Attorney Melanie Bachman
Acting Executive Director
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06501

Re: Notice of Exempt Modification Crown Castle/T-Mobile co-location
 T-Mobile Site ID CT11274A
 102 Dyer Avenue, Canton, CT

Dear Attorney Bachman:
This office represents T-Mobile Northeast LLC ("T-Mobile") and has been retained to file exempt modification filings with the Connecticut Siting Council on its behalf.

In this case, Crown Castle owns the existing monopole flagpole telecommunications tower and related facility at 102 Dyer Avenue, Canton, CT (41.831614/-72.919818). T-Mobile intends to replace 2 existing antennas with 6 new antennas and related equipment at this existing telecommunications facility in Canton ("Canton Facility"). Please accept this letter as notification, pursuant to R.C.S.A. $\$ 16-50 j-73$, of construction which constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R. C.S.A. § 16-50j-73, a copy of this letter is being sent to the First Selectman, Richard Barlow, and the property owner, New Horizon Incorporated.

The existing Canton Facility consists of a 68.5 foot monopole flagpole tower. ${ }^{1}$ T-Mobile plans to replace 2 existing antennas with 6 new antennas on cluster mounts at a centerline of 65.5 feet and replace 2 existing tower mounted amplifiers ("TMAs") with 3 TMAs on an existing S800 cabinet. (See the plans revised to July 28, 2014 attached hereto as Exhibit A). T-Mobile will also install coax cables inside the flagpole and replace a RF transparent $24^{\prime \prime}$ diameter canister. The existing Canton Facility is structurally capable of supporting T-Mobile's proposed modifications, as indicated in the structural analysis dated June 25, 2014, and attached hereto as Exhibit B.

The planned modifications to the Canton Facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

[^0]August 28, 2014
CT11274A
Page 2
The planned modifications to the Canton Facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modification will not increase the height of the tower. T-Mobile's existing antennas are at a centerline of 65.5 feet; the replacement antennas will be installed at the same 65.5 foot level. The enclosed tower drawing confirms that the proposed modification will not increase the height of the tower.
2. The proposed modifications will not require an extension on the site boundaries or lease area, as depicted on Sheet 1 of Exhibit A. T-Mobile's equipment will be located entirely within the existing compound area.
3. The proposed modification to the Facility will not increase the noise levels at the existing facility by six decibels or more.
4. The operation of the replacement antennas will not increase the total radio frequency (RF) power density, measured at the base of the tower, to a level at or above the applicable standard. According to a Radio Frequency Emissions Analysis Report prepared by EBI dated July 14,2014 . T-Mobile's operations would add 1.53% of the FCC Standard. Therefore, the calculated "worst case" power density for the planned combined operation at the site including all of the proposed antennas would be 1.53% of the FCC Standard as calculated for a mixed frequency site as evidenced by the engineering exhibit attached hereto as Exhibit C.

For the foregoing reasons, T-Mobile respectfully submits that the proposed replacement antennas and equipment at the Canton Facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Upon acknowledgement of this exempt modification, T-Mobile shall commence construction approximately sixty days from the receipt of the Council's decision.

cc: Town of Canton, First Selectman Richard Barlow
Crown Castle
New Horizon Incorporated
Halene Fujimoto, HPC Wireless Services

INSTALLATION SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S
RECOMENDTONS. MINMUM EMEEDENT SHALL BE $4-3 / 4^{\prime \prime}$ UNLESS OTHERWISE
NOTED.

 SV 9NIVZ9 dVO İIS IN CORRECTING WELDING. ALL WELDERS AND WELDING PROCESSES SHALL BE
OUALIFED IN ACCORDANCE WTH AWS "STANDARD QUALFICATION PROCEDURES",
 ANCHOR BOLTS SHALL BE TENSIONED BY THE TURN-OF-NUT METHOD AFTER
GROUTNG OF BASE PLATES. STRUCTURAL CONNECTIONS "SPECIFICATIONS FOR STRUCTURAL JOINTS USING ASTM
A325 OR A490 BOLTS".
 RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS "SPECIFICATION FOR
STRUCTRAL JOINTS USING ASTM A325 OR A490 BOLTS", UNLESS OTHERWISE
NOTED. STRUCTURAL CONNECTIONS SHALL BE SNUG TIGHT IN ACCORDANCE WITH THE
RESEARCH COUNIC ON STUUCURAL CONNECTINS "SPECIFICALON FOR
STRUCTURAL UOINTS USING ASTM A325 OR A490 BOLTS", UNLESS OTHERWISE FIELD CONNECTIONS SHALL BE BOLTED UNLESS OTHERWISE INDICATED. ALL BOLTED
CONNECTONS SHAL BE MADE MTH NOT LESS THAN TWO (2) HIGH STRENGTH
BOLTS, OR EOUVIVALENT WELD. WASHERS, WHERE REQUIRED, SHALL CONFORM TO ASTM F436 "HARDENED STEEL
WASHERS". MATCHING NUTS SHALL BE HEAVY HEX TYPE, CONFORMING TO ASTM A563 "CARBON
AND ALLOY STEEL ALTS".
WASHERS, WHERE REQURED, SHALL CONFORM TO ASTM F436 "HARDENED STEEL ASTM A325 "STRUCTURAL BOLTS, STEEL, HEAT TREATED, $120 / 105 \mathrm{KSI}$ MININUM
TENIE STRNGH". BOLTS SHALL BE $3 / 4$ INCH DIAMETER, TYPE X, UNLESS
OTHERWSE NOTED.
 ANCHOR BOLTS SHALL CONFORM TO ASTM F1554 "ANCHOR BOLTS, STEEL, 36, 55,
AND 105-KSI YELD STRENGTH", GRADE 36 . MISCELLANEOUS STEEL, INCLUDING CHANNELS, ANLLES, PLATES, AND BARS SHALL
CONFRM TO ASTM A36 "CARBON STRUCTURAL STEEL", UNLLSS OTHERWSE
INIICATED. HOLLOW STRUCTURAL SECTONS (HSS) SHALL CONFORM TO ASTM ASO
"COLD-FRMED WEDEE \& SEMLESS CARBON STEEL STRUCTURAL TUBING IN
ROUNDS AND SHAPES", GRADE B. THIS GRADE, ASTM A572 "HIGH-STRENGTH LOW-ALLOY COLUMBIUM-VANADIUM
STRUCTURAL STEL", GRADE 50, MAY BE SUBSTTUTED.
HOLOW STRUCTURAL SECTONS (HSS) SHALL CONFORM TO ASTM A500
 STRUCTURAL STEEL WIDE FLANGE SHAPES SHAL CONFORM TO ASTM A992 "STEEL CONSTRUCTION "SPECIFICATION FOR STRUCTURAL STEEL BUILDINGS, AlLOWABLE
STRESS DESIGN AND PLASTIC DESIGN". DESIGN AND CONSTRUCTION OF STRUCTURAL STEEL SHALL CONFORM TO THE
AMERICAN INSTTTUTE OF STEEL
22. THE NOTES CONTAINED HEREIN ARE NOT PROJECT SPECFIC. THE CONTRACTOR
SHAL UTHIZE AL NOTES WHICH SOLELY PERTAIN TO THE WORK DEPICTED ON
THESE DRAWIGS. THE NOTES CONTAINED HEREIN ARE NOT PROJECT SPECFICC. THE CONTRACTOR
SHAL UTHIZE ALL NOTES WHHCH SOLELY PERTAIN TO THE WORK DEPICTED ON all steel work shall be subuect to special inspections during constructon. DAMAGED GALVANIZED SURFACES SHALL BE REPARED BY COLD GALVANIZING IN
ACORDANEE WTH ASTM AT80 "RPPAIR OF DAMAGED AND UNCOATED AREAS OF
HOT-DIP GALVANIZED COATIGS". ACROWARE", UNLESS OTHERWISE NOTED. ALL EXTERIOR BOLTS AND MISCELLANEOUS HARDWARE SHALL BE GALYANIZED IN
ACCORDANCE WTH ASTM AI53 ZINC COATNG (HOT-DIP) ON IRON AND STEEL ALL EATM A123"ZINC (HOT-DIP GALVANIZED) COATINGS ON IRON AND STEEL
MTHH
PRODUCTS", UNLESS OTHERWISE NOTED. ALL EXTERIOR STEEL SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE
WTH ASTM A123 ZIINC (HOT-DIP GALVANIZED) COATNGS ON RON AND STEEL FIELD CONNECTIONS AND DAMAGED OR ABRADED AREAS OF SHOP PRIME COAT
SHALL BE TOUCH-UP PAINTED WTH COMPATELE FIELD PRIMER. MAFTALLATION SHALL RECEIVE TWO (2) COATS OF PRIMER. SEE ARCHITECTURAL
INRAWINGS FOR FIIISH PAINT.

