September 13, 2016 Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051 RE: Notice of Exempt Modification for T-Mobile / L700 Crown Site BU: 845993 T-Mobile Site ID: CTHA509A Located at: 12 Nepaug Road, Burlington, CT 06013 Latitude: 41° 46' 56.86" / Longitude: -72°59'22.68" Dear Ms. Bachman, T-Mobile currently maintains six (6) antennas at the 90-foot level of the existing 119-foot monopole tower located at 12 Nepaug Road, Burlington, CT. The tower is owned by Crown Castle. The property is owned by AT&T Mobility. T-Mobile now proposes to add three (3) new antennas. The antennas would be installed at the same 90-foot level of the tower. This facility was approved by the Connecticut Siting Council on February 18, 2004, Docket No. 268. This approval included the condition(s) that: - The tower shall be constructed no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of AT&T Wireless and other entities, both public and private, but such tower shall not exceed a height of 120 feet above ground level. - 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be submitted to and approved by the Council prior to the commencement of facility construction and shall include: - a) a final site plan(s) of site development to include specifications for the tower, tower foundation, antennas, equipment building, access road, utility line, and landscaping; and - b) construction plans for site clearing, water drainage, and erosion and sedimentation control consistent with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, as amended. - 3. The Certificate Holder shall, prior to the commencement of operation, provide the Council worst-case modeling of electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of electromagnetic radio frequency power density is submitted to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order. - 4. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards. - 5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing. - 6. The Certificate Holder shall provide reasonable space on the tower for no compensation for any municipal antennas, provided such antennas are compatible with the structural integrity of the tower. - 7. If the facility does not initially provide wireless services within one year of completion of construction or ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made. - 8. Any antenna that becomes obsolete and ceases to function shall be removed within 60 days after such antennas become obsolete and cease to function. - 9. Unless otherwise approved by the Council, this Decision and Order shall be void if the facility authorized herein is not operational within one year of the effective date of this Decision and Order or within one year after all appeals to this Decision and Order have been resolved. This modification complies with the aforementioned condition(s). Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. §16-50j-72(b)(2). In accordance with R.S.C.A. § 16-50j-73, a copy of this letter is being sent to Mr. Theodore Shafer, First Selectman for the Town of Burlington, as well as the property owner and the tower owner. - 1. The proposed modifications will not result in an increase in the height of the existing tower. - 2. The proposed modification will not require the extension of the site boundary. - 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria. - 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard. - 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site. - 6. The existing structure and its foundation can support the proposed loading. For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Amanda Goodall. Sincerely, Amanda Goodall Real Estate Specialist 12 Gill Street, Suite 5800, Woburn, MA 01801 339-205-7017 Amanda.Goodall@crowncastle.com #### Attachments: Tab 1: Exhibit-1: Compound plan and elevation depicting the planned changes Tab 2: Exhibit-2: Structural Modification Report Tab 4: Exhibit-3: General Power Density Table report (RF Emissions Analysis Report) cc: First Selectman Theodore ShaferTown of Burlington200 Spielman HighwayBurlington, CT 06013 Crown Castle (Tower Owner) 12 Gill Street, Suite 5800 Woburn, Ma 01801 AT&T Mobility c/o Crown Castle 12 Gill Street, Suite 5800 Woburn, Ma 01801 | DOCKET NO. 268 - AT&T Wireless PCS, LLC d/b/a AT&T | } | Connecticut | |---|---|------------------| | Wireless application for a Certificate of Environmental | | | | Compatibility and Public Need for the construction, maintenance | } | Siting | | and operation of a wireless telecommunications facility located | | | | near Lyon and Nepaug Roads in Burlington, Connecticut. | } | Council | | | | | | | } | February 18 2004 | #### Decision and Order: Burlington Site CT-828 Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a telecommunications facility including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the proposed site, located at the intersection of Lyon and Nepaug Roads, Burlington, Connecticut. The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions: - 1. The tower shall be constructed no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of AT&T Wireless and other entities, both public and private, but such tower shall not exceed a height of 120 feet above ground level. - 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be submitted to and approved by the Council prior to the commencement of facility construction and shall include: - a) a final site plan(s) of site development to include specifications for the tower, tower foundation, antennas, equipment building, access road, utility line, and landscaping; and - b) construction plans for site clearing, water drainage, and erosion and sedimentation control consistent with the <u>2002 Connecticut Guidelines for Soil Erosion and Sediment Control</u>, as amended. - 3. The Certificate Holder shall, prior to the commencement of operation, provide the Council worst-case modeling of electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of electromagnetic radio frequency power density is submitted to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order. - 4. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards. - 5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing. - 6. The Certificate Holder shall provide reasonable space on the tower for no compensation for any municipal antennas, provided such antennas are compatible with the structural integrity of the tower. - 7. If the facility does not initially provide wireless services within one year of completion of
construction or ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made. - 8. Any antenna that becomes obsolete and ceases to function shall be removed within 60 days after such antennas become obsolete and cease to function. - 9. Unless otherwise approved by the Council, this Decision and Order shall be void if the facility authorized herein is not operational within one year of the effective date of this Decision and Order or within one year after all appeals to this Decision and Order have been resolved. Pursuant to General Statutes § 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in The Hartford Courant. By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies. Docket 268 – AT&T Wireless Burlington Page 3 The parties and intervenors to this proceeding are: #### **Applicant** AT&T Wireless PCS, LLC d/b/a AT&T Wireless #### **Intervenor** Sprint Spectrum, L.P. d/b/a Sprint PCS #### **Its Representative** Christopher B. Fisher, Esq. Cuddy & Feder LLP 90 Maple Avenue White Plains, New York 10601 #### **Its Representative** Thomas J. Regan, Esq. Brown Rudnick Berlack Israels CityPlace 1 185 Asylum Street Hartford, CT 06103 Map Block Lot 5-11-17-A-CELL Account 30303111 #### **Property Information** | Property Location | 12 NEPAUG RD | | | |-------------------|---------------|----------------|---------| | Owner | AT&T MOBILITY | | | | Co-Owner | · | | | | Mailing Address | 575 MOROS | GO DRIVE SU | TE 13-F | | | ATLANTA | GA | 30324 | | Land Use | 402V | Ind Bldg Mdl-(| 00 | | Land Class | ı | | | | Zoning Code | | | | | Census Tract | 4101 | | | | 0 | | | |---|---|-----| | | | | | | | | | | | ••• | | | | | | | | | | | | | | | 0 | 0 | #### Photo Sketch #### **Primary Construction Details** | Year Built | | |---------------------------|--| | Stories | | | Building Style | | | Building Use | | | Building Condition | | | Floors | | | Total Rooms | | | Bedrooms | | |----------------|---| | Full Bathrooms | | | Half Bathrooms | | | Bath Style | | | Kitchen Style | _ | | Roof Style | | | Roof Cover | | | Exterior Walls | | |-------------------|--| | Interior Walls | | | Heating Type | | | Heating Fuel | | | AC Type | | | Gross Bldg Area | | | Total Living Area | | Map Block Lot 5-11-17-A-CELL Account 30303111 | | _ | |-----------|---------| | Valuation | Summary | (Assessed value = 70% of Appraised Value) | Item | Appraised | Assessed | | |--------------|-----------|----------|--| | Buildings | 0 | 0 | | | Extras | 0 | 0 | | | Improvements | 715100 | 500570 | | | Outbuildings | 715100 | 500570 | | | Land | 0 | 0 | | | Total | 715100 | 500570 | | #### **Sub Areas** | Subarea Type | Gross Area (sq ft) | Living Area (sq ft) | |--------------|--------------------|---------------------| l'otal Area | | 0 | #### Outbuilding and Extra Items | Туре | Description | |----------------|-------------| | Paving-Concret | 36.00 S.F. | | PerCastConcCel | 240.00 S.F. | | PerCastConcCel | 360.00 S.F. | | Fence 8' Chain | 260.00 L.F. | | CELL SITES | | | | | | | | | | | | | | | | | #### Sales History | Owner of Record | Book/ Page | Sale Date | Sale Price | |-----------------|------------|-----------|------------| | AT&T MOBILITY | 000/ 000 | 10/1/2008 | 0 | # Te Mobile® # T-MOBILE NORTHEAST LLC T-MOBILE SITE #: CTHA509A CROWN CASTLE BU #: 845993 SITE NAME: BURLINGTON-NEPAUG ROAD 12 NEPAUG ROAD BURLINGTON, CT 06013 HARTFORD COUNTY FROM BLOOMFIELD, CT: HEAD NORTHEAST ON GRIFFIN RD S TOWARD W NEWBERRY RD. TURN LEFT ONTO DAY HILL RD. TURN LEFT ONTO CT-189 S. SLIGHT RIGHT ONTO BROWN ST. TURN RIGHT ONTO CT-178 W. TURN RIGHT ONTO CT-178 W. TURN RIGHT ONTO HOPMEADOW ST. TURN LEFT ONTO CANAL ST. CONTINUE ONTO DEER PARK RD. TURN LEFT ONTO CT-167 S/BUSHY HILL RD. TURN RIGHT ONTO CANTON RD. CONTINUE STRAIGHT ONTO WILDWOOD RD. TURN LEFT ONTO NOTCH RD. SLIGHT LEFT ONTO WASHBURN RD. TURN LEFT ONTO AWTON RD. TURN RIGHT ONTO ALBAMY TURNERE. TURN LEFT ONTO DOWD AVE. CONTINUE ONTO MAPLE AVE. CONTINUE ONTO BRIDGE ST. TURN LEFT ONTO CT-179 S/BURLINGTON AVE. TURN RIGHT ONTO CT-4. TURN RIGHT ONTO LYON RD. TURN LEFT ONTO NEPAUG RD. SITE WILL BE ON THE RIGHT. #### ENGINEER DEWBERRY ENGINEERS INC. 600 PARSIPPANY ROAD SUITE 301 PARSIPPANY. NJ 07054 CONTACT: BRYAN HUFF PHONE #: (973) 576-0147 CONSTRUCTION CROWN CASTLE 3 CORPORATE PARK DRIVE, SUITE 101 CLIFTON PARK, NY 12065 CONSULTANT TEAM CONTACT: PATRICIA PELON PHONE #: (518) 373-3507 705A-V2 PROJECT SUMMARY SITE NAME: BURLINGTON-NEPAUG ROAD > SITE NUMBER: CTHA509A TOWER OWNER: CROWN CASTLE 3 CORPORATE PARK DRIVE, SUITE 101 CLIFTON PARK, NY 12085 APPLICANT/DEVELOPER: T-MOBILE NORTHEAST LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 COORDINATES: LATITUDE: 41"-46"-56.86" N (NAD83) LONGITUDE: 72"-59"-22.68" W (NAD83) (PER CROWN CASTLE) CONFIGURATION | SITE ADDRESS: | |---| | 12 NEPAUG ROAD
BURLINGTON, CT 05013
HARTFORD COUNTY | | | PROJECT DIRECTORY INSTALL (3) NEW ANTENNAS. SCOPE OF WORK THIS DOCUMENT WAS DEVELOPED TO REFLECT A SPECIFIC SITE AND ITS SITE CONDITIONS AND IS NOT TO BE USED FOR ANOTHER SITE OR WHEN OTHER CONDITIONS PERTAIN. REUSE OF THIS DOCUMENT IS AT THE SOLE RISK OF THE USER. A.D.A. COMPLIANCE: FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. | SHT.
NO. | DESCRIPTION | | | | |-------------|---------------------------------|--|--|--| | T-1 | TITLE SHEET | | | | | | | | | | | G-1 | GENERAL NOTES | | | | | | | | | | | C-1 | COMPOUND PLAN & EQUIPMENT PLANS | | | | | C-2 | ANTENNA LAYOUTS & ELEVATIONS | | | | | C-3 | CONSTRUCTION DETAILS | | | | | | | | | | | E-1 | GROUNDING NOTES & DETAILS | SHEET INDEX | | | | # T - Mobile T-MOBILE NORTHEAST LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 CROWN CASTLE 3 CORPORATE PARK DRIVE, SUITE 101 CLIFTON PARK, NY 12065 CTHA509A BURLINGTON -NEPAUG ROAD | | CONSTRUCTION DRAWINGS | | | | |---|-----------------------|-------------------|--|--| | H | | | | | | H | | | | | | | | | | | | H | | | | | | H | | | | | | 0 | | ISSUED AS FINAL | | | | Α | 09/01/16 | ISSUED FOR REVIEW | | | Dewberry Engineers Inc. 60 PARSIPPANY ROAD SUITE 301 PARSIPPANY, NJ 07054 PHONE: 973-739-9400 JIANG YU, P.E. CONNECTICUT LICENSE NO. 0023222 DRAWN BY: JC REVIEWED BY: BSH CHECKED BY: GHN PROJECT NUMBER: 50066258 JOB NUMBER: 50078132 SITE ADDRESS: 12 NEPAUG ROAD BURLINGTON, CT 06013 HARTFORD COUNTY SHEET TITLE TITLE SHEET SHEET NUMBER T-1 #### **GENERAL NOTES** - FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: PROJECT MANAGEMENT CROWN CASTLE CONTRACTOR — GENERAL CONTRACTOR (CONSTRUCTION) OWNER — T-MOBILE OEM — ORIGINAL EQUIPMENT MANUFACTURER - PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPUSHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF PROJECT - ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE - ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS. - DRAWINGS PROVIDED HERE ARE NOT TO SCALE UNLESS OTHERWISE NOTED AND ARE INTENDED TO SHOW OUTLINE ONLY. - UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS. - THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE. - IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY PROJECT MANAGEMENT. - CONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND 11 CABLES, GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING. CONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. CONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING WITH PROJECT MANAGEMENT. - 10. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF - 11. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION. - 12. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION - THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES AND FOR COORDINATING ALL PORTIONS OF THE WORK UNDER THE CONTRACT. - 14. CONTRACTOR SHALL NOTIFY DEWBERRY 48 HOURS IN ADVANCE OF POURING CONCRETE, OR BACKFILLING TRENCHES, SEALING ROOF AND WALL PENETRATIONS & POST DOWNS, FINISHING NEW WALLS OR FINAL
