# Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

November 15, 2022

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Notice of Exempt Modification – Facility Modification 185 Academy Road, Cheshire, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") intervened in the Diamond Towers V, LLC ("Diamond") tower application, Docket No. 498, filed with the Council on March 16, 2021. The Council approved Docket No. 498 on August 13, 2021 including Cellco's request to install certain antennas and remote radio heads ("RRHs") on the approved tower. The Council's Decision and Order for Docket No. 498 is included in Attachment 1.

Since the Docket No. 498 approval, Cellco has decided to install different model antennas and RRHs than originally approved and now intends to install three (3) Samsung MT6407-77A antennas, three (3) MX06FIT665 antennas and three (3) MX10FIT665 antennas on its proposed t-arm antenna mounts. Cellco also intends to install nine (9) new remote radio heads ("RRHs") behind its antennas. A set of project plans showing Cellco's proposed facility modifications and new antennas and RRH specifications are included in Attachment 2.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Cheshire's Chief Elected Official and Land Use Officer.

Melanie A. Bachman, Esq. November 15, 2022 Page 2

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing tower. The antennas will be installed on Cellco's approved T-arm mounts.
- 2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The installation of Cellco's new antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. Cellco's far field tables for Cellco's facility are included in <u>Attachment 3</u>. The modified facility will be capable of providing Cellco's 5G wireless service.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. According to the attached Structural Analysis ("SA") and Mount Analysis ("MA"), the existing tower, tower foundation and antenna mounts can support Cellco's proposed modifications. Copies of the SA and MA are included in Attachment 4.

A copy of the parcel map and Property owner information is included in <u>Attachment 4</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in Attachment 5.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Melanie A. Bachman, Esq. November 15, 2022 Page 3

Sincerely,

Kenneth C. Baldwin

Kunig mu

Enclosures Copy to:

Sean M. Kimball, Cheshire Town Manager Michael Glidden, Town Planner Cheshire United Methodist Church, Property Owner Tim Parks, Verizon Wireless

# **ATTACHMENT 1**

| <b>DOCKET NO. 498</b> – Diamond Towers V, LLC application for a | } | Connecticut     |
|-----------------------------------------------------------------|---|-----------------|
| Certificate of Environmental Compatibility and Public Need for  |   |                 |
| the construction, maintenance, and operation of a               | } | Siting          |
| telecommunications facility located at 185 Academy Road (Route  |   |                 |
| 68/Route 70), Cheshire, Connecticut.                            | } | Council         |
|                                                                 |   |                 |
|                                                                 |   | August 12, 2021 |

#### **Decision and Order**

Pursuant to Connecticut General Statutes §16-50p, and the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, maintenance, and operation of a telecommunications facility, including effects on the natural environment, ecological balance, public health and safety, scenic, historic, and recreational values, agriculture, forests and parks, air and water purity, and fish, aquaculture and wildlife are not disproportionate, either alone or cumulatively with other effects, when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to Diamond Towers V, LLC, hereinafter referred to as the Certificate Holder, for a telecommunications facility at 185 Academy Road, Cheshire, Connecticut.

Unless otherwise approved by the Council, the facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be constructed as a monopine at a height of 95 feet above ground to provide the proposed wireless services, sufficient to accommodate the antennas of Cellco Partnership d/b/a Verizon Wireless (Cellco) and other entities, both public and private. The height of the "tree branches" at the top of the monopine structure shall not exceed 99 feet above ground level and the density and configuration of the "tree branches" shall conceal the antennas. The height of the tower may be extended after the date of this Decision and Order pursuant to regulations of the Federal Communications Commission.
- 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be submitted to and approved by the Council prior to the commencement of facility construction and shall include:
  - a) A certified letter from a wireless telecommunications carrier with a firm commitment to install associated wireless equipment at the facility upon completion of construction;
  - b) final site plan(s) for development of the facility that employ the governing standard in the State of Connecticut for tower design in accordance with the currently adopted International Building Code and include specifications for the tower, tower foundation, antennas and equipment compound including, but not limited to, fence design, landscaping, ground equipment, access road, utility installation and emergency backup generator;
  - c) the tower shall be designed with a yield point to ensure that the tower setback radius remains within the boundaries of the subject property;
  - d) construction plans for site clearing, grading, landscaping, water drainage and stormwater control, and erosion and sedimentation controls consistent with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, as amended;
  - e) construction schedule including hours and days of the week for construction activities developed in consultation with the property owner; and

- f) A Fuel Spill Response Plan.
- 3. Prior to the commencement of operation, the Certificate Holder shall provide the Council worst-case modeling of the electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of the electromagnetic radio frequency power density be submitted to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.
- 4. Upon the establishment of any new federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 5. The Certificate Holder shall provide the Council with a copy of necessary permits from any other state or federal agency with concurrent jurisdiction prior to the commencement of construction.
- 6. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 7. Unless otherwise approved by the Council, if the facility authorized herein is not fully constructed with at least one fully operational wireless telecommunications carrier providing wireless service within eighteen months from the date of the mailing of the Council's Findings of Fact, Opinion, and Decision and Order (collectively called "Final Decision"), this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made. The time between the filing and resolution of any appeals of the Council's Final Decision shall not be counted in calculating this deadline. Authority to monitor and modify this schedule, as necessary, is delegated to the Executive Director. The Certificate Holder shall provide written notice to the Executive Director of any schedule changes as soon as is practicable.
- 8. Any request for extension of the time period referred to in Condition 7 shall be filed with the Council not later than 60 days prior to the expiration date of this Certificate and shall be served on all parties and intervenors, as listed in the service list, and the Town of Cheshire.
- 9. If the facility ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council within 90 days from the one year period of cessation of service. The Certificate Holder may submit a written request to the Council for an extension of the 90 day period not later than 60 days prior to the expiration of the 90 day period.
- 10. Any nonfunctioning antenna, and associated antenna mounting equipment, on this facility shall be removed within 60 days of the date the antenna ceased to function.
- 11. In accordance with Section 16-50j-77 of the Regulations of Connecticut State Agencies, the Certificate Holder shall provide the Council with written notice two weeks prior to the commencement of site construction activities. In addition, the Certificate Holder shall provide the Council with written notice of the completion of site construction, and the commencement of site operation.

Docket No. 498 Decision and Order Page 3

- 12. The Certificate Holder shall remit timely payments associated with annual assessments and invoices submitted by the Council for expenses attributable to the facility under Conn. Gen. Stat. §16-50v.
- 13. This Certificate may be transferred in accordance with Conn. Gen. Stat. §16-50k(b), provided both the Certificate Holder/transferor and the transferee are current with payments to the Council for their respective annual assessments and invoices under Conn. Gen. Stat. §16-50v. In addition, both the Certificate Holder/transferor and the transferee shall provide the Council a written agreement as to the entity responsible for any quarterly assessment charges under Conn. Gen. Stat. §16-50v(b)(2) that may be associated with this facility.
- 14. The Certificate Holder shall maintain the facility and associated equipment, including but not limited to, the tower, tower foundation, antennas, equipment compound, radio equipment, access road, utility line and landscaping in a reasonable physical and operational condition that is consistent with this Decision and Order and a Development and Management Plan to be approved by the Council.
- 15. If the Certificate Holder is a wholly-owned subsidiary of a corporation or other entity and is sold/transferred to another corporation or other entity, the Council shall be notified of such sale and/or transfer and of any change in contact information for the individual or representative responsible for management and operations of the Certificate Holder within 30 days of the sale and/or transfer.
- 16. This Certificate may be surrendered by the Certificate Holder upon written notification and acknowledgment by the Council.

We hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed in the Service List, dated April 8, 2021, and notice of issuance published in <u>The Cheshire</u> Herald.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

# **ATTACHMENT 2**

# verizon

## **WIRELESS SERVICES FACILITY**

## CHESHIRE EAST CT **185 ACADEMY ROAD** CHESHIRE, CT 06410

#### DRAWING INDEX

T-1 TITLE SHEET

SP-1 SITE PLAN

C-1 COMPOUND PLAN & WEST ELEVATION

C-2 EQUIPMENT AREA PLAN & DETAILS

C-3 EQUIPMENT DETAILS

M-1 MECHANICAL PLAN, DETAILS & NOTES

S-1 STRUCTURAL PLANS & DETAILS

E-1 ELECTRICAL PLAN, SCHEDULES & NOTES

E-2 SCHEMATIC ONE-LINE RISER DIAGRAM, DETAILS & NOTES

E-3 EQUIPMENT GROUNDING PLANS & NOTES

E-4 GROUNDING DETAILS

**B-1 RF BILL OF MATERIALS & EQUIPMENT SPECIFICATIONS** 

N-1 NOTES & SPECIFICATIONS

#### SITE DIRECTIONS

START: 20 ALEXANDER DRIVE WALLINGFORD, CONNECTICUT 06492

END: 185 ACADEMY ROAD CHESHIRE, CT 06410

TAKE ALEXANDER DR. AND BARNES INDUSTRIAL PARK RD. 0.6 MI 371 FT 0.1 MI 72 FT 167 FT 0.3 MI TO CT-68W HEAD SOUTH TOWARD ALEXANDER DR TURN RIGHT TURN RIGHT TOWARD ALEXANDER DRIVE TURN RIGHT TOWARD ALEXANDER DRIVE TURN RIGHT ONTO ALEXANDER DRIVE TURN RIGHT ONTO BARNES INDUSTRIAL PARK RD. TURN LEFT AT 1ST CROSS STREET ONTO CT-68 W TURN LEFT ONTO CT-68W/CT-70 W (DESTINATION ON THE LEFT)



LOCATION MAP

#### SITE INFORMATION

VZ SITE NAME: CHESHIRE EAST CT VZ PBO L FUZE LD : 15372347 VZ LOCATION CODE: 470656 VZ PROJECT CODE: 20171649710

LOCATION: 185 ACADEMY ROAD

PROJECT SCOPE: INSTALLATION CONSISTS OF SIX (6) PANEL ANTENNAS, THREE
(3) SAMSUNG MT6407-77A ANTENNAS W/INTEGRATED RRHs, SIX
(6) DUAL-BAND REMOTE PADIO HEADS (PRHs) & ONE (1) 120VP
MOUNTED TO A PENDING 99 ± AGL MONOPINE TOWER (GY) OTHERS) IN ADDITION TO BASE EQUIPMENT CABINETS, 50kW OTHERS, IN ADDITION TO BASE EQUIPMENT CABINETS, SORW
PROPANE EMPRGENCY STANDBY POWER GENERATOR & A 1,000
GAL. PROPANE TANK W/PROTECTIVE ICE CANOPY LOCATED AT
GRADE WITHIN PENDING (2,100± SF) FENCED COMPOUND AREA.

COORDINATES & GROUND

SURVEYING ASSOCIATES, LLC.

MAP/LOT: 58-27

LATITUDE: 41° 29' 53.7872"N (41.49827422"N)

ELEVATION INDICATED HEREIN WERE ESTABLISHED FROM A TOPOGRAPHIC LAND SURVEY, AS LONGITUDE: 72° 53' 39.3902'W (72.89427505°W) PREPARED BY MARTIN

GROUND ELEVATION: 242.7'± AMSL

PROPERTY OWNER: CHESHIRE LINITED METHODIST CHURCH

185 ACADEMY ROAD CHESHIRE, CT 06410

TOWER OWNER: DIAMOND COMMUNICATIONS LLC. 210 MOUNTAIN AVENUE UNIT 619 SPRINGFIELD, NJ 07081

APRI ICANT: CELL CO PARTNERSHIP WALLINGFORD, CT 06492

LEGAL/REGULATORY COUNSEL: ROBINSON & COLE, LLP KENNETH C. BALDWIN, ESQ. 280 TRUMBULL STREET

HARTFORD, CT 06103

ENGINEER CONTACT: ALL-POINTS TECHNOLOGY CORPORATION, P.C.

567 VAUXHALL STREET EXTENSION - SUITE 311 WATERFORD, CT 06385 860 663-1697

Cellco Partnership d/b/a



NO DATE REVISION

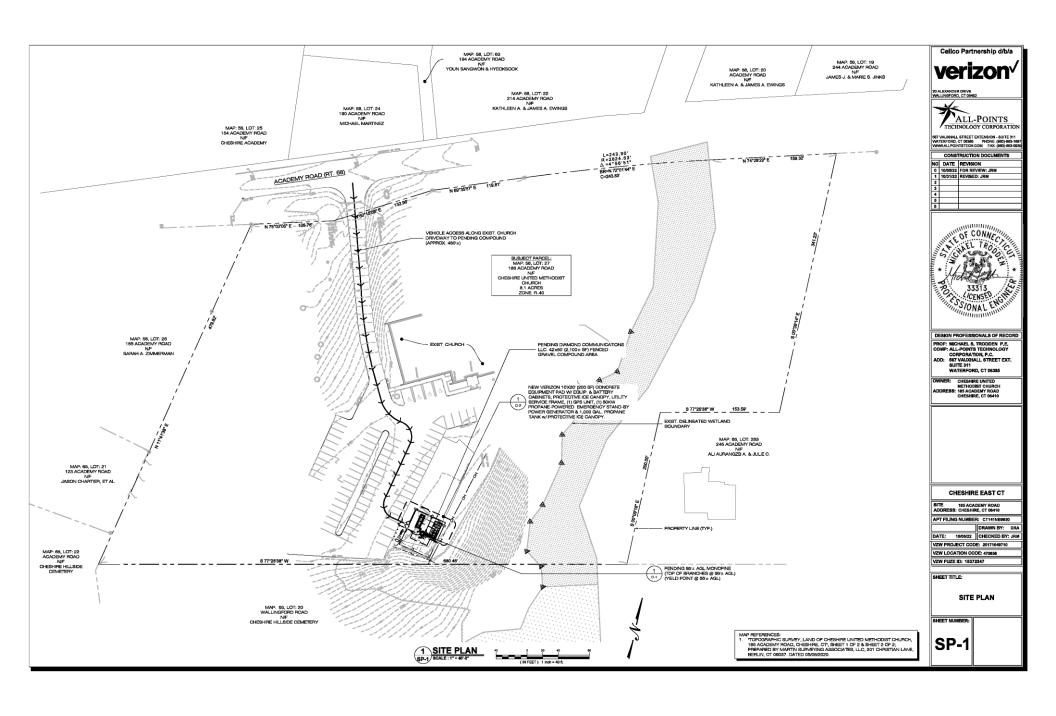


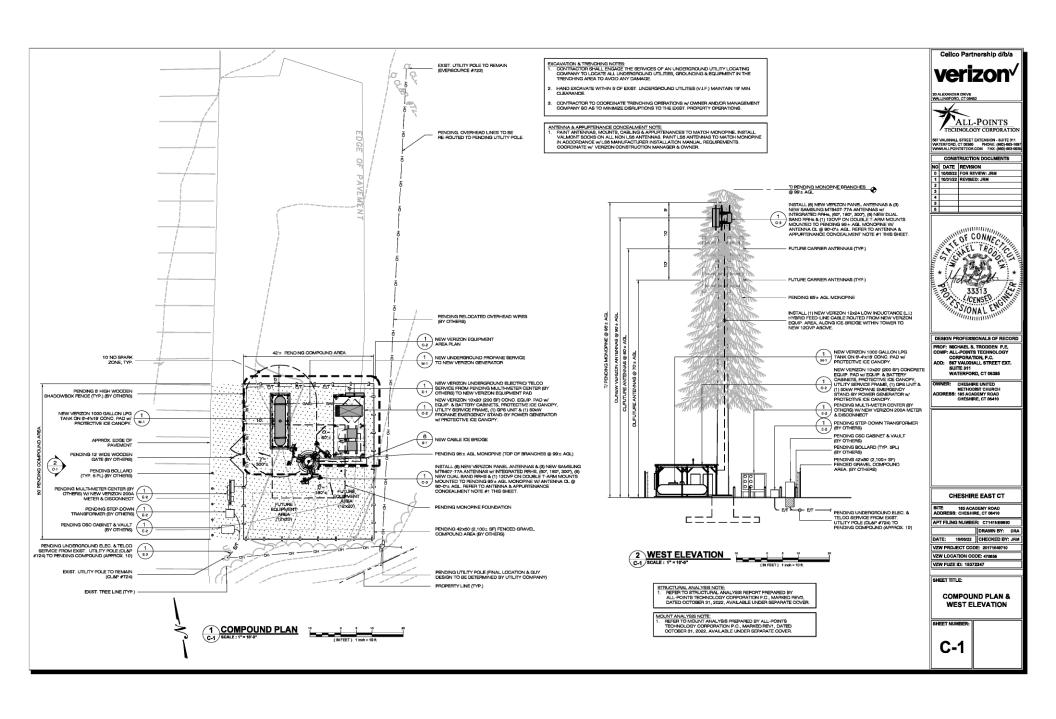
DESIGN PROCESSIONALS OF RECORD PROF: MICHAEL S, TRODDEN P,E, COMP: ALL-POINTS TECHNOLOGY CORPORATION, P.C. ADD: 567 VAUXHALL STREET EXT.

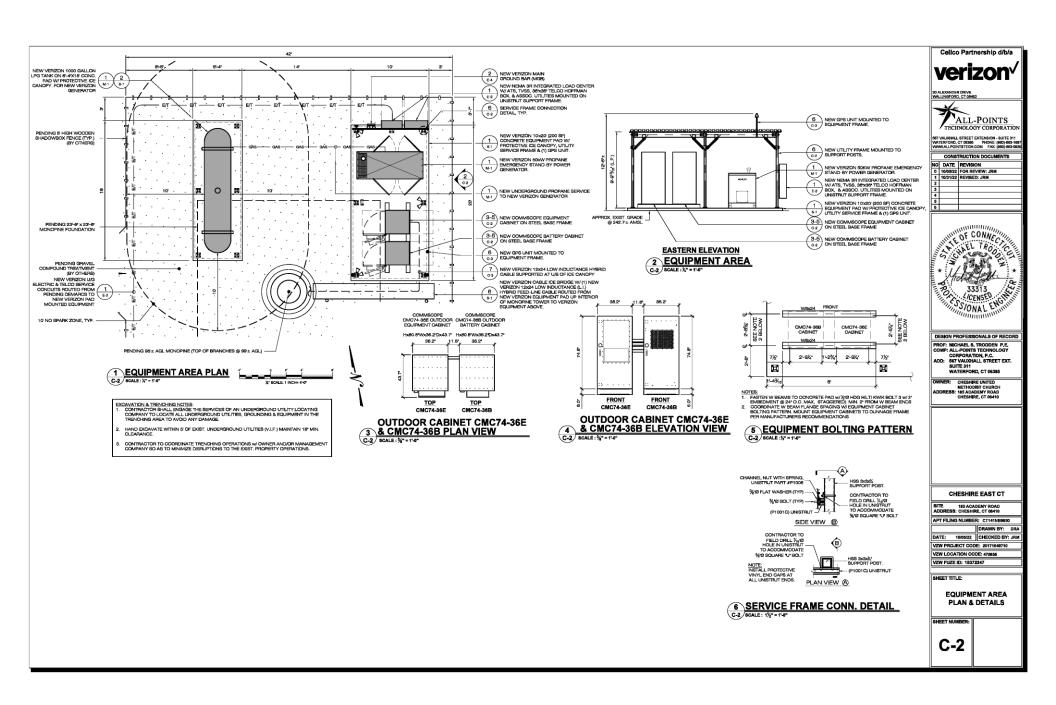
WATERFORD, CT 06385

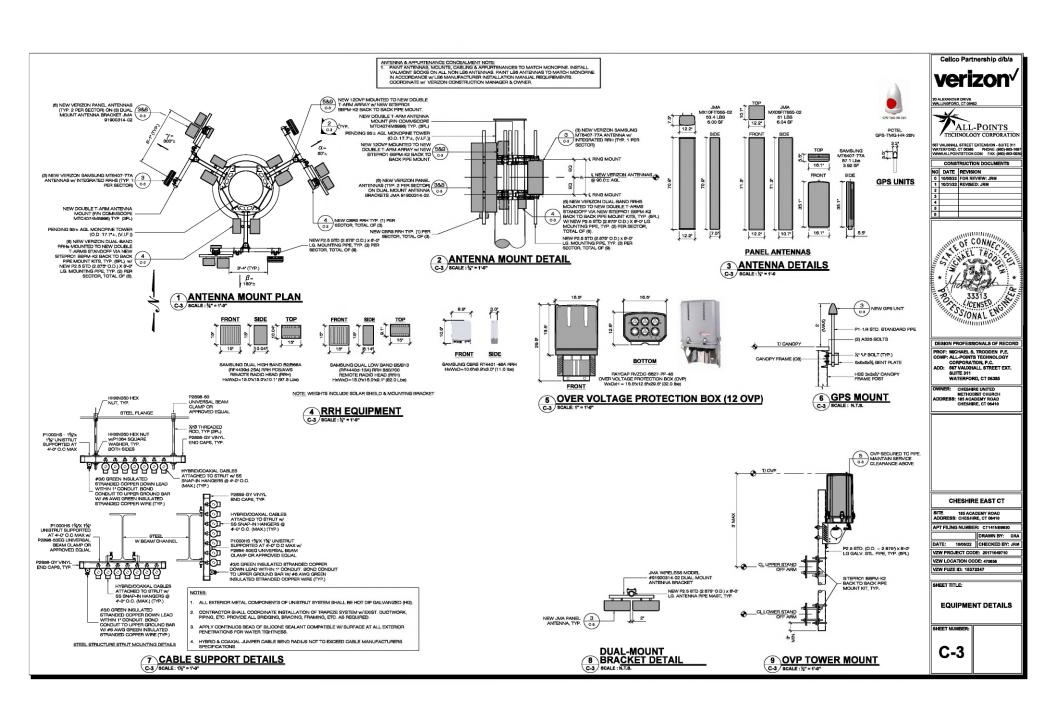
CHESHIRE FAST CT

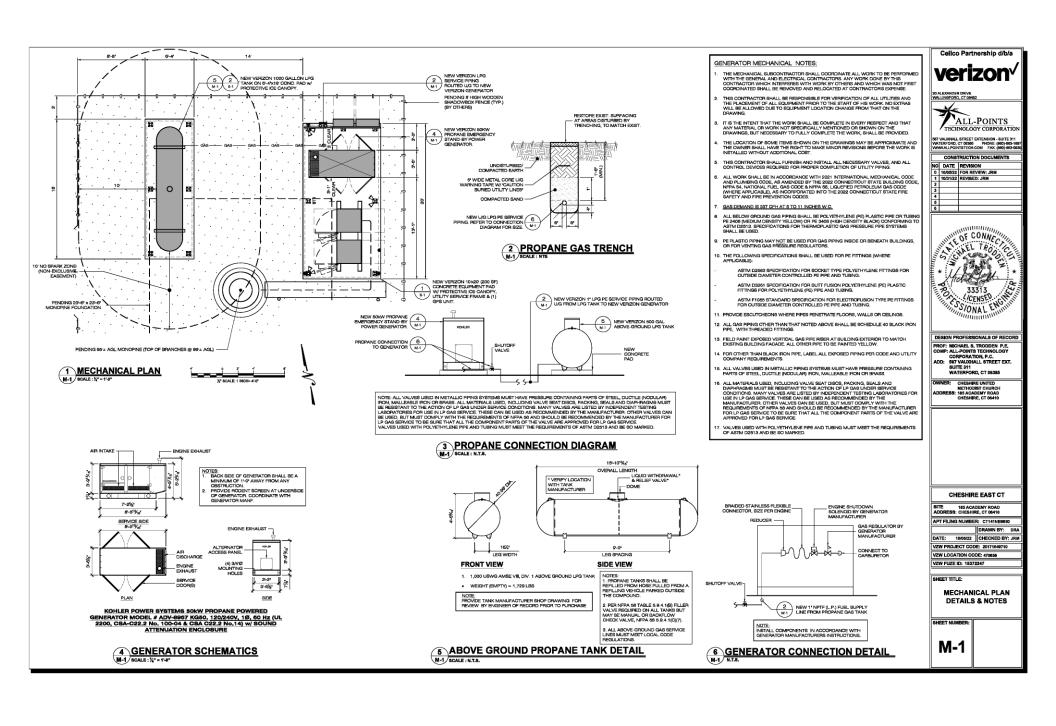
SITE 185 ACADEMY ROAD ADDRESS: CHESHIRE, CT 06410

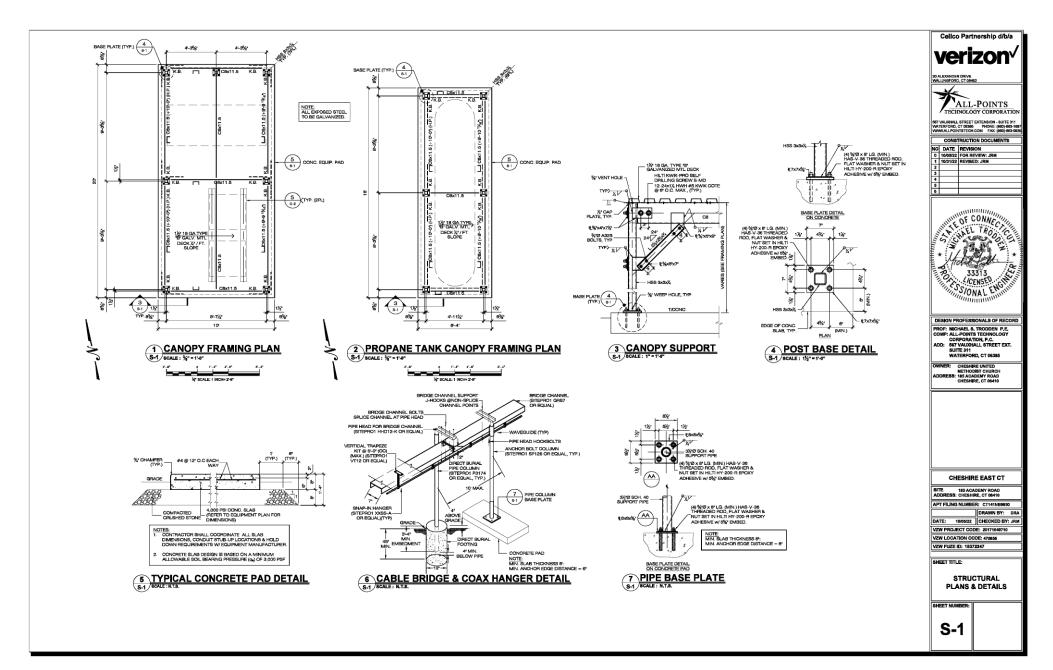

DRAWN BY: DRA 10/05/22 CHECKED BY: JRI


VZW PROJECT CODE: 20171649710 VZW LOCATION CODE: 470656 VZW FUZE ID: 15372347


TITLE SHEET


SHEET TITLE:


T-1














| SYMBOL          | DESCRIPTION                                                              | ABBREV. | DESCRIPTION                            |
|-----------------|--------------------------------------------------------------------------|---------|----------------------------------------|
| $\Box$          | FUSED DISCONNECT SWITCH (VOLTAGE<br>AS REQUIRED)                         | AFF     | ABOVE FINISHED FLOOR                   |
| - E -           | ELECTRICAL CONDUIT & CABLES                                              | AFG     | ABOVE FINISHED GRADE                   |
| -т —            | TELCO/FIBER CONDUIT & DRAG LINE                                          | AGB     | ANTENNA GROUND BAR                     |
|                 | GROUND CONDUIT & WIRE                                                    | AWG     | AMERICAN WIRE GAGE                     |
| φ               | DUPLEX RECEPTACLE WITH PANEL DP1<br>CIRCUIT INDICATED. (MOUNTED 42° AFF) | BCW     | BARE COPPER WIRE                       |
| W               | ELECTRIC METER AND BASE.<br>COORDINATE WITH UTILITY COMPANY              | С       | CONDUIT                                |
| Т               | TRANSFORMER                                                              | DP      | DISTRIBUTION PANEL                     |
|                 | NON-FUSED DISCONNECT SWITCH<br>(VOLTAGE AS REQUIRED)                     | ECB     | ENCLOSED CIRCUIT BREAKER               |
| ₽₽              | GROUND BAR                                                               | EGB     | EQUIPMENT GROUND BAR                   |
| ூ               | SPECIAL PURPOSE OUTLET                                                   | FACP    | FIRE ALARM CONTROL PANEL               |
| 8               | GROUND ROD                                                               | GFCI    | GROUND FAULT CIRCUIT INTERRUPTER       |
| Ť               | GROUND CONNECTION                                                        | GRO     | GALVANIZED RIGID CONDUIT               |
| ILC             | INTEGRATED LOAD CENTER w/ XFER SWITCH                                    | KWH     | KILO-WATT-HOUR                         |
| \$ <sub>T</sub> | 12 HR. TIMER SWITCH (MOUNTED 48" AFG.)                                   | LFMC    | LIQUID TIGHT FLEXIBLE METALLIC CONDUIT |
| <b>⊕</b> WP     | DUPLEX RECEPTACLE WITH GFCI AND<br>WEATHERPROOF COVER WHILE IN-USE       | MGB     | MASTER GROUND BAR                      |
| 큥               | GROUND BAR                                                               | мтѕ     | MANUAL TRANSFER SWITCH                 |
| ADA             | LIGHT FIXTURE                                                            | NF      | NON-FUSED                              |
|                 |                                                                          | N.O.    | NORMALLY OPEN                          |
|                 |                                                                          | RGS     | RIGID STEEL CONDUIT                    |
|                 |                                                                          | SA      | SURGE ARRESTOR                         |
|                 |                                                                          | TL      | TWIST-LOOK                             |
|                 |                                                                          | UNO     | UNLESS NOTED OTHERWISE                 |

|      | LIGHTING FIXTURE SCHEDULE                     |                        |                 |          |       |  |  |  |  |
|------|-----------------------------------------------|------------------------|-----------------|----------|-------|--|--|--|--|
| TYPE | MANUFACTURER<br>CATALOG/MODEL No.             | GENERAL<br>DESCRIPTION | LAMP            | MOUNTING | NOTES |  |  |  |  |
| ^    | RAB LIGHTING INC. LED<br>MODEL # BULLET2X12W. | BULLET FLOOD<br>2X12W  | LED<br>(2480Lm) | SURFACE  | 1,2   |  |  |  |  |
| -    | -                                             | -                      | -               | -        | -     |  |  |  |  |
|      |                                               |                        |                 |          |       |  |  |  |  |

- 1. ALUMINUM ROUND WEATHERPROOF BOX MCMASTER-CARR MODEL#
- 7219K71.
  2. ALUMINUM WEATHERPROOF COVER MCMASTER-CARR MODEL# 7219K13.

#### EQUIPMENT LEGEND

#### DESIGNATION DESCRIPTION

ILC

IINTEGRATED LOAD CENTER (ILC) - 200A-2P, 120240/AC, 1 PH, 3W, WI 200A SERVICE DISCONNECT SWITCH, AUTOMATIC TRANSFER SWITCH AND COLIENT ETWS NORMAL POWER AND GENERATOR), NEIVA 3R ENICLOSURE. MIN. TWO YEAR MANF. WARRANTY. FURNISH BOLT-ON CROUIT BREAKERS - TOTAL 42 POLES, 28VAC.

20A @ 125V, 12 HOUR TIMER SWITCH - MCMASTER-CARR MODEL# 7014K49. (SEE NOTE 2 BELOW).

- 2. DOUBLE GANG WEATHER PROOF OUTLET BOX MCMASTER-CARR MODEL# 7219K28.
  3. DOUBLE GANG WEATHER PROOF COVER INTERMATIC MODEL# WP12300.

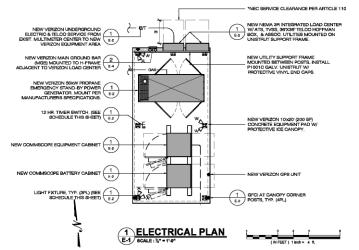
SITE UTILITY NOTES:

1. CONTRACTOR SHALL ENGAGE THE SERVICES OF AN UNDERGROUND UTILITY LOCATING COMPANY TO LOCATE ALL UNDERGROUND EQUIPMENT IN THE TRENCHING AREA TO AVOID ANY DAMAGE.

- HAND EXCAVATE WITHIN 5' OF EXIST, UNDERGROUND UTILITIES (V.I.F.)
  MAINTAIN 18' MIN. CLEARANCE.
- CONTRACTOR TO COORDINATE TRENCHING OPERATIONS W/OWNER AND/OR MANAGEMENT COMPANY SO AS TO MINIMIZE DISPUTIONS TO THE EXIST, PROPERTY OPERATIONS, REINSTATE FINISHED GRADE TO PRE-CONSTRUCTION CONDITIONS & STANDARDS.

| PA         | NEL NAME/LOCATION: ILC/VERIZON MAIN: 200A, 1P MCE VOLTAGE/PHASE: 120/240V, 1Ø, PANEL RATING: 200A, 240 VAG | 3W INTE        |   | LOAD CE                  | NTER (IL   | _C)        | DEWAND         |       |                | MOUNTING: SURFACE NUFACTURER: ASCO OR EQUAL REAKER TYPE: BOLT ON AIC RATING: 42K MIN. |            |
|------------|------------------------------------------------------------------------------------------------------------|----------------|---|--------------------------|------------|------------|----------------|-------|----------------|---------------------------------------------------------------------------------------|------------|
| CKT<br>NO. | LOAD<br>DESCRIPTION                                                                                        | TRIP<br>(AMPS) | Р | DEMAND<br>LOAD<br>(AMPS) | A<br>(kVA) | B<br>(kVA) | LOAD<br>(AMPS) | Р     | TRIP<br>(AMPS) | LOAD<br>DESCRIPTION                                                                   | CKT<br>NO. |
| 3          | RECTIFIER #1                                                                                               | 30             | 2 | 5.83<br>5.83             | 1.4        | 1.4        | 5.83<br>5.83   | 2     | 30             | RECTIFIER #5                                                                          | 2          |
| 5          | RECTIFIER # 2                                                                                              | 30             | 2 | 5.83<br>5.83             | 1.4        | 1.4        | 5.83<br>5.83   | 2     | 30             | RECTIFIER #6                                                                          | 6          |
| 9<br>11    | RECTIFIER #3                                                                                               | 30             | 2 | 5.83<br>5.83             | 1.4        | 1.4        | 5.83           | 2     | 30             | RECTIFIER #7                                                                          | 10<br>12   |
| 13<br>15   | RECTIFIER # 4                                                                                              | 30             | 2 | 5.83<br>5.83             | 1.4        | 1.4        | 5.83<br>5.83   | 2     | 30             | RECTIFIER #8                                                                          | 14<br>16   |
| 17         | QUADRUPLEX RECEPTAGLE                                                                                      | 20             | 1 | 0.36                     | 0.54       |            | 0.18           | 1     | 20             | GFOI (EQUIPMENT CABINET)                                                              | 18         |
| 19         | GFCI (CORNER OF EQUIP. CANOPY)                                                                             | 20             | 1 | 0.18                     |            | 0.36       | 0.18           | 1     | 20             | GFCI (TELCO BOX)                                                                      | 20         |
| 21         | GFCI (CORNER OF EQUIP. CANOPY)                                                                             | 20             | 1 | 0.18                     | 1.62       |            | 1.44           | 1     | 15             | GEN BATTERY CHARGER                                                                   | 22         |
| 23         | GFCI (CORNER OF EQUIP. CANOPY)                                                                             | 20             | 1 | 0.18                     |            | 1.68       | 1.50           | 1     | 15             | GEN BLOCK HEATER                                                                      | 24         |
| 25         | GFCI (CORNER OF EQUIP. CANOPY)                                                                             | 20             | 1 | 0.18                     | 0.36       |            | 0.18           | 1     | 15             | GEN GFCI RECEPTACLE                                                                   | 26         |
| 27         |                                                                                                            |                |   |                          |            | 0.12       | 0.12           | 1     | 15             | CANOPY LIGHTING                                                                       | 28         |
| 29<br>31   |                                                                                                            |                |   |                          | 0.01       | 0.01       | 0.01           | 2     | 60             | TVSS                                                                                  | 30<br>32   |
| 33         |                                                                                                            |                |   |                          |            |            |                |       |                |                                                                                       | 34         |
| 35         | SPARE                                                                                                      | -              | - |                          |            |            |                | -     | -              | SPARE                                                                                 | 36         |
| 37         | SPARE                                                                                                      | -              | - |                          |            |            |                | -     | -              | SPARE                                                                                 | 38         |
| 39         | SPARE                                                                                                      | -              | - |                          |            |            |                | -     | -              | SPARE                                                                                 | 40         |
| 41         | SPARE                                                                                                      | -              | - |                          |            |            |                | -     | -              | SPARE                                                                                 | 42         |
|            |                                                                                                            |                |   |                          | Α          | В          | TOTAL          |       |                |                                                                                       |            |
|            |                                                                                                            |                |   |                          | 8.13       | 7.77       | 16.1           | TOTAL | PANEL L        | OAD (kW)                                                                              |            |
| l          |                                                                                                            |                |   |                          |            |            | 38.4           | TOTAL | RATED C        | APACITY (kW)                                                                          |            |

- DOOR DIRECTORY TO BE COMPLETED WITH RESPECT TO THE ACTUAL CIRCUIT DESCRIPTION. BRANCH OB AND CONDUCTOR SIZE AND QUANTITY BASED ON SPECIFIED EQUIPMENT. CONFIRM LECTRICAL, REQUIREMENTS PRIOR TO NOTALLATION. BRANCH CONDUCTOR SPECIFIED SHALL BE TYPE "THYNN" 600V 75 DEG. C PATED COPPER UNIO.


#### STANDARD ACCESSORIES - COPPER BUSSING ONLY

67.8 PANEL AMPS (A)

22.3 TOTAL PANEL RATED SPARE CAPACITY (kW)

- COPPER BUSSING ONLY
- COPPER BUJUMENT GROUND KIT
- NIBULATED COPPER BOLID NEUTRAL BAR
- BOLT-ON BRANCH CREDIT BREAKERS
- DIRECTORY FRANCH CREDIT BREAKERS
- DIRECTORY FRANCH WITH GLASHLATED
- LAMINATED ENGRAVED BAKELITE NAMEPLATE
- FRONT DOOR (DOOR-IN-DOOR CONSTRUCTION)
- NEMA 3R

OWNER: CHESHIRE UNITED





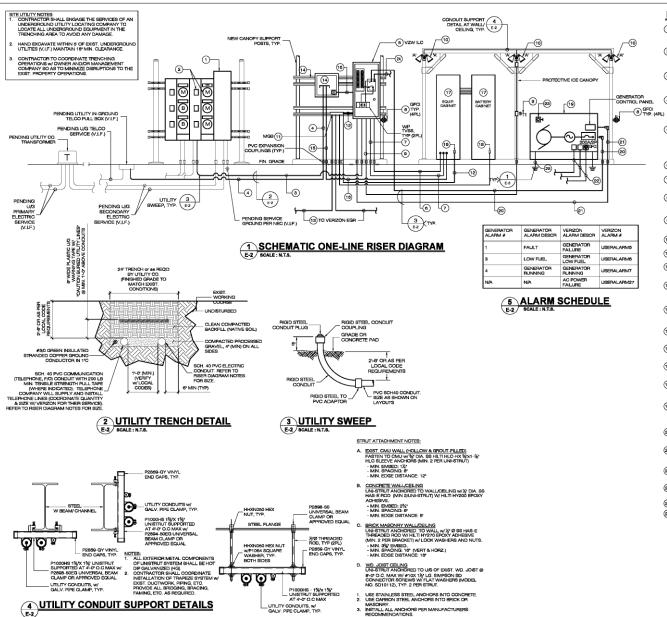


567 VAUXHALL STREET EXTENSION - SUITE 311 WATERFORD, CT 08385 PHONE: (860)-963-10 WWW.ALLPOINTSTECH.COM FAX: (860)-963-01

NO DATE REVISION
0 10/05/22 FOR REVIEW: JRM
1 10/31/22 REVISED: JRM



DESIGN PROFESSIONALS OF RECORD PROF: MICHAEL S, TRODDEN P,E, COMP: ALL-POINTS TECHNOLOGY CORPORATION, P.C. ADD: 567 VAUXHALL STREET EXT. SUITE 311 WATERFORD, CT 06385


#### CHESHIRE EAST CT

SITE 185 ACADEMY ROAD ADDRESS: CHESHIRE, CT 06410 APT FILING NUMBER: CT141NB9650 DRAWN BY: DRA 10/05/22 CHECKED BY: JRM VZW PROJECT CODE: 20171649710 VZW LOCATION CODE: 470656

VZW FUZE ID: 15372347 SHEET TITLE:

ELECTRICAL PLAN **SCHEDULES & NOTES** 

E-1



#### **ELECTRICAL ONE-LINE RISER KEY NOTES:**

- PENDING 1Ø, 3W, 120/240V, 2P-800A, 85,000 A/C MAIN CIFCUIT BREAKER & (2) 1Ø, 3W, 120/240V, 1200A RATED METER CENTER BRANCH UNITS W/ LEVER BYPASS SOCKETS (V.LF.).
- NEW 120/240V. 1/Z. 3W KWH MANUAL BY-PASS METER SCHNEIDER ELECTRIC (OR EQUAL) NEW 120/240V, 1/8, 3W WMH MANUAL BY-PASS METER SOTHEDER ELECTRIC (OR EQUAL) W/2004, 2º TEMANT O'ROUT BERKAREN COORDINATE INSTILLATION AND ACTIVATION OF METER WITH UTILITY COMPANY, REFER TO 1/6-1 FOR LOCATION. VERFEY LOCATION OF METER WITH LITHLY COMPANY AND LOCAL ELECTRICAL NEGREGOR METER SOCKET SHALL BE CLEARLY LABELED "CAPRIER NAME" SERVICE ENTRANCE, 2004, 120/240V, 1/9, 3W."
- (3)#3/0 & (1)#6 G IN 2°C TO SUPPORT 200A, 120/240V, 1Ø, 3W NORIMAL POWER SERVICE FROM LOAD SIDE OF VERIZON COMBINATION METER SOCKET TO NORMAL TERMINAL OF VERIZON LC.
- NEW VERIZON 24 PAR SINGLE MODE FIBER SERVICE IN 3'O WITH FULL ROPE ROUTED UNDERGROUND FROM TELCO DEMARC TO NEW HOFFMAN BOX AND FIBER TERMINATION PAREL, FIFE). COATED AT VERIZON CEUJIPMENT ARRA. PROVIDE LANDICTON BÖXIGES AND DEWANDION COUPLINGS AS REQUIRED. FIVAL TERMINATION BY OTHERS. COOPIGNATE INSTALLATION WITH LOCAL UNITY COMPANY AND AUTHORIST HAVING JURGIDICTION (AHJ).
- NEW VERIZON 120240V, 1 PH, 3W, NEMA SR INTEGRATED LOAD CENTER WI 2004-2P MAN ORDUIT BREAKER (MCD), AUTOMATO TRANSFER SWITCH AND LOUBLE TVSS. FIRER TO A PROPERTY OF THE STATE OF THE STATE
- (16) #6 AWG, (1) #8G IN 2" C TO FEED NEW EQUIPMENT CABINET. INSTALL ALL WIRING PER MANUFACTURERS SPECIFICATIONS.
- (2) #12 & (1) #12G IN 3/4°C TO FEED NEW EQUIPMENT CABINET 20A/120V GFCI OUTLET.
- (2) #12 & (1) #12G IN 34" O TO FEED NEW 20A120V GFCI OUTLET (NEMA 5-20R) IN NEMA (a) BR ENCLOSINED LCOATED AT VERIZON COMPRIED AND YFOSTS, INSTALL APPROX. 46" A.F.G. REFEIT TO EQUIPMENT LEGEND ON DRAWING E-1 FOR SPECIFICATIONS AND 2E-1
- (2) #12 & (1) #12G IN 3/4" C TO FEED NEW 20A/120V 12 HR TIMER SWITCH IN NEMA 3R ENCLOSURE LOCATED, INSTALL APPROX. 48" A F. G. REFER TO EQUIPMENT LEGEND ON DRAWING E-1 FOR SECPICATIONS AND E-1 FOR LOCATION.
- NEW SERVICE LIGHT FIXTURE. SECURE LIGHT FIXTURE TO J-BOX. REFER TO LIGHTING FIXTURE SCHEDULE ON DRAWING E-1 FOR SPECIFICATIONS AND E-1 FOR LOCATION. WIRE SWITCH TO CONTROL. ALL LIGHTS SMULTANEOUSLY (YYP)
- (1) MAIN GROUND BAR (MGB), REFER TO E-3 FOR LOCATION AND E-4 FOR DETAILS.
- PROVIDE #6 AWG GREEN INSULATED STRANDED COPPER WIRE IN 1°C AND GROUND VERIZON
  (12) LOAD CENTER TO MAIN GROUND BAR (MGB), REFER TO DRAWING E-3 FOR LOCATION AND
  GROUNDING NOTES.
- PROVIDE #3,0 AWG GREEN INSULATED STRANDED COPPER WIRE (EGR) IN 1° C TO EGR (TYP 2PL) BOND METALLIC CONDUIT WITH #6 AWG GREEN INSULATED STRANDED COPPER WIRE AT BOTHENDS. REFER TO 2,E-1 LOCATION.
- 3 x 3 x 1 NEMA-SR HOFFMAN BOX W/ HINGED COVER, LOCKABLE CLASP, ½' MARINE GRADE PLYWOOD BACKSCHAP PANTED WITH BLACK FIRE RETARDAIN TINTURESCENT PAINT MOUNTED NESSE AND (1) DURES COLLICATED RESE OR BOTTOM RIGHT HAND CORNER MOUNTED NESSE OR BOTTOM RIGHT HAND CORNER MOUNT HOFFMAN BOX BETWEEN EQUIPMENT CANOPY POSTS ON PIDDIO GALV. UNISTRUIT AND INSTALL PROTECTIVE WITH LEW CAPS.
- 15 FIBER TELCO SERVICE ROUTED WITHIN 2" FROM TELCO HOFFMAN BOX TO EQUIPMENT CABINET. FINAL TERMINATION BY OTHERS, PROVIDE JUNCTION BOX(ES) WHERE REQUIRED.
- VERIZON WIRELESS COMMISCOPE EQUIPMENT & BATTERY CABINETS, COORDINATE INSTALLATION WITH VERIZON CONSTRUCTION MANAGER
- BOND EQUIPMENT & BATTERY CABINET TO MAIN GROUND BAR (MGB) PER EQUIPMENT CABINET MANUFACTURER SPECIFICATIONS. MIN #2 AVIG GREEN INSULATED STRANDED COPPER WIRE. INSTALL CABINET INTERNAL GROUNDING PER MANUFACTURERS SPECIFICATIONS.
- NEW VERIZON KOHLER CO. 50KW PROPANE EMERGENCY STANDBY POWER GENERATOR KOHLER MODEL ADV-867, 120/240/, 16, 3W, 66 HZ. REFER TO GENERATOR MANUFACTURER FOR INSTALLATION REQUIREMENTS, PROVIDE ROCENT SCREEN AT UNDERSIDE OF GENERATOR. COORDINATE WITH GENERATOR MANF.
- (20) #3/0 & (1) #8G IN 2° C TO SUPPORT 200A, 120/240V, 1Ø, 3W SERVICE FROM VERIZON GENERATOR TO EMERGENCY TERMINAL LUGS OF ATS
- (2) #12AWG (FOR GENERATOR START SIGNAL) IN 1" C BETWEEN GENERATOR CONTROL PANEL AND ATS CONTROL. REFER TO MANUFACTURERS INSTRUCTION MANUAL FOR ENGINE CONTROL AND MONITORING CIRCUITS WIRING AND TERMINATION
- PROVIDE (3) BRANCH CIPCUIT FEEDS FOR: BLOCK HEATER, WEATHER RESISTANT DUPLEX GFOI OUTLET (NEMA 5-207) & BROLGSURE (NEMA 3F) & BATTERY CHARGER. PROVIDE (6) #12 & (1) #12G N 1º CTO L.C. SUPPLY FROM (6) 2041P CROUTT BREAKERS COMPATIBLE WITH LIC.
- PROVIDE ¾\* C AND CONDUCTORS TO SUPPORT REMOTE GENERATOR SHUT-OFF SWITCH WITH BREAK GLASS ENCLOSURE IN PROXIMITY TO GENERATOR. COORDINATE FINAL LOCATION WITH LOCAL FIRE MARSHALL. IN STALL ALL REQUIRED SIGNATOR.
- (24) PROVIDE 3/4° C FOR ALARM WIRES ROUTED TO TELCO BOARD ALARM TERMINAL BLOCK
- (25) GROUND GENERATOR PER NEC REQUIREMENTS.