INSTALLATION SHALL BE IN ACCORDANCE WTH THE MANUFACTURER'S WRITTEN
INSTRUCTONS. CONCRETE OR GROUTED CMU
HOLOW CMU

SOXY ANCHOR ASSEMBLIES SHALL BE AS MANUFACTURED BY HILTI OR ENGINEER
APPROVED EUAL AS FOLLOWS:
BASE MATERAL
STRUCTURAL STEEL NOTES

Date: June 25, 2014
Veronica Harris
Crown Castle
1200 McArthur Blvd

Crown Castle 2000 Corporate Drive Canonsburg, PA (724) 416-2000

Subject: Structural Analysis Report

Carrier Designation:	T-Mobile Co-Locate Carrier Site Number: Carrier Site Name:	CT11274A Canton/Rt 10
Crown Castle Designation:	Crown Castle BU Number:	822915
	Crown Castle Site Name:	Canton/Rt 10
	Crown Castle JDE Job Number:	269898
	Crown Castle Work Order Number:	739262
	Crown Castle Application Number:	218324 Rev. 1
Engineering Firm Designation:	Crown Castle Project Number:	739262
Site Data:	102 Dyer Ave., Canton, Hartford County, CT Latitude $41^{\circ} 49^{\prime} 53.75^{\prime \prime}$, Longitude $-72^{\circ} 55^{\prime} 11.41^{\prime \prime}$ 68.5 Foot - Flagpole Tower	

Dear Veronica Harris,

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 739262, in accordance with application 218324, revision 1.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

```
LC5: Existing + Proposed Equipment
Sufficient Capacity
Note: See Table I and Table If for the proposed and existing loading, respectively.
```

The analysis has been performed in accordance with the TIAEIA-222-F standard and the 2005 CT State Building Code based upon a wind speed of 80 mph fastest mile.

All modifications and equipment proposed in this report shall be installed in accordance with the attached drawings for the determined available structural capacity to be effective.

We at Crown Castle appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Structural analysis prepared by: Mitchell Prust, EIT / MRC

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable Information
Table 2 - Existing Antenna and Cable Information
Table 3 - Design Antenna and Cable Information
3) ANALYSIS PROCEDURE

Table 4 - Documents Provided
3.1) Analysis Method
3.2) Assumptions

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)
Table 6 - Tower Components vs. Capacity
4.1) Recommendations
5) APPENDIX A
tnxTower Output
6) APPENDIX B

Base Level Drawing
7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 68.5 ft Monopole tower designed by STEALTH NETWORK TECHNOLOGIES INC. in October of 2000. The tower was originally designed for a wind speed of 80 mph per TIA/EIA-222-F.

2) ANALYSIS CRITERIA

The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 80 mph with no ice, 28.1 mph with 1 inch ice thickness and 50 mph under service loads.

Table 1 - Proposed Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
65.5	65.5	3	ericsson	KRY 112 144/1		N	

Table 2 - Existing Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
65.5	65.5	-	-	-	4	$7 / 8$	1
		-	-	-	7	$1-5 / 8$	3

Notes:

1) Existing Equipment
2) Equipment to be Removed; Not Considered in this Analysis
3) MLA Equipment; Considered in this Analysis

Table 3 - Design Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
Not Available						

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Remarks	Reference	Source
4-TOWER MANUFACTURER DRAWINGS	Tower Engineering Professionals (Mapping) / Stealth Network Technologies, Inc.	3491150	CCISITES
4-TOWER MAPPING	Tower Engineering Professionals	-	ONFILE

3.1) Analysis Method

tnxTower (version 6.1.4.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

1) Tower and structures were built in accordance with the manufacturer's specifications.
2) The tower and structures have been maintained in accordance with the manufacturer's specification.
3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
4) When applicable, transmission cables are considered as structural components for calculating wind loads as allowed by TIA/EIA-222-F.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	$\mathbf{P (K)}$	SF*P_allow (\mathbf{K})	\% Capacity	Pass / Fail
L1	$68.5-54.75$	Pole	P3.5x0.438	1	-0.765	117.945	78.9	Pass
L2	$54.75-0$	Pole	P10.75x0.365	2	-3.454	333.349	77.3	Pass
							Summary	
						Pole (L1)	78.9	Pass
					Rating $=$	78.9	Pass	

Table 6 - Tower Component Stresses vs. Capacity - LC5

Notes	Component	Elevation (ft)	\% Capacity	Pass / Fail
1	Anchor Rods	0	11.2	Pass
1	Base Plate	0	24.6	Pass
1	Flange Bolts	54.75	50.9	Pass
1,2	Base Foundation (Compared w/ Design Loads)	0	26.0	Pass

Structure Rating (max from all components) $=$	$\mathbf{7 8 . 9 \%}$

Notes:

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the \% capacity consumed.
2) Foundation capacity determined by comparing analysis reactions to original design reactions.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the existing and proposed loads. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

Section	2	1
Size	P10．75×0．365	P3．5x0．438
Length（ft）	54＇9＂	$13^{\prime} 9^{\prime \prime}$
Grade		A53－B－35
Weight（k） 2.4	2.2	0.2

68.5 ft
54.8 ft

でて
0.0 ft

28 mph WIND－ 1.000 in ICE

REACTIONS－ 80 mph WIND

Crown Castle 2000 Corporate Drive	${ }^{\text {Job：}}$ BU\＃ 822915		
	Project：		
	Client：Crown Castle	Drawn by：Mitchell P	App＇d：
e Are Solutions Phone：（724）416－2000	Code：TIA／EIA－222－F	Date：06／23／14	Scale：NTS
FAX：	Path： X ：IENG Work ArealM	22915，822915－fagpole．eri	Dwg No．E－1

