JULIE D. KOHLER

PLEASE REPLY TO: Bridgeport WRITER'S DIRECT DIAL: (203) 337-4157
E-Mail Address: jkohler@cohenandwolf.com
July 2, 2014

Attorney Melanie Bachman
Acting Executive Director
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

Re: Notice of Exempt Modification AT\&T Mobility- Crown Castle/ MetroPCS co-location Site ID CTHA509A
 12 Nepaug Road Burlington, CT

Dear Attorney Bachman:
This office represents MetroPCS Massachusetts, LLC ("MetroPCS") and has been retained to file exempt modification filings with the Connecticut Siting Council on its behalf.

In this case, AT\&T Mobility/Crown Castle owns the existing monopole telecommunications tower and related facility at 12 Nepaug Road, Burlington, Connecticut (Latitude:41.782500, Longitude: -72.9896). MetroPCS intends to replace three existing antennas with six new antennas and related equipment at this existing telecommunications facility in Burlington ("Burlington Facility"). Please accept this letter as notification, pursuant to R.C.S.A. § $16-50 j-73$, of construction which constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to the First Selectman Theodore Shafer, and the property owner, AT\&T Mobility.

The existing Burlington Facility consists of a 120 foot monopole tower. ${ }^{1}$ MetroPCS plans to replace three existing antennas on pipe mounts with six new antennas on T-arm mounts at a centerline of 90 feet. (See the plans revised to May 6, 2014 attached hereto as Exhibit A). MetroPCS will also install a $6^{\prime} \times 6^{\prime}$ concrete pad, replace an equipment cabinet and install a battery backup unit, install fiber cable and reuse existing coax cables. The existing Burlington Facility is structurally capable of supporting MetroPCS' proposed modifications, as indicated in the structural analysis dated June 10, 2014 and attached hereto as Exhibit B.

The planned modifications to the Burlington Facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

[^0]July 2, 2014
Site ID CTHA509A
Page 2

1. The proposed modification will not increase the height of the tower. MetroPCS' replacement and additional antennas will be installed at a centerline of 90 feet, merely replacing existing antennas located at the same 90 foot elevation. The enclosed tower drawing confirms that the proposed modification will not increase the height of the tower.
2. The proposed modifications will not require an extension of the site boundaries or lease area, as depicted on Sheets 2 of Exhibit A. MetroPCS' equipment will be located entirely within the existing compound area.
3. The proposed modification to the Burlington Facility will not increase the noise levels at the existing facility by six decibels or more.
4. The operation of the replacement antennas will not increase the total radio frequency (RF) power density, measured at the base of the tower, to a level at or above the applicable standard. According to a Radio Frequency Emissions Analysis Report prepared by EBI dated June 30, 2014, MetroPCS' operations would add 1.477% of the FCC Standard. Therefore, the calculated "worst case" power density for the planned combined operation at the site including all of the proposed antennas would be 67.697% of the FCC Standard as calculated for a mixed frequency site as evidenced by the engineering exhibit attached hereto as Exhibit C.

For the foregoing reasons, MetroPCS respectfully submits that the proposed replacement antennas and equipment at the Burlington Facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Upon acknowledgement by the Council of this proposed exempt modification, MetroPCS shall commence construction approximately sixty days from the date of the Council's notice of acknowledgement.

Sincerely,

cc: Town of Burlington, First Selectman Theodore Shafer
AT\&T Mobility
Crown Castle
Sheldon Freincle, NSS
EXHIBIT A

EXISTING EQUIPMENT

Date: June 10, 2014
Darcy Tarr
Crown Castle
3530 Toringdon Way, Suite 300
Charlotte, NC 28277
(704) 405-6589

GPD Group
520 South Main Street, Suite 2531
Akon, OH 44311
(614) 859-1607
dpalkovic@gpdgroup.com

Subject:

Carrier Designation:

Crown Castle Designation:

Engineering Firm Designation:

Site Data:

Dear Ms. Darcy Tarr,
GPD Group is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 653211, in accordance with application 247460 , revision 1 .

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

```
LC7: Existing + Reserved + Proposed Equipment
Note: See Table I and Table II for the proposed and existing/reserved loading, respectively.
```

Sufficient Capacity

The analysis has been performed in accordance with the TIA/EIA-222-F standard and 2005 CT State Building Code with 2009 amendment based upon a wind speed of 80 mph fastest mile.

We at GPD Group appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Structural analysis prepared by: Joshua Huffine, E.I.
Respectfully submitted by:

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable Information
Table 2 - Existing and Reserved Antenna and Cable Information
3) ANALYSIS PROCEDURE

Table 3 - Documents Provided
3.1) Analysis Method
3.2) Assumptions
4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Components vs. Capacity
4.1) Recommendations
5) APPENDIX A
tnxTower Output
6) APPENDIX B

Base Level Drawing
7) APPENDIX C

Additional Calculations

1) INTRODUCTION

The existing monopole has three major sections connected by slip joints. It has 18 sides and is evenly tapered from $51^{\prime \prime}$ (flat-flat) at the base to $22^{\prime \prime}$ (flat-flat) at the top. The structure is galvanized and has no tower lighting.

2) ANALYSIS CRITERIA

The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 80 mph with no ice, 38 mph with 1 inch ice thickness (in accordance with ASCE7 ice conditions) and 50 mph under service loads.

Table 1 - Proposed Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
88.0	90.0	3	Ericsson	ERICSSON AIR 21 B2A B4P			
		3	Ericsson	ERICSSON AIR 21 B4A B2P	1	$1-5 / 8$	1
	88.0	1		T-Arm Mount [TA 602-3]			

Notes:

1) See Appendix B for the proposed coax layout.

Table 2 - Existing and Reserved Antenna and Cable Information

Mounting Level (ft)	Center Lîne Elevation (ft)	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Antennas } \end{aligned}$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
119.0	119.0	1		Platform Mount [LP 1201-1]	$\begin{gathered} 12 \\ 2 \\ 1 \end{gathered}$	$\begin{gathered} 1-5 / 8 \\ 7 / 8 \\ 1 / 2 \end{gathered}$	
		6	Ericsson	RBS 6601			
		3	KMW Communications	AM-X-CD-16-65-00T-RET			
		6	Powerwave Technologies	7770.00			
		6	Powerwave Technologies	LGP13519			
		6	Powerwave Technologies	LGP21401			
		1	Raycap	DC6-48-60-18-8F			
109.0	109.0	1		Platform Mount [LP 1201-1]	6	1-1/4	
		6	Andrew	950F85T2E-M			
99.0	99.0	1		Platform Mount [LP 1201-1]	12	1-5/8	
		3	Antel	BXA-171085-8BF-EDIN-2			1
		3	Antel	BXA-70063-6CF-2			
		6	Antel	LPA-80080/4CF			
		6	RFS Celwave	FD9R6004/2C-3L			
88.0	88.0				6	1-5/8	
		1		Pipe Mount [PM 602-3]			2
		3	Kathrein	742213			

Notes:

1) Reserved equipment.
2) Existing equipment is to be removed prior to installation of the proposed loading configuration and was not considered in this analysis.

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
Foundation Calculations	URS, Project \#: CW1-057, dated $10 / 28 / 2005$	Doc ID \#: 5072131	Crown DMZ
Geotechnical Report	JGI, Project \#: 04143G, dated $2 / 24 / 2004$	Doc ID \#: 4551029	Crown DMZ
Tower Mapping	GPD, Project \#: 2008265.31, dated 12/3/2008	D. Palkovic	GPD Group
Previous Structural Analysis	GPD, Project \#: 2012801.73, dated 10/26/2012	Doc ID \#: 4301089	Crown DMZ

3.1) Analysis Method

tnx Tower (version 6.1.4.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

1) Tower and structures were built in accordance with the manufacturer's specifications.
2) The tower and structures have been maintained in accordance with the manufacturer's specification.
3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
4) When applicable, transmission cables are considered as structural components for calculating wind loads as allowed by TIA/EIA-222-F.

This analysis may be affected if any assumptions are not valid or have been made in error. GPD Group should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Туре	Size	Critical Element	$\mathrm{P}(\mathrm{K})$	SF*P allow (K)	\% Capacity	Pass / Fall
L1	118.5-96.5	Pole	TP27.59×22x0.1875	1	-6.32	816.35	25.2	Pass
L2	96.5-47.75	Pole	TP39.49x26.1986×0.25	2	-15.97	1555.53	63.8	Pass
L3	47.75-0	Pole	TP5 $\times 37.6042 \times 0.3125$	3	-26.39	2522.69	65.3	Pass
						Summary	ELC:	Load Case 7
		-				Pole (L3)	65.3	Pass
						Rating =	65.3	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	\% Capacity	Pass / Fail
1	Anchor Rods	0	58.2	Pass
1	Base Plate	0	43.2	Pass
1	Base Foundation	0	14.9	Pass
1	Base Foundation Soil Interaction	0	46.7	Pass

Notes:

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the \% capacity consumed.

4.1) Recommendations

The existing tower and its foundation are sufficient for the proposed loading and do not require modifications.

