM			
			3	Andrew	LNX-6514DS-VTM			
			6	RFS	FD9R6004/2C-3L			
			3	Alcatel-Lucent	RRH2x40-AWS			
			1		DB-T1-6Z-8AB-0Z			
			1		LP Platform			
Town of Cheshire	89.08	89.08	1		Dipole Antenna	5	1/2	
			1		Collar Mount			
		81.25	1		Yagi Antenna			
		79.33	1		Yagi Antenna			
	83.17	83.17	1	PCTEL	GPS-TMG-HR-26N			
			1		Collar Mount			
		81.17	1		Yagi Antenna			

Notes:

1) Coax installed outside the monopole in a single row.
2) Conduit contains DC and power cables.

Final Proposed Loading Configuration

Carrier	Mounting Level (ft)	Center Line Elevation (ft)	\# of Antennas	Antenna Manufact.	Antenna/Mount Model	\# of Coax	Coax Size (in)	Note
Sprint	160	158	3	RFS	APXVSPP18-C-A20	6	1-1-/4	1
			3	RFS	APXVTM14-C-I20			
			4	RFS	ACU-A20-N			
			3	ALU	1900 MHz RRH			
			3	ALU	800 MHz RRH			
			3	ALU	2500 MHz RRH			
			3	ALU	800 MHz Filter			
		160	1		LP P Patform			

Notes:
1)This loading represents the final configuration for Sprint. See the next page for the proposed coax layout.

Proposed Coax Configuration

$\#$	CARRIER	SIZE	QTY.	ELEVATION	NOTES
1	Town of Cheshire	$1 / 2^{\prime \prime}$	4	160^{\prime}	
2	Sprint	$1-1 / 4^{\prime \prime}$ Fiber	6	160^{\prime}	Proposed
3	T-Mobile	$1-5 / 8^{\prime \prime}$	18	152^{\prime}	
4	Pocket	$1-5 / 8^{\prime \prime}$	6	141.08^{\prime}	
5	AT\&T	$1-5 / 8^{\prime \prime}$	6	132^{\prime}	
6	AT\&T	$3^{\prime \prime}$ Conduit	1	125^{\prime}	Carries DC and Power Cables
7	Verizon	$1-5 / 8^{\prime \prime}$	12	122.5^{\prime}	
8	Verizon	$1-5 / 8^{\prime \prime}$ Fiber	1	122.5^{\prime}	
9	Town of Cheshire	$1 / 2^{\prime \prime}$	5	89.09^{\prime}	

Assumptions

This structural analysis is based on the theoretical capacity of the members and is not a condition assessment of the tower. This analysis is from information supplied, and therefore, its results are based on and are as accurate as that supplied data. GPD has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural analysis.

1) Tower and structures were built in accordance with the manufacturer's specifications.
2) The tower and structures have been maintained in accordance with the manufacturer's specification.
3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in the Existing/Reserved Loading and Proposed Loading Tables, and the specified documents.
4) All mounts, if applicable, are considered adequate to support the loading. No actual analysis of the mount(s) is performed. This analysis is limited to analyzing the tower only.
5) Mount sizes, weights, and manufacturers are best estimates based on photos provided and determined without the benefit of a site visit by GPD.
6) The proposed coax shall be installed internal to the monopole.
7) All member connections and foundation steel reinforcing are assumed designed to meet or exceed the load carrying capacity of the connected member and surrounding soils respectively unless otherwise specified in this report.
8) The existing loads on the tower were modeled from the previous structural analyses.

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and GPD Group should be allowed to review any new information to determine its effect on the structural integrity of the tower.

Tower Section Results

Capacity Summary of Structural Components

Section No.	Elevation $\mathbf{f t}$	Component Type	Size	Critical Element	\mathbf{P} \mathbf{K}	$\boldsymbol{\varnothing} \mathbf{P a l l o w}^{\mathbf{K}}$	\% Capacity	Pass/ Fail
L1	$160-146.5$	Pole	TP20.91×16.75x0.1875	1	-4.72	865.69	21.0	Pass
L2	$146.5-95.75$	Pole	TP36.16x19.6876x0.25	2	-17.17	1841.20	76.7	Pass
L3	$95.75-46.75$	Pole	TP50.76x34.2745x0.3125	3	-29.70	3077.94	75.6	Pass
L4	$46.75-0$	Pole	TP64.53x48.1321×0.375	4	-49.06	4662.89	66.1	Pass
							Summary	
						Pole(L2)	76.7	Pass
					RATING $=$	$\mathbf{7 6 . 7}$	Pass	

Additional Capacities

Notes	Component	Elevation (ft)	\% Capacity	Pass / Fail
	Anchor Rods	0	67.4	Pass
	Base Plate	0	42.0	Pass
	Tower Base Foundation	0	42.8	Pass

Disclaimer of Warranties

GPD GROUP has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD GROUP in connection with this Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. All tower components have been assumed to only resist dead loads when no other loads are applied. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

This analysis is limited to the designated maximum wind and seismic conditions per the governing tower standards and code. Wind forces resulting in tower vibrations near the structure's resonant frequencies were not considered in this analysis and are outside the scope of this analysis. Lateral loading from any dynamic response was not evaluated under a time-domain based fatigue analysis.

GPD GROUP does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD GROUP provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the feasibility of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the code specified amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD GROUP, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

Towers are designed to carry gravity, wind, and ice loads. All members, legs, diagonals, struts, and redundant members provide structural stability to the tower with little redundancy. Absence or removal of a member can trigger catastrophic failure unless a substitute is provided before any removal. Legs carry axial loads and derive their strength from shorter unbraced lengths by the presence of redundant members and their connection to the diagonals with bolts or welds. If the bolts or welds are removed without providing any substitute to the frame, the leg is subjected to a higher unbraced length that immediately reduces its load carrying capacity. If a diagonal is also removed in addition to the connection, the unbraced length of the leg is greatly increased, jeopardizing its load carrying capacity. Failure of one leg can result in a tower collapse because there is no redundancy. Redundant members and diagonals are critical to the stability of the tower.

GPD GROUP makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD GROUP will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD GROUP pursuant to this report will be limited to the total fee received for preparation of this report.
DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
20' Omni (3" Diam)	160	80010121 w/ Mount Pipe	132
DB224	160	SBNH-1D6565C w/ Mount Pipe	132
DB224	160	P65-15-XLH-RR w/ Mount Pipe	132
6' Omni	160	80010121 w/ Mount Pipe	132
MTS 36" Standoff (3)	160	SBNH-1D6565C w/ Mount Pipe	132
APXVSPP18-C-A20 w/ Mount Pipe	160	AM-X-CD-16-65-00T-RET w/ Mount Pipe	132
APXVSPP18-C-A20 w/ Mount Pipe	160		
APXVSPP18-C-A20 w/ Mount Pipe	160	80010121 w/ Mount Pipe	132
APXVTM14-C-120 w/ Mount Pipe	160	AM-X-CD-16-65-00T-RET w/ Mount Pipe	132
APXVTM14-C-120 w/ Mount Pipe	160		
APXVTM14-C-120 w/ Mount Pipe	160	P65-15-XLH-RR w/ Mount Pipe	132
Mount Pipe	160	(4) TMA	132
Mount Pipe	160	(4) TMA	132
Mount Pipe	160	(4) TMA	132
(2) ACU-A20-N	160	Mount Pipe	132
ACU-A20-N	160	Mount Pipe	132
ACU-A20-N	160	Mount Pipe	132
1900MHz RRH	160	Sabre 12' LP Platform	132
1900MHz RRH	160	(2) RRH	125
1900MHz RRH	160	(2) RRH	125
RRH 800 MHz	160	(2) RRH	125
RRH 800 MHz	160	DC6-48-60-18-8F	125
RRH 800 MHz	160	Universal Ring Mount w/8" Standoff	125
RRH 2500 MHz	160	BXA-70063/6CF w/ Mount Pipe	122.5
RRH 2500 MHz	160	BXA-70063/6CF w/ Mount Pipe	122.5
RRH 2500MHz	160	BXA-70063/6CF w/ Mount Pipe	122.5
800 MHz Filter	160	BXA-185063/8CF w/ Mount Pipe	122.5
800 MHz Filter	160	BXA-185063/8CF w/ Mount Pipe	122.5
800 MHz Filter	160	BXA-185063/8CF w/ Mount Pipe	122.5
Sabre 12' LP Platform	160	(2) FD9R6004/2C-3L	122.5
AIR21 B2A/B4P w/ mount pipe	152	(2) FD9R6004/2C-3L	122.5
AIR21 B4A/B2P w/ mount pipe	152	(2) FD9R6004/2C-3L	122.5
APX16-PV-6PVL-C w/ Mount Pipe	152	HBX-6517DS-VTM w/ Mount Pipe	122.5
AIR21 B2A/B4P w/ mount pipe	152	HBX-6517DS-VTM w/ Mount Pipe	122.5
AIR21 B4A/B2P w/ mount pipe	152	HBX-6517DS-VTM w/ Mount Pipe	122.5
APX16-PV-6PVL-C w/ Mount Pipe	152	LNX-6514DS-VTM w/ Mount Pipe	122.5
AIR21 B2A/B4P w/ mount pipe	152	LNX-6514DS-VTM w/ Mount Pipe	122.5
AIR21 B4A/B2P w/ mount pipe	152	LNX-6514DS-VTM w/ Mount Pipe	122.5
APX16-PV-6PVL-C w/ Mount Pipe	152	RRH $2 \times 40-A W S$	122.5
KRY 112	152	RRH2x40-AWS	122.5
ATMAA1412D	152	RRH2x40-AWS	122.5
KRY 112	152	DB-T1-6Z-8AB-0Z	122.5
ATMAA1412D	152	MTS 14.5' LP Platform	122.5
KRY 112	152	3' Yagi	89.08
ATMAA1412D	152	3' Yagi	89.08
Sabre 12' LP Platform	152	Andrew Collar Mount	89.08
APXV18-206517S-C w/ Mount Pipe	141.08	14' Dipole	89.08
APXV18-206517S-C w/ Mount Pipe	141.08	3' Yagi	83.17
APXV18-206517S-C w/ Mount Pipe	141.08	Andrew Collar Mount	83.17
MTS 36" Standoff (3)	141.08	GPS-TMG-HR-26N	83.17

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

ALL REACTIONS ARE FACTORED

$\underline{95.8 \mathrm{ft}}$

AXIAL
49 K

0.0 ft

TORQUE 1 kip-ft

160.0 ft
146.5 ft

TOWER DESIGN NOTES

1. Tower is located in New Haven County, Connecticut.
2. Tower designed for Exposure B to the TIA-222-G Standard.
3. Tower designed for a 105 mph basic wind in accordance with the TIA-222-G Standard. 1016 kiv-incre is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to 10 -increase in thickness with height.
4. Deflections are based upon a 60 mph wind.
TORQUE 0 kip-ft 6. Tower Structure Class II.
50 mph WIND - 0.7500 in ICE7. Topographic Category 1 with Crest Height of 0.00 ft
5. TOWER RATING: 76.7%
REACTIONS - 105 mph WIND