ELECTRICAL CONNECTIONS FOR ENGINEER REVIEW. - 15. CONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. CONTRACTOR SHALL NOTIFY PROJECT MANAGEMENT OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING - THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION. ANY CONSTRUCTION WORK BY CONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED. WITH CONTRACTOR. ALSO, WORK SHOULD BE SCHEDULED FOR AN APPROPRIATE MAINTENANCE - 17. SINCE THE CELL SITE IS ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE ADVISED TO BE WORN TO ALERT OF ANY DANGEROUS EXPOSURE LEVELS. #### SITE WORK GENERAL NOTES: - THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF CONSTRUCTION. - ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO: - B) CONFINED SPACE - C) ELECTRICAL SAFETY - D) TRENCHING & EXCAVATION. - 3. ALL SITE WORK SHALL BE AS INDICATED ON THE DRAWINGS AND PROJECT SPECIFICATIONS. - IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES, TOP SOIL AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY. - ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF CONTRACTOR, OWNER AND/OR LOCAL UTILITIES. - 6. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. - 7. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE T-MOBILE SPECIFICATION FOR SITE - THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE TRANSMISSION EQUIPMENT AND TOWER AREAS. - NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT. - THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION, SEE SOIL COMPACTION NOTES. - 11. THE AREAS OF THE OWNER'S PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION. - 12. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL JURISDICTION'S GUIDELINES FOR EROSION AND SEDIMENT CONTROL #### **ELECTRICAL INSTALLATION NOTES:** - ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE LOCAL CODES. - 2. CONTRACTOR SHALL MODIFY EXISTING CABLE TRAY SYSTEM AS REQUIRED TO SUPPORT RF AND TRANSPORT CABLING TO THE NEW BTS EQUIPMENT. CONTRACTOR SHALL SUBMIT MODIFICATIONS TO PROJECT MANAGEMENT - CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED. - WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE - ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC AND TELCORDIA. - 6. CABLES SHALL NOT BE ROUTED THROUGH LADDER-STYLE CABLE TRAY RUNGS. - EACH END OF EVERY POWER, POWER PHASE CONDUCTOR (I.E., HOTS), GROUNDING, AND T1 CONDUCTOR AND CABLE SHALL BE LABELED WITH COLOR—CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2 INCH PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM - ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH ENGRAVED LAMACOID PLASTIC LABELS. ALL EQUIPMENT SHALL BE LABELED WITH THEIR VOLTAGE RATING, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING, AND BRANCH CIRCUIT ID NUMBERS (I.E., PANELBOARD AND CIRCUIT ID'S). - PANELBOARDS (ID NUMBERS) AND INTERNAL CIRCUIT BREAKERS (CIRCUIT ID NUMBERS) SHALL BE CLEARLY LABELED WITH ENGRAVED LAMACOID PLASTIC LABELS. - 10. ALL TIE WRAPS SHALL BE CUT FLUSH WITH APPROVED CUTTING TOOL TO REMOVE SHARP EDGES. - POWER, CONTROL, AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE CONDUCTOR (SIZE 14 AWG OR LARGER), 600V, OIL RESISTANT THHN OR THWN-2, CLASS B STRANDED COPPER CABLE RATED FOR 90 °C (WET AND DRY) OPERATION; LISTED OR LABELED FOR THE LOCATION AND RACEWAY SYSTEM - 12. POWER PHASE CONDUCTORS (I.E., HOTS) SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2 INCH PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL.) PHASE CONDUCTOR COLOR CODES SHALL CONFORM WITH THE NEC & OSHA AND MATCH EXISTING INSTALLATION REQUIREMENTS. - 13. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE CONDUCTOR (SIZE 6 AWG OR LARGER), 800V, OIL RESISTANT THHN OR THWN-2 GREEN INSULATION, CLASS B STRANDED COPPER CABLE RATED FOR 90°C (WET AND DRY) OPERATION; LISTED OR LABELED FOR THE LOCATION AND RACEWAY SYSTEM - 14. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED OUTDOORS, OR BELOW GRADE, SHALL BE SINGLE CONDUCTOR #2 AWG SOLID TINNED COPPER CABLE, UNLESS OTHERWISE SPECIFIED - 15. POWER AND CONTROL WIRING, NOT IN TUBING OR CONDUIT, SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (SIZE 14 AWG OR LARGER), 800V, OIL RESISTANT THHN OR THWN-2, CLASS B STRANDED COPPER CABLE RATED FOR 90°C (WET AND DRY) OPERATION; WITH OUTER JACKET; LISTED OR LABELED FOR THE LOCATION USED, UNLESS OTHERWISE SPECIFIED. - 16. ALL POWER AND POWER GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE. COMPRESSION WIRE LUGS AND WIRENUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRENUTS SHALL BE RATED FOR OPERATION AT NO LESS THAN 75'C (90'C IF AVAILABLE). - 17. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA. - 18. NEW RACEWAY OR CABLE TRAY WILL MATCH THE EXISTING INSTALLATION WHERE POSSIBLE. - 19. ELECTRICAL METALLIC TUBING (EMT) OR RIGID NONMETALLIC CONDUIT (I.E., RIGID PVC SCHEDULE 4D, OR RIGID PVC SCHEDULE 80 FOR LOCATIONS SUBJECT TO PHYSICAL DAMAGE) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS. - ELECTRICAL METALLIC TUBING (EMT), ELECTRICAL NONMETALLIC TUBING (ENT), OR RIGID NONMETALLIC CONDUIT (RIGID PVC, SCHEDULE 40) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS. - 21. GALVANIZED STEEL INTERMEDIATE METALLIC CONDUIT (IMC) SHALL BE USED FOR OUTDOOR LOCATIONS ABOVE - 22. RIGID NONMETALLIC CONDUIT (I.E., RIGID PVC SCHEDULE 40 OR RIGID PVC SCHEDULE 80) SHALL BE USED UNDERGROUND; DIRECT BURIED, IN AREAS OF OCCASIONAL LIGHT VEHICLE TRAFFIC OR ENCASED IN REINFORCED CONCRETE IN AREAS OF HEAVY VEHICLE TRAFFIC. - 23. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED. - 24. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SETSCREW FITTINGS ARE NOT ACCEPTABLE. - 25. CABINETS, BOXES, AND WIREWAYS SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE, AND NEC. - 26. CABINETS, BOXES, AND WIREWAYS TO MATCH THE EXISTING INSTALLATION WHERE POSSIBLE. - 27. WIREWAYS SHALL BE EPOXY-COATED (GRAY) AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARD; SHALL BE PANDUIT TYPE E (OR EQUAL); AND RATED NEMA 1 (OR BETTER) INDOORS, OR NEMA 3R (OR BETTER) OUTDOORS. - 28. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES, AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET STEEL, SHALL MEET OR EXCEED UL 50, AND RATED NEMA 1 (OR BETTER) INDOORS, OR NEMA 3R (OR BETTER) OUTDOORS. - 29. METAL RECEPTACLE, SWITCH, AND DEVICE BOXES SHALL BE CALVANIZED, EPOXY-COATED, OR NON-CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1; AND RATED NEMA 1 (OR BETTER) INDOORS, OR WEATHER - 30. NONMETALLIC RECEPTACLE, SWITCH, AND DEVICE BOXES SHALL MEET OR EXCEED NEWA OS 2; AND RATED NEMA 1 (OR BETTER) INDOORS, OR WEATHER PROTECTED (WP OR BETTER) OUTDOORS. - 31. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM PROJECT MANAGEMENT BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS. - 32. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD AGAINST LIFE AND PROPERTY. #### **CONCRETE AND REINFORCING STEEL NOTES:** - ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST—IN—PLACE CONCRETE. - 2. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 4000 PSI AT 28 DAYS, UNLESS NOTED OTHERWISE. A HIGHER STRENGTH (4000 PSI) MAY BE USED. ALL CONCRETING WORK SHALL BE DONE IN ACCORDANCE WITH ACI 318 CODE REQUIREMENTS. - REINFORCING STEEL SHALL CONFORM TO ASTM A 615, GRADE 80, DEFORMED UNLESS NOTED OTHERWISE. WELDED WIRE FABRIC SHALL CONFORM TO ASTM A 185 WELDED STEEL WIRE FABRIC UNLESS NOTED OTHERWISE (UNO). SPLICES SHALL BE CLASS "B" AND ALL HOOKS SHALL BE STANDARD, UNO. - THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS: CONCRETE CAST AGAINST EARTH.......3 IN. CONCRETE EXPOSED TO EARTH OR WEATHER: #6 AND LARGER2 IN. #5 AND SMALLER & WWF.......1 1/2 IN. CONCRETE NOT EXPOSED TO EARTH OR WEATHER OR NOT CAST AGAINST THE GROUND: - A CHAMFER 3/4" SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNO, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4. - 6. INSTALLATION OF CONCRETE EXPANSION/WEDGE ANCHOR, SHALL BE PER MANUFACTURER'S WRITTEN INSTALLATION OF CONCRETE
EARANSION, WEDGE ANCION, SPALE BE FER MANUFACTURER WITTEN RECOMMENDED PROCEDURE. THE ANCHOR BOLT, DOWEL OR ROD SHALL CONFORM TO MANUFACTURER'S RECOMMENDATION FOR EMBEDIMENT DEPTH OR AS SHOWN ON THE DRAWINGS. NO REBAR SHALL BE CUT WITHOUT PRIOR CONTRACTOR APPROVAL WHEN DRILLING HOLES IN CONCRETE. SPECIAL INSPECTIONS, REQUIRED BY GOVERNING CODES, SHALL BE PERFORMED IN ORDER TO MAINTAIN MANUFACTURER'S MAXIMUM ALLOWABLE LOADS. ALL EXPANSION/WEDGE ANCHORS SHALL BE STAINLESS STEEL OR HOT DIPPED GALVANIZED. EXPANSION BOLTS SHALL BE PROVIDED BY RAMSET/REDHEAD OR APPROVED EQUAL. - CONCRETE CYLINDER TEST IS NOT REQUIRED FOR SLAB ON GRADE WHEN CONCRETE IS LESS THAN 50 CUBIC YARDS (IBC 1905.6.2.3) IN THAT EVENT THE FOLLOWING RECORDS SHALL BE PROVIDED BY THE CONCRETE SUPPLIER; - (A) RESULTS OF CONCRETE CYLINDER TESTS PERFORMED AT THE - SUPPLIER'S PLANT, (B) CERTIFICATION OF MINIMUM COMPRESSIVE STRENGTH FOR THE CONCRETE GRADE SUPPLIED. - FOR GREATER THAN 50 CUBIC YARDS THE GC SHALL PERFORM THE CONCRETE CYLINDER TEST. - AS AN ALTERNATIVE TO ITEM 7, TEST CYLINDERS SHALL BE TAKEN INITIALLY AND THEREAFTER FOR EVERY 50 YARDS OF CONCRETE FROM EACH DIFFERENT BATCH PLANT. - EQUIPMENT SHALL NOT BE PLACED ON NEW PADS FOR SEVEN DAYS AFTER PAD IS POURED, UNLESS IT IS VERIFIED BY CYLINDER TESTS THAT COMPRESSIVE STRENGTH HAS BEEN ATTAINED. #### STRUCTURAL STEEL NOTES: - ALL STEEL WORK SHALL BE PAINTED OR GALVANIZED IN ACCORDANCE WITH THE DRAWINGS UNLESS NOTED OTHERWISE, STRUCTURAL STEEL SHALL BE ASTM-A-36 UNLESS OTHERWISE NOTED ON THE SITE SPECIFIC DRAWINGS. STEEL DESIGN, INSTALLATION AND BOLTING SHALL BE PERFORMED IN ACCORDANCE WITH THE american institute of steel construction (aisc) "manual of steel construction" - ALL WELDING SHALL BE PERFORMED USING E70XX ELECTRODES AND WELDING SHALL CONFORM TO AISC. WHERE FILLET WELD SIZES ARE NOT SHOWN, PROVIDE THE MINIMUM SIZE PER TABLE J2.4 IN THE AISC "MANUAL OF STEEL CONSTRUCTION". PAINTED SURFACES SHALL BE TOUCHED UP. - BOLTED CONNECTIONS SHALL BE ASTM A325 BEARING TYPE $(3/4^{\circ}0)$ Connections and shall have minimum of two bolts unless noted otherwise. - NON-STRUCTURAL CONNECTIONS FOR STEEL GRATING MAY USE 5/8" DIA. ASTM A 307 BOLTS UNLESS NOTED - INSTALLATION OF CONCRETE EXPANSION/WEDGE ANCHOR, SHALL BE PER MANUFACTURER'S WRITTEN RECOMMENDED PROCEDURE. THE ANCHOR BOLT, DOWEL OR ROD SHALL CONFORM TO MANUFACTURER'S RECOMMENDATION FOR EMBEDMENT DEPTH OR AS SHOWN ON THE DRAWNINGS. NO REBAR SHALL BE CUT WITHOUT PRIOR CONTRACTOR APPROVAL WHEN DRILLING HOLES IN CONCRETE. SPECIAL INSPECTIONS, REQUIRED BY GOVERNING CODES, SHALL BE PERFORMED IN ORDER TO MAINTAIN MANUFACTURER'S MAXIMUM ALLOWABLE LOADS, ALL EXPANSION/WEDGE ANCHORS SHALL BE STAINLESS STEEL OR HOT DIPPED GALVANIZED. EXPANSION BOLTS SHALL BE PROVIDED BY RAMSET/REDHEAD OR APPROVED EQUAL. - CONTRACTOR SHALL SUBMIT SHOP DRAWINGS FOR ENGINEER REVIEW & APPROVAL ON PROJECTS REQUIRING STRUCTURAL STEEL. - 7. ALL STRUCTURAL STEEL WORK SHALL BE DONE IN ACCORDANCE WITH AISC SPECIFICATIONS. #### **CONSTRUCTION NOTES** - FIELD VERIFICATION CONTRACTOR SHALL FIELD VERIFY SCOPE OF WORK, T-MOBILE ANTENNA PLATFORM LOCATION AND ANTENNAS TO BE REPLACED - CONTRACTOR SHALL COORDINATE RF WORK AND PROCEDURES WITH PROJECT MANAGEMENT. - CABLE LADDER RACK: CONTRACTOR SHALL FURNISH AND INSTALL CABLE LADDER RACK, CABLE TRAY, AND CONDUIT AS REQUIRED TO SUPPORT CABLES TO THE NEW BTS LOCATION. - GROUNDING OF ALL EQUIPMENT AND ANTENNAS IS NOT CONSIDERED PART OF THE SCOPE OF THIS PROJECT AND IS THE RESPONSIBILITY OF THE OWNER AND CONTRACTOR AT THE TIME OF CONSTRUCTION. ALL EQUIPMENT AND ANTENNAS TO BE INSTALLED AND GROUNDED IN ACCORDANCE WITH GOVERNING BUILDING CODE, MANUFACTURER RECOMMENDATIONS AND OWNER SPECIFICATIONS. # T - Mobile T-MOBILE NORTHEAST LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 CROWN CASTLE 3 CORPORATE PARK DRIVE, SUITE 101 CLIFTON PARK, NY 12065 #### CTHA509A **BURLINGTON -NEPAUG ROAD** | | 0 | CONSTR | RUCTION DRAWINGS | |---|---|----------|-------------------| | | L | | | | | Ц | | | | | Н | | | | | Н | | | | П | H | | | | | Н | | | | | ō | 09/09/16 | ISSUED AS FINAL | | | Α | 09/01/16 | ISSUED FOR REVIEW | | | | | | Dewberry Engineers Inc. 600 PARSIPPANY ROAD SUITE 301 PARSIPPANY, NJ 07054 PHONE: 973,739,9400 FAX: 973.739.9710 | DRAWN BY: | JC | |--------------|-----| | | | | REVIEWED BY: | BSH | CONNECTICUT LICENSE NO. 0023222 T IS A VIOLATION OF LAW FOR ANY PERSON, UNLES THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER TO ALTER THIS DOCUMENT. PROJECT NUMBER: 50066258 GHN JOB NUMBER: 50078132 SITE ADDRESS: 12 NEPAUG ROAD BURLINGTON, CT 06013 HARTFORD COUNTY CHECKED BY: GENERAL NOTES SHEET NUMBER T · Mobile T-MOBILE NORTHEAST LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 CROWN CASTLE 3 CORPORATE PARK DRIVE, SUITE 101 CLIFTON PARK, NY 12065 CTHA509A BURLINGTON -NEPAUG ROAD | (| CONSTRUCTION DRAWINGS | | | | | | |---|-----------------------|-------------------|--|--|--|--| | | - | | | | | | | H | | | | | | | | Н | | | | | | | | Г | 0 | 09/09/16 | ISSUED AS FINAL | | | | | | Α | 09/01/16 | ISSUED FOR REVIEW | | | | | # Dewberry Dewberry Engineers Inc. 800 PARSIPPANY ROAD SUITE 301 PARSIPPANY, NJ 07054 PHONE: 973, 739,9400 FAX: 973, 739,9710 CONNECTICUT LICENSE NO. 0023222 IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER TO ALTER THIS DOCUMENT. | REVIEWED BY: | BSH | |-----------------|----------| | CHECKED BY: | GHN | | PROJECT NUMBER: | 50066258 | | JOB NUMBER: | 50078132 | 12 NEPAUG ROAD BURLINGTON, CT 06013 HARTFORD COUNTY SHEET TITLE DRAWN BY: SITE ADDRESS: COMPOUND PLAN & EQUIPMENT PLANS SHEET NUMBER C-1 T - Mobile T-MOBILE NORTHEAST LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 CROWN CASTLE 3 CORPORATE PARK DRIVE, SUITE 101 CLIFTON PARK, NY 12065 > CTHA509A **BURLINGTON -NEPAUG ROAD** | | CONSTRUCTION | | | DRAWINGS | |-----|--------------|----------|----------------|----------| | | | | | | | | | | | | | | Ц | | | | | | L | | | | | | | | | | | | | | | | | | Ц | | | | | - 1 | 0 | 09/09/16 | issued as fina | L | | - 1 | Α | 09/01/16 | ISSUED FOR RE | MEW | # Dewberry* Dewberry Engineers Inc. 600 PARSIPPANY ROAD SUITE 301 PARSIPPANY, NJ 07054 PHONE: 973, 739, 9400 FAX: 973, 739, 9710 JANG YU, P.E. CONNECTICUT LICENSE NO. 0023222 IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER TO ALTER THIS DOCUMENT. DRAWN BY: JC BSH REVIEWED BY: CHECKED BY: GHN PROJECT NUMBER: 50066258 50078132 12 NEPAUG ROAD BURLINGTON, CT 06013 HARTFORD COUNTY SHEET TITLE ANTENNA LAYOUTS & ELEVATIONS SHEET NUMBER C-2 - 1. MOUNT ANTENNAS PER MANUFACTURER'S RECOMMENDATIONS. - GROUND ANTENNAS AND MOUNTS PER MANUFACTURER'S RECOMMENDATIONS AND T-MOBILE STANDARDS. - 3. CONFIRM REQUIRED ANTENNAS WITH THE LATEST RFDS. ISOMETRIC ANTENNA DETAIL SCALE: N.T.S. | | FIBER/DC CABLES — | B2A B4P | B4A B2P | L
T
E
7
0 | |-----------------------|---------------------------------|-----------|-----------|-----------------------| | TOWER GROUND | TRUNK CABLE——— | | | COAX CABLES | | RECT AAV CSR LMU BATT | DUW
DUW
DUS
DUS
DUS | | | | | | SITE CONFIGUR | ATION 7 | | -(2) | | S | CALE: N.T.S. | | | | | | DESIGN CONFIGURATION | | | | | | | | |-------|-------------------------|--------------------------|------------------|-------------|--------------------|--------------|-------------------|-------------------| | | ANTENNAS | | COAX | | HYBRID COAX/HYBRID | TMA | RRU | | | | EXISTING | PROPOSED | EXISTING | PROPOSED | EXISTING | LENGTH | EXISTING/PROPOSED | EXISTING/PROPOSED | | | ERICSSON AIR 21 B2A B4P | EXISTING TO REMAIN | | | | | _ | _ | | ALPHA | _ | COMMSCOPE LNX-6515DS-A1M | (2) 1-5/8"ø | _ | | 140'-0" | - 1 II- | - | | | ERICSSON AIR 21 B4A B2P | EXISTING TO REMAIN | | | | 7 - - | = | | | U = | ERICSSON AIR 21 B2A B4P | EXISTING TO REMAIN | Te 1 1 | | 1 | | 3-3-3 | - | | BETA | | COMMSCOPE LNX-6515DS-A1M | (2) 1-5/8"ø – | (1) 1-5/8"ø | 140'-0" | - | = | | | | ERICSSON AIR 21 B4A B2P | EXISTING TO REMAIN | | | | | _ | _ | | | ERICSSON AIR 21 B2A B4P | EXISTING TO REMAIN | | | | | | | | GAMMA | | COMMSCOPE LNX-6515DS-A1M | 1M (2) 1-5/8*ø – | | 140'-0" | = | - | | | | ERICSSON AIR 21 B4A B2P | EXISTING TO REMAIN | | | | | 9-0 | _ | # T - Mobile T-MOBILE NORTHEAST LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 CROWN CASTLE 3 CORPORATE PARK DRIVE, SUITE 101 CLIFTON PARK, NY 12065 CTHA509A **BURLINGTON -NEPAUG ROAD** | | _ | | | |----------|----------|----------------|----------| | | CONSTR | RUCTION | DRAWINGS | | | | | | | | | | | | | | | 15.0 | | | | | | | Н | | _ | | | \vdash | | | | | 6 | 09/09/16 | ISSUED AS FINA | | | A | 09/01/16 | ISSUED FOR RE | MEW | # Dewberry* Dewberry Engineers Inc. 600 PARSIPPANY ROAD SUITE 301 PARSIPPANY, NJ 07054 PHONE: 973,739,9400 FAX: 973,739,9710 DRAWN BY: JC REVIEWED BY: BSH CHECKED BY: GHN PROJECT NUMBER: 50066258 JOB NUMBER: 50078132 SITE ADDRESS: 12 NEPAUG ROAD BURLINGTON, CT 06013 HARTFORD COUNTY SHEET TITLE CONSTRUCTION DETAILS SHEET NUMBER C-3 #### **GROUNDING NOTES:** - 1. THE CONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM AND LIGHTNING PROTECTION SYSTEM (AS DESIGNED AND INSTALLED) FOR STRICT COMPLIANCE WITH THE NEC (AS ADOPTED BY THE AHJ). THE SITE—SPECIFIC (UL, LPI, OR NFPA) LIGHTING PROTECTION CODE, AND GENERAL COMPLIANCE WITH TELCORDIA AND TIA GROUNDING STANDARDS. THE CONTRACTOR SHALL REPORT ANY VIOLATIONS OR ADVERSE FINDINGS TO THE ENGINEER FOR RESOLUTION. - 2. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION, AND AC POWER GES'S) SHALL BE BONDED TOGETHER, AT OR BELLOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS, ALL AVAILABLE GROUNDING ELECTRODES SHALL BE CONNECTED TOGETHER IN ACCORDANCE WITH THE NEC. - THE CONTRACTOR SHALL PERFORM IEEE FALL—OF—POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS.