5) DISCLAIMER OF WARRANTIES

GPD GROUP has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD GROUP in connection with this Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

This analysis is limited to the designated maximum wind and seismic conditions per the governing tower standards and code. Wind forces resulting in tower vibrations near the structure's resonant frequencies were not considered in this analysis and are outside the scope of this analysis. Lateral loading from any dynamic response was not evaluated under a time-domain based fatigue analysis.

GPD GROUP does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD GROUP provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the capability of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the code specified amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD GROUP, but are beyond the scope of this report.

Misceilaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

Towers are designed to carry gravity, wind, and ice loads. All members, legs, diagonals, struts, and redundant members provide structural stability to the tower with little redundancy. Absence or removal of a member can trigger catastrophic failure unless a substitute is provided before any removal. Legs carry axial loads and derive their strength from shorter unbraced lengths by the presence of redundant members and their connection to the diagonals with bolts or welds. If the bolts or welds are removed without providing any substitute to the frame, the leg is subjected to a higher unbraced length that immediately reduces its load carrying capacity. If a diagonal is also removed in addition to the connection, the unbraced length of the leg is greatly increased, jeopardizing its load carrying capacity. Failure of one leg can result in a tower collapse because there is no redundancy. Redundant members and diagonals are critical to the stability of the tower.

GPD GROUP makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD GROUP will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD GROUP pursuant to this report will be limited to the total fee received for preparation of this report.

APPENDIX A

TNXTOWER OUTPUT

118.5 ft
96.5 it
47.8 ft
0.0 ft

DESIGNED APPURTENANCE LOADING			
TYPE	ELEVATION	TYPE	ELEVATION
Platiorm Mount [LP 1200-1]	113	(2) Pipe Mount $6^{\prime} \times 2.375^{\prime \prime}$	109
AM-X-CD-16-65-00T-RET w/ Mount	119	(2) Pipe Mount $6^{\prime} \times 2.375^{\prime \prime}$	109
Pipe		Platiform Mount [LP 1201-1]	99
AM-X-CD-16-65-00T-RET w/ Mount Pipe	119	BXA-171085-8BF-EDIN-2 w/ Mount Pipe	99
AM-X-CD-16-65-00T-RET w/ Mount Pipe	119	BXA-171085-8BF-EDIN-2 w/ Mount Pipe	98
(2) 7770.00 w/ Mount Pipe	119	BXA-171085-8BF-EDIN-2 w/ Mount	99
(2) $7770.00 \mathrm{w} / \mathrm{Mount}$ Pipe	119	Pipe	
(2) $770.00 \mathrm{w} / \mathrm{Mount} \mathrm{Pipe}$	119	BXA-70063-6CF-2 w/ Mount Pipe	99
(2) LGP13519	119	BXA-70063-6CF-2 w/ Mount Pipe	99
(2) L.GP13519	119	BXA-70063-6CF-2 w/ Mount Pipe	93
(2) LGP13519	119	(2) LPA-80080/4CF w/ Mount Pipe	99
(2) LGP21401	119	(2) LPA-80080/4CF w/ Mount Pipe	99
(2) LGP21401	119	(2) LPA-80080/4CF w/ Mount Pipe	99
(2) LGP21401	119	(2) FD9R6004/2C-3L	99
(2) RES 6601	119	(2) FD9R6004/2C-3L	99
(2) RBS 6601	119	(2) FD9R6004/2C-3L	99
(2) RBS 6801	119	T-Arm Mount [TA 602-3]	88
DC6-48-60-18-8F	119	ERICSSON AIR 21 B2A B4P w/ Mount	88
Pipe Mount $\mathrm{E}^{\prime} \times 2.375^{\prime \prime}$	119	Pipe	
Pipe Mount $6^{\prime} \times 2.375^{\text {a }}$	119	ERICSSON AIR 21 B2A B4P w/ Mount	88
Pipe Mount ${ }^{\text {6 }}$ '2.377 ${ }^{\text {a }}$	119		
Pipe Mount $6 \times \times 2.375^{\prime \prime}$	119	ERIC Pipe	88
Pipe Mount $6^{6} \times 2.375^{\prime \prime}$	119	ERICSSON AIR 21 B4A B2P w/ Mount	88
Pipe Mount $6 \times 2.375^{\prime \prime}$	119		
Platform Mount [LP 1201-1]	109	ERICSSON AIR 21 B4A B2P w/ Mount	88
(2) 950F85T2E-M w/ Mount Pipe	109		
(2) 950F85T2E-M w/ Mount Pipe	109	ERICSSON AIR 21 B4AB2P w/ Mount Pipe	88
(2) 950F85T2E-M w/ Mount Pipe	109		
(2) Pipe Mount $\mathrm{E}^{\prime} \times 2.375^{\prime \prime}$	109		

MATERIAL STRENGTH
MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

1. Tower is located in Hartiord County, Connecticut.
2. Tower designed for a 80 mph basic wind in accordance with the TIA/EIA-222-F Standard.
3. Tower is also designed for a 38 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
4. Deflections are based upon a 50 mph wind.
5. TOWER RATING: 65.3\%

TORQUE 3 kip -ft 38 mph WIND - 1.0000 in ICE

TORQUE 11 kip-ft
REACTIONS - 80 mph WIND

GPD GROUP Consulting Engineers	GPD Group 520 South Main Street, Suite 2531 Akon, OH 44311 Phone: (330) 572-2153 FAX: (330) 572-2101	Pob: Burlington-Nepaug Road - BU\#;: 845993		
		Project: 2014777.845993.01 Client: Crown Castle USA, Inc. Drawn by: Joshua Huffine App'd:		
		Code: TIA/EIA-222-F	Date: $06 / 10 / 14$	Scale: NTS
		TiCriomi84599301TNX845993.en		wg No. E-1

Feed Line Distribution Chart

\qquad
\qquad Truss Leg

	GPD Group 520 South Main Street, Suite 2531 Akon, OH 44311 Phone: (330) 572-2153 FAX (330) 572-2101	${ }^{\text {Pob: }}$ Burlington-Nepaug Road - BU\#: 845993		
		Project: 2014777.845993.01		
		Client: Crown Castle USA, Inc.	Drawn by: Joshua	
		Code: TIA/EIA-222-F	Date: $06 / 10$	le: NTS
				g No.

tnxTower	Job Burlington-Nepaug Road - BU\#: 845993		$\text { Page } \quad 1 \text { of } 9$
GPD Group 520 South Main Street, Suite 2531 Akon, OH 44311 Phone: (330) 572-2153 FAX: (330) 572-2101	Project	2014777.845993 .01	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 17:31:25 06/10/14 } \end{array}$
	Client	Crown Castle USA, Inc.	Designed by Joshua Huffine

Tower Input Data

There is a pole section.
This tower is designed using the TIA/EIA-222-F standard.
The following design criteria apply:
Tower is located in Hartford County, Connecticut.
Basic wind speed of 80 mph .
Nominal ice thickness of 1.0000 in .
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 38 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 50 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1.333 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consi	r Moments - L		Distribute Leg Loads As Uniform Assume Legs Pinned				Treat Feedline Bundles As Cylinder		
Consi	er Moments - H	ntals					Use ASCE 10 X-Brace Ly Rules		
Consi	er Moments - Di	nals	A	Assume Rigid Index Plate			Calculate Redundant Bracing Forces		
Use M	ment Magnific		Us	Use Clear Spans For Wind Area			Ignore Redundant Members in FEA		
$\sqrt{ }$ Use C	de Stress Ratio			Use Clear Spans For KL/r			SR Leg Bolts Resist Compression		
$\sqrt{ }$ Use C	de Safety Facto	Guys	Retension Guys To Initial Tension				All Leg Panels Have Same Allowable		
$\sqrt{ }$ Escala	Ice		$\sqrt{ }$ Bypass Mast Stability Checks				\checkmark Consider Feedline		
Alwa	Use Max Kz		$\sqrt{ }$ Use Azimuth Dish Coefficients						$\sqrt{ }$ Consider Feedline Torque
Use S	cial Wind Prof		Pro	Wind Ar	of Appurt.		Include Angle Block Shear Check		
Inclu	Bolts In Memb	apacity		Autocalc Torque Arm Areas			Poles		
Leg B	ts Ate At Top	ection	SR	mbers Ha	Cut Ends		$\sqrt{ }$ Include	ar-Torsi	nteraction
Secon	ary Horizontal	es Leg	$\sqrt{ }$ So	pacity R	rts By Com	onent	Always Use Sub-Critical Flow		
Use D	mond Inner Br	(4 Sided)	Triangulate Diamond Inner Bracing				Use Top Mounted Sockets		
Add IBC . $6 \mathrm{D}+\mathrm{W}$ Combination			Use	Use TIA-222-G Tension Splice Capacity					
			Tapered Pole Section Geometry						
Section	Elevation	Section	Splice Length $f t$	Number of Sides	TopDiameterin	BottomDiameterin	Wall Thickness in	Bend	Pole Grade
	f	Length $f t$						Radius in	
L1	118.50-96.50	22.00	4.00	18	22.0000	27.5900	0.1875	0.7500	A572-65
									(65 ksi)
L2	96.50-47.75	52.75	5.50	18	26.1986	39.4900	0.2500	1.0000	A572-65
									(65 ksi)
L3	47.75-0.00	53.25		18	37.6042	51.0000	0.3125	1.2500	A572-65
									(65 ksi)

