Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

April 14, 2022

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 100 (a/k/a 130) Old Tatnic Hill Road, Brooklyn, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an existing wireless telecommunications facility at the above-referenced property address (the "Property"). The facility consists of antennas and remote radio heads attached to a tower and associated equipment on the ground near the base of the tower. The tower was approved by the Town of Brooklyn ("Town") in August of 1999. Cellco's use of the tower were approved by the Siting Council ("Council") in July of 2001 (EM-VER-019-010614). A copy of the Town's and the Council's approvals are included in <u>Attachment 1</u>.

Cellco now intends to modify its facility by removing nine (9) existing antennas and installing three (3) new Samsung MT6407-77A antennas and six (6) MX06FRO660-03 antennas on its existing antenna platform. Cellco also intends to remove three (3) remote radio heads ("RRHs') with six (6) new RRHs behind its antennas. A set of project plans showing Cellco's proposed facility modifications and new antennas and RRH specifications are included in Attachment 2.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Brooklyn's Chief Elected Official and Land Use Officer.

Boston | Hartford | New York | Providence | Stamford | Albany | Los Angeles | Miami | New London | rc.com

Melanie A. Bachman, Esq. April 14, 2022 Page 2

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. Cellco's replacement antennas will be installed on its existing antenna platform mount.

2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The installation of Cellco's new antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A cumulative General Power Density table for Cellco's modified facility is included in <u>Attachment 3</u>. The modified facility will be capable of providing Cellco's 5G wireless service.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. According to the attached Structural Analysis ("SA") and Mount Analysis ("MA"), the existing tower, tower foundation and antenna platform with certain modifications can support Cellco's proposed modifications. Copies of the SA and MA are included in <u>Attachment 4</u>.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 6</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Melanie A. Bachman, Esq. April 14, 2022 Page 3

Sincerely,

Kunig MM

Kenneth C. Baldwin

Enclosures

Copy to:

Austin Tanner, Brooklyn First Selectman Jana Butts-Roberson, Director of Community Development/Town Planner Benjamin and Sophie Davidson, Property Owners Karla Hanna, Verizon Wireless

ATTACHMENT 1

TOWN OF BROOKLYN CONNECTICUT 06234

Norwich Bulletin Classified/Legals Department Please run the following Legal Ad One Time Only: Monday, August 9, 1999

(Bill to the Town of Brooklyn, Account #10089300) Contact Chuck Dobrowski at 779-3411 with any question/problems Thank you.)

Town of Brooklyn Planning and Zoning Commission Notice of Decision

At the Regular Meeting of the Brooklyn Planning and Zoning Commission held on August 4, 1999, the following decisions were rendered.

Zone Change Application 99-02 of Angela C. Revera, request for Zone Change at 207 Day Street, from R30 to RA. – APPLICATION WAS DENIED

SPR-99-17 of SBA Inc./Sprint PCS, construction of telecommunications facility at 130 Old Tatnic Hill Road, Map 15, Lot 16. – APPLICATION WAS APPROVED

SPR-99-18 of Nextel Communications, construction of telecommunications facility at Tatnic Hill Road, Map 14, Lot 10. – APPLICATION WAS WITHDRAWN

SD-99-06, Theodore Stever, Allen Hill Road, three lot subdivision. – APPLICATION WAS APPROVED WITH CONDITIONS

SPR99-19 Kenyon Oil Company, 409 Providence Road, construction of Convenience Store and Gas Station. – APPLICATION TABLED.

allama Madalia,

Bruce Parsons Chairman

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL Ten Franklin Square

New Britain, Connecticut 06051 Phone: (860) 827-2935 Fax: (860) 827-2950

Sandy M. Carter Verizon Wireless 20 Alexander Drive P.O. Box 5029 Wallingford, CT 06492

RE: **TS-VER-019-010614** - Cellco Partnership d/b/a Verizon Wireless request for an order to approve tower sharing at an existing telecommunications facility located at 130 Tatnic Hill Road, Brooklyn, Connecticut.

Dear Ms. Carter:

At a public meeting held July 11, 2001, the Connecticut Siting Council (Council) ruled that the shared use of this existing tower site is technically, legally, environmentally, and economically feasible and meets public safety concerns, and therefore, in compliance with General Statutes § 16-50aa, the Council has ordered the shared use of this facility to avoid the unnecessary proliferation of tower structures. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Any additional change to this facility may require an explicit request to this agency pursuant to General Statutes § 16-50aa or notice pursuant to Regulations of Connecticut State Agencies Section 16-50j-73, as applicable. Such request or notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

This decision applies only to this request for tower sharing and is not applicable to any other request or construction.

The proposed shared use is to be implemented as specified in your letter dated June 14, 2001.

Thank you for your attention and cooperation.

Very truly yours, tila for Mortimer A. Gelston Chairman

MAG/RKE/laf

 c: Honorable Maurice F. Bowen, First Selectman, Town of Brooklyn Chester Dobrowski, Zoning Enforcement Officer, Town of Brooklyn Esther McNany, SBA, Inc.
 Julie M. Donaldson, Esq., Hurwitz & Sagarin LLC Ronald C. Clark, Nextel Communications Peter W. van Wilgen, SNET Mobility, LLC

ATTACHMENT 2

BROOKLYN CT 130 OLD TATNIC HILL ROAD BROOKLYN, CT 06095

GENERAL NOTES

- ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BULDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUINGS THE THY OTHER ZERISION OF STRUCTURE, STRUCT
- SHOULD ANY FIELD CONDITIONS PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL NOT PROCEED WITH ANY AFFECTED WORK.
- 3. CONTINUETING SHALL RAFEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTINUET DOCUMENT SEC. CONTRACTOR SHALL CORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE OF DRAWINGS AND SPECIFICATIONS FOR SHALL EXAMPLE ALL PARTICIPATIONS FOR THE INFORMATION THAT AFFECTS THERE WORK.
- CONTRACTOR SHALL PROMDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, AND ALL TRADES AS APPLICABLE PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- Control of the section of the sectio
- 8. LOCATION OF EQUIPALENT, AND WORK SUPPLIED BY OTHERS THAT IS DUGRAMMATICALLY INDICATED ON THE DRAWINGS SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBJECTIVE ONTRACTORS.
- B. THE CONTRACTOR IS SOLLY RESPONSELE TO DETERMINE CONTRACTOR PROCEDURE: AND SQUINCE, AND TO ENSURE THE SWETT OF THE DISTING STRUCTURES AND ITS COMPOSIT PARTS DURING CONSTRUCTION. THE DISCIDENT CONTRACTOR OF INSTEAD OF ONE OF ONE OF ONE DISCIDENT CONTRACTOR OF ONE OF ONE OF ONE OF ONE OF ONE BULDING'S/ROPERTY ONES. COORDINATE WORK WITH BULDING'S/ROPERTY ONES.
- LO DRWINGS INDICATE THE WINNUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATE TO BE SUBSTANDED TO ANY ORDWAYES, SHOULD BE INDICATED TO BE SUBSTANDED TO ANY ORDWAYES, INDICATED TO ANALI, INCLUDE IN ISIN WORK AND SHALL DECUDITE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LANS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.

- 11. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REMEWED BY CONTINUETOR AND ALL APPLICABLE SUBCONTINUETORS FOR ANY THESE ITEMS AT IND COST TO OWNER OR CONSTRUCTION MANAGER.
 ANY AND ALL ERMONS, DESCRETANCIES, AND INSERD'TEMES ARE
- 13. ANY AND ALL ERRORS, DISCREPANCIES, AND 'MISSED' ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE VERZON WIRELESS CONSTRUCTION MANAGER DURING THE BOOMD PROCESS BY THE CONTROL WILL BE ALLOWED FOR MISSED TIMES.
- CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 15. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUIT AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- 18. ALL CONTRACTOR AND ADDRESS AND ADDRESS
- ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LUABLE FOR ALL REPURS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 20. THE CONTRACTOR SHALL CONTACT "CALL BEFORE YOU DIG" AT LEAST 48 HOURS PRIOR TO ANY EXCANTIONS AT 1-800-922-4455, ALL UTLITES SHALL BE LEDRIFIED AND LEARLY LMARTED PROR TO ANY EXCANATION WORK, CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED DUILTIES THROUGHOUT PROJECT COMPLETION.

 SITE DIRECTIONS

 FROM:
 20 ALXINGER INSC.
 TO: 130 OLD TAINE III. INFO

 1. SHIT OUT GONE NORTH ON ALXINGED IN TOWARD BANES INCUSTING. RD.
 0.18 MI

 1. TURK REF ONTO GONE CONSTRUM. RD.
 0.11 MI

 1. TURK REF ONTO GONE ON TOWARD BANES INCUSTING. RD.
 0.18 MI

 1. TURK REF ONTO GONE ON TOWARD BANES INCUSTING. RD.
 0.11 MI

 1. TURK REF ONTO GONE ONTO ALXES NO.
 0.13 MI

 1. TURK REF ONTO CH-1.5 MI TOWARD INFORMATION ONTO CH-6.6
 0.11 MI

 1. TURK REF ONTO CH-1.5 MI TOWARD INFORMATION ONTO CH-6.6
 0.32 MI

 1. TURK REF ONTO CH-1.5 MI TOWARD INFORMATION ONTO CH-6.6
 0.32 MI

 1. BERGE ONTO CH-1.5 MI TOWARD INFORMATION ONTO CH-6.6
 0.33 MI

 1. BERGE ONTO CH-2.5 TOWARD ONTOWARD INFORMATION ONTO CH-6.6
 0.33 MI

 1. BERGE ONTO CH-2.5 MI TOWARD INFORMATION ONTO CH-6.6
 0.33 MI

 1. BERGE ONTO CH-2.5 MI TOWARD INFORMATION ONTO CH-6.6
 0.33 MI

 1. CH-2.5 LET TOWARD ONTOWARD INFORMATION ONTO CH-6.6
 0.33 MI

 1. CH-2.5 LET TOWARD ONTOWARD INFORMATION ONTO CH-6.6
 0.33 MI

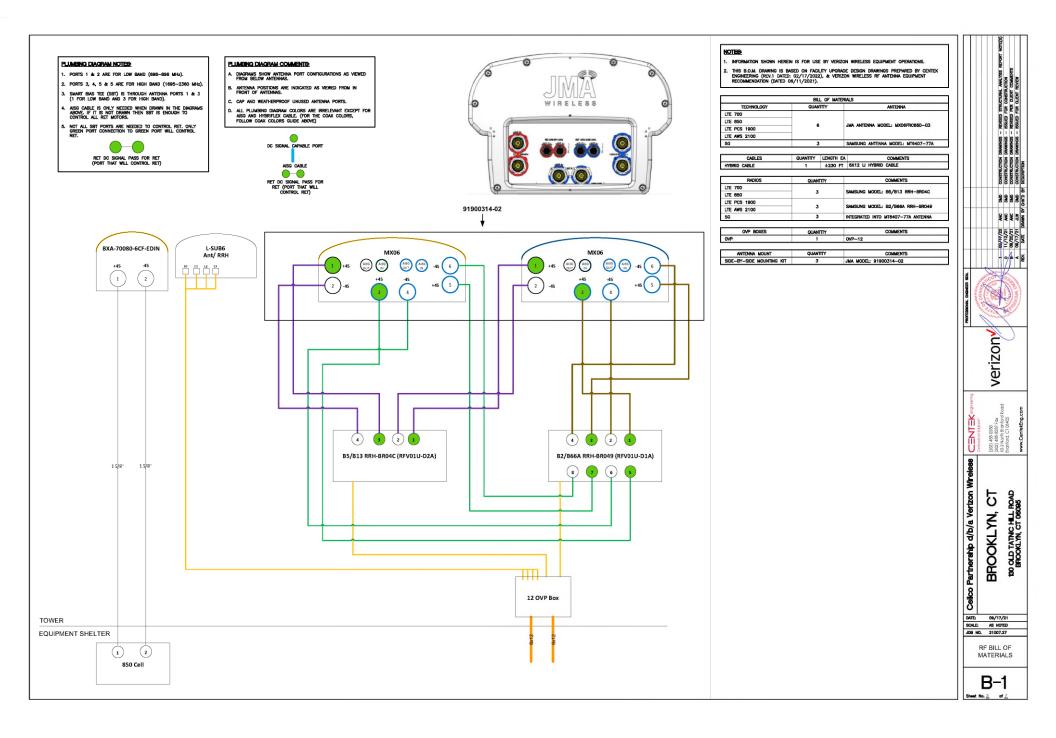
 1. CH-2.5 LET TOWARD ONTOWARD INFORMATION ONTO CH-6.6
 0.33 MI

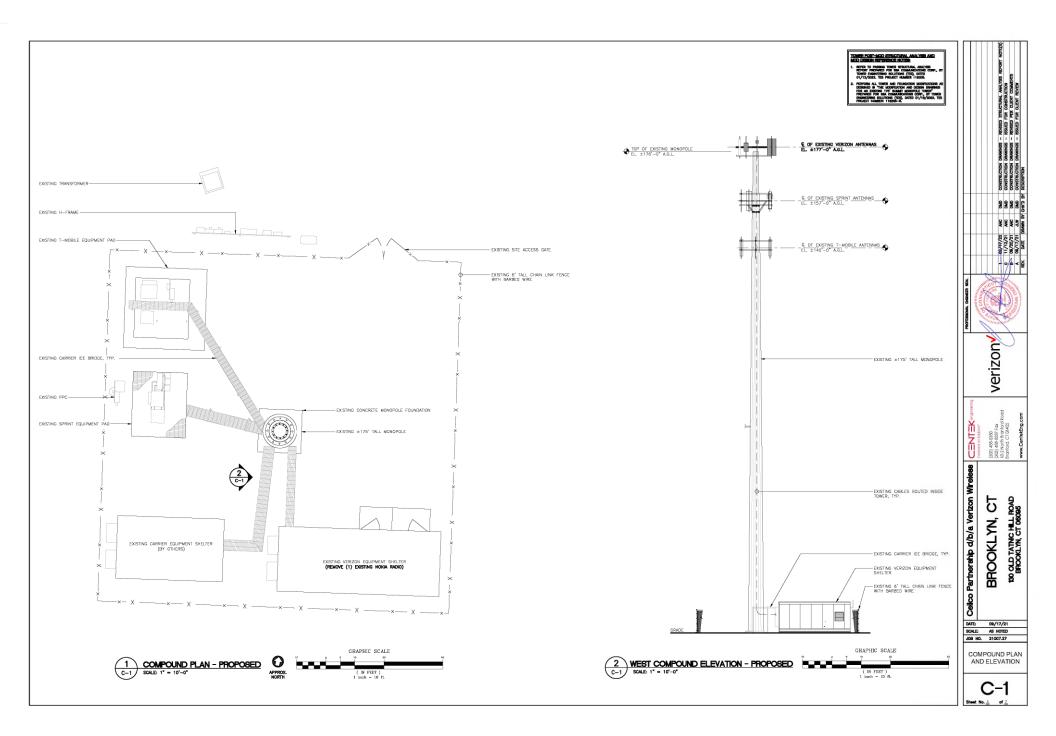
 1. CH-2.5 LET TOWARD ONTOWARD INFORMATION ONTO CH-6.6
 0.33 MI

 1. CH-2.5 LE

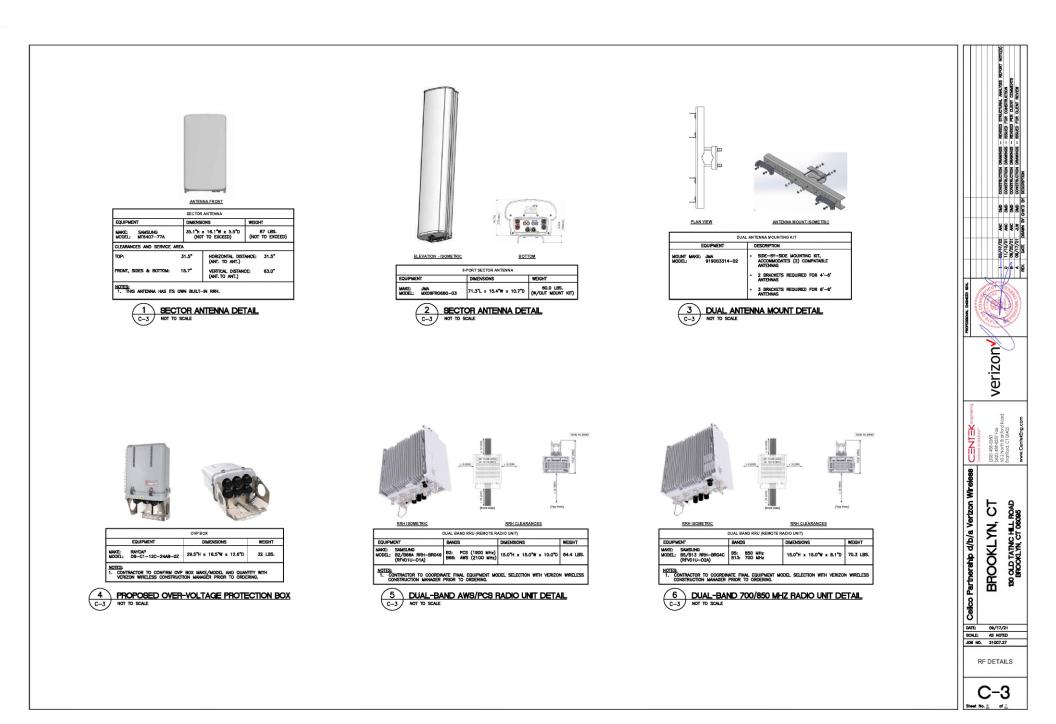
PROJECT SUMMARY THE PROPOSED UPGRADE SCOPE OF WORK AT THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY GENERALLY INCLUDES THE FOLLOWING: A. AT THE EXISTING MONOPOLE MOUNTED ANTENNA SECTORS: · REMOVE (3) EXISTING ANTEL - BXA-70063-6CF ANTENNAS. • REMOVE (3) EXISTING AMPHENOL - BXA-171085-12CF ANTENNAS. · REMOVE (3) EXISTING AMPHENOL - WEXO85X19R050 ANTENNAS. · REMOVE (1) EXISTING 1-5/8" COAXIAL CARLE. · REMOVE (1) EXISTING OVP-6 BOX. · REMOVE (1) EXISTING NOKIA - UHBC B13 TRDU 2x40. RETAIN (3) EXISTING ANTEL - BXA-70080-6CF-EDIN-0 ANTENNAS. • RETAIN (11) EXISTING 1-5/8" COMA COAXIAL CABLES. • RETAIN (1) EXISTING 6x12 HYBRIFLEX non-LI CABLE. INSTALL (6) JMA - MX06FR0660-03 ANTENNAS. INSTALL (3) SAMSLING - MTRAO7-77A ALL-IN-ONE ANTENNA/ RPUS • INSTALL (3) SAMSUNG - B2/B66A RRH-BR049 RRUe. verizon INSTALL (3) SAMSUNG - B5/B13 RRH-BR04C RRUs. · INSTALL (3) JMA - 91900314-02 ANTENNA MOUNTS. INSTALL (1) 6x12 HYBRIFLEX LI CABLE. INSTALL (1) OVP-12 BOX. PERFORM TOWER ALL TOWER AND TOWER FOUNDATION MODIFICATIONS AS DESIGNED BY OTHERS AND REFERENCED HEREIN. 8. AT THE EXISTING VERIZON WIRELESS EQUIPMENT SHELTER · REMOVE (3) EXISTING NOKIA - UHID B4 RRH 2x40. PROJECT INFORMATION Ж 5587 Fax 8587 Fax 8ronford CT 06405 Z SITE NAME: BROOKLYN CT 10 00 to 10 SITE ADDRESS: 130 OLD TATNIC HILL RD, BROOKLYN, CT 08095 (203) -(203) -63-2 N Ü CELLCO PARTNERSHIP LESSEE/TENANT: Wireless d.b.g. VERIZON WIRELESS 20 ALEXANDER DRIVE WALLINGFORD, CT 06492 CONTACT PERSON: WALTER CHARCZNSKI (CONSTRUCTION MANAGER) VERIZON WIRELESS (860) 306-1806 5 OLD TATNIC HELL ROAD BROOKLYN, CT 06085 CENTEK ENGINEERING, INC. 83-2 NORTH BRANFORD RD. BRANFORD, CT. 06405 (203) 488-0580 Partnership d/b/a Verizon ENGINEER: BROOKLYN, PROJECT COORDINATES: Latitude: 41°-46'-1.7796"N Longitude: 71°-58'-19.02"W COORDINATES BASED ON VERIZON WIRELESS RFDS, DATED JUNE 11, 2021. SHEET INDEX 8 SHT NO DESCRIPTION REV T-1 TITLE SHEET Cellos N-1 NOTES AND SPECIFICATIONS 1 DATE: 09/17/21 B-1 RF BILL OF MATERIALS 1 SCALE: AS NOTED JOB NO. 21007.27 C-1 COMPOUND PLAN AND ELEVATION TITLE C-2 ANTENNA SECTOR CONFIGURATION DETAILS 1 SHEET C-3 F DETAILS

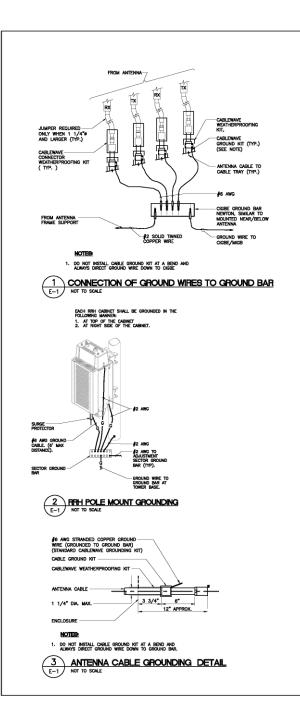
1

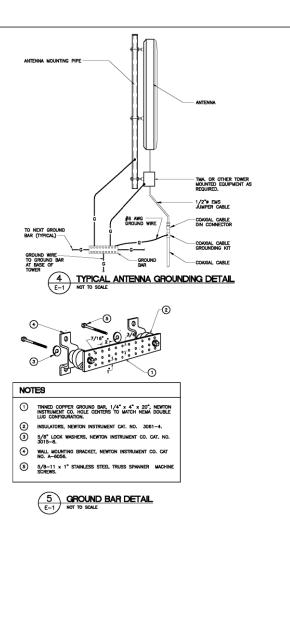

T-1

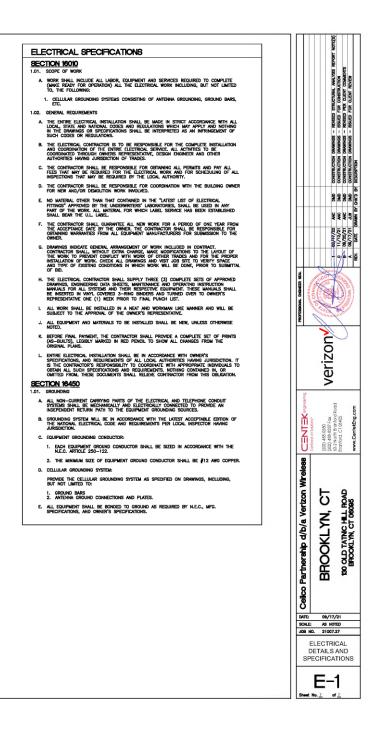

ELECTRICAL DETAILS AND SPECIFICATIONS


E-1


NVALYSIS CTION DOMMENT


DESKIN BASID COVERING CODE: 2015 INTERNATIONAL BULDING (BC) AS MODIFIED BY THE 2016 OF STREE BULDING COME AN AMBIDIATION. 10 DESKIN CRITERIA * RISK CATEGORY: 1 (MAED ON TABLE 160.4.5 OF THE 2015 BC) • NISK CATEGORY: 1 (MAED) ON TABLE 160.4.5 OF THE 2015 BC) • NISK CATEGORY: 1 (MAED) ON TABLE 160.4.5 OF THE 2015 BC) • NISK CATEGORY: 1 (MAED) ON TABLE 160.4.5 OF THE 2015 BC) • NISK CATEGORY: 1 (MAED) ON TABLE 160.4.5 OF THE 2015 BC) • DESIDE ON ACCT, 7-10) PER 2015 INTERNATIONAL BULDING CODE (BC) AS • MORPHE D' THE 2016 COMPRECING TSTATE BULDING CODE • BULDING MO OTHER TRUCTURES. CONCENT DAVIE DIA MONTHANE TRUCTURES. • READING THE STREET/LINES. CONCENT DAVIE DIA MONTHANE TRUCTURES. • READING THE BULBING CODE • DESIDE DIA ACCT, THE WINHAUM STADAPORS, BUT F ANY WORK SHOLD BE • READING TO THE STREET/LINES ON TRUCTURES. • DESIDE MONTH THE WINHAUM STADAPORS, BUT F ANY WORK SHOLD BE • READING TO THE THE WINHAUM STADAPORS, BUT F ANY WORK SHOLD BE • READING THE DE STRESTAVADARE ON READING STADAPORS WITH S MUES ON READINA <th></th> <th>Contraction (Assesses - Motor International Contraction (Assesses) - Motor International Contractions (Assessesses) - Motor International Contractional Contra</th>		Contraction (Assesses - Motor International Contraction (Assesses) - Motor International Contractions (Assessesses) - Motor International Contractional Contra
DESIGN CRITERN RISK CATEGORY: I (BASED ON TABLE 1804.5 OF THE 2015 BC) NOLMAL DESIGN SPEED (TOWER): 101 MPH (Yew) (EXPOSIBLE B/MEORTANCE FACTOR 1.0 BASED ON ASCE 7-10) FEI 2015 INTERNATIONAL BULDING CODE (BC) AS MOORED PTHE 2016 COMPENDENT STARE BULDING CODE SESIMIC LOAD (DOES NOT CONTINUEL): PEI ASCE 7-10 MINIMAN DESIGN LOADS FOR BULDING NOT OTHER STRUCTURES. CONSTRUCTION SHALL BE IN COMPLIANCE WITH THE GOVERNING BULDING CODE		HALLING CENERS SHAMPIC NAMINGS - REVIERS PERCENTIAN NAMINGS - REVIERS PERCENTIAN NAMINGS - REVIERS PERCENTIAN NAMINGS - REVIEWS - REVIEWS
RISK CATEDORY: I (BASED ON TABLE 1604.5 OF THE 2015 BC) NOMINUL DESIGN SPEED (TOMER): 101 MEM (Yuw) (DEPOSINE B/MEORTANCE FACTOR 10 BMSD ON ASCT.7-101 PRE 2015 INTENNIONUL BUILDING CODE (BC) AS MODIFED BY THE 2016 CONTENCLY PER ASCE 7-10 MINIMUM DESIGN LOADS FOR BUILDING AND OTHER STRUCTURES. CONTENLING THE STRUCTURES. CONTENLING AND ADDRESS AND A		HALLING CENERS SHAMPIC NAMINGS - REVIERS PERCENTIAN NAMINGS - REVIERS PERCENTIAN NAMINGS - REVIERS PERCENTIAN NAMINGS - REVIEWS - REVIEWS
NOMINAL DESIGN SPEED (TOWER): (1) IMPL (Vew)) (DPOSLIKE B/MPORTANCE FACTOR 1) DISCO DI ACCT, 7-(0) FEE 2015 INTERNATIONAL BULLINA CODE (IRC) AS MODELD DI HE 2015 COMPENDITE TATE BULLINA CODE BULLINA DI HE 2015 COMPENDITE TATE BULLINA CODE BULLINA NO THEM STRUCTURES. CONCENTRAL NOTES 1. ALL CONSTRUCTION SHALL BE IN COMPLANCE WITH THE GOVERNING BULLING CODE.		SCHWARK SCHWARK SCHWARK SCHWARK SCHWARK
SERVIC LOAD (DOES NOT CONTROL; PER AGC 7-10 MINIMAN DESIGN LOADS FOR BULDING AND OTHER STRUCTURES. CONTROL OF THE OPERATION OF THE OP		SCHWARK SCHWARK SCHWARK SCHWARK SCHWARK
1. ALL CONSTRUCTION SHALL BE IN COMPLIANCE WITH THE GOVERNING BUILDING CODE.		DIATRUCTION DRAWINGS DIATRUCTION DRAWINGS DOISTRUCTION DRAWINGS DOISTRUCTION DRAWINGS DESRIFTION
1. ALL CONSTRUCTION SHALL BE IN COMPLIANCE WITH THE GOVERNING BUILDING CODE.		ONSTRUCTION DR DONSTRUCTION DR DONSTRUCTION DR DONSTRUCTION DR
DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATORS BRANNE ON THE WORK, HE CONTRACTOR SHALL INCLUES IN HIS		ONSTRUCT ONSTRUCT ONSTRUCT ONSTRUCT
ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.		20001
3. BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH INVESTIDATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE NO SUBSURFACE) AT OR CONTIGUOUS TO THE SITE WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK.		ANC DMD ANC DMD ANC DMD ANC DMD ANC DMD
4. DIMENSIONS AND DETAILS SHALL BE CHECKED AGAINST EXISTING FIELD CONDITIONS.		3
OPPLINGE CLEDKER AND ANGUOD DOLTE AS DECUMPED DV ALL TRADES		00/17/22 06/17/21 06/17/21
OFTIMINAS, SLEETES AND AMENUM DO LISS OR RECOMPLE DI ALL INDUES. 6. ALL DIRESCIONES ELEVATIONS, ON OTHER REFERENCEST DE DESIME SINGULARES, SUMMACE AND SUBSURFACE CONTINUES MER APPROXIMATE. NO GUAVANTE IS DOSTINGETOR SULL VERTIY AND COORDINATE, ALL DIRESCONS, ELEVATIONS, MANUES WITH DESITING CONTINUES AND WITH ARCHITECTURAL AND SITE DRAWINGS BEFORE PROCEEDING WITH ANY WORK:		- 0 10 - 22
 AS THE WORK PROGRESSES, THE CONTRACTOR SHALL NOTIFY THE OWNER OF ANY CONDITIONS WHICH ARE IN CONFLICT OR OTHERWISE NOT CONSISTENT WITH THE CONSTRUCTION DOCUMENTS AND SHALL NOT PROCEED WITH SUCH WORK UNTIL THE CONFLICT IS SATISFACTORIZIN RESOLVED. 	DAMAGER SEA.	
B. THE CONTINCTOR SHALL DOWPLY WITH ALL APPLICABLE SAFETY CODES AND REGULATIONS DURING ALL PHASES OF CONSTRUCTION. THE CONTINCTOR IS SOLELY RESPONSED FOR PROVIDING NO WAINTAINING ADQUARE SHORING, BRICHING, AND BARGRADES AS MAY BE REGULARED FOR THE PROTECTION OF EXISTING PROPERTY, CONSTRUCTION WORKERS, AND OR POPULGE SHEETY.	PROFESSIONUL I	
9. THE CONTINUED IS BUILD'RESPONSELE TO DETERMINE CONSTRUCTION PROCEDURE ON STUDIECE AND TO DETERMENE THE SERVEY OF THE DESTING STUDIESES AND ITS COMPANIENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WAREVERS THE SOMER, BUSCING, UNDERPRIVANCE, ETC. THAT MAY BE RESESSAVE, MARTAN EXEMTING SITE OPERATIONS, COORDINATE WORK WITH NOTIFICIAL TUTLES		No
10. ALL DAMAGE CAUSED TO ANY DOCTING STRUCTURE SHALL BE THE SACE RESPONSESHITY OF THE CONTRACTOR. THE CONTRACTOR WHE BE HELD LABLE FOR ALL REPARTS REQUERED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.		eriz
11. REFER TO DRAWING T1 FOR ADDITIONAL NOTES AND REQUIREMENTS.		ž
		(203) 489-0090 (203) 489-6587 Fax 63-2 North Bronkfood Bronkord, CT 04405 www.CentekEng.com
	N	BROOKLYN, CT BROOKLYN, CT BROOK
	Sheet 1	N-1





SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..

Model Code : MT6407-77A


Points of Differentiation

Wide Bandwidth

With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

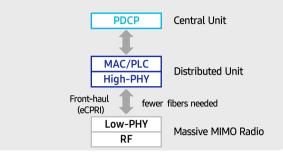
C-Band spectrum supported by Massive MIMO Radio

Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.

This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.



Technical Specifications

ltem	Specification
Tech	NR
Band	n77
Frequency Band	3700 - 3980 MHz
EIRP	78.5dBm (53.0 dBm+25.5 dBi)
IBW/OBW	280 MHz / 200 MHz
Installation	Pole/Wall
Size/ Weight	16.06 x 35.06 x 5.51 inch (50.86L)/ 79.4 lbs

Future Proof Product

Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment.

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

Dual-Band Radio Unit 700/850MHz (B13/B5) RFV01U-D2A

Samsung's RFV01U-D2A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.

The RFV01U-D2A RU targets dual-band support across Band 13 (700MHz) and Band 5 (850MHz), making it an ideal product for broad coverage footprints across multiple common low-end, long-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributedand central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation

Key Technical Specifications

Duplex Type: FDD Operating Frequencies: B13: DL(746-756MHz)/UL(777-787MHz) B5: DL(869-894MHz)/UL(824-849MHz) Instantaneous Bandwidth: 10MHz(B13) + 25MHz(B5) RF Chain: 4T4R/2T4R/2T2R Output Power: Total 320W DU-RU Interface: CPRI (10Gbps) Dimensions: 380 x 380 x 207mm (29.9L) Weight: 31.9kg Input Power: -48V DC Operating Temp.: -40 - 55°(w/o solar load) Cooling: Natural convection

Dual-Band Radio Unit AWS/PCS (B66/B2) RFV01U-D1A

Samsung's RFV01U-D1A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.

The RFV01U-D1A RU targets dual-band support across Band 66 (AWS) and Band 2 (PCS), making it an ideal product for broad coverage footprints across multiple common mid-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributed-and central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation
- Built-in Broadcast Auxiliary Services (BAS) filter ensures compliant AWS operation without impacting footprint

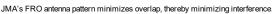
Key Technical Specifications

Duplex Type: FDD Operating Frequencies: B66: DL(2,110-2,180MHz)/UL(1,710-1,780MHz) B2: DL(1,930-1,990MHz)/UL(1,850-1,910MHz) Instantaneous Bandwidth: 70MHz(B66) + 60MHz(B2) RF Chain: 4T4R/2T4R/2T2R Output Power: Total 320W DU-RU Interface: CPRI (10Gbps) Dimensions: 380 x 380 x 255mm (36.8L) Weight: 38.3kg Input Power: -48V DC Operating Temp.: -40 - 55°(w/o solar load) Cooling: Natural convection

MX06FRO660-03

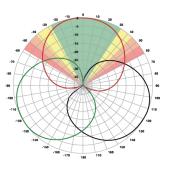
NWAV™ X-Pol Hex-Port Antenna

X-Pol Hex-Port 6 ft 60° Fast Roll Off antenna with independent tilt on 700 & 850 MHz:


2 ports 698-798, 824-894 MHz and 4 ports 1695-2180 MHz

- Fast Roll Off (FRO™) azimuth beam pattern improves Intra- and Inter-cell SINR
- Compatible with dual band 700/850 MHz radios with independent low band EDT without external diplexers
- Fully integrated (iRETs) with independent RET control for low and high bands for ease of network optimization
- SON-Ready array spacing supports beamforming capabilities
- Suitable for LTE/CDMA/PCS/UMTS/GSM air interface technologies
- Integrated Smart Bias-Ts reduce leasing costs

Fast Roll-Off antennas increase data throughput without compromising coverage


The horizontal beam produced by Fast Roll-Off (FRO) technology increases the Signal to Interference & Noise Ratio (SINR) by eliminating overlap between sectors .

Non-FRO antenna

Large traditional antenna pattern overlap creates harmful interference.

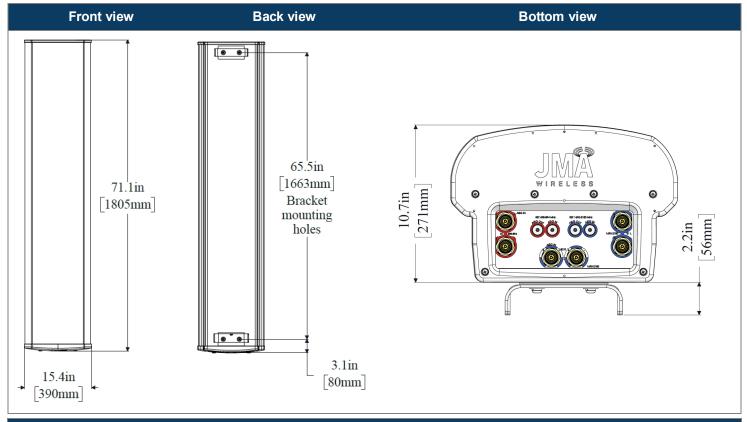
JMA FRO antenna

NWAV

The LTE radio automatically selects the best throughput based on measured SINR.

Electrical specification (minimum/maximum)	Port	s 1, 2	Ports 3, 4, 5, 6			
Frequency bands, MHz	698-798	824-894	1695-1880	1850-1990	1920-2180	
Polarization	± 4	15°	± 45°			
Average gain over all tilts, dBi	14.4	14.0	17.6	18.0	18.2	
Horizontal beamwidth (HBW), degrees	60.5	53.0	55.0	55.0	55.5	
Front-to-back ratio, co-polar power @180°± 30°, dB	>24	>24.0	>25.0	>25.0	>25.0	
X-Pol discrimination (CPR) at boresight, dB	>15.0	>14.2	>18	>18	>15	
Sector power ratio, percent	<3.5	<3.0	<3.7	<3.8	<3.6	
Vertical beamwidth (VBW), degrees ¹	13.1	11.8	6.0	5.5	5.5	
Electrical downtilt (EDT) range, degrees	2-14	2-14		0-9		
First upper side lobe (USLS) suppression, dB ¹	≤-15.0	≤-16.5	≤-16.0	≤-16.0	≤-16.0	
Cross-polar isolation, port-to-port, dB ¹	25	25	25	25	25	
Max VSWR / return loss, dB	1.5:1	/ -14.0	1.5:1 / -14.0			
Max passive intermodulation (PIM), 2x20W carrier, dBc	-153		-153			
Max input power per any port, watts	30	00		250		
Total composite power all ports, watts			1500			

¹ Typical value over frequency and tilt


©2019 JMA Wireless. All rights reserved. This document contains proprietary information. All products, company names, brands, and logos are trademarks™ or registered® trademarks of their respective holders. All specifications are subject to change without notice. +1 315.431.7100 customerservice@jmawireless.com

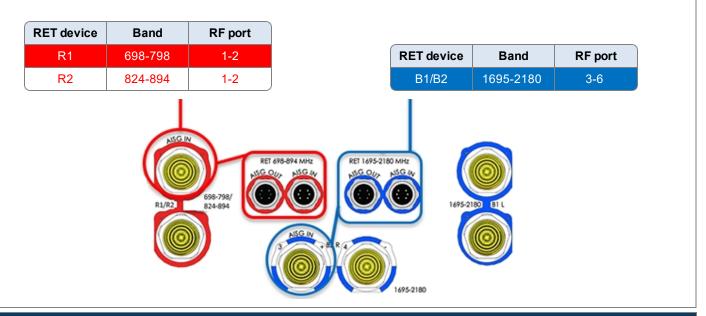
MX06FRO660-03

NWAV™ X-Pol Hex-Port Antenna

Mechanical specifications	
Dimensions height/width/depth, inches (mm)	71.3/ 15.4/ 10.7 (1811/ 392/ 273)
Shipping dimensions length/width/height, inches (mm)	82/20/15 (2083/508/381)
No. of RF input ports, connector type, and location	6 x 4.3-10 female, bottom
RF connector torque	96 lbf·in (10.85 N·m or 8 lbf·ft)
Net antenna weight, lb (kg)	60 (27.0)
Shipping weight, lb (kg)	90 (41.0)
Antenna mounting and downtilt kit included with antenna	91900318
Net weight of the mounting and downtilt kit, lb (kg)	18 (8.18)
Range of mechanical up/down tilt	-2° to 14°
Rated wind survival speed, mph (km/h)	150 (241)
Frontal, lateral, and rear wind loading @ 150 km/h, lbf (N)	154 (685), 73 (325), 158 (703)
Equivalent flat plate @ 100 mph and Cd=2, sq ft	2.6

Ordering information

Antenna model	Description					
MX06FRO660-03 6F X-Pol HEX FRO 60° independent tilt 700/850 RET, 4.3-10 & SBT						
Optional accessories						
AISG cables	M/F cables for AISG connections					
PCU-1000 RET controller	Stand-alone controller for RET control and configurations					


MX06FRO660-03

NWAV™ X-Pol Hex-Port Antenna

Remote electrical tilt (RET 1000) information					
RET location	Integrated into antenna				
RET interface connector type	8-pin AISG connector per IEC 60130-9				
RET connector torque	Min 0.5 N·m to max 1.0 N·m (hand pressure & finger tight)				
RET interface connector quantity	2 pairs of AISG male/female connectors				
RET interface connector location	Bottom of the antenna				
Total no. of internal RETs (low bands)	2				
Total no. of internal RETs (high bands)	1				
RET input operating voltage, vdc	10-30				
RET max power consumption, idle state, W	≤ 2.0				
RET max power consumption, normal operating conditions, W	≤ 13.0				
RET communication protocol	AISG 2.0 / 3GPP				

RET and RF connector topology

Each RET device can be controlled either via the designated external AISG connector or RF port as shown below:

Array topology

3 sets of radiating arrays	Band	RF port
R1/R2: 698-894 MHz	1695-2180	3-4
B1: 1695-2180 MHz B2: 1695-2180 MHz	698-894	1-2
	1695-2180	5-6

©2019 JMA Wireless. All rights reserved. This document contains proprietary information. All products, company names, brands, and logos are trademarks[™] or registered® trademarks of their respective holders. All specifications are subject to change without notice. +1 315.431.7100 customerservice@jmawireless.com

ATTACHMENT 3

	General	Power	Density					
Site Name: Brooklyn								
Tower Height: Verizon @ 177ft								
CARRIER	# OF CHAN.	WATTS ERP	HEIGHT	FREQ.	CALC.	MAX. PERMISS.EXP.	FRACTION MPE	Total
*Sprint	1	377	157	850	0.00594609	0.566666667	0.10%	Total
*Sprint	2	942	157	850	0.029714678	0.566666667	0.52%	
*Sprint	5	512	157	1900	0.040376632	1	0.40%	
*Sprint	2	1280	157	1900	0.040376632	1	0.40%	
*Sprint	8	778	157	2500	0.098165688	1	0.98%	
*Nextel	9	100	153	851	0.014977932	0.567333333	0.26%	
*T-Mobile	2	592	140	600	0.0237	0.4000	0.59%	
*T-Mobile	1	1578	140	600	0.0316	0.4000	0.79%	
*T-Mobile	2	649	140	700	0.0260	0.4667	0.56%	
*T-Mobile	4	1102	140	1900	0.0883	1.0000	0.88%	
*T-Mobile	2	2204	140	1900	0.0883	1.0000	0.88%	
*T-Mobile	2	2589	140	2100	0.1037	1.0000	1.04%	
*T-Mobile	1	11045	140	2500	0.2212	1.0000	2.21%	
*T-Mobile	1	1074	140	2500	0.0215	1.0000	0.22%	
*T-Mobile	1	22089	140	2500	0.4424	1.0000	4.42%	
*T-Mobile	1	2148	140	2500	0.0430	1.0000	0.43%	
VZW 700	4	609	177	751	0.0028	0.5007	0.56%	
VZW CDMA	2	422	177	877.26	0.0010	0.5848	0.17%	
VZW Cellular	4	623	177	874	0.0029	0.5827	0.49%	
VZW PCS	4	1462	177	1977.5	0.0067	1.0000	0.67%	
VZW AWS	4	1530	177	2120	0.0070	1.0000	0.70%	
VZW CBAND	2	21627	177	3730.08	0.0497	1.0000	4.97%	
								22.27%
* Source: Siting Council								

ATTACHMENT 4

Phone (972) 483-0607, Fax (972) 975-9615 1320 Greenway Drive, Suite 600, Irving, Texas 75038

Post-Mod Structural Analysis Report

Existing 175 ft SUMMIT Monopole Customer Name: SBA Communications Corp Customer Site Number: CT01915-S Customer Site Name: South Brooklyn Carrier Name: (App#: 165546-1) Carrier Site ID / Name: 118589 / BROOKLYN_CT Site Location: 100 Old Tatnic Hill Road Brooklyn, Connecticut Windham County Latitude: 41.767160 Longitude: -71.971949

mmmmmmm

<u>Analysis Result:</u> Max Structural Usage: 79.2% [Pass] Max Foundation Usage: 59.0% [Pass] Report Prepared By: Mohammed Al Rubaye

TES Project Number: 121972

("曲») ES

Tower Engineering Solutions Phone (972) 483-0607, Fax (972) 975-9615 1320 Greenway Drive, Suite 600, Irving, Texas 75038

Post-Mod Structural Analysis Report

Existing 175 ft SUMMIT Monopole Customer Name: SBA Communications Corp Customer Site Number: CT01915-S Customer Site Name: South Brooklyn Carrier Name: (App#: 165546-1) Carrier Site ID / Name: 118589 / BROOKLYN_CT Site Location: 100 Old Tatnic Hill Road Brooklyn, Connecticut Windham County Latitude: 41.767160 Longitude: -71.971949

<u>Analysis Result:</u> Max Structural Usage: 79.2% [Pass] Max Foundation Usage: 59.0% [Pass] Report Prepared By: Mohammed Al Rubaye

Introduction

The purpose of this report is to summarize the analysis results on the 175 ft SUMMIT Monopole to support the proposed antennas and transmission lines in addition to those currently installed. Any existing modification listed under Sources of Information was assumed completed and was included in this analysis.