(GENERAL) USE GRC FOR ALL EXTERIOR APPLICATIONS, INCLUDING SWEEPS (GENERAL) COORDINATE ALL OUTAGES WITH OWNER AND PROVIDE TEMPORARY POWER AS REQUIRED.

(GENERAL) PAINT ALL EXPOSED EXTERIOR CONDUITS TO MATCH EXTERIOR OF EXIST. BUILDING (WHERE APPLICABLE).

(GENERAL) CONTRACTOR SHALL VERIFY THAT ALL BUILDING/STRUCTURE GROUNDING ELECTRODES ARE BONDED WITH APPROPRIATELY SIZED CONDUCTORS PER NEC.

(GENERAL) ALL ENTRY HOLE(S) TO BE SEALED WATER TIGHT (WHERE APPLICABLE).

Cellco Partnership d/b/a verizon



567 VAUXHALL STREET EXTENSION - SUITE 311 WATERFORD, CT 08385 PHONE: (860)-663-0 WWW.ALLPOINTSTECH.COM FAX: (860)-663-0

NO DATE REVISION 0 10/05/22 FOR REVIEW:

A LAEL TO Had Had SSONAL ENGINEER

DESIGN PROFESSIONALS OF RECORD

PROF: MICHAEL S, TRODDEN P,E, COMP: ALL-POINTS TECHNOLOGY CORPORATION, P.C. ADD: 567 VALVALL STREET EXT. SUITE 311 WATERFORD, CT 06385

CHESHIRE UNITED

CHESHIRE FAST CT

SITE 185 ACADEMY ROAD ADDRESS: CHESHIRE, CT 06410

DRAWN BY: DRA 10/05/22 CHECKED BY: JRM

VZW PROJECT CODE: 20171649710 VZW LOCATION CODE: 470656 VZW FUZE ID: 15372347

SHEET TITLE:

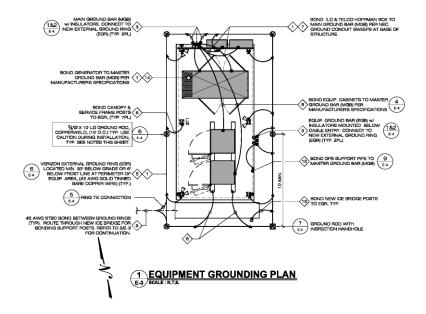
SCHEMATIC ONE-LINE RISER DIAGRAM, **DETAILS & NOTES** 

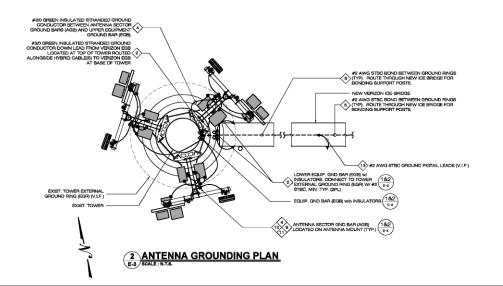
E-2

#### **TYPICAL GROUNDING NOTES**

- GROUND PER NEC (NFPA-70), NESC AND MANUFACTURERS SPECIFICATIONS
- #30 GREEN NS.LATED STRANDED COPPER DOWN LEAD WITHIN 110 BETWEEN LPPER EQUIPMENT GROUND BARF AND LOWING EQUIPMENT GROUND BARF AND LOWING EQUIPMENT GROUND COMOUNT ALONGOSE HERRO CASE, COOKINGTIS, (WHERE APPLICABLE), COOKINGTA WY VERIZON CONSTRUCTION MANAGER AND OWNER BOND CONDUIT TO GROUND SARS) WITH FAST AND GREEN INSLATED STRANDED GROUND SARS) WITH FAST AND GREEN INSLATED STRANDED GROWNER WIFE (WHOSE APPLICABLE), REFER TO EL 4 FOR DETAILS. **2**
- 43/0 GREEN INSULATED STRANDED COPPER DOWN LEAD WITHIN 1°C BETWEEN ANTENNA SECTOR GROUND BAR & UPPER EQUIPMENT GROUND BAR (EGB). REFER TO E-4 FOR DETAILS.
- 6 BOND CANOPY POSTS, STEEL SERVICE FRAME POSTS & STEEL DUNNAGE FRAME (WHERE APPLICABLE) TO VERIZON EXTERIOR GROUND RING (EGR) W/ #2 AWG SOLID TINNED BARE COPPER WIRE (STRO); IN 1'LTC.
- BOND VERIZON INTEGRATED LOAD CENTER & TELCO HOFFMAN BOX TO EQUIPMENT GROUND BAR (EGB) W/ #6 AWG GREEN INSULATED STRANDED COPPER WIRE.
- BOND VERIZON WIRELESS EQUIPMENT & BATTERY CABINETS TO VERIZON EQUIPMENT BAR (EGB) WITH #2 AWG GREEN INSULATED STRANDED COPPER WIRE PER MANUFACTURERS SPECIFICATIONS.
- BOND HYBRID/COAXIAL CABLES TO ANTENNA SECTOR GROUND BARS & EQUIPMENT GROUND BAR (#GB) AT CANOPY W/ #6 AWG GREEN INSULATED STRANDED COPPER WIRE.
- GROUND RRHS, QUAD DIPLEXERS & OVP TO ANTENNA GROUND BAR W/#6 AWG GREEN INSULATED STRANDED COPPER WIRE PER MANUFACTURERS RECOMMENDATIONS.
- BOND GPS ANTENNA MOUNTING MAST (AS APPLICABLE) TO MAIN GROUND BAR W/ #2 AWG GREEN INSULATED COPPER WIRE.
- (13) BOND ALL ICE-BRIDGE POSTS TO EXTERNAL GROUND RING (EGR) WITH #2 SOLID TINNED WIRE
- BOND NEW GENERATOR PER MFR AND NEC REQUIREMENTS, TYP.

#### GROUNDING GENERAL NOTES:


- ALL SURGE SUPPRESSION DEVICES (WHERE APPLICABLE) SHALL BE BONDED TO EQUIPMENT GROUND BAR (EGB) PER MANUFACTURERS SPECIFICATIONS.
- ALL IN-GROUND RINGS, RADIALS, AND BONDING CONDUCTORS SHALL BE #2 AWG SOLID BARE TINNED COPPER (SBTC) ALL AT SAME 30 IN. DEPTH OR 6 IN. BELOW FROST LINE WHICHEVER IS GREATER.
- 3. ALL GROUND RINGS SHALL BE MIN 2 FT FROM FOUNDATION BEING ENCIRCLED.
- COMBINE IN-GROUND RINGS, RADIALS, AND BONDING CONDUCTORS INTO SINGLE CONDUCTOR FOR ALL PORTIONS PARALLEL 2 FT APART OR CLOSER.
- UNLESS NOTED OTHERWISE, ALL ABOVE GROUND CONDUCTORS SHALL BE MIN #6 AWG INSULATED STRANDED COPPER.
- CONDUCTORS BONDING ABOVE-GROUND CONNECTIONS TO IN-GROUND CONNECTIONS SHALL
  BE MIN #2 AWG SBTC UNLESS NOTED OTHERWISE AND SHALL BE PROTECTED BY LIQUIDTIGHT
  FLEXIBLE NONMETALLIC CONDUIT FOR ALL PORT NON SABOVE GROUND.
- 7. REFER TO GROUNDING NOTES & SPECIFICATIONS ON SHEET N-1 FOR MORE INFORMATION.


| GROUNDING LEGEND |                                                                   |  |  |  |  |
|------------------|-------------------------------------------------------------------|--|--|--|--|
| SYMBOL           | DL DESCRIPTION                                                    |  |  |  |  |
| *<br>*<br>*      | EXOTHERMIC WELD MECHANICAL CONNECTION GROUND ROD GROUND CONDUCTOR |  |  |  |  |
|                  | GROUND ROD W/ INSPECTION<br>HAND HOLE                             |  |  |  |  |

SITE LITLITY NOTES:

1. CONTRACTOR SHALL ENGAGE THE SERVICES OF AN UNDERGROUND UTILITY LOCATING COMPANY TO LOCATE ALL UNDERGROUND EQUIPMENT IN THE TRENCHING AREA TO AVIOL ANY DAMAGE.

- CONTRACTOR TO COORDINATE TRENCHING OPERATIONS W/ OWNER AND/OR MANAGEMENT COMPANY SO AS TO MINIMIZE DISRUPTIONS TO THE EXIST. PROPERTY OPERATIONS.









567 VAUXHALL STREET EXTENSION - SUITE 311 WATERFORD, CT 06365 PHONE: (860)-663-0 WWW.ALLPOINTSTECH.COM FAX: (860)-663-0

NO DATE REVISION
0 10/05/22 FOR REVIEW: J
1 10/31/22 REVISED: JRM

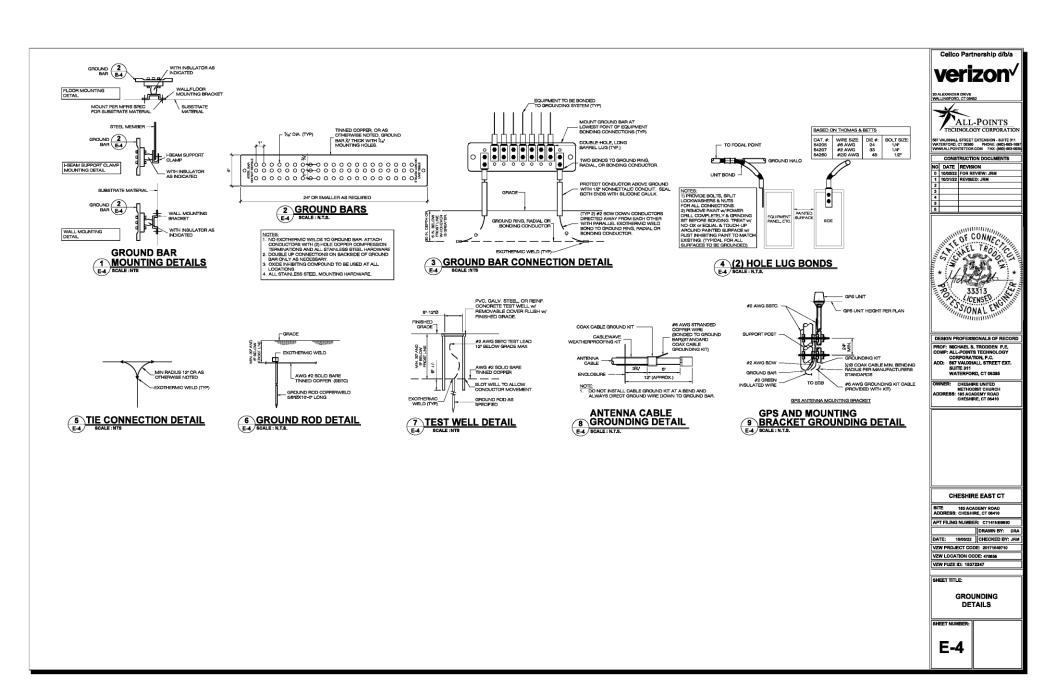


DESIGN PROFESSIONALS OF RECORD PROF: MICHAEL S, TRODDEN P,E, COMP: ALL-POINTS TECHNOLOGY CORPORATION, P.C. ADD: 567 VAUXHALL STREET EXT. SUITE 311 WATERFORD, CT 06385

OWNER: CHESHIRE UNITED

CHESHIRE EAST CT

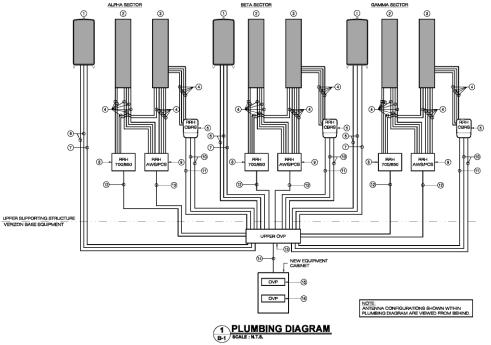
SITE 185 ACADEMY ROAD ADDRESS: CHESHIRE, CT 06410


DRAWN BY: DRA 10/05/22 CHECKED BY: JRM

VZW PROJECT CODE: 20171649710 VZW LOCATION CODE: 470656 VZW FUZE ID: 15372347

SHEET TITLE

**EQUIPMENT GROUNDING PLANS &** NOTES


E-3



| EQUIPME | ENT SPECIFICATIONS                   |     |         |                     |                     |                     |                     |                 |
|---------|--------------------------------------|-----|---------|---------------------|---------------------|---------------------|---------------------|-----------------|
| SECTOR  | ANTENNA MAKEMODEL                    | QTY | AZIMUTH | EQUIPMENT<br>STATUS | HEIGHT<br>(IN)      | WIDTH<br>(IN)       | DEPTH<br>(IN)       | WEIGHT<br>(LBS) |
| ALPHA   | SAMSUNG MT6407-77A                   | 1   | 60,     | NEW                 | 35.1 <sup>™</sup>   | 16.1(1)             | 5.51 <sup>PQ</sup>  | 87.10           |
|         | 700/850/2100: JMA MX06FIT665-02      | 1   | 60°     | NEW                 | 71.3                | 12.2                | 10.7                | 51.0            |
|         | 700/850/1900/2100: JMA MX10FIT665-02 | 1   | 60°     | NEW                 | 70.9                | 12.2                | 7.5                 | 53.4            |
| BETA    | SAMSUNG MT6407-77A                   | 1   | 180°    | NEW                 | 35.1 <sup>09</sup>  | 18.1 <sup>(R)</sup> | 5.51 <sup>FR</sup>  | 87.1            |
|         | 700/850/2100: JMA MX06FIT665-02      | 1   | 180°    | NEW                 | 71.3                | 12.2                | 10.7                | 51.0            |
|         | 700/850/1900/2100: JMA MX10FIT865-02 | 1   | 180°    | NEW                 | 70.9                | 12.2                | 7.5                 | 53.4            |
| GAMMA   | SAMSUNG MT6407-77A                   | 1   | 300°    | NEW                 | 35.1 <sup>(5)</sup> | 16.1 <sup>(3)</sup> | 5.51 <sup>(5)</sup> | 87.1            |
|         | 700/860/2100: JMA MX08FIT885-02      | 1   | 300°    | NEW                 | 71.3                | 12.2                | 10.7                | 51.0            |
|         | 700/850/1900/2100: JMA MX10FIT685-02 | 1   | 300°    | NEW                 | 70.9                | 12.2                | 7.5                 | 53.4            |
|         | APPURTENANCE MAKE/MODEL              |     |         |                     |                     |                     |                     |                 |
|         | SAMSUNG B2/B66A RRH (RF4439d-25A)    | 3   | -       | NEW                 | 15.0                | 15.0                | 10.1                | 97.5            |
|         | SAMSUNG B5/B13 RRH (RF4440d-13A)     | 3   | -       | NEW                 | 15.0                | 15.0                | 9,1                 | 82.0            |
|         | SAMSUNG CBRS RT4401-48 RRH           | 3   | -       | NEW                 | 10.6                | 8.9                 | 3,0                 | 11.0            |
|         | RAYCAP RVZDC-8627-PF-48              | 1   | -       | NEW                 | 29.5                | 16.5                | 12.6                | 26.9            |

|          |                               |          |         | BILL OF MATERIALS                                                                        |
|----------|-------------------------------|----------|---------|------------------------------------------------------------------------------------------|
|          | EQUIPMENT DESCRIPTION         | QUANTITY | LENGTH  | COMMENTS                                                                                 |
| )        | LS6 ANTENNA w/ INTEGRATED RRH | 3        |         | (SAMSUNG MT8407-77A)                                                                     |
| 9        | 700/850/2100                  | 3        |         | (JMA MX08FIT665-02)                                                                      |
| 3)       | 700/850/1900/CBRS             | 3        |         | (JMA MX10F/T885-02)                                                                      |
| 0        | 1/2" JUMPER CABLE             | 48       | 15 FT   | ROUTED FROM RRHS TO ANTENNAS                                                             |
| 0        | OBRS RRH                      | 9        |         | SAMSUNG CBRS RT4401-48A MOUNTED TO NEW ANTENNA MOUNT                                     |
| 9        | ANTENNA LINK CABLES           | 6        | 15 M    | ROUTE FROM UPPER OVP TO LS6 ANTENNA                                                      |
| D        | ANTENNA POWER CABLES          | 3        | 15 M    | PROPIETARY POWER CABLE FROM EXIST. OVP TO LS6 ANTENNA                                    |
| D        | 850/700 DUAL BAND RRH         | 3        |         | SAMSUNG B5/B13 RRH (RF4440d-13A) MOUNTED TO NEW ANTENNA MOUNT                            |
| <u> </u> | PCS/AWS DUAL BAND RRH         | 3        |         | SAMSUNG B2/666 RRH (RF4439d-25A) MOUNTED TO NEW ANTENNA MOUNT                            |
| 0        | CPRI CABLES                   | 6        | 25 FT   | ROUTE FROM UPPER OVP TO RRH                                                              |
| <u>1</u> | 10 AWG x2 DC POWER CABLE      | 3        | 25 FT   | PROPIETARY POWER CABLE FROM UPPER OVP TO RRH                                             |
| 3        | RRH CABLES                    | 6        | 15M     | PROPRIETARY POWER & FIBER CABLES                                                         |
| 3)       | UPPER 120VP                   | 1        |         | (RVZDC-8627-PF-48) MOUNTED TO NEW ANTENNA MOUNT                                          |
| 3)       | HYBRID CABLE                  | 1        | 130± FT | 12:24 LOW INDUCTANCE (L.I.) HYBRID FEED-LINE CABLE ROUTED FROM LOWER OVP(s) TO UPPER OVP |
| 6)       | LOWER BOVP                    | 2        |         | (6 OVP) PACK MOUNTED IN NEW EQUIPMENT CABINET                                            |

- 1. INFORMATION SHOWN NEEDON IS FOR USE BY VERZON EQUIPMENT OPERATIONS.
  2. INFORMATION SHOWN NEEDON INFORMATION ON THE PROPERTY OF THE PROPERTY



Cellco Partnership d/b/a verizon



567 VAUXHALL STREET EXTENSION - SUITE 311 WATERFORD, CT 08385 PHONE: (860)-963-10 WWW.ALLPOINTSTECH.COM FAX: (860)-963-01

NO DATE REVISION
0 10/05/22 FOR REVIEW: JRM
1 10/31/22 REVISED: JRM



DESIGN PROFESSIONALS OF RECORD PROF: MICHAEL S, TRODDEN P.E.
COMP: ALL-POINTS TECHNOLOGY
CORPORATION, P.C.
ADD: 567 VAUXHALL STREET EXT.
SUITE 311
WATERFORD, CT 06385

WHER: CHESHIRE UNITED METHODIST CHURCH ADDRESS: 185 ACADEMY ROAD CHESHIRE, CT 06410

CHESHIRE EAST CT

SITE 185 ACADEMY ROAD ADDRESS: CHESHIRE, CT 06410 APT FILING NUMBER: CT141NB9650 DRAWN BY: DRA 10/05/22 CHECKED BY: JRM VZW PROJECT CODE: 20171649710 VZW LOCATION CODE: 470656 VZW FUZE ID: 15372347

SHEET TITLE: RF BILL OF MATERIALS & EQUIPMENT SPECIFICATIONS

**B-1** 

BHALL NOT BE MADE WITHOUT WINTED APPROVAL OF THE OWNER OR AND STORE GRILL BE PERFORMED IN ACCORDANCE WITH BECTION 4.54.4 OF THE CO.S. BECTIOT FOR THE SOLVICUL, AND/COST BECTION 4.54.4 OF THE CO.S. BESTORE FOR THE SOLVICUL, AND/COST BECTION TO WORK TO THE CONTROL OF THE SOLVICUL AND/COST BECTION TO WORK TO THE CONTROL OF THE SOLVICUL AND/COST BECTION TO WORK TO THE CONTROL OF THE SOLVICUL AND/COST BECTION TO WORK TO THE CONTROL OF THE SOLVICUL AND/COST BECTION TO WORK TO THE CONTROL OF THE SOLVICUL AND/COST BECTION TO WORK TO THE CONTROL OF THE SOLVICUL AND/COST BECTION TO THE SOLVICUL AN DESIGN BASIS: GOVERNING CODES/DESIGN STANDARDS: ALL CONTRACTORS BHALL SUBMIT SHOP DRAWINGS OF ALL EQUIPMENT AND MATERIALS TO THE ENGINEER FOR APPROVAL PROBITO FABRICATION AND INSTALLATION, AND SHALL NOT PROCEED UNTIL INTERNATIONAL BUILDING CODE (BC) AS AMENDED BY THE AND MATERIALS TO THE ENGINEER FOR APPROVAL PROFITO FABRICATION AND INSTALLATION, AND SHALL NOT PROCEED UNTIL ENGINEER APPROVAL IN WITTING IS RETURNED. SUCH CONTRACTION SHALL MAINTAIN ON JOS STEEL COMPLETS BUT OF SHOT DRIWNINGS WITH MAY DEVALORIZE FROM THE CONTRACT PRIVAL PRIVALE PRIVAL 05 STEEL: CATIONS SHALL INCLUDE THE GENERAL SPECIFICATION WITH ANY DEVALORS FROM THE CHARLE ELROW ITHOUT SEEM OF THE MOTION AND SETTING AND ESTIMATE SHALLS ELROW ITHOUT SELECTION OF THE MOTION AND SHALL FOR THE MOTION AND SHALL FOR THE MOTION AND SHALL FOR THE MOTION AND SHALL FROM AND SHALL FROM AND SHALL FROM AND SHALL FROM SHALL DESKN CRITISIA RISK CATEGORY (CANOPY): II (BC 2021 TABLE 1604 5) RISK CATEGORY MOUNTS: II (TA-222-H. TABLE 2-1) WIND LOADS: MISC. STEEL. ARTHAN AND HIS TO THE LINED IN MORK AND EXPONENCE CHIPTER CALL HAVE NOT AND THE TOTAL LINED IN MISC. AND CALL PROVIDED AND CA ULTIMATE BABIO WIND SPEED, V<sub>LT</sub> CONTRACTORS RESPONSIBILITY ON THE JORRITE SHALL SE ADSQUATELY SECURED, MAINTAINED, AND PROTECTED, SO AS NOT TO SECONS DAMAGED OR ORGATE ANY HAZARD TO PERSONNIL OR THE DON'TRACTORS HOURS OF WORK SHALL BE IN ADDORDANCE WITH LODAL CODES AND DROMANDES AND BE APPROVED BY THE OWNER. DEPOSURE CATEGORY CONTRACTOR BY THE OWNERS AND BE APPROVED BY THE OWNERS AND READ TH IDELOAD BASIC WIND SPEED (V) - 50 MPH (TA-222-H, ANNEX B) W/ OII 5-SIC GUST ENCOUNTERIO

ALL TRESCOURTE WORK REQUIRED OF BREDZIED OF AN A PART OF THE WORK, SENDING THE CHARLES TH SESION IOE THICKNESS (T) = 1.00\* (TLA-292-H, ANNEX III) ROOF LIVE LOAD, \$LUB 20 PSF (BC 2021 TABLE 1607-1) MEN BEFORD.

ANY DESTING UTILITY, SERVICE, STRUCTURE, EQUIPMENT, OR FORTURE
CONSTRUCTING THE WORK SHALL BE REPOWED ANDOR RELOCATED AS
DIRECTED BY THE CONSTRUCTION MANAGER. 2 OUSE!
ALL BOLTS, AND-ORB AND MISCELLANDOUGH INFORMACE EPOPEED TO WEATHER SHALL BE GALLAWARD IN ADDISHARD WITH METHAL ARTS. AND THE GALLAWARD IN ADDISHARD WITH METHAL ARTS. AND ADDISHARD SHALL BE EXPANDED BY TOUGH BY ADDISHARD SHALL BY TOUGH BY DAVID BY TOUGH BY DAVID BY TOUGH BY TOUGH BY DAVID BY TOUGH BY TOUGH BY DAVID BY TOUGH BY 8NOW LOAD SROUND SHOW LOAD (Pg) = 50 PSF (2022 C8B0 APPENDX P) RDCF SNOW LOAD (Pg) = 50 PSF (AN PSR 2022 C8B0 ADD 1008 1.1) (ASCE 7.4 6) SEC 7.3 4, O INCREDIO BY THE COMMENTATION ANALOSSIS.

A RABBERTO IS INCONSTRUCTOR MANAGEMENT AND ANALOSSIS OF A RABBERTO IS INCONSTRUCTOR INCONSTRUCTOR ANALOSSIS OF A RABBERTO IS INCONSTRUCTOR ANALOSSIS OF A RABBERTO IS INCONSTRUCTOR ANALOSSIS OF A RABBERTO INCONSTRUCTOR ANALOSSIS OF A RABBERTO INCONSTRUCTOR ANALOSSIS OF A RABBERTO ANALOSSIS OF A RABB BEISMIC LOAD: PANT APPLIED IN SICH OF FELD.

THE IMPRIESE HALL BE NOTHED OF ANY NODEWORLY PARTICULAR DAMAGED OF OTHERWISE MIRRITHING OR NODEONOGENING INSTEALS OF CONCINCION TO REMEDIAL OF CONSISTING ANY SUCH STRUCKLY AND CONSISTING AND ANY SUCH STRUCKLY AND ANY SUCK STRUCK ST REFER TO SECTION 1613 OF THE 2016 EGIZO16 CONNECTICUT 61 BULDING CODE FOR SEISMIC CLASS FIGATION AND LOADING DETERMINATION 04 CONCRETE: THESE SPECIFICATIONS SHALL INCLUDE THE DENIFIAL SPECIFICATIONS HEREIN CONTRACTOR TO REMOVE AND RE-NISTALL ALL FIRE PROOFING AS REQUIRED DURING CONSTRUCTION OT GENERAL: \*\*REPLYATIONS USED IN THESE SPECIFICATIONS NOLLDE THE DI GENERAL

AMERICAN CONCENTRATION

AMERICAN CONCENTRA THE STEEL STRUCTURE SHALL BE DESCRIBE TO BE SELF-SLIPPOPERING.
THE STEEL STRUCTURE SHALL BE DESCRIBE TO BE SELF-SLIPPOPERING.
BESTONE BLUTT TO DETERMANE EXPORTION PRODUCEDURE AND SOCIETY OF STRUCTURE AND TO INCLUDE THE SHAPETY OF THE SILLDING AND TO COMPONENT.
AND TO INCLUDE THE SHAPETY OF THE SILLDING AND TIE COMPONENT. BRIGHIGATIONS HEREIN.

ALL CONGRETE CONSTRUCTION SHALL INI DONE IN ACCORDANCE
WITH THE AMERICAN CONORETE INSTITUTE (AC) CODES 901 & 318,
LATEST REVISION. ALL CONCRETE USED SHALL BE 4000 PSI (28 DAY COMP STRENGTH). THE CONCRETE MIX SHALL BE BASED ON USING THE FOLLOWING MATERIALS AND PARAMETERS. PAYTE DURNO ENECTION
ALL STEEL REMINTS BHALL BE INSTALLED PLANS AND LEVEL
TOWER MANUFACTURERS DESIGNS SHALL PREVAIL FOR TOWER
CONNICTIONS SHALL BE DISSORSE BY THE FASIFICATION AND
CONSTRUCTION ACCORDANCE WITHTHE LATEST EDITION OF THE LAGS. POLICADO COMENTE: ASTM OTBS, TI
AGORIDATE: ASTM OTBS, TI
AGORIDATE: ASTM OTBS, TI NOH MAX
WATER: POTABLE:
AGMICUNE: NON-OHLORICE!
AR: 88"
SULMP: 4 INDH CONTROLLEGE AND ASSESSMENT OF THE SEASON ASSES NPTA INSTITUTE TO VITE TO ASSOCIATION OF CONTROL OF CONTROL AND ASSOCIATION OF CONTROL OT CONTROL OF CONTROL O \*ALL CONORETE DIPOSED TO FREIZING WEATHER SHALL CONTAIN INTRAINID AIR PER AC 211 TABLE 4.2.1 OF ACI 515-05. LIGHTAN INTRIANID AR PIRACE 21 TABLE 4.2.1 OF AG 1916 OR ALL RENCROUND GITES, CHAIL BE ARTH MAIR, G. PRO DEPORMED, WELLED WIFE FARRIC SHALL CONFORM TO ARTH A18 WILLIGH STIEL, WHIE FRANC SHALL CONFORM OR ARTH MOVED THE WIFE FARRIC SHALL BOX OF ARTH ALL HOOKS SHALL SE AND STANDARD LING. RESPONDED AND THE WIFE COURSE THE ARTHUR RESIDUED AND THE DIVIDENCE OF THE SHALL AND BUT AND CONTROLL TO CONTROL TO WITHOUT AND CONTROL TO MAKE AND CONTROL TO AND CONTROL TO MAKE AND CONTROL TO AND CONTROL TO MAKE AND CONTROL T ANY REPERINCE HEREIN TO AN OR EQUAL ITEM, THAT EQUAL ITEM SHALL BE FIRE APPROVED BY THE CONSTRUCTION MANAGER BEFORE THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL: SPALE SE TEMPORALE COORDINATE THEIR WORK WITH ALL OTHER TRADES
ALL TRADES SHALL COORDINATE THEIR WORK WITH ALL OTHER TRADES
AND OTHER WORK AND CONDITIONS AS A PHYDMINIST OF REGULED TO
AND CONFLICTS. RESCUES AND COORDINATE ALL CONFLICTS WITH
ALL PREVIOUS WORK AND SIZE OPERATIONS. COORDINATION WITH HE
SEARCH SHALL SEW WITH HE OWNER, ON COMMENTS SPECHAL
THE OBJUST OF THE RESERVATION SEARCH SPECHAL
THE OBJUST OF THE RESERVATION SEARCH SPECHAL
THE OBJUST OF THE RESERVATION SEARCH SEARCH TO THE AND ALL ATTORNOON. + ONDREIC GAST AGAINST SARTH - 3 N

+ CONDREIC BAST AGAINST SARTH - 3 N

+ CONDREIC BAST AGAINST SARTH - 3 N

+ #6 AND LAPGER - 2 N

- #6 AND SAALUR - 1 1/2 N

- CONDREIC BAST BAST SARTH ■ #6 AND SMALLER = 1 1/2 IN COMPRIETE NOT DORDED TO EARTH OR WEATHER OR NOT CAST AGAINST THE GROUND:
■ BLAS AND WALL = 3H N
■ BLAS AND COLLERS = 11/2 IN THIS REGISTAT.

ALL WORK MALL SE IN STRICT ACCORDINATE WITH ALL APPLICABLE EIGHT NOR OF ALL APPLICABLE COOLER AND BHALL SE ACCEPTABLE TO COST BETWEEN ALL APPLICABLE COOLER AND BHALL SE ACCEPTABLE OF COST BETWEEN ACCEPTABLE AND SECTOR OF AND AND ADDRESS AND A SEAL ALL PENETRATIONS AND SEARS SETWEEN MASONRY AND STEEL
WITHOUGH COOKING THE DAY SEAL AND OF DAY HE 97 THERMAL & MOISTURE PROTECTION:
THESE SPECIFICATIONS SHALL NOLIDE THE GENERAL SPECIFICATIONS
HEISEN A 8/4 N. CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EXXES OF CONORITE, IN ACCORDANCE WITH AC 301 BIDTION 4.2.4. CONCRETE SHALL BE PLACED IN A UNIFORM MANNER AND CONSCLIDATED IN PLACE. HEIRIN
PRE-BIOF ALL RINGTING TOMOST HICUSH BULDING WALLS FLOORS,
AND CILLINGS WITH LISTED AND ACCOUNTS WETRALS TO MAKE
AND CILLINGS WITH LISTED AND ACCOUNTS WETRALS TO MAKE
AND CILLINGS WITH LISTED AND ACCOUNTS AND ADDRESS
WALL SEE MAKE OF TITED, AND PREMINENTLY SECULED IN PLACE
FEREITEDPING BALL SEE MISTALLID IN ACCOUNTS WITH HARMSHIP
AND ADDRESS OF THE MAKE AND ADDRESS OF THE MAKE
ANY LIST AND ADDRESS OF THE MAKE AND ADDRESS RECORMINENDATION
AND ADDRESS OF LISTEDISM AND ADDRESS RECORMINENDATION
AND ADDRESS OF LISTEDISM AND ADDRESS AND ADD CONTRACTOR BY HALL PROVIDE ALL LABOR, MATERIALS, INSUPANCE, BOURMENT, INSTALLATION, CONSTRUCTION TOOLS, TRANSPORTATION, ITC., FOR A COMPLETE AND PROPURLY OPERATIVE AND USUALLY SYSTEM THE CONTRACT AND AS INDICATED ON THE DRAWINGS AND AS SPECIFED FERR MANQOR OTHERWISE REQUIRED. CONCRETE FOOTINGS SHALL BE CAST AGAINST LEVEL, COMPACTED, NON FROZEN BASE SOLL FREE OF STANDING WATER

OS ANCHORS:
THEIR EPECIFICATIONS SHALL INCLUDE THE GENERAL SPECIFICATIONS
HEREIN CONTRACTOR SHALL VERIFY ALL EXISTING CONDITIONS, INSTALLATIONS, AND EQUIPMENT IN THE FIELD PRIOR TO BID, FABRICATION, AND INSTALLATION OF ANY WORK INTERLATION OF MAY WORK

OWTHWOTONS SHALL WEIPY ALL DIMINISONS AND CONDITIONS IN THE
FIELD PRICE TO FRANCATION AND DIRECTION OF MAY MATERIAL THE
UNINESS HALL BE ROFFED FOR INRECTIONS INVOLVED THE MORE TO GLOSING
COMMULTION OF THE WORK IN ADDIRECTION WITH THE DIMINIAGET
DOLARMITS ON THE WORK IN ADDIRECTION WITH THE DIMINIAGET
OOLARMITS EXPANSION ANCHORS SHALL BE USED WHERE ATTACHING TO CONDICTE. MADONITY MOUNTS SHALL HAVE INJECTION ADHESIVE ANCHORSES. BOYANDON BOLTS BHALL BE HILT KWK BOLT S OR EQUAL MINIMUM EMBIDMENT 4 NOHES. AMERICAN A HOUSE AND AND A STREET, AND AND A STREET, AND AND AND A STREET, AND AND AND A STREET, AND DOCUMENTS
CONTINUETOR SHALL VIST THE SITE TO IMMINISE AND DAHA APPROVAL
FOR ALL TROWN DISPLETIONS, POWER CUT/AGE, WORK SCHEDLES,
DEPARTION OF WORK AREA AND WORK STORME, FINISH
BULDINASTE ACCISES, NOSE AND CLEMALISES REQUIRIMENTS WITH
THE SULEDWISHER HAVAGEMENT PROVITO ALL WORK, ANY
DISPLETIONS SHALL SE KEYT TO A MINIMUM AND SHALL SE
MELLISHED TO A VIOLENTIA PREPOVAL OF THE OWNER. ANY BELL DIE ROOF PERITENCE OF REFERENCE BALL BAT THE TIME OF REFERENCE BALL BAT BELL DIE ROOF PERITENCE OF OR RESIDENCE DOES BALL BE PERFORMED SO THAT ROOF WARPAINT N PLACE B NOT COMPROMED ON THAT DOES THAT THE PERFORMANT AND ALL ROOMS WORK IF ROOMS CONTRACTOR SHOULAND ANY BAND ALL ROOMS WORK IF ROOMS ON THE PERFORMANT OF THE PERFORM THE CONTRACTOR BYALL BAPESUARD AGAINST CREATING ANY HAZARO AFFECTING TENANT EGGESS OR COMPROMISING STE SECURITY ALL PENETRATIONS INTO OR THROUGH BULDING, B-IELTIER, EQUIPMENT, CABINET, AND SIMILAR ENCLOSURE EXTERIOR WALLS, SHALL BE SEALED WITH BE LOON BRAIL RE. THROUGH FACE.

NUSCTION AND RESPONSANCH OR SOLD MARGHET AND GROUT FULL DIE DON GHALL BE HETH HET HIS SIG DIE BOUM, WITH THREATD ROOL MANTHA, "IS HORSE BETWEEN AND HORSE AND ALL FIRST EDGES MINIMAM SPACKAR BOUNDED, MANTHA BOUNDED BE BOOKED MANTHAM SPACKAR BOUNDED BE BOOKED AND HORSE BOOKED BOTH AND HALL BOTT BE INSTALLED BY NOTIFIED BOOKED BOOKED BOTH AND HALL BOTT BE INSTALLED BY NOTIFIED BOOKED BOTH AND HALL BOTT BE INSTALLED BY ADMITTING AND HE BOTT BOOKED BOTH BOOKED BOOKED BOTH BOOKED BOTH BOOKED BOOKED BOTH BOOKED BOOKED BOTH BOOKED BOOKED BOTH BOOKED BOOKED BOTH BOOKED BOOKE PROR TO ALL BELOW-GRADE WORK AND ANY SUPPACE WORK IN A NEW AREA FOR STRUCTURES OR VEHICLES, CONTRACTOR SHALL NEW WARLA FOR STRUCTURES ON VEHICLES, CONTINUED ON SALE.

NEW WARLA FOR STRUCTURES TO DENTIFY ANY INDESENDANCE

STRUCTURES, CONSULTE, AND PREMISE IN THE AREA ALL DOSTTON

STRUCTURES, CONSULTE, AND PREMISE IN THE AREA ALL DOSTTON

WINDESSCROUND OFF, THE STRUCTURES OF SECONDANTIESD, PAPEL, SE

PROTECUTE AT ALL THESE SCREENING WANTON SHOULD SELVED BY THE

CONTINUED WHEN DIGGING OF SECONDANTIESD. GRATING GHALL BE ATTACHED -NSTALLED ANCHORS: AROUND OR NIAR BURD UTILITIES CONTRACTOR IS NAV MANNER.
REPARE, REP. ACIMIENT, AND ALL DAMAGES DUE TO DAMAGE OF

OHERVE MORE INSPERVIOUS NETWORKS NETWORK INSPERVIOUS INTO THE NETWORK IN THE NETWORK INTO CONCRETE AND SUPPORTING A SUBTIMISE OF THE NETWORK IN THE NETWORK INTO CONCRETE AND SUPPORTING A SUBTIMISE NETWORK IN THE NETWORK IN THE NETWORK IN THE NETWORK IN ACCOUNT IN THE NETWORK IN THE NETWORK

CHITTIFICATION PRICINAMA.

ANCHORS SHALL BE INSTALLED PER MANUFACTURERS

BECOMMENDATIONS AND IS-FALL NOT TO BE INSTALLED IN MOREAR.

JOINTE
AS PRI COMA 29 CHY 1928 I 193 BLICA DUBT CONTROL PIRALIATIONS,
DRILLIP HOLDS FOR POST NETALLID ANCHORN CONCRETE AND
MARCHAY BHALL BE INSTALLED UNDER HIT MAYE BET INSTALLATION
BYSTEM WHICH COMPRISED OF A COCK APPROVED HIT, HOLDING DIRLIP
STAND WACHES, A TUBBANTE BRITALATION METROD AND ALL
DIRLIP HOLDING HOLDING HOLDING HEALING
ALLONGE WITH AN APPROVED DUBTLESS SYSTEM THAT MAINTAINS
BUILDS DUBT SINGSON BILO, ON THE PRIMINGIBLE LUVELY.

THE PROPERTY OF THE PROPERTY O

UTILITIES BY HE OPERATION ALL DISHAFET AND MATERIAL LOCATIONS, ROUTING CHEMISTICS, SOLUTIONS, SPECIOLATION AND DESIREMA, INSTALLID CHEMISTICS, MICHAEL BE CONSIDERED DISHAFAMANTA OF INSTALLID CHEMISTERISTICS BY HELD BE CRETERIAND IN THE PELO PRIOR TO ANY INSTALLATION, ANY DISPERSIONS THAT MAY CAUSE SOLUTIONS OF THE CHEMISTICS AND STREET AND TO THE ATTENTION OF THE OWNER OR DESIREMENT PROPERTY OF THE ATTENTION OF THE OWNER OR DESIREMENT PROPERTY ON THE OWN WORK.

ATTENTION OF THE COMERGE OF ENGINEER PROOF TO ANY WORK ALL RETURNSHEED REFE IN TO WEST ACTION OF ANY CONDITION OF STE, PELD, RANK, OR SPECIFICATIONS PROOF TO ANY WORK SHALL BE THE FALL RESPONSED TO OTHER CONTROL TO ANY AND ALL ADDITIONS, MODIFICATION AS THE PROOF AND ALL ADDITIONS, CHANGES REPAIR ON DEMOLITION AS A RESPECT OF ANY ADDITION OF THE CONTROL TO ANY ANY ADDITION OF THE PROOF ANY ADDITION OF THE PELL RESPONSED THE ANALYTY.

CHAMBER LOUALTY

ALL NOTES THE SEET SHILL APPLY IN LIBBS RECORDALLY AND TO CHAMBER SHEET SHILL APPLY IN LIBBS RECORDALLY AND TO CHAMBER SHEET SHILL APPLY IN LIBBS RECORDATION AND THE ADMINISTRATION OF THE ADMINISTRATION AND THE A

OTOR SHALL PROVIDE ALL CUTTING AND PATCHING AS CONTRACTOR SHALL PROVIDE ALL CUTTING AND PATCHING AS REQUIRED FOR THE INSTALLATION OF HIS WORK, ANY PATCHING SHALL MATCH DOSTING SUPPOLISIONS AREA IN ALL RESPONSED. ALL REMOVED MATERIAL SHALL SE REMOVED FROM THE PREMISES DALY IN AN ACCOUNTS CARE MANNER.

ALL BURPLUS MATERIAL BHALL BE REMOVED FROM THE STE PROMPTLY WHEN DECEMED TO BE SUPPLUS.

MENT CONTROLLER HALL BE RESPONSEL FOR THE PROTECTION OF HIS WORK AND HEMA'S MERTALED OR DICTIFIC WORK, INCLUDING WORDSTON OF THE CITE, ALL PRINCIPLES, AND ALL COOLINGS APPROPRIATE SAFEERS, SAFETY GLARDS, SIGNAGE, AND SECURITY AS RECUITED.

ALL CONTRACTORS BYALL PROVIDE ALL NECESSARY TOOLS, FXTURES, SERVICES, MATERIALS, JOS AND REPSONNEL REQUIRED FOR THE INCOUTION OF THEIR WORK.

ALL WORK SHALL BE PERFORMED BY LICENSED CONTRACTORS IN THE TRADE HAVING JURISDICTION.

TON, ADDITION, OR CHANGE IN DEGION

28 ELECTRICAL: L BLECTRON, CONDUCTORS:

• INSULATION BYALL BE MINIMUM 600V TYPE THINN, THIMIN-2, OR MINIMUM CONDUCTORS SHALL BE SOFT DRAWN BOW MINIMUM CONDUCTMITY PROPERLY RETINED COPPER. These instructions and a management and \*FEEDER GROUT CONDUCTORS BYALL BE ETHER COPPER OR ALUMINUM OF THE APPROPRIATE SZE FOR THE APPLICATION, OR AS SPECIFICALLY NOTED.

