Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

August 27, 2020

Via Electronic Mail

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Request of Cellco Partnership d/b/a Verizon Wireless for an Order to Approve the Shared Use of an Existing Tower at 1325 Cheshire Street, Cheshire, Connecticut

Dear Ms. Bachman:

Pursuant to Connecticut General Statutes ("C.G.S.") §16-50aa, as amended, Cellco Partnership d/b/a Verizon Wireless ("Cellco") hereby requests an order from the Siting Council ("Council") to approve the shared use of an existing telecommunications tower on a 59-acre parcel at 1325 Cheshire Street in Cheshire, Connecticut (the "Property"). The Property is owned by the Town of Cheshire. The tower is owned by InSite Towers Development, LLC ("InSite"). Cellco identifies this site as its "Cheshire NE 2 Facility".

The existing 170-foot monopole tower was approved by the Siting Council on January 8, 2015 in Docket No. 451. A copy of the Council's Decision and Order in Docket No. 451 is included in Attachment 1.¹ The Town of Cheshire maintains antennas at the top of the tower.

Cellco requests that the Council find that the proposed shared use of the InSite tower satisfies the criteria of C.G.S § 16-50aa and issue an order approving this request. A copy of this filing is being sent to Cheshire Town Manager, Sean Kimball; William Voelker, Cheshire's Town Planner; and InSite.

Boston | Hartford | New York | Providence | Stamford | Albany | Los Angeles | Miami | New London | **rc.com**

¹ The Docket No. 451 Certificate was transferred from Homeland Towers to InSite on September 29, 2016.

Melanie A. Bachman, Esq. August 27, 2020 Page 2

Background

Cellco is licensed by the Federal Communications Commission ("FCC") to provide wireless services throughout the State of Connecticut. Cellco and InSite have agreed to the proposed shared use of the Cheshire Street tower pursuant to mutually acceptable terms and conditions. Likewise, InSite and Cellco have agreed to the proposed installation of equipment on the ground within an existing fenced compound. InSite has authorized Cellco to apply for all necessary permits and approvals that may be required to share the existing tower. (*See* Owner's authorization letter included in <u>Attachment 2</u>).

Cellco proposes to install six (6) antennas and nine (9) remote radio heads ("RRHs") on the tower at a height of 145 feet above ground level ("AGL"). Cellco will also install one (1) equipment cabinet and a 30-kW diesel-fueled backup generator in the northeast corner of the facility compound. Included in <u>Attachment 3</u> are Cellco's project plans showing the location and details related to Cellco's proposed site improvements. <u>Attachment 4</u> contains specifications for Cellco's proposed generator, antennas and RRHs.

C.G.S. § 16-50aa(c)(1) provides that, upon written request for approval of a proposed shared use, "if the council finds that the proposed shared use of the facility is technically, legally, environmentally and economically feasible and meets public safety concerns, the council shall issue an order approving such shared use." Cellco respectfully submits that the shared use of the tower satisfies these criteria.

A. <u>Technical Feasibility</u>. The existing InSite tower is structurally capable of supporting Cellco's antennas, RRHs, antenna mounting system and related equipment. The proposed shared use of this tower is, therefore, technically feasible. A Structural Analysis Report dated July 17, 2020 prepared for this project confirms that the tower can support Cellco's proposed tower loading. A copy of the Structural Analysis Report is included in <u>Attachment 5</u>. A Mount Analysis Report, dated July 10, 2020, was also prepared and confirms that the antenna mounts will have sufficient capacity to support Cellco's proposed equipment. A copy of the Mount Analysis Report is included in <u>Attachment 6</u>.

B. <u>Legal Feasibility</u>. Under C.G.S. § 16-50aa, the Council has been authorized to issue orders approving the shared use of an existing tower such as the InSite tower. This authority complements the Council's prior-existing authority under C.G.S. § 16-50p to issue orders approving the construction of new towers that are subject to the Council's jurisdiction. In addition, § 16-50x(a) directs the Council to "give such consideration to other state laws and municipal regulations as it shall deem appropriate" in ruling on requests for the shared use of existing tower facilities. Under the statutory authority vested in the Council, an order by the

Melanie A. Bachman, Esq. August 27, 2020 Page 3

Council approving the requested shared use would permit the Applicant to obtain a building permit for the proposed installations.

C. <u>Environmental Feasibility</u>. The proposed shared use of the InSite tower would have minimal environmental effects, for the following reasons:

- 1. The proposed installation of six (6) antennas and nine (9) RRHs at a height of 145 feet AGL on the existing 170-foot tower would have an insignificant incremental visual impact on the area around the existing tower. Cellco's equipment will be located within the existing fenced compound area. The shared use of this tower facility was contemplated at the time of the Council's review of the Docket No. 451application and would not cause any significant change or alteration in the physical or environmental characteristics of the existing site.
- 2. Noise associated with Cellco's proposed facility will comply with State and local noise standards. Noise associated with the backup generator is exempt from these same standards.
- 3. Operation of Cellco's antennas at this site would not exceed the RF emissions standards adopted by the Federal Communications Commission ("FCC"). Included in <u>Attachment 7</u> of this filing is a worst-case cumulative General Power Density table that demonstrates that the facility will operate well within the FCC's safety standards.
- 4. Under ordinary operating conditions, the proposed installation would not require the use of any water or sanitary facilities and would not generate air emissions or discharges to water bodies or sanitary facilities. After construction is complete the proposed installations would not generate any increased traffic to the facility other than periodic maintenance visits to the cell site.

The proposed shared use of the InSite tower would, therefore, have a minimal environmental effect, and is environmentally feasible.

D. <u>Economic Feasibility</u>. As previously mentioned, Cellco has entered into an agreement with InSite for the shared use of the existing facility subject to mutually agreeable terms. The proposed tower sharing is, therefore, economically feasible.

Melanie A. Bachman, Esq. August 27, 2020 Page 4

E. <u>Public Safety Concerns</u>. The tower is structurally capable of supporting Cellco's antennas, antenna mounting frame, RRHs and all related equipment. Cellco is not aware of any public safety concerns relative to the proposed sharing of the existing InSite tower. In fact, the provision of new and improved wireless service through shared use of the existing tower is expected to enhance the safety and welfare of area residents and members of the general public traveling through the Town of Cheshire.

Conclusion

A Certificate of Mailing verifying that this filing was sent to the municipal officials, the Property owner and the tower owner is included in <u>Attachment 8</u>.

For the reasons discussed above, the proposed shared use of the existing InSite tower at the Property satisfies the criteria stated in C.G.S. § 16-50aa and advances the General Assembly's and the Council's goal of preventing the unnecessary proliferation of towers in Connecticut. The Applicant, therefore, respectfully requests that the Council issue an order approving the proposed shared use.

Thank you for your consideration of this matter.

Very truly yours,

Kunig MM

Kenneth C. Baldwin

Enclosures Copy to:

> Sean Kimball, Town Manager William Voelker, Town Planner InSite Towers Development, LLC

ATTACHMENT 1

DOCKET NO. 451 – Homeland Towers, LLC and New Cingular	}	Connecticut
Wireless PCS, LLC application for a Certificate of Environmental		
Compatibility and Public Need for the construction, maintenance, and	}	Siting
operation of a telecommunications facility located at the Cheshire)	C "I
Wastewater Treatment Plant, Cheshire Tax Assessor Map 38, Lot 180,	}	Council
1325 Cheshire Street, Cheshire, Connecticut.		January 8, 2015

Decision and Order

Pursuant to Connecticut General Statutes §16-50p and the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, maintenance, and operation of a telecommunications facility, including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate, either alone or cumulatively with other effects, when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to Homeland Towers, LLC, hereinafter referred to as the Certificate Holder, for a telecommunications facility at at the Cheshire Wastewater Treatment Plant, Cheshire Tax Assessor Map 38, Lot 180 located at 1325 Cheshire Street, Cheshire, Connecticut.

Unless otherwise approved by the Council, the facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be constructed as a monopole, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of New Cingular Wireless PCS, LLC and other entities, both public and private, but such tower shall not exceed a height of 170 feet above ground level. The height at the top of any antennas shall not exceed 190 feet above ground level.
- 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be served on the Town of Cheshire for comment, and all parties and intervenors as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction and shall include:
 - a) final site plan(s) for development of the facility to include specifications for the tower, tower foundation, antennas, equipment compound including, but not limited to, fence with less than two inch mesh, radio equipment, access road, utility line, emergency backup generator and landscaping that employ the governing standard in the State of Connecticut for tower design in accordance with the currently adopted International Building Code; and
 - b) construction plans for site clearing, grading, landscaping, water drainage, and erosion and sedimentation controls consistent with the <u>2002 Connecticut Guidelines for Soil Erosion and</u> <u>Sediment Control</u>, as amended; and
 - c) a protection plan for box and wood turtles.

- 3. Prior to the commencement of operation, the Certificate Holder shall provide the Council worst-case modeling of the electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of the electromagnetic radio frequency power density be submitted to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.
- 4. Upon the establishment of any new federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 6. Unless otherwise approved by the Council, if the facility authorized herein is not fully constructed with at least one fully operational wireless telecommunications carrier providing wireless service within eighteen months from the date of the mailing of the Council's Findings of Fact, Opinion, and Decision and Order (collectively called "Final Decision"), this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council's Final Decision shall not be counted in calculating this deadline. Authority to monitor and modify this schedule, as necessary, is delegated to the Executive Director. The Certificate Holder shall provide written notice to the Executive Director of any schedule changes as soon as is practicable.
- 7. Any request for extension of the time period referred to in Condition 6 shall be filed with the Council not later than 60 days prior to the expiration date of this Certificate and shall be served on all parties and intervenors, as listed in the service list, and the Town of Cheshire. Any proposed modifications to this Decision and Order shall likewise be so served.
- 8. If the facility ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council within 90 days from the one year period of cessation of service. The Certificate Holder may submit a written request to the Council for an extension of the 90 day period not later than 60 days prior to the expiration of the 90 day period.
- 9. Any nonfunctioning antenna, and associated antenna mounting equipment, on this facility shall be removed within 60 days of the date the antenna ceased to function.
- 10. In accordance with Section 16-50j-77 of the Regulations of Connecticut State Agencies, the Certificate Holder shall provide the Council with written notice two weeks prior to the commencement of site construction activities. In addition, the Certificate Holder shall provide the Council with written notice of the completion of site construction, and the commencement of site operation.
- 11. The Certificate Holder shall remit timely payments associated with annual assessments and invoices submitted by the Council for expenses attributable to the facility under Conn. Gen. Stat. §16-50v.

Docket 451: Cheshire Decision and Order Page 3

- 12. This Certificate may be transferred in accordance with Conn. Gen. Stat. §16-50k(b), provided both the Certificate Holder/transferor and the transferee are current with payments to the Council for their respective annual assessments and invoices under Conn. Gen. Stat. §16-50v. In addition, both the Certificate Holder/transferor and the transferee shall provide the Council a written agreement as to the entity responsible for any quarterly assessment charges under Conn. Gen. Stat. §16-50v(b)(2) that may be associated with this facility.
- 13. The Certificate Holder shall maintain the facility and associated equipment, including but not limited to, the tower, tower foundation, antennas, equipment compound, radio equipment, access road, utility line and landscaping in a reasonable physical and operational condition that is consistent with this Decision and Order and a Development and Management Plan to be approved by the Council.
- 14. If the Certificate Holder is a wholly-owned subsidiary of a corporation or other entity and is sold/transferred to another corporation or other entity, the Council shall be notified of such sale and/or transfer and of any change in contact information for the individual or representative responsible for management and operations of the Certificate Holder within 30 days of the sale and/or transfer.
- 15. This Certificate may be surrendered by the Certificate Holder upon written notification and approval by the Council.

We hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed in the Service List, dated October 2, 2014, and notice of issuance published in the <u>Cheshire Herald</u>.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

ATTACHMENT 2

DATE: 8/20/20

VERIZON ID: Cheshire Northeast_2_CT

INSITE ID: CT005 Cheshire

SITE ADDRESS: 1325 Cheshire St., Cheshire, CT 06410

RE: APPLICATION BY CELLCO PARTNERSHIP D/B/A VERIZON WIRELESS FOR ZONING AND BUILDING PERMIT IN THE TOWN OF CHESHIRE, COUNTY OF NEW HAVEN, CONNECTICUT

To Whom It May Concern:

On behalf of InSite Towers Development, LLC, owner of the tower at the above-referenced site, the undersigned hereby authorizes Verizon Wireless and its authorized agents to file for all necessary administrative approvals, zoning approvals and building permits (local, state and federal) for the purposes of upgrading, installing, operating and maintaining a telecommunications facility at the site/property referenced above on behalf of Verizon Wireless.

By: Robert 2 Conson Name: Robert Johnson Title: <u>COD</u> Date: <u>8/20/20</u>

ATTACHMENT 3

SUPPORTING DOCUMENTS

RADIO FREQUENCY (RF) DESIGN DATE: 7/1/20

ANTENNA MOUNT STRUCTURAL ANALYSIS DATE: 7/10/20

ANTENNA SUPPORT STRUCTURE (170'± MONOPOLE) STRUCTURAL ANALYSIS DATE: 7/17/20 (BY OTHERS

PROJECT TYPE: WIRELESS TELECOMMUNICATIONS COLLOCATION ON EXISTING 170'± MONOPOLE

SITE INFORMATION:

LAND OWNER:

TOWER OWNER:

APPLICANT:

SITE ADDRESS:

COUNTY:

SITE CONTROL POINT:

ZONING CLASSIFICATION: ZONING JURISDICTION: TAX ID PARCEL NUMBER: ARCHITECT / ENGINEER:

POWER COMPANY:

TELEPHONE COMPANY:

TOWN OF CHESHIRE (C/O SEWER FILTRATION PLAN) 1325 CHESHIRE STREE CHESHIRE, CT 06410

INSITE TOWERS, LLC 1199 NORTH FAIRFAX STREET, SUITE 700 ALEXANDRIA, VA 22314

CELLCO PARTNERSHIP dba VERIZON WIRELESS) 20 ALEXANDER DRIVE WALLINGFORD, CT 06492 1325 CHESHIRE STREET CHESHIRE, CT 06410

NEW HAVEN COUNTY, CT

CENTER OF EXISTING MONOPOLE N 41°-31'-57.33" (41.532592°) (NAD '83) W 72°-52'-13.73" (72.870481°) (NAD '83)

R-40 (RESIDENTIAL)

TOWN OF CHESHIRE, CT

MAP 38 LOT 180 CHAPPELL ENGINEERING ASSOCIATES, LLC 201 BOSTON POST ROAD WEST, SUITE 101 MARLBOROUGH, MA 01752

EVERSOURCE ENERGY 247 STATION DRIVE, SE 210 WESTWOOD, MA 02090 (781) 441-3610 VERIZON **185 FRANKLIN STREET** BOSTON, MA 02107 (800) 941-9900

GENERAL NOTES

1. CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON JOB SITE. CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ARCHITECT/ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK. FAILURE TO NOTIFY THE ARCHITECT/ENGINEER PLACES THE RESPONSIBILITY ON THE CONTRACTOR TO CORRECT THE DISCREPANCIES AT THE CONTRACTOR'S EXPENSE.

2. NEW CONSTRUCTION SHALL CONFORM TO ALL APPLICABLE CODES AND ORDINANCES.

- BUILDING CODE: 2018 CONNECTICUT STATE BUILDING CODE ELECTRICAL CODE: 2017 NATIONAL ELECTRICAL CODE
- STRUCTURAL CODE: TIA/EIA-222-G STRUCTURAL STANDARDS FOR ANTENNA •
- SUPPORTING STRUCTURES AND ANTENNAS.

AT LEAST 72 HOURS PRIOR TO DIGGING. THE CONTRACTOR IS REQUIRED TO CALL BEFORE YOU DIG AT 811

20 ALEXANDER DRIVE, WALLINGFORD, CT 06492

CHESHIRE NORTHEAST 2 CT

1325 CHESHIRE STREET CHESHIRE, CT 06410

VICINITY MAP SCALE: 1"=1000' Cheshire Stree

DRIVING DIRECTIONS

FROM WALLINGFORD, TURN RIGHT ONTO BARNES INDUSTRIAL ROAD SOUTH. TURN LEFT AT THE 1ST CROSS STREET ONTO CT-68 WEST. TURN RIGHT ONTO CT-70 EAST. TURN SLIGHT LEFT ONTO CHESHIRE STREET. THE SITE WILL BE ON THE LEFT SIDE.

DESCRIPTION DWG. TITLE SHEET GN01 **GENERAL NOTES** PROPERTY PLAN EQUIPMENT COMPOUND **EQUIPMENT PAD PLAN & D** EAST AND NORTH EQUIPM ICE SHIELD FRAMING PLAN ANTENNA MOUNTING PLA RF01 ANTENNA DETAILS AND AN RF02 RF03 **RF COLOR CODE SPECIFIC** ELECTRICAL SPECIFICATIC EQUIPMENT COMPOUND U **ELECTRICAL DIAGRAMS &** SCHEMATIC GROUNDING GROUNDING DETAILS

T01

C01

A01

A03

S01

E01

E02

E03

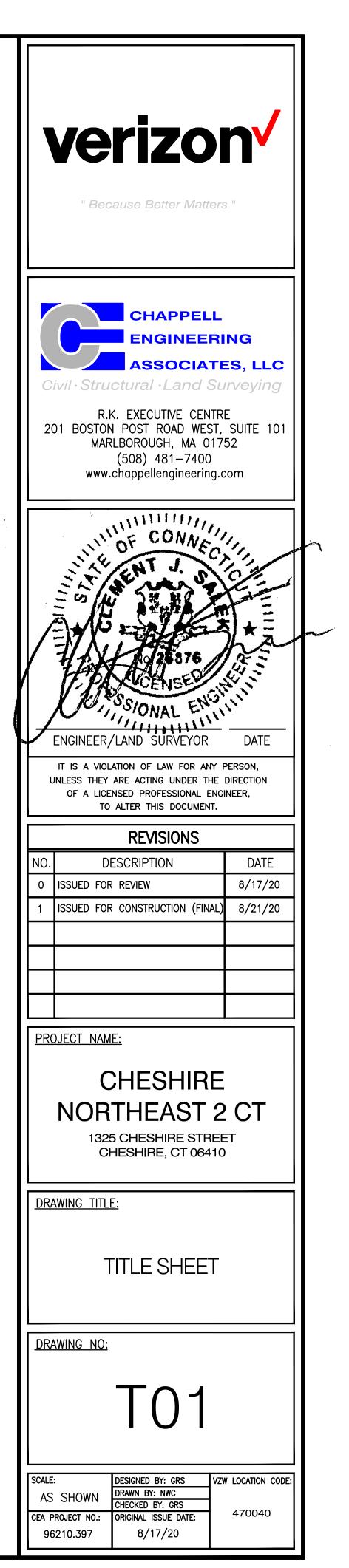
E04

E05

ALL PLANS, EXISTING DIMENSIONS AND CONDITIONS AT THE PROPOSED PROJECT SITE SHALL BE VERIFIED IN THE FIELD DURING THE CONSTRUCTION PHASE. THE PROJECT OWNER'S REPRESENTATIVE SHALL BE NOTIFIED IN WRITING OF ANY DISCREPANCIES IMMEDIATELY PRIOR TO PROCEEDING WITH THE PROPOSED WORK AFFECTED BY SUCH DISCREPANCIES. IN THE EVENT OF LACK OF SUCH NOTIFICATION, SUCH DISCREPANCIES SHALL BECOME THE RESPONSIBILITY OF THE PREVAILING CONTRACTOR RESPONSIBLE FOR CONSTRUCTION.

- WIRELESS TELECOMMUNICATIONS SERVICE
- 2. THIS FACILITY WILL CONSUME NO UNRECOVERABLE ENERGY.
- 3. NO POTABLE WATER SUPPLY IS TO BE PROVIDED AT THIS LOCATION.
- 5. NO SOLID WASTE WILL BE GENERATED AT THIS LOCATION.

SHEET INDEX


	REV.
	1
	1
	1
PLAN	1
DETAILS	1
MENT COMPOUND ELEVATIONS	1
N & STRUCTURAL DETAILS	1
AN AND DETAILS	1
NCILLARY EQUIPMENT SPECIFICATIONS	1
CATIONS AND PLUMBING DIAGRAM	1
ONS AND NOTES	1
UTILITY PLAN & DETAILS	1
DETAILS	1
PLAN & DETAILS	1
	1

DO NOT SCALE DRAWINGS

PROJECT DESCRIPTION

1. THIS IS AN UNMANNED AND RESTRICTED ACCESS INSTALLATION AND WILL BE USED FOR THE TRANSMISSION OF RADIO SIGNAL FOR THE PURPOSE OF PROVIDING PUBLIC

4. NO WASTE WATER WILL BE GENERATED AT THIS LOCATION.

GENERAL NOTES:

1. FOR THE PURPOSE OF CONSTRUCTION DRAWINGS, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR - VERIZON WIRELESS SUBCONTRACTOR – GENERAL CONTRACTOR (CONSTRUCTION)

OWNER - VERIZON WIRELESS OEM – ORIGINAL EQUIPMENT MANUFACTURER

2. PRIOR TO THE SUBMISSION OF BIDS. THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CONTRACTOR.

3. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES. SUBCONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS. ORDINANCES. RULES. REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK.

4. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

5. DRAWINGS PROVIDED HERE ARE NOT TO BE SCALED AND ARE INTENDED TO SHOW OUTLINE ONLY.

6. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

7. THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

8. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CONTRACTOR.

9. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND T1 CABLES, GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING. SUBCONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING WITH THE CONTRACTOR.

10. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF THE OWNER.

11. SUBCONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

12. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION.

13. THE SUBCONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN. THE SUBCONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES FOR COORDINATING ALL PORTIONS OF THE WORK UNDER THE CONTRACT.

14. SUBCONTRACTOR SHALL NOTIFY CHAPPELL ENGINEERING ASSOCIATES, LLC. 48 HOURS IN ADVANCE OF POURING CONCRETE OR BACK FILLING TRENCHES, SEALING ROOF AND WALL PENETRATIONS & POST DOWNS, FINISHING NEW WALLS OR FINAL ELECTRICAL CONNECTIONS FOR ENGINEERING REVIEW.

15. CONSTRUCTION SHALL COMPLY WITH VERIZON WIRELESS NETWORK STANDARD #NSTD123 TO THE MAXIMUM EXTENT FEASIBLE UNLESS PRECLUDED OR LIMITED BY DESIGN SHOWN ON THESE DRAWINGS.

16. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. SUBCONTRACTOR SHALL NOTIFY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.

17. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION. ANY CONSTRUCTION WORK BY SUBCONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WITH CONTRACTOR. ALSO, WORK SHOULD BE SCHEDULED FOR AN APPROPRIATE MAINTENANCE WINDOW USUALLY IN LOW TRAFFIC PERIODS AFTER MIDNIGHT.

18. SINCE THE CELL SITE IS ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF FI FCTROMAGNETIC RADIATION. FOUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE TO BE WORN TO ALERT OF ANY DANGEROUS EXPOSURE LEVELS.

SITE WORK GENERAL NOTES:

1. THE SUBCONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF CONSTRUCTION.

2. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY ENGINEERS. EXTREME CAUTION SHOULD BE USED BY THE SUBCONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. SUBCONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING & EXCAVATION.

3. ALL SITE WORK SHALL BE AS INDICATED ON THE DRAWINGS AND PROJECT SPECIFICATIONS.

4. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.

5. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE BTS EQUIPMENT AND TOWER AREAS.

6. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

7. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.

8. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF ENGINEERING, OWNER AND/OR LOCAL UTILITIES.

9. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE AND STABILIZED TO PREVENT EROSION AS SPECIFIED IN THE PROJECT SPECIFICATIONS.

10. SUBCONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.

11. THE SUBCONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE VERIZON WIRELESS SPECIFICATION FOR SITE SIGNAGE.

3. REINFORCING STEEL SHALL CONFORM TO ASTM A 615, GRADE 60, DEFORMED UNLESS NOTED OTHERWISE, WELDED WIRE FABRIC SHALL CONFORM TO ASTM A 185 WELDED STEEL WIRE FABRIC UNLESS NOTED OTHERWISE. SPLICES SHALL BE CLASS "B" AND ALL HOOKS SHALL BE STANDARD, UNO.

4. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:

5. A CHAMFER ³/₄" SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNO, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4. 6. INSTALLATION OF CONCRETE EXPANSION/WEDGE ANCHOR, SHALL BE PER MANUFACTURER'S WRITTEN RECOMMENDED PROCEDURE. THE ANCHOR BOLT, DOWEL OR ROD SHALL CONFORM TO MANUFACTURER'S RECOMMENDATION FOR EMBEDMENT DEPTH OR AS SHOWN ON THE DRAWINGS. NO REBAR SHALL BE CUT WITHOUT PRIOR ENGINEERING APPROVAL WHEN DRILLING HOLES IN CONCRETE. SPECIAL INSPECTIONS, REQUIRED BY GOVERNING CODES, SHALL BE STAINLESS STEEL OR HOT DIPPED GALVANIZED. EXPANSION BOLTS SHALL BE PROVIDED BY RAMSET/REDHEAD OR APPROVED EQUAL.

7. CONCRETE CYLINDER TEST IS NOT REQUIRED FOR SLAB ON GRADE WHEN CONCRETE IS LESS THAN 50 CUBIC YARDS (IBC1905.6.2.3) IN THAT EVENT THE FOLLOWING RECORDS SHALL BE PROVIDED BY THE CONCRETE SUPPLIER; (A) RESULTS OF CONCRETE CYLINDER TEST PERFORMED AT THE SUPPLIERS PLANT

FOR GREATER THAN 50 CUBIC YARDS THE GC SHALL PERFORM THE CONCRETE CYLINDER TEST. 8. AS AN ALTERNATIVE TO ITEM 7. TEST CYLINDERS SHALL BE TAKEN INITIALLY AND THEREAFTER FOR EVERY 50 YARDS OF CONCRETE FROM EACH DIFFERENT BATCH PLANT.

9. EQUIPMENT SHALL NOT BE PLACED ON NEW PADS FOR SEVEN DAYS AFTER PAD IS POURED, UNLESS IT IS VERIFIED BY CYLINDER TESTS THAT COMPRESSIVE STRENGTH HAS BEEN ATTAINED.

1. ALL STEEL WORK SHALL BE PAINTED OR GALVANIZED IN ACCORDANCE WITH THE DRAWINGS AND VERIZON WIRELESS SPECIFICATION 25252-000-3PS-GET-00001 UNLESS OTHERWISE NOTED. STRUCTURAL STEEL SHALL BE ASTM-A-36 UNLESS OTHERWISE NOTED ON THE SITE SPECIFIC DRAWINGS. STEEL DESIGN, INSTALLATION AND BOLTING SHALL BE IN ACCORDANCE WITH THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) "MANUAL OF STEEL CONSTRUCTION".

2. ALL WELDING SHALL BE PERFORMED USING E70XX ELECTRODES AND WELDING SHALL CONFORM TO AISC AND AWS D1.1. WHERE FILLET WELD SIZES ARE NOT SHOWN, PROVIDE THE MINIMUM SIZE PER TABLE J2.4 IN THE AISC "MANUAL OF STEEL CONSTRUCTION", 9TH EDITION. PAINTED SURFACES SHALL BE TOUCHED UP.

3. BOLTED CONNECTIONS SHALL USE BEARING TYPE ASTM A325 BOLTS ($\frac{3}{4}$ "\$\overline{"}\ove NOTED OTHERWISE.

6. CONTRACTOR SHALL SUBMIT SHOP DRAWINGS FOR ENGINEER REVIEW & APPROVAL ON PROJECTS REQUIRING STRUCTURAL STEEL

2. COMPACTION CERTIFICATION: AN INSPECTION AND WRITTEN CERTIFICATION BY A QUALIFIED GEOTECHNICAL TECHNICIAN OR ENGINEER IS ACCEPTABLE.

3. AS AN ALTERNATE TO INSPECTION AND WRITTEN CERTIFICATION, THE "UNDISTURBED SOIL" BASE SHALL BE COMPACTED WITH "COMPACTION EQUIPMENT", LISTED BELOW, TO AT LEAST 90% MODIFIED PROCTOR MAXIMUM DENSITY PER ASTM D 1557 METHOD C.

1. HAND OPERATED DOUBLE DRUM, VIBRATORY ROLLER, VIBRATORY PLATE COMPACTOR OR JUMPING JACK COMPACTOR.

1. FIELD VERIFICATION: SUBCONTRACTOR SHALL FIELD VERIFY SCOPE OF WORK, VERIZON WIRELESS ANTENNA PLATFORM LOCATION AND ANTENNAS TO BE REPLACED.

SUBCONTRACTOR SHALL COORDINATE RF WORK AND PROCEDURES WITH CONTRACTOR. 3. CABLE LADDER RACK:

SUBCONTRACTOR SHALL FURNISH AND INSTALL CABLE LADDER RACK, CABLE TRAY, AND CONDUIT AS REQUIRED TO SUPPORT CABLES TO THE NEW BTS LOCATION.

CONCRETE AND REINFORCING STEEL NOTES:

1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE.

2. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 3000 PSI AT 28 DAYS, UNLESS NOTED OTHERWISE. A HIGHER STRENGTH (4000PSI) MAY BE USED. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 381 CODE REQUIREMENTS

CONCRETE EXPOSED TO EARTH OR WEATHER:

#5 AND SMALLER & WWF1½ IN. CONCRETE NOT EXPOSED TO EARTH OR WEATHER

OR NOT CAST AGAINST THE GROUND:

SLAB AND WALL%4 IN. BEAMS AND COLUMNS1½ IN.

(B) CERTIFICATION OF MINIMUM COMPRESSIVE STRENGTH FOR THE CONCRETE GRADE SUPPLIED.

STRUCTURAL STEEL NOTES:

4. NON-STRUCTURAL CONNECTIONS FOR STEEL GRATING MAY USE %" DIA. ASTM A 307 BOLTS UNLESS NOTED OTHERWISE.

5. INSTALLATION OF CONCRETE EXPANSION/WEDGE ANCHORS SHALL BE PER MANUFACTURER'S WRITTEN RECOMMENDED PROCEDURE. THE ANCHOR BOLT. DOWEL OR ROD SHALL CONFORM TO THE MANUFACTURERS RECOMMENDATION FOR EMBEDMENT DEPTH OR AS SHOWN ON THE DRAWINGS. NO REBAR SHALL BE CUT WITHOUT PRIOR CONTRACTOR APPROVAL WHEN DRILLING HOLES IN CONCRETE SPECIAL INSPECTIONS, REQUIRED BY GOVERNING CODES, SHALL BE PERFORMED IN ORDER TO MAINTAIN MANUFACTURER'S MAXIMUM ALLOWABLE LOADS. ALL EXPANSION/WEDGE ANCHORS SHALL BE STAINLESS STEEL OR HOT DIPPED GALVANIZED. EXPANSION BOLTS SHALL BE PROVIDED BY RAMSET/REDHEAD OR APPROVED EQUAL.

7. ALL STRUCTURAL STEEL WORK SHALL BE DONE IN ACCORDANCE WITH AISC SPECIFICATIONS.

SOIL COMPACTION NOTES FOR SLAB ON GRADE:

1. EXCAVATE AS REQUIRED TO REMOVE VEGETATION AND TOPSOIL TO EXPOSE NATURAL SUBGRADE AND PLACE CRUSHED STONE AS

4. COMPACTED SUBBASE SHALL BE UNIFORM AND LEVELED. PROVIDE 6" MINIMUM CRUSHED STONE OR GRAVEL COMPACTED IN 3" LIFTS ABOVE COMPACTED SOIL. GRAVEL SHALL BE NATURAL OR CRUSHED WITH 100% PASSING #1 SIEVE.

5. AS AN ALTERNATE TO ITEMS 2 AND 3. THE SUBGRADE SOILS WITH 5 PASSES OR A MEDIUM SIZED VIBRATORY PLATE COMPACTOR (SUCH AS BOMAG BPR 30/38) OR HAND-OPERATED SINGLE DRUM VIBRATORY ROLLER (SUCH AS BOMAG BW 55E). AND SOFT ÀREAS THAT ARE ENCOUNTERED SHOULD BE REMOVED AND REPLACED WITH A WELL-GRADED GRANULAR FILL AND COMPACTED AS STATED ABOVE.

COMPACTION EQUIPMENT:

CONSTRUCTION NOTES:

2. COORDINATION OF WORK:

ELECTRICAL INSTALLATION NOTES:

1. WIRING, RACEWAY, AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC AND TELCORDIA.

2. SUBCONTRACTOR SHALL MODIFY EXISTING CABLE TRAY SYSTEM AS REQUIRED TO SUPPORT RF AND TRANSPORT CABLING TO THE NEW BTS EQUIPMENT. SUBCONTRACTOR SHALL SUBMIT MODIFICATIONS TO CONTRACTOR FOR APPROVAL. 3. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC AND

TELCORDIA.

5. EACH END OF EVERY POWER, GROUNDING, AND T1 CONDUCTOR AND CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2 INCH PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC & OSHA, AND MATCH EXISTING INSTALLATION REQUIREMENTS.

6. POWER PHASE CONDUCTORS (I.E., HOTS) SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, ½ INCH PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). PHASE CONDUCTOR COLOR CODES SHALL CONFORM WITH THE NEC & OSHA AND MATCH EXISTING INSTALLATION REQUIREMENTS

7. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH ENGRAVED LAMACOID PLASTIC LABELS. ALL EQUIPMENT SHALL BE LABELED WITH THEIR VOLTAGE RATING, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING, AND BRANCH CIRCUIT ID NUMBERS (I.E., PANEL BOARD AND CIRCUIT ID'S).

8. PANEL BOARDS (ID NUMBERS) AND INTERNAL CIRCUIT BREAKERS (CIRCUIT ID NUMBERS) SHALL BE CLEARLY LABELED WITH ENGRAVED LAMACOID PLASTIC LABELS.

9. ALL TIE WRAPS SHALL BE CUT FLUSH WITH APPROVED CUTTING TOOL TO REMOVE SHARP EDGES.

10. POWER, CONTROL, AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE CONDUCTOR (#34 AWG OR LARGER), 600 V, OIL RESISTANT THHN OR THWN-2, CLASS B STRANDED COPPER CABLE RATED FOR 90 °C (WET AND DRY) OPERATION; LISTED OR LABELED FOR THE LOCATION AND RACEWAY SYSTEM USED, UNLESS OTHERWISE SPECIFIED.

11. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE CONDUCTOR (#6 AWG OR LARGER), 600 V, OIL RESISTANT THHN OR THWN-2 GREEN INSULATION, CLASS B STRANDED COPPER CABLE RATED FOR 90 °C (WET AND DRY) OPERATION; LISTED OR LABELED FOR THE LOCATION AND RACEWAY SYSTEM USED, UNLESS OTHERWISE SPECIFIED.

12. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED OUTDOORS, OR BELOW GRADE, SHALL BE SINGLE CONDUCTOR #3 AWG SOLID TINNED COPPER CABLE, UNLESS OTHERWISE SPECIFIED.

13. POWER AND CONTROL WIRING, NOT IN TUBING OR CONDUIT, SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#34 AWG OR LARGER), 600 V, OIL RESISTANT THHN OR THWN-2, CLASS B STRANDED COPPER CABLE RATED FOR 90 °C (WET AND DRY) OPERATION; WITH OUTER JACKET; LISTED OR LABELED FOR THE LOCATION USED, UNLESS OTHERWISE SPECIFIED.

14. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION AT NO LESS THAN 75°C (90°C IF AVAILABLE).

15. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE, AND NEC.

16. NEW RACEWAY OR CABLE TRAY WILL MATCH THE EXISTING INSTALLATION WHERE POSSIBLE.

17. ELECTRICAL METALLIC TUBING (EMT) OR RIGID NONMETALLIC CONDUIT (I.E., RIGID PVC SCHEDULE 40, OR RIGID PVC SCHEDULE 80 FOR LOCATIONS SUBJECT TO PHYSICAL DAMAGE) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

18. ELECTRICAL METALLIC TUBING (EMT), ELECTRICAL NONMETALLIC TUBING (ENT), OR RIGID NONMETALLIC CONDUIT (RIGID PVC, SCHEDULE 40) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.

19. GALVANIZED STEEL INTERMEDIATE METALLIC CONDUIT (IMC) SHALL BE USED FOR OUTDOOR LOCATIONS ABOVE GRADE 20. RIGID NONMETALLIC CONDUIT (I.E., RIGID PVC SCHEDULE 40 OR RIGID PVC SCHEDULE 80) SHALL BE USED UNDERGROUND; DIRECT BURIED, IN AREAS OF OCCASIONAL LIGHT VEHICLE TRAFFIC OR ENCASED IN REINFORCED

CONCRETE IN AREAS OF HEAVY VEHICLE TRAFFIC.

21. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.

22. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.

23. CABINETS, BOXES, AND WIREWAYS SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE, AND NEC.

25. WIREWAYS SHALL BE EPOXY-COATED (GRAY) AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARD; SHALL BE PANDUIT TYPE E (OR EQUAL); AND RATED NEMA 1 (OR BETTER) INDOORS, OR NEMA 3R (OR BETTER)

OUTDOORS.

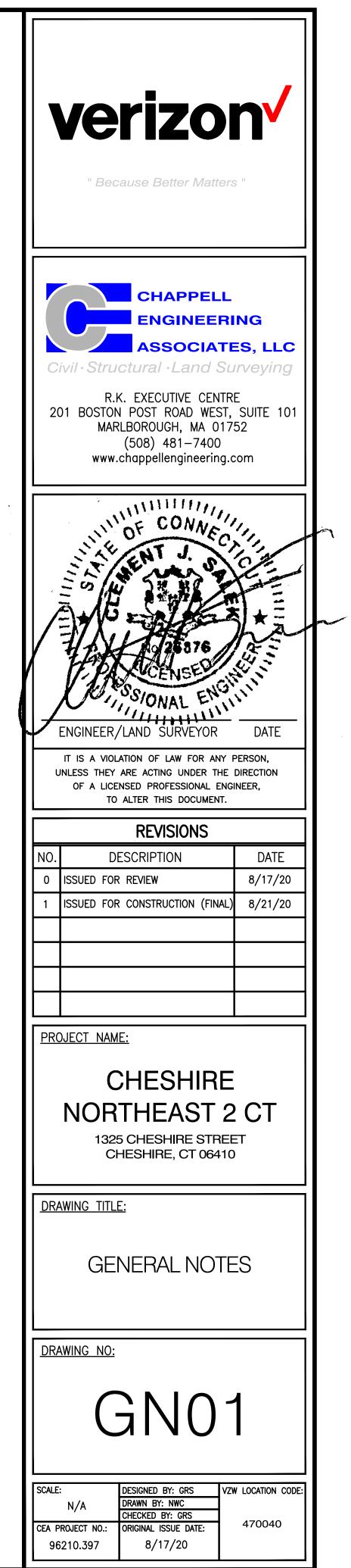
26. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES, AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET STEEL, SHALL MEET OR EXCEED UL 50, AND RATED NEMA 1 (OR BETTER) INDOORS. OR NEMA 3R (OR BETTER) OUTDOORS

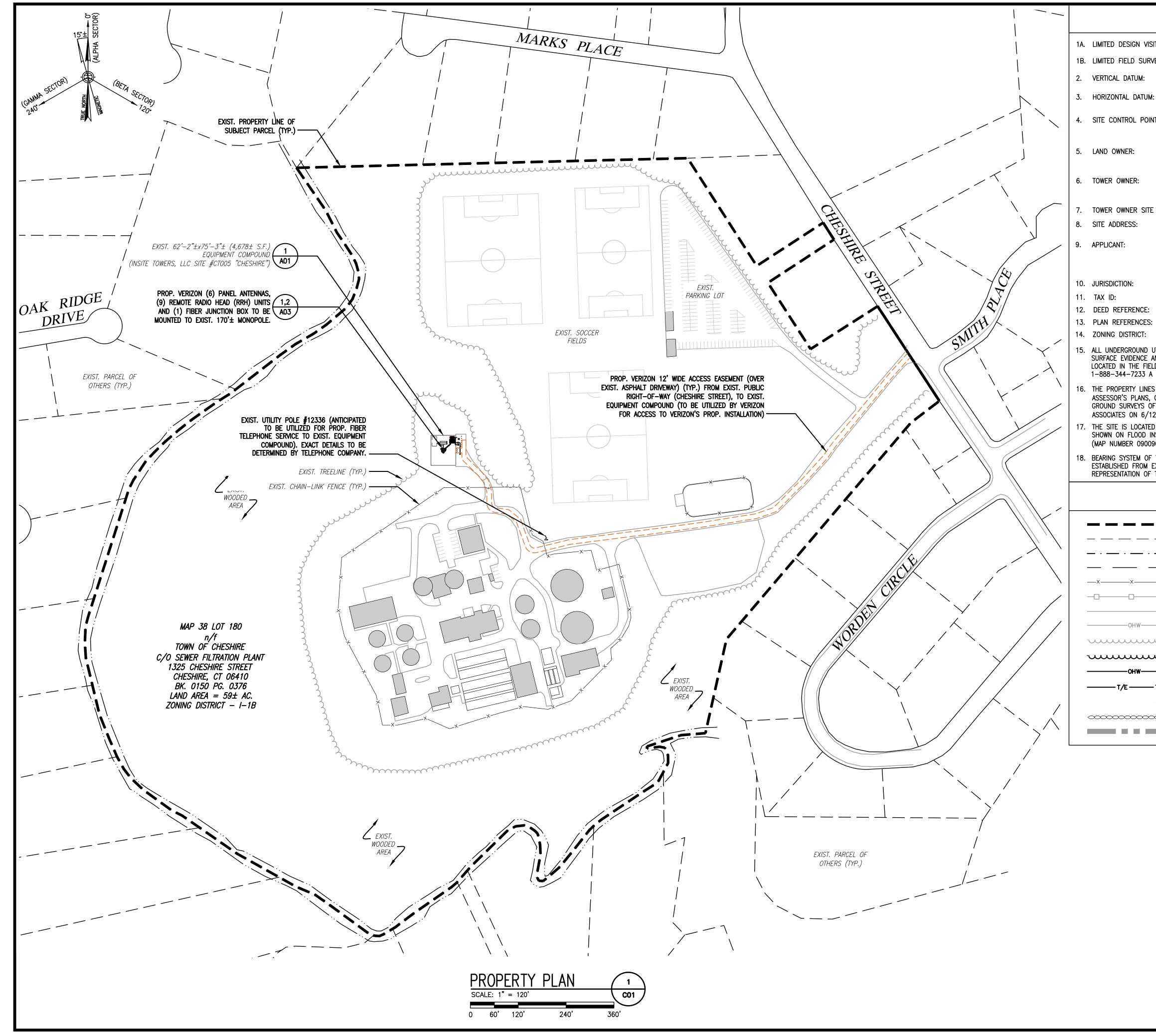
27. METAL RECEPTACLE, SWITCH, AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED, OR NON- CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1; AND RATED NEMA 1 (OR BETTER) INDOORS, OR WEATHER PROTECTED (WP OR BETTER) OUTDOORS.