The proposed modification by **TES** listed under Sources of Information was considered completed and was included in this analysis.

Sources of Information

Tower Drawings	Tower Drawings prepared by Paul J. Ford and Company, Job # 29200-401 Dated 04/05/2000
Foundation Drawing	Foundation Drawings prepared by Paul J. Ford and Company, Job # 29200-401 Dated 04/05/2000
Geotechnical Report	Geotechnical Report prepared by FDH Engineering, Project # 1201186EG1 Dated 08/16/2012
Existing Modification	N/A
Mount Analysis	Maser Consulting Connecticut Project #: 21777249A, dated 09/02/2021
Mount Mod Drawings	Maser Consulting Connecticut Project #: 21777249A, dated 09/02/2021
Proposed Modification	TES Job # 121972

Analysis Criteria

The rigorous analysis was performed in accordance with the requirements and stipulations of the TIA-222-G-2. In accordance with this standard, the structure was analyzed using **TESPoles**, a proprietary analysis software. The program considers the structure as an elastic 3-D model with second-order effects and temperature effects incorporated in the analysis. The analysis was performed using multiple wind directions.

Wind Speed Used in the Analysis:	Ultimate Design Wind Speed V _{ult} = 130.0 mph (3-Sec. Gust)/ Nominal Design Wind Speed V _{asd} = 101.0 mph (3-Sec. Gust)
Basic Wind Speed with Ice:	50 mph (3-Sec. Gust) with 1" radial ice concurrent
Operational Wind Speed:	60 mph + 0" Radial ice
Standard/Codes:	TIA-222-G-2 / 2015 IBC / 2018 Connecticut State Building
	Code
Exposure Category:	В
Structure Class:	II
Topographic Category:	1
Crest Height:	0 ft
Seismic Parameters:	SS = 0.171, S1 = 0.062

This structural analysis is based upon the tower being classified as a Structure Class II; however, if a different classification is required subsequent to the date hereof, the tower classification will be changed to meet such requirement and a new structural analysis will be run.

Existing Antennas, Mounts and Transmission Lines

The table below summarizes the antennas, mounts and transmission lines that were considered in the analysis as existing on the tower.

Items	Elevation (ft.)	Qty.	Antenna Descriptions	Mount Type & Qty.	Transmission Lines	Owner
-		3 Antel - WBX065X19R050 - Panel				
-		3	Antel - BXA-70063/6CF - Panel			
-		3	Antel - BXA-171085/12CF - Panel		(12) 1 5/8"	
-	176.0	3	Antel - BXA-70080/6CF - Panel	LP Platform	(1) 1 5/8"	Verizon
-		3	Alcatel Lucent - RRH2x40-AWS - RRH		Hybrid	
-		6	RFS - FD9R60042C-3L - Diplexer			
-		1	RFS - DB-T1-6Z-8AB-0Z - Distribution Box			
8		3	RFS - APXVTM14-C-I20 - Panel	(1) LP Platform w/		
9		3	Commscope - NNVV-65B-R4 - Panel	handrail kit & v-brace kit	(A) 1 1 (A'')	
10	157.0	3	ALU - 1900 MHz - RRU	[(1) SitePro PRK-1245L	(4) 1 1/4" Fiber	Sprint Nextel
11	11	6	ALU - 800 MHz - RRU	(1) SitePro HRK-14-U &	FIDEI	
12	3		ALU - TD-RRH8x20-25 - RRU	(1) SitePro PRK-SFS-H-L]		
13		3	RFS APXV18-206516S-C-A20			
14		3	RFS APXVAARR24_43-U-NA20		(9) 1 5/8"	
15	140.0	3	Ericsson KRY 112 489/2	Platform w/ Handrails	(3) 1 5/8"Fiber	T-Mobile
16		3	Ericsson Radio 4449 B71+B12	Commscope MT-195-12		
17		3	Kathrein 782 11056			
18		3	Commscope FFVV-65B-R2 - Panel	Commissione		
19	110.0	3	Fujitsu TA08025-B605 RRU	Commscope MC-PK8-DSH	(1) 1.6"	Dish Wireless
20	20		Fujitsu TA08025-B604 RRU	(Platform)	Hybrid	DISIT WITCHESS
21		1	Raycap RDIDC-9181-PF-48-OVP	ומנטוווו		
22	75.0	1	GPS	Direct	(1) 1/2"	Sprint Nextel

Proposed Carrier's Final Configuration of Antennas, Mounts and Transmission Lines

Information pertaining to the proposed carrier's final configuration of antennas and transmission lines was provided by SBA Communications Corp. The proposed antennas and lines are listed below.

Items	Elevation (ft)	Qty.	Antenna Descriptions	Mount Type & Qty.	Transmission Lines	Owner
1		3	Samsung MT6407-77A - Panel	LP Platform w/ Mount Mods		
2		3	Antel BXA-70080-6CF - Panel	[(12) VZWSMART-MSK1, (6)	(1) 1 5/8" 6x12	
3	177.0	6	JMA Wireless MX06FRO660-03 - Panel	VZWSMART-PLK3 Support Rail, (1) ZWSMART-PLK5 Kicker Kit,	(1) 13/8 0x12 Hybriflex Ll (11) 1 5/8"	Verizon
4	177.0	3	Samsung B2/B66A RRU	(1) VZWSMART-PLK7 Collar	(1) 1 5/8"	VCHZOH
5		3	Samsung B5/B13 RRU	Mount, (3) 24" P2 1/2 STD, (3)	Hybrid	
6	1	1	Raycap RVZDC-6627-PF-48 OVP	14' P2 1/2 STD, (1) HSS 3x2 1/2x1/4 SHIM]	,	

All transmission lines are considered running inside of the pole shafts.

Analysis Results

The results of the structural analysis, performed for the wind and ice loading and antenna equipment as defined above, are summarized as the following:

	Pole shafts	Anchor Bolts	Base Plate	Bridge Stiffener	Flange Bolts	
Max. Usage:	79.2%	39.7%	77.5%	48.9%	21.8%	
Pass/Fail	Pass	Pass	Pass	Pass	Pass	

Foundations

	Moment (Kip-Ft)	Shear (Kips)	Axial (Kips)
Analysis Reactions	4186.7	32.6	98.2

The foundation has been investigated using the supplied documents and soils report and was found adequate. Therefore, no modification to the foundation will be required.

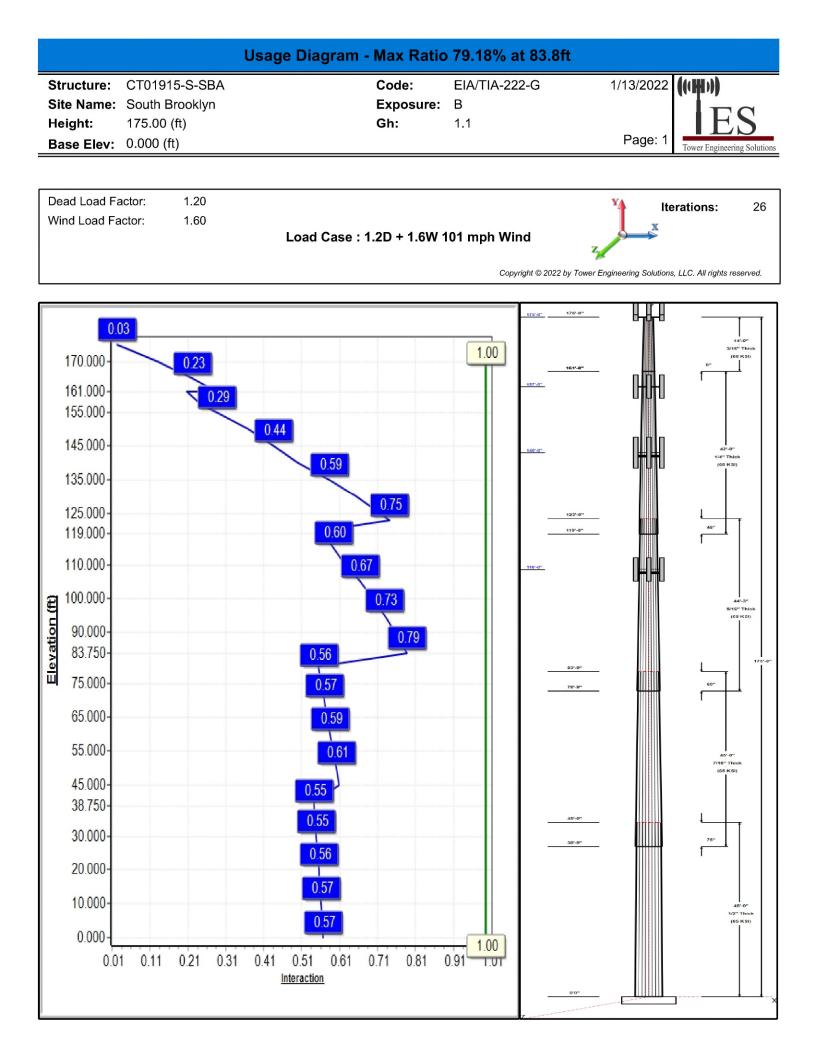
Operational Condition (Rigidity):

Operational characteristics of the tower are found to be within the limits prescribed by TIA-222 for the installed antennas. The maximum twist/sway at the elevation of the proposed equipment is 1.7359 degrees under the operational wind speed as specified in the Analysis Criteria.

Conclusions

Based on the analysis results, the structure and its foundation will be adequate to safely support the existing and proposed equipment and meet the minimum requirements per the TIA-222-G-2 Standard after the following proposed modification is successfully completed.

- Proposed modification design drawing by **TES** Job # 121972

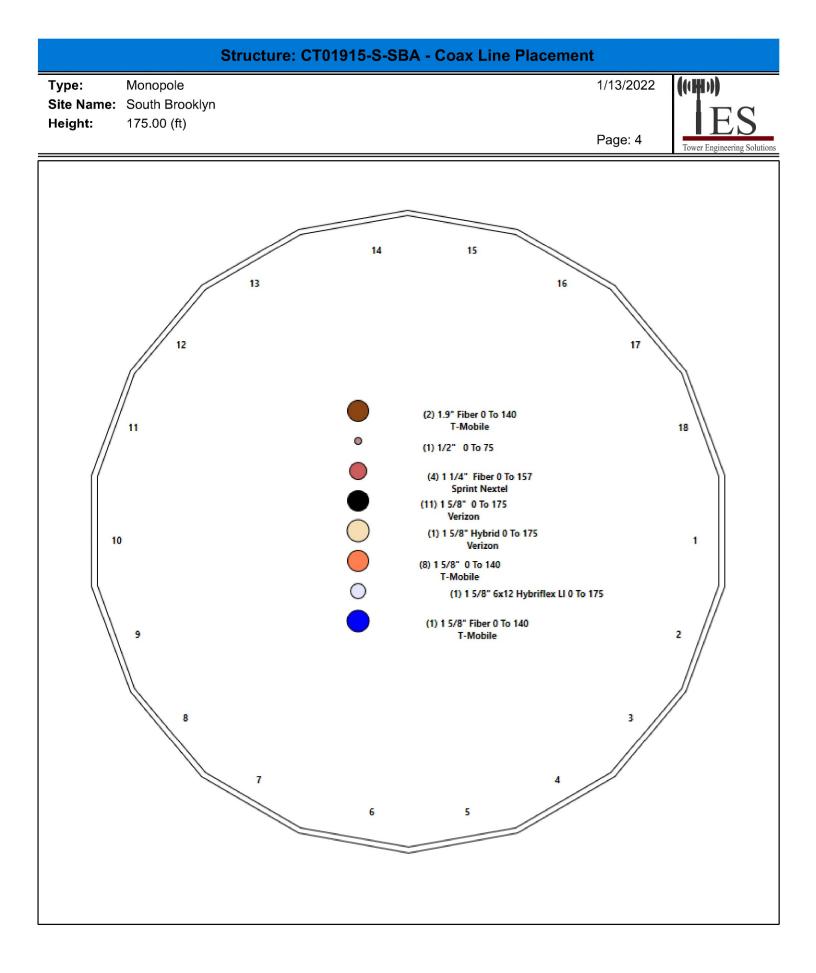

Pre-Mod Installation Determination

We have also checked this tower to determine if the proposed equipment loading can be installed prior to the completion of the required modifications. We ran a reduced wind loading case as required by TIA-322 considering a construction period of no more than 6 months.

The tower and/or foundations failed, so the Carrier cannot install their proposed loading prior to the mods completion.

Standard Conditions

- 1. This analysis was performed based on the information supplied to **(TES) Tower Engineering Solutions**, **LLC.** Verification of the information provided was not included in the Scope of Work for **TES**. The accuracy of the analysis is dependent on the accuracy of the information provided.
- 2. The structural analysis was performance based upon the evidence available at the time of this report. All information provided by the client is considered to be accurate.
- 3. The analyses will be performed based on the codes as specified by the client or based on the best knowledge of the engineering staff of **TES**. In the absence of information to the contrary, all work will be performed in accordance with the latest relevant revision of ANSI/TIA-222. If wind speed and/or ice loads are different from the minimum values recommended by the EIA/TIA-222 standard or other codes, **TES** should be notified in writing and the applicable minimum values provided by the client.
- 4. The configuration of the existing mounts, antennas, coax and other appurtenances were supplied by the customer for the current structural analysis. **TES** has not visited the tower site to verify the adequacy of the information provided. If there is any discrepancy found in the report regarding the existing conditions, **TES** should be notified immediately to evaluate the effect of the discrepancy on the analysis results.
- 5. The client will assume responsibility for rework associated with the differences in initially provided information, including tower and foundation information, existing and/or proposed equipment and transmission lines.
- 6. If a feasibility analysis was performed, final acceptance of changed conditions shall be based upon a rigorous structural analysis.



					S	tructure:	СТ0191	5-S-SBA		
Type: Site N		Tapereo				Bas	e Shape:	18 Sided 0.23000	1/13/2022	(((Ħ)))
		South B					Taper:	0.23000		EC
Heigh		175.00 (Page: 2	
Base	Elev:	0.00 (ft)							Page: 2	Tower Engineering Solutions
				Prope				175'-0" 175'-0"	╘╼╬╾╘	tt
Seq	Length (ft)	Top (in)	Bottom (in)	Thick (in)	Joint Type	Taper	Grade			14'-0"
1	45.00	46.68	57.03	0.500	.)po	0.23000	(ksi) 65			3/16" Thick (60 KSI)
2	45.00	38.64	48.99	0.438	Slip	0.23000	65	101'-0"		f t
3	44.25	30.24	40.42	0.313	Slip	0.23000	65	157'-0"		
4	42.00	22.00	31.66	0.250	Slip	0.23000	60			
5	14.00	18.78	22.00	0.188	Butt	0.23000	60			
		Dis	screte A	Appurt	enances	5				
Attach	n For	се						140'-0"		42'-0" 1/4" Thick
Elev (ft						Carrier				(60 K SI)
175.00			-	ning rod						
175.00				ofile Platfo		Verizon				
175.00 175.00				ng MT640 XA-70080		Verizon Verizon		123'-0"		
175.00			6 JMA W		-001	Verizon		119'-0"		48"
175.00				ng B2/B66	6A	Verizon				
175.00			3 Samsu	-		Verizon		110'-0''	nWiWn	
175.00			1 RVZDC	C-6627-PF	-48	Verizon				
175.00				2-5 (Kicke	ers w/o	Verizon				44'-3"
175.00			1 MS-HR			Verizon				6/16" Thick (65 KSI)
175.00 161.00				242 (Heav Stiffener	/y Collar	Verizon				
157.00				M14-C-I2	0	Sprint Nextel				
157.00			3 NNVV-		•	Sprint Nextel				170'-0"
157.00	0 157	.00	3 ALU - 1	1900 MHz	- RRU	Sprint Nextel		83'-9"	er et tet e	
157.00	0 157	.00	6 ALU - 8	300 MHz -	RRU	Sprint Nextel		78'-5"		60"
157.00				D-RRH8		Sprint Nextel				'
157.00 140.00			1 Platforr 3 APXV1	n w/ Hand		Sprint Nextel T-Mobile				
140.00			• • • • • • •	0 2000.0	3-U-NA20					
140.00			3 KRY 11		10-0-11/120	T-Mobile				45'-0"
140.00			1 MT-195			T-Mobile				7/16" Thick (65 K SI)
140.00	0 140	.00	3 4449			T-Mobile				
140.00				n 782 110	56	T-Mobile				
110.00			3 Comms			Dish Wireless		45'-0"		
110.00			1 MC-PK		DEOF	Dish Wireless Dish Wireless				
110.00 110.00			3 Fujitsu 3 Fujitsu	TA08025		Dish Wireless Dish Wireless		382.		
110.00			1 Raycap		2001	Dish Wireless				
75.00			1 GPS			Sprint Nextel				
		L	inear A	ppurte	nances					
Elev	Elev									45'-0" 1/2" Thiok (65 KSI)
From (f	t) To (f	t) Place	ement De			Carrier				
0.00	175.				lybriflex Ll	Verizon				
0.00	175.			/8" Coax		Verizon				
0.00	175. 157.			/8" Hybrid /4" Fiber		Verizon Sprint Nextel				
0.00	140.0			/8" Coax		T-Mobile		0*0**		
0.00	140.			/8" Fiber		T-Mobile				^
0.00	140.			" Fiber		T-Mobile				
0.00	110.			" Hybrid		Dish Wireless	6			
0.00	75.0	0 Ins	ide 1/2	" Coax		Sprint Nextel				
			Anc	hor Bo	lts					

 $\label{eq:copyright} @ 2022 \ by \ Tower \ Engineering \ Solutions, \ LLC. \ All \ rights \ reserved.$

Structure: CT01915-S-SBA											
Туре:	Tapered	Base Shape:	18 Sided	1/13/2022	(((H)))						
Site Name:	South Brooklyn	Taper:	0.23000								
Height:	175.00 (ft)										
Base Elev:	0.00 (ft)			Page: 3	Tower Engineering Solutions						

Qty	Spec	ifications	(ksi)	Arrar	Arrangement					
32	2 2.25" 18J 75.0			Cluster						
Base Plate										
Thick	iness	Specificatio	ns	Grade						
(ii	n)	(in)		(ksi)	Geo	metry				
2.50	2.5000 68.0			50.0	50.0 Clipp					
	Reactions									
				Mo	oment	Shear	Axial			
Load	Case			(F1	-Kips)	(Kips)	(Kips)			
1.2D +	- 1.6W 1	01 mph Wind		4186.7		32.6	57.3			
0.9D +	- 1.6W 1	01 mph Wind		4129.9		32.6	43.0			
1.2D +	- 1.0Di +	1.0Wi 50 mph	Wind	1262.7		9.4	98.2			
1.2D +	- 1.0E			2	266.4		57.4			
0.9D +	- 1.0E			262.5		2.0	43.0			
1.0D + 1.0W 60 mph Wind				9	16.9	7.2	47.8			

Shaft Properties											
Structure:	CT01915-S-SBA			Code:	EIA/TIA-222-G	1/13/2022	4400.00				
Site Name:	South Brooklyn			Exposure:	В		dealersh				
Height:	175.00 (ft)			Crest Height:	0.00		EC				
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil						
Gh:	1.1	Topography:	1	Struct Class:	II	Page: 5	Tower Engineering Solutions				

Sec. No.	Shape	Length (ft)	Thick (in)	Fy (ksi)	Joint Type	Overlap (in)	Weight (Ib)
1	18	45.000	0.5000	65		0.00	12,479
2	18	45.000	0.4375	65	Slip	75.00	9,224
3	18	44.250	0.3125	65	Slip	60.00	5,229
4	18	42.000	0.2500	60	Slip	48.00	3,014
5	18	14.000	0.1875	60	Flange	0.00	573
					Total Shaft Weight:		30,519

			Bo	ottom									
Sec. No.	Dia (in)	Elev (ft)	Area (sqin)	lx (in^4)	W/t Ratio	D/t Ratio	Dia (in)	Elev (ft)	Area (sqin)	lx (in^4)	W/t Ratio	D/t Ratio	Taper
1	57.03	0.00	89.71	36220.24	18.70	114.06	46.68	45.00	73.29	19745.8	15.05	93.36	0.230000
2	48.99	38.75	67.42	20082.80	18.33	111.98	38.64	83.75	53.05	9783.25	14.16	88.33	0.230000
3	40.42	78.75	39.78	8083.32	21.39	129.34	30.24	123.00	29.68	3358.97	15.65	96.77	0.230000
4	31.66	119.0	24.92	3106.62	20.92	126.64	22.00	161.00	17.26	1031.48	14.11	88.00	0.230000
5	22.00	161.0	12.98	780.30	19.28	117.33	18.78	175.00	11.06	483.24	16.25	100.1	0.230000

	Load Summary													
Structure:	CT01915-S-SBA			Code:	EIA/TIA-222-G	1/13/2022	44.000.53							
Site Name:	South Brooklyn			Exposure:	В		((cHrw))							
Height:	175.00 (ft)			Crest Height:	0.00		EC							
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil									
Gh:	1.1	Topography:	1	Struct Class:	II	Page: 6	Tower Engineering Solutions							

Discrete Appurtenances

				I			lce				
No.	Elev (ft)	Description	Qty	Weight (Ib)	CaAa (sf)	CaAa Factor	Weight (Ib)	CaAa (sf)	CaAa Factor	Hor. Ecc. (ft)	Vert Ecc (ft)
1	175.00	6' Lightning rod	1	6.50	0.38	1.00	55.65	1.853	1.00	0.00	0.00
2	175.00	Low Profile Platform-flat	1	1200.00	37.00	1.00	2617.86	78.969	1.00	0.00	0.00
3	175.00	Samsung MT6407-77A	3	79.40	4.69	0.70	253.55	5.994	0.70	0.00	2.00
4	175.00	Antel BXA-70080-6CF	3	18.00	5.76	0.87	189.54	8.972	0.87	0.00	2.00
5	175.00	JMA Wireless MX06FRO660-03	6	46.00	9.87	0.87	430.19	11.769	0.87	0.00	2.00
6	175.00	Samsung B2/B66A	3	84.40	1.87	0.67	197.19	2.673	0.67	0.00	2.00
7	175.00	Samsung B5/B13	3	70.30	1.87	0.67	172.98	2.673	0.67	0.00	2.00
8	175.00	RVZDC-6627-PF-48	1	32.00	4.06	1.00	186.26	5.173	1.00	0.00	2.00
9	175.00	MS-KI22-5 (Kickers w/o Collar)	1	146.00	5.33	1.00	422.01	12.887	1.00	0.00	0.00
10	175.00	MS-HRECP	1	514.00	12.00	1.00	1339.95	27.880	1.00	0.00	2.00
11	175.00	MS-H1242 (Heavy Collar Mount)	1	150.60	2.50	1.00	435.31	6.045	1.00	0.00	0.00
12		Bridge Stiffener	1	204.17	2.89	1.00	395.56	5.599	1.00	0.00	0.00
13	157.00	APXVTM14-C-I20	3	56.20	6.34	0.77	286.02	7.864	0.77	0.00	0.00
14	157.00	NNVV-65B-R4	3	84.70	12.27	0.74	503.26	14.220	0.74	0.00	0.00
15	157.00	ALU - 1900 MHz - RRU	3	60.00	2.77	0.67	171.76	4.469	0.67	0.00	0.00
16	157.00	ALU - 800 MHz - RRU	6	53.00	2.49	0.67	152.06	4.022	0.67	0.00	0.00
17	157.00	ALU - TD-RRH8x20-25 - RRU	3	70.00	4.05	0.67	228.65	5.168	0.67	0.00	0.00
18	157.00	Platform w/ Handrail +	1	2800.00	54.00	1.00	6072.63	14.590	1.00	0.00	0.00
19	140.00	APXV18-206516S-C-A20	3	18.70	3.61	0.73	111.49	6.069	0.73	0.00	0.00
20	140.00	APXVAARR24_43-U-NA20	3	128.00	20.24	0.70	704.43	22.787	0.70	0.00	0.00
21	140.00	KRY 112 489/2	3	15.40	0.67	0.67	43.19	1.522	0.67	0.00	0.00
22	140.00	MT-195-12	1	2000.00	40.00	1.00	4773.15	67.731	1.00	0.00	0.00
23	140.00	4449	3	70.00	1.65	0.67	168.10	2.387	0.67	0.00	0.00
24	140.00	Kathrein 782 11056	3	1.80	0.28	0.67	7.79	0.811	0.67	0.00	0.00
25	110.00	Commscope FFVV-65B-R2	3	70.80	12.27	0.74	408.44	14.152	0.74	0.00	0.00
26	110.00	MC-PK8-DSH	1	1727.00	37.59	1.00	3908.72	98.645	1.00	0.00	0.00
27	110.00	Fujitsu TA08025-B605 RRU	3			142.61	2.685	0.67	0.00	0.00	
28	110.00	Fujitsu TA08025-B604 RRU	3				129.34	2.685	0.67	0.00	0.00
29	110.00	Raycap RDIDC-9181-PF-48-OVP	1				90.73	2.745	1.00	0.00	0.00
30	75.00		1					1.886	1.00	0.00	0.00
		Totals:	72	12,305.97			34,992.85				

Linear Appurtenances

Bottom Elev.	Top Elev.		Exposed	
(ft)	(ft)	Description	Width	Exposed
0.00	175.00	(1) 1 5/8" 6x12 Hybriflex Ll	0.00	Inside
0.00	175.00	(11) 1 5/8" Coax	0.00	Inside
0.00	175.00	(1) 1 5/8" Hybrid	0.00	Inside
0.00	157.00	(4) 1 1/4" Fiber	0.00	Inside
0.00	140.00	(8) 1 5/8" Coax	0.00	Inside
0.00	140.00	(1) 1 5/8" Fiber	0.00	Inside
0.00	140.00	(2) 1.9" Fiber	0.00	Inside
0.00	110.00	(1) 1.6" Hybrid	0.00	Inside
0.00	75.00	(1) 1/2" Coax	0.00	Inside

	Shaft Section Properties													
Structure:	CT01915-S-SBA			Code:	EIA/TIA-222-G	1/13/2022	44.000.53							
Site Name:	South Brooklyn			Exposure:	В		(altri)							
Height:	175.00 (ft)			Crest Height:	0.00		EC							
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil									
Gh:	1.1	Topography:	1	Struct Class:	II	Page: 7	Tower Engineering Solution							

Increment Length: 5 (ft)

Elev (ft)	Description	Thick (in)	Dia (in)	Area (in^2)	lx (in^4)	W/t Ratio	D/t Ratio	Fpy (ksi)	S (in^3)	Weight (Ib)
0.00		0.5000	57.030	89.710	36220.2	18.70	114.06	79.4	1250.	0.0
5.00		0.5000	55.880	87.885	34054.4	18.30	111.76	79.9	1200.	1510.8
10.00		0.5000	54.730	86.060	31976.7	17.89	109.46	80.4	1150.	1479.7
15.00		0.5000	53.580	84.235	29985.2	17.48	107.16	80.8	1102.	1448.7
20.00		0.5000	52.430	82.410	28078.2	17.08	104.86	81.3	1054.	1417.6
25.00		0.5000	51.280	80.585	26253.8	16.67	102.56	81.8	1008.	1386.6
30.00		0.5000	50.130	78.760	24510.2	16.27	100.26	82.3	963.0	1355.5
35.00		0.5000	48.980	76.935	22845.6	15.86	97.96	82.5	918.7	1324.5
38.75	Bot - Section 2	0.5000	48.117	75.566	21647.8	15.56	96.23	82.5	886.1	973.0
40.00		0.5000	47.830	75.110	21258.1	15.46	95.66	82.5	875.4	606.4
45.00	Top - Section 1	0.4375	47.555	65.426	18351.4	17.76	108.70	0.0	0.0	2389.1
50.00		0.4375	46.405	63.829	17040.2	17.29	106.07	81.1	723.3	1099.6
55.00		0.4375	45.255	62.232	15793.0	16.83	103.44	81.6	687.4	1072.4
60.00		0.4375	44.105	60.636	14608.2	16.37	100.81	82.2	652.4	1045.2
65.00		0.4375	42.955	59.039	13484.2	15.90	98.18	82.5	618.3	1018.1
70.00		0.4375	41.805	57.442	12419.4	15.44	95.55	82.5	585.1	990.9
75.00		0.4375	40.655	55.845	11412.2	14.97	92.93	82.5	552.9	963.7
78.75	Bot - Section 3	0.4375	39.792	54.647	10693.6	14.63	90.95	82.5	529.3	705.0
80.00		0.4375	39.505	54.248	10460.9	14.51	90.30	82.5	521.6	400.2
83.75	Top - Section 2	0.3125	39.267	38.637	7407.7	20.75	125.66	0.0	0.0	1183.1
85.00		0.3125	38.980	38.352	7244.9	20.58	124.74	77.2	366.1	163.7
90.00		0.3125	37.830	37.211	6617.5	19.93	121.06	78.0	344.5	642.8
95.00		0.3125	36.680	36.071	6027.5	19.29	117.38	78.7	323.7	623.4
100.00		0.3125	35.530	34.930	5473.6	18.64	113.70	79.5	303.4	604.0
105.00		0.3125	34.380	33.789	4954.7	17.99	110.02	80.2	283.9	584.6
110.00		0.3125	33.230	32.649	4469.7	17.34	106.34	81.0	264.9	565.2
115.00		0.3125	32.080	31.508	4017.4	16.69	102.66	81.8	246.7	545.8
119.00	Bot - Section 4	0.3125	31.160	30.596	3678.4	16.17	99.71	82.4	232.5	422.7
120.00		0.3125	30.930	30.368	3596.7	16.04	98.98	82.5	229.0	188.2
123.00	Top - Section 3	0.2500	30.740	24.193	2841.6	20.27	122.96	0.0	0.0	556.3
125.00	·	0.2500	30.280	23.828	2714.9	19.95	121.12	72.8	176.6	163.4
130.00		0.2500	29.130	22.915	2414.8	19.14	116.52	73.6	163.3	397.6
135.00		0.2500	27.980	22.003	2137.6	18.32	111.92		150.5	382.1
140.00		0.2500	26.830	21.090	1882.6	17.51	107.32		138.2	366.6
145.00		0.2500	25.680	20.178	1648.6	16.70	102.72	76.2	126.4	351.1
150.00		0.2500	24.530	19.265	1434.9	15.89	98.12		115.2	335.5
155.00		0.2500	23.380	18.353	1240.5	15.08	93.52		104.5	320.0
157.00		0.2500	22.920	17.988	1168.0	14.76	91.68		100.4	123.7
160.00		0.2500	22.230	17.441	1064.6	14.27	88.92	76.2	94.3	180.8
161.00	Top - Section 4	0.2500	22.000	17.258	1031.5	14.11	88.00	76.2		59.0
161.00	Bot - Section 5	0.1875	22.000	12.981	780.3	18.81	117.33	73.5	69.9	
165.00		0.1875	21.080	12.433	685.7	18.41	112.43	74.4	64.1	173.0
170.00		0.1875	19.930	11.749	578.6	17.33	106.29	75.5	57.2	205.7
175.00		0.1875	18.780	11.064	483.2	16.25	100.16	76.2		194.1
		0.1010			100.2		100.10	, 0.2		30519.4

	Wind Loading - Shaft												
Structure:	CT01915-S-SBA			Code:	EIA/TIA-222-G	1/13/2022	44.000.53						
Site Name:	South Brooklyn			Exposure:	В		(«How						
Height:	175.00 (ft)			Crest Height:	0.00		EC						
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil								
Gh:	1.1	Topography:	1	Struct Class:	П	Page: 8	Tower Engineering Solutions						
Dea	: 1.2D + 1.6W 10 [.] Id Load Factor Id Load Factor	1 mph Wind 1.20 1.60				Z X	terations 26						

Elev (ft)	Description	Kzt	Kz	qz (psf)	qzGh (psf)	C (mph-ft)	Cf	lce Thick (in)	Tributary (ft)	Aa (sf)	CfAa (sf)	Wind Force X (Ib)	Dead Load Ice (Ib)	Tot Dead Load (Ib)
0.00		1.00	0.70	17.366	19.10	407.79	0.650	0.000	0.00	0.000	0.00	0.0	0.0	0.0
5.00		1.00	0.70	17.366	19.10	399.57	0.650	0.000	5.00	23.886	15.53	474.5	0.0	1812.9
10.00		1.00	0.70	17.366	19.10	391.35	0.650	0.000	5.00	23.399	15.21	464.9	0.0	1775.7
15.00		1.00	0.70	17.366	19.10	383.12	0.650	0.000	5.00	22.913	14.89	455.2	0.0	1738.4
20.00		1.00	0.70	17.366	19.10	374.90	0.650	0.000	5.00	22.426	14.58	445.5	0.0	1701.2
25.00		1.00	0.70	17.366	19.10	366.68	0.650	0.000	5.00	21.940	14.26	435.9	0.0	1663.9
30.00		1.00	0.70	17.381	19.12	358.61	0.650	0.000	5.00	21.453	13.94	426.6	0.0	1626.6
35.00		1.00	0.73	18.163	19.98	358.18	0.650	0.000	5.00	20.966	13.63	435.7	0.0	1589.4
38.75 Bot	- Section 2	1.00	0.75	18.699	20.57	357.03	0.650	0.000	3.75	15.406	10.01	329.6	0.0	1167.6
40.00		1.00	0.76	18.870	20.76	356.51	0.650	0.000	1.25	5.167	3.36	111.5	0.0	727.7
	o - Section 1	1.00	0.79	19.516	21.47	353.84	0.650	0.000		20.364	13.24	454.6	0.0	2867.0
50.00		1.00		20.112		357.09	0.650	0.000		19.877	12.92	457.3	0.0	1319.5
55.00		1.00		20.667	22.73	353.02		0.000		19.390	12.60	458.5	0.0	1286.9
60.00		1.00		21.187	23.31	348.35	0.650	0.000		18.904	12.29	458.2	0.0	1254.3
65.00		1.00		21.678	23.85	343.17	0.650	0.000		18.417	11.97	456.7	0.0	1221.7
70.00		1.00		22.142	24.36	337.53	0.650	0.000		17.931	11.65	454.2	0.0	1189.1
75.00 App	ourtenance(s)	1.00	0.91	22.582	24.84	331.50	0.650	0.000	5.00	17.444	11.34	450.7	0.0	1156.5
78.75 Bot	- Section 3	1.00	0.92	22.899	25.19	326.74	0.650	0.000	3.75	12.764	8.30	334.4	0.0	846.0
80.00		1.00	0.93	23.003	25.30	325.11	0.650	0.000	1.25	4.260	2.77	112.1	0.0	480.2
83.75 Top	o - Section 2	1.00		23.306	25.64	320.10	0.650	0.000	3.75	12.597	8.19	335.9	0.0	1419.7
85.00		1.00	0.94	23.404	25.74	323.58	0.650	0.000	1.25	4.138	2.69	110.8	0.0	196.5
90.00		1.00	0.96	23.790	26.17	316.60	0.650	0.000	5.00	16.249	10.56	442.2	0.0	771.4
95.00		1.00		24.160	26.58	309.36	0.650	0.000	5.00	15.762	10.25	435.7	0.0	748.1
00.00		1.00	0.99	24.517	26.97	301.87	0.650	0.000	5.00	15.276	9.93	428.4	0.0	724.8
05.00		1.00	1.00	24.861	27.35	294.14	0.650	0.000	5.00	14.789	9.61	420.6	0.0	701.5
110.00 App	ourtenance(s)	1.00	1.02	25.194	27.71	286.19	0.650	0.000	5.00	14.303	9.30	412.2	0.0	678.2
15.00		1.00		25.516	28.07	278.05	0.650	0.000	5.00	13.816	8.98	403.3	0.0	654.9
19.00 Bot	- Section 4	1.00	1.04	25.766	28.34	271.40	0.650	0.000	4.00	10.703	6.96	315.5	0.0	507.2
20.00		1.00			28.41	269.72	0.650	0.000	1.00	2.669	1.74	78.9	0.0	225.9
	o - Section 3	1.00		26.011	28.61	264.63	0.650	0.000	3.00	7.891	5.13	234.8	0.0	667.5
25.00		1.00		26.131	28.74	265.59	0.650	0.000	2.00	5.163	3.36	154.4	0.0	196.1
30.00		1.00		26.425	29.07	256.94	0.650	0.000		12.568	8.17	379.9	0.0	477.2
35.00		1.00		26.712	29.38	248.13	0.650	0.000		12.081	7.85	369.2	0.0	458.5
	ourtenance(s)	1.00		26.991	29.69	239.17	0.650	0.000		11.595	7.54	358.0	0.0	439.9
45.00		1.00		27.263	29.99	230.07	0.650	0.000		11.108	7.22	346.5	0.0	421.3
50.00		1.00	1.11	27.528	30.28	220.84	0.650	0.000	5.00	10.622	6.90	334.5	0.0	402.7
55.00		1.00		27.787	30.57	211.47		0.000		10.135	6.59	322.2	0.0	384.0
	ourtenance(s)	1.00		27.889	30.68	207.69		0.000	2.00	3.918	2.55	125.0	0.0	148.4
60.00		1.00		28.040	30.84	201.98	0.650	0.000	3.00	5.731	3.73	183.8	0.0	217.0
	o - Section 4	1.00		28.090	30.90	200.07		0.000	1.00	1.871	1.22	60.1	0.0	70.8
65.00		1.00		28.288	31.12	192.38		0.000	4.00	7.291	4.74	235.9	0.0	207.5
70.00		1.00		28.530	31.38	182.66		0.000	5.00	8.676	5.64	283.2	0.0	246.9
75.00 App	ourtenance(s)	1.00	1.16	28.768	31.64	172.84	0.650	0.000	5.00	8.189	5.32	269.5	0.0	232.9

Discrete Appurtenance Forces

Structure:	CT01915-S-SBA			Code:	EIA/TIA-222-G	1/13/2022	44.000.53
Site Name:	South Brooklyn			Exposure:	В		(«Ħ»)
Height:	175.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		
Gh:	1.1	Topography:	1	Struct Class:	П	Page: 9	Tower Engineering Solutions