SPECIFICALLY NOTES:

\*FERMANENTLY LAREL OR TAG ALL CONDUCTORS WITH THER

GROUT DESIGNATION AT ALL TERMINATION ENDS, SPLICES, AND

VISILE AS PASS: THROUGH IN ALL ENCLOSURES. ALL CONDUIT, RACEWAY, WIREWAYS, DUCTS, ETC. SHALL BE LIETED AND SUITABLE FOR THE APPLICATION. ONLY THE FOLLOWING CONDUITS AS APPROVED AND LISTED FOR THE APPLICATION SHALL BE NO BUT MADE FOR THE PRODUCTION CAN IT HE POLLOWING COMPOUND AS APPRICACE AND LEMES FOR THE APPLICATION SHALL BE CONTRIBUTED FOR THE APPLICATION SHALL BE CONTRIBUTED AND CONTRIBUTIONS OF THE CONTRIBUTION OF

COMMITTENES CONTINUES PARA POR LIGHTISTET TARGETS META,
PORAL CORRECTIONS OF TO WARTHS OF LONG TO THE CONTINUES OF THE CONTIN SHALL NOT BE USED IN CONCRETE SLASS NOR EXPOSED WITHIN A BUILDING OF STRUCTURE. \*METAL CLAD CARLE (MC)
 \*CONCEALED INSTALLATIONS ONLY
 \*WITHIN A DUCT WITH SWOOTH OR CORRUSATED METAL JACKET AND IND CUTER COVERNIS OVER THE METAL JACKET.

IN FINISHED SPACES, ALL CONDUITS SHALL BE CONCEALED EXCEPT TO MAKE A FINAL CONNECTION TO EQUIPMENT NOT MOUNTED IN OR ADAINST ENISH IN ANTERIAL AMARIAT FREE HATTERIA.
ALL RECERNAD BROWNED CIRCUITS BRALL HAVE A REPARATE
PROPELLY SIZEO AND MARKES GROUNDING CONDUCTOR, PER
APPLICABLE CODER, THAT BOYDS ALL BNG CREEKS, BODES, ETC.
CONDUCT SHALL NOT SE URED AS A GROUNDING OR BOYDING
ORNOLLOTOR.

CONCINCTOR 18 N. BEST ARE SERVICE OR DESCRIPTION OF CONCINCTOR PRODUCTION OF THE CONCINCTOR SERVICE OF TO PERMAN, CONTINUED THAT THE SERVICE OF THE SERVICE OF THAT THE SERVICE OF THE SERVICE OF THAT THE SERVICE OF TH ALL EQUIPMENT, ENCLOSURES, ETC. SHALL BE SUTABLE FOR THE INSTALLID INSTALLONS.

NOTALLY TONS.

WITHOUTHOUS SHALL BE SMIGFICATION GRADE AND WITHOUTHOUTHOUTHOUTH PLATTE SHALL BE PLASTIC WITH ENSPAYING AS SMIGFIED.
OOLDS SHALL BE VORY. ALL DEVOES AND GOVER PLATES SHALL BE
OF THE SAME MANIFOLITIES.

ALL FIRE-RATED PENETRATIONS SHALL BE SEALED USING A SUTABLE AND LISTED FIRE SHALING DEVICE OR GROUT THAT WILL MANTAN THE FIRE RATING OF THE STRUCTURE PENETRATED. PROVIDE PERMANENTLY AFFORD INSPANIO NAMER ATTE FOR ALL COOL REQUIRED AND ALL PANES, MITTENS, 2000 ON ALL PANES, 2000 ON ALL BLECTRICAL CONTRACTOR IS RESPONSIBLE FOR ALL FINAL TERMINATIONS TO ALL EQUIPMENT.

TERMINATIONS TO ALL EQUIPMENT.
ALL ELECTROL, APPLICITUATIONS THAT AND DISCONNECTED SHALL IS
COMMUTELY REMOVED WITH EOSITING STRUCTURES TO REMAIN,
REVARED, FINSED, FALLES, FANTED, ETC. ALL PANEL, SCHEDLLES,
SCHIPMENT LASCLING, AND CODE REGILIED LASCLING, SHALL SE
VEHICES AND PROPERLY COMPLETES TO MITCH 11: THE NEXT LATIC. 26 GROUNDING: THESE SPECIFICATIONS SHALL INCLUDE THE SENERAL SPECIFICATION

HEREN
GROUND ALL SYSTEMS AND EQUIPMENT IN ACCORDANCE WITH BEST
INDUSTRY PRACTICIL, THE REQUIREMENTS OF THE NIPA 70 NATIONAL
BLOTTEGAL CODE (NEC), AND ALL OTHER APPLICABLE CODES AND
REGULA TYPINS.

SYSTIM.
ALL EQUIPMENT ENGLOSIAMES, DEVOTES, AND CONDUCTE SHALL BE CHOOLINGS BY THE INSTALLATION OF A BETWANTE GROUNDING CONDUCTION OF A MILE RECOGNIZATION OF THE STALL REGISTER OF SHAWONS CRITICATE BY IT IS STALL BY

SCHORUS WHE OR GROUT

FROM JALL HERIT, CONSISTE TO GRITHIN THAT ARE CONNICTED TO
NON-METALLO ENCLOSHING. IN ARCUND BOOKE, AND TO AN
HOLICURAR WHERE A GROUND BUS OR SHOPPING DO REUPING.
ACCOUNT, BUT HER BOOK WITH GROUNDING CONFUCITION MINIMAL
METALLO ENCOUNTED TO A GROUND BUS OFFICE MINIMAL
BUT CONFIDENCE TO TO A GROUND THE PER MINIMAL
BUT CONFIDENCE TO TO A GROUND THE THE MINIMAL
BUT CONFIDENCE TO TO A GROUND THE THE MINIMAL BUS ALLY
BUT CONFIDENCE TO THE A GROUND THE THE MINIMAL BUS ALLY
BUT CONFIDENCE TO THE SALIMENT GROUNDING AND LOAD SOE BONDING CONDUCTIONS IN SALIMENT GROUNDING AND LOAD SOE BONDING CONDUCTIONS OF LOADS AND LOAD SOURCE AND LOAD SOURCE AND LOAD SOURCE AND LOAD AND LOAD SOURCE AND LOAD SOURCE AND LOAD SOURCE AND MEZI ARROW THE STRANGARD FOR THIS DIRECTION OF LOOP, INCREMENTE GROUNDING CONDUCTION FROPORTIONALE Y TO THE GROUNDING CONDUCTION FROPORTIONALE Y TO THE CHOICE SECTIONAL AND LOT THE LUMISOURCED CONDUCTIONS. PLYCE MAIN BONDING JUMPERS AND GROUNDING ELECTRODE NOUCTORS SHALL BE SZED AND INSTALLED PER THE MINIMUM OF LAPPLICABLE CODES AND REGULATIONS.

OCICLATIONS BALL, SE METRI AND DEPTALED PRITTI SE MONIANO DE LOS LOS PENAS PERIODES.

LOS LOS PENAS PENAS

IN GROUND CONDUCTORS

WIN 19 AWG COPPER GEBIN GEWINDED FOR BONDING

STRUCTURES, AND FOR KYTER-SYSTEM BONDING OF INDVOLVA,

ELIMBIATS GUOL AS SPOUND SHAT TO GROUND BAR

MIN 19 AWG COPPER GREEN STRANDED OR ALL BOU PMENT

BONDING

 IND READ AND LOTTER MEASURE SETTINGS.

INSTALL ALL IN GROUND CONDUCTORS IN THE SAME HORIZONTAL PAREIGN IN A COMMANDED DESICTION AWAY FROM THE TOWER AND SOUTHWEST A MISS.

AND LOSS HERE MAKE DIRECT FURNESS MAKEN AS POSSIBLE.

PLACED THROCKEN FOR METER ALL OR LESSES WHEN PROPOSE

PLACED THROCKEN FOR METER ALL OR LESSES WHEN PROPOSE

THROCKEN FOR THROCKEN FOR THROCKEN FOR METER ALL OR THROCKEN FOR THROC NAME ALL CONNECTIONS IN CONTACT WITH EARTH WITH BOTHERING WELDING MAKE ALL OTHER CONNECTIONS WITH BIOTHERING WILDING, PRINTINGS III COMPRESSION CONNECTIONS, OR LISTED COMPRESSION TWO HOLD LUGS

CONDUCTOR.

LIPMENT AND TOWER GROUND RINGS SHALL BE:

DONDED TO ANY CONDUCTIVE OBJECT OR STRUCTURE WITHIN 5
FEET OF COLUMENT GROUND RINGS AND WITHIN 16 FEET OF NOTALLED MINIMUM 18 INCHES FROM POUNDATIONS, POOTINGS, AND SIMILAS.

AND SIMILAY. TAILL ALL IN-GROUND RINGS, RADIALS, BONDS CONNECTING THEM, D.ALL SIMILAY GROUNDING: AD ALL SIMILAR SPICUADINA:

ANN 30 INCHES SELOW GRADE, OR 9 INCHES SELOW THE FROST
LINE, WHORSING IN GRAZIEDED FIN
ANN 2F EFF FROM FEBRUARY CHEST HER OFFICIALISM
AND 2F EFF FROM FEBRUARY CHEST HIS CHESTONIA
SONO TO AND OF THESE STRUCTURES. DO HOT SONO TO
FOUNDATION FINES SERVICIOUS.

POLINATION NTERNAL PENVICIONAMENT
ALL ROUPENPER PORQUEDO NA COMPOUNDA SEA
ETHIOTINE, OR BIMILARI BANILLE BONICEO TO A BINILLE PORT
ACULAD, PREPAREN AVIA BOLANTICO RECURSO MA BINILLE PORT
ACULADO, PREPAREN AVIA BOLANTICO BONICEO BANILLE PORT
ACULADO, PREPAREN AVIA BOLANTICO BONICEO BONICEO BONICEO
BONICADO PORT
ACULADO PROPINCIA DE BONICEO BONICEO BONICEO
BONICADO PORT
ACULADO POR

WIR GROUNDING: • BLCH TOWIER LIG SHALL BE BONDED TO ITS RING. SINGLE-LEGGED TOWIFRE OR MONOPOLES, SHALL HAVES BONDS ON OPPOSITE BDBS
BOND TO TOWER BASE, NOT TO VERTICAL TOWER STRUCTURE,
AWAY FROM TOWER MOUNTING HARDWARE.

AWAY FROM TOWER MICHITED INFORMATION TOWN TOWN TOWN IN\*\*IRACH INCK DIRALL INVITA A CONTRIBUTION OF GIVEN INCK ON THE 
\*\*IRACH INCK DIRALL CONTRIBUTION OF CONTRIBUTION FROM THE TOWER 
\*\*TO THE RING WITH FACIONAL CONTRIBUTION OF PROPERTY 
INFECTION WITH A PARALLEL CONNECTION ON THE RING ON 
OPPORTER SIZES OF THE BROWNED FROM 
\*\*INFECTION FROM THE PROPERTY 
INFECTION FROM THE PROPERTY 
INFEC

OPHIGHT ISSUED HE WAS ALLOW HAVE A STOLLING THAT COMMITTED HE WAS ALLOW HAVE A STOLLING THAT COMMITTED HE WAS ALLOW HAVE A STOLLING THAT A SHALLE FORT OFFICIAL STOLLING THAT AND A SHALLE FORT OFFICIAL STOLLING THAT COMMITTED HE WAS ALLOW HAVE A SHALLE FOR THE CHARGE HE WAS ALLOW HE WAS ALLOW HAVE A SHALLE SHALL SYSTEM PER APPLICABLE VERBON OF NPPA 789.

BOND ALL FIXED CONDUCTIVE BUILDING COMPONENTS TOGETHER

AND TO THE BUILDING RING GROUND AT THE CORNERS. THIS!

TYPICALLY CALLED THE HALD GROUND, DO NOT BOND EQUIPMENT
TO THE HALD GROUND.

TO THE NAJ DRIVATION OF THE WAY O

CLOSES I THE MERCHANT HE REPORTED TO ALL DOOR IN THE CHARLES AND ALL DOOR ALL DOOR

GROUND RING THAT FOLLOWS THE FENCE LINE, BONDING ALL POSTS TO THE RING.

THE SECONDAL OF THE SECONDAL S AFTER NETALLATION, THE TRANSMISSION, LIST SYSTEM SHALL BE PM./
SMIER TIETED FOR PROFER NETALLATION AND DAWNER WHEN
ANTENNES ORNEOTED. CONTINUED OR SMILL DESIRAN AND USE LATER
TESTING PROCEDURES FROM OWNER OR MANUFACTURES PROR TO
BOOKS.

NITINNA GAILLIB BHALL BILLINGUILLY COLOR-COOLD AT THE NITINNAB, DOTH BOOD OF EQUIPMENT BHELTER WALL, AND JUANER ABLES AT THE EQUIPMENT. CHALLE ATT-E EQUIPMENT
HE CONTINUED HALL REPORT HAD INSTALL ALL CONNECTORS.
ASSOCIATIO OMES MICHINING AND GROUNDING HARDWAYS (WALL
MOUNTS, STRANGORS AND ALL ASSOCIATIO HARDWAYS TO INSTALL
ALL CARLES AND ANTIBYING TO THE MANUFACTURERS AND OWNERS
GROUP CONTINUE
ANTIBANA CHALLES SHALL BE FOUND BE SOTRO CONDIAL OWNERS AS
FOLLOWS:

LOWS:
BASE STATION ANTENNAS.

7.8° DAMETER FOR CABLE LENGTHS UP TO 100 FT.

1-58° DAMETER FOR CABLE LENGTHS UP TO 100 FT.

GPS ANTERIORS
 THE DAWLETER FOR CABLE LENGTHS UP TO 200 FT.
 1-get DAWLETER FOR CABLE LENGTHS GREATER THAN 200 FT.

PAGE FOR 1-SECONOR, CARLES BALLE SHALL BE INSTALLED WITH A MINIMAN NUMBER OF BENGG HERE POSSELE. CABLE SHALL NOT BE LEFT UNTERMINATED AND BALL BE SHALLD MANEDATELY ATTER BURN ORTALLED. LECTEROR ORALLE CONNECTIONS SHALL BE CONFECT OWTH A ALL EXTERIOR CABLE CONNECTIONS 61-ALL SE COVERED WITH A WATERPROOF SPLICING KIT. CONTRACTOR SPALL VIEW PEACET LINGTH AND DIRECTION OF TRAVE

SABLE GHALL BE FURNISHED AND INSTALLED WITHOUT GPLICES AND WITH CONNECTIONS AT EACH END. 28 CABLE TRAY:

HEREIN DE MALE SE MACE OF EITHER DOWNOS ON ROSSITANT METAL OR WITH A COPROSION RESISTANT FINISH.

CARLE TRAY SHALL SE OF LADDER TRAY TYPE WITH FLAT COVER CLAMMED TO SID FIALS. SABLE LADDER SHALL BE SZED TO FIT ALL CABLES IN ACCORDANCE WITH NEG AND NEWS 11-10-24 CABLE LACOURT TRAYS SHALL BE NEWA CLASS 12A BY PW NOUSTRES, NO. OH EQUAL ABLE LACORS TRAY SHALL BE SUPPORTED IN ACCORDANCE WITH WILLI'S CTUTIERS SPECIFICATIONS.

T EXCAVATION & FLL:

HEREN.
OWNTHMOTOR HALL GRADE ONLY MEMA BHOWN TO BE MODIFIED AS MADE TO THE WORK AND DAY. TO THE SYSTEM REQUIRED TO SHIP OWNER, AND WASTE YOU WASTE THE ALL MADE GROWS BHALL NOT BE STEEPER THAN 3 IN SHORT SAN A MEMORIAL MEDICAL MEDI NO FILL OR EMBANDMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY EN LO DE MANAGEMENT.

ALL FLL BHALL BE FLAGED IN ONE FOOT LIFTS AND COMPACTED IN PLACE. BITRUCTURAL FILL BHALL BE COMPACTED TO 90% OF TIS MAXIMUM DRY UNIT WE GHT TERTED IN ACCORDANCE WITH ARTM.

DESTRUCTIONS FOR FOOTINGS SHALL BE OUT LEVEL TO THE REQUIRED DEPTH AND TO UNDSTURBED SOIL. REPORT UNSUITABLE BOLL

TOWER FOUNDATION EXCAVATION, BACKFILL AND COMPACTION GIVE BE IN ACCORDANCE WITH TOWER MANUFACTURERS DESIGNS AND NATIVE GRAVEL MATERIAL MAY BE USED FOR THENCH BASISFELL WHERE BELEDT MATERIAL IS NOT SPECIFED. GRAVEL MATERIAL FOR OCNOUT THENCH BACKPILL SHALL NOT CONTAN HOCK GREATER THAN 2 INCHES IN DAMPETS.

IN DIAMETER.
BANK OR DRUGHED GRAVEL SHALL CONSIST OF TOUGH, DURABLE
PARTICLES OF CRUSHED OR LONGILISHED GRAVEL THESE OF BOTT, THA
BLONGATUD OR LAWANTED PRICES AND MEET THE SPECFED.

MORPH OF HAMMING PICES AND MET THE WRITERS IN THE WRITERS IN THE WRITERS AND MET THE W

BANK ORWITE, BARE 64/LL PA MITH PAGE 07 100% WITH PAGE 3-16\* 100% WITH PAGE 3-16\* 100% WITH PAGE 3-16\* 55-100% WITH PAGE 3-16\* 55-100% WITH PAGE 3-16\* 55-100% WITH PAGE 3-16\* 15-40% WITH PAGE 3-16\* 15-40% WITH PAGE 3-10 0-10% WITH PAGE 3-100 0-6% WITH PAGE 3-100 0-96% WITH PAGE 3-100 0

MIGH SENSE:

05-000, WITH PARES 3-10°

05-00 ST SEDIMENTATION & EFICS ION CONTROL: THESE SPECIFICATIONS BHALL INCLIDE THE GENE HEREIN

HIREM CONTRACTOR SHALL MINIDE DISTURBANCE TO BOST STEEDLING CONTRACTOR ESPACE (MINIDE DISTURBANCE TO BOST STEEDLING CONTRACTOR ESPACE STEEDLING DURING CONSTITUTION SHALL BE IN CONTRACTOR THAT BUT DO SHALL BE IN CONTRACTOR CONTRACT WITH SUBJECT OF SHALL BE SHARL SHALL BE CLARKLY MARKED BEFORE COMMENCIAL WITH BUT OF LOTHER CONTRACTOR WITH BUT OF WORK

T IS THE CONTRACTORS RESPONSELLTY TO MAINTAIN SEC MEASURE THEOLOGICULE DEPARTON OF PROJECT UNTIL DISTURBED LAND IS

NULRE OF THE BEC BYBITEMB BHALL BE CORRECTED IMMEDIATELY NO BUPYLIMENTED WITH ADDITIONAL MEASURES AS NEEDED. OPROLEMALL BE EPREAD TO FINISH GRADES AND SEEDED AS SOON AS FINISHED GRADES ARE ESTABLISHED. STRAW MULCH, JUTE NETTING RIMATS SHALL BE USED WHERE THE NEW SEED IS PLACED.

RIATS BRAIL BE LIBED Weeter the New Steus or Audics SECRETARY 888000 SPALL BE LODGE AND FRANKE TO A DEPTHOR 9. TOPICS, SPALL SE LODGE OF PRINTED OR SERVICE SETTING 9. TOPICS, SPALL SE LODGE OF PRINTED OR SERVICE SETTING 9. TOPICS, SPALL SE LODGE OF PRINTED OR SERVICE SETTING 1. TOPICS SETTING SETTING SETTING SETTING 1. TOPICS SETTING SETTING SETTING SETTING 1. SETTING SETTING SETTING SETTING 1. SETTING SETTING SETTING SETTING 1. SETTING SETTING SETTING 1. SETTING SETTING SETTING 1. SETTING SETTING 1. SETTING SETTING 1. SETTING SETTING 1. SETT

Cellco Partnership d/b/a verizon<sup>v</sup>

20 ALEXANDER DRIVE WALLINGFORD, CT 08462



567 VAUXHALL STREET EXTENSION - SUITE 311 WATERFORD, CT 06385 PHONE: (860)-863-16 WWW.ALLPOINTSTECH.COM FAX: (860)-863-06

NO DATE REVISION



DESIGN PROCESSIONALS OF RECORD PROF: MICHAEL S, TRODDEN P,E, COMP: ALL-POINTS TECHNOLOGY CORPORATION, P.C. ADD: 567 VAUXHALL STREET EXT. WATERFORD, CT 06385

METHODIST CHURCH ADDRESS: 185 ACADEMY ROAD CHESHIRE, CT 06410

CHESHIRE FAST CT

SITE 185 ACADEMY ROAD ADDRESS: CHESHIRE, CT 06410

DRAWN BY: DRA 10/05/22 CHECKED BY: JRM

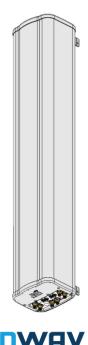
VZW PROJECT CODE: 20171649710 VZW LOCATION CODE: 470656

VZW FUZE ID: 15372347

SHEET TITLE:

NOTES & SPECIFICATIONS

N-1


# MX06FIT665-02





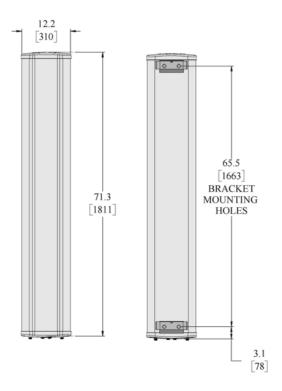
## X-Pol, Hex-Port 6 ft 65° Form In Tighter with Smart Bias T (2) 698-894 MHz & (4) 1695-2180 MHz

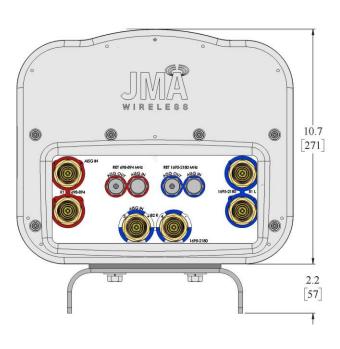
- Excellent Passive Intermodulation (PIM) performance reduces harmful interference
- Fully integrated (iRETs) with independent RET control for low and high bands for ease of network optimization
- SON-Ready array spacing supports beamforming capabilities
- Suitable for LTE/CDMA/PCS/UMTS/GSM Air interface technologies
- Integrated Smart BIAS-Ts reduces leasing costs
- Optimized width for reduced wind loading





| Electrical Specification (Minimum/ Maximum)                | Port       | s 1,2           | Ports 3,4,5,6 |            |            |  |
|------------------------------------------------------------|------------|-----------------|---------------|------------|------------|--|
| Frequency bands, MHz                                       | 698–798    | 824–894         | 1695–1880     | 1850–1990  | 1920–2180  |  |
| Polarization                                               | ± 4        | 45 <sup>0</sup> |               | ± 45°      |            |  |
| Average gain over all tilts, dBi                           | 14.4       | 14.8            | 17.8          | 18.1       | 18.2       |  |
| Horizontal beamwidth (HBW), degrees <sup>1</sup>           | 66.0       | 57.0            | 63.0          | 63.0       | 58.0       |  |
| Front-to-back ratio, co-polar power @180°± 30°, dB         | >22        | >22.0           | >25.0         | >25.0      | >25.0      |  |
| X-Pol discrimination (CPR) at boresight, dB                | >17.0      | >15.6           | >23           | >18        | >18        |  |
| Sector power ratio, percent <sup>1</sup>                   | <5.0       | <3.0            | <4.6          | <3.8       | <5.0       |  |
| Vertical beamwidth, (VBW), degrees <sup>1</sup>            | 13.5       | 12.0            | 6.0           | 5.5        | 5.4        |  |
| Electrical downtilt (EDT) range, degrees                   | 2-14       | 2-14            | 0-9           |            |            |  |
| First upper side lobe (USLS) suppression, dB <sup>1</sup>  | ≤ -17.0    | ≤ -16.0         | ≤ -17.0       | ≤ -16.0    | ≤ -16.0    |  |
| Minimum cross-polar isolation, port-to-port, dB            | 25         | 25              | 25            | 25         | 25         |  |
| Maximum VSWR/ return loss, dB                              | 1.5/ -14.0 | 1.5/ -14.0      | 1.5/ -14.0    | 1.5/ -14.0 | 1.5/ -14.0 |  |
| Maximum passive Intermodulation (PIM), 2x 20W carrier, dBc | -153       | -153            |               | -153       |            |  |
| Maximum input power per any port, watts                    | 30         | 00              |               | 250        |            |  |
| Total composite power all ports, watts                     | 1500       |                 |               |            |            |  |


<sup>1</sup> Typical value over frequency and tilt


# MX06FIT665-02

# JMA WIRELESS

# NWAV™ X-Pol Antenna | Hex-Port | 6 ft | 65°

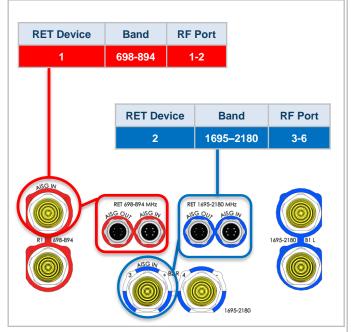
| Mechanical Specifications                                |                                   |
|----------------------------------------------------------|-----------------------------------|
| Dimensions height/ width/ depth, inches (mm)             | 71.3/ 12.2/ 10.7 (1811/ 310/ 271) |
| Shipping dimensions length/ width/ height, inches (mm)   | 82/ 20/ 15 (2083/ 508/ 381)       |
| No. of RF input ports, connector type & location         | 6 x 4.3-10 female, bottom         |
| RF connector torque                                      | 96 in- lb (10.85 N-M or 8 ft-lbs) |
| Net antenna weight, lb (kg)                              | 51 (23.18)                        |
| Shipping weight, lb (kg)                                 | 91 (41.36)                        |
| Antenna mounting and downtilt kit included with antenna  | 91900318                          |
| Net weight of the mounting and downtilt kit, lb (kg)     | 18 (8.18)                         |
| Range of mechanical up/ down tilt                        | -2° to 12°                        |
| Rated wind survival speed, mph (km/h)                    | 150 (241)                         |
| Frontal, lateral & rear wind loading @ 150 km/h, lbf (N) | 87 (386), 68 (301), 109 (485)     |
| Equivalent flat plate @100 mph and Cd=2, sq. ft.         | 1.42                              |





| Ordering Information |                                                     |  |  |  |  |
|----------------------|-----------------------------------------------------|--|--|--|--|
| Antenna Model        | Description                                         |  |  |  |  |
| MX06FIT665-02        | 6F X- Pol HEX FIT 65° 2-14°/ 0-9° RET, 4.3-10 & SBT |  |  |  |  |
| Optional Accessories |                                                     |  |  |  |  |
| 992100-CA030-SC      | Optional AISG jumper cable, M/F, 3.0 meters         |  |  |  |  |
| PCU-1000             | Primary control unit, USB                           |  |  |  |  |

# MX06FIT665-02




## NWAV™ X-Pol Antenna | Hex-Port | 6 ft | 65°

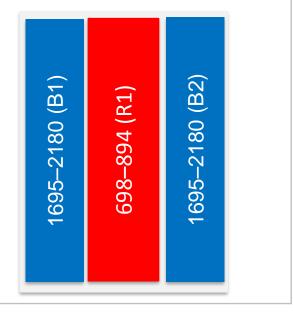
| Remote Electrical Tilt (RET 1000) Information              |                                         |
|------------------------------------------------------------|-----------------------------------------|
| RET location                                               | Integrated into antenna                 |
| RET interface connector type                               | 8 Pin AISG connector per IEC 60130-9    |
| RET interface connector quantity                           | 2 pairs of AISG male/ female connectors |
| RET interface connector location                           | Bottom of the antenna                   |
| Total No. of internal RETs low bands                       | 1                                       |
| Total No. of internal RETs high bands                      | 1                                       |
| RET input operating voltage, vdc                           | 10-30                                   |
| RET max. power consumption, idle state, W                  | ≤ 2.0                                   |
| RET max. power consumption, normal operating conditions, W | ≤ 13.0                                  |
| RET communication protocol                                 | AISG 2.0/ 3GPP                          |

#### **RET & RF Connector Topology**

Each RET device can be controlled either via the designated external AISG connector or RF port as shown below



#### **Array Topology**


3 sets of radiating arrays

R1 - 698-894MHz

B1 - 1695-2180MHz

B2 - 1695-2180MHz

| Band      | RF Port |
|-----------|---------|
| 1695–2180 | 3-4     |
| 698–894   | 1-2     |
| 1695–2180 | 5-6     |





#### NWAV™ X-Pol Ten-Port Antenna

# X-Pol Ten-Port 6 ft, 65° Form in Tighter with Smart Bias Ts, 698-4200 MHz: 2 ports 698-894 MHz, 4 ports 1695-2180 MHz, and 4 ports 3400-4200 MHz

- Excellent passive intermodulation (PIM) performance reduces harmful interference.
- Fully integrated (iRETs) with independent RET control for low band and mid band
- FET configured with internal RET for high band & ease of future network optimization.
- SON-Ready array spacing supports beamforming capabilities
- Suitable for 3G, 4G, and 5G interface technologies
- · Integrated Smart Bias-Ts reduce leasing costs
- · Optimized form factor for reduced wind loading





| Electrical specification (minimum/maximum)                | Port          | s 1, 2  |               | Ports 3, 4, 5, 6 | 6         |
|-----------------------------------------------------------|---------------|---------|---------------|------------------|-----------|
| Frequency bands, MHz                                      | 698-798       | 824-894 | 1695-1880     | 1850-1990        | 1920-2180 |
| Polarization                                              | ± 4           | 45°     |               | ± 45°            |           |
| Average gain over all tilts, dBi                          | 14.4          | 14.8    | 17.8          | 18.1             | 18.2      |
| Horizontal beamwidth (HBW), degrees <sup>1</sup>          | 66.0          | 61.0    | 63.0          | 63.0             | 58.0      |
| Front-to-back ratio, co-polar power @180°± 30°, dB        | >22           | >22.0   | >25.0         | >25.0            | >25.0     |
| X-Pol discrimination (CPR) at boresight, dB               | >17.0         | >15.6   | >23           | >18              | >18       |
| Vertical beamwidth (VBW), degrees <sup>1</sup>            | 13.5          | 12.0    | 6.0           | 5.5              | 5.4       |
| Electrical downtilt (EDT) range, degrees                  | 2             | -14     |               | 0-9              |           |
| First upper side lobe (USLS) suppression, dB <sup>1</sup> | ≤-17.0        | ≤-16.0  | ≤-17.0        | ≤-16.0           | ≤-16.0    |
| Cross-polar isolation, port-to-port, dB <sup>1</sup>      | 25            | 25      | 25            | 25               | 25        |
| Max VSWR / return loss, dB                                | 1.5:1 / -14.0 |         | 1.5:1 / -14.0 |                  |           |
| Max passive intermodulation (PIM), 2x20W carrier, dBc     | -1            | 53      |               | -153             |           |
| Max input power per any port, watts                       | 3             | 00      |               | 250              |           |
| Total composite power all ports (1-10), watts             | 1500          |         |               |                  |           |

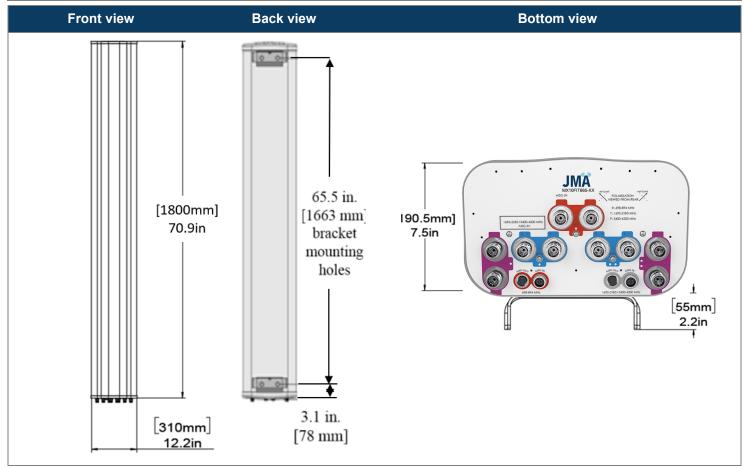
<sup>&</sup>lt;sup>1</sup> Typical value over frequency and tilt



#### NWAV™ X-Pol Ten-Port Antenna

| Electrical specification (minimum/maximum)                |           | Ports 7, 8, 9, 10                  |           |           |
|-----------------------------------------------------------|-----------|------------------------------------|-----------|-----------|
| Frequency bands, MHz                                      | 3400-3550 | 3550-3700                          | 3700-3950 | 3950-4200 |
| Polarization                                              |           | ± 45°                              |           |           |
| Average gain over all tilts, dBi                          | 13.6      | 13.8                               | 14.0      | 14.2      |
| Horizontal beamwidth (HBW), degrees                       | 65        | 62                                 | 60        | 58        |
| Front-to-back ratio, co-polar power @180°± 30°, dB        | >23       | >23                                | >23       | >22       |
| Vertical beamwidth (VBW), degrees <sup>1</sup>            | 20        | 19.6                               | 19.3      | 18.5      |
| Electrical downtilt (EDT) range, degrees                  | 2         | 2-12 orderable in 1 deg increments |           |           |
| First upper side lobe (USLS) suppression, dB <sup>1</sup> | ≤-15      | ≤-15                               | ≤-15      | ≤-15      |
| Cross-polar isolation, port-to-port, dB <sup>1</sup>      | 25        | 25                                 | 25        | 25        |
| Max VSWR / return loss, dB                                |           | 1.5:1 / -14.0                      |           |           |
| Max input power per any port, watts                       |           | 150                                |           |           |
| Total composite power all ports (1-10), watts             |           | 1500                               |           |           |

<sup>&</sup>lt;sup>1</sup> Typical value over frequency and tilt


<sup>\*</sup> For ports 7-10, the electrical downtilt is FET configured with internal RET, where the required electrical downtilt is defined at the time of order per the ordering information below.

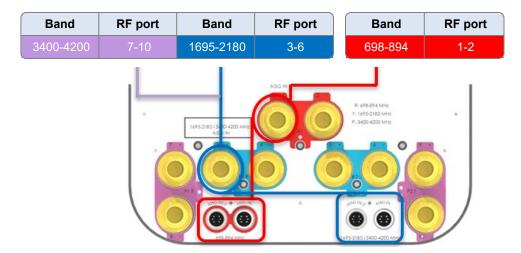
| Ordering information                                                           |                                                                                                                                  |  |  |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|
| Antenna model                                                                  | Description                                                                                                                      |  |  |
|                                                                                | 6F X- Pol 10 Port FIT 65° 2-14°/ 0-9°/ 2-12°, 4.3-10 & SBTs                                                                      |  |  |
| MX10FIT665-xx (xx represents the FET in one degree increments for 3.4-4.2 GHz) | xx=02 thru 12 for each 1 degree tilt 3.4-4.2 GHz<br>Examples MX10FIT665-02 – 2deg, MX10FIT665-09 – 9deg, MX10FIT665-12-<br>12deg |  |  |
| Optional accessories                                                           |                                                                                                                                  |  |  |
| AISG cables                                                                    | M/F cables for AISG connections                                                                                                  |  |  |
| PCU-1000 RET controller                                                        | Stand-alone controller for RET control and configurations                                                                        |  |  |
| 91900314-02                                                                    | Dual Mount Bracket (see 91900314 bracket document for details)                                                                   |  |  |



#### NWAV™ X-Pol Ten-Port Antenna

| Mechanical specifications                                      |                                      |
|----------------------------------------------------------------|--------------------------------------|
| Dimensions height/width/depth, inches (mm)                     | 70.9/ 12.2/ 7.5 (1800/ 309.9/ 190.5) |
| Shipping dimensions length/width/height, inches (mm)           | 76/ 20/ 14.5 (1930/ 508/ 368)        |
| No. of RF input ports, connector type, and location            | 10 x 4.3-10 female, bottom           |
| RF connector torque                                            | 96 lbf·in (10.85 N·m or 8 lbf·ft)    |
| Net antenna weight, lb (kg)                                    | 53.4 (24.3)                          |
| Shipping weight, lb (kg)                                       | 97.5 (44.3)                          |
| Antenna mounting and downtilt kit included with antenna        | 91900318                             |
| Net weight of the mounting and downtilt kit, lb (kg)           | 20.3 (9.2)                           |
| Range of mechanical up/down tilt                               | -2° to 12°                           |
| Rated wind survival speed, mph (km/h)                          | 150 (241)                            |
| Frontal and lateral, and rear wind loading @ 150 km/h, lbf (N) | 66.9 (297.6), 60.0 (266.9)           |
| Equivalent flat plate @ 100 mph and Cd=2, sq ft                | 1.49                                 |
| EPA frontal and lateral, ft <sup>2</sup> , (m <sup>2</sup> )   | 3.0 (0.28), 3.6 (0.33)               |





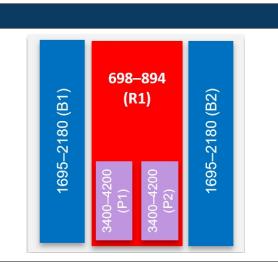

#### NWAV™ X-Pol Ten-Port Antenna

| Remote electrical tilt (RET 1000) information             |                                                              |  |
|-----------------------------------------------------------|--------------------------------------------------------------|--|
| RET location                                              | Integrated into antenna                                      |  |
| RET interface connector type                              | 8-pin AISG connector per IEC 60130-9 or RF port bias-t       |  |
| RET connector torque                                      | Min 0.5 N⋅m to max 1.0 N⋅m (hand pressure & finger tight)    |  |
| RET interface connector quantity                          | 2 pairs of AISG male/female connectors and 2 RF port bias-ts |  |
| RET interface connector location                          | Bottom of the antenna                                        |  |
| Total no. of internal RETs 698-894 MHz                    | 1                                                            |  |
| Total no. of internal RETs 1695-2180 MHz                  | 1                                                            |  |
| Total no. of internal RETs 3400-4200 MHz                  | 1                                                            |  |
| RET input operating voltage, vdc                          | 10-30                                                        |  |
| RET max power consumption, idle state, W                  | ≤ 2.0                                                        |  |
| RET max power consumption, normal operating conditions, W | ≤ 13.0                                                       |  |
| RET communication protocol                                | AISG 2.0 / 3GPP                                              |  |

#### **RET and RF connector topology**

Each RET device can be controlled either via the designated external AISG connector or RF smart bias-t port as shown below:



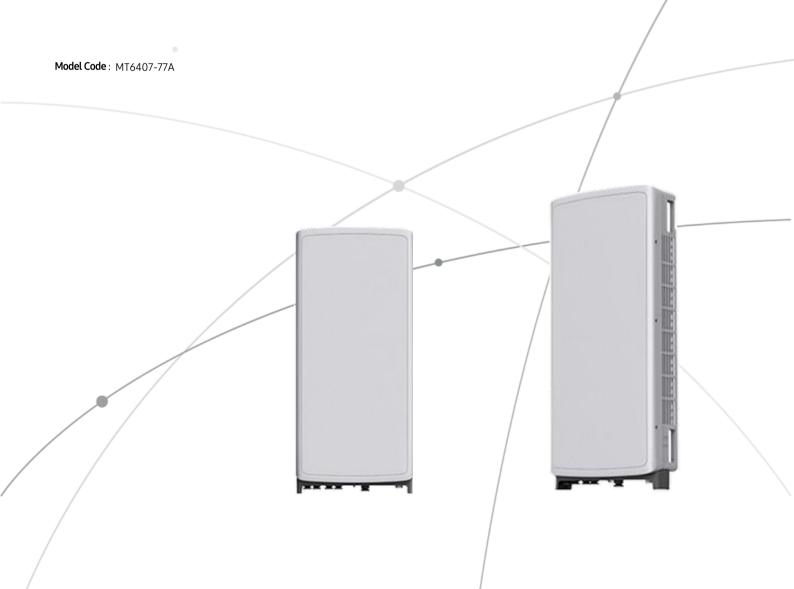

Note: The RET Device for 3400-4200 MHz is connected via the 1695-2180 Port 3 Bias T port or 1695-2180/3400-4200 MHz AISG ports.

#### Array topology

5 sets of radiating arrays

R1: 698-894 MHz B1: 1695-2180 MHz B2: 1695-2180 MHz P1: 3400-4200 MHz P2: 3400-4200 MHz

| Band      | RF port |
|-----------|---------|
| 698-894   | 1-2     |
| 1695-2180 | 3-4     |
| 1695-2180 | 5-6     |
| 3400-4200 | 7-8     |
| 3400-4200 | 9-10    |



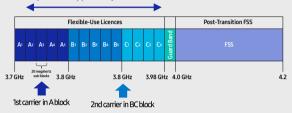

# SAMSUNG

# SAMSUNG C-Band 64T64R Massive MIMO Radio

# for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..




## Points of Differentiation

#### Wide Bandwidth

With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

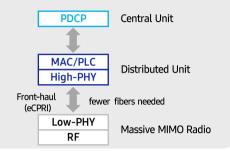
Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

C-Band spectrum supported by Massive MIMO Radio



## **Enhanced Performance**

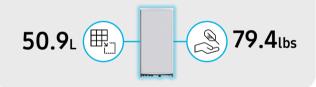
C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.


This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.



#### **Future Proof Product**


Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.



## Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment..





## Technical Specifications

| Item              | Specification                                   |
|-------------------|-------------------------------------------------|
| Tech              | NR                                              |
| Band              | n77                                             |
| Frequency<br>Band | 3700 - 3980 MHz                                 |
| EIRP              | 78.5dBm (53.0 dBm+25.5 dBi)                     |
| IBW/OBW           | 280 MHz / 200 MHz                               |
| Installation      | Pole/Wall                                       |
| Size/<br>Weight   | 16.06 x 35.06 x 5.51 inch (50.86L)/<br>79.4 lbs |



#### About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

#### © 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

# **Specifications**

The table below outlines the main specifications of the RRH.

Table 1. Specifications

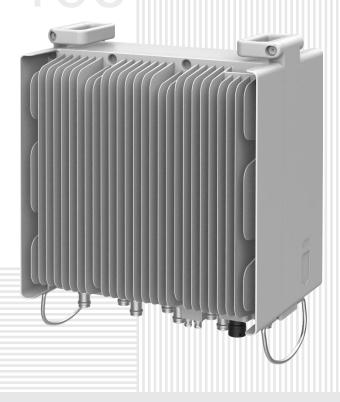
| Item                       | RT4401-48A                                                                                           |
|----------------------------|------------------------------------------------------------------------------------------------------|
| Air Technology             | LTE                                                                                                  |
| Band                       | Band 48 (3.5 GHz)                                                                                    |
| Operating Frequency (MHz)  | 3550 to 3700                                                                                         |
| RF Chain                   | 4TX/4RX                                                                                              |
| Input Power                | -48 V DC (-38 to -57 V DC, 1 SKU), with clip-on AC-DC converter (Option)                             |
| Dimension (W × D × H) (mm) | 8.55 in. (217.4) × 4.15 in. (105.5) × 13.91 in. (353.5)<br>* RRH only                                |
|                            | 11.39 in. (289.4) × 5.45 in. (138.5) × 16.16 in. (410.5)<br>* with Clip-on antenna, AC-DC power unit |
| Cooling                    | Natural convection                                                                                   |
| Unwanted Emission          | 3GPP 36.104 Category A                                                                               |
|                            | [B48]: FCC 47 CFR 96.41 e)                                                                           |
| Spectrum Analyzer          | TX/RX Support                                                                                        |
| Antenna Type               | Integrated (Clip-on) antenna (Option),                                                               |
|                            | External antenna (Option)                                                                            |
| Operating Humidity         | 5 to 100 [%] (RH), condensing, not to exceed 30 g/m <sup>3</sup> absolute humidity                   |
| Altitude                   | -60 to 1,800 m                                                                                       |
| Earthquake                 | Telcordia Earthquake Risk Zone4 (Telcordia GR-63-CORE)                                               |
| Vibration in Use           | Office Vibration                                                                                     |
| Transportation Vibration   | Transportation Vibration                                                                             |
| Noise                      | Fanless (natural convection cooling)                                                                 |
| Wind Resistance            | Telcordia GR-487-CORE, Section 3.34                                                                  |
| EMC                        | FCC Title 47, CFR Part 96                                                                            |
| Safety                     | UL 60950-1 2nd ED                                                                                    |



| Item | RT4401-48A                |
|------|---------------------------|
|      | UL 62368-1                |
|      | UL 60950-22               |
| RF   | FCC Title 47, CFR Part 96 |

The table below outlines the AC/DC power unit specifications of the RRH system.

## **SAMSUNG**

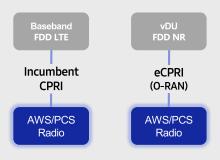

# AWS/PCS MACRO RADIO

# DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This AWS/PCS 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

Model Code

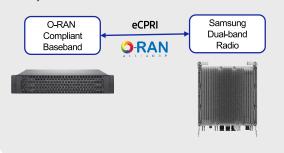
RF4439d-25A






### Points of Differentiation

#### **Continuous Migration**


Samsung's AWS/PCS macro radio can support each incumbent CPRI interface as well as advanced eCPRI interfaces. This feature provides installable options for both legacy LTE networks and added NR networks.



#### O-RAN Compliant

A standardized O-RAN radio can help in implementing costeffective networks, which are capable of sending more data without compromising additional investments.

Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.



### Optimum Spectrum Utilization

The number of required carriers varies according to site (region). Supporting many carriers is essential for using all frequencies that the operator has available.

The new AWS/PCS dual-band radio can support up to 3 carriers in the PCS (1.9GHz) band and 4 carriers in the AWS (2.1GHz) band, respectively.



Supports up to 7 carriers

#### **Brand New Features** in a Compact Size

Samsung's AWS/PCS macro radio offers several features, such as dual connectivity for baseband for both CDU and vDU, O-RAN capability, more carriers and an enlarged PCS spectrum, combined into an incumbent radio volume of 36.8L.