Tower Input Data

There is a pole section.
This tower is designed using the TIA/EIA-222-F standard.
The following design criteria apply:
4) Tower is located in Hartford County, Connecticut.
5) Basic wind speed of 80 mph .
6) Nominal ice thickness of 1.000 in.
7) Ice thickness is considered to increase with height.
8) Ice density of 56.000 pcf.
9) A wind speed of 28 mph is used in combination with ice.
10) Temperature drop of $50.000^{\circ} \mathrm{F}$.
11) Deflections calculated using a wind speed of 50 mph .
12) A non-linear (P-delta) analysis was used.
13) Pressures are calculated at each section.
14) Stress ratio used in pole design is 1.333 .
15) Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options		
Consider Moments - Legs	Distribute Leg Loads As Uniform	Treat Feedline Bundles As Cylinder
Consider Moments - Horizontals	Assume Legs Pinned	Use ASCE 10 X-Brace Ly Rules
Consider Moments - Diagonals	$\sqrt{ }$ Assume Rigid Index Plate	Calculate Redundant Bracing Forces
Use Moment Magnification	$\sqrt{ }$ Use Clear Spans For Wind Area	Ignore Redundant Members in FEA
$\sqrt{ }$ Use Code Stress Ratios	Use Clear Spans For KL/r	SR Leg Bolts Resist Compression
$\sqrt{ }$ Use Code Safety Factors - Guys	Retension Guys To Initial Tension	All Leg Panels Have Same Allowable
$\sqrt{ }$ Escalate Ice	$\sqrt{ }$ Bypass Mast Stability Checks	Offset Girt At Foundation
Always Use Max Kz	$\sqrt{ }$ Use Azimuth Dish Coefficients	$\sqrt{ }$ Consider Feedline Torque
Use Special Wind Profile	$\sqrt{ }$ Project Wind Area of Appurt.	Include Angle Block Shear Check
Include Bolts In Member Capacity	Autocalc Torque Arm Areas	Poles
Leg Bolts Are At Top Of Section	SR Members Have Cut Ends	$\sqrt{ }$ Include Shear-Torsion Interaction
Secondary Horizontal Braces Leg	$\sqrt{ }$ Sort Capacity Reports By Component	Always Use Sub-Critical Flow
Use Diamond Inner Bracing (4 Sided)	Triangulate Diamond Inner Bracing	Use Top Mounted Sockets
Add IBC . 6D+W Combination	Use TIA-222-G Tension Splice Capacity Exemption	

	Pole Section Geometry				
Section	Elevation ft	Section Length ft	Pole Size	Pole Grade	Socket Length ft
L1	$68^{\prime \prime} 6^{\prime \prime}-54^{\prime} 9^{\prime \prime}$	$13^{\prime} 9^{\prime \prime}$	P3.5×0.438	$\begin{gathered} \text { A53-B-35 } \\ (35 \mathrm{ksi}) \end{gathered}$	
L2	54'9"-0'	54'9'	P10.75x0.365	A53-B-35 (35 ksi)	

Tower Elevation	GussetArea(per face)	Gusset Thickness	Gusset Grade Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Double Angle	
						Stitch Bolt Spacing	Stitch Bolt Spacing
$f t$	t^{2}	in				Diagonals in	Horizontals in
L1 68'6"-54'9"			1	0	1		
L2 54'9"-0'			1	1	1		

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Component Type	Placement ft	Total Number	Number Per Row	Clear Spacing in	Width or Diamete r in	Perimete r in	Weight $k l f$

Feed Line/Linear Appurtenances - Entered As Area

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Component Type	Placement ft	Total Number		$C_{A} A_{A}$ $f^{2} / f t$	Weight klf
AL5-50(7/8)	A	No	Inside Pole	$65^{\prime} 6^{\prime \prime}-0^{\prime}$	4	No lce	0.000	0.000
						1/2" Ice	0.000	0.000
						1" Ice	0.000	0.000
						2 " ice	0.000	0.000
						4 " ice	0.000	0.000
LDF7-50A(1-5/8')	A	No	Inside Pole	$65^{\prime} 6^{\prime \prime}-0^{\prime}$	7	No lce	0.000	0.001
						1/2" Ice	0.000	0.001
						1" Ice	0.000	0.001
						$2^{\prime \prime}$ Ice	0.000	0.001
						4" Ice	0.000	0.001
AL5-50(7/8)	A	No	Inside Pole	$65^{\prime} 6^{\prime \prime}-0^{\prime}$	2	No lce	0.000	0.000
						1/2" Ice	0.000	0.000
						$1{ }^{1 \prime}$ Ice	0.000	0.000
						2" Ice	0.000	0.000
						4" Ice	0.000	0.000

Feed Line/Linear Appurtenances Section Areas

Tower Sectio	Tower Elevation n	$f t$	Face	A_{R}	A_{F}	$C_{A} A_{A}$ In Face	$C_{A} A_{A}$ Out Face
L1	$68^{\prime} 6^{\prime \prime}-54^{\prime} 9^{\prime \prime}$	A	0.000	0.000	0.000	0.000	Weight
		B	0.000	0.000	0.000	0.000	0.078
		C	0.000	0.000	0.000	0.000	0.000
L2	$54^{\prime} 9^{\prime \prime}-0^{\prime}$	A	0.000	0.000	0.000	0.000	0.400
		B	0.000	0.000	0.000	0.000	0.000
		C	0.000	0.000	0.000	0.000	0.000

Feed Line/Línear Appurtenances Section Areas - With lce								
Tower	Tower	Face	lce	A_{R}	A_{F}	$\mathrm{C}_{A} A_{A}$	$\mathrm{C}_{4} A_{A}$	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	
n	ft	Leg	in	ft^{2}	ft^{2}	${f t^{2}}^{2}$	ft^{2}	K
L1	68'6"-54'9'	A	1.078	0.000	0.000	0.000	0.000	0.078
		B		0.000	0.000	0.000	0.000	0.000
		C		0.000	0.000	0.000	0.000	0.000
L2	$54^{\prime \prime} 9^{\prime \prime}-0^{\prime}$	A	1.000	0.000	0.000	0.000	0.000	0.400
		B		0.000	0.000	0.000	0.000	0.000
		C		0.000	0.000	0.000	0.000	0.000

Feed Line Center of Pressure

Section	Elevation	$C P_{X}$ in	$C P_{Z}$ in	$\begin{aligned} & C P_{x} \\ & \text { lce } \\ & \text { in } \end{aligned}$	$\begin{aligned} & C P_{Z} \\ & \text { lce } \\ & \text { in } \end{aligned}$
L1	68'6"-54'9'	0.000	0.000	0.000	0.000
L2	$54^{\prime} 9^{\prime \prime}-0^{\prime}$	0.000	0.000	0.000	0.000

User Defined Loads									
Description	Elevation	Offset From	Azimuth Angle		Weight	F_{X}	F_{z}	Wind Force	$C_{A} A_{C}$
	f	$\begin{gathered} \text { Centroid } \\ \mathrm{ft} \end{gathered}$	-		K	K	K	K	$f{ }^{2}$
Flag	68'6"	0^{\prime}	0.000	$\begin{aligned} & \text { No Ice } \\ & \text { Ice } \\ & \text { Service } \end{aligned}$	0.262	0.000	0.000	0.245	7.176
					0.463	0.000	0.000	0.044	10.545
					0.262	0.000	0.000	0.109	8.165

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Offset Type \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
ft \\
ft \\
ft
\end{tabular} \& Azimuth Adjustmen \(t\) \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

$$
f^{2}
$$ \& $C_{A} A_{A}$ Side

$$
f^{2}
$$ \& Weight

K

\hline APXV18-209014-C w/ Mount Pipe \& A \& From Leg \& $$
\begin{gathered}
0.500 \\
0^{\prime} \\
0^{\prime}
\end{gathered}
$$ \& 0.000 \& $65^{\prime \prime}{ }^{\prime \prime}$ \& No lce 1/2" Ice 1" Ice 2" Ice 4" Ice \& \[

$$
\begin{aligned}
& 0.000 \\
& 0.000 \\
& 0.000 \\
& 0.000 \\
& 0.000
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.000 \\
& 0.000 \\
& 0.000 \\
& 0.000 \\
& 0.000
\end{aligned}
$$
\] \& 0.038