28. NONMETALLIC RECEPTACLE, SWITCH, AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2; AND RATED NEMA 1 (OR BETTER) INDOORS, OR WEATHER PROTECTED (WP OR BETTER) OUTDOORS.

29. THE SUBCONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CONTRACTOR BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.

30. THE SUBCONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD AGAINST LIFE AND PROPERTY. 31. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL


APPLICABLE LOCAL CODES.


NOT BLOCKED.

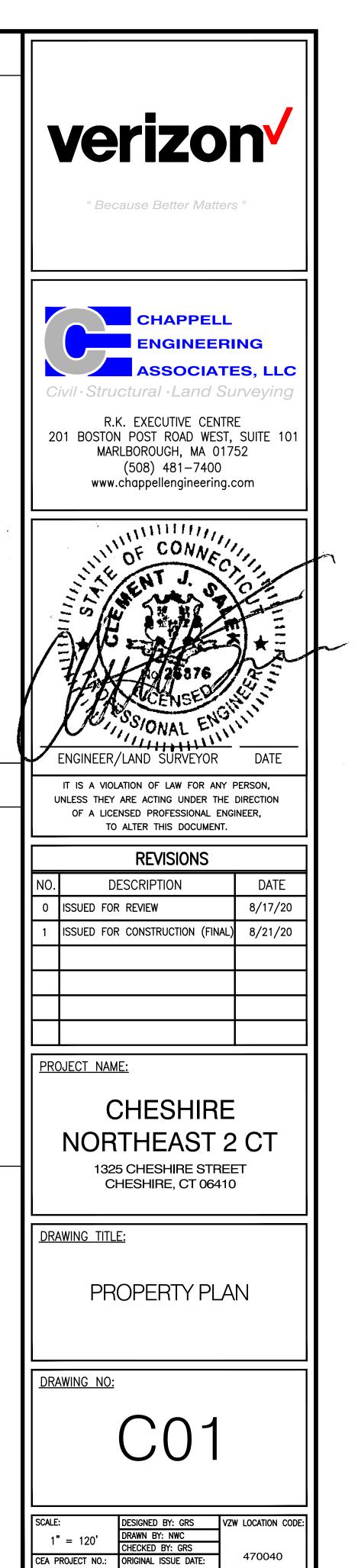
4. CABLES SHALL NOT BE ROUTED THROUGH LADDER-STYLE CABLE TRAY RUNGS.

24. CABINETS, BOXES, AND WIREWAYS TO MATCH THE EXISTING INSTALLATION WHERE POSSIBLE.

32. CONDUIT ROUTINGS ARE SCHEMATIC. SUBCONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS

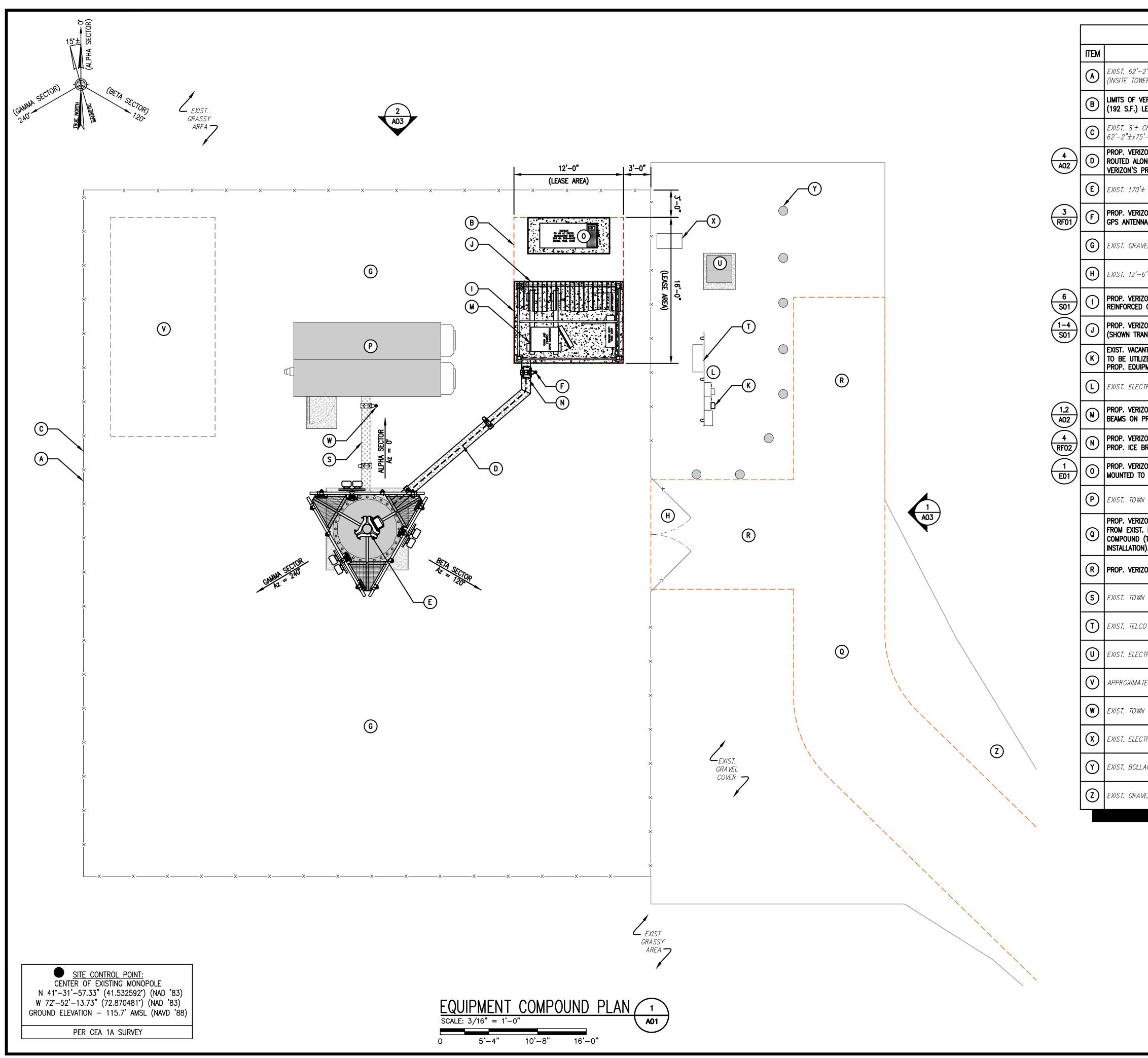
GENERAL NOTES:

ESIGN VISIT DATE:	6/12/20
ELD SURVEY DATE:	6/16/20
DATUM:	NORTH AMERICAN VERTICAL DATUM OF 1988
AL DATUM:	(NAVD '88) NORTH AMERICAN DATUM OF 1983 (NAD '83)
rol point:	CENTER OF EXISTING MONOPOLE LATITUDE: N. 41°-31'-57.33" (41.532592°) (NAD '83) LONGITUDE: W. 72°-52'-13.73" (72.870481°) (NAD '83)
IER:	TOWN OF CHESHIRE (C/O SEWER FILTRATION PLAN) 1325 CHESHIRE STREET CHESHIRE, CT 06410
VNER:	INSITE TOWERS, LLC 1199 NORTH FAIRFAX STREET, SUITE 700 ALEXANDRIA, VA 22314
VNER SITE ID:	"CHESHIRE" SITE
RESS:	1325 CHESHIRE STREET CHESHIRE, CT 06410
:	CELLCO PARTNERSHIP (dba VERIZON WIRELESS) 20 ALEXANDER DRIVE WALLINGFORD, CT 06492
ON:	TOWN OF CHESHIRE, CT
	MAP 38 LOT 180
ERENCE:	BK. 0150 PG. 0376
ERENCES:	TOWN OF CHESHIRE ASSESSOR/GIS MAPS
ISTRICT:	R-40 (RESIDENTIAL)
GROUND UTILITY INFORM	MATION PRESENTED HEREON WAS DETERMINED FROM

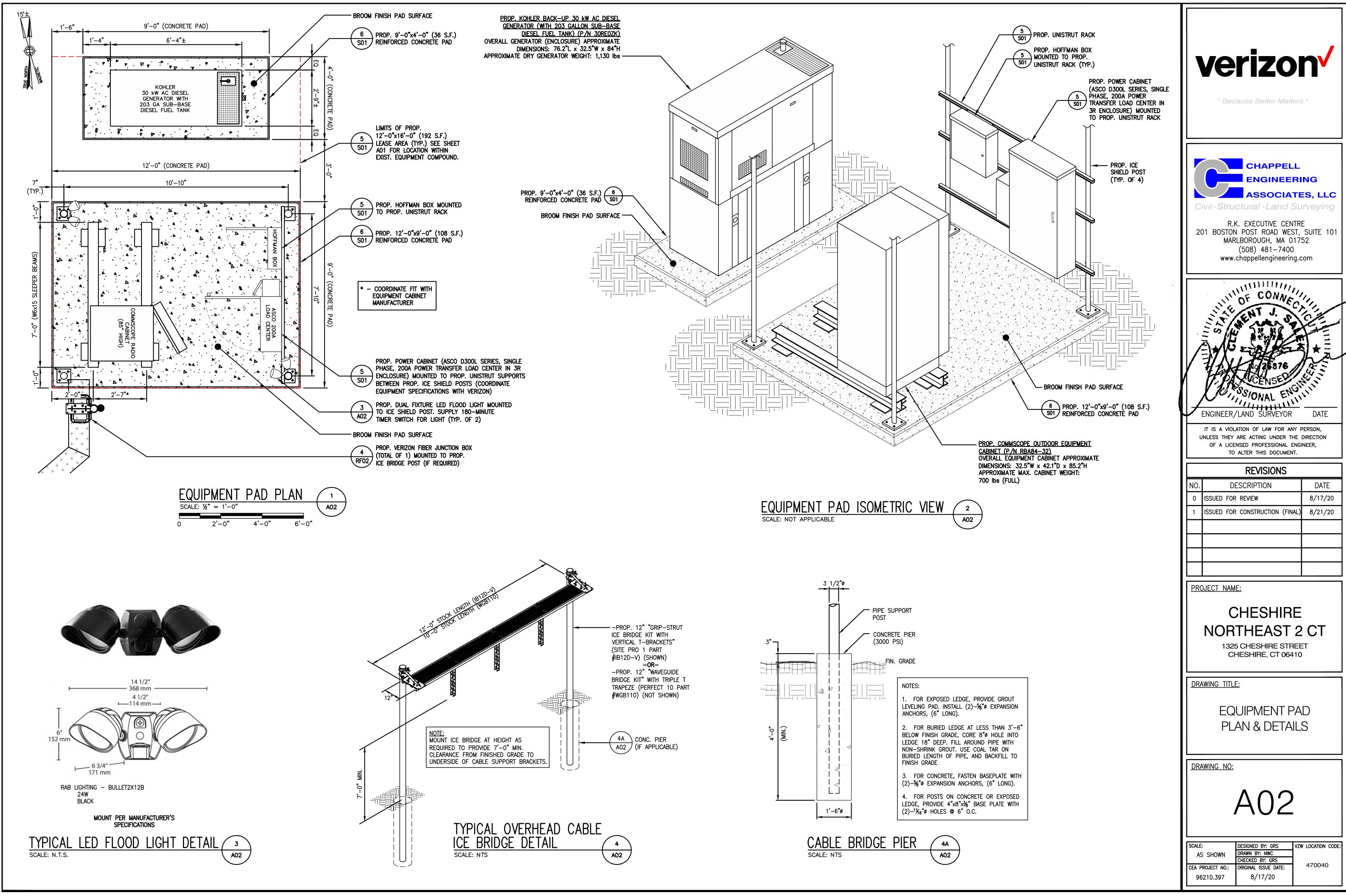

15. ALL UNDERGROUND UTILITY INFORMATION PRESENTED HEREON WAS DETERMINED FROM SURFACE EVIDENCE AND PLANS OF RECORD. ALL UNDERGROUND UTILITIES SHOULD BE LOCATED IN THE FIELD PRIOR TO THE COMMENCEMENT OF ANY SITE WORK. CALL DIGSAFE 1-888-344-7233 A MINIMUM OF 72 HOURS PRIOR TO PLANNED ACTIVITY.

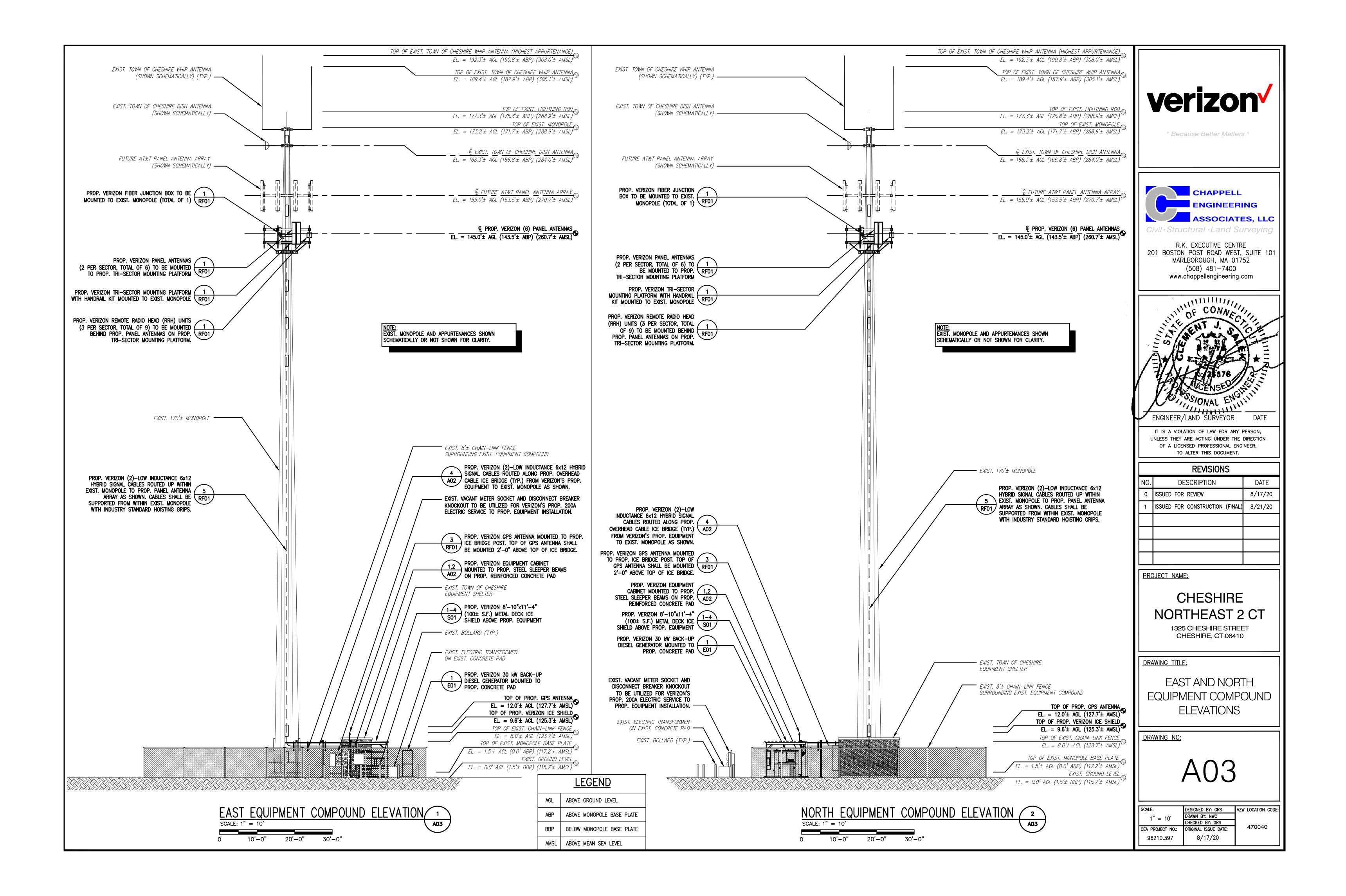
16. THE PROPERTY LINES SHOWN WERE COMPILED UTILIZING TOWN OF CHESHIRE ASSESSOR'S PLANS, GIS, RECORDED DEEDS, PLANS OF REFERENCE AND A LIMITED GROUND SURVEYS OF THE PROPERTY PERFORMED BY CHAPPELL ENGINEERING ASSOCIATES ON 6/12/2020 & 6/16/2020.

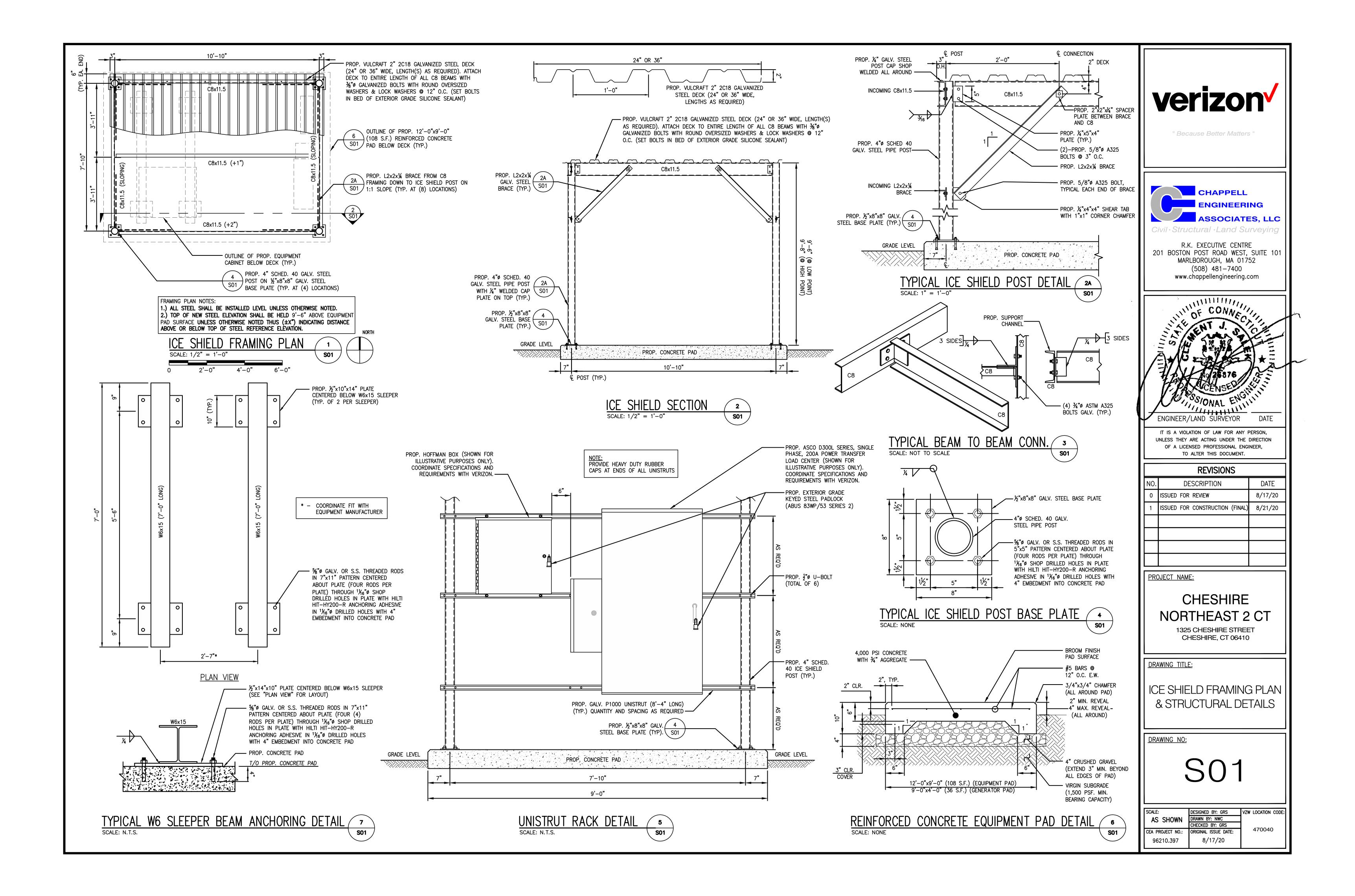
. THE SITE IS LOCATED IN FLOOD HAZARD ZONE X (AREA OF MINIMAL FLOOD HAZARD) AS SHOWN ON FLOOD INSURANCE RATE MAP FOR THE TOWN OF CHESHIRE, (MAP NUMBER 09009C0161J) EFFECTIVE 05/16/2017.

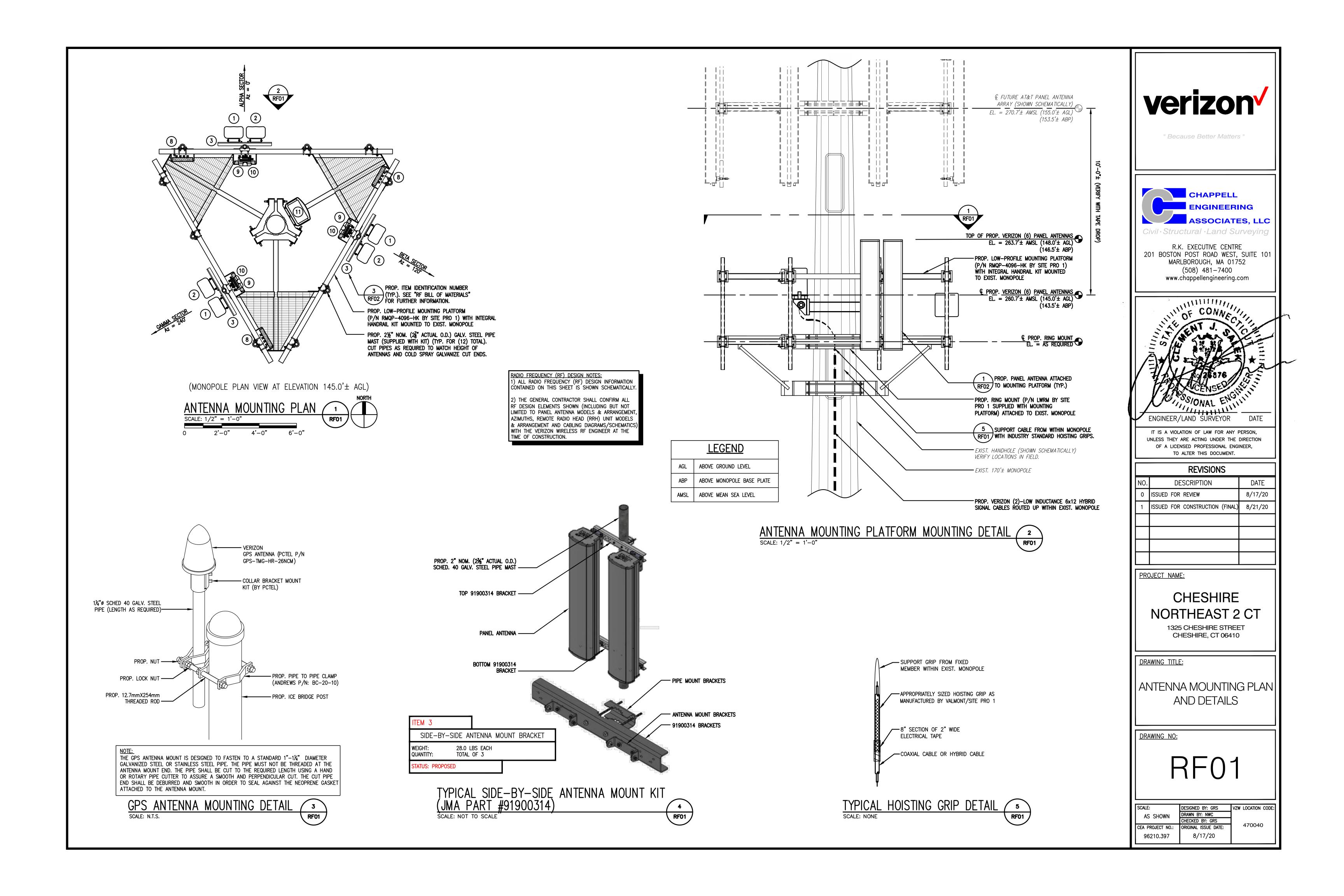

18. BEARING SYSTEM OF THIS PLAN IS BASED ON TRUE NORTH. TRUE NORTH WAS ESTABLISHED FROM EXIST. PLAN REFERENCE. IT IS NOT INTENDED TO BE AN EXACT REPRESENTATION OF TRUE NORTH.

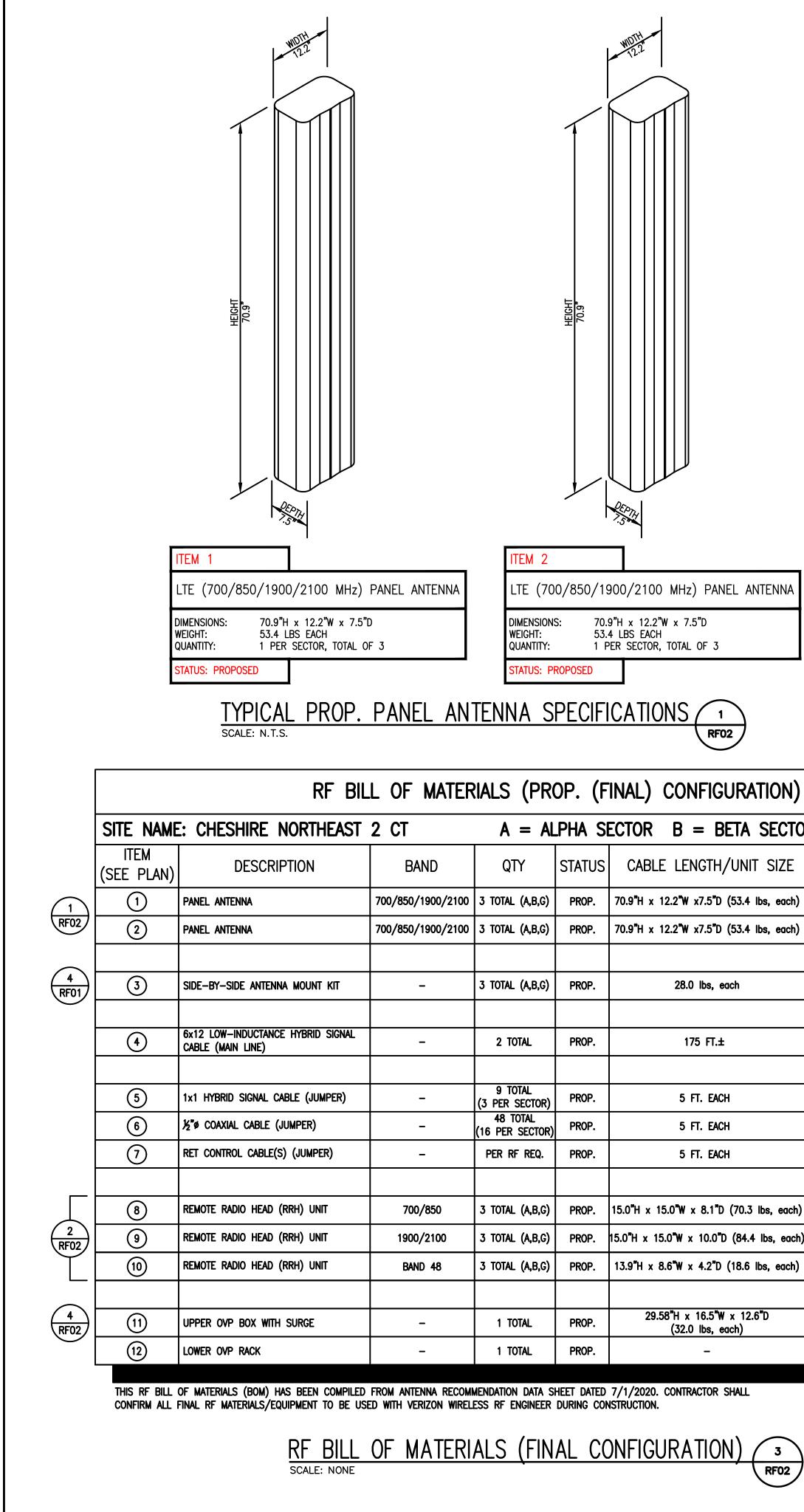
<u>LEGEND</u>	
OR STREET	PROPERTY LINE
	ABUTTING PROPERTY LINE
· · · · ·	PROPERTY OFFSET/RADIUS
	EXIST. EASEMENT
XXX	EXIST. CHAIN LINK FENCE
-000	EXIST. STOCKADE FENCE
	EXIST. EDGE OF PAVEMENT
	EXIST. OVERHEAD UTILITIES
uuuuuu.	EXIST. TREELINE
	PROP. TREELINE
-онwонw	PROP. OVERHEAD UTILITIES
Έ Τ/Ε Τ/Ε	PROP. UTILITIES
С)	EXIST. UTILITY POLE
	EXIST. STONE WALL
	ZONING BOUNDARY




8/17/20


96210.397




LEGEND	
DESCRIPTION	
75'-3"± (4,678± S.F.) EQUIPMENT COMPOUND LLC SITE #CT005 "CHESHIRE") (TYP.)	Verizon
N'S PROP. 12'-0"x16'-0" AREA (TYP.)	
NK FENCE SURROUNDING EXIST. 4,678± S.F.) EQUIPMENT COMPOUND (TYP.)	" Because Better Matters "
LOW INDUCTANCE 6x12 HYBRID SIGNAL CABLES P. OVERHEAD CABLE ICE BRIDGE (TYP.) FROM UIPMENT TO EXIST. MONOPOLE AS SHOWN.	
PPOLE	
ANTENNA MOUNTED TO PROP. ICE BRIDGE POST. TOP OF BE MOUNTED 2'-0" ABOVE TOP OF BRIDGE.	CHAPPELL ENGINEERING
R WITHIN EXIST. COMPOUND	ASSOCIATES, LL Civil · Structural ·Land Surveyir
PLE SWING GATE	R.K. EXECUTIVE CENTRE 201 BOSTON POST ROAD WEST, SUITE
)"x9'-0" (108 S.F.) E PAD	MARLBOROUGH, MA 01752 (508) 481-7400 www.chappellengineering.com
*x8'-10" (100± S.F.) METAL DECK ICE SHIELD FOR CLARITY) ABOVE PROP. EQUIPMENT	
R SOCKET AND DISCONNECT BREAKER KNOCKOUT VERIZON'S PROP. 200A ELECTRIC SERVICE TO STALLATION.	NILE OF CONNECTION
ER BANK	EST STATES
PMENT CABINET MOUNTED TO PROP. STEEL SLEEPER '-0"x9'-0" (108 S.F.) REINFORCED CONCRETE PAD	
R JUNCTION BOX (TOTAL OF 1) MOUNTED TO POST (IF REQUIRED)	THE AND STONES
W BACK-UP DIESEL GENERATOR 9'-0"x4'-0" (36 S.F.) CONCRETE PAD	ENGINEER/LAND SURVEYOR DATE
SHIRE 16'±x8'± EQUIPMENT SHELTER	
WIDE ACCESS EASEMENT (OVER EXIST. DRIVEWAY) (TYP.) RIGHT-OF-WAY (CHESHIRE STREET), TO EXIST. EQUIPMENT UTILIZED BY VERIZON FOR ACCESS TO VERIZON'S PROP.	IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.
SHEET CO1 FOR CONTINUATION TO CHESHIRE STREET. x20' PARKING SPACE OR TURN-AROUND AREA	REVISIONS
SHIRE OVERHEAD CABLE ICE BRIDGE (TYP.)	NO.DESCRIPTIONDAT0ISSUED FOR REVIEW8/17/
T	1 ISSUED FOR CONSTRUCTION (FINAL) 8/21/
NSFORMER ON EXIST. CONCRETE PAD	
ON OF FUTURE AT&T LEASE AREA	
SHIRE GPS ANTENNA	PROJECT NAME:
LBOX	CHESHIRE
p.)	NORTHEAST 2 CT 1325 CHESHIRE STREET
' 'S DRIVE	CHESHIRE, CT 06410
	DRAWING TITLE:
	EQUIPMENT
	COMPOUND PLAN
	DRAWING NO:
	A01
	SCALE: $\frac{3}{16}^{"} = 1^{'}-0^{"}$ DESIGNED BY: GRS VZW LOCATION DRAWN BY: NWC DV50/50.000
	716 = 1 - 0 CHECKED BY: GRS 470040

ITEM 8	ITEM 9
LTE/CDMA (700/850 MHz) REMOTE RADIO HEAD UNIT	PCS-AWS (1900/2100 MHz) REMOTE RADIO HEAD
DIMENSIONS: 15.0"H x 15.0"W x 8.1"D WEIGHT: 70.3 LBS QUANTITY: 1 PER SECTOR, TOTAL OF 3	DIMENSIONS: 15.0"H x 15.0"W x 10.0"D WEIGHT: 84.4 LBS QUANTITY: 1 PER SECTOR, TOTAL OF 3
STATUS: PROPOSED	STATUS: PROPOSED

TYPICAL REMOTE RADIO HEAD (RRH) UNIT DIMENSIONS (2 SCALE: N.T.S.

Procedure Mounting Procedures

mounting	riocedures
4.1	A mounting base is delivered with the unit. The base allows either wall/ladder or pole mounted installation. See picture to identify the holes for each installation method.

- **Option 1: Pole Mount** 4.2 Using supplied nardware, mount Bracke to 2" to 4" diameter pole.
- **Option 2: Unistrut** 4.3
- **Option 3: Monopole** 4.4 Use 1" stainless steel bands (not supplied) through slots on bracket to mount to Monopole.

Gland/Insert Definitions

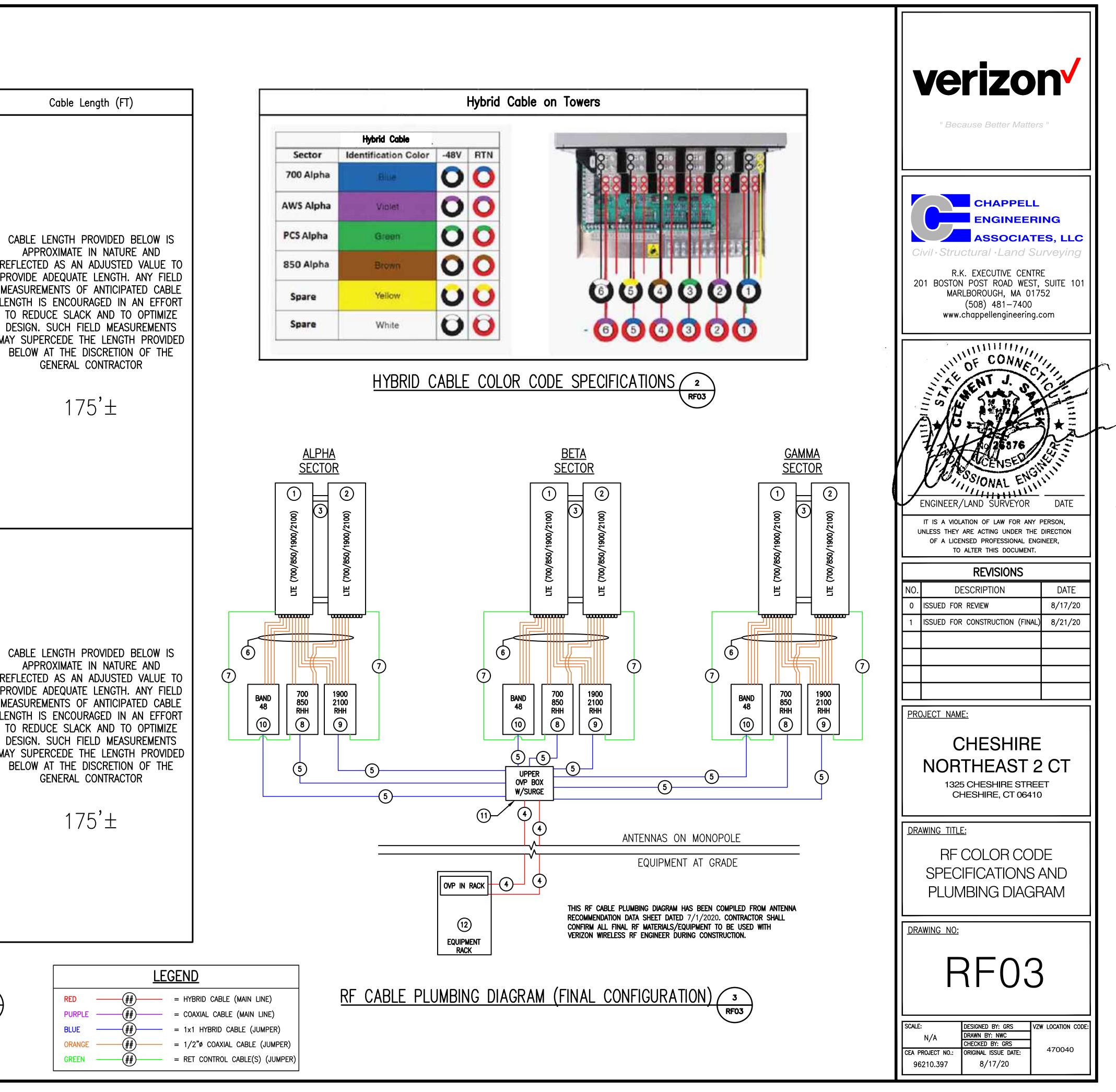
5.1 See picture to identify Base Gland Assembly Definitions.

,	Assembled in unit as shipped:					
	Qty	Connector Size	Pos	Insert P/N	Insert Hole	Cable Type
	2	M75	Α	190-0760	42mm	6x12 RL
	4	M75	в	190-0738	3x 16.5mm	1x2

Included in kit shipped with unit:

Qty	Connector Size	Insert P/N	Insert Hole	Cable Type	Pu
2	M75	190-0760	42mm	6x12 RL	2 glands fit
2	M75	190-0747	2x 24.5mm	2x12 DC	2 glands fit 2 e
1	M75	190-0905	2x 10.5mm	2x12 Fiber	1 gland fit 2
1	M75	190-0912	2x 9.5mm	2 ETH	1 gland fits

ITEM 11		
FIB	ER JI	JNCTION BOX
DIMENSIONS: WEIGHT: QUANTITY:	32.0	5"H x 16.5"W x 12.6"D D LBS AL OF 1
STATUS: PROPOS	SED	


TYPICAL FIBER JUNCTION BOX DIMENSIONS, SCHEMATIC AND MOUNTING PROCEDURE SCALE: N.T.S.