Load Case: 1.2D + 1.6W 101 mph Wind

Dead Load Factor Wind Load Factor

1.20 1.60

No.	Elev (ft)	Description	Qty	qz (psf)	qzGh (psf)	Orient Factor x Ka	Ka	Total CaAa (sf)	Dead Load (Ib)	Horiz Ecc (ft)	Vert Ecc (ft)	Wind FX (lb)	Mom Y (lb-ft)	Mom Z (Ib-ft)
1	175.00 JMA	A Wireless	6	28.861	31.747	0.65	0.75	38.64	331.20	0.000	2.000	1962.80	0.00	3925.60
2	175.00 6' Li	ightning rod	1	28.768	31.644	1.00	1.00	0.38	7.80	0.000	0.000	19.24	0.00	0.00
3	175.00 Low	Profile Platform-flat	1	28.768	31.644	1.00	1.00	37.00	1440.00	0.000	0.000	1873.35	0.00	0.00
4	175.00 Sam	nsung MT6407-77A	3	28.861	31.747	0.52	0.75	7.39	285.84	0.000	2.000	375.22	0.00	750.43
5	175.00 Ante	el BXA-70080-6CF	3	28.861	31.747	0.65	0.75	11.28	64.80	0.000	2.000	572.73	0.00	1145.46
6	175.00 MS-	H1242 (Heavy Collar	1	28.768	31.644	1.00	1.00	2.50	180.72	0.000	0.000	126.58	0.00	0.00
7	175.00 Sam	nsung B2/B66A	3	28.861	31.747	0.50	0.75	2.82	303.84	0.000	2.000	143.19	0.00	286.39
8	175.00 Sam	nsung B5/B13	3	28.861	31.747	0.50	0.75	2.82	253.08	0.000	2.000	143.19	0.00	286.39
9	175.00 RVZ	ZDC-6627-PF-48	1	28.861	31.747	0.75	0.75	3.04	38.40	0.000	2.000	154.67	0.00	309.35
10	175.00 MS-	-KI22-5 (Kickers w/o	1	28.768	31.644	1.00	1.00	5.33	175.20	0.000	0.000	269.86	0.00	0.00
11	175.00 MS-	HRECP	1	28.861	31.747	1.00	1.00	12.00	616.80	0.000	2.000	609.55	0.00	1219.10
12	161.00 Brid	ge Stiffener	1	28.090	30.899	1.00	1.00	2.89	245.00	0.000	0.000	142.88	0.00	0.00
13	157.00 Plat	form w/ Handrail +	1	27.889	30.678	1.00	1.00	54.00	3360.00	0.000	0.000	2650.59	0.00	0.00
14	157.00 ALU	J - TD-RRH8x20-25 -	3	27.889	30.678	0.50	0.75	6.11	252.00	0.000	0.000	299.68	0.00	0.00
15	157.00 ALU	J - 800 MHz - RRU	6	27.889	30.678	0.50	0.75	7.51	381.60	0.000	0.000	368.50	0.00	0.00
16	157.00 ALU	J - 1900 MHz - RRU	3	27.889	30.678	0.50	0.75	4.18	216.00	0.000	0.000	204.97	0.00	0.00
17	157.00 APX	(VTM14-C-I20	3	27.889	30.678	0.58	0.75	10.98	202.32	0.000	0.000	539.15	0.00	0.00
18	157.00 NN\	/V-65B-R4	3	27.889	30.678	0.55	0.75	20.43	304.92	0.000	0.000	1002.78	0.00	0.00
19	140.00 KRY	7 112 489/2	3	26.991	29.690	0.50	0.75	1.01	55.44	0.000	0.000	47.98	0.00	0.00
20	140.00 APX	(V18-206516S-C-A20	3	26.991	29.690	0.55	0.75	5.93	67.32	0.000	0.000	281.67	0.00	0.00
21	140.00 APX	(VAARR24_43-U-NA2	3	26.991	29.690	0.52	0.75	31.88	460.80	0.000	0.000	1514.33	0.00	0.00
22	140.00 444	9	3	26.991	29.690	0.50	0.75	2.49	252.00	0.000	0.000	118.16	0.00	0.00
23	140.00 MT-	195-12	1	26.991	29.690	1.00	1.00	40.00	2400.00	0.000	0.000	1900.15	0.00	0.00
24	140.00 Kath	nrein 782 11056	3	26.991	29.690	0.50	0.75	0.42	6.48	0.000	0.000	20.05	0.00	0.00
25	110.00 Ray	сар	1	25.194	27.713	1.00	1.00	2.01	26.28	0.000	0.000	89.13	0.00	0.00
26	110.00 Fujit	tsu TA08025-B604	3	25.194	27.713	0.50	0.75	2.95	230.04	0.000	0.000	131.01	0.00	0.00
27	110.00 Fujit	tsu TA08025-B605	3	25.194	27.713	0.50	0.75	2.95	270.00	0.000	0.000	131.01	0.00	0.00
28	110.00 MC-	-PK8-DSH	1	25.194	27.713	1.00	1.00	37.59	2072.40	0.000	0.000	1666.77	0.00	0.00
29	110.00 Con	nmscope	3	25.194	27.713	0.55	0.75	20.43	254.88	0.000	0.000	905.86	0.00	0.00
30	75.00 GPS	3	1	22.582	24.841	1.00	1.00	1.00	12.00	0.000	0.000	39.74	0.00	0.00
							Totals	:	14,767.16		1	8,304.82		

	Total Applied Force Summary													
Structure:	CT01915-S-SBA	a.		Code:	EIA/TIA-222-G	1/13/2022	44.000.53							
Site Name:	South Brooklyn			Exposure:	В		((atta))							
Height:	175.00 (ft)			Crest Height:	0.00		EC							
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil									
Gh:	1.1	Topography:	1	Struct Class:	II	Page: 10	Tower Engineering Solutions							

Load Case: 1.2D + 1.6W 101 mph Wind

Dead Load Factor Wind Load Factor

1.20 1.60

Elev		Lateral FX (-)	Axial FY (-)	Torsion MY	Momen MZ
(ft)	Description	(lb)	(lb)	(lb-ft)	(lb-ft)
0.00		0.00	0.00	0.00	0.00
5.00		474.54	2006.08	0.00	0.00
10.00		464.87	1968.82	0.00	0.00
15.00		455.20	1931.56	0.00	0.00
20.00		445.54	1894.30	0.00	0.00
25.00		435.87	1857.04	0.00	0.00
30.00		426.56	1819.78	0.00	0.00
35.00		435.66	1782.52	0.00	0.00
38.75		329.56	1312.44	0.00	0.00
40.00		111.54	775.94	0.00	0.00
45.00		454.63	3060.09	0.00	0.00
50.00		457.33	1512.62	0.00	0.00
55.00		458.45	1480.01	0.00	0.00
60.00		458.20	1447.41	0.00	0.00
65.00		456.73	1414.81	0.00	0.00
70.00		454.18	1382.21	0.00	0.00
75.00	(1) attachments	490.40	1361.60	0.00	0.00
78.75		334.37	990.09	0.00	0.00
80.00		112.10	528.26	0.00	0.00
83.75		335.86	1563.82	0.00	0.00
85.00		110.80	244.53	0.00	0.00
90.00		442.22	963.55	0.00	0.00
95.00		435.66	940.26	0.00	0.00
100.00		428.45	916.97	0.00	0.00
105.00		420.62	893.69	0.00	0.00
110.00	(11) attachments	3336.02	3724.00	0.00	0.00
115.00	()	403.29	836.19	0.00	0.00
119.00		315.47	652.19	0.00	0.00
120.00		78.87	262.11	0.00	0.00
123.00		234.81	776.28	0.00	0.00
125.00		154.35	268.59	0.00	0.00
130.00		379.94	658.43	0.00	0.00
135.00		369.19	639.80	0.00	0.00
140.00	(16) attachments	4240.36	3863.21	0.00	0.00
145.00	(ity attachments	346.45	522.12	0.00	0.00
150.00		334.50	503.49	0.00	0.00
155.00		322.18	484.86	0.00	0.00
157.00	(19) attachments	5190.68	4905.57	0.00	0.00
160.00	(19) audonments	183.83	268.00	0.00	0.00
161.00	(1) attachments	203.02	332.85	0.00	0.00
165.00	(T) attachments	235.94	275.55	0.00	0.00
170.00		283.16	331.86	0.00	0.00
175.00	(24) attachments	6519.89	4015.57	0.00	7922.71
110.00					
	Totals:	32,561.33	57,369.05	0.00	7,922.71

	Calculated Forces													
Struc	ture:	CT019	915-S-S	SBA			Code:	EIA	/TIA-222	2-G	1/1	3/2022	(4.000.5N	
Site N	lame:	South	Brookly	yn			Exposure	: В					((#))	
Heigh	nt:	175.00	D (ft)				Crest Heig	ght: 0.0	0					C
Base	Elev:	0.000	(ft)				Site Class	: D-	Stiff Soi					
Gh:		1.1		То	pography	: 1	Struct Cla				Pa	age: 11	Tower Engineer	ring Solutions
Load	Case:	1.2D	+ 1.6W	101 mp	h Wind						¥	lte	erations	26
	Dea	d Load	l Facto	r 1.2	20							×		
	Win	d Load	l Facto	r 1.6	60					2				
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation Sway (deg)	Rotation Twist (deg)	Stress Ratio
0.00	-57.32	-32.64	0.00	-4186.7	0.00	4186.71	6411.04	3205.52	14877.2	7449.66	0.00	0.000	0.000	0.571
5.00	-55.22	-32.32	0.00	-4023.5	0.00	4023.50	6318.35	3159.17	14361.2	7191.28	0.09	-0.161	0.000	0.568
10.00	-53.17	-32.00	0.00	-3861.8	0.00	3861.88	6224.09	3112.04	13850.5	6935.58	0.34	-0.326	0.000	0.565
15.00 20.00	-51.14	-31.69	0.00	-3701.8 -3543.4	0.00	3701.86 3543.43	6128.26 6030.87	3064.13 3015.43	13345.4 12846.2	6682.66 6432.65	0.78 1.38	-0.494 -0.666	0.000 0.000	0.562 0.559
25.00	-49.10	-31.06	0.00	-3386.5	0.00	3386.57	5931.91	2965.95	12352.9	6185.64	2.18	-0.842	0.000	0.559
30.00	-45.30	-30.75	0.00	-3231.2	0.00	3231.28	5831.38	2915.69	11865.8	5941.76	3.15	-1.021	0.000	0.552
35.00	-43.44	-30.40	0.00	-3077.5	0.00	3077.56	5715.88	2857.94	11358.6	5687.79	4.32	-1.204	0.000	0.549
38.75	-42.09	-30.11	0.00	-2963.5	0.00	2963.57	5614.19	2807.10	10956.1	5486.19	5.32	-1.345	0.000	0.548
40.00	-41.25	-30.07	0.00	-2925.9	0.00	2925.94	5580.30	2790.15	10823.5	5419.80	5.68	-1.393	0.000	0.547
45.00	-38.11	-29.66	0.00	-2775.6	0.00	2775.61	4741.11	2370.56	9166.15	4589.89	7.24	-1.584	0.000	0.613
50.00 55.00	-36.50 -34.93	-29.29 -28.91	0.00	-2627.3 -2480.8	0.00	2627.32 2480.88	4656.71 4570.75	2328.36 2285.37	8781.22 8401.44	4397.14 4206.97	9.01 10.98	-1.779 -1.992	0.000	0.606 0.598
60.00	-34.93	-28.53	0.00	-2336.3	0.00	2336.32	4370.73	2265.57	8027.05	4200.97	13.19	-2.209	0.000	0.598
65.00	-31.89	-28.14	0.00	-2193.6	0.00	2193.68	4386.28	2193.14	7644.63	3828.00	15.62	-2.429	0.000	0.580
70.00	-30.42	-27.74	0.00	-2052.9	0.00	2052.98	4267.64	2133.82	7234.64	3622.70	18.28	-2.653	0.000	0.574
75.00	-28.99	-27.29	0.00	-1914.2	0.00	1914.26	4149.01	2074.50	6835.94	3423.05	21.18	-2.881	0.000	0.566
78.75	-27.96	-26.96	0.00	-1811.9	0.00	1811.92	4060.03	2030.01	6544.34	3277.03	23.51	-3.055	0.000	0.560
80.00	-27.38	-26.88	0.00	-1778.2	0.00	1778.22	4030.37	2015.18	6448.55	3229.07	24.32	-3.115	0.000	0.558
83.75	-25.79	-26.51	0.00	-1677.4	0.00	1677.43	2677.54	1338.77	4285.17	2145.77	26.84	-3.291	0.000	0.792
85.00 90.00	-25.46 -24.39	-26.47 -26.10	0.00	-1644.2 -1511.9	0.00	1644.29 1511.96	2664.37 2610.69	1332.18 1305.34	4232.36 4022.76	2119.33 2014.37	27.71 31.38	-3.351 -3.661	0.000 0.000	0.786 0.760
95.00		-25.73		-1381.4	0.00	1381.46	2555.44		3815.94		35.38	-3.972	0.000	0.733
100.00		-25.36			0.00	1252.82	2498.62	1249.31	3612.11	1808.74	39.70	-4.283	0.000	0.702
105.00		-24.98	0.00	-1126.0	0.00	1126.03	2440.24	1220.12		1708.29	44.35	-4.592	0.000	0.668
110.00	-17.78	-21.44	0.00	-1001.1	0.00	1001.12	2380.29	1190.15		1609.56	49.32	-4.897	0.000	0.630
115.00	-16.88	-21.05	0.00	-893.90	0.00	893.90	2318.78		3020.85	1512.67	54.60	-5.199	0.000	0.599
119.00	-16.21	-20.72	0.00	-809.70	0.00	809.70	2268.44	1134.22		1436.56	59.06	-5.440	0.000	0.571
120.00	-15.91	-20.65	0.00	-788.98	0.00	788.98	2255.69		2831.25	1417.73	60.20	-5.502	0.000	0.564
123.00 125.00	-15.11	-20.38 -20.26	0.00	-727.04 -686.29	0.00	727.04 686.29	1577.63 1561.09		1975.86 1925.40	989.40 964.13	63.71 66.12	-5.682 -5.802	0.000 0.000	0.745 0.722
130.00	-14.04		0.00	-585.01	0.00	585.01	1518.76	759.38	1800.86	904.13	72.36	-6.135	0.000	0.659
135.00	-13.35		0.00	-485.56	0.00	485.56	1475.03		1678.77	840.64	78.95	-6.450	0.000	0.587
140.00	-9.92	-14.92	0.00	-387.94	0.00	387.94	1429.92	714.96	1559.34	780.83	85.85	-6.741	0.000	0.504
145.00	-9.38	-14.55	0.00	-313.36	0.00	313.36	1383.42	691.71	1442.75	722.45	93.04	-7.006	0.000	0.441
150.00	-8.87		0.00	-240.61	0.00	240.61	1321.23	660.61	1314.97	658.46	100.49	-7.245	0.000	0.373
155.00	-8.40	-13.83	0.00	-169.65	0.00	169.65	1258.65	629.32	1192.75	597.26	108.17	-7.448	0.000	0.291
157.00	-4.20	-8.05	0.00	-142.00	0.00	142.00	1233.62	616.81	1145.53	573.62	111.29		0.000	0.251
160.00 161.00	-3.95 -3.64	-7.84 -7.59	0.00	-117.85 -110.01	0.00	117.85 110.01	1196.07 1183.55	598.03 591.78	1076.49 1053.96	539.05 527.76	116.04 117.63	-7.614 -7.645	0.000 0.000	0.222 0.212
161.00	-3.64	-7.59	0.00	-110.01	0.00	110.01	858.57	429.28	768.96	385.05	117.63	-7.645	0.000	0.212
165.00	-3.38	-7.33	0.00	-79.63	0.00	79.63	832.45	416.23	713.85	357.46	124.06	-7.749	0.000	0.230
170.00	-3.08	-7.01	0.00	-42.98	0.00	42.98	798.56	399.28	646.76	323.86	132.23	-7.877	0.000	0.137
175.00	0.00	-6.52	0.00	-7.92	0.00	7.92	758.80	379.40	578.42	289.64	140.49	-7.939	0.000	0.028

	Wind Loading - Shaft													
Structure:	CT01915-S-SBA			Code:	EIA/TIA-222-G	1/13/2022	44.000.53							
Site Name:	South Brooklyn			Exposure:	В		(«₩»)							
Height:	175.00 (ft)			Crest Height:	0.00		EC							
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil									
Gh:	1.1	Topography:	1	Struct Class:	Ш	Page: 12	Tower Engineering Solutions							
Load Case	Load Case: 0.9D + 1.6W 101 mph Wind Iterations 25													

Load Case: 0.9D + 1.6W 101 mph Wind Dead Load Factor 0.90

Wind Load Factor 1.60

1		Iterati
-	X	

Elev (ft)	Description	Kzt	Kz	qz (psf)	qzGh (psf)	C (mph-ft)	Cf	lce Thick (in)	Tributary (ft)	Aa (sf)	CfAa (sf)	Wind Force X (Ib)	Dead Load Ice (Ib)	Tot Dead Load (Ib)
0.00		1.00	0.70	17.366	19.10	407.79	0.650	0.000	0.00	0.000	0.00	0.0	0.0	0.0
5.00		1.00	0.70	17.366	19.10	399.57	0.650	0.000	5.00	23.886	15.53	474.5	0.0	1359.7
10.00		1.00	0.70	17.366	19.10	391.35	0.650	0.000	5.00	23.399	15.21	464.9	0.0	1331.8
15.00		1.00	0.70	17.366	19.10	383.12	0.650	0.000	5.00	22.913	14.89	455.2	0.0	1303.8
20.00		1.00	0.70	17.366	19.10	374.90	0.650	0.000	5.00	22.426	14.58	445.5	0.0	1275.9
25.00		1.00	0.70	17.366	19.10	366.68	0.650	0.000	5.00	21.940	14.26	435.9	0.0	1247.9
30.00		1.00	0.70	17.381	19.12	358.61	0.650	0.000	5.00	21.453	13.94	426.6	0.0	1220.0
35.00		1.00	0.73	18.163	19.98	358.18	0.650	0.000	5.00	20.966	13.63	435.7	0.0	1192.0
38.75 Bot	- Section 2	1.00	0.75	18.699	20.57	357.03	0.650	0.000	3.75	15.406	10.01	329.6	0.0	875.7
40.00		1.00	0.76	18.870	20.76	356.51	0.650	0.000	1.25	5.167	3.36	111.5	0.0	545.7
45.00 Top	o - Section 1	1.00	0.79	19.516	21.47	353.84	0.650	0.000	5.00	20.364	13.24	454.6	0.0	2150.2
50.00		1.00	0.81	20.112	22.12	357.09	0.650	0.000	5.00	19.877	12.92	457.3	0.0	989.6
55.00		1.00	0.83	20.667	22.73	353.02	0.650	0.000	5.00	19.390	12.60	458.5	0.0	965.2
60.00		1.00	0.85	21.187	23.31	348.35	0.650	0.000	5.00	18.904	12.29	458.2	0.0	940.7
65.00		1.00	0.87	21.678	23.85	343.17	0.650	0.000	5.00	18.417	11.97	456.7	0.0	916.3
70.00		1.00	0.89	22.142	24.36	337.53	0.650	0.000	5.00	17.931	11.65	454.2	0.0	891.8
75.00 App	ourtenance(s)	1.00	0.91	22.582	24.84	331.50	0.650	0.000	5.00	17.444	11.34	450.7	0.0	867.4
78.75 Bot	- Section 3	1.00	0.92	22.899	25.19	326.74	0.650	0.000	3.75	12.764	8.30	334.4	0.0	634.5
80.00		1.00	0.93	23.003	25.30	325.11	0.650	0.000	1.25	4.260	2.77	112.1	0.0	360.2
83.75 Top	o - Section 2	1.00	0.94	23.306	25.64	320.10	0.650	0.000	3.75	12.597	8.19	335.9	0.0	1064.8
85.00		1.00	0.94	23.404	25.74	323.58	0.650	0.000	1.25	4.138	2.69	110.8	0.0	147.4
90.00		1.00	0.96	23.790	26.17	316.60	0.650	0.000	5.00	16.249	10.56	442.2	0.0	578.5
95.00		1.00	0.97	24.160	26.58	309.36	0.650	0.000	5.00	15.762	10.25	435.7	0.0	561.1
00.00		1.00	0.99	24.517	26.97	301.87	0.650	0.000	5.00	15.276	9.93	428.4	0.0	543.6
105.00		1.00	1.00	24.861	27.35	294.14	0.650	0.000		14.789	9.61	420.6	0.0	526.1
110.00 App	ourtenance(s)	1.00	1.02	25.194	27.71	286.19	0.650	0.000	5.00	14.303	9.30	412.2	0.0	508.7
115.00		1.00	1.03	25.516	28.07	278.05	0.650	0.000	5.00	13.816	8.98	403.3	0.0	491.2
	- Section 4	1.00		25.766	28.34	271.40	0.650	0.000	4.00	10.703	6.96	315.5	0.0	380.4
20.00		1.00		25.828	28.41	269.72	0.650	0.000	1.00	2.669	1.74	78.9	0.0	169.4
	o - Section 3	1.00		26.011	28.61	264.63	0.650	0.000	3.00	7.891	5.13	234.8		500.6
25.00		1.00		26.131	28.74	265.59	0.650	0.000	2.00	5.163	3.36	154.4	0.0	147.1
30.00		1.00		26.425	29.07	256.94	0.650	0.000		12.568	8.17	379.9		357.9
135.00		1.00		26.712	29.38	248.13	0.650	0.000		12.081	7.85	369.2	0.0	343.9
	ourtenance(s)	1.00		26.991	29.69	239.17	0.650	0.000		11.595	7.54	358.0	0.0	329.9
145.00		1.00		27.263	29.99	230.07	0.650	0.000		11.108	7.22	346.5	0.0	316.0
50.00		1.00		27.528	30.28	220.84	0.650	0.000		10.622	6.90	334.5		302.0
55.00		1.00		27.787	30.57	211.47		0.000		10.135	6.59	322.2		288.0
	ourtenance(s)	1.00		27.889	30.68	207.69		0.000	2.00		2.55	125.0		111.3
60.00		1.00		28.040	30.84	201.98	0.650	0.000	3.00	5.731	3.73	183.8		162.7
	o - Section 4	1.00		28.090	30.90	200.07		0.000	1.00	1.871	1.22	60.1	0.0	53.1
65.00		1.00		28.288	31.12	192.38		0.000	4.00	7.291	4.74	235.9		155.7
170.00		1.00		28.530	31.38	182.66	0.650	0.000	5.00		5.64	283.2		185.1
75.00 App	ourtenance(s)	1.00	1.16	28.768	31.64	172.84	0.650	0.000	5.00	8.189	5.32	269.5	0.0	174.7
								Totals:	175.00			14,256.5	5	27,467.4

Discrete Appurtenance Forces

Structure:	CT01915-S-SBA			Code:	EIA/TIA-222-G	1/13/2022	44.000.5X
Site Name:	South Brooklyn			Exposure:	В		(((Ħ)))
Height:	175.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		
Gh:	1.1	Topography:	1	Struct Class:	П	Page: 13	Tower Engineering Solutions

Load Case: 0.9D + 1.6W 101 mph Wind

Dead Load Factor0.90Wind Load Factor1.60

No.	Elev (ft)	Description	Qty	qz (psf)	qzGh (psf)	Orient Factor x Ka	Ka	Total CaAa (sf)	Dead Load (lb)	Horiz Ecc (ft)	Vert Ecc (ft)	Wind FX (Ib)	Mom Y (lb-ft)	Mom Z (Ib-ft)
1	175.00	JMA Wireless	6	28.861	31.747	0.65	0.75	38.64	248.40	0.000	2.000	1962.80	0.00	3925.60
2	175.00	6' Lightning rod	1	28.768	31.644	1.00	1.00	0.38	5.85	0.000	0.000	19.24	0.00	0.00
3	175.00	Low Profile Platform-flat	1	28.768	31.644	1.00	1.00	37.00	1080.00	0.000	0.000	1873.35	0.00	0.00
4	175.00	Samsung MT6407-77A	3	28.861	31.747	0.52	0.75	7.39	214.38	0.000	2.000	375.22	0.00	750.43
5	175.00	Antel BXA-70080-6CF	3	28.861	31.747	0.65	0.75	11.28	48.60	0.000	2.000	572.73	0.00	1145.46
6	175.00	MS-H1242 (Heavy Collar	1	28.768	31.644	1.00	1.00	2.50	135.54	0.000	0.000	126.58	0.00	0.00
7	175.00	Samsung B2/B66A	3	28.861	31.747	0.50	0.75	2.82	227.88	0.000	2.000	143.19	0.00	286.39
8	175.00	Samsung B5/B13	3	28.861	31.747	0.50	0.75	2.82	189.81	0.000	2.000	143.19	0.00	286.39
9	175.00	RVZDC-6627-PF-48	1	28.861	31.747	0.75	0.75	3.04	28.80	0.000	2.000	154.67	0.00	309.35
10	175.00	MS-KI22-5 (Kickers w/o	1	28.768	31.644	1.00	1.00	5.33	131.40	0.000	0.000	269.86	0.00	0.00
11	175.00	MS-HRECP	1	28.861	31.747	1.00	1.00	12.00	462.60	0.000	2.000	609.55	0.00	1219.10
12	161.00	Bridge Stiffener	1	28.090	30.899	1.00	1.00	2.89	183.75	0.000	0.000	142.88	0.00	0.00
13	157.00	Platform w/ Handrail +	1	27.889	30.678	1.00	1.00	54.00	2520.00	0.000	0.000	2650.59	0.00	0.00
14	157.00	ALU - TD-RRH8x20-25 -	3	27.889	30.678	0.50	0.75	6.11	189.00	0.000	0.000	299.68	0.00	0.00
15	157.00	ALU - 800 MHz - RRU	6	27.889	30.678	0.50	0.75	7.51	286.20	0.000	0.000	368.50	0.00	0.00
16	157.00	ALU - 1900 MHz - RRU	3	27.889	30.678	0.50	0.75	4.18	162.00	0.000	0.000	204.97	0.00	0.00
17	157.00	APXVTM14-C-I20	3	27.889	30.678	0.58	0.75	10.98	151.74	0.000	0.000	539.15	0.00	0.00
18	157.00	NNVV-65B-R4	3	27.889	30.678	0.55	0.75	20.43	228.69	0.000	0.000	1002.78	0.00	0.00
19	140.00	KRY 112 489/2	3	26.991	29.690	0.50	0.75	1.01	41.58	0.000	0.000	47.98	0.00	0.00
20	140.00	APXV18-206516S-C-A20	3	26.991	29.690	0.55	0.75	5.93	50.49	0.000	0.000	281.67	0.00	0.00
21	140.00	APXVAARR24_43-U-NA2	3	26.991	29.690	0.52	0.75	31.88	345.60	0.000	0.000	1514.33	0.00	0.00
22	140.00	4449	3	26.991	29.690	0.50	0.75	2.49	189.00	0.000	0.000	118.16	0.00	0.00
23	140.00	MT-195-12	1	26.991	29.690	1.00	1.00	40.00	1800.00	0.000	0.000	1900.15	0.00	0.00
24	140.00	Kathrein 782 11056	3	26.991	29.690	0.50	0.75	0.42	4.86	0.000	0.000	20.05	0.00	0.00
25	110.00	Raycap	1	25.194	27.713	1.00	1.00	2.01	19.71	0.000	0.000	89.13	0.00	0.00
26	110.00	Fujitsu TA08025-B604	3	25.194	27.713	0.50	0.75	2.95	172.53	0.000	0.000	131.01	0.00	0.00
27	110.00	Fujitsu TA08025-B605	3	25.194	27.713	0.50	0.75	2.95	202.50	0.000	0.000	131.01	0.00	0.00
28	110.00	MC-PK8-DSH	1	25.194	27.713	1.00	1.00	37.59	1554.30	0.000	0.000	1666.77	0.00	0.00
29	110.00	Commscope	3	25.194	27.713	0.55	0.75	20.43	191.16	0.000	0.000	905.86	0.00	0.00
30	75.00	GPS	1	22.582	24.841	1.00	1.00	1.00	9.00					0.00
							Totals	:	11,075.37		1	8,304.82		

	Total Applied Force Summary												
Structure:	CT01915-S-SBA			Code:	EIA/TIA-222-G	1/13/2022							
Site Name:	South Brooklyn			Exposure:	В	de the sub							
Height:	175.00 (ft)			Crest Height:	0.00		C						
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		^v N						
Gh:	1.1	Topography:	1	Struct Class:	11	Page: 14	ring Solutions						

Load Case: 0.9D + 1.6W 101 mph Wind

Dead Load Factor Wind Load Factor

0.90 1.60

Iterations

Elev		Lateral FX (-)	Axial FY (-)	Torsion MY	Moment MZ
(ft)	Description	(lb)	(lb)	(lb-ft)	(lb-ft)
0.00		0.00	0.00	0.00	0.00
5.00		474.54	1504.56	0.00	0.00
10.00		464.87	1476.62	0.00	0.00
15.00		455.20	1448.67	0.00	0.00
20.00		445.54	1420.73	0.00	0.00
25.00		435.87	1392.78	0.00	0.00
30.00		426.56	1364.84	0.00	0.00
35.00		435.66	1336.89	0.00	0.00
38.75		329.56	984.33	0.00	0.00
40.00		111.54	581.95	0.00	0.00
45.00		454.63	2295.06	0.00	0.00
50.00		457.33	1134.46	0.00	0.00
55.00		458.45	1110.01	0.00	0.00
60.00		458.20	1085.56	0.00	0.00
65.00		456.73	1061.11	0.00	0.00
70.00		454.18	1036.66	0.00	0.00
75.00	(1) attachments	490.40	1021.20	0.00	0.00
78.75	()	334.37	742.57	0.00	0.00
80.00		112.10	396.19	0.00	0.00
83.75		335.86	1172.86	0.00	0.00
85.00		110.80	183.39	0.00	0.00
90.00		442.22	722.66	0.00	0.00
95.00		435.66	705.20	0.00	0.00
100.00		428.45	687.73	0.00	0.00
105.00		420.62	670.26	0.00	0.00
110.00	(11) attachments	3336.02	2793.00	0.00	0.00
115.00	(TT) attachmente	403.29	627.14	0.00	0.00
119.00		315.47	489.14	0.00	0.00
120.00		78.87	196.59	0.00	0.00
123.00		234.81	582.21	0.00	0.00
125.00		154.35	201.44	0.00	0.00
130.00		379.94	493.82	0.00	0.00
135.00		369.19	479.85	0.00	0.00
140.00	(16) attachments	4240.36	2897.40	0.00	0.00
145.00		346.45	391.59	0.00	0.00
150.00		334.50	377.62	0.00	0.00
155.00		322.18	363.65	0.00	0.00
157.00	(19) attachments	5190.68	3679.18	0.00	0.00
160.00	(ie) attaonmonto	183.83	201.00	0.00	0.00
161.00	(1) attachments	203.02	249.64	0.00	0.00
165.00	(T) acaoninenta	235.94	206.66	0.00	0.00
170.00		283.16	248.90	0.00	0.00
175.00	(24) attachments	6519.89	3011.68	0.00	7922.71
110.00					
	Totals:	32,561.33	43,026.79	0.00	7,922.71

						Calc	ulated Fo	orces						
Struc	ture:	CT019	915-S-S	BA			Code:	EIA	VTIA-222	2-G	1/1	3/2022	(
Site N	Name:	South	Brookly	/n			Exposure	: В					((#))	
Heigh		175.00	-				Crest Heig		0					C
-								-		r.				S
	Elev:	0.000	(π)				Site Class		Stiff Soi				Tower Engineer	ring Solution
Gh:		1.1		Тор	pography:	: 1	Struct Cla	ss: II			Pa	age: 15	Tower Enginee.	ing solution
Load	Case:	0.9D	+ 1.6W	101 mp	h Wind						Y		erations	25
			Facto								-	×		
	Win	d Load	l Facto	r 1.6	0					2				
Seg Elev	Pu FY (-)	Vu FX (-)	Tu MY (-)	Mu MZ	Mu MX	Resultant Moment	phi Pn	phi Vn	phi Tn	phi Mn	Total Deflect	Sway	Rotation Twist	Stress
(ft)	(kips)		(ft-kips)		(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	(deg)	Ratio
0.00 5.00	-42.98 -41.39	-32.62 -32.26	0.00	-4129.8 -3966.7	0.00	4129.89 3966.79	6411.04 6318.35	3205.52 3159.17	14877.2 14361.2	7449.66 7191.28	0.00	0.000	0.000 0.000	0.561 0.558
10.00	-41.39	-32.26	0.00	-3966.7	0.00	3966.79	6224.09	3159.17	13850.5	6935.58	0.09	-0.159	0.000	0.558
15.00	-38.28	-31.55	0.00	-3645.9	0.00	3645.97	6128.26	3064.13	13345.4	6682.66	0.34	-0.321	0.000	0.552
20.00	-36.77	-31.20	0.00	-3488.2	0.00	3488.23	6030.87	3015.43	12846.2	6432.65	1.37	-0.656	0.000	0.548
25.00	-35.29	-30.85	0.00	-3332.2	0.00	3332.23	5931.91	2965.95	12352.9	6185.64	2.15	-0.829	0.000	0.545
30.00	-33.84	-30.51	0.00	-3177.9	0.00	3177.96	5831.38	2915.69	11865.8	5941.76	3.11	-1.005	0.000	0.541
35.00	-32.43	-30.14	0.00	-3025.4	0.00	3025.40	5715.88	2857.94	11358.6	5687.79	4.26	-1.185	0.000	0.538
38.75	-31.40	-29.84	0.00	-2912.3	0.00	2912.38	5614.19	2807.10	10956.1	5486.19	5.24	-1.324	0.000	0.537
40.00	-30.76	-29.78	0.00	-2875.0	0.00	2875.08	5580.30	2790.15	10823.5	5419.80	5.60	-1.372	0.000	0.536
45.00	-28.38	-29.36	0.00	-2726.1	0.00	2726.19	4741.11	2370.56	9166.15	4589.89	7.13	-1.559	0.000	0.600
50.00	-27.16	-28.96	0.00	-2579.4	0.00	2579.40	4656.71	2328.36	8781.22	4397.14	8.87	-1.750	0.000	0.593
55.00	-25.96	-28.57	0.00	-2434.5	0.00	2434.58	4570.75	2285.37	8401.44	4206.97	10.81	-1.959	0.000	0.585
60.00	-24.79 -23.64	-28.16 -27.75	0.00	-2291.7 -2150.9	0.00	2291.75	4483.21 4386.28	2241.61 2193.14	8027.05	4019.49 3828.00	12.98	-2.172	0.000	0.576
65.00 70.00	-23.64	-27.75	0.00	-2150.9	0.00	2150.94 2012.18	4366.26	2193.14	7644.63 7234.64	3622.70	15.37 17.99	-2.389 -2.608	0.000 0.000	0.567 0.561
75.00	-22.32	-26.88	0.00	-1875.4	0.00	1875.47	4149.01	2074.50	6835.94	3423.05	20.84	-2.831	0.000	0.553
78.75	-20.65	-26.55	0.00	-1774.6	0.00	1774.68	4060.03	2030.01	6544.34	3277.03	23.13	-3.001	0.000	0.547
80.00	-20.21	-26.45	0.00	-1741.5	0.00	1741.50	4030.37	2015.18	6448.55	3229.07	23.92	-3.060	0.000	0.545
83.75	-19.00	-26.09	0.00	-1642.3	0.00	1642.30	2677.54	1338.77	4285.17	2145.77	26.40	-3.232	0.000	0.773
85.00	-18.74	-26.03	0.00	-1609.6	0.00	1609.68	2664.37	1332.18	4232.36	2119.33	27.25	-3.292	0.000	0.767
90.00	-17.91	-25.64	0.00	-1479.5	0.00	1479.52	2610.69	1305.34	4022.76	2014.37	30.86	-3.595	0.000	0.742
95.00	-17.11	-25.25	0.00	-1351.3	0.00	1351.31	2555.44	1277.72	3815.94	1910.80	34.79	-3.899	0.000	0.714
100.00	-16.32	-24.86	0.00	-1225.0	0.00	1225.05	2498.62	1249.31	3612.11	1808.74	39.03	-4.203	0.000	0.684
105.00	-15.55	-24.48	0.00	-1100.7	0.00	1100.73	2440.24	1220.12	3411.50	1708.29	43.59	-4.505	0.000	0.651
110.00	-12.93	-20.99	0.00	-978.36	0.00	978.36		1190.15		1609.56	48.47	-4.804	0.000	0.614
115.00		-20.59	0.00	-873.40	0.00	873.40	2318.78	1159.39		1512.67	53.65	-5.099	0.000	0.583
119.00		-20.26	0.00	-791.04	0.00	791.04	2268.44	1134.22		1436.56	58.02	-5.334	0.000	0.556
120.00	-11.51		0.00	-770.78	0.00	770.78	2255.69		2831.25	1417.73	59.14	-5.395	0.000	0.549
123.00 125.00	-10.90 -10.64	-19.93 -19.80	0.00 0.00	-710.21 -670.35	0.00	710.21 670.35	1577.63 1561.09	788.82 780.55	1975.86 1925.40	989.40 964.13	62.58 64.94	-5.570 -5.687	0.000	0.725
125.00	-10.04	-19.80	0.00	-571.35	0.00	571.35		759.38	1925.40	904.13	71.06	-5.687	0.000	0.703
135.00	-9.54	-19.42	0.00	-474.24	0.00	474.24	1475.03	737.52	1678.77	840.64	77.51	-6.321	0.000	0.571
140.00	-7.07	-14.55	0.00	-378.97	0.00	378.97		714.96	1559.34	780.83	84.28	-6.604	0.000	0.491
145.00	-6.66	-14.19	0.00	-306.22	0.00	306.22		691.71	1442.75	722.45	91.32	-6.863	0.000	0.429
150.00	-6.28	-13.83	0.00	-235.28	0.00	235.28	1321.23	660.61	1314.97	658.46	98.62	-7.097	0.000	0.363
155.00	-5.92	-13.48	0.00	-166.11	0.00	166.11		629.32	1192.75	597.26	106.14	-7.296	0.000	0.283
157.00	-2.93	-7.87	0.00	-139.14	0.00	139.14		616.81	1145.53	573.62	109.21	-7.366	0.000	0.245
160.00	-2.74	-7.66	0.00	-115.54	0.00	115.54		598.03	1076.49	539.05	113.85	-7.459	0.000	0.217
161.00	-2.51	-7.43	0.00	-107.87	0.00	107.87		591.78	1053.96	527.76	115.42	-7.489	0.000	0.207
161.00	-2.51	-7.43	0.00	-107.87	0.00	107.87	858.57	429.28	768.96	385.05	115.42	-7.489	0.000	0.283
165.00	-2.32	-7.18	0.00	-78.14	0.00	78.14		416.23	713.85	357.46	121.72	-7.591	0.000	0.222
170.00	0.40	6.07	0.00	40.00	0.00	40.00	700 50	200.20	646 76	202.00	100 70	7 746	0.000	0 4 2 2

758.80

379.40

42.26

7.92

798.56 399.28 646.76 323.86 129.72 -7.716

289.64 137.82 -7.778

578.42

0.133

0.028

0.000

0.000

-2.10

0.00

-6.87

-6.52

0.00

0.00

170.00

175.00

-42.26

-7.92

0.00

0.00

	Wind Loading - Shaft												
Structure:	CT01915-S-SBA			Code:	EIA/TIA-222-G	1/13/2022	44.000.53						
Site Name:	South Brooklyn			Exposure:	В		(((#)))						
Height:	175.00 (ft)			Crest Height:	0.00		EC						
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		I LS						
Gh:	1.1	Topography:	1	Struct Class:	П	Page: 16	Tower Engineering Solutions						
Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind Iterations 2													

Load Case: 1.2D + 1.0E)i + 1.0Wi 50 mph Wind
Dead Load Factor	or 1.20
Wind Load Factor	or 1.00

Z

Elev (ft)	Description	Kzt	Kz	qz (psf)	qzGh (psf)	C (mph-ft)	Cf	lce Thick (in)	Tributary (ft)	Aa (sf)	CfAa (sf)	Wind Force X (lb)	Dead Load Ice (Ib)	Tot Dead Load (Ib)
0.00		1.00	0.70	4.256	4.68	0.00	1.200	0.000	0.00	0.000	0.00	0.0	0.0	0.0
5.00		1.00	0.70	4.256	4.68	0.00	1.200	1.656	5.00	25.266	30.32	141.9	596.8	2409.8
10.00		1.00	0.70	4.256	4.68	0.00	1.200	1.775	5.00	24.878	29.85	139.8	628.2	2403.9
15.00		1.00	0.70	4.256	4.68	0.00	1.200	1.848	5.00	24.453	29.34	137.4	641.7	2380.1
20.00		1.00	0.70	4.256	4.68	0.00	1.200	1.902	5.00	24.011	28.81	134.9	647.4	2348.5
25.00		1.00	0.70	4.256	4.68	0.00	1.200	1.945	5.00	23.561	28.27	132.4	648.5	2312.4
30.00		1.00	0.70	4.260	4.69	0.00	1.200	1.981	5.00	23.104	27.72	129.9	646.6	2273.2
35.00		1.00	0.73	4.451	4.90	0.00	1.200	2.012	5.00	22.643	27.17	133.0	642.5	2231.9
	t - Section 2	1.00	0.75	4.583	5.04	0.00	1.200	2.032	3.75	16.676	20.01	100.9	478.7	1646.3
40.00		1.00	0.76	4.625	5.09	0.00	1.200	2.039	1.25	5.592	6.71	34.1	162.0	889.6
45.00 To	p - Section 1	1.00	0.79	4.783	5.26	0.00	1.200	2.063	5.00	22.083	26.50	139.4	641.1	3508.0
50.00		1.00	0.81	4.929	5.42	0.00	1.200	2.085	5.00	21.614	25.94	140.6	633.1	1952.6
55.00		1.00	0.83	5.065	5.57	0.00	1.200	2.105	5.00	21.144	25.37	141.4	624.3	1911.1
60.00		1.00	0.85	5.193	5.71	0.00	1.200	2.123		20.673	24.81	141.7	614.7	1868.9
65.00		1.00	0.87	5.313	5.84	0.00	1.200	2.140	5.00	20.201	24.24	141.7	604.4	1826.1
70.00		1.00	0.89	5.426	5.97	0.00	1.200	2.156	5.00	19.728	23.67	141.3	593.6	1782.6
	purtenance(s)	1.00	0.91	5.534	6.09	0.00	1.200	2.171	5.00	19.253	23.10	140.7	582.2	1738.7
	t - Section 3	1.00	0.92	5.612	6.17	0.00	1.200	2.182		14.127	16.95	104.7	430.1	1276.0
80.00		1.00	0.93	5.637	6.20	0.00	1.200	2.185	1.25	4.715	5.66	35.1	144.7	625.0
	p - Section 2	1.00	0.94	5.712	6.28	0.00	1.200	2.195		13.969	16.76	105.3	427.4	1847.1
85.00		1.00	0.94	5.736	6.31	0.00	1.200	2.198	1.25	4.596	5.52	34.8	141.7	338.2
90.00		1.00	0.96	5.830	6.41	0.00	1.200	2.211		18.092	21.71	139.2	554.3	1325.7
95.00		1.00	0.97	5.921	6.51	0.00	1.200	2.223		17.615	21.14	137.7	541.5	1289.6
100.00		1.00	0.99	6.008	6.61	0.00	1.200	2.234		17.138	20.57	135.9	528.3	1253.1
105.00		1.00	1.00	6.093	6.70	0.00	1.200	2.245		16.660	19.99	134.0	514.9	1216.4
	purtenance(s)	1.00	1.02	6.174	6.79	0.00	1.200	2.256		16.183	19.42	131.9	501.2	1179.4
115.00		1.00	1.03	6.253	6.88	0.00	1.200	2.266		15.704	18.85	129.6	487.2	1142.2
	t - Section 4	1.00	1.04	6.315	6.95	0.00	1.200	2.274		12.218	14.66	101.8	380.7	887.9
120.00		1.00	1.04	6.330	6.96	0.00	1.200	2.276	1.00	3.049	3.66	25.5	96.0	321.9
	p - Section 3	1.00	1.05	6.375	7.01	0.00	1.200	2.281	3.00	9.032	10.84	76.0	282.9	950.5
25.00		1.00	1.05	6.404	7.04	0.00	1.200	2.285	2.00	5.925	7.11	50.1	186.3	382.4
30.00		1.00	1.07	6.476	7.12	0.00	1.200	2.294		14.480	17.38	123.8	451.2	928.4
35.00		1.00	1.08	6.546	7.20	0.00	1.200	2.303		14.000	16.80	121.0	436.5	895.0
	purtenance(s)	1.00	1.09	6.615	7.28	0.00	1.200	2.311		13.521	16.22	118.1	421.5	861.4
145.00		1.00	1.10	6.681	7.35	0.00	1.200	2.319		13.041	15.65	115.0	406.4	827.7
150.00		1.00	1.11	6.746	7.42	0.00	1.200	2.313		12.561	15.07	111.9		793.8
155.00		1.00	1.12	6.810	7.49	0.00	1.200	2.335		12.081	14.50	108.6	375.7	759.7
	purtenance(s)	1.00	1.12	6.835	7.52		1.200	2.338	2.00		5.64	42.4	147.8	296.2
160.00		1.00	1.12	6.872	7.56		1.200	2.342	3.00	6.902	8.28	62.6	216.1	433.1
	p - Section 4	1.00	1.13	6.884	7.57		1.200	2.343	1.00	2.262	2.71	20.6	71.4	142.2
165.00	P 00000114	1.00	1.14		7.63		1.200	2.349	4.00		10.63	81.1	275.5	483.1
170.00		1.00	1.14	6.992	7.69	0.00	1.200	2.349		10.639	12.77	98.2		575.4
	purtenance(s)	1.00		7.050	7.76		1.200	2.363		10.158	12.19	94.5		545.5
10.00 AP	pullenance(s)	1.00	1.10	1.000	1.10	0.00	1.200	2.000	5.00	10.100	12.19	54.5		343.5