0.072
0.112
0.212
0.523

\hline APXV18-209014-C w/ Mount Pipe \& B \& From Leg \& $$
\begin{gathered}
0.500 \\
0^{\prime} \\
0^{\prime}
\end{gathered}
$$ \& 0.000 \& $65^{\prime \prime}{ }^{\prime \prime}$ \& No lce 1/2" Ice 1" Ice 2" Ice 4 " Ice \& \[

$$
\begin{aligned}
& 0.000 \\
& 0.000 \\
& 0.000 \\
& 0.000 \\
& 0.000
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.000 \\
& 0.000 \\
& 0.000 \\
& 0.000 \\
& 0.000
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.038 \\
& 0.072 \\
& 0.112 \\
& 0.212 \\
& 0.523
\end{aligned}
$$
\]

\hline APXV18-209014-C w/ Mount Pipe \& C \& From Leg \& \[
$$
\begin{gathered}
0.500 \\
0^{\prime} \\
0^{\prime}
\end{gathered}
$$

\] \& 0.000 \& 65'6" \& | No Ice |
| :--- |
| $1 / 2^{\prime \prime}$ |
| Ice |
| 1" Ice |
| 2" Ice |
| 4 " Ice | \& \[

$$
\begin{aligned}
& 0.000 \\
& 0.000 \\
& 0.000 \\
& 0.000 \\
& 0.000
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.000 \\
& 0.000 \\
& 0.000 \\
& 0.000 \\
& 0.000
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.038 \\
& 0.072 \\
& 0.112 \\
& 0.212 \\
& 0.523
\end{aligned}
$$
\]

\hline KRY 112 144/1 \& A \& From Leg \& \[
$$
\begin{gathered}
0.500 \\
0^{\prime} \\
0^{\prime}
\end{gathered}
$$

\] \& 0.000 \& 65'6" \& | No Ice |
| :--- |
| 1/2" |
| Ice |
| 1" Ice |
| 2" Ice |
| 4" Ice | \& \[

$$
\begin{aligned}
& 0.000 \\
& 0.000 \\
& 0.000 \\
& 0.000 \\
& 0.000
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.000 \\
& 0.000 \\
& 0.000 \\
& 0.000 \\
& 0.000
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.011 \\
& 0.014 \\
& 0.019 \\
& 0.032 \\
& 0.082
\end{aligned}
$$
\]

\hline KRY 112 144/1 \& B \& From Leg \& \[
$$
\begin{gathered}
0.500 \\
0^{\prime} \\
0^{\prime}
\end{gathered}
$$

\] \& 0.000 \& $65^{\prime \prime}{ }^{\prime \prime}$ \& | No Ice |
| :--- |
| 1/2" |
| lce |
| 1" Ice |
| 2" Ice |
| 4 " Ice | \& \[

$$
\begin{aligned}
& 0.000 \\
& 0.000 \\
& 0.000 \\
& 0.000 \\
& 0.000
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.000 \\
& 0.000 \\
& 0.000 \\
& 0.000 \\
& 0.000
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.011 \\
& 0.014 \\
& 0.019 \\
& 0.032 \\
& 0.082
\end{aligned}
$$
\]

\hline KRY 112 144/1 \& C \& From Leg \& $$
\begin{gathered}
0.500 \\
0^{\prime} \\
0^{\prime}
\end{gathered}
$$ \& 0.000 \& $65^{\prime \prime}{ }^{\prime \prime}$ \& \[

$$
\begin{gathered}
\text { No Ice } \\
1 / 2^{\prime \prime} \\
\text { Ice } \\
1^{\prime \prime} \text { Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0.000 \\
& 0.000 \\
& 0.000 \\
& 0.000
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.000 \\
& 0.000 \\
& 0.000 \\
& 0.000
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.011 \\
& 0.014 \\
& 0.019 \\
& 0.032
\end{aligned}
$$
\]

\hline
\end{tabular}

tnxTower Report - version 6.1.4.1

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Offset Type \& \begin{tabular}{c}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\) \\
\(f t\) \\
\hline
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustmen t \\
。
\end{tabular} \& Placement

ft \& \& $C_{A} A_{A}$ Front

$$
\pi t^{2}
$$ \& $C_{A} A_{A}$ Side

$$
f^{2}
$$ \& Weight

K

\hline \& \& \& \& \& \& $$
\begin{aligned}
& 2^{\prime \prime} \text { Ice } \\
& 4^{\prime \prime} \text { Ice }
\end{aligned}
$$ \& 0.000 \& 0.000 \& 0.082

\hline \multicolumn{10}{|l|}{*****}

\hline \multirow[t]{6}{*}{Canister Load1} \& \multirow[t]{6}{*}{C} \& \multirow[t]{6}{*}{None} \& \& \multirow[t]{6}{*}{0.000} \& \multirow[t]{6}{*}{68'6"} \& No lce \& 1.556 \& 1.556 \& 0.017

\hline \& \& \& \& \& \& $1 / 2^{\prime \prime}$ \& 1.722 \& 1.722 \& 0.037

\hline \& \& \& \& \& \& Ice \& 1.888 \& 1.888 \& 0.059

\hline \& \& \& \& \& \& 1" Ice \& 2.219 \& 2.219 \& 0.110

\hline \& \& \& \& \& \& 2" Ice \& 2.883 \& 2.883 \& 0.237

\hline \& \& \& \& \& \& 4" Ice \& \& \&

\hline \multirow[t]{6}{*}{Canister Load2} \& \multirow[t]{6}{*}{c} \& \multirow[t]{6}{*}{None} \& \& \multirow[t]{6}{*}{0.000} \& \multirow[t]{6}{*}{61'9'} \& No lce \& 3.255 \& 3.255 \& 0.037

\hline \& \& \& \& \& \& 1/2" \& 3.593 \& 3.593 \& 0.080

\hline \& \& \& \& \& \& Ice \& 3.931 \& 3.931 \& 0.126

\hline \& \& \& \& \& \& 1" Ice \& 4.607 \& 4.607 \& 0.233

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 5.959 \& 5.959 \& 0.495

\hline \& \& \& \& \& \& $4^{\prime \prime}$ Ice \& \& \&

\hline \multirow[t]{6}{*}{Canister Load3} \& \multirow[t]{6}{*}{C} \& \multirow[t]{6}{*}{None} \& \& \multirow[t]{6}{*}{0.000} \& \multirow[t]{6}{*}{$54^{\prime \prime} 9^{\prime \prime}$} \& No lce \& 1.699 \& 1.699 \& 0.051

\hline \& \& \& \& \& \& 1/2' \& 1.871 \& 1.871 \& 0.074

\hline \& \& \& \& \& \& Ice \& 2.043 \& 2.043 \& 0.098

\hline \& \& \& \& \& \& 1 Ice \& 2.388 \& 2.388 \& 0.153

\hline \& \& \& \& \& \& $$
2^{\prime \prime} \text { Ice }
$$ \& 3.076 \& 3.076 \& 0.289

\hline \& \& \& \& \& \& 4" Ice \& \& \&

\hline \multirow[t]{6}{*}{Truck Ball} \& \multirow[t]{6}{*}{C} \& \multirow[t]{6}{*}{None} \& \& \multirow[t]{6}{*}{0.000} \& \multirow[t]{6}{*}{69'1/2"} \& No lce \& 0.737 \& 0.737 \& 0.050