2 FH connectivity O-RAN capability

More carriers and spectrum

Same as an incumbent radio volume



## Technical Specifications

| Item              | Specification                                                                    |
|-------------------|----------------------------------------------------------------------------------|
| Tech              | LTE/NR                                                                           |
| Brand             | B25(PCS), B66(AWS)                                                               |
| Frequency<br>Band | DL: 1930 – 1995MHz, UL: 1850 – 1915MHz<br>DL: 2110 – 2200MHz, UL: 1710 – 1780MHz |
| RF Power          | (B25) 4 × 40W or 2 × 60W<br>(B66) 4 × 60W or 2 × 80W                             |
| IBW/OBW           | (B25) 65MHz / 30MHz<br>(B66) DL 90MHz, UL 70MHz / 60MHz                          |
| Installation      | Pole, Wall                                                                       |
| Size/<br>Weight   | 14.96 x 14.96 x 10.04inch (36.8L) / 74.7lb                                       |

## **SAMSUNG**

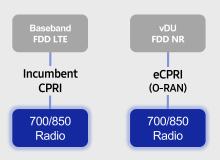
# 700/850MHZ MACRO RADIO

DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This 700/850MHz 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

Model Code

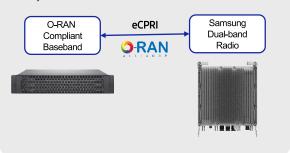
RF4440d-13A






## Points of Differentiation

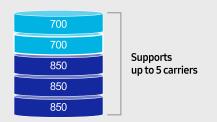
### **Continuous Migration**


Samsung's 700/850MHz macro radio can support each incumbent CPRI interface as well as an advanced eCPRI interface. This feature provides installable options for both legacy LTE networks and added NR networks.



### O-RAN Compliant

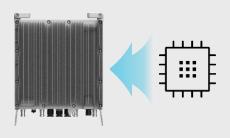
A standardized O-RAN radio can help when implementing cost-effective networks because it is capable of sending more data without compromising additional investments.


Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.



## Optimum Spectrum Utilization

The number of required carriers varies according to site (region). The ability to support many carriers is essential for using all frequencies that the operator has available.


The new 700/850MHz dual-band radio can support up to 2 carriers in the B13 (700MHz) band and 3 carriers in the B5 (850MHz) band, respectively.



## Secured Integrity

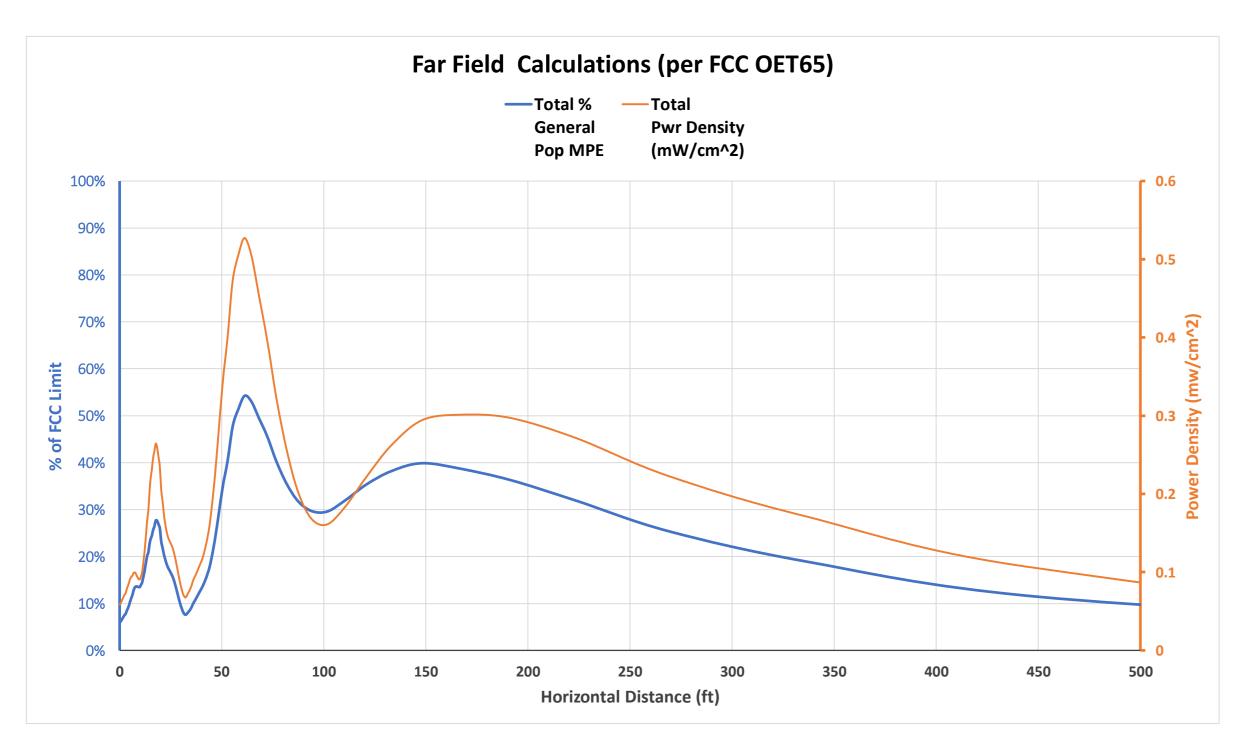
Access to sensitive data is allowed only to authorized

The Samsung radio's CPU can protect root of trust, which is credential information to verify SW integrity, and secure storage provides access control to sensitive data by using dedicated hardware (TPM).





# Technical Specifications


| Item              | Specification                                                            |
|-------------------|--------------------------------------------------------------------------|
| Tech              | LTE / NR                                                                 |
| Brand             | B13(700MHz), B5(850MHz)                                                  |
| Frequency<br>Band | DL: 746 – 756MHz, UL: 777 – 787MHz<br>DL: 869 – 894MHz, UL: 824 – 849MHz |
| RF Power          | (B13) 4 × 40W or 2 × 60W<br>(B5) 4 × 40W or 2 × 60W                      |
| IBW/OBW           | (B13) 10MHz / 10MHz<br>(B5) 25MHz / 25MHz                                |
| Installation      | Pole, Wall                                                               |
| Size/<br>Weight   | 14.96 x 14.96 x 9.05inch (33.2L) /<br>70.33 lb                           |

# **ATTACHMENT 3**

| Location                         |            |       | CHESHIRE | E EAST CT |             |             |  |  |  |  |  |
|----------------------------------|------------|-------|----------|-----------|-------------|-------------|--|--|--|--|--|
| Date                             | 11/14/2022 |       |          |           |             |             |  |  |  |  |  |
| Band                             | C-Band     | CBRS  | AWS      | PCS       | 850-LTE     | 700         |  |  |  |  |  |
| Operating Frequency (MHz)        | 3,700      | 3,550 | 2,145    | 1,970     | 880         | 746         |  |  |  |  |  |
| General Population MPE (mW/cm^2) | 1          | 1     | 1        | 1         | 0.586666667 | 0.497333333 |  |  |  |  |  |
| ERP Per Transmitter<br>(Watts)   | 21,878     | 22    | 1,530    | 2,138     | 1,023       | 1,012       |  |  |  |  |  |
| Number of Transmitters           | 2          | 4     | 4        | 4         | 4           | 4           |  |  |  |  |  |
| Antenna Centerline<br>(feet)     | 29.5       | 29.5  | 29.5     | 29.5      | 29.5        | 29.5        |  |  |  |  |  |
| Total ERP (Watts)                | 43,755     | 89    | 6,122    | 8,552     | 4,093       | 4,046       |  |  |  |  |  |
| Total ERP (dBm)                  | 76         | 50    | 68       | 69        | 66          | 66          |  |  |  |  |  |

Maximum % of General Population Limit

54.2%



| Angle            |             |             | Power Density | Power Density (mW/cm^2) |             |             | Percent of General Population MPE |       |        |       |       |       |          |       |         |             |                             |                         |
|------------------|-------------|-------------|---------------|-------------------------|-------------|-------------|-----------------------------------|-------|--------|-------|-------|-------|----------|-------|---------|-------------|-----------------------------|-------------------------|
| Below<br>Horizon | C-Band      | CBRS        | AWS           | PCS                     | 850-LTE     | 700 MHz     | 39GHz                             | 28GHz | C-Band | CBRS  | AWS   | PCS   | Cellular | CDMA  | 700 MHz | Distance    | Total Pwr Density (mW/cm^2) | Total % General Pop MPE |
| 90               | 0.055556923 | 0.000106031 | 0.001382189   | 0.000507888             | 4.42351E-05 | 0.001150187 | 0.00%                             | 0.00% | 5.56%  | 0.01% | 0.14% | 0.05% | 0.01%    | 0.00% | 0.23%   | 0           | 0.058747452                 | 5.99%                   |
| 89               | 0.055540001 | 0.000124538 | 0.001863954   | 0.000496176             | 5.20756E-05 | 0.001382407 | 0.00%                             | 0.00% | 5.55%  | 0.01% | 0.19% | 0.05% | 0.01%    | 0.00% | 0.28%   | 0.410194026 | 0.059459151                 | 6.09%                   |
| 88               | 0.056781767 | 0.000136743 | 0.002512107   | 0.000507269             | 5.43548E-05 | 0.001738758 | 0.00%                             | 0.00% | 5.68%  | 0.01% | 0.25% | 0.05% | 0.01%    | 0.00% | 0.35%   | 0.820638083 | 0.061730998                 | 6.35%                   |
| 87               | 0.058015895 | 0.000163773 | 0.003157739   | 0.000555362             | 4.94966E-05 | 0.002236542 | 0.00%                             | 0.00% | 5.80%  | 0.02% | 0.32% | 0.06% | 0.01%    | 0.00% | 0.45%   | 1.231582813 | 0.064178808                 | 6.65%                   |
| 86               | 0.059240643 | 0.000205739 | 0.00378834    | 0.000621798             | 4.62007E-05 | 0.002809635 | 0.00%                             | 0.00% | 5.92%  | 0.02% | 0.38% | 0.06% | 0.01%    | 0.00% | 0.56%   | 1.643280081 | 0.066712355                 | 6.96%                   |
| 85               | 0.060454222 | 0.000235571 | 0.004337663   | 0.000695755             | 5.27783E-05 | 0.003447123 | 0.00%                             | 0.00% | 6.05%  | 0.02% | 0.43% | 0.07% | 0.01%    | 0.00% | 0.69%   | 2.055983593 | 0.069223112                 | 7.27%                   |
| 84               | 0.061654798 | 0.000257432 | 0.004740194   | 0.000727774             | 6.48628E-05 | 0.004036426 | 0.00%                             | 0.00% | 6.17%  | 0.03% | 0.47% | 0.07% | 0.01%    | 0.00% | 0.81%   | 2.469949529 | 0.071481487                 | 7.56%                   |
| 83               | 0.061410071 | 0.000274749 | 0.005176888   | 0.000724885             | 6.74945E-05 | 0.004723563 | 0.00%                             | 0.00% | 6.14%  | 0.03% | 0.52% | 0.07% | 0.01%    | 0.00% | 0.95%   | 2.885437181 | 0.072377651                 | 7.72%                   |
| 82               | 0.064009397 | 0.000286378 | 0.005650319   | 0.000687501             | 1.81248E-05 | 0.00539851  | 0.00%                             | 0.00% | 6.40%  | 0.03% | 0.57% | 0.07% | 0.00%    | 0.00% | 1.09%   | 3.302709616 | 0.076050229                 | 8.15%                   |
| 81               | 0.066677305 | 0.000291524 | 0.006163214   | 0.000653142             | 0.000143221 | 0.006166066 | 0.00%                             | 0.00% | 6.67%  | 0.03% | 0.62% | 0.07% | 0.02%    | 0.00% | 1.24%   | 3.722034348 | 0.080094472                 | 8.64%                   |
| 80               | 0.067833012 | 0.000289826 | 0.006565538   | 0.00063602              | 0.000264527 | 0.007202301 | 0.00%                             | 0.00% | 6.78%  | 0.03% | 0.66% | 0.06% | 0.05%    | 0.00% | 1.45%   | 4.143684047 | 0.082791223                 | 9.03%                   |
| 79               | 0.068965412 | 0.000268737 | 0.006989732   | 0.00064515              | 0.000362794 | 0.008803624 | 0.00%                             | 0.00% | 6.90%  | 0.03% | 0.70% | 0.06% | 0.06%    | 0.00% | 1.77%   | 4.567937265 | 0.086035449                 | 9.52%                   |
| 78               | 0.070072396 | 0.000232939 | 0.00743663    | 0.000718748             | 0.000453498 | 0.011004673 | 0.00%                             | 0.00% | 7.01%  | 0.02% | 0.74% | 0.07% | 0.08%    | 0.00% | 2.21%   | 4.995079199 | 0.089918884                 | 10.14%                  |
| 77               | 0.069532212 | 0.000196283 | 0.007551187   | 0.000897874             | 0.000541022 | 0.014067477 | 0.00%                             | 0.00% | 6.95%  | 0.02% | 0.76% | 0.09% | 0.09%    | 0.00% | 2.83%   | 5.425402491 | 0.092786055                 | 10.74%                  |
| 76               | 0.067382391 | 0.000147653 | 0.007662591   | 0.001231901             | 0.000675422 | 0.017562105 | 0.00%                             | 0.00% | 6.74%  | 0.01% | 0.77% | 0.12% | 0.12%    | 0.00% | 3.53%   | 5.859208067 | 0.094662063                 | 11.29%                  |
| 75               | 0.063771369 | 9.4476E-05  | 0.007593726   | 0.001760578             | 0.000926093 | 0.021411934 | 0.00%                             | 0.00% | 6.38%  | 0.01% | 0.76% | 0.18% | 0.16%    | 0.00% | 4.31%   | 6.296806022 | 0.095558175                 | 11.79%                  |
| 74               | 0.061719366 | 5.76922E-05 | 0.007182087   | 0.002526102             | 0.001263136 | 0.02608865  | 0.00%                             | 0.00% | 6.17%  | 0.01% | 0.72% | 0.25% | 0.22%    | 0.00% | 5.25%   | 6.738516565 | 0.098837034                 | 12.61%                  |
| 73               | 0.057007345 | 4.13644E-05 | 0.006633764   | 0.003605457             | 0.001725677 | 0.030336185 | 0.00%                             | 0.00% | 5.70%  | 0.00% | 0.66% | 0.36% | 0.29%    | 0.00% | 6.10%   | 7.184671014 | 0.099349792                 | 13.12%                  |
| 72               | 0.052619999 | 3.64625E-05 | 0.005983841   | 0.005037097             | 0.002249984 | 0.033665184 | 0.00%                             | 0.00% | 5.26%  | 0.00% | 0.60% | 0.50% | 0.38%    | 0.00% | 6.77%   | 7.635612861 | 0.099592567                 | 13.52%                  |

| 71                | 0.04635305                 | 3.95161E-05                | 0.005151189                | 0.006578211                | 0.002806125                | 0.036484506                | 0.00%          | 0.00%          | 4.64%            | 0.00%          | 0.52%          | 0.66%          | 0.48%            | 0.00%          | 7.34%            | 8.091698912                | 0.097412597                | 13.63%           |
|-------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------|----------------|------------------|----------------|----------------|----------------|------------------|----------------|------------------|----------------------------|----------------------------|------------------|
| 70                | 0.039875837                | 5.14524E-05                | 0.003131189                | 0.008351016                | 0.002800123                | 0.038613571                | 0.00%          | 0.00%          | 3.99%            | 0.00%          | 0.32%          | 0.84%          | 0.48%            | 0.00%          | 7.34%<br>7.76%   | 8.553300505                | 0.097412397                | 13.61%           |
| 69                | 0.034280067                | 7.529E-05                  | 0.003989063                | 0.009909943                | 0.004037107                | 0.039909089                | 0.00%          | 0.00%          | 3.43%            | 0.01%          | 0.40%          | 0.99%          | 0.69%            | 0.00%          | 8.02%            | 9.020804823                | 0.092200559                | 13.54%           |
| 68                | 0.030836843                | 0.000102274                | 0.003845024                | 0.010967292                | 0.004798423                | 0.040280983                | 0.00%          | 0.00%          | 3.08%            | 0.01%          | 0.38%          | 1.10%          | 0.82%            | 0.00%          | 8.10%            | 9.494616307                | 0.090830839                | 13.49%           |
| 67                | 0.029702318                | 0.000110532                | 0.003789828                | 0.012128856                | 0.005673081                | 0.039702742                | 0.00%          | 0.00%          | 2.97%            | 0.01%          | 0.38%          | 1.21%          | 0.97%            | 0.00%          | 7.98%            | 9.975158181                | 0.091107358                | 13.52%           |
| 66                | 0.030633633                | 0.000103967                | 0.00373274                 | 0.013098694                | 0.006717801                | 0.040015538                | 0.00%          | 0.00%          | 3.06%            | 0.01%          | 0.37%          | 1.31%          | 1.15%            | 0.00%          | 8.05%            | 10.4628741                 | 0.094302373                | 13.95%           |
| 65                | 0.034617014                | 0.000100227                | 0.003673828                | 0.013530664                | 0.007591337                | 0.039383994                | 0.00%          | 0.00%          | 3.46%            | 0.01%          | 0.37%          | 1.35%          | 1.29%            | 0.00%          | 7.92%            | 10.95822997                | 0.098897064                | 14.41%           |
| 64                | 0.04488059                 | 0.000120991                | 0.003295245                | 0.013307242                | 0.008771769                | 0.03785199                 | 0.00%          | 0.00%          | 4.49%            | 0.01%          | 0.33%          | 1.33%          | 1.50%            | 0.00%          | 7.61%            | 11.46171583                | 0.108227828                | 15.27%           |
| 63                | 0.058143337                | 0.000175872<br>0.000227669 | 0.002693575<br>0.001788287 | 0.012460327                | 0.009452106                | 0.03635215                 | 0.00%          | 0.00%          | 5.81%            | 0.02%          | 0.27%          | 1.25%          | 1.61%            | 0.00%          | 7.31%<br>7.01%   | 11.97384806                | 0.119277368                | 16.27%           |
| 62<br>61          | 0.075267594<br>0.097359133 | 0.000227669                | 0.001788287                | 0.011445573<br>0.010218948 | 0.009741743<br>0.009759001 | 0.034884957<br>0.031945291 | 0.00%<br>0.00% | 0.00%<br>0.00% | 7.53%<br>9.74%   | 0.02%<br>0.02% | 0.18%<br>0.09% | 1.14%<br>1.02% | 1.66%<br>1.66%   | 0.00%<br>0.00% | 7.01%<br>6.42%   | 12.49517164<br>13.02626271 | 0.133355824<br>0.150370393 | 17.55%<br>18.95% |
| 60                | 0.120170937                | 0.000195207                | 0.000180148                | 0.009568171                | 0.00937191                 | 0.027914484                | 0.00%          | 0.00%          | 12.02%           | 0.02%          | 0.02%          | 0.96%          | 1.60%            | 0.00%          | 5.61%            | 13.56773133                | 0.167400856                | 20.22%           |
| 59                | 0.138315029                | 0.000155441                | 7.70369E-05                | 0.009613884                | 0.008354068                | 0.023275527                | 0.00%          | 0.00%          | 13.83%           | 0.02%          | 0.01%          | 0.96%          | 1.42%            | 0.00%          | 4.68%            | 14.12022455                | 0.179790986                | 20.92%           |
| 58                | 0.166563236                | 0.000118107                | 0.000656763                | 0.010558656                | 0.007287991                | 0.018097113                | 0.00%          | 0.00%          | 16.66%           | 0.01%          | 0.07%          | 1.06%          | 1.24%            | 0.00%          | 3.64%            | 14.68442977                | 0.203281865                | 22.67%           |
| 57                | 0.187034183                | 9.62979E-05                | 0.001769091                | 0.012104601                | 0.00606666                 | 0.013120523                | 0.00%          | 0.00%          | 18.70%           | 0.01%          | 0.18%          | 1.21%          | 1.03%            | 0.00%          | 2.64%            | 15.26107844                | 0.220191356                | 23.77%           |
| 56                | 0.200394875                | 8.76158E-05                | 0.003074085                | 0.014253322                | 0.004930776                | 0.009287884                | 0.00%          | 0.00%          | 20.04%           | 0.01%          | 0.31%          | 1.43%          | 0.84%            | 0.00%          | 1.87%            | 15.85095015                | 0.232028557                | 24.49%           |
| 55                | 0.21451972                 | 9.37914E-05                | 0.004239322                | 0.016691552                | 0.004202385                | 0.00703878                 | 0.00%          | 0.00%          | 21.45%           | 0.01%          | 0.42%          | 1.67%          | 0.72%            | 0.00%          | 1.42%            | 16.45487715                | 0.246785551                | 25.69%           |
| 54                | 0.219105597                | 9.36158E-05                | 0.004747693                | 0.019574153                | 0.004184871                | 0.007025603                | 0.00%          | 0.00%          | 21.91%           | 0.01%          | 0.47%          | 1.96%          | 0.71%            | 0.00%          | 1.41%            | 17.07374941                | 0.254731534                | 26.48%           |
| 53                | 0.223581268<br>0.212717133 | 7.94568E-05<br>6.2878E-05  | 0.004734396<br>0.004108012 | 0.02241119<br>0.025051398  | 0.004575769<br>0.005355884 | 0.009025382<br>0.012700845 | 0.00%<br>0.00% | 0.00%<br>0.00% | 22.36%<br>21.27% | 0.01%<br>0.01% | 0.47%<br>0.41% | 2.24%          | 0.78%<br>0.91%   | 0.00%<br>0.00% | 1.81%<br>2.55%   | 17.70852018<br>18.36021222 | 0.264407462                | 27.68%<br>27.66% |
| 52<br>51          | 0.212717133                | 4.74722E-05                | 0.003479947                | 0.028039668                | 0.005844832                | 0.012700843                | 0.00%          | 0.00%          | 19.31%           | 0.01%          | 0.41%          | 2.51%<br>2.80% | 1.00%            | 0.00%          | 3.43%            | 19.02992478                | 0.259996149<br>0.247546552 | 26.89%           |
| 50                | 0.175083861                | 2.77934E-05                | 0.003229054                | 0.030568604                | 0.005423439                | 0.021344023                | 0.00%          | 0.00%          | 17.51%           | 0.00%          | 0.32%          | 3.06%          | 0.92%            | 0.00%          | 4.29%            | 19.71884133                | 0.235676775                | 26.11%           |
| 49                | 0.141350682                | 1.41577E-05                | 0.004227923                | 0.031719578                | 0.003726718                | 0.02434042                 | 0.00%          | 0.00%          | 14.14%           | 0.00%          | 0.42%          | 3.17%          | 0.64%            | 0.00%          | 4.89%            | 20.42823834                | 0.205379479                | 23.26%           |
| 48                | 0.119367225                | 1.57972E-05                | 0.007633335                | 0.03295449                 | 0.002387337                | 0.025877079                | 0.00%          | 0.00%          | 11.94%           | 0.00%          | 0.76%          | 3.30%          | 0.41%            | 0.00%          | 5.20%            | 21.15949504                | 0.188235263                | 21.61%           |
| 47                | 0.089741456                | 2.53331E-05                | 0.014415254                | 0.032735773                | 0.006683774                | 0.026243591                | 0.00%          | 0.00%          | 8.97%            | 0.00%          | 1.44%          | 3.27%          | 1.14%            | 0.00%          | 5.28%            | 21.91410452                | 0.169845182                | 20.11%           |
| 46                | 0.06585767                 | 3.5506E-05                 | 0.02479908                 | 0.030877054                | 0.010462489                | 0.024810557                | 0.00%          | 0.00%          | 6.59%            | 0.00%          | 2.48%          | 3.09%          | 1.78%            | 0.00%          | 4.99%            | 22.69368621                | 0.156842356                | 18.93%           |
| 45                | 0.044025894                | 5.18089E-05                | 0.038863095                | 0.027844388                | 0.013327136                | 0.022373727                | 0.00%          | 0.00%          | 4.40%            | 0.01%          | 3.89%          | 2.78%          | 2.27%            | 0.00%          | 4.50%            | 23.5                       | 0.146486051                | 17.85%           |
| 44                | 0.027433469                | 8.31719E-05                | 0.05421381                 | 0.02395026                 | 0.015463556                | 0.019692955                | 0.00%          | 0.00%          | 2.74%            | 0.01%          | 5.42%          | 2.40%          | 2.64%            | 0.00%          | 3.96%            | 24.33496237                | 0.140837222                | 17.16%           |
| 43                | 0.015216152                | 0.000129718                | 0.06731844                 | 0.020106401                | 0.016723743                | 0.016532366                | 0.00%          | 0.00%          | 1.52%            | 0.01%          | 6.73%          | 2.01%          | 2.85%            | 0.00%          | 3.32%            | 25.20066469                | 0.136026821                | 16.45%           |
| 42<br>41          | 0.008236828<br>0.00535333  | 0.000184695<br>0.000245087 | 0.074402782<br>0.073190248 | 0.016857356<br>0.014779288 | 0.016473604<br>0.015836262 | 0.013860858<br>0.011082919 | 0.00%<br>0.00% | 0.00%<br>0.00% | 0.82%<br>0.54%   | 0.02%<br>0.02% | 7.44%<br>7.32% | 1.69%<br>1.48% | 2.81%<br>2.70%   | 0.00%<br>0.00% | 2.79%<br>2.23%   | 26.0993941<br>27.03365757  | 0.130016124<br>0.120487134 | 15.56%<br>14.28% |
| 40                | 0.0033333                  | 0.000243087                | 0.064077031                | 0.012939058                | 0.013830202                | 0.0011082919               | 0.00%          | 0.00%          | 0.34%            | 0.02%          | 6.41%          | 1.48%          | 2.48%            | 0.00%          | 1.74%            | 28.00620943                | 0.120487134                | 12.75%           |
| 39                | 0.014537234                | 0.000401955                | 0.049924186                | 0.010802177                | 0.012431125                | 0.006584335                | 0.00%          | 0.00%          | 1.45%            | 0.04%          | 4.99%          | 1.08%          | 2.12%            | 0.00%          | 1.32%            | 29.02008318                | 0.094681013                | 11.01%           |
| 38                | 0.024741279                | 0.000543398                | 0.033056079                | 0.008403334                | 0.010362172                | 0.005005556                | 0.00%          | 0.00%          | 2.47%            | 0.05%          | 3.31%          | 0.84%          | 1.77%            | 0.00%          | 1.01%            | 30.07862836                | 0.082111818                | 9.45%            |
| 37                | 0.034967472                | 0.000698812                | 0.01735775                 | 0.006091072                | 0.008216614                | 0.003978271                | 0.00%          | 0.00%          | 3.50%            | 0.07%          | 1.74%          | 0.61%          | 1.40%            | 0.00%          | 0.80%            | 31.18555331                | 0.071309991                | 8.11%            |
| 36                | 0.04499617                 | 0.000821999                | 0.006591811                | 0.005299136                | 0.00622593                 | 0.003794947                | 0.00%          | 0.00%          | 4.50%            | 0.08%          | 0.66%          | 0.53%          | 1.06%            | 0.00%          | 0.76%            | 32.34497513                | 0.067729993                | 7.60%            |
| 35                | 0.055197675                | 0.000896637                | 0.00111622                 | 0.006822606                | 0.004709225                | 0.004549367                | 0.00%          | 0.00%          | 5.52%            | 0.09%          | 0.11%          | 0.68%          | 0.80%            | 0.00%          | 0.91%            | 33.56147816                | 0.07329173                 | 8.12%            |
| 34                | 0.057525643                | 0.000978492                | 4.52575E-05                | 0.011773104                | 0.003482492                | 0.006107896                | 0.00%          | 0.00%          | 5.75%            | 0.10%          | 0.00%          | 1.18%          | 0.59%            | 0.00%          | 1.23%            | 34.84018276                | 0.079912885                | 8.85%            |
| 33                | 0.057142036                | 0.001017775                | 0.00081806                 | 0.019860273                | 0.002944316                | 0.00837502                 | 0.00%          | 0.00%          | 5.71%            | 0.10%          | 0.08%          | 1.99%          | 0.50%            | 0.00%          | 1.68%            | 36.18682665                | 0.090157479                | 10.07%           |
| 32<br>31          | 0.052863705<br>0.051099524 | 0.000985947<br>0.000869186 | 0.001199463<br>0.00060848  | 0.029186841<br>0.038058034 | 0.0035825<br>0.005005477   | 0.01045172<br>0.01242931   | 0.00%<br>0.00% | 0.00%<br>0.00% | 5.29%<br>5.11%   | 0.10%<br>0.09% | 0.12%<br>0.06% | 2.92%<br>3.81% | 0.61%<br>0.85%   | 0.00%<br>0.00% | 2.10%<br>2.50%   | 37.60786143<br>39.11056784 | 0.098270176<br>0.108070011 | 11.14%<br>12.42% |
| 30                | 0.056581987                | 0.000809180                | 7.91603E-05                | 0.041087308                | 0.006511887                | 0.01242551                 | 0.00%          | 0.00%          | 5.66%            | 0.03%          | 0.01%          | 4.11%          | 1.11%            | 0.00%          | 2.70%            | 40.70319398                | 0.118510434                | 13.67%           |
| 29                | 0.075141635                | 0.000718748                | 0.000816037                | 0.038628704                | 0.007886954                | 0.0129393                  | 0.00%          | 0.00%          | 7.51%            | 0.07%          | 0.08%          | 3.86%          | 1.34%            | 0.00%          | 2.60%            | 42.39512225                | 0.136131378                | 15.48%           |
| 28                | 0.109133168                | 0.000614685                | 0.00284306                 | 0.030198562                | 0.008109338                | 0.011587425                | 0.00%          | 0.00%          | 10.91%           | 0.06%          | 0.28%          | 3.02%          | 1.38%            | 0.00%          | 2.33%            | 44.19707194                | 0.162486238                | 17.99%           |
| 27                | 0.165512848                | 0.00047811                 | 0.005183951                | 0.01909243                 | 0.007583337                | 0.00922278                 | 0.00%          | 0.00%          | 16.55%           | 0.05%          | 0.52%          | 1.91%          | 1.29%            | 0.00%          | 1.85%            | 46.12134688                | 0.207073457                | 22.17%           |
| 26                | 0.239013321                | 0.000338157                | 0.006827336                | 0.008921782                | 0.005747127                | 0.00637459                 | 0.00%          | 0.00%          | 23.90%           | 0.03%          | 0.68%          | 0.89%          | 0.98%            | 0.00%          | 1.28%            | 48.18214028                | 0.267222312                | 27.77%           |
| 25                | 0.321095856                | 0.000212976                | 0.007988475                | 0.002226713                | 0.00353723                 | 0.003914397                | 0.00%          | 0.00%          | 32.11%           | 0.02%          | 0.80%          | 0.22%          | 0.60%            | 0.00%          | 0.79%            | 50.39591263                | 0.338975648                | 34.54%           |
| 24                | 0.383146429                | 0.000108159                | 0.009315239                | 2.31416E-05                | 0.001494147                | 0.002626606                | 0.00%          | 0.00%          | 38.31%           | 0.01%          | 0.93%          | 0.00%          | 0.25%            | 0.00%          | 0.53%            | 52.78186419                | 0.396713721                | 40.04%           |
| 23                | 0.455506109<br>0.480716486 | 3.22991E-05<br>5.05341E-07 | 0.010822396<br>0.012238219 | 0.001022171<br>0.0031836   | 0.001316809<br>0.002647998 | 0.003269824<br>0.006575354 | 0.00%<br>0.00% | 0.00%<br>0.00% | 45.55%<br>48.07% | 0.00%<br>0.00% | 1.08%<br>1.22% | 0.10%<br>0.32% | 0.22%<br>0.45%   | 0.00%<br>0.00% | 0.66%<br>1.32%   | 55.3625306<br>58.16454106  | 0.471969608<br>0.505362163 | 47.62%<br>51.39% |
| 22<br>21          | 0.493624272                | 2.59473E-05                | 0.012001229                | 0.0051830                  | 0.002047998                | 0.012572645                | 0.00%          | 0.00%          | 49.36%           | 0.00%          | 1.22%          | 0.56%          | 0.43%            | 0.00%          | 2.53%            | 61.21959302                | 0.503302103                | 54.23%           |
| 20                | 0.460088684                | 0.000110799                | 0.00996944                 | 0.008787616                | 0.004622429                | 0.021820852                | 0.00%          | 0.00%          | 46.01%           | 0.01%          | 1.00%          | 0.88%          | 0.79%            | 0.00%          | 4.39%            | 64.56571936                | 0.505399819                | 53.07%           |
| 19                | 0.389064869                | 0.000224759                | 0.007513654                | 0.013869203                | 0.010024222                | 0.033577795                | 0.00%          | 0.00%          | 38.91%           | 0.02%          | 0.75%          | 1.39%          | 1.71%            | 0.00%          | 6.75%            | 68.24895563                | 0.454274503                | 49.53%           |
| 18                | 0.305283204                | 0.000343083                | 0.005761454                | 0.020736354                | 0.017608873                | 0.046852532                | 0.00%          | 0.00%          | 30.53%           | 0.03%          | 0.58%          | 2.07%          | 3.00%            | 0.00%          | 9.42%            | 72.32556312                | 0.3965855                  | 45.63%           |
| 17                | 0.202585735                | 0.000476765                | 0.005277619                | 0.026220342                | 0.02683104                 | 0.060623222                | 0.00%          | 0.00%          | 20.26%           | 0.05%          | 0.53%          | 2.62%          | 4.57%            | 0.00%          | 12.19%           | 76.86503653                | 0.322014726                | 40.22%           |
| 16                | 0.113609417                | 0.000625331                | 0.00514332                 | 0.027380655                | 0.036094662                | 0.072684949                | 0.00%          | 0.00%          | 11.36%           | 0.06%          | 0.51%          | 2.74%          | 6.15%            | 0.00%          | 14.61%           | 81.95423943                | 0.255538334                | 35.44%           |
| 15                | 0.044743571                | 0.000761073                | 0.003949661                | 0.022478128                | 0.046000155                | 0.082558311                | 0.00%          | 0.00%          | 4.47%            | 0.08%          | 0.39%          | 2.25%          | 7.84%            | 0.00%          | 16.60%           | 87.70319398                | 0.2004909                  | 31.63%           |
| 14                | 0.006638784                | 0.000899051                | 0.002031972                | 0.014259951                | 0.052980638                | 0.090806867                | 0.00%          | 0.00%          | 0.66%            | 0.09%          | 0.20%          | 1.43%          | 9.03%            | 0.00%          | 18.26%           | 94.25335194                | 0.167617264                | 29.67%           |
| 13<br>12          | 0.001900703<br>0.026332737 | 0.000978611<br>0.001028471 | 0.00054293<br>0.000787635  | 0.006470588<br>0.001704219 | 0.059012349<br>0.063463593 | 0.092245333<br>0.090474493 | 0.00%<br>0.00% | 0.00%<br>0.00% | 0.19%<br>2.63%   | 0.10%<br>0.10% | 0.05%<br>0.08% | 0.65%<br>0.17% | 10.06%<br>10.82% | 0.00%<br>0.00% | 18.55%<br>18.19% | 101.789683<br>110.5588076  | 0.161150513<br>0.183791148 | 29.60%<br>31.99% |
| 11                | 0.068538702                | 0.001028471                | 0.002300197                | 0.0001704213               | 0.064263522                | 0.085499983                | 0.00%          | 0.00%          | 6.85%            | 0.10%          | 0.23%          | 0.01%          | 10.95%           | 0.00%          | 17.19%           | 120.8970194                | 0.221751039                | 35.34%           |
| 10                | 0.121360859                | 0.000967775                | 0.003161607                | 0.000130349                | 0.061109298                | 0.075876763                | 0.00%          | 0.00%          | 12.14%           | 0.10%          | 0.32%          | 0.01%          | 10.42%           | 0.00%          | 15.26%           | 133.2751228                | 0.262606652                | 38.24%           |
| 9                 | 0.17116031                 | 0.000899703                | 0.002234767                | 0.000101259                | 0.055645714                | 0.064481216                | 0.00%          | 0.00%          | 17.12%           | 0.09%          | 0.22%          | 0.01%          | 9.49%            | 0.00%          | 12.97%           | 148.3731606                | 0.294522969                | 39.89%           |
| 8                 | 0.200377425                | 0.000798996                | 0.000672478                | 8.99246E-05                | 0.04829225                 | 0.051036272                | 0.00%          | 0.00%          | 20.04%           | 0.08%          | 0.07%          | 0.01%          | 8.23%            | 0.00%          | 10.26%           | 167.2111885                | 0.301267346                | 38.69%           |
| 7                 | 0.217033675                | 0.000687421                | 0.000982554                | 0.001440644                | 0.038775354                | 0.038243469                | 0.00%          | 0.00%          | 21.70%           | 0.07%          | 0.10%          | 0.14%          | 6.61%            | 0.00%          | 7.69%            | 191.3921411                | 0.297163118                | 36.31%           |
| 6                 | 0.205687223                | 0.00055578                 | 0.004256342                | 0.004957204                | 0.02912299                 | 0.026868132                | 0.00%          | 0.00%          | 20.57%           | 0.06%          | 0.43%          | 0.50%          | 4.96%            | 0.00%          | 5.40%            | 223.5875647                | 0.271447671                | 31.91%           |
| 5<br>4            | 0.168008092                | 0.000414025                | 0.008732918                | 0.009275978                | 0.01983165                 | 0.017035715                | 0.00%          | 0.00%          | 16.80%           | 0.04%          | 0.87%          | 0.93%          | 3.38%            | 0.00%          | 3.43%            | 268.6062291                | 0.223298377                | 25.45%<br>18.07% |
| <del>1</del><br>3 | 0.126446618<br>0.074531268 | 0.000277717<br>0.000159601 | 0.010907781<br>0.009081712 | 0.01185596<br>0.010577134  | 0.012132097<br>0.006373341 | 0.00972607<br>0.004768356  | 0.00%<br>0.00% | 0.00%<br>0.00% | 12.64%<br>7.45%  | 0.03%<br>0.02% | 1.09%<br>0.91% | 1.19%<br>1.06% | 2.07%<br>1.09%   | 0.00%<br>0.00% | 1.96%<br>0.96%   | 336.065657<br>448.4067122  | 0.171346243<br>0.105491411 | 18.97%<br>11.48% |
| 2                 | 0.074331208                | 7.09696E-05                | 0.009081712                | 0.006200204                | 0.000373341                | 0.004768336                | 0.00%          | 0.00%          | 3.39%            | 0.02%          | 0.49%          | 0.62%          | 0.42%            | 0.00%          | 0.35%            | 672.9519521                | 0.04927213                 | 5.28%            |
| 1                 | 0.008678583                | 1.73838E-05                | 0.001186528                | 0.001696205                | 0.000525385                | 0.000350331                | 0.00%          | 0.00%          | 0.87%            | 0.00%          | 0.12%          | 0.17%          | 0.09%            | 0.00%          | 0.07%            | 1346.314098                | 0.012454416                | 1.32%            |
|                   |                            |                            |                            |                            |                            |                            |                |                |                  |                |                |                |                  |                |                  |                            |                            |                  |

| degree<br>below<br>horizon | AT1K02<br>(39GHz) | AT1K01<br>(28GHz) | MT6407-77A<br>(3,730MHz) | XXDWMM-<br>12.5-65<br>(3,550MHz) | AWS<br>(2,155MHz) | PCS<br>(1,962MHz) |
|----------------------------|-------------------|-------------------|--------------------------|----------------------------------|-------------------|-------------------|
| 0                          | 0.08              | 0.08              | 0.4                      | 0.29                             | 1                 | 0.19              |
| 1                          | 0.39              | 0.39              | 0                        | 0.09                             | 0.1               | 0                 |
| 2                          | 0.3               | 0.3               | 0.1                      | 0                                | 0                 | 0.39              |
| 3                          | 0                 | 0                 | 0.2                      | 0                                | 0.8               | 1.59              |
| 4                          | 0.31              | 0.31              | 0.4                      | 0.09                             | 2.5               | 3.59              |
| 5                          | 0.42              | 0.42              | 1.1                      | 0.29                             | 5.4               | 6.59              |
| 6                          | 0.13              | 0.13              | 1.8                      | 0.59                             | 10.1              | 10.89             |
| 7                          | 0.44              | 0.44              | 2.9                      | 1                                | 17.8              | 17.59             |
| 8                          | 0.36              | 0.36              | 4.4                      | 1.5                              | 20.6              | 30.79             |
| 9                          | 0.09              | 0.09              | 6.1                      | 2                                | 16.4              | 31.29             |
| 10                         | 0.4               | 0.4               | 8.5                      | 2.59                             | 15.8              | 31.1              |
| 11                         | 0.52              | 0.52              | 11.8                     | 3.19                             | 18                | 31.9              |
| 12                         | 0.26              | 0.26              | 16.7                     | 3.89                             | 23.4              | 21.5              |
| 13                         | 0.57              | 0.57              | 28.8                     | 4.79                             | 25.7              | 16.39             |
| 14                         | 0.51              | 0.51              | 24                       | 5.79                             | 20.6              | 13.59             |
| 15                         | 0.26              | 0.26              | 16.3                     | 7.1                              | 18.3              | 12.2              |
| 16                         | 0.58              | 0.58              | 12.8                     | 8.5                              | 17.7              | 11.89             |
| 17                         | 1.07              | 1.07              | 10.8                     | 10.19                            | 18.1              | 12.59             |
| 18                         | 0.55              | 0.55              | 9.5                      | 12.1                             | 18.2              | 14.09             |
| 19                         | 0.58              | 0.58              | 8.9                      | 14.39                            | 17.5              | 16.29             |
| 20                         | 1.08              | 1.08              | 8.6                      | 17.89                            | 16.7              | 18.7              |
| 21                         | 0.59              | 0.59              | 8.7                      | 24.6                             | 16.3              | 21.1              |
| 22                         | 0.65              | 0.65              | 9.2                      | 42.09                            | 16.6              | 23.9              |
| 23                         | 1.22              | 1.22              | 9.8                      | 24.4                             | 17.5              | 29.2              |
| 24                         | 0.99              | 0.99              | 10.9                     | 19.5                             | 18.5              | 46                |
| 25                         | 0.8               | 0.8               | 12                       | 16.89                            | 19.5              | 26.5              |
| 26                         | 1.11              | 1.11              | 13.6                     | 15.2                             | 20.5              | 20.79             |
| 27                         | 1.12              | 1.12              | 15.5                     | 14                               | 22                | 17.79             |
| 28                         | 0.95              | 0.95              | 17.6                     | 13.2                             | 24.9              | 16.09             |
| 29                         | 1.25              | 1.25              | 19.5                     | 12.8                             | 30.6              | 15.3              |
| 30                         | 2.03              | 2.03              | 21                       | 12.6                             | 41                | 15.3              |
| 31                         | 3.32              | 3.32              | 21.7                     | 12.5                             | 32.4              | 15.89             |
| 32                         | 5.21              | 5.21              | 21.8                     | 12.2                             | 29.7              | 17.29             |
| 33                         | 7.88              | 7.88              | 21.7                     | 12.3                             | 31.6              | 19.2              |
| 34                         | 11.74             | 11.74             | 21.9                     | 12.7                             | 44.4              | 21.7              |
| 35                         | 16.19             | 16.19             | 22.3                     | 13.3                             | 30.7              | 24.29             |
| 36                         | 14.94             | 14.94             | 23.4                     | 13.89                            | 23.2              | 25.6              |
| 37                         | 15.07             | 15.07             | 24.7                     | 14.8                             | 19.2              | 25.2              |
| 38                         | 16.33             | 16.33             | 26.4                     | 16.09                            | 16.6              | 24                |
| 39                         | 15.38             | 15.38             | 28.9                     | 17.59                            | 15                | 23.1              |