Discrete Appurtenance Forces

Structure:	CT01915-S-SBA			Code:	EIA/TIA-222-G	1/13/2022	44.000.5X
Site Name:	South Brooklyn			Exposure:	В		((e冉))
Height:	175.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		
Gh:	1.1	Topography:	1	Struct Class:	П	Page: 17	Tower Engineering Solutions

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind

Dead Load Factor1.20Wind Load Factor1.00

No.	Elev (ft)	Description	Qty	qz (psf)	qzGh (psf)	Orient Factor x Ka	Ka	Total CaAa (sf)	Dead Load (Ib)	Horiz Ecc (ft)	Vert Ecc (ft)	Wind FX (lb)	Mom Y (lb-ft)	Mom Z (Ib-ft)
1	175.00	JMA Wireless	6	7.073	7.780	0.65	0.75	46.07	2636.36	0.000	2.000	358.48	0.00	716.96
2	175.00	6' Lightning rod	1	7.050	7.755	1.00	1.00	1.85	51.65	0.000	0.000	14.37	0.00	0.00
3	175.00	Low Profile Platform-flat	1	7.050	7.755	1.00	1.00	78.97	2557.86	0.000	0.000	612.42	0.00	0.00
4	175.00	Samsung MT6407-77A	3	7.073	7.780	0.52	0.75	9.44	808.29	0.000	2.000	73.45	0.00	146.91
5	175.00	Antel BXA-70080-6CF	3	7.073	7.780	0.65	0.75	17.56	470.52	0.000	2.000	136.65	0.00	273.30
6	175.00	MS-H1242 (Heavy Collar	1	7.050	7.755	1.00	1.00	6.04	399.13	0.000	0.000	46.88	0.00	0.00
7	175.00	Samsung B2/B66A	3	7.073	7.780	0.50	0.75	4.03	642.20	0.000	2.000	31.35	0.00	62.70
8	175.00	Samsung B5/B13	3	7.073	7.780	0.50	0.75	4.03	561.13	0.000	2.000	31.35	0.00	62.70
9	175.00	RVZDC-6627-PF-48	1	7.073	7.780	0.75	0.75	3.88	167.46	0.000	2.000	30.19	0.00	60.37
10	175.00	MS-KI22-5 (Kickers w/o	1	7.050	7.755	1.00	1.00	12.89	387.21	0.000	0.000	99.94	0.00	0.00
11	175.00	MS-HRECP	1	7.073	7.780	1.00	1.00	27.88	1956.75	0.000	2.000	216.92	0.00	433.84
12	161.00	Bridge Stiffener	1	6.884	7.573	1.00	1.00	5.60	640.56	0.000	0.000	42.40	0.00	0.00
13	157.00	Platform w/ Handrail +	1	6.835	7.518	1.00	1.00	114.59	7932.63	0.000	0.000	861.54	0.00	0.00
14	157.00	ALU - TD-RRH8x20-25 -	3	6.835	7.518	0.50	0.75	7.79	727.95	0.000	0.000	58.57	0.00	0.00
15	157.00	ALU - 800 MHz - RRU	6	6.835	7.518	0.50	0.75	12.13	849.39	0.000	0.000	91.17	0.00	0.00
16	157.00	ALU - 1900 MHz - RRU	3	6.835	7.518	0.50	0.75	6.74	479.57	0.000	0.000	50.65	0.00	0.00
17	157.00	APXVTM14-C-I20	3	6.835	7.518	0.58	0.75	13.62	891.79	0.000	0.000	102.43	0.00	0.00
18	157.00	NNVV-65B-R4	3	6.835	7.518	0.55	0.75	23.68	1385.10	0.000	0.000	178.01	0.00	0.00
19	140.00	KRY 112 489/2	3	6.615	7.276	0.50	0.75	2.29	130.10	0.000	0.000	16.69	0.00	0.00
20	140.00	APXV18-206516S-C-A20	3	6.615	7.276	0.55	0.75	9.97	285.69	0.000	0.000	72.54	0.00	0.00
21	140.00	APXVAARR24_43-U-NA2	3	6.615	7.276	0.52	0.75	35.89	2190.09	0.000	0.000	261.13	0.00	0.00
22	140.00	4449	3	6.615	7.276	0.50	0.75	3.60	546.30	0.000	0.000	26.19	0.00	0.00
23	140.00	MT-195-12	1	6.615	7.276	1.00	1.00	67.73	4573.15	0.000	0.000	492.83	0.00	0.00
24	140.00	Kathrein 782 11056	3	6.615	7.276	0.50	0.75	1.22	16.34	0.000	0.000	8.90	0.00	0.00
25	110.00	Raycap	1	6.174	6.792	1.00	1.00	2.74	82.41	0.000	0.000	18.64	0.00	0.00
26	110.00	Fujitsu TA08025-B604	3	6.174	6.792	0.50	0.75	4.05	390.07	0.000	0.000	27.49	0.00	0.00
27	110.00	Fujitsu TA08025-B605	3	6.174	6.792	0.50	0.75	4.05	435.03	0.000	0.000	27.49	0.00	0.00
28	110.00	MC-PK8-DSH	1	6.174	6.792	1.00	1.00	98.65	3881.12	0.000	0.000	669.97	0.00	0.00
29	110.00	Commscope	3	6.174	6.792	0.55	0.75	23.56	1050.61	0.000	0.000	160.04	0.00	0.00
30	75.00	GPS	1	5.534	6.088	1.00	1.00	1.89	40.47	0.000	0.000	11.48	0.00	0.00
							Totals	:	37,166.92			4,830.16		

	Total Applied Force Summary									
Structure:	CT01915-S-SBA			Code:	EIA/TIA-222-G	1/13/2022	44.000.5N			
Site Name:	South Brooklyn			Exposure:	В		(((Ħ)))			
Height:	175.00 (ft)			Crest Height:	0.00		EC			
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil					
Gh:	1.1	Topography:	1	Struct Class:	Ш	Page: 18	Tower Engineering Solutions			

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind

Dead Load Factor Wind Load Factor

1.20 1.00

		Lateral	Axial	Torsion	Moment
Elev (ft)	Description	FX (-) (Ib)	FY (-) (Ib)	MY (lb-ft)	MZ (lb-ft)
(ft)	Description	. ,			
0.00		0.00	0.00	0.00	0.00
5.00		141.94	2602.93	0.00	0.00
10.00		139.76	2597.01	0.00	0.00
15.00		137.37	2573.26	0.00	0.00
20.00		134.89	2541.66	0.00	0.00
25.00		132.36	2505.50	0.00	0.00
30.00		129.91	2466.33	0.00	0.00
35.00		133.05	2425.00	0.00	0.00
38.75		100.88	1791.18	0.00	0.00
40.00		34.13	937.92	0.00	0.00
45.00		139.41	3701.15	0.00	0.00
50.00		140.63	2145.73	0.00	0.00
55.00		141.37	2104.28	0.00	0.00
60.00		141.70	2062.07	0.00	0.00
65.00		141.66	2019.21	0.00	0.00
70.00		141.30	1975.77	0.00	0.00
75.00	(1) attachments	152.13	1972.31	0.00	0.00
78.75		104.65	1420.16	0.00	0.00
80.00		35.09	673.01	0.00	0.00
83.75		105.32	1991.26	0.00	0.00
85.00		34.80	386.24	0.00	0.00
90.00		139.23	1517.89	0.00	0.00
95.00		137.67	1481.75	0.00	0.00
100.00		135.92	1445.31	0.00	0.00
105.00		133.99	1408.57	0.00	0.00
110.00	(11) attachments	1035.52	7210.81	0.00	0.00
115.00		129.63	1323.41	0.00	0.00
119.00		101.84	1032.90	0.00	0.00
120.00		25.47	358.15	0.00	0.00
123.00		76.00	1059.22	0.00	0.00
125.00		50.09	454.90	0.00	0.00
130.00		123.78	1109.64	0.00	0.00
135.00		120.98	1076.25	0.00	0.00
140.00	(16) attachments	996.33	8784.35	0.00	0.00
145.00		115.01	928.52	0.00	0.00
150.00		111.86	894.61	0.00	0.00
155.00		108.59	860.55	0.00	0.00
157.00	(19) attachments	1384.75	12602.93	0.00	0.00
160.00		62.61	484.07	0.00	0.00
161.00	(1) attachments	62.95	799.80	0.00	0.00
165.00		81.05	551.07	0.00	0.00
170.00		98.19	660.41	0.00	0.00
175.00	(24) attachments	1746.53	11269.02	0.00	1756.78
	Totals:	9,340.38	98,206.11	0.00	1,756.78

	Calculated Forces								
Structure:	CT01915-S-SBA			Code:	EIA/TIA-222-G	1/13/2022			
Site Name:	South Brooklyn			Exposure:	В	de de sta			
Height:	175.00 (ft)			Crest Height:	0.00	IEC			
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil				
Gh:	1.1	Topography:	1	Struct Class:	11	Page: 19 Tower Engineering Solutions			

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind

Dead Load Factor1.20Wind Load Factor1.00

*	Iterations
×	
2	

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation Sway (deg)	Rotation Twist (deg)	Stress Ratio
0.00	-98.20	-9.38	0.00	-1262.6	0.00	1262.68	6411.04	3205.52	14877.2	7449.66	0.00	0.000	0.000	0.185
5.00	-95.59	-9.32	0.00	-1215.7	0.00	1215.77	6318.35	3159.17	14361.2	7191.28	0.03	-0.049	0.000	0.184
10.00	-92.99	-9.26	0.00	-1169.1	0.00	1169.16	6224.09	3112.04	13850.5	6935.58	0.10	-0.098	0.000	0.184
15.00	-90.41	-9.20	0.00	-1122.8	0.00	1122.86	6128.26	3064.13	13345.4	6682.66	0.23	-0.149	0.000	0.183
20.00	-87.86	-9.14	0.00	-1076.8	0.00	1076.86	6030.87	3015.43	12846.2	6432.65	0.42	-0.202	0.000	0.182
25.00	-85.34	-9.08	0.00	-1031.1	0.00	1031.18	5931.91	2965.95	12352.9	6185.64	0.66	-0.255	0.000	0.181
30.00	-82.87	-9.01	0.00	-985.80	0.00	985.80	5831.38	2915.69	11865.8	5941.76	0.95	-0.310	0.000	0.180
35.00	-80.44	-8.94	0.00	-940.74	0.00	940.74	5715.88	2857.94	11358.6	5687.79	1.31	-0.366	0.000	0.179
38.75	-78.64	-8.86	0.00	-907.23	0.00	907.23	5614.19	2807.10	10956.1	5486.19	1.61	-0.409	0.000	0.179
40.00	-77.70	-8.87	0.00	-896.16	0.00	896.16	5580.30	2790.15	10823.5	5419.80	1.72	-0.424	0.000	0.179
45.00	-73.99	-8.78	0.00	-851.80	0.00	851.80	4741.11	2370.56	9166.15	4589.89	2.20	-0.482	0.000	0.201
50.00	-71.83	-8.70	0.00	-807.91	0.00	807.91	4656.71	2328.36	8781.22	4397.14	2.73	-0.542	0.000	0.199
55.00	-69.72	-8.62	0.00	-764.42	0.00	764.42	4570.75	2285.37	8401.44	4206.97	3.34	-0.607	0.000	0.197
60.00	-67.65	-8.53	0.00	-721.34	0.00	721.34	4483.21	2241.61	8027.05	4019.49	4.01	-0.674	0.000	0.195
65.00	-65.62	-8.44	0.00	-678.69	0.00	678.69	4386.28	2193.14	7644.63	3828.00	4.75	-0.743	0.000	0.192
70.00	-63.64	-8.35	0.00	-636.48	0.00	636.48	4267.64	2133.82	7234.64	3622.70	5.57	-0.812	0.000	0.191
75.00	-61.66	-8.24	0.00	-594.72	0.00	594.72	4149.01	2074.50	6835.94	3423.05	6.45	-0.882	0.000	0.189
78.75	-60.24	-8.15	0.00	-563.82	0.00	563.82	4060.03	2030.01	6544.34	3277.03	7.17	-0.937	0.000	0.187
80.00	-59.56	-8.14	0.00	-553.64	0.00	553.64	4030.37	2015.18	6448.55	3229.07	7.42	-0.955	0.000	0.186
83.75	-57.57	-8.04	0.00	-523.11	0.00	523.11	2677.54	1338.77	4285.17	2145.77	8.19	-1.010	0.000	0.265
85.00	-57.17	-8.06	0.00	-513.06	0.00	513.06	2664.37	1332.18	4232.36	2119.33	8.46	-1.029	0.000	0.264
90.00	-55.64	-7.98	0.00	-472.78	0.00	472.78	2610.69	1305.34	4022.76	2014.37	9.59	-1.126	0.000	0.256
95.00	-54.15	-7.91	0.00	-432.88	0.00	432.88	2555.44	1277.72	3815.94	1910.80	10.82	-1.223	0.000	0.248
100.00	-52.70	-7.83	0.00	-393.35	0.00	393.35	2498.62	1249.31	3612.11	1808.74	12.15	-1.321	0.000	0.239
105.00	-51.28	-7.75	0.00	-354.21	0.00	354.21	2440.24	1220.12	3411.50	1708.29	13.59	-1.418	0.000	0.228
110.00	-44.09	-6.60	0.00	-315.48	0.00	315.48	2380.29	1190.15	3214.34	1609.56	15.12	-1.514	0.000	0.215
115.00	-42.76	-6.50	0.00	-282.48	0.00	282.48	2318.78	1159.39	3020.85	1512.67	16.76	-1.609	0.000	0.205
119.00	-41.72	-6.40	0.00	-256.48	0.00	256.48	2268.44	1134.22	2868.85	1436.56	18.14	-1.685	0.000	0.197
120.00	-41.36	-6.39	0.00	-250.08	0.00	250.08	2255.69	1127.85	2831.25	1417.73	18.50	-1.705	0.000	0.195
123.00	-40.30	-6.32	0.00	-230.90	0.00	230.90	1577.63	788.82	1975.86	989.40	19.58	-1.762	0.000	0.259
125.00	-39.84	-6.31	0.00	-218.27	0.00	218.27	1561.09	780.55	1925.40	964.13	20.33	-1.800	0.000	0.252
130.00	-38.72	-6.22	0.00	-186.74	0.00	186.74	1518.76	759.38	1800.86	901.77	22.27	-1.906	0.000	0.233
135.00	-37.64	-6.12	0.00	-155.66	0.00	155.66	1475.03	737.52	1678.77	840.64	24.32	-2.007	0.000	0.211
140.00	-28.89	-4.86	0.00	-125.05	0.00	125.05	1429.92	714.96	1559.34	780.83	26.48	-2.100	0.000	0.180
145.00	-27.96	-4.75	0.00	-100.77	0.00	100.77	1383.42	691.71	1442.75	722.45	28.72	-2.186	0.000	0.160
150.00	-27.06	-4.63	0.00	-77.04	0.00	77.04	1321.23	660.61	1314.97	658.46	31.05	-2.262	0.000	0.138
155.00	-26.21	-4.51	0.00	-53.87	0.00	53.87	1258.65	629.32	1192.75	597.26	33.46	-2.327	0.000	0.111
157.00	-13.67	-2.62	0.00	-44.86	0.00	44.86	1233.62	616.81	1145.53	573.62	34.44	-2.350	0.000	0.089
160.00	-13.19	-2.54	0.00	-37.00	0.00	37.00	1196.07	598.03	1076.49	539.05	35.93	-2.380	0.000	0.080
161.00	-12.39	-2.45	0.00	-34.46	0.00	34.46	1183.55	591.78	1053.96	527.76	36.43	-2.389	0.000	0.076
161.00	-12.39	-2.45	0.00	-34.46	0.00	34.46	858.57	429.28	768.96	385.05	36.43	-2.389	0.000	0.104
165.00	-11.84	-2.35	0.00	-24.67	0.00	24.67	832.45	416.23	713.85	357.46	38.44	-2.422	0.000	0.083
170.00	-11.18	-2.23	0.00	-12.91	0.00	12.91	798.56	399.28	646.76	323.86	41.00	-2.461	0.000	0.054
175.00	0.00	-1.75	0.00	-1.76	0.00	1.76	758.80	379.40	578.42	289.64	43.59	-2.479	0.000	0.006

	Seismic Segment Forces (Factored)									
Struc	ture: CT01915-S-SBA			Cod	de:		EIA/TIA	-222-0	G 1/13/2022	
Site N					osure	ə:	B		。 (((単)))
Heigh										
Base	. ,				Crest Height: 0.00 Site Class: D - Stiff Soil					LS
		T						1 301	Tower Eng	ineering Solutions
Gh:	Gh: 1.1 Topography: 1				uct Cl	ass:	П		Page: 20	
Load	Case: 1.2D + 1.0E								1teration	ns 23
G	ust Response Factor	1.10					Sds	0.18	s s	Ss 0.17
	Dead Load Factor	1.20 Se	ismic Load I	actor		1.00	Sd1	0.10	s s	61 0.06
	Wind Load Factor	0.00 Str	ucture Freq	uency	(f1)	0.31	SA	0.03	Seismic Importance Facto	or 1.00
Тор			14/-				Late			
Elev (ft)	Description		Wz (lb)	а	b	С	Fs (Ib			R: 1.50
0.00			0.00	0.00	0.00	0.00		.00		
5.00			1510.7	0.00	0.03	0.02		.32		
10.00 15.00			1479.7 1448.6	0.01	0.05 0.06	0.03		.68 .08		
20.00			1417.6	0.02	0.07	0.04		.50		
25.00			1386.5	0.04	0.07	0.04		.40		
30.00			1355.5	0.06	0.07	0.04		.60		
35.00 38.75	Bot - Section 2		1324.4 972.99	0.08 0.09	0.07 0.07	0.04		.53 .97		
40.00	Bot - Section 2		606.38	0.09	0.07	0.04		.97 .28		
45.00	Top - Section 1		2389.1	0.12	0.07	0.03		.55		
50.00			1099.5	0.15	0.07	0.03		.06		
55.00			1072.4	0.19	0.06	0.02		.42		
60.00 65.00			1045.2 1018.0	0.22 0.26	0.06 0.05	0.02		.12 .80		
70.00			990.89	0.20	0.03	0.02		.00		
75.00	Appurtenance(s)		973.73	0.35	0.03	0.01		.70		
78.75	Bot - Section 3		704.96	0.38	0.02	0.01		.61		
80.00	Top Costion 0		400.18	0.39	0.02	0.01		.03		
83.75 85.00	Top - Section 2		1183.0 163.74	0.43 0.45	0.01 0.00	0.01 0.01		.26 .68		
90.00			642.81	0.50	-0.02	0.01		.86		
95.00			623.41	0.56	-0.04	0.01		.31		
100.00			604.00		-0.06	0.02	-14			
105.00 110.00	Appurtenance(s)		584.59 2943.1	0.68 0.75	-0.08 -0.10	0.03	18- 108-			
115.00	Appultonanoo(o)		545.78	0.82	-0.11	0.04	-20			
119.00	Bot - Section 4		422.65	0.87	-0.12	0.08	-15	.26		
120.00	T 0 1 1		188.22	0.89	-0.12	0.08		.64		
123.00 125.00	Top - Section 3		556.27 163.40	0.93 0.96	-0.12 -0.12	0.10	-17	.76 .74		
125.00			397.64	1.04	-0.12	0.11 0.15		.74 .63		
135.00			382.12	1.12	-0.05	0.20		.26		
140.00	Appurtenance(s)		3068.2	1.21	0.01	0.26	33	.17		
145.00			351.07	1.30	0.12	0.33		.89		
150.00 155.00			335.54 320.02	1.39 1.48	0.26 0.46	0.42 0.52		.38 .27		
155.00	Appurtenance(s)		4054.3	1.40	0.46	0.52	381			
160.00			180.83	1.58	0.72	0.64	20	.45		
161.00	Top - Section 4		263.21	1.60	0.78	0.67		.51		
165.00			172.96	1.68	1.05	0.78		.56		
170.00 175.00	Appurtenance(s)		205.72 3275.4	1.78 1.89	1.46 1.98	0.95 1.14	38 749	.33		
		Totals:	42,825.4	1.00	1.00	1.17	1,78		Total Wind: 32	2,561.3

Seismic Base Shear is Less Than 50% of Wind Force - An Analysis is NOT Required

Calculated Forces													
Struct	ture:	CT019	915-S-S	SBA			Code:	FL	4/TIA-22	2-G	1/13/2022		
Site N			Brookly				Exposure		0117022	20	1,10,2022	((Ħ))	
Heigh			-	yıı			Crest Hei		0		ľ		
-		175.00						-					S
Base	Elev:	0.000	(ff)				Site Class		- Stiff So	11		Torres	Colutions
Gh:		1.1		Торо	ography	: 1	Struct Cla	ass: II			Page: 21	Tower Engineer	nng Solutions
Load	Case:	1.2D	+ 1.0E								1te	erations	23
Gu	ust Res	sponse	Facto	r 1.10				:	Sds 0.	18	×	Ss	0.17
	Dea	d Load	l Facto	r 1.20	Seism	ic Load Fac	tor	1.00	Sd1 0.	10 2		S1	0.06
	Win	d Load	I Facto	r 0.00	Struct	ure Freque	ncy (f1)	0.31	SA 0.	03 Seis	mic Importance	Factor	1.00
Seg	Pu	Vu	Tu	Mu	Mu	Resultant	phi	phi	phi	phi		Rotation	
Elev (ft)	FY (-) (kips)	FX (-)	MY (-) (ft-kips)	MZ	MX ft-kips)	Moment (ft-kips)	Pn (kips)	Vn (kips)	Tn (ft-kips)	Mn (ft-kips)	Deflect Sway (in) (deg)	Twist (deg)	Stress Ratio
0.00	-57.37	-2.02	0.00	-266.41	0.00	266.41	6411.04	3205.52	14877.2	7449.66	0.00	0.00	0.045
5.00	-55.36	-2.00	0.00	-256.32	0.00	256.32	6318.35	3159.17			0.01	-0.01	0.044
10.00	-53.39 -51.46	-1.98 -1.94	0.00	-246.31 -236.44	0.00	246.31 236.44	6224.09 6128.26	3112.04 3064.13			0.02	-0.02 -0.03	0.044
15.00 20.00	-49.57	-1.94	0.00	-236.44	0.00	236.44	6030.87	3015.43			0.05 0.09	-0.03	0.044
25.00	-47.71	-1.87	0.00	-217.20	0.00	217.20	5931.91	2965.95			0.14	-0.05	0.043
30.00	-45.89	-1.83	0.00	-207.86	0.00	207.86	5831.38	2915.69			0.20	-0.07	0.043
35.00	-44.11	-1.79	0.00	-198.70	0.00	198.70	5715.88	2857.94	11358.6	5687.79	0.28	-0.08	0.043
38.75	-42.79	-1.76	0.00	-191.99	0.00	191.99	5614.19	2807.10			0.34	-0.09	0.043
40.00	-42.02	-1.74	0.00	-189.79	0.00	189.79	5580.30	2790.15			0.36	-0.09	0.043
45.00 50.00	-38.96 -37.44	-1.66 -1.63	0.00	-181.08 -172.78	0.00	181.08 172.78	4741.11 4656.71	2370.56 2328.36			0.46 0.58	-0.10 -0.11	0.048 0.047
55.00	-35.96	-1.59	0.00	-164.65	0.00	164.65	4570.75	2285.30			0.70	-0.13	0.047
60.00	-34.52	-1.56	0.00	-156.68	0.00	156.68	4483.21	2241.61	8027.05		0.85	-0.14	0.047
65.00	-33.10	-1.53	0.00	-148.88	0.00	148.88	4386.28	2193.14	7644.63	3828.00	1.00	-0.16	0.046
70.00	-31.72	-1.50	0.00	-141.24	0.00	141.24	4267.64	2133.82			1.18	-0.17	0.046
75.00	-30.36	-1.48	0.00	-133.73	0.00	133.73	4149.01	2074.50			1.37	-0.19	0.046
78.75 80.00	-29.37 -28.84	-1.46 -1.46	0.00	-128.18 -126.36	0.00 0.00	128.18 126.36	4060.03 4030.37	2030.01 2015.18	6544.34 6448.55		1.52 1.57	-0.20 -0.21	0.046 0.046
83.75	-27.27	-1.40	0.00	-120.89	0.00	120.30	2677.54	1338.77			1.74	-0.21	0.040
85.00	-27.03	-1.44	0.00	-119.09	0.00	119.09	2664.37			2119.33	1.80	-0.22	0.066
90.00	-26.07	-1.45	0.00	-111.87	0.00	111.87	2610.69	1305.34	4022.76	2014.37	2.04	-0.25	0.066
95.00	-25.12	-1.46	0.00	-104.61	0.00	104.61	2555.44	1277.72			2.31	-0.27	0.065
100.00	-24.21	-1.46	0.00	-97.32	0.00	97.32	2498.62	1249.31			2.61	-0.29	0.063
105.00	-23.31	-1.47	0.00	-90.01	0.00	90.01	2440.24	1220.12 1190.15			2.92	-0.32	0.062
110.00 115.00	-19.59 -18.75	-1.46 -1.46	0.00	-82.67 -75.39	0.00 0.00	82.67 75.39	2380.29 2318.78	1159.39			3.27 3.64	-0.34 -0.37	0.060 0.058
119.00	-18.10	-1.46	0.00	-69.56	0.00	69.56	2268.44	1134.22			3.96	-0.39	0.056
120.00	-17.84	-1.46	0.00	-68.10	0.00	68.10	2255.69	1127.85			4.04	-0.39	0.056
123.00	-17.06	-1.46	0.00	-63.72	0.00	63.72	1577.63	788.82			4.29	-0.41	0.075
125.00	-16.79	-1.46	0.00	-60.81	0.00	60.81	1561.09	780.55			4.46	-0.42	0.074
130.00	-16.13	-1.47	0.00	-53.50	0.00	53.50	1518.76	759.38			4.92	-0.45	0.070
135.00 140.00	-15.49 -11.63	-1.47 -1.41	0.00	-46.18 -38.84	0.00 0.00	46.18 38.84	1475.03 1429.92	737.52 714.96		840.64 780.83	5.40 5.92	-0.48 -0.51	0.065 0.058
145.00	-11.10	-1.41	0.00	-30.84	0.00	30.84	1383.42	691.71		722.45	6.46	-0.53	0.058
150.00	-10.60	-1.38	0.00	-24.82	0.00	24.82	1321.23	660.61	1314.97		7.03	-0.56	0.046
155.00	-10.12	-1.35	0.00	-17.93	0.00	17.93	1258.65	629.32			7.63	-0.58	0.038
157.00	-5.21	-0.92	0.00	-15.23	0.00	15.23	1233.62	616.81			7.87	-0.59	0.031
160.00	-4.95	-0.90	0.00	-12.48	0.00	12.48	1196.07	598.03			8.25	-0.60	0.027
161.00	-4.61	-0.86	0.00	-11.58	0.00	11.58	1183.55	591.78			8.37	-0.60	0.026
161.00 165.00	-4.61 -4.34	-0.86 -0.83	0.00	-11.58 -8.14	0.00 0.00	11.58 8.14	858.57 832.45	429.28 416.23			8.37 8.88	-0.60 -0.61	0.035 0.028
170.00	-4.01	-0.83	0.00	-8.14	0.00	3.96	798.56	399.28			9.52	-0.61	0.028
175.00	0.00	-0.75	0.00	0.00	0.00	0.00	758.80	379.40			10.18	-0.63	0.000

Seismic Segment Forces (Factored)										
Struc	ture: CT01915-S-SBA			Cod	de:		EIA/TIA	-222-0	G 1/13/2022	
	lame: South Brooklyn				osure	. .	B			
Heigh										C
Base	. ,				Crest Height: 0.00 Site Class: D - Stiff Soil			Soil		S
		Topogr	onbur 1		uct Cl			301	Decret 22 Tower Engineer	ring Solutions
Gh:	1.1	Topogr	aphy: 1	Sur		ass:	Ш		Page: 22	
Load	I Case: 0.9D + 1.0E								1terations	23
G	ust Response Factor	1.10					Sds	0.18	Ss	0.17
	Dead Load Factor	0.90 S	eismic Load I	actor		1.00	Sd1	0.10	🌠 S1	0.06
	Wind Load Factor	0.00 S f	tructure Freq	uency	(f1)	0.31	SA	0.03	Seismic Importance Factor	1.00
Тор			Wz				Late			
Elev (ft)	Description		(lb)	а	b	с	Fs (Ib			R: 1.50
0.00			0.00	0.00	0.00	0.00		.00		
5.00			1510.7	0.00	0.03	0.02		.32		
10.00 15.00			1479.7 1448.6	0.01	0.05 0.06	0.03	36 42	.68		
20.00			1417.6	0.01	0.00	0.03	44			
25.00			1386.5	0.04	0.07	0.04	45			
30.00			1355.5	0.06	0.07	0.04	45			
35.00			1324.4	0.08	0.07	0.04	45			
38.75 40.00	Bot - Section 2		972.99 606.38	0.09 0.10	0.07 0.07	0.04 0.04		.97 .28		
40.00	Top - Section 1		2389.1	0.10	0.07	0.04	85			
50.00			1099.5	0.15	0.07	0.03		.06		
55.00			1072.4	0.19	0.06	0.02	39	.42		
60.00			1045.2	0.22	0.06	0.02		.12		
65.00 70.00			1018.0 990.89	0.26 0.30	0.05 0.04	0.02		.80 .03		
75.00	Appurtenance(s)		973.73	0.35	0.04	0.01		.70		
78.75	Bot - Section 3		704.96	0.38	0.02	0.01	15			
80.00			400.18	0.39	0.02	0.01		.03		
83.75	Top - Section 2		1183.0	0.43	0.01	0.01		.26		
85.00 90.00			163.74 642.81	0.45 0.50	0.00	0.01 0.01		.68 .86		
95.00			623.41	0.56	-0.02	0.01		.31		
100.00			604.00		-0.06	0.02	-14			
105.00			584.59	0.68	-0.08	0.03	-18			
110.00	Appurtenance(s)		2943.1	0.75	-0.10	0.04	-108			
115.00 119.00	Bot - Section 4		545.78 422.65	0.82 0.87	-0.11 -0.12	0.06 0.08	-20 -15			
120.00			188.22	0.89	-0.12	0.08		.64		
123.00	Top - Section 3		556.27	0.93	-0.12	0.10	-17	.76		
125.00			163.40	0.96	-0.12	0.11		.74		
130.00			397.64	1.04	-0.10	0.15		.63		
135.00 140.00	Appurtenance(s)		382.12 3068.2	1.12 1.21	-0.05 0.01	0.20 0.26		.26 .17		
145.00	Appultonanoo(o)		351.07	1.30	0.12	0.33		.89		
150.00			335.54	1.39	0.26	0.42		.38		
155.00			320.02	1.48	0.46	0.52		.27		
157.00	Appurtenance(s)		4054.3	1.52	0.55	0.57	381			
160.00 161.00	Top - Section 4		180.83 263.21	1.58 1.60	0.72 0.78	0.64 0.67		.45 .51		
165.00			172.96	1.68	1.05	0.78		.56		
170.00			205.72	1.78	1.46	0.95		.33		
175.00	Appurtenance(s)		3275.4	1.89	1.98	1.14	749			
		Totals:	42,825.4				1,78	7.6	Total Wind: 32,56	1.3

Seismic Base Shear is Less Than 50% of Wind Force - An Analysis is NOT Required

Calculated Forces														
Struc	ture:	CT019	915-S-S	BA			Code:	F	A/TI	A-222	-G	1/13/2022		
	lame:		Brookly				Exposure					1, 10, 2022	((卅))	
Heigh		175.00	-	,			Crest Hei		00					C
-	Elev:	0.000					Site Class	-		ff Soil				S
	Elev:		(11)	T					- 30	1 301		Dame: 00	Tower Engineer	ring Solutions
Gh:		1.1		Торс	ography	/: 1	Struct Cla					Page: 23		
Load	Case:	0.9D	+ 1.0E									¥) Ite	rations	23
G	ust Re	sponse	Facto	r 1.10					Sds	0.1	8	×	Ss	0.17
	Dea	d Load	l Facto	r 0.90	Seism	ic Load Fa	ctor	1.00	Sd1	0.1	0 2		S1	0.06
	Win	d Load	I Facto	r 0.00	Struct	ure Freque	ncy (f1)	0.31	SA	0.0	3 Seis	mic Importance	Factor	1.00
Seg	Pu	Vu	Tu	Mu	Mu	Resultant	phi	phi		phi	phi	Total Rotation		
Elev	FY (-)	FX (-)	MY (-)	MZ	MX	Moment	Pn	Vn		Tn	Mn	Deflect Sway	Twist	Stress
(ft)	(kips)		(ft-kips)		ft-kips)	(ft-kips)	(kips) 6411.04	(kips)		-kips)	(ft-kips)	(in) (deg)	(deg)	Ratio
0.00 5.00	-43.03 -41.52	-2.02	0.00	-262.47 -252.39	0.00	262.47 252.39	6318.35			877.2	7449.66 7191.28	0.00 0.01	0.00 -0.01	0.042
10.00	-40.04	-1.97	0.00	-242.39	0.00	242.39	6224.09			8850.5	6935.58	0.02	-0.02	0.042
15.00	-38.60	-1.93	0.00	-232.55	0.00	232.55	6128.26			345.4	6682.66	0.05	-0.03	0.041
20.00	-37.17	-1.90	0.00	-222.88	0.00	222.88	6030.87	3015.4		2846.2	6432.65	0.09	-0.04	0.041
25.00	-35.78	-1.86	0.00	-213.41	0.00	213.41	5931.91	2965.9		2352.9	6185.64	0.14	-0.05	0.041
30.00	-34.42	-1.82	0.00	-204.13	0.00	204.13	5831.38			1865.8	5941.76	0.20	-0.06	0.040
35.00 38.75	-33.08 -32.09	-1.77 -1.74	0.00	-195.05 -188.40	0.00	195.05 188.40	5715.88 5614.19			1358.6)956.1	5687.79 5486.19	0.27 0.33	-0.08 -0.08	0.040 0.040
40.00	-31.51	-1.74	0.00	-186.22	0.00	186.22	5580.30			823.5	5419.80	0.36	-0.09	0.040
45.00	-29.22	-1.64	0.00	-177.60	0.00	177.60	4741.11			66.15	4589.89	0.46	-0.10	0.045
50.00	-28.08	-1.61	0.00	-169.40	0.00	169.40	4656.71	2328.3	6 87	81.22	4397.14	0.57	-0.11	0.045
55.00	-26.97	-1.57	0.00	-161.37	0.00	161.37	4570.75			01.44	4206.97	0.69	-0.13	0.044
60.00	-25.89	-1.54	0.00	-153.52	0.00	153.52	4483.21	2241.6		27.05	4019.49	0.83	-0.14	0.044
65.00 70.00	-24.83 -23.79	-1.50 -1.48	0.00	-145.84 -138.32	0.00 0.00	145.84 138.32	4386.28 4267.64			644.63 234.64	3828.00 3622.70	0.99 1.16	-0.16 -0.17	0.044 0.044
75.00	-22.77	-1.45	0.00	-130.94	0.00	130.94	4149.01	2074.5		335.94	3423.05	1.34	-0.19	0.044
78.75	-22.02	-1.44	0.00	-125.50	0.00	125.50	4060.03			544.34	3277.03	1.49	-0.20	0.044
80.00	-21.63	-1.43	0.00	-123.70	0.00	123.70	4030.37			48.55	3229.07	1.55	-0.20	0.044
83.75	-20.45	-1.41	0.00	-118.34	0.00	118.34	2677.54	1338.7		285.17	2145.77	1.71	-0.21	0.063
85.00	-20.27	-1.42	0.00	-116.58	0.00	116.58	2664.37				2119.33	1.77	-0.22	0.063
90.00 95.00	-19.55 -18.84	-1.42 -1.42	0.00	-109.50 -102.40	0.00 0.00	109.50 102.40	2610.69 2555.44			22.76 315.94	2014.37 1910.80	2.01 2.27	-0.24 -0.26	0.062 0.061
100.00	-18.15	-1.43	0.00	-95.27	0.00	95.27	2498.62			612.11	1808.74	2.56	-0.29	0.060
105.00	-17.48	-1.43	0.00	-88.13	0.00	88.13	2440.24			11.50	1708.29	2.87	-0.31	0.059
110.00	-14.69	-1.42	0.00	-80.96	0.00	80.96	2380.29	1190.1	5 32	214.34	1609.56	3.21	-0.33	0.056
115.00	-14.06	-1.43	0.00	-73.85	0.00	73.85	2318.78			20.85	1512.67	3.57	-0.36	0.055
119.00	-13.57	-1.43	0.00	-68.15	0.00	68.15	2268.44 2255.69			868.85 831.25	1436.56	3.88	-0.38	0.053
120.00 123.00	-13.38 -12.79	-1.43 -1.43	0.00	-66.72 -62.44	0.00 0.00	66.72 62.44	1577.63			975.86	1417.73 989.40	3.96 4.21	-0.38 -0.40	0.053 0.071
125.00	-12.59	-1.43	0.00	-59.59	0.00	59.59	1561.09			25.40	964.13	4.38	-0.41	0.070
130.00	-12.10	-1.43	0.00	-52.45	0.00	52.45	1518.76			300.86	901.77	4.82	-0.44	0.066
135.00	-11.62	-1.43	0.00	-45.30	0.00	45.30	1475.03	737.5	2 16	678.77	840.64	5.30	-0.47	0.062
140.00	-8.72	-1.38	0.00	-38.14	0.00	38.14	1429.92			59.34	780.83	5.81	-0.50	0.055
145.00	-8.33	-1.37	0.00	-31.24	0.00	31.24	1383.42			42.75	722.45	6.34	-0.52	0.049
150.00 155.00	-7.95 -7.58	-1.35 -1.32	0.00	-24.40 -17.65	0.00 0.00	24.40 17.65	1321.23 1258.65			814.97 192.75	658.46 597.26	6.90 7.48	-0.55 -0.57	0.043 0.036
155.00	-7.56	-0.90	0.00	-17.05	0.00	17.05	1238.63			45.53	573.62	7.40	-0.57	0.030
160.00	-3.71	-0.88	0.00	-12.29	0.00	12.29	1196.07			76.49	539.05	8.09	-0.58	0.026
161.00	-3.46	-0.85	0.00	-11.41	0.00	11.41	1183.55			53.96	527.76	8.21	-0.59	0.025
161.00	-3.46	-0.85	0.00	-11.41	0.00	11.41	858.57			68.96	385.05	8.21	-0.59	0.034
165.00	-3.25	-0.82	0.00	-8.02	0.00	8.02	832.45			13.85	357.46	8.71	-0.60	0.026
170.00 175.00	-3.00 0.00	-0.78 -0.75	0.00	-3.91 0.00	0.00 0.00	3.91 0.00	798.56 758.80			646.76 578.42	323.86 289.64	9.34 9.99	-0.61 -0.62	0.016 0.000
175.00	0.00	-0.75	0.00	0.00	0.00	0.00	100.00	519.4	5 5	0.42	∠0 9.04	9.99	-0.02	0.000

	Wind Loading - Shaft									
Structure:	CT01915-S-SBA			Code:	EIA/TIA-222-G	1/13/2022	44.000.53			
Site Name:	South Brooklyn			Exposure:	В		(«₩»)			
Height:	175.00 (ft)			Crest Height:	0.00		EC			
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil					
Gh:	1.1	Topography:	1	Struct Class:	Ш	Page: 24	Tower Engineering Solutions			
Load Case	Load Case: 1.0D + 1.0W 60 mph Wind 14 Iterations 24									