\hline \& \& \& \& \& \& 1/2" \& 0.855 \& 0.855 \& 0.059

\hline \& \& \& \& \& \& Ice \& 0.982 \& 0.982 \& 0.070

\hline \& \& \& \& \& \& 1 ' Ice \& $$
1.261
$$ \& \[

1.261

\] \& \[

0.096
\]

\hline \& \& \& \& \& \& 2" Ice \& 1.924 \& 1.924 \& 0.170

\hline \& \& \& \& \& \& 4" Ice \& \& \&

\hline
\end{tabular}

Load Combinations

Comb. No.	Description
1	Dead Only
2	Dead+Wind 0 deg - No lce
3	Dead+Wind 30 deg - No Ice
4	Dead+Wind 60 deg - No lce
5	Dead+Wind 90 deg - No lce
6	Dead+Wind 120 deg - No Ice
7	Dead+Wind 150 deg - No lce
8	Dead+Wind 180 deg - No lce
9	Dead+Wind 210 deg - No lce
10	Dead+Wind 240 deg - No lce
11	Dead+Wind 270 deg - No lce
12	Dead+Wind 300 deg - No lce
13	Dead+Wind 330 deg - No lce
14	Dead+[ce+Temp
15	Dead+Wind 0 deg+Ice + Temp
16	Dead+Wind 30 deg+lce+Temp
17	Dead+Wind $60 \mathrm{deg}+\mathrm{lce}+$ Temp
18	Dead+Wind 90 deg+lce+Temp
19	Dead+Wind 120 deg+lce+Temp
20	Dead+Wind $150 \mathrm{deg}+\mathrm{lce}+$ Temp
21	Dead+Wind $180 \mathrm{deg}+\mathrm{lce}+$ Temp
22	Dead+Wind 210 deg+lce+Temp
23	Dead+Wind $240 \mathrm{deg}+\mathrm{Ice}+$ Temp
24	Dead+Wind 270 deg+lce + Temp
25	Dead+Wind 300 deg+lce+Temp
26	Dead+Wind 330 deg+lce+Temp

tnxTower Report - version 6.1.4.1

Comb.		Description
No.		
27	Dead+Wind 0 deg - Service	
28	Dead+Wind 30 deg - Service	
29	Dead+Wind 60 deg - Service	
30	Dead+Wind 90 deg - Service	
31	Dead+Wind 120 deg - Service	
32	Dead+Wind 150 deg - Service	
33	Dead+Wind 180 deg - Service	
34	Dead+Wind 210 deg - Service	
35	Dead+Wind 240 deg - Service	
36	Dead+Wind 270 deg - Service	
37	Dead+Wind 300 deg - Service	
38	Dead+Wind 330 deg - Service	

Maximum Member Forces

$\begin{gathered} \text { Sectio } \\ n \\ \text { No. } \\ \hline \end{gathered}$	Elevation ft	Component Type	Condition	Gov. Load Comb	Force K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L1	68.5-54.75	Pole	Max Tension	15	0.000	0.000	-0.000
			Max. Compression	14	-1.514	0.000	0.000
			Max. Mx	5	-0.765	-5.780	0.000
			Max. My	2	-0.765	0.000	5.780
			Max. Vy	5	0.480	-2.763	0.000
			Max. Vx	2	-0.480	0.000	2.763
			Max. Torque	4			0.000
L2	54.75-0	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	14	-5.020	0.000	0.000
			Max. Mx	5	-3.454	-58.472	0.000
			Max. My	2	-3.454	0.000	58.472
			Max. Vy	5	1.321	-58.472	0.000
			Max. Vx	2	-1.321	0.000	58.472
			Max. Torque	4			0.000

	Maximum Reactions				
Location	Condition	Gov. Load Comb.	Vertical K	$\begin{gathered} \text { Horizontal, X } \\ K \end{gathered}$	$\begin{gathered} \text { Horizontal, } Z \\ K \end{gathered}$
Pole	Max. Vert	18	5.020	-0.327	0.000
	Max. H_{x}	11	3.458	1.312	0.000
	Max. H_{z}	2	3.458	0.000	1.312
	Max. M_{x}	2	58.472	0.000	1.312
	Max. M_{z}	5	58.472	-1.312	0.000
	Max. Torsion	4	0.000	-1.137	0.656
	Min. Vert	1	3.458	0.000	0.000
	Min. H_{x}	5	3.458	-1.312	0.000
	Min. Hz_{z}	8	3.458	0.000	-1.312
	Min. M_{x}	8	-58.472	0.000	-1.312
	Min. M M_{z}	11	-58.472	1.312	0.000
	Min. Torsion	6	-0.000	-1.137	-0.656

Tower Mast Reaction Summary

Load Combination	Vertical	Shear $_{x}$ K	Shear K	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque kip-ft
Dead Only	3.458	0.000	0.000	0.000	0.000	0.000
Dead+Wind 0 deg - No Ice	3.458	0.000	-1.312	-58.472	0.000	0.000
Dead+Wind 30 deg - No lce	3.458	0.656	-1.137	-50.638	-29.236	0.000
Dead+Wind 60 deg - No lce	3.458	1.137	-0.656	-29.236	-50.638	-0.000
Dead+Wind 90 deg - No lce	3.458	1.312	0.000	0.000	-58.472	0.000
Dead+Wind 120 deg - No Ice	3.458	1.137	0.656	29.236	-50.638	0.000
Dead+Wind 150 deg - No Ice	3.458	0.656	1.137	50.638	-29.236	-0.000
Dead+Wind 180 deg - No Ice	3.458	0.000	1.312	58.472	0.000	0.000
Dead+Wind 210 deg - No Ice	3.458	-0.656	1.137	50.638	29.236	0.000
Dead+Wind 240 deg - No Ice	3.458	-1.137	0.656	29.236	50.638	-0.000
Dead+Wind 270 deg - No Ice	3.458	-1.312	0.000	0.000	58.472	0.000
Dead+Wind 300 deg - No lce	3.458	-1.137	-0.656	-29.236	50.638	0.000
Dead+Wind 330 deg - No Ice	3.458	-0.656	-1.137	-50.638	29.236	-0.000
Dead+Ice+Temp	5.020	0.000	0.000	0.000	0.000	0.000
Dead+Wind 0 deg+Ice+Temp	5.020	0.000	-0.327	-13.552	0.000	0.000
Dead+Wind 30 deg+Ice+Temp	5.020	0.164	-0.283	-11.737	-6.776	0.000
Dead+Wind 60 deg+Ice+Temp	5.020	0.283	-0.164	-6.776	-11.737	-0.000
Dead+Wind 90 deg+Ice+Temp	5.020	0.327	0.000	0.000	-13.552	0.000
Dead+Wind 120 deg+Ice + Temp	5.020	0.283	0.164	6.776	-11.737	0.000
Dead+Wind 150 deg+Ice + Temp	5.020	0.164	0.283	11.737	-6.776	-0.000
Dead+Wind 180 deg+Ice+Temp	5.020	0.000	0.327	13.552	0.000	0.000
Dead+Wind 210 deg+Ice+Temp	5.020	-0.164	0.283	11.737	6.776	0.000
Dead+Wind 240 deg+Ice+Temp	5.020	-0.283	0.164	6.776	11.737	-0.000
Dead+Wind 270 deg+Ice+Temp	5.020	-0.327	0.000	0.000	13.552	0.000
Dead+Wind 300 deg+Ice+Temp	5.020	-0.283	-0.164	-6.776	11.737	0.000
Dead+Wind 330 deg+Ice+Temp	5.020	-0.164	-0.283	-11.737	6.776	-0.000
Dead+Wind 0 deg - Service	3.458	0.000	-0.711	-29.240	0.000	0.000
Dead+Wind 30 deg - Service	3.458	0.355	-0.615	-25.323	-14.620	0.000
Dead+Wind 60 deg - Service	3.458	0.615	-0.355	-14.620	-25.323	-0.000
Dead+Wind 90 deg - Service	3.458	0.711	0.000	0.000	-29.240	0.000
Dead+Wind 120 deg Service	3.458	0.615	0.355	14.620	-25.323	0.000
Dead+Wind 150 deg Service	3.458	0.355	0.615	25.323	-14.620	-0.000
Dead+Wind 180 deg Service	3.458	0.000	0.711	29.240	0.000	0.000
Dead+Wind 210 deg Service	3.458	-0.355	0.615	25.323	14.620	0.000
Dead+Wind 240 deg Service	3.458	-0.615	0.355	14.620	25.323	-0.000
Dead+Wind 270 deg Service	3.458	-0.711	0.000	0.000	29.240	0.000
Dead + Wind 300 deg Service	3.458	-0.615	-0.355	-14.620	25.323	0.000
Dead+Wind 330 deg Service	3.458	-0.355	-0.615	-25.323	14.620	-0.000