GPD Group

520 South Main St Suite 2531
Akron, Ohio 44311
Phone: (330) 572-2100
FAX: (330) 572-2103

CT33762-M Cheshire, CT
Project: 2014778.33762.03

Client: SBA	Drawn by: ebecker	App'd:
Code: TIA-222-G	Date: 07/17/14	ale: NTS
		D

| thxTMWWer | Job | PT33762-M Cheshire, CT |
| :---: | :--- | :--- | :--- |

Tower Input Data

There is a pole section.
This tower is designed using the TIA-222-G standard.
The following design criteria apply:
Tower is located in New Haven County, Connecticut.
Basic wind speed of 105 mph .
Structure Class II.
Exposure Category B.
Topographic Category 1.
Crest Height 0.00 ft .
Nominal ice thickness of 0.7500 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf.
A wind speed of 50 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
$\sqrt{ }$ Use Code Stress Ratios
$\sqrt{ }$ Use Code Safety Factors - Guys Escalate Ice
Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) Add IBC .6D+W Combination

Distribute Leg Loads As Uniform Assume Legs Pinned
$\sqrt{ }$ Assume Rigid Index Plate
$\sqrt{ }$ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
$\sqrt{ }$ Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt. Autocalc Torque Arm Areas SR Members Have Cut Ends Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Use TIA-222-G Tension Splice Capacity Exemption

Treat Feedline Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules
Calculate Redundant Bracing Forces
Ignore Redundant Members in FEA
SR Leg Bolts Resist Compression
All Leg Panels Have Same Allowable
Offset Girt At Foundation
$\sqrt{ }$ Consider Feedline Torque
Include Angle Block Shear Check Poles
$\sqrt{ }$ Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets

Feed Line/Linear Appurtenances - Entered As Round Or Flat

| Description | Sector | Component
 Type | Placement | Total
 Number | Number
 Per Row | Start/End
 Position | Width or Perimeter
 Diameter
 in | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| in | | | | | | | | |

tnxTower GPD Group 520 South Main St Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2103	Job	CT33762-M Cheshire, CT	$\text { Page } 2 \text { of } 9$
	Project	2014778.33762 .03	$\begin{aligned} & \text { Date } \\ & \text { 13:32:48 07/17/14 } \end{aligned}$
	Client	SBA	Designed by ebecker

Feed Line/Linear Appurtenances - Entered As Area

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Description \& $$
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
$$ \& Allow Shield \& Component Type \& Placement
ft \& Total Number \& \& $C_{A} A_{A}$

$f t^{2} / f t$ \& | Weight |
| :--- |
| plf |

\hline \multirow[t]{3}{*}{LDF4-50A (1/2 FOAM)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{Inside Pole} \& \multirow[t]{3}{*}{160.00-8.00} \& \multirow[t]{3}{*}{4} \& No Ice \& 0.00 \& 0.15

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.15

\hline \& \& \& \& \& \& $1{ }^{1 \prime}$ Ice \& 0.00 \& 0.15

\hline \multirow[t]{3}{*}{LDF6-50A (1-1/4 FOAM)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{Inside Pole} \& \multirow[t]{3}{*}{160.00-8.00} \& \multirow[t]{3}{*}{6} \& No Ice \& 0.00 \& 0.66

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.66

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.66

\hline \multirow[t]{3}{*}{$$
\begin{gathered}
\text { LDF7-50A }(1-5 / 8 \\
\text { FOAM })
\end{gathered}
$$} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{Inside Pole} \& \multirow[t]{3}{*}{152.00-8.00} \& \multirow[t]{3}{*}{18} \& No Ice \& 0.00 \& 0.82

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.82

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.82

\hline \multirow[t]{3}{*}{$$
\begin{gathered}
\text { LDF7-50A }(1-5 / 8 \\
\text { FOAM })
\end{gathered}
$$} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{Inside Pole} \& \multirow[t]{3}{*}{132.00-8.00} \& \multirow[t]{3}{*}{12} \& No Ice \& 0.00 \& 0.82

\hline \& \& \& \& \& \& $1 / 2^{\prime \prime}$ Ice \& 0.00 \& 0.82

\hline \& \& \& \& \& \& $1{ }^{1 \prime}$ Ice \& 0.00 \& 0.82

\hline \multirow[t]{3}{*}{3" Innerduct} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{Inside Pole} \& \multirow[t]{3}{*}{125.00-8.00} \& \multirow[t]{3}{*}{1} \& No Ice \& 0.00 \& 0.50

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.50

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.50

\hline \multirow[t]{3}{*}{LDF7-50A (1-5/8 FOAM)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{Inside Pole} \& \multirow[t]{3}{*}{122.50-8.00} \& \multirow[t]{3}{*}{12} \& No Ice \& 0.00 \& 0.82

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.82

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.82

\hline \multirow[t]{3}{*}{HB158-1-08U8-S8J18 (1-5/8")} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{Inside Pole} \& \multirow[t]{3}{*}{122.50-8.00} \& \multirow[t]{3}{*}{1} \& No Ice \& 0.00 \& 1.30

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 1.30

\hline \& \& \& \& \& \& $1{ }^{1 \prime}$ Ice \& 0.00 \& 1.30

\hline \multirow[t]{3}{*}{LDF4-50A (1/2 FOAM)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{Inside Pole} \& \multirow[t]{3}{*}{89.08-8.00} \& \multirow[t]{3}{*}{1} \& No Ice \& 0.00 \& 0.15

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.15

\hline \& \& \& \& \& \& 1" Ice \& 0.00 \& 0.15

\hline \multirow[t]{3}{*}{LDF4-50A (1/2 FOAM)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{Inside Pole} \& \multirow[t]{3}{*}{81.25-8.00} \& \multirow[t]{3}{*}{1} \& No Ice \& 0.00 \& 0.15

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.15

\hline \& \& \& \& \& \& $1{ }^{1 \prime}$ Ice \& 0.00 \& 0.15

\hline \multirow[t]{3}{*}{LDF4-50A (1/2 FOAM)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{Inside Pole} \& \multirow[t]{3}{*}{79.33-8.00} \& \multirow[t]{3}{*}{1} \& No Ice \& 0.00 \& 0.15

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.15

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.15

\hline \multirow[t]{3}{*}{LDF4-50A (1/2 FOAM)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{Inside Pole} \& \multirow[t]{3}{*}{83.17-8.00} \& \multirow[t]{3}{*}{1} \& No Ice \& 0.00 \& 0.15

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.15

\hline \& \& \& \& \& \& $1{ }^{1 \prime}$ Ice \& 0.00 \& 0.15

\hline \multirow[t]{3}{*}{LDF4-50A (1/2 FOAM)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{Inside Pole} \& \multirow[t]{3}{*}{81.17-8.00} \& \multirow[t]{3}{*}{1} \& No Ice \& 0.00 \& 0.15

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.15

\hline \& \& \& \& \& \& 1" Ice \& 0.00 \& 0.15

\hline
\end{tabular}

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) \\
Front \\
\(f t^{2}\)
\end{tabular} \& \(C_{A} A_{A}\)
Side

$f t^{2}$ \& Weight

\hline \multirow[t]{3}{*}{20' Omni (3" Diam)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 2.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 6.00 \& 6.00 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.03 \& 8.03 \& 0.09

\hline \& \& \& 10.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 10.08 \& 10.08 \& 0.14

\hline \multirow[t]{3}{*}{DB224} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 2.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 3.15 \& 3.15 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.67 \& 5.67 \& 0.04

\hline \& \& \& 8.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 8.19 \& 8.19 \& 0.05

\hline \multirow[t]{3}{*}{DB224} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 2.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 3.15 \& 3.15 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.67 \& 5.67 \& 0.04

\hline \& \& \& 8.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 8.19 \& 8.19 \& 0.05

\hline
\end{tabular}

tnxTower GPD Group 520 South Main St Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2103	Job	CT33762-M Cheshire, CT	$\begin{aligned} & \text { Page } \\ & \\ & \end{aligned}$
	Project	2014778.33762 .03	$\begin{aligned} & \text { Date } \\ & \text { 13:32:48 07/17/14 } \end{aligned}$
	Client	SBA	Designed by ebecker

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& | $C_{A} A_{A}$ Side |
| :--- |
| $f t^{2}$ | \& Weight

\hline \multirow[t]{3}{*}{6' Omni} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 2.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 1.77 \& 1.77 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.13 \& 2.13 \& 0.04

\hline \& \& \& 6.17 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.50 \& 2.50 \& 0.06

\hline \multirow[t]{3}{*}{MTS 36" Standoff (3)} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 2.64 \& 2.64 \& 0.09

\hline \& \& \& \& \& \& 1/2" Ice \& 4.10 \& 4.10 \& 0.13

\hline \& \& \& \& \& \& 1" Ice \& 5.56 \& 5.56 \& 0.17

\hline \multicolumn{8}{|l|}{***} \& \&

\hline \multirow[t]{3}{*}{APXVSPP18-C-A20 w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 8.26 \& 6.71 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.81 \& 7.66 \& 0.14

\hline \& \& \& -2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.36 \& 8.49 \& 0.22

\hline \multirow[t]{3}{*}{APXVSPP18-C-A20 w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 8.26 \& 6.71 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.81 \& 7.66 \& 0.14

\hline \& \& \& -2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.36 \& 8.49 \& 0.22

\hline \multirow[t]{3}{*}{APXVSPP18-C-A20 w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 8.26 \& 6.71 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.81 \& 7.66 \& 0.14

\hline \& \& \& -2.00 \& \& \& $1^{\prime \prime}$ Ice \& 9.36 \& 8.49 \& 0.22

\hline \multirow[t]{3}{*}{APXVTM14-C-120 w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 7.13 \& 4.96 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.66 \& 5.75 \& 0.13

\hline \& \& \& -2.00 \& \& \& $1^{\prime \prime}$ Ice \& 8.18 \& 6.47 \& 0.19

\hline \multirow[t]{3}{*}{APXVTM14-C-120 w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 7.13 \& 4.96 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.66 \& 5.75 \& 0.13

\hline \& \& \& -2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 8.18 \& 6.47 \& 0.19

\hline \multirow[t]{3}{*}{APXVTM14-C-120 w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 7.13 \& 4.96 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.66 \& 5.75 \& 0.13

\hline \& \& \& -2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 8.18 \& 6.47 \& 0.19

\hline \multirow[t]{3}{*}{Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 1.43 \& 1.43 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.50 \& 1.50 \& 0.03

\hline \& \& \& -2.00 \& \& \& 1" Ice \& 1.57 \& 1.57 \& 0.04

\hline \multirow[t]{3}{*}{Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 1.43 \& 1.43 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.50 \& 1.50 \& 0.03