Load Case: 1.0D + 1.0W 60 mph Wind Dead Load Factor 1.00

Wind Load Factor 1.00

*	Iterations
z ×	

105.00 110.00 Appurtenance(115.00 119.00 Bot - Section 4 120.00 123.00 Top - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 155.00 157.00 Appurtenance(160.00	cription	Kzt	Kz	qz (psf)	qzGh (psf)	C (mph-ft)	Cf	lce Thick (in)	Tributary (ft)	Aa (sf)	CfAa (sf)	Wind Force X (Ib)	Dead Load Ice (Ib)	Tot Dead Load (Ib)
10.00 15.00 20.00 25.00 30.00 35.00 38.75 Bot - Section 2 40.00 45.00 Top - Section 1 50.00 55.00 60.00 65.00 70.00 75.00 Appurtenance(78.75 Bot - Section 3 80.00 83.75 Top - Section 2 85.00 90.00 95.00 100.00 105.00 110.00 Appurtenance(115.00 119.00 Bot - Section 4 123.00 Top - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 150.01 150.01 150.01 150.01 150.01 150.00 155.00 155.00 157.00 Appurtenance(160.00		1.00	0.70	6.129	6.74	242.25	0.650	0.000	0.00	0.000	0.00	0.0	0.0	0.0
15.00 20.00 25.00 30.00 35.00 38.75 Bot - Section 2 40.00 45.00 Top - Section 1 50.00 55.00 60.00 65.00 70.00 75.00 Appurtenance(78.75 Bot - Section 3 80.00 83.75 Top - Section 2 85.00 90.00 95.00 100.00 105.00 110.00 Appurtenance(115.00 123.00 Top - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 150.01 150.01 150.01 150.01 150.01 150.01 150.01 150.01 150.00 155.00 157.00 Appurtenance(160.00		1.00	0.70	6.129	6.74	237.37	0.650	0.000	5.00	23.886	15.53	104.7	0.0	1510.8
20.00 25.00 30.00 35.00 38.75 Bot - Section 2 40.00 45.00 Top - Section 1 50.00 55.00 60.00 65.00 70.00 75.00 Appurtenance(78.75 Bot - Section 3 80.00 83.75 Top - Section 2 85.00 90.00 95.00 100.00 105.00 110.00 Appurtenance(115.00 119.00 Bot - Section 4 123.00 Top - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 150.01 150.01 150.01 150.01 150.01 150.00 155.00 157.00 Appurtenance(160.00		1.00	0.70	6.129	6.74	232.48	0.650	0.000	5.00	23.399	15.21	102.5	0.0	1479.7
25.00 30.00 35.00 38.75 Bot - Section 2 40.00 45.00 Top - Section 1 50.00 55.00 60.00 65.00 70.00 75.00 Appurtenance(78.75 Bot - Section 3 80.00 83.75 Top - Section 2 85.00 90.00 95.00 100.00 105.00 110.00 Appurtenance(115.00 119.00 Bot - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 150.01 150.01 150.00 155.00 155.00 157.00 Appurtenance(150.01 150.01 150.01 150.01 150.01 150.01 150.00 155.00 157.00 Appurtenance(160.00		1.00	0.70	6.129	6.74	227.60	0.650	0.000	5.00	22.913	14.89	100.4	0.0	1448.7
30.00 35.00 38.75 Bot - Section 2 40.00 45.00 Top - Section 1 50.00 55.00 60.00 65.00 70.00 75.00 Appurtenance(78.75 Bot - Section 3 80.00 83.75 Top - Section 2 85.00 90.00 95.00 100.00 105.00 110.00 Appurtenance(115.00 119.00 Bot - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 150.00 155.00 155.00 155.00 157.00 Appurtenance(160.00		1.00	0.70	6.129	6.74	222.71	0.650	0.000	5.00	22.426	14.58	98.3	0.0	1417.6
35.00 38.75 Bot - Section 2 40.00 45.00 Top - Section 1 50.00 55.00 60.00 65.00 70.00 75.00 Appurtenance(78.75 Bot - Section 3 80.00 83.75 Top - Section 2 85.00 90.00 95.00 100.00 105.00 110.00 Appurtenance(115.00 119.00 Bot - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 150.00 155.00 155.00 157.00 Appurtenance(150.01 150.01 150.01 150.01 150.01 150.00 157.00 Appurtenance(160.00		1.00	0.70	6.129	6.74	217.83	0.650	0.000	5.00	21.940	14.26	96.1	0.0	1386.6
38.75 Bot - Section 2 40.00 45.00 Top - Section 1 50.00 55.00 60.00 65.00 70.00 75.00 Appurtenance(78.75 Bot - Section 3 80.00 83.75 Top - Section 2 85.00 90.00 95.00 100.00 105.00 110.00 Appurtenance(115.00 123.00 Top - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 150.00 155.00 155.00 157.00 Appurtenance(160.00		1.00	0.70	6.134	6.75	213.03	0.650	0.000	5.00	21.453	13.94	94.1	0.0	1355.5
40.00 45.00 Top - Section 1 50.00 55.00 60.00 65.00 70.00 75.00 Appurtenance(78.75 Bot - Section 3 80.00 83.75 Top - Section 2 85.00 90.00 95.00 100.00 105.00 110.00 Appurtenance(115.00 119.00 Bot - Section 4 123.00 Top - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 150.00 155.00 155.00 157.00 Appurtenance(160.00		1.00	0.73	6.410	7.05	212.78	0.650	0.000	5.00	20.966	13.63	96.1	0.0	1324.5
45.00 Top - Section 1 50.00 55.00 60.00 65.00 70.00 75.00 Appurtenance(78.75 Bot - Section 3 80.00 83.75 Top - Section 2 85.00 90.00	ion 2	1.00	0.75	6.599	7.26	212.10	0.650	0.000	3.75	15.406	10.01	72.7	0.0	973.0
50.00 55.00 60.00 65.00 70.00 75.00 Appurtenance(78.75 Bot - Section 3 80.00 83.75 Top - Section 2 85.00 90.00 95.00 100.00 105.00 110.00 Appurtenance(115.00 123.00 Top - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 150.00 155.00 157.00 Appurtenance(160.00		1.00	0.76	6.659	7.33	211.79	0.650	0.000	1.25	5.167	3.36	24.6	0.0	606.4
55.00 60.00 65.00 70.00 75.00 Appurtenance(78.75 Bot - Section 3 80.00 83.75 Top - Section 2 85.00 90.00 95.00 100.00 105.00 110.00 Appurtenance(115.00 123.00 Top - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 150.00 155.00 157.00 Appurtenance(160.00	tion 1	1.00	0.79	6.887	7.58	210.20	0.650	0.000		20.364	13.24	100.3		2389.1
60.00 65.00 70.00 75.00 Appurtenance(78.75 Bot - Section 3 80.00 83.75 Top - Section 2 85.00 90.00 95.00 100.00 105.00 110.00 Appurtenance(115.00 119.00 Bot - Section 4 120.00 123.00 Top - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 150.00 155.00 157.00 Appurtenance(160.00		1.00	0.81	7.098	7.81	212.13	0.650	0.000		19.877	12.92	100.9		1099.6
65.00 70.00 75.00 Appurtenance(78.75 Bot - Section 3 80.00 83.75 Top - Section 2 85.00 90.00 95.00 100.00 105.00 110.00 Appurtenance(115.00 119.00 Bot - Section 4 120.00 123.00 Top - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 155.00 157.00 Appurtenance(160.00		1.00	0.83	7.294	8.02	209.71	0.650	0.000		19.390	12.60	101.1	0.0	1072.4
70.00 75.00 Appurtenance(78.75 Bot - Section 3 80.00 83.75 Top - Section 2 85.00 90.00 95.00 100.00 105.00 110.00 Appurtenance(115.00 119.00 Bot - Section 4 120.00 123.00 Top - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 155.00 157.00 Appurtenance(160.00		1.00	0.85	7.477	8.22	206.94	0.650	0.000		18.904	12.29	101.1	0.0	1045.2
75.00 Appurtenance(78.75 Bot - Section 3 80.00 83.75 Top - Section 2 85.00 90.00 95.00 100.00 105.00 110.00 Appurtenance(115.00 119.00 Bot - Section 4 120.00 123.00 Top - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 155.00 157.00 Appurtenance(160.00		1.00	0.87	7.650	8.42	203.86	0.650	0.000		18.417	11.97	100.7		1018.1
78.75 Bot - Section 3 80.00 83.75 Top - Section 2 85.00 90.00 95.00 100.00 105.00 110.00 Appurtenance(115.00 119.00 Bot - Section 4 120.00 123.00 Top - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 155.00 157.00 Appurtenance(160.00		1.00	0.89	7.814	8.60	200.52	0.650	0.000	5.00	17.931	11.65	100.2		990.9
80.00 83.75 Top - Section 2 85.00 90.00 95.00 100.00 110.00 Appurtenance(115.00 119.00 Bot - Section 4 120.00 123.00 Top - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 155.00 157.00 Appurtenance(160.00	ance(s)	1.00	0.91	7.969	8.77	196.93	0.650	0.000	5.00	17.444	11.34	99.4		963.7
83.75 Top - Section 2 85.00 90.00 95.00 100.00 105.00 110.00 Appurtenance(115.00 123.00 Bot - Section 4 120.00 123.00 Top - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 155.00 157.00 Appurtenance(160.00	ion 3	1.00	0.92	8.081	8.89	194.10	0.650	0.000	3.75	12.764	8.30	73.8		705.0
85.00 90.00 95.00 100.00 110.00 Appurtenance(115.00 119.00 Bot - Section 4 120.00 123.00 Top - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 150.00 155.00 157.00 Appurtenance(160.00		1.00	0.93	8.118	8.93	193.13	0.650	0.000	1.25	4.260	2.77	24.7	0.0	400.2
90.00 95.00 100.00 110.00 Appurtenance(115.00 119.00 Bot - Section 4 120.00 123.00 Top - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 155.00 157.00 Appurtenance(160.00	tion 2	1.00	0.94	8.225	9.05	190.16	0.650	0.000	3.75	12.597	8.19	74.1	0.0	1183.1
95.00 100.00 105.00 110.00 Appurtenance(115.00 119.00 Bot - Section 4 120.00 123.00 Top - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 155.00 157.00 Appurtenance(160.00		1.00	0.94	8.260	9.09	192.22	0.650	0.000	1.25		2.69	24.4		163.7
100.00 105.00 110.00 Appurtenance(115.00 119.00 Bot - Section 4 120.00 123.00 Top - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 155.00 157.00 Appurtenance(160.00		1.00	0.96	8.396	9.24	188.08	0.650	0.000		16.249	10.56	97.5	0.0	642.8
105.00 110.00 Appurtenance(115.00 119.00 Bot - Section 4 120.00 123.00 Top - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 150.00 155.00 157.00 Appurtenance(160.00		1.00	0.97	8.526	9.38	183.78	0.650	0.000		15.762	10.25	96.1	0.0	623.4
110.00 Appurtenance(115.00 119.00 Bot - Section 4 120.00 123.00 Top - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 150.00 155.00 157.00 Appurtenance(160.00		1.00	0.99	8.652	9.52	179.33	0.650	0.000		15.276	9.93	94.5		604.0
115.00 119.00 Bot - Section 4 120.00 123.00 Top - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 150.00 155.00 157.00 Appurtenance(160.00		1.00	1.00	8.774	9.65	174.74	0.650	0.000		14.789	9.61	92.8		584.6
119.00 Bot - Section 4 120.00 123.00 Top - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 150.00 155.00 157.00 Appurtenance(160.00	ance(s)	1.00	1.02	8.891	9.78	170.02	0.650	0.000		14.303	9.30	90.9		565.2
120.00 123.00 Top - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 150.00 155.00 157.00 Appurtenance(160.00		1.00	1.03	9.005	9.91	165.18	0.650	0.000		13.816	8.98	89.0		545.8
123.00 Top - Section 3 125.00 130.00 135.00 140.00 Appurtenance(145.00 150.00 155.00 157.00 Appurtenance(160.00	ion 4	1.00	1.04	9.093	10.00	161.23	0.650	0.000		10.703	6.96	69.6		422.7
125.00 130.00 135.00 140.00 Appurtenance(145.00 150.00 155.00 157.00 Appurtenance(160.00		1.00	1.04	9.115	10.03	160.23	0.650	0.000	1.00	2.669	1.74	17.4		188.2
130.00 135.00 140.00 Appurtenance(145.00 150.00 155.00 157.00 Appurtenance(160.00	tion 3	1.00	1.05	9.179	10.10	157.21	0.650	0.000	3.00	7.891	5.13	51.8		556.3
135.00 140.00 Appurtenance(145.00 150.00 155.00 157.00 Appurtenance(160.00		1.00	1.05	9.222	10.14	157.78	0.650	0.000	2.00	5.163	3.36	34.0		163.4
140.00 Appurtenance(145.00 150.00 155.00 157.00 Appurtenance(160.00		1.00	1.07	9.326	10.26	152.64	0.650	0.000		12.568	8.17	83.8		397.6
145.00 150.00 155.00 157.00 Appurtenance(160.00		1.00	1.08	9.427	10.37	147.41	0.650	0.000		12.081	7.85	81.4		382.1
150.00 155.00 157.00 Appurtenance(160.00	ance(s)	1.00	1.09	9.525	10.48	142.08	0.650	0.000		11.595	7.54	79.0		366.6
155.00 157.00 Appurtenance(160.00		1.00	1.10	9.621	10.58	136.68	0.650	0.000		11.108	7.22	76.4		351.1
157.00 Appurtenance(160.00		1.00	1.11	9.715	10.69	131.19	0.650	0.000		10.622	6.90	73.8		335.5
160.00		1.00	1.12	9.806	10.79	125.63	0.650	0.000		10.135	6.59	71.1	0.0	320.0
	ance(s)	1.00		9.842	10.83	123.38		0.000	2.00		2.55	27.6		123.7
161.00 Top - Section 4		1.00	1.13	9.896	10.89	119.99		0.000	3.00	5.731	3.73	40.5		180.8
	tion 4	1.00	1.13	9.913	10.90	118.85		0.000	1.00	1.871	1.22	13.3		59.0
165.00		1.00		9.983	10.98	114.28		0.000	4.00	7.291	4.74	52.0		173.0
170.00		1.00		10.069	11.08	108.51		0.000	5.00		5.64	62.5		205.7
175.00 Appurtenance(ance(s)	1.00	1.16	10.152	11.17	102.67	0.650	0.000	5.00	8.189	5.32	59.4	0.0	194.1

Discrete Appurtenance Forces

Structure:	CT01915-S-SBA			Code:	EIA/TIA-222-G	1/13/2022	44.000.53
Site Name:	South Brooklyn			Exposure:	В		(«Ħ»)
Height:	175.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		
Gh:	1.1	Topography:	1	Struct Class:	П	Page: 25	Tower Engineering Solutions

Load Case: 1.0D + 1.0W 60 mph Wind

Dead Load Factor1.00Wind Load Factor1.00

No.	Elev (ft)	Description	Qty	qz (psf)	qzGh (psf)	Orient Factor x Ka	Ka	Total CaAa (sf)	Dead Load (Ib)	Horiz Ecc (ft)	Vert Ecc (ft)	Wind FX (lb)	Mom Y (lb-ft)	Mom Z (Ib-ft)
1	175.00	JMA Wireless	6	10.185	11.204	0.65	0.75	38.64	276.00	0.000	2.000	432.93	0.00	865.86
2	175.00	6' Lightning rod	1	10.152	11.168	1.00	1.00	0.38	6.50	0.000	0.000	4.24	0.00	0.00
3	175.00	Low Profile Platform-flat	1	10.152	11.168	1.00	1.00	37.00	1200.00	0.000	0.000	413.20	0.00	0.00
4	175.00	Samsung MT6407-77A	3	10.185	11.204	0.52	0.75	7.39	238.20	0.000	2.000	82.76	0.00	165.52
5	175.00	Antel BXA-70080-6CF	3	10.185	11.204	0.65	0.75	11.28	54.00	0.000	2.000	126.33	0.00	252.65
6	175.00	MS-H1242 (Heavy Collar	1	10.152	11.168	1.00	1.00	2.50	150.60	0.000	0.000	27.92	0.00	0.00
7	175.00	Samsung B2/B66A	3	10.185	11.204	0.50	0.75	2.82	253.20	0.000	2.000	31.58	0.00	63.17
8	175.00	Samsung B5/B13	3	10.185	11.204	0.50	0.75	2.82	210.90	0.000	2.000	31.58	0.00	63.17
9	175.00	RVZDC-6627-PF-48	1	10.185	11.204	0.75	0.75	3.04	32.00	0.000	2.000	34.12	0.00	68.23
10	175.00	MS-KI22-5 (Kickers w/o	1	10.152	11.168	1.00	1.00	5.33	146.00	0.000	0.000	59.52	0.00	0.00
11	175.00	MS-HRECP	1	10.185	11.204	1.00	1.00	12.00	514.00	0.000	2.000	134.45	0.00	268.89
12	161.00	Bridge Stiffener	1	9.913	10.905	1.00	1.00	2.89	204.17	0.000	0.000	31.51	0.00	0.00
13	157.00	Platform w/ Handrail +	1	9.842	10.827	1.00	1.00	54.00	2800.00	0.000	0.000	584.63	0.00	0.00
14	157.00	ALU - TD-RRH8x20-25 -	3	9.842	10.827	0.50	0.75	6.11	210.00	0.000	0.000	66.10	0.00	0.00
15	157.00	ALU - 800 MHz - RRU	6	9.842	10.827	0.50	0.75	7.51	318.00	0.000	0.000	81.28	0.00	0.00
16	157.00	ALU - 1900 MHz - RRU	3	9.842	10.827	0.50	0.75	4.18	180.00	0.000	0.000	45.21	0.00	0.00
17	157.00	APXVTM14-C-I20	3	9.842	10.827	0.58	0.75	10.98	168.60	0.000	0.000	118.92	0.00	0.00
18	157.00	NNVV-65B-R4	3	9.842	10.827	0.55	0.75	20.43	254.10	0.000	0.000	221.18	0.00	0.00
19	140.00	KRY 112 489/2	3	9.525	10.478	0.50	0.75	1.01	46.20	0.000	0.000	10.58	0.00	0.00
20	140.00	APXV18-206516S-C-A20	3	9.525	10.478	0.55	0.75	5.93	56.10	0.000	0.000	62.13	0.00	0.00
21	140.00	APXVAARR24_43-U-NA2	3	9.525	10.478	0.52	0.75	31.88	384.00	0.000	0.000	334.01	0.00	0.00
22	140.00	4449	3	9.525	10.478	0.50	0.75	2.49	210.00	0.000	0.000	26.06	0.00	0.00
23	140.00	MT-195-12	1	9.525	10.478	1.00	1.00	40.00	2000.00	0.000	0.000	419.11	0.00	0.00
24	140.00	Kathrein 782 11056	3	9.525	10.478	0.50	0.75	0.42	5.40	0.000	0.000	4.42	0.00	0.00
25	110.00	Raycap	1	8.891	9.780	1.00	1.00	2.01	21.90	0.000	0.000	19.66	0.00	0.00
26	110.00	Fujitsu TA08025-B604	3	8.891	9.780	0.50	0.75	2.95	191.70	0.000	0.000	28.90	0.00	0.00
27	110.00	Fujitsu TA08025-B605	3	8.891	9.780	0.50	0.75	2.95	225.00	0.000	0.000	28.90	0.00	0.00
28	110.00	MC-PK8-DSH	1	8.891	9.780	1.00	1.00	37.59	1727.00	0.000	0.000	367.63	0.00	0.00
29	110.00	Commscope	3	8.891	9.780	0.55	0.75	20.43	212.40	0.000	0.000	199.80	0.00	0.00
30	75.00	GPS	1	7.969	8.766	1.00	1.00	1.00	10.00	0.000	0.000	8.77	0.00	0.00
							Totals	:	12,305.97			4,037.43		

	Total Applied Force Summary											
Structure: CT01915-S-SBA Code: EIA/TIA-222-G 1/13/2	022											
Site Name: South Brooklyn Exposure: B	(((中)))											
Height: 175.00 (ft) Crest Height: 0.00	EC											
Base Elev: 0.000 (ft) Site Class: D - Stiff Soil												
Gh: 1.1 Topography: 1 Struct Class: II Page	: 26 Tower Engineering Solutions											

Load Case: 1.0D + 1.0W 60 mph Wind

Dead Load Factor Wind Load Factor

tor 1.00 tor 1.00

Elev		Lateral FX (-)	Axial FY (-)	Torsion MY	Moment MZ
(ft)	Description	(lb)	(lb)	(lb-ft)	(lb-ft)
0.00		0.00	0.00	0.00	0.00
5.00		104.67	1671.73	0.00	0.00
10.00		102.53	1640.68	0.00	0.00
15.00		100.40	1609.63	0.00	0.00
20.00		98.27	1578.58	0.00	0.00
25.00		96.14	1547.53	0.00	0.00
30.00		94.09	1516.48	0.00	0.00
35.00		96.09	1485.43	0.00	0.00
38.75		72.69	1093.70	0.00	0.00
40.00		24.60	646.61	0.00	0.00
45.00		100.28	2550.07	0.00	0.00
50.00		100.87	1260.51	0.00	0.00
55.00		101.12	1233.35	0.00	0.00
60.00		101.06	1206.18	0.00	0.00
65.00		100.74	1179.01	0.00	0.00
70.00		100.18	1151.84	0.00	0.00
75.00	(1) attachments	108.17	1134.67	0.00	0.00
78.75		73.75	825.07	0.00	0.00
80.00		24.73	440.22	0.00	0.00
83.75		74.08	1303.18	0.00	0.00
85.00		24.44	203.77	0.00	0.00
90.00		97.54	802.96	0.00	0.00
95.00		96.09	783.55	0.00	0.00
100.00		90.09	764.14	0.00	0.00
105.00		94.30	744.74	0.00	0.00
	(11) attachmenta				
110.00	(11) attachments	735.81	3103.33	0.00	0.00
115.00		88.95	696.83	0.00	0.00
119.00		69.58	543.49	0.00	0.00
120.00		17.40	218.43	0.00	0.00
123.00		51.79	646.90	0.00	0.00
125.00		34.05	223.82	0.00	0.00
130.00		83.80	548.69	0.00	0.00
135.00		81.43	533.16	0.00	0.00
140.00	(16) attachments	935.28	3219.34	0.00	0.00
145.00		76.42	435.10	0.00	0.00
150.00		73.78	419.58	0.00	0.00
155.00		71.06	404.05	0.00	0.00
157.00	(19) attachments	1144.89	4087.97	0.00	0.00
160.00		40.55	223.33	0.00	0.00
161.00	(1) attachments	44.78	277.37	0.00	0.00
165.00		52.04	229.62	0.00	0.00
170.00		62.46	276.55	0.00	0.00
175.00	(24) attachments	1438.07	3346.31	0.00	1747.49
	Totals:	7,181.94	47,807.54	0.00	1,747.49

						Calc	ulated Fo	orces						
Struc	ture:	CT019	915-S-S	SBA			Code:	EIA	VTIA-222	2-G	1/1	3/2022	1	
Site N	Name:	South	Brookh	vn			Exposure	: В					((甲))	
Heigh		175.00					Crest Heig		0					C
-	Elev:	0.000					Site Class	•	Stiff Soil	r.				S
	Liev.		(11)	T					500		D	07	Tower Enginee	ring Solutions
Gh:		1.1		10	pography	: 1	Struct Cla	ISS: II			Pa	age: 27	Ũ	
Load			+ 1.0W I Facto	' 60 mph r 1.0							ľ	lte	erations	24
	Win	d Load	l Facto	r 1.0	0					2				
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)		Rotation Twist (deg)	Stress Ratio
0.00	-47.81	-7.20	0.00	-916.87	0.00	916.87	6411.04	3205.52	14877.2	7449.66	0.00	0.000	0.000	0.131
5.00	-46.13	-7.12	0.00	-880.89	0.00	880.89	6318.35	3159.17	14361.2	7191.28	0.02	-0.035	0.000	0.130
10.00	-44.48	-7.04	0.00	-845.29	0.00	845.29	6224.09	3112.04	13850.5	6935.58	0.08	-0.071	0.000	0.129
15.00 20.00	-42.87 -41.29	-6.97 -6.89	0.00	-810.07	0.00	810.07 775.23	6128.26 6030.87	3064.13 3015.43	13345.4 12846.2	6682.66 6432.65	0.17	-0.108 -0.146	0.000 0.000	0.128 0.127
25.00	-39.74	-6.82	0.00	-740.76	0.00	740.76	5931.91	2965.95	12352.9	6185.64	0.48	-0.140	0.000	0.127
30.00	-38.21	-6.75	0.00	-706.66	0.00	706.66	5831.38	2915.69	11865.8	5941.76	0.69	-0.223	0.000	0.125
35.00	-36.73	-6.67	0.00	-672.92	0.00	672.92	5715.88	2857.94	11358.6	5687.79	0.95	-0.263	0.000	0.125
38.75	-35.63	-6.60	0.00	-647.91	0.00	647.91	5614.19	2807.10	10956.1	5486.19	1.17	-0.294	0.000	0.124
40.00	-34.98	-6.59	0.00	-639.66	0.00	639.66	5580.30	2790.15	10823.5	5419.80	1.24	-0.305	0.000	0.124
45.00 50.00	-32.43 -31.16	-6.50 -6.42	0.00	-606.71 -574.21	0.00 0.00	606.71 574.21	4741.11 4656.71	2370.56 2328.36	9166.15 8781.22	4589.89 4397.14	1.59 1.97	-0.347 -0.389	0.000 0.000	0.139 0.137
55.00	-29.92	-6.33	0.00	-574.21	0.00	542.13	4656.71	2328.30	8401.44	4397.14	2.40	-0.389	0.000	0.137
60.00	-28.71	-6.24	0.00	-542.10	0.00	510.49	4483.21	2241.61	8027.05	4019.49	2.89	-0.483	0.000	0.133
65.00	-27.53	-6.16	0.00	-479.27	0.00	479.27	4386.28	2193.14	7644.63	3828.00	3.42	-0.531	0.000	0.131
70.00	-26.37	-6.07	0.00	-448.50	0.00	448.50	4267.64	2133.82	7234.64	3622.70	4.00	-0.580	0.000	0.130
75.00	-25.24	-5.97	0.00	-418.16	0.00	418.16	4149.01	2074.50	6835.94	3423.05	4.63	-0.630	0.000	0.128
78.75	-24.41	-5.89	0.00	-395.79	0.00	395.79	4060.03	2030.01	6544.34	3277.03	5.14	-0.668	0.000	0.127
80.00	-23.97	-5.87	0.00	-388.43	0.00	388.43	4030.37	2015.18	6448.55	3229.07	5.32	-0.681	0.000	0.126
83.75 85.00	-22.66 -22.45	-5.79 -5.78	0.00	-366.40 -359.16	0.00	366.40 359.16	2677.54 2664.37	1338.77 1332.18	4285.17 4232.36	2145.77 2119.33	5.87 6.06	-0.719 -0.733	0.000 0.000	0.179 0.178
90.00	-22.45	-5.70	0.00	-330.24	0.00	330.24	2610.69	1305.34	4232.30	2014.37	6.86	-0.733	0.000	0.178
95.00	-20.86	-5.62		-301.74	0.00	301.74	2555.44		3815.94		7.74	-0.868	0.000	0.166
100.00	-20.09	-5.54	0.00	-273.65	0.00	273.65	2498.62	1249.31	3612.11	1808.74	8.69	-0.936	0.000	0.159
105.00	-19.34	-5.45	0.00	-245.97	0.00	245.97	2440.24	1220.12	3411.50	1708.29	9.70	-1.004	0.000	0.152
110.00	-16.24	-4.68	0.00	-218.71	0.00	218.71	2380.29	1190.15		1609.56	10.79	-1.070	0.000	0.143
115.00	-15.54	-4.59	0.00	-195.31	0.00	195.31	2318.78		3020.85	1512.67	11.95		0.000	0.136
119.00	-15.00	-4.52	0.00	-176.94	0.00	176.94	2268.44		2868.85	1436.56	12.92	-1.189	0.000	0.130
120.00 123.00	-14.78 -14.13	-4.51 -4.45	0.00 0.00	-172.42 -158.90	0.00	172.42 158.90	2255.69 1577.63		2831.25 1975.86	1417.73 989.40	13.17 13.94	-1.202 -1.242	0.000 0.000	0.128 0.170
125.00	-13.90	-4.42	0.00	-150.00	0.00	150.00	1561.09	780.55	1925.40	964.13	14.47	-1.242	0.000	0.165
130.00	-13.35	-4.34	0.00	-127.89	0.00	127.89	1518.76	759.38	1800.86	901.77	15.83	-1.341	0.000	0.151
135.00	-12.82	-4.26	0.00	-106.18	0.00	106.18	1475.03	737.52	1678.77	840.64	17.28	-1.410	0.000	0.135
140.00	-9.62	-3.26	0.00	-84.87	0.00	84.87	1429.92	714.96	1559.34	780.83	18.79	-1.473	0.000	0.115
145.00	-9.18	-3.18	0.00	-68.58	0.00	68.58		691.71	1442.75	722.45	20.36	-1.531	0.000	0.102
150.00	-8.76	-3.10	0.00	-52.69	0.00	52.69	1321.23	660.61	1314.97	658.46	21.99	-1.584	0.000	0.087
155.00	-8.36	-3.02	0.00	-37.19	0.00	37.19	1258.65	629.32	1192.75	597.26	23.68	-1.628	0.000	0.069
157.00 160.00	-4.30 -4.08	-1.76 -1.72	0.00	-31.14 -25.85	0.00	31.14 25.85	1233.62 1196.07	616.81 598.03	1145.53 1076.49	573.62 539.05	24.36 25.40	-1.644 -1.665	0.000 0.000	0.058 0.051
161.00	-4.08	-1.66	0.00	-25.85	0.00	25.85		598.03	1078.49	527.76	25.40	-1.671	0.000	0.031
161.00	-3.81	-1.66	0.00	-24.14	0.00	24.14	858.57	429.28	768.96	385.05	25.75	-1.671	0.000	0.067
165.00	-3.58	-1.61	0.00	-17.48	0.00	17.48	832.45	416.23	713.85	357.46	27.16	-1.694	0.000	0.053
170.00	-3.30	-1.54	0.00	-9.44	0.00	9.44	798.56	399.28	646.76	323.86	28.95	-1.722	0.000	0.033
1														

758.80 379.40 578.42 289.64 30.76 -1.736

0.000

0.006

1.75

175.00

0.00 -1.44 0.00

-1.75

0.00

	Final Analysis Summary												
Structure:	CT01915-S-SBA		Code:	EIA/TIA-222-G	1/13/2022	4							
Site Name:	South Brooklyn		Exposure:	В		(((H)))							
Height:	175.00 (ft)		Crest Height:	0.00		EC							
Base Elev:	0.000 (ft)		Site Class:	D - Stiff Soil		I L S							
Gh:	1.1	Topography: 1	Struct Class:	II	Page: 28	Tower Engineering Solutions							

Reactions

Load Case	Shear FX (kips)	Shear FZ (kips)	Axial FY (kips)	Moment MX (ft-kips)	Moment MY (ft-kips)	Moment MZ (ft-kips)
1.2D + 1.6W 101 mph Wind	32.6	0.00	57.32	0.00	0.00	4186.71
0.9D + 1.6W 101 mph Wind	32.6	0.00	42.98	0.00	0.00	4129.89
1.2D + 1.0Di + 1.0Wi 50 mph Wind	9.4	0.00	98.20	0.00	0.00	1262.68
1.2D + 1.0E	2.0	0.00	57.37	0.00	0.00	266.41
0.9D + 1.0E	2.0	0.00	43.03	0.00	0.00	262.47
1.0D + 1.0W 60 mph Wind	7.2	0.00	47.81	0.00	0.00	916.87

Max Stresses

Load Case	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	t phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Elev (ft)	Stress Ratio
1.2D + 1.6W 101 mph Wind	-25.79	-26.51	0.00	-1677.4	0.00	-1677.4	2677.54	1338.7	4285.17	2145.77	83.75	0.792
0.9D + 1.6W 101 mph Wind	-19.00	-26.09	0.00	-1642.3	0.00	-1642.3	2677.54	1338.7	4285.17	2145.77	83.75	0.773
1.2D + 1.0Di + 1.0Wi 50 mph Wind	-57.57	-8.04	0.00	-523.11	0.00	-523.11	2677.54	1338.7	4285.17	2145.77	83.75	0.265
1.2D + 1.0E	-17.06	-1.46	0.00	-63.72	0.00	-63.72	1577.63	788.82	1975.86	989.40	123.00	0.075
0.9D + 1.0E	-12.79	-1.43	0.00	-62.44	0.00	-62.44	1577.63	788.82	1975.86	989.40	123.00	0.071
1.0D + 1.0W 60 mph Wind	-22.66	-5.79	0.00	-366.40	0.00	-366.40	2677.54	1338.7	4285.17	2145.77	83.75	0.179

	Base Plate Summary												
Structure:	CT01915-S-SB			Code:	EIA/TIA-222-G	1/13/2022	4						
Site Name:	South Brooklyn			Exposure:	В		(((Ħ)))						
Height:	175.00 (ft)			Crest Height:	0.00		EC						
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil								
Gh:	1.1	Topography:	1	Struct Class:	II	Page: 29	Tower Engineering Solutions						

Reaction	s	Base Pla	ate	Anchor E	Bolts		
Original Des	sign	Yield (ksi):	50.00	Bolt Circle:	64.00		
Moment (kip-ft):	3710.00	Width (in):	68.00	Number Bolts:	32.00		
Axial (kip):	38.30	Style:	Clipped	Bolt Type:	2.25" 18J		
Shear (kip):	29.70	Polygon Sides:	8.00	Bolt Diameter (in):	2.25		
Analysis (1.2D -	+ 1.6W/)	Clip Length (in):	18.50	Yield (ksi):	75.00		
Moment (kip-ft):	4186.71	Effective Len (in):	6.47	Ultimate (ksi):	100.00		
Axial (kip):	57.32	Moment (kip-in):	352.66	Arrangement:	Clustered		
Shear (kip):	32.64	Allow Stress (ksi):	67.50	Cluster Dist (in):	6.00		
		Applied Stress (ksi):	51.98	Start Angle (deg):	45.00		
		Stress Ratio:	0.77	Compression			
				Force (kip):	101.19		
				Allowable (kip):	260.00		
				Ratio:	0.40		
		Tension					
				Force (kip):	95.06		
				Allowable (kip):	260.00		
				Ratio:	0.37		

(((H)))		Monop		Da 1/13/					
		Customer Name:	Verizon			TIA Standard:	,	EIA-2	
I F S		Site Name:	V ON LON			Structure Hei			75
		Site Number:	CT01915-	S-SBA		Engineer Nam		M. ALF	
Tower Engineering Solution	15	Engr. Number:	121972			Engineer Log			,
Foundation Info Obtained from:	F) Prawings/Calculations							
Structure Type:	-	Monopole				K			_
Analysis or Design?		Analysis		7	0.50				0.00
Base Reactions (Factored):				-			<u></u>		
Axial Load (Kips):	57.3	Shear Force (Kips):	32.6				\sim) #	5
Uplift Force (Kips):	0.0	Moment (Kips-ft):	4186.7		7.0		, 42	2 #	9
		_					42	2 #	9
Foundation Geometries:					7.0	\mathbf{Z}	42		9
		Mods required -Yes/No ?:					42	2 #	9
Diameter of Pier (ft.):	7.0	Depth of Base BG (ft.):	7.0		• •		9/9	- !'	↑
Pier Height A. G. (ft.):	0.50	Thickness of Pad (ft):	3.50					_ i,	3.50
Length of Pad (ft.):	25	Width of Pad (ft.):	25		 K	25.0		⊣	<u> </u>
Final Length of pad (ft)	25.0	Final width of pad (ft):	25.0	7		25.0		_' 	0.0
Material Properties and Reabr Info	<u>):</u>						7.0		·
Concrete Strength (psi):	3000	Steel Elastic Modulus:	29000	ksi			/		
Vertical bar yield (ksi)	60	Tie steel yield (ksi):	60			6 9			25.0
Vertical Rebar Size #:	11	Tie / Stirrup Size #:	5		25.0				W
Qty. of Vertical Rebars:	36	Tie Spacing (in):	11.0			29			
Pad Rebar Yield (Ksi):	60	Pad Steel Rebar Size (#):	9		36	# 11			1
Concrete Cover (in.):	3	Unit Weight of Concrete:	150.0	pcf					
Rebar at the bottom of the concrete	e pad:								0.0
Qty. of Rebar in Pad (L):	42	Qty. of Rebar in Pad (W):	42	-	0.0				0.0
Rebar at the top of the concrete pa	d:				\leftarrow	25.0	L	$ \mapsto$	
Qty. of Rebar in Pad (L):	42	Qty. of Rebar in Pad (W):	42		<			\rightarrow	1
	1.35								
Soil Design Parameters:									
Soil Unit Weight (pcf):	125.0	Soil Buoyant Weight:	50.0	Pcf					
Water Table B.G.S. (ft):	7.0	Unit Weight of Water:	62.4	pcf	Angle from Top (of Pad	30		
Ultimate Bearing Pressure (psf):	30000	Ultimate Skin Friction:	0	Psf	Angle from Botti		25		
Consider Friction for O.T.M. (Y/N):	No	Consider Friction for beari		No	Angle from Botti		25		
Consider soil hor. resist. for OTM.:	No	Reduction factor on the m		bearing	pressure:	1.00			
Foundation Analysis and Design:	Uplift Str	ength Reduction Factor:	0.75	Comp	ression Strength R	eduction Factor	0.75		
Total Dry Soil Volume (cu. Ft.):	55.000		2052.80		Dry Soil Weight (Ki		256.60		
Total Buoyant Soil Volume (cu. 1	Ft.):		0.00		Buoyant Soil Weight		0.00		
Total Effective Soil Weight (Kips			256.60			te Block at Top (K):	0.00		
Total Dry Concrete Volume (cu.	-		2341.44	-	Dry Concrete Weig		351.22		
Total Buoyant Concrete Volume			0.00		Buoyant Concrete	• • • •	0.00		
Total Effective Concrete Weight	t (Kips):		351.22	Total \	Vertical Load on Ba	ase (Kips):	665.14	Load/	
Check Soil Capacities:								Capacity Ratio	
Calculated Maxium Net Soil Pressur	e under th	ne base (psf):	3551	<	Allowable Factor	ed Soil Bearing (psf):	22500	0.16	ОК
Allowable Foundation Overturning			7554.4	>	Design Factored	Momont (kips-ft):	4432	0.5 9	ОК
Factor of Safety Against Overturnin	g (O. R. M	oment/Design Moment):	1.70	OK!					

Check the capaci	ities of Reinforceing Concrete:						
Strength reduction	on factor (Flexure and axial tension):	0.90	Streng	th reduction factor (Shear):	0.75		
Strength reduction	on factor (Axial compresion):	0.65	Wind	Load Factor on Concrete Design:	1.00		
						Load/ Capacity	
(1) Concrete Pie	<u>r:</u>					Ratio	
Ve	rtical Steel Rebar Area (sq. in./each):	1.56		Tie / Stirrup Area (sq. in./each):	0.31		
Cal	culated Moment Capacity (Mn,Kips-Ft):	8832.5	>	Design Factored Moment (Mu, Kips-F	4317.3	0.49	OK!
Cal	culated Shear Capacity (Kips):	682.6	>	Design Factored Shear (Kips):	32.6	0.05	OK!
Cal	culated Tension Capacity (Tn, Kips):	3032.6	>	Design Factored Tension (Tu Kips):	0.0	0.00	OK!
Cal	culated Compression Capacity (Pn, Kips):	7273.9	>	Design Factored Axial Load (Pu Kips):	57.3	0.01	OK!
Mo	oment & Axial Strength Combination:	0.49	OK!	Check Tie Spacing (Design/Required):		0.9167	OK!
Pie	r Reinforcement Ratio:	0.010		Reinforcement Ratio is satisfied per A	CI		
(2).Concrete Pac	<u>d:</u>						
On	e-Way Design Shear Capacity (L-Direction, Kips):	947.4	>	One-Way Factored Shear (L-D. Kips):	326.8	0.34	OK!
On	e-Way Design Shear Capacity (W-Direction, Kips):	947.4	>	One-Way Factored Shear (W-D., Kips)	326.8	0.34	OK!
On	e-Way Design Shear Capacity (Corner-Corner. Kips):	831.8	>	One-Way Factored Shear (C-C, Kips):	303.2	0.36	OK!
Lov	wer Steel Pad Reinforcement Ratio (L-Direct.):	0.0036	OK!	Lower Steel Pad Reinf. Ratio (W-Direc	0.0036		
Lov	wer Steel Pad Moment Capacity (L-Direction. Kips-ft):	6953.4	>	Moment at Bottom (L-Dir. K-Ft):	1982.2	0.29	OK!
Lov	wer Steel Pad Moment Capacity (W-Direction. Kips-ft):	6953.4	>	Moment at Bottom (W-Dir. K-Ft):	1982.2	0.29	OK!
Lov	wer Steel Pad Moment Capacity (Corner-Corner,K-ft):	9724.9	>	Moment at Bottom (C-C Dir. K-Ft):	2803.2	0.29	OK!
Up	per Steel Pad Reinforcement Ratio (L-Direct.):	0.0036	OK!	Upper Steel Reinf. Ratio (W-Dir.):	0.0036		
Up	per Steel Pad Moment Capacity (L-Direc. Kips-ft):	6953.4	>	Moment at the top (L-Dir K-Ft):	686.0	0.10	OK!
Up	per Steel Pad Moment Capacity (W-Direc. Kips-ft):	6953.4	>	Moment at the top (W-Dir K-Ft):	686.0	0.10	OK!
Up	per Steel Pad Moment Capacity (Corner-Corner. K-ft):	9724.9	>	Moment at the top (C-C Dir. K-Ft):	643.6	0.07	OK!
(3).Check Punch	ing Shear Capacity due to Moment in the Pier:						
Mc	oment transferred by punching shear:	1674.7	k-ft.	Max. factored shear stress $v_{u_{CD}}$:		4.0	Psi
Ma	ax. factored shear stress v _{u_AB} :	9.9	Psi	Factored shear Strength φν _n :		164.3	Psi
Ma	ax. factored shear stress v _u :	9.9	Psi	Check Usage of Punching Shear Ca	oacity:	0.06	OK!