USE OF OTHER METHODS MUST BE PRE—APPROVED BY THE ENGINEER IN WRITING. - 4. THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS ON TOWER SITES AND 10 OHMS OR LESS ON ROOFTOP SITES. WHEN ADDING ELECTRODES, CONTRACTOR SHALL MAINTAIN A MINIMUM DISTANCE BETWEEN THE ADDED ELECTRODE AND ANY OTHER EXISTING ELECTRODE EQUAL TO THE BURIED LENGTH OF THE ROD. IDEALLY, CONTRACTOR SHALL STRIVE TO KEEP THE SEPARATION DISTANCE EQUAL TO TWICE THE BURIED LENGTH OF THE RODS. - THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT. - METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH 8 AWG COPPER WIRE AND UL APPROVED GROUNDING TYPE CONDUIT CLAMPS. - METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO TRANSMISSION EQUIPMENT. - 8. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED. BACK-TO-BACK CONNECTIONS ON OPPOSITE SIDES OF THE GROUND BUS ARE PERMITTED. - 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS. - 10. USE OF 90' BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45' BENDS CAN BE ADEQUATELY SUPPORTED. IN ALL CASES, BENDS SHALL BE MADE WITH A MINIMUM BEND RADIUS OF 8 - 11. EACH INTERIOR TRANSMISSION CABINET FRAME/PLINTH SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH 6 AWG STRANDED, GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRE UNLESS NOTED OTHERWISE IN THE DETAILS. EACH OUTDOOR CABINET FRAME/PLINTH SHALL BE DIRECTLY CONNECTED TO THE BURIED GROUND RING WITH 2 AWG SOLID TIM-PLATED COPPER WIRE UNLESS NOTED OTHERWISE IN THE DETAILS. - ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING, SHALL BE 2 AWG SOLID TIN-PLATED COPPER UNLESS OTHERWISE INDICATED. - 13. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE. CONNECTIONS TO ABOVE GRADE UNITS SHALL BE MADE WITH EXOTHERMIC WELDS WHERE PRACTICAL OR WITH 2 HOLE MECHANICAL TYPE BRASS CONNECTORS WITH STANLESS STEEL HARDWARE, INCLUDING SET SCREWS. HIGH PRESSURE CRIMP CONNECTORS MAY ONLY BE USED WITH WRITTEN PERMISSION FROM T-MOBILE MARKET REPRESENTATIVE. - 14. EXOTHERMIC WELDS SHALL BE PERMITTED ON TOWERS ONLY WITH THE EXPRESS APPROVAL OF THE TOWER MANUFACTURER OR THE CONTRACTORS STRUCTURAL ENGINEER. - 15. ALL WIRE TO WIRE GROUND CONNECTIONS TO THE INTERIOR GROUND RING SHALL BE FORMED USING HIGH PRESS CRIMPS OR SPLIT BOLT CONNECTORS WHERE INDICATED IN THE DETAILS. - 16. ON ROOFTOP SITES WHERE EXOTHERMIC WELDS ARE A FIRE HAZARD COPPER COMPRESSION CAP CONNECTORS MAY BE USED FOR WIRE TO WIRE CONNECTORS. 2 HOLE MECHANICAL TYPE BRASS CONNECTORS WITH STANLESS STEEL HARDWARE, INCLUDING SET SCREWS SHALL BE USED FOR CONNECTION TO ALL ROOFTOP TRANSMISSION EQUIPMENT AND STRUCTURAL STEEL. - COAX BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR USING TWO-HOLE MECHANICAL TYPE BRASS CONNECTORS AND STAINLESS STEEL HARDWARE. - APPROVED ANTIOXIDANT COATINGS (I.E., CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS. - ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL. - MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC. - 21. BOND ALL METALLIC OBJECTS WITHIN 6 FT OF THE BURIED GROUND RING WITH 2 AWG SOLID TIN-PLATED COPPER GROUND CONDUCTOR. DURING EXCAVATION FOR NEW GROUND CONDUCTORS, IF EXISTING GROUND CONDUCTORS ARE ENCOUNTERED, BOND EXISTING GROUND CONDUCTORS TO NEW CONDUCTORS. - 22. GROUND CONDUCTORS USED IN THE FACILITY GROUND AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC PLASTIC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (E.G., NON-METALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT WITH LISTED BONDING FITTINGS. #### NOTE: DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO CIGBE. #### CONNECTION OF GROUND WIRES TO GROUNDING BAR (CIGBE) SCALE: N.T.S TYPICAL ANTENNA GROUNDING DETAIL SCALE: N.T.S #### NOTES: - 1. DOUBLING UP OR STACKING OF CONNECTIONS IS NOT PERMITTED. - 2. OXIDE INHIBITING COMPOUND TO BE USED AT ALL LOCATIONS. # TYPICAL GROUND BAR MECHANICAL CONNECTION DETAIL E: N.T.S. #### NOTES: - 1. BOND ANTENNA GROUNDING KIT CABLE TO TOP CIGBE - 2. BOND ANTENNA GROUNDING KIT CABLE TO BOTTOM CIGBE. - 3. SCHEMATIC GROUNDING DIAGRAM IS TYPICAL FOR EACH SECTOR. - 4. VERIFY EXISTING GROUND SYSTEM IS INSTALLED PER T-MOBILE STANDARDS # SCHEMATIC GROUNDING DIAGRAM SCALE: N.T.S. 4) T · Mobile T-MOBILE NORTHEAST LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 CROWN CASTLE 3 CORPORATE PARK DRIVE, SUITE 101 CLIFTON PARK, NY 12065 #### CTHA509A BURLINGTON -NEPAUG ROAD | | CONSTR | RUCTION DRAWINGS | |---|----------|--| | | | | | L | | The state of s | | Н | | | | | | | | H | | | | 0 | 09/09/16 | ISSUED AS FINAL | | Α | 09/01/16 | ISSUED FOR REVIEW | # Dewberry* Dewberry Engineers Inc. 600 PARSIPPANY ROAD SUITE 301 PARSIPPANY, NJ 07054 PHONE: 973.739.9400 FAX: 973.739.9710 | DRAWN BY: | JC | |-----------------|----------| | REVIEWED BY: | BSH | | CHECKED BY: | GHN | | PROJECT NUMBER: | 50066258 | | JOB NUMBER: | 50078132 | | | | T IS A VIOLATION OF LAW FOR ANY PERSON, UNLE THEY ARE ACTING UNDER THE DIRECTION OF A UCENSED PROFESSIONAL ENGINEER TO ALTER THI DOCUMENT. 12 NEPAUG ROAD BURLINGTON, CT 06013 HARTFORD COUNTY SHEET TITLE SITE ADDRESS: GROUNDING NOTES & DETAILS SHEET NUMBER E-1 Date: August 28, 2016 Sean Dempsey Crown Castle 3530 Toringdon Way, Suite 300 Charlotte, NC 28277 Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 (724) 416-2000 Subject: Structural Analysis Report Carrier Designation: Metro PCS Co-Locate Carrier Site Number: CTHA509A Carrier Site Name: AT&T Burlington Monopole^{*} Crown Castle Designation: Crown Castle BU Number: 845993 Crown Castle Site Name: **BURLINGTON-NEPAUG ROAD** Crown Castle JDE Job Number: Crown Castle Work Order Number: 392501 1288438 Crown Castle Application Number: 358447 Rev. 0 Engineering Firm Designation: **Crown Castle Project Number:** 1288438 Site Data: 12 NEPAUG ROAD, BURLINGTON, Hartford County, CT Latitude 41° 46′ 56.86″, Longitude -72° 59′ 22.68″ 120 Foot - Monopole Tower Dear Sean Dempsey, Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 1288438, in accordance with application 358447, revision 0. The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be: LC5: Existing + Proposed Equipment Sufficient Capacity Note: See Table I and Table II for the proposed and existing loading, respectively. The analysis has been performed in accordance with the TIA/EIA-222-F standard and 2005 CT State Building Code based upon a wind speed of 80 mph fastest mile. All equipment proposed in this report shall be installed in accordance with the attached drawings for
the determined available structural capacity to be effective. We at *Crown Castle* appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects, please give us a call. Structural analysis prepared by: Matthew Hussak / MBC Respectfully submitted by: Terry P. Styran, P.E. Senior Project Engineer tnxTower Report - version 7.0.5.1 #### **TABLE OF CONTENTS** #### 1) INTRODUCTION #### 2) ANALYSIS CRITERIA Table 1 - Proposed Antenna and Cable Information Table 2 - Existing Antenna and Cable Information Table 3 - Design Antenna and Cable Information #### 3) ANALYSIS PROCEDURE Table 4 - Documents Provided 3.1) Analysis Method 3.2) Assumptions #### 4) ANALYSIS RESULTS Table 5 - Section Capacity (Summary) Table 6 - Tower Components vs. Capacity - LC5 4.1) Recommendations #### 5) APPENDIX A tnxTower Output #### 6) APPENDIX B Base Level Drawing #### 7) APPENDIX C **Additional Calculations** #### 1) INTRODUCTION This tower is a 120ft Monopole tower designed by ENGINEERED ENDEAVORS, INC and mapped by FDH in February of 2016. The original design standard and wind speed are unknown. #### 2) ANALYSIS CRITERIA The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 80 mph with no ice, 37.6 mph with 1 inch ice thickness and 50 mph under service loads. Table 1 - Proposed Antenna and Cable Information | Mounting
Level (ft) | Elevation | Number
of
Antennas | Antenna
Manufacturer | Antenna Model | Number
of Feed
Lines | Feed
Line
Size (in) | Note | |------------------------|-----------|--------------------------|-------------------------|---------------------------------|----------------------------|---------------------------|------| | 88.0 | 90.0 | 3 | commscope | LNX-6515DS-A1M w/
Mount Pipe | - | - | _ | Table 2 - Existing Antenna and Cable Information | Mounting
Level (ft) | Center
Line
Elevation
(ft) | Number
of
Antennas | Antenna
Manufacturer | anufacturer Antenna Model | | Feed
Line
Size (in) | Note | |------------------------|-------------------------------------|------------------------------------|-------------------------|--|---------|---------------------------|------| | | | 3 | ericsson | RRUS-11 | | | | | | | 1 | gps | GPS_A | | | | | | | 3 | kmw communications | AM-X-CD-16-65-00T-RET
w/ Mount Pipe | | | | | | | 6 | powerwave technologies | 7770.00 w/ Mount Pipe | 2 | 1/2 | | | 119.0 | 119.0 | 6 | powerwave technologies | LGP13519 | 2
12 | 2 7/8 1 | 1 | | | | 6 | powerwave technologies | | | | | | | | 1 | raycap | DC6-48-60-18-8F | | | | | | | 1 | tower mounts | Platform Mount
[LP 1201-1] | | | | | 100.0 | 400.0 | 6 andrew 950F85T2E-M w/ Mount Pipe | | 6 | 4 4 / 4 | | | | 109.0 | 109.0 | 1 | tower mounts | Platform Mount
[LP 1201-1] | 6 | 1-1/4 | 1 | | | | 3 | antel | BXA-171085-8BF-EDIN-2
w/ Mount Pipe | | | | | | | 3 | antel | BXA-70063-6CF-2
w/ Mount Pipe | | | 1 | | 99.0 | 99.0 | 6 | antel | LPA-80080/4CF
w/ Mount Pipe | 12 | 1-5/8 | | | | | 6 | rfs celwave | FD9R6004/2C-3L | | | | | | | 1 | tower mounts | Platform Mount
[LP 1201-1] | | | | | Mounting
Level (ft) | Flevation | Number
of
Antennas | Antenna
Manufacturer | Antenna Model | Number
of Feed
Lines | Feed
Line
Size (in) | Note | |------------------------|-----------|--------------------------|-------------------------|--|----------------------------|---------------------------|------| | | 00.0 | 3 | ericsson | ERICSSON AIR 21 B2A
B4P w/ Mount Pipe | | | | | 88.0 | 90.0 | 3 | ericsson | ERICSSON AIR 21 B4A
B2P w/ Mount Pipe | 7 | 1-5/8 | 1 | | | 88.0 | 1 | tower mounts | T-Arm Mount [TA 602-3] | | | | Notes: Table 3 - Design Antenna and Cable Information | Mounti
Level (| Center Line (t) Elevation (ft) | Number
of
Antennas | Antenna
Manufacturer | Antenna Model | Number
of Feed
Lines | Feed
Line
Size (in) | | | | | | |-------------------|--------------------------------|--------------------------|-------------------------|---------------|----------------------------|---------------------------|--|--|--|--|--| | | Information Not Available | | | | | | | | | | | #### 3) ANALYSIS PROCEDURE **Table 4 - Documents Provided** | Document | Remarks | Reference | Source | |--|------------------------------------|-----------|----------| | 4-GEOTECHNICAL REPORTS | Jaworski Geotech, Inc. | 4551029 | CCISITES | | 4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS | URS | 5072131 | CCISITES | | 4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS | FDH Velocitel (Foundation Mapping) | 6171674 | CCISITES | | 4-TOWER MANUFACTURER DRAWINGS | FDH Velocitel (Tower Mapping) | 6172249 | CCISITES | #### 3.1) Analysis Method tnxTower (version 7.0.5.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. #### 3.2) Assumptions - 1) Tower and structures were built in accordance with the manufacturer's specifications. - 2) The tower and structures have been maintained in accordance with the manufacturer's specification. - The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings. - 4) When applicable, transmission cables are considered as structural components for calculating wind loads as allowed by TIA/EIA-222-F. This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower. ¹⁾ Existing Equipment #### 4) ANALYSIS RESULTS **Table 5 - Section Capacity (Summary)** | Section