InxTower	Job Burlington-Nepaug Road - BU\#: 845993		$\begin{array}{ll} \text { Page } & \\ & 2 \text { of } 9 \end{array}$
GPD Group 520 South Main Street, Suite 2531 Akon, OH 44311 Phone: (330) 572-2153 FAX: (330) 572-2101	Project	2014777.845993 .01	Date $17: 31: 2506 / 10 / 14$
	Client	Crown Castle USA, Inc.	Designed by Joshua Huffine

Tapered Pole Properties

Section	Tip Dia.	Area in	I in 4	r in	C $i n$	I / C $i n^{3}$	J $i n^{4}$	It/Q in 2	w in	
L1	22.3394	12.9812	780.3007	7.7434	11.1760	69.8193	1561.6281	6.4918	3.5420	18.891
	28.0156	16.3079	1547.0922	9.7279	14.0157	110.3826	3096.2202	8.1555	4.5258	24.138
L2	27.6262	20.5902	1751.5720	9.2118	13.3089	131.6090	3505.4488	10.2971	4.1710	16.684
	40.0992	31.1369	6057.1925	13.9302	20.0609	301.9399	12122.3553	15.5714	6.5102	26.041
L3	39.5892	36.9887	6498.7512	13.2385	19.1029	340.1968	13006.0537	18.4979	6.0683	19.419
	51.7868	50.2757	16319.1303	17.9941	25.9080	629.8877	32659.7336	25.1426	8.4260	26.963

| Tower
 Elevation | Gusset
 Area
 (perface) | Gusset
 Thickness | | Gusset Grade Adjust. Factor | Adjust. | Af |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Factor |
| :---: |
| Ft |

Feed Line/Linear Appurtenances - Entered As Area

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Component Type	Placement	Total Number		$C_{A} A_{A}$ $f^{2} / f t$	Weight plf
LDF6-50A(1-1/4")	A	No	Inside Pole	109.00-8.00	6	No Ice	0.00	0.66
						1/2" Ice	0.00	0.66
						1" Tce	0.00	0.66
						2" Ice	0.00	0.66
						$4{ }^{\prime \prime}$ Ice	0.00	0.66
LDF4-50A(1/2")	A	No	Inside Pole	118.50-8.00	1	No Ice	0.00	0.15
						1/2" Ice	0.00	0.15
						1" Ice	0.00	0.15
						2" Ice	0.00	0.15
						4 " Ice	0.00	0.15
LDF5-50A(7/8")	A	No	Inside Pole	118.50-8.00	2	No Ice	0.00	0.33
						1/2" Ice	0.00	0.33
						1" Ice	0.00	0.33
						2" Ice	0.00	0.33
						$4{ }^{\prime \prime}$ Ice	0.00	0.33
LDF7-50A(1-5/8")	A	No	Inside Pole	118.50-8.00	12	No Ice	0.00	0.82
						1/2" Ice	0.00	0.82
						1" Ice	0.00	0.82
						2" Ice	0.00	0.82
						$4^{\prime \prime}$ Ice	0.00	0.82
LDF7-50A(1-5/8")	B	No	Inside Pole	88.00-8.00	6	No Ice	0.00	0.82
						$1 / 2^{\prime \prime}$ Ice	0.00	0.82
						1" Ice	0.00	0.82
						$2^{\prime \prime}$ Ice	0.00	0.82
						$4{ }^{\prime \prime}$ Ice	0.00	0.82
	B	No	Inside Pole	88.00-8.00	1	No Ice	0.00	1.07
9Power/18Fiber RL 2 (1						1/2" Ice	0.00	1.07
5/8)						1" Ice	0.00	1.07
						$2^{\prime \prime}$ Ice	0.00	1.07
						4 "Ice	0.00	1.07
Step Pegs	B	No		118.50-8.00	1	No Ice	0.08	2.72
			Face)			1/2" Ice	0.18	3.51
						1 " Ice	0.28	4.92
						$2^{\prime \prime}$ Ice	0.48	9.56

tnxTower	Job Burlington-Nepaug Road - BU\#: 845993		$\begin{aligned} & \text { Page } \quad 3 \text { of } 9 \end{aligned}$
GPD Group 520 South Main Street, Suite 2531 Akon, OH 44311 Phone: (330) 572-2153 FAX: (330) 572-2101	Project	2014777.845993 .01	Date $17: 31: 2506 / 10 / 14$
	Client	Crown Castle USA, Inc.	Designed by Joshua Huffine

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Component Type	Placement $f t$	Total Number		$\begin{aligned} & C_{A} A_{A} \\ & {f t^{2} / f t}^{2} \end{aligned}$	Weight plf
						4^{11} Ice	0.88	26.18
Safety Line (3/8')	B	No	CaAa (Out Of	118.50-8.00	1	No Ice	0.04	0.22
			Face)			$1 / 2^{\prime \prime}$ Ice	0.14	0.75
						1 I' Ice	0.24	1.28
						$2^{\prime \prime}$ Ice	0.44	2.34
						$4^{\prime \prime}$ Ice	0.84	4.46
LDF7-50A(1-5/8")	C	No	Inside Pole	$99.00-8.00$	12	No Ice	0.00	0.82
						$1 / 2^{\prime \prime}$ Ice	0.00	0.82
						1^{11} Ice	0.00	0.82
						$2^{\prime \prime}$ Ice	0.00	0.82
						$4^{\prime \prime}$ Ice	0.00	0.82

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Offset Type \& Offsets: Horz Lateral Vert \(f t\) \(f t\) \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) \\
Front
\[
f t^{2}
\]
\end{tabular} \& \begin{tabular}{l}
\(C_{A} A_{A}\) \\
Side \\
\(f t^{2}\)
\end{tabular} \& Weight

K

\hline \multirow[t]{5}{*}{Platform Mount [LP 1201-1]} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{None} \& \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{119.00} \& No Ice \& 23.10 \& 23.10 \& 2.10

\hline \& \& \& \& \& \& $1 / 2^{\prime \prime}$ Ice \& 26.80 \& 26.80 \& 2.50

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 30.50 \& 30.50 \& 2.90

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 37.90 \& 37.90 \& 3.70

\hline \& \& \& \& \& \& $4^{\prime \prime}$ Ice \& 52.70 \& 52.70 \& 5.30

\hline \multirow[t]{5}{*}{$$
\begin{aligned}
& \text { AM-X-CD-16-65-00T-RET } \\
& \text { w/ Mount Pipe }
\end{aligned}
$$} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From

Centroid-Fa
ce} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{119.00} \& No Ice \& 8.50 \& 6.30 \& 0.07

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 9.15 \& 7.48 \& 0.14

\hline \& \& \& 0.00 \& \& \& 1 I' Ice \& 9.77 \& 8.37 \& 0.21

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 11.03 \& 10.18 \& 0.38

\hline \& \& \& \& \& \& 4" Ice \& 13.68 \& 14.02 \& 0.87

\hline \multirow[t]{5}{*}{AM-X-CD-16-65-00T-RET w/ Mount Pipe} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Fa } \\
& \text { ce }
\end{aligned}
$$} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{119,00} \& No Ice \& 8.50 \& 6.30 \& 0.07

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 9.15 \& 7.48 \& 0.14

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 9.77 \& 8.37 \& 0.21

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 11.03 \& 10.18 \& 0.38

\hline \& \& \& \& \& \& 4" Ice \& 13.68 \& 14.02 \& 0.87

\hline \multirow[t]{5}{*}{AM-X-CD-16-65-00T-RET w/ Mount Pipe} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Centroid-Fa ce} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{119.00} \& No Ice \& 8.50 \& 6.30 \& 0.07

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 9.15 \& 7.48 \& 0.14

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 9.77 \& 8.37 \& 0.21

\hline \& \& \& \& \& \& 2" Ice \& 11.03 \& 10.18 \& 0.38

\hline \& \& \& \& \& \& 4 " Ice \& 13.68 \& 14.02 \& 0.87

\hline \multirow[t]{5}{*}{(2) $7770.00 \mathrm{~W} / \mathrm{Mount} \mathrm{Pipe}$} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Centroid-Fa ce} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{119.00} \& No Ice \& 6.22 \& 4.35 \& 0.06

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 6.77 \& 5.20 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 7.30 \& 5.92 \& 0.16

\hline \& \& \& \& \& \& 2" Ice \& 8.38 \& 7.41 \& 0.29

\hline \& \& \& \& \& \& $4^{\prime \prime}$ Ice \& 10.69 \& 10.76 \& 0.68

\hline \multirow[t]{5}{*}{(2) $77770.00 \mathrm{w} /$ Mount Pipe} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Centroid-Fa ce} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{119.00} \& No Ice \& 6.22 \& 4.35 \& 0.06

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 6.77 \& 5.20 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 7.30 \& 5.92 \& 0.16

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 8.38 \& 7.41 \& 0.29

\hline \& \& \& \& \& \& 4" Ice \& 10.69 \& 10.76 \& 0.68

\hline \multirow[t]{5}{*}{(2) $7770.00 \mathrm{w} /$ Mount Pipe} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Centroid-Fa ce} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{119.00} \& No Ice \& 6.22 \& 4.35 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.77 \& 5.20 \& 0.11