\hline \& \& \& -2.00 \& \& \& $1^{\prime \prime}$ Ice \& 1.57 \& 1.57 \& 0.04

\hline \multirow[t]{3}{*}{Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 1.43 \& 1.43 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.50 \& 1.50 \& 0.03

\hline \& \& \& -2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.57 \& 1.57 \& 0.04

\hline \multirow[t]{3}{*}{(2) ACU-A20-N} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 0.08 \& 0.14 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.12 \& 0.19 \& 0.00

\hline \& \& \& -2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.17 \& 0.25 \& 0.00

\hline \multirow[t]{3}{*}{ACU-A20-N} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 0.08 \& 0.14 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.12 \& 0.19 \& 0.00

\hline \& \& \& -2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.17 \& 0.25 \& 0.00

\hline \multirow[t]{3}{*}{ACU-A20-N} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 0.08 \& 0.14 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.12 \& 0.19 \& 0.00

\hline \& \& \& -2.00 \& \& \& 1" Ice \& 0.17 \& 0.25 \& 0.00

\hline \multirow[t]{3}{*}{1900MHz RRH} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 2.94 \& 1.19 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.17 \& 1.35 \& 0.08

\hline \& \& \& -2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.41 \& 1.52 \& 0.11

\hline \multirow[t]{3}{*}{1900MHz RRH} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 2.94 \& 1.19 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.17 \& 1.35 \& 0.08

\hline \& \& \& -2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.41 \& 1.52 \& 0.11

\hline \multirow[t]{3}{*}{1900MHz RRH} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 2.94 \& 1.19 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.17 \& 1.35 \& 0.08

\hline \& \& \& -2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.41 \& 1.52 \& 0.11

\hline \multirow[t]{3}{*}{RRH 800 MHz} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 2.01 \& 1.67 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.21 \& 1.86 \& 0.06

\hline \& \& \& -2.00 \& \& \& 1 " Ice \& 2.42 \& 2.06 \& 0.08

\hline \multirow[t]{2}{*}{RRH 800 MHz} \& \multirow[t]{2}{*}{B} \& \multirow[t]{2}{*}{From Leg} \& 4.00 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{160.00} \& No Ice \& 2.01 \& 1.67 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.21 \& 1.86 \& 0.06

\hline
\end{tabular}

tnxTower GPD Group 520 South Main St Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2103	Job	CT33762-M Cheshire, CT	$\text { Page } 4 \text { of } 9$
	Project	2014778.33762 .03	$\begin{aligned} & \text { Date } \\ & \text { 13:32:48 07/17/14 } \end{aligned}$
	Client	SBA	Designed by ebecker

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

$$
f t^{2}
$$ \& $C_{A} A_{A}$

Side

$f t^{2}$ \& Weight

\hline \multirow{4}{*}{RRH 800 MHz} \& \multirow{4}{*}{C} \& \multirow{4}{*}{From Leg} \& -2.00 \& \multirow{4}{*}{0.0000} \& \multirow{3}{*}{160.00} \& 1" Ice \& 2.42 \& 2.06 \& 0.08

\hline \& \& \& 4.00 \& \& \& No Ice \& 2.01 \& 1.67 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.21 \& 1.86 \& 0.06

\hline \& \& \& -2.00 \& \& \multirow{4}{*}{160.00} \& 1" Ice \& 2.42 \& 2.06 \& 0.08

\hline \multirow[t]{3}{*}{RRH 2500 MHz} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \& No Ice \& 3.76 \& 2.23 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.03 \& 2.46 \& 0.08

\hline \& \& \& -2.00 \& \& \& 1 " Ice \& 4.30 \& 2.69 \& 0.11

\hline \multirow[t]{3}{*}{RRH 2500 MHz} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 3.76 \& 2.23 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.03 \& 2.46 \& 0.08

\hline \& \& \& -2.00 \& \& \& 1" Ice \& 4.30 \& 2.69 \& 0.11

\hline \multirow[t]{3}{*}{RRH 2500 MHz} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 3.76 \& 2.23 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.03 \& 2.46 \& 0.08

\hline \& \& \& -2.00 \& \& \& 1 " Ice \& 4.30 \& 2.69 \& 0.11

\hline \multirow[t]{3}{*}{800 MHz Filter} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 0.49 \& 0.48 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.60 \& 0.59 \& 0.01

\hline \& \& \& -2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.71 \& 0.70 \& 0.02

\hline \multirow[t]{3}{*}{800 MHz Filter} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 0.49 \& 0.48 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.60 \& 0.59 \& 0.01

\hline \& \& \& -2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.71 \& 0.70 \& 0.02

\hline \multirow[t]{3}{*}{800 MHz Filter} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 0.49 \& 0.48 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.60 \& 0.59 \& 0.01

\hline \& \& \& -2.00 \& \& \& 1" Ice \& 0.71 \& 0.70 \& 0.02

\hline \multirow[t]{3}{*}{Sabre 12' LP Platform} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 28.47 \& 28.47 \& 1.12

\hline \& \& \& \& \& \& 1/2" Ice \& 33.59 \& 33.59 \& 1.51

\hline \& \& \& \& \& \& 1 " Ice \& 38.71 \& 38.71 \& 1.91

\hline *** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{AIR21 B2A/B4P w/ mount pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{152.00} \& No Ice \& 6.61 \& 5.54 \& 0.09

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.08 \& 6.27 \& 0.14

\hline \& \& \& -3.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.55 \& 7.01 \& 0.21

\hline \multirow[t]{3}{*}{AIR21 B4A/B2P w/ mount pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{152.00} \& No Ice \& 6.61 \& 5.54 \& 0.10

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.08 \& 6.27 \& 0.16

\hline \& \& \& -3.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.55 \& 7.01 \& 0.22

\hline \multirow[t]{3}{*}{APX16-PV-6PVL-C w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{152.00} \& No Ice \& 6.79 \& 3.05 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.23 \& 3.65 \& 0.11

\hline \& \& \& -3.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.68 \& 4.27 \& 0.16

\hline \multirow[t]{3}{*}{AIR21 B2A/B4P w/ mount pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{152.00} \& No Ice \& 6.61 \& 5.54 \& 0.09

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.08 \& 6.27 \& 0.14

\hline \& \& \& -3.00 \& \& \& $1^{\prime \prime}$ Ice \& 7.55 \& 7.01 \& 0.21

\hline \multirow[t]{3}{*}{AIR21 B4A/B2P w/ mount pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{152.00} \& No Ice \& 6.61 \& 5.54 \& 0.10

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.08 \& 6.27 \& 0.16

\hline \& \& \& -3.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.55 \& 7.01 \& 0.22

\hline \multirow[t]{3}{*}{APX16-PV-6PVL-C w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{152.00} \& No Ice \& 6.79 \& 3.05 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.23 \& 3.65 \& 0.11

\hline \& \& \& -3.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.68 \& 4.27 \& 0.16

\hline \multirow[t]{3}{*}{AIR21 B2A/B4P w/ mount pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{152.00} \& No Ice \& 6.61 \& 5.54 \& 0.09

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.08 \& 6.27 \& 0.14

\hline \& \& \& -3.00 \& \& \& 1" Ice \& 7.55 \& 7.01 \& 0.21

\hline \multirow[t]{3}{*}{AIR21 B4A/B2P w/ mount pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{152.00} \& No Ice \& 6.61 \& 5.54 \& 0.10

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.08 \& 6.27 \& 0.16

\hline \& \& \& -3.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 7.55 \& 7.01 \& 0.22

\hline \multirow[t]{3}{*}{APX16-PV-6PVL-C w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{152.00} \& No Ice \& 6.79 \& 3.05 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.23 \& 3.65 \& 0.11

\hline \& \& \& -3.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.68 \& 4.27 \& 0.16

\hline \multirow[t]{3}{*}{KRY 112} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{152.00} \& No Ice \& 0.53 \& 0.42 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.63 \& 0.53 \& 0.02

\hline \& \& \& -3.00 \& \& \& 1" Ice \& 0.75 \& 0.64 \& 0.02

\hline ATMAA1412D \& A \& From Leg \& 4.00 \& 0.0000 \& 152.00 \& No Ice \& 1.17 \& 0.47 \& 0.02

\hline
\end{tabular}

tnxTower GPD Group 520 South Main St Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2103	Job	CT33762-M Cheshire, CT	$\text { Page } 5 \text { of } 9$
	Project	2014778.33762 .03	$\begin{aligned} & \text { Date } \\ & \text { 13:32:48 07/17/14 } \end{aligned}$
	Client	SBA	Designed by ebecker

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

K

\hline \multirow{5}{*}{KRY 112} \& \multirow{4}{*}{B} \& \multirow{5}{*}{From Leg} \& 0.00 \& \multirow{5}{*}{0.0000} \& \multirow{4}{*}{152.00} \& 1/2" Ice \& 1.31 \& 0.57 \& 0.02

\hline \& \& \& -3.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.47 \& 0.69 \& 0.03

\hline \& \& \& 4.00 \& \& \& No Ice \& 0.53 \& 0.42 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.63 \& 0.53 \& 0.02

\hline \& \multirow{4}{*}{B} \& \& -3.00 \& \& \multirow{3}{*}{152.00} \& $1{ }^{\prime \prime}$ Ice \& 0.75 \& 0.64 \& 0.02

\hline \multirow[t]{3}{*}{ATMAA1412D} \& \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \& No Ice \& 1.17 \& 0.47 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.31 \& 0.57 \& 0.02

\hline \& \& \& -3.00 \& \& \multirow{4}{*}{152.00} \& $1{ }^{\prime \prime}$ Ice \& 1.47 \& 0.69 \& 0.03

\hline \multirow[t]{3}{*}{KRY 112} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \& No Ice \& 0.53 \& 0.42 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.63 \& 0.53 \& 0.02

\hline \& \& \& -3.00 \& \& \& $1^{\prime \prime}$ Ice \& 0.75 \& 0.64 \& 0.02

\hline \multirow[t]{3}{*}{ATMAA1412D} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{152.00} \& No Ice \& 1.17 \& 0.47 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.31 \& 0.57 \& 0.02

\hline \& \& \& -3.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.47 \& 0.69 \& 0.03

\hline \multirow[t]{3}{*}{Sabre 12' LP Platform} \& \multirow[t]{4}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{152.00} \& No Ice \& 28.47 \& 28.47 \& 1.12

\hline \& \& \& \& \& \& 1/2" Ice \& 33.59 \& 33.59 \& 1.51

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 38.71 \& 38.71 \& 1.91

\hline *** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{APXV18-206517S-C w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{141.08} \& No Ice \& 5.17 \& 4.46 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.62 \& 5.39 \& 0.09

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 6.08 \& 6.20 \& 0.14

\hline \multirow[t]{3}{*}{APXV18-206517S-C w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{141.08} \& No Ice \& 5.17 \& 4.46 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.62 \& 5.39 \& 0.09