| 40 | 15.03 | 15.03 | 31.7 | 18.89 | 14.1 | 22.5  |
|----|-------|-------|------|-------|------|-------|
| 41 | 15.75 | 15.75 | 33.6 | 20.1  | 13.7 | 22.1  |
| 42 | 17.49 | 17.49 | 31.9 | 21.5  | 13.8 | 21.7  |
| 43 | 20.55 | 20.55 | 29.4 | 23.2  | 14.4 | 21.1  |
| 44 | 21.87 | 21.87 | 27   | 25.29 | 15.5 | 20.5  |
| 45 | 20.56 | 20.56 | 25.1 | 27.5  | 17.1 | 20    |
| 46 | 20.35 | 20.35 | 23.5 | 29.29 | 19.2 | 19.7  |
| 47 | 21.02 | 21.02 | 22.3 | 30.9  | 21.7 | 19.59 |
| 48 | 21.62 | 21.62 | 21.2 | 33.09 | 24.6 | 19.7  |
| 49 | 20.49 | 20.49 | 20.6 | 33.7  | 27.3 | 20    |
| 50 | 20.28 | 20.28 | 19.8 | 30.9  | 28.6 | 20.29 |
| 51 | 20.83 | 20.83 | 19.5 | 28.7  | 28.4 | 20.79 |
| 52 | 22.1  | 22.1  | 19.2 | 27.6  | 27.8 | 21.4  |
| 53 | 22.84 | 22.84 | 19.1 | 26.7  | 27.3 | 22    |
| 54 | 23.96 | 23.96 | 19.3 | 26.1  | 27.4 | 22.7  |
| 55 | 25.61 | 25.61 | 19.5 | 26.2  | 28   | 23.5  |
| 56 | 24.75 | 24.75 | 19.9 | 26.6  | 29.5 | 24.29 |
| 57 | 24.54 | 24.54 | 20.3 | 26.29 | 32   | 25.1  |
| 58 | 24.84 | 24.84 | 20.9 | 25.5  | 36.4 | 25.79 |
| 59 | 25.6  | 25.6  | 21.8 | 24.4  | 45.8 | 26.29 |
| 60 | 25.03 | 25.03 | 22.5 | 23.5  | 42.2 | 26.4  |
| 61 | 24.18 | 24.18 | 23.5 | 22.9  | 35.5 | 26.2  |
| 62 | 23.83 | 23.83 | 24.7 | 23    | 32.4 | 25.79 |
| 63 | 23.88 | 23.88 | 25.9 | 24.2  | 30.7 | 25.5  |
| 64 | 24.25 | 24.25 | 27.1 | 25.9  | 29.9 | 25.29 |
| 65 | 24.7  | 24.7  | 28.3 | 26.79 | 29.5 | 25.29 |
| 66 | 24.47 | 24.47 | 28.9 | 26.7  | 29.5 | 25.5  |
| 67 | 24.47 | 24.47 | 29.1 | 26.5  | 29.5 | 25.9  |
| 68 | 24.68 | 24.68 | 29   | 26.9  | 29.5 | 26.4  |
| 69 | 25.07 | 25.07 | 28.6 | 28.29 | 29.4 | 26.9  |
| 70 | 25.64 | 25.64 | 28   | 30    | 29   | 27.7  |
| 71 | 26.36 | 26.36 | 27.4 | 31.2  | 28.4 | 28.79 |
| 72 | 27.24 | 27.24 | 26.9 | 31.6  | 27.8 | 30    |
| 73 | 28.26 | 28.26 | 26.6 | 31.1  | 27.4 | 31.5  |
| 74 | 28.68 | 28.68 | 26.3 | 29.7  | 27.1 | 33.09 |
| 75 | 28.98 | 28.98 | 26.2 | 27.6  | 26.9 | 34.7  |
| 76 | 29.37 | 29.37 | 26   | 25.7  | 26.9 | 36.29 |
| 77 | 29.83 | 29.83 | 25.9 | 24.5  | 27   | 37.7  |
| 78 | 30.36 | 30.36 | 25.9 | 23.79 | 27.1 | 38.7  |
| 79 | 30.94 | 30.94 | 26   | 23.2  | 27.4 | 39.2  |
| 80 | 30.89 | 30.89 | 26.1 | 22.9  | 27.7 | 39.29 |
| 81 | 30.44 | 30.44 | 26.2 | 22.9  | 28   | 39.2  |
| 82 | 30.13 | 30.13 | 26.4 | 23    | 28.4 | 39    |
|    |       |       |      |       |      |       |

| 83 | 29.93 | 29.93 | 26.6 | 23.2  | 28.8 | 38.79 |
|----|-------|-------|------|-------|------|-------|
| 84 | 29.81 | 29.81 | 26.6 | 23.5  | 29.2 | 38.79 |
| 85 | 29.76 | 29.76 | 26.7 | 23.9  | 29.6 | 39    |
| 86 | 29.78 | 29.78 | 26.8 | 24.5  | 30.2 | 39.5  |
| 87 | 29.85 | 29.85 | 26.9 | 25.5  | 31   | 40    |
| 88 | 29.97 | 29.97 | 27   | 26.29 | 32   | 40.4  |
| 89 | 30.13 | 30.13 | 27.1 | 26.7  | 33.3 | 40.5  |
| 90 | 30.33 | 30.33 | 27.1 | 27.4  | 34.6 | 40.4  |

| 850-LTE<br>(880MHz) | 850-CDMA<br>(869MHz) | 700-LTE<br>(746MHz) |
|---------------------|----------------------|---------------------|
| 2.79                | 0                    | 4.8                 |
| 1.89                | 0.02                 | 3.6                 |
| 1.19                | 0.14                 | 2.6                 |
| 0.59                | 0.36                 | 1.8                 |
| 0.29                | 0.68                 | 1.2                 |
| 0.09                | 1.1                  | 0.7                 |
| 0                   | 1.63                 | 0.3                 |
| 0.09                | 2.28                 | 0.1                 |
| 0.29                | 3.06                 | 0                   |
| 0.69                | 3.96                 | 0                   |
| 1.19                | 5.05                 | 0.2                 |
| 1.79                | 6.3                  | 0.5                 |
| 2.59                | 7.76                 | 1                   |
| 3.59                | 9.52                 | 1.6                 |
| 4.69                | 11.54                | 2.3                 |
| 5.89                | 14.03                | 3.3                 |
| 7.49                | 17.05                | 4.4                 |
| 9.29                | 20.58                | 5.7                 |
| 11.6                | 23.59                | 7.3                 |
| 14.5                | 23.39                | 9.2                 |
| 18.29               | 21.14                | 11.5                |
| 20                  | 19.1                 | 14.3                |
| 21.5                | 17.69                | 17.5                |
| 24.9                | 16.78                | 20.9                |
| 24.7                | 16.27                | 22.2                |
| 21.29               | 16.09                | 20.8                |
| 19.5                | 16.19                | 19                  |
| 18.6                | 16.55                | 17.7                |
| 18.6                | 17.14                | 17                  |
| 19                  | 17.99                | 16.8                |
| 20.1                | 19.1                 | 16.9                |
| 21.5                | 20.51                | 17.5                |
| 23.2                | 22.33                | 18.5                |
| 24.29               | 24.6                 | 19.7                |
| 23.79               | 27.59                | 21.3                |
| 22.7                | 31.9                 | 22.8                |
| 21.7                | 38.48                | 23.8                |
| 20.7                | 41.89                | 23.8                |
| 19.89               | 35.75                | 23                  |
| 19.29               | 32.01                | 22                  |

| 18.79 | 29.87 | 21   |
|-------|-------|------|
| 18.6  | 28.59 | 20.1 |
| 18.6  | 27.83 | 19.3 |
| 18.7  | 27.45 | 18.7 |
| 19.2  | 27.45 | 18.1 |
| 20    | 27.71 | 17.7 |
| 21.2  | 28.25 | 17.4 |
| 23.29 | 29.03 | 17.3 |
| 27.9  | 30.1  | 17.5 |
| 26.1  | 31.47 | 17.9 |
| 24.6  | 33.18 | 18.6 |
| 24.4  | 35.42 | 19.7 |
| 24.9  | 38.33 | 21.1 |
| 25.7  | 42.61 | 22.7 |
| 26.2  | 49.79 | 23.9 |
| 26.29 | 53.07 | 24   |
| 25.7  | 45.53 | 22.9 |
| 24.9  | 41.16 | 21.5 |
| 24.2  | 38.77 | 20.2 |
| 23.7  | 37.04 | 19.2 |
| 23.29 | 35.74 | 18.5 |
| 23.2  | 34.89 | 18   |
| 23.29 | 34.18 | 17.7 |
| 23.5  | 33.65 | 17.6 |
| 23.9  | 33.31 | 17.5 |
| 24.6  | 33.07 | 17.4 |
| 25.2  | 32.91 | 17.4 |
| 26    | 32.75 | 17.5 |
| 26.79 | 32.73 | 17.5 |
| 27.6  | 32.76 | 17.6 |
| 28.4  | 32.89 | 17.8 |
| 29.29 | 33.11 | 18.1 |
| 30.3  | 33.28 | 18.5 |
| 31.5  | 33.64 | 19   |
| 32.9  | 33.8  | 19.7 |
| 34.29 | 34.16 | 20.6 |
| 35.7  | 34.42 | 21.5 |
| 36.7  | 34.79 | 22.5 |
| 37.5  | 35.13 | 23.6 |
| 38.5  | 35.47 | 24.6 |
| 39.9  | 35.69 | 25.5 |
| 42.59 | 35.96 | 26.2 |
| 51.59 | 36.1  | 26.8 |
|       |       |      |

| 45.9  | 36.44 | 27.4 |
|-------|-------|------|
| 46.09 | 36.61 | 28.1 |
| 47    | 36.69 | 28.8 |
| 47.59 | 36.85 | 29.7 |
| 47.3  | 36.89 | 30.7 |
| 46.9  | 37.29 | 31.8 |
| 47.09 | 37.43 | 32.8 |
| 47.8  | 37.72 | 33.6 |

# **ATTACHMENT 4**



# STRUCTURAL ANALYSIS REPORT 95'± MONO-PINE TOWER CHESHIRE, CONNECTICUT

Prepared for Verizon Wireless



Verizon Site Ref:

470656; Cheshire East CT

Site Address: 185 Academy Road, Cheshire, CT 06410

FUZE ID: 15372347 Location Code: 470656 Project Code: 20171649710

APT Filing No. CT141NB9650

Rev 0: October 31, 2022



### Structural Analysis Report 95'<sub>±</sub> Mono-pine Tower Cheshire, Connecticut prepared for Verizon Wireless

### **EXECUTIVE SUMMARY:**

All-Points Technology Corporation, P.C. (APT) performed a structural analysis of a pending 95' mono-pine tower structure to support a proposed Verizon equipment installation.

The proposed Verizon installation consists of six (6) proposed panel antennas, three (3) new LSub6 antennas with integrated Radio Heads, the installation of six (6) dual-band Remote Radio Heads (RRHs) & one (1) 12 OVP to be supported by three (3) proposed Commscope Double T-Arm 6' (P/N MTC4074M6996). The proposed Verizon equipment shall be fed by one (1) new 12x24 hybrid cable routed within the host tower. Additional reference can be made to the table on the following page.

The results of this analysis indicate that the mono-pine structure meets the requirements of the 2021 International Building Code (IBC), as amended by the 2022 Connecticut State Building Code, and the ANSI/TIA-222-H standard with Verizon's proposed equipment installation.

Evaluation of the pending foundation was limited to a comparison of the base reactions calculated under the proposed loading against the design reactions indicated within original design documents prepared by Sabre Industries. Reactions imposed by the proposed installation are less than the published design reactions, indicating that the foundation is adequately sized.

The steel component structure usage is summarized in the table below:

| Elevation/Component | Capacity |
|---------------------|----------|
| 49.25′-95′ (L1)     | 48%      |
| 1' - 49.25' (L2)    | 51%      |
| Anchor Bolts        | 35%      |
| Base Plate          | 47%      |

#### **INTRODUCTION:**

A structural analysis of the subject communications tower was performed by APT for Verizon Wireless. The pending tower will be located at 185 Academy Road, Cheshire, Connecticut.

The following information was utilized in the preparation of this analysis:

- RFDS detailing Verizon's proposed equipment changes, latest version.
- Structural Design Report, prepared for Diamond Communications, LLC., by Sabre Industries, (Sabre Job No: 488746 Revision A), signed and sealed by Robert Beacom, P.E. (CT P.E No. 28396); dated 10/04/21.
- Construction Drawings prepared by APT (Project No. CT141NB9650), marked Rev. 1 dated 10/31/22.

The structure is a 95'±, galvanized steel, 18-sided mono-pine tower structure designed and manufactured by Sabre Industries.

The analysis was conducted using the following antenna inventory (proposed equipment changes shown in **bold** text, reserved equipment shown in *italics*):

| Carri<br>er | Antenna and Appurtenance Make/Model                                                                                                                                                                                                                                                     | Elevation | Status                | Mount Type                                                                                                                                                                                | Coax/Feed-<br>Line                |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Veriz<br>on | 3) JMA MX10FIT665-02 panel antennas (s) (3) JMA MX06FIT665-02 panel antennas (s) (3) Samsung MT6407-77A Panel Antennas w/ Integrated RRHs (3) Samsung B2/B66a (RF4439d-25A) RRHs, (3) Samsung B5/B13 (RF4440d-13A) RRHs, (3) Samsung CBRS RT4401-48A RRHs, (1) RVZDC-6627-PF-48 (12OVP) | 90'±      | P<br>P<br>P<br>P<br>P | Three (3) Commscope Double<br>T-Arm 6'<br>(P/N MTC4074M6996) w/ three<br>(3) SitePRO1 Back to Back<br>Pipe Mount (P/N BBPM-K2) &<br>nine (9) P2.5 STD x 8'-0"L<br>antenna mounting pipes. | (1) 12x24<br>L.I. Hybrid<br>Cable |

#### Notes:

- 1. ETR = Existing to Remain; ERL= Existing to be Relocated; **P** = Proposed; *R* = Reserved.
- 2. Elevations are measured above ground level (AGL). Tower is approximately 1' above grade.
- 3. All feed-lines noted above shall be routed within interior of the pole unless otherwise noted.
- 4. Proposed Verizon side-by- side antennas to utilize Dual Mount Antenna Brackets (JMA P/N 91900314-02)
- 5. Branch EPA and loading provided by Sabre Industries.

### STRUCTURAL ANALYSIS:

### Methodology:

This structural analysis has been prepared in accordance with the ANSI/TIA-222-H standard entitled "Structural Standard for Antenna Supporting Structures, Antennas and Small Wind Turbine Support Structures"; American Institute of Steel Construction (AISC) Manual of Steel Construction, and the 2021 International Building Code (IBC), as amended by the 2022 Connecticut State Building Code utilizing the following criteria:

- Load Case 1: 120 mph 3-second gust) wind speed
- Load Case 2: 50mph (3-second gust) wind speed w/ 1.00" ice thickness
- Risk Category: II
- Exposure Category: C
- Topographic Category 1

### **Analysis Results:**

The analysis was conducted in accordance with the criteria outlined above with the aforementioned loading. The following table summarizes the results of the analysis:

| Elevation/Component | Capacity |
|---------------------|----------|
| 49.25'-95' (L1)     | 48%      |
| 1' - 49.25' (L2)    | 51%      |
| Anchor Bolts        | 35%      |
| Base Plate          | 47%      |

#### Foundation:

Evaluation of the pending foundation was limited to a comparison of the base reactions calculated under the proposed loading against the design reactions indicated within original design documents prepared by Sabre Industries. Reactions imposed by the proposed installation are less than the published design reactions, indicating that the foundation is adequately sized.

The calculated base reactions with the proposed equipment loading are indicated within the table below:

| Load Effect        | Original Design<br>(TIA-222-H) | Calculated<br>Reactions | Result |
|--------------------|--------------------------------|-------------------------|--------|
| Compression        | 51.93 k                        | 27 k                    | PASS   |
| Base Shear         | 71.24 k                        | 40 k                    | PASS   |
| Overturning Moment | 4,728.52 ft-k                  | 2,434 ft-k              | PASS   |

#### **CONCLUSIONS:**

In conclusion, our analysis indicates that the pending mono-pine tower structure located at 185 Academy Road, Cheshire, Connecticut, meets the requirements of the 2021 International Building Code (IBC), as amended by the 2022 Connecticut State Building Code, and the ANSI/TIA-222-H standard with Verizon's proposed equipment installation.

Sincerely,

All-Points Technology Corp. P.C.

Michael S. Trodden, P.E. Senior Structural Engineer Prepared By:

All-Points Technology Corp. P.C.

Jan R. Meal

Jason R. Mead

Department Manager -

Structural Services

Verizon Wireless 95'<sub>±</sub> Mono-pine, Cheshire, Connecticut 470656 - Cheshire East CT October 31, 2022 ~ Rev 0 Page 4 APT Project #CT141NB9650

### **LIMITATIONS:**

This report is based on the following:

- 1. Tower/structure is properly installed and maintained.
- 2. All members and components are in a non-deteriorated condition.
- 3. All required members are in place.
- 4. All bolts are in place and are properly tightened.
- 5. Tower/structure is in plumb condition.
- 6. All tower members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
- 7. Material yield stress values as follows:

Monopole: A572 Gr. 65 Base plate: A572 Gr. 50 Anchor bolts: A615 Gr. 75

All-Points Technology Corporation, P.C. (APT) is not responsible for any modifications completed prior to or hereafter which APT is not or was not directly involved. Modifications include but are not limited to:

- 1. Replacing or reinforcing bracing members.
- 2. Reinforcing members in any manner.
- 3. Adding or relocating antennas.
- 4. Installing antenna mounts or waveguide cables.
- 5. Extending tower.

APT hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations, and conclusions are based upon the information contained and set forth herein. If you are aware of any information which conflicts with that which is contained herein, or you are aware of any defects arising from original design, material, fabrication, or erection deficiencies, you should disregard this report and immediately contact APT. APT disclaims all liability for any representation, recommendation, or conclusion not expressly stated herein.

# Appendix A

Design Criteria

(Add) APPENDIX P MUNICIPALITY – SPECIFIC STRUCTURAL DESIGN PARAMETERS

| :            | Basic          | Basic Design Wind Speeds, V<br>(mph) | /ind Spee           | ds, V              | Allow          | able Stress Desi<br>Speeds, $V_{asd}$<br>(mph) | Allowable Stress Design Wind Speeds, $V_{asd}$ (mph) | Wind               | Ground                                      | MCE Ground<br>Accelerations | round<br>ations | Wind-Borne Debris<br>Region <sup>1</sup> | ne Debris<br>on¹ | Hurricane-      |
|--------------|----------------|--------------------------------------|---------------------|--------------------|----------------|------------------------------------------------|------------------------------------------------------|--------------------|---------------------------------------------|-----------------------------|-----------------|------------------------------------------|------------------|-----------------|
| Municipality | Risk<br>Cat. I | Risk<br>Cat. II                      | Risk<br>Cat.<br>III | Risk<br>Cat.<br>IV | Risk<br>Cat. I | Risk<br>Cat. II                                | Risk<br>Cat.<br>III                                  | Risk<br>Cat.<br>IV | $\begin{array}{c c} P_g \\ pst \end{array}$ | S <sub>S</sub>              | $S_I$           | Risk Cat. III<br>Occup. I-2              | Risk Cat.<br>IV  | Prone<br>Region |
| Andover      | 110            | 120                                  | 130                 | 135                | 85             | 93                                             | 101                                                  | 105                | 30                                          | 0.193                       | 0.055           |                                          |                  | Yes             |
| Ansonia      | 110            | 120                                  | 130                 | 135                | 85             | 93                                             | 101                                                  | 105                | 30                                          | 0.202                       | 0.054           |                                          |                  | Yes             |
| Ashford      | 110            | 120                                  | 130                 | 135                | 85             | 93                                             | 101                                                  | 105                | 35                                          | 0.181                       | 0.055           |                                          |                  | Yes             |
| Avon         | 110            | 120                                  | 125                 | 130                | 85             | 93                                             | 26                                                   | 101                | 35                                          | 0.180                       | 0.054           |                                          |                  | Yes             |
| Barkamsted   | 110            | 115                                  | 125                 | 130                | 85             | 68                                             | 26                                                   | 101                | 35                                          | 0.170                       | 0.054           |                                          |                  |                 |
| Beacon Falls | 110            | 120                                  | 130                 | 135                | 85             | 93                                             | 101                                                  | 105                | 30                                          | 0.199                       | 0.054           |                                          |                  | Yes             |
| Berlin       | 110            | 120                                  | 130                 | 135                | 85             | 93                                             | 101                                                  | 105                | 30                                          | 0.201                       | 0.055           |                                          |                  | Yes             |
| Bethany      | 110            | 120                                  | 130                 | 135                | 85             | 93                                             | 101                                                  | 105                | 30                                          | 0.199                       | 0.054           |                                          |                  | Yes             |
| Bethel       | 110            | 120                                  | 125                 | 130                | 85             | 93                                             | 26                                                   | 101                | 30                                          | 0.223                       | 0.056           |                                          |                  | Yes             |
| Bethlehem    | 110            | 120                                  | 125                 | 130                | 85             | 93                                             | 26                                                   | 101                | 35                                          | 0.186                       | 0.054           |                                          |                  | Yes             |
| Bloomfield   | 110            | 120                                  | 130                 | 135                | 85             | 93                                             | 101                                                  | 105                | 30                                          | 0.182                       | 0.055           |                                          |                  | Yes             |
| Bolton       | 110            | 120                                  | 130                 | 135                | 85             | 93                                             | 101                                                  | 105                | 30                                          | 0.191                       | 0.055           |                                          |                  | Yes             |
| Bozrah       | 115            | 125                                  | 135                 | 140                | 68             | 97                                             | 105                                                  | 108                | 30                                          | 0.197                       | 0.054           |                                          |                  | Yes             |
| Branford     | 115            | 125                                  | 135                 | 135                | 68             | 62                                             | 105                                                  | 105                | 30                                          | 0.201                       | 0.053           | Type B                                   | Type B           | Yes             |
| Bridgeport   | 110            | 120                                  | 130                 | 135                | 85             | 93                                             | 101                                                  | 105                | 30                                          | 0.211                       | 0.054           |                                          | Type B           | Yes             |
| Bridgewater  | 110            | 120                                  | 125                 | 130                | 85             | 93                                             | 26                                                   | 101                | 35                                          | 0.201                       | 0.055           |                                          |                  |                 |
| Bristol      | 110            | 120                                  | 130                 | 130                | 85             | 93                                             | 101                                                  | 101                | 35                                          | 0.188                       | 0.054           |                                          |                  | Yes             |
| Brookfield   | 110            | 120                                  | 125                 | 130                | 85             | 93                                             | 26                                                   | 101                | 30                                          | 0.210                       | 0.055           |                                          |                  | Yes             |
| Brooklyn     | 115            | 125                                  | 135                 | 135                | 68             | 97                                             | 105                                                  | 105                | 35                                          | 0.184                       | 0.054           |                                          |                  | Yes             |
| Burlington   | 110            | 120                                  | 125                 | 130                | 85             | 93                                             | 26                                                   | 101                | 35                                          | 0.180                       | 0.054           |                                          |                  | Yes             |
| Canaan       | 105            | 115                                  | 125                 | 130                | 81             | 68                                             | 26                                                   | 101                | 40                                          | 0.166                       | 0.054           |                                          |                  |                 |
| Canterbury   | 115            | 125                                  | 135                 | 140                | 68             | 97                                             | 105                                                  | 108                | 30                                          | 0.187                       | 0.054           |                                          |                  | Yes             |
| Canton       | 110            | 120                                  | 125                 | 130                | 85             | 93                                             | 6                                                    | 101                | 35                                          | 0.177                       | 0.054           |                                          |                  | Yes             |
| Chaplin      | 115            | 125                                  | 130                 | 135                | 68             | 97                                             | 101                                                  | 105                | 35                                          | 0.184                       | 0.055           |                                          |                  | Yes             |
| Cheshire     | 110            | 120                                  | 130                 | 135                | 85             | 93                                             | 101                                                  | 105                | 30                                          | 0.200                       | 0.055           |                                          |                  | Yes             |
| Chester      | 115            | 125                                  | 135                 | 140                | 68             | 62                                             | 105                                                  | 108                | 30                                          | 0.213                       | 0.055           |                                          |                  | Yes             |
| Clinton      | 115            | 125                                  | 135                 | 140                | 68             | 97                                             | 105                                                  | 108                | 30                                          | 0.205                       | 0.054           | Type B                                   | Type B           | Yes             |
| Colchester   | 115            | 125                                  | 135                 | 135                | 68             | 26                                             | 105                                                  | 105                | 30                                          | 0.205                       | 0.055           |                                          |                  | Yes             |
| Colebrook    | 105            | 115                                  | 125                 | 130                | 81             | 68                                             | 26                                                   | 101                | 40                                          | 0.165                       | 0.054           |                                          |                  |                 |
| Columbia     | 115            | 125                                  | 130                 | 135                | 68             | 97                                             | 101                                                  | 105                | 30                                          | 0.195                       | 0.055           |                                          |                  | Yes             |



#### lce

Results:

Ice Thickness: 1.00 in.

Concurrent Temperature: 15 F

Gust Speed 50 mph

**Data Source:** Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed: Tue Sep 27 2022

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

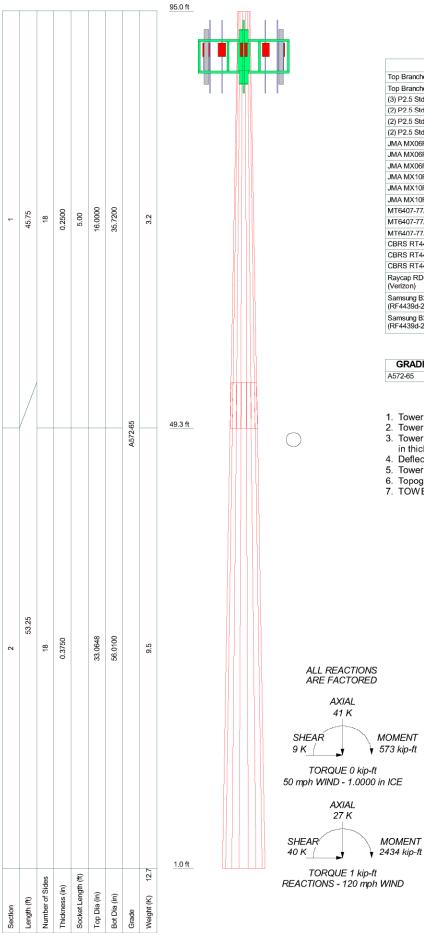
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

### **Snow**

Results:

Ground Snow Load,  $p_g$ : 30 lb/ft<sup>2</sup> Elevation: 240.1 ft

Data Source: ASCE/SEI 7-16, Table 7.2-8


Date Accessed: Tue Sep 27 2022

Values provided are ground snow loads. In areas designated "case study required," extreme local variations in ground snow loads preclude mapping at this scale. Site-specific case studies are required to establish ground snow

loads at elevations not covered.

# Appendix B

Tower Schematic



#### **DESIGNED APPURTENANCE LOADING**

| TYPE                                           | ELEVATION | TYPE                                          | ELEVATION |
|------------------------------------------------|-----------|-----------------------------------------------|-----------|
| Top Branches                                   | 95.5      | Samsung B2/B66A RRH                           | 90        |
| Top Branches                                   | 90.5      | (RF4439d-25A) (Verizon)                       |           |
| (3) P2.5 Std x 8.0' Pipe Mount (Verizon)       | 90        | Samsung B5/B13 RRH (RF4440d-13A)              | 90        |
| (2) P2.5 Std x 8.0' Pipe Mount (Verizon)       | 90        | (Verizon)                                     |           |
| (2) P2.5 Std x 8.0' Pipe Mount (Verizon)       | 90        | Samsung B5/B13 RRH (RF4440d-13A)<br>(Verizon) | 90        |
| (2) P2.5 Std x 8.0' Pipe Mount (Verizon)       | 90        | Samsung B5/B13 RRH (RF4440d-13A)              | 90        |
| JMA MX06FIT665-02 (Verizon)                    | 90        | (Verizon)                                     | 90        |
| JMA MX06FIT665-02 (Verizon)                    | 90        | MTC4074M6xxx w/o pipes (Verizon)              | 90        |
| JMA MX06FIT665-02 (Verizon)                    | 90        | (3) P2.5 Std x 8.0' Pipe Mount (Verizon)      | 90        |
| JMA MX10FIT665-02 (Verizon)                    | 90        | (3) P2.5 Std x 8.0' Pipe Mount (Verizon)      | 90        |
| JMA MX10FIT665-02 (Verizon)                    | 90        | Branches                                      | 85.5      |
| JMA MX10FIT665-02 (Verizon)                    | 90        | Branches                                      | 80.5      |
| MT6407-77A (Verizon)                           | 90        | Branches                                      | 75.5      |
| MT6407-77A (Verizon)                           | 90        | Branches                                      | 70.5      |
| MT6407-77A (Verizon)                           | 90        | Branches                                      | 65.5      |
| CBRS RT4401-48A RRH (Verizon)                  | 90        | Branches                                      | 60.5      |
| CBRS RT4401-48A RRH (Verizon)                  | 90        | Branches                                      | 55.5      |
| CBRS RT4401-48A RRH (Verizon)                  | 90        | Branches                                      | 50.5      |
| Raycap RDC-6627-PF-48 OVP<br>(Verizon)         | 90        | Branches                                      | 45.5      |
| Samsung B2/B66A RRH                            | 90        | Branches                                      | 40.5      |
| (RF4439d-25A) (Verizon)                        | 30        | Branches                                      | 35.5      |
| Samsung B2/B66A RRH<br>(RF4439d-25A) (Verizon) | 90        | Branches                                      | 31.5      |

#### MATERIAL STRENGTH

| GRADE    | Fy     | Fu     | GRADE | Fy | Fu |  |
|----------|--------|--------|-------|----|----|--|
| A 572 65 | 65 kei | 90 kei |       |    |    |  |

#### **TOWER DESIGN NOTES**

- Tower designed for Exposure C to the TIA-222-H Standard.
   Tower designed for a 120 mph basic wind in accordance with the TIA-222-H Standard.
   Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
- 4. Deflections are based upon a 60 mph wind.
- 5. Tower Risk Category II.
- 6. Topographic Category 1 with Crest Height of 0.00 ft7. TOWER RATING: 50.7%



All-Points Technology Corporation, P.C. 567 Vauxhall Streeet Ext., Suite 311 Waterford, CT 06385 Phone: (860) 663-1697 FAX:

| Job: <b>95' Mono-pin</b> e | Tower          |            |
|----------------------------|----------------|------------|
| Project: 470656_Cheshi     | ire East CT    |            |
| Client: Verizon            | Drawn by: JRM  | App'd:     |
| Code: TIA-222-H            | Date: 10/31/22 | Scale: NTS |
| Path:                      |                | Dwg No. E- |

# Appendix C

Calculations

# All-Points Technology Corporation, P.C.

567 Vauxhall Streeet Ext., Suite 311 Waterford, CT 06385 Phone: (860) 663-1697 FAX:

| Job                             | Page                      |
|---------------------------------|---------------------------|
| 95' Mono-pine Tower             | 1 of 5                    |
| Project 470656_Cheshire East_CT | Date<br>11:39:46 10/31/22 |
| Client Verizon                  | Designed by<br>JRM        |

# **Tower Input Data**

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower base elevation above sea level: 883.00 ft.

Basic wind speed of 120 mph.

Risk Category II.

Exposure Category C.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1.

Crest Height: 0.00 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

# Feed Line/Linear Appurtenances - Entered As Area

| Description      | Face<br>or | Allow<br>Shield | Exclude<br>From       | Component<br>Type | Placement    | Total<br>Number |          | $C_AA_A$ | Weight |
|------------------|------------|-----------------|-----------------------|-------------------|--------------|-----------------|----------|----------|--------|
|                  | Leg        |                 | Torque<br>Calculation |                   | ft           |                 |          | ft²/ft   | plf    |
| HB158-U12S24-xxx | С          | No              | Yes                   | Inside Pole       | 95.00 - 6.00 | 1               | No Ice   | 0.00     | 3.20   |
| -LI              |            |                 |                       |                   |              |                 | 1/2" Ice | 0.00     | 3.20   |
| (Verizon)        |            |                 |                       |                   |              |                 | 1" Ice   | 0.00     | 3.20   |

# Feed Line/Linear Appurtenances Section Areas

| Tower   | Tower       | Face | $A_R$ | $A_F$ | $C_A A_A$ | $C_A A_A$       | Weight |
|---------|-------------|------|-------|-------|-----------|-----------------|--------|
| Section | Elevation   |      |       |       | In Face   | Out Face        |        |
|         | ft          |      | ft²   | ft²   | ft²       | ft <sup>2</sup> | K      |
| L1      | 95.00-49.25 | A    | 0.000 | 0.000 | 0.000     | 0.000           | 0.00   |
|         |             | В    | 0.000 | 0.000 | 0.000     | 0.000           | 0.00   |
|         |             | C    | 0.000 | 0.000 | 0.000     | 0.000           | 0.15   |
| L2      | 49.25-1.00  | A    | 0.000 | 0.000 | 0.000     | 0.000           | 0.00   |
|         |             | В    | 0.000 | 0.000 | 0.000     | 0.000           | 0.00   |
|         |             | C    | 0.000 | 0.000 | 0.000     | 0.000           | 0.14   |

# All-Points Technology Corporation, P.C.

567 Vauxhall Streeet Ext., Suite 311 Waterford, CT 06385 Phone: (860) 663-1697 FAX:

| Job     |                         | Page                      |
|---------|-------------------------|---------------------------|
|         | 95' Mono-pine Tower     | 2 of 5                    |
| Project | 470656_Cheshire East_CT | Date<br>11:39:46 10/31/22 |
| Client  | Verizon                 | Designed by<br>JRM        |

# Feed Line/Linear Appurtenances Section Areas - With Ice

| Tower   | Tower       | Face | Ice       | $A_R$           | $A_F$           | $C_AA_A$        | $C_A A_A$       | Weight |
|---------|-------------|------|-----------|-----------------|-----------------|-----------------|-----------------|--------|
| Section | Elevation   | or   | Thickness |                 |                 | In Face         | Out Face        |        |
|         | ft          | Leg  | in        | ft <sup>2</sup> | ft <sup>2</sup> | ft <sup>2</sup> | ft <sup>2</sup> | K      |
| L1      | 95.00-49.25 | A    | 1.077     | 0.000           | 0.000           | 0.000           | 0.000           | 0.00   |
|         |             | В    |           | 0.000           | 0.000           | 0.000           | 0.000           | 0.00   |
|         |             | C    |           | 0.000           | 0.000           | 0.000           | 0.000           | 0.15   |
| L2      | 49.25-1.00  | A    | 0.970     | 0.000           | 0.000           | 0.000           | 0.000           | 0.00   |
|         |             | В    |           | 0.000           | 0.000           | 0.000           | 0.000           | 0.00   |
|         |             | C    |           | 0.000           | 0.000           | 0.000           | 0.000           | 0.14   |

# **Discrete Tower Loads**

| Description              | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustment | Placement |          | $C_AA_A$<br>Front | $C_AA_A$<br>Side | Weigh |
|--------------------------|-------------------|----------------|-----------------------------|-----------------------|-----------|----------|-------------------|------------------|-------|
|                          | J                 |                | Vert<br>ft<br>ft            | ٥                     | ft        |          | ft²               | ft²              | K     |
|                          |                   |                | ft                          |                       |           |          |                   |                  |       |
| (3) P2.5 Std x 8.0' Pipe | A                 | From Face      | 3.50                        | 0.0000                | 90.00     | No Ice   | 2.30              | 2.30             | 0.05  |
| Mount                    |                   |                | 0.00                        |                       |           | 1/2" Ice | 3.13              | 3.13             | 0.06  |
| (Verizon)                |                   |                | 0.00                        |                       |           | 1" Ice   | 3.62              | 3.62             | 0.09  |
| (3) P2.5 Std x 8.0' Pipe | В                 | From Face      | 3.50                        | 0.0000                | 90.00     | No Ice   | 2.30              | 2.30             | 0.05  |
| Mount                    |                   |                | 0.00                        |                       |           | 1/2" Ice | 3.13              | 3.13             | 0.06  |
| (Verizon)                |                   |                | 0.00                        |                       |           | 1" Ice   | 3.62              | 3.62             | 0.09  |
| (3) P2.5 Std x 8.0' Pipe | C                 | From Face      | 3.50                        | 0.0000                | 90.00     | No Ice   | 2.30              | 2.30             | 0.05  |
| Mount                    |                   |                | 0.00                        |                       |           | 1/2" Ice | 3.13              | 3.13             | 0.06  |
| (Verizon)                |                   |                | 0.00                        |                       |           | 1" Ice   | 3.62              | 3.62             | 0.09  |
| (2) P2.5 Std x 8.0' Pipe | A                 | From Face      | 2.00                        | 0.0000                | 90.00     | No Ice   | 2.30              | 2.30             | 0.05  |
| Mount                    |                   |                | 0.00                        |                       |           | 1/2" Ice | 3.13              | 3.13             | 0.06  |
| (Verizon)                |                   |                | 0.00                        |                       |           | 1" Ice   | 3.62              | 3.62             | 0.09  |
| (2) P2.5 Std x 8.0' Pipe | В                 | From Face      | 2.00                        | 0.0000                | 90.00     | No Ice   | 2.30              | 2.30             | 0.05  |
| Mount                    |                   |                | 0.00                        |                       |           | 1/2" Ice | 3.13              | 3.13             | 0.06  |
| (Verizon)                |                   |                | 0.00                        |                       |           | 1" Ice   | 3.62              | 3.62             | 0.09  |
| (2) P2.5 Std x 8.0' Pipe | C                 | From Face      | 2.00                        | 0.0000                | 90.00     | No Ice   | 2.30              | 2.30             | 0.05  |
| Mount                    |                   |                | 0.00                        |                       |           | 1/2" Ice | 3.13              | 3.13             | 0.06  |
| (Verizon)                |                   |                | 0.00                        |                       |           | 1" Ice   | 3.62              | 3.62             | 0.09  |
| JMA MX06FIT665-02        | A                 | From Face      | 4.00                        | 0.0000                | 90.00     | No Ice   | 8.15              | 7.34             | 0.05  |
| (Verizon)                |                   |                | 0.00                        |                       |           | 1/2" Ice | 8.60              | 7.78             | 0.11  |
|                          |                   |                | 0.00                        |                       |           | 1" Ice   | 9.06              | 8.24             | 0.18  |
| JMA MX06FIT665-02        | В                 | From Face      | 4.00                        | 0.0000                | 90.00     | No Ice   | 8.15              | 7.34             | 0.05  |
| (Verizon)                |                   |                | 0.00                        |                       |           | 1/2" Ice | 8.60              | 7.78             | 0.11  |
|                          |                   |                | 0.00                        |                       |           | 1" Ice   | 9.06              | 8.24             | 0.18  |
| JMA MX06FIT665-02        | C                 | From Face      | 4.00                        | 0.0000                | 90.00     | No Ice   | 8.15              | 7.34             | 0.05  |
| (Verizon)                |                   |                | 0.00                        |                       |           | 1/2" Ice | 8.60              | 7.78             | 0.11  |
|                          |                   |                | 0.00                        |                       |           | 1" Ice   | 9.06              | 8.24             | 0.18  |
| JMA MX10FIT665-02        | A                 | From Face      | 4.00                        | 0.0000                | 90.00     | No Ice   | 8.09              | 5.47             | 0.05  |
| (Verizon)                |                   |                | 0.00                        |                       |           | 1/2" Ice | 8.54              | 5.92             | 0.10  |
|                          |                   |                | 0.00                        |                       |           | 1" Ice   | 9.00              | 6.38             | 0.16  |
| JMA MX10FIT665-02        | В                 | From Face      | 4.00                        | 0.0000                | 90.00     | No Ice   | 8.09              | 5.47             | 0.05  |
| (Verizon)                |                   |                | 0.00                        |                       |           | 1/2" Ice | 8.54              | 5.92             | 0.10  |
| ,                        |                   |                | 0.00                        |                       |           | 1" Ice   | 9.00              | 6.38             | 0.16  |
| JMA MX10FIT665-02        | C                 | From Face      | 4.00                        | 0.0000                | 90.00     | No Ice   | 8.09              | 5.47             | 0.05  |
| (Verizon)                |                   |                | 0.00                        |                       |           | 1/2" Ice | 8.54              | 5.92             | 0.10  |
| ,                        |                   |                | 0.00                        |                       |           | 1" Ice   | 9.00              | 6.38             | 0.16  |
| MT6407-77A               | Α                 | From Face      | 4.00                        | 0.0000                | 90.00     | No Ice   | 4.71              | 1.84             | 0.09  |
| (Verizon)                |                   |                | 0.00                        |                       |           | 1/2" Ice | 5.00              | 2.07             | 0.12  |

All-Points Technology Corporation, P.C. 567 Vauxhall Streeet Ext., Suite 311 Waterford, CT 06385 Phone: (860) 663-1697 FAX:

| Job                             | Page                      |
|---------------------------------|---------------------------|
| 95' Mono-pine Tower             | 3 of 5                    |
| Project 470656_Cheshire East_CT | Date<br>11:39:46 10/31/22 |
| Client<br>Verizon               | Designed by<br>JRM        |

| Description                         | Face<br>or | Offset<br>Type | Offsets:<br>Horz | Azimuth<br>Adjustment | Placement |                  | $C_AA_A$ Front | $C_AA_A$<br>Side | Weight       |
|-------------------------------------|------------|----------------|------------------|-----------------------|-----------|------------------|----------------|------------------|--------------|
|                                     | Leg        |                | Lateral          |                       |           |                  |                |                  |              |
|                                     |            |                | Vert<br>ft       | 0                     | ft        |                  | ft²            | $ft^2$           | K            |
|                                     |            |                | ft<br>ft         |                       | ,,,       |                  | Je             | J.               | **           |
|                                     |            |                | 0.00             |                       |           | 1" Ice           | 5.29           | 2.30             | 0.15         |
| MT6407-77A                          | В          | From Face      | 4.00             | 0.0000                | 90.00     | No Ice           | 4.71           | 1.84             | 0.09         |
| (Verizon)                           |            |                | 0.00             |                       |           | 1/2" Ice         | 5.00           | 2.07             | 0.12         |
|                                     |            |                | 0.00             |                       |           | 1" Ice           | 5.29           | 2.30             | 0.15         |
| MT6407-77A                          | C          | From Face      | 4.00             | 0.0000                | 90.00     | No Ice           | 4.71           | 1.84             | 0.09         |
| (Verizon)                           |            |                | 0.00             |                       |           | 1/2" Ice         | 5.00           | 2.07             | 0.12         |
| CDDC DTMAN 404 DDM                  |            | в в            | 0.00             | 0.0000                | 00.00     | 1" Ice           | 5.29           | 2.30             | 0.15         |
| CBRS RT4401-48A RRH                 | Α          | From Face      | 4.00             | 0.0000                | 90.00     | No Ice           | 1.00           | 0.50             | 0.02         |
| (Verizon)                           |            |                | 0.00<br>0.00     |                       |           | 1/2" Ice         | 1.12           | 0.60             | 0.03<br>0.04 |
| CBRS RT4401-48A RRH                 | В          | From Face      | 4.00             | 0.0000                | 90.00     | 1" Ice<br>No Ice | 1.26<br>1.00   | 0.71<br>0.50     | 0.04         |
| (Verizon)                           | Ь          | FIOIII Face    | 0.00             | 0.0000                | 90.00     | 1/2" Ice         | 1.12           | 0.50             | 0.02         |
| (Verizon)                           |            |                | 0.00             |                       |           | 1" Ice           | 1.12           | 0.71             | 0.03         |
| CBRS RT4401-48A RRH                 | С          | From Face      | 4.00             | 0.0000                | 90.00     | No Ice           | 1.00           | 0.50             | 0.02         |
| (Verizon)                           | -          | 3.0            | 0.00             |                       | 2 2.00    | 1/2" Ice         | 1.12           | 0.60             | 0.03         |
| (1.22.22)                           |            |                | 0.00             |                       |           | 1" Ice           | 1.26           | 0.71             | 0.04         |
| Raycap RDC-6627-PF-48               | C          | From Face      | 2.00             | 0.0000                | 90.00     | No Ice           | 4.06           | 3.10             | 0.03         |
| OVP                                 |            |                | 0.00             |                       |           | 1/2" Ice         | 4.32           | 3.34             | 0.07         |
| (Verizon)                           |            |                | 0.00             |                       |           | 1" Ice           | 4.58           | 3.58             | 0.11         |
| Samsung B2/B66A RRH                 | A          | From Face      | 2.00             | 0.0000                | 90.00     | No Ice           | 1.88           | 1.26             | 0.10         |
| (RF4439d-25A)                       |            |                | 0.00             |                       |           | 1/2" Ice         | 2.05           | 1.41             | 0.12         |
| (Verizon)                           |            |                | 0.00             |                       |           | 1" Ice           | 2.22           | 1.56             | 0.14         |
| Samsung B2/B66A RRH                 | В          | From Face      | 2.00             | 0.0000                | 90.00     | No Ice           | 1.88           | 1.26             | 0.10         |
| (RF4439d-25A)                       |            |                | 0.00             |                       |           | 1/2" Ice         | 2.05           | 1.41             | 0.12         |
| (Verizon)                           |            |                | 0.00             |                       |           | 1" Ice           | 2.22           | 1.56             | 0.14         |
| Samsung B2/B66A RRH                 | C          | From Face      | 2.00             | 0.0000                | 90.00     | No Ice           | 1.88           | 1.26             | 0.10         |
| (RF4439d-25A)                       |            |                | 0.00             |                       |           | 1/2" Ice         | 2.05           | 1.41             | 0.12         |
| (Verizon)                           | 4          | Enom Eooo      | 0.00             | 0.0000                | 00.00     | 1" Ice<br>No Ice | 2.22<br>1.88   | 1.56             | 0.14<br>0.08 |
| Samsung B5/B13 RRH<br>(RF4440d-13A) | Α          | From Face      | 2.00<br>0.00     | 0.0000                | 90.00     | 1/2" Ice         | 2.05           | 1.14<br>1.28     | 0.08         |
| (Verizon)                           |            |                | 0.00             |                       |           | 1" Ice           | 2.03           | 1.42             | 0.10         |
| Samsung B5/B13 RRH                  | В          | From Face      | 2.00             | 0.0000                | 90.00     | No Ice           | 1.88           | 1.14             | 0.12         |
| (RF4440d-13A)                       | Ь          | 11011111100    | 0.00             | 0.0000                | 70.00     | 1/2" Ice         | 2.05           | 1.28             | 0.10         |
| (Verizon)                           |            |                | 0.00             |                       |           | 1" Ice           | 2.22           | 1.42             | 0.12         |
| Samsung B5/B13 RRH                  | С          | From Face      | 2.00             | 0.0000                | 90.00     | No Ice           | 1.88           | 1.14             | 0.08         |
| (RF4440d-13A)                       |            |                | 0.00             |                       |           | 1/2" Ice         | 2.05           | 1.28             | 0.10         |
| (Verizon)                           |            |                | 0.00             |                       |           | 1" Ice           | 2.22           | 1.42             | 0.12         |
| MTC4074M6xxx w/o pipes              | C          | From Face      | 2.00             | 0.0000                | 90.00     | No Ice           | 7.20           | 5.40             | 1.37         |
| (Verizon)                           |            |                | 0.00             |                       |           | 1/2" Ice         | 9.00           | 6.40             | 1.83         |
|                                     |            |                | 0.00             |                       |           | 1" Ice           | 10.80          | 7.40             | 2.28         |
| Top Branches                        | C          | None           |                  | 0.0000                | 95.50     | No Ice           | 25.00          | 25.00            | 0.25         |
|                                     |            |                |                  |                       |           | 1/2" Ice         | 27.00          | 27.00            | 0.45         |
|                                     |            |                |                  |                       |           | 1" Ice           | 29.00          | 29.00            | 0.65         |
| Top Branches                        | C          | None           |                  | 0.0000                | 90.50     | No Ice           | 25.00          | 25.00            | 0.25         |
|                                     |            |                |                  |                       |           | 1/2" Ice         | 27.00          | 27.00            | 0.45         |
| - ·                                 | ~          |                |                  |                       | 0.5.50    | 1" Ice           | 29.00          | 29.00            | 0.65         |
| Branches                            | C          | None           |                  | 0.0000                | 85.50     | No Ice           | 50.00          | 50.00            | 0.50         |
|                                     |            |                |                  |                       |           | 1/2" Ice         | 56.00          | 56.00            | 0.70         |
| Branches                            | С          | None           |                  | 0.0000                | 80.50     | 1" Ice<br>No Ice | 62.00<br>50.00 | 62.00<br>50.00   | 0.90<br>0.50 |
| Dianches                            |            | INOHE          |                  | 0.0000                | 00.50     | 1/2" Ice         | 56.00          | 56.00            | 0.30         |
|                                     |            |                |                  |                       |           | 1" Ice           | 62.00          | 62.00            | 0.70         |
| Branches                            | C          | None           |                  | 0.0000                | 75.50     | No Ice           | 50.00          | 50.00            | 0.50         |
| Dianones                            |            | 140110         |                  | 0.0000                | 75.50     | 1/2" Ice         | 56.00          | 56.00            | 0.70         |
|                                     |            |                |                  |                       |           | 1" Ice           | 62.00          | 62.00            | 0.90         |
| Branches                            | C          | None           |                  | 0.0000                | 70.50     | No Ice           | 50.00          | 50.00            | 0.50         |
| 2141171170                          | -          | 1.0110         |                  | 0.0000                | , 0100    | 1/2" Ice         | 56.00          | 56.00            | 0.70         |