Solution Summary							
		Applied F			of Re		
Load	PX	PY	$P Z$	$P X$	PY	$P Z$	\% Error
Comb.	K	K	K	K	K	K	
1	0.000	-3.458	0.000	0.000	3.458	0.000	0.000\%
2	0.000	-3.458	-1.312	0.000	3.458	1.312	0.000\%
3	0.656	-3.458	-1.137	-0.656	3.458	1.137	0.000\%
4	1.137	-3.458	-0.656	-1.137	3.458	0.656	0.000\%
5	1.312	-3.458	0.000	-1.312	3.458	0.000	0.000\%
6	1.137	-3.458	0.656	-1.137	3.458	-0.656	0.000\%
7	0.656	-3.458	1.137	-0.656	3.458	-1.137	0.000\%
8	0.000	-3.458	1.312	0.000	3.458	-1.312	0.000\%
9	-0.656	-3.458	1.137	0.656	3.458	-1.137	0.000\%
10	-1.137	-3.458	0.656	1.137	3.458	-0.656	0.000\%
11	-1.312	-3.458	0.000	1.312	3.458	0.000	0.000\%
12	-1.137	-3.458	-0.656	1.137	3.458	0.656	0.000\%
13	-0.656	-3.458	-1.137	0.656	3.458	1.137	0.000\%
14	0.000	-5.020	0.000	0.000	5.020	0.000	0.000\%
15	0.000	-5.020	-0.327	0.000	5.020	0.327	0.000\%
16	0.164	-5.020	-0.283	-0.164	5.020	0.283	0.000\%
17	0.283	-5.020	-0.164	-0.283	5.020	0.164	0.000\%
18	0.327	-5.020	0.000	-0.327	5.020	0.000	0.000\%
19	0.283	-5.020	0.164	-0.283	5.020	-0.164	0.000\%
20	0.164	-5.020	0.283	-0.164	5.020	-0.283	0.000\%
21	0.000	-5.020	0.327	0.000	5.020	-0.327	0.000\%
22	-0.164	-5.020	0.283	0.164	5.020	-0.283	0.000\%
23	-0.283	-5.020	0.164	0.283	5.020	-0.164	0.000\%
24	-0.327	-5.020	0.000	0.327	5.020	0.000	0.000\%
25	-0.283	-5.020	-0.164	0.283	5.020	0.164	0.000\%
26	-0.164	-5.020	-0.283	0.164	5.020	0.283	0.000\%
27	0.000	-3.458	-0.711	0.000	3.458	0.711	0.000\%
28	0.355	-3.458	-0.615	-0.355	3.458	0.615	0.000\%
29	0.615	-3.458	-0.355	-0.615	3.458	0.355	0.000\%
30	0.711	-3.458	0.000	-0.711	3.458	0.000	0.000\%
31	0.615	-3.458	0.355	-0.615	3.458	-0.355	0.000\%
32	0.355	-3.458	0.615	-0.355	3.458	-0.615	0.000\%
33	0.000	-3.458	0.711	0.000	3.458	-0.711	0.000\%
34	-0.355	-3.458	0.615	0.355	3.458	-0.615	0.000\%
35	-0.615	-3.458	0.355	0.615	3.458	-0.355	0.000\%
36	-0.711	-3.458	0.000	0.711	3.458	0.000	0.000\%
37	-0.615	-3.458	-0.355	0.615	3.458	0.355	0.000\%
38	-0.355	-3.458	-0.615	0.355	3.458	0.615	0.000\%

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	5	0.00000001	0.00000001
3	Yes	5	0.00000001	0.00036934
4	Yes	5	0.00000001	0.00036934
5	Yes	5	0.00000001	0.00000001
6	Yes	5	0.00000001	0.00036934
7	Yes	5	0.00000001	0.00036934
8	Yes	5	0.00000001	0.00000001
9	Yes	5	0.00000001	0.00036934
10	Yes	5	0.00000001	0.00036934
11	Yes	5	0.00000001	0.00000001
12	Yes	5	0.00000001	0.00036934
13	Yes	5	0.00000001	0.00036934
14	Yes	4	0.00000001	0.00000001
15	Yes	5	0.00000001	0.00006914
16	Yes	5	0.00000001	0.00007815
17		5	0.00000001	0.00007815

tnxTower Report - version 6.1.4.1

18			0.00000001	0.00006914
19	Yes	5	0.00000001	0.00007815
20	Yes	5	0.0000001	0.00007815
21	Yes	5	0.00000001	0.00006914
22	Yes	5	0.00000001	0.00007815
23	Yes	5	0.0000001	0.00007815
24	Yes	5	0.00000001	0.00006914
25	Yes	5	0.00000001	0.00007815
26	Yes	5	0.0000001	0.00007815
27	Yes	5	0.00000001	0.0000001
28	Yes	5	0.00000001	0.00000001
29	Yes	5	0.00000001	0.00000001
30	Yes	5	0.0000001	0.0000001
31	Yes	5	0.00000001	0.00000001
32	Yes	5	0.00000001	0.00000001
33	Yes	5	0.0000001	0.0000001
34	Yes	5	0.00000001	0.00000001
35	Yes	5	0.00000001	0.00000001
36	Yes	5	0.00000001	0.00000001
37	Yes	5	0.00000001	0.0000001
38	Yes	5	0.00000001	0.00000001

	Maximum Tower Deflections - Service Win				
Section No.	Elevation ft	Horz. Deflection in	Gov. Load Comb	Tilt	Twist
L1	68.5-54.75	15.616	27	2.222	0.000
L2	54.75-0	10.054	27	1.318	0.000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
f			Comb.	in	0	0

	Maximum Tower Deflections - Design Win				
Section No.	Elevation ft	Horz. Deflection in	Gov. Load Comb	Tilt	Twist
L1	68.5-54.75	32.762	5	4.851	0.000
L2	54.75-0	20.734	5	2.759	0.000

Critical Deflections and Radius of Curvature - Design Wind						
Elevation ft	Appurtenance	Gov. Load Comb	Deflection in	Tilt -	Twist .	Radius of Curvature ft
69'1/2"	Truck Ball	5	32.762	4.851	0.000	1532
68 '6"	Canister Load1	5	32.762	4.851	0.000	1532
$65^{\prime \prime}{ }^{\prime \prime}$	APXV18-209014-C w/ Mount Pipe	5	29.996	4.366	0.000	1532
61'9'	Canister Load2	5	26.602	3.772	0.000	1134
$54{ }^{\prime \prime}$	Canister Load3	5	20.734	2.759	0.000	601