ION)	
SECTO	R G = GAMMA SECTOR
SIZE	COMMENTS
s, each)	MOUNTED TO PROP. SIDE-BY-SIDE MOUNT
s, each)	MOUNTED TO PROP. SIDE-BY-SIDE MOUNT
	MOUNTED TO PROP. PIPE MAST
	ROUTED UP WITHIN EXIST. MONOPOLE TO PROP. ANTENNA ARRAY
	ROUTED FROM PROP. UPPER OVP BOX TO PROP. REMOTE RADIO HEAD (RRH) UNITS
	ROUTE FROM PROP. REMOTE RADIO HEAD (RRH) UNITS TO PROP. ANTENNAS
	ROUTE FROM PROP. REMOTE RADIO HEAD (RRH) UNITS TO PROP. ANTENNAS
os, each)	MOUNTED TO PROP. PIPE MAST
bs, each)	MOUNTED TO PROP. PIPE MAST
s, each)	MOUNTED TO PROP. PIPE MAST
D	MOUNTED TO EXIST. MONOPOLE
	INTEGRAL WITHIN EQUIPMENT CABINET

Line Color Code	Band	Tx/Rx	Color Pairs	Sector	
BR	850	Tx0/Rx0	Blue + Red		
BY	850	Tx1/Rx1	Blue + Yellow		
BG	1900 CDMA	Tx0/Rx0			
BBG	1900 CDMA	Tx1/Rx1	Blue + Green		
BP	700 700	Tx0/Rx0			
BBP	700	Tx1/Rx1			
BBBP	700	Tx2/Rx2	Blue + Purple		
BBBBP	700	Tx3/Rx3			(
BBr	AWS	Tx0/Rx0		ALPHA	
BBBr	AWS	Tx1/Rx1			RE PR
BBBBr	AWS	Tx2/Rx2	Blue + Brown		ME
BBBBBr	AWS	Tx3/Rx3			LEI T
BGG	1900 LTE	Tx0/Rx0			D
BBGG	1900 LTE	Tx1/Rx1			MA`
BBBGG	1900 LTE	Tx2/Rx2	Blue + Green		
BBBBGG	1900 LTE	, Tx3/Rx3			
WR	850	, Tx0/Rx0	White + Red		
WY	850	Tx1/Rx1	White + Yellow		
WG	1900 CDMA	Tx0/Rx0			
WWG	1900 CDMA	Tx1/Rx1	White + Green		
WP	700	Tx0/Rx0	White t Purple	1	
WWP	700	Tx1/Rx1			
WWWP	700	Tx2/Rx2	White + Purple	BETA	
WWWWP	700	Tx3/Rx3			
WBr	AWS	Tx0/Rx0			DEIA
WWBr	AWS	Tx1/Rx1	White + Brown		
WWWBr	AWS	Tx2/Rx2			
WWWWBr	AWS	Tx3/Rx3			
WGG	1900 LTE	Tx0/Rx0			
WWGG	1900 LTE	Tx1/Rx1	White + Green		
WWWGG	1900 LTE	Tx2/Rx2			
WWWWGG	1900 LTE	Tx3/Rx3			
OR	850	Tx0/Rx0	Orange + Red		RE
OY	850	Tx1/Rx1	Orange + Yellow		PR ME
OG	1900 CDMA	Tx0/Rx0	Orange + Green		
00G	1900 CDMA	Tx1/Rx1	, ,		T D
OP	700	Tx0/Rx0			MA`
00P	700	Tx1/Rx1	Orange + Purple		E
000P	700	Tx2/Rx2			
0000P	700	Tx3/Rx3		GAMMA	
OBr	AWS	Tx0/Rx0			
00Br	AWS	Tx1/Rx1	Orange + Brown		
000Br	AWS	Tx2/Rx2			
0000Br	AWS	Tx3/Rx3		4	
0GG	1900 LTE	Tx0/Rx0			
00GG	1900 LTE	Tx1/Rx1	Orange + Green		
000GG	1900 LTE	Tx2/Rx2			
0000GG	1900 LTE	Tx3/Rx3			

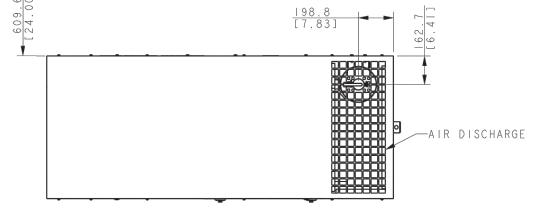
LINE COLOR CODE SPECIFICATIONS

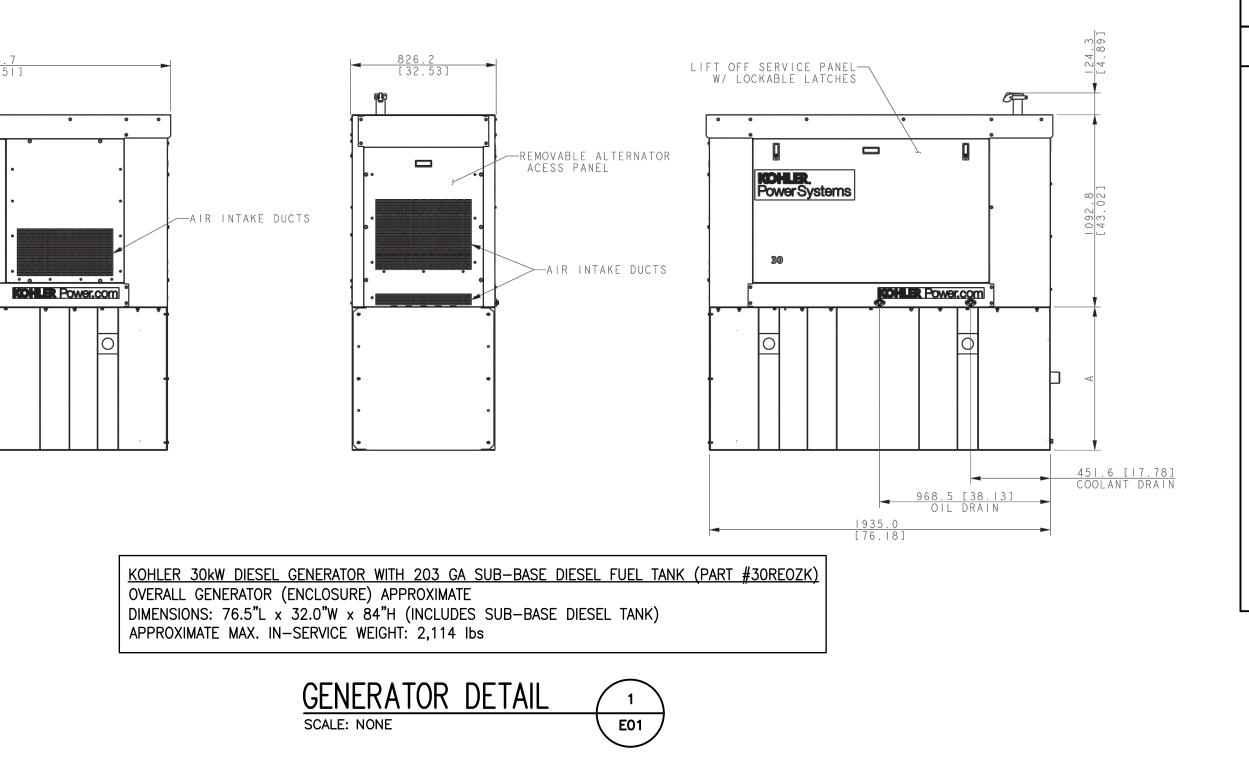
RF03

	ELECTRICAL SPECIFICATIONS		
1.	FURNISH ALL LABOR, MATERIALS, EQUIPMENT, TOOLS AND INCIDENTALS REQUIRED TO MAKE READY FOR USE THE COMPLETE ELECTRICAL SYSTEMS AS SHOWN ON THE DRAWINGS. MAKE ALL NECESSARY CONNECTIONS AT "PACKAGED" EQUIPMENT.		ELECTRICAL CONTRACTOR SHALL AS MINOR CUTTING REQUIRED FOR HIS THE ELECTRICAL CONTRACTOR, AT H
2.	THE ELECTRICAL SYSTEMS SHALL BE SUITABLE IN EVERY WAY FOR THE SERVICE REQUIRED. ALL MATERIAL AND ALL WORK WHICH MAY BE REASONABLY IMPLIED AS BEING INCIDENTAL TO THE WORK SHALL BE FURNISHED AT NO EXTRA COST.		STORAGE AND OFFICE SPACE.
3.	FURNISH AND INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH THE REQUIREMENTS OF LOCAL, STATE AND NATIONAL CODES AND STANDARDS, INCLUDING BUT NOT LIMITED TO: THE 2018 CONNECTICUT STATE BUILDING CODE	36.	ELECTRICAL CONTRACTOR'S WORK SI AND TRANSPORTATION NECESSARY F
	THE NATIONAL ELECTRICAL CODE (NFPA-70) THE CONNECTICUT ELECTRIC CODE		ELECTRICAL CONTRACTOR TO FURNIS
	THE NATIONAL ELECTRICAL SAFETY CODE (ANSI C–2) THE LIFE SAFETY CODE (NFPA 101) THE STRUCTURAL STANDARDS FOR ANTENNA SUPPORTING STRUCTURE AND ANTENNAS (TIA/EIA–222–G)	38.	GENERAL NOTES
4.	(TAY EIA-222-6) MATERIALS AND EQUIPMENT SHALL BE NEW, UNUSED AND UNDERWRITERS' LABORATORIES, INC. LISTED. CONTRACTOR SHALL BE RESPONSIBLE FOR PROVIDING ALL MATERIALS IN A TIMELY FASHION, INCLUDING	1.	CONTRACTOR SHALL VISIT THE SITE
	RESPONSIBILITY FOR DETERMINING AVAILABILITY/LEAD TIME FOR ALL NECESSARY EQUIPMENT. CONTRACTOR SHALL OBTAIN ALL NECESSARY PERMITS AND PAY ALL FEES FOR PERMITS AND INSPECTIONS.	2. 3.	BRANCH CIRCUIT RUNS 100 FT AND THESE DRAWINGS ARE DIAGRAMMATIC
5.	WHERE NEW COMMERCIAL POWER SERVICE IS PROVIDED TO THE SITE, OR EXISTING SERVICE MUST BE MODIFIED, CONTRACTOR SHALL MAKE ALL ARRANGEMENTS WITH THE ELECTRIC UTILITY, SHALL PERFORM ALL OF HIS WORK IN ACCORDANCE WITH THE REQUIREMENTS OF THE UTILITY, AND SHALL PAY ALL		EQUIPMENT AND ROUTING OF RACEW THE ELECTRICAL CONTRACTOR SHALL
6.	UTILITY SERVICE BACK CHARGES. ALL WIRING OUTSIDE SHALL BE INSTALLED IN HEAVY-GAUGE, (SCHEDULE 40) RIGID STEEL CONDUIT, HOT-DIPPED GALVANIZED INSIDE AND OUTSIDE WITH AN ADDITIONAL FACTORY-APPLIED FINISH INSIDE AND OUTSIDE. CUT ENDS SHALL BE REAMED, THREADED AND COLD GALVANIZED. NO COMPRESSION FITTING	5.	TO THE EXACT LOCATION OF THEIR WIRING AND ALL ELECTRICAL CONNE OPERATIVE HVAC AND PLUMBING SY: INTERRUPTIONS TO THE EXISTING EL
7.	WILL BE ACCEPTED. UNDERGROUND CONDUITS SHALL BE PVC SCHEDULE 40 AND INSTALLED NOT LESS THAN 30 INCHES		EXISTING DISTRIBUTION, BRANCH CIR AS SHORT AS POSSIBLE, AND TO T
7. 8.	BELOW FINISHED GRADE. WIRING INSTALLED IN THE BUILDING THAT IS SHOWN TO BE IN CONDUIT SHALL BE INSTALLED IN EMT. EMT.	6.	ALL CONDUIT SHALL BE SURFACE M CONDUIT BELOW 7'-8" AFF IN FINIS
	FITTINGS SHALL BE STEEL COMPRESSION TYPE.		ALL WIRING TO BE 3/4"C, 2#12 &
9.	LIQUID TIGHT, FLEXIBLE METAL CONDUIT SHALL BE USED FOR ALL MOTOR TERMINATIONS AND FOR CONNECTIONS TO EQUIPMENT SUBJECT TO VIBRATION. FLEXIBLE METAL CONDUIT SHALL CONSIST OF A FLEXIBLE, CORROSION RESISTANT METAL CORE WITH AN EXTRUDED, WATERTIGHT, SYNTHETIC JACKET.	8. 9.	NO BX OR ROMEX CABLE IS PERMIT
10.	CONDUITS SMALLER THAN $1-1/2$ " SHALL HAVE A CONTINUOUS GROUND CONDUCTOR UNDER THE JACKET. NO CONDUIT SMALLER THAN $3/4$ " ELECTRICAL TRADE SIZE SHALL BE USED, EXCEPT AS OTHERWISE		ALL OUTLET AND JUNCTION BOXES
	SHOWN ON THE DRAWINGS. BOX SIZES SHALL BE 4" SQUARE MINIMUM, BUT NOT LESS THAN THAT REQUIRED BY THE CONNECTICUT ELECTRICAL CODE.		ALL RECEPTACLE AND EQUIPMENT C GROUNDING CONDUCTOR RUN WITH ALL WALL PENETRATIONS FOR TELCO
11.	FITTINGS AND EXPOSED SWITCH, OUTLET AND CONTROL STATION BOXES AND OTHER EXPOSED BOXES 4" SQUARE SHALL BE CAST OR MALLEABLE IRON WITH CADMIUM—ZINC FINISH AND CAST COVERS WITH STAINLESS STEEL SCREWS.		ALL SWITCHES SHALL BE FORTY-EIG
12.	FLUSH SWITCH AND OUTLET BOXES SHALL BE HOT-DIPPED GALVANIZED, PRESSED STEEL WITH NYLON COVER PLATES, COLOR AS DETERMINED BY THE ENGINEER.		ALL RECEPTACLES SHALL BE EIGHTE ALL WIRING SHALL BE IN METAL RA
13.	EXCEPT AS OTHERWISE SHOWN, TERMINAL, JUNCTION AND PULL BOXES LARGER THAT 4" SQUARE SHALL BE SHEET STEEL. STEEL BOXES SHALL BE HOT—DIPPED GALVANIZED. BOXES AND COVERS SHALL BE NOT LESS THAN 14 GAUGE METAL. COVERS SHALL BE GASKETED AND FASTENED WITH STAINLESS STEEL HARDWARE.	16.	WIRE COLOR SHALL BE PER STANDA FOR UTILITY BILLING, PLEASE SEND
14.	FITTINGS USED WITH LIQUID TIGHT, FLEXIBLE CONDUIT SHALL BE OF THE SCREW-IN, COMPRESSION TYPE WITH SEALING RING. FITTINGS LARGER THAN $1-1/4$ " SHALL BE FURNISHED WITH INTEGRAL GROUND LUGS.		VERIZON WIRELESS 20 ALEXANDER DRIVE WALLINGFORD, CT 06492
15.	HANGERS, RODS, BACK PLATES, BEAM CLAMPS, ETC. SHALL BE GALVANIZED IRON OR STEEL. CONDUITS SHALL BE SUPPORTED AT LEAST EVERY 5 FEET.		
16.	EXPOSED CONDUITS SHALL BE RUN PARALLEL TO OR AT RIGHT ANGLES TO WALLS. CONDUIT RUNS SHALL BE STRAIGHT AND TRUE. CONDUIT SHALL BE SUPPORTED BY MEANS OF TWO-HOLE PIPE CLAMPS. BACK PLATES SHALL BE INSTALLED WHERE REQUIRED TO RAISE CONDUITS FROM THE SURFACE. MULTIPLE, HORIZONTAL RUNS SHALL BE SUPPORTED ON TRAPEZE HANGERS WITH STEEL HORIZONTAL MEMBERS AND THREADED RODS NOT LESS THAN 3/8 INCHES IN DIAMETER. HANGERS SHALL BE ATTACHED TO STRUCTURAL STEEL BY MEANS OF BEAM CLAMPS. SPOT TYPE INSERTS SHALL BE USED IN CONCRETE.		
17.	CONDUIT BENDS SHALL BE CAREFULLY MADE TO PREVENT DISTORTION OF THE CIRCULAR CROSS-SECTION. NO CONDUIT RUN SHALL HAVE MORE THAN THE EQUIVALENT OF THREE 90 DEGREE BENDS BETWEEN PULLING POINTS. CHANGES IN DIRECTION SHALL BE MADE WITH BENDS, STANDARD ELBOWS AND PULLBOXES. BENDS IN PARALLEL RUNS SHALL BE CONCENTRIC.		
18.	CONDUIT SHALL NOT BE SUPPORTED FROM PIPING, PIPING SUPPORTS, DUCTWORK, SUSPENDED CEILING SUPPORTS OR MECHANICAL EQUIPMENT SUBJECT TO VIBRATION OR REMOVAL.		
19.	THE ENDS OF ALL CONDUITS SHALL BE TIGHTLY PLUGGED DURING BUILDING CONSTRUCTION UNTIL WIRES ARE TO BE PULLED. SPARE CONDUITS SHALL BE FURNISHED WITH THREADED CAPS.		1069 7
20.	CONDUITS SHALL BE TERMINATED AT UNGASKETED SHEET STEEL BOXES AND ENCLOSURES WITH DOUBLE LOCK NUTS AND SUITABLE BUSHINGS. BUSHINGS INSTALLED ON CONDUITS CONTAINING GROUND WIRES SHALL BE GROUNDING TYPE. CONDUITS SHALL BE TERMINATED AT GASKETED SHEET METAL BOXES AND ENCLOSURES WITH CONDUIT HUBS.		1968.7 [77.5]]
21.	CONDUCTORS SHALL BE ANNEALED, 98 PERCENT CONDUCTIVITY, SOFT-DRAWN COPPER. NO CONDUCTOR SMALLER THAT NO. 12 AWG SHALL BE USED, EXCEPT AS OTHERWISE NOTED.	• •	
22.	WIRE FOR POWER AND LIGHTING BRANCH CIRCUITS SHALL BE 600 VOLT, TYPE THWN. WIRE FOR CONTROL CIRCUITS SHALL BE 600 VOLT, TYPE THWN, NO. 14 AWG, STRANDED. SERVICE CONDUCTORS AND FEEDERS SHALL BE TYPE XHHW. CONDUCTORS NO. 10 AWG AND SMALLER SHALL BE SOLID. NO. 8 AWG AND LARGER SHALL BE STRANDED		
23.	ALL CONDUCTORS SHALL BE CAREFULLY HANDLED TO AVOID KINKS OR DAMAGE TO INSULATION. LUBRICATIONS SHALL BE USED TO FACILITATE WIRE PULLING. LUBRICANTS SHALL BE UL LISTED FOR USE WITH THE INSULATION SPECIFIED.		
24.	ALL EQUIPMENT AND MATERIALS SHALL BE GROUNDED IN STRICT ACCORDANCE WITH THE CONNECTICUT ELECTRICAL CODE, AND THE STANDARD REQUIREMENTS OF VERIZON WIRELESS AND LUCENT.	:	
25.	DISCONNECT SWITCHES SHALL BE 480 OR 240 VOLT, HEAVY-DUTY, QUICK-MAKE, QUICK BREAK, VISIBLE BLADE, 2 POLE WITH EXTERNAL OPERATING HANDLE AND FULL COVER INTERLOCK. SWITCHES INSTALLED OUTSIDE SHALL BE NEMA TYPE 3R ENCLOSED.		
	WALL SWITCHES SHALL BE SINGLE POLE 3-WAY OR 4-WAY, INDICATING, TOGGLE-ACTION, FLUSH, QUIET TYPE, SPECIFICATION GRADE, RATED 20 AMPERE, 120-277 VOLT. COLOR AS DETERMINED BY ENGINEER.	<u>54.0</u>	
	GENERAL PURPOSE RECEPTACLES SHALL BE DUPLEX, 2 POLE, 3 WIRE, STRAIGHT BLADE, NYLON FACE, GROUNDING TYPE, 20 AMPERE, 125 VOLT, SPECIFICATION GRADE. COLOR AS DETERMINED BY ENGINEER.	LZ.IJJ ''	
	PANELS SHALL BE PER DIRECTED BY THESE DRAWINGS WITH TYPED DIRECTORIES. CIRCUIT BREAKERS SHALL BE MOLDED CASE, THERMAL-MAGNETIC TYPE WITH RMS SYMMETRICAL INTERRUPTING RATING OF NOT LESS THAN 22,000 AMPERE FOR 240 VOLT BREAKERS. ENCLOSED BREAKERS SHALL HAVE PADLOCKING PROVISIONS AND EXTERNAL OPERATING HANDLE WITH FULL COVER		
30.	INTERLOCK. BREAKERS SHALL BE 1" MODULES MINIMUM. NAMEPLATES SHALL BE PROVIDED FOR ALL EQUIPMENT INDICATING VOLTAGE, PHASE, USE AND SOURCE OF ORIGIN. DEVICES SHALL BE LABELED INDICATING VOLTAGE AND BRANCH CIRCUIT. BRANCH CONDUCTORS SHALL BE LABELED INDICATING BRANCH CIRCUIT. FEEDER CONDUCTORS SHALL INDICATE PHASE.		
31.	ALL EXTERIOR CONDUCTOR/LUG TERMINALS SHALL HAVE AN ANTIOXIDANT APPLIED.		
32.	ALL SPRING TYPE WIRE CONDUCTORS USED IN EXTERIOR BOXES SHALL BE SILICON FILLED.		

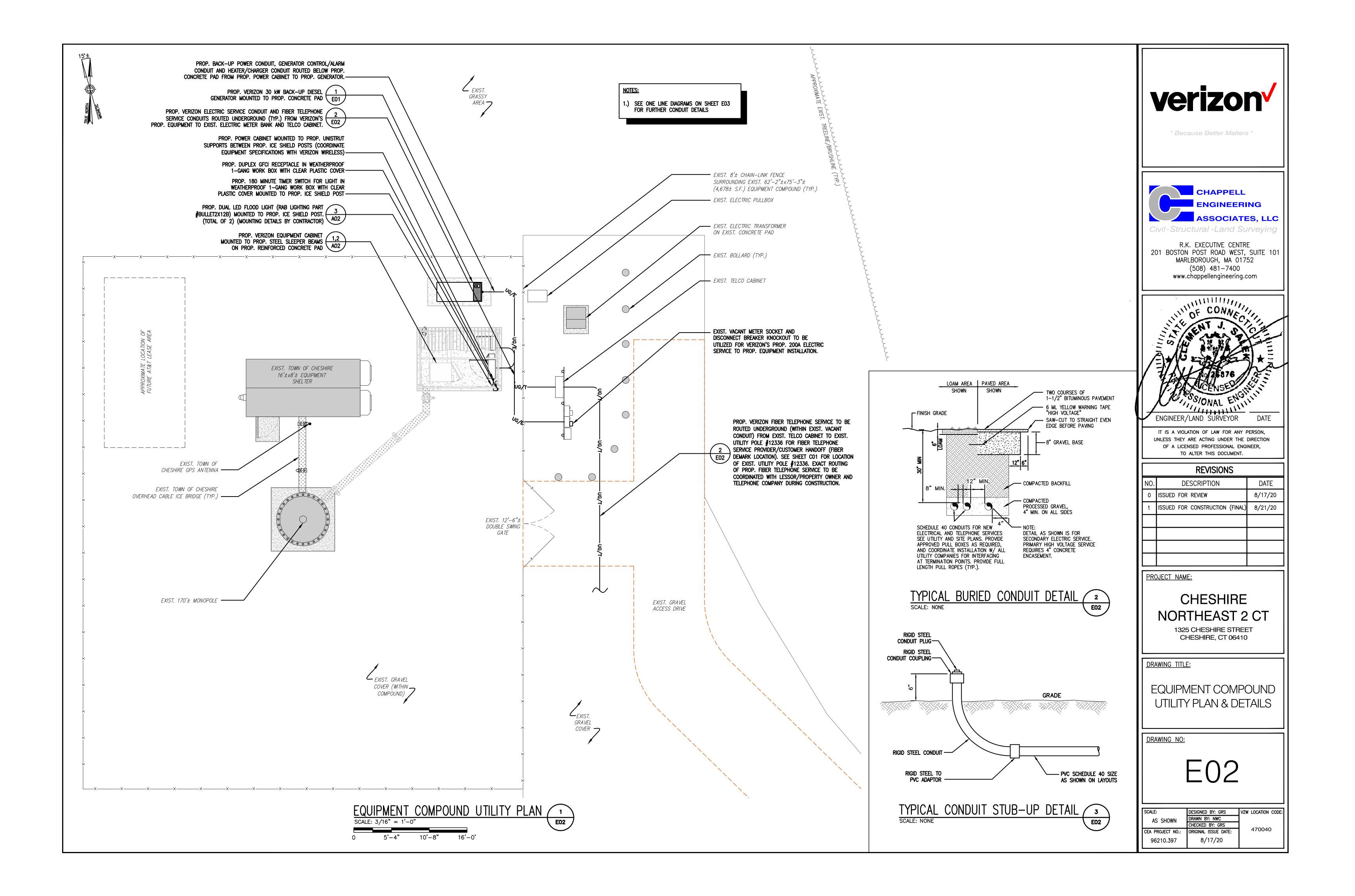
CTOR SHALL AS PART OF HIS WORK INCLUDE ALL FITTINGS, SLEEVES AND UIRED FOR HIS WORK, INCLUDING FIRES-STOPPING.

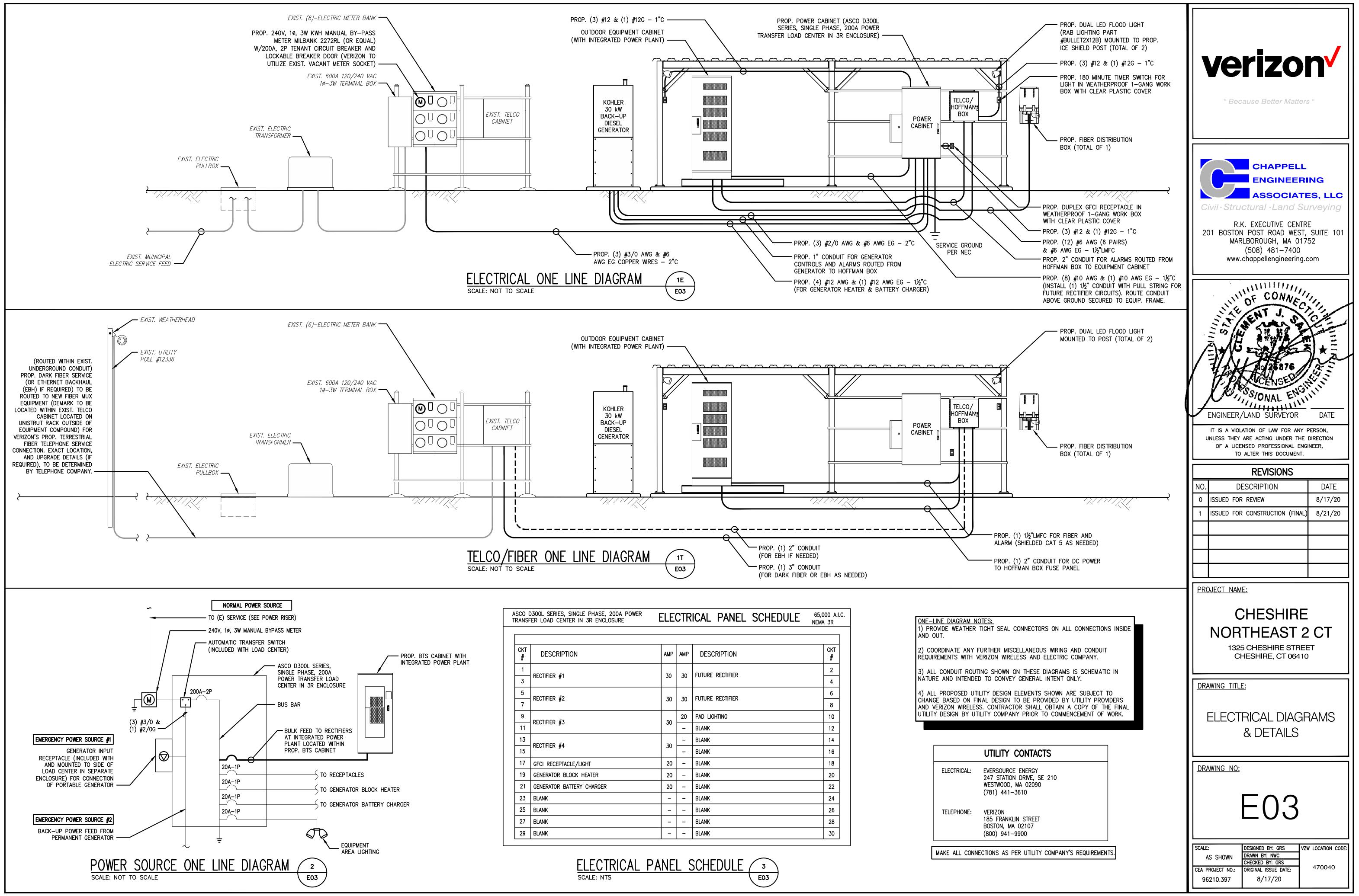
- NTRACTOR, AT HIS OWN EXPENSE, SHALL PROVIDE HIS OWN, WHERE DIRECTED,
- HOP DRAWINGS OF ALL EQUIPMENT SHALL BE PROVIDED TO THE ENGINEER. CTOR'S WORK SHALL INCLUDE ALL LABOR AND MATERIALS, SCAFFOLDING TOOL ON NECESSARY FOR COMPLETE INSTALLATION.
- CTOR TO FURNISH ENGINEER ONE SET OF MYLARS OF "AS BUILT" DRAWINGS. CTOR SHALL PROVIDE TEMPORARY POWER & LIGHTING AS REQ'D.
- VISIT THE SITE TO MAKE HIMSELF AWARE OF THE EXISTING CONDITIONS.
- UNS 100 FT AND OVER SHALL BE #10 AWG CONDUCTORS.
- ARE DIAGRAMMATIC ONLY. THE EXACT LOCATION, MOUNTING HEIGHT, SIZE OF JTING OF RACEWAYS SHALL BE COORDINATED AND DETERMINED IN THE FIELD.
- NTRACTOR SHALL COORDINATE WITH THE HVAC AND PLUMBING CONTRACTORS AS ATION OF THEIR RESPECTIVE EQUIPMENT, THE POWER WIRING, THE CONTROL ECTRICAL CONNECTIONS REQUIRED BY THIS CONTRACTOR FOR COMPLETELY ND PLUMBING SYSTEMS IN CONFORMANCE WITH THE CONTRACT DOCUMENTS.
- THE EXISTING ELECTRICAL SERVICE FOR SPLICING CONNECTIONS, RENOVATION OF ION, BRANCH CIRCUITS, INSTALLATION OF NEW ELECTRIC SERVICE, AND SHALL BE SIBLE, AND TO THE CONVENIENCE OF THE OWNER.
- BE SURFACE MOUNTED UNLESS OTHERWISE NOTED. NO INTERIOR HORIZONTAL '-8" AFF IN FINISHED SPACES.
- 3/4"C, 2#12 & 1#12 GROUND, UNLESS OTHERWISE NOTED.
- CABLE IS PERMITTED.
- AND EQUIPMENT SHALL BE 20A SPECIFICATION GRADE AND UL LISTED.
- UNCTION BOXES SHALL BE SECURELY SURFACE MOUNTED. ND EQUIPMENT CIRCUITS SHALL BE GROUNDED USING A FULL SIZE EQUIPMENT CTOR RUN WITH THE CURRENT CONDUCTORS.
- ATIONS FOR TELCO, POWER. AND GROUNDING SHALL REQUIRE PVC SLEEVES.
- L BE FORTY-EIGHT (48) INCHES AFF, UNLESS OTHERWISE NOTED.
- SHALL BE EIGHTEEN (18) INCHES AFF, UNLESS OTEHRWISE NOTED.
- BE IN METAL RACEWAY & NO. 12 AWG COPPER MIN. UNLESS OTHERWISE NOTED.
- BE PER STANDARD CODING BY PHASE.
- , PLEASE SEND TO:

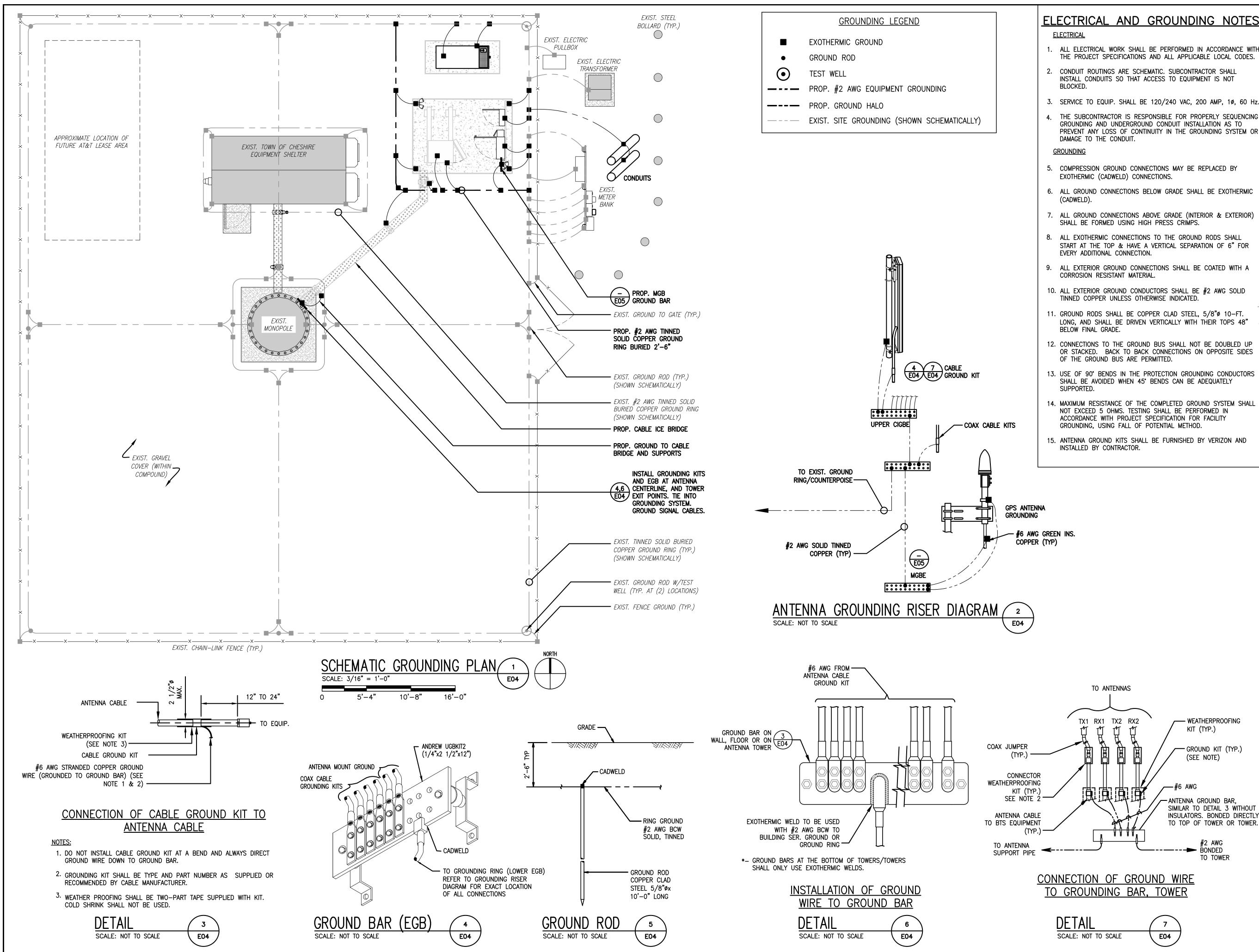

GROUNDING GENERAL NOTES


- 1. ALL EXTERIOR CONDUCTORS SHALL BE #2 AWG, SOLID, BARE, TINNED COPPER, UNLESS OTHERWISE NOTED. MINIMUM BEND RADIUS SHALL BE EIGHT (8) INCHES.
- 2. ALL CONNECTIONS TO HALO GROUND RING AND ALL CABLE TRAY JUMPERS SHALL BE #6 AWG, INSULATED, STRANDED, COPPER WIRE.
- 3. ALL WIRE-TO-WIRE CONNECTIONS SHALL BE THREE-CLAMP, C TAP COMPRESSION (T&B #54740 ORANGE OR EQUIVALENT). ALL GROUND BAR CONNECTIONS SHALL BE TWO-HOLE, LONG-BARREL TYPE COMPRESSION LUGS (T&B OR EQUIVALENT). ALL OTHER CONNECTIONS TO STEEL SURFACES SHALL USE LUG-TYPE CONNECTORS.

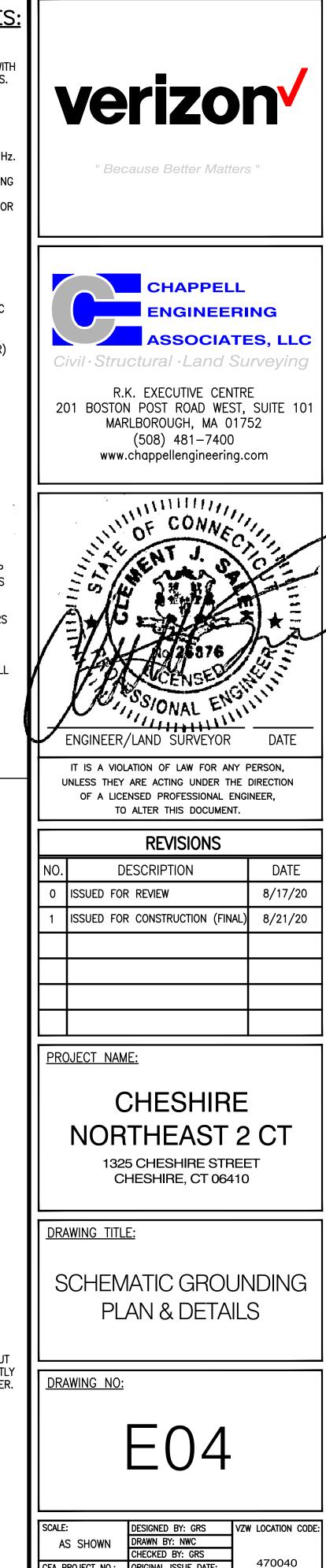
- 4. MECHANICALLY BOND ANTENNA MOUNTS WITH #2 AWG, BARE, STRANDED CONDUCTORS.
- 5. ALL GROUNDING WORK SHALL COMPLY WITH VERIZON WIRELESS STANDARDS.
- 6. CONNECT GROUND CONDUCTOR TO EXISTING GROUNDING SYSTEM. ATTACH TO WALLS, PARAPET, CABLE TRAY, ETC. WITH A CLAMPS AS NECESSARY. REMOVE PAINT, FIREPROOFING, MILL SCALE, ETC. TO ACHIEVE GOOD CAD WELD GROUND CONNECTION.
- 7. CONNECT TO HALO GROUND USING C-TAP (#54730).
- 8. CONNECT TO ENCLOSURES USING BLUE GROUND LUGS.