# All-Points Technology Corporation, P.C.

567 Vauxhall Streeet Ext., Suite 311 Waterford, CT 06385 Phone: (860) 663-1697 FAX:

| Job                     |                  | Page                      |
|-------------------------|------------------|---------------------------|
| 95' Mo                  | no-pine Tower    | 4 of 5                    |
| <b>Project</b> 470656_C | Cheshire East_CT | Date<br>11:39:46 10/31/22 |
| Client                  | Verizon          | Designed by<br>JRM        |

| Description | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral<br>Vert | Azimuth<br>Adjustment | Placement |          | $C_AA_A$<br>Front | $C_AA_A$<br>Side | Weigh |
|-------------|-------------------|----------------|-------------------------------------|-----------------------|-----------|----------|-------------------|------------------|-------|
|             |                   |                | ft<br>ft<br>ft                      | ٥                     | ft        |          | ft²               | ft²              | K     |
|             |                   |                |                                     |                       |           | 1" Ice   | 62.00             | 62.00            | 0.90  |
| Branches    | C                 | None           |                                     | 0.0000                | 65.50     | No Ice   | 50.00             | 50.00            | 0.50  |
|             |                   |                |                                     |                       |           | 1/2" Ice | 56.00             | 56.00            | 0.70  |
|             |                   |                |                                     |                       |           | 1" Ice   | 62.00             | 62.00            | 0.90  |
| Branches    | C                 | None           |                                     | 0.0000                | 60.50     | No Ice   | 50.00             | 50.00            | 0.50  |
|             |                   |                |                                     |                       |           | 1/2" Ice | 56.00             | 56.00            | 0.70  |
|             |                   |                |                                     |                       |           | 1" Ice   | 62.00             | 62.00            | 0.90  |
| Branches    | C                 | None           |                                     | 0.0000                | 55.50     | No Ice   | 50.00             | 50.00            | 0.50  |
|             |                   |                |                                     |                       |           | 1/2" Ice | 56.00             | 56.00            | 0.70  |
|             |                   |                |                                     |                       |           | 1" Ice   | 62.00             | 62.00            | 0.90  |
| Branches    | C                 | None           |                                     | 0.0000                | 50.50     | No Ice   | 50.00             | 50.00            | 0.50  |
|             |                   |                |                                     |                       |           | 1/2" Ice | 56.00             | 56.00            | 0.70  |
|             |                   |                |                                     |                       |           | 1" Ice   | 62.00             | 62.00            | 0.90  |
| Branches    | C                 | None           |                                     | 0.0000                | 45.50     | No Ice   | 50.00             | 50.00            | 0.50  |
|             |                   |                |                                     |                       |           | 1/2" Ice | 56.00             | 56.00            | 0.70  |
|             |                   |                |                                     |                       |           | 1" Ice   | 62.00             | 62.00            | 0.90  |
| Branches    | C                 | None           |                                     | 0.0000                | 40.50     | No Ice   | 55.56             | 55.56            | 0.50  |
|             |                   |                |                                     |                       |           | 1/2" Ice | 61.56             | 61.56            | 0.70  |
|             |                   |                |                                     |                       |           | 1" Ice   | 67.56             | 67.56            | 0.90  |
| Branches    | C                 | None           |                                     | 0.0000                | 35.50     | No Ice   | 55.56             | 55.56            | 0.50  |
|             |                   |                |                                     |                       |           | 1/2" Ice | 61.56             | 61.56            | 0.70  |
|             |                   |                |                                     |                       |           | 1" Ice   | 67.56             | 67.56            | 0.90  |
| Branches    | C                 | None           |                                     | 0.0000                | 31.50     | No Ice   | 44.45             | 44.45            | 0.40  |
|             |                   |                |                                     |                       |           | 1/2" Ice | 49.23             | 49.23            | 0.56  |
|             |                   |                |                                     |                       |           | 1" Ice   | 54.00             | 54.00            | 0.72  |

# **Maximum Tower Deflections - Service Wind**

| Section | Elevation  | Horz.      | Gov.  | Tilt   | Twist  |
|---------|------------|------------|-------|--------|--------|
| No.     |            | Deflection | Load  |        |        |
|         | ft         | in         | Comb. | 0      | 0      |
| L1      | 95 - 49.25 | 6.384      | 59    | 0.6243 | 0.0020 |
| L2      | 54.25 - 1  | 1.956      | 59    | 0.3467 | 0.0003 |

# Critical Deflections and Radius of Curvature - Service Wind

| Elevation | Appurtenance                   | Gov.  | Deflection | Tilt   | Twist  | Radius of |
|-----------|--------------------------------|-------|------------|--------|--------|-----------|
|           |                                | Load  |            |        |        | Curvature |
| ft        |                                | Comb. | in         | 0      | 0      | ft        |
| 95.50     | Top Branches                   | 59    | 6.384      | 0.6243 | 0.0020 | 42611     |
| 90.50     | Top Branches                   | 59    | 5.825      | 0.5933 | 0.0018 | 42611     |
| 90.00     | (3) P2.5 Std x 8.0' Pipe Mount | 59    | 5.764      | 0.5899 | 0.0017 | 42611     |
| 85.50     | Branches                       | 59    | 5.211      | 0.5590 | 0.0015 | 22427     |
| 80.50     | Branches                       | 59    | 4.611      | 0.5247 | 0.0013 | 14693     |
| 75.50     | Branches                       | 59    | 4.030      | 0.4905 | 0.0011 | 10926     |
| 70.50     | Branches                       | 59    | 3.478      | 0.4564 | 0.0009 | 8696      |
| 65.50     | Branches                       | 59    | 2.959      | 0.4225 | 0.0007 | 7222      |
| 60.50     | Branches                       | 59    | 2.483      | 0.3887 | 0.0005 | 6175      |
| 55.50     | Branches                       | 59    | 2.055      | 0.3551 | 0.0003 | 5479      |
| 50.50     | Branches                       | 59    | 1.681      | 0.3218 | 0.0002 | 5627      |

# All-Points Technology Corporation, P.C.

567 Vauxhall Streeet Ext., Suite 311 Waterford, CT 06385 Phone: (860) 663-1697 FAX:

| Job     |                         | Page                      |
|---------|-------------------------|---------------------------|
|         | 95' Mono-pine Tower     | 5 of 5                    |
| Project | 470656_Cheshire East_CT | Date<br>11:39:46 10/31/22 |
| Client  | Verizon                 | Designed by<br>JRM        |

| Elevation | Appurtenance | Gov.  | Deflection | Tilt   | Twist  | Radius of |
|-----------|--------------|-------|------------|--------|--------|-----------|
|           |              | Load  |            |        |        | Curvature |
| ft        |              | Comb. | in         | 0      | 0      | ft        |
| 45.50     | Branches     | 59    | 1.361      | 0.2886 | 0.0001 | 6256      |
| 40.50     | Branches     | 59    | 1.089      | 0.2557 | 0.0001 | 7047      |
| 35.50     | Branches     | 51    | 0.867      | 0.2235 | 0.0000 | 8069      |
| 31.50     | Branches     | 51    | 0.715      | 0.1983 | 0.0000 | 9127      |

# **Maximum Tower Deflections - Design Wind**

| Section | Elevation  | Horz.      | Gov.  | Tilt   | Twist  |
|---------|------------|------------|-------|--------|--------|
| No.     |            | Deflection | Load  |        |        |
|         | ft         | in         | Comb. | 0      | 0      |
| L1      | 95 - 49.25 | 28.044     | 18    | 2.6884 | 0.0090 |
| L2      | 54.25 - 1  | 8.688      | 18    | 1.5372 | 0.0014 |

# Critical Deflections and Radius of Curvature - Design Wind

| Elevation | Appurtenance                   | Gov.  | Deflection | Tilt   | Twist  | Radius of |
|-----------|--------------------------------|-------|------------|--------|--------|-----------|
|           |                                | Load  |            |        |        | Curvature |
| ft        |                                | Comb. | in         | 0      | 0      | ft        |
| 95.50     | Top Branches                   | 18    | 28.044     | 2.6884 | 0.0090 | 9857      |
| 90.50     | Top Branches                   | 18    | 25.606     | 2.5619 | 0.0080 | 9857      |
| 90.00     | (3) P2.5 Std x 8.0' Pipe Mount | 18    | 25.336     | 2.5478 | 0.0079 | 9857      |
| 85.50     | Branches                       | 18    | 22.924     | 2.4212 | 0.0070 | 5187      |
| 80.50     | Branches                       | 18    | 20.301     | 2.2805 | 0.0059 | 3398      |
| 75.50     | Branches                       | 18    | 17.765     | 2.1395 | 0.0049 | 2526      |
| 70.50     | Branches                       | 18    | 15.349     | 1.9984 | 0.0039 | 2010      |
| 65.50     | Branches                       | 18    | 13.083     | 1.8569 | 0.0030 | 1669      |
| 60.50     | Branches                       | 18    | 10.996     | 1.7151 | 0.0022 | 1427      |
| 55.50     | Branches                       | 18    | 9.121      | 1.5728 | 0.0016 | 1265      |
| 50.50     | Branches                       | 18    | 7.482      | 1.4301 | 0.0010 | 1299      |
| 45.50     | Branches                       | 18    | 6.075      | 1.2870 | 0.0006 | 1444      |
| 40.50     | Branches                       | 18    | 4.876      | 1.1434 | 0.0003 | 1626      |
| 35.50     | Branches                       | 2     | 3.870      | 1.0001 | 0.0000 | 1862      |
| 31.50     | Branches                       | 2     | 3.181      | 0.8858 | 0.0000 | 2106      |

# **Section Capacity Table**

| Section<br>No. | Elevation<br>ft | Component<br>Type | Size                  | Critical<br>Element | P<br>K | ø $P_{allow}$ | %<br>Capacity | Pass<br>Fail |
|----------------|-----------------|-------------------|-----------------------|---------------------|--------|---------------|---------------|--------------|
| L1             | 95 - 49.25      | Pole              | TP35.72x16x0.25       | 1                   | -11.49 | 1546.47       | 47.7          | Pass         |
| L2             | 49.25 - 1       | Pole              | TP56.01x33.0648x0.375 | 2                   | -27.21 | 3873.84       | 50.7          | Pass         |
|                |                 |                   |                       |                     |        |               | Summary       |              |
|                |                 |                   |                       |                     |        | Pole (L2)     | 50.7          | Pass         |
|                |                 |                   |                       |                     |        | RATING =      | 50.7          | Pass         |



Verizon - 470656 Cheshire East CT

185 Academy Road, Cheshire, CT CT 06410

APT FILING No. CT141NB9650

Anchor Bolt and Base Plate Analysis (Circular Pattern)

Prepared by: JRM Checked by: MST, P.E.

Date: 10.31.22 (Rev.0)

#### Anchor Bolt and Base Plate Analysis (Non-Grouted Base Plate): Circular base analysis methdology to TIA-222-H Annex Q. Ref: Tower design calculations - Sabire Input Data: Industries; Job No. 488746 - Revision A), dated 10.04.21 Tower Reactions (1.2DL + 1.0WL): Overturning Moment = $M_{ij} := 2434 \cdot \mathbf{ft} \cdot \mathbf{kip}$ (Input From tnxTower) Axial Force = $R_{u} := 27.0 \cdot kip$ (Input From tnxTower) Shear Force = (Input From tnxTower) $V_{ij} := 40.0 \cdot kip$ Anchor Bolt Data: Anchor Bolt Grade = ASTM A615 Gr. 75 (User Input) Number of Anchor Bolts = N := 16(User Input) Diameter of Bolt Circle = $D_{BC} := 62.75 \cdot in$ (User Input) Bolt "Column" Distance = $I_{ar} := 1.0 in$ (Defined as anchor rod projection from supporting structure to bottom of leveling nut) Bolt Ultimate Stress = $F_{ub} \coloneqq 100 \cdot ksi$ (User Input) Bolt Yield Stress = $F_{vb} := 75 \cdot ksi$ (User Input) Bolt Modulus of Elasticity = E := 29000 ⋅ ksi (User Input) Nominal Diameter of Anchor Bolts = D := 2.25 in(User Input) Ihreads per Inch = n := 4.5(User Input) (User Input - Table Q-1) Anchor Rod Correction Factor = $n_c = 1.02$ Base Plate Data: ASTM A572-50 Plate Yield Stress = $F_{vf} = 50 \cdot ksi$ (User Input) Base Plate Thickness = (User Input) $t_{TP} = 2.00 \ in$ Base Plate Diameter = $D_{OD} := 68.50 \cdot in$ (User Input) Outer Pole Diameter = $D_T := 56.010 \cdot in$ (Flat to Flat - User Input)



567 Vauxhall Street Extension, Suite 311 Waterford, CT 06385 PH: 860-663-1697 Verizon - 470656 Cheshire East CT

185 Academy Road, Cheshire, CT CT 06410

APT FILING No. CT141NB9650

Anchor Bolt and Base Plate Analysis (Circular Pattern)

Prepared by: JRM Checked by: MST, P.E.

Date: 10.31.22 (Rev.0)

### Distance from Bolts to Centroid of Pole:

Radius of Bolt Circle =:

Distance to Bolts =

$$R_{bc} := \frac{D_{BC}}{2} = 31.375$$
 in

$$i := 1..N$$

$$d_{i} := \left| \begin{array}{l} \theta \leftarrow 2 \cdot \pi \cdot \left( \frac{i}{N} \right) \\ d \leftarrow R_{bc} \cdot \sin \left( \theta \right) \end{array} \right|$$

$$d_1 = 12.01 in$$

$$d_2 = 22.19$$
 in

$$d_2 = 28.99$$
 in

$$d_{A} = 31.38$$
 in

$$d_{E} = 28.99 in$$

$$d_{e} = 22.19$$
 in

$$R_{pole} := \frac{D_T}{2} = 28 \text{ in}$$

$$w_1 \coloneqq 0.25$$
 in

$$D_e := D_T + _{w1} = 56.26$$
 in

$$\theta_1 := \frac{\pi}{N} = 0.196 \text{ rad}$$

$$\theta_{2} \coloneqq \text{if } (12) \ (t_{TP}) \ge D_{BC} \qquad = 0.196 \ \textit{rad}$$

$$\left\| \text{asin} \left( \frac{(12)}{D_{BC}} \right) \right\|_{BC} = 0.196 \ \text{rad}$$

$$\| \text{else} \|_{\theta_{1}}$$

$$\theta_3 := a\cos\left(\frac{D_{BC} + D_e}{2 \cdot D_{BC}}\right) = 0.32 \ rad$$

$$\theta_{min} := min(\theta_1, \theta_2, \theta_3) = 0.196$$
 rad

$$x := 0.50 \cdot (D_{BC} - D_e) = 3.245 in$$

$$B_{et} := D_{BC} \cdot \sin(\theta_{min}) = 12.242 in$$

$$\begin{aligned} D_{oe} &\coloneqq \text{if } D_{BC} + 6 \ \left( t_{TP} \right) \leq D_{OD} \\ & \left\| D_{BC} + 6 \ \left( t_{TP} \right) \right. \end{aligned} = 68.5 \ \textit{in}$$
 else 
$$\left\| D_{OD} \right.$$

$$B_{er} := (D_{oe} - D_e) \cdot \sin(\theta_{min}) = 2.388$$
 in

$$B_{\text{eff}} := B_{\text{et}} + B_{\text{er}} = 14.63 \text{ in}$$

{f}.xmcd

Effective Width of Baseplate for Bending =



khall Street Extension, Suite 311 Waterford, CT 06385 PH: 860-663-1697

Verizon - 470656 Cheshire East CT

185 Academy Road, Cheshire, CT CT 06410

APT FILING No. CT141NB9650

Anchor Bolt and Base Plate Analysis (Circular Pattern)

Prepared by: JRM Checked by: MST, P.E.

Date: 10.31.22 (Rev.0)

| Anchor | Bolt | Properties: |
|--------|------|-------------|

Nominal Unthreaded Area of Bolt =

Net Area of Bolt =

Tensile Root Diameter =

Plastic Section Modulus of Bolt =

Rod Radius of Gyration =

Rod Critical Compression Stress =

#### Anchor Bolt Forces:

Maximum Bolt Tension Force =

Maximum Bolt Shear Force =

Bolt Bending Moment =

#### Anchor Bolt Strengths:

Bolt Design Tension Strength =

Bolt Design Compression Yield Strength =

Bolt Design Shear Rupture Strength =

Bolt Design Shear Yield Strength =

Bolt Design Buckling Strength =

Bolt Design Flexural Strength =

$$A_g := \frac{\pi}{4} \cdot D^2 = 3.976 \text{ in}^2$$

$$A_n := \frac{\pi}{4} \cdot \left(D - \frac{0.9743 \cdot in}{n}\right)^2 = 3.248 \ in^2$$

$$D_{rt} = D - \frac{0.9743 \cdot in}{0.9743 \cdot in} = 2.033 in$$

$$D_{n} := D - \frac{0.9743 \cdot in}{n} = 2.033 in$$

$$Z_{x} := \frac{D_{n}^{3}}{6} = 1.401 in^{3}$$

$$r := \frac{D_{rt}}{4} = 0.508 \ in$$

$$F_{cr} = 74.95 \text{ ksi}$$

$$P_{ut} := \left(\frac{(n_c) \cdot \boldsymbol{\pi} \cdot M_u}{N \cdot D_{BC}} - \frac{R_u}{N}\right) = 91.53 \text{ kip}$$

$$P_{uc} := \left(\frac{(n_c) \cdot \boldsymbol{\pi} \cdot M_u}{N \cdot D_{BC}} + \frac{R_u}{N}\right) = 94.91 \ \boldsymbol{kip}$$

$$V_u := \frac{V_u}{N} = 2.5 \text{ kip}$$

$$M_u := 0.65 \cdot V_u \cdot I_{ar} = 1.625 \ in \cdot kip$$

 $\phi_t R_{nt} := 0.75 \cdot F_{ttb} \cdot A_n = 243.58 \text{ kip}$ 

 $\phi_c R_{nc} := 0.90 \cdot F_{yb} \cdot A_g = 268.39 \text{ kip}$ 

 $\phi_{V}R_{nv} := 0.75 \cdot 0.5 \cdot F_{ub} \cdot A_{g} = 149.1 \text{ kip}$ 

 $\phi_c R_{nvc} := 0.90 \cdot 0.6 \cdot 0.75 \cdot F_{vb} \cdot A_g = 120.77 \text{ kip}$ 

 $\phi_c R_{nb} := 0.90 \cdot F_{cr} \cdot A_a = 268.22 \text{ kip}$ 

 $\phi_t M_n := 0.90 \ F_{vb} \cdot Z_x = 94.6 \ in \cdot kip$ 



567 Vauxhall Street Extension, Suite 311 Waterford, CT 06385 PH: 860-663-1697 Verizon - 470656 Cheshire East CT

185 Academy Road, Cheshire, CT CT 06410

APT FILING No. CT141NB9650

Anchor Bolt and Base Plate Analysis (Circular Pattern)

Prepared by: JRM Checked by: MST, P.E.

Date: 10.31.22 (Rev.0)

Anchor Rod Usage =

Note:

Per TIA-222-H Section 4.9.9 when the anchor rod projection (lar) exceeds 1(d) but is not more than 3 in., it shall be permitted to consider (lar) less than or equal to 1(d) when 5,000 psi min. 7 day strength non shrink, non metallic grout is installed between the supporting structure and the leveling nuts, otherwise all interaction equations shall be investigated based on (lar).

$$\begin{aligned} & \text{Usage1} \coloneqq \left[ & \text{if } I_{ar} \leq 1.0 \cdot D \\ & & \text{max} \left( \left[ \left( \frac{P_{ut}}{\phi_t R_{nt}} \right)^2 + \left( \frac{V_u}{\phi_v R_{nv}} \right)^2 \right] \right) \\ & \text{also if } 1.0 \cdot D < I_{ar} \leq 4.0 \cdot D \\ & & \text{max} \left( \left[ \left( \left( \frac{P_{ut}}{\phi_t R_{nt}} \right) + \left( \frac{M_u}{\phi_t M_n} \right) \right)^2 + \left( \frac{V_u}{\phi_v R_{nv}} \right)^2 \right] \right) \\ & \text{else} \\ & & \text{max} \left( \left[ \left( \left( \frac{P_{ut}}{\phi_t R_{nt}} \right) + \left( \frac{M_u}{\phi_t M_n} \right) + \left( \frac{V_u}{\phi_c R_{nvc}} \right)^2 \right] \right) \\ & & \text{else} \end{aligned}$$

### Base Plate Analysis:

$$Z_p := \frac{B_{\text{eff}} \cdot t_{TP}^2}{4} = 14.63 \text{ in}^3$$

$$M_p := P_{uc} \cdot x = 307.98 \ in \cdot kip$$

$$\phi M_n := 0.90 \cdot F_{yf} \cdot Z_p = 658.34 \text{ in } \cdot \text{kip}$$

$$Usage2 := \frac{M_p}{\phi M_n} = 0.47$$

$$tTP := \sqrt{\frac{4 \cdot P_{uc} \cdot x}{0.9 \cdot F_{vf} \cdot B_{eff}}} = 1.368 \text{ in}$$

#### Anchor Bolt and Base Plate Analysis Summary:

Anchor Bolt Usage (% of Capacity) =

Usage1 = 35%

Base Plate Bending Usage (% of Capacity) =

Usage2 = 47%

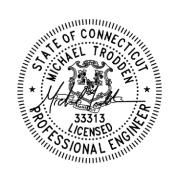


## MOUNT ANALYSIS REPORT 95'± MONO-PINE TOWER CHESHIRE, CONNECTICUT

Prepared for Verizon Wireless



Verizon Site Ref:


470656; Cheshire East CT

Site Address: 185 Academy Road, Cheshire, CT 06410

FUZE ID: 15372347 Location Code: 470656 Project Code: 20171649710

APT Filing No. CT141NB9650

Rev 0: October 24, 2022 Rev 1: October 31, 2022



### Mount Analysis Report 95-ft± Mono-pine Tower Cheshire, Connecticut prepared for Verizon Wireless

#### **EXECUTIVE SUMMARY:**

All-Points Technology Corporation, P.C. (APT) performed a structural analysis of a proposed antenna mount assembly to support a proposed Verizon equipment installation. This evaluation was limited to the proposed mount assembly and its connection to the existing host tower structure.

The proposed Verizon installation consists of six (6) proposed panel antennas, three (3) new LSub6 antennas with integrated Radio Heads, the installation of six (6) dual-band Remote Radio Heads (RRHs) & one (1) 12 OVP to be supported by three (3) proposed Commscope Double T-Arm 6' (P/N MTC4074M6996). The proposed Verizon equipment shall be fed by one (1) new 12x24 hybrid cable routed within the host tower. Additional reference can be made to the table on the following page.

The results of this analysis indicate that the proposed antenna mount assembly meets the requirements of the 2021 International Building Code (IBC), as amended by the 2022 Connecticut State Building Code, and the ANSI/TIA-222-H standard with Verizon's proposed equipment installation.

The mount assembly component usage is summarized in the table below:

| Mount Assembly Component    | Usage (%) |
|-----------------------------|-----------|
| Members (Tube Standoff Arm) | 20%       |
| Connection (Plate)          | 32%       |

#### **INTRODUCTION:**

A structural analysis of the proposed antenna mount assembly was performed by APT for the purpose of supporting the proposed Verizon Wireless equipment installation. The subject host structure is a mono-pine tower designed by Sabre Industries located at 185 Academy Road in Cheshire, Connecticut.

The following information was utilized in the preparation of this analysis:

- RFDS detailing Verizon's proposed equipment changes, latest version.
- Construction Drawings prepared by APT (APT Project No. CT141NB9650), marked Rev 1, dated October 31, 2022.
- Structural Design Report prepared for Diamond Communications, LLC., by Sabre Industries, (Sabre Job No: 488746 Revision A), signed and sealed by Robert Beacom, P.E. (CT P.E No. 28396); dated 10/04/21.
- Assembly Drawings for the Double T-Arm 6' (P/N: MTC4074M6996) prepared by Commscope, Inc., dated August 8, 2019.

The analysis was conducted using the following antenna inventory (proposed equipment shown in **bold** text):

| Carrier | Antenna and Appurtenance Make/Model                                                                                                                                                                                                                                                      | Elevation | Status           | Mount Type                                                                                                                                                                                      | Coax/Feed-<br>Line                |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Verizon | (3) JMA MX10FIT665-02 panel antennas (5) (3) JMA MX06FIT665-02 panel antennas (5) (3) Samsung MT6407-77A Panel Antennas w/ Integrated RRHs (3) Samsung B2/B66a (RF4439d-25A) RRHs, (3) Samsung B5/B13 (RF4440d-13A) RRHs, (3) Samsung CBRS RT4401-48A RRHs, (1) RVZDC-6627-PF-48 (12OVP) | 90'±      | P<br>P<br>P<br>P | Three (3) Commscope<br>Double T-Arm 6'<br>(P/N MTC4074M6996)<br>W/ three (3) SitePRO1<br>Back to Back Pipe<br>Mount (P/N BBPM-K2)<br>& nine (9) P2.5 STD x<br>8'-0"L antenna<br>mounting pipes. | (1) 12x24<br>L.I. Hybrid<br>Cable |

#### Notes:

- 1. ETR = Existing to Remain; ERL= Existing to be Relocated;  $\mathbf{P}$  = Proposed;  $\mathbf{F}$  = Future; R= Reserved.
- 2. Proposed antennas to utilize Dual Mount Antenna Brackets (JMA P/N 91900314-02)

### **STRUCTURAL ANALYSIS:**

### Antenna Frame Analysis Criteria:

The structural analysis has been prepared in accordance with the ANSI/TIA-222-H standard entitled "Structural Standard for Antenna Supporting Structures, Antennas and Small Wind Turbine Support Structures"; American Institute of Steel Construction (AISC) Manual of Steel Construction, and the 2021 International Building Code (IBC), as amended by the 2022 Connecticut State Building Code utilizing the following criteria:

- Load Case 1: 120 mph 3-second gust) wind speed
- Load Case 2: 50mph (3-second gust) wind speed w/ 1.00" ice thickness
- Load Case 3: 30mph (3-second gust) Maintenance wind speed.
- Risk Category: II
- Exposure Category: C
- Topographic Category 1
- Maintenance Live Load, L<sub>v</sub> = 250 lbs / L<sub>m</sub> = 500 lbs

### **ANALYSIS RESULTS:**

The analysis of the antenna mount assembly was conducted in accordance with the criteria outlined herein with the aforementioned proposed equipment loading. The following table summarizes the results of the analysis:

| Mount Assembly Component    | Usage (%) |
|-----------------------------|-----------|
| Members (Tube Standoff Arm) | 20%       |
| Connection (Plate)          | 32%       |

### **CONCLUSIONS AND RECOMMENDATIONS:**

In conclusion, we find that the proposed mount assembly located at 185 Academy Road in Cheshire, Connecticut meets the requirements of the 2021 International Building Code (IBC), as amended by the 2022 Connecticut State Building Code, and the ANSI/TIA-222-H standard under the proposed equipment loading.

Sincerely,

All-Points Technology Corp. P.C.

Michael S. Trodden, P.E. Senior Structural Engineer

Mount Analysis
95'<sub>±</sub> Mono-pine, Cheshire, Connecticut
470656 - Cheshire East CT

October 31, 2022 ~ Rev 1 Page 4 APT Project #CT141NB9650

### LIMITATIONS:

This report is based on the following:

- 1. Tower/structure is properly installed and maintained.
- 2. With the exception of the anchor bolts, all members are in a non-deteriorated condition.
- 3. All required members are in place.
- 4. All bolts are in place and are properly tightened.
- 5. Tower/structure is in plumb condition.
- 6. All tower members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
- 7. Mount Assembly material yield stress values as follows:

Tubes: ASTM A500 Gr. B (46 KSI) Pipes: ASTM A53 Gr. B (35 KSI)

End Connection Plates: ASTM A572 Gr. 50 (50 KSI)

Misc. Steel: ASTM A36 (36 KSI)

All-Points Technology Corporation, P.C. (APT) is not responsible for any modifications completed prior to or hereafter which APT is not or was not directly involved. Modifications include but are not limited to:

- 1. Replacing or reinforcing bracing members.
- 2. Reinforcing members in any manner.
- 3. Installing antenna mounts.
- 4. Extending tower/structure.

APT hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations, and conclusions are based upon the information contained and set forth herein. If you are aware of any information which is contrary to that which is contained herein, or you are aware of any defects arising from the original design, material, fabrication, and erection deficiencies, you should disregard this report and immediately contact APT. APT disclaims all liability for any representation, recommendation, or conclusion not expressly stated herein.

## Appendix A

Design Criteria

(Add) APPENDIX P MUNICIPALITY – SPECIFIC STRUCTURAL DESIGN PARAMETERS

| :            | Basic          | Basic Design Wind Speeds, V<br>(mph) | Vind Spee           | ds, V              | Allow          | Allowable Stress Design Wind Speeds, $V_{asd}$ (mph) | s Design 's, V <sub>asd</sub> | Wind               | Ground                                                          | MCE Ground<br>Accelerations | round<br>ations | Wind-Borne Debris<br>Region <sup>1</sup> | ne Debris       | Hurricane-      |
|--------------|----------------|--------------------------------------|---------------------|--------------------|----------------|------------------------------------------------------|-------------------------------|--------------------|-----------------------------------------------------------------|-----------------------------|-----------------|------------------------------------------|-----------------|-----------------|
| Municipanty  | Risk<br>Cat. I | Risk<br>Cat. II                      | Risk<br>Cat.<br>III | Risk<br>Cat.<br>IV | Risk<br>Cat. I | Risk<br>Cat. II                                      | Risk<br>Cat.<br>III           | Risk<br>Cat.<br>IV | $\begin{array}{c} p_{s} \\ p_{s} \\ (\mathrm{psf}) \end{array}$ | $S_S$ (g)                   | $S_I$           | Risk Cat. III<br>Occup. I-2              | Risk Cat.<br>IV | Frone<br>Region |
| Andover      | 110            | 120                                  | 130                 | 135                | 85             | 93                                                   | 101                           | 105                | 30                                                              | 0.193                       | 0.055           |                                          |                 | Yes             |
| Ansonia      | 110            | 120                                  | 130                 | 135                | 85             | 93                                                   | 101                           | 105                | 30                                                              | 0.202                       | 0.054           |                                          |                 | Yes             |
| Ashford      | 110            | 120                                  | 130                 | 135                | 85             | 93                                                   | 101                           | 105                | 35                                                              | 0.181                       | 0.055           |                                          |                 | Yes             |
| Avon         | 110            | 120                                  | 125                 | 130                | 85             | 93                                                   | 97                            | 101                | 35                                                              | 0.180                       | 0.054           |                                          |                 | Yes             |
| Barkamsted   | 110            | 115                                  | 125                 | 130                | 85             | 68                                                   | 62                            | 101                | 35                                                              | 0.170                       | 0.054           |                                          |                 |                 |
| Beacon Falls | 110            | 120                                  | 130                 | 135                | 85             | 93                                                   | 101                           | 105                | 30                                                              | 0.199                       | 0.054           |                                          |                 | Yes             |
| Berlin       | 110            | 120                                  | 130                 | 135                | 85             | 93                                                   | 101                           | 105                | 30                                                              | 0.201                       | 0.055           |                                          |                 | Yes             |
| Bethany      | 110            | 120                                  | 130                 | 135                | 85             | 93                                                   | 101                           | 105                | 30                                                              | 0.199                       | 0.054           |                                          |                 | Yes             |
| Bethel       | 110            | 120                                  | 125                 | 130                | 85             | 93                                                   | 26                            | 101                | 30                                                              | 0.223                       | 0.056           |                                          |                 | Yes             |
| Bethlehem    | 110            | 120                                  | 125                 | 130                | 85             | 93                                                   | 62                            | 101                | 35                                                              | 0.186                       | 0.054           |                                          |                 | Yes             |
| Bloomfield   | 110            | 120                                  | 130                 | 135                | 85             | 93                                                   | 101                           | 105                | 30                                                              | 0.182                       | 0.055           |                                          |                 | Yes             |
| Bolton       | 110            | 120                                  | 130                 | 135                | 85             | 93                                                   | 101                           | 105                | 30                                                              | 0.191                       | 0.055           |                                          |                 | Yes             |
| Bozrah       | 115            | 125                                  | 135                 | 140                | 68             | 62                                                   | 105                           | 108                | 30                                                              | 0.197                       | 0.054           |                                          |                 | Yes             |
| Branford     | 115            | 125                                  | 135                 | 135                | 68             | 62                                                   | 105                           | 105                | 30                                                              | 0.201                       | 0.053           | Type B                                   | Type B          | Yes             |
| Bridgeport   | 110            | 120                                  | 130                 | 135                | 85             | 93                                                   | 101                           | 105                | 30                                                              | 0.211                       | 0.054           |                                          | Type B          | Yes             |
| Bridgewater  | 110            | 120                                  | 125                 | 130                | 85             | 93                                                   | 97                            | 101                | 35                                                              | 0.201                       | 0.055           |                                          |                 |                 |
| Bristol      | 110            | 120                                  | 130                 | 130                | 85             | 93                                                   | 101                           | 101                | 35                                                              | 0.188                       | 0.054           |                                          |                 | Yes             |
| Brookfield   | 110            | 120                                  | 125                 | 130                | 85             | 93                                                   | 62                            | 101                | 30                                                              | 0.210                       | 0.055           |                                          |                 | Yes             |
| Brooklyn     | 115            | 125                                  | 135                 | 135                | 68             | 6                                                    | 105                           | 105                | 35                                                              | 0.184                       | 0.054           |                                          |                 | Yes             |
| Burlington   | 110            | 120                                  | 125                 | 130                | 85             | 93                                                   | 62                            | 101                | 35                                                              | 0.180                       | 0.054           |                                          |                 | Yes             |
| Canaan       | 105            | 115                                  | 125                 | 130                | 81             | 68                                                   | 97                            | 101                | 40                                                              | 0.166                       | 0.054           |                                          |                 |                 |
| Canterbury   | 115            | 125                                  | 135                 | 140                | 68             | 62                                                   | 105                           | 108                | 30                                                              | 0.187                       | 0.054           |                                          |                 | Yes             |
| Canton       | 110            | 120                                  | 125                 | 130                | 85             | 93                                                   | 62                            | 101                | 35                                                              | 0.177                       | 0.054           |                                          |                 | Yes             |
| Chaplin      | 115            | 125                                  | 130                 | 135                | 68             | 97                                                   | 101                           | 105                | 35                                                              | 0.184                       | 0.055           |                                          |                 | Yes             |
| Cheshire     | 110            | 120                                  | 130                 | 135                | 85             | 93                                                   | 101                           | 105                | 30                                                              | 0.200                       | 0.055           |                                          |                 | Yes             |
| Chester      | 115            | 125                                  | 135                 | 140                | 68             | 67                                                   | 105                           | 108                | 30                                                              | 0.213                       | 0.055           |                                          |                 | Yes             |
| Clinton      | 115            | 125                                  | 135                 | 140                | 68             | 6                                                    | 105                           | 108                | 30                                                              | 0.205                       | 0.054           | Type B                                   | Type B          | Yes             |
| Colchester   | 115            | 125                                  | 135                 | 135                | 68             | 97                                                   | 105                           | 105                | 30                                                              | 0.205                       | 0.055           |                                          |                 | Yes             |
| Colebrook    | 105            | 115                                  | 125                 | 130                | 81             | 68                                                   | 67                            | 101                | 40                                                              | 0.165                       | 0.054           |                                          |                 |                 |
| Columbia     | 115            | 125                                  | 130                 | 135                | 68             | 97                                                   | 101                           | 105                | 30                                                              | 0.195                       | 0.055           |                                          |                 | Yes             |



#### lce

#### Results:

Ice Thickness: 1.00 in.

Concurrent Temperature: 15 F

Gust Speed 50 mph

Data Source: Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed: Tue Sep 27 2022

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

## Appendix B

**Mount Analysis** 



Project ID: CT141NB9650
Site Name: Cheshire East CT
Date: 10/24/2022

(Based on ANSI/TIA-222-H)

| Site Name:    | Cheshire East CT   |
|---------------|--------------------|
| Site Address: | 185 Academy Road   |
| Site Address. | Cheshire, CT 06410 |
| Site County:  | New Haven          |

|                                              | Design Crite | <u>ria</u> |                       |
|----------------------------------------------|--------------|------------|-----------------------|
| Risk Category =                              | П            |            | Sect. 2.2 & Table 2-1 |
| Exposure Category =                          | С            |            | Section 2.6.5         |
| Ultimate Design Wind Speed, V =              | 120          | mph        | 2022 CSBC, Appendix P |
| Design Wind Speed with Ice, V <sub>i</sub> = | 50           | mph        | Fig. B-9              |
| Design Ice Thickness, t <sub>i</sub> =       | 1.00         | in         | Fig. B-9              |
| Importance Factor, I =                       | 1.00         |            | Table 2-3             |
| Basic Wind Speed, $V_m =$                    | 30           | mph        | Section 16.3          |
| Maintenance Load, $L_m$ =                    | 500.0        | lbs        | Section 16.3          |
| <u>Assembly</u> Maintenance Load, $L_v =$    | 250.0        | lbs        | Section 16.3          |

#### Wind Pressure Analysis:

| ressure Analysis:                                           |                            |                                      |     |                  |
|-------------------------------------------------------------|----------------------------|--------------------------------------|-----|------------------|
| $q_z = 0.00256K_zK_{zt}K_sK_eK_dV^2$                        | Se                         | ction 2.6.11.                        | 5   |                  |
| <u>K<sub>7</sub>:</u>                                       | Se                         | e Next She                           | eet |                  |
|                                                             | $z_g =$                    | 900                                  |     | Table 2-4        |
|                                                             | α=                         | 9.5                                  |     | Table 2-4        |
|                                                             | $K_{zmin} =$               | 0.85                                 |     | Table 2-4        |
| <u>K<sub>zt</sub> :</u>                                     | K <sub>zt</sub> =          | 1.00                                 |     | Section 2.6.6    |
| <u>Ks :</u><br><u>Ks :</u>                                  | K <sub>s</sub> =           | 1.00                                 |     | Section 2.6.7    |
| <u>K<sub>e</sub> :</u>                                      | K <sub>e</sub> =           | 1.00                                 |     | Section 2.6.8    |
| <u>K<sub>d</sub> :</u>                                      | K <sub>d</sub> =           | 0.95                                 |     | Section 16.6     |
|                                                             |                            |                                      |     |                  |
|                                                             | $q_z^{1} =$                | 35.02                                | psf |                  |
|                                                             | $q_{zi}' =$                | 6.08                                 | psf |                  |
|                                                             | <b>q</b> <sub>zm</sub> ' = | 2.19                                 | psf |                  |
| $F = q_z G_h (EPA)_A = q_z G_h K_a [(EPA)_A = q_z G_h K_a]$ | A) <sub>N</sub> cos²(θ)+(  | EPA) <sub>T</sub> sin <sup>2</sup> ( | ⊖)] | Section 2.6.11.2 |

1.00

0.90

Section 16.6

Section 16.6

 $G_h =$ 

 $K_a =$ 

CT141NB9650 Cheshire East CT 10/24/2022

Project ID: Site Name: Date:

> = " Table 2-4 Table 2-4 Table 2-4 900  $z_g = \alpha = \alpha = K_{zmin} = \alpha$ Section 16.6 Section 16.6 1.00 ۾ ۾ چ Design Criteria: (From Previous Sheet)  $q_{i}^{*} = 35.02 \text{ psf}$   $q_{ii}^{*} = 6.08 \text{ psf}$   $q_{iw}^{*} = 2.10 \text{ psf}$

ALL-POINTS TECHNOLOGY CORPORATION

[Based on ANSI/TIA-222-H]

Table 2-3 Section 2.6.6

1.00

|                             |       |       |         |         |            |        |        |                 |                              |             | ŀ    |                |                             |             |          |            |            |             |
|-----------------------------|-------|-------|---------|---------|------------|--------|--------|-----------------|------------------------------|-------------|------|----------------|-----------------------------|-------------|----------|------------|------------|-------------|
|                             |       |       |         |         | Dimensions | sions  |        | 프               | Flat Panel Front Coefficient | Coefficient |      | т.             | Flat Panel Side Coefficient | Coefficient |          |            |            |             |
|                             | Elev. |       |         | Height, | Width,     | Depth, | Wght., | Area,           | Aspect                       |             |      | Area,          | Aspect                      |             |          | Front Wind | Side Wind  |             |
| Description                 | z, ft | K     | q,, psf | ï       | Ē          | .⊑     | lbs    | ft <sup>2</sup> | Ratio                        | Ca          | CaAa | H <sub>2</sub> | Ratio                       | ద్          | $C_aA_a$ | Force, lbs | Force, lbs | Weight, Ibs |
| MT6407-77A                  | 0.06  | 1.238 | 43.35   | 35.1    | 16.1       | 5.5    | 87.1   | 3.92            | 2.187                        | 1.20        | 4.70 | 1.344          | 6.374                       | 1.37        | 1.844    | 184.0      | 72.0       | 87.1        |
| MX10FIT665-02               | 0.06  | 1.238 | 43.35   | 70.9    | 12.2       | 7.5    | 86.9   | 6.01            | 5.811                        | 1.35        | 8.09 | 3.693          | 9.453                       | 1.48        | 5.472    | 316.0      | 214.0      | 86.9        |
| MX06FIT665-02               | 0.06  | 1.238 | 43.35   | 71.3    | 12.2       | 10.7   | 84.5   | 6.04            | 5.844                        | 1.35        | 8.15 | 5.298          | 6.664                       | 1.39        | 7.338    | 318.0      | 287.0      | 84.5        |
| B2/66a Samsung RRH          | 0.06  | 1.238 | 43.35   | 15.0    | 15.0       | 10.0   | 97.5   | 1.56            | 1.000                        | 1.20        | 1.88 | 1.046          | 1.494                       | 1.20        | 1.255    | 74.0       | 49.0       | 97.5        |
| B5/B13 Samsung RRH          | 0.06  | 1.238 | 43.35   | 15.0    | 15.0       | 9.1    | 82.0   | 1.56            | 1.000                        | 1.20        | 1.88 | 0.948          | 1.648                       | 1.20        | 1.138    | 74.0       | 45.0       | 82.0        |
| CBRS RT4401-48A Samsung RRH | 0.06  | 1.238 | 43.35   | 10.6    | 6.8        | 3.0    | 11.0   | 99.0            | 1.191                        | 1.20        | 0.79 | 0.221          | 3.533                       | 1.25        | 0.275    | 31.0       | 11.0       | 11.0        |
| 12 OVP                      | 90.0  | 1.238 | 43.35   | 29.5    | 16.5       | 12.6   | 32.0   | 3.38            | 1.788                        | 1.20        | 4.06 | 2.581          | 2.341                       | 1.20        | 3.098    | 159.0      | 121.0      | 32.0        |
|                             |       |       |         |         |            |        |        |                 |                              |             |      |                |                             |             |          |            |            |             |
|                             |       |       |         |         |            |        |        |                 |                              |             |      |                |                             |             |          |            |            |             |

| CBRS RT4401-48A Samsung RRH | 0.06  | 1.238          | 7.526   | 1.11    | 12.81      | 9.39   | 15.1    | 66.0            | 1.36                        | 0.70          | 0.692                         | 0.464           | 1.36                       | 0.70          | 0.325    | 5.0        | 3.0          | 26.1        |
|-----------------------------|-------|----------------|---------|---------|------------|--------|---------|-----------------|-----------------------------|---------------|-------------------------------|-----------------|----------------------------|---------------|----------|------------|--------------|-------------|
| 12 OVP                      | 0.06  | 1.238          | 7.526   | 1.11    | 31.71      | 20.76  | 78.0    | 4.12            | 1.53                        | 0.70          | 2.884                         | 3.262           | 1.53                       | 0.70          | 2.283    | 20.0       | 16.0         | 110.0       |
|                             |       |                |         |         |            |        |         |                 |                             |               |                               |                 |                            |               |          |            |              |             |
|                             |       |                |         |         | Dimensions | sions  |         | Н               | Flat Panel Front Coefficien | t Coefficient |                               | ď.              | Flat Panel Side Coefficien | : Coefficient |          |            |              |             |
|                             | Elev. |                |         | Height, | Width,     | Depth, | Wght.*, | Area,           | Aspect                      |               |                               | Area,           | Aspect                     |               | Ī        | Front Wind | Side Wind    |             |
| Description                 | z, ft | K <sub>2</sub> | qz, psf | ï       | i          | in     | lbs     | ft <sup>2</sup> | Ratio                       | Ca            | C <sub>a</sub> A <sub>a</sub> | ft <sup>2</sup> | Ratio                      | Ca            | $C_aA_a$ | Force, Ibs | Force, lbs \ | Weight, Ibs |
| MT6407-77A                  | 0.06  | 1.238          | 2.71    | 35.1    | 16.1       | 5.5    | 87.1    | 3.92            | 2.187                       | 1.20          | 4.70                          | 1.344           | 6.374                      | 1.37          | 1.844    | 12.0       | 5.0          | 87.1        |
| MX10FIT665-02               | 0.06  | 1.238          | 2.71    | 70.9    | 12.2       | 7.5    | 86.9    | 6.01            | 5.811                       | 1.35          | 8.09                          | 3.693           | 9.453                      | 1.48          | 5.472    | 20.0       | 14.0         | 86.85       |
| MX06FIT665-02               | 0.06  | 1.238          | 2.71    | 71.3    | 12.2       | 10.7   | 84.5    | 6.04            | 5.844                       | 1.35          | 8.15                          | 5.298           | 6.664                      | 1.39          | 7.338    | 20.0       | 18.0         | 84.45       |
| B2/66a Samsung RRH          | 0.06  | 1.238          | 2.71    | 15.0    | 15.0       | 10.0   | 97.5    | 1.56            | 1.000                       | 1.20          | 1.88                          | 1.046           | 1.494                      | 1.20          | 1.255    | 5.0        | 4.0          | 97.5        |
| B5/B13 Samsung RRH          | 0.06  | 1.238          | 2.71    | 15.0    | 15.0       | 9.1    | 82.0    | 1.56            | 1.000                       | 1.20          | 1.88                          | 0.948           | 1.648                      | 1.20          | 1.138    | 5.0        | 3.0          | 82          |
| CBRS RT4401-48A Samsung RRH | 0.06  | 1.238          | 2.71    | 10.6    | 6.8        | 3.0    | 11.0    | 99.0            | 1.191                       | 1.20          | 0.79                          | 0.221           | 3.533                      | 1.25          | 0.275    | 2.0        | 1.0          | 11          |
| 12 OVP                      | 0.06  | 1.238          | 2.71    | 29.5    | 16.5       | 12.6   | 32.0    | 3.38            | 1.788                       | 1.20          | 4.06                          | 2.581           | 2.341                      | 1.20          | 3.098    | 10.0       | 8.0          | 32.0        |
|                             |       |                |         |         |            |        |         |                 |                             |               |                               |                 |                            |               |          |            |              |             |