No. | Elevation (ft) | Component
Type | Size | Critical Element | P (K) | SF*P_allow
(K) | %
Capacity | Pass / Fail | |----------------|----------------|-------------------|------------------------|------------------|--------|-------------------|---------------|-------------| | L1 | 120 - 97 | Pole | TP28.93x22.69x0.1875 | 1 | -6.24 | 858.87 | 22.2 | Pass | | L2 | 97 - 48 | Pole | TP39.7x27.5729x0.25 | 2 | -16.10 | 1565.92 | 65.6 | Pass | | L3 | 48 - 0 | Pole | TP51.04x38.0569x0.3125 | 3 | -26.38 | 2523.73 | 68.1 | Pass | | | | | | | | | Summary | | | | | | | | | Pole (L3) | 68.1 | Pass | | | | | | | | Rating = | 68.1 | Pass | Table 6 - Tower Component Stresses vs. Capacity - LC5 | Notes | Component | Elevation (ft) | % Capacity | Pass / Fail | |-------|-------------------------------------|----------------|------------|-------------| | 1 | Anchor Rods | 0 | 59.4 | Pass | | 1 | Base Plate | 0 | 83.8 | Pass | | 1 | Base Foundation
Structural | 0 | 62.4 | Pass | | 1 | Base Foundation
Soil Interaction | 0 | 56.8 | Pass | | Structure Rating (max from all components) = | 83.8% | |--|-------| |--|-------| Notes: #### 4.1) Recommendations The tower and its foundation have sufficient capacity to carry the existing and proposed loads. No modifications are required at this time. See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed. # APPENDIX A TNXTOWER OUTPUT # 28.9300 0.1875 23.00 3.62 9 52.62 39.7000 8 A572-65 48.0 ft 52.96 51.0400 ო 9 AXIAL 42 K SHEAR 5 K 506 kip-ft TORQUE 0 kip-ft 38 mph WIND - 1.0000 in ICE AXIAL 26 K SHEAR' 20 K 0.0 ft 13.8 TORQUE 0 kip-ft Number of Sides REACTIONS - 80 mph WIND Thickness (in) Top Dia (in) Bot Dia (in) Weight (K) Length (ft) #### **DESIGNED APPURTENANCE LOADING** | TYPE | ELEVATION | TYPE | ELEVATION | |--|-----------|--|-----------| | Platform Mount [LP 1201-1] | 119 | 6' x 2" Mount Pipe | 109 | | AM-X-CD-16-65-00T-RET w/ Mount | 119 | Platform Mount [LP 1201-1] | 99 | | Pipe | | (2) LPA-80080/4CF w/ Mount Pipe | 99 | | AM-X-CD-16-65-00T-RET w/ Mount
Pipe | 119 | (2) LPA-80080/4CF w/ Mount Pipe | 99 | | ' | 440 | (2) LPA-80080/4CF w/ Mount Pipe | 99 | | AM-X-CD-16-65-00T-RET w/ Mount
Pipe | 119 | BXA-171085-8BF-EDIN-2 w/ Mount
Pipe | 99 | | (2) 7770.00 w/ Mount Pipe | 119 | BXA-171085-8BF-EDIN-2 w/ Mount | 99 | | (2) 7770.00 w/ Mount Pipe | 119 | Pipe | | | (2) 7770.00 w/ Mount Pipe | 119 | BXA-171085-8BF-EDIN-2 w/ Mount | 99 | | GPS_A | 119 | Pipe | | | (2) LGP21401 | 119 | BXA-70063-6CF-2 w/ Mount Pipe | 99 | | (2) LGP21401 | 119 | BXA-70063-6CF-2 w/ Mount Pipe | 99 | | (2) LGP21401 | 119 | BXA-70063-6CF-2 w/ Mount Pipe | 99 | | DC6-48-60-18-8F | 119 | (2) FD9R6004/2C-3L | 99 | | (2) LGP13519 | 119 | (2) FD9R6004/2C-3L | 99 | | (2) LGP13519 | 119 | (2) FD9R6004/2C-3L | 99 | | (2) LGP13519 | 119 | T-Arm Mount [TA 602-3] | 88 | | RRUS-11 | 119 | ERICSSON AIR 21 B2A B4P w/ Mount | 88 | | RRUS-11 | 119 | Pipe | | | RRUS-11 | 119 | ERICSSON AIR 21 B2A B4P w/ Mount
Pipe | 88 | | 6' x 2" Mount Pipe | 119 | • | 00 | | 6' x 2" Mount Pipe | 119 | ERICSSON AIR 21 B2A B4P w/ Mount
Pipe | 88 | | 6' x 2" Mount Pipe | 119 | ERICSSON AIR 21 B4A B2P w/ Mount | 88 | | 6' x 2" Mount Pipe | 119 | Pipe | | | 6' x 2" Mount Pipe | 119 | ERICSSON AIR 21 B4A B2P w/ Mount | 88 | | 6' x 2" Mount Pipe | 119 | Pipe | | | Platform Mount [LP 1201-1] | 109 | ERICSSON AIR 21 B4A B2P w/ Mount | 88 | | (2) 950F85T2E-M w/ Mount Pipe | 109 | Pipe | | | (2) 950F85T2E-M w/ Mount Pipe | 109 | LNX-6515DS-A1M w/ Mount Pipe | 88 | | (2) 950F85T2E-M w/ Mount Pipe | 109 | LNX-6515DS-A1M w/ Mount Pipe | 88 | | 6' x 2" Mount Pipe | 109 | LNX-6515DS-A1M w/ Mount Pipe | 88 | |
6' x 2" Mount Pipe | 109 | 1 | | #### **MATERIAL STRENGTH** | GRADE | Fy | Fu | GRADE | Fy | Fu | |---------|--------|--------|-------|----|----| | A572-65 | 65 ksi | 80 ksi | | | | #### **TOWER DESIGN NOTES** - 1. Tower is located in Hartford County, Connecticut. - 2. Tower designed for a 80 mph basic wind in accordance with the TIA/EIA-222-F Standard. - 3. Tower is also designed for a 38 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height. - 4. Deflections are based upon a 50 mph wind.5. TOWER RATING: 68.1% | ^{Job:} BU# 845993 | | | |----------------------------|---------------------------------------|------------| | Project: | | | | Client: Crown Castle | Drawn by: MCarll | App'd: | | Code: TIA/EIA-222-F | Date: 08/28/16 | Scale: NTS | | Path: | 1200 4201 O A MECUO 45002 MICA200 420 | Dwg No. E- | #### **Tower Input Data** There is a pole section. This tower is designed using the TIA/EIA-222-F standard. The following design criteria apply: - 1) Tower is located in Hartford County, Connecticut. - 2) Basic wind speed of 80 mph. - 3) Nominal ice thickness of 1.0000 in. - 4) Ice thickness is considered to increase with height. - 5) Ice density of 56 pcf. - 6) A wind speed of 38 mph is used in combination with ice. - 7) Temperature drop of 50 °F. - 8) Deflections calculated using a wind speed of 50 mph. - 9) A non-linear (P-delta) analysis was used. - 10) Pressures are calculated at each section. - 11) Stress ratio used in pole design is 1.333. - Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered. #### **Options** Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification - √ Use Code Stress Ratios - √ Use Code Safety Factors Guys - ✓ Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned - √ Assume Rigid Index Plate - √ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension - √ Bypass Mast Stability Checks - √ Use Azimuth Dish Coefficients - √ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination ✓ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption Poles ✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets #### **Tapered Pole Section Geometry** | Section | Elevation | Section | Splice | Number | Тор | Bottom | Wall | Bend | Pole Grade | |---------|--------------|---------|--------|--------|----------|----------|-----------|--------|---------------------| | | | Length | Length | of | Diameter | Diameter | Thickness | Radius | | | | ft | ft | ft | Sides | in | in | in | in | | | L1 | 120.00-97.00 | 23.00 | 3.62 | 18 | 22.6900 | 28.9300 | 0.1875 | 0.7500 | A572-65
(65 ksi) | | L2 | 97.00-48.00 | 52.62 | 4.96 | 18 | 27.5729 | 39.7000 | 0.2500 | 1.0000 | A572-65
(65 ksi) | | L3 | 48.00-0.00 | 52.96 | | 18 | 38.0569 | 51.0400 | 0.3125 | 1.2500 | A572-65
(65 ksi) | ### **Tapered Pole Properties** | Section | Tip Dia. | Area | 1 | r | С | I/C | J | It/Q | W | w/t | |---------|----------|------|-----------------|----|----|-----------------|-----|------|----|-----| | | in | in² | in ⁴ | in | in | in ³ | in⁴ | in² | in | | | Section | Tip Dia. | Area | 1 | r | С | I/C | J | It/Q | W | w/t | |---------|----------|---------|----------------|---------|---------|----------|----------------|---------|--------|--------| | | in | in² | in⁴ | in | in | in³ | in⁴ | in² | in | | | L1 | 23.0400 | 13.3918 | 856.7181 | 7.9884 | 11.5265 | 74.3258 | 1714.5635 | 6.6972 | 3.6634 | 19.538 | | | 29.3763 | 17.1054 | 1785.3331 | 10.2036 | 14.6964 | 121.4807 | 3573.0155 | 8.5543 | 4.7617 | 25.396 | | L2 | 28.8454 | 21.6807 | 2044.8607 | 9.6996 | 14.0070 | 145.9883 | 4092.4120 | 10.8424 | 4.4128 | 17.651 | | | 40.3124 | 31.3036 | 6154.9624 | 14.0048 | 20.1676 | 305.1906 | 12318.023
6 | 15.6548 | 6.5472 | 26.189 | | L3 | 39.8787 | 37.4377 | 6738.3192 | 13.3993 | 19.3329 | 348.5416 | 13485.504
8 | 18.7224 | 6.1480 | 19.674 | | | 51.8274 | 50.3153 | 16357.795
4 | 18.0083 | 25.9283 | 630.8853 | 32737.114
9 | 25.1625 | 8.4330 | 26.986 | | Tower
Elevation | Gusset
Area
(per face) | Gusset
Thickness | Gusset Grade Adjust. Factor
A _f | Adjust.
Factor
A _r | Weight Mult. | Double Angle
Stitch Bolt
Spacing
Diagonals | Double Angle
Stitch Bolt
Spacing
Horizontals | Double Angle
Stitch Bolt
Spacing
Redundants | |--------------------|------------------------------|---------------------|---|-------------------------------------|--------------|---|---|--| | ft | ft² | in | | | | in | in | in | | L1 120.00- | | | 1 | 1 | 1 | | | | | 97.00 | | | | | | | | | | L2 97.00- | | | 1 | 1 | 1 | | | | | 48.00 | | | | | | | | | | L3 48.00-0.00 | | | 1 | 1 | 1 | | | | | Feed Line/Linear Appurtenances - Entered As Round Or Flat | | | | | | | | | | | | |---|------|--------|-----------|-----------|--------|---------|---------|----------|----------|--------|--| | | | | | | | | | | | | | | Description | Face | Allow | Component | Placement | Total | Number | Clear | Width or | Perimete | Weight | | | | or | Shield | Type | | Number | Per Row | Spacing | Diamete | r | | | | | Leg | | | ft | | | in | r | | plf | | | | · | | | | | | | i. | in | • | | *** # Feed Line/Linear Appurtenances - Entered As Area | Description | Face
or | Allow
Shield | Component
Type | Placement | Total
Number | | C_AA_A | Weight | |------------------|------------|-----------------|-------------------|---------------|-----------------|----------|---------------------|--------| | | Leg | Officia | Турс | ft | rvarriber | | f t² /ft | plf | | LDF4-50A(1/2") | A | No | Inside Pole | 119.00 - 8.00 | 2 | No Ice | 0.00 | 0.15 | | , | | | | | | 1/2" Ice | 0.00 | 0.15 | | | | | | | | 1" Ice | 0.00 | 0.15 | | | | | | | | 2" Ice | 0.00 | 0.15 | | | | | | | | 4" Ice | 0.00 | 0.15 | | LDF5-50A(7/8") | Α | No | Inside Pole | 119.00 - 8.00 | 2 | No Ice | 0.00 | 0.33 | | , , | | | | | | 1/2" Ice | 0.00 | 0.33 | | | | | | | | 1" Ice | 0.00 | 0.33 | | | | | | | | 2" Ice | 0.00 | 0.33 | | | | | | | | 4" Ice | 0.00 | 0.33 | | LDF7-50A(1-5/8") | Α | No | Inside Pole | 119.00 - 8.00 | 12 | No Ice | 0.00 | 0.82 | | | | | | | | 1/2" Ice | 0.00 | 0.82 | | | | | | | | 1" Ice | 0.00 | 0.82 | | | | | | | | 2" Ice | 0.00 | 0.82 | | | | | | | | 4" Ice | 0.00 | 0.82 | | *** | | | | | | | | | | LDF6-50A(1-1/4") | С | No | Inside Pole | 109.00 - 8.00 | 6 | No Ice | 0.00 | 0.66 | | | | | | | | 1/2" Ice | 0.00 | 0.66 | | | | | | | | 1" Ice | 0.00 | 0.66 | | | | | | | | 2" Ice | 0.00 | 0.66 | | *** | | | | | | 4" Ice | 0.00 | 0.66 | | LDF7-50A(1-5/8") | С | No | Inside Pole | 99.00 - 8.00 | 12 | No Ice | 0.00 | 0.82 | | | · | | | | | 1/2" Ice | 0.00 | 0.82 | | | | | | | | 1" Ice | 0.00 | 0.82 | | | | | | | | 2" Ice | 0.00 | 0.82 | | | | | | | | 4" Ice | 0.00 | 0.82 | | Description | Face
or | Allow
Shield | Component
Type | Placement | Total
Number | | C _A A _A | Weight | |-------------------|------------|-----------------|-------------------|--------------|-----------------|----------|-------------------------------|--------| | | Leg | | 71 | ft | | | f l² /ft | plf | | *** | | | | | | | | | | LDF7-50A(1-5/8") | В | No | Inside Pole | 88.00 - 8.00 | 6 | No Ice | 0.00 | 0.82 | | , , | | | | | | 1/2" Ice | 0.00 | 0.82 | | | | | | | | 1" Ice | 0.00 | 0.82 | | | | | | | | 2" Ice | 0.00 | 0.82 | | | | | | | | 4" Ice | 0.00 | 0.82 | | MLE Hybrid | В | No | Inside Pole | 88.00 - 8.00 | 1 | No Ice | 0.00 | 1.07 | | 9Power/18Fiber RL | | | | | | 1/2" Ice | 0.00 | 1.07 | | 2(1-5/8") | | | | | | 1" Ice | 0.00 | 1.07 | | , , | | | | | | 2" Ice | 0.00 | 1.07 | | | | | | | | 4" Ice | 0.00 | 1.07 | | *** | | | | | | | | | | *** | | | | | | | | | | *** | | | | | | | | | # Feed Line/Linear Appurtenances Section Areas | Tower
Sectio | Tower
Elevation | Face | AR | AF | C _A A _A
In Face | C _A A _A