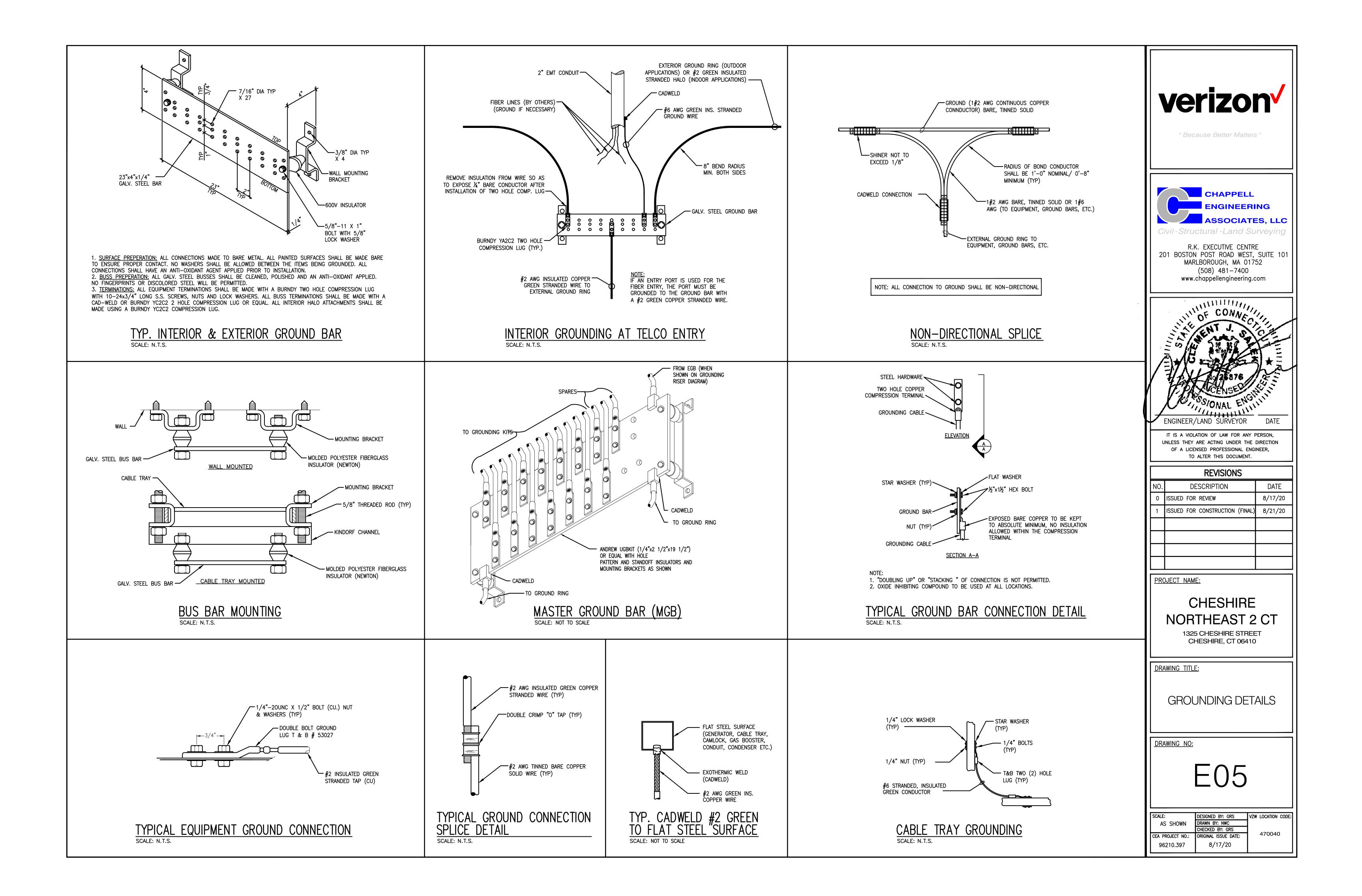



MINIMUM REQUIRED CLEARENCE FOR AIRFLOW



	LEGEND	
ELEC	TRICAL SYMBOLS	
	METER	Verizon
	GROUND ROD/TEST (OBSERVATION) WELL GROUND ROD	" Because Better Matters "
• 	CADWELD TYPE CONNECTION COMPRESSION TYPE CONNECTION GROUNDING WIRE	
1 E02	REPRESENTS DETAIL NUMBER	
	1'X4' SURFACE MTD. FLOURESCENT LIGHTING FIXTURE	ENGINEERING ASSOCIATES, LLC
	SELF CONTAINED EMERG. LIGHTING UNIT	Civil · Structural · Land Surveying
S	20A-120V-1P TOGGLE SWITCH	R.K. EXECUTIVE CENTRE 201 BOSTON POST ROAD WEST, SUITE 101
DS	MAGNETIC DOOR SWITCH (DOOR JAMB TYPE)	MARLBOROUGH, MA 01752
⊕=	20A—120V QUADRAPLEX RECEPTACLE, GROUNDING TYPE, 2—CKT. NO.	(508) 481–7400 www.chappellengineering.com
₩P/GFI	20A-120V DUPLEX RECEPTACLE, GROUNDING TYPE. WP = WEATHERPROOF GFI = GROUND FAULT	THE OF CONNECT
θπ	SIMPLEX RECEPTACLE, GROUNDING TYPE. TL = TWIST LOCK	NUMBER OF CONNECTION
J	JUNCTION BOX	THENT SCIENT
	PANELBOARD 'P1'	
* ② Nw	MOTOR – NUMERAL DENOTES HORSEPOWER WEATHER PROOF DISCONNECT SWITCH	ANT
₽ "	FUSED DISCONNECT SWITCH - '3R' & '1' - NEMA ENCLOSURE	HALLENSE SE
* ①–	THERMOSTAT $* \oplus_{H}$ – HI TEMPERATURE ALARM THERMOSTAT	SIONAL ENGININ
* ⊕–	HUMIDISTAT $* \Theta_{H/L0} - HI/L0$ HUMIDITY ALARM HUMIDISTAT	ENGINEER/LAND SURVEYOR DATE
Θ	COMBINATION SMOKE/HEAT DETECTOR WITH MINI HORN SIMPLEX CAT.#2098–9696 WITH FORM A & C CONTACTS	IT IS A VIOLATION OF LAW FOR ANY PERSON,
P1-2	HOMERUN TO PANEL (FURNISH & INSTALLED BY MECHANICAL)	UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.
	SURGE ARRESTOR – JOSLYN CAT. NO. 1455–85	REVISIONS
AFF	ABOVE FINISHED FLOOR	NO. DESCRIPTION DATE
* M//////	MOTORIZED DAMPER	0 ISSUED FOR REVIEW 8/17/20
	EXPOSED CONDUIT $2#12-3/4$ °C.	1 ISSUED FOR CONSTRUCTION (FINAL) 8/21/20
тс]	ALARM TERMINAL CABINET	
	* EQUIPMENT FURNISHED AND INSTALLED BY OTHERS AND WIRED BY THIS CONTRACTOR	
	ABBREVIATIONS	
	AWG AMERICAN WIRE GAUGE	PROJECT NAME:
	BCW BARE COPPER WIRE	CHESHIRE
	GPSGLOBAL POSITIONING SYSTEMPCSPERSONAL COMMUNICATION SYSTEM	NORTHEAST 2 CT
	RWY RACEWAY	1325 CHESHIRE STREET
	TYP. TYPICAL	CHESHIRE, CT 06410
	RGS RIGID GALVANIZED STEEL	
	EMT ELECTRICAL METALLIC TUBING DWG DRAWING	DRAWING TITLE:
	EMT INTERIOR GROUND RING (HALO)	ELECTRICAL
	GEN GENERATOR	SPECIFICATIONS AND
	GR GROWTH	NOTES
	CGBE COAX GROUND BAR EXTERNAL	
	CIGBE COAX ISOLATED GROUND BAR EXTERNAL MGB MASTER GROUND BAR	DRAWING NO:
	PVC RIGID (SCH. 40) POLYVINYL CHLORIDE CONDUIT	
	EBH ETHERNET BACK HAUL	E01
		SCALE:DESIGNED BY: GRSVZW LOCATION CODE:AS SHOWNDRAWN BY: NWCCHECKED BY: GRS470040CEA PROJECT NO.:ORIGINAL ISSUE DATE:47004096210.3978/17/208/17/20470040


SCO D300L SERIES, SINGLE PHASE, 200A POWER RANSFER LOAD CENTER IN 3R ENCLOSURE ELECTRICAL PANEL SCHEDULE 65,000 A.I.C. NEMA 3R						
скт #	DESCRIPTION	AMP	AMP	DESCRIPTION	скт #	
1 3	RECTIFIER #1	30	30	FUTURE RECTIFIER	2	
5 7	RECTIFIER #2	30	30	FUTURE RECTIFIER	6 8	
9		70	20	PAD LIGHTING	10	
11	RECTIFIER #3	30	-	BLANK	12	
13		70	-	BLANK	14	
15	RECTIFIER #4	30	-	BLANK	16	
17	GFCI RECEPTACLE/LIGHT	20	-	BLANK	18	
19	GENERATOR BLOCK HEATER	20	-	BLANK	20	
21	GENERATOR BATTERY CHARGER	20	-	BLANK	22	
23	BLANK	_	-	BLANK	24	
25	BLANK	_	-	BLANK	26	
27	BLANK	_	-	BLANK	28	
29	BLANK	-	-	BLANK	30	


ELECTRICAL AND GROUNDING NOTES:

- 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS AND ALL APPLICABLE LOCAL CODES.
- 3. SERVICE TO EQUIP. SHALL BE 120/240 VAC, 200 AMP, 10, 60 Hz.
- THE SUBCONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR

- 5. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY
- 6. ALL GROUND CONNECTIONS BELOW GRADE SHALL BE EXOTHERMIC
- 7. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR & EXTERIOR)
- 8. ALL EXOTHERMIC CONNECTIONS TO THE GROUND RODS SHALL START AT THE TOP & HAVE A VERTICAL SEPARATION OF 6" FOR
- 9. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A
- 10. ALL EXTERIOR GROUND CONDUCTORS SHALL BE #2 AWG SOLID
- 11. GROUND RODS SHALL BE COPPER CLAD STEEL, 5/8"ø 10-FT. LONG, AND SHALL BE DRIVEN VERTICALLY WITH THEIR TOPS 48"
- 12. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED. BACK TO BACK CONNECTIONS ON OPPOSITE SIDES
- 13. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS
- 14. MAXIMUM RESISTANCE OF THE COMPLETED GROUND SYSTEM SHALL
- 15. ANTENNA GROUND KITS SHALL BE FURNISHED BY VERIZON AND



CEA PROJECT NO .: ORIGINAL ISSUE DATE: 8/17/20 96210.397

ATTACHMENT 4

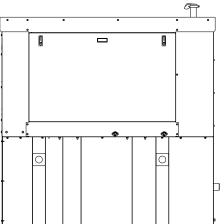
COMPACT FOOTPRINT

Our 76.5" x 32" rectangular footprint is specially designed for cell tower site applications.

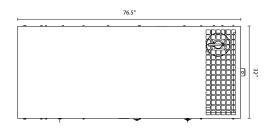
QUIET PERFORMANCE

Our sound enclosure delivers a sound performance of 65 dBA— which is among the quietest available.

RELIABLE POWER


Our direct engine/alternator design eliminates the possibility of generator failure due to improper adjustment or belt breakdowns.

SINGLE-SIDE SERVICE


Maintenance is easy. All frequently serviced touch points are located on a single side and accessible by an easy-to-remove lift off door.

30REOZK

Front View

Top View

MODEL		30REOZK		
FUEL TYPE		Diesel		
ENGINE MAKER		Kohler KDI		
OPERATING SPEED	(rpm)	1800		
CONTROLLER		Kohler Decision-Maker 3000		
VOLTAGE		120/240 1 Phase		
TANK GALLON/48 HRS @ FULL LOAD		203		
TANK*		Standard, Double Wall		
OVERALL DIMENSIONS	L x W x H in	76.5 x 32.0 x 47.0		
WEIGHT	lbs	1130		
PEOPLESOFT NUMBER		21099077		

*Alternative tank sizes, state tanks and 3 phase models available.

NWAV™ X-Pol Ten-Port Antenna

X-Pol Ten-Port 6 ft, 65° Form in Tighter with Smart Bias Ts, 698-4200 MHz:

2 ports 698-894 MHz, 4 ports 1695-2180 MHz, and 4 ports 3400-4200 MHz

- Excellent passive intermodulation (PIM) performance reduces harmful interference.
- Fully integrated (iRETs) with independent RET control for low band and mid band
- FET configured with internal RET for high band & ease of future network optimization.
- · SON-Ready array spacing supports beamforming capabilities
- Suitable for 3G, 4G, and 5G interface technologies
- Integrated Smart Bias-Ts reduce leasing costs
- · Optimized form factor for reduced wind loading

Electrical specification (minimum/maximum)	Ports 1, 2		Ports 3, 4, 5, 6		
Frequency bands, MHz	698-798	824-894	1695-1880	1850-1990	1920-2180
Polarization	± 4	45°	± 45°		
Average gain over all tilts, dBi	14.4	14.8	17.8	18.1	18.2
Horizontal beamwidth (HBW), degrees ¹	66.0	57.0	63.0	63.0	58.0
Front-to-back ratio, co-polar power @180°± 30°, dB	>22	>22.0	>25.0	>25.0	>25.0
X-Pol discrimination (CPR) at boresight, dB	>17.0	>15.6	>23	>18	>18
Vertical beamwidth (VBW), degrees ¹	13.5	12.0	6.0	5.5	5.4
Electrical downtilt (EDT) range, degrees	2-14		0-9		
First upper side lobe (USLS) suppression, dB ¹	≤-17.0	≤-16.0	≤-17.0	≤-16.0	≤-16.0
Cross-polar isolation, port-to-port, dB ¹	25	25	25	25	25
Max VSWR / return loss, dB	1.5:1 / -14.0		1.5:1 / -14.0		
Max passive intermodulation (PIM), 2x20W carrier, dBc	-153		-153		
Max input power per any port, watts	300		250		
Total composite power all ports (1-10), watts	1500				

¹ Typical value over frequency and tilt

©2020 JMA Wireless. All rights reserved. This document contains proprietary information. All products, company names, brands, and logos are trademarks[™] or registered® trademarks of their respective holders. All specifications are subject to change without notice. +1 315.431.7100 customerservice@jmawireless.com

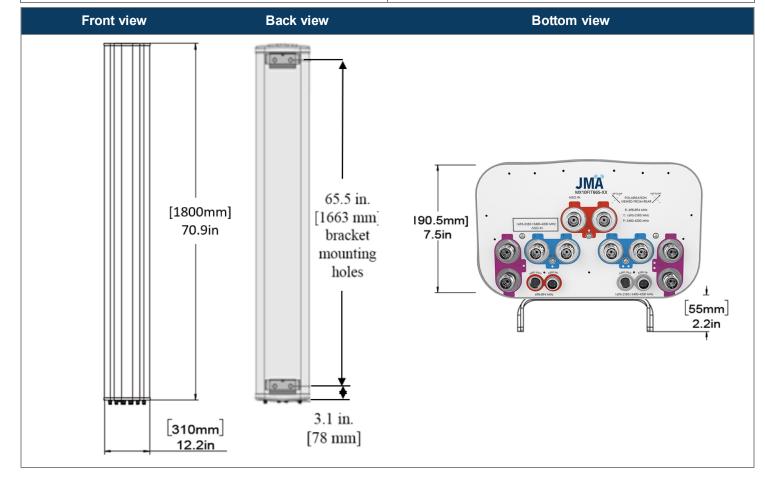
PRELIMINARY

NWAV™ X-Pol Ten-Port Antenna

Electrical specification (minimum/maximum)	Ports 7, 8, 9, 10			
Frequency bands, MHz	3400-3550	3550-3700	3700-3950	3950-4200
Polarization	± 45°			
Average gain over all tilts, dBi	13.6	13.8	14.0	14.2
Horizontal beamwidth (HBW), degrees	65	62	60	58
Front-to-back ratio, co-polar power @180°± 30°, dB	>23	>23	>23	>22
Vertical beamwidth (VBW), degrees ¹	20	19.6	19.3	18.5
Electrical downtilt (EDT) range, degrees	2-12 orderable in 1 deg increments			its
First upper side lobe (USLS) suppression, dB ¹	≤-15	≤-15	≤-15	≤-15
Cross-polar isolation, port-to-port, dB ¹	25	25	25	25
Max VSWR / return loss, dB	1.5:1 / -14.0			
Max input power per any port, watts	150			
Total composite power all ports (1-10), watts	1500			

¹ Typical value over frequency and tilt

* For ports 7-10, the electrical downtilt is FET configured with internal RET, where the required electrical downtilt is defined at the time of order per the ordering information below.

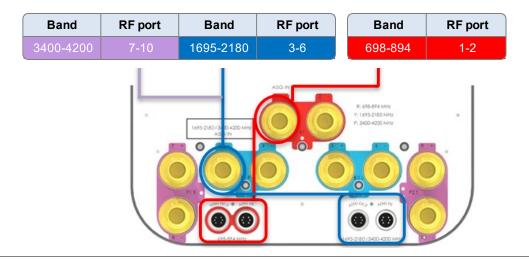

Ordering information						
Antenna model	Description					
	6F X- Pol 10 Port FIT 65º 2-14º/ 0-9º/ 2-12º, 4.3-10 & SBTs					
MX10FIT665-xx (xx represents the FET in one degree increments for 3.4-4.2 GHz)	xx=02 thru 12 for each 1 degree tilt 3.4-4.2 GHz Examples MX10FIT665-02 – 2deg, MX10FIT665-09 – 9deg, MX10FIT665-12- 12deg					
Optional accessories						
AISG cables	M/F cables for AISG connections					
PCU-1000 RET controller	Stand-alone controller for RET control and configurations					
91900314-02	Dual Mount Bracket (see 91900314 bracket document for details)					

NWAV™ X-Pol Ten-Port Antenna

PRELIMINARY

70.9/ 12.2/ 7.5 (1800/ 309.9/ 190.5)
76/ 20/ 14.5 (1930/ 508/ 368)
10 x 4.3-10 female, bottom
96 lbf·in (10.85 N·m or 8 lbf·ft)
53.4 (24.3)
97.5 (44.3)
91900318
20.3 (9.2)
-2° to 12°
150 (241)
74.1 (330), 26.1 (116), 69.8 (311)
1.49

©2020 JMA Wireless. All rights reserved. This document contains proprietary information. All products, company names, brands, and logos are trademarks™ or registered® trademarks of their respective holders. All specifications are subject to change without notice. +1 315.431.7100 customerservice@jmawireless.com


PRELIMINARY

NWAV™ X-Pol Ten-Port Antenna

Remote electrical tilt (RET 1000) information				
RET location	Integrated into antenna			
RET interface connector type	8-pin AISG connector per IEC 60130-9 or RF port bias-t			
RET connector torque	Min 0.5 N $\cdot m$ to max 1.0 N $\cdot m$ (hand pressure & finger tight)			
RET interface connector quantity	2 pairs of AISG male/female connectors and 2 RF port bias-ts			
RET interface connector location	Bottom of the antenna			
Total no. of internal RETs 698-894 MHz	1			
Total no. of internal RETs 1695-2180 MHz	1			
Total no. of internal RETs 3400-4200 MHz	1			
RET input operating voltage, vdc	10-30			
RET max power consumption, idle state, W	≤ 2.0			
RET max power consumption, normal operating conditions, W	≤ 13.0			
RET communication protocol	AISG 2.0 / 3GPP			

RET and RF connector topology

Each RET device can be controlled either via the designated external AISG connector or RF smart bias-t port as shown below:

Note: The RET Device for 3400-4200 MHz is connected via the 1695-2180 Port 3 Bias T port or 1695-2180/3400-4200 MHz AISG ports.

Array topology		
5 sets of radiating arrays	Band	RF port
R1: 698-894 MHz	698-894	1-2
B1: 1695-2180 MHz B2: 1695-2180 MHz P1: 3400-4200 MHz P2: 3400-4200 MHz	1695-2180	3-4
	1695-2180 5-6	
	3400-4200	7-8
	3400-4200	9-10

©2020 JMA Wireless. All rights reserved. This document contains proprietary information. All products, company names, brands, and logos are trademarks[™] or registered® trademarks of their respective holders. All specifications are subject to change without notice. +1 315.431.7100 customerservice@jmawireless.com

SAMSUNG

Dual-Band Radio Unit 700/850MHz (B13/B5) RFV01U-D2A

Samsung's RFV01U-D2A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.

The RFV01U-D2A RU targets dual-band support across Band 13 (700MHz) and Band 5 (850MHz), making it an ideal product for broad coverage footprints across multiple common low-end, long-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributed-and central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation

Key Technical Specifications

Duplex Type: FDD Operating Frequencies: B13: DL(746-756MHz)/UL(777-787MHz) B5: DL(869-894MHz)/UL(824-849MHz) Instantaneous Bandwidth: 10MHz(B13) + 25MHz(B5) RF Chain: 4T4R/2T4R/2T2R Output Power: Total 320W DU-RU Interface: CPRI (10Gbps) Dimensions: 380 x 380 x 207mm (29.9L) Weight: 31.9kg Input Power: -48V DC Operating Temp.: -40 - 55°(w/o solar load) Cooling: Natural convection

SAMSUNG

Dual-Band Radio Unit AWS/PCS (B66/B2) RFV01U-D1A

Samsung's RFV01U-D1A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.

The RFV01U-D1A RU targets dual-band support across Band 66 (AWS) and Band 2 (PCS), making it an ideal product for broad coverage footprints across multiple common mid-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributed-and central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation
- Built-in Broadcast Auxiliary Services (BAS) filter ensures compliant AWS operation without impacting footprint

Key Technical Specifications

Duplex Type: FDD Operating Frequencies: B66: DL(2,110-2,180MHz)/UL(1,710-1,780MHz) B2: DL(1,930-1,990MHz)/UL(1,850-1,910MHz) Instantaneous Bandwidth: 70MHz(B66) + 60MHz(B2) RF Chain: 4T4R/2T4R/2T2R Output Power: Total 320W DU-RU Interface: CPRI (10Gbps) Dimensions: 380 x 380 x 255mm (36.8L) Weight: 38.3kg Input Power: -48V DC Operating Temp.: -40 - 55°(w/o solar load) Cooling: Natural convection

[CBRS RRH] Spec.		Item	Specification		
		Band	Band 48 (3.5 GHz)		
		Frequency	3550~3700 MHz		
		IBW	150 MHz		
		OBW	80 MHz		
		# of Carriers	5/10/15/20 MHz x 4 carriers		
		RF Chain	4TX / 4RX		
		RF Output Power	4 path x 5 W (Total: 20 W = 43 dBm)		
		& EIRP	(EIRP: 47 dBm / 10 MHz)		
		RX Sensitivity	Typical : -101.5 dBm @ 1 Rx (3GPP 36.104, Wide Area)		
		Modulation	256-QAM support (1024-QAM with 1~2dB power back-off)		
		Input Power	-48 VDC (-38 to -57 VDC, 1 SKU),		
and an in		Input Power	with clip-on AC-DC converter (Option)		
Handi		Power Consumption	About 160 Watt @ 100% RF load, typical conditions		
(Pe		Volume	Under 7L (w/o Antenna), Under 9.6L (with antenna)		
		Weight	Under 8.0 kg (18.64 lb) (w/o Antenna), Under 10.5 Kg (with ant.)		
() () () () () () () () () ()		Operating Temperature	-40°C (-40°F) ~ 55°C (131°F) (W/o solar load)		
		Cooling	Natural convection		
		Unwanted Emission	3GPP 36.104 Category A		
			[B48] : FCC 47 CFR 96.41 e)		
		Optic Interface	20km, 2 ports (9.8Gbps x 2), SFP, single mode, duplex or Bi-Di		
		CPRI Cascade	Not supported		
Port		# of Antenna Port	4		
Standard Gua		External Alarm (UDA)	4		
Label	TOROIPPORD.	RET	AISG 2.2		
		TMA & built-in Bias-T I//F	Not supported		
		and PIM cancellation			
		Mounting Options	Pole, wall, tower, back to back, side by side (for external ant),		
			3 RRH with Clip-on Antenna on the pole		
		Antenna Type	Integrated (Clip-on) antenna (Option),		
Current Size: 216 x 307 x 105.5 mm (6.99L) (8.5 x 12.1 x 4.1 inch., excluding Port Guard) Design is subject to minor change			External antenna (Option)		
		NB-IoT	Not Supported (HW Resource reserved		
		Charlen Angeleren	for 1 Guard Band NB-IoT per LTE carrier)		
		Spectrum Analyzer	TX/RX Support		
		External Alarm (UDA)	4 Current with CAM we are de		
		5G NR XRAN	Support with S/W upgrade		
		ΔηΑΙΝ	Support with S/W upgrade		

ATTACHMENT 5

Structural Analysis Report

Structure	: 170 foot Monopole	
Insite Site Name	: Cheshire	
Insite Site Number	: CT005	
Proposed Carrier	: Verizon Wireless	
Carrier Site Name	: Cheshire Northeast 2 CT	
Carrier Site Number	:NA	
Site Location	: 1325 Cheshire St	
	Cheshire, CT 06410	
	41.5326, -72.8705	
Date	: July 17, 2020	
Max Member Stress Level	: 33.5% (Pole)	
	35.0% (Anchor Bolt)	WINNING CONN
	43.5% (Foundation)	ST ANDRAS FIRE CA
Result	: PASS	No. 30273 No. 30273 CENSED SOLVAL ENGINITION 07/17

Prepared by: Bennett & Pless, Inc. B&P Job No.: 20.03.013.020 07/17/20

Atlanta | Boca Raton | Charlotte | Chattanooga | Orlando 750 Park of Commerce Drive, Suite 200 | Boca Raton, FL 33487 www.bennett-pless.com

Table of Contents

Introduction	1
Existing Structural Information	1
Final Proposed Equipment Loading for Verizon Wireless	1
Design Criteria	2
Analysis Results	2
Assumptions	2
Conclusions	3
Standard Conditions	4
Disclaimer of Warranties	4
Calculations	Attached
Collocation Application	Attached

Introduction

We have completed our structural analysis of the proposed equipment installation on the foregoing tower to determine its ability to support the new loads proposed by Verizon Wireless. The objective of the analysis was to determine if the tower meets the current structural codes and standards with the proposed equipment installation.

Existing Structural Information

The following documents for the existing structure were made available for our structural analysis.

Tower Information	Ambor tower drawings dated 9/21/2015	
Foundation Information	Ambor tower drawings dated 9/21/2015	
Geotechnical Information	Terracon geotechnical report Project No J2145102 dated 3/18/2014	
Existing Equipment Information	Verizon Wireless Colocation Application dated 07/13/2020	
	Bennett & Pless Structural Analysis Project No. 19313.009 dated 06/26/19.	
	Sprint Colocation Application dated 6/25/2018	
	AT&T Wireless Colocation Application dated 1/27/2014	
Tower Reinforcement Information	Tower has not been previously reinforced.	

Final Proposed Equipment Loading for Verizon Wireless

The following proposed loading was obtained from the Insite Collocation Application:

	Antenna/Equipment				Coax	
Mount	RAD	Qty.	Antenna	Туре	Qty.	Size/Type
		1	Sitepro 1 RMQP-4096-HK	Mount		
	-	3	JMA 91900314	Mount		
		6	JMA MX10FIT665	Panel		
145.0		3	Samsung B5/B13-BRO4C	RRH	2	1 1/4" Hybrid
	145.0	3	Samsung B2/B66A	RRH		
		3	CBRS RT-4401-48A	RRH		
		1	RFS DB-C1-12C-24-AB-0Z	Surge Suppr.		

Note: All Equipment shown above is proposed.

Note: Proposed feed lines to be placed inside the pole.

Note: Other existing loading can be found on the tower profile attached.

Design Criteria

The tower was analyzed using tnxTower (Version 8.0.7.4) tower analysis software using the following design criteria.

State/County	Connecticut / New Haven
State Building Code	2018 Connecticut State Building Code
TIA/EIA Standard Code	TIA-222-G
Basic Wind Speed	123 MPH (V _{ult})/96 MPH (V _{asd})
Basic Wind Speed w/ Ice	50 MPH/ 0.75" Ice
Steel Grade	50ksi pole, A615-75 anchor bolts, 50 ksi
	base plate
Exposure Category	С
Topographic Category (height)	1 (0.0 ft)
Importance Factor	1.0

Analysis Results

Based on the foregoing information, the **existing tower is structurally capable of supporting the proposed equipment loads.** The base plates and anchor rods have also been evaluated and are **structurally capable of supporting the proposed equipment loads.** The tower foundation is also found to be structurally capable of supporting the proposed equipment loads.

Assumptions

The below assumptions are true, complete and accurate.

- 1. The existing tower has been maintained to manufacturer's specifications and is in good condition.
- 2. Foundations are considered to have been properly designed for the original design loads.
- 3. All member connections are considered to have been designed to meet the load carrying capacity of the connected member.
- 4. Antenna mount loads have been estimated based on generally accepted industry standards.
- 5. The mounts for the proposed antennas have been analyzed and designed by others.
- 6. See additional assumptions contained in the report attached.
- 7. Tower is within acceptable engineering tolerance at 105%.
- 8. Foundations are within acceptable engineering tolerance at 110%.

Conclusions

The existing tower described above **does have sufficient capacity** to support the proposed loading based on the governing Building Code. The existing tower foundations is also acceptable.

We appreciate the opportunity of providing our continuing professional services to you. If you have any questions or need further assistance, please call us anytime at 561-288-1187.

Sincerely,

Analysis by:

Vinter

Michael Hlinka, E.I. Design Engineer

Reviewed by:

Thomas F. Ireland, P.E. Principal

Standard Conditions

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but not necessarily limited, to:

- Information supplied by the client regarding the structure itself, the antenna and transmission line loading on the structure and it components, or relevant information.
- Information from drawings in possession of Bennett & Pless Inc., or generated by field inspections or measurements of the structure.

It is the responsibility of the client to ensure that the information provided to Bennett & Pless Inc. and used in the performance of our engineering services is correct and complete. In the absence of information contrary, we consider that all structures were constructed in accordance with the drawings and specifications and are in a uncorroded condition and have not deteriorated; and we, therefore consider that their capacity has not significantly changed from the original design condition.

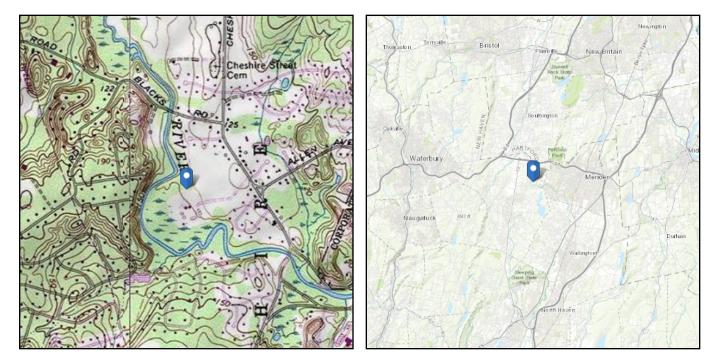
All services will be performed to the codes and standards specified by the client, and we do not imply to meet any other code and standard requirements unless explicitly agreed to in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes and standards, the client shall specify the exact requirements. In the absence of information to the contrary, all work will be performed in accordance with the revision of ANSI/TIA/EIA-222 requested.

All services are performed, results obtained and recommendations made in accordance with the generally accepted engineering principles and practices. Bennett & Pless Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

Disclaimer of Warranties

Bennett & Pless Inc. makes no warranties, expressed or implied, in connection with this report, and disclaims any liability arising from the ability of the existing structure to support the design loads for which it was originally designed. Bennett & Pless Inc. will not be responsible whatsoever for or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of Bennett & Pless Inc. pursuant to this report will be limited to the total fee received for preparation of this report.

Attachment 1: Calculations


ASCE 7 Hazards Report

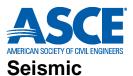
Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

 Elevation:
 113.74 ft (NAVD 88)

 Latitude:
 41.5326

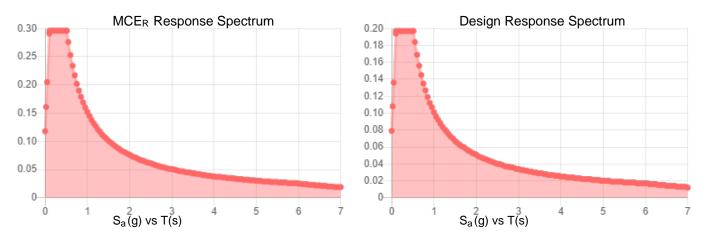
 Longitude:
 -72.8705

Wind


Results:

Wind Speed:	123 Vmph
10-year MRI	77 Vmph
25-year MRI	87 Vmph
50-year MRI	93 Vmph
100-year MRI	100 Vmph
Data Source:	ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, incorporating errata of March 12, 2014
Date Accessed:	Thu Jul 16 2020

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Site Soil Class: Results:	D - Stiff Soil			
S _S :	0.185	S _{DS} :	0.197	
S ₁ :	0.063	S _{D1} :	0.101	
F _a :	1.6	T∟ :	6	
F _v :	2.4	PGA :	0.095	
S _{MS} :	0.296	PGA M:	0.152	
S _{M1} :	0.152	F _{PGA} :	1.6	
		l _e :	1	

Seismic Design Category B

Data Accessed: Date Source:

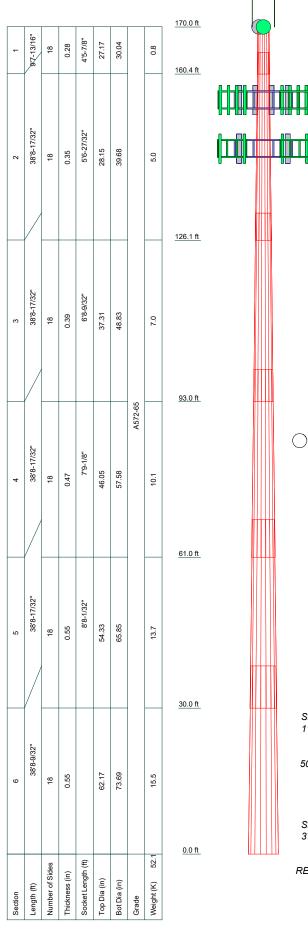
Thu Jul 16 2020

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:	0.75 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Thu Jul 16 2020


Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

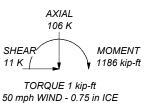
ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

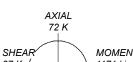
In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
DS1F03F36D-Ns (Town of Cheshire)	170	FC 12-PC6-10E (ATT)	155
DS1F03F36D-Ns (Town of Cheshire)	170	FC 12-PC6-10E (ATT)	155
(2) 4' Stand off (Town of Cheshire)	170	12' LP Platform (ATT)	155
(2) 6' x 3" Pipe Mount (Town of Cheshire)	170	(4) HPA-65R-BUU-H8 w/ Mount Pipe (ATT)	155
3' Dish w/ Radome (Town of Cheshire)	170	(4) HPA-65R-BUU-H8 w/ Mount Pipe	155
3' Dish w/ Radome (Town of Cheshire)	170	(ATT)	
(4) HPA-65R-BUU-H8 w/ Mount Pipe	155	(2) JMA MX10FIT665 (VZW)	145
(ATT)		Samsung B5/B13 RRH-BR04C (VZW)	145
(3) RRUS 11 (ATT)	155	Samsung B5/B13 RRH-BR04C (VZW)	145
(3) RRUS 11 (ATT)	155	Samsung B5/B13 RRH-BR04C (VZW)	145
(3) RRUS 11 (ATT)	155	Samsung B2/B66A RRH-BR049 (VZW)	145
(2) RRUS 12 (ATT)	155	Samsung B2/B66A RRH-BR049 (VZW)	145
(2) RRUS 12 (ATT)	155	Samsung B2/B66A RRH-BR049 (VZW)	145
(2) RRUS 12 (ATT)	155	CBRS RT-4401-48A RRH (VZW)	145
(2) RRUS 22 xx20 (ATT)	155	CBRS RT-4401-48A RRH (VZW)	145
(2) RRUS 22 xx20 (ATT)	155	CBRS RT-4401-48A RRH (VZW)	145
(2) RRUS 22 xx20 (ATT)	155	RFS DB-C1-12C-24-AB-0Z (VZW)	145
(2) RRUS A2 MODULE (ATT)	155	Site Pro 1 RMQP-XXX-HK12 w/ JMA	145
(2) RRUS A2 MODULE (ATT)	155	91900314 (VZW)	
(2) RRUS A2 MODULE (ATT)	155	(2) JMA MX10FIT665 (VZW)	145
DC12-48-60-RM (ATT)	155	(2) JMA MX10FIT665 (VZW)	145
DC12-48-60-RM (ATT)	155	1	
Raycap DC12-48-60-0-25E (ATT)	155	1	
Raycap DC12-48-60-0-25E (ATT)	155	1	
FC 12-PC6-10E (ATT)	155	1	

MATERIAL STRENGTH


GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			


TOWER DESIGN NOTES

- Tower is located in New Haven County, Connecticut.
 Tower designed for Exposure C to the TIA-222-G Standard.
 Tower designed for a 96 mph basic wind in accordance with the TIA-222-G Standard.
 Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
 Deflections are based upon a 60 mph wind.
 Tower Structure Class II.
 Topographic Category 1 with Crest Height of 0'
 Connections use calvapized A325 bolts puts and locking devices. Installation per

- Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC Specifications.
- 9. Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.
- 10. Full height step bolts
- Antenna feedlines are considered to run inside the pole shaft.
 TOWER RATING: 33.5%

ALL REACTIONS ARE FACTORED

TORQUE 9 kip-ft REACTIONS - 96 mph WIND

	Bennett & Pless	^{Job:} 170 ft Tapered Mono	opole	
	750 Park Commerce Dr #200	Project: Cheshire, CT (CT005)		_
	Boca Raton, FL 33487	Client: AMBOR / InSite Towers	^{Drawn by:} mhlinka	App'd:
Experience Structural Expertise		^{Code:} TIA-222-G	Date: 07/16/20	Scale: NT
	FAX:	Path: 2/whered Project (200020 00 000 - Buce/20 00 01 unx - india/20 01 013 000 - CT005 Chemises)	VZWI 1781 MonoSA InfoCTIOS Cheatine SA 071620 ToChe	Dwg No. E-

Bennett & Pless 750 Park Commerce Dr #200 Boca Raton, FL 33487 Phone: 561-282-2676 FAX:

Job	170 ft Tapered Monopole	Page 1 of 15
Project	Cheshire, CT (CT005)	Date 17:32:52 07/16/20
Client	AMBOR / InSite Towers	Designed by mhlinka

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-G standard. The following design criteria apply: Tower is located in New Haven County, Connecticut. Basic wind speed of 96 mph. Structure Class II. Exposure Category C. Topographic Category 1. Crest Height 0'. Nominal ice thickness of 0.75 in. Ice thickness is considered to increase with height. Ice density of 56 pcf. A wind speed of 50 mph is used in combination with ice. Temperature drop of 50 °F. Deflections calculated using a wind speed of 60 mph. Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC Specifications.. Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards... Full height step bolts. Antenna feedlines are considered to run inside the pole shaft.. A non-linear (P-delta) analysis was used. Pressures are calculated at each section. Stress ratio used in pole design is 1. Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned

- Assume Rigid Index Plate
- Use Clear Spans For Wind Area
- Use Clear Spans For KL/r
- Retension Guys To Initial Tension Bypass Mast Stability Checks
- Use Azimuth Dish Coefficients
- Project Wind Area of Appurt.
- Autocalc Torque Arm Areas
- Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules

- Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation Consider Feed Line Torque Include Angle Block Shear Check
- Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption Poles
 - Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

tnxTower

Bennett & Pless 750 Park Commerce Dr #200 Boca Raton, FL 33487 Phone: 561-282-2676 FAX: 170 ft Tapered Monopole

Cheshire, CT (CT005)

AMBOR / InSite Towers

17:32:52 07/16/20 Designed by mhlinka

2 of 15

Page

Date

Tapered Pole Section Geometry

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
L1	170'-160'4-3/16"	9'7-13/16"	4'5-7/8"	18	27.17	30.04	0.28	1.10	A572-65
L2	160'4-3/16''-126' 1-11/16''	38'8-17/32"	5'6-27/32"	18	28.15	39.68	0.35	1.42	(65 ksi) A572-65 (65 ksi)
L3	126'1-11/16"-93'	38'8-17/32"	6'8-9/32''	18	37.31	48.83	0.39	1.57	A572-65 (65 ksi)
L4	93'-60'11-5/8"	38'8-17/32"	7'9-1/8"	18	46.05	57.58	0.47	1.89	A572-65 (65 ksi)
L5	60'11-5/8"-30'1/ 4"	38'8-17/32"	8'8-1/32''	18	54.33	65.85	0.55	2.20	A572-65 (65 ksi)
L6	30'1/4"-0'	38'8-9/32"		18	62.17	73.69	0.55	2.20	A572-65 (65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	Ι	r	С	I/C	J	It/Q	w	w/t
	in	in^2	in^4	in	in	in ³	in^4	in^2	in	
L1	27.55	23.53	2149.79	9.55	13.80	155.76	4302.42	11.76	4.30	15.591
	30.46	26.04	2914.09	10.57	15.26	190.96	5832.01	13.02	4.80	17.424
L2	29.89	31.26	3052.07	9.87	14.30	213.41	6108.16	15.63	4.33	12.223
	40.24	44.23	8641.47	13.96	20.16	428.70	17294.32	22.12	6.36	17.949
L3	39.51	46.13	7943.69	13.11	18.95	419.10	15897.83	23.07	5.87	14.92
	49.52	60.53	17939.83	17.19	24.81	723.22	35903.27	30.27	7.90	20.069
L4	48.71	68.29	17923.86	16.18	23.39	766.15	35871.31	34.15	7.27	15.412
	58.40	85.56	35251.47	20.27	29.25	1205.15	70549.32	42.79	9.30	19.711
L5	57.42	93.88	34299.59	19.09	27.60	1242.83	68644.32	46.95	8.59	15.625
	66.78	113.99	61411.06	23.18	33.45	1835.81	122902.93	57.01	10.62	19.312
L6	65.67	107.57	51599.12	21.87	31.58	1633.83	103266.14	53.79	9.97	18.134
	74.75	127.69	86307.99	25.97	37.44	2305.43	172729.54	63.86	12.00	21.822

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A_f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft^2	in					in	in	in
L1 170'-160'4-3/1				1	1	1			
6" L2 160'4-3/16"-12				1	1	1			
6'1-11/16" L3 126'1-11/16"-9				1	1	1			
3'									
L4 93'-60'11-5/8"				1	1	1			
L5 60'11-5/8"-30'1				1	1	1			
/4" L6 30'1/4"-0'				1	1	1			