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 6.08 \& 6.20 \& 0.14

\hline \multirow[t]{3}{*}{APXV18-206517S-C w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{141.08} \& No Ice \& 5.17 \& 4.46 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.62 \& 5.39 \& 0.09

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 6.08 \& 6.20 \& 0.14

\hline \multirow[t]{3}{*}{MTS 36" Standoff (3)} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{141.08} \& No Ice \& 2.64 \& 2.64 \& 0.09

\hline \& \& \& \& \& \& 1/2" Ice \& 4.10 \& 4.10 \& 0.13

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 5.56 \& 5.56 \& 0.17

\hline *** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{80010121 w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& $$
4.00
$$ \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{132.00} \& No Ice \& 6.27 \& 5.19 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.05 \& 6.36 \& 0.13

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.78 \& 7.39 \& 0.19

\hline \multirow[t]{3}{*}{SBNH-1D6565C w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{132.00} \& No Ice \& 11.45 \& 9.60 \& 0.09

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.06 \& 11.02 \& 0.18

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 12.69 \& 12.29 \& 0.27

\hline \multirow[t]{3}{*}{P65-15-XLH-RR w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{132.00} \& No Ice \& 5.97 \& 4.05 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.39 \& 4.64 \& 0.10

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 6.81 \& 5.25 \& 0.15

\hline \multirow[t]{3}{*}{80010121 w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{132.00} \& No Ice \& 6.27 \& 5.19 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.05 \& 6.36 \& 0.13

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 7.78 \& 7.39 \& 0.19

\hline \multirow[t]{3}{*}{SBNH-1D6565C w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{132.00} \& No Ice \& 11.45 \& 9.60 \& 0.09

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.06 \& 11.02 \& 0.18

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 12.69 \& 12.29 \& 0.27

\hline \multirow[t]{3}{*}{AM-X-CD-16-65-00T-RET w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{132.00} \& No Ice \& 8.55 \& 6.65 \& 0.09

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 9.18 \& 7.68 \& 0.16

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 9.79 \& 8.56 \& 0.23

\hline \multirow[t]{3}{*}{80010121 w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{132.00} \& No Ice \& 6.27 \& 5.19 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.05 \& 6.36 \& 0.13

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 7.78 \& 7.39 \& 0.19

\hline \multirow[t]{3}{*}{AM-X-CD-16-65-00T-RET w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{132.00} \& No Ice \& 8.55 \& 6.65 \& 0.09

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 9.18 \& 7.68 \& 0.16

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 9.79 \& 8.56 \& 0.23

\hline \multirow[t]{2}{*}{P65-15-XLH-RR w/ Mount Pipe} \& \multirow[t]{2}{*}{C} \& \multirow[t]{2}{*}{From Leg} \& 4.00 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{132.00} \& No Ice \& 5.97 \& 4.05 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.39 \& 4.64 \& 0.10

\hline
\end{tabular}

tnxTower GPD Group 520 South Main St Suite 2531 Akron，Ohio 44311 Phone：（330）572－2100 FAX：（330）572－2103	Job	CT33762－M Cheshire，CT	$\text { Page } 6 \text { of } 9$
	Project	2014778.33762 .03	$\begin{aligned} & \text { Date } \\ & \text { 13:32:48 07/17/14 } \end{aligned}$
	Client	SBA	Designed by ebecker

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \begin{tabular}{l}
Face \\
or Leg
\end{tabular} \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets： \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
－
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

\hline \multirow{3}{*}{（4）TMA} \& \multirow{3}{*}{A} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{132.00} \& 1＂Ice \& 6.81 \& 5.25 \& 0.15

\hline \& \& \& 4.00 \& \& \& No Ice \& 1.91 \& 0.95 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1／2＂Ice \& 2.09 \& 1.09 \& 0.04

\hline \multirow{4}{*}{（4）TMA} \& \multirow{3}{*}{B} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{132.00} \& $1{ }^{\prime \prime}$ Ice \& 2.27 \& 1.23 \& 0.05

\hline \& \& \& 4.00 \& \& \& No Ice \& 1.91 \& 0.95 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1／2＂Ice \& 2.09 \& 1.09 \& 0.04

\hline \& \multirow{3}{*}{C} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{4}{*}{0.0000} \& \multirow{3}{*}{132.00} \& $1{ }^{\prime \prime}$ Ice \& 2.27 \& 1.23 \& 0.05

\hline \multirow[t]{3}{*}{（4）TMA} \& \& \& 4.00 \& \& \& No Ice \& 1.91 \& 0.95 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1／2＂Ice \& 2.09 \& 1.09 \& 0.04

\hline \& \multirow{4}{*}{A} \& \multirow{4}{*}{From Leg} \& 0.00 \& \& \multirow{4}{*}{132.00} \& $1{ }^{\prime \prime}$ Ice \& 2.27 \& 1.23 \& 0.05

\hline \multirow[t]{3}{*}{Mount Pipe} \& \& \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \& No Ice \& 1.43 \& 1.43 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1／2＂Ice \& 1.50 \& 1.50 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.57 \& 1.57 \& 0.04

\hline \multirow[t]{3}{*}{Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{132.00} \& No Ice \& 1.43 \& 1.43 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1／2＂Ice \& 1.50 \& 1.50 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.57 \& 1.57 \& 0.04

\hline \multirow[t]{3}{*}{Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{132.00} \& No Ice \& 1.43 \& 1.43 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1／2＂Ice \& 1.50 \& 1.50 \& 0.03

\hline \& \& \& 0.00 \& \& \& ロロロロ \& 1.57 \& 1.57 \& 0.04

\hline \multirow[t]{3}{*}{Sabre 12＇LP Platform} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{132.00} \& No Ice \& 28.47 \& 28.47 \& 1.12

\hline \& \& \& \& \& \& 1／2＂Ice \& 33.59 \& 33.59 \& 1.51

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 38.71 \& 38.71 \& 1.91

\hline ＊＊＊ \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{（2）RRH} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{125.00} \& No Ice \& 2.94 \& 1.25 \& 0.10

\hline \& \& \& 0.00 \& \& \& 1／2＂Ice \& 3.17 \& 1.41 \& 0.12

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.40 \& 1.57 \& 0.14

\hline \multirow[t]{3}{*}{（2）RRH} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{125.00} \& No Ice \& 2.94 \& 1.25 \& 0.10

\hline \& \& \& 0.00 \& \& \& 1／2＂Ice \& 3.17 \& 1.41 \& 0.12

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.40 \& 1.57 \& 0.14

\hline \multirow[t]{3}{*}{（2）RRH} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{125.00} \& No Ice \& 2.94 \& 1.25 \& 0.10

\hline \& \& \& 0.00 \& \& \& 1／2＂Ice \& 3.17 \& 1.41 \& 0.12

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.40 \& 1.57 \& 0.14

\hline \multirow[t]{3}{*}{DC6－48－60－18－8F} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{125.00} \& No Ice \& 2.57 \& 2.57 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1／2＂Ice \& 2.80 \& 2.80 \& 0.04

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.04 \& 3.04 \& 0.07

\hline \multirow[t]{3}{*}{Universal Ring Mount w／8＂ Standoff} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{125.00} \& No Ice \& 1.00 \& 1.00 \& 0.05

\hline \& \& \& \& \& \& $$
1 / 2^{\prime \prime} \text { Ice }
$$ \& 1.50 \& 1.50 \& 0.07

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.00 \& 2.00 \& 0.09

\hline ＊＊＊ \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{BXA－70063／6CF w／Mount Pipe} \& \multirow[t]{3}{*}{A} \& From \& 4.00 \& 0.0000 \& 122.50 \& No Ice \& 8.23 \& 5.66 \& 0.05

\hline \& \& Centroid－Le \& 0.00 \& \& \& 1／2＂Ice \& 8.99 \& 6.92 \& 0.11

\hline \& \& g \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.71 \& 8.04 \& 0.18

\hline \multirow[t]{3}{*}{BXA－70063／6CF w／Mount Pipe} \& \multirow[t]{3}{*}{B} \& From \& 4.00 \& 0.0000 \& 122.50 \& No Ice \& 8.23 \& 5.66 \& 0.05

\hline \& \& Centroid－Le \& 0.00 \& \& \& 1／2＂Ice \& 8.99 \& 6.92 \& 0.11

\hline \& \& g \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.71 \& 8.04 \& 0.18

\hline \multirow[t]{3}{*}{BXA－70063／6CF w／Mount Pipe} \& \multirow[t]{3}{*}{C} \& From \& 4.00 \& 0.0000 \& 122.50 \& No Ice \& 8.23 \& 5.66 \& 0.05

\hline \& \& Centroid－Le \& 0.00 \& \& \& 1／2＂Ice \& 8.99 \& 6.92 \& 0.11

\hline \& \& g \& 0.00 \& \& \& 1＂Ice \& 9.71 \& 8.04 \& 0.18

\hline \multirow[t]{3}{*}{BXA－185063／8CF w／Mount Pipe} \& \multirow[t]{3}{*}{A} \& From \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{122.50} \& No Ice \& 3.64 \& 3.46 \& 0.04

\hline \& \& Centroid－Le \& 0.00 \& \& \& 1／2＂Ice \& 4.26 \& 4.48 \& 0.07

\hline \& \& g \& 0.00 \& \& \& 1 ＂Ice \& 4.79 \& 5.23 \& 0.11

\hline \multirow[t]{3}{*}{BXA－185063／8CF w／Mount Pipe} \& \multirow[t]{3}{*}{B} \& From \& 4.00 \& 0.0000 \& 122.50 \& No Ice \& 3.64 \& 3.46 \& 0.04

\hline \& \& Centroid－Le \& 0.00 \& \& \& 1／2＂Ice \& 4.26 \& 4.48 \& 0.07

\hline \& \& g \& 0.00 \& \& \& 1＂Ice \& 4.79 \& 5.23 \& 0.11

\hline \multirow[t]{3}{*}{BXA－185063／8CF w／Mount Pipe} \& \multirow[t]{3}{*}{C} \& From \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{122.50} \& No Ice \& 3.64 \& 3.46 \& 0.04

\hline \& \& Centroid－Le \& 0.00 \& \& \& 1／2＂Ice \& 4.26 \& 4.48 \& 0.07

\hline \& \& g \& 0.00 \& \& \& 1 ＂Ice \& 4.79 \& 5.23 \& 0.11

\hline
\end{tabular}

tnxTower GPD Group 520 South Main St Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2103	Job	CT33762-M Cheshire, CT	$\text { Page } 7 \text { of } 9$
	Project	2014778.33762 .03	$\begin{aligned} & \text { Date } \\ & \text { 13:32:48 07/17/14 } \end{aligned}$
	Client	SBA	Designed by ebecker