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 7.30 \& 5.92 \& 0.16

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 8.38 \& 7.41 \& 0.29

\hline \& \& \& \& \& \& $4^{\prime \prime}$ Ice \& 10.69 \& 10.76 \& 0.68

\hline \multirow[t]{3}{*}{(2) LGP13519} \& \multirow[t]{3}{*}{A} \& From \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{119.00} \& No Ice \& 0.34 \& 0.21 \& 0.01

\hline \& \& Centroid-Fa \& 0.00 \& \& \& 1/2" Ice \& 0.42 \& 0.28 \& 0.01

\hline \& \& ce \& 0.00 \& \& \& 1" Ice \& 0.51 \& 0.36 \& 0.01

\hline
\end{tabular}

tnxTower	Job Burlington-Nepaug Road - BU\#: 845993		$\begin{aligned} & \text { Page } \\ & \\ & \\ & 4 \text { of } 9 \end{aligned}$
GPD Group 520 South Main Street, Suite 2531	Project	2014777.845993 .01	Date $17: 31: 2506 / 10 / 14$
Akon, OH 44311 Phone: (330) 572-2153 FAX: (330) 572-2101	Client	Crown Castle USA, Inc.	Designed by Joshua Huffine

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{aligned}
\& \text { Face } \\
\& \text { or } \\
\& \text { Leg }
\end{aligned}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

ft \& \& $C_{A} A_{A}$ Front

$$
f t^{2}
$$ \& $C_{A} A_{A}$ Side

$$
f t^{2}
$$ \& Weight

K

\hline \multirow{6}{*}{(2) LGP13519} \& \multirow{5}{*}{B} \& \multirow{6}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Fa } \\
& \text { ce }
\end{aligned}
$$} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{119.00} \& 2" Ice \& 0.73 \& 0.55 \& 0.02

\hline \& \& \& \& \& \& 4 " Ice \& 1.25 \& 1.03 \& 0.07

\hline \& \& \& 4.00 \& \& \& No Ice \& 0.34 \& 0.21 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.42 \& 0.28 \& 0.01

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 0.51 \& 0.36 \& 0.01

\hline \& \multirow{5}{*}{C} \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{119.00} \& $2^{\prime \prime}$ Ice \& 0.73 \& 0.55 \& 0.02

\hline \multirow{4}{*}{(2) LGP13519} \& \& \multirow{5}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Fa } \\
& \text { ce }
\end{aligned}
$$} \& \& \& \& $4^{\prime \prime}$ Ice \& 1.25 \& 1.03 \& 0.07

\hline \& \& \& 4.00 \& \& \& No Ice \& 0.34 \& 0.21 \& 0.01

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 0.42 \& 0.28 \& 0.01

\hline \& \& \& \& \& \& $1^{\prime \prime}$ Ice \& 0.51 \& 0.36 \& 0.01

\hline \multirow{5}{*}{(2) LGP21401} \& \multirow{5}{*}{A} \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{119.00} \& $2^{\prime \prime}$ Ice \& 0.73 \& 0.55 \& 0.02

\hline \& \& \multirow{5}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Fa } \\
& \text { ce }
\end{aligned}
$$} \& \& \& \& $4^{\prime \prime}$ Ice \& 1.25 \& 1.03 \& 0.07

\hline \& \& \& 4.00 \& \& \& No Ice \& 1.29 \& 0.23 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.45 \& 0.31 \& 0.02

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.61 \& 0.40 \& 0.03

\hline \multirow{5}{*}{(2) LGP21401} \& \multirow{5}{*}{B} \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{119.00} \& $2^{\prime \prime}$ Ice \& 1.97 \& 0.61 \& 0.05

\hline \& \& \multirow{5}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Fa } \\
& \text { ce }
\end{aligned}
$$} \& \& \& \& $4^{\prime \prime}$ Ice \& 2.79 \& 1.12 \& 0.14

\hline \& \& \& 4.00 \& \& \& No Ice \& 1.29 \& 0.23 \& 0.01

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 1.45 \& 0.31 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 1.61 \& 0.40 \& 0.03

\hline \multirow{5}{*}{(2) LGP21401} \& \multirow{5}{*}{C} \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{119.00} \& $2^{\prime \prime}$ Ice \& 1.97 \& 0.61 \& 0.05

\hline \& \& \multirow{5}{*}{From
Centroid-Fa
ce} \& \& \& \& $4{ }^{\text {" Ice }}$ \& 2.79 \& 1.12 \& 0.14

\hline \& \& \& 4.00 \& \& \& No Ice \& 1.29 \& 0.23 \& 0.01

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 1.45 \& 0.31 \& 0.02

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 1.61 \& 0.40 \& 0.03

\hline \multirow{5}{*}{(2) RBS 6601} \& \multirow{5}{*}{A} \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{119.00} \& $2^{\prime \prime}$ Ice \& 1.97 \& 0.61 \& 0.05

\hline \& \& \multirow{5}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Fa } \\
& \text { ce }
\end{aligned}
$$} \& \& \& \& $4^{\prime \prime}$ Ice \& 2.79 \& 1.12 \& 0.14

\hline \& \& \& 4.00 \& \& \& No Ice \& 0.55 \& 0.40 \& 0.02

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 0.70 \& 0.52 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1 I' Ice \& 0.86 \& 0.64 \& 0.05

\hline \multirow{5}{*}{(2) RBS 6601} \& \multirow{5}{*}{B} \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{119.00} \& $2^{\prime \prime}$ Ice \& 1.19 \& 0.91 \& 0.09

\hline \& \& \multirow{5}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Fa } \\
& \text { ce }
\end{aligned}
$$} \& \& \& \& $4{ }^{\prime \prime}$ Ice \& 1.97 \& 1.55 \& 0.21

\hline \& \& \& 4.00 \& \& \& No Ice \& 0.55 \& 0.40 \& 0.02

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 0.70 \& 0.52 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 0.86 \& 0.64 \& 0.05

\hline \multirow{5}{*}{(2) RBS 6601} \& \multirow{5}{*}{C} \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{119.00} \& $2^{\prime \prime}$ Ice \& 1.19 \& 0.91 \& 0.09

\hline \& \& \multirow{5}{*}{From Centroid-Fa ce} \& \& \& \& 4 " Ice \& 1.97 \& 1.55 \& 0.21

\hline \& \& \& 4.00 \& \& \& No Ice \& 0.55 \& 0.40 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.70 \& 0.52 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 0.86 \& 0.64 \& 0.05

\hline \multirow{5}{*}{DC6-48-60-18-8F} \& \multirow{5}{*}{B} \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{119.00} \& $2^{\prime \prime}$ Ice \& 1.19 \& 0.91 \& 0.09

\hline \& \& \multirow{5}{*}{From Centroid-Fa ce} \& \& \& \& 4 " Ice \& 1.97 \& 1.55 \& 0.21

\hline \& \& \& \& \& \& No Ice \& 2.57 \& 2.57 \& 0.02

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 2.80 \& 2.80 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 3.04 \& 3.04 \& 0.07

\hline \multirow{5}{*}{Pipe Mount 6'x2.375'} \& \multirow{5}{*}{A} \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{119.00} \& $2^{\prime \prime}$ Ice \& 3.54 \& 3.54 \& 0.13

\hline \& \& \multirow{5}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Fa } \\
& \text { ce }
\end{aligned}
$$} \& \& \& \& $4^{\prime \prime}$ Ice \& 4.66 \& 4.66 \& 0.30

\hline \& \& \& \& \& \& No Ice \& 1.43 \& 1.43 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.92 \& 1.92 \& 0.04

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.29 \& 2.29 \& 0.05

\hline \multirow{7}{*}{Pipe Mount 6'x2.375"} \& \multirow{7}{*}{B} \& \& \& \multirow{7}{*}{0.0000} \& \multirow{7}{*}{119.00} \& $2^{\prime \prime}$ Ice \& 3.06 \& 3.06 \& 0.09

\hline \& \& \multirow{6}{*}{From
Centroid-Fa
ce} \& \& \& \& $4{ }^{\prime \prime}$ Ice \& 4.70 \& 4.70 \& 0.23

\hline \& \& \& \& \& \& \& 1.43 \& 1.43 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 1.92 \& 1.92 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 2.29 \& 2.29 \& 0.05

\hline \& \& \& \& \& \& 2" Ice \& 3.06 \& 3.06 \& 0.09

\hline \& \& \& \& \& \& $4^{\prime \prime}$ Ice \& 4.70 \& 4.70 \& 0.23

\hline
\end{tabular}

tnxTower	Job Burlington-Nepaug Road - BU\#: 845993		$\begin{array}{ll} \hline \text { Page } & \\ & \\ \text { of } 9 \end{array}$
GPD Group 520 South Main Street, Suite 2531	2014777.845993.01		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 17:31:25 06/10/14 } \end{array}$
Akon, OH1 44311 Phone: (330) 572-2153 FAX: (330) 572-2101	Client	Crown Castle USA, Inc.	Designed by Joshua Huffine