Project Client

Job

Bennett & Pless 750 Park Commerce Dr #200 Boca Raton, FL 33487 Phone: 561-282-2676 FAX:

	Job		Page
		170 ft Tapered Monopole	3 of 15
	Project		Date
00		Cheshire, CT (CT005)	17:32:52 07/16/20
	Client	AMBOR / InSite Towers	Designed by mhlinka

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque	••	ft			ft²/ft	klf
	-		Calculation		-				-

3/4" DC Power	С	No	Yes	Inside Pole	155' - 5'	8	No Ice	0.00	0.00
Cable							1/2" Ice	0.00	0.00
(ATT)							1" Ice	0.00	0.00
1/2" FIBER CABLE	А	No	Yes	Inside Pole	155' - 5'	2	No Ice	0.00	0.00
(ATT)							1/2" Ice	0.00	0.00
							1" Ice	0.00	0.00
3/8" RET	В	No	Yes	Inside Pole	155' - 5'	3	No Ice	0.00	0.00
(ATT)							1/2" Ice	0.00	0.00
							1" Ice	0.00	0.00

7/8" Coax	С	No	Yes	Inside Pole	170' - 5'	2	No Ice	0.00	0.00
(Town of Chechire)							1/2" Ice	0.00	0.00
							1" Ice	0.00	0.00
7/8" Coax	С	No	Yes	Inside Pole	170' - 5'	2	No Ice	0.00	0.00
(Town of Chechire)							1/2" Ice	0.00	0.00
							1" Ice	0.00	0.00
E105J (1.3")	С	No	Yes	Inside Pole	170' - 5'	2	No Ice	0.00	0.00
(Town of Chechire)							1/2" Ice	0.00	0.00
```````````````````````````````````````							1" Ice	0.00	0.00
***									
1 1/4" Hybriflex	С	No	Yes	Inside Pole	145' - 5'	2	No Ice	0.00	0.00
(VZW)							1/2" Ice	0.00	0.00
. ,							1" Ice	0.00	0.00

## Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	$A_R$	$A_F$	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		$ft^2$	$ft^2$	$ft^2$	$ft^2$	K
L1	170'-160'4-3/16"	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.01
L2	160'4-3/16"-126'1-	А	0.000	0.000	0.000	0.000	0.00
	11/16"	В	0.000	0.000	0.000	0.000	0.01
		С	0.000	0.000	0.000	0.000	0.20
L3	126'1-11/16"-93'	А	0.000	0.000	0.000	0.000	0.01
		В	0.000	0.000	0.000	0.000	0.01
		С	0.000	0.000	0.000	0.000	0.24
L4	93'-60'11-5/8"	А	0.000	0.000	0.000	0.000	0.01
		В	0.000	0.000	0.000	0.000	0.01
		С	0.000	0.000	0.000	0.000	0.23
L5	60'11-5/8"-30'1/4"	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.01
		С	0.000	0.000	0.000	0.000	0.22
L6	30'1/4"-0'	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.01
		С	0.000	0.000	0.000	0.000	0.18

# tnxTower

	Job		Page
		170 ft Tapered Monopole	4 of 15
	Project		Date
00		Cheshire, CT (CT005)	17:32:52 07/16/20
	Client		Designed by
		AMBOR / InSite Towers	mhlinka

#### **Bennett & Pless** 750 Park Commerce Dr #200 Boca Raton, FL 33487 Phone: 561-282-2676 FAX:

## Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	$A_R$	$A_F$	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	$ft^2$	$ft^2$	$ft^2$	$ft^2$	K
L1	170'-160'4-3/16"	А	1.762	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.01
L2	160'4-3/16"-126'1-	А	1.736	0.000	0.000	0.000	0.000	0.00
	11/16"	В		0.000	0.000	0.000	0.000	0.01
		С		0.000	0.000	0.000	0.000	0.20
L3	126'1-11/16"-93'	Α	1.690	0.000	0.000	0.000	0.000	0.01
		В		0.000	0.000	0.000	0.000	0.01
		С		0.000	0.000	0.000	0.000	0.24
L4	93'-60'11-5/8"	А	1.632	0.000	0.000	0.000	0.000	0.01
		В		0.000	0.000	0.000	0.000	0.01
		С		0.000	0.000	0.000	0.000	0.23
L5	60'11-5/8"-30'1/4"	А	1.549	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.01
		С		0.000	0.000	0.000	0.000	0.22
L6	30'1/4"-0'	А	1.386	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.01
		С		0.000	0.000	0.000	0.000	0.18

### Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	0	ft		ft ²	ft ²	K
DS1F03F36D-Ns (Town of Cheshire)	С	From Leg	1.50 0' 3'	0.00	170'	No Ice 1/2" Ice 1" Ice	1.50 2.25 3.00	1.50 2.25 3.00	0.01 0.02 0.03
DS1F03F36D-Ns (Town of Cheshire)	В	From Leg	1.50 0' 3'	0.00	170'	No Ice 1/2" Ice 1" Ice	1.50 2.25 3.00	1.50 2.25 3.00	0.03 0.01 0.02 0.03
(2) 4' Stand off (Town of Cheshire)	С	None	5	0.00	170'	No Ice 1/2" Ice 1" Ice	0.70 0.90 1.10	0.70 0.90 1.10	0.03 0.01 0.01 0.02
(2) 6' x 3" Pipe Mount (Town of Cheshire) ***	C	None		0.00	170'	No Ice 1/2" Ice 1" Ice	1.10 1.77 2.13 2.50	1.10 1.77 2.13 2.50	0.02 0.03 0.05 0.07
*** HPA-65R-BUU-H8 w/ Mount Pipe (ATT)	А	From Leg	3.00 0' 0'	0.00	155'	No Ice 1/2" Ice 1" Ice	13.21 13.90 14.59	9.58 11.05 12.50	0.10 0.20 0.30
) HPA-65R-BUU-H8 w/ Mount Pipe (ATT)	В	From Leg	3.00 0' 0'	0.00	155'	No Ice 1/2" Ice 1" Ice	13.21 13.90 14.59	9.58 11.05 12.50	0.10 0.20 0.30
) HPA-65R-BUU-H8 w/ Mount Pipe (ATT)	С	From Leg	3.00 0' 0'	0.00	155'	No Ice 1/2" Ice 1" Ice	13.21 13.90 14.59	9.58 11.05 12.50	0.10 0.20 0.30
(3) RRUS 11	А	From Leg	3.00	0.00	155'	No Ice	2.78	1.19	0.05

**Bennett & Pless** 750 Park Commerce Dr #200 Boca Raton, FL 33487 Phone: 561-282-2676 FAX:

	Job		Page
er		170 ft Tapered Monopole	5 of 15
less	Project		Date
Dr #200		Cheshire, CT (CT005)	17:32:52 07/16/20
33487 2676	Client	AMBOR / InSite Towers	Designed by mhlinka

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weigh
	Leg		Vert						
			ft ft	0	ft		$ft^2$	$ft^2$	K
			ft ft						
(ATT)			0'			1/2" Ice	2.99	1.33	0.07
			0'			1" Ice	3.21	1.49	0.10
(3) RRUS 11	В	From Leg	3.00	0.00	155'	No Ice	2.78	1.19	0.05
(ATT)			0'			1/2" Ice	2.99	1.33	0.07
(3) RRUS 11	С	From Leg	0' 3.00	0.00	155'	1" Ice No Ice	3.21 2.78	1.49 1.19	0.10 0.05
(ATT)	C	110111 Leg	0'	0.00	155	1/2" Ice	2.99	1.33	0.05
(1111)			0'			1" Ice	3.21	1.49	0.10
(2) RRUS 12	А	From Leg	3.00	0.00	155'	No Ice	3.15	1.29	0.06
(ATT)			0'			1/2" Ice	3.36	1.44	0.08
			0'			1" Ice	3.59	1.60	0.11
(2) RRUS 12	В	From Leg	3.00	0.00	155'	No Ice	3.15	1.29	0.06
(ATT)			0' 0'			1/2" Ice	3.36	1.44	0.08
(2) RRUS 12	С	From Leg	3.00	0.00	155'	1" Ice No Ice	3.59 3.15	1.60 1.29	0.11 0.06
(2) KKOS 12 (ATT)	C	110III Leg	0'	0.00	155	1/2" Ice	3.36	1.44	0.08
(/111)			0'			1" Ice	3.59	1.60	0.11
(2) RRUS 22 xx20	А	From Leg	3.00	0.00	155'	No Ice	3.87	2.76	0.08
(ATT)		U	0'			1/2" Ice	4.15	3.02	0.10
			0'			1" Ice	4.44	3.29	0.14
(2) RRUS 22 xx20	В	From Leg	3.00	0.00	155'	No Ice	3.87	2.76	0.08
(ATT)			0'			1/2" Ice	4.15	3.02	0.10
	C	<b>Б</b> Т	0'	0.00	1.5.51	1" Ice	4.44	3.29	0.14
(2) RRUS 22 xx20 (ATT)	С	From Leg	3.00 0'	0.00	155'	No Ice 1/2" Ice	3.87 4.15	2.76 3.02	0.08 0.10
(A11)			0'			1/2 Ice 1" Ice	4.13	3.02	0.10
(2) RRUS A2 MODULE	А	From Leg	3.00	0.00	155'	No Ice	1.60	0.38	0.02
(ATT)		Tronii Leg	0'	0.00	100	1/2" Ice	1.76	0.47	0.03
			0'			1" Ice	1.92	0.57	0.04
2) RRUS A2 MODULE	В	From Leg	3.00	0.00	155'	No Ice	1.60	0.38	0.02
(ATT)			0'			1/2" Ice	1.76	0.47	0.03
	~		0'			1" Ice	1.92	0.57	0.04
(2) RRUS A2 MODULE	С	From Leg	3.00	0.00	155'	No Ice	1.60	0.38	0.02
(ATT)			0' 0'			1/2" Ice	1.76 1.92	0.47 0.57	0.03 0.04
DC12-48-60-RM	А	From Leg	3.00	0.00	155'	1" Ice No Ice	2.25	2.25	0.04
(ATT)	Α	110111 Leg	0'	0.00	155	1/2" Ice	2.23	2.50	0.02
(1111)			0'			1" Ice	2.75	2.75	0.05
DC12-48-60-RM	С	From Leg	3.00	0.00	155'	No Ice	2.25	2.25	0.02
(ATT)		U	0'			1/2" Ice	2.50	2.50	0.04
			0'			1" Ice	2.75	2.75	0.05
aycap DC12-48-60-0-25E	А	From Leg	3.00	0.00	155'	No Ice	4.80	1.63	0.05
(ATT)			0'			1/2" Ice	5.07	1.80	0.09
aycap DC12-48-60-0-25E	C	Enom Lag	0' 3.00	0.00	155'	1" Ice	5.35	1.99	0.12
(ATT)	С	From Leg	3.00 0'	0.00	155	No Ice 1/2" Ice	4.80 5.07	1.63 1.80	0.05 0.09
(A11)			0'			1/2 Icc 1" Ice	5.35	1.99	0.02
FC 12-PC6-10E	А	From Leg	3.00	0.00	155'	No Ice	1.00	1.00	0.01
(ATT)			0'			1/2" Ice	1.25	1.25	0.01
			0'			1" Ice	1.50	1.50	0.02
FC 12-PC6-10E	А	From Leg	3.00	0.00	155'	No Ice	1.00	1.00	0.01
(ATT)			0'			1/2" Ice	1.25	1.25	0.01
EC 12 DCC 10E		E	0'	0.00	1551	1" Ice	1.50	1.50	0.02
FC 12-PC6-10E	А	From Leg	3.00	0.00	155'	No Ice	1.00	1.00	0.01
(ATT)			0' 0'			1/2" Ice 1" Ice	1.25 1.50	1.25 1.50	0.01 0.02

	Job		Page
tnxTower		170 ft Tapered Monopole	
Bennett & Pless	Project		Date
750 Park Commerce Dr #200		Cheshire, CT (CT005)	17:3
Boca Raton, FL 33487 Phone: 561-282-2676	Client	AMBOR / InSite Towers	Desig

FAX:

Designed by mhlinka

6 of 15

17:32:52 07/16/20

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	0	ft		ft ²	$ft^2$	Κ
(ATT)						1/2" Ice 1" Ice	33.59 38.71	33.59 38.71	1.51 1.91
***									
(2) JMA MX10FIT665	А	From Leg	3.00	0.00	145'	No Ice	8.09	5.47	0.05
(VZW)			0'			1/2" Ice	8.54	5.92	0.10
			0'			1" Ice	9.00	6.38	0.16
(2) JMA MX10FIT665	В	From Leg	3.00	0.00	145'	No Ice	8.09	5.47	0.05
(VZW)			0'			1/2" Ice	8.54	5.92	0.10
			0'			1" Ice	9.00	6.38	0.16
(2) JMA MX10FIT665	С	From Leg	3.00	0.00	145'	No Ice	8.09	5.47	0.05
(VZW)			0'			1/2" Ice	8.54	5.92	0.10
			0'			1" Ice	9.00	6.38	0.16
Samsung B5/B13	А	From Leg	3.00	0.00	145'	No Ice	1.85	1.01	0.07
RRH-BR04C			0'			1/2" Ice	2.02	1.14	0.09
(VZW)			0'			1" Ice	2.20	1.28	0.11
Samsung B5/B13	В	From Leg	3.00	0.00	145'	No Ice	1.85	1.01	0.07
RRH-BR04C			0'			1/2" Ice	2.02	1.14	0.09
(VZW)			0'			1" Ice	2.20	1.28	0.11
Samsung B5/B13	С	From Leg	3.00	0.00	145'	No Ice	1.85	1.01	0.07
RRH-BR04C			0'			1/2" Ice	2.02	1.14	0.09
(VZW)			0'			1" Ice	2.20	1.28	0.11
Samsung B2/B66A	А	From Leg	3.00	0.00	145'	No Ice	1.85	1.24	0.08
RRH-BR049			0'			1/2" Ice	2.02	1.38	0.10
(VZW)			0'			1" Ice	2.20	1.53	0.12
Samsung B2/B66A	В	From Leg	3.00	0.00	145'	No Ice	1.85	1.24	0.08
RRH-BR049			0'			1/2" Ice	2.02	1.38	0.10
(VZW)			0'			1" Ice	2.20	1.53	0.12
Samsung B2/B66A	С	From Leg	3.00	0.00	145'	No Ice	1.85	1.24	0.08
RRH-BR049			0'			1/2" Ice	2.02	1.38	0.10
(VZW)			0'			1" Ice	2.20	1.53	0.12
CBRS RT-4401-48A RRH	А	From Leg	3.00	0.00	145'	No Ice	0.86	0.29	0.02
(VZW)			0'			1/2" Ice	0.98	0.36	0.03
			0'			1" Ice	1.10	0.45	0.03
CBRS RT-4401-48A RRH	В	From Leg	3.00	0.00	145'	No Ice	0.86	0.29	0.02
(VZW)			0'			1/2" Ice	0.98	0.36	0.03
			0'			1" Ice	1.10	0.45	0.03
CBRS RT-4401-48A RRH	С	From Leg	3.00	0.00	145'	No Ice	0.86	0.29	0.02
(VZW)			0'			1/2" Ice	0.98	0.36	0.03
	-		0'			1" Ice	1.10	0.45	0.03
RFS DB-C1-12C-24-AB-0Z	С	From Leg	3.00	0.00	145'	No Ice	4.06	3.10	0.03
(VZW)			0'			1/2" Ice	4.32	3.34	0.07
			0'			1" Ice	4.58	3.58	0.11
Site Pro 1	С	From Leg	3.00	0.00	145'	No Ice	34.54	31.94	1.95
MQP-XXX-HK12 w/ JMA 91900314 (VZW)			0' 0'			1/2" Ice 1" Ice	39.46 44.38	31.94 31.94	2.35 2.75

tnxTower	Job	170 ft Tapered Monopole	Page 7 of 15
<b>Bennett &amp; Pless</b> 750 Park Commerce Dr #200	Project	Cheshire, CT (CT005)	Date 17:32:52 07/16/20
	Client	AMBOR / InSite Towers	Designed by mhlinka

Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	0	ft	ft		$ft^2$	Κ
3' Dish w/ Radome	А	Paraboloid	From	0.00	0.00		170'	3.00	No Ice	7.07	0.04
(Town of Cheshire)		w/Radome	Face	0'					1/2" Ice	7.47	0.07
				0'					1" Ice	7.86	0.11
3' Dish w/ Radome	С	Paraboloid	From	0.00	0.00		170'	3.00	No Ice	7.07	0.04
(Town of Cheshire)		w/Radome	Face	0'					1/2" Ice	7.47	0.07
				0'					1" Ice	7.86	0.11

# Load Combinations

Comb.	Description						
No.	-						
1	Dead Only						
2	1.2 Dead+1.6 Wind 0 deg - No Ice						
3	0.9 Dead+1.6 Wind 0 deg - No Ice						
4	1.2 Dead+1.6 Wind 30 deg - No Ice						
5	0.9 Dead+1.6 Wind 30 deg - No Ice						
6	1.2 Dead+1.6 Wind 60 deg - No Ice						
7	0.9 Dead+1.6 Wind 60 deg - No Ice						
8	1.2 Dead+1.6 Wind 90 deg - No Ice						
9	0.9 Dead+1.6 Wind 90 deg - No Ice						
10	1.2 Dead+1.6 Wind 120 deg - No Ice						
11	0.9 Dead+1.6 Wind 120 deg - No Ice						
12	1.2 Dead+1.6 Wind 150 deg - No Ice						
13	0.9 Dead+1.6 Wind 150 deg - No Ice						
14	1.2 Dead+1.6 Wind 180 deg - No Ice						
15	0.9 Dead+1.6 Wind 180 deg - No Ice						
16	1.2 Dead+1.6 Wind 210 deg - No Ice						
17	0.9 Dead+1.6 Wind 210 deg - No Ice						
18	1.2 Dead+1.6 Wind 240 deg - No Ice						
19	0.9 Dead+1.6 Wind 240 deg - No Ice						
20	1.2 Dead+1.6 Wind 270 deg - No Ice						
21	0.9 Dead+1.6 Wind 270 deg - No Ice						
22	1.2 Dead+1.6 Wind 300 deg - No Ice						
23	0.9 Dead+1.6 Wind 300 deg - No Ice						
24	1.2 Dead+1.6 Wind 330 deg - No Ice						
25	0.9 Dead+1.6 Wind 330 deg - No Ice						
26	1.2 Dead+1.0 Ice+1.0 Temp						
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp						
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp						
29 20	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp						
30 31	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp						
	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp						
32 33	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp						
	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp						
34 35	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp						
33 36	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp						
30	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp						
37	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp						
38	Dead+Wind 0 deg - Service						
39 40	Dead+Wind 0 deg - Service Dead+Wind 30 deg - Service						
40 41	Dead+Wind 50 deg - Service						
41	Dead+Wind 00 deg - Service						
42 43	Dead+Wind 30 deg - Service						
43 44	Dead+Wind 120 deg - Service						
44 45	Dead+Wind 180 deg - Service						
43	Deaut wind 100 deg - Service						

*tnxTov* 

**Bennett & Pless** 750 Park Commerce Dr #200 Boca Raton, FL 33487 Phone: 561-282-2676 FAX:

wer	Job		Page
		170 ft Tapered Monopole	8 of 15
Pless	Project		Date
rce Dr #200		Cheshire, CT (CT005)	17:32:52 07/16/20
erce Dr #200 FL 33487 182-2676	Client	AMBOR / InSite Towers	Designed by mhlinka

Comb.	Description
No.	
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

# **Maximum Member Forces**

Section No.	Elevation ft	Component Type	Condition	Gov.	Axial	Major Axis	Minor Axis
	Jr	1 ypc		Load		Moment	Moment
I 1		• •		Comb.	Κ	kip-ft	kip-ft
	170 - 160.354	Pole	Max Tension	26	0.00	-0.00	0.00
LI	170 - 100.334	1010	Max. Compression	20 26	-1.54	0.17	-0.21
			Max. Max	20	-0.69	-6.54	-0.21
				8 14	-0.69	-0.19	-6.78
			Max. My	14 8			
			Max. Vy		1.41	-6.54	0.17
			Max. Vx	14	1.44	-0.19	-6.78
	1		Max. Torque	10	0.00	0.00	-0.54
L2	160.354 - 126.135	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-30.27	16.53	-8.06
			Max. Mx	20	-13.76	422.60	-5.05
			Max. My	14	-13.75	10.12	-423.73
			Max. Vy	8	19.96	-407.86	-0.78
			Max. Vx	14	19.97	10.12	-423.73
			Max. Torque	25			8.53
L3	126.135 - 92.9974	Pole	Max Tension	1	0.00	0.00	0.00
	92.9974		Max. Compression	26	-41.83	16.87	-8.23
			Max. Max	20	-21.93	1119.77	-7.66
			Max. My	20 14	-21.93	13.40	-1124.60
			Max. Vy	8	23.84	-1108.47	5.06
			•	0 14			
			Max. Vx	14 25	23.85	13.40	-1124.60
т. 4	02 0074	Pole	Max. Torque		0.00	0.00	8.53
L4	92.9974 - 60.974	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-57.26	17.09	-8.34
			Max. Mx	20	-33.47	1918.55	-10.16
			Max. My	14	-33.47	16.51	-1926.94
			Max. Vy	8	27.98	-1910.60	10.75
			Max. Vx	14	27.99	16.51	-1926.94
			Max. Torque	25			8.53
L5	60.974 -	Pole	Max Tension	1	0.00	0.00	0.00
	30.0182		Max. Compression	26	-77.12	17.09	-8.34
			Max. Mx	20	-49.03	2819.05	-12.56
			Max. My	14	-49.03	19.47	-2830.90
			Max. Vy	8	32.13	-2814.38	16.27
			Max. Vx	14	32.13	19.47	-2830.90
			Max. Torque	25	52.15	17.47	8.53
L6	30.0182 - 0	Pole	Max Tension	1	0.00	0.00	0.00
LU	50.0102 - 0	1010	Max. Compression	26	-105.68	17.09	-8.33
			Max. Max	20	-72.15	4154.24	-8.55
			Max. My	20 14	-72.13	23.20	-4170.50
			Max. Wy Max. Vy	14	-72.15 36.94	-4153.80	-4170.50 23.34
			Max. vy Max. Vx	8 14	36.94 36.94	-4153.80 23.20	-4170.50
				14 25	30.94	23.20	-4170.50 8.52
			Max. Torque	23			0.32



Bennett & Pless 750 Park Commerce Dr #200 Boca Raton, FL 33487 Phone: 561-282-2676 FAX:

Job		Page
	170 ft Tapered Monopole	9 of 15
Project		Date
	Cheshire, CT (CT005)	17:32:52 07/16/20
Client	AMBOR / InSite Towers	Designed by mhlinka

### **Maximum Reactions**

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Pole	Max. Vert	26	105.68	0.00	-0.00
	Max. H _x	21	54.12	36.82	-0.08
	Max. Hz	2	72.16	-0.15	36.90
	Max. M _x	2	4154.27	-0.15	36.90
	Max. Mz	8	4153.80	-36.93	0.18
	Max. Torsion	25	8.52	18.38	31.95
	Min. Vert	11	54.12	-31.91	-18.32
	Min. H _x	8	72.16	-36.93	0.18
	Min. Hz	14	72.16	0.09	-36.93
	Min. M _x	14	-4170.50	0.09	-36.93
	Min. Mz	20	-4154.24	36.82	-0.08
	Min. Torsion	13	-8.52	-18.38	-31.95

# **Tower Mast Reaction Summary**

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, $M_x$	Overturning Moment, $M_z$	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	60.13	0.00	0.00	4.21	7.98	-0.00
1.2 Dead+1.6 Wind 0 deg - No Ice	72.16	0.15	-36.90	-4154.27	-13.57	-7.95
0.9 Dead+1.6 Wind 0 deg - No	54.12	0.15	-36.90	-4137.35	-15.95	-7.98
Ice						
1.2 Dead+1.6 Wind 30 deg - No Ice	72.16	18.62	-32.01	-3605.37	-2096.69	-5.23
0.9 Dead+1.6 Wind 30 deg - No Ice	54.12	18.62	-32.01	-3590.85	-2089.94	-5.25
1.2 Dead+1.6 Wind 60 deg - No	72.16	32.05	-18.58	-2094.15	-3607.33	-0.92
Ice	54.10	22.05	10.50	2006.26	2502.06	0.00
0.9 Dead+1.6 Wind 60 deg - No Ice	54.12	32.05	-18.58	-2086.26	-3593.96	-0.92
1.2 Dead+1.6 Wind 90 deg - No	72.16	36.93	-0.18	-23.34	-4153.80	3.64
Ice 0.9 Dead+1.6 Wind 90 deg - No	54.12	36.93	-0.18	-24.51	-4138.05	3.65
Ice	0	00000	0110	2.110.1	1100100	5105
1.2 Dead+1.6 Wind 120 deg -	72.16	31.91	18.32	2064.66	-3585.07	7.03
No Ice	54.10	21.01	10.00	2054.22	2571.01	7.04
0.9 Dead+1.6 Wind 120 deg - No Ice	54.12	31.91	18.32	2054.32	-3571.81	7.06
1.2 Dead+1.6 Wind 150 deg - No Ice	72.16	18.38	31.95	3608.79	-2060.08	8.49
0.9 Dead+1.6 Wind 150 deg - No Ice	54.12	18.38	31.95	3591.67	-2053.50	8.52
1.2 Dead+1.6 Wind 180 deg - No Ice	72.16	-0.09	36.93	4170.50	23.20	7.83
0.9 Dead+1.6 Wind 180 deg -	54.12	-0.09	36.93	4150.91	20.64	7.86
No Ice 1.2 Dead+1.6 Wind 210 deg - No Ice	72.16	-18.48	31.97	3608.15	2091.04	5.10
0.9 Dead+1.6 Wind 210 deg - No Ice	54.12	-18.48	31.97	3591.04	2079.43	5.12

# tnxTower

**Bennett & Pless** 750 Park Commerce Dr #200 Boca Raton, FL 33487 Phone: 561-282-2676 FAX:

Job		Page
	170 ft Tapered Monopole	10 of 15
Project		Date
	Cheshire, CT (CT005)	17:32:52 07/16/20
Client	AMBOR / InSite Towers	Designed by mhlinka

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, $M_x$	Overturning Moment, M _z	Torque
Combination	Κ	Κ	Κ	kip-ft	kip-ft	kip-ft
1.2 Dead+1.6 Wind 240 deg -	72.16	-31.88	18.47	2086.69	3596.10	0.92
No Ice						
0.9 Dead+1.6 Wind 240 deg -	54.12	-31.88	18.47	2076.26	3577.90	0.92
No Ice						
1.2 Dead+1.6 Wind 270 deg -	72.16	-36.82	0.08	15.59	4154.24	-3.51
No Ice						
0.9 Dead+1.6 Wind 270 deg -	54.12	-36.82	0.08	14.23	4133.59	-3.52
No Ice						
1.2 Dead+1.6 Wind 300 deg -	72.16	-31.91	-18.38	-2065.90	3604.78	-6.91
No Ice						
0.9 Dead+1.6 Wind 300 deg -	54.12	-31.91	-18.38	-2058.13	3586.52	-6.94
No Ice						
1.2 Dead+1.6 Wind 330 deg -	72.16	-18.38	-31.95	-3598.71	2079.23	-8.49
No Ice	54.10	10.20	21.05	2504.22	2017	0.50
0.9 Dead+1.6 Wind 330 deg -	54.12	-18.38	-31.95	-3584.22	2067.66	-8.52
No Ice	105 (9	0.00	0.00	0.22	17.00	0.00
1.2 Dead+1.0 Ice+1.0 Temp	105.68	-0.00	0.00	8.33 -1143.83	17.09	-0.00
1.2 Dead+1.0 Wind 0 deg+1.0	105.68	0.10	-10.64	-1145.85	2.82	-1.39
Ice+1.0 Temp 1.2 Dead+1.0 Wind 30 deg+1.0	105.68	5.45	-9.26	-996.01	-578.48	-0.95
I.2 Dead+1.0 wind 50 deg+1.0 Ice+1.0 Temp	105.08	5.45	-9.20	-990.01	-3/8.48	-0.93
1.2 Dead+1.0 Wind 60 deg+1.0	105.68	9.34	-5.40	-580.11	-998.48	-0.21
Ice+1.0 Temp	105.08	9.54	-5.40	-560.11	-990.40	-0.21
1.2 Dead+1.0 Wind 90 deg+1.0	105.68	10.73	-0.10	-7.11	-1147.33	0.59
Ice+1.0 Temp	105.00	10.75	0.10	7.11	1147.55	0.57
1.2 Dead+1.0 Wind 120	105.68	9.24	5.24	572.04	-984.21	1.18
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	105.68	5.29	9.19	1001.82	-554.18	1.45
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	105.68	-0.08	10.65	1161.94	29.74	1.37
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	105.68	-5.42	9.25	1011.34	607.88	0.92
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	105.68	-9.30	5.38	593.32	1026.72	0.21
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	105.68	-10.71	0.08	20.26	1177.99	-0.56
deg+1.0 Ice+1.0 Temp	105 50				1010.07	
1.2 Dead+1.0 Wind 300	105.68	-9.24	-5.25	-557.54	1018.86	-1.16
deg+1.0 Ice+1.0 Temp	105 (9	5 20	0.10	094.09	500 71	1 45
1.2 Dead+1.0 Wind 330	105.68	-5.29	-9.19	-984.98	588.71	-1.45
deg+1.0 Ice+1.0 Temp	60.12	0.02	<u> </u>	001.94	2.01	1 74
Dead+Wind 0 deg - Service Dead+Wind 30 deg - Service	60.13 60.13	0.03 4.07	-8.06 -6.99	-901.84 -782.26	3.01 -450.79	-1.74 -1.15
Dead+Wind 60 deg - Service	60.13	7.00	-4.06	-453.05	-430.79	-0.20
Dead+Wind 90 deg - Service	60.13	8.07	-4.00	-453.05 -1.94	-898.92	-0.20
Dead+Wind 120 deg - Service	60.13	6.97	4.00	452.91	-775.02	1.54
Dead+Wind 120 deg - Service	60.13	4.01	6.98	789.29	-442.81	1.86
Dead+Wind 180 deg - Service	60.13	-0.02	8.07	911.66	11.01	1.72
Dead+Wind 210 deg - Service	60.13	-4.04	6.98	789.15	461.48	1.12
Dead+Wind 240 deg - Service	60.13	-6.96	4.04	457.71	789.35	0.20
Dead+Wind 270 deg - Service	60.13	-8.04	0.02	6.54	910.93	-0.77
Dead+Wind 300 deg - Service	60.13	-6.97	-4.02	-446.90	791.24	-1.52
Dead+Wind 330 deg - Service	60.13	-4.01	-6.98	-780.81	458.91	-1.86
<u> </u>						

# **Solution Summary**

*tnxTower* 

**Bennett & Pless** 750 Park Commerce Dr #200 Boca Raton, FL 33487 Phone: 561-282-2676 FAX:

Job		Page
	170 ft Tapered Monopole	11 of 15
Project		Date
	Cheshire, CT (CT005)	17:32:52 07/16/20
Client	AMBOR / InSite Towers	Designed by mhlinka

		m of Applied Forces			Sum of Reaction		
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-60.13	0.00	0.00	60.13	0.00	0.000%
2	0.15	-72.16	-36.90	-0.15	72.16	36.90	0.000%
3	0.15	-54.12	-36.90	-0.15	54.12	36.90	0.000%
4	18.62	-72.16	-32.01	-18.62	72.16	32.01	0.000%
5	18.62	-54.12	-32.01	-18.62	54.12	32.01	0.000%
6	32.05	-72.16	-18.58	-32.05	72.16	18.58	0.000%
7	32.05	-54.12	-18.58	-32.05	54.12	18.58	0.000%
8	36.93	-72.16	-0.18	-36.93	72.16	0.18	0.000%
9	36.93	-54.12	-0.18	-36.93	54.12	0.18	0.000%
10	31.91	-72.16	18.32	-31.91	72.16	-18.32	0.000%
11	31.91	-54.12	18.32	-31.91	54.12	-18.32	0.000%
12	18.38	-72.16	31.95	-18.38	72.16	-31.95	0.000%
13	18.38	-54.12	31.95	-18.38	54.12	-31.95	0.000%