• • • • • • • • • • • • • • • • • • •			PER THE INTERNATIONAL BUILDING CODE THIS STRUCTURE IS CLASSIFIED AS:	AS:	(••••••••••••••••••••••••••••••••••••••
Image: Section of the section of th					ES
EXERCISE EXERCISE <td< th=""><th></th><th>MODIFICATION AND DESIG</th><th>Z</th><th></th><th>Tower Engineering Solutions 1120 GREEMAY DRVE, SUITE 600 FRONG, 177 75038 PHONE, 6972) 485–5607 PHONE, 6972) 485–5607</th></td<>		MODIFICATION AND DESIG	Z		Tower Engineering Solutions 1120 GREEMAY DRVE, SUITE 600 FRONG, 177 75038 PHONE, 6972) 485–5607 PHONE, 6972) 485–5607
PROPOSED CARREY. VERZON STEE: CT01915-S-SBA / SOUTH BROOKLYN CONDENDATES (LATTUDE: 41.757160°, LONGTUDE: 47.757160°, LONGTUDE: 47.757160°, LONGTUDE: 47.157160°, LONG		DRAWINGS FOR AN EXISTIN 175' SUMMIT MONOPOLE TOV	NER VER		5900 BROKEN SOUND PARKMAY, NW BOCA RANON, FL 33467 (300)-487-SIF TES JOB 40: TES JOB 40: TES JOB 40: C101915-S-SBA
SIE: C101915-S-SBA / SOUTH BROOKLYN cooranners (unrunce: +1.767160; LONGITOR: -71.371949) COORDINATES (AITTUDE: 4.7.67160; LONGITOR: -71.371949) THE RICGING FIAN FOR THIS SITE WOLLD BE A MINIMUM OF A CLASS I AND THE CONTRACTOR BAGLI MACE FIAN ERMINISTIC MINIMUM OF A CLASS I AND THE CONTRACTOR BAGLI MACE FIAN ERMINISTIC SERVERTOR OF THIS SET OF DRAWINGS RE NOT PROVIDED AND DRAWINGS RE ROOT PROVIDED AND DRAWING RE ROOT PROVIDED AND DRAWING RE ROOT PROVID		PROPOSED CARRIER: VERIZON			CUSTOMER SITE NAME: SOUTH BROOKLYN 100 OLD TATNIC HILL ROND BROOKLYN, CT 08234
CONSTRUCTOR THE ROGING PAIN FOR THIS SITE WOULD BE A MINIMUN OF A CLASS I AND THE CONTRACTOR SHALL MAKE FINAL DETERMINATION SHALL MAKE FINAL DETERMINATION SHALL MAKE FINAL DETERMINATION STALL MAKE FINAL DETERMINATION STA		SITE: CT01915-S-SBA / SOUTH BROOL COORDINATES (LATITUDE: 41.767160', LONGITUDE: -71.97)KLYN 1949')		LOC COMPANY
The Rigging Pair Site would Bit and Final DetErmination Shall make Final DetErmination Image: Shall pair site site of parameters of the site		CONSTRUCTION CLASS	_		The second second
Electer of the transmission o		THE RIGGING PLAN FOR THIS SITE WOULD BE A MINIMUM OF A CLASS I AND THE CONTRACTOR SHALL MAKE FINAL DETERMINATION			No. Friday
PLEASE NOTE THIS SET OF DRAWINGS IS FOR INSTALLATION AND ASSEMBLY ONLY. FABRICATION DETAIL DRAWINGS ARE NOT PROVIDED AND MUST BE COMPLETED BY THE STEEL FABRICATOR SELECTED. TES CAN MUST BE COMPLETED BY THE STEEL FABRICATOR SELECTED. TES CAN PROVIDE THE FABRICATION DETAIL DRAWINGS FOR AN ADDITIONAL FEE. SHEET DATE AND DETAIL DRAWINGS FOR AN ADDITIONAL FEE. THE THE STEEL FABRICATOR OF AN ADDITIONAL FEE. THE THE STEEL FABRICATION OF AN ADDITIONAL FEE. THE STEEL FABRICATI					CHECKEE
SHEET SHEET TITLE REV T-1 T-1 TTLE SHET 0 0x4 0 0 0 A-1 0 0 0 A-2 FLANGE STIFTERER INSTRUCTION DETAILS 0 A-1 0 0 0		PLEASE NO ASSEMBLY A MUST BE C PROVIDE TH	TE THIS SET OF DRAWINGS IS FOR INSTALLATION AND ONLY. FABRICATION DETAIL DRAWINGS ARE NOT PROVIDEI COMPLETED BY THE STEEL FABRICATOR SELECTED. TES CHE FABRICATION DETAIL DRAWINGS FOR AN ADDITIONAL FI	D AND AN EE.	Sket mie TITLE SHEET
T-1 THE SHET D0 BM BIL OF WRITHALS 0 BM BIL OF WRITHALS 0 CH-1 CH-1 CH-1 CH-1 TONER PROFILE 0 A-1 FLANGE STIFFILER MSTALLATION DETALLS 0		SHEET	SHEET TITLE	REV	
		1-1	TILLE SHEET	0	This drawing/document is the property of Tower Engineering Solutions, LLC, information
		BOM	BILL OF MATERIALS CENERAL MATES		contained herein is considered confidential in notime and is to be used only for the
A-2 FLANCE STIFFLEER INSTRUCTION DETMLS 0 1 decisionare by any method		A-1	TOWER PROFILE		specific site that it was intended for. Reproduction, transmission, publication or
Cheer Explored in the information in the information is a constrained in the information in the information is a constrained in the information in the informat		A-2	FLANGE STIFFENER INSTALLATION DETAILS	0	disclosure by any method is prohibited except by express written permission from
	THE WO OFOND T				Tower Engineering Solutions, LLC. Without exception, the information on this
	RE BASED ON THE DATED 12/09/2021.				nt rem
					-

			Tower Engineering Solutions	1320 GREENWAY DRIVE, SUITE 500	PHONE: (972) 483-0607		5900 BROKEN SOUND PARKWAY, NW	BOCA RATON, FL 33487	(a00)-4a7-311E	12107 NO:	CUSTOMER SITE NO:	CT01915-S-SBA	CUSTOMER SITE NAME:	100 OLD TATING HILL ROAD	BROOKLYN, CT 06234							DRAWN BY: BS CHECKED BY: RK/AD	REV. DESCRIPTION BY DATE		SHEET TITLE:	BILL OF MATERIALS	This drawing/document is the property of Tower Engineering Solutions, LLC, Information	contained herein is considered confidential in nature and is to be used anly for the	specific site that it was intended for. Reproducton, transmission, publication or distribution to an antibution of the second se	except by express written permission from	exception, the information on this	Tower Engineering Solutions, LLC.	SHEET NUMBER: REV #:	
	NOTES																			GALVANIZED	GALVANIZED													
	WEIGHT (LB)																			720.6	: :													
	PIECE WEIGHT (LBS)	,																		240.2	:													
	SHEET LIST (FABRICATE)																			Ħ	: :													
	SHEET UST (INSTALLATION)																			A-2	A-1 A-1													
	IENGTH (I																			1	: :												+	
BILL OF MATERIALS	DESCRIPTIONS	MATERIAL & HARDWARE																	Following Items are Non-standard Parts		LAWEU / FIENNY 26/ WHILE ALKNULLE EASTOWERLE COATING AND SEALER OR EQUIV (GALLON) TUF-TUG ANGLE CUP STAND OFF ASSEMBLY								ALL APLXXXX, LPXXXX AND RLPXXXX ARE PATENTED PRODUCTS AND CANNOT BE FABRICATED BY THIRD PARTIES. THESE PARTS ARE AVAILABLE FROM:	METROSITE, LLC.	180 IND PARK BLVD COMMERCE, GA 30529 OFFICE: (706) 335-7045	FAX: (706) 335-7056	NOTE: AII MATERIAIS, WHICH WERENT LISTED IN THIS SHEET. ARE ASSUMED TO BE PROVIDED BY THE CONTRACTOR.	NOTE: ALL MATERIALS, WHICH WEREN'T LISTEU IN THIS SHEET, ARE ASSUMED TO BE FROVIDED OF THE COMMALION.
	PART NUMBER																			FPL-1	120-123/115-317													
	QUANTITY PROVIDED																				r 2												T	
	QUANTITY COUNTED																				n 7					רך. s			nign3					

GENERAL NOTES

- 2
- ALL WORK SHALL COMPLY WITH THE ANS/TIA-222-C, ANS/ASSP AT0.48, 2018 CONNECTICUT STATE BUILDING AND ANY OTHER OVERHING BUILDING CODES NAM CSH-T RECULATIONS. ALL WORK INDICATED ON THE DRAWINGS SHALL BE PERFORMED BY QUALIFIED CONTRACTORS EXPERIENCED IN TELECOMMUNICATIONS TOWER, POLE AND FOUNDATION CONSTRUCTION. THE CONTRACTOR SHALL BE REPORSIBLE FOR THE DESON AND FABRICATION OF ALL MISCELLANEOUS PARTS (SUCH AS SHIMS), TEMPORARY SUPPORTS, AND GUINNGS, ETC., PER MIS/ASSP AT0.48, TO COMPLETE THE ASSEMBLY AS SHOWN IN THE DRAWINGS, CONTRACTOR SHALL PROCEED WITH THE INSTALLIAND WORK CAREFULLY SO THE WORK WILL NOT DAMAGE ANY EXPENSIONS CONTRACTOR SHALL PROCEED WITH THE INSTALLIAND WORK CAREFULLY SO THE WORK WILL NOT DAMAGE ANY EXPENSIONS CONTRACTOR SHALL PROCEED WITH THE INSTALLIAND WORK CAREFULLY SO THE WORK WILL NOT DAMAGE ANY EXPENSIONS CONTRACTOR SHALL PROCEED WITH THE INSTALLIAND WORK CAREFULLY SO THE WORK WILL NOT DAMAGE ANY EXPENSIONS CONTRACTOR SHALL PROCEED WITH THE INSTALLIAND WORK CAREFULLY SO THE WORK WILL NOT DAMAGE ANY EXPENSION THE USE OF CAS TORCH OR WHEDER, ARE NOT ALLOWED ON ANY TOWER STRUCTURE WITHOUT THE CONSENT OF THE TOWER OWNER.
- GENERALLY THE CONTRACTOR IS RESPONSIBLE TO CONDUCT AN ONSTE VIST SURVEY OF THE JOB SITE AFTER AWARD, AND REPORT ANY ISSUES WITH THE SITE TO TES BEFORE PROCEEDING CONSTRUCTION. φ

FABRICATION

- ALL STEEL SHALL MEET OR EXCEED THE MINIUM STRENGTH AS SPECIFIED IN THE DRAWINGS. IF YIELD STRENGTH WAS NOT NOTED IN THE DRAWNGS, CONTRACTORS SHALL CONTACT TES FOR DIRECTION.
 ALL FIELD CUT EDGES SHALL BE GROUND SMOOTH. ALL FIELD CUT RAND/REPACES SHALL BE REPARED WITH A MINIUM OF TWO COATS OF ZNARZ COUD GRUNDH PER ASTM A780 AND MANUFACURETS RECOMMEDIATIONS.

WELDING

- ALL WELDING SHALL BE PERFORMED BY AWS CERTIFIED WELDERS AND IN ACCORDANCE WITH THE LATEST EDITION OF THE AWS WELDING CODE D1.1. ALL ELECTRODES TO BE LOW HYDROGEN, MATCHING FILLER METAL, PER AWS D1.1, UND. (FTOXX UNLESS NOTED OTHERWISE).
 - PRIOR TO FIELD WELDING CALVANIZED MATERIAL, CONTRACTOR SHALL GRIND OFF CALVANIZING APPROX. 0.5" BEYOND THE
- PROPOSED FIELD WEID SUBFACES. ALL WEIDS SHALL BE NEPECTED VENALLY. A MINNUM OF 25% OF WEIDS SHALL BE INSPECTED WITH DYE PENETRANT OR MAGNETIC PARTICLE TO MEET THE ACCEPTANCE CATERIA OF AMS D1.1. 100% OF MEIDS SHALL BE INSPECTED IF DEFECTS ARE FOUND.
 - AFTER INSPECTIONS SHALL BE PERFORMED BY AN AWS CRETIFIED WELD INSPECTION. AFTER INSPECTION, ALL FIELD WELPED SUFACES SHALL BE REPARED WITH A MINIUM OF TWO COATS OF ZINGA COLD GALVANIARC COMPOUND FIELS SIM ANUFACTURER'S RECOMMENDATIONS. 4.10

BOLTED ASSEMBLIES AND TICHTENING OF CONNECTIONS

- ALL HICH STRENGTH BOLTS SHALL CONFORM TO THE PROVISIONS OF THE SPECIFICATIONS FOR STRUCTURAL JOINTS USING A325 OR 4490 BOLTS AS APPROVED BY THE RCSC.
 - FLANCE BOLTS SHALL BE TICHTENED BY THE AISC "TURN-OF-THE-NUT" METHOD. THE FOLLOWING TABLE SHOULD BE USED FOR 2
- THE "TURN-OF-THE-NUT" TIGHTENING. SPECE BOILS AND ALL OTHER BOLTS IN BEARING TYPE CONNECTIONS SHALL BE TIGHTENED TO A SNUG-TIGHT CONDITION. THE SUIGE-TIGHT CONDITION IS DETRIED AS THE TIGHTNESS ATTAINED BY ETHER A FEW IMPACTS OF AN IMPACT WERNEL OR THE FULL EFFORT OF AN IRONWORKER WITH AN ORDINARY SPUID WRENCH TO BRING THE CONNECTED PLES INTO FIRM CONTACT. HB HOLLO-BOLT SHALL BE INSTALLED FRE ICC ESR-3330 INSTRUCTIONS. m. 4
 - ú.

VERIFICATION AND INSPECTION

R IF APPLICABLE, VERFICATION INSFECTION TO BE PERFORMED SHALL BE IN ACCORDANCE TO IBC-2015 SECTION 1705 -STEEL CONSTRUCTION & TABLE 1705.3 FOR CONCRETE CONSTRUCTION.

POST INSTALLED EPOXY INJECTED ANCHOR BOLTS.

- CONCRETE MUST BE A MINIMUM OF 28 DAYS OLD.
- NM
- CHLONG, DEL AN MININGATO RE CARTA DI PERTHALLI WITES, CRUICARTANDE ET REQUERTAND ET A MININGATOLIRE'S RECORRENATOR FOR CURE THA LI WITES INTE, OLI DEBRIS, GRESSE OR DUST MULTIC TRECORDIERTAND FOR CORRECT THE OF CORRE II. ANOID DAMAGINE STREUNIS FOR CURRER AND DETTHAL WITES RECOMMENDATION FOR CORRECT THE OF CORRE II. ANOID DAMAGINE STREOLIREMASING STEEL OR OTHER EMBEDDED TEMIS, NOTIFY TES FOMMERTING FI ERMONED ITEMIS FOR CONCRETE, REUNDERMANG STEEL OR OTHER EMBEDDED TEMIS, NOTIFY TES FOMMERTING FI II. ANOID DAMAGINE STEEL OR OTHER EMBEDDED TEMIS, NOTIFY TES FOMMERTING FOR CORRECT MINIS IN THE COUNCRETE, REUNDERMANDED OTHINA MINISTATICTIONS.
 A HOLE ROUGHENING DENGE FROM FILTER INTO MILTARTICTIONS.
 A HOLE ROUGHENING DENGE FROM THE AND BRUCH AND INSTRUCTIONS.
 A FILE REDORF AND ROUGHENING FLEIZE CONNENDED TEMIS AND FLUSH WITH RUNNING WATTER TO REMOVE ANY SULREY OF DEBRIS. REMOVE AND ROUGHENING DENGE PARAMICAL PUMPING.
 BERNSH EACH HOLE WITH AN APPROPRIATE SIZED MILLON BRUCH AND INSTRUCTIONS.
 BERNSH EACH HOLE WITH AN APPROPRIATE SIZED MILLON BRUCH AND INCLUDENT.
 A FILE REGISTER FROM THE POLE.
 A BUESH EACH HOLE WITH ANNOING WATTER TO REMOVE ANY SULREY OR DEBRIS. REMOVE CALL WATTER FROM THE POLE.
 A FILE REMOVE THAN AND ROUGH AND MILLISH WITH RUNNING WATTER A SECOND THME. REMOVE ALL WATTER FROM THE POLE.
 A REMOVE ALL WATTER FROM THE POLE.
 A CONFIRM TANT AND ARY THOU THAN AND CONTINGS.
 CONFIRM THAT EACH HOLE IN THAT EACH HOLE AND DETCH.
 CONFIRM THAT EACH HOLE AND DETCH.
 CONFIRM THAT EACH HOLE AND OTHER AND CLEMED HOLE IN CLOSEOUT PHOTO PACKAGE.
 EDOW VECH HOLE NATTER TO BE AND AND MONTONIA.
 EDOW VECH HOLE NATION OF EACH ROUGHED AND DETCH.
 CONFIRM THAT EACH HOLE AND THAT AND CLEMED HOLE IN CLOSEOUT PHOTO PACKAGE.
 EDOW VECH HOLE NATHATE PLACE IN RANNUMANDANDE.
 EDOW VECH HOLE NATION
 - 4

CLC

- ů
- - 6.

- 9.011.0

TABLE B.2 NUT ROTATION FROM SNUG-TIGHT CONDITION FOR TURN-OF-NUT PRETENSIONING ^{G,D}	Consideration of the state of the state
Table 8.2 N Condition Fo	

BOLT LENGTHF BOTH FACES ONE FACE NORML TO BOLT AXIS SLOFED TA BOLT AXIS SLOFED TA NOT MORE THAN 1/3 TURN 1/3 MORE THAN 46 1/3 TURN 1/3 MORE THAN 46 1/2 TURN 2/3	ONE FACE NORMAL TO BOLT AND, OTHER SLOPED NOT MORE THAN 1:20 ^d 1/2 TURN	BOTH FACES SLOPED NOT MORE THM 1:20 FROM NORMAL TO BOLT AXIS ⁴ 2/3 TURN
1/3 TURN 1/2 TURN		2/3 TURN
1/2 TURN		
•	4 2/3 TURN	5/6 TURN
MORE THAN 845 BUT NOT MORE 2/3 TURN 5/6 THAN 1245	V 5/6 TURN	1 TURN

[•] NUT ROTATION IS RELATIVE TO BOLT REGARDLESS OF THE ELEMENT (NUT OR BOLT) BEING TURNED. FOR REQUERD NUT ROTATIONS OF 1/2 TURN AND LESS. THE TOLERANCE IS PLUS OR AMNUS 30 DEGREES, FOR REQUIRED NUT ROTATIONS OF 2/3 TURN AND MARE, THE TOLERANCE IS PLUS OR MINUS 45 DEGREES.

- ⁶ WHEN THE BOLT LENGTH EXCEEDS 124, THE REQUIRED NUT ROTATION SHALL BE DETERMINED BY ACTUAL TESTING IN A SUITABLE TENSION CALIBRATOR THAT SIMULATES THE CONDITIONS OF SOLIDLY FITTING STEEL. $^{\rm b}$ APPLICABLE ONLY TO JOINTS IN WHICH ALL MATERIAL WITHIN THE GRIP IS STEEL.

^d BEVELED WASHER NOT USED.

SPECIFICATION FOR STRUCTURAL JOINTS USING ASTM A325 OR 4490 BOLTS, JUNE 30, 2004 RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS

INSTALLATION TORQUE REQUIRED FOR HOLLO BOLTS AND AJAX BOLTS:

- ~ ~ 4
- HB12 HOLLO BOLT: 59 FT-LBS HB16 HOLLO BOLT: 140 FT-LBS HB20 HOLLO BOLT: 221 FT-LBS M20 AJAX BOLT: 280 FT-LBS.

FIELD HOT WORK PLAN NOTES:

- FOLLOWING GUIDELINES SHALL BE COMPLIED WITH:
- ÷
- ы'n
 - 4
- CONTRACTOR'S RESPONSIBILITY TO COMPLETE A HOT WORK PLAN IF AMARDED PER CUSTOMER SPECIFICATIONS GUIDELINES FOR WIDNE, CUTING & SPARK PRODUCING WORK.
 STENCATORS GUIDELINES FOR WIDNE, CUTING AS FORK PRODUCING WORK.
 CONTRACTOR MUST OFFAN THE CONTACT INFO OF THE LOCAL FIRE DEPARTIMENT AND THE 911 ADDRESS OF THE TOWER STIR BETORE CONSTRUCTION.
 CONTRACTOR MUST OFFAN THE CONTACT INFO OF THE LOCAL FIRE DEPARTIMENT AND THE 911 ADDRESS OF THE TOWER STIR BETORE CONSTRUCTION.
 CONTRACTOR MUST OFFAN THE CONTACT INFO OF THE LOCAL FIRE DEPARTIMENT AND THE 911 ADDRESS OF THE TOWER STIRE FLOW CONCREACE IS AMILABLE IN THE TOWER STIE. IF CLIL CONFERCIS IS NOT AVAILABLE AN IMMEDIATE ANNLABLE MENNS OF DIRECT COMMUNICATION WITH THE FIRE DEPARTMENT SHALL BE DEPENDEND FOR TO CONSTRUCTION START.
 J.L. CONSTRUCTON SHALL BE PERFORMED FUNCE MINIS PEED LESS THAN 10 WHO START.
 J.L. CONSTRUCTON SHALL BE PERFORMED UNDER WIND SPEED LESS THAN 10 WHO START.
 J.L. CONSTRUCTON SHALL BE PERFORMED UNDER WIND SPEED LESS THAN 10 WHO START.
 J.L. CONSTRUCTOR SHALL BE PERFORMED UNDER WIND SPEED LESS THAN 10 WHO START.
 J.L. CONSTRUCTOR SHALL BE VARCE ANALLABLE RANKED FORM TO CONSTRUCTION START.
 J.L. CONSTRUCTOR SHALL BE WARD FOR TO CONSTRUCTION START.
 J.L. CONSTRUCTOR SHALL BE WARD FOR AN INCLORED START.
 J. CONSTRUCTOR SHALL ASSON A THE MATCHER TO PERFORM FIRE FORMATION UNDER.
 J. CONTRACTOR STALL ASSON A FIRE MATCHER TO PERFORM FIRE FORMATION DUTES.
 J. CONTRACTOR STALL ASSON A FIRE MATCHER TO PERFORM FIRE FORMATION DUTES.
 J. CONTRACTOR STALL ASSON A FIRE WATCHER TO PERFORM FIRE FORMATION DUTES.
 - ц.
- All welders shall be and or state certified. They must also be experienced in welding on Galanneed Materials. If it is possible, all desting coan near welding area shall be temporarily moved anany from the welding area before welding the plattes.
 - 6

 - PLEASE REPORT ANY FIELD ISSUE TO TES @ 972-483-0607. 10.

scept by express written permission from over Engineering Solutions, LLC. Without sception, the information on this

method is prohibited

only

be used

was inten

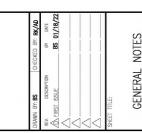
that

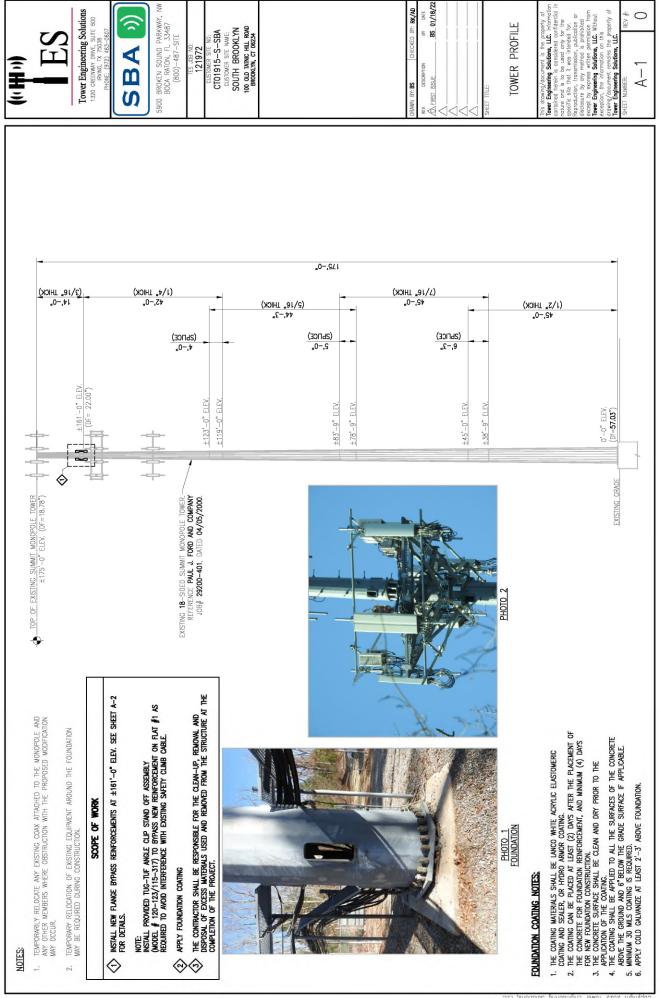
his drawing/document is the property over Engineering Solutions, LLC. Inform

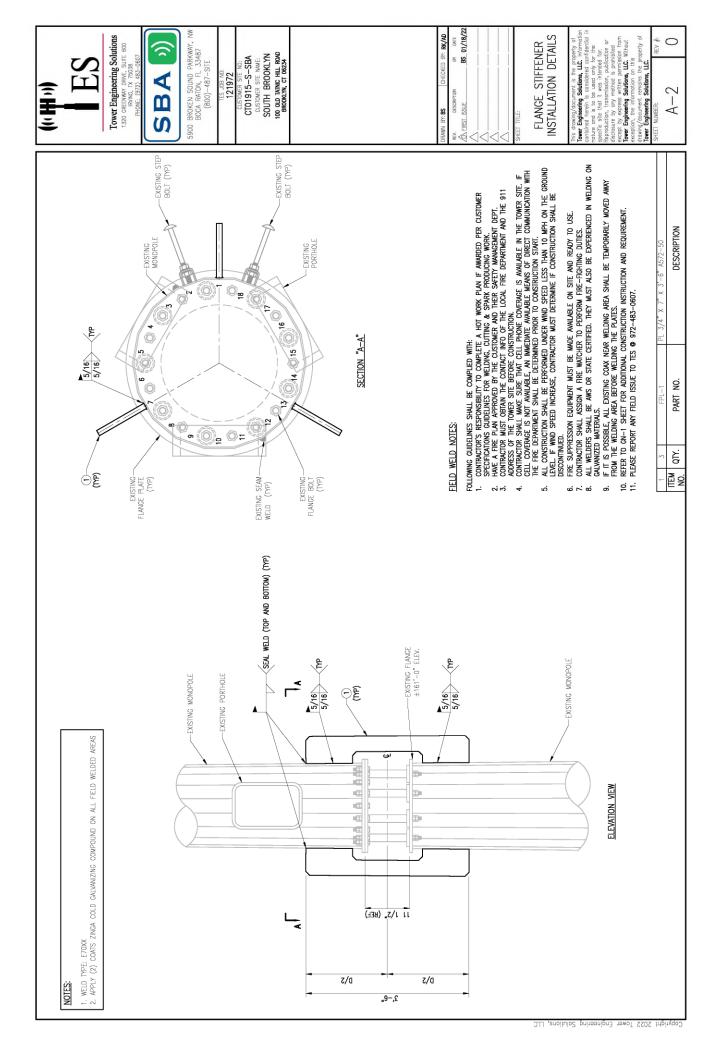
operty of

rawing/document remains the prover Engineering Solutions, LLC.

0


GN-1


2022 Tower Engineering Salutions,



100 OLD TATNIC HILL ROAD BROOKLYN, CT 06234

Maser Consulting Connecticut 2000 Midlantic Drive Suite 100 Mt. Laurel, NJ 08054 856.797.0412 Peter.Albano@colliersengineering.com

Post-Mod Antenna Mount Analysis Report and PMI Requirements

Mount Fix

SMART Tool Project #: 10099557 Maser Consulting Connecticut Project #: 21777249A

September 2, 2021

Site Information

Site ID: Site Name: Carrier Name: Address: 467252-VZW / BROOKLYN CT BROOKLYN CT Verizon Wireless 130 Old Tatnic Hill Rd Brooklyn, Connecticut 06095 Windham County 41.767161° -71.971950°

Latitude: Longitude:

Structure Information

Tower Type: Mount Type: 176-Ft Monopole 14.36-Ft Platform

FUZE ID # 16272042

Analysis Results

Platform: 78.9% Pass

<u>***Contractor PMI Requirements:</u> Included at the end of this MA report Available & Submitted via portal at https://pmi.vzwsmart.com Contractor - Please Review Specific Site PMI Requirements Upon Award Requirements also Noted on Mount Modification Drawings Requirements may also be Noted on A & E drawings

Report Prepared By: Lauren Luzier

Executive Summary:

The objective of this report is to summarize the analysis results of the antenna support mount including the proposed modifications at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

Sources of Information:

Document Type	Remarks						
Radio Frequency Data Sheet (RFDS)	Verizon RFDS Site ID: 323501, dated March 3, 2021						
Mount Mapping Report	Hudson Design Group, LLC, Site ID: 467252, dated August 10, 2021						
Previous Mount Analysis Report	Maser Consulting Connecticut Project #: 21777249A, dated August 27, 2021						
Mount Modification Drawings	Maser Consulting Connecticut Project #: 21777249A, dated September 7, 2021						

Analysis Criteria:

Codes and Standards:

Couce and Otandards.		
Wind Parameters:	Basic Wind Speed (Ultimate 3-sec. Gust), V _{ULT} : Ice Wind Speed (3-sec. Gust): Design Ice Thickness: Risk Category: Exposure Category: Topographic Category: Topographic Feature Considered: Topographic Method: Ground Elevation Factor, K _e :	122 mph 50 mph 1.00 in II B 1 N/A N/A 0.981
Seismic Parameters:	Ss: S ₁ :	0.185 0.054
Maintenance Parameters:	Wind Speed (3-sec. Gust): Maintenance Live Load, Lv: Maintenance Live Load, Lm:	30 mph 250 lbs. 500 lbs.
Analysis Software:	RISA-3D (V17)	

ANSI/TIA-222-H

Final Loading Configuration:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status			
		6	JMA Wireless	MX06FRO660-03				
		3	Samsung	MT6407-77A				
175.50	177.00	3	Samsung	B2/B66A RRH-BR049	Added			
1/5.50	177.00	177.00	177.00	177.00	3	Samsung	B5/B13 RRH-BR04C	
		1	Raycap	RVZDC-6627-PF-48				
		3	Amphenol Antel	BXA-70080-6CF-EDIN	Retained			

The following equipment has been considered for the analysis of the mount:

The recent mount mapping did report existing OVP units. However, it is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

Standard Conditions:

- 1. All engineering services are performed on the basis that the information provided to Maser Consulting Connecticut and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation. Any deviation from the loading locations specified in this report shall be communicated to Maser Consulting to verify deviation will not adversely impact the analysis.
- 2. Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

- 3. For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped by Maser Consulting Connecticut, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- 4. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.

- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Maser Consulting is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.
- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

. Cha	nnel, Solid Round, Angle, Plate	ASTM A36 (Gr. 36)
	(Rectangular)	ASTM 500 (Gr. B-46)
	(3)	ASTM A53 (Gr. B-35)
	aded Rod	F1554 (Gr. 36)
o Bolt		ASTM A325

8. Any mount modifications listed under Sources of Information are assumed to have been installed per the design specifications.

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Moser Consulting.

Analysis Results:

Component	Utilization %	Pass/Fail
Standoff_1	24.5 %	Pass
Standoff_2	10.1 %	Pass
Grating Angle	32.9 %	Pass
Cross Members	22.6 %	Pass
Face Horizontal	78.9 %	Pass
Mount Pipe	41.0 %	Pass
Support Rail	22.4 %	Pass
Support Rail Corner	31.8 %	Pass
Kicker	7.5 %	Pass
Mount Connection	24.3 %	Pass

Structure Rating – (Controlling Utilization of all Components)	78.9%
--	-------

Recommendation:

The existing mount will be **SUFFICIENT** for the final loading after the proposed modifications are successfully completed.

ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other, if required. Separate review fees will apply.

Attachments:

- 1. Mount Photos
- 2. Mount Mapping Report (for reference only)
- 3. Analysis Calculations
- 4. Contractor Required PMI Report Deliverables
- 5. Antenna Placement Diagrams
- 6. TIA Adoption and Wind Speed Usage Letter

		Ant	enna Mount Ma	pping	Form	PATEN	T PEN	DING)				FCC #
MASER	Tower Owner:	OTHER					Mapping	Date:			8/10	/2021
CONSULTING P.A.	Site Name:	BROOKLY	/N CT				Tower Ty	/pe:				opole
	Site Number or ID:	467252						eight (Ft.):				7'-0"
	Mapping Contractor:		DESIGHN GROUP LLC,					evation (Ft.				6.8
	of TES and under PATENT PENDING. The formatic prohibited except by express written permission											
	rrantying the usability of the safety climb as it mu						VOIR SHall De	e compnant i	Mill ANSI/ASSE A 10.46,	0311A, 100, 17		arety
	, , , ,											
					Mount Pi	oe Configura	tion and G	eometries	[Unit = Inches]			
					Vertical	Horizontal					Vertical	Horizor
		Sector /	Mount Pipe Size & L	ength	Offset	Offset "C1,	Sector /		Mount Pipe Size & Len	gth	Offset	Offset '
		Position			Dimension ""	C2, C3, etc."	Position				Dimension	C2, C3,
		A1	2" STD. PIPE X 96" LON	G	48.00	16.00	C1	2" STD. PI	PE X 96" LONG		48.00	16.0
		A2	2" STD. PIPE X 96" LON		48.00	80.00	C2	2" STD. PI	PE X 96" LONG		48.00	80.0
		A3	2" STD. PIPE X 96" LONG	G	48.00	128.00	C3	2" STD. PI	PE X 96" LONG		48.00	128.0
		A4	2" STD. PIPE X 96" LON	G	48.00	132.00	C4	2" STD. PI	PE X 96" LONG		48.00	132.
		A5					C5					<u> </u>
Please insert the sketcher	s of the antenna mount from the	A6		-	10.00	46.00	C6					<u> </u>
	mensions and members here.	B1 B2	2" STD. PIPE X 96" LONG		48.00 48.00	16.00 80.00	D1 D2					-
statemes tab with a	contraction of the second contract of the free	B2 B3	2" STD. PIPE X 96" LONG 2" STD. PIPE X 96" LONG		48.00	128.00	D2 D3					
		B3 B4	2" STD. PIPE X 96" LON		48.00	132.00	D3					
		B5	2011				D5					
		B6					D6					
			Distance between	bottom r	ail and mo	unt CL eleva	tion (dim	d). Unit is i	inches. See 'Mount E	lev Ref' tab	for details. :	16.0
			Distar	nce from	top of bott	om support	rail to low	vest tip of	ant./eqpt. of Carrier	above. (N/A	\ if > 10 ft.) :	
			Distan	ce from I	op of botte	om support	rail to high	hest tip of	ant./eqpt. of Carrier	Reproduction, transmission, .48, OSHA, FCC, FAA and ot Length Offsi Dimension (0fsi Dimension) 48.0 48.0 48.0 48.0 48.0 48.0 148.0 48.0 148.0 48.0 148.0 48.0 148.0 48.0 148.0 48.0 148.0 48.0 148.0 10 150 10 161 10 171 10 171 10 171 10 171 10 171 10 171 10 171 10 171 10 171 10 171 10 171 10 172 10 171 10 172 10 172 10 172 10 172 12.00 170 45.0 <td< td=""><td>\ if > 10 ft.) :</td><td></td></td<>	\ if > 10 ft.) :	
					Please en	ter addition	al infomat	ion or com	ments below.			
		Terrer		(h.).		Truester	Cian an Dala	Chaft Diam		-)-		
			e Width at Mount Elev. (s/Platforms on monopole		the wold si				neter at Mount Elev. (i			0.37
SECTOR B	-SECTOR C											
LEG B	SECTOR C	tems	Enter antenr Antenna Models if				Соах	Antenna	[Units are inc	hes and dea	grees] Antenna	anten
FACE B	251	ts. Items	Enter antenr Antenna Models if Known	Width	Depth	Height	Coax Size and	Antenna Center-	[Units are inc Vertical Distances"b _{1a} , b _{2a} ,	Horiz. Offset	grees] Antenna Azîmuth	anten Pho
FACE B	251	Ants. Items	Antenna Models if				Соах	Antenna	[Units are inc	Horiz. Offset "h" (Use "-" if Ant. is	grees] Antenna	anten Pho
FACE B	251	Ants. Items	Antenna Models if	Width	Depth	Height	Coax Size and Qty	Antenna Center- line (Ft.)	[Units are inc Vertical Distances"b _{1a} , b _{2a} ,	Horiz. Offset "h" (Use "-" if Ant. is	grees] Antenna Azîmuth	anter Pho
EC B	LEG C		Antenna Models if Known	Width	Depth	Height	Coax Size and	Antenna Center- line (Ft.)	[Units are inc Vertical Distances"b _{1a} , b _{2a} ,	hes and dep Horiz. Offset "h" (Use "-" if Ant. is behind)	grees] Antenna Azîmuth	anten Pho Numb
EC B	251	Ant _{1a}	Antenna Models if Known 9442 RRH2x40-AWS	Width (in.) 12.00	Depth (in.) 8.00	Height (in.) 25.00	Coax Size and Qty	Antenna Center- line (Ft.) 177.717	[Units are inc Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 21.00	Horiz. Offset "h" (Use "-" if Ant. is behind) -7.00	Antenna Azimuth (Degrees)	Pho Numb
EC B	LEG C	Ant _{1a} Ant _{1b}	Antenna Models if Known	Width (in.)	Depth (in.)	Height (in.)	Coax Size and Qty	Antenna Center- line (Ft.)	[Units are inc Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches)	Horiz. Offset "h" (Use "-" if Ant. is behind) -7.00	grees] Antenna Azîmuth	Pho Numb
EC B	G A	Ant _{1a} Ant _{1b} Ant _{1c}	Antenna Models if Known 9442 RRH2x40-AWS	Width (in.) 12.00	Depth (in.) 8.00	Height (in.) 25.00	Coax Size and Qty	Antenna Center- line (Ft.) 177.717	[Units are inc Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 21.00	Horiz. Offset "h" (Use "-" if Ant. is behind) -7.00	Antenna Azimuth (Degrees)	Pho Numb
EC B		Ant _{1a} Ant _{1b} Ant _{1c} Ant _{2a}	Antenna Models if Known 9442 RRH2x40-AWS W8X066X19R050G	Width (in.) 12.00 7.00	Depth (in.) 8.00 3.00	Height (in.) 25.00 77.00	Coax Size and Qty	Antenna Center- line (Ft.) 177.717 176.467	[Units are inc Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 21.00 36.00	Horiz. Offset "h" (Use "-" if Ant. is behind) -7.00 6.00	grees] Antenna Azimuth (Degrees) 45.00	Anten Pho Numb
EC B	G A	Ant _{1a} Ant _{1b} Ant _{1c} Ant _{2a} Ant _{2b}	Antenna Models if Known 9442 RRH2x40-AWS	Width (in.) 12.00	Depth (in.) 8.00	Height (in.) 25.00	Coax Size and Qty	Antenna Center- line (Ft.) 177.717	[Units are inc Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 21.00	Horiz. Offset "h" (Use "-" if Ant. is behind) -7.00 6.00	Antenna Azimuth (Degrees)	Anten Pho Numb
EC B	G A	Ant _{1a} Ant _{1b} Ant _{1c} Ant _{2a}	Antenna Models if Known 9442 RRH2x40-AWS W8X066X19R050G	Width (in.) 12.00 7.00	Depth (in.) 8.00 3.00	Height (in.) 25.00 77.00	Coax Size and Qty	Antenna Center- line (Ft.) 177.717 176.467	[Units are inc Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 21.00 36.00	Horiz. Offset "h" (Use "-" if Ant. is behind) -7.00 6.00	grees] Antenna Azimuth (Degrees) 45.00	Anten Pho Numb
EC B	G A	Ant _{1a} Ant _{1b} Ant _{1c} Ant _{2a} Ant _{2b}	Antenna Models if Known 9442 RRH2x40-AWS W8X066X19R050G	Width (in.) 12.00 7.00	Depth (in.) 8.00 3.00	Height (in.) 25.00 77.00	Coax Size and Qty	Antenna Center- line (Ft.) 177.717 176.467	[Units are inc Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 21.00 36.00	Horiz. Offset "h" (Use "-" if Ant. is behind) -7.00 6.00	grees] Antenna Azimuth (Degrees) 45.00	Anten Pho Numb
EC B	G A	$\begin{tabular}{c} Ant_{1a} \\ Ant_{1b} \\ Ant_{1c} \\ Ant_{2a} \\ Ant_{2b} \\ Ant_{2c} \end{tabular}$	Antenna Models if Known 9442 RRH2x40-AWS W8X066X19R050G	Width (in.) 12.00 7.00 11.00	Depth (in.) 8.00 3.00	Height (in.) 25.00 77.00	Coax Size and Qty	Antenna Center- line (Ft.) 177.717 176.467	[Units are inc Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches) 21.00 36.00	Horiz. Offset "h" (Use "-" if Ant. is behind) -7.00 6.00 12.00	grees] Antenna Azimuth (Degrees) 45.00	anten Pho Numb 58 26,5 27,5
EG B	G A	$\begin{tabular}{ c c c c c } \hline Ant_{1a} & \\ \hline Ant_{1b} & \\ \hline Ant_{1c} & \\ \hline Ant_{2a} & \\ \hline Ant_{2c} & \\ \hline Ant_{3c} & \\ \hline Ant_{3b} & \\ \hline \end{tabular}$	Antenna Models if Known 9442 RRH2x40-AWS W8X066X19R050G BXA-70063-6CF-EDIN	Width (in.) 12.00 7.00 11.00	Depth (in.) 8.00 3.00 7.00	Height (in.) 25.00 77.00 72.00	Coax Size and Qty	Antenna Center- line (Ft.) 177.717 176.467 173.467	[Units are inc Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} "(Inches) 21.00 36.00 72.00	Horiz. Offset "h" (Use "-" if Ant. is behind) -7.00 6.00 12.00	grees] Antenna Azimuth (Degrees) 45.00 45.00	anten Pho Numb 58 26,5 27,5
EC B	G A	Ant _{1a} Ant _{1b} Ant _{1c} Ant _{2a} Ant _{2b} Ant _{2c} Ant _{3b} Ant _{3c}	Antenna Models if Known 9442 RRH2x40-AWS W8X066X19R050G BXA-70063-6CF-EDIN	Width (in.) 12.00 7.00 11.00	Depth (in.) 8.00 3.00 7.00	Height (in.) 25.00 77.00 72.00	Coax Size and Qty	Antenna Center- line (Ft.) 177.717 176.467 173.467	[Units are inc Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} "(Inches) 21.00 36.00 72.00	Horiz. Offset "h" (Use "-" if Ant. is behind) -7.00 6.00 12.00	grees] Antenna Azimuth (Degrees) 45.00 45.00	anten Pho Numb 58 26,5 27,5
EG B	G A (Antso S A (Antso Antso S A (Antso S A (Antso Antso Antso Antso Antso Antso Antso	Ant _{1a} Ant _{1b} Ant _{1c} Ant _{2a} Ant _{2b} Ant _{2c} Ant _{3b} Ant _{3b} Ant _{3c} Ant _{3c}	9442 RRH2x40-AWS 9442 RRH2x40-AWS W8X066X19R050G BXA-70063-6CF-EDIN BXA-171085-12CF-ED	Width (in.) 12.00 7.00	Depth (in.) 8.00 3.00 7.00 4.00	Height (in.) 25.00 77.00 72.00 72.00	Coax Size and Qty	Antenna Center- line (Ft.) 177.717 176.467 173.467 173.467	[Units are inc Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} "(Inches) 21.00 36.00 72.00 72.00	hes and deg Horiz. Offset "h" (Use "-" if Ant. is behind) -7.00 6.00 12.00 7.00	grees] Antenna Azimuth (Degrees) 45.00 45.00 45.00	anten Pho Numb 58 26,5 27,5 28,6 28,6
EG B	G A Horizontal Offset "h"	Ant _{1a} Ant _{1b} Ant _{1c} Ant _{2a} Ant _{2b} Ant _{2c} Ant _{3b} Ant _{3c} Ant _{3c} Ant _{4a}	Antenna Models if Known 9442 RRH2x40-AWS W8X066X19R050G BXA-70063-6CF-EDIN	Width (in.) 12.00 7.00 11.00	Depth (in.) 8.00 3.00 7.00	Height (in.) 25.00 77.00 72.00	Coax Size and Qty	Antenna Center- line (Ft.) 177.717 176.467 173.467	[Units are inc Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} "(Inches) 21.00 36.00 72.00	hes and deg Horiz. Offset "h" (Use "-" if Ant. is behind) -7.00 6.00 12.00 7.00	grees] Antenna Azimuth (Degrees) 45.00 45.00	anten Pho Numb 58 26,5 27,5 28,6 28,6
EG B	G A (Antso S A (Antso Antso S A (Antso S A (Antso Antso Antso Antso Antso Antso Antso	$\begin{array}{c} \\ Ant_{1a} \\ Ant_{1b} \\ Ant_{1c} \\ Ant_{2a} \\ Ant_{2a} \\ Ant_{2b} \\ Ant_{2c} \\ Ant_{3b} \\ Ant_{3c} \\ Ant_{3c} \\ Ant_{4c} \\ An$	9442 RRH2x40-AWS 9442 RRH2x40-AWS W8X066X19R050G BXA-70063-6CF-EDIN BXA-171085-12CF-ED	Width (in.) 12.00 7.00	Depth (in.) 8.00 3.00 7.00 4.00	Height (in.) 25.00 77.00 72.00 72.00	Coax Size and Qty	Antenna Center- line (Ft.) 177.717 176.467 173.467 173.467	[Units are inc Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} "(Inches) 21.00 36.00 72.00 72.00	hes and deg Horiz. Offset "h" (Use "-" if Ant. is behind) -7.00 6.00 12.00 7.00	grees] Antenna Azimuth (Degrees) 45.00 45.00 45.00	anten Pho Numb 58 26,5 27,5 28,6 28,6
EC B	G A (Antso S A (Antso Antso S A (Antso S A (Antso Antso Antso Antso Antso Antso Antso	$\begin{array}{c c} \\ Ant_{1a} \\ Ant_{1b} \\ Ant_{1c} \\ Ant_{2a} \\ Ant_{2a} \\ Ant_{2b} \\ Ant_{2c} \\ Ant_{3b} \\ Ant_{3c} \\ Ant_{3c} \\ Ant_{4c} \\ Ant_{4c} \\ Ant_{5c} \\ $	9442 RRH2x40-AWS 9442 RRH2x40-AWS W8X066X19R050G BXA-70063-6CF-EDIN BXA-171085-12CF-ED	Width (in.) 12.00 7.00	Depth (in.) 8.00 3.00 7.00 4.00	Height (in.) 25.00 77.00 72.00 72.00	Coax Size and Qty	Antenna Center- line (Ft.) 177.717 176.467 173.467 173.467	[Units are inc Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} "(Inches) 21.00 36.00 72.00 72.00	hes and deg Horiz. Offset "h" (Use "-" if Ant. is behind) -7.00 6.00 12.00 7.00	grees] Antenna Azimuth (Degrees) 45.00 45.00 45.00	anten Phot Numb 58 26,5 27,5 27,5 28,6
EG B	G A (Antso S A (Antso Antso S A (Antso S A (Antso Antso Antso Antso Antso Antso Antso	$\begin{array}{c} \\ Ant_{1a} \\ Ant_{1b} \\ Ant_{1c} \\ Ant_{2a} \\ Ant_{2a} \\ Ant_{2b} \\ Ant_{2c} \\ Ant_{3b} \\ Ant_{3c} \\ Ant_{3c} \\ Ant_{4c} \\ An$	9442 RRH2x40-AWS 9442 RRH2x40-AWS W8X066X19R050G BXA-70063-6CF-EDIN BXA-171085-12CF-ED	Width (in.) 12.00 7.00	Depth (in.) 8.00 3.00 7.00 4.00	Height (in.) 25.00 77.00 72.00 72.00	Coax Size and Qty	Antenna Center- line (Ft.) 177.717 176.467 173.467 173.467	[Units are inc Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} "(Inches) 21.00 36.00 72.00 72.00	hes and deg Horiz. Offset "h" (Use "-" if Ant. is behind) -7.00 6.00 12.00 7.00	grees] Antenna Azimuth (Degrees) 45.00 45.00 45.00	anten Pho Numb 58 26,5 27,5 28,6 28,6
EG B	G A (Antso S A (Antso Antso S A (Antso S A (Antso Antso Antso Antso Antso Antso Antso	$\begin{array}{c c} \\ Ant_{1a} \\ Ant_{1b} \\ Ant_{1c} \\ Ant_{2a} \\ Ant_{2a} \\ Ant_{2b} \\ Ant_{2c} \\ Ant_{3b} \\ Ant_{3c} \\ Ant_{3c} \\ Ant_{4c} \\ Ant_{4c} \\ Ant_{5c} \\ $	9442 RRH2x40-AWS 9442 RRH2x40-AWS W8X066X19R050G BXA-70063-6CF-EDIN BXA-171085-12CF-ED	Width (in.) 12.00 7.00	Depth (in.) 8.00 3.00 7.00 4.00	Height (in.) 25.00 77.00 72.00 72.00	Coax Size and Qty	Antenna Center- line (Ft.) 177.717 176.467 173.467 173.467	[Units are inc Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} "(Inches) 21.00 36.00 72.00 72.00	hes and deg Horiz. Offset "h" (Use "-" if Ant. is behind) -7.00 6.00 12.00 7.00	grees] Antenna Azimuth (Degrees) 45.00 45.00 45.00	anten Phot Numb 58 26,5 27,5 27,5 28,6
LEG B SECTOR A LEG Antia Antia Antia Antia Antia Antia Antia Antia Antia Antia Antia	G A (Antso State Anteso Antso State Anteso State Anteso	$\begin{array}{c c} \\ Ant_{1a} \\ Ant_{1b} \\ Ant_{1c} \\ Ant_{2a} \\ Ant_{2a} \\ Ant_{2b} \\ Ant_{2c} \\ Ant_{3b} \\ Ant_{3c} \\ Ant_{3c} \\ Ant_{4a} \\ Ant_{4c} \\ Ant_{5c} \\ Ant_{5b} \\ \end{array}$	9442 RRH2x40-AWS 9442 RRH2x40-AWS W8X066X19R050G BXA-70063-6CF-EDIN BXA-171085-12CF-ED	Width (in.) 12.00 7.00	Depth (in.) 8.00 3.00 7.00 4.00	Height (in.) 25.00 77.00 72.00 72.00	Coax Size and Qty	Antenna Center- line (Ft.) 177.717 176.467 173.467 173.467	[Units are inc Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} "(Inches) 21.00 36.00 72.00 72.00	hes and deg Horiz. Offset "h" (Use "-" if Ant. is behind) -7.00 6.00 12.00 7.00	grees] Antenna Azimuth (Degrees) 45.00 45.00 45.00	anteni Phot Numb 58 26,5 27,5 27,5 28,6
LEG B SECTOR A LEG B SECTOR A LEG Antia	G A (Antso S A (Antso Antso S A (Antso S A (Antso Antso Antso Antso Antso Antso Antso	$\begin{tabular}{ c c c c c c c } \hline Ant_{1a} & Ant_{1b} & Ant_{1c} & Ant_{1c} & Ant_{2a} & Ant_{2a} & Ant_{2a} & Ant_{2a} & Ant_{3b} & Ant_{3c} & Ant_{4a} & Ant_{4a} & Ant_{4a} & Ant_{4c} & Ant_{4c$	9442 RRH2x40-AWS 9442 RRH2x40-AWS W8X066X19R050G BXA-70063-6CF-EDIN BXA-171085-12CF-ED	Width (in.) 12.00 7.00	Depth (in.) 8.00 3.00 7.00 4.00	Height (in.) 25.00 77.00 72.00 72.00	Coax Size and Qty	Antenna Center- line (Ft.) 177.717 176.467 173.467 173.467	[Units are inc Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} "(Inches) 21.00 36.00 72.00 72.00	hes and deg Horiz. Offset "h" (Use "-" if Ant. is behind) -7.00 6.00 12.00 7.00	grees] Antenna Azimuth (Degrees) 45.00 45.00 45.00	anteni Phot Numb 58 26,5 27,5 27,5 28,6
LEG B SECTOR A LEG B SECTOR A LEG Antia	G A (Antso State Anteso Antso State Anteso State Anteso	Antia Antia Antitu Antic	9442 RRH2x40-AWS 9442 RRH2x40-AWS W8X066X19R050G BXA-70063-6CF-EDIN BXA-171085-12CF-ED	Width (in.) 12.00 7.00	Depth (in.) 8.00 3.00 7.00 4.00	Height (in.) 25.00 77.00 72.00 72.00	Coax Size and Qty	Antenna Center- line (Ft.) 177.717 176.467 173.467 173.467	[Units are inc Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} "(Inches) 21.00 36.00 72.00 72.00	hes and deg Horiz. Offset "h" (Use "-" if Ant. is behind) -7.00 6.00 12.00 7.00	grees] Antenna Azimuth (Degrees) 45.00 45.00 45.00	anteni Phot Numb 58 26,5 27,5 27,5 28,6
LEG B SECTOR A LEG B SECTOR A LEG Antia	G A (Antso State Anteso Antso State Anteso State Anteso	Ant _{1a} Ant _{1b} Ant _{1c} Ant _{2a} Ant _{2a} Ant _{2a} Ant _{2a} Ant _{3b} Ant _{3b} Ant _{4a} Ant _{4a} Ant _{4b} Ant _{5a} Ant ₅ Ant ₅	9442 RRH2x40-AWS 9442 RRH2x40-AWS W8X066X19R050G BXA-70063-6CF-EDIN BXA-171085-12CF-ED	Width (in.) 12.00 7.00	Depth (in.) 8.00 3.00 7.00 4.00	Height (in.) 25.00 77.00 72.00 72.00	Coax Size and Qty	Antenna Center- line (Ft.) 177.717 176.467 173.467 173.467	[Units are inc Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} "(Inches) 21.00 36.00 72.00 72.00	hes and deg Horiz. Offset "h" (Use "-" if Ant. is behind) -7.00 6.00 12.00 7.00	grees] Antenna Azimuth (Degrees) 45.00 45.00 45.00	antenr Phot Numb 58 26,5 27,5 27,5 28,6
LEG B SECTOR A LEG Antia An	G A (Antso State Anteso Antso State Anteso State Anteso	Ant _{1a} Ant _{1b} Ant _{1b} Ant _{2b} Ant _{2b}	9442 RRH2x40-AWS 9442 RRH2x40-AWS W8X066X19R050G BXA-70063-6CF-EDIN BXA-171085-12CF-ED	Width (in.) 12.00 7.00	Depth (in.) 8.00 3.00 7.00 4.00	Height (in.) 25.00 77.00 72.00 72.00	Coax Size and Qty	Antenna Center- line (Ft.) 177.717 176.467 173.467 173.467	[Units are inc Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} "(Inches) 21.00 36.00 72.00 72.00	hes and deg Horiz. Offset "h" (Use "-" if Ant. is behind) -7.00 6.00 12.00 7.00	grees] Antenna Azimuth (Degrees) 45.00 45.00 45.00	Photos antenn Numb 58 26,5 27,5 28,6 28,6 29,6 29,6
LEG B SECTOR A LEG Antia	G A C A C A C A C A C A C A C A C	Ant _{1a} Ant _{1b} Ant _{1c} Ant _{2a} Ant _{2a} Ant _{2a} Ant _{2a} Ant _{3b} Ant _{3b} Ant _{4a} Ant _{4a} Ant _{4b} Ant _{5a} Ant ₅ Ant ₅	9442 RRH2x40-AWS 9442 RRH2x40-AWS W8X066X19R050G BXA-70063-6CF-EDIN BXA-171085-12CF-ED	Width (in.) 12.00 7.00	Depth (in.) 8.00 3.00 7.00 4.00	Height (in.) 25.00 77.00 72.00 72.00	Coax Size and Qty	Antenna Center- line (Ft.) 177.717 176.467 173.467 173.467	[Units are inc Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} "(Inches) 21.00 36.00 72.00 72.00	hes and deg Horiz. Offset "h" (Use "-" if Ant. is behind) -7.00 6.00 12.00 7.00	grees] Antenna Azimuth (Degrees) 45.00 45.00 45.00	anteni Phot Numb 58 26,5 27,5 27,5 28,6