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{aligned}
\& \text { Face } \\
\& \text { or } \\
\& \text { Leg }
\end{aligned}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets:
Horz
Lateral
Vert
\(f t\)
\(f t\)
\(f t\)
\(f t\) \& \begin{tabular}{l}
Azinuth Adjustment \\
。
\end{tabular} \& Placement \& \& \(C_{A} A_{A}\) Front
\[
f t^{2}
\] \& \begin{tabular}{l}
\(C_{A} A_{A}\) Side \\
\(f t^{2}\)
\end{tabular} \& Weight

K

\hline \multirow[t]{5}{*}{Pipe Mount 6'x2.375"} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From
Centroid-Fa
ce} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{119.00} \& No Ice \& 1.43 \& 1.43 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\text {" }}$ Ice \& 1.92 \& 1.92 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 2.29 \& 2.29 \& 0.05

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 3.06 \& 3.06 \& 0.09

\hline \& \& \& \& \& \& 4 " Ice \& 4.70 \& 4.70 \& 0.23

\hline \multirow[t]{5}{*}{Pipe Mount 6'x2.375"} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Centroid-Fa ce} \& 2.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{119.00} \& No Ice \& 1.43 \& 1.43 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.92 \& 1.92 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1 I' Ice \& 2.29 \& 2.29 \& 0.05

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 3.06 \& 3.06 \& 0.09

\hline \& \& \& \& \& \& 4 " Ice \& 4.70 \& 4.70 \& 0.23

\hline \multirow[t]{5}{*}{Pipe Mount 6'x2.375'} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Fa } \\
& \text { ce }
\end{aligned}
$$} \& 2.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{119.00} \& No Ice \& 1.43 \& 1.43 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 1.92 \& 1.92 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1 "Ice \& 2.29 \& 2.29 \& 0.05

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 3.06 \& 3.06 \& 0.09

\hline \& \& \& \& \& \& 4" Ice \& 4.70 \& 4.70 \& 0.23

\hline \multirow[t]{5}{*}{Pipe Mount 6'x2.375"} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Centroid-Fa ce} \& 2.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{119.00} \& No Ice \& 1.43 \& 1.43 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 1.92 \& 1.92 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1 "Ice \& 2.29 \& 2.29 \& 0.05

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 3.06 \& 3.06 \& 0.09

\hline \& \& \& \& \& \& 4 " Ice \& 4.70 \& 4.70 \& 0.23

\hline \multirow[t]{5}{*}{Platform Mount [LP 1201-1]} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{None} \& \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{109.00} \& No Ice \& 23.10 \& 23.10 \& 2.10

\hline \& \& \& \& \& \& $1 / 2$ " Ice \& 26.80 \& 26.80 \& 2.50

\hline \& \& \& \& \& \& 1 " Ice \& 30.50 \& 30.50 \& 2.90

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 37.90 \& 37.90 \& 3.70

\hline \& \& \& \& \& \& $4{ }^{\prime \prime}$ Ice \& 52.70 \& 52.70 \& 5.30

\hline \multirow[t]{5}{*}{(2) 950F85T2E-M w/ Mount Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From
Centroid-Le
g} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{109.00} \& No Ice \& 3.02 \& 5.66 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 3.47 \& 6.55 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 3.90 \& 7.31 \& 0.12

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 4.80 \& 8.95 \& 0.24

\hline \& \& \& \& \& \& 4 " Ice \& 6.71 \& 12.54 \& 0.59

\hline \multirow[t]{5}{*}{(2) 950F85T2E-M w/ Mount Pipe} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From
Centroid-Le
g} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{109.00} \& No Ice \& 3.02 \& 5.66 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 3.47 \& 6.55 \& 0.07

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 3.90 \& 7.31 \& 0.12

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 4.80 \& 8.95 \& 0.24

\hline \& \& \& \& \& \& 4 " Ice \& 6.71 \& 12.54 \& 0.59

\hline \multirow[t]{5}{*}{(2) 950F85T2E-M w/ Mount Pipe} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From
Centroid-Le
g} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{109.00} \& No Ice \& 3.02 \& 5.66 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.47 \& 6.55 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1 I' Ice \& 3.90 \& 7.31 \& 0.12

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 4.80 \& 8.95 \& 0.24

\hline \& \& \& \& \& \& $4^{\prime \prime}$ Ice \& 6.71 \& 12.54 \& 0.59

\hline \multirow[t]{5}{*}{(2) Pipe Mount 6'x2.375'} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From
Centroid-Le
g} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{109.00} \& No Ice \& 1.43 \& 1.43 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 1.92 \& 1.92 \& 0.04

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 2.29 \& 2.29 \& 0.05

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 3.06 \& 3.06 \& 0.09

\hline \& \& \& \& \& \& $4^{\prime \prime}$ Ice \& 4.70 \& 4.70 \& 0.23

\hline \multirow[t]{5}{*}{(2) Pipe Mount 6'x2.375"} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Centroid-Le g} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{109.00} \& No Ice \& 1.43 \& 1.43 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.92 \& 1.92 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 2.29 \& 2.29 \& 0.05

\hline \& \& \& \& \& \& 2"Ice \& 3.06 \& 3.06 \& 0.09

\hline \& \& \& \& \& \& 4 " Ice \& 4.70 \& 4.70 \& 0.23

\hline \multirow[t]{5}{*}{(2) Pipe Mount 6'x2.375"} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Centroid-Le g} \& \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{109.00} \& \& 1.43 \& 1.43 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.92 \& 1.92 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1 I' Ice \& 2.29 \& 2.29 \& 0.05

\hline \& \& \& \& \& \& 2" Ice \& 3.06 \& 3.06 \& 0.09

\hline \& \& \& \& \& \& 4" Ice \& 4.70 \& 4.70 \& 0.23

\hline \multirow[t]{2}{*}{Platform Mount [LP 1201-1]} \& \multirow[t]{2}{*}{C} \& \multirow[t]{2}{*}{None} \& \& 0.0000 \& 99.00 \& No Ice \& 23.10 \& 23.10 \& 2.10

\hline \& \& \& \& \& \& $1 / 2^{\prime \prime}$ Ice \& 26.80 \& 26.80 \& 2.50

\hline
\end{tabular}

tnxTower	Burlington-Nepaug Road - BU\#: 845993		Page 6 of 9
GPD Group 520 South Main Street, Suite 2531	Project	2014777.845993.01	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 17:31:25 06/10/14 } \end{array}$
Akon, OH 44311 Phone: (330) $572-2153$ FAX: (330) $572-2101$	Client	Crown Castle USA, Inc.	Designed by Joshua Huffine

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& Azimuth Adjustment \& Placement \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) \\
Front
\end{tabular} \& \(C_{A} A_{A}\) Side \& Weight

K

\hline \multirow{7}{*}{BXA-171085-8BF-EDIN-2 w/ Mount Pipe} \& \multirow{6}{*}{A} \& \multirow{7}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Fa } \\
& \text { ce }
\end{aligned}
$$} \& \& \multirow{6}{*}{0.0000} \& \multirow{6}{*}{99.00} \& 1" Ice \& 30.50 \& 30.50 \& 2.90

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 37.90 \& 37.90 \& 3.70

\hline \& \& \& \& \& \& $4^{\prime \prime}$ Ice \& 52.70 \& 52.70 \& 5.30

\hline \& \& \& 4.00 \& \& \& No Ice \& 3.41 \& 3.58 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.88 \& 4.38 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 4.35 \& 5.06 \& 0.11

\hline \& \multirow{5}{*}{B} \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{99.00} \& $2^{\prime \prime}$ Ice \& 5.36 \& 6.47 \& 0.21

\hline \multirow{4}{*}{BXA-171085-8BF-EDIN-2 w/ Mount Pipe} \& \& \multirow{5}{*}{From Centroid-Fa ce} \& \& \& \& 4 " Ice \& 7.52 \& 9.64 \& 0.52

\hline \& \& \& 4.00 \& \& \& No Ice \& 3.41 \& 3.58 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.88 \& 4.38 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 4.35 \& 5.06 \& 0.11

\hline \multirow{5}{*}{BXA-171085-8BF-EDIN-2 w/ Mount Pipe} \& \multirow{5}{*}{C} \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{99.00} \& $2^{\prime \prime}$ Ice \& 5.36 \& 6.47 \& 0.21

\hline \& \& \multirow{5}{*}{From Centroid-Fa ce} \& \& \& \& $4^{\prime \prime}$ Ice \& 7.52 \& 9.64 \& 0.52

\hline \& \& \& 4.00 \& \& \& No Ice \& 3.41 \& 3.58 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.88 \& 4.38 \& 0.07

\hline \& \& \& 0.00 \& \& \& $1{ }^{\text {" }}$ Ice \& 4.35 \& 5.06 \& 0.11

\hline \multirow{5}{*}{BXA-70063-6CF-2 w/ Mount Pipe} \& \multirow{5}{*}{A} \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{99.00} \& $2^{\prime \prime}$ Ice \& 5.36 \& 6.47 \& 0.21

\hline \& \& \multirow{5}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Fa } \\
& \text { ce }
\end{aligned}
$$} \& \& \& \& 4 " Ice \& 7.52 \& 9.64 \& 0.52