Compression Checks

Pole Design Data										
Section No.	Elevation	Size	L	L_{u}	$K l / r$	F_{a}	A	Actual P	Allow. P_{a}	Ratio P
	$f t$		π	f		ksi	$i n^{2}$	K	K	P_{3}
L1	$68.5-54.75$ (1)	P3.5x0.438	13'9'	0^{\prime}	0.0	21.000	4.213	-0.765	88.481	0.009
L2	54.75-0 (2)	P10.75×0.365	54'9'	0^{\prime}	0.0	21.000	11.908	-3.454	250.074	0.014

Pole Bending Design Data

Section No.	Elevation f	Size	$\begin{gathered} \text { Actual } \\ M_{x} \\ \text { kip-ft } \end{gathered}$	Actual $f_{b x}$ ksi	Allow. $F_{b x}$ ksi	$\begin{gathered} \text { Ratio } \\ f_{b x} \\ \hline F_{b x} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Actual } \\ & M_{y} \\ & \text { kip-ft } \end{aligned}$	$\begin{gathered} \text { Actual } \\ f_{b y} \\ \text { ksi } \end{gathered}$	Allow. $F_{b y}$ ksi	$\begin{gathered} \text { Ratio } \\ f_{b y} \\ \hline F_{b y} \end{gathered}$
L1	$68.5-54.75$ (1)	P3.5x0.438	5.780	24.088	23.100	1.043	0.000	0.000	23.100	0.000
L2	54.75-0 (2)	P10.75x0.365	58.472	23.464	23.100	1.016	0.000	0.000	23.100	0.000

Pole Shear Design Data										
Section No.	Elevation ft	Size	Actual V K	$\begin{gathered} \text { Actual } \\ f_{v} \\ k s i \end{gathered}$	Allow. F_{V} ksi	$\begin{gathered} \text { Ratio } \\ \begin{array}{c} f_{v} \\ \hline F_{v} \\ \hline \end{array} \end{gathered}$	$\begin{gathered} \hline \text { Actual } \\ T \\ \text { kip-ft } \end{gathered}$	$\begin{gathered} \text { Actual } \\ f_{t i} \\ k s i \end{gathered}$	Allow. $F_{v i}$ ksi	$\begin{gathered} \text { Ratio } \\ f_{v t} \\ \hline F_{v t} \\ \hline \end{gathered}$
L1	$68.5-54.75$ (1)	P3.5×0.438	0.471	0.223	14.000	0.016	0.000	0.000	14.000	0.000
L2	54.75-0 (2)	$\mathrm{P} 10.75 \times 0.365$	1.321	0.222	14.000	0.016	0.000	0.000	14.000	0.000

Pole Interaction Design Data

Section No.	Elevation ft	$\begin{gathered} \text { Ratio } \\ P \\ \hline P_{a} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ f_{b x} \\ \hline F_{b x} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ f_{b y} \\ \hline F_{b y} \\ \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Ratio } \\ f_{v} \\ F_{v} \\ \hline \end{array} \end{gathered}$	$\begin{gathered} \text { Ratio } \\ f_{v t} \\ F_{v t} \\ \hline \end{gathered}$	Comb Stress Ratio	Allow. Stress Ratio	Criteria
L1	$68.5-54.75$ (1)	0.009	1.043	0.000	0.016	0.000	1.052	1.333	H1-3+VT
L2	54.75-0 (2)	0.014	1.016	0.000	0.016	0.000	1.030	1.333	H1-3+VT

Section Capacity Table

| Section | Elevation | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | $f t$ | Component |
| Type | | |

APPENDIX B

BASE LEVEL DRAWING

\square

APPENDIX C

ADDITIONAL CALCULATIONS

CCI Flagpole Tool

Site Data	
BU\#: 822915	
Site Name: Canton/Rt 10	
App \#: 218324 Rev. 1	
Code	
Code Ice Thickness Windspeed (V) Ice Wind Speed (V)	$\begin{aligned} & \text { TIA/EIA 222-F } \\ & 1 \mathrm{in} \\ & 80 \mathrm{mph} \\ & 28.1 \mathrm{mph} \\ & \hline \end{aligned}$

Tower Information	
Total Tower Height:	68.5 ft
Base Tower Height:	54.75 ft
Total Canister Length:	13.75 ft
Number of Canister Assembly	
Sections:	2

FLANGE PLATE (TYPE 3: SOLIDITY RATIO 0.5)

Canister Section Number *:	Canister Assembly Length (ft):	Canister Assembly Diameter (in):	Number of Sides Canister Section	Mating Plate Type:	Mating Flange Plate Thickness (in)*:	Flange Plate Diameter (in):	Solidity Ratio	Plate Weight (Kip):	Canister Weight (Kip)
1	6.75	9.375	Round	1	0.16	9	0.45	0.003	0.033
2	7	9.875	Round	3	1.75	9.25	0.5	0.033	0.036

Flag on Tower:	Yes
Flag Width:	18 ft
Flag Height:	12 ft
Flag Elevation(z):	68.5 ft

Truck Ball on Tower:	Yes
Diameter of Ball:	13 in

Geometry: Base Tower + Spine				822915.eri (last saved 06/23 12:55 pm)					Delete
Pole Height Above Base (ft)	$\begin{gathered} \text { Section } \\ \text { Length (ft) } \end{gathered}$	Lap Splice Length (ft)	Number of Sides	Top Diameter (in) (in)	Bottom Diameter (in)		Bend Radius (in)	Pole Material	
68.5	13.75	0	0	3.5	3.5	0.438	n/a	A53-B-35	
54.75	54.75	0	0	10.75	10.75	0.365	n/a	A53-B-35	[x]

Discrete Loads: Truck Ball	Apply $C_{a} A_{A}$ at Elevation(z) (ft)	$C_{a} A_{A}$ No Ice $\left(\mathrm{ft}^{2}\right)$	$\begin{gathered} C_{a} A_{A} \\ 1 / 2^{4} \text { Ice }\left(\mathrm{ft}^{2}\right) \end{gathered}$	$\begin{gathered} C_{a} A_{A} \\ 1^{1 "} \operatorname{lce}\left(\mathrm{f}^{2}\right) \end{gathered}$	$\begin{gathered} C_{a} A_{A} \\ 2^{\prime \prime} \text { Ice }\left(\mathrm{ft}^{2}\right) \end{gathered}$	$\begin{gathered} C_{a} A_{A} \\ 4^{11} \text { ice }\left(\mathrm{ft}^{2}\right) \end{gathered}$	Weight No Ice (Kip)	Weight $1 / 2^{\text {" }}$ Ice (Kip)
	69.04166667	0.737	0.855	0.982	1.261	1.924	0.05	0.059