14	-0.09	-72.16	36.93	0.09	72.16	-36.93	0.000%
15	-0.09	-54.12	36.93	0.09	54.12	-36.93	0.000%
16	-18.48	-72.16	31.97	18.48	72.16	-31.97	0.000%
17	-18.48	-54.12	31.97	18.48	54.12	-31.97	0.000%
18	-31.88	-72.16	18.47	31.88	72.16	-18.47	0.000%
19	-31.88	-54.12	18.47	31.88	54.12	-18.47	0.000%
20	-36.82	-72.16	0.08	36.82	72.16	-0.08	0.000%
20	-36.82	-54.12	0.08	36.82	54.12	-0.08	0.000%
22	-31.91	-72.16	-18.38	31.91	72.16	18.38	0.000%
23	-31.91	-54.12	-18.38	31.91	54.12	18.38	0.000%
23	-18.38	-72.16	-31.95	18.38	72.16	31.95	0.000%
25	-18.38	-54.12	-31.95	18.38	54.12	31.95	0.000%
26	0.00	-105.68	0.00	0.00	105.68	-0.00	0.000%
20	0.10	-105.68	-10.64	-0.10	105.68	10.64	0.000%
28	5.45	-105.68	-9.26	-5.45	105.68	9.26	0.000%
28 29	9.34	-105.68	-5.40	-9.34	105.68	5.40	0.000%
30	10.73	-105.68	-0.10	-10.73	105.68	0.10	0.000%
31	9.24	-105.68	5.24	-9.24	105.68	-5.24	0.000%
32	5.29	-105.68	9.19	-5.29	105.68	-9.19	0.000%
32	-0.08	-105.68	10.65	0.08	105.68	-10.65	0.000%
33 34	-5.42	-105.68	9.25	5.42	105.68	-9.25	0.000%
34 35	-9.30	-105.68	9.23 5.38	9.30	105.68	-9.23 -5.38	0.000%
35 36	-9.50	-105.68	0.08	9.50 10.71	105.68	-0.08	0.000%
30 37	-9.24			9.24			
37	-9.24 -5.29	-105.68 -105.68	-5.25 -9.19	9.24 5.29	105.68 105.68	5.25 9.19	0.000% 0.000%
39	0.03	-60.13	-8.06	-0.03	60.13	8.06	0.000%
40	4.07	-60.13	-6.99	-4.07	60.13	6.99	0.000%
41	7.00	-60.13	-4.06	-7.00	60.13	4.06	0.000%
42	8.07	-60.13	-0.04	-8.07	60.13	0.04	0.000%
43	6.97	-60.13	4.00	-6.97	60.13	-4.00	0.000%
44	4.01	-60.13	6.98	-4.01	60.13	-6.98	0.000%
45	-0.02	-60.13	8.07	0.02	60.13	-8.07	0.000%
46	-4.04	-60.13	6.98	4.04	60.13	-6.98	0.000%
47	-6.96	-60.13	4.04	6.96	60.13	-4.04	0.000%
48	-8.04	-60.13	0.02	8.04	60.13	-0.02	0.000%
49	-6.97	-60.13	-4.02	6.97	60.13	4.02	0.000%
50	-4.01	-60.13	-6.98	4.01	60.13	6.98	0.000%

# **Non-Linear Convergence Results**

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001

	<b>—</b>	Job			Page
tnx	Tower		170 ft Tap	ered Monopole	12 of 15
		Project			Date
	<b>nett &amp; Pless</b> Commerce Dr #200	-	Cheshir	e, CT (CT005)	17:32:52 07/16/20
	aton, FL 33487	Client			Designed by
	: 561-282-2676		AMBOR	/ InSite Towers	mhlinka
	FAX:				
2	Yes	5	0.00000001	0.00001035	
3	Yes	5	0.00000001	0.00000511	
4	Yes	5	0.00000001	0.00001822	
5	Yes	5	0.00000001	0.00000875	
6	Yes	5	0.00000001	0.00002109	
7	Yes	5	0.00000001	0.00001017	
8	Yes	5	0.00000001	0.00000463	
9	Yes	5	0.00000001	0.00000225	
10	Yes	5	0.00000001	0.00002583	
11	Yes	5	0.00000001	0.00001261	
12	Yes	5	0.00000001	0.00001766	
13	Yes	5	0.00000001	0.00000851	
14	Yes	5 5	0.00000001 0.00000001	0.00001067 0.00000526	
15 16	Yes Yes	5	0.00000001	0.00002480	
10	Yes	5	0.00000001	0.00002480	
17	Yes	5	0.00000001	0.00001198	
18	Yes	5	0.00000001	0.00000954	
20	Yes	5	0.00000001	0.00000492	
20 21	Yes	5	0.00000001	0.00000492	
22	Yes	5	0.00000001	0.00001779	
22	Yes	5	0.00000001	0.00000852	
23	Yes	5	0.00000001	0.00002774	
24	Yes	5	0.00000001	0.00001353	
26	Yes	4	0.00000001	0.00003765	
20	Yes	5	0.00000001	0.00004767	
28	Yes	5	0.00000001	0.00004884	
29	Yes	5	0.00000001	0.00004884	
30	Yes	5	0.00000001	0.00004723	
31	Yes	5	0.00000001	0.00004723	
32	Yes	5	0.00000001	0.00004934	
33	Yes	5	0.00000001	0.00004954	
34	Yes	5	0.00000001	0.00005241	
35	Yes	5	0.00000001	0.00005267	
36	Yes	5	0.00000001	0.00005063	
37	Yes	5	0.00000001	0.00005087	
38	Yes	5	0.00000001	0.00005000	
39	Yes	4	0.00000001	0.00002649	
40	Yes	4	0.00000001	0.00002073	
41	Yes	4	0.00000001	0.00001934	
42	Yes	4	0.00000001	0.00001548	
43	Yes	4	0.00000001	0.00003100	
44	Yes	4	0.00000001	0.00002683	
45	Yes	4	0.00000001	0.00002698	
46	Yes	4	0.00000001	0.00002838	
47	Yes	4	0.00000001	0.00001913	
48	Yes	4	0.00000001	0.00001591	
49	Yes	4	0.00000001	0.00002389	
50	Yes	4	0.00000001	0.00003551	

# Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	ft	Comb.	0	0
L1	170 - 160.354	0.79	46	0.49	0.00
L2	164.846 - 126.135	0.75	46	0.49	0.00
L3	131.708 - 92.9974	0.47	46	0.43	0.00
L4	99.6849 - 60.974	0.26	46	0.31	0.00
L5	68.7292 - 30.0182	0.12	46	0.20	0.00

Areas Tracks are	Job		Page
tnxTower		170 ft Tapered Monopole	13 of 15
Bennett & Pless	Project		Date
750 Park Commerce Dr #200		Cheshire, CT (CT005)	17:32:52 07/16/20
Boca Raton, FL 33487 Phone: 561-282-2676 FAX:	Client	AMBOR / InSite Towers	Designed by mhlinka

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	ft	Comb.	0	0
L6	38.6901 - 0	0.04	46	0.11	0.00

### **Critical Deflections and Radius of Curvature - Service Wind**

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	ft	0	0	ft
170'	3' Dish w/ Radome	46	0.79	0.49	0.00	383562
155'	(4) HPA-65R-BUU-H8 w/ Mount	46	0.66	0.48	0.00	69190
	Pipe					
145'	(2) JMA MX10FIT665	46	0.58	0.47	0.00	29706

# Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	ft	Comb.	0	0
L1	170 - 160.354	3.57	14	2.19	0.02
L2	164.846 - 126.135	3.37	16	2.18	0.02
L3	131.708 - 92.9974	2.15	16	1.95	0.01
L4	99.6849 - 60.974	1.19	14	1.40	0.01
L5	68.7292 - 30.0182	0.56	14	0.90	0.00
L6	38.6901 - 0	0.18	14	0.50	0.00

# **Critical Deflections and Radius of Curvature - Design Wind**

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	ft	0	0	ft
170'	3' Dish w/ Radome	14	3.57	2.19	0.02	98220
155'	(4) HPA-65R-BUU-H8 w/ Mount	16	3.00	2.16	0.02	15637
	Pipe					
145'	(2) JMA MX10FIT665	16	2.62	2.09	0.02	6868

### **Compression Checks**

			Pol	e Des	sign D	Data			
Section No.	Elevation	Size	L	L _u	Kl/r	Α	$P_u$	$\phi P_n$	Ratio P _u
	ft		ft	ft		$in^2$	Κ	Κ	$\phi P_n$
L1	170 - 160.354	TP30.04x27.17x0.28	9'7-13/1	170'	202.1	24.87	-1.54	137.48	0.011

Anna Theorem	Job		Page
tnxTower		170 ft Tapered Monopole	14 of 15
<b>Bennett &amp; Pless</b> 750 Park Commerce Dr #200	Project	Cheshire, CT (CT005)	Date 17:32:52 07/16/20
Boca Raton, FL 33487 Phone: 561-282-2676 FAX:	Client	AMBOR / InSite Towers	Designed by mhlinka

Section No.	Elevation	Size	L	$L_u$	Kl/r	Α	$P_u$	$\phi P_n$	Ratio $P_u$
	ft		ft	ft		$in^2$	K	Κ	$\phi P_n$
	(1)		6"						
L2	160.354 -	TP39.68x28.15x0.35	38'8-17/	170'	152.6	42.36	-13.75	411.16	0.033
	126.135 (2)		32"						
L3	126.135 -	TP48.83x37.31x0.39	38'8-17/	170'	123.7	58.04	-21.92	856.57	0.026
	92.9974 (3)		32"						
L4	92.9974 -	TP57.58x46.05x0.47	38'8-17/	170'	104.9	82.10	-33.47	1686.54	0.020
	60.974 (4)		32"						
L5	60.974 -	TP65.85x54.33x0.55	38'8-17/	170'	91.6	109.49	-49.03	2946.42	0.017
	30.0182 (5)		32"						
L6	30.0182 - 0 (6)	TP73.69x62.17x0.55	38'8-9/3	170'	78.6	127.69	-72.15	4393.54	0.016
			2"						

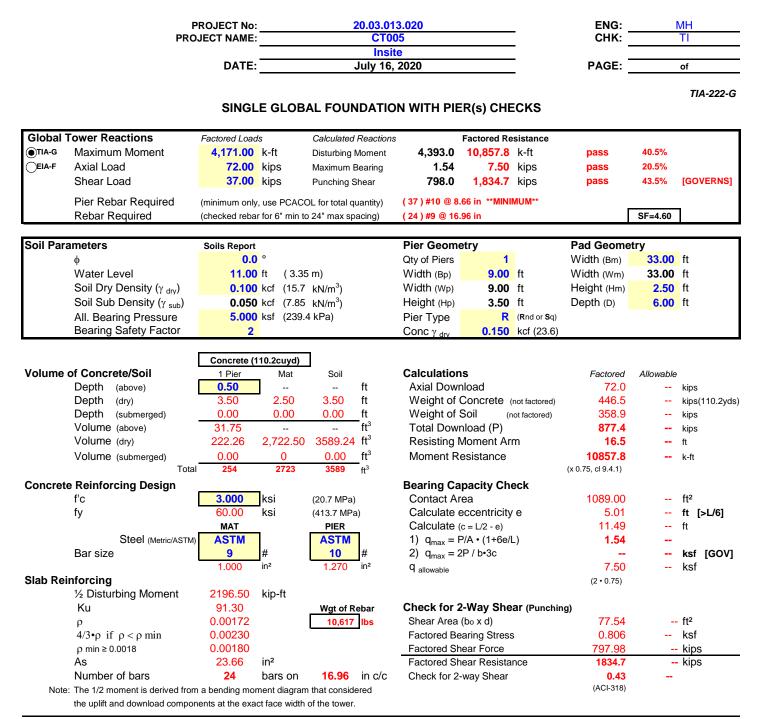
# Pole Bending Design Data

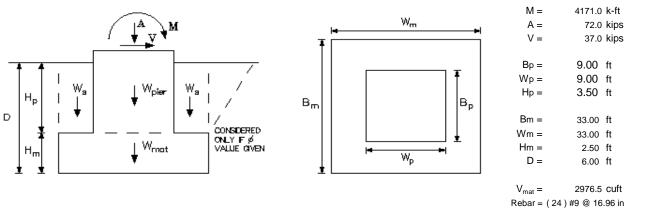
Section No.	Elevation	Size	$M_{ux}$	$\phi M_{nx}$	Ratio M _{ux}	$M_{uy}$	$\phi M_{ny}$	Ratio M _{uy}
	ft		kip-ft	kip-ft	$\phi M_{nx}$	kip-ft	kip-ft	$\phi M_{nv}$
L1	170 - 160.354 (1)	TP30.04x27.17x0.28	2.29	1069.66	0.002	0.00	1069.66	0.000
L2	160.354 - 126.135 (2)	TP39.68x28.15x0.35	424.68	2395.86	0.177	0.00	2395.86	0.000
L3	126.135 - 92.9974 (3)	TP48.83x37.31x0.39	1125.25	3930.97	0.286	0.00	3930.97	0.000
L4	92.9974 - 60.974 (4)	TP57.58x46.05x0.47	1927.33	6591.60	0.292	0.00	6591.60	0.000
L5	60.974 - 30.0182 (5)	TP65.85x54.33x0.55	2831.02	10114.25	0.280	0.00	10114.25	0.000
L6	30.0182 - 0 (6)	TP73.69x62.17x0.55	4171.13	13094.92	0.319	0.00	13094.92	0.000

# Pole Shear Design Data

Section No.	Elevation	Size	Actual $V_u$	$\phi V_n$	Ratio $V_u$	Actual $T_u$	$\phi T_n$	Ratio T _u
	ft		K	Κ	$\phi V_n$	kip-ft	kip-ft	$\phi T_n$
L1	170 - 160.354 (1)	TP30.04x27.17x0.28	0.44	909.24	0.000	0.05	2145.06	0.000
L2	160.354 - 126.135 (2)	TP39.68x28.15x0.35	19.96	1549.01	0.013	5.10	4804.38	0.001
L3	126.135 - 92.9974 (3)	TP48.83x37.31x0.39	23.84	2059.16	0.012	5.10	7881.62	0.001
L4	92.9974 - 60.974 (4)	TP57.58x46.05x0.47	27.98	2927.00	0.010	5.10	13216.50	0.000
L5	60.974 - 30.0182 (5)	TP65.85x54.33x0.55	32.12	3924.70	0.008	5.10	20280.00	0.000
L6	30.0182 - 0 (6)	TP73.69x62.17x0.55	37.06	4351.65	0.009	0.92	26251.67	0.000

tnxTower	Jop	170 ft Tapered Monopole	Page 15 of 15
<b>Bennett &amp; Pless</b> 750 Park Commerce Dr #200	Project	Cheshire, CT (CT005)	Date 17:32:52 07/16/20
Boca Raton, FL 33487 Phone: 561-282-2676 FAX:	Client	AMBOR / InSite Towers	Designed by mhlinka


Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	$Ratio V_u$	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	$\phi P_n$	$\phi M_{nx}$	$\phi M_{ny}$	$\phi V_n$	$\phi T_n$	Ratio	Ratio	
L1	170 - 160.354 (1)	0.011	0.002	0.000	0.000	0.000	0.013	1.000	4.8.2 🗸
L2	160.354 - 126.135 (2)	0.033	0.177	0.000	0.013	0.001	0.211	1.000	4.8.2 🖌
L3	126.135 - 92.9974 (3)	0.026	0.286	0.000	0.012	0.001	0.312	1.000	4.8.2 🖌
L4	92.9974 - 60.974 (4)	0.020	0.292	0.000	0.010	0.000	0.312	1.000	4.8.2 🖌
L5	60.974 - 30.0182 (5)	0.017	0.280	0.000	0.008	0.000	0.297	1.000	4.8.2 🖌
L6	30.0182 - 0 (6)	0.016	0.319	0.000	0.009	0.000	0.335	1.000	4.8.2 🖌


# **Section Capacity Table**

Section	Elevation	Component	Size	Critical	Р	$\phi P_{allow}$	%	Pass
No.	ft	Type		Element	Κ	K	Capacity	Fail
L1	170 - 160.354	Pole	TP30.04x27.17x0.28	1	-1.54	137.48	1.3	Pass
L2	160.354 - 126.135	Pole	TP39.68x28.15x0.35	2	-13.75	411.16	21.1	Pass
L3	126.135 - 92.9974	Pole	TP48.83x37.31x0.39	3	-21.92	856.57	31.2	Pass
L4	92.9974 - 60.974	Pole	TP57.58x46.05x0.47	4	-33.47	1686.54	31.2	Pass
L5	60.974 - 30.0182	Pole	TP65.85x54.33x0.55	5	-49.03	2946.42	29.7	Pass
L6	30.0182 - 0	Pole	TP73.69x62.17x0.55	6	-72.15	4393.54	33.5	Pass
							Summary	
						Pole (L6)	33.5	Pass
						RATING =	33.5	Pass

Program Version 8.0.7.4 - 5/11/2020 File:Z:/shared/Projects/2020/20.03.000 - Boca/20.03.013.xxx - InSite/20.03.013.020 - CT005 Cheshire (VZW) 170ft Mono/SA Info/CT005 Cheshire_SA_071620_ToCheshire.eri

Base/Flange Plate	Plate Type Pole Diameter Pole Thickness Plate Diameter Plate Thickness Plate Fy Weld Length $\phi_s$ Resistance Applied	Baseplate           73.69         in           0.55         in           87.4         in           2.76         in           50         ksi           0.3125         in           708.55         k-in           207.72         k-in	
Stiffeners	#	0	
Bolts	# Bolt Circle (R)adial / (S)quare Diameter Hole Diameter Type Fy Fu ∮s Resistance Applied	<b>28</b> 81.56 in R 2.25 in 2.64 in A615-75 75 ksi 100 ksi 259.82 k 90.21 k	
Reinforcement	#	0	Plate Stress Ratio: 0.29 (Pass) Bolt Stress Ratio: 0.35 (Pass)
Extra Bolts O	#	0	





11 FDNS - Foundation Mat and Pier GLOBAL

Attachment 2: Collocation Application



### WORKSHEET 1 OF 2 (COMPLETE BOTH WORKSHEET TABS)

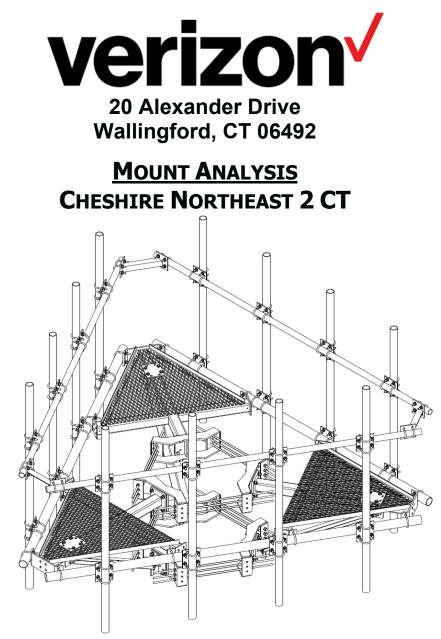
	STOMER
Insta	
AFFL	A Site Application Fee to be paid upon submission of this
Towers,LLC DATE SUBM	TTED: 07/08/20 Customer Application
CUSTOMER	RINFORMATION
COMPANY NAME: Verizon Wireless	PHONE: 508-821-0159
ENTITY Type: i.e. Inc., LLP d/b/a Cellco Partnership	FAX: 508-819-3017
STATE of Inc. New Jedey	SERVICE (PCS, SMR):
CUSTOME	R ADDRESSES
COMPANY Address: c/o Centerline Communications, LLC	CITY/STATE: ZIP :
BILLING Address: 750 W. Center St, Suite 301	CITY/STATE: W.Bridgewater MA ZIP : 2379
NOTICE Address 1: One Verizon Way, Mail Stop 4AW100	CITY/STATE: Basking Ridge NJ ZIP : 7920
NOTICE Address 2:	CITY/STATE: ZIP :
	ER CONTACTS
PRIMARY CONTACT: Mark Appleby	PHONE: 860-209-4694
TITLE: Site Acquisition Consultant	E-MAIL Address: mappleby@clinellc.com
SIGNATORY NAME: Keith Murray	PHONE:
TITLE: Director New England Network	E-MAIL Address:
EMERGENCY CONTACT:	PHONE:
TITLE:	E-MAIL Address:
TECHNICAL/OPS:	PHONE:
	E-MAIL Address:
RF ENGINEER: Ziad Cheiban	PHONE:
TITLE: RF Design Engineer BILLING CONTACT:	E-MAIL Address: PHONE:
TITLE:	E-MAIL Address:
LEGAL CONTACT:	PHONE:
TITLE:	E-MAIL Address:
	FORMATION
CUSTOMER Site # / Name: Cheshire Northeast 2 CT	INSITE Site # and Name: CT005 Cheshire
SITE LATITUDE: 41° 31' 57.32" N	SITE LONGITUDE: 72° 52' 13.70" W
SITE ADDRESS: 1325 Cheshire Street	CITY: Cheshire
STATE: CT ZIP: 6410	STRUCTURE TYPE: Monopole
	ION OF COLOCATION OR MODIFICATION REQUEST
	nsung B5/B13-RRH BRO4C Radio Heads 1-Per Sector- 3 Samsung
B2/B66A Radio Heads 1-Per Sector - 3 CBRS RT-4401-48A Radio	
	E WILL INSTALL 3 JMA 91900314 Dual mount Antenna Brackets on
Platform please include in structural supplied Specs with Application	
	T EQUIPMENT TO BE REMOVED
N/A	
	DN PREPARED BY
NAME: Mark Appleby	PHONE: 860-209-4694
COMPANY	
COMPANT. Centerline Communications LLC	ADDRESS. 750 W Center St W. Bridgewater MA
TITLE:	E-MAIL Address: mappleby@cline llc.com

#### WORKSHEET 2 OF 2 (COMPLETE BOTH WORKSHEET TABS)

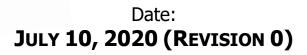
#### Please be sure to fill in all applicable fields such that it represents your FINAL equipment loading once installation is complete.

#### EXHIBIT Equipment

CT005 Cheshire Site Name and #:


I I Licensee Name:

Verizon Wireless


The mounting method and exact location of the space and equipment listed herein shall be subject to InSite's approval.
SYSTEM REQUIREMENTS

		SYSTEM REC	QUIREMENTS										
POWER provided by:	Utility Company direct		TELCO provided by:	TBD									
Power Requirements:	Amps: 200	Volts: 120/240	No. of Outlets:	N/A									
Generator Provided by:			odel: 30 REOZK	Fuel Type: Diesel	Capacity: 30 Kw								
Batteries:	Quantity: N/A	Make: N/A	Model:										
SPACE REQUIREMENTS & RADIO INVENTORY													
Type of Space Required:		Floor: No	Total Square Feet:	102 cg. ft	[								
	Equipment Floor/Ground Space		Equipment Height:										
					NI/A								
	ons of Generator Ground Space			of Fuel Tank Ground Space: Transmitter Power Output									
No. of Transmitters (Tx):		r Make/Model: JMA-Wirele											
No. of Receivers (Rx):		er Make/Model: JMA-Wirele	ess	Transmitter ERP:	IBD								
Total Square Feet includes: [9' x 4' generator pad EQUIPMENT LOADING DESCRIPTION (FINAL CONFIGURATION)													
· · - ··	Sector 1	Sector 2	Sector 3	DISH(ES)	OTHER								
Antenna Type (1):		Panel	Panel	N/A	N/A								
# of Antennas (1)/ Sector:		Two (2)	Two (2)	None	None								
Tx, Rx or Both:		Both	Both	N/A	N/A								
Antenna Manufacturer (1):		JMA Wireless	JMA Wireless	N/A	N/A								
Antenna Model (1):		MX10FIT665	MX10FIT665	N/A	N/A								
Antenna Dimensions (1):		70.9" x 12.2" x 7.5"	70.9" x 12.2" x 7.5"	N/A	N/A								
Antenna Weight (1):		53.4 lbs	53.4 lbs	N/A	N/A								
Antenna RAD Ctr (1):		145'	145'	N/A	N/A								
# of RRU/RRHs/ Sector (1):		One (1)	One (1)										
RRU/RRH Manufacturer (1):		Samsung	Samsung										
	B5/B13-RRH BRO4C	B5/B13-RRH BRO4C	B5/B13-RRH BRO4C										
RRU/RRH Dimensions (1):	15" x 15" x 8.1"	15" x 15" x 8.1"	15" x 15" x 8.1"										
RRU/RRH Weight (1):	70.3 lbs	70.3 lbs	70.3 lbs										
RRU/RRH RAD Ctr (1):	145'	145'	145'										
# of RRU/RRHs/ Sector (2):	One (1)	One (1)	One (1)										
RRU/RRH Manufacturer (2):	Samsung	Samsung	Samsung										
RRU/RRH Model (2):	B2/B66A RRH	B2/B66A RRH	B2/B66A RRH										
RRU/RRH Dimension (2):		15" x 15" x 10"	15" x 15" x 10"										
RRU/RRH Weight (2):		84.4 lbs	84.4 lbs										
RRU/RRH RAD Ctr (2):		145'	145'										
# of RRU/RRHs/ Sector (3):		One (1)	One (1)										
RRU/RRH Manufacturer (3):		CBRS	CBRS	-									
	RT-4401-48A RRH	RT-4401-48A RRH	RT-4401-48A RRH	-									
RRU/RRH Dimension (3):		8.5" x 12.1" x 4.1"	8.5" x 12.1" x 4.1"	-									
RRU/RRH Weight (3):		18.6 lbs	18.6 lbs	-									
RRU/RRH RAD Ctr (3):		145'	145'										
# of TMAs/ Sector (1):		None	None										
# of Diplexers/ Sector (1).		None											
			None										
# of Surge Suppressors/Sctr:		None	None										
Surge Suppressor Make:	RFS DB-C1-12C-24-AB-0Z	N/A	N/A										
		N/A	N/A										
Surge Supressor Dimensions:		N/A	N/A										
Surge Supressor Weight:		N/A	N/A										
Surge Supressors RAD Ctr:		N/A	N/A										
OTHER:		None	None	NI/A	NI/A								
	869-880, 890-891.5, 1970-1			N/A	N/A								
	824-835, 845-846.5, 1890-1		, , , ,	N/A	N/A								
# of Lines:		None	None	None	None								
	1-1/4" Hybrid	N/A	N/A	N/A	N/A								
	LP Platform w/handrail	LP Platform w/handrai		N/A	N/A								
	Twelve & Half Feet (12.5'	· · ·		N/A	N/A								
Mount Make:		Site Pro 1	Site Pro 1	N/A	N/A								
	RMQP-4096-HK	RMQP-4096-HK	RMQP-4096-HK	N/A	N/A								
Antenna Brackets:	One (1) JMA 91900314	One (1) JMA 9190031	4 One (1) JMA 91900314	N/A	N/A								

# **ATTACHMENT 6**









R.K. Executive Centre 
201 Boston Post Road West 
Suite 101 
Marlborough, MA 01752



July 10, 2020



#### <u>RE:</u>

 Applicant Site Name:
 Cheshire Northeast 2 CT

 Applicant Location Code:
 470040

 Site Address:
 1325 Cheshire Street, Cheshire, CT 06410

To whom it may concern:

Chappell Engineering Associates, LLC has performed a structural analysis of the proposed Verizon braced low-profile antenna mounting platform being proposed at the existing 170'+/- monopole located at the above-referenced address at approximately 145ft AGL to analyze the effect of the proposed Verizon antenna installation on the subject platform.

The proposed antenna support structure will consist of one (1) low-profile antenna frame supporting twelve (12) individual antenna pipe mounts. Our analysis has considered the following total major equipment loads indicated on the antenna design summary (included in this report) to be installed on the proposed low-profile antenna frame:

Appurtenance	<u>Size (in)</u>	<u>Weight</u>	<b>Location</b>	<u>Status</u>
(6) JMA MX10FIT665 Panel	71Hx12.2Wx7.5D	53.4lbs	Face of Mount	Proposed
(3) LTE/CDMA 700/850 RRH	15Hx15Wx8.1D	70lbs	Face of Mount	Proposed
(3) PCS/AWS 1900/2100 RRH	15Hx15Wx10.1D	85lbs	Face of Mount	Proposed
(3) CBRS Band 48 RRH	12.1Hx8.5Wx4.1D	19lbs	Face of Mount	Proposed
(1) RFS Fiber Junction Box	19.2Hx15.7Wx10.3D	30lbs	Face of Mount	Proposed

The proposed antennas and ancillary hardware are shown on the enclosed drawings

We have modeled the entire low-profile antenna frame under both wind and wind/ice loads. Our analysis and results are included in this report.

Based upon our analysis of the antenna mounts being proposed, **we consider the proposed RMQP-4096-HK lowprofile mounting frame assembly has adequate capacity** to support the proposed antenna configuration as shown on the construction drawings. Our analysis assumes the mount will be installed and maintained according to the manufacturers' recommendations.

If you have any questions regarding this matter, please do not hesitate to call.

Very truly yours, CHAPPELL ENGINEERING ASSOCIAT SSIONAL Clement J Salek, P.E. CJS/cjs

R.K. Executive Centre 
201 Boston Post Road West 
Suite 101 
Marlborough, MA 01752

Appendix A – RF Antenna Data Sheets



### NORTH EAST > North East > New England > New England West > CHESHIRE_NE_2_CT - B

Cheiban, Ziad - ziad.cheiban@verizonwireless.com - 7/1/2020 12:51:15

Project Details	Location Information
Carrier Aggregation: false	Site ID: 616512863
MPT Id:	E-NodeB ID: 064361
eCIP-0: false	<b>PSLC:</b> 470040
Project Name: New Build - CHESHIRE_NE_2_CT - A	Switch Name: Wallingford 1
FUZE Project ID: 16205305	Tower Owner:
Designed Sector Carrier 4G: 15	Tower Type: Monopole
Designed Sector Carrier 5G: N/A	Site Type: MACRO
Additional Sector Carrier 4G: N/A	Street Address: 1325 Cheshire
Additional Sector Carrier 5G: N/A	City: Cheshire
SiteTraker Project Id: a2R0H000001EgmPUAS	State: CT
RFDS Project Scope: New Build	<b>Zip Code:</b> 06410
	County: New Haven
Rev0_2020-06-10: Preliminary Rev1 2020-07-01: Removed MMU antennas	Latitude: 41.532589 / 4
Suffix: Rev1_2020-07-01	Longitude: -72.870472 / 7

ire Street

/ 41° 31' 57.3204" N

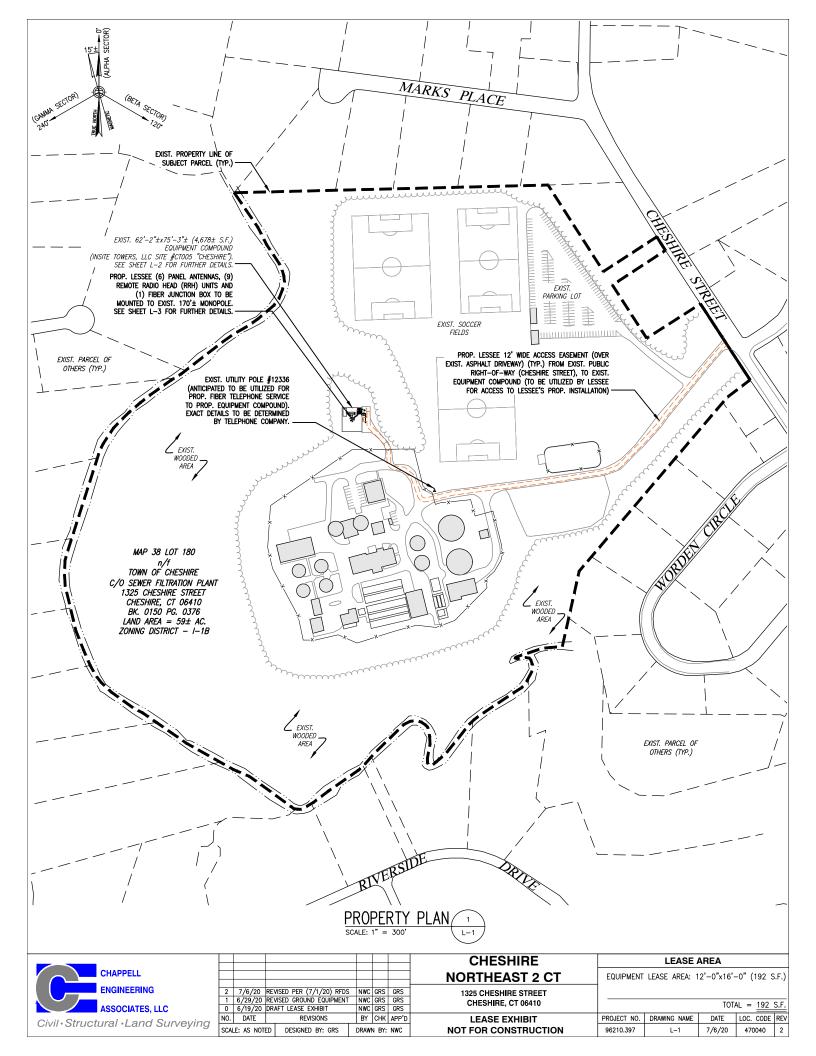
/ 72° 52' 13.6992" W

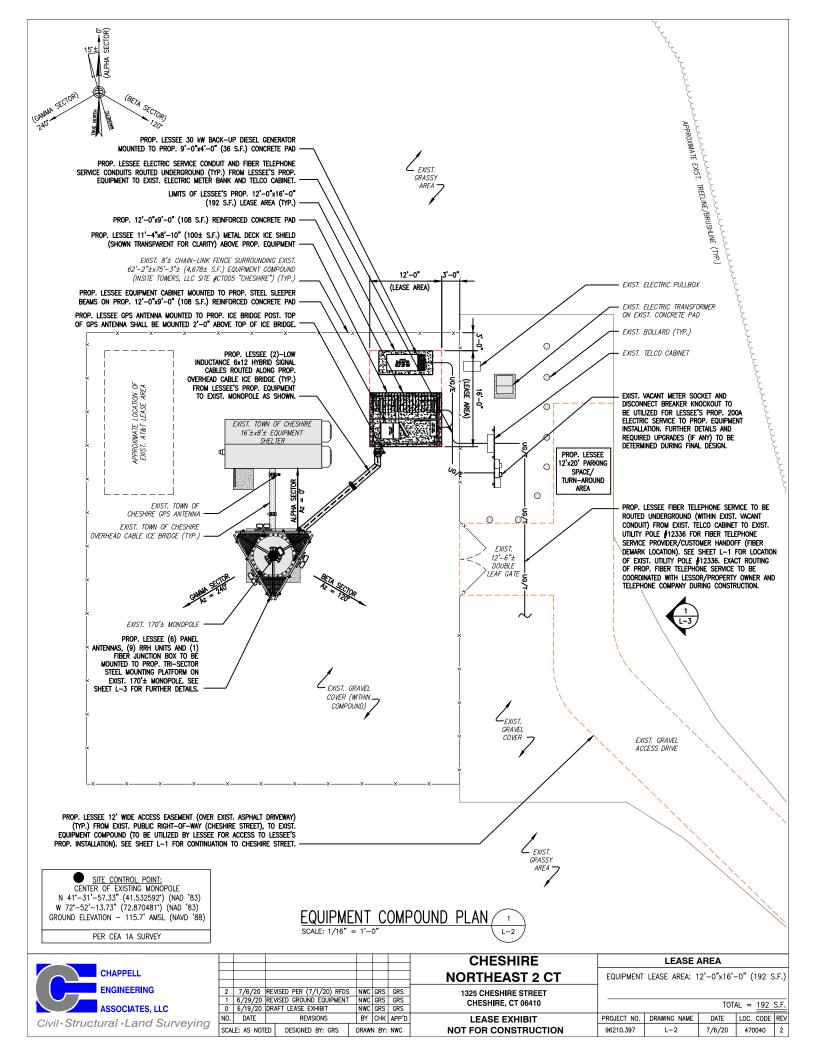
## Antenna Summary

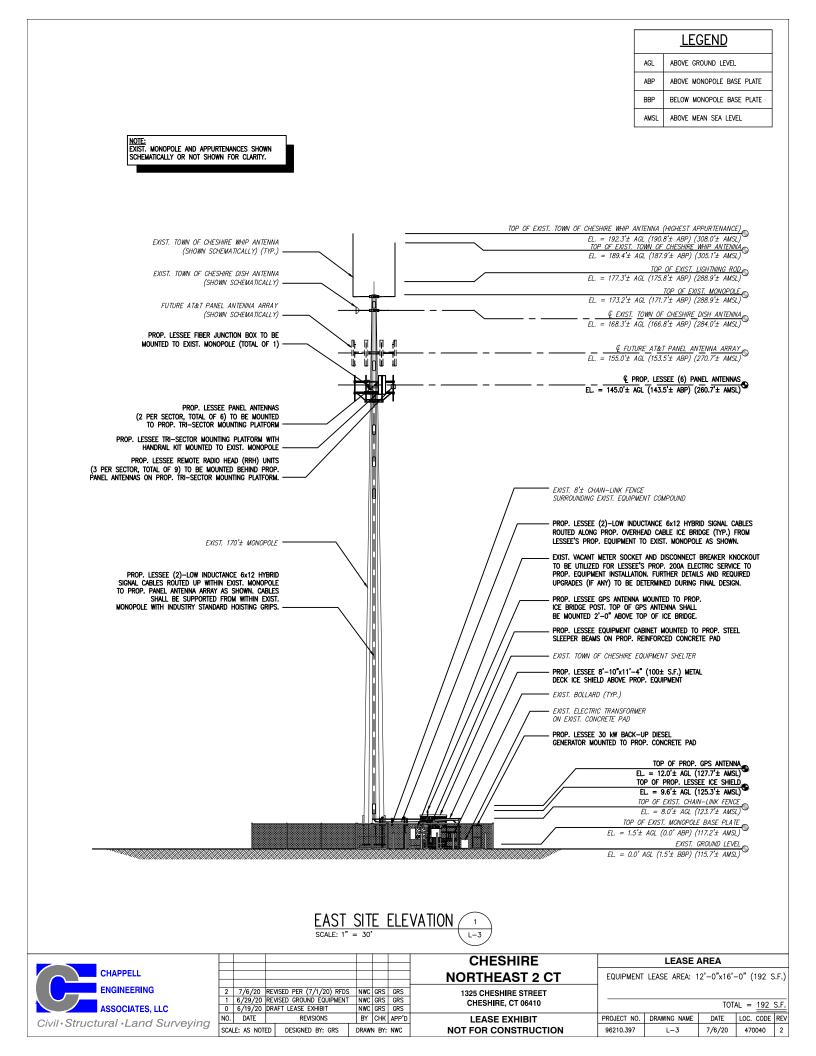
Added																			
700	850	1900	AWS	AWS3 2	8 GHz 31	GHz	39 GHz	CBRS	LAA	N77	Make	Model	Centerline	Tip Height	Azimuth	RET	4xRx	Inst. Type	Quantity
LTE	LTE	LTE	LTE					LTE			JMA	MX10FIT665	145	148	0(D1) 0(D19) 120(D2) 120(D20) 240(D21) 240(D3)	true	true	PHYSICAL	6
Remove	ed																		
700	850	1900	AWS	AWS3 2	8 GHz 31	GHz	39 GHz	CBRS	LAA	N77	Make	Model	Centerline	Tip Height	Azimuth	RET	4xRx	Inst. Type	Quantity
												No data available.							
Retaine	ed																		
700	850	1900	AWS	AWS3 2	8 GHz 31	GHz	39 GHz	CBRS	LAA	N77	Make	Model	Centerline	Tip Height	Azimuth	RET	4xRx	Inst. Type	Quantity
												No data available.							
											Added: 6	Removed: 0	Retai	ined: 0					

# Equipment Summary

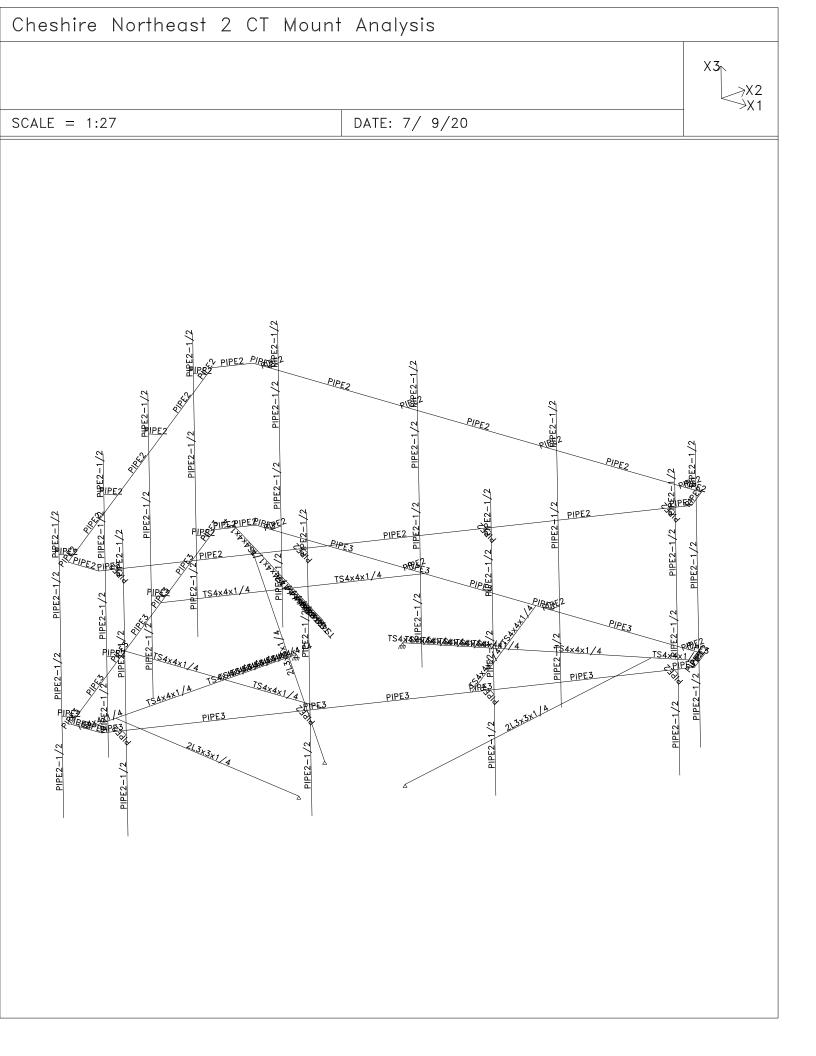
Added																		
Equipment Type	Location	700	850	1900	AWS	AWS3	28 GHz	31 GHz	39 GHz	CBRS	LAA	N77	Make	Model	Cable Length	Cable Size	Install Type	Quantity
Hybrid Cable	Tower													LI 6x12			PHYSICAL	2
Mount	Tower												JMA	91900314-02			PHYSICAL	3
OVP Box	Tower													12-0VP			PHYSICAL	1
RRU	Tower	LTE	LTE										Samsung	B5/B13 RRH-BR04C (RFV01U-D2A)			PHYSICAL	3
RRU	Tower									LTE			Samsung	CBRS RRH - RT4401-48A			PHYSICAL	3
RRU	Tower			LTE	LTE								Samsung	B2/B66A RRH-BR049 (RFV01U-D1A)			PHYSICAL	3
Removed																		
Equipment Type	Location	700	850	1900	AWS	AWS3	28 GHz	31 GHz	39 GHz	CBRS	LAA	N77	Make	Model	Cable Length	Cable Size	Install Type	Quantity
											No d	data availal	ble.					
Retained																		
Equipment Type	Location	700	850	1900	AWS	AWS3	28 GHz	31 GHz	39 GHz	CBRS	LAA	N77	Make	Model	Cable Length	Cable Size	Install Type	Quantity


### Service Info


1900 MHZ LTE		0002	
Sector	D1	D2	D3
Azimuth	0	120	240