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& $C_{A} A_{A}$
Front

$f t^{2}$ \& $C_{A} A_{A}$
Side

$f t^{2}$ \& Weight

\hline \multirow[t]{3}{*}{(2) FD9R6004/2C-3L} \& \multirow[t]{3}{*}{A} \& From \& 4.00 \& 0.0000 \& 122.50 \& No Ice \& 0.37 \& 0.08 \& 0.00

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 0.45 \& 0.14 \& 0.01

\hline \& \& g \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.54 \& 0.20 \& 0.01

\hline \multirow[t]{3}{*}{(2) FD9R6004/2C-3L} \& \multirow[t]{3}{*}{B} \& From \& 4.00 \& 0.0000 \& 122.50 \& No Ice \& 0.37 \& 0.08 \& 0.00

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 0.45 \& 0.14 \& 0.01

\hline \& \& g \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.54 \& 0.20 \& 0.01

\hline \multirow[t]{3}{*}{(2) FD9R6004/2C-3L} \& \multirow[t]{3}{*}{C} \& From \& 4.00 \& 0.0000 \& 122.50 \& No Ice \& 0.37 \& 0.08 \& 0.00

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 0.45 \& 0.14 \& 0.01

\hline \& \& g \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.54 \& 0.20 \& 0.01

\hline \multirow[t]{3}{*}{HBX-6517DS-VTM w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& From \& 4.00 \& 0.0000 \& 122.50 \& No Ice \& 5.30 \& 4.73 \& 0.04

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 5.77 \& 5.68 \& 0.08

\hline \& \& g \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 6.25 \& 6.50 \& 0.13

\hline \multirow[t]{3}{*}{HBX-6517DS-VTM w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& From \& 4.00 \& 0.0000 \& 122.50 \& No Ice \& 5.30 \& 4.73 \& 0.04

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 5.77 \& 5.68 \& 0.08

\hline \& \& g \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 6.25 \& 6.50 \& 0.13

\hline \multirow[t]{3}{*}{HBX-6517DS-VTM w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& From \& 4.00 \& 0.0000 \& 122.50 \& No Ice \& 5.30 \& 4.73 \& 0.04

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 5.77 \& 5.68 \& 0.08

\hline \& \& g \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 6.25 \& 6.50 \& 0.13

\hline \multirow[t]{3}{*}{LNX-6514DS-VTM w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& From \& 4.00 \& 0.0000 \& 122.50 \& No Ice \& 8.41 \& 6.83 \& 0.06

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 8.96 \& 7.79 \& 0.13

\hline \& \& g \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.52 \& 8.62 \& 0.20

\hline \multirow[t]{3}{*}{LNX-6514DS-VTM w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& From \& 4.00 \& 0.0000 \& 122.50 \& No Ice \& 8.41 \& 6.83 \& 0.06

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 8.96 \& 7.79 \& 0.13

\hline \& \& g \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.52 \& 8.62 \& 0.20

\hline \multirow[t]{3}{*}{LNX-6514DS-VTM w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& From \& 4.00 \& 0.0000 \& 122.50 \& No Ice \& 8.41 \& 6.83 \& 0.06

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 8.96 \& 7.79 \& 0.13

\hline \& \& g \& 0.00 \& \& \& 1" Ice \& 9.52 \& 8.62 \& 0.20

\hline \multirow[t]{3}{*}{RRH2x40-AWS} \& \multirow[t]{3}{*}{A} \& From \& 4.00 \& 0.0000 \& 122.50 \& No Ice \& 2.52 \& 1.59 \& 0.04

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 2.75 \& 1.80 \& 0.06

\hline \& \& g \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.99 \& 2.01 \& 0.08

\hline \multirow[t]{3}{*}{RRH2x40-AWS} \& \multirow[t]{3}{*}{B} \& From \& 4.00 \& 0.0000 \& 122.50 \& No Ice \& 2.52 \& 1.59 \& 0.04

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 2.75 \& 1.80 \& 0.06

\hline \& \& g \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.99 \& 2.01 \& 0.08

\hline \multirow[t]{3}{*}{RRH2x40-AWS} \& \multirow[t]{3}{*}{C} \& From \& 4.00 \& 0.0000 \& 122.50 \& No Ice \& 2.52 \& 1.59 \& 0.04

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 2.75 \& 1.80 \& 0.06

\hline \& \& g \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.99 \& 2.01 \& 0.08

\hline \multirow[t]{3}{*}{DB-T1-6Z-8AB-0Z} \& \multirow[t]{3}{*}{C} \& From \& 4.00 \& 0.0000 \& 122.50 \& No Ice \& 5.60 \& 2.33 \& 0.05

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 5.92 \& 2.56 \& 0.09

\hline \& \& g \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 6.24 \& 2.79 \& 0.13

\hline \multirow[t]{3}{*}{MTS 14.5' LP Platform} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{122.50} \& No Ice \& 17.46 \& 17.46 \& 1.35

\hline \& \& \& \& \& \& 1/2" Ice \& 22.44 \& 22.44 \& 1.62

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 27.42 \& 27.42 \& 1.90

\hline *** \& \& \& \& \& \& \& \& \&

\hline \multicolumn{10}{|l|}{***}

\hline \multirow[t]{3}{*}{3' Yagi} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& 0.0000 \& 89.08 \& No Ice \& 0.52 \& 0.52 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.71 \& 0.71 \& 0.02

\hline \& \& \& -7.83 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.90 \& 0.90 \& 0.03

\hline \multirow[t]{3}{*}{3' Yagi} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& 0.0000 \& 89.08 \& No Ice \& 0.52 \& 0.52 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.71 \& 0.71 \& 0.02

\hline \& \& \& -9.75 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.90 \& 0.90 \& 0.03

\hline \multirow[t]{3}{*}{3' Yagi} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& 0.0000 \& 83.17 \& No Ice \& 0.52 \& 0.52 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.71 \& 0.71 \& 0.02

\hline \& \& \& -1.92 \& \& \& $1{ }^{1 \prime}$ Ice \& 0.90 \& 0.90 \& 0.03

\hline \multirow[t]{3}{*}{Andrew Collar Mount} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& 0.0000 \& 83.17 \& No Ice \& 2.14 \& 2.14 \& 0.19

\hline \& \& \& \& \& \& 1/2" Ice \& 2.35 \& 2.35 \& 0.25

\hline \& \& \& \& \& \& 1" Ice \& 2.57 \& 2.57 \& 0.30

\hline Andrew Collar Mount \& C \& None \& \& 0.0000 \& 89.08 \& No Ice \& 2.14 \& 2.14 \& 0.19

\hline
\end{tabular}

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert $f t$ $f t$ ft	Azimuth Adjustment 0	Placement		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side	Weight
	C	From Leg		0.0000	89.08	1/2" Ice	2.35	2.35	0.25
						1" Ice	2.57	2.57	0.30
			1.00			No Ice	2.80	2.80	0.03
			0.00			1/2" Ice	4.22	4.22	0.05
			0.00		83.17	$1{ }^{\prime \prime}$ Ice	5.67	5.67	0.08
	B	From Leg	1.00	0.0000		No Ice	0.16	0.16	0.00
GPS-TMG-HR-26N			0.00			1/2" Ice	0.21	0.21	0.00
			0.00			$1{ }^{\prime \prime}$ Ice	0.28	0.28	0.01

Compression Checks

Pole Design Data

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		$i n^{2}$	K	K	ϕP_{n}
L1	160-146.5 (1)	TP20.91x16.75x0.1875	13.50	0.00	0.0	11.8282	-4.72	865.69	0.005
L2	$146.5-95.75$ (2)	TP36.16x19.6876x0.25	53.50	0.00	0.0	27.3952	-17.17	1841.20	0.009
L3	$95.75-46.75$ (3)	TP50.76x34.2745x0.3125	53.50	0.00	0.0	48.0510	-29.70	3077.94	0.010
L4	46.75-0 (4)	TP64.53x48.1321x0.375	53.25	0.00	0.0	76.3605	-49.06	4662.89	0.011

Pole Bending Design Data

Section No.	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	Ratio $M_{u x}$	$M_{u y}$	$\phi M_{n y}$	Ratio $M_{u y}$
$f t$			kip-ft	kip-ft	$\phi M_{n x}$	kip-ft	kip-ft	$\phi M_{n y}$
L1	160-146.5 (1)	TP20.91x16.75x0.1875	71.99	353.25	0.204	0.00	353.25	0.000
L2	$146.5-95.75$ (2)	TP36.16x19.6876x0.25	990.52	1307.93	0.757	0.00	1307.93	0.000
L3	$95.75-46.75$ (3)	TP50.76x34.2745x0.3125	2290.79	3070.47	0.746	0.00	3070.47	0.000
L4	46.75-0 (4)	TP64.53x48.1321x0.375	4010.18	6163.78	0.651	0.00	6163.78	0.000

Pole Shear Design Data

Section	Elevation	Size	Actual	ϕV_{n}	Ratio No.		V_{u}		Actual

Section Capacity Table

Section	Elevation	Component Type	Size		Critical	P	$\phi P_{\text {allow }}$ No.	$f t$

GPD GROUP

Anchor Rods		
Pole Diameter $=$ Number of Rods $=$ ϕ $=$ Rod Ultimate Strength $\left(\mathrm{F}_{\mathrm{u}}\right)$ $=$ Base Plate Detail Type $=$ Rod Circle $=$ Rod Diameter $=$ Net Tensile Area $=$ Max Tension on Rod $=$ Max Compression on Rod $=$ P_{u} $=$ V_{u} $=$ η $=$ $\varphi \mathrm{R}_{\mathrm{nt}}$ $=$	64.53	$\begin{aligned} & \text { in } \\ & \text { ksi } \\ & \text { in } \\ & \text { in } \\ & \text { in }{ }^{2} \\ & \text { kips } \end{aligned}$
	16	
	0.8	
	100	
	d	
	71.651	
	2.25	
	3.25	
	164.75	
	170.88	
	170.88	
	2.19	
	0.50	
	260.00	
Anchor Rod Capacity =	7.4\%	OK

Base Plate			
Plate Strength (Fy) =	60 ksi		
$\phi=$	0.9		
Plate Thickness =	3 in		
Plate Width =	73 in		
Est. Dist. b/w ea. Rod =	6 in		
$\mathrm{w}_{\text {calc }}=$	47.83 in		
$\mathrm{w}_{\text {max }}=$	38.71 in		
w =	38.71 in		
$\mathrm{Z}=$	$87.09 \mathrm{in}^{3}$		
$\mathrm{M}_{\mathrm{u}}=$	1975.67 k-in		
$\varphi \mathrm{M}_{\mathrm{n}}=$	4702.97 k-in		
Base Plate Capacity =	42.0\% OK		${ }^{*}$ This analysis assumes the clear distance from
:---			
the top of the concrete to the bottom of the			
leveling nut is less than the diameter of the			
anchor rod. Notify GPD Group immediately if			
existing field conditions do not meet this			
assumption.			