Discrete Loads: $\mathrm{C}_{\mathrm{F}} \mathrm{A}_{\mathrm{F}}$ for Canister Assembly								
Canister Loading	Apply $\mathrm{C}_{\mathrm{F}} \mathrm{A}_{\mathrm{F}}$ at Elevation(z) (ft)	$\begin{gathered} C_{F} A_{F} \\ \text { No lce }\left(\mathrm{ft}^{2}\right) \end{gathered}$	$\begin{gathered} C_{F} A_{F} \\ 1 / 2^{\prime \prime} \text { Ice }\left(\mathrm{ft}^{2}\right) \end{gathered}$	$\begin{gathered} C_{F} A_{F} \\ 1^{11} \text { Ice }\left(\mathrm{ft}^{2}\right) \end{gathered}$	$\begin{gathered} C_{F} A_{F} \\ 2^{11} \text { Ice }\left(\mathrm{ft}^{2}\right) \end{gathered}$	$\begin{gathered} C_{F} A_{F} \\ 4^{4} \text { Ice }\left(\mathrm{ft}^{2}\right) \end{gathered}$	Canister Assembly Weight No Ice (Kip)	Canister Assembly Weight 1/2" lce (Kip)
Canister Load 1	68.5	1.556	1.722	1.888	2.219	2.883	0.017	0.037
Canister Load 2	61.75	3.255	3.593	3.931	4.607	5.959	0.037	0.080
Canister Load 3	54.75	1.699	1.871	2.043	2.388	3.076	0.051	0.074

User Forces: Flag Force Calculation Per ANSI/NAAMM FP 1001-07	
Wind $_{\text {FORCE }}=$	0.245 Kip
Weight $^{2}=$	0.262 Kip
Wind $_{\text {FORCE, ICE }}=$	0.044 Kip
Weight $_{\text {ICE }}=$	0.463 Kip
W $_{\text {FORCE, SERVICE WIND }}=$	0.109 Kip
Weight $=$	0.262 Kip

\leftarrow Flag force should be included at the top of the flag
attachment elevation. If the attachment of the flag to the halyard distributes forces equally to the pole, apply flag forces accordingly in tnx file.

Stiffened or Unstiffened, Exterior Flange Plate - Any Bolt Material TIA Rev F

Pole Data		
Diam:	3.5	in
Thick:	0.438	in
Grade:	35	ksi
\# of Sides:	0	"O" IF Round
Fu	63	ksi
Reinf. Fillet Weld	0	"0" if None

Stress Increase Factor			
ASIF: 1.333			

[^1]Square, Stiffened / Unstiffened Base Plate, Any Rod Material - Rev. F/G
Assumptions: 1) Rod groups at corners. Total \# rods divisible by 4. Maximum total \# of rods $=48$ (12 per Corner).
2) Rod Spacing = Straight Center-to-Center distance between any (2) adjacent rods (same corner)
3) Clear space between bottom of leveling nut and top of concrete not exceeding (1)*(Rod Diameter)

Site Data		
BU\#: 822915		
Site Name: Canton/RT 10		
App \#: 218324 Rev. 1		
Anchor Rod Data		
Eta Factor, η	0.5	TIA G (Fig. 4-4)
Qty: Diam: Rod Material: Yield, Fy: Strength, Fu: Bolt Circle:	4	
	2.25	in
	A615-J	
	75	ksi
	100	ksi
	31	in

Base Reactions		
TIA Revision:	F	
Unfactored Moment, M: $:$	58	ft-kips
Unfactored Axial, P:	3	kips
Unfactored Shear, V:	1	kips

Plate Data		
W=Side:	28.5	in
Thick:	2	in
Grade:	50	ksi
Clip Distance:	0	in

Stiffener Data (Welding at both sides)		
Configuration:	Unstiffened	
Weld Type:		**
Groove Depth:		<-- Disregard
Groove Angle:		<- Disregard
Fillet H. Weld:		in
Fillet V. Weld:		in
Width:		in
Height:		in
Thick:		in
Notch:		in
Grade:		ksi
Weld str.:		ksi

Pole Data		
Diam:	10.75	in
Thick:	0.365	in
Grade:	35	ksi
\# of Sides:	0	"0" IF Round

Stress Increase Factor		
ASD ASIF:		1.333

Anchor Rod Results

TIA F --> Maximum Rod Tension	21.8 Kips
Allowable Tension:	195.0 Kips
Anchor Rod Stress Ratio:	11.2% Pass

Base Plate Results	Flexural Check	PL Ref. Data
Base Plate Stress:	12.3 ksi	Yield Line (in):
Allowable PL Bending Stress:	50.0 ksi	29.08
Base Plate Stress Ratio:	24.6% Pass	Max PL Length:
		29.56

N/A - Unstiffened
Stiffener Results

Horizontal Weld	N/A
Vertical Weld:	N/A
Plate Flex+Shear, fo/Fb+(fv/Fv)^2:	N/A
Plate Tension+Shear, ftFt+(fv/Fv)^2:	N/A
Plate Comp. (AISC Bracket):	N/A
Pole Results	
Pole Punching Shear Check:	

${ }^{* *}$ Note: for complete joint penetration groove welds the groove depth must be exactly $1 / 2$ the stiffener thickness for calculation purposes

	REACTIONS	REACTIONS	
MOMENT (kip-ft)	225.0	58.47	26.0%
SHEAR (kips)	6.0	1.32	22.0%

Design loads from: CClsites Doc \# 3491150

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility
Site ID: CT11274A
Canton / Route 10
102 Dyer Avenue
Canton, CT 06019
July 14, 2014

EBI Project Number: 62143860

July 14, 2014

T-Mobile USA
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 06002

Re: Emissions Values for Site: CT11274A - Canton / Route 10

EBI Consulting was directed to analyze the proposed T-Mobile facility located at 102 Dyer Avenue, Canton, CT, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm} 2$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307 (b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The general population exposure limit for the cellular band is $567 \mu \mathrm{~W} / \mathrm{cm} 2$, and the general population exposure limit for the PCS and AWS bands is $1000 \mu \mathrm{~W} / \mathrm{cm} 2$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 102 Dyer Avenue, Canton, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, the actual antenna pattern gain value in the direction of the sample area was used. For this report the sample point is a 6 foot person standing at the base of the tower

For all calculations, all equipment was calculated using the following assumptions:

1) 2 GSM channels (1935.000 MHz -to 1945.000 MHz) were considered for each sector of the proposed installation.
2) 2 UMTS channels (2110.000 MHz to $2120.000 \mathrm{MHz} / 2140.000 \mathrm{MHz}$ to 2145.000 MHz) were considered for each sector of the proposed installation.
3) 2 LTE channels (2110.000 MHz to $2120.000 \mathrm{MHz} / 2140.000 \mathrm{MHz}$ to 2145.000 MHz) were considered for each sector of the proposed installation.
4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
5) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The actual gain in this direction was used per the manufactures supplied specifications.
6) The antenna used in this modeling is the RFS APXV18-209014-C for LTE, UMTS and GSM. This is based on feedback from the carrier with regards to anticipated antenna selection. This antenna has a 15.5 dBd gain value at its main lobe. Actual antenna gain values were used for all calculations as per the manufacturers specifications.
7) The antenna mounting height centerline of the proposed antennas is $\mathbf{6 5 . 5}$ feet above ground level (AGL).
8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

Summary

All calculations performed for this analysis yielded results that were well within the allowable limits for general public exposure to RF Emissions.

The anticipated Maximum Composite contributions from the T-Mobile facility are $\mathbf{1 . 5 5 3 \%}$ ($\mathbf{0 . 5 1 8 \%}$ from each sector) of the allowable FCC established general public limit considering all three sectors simultaneously sampled at the ground level.

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{1 . 5 5 3 \%}$ of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5\% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

EBI Consulting

21 B Street
Burlington, MA 01803

[^0]: ${ }^{1}$ The Canton Facility is listed neither as a docket nor a petition in the Connecticut Siting Council's database.

[^1]: * $0=$ none 1 = every bolt, 2 = every 2 bolts, $3=2$ per bolt
 ** Note: for complete joint penetration groove welds the groove depth must be exactly $1 / 2$ the stiffener thickness for caiculation purposes