Out Face | Weight | |-----------------|--------------------|------|-----------------|-----------------|--|---|--------| | n | ft | | f t² | ft ² | ft ² | f t² | K | | L1 | 120.00-97.00 | Α | 0.000 | 0.000 | 0.000 | 0.000 | 0.24 | | | | В | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | | | | С | 0.000 | 0.000 | 0.000 | 0.000 | 0.07 | | L2 | 97.00-48.00 | Α | 0.000 | 0.000 | 0.000 | 0.000 | 0.53 | | | | В | 0.000 | 0.000 | 0.000 | 0.000 | 0.24 | | | | С | 0.000 | 0.000 | 0.000 | 0.000 | 0.68 | | L3 | 48.00-0.00 | Α | 0.000 | 0.000 | 0.000 | 0.000 | 0.43 | | | | В | 0.000 | 0.000 | 0.000 | 0.000 | 0.24 | | | | С | 0.000 | 0.000 | 0.000 | 0.000 | 0.55 | # Feed Line/Linear Appurtenances Section Areas - With Ice | Tower
Sectio | Tower
Elevation | Face
or | lce
Thickness | A_R | AF | C _A A _A
In Face | C _A A _A
Out Face | Weight | |-----------------|--------------------|------------|------------------|-----------------|-----------------|--|---|--------
 | n | ft | Leg | in | ft ² | ft ² | ft ² | ft ² | K | | L1 | 120.00-97.00 | Α | 1.153 | 0.000 | 0.000 | 0.000 | 0.000 | 0.24 | | | | В | | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | | | | С | | 0.000 | 0.000 | 0.000 | 0.000 | 0.07 | | L2 | 97.00-48.00 | Α | 1.098 | 0.000 | 0.000 | 0.000 | 0.000 | 0.53 | | | | В | | 0.000 | 0.000 | 0.000 | 0.000 | 0.24 | | | | С | | 0.000 | 0.000 | 0.000 | 0.000 | 0.68 | | L3 | 48.00-0.00 | Α | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.43 | | | | В | | 0.000 | 0.000 | 0.000 | 0.000 | 0.24 | | | | С | | 0.000 | 0.000 | 0.000 | 0.000 | 0.55 | #### **Feed Line Center of Pressure** | Section | Elevation | CPx | CPz | CP _X
Ice | CPz
Ice | |---------|--------------|--------|--------|------------------------|------------| | | ft | in | in | in | in | | L1 | 120.00-97.00 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | L2 | 97.00-48.00 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | L3 | 48.00-0.00 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | #### **Discrete Tower Loads** | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral
Vert | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |---------------------------|-------------------|----------------|-------------------------------------|---------------------------|-----------|------------------|--|---------------------------------------|--------------| | | | | ft | | ft | | ft ² | ft ² | K | | | | | ft
ft | 0 | | | | | | | *** | | | | | | | | | | | Platform Mount [LP 1201- | В | None | | 0.0000 | 119.00 | No Ice
1/2" | 23.10 | 23.10 | 2.10 | | 1] | | | | | | lce | 26.80
30.50 | 26.80
30.50 | 2.50
2.90 | | | | | | | | 1" Ice | 37.90 | 37.90 | 3.70 | | | | | | | | 2" Ice | 52.70 | 52.70 | 5.30 | | | | | | | | 4" Ice | | | | | AM-X-CD-16-65-00T-RET | С | From Leg | 4.00 | 0.0000 | 119.00 | No Ice | 8.50 | 6.30 | 0.07 | | w/ Mount Pipe | | | 0.00 | | | 1/2" | 9.15 | 7.48 | 0.14 | | | | | 0.00 | | | Ice
1" Ice | 9.77
11.03 | 8.37
10.18 | 0.21
0.38 | | | | | | | | 2" Ice | 13.68 | 14.02 | 0.87 | | | | | | | | 4" Ice | | | | | AM-X-CD-16-65-00T-RET | Α | From Leg | 4.00 | 0.0000 | 119.00 | No Ice | 8.50 | 6.30 | 0.07 | | w/ Mount Pipe | | | 0.00 | | | 1/2" | 9.15 | 7.48 | 0.14 | | | | | 0.00 | | | Ice
1" Ice | 9.77
11.03 | 8.37 | 0.21 | | | | | | | | 2" Ice | 13.68 | 10.18
14.02 | 0.38
0.87 | | | | | | | | 4" Ice | 13.00 | 14.02 | 0.07 | | AM-X-CD-16-65-00T-RET | В | From Leg | 4.00 | 0.0000 | 119.00 | No Ice | 8.50 | 6.30 | 0.07 | | w/ Mount Pipe | | _ | 0.00 | | | 1/2" | 9.15 | 7.48 | 0.14 | | | | | 0.00 | | | Ice | 9.77 | 8.37 | 0.21 | | | | | | | | 1" Ice
2" Ice | 11.03 | 10.18 | 0.38 | | | | | | | | 4" Ice | 13.68 | 14.02 | 0.87 | | (2) 7770.00 w/ Mount Pipe | С | From Leg | 4.00 | 0.0000 | 119.00 | No Ice | 6.12 | 4.25 | 0.06 | | (=) | | | 0.00 | | | 1/2" | 6.63 | 5.01 | 0.10 | | | | | 0.00 | | | Ice | 7.13 | 5.71 | 0.16 | | | | | | | | 1" Ice | 8.16 | 7.16 | 0.29 | | | | | | | | 2" Ice
4" Ice | 10.36 | 10.41 | 0.66 | | (2) 7770.00 w/ Mount Pipe | Α | From Leg | 4.00 | 0.0000 | 119.00 | No Ice | 6.12 | 4.25 | 0.06 | | () | | | 0.00 | | | 1/2" | 6.63 | 5.01 | 0.10 | | | | | 0.00 | | | Ice | 7.13 | 5.71 | 0.16 | | | | | | | | 1" Ice
2" Ice | 8.16 | 7.16 | 0.29 | | | | | | | | 4" Ice | 10.36 | 10.41 | 0.66 | | (2) 7770.00 w/ Mount Pipe | В | From Leg | 4.00 | 0.0000 | 119.00 | No Ice | 6.12 | 4.25 | 0.06 | | () | | | 0.00 | | | 1/2" | 6.63 | 5.01 | 0.10 | | | | | 0.00 | | | Ice | 7.13 | 5.71 | 0.16 | | | | | | | | 1" Ice | 8.16 | 7.16 | 0.29 | | | | | | | | 2" Ice
4" Ice | 10.36 | 10.41 | 0.66 | | GPS_A | Α | From Leg | 4.00 | 0.0000 | 119.00 | No Ice | 0.30 | 0.30 | 0.00 | | _ | | J | 0.00 | | | 1/2" | 0.37 | 0.37 | 0.00 | | | | | 0.00 | | | Ice | 0.46 | 0.46 | 0.01 | | | | | | | | 1" Ice
2" Ice | 0.65
1.15 | 0.65
1.15 | 0.02
0.08 | | | | | | | | 4" Ice | 1.13 | 1.10 | 0.06 | | (2) LGP21401 | С | From Leg | 4.00 | 0.0000 | 119.00 | No Ice | 1.29 | 0.23 | 0.01 | | () | | | 0.00 | | | 1/2" | 1.45 | 0.31 | 0.02 | | | | | 0.00 | | | Ice | 1.61 | 0.40 | 0.03 | | | | | | | | 1" Ice | 1.97 | 0.61 | 0.05 | | | | | | | | 2" Ice
4" Ice | 2.79 | 1.12 | 0.14 | | (2) LGP21401 | Α | From Leg | 4.00 | 0.0000 | 119.00 | No Ice | 1.29 | 0.23 | 0.01 | | , , = = : - : . | | | 0.00 | | | 1/2" | 1.45 | 0.31 | 0.02 | | | | | 0.00 | | | Ice | 1.61 | 0.40 | 0.03 | | | | | | | | 1" Ice | 1.97 | 0.61 | 0.05 | | | | | | | | 2" Ice | 2.79 | 1.12 | 0.14 | | (2) LGP21401 | В | From Leg | 4.00 | 0.0000 | 119.00 | 4" Ice
No Ice | 1.29 | 0.23 | 0.01 | | (=) = 01 = 1 = 01 | | J Log | 0.00 | 2.0000 | . 10.00 | 1/2" | 1.45 | 0.23 | 0.02 | | | | | 0.00 | | | Ice | 1.61 | 0.40 | 0.03 | | | | | | | | | | | | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral
Vert | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |--------------------|-------------------|----------------|-------------------------------------|---------------------------|-----------|---|--|---------------------------------------|--------------------------------------| | | | | ft
ft
ft | 0 | ft | | ft² | ft ² | K | | | | | | | | 1" Ice
2" Ice
4" Ice | 1.97
2.79 | 0.61
1.12 | 0.05
0.14 | | DC6-48-60-18-8F | Α | From Leg | 4.00
0.00
0.00 | 0.0000 | 119.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 1.27
1.46
1.66
2.09
3.10 | 1.27
1.46
1.66
2.09
3.10 | 0.02
0.04
0.05
0.10
0.21 | | (2) LGP13519 | С | From Leg | 4.00
0.00
0.00 | 0.0000 | 119.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 0.34
0.42
0.51
0.73
1.25 | 0.21
0.28
0.36
0.55
1.03 | 0.01
0.01
0.01
0.02
0.07 | | (2) LGP13519 | Α | From Leg | 4.00
0.00
0.00 | 0.0000 | 119.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 0.34
0.42
0.51
0.73
1.25 | 0.21
0.28
0.36
0.55
1.03 | 0.01
0.01
0.01
0.02
0.07 | | (2) LGP13519 | В | From Leg | 4.00
0.00
0.00 | 0.0000 | 119.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 0.34
0.42
0.51
0.73
1.25 | 0.21
0.28
0.36
0.55
1.03 | 0.01
0.01
0.01
0.02
0.07 | | RRUS-11 | С | From Leg | 4.00
0.00
0.00 | 0.0000 | 119.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 3.25
3.49
3.74
4.27
5.43 | 1.37
1.55
1.74
2.14
3.04 | 0.05
0.07
0.09
0.15
0.31 | | RRUS-11 | А | From Leg | 4.00
0.00
0.00 | 0.0000 | 119.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 3.25
3.49
3.74
4.27
5.43 | 1.37
1.55
1.74
2.14
3.04 | 0.05
0.07
0.09
0.15
0.31 | | RRUS-11 | В | From Leg | 4.00
0.00
0.00 | 0.0000 | 119.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 3.25
3.49
3.74
4.27
5.43 | 1.37
1.55
1.74
2.14
3.04 | 0.05
0.07
0.09
0.15
0.31 | | 6' x 2" Mount Pipe | С | From Leg | 4.00
0.00
0.00 | 0.0000 | 119.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 1.43
1.92
2.29
3.06
4.70 | 1.43
1.92
2.29
3.06
4.70 | 0.02
0.03
0.05
0.09
0.23 | | 6' x 2" Mount Pipe | Α | From Leg | 4.00
0.00
0.00 | 0.0000 | 119.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 1.43
1.92
2.29
3.06
4.70 | 1.43
1.92
2.29
3.06
4.70 | 0.02
0.03
0.05
0.09
0.23 | | 6' x 2" Mount Pipe | В | From Leg | 4.00
0.00
0.00 | 0.0000 | 119.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 1.43
1.92
2.29
3.06
4.70 | 1.43
1.92
2.29
3.06
4.70 | 0.02
0.03
0.05
0.09
0.23 | | 6' x 2" Mount Pipe | С | From Leg | 2.00
0.00 | 0.0000 | 119.00 | No Ice
1/2" | 1.43
1.92 | 1.43
1.92 | 0.02
0.03 | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |----------------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|---|---|---|--------------------------------------| | | | | Vert
ft
ft
ft | ٥ | ft | | ft ^e | ft ² | K | | | | | 0.00 | | | Ice
1" Ice
2" Ice
4" Ice | 2.29
3.06
4.70 | 2.29
3.06
4.70 | 0.05
0.09
0.23 | | 6' x 2" Mount Pipe | Α | From Leg | 2.00
0.00
0.00 | 0.0000 | 119.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 1.43
1.92
2.29
3.06
4.70 | 1.43
1.92
2.29
3.06
4.70 | 0.02
0.03
0.05
0.09
0.23 | | 6' x 2" Mount Pipe | В | From Leg | 2.00
0.00
0.00 | 0.0000 | 119.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 1.43
1.92
2.29
3.06
4.70 | 1.43
1.92
2.29
3.06
4.70 | 0.02
0.03
0.05
0.09
0.23 | | Platform Mount [LP 1201-
1] | В | None | | 0.0000 | 109.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 23.10
26.80
30.50
37.90
52.70 | 23.10
26.80
30.50
37.90
52.70 | 2.10
2.50
2.90
3.70
5.30 | | (2) 950F85T2E-M w/
Mount Pipe | С | From Leg | 4.00
0.00
0.00 | 0.0000 | 109.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 3.02
3.47
3.90
4.80
6.71 | 5.66
6.55
7.31
8.95
12.54 | 0.03
0.07
0.12
0.24
0.59 | | (2) 950F85T2E-M w/
Mount Pipe | Α | From Leg | 4.00
0.00
0.00 | 0.0000 | 109.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 3.02
3.47
3.90
4.80
6.71 | 5.66
6.55
7.31
8.95
12.54 | 0.03
0.07
0.12
0.24
0.59 | | (2) 950F85T2E-M w/
Mount Pipe
| В | From Leg | 4.00
0.00
0.00 | 0.0000 | 109.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 3.02
3.47
3.90
4.80
6.71 | 5.66
6.55
7.31
8.95
12.54 | 0.03
0.07
0.12
0.24
0.59 | | 6' x 2" Mount Pipe | С | From Leg | 4.00
0.00
0.00 | 0.0000 | 109.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 1.43
1.92
2.29
3.06
4.70 | 1.43
1.92
2.29
3.06
4.70 | 0.02
0.03
0.05
0.09
0.23 | | 6' x 2" Mount Pipe | Α | From Leg | 4.00
0.00
0.00 | 0.0000 | 109.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 1.43
1.92
2.29
3.06
4.70 | 1.43
1.92
2.29
3.06
4.70 | 0.02
0.03
0.05
0.09
0.23 | | 6' x 2" Mount Pipe | В | From Leg | 4.00
0.00
0.00 | 0.0000 | 109.00 | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 1.43
1.92
2.29
3.06
4.70 | 1.43
1.92
2.29
3.06
4.70 | 0.02
0.03
0.05
0.09
0.23 | | Platform Mount [LP 1201-
1] | В | None | | 0.0000 | 99.00 | No Ice
1/2"
Ice
1" Ice
2" Ice | 23.10
26.80
30.50
37.90
52.70 | 23.10
26.80
30.50
37.90
52.70 | 2.10
2.50
2.90
3.70
5.30 | |
Description | Face | Offset | Offsets: | Azimuth | Placement | | C _A A _A | C _A A _A | Weight | |--|-----------|-------------|-------------------------|----------------|-----------|------------------|-------------------------------|-------------------------------|--------------| | Безсприон | or
Leg | Type | Horz
Lateral
Vert | Adjustmen
t | riacement | | Front | Side | weigin | | | | | ft
ft
ft | ۰ | ft | | ft ² | ft² | K | | (2) LPA-80080/4CF w/ | С | From Leg | 4.00 | 0.0000 | 99.00 | 4" Ice
No Ice | 2.86 | 7.23 | 0.03 | | Mount Pipe | O | 1 Tom Log | 0.00 | 0.0000 | 33.00 | 1/2" | 3.22 | 7.92 | 0.08 | | · | | | 0.00 | | | Ice | 3.59 | 8.63 | 0.13 | | | | | | | | 1" Ice
2" Ice | 4.45
6.32 | 10.11 | 0.25 | | | | | | | | 4" Ice | 6.32 | 13.34 | 0.61 | | (2) LPA-80080/4CF w/ | Α | From Leg | 4.00 | 0.0000 | 99.00 | No Ice | 2.86 | 7.23 | 0.03 | | Mount Pipe | | | 0.00 | | | 1/2" | 3.22 | 7.92 | 0.08 | | | | | 0.00 | | | Ice
1" Ice | 3.59
4.45 | 8.63
10.11 | 0.13
0.25 | | | | | | | | 2" Ice | 6.32 | 13.34 | 0.23 | | | | | | | | 4" Ice | | | | | (2) LPA-80080/4CF w/ | В | From Leg | 4.00 | 0.0000 | 99.00 | No Ice | 2.86 | 7.23 | 0.03 | | Mount Pipe | | | 0.00
0.00 | | | 1/2"
Ice | 3.22
3.59 | 7.92
8.63 | 0.08