Ant on Tower

Antenna Layout (Looking Out From Tower)

Mou	int Az	imuth	(Deg	ree)		Tower Leg Azi	muth (Degree)						Sector E	3				
		ach Se		,		for Each		Ant _{1a}	9442 RRH2x40-AWS	12.00	8.00	25.00		177.717	21.00	-7.00		61
Sector A:		15.00	De	g L	eg A:		Deg	Ant _{1b}	W8X066X19R050G	7.00	3.00	77.00		176.467	36.00	6.00	165.00	34,61
Sector B:		65.00	De		eg B:		Deg	Ant _{1c}		I								
Sector C:	2	85.00	De	_	eg C:		Deg	Ant _{2a}										
Sector D:					eg D:		Deg	Ant _{2b}	BXA-70063-6CF-EDIN	- 11.00	7.00	72.00		176.967	30.00	12.00	165.00	35,62
		0.00	Cli		ng Fac	ility Information		Ant _{2c}										
Location:	4	Corro	_	_		N/A Good condition.		Ant _{3a} Ant _{3b}	BXA-171085-12CF-ED	6.00	4.00	72.00		173.467	72.00	7.00	165.00	36,63
Climbing			ccess	_		Climbing path was of	bstructed.	Ant _{3b}	BAA-171085-12CF-ED	8.00	4.00	72.00		175.467	72.00	7.00	105.00	50,0
Facility			nditio			Good condition.		Ant _{4a}		<u> </u>								
								Ant _{4b}	BXA-70080-6CF-EDIN	8.00	5.00	72.00		173.467	72.00	10.00	165.00	36,6
								Ant _{4c}		<u> </u>								,
								Ant _{5a}										
								Ant _{sb}										
								Ant _{5c}										
								Ant or										
								Stando Ant or										
								Stando										
Plea	ase in	isert a	ohoto	o of t	he mo	ount centerline measu	urement here.	Ant or										
								Tower Ant or		<u> </u>								
								Tower										
													Sector C					
								Ant _{1a}	9442 RRH2x40-AWS	12.00	8.00	25.00		177.717	21.00	-7.00		64
								Ant _{1b}	W8X066X19R050G	7.00	3.00	77.00		176.467	36.00	6.00	285.00	41,6
								Ant _{1c}		-								
								Ant _{2a} Ant _{2b}	BXA-70063-6CF-EDIN	- 11.00	7.00	72.00		176.967	30.00	12.00	285.00	42,6
								Ant _{2b}	BAA-70003-0CF-EDIN	11.00	7.00	72.00		170.507	30.00	12.00	285.00	42,0
			6	ar	11			Ant _{3a}		<u> </u>								
г	1	2	.		I A	<u>L</u>		Ant _{3b}	BXA-171085-12CF-ED	6.00	4.00	72.00		176.633	34.00	7.00	285.00	43,6
								Ant _{3c}		<u> </u>								
			11	Щ				Ant _{4a}										
L	T.	Ļ			ΠΨ	TIP OF EQUIPMENT	r.	Ant _{4b}	BXA-70080-6CF-EDIN	8.00	5.00	72.00		176.967	30.00	10.00	285.00	43,6
								Ant _{4c}										
							DISTANCE FROM TOP OF MAIN PLATFORM MEMBER TO LOWES OF ANT/EQPT. OF CARRIER A (N/A IF > 10 PL)	Ant _{5a}										
			TT		T			Ant _{sb}		<u> </u>								
	ŧ				÷π.		DISTANCE FROM TOP OF MAIN	Ant _{5c}		<u> </u>								
STING PLATFORM-					11		DISTANCE FROM TOP OF MAIN PLATFORM MEMBER TO HIGHE OF ANT./EQI'T. OF CARMER E (N/A IF > 10 FT.)	Ant or Stando										
Г	1	L.			ll n		L	Ant or										
								Stando		<u> </u>								
c					11			Ant or Tower										
	Ļ	Ļ						Ant or										
			C	FLATFOR	Ш			Tower					Sector D					
ſ	7	ſ	1	PLAIFUR	n n n n n n n n n n n n n n n n n n n	Ē		Ant _{1a}		T			Sector	,				
		_		K				Ant _{1b}		<u> </u>								
								Ant _{1c}										
٩.,				Ť	≡.þ			Ant _{za}										
					/		[Ant _{2b}										
-		Ē	1				DISTANCE FROM TOP OF BU SUPPORT RAIL TO LOWEST ANT./EQFT. OF CARRIER AE (N/A IF > 10 FT.)	TEM Ant _{2c}										
-							ANT./EQPT. OF CARRIER AE (N/A IF > 10 FT.)											
					1			Ant _{3b}										
-		74		Ï.	ĻF		DISTANCE FROM TOD OF D	Ant _{3c}		-								
ING SECTOR FRA		· · ·					DISTANCE FROM TOP OF BO SUPPORT RAIL TO HIGHEST ANT./EOPT. OF CARRIER BE (N/A IF > 10 FT.)	TP OF Ant _{4a}										
						TIP OF EQUIPMENT		Ant _{4b} Ant _{4c}										
Ľ	7	Ľ	1		Ϊ			Ant _{4c} Ant _{5a}										
c				Î	ŦÞ			Ant _{Sa}	_									
e.				1	# =	 		Ant _{Sc}										
L	_	L,	4		ų			Ant or										
	(pl					and the could store for	the main strend of	Stando										
						ord the weld size from ar. See below for refere		Ant or Stando										
//	p	>	~		- 2011		11	Ant or										
//	/			-			\swarrow	Tower										
T							7	Ant or Tower										
ľ	P	Ì				REPORT VE STANDUFF INTE COLLA	LD SIZE FROM TO PLATE BOLTING AR MOUNT.											

	Observed Safety and Structural Issues During the Mount Mapping	
lssue #	Description of Issue	Photo #
1	BENT CLIMBING PEG	140
2	SAFETY CLIMB IS TWISTED AT TOP	57
3	SAFETY CLIMB IS TRAPPED BEHIND RING MOUNT	139
4		
5		
6		
7		
8		

	Observed Obstructions to Tower Lighting System													
If the tower lighting system is being obst	the tower lighting system is being obstructed by the carrier's equipment (for example: a light nested by the antennas), please provide photos and fill in the information below. Photo #													
Description of Obstruction:	Description of Obstruction:													
Type of Light:	Pho	oto #	Additional Comments:											
Lighting Technology:	Pho	oto #												
Elevation (AGL) at base of light (Ft.):	Pho	oto #												
Is a service loop available?	Is a service loop available? Photo # Photo #													
Is beacon installed on an extension?	Pho	oto #												

Mapping Notes

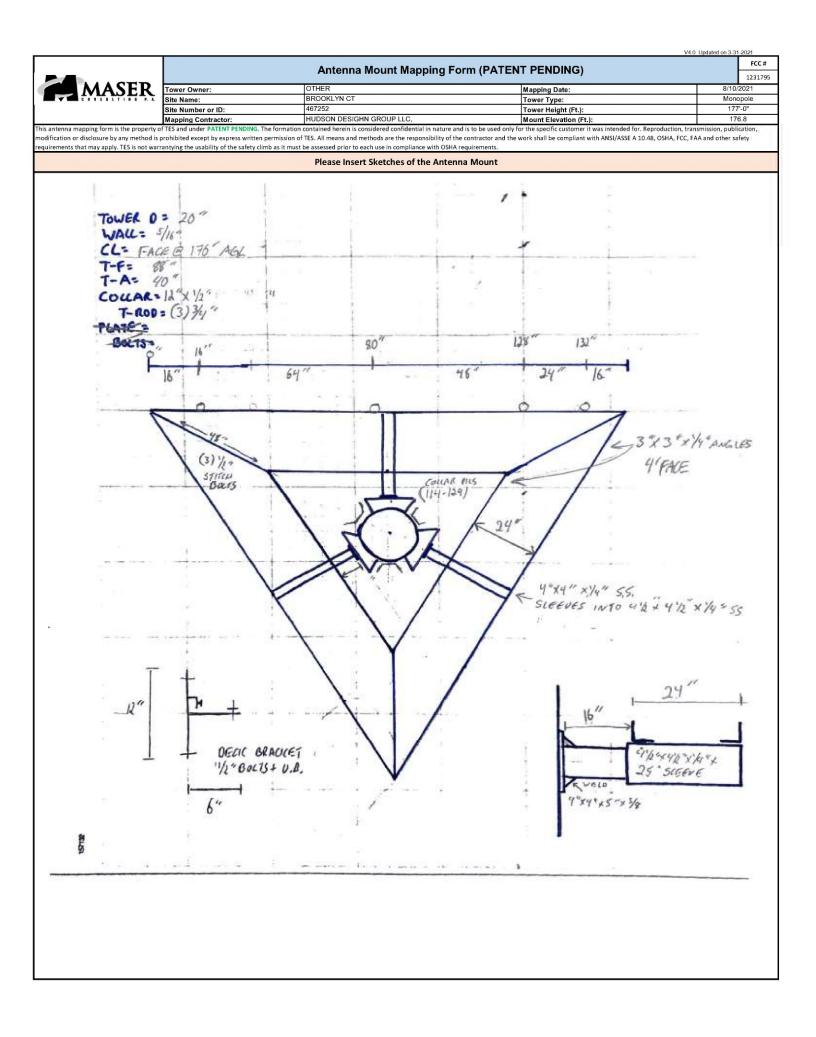
1. Please report any visible structural or safety issues observed on the antenna mounts (Damaged members, loose connections, tilting mounts, safety climb issues, etc.)

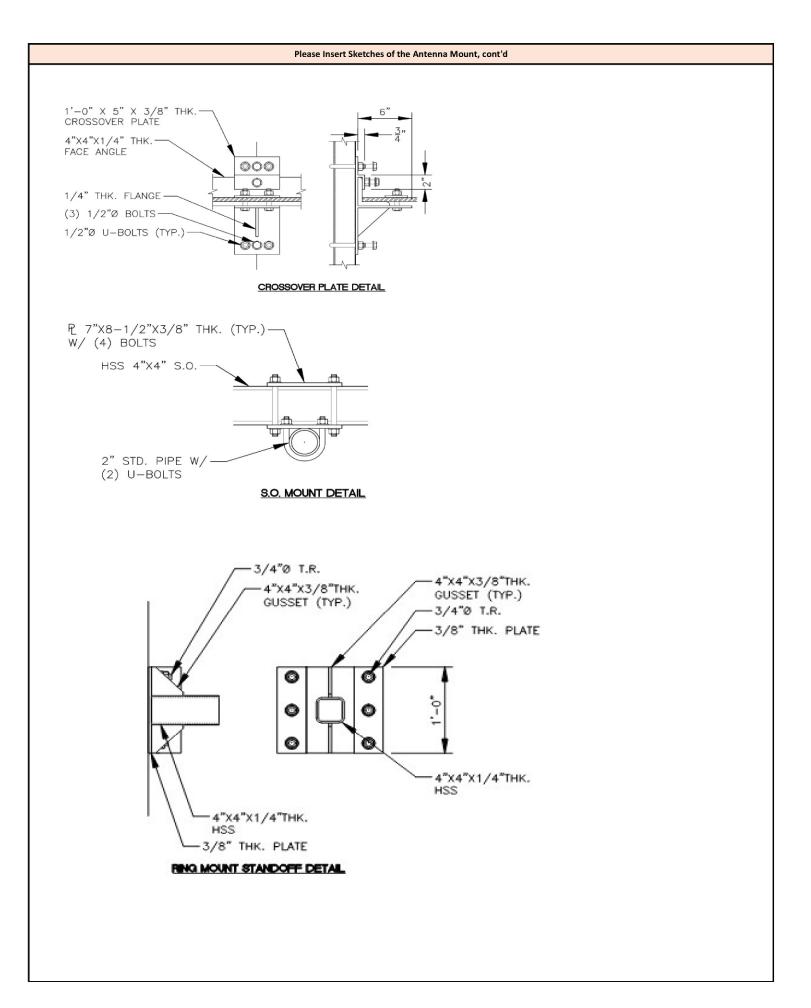
2. If the thickness of the existing pipes or tubing can't be obtained from a general tool (such as Caliper), please use an ultrasonic measurement tool (thickness gauge) to measure the thickness.

3. Please create all required detail sketches of the mounts and insert them into the "Sketches" tab.

4. Please measure and enter the bolt sizes and types under the Members Box in the spreadsheet of the mount type.

5. Take and label the photos of the tower, mounts, connections, antennas and all measurements. Minimum 50 photos are required.


6. Please measure and report the size and length of all existing antenna mounting pipes.

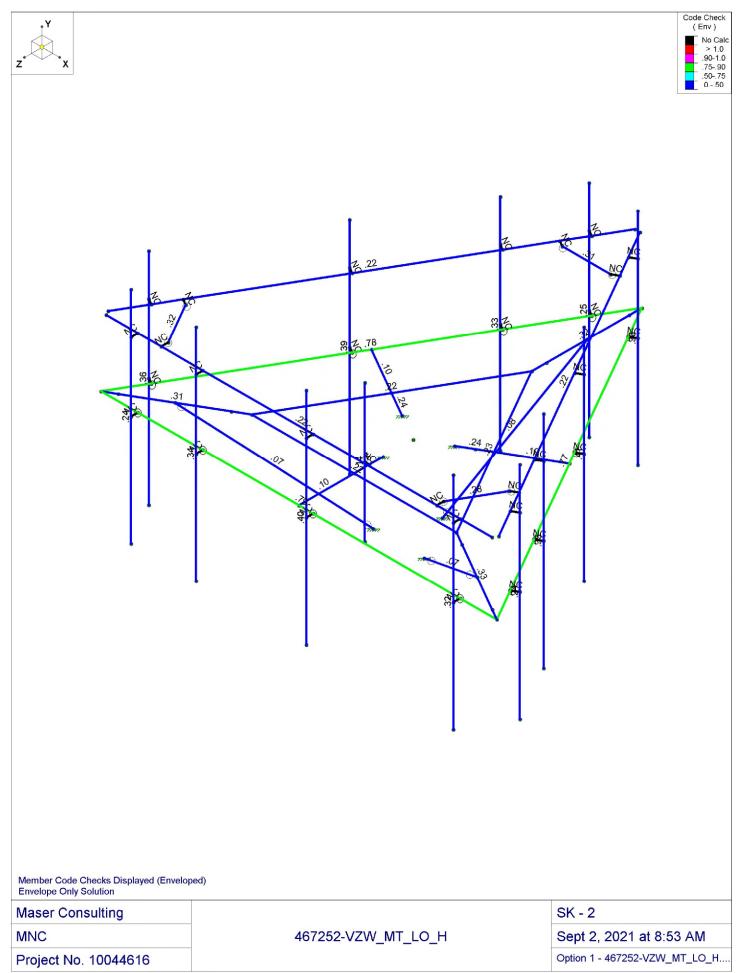

7. Please measure and report the antenna information for all sectors.

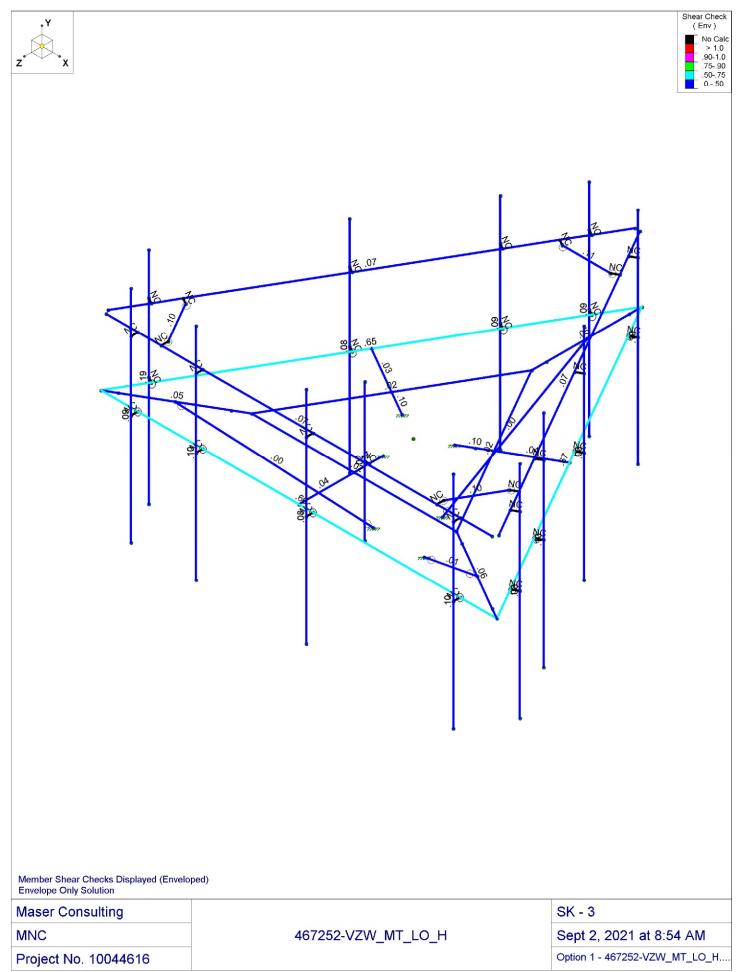
8. Don't delete or rearrange any sheet or contents of any sheet from this mapping form.

Standard Conditions

1. Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping are to be reported in this mapping. However, this mount mapping is not a condition assessment of the mount.

Please Insert Sketches of the Antenna Mount, cont'd


Please Insert Sketches of the Antenna Mount, cont'd


Please Insert Sketches of the Antenna Mount, cont'd

				Ant	enna	Mount Mapping Form (PATEN			ated on 3-31-202	21 FCC #
MA	OTT				enna					1231795
MA	SER	Tower Owner:		OTHER	VALOT		Mapping Date:		8/10/202	
	TING P.A.	Site Name: Site Number or ID:		BROOKL 467252	INCI		Tower Type:	/E4 \-	Monopol 177'-0"	
		Site Number of ID: Mapping Contractor:			DESIGH	GROUP LLC,	Tower Height		176.8	
		f TES and under PATENT PENDING. The		contained h	nerein is cor	sidered confidential in nature and is to be used only t	or the specific cust	omer it was intended for. Reproduction, transmis	sion, publicatio	on,
nodification or disclosure by	any method is TES is not war	prohibited except by express written pe	rmission of	TES. All me	ans and me	thods are the responsibility of the contractor and the ch use in compliance with OSHA requirements.	work shall be com	pliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA ar	id other safety	
equirements that may apply	r. TES IS NOL WAIT	antying the usability of the safety clinic	as it must i	Je assesseu	prior to ea	ch use in compliance with OSHA requirements.				
			_	Plea	se enter i	nformation about transmission lines.				_
Transmission		Diameter/Size (in.)	Locat	ed on	Photo					
Line Type	Quantity	Please add a description if	Towe		#		Additiona	Comments		
(Pick from List)		using type "Other".				All Sectors				
<u>(</u>	12	1-5/8"		IDE	22	All Sectors				
Coax	12			IDE						
Hybrid	1	1-1/4"		IDE	22					
				Please	nter info	mation about additional RF equipment.				
Equipment Type	1		Width	Depth	Height					
(Pick from List)	Quantity	Model Numbers if Known	(in.)	(in.)	(in.)	Location	Photo #	Additional Comments		
protection clocy						Sector A		•		
OVP	1	RHSDC-3315-PF-48	15.00	10.00	28.00	MOUNT STAND OFF	103	2" STD. PIPE X 36" LONG "U" = 31"		
			<u> </u>							
			<u> </u>							
			<u> </u>							
			<u> </u>							
						farster P				
	-	1		-	1	Sector B	-	1		
						Sector C				
										_
										_
										_
			1							

Equipment Type (Pick from List)	Quantity	Model Numbers if Known	Width (in.)	Depth (in.)	Height (in.)	Location	Photo #	Additional Comments
	•					Sector D		
						Ground Equipment		

Envelope Only Solution		SK - 1
Maser Consulting	ACTOCO VIZIAL NAT LO LL	SK - 1
MNC	467252-VZW_MT_LO_H	Sept 2, 2021 at 8:53 AM
Project No. 10044616		Option 1 - 467252-VZW_MT_LO_H

Basic Load Cases

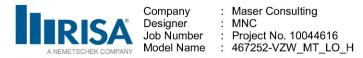
	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Antenna D	None					93			
2	Antenna Di	None					93			
3	Antenna Wo (0 Deg)	None					93			
4	Antenna Wo (30 Deg)	None					93			
5	Antenna Wo (60 Deg)	None					93			
6	Antenna Wo (90 Deg)	None					93			
7	Antenna Wo (120 Deg)	None					93			
8	Antenna Wo (150 Deg)	None					93			
9	Antenna Wo (180 Deg)	None					93			
	Antenna Wo (210 Deg)	None					93			
	Antenna Wo (240 Deg)	None					93			
12	Antenna Wo (270 Deg)	None					93			
13	Antenna Wo (300 Deg)	None					93			
14	Antenna Wo (330 Deg)	None					93			
15	Antenna Wi (0 Deg)	None					93			
16	Antenna Wi (30 Deg)	None					93			
17	Antenna Wi (60 Deg)	None					93			
18	Antenna Wi (90 Deg)	None					93			
19	Antenna Wi (120 Deg)	None					93			
20	Antenna Wi (150 Deg)	None					93			
21	Antenna Wi (180 Deg)	None					93			
22	Antenna Wi (210 Deg)	None					93			
23	Antenna Wi (240 Deg)	None					93			<u> </u>
24	Antenna Wi (270 Deg)	None					93			
25	Antenna Wi (300 Deg)	None					93			
26	Antenna Wi (330 Deg)	None					93			
27	Antenna Wm (0 Deg)	None					93			
28	Antenna Wm (30 Deg)	None					93			
29	Antenna Wm (60 Deg)	None					93			
	Antenna Wm (90 Deg)	None					93			
	Antenna Wm (120 Deg)	None					93			
	Antenna Wm (150 Deg)	None					93			
	Antenna Wm (180 Deg)	None					93			
	Antenna Wm (210 Deg)	None					93			
	Antenna Wm (240 Deg)	None					93			<u> </u>
	Antenna Wm (270 Deg)	None					93			
	Antenna Wm (300 Deg)	None					93			1
	Antenna Wm (330 Deg)	None					93			
39	Structure D	None		-1					3	
40	Structure Di	None						37	3	
40	Structure Wo (0 Deg)	None						74		
42	Structure Wo (30 Deg)	None						74		
42	Structure Wo (60 Deg)	None						74		
43	Structure Wo (90 Deg)	None						74		
44	Structure Wo (30 Deg)	None						74		
45	Structure Wo (120 D	None						74		
40	Structure Wo (180 D	None						74		
47	Structure Wo (180 D	None						74		+
40	Structure Wo (240 D	None						74		
	Structure Wo (240 D	None						74		+
<u>50</u> 51	Structure Wo (270 D							74		
51	Structure Wo (300 D	None								
	Structure Wi (0 Deg)	None						74		
53		None						74		
DIC	A-3D Version 17.0.4	IR·\ \ \ \				on 1 167	050 1/711	MTIO	LL *2 41	Dere 4

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
54	Structure Wi (30 Deg)	None						74		
55	Structure Wi (60 Deg)	None						74		
56	Structure Wi (90 Deg)	None						74		
57	Structure Wi (120 De	None						74		
58	Structure Wi (150 De	None						74		
59	Structure Wi (180 De	None						74		
60	Structure Wi (210 De	None						74		
61	Structure Wi (240 De	None						74		
62	Structure Wi (270 De	None						74		
63	Structure Wi (300 De	None						74		
64	Structure Wi (330 De	None						74		
65	Structure Wm (0 Deg)	None						74		
66	Structure Wm (30 De	None						74		
67	Structure Wm (60 De	None						74		
68	Structure Wm (90 De	None						74		
69	Structure Wm (120 D	None						74		
70	Structure Wm (150 D	None						74		
71	Structure Wm (180 D	None						74		
72	Structure Wm (210 D	None						74		
73	Structure Wm (240 D	None						74		
74	Structure Wm (270 D	None						74		
75	Structure Wm (300 D	None						74		
76	Structure Wm (330 D	None						74		
77	Lm1	None					1			
78	Lm2	None					1			
79	Lv1	None					1			
80	Lv2	None					1			
81	BLC 39 Transient Are	None						30		
82	BLC 40 Transient Are	None						30		

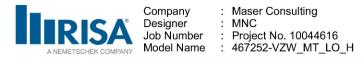
Load Combinations

	Description			S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	<u>Fa</u>
1	1.2D+1.0Wo (0	.Yes	Y		1	1.2	39	1.2	3	1	41	1												
2	1.2D+1.0Wo (30.				1	1.2	39	1.2	4	1	42	1												
3	1.2D+1.0Wo (60.	.Yes	Y		1	1.2	39	1.2	5	1	43	1												
4	1.2D+1.0Wo (90.	.Yes	Y		1	1.2	39	1.2	6	1	44	1												
5	1.2D+1.0Wo (12.	.Yes	Y		1	1.2	39	1.2	7	1	45	1												
6	1.2D+1.0Wo (15.	.Yes	Y		1	1.2	39	1.2	8	1	46	1												
7	1.2D+1.0Wo (18.	.Yes	Y		1	1.2	39	1.2	9	1	47	1												
8	1.2D+1.0Wo (21.	.Yes	Y		1	1.2	39	1.2	10	1	48	1												
9	1.2D+1.0Wo (24.	.Yes	Y		1	1.2	39	1.2	11	1	49	1												
10	1.2D+1.0Wo (27.	.Yes	Y		1	1.2	39	1.2	12	1	50	1												
11	1.2D+1.0Wo (30.	.Yes	Y		1	1.2	39	1.2	13	1	51	1												
12	1.2D+1.0Wo (33.	.Yes	Y		1	1.2	39	1.2	14	1	52	1												
13	1.2D + 1.0Di + 1.	.Yes	Y		1	1.2	39	1.2	2	1	40	1	15	1	53	1								
14	1.2D + 1.0Di + 1.	.Yes	Y		1		39		2	1	40	1	16		54	1								
15	1.2D + 1.0Di + 1.	.Yes	Y		1	1.2	39	1.2	2	1	40	1	17	1	55	1								
16	1.2D + 1.0Di + 1.	.Yes	Y		1		39		2	1	40	1	18	1	56	1								
17	1.2D + 1.0Di + 1.	.Yes	Y		1	1.2	39	1.2	2	1	40	1	19	1	57	1								
18	1.2D + 1.0Di + 1.	.Yes	Y		1	1.2	39	1.2	2	1	40	1	20	1	58	1								
19	1.2D + 1.0Di + 1.	.Yes	Y		1				2	1	40	1	21	1	59	1								
20	1.2D + 1.0Di + 1.	.Yes	Y		1		39		2	1	40	1	22	1	60	1								
21	1.2D + 1.0Di + 1.	.Yes	Y		1		_		2	1	40	1	23	1	61	1								
22	1.2D + 1.0Di + 1.	.Yes	Y		1		39		2	1	40	1	24		62	1								
	1.2D + 1.0Di + 1.	.Yes	Ý		1	1.2			2	1	40	1	25		63	1								



Load Combinations (Continued)

	Description	S	PDelta	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
24	1.2D + 1.0Di + 1.	.Yes			1			1.2		1	40		26		64									
	1.2D + 1.5Lm1	Yes	Y		1			1.2		1.5	27	1	65											\square
26	1.2D + 1.5Lm1	Yes	Y		1	1.2		1.2				1	66											
27	1.2D + 1.5Lm1	Yes	Y		1	1.2		1.2				1	67	1										\square
28	1.2D + 1.5Lm1	Yes	Y		1	1.2		1.2			30	1	68	1										
29	1.2D + 1.5Lm1	Yes	Y		1	1.2	39	1.2	77	1.5	31	1	69	1										
30	1.2D + 1.5Lm1	Yes	Y		1	1.2		1.2			32	1	70	1										
31	1.2D + 1.5Lm1	Yes	Y		1	1.2	39	1.2	77	1.5	33	1	71	1										
32	1.2D + 1.5Lm1	Yes	Y		1	1.2	39	1.2	77	1.5	34	1	72	1										
	1.2D + 1.5Lm1		Y		1	1.2	39	1.2	77	1.5	35	1	73	1										
34	1.2D + 1.5Lm1	Yes	Y		1	1.2	39	1.2	77	1.5	36	1	74	1										
35	1.2D + 1.5Lm1	Yes	Y		1	1.2	39	1.2	77	1.5	37	1	75	1										
36	1.2D + 1.5Lm1	Yes	Y		1	1.2		1.2				1	76	1										
<u> </u>	1.2D + 1.5Lm2		Y		1	1.2		1.2			27	1	65	1										
	1.2D + 1.5Lm2		Y		1	1.2		1.2			28	1	66	1										
00	1.2D + 1.5Lm2		Y		1	1.2	39	1.2	78	1.5	29	1	67	1										
	1.2D + 1.5Lm2	_	Y		1	1.2		1.2				1	68	1										
	1.2D + 1.5Lm2		Y		1	1.2		1.2				1	69	1										
	1.2D + 1.5Lm2	-	Y		1	1.2		1.2				1	70	1										
43	1.2D + 1.5Lm2	Yes	Y		1	1.2		1.2				1	71	1										
44	1.2D + 1.5Lm2		Y		1	1.2		1.2			34	1	72	1										
	1.2D + 1.5Lm2		Y		1	1.2		1.2			35	1	73	1										
	1.2D + 1.5Lm2		Y		1	1.2		1.2				1	74	1										
	1.2D + 1.5Lm2	+ +	Y		1	1.2		1.2				1	75	1										
	1.2D + 1.5Lm2	-	Y		1	1.2		1.2			38	1	76	1										
	1.2D + 1.5Lv1		Y		1	1.2		1.2																
	1.2D + 1.5Lv2		Y		1	1.2	39	1.2	80	1.5														
51	1.4D	Yes	Y		1		39	1.4																
52	Seismic Mass	-	Y		1	1	39																	
	1.2D + 1.0Ev +		Y		1			1.2			SY		SZ											
	1.2D + 1.0Ev +		Y		1	1.2		1.2			SY			866										
	1.2D + 1.0Ev +	-	Y		1	1.2		1.2				1	SZ	5										
	1.2D + 1.0Ev +		Y		1			1.2			SY	1	SZ											
- · ·	1.2D + 1.0Ev +		Y		1	1.2		1.2				1	SZ	.5										
	1.2D + 1.0Ev +		Y		1	1.2		1.2		.5	SY	1		.866										
	1.2D + 1.0Ev +		Y		1	1.2		1.2		_	SY	1	SZ	1										
~~	1.2D + 1.0Ev +		Y		1	1.2		1.2						.866										
V 1	1.2D + 1.0Ev +		Y		1			1.2				1	SZ	.5										\square
	1.2D + 1.0Ev +		Y		1			1.2			SY		SZ											
	1.2D + 1.0Ev +	-	Y		1			1.2					SZ											
64	1.2D + 1.0Ev +		Y		1	1.2	39	1.2	SX	5	SY	1	SZ	866										


Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
1	CP	0.	0	-0.	Ó	
2	N2	0.	0	1.095417	0	
3	N10	-0.	0	-4.291667	0	
4	N11	-0.	0	-4.833334	0	
5	N12	-0.	0	-6.333334	0	
6	N13	-0.	0	-7.833334	0	
7	N14	-0.	0	-8.291667	0	
8	N15	-3.716693	0	2.145833	0	
9	N16	-7.180794	0	4.145833	0	
10	N17	3.716693	0	2.145833	0	
11	N18	7.180794	0	4.145833	0	

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
12	N15A	0.	0	2.145833	0	
13	N16A	0.	0	4.145833	0	
14	N15B	-4.18579	0	2.416667	0	
15	N16B	-5.484828	0	3.166667	0	
16	N17A	-6.783866	0	3.916667	0	
17	N18A	4.18579	0	2.416667	0	
18	N19	5.484828	0	3.166667	0	
19	N20	6.783866	0	3.916667	0	
20	N67	3.597461	0	-2.060682	0	
21	<u>N77</u>	0.948658	0	-0.547709	0	
22	N78	1.858346	0	-1.072917	0	
23	N91	-3.583333	0	-2.085151	0	
24	N109	-0.948659	0	-0.547708	0	
25	N110	-1.858346	0	-1.072917	0	
26	N108A	3.590397	0	-2.072917	0	
27	N110A	-3.590397	0	-2.072917	0	
28	N119B	1.425334	0	-0.822917	0	
29	N35	5.847461	0	4.145833	0	
30	N36	5.847461	0	4.395833	0	
31	N34	5.847461	4	4.395833	0	
32	N35A	5.847461	-4	4.395833	0	
33	N36A	0.514127	0	4.145833	0	
34	N37	0.514127	0	4.395833	0	
35	N38	0.514127	4	4.395833	0	
36	N39	0.514127	-4	4.395833	0	
37	N40	-3.485873	0	4.145833	0	
38	N41	-3.485873	0	4.395833	0	
39	N42	-3.485873	4	4.395833	0	
40	N43	-3.485873	-4	4.395833	0	
41	N44	-5.847464	0	4.145833	0	
42	N45	-5.847464	0	4.395833	0	
43	N46	-5.847464	4	4.395833	0	
44	N47	-5.847464	-4	4.395833	0	
45	N48	0.666667	0	-7.136966	0	
46	N49	0.883173	0	-7.261966	0	
47	N50	0.883173	4	-7.261966	0	
48	N51	0.883173	-4	-7.261966	0	
49	N52	3.333333	0	-2.518164	0	
50	N53	3.54984	0	-2.643164	0	
51	N54	3.54984	4	-2.643164	0	
52	N55	3.54984	-4	-2.643164	0	
53	N56	5.333333	0	0.945937	0	
54	N57	5.54984	0	0.820937	0	
55	N58	5.54984	4	0.820937	0	
56	N59	5.54984	-4	0.820937	0	
57	N60	6.514129	0	2.991136	0	
58	N61	6.730636	0	2.866136	0	
59	N62	6.730636	4	2.866136	0	
60	N63	6.730636	-4	2.866136	0	
61	N64	-6.514127	0	2.991133	0	
62	N65	-6.730634	0	2.866133	0	
63	N66	-6.730634	4	2.866133	0	
64	N67A	-6.730634	-4	2.866133	0	
65	N68	-3.847461	0	-1.627669	0	
66	N69	-4.063967	0	-1.752669	0	
67	N70	-4.063967	4	-1.752669	0	
68	N71	-4.063967	-4	-1.752669	0	