\hline \& \& \& \& \& \& No Ice \& 7.97 \& 5.80 \& 0.04

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 8.61 \& 6.95 \& 0.10

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 9.22 \& 7.82 \& 0.17

\hline \multirow{5}{*}{BXA-70063-6CF-2 w/ Mount Pipe} \& \multirow{5}{*}{B} \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{99.00} \& $2^{\prime \prime}$ Ice \& 10.46 \& 9.60 \& 0.34

\hline \& \& \multirow{5}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Fa } \\
& \text { ce }
\end{aligned}
$$} \& \& \& \& $4^{\prime \prime}$ Ice \& 13.07 \& 13.37 \& 0.80

\hline \& \& \& \& \& \& No Ice \& 7.97 \& 5.80 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.61 \& 6.95 \& 0.10

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.22 \& 7.82 \& 0.17

\hline \multirow{5}{*}{BXA-70063-6CF-2 w/ Mount Pipe} \& \multirow{5}{*}{C} \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{99.00} \& $2^{\prime \prime}$ Ice \& 10.46 \& 9.60 \& 0.34

\hline \& \& \multirow{5}{*}{From Centroid-Fa ce} \& \& \& \& $4^{\prime \prime}$ Ice \& 13.07 \& 13.37 \& 0.80

\hline \& \& \& 4.00 \& \& \& No Ice \& 7.97 \& 5.80 \& 0.04

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 8.61 \& 6.95 \& 0.10

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 9.22 \& 7.82 \& 0.17

\hline \multirow{5}{*}{(2) LPA-80080/4CF w/ Mount Pipe} \& \multirow{5}{*}{A} \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{99.00} \& $2^{\prime \prime}$ Ice \& 10.46 \& 9.60 \& 0.34

\hline \& \& \multirow{5}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Fa } \\
& \text { ce }
\end{aligned}
$$} \& \& \& \& 4" Ice \& 13.07 \& 13.37 \& 0.80

\hline \& \& \& \& \& \& No Ice \& 2.86 \& 7.23 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1 / 2^{11}$ Ice \& 3.22 \& 7.92 \& 0.08

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 3.59 \& 8.63 \& 0.13

\hline \multirow{5}{*}{(2) LPA-80080/4CF w/ Mount Pipe} \& \multirow{5}{*}{B} \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{99.00} \& $2^{\prime \prime}$ Ice \& 4.45 \& 10.11 \& 0.25

\hline \& \& \multirow{5}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Fa } \\
& \text { ce }
\end{aligned}
$$} \& \& \& \& $4^{\prime \prime}$ Ice \& 6.32 \& 13.34 \& 0.61

\hline \& \& \& 4.00 \& \& \& No Ice \& 2.86 \& 7.23 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.22 \& 7.92 \& 0.08

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 3.59 \& 8.63 \& 0.13

\hline \multirow{5}{*}{(2) LPA-80080/4CF w/ Mount Pipe} \& \multirow{5}{*}{C} \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{99.00} \& $2^{\prime \prime}$ Ice \& 4.45 \& 10.11 \& 0.25

\hline \& \& \multirow{5}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Fa } \\
& \text { ce }
\end{aligned}
$$} \& \& \& \& $4^{\prime \prime}$ Ice \& 6.32 \& 13.34 \& 0.61

\hline \& \& \& 4.00 \& \& \& No Ice \& 2.86 \& 7.23 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 3.22 \& 7.92 \& 0.08

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 3.59 \& 8.63 \& 0.13

\hline \multirow{5}{*}{(2) FD9R6004/2C-3L} \& \multirow{5}{*}{A} \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{99.00} \& 2" Ice \& 4.45 \& 10.11 \& 0.25

\hline \& \& \multirow{5}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Fa } \\
& \text { ce }
\end{aligned}
$$} \& \& \& \& $4^{\prime \prime}$ Ice \& 6.32 \& 13.34 \& 0.61

\hline \& \& \& 4.00 \& \& \& No Ice \& 0.37 \& 0.08 \& 0.00

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 0.45 \& 0.14 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 0.54 \& 0.20 \& 0.01

\hline \multirow{6}{*}{(2) FD9R6004/2C-3L} \& \multirow{6}{*}{B} \& \& \& \multirow{6}{*}{0.0000} \& \multirow{6}{*}{99.00} \& 2 " Ice \& 0.75 \& 0.34 \& 0.02

\hline \& \& \multirow{5}{*}{From
Centroid-Fa
ce} \& \& \& \& 4 " Ice \& 1.28 \& 0.74 \& 0.06

\hline \& \& \& 4.00 \& \& \& No Ice \& 0.37 \& 0.08 \& 0.00

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 0.45 \& 0.14 \& 0.01

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 0.54 \& 0.20 \& 0.01

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 0.75 \& 0.34 \& 0.02

\hline
\end{tabular}

tnxTower	Burlington-Nepaug Road - BU\#: 845993		$\begin{aligned} & \text { Page } 7 \text { of } 9 \end{aligned}$
GPD Group 520 South Main Street, Suite 2531	Project	2014777.845993 .01	Date $17: 31: 25 \text { 06/10/14 }$
Akon, OH 44311 Phone: (330) 572-2153 FAX: (330) 572-2101	Client	Crown Castle USA, Inc.	Designed by Joshua Huffine

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& $$
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
$$ \& $$
\begin{aligned}
& \text { Offset } \\
& \text { Type }
\end{aligned}
$$ \& Offsets:
Horz
Lateral
Vert
$f t$
$f t$
$f t$
$f t$ \& Azimuth Adjustment \& Placement \& \& $C_{A} A_{A}$ Front
$$
f t^{2}
$$ \& $C_{A} A_{A}$
Side

f^{2} \& Weight

K

\hline \multirow{6}{*}{(2) FD9R6004/2C-3L} \& \multirow{4}{*}{C} \& \multirow{5}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Fa } \\
& \text { ce }
\end{aligned}
$$} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{99.00} \& 4 " Ice \& 1.28 \& 0.74 \& 0.06

\hline \& \& \& 4.00 \& \& \& No Ice \& 0.37 \& 0.08 \& 0.00

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 0.45 \& 0.14 \& 0.01

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 0.54 \& 0.20 \& 0.01

\hline \& \multirow{6}{*}{C} \& \& \& \multirow{6}{*}{0.0000} \& \multirow{6}{*}{88.00} \& 2" Ice \& 0.75 \& 0.34 \& 0.02

\hline \& \& \multirow{5}{*}{None} \& \& \& \& 4 " Ice \& 1.28 \& 0.74 \& 0.06

\hline \multirow[t]{5}{*}{T-Arm Mount [TA 602-3]} \& \& \& \& \& \& No Ice \& 11.59 \& 11.59 \& 0.77

\hline \& \& \& \& \& \& $1 / 2$ " Ice \& 15.44 \& 15.44 \& 0.99

\hline \& \& \& \& \& \& $1{ }^{11}$ Ice \& 19.29 \& 19.29 \& 1.21

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 26.99 \& 26.99 \& 1.64

\hline \& \multirow{4}{*}{A} \& \multirow{3}{*}{From Face} \& \& \multirow{4}{*}{0.0000} \& \multirow{3}{*}{88.00} \& $4{ }^{\text {" Ice }}$ \& 42.39 \& 42.39 \& 2.50

\hline \multirow[t]{5}{*}{ERICSSON AIR 21 B2A B4P w/ Mount Pipe} \& \& \& 4.00 \& \& \& No Ice \& 6.90 \& 5.72 \& 0.11

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 7.46 \& 6.63 \& 0.17

\hline \& \& \& \& \& \& $1{ }^{\text {" Ice }}$ \& 8.00 \& 7.42 \& 0.24

\hline \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Face} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{88.00} \& $2^{\prime \prime}$ Ice \& 9.10 \& 9.07 \& 0.39

\hline \& \& \& \& \& \& 4 " Ice \& 11.44 \& 12.58 \& 0.82

\hline \multirow[t]{5}{*}{ERICSSON AIR 21 B2A B4P w/ Mount Pipe} \& \& \& 4.00 \& \& \& No Ice \& 6.90 \& 5.72 \& 0.11

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 7.46 \& 6.63 \& 0.17

\hline \& \& \& 2.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 8.00 \& 7.42 \& 0.24

\hline \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Face} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{88.00} \& $2^{\prime \prime}$ Ice \& 9.10 \& 9.07 \& 0.39

\hline \& \& \& \& \& \& $4^{\prime \prime}$ Ice \& 11.44 \& 12.58 \& 0.82

\hline \multirow[t]{5}{*}{ERICSSON AIR 21 B2A B4P w/ Mount Pipe} \& \& \& 4.00 \& \& \& No Ice \& 6.90 \& 5.72 \& 0.11

\hline \& \& \& $$
0.00
$$ \& \& \& 1/2" Ice \& 7.46 \& 6.63 \& 0.17

\hline \& \& \& 2.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 8.00 \& 7.42 \& 0.24

\hline \& \multirow{6}{*}{A} \& \multirow{5}{*}{From Face} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{88.00} \& 2" Ice \& 9.10 \& 9.07 \& 0.39

\hline \& \& \& \& \& \& 4 " Ice \& 11.44 \& 12.58 \& 0.82

\hline \multirow[t]{5}{*}{ERICSSON AIR 21 B4A B2P w/ Mount Pipe} \& \& \& 4.00 \& \& \& No Ice \& 6.90 \& 5.72 \& 0.11