Cell / ENode B ID	064361	064361	064361
Antenna Model	MX10FIT665	MX10FIT665	MX10FIT665
Antenna Moder	PIXIOTTOOS	PIXTOTTOOS	NATO TOOS
Antenna Make	ЈМА	ЈМА	JMA
Antenna Centerline(Ft)	145	145	145
Mechanical Down-Tilt(Deg.)	0	0	0
Electrical Down-Tilt	2	2	2
	148	148	148
Tip Height		234.83	
Regulatory Power	234.83	234.83	234.83
TMA Make TMA Model			
	Commun	Commun	C
RRU Make	Samsung	Samsung	Samsung
RRU Model	B2/B66A RRH-BR049 (RFV01U-D1A)	B2/B66A RRH-BR049 (RFV01U-D1A)	B2/B66A RRH-BR049 (RFV01U-D1A)
Number of Tx, Rx Lines	4,4	4,4	4,4
Position			
Transmitter Id	7112942	7112943	7112944
Source	ATOLL_API	ATOLL_API	ATOLL_API
2100 MHZ LTE		0002	
Sector	D1	D2	D3
Azimuth	0	120	240
Cell / ENode B ID	064361	064361	064361
Antenna Model	MX10FIT665	MX10FIT665	MX10FIT665
Antenna Make	ЈМА	ЈМА	JMA
Antenna Centerline(Ft)	145	145	145
Mechanical Down-Tilt(Deg.)	0	0	0
Electrical Down-Tilt	2	2	2
Tip Height	148	148	148
Regulatory Power	128.74	128.74	128.74
TMA Make	120.74	120.74	120.74
TMA Make			
	Computer	Computer	Computer
RRU Make	Samsung B2/B66A RRH-BR049 (RFV01U-D1A)	Samsung B2/B66A RRH-BR049 (RFV01U-D1A)	Samsung
RRU Model			B2/B66A RRH-BR049 (RFV01U-D1A)
Number of Tx, Rx Lines	4,4	4,4	4,4
Position			
Transmitter Id	7112945	7112946	7112947
Source	ATOLL_API	ATOLL_API	ATOLL_API
350 MHZ LTE		0002	
Sector		D2	D3
Sector	D1	02	
Azimuth	0		
Azimuth	0	120	240
Azimuth Cell / ENode B ID	0 064361	120 064361	240 064361
Azimuth	0	120	240
Azimuth Cell / ENode B ID Antenna Model	0 064361 MX10FIT665	120 064361 MX10FIT665	240 064361 MX10FIT665
Azimuth Cell / ENode B ID Antenna Model Antenna Make	0 064361 MX10FIT665 JMA	120 064361 MX10FIT665 JMA	240 064361 MX10FIT665 JMA
Azimuth Cell / ENode B ID Antenna Model Antenna Make Antenna Centerline(Ft)	0 064361 MX10FIT665 JMA 145	120 064361 MX10FIT665 JMA 145	240 064361 MX10FIT665 JMA 145
Azimuth Cell / ENode B ID Antenna Model Antenna Make Antenna Centerline(Ft) Mechanical Down-Tilt(Deg.)	0 064361 MX10FIT665 JMA 145 0	120 064361 MX10FIT665 JMA 145 0	240 064361 MX10FIT665 JMA 145 0
Azimuth Cell / ENode B ID Antenna Model Antenna Make Antenna Centerline(Ft) Mechanical Down-Tilt(Deg.) Electrical Down-Tilt	0 064361 MX10FIT665 JMA 145 0 8	120 064361 MX10FIT665 JMA 145 0 8	240 064361 MX10FIT665 JMA 145 0 8
Azimuth Cell / ENode B ID Antenna Model Antenna Make Antenna Centerline(Ft) Mechanical Down-Tilt(Deg.) Electrical Down-Tilt Tip Height	0 064361 MX10FIT665 JMA 145 0 8 148	120 064361 MX10FIT665 JMA 145 0 8 148	240 064361 MX10FIT665 JMA 145 0 8 148
Azimuth Cell / ENode B ID Antenna Model Antenna Make Antenna Centerline(Ft) Mechanical Down-Tilt(Deg.) Electrical Down-Tilt Tip Height Regulatory Power	0 064361 MX10FIT665 JMA 145 0 8	120 064361 MX10FIT665 JMA 145 0 8	240 064361 MX10FIT665 JMA 145 0 8
Azimuth Cell / ENode B ID Antenna Model Antenna Make Antenna Centerline(Ft) Mechanical Down-Tilt(Deg.) Electrical Down-Tilt Tip Height Regulatory Power TMA Make	0 064361 MX10FIT665 JMA 145 0 8 148	120 064361 MX10FIT665 JMA 145 0 8 148	240 064361 MX10FIT665 JMA 145 0 8 8 148
Azimuth Cell / ENode B ID Antenna Model Antenna Make Antenna Centerline(Ft) Mechanical Down-Tilt(Deg.) Electrical Down-Tilt Tip Height Regulatory Power TMA Make TMA Model	0 064361 MX10FIT665 JMA 145 0 8 148 246.64	120 064361 MX10FIT665 JMA 145 0 8 148 246.64	240 064361 MX10FIT665 JMA 145 0 8 148 246.64
Azimuth Cell / ENode B ID Antenna Model Antenna Make Antenna Centerline(Ft) Mechanical Down-Tilt(Deg.) Electrical Down-Tilt Tip Height Regulatory Power TMA Make TMA Model RRU Make	0 064361 MX10FIT665 JMA 145 0 8 148 246.64 Samsung	120 064361 MX10FIT665 JMA 145 0 8 148 246.64 Samsung	240 064361 MX10FIT665 JMA 145 0 8 148 246.64 Samsung
Azimuth Cell / ENode B ID Antenna Model Antenna Make Antenna Centerline(Ft) Mechanical Down-Tilt(Deg.) Electrical Down-Tilt Tip Height Regulatory Power TMA Make TMA Model RRU Make RRU Model	0 064361 MX10FIT665 JMA 145 0 8 148 246.64 Samsung B5/B13 RRH-BR04C (RFV01U-D2A)	120 064361 MX10FIT665 JMA 145 0 8 148 246.64 Samsung B5/B13 RRH-BR04C (RFV01U-D2A)	240 064361 MX10FIT665 JMA 145 0 8 148 246.64 Samsung B5/B13 RRH-BR04C (RFV01U-D2A)
Azimuth Cell / ENode B ID Antenna Model Antenna Make Antenna Centerline(Ft) Mechanical Down-Tilt(Deg.) Electrical Down-Tilt Tip Height Regulatory Power TMA Make TMA Model RRU Make RRU Model Number of Tx, Rx Lines	0 064361 MX10FIT665 JMA 145 0 8 148 246.64 Samsung	120 064361 MX10FIT665 JMA 145 0 8 148 246.64 Samsung	240 064361 MX10FIT665 JMA 145 0 8 148 246.64 Samsung
Azimuth Cell / ENode B ID Antenna Model Antenna Make Antenna Centerline(Ft) Mechanical Down-Tilt(Deg.) Electrical Down-Tilt Tip Height Regulatory Power TMA Make TMA Model RRU Make RRU Make RRU Model Number of Tx, Rx Lines Position	0 064361 MX10FIT665 JMA 145 0 8 148 246.64 Samsung B5/B13 RRH-BR04C (RFV01U-D2A) 4,4	120 064361 MX10FIT665 JMA 145 0 8 148 246.64 Samsung B5/B13 RRH-BR04C (RFV01U-D2A) 4,4	240 064361 MX10FIT665 JMA 145 0 8 148 246.64 Samsung B5/B13 RRH-BR04C (RFV01U-D2A) 4,4
Azimuth Cell / ENode B ID Antenna Model Antenna Make Antenna Centerline(Ft) Mechanical Down-Tilt(Deg.) Electrical Down-Tilt Tip Height Regulatory Power TMA Make TMA Model RRU Make RRU Model Number of Tx, Rx Lines	0 064361 MX10FIT665 JMA 145 0 8 148 246.64 Samsung B5/B13 RRH-BR04C (RFV01U-D2A)	120 064361 MX10FIT665 JMA 145 0 8 148 246.64 Samsung B5/B13 RRH-BR04C (RFV01U-D2A)	240 064361 MX10FIT665 JMA 145 0 8 148 246.64 Samsung B5/B13 RRH-BR04C (RFV01U-D2A)


700 MHZ LTE		0002	
Sector	D1	D2	D3
Azimuth	0	120	240
Cell / ENode B ID	064361	064361	064361
Antenna Model	MX10FIT665	MX10FIT665	MX10FIT665
Antenna Make	ЈМА	ЈМА	ЈМА
Antenna Centerline(Ft)	145	145	145
Mechanical Down-Tilt(Deg.)	0	0	0
Electrical Down-Tilt	8	8	8
Tip Height	148	148	148
Regulatory Power	59.67	59.67	59.67
TMA Make			
TMA Model			
RRU Make	Samsung	Samsung	Samsung
RRU Model	B5/B13 RRH-BR04C (RFV01U-D2A)	B5/B13 RRH-BR04C (RFV01U-D2A)	B5/B13 RRH-BR04C (RFV01U-D2
Number of Tx, Rx Lines	4,4	4,4	4,4
Position		, i i i i i i i i i i i i i i i i i i i	· · · · ·
Transmitter Id	7112939	7112940	7112941
Source	ATOLL_API	ATOLL_API	ATOLL_API
_5 GHz		0002	
Sector	D19	D20	D21
Azimuth	0	120	240
Cell / ENode B ID	064361	064361	064361
Antenna Model	MX10FIT665	MX10FIT665	MX10FIT665
Antenna Make	JMA	JMA	JMA
Antenna Centerline(Ft)	145	145	145
Mechanical Down-Tilt(Deg.)	0	0	0
Electrical Down-Tilt	2	2	2
Tip Height	148	148	148
Regulatory Power	9.89	9.89	9.89
TMA Make			
TMA Model			
RRU Make	Samsung	Samsung	Samsung
RRU Model	CBRS RRH - RT4401-48A	CBRS RRH - RT4401-48A	CBRS RRH - RT4401-48A
Number of Tx, Rx Lines	4,4	4,4	4,4
Position			
Transmitter Id	7112951	7112952	7112953
Source	ATOLL_API	ATOLL_API	ATOLL_API
	· · · · · · · · · · · · · · · · · · ·		

Service Comments


Appendix B –Drawings







Appendix C- Mount Analysis



Cheshire Northeast 2 CT Mount Analysis

#### Prepared by:

Page: 1 Date: 7/ 9/20

Load no. 1: Front No Ice (units - kips ft.)	
/ JOINT LOADS / BEAM LOADS / JOINT LOADS / BEAM LOADS / JOINT LOADS	
/ BEAM LOADS / JOINT LOADS / JOINT LOADS / JOINT LOADS FX2 -0.464 FX3 -0.06 N 28 30	
FX2 -0.4 FX3 -0.06 N 64 66 48 50 FX2 -0.12 FX3 -0.07 N 126 130 125 129 127 128 / END	
FORCE SUMMATION	
FX1=0. kip FX2=-3.248 kip	

FX2=-3.248 kip FX3=-0.78 kip

Load no. 2: Side No Ice (units - kips ft.)
/ JOINT LOADS / BEAM LOADS / JOINT LOADS / BEAM LOADS / JOINT LOADS
/ BEAM LOADS / JOINT LOADS / BEAM LOADS / JOINT LOADS / JOINT LOADS / JOINT LOADS
FX1 -0.402 FX3 -0.06 N 64 66 28 30 48 50 FX1 -0.12 FX3 -0.07 N 126 130 125 129 127 128 / END
FORCE SUMMATION
FX1=-3.132 kip FX2=0. kip FX3=-0.78 kip

Load no. 3: Front Ice (units - kips ft.)	
/ JOINT LOADS	
/ BEAM LOADS	
/ JOINT LOADS	
/ BEAM LOADS	
/ JOINT LOADS	
/ JOINT LOADS	
/ BEAM LOADS	
/ JOINT LOADS	
/ JOINT LOADS	
FX2 -0.09 FX3 -0.2 N 28 30	
FX2 -0.08 FX3 -0.2 N 64 66 48 50	

Cheshire Northeast 2 CT Mount Analysis

#### Prepared by:

Load no. 3: Front Ice (units - kips ft.)

FX2 -0.03 FX3 -0.12 N 126 130 125 129 127 128 / END

FORCE SUMMATION

FX1=0. kip FX2=-0.68 kip FX3=-1.92 kip

Load no. 4: Side Ice (units - kips ft.)
/ JOINT LOADS / BEAM LOADS / JOINT LOADS / BEAM LOADS / JOINT LOADS
/ BEAM LOADS / JOINT LOADS / JOINT LOADS FX1 -0.08 FX3 -0.2 N 64 66 28 30 48 50 FX1 -0.03 FX3 -0.12 N 126 130 125 129 127 128
/ END
FORCE SUMMATION
FX1=-0.66 kip FX2=0. kip FX3=-1.92 kip

Page: 2 Date: 7/ 9/20

Cheshire Northeast 2 CT Mount Analysis

#### Prepared by:

Load no. 6: Front Frame Ice (units - kips ft.)

/ BEAM LOADS / BEAM LOADS DIST GL FX2 -0.003 B 1 4 5 13 15 TO 35 BY 2 49 TO 51 55 56 63 64 66 71 72 TO 74 76 TO 81 83 TO 88 90 TO 115 117 133 134 135 142 TO 144 / END

FORCE SUMMATION

FX1=0. kip FX2=-0.523 kip FX3=0. kip

Load no. 7: Side Frame Ice (units - kips ft.)	
/ BEAM LOADS / BEAM LOADS / BEAM LOADS / BEAM LOADS DIST GL FX1 -0.003 B 4 5 13 TO 35 BY 2 50 51 63 64 66 71 72 TO 78 BY 2 79 TO 81 83 TO 88 90 91 93 94 96 TO 100 BY 2 101 TO 115 117 133 134 135	
142 TO 144 / END	
FORCE SUMMATION	
FX1=-0.4387 kip FX2=0. kip FX3=0. kip	

Load no. 8: Front Frame No Ice (units - kips ft.)

/ BEAM LOADS / BEAM LOADS DIST GL FX2 -0.006 B 1 4 5 13 15 TO 35 BY 2 49 TO 51 55 56 63 64 66 71 72 TO 74 76 TO 81 83 TO 88 90 TO 115 117 133 134 135 142 TO 144 / END

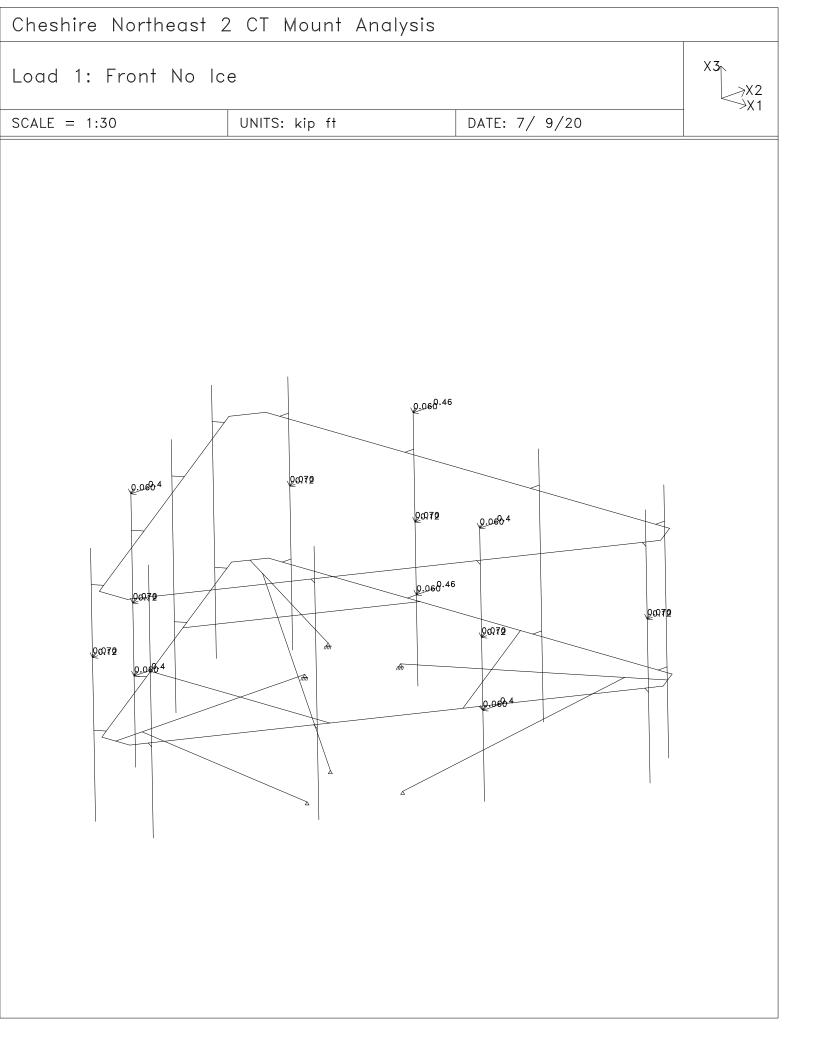
FORCE SUMMATION

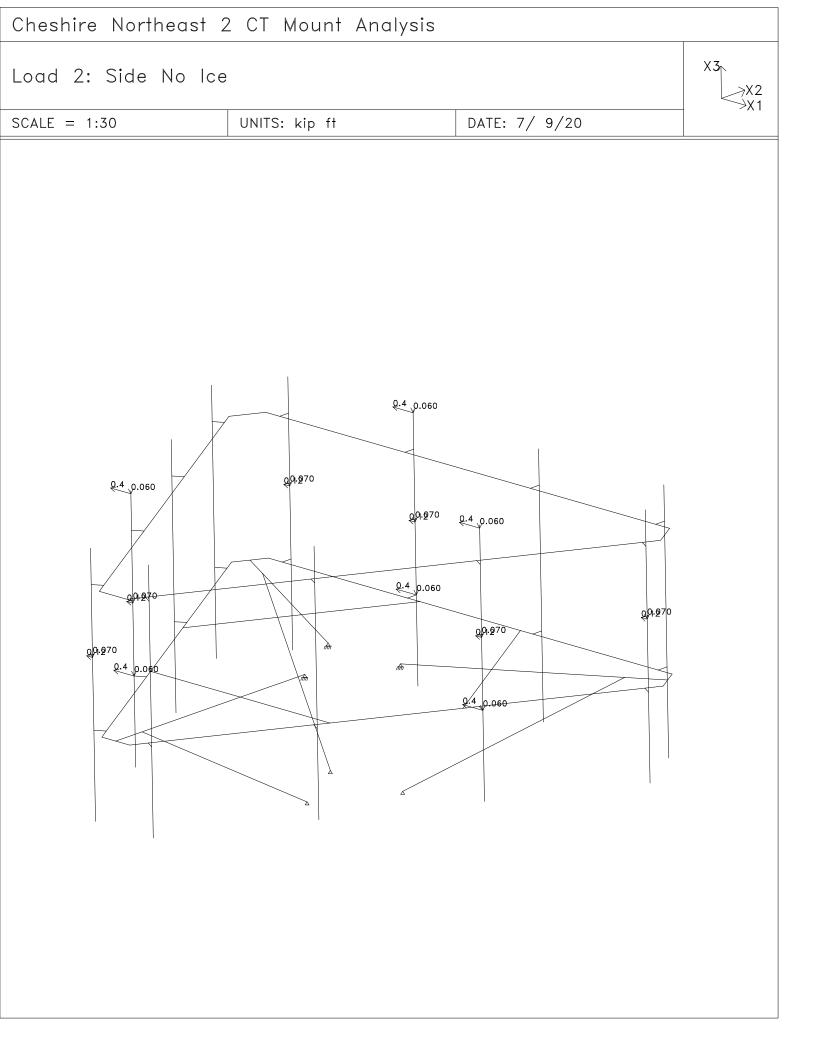
FX1=0. kip FX2=-1.046 kip FX3=0. kip

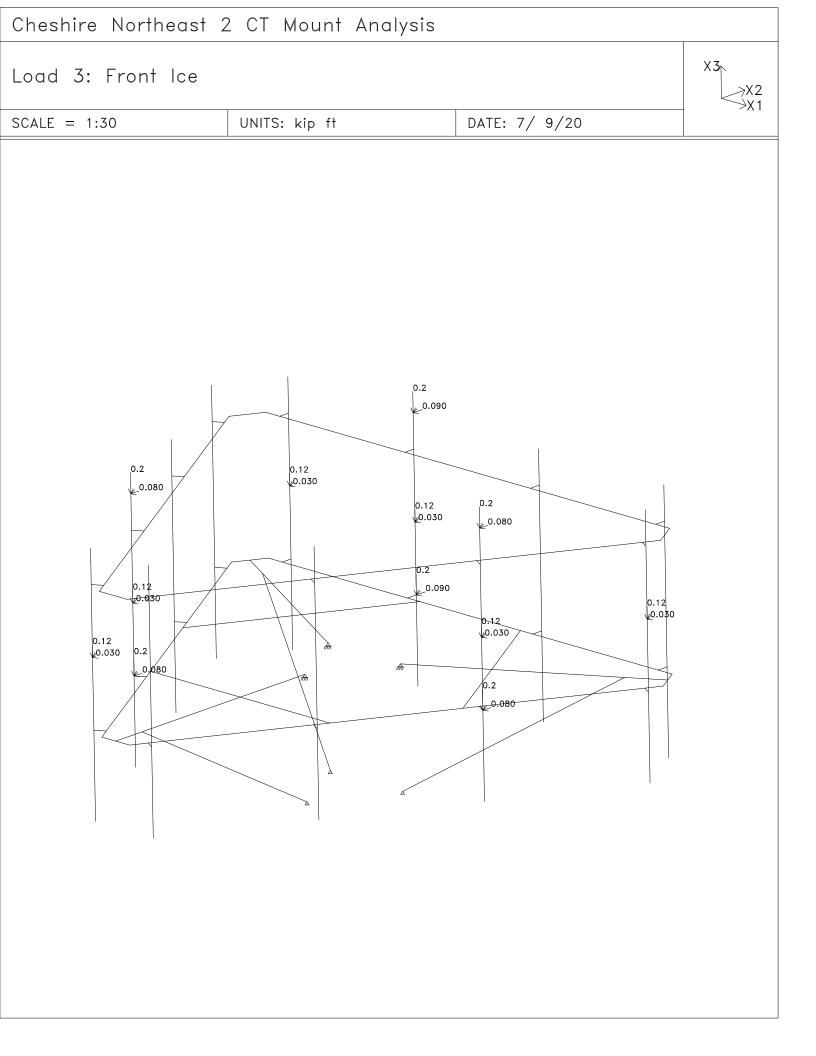
/ BEAM LOADS

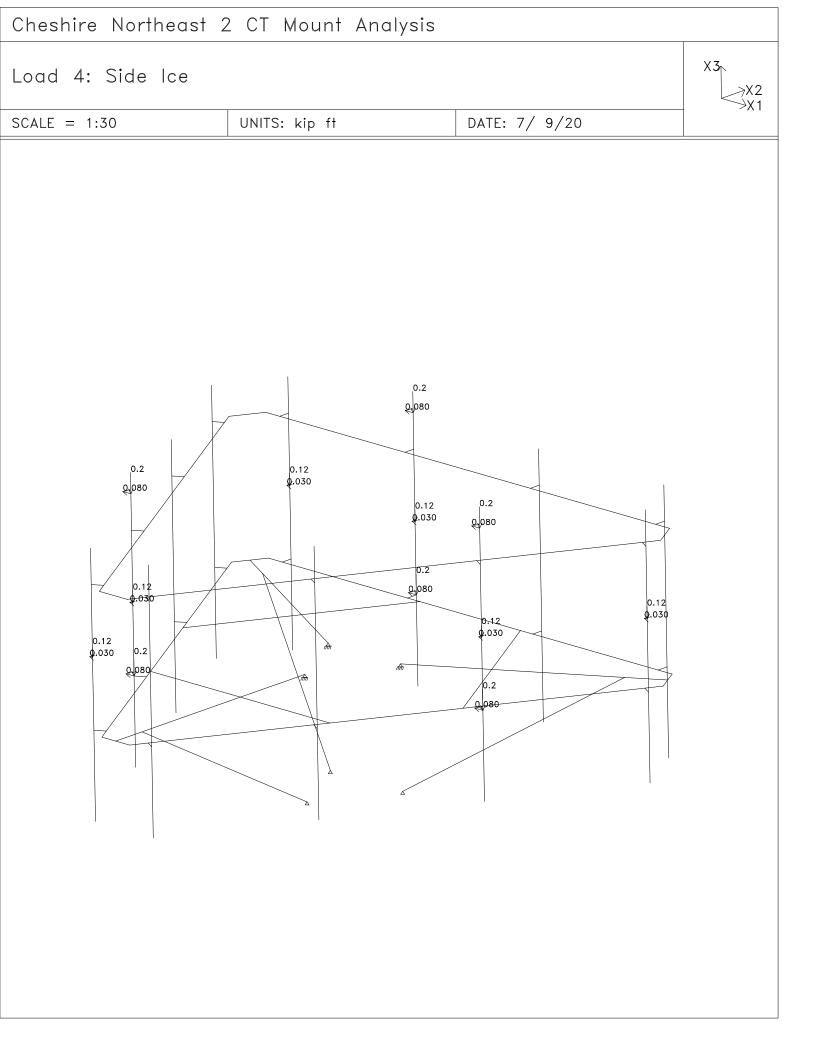
Page: 3 Date: 7/ 9/20

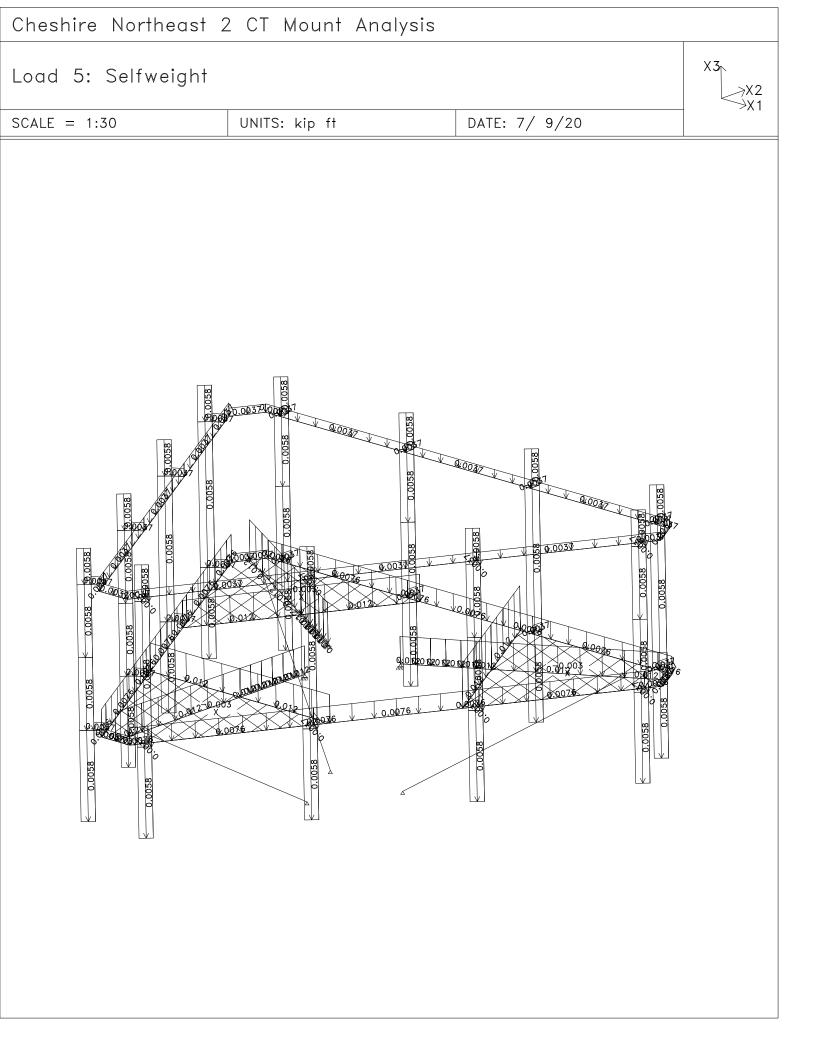
Cheshire Northeast 2 CT Mount Analysis

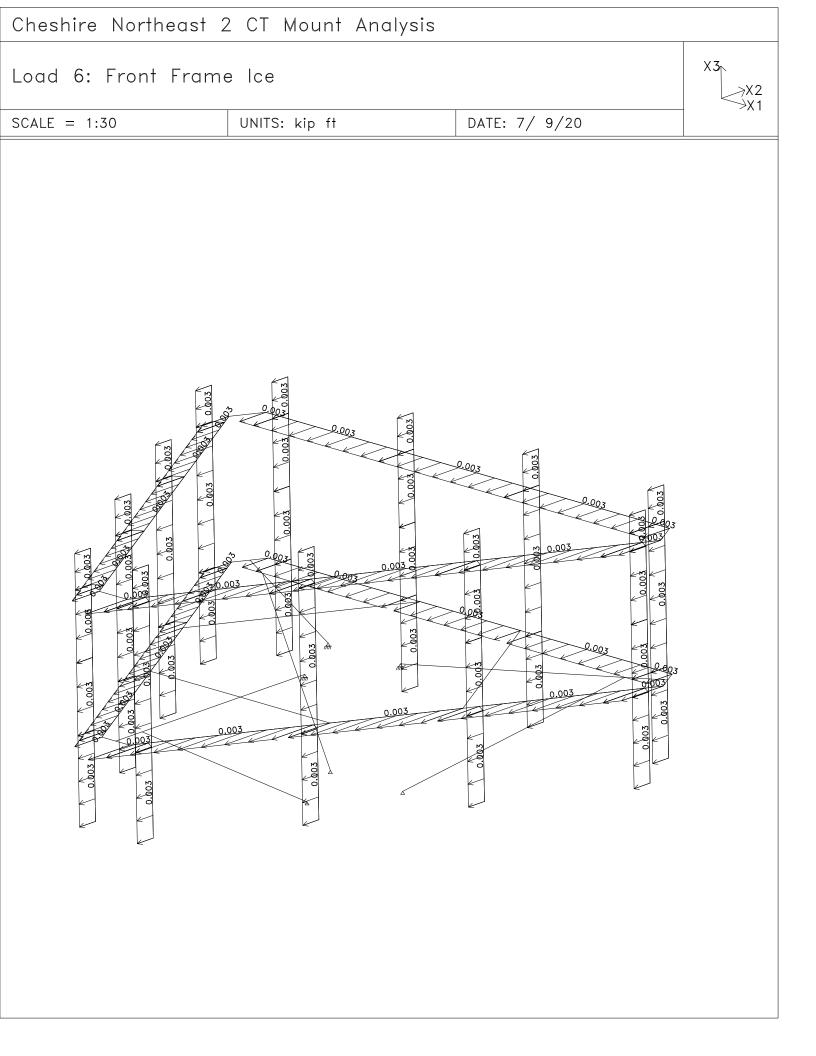

#### Prepared by:

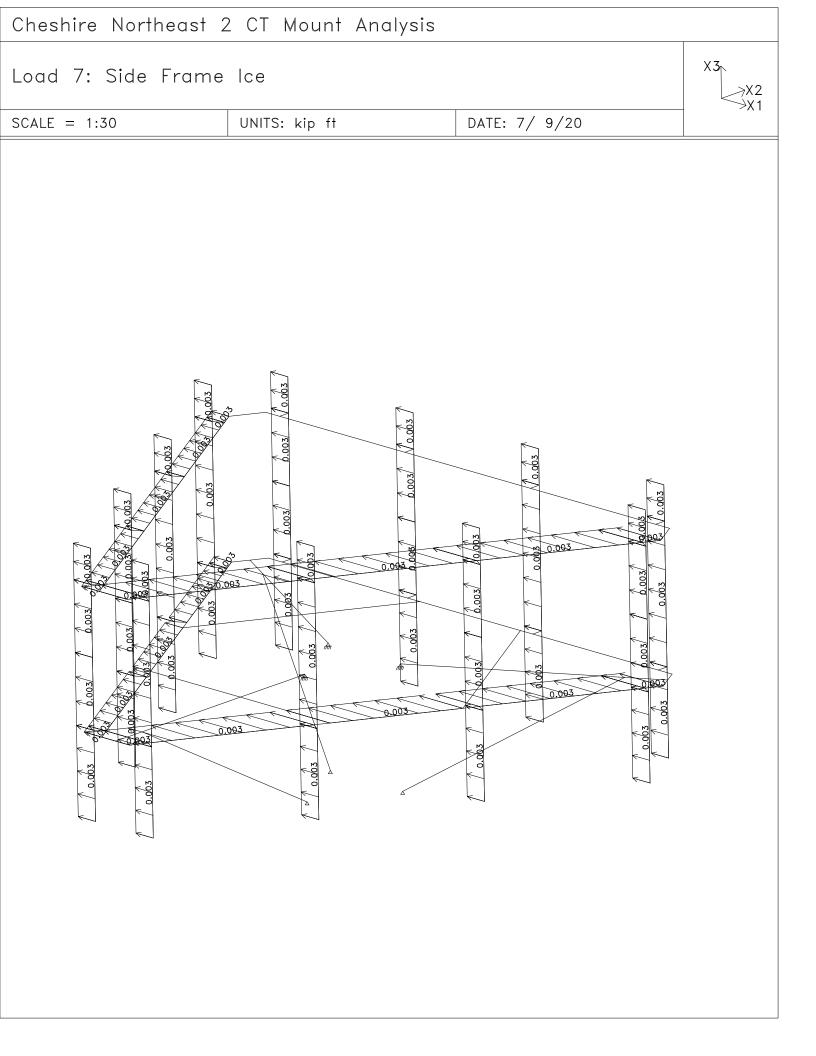

Load no. 9: Side Frame No Ice (units - kips ft.)

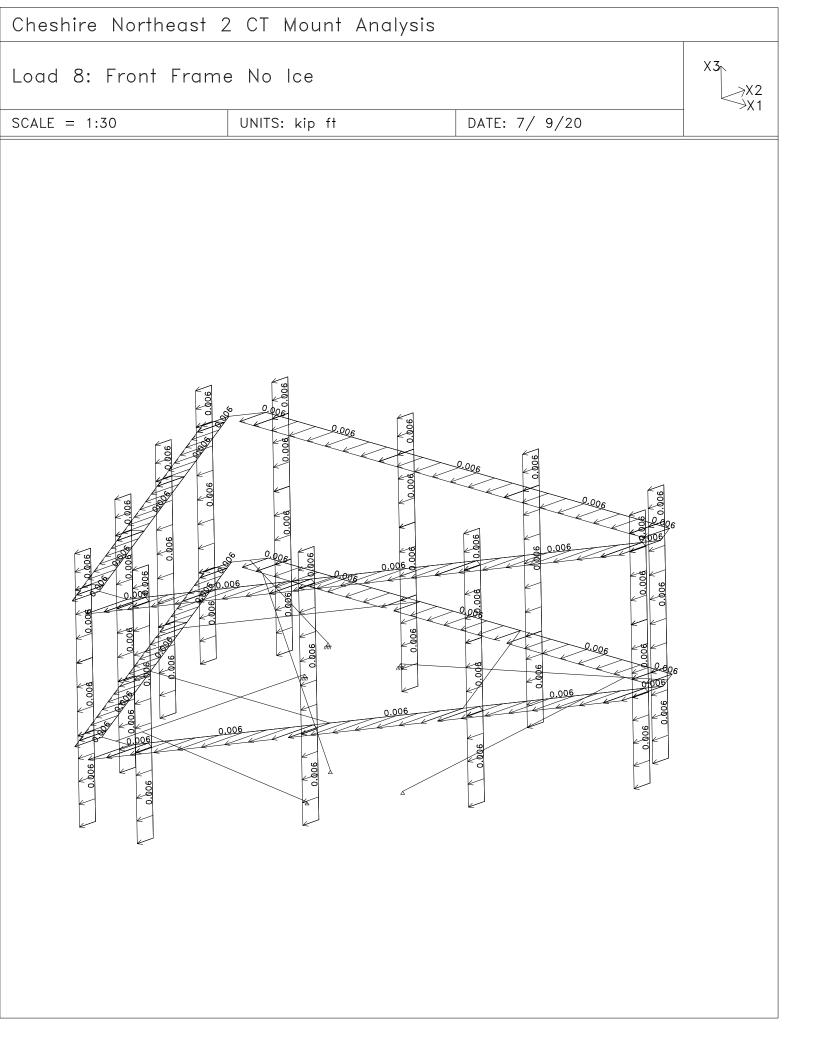

/ BEAM LOADS DIST GL FX1 -0.006 B 4 5 13 TO 35 BY 2 50 51 63 64 66 71 72 TO 78 BY 2 79 TO 81 83 TO 88 90 91 93 94 96 TO 100 BY 2 101 TO 115 117 133 134 135 142 TO 144 / END STATIC

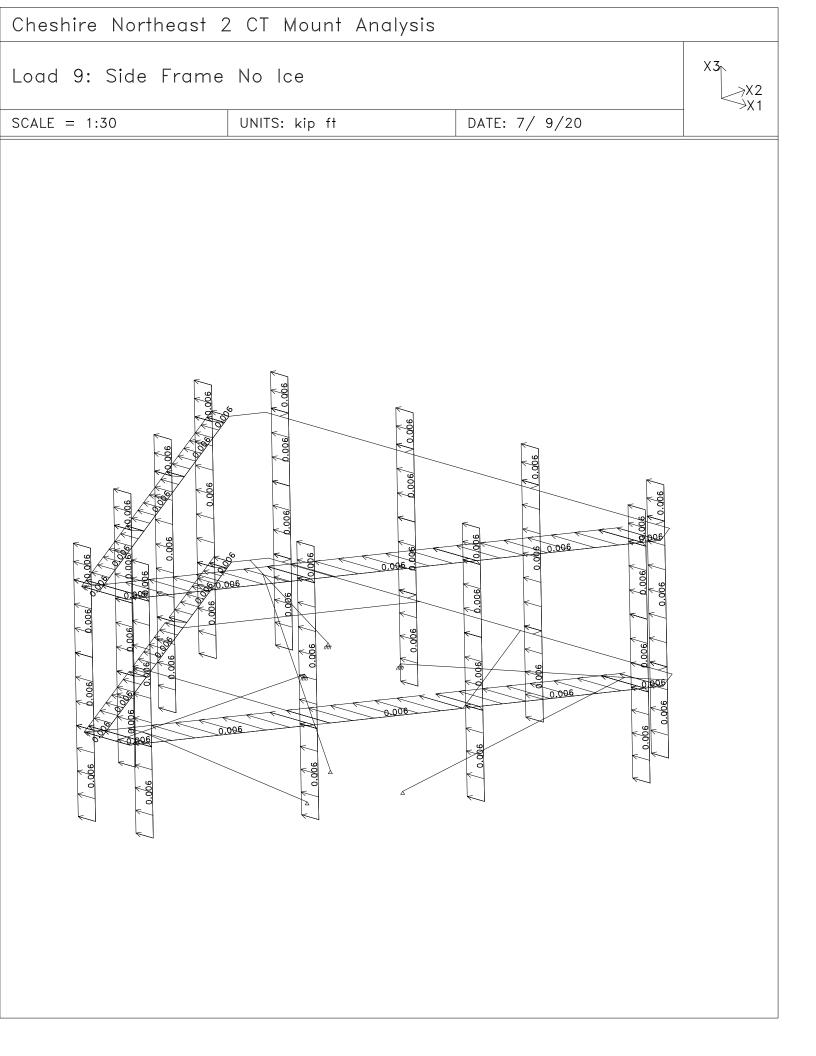

FORCE SUMMATION


FX1=-0.8773 kip FX2=0. kip FX3=0. kip Page: 4 Date: 7/ 9/20



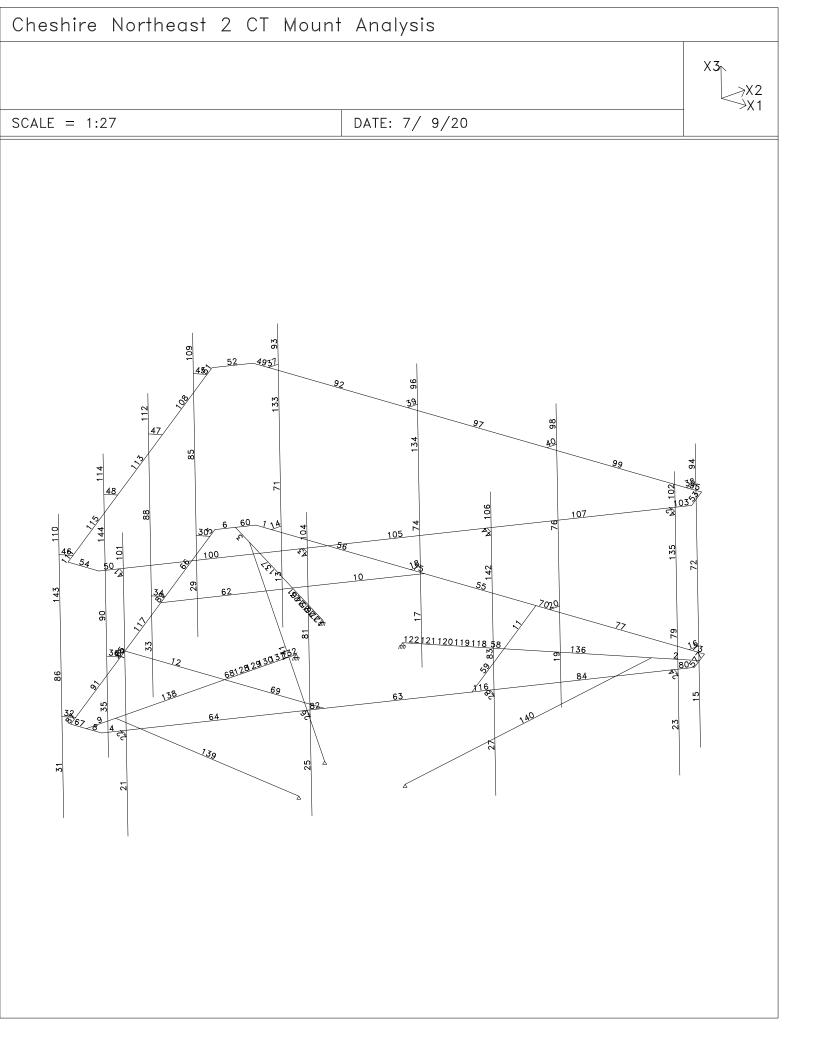












Cheshire Northeast 2 CT Mount Analysis

#### Prepared by:

	COMBINATIONS TABLE						
Comb.	0						
	Front No Ice						
1		+ 5 * 1.05	+ 8 * 1.00				
	Side No Ice	- + 4 0-	0 * 4 00				
2		+5* 1.05	+9* 1.00				
3	Front Iced	+5* 1.25	+ 6 * 1 00				
5		+ J 1.2J	το 1.00				
4	Side Iced	+ 5 * 1.25	+ 7 * 1 00				
	÷ 1.00	+ 5 1.25	+ 1.00				



Cheshire Northeast 2 CT Mount Analysis

#### Prepared by:

43 PIPE 2

44 PIPE 2

45 PIPE 2

46 PIPE 2

47 PIPE 2

-211116	NULLIEC	wount	Allalysis	

	ults	Su	mma	ry Table						
					_		APAC	ITY	-	
Section	Com		Slen	Axial			Mom	LTB	Combined Axial+Mom	
PIPE 3	1	666	150	-0.01			0.20 0.15	0.20	0.34	
TS 4x4x1/4	2	2890	46	-0.02	MJ	0.04	0.11	0.11	0.33	
TS 4x4x1/4	1	2214	57	0.03	MJ	0.05	0.13	0.13	0.46	
PIPE 2	1	3785	8	0.02	MJ	0.06	0.37	0.37	0.57	
PIPE 2	2	9999	8	0.02	MJ	0.06	0.15	0.15	0.31	
PIPE 2	2	5492	8	-0.02	MJ	0.06	0.23	0.23	0.28	
TS 4x4x1/4	2	2694	57	0.04			0.11	0.11	0.45	
TS 4x4x1/4	1	9999	26	-0.01			0.00	0.00	0.01	
TS 4x4x1/4		9999	26	0.00	MI	0.00	0.00	0.00	0.00	
TS 4x4x1/4	2	9999	26	0.01			0.00	0.00	0.01	
PIPE 2	1	7520	5	-0.01			0.19 0.19	0.19 0.00	0.38	
PIPE 2	2	9999	5	0.00	MJ	0.04	0.16	0.16	0.21	
PIPE 2	1	2997	5	-0.03	MJ	0.04	0.63	0.63	0.70	
PIPE 2	1	4639	5	-0.01					0.52	
PIPE 2	1	8258	5	-0.01	MJ	0.03	0.22	0.22	0.36	
PIPE 2	1	6880	5	-0.01	MJ	0.05	0.31 0.16	0.31	0.35	
PIPE 2	2	5044	5	-0.01			0.36 0.16	0.36 0.00	0.45	
PIPE 2	2	3728	5	-0.02	MJ	0.04	0.50	0.50	0.64	
PIPE 2	1	7741	5	0.01	MJ	0.05	0.28 0.15	0.28	0.30	
PIPE 2	2	8582	5	0.01			0.23	0.23	0.36	
PIPE 2	2	6836	5	0.00	MJ	0.01	0.22	0.22	0.40	
PIPE 2	2	3926	5	0.02	MJ	0.04	0.48	0.48	0.52	
PIPE 2	1	9999	5	0.00	MJ	0.04	0.08	0.08	0.26	
PIPE 2	2	9999	5	0.00	MJ	0.03	0.14	0.14	0.19	
PIPE 2	1	9000	5	-0.01	MJ	0.02	0.20	0.20	0.26	
PIPE 2	1	9999	5	0.01	MJ	0.01	0.04	0.04	0.18	
PIPE 2	1	9999	5	0.00		0.02	0.14	0.00	0.23	
	· · ·		-			0.03	0.14	0.00		1
	PIPE 3 TS 4x4x1/4 TS 4x4x1/4 PIPE 2 PIPE 2 PIPE 2 PIPE 2 TS 4x4x1/4 TS 4x4x1/4 TS 4x4x1/4 TS 4x4x1/4 TS 4x4x1/4 PIPE 2 PIPE 2	PIPE 3       1         TS 4x4x1/4       2         TS 4x4x1/4       1         PIPE 2       2         PIPE 2       2         PIPE 2       2         PIPE 2       2         TS 4x4x1/4       1         PIPE 2       2         PIPE 2       1         PIP	Section         Com         L/           PIPE 3         1         666           TS 4x4x1/4         2         2890           TS 4x4x1/4         1         2214           PIPE 2         1         3785           PIPE 2         2         9999           PIPE 2         2         5492           TS 4x4x1/4         1         9999           PIPE 2         1         7520           PIPE 2         1         8258           PIPE 2         1         8258           PIPE 2         1         8258           PIPE 2         1         8258           PIPE 2         1         8300           PIPE 2         1         8301           PIPE 2         1         7741           PIPE 2         2         8582           PIPE 2         2         3926           PIPE 2         2         3926           PIPE 2         1         9999	PIPE 3       1       666       150         TS 4x4x1/4       2       2890       46         TS 4x4x1/4       1       2214       57         PIPE 2       1       3785       8         PIPE 2       2       9999       8         PIPE 2       2       9999       8         PIPE 2       2       5492       8         TS 4x4x1/4       2       269       57         TS 4x4x1/4       1       9999       26         TS 4x4x1/4       1       9999       26         TS 4x4x1/4       2       9999       26         PIPE 2       1       7520       5         PIPE 2       1       7520       5         PIPE 2       1       2997       5         PIPE 2       1       4639       5         PIPE 2       1       8860       5         PIPE 2       1       8880       5         PIPE 2       2       5044       5         PIPE 2       2       3728       5         PIPE 2       2       8582       5         PIPE 2       2       8586       5	Section         Com         L         Slen         Axial           PIPE 3         1         666         150         -0.01           TS 4x4x1/4         2         2890         46         -0.02           TS 4x4x1/4         1         2214         57         0.03           PIPE 2         2         9999         8         0.02           PIPE 2         2         9999         8         0.02           PIPE 2         2         5492         8         -0.02           TS 4x4x1/4         1         9999         26         -0.01           PIPE 2         1         7520         5         -0.01           PIPE 2         1         8258         5         -0.01           PIPE 2         1         8680         5         -0.01           PIPE 2         2         5044         5         -0.01           PIPE 2         2         3728         5         -0.02 <td>Section         Com         L/         Slen         Axia/           PIPE 3         1         666         150         -0.01         MJ           TS 4x4x1/4         2         2890         46         -0.02         MJ           TS 4x4x1/4         1         2214         57         0.03         MJ           PIPE 2         1         3785         8         0.02         MJ           PIPE 2         2         9999         8         0.02         MJ           PIPE 2         2         5492         8         -0.02         MJ           PIPE 2         2         5492         8         -0.02         MJ           TS 4x4x1/4         2         9999         26         -0.01         MI           TS 4x4x1/4         1         9999         26         0.01         MI           TS 4x4x1/4         2         9999         26         0.01         MI           PIPE 2         1         7520         5         -0.01         MJ           PIPE 2         1         8258         5         -0.01         MJ           PIPE 2         1         8880         5         -0.01         MJ     &lt;</td> <td>Section         Com         Def/L/L         Slear           PIPE 3         1         666         150         -0.01         MJ         0.04           TS 4x4x1/4         2         2890         46         -0.02         MJ         0.04           TS 4x4x1/4         1         2214         57         0.03         MJ         0.05           PIPE 2         1         3785         8         0.02         MJ         0.06           PIPE 2         2         9999         8         0.02         MJ         0.06           PIPE 2         2         5492         8         -0.02         MJ         0.06           PIPE 2         2         2         5492         8         -0.02         MJ         0.06           TS 4x4x1/4         1         9999         26         -0.01         MJ         0.00           TS 4x4x1/4         1         9999         26         0.01         MI         0.00           TS 4x4x1/4         1         9999         26         0.01         MI         0.02           PIPE 2         1         7520         5         -0.01         MJ         0.04           MI         0.</td> <td>Section         Com         Defl L/         Slen         Axial         Dir Shear         Mom           PIPE 3         1         666         150         -0.01         MJ         0.04         0.15           TS 4x4x1/4         2         2890         46         -0.02         MJ         0.04         0.28           TS 4x4x1/4         1         2214         57         0.03         MJ         0.06         0.41           PIPE 2         1         3785         8         0.02         MJ         0.06         0.41           PIPE 2         2         9999         8         0.02         MJ         0.06         0.21           PIPE 2         2         5492         8         -0.02         MJ         0.06         0.23           TS 4x4x1/4         1         9999         26         -0.01         MJ         0.00         0.00           TS 4x4x1/4         1         9999         26         0.00         MJ         0.00         0.00           TS 4x4x1/4         1         9999         26         0.00         MJ         0.00         0.00           TS 4x4x1/4         1         9999         5         0.00         <td< td=""><td>Section         Com         L/         Slen         Axial         Shear         Mon         LTB           PIPE 3         1         666         150         -0.01         MJ         0.04         0.15         0.00           TS 4x4x1/4         2         2890         46         -0.02         MJ         0.04         0.11         0.11         0.01         0.01         0.01         0.01         0.01         0.01         0.05         0.01         0.01         0.01         0.01         0.06         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.00         0.01         0.00         0.01         0.00         0.01         0.00         0.00         0.01         0.00         0.00         0.01         0.00         0.00         0.01         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00</td><td>Section         Com         L/         Stear         Nom         LTB         Axia/+Mom           PIPE 3         1         666         150         -0.01         MJ         0.04         0.20         0.20         0.34           TS 4x4x1/4         2         2890         46         -0.02         MJ         0.04         0.11         0.13         0.33           TS 4x4x1/4         1         2214         57         0.03         MJ         0.06         0.41         0.00           PIPE 2         2         9999         8         0.02         MJ         0.06         0.15         0.31           PIPE 2         2         5492         8         -0.02         MJ         0.06         0.15         0.31           PIPE 2         2         5492         8         -0.02         MJ         0.06         0.15         0.00           TS 4x4x1/4         1         9999         26         -0.01         MJ         0.00         0.00         0.00         0.01           TS 4x4x1/4         1         9999         26         -0.01         MJ         0.04         0.04         0.04         0.04         0.04         0.04         0.04</td></td<></td>	Section         Com         L/         Slen         Axia/           PIPE 3         1         666         150         -0.01         MJ           TS 4x4x1/4         2         2890         46         -0.02         MJ           TS 4x4x1/4         1         2214         57         0.03         MJ           PIPE 2         1         3785         8         0.02         MJ           PIPE 2         2         9999         8         0.02         MJ           PIPE 2         2         5492         8         -0.02         MJ           PIPE 2         2         5492         8         -0.02         MJ           TS 4x4x1/4         2         9999         26         -0.01         MI           TS 4x4x1/4         1         9999         26         0.01         MI           TS 4x4x1/4         2         9999         26         0.01         MI           PIPE 2         1         7520         5         -0.01         MJ           PIPE 2         1         8258         5         -0.01         MJ           PIPE 2         1         8880         5         -0.01         MJ     <	Section         Com         Def/L/L         Slear           PIPE 3         1         666         150         -0.01         MJ         0.04           TS 4x4x1/4         2         2890         46         -0.02         MJ         0.04           TS 4x4x1/4         1         2214         57         0.03         MJ         0.05           PIPE 2         1         3785         8         0.02         MJ         0.06           PIPE 2         2         9999         8         0.02         MJ         0.06           PIPE 2         2         5492         8         -0.02         MJ         0.06           PIPE 2         2         2         5492         8         -0.02         MJ         0.06           TS 4x4x1/4         1         9999         26         -0.01         MJ         0.00           TS 4x4x1/4         1         9999         26         0.01         MI         0.00           TS 4x4x1/4         1         9999         26         0.01         MI         0.02           PIPE 2         1         7520         5         -0.01         MJ         0.04           MI         0.	