Mat Foundation Analysis
 CT33762-M/Cheshire, CT

General Info	
Code	TIA-222-G
Bearing On	Soil
Foundation Type	Mono Pad
Pier Type	Round
Reinforcing Known	Yes
Max Capacity	1

Tower Reactions	
Moment, M	$4010 \mathrm{k}-\mathrm{ft}$
Axial, P	49 k
Shear, V	35 k

Pad \& Pier Geometry		
Pier Diameter, \varnothing	8	ft
Pad Length, L	27	ft
Pad Width, W	27	ft
Pad Thickness, t	5	ft
Depth, D	13.25	ft
Height Above Grade, HG	0	ft

Pad \& Pier Reinforcing		
Rebar Fy	60	ksi
Concrete Fc'	4	ksi
Clear Cover	3	in
Reinforced Top \& Bottom?	Yes	
Pad Reinforcing Size	$\# 8$	
Pad Quantity Per Layer	42	
Pier Rebar Size	$\# 9$	
Pier Quantity of Rebar	38	

Soil Properties	
Soil Type	Granular
Soil Unit Weight	100 pcf
Angle of Friction, \varnothing	35°
Bearing Type	Gross
Ultimate Bearing	8 ksf
Water Table Depth	0 ft
Frost Depth	3.33333 ft

GPD Mat Foundation Analysis - V1.02

Bearing Summary		Load Case	
Qxmax	1.49	ksf	
Qymax	1.49	ksf	$1.2 \mathrm{D}+1.6 \mathrm{~W}$
Qmax @ 45	1.52	ksf	$1.2 \mathrm{D}+1.6 \mathrm{~W}$
$\mathrm{Q}_{\text {(all) Gross }}$	6.00	ksf	$1.2 \mathrm{D}+1.6 \mathrm{~W}$
	Pass		
Controlling Capacity	$\mathbf{2 5 . 4 \%}$		

Overturning Summary (Required FS=1.0)		Load Case	
FS(ot)x	2.34	≥ 1.0	$0.9 \mathrm{D}+1.6 \mathrm{~W}$
FS(ot)y	2.34	≥ 1.0	$0.9 \mathrm{D}+1.6 \mathrm{~W}$
Controlling Capacity	$\mathbf{4 2 . 8 \%}$	Pass	

Sprint

PROJECT:
2.5 EQUIPMENT DEPLOYMENT

SITE NAME: CHESHIRE/TOWER VENTURES
\%

PROPERTY OWNER:
TOWN O O C CESTIIE
84 SOUTH MAN RTRET
CHESHIRE, CT 06410
TOWER OWNER:
SBA SITE MANAGEMENT
1480 ROUE 9 NORNH, SUTE 303
WOODRRICGE, NJ 07095
SBA REGIONAL SITE MANAGER: RON LENNOX
PHONE: $201-316-7348$
RLennox 9 Sbssite.com

LATITUDE (NAD83): LATITUDE (NADB3): $41^{\circ} 30^{\circ} 40.38^{\prime \prime} \mathrm{N}$
41.511217^{\prime}

LONGITUDE (NAD83):
$-72^{5} .533^{\prime} 54.69^{\prime \prime} \mathrm{W}$
-72.898525^{\prime}
COUNTY:
new haven
ZONING DISTRICT:
POWER COMPANY:
AAV PROVIDER:
AT\&T
SPRINT CONSTRUCTION MANAGER: ANDREW CLARK
PHON: $315-719-6636$ ondrew.clarkesprint.com

 GROUND-LEVEL RAN EQUIPMENT, CONSISTING OF: * INSTALL NEW GROWTH CABINET WTH 2.5 RADIO ACCESS NETWORK * NSTALL NEW GROWTH CABINET WIT 2.5 R (RAN) EQUUPMENT $\&$ (2) BATERY STRINGS
 TOWER-TOP EQUPMENT, INCLUDING INSTALLATION OF (3) PANEL ANTENNAS
 * (3) PANEL ANTENNAS

DRAWING INDEX				
SHEET NO:	SHEET TItLE	REV	CHK	BY
T-1	TITLE SHEET	2	вв	AN
SP-1	OUTLINE SPECIFICATIONS	2	BB	an
SP-2	OUTLINE SPECIFICATIONS	2	вв	AN
SP-3	OUTLINE SPECIFICATIONS	2	BB	AN
A-1	COMPOUND PLAN	2	BB	an
A-2	Elevation and antenna plans	2	BB	AN
A-3	RF DATA SHEET	2	BB	an
A-4	RAN WIRING DIAGRAM	2	BB	AN
A-5	EQUPMENT DETALS	2	BB	AN
A-6	EQUPMENT DETALS	2	вB	an
S-1	STRUCTURAL DETALLS	2	BB	an
E-1	ONE LINE DIAGRAM	2	BB	AN
E-2	GROUNDING DETALS AND NOTES	2	BB	AN
APPROVALS				
THE FOLLOWING PARTIES HEREBY APPROVE AND ACCEPT THESE DOCUMENTS AND AUTHORIZE THE CONTRACTOR TO PROCEED WITH THE CONSTRUCTION DESCRIBED HEREIN. ALL DOCUMENTS ARE SUBJECT TO REVIEW BY THE LOCAL BUILDING DEPARTMENT AND MAY IMPOSE CHANGES OR MODIFICATIONS.				

SPRINT:	DATE:
construction manager:	DATE:
LEASING/ SITE ACQUISITION	DATE:
RF Engineer:	DATE:
LANDLORD/ TOWER OWNER:	date:

Sprint

mamanam
SBA ())

SITE NUMBER:
CT43XC809-
SITE NAME:
TOWER VENTURES SITE ADDRESS:
CHOSHIHAND AVENUE
CHESHRE, CT O6410

TItLE SHEET

T-1

THESE OUTLINE SPECIFICATIONS IN CONJUNCTION WITH THE SPRINT STANDARD CONSTRUCTION SPECIFICATIONS, INCLUDING CONTRACT DOCUMENTS
AND THE CONSTRUCTION DRAWINGS DESCRIBE THE WORK TO BE PERFORMED BY THE CONTRACTOR. SECTION 01100 - SCOPE OF WORK
 . 2 RELATED DOCUMENTS:
A. THE REQUREMENTS OF THIS SECTION APPLY to AlL SECTIONS IN THIS SPECIFICATION.
B. SPRINT "STANDARD CoNSTRUCCIION DETALLS FOR WIRELESS SITES" ARE INCLUDED IN AND
MAE A ART OF THESE SPECIFCATIONS HEREWIH.
 WIRELESS SITES A AD THE CONTSRCCTIN DOAW
ORAWGGS SALL TAKE PRECEDENCE. NOTIFY
OCURS.
.4 NATIONALY RECOGNIZED CODES AND STANDARDS:
 1. GE-7BOLCOLE GENERIC REQUIREMENTS FOR THE PHYSICAL DESIGN AND MANUFACTURE

7. AMERICAN WIRE PRROUCERS ASSOCIATION (AWPA)
8. CONCRET REINFORIIG STEEL ISTTUT (CRSI)
9. AMERICAN ASSOCIATINN OF STATE HIGHWAY AND TRANSPORTATION OFFICILLS (AASHTO)
9. AMERICAN ASSOCIATION OF STATE HICHWAY AND TRAN
10. PRTRANO CEMEN ASSOCAION (PCA)
11. NATIONAL CONCRETE MASONRY ASSOCIATION (NCMA)

1. NATTINAL CONCRET MASONRY ASSA)
2. BRICKINDUTRY ASSOCIATON (BAA)
3. AMERICAN WELING SOCIETY (AWS)

5 DEFINTTINS:
WORK: :THE SUM OF TASKS AND RESPONSIBILTIES IDENTIFED IN THE CONTRACT
DOCUMENTS.
B. COCMPNYTS. SpRINT CORPORATION
C. ENGIEER: SYNONYMOUS WTH AR

 COMPANY, A\&E, OR CONTRACTOR TO RROVDE MATERRALS OR TO ACCOMPLISH SPECIFIC
TASKS RELLTED TO BUT NOT INCLUOED IN THE WORK.

 . 7 POINT OF CONTACT. COMMUNICATINN BEEWEEN SPRINT AND THE CONTRACTOR SHALL FLOW
IHROUGH SHR SINGLE SPRINT CONSTRUCTION MANAGER APPOITED TO MANAGE THE PROJECT

 - DMENSINS SHOWN ARE TO FINSH SURFACES UNLESS NOTED OTHERWISE, SPACING

 METHODS OF PROCEDURE (MOPS) FOR CONSTRUCTION: CONTRACTOR SHALL PERFORM
WORK AS DESCRIBED IN THE FOLIOWNG INSTALLATION AND COMMISIONING MOPS.

PART 2 - PRODCLTS (NOT USED) PART 3 - EXECUTOO

 AVALLABLE. USE OF THE LESSSRS OR STEE OWNER'S UTLLITES OR FACLITIIES IS EXPRESSLY
FORBIDEN EXCEPT AS OTHERNIIE ALLOWED IN THE CONTRACT DOCUMENTIS.
 TESTING: REOUREME

FOR COMPANY TESA AGENCY.
3. 4 IIENENSONS VERTH DIMENIINS INDICATED ON DRAWINGS WITH FIELD DIMENSIONS BEFORE
FABRICTION OR ORDERNG OF MATERALLS. DO NOT SCALE DRAWINGS.

SECTION 01200 - COMPANY FURNISHED MATERIAL AND EQUIPMENT
 related documents:
A. THE REQuIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIICCATION.

PART 2 - PRODUCTS (NOT USED)
PART 3 - EXECUTON
PART 3 - EXECUTION
3.1 RECEIPT OF MATERAL AND EOUPMENT:
A. COMPANY EURNSHMEDMAUTERAL AND EOUIPMENT IS IDENTIFIED ON THE RF DATA SHEET IN THE

4. AEECORENT.iY DEFECTS OR DAMAGES AND WTHIN TWENT

. 2 DELUERABLES:
A. Complete shipping and receipt documentation in accordance with company practice.
B. IF APPLCABEE COMPLLETE LOST//STOLLEN/DAMAGED DCOCUMENTATON REPORT AS NECESSARY IN ACCORDANCE WTH COMPAN PRACIIE, AND AS DIEECED BY COMPANY.
UPPOOD DOCUMENTITIN ITTO SRRINT ITE MANAGEMENT SYTTEM (SMS) AND/OR PROVIDE HARD
COPY DOCUMENTATON AS REQUESTED.