\hline \& \& \& $$
0.00
$$ \& \& \& 1/2" Ice \& 7.46 \& 6.63 \& 0.17

\hline \& \& \& \multirow[t]{2}{*}{2.00} \& \& \& $1{ }^{12}$ Ice \& 8.00 \& 7.42 \& 0.24

\hline \& \& \& \& \multirow{5}{*}{0.0000} \& \& $2^{\prime \prime}$ Ice \& 9.10 \& 9.07 \& 0.39

\hline \& \multirow{5}{*}{B} \& \multirow{4}{*}{From Face} \& \& \& \multirow{4}{*}{88.00} \& 4 " Ice \& 11.44 \& 12.58 \& 0.82

\hline \multirow[t]{5}{*}{ERICSSON AIR 21 B4A B2P w/ Mount Pipe} \& \& \& 4.00 \& \& \& No Ice \& 6.90 \& 5.72 \& 0.11

\hline \& \& \& $$
0.00
$$ \& \& \& $1 / 2^{\prime \prime}$ Ice \& 7.46 \& 6.63 \& 0.17

\hline \& \& \& \multirow[t]{2}{*}{2.00} \& \& \& 1" Ice \& 8.00 \& 7.42 \& 0.24

\hline \& \& \multirow{7}{*}{From Face} \& \& \multirow{7}{*}{0.0000} \& \multirow{7}{*}{88.00} \& $2^{\prime \prime}$ Ice \& 9.10 \& 9.07 \& 0.39

\hline \& \multirow{6}{*}{C} \& \& \& \& \& 4 " Ice \& 11.44 \& 12.58 \& 0.82

\hline \multirow[t]{5}{*}{ERICSSON AIR 21 B4A B2P w/ Mount Pipe} \& \& \& 4.00 \& \& \& No Ice \& 6.90 \& 5.72 \& 0.11

\hline \& \& \& $$
0.00
$$ \& \& \& 1/2" Ice \& 7.46 \& 6.63 \& 0.17

\hline \& \& \& 2.00 \& \& \& $1^{\prime \prime}$ Ice \& 8.00 \& 7.42 \& 0.24

\hline \& \& \& \& \& \& $2^{\text {n }}$ Ice \& \[
9.10

\] \& \[

9.07

\] \& \[

0.39
\]

\hline \& \& \& \& \& \& $4^{\prime \prime}$ Ice \& 11.44 \& 12.58 \& 0.82

\hline
\end{tabular}

tnxTower	Job Burlington-Nepaug Road - BU\#: 845993		$\begin{aligned} & \text { Page } \quad 8 \text { of } 9 \end{aligned}$
GPD Group 520 South Main Street, Suite 2531 Akon, OH 44311 Phone: (330) 572-2153 FAX: (330) 572-2101	Project	2014777.845993 .01	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 17:31:25 06/10/14 } \end{array}$
	Client	Crown Castle USA, Inc.	Designed by Joshua Huffine

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
$f t$		Comb.	in	0	0	ft
119.00	Platform Mount [LP 1201-1]	20	18.108	1.3201	0.0387	25168
109.00	Platform Mount [LP 1201-1]	20	15.508	1.2829	0.0333	13246
99.00	Platform Mount [LP 1201-1]	20	12.861	1.2224	0.0277	6809
88.00	T-Arm Mount [TA 602-3]	20	10.150	1.1151	0.0219	5385

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	$f t$	in	Comb.	0	0
L1	$118.5-96.5$	46.015	3	3.3456	0.0989
L2	$100.5-47.75$	33.701	3	3.1327	0.0729
L3	$53.25-0$	9.220	3	1.6144	0.0194

Critical Deflections and Radius of Curvature - Design Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist	Radius of Curvature $f t$
119.00	.Platform Mount [LP 1201-1]	3	46.015	3.3456	0.0989	10094
109.00	Platform Mount [LP 1201-1]	3	39.428	3.2544	0.0851	5312
99.00	Platform Mount [LP 1201-1]	3	32.718	3.1045	0.0708	2726
88.00	T-Arm Mount [TA 602-3]	3	25.837	2.8348	0.0560	2143

Compression Checks

Pole Design Data

Section No.	Elevation	Size	L	L_{u}	$K l / r$	F_{a}	A	Actual Allow.	Ratio 	$f t$

Pole Bending Design Data

Section No.	Elevation $f t$	Size	$\begin{gathered} \hline \text { Actual } \\ M_{x} \\ k i p-f t \\ \hline \end{gathered}$	Actual $f_{b x}$ ksi	$\begin{gathered} \text { Allow. } \\ F_{b x} \\ k s i \end{gathered}$	$\begin{gathered} \text { Ratio } \\ f_{b x} \\ \hline F_{b x} \\ \hline \end{gathered}$	$\begin{gathered} \text { Actual } \\ M_{y} \\ \text { kip-ft } \\ \hline \end{gathered}$	$\begin{gathered} \text { Actual } \\ f_{b y} \\ k s i \\ \hline \end{gathered}$	Allow. $F_{b y}$ ksi	$\begin{gathered} \text { Ratio } \\ f_{b y} \\ \hline F_{b y} \\ \hline \end{gathered}$
L1	118.5-96.5 (1)	TP27.59x22x0.1875	107.97	12.663	39.000	0.325	0.00	0.000	39.000	0.000
L2	96.5-47.75 (2)	TP39.49x26.1986x0.25	760.01	32.465	38.850	0.836	0.00	0.000	38.850	0.000
L3	47.75-0 (3)	TP51x37.6042x0.3125	1691.75	32.230	37.642	0.856	0.00	0.000	37.642	0.000

tnxTower	Job Burlington-Nepaug Road - BU\#: 845993		$\begin{aligned} & \text { Page } \quad 9 \text { of } 9 \end{aligned}$
GPD Group 520 South Main Street, Suite 2531 Akon, OH 44311 Phone: (330) 572-2153 FAX: (330) 572-2101	Project	2014777.845993 .01	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 17:31:25 06/10/14 } \end{array}$
	Client	Crown Castle USA, Inc.	Designed by Joshua Huffine

Pole Shear Design Data

Section No.	Elevation $f t$	Size	$\begin{gathered} \text { Actual } \\ V \\ K \end{gathered}$	$\begin{gathered} \text { Actual } \\ f_{v} \\ k s i \end{gathered}$	$\begin{gathered} \text { Allow. } \\ F_{v} \\ k s i \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Ratio } \\ f_{v} \end{array} \\ \hline F_{v} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Actual } \\ T \\ \text { kip-ft } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Actual } \\ f_{\mathrm{vi}} \\ k s i \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Allow. } \\ F_{v i} \\ k s i \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ f_{\mathrm{vt}} \\ \hline F_{\mathrm{wr}} \\ \hline \end{gathered}$
L1	118.5-96.5 (1)	TP27.59x22×0.1875	7.66	0.488	26.000	0.038	5.05	0.289	26.000	0.011
L2	96.5-47.75 (2)	TP39.49x26.1986x0.25	15.84	0.527	26.000	0.041	6.55	0.137	26.000	0.005
L3	47.75-0 (3)	TP51x37.6042x0.3125	19.17	0.381	26.000	0.029	6.54	0.061	26.000	0.002

Pole Interaction Design Data

Section No.	Elevation ft	$\begin{gathered} \hline \text { Ratio } \\ P \\ \hline P_{a} \\ \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Ratio } \\ f_{b x} \end{array} \\ \hline F_{b x} \\ \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Ratio } \\ f_{b y} \end{array} \\ \hline F_{b y} \end{gathered}$	$\begin{gathered} \text { Ratio } \\ f_{v} \\ \hline F_{v} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ f_{v t} \\ F_{v i} \\ \hline \end{gathered}$	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
L1	118.5-96.5 (1)	0.010	0.325	0.000	0.038	0.011	$\begin{gathered} 0.336 \\ \end{gathered}$	1.333	H1-3+VT
L2	96.5-47.75 (2)	0.014	0.836	0.000	0.041	0.005	0.850	1.333	H1-3+VT
L3	47.75-0 (3)	0.014	0.856	0.000	0.029	0.002	0.870	1.333	H1-3+VT

Section Capacity Table								
Section	Elevation	Component	Size	Critical	P	SF** ${ }^{\text {athow }}$	\%	Pass
No.	$f t$	Type		Element	K	K	Capacity	Fail
L1	118.5-96.5	Pole	TP27.59×22x0.1875	1	-6.32	816.35	25.2	Pass
L2	96.5-47.75	Pole	TP39.49×26.1986×0.25	2	-15.97	1555.53	63.8	Pass
L3	47.75-0	Pole	TP51×37.6042×0.3125	3	-26.39	2522.69	65.3	Pass
						Summary	ELC:	Load Case 7
						Pole (L3)	65.3	Pass
						Rating =	65.3	Pass

APPENDIX B

BASE LEVEL DRAWING

*sn
sszycay noiega nmoyo

APPENDIX C

ADDITIONAL CALCULATIONS

Stiffened or Unstiffened, Ungrouted, Circular Base Plate - Any Rod Material
 TIA Rev F