Section         Com         Defl L/         Slen         Axial         Dir Shear         Mom           PIPE 3         1         666         150         -0.01         MJ         0.04         0.15           TS 4x4x1/4         2         2890         46         -0.02         MJ         0.04         0.28           TS 4x4x1/4         1         2214         57         0.03         MJ         0.06         0.41           PIPE 2         1         3785         8         0.02         MJ         0.06         0.41           PIPE 2         2         9999         8         0.02         MJ         0.06         0.21           PIPE 2         2         5492         8         -0.02         MJ         0.06         0.23           TS 4x4x1/4         1         9999         26         -0.01         MJ         0.00         0.00           TS 4x4x1/4         1         9999         26         0.00         MJ         0.00         0.00           TS 4x4x1/4         1         9999         26         0.00         MJ         0.00         0.00           TS 4x4x1/4         1         9999         5         0.00 <td< td=""><td>Section         Com         L/         Slen         Axial         Shear         Mon         LTB           PIPE 3         1         666         150         -0.01         MJ         0.04         0.15         0.00           TS 4x4x1/4         2         2890         46         -0.02         MJ         0.04         0.11         0.11         0.01         0.01         0.01         0.01         0.01         0.01         0.05         0.01         0.01         0.01         0.01         0.06         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.00         0.01         0.00         0.01         0.00         0.01         0.00         0.00         0.01         0.00         0.00         0.01         0.00         0.00         0.01         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00</td><td>Section         Com         L/         Stear         Nom         LTB         Axia/+Mom           PIPE 3         1         666         150         -0.01         MJ         0.04         0.20         0.20         0.34           TS 4x4x1/4         2         2890         46         -0.02         MJ         0.04         0.11         0.13         0.33           TS 4x4x1/4         1         2214         57         0.03         MJ         0.06         0.41         0.00           PIPE 2         2         9999         8         0.02         MJ         0.06         0.15         0.31           PIPE 2         2         5492         8         -0.02         MJ         0.06         0.15         0.31           PIPE 2         2         5492         8         -0.02         MJ         0.06         0.15         0.00           TS 4x4x1/4         1         9999         26         -0.01         MJ         0.00         0.00         0.00         0.01           TS 4x4x1/4         1         9999         26         -0.01         MJ         0.04         0.04         0.04         0.04         0.04         0.04         0.04</td></td<>	Section         Com         L/         Slen         Axial         Shear         Mon         LTB           PIPE 3         1         666         150         -0.01         MJ         0.04         0.15         0.00           TS 4x4x1/4         2         2890         46         -0.02         MJ         0.04         0.11         0.11         0.01         0.01         0.01         0.01         0.01         0.01         0.05         0.01         0.01         0.01         0.01         0.06         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.00         0.01         0.00         0.01         0.00         0.01         0.00         0.00         0.01         0.00         0.00         0.01         0.00         0.00         0.01         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00	Section         Com         L/         Stear         Nom         LTB         Axia/+Mom           PIPE 3         1         666         150         -0.01         MJ         0.04         0.20         0.20         0.34           TS 4x4x1/4         2         2890         46         -0.02         MJ         0.04         0.11         0.13         0.33           TS 4x4x1/4         1         2214         57         0.03         MJ         0.06         0.41         0.00           PIPE 2         2         9999         8         0.02         MJ         0.06         0.15         0.31           PIPE 2         2         5492         8         -0.02         MJ         0.06         0.15         0.31           PIPE 2         2         5492         8         -0.02         MJ         0.06         0.15         0.00           TS 4x4x1/4         1         9999         26         -0.01         MJ         0.00         0.00         0.00         0.01           TS 4x4x1/4         1         9999         26         -0.01         MJ         0.04         0.04         0.04         0.04         0.04         0.04         0.04

1 9999

2 9999

2 9999

2 9999

2 9999

5

5

5

5

5

0.01

0.00

MJ 0.01

MI 0.04

MI 0.04

MI 0.03

MI 0.03

MJ 0.01 MI 0.03

-0.01 MJ 0.02

-0.01 MJ 0.05

0.00 MJ 0.05

0.03 0.03

0.15 0.00 0.15 0.15

0.06 0.00

0.18 0.18

0.15 0.00

0.11 0.11

0.16 0.00

0.03 0.03 0.18 0.00 0.16

0.21

0.20

0.26

0.20

#### Strap 2017.00

Code: AISC-ASD

Cheshire Northeast 2 CT Mount Analysis

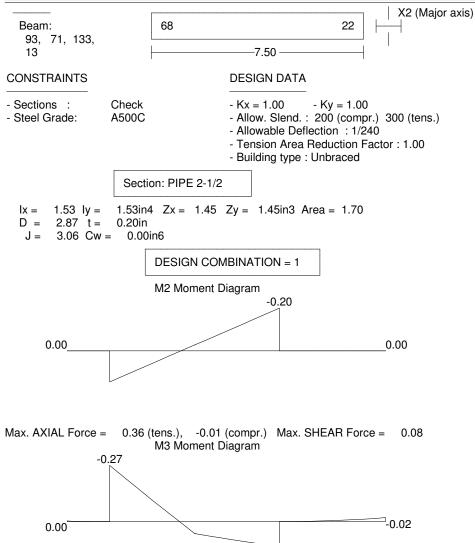
#### Prepared by:

eshire Northeast 2 CT	Mount Analysis	

			Defl			Dir		<u>APAC</u>	;	Combined	i
Beam	Section	Com		Slen	Axial		Shear	Мот	LTB		
48	PIPE 2	2	9999	5	0.01	MJ MI	0.02 0.04	0.17 0.06	0.17 0.00	0.23	
49	PIPE 2	1	662	206	-0.09	MJ	0.04	0.08 0.27 0.28	0.00 0.27 0.00	0.43	,
52	PIPE 2	1	9999	15	-0.01	MJ		0.20	0.00	0.12	
53	PIPE 2	1	9999	15	0.00	MJ	0.04	0.09	0.09	0.10	
54	PIPE 2	2	9999	15	0.01	MJ	0.04	0.10	0.10	0.10	
57	PIPE 2	2	3535	8	0.01	MJ	0.08	0.42 0.21	0.42 0.00	0.48	
59	TS 4x4x1/4	2	9999	26	-0.01	MI MI	0.08 0.00	0.21	0.00	0.01	
60	PIPE 2	1	4540	8	-0.01	MJ	0.08	0.25	0.25	0.45	
62	TS 4x4x1/4	3	9999	26	0.00	MI MI	0.08 0.00	0.19 0.00	0.00 0.00	0.00	
	PIPE 2	2	3803	20	-0.02	MJ	0.00	0.00	0.00	0.00	
07		2	5005	0	-0.02		0.05	0.15		0.40	
	TS 4x4x1/4	2	9999	26	0.00	MI	0.00	0.00	0.00	0.00	
80	PIPE 3	2	668	150	-0.01	MJ	0.04	0.19	0.19	0.32	
						MI	0.04	0.14	0.00		
87	PIPE 3	2	664	150	-0.01	MJ MI	0.04 0.04	0.20 0.15	0.20 0.00	0.34	
93	PIPE 2-1/2	1	229	95	-0.01	MJ	0.03	0.26	0.26	0.36	
94	PIPE 2-1/2	3	2547	95	-0.01	MI MJ	0.01 0.01	0.10 0.15	0.00 0.15	0.19	
						MI	0.01	0.08	0.00		
96	PIPE 2-1/2	1	140	67	-0.01	MJ MI	0.03 0.03	0.20 0.34	0.20 0.00	0.39	1
98	PIPE 2-1/2	1	1200	95	0.00	MJ	0.01	0.09	0.09	0.23	
						MI	0.01	0.21	0.00		
101	PIPE 2-1/2	1	1539	95	-0.01	MJ	0.02	0.21	0.21	0.36	
102	PIPE 2-1/2	2	320	95	-0.02	MI MJ	0.02 0.01	0.15 0.10	0.00 0.10	0.24	
102	FIFE 2-1/2	2	320	95	-0.02	MI		0.10	0.00	0.24	
103	PIPE 2	1	804	200	-0.10	MJ	0.04	0.27	0.27	0.50	
104		, I	10.1-	~-	0.00	MI	0.02	0.20	0.00	0.01	
104	PIPE 2-1/2	1	1247	95	0.00	MJ MI	0.02 0.02	0.21 0.22	0.21 0.00	0.31	
106	PIPE 2-1/2	2	182	66	-0.01	MJ	0.02	0.22	0.00	0.33	
100	I II ∟ ∠- I/∠	2	102	00	-0.01	MI		0.29	0.29	0.00	
109	PIPE 2-1/2	4	1848	85	-0.02	MJ	0.01	0.08	0.08	0.26	
110	PIPE 2-1/2	2	258	82	-0.02	MJ	0.02 0.02	0.19		0.41	
		-	070				0.03	0.21	0.00	~ ==	
111	PIPE 2	2	679	203	-0.10	MJ MI	0.04 0.02	0.31 0.24	0.31 0.00	0.55	
112	PIPE 2-1/2	2	1556	95	0.00	MJ	0.02	0.20	0.20	0.31	F
114	PIPE 2-1/2	2	175	56	-0.01	MI MJ	0.01 0.03	0.12 0.19	0.00 0.19	0.35	
						MI	0.03	0.27	0.00	0.00	
139	2L 3x3x1/4	3	9999	91	-0.08	MI	0.00	0.00	0.00	0.08	
	2L 3x3x1/4	3	9999	90	-0.07	MI		0.00	0.00	0.07	
141	2L 3x3x1/4	4	9999	90	-0.08	MI	0.00	0.00	0.00	0.08	

Results Summary Table

#### Strap 2017.00


Code: AISC-ASD

Cheshire Northeast 2 CT Mount Analysis

#### Prepared by:

#### Detailed Results Table for Beam 93 - 13

Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch



Max. AXIAL Force = 0.36 (tens.), -0.01 (compr.) Max. SHEAR Force = 0.17

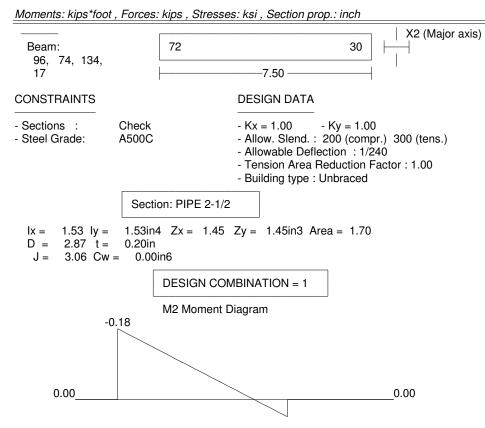
#### SECTION CLASSIFICATION: *** COMPACT ***

Limiting Ratios:		Compact	Non-Compact	Slender -axial		
d/t= 14.04	<	44.1	195.4	69.3	(Fy= 46.0	R = -0.005)

DESIGN	EQUATION	FACTORS	VALUES	RESULT
V2 Shear G2.1.b-i	Vu/0.6Vn<1.00 Vn=0.6*Fy*Aw	Aw = 0.85	Vu = 0.17 Vn = 23.58	0.01
M3 Moment (F8-1) without LTB	M 0.6Mn < 1.00	Z = 1.45	M = 0.27 Mn = 5.57	0.08
V3 Shear G2.1.b-i	Vu/0.6Vn<1.00 Vn=0.6*Fy*Aw	Aw = 0.85	Vu = 0.08 Vn = 23.58	0.01

Code: AISC-ASD

Cheshire Northeast 2 CT Mount Analysis


#### Prepared by:

#### Detailed Results Table for Beam 93 - 13

Moments: kips*foot, Forces: kips, Stresses: ksi, Section prop.: inch

DESIGN	EQUATION	FACTORS	VALUES	RESULT
M2 Moment (F8-1) without LTB	M 0.6Mn < 1.00	Z = 1.45	M = 0.20 Mn = 5.57	0.06
Deflection	defl. < 1.00 L / 240		defl = 0.39237	1.05
Axial Force (D2-1)	Pu 0.6AgFy < 1.00	(kL/r)x =95 (kL/r)y =95	Pu = 0.36 Ag = 1.70 Fy = 46.00	0.01
Combined Forces (compress.) (H1-1b)	$\frac{\Pr}{2\phi\Pr} + \frac{Mrx}{\phiMnx} + \frac{Mry}{\phiMny} \\ < 1.00$	Cmx = 1.00 Cmy = 1.00 Pex = 54.27 Pey = 54.27	$ \begin{array}{rrrr} Mrx &=& 0.20 \\ Mry &=& 0.27 \\ B1x &=& 1.00 \\ B1y &=& 1.00 \\ \end{array} $	0.14

#### Detailed Results Table for Beam 96 - 17



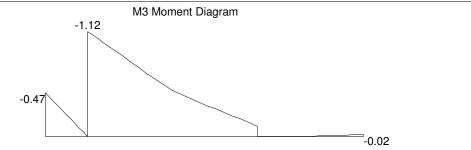
Max. AXIAL Force = 0.02 (tens.), -0.12 (compr.) Max. SHEAR Force = 0.06

Strap 2017.00

Code: AISC-ASD

Cheshire Northeast 2 CT Mount Analysis

#### Prepared by:


Strap 2017.00

Code: AISC-ASD

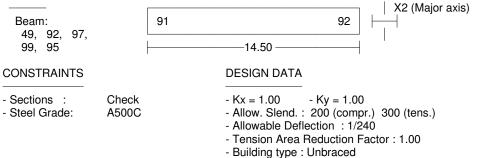
Date: 7/ 9/20



Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch



Max. AXIAL Force = 0.02 (tens.), -0.12 (compr.) Max. SHEAR Force = 0.47


#### SECTION CLASSIFICATION: *** COMPACT ***

Limiting Ratios: Compact Non-Compact Slender -axial d/t= 14.04 < 44.1 195.4 69.3 (Fy= 46.0 R = 0.002 )

DESIGN	EQUATION	FACTORS	VALUES	RESULT
V2 Shear G2.1.b-i	Vu/0.6Vn<1.00 Vn=0.6*Fy*Aw	Aw = 0.85	Vu = 0.47 Vn = 23.58	0.03
M3 Moment (F8-1) without LTB	M 0.6Mn < 1.00	Z = 1.45	M = 1.12 Mn = 5.57	0.34
M2 Moment (F8-1) without LTB	<u>M</u> 0.6Mn < 1.00	Z = 1.45	M = 0.18 Mn = 5.57	0.06
Deflection	defl. < 1.00 L / 240		defl = 0.64077	1.71
Axial Force (E3-1)	Pu 0.6AgFcr Slender. reduct.	(kL/r)x =67 (kL/r)y =67 x = 0.70	$\begin{array}{rrrr} {\sf Pu} &=& 0.12\\ {\sf Ag} &=& 1.70\\ {\sf Fcr} &=& 34.04\\ {\sf y} &=& 0.70 \end{array}$	0.00
Combined Forces (compress.) (H1-1b)	$\frac{\Pr}{2\varphi \Pr} + \frac{Mrx}{\varphi Mnx} + \frac{Mry}{\varphi Mny} \\ < 1.00$	Cmx = 1.00 Cmy = 1.00 Pex = 109.10 Pey = 109.10	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.39

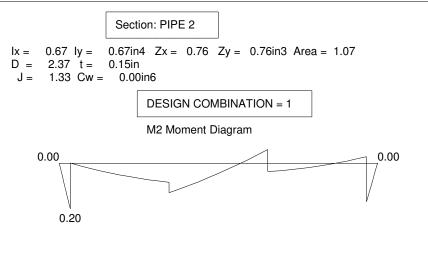
#### Detailed Results Table for Beam 49 - 95

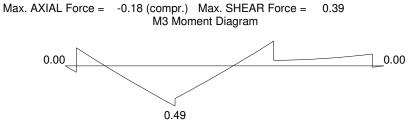
Moments: kips*foot, Forces: kips, Stresses: ksi, Section prop.: inch



Cheshire Northeast 2 CT Mount Analysis

Prepared by:


Code: AISC-ASD


Strap 2017.00

Date: 7/ 9/20

#### Detailed Results Table for Beam 49 - 95

Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch





#### Max. AXIAL Force = -0.18 (compr.) Max. SHEAR Force = 0.17

SECTION CLASSIFICATION: *** COMPACT ***

Limiting Ratios: Compact Non-Compact Slender -axial d/t= 15.46 < 44.1 195.4 69.3 (Fy= 46.0 R = 0.004 )

DESIGN	EQUATION	FACTORS	VALUES	RESULT
V2 Shear G2.1.b-i	Vu/0.6Vn<1.00 Vn=0.6*Fy*Aw	Aw = 0.54	Vu = 0.17 Vn = 14.87	0.02
M3 Moment (F8-1) without LTB	M 0.6Mn < 1.00	Z = 0.76	M = 0.49 Mn = 2.92	0.28
V3 Shear G2.1.b-i	Vu/0.6Vn<1.00 Vn=0.6*Fy*Aw	Aw = 0.54	Vu = 0.39 Vn = 14.87	0.04
M2 Moment (F8-1) without LTB	M 0.6Mn < 1.00	Z = 0.76	M = 0.20 Mn = 2.92	0.11
Deflection	defl. < 1.00 L / 240		defl = 0.26265	0.36
Axial Force (E3-1)	Pu 	(kL/r)x =189 (kL/r)y =189 x = 0.85	$\begin{array}{rrrrr} Pu &=& 0.18\\ Ag &=& 1.07\\ Fcr &=& 7.05\\ y &=& 0.85 \end{array}$	0.04

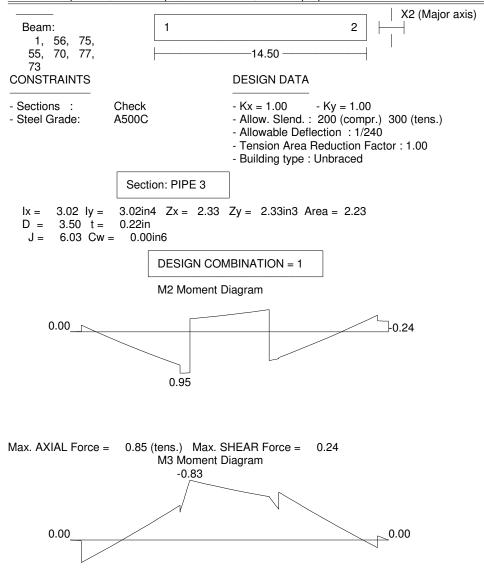
Cheshire Northeast 2 CT Mount Analysis

#### Prepared by:

Strap 2017.00

Code: AISC-ASD

Date: 7/ 9/20


#### Detailed Results Table for Beam 49 - 95

Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch

DESIGN	EQUATION	FACTORS	VALUES	RESULT
Combined Forces (compress.) (H1-1b)	$\frac{\Pr}{2\phi \Pr} + \frac{Mrx}{\phi Mnx} + \frac{Mry}{\phi Mny} \\ < 1.00$	Cmx = 1.00 Cmy = 1.00 Pex = 8.65 Pey = 8.65	$\begin{array}{rrrr} Mrx &=& 0.20\\ Mry &=& 0.51\\ B1x &=& 1.03\\ B1y &=& 1.03 \end{array}$	0.43

#### Detailed Results Table for Beam 1 - 73

Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch



Max. AXIAL Force = 0.85 (tens.) Max. SHEAR Force = 0.99

Cheshire Northeast 2 CT Mount Analysis

#### Prepared by:

Code: AISC-ASD

Strap 2017.00

#### Detailed Results Table for Beam 1 - 73

Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch

#### SECTION CLASSIFICATION: *** COMPACT ***

Limiting Ratios:		Compact	Non-Compact	Slender -axial		
d/t= 16.16	<	44.1	195.4	69.3	(Fy= 46.0	R = -0.008)

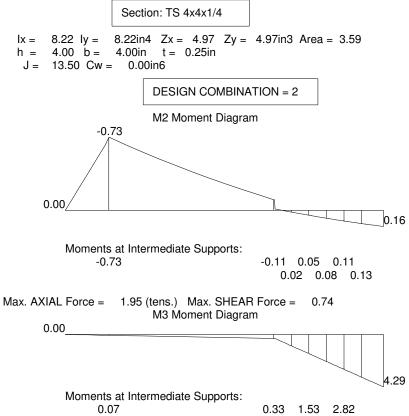
DESIGN	EQUATION	FACTORS	VALUES	RESULT
V2 Shear G2.1.b-i	Vu/0.6Vn<1.00 Vn=0.6*Fy*Aw	Aw = 1.11	Vu = 0.99 Vn = 30.86	0.05
M3 Moment (F8-1) without LTB	M 0.6Mn < 1.00	Z = 2.33	M = 0.83 Mn = 8.95	0.15
V3 Shear G2.1.b-i	Vu/0.6Vn<1.00 Vn=0.6*Fy*Aw	Aw = 1.11	Vu = 0.24 Vn = 30.86	0.01
M2 Moment (F8-1) without LTB	M 0.6Mn < 1.00	Z = 2.33	M = 0.95 Mn = 8.95	0.18
Deflection	defl. < 1.00 L / 240		defl = 0.26123	0.36
Axial Force (D2-1)	Pu 0.6AgFy < 1.00	(kL/r)x =150 (kL/r)y =150	Pu = 0.85 Ag = 2.23 Fy = 46.00	0.01
Combined Forces (tension) (H1-1b)	$\frac{\Pr}{2\phi\Pr} + \frac{Mrx}{\phiMnx} + \frac{Mry}{\phiMny} \\ < 1.00$		Mrx = 0.95 Mry = 0.83	0.34

#### Detailed Results Table for Beam 9 - 132

Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch

Beam: 9, 138,	68,		11				12	│ X2 (Major axis) │───│
128, 129,	130,	-			—7.16 —			
131, 132 CONSTRAIN	NTS			DE	SIGN DA	ATA		
- Sections : - Steel Grad	-	Check A500B		- A - A - Te	llow. Slei llowable ension A	Deflectio	(compr. n : 1/240 Iction Fac	)300 (tens.) 0 ctor:1.00
INTERMEDI	ATE SUF	PORTS		_	ananig tj	po : oo	accu	
L =	1.00	4.71	5.08	5.46	5.88	6.25	6.67	
LatTors.								

LatTors.							
Compress.	Х	Х	Х	Х	Х	Х	Х


Cheshire Northeast 2 CT Mount Analysis

#### Prepared by:

#### by:

#### Detailed Results Table for Beam 9 - 132

Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch



0.92 2.21 3.49

Max. AXIAL Force = 1.95 (tens.) Max. SHEAR Force = 1.62

#### SECTION CLASSIFICATION: *** COMPACT ***

Limiting Ratios:		Compact	Non-Compact	Slender -axial	
d/t= 13.13	<	60.8	143.1	35.2	(Fy= 46.0 R = -0.012)
b/t= 13.13	<	28.1	35.2	35.2	

DESIGN	EQUATION	FACTORS	VALUES	RESULT
V2 Shear G2.1.b-i	Vu/0.6Vn<1.00 Vn=0.6*Fy*Aw	Aw = 1.62	Vu = 1.62 Vn = 44.72	0.06
M3 Moment (F7-1) without LTB	M 0.6Mn < 1.00	Z = 4.97	M = 4.29 Mn = 19.07	0.38
V3 Shear G2.1.b-i	Vu/0.6Vn<1.00 Vn=0.6*Fy*Aw	Aw = 1.62	Vu = 0.74 Vn = 44.72	0.03
M2 Moment (F7-1) without LTB	M 0.6Mn < 1.00	Z = 4.97	M = 0.73 Mn = 19.07	0.06
Deflection	defl. < 1.00 L / 240		defl = 0.03189	0.09

# Strap 2017.00

Code: AISC-ASD

Cheshire Northeast 2 CT Mount Analysis

#### Prepared by:

#### Detailed Results Table for Beam 9 - 132

Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch

DESIGN	EQUATION	FACTORS	VALUES	RESULT
Axial Force (D2-1)	Pu 0.6AgFy < 1.00	(kL/r)x =29 (kL/r)y =57	Pu = 1.95 Ag = 3.59 Fy = 46.00	0.02
Lateral Torsional Buckling	M 		M = 0.73 Mn = 19.07 lange	0.06
Combined Forces (tension) (H1-1b)	$\frac{\Pr}{2\phi\Pr} + \frac{Mrx}{\phiMnx} + \frac{Mry}{\phiMny} \\ < 1.00$		Mrx = 0.73 Mry = 4.29	0.45

#### Detailed Results Table for Beam 3 - 127

X2 (Major axis) 5 6 Beam: 3, 137, 61, -7.16 123, 124, 125, 126, 127 CONSTRAINTS **DESIGN DATA** - Sections : Check - Kx = 1.00 - Ky = 1.00- Allow. Slend. : 200 (compr.) 300 (tens.) - Steel Grade: A500B - Allowable Deflection : 1/240 - Tension Area Reduction Factor : 1.00 - Building type : Unbraced INTERMEDIATE SUPPORTS L = 1.17 4.71 5.12 5.50 5.92 6.29 6.71 Lat.-Tors. Compress. Х Х Х Х Х Х Х Section: TS 4x4x1/4 8.22 ly = 8.22in4 Zx = 4.97 Zy = 4.97in3 Area = 3.59 Ix =

- h = 4.00 b = 4.00in t = 0.25in
- 13.50 Cw = 0.00in6 J =

Strap 2017.00

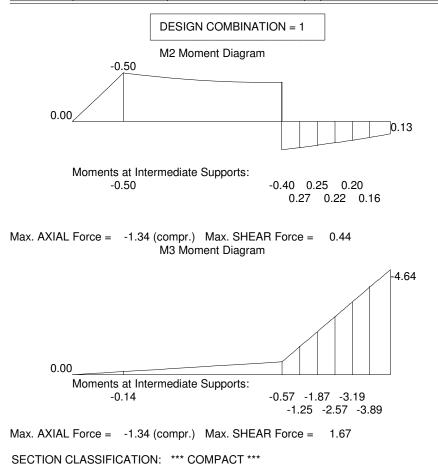
Code: AISC-ASD

Date: 7/ 9/20

Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch

Cheshire Northeast 2 CT Mount Analysis

#### Prepared by:


Strap 2017.00

Code: AISC-ASD

Date: 7/ 9/20

#### Detailed Results Table for Beam 3 - 127

Moments: kips*foot, Forces: kips, Stresses: ksi, Section prop.: inch

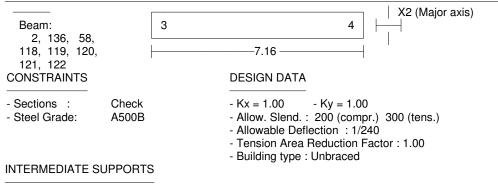


Limiting Ratios:		Compact	Non-Compact	Slender -axial	
d/t= 13.13	<	60.8	143.1	35.2	(Fy= 46.0 R = 0.008)
b/t= 13.13	<	28.1	35.2	35.2	

DESIGN	EQUATION	FACTORS	VALUES	RESULT
V2 Shear G2.1.b-i	Vu/0.6Vn<1.00 Vn=0.6*Fy*Aw	Aw = 1.62	Vu = 1.67 Vn = 44.72	0.06
M3 Moment (F7-1) without LTB	M 0.6Mn < 1.00	Z = 4.97	M = 4.64 Mn = 19.07	0.41
V3 Shear G2.1.b-i	Vu/0.6Vn<1.00 Vn=0.6*Fy*Aw	Aw = 1.62	Vu = 0.44 Vn = 44.72	0.02
M2 Moment (F7-1) without LTB	M 0.6Mn < 1.00	Z = 4.97	M = 0.50 Mn = 19.07	0.04
Deflection	defl. < 1.00 L / 240		defl = 0.03881	0.11
Axial Force (E3-1)	Pu 0.6AgFcr Slender. reduct.	(kL/r)x =17 (kL/r)y =35 x = 0.60	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.01

Cheshire Northeast 2 CT Mount Analysis

#### Prepared by:


#### Detailed Results Table for Beam 3 - 127

Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch

DESIGN	EQUATION	FACTORS	VALUES	RESULT
Lateral Torsional Buckling	M 		M = 0.50 Mn = 19.07 ange	0.04
Combined Forces (compress.) (H1-1b)	$\frac{\Pr}{2\phi\Pr} + \frac{Mrx}{\phiMnx} + \frac{Mry}{\phiMny} \\ < 1.00$	Cmx = 1.00 Cmy = 1.00 Pex = 3571.32 Pey = 842.54	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.46

#### Detailed Results Table for Beam 2 - 122

Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch



L =	1.17	4.71	5.12	5.50	5.92	6.29	6.71
LatTors.							
Compress.	Х	Х	Х	Х	Х	Х	х

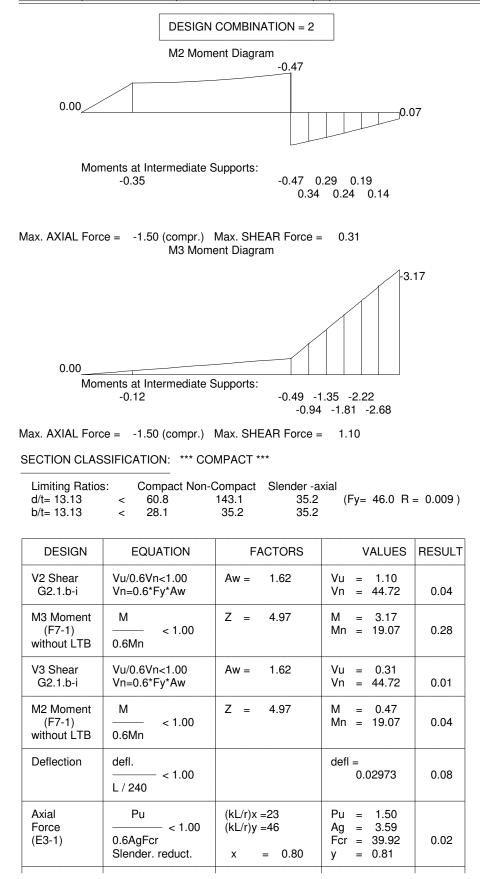
#### Section: TS 4x4x1/4

Ix = 8.22 Iy = 8.22in4 Zx = 4.97 Zy = 4.97in3 Area = 3.59

 $h = 4.00 \ b = 4.00 in t = 0.25 in$ 

J = 13.50 Cw = 0.00in6

Code: AISC-ASD


Cheshire Northeast 2 CT Mount Analysis

#### Prepared by:

Strap 2017.00

Detailed Results Table for Beam 2 - 122

Moments: kips*foot, Forces: kips, Stresses: ksi, Section prop.: inch



Code: AISC-ASD

Cheshire Northeast 2 CT Mount Analysis

#### Prepared by:

#### Detailed Results Table for Beam 2 - 122

Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch

DESIGN	EQUATION	FACTORS	VALUES	RESULT
Lateral Torsional Buckling	M 		M = 0.47 Mn = 19.07 ange	0.04
Combined Forces (compress.) (H1-1b)	$\frac{\Pr}{2\phi \Pr} + \frac{Mrx}{\phi Mnx} + \frac{Mry}{\phi Mny} \\ < 1.00$	Cmx = 1.00 Cmy = 1.00 Pex = 1951.06 Pey = 487.77	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.33

# Strap 2017.00

Code: AISC-ASD

# **ATTACHMENT 7**

	General	Power	Density					
Site Name: Cheshire NE 2								
Structure Height: 170 Ft								
CARRIER	# OF CHAN.	WATTS ERP	HEIGHT	CALC. POWER DENS	FREQ.	MAX. PERMISS. EXP.	FRACTION MPE	Total
*AT&T	# OF CHAN.	_						TOLAT
	1	1028	155	880	0.0167	0.5867	0.28%	
*AT&T	1	1265	155	1900	0.0205	1.0000	0.20%	
*AT&T	2	1254	155	710	0.0406	0.4733	0.86%	
*AT&T	1	1543	155	880	0.0250	0.5867	0.43%	
*AT&T	2	1897	155	1900	0.0615	1.0000	0.61%	
*AT&T	1	2179	155	2300	0.0353	1.0000	0.35%	
VZW CBRS	4	54	145	0.0037	54	1.0000	0.37%	
VZW PCS	4	1288	145	0.0881	1970	1.0	8.81%	
VZW Cellular LTE	4	617	145	0.0422	880	0.579333	7.19%	
VZW AWS	4	1413	145	0.0966	2145	1.0	9.66%	
VZW 700	4	537	145	0.0367	746	0.497333	7.39%	
								36.17%
* Source: Siting Council								

# **ATTACHMENT 8**

<b>UNITED STATES</b> POSTAL SERVICE ®	CHESHIRE I	Certificate of Mailing — Firm				
Name and Address of Sender	TOTAL NO. of Pieces Listed by Sender	TOTAL NO. of Pieces Received at Post Office™	Affix Stamp Here			
Kenneth C. Baldwin, Esquire Robinson & Cole 280 Trumbull Street Hartford, CT 06103	Postmaster, per (name of receiving employee)		Postmark with Date of Receipt.			
USPS® Tracking Number Firm-specific Identifier	Addr (Name, Street, City, Str	ess ate, and ZIP Code™)	Postage	Fee	Special Handling	Parcel Airlift
1.	Sean Kimball, Town Manager Town of Cheshire 84 South Main Street Cheshire, CT 06410		-			
2.	William Voelker, Tow Town of Cheshire 84 South Main Street		-	OLD S	STATE HOUSE	
3.	Cheshire, CT 06410 InSite Towers Develo 1199 North Fairfax S	opment, LLC	-	List is	STATION	
4.	Alexandria, VA 223		-	12	6019	
5.			-			
6.			_			
			-			