SECTION 01300 - CELL SITE CONSTRUCTION
PART 1 - GENERAL

BY THE CONTRACTOR.
RELATED OOCUMENTS:
A. THE REQUIREMENTS OF THIS SECTTON APPLY TO ALL SECTIONS IN THIS SPECCIICATION.
B. SPRINT -STANDARD CONSTRUCTITN DETALLS FOR WRELESSS STIES' ARE INCLUDED IN AND MADE A PART

NOTCE TO PROCEED:
A. No work shall commence prior to company's writen notice to proceed and the issuance
B. UPON RECEVNIG NoITICE TO PROCEED, CONTRACTOR SHALL FULY PERFORM ALL WORK NECESSARY
TO PROVIIE SPRINT WTH AN OPERATONAL WIRELESS FACIITYLY

PART 2 - PRODUCTS (NOT USED)
PART 3 - EXECUTION
PART FUNCTIONAL REQUIREMENTS:

b. SUBMT SPEGIFIC Documentation as indicated herein, and obtain required approvals whlle
THE work is being performed.
c. THE WORGE AND CONOUCT ALL FIELD CONSTRUCTION SERVCE RELATED ACTVTIES

 19. PERRRORM ANTTENNAL AND COAX SWEEP TESTING AND MAKE ANY AND ALL NECESSARY
 3.2 General requirements for civl construction:

 E. Conouct testing as required herein.

5. LITIES AITION). ANTENNA INSTALL DATE (POPULATE FIELD IN SMS AND/OR FORWARD NOTFICATION).

10. TOOTFERCATON). CONTRUCTION COMPLETE DATE (POPULATE FIELD in SMS AND/OR FORWARD

Sprint

5awana

SBA

CTT43XC8009-A STEE NAME:

CONTINUED FROM SP-1:
SECTION 01400 - SUBMITTALS, TESTS, AND INSPECTIONS
 BE PERFORMED BY
A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECCIFCATION.
B. SPRINT "STANDARD CONSTRUCTION DETALLS FOR WRRLLESS SITES" ARE INCLUDED IN AND
MADE A AART OF THESE SPECIFICATONS HEREWITH. 3 submittals:
A. THE WORK IN ALL ASPECTS SHALL COMPLY WITH THE CONSTRUCTION DRAWINGS AN
B. SUBMTT THE FOLLOWNG TO COMPANY REPRESENTATIVE FOR APPROVAL.

ALTERNATES: AT THE COMPANY'S REQUEST, ANY ALTERNATVES TO THE MATERIALS OR
METHODS SPECIFIED SHALL BE SUBMITTED TO SPRINT'S CONSTRUCTON MANAGER FOR

 FOR USE OF ALTERNA:
A. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL CONSTRUCTION TESTS, INSPECTION
B. CONTRACTOR SHALL ACCOMPLISH TESTING INCLUDING BUT NOT LIMTED TO THE COAX SWEEPS AND FIBER TESTS PER SPRINT TS-0200 (CURRENT VERSION) ANTENNA LINE AGL AZMUUTHANAAROSOWNTLT USING ELECTRONIC COMMERCIAL MADE-FOR-THE-PURPOS CONTRACTOR SHALL BE RESPONIBLE FOR ANY AND ALL CORRECTIONS TO ANY WORK
IDENTIFIE AS UNACEETABLE IN SIE INSPECTION ACTMUTES AND/OR AS A RESULT OF Requirsing closeout documentation includes, but is not limited to the following;
 SHEETS. SWEEP AND FIBER TESTS

5. PLECTRONIC AS-BUULT DRAWINGS IN AUTTCCAD AND PDF FORMATS. ANY FELD CHANGE MUS
 GENERAL NOT
HIICHLLHETED
LIEN WAVERS
6. LEN WAVERS ATMAL PAYMENT APLICATION
8. REOURED FINAL CONSTRUCTION PHOTOS
9. CONSTRUCTION AND COMMISSIONNG CHECKLST COMPLETE WTH NO DEFICIENT TEEMS
10. ALL POST NTP TAAKS INCCLUDNG D DOCUMENT UPLOADS COMPLETED IN SITERRA (SPRINTS
DOCUMENT REPOSTORKY OF RECORD).
. 5 COMMISSIONING: PERFORM ALL COMMISSIONING AS REQUIRED BY APPLCABLE MOPS . 6 integration: Perform all integration activities as required by applicable mops
PART 2 - Prooucts
ART 3 - EXECUTION
1 REQUREMENTS FOR TESTING:
THIRD PARTY TESTING AGENCY: WHEN THE USE OF A THRD PART INEEPENDENT TESTNG
AGENCY IS REOURED, THE AGENCY THAT IS SLEETTE MUST PERFRM SUCH WOR ON

 . EXPESRIENCE IN SOLLS, CONCRETE, MSOONRY, AGGREGATE, AND ASPHALT TESTING USING ASTM, 3.2 REQURED TESTS:
A. CONTRAATOR SHALL ACCOMplish testing including but not limited to the

 FIELDN OALITY CONTROL TESTING AS SPECFFIED IN SECTION: PORTLAND CEMENT CONCRETE TESTNG REQURED UNDER SECTION: AGGREGATE BASE FOR ACCESS ROADS, PADS AN
ANCOROR LLCOATONS
STRUCTUAL AACFIN STRUCTURAL BACFFILL COMPACTION TESTS FOR THE TOWER FOUNDATION.

8. GROUNDNG AT AATENNA MASTS FOR GPS AND ANTENNAS
$\frac{\text { REQURED INSPECTIONS: }}{\text { SCHEDE }}$
CONDUCT INSPECTIONS INCLUDING BUT NOT LIMTED TO THE FOLLOWING
 PHROTOGRAPHS BY CONTRACTOR, APPROVED BY AEE OR SPRINT REPRESENTATI
 PRE-ANTIESD POST-CONSTRUCTION ROOFTOP AND STRUCTURAL INSPECTIONS ON EXISTING 5. TOWERERECTION SECTION STACKING AND PLATFORM ATACHMENT DOCUMENTED BY DIGITAL ANTENA AZIMUTH, DOWN TILT ANO PER SUNLGHT TOOL SUNIGHT INSTRUMENTS

FINL INPEETTON CHECKLSTO AND HANDOFF WALK (HOC.). SIGNED FORM SHOWIN

THE CONTROCTOR SHALL BE RESPONSIBLE FOR ANY AND AL CORRECTIONS TO ANY WORK
IDENTFFIED AS UNACCEPTABLE IN STIE INSPECTIN ACTVITIES AND/OR AS A RESULT OF CONSTRUCTION INSPECTIONS AND CORRECTVE MEASURES SHALL BE DOCUMENTED BY THE
CONTRACTOR WTH WRITINN REPORTS AN PHOTOGRPSH. PHOTOGRPHS MUT BE DGGITL

ERMANENT SITE FILES.

required closeout documentation includes the following

SECTION 01500 - PROJECT REPORTING

A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS SPECIFICATION.
B. SPRINT "STANDARD CONSTRUCTON DETALS FOR WRRELESS SITES" ARE INCLUDED IN A
b. SPRINT "STANDARD CONSTRUCTION DETALL FOR WIRELESS SITES" ARE INCLUDED IN AND
MADE A PART OF THESE SPECIFCATIONS HEREWTH.

PART 2 - PRODUCTS (NOT USED)
ART 3 - EXECUTION

B. REPORT INFORMATION WILL BE TRANSMITED TO SPRINT VIA ELECTRONIC MEANS AS REQURED.
THIS INFORMATON WLL PROVID A BASIS FOR PROGRESS MONTORING AND PATMENT. . 2 PROJECT CONFERENCE CALLS:
 PROJECTIONS, AND ANSWE
PROJECT TRACKING IN SMS:

Contractor shall provide schedule updates and prouections in the sms system on
a weekly basis. ADOITIONAL REPORTING:

ADDITIONAL OR ALTERNATE REPORTING REQUIREMENTS MAY BE ADDED TO THE REPORT AS
DETERMNED TO BE REASONABLY NECESSARY BY COMPANY. PROJECT PHOTOGRAPHS:

 SHELEER AND TOWER OVERVEW. TEWER FOUNDATON(S) -

 PHOTOO O O TOSER SECTTON STACKIIC. Stacking.
Tower foundation.

18. LLECTRICAL TRENCH(S) WTH ELECTRCAL CONDIT CEFORE BACKFLLL

23. Town beroruill).

 34. MALER BUS BAR

 SECTION 07500 - ROOF CUTTING, PATCHING AND REPAIR
SUMMARY:
THS SETON SPECIFS CUTTING AND PATCHING EXISTING ROOFING SYSTEMS WHERE
CNOUT OR CABEES EXIT THE BUILING ONTO THE ROOF OR EUULDING-MMUNTED

1.4 SUBMITTALS:

PRE-CONSTRUCTION ROOF PHOTOS: COMPLETE A ROOF INSPECTION PRIOR TO THE INSTALLATIO
OF SPRINT ROUPMENT ON ANY ROOFTOP BUILD. AT A MINMUM INSECT AND PHOTOGRAPA OF SPRNT EQUPMENT ON ANY ROOFTOP BULLD. AT A MNIMUM INSPECT AND PFOTOCA
(MNIMUM 3 EA.) ALL AREAS IMPACTED BY THE ADOITION OF THE SPRINT EQUPMENT.
B. PROVIDE SIMLAR PHOTOGRAPHS SHOWING ROOF CONDITIONS AFTER CONSTRUCTION (MINIMUM 3 ROOF INSPECTION PHOTOGRAPHS SHOULD BE UPLOADED WITH CLOSEOUT PHOTOGRAPHS.

EETION 09900 - PAINTING

COMPLY WTT GOVERNING CODES AND REGULATIONS. PROVIDE RROOUCTS OF ACCEPTABLE
 YEARS. USE EXPERIENCED INSTALLERS.
WTH MANUFACTURER'S INSTRUCTIONS.