0.13 | | | | | 0.00 | | | 1" Ice | 4.45 | 10.11 | 0.13 | | | | | | | | 2" Ice | 6.32 | 13.34 | 0.61 | | 5./. /=/ | _ | | | | | 4" Ice | | | | | BXA-171085-8BF-EDIN-2
w/ Mount Pipe | С | From Leg | 4.00
0.00 | 0.0000 | 99.00 | No Ice
1/2" | 3.18
3.56 | 3.35
3.97 | 0.03
0.06 | | w/ Would i ipe | | | 0.00 | | | Ice | 3.96 | 4.60 | 0.00 | | | | | | | | 1" Ice | 4.85 | 5.89 | 0.19 | | | | | | | | 2" Ice | 6.77 | 8.89 | 0.49 | | BXA-171085-8BF-EDIN-2 | Α | From Leg | 4.00 | 0.0000 | 99.00 | 4" Ice
No Ice | 3.18 | 3.35 | 0.03 | | w/ Mount Pipe | ^ | 1 Tolli Leg | 0.00 | 0.0000 | 99.00 | 1/2" | 3.56 | 3.97 | 0.06 | | • | | | 0.00 | | | Ice | 3.96 | 4.60 | 0.10 | | | | | | | | 1" Ice | 4.85 | 5.89 | 0.19 | | | | | | | | 2" Ice
4" Ice | 6.77 | 8.89 | 0.49 | | BXA-171085-8BF-EDIN-2 | В | From Leg | 4.00 | 0.0000 | 99.00 | No Ice | 3.18 | 3.35 | 0.03 | | w/ Mount Pipe | | ŭ | 0.00 | | | 1/2" | 3.56 | 3.97 | 0.06 | | | | | 0.00 | | | Ice
1" Ice | 3.96 | 4.60 | 0.10 | | | | | | | | 2" Ice | 4.85
6.77 | 5.89
8.89 | 0.19
0.49 | | | | | | | | 4" Ice | 0.11 | 0.00 | 0.10 | | BXA-70063-6CF-2 w/ | С | From Leg | 4.00 | 0.0000 | 99.00 | No Ice | 7.97 | 5.80 | 0.04 | | Mount Pipe | | | 0.00
0.00 | | | 1/2"
Ice | 8.61
9.22 | 6.95
7.82 | 0.10
0.17 | | | | | 0.00 | | | 1" Ice | 10.46 | 9.60 | 0.17 | | | | | | | | 2" Ice | 13.07 | 13.37 | 0.80 | | DV4 =0000 00= 0 / | _ | | | | | 4" Ice | | | | | BXA-70063-6CF-2 w/
Mount Pipe | Α | From Leg | 4.00
0.00 | 0.0000 | 99.00 | No Ice
1/2" | 7.97
8.61 | 5.80
6.95 | 0.04
0.10 | | Would Tipe | | | 0.00 | | | Ice | 9.22 | 7.82 | 0.17 | | | | | | | | 1" Ice | 10.46 | 9.60 | 0.34 | | | | | | | | 2" Ice
4" Ice | 13.07 | 13.37 | 0.80 | | BXA-70063-6CF-2 w/ | В | From Leg | 4.00 | 0.0000 | 99.00 | No Ice | 7.97 | 5.80 | 0.04 | | Mount Pipe | | | 0.00 | | | 1/2" | 8.61 | 6.95 | 0.10 | | | | | 0.00 | | | Ice | 9.22 | 7.82 | 0.17 | | | | | | | | 1" Ice
2" Ice | 10.46
13.07 | 9.60
13.37 | 0.34
0.80 | | | | | | | | 4" Ice | 10.07 | 10.07 | 0.00 | | (2) FD9R6004/2C-3L | С | From Leg | 4.00 | 0.0000 | 99.00 | No Ice | 0.37 | 0.08 | 0.00 | | | | | 0.00 | | | 1/2" | 0.45 | 0.14 | 0.01 | | | | | 0.00 | | | Ice
1" Ice | 0.54
0.75 | 0.20
0.34 | 0.01
0.02 | | | | | | | | 2" Ice | 1.28 | 0.74 | 0.06 | | (0) =0.00 | _ | | | | | 4" Ice | | | | | (2) FD9R6004/2C-3L | Α | From Leg | 4.00
0.00 | 0.0000 | 99.00 | No Ice
1/2" | 0.37
0.45 | 0.08
0.14 | 0.00
0.01 | | | | | 0.00 | | | lce | 0.45 | 0.14 | 0.01 | | | | | | | | 1" Ice | 0.75 | 0.34 | 0.02 | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |-------------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|------------------|--|---------------------------------------|--------------| | | | | Vert
ft
ft
ft | 0 | ft | | ft ^e | ft ² | К | | | | | | | | 2" Ice
4" Ice | 1.28 | 0.74 | 0.06 | | (2) FD9R6004/2C-3L | В | From Leg | 4.00 | 0.0000 | 99.00 | No Ice | 0.37 | 0.08 | 0.00 | | () | | 3 | 0.00 | | | 1/2" | 0.45 | 0.14 | 0.01 | | | | | 0.00 | | | Ice | 0.54 | 0.20 | 0.01 | | | | | | | | 1" Ice | 0.75 | 0.34 | 0.02 | | | | | | | | 2" Ice
4" Ice | 1.28 | 0.74 | 0.06 | | ***
T-Arm Mount [TA 602-3] | В | None | | 0.0000 | 88.00 | No Ice | 11.59 | 11.59 | 0.77 | | | | | | | | 1/2" | 15.44 | 15.44 | 0.99 | | | | | | | | Ice | 19.29 | 19.29 | 1.21 | | | | | | | | 1" Ice
2" Ice | 26.99
42.39 | 26.99 | 1.64 | | | | | | | | 4" Ice | 42.39 | 42.39 | 2.50 | | ERICSSON AIR 21 B2A | С | From Face | 4.00 | 0.0000 | 88.00 | No Ice | 6.83 | 5.64 | 0.11 | | B4P w/ Mount Pipe | · · | | 0.00 | 0.000 | 00.00 | 1/2" | 7.35 | 6.48 | 0.17 | | · | | | 2.00 | | | Ice | 7.86 | 7.26 | 0.23 | | | | | | | | 1" Ice | 8.93 | 8.86 | 0.38 | | | | | | | | 2" Ice
4" Ice | 11.18 | 12.29 | 0.81 | | ERICSSON AIR 21 B2A | Α | From Face | 4.00 | 0.0000 | 88.00 | No Ice | 6.83 | 5.64 | 0.11 | | B4P w/ Mount Pipe | ^ | i ioiii i ace | 0.00 | 0.0000 | 00.00 | 1/2" | 7.35 | 6.48 | 0.11 | | Bir William i ipo | | | 2.00 | | | Ice | 7.86 | 7.26 | 0.23 | | | | | | | | 1" Ice | 8.93 | 8.86 | 0.38 | | | | | | | | 2" Ice
4" Ice | 11.18 | 12.29 | 0.81 | | ERICSSON AIR 21 B2A | В | From Face | 4.00 | 0.0000 | 88.00 | No Ice | 6.83 | 5.64 | 0.11 | | B4P w/ Mount Pipe | _ | | 0.00 | 0.000 | 00.00 | 1/2" | 7.35 | 6.48 | 0.17 | | · | | | 2.00 | | | Ice | 7.86 | 7.26 | 0.23 | | | | | | | | 1" Ice | 8.93 | 8.86 | 0.38 | | | | | | | | 2" Ice | 11.18 | 12.29 | 0.81 | | ERICSSON AIR 21 B4A | С | From Face | 4.00 | 0.0000 | 88.00 | 4" Ice
No Ice | 6.83 | 5.64 | 0.11 | | B2P w/ Mount Pipe | C | i ioiii i ace | 0.00 | 0.0000 | 00.00 | 1/2" | 7.35 | 6.48 | 0.11 | | BZI W Would ipe | | | 2.00 | | | Ice | 7.86 | 7.26 | 0.23 | | | | | | | | 1" Ice | 8.93 | 8.86 | 0.38 | | | | | | | | 2" Ice | 11.18 | 12.29 | 0.81 | | EDIO000N AID 04 D44 | | | 4.00 | 0.0000 | 00.00 | 4" Ice | 0.00 | - 04 | 0.44 | | ERICSSON AIR 21 B4A | Α | From Face | 4.00 | 0.0000 | 88.00 | No Ice
1/2" | 6.83
7.35 | 5.64 | 0.11 | | B2P w/ Mount Pipe | | | 0.00
2.00 | | | Ice | 7.33
7.86 | 6.48
7.26 | 0.17
0.23 | | | | | 2.00 | | | 1" Ice | 8.93 | 8.86 | 0.28 | | | | | | | | 2" Ice | 11.18 | 12.29 | 0.81 | | | | | | | | 4" Ice | | | | | ERICSSON AIR 21 B4A | В | From Face | 4.00 | 0.0000 | 88.00 | No Ice | 6.83 | 5.64 | 0.11 | | B2P w/ Mount Pipe | | | 0.00
2.00 | | | 1/2"
Ice | 7.35
7.86 | 6.48
7.26 | 0.17
0.23 | | | | | 2.00 | | | 1" Ice | 8.93 | 8.86 | 0.23 | | | | | | | | 2" Ice | 11.18 | 12.29 | 0.81 | | | | | | | | 4" Ice | | | | | LNX-6515DS-A1M w/ | Α | From Leg | 4.00 | 0.0000 | 88.00 | No Ice | 11.68 | 9.84 | 0.08 | | Mount Pipe | | | 0.00 | | | 1/2" | 12.40 | 11.37 | 0.17 | | | | | 2.00 | | | Ice
1" Ice | 13.14
14.60 | 12.91
15.27 | 0.27
0.51 | | | | | | | | 2" Ice | 17.87 | 20.14 | 1.15 | | | | | | | | 4" Ice | 17.07 | 20.17 | 1.10 | | LNX-6515DS-A1M w/ | В | From Leg | 4.00 | 0.0000 | 88.00 | No Ice | 11.68 | 9.84 | 0.08 | | Mount Pipe | | - | 0.00 | | | 1/2" | 12.40 | 11.37 | 0.17 | | | | | 2.00 | | | Ice | 13.14 | 12.91 | 0.27 | | | | | | | | 1" Ice
2" Ice | 14.60 | 15.27 | 0.51 | | | | | | | | 4" Ice | 17.87 | 20.14 | 1.15 | | LNX-6515DS-A1M w/ | С | From Leg | 4.00 | 0.0000 | 88.00 | No Ice | 11.68 | 9.84 | 0.08 | | Mount Pipe | - | 3 | 0.00 | | | 1/2" | 12.40 | 11.37 | 0.17 | | • | | | | | | | | | | | | or
Leg | Offset
Type | Offsets:
Horz
Lateral
Vert | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |-----|-----------|----------------|-------------------------------------|---------------------------|-----------|-----------------------------------|--|---------------------------------------|----------------------| | | | | ft
ft
ft | ٥ | ft | | ft² | ft ² | K | | *** | | | 2.00 | | | Ice
1" Ice
2" Ice
4" Ice | 13.14
14.60
17.87 | 12.91
15.27
20.14 | 0.27
0.51
1.15 | # **Load Combinations** | Comb. | Description | |-------|-----------------------------| | No. | | | 1 | Dead Only | | 2 | Dead+Wind 0 deg - No Ice | | 3 | Dead+Wind 30 deg - No Ice | | 4 | Dead+Wind 60 deg - No Ice | | 5 | Dead+Wind 90 deg -
No Ice | | 6 | Dead+Wind 120 deg - No Ice | | 7 | Dead+Wind 150 deg - No Ice | | 8 | Dead+Wind 180 deg - No Ice | | 9 | Dead+Wind 210 deg - No Ice | | 10 | Dead+Wind 240 deg - No Ice | | 11 | Dead+Wind 270 deg - No Ice | | 12 | Dead+Wind 300 deg - No Ice | | 13 | Dead+Wind 330 deg - No Ice | | 14 | Dead+Ice+Temp | | 15 | Dead+Wind 0 deg+lce+Temp | | 16 | Dead+Wind 30 deg+Ice+Temp | | 17 | Dead+Wind 60 deg+Ice+Temp | | 18 | Dead+Wind 90 deg+lce+Temp | | 19 | Dead+Wind 120 deg+Ice+Temp | | 20 | Dead+Wind 150 deg+lce+Temp | | 21 | Dead+Wind 180 deg+lce+Temp | | 22 | Dead+Wind 210 deg+lce+Temp | | 23 | Dead+Wind 240 deg+Ice+Temp | | 24 | Dead+Wind 270 deg+lce+Temp | | 25 | Dead+Wind 300 deg+lce+Temp | | 26 | Dead+Wind 330 deg+lce+Temp | | 27 | Dead+Wind 0 deg - Service | | 28 | Dead+Wind 30 deg - Service | | 29 | Dead+Wind 60 deg - Service | | 30 | Dead+Wind 90 deg - Service | | 31 | Dead+Wind 120 deg - Service | | 32 | Dead+Wind 150 deg - Service | | 33 | Dead+Wind 180 deg - Service | | 34 | Dead+Wind 210 deg - Service | | 35 | Dead+Wind 240 deg - Service | | 36 | Dead+Wind 270 deg - Service | | 37 | Dead+Wind 300 deg - Service | | 38 | Dead+Wind 330 deg - Service | | | · | # **Maximum Member Forces** | Sectio | Elevation | Component | Condition | Gov. | Force | Major Axis | Minor Axis | |--------|-----------|-----------|-----------------|-------|--------|------------|------------| | n | ft | Type | | Load | | Moment | Moment | | No. | | ,, | | Comb. | K | kip-ft | kip-ft | | L1 | 120 - 97 | Pole | Max Tension | 8 | 0.00 | 0.00 | 0.00 | | | | | Max Compression | 14 | -11 83 | 0.00 | 0.36 | | Sectio | Elevation | Component | Condition | Gov. | Force | Major Axis | Minor Axis | |----------|-----------|-----------|------------------|---------------|--------|------------------|------------------| | n
No. | ft | Type | | Load
Comb. | K | Moment
kip-ft | Moment
kip-ft | | | | | Max. Mx | 5 | -6.24 | -105.02 | 0.09 | | | | | Max. My | 2 | -6.24 | 0.00 | 105.12 | | | | | Max. Vy | 5 | 7.45 | -105.02 | 0.09 | | | | | Max. Vx | 2 | -7.45 | 0.00 | 105.12 | | | | | Max. Torque | 5 | | | 0.31 | | L2 | 97 - 48 | Pole | Max Tension | 1 | 0.00 | 0.00 | 0.00 | | | | | Max. Compression | 14 | -28.56 | 0.00 | 0.36 | | | | | Max. Mx | 5 | -16.10 | -796.83 | 0.11 | | | | | Max. My | 2 | -16.10 | 0.00 | 796.94 | | | | | Max. Vy | 5 | 16.79 | -796.83 | 0.11 | | | | | Max. Vx | 2 | -16.79 | 0.00 | 796.94 | | | | | Max. Torque | 5 | | | 0.31 | | L3 | 48 - 0 | Pole | Max Tension | 1 | 0.00 | 0.00 | 0.00 | | | | | Max. Compression | 14 | -41.61 | 0.00 | 0.36 | | | | | Max. Mx | 5 | -26.38 | -1768.74 | 0.11 | | | | | Max. My | 2 | -26.38 | 0.00 | 1768.84 | | | | | Max. Vy | 5 | 19.94 | -1768.74 | 0.11 | | | | | Max. Vx | 2 | -19.94 | 0.00 | 1768.84 | | | | | Max. Torque | 5 | | | 0.31 | | R4 - 1 | D 1' | |---------|-----------| | Maximum | Reactions | | Location | Condition | Gov. | Vertical | Horizontal, X | Horizontal, Z | |----------|---------------------|-------|----------|---------------|---------------| | | | Load | K | K | K | | | | Comb. | | | | | Pole | Max. Vert | 15 | 41.61 | 0.00 | 5.41 | | | Max. H _x | 11 | 26.39 | 19.93 | 0.00 | | | Max. H _z | 2 | 26.39 | 0.00 | 19.93 | | | Max. M _x | 2 | 1768.84 | 0.00 | 19.93 | | | Max. M _z | 5 | 1768.74 | -19.93 | 0.00 | | | Max. Torsion | 5 | 0.31 | -19.93 | 0.00 | | | Min. Vert | 1 | 26.39 | 0.00 | 0.00 | | | Min. H _x | 5 | 26.39 | -19.93 | 0.00 | | | Min. H _z | 8 | 26.39 | 0.00 | -19.93 | | | Min. M _x | 8 | -1768.63 | 0.00 | -19.93 | | | Min. M _z | 11 | -1768.74 | 19.93 | 0.00 | | | Min. Torsion | 11 | -0.31 | 19.93 | 0.00 | # **Tower Mast Reaction Summary** | Load | Vertical | Shear _x | Shearz | Overturning | Overturning | Torque | |----------------------------|----------|--------------------|--------|------------------------|-------------|--------| | Combination | | | | Moment, M _x | Moment, Mz | | | | K | K | K | kip-ft | kip-ft | kip-ft | | Dead Only | 26.39 | 0.00 | 0.00 | -0.10 | 0.00 | 0.00 | | Dead+Wind 0 deg - No Ice | 26.39 | 0.00 | -19.93 | -1768.84 | 0.00 | 0.00 | | Dead+Wind 30 deg - No Ice | 26.39 | 9.96 | -17.26 | -1531.88 | -884.37 | -0.16 | | Dead+Wind 60 deg - No Ice | 26.39 | 17.26 | -9.96 | -884.48 | -1531.77 | -0.27 | | Dead+Wind 90 deg - No Ice | 26.39 | 19.93 | -0.00 | -0.11 | -1768.74 | -0.31 | | Dead+Wind 120 deg - No Ice | 26.39 | 17.26 | 9.96 | 884.26 | -1531.77 | -0.27 | | Dead+Wind 150 deg - No Ice | 26.39 | 9.96 | 17.26 | 1531.66 | -884.37 | -0.16 | | Dead+Wind 180 deg - No Ice | 26.39 | 0.00 | 19.93 | 1768.63 | 0.00 | 0.00 | | Dead+Wind 210 deg - No Ice | 26.39 | -9.96 | 17.26 | 1531.66 | 884.37 | 0.16 | | Dead+Wind 240 deg - No Ice | 26.39 | -17.26 | 9.96 | 884.26 | 1531.77 | 0.27 | | Dead+Wind 270 deg - No Ice | 26.39 | -19.93 | -0.00 | -0.11 | 1768.74 | 0.31 | | Dead+Wind 300 deg - No Ice | 26.39 | -17.26 | -9.96 | -884.48 | 1531.77 | 0.27 | | Dead+Wind 330 deg - No Ice | 26.39 | -9.96 | -17.26 | -1531.88 | 884.37 | 0.16 | | Dead+Ice+Temp | 41.61 | 0.00 | 0.00 | -0.36 | 0.00 | 0.00 | | Dead+Wind 0 | 41.61 | 0.00 | -5.41 | -506.29 | 0.00 | 0.00 | | deg+lce+Temp | | | | | | | | Dead+Wind 30 | 41.61 | 2.70 | -4.68 | -438.51 | -252.95 | -0.05 | | dea+lce+Temp | | | | | | | | Load | Vertical | Shear _x | Shear₂ | Overturning | Overturning | Torque | |----------------------------|----------|--------------------|--------|------------------------|-------------|--------| | Combination | | | | Moment, M _x | Moment, Mz | | | | K | K | K | kip-ft | kip-ft | kip-ft | | Dead+Wind 60 | 41.61 | 4.68 | -2.70 | -253.34 | -438.12 | -0.09 | | deg+lce+Temp | | | | | | | | Dead+Wind 90 | 41.61 | 5.41 | 0.00 | -0.39 | -505.90 | -0.10 | | deg+lce+Temp | | | | | | | | Dead+Wind 120 | 41.61 | 4.68 | 2.70 | 252.56 | -438.12 | -0.09 | | deg+lce+Temp | | | | | | | | Dead+Wind 150 | 41.61 | 2.70 | 4.68 | 437.73 | -252.95 | -0.05 | | deg+lce+Temp | | | | | | | | Dead+Wind 180 | 41.61 | 0.00 | 5.41 | 505.50 | 0.00 | 0.00 | | deg+lce+Temp | | | | | | | | Dead+Wind 210 | 41.61 | -2.70 | 4.68 | 437.73 | 252.95 | 0.05 | | deg+lce+Temp | | | | | | | | Dead+Wind 240 | 41.61 | -4.68 | 2.70 | 252.56 | 438.12 | 0.09 | | deg+lce+Temp | | | | | | | | Dead+Wind 270 | 41.61 | -5.41 | 0.00 | -0.39 | 505.90 | 0.10 | | deg+lce+Temp | | | | | | | | Dead+Wind 300 | 41.61 | -4.68 | -2.70 | -253.34 | 438.12 | 0.09 | | deg+lce+Temp | | | | | | | | Dead+Wind 330 | 41.61 | -2.70 | -4.68 | -438.51 | 252.95 | 0.05 | | deg+lce+Temp | | | | | | | | Dead+Wind 0 deg - Service | 26.39 | 0.00 | -7.78 | -691.34 | 0.00 | 0.00 | | Dead+Wind 30 deg - Service | 26.39 | 3.89 | -6.74 | -598.74 | -345.62 | -0.06 | | Dead+Wind 60 deg - Service | 26.39 | 6.74 | -3.89 | -345.73 | -598.63 | -0.11 | | Dead+Wind 90 deg - Service | 26.39 | 7.78 | 0.00 | -0.11 | -691.23 | -0.12 | | Dead+Wind 120 deg - | 26.39 | 6.74 | 3.89 | 345.51 | -598.63 | -0.11 | | Service | | | | | | | | Dead+Wind 150 deg - | 26.39 | 3.89 | 6.74 | 598.52 | -345.62 | -0.06 | | Service | | | | | | | | Dead+Wind 180 deg - | 26.39 | 0.00 | 7.78 | 691.12 | 0.00 | 0.00 | | Service | | | | | | | | Dead+Wind 210 deg - | 26.39 | -3.89 | 6.74 | 598.52 | 345.62 | 0.06 | | Service | | | | | | | | Dead+Wind 240 deg - | 26.39 | -6.74 | 3.89 | 345.51 | 598.63 | 0.11 | | Service | | | | | | | | Dead+Wind 270 deg - | 26.39 | -7.78 | 0.00 | -0.11 | 691.23 | 0.12 | | Service | | | | | | | | Dead+Wind 300 deg - | 26.39 | -6.74 | -3.89 | -345.73 | 598.63 | 0.11 | | Service | | | | | | | | Dead+Wind 330 deg - | 26.39 | -3.89 | -6.74 | -598.74 | 345.62 | 0.06 | | Service | | | | | | | # **Solution Summary** | | Sun | n of Applied Force | es | | Sum of Reactions | | | | | |-------|--------|--------------------|--------|--------|------------------|--------|--------|--|--| | Load | PX | PY | PZ | PX | PY | PZ | % Erro | | | | Comb. | K | K | K | K | K | K | | | | | 1 | 0.00 | -26.39 | 0.00 | 0.00 | 26.39 | 0.00 | 0.000% | | | | 2 | 0.00 | -26.39 | -19.93 | 0.00 | 26.39 | 19.93 | 0.000% | | | | 3 | 9.96 | -26.39 | -17.26 | -9.96 | 26.39 | 17.26 | 0.000% | | | | 4 | 17.26 | -26.39 | -9.96 | -17.26 | 26.39 | 9.96 | 0.000% | | | | 5 | 19.93 | -26.39 | 0.00 | -19.93 | 26.39 | 0.00 | 0.000% | | | | 6 | 17.26 | -26.39 | 9.96 | -17.26 | 26.39 | -9.96 | 0.000% | | | | 7 | 9.96 | -26.39 | 17.26 | -9.96 | 26.39 | -17.26 | 0.000% | | | | 8 | 0.00 | -26.39 | 19.93 | 0.00 | 26.39 | -19.93 | 0.000% | | | | 9 | -9.96 | -26.39 | 17.26 | 9.96 | 26.39 | -17.26 | 0.000% | | | | 10 | -17.26 | -26.39 | 9.96 | 17.26 | 26.39 | -9.96 | 0.000% | | | | 11 | -19.93 | -26.39 | 0.00 | 19.93 | 26.39 | 0.00 | 0.000% | | | | 12 | -17.26 | -26.39 | -9.96 | 17.26 | 26.39 | 9.96 | 0.000% | | | | 13 | -9.96 | -26.39 | -17.26 | 9.96 | 26.39 | 17.26 | 0.000% | | | | 14 | 0.00 | -41.61 | 0.00 | 0.00 | 41.61 | 0.00 | 0.000% | | | | 15 | 0.00 | -41.61 | -5.41 | 0.00 | 41.61 | 5.41 | 0.000% | | | | 16 | 2.70 | -41.61 | -4.68 | -2.70 | 41.61 | 4.68 | 0.000% | | | | 17 | 4.68 | -41.61 | -2.70 | -4.68 | 41.61 | 2.70 | 0.000% | | | | 18 | 5.41 | -41.61 | 0.00 | -5.41 | 41.61 | 0.00 | 0.000% | | | | 19 | 4.68 | -41.61 | 2.70 | -4.68 | 41.61 | -2.70 | 0.000% | | | | 20 | 2.70 | -41.61 | 4.68 | -2.70 | 41.61 | -4.68 | 0.000% | | | | | Sur | n of Applied Force | es | | Sum of Reaction | ns | | |-------|-------|--------------------|-------|-------|-----------------|-------|---------| | Load | PX | PY | PZ | PX | PY | PZ | % Error | | Comb. | K | K | K | K | K | K | | | 21 | 0.00 | -41.61 | 5.41 | 0.00 | 41.61 | -5.41 | 0.000% | | 22 | -2.70 | -41.61 | 4.68 | 2.70 | 41.61 | -4.68 | 0.000% | | 23 | -4.68 | -41.61 | 2.70 | 4.68 | 41.61 | -2.70 | 0.000% | | 24 | -5.41 | -41.61 | 0.00 | 5.41 | 41.61 | 0.00 | 0.000% | | 25 | -4.68 | -41.61 | -2.70 | 4.68 | 41.61 | 2.70 | 0.000% | | 26 | -2.70 | -41.61 | -4.68 | 2.70 | 41.61 | 4.68 | 0.000% | | 27 | 0.00 | -26.39 | -7.78 | 0.00 | 26.39 | 7.78 | 0.000% | | 28 | 3.89 | -26.39 | -6.74 | -3.89 | 26.39 | 6.74 | 0.000% | | 29 | 6.74 | -26.39 | -3.89 | -6.74 | 26.39 | 3.89 |
0.000% | | 30 | 7.78 | -26.39 | 0.00 | -7.78 | 26.39 | 0.00 | 0.000% | | 31 | 6.74 | -26.39 | 3.89 | -6.74 | 26.39 | -3.89 | 0.000% | | 32 | 3.89 | -26.39 | 6.74 | -3.89 | 26.39 | -6.74 | 0.000% | | 33 | 0.00 | -26.39 | 7.78 | 0.00 | 26.39 | -7.78 | 0.000% | | 34 | -3.89 | -26.39 | 6.74 | 3.89 | 26.39 | -6.74 | 0.000% | | 35 | -6.74 | -26.39 | 3.89 | 6.74 | 26.39 | -3.89 | 0.000% | | 36 | -7.78 | -26.39 | 0.00 | 7.78 | 26.39 | 0.00 | 0.000% | | 37 | -6.74 | -26.39 | -3.89 | 6.74 | 26.39 | 3.89 | 0.000% | | 38 | -3.89 | -26.39 | -6.74 | 3.89 | 26.39 | 6.74 | 0.000% | # **Non-Linear Convergence Results** | Load | Converged? | Number | Displacement | Force | |-------------|------------|-----------|--------------|------------| | Combination | | of Cycles | Tolerance | Tolerance | | 1 | Yes | 4 | 0.0000001 | 0.0000001 | | 2 | Yes | 4 | 0.0000001 | 0.00006110 | | 3 | Yes | 5 | 0.0000001 | 0.00024790 | | 4 | Yes | 5 | 0.0000001 | 0.00025473 | | 5 | Yes | 4 | 0.0000001 | 0.00028533 | | 6 | Yes | 5 | 0.0000001 | 0.00024597 | | 7 | Yes | 5 | 0.0000001 | 0.00025265 | | 8 | Yes | 4 | 0.0000001 | 0.00006108 | | 9 | Yes | 5 | 0.0000001 | 0.00025265 | | 10 | Yes | 5 | 0.0000001 | 0.00024597 | | 11 | Yes | 4 | 0.0000001 | 0.00028533 | | 12 | Yes | 5 | 0.0000001 | 0.00025473 | | 13 | Yes | 5 | 0.0000001 | 0.00024790 | | 14 | Yes | 4 | 0.0000001 | 0.0000001 | | 15 | Yes | 5 | 0.00000001 | 0.00009638 | | 16 | Yes | 5 | 0.00000001 | 0.00012322 | | 17 | Yes | 5 | 0.00000001 | 0.00012399 | | 18 | Yes | 5 | 0.00000001 | 0.00009631 | | 19 | Yes | 5 | 0.0000001 | 0.00012254 | | 20 | Yes | 5 | 0.00000001 | 0.00012324 | | 21 | Yes | 5 | 0.00000001 | 0.00009605 | | 22 | Yes | 5 | 0.00000001 | 0.00012324 | | 23 | Yes | 5 | 0.0000001 | 0.00012254 | | 24 | Yes | 5 | 0.00000001 | 0.00009631 | | 25 | Yes | 5 | 0.0000001 | 0.00012399 | | 26 | Yes | 5 | 0.00000001 | 0.00012322 | | 27 | Yes | 4 | 0.00000001 | 0.00003104 | | 28 | Yes | 4 | 0.00000001 | 0.00062131 | | 29 | Yes | 4 | 0.0000001 | 0.00065893 | | 30 | Yes | 4 | 0.00000001 | 0.00006473 | | 31 | Yes | 4 | 0.00000001 | 0.00061114 | | 32 | Yes | 4 | 0.00000001 | 0.00064682 | | 33 | Yes | 4 | 0.00000001 | 0.00003102 | | 34 | Yes | 4 | 0.00000001 | 0.00064682 | | 35 | Yes | 4 | 0.00000001 | 0.00061114 | | 36 | Yes | 4 | 0.00000001 | 0.00006473 | | 37 | Yes | 4 | 0.00000001 | 0.00065893 | | 38 | Yes | 4 | 0.00000001 | 0.00062131 | #### **Maximum Tower Deflections - Service Wind** | Section
No. | Elevation | Horz.
Deflection | Gov.
Load | Tilt | Twist | |----------------|-------------|---------------------|--------------|--------|--------| | | ft | in | Comb. | 0 | 0 | | L1 | 120 - 97 | 18.604 | 27 | 1.2890 | 0.0015 | | L2 | 100.62 - 48 | 13.467 | 27 | 1.2183 | 0.0008 | | L3 | 52.96 - 0 | 3.693 | 27 | 0.6498 | 0.0002 | #### **Critical Deflections and Radius of Curvature - Service Wind** | Elevation | Appurtenance | Gov.
Load | Deflection | Tilt | Twist | Radius of
Curvature | |-----------|----------------------------|--------------|------------|--------|--------|------------------------| | ft | | Comb. | in | 0 | 0 | ft | | 119.00 | Platform Mount [LP 1201-1] | 27 | 18.335 | 1.2866 | 0.0015 | 34072 | | 109.00 | Platform Mount [LP 1201-1] | 27 | 15.655 | 1.2585 | 0.0011 | 15487 | | 99.00 | Platform Mount [LP 1201-1] | 27 | 13.053 | 1.2077 | 0.0008 | 8337 | | 88.00 | T-Arm Mount [TA 602-3] | 27 | 10.358 | 1.1111 | 0.0005 | 6042 | # **Maximum Tower Deflections - Design Wind** | Section | Elevation | Horz. | Gov. | Tilt | Twist | |---------|-------------|------------|-------|--------|--------| | No. | | Deflection | Load | | | | | ft | in | Comb. | ٥ | 0 | | L1 | 120 - 97 | 47.566 | 2 | 3.2953 | 0.0039 | | L2 | 100.62 - 48 | 34.436 | 2 | 3.1153 | 0.0021 | | L3 | 52.96 - 0 | 9.446 | 2 | 1.6621 | 0.0006 | # **Critical Deflections and Radius of Curvature - Design Wind** | Elevation | on Appurtenance | | Deflection | Tilt | Twist | Radius of
Curvature | |-----------|----------------------------|-------|------------|--------|--------|------------------------| | ft | | Comb. | in | 0 | 0 | ft | | 119.00 | Platform Mount [LP 1201-1] | 2 | 46.877 | 3.2893 | 0.0038 | 13431 | | 109.00 | Platform Mount [LP 1201-1] | 2 | 40.030 | 3.2178 | 0.0028 | 6104 | | 99.00 | Platform Mount [LP 1201-1] | 2 | 33.379 | 3.0881 | 0.0020 | 3284 | | 88.00 | T-Arm Mount [TA 602-3] | 2 | 26.489 | 2.8415 | 0.0014 | 2375 | # **Compression Checks** | Pole Design Data | | | | | | | | | | | |------------------|--------------|------------------------|-------|------|------|--------|---------|-------------|--------------|------------| | Section
No. | Elevation | Size | L | Lu | KI/r | Fa | Α | Actual
P | Allow.
Pa | Ratio
P | | | ft | | ft | ft | | ksi | in² | K | K | Pa | | L1 | 120 - 97 (1) | TP28.93x22.69x0.1875 | 23.00 | 0.00 | 0.0 | 39.000 | 16.5209 | -6.24 | 644.32 | 0.010 | | L2 | 97 - 48 (2) | TP39.7x27.5729x0.25 | 52.62 | 0.00 | 0.0 | 38.647 | 30.3965 | -16.10 | 1174.73 | 0.014 | | L3 | 48 - 0 (3) | TP51.04x38.0569x0.3125 | 52.96 | 0.00 | 0.0 | 37.628 | 50.3153 | -26.38 | 1893.27 | 0.014 | | Pole Bending Design Data | | | | | | | | | | | |--------------------------|--------------|------------------------|--------------------------|---------------------------|---------------------------|--------------------------|--------------------------|---------------------------|---------------------------|--------------------------| | Section
No. | Elevation | Size | Actual
M _x | Actual
f _{bx} | Allow.
F _{bx} | Ratio
f _{bx} | Actual
M _y | Actual
f _{by} | Allow.
F _{by} | Ratio
f _{by} | | | ft | | kip-ft | ksi | ksi | F _{bx} | kip-ft | ksi | ksi | F _{by} | | L1 | 120 - 97 (1) | TP28.93x22.69x0.1875 | 105.12 | 11.134 | 39.000 | 0.285 | 0.00 | 0.000 | 39.000 | 0.000 | | L2 | 97 - 48 (2) | TP39.7x27.5729x0.25 | 796.94 | 33.240 | 38.647 | 0.860 | 0.00 | 0.000 | 38.647 | 0.000 | | L3 | 48 - 0 (3) | TP51.04x38.0569x0.3125 | 1768.8
4 | 33.645 | 37.628 | 0.894 | 0.00 | 0.000 | 37.628 | 0.000 | | Pole Shear Design Data | | | | | | | | | | | |------------------------|--------------|------------------------|-------------|-----------------------|--------|-------------------------|-------------|---------------------------|---------------------------|--------------------------| | Section
No. | Elevation | Size | Actual
V | Actual f _v | Allow. | Ratio
f _v | Actual
T | Actual
f _{vt} | Allow.