Force, Ibs Force, Ibs Weight, Ibs 23.0 10.0 163.1 38.0 26.0 213.8 38.0 7.0 134.6 10.0 7.0 118.1

C<sub>a</sub>A<sub>a</sub> 1.401 3.737 4.911 1.025 0.946

Ca 0.70 0.76 0.75 0.70 0.70

Aspect Ratio 2.20 5.11 4.53 0.95

Area, ft<sup>2</sup> 2.002 4.930 6.591 1.464 1.352

> C<sub>a</sub>A<sub>a</sub> 3.316 5.545 5.482 1.440 1.440

Ca 0.70 0.76 0.75 0.70

Aspect Ratio 2.20 5.11 4.53 0.95

Area, ft² 4.74 7.32 7.36 2.06 2.06

lce Wght., lbs 76.0 126.9 143.4 37.1 36.1

Dc, in 16.98 14.32 16.23 18.05 17.54

in 37.33 73.11 73.51 17.21

lce Thick., t<sub>iv.</sub> in 1.11 1.11 1.11 1.11

> q<sub>2b</sub> psf 7.526 7.526 7.526 7.526 7.526

K<sub>2</sub> 1.238 1.238 1.238 1.238

2, ft 90.0 90.0 90.0 90.0

Description
MT6407-77A
MX10FIT665-02
MX06FIT665-02
B2/66a Samsung RRH
B5/B13 Samsung RRH

ront Wind Side Wind

Project ID: Site Name: Date:

ALL-POINTS TECHNOLOGY CORPORATION Based on ANSI/TIA-222-H)

Wind, Ibs/ft 4.21 3.11 3.45 3.87 4.55 Ca 120 120 120 120 Weight, lbs/ft 9.13 4.70 5.38 6.22 7.57 5.657 2.375 2.875 3.500 4.500 Width or Dia, in 6.21 4.59 5.09 5.71 6.71 Table 2-3 Section 2.6.6 Wind, lbs/ft 16.26 9.27 11.22 13.66 17.56 Ca 1.25 1.20 1.20 1.20 1.20 1.00 = = = Flat or Round HSS ROUND ROUND ROUND Weight, lbs/ft 12.20 3.65 5.79 7.58 10.80 Table 2-4
Table 2-4
Table 2-4 Dimensions Thickness, in 0.250 900 Depth, in 4.000 2.375 2.875 3.500 4.500 Width or Dia, in 4.000 2.375 2.875 3.500 4.500 2.71 2.71 2.71 2.71 2.71 2.71 Section 16.6 Section 16.6 7.53 7.53 7.53 7.53 7.53 7.53 1.00 g × q, psf 43.35 43.35 43.35 43.35 43.35 K, 1238 1238 1238 1238 1238 z, ft 2, ft 90.0 90.0 90.0 Design Criteria: (From Previous Sheet)

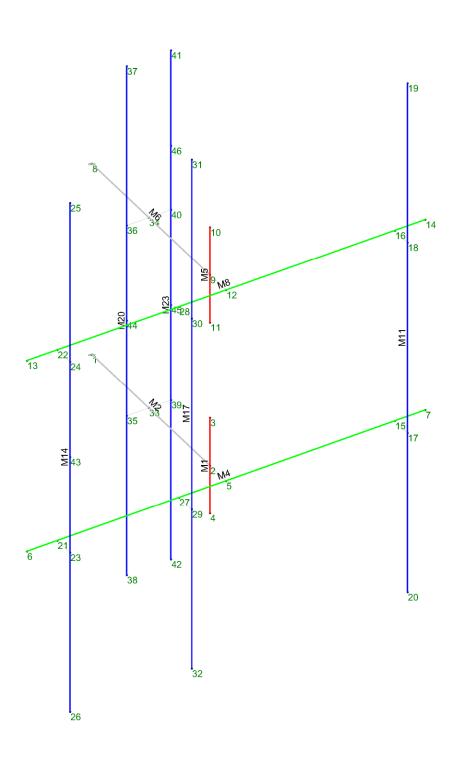
q, = 35.02 psf

q, = 6.08 psf

q<sub>w</sub> = 6.08 psf

q<sub>w</sub> = 2.19 psf

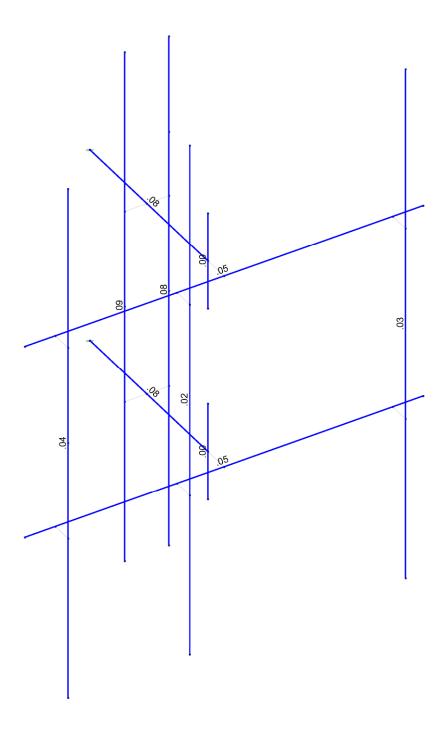
t<sub>f</sub> = 1.00 in HSS4x4
2.0" STD
2.5" STD
3.0" STD
4.0" STD


Wind, lbs/ft 1.02 0.58 0.70 0.85 1.10

Ca 1.25 1.20 1.20 1.20

CT141VB9650 Cheshire East CT 10/24/2022








| APT           |                      |                                  |
|---------------|----------------------|----------------------------------|
| MST           | MTC4074M6996         |                                  |
| CHESHIRE EAST | NODE & MEMBER LABELS | Cheshire East - MTC4074M6996.r3d |







Member Code Checks Displayed Results for LC 1, 1.4DL

| APT           |                  |                                  |
|---------------|------------------|----------------------------------|
| MST           | MTC4074M6996     |                                  |
| CHESHIRE EAST | BENDING STRESSES | Cheshire East - MTC4074M6996.r3d |



Checked By:\_\_\_

## **Hot Rolled Steel Properties**

|   | Label          | E [ksi] | G [ksi] | Nu | Therm (\1 | Density[k/ft^3] | Yield[ksi] | Ry  | Fu[ksi] | Rt  |
|---|----------------|---------|---------|----|-----------|-----------------|------------|-----|---------|-----|
| 1 | A992           | 29000   | 11154   | .3 | .65       | .49             | 50         | 1.1 | 65      | 1.1 |
| 2 | A36 Gr.36      | 29000   | 11154   | .3 | .65       | .49             | 36         | 1.5 | 58      | 1.2 |
| 3 | A572 Gr.50     | 29000   | 11154   | .3 | .65       | .49             | 50         | 1.1 | 65      | 1.1 |
| 4 | A500 Gr.B RND  | 29000   | 11154   | .3 | .65       | .527            | 42         | 1.4 | 58      | 1.3 |
| 5 | A500 Gr.B Rect | 29000   | 11154   | .3 | .65       | .527            | 46         | 1.4 | 58      | 1.3 |
| 6 | A53 Gr.B       | 29000   | 11154   | .3 | .65       | .49             | 35         | 1.6 | 60      | 1.2 |
| 7 | A1085          | 29000   | 11154   | .3 | .65       | .49             | 50         | 1.4 | 65      | 1.3 |

## **Hot Rolled Steel Section Sets**

|   | Label      | Shape    | Type   | Design List | Material      | Design    | A [in2] | lyy [in4] | Izz [in4] | J [in4] |
|---|------------|----------|--------|-------------|---------------|-----------|---------|-----------|-----------|---------|
| 1 | 2.5" STD   | PIPE 2.5 | Column | Pipe        | A53 Gr.B      | Typical   | 1.61    | 1.45      | 1.45      | 2.89    |
| 2 | 3.0" STD   | PIPE 3.0 | Beam   | Pipe        | A53 Gr.B      | Typical   | 2.07    | 2.85      | 2.85      | 5.69    |
| 3 | 4.0" STD   | PIPE 4.0 | Column | Pipe        | A53 Gr.B      | Typical   | 2.96    | 6.82      | 6.82      | 13.6    |
| 4 | HSS4x4x1/4 | HSS4x4x4 | Beam   | SquareTube  | A500 Gr.B Rec | t Typical | 3.37    | 7.8       | 7.8       | 12.8    |

#### Hot Rolled Steel Design Parameters

|    | Label | Shape      | Length[in] | Lbyy[in] | Lbzz[in] | Lcomp top[in] | Lcomp bot[in] | L-torg | Куу   | Kzz | Cb | Function |
|----|-------|------------|------------|----------|----------|---------------|---------------|--------|-------|-----|----|----------|
| 1  | M1    | 4.0" STD   | 18         | ,,,,     |          |               |               |        | • • • |     |    | Lateral  |
| 2  | M2    | HSS4x4x1/4 | 34.8       |          |          | Lbyy          |               |        |       |     |    | Lateral  |
| 3  | M4    | 3.0" STD   | 72         |          |          | Lbyy          |               |        |       |     |    | Lateral  |
| 4  | M5    | 4.0" STD   | 18         |          |          |               |               |        |       |     |    | Lateral  |
| 5  | M6    | HSS4x4x1/4 | 34.8       |          |          | Lbyy          |               |        |       |     |    | Lateral  |
| 6  | M8    | 3.0" STD   | 72         |          |          | Lbyy          |               |        |       |     |    | Lateral  |
| 7  | M11   | 2.5" STD   | 96         |          |          |               |               |        |       |     |    | Lateral  |
| 8  | M14   | 2.5" STD   | 96         |          |          |               |               |        |       |     |    | Lateral  |
| 9  | M17   | 2.5" STD   | 96         |          |          |               |               |        |       |     |    | Lateral  |
| 10 | M20   | 2.5" STD   | 96         |          |          |               |               |        |       |     |    | Lateral  |
| 11 | M23   | 2.5" STD   | 96         |          |          |               |               |        |       |     |    | Lateral  |

#### **Basic Load Cases**

|    | BLC Description | Category | X Gra Y | / Gra | Z Grav | . Joint | Point | Distrib | .Area(Memb | .Surfac |
|----|-----------------|----------|---------|-------|--------|---------|-------|---------|------------|---------|
| 1  | DL              | DĽ       |         | -1.05 |        | 4       | 4     |         | ,          |         |
| 2  | WLX             | WLX      |         |       |        | 4       | 4     | 9       |            |         |
| 3  | WLZ             | WLZ      |         |       |        | 4       | 4     | 9       |            |         |
| 4  | DLi             | OL1      |         |       |        | 4       | 4     | 11      |            |         |
| 5  | WLXi            | WL+X     |         |       |        | 4       | 4     | 9       |            |         |
| 6  | WLZi            | WL+Z     |         |       |        | 4       | 4     | 9       |            |         |
| 7  | Lv              | LL       |         |       |        |         |       |         |            |         |
| 8  | WLXm            | WL-X     |         |       |        | 4       | 4     | 9       |            |         |
| 9  | WLZm            | WL-Z     |         |       |        | 4       | 4     | 9       |            |         |
| 10 | Lm (1)          | OL2      |         |       |        |         | 1     |         |            |         |
| 11 | Lm (2)          | OL3      |         |       |        |         | 1     |         |            |         |
| 12 | Lm (3)          | OL4      |         |       |        |         | 1     |         |            |         |
| 13 | Lm (4)          | OL5      |         |       |        |         | 1     |         |            |         |

#### **Load Combinations**

|   | Description | S   | PDelta | S | . BLC | Fa  | BLC | Fa | . BLC | Fa | .BLC | FaI | B F | =aI | В | Fa |
|---|-------------|-----|--------|---|-------|-----|-----|----|-------|----|------|-----|-----|-----|---|----|---|----|---|----|---|----|---|----|
| 1 | 1.4DL       | Yes | Υ      |   | DL    | 1.4 |     |    |       |    |      |     |     |     |   |    |   |    |   |    |   |    |   |    |
| 2 |             |     |        |   |       |     |     |    |       |    |      |     |     |     |   |    |   |    |   |    |   |    |   |    |
| 3 | 1.2DL + WLX | Yes | Υ      |   | DL    | 1.2 | WLX | 1  |       |    |      |     |     |     |   |    |   |    |   |    |   |    |   |    |



Checked By:\_\_\_

## Load Combinations (Continued)

| Description                                              | S   | PDelta :    | s    | BI C | Fa  | BI C | Fa  | BI C | Fa       | BI C | Fa         | В | Fa | В        | Fa | В | Fa | В | Fa    | В | Fa  | В | Fa  |
|----------------------------------------------------------|-----|-------------|------|------|-----|------|-----|------|----------|------|------------|---|----|----------|----|---|----|---|-------|---|-----|---|-----|
| 4 1.2DL + 0.75WLX + 0.25                                 | Yes | Y           | ···· |      |     | WLX  |     |      |          |      |            |   |    | <u> </u> |    | J | i  |   | , u., |   | , a | J | i u |
| 5 1.2DL + 0.25WLX + 0.75                                 |     |             |      |      |     | WLX  |     |      |          |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
| 6 1.2DL + WLZ                                            | Yes | Υ           |      |      |     | WLZ  |     |      |          |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
| 7 1.2DL + 0.25WL-X + 0.7.                                |     | Υ           |      |      |     | WLX  |     | WLZ  | .75      |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
| 8 1.2DL + 0.75WL-X + 0.2.                                | Yes | Υ           |      |      |     | WLX  |     |      |          |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
| 9 1.2DL + WL-X                                           | Yes | Υ           |      |      |     | WLX  |     |      |          |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
| 10 1.2DL + 0.75WL-X + 0.2                                |     |             |      |      |     | WLX  |     |      |          |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
| 11 1.2DL + 0.25WL-X + 0.7.                               | _   |             |      |      |     | WLX  |     |      | 75       |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
| 12 1.2DL + WL-Z                                          | Yes |             |      |      |     | WLZ  |     |      |          |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
| 13 1.2DL + 0.25WLX + 0.75                                |     |             |      |      |     | WLX  |     |      |          |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
| 14 1.2DL + 0.75WLX + 0.25                                | Yes | Υ           |      | DL   | 1.2 | WLX  | .75 | WLZ  | 25       |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
| 15                                                       |     |             |      |      |     |      |     |      |          |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
| 16 1.2DL + DLi + WLX                                     |     |             |      |      |     | OL1  |     | WL   |          |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
| 17 1.2DL + DLi + 0.75WLXi                                |     |             |      |      |     | OL1  |     | WL   |          |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
| 18 1.2DL + DLi + 0.25WLXi                                |     |             |      |      |     | OL1  |     |      |          | VV   | .75        |   |    |          |    |   |    |   |       |   |     |   |     |
| 19 1.2DL + DLi + WLZi                                    |     |             |      |      |     | OL1  |     | WL   |          | 14/  | 7.         |   |    |          |    |   |    |   |       |   |     |   |     |
| 20 1.2DL + DLi + 0.25WL-X                                |     |             |      |      |     | OL1  |     |      |          |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
| 21 1.2DL + DLi + 0.75WL-X                                |     |             |      |      |     | OL1  |     | WL   |          | ٧٧   | .25        |   |    |          |    |   |    |   |       |   |     |   |     |
| 22 1.2DL + DLi + WL-X<br>23 1.2DL + DLi + 0.75WL-X       |     |             |      |      |     | OL1  |     | WL   |          | W/   | - 25       |   |    |          |    |   |    |   |       |   |     |   |     |
| 24 1.2DL + DLi + 0.25WL-X                                |     |             |      |      |     | OL1  |     | WL   |          |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
| 25 1.2DL + DLi + WL-Z                                    | _   | -           |      |      |     | OL1  |     |      |          |      | .70        |   |    |          |    |   |    |   |       |   |     |   |     |
| 26 1.2DL + DLi + 0.25WLXi                                |     |             |      | DI   | 1.2 | OL1  | 1   | WI   | 25       | W    | - 75       |   |    |          |    |   |    |   |       |   |     |   |     |
| 27 1.2DL + DLi + 0.75WLXi                                |     |             |      |      |     | OL1  |     | WL   | 75       | W    | 25         |   |    |          |    |   |    |   |       |   |     |   |     |
| 28                                                       |     |             |      |      | 1.2 | OLI  |     |      | .,,      |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
| 29 1.2DL + 1.5Lm(1) + WLX                                | Yes | Υ           |      | DI   | 12  | OL2  | 1.5 | WL   | . 1      |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
| 30 1.2DL + 1.5Lm(1) + 0.75                               |     |             |      |      |     | OL2  |     |      |          | W    | 25         |   |    |          |    |   |    |   |       |   |     |   |     |
| 31 1.2DL + 1.5Lm(1) + 0.25                               |     |             |      |      |     | OL2  |     |      |          |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
| 32 1.2DL + 1.5Lm(1) + WLZ                                |     |             |      | DL   | 1.2 | OL2  | 1.5 | WL   | . 1      |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
| 33 1.2DL + 1.5Lm(1) + 0.25                               |     |             |      | DL   | 1.2 | OL2  | 1.5 | WL   | 25       | W    | .75        |   |    |          |    |   |    |   |       |   |     |   |     |
| 34 1.2DL + 1.5Lm(1) + 0.75                               |     |             |      | DL   | 1.2 | OL2  | 1.5 | WL   | 75       | W    | .25        |   |    |          |    |   |    |   |       |   |     |   |     |
| 35 1.2DL + 1.5Lm(1) + WL                                 | Yes |             |      |      |     | OL2  |     |      |          |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
| 36 1.2DL + 1.5Lm(1) + 0.75                               |     |             |      | DL   | 1.2 | OL2  | 1.5 | WL   | 75       | W    | 25         |   |    |          |    |   |    |   |       |   |     |   |     |
| 37   1.2DL + 1.5Lm(1) + 0.25                             |     |             |      |      |     | OL2  |     |      |          | W    | 75         |   |    |          |    |   |    |   |       |   |     |   |     |
| 38 1.2DL + 1.5Lm(1) + WL                                 |     |             |      |      |     | OL2  |     |      |          |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
| 39 1.2DL + 1.5Lm(1) + 0.25                               |     |             |      |      |     | OL2  |     |      |          |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
| 40 1.2DL + 1.5Lm(1) + 0.75                               | Yes | Υ           |      | DL   | 1.2 | OL2  | 1.5 | WL   | .75      | W    | 25         |   |    |          |    |   |    |   |       |   |     |   |     |
| 41                                                       |     |             |      |      |     |      |     |      |          |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
| 42 1.2DL + 1.5Lm(2) + WLX                                |     |             |      |      |     | OL3  |     |      |          |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
| 43 1.2DL + 1.5Lm(2) + 0.75                               | _   |             |      | DL   | 1.2 | OL3  | 1.5 | WL   | .75      | W    | .25        |   |    |          |    |   |    |   |       |   |     |   |     |
| 44 1.2DL + 1.5Lm(2) + 0.25                               |     |             |      |      |     | OL3  |     |      |          | VV   | .75        |   |    |          |    |   |    |   |       |   |     |   |     |
| 45 1.2DL + 1.5Lm(2) + WLZ                                | _   |             |      |      |     | OL3  |     |      |          | 101  | 7.5        |   |    |          |    |   |    |   |       |   |     |   |     |
| 46 1.2DL + 1.5Lm(2) + 0.25                               |     |             |      | DL   | 1.2 | OL3  | 1.5 | VVL  | 25<br>7F | ۷۷   | ./5        |   |    |          |    |   |    |   |       |   |     |   |     |
| 47 1.2DL + 1.5Lm(2) + 0.75                               |     |             |      | DL   | 1.2 | OL3  | 1.5 | VVL  | /0       | vv   | .25        |   |    |          |    |   |    |   |       |   |     |   |     |
| 48 1.2DL + 1.5Lm(2) + WL                                 |     |             |      | DL   | 1.2 | OL3  | 1.5 | VVL  | - TE     | ۱۸/  | - 25       |   |    |          |    |   |    |   |       |   |     |   |     |
| 49 1.2DL + 1.5Lm(2) + 0.75<br>50 1.2DL + 1.5Lm(2) + 0.25 |     |             |      | DL   | 1.2 | OL3  | 1.5 | VVL  | 10       | νν   | 20<br>- 75 |   |    |          |    |   |    |   |       |   |     |   |     |
|                                                          | _   |             |      |      |     | OL3  |     |      |          | v v  | 73         |   |    |          |    |   |    |   |       |   |     |   |     |
| 51 1.2DL + 1.5Lm(2) + WL<br>52 1.2DL + 1.5Lm(2) + 0.25   |     | <del></del> |      |      |     | OL3  |     |      |          | W    | - 75       |   |    |          |    |   |    |   |       |   |     |   |     |
| 53 1.2DL + 1.5Lm(2) + 0.75                               |     |             |      |      |     | OL3  |     |      |          |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
| 54                                                       |     |             |      |      | 1.4 | OLS  | 1.0 |      | .,,      |      | 0          |   |    |          |    |   |    |   |       |   |     |   |     |
| 55 1.2DL + 1.5Lm(3) + WLX                                | Yes | Υ           |      | DI   | 12  | OL4  | 15  | WL   | . 1      |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
| 56 1.2DL + 1.5Lm(3) + 0.75                               |     |             |      |      |     | OL4  |     |      |          | W    | .25        |   |    |          |    |   |    |   |       |   |     |   |     |
| 57 1.2DL + 1.5Lm(3) + 0.25                               |     |             |      | DI   | 1.2 | OL4  | 1.5 | WL   | .25      | W    | .75        |   |    |          |    |   |    |   |       |   |     |   |     |
| 58 1.2DL + 1.5Lm(3) + WLZ                                |     |             |      | DL   | 1.2 | OL4  | 1.5 | WL   | 1        |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
| 59 1.2DL + 1.5Lm(3) + 0.25                               |     |             |      | DL   | 1.2 | OL4  | 1.5 | WL   | 25       | W    | .75        |   |    |          |    |   |    |   |       |   |     |   |     |
| 60 1.2DL + 1.5Lm(3) + 0.75                               | _   |             |      |      |     | OL4  |     |      |          |      |            |   |    |          |    |   |    |   |       |   |     |   |     |
|                                                          |     |             |      |      |     |      |     |      |          |      |            |   |    |          |    |   |    |   |       |   |     |   |     |



Checked By:\_\_\_

## Load Combinations (Continued)

|    | Description             | S    | PDelta | S | BLC Fa | BLC   | Fa.   | BLC | Fa. | .BLC | Fa  | В | Fa | В | Fa | В | Fa | В | Fa | В | Fa | В | Fa |
|----|-------------------------|------|--------|---|--------|-------|-------|-----|-----|------|-----|---|----|---|----|---|----|---|----|---|----|---|----|
| 61 | 1.2DL + 1.5Lm(3) + WL   | .Yes | Υ      |   | DL 1.  |       |       |     |     |      |     |   |    |   |    |   |    |   |    |   |    |   |    |
| 62 | 1.2DL + 1.5Lm(3) + 0.75 | .Yes | Υ      |   | DL 1.  |       |       |     |     |      |     |   |    |   |    |   |    |   |    |   |    |   |    |
| 63 | 1.2DL + 1.5Lm(3) + 0.25 | .Yes | Υ      |   | DL 1.  |       |       |     |     |      | 75  |   |    |   |    |   |    |   |    |   |    |   |    |
| 64 | 1.2DL + 1.5Lm(3) + WL   | .Yes | Υ      |   | DL 1.  | 2 OL4 | 1 1.5 | WL. | 1   |      |     |   |    |   |    |   |    |   |    |   |    |   |    |
| 65 | 1.2DL + 1.5Lm(3) + 0.25 | .Yes | Υ      |   | DL 1.  | 2 OL4 | 1 1.5 | WL. | 25  | W    | 75  |   |    |   |    |   |    |   |    |   |    |   |    |
| 66 | 1.2DL + 1.5Lm(3) + 0.75 | .Yes | Υ      |   | DL 1.  | 2 OL4 | 1.5   | WL. | 75  | W    | 25  |   |    |   |    |   |    |   |    |   |    |   |    |
| 67 |                         |      |        |   |        |       |       |     |     |      |     |   |    |   |    |   |    |   |    |   |    |   |    |
| 68 | 1.2DL + 1.5Lm(4) + WLX. | .Yes | Υ      |   | DL 1.  | 2 OLS | 5 1.5 | WL. | . 1 |      |     |   |    |   |    |   |    |   |    |   |    |   |    |
| 69 | 1.2DL + 1.5Lm(4) + 0.75 | .Yes | Υ      |   | DL 1.  |       |       |     |     |      |     |   |    |   |    |   |    |   |    |   |    |   |    |
| 70 | 1.2DL + 1.5Lm(4) + 0.25 | .Yes | Υ      |   | DL 1.  | 2 OLS | 5 1.5 | WL. |     | W    | .75 |   |    |   |    |   |    |   |    |   |    |   |    |
| 71 | 1.2DL + 1.5Lm(4) + WLZ. | .Yes | Υ      |   | DL 1.  |       |       |     |     |      |     |   |    |   |    |   |    |   |    |   |    |   |    |
| 72 | 1.2DL + 1.5Lm(4) + 0.25 | .Yes | Υ      |   | DL 1.  | 2 OLS | 5 1.5 | WL. | 25  | 5 W  | .75 |   |    |   |    |   |    |   |    |   |    |   |    |
| 73 | 1.2DL + 1.5Lm(4) + 0.75 | .Yes | Υ      |   | DL 1.  | 2 OLS | 5 1.5 | WL. | 75  | 5 W  | .25 |   |    |   |    |   |    |   |    |   |    |   |    |
| 74 | 1.2DL + 1.5Lm(4) + WL   | .Yes | Υ      |   | DL 1.  | 2 OLS | 5 1.5 | WL. | 1   |      |     |   |    |   |    |   |    |   |    |   |    |   |    |
| 75 | 1.2DL + 1.5Lm(4) + 0.75 | .Yes | Υ      |   | DL 1.  |       |       |     |     |      |     |   |    |   |    |   |    |   |    |   |    |   |    |
| 76 | 1.2DL + 1.5Lm(4) + 0.25 | .Yes | Υ      |   | DL 1.  |       |       |     |     |      | 75  |   |    |   |    |   |    |   |    |   |    |   |    |
| 77 | 1.2DL + 1.5Lm(4) + WL   | .Yes | Υ      |   | DL 1.  | 2 OLS | 5 1.5 | WL. | 1   |      |     |   |    |   |    |   |    |   |    |   |    |   |    |
| 78 | 1.2DL + 1.5Lm(4) + 0.25 | .Yes | Υ      |   | DL 1.  | 2 OLS | 5 1.5 | WL. | 25  | W    | 75  |   |    |   |    |   |    |   |    |   |    |   |    |
| 79 | 1.2DL + 1.5Lm(4) + 0.75 | .Yes | Υ      |   | DL 1.  | 2 OLS | 5 1.5 | WL. | 75  | W    | 25  |   |    |   |    |   |    |   |    |   |    |   |    |
| 80 |                         |      |        |   |        |       |       |     |     |      |     |   |    |   |    |   |    |   |    |   |    |   |    |
| 81 | 1.2DL + 1.5Lv           | Yes  | Υ      |   | DL 1.  | 2 LL  | 1.5   | 5   |     |      |     |   |    |   |    |   |    |   |    |   |    |   |    |

#### Envelope Joint Reactions

|   | Joint   |     | X [lb]   | LC | Y [lb]  | LC | Z [lb]   | LC | MX [lb-ft] | LC | MY [lb-ft] | LC | MZ [lb-ft] | LC |
|---|---------|-----|----------|----|---------|----|----------|----|------------|----|------------|----|------------|----|
| 1 | 1       | max | 1135.38  | 3  | 1001.75 | 22 | 684.13   | 6  | 448.58     | 32 | 1756.97    | 12 | 1724.25    | 61 |
| 2 |         | min | -425.59  | 9  | 497.81  | 3  | -558.92  | 12 | -531       | 64 | -2040.58   | 6  | 855.21     | 3  |
| 3 | 8       | max | 636.01   | 3  | 1007.94 | 16 | 802.66   | 6  | 449.98     | 32 | 2289.17    | 12 | 1723.63    | 48 |
| 4 |         | min | -1345.8  | 9  | 499.84  | 9  | -927.86  | 12 | -529.63    | 64 | -2012.32   | 6  | 894.58     | 3  |
| 5 | Totals: | max | 1771.39  | 3  | 1985.71 | 22 | 1486.79  | 6  |            |    |            |    |            |    |
| 6 |         | min | -1771 39 | 9  | 1106 61 | 3  | -1486 79 | 12 |            |    |            |    |            |    |

## Joint Reactions (By Combination)

|    | LC | Joint Label | X [lb]   | Y [lb]   | Z [lb]  | MX [lb-ft] | MY [lb-ft] | MZ [lb-ft] |
|----|----|-------------|----------|----------|---------|------------|------------|------------|
| 1  | 1  | 1           | 414.07   | 644.32   | 73.06   | -76.1      | -163.58    | 1065.45    |
| 2  | 1  | 8           | -414.07  | 646.72   | -73.06  | -74.5      | 163.36     | 1067.27    |
| 3  | 1  | Totals:     | 0        | 1291.04  | 0       |            |            |            |
| 4  | 1  | COG (in):   | X: 31.37 | Y: 19.04 | Z: 3.44 |            |            |            |
| 5  | 3  | 1 .         | 1135.38  | 497.81   | 65.18   | -61.15     | 489.78     | 855.21     |
| 6  | 3  | 8           | 636.01   | 608.8    | -65.18  | -60.24     | 748.05     | 894.58     |
| 7  | 3  | Totals:     | 1771.39  | 1106.61  | 0       |            |            |            |
| 8  | 3  | COG (in):   | X: 31.37 | Y: 19.04 | Z: 3.44 |            |            |            |
| 9  | 4  | 1 ` ´       | 940.27   | 511.98   | 219.93  | -58.32     | -143.31    | 869.91     |
| 10 | 4  | 8           | 388.27   | 594.63   | 151.77  | -57.19     | 57.39      | 899.47     |
| 11 | 4  | Totals:     | 1328.54  | 1106.61  | 371.7   |            |            |            |
| 12 | 4  | COG (in):   | X: 31.37 | Y: 19.04 | Z: 3.44 |            |            |            |
| 13 | 5  | 1 ` ´       | 550.04   | 540.31   | 529.4   | -52.65     | -1408.48   | 899.28     |
| 14 | 5  | 8           | -107.19  | 566.3    | 585.69  | -51.09     | -1322.8    | 909.22     |
| 15 | 5  | Totals:     | 442.85   | 1106.61  | 1115.09 |            |            |            |
| 16 | 5  | COG (in):   | X: 31.37 | Y: 19.04 | Z: 3.44 |            |            |            |
| 17 | 6  | 1 ` ´       | 354.93   | 554.48   | 684.13  | -49.83     | -2040.58   | 913.95     |
| 18 | 6  | 8           | -354.92  | 552.13   | 802.66  | -48.05     | -2012.32   | 914.09     |
| 19 | 6  | Totals:     | 0        | 1106.61  | 1486.79 |            |            |            |
| 20 | 6  | COG (in):   | X: 31.37 | Y: 19.04 | Z: 3.44 |            |            |            |
| 21 | 7  | 1           | 159.8    | 567.55   | 528.11  | -54.7      | -1721.57   | 928.27     |



Company : APT
Designer : MST
Job Number : CHESHIRE EAST
Model Name : MTC4074M6996 : APT : MST : CHESHIRE EAST

Checked By:\_\_\_

|    |    | ionone (By com | Jiiiatioii, (O |          |          |            |            |            |
|----|----|----------------|----------------|----------|----------|------------|------------|------------|
|    | LC | Joint Label    | X [lb]         | Y [lb]   | Z [lb]   | MX [lb-ft] | MY [lb-ft] | MZ [lb-ft] |
| 22 | 7  | 8              | -602.65        | 539.06   | 586.98   | -52.91     | -1624.76   | 919.31     |
| 23 | 7  | Totals:        | -442.84        | 1106.61  | 1115.09  |            |            |            |
| 24 | 7  | COG (in):      | X: 31.37       | Y: 19.04 | Z: 3.44  |            |            |            |
| 25 | 8  | 1              | -230.46        | 593.7    | 216.08   | -64.44     | -1083.96   | 956.87     |
| 26 | 8  | 8              | -1098.08       | 512.91   | 155.61   | -62.63     | -850.13    | 929.73     |
| 27 | 8  | Totals:        | -1328.54       | 1106.61  | 371.7    | 02.00      | 000.10     | 020.70     |
| 28 | 8  | COG (in):      | X: 31.37       | Y: 19.04 | Z: 3.44  |            |            |            |
| 29 | 9  | 1              | -425.59        | 606.77   | 60.07    | -69.3      | -765.37    | 971.17     |
| 30 | 9  | 8              | -1345.8        | 499.84   | -60.07   | -67.47     | -463.08    | 934.93     |
|    | 9  | Totals:        | -1771.39       |          |          | -07.47     | -403.00    | 934.93     |
| 31 |    |                |                | 1106.61  | 0        |            |            |            |
| 32 | 9  | COG (in):      | X: 31.37       | Y: 19.04 | Z: 3.44  | 70.40      | 405.00     | 050.50     |
| 33 | 10 | 1              | -230.46        | 592.6    | -94.67   | -72.13     | -135.28    | 956.52     |
| 34 | 10 | 8              | -1098.08       | 514.01   | -277.02  | -70.51     | 224.42     | 930.08     |
| 35 | 10 | Totals:        | -1328.54       | 1106.61  | -371.7   |            |            |            |
| 36 | 10 | COG (in):      | X: 31.37       | Y: 19.04 | Z: 3.44  |            |            |            |
| 37 | 11 | 1              | 159.79         | 564.27   | -404.17  | -77.78     | 1125.89    | 927.2      |
| 38 | 11 | 8              | -602.64        | 542.34   | -710.92  | -76.6      | 1600.54    | 920.38     |
| 39 | 11 | Totals:        | -442.85        | 1106.61  | -1115.09 |            |            |            |
| 40 | 11 | COG (in):      | X: 31.37       | Y: 19.04 | Z: 3.44  |            |            |            |
| 41 | 12 | 1              | 354.91         | 550.11   | -558.92  | -80.62     | 1756.97    | 912.53     |
| 42 | 12 | 8              | -354.91        | 556.5    | -927.86  | -79.65     | 2289.17    | 915.52     |
| 43 | 12 | Totals:        | 0              | 1106.61  | -1486.79 | 70.00      | 2200.17    | 010.02     |
| 44 | 12 | COG (in):      | X: 31.37       | Y: 19.04 | Z: 3.44  |            |            |            |
| 45 | 13 | 1              | 550.03         | 537.03   | -402.9   | -75.76     | 1440.37    | 898.21     |
| 46 | 13 | 8              | -107.19        | 569.58   | -712.19  | -74.81     | 1904.14    | 910.29     |
|    | 13 |                |                |          |          | -/4.01     | 1904.14    | 910.29     |
| 47 |    | Totals:        | 442.84         | 1106.61  | -1115.09 |            |            |            |
| 48 | 13 | COG (in):      | X: 31.37       | Y: 19.04 | Z: 3.44  | 00.00      | 000 77     | 000 55     |
| 49 | 14 | 1              | 940.26         | 510.88   | -90.85   | -66.03     | 806.77     | 869.55     |
| 50 | 14 | 8              | 388.28         | 595.72   | -280.85  | -65.1      | 1133.58    | 899.83     |
| 51 | 14 | Totals:        | 1328.54        | 1106.61  | -371.7   |            |            |            |
| 52 | 14 | COG (in):      | X: 31.37       | Y: 19.04 | Z: 3.44  |            |            |            |
| 53 | 16 | 1              | 823.83         | 977.77   | 162.7    | -184.83    | -282.03    | 1678       |
| 54 | 16 | 8              | -487.75        | 1007.94  | -162.7   | -180.78    | 441.61     | 1691.03    |
| 55 | 16 | Totals:        | 336.08         | 1985.71  | 0        |            |            |            |
| 56 | 16 | COG (in):      | X: 32.54       | Y: 19.76 | Z: 5.16  |            |            |            |
| 57 | 17 | 1 ` ′          | 785.1          | 980.84   | 193.67   | -184.49    | -390.33    | 1680.23    |
| 58 | 17 | 8              | -533.04        | 1004.87  | -123.9   | -180.42    | 326.14     | 1691.13    |
| 59 | 17 | Totals:        | 252.06         | 1985.71  | 69.77    |            |            |            |
| 60 | 17 | COG (in):      | X: 32.54       | Y: 19.76 | Z: 5.16  |            |            |            |
| 61 | 18 | 1              | 707.64         | 986.98   | 255.6    | -183.82    | -606.87    | 1684.7     |
| 62 | 18 | 8              | -623.62        | 998.73   | -46.29   | -179.7     | 95.26      | 1691.34    |
| 63 | 18 | Totals:        | 84.02          | 1985.71  | 209.31   | 110.1      | 00.20      | 1001.04    |
| 64 | 18 | COG (in):      | X: 32.54       | Y: 19.76 | Z: 5.16  |            |            |            |
| 65 | 19 | , ` '          | 668.92         | 990.05   | 286.57   | -183.48    | -715.12    | 1696.02    |
|    |    | 1<br>8         |                |          |          |            |            | 1686.93    |
| 66 | 19 |                | -668.92        | 995.66   | -7.49    | -179.34    | -20.16     | 1691.45    |
| 67 | 19 | Totals:        | 0              | 1985.71  | 279.08   |            |            |            |
| 68 | 19 | COG (in):      | X: 32.54       | Y: 19.76 | Z: 5.16  | 10:55      | 0.1= 0     | 1005 11    |
| 69 | 20 | 1              | 630.19         | 992.98   | 255.44   | -184.08    | -647.6     | 1689.11    |
| 70 | 20 | 8              | -714.21        | 992.74   | -46.13   | -179.91    | 55.92      | 1691.6     |
| 71 | 20 | Totals:        | -84.02         | 1985.71  | 209.31   |            |            |            |
| 72 | 20 | COG (in):      | X: 32.54       | Y: 19.76 | Z: 5.16  |            |            |            |
| 73 | 21 | <u> </u>       | 552.73         | 998.83   | 193.18   | -185.3     | -512.57    | 1693.48    |
| 74 | 21 | 8              | -804.79        | 986.89   | -123.41  | -181.07    | 208.03     | 1691.91    |
| 75 | 21 | Totals:        | -252.06        | 1985.71  | 69.77    |            |            |            |
| 76 | 21 | COG (in):      | X: 32.54       | Y: 19.76 | Z: 5.16  |            |            |            |
| 77 | 22 | 1              | 514            | 1001.75  | 162.06   | -185.91    | -445.06    | 1695.67    |
| 78 | 22 | 8              | -850.08        | 983.96   | -162.06  | -181.65    | 284.07     | 1692.06    |
| 10 |    |                | -000.00        | 000.00   | 102.00   | 101.00     | 207.01     | 1002.00    |



Company Designer Job Number Model Name

: APT : MST : CHESHIRE EAST : MTC4074M6996

Checked By:\_\_\_

| JUIII | CACC         | actions (By Comb | milation) (C | <u>Ontanaeu,</u> |           |            |            |            |
|-------|--------------|------------------|--------------|------------------|-----------|------------|------------|------------|
|       | LC           | Joint Label      | X [lb]       | Y [lb]           | Z [lb]    | MX [lb-ft] | MY [lb-ft] | MZ [lb-ft] |
| 79    | 22           | Totals:          | -336.08      | 1985.71          | 0         |            |            |            |
| 80    | 22           | COG (in):        | X: 32.54     | Y: 19.76         | Z: 5.16   |            |            |            |
| 81    | 23           | 1                | 552.73       | 998.68           | 131.09    | -186.24    | -336.86    | 1693.44    |
| 82    | 23           | 8                | -804.78      | 987.03           | -200.86   | -182.01    | 399.45     | 1691.95    |
| 83    | 23           | Totals:          | -252.06      | 1985.71          | -69.77    | 102.01     | 000.40     | 1001.00    |
| 84    | 23           | COG (in):        | X: 32.54     | Y: 19.76         | Z: 5.16   |            |            |            |
| 85    | 24           | 1                | 630.18       | 992.54           | 69.15     | -186.92    | -120.4     | 1688.97    |
| 86    | 24           | 8                | -714.2       | 993.17           | -278.46   | -182.73    | 630.24     | 1691.74    |
|       | 24           |                  | -84.02       | 1985.71          |           | -102.73    | 030.24     | 1091.74    |
| 87    |              | Totals:          |              |                  | -209.31   |            |            |            |
| 88    | 24           | COG (in):        | X: 32.54     | Y: 19.76         | Z: 5.16   | 407.00     | 40.45      | 4000 74    |
| 89    | 25           | 1                | 668.91       | 989.47           | 38.18     | -187.26    | -12.15     | 1686.74    |
| 90    | 25           | 8                | -668.91      | 996.24           | -317.26   | -183.09    | 745.66     | 1691.64    |
| 91    | 25           | Totals:          | 0            | 1985.71          | -279.08   |            |            |            |
| 92    | 25           | COG (in):        | X: 32.54     | Y: 19.76         | Z: 5.16   |            |            |            |
| 93    | 26           | 1                | 707.64       | 986.55           | 69.31     | -186.65    | -79.61     | 1684.55    |
| 94    | 26           | 8                | -623.62      | 999.17           | -278.62   | -182.51    | 669.66     | 1691.49    |
| 95    | 26           | Totals:          | 84.02        | 1985.71          | -209.31   |            |            |            |
| 96    | 26           | COG (in):        | X: 32.54     | Y: 19.76         | Z: 5.16   |            |            |            |
| 97    | 27           | 1 ` ´            | 785.1        | 980.7            | 131.57    | -185.44    | -214.55    | 1680.18    |
| 98    | 27           | 8                | -533.04      | 1005.02          | -201.34   | -181.36    | 517.63     | 1691.18    |
| 99    | 27           | Totals:          | 252.06       | 1985.71          | -69.77    |            |            |            |
| 100   | 27           | COG (in):        | X: 32.54     | Y: 19.76         | Z: 5.16   |            |            |            |
| 101   | 29           | 1 1              | 768.83       | 923.99           | -230.73   | 447.88     | 555.98     | 1717.38    |
| 102   | 29           | 8                | -655.34      | 932.62           | 230.73    | 449.23     | -477.59    | 1720.93    |
| 103   | 29           | Totals:          | 113.49       | 1856.61          | 0         |            |            |            |
| 104   | 29           | COG (in):        | X: 36.19     | Y: 18.62         | Z: -10.27 |            |            |            |
| 105   | 30           | 1                | 756.29       | 924.78           | -220.8    | 448.05     | 515.72     | 1718.25    |
| 106   | 30           | 8                | -671.17      | 931.83           | 244.6     | 449.42     | -521.45    | 1721.25    |
| 107   | 30           | Totals:          | 85.12        | 1856.61          | 23.81     | 770.72     | -021.40    | 1721.20    |
| 108   | 30           | COG (in):        | X: 36.19     | Y: 18.62         | Z: -10.27 |            |            |            |
| 109   | 31           | 1                | 731.21       | 926.37           | -200.92   | 448.4      | 435.19     | 1719.99    |
| 110   | 31           | 8                |              | 930.24           |           | 449.79     | -609.17    |            |
|       | 31           |                  | -702.83      |                  | 272.34    | 449.79     | -009.17    | 1721.89    |
| 111   |              | Totals:          | 28.37        | 1856.61          | 71.42     |            |            |            |
|       | 31           | COG (in):        | X: 36.19     | Y: 18.62         | Z: -10.27 | 440.50     | 004.00     | 4700.00    |
| 113   | 32           | 1                | 718.66       | 927.17           | -190.98   | 448.58     | 394.93     | 1720.86    |
| 114   | 32           | 8                | -718.66      | 929.44           | 286.21    | 449.98     | -653.02    | 1722.22    |
| 115   | 32           | Totals:          | 0            | 1856.61          | 95.23     |            |            |            |
| 116   | 32           | COG (in):        | X: 36.19     | Y: 18.62         | Z: -10.27 |            |            |            |
| 117   | 33           | 1                | 706.12       | 927.88           | -201.01   | 448.27     | 415.62     | 1721.71    |
| 118   |              | 8                | -734.5       | 928.73           | 272.43    | 449.67     | -628.01    | 1722.56    |
| 119   | 33           | Totals:          | -28.37       | 1856.61          | 71.42     |            |            |            |
| 120   | 33           | COG (in):        | X: 36.19     | Y: 18.62         | Z: -10.27 |            |            |            |
| 121   | 34           | 1                | 681.04       | 929.31           | -221.06   | 447.65     | 456.98     | 1723.4     |
| 122   | 34           | 8                | -766.16      | 927.3            | 244.86    | 449.05     | -577.99    | 1723.26    |
| 123   | 34           | Totals:          | -85.12       | 1856.61          | 23.81     |            |            |            |
| 124   | 34           | COG (in):        | X: 36.19     | Y: 18.62         | Z: -10.27 |            |            |            |
| 125   | 35           | 1 ` ′            | 668.5        | 930.02           | -231.08   | 447.34     | 477.67     | 1724.24    |
| 126   | 35           | 8                | -781.99      | 926.58           | 231.08    | 448.74     | -552.99    | 1723.6     |
| 127   | 35           | Totals:          | -113.49      | 1856.61          | 0         |            |            |            |
| 128   | 35           | COG (in):        | X: 36.19     | Y: 18.62         | Z: -10.27 |            |            |            |
| 129   | 36           | 1                | 681.04       | 929.23           | -241.02   | 447.17     | 517.92     | 1723.37    |
| 130   | 36           | 8                | -766.16      | 927.38           | 217.21    | 448.55     | -509.14    | 1723.28    |
| 131   | 36           | Totals:          | -85.12       | 1856.61          | -23.81    |            | 555111     | 23.20      |
| 132   | 36           | COG (in):        | X: 36.19     | Y: 18.62         | Z: -10.27 |            |            |            |
| 133   | 37           | 1                | 706.12       | 927.64           | -260.89   | 446.82     | 598.42     | 1721.63    |
| 134   | 37           | 8                | -734.5       | 928.97           | 189.47    | 448.18     | -421.44    | 1721.63    |
| 135   | 37           | Totals:          | -28.37       | 1856.61          | -71.42    | 770.10     | 721.44     | 1122.04    |
| 133   | _ ∪ <i>I</i> | า บเสเร.         | -20.31       | 10.00.01         | -7 1.42   | 1          | 1          |            |