Sprint

SBA

CT43XC8099-A sire mule
TOWER VENTURES

OUTLINE
SPECIFICATIONS

SP-2

CONTINUED FROM SP-2:
 Paint schedule:

B. ROOF TOP CONSTRUCTION: TOUCH UP - PREPARE SURFACES TO BE REPARED. FOLLOW
INDUSTRY STANDRDS AND REQUREMENTS OF OWNER TO MATCH
EXISTING COATNG AND PAINTING APPLICATION:

1. INSPECT SURFACES, REPORT UNSATIFACTORY CONOTIIONS IN WRTING; BEGINNING WORK
 MATCH APROOED MOKK-URS FOR COOLOR TEXTURE, AND PATTERN. RE-COAT OR REMOV
AND REPLACE WORK WHHOH DOES NOT MATCH OR SHOWS LOSS OF ADHESION. OUCHUP PAINTING:
 2. FEELD TOUCHUP PRINT SHALL BE DONE IN ACCORDANCE WITH THE MANUFACTURER'S 3. ALL METAL COMPONENTS SHALL BE HANLED WITH CARE TO PREVENT DAMAGE TO THE
COMPONENS, THEIR PRESERVATVE TREATMENT, OR THEIR PROTECTVE COATNGS. SECTION 11700 - ANTENNA ASSEMBLY, REMOTE RADIO HEADS AND CABLE ISTALLATION

$\frac{\text { ANTENNAS AND RRH'S: }}{\text { THE }}$
of antennas and rrh's to be installed is detaled on the
$\frac{\text { HYBRD CABLE: }}{\text { HYBRID CABLE }}$
HYBRID CABLE WLL BE DC/FIBER AND FURNSHED FOR INSTALATION AT EACH SITE. CABLE
SHAL BE INTTALED PER THE CONSTRUCTON DRAWINGS AND THE APPLICABLE MANUFACTURER'S
REQUIREMENS. JUMPERS AND CONNECTORS:
 NOT ACCEPTABLE. JUMPERS BETWEEN THECRRH AND ANTENNAS OR TOWER TOP AMPLFIERS
SHAL CONIST OF $1 / 2$ INCH FOAM IELETRRC, OUTOOOR RATED COAXIAL CABLE. DO NOT USE
 REMOTE ELECTRICAL TILT (RET) CABLES:
MIICELLANEOUS: INTALLL SPLITERS, COMBINERS, FILTERS PER RF DATA SHEET, FURNISHED BY SPRINT.
ANTENNA INSTALLATION:

B. ANEENEE. MOUNTING REQUIREMENTS: PROVIDE ANTENNA MOUNTING HARDWARE AS INDICATED
ybrid cables installation:
THE CONTRACTOR SHALL ROUTE, TEST, AND INSTALL ALL CABLES AS INDICATED ON THE
CONSTRUCTION DRAWNGS AND IN ACCORDANCE WITH THE MANUFACTURER'S CONSTRUCTIO DRAWLNGS AND IN ACCORDANCE WTH THE MANUFACTURER'S
RECOMMENOATONS.
THE INSTALLED RADIUS OF THE CABLLES SHALL NOT BE LESS Than the manufacturer's
SPECIICATIONS FOR BENING RADI.
. ExTreme care shall be taken to avoid damage to the cables during handling and
INSTALALION.

grounding of transmission lines: all transmission lines shall be grounded as inicated section 26200 - ELECTRICAL MATERIALS AND EQUIPMENT
ON DRAWINGS.

WEATHERPROOFING EXTERIOR CONNECTORS AND HYBRID CABLE GROUND

$\frac{\text { KEATS: }}{\text { A. ALL }}$
all fiber \& coax connectors and ground kits shall be weatherproofed.
WEATHERRROOFED USING ONE OF THE FOLLOWING METHODS. ALL INSTALLATONS MUST
BE DONE IN ACCORDACE WITH THE MANUFACTURER'S RECOMMENDATONS AND

SECTION 11800 - INSTALLATION OF MULTIMODAL BASE STATIONS MMBTS) AND RELATED EQUIPMENT
SUMMARY:
THIS SECTION SPECIFIES MMBTS CABINETS, POWER CABINEES, AND INTERNAL
EQUPMPENT NCLUOING BY NOT LMITED TO RECTFIERS, POWER DISTRUUTION

 NEW CABALET AS SHO
INSTALATON MOPS.
COUPLY with manufacturers instalation and start-up requirements
DC Circuit breaker labeling
A. Label circuit breakers according to sprint cell site engineering notice - en

SECTION 11800 - INSTALLATION OF MULTIMODAL BASE TRANSCIEVER STATIONS (MMBTS) AND RELATED EQUIPMENT
SUMMARY:

c. COMPLY with manufacturers installation and start-up requirements

SUPPORTING DEVICES:
A. MANUFACTURED STRUCTURAL SUPPORT MATERALS: SUBJECT TO COMPLANCE WITH
REQUREMENTS, PROVIIE PRODUCTS BY THE FOLOWING: ALLED TUBE ARO COEDUIT
B-LLE SYTEM

b. FASTENERS: TTPES, MATERIALS, AND CONSTRUCTION FEATURES AS FOLLOWS:

8. DO NNO WELD CONDUT, PIPE STRAPS, OR ITEMS OTHER THAN THREADED STUDS TO STEEL

SUPPORTING DEVICES:
A. INSTALL SUPPORTING DEVVCES TO FAATEN ELECTRICAL COMPONENTS SECURELY AND
PERMANENTLY IN ACCORDANEE WTH NEC.
b. COORDINATE WITH THE BULLDING STRUCTURAL SYSTEM AND WTH OTHER TRADES.

D. ENSURE THAA THE LOAD APPLLED by ANY FASTENER dOES NOT EXCEED 25 PERCENT
E. USE VIBRATION AND SHOCK-RESIITANT FASTENERS FOR ATTACHMENTS TO CONCRETE

ELECTRICAL IDENTIFICATION:
A. UPDATE AND PROVIDE TYPED CIRCUIT BREAKER SCHEDLES IN THE MOUNTING BRACKET,
INSIDE DOORS OF AC PANEL BOARDS WTH ANY CHANGES MADE TO THE AC SYSTEM.
B. BRANCH CIRCUITS FEEDING AVATION OBSTRUCTION LIGHTING EQUIPMENT SHALL BE
CLEARLY IDENTIFED AS SUCH AT THE BRANCH CIRCUIT PANELBOARD.

Sprint

SBA $\mu)$

 Ror foul

E. MANUFACTURER FOR BOXES AND COVERS SHALL BE HOFFMAN, SQUARE "D"
CROUSE-HINOS, COOPER, ADALET, APPLETON, O-Z GEDNEY, RACO, OR APPROVED
EOUAL SUPPLEMENTAL GROUNDING SYSTEM
A. FURNSH AND INSTALL A SUPPLEMENTAL GROUNING SYSTEM AS INIICATED ON THE
DRAWINGS. SUPPORT SYSTEM WIHE NON-MAGNETIC STANLESS STEL CLES WTH

 c. STOLEN GROUND-AARS IN THE EVENT OF STOEEN GROUND BARS, CONTACT SPRINT CM EXISTING STRUCTURE:
A. ExISTNG EXPOSED WIING AND ALL EXPOSED OUTLETS, RECEPTACLES, SWITCHES,

CONDUIT AND CONDUCTOR INSTALLATION:
A. CONDUTTS SHALL BE FASTENED SECURELY IN PLACE WTH APPROVED NON-PERFORATED

BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND
INIE.
CONDUCTORS SHALL be pulled in aCCordance with accepted good practice.
A. RIIID GALVANIZD STEEL (RGS) CONDUT SHALL BE USED FOR EXTERIOR LOCATIONS

 WELLED \mathbb{N} ACCORDANCE WHT M MANUACTUUER'S INSTRUCTONS. CONDUTT SHALL BE c. TRANIITIONS BETWEEN PVC AND RIGID (RGS) SHALL Be MADE WITH PVC COATED
METALIC LONG SWEEP RADIUS ELBOWS.

 MANUFACTURERS OF FLEXBLEL CONDUTS SHAL SE
UNIERSAL METAL OOSE, OR APROVVED EQUAL.
F. MINIMUM SIZE CONDUIT SHALL BE $3 / 4$ INCH (21 MM)
hUBS AND BOXES:

B. CABLE TERMNATION FTTINGS FOR CONDUT RON ALOY COVER AND STANLESS STEEL COVER 'SCREWS, CROUSE-HINDS WAB SERES
B. CONDUCTORS SHALL BE PULLED IN ACCORDANCE WTH ACCEPTED GOOD PRACTCE.

\section*{| CHECKED BY: | вB |
| :--- | ---: |
| APPROVED BY: | D.C |
 SUBMITTALS
 | | |
| :--- | :--- |}

CTITEXCOOQR SITE NAME:
TOWER VENTURES
SITE ADDRESS:
490 HIGHLAND AVENUE
490 HIGHAND AVENUE
CHESHIRE, CT
06410

OUTLIN
OUTLINE
SPECIFICATIONS
$S P-3$

SPECIAL WORK NOTE: JUMPERS (COAXAISG) FROM 2.5 RRH TO 2.5 ANTENNA CANNOT EXCEED 15 '. JUMPERS (COAXIAISG) FROM 2.5 RRH TO 2.5 ANTENNA CANNOT EX
NOTIFY SPRINT CONSTRUCTION MANAGER OF ANY DISCREPANCY
}

SPRINT CONSTRUCTION STANDARDS:

GENERAL CONTRACTOR SHAL ADHERE TO THE FOLLOWING SPRINT
CONSTRUCTION STANDARDS.

- CONSTRUCTION STANDARDS: $\operatorname{lintegrated~CONSTRUCTION~STANDARDS~FOR~}$
WRELLESS SITES

 GROUND KITSG
-COLOR CODING: SPRINT NEXTEL ANT AND LINE COLOR CODING PER

 MANAGER IF RF ENGINEER DOES NOT ANSWER, BUT STLLL LEAVE
MESSAGE TO RF ENGINER) UIING SPRINT-PROIIED COTTACT

 VERIF OPERATIN OF ALL EXISTING SPRINT ASSG EOUPMENT NCLUDNG
BOOMHZ $1.9 G Z$ AND 2.56 . TEST INLLUE COMPLETE DOWNTLTT, AZZMUTH

 ANTENA IS NOT TO BE PLACED IN FRONT OF ANY OTHER ANTENN
USING THE SAME 4S DGREE RUEE. THIS INCLUDES SPRINT AND

 WITH AS-BULIT SETINGS. USE $3 Z$ RF ALIGNMENT TOOL NR ROUNALENT
TOOL. HTP://WWW. $32 T E L E C O M . C O M / A N T E N N A-A L I G N M E N T-T O O L / . ~$

Sprint 1 INTERNATIONAL BLVD, SUITE 800 MAHWAH, NJ 07495 TEL: (800) $357-7641$	
$\mathrm{SBA} \quad \nu)$	
CHECKED BY: ${ }^{\text {B }}$	
APPROVED BY: DJC	
SUBMITTALS	
SITE NUMBER: CT43XC809-A SITE NAME: CHESHIRE/ TOWER VENTURES SITE ADDRESS: 490 HIGHLAND AVENUECHESHIRE, CT 06410 CHESHRE, CT 06410	
RF DATA SHEET	
	Ste wWer $A-3$

 2.5 HYBRID CABLE X-SECTION AND DATA

Sprint

SBA ($)$

EQUIPMENT
DETAILS

A-5

9929 MMBTS OUTDOOR CABINET scalle: n.r.s.

FRONT VIEW
PROPOSED MMBTS OUTDOOR CABINET WITH LTE 2.5 BBU EQUIPMENT

Sprint ${ }^{\prime}$

SBA,)

O5/15/14|
SITE NUMBER:
CT $43 \times C 809-1$ T43XC809-
STTE NAME:
CHESHIRE/
STIE AODRESS:
490 HIGHLANE AVENUE
CHESHIRE, CT 06410

EQUIPMENT

A-6

- Dasme pet wit get wit
(ix)

2.5 ANTENNA AND RRH PHOTO DETAIL AND EQUIPMENT SCHEMATIC

SBA ())

STRUCTURAL DETAILS

[^0]: After printing this label:

 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
 2. Fold the printed page along the horizontal line.
 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.