F _{vt} | Ratio
f _{vt} | | | ft | | K | ksi | ksi | F _v | kip-ft | ksi | ksi | F _{vt} | | L1 | 120 - 97 (1) | TP28.93x22.69x0.1875 | 7.45 | 0.451 | 26.000 | 0.035 | 0.00 | 0.000 | 26.000 | 0.000 | | L2 | 97 - 48 (2) | TP39.7x27.5729x0.25 | 16.79 | 0.552 | 26.000 | 0.042 | 0.00 | 0.000 | 26.000 | 0.000 | | L3 | 48 - 0 (3) | TP51.04x38.0569x0.3125 | 19.94 | 0.396 | 26.000 | 0.030 | 0.00 | 0.000 | 26.000 | 0.000 | | Pole Interaction Design Data | | | | | | | | | | |------------------------------|--------------|------------|--------------------------|--------------------------|-------------------------|--------------------------|-----------------|------------------|-----------| | Section
No. | Elevation | Ratio
P | Ratio
f _{bx} | Ratio
f _{by} | Ratio
f _v | Ratio
f _{vt} | Comb.
Stress | Allow.
Stress | Criteria | | | ft | Pa | F _{bx} | F _{by} | F_v | F _{vt} | Ratio | Ratio | | | L1 | 120 - 97 (1) | 0.010 | 0.285 | 0.000 | 0.035 | 0.000 | 0.295 | 1.333 | H1-3+VT 🗸 | | L2 | 97 - 48 (2) | 0.014 | 0.860 | 0.000 | 0.042 | 0.000 | 0.874 | 1.333 | H1-3+VT 🗸 | | L3 | 48 - 0 (3) | 0.014 | 0.894 | 0.000 | 0.030 | 0.000 | 0.908 | 1.333 | H1-3+VT 🗸 | | | | | Section Capac | ity Tab | le | | | | |----------------|-----------------|-------------------|------------------------|---------------------|--------|----------------------------|---------------|--------------| | Section
No. | Elevation
ft | Component
Type | Size | Critical
Element | P
K | SF*P _{allow}
K | %
Capacity | Pass
Fail | | L1 | 120 - 97 | Pole | TP28.93x22.69x0.1875 | 1 | -6.24 | 858.87 | 22.2 | Pass | | L2 | 97 - 48 | Pole | TP39.7x27.5729x0.25 | 2 | -16.10 | 1565.92 | 65.6 | Pass | | L3 | 48 - 0 | Pole | TP51.04x38.0569x0.3125 | 3 | -26.38 | 2523.73 | 68.1 | Pass | | | | | | | | | Summary | | | | | | | | | Pole (L3) | 68.1 | Pass | | | | | | | | RATING = | 68.1 | Pass | # APPENDIX B BASE LEVEL DRAWING # APPENDIX C ADDITIONAL CALCULATIONS ## Stiffened or Unstiffened, Ungrouted, Circular Base Plate - Any Rod Material ### TIA Rev F Site Data BU#: 845993 Site Name: Burlington-Nepaug Road App #: 358447 Rev. 0 Pole Manufacturer: Other | Reactions | | | |-----------|------|---------| | Moment: | 1769 | ft-kips | | Axial: | 26 | kips | | Shear: | 20 | kips | If No stiffeners, Criteria: **Anchor Rod Results** Allowable Tension: Maximum Rod Tension: Anchor Rod Stress Ratio: AISC ASD <-Only Applicable to Unstiffened Cases 115.7 Kips 195.0 Kips 59.4% Pass Non-Rigid Service, ASD Fty*ASIF | Anchor Rod Data | | | | | |-----------------|--------|-----|--|--| | Qty: | 12 | | | | | Diam: | 2.25 | in | | | | Rod Material: | A615-J | | | | | Strength (Fu): | 100 | ksi | | | | Yield (Fy): | 75 | ksi | | | | Bolt Circle: | 60 | in | | | | Plate Data | | | | | |-------------------|-------|-----|--|--| | Diam: | 74 | in | | | | Thick: | 2.25 | in | | | | Grade: | 36 | ksi | | | | Single-Rod B-eff: | 13.50 | lin | | | | Stiffener Data (Welding at both sides) | | | | | |--|---|-------------|--|--| | Config: | 0 | * | | | | Weld Type: | | | | | | Groove Depth: | | < Disregard | | | | Groove Angle: | | < Disregard | | | | Fillet H. Weld: | | in | | | | <u>Fillet</u> V. Weld: | | in | | | | Width: | | in | | | | Height: | | in | | | | Thick: | | in | | | | Notch: | | in | | | | Grade: | | ksi | | | | Weld str.: | | ksi | | | | Pole Data | | | | | |--------------------|--------|--------------|--|--| | Diam: | 51.04 | in | | | | Thick: | 0.3125 | in | | | |
Grade: | 65 | ksi | | | | # of Sides: | 18 | "0" IF Round | | | | Fu | 80 | ksi | | | | Reinf. Fillet Weld | 0 | "0" if None | | | | Stress Inc | crease Facto | or | |------------|--------------|----| | ASIF: | 1.333 | | | Base Plate Results | Flexural Check | |--------------------------|----------------| | Base Plate Stress: | 30.2 ksi | | Allowable Plate Stress: | 36.0 ksi | | Base Plate Stress Ratio: | 83.8% Pass | | ıral Check | Non-Rigid | |------------|--------------| | 30.2 ksi | Service ASD | | 36.0 ksi | 0.75*Fy*ASIF | | 83.8% Pass | Y.L. Length: | | | 04 = 4 | #### <u>n/a</u> Stiffener Results Horizontal Weld: n/a Vertical Weld: n/a Plate Flex+Shear, fb/Fb+(fv/Fv)^2: n/a Plate Tension+Shear, ft/Ft+(fv/Fv)^2: n/a Plate Comp. (AISC Bracket): n/a #### **Pole Results** Pole Punching Shear Check: n/a CCIplate v2.0 Analysis Date: 8/28/2016 ^{* 0 =} none, 1 = every bolt, 2 = every 2 bolts, 3 = 2 per bolt ^{**} Note: for complete joint penetration groove welds the groove depth must be exactly 1/2 the stiffener thickness for calculation purposes # **Monopole Pier and Pad Foundation** **BU #**: 845993 Site Name: Burlington-Nepaug Road App. Number: 358447 Rev. 0 TIA-222 Revision: F | - | | |------|-------------------| | | | | 20 | kips | | 1769 | ft-kips | | 120 | ft | | 26 | kips | | 4.25 | ft | | | 1769
120
26 | | Foundation Dimensions | | | | |-----------------------|------|-----|--| | Depth, D : | 5 | ft | | | Pad Width, W: | 23.8 | ft | | | Neglected Depth, N: | 3.33 | ft | | | Thickness, T: | 3.00 | ft | | | Pier Diameter, Pd: | 7.00 | ft | | | Ext. Above Grade, E: | 0.90 | ft | | | BP Dist. Above Pier: | 3 | in. | | | Clear Cover, Cc: | 3.0 | in | | | Soil Properties | | | | | |-------------------------------|-------|-----|--|--| | Soil Unit Weight, γ: | 0.120 | kcf | | | | Ult. Bearing Capacity, Bc: | 12.0 | ksf | | | | Angle of Friction, Φ: | 30 | deg | | | | Cohesion, Co: | 0.000 | ksf | | | | Passive Pressure, Pp : | 0.000 | ksf | | | | Base Friction, μ: | 0.45 | | | | | Material Properties | | | |---------------------------|-------|-----| | Rebar Yield Strength, Fy: | 60000 | psi | | Concrete Strength, F'c: | 3000 | psi | | Concrete Unit Weight, δc: | 0.150 | kcf | | Seismic Zone, z: | 1 | | | Rebar Properties | | | |------------------------------|----|----| | Pier Rebar Size, Sp : | 8 | | | Pier Rebar Quanity, mp: | 29 | 36 | | Pad Rebar Size, Spad: | 8 | | | Pad Rebar Quanity, mpad: | 29 | 12 | | Pier Tie Size, St: | 3 | 3 | | Tie Quanity, mt : | 5 | 5 | | Design Checks | | | | | | |-----------------------------|---------------------------|-------------------|-------|--|--| | | Capacity/
Availability | Demand/
Limits | Check | | | | Req'd Pier Diam.(ft) | 7 | 5.75 | ок | | | | Overturning (ft-kips) | 3114.10 | 1769.00 | 56.8% | | | | Shear Capacity (kips) | 98.54 | 20.00 | 20.3% | | | | Bearing (ksf) | 9.00 | 1.80 | 20.0% | | | | Pad Shear - 1-way (kips) | 762.59 | 249.02 | 32.7% | | | | Pad Shear - 2-way (kips) | 1954.52 | 78.08 | 4.0% | | | | Pad Moment Capacity (k-ft) | 3253.29 | 753.23 | 23.2% | | | | Pier Moment Capacity (k-ft) | 2927.91 | 1827.00 | 62.4% | | | # RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS T-Mobile Existing Facility Site ID: CTHA509A AT&T Burlington Monopole 12 Nepaug Road Burlington, CT 06013 September 2, 2016 EBI Project Number: 6216003937 | Site Compliance Summary | | | | |--|-----------|--|--| | Compliance Status: | COMPLIANT | | | | Site total MPE% of FCC general public allowable limit: | 11.95 % | | | September 2, 2016 T-Mobile USA Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, CT 06002 Emissions Analysis for Site: CTHA509A – AT&T Burlington Monopole EBI Consulting was directed to analyze the proposed T-Mobile facility located at **12 Nepaug Road**, **Burlington**, **CT**, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits. All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density. All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below. General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area. Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limit for the 700 MHz Band is approximately 467 μ W/cm², and the general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density. Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. Additional details can be found in FCC OET 65. ### **CALCULATIONS** Calculations were done for the proposed T-Mobile Wireless antenna facility located at **12 Nepaug Road**, **Burlington**, **CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower. For all calculations, all equipment was calculated using the following assumptions: - 1) 2 UMTS channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel. - 2) 2 LTE channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel - 3) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts. - 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous. - 5) For the following calculations the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction. - 6) The antennas used in this modeling are the Ericsson AIR21 B4A/B2P & Ericsson AIR21 B2A/B4P for 1900 MHz (PCS) and 2100 MHz (AWS) channels and the Commscope LNX-6515DS-VTM for 700 MHz channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The Ericsson AIR21 B4A/B2P has a maximum gain of 15.9 dBd at its main lobe at 1900 MHz and 2100 MHz. The Ericsson AIR21 B2A/B4P has a maximum gain of 15.9 dBd at its main lobe at 1900 MHz and 2100 MHz. The Commscope LNX-6515DS-VTM has a maximum gain of 14.6 dBd at its main lobe. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction. - 7) The antenna mounting height centerline of the proposed antennas is **90 feet** above ground level (AGL). - 8) Emissions
values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves. - 9) All calculations were done with respect to uncontrolled / general public threshold limits. ## **T-Mobile Site Inventory and Power Data** | Q | | a . | | G · | | |--------------------|-----------------|--------------------|-----------------|--------------------|-----------------| | Sector: | A | Sector: | В | Sector: | С | | Antenna #: | 1 | Antenna #: | 1 | Antenna #: | 1 | | Make / Model: | Ericsson AIR21 | Make / Model: | Ericsson AIR21 | Make / Model: | Ericsson AIR21 | | | B4A/B2P | | B4A/B2P | | B4A/B2P | | Gain: | 15.9 dBd | Gain: | 15.9 dBd | Gain: | 15.9 dBd | | Height (AGL): | 90 | Height (AGL): | 90 | Height (AGL): | 90 | | Frequency Bands | 1900 MHz(PCS) / | Frequency Bands | 1900 MHz(PCS) / | Frequency Bands | 1900 MHz(PCS) / | | 1 requeitey Bands | 2100 MHz (AWS) | 1 requeriey Burids | 2100 MHz (AWS) | Trequency Bunds | 2100 MHz (AWS) | | Channel Count | 2 | Channel Count | 2 | Channel Count | 2 | | Total TX Power(W): | 120 | Total TX Power(W): | 120 | Total TX Power(W): | 120 | | ERP (W): | 4,668.54 | ERP (W): | 4,668.54 | ERP (W): | 4,668.54 | | Antenna A1 MPE% | 2.38 | Antenna B1 MPE% | 2.38 | Antenna C1 MPE% | 2.38 | | Antenna #: | 2 | Antenna #: | 2 | Antenna #: | 2 | | Make / Model: | Ericsson AIR21 | Make / Model: | Ericsson AIR21 | Make / Model: | Ericsson AIR21 | | Make / Model: | B2A/B4P | Make / Model: | B2A/B4P | Make / Model: | B2A/B4P | | Gain: | 15.9 dBd | Gain: | 15.9 dBd | Gain: | 15.9 dBd | | Height (AGL): | 90 | Height (AGL): | 90 | Height (AGL): | 90 | | Frequency Bands | 1900 MHz(PCS) / | Frequency Bands | 1900 MHz(PCS) / | Frequency Bands | 1900 MHz(PCS) / | | riequency bands | 2100 MHz (AWS) | rrequency bands | 2100 MHz (AWS) | Frequency Bands | 2100 MHz (AWS) | | Channel Count | 2 | Channel Count | 2 | Channel Count | 2 | | Total TX Power(W): | 60 | Total TX Power(W): | 60 | Total TX Power(W): | 60 | | ERP (W): | 2,334.27 | ERP (W): | 2,334.27 | ERP (W): | 2,334.27 | | Antenna A2 MPE% | 1.19 | Antenna B2 MPE% | 1.19 | Antenna C2 MPE% | 1.19 | | Antenna #: | 3 | Antenna #: | 3 | Antenna #: | 3 | | Make / Model: | Commscope LNX- | Make / Model: | Commscope LNX- | Make / Model: | Commscope LNX- | | Make / Model: | 6515DS-VTM | Make / Model: | 6515DS-VTM | Make / Model: | 6515DS-VTM | | Gain: | 14.6 dBd | Gain: | 14.6 dBd | Gain: | 14.6 dBd | | Height (AGL): | 90 | Height (AGL): | 90 | Height (AGL): | 90 | | Frequency Bands | 700 MHz | Frequency Bands | 700 MHz | Frequency Bands | 700 MHz | | Channel Count | 1 | Channel Count | 1 | Channel Count | 1 | | Total TX Power(W): | 30 | Total TX Power(W): | 30 | Total TX Power(W): | 30 | | ERP (W): | 865.21 | ERP (W): | 865.21 | ERP (W): | 865.21 | | Antenna A3 MPE% | 0.94 | Antenna B3 MPE% | 0.94 | Antenna C3 MPE% | 0.94 | | Site Composite MPE% | | | | |---------------------------|---------|--|--| | Carrier | MPE% | | | | T-Mobile (Per Sector Max) | 4.51 % | | | | Sprint | 0.83 % | | | | AT&T | 2.52 % | | | | Verizon Wireless | 4.09 % | | | | Site Total MPE %: | 11.95 % | | | | T-Mobile Sector A Total: | 4.51 % | |--------------------------|---------| | T-Mobile Sector B Total: | 4.51 % | | T-Mobile Sector C Total: | 4.51 % | | | | | Site Total: | 11.95 % | | T-Mobile _per sector | #
Channels | Watts ERP
(Per Channel) | Height
(feet) | Total
Power
Density
(µW/cm²) | Frequency
(MHz) | Allowable
MPE
(µW/cm²) | Calculated %
MPE | |------------------------------|---------------|----------------------------|------------------|---------------------------------------|--------------------|------------------------------|---------------------| | T-Mobile AWS - 2100 MHz LTE | 2 | 2,334.27 | 90 | 23.79 | AWS - 2100 MHz | 1000 | 2.38% | | T-Mobile PCS - 1950 MHz UMTS | 2 | 1,167.14 | 90 | 11.89 | PCS - 1950 MHz | 1000 | 1.19% | | T-Mobile 700 MHz LTE | 1 | 865.21 | 90 | 4.41 | 700 MHz | 467 | 0.94% | | | | | | | | Total: | 4.51% | # **Summary** All calculations performed for this analysis yielded results that were **within** the allowable limits for general public exposure to RF Emissions. The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here: | T-Mobile Sector | Power Density Value (%) | |-------------------------|-------------------------| | Sector A: | 4.51 % | | Sector B: | 4.51 % | | Sector C: | 4.51 % | | T-Mobile Per Sector | 4.51 % | | Maximum: | 4.51 % | | | | | Site Total: | 11.95 % | | | | | Site Compliance Status: | COMPLIANT | The anticipated composite MPE value for this site assuming all carriers present is **11.95%** of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions. FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.