Company : APT
Designer : MST
Job Number : CHESHIRE EAST
Model Name : MTC4074M6996 : APT : MST : CHESHIRE EAST

Checked By:\_\_\_

|     |    | detions (by come | macron, to |          |           |            |            |            |
|-----|----|------------------|------------|----------|-----------|------------|------------|------------|
|     | LC | Joint Label      | X [lb]     | Y [lb]   | Z [lb]    | MX [lb-ft] | MY [lb-ft] | MZ [lb-ft] |
| 136 | 37 | COG (in):        | X: 36.19   | Y: 18.62 | Z: -10.27 |            |            |            |
| 137 | 38 | 1 1              | 718.67     | 926.85   | -270.83   | 446.65     | 638.68     | 1720.76    |
| 138 | 38 | 8                | -718.67    | 929.76   | 175.61    | 447.99     | -377.58    | 1722.32    |
| 139 | 38 | Totals:          | 0          | 1856.61  | -95.23    |            |            |            |
| 140 | 38 | COG (in):        | X: 36.19   | Y: 18.62 | Z: -10.27 |            |            |            |
| 141 | 39 | 1                | 731.21     | 926.13   | -260.81   | 446.95     | 618.01     | 1719.91    |
| 142 | 39 | 8                | -702.84    | 930.48   | 189.39    | 448.3      | -402.58    | 1721.97    |
| 143 |    |                  | 28.37      | 1856.61  | -71.42    | 440.3      | -402.00    | 1721.97    |
|     | 39 | Totals:          |            |          |           |            |            |            |
| 144 | 39 | COG (in):        | X: 36.19   | Y: 18.62 | Z: -10.27 | 447.57     | 570.00     | 4740.00    |
| 145 | 40 | 1                | 756.29     | 924.7    | -240.76   | 447.57     | 576.66     | 1718.22    |
| 146 | 40 | 8                | -671.17    | 931.9    | 216.95    | 448.92     | -452.59    | 1721.28    |
| 147 | 40 | Totals:          | 85.12      | 1856.61  | -23.81    |            |            |            |
| 148 | 40 | COG (in):        | X: 36.19   | Y: 18.62 | Z: -10.27 |            |            |            |
| 149 | 42 | 1                | 768.83     | 923.92   | 138.74    | -216.67    | -271.91    | 1717.35    |
| 150 | 42 | 8                | -655.34    | 932.69   | -138.74   | -215.32    | 348.25     | 1720.95    |
| 151 | 42 | Totals:          | 113.49     | 1856.61  | 0         |            |            |            |
| 152 | 42 | COG (in):        | X: 36.19   | Y: 18.62 | Z: 5.48   |            |            |            |
| 153 | 43 | 1 ` ′            | 756.29     | 924.71   | 148.69    | -216.5     | -312.17    | 1718.22    |
| 154 | 43 | 8                | -671.18    | 931.9    | -124.88   | -215.13    | 304.39     | 1721.28    |
| 155 | 43 | Totals:          | 85.12      | 1856.61  | 23.81     |            | 33 1133    |            |
| 156 | 43 | COG (in):        | X: 36.19   | Y: 18.62 | Z: 5.48   |            |            |            |
| 157 | 44 | 1                | 731.21     | 926.3    | 168.58    | -216.15    | -392.7     | 1719.97    |
| 158 | 44 | 8                | -702.84    | 930.31   | -97.16    | -214.76    | 216.67     | 1721.92    |
| 159 | 44 | Totals:          | 28.37      | 1856.61  | 71.42     | -214.70    | 210.07     | 1721.92    |
|     | 44 |                  | X: 36.19   | Y: 18.62 | Z: 5.48   |            |            |            |
| 160 |    | COG (in):        |            |          |           | 045.00     | 400.00     | 4700.04    |
| 161 | 45 | 1                | 718.67     | 927.09   | 178.53    | -215.98    | -432.96    | 1720.84    |
| 162 | 45 | 8                | -718.67    | 929.52   | -83.3     | -214.57    | 172.81     | 1722.24    |
| 163 | 45 | Totals:          | 0          | 1856.61  | 95.23     |            |            |            |
| 164 | 45 | COG (in):        | X: 36.19   | Y: 18.62 | Z: 5.48   |            |            |            |
| 165 | 46 | 1                | 706.13     | 927.81   | 168.5     | -216.28    | -412.26    | 1721.68    |
| 166 | 46 | 8                | -734.5     | 928.8    | -97.08    | -214.87    | 197.8      | 1722.59    |
| 167 | 46 | Totals:          | -28.37     | 1856.61  | 71.42     |            |            |            |
| 168 | 46 | COG (in):        | X: 36.19   | Y: 18.62 | Z: 5.48   |            |            |            |
| 169 | 47 | 1 ` ´            | 681.04     | 929.24   | 148.45    | -216.88    | -370.86    | 1723.37    |
| 170 | 47 | 8                | -766.16    | 927.37   | -124.64   | -215.48    | 247.78     | 1723.28    |
| 171 | 47 | Totals:          | -85.12     | 1856.61  | 23.81     |            |            |            |
| 172 | 47 | COG (in):        | X: 36.19   | Y: 18.62 | Z: 5.48   |            |            |            |
| 173 | 48 | 1                | 668.5      | 929.95   | 138.42    | -217.18    | -350.16    | 1724.22    |
| 174 | 48 | 8                | -781.99    | 926.66   | -138.42   | -215.78    | 272.77     | 1723.63    |
| 175 | 48 | Totals:          | -113.49    | 1856.61  | 0         | -213.70    | 212.11     | 1725.05    |
| 176 | 48 | COG (in):        | X: 36.19   | Y: 18.62 | Z: 5.48   |            |            |            |
| 177 | 49 | 1                |            | 929.16   |           | -217.35    | -309.9     | 1723.35    |
|     |    | 8                | 681.04     |          | 128.47    |            |            |            |
| 178 | 49 | -                | -766.16    | 927.45   | -152.28   | -215.97    | 316.62     | 1723.31    |
| 179 | 49 | Totals:          | -85.12     | 1856.61  | -23.81    |            |            |            |
| 180 | 49 | COG (in):        | X: 36.19   | Y: 18.62 | Z: 5.48   | 0.1==      | 000        | 4704.51    |
| 181 | 50 | 1                | 706.13     | 927.57   | 108.58    | -217.7     | -229.39    | 1721.61    |
| 182 | 50 | 8                | -734.5     | 929.04   | -180      | -216.35    | 404.32     | 1722.66    |
| 183 | 50 | Totals:          | -28.37     | 1856.61  | -71.42    |            |            |            |
| 184 | 50 | COG (in):        | X: 36.19   | Y: 18.62 | Z: 5.48   |            |            |            |
| 185 | 51 | 1 ` ′            | 718.67     | 926.78   | 98.63     | -217.88    | -189.14    | 1720.73    |
| 186 | 51 | 8                | -718.67    | 929.83   | -193.85   | -216.54    | 448.18     | 1722.34    |
| 187 | 51 | Totals:          | 0          | 1856.61  | -95.23    |            |            |            |
| 188 | 51 | COG (in):        | X: 36.19   | Y: 18.62 | Z: 5.48   |            |            |            |
| 189 | 52 | 1                | 731.21     | 926.06   | 108.66    | -217.57    | -209.83    | 1719.89    |
| 190 | 52 | 8                | -702.84    | 930.55   | -180.08   | -216.23    | 423.2      | 1722       |
| 191 | 52 | Totals:          | 28.37      | 1856.61  | -71.42    | 210.20     | 720.2      | 1122       |
| 192 | 52 | COG (in):        | X: 36.19   | Y: 18.62 |           |            |            |            |
| 192 | 52 | COG (III).       | 1.30.19    | 1. 10.02 | Z: 5.48   |            |            |            |



Company Designer Job Number Model Name

: APT : MST : CHESHIRE EAST : MTC4074M6996

Checked By:\_\_\_

| JUIII | LNE | actions (By Comb | illation) (C | omanueu) |             |               |            |            |
|-------|-----|------------------|--------------|----------|-------------|---------------|------------|------------|
|       | LC  | Joint Label      | X [lb]       | Y [lb]   | Z [lb]      | MX [lb-ft]    | MY [lb-ft] | MZ [lb-ft] |
| 193   | 53  | 1                | 756.29       | 924.63   | 128.71      | -216.97       | -251.21    | 1718.2     |
| 194   | 53  | 8                | -671.17      | 931.98   | -152.52     | -215.63       | 373.23     | 1721.3     |
| 195   | 53  | Totals:          | 85.12        | 1856.61  | -23.81      |               | 0.0.20     |            |
| 196   | 53  | COG (in):        | X: 36.19     | Y: 18.62 | Z: 5.48     |               |            |            |
| 197   | 55  | 1                | 768.84       | 924      | 388.31      | -529.83       | -829.98    | 1717.38    |
| 198   | 55  | 8                | -655.35      | 932.61   | -388.31     | -528.46       | 904.47     | 1720.93    |
| 199   | 55  | Totals:          | 113.49       | 1856.61  | 0           | -320.40       | 304.47     | 1720.95    |
| 200   | 55  | COG (in):        | X: 36.19     | Y: 18.62 | Z: 14.37    |               |            |            |
| 201   | 56  | 1                | 756.3        | 924.8    | 398.26      | -529.67       | -870.25    | 1718.25    |
| 202   | 56  | 8                | -671.18      | 931.81   | -374.46     | -528.29       | 860.62     | 1710.25    |
| 202   |     |                  |              |          |             | -520.29       | 000.02     | 1721.25    |
|       | 56  | Totals:          | 85.12        | 1856.61  | 23.81       |               |            |            |
| 204   | 56  | COG (in):        | X: 36.19     | Y: 18.62 | Z: 14.37    | E00.0E        | 050.0      | 4700       |
| 205   | 57  | 1                | 731.21       | 926.39   | 418.16      | -529.35       | -950.8     | 1720       |
| 206   | 57  | 8                | -702.84      | 930.22   | -346.74     | -527.94       | 772.92     | 1721.89    |
| 207   | 57  | Totals:          | 28.37        | 1856.61  | 71.42       |               |            |            |
| 208   | 57  | COG (in):        | X: 36.19     | Y: 18.62 | Z: 14.37    | <b>500.10</b> | 22122      | 1700.07    |
| 209   | 58  | 1                | 718.67       | 927.18   | 428.11      | -529.19       | -991.08    | 1720.87    |
| 210   | 58  | 8                | -718.67      | 929.43   | -332.89     | -527.76       | 729.07     | 1722.21    |
| 211   | 58  | Totals:          | 0            | 1856.61  | 95.23       |               |            |            |
| 212   | 58  | COG (in):        | X: 36.19     | Y: 18.62 | Z: 14.37    |               |            |            |
| 213   | 59  | 1                | 706.13       | 927.89   | 418.08      | -529.48       | -970.36    | 1721.71    |
| 214   | 59  | 8                | -734.5       | 928.72   | -346.66     | -528.05       | 754.04     | 1722.56    |
| 215   | 59  | Totals:          | -28.37       | 1856.61  | 71.42       |               |            |            |
| 216   | 59  | COG (in):        | X: 36.19     | Y: 18.62 | Z: 14.37    |               |            |            |
| 217   | 60  | 1                | 681.05       | 929.32   | 398.02      | -530.06       | -928.92    | 1723.4     |
| 218   | 60  | 8                | -766.16      | 927.29   | -374.21     | -528.64       | 803.99     | 1723.25    |
| 219   | 60  | Totals:          | -85.12       | 1856.61  | 23.81       |               |            |            |
| 220   | 60  | COG (in):        | X: 36.19     | Y: 18.62 | Z: 14.37    |               |            |            |
| 221   | 61  | 1                | 668.5        | 930.04   | 387.99      | -530.35       | -908.2     | 1724.25    |
| 222   | 61  | 8                | -781.99      | 926.57   | -387.99     | -528.93       | 828.96     | 1723.6     |
| 223   | 61  | Totals:          | -113.49      | 1856.61  | 0           |               |            |            |
| 224   | 61  | COG (in):        | X: 36.19     | Y: 18.62 | Z: 14.37    |               |            |            |
| 225   | 62  | 1                | 681.04       | 929.25   | 378.04      | -530.52       | -867.93    | 1723.38    |
| 226   | 62  | 8                | -766.16      | 927.36   | -401.84     | -529.11       | 872.8      | 1723.28    |
| 227   | 62  | Totals:          | -85.12       | 1856.61  | -23.81      |               |            |            |
| 228   | 62  | COG (in):        | X: 36.19     | Y: 18.62 | Z: 14.37    |               |            |            |
| 229   | 63  | 1 1              | 706.13       | 927.66   | 358.14      | -530.84       | -787.4     | 1721.63    |
| 230   | 63  | 8                | -734.5       | 928.95   | -429.56     | -529.46       | 960.48     | 1722.64    |
| 231   | 63  | Totals:          | -28.37       | 1856.61  | -71.42      |               |            |            |
| 232   |     | COG (in):        | X: 36.19     | Y: 18.62 | Z: 14.37    |               |            |            |
| 233   | 64  | 1                | 718.67       | 926.86   | 348.19      | -531          | -747.13    | 1720.76    |
| 234   | 64  | 8                | -718.67      | 929.75   | -443.41     | -529.63       | 1004.32    | 1722.32    |
| 235   | 64  | Totals:          | 0            | 1856.61  | -95.23      |               |            |            |
| 236   | 64  | COG (in):        | X: 36.19     | Y: 18.62 | Z: 14.37    |               |            |            |
| 237   | 65  | 1                | 731.21       | 926.15   | 358.22      | -530.71       | -767.84    | 1719.92    |
| 238   | 65  | 8                | -702.84      | 930.46   | -429.64     | -529.34       | 979.36     | 1721.97    |
| 239   | 65  | Totals:          | 28.37        | 1856.61  | -71.42      | 520.01        | 0.0100     |            |
| 240   | 65  | COG (in):        | X: 36.19     | Y: 18.62 | Z: 14.37    |               |            |            |
| 241   | 66  | 1                | 756.3        | 924.72   | 378.28      | -530.13       | -809.26    | 1718.23    |
| 242   | 66  | 8                | -671.18      | 931.89   | -402.09     | -528.75       | 929.43     | 1721.28    |
| 243   | 66  | Totals:          | 85.12        | 1856.61  | -23.81      | 020.70        | 020.70     | 1721.20    |
| 244   | 66  | COG (in):        | X: 36.19     | Y: 18.62 | Z: 14.37    |               |            |            |
| 245   | 68  | 1                | 492.6        | 924.19   | 77.33       | -168.16       | -133.74    | 1303.44    |
| 245   | 68  | 8                | -379.11      | 932.42   | -77.33      | -166.81       | 210.39     | 1303.44    |
| 247   | 68  | Totals:          | 113.49       | 1856.61  | -//.33<br>0 | -100.01       | 210.38     | 1307.00    |
| 247   |     |                  |              |          | Z: 3.66     |               |            |            |
|       | 68  | COG (in):        | X: 25.48     | Y: 18.62 |             | 167.00        | 172.00     | 1204.22    |
| 249   | 69  | 1                | 480.07       | 924.99   | 87.28       | -167.98       | -173.99    | 1304.32    |



Checked By:\_\_\_

## Joint Reactions (By Combination) (Continued)

|     |    |             | omation, (O |          |         |            |            |            |
|-----|----|-------------|-------------|----------|---------|------------|------------|------------|
|     | LC | Joint Label | X [lb]      | Y [lb]   | Z [lb]  | MX [lb-ft] | MY [lb-ft] | MZ [lb-ft] |
| 250 | 69 | 8           | -394.95     | 931.62   | -63.47  | -166.62    | 166.53     | 1307.42    |
| 251 | 69 | Totals:     | 85.12       | 1856.61  | 23.81   |            |            |            |
| 252 | 69 | COG (in):   | X: 25.48    | Y: 18.62 | Z: 3.66 |            |            |            |
| 253 | 70 | 1 1         | 455         | 926.57   | 107.17  | -167.63    | -254.5     | 1306.09    |
| 254 | 70 | 8           | -426.63     | 930.04   | -35.75  | -166.24    | 78.79      | 1308.09    |
| 255 | 70 | Totals:     | 28.37       | 1856.61  | 71.42   |            |            |            |
| 256 | 70 | COG (in):   | X: 25.48    | Y: 18.62 | Z: 3.66 |            |            |            |
| 257 | 71 | 1 1         | 442.47      | 927.37   | 117.12  | -167.45    | -294.76    | 1306.98    |
| 258 | 71 | 8           | -442.47     | 929.24   | -21.89  | -166.05    | 34.93      | 1308.42    |
| 259 | 71 | Totals:     | 0           | 1856.61  | 95.23   |            |            |            |
| 260 | 71 | COG (in):   | X: 25.48    | Y: 18.62 | Z: 3.66 |            |            |            |
| 261 | 72 | 1           | 429.94      | 928.08   | 107.09  | -167.75    | -274.06    | 1307.84    |
| 262 | 72 | 8           | -458.31     | 928.53   | -35.67  | -166.35    | 59.92      | 1308.79    |
| 263 | 72 | Totals:     | -28.37      | 1856.61  | 71.42   |            |            |            |
| 264 | 72 | COG (in):   | X: 25.48    | Y: 18.62 | Z: 3.66 |            |            |            |
| 265 | 73 | 1           | 404.87      | 929.51   | 87.04   | -168.36    | -232.67    | 1309.56    |
| 266 | 73 | 8           | -489.99     | 927.09   | -63.23  | -166.96    | 109.92     | 1309.51    |
| 267 | 73 | Totals:     | -85.12      | 1856.61  | 23.81   |            |            |            |
| 268 | 73 | COG (in):   | X: 25.48    | Y: 18.62 | Z: 3.66 |            |            |            |
| 269 | 74 | 1           | 392.34      | 930.23   | 77.01   | -168.66    | -211.98    | 1310.42    |
| 270 | 74 | 8           | -505.82     | 926.38   | -77.01  | -167.27    | 134.92     | 1309.87    |
| 271 | 74 | Totals:     | -113.49     | 1856.61  | 0       |            |            |            |
| 272 | 74 | COG (in):   | X: 25.48    | Y: 18.62 | Z: 3.66 |            |            |            |
| 273 | 75 | 1           | 404.87      | 929.44   | 67.06   | -168.84    | -171.73    | 1309.53    |
| 274 | 75 | 8           | -489.99     | 927.17   | -90.87  | -167.46    | 178.78     | 1309.53    |
| 275 | 75 | Totals:     | -85.12      | 1856.61  | -23.81  |            |            |            |
| 276 | 75 | COG (in):   | X: 25.48    | Y: 18.62 | Z: 3.66 |            |            |            |
| 277 | 76 | 1           | 429.94      | 927.85   | 47.17   | -169.2     | -91.24     | 1307.76    |
| 278 | 76 | 8           | -458.31     | 928.76   | -118.59 | -167.84    | 266.49     | 1308.86    |
| 279 | 76 | Totals:     | -28.37      | 1856.61  | -71.42  | 107.01     | 200.10     | 1000.00    |
| 280 | 76 | COG (in):   | X: 25.48    | Y: 18.62 | Z: 3.66 |            |            |            |
| 281 | 77 | 1           | 442.47      | 927.05   | 37.22   | -169.37    | -50.99     | 1306.88    |
| 282 | 77 | 8           | -442.47     | 929.56   | -132.45 | -168.04    | 310.36     | 1308.53    |
| 283 | 77 | Totals:     | 0           | 1856.61  | -95.23  | 100.01     | 010.00     | 1000.00    |
| 284 | 77 | COG (in):   | X: 25.48    | Y: 18.62 | Z: 3.66 |            |            |            |
| 285 | 78 | 1           | 455         | 926.34   | 47.25   | -169.07    | -71.68     | 1306.02    |
| 286 | 78 | 8           | -426.63     | 930.27   | -118.67 | -167.73    | 285.37     | 1308.17    |
| 287 | 78 | Totals:     | 28.37       | 1856.61  | -71.42  | 107.70     | 200.01     | 1000.17    |
| 288 | 78 | COG (in):   | X: 25.48    | Y: 18.62 | Z: 3.66 |            |            |            |
| 289 | 79 | 1           | 480.07      | 924.91   | 67.3    | -168.46    | -113.05    | 1304.3     |
| 290 | 79 | 8           | -394.95     | 931.7    | -91.11  | -167.12    | 235.39     | 1307.44    |
| 291 | 79 | Totals:     | 85.12       | 1856.61  | -23.81  | 107.12     | 200.00     | 1007.77    |
| 292 | 79 | COG (in):   | X: 25.48    | Y: 18.62 | Z: 3.66 |            |            |            |
| 293 | 81 | 1           | 354.92      | 552.29   | 62.62   | -65.23     | -140.19    | 913.24     |
| 294 | 81 | 8           | -354.92     | 554.32   | -62.62  | -63.86     | 140.03     | 914.8      |
| 295 | 81 | Totals:     | 0           | 1106.61  | 0       | -00.00     | 170.00     | 014.0      |
| 296 | 81 | COG (in):   | X: 31.37    | Y: 19.04 | Z: 3.44 |            |            |            |
| 290 | 01 | COG (III).  | Λ. 31.37    | 1. 19.04 | Z. 3.44 |            |            |            |

#### Envelope AISC 14th(360-10): LRFD Steel Code Checks

|   | Member | Shape    | Code Che | .Loc[in] | LC | Shear Check | Loc[i | . Dir | LC | phi*Pnc  | .phi*Pnt [. | .phi*Mn y-y | phi*Mn z-z | Cb   | Eqn   |
|---|--------|----------|----------|----------|----|-------------|-------|-------|----|----------|-------------|-------------|------------|------|-------|
| 1 | M1     | PIPE 4.0 | .001     | 9        | 9  | .000        | 9     |       | 9  | 92571.33 | 93240       | 10631.25    | 10631.25   | 1.56 | H1-1b |
| 2 | M2     | HSS4x4x4 | .184     | 34.8     | 6  | .063        | 34.8  | У     | 61 | 134692   | 139518      | 16180.5     | 16180.5    | 1.47 | H1-1b |
| 3 | M4     | PIPE 3.0 | .189     | 36       | 3  | .062        | 36    |       | 61 | 53775.84 | 65205       | 5748.75     | 5748.75    | 1.76 | H1-1b |
| 4 | M5     | PIPE 4.0 | .001     | 9        | 9  | .000        | 9     |       | 9  | 92571.33 | 93240       | 10631.25    | 10631.25   | 1.56 | H1-1b |
| 5 | M6     | HSS4x4x4 | .199     | 34.8     | 12 | .063        | 34.8  | У     | 64 | 134692   | 139518      | 16180.5     | 16180.5    | 1.47 | H1-1b |



Company Designer Job Number Model Name

: APT : MST : CHESHIRE EAST : MTC4074M6996

Checked By:\_\_\_

## Envelope AISC 14th(360-10): LRFD Steel Code Checks (Continued)

|    | Member | Shape    | Code Che | .Loc[in] | LC | Shear Check | Loc[i D | Dir I | LC | phi*Pnc  | .phi*Pnt [ | .phi*Mn y-y | phi*Mn z-z | Cb   | Eqn   |
|----|--------|----------|----------|----------|----|-------------|---------|-------|----|----------|------------|-------------|------------|------|-------|
| 6  | M8     | PIPE 3.0 | .189     | 36       | 9  | .062        | 36      | 4     | 42 | 53775.84 | 65205      | 5748.75     | 5748.75    | 1.76 | H1-1b |
| 7  | M11    | PIPE 2.5 | .135     | 66       | 38 | .049        | 30      |       | 32 | 30038.46 | 50715      | 3596.25     | 3596.25    | 1.11 | H1-1b |
| 8  | M14    | PIPE 2.5 | .121     | 66       | 58 | .053        | 30      |       | 64 | 30038.46 | 50715      | 3596.25     | 3596.25    | 1.67 | H1-1b |
| 9  | M17    | PIPE 2.5 | .075     | 66       | 58 | .051        | 30      | (     | 64 | 30038.46 | 50715      | 3596.25     | 3596.25    | 1.12 | H1-1b |
| 10 | M20    | PIPE 2.5 | .170     | 30       | 61 | .058        | 30      | (     | 61 | 30038.46 | 50715      | 3596.25     | 3596.25    | 4.95 | H1-1b |
| 11 | M23    | PIPE 2.5 | .163     | 30       | 35 | .052        | 30      | (     | 61 | 30038.46 | 50715      | 3596.25     | 3596.25    | 4.9  | H1-1b |



Project ID: Site Name: CT141NB9650 Cheshire East CT

Date:

338.8 lbs

10/24/2022

## PROPOSED CONNECTION CHECK

>> Max Reactions per RISA Output: N8, LC12

(Axial) Fx = 354.9 lbs Mx = 79.7 lbs-ft

Fy = 556.5 lbs My = 2289.2 lbs-ft Fz = 927.9 lbs Mz = 915.5 lbs-ft

>> Existing Connection:

L, in W, in

Member Size = 4 x 4

L, in W, in t, in Plate = 9 x 9 x 0.625

Bolt Spac. = 7 in Fy = 50 ksi

Bolt Dia = 0.625 in Grade = A325 (Assume)

# of Bolts = 4

>> Check Existing Bolts: Assume 5/8" DIA A325 Bolts

Tall = 20700 lbs Vall = 12400 lbs

 $T_{My} = 1962.2 \text{ lbs}$   $V_{Fyz} = 270.49 \text{ lbs}$   $T_{Mz} = 784.73 \text{ lbs}$   $V_{MX} = 68.27 \text{ lbs}$ 

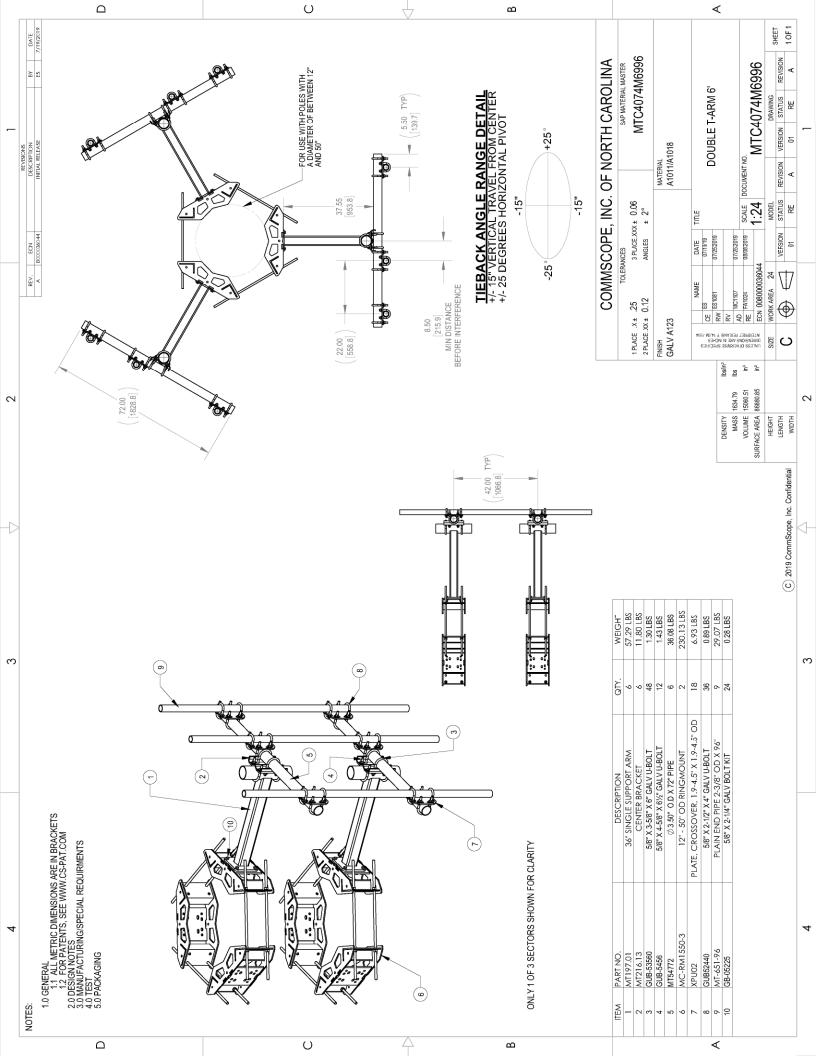
T<sub>Fa</sub> = 88.73 lbs Ft = 2835.6 lbs Fv =

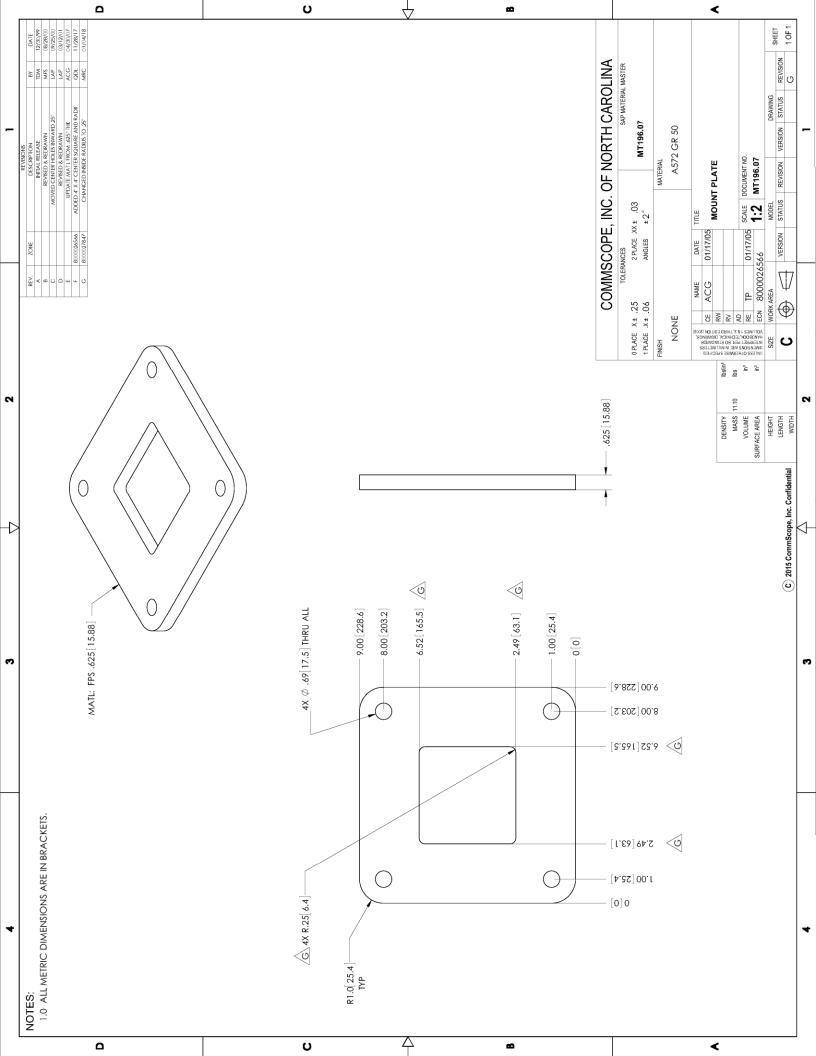
>> Bolt Interaction:

0.137 + 0.027 = 0.164 < **1.0, OK** 

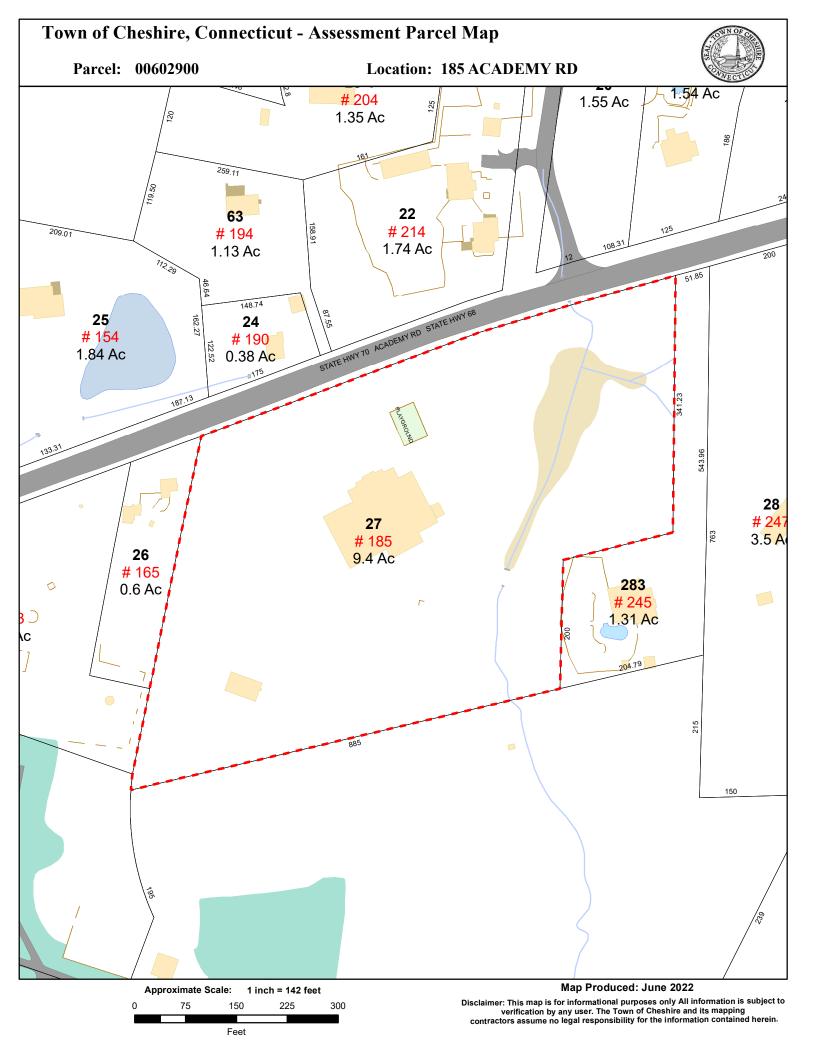
>> Check Existing Plate:

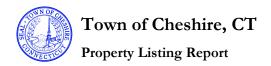
 $Sx = 0.5859 \text{ in}^3$ 


Flange Arm = 1.5 in (Face of Member to Centerline of Bolt)


 $f_{act.} = 14.52 \text{ ksi}$   $f_{all} = 45.00 \text{ ksi}$ 

>> Plate Interaction: 0.323 < 1.0, OK


# Appendix C


References





# **ATTACHMENT 5**





Map Block Lot

58 27

Building #

Unique Identifier

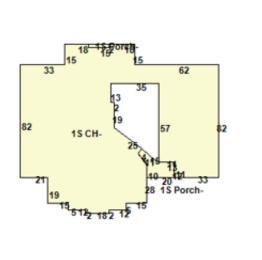
00602900

## **Property Information**

| Property Location | 185 ACADEMY RD              |  |  |
|-------------------|-----------------------------|--|--|
| Mailing Adduses   | 185 ACADEMY RD              |  |  |
| Mailing Address   | CHESHIRE CT 06410           |  |  |
| Land Use          | Church - Sanctuary (Chapel) |  |  |
| Zoning Code       | R-40                        |  |  |
| Neighborhood      | I-1B                        |  |  |

## **Valuation Summary**

(Assessed value = 70% of Appraised Value)


| Item         | Appraised | Assessed |
|--------------|-----------|----------|
| Buildings    | 1808244   | 1265770  |
| Outbuildings | 22560     | 15790    |
| Land         | 597860    | 418500   |
| Total        | 2428664   | 1700060  |

| Owner        | CHESHIRE UNITED METHODIST |
|--------------|---------------------------|
| Co-Owner     | CHURCH                    |
| Book / Page  | 1141/0126                 |
| Land Class   | Commercial                |
| Census Tract | 3433                      |
| Acreage      | 9.4                       |

## **Utility Information**

| Electric     | No |
|--------------|----|
| Gas          | No |
| Sewer        | No |
| Public Water | No |
| Well         | No |





## **Primary Construction Details**

| Year Built                      | 1986           |
|---------------------------------|----------------|
| Building Desc.                  | Commercial     |
| Building Style                  |                |
| Stories                         | 1.00           |
| Exterior Walls                  | Concrete Block |
| Exterior Walls 2                |                |
| Interior Walls                  | Drywall        |
| Interior Walls 2                |                |
| Interior Floors 1               | Composite      |
| Interior Floors 2               |                |
| Interior Walls Interior Walls 2 |                |

| Heating Fuel   | Oil       |
|----------------|-----------|
| Heating Type   | Hot Water |
| AC Type        |           |
| Bedrooms       | 0         |
| Full Bathrooms | 0         |
| Half Bathrooms | 0         |
| Extra Fixtures | 0         |
| Total Rooms    | 0         |
| Bath Style     | NA        |
| Kitchen Style  |           |
| Occupancy      | 0         |
|                |           |

| Building Use       | Church - Sanctuary |
|--------------------|--------------------|
| Building Condition | Excellent          |
| Frame Type         | Average            |
| Fireplaces         | 0                  |
| Bsmt Gar           | 0                  |
| Fin Bsmt Area      |                    |
| Fin Bsmt Quality   |                    |
| Building Grade     | 25                 |
| Roof Style         | HIP                |
| Roof Cover         | Wood               |
| enort Created On   | 10/27/2022         |

Report Created On

## Town of Cheshire, CT **Property Listing Report**

Owner of Record

**CHESHIRE UNITED METHODIST** 

Map Block Lot

58 27

Building #

Unique Identifier

00602900

| Type               | Description      | Area (sq ft) | Condition            | Year Built |
|--------------------|------------------|--------------|----------------------|------------|
| Paving             | Paving           | 30000        | Excellent            | 1986       |
| Shed               | Frame            | 240          | Good                 | 2013       |
| Poles              | Light Fixtures   | 1            | Good                 | 2013       |
|                    |                  |              |                      |            |
|                    |                  |              |                      |            |
|                    |                  |              |                      |            |
|                    |                  |              |                      |            |
| ched Extra Feature | es               |              |                      |            |
| ched Extra Feature | Description      | Area (sq ft) | Condition            | Year Built |
|                    |                  | Area (sq ft) | Condition  Excellent | Year Built |
| Type               | Description      |              |                      |            |
| Type<br>Porch      | Description Open | 301          | Excellent            | 1987       |
| Type<br>Porch      | Description Open | 301          | Excellent            | 1987       |
| Type<br>Porch      | Description Open | 301          | Excellent            | 1987       |
| Type<br>Porch      | Description Open | 301          | Excellent            | 1987       |

Book/ Page

1141\_126

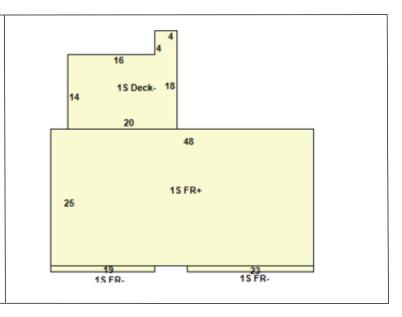
Sale Date

1/11/1996

Sale Price

0

Map Block Lot


58 27

Building #

Unique Identifier

00602900





## **Primary Construction Details**

| Year Built        | 1971          |
|-------------------|---------------|
| Building Desc.    | Single Family |
| Building Style    | Raised Ranch  |
| Stories           | 1.00          |
| Exterior Walls    | Vinyl         |
| Exterior Walls 2  |               |
| Interior Walls    | Drywall       |
| Interior Walls 2  |               |
| Interior Floors 1 | Hardwood      |
| Interior Floors 2 |               |

| Heating Fuel   | Oil     |
|----------------|---------|
| Heating Type   | FHA     |
| AC Type        |         |
| Bedrooms       | 3       |
| Full Bathrooms | 2       |
| Half Bathrooms | 1       |
| Extra Fixtures | 0       |
| Total Rooms    | 7       |
| Bath Style     | NA      |
| Kitchen Style  | Typical |
| Occupancy      | 1       |

| Building Use              | Residential |
|---------------------------|-------------|
| <b>Building Condition</b> | Very Good   |
| Frame Type                | Wood Frame  |
| Fireplaces                | 1           |
| Bsmt Gar                  | 0           |
| Fin Bsmt Area             |             |
| Fin Bsmt Quality          |             |
| Building Grade            | 0           |
| Roof Style                | Gable       |
| Roof Cover                | Asphalt     |
|                           |             |

## **Attached Extra Features**

| Type | Description | Area (sq ft) | Condition | Year Built |
|------|-------------|--------------|-----------|------------|
| Deck | Wood        | 291          | Average   | 2012       |
|      |             |              |           |            |
|      |             |              |           |            |
|      |             |              |           |            |
|      |             |              |           |            |
|      |             |              |           |            |
|      |             |              |           |            |
|      |             |              |           |            |
|      |             |              |           |            |
|      |             |              |           |            |

# **ATTACHMENT 6**



# CHESHIRE EAST Certificate of Mailing — Firm

| Name and Address of Sender                                                                   | TOTAL NO. of Pieces Listed by Sender  TOTAL NO. of Pieces Received at Post Office™        | Postmark with Date of Receipt.                                  |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Kenneth C. Baldwin, Esq.<br>Robinson & Cole LLP<br>280 Trumbull Street<br>Hartford, CT 06103 | Postmaster, per (name of receiving employee)                                              | neopost 11/15/2022 US POSTAGE \$003.092  ZIP 06103 041L12203937 |
|                                                                                              |                                                                                           |                                                                 |
| USPS® Tracking Number                                                                        | Address<br>(Name, Street, City, State, and ZIP Code™)                                     | Postage Fee Special Handling Parcel Airlift                     |
| Firm-specific Identifier  1.                                                                 | Sean M. Kimball, Town Manager Town of Cheshire 84 South Main Street                       | USPS                                                            |
| 2.                                                                                           | Cheshire, CT 06410  Michael Glidden, Town Planner  Town of Cheshire  84 South Main Street |                                                                 |
| 3.                                                                                           | Cheshire, CT 06410 Cheshire United Methodist Church 185 Academy Road Cheshire, CT 06410   |                                                                 |
| 4.                                                                                           |                                                                                           |                                                                 |
| 5.                                                                                           |                                                                                           |                                                                 |
| 6.                                                                                           |                                                                                           |                                                                 |
| PS Form <b>3665</b> , January 2017 (Page of                                                  | ) PSN 7530-17-000-5549                                                                    | See Reverse for Instruction                                     |