Site Data
BU\#: 845993
Site Name: Burlington-Nepaug Road

App \#: 247460 Rev. 1
Pole Manufacturer:) Other

Anchor Rod Data				
Qty:	12			
Diam:	2.25	in		
Rod Material:	A615-J			
Strength (Fu)	100			ksi
Yield (Fy):	75	ksi		
Bolt Circle:	58.5	in		

Plate Data		
Diam:	66	in
Thick:	2.25	in
Grade:	60	ksi
Single-Rod B-eff:	13.49	in

Reactions		
Moment:	1692	ft-kips
Axial:	26	kips
Shear:	19	kips

If No stiffeners, Criteria: \quad AISC ASD $<$-Only Applcable to Unstiffened Cases

Anchor Rod Results

Maximum Rod Tension:
Allowable Tension:
Anchor Rod Stress Ratio:

	Rigid
113.5 Kips	Service, ASD
195.0 Kips	Fty*ASIF

Base Plate Results

Base Plate Stress:
Allowable Plate Stress:
Base Plate Stress Ratio:

Flexural Check	Rigid
25.9 ksi	Service ASD
60.0 ksi	0.75*Fy*ASIF
43.2\% Pass	$\begin{aligned} & \hline \text { Y.L. Length: } \\ & 28.66 \end{aligned}$

n/a
Stiffener Results
Horizontal Weld : n/a
Vertical Weld: n/a
Plate Flex+Shear, $\mathrm{fb} / \mathrm{Fb}+(\mathrm{fv} / \mathrm{Fv})^{\wedge} 2: \quad \mathrm{n} / \mathrm{a}$
Plate Tension+Shear, ft/Ft+(fv/Fv) ${ }^{\wedge}$ 2: n/a
Plate Comp. (AISC Bracket): n/a
Pole Results
Pole Punching Shear Check: n/a

Pole Data		
Diam:	51	in
Thick:	0.3125	in
Grade:	65	ksi
\# of Sides:	18	"0" IF Round
Fu	80	ksi
	0	" 0 " if None

Stress Increase Factor		
ASIF:		1.333

[^1]Mat Foundation Analysis
Burlington-Nepaug Road - BU\#: 845993
2014777.845993 .01

Bearing Summary			Load Case
Qxmax	1.27	ksf	$1.2 \mathrm{D}+1.6 \mathrm{~W}$
Qymax	1.27	ksf	$1.2 \mathrm{D}+1.6 \mathrm{~W}$
Qmax @ 45	1.43	ksf	$1.2 \mathrm{D}+1.6 \mathrm{~W}$
$\mathrm{Q}_{\text {fall }}$ Gross	9.40	ksf	
Controlling Capacity	15.2\%	Pass	

Tower Reactions	
Moment, M	$1692 \mathrm{k}-\mathrm{ft}$
Axial, P	26 k
Shear, V	19 k

Overturning Summary (Required $\mathbf{F S}=\mathbf{1 . 0}$)		Load Case	
FS(ot) C	2.14	≥ 1.0	$0.9 \mathrm{D}+1.6 \mathrm{~W}$
FS(ot) y	2.14	≥ 1.0	$0.9 \mathrm{D}+1.6 \mathrm{~W}$
Controlling Capacity	$\mathbf{4 6 . 7 \%}$	Pass	

Pad \& Pier Geometry		
Pier Width, $\boldsymbol{7}$	7	ft
Pad Length, L	25	ft
Pad Width, W	25	ft
Pad Thickness, t	3	ft
Depth, D	5	ft
Height Above Grade, HG	1	ft

Pad \& Pier Reinforcing		
Rebar Fy	60	ksi
Concrete Fc'	4	ksi
Clear Cover	3	in
Reinforced Top \& Bottom?	Yes	
Pad Reinforcing Size	$\# 8$	
Pad Quantity Per Layer	29	
Pier Rebar Size	$\# 8$	
Pier Quantity of Rebar	30	

Soil Properties	
Soil Type	Granular
Soil Unit Weight	120 pcf
Angle of Friction, \varnothing	30°
Bearing Type	Net
Ultimate Bearing	12 ksf
Water Table Depth	4 ft
Frost Depth	3.333 ft

GPD Mat Foundation Analysis - V1.02

Code TIA/EIA-222-F

Tower Reactions	
Moment	$1692 \mathrm{k}-\mathrm{ft}$
Axial	26 k
Shear	19 k

Overall Capacities		
Reinforcement Capacity	14.9%	OK
As Min Met?	No	
Controlling Capacity	14.9%	OK

Pad \& Pier Geometry	
Height	5 ft
Height above Grade	1 ft
Pad Length, L	25 ft
Pad Width, W	25 ft
Pad Thickness	3 ft
Pier Shape	Square
Square Pier Width	7 ft

Pad \& Pier Reinforcing	
Reinforcing Known	Yes
$\mathrm{f}_{\mathrm{c}}{ }^{\text {a }}$	4 ksi
Clear Cover	3 in
Rebar Fy	60 ksi
Pad Rebar Size	$\# 8$
Pad Rebar Quantity	29
Pier Rebar Size	$\# 8$
Pier Rebar Quantity	30

Unit Weights	
Concrete Unit Weight	150 pcf
Soil Unit Weight	120 pcf

Orthogonal Bearing	
$\mathrm{a}_{\text {max }}$	1.55 ksf
$\mathrm{Q}_{\text {min }}$	0.00 ksf
Bearing Length	25 ft

Moment Capacity	14.9%	OK
One-Way (Wide-Beam) Shear		
$\mathrm{V}_{\mathrm{u}}=$	7.68 psi	
$\phi \mathrm{V}_{\mathrm{n}}=$	94.87 psi	
Shear Capacity	8.1%	OK
Two-Way (Punching) Shear		
$\mathrm{V}_{\mathrm{u}}=$	21.72 psi	
$\phi \mathrm{V}_{\mathrm{n}}=$	189.74 psi	
Shear Capacity	11.4%	OK
Pier Compression		
$\mathrm{P}_{\mathrm{u}}=$	33.80 k	
$\phi \mathrm{P}_{\mathrm{n}}=$	9312.25 k	
Compresion Capacity	0.4%	OK

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

MetroPCS / T-Mobile Existing Facility
Site ID: CTHA509A
Pocket Smart Wireless
12 Nepaug Road
Burlington, MA 06013
June 30, 2014

EBI Project Number: 62143647

June 30, 2014

MetroPCS / T-Mobile USA
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 06002

Re: Emissions Values for Site: CTHA509A - Pocket Smart Wireless

EBI Consulting was directed to analyze the proposed MetroPCS / T-Mobile facility located at 12 Nepaug Road, Burlington, MA, for the purpose of determining whether the emissions from the Proposed MetroPCS / T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm} 2$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307 (b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The general population exposure limit for the cellular band is $567 \mu \mathrm{~W} / \mathrm{cm} 2$, and the general population exposure limit for the PCS and AWS bands is $1000 \mu \mathrm{~W} / \mathrm{cm} 2$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed MetroPCS / T-Mobile Wireless antenna facility located at 12 Nepaug Road, Burlington, MA, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since MetroPCS / T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, the actual antenna pattern gain value in the direction of the sample area was used. For this report the sample point is a 6 foot person standing at the base of the tower

For all calculations, all equipment was calculated using the following assumptions:

1) 2 GSM channels (1935.000 MHz - to 1945.000 MHz) were considered for each sector of the proposed installation.
2) 2 UMTS channels (2110.000 MHz to $2120.000 \mathrm{MHz} / 2140.000 \mathrm{MHz}$ to 2145.000 MHz) were considered for each sector of the proposed installation.
3) 2 LTE channels (2110.000 MHz to $2120.000 \mathrm{MHz} / 2140.000 \mathrm{MHz}$ to 2145.000 MHz) were considered for each sector of the proposed installation.
4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
5) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The actual gain in this direction was used per the manufactures supplied specifications.
6) The antenna used in this modeling is the Ericsson AIR21 for LTE, UMTS and GSM. This is based on feedback from the carrier with regards to anticipated antenna selection. This antenna has a 15.6 dBd gain value at its main lobe. Actual antenna gain values were used for all calculations as per the manufacturers specifications.
7) The antenna mounting height centerline of the proposed antennas is $\mathbf{9 0}$ feet above ground level (AGL).
8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

Summary

All calculations performed for this analysis yielded results that were well within the allowable limits for general public exposure to RF Emissions.

The anticipated Maximum Composite contributions from the MetroPCS / T-Mobile facility are 1.477\% ($\mathbf{0 . 4 9 2 \%}$ from each sector) of the allowable FCC established general public limit considering all three sectors simultaneously sampled at the ground level.

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{6 7 . 6 9 7 \%}$ of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

EBI Consulting

21 B Street
Burlington, MA 01803

[^0]: ${ }^{1}$ The Burlington Facility was approved at a height of 120 feet (Docket 268), which is consistent with this filing.

[^1]: * $0=$ none, 1 = every bolt, 2 = every 2 bolts, $3=2$ per bolt
 ** Note: for complete joint penetration groove welds the groove depth must be exactly $1 / 2$ the stiffener thickness for calculation purposes