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
69	N72	-1.847461	0	-5.091771	0	
70	N73	-2.063967	0	-5.216771	0	
71	N74	-2.063967	4	-5.216771	0	
72	N75	-2.063967	-4	-5.216771	0	
73	N76	-0.666665	0	-7.136969	0	
74	N77A	-0.883171	0	-7.261969	0	
75	N78A	-0.883171	4	-7.261969	0	
76	N79	-0.883171	-4	-7.261969	0	
77	N80	0.	0	1.595417	0	
78	N81	-0.166666	0	1.595417	0	
79	N82	-0.166666	2.5	1.595417	0	
80	N84	-0.166666	-2.5	1.595417	0	
81	N84A	-6.999794	2.5	4.145833	0	
82	N85	6.999794	2.5	4.145833	0	
83	N86	5.847461	2.5	4.145833	0	
84	N87	5.847461	2.5	4.395833	0	
85	N88	0.514127	2.5	4.145833	0	
86	N89	0.514127	2.5	4.395833	0	
87	N90A	-3.485873	2.5	4.145833	0	
88	N91A	-3.485873	2.5	4.395833	0	
89	N92	-5.847464	2.5	4.145833	0	
90	N93	-5.847464	2.5	4.395833	0	
91	N94	-4.999794	2.5	4.145833	0	
92	N95	-4.999794	2.5	3.895833	0	
93	N96	4.999794	2.5	4.145833	0	
94	N97	4.999794	2.5	3.895833	0	
95	N98	7.090294	2.5	3.989083	0	
96	N99	0.0905	2.5	-8.134916	0	
97	N100	0.666667	2.5	-7.136966	0	
98	N101	0.883173	2.5	-7.261966	0	
99	N102A	3.333333	2.5	-2.518164	0	
100	N103	3.54984	2.5	-2.643164	0	
101	N104	5.333333	2.5	0.945937	0	
102	N105	5.54984	2.5	0.820937	0	
103	N106	6.514129	2.5	2.991136	0	
104	N107	6.730636	2.5	2.866136	0	
105	N108B	6.090294	2.5	2.257032	0	
106	N109A	5.873788	2.5	2.382032	0	
107	N110B	1.0905	2.5	-6.402865	0	
108	N111	0.873994	2.5	-6.277865	0	
109	N112	-0.0905	2.5	-8.134916	0	
110	N113	-7.090294	2.5	3.989083	0	
111	N114	-6.514127	2.5	2.991133	0	
112	N115	-6.730634	2.5	2.866133	0	
113	N116	-3.847461	2.5	-1.627669	0	
114	N117	-4.063967	2.5	-1.752669	0	
115	N118	-1.847461	2.5	-5.091771	0	
116	N119	-2.063967	2.5	-5.216771	0	
117	N120	-0.666665	2.5	-7.136969	0	
118	N121	-0.883171	2.5	-7.261969	0	
119	N122	-1.0905	2.5	-6.402865	0	
120	N123	-0.873994	2.5	-6.277865	0	
121	N124	-6.090294	2.5	2.257032	0	
122	N125	-5.873788	2.5	2.382032	0	
123	N123A	-0.	0	-6.291667	0	
	14044				0	
124 125	<u>N124A</u> N126	-0.916334	-3 -3	<u>-1.058091</u> 0.529045	0	

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
126	N128	0.916334	-3	0.529045	0	

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design L	. Material	Design	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	Mount Pipe	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
2	Support Rail	PIPE 2.5	Beam	Pipe	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
3	Bottom Corner Plate	L15X6.5X6	Beam	Single A	A36 Gr.36	Typical	7.922	24.473	192.705	.363
4	Standoff 2	HSS4.5X4.5X4	Beam	Tube	A500 Gr.B Rect	Typical	3.84	11.4	11.4	18.5
5	Cross Members	L3X3X4	Beam	Channel	A36 Gr.36	Typical	1.44	1.23	1.23	.031
6	Face Horizontal	L3X3X4	Beam	Single A	A36 Gr.36	Typical	1.44	1.23	1.23	.031
7	Standoff 1	HSS4X4X4	Beam	Tube	A500 Gr.B Rect	Typical	3.37	7.8	7.8	12.8
8	Grating Angle	LL3x3x4x0	Beam	Double	A36 Gr.36	Typical	2.88	4.5	2.46	.063
9	Top Corner Plate	L2.5x2.5x4	Beam	Single A	A36 Gr.36	Typical	1.19	.692	.692	.026
10	Support Rail Corner	L3X3X4	Beam	Single A	A36 Gr.36	Typical	1.44	1.23	1.23	.031
11	Support Bracing	L2.5x2.5x4			A36 Gr.36	Typical	1.19	.692	.692	.026
12	Kicker	LL3x3x3x3	Column	Double	A36 Gr.36	Typical	2.18	4.09	1.9	.027

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E	.Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.4	65	1.3

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N2	N15A			Standoff 1	Beam	Tube	A500 Gr.B	Typical
2	M2	N15A	N16A			Standoff 2	Beam	Tube	A500 Gr.B	Typical
3	M5	N14	N10		180	Grating Angle	Beam	Double Angle (A36 Gr.36	Typical
4	M6	N16	N15		180	Grating Angle	Beam	Double Angle (A36 Gr.36	Typical
5	M7	N18	N17		180	Grating Angle	Beam	Double Angle (A36 Gr.36	Typical
6	M6A	N17	N15		270	Cross Members	Beam	Channel	A36 Gr.36	Typical
7	M7A	N16	N18		270	Face Horizontal	Beam	Single Angle	A36 Gr.36	Typical
8	M23A	N10	N17		270	Cross Members	Beam	Channel	A36 Gr.36	Typical
9	M24	N18	N14		270	Face Horizontal	Beam	Single Angle	A36 Gr.36	Typical
10	M38	N77	N78			Standoff 1	Beam	Tube	A500 Gr.B	Typical
11	M39A	N15	N10		270	Cross Members	Beam	Channel	A36 Gr.36	Typical
12	M40	N14	N16		270	Face Horizontal	Beam	Single Angle		Typical
13	M54	N109	N110			Standoff 1	Beam	Tube	A500 Gr.B	Typical
14	M55	N78	N108A			Standoff 2	Beam	Tube	A500 Gr.B	Typical
15	M56	N110	N110A			Standoff 2	Beam	Tube	A500 Gr.B	Typical
16	M16	N35	N36			RIGID	None	None	RIGID	Typical
17	MP1A	N34	N35A			Mount Pipe	Beam	Pipe	A53 Gr.B	Typical
18	M18	N36A	N37			RIGID	None	None	RIGID	Typical
19	MP2A	N38	N39			Mount Pipe	Beam	Pipe	A53 Gr.B	Typical
20	M20	N40	N41			RIGID	None	None	RIGID	Typical
21	MP3A	N42	N43			Mount Pipe	Beam	Pipe	A53 Gr.B	Typical
22	M22	N44	N45			RIGID	None	None	RIGID	Typical
23	MP4A	N46	N47			Mount Pipe	Beam	Pipe	A53 Gr.B	Typical

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
24	M24A	N48	N49			RIGID	None	None	RIGID	Typical
25	MP1C	N50	N51			Mount Pipe	Beam	Pipe	A53 Gr.B	Typical
26	M26	N52	N53			RIGID	None	None	RIGID	Typical
27	MP2C	N54	N55			Mount Pipe	Beam	Pipe	A53 Gr.B	Typical
28	M28	N56	N57			RIGID	None	None	RIGID	Typical
29	MP3C	N58	N59			Mount Pipe	Beam	Pipe	A53 Gr.B	Typical
30	M30	N60	N61			RIGID	None	None	RIGID	Typical
31	MP4C	N62	N63			Mount Pipe	Beam	Pipe	A53 Gr.B	Typical
32	M32	N64	N65			RIGID	None	None	RIGID	Typical
33	MP1B	N66	N67A			Mount Pipe	Beam	Pipe	A53 Gr.B	Typical
34	M34	N68	N69			RIGID	None	None	RIGID	Typical
35	MP2B	N70	N71			Mount Pipe	Beam	Pipe	A53 Gr.B	Typical
36	M36	N72	N73			RIGID	None	None	RIGID	Typical
37	MP3B	N74	N75			Mount Pipe	Beam	Pipe	A53 Gr.B	Typical
38	M38A	N76	N77A			RIGID	None	None	RIGID	Typical
39	MP4B	N78A	N79			Mount Pipe	Beam	Pipe	A53 Gr.B	Typical
40	M40A	N80	N81			RIGID	None	None	RIGID	Typical
41	M41	N82	N84			Mount Pipe	Beam	Pipe	A53 Gr.B	Typical
42	M42	N84A	N85		270	Support Rail	Beam	Pipe	A53 Gr.B	Typical
43	M43	N86	N87			RIGID	None	None	RIGID	Typical
44	M44	N88	N89			RIGID	None	None	RIGID	Typical
45	M45	N90A	N91A			RIGID	None	None	RIGID	Typical
46	M46	N92	N93			RIGID	None	None	RIGID	Typical
47	M47	N94	N95			RIGID	None	None	RIGID	Typical
48	M48	N96	N97			RIGID	None	None	RIGID	Typical
49	M49	N98	N99		270	Support Rail	Beam	Pipe	A53 Gr.B	Typical
50	M50	N100	N101			RIGID	None	None	RIGID	Typical
51	M51	N102A	N103			RIGID	None	None	RIGID	Typical
52	M52	N104	N105			RIGID	None	None	RIGID	Typical
53	M53	N106	N107			RIGID	None	None	RIGID	Typical
54	M54A	N108B	N109A			RIGID	None	None	RIGID	Typical
55	M55A	N110B	N111			RIGID	None	None	RIGID	Typical
56	M56A	N112	N113		270	Support Rail	Beam	Pipe	A53 Gr.B	Typical
57	M57	N114	N115			RIGID	None	None	RIGID	Typical
58	M58	N116	N117			RIGID	None	None	RIGID	Typical
59	M59	N118	N119			RIGID	None	None	RIGID	Typical
60	M60	N120	N121			RIGID	None	None	RIGID	Typical
61	M61	N122	N123			RIGID	None	None	RIGID	Typical
62	M62	N124	N125			RIGID	None	None	RIGID	Typical
63	M63	N95	N125		90	Support Rail C	Beam	Single Angle	A36 Gr.36	Typical
64	M64	N123	N111		90	Support Rail C	Beam	Single Angle	A36 Gr.36	Typical
65	M65	N109A	N97		90	Support Rail C	Beam	Single Angle	A36 Gr.36	Typical
66	M66	N12	N124A			Kicker	Column	Double Angle (. A36 Gr.36	Typical
67	M67	N16B	N126			Kicker		Double Angle (Typical
68	M68	N19	N128			Kicker	Column	Double Angle (A36 Gr.36	Typical

Member Advanced Data

Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat	Analysis	Inactive	Seismic
M1					•	Ýes		-		None
M2						Yes				None
M5						Yes				None
M6						Yes				None
M7						Yes				None
M6A						Yes				None
M7A						Yes				None
	M1 M2 M5 M6 M7 M6A	M1 M2 M5 M6 M7 M6A	M1 M2 M5 M6 M7 M6A M6A	M1 M2 M2 M5 M6 M7 M6A M6	M1 Image: Constraint of the second	M1 M2 M2 M3 M5 M6 M7 M6 M6A M6	M1 Yes M2 Yes M5 Yes M6 Yes M7 Yes M6A Yes	M1 Yes M2 Yes M5 Yes M6 Yes M7 Yes M6A Yes	M1 Yes M2 Yes M5 Yes M6 Yes M7 Yes M6A Yes	M1 M1 Yes Yes M2 M2 Yes Yes M5 Yes Yes Yes M6 Yes Yes Yes M7 Yes Yes Yes M6A Yes Yes Yes

Member Advanced Data (Continued)

	Label	I Release	J Release	L Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat	Analysis	Inactive	Seismic
8	M23A			1 Onsequit			Yes				None
9	M24						Yes				None
10	M38						Yes				None
11	M39A						Yes				None
12	M40						Yes				None
13	M54						Yes				None
14	M55						Yes				None
15	M56						Yes				None
16	M16		000X00				Yes	** NA **			None
17	MP1A						Yes				None
18	M18		000X00				Yes	** NA **			None
19	MP2A						Yes				None
20	M20		000X00				Yes	** NA **			None
21	MP3A						Yes				None
22	M22		000X00				Yes	** NA **			None
23	MP4A						Yes				None
24	M24A		000X00				Yes	** NA **			None
25	MP1C						Yes				None
26	M26		000X00				Yes	** NA **			None
27	MP2C		000100				Yes				None
28	M28		000X00				Yes	** NA **			None
29	MP3C		000100				Yes				None
30	M30		000X00				Yes	** NA **			None
31	MP4C		000000				Yes	** NIA **			None
32	M32		000X00				Yes	** NA **			None
33	MP1B		000000				Yes	** NA **			None
34 35	M34 MP2B		000X00				Yes	NA			None
36	M36		000X00				Yes Yes	** NA **			None
37	MP3B		000,000				Yes	INA			None None
38	M38A		000X00				Yes	** NA **			None
39	MP4B		000000				Yes				None
40	M40A						Yes	** NA **			None
41	M41						Yes	Default			None
42	M42						Yes	Donadin			None
43	M43						Yes	** NA **			None
44	M44						Yes	** NA **			None
45	M45						Yes	** NA **			None
46	M46						Yes	** NA **			None
47	M47	00000X					Yes	** NA **			None
48	M48	00000X					Yes	** NA **			None
49	M49						Yes				None
50	M50						Yes	** NA **			None
51	M51						Yes	** NA **			None
52	M52						Yes	** NA **			None
53	M53						Yes	** NA **			None
54	M54A	00000X					Yes	** NA **			None
55	M55A	00000X					Yes	** NA **			None
56	M56A						Yes				None
57	M57						Yes	** NA **			None
58	M58						Yes	** NA **			None
59	M59						Yes	** NA **			None
60	M60	000001					Yes	** NA **			None
61	M61	00000X					Yes	** NA ** ** NA **			None
62	M62	00000X					Yes	INA ***			None
63 64	M63 M64						Yes Yes				None None
DIC		ion 17 0 4	(D·) / /				on 1 16	27050 1/2	7\^/ \/T	O U 2341	Dogo 11

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl RatAnalysis	Inactive	Seismic
65	M65					-	Yes			None
66	M66	BenPIN	BenPIN				Yes	** NA **		None
67	M67	BenPIN	BenPIN				Yes	** NA **		None
68	M68	BenPIN	BenPIN				Yes	** NA **		None

Member Point Loads (BLC 1 : Antenna D)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Y	-23	.5
2	MP1A	My	021	.5
3	MP1A	Mz	.015	.5
4	MP1A	Y	-23	5.5
5	MP1A	My	021	5.5
6	MP1A	Mz	.015	5.5
7	MP1B	Y	-23	.5
8	MP1B	My	003	.5
9	MP1B	Mz	026	.5
10	MP1B	Y	-23	5.5
11	MP1B	My	003	5.5
12	MP1B	Mz	026	5.5
13	MP1C	Y	-23	.5
14	MP1C	My	.024	.5
15	MP1C	Mz	.011	.5
16	MP1C	Y	-23	5.5
17	MP1C	Μγ	.024	5.5
18	MP1C	Mz	.011	5.5
19	MP1A	Y	-23	.5
20	MP1A	My	.024	.5
21	MP1A	Mz	011	.5
22	MP1A	Y	-23	5.5
23	MP1A	My	.024	5.5
24	MP1A	Mz	011	5.5
25	MP1B	Y	-23	.5
26	MP1B	My	.024	.5
27	MP1B	Mz	011	.5
28	MP1B	Y	-23	5.5
29	MP1B	Μγ	.024	5.5
30	MP1B	Mz	011	5.5
31	MP1C	Y	-23	.5
32	MP1C	My	003	.5
33	MP1C	Mz	.026	.5
34	MP1C	Y	-23	5.5
35	MP1C	My	003	5.5
36	MP1C	Mz	.026	5.5
37	MP3A	Y	-43.55	1.5
38	MP3A	My	018	1.5
39	MP3A	Mz	0	1.5
40	MP3A	Y	-43.55	3.5
41	MP3A	My	018	3.5
42	MP3A	Mz	0	3.5
43	MP3B	Y	-43.55	1.5
44	MP3B	My	.009	1.5
45	MP3B	Mz	016	1.5
46	MP3B	Y	-43.55	3.5
47	MP3B	My	.009	3.5
48	MP3B	Mz	016	3.5

Member Point Loads (BLC 1 : Antenna D) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
49	MP3C	Y	-43.55	1.5
50	MP3C	My	.009	1.5
51	MP3C	Mz	.016	1.5
52	MP3C	Y	-43.55	3.5
53	MP3C	My	.009	3.5
54	MP3C	Mz	.016	3.5
55	MP1A	Y	-84.4	3
56	MP1A	My	.042	3
57	MP1A	Mz	0	3
58	MP1B	Y	-84.4	3
59	MP1B	My	021	3
60	MP1B	Mz	.037	3
61	MP1C	Y	-84.4	3
62	MP1C	My	021	3
63	MP1C	Mz	037	3
64	MP2A	Y	-70.3	3
65	MP2A	My	.035	3
66	MP2A	Mz	0	3
67	MP2B	Y	-70.3	3
68	MP2B	My	018	3
69	MP2B	Mz	.03	3
70	MP2C	Y	-70.3	3
71	MP2C	My	018	3
72	MP2C	Mz	03	3
73	M41	Y	-32	1
74	M41	My	0	1
75	M41	Mz	0	1
76	MP4A	Y	-9	.5
77	MP4A	My	004	.5
78	MP4A	Mz	0	.5
79	MP4A	Y	-9	5.5
80	MP4A	My	004	5.5
81	MP4A	Mz	0	5.5
82	MP4B	Y	-9	.5
83	MP4B	My	.002	.5
84	MP4B	Mz	004	.5
85	MP4B	Y	-9	5.5
86	MP4B	My	.002	5.5
87	MP4B	Mz	004	5.5
88	MP4C	Y	-9	.5
89	MP4C	My	.002	.5
90	MP4C	Mz	.004	.5
91	MP4C	Y	-9	5.5
			.002	5.5
92 93	MP4C MP4C MP4C	My Mz	.002 .004	5.5 5.5

Member Point Loads (BLC 2 : Antenna Di)

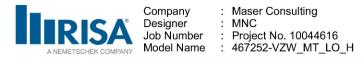
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Y	-84.627	.5
2	MP1A	My	078	.5
3	MP1A	Mz	.056	.5
4	MP1A	Y	-84.627	5.5
5	MP1A	My	078	5.5
6	MP1A	Mz	.056	5.5
7	MP1B	Y	-84.627	.5
8	MP1B	My	01	.5

Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
9	MP1B	Mz	095	.5
10	MP1B	Y	-84.627	5.5
11	MP1B	My	01	5.5
12	MP1B	Mz	095	5.5
13	MP1C	Υ	-84.627	.5
14	MP1C	My	.088	.5
15	MP1C	Mz	.039	.5
16	MP1C	Y	-84.627	5.5
17	MP1C	My	.088	5.5
18	MP1C	Mz	.039	5.5
19	MP1A	Y	-84.627	.5
20	MP1A	My	.088	.5
21	MP1A	Mz	039	.5
22	MP1A	Y	-84.627	5.5
23	MP1A	My	.088	5.5
24	MP1A	Mz	039	5.5
25	MP1B	Y	-84.627	.5
26	MP1B	My	.088	.5
27	MP1B	Mz	039	.5
28	MP1B	Y	-84.627	5.5
29	MP1B	My	.088	5.5
30 31	MP1B MP1C	Mz Y	039 -84.627	5.5
32	MP1C	My	01	.5
33	MP1C	Mz	.095	.5
34	MP1C	Y	-84.627	5.5
35	MP1C	My	01	5.5
36	MP1C	Mz	.095	5.5
37	MP3A	Y	-36.574	1.5
38	MP3A	My	015	1.5
39	MP3A	Mz	0	1.5
40	MP3A	Y	-36.574	3.5
41	MP3A	My	015	3.5
42	MP3A	Mz	0	3.5
43	MP3B	Y	-36.574	1.5
44	MP3B	My	.008	1.5
45	MP3B	Mz	013	1.5
46	MP3B	Y	-36.574	3.5
47	MP3B	My	.008	3.5
48	MP3B	Mz	013	3.5
49	MP3C	Y	-36.574	1.5
50	MP3C	My	.008	1.5
51	MP3C	Mz	.013	1.5
52	MP3C	Y	-36.574	3.5
53	MP3C	My	.008	3.5
54	MP3C	Mz	.013	3.5
55	MP1A	Y	-46.13	3
56	MP1A	My	.023	3
57	MP1A	Mz	0	3
58	MP1B	Y	-46.13	3
59	MP1B	My	012	3
60	MP1B	Mz	.02	3
61	MP1C	Y	-46.13	3
62	MP1C	My	012	3
63	MP1C	Mz	02	3
64	MP2A	Y	-41.493	3
65	MP2A	My	.021	3
) Version 17 0 4 [R·\ \		SA\Ontion 1 - 467252-\/7\//	

Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
66	MP2A	Mz	0	3
67	MP2B	Y	-41.493	3
68	MP2B	My	01	3
69	MP2B	Mz	.018	3
70	MP2C	Y	-41.493	3
71	MP2C	My	01	3
72	MP2C	Mz	018	3
73	M41	Y	-90.244	1
74	M41	My	0	1
75	M41	Mz	0	1
76	MP4A	Y	-45.757	.5
77	MP4A	My	023	.5
78	MP4A	Mz	0	.5
79	MP4A	Y	-45.757	5.5
80	MP4A	Му	023	5.5
81	MP4A	Mz	0	5.5
82	MP4B	Y	-45.757	.5
83	MP4B	My	.011	.5
84	MP4B	Mz	02	.5
85	MP4B	Y	-45.757	5.5
86	MP4B	Му	.011	5.5
87	MP4B	Mz	02	5.5
88	MP4C	Y	-45.757	.5
89	MP4C	My	.011	.5
90	MP4C	Mz	.02	.5
91	MP4C	Y	-45.757	5.5
92	MP4C	My	.011	5.5
93	MP4C	Mz	.02	5.5


Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	0	.5
2	MP1A	Z	-183.081	.5
3	MP1A	Mx	122	.5
4	MP1A	Х	0	5.5
5	MP1A	Z	-183.081	5.5
6	MP1A	Mx	122	5.5
7	MP1B	Х	0	.5
8	MP1B	Z	-147.856	.5
9	MP1B	Mx	.167	.5
10	MP1B	Х	0	5.5
11	MP1B	Z	-147.856	5.5
12	MP1B	Mx	.167	5.5
13	MP1C	Х	0	.5
14	MP1C	Z	-147.856	.5
15	MP1C	Mx	068	.5
16	MP1C	Х	0	5.5
17	MP1C	Z	-147.856	5.5
18	MP1C	Mx	068	5.5
19	MP1A	Х	0	.5
20	MP1A	Z	-147.856	.5
21	MP1A	Mx	.068	.5
22	MP1A	Х	0	5.5
23	MP1A	Z	-147.856	5.5
24	MP1A	Mx	.068	5.5
25	MP1B	Х	0	.5

Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

00	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
26	MP1B	Z	-147.856	.5
27	MP1B	Mx	.068	.5
28	MP1B	X 7	0	5.5
29	MP1B	Z	-147.856	5.5
30	MP1B	Mx	.068	5.5
31	MP1C	X 7	0	.5
32	MP1C	Z	-147.856	.5
33	MP1C	Mx	167	.5
34	MP1C	X	0	5.5
35	MP1C	Z	-147.856	5.5
36	MP1C	Mx	167	5.5
37	MP3A	X	0	1.5
38	MP3A	Z	-87.182	1.5
39	MP3A	Mx	0	1.5
40	MP3A	Х	0	3.5
41	MP3A	Z	-87.182	3.5
42	MP3A	Mx	0	3.5
43	MP3B	X	0	1.5
44	MP3B	Z	-47.394	1.5
45	MP3B	Mx	.017	1.5
46	MP3B	X	0	3.5
47	MP3B	Z	-47.394	3.5
48	MP3B	Mx	.017	3.5
49	MP3C	X	0	1.5
50	MP3C	Z	-47.394	1.5
51	MP3C	Mx	017	1.5
52	MP3C	X	0	3.5
53	MP3C	Z	-47.394	3.5
54	MP3C	Mx	017	3.5
55	MP1A	X	0	3
56	MP1A	Z	-69.374	3
57	MP1A	Mx	0	3
58	MP1B	X	0	3
59	MP1B	Z	-52.123	3
60	MP1B	Mx	023	3
61	MP1C	X	0	3
62	MP1C	Z	-52.123	3
63	MP1C	Mx	.023	3
64	MP2A	X	0	3
65	MP2A	Z	-69.374	3
66	MP2A	Mx	0	3
67	MP2B	Х	0	3
68	MP2B	Z	-45.515	3
69	MP2B	Mx	02	3
70	MP2C	X	0	3
71	MP2C	Z	-45.515	3
72	MP2C	Mx	.02	3
73	M41	Х	0	1
74	M41	Z	-141.693	1
75	M41	Mx	0	1
76	MP4A	X	0	.5
77	MP4A	Z	-106.844	.5
78	MP4A	Mx	0	.5
79	MP4A	X	0	5.5
80	MP4A	Z	-106.844	5.5
			1001011	
81	MP4A	Mx	0	5.5

Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
83	MP4B	Z	-90.16	.5
84	MP4B	Mx	.039	.5
85	MP4B	Х	0	5.5
86	MP4B	Z	-90.16	5.5
87	MP4B	Mx	.039	5.5
88	MP4C	X	0	.5
89	MP4C	Z	-90.16	.5
90	MP4C	Mx	039	.5
91	MP4C	Х	0	5.5
92	MP4C	Z	-90.16	5.5
93	MP4C	Mx	039	5.5

Member Point Loads (BLC 4 : Antenna Wo (30 Deg))

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			X	85.67	.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	MP1A	Z	-148.384	.5
	3		Mx	177	.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	MP1A	X	85.67	5.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5	MP1A	Z	-148.384	5.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		MP1A	Mx		5.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	MP1B		68.057	.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	MP1B	Z		.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	MP1B	Mx	.125	.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10			68.057	5.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11		Z		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	MP1B	Mx	.125	5.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13		X		.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Z		.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Mx		.5
17MP1CZ-148.3845.518MP1CMx.025.519MP1AX68.057.520MP1AZ-117.878.521MP1AMx.125.522MP1AX68.0575.523MP1AZ-117.8785.524MP1AX68.057.525MP1BX68.057.526MP1BX68.057.527MP1BX68.057.528MP1BZ-117.878.529MP1BX68.0575.531MP1CX85.67.533MP1CZ-148.384.533MP1CX85.67.534MP1CX85.675.535MP1CZ-148.384.536MP1CX85.675.537MP3AX36.961.539MP3AX36.961.534MP3AX36.961.534MP3AX36.961.534MP3AX36.961.535MP3AX36.961.536MP3AX36.961.537MP3AX36.963.5					5.5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	MP1C	Z	-148.384	5.5
19 MP1A X 68.057 .5 20 MP1A Z -117.878 .5 21 MP1A Mx .125 .5 22 MP1A X 68.057 5.5 23 MP1A Z -117.878 5.5 24 MP1A Z -117.878 5.5 24 MP1A X 68.057 .5 25 MP1B X 68.057 .5 26 MP1B Z -117.878 .5 27 MP1B Mx .125 .5 28 MP1B X 68.057 .5.5 29 MP1B Z -117.878 .5 30 MP1B Z -117.878 .5.5 31 MP1C X 85.67 .5 33 MP1C X 85.67 .5 34 MP1C X 85.67 .5.5 35 MP1	18	MP1C	Mx	.02	5.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19	MP1A	X	68.057	.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20	MP1A	Z	-117.878	.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21	MP1A	Mx	.125	.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				68.057	5.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23	MP1A	Z	-117.878	5.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		MP1A	Mx	.125	
26 MP1B Z -117.878 .5 27 MP1B Mx .125 .5 28 MP1B X 68.057 5.5 29 MP1B Z -117.878 5.5 30 MP1B Z -117.878 5.5 30 MP1B Mx .125 5.5 31 MP1C X 85.67 .5 32 MP1C Z -148.384 .5 33 MP1C X 85.67 5.5 34 MP1C X 85.67 5.5 35 MP1C Z -148.384 5.5 36 MP1C Z -148.384 5.5 36 MP1C Z -148.384 5.5 37 MP3A X 36.96 1.5 38 MP3A Z -64.016 1.5 39 MP3A X 36.96 3.5		MP1B	X	68.057	.5
27 MP1B Mx .125 .5 28 MP1B X 68.057 5.5 29 MP1B Z -117.878 5.5 30 MP1B Mx .125 5.5 31 MP1C X 85.67 .5 32 MP1C Z -148.384 .5 33 MP1C Z -148.384 .5 34 MP1C X 85.67 5.5 35 MP1C X 85.67 5.5 36 MP1C X 85.67 5.5 36 MP1C Z -148.384 5.5 36 MP1C X 36.96 1.5 37 MP3A X 36.96 1.5 38 MP3A Z -64.016 1.5 39 MP3A X 36.96 3.5		MP1B	Z		.5
28 MP1B X 68.057 5.5 29 MP1B Z -117.878 5.5 30 MP1B Mx .125 5.5 31 MP1C X 85.67 .5 32 MP1C Z -148.384 .5 33 MP1C X 85.67 .5 34 MP1C X 85.67 5.5 35 MP1C X 85.67 5.5 36 MP1C X 85.67 5.5 37 MP3A X 36.96 1.5 38 MP3A Z -64.016 1.5 39 MP3A X 36.96 3.5		MP1B	Mx	.125	.5
30 MP1B Mx .125 5.5 31 MP1C X 85.67 .5 32 MP1C Z -148.384 .5 33 MP1C Mx 177 .5 34 MP1C X 85.67 5.5 35 MP1C X 85.67 5.5 36 MP1C Z -148.384 5.5 36 MP1C X 85.67 5.5 37 MP3A X 36.96 1.5 38 MP3A Z -64.016 1.5 39 MP3A X 36.96 3.5	28	MP1B		68.057	5.5
31 MP1C X 85.67 .5 32 MP1C Z -148.384 .5 33 MP1C Mx 177 .5 34 MP1C X 85.67 5.5 35 MP1C X 85.67 5.5 36 MP1C Z -148.384 5.5 37 MP3A X 36.96 1.5 38 MP3A Z -64.016 1.5 39 MP3A X 36.96 3.5 40 MP3A X 36.96 3.5	29	MP1B	Z	-117.878	5.5
32 MP1C Z -148.384 .5 33 MP1C Mx 177 .5 34 MP1C X 85.67 5.5 35 MP1C Z -148.384 5.5 36 MP1C Z -148.384 5.5 37 MP3A X 36.96 1.5 38 MP3A Z -64.016 1.5 39 MP3A Mx 015 1.5 40 MP3A X 36.96 3.5	30		Mx	.125	5.5
32 MP1C Z -148.384 .5 33 MP1C Mx 177 .5 34 MP1C X 85.67 5.5 35 MP1C Z -148.384 5.5 36 MP1C Mx 177 5.5 37 MP3A X 36.96 1.5 38 MP3A Z -64.016 1.5 39 MP3A X 36.96 3.5 40 MP3A X 36.96 3.5	31	MP1C	X		.5
34 MP1C X 85.67 5.5 35 MP1C Z -148.384 5.5 36 MP1C Mx 177 5.5 37 MP3A X 36.96 1.5 38 MP3A Z -64.016 1.5 39 MP3A Mx 015 1.5 40 MP3A X 36.96 3.5	32	MP1C	Z	-148.384	.5
34 MP1C X 85.67 5.5 35 MP1C Z -148.384 5.5 36 MP1C Mx 177 5.5 37 MP3A X 36.96 1.5 38 MP3A Z -64.016 1.5 39 MP3A Mx 015 1.5 40 MP3A X 36.96 3.5	33	MP1C	Mx	177	.5
35 MP1C Z -148.384 5.5 36 MP1C Mx 177 5.5 37 MP3A X 36.96 1.5 38 MP3A Z -64.016 1.5 39 MP3A Mx 015 1.5 40 MP3A X 36.96 3.5	34	MP1C	X	85.67	5.5
36 MP1C Mx 177 5.5 37 MP3A X 36.96 1.5 38 MP3A Z -64.016 1.5 39 MP3A Mx 015 1.5 40 MP3A X 36.96 3.5	35	MP1C	Z		5.5
37 MP3A X 36.96 1.5 38 MP3A Z -64.016 1.5 39 MP3A Mx 015 1.5 40 MP3A X 36.96 3.5		MP1C		177	
38 MP3A Z -64.016 1.5 39 MP3A Mx 015 1.5 40 MP3A X 36.96 3.5		MP3A	X	36.96	1.5
40 MP3A X 36.96 3.5			Z	-64.016	
	39	MP3A	Mx	015	1.5
	40	MP3A	X	36.96	
	41	MP3A	Z	-64.016	3.5
42 MP3A Mx015 3.5	42	MP3A	Mx	015	3.5

Member Point Loads (BLC 4 : Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
43	MP3B	Х	17.066	1.5
44	MP3B	Z	-29.559	1.5
45	MP3B	Mx	.014	1.5
46	MP3B	Х	17.066	3.5
47	MP3B	Z	-29.559	3.5
48	MP3B	Mx	.014	3.5
49	MP3C	Х	36.96	1.5
50	MP3C	Z	-64.016	1.5
51	MP3C	Mx	015	1.5
52	MP3C	X	36.96	3.5
53	MP3C	Z	-64.016	3.5
54	MP3C	Mx	015	3.5
55	MP1A	X	31.812	3
56	MP1A	Z	-55.1	3
57	MP1A	Mx	.016	3
58	MP1B	Х	23.187	3
59	MP1B	Z	-40.16	3
60	MP1B	Mx	023	3
61	MP1C	X	31.812	3
62	MP1C	Z	-55.1	3
63	MP1C	Mx	.016	3
64	MP2A	X	30.711	3
65	MP2A	Z	-53.192	3
66	MP2A	Mx	.015	3
67	MP2B	<u> </u>	18.781	3
68	MP2B	Z	-32.53	3
69	MP2B	Mx	019	3
70	MP2C	<u> </u>	30.711	3
71	MP2C	Z	-53.192	3
72	MP2C	Mx	.015	3
73	<u>M41</u>	<u> </u>	61.92	1
74	<u>M41</u>	Z	-107.248	1
75	M41	Mx	0	1
76	MP4A	X Z	50.641	.5
77	MP4A		-87.713	<u>.5</u> .5
78	MP4A	Mx	025	
79	MP4A	Z	<u>50.641</u> -87.713	5.5
80	MP4A			5.5
81 82	MP4A MP4B	Mx X	025 42.299	<u>5.5</u> .5
82	MP4B MP4B	Z	-73.265	.5
84	MP4B MP4B	Mx	.042	.5
85	MP4B MP4B		42.299	5.5
86	MP4B MP4B	X Z	-73.265	5.5
87	MP4B MP4B	Mx	.042	5.5
88	MP4D MP4C	X	50.641	.5
89	MP4C MP4C	^ Z	-87.713	.5
90	MP4C	Mx	025	.5
90	MP4C MP4C		50.641	5.5
92	MP4C	Z	-87.713	5.5
93	MP4C	Mx	025	5.5
			020	0.0

Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	128.047	.5
2	MP1A	Z	-73.928	.5

Member Point Loads (BLC 5 : Antenna Wo (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
3	MP1A	Mx	167	.5
4	MP1A	X	128.047	5.5
5	MP1A	Z	-73.928	5.5
6	MP1A	Mx	167	5.5
7	MP1B	X	128.047	.5
8	MP1B	Z	-73.928	.5
9	MP1B	Mx	.068	.5
10	MP1B	X	128.047	5.5
11	MP1B	Z	-73.928	5.5
12	MP1B	Mx	.068	5.5
13	MP1C	X	158.553	.5
14	MP1C	Z	-91.541	.5
15	MP1C	Mx	.122	.5
16	MP1C	X	158.553	5.5
17	MP1C	Z	-91.541	5.5
18	MP1C	Mx	.122	5.5
19	MP1A	X	128.047	.5
20	MP1A	Z	-73.928	.5
21	MP1A	Mx	.167	.5
22	MP1A	X	128.047	5.5
23	MP1A	Z	-73.928	5.5
24	MP1A	Mx	.167	5.5
25	MP1B	X	128.047	.5
26	MP1B	Z	-73.928	.5
27	MP1B	Mx	.167	.5
28	MP1B	X	128.047	5.5
29	MP1B	Z	-73.928	5.5
30	MP1B	Mx	.167	5.5
31	MP1C	X	158.553	.5
32	MP1C	Z	-91.541	.5
33	MP1C	Mx	122	.5
34	MP1C	X	158.553	5.5
35	MP1C	Z	-91.541	5.5
36	MP1C	Mx	122	5.5
37	MP3A	X	41.044	1.5
38	MP3A	Z	-23.697	1.5
39	MP3A	Mx	017	1.5
40	MP3A	X	41.044	3.5
41	MP3A	Z	-23.697	3.5
42	MP3A	Mx	017	3.5
43	MP3B	Χ	41.044	1.5
44	MP3B	Z	-23.697	1.5
45	MP3B	Mx	.017	1.5
46	MP3B	Х	41.044	3.5
47	MP3B	Z	-23.697	3.5
48	MP3B	Mx	.017	3.5
49	MP3C	Х	75.501	1.5
50	MP3C	Z	-43.591	1.5
51	MP3C	Mx	0	1.5
52	MP3C	X	75.501	3.5
53	MP3C	Z	-43.591	3.5
54	MP3C	Mx	0	3.5
55	MP1A	X	45.14	3
56	MP1A	Z	-26.062	3
57	MP1A	Mx	.023	3
58	MP1B	X	45.14	3
59	MP1B	Z	-26.062	3
			ISA\Ontion 1 - 467252-\/7\//	·

Member Point Loads (BLC 5 : Antenna Wo (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
60	MP1B	Mx	023	3
61	MP1C	Х	60.08	3
62	MP1C	Z	-34.687	3
63	MP1C	Mx	0	3
64	MP2A	Х	39.417	3
65	MP2A	Z	-22.758	3
66	MP2A	Mx	.02	3
67	MP2B	Х	39.417	3
68	MP2B	Z	-22.758	3
69	MP2B	Mx	02	3
70	MP2C	Х	60.08	3
71	MP2C	Z	-34.687	3
72	MP2C	Mx	0	3
73	M41	Х	99.517	1
74	M41	Z	-57.456	1
75	M41	Mx	0	1
76	MP4A	Х	78.081	.5
77	MP4A	Z	-45.08	.5
78	MP4A	Mx	039	.5
79	MP4A	Х	78.081	5.5
80	MP4A	Z	-45.08	5.5
81	MP4A	Mx	039	5.5
82	MP4B	X	78.081	.5
83	MP4B	Z	-45.08	.5
84	MP4B	Mx	.039	.5
85	MP4B	X	78.081	5.5
86	MP4B	Z	-45.08	5.5
87	MP4B	Mx	.039	5.5
88	MP4C	Х	92.529	.5
89	MP4C	Z	-53.422	.5
90	MP4C	Mx	0	.5
91	MP4C	Х	92.529	5.5
92	MP4C	Z	-53.422	5.5
93	MP4C	Mx	0	5.5

Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	136.114	.5
2	MP1A	Z	0	.5
3	MP1A	Mx	125	.5
4	MP1A	Х	136.114	5.5
5	MP1A	Z	0	5.5
6	MP1A	Mx	125	5.5
7	MP1B	Х	171.339	.5
8	MP1B	Z	0	.5
9	MP1B	Mx	02	.5
10	MP1B	Х	171.339	5.5
11	MP1B	Z	0	5.5
12	MP1B	Mx	02	5.5
13	MP1C	Х	171.339	.5
14	MP1C	Z	0	.5
15	MP1C	Mx	.177	.5
16	MP1C	Х	171.339	5.5
17	MP1C	Z	0	5.5
18	MP1C	Mx	.177	5.5
19	MP1A	Х	171.339	.5

Member Point Loads (BLC 6 : Antenna Wo (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
20	MP1A	Z	0	.5
21	MP1A	Mx	.177	.5
22	MP1A	X	171.339	5.5
23	MP1A	Z	0	5.5
24	MP1A	Mx	.177	5.5
25	MP1B	<u> </u>	171.339	.5
26	MP1B	Z	0	.5
27 28	MP1B	Mx V	<u>.177</u> 171.339	.5 5.5
28	MP1B MP1B	X Z	0	5.5
30	MP1B MP1B	Mx	.177	5.5
31	MP1C	X	171.339	.5
32	MP1C	Z	0	.5
33	MP1C	Mx	02	.5
34	MP1C	X	171.339	5.5
35	MP1C	Z	0	5.5
36	MP1C	Mx	02	5.5
37	MP3A	X	34.131	1.5
38	MP3A	Z	0	1.5
39	MP3A	Mx	014	1.5
40	MP3A	Х	34.131	3.5
41	MP3A	Z	0	3.5
42	MP3A	Mx	014	3.5
43	MP3B	X Z	73.919	1.5
44	MP3B		0	1.5
45	MP3B	Mx X	.015	1.5
46	MP3B MP3B	X Z	73.919	3.5 3.5
47 48	MP3B MP3B	Mx	0.015	3.5
40	MP3D MP3C	X	73.919	1.5
50	MP3C	Z	0	1.5
51	MP3C	Mx	.015	1.5
52	MP3C	X	73.919	3.5
53	MP3C	Z	0	3.5
54	MP3C	Mx	.015	3.5
55	MP1A	Х	46.373	3
56	MP1A	Z	0	3
57	MP1A	Mx	.023	3
58	MP1B	X	63.624	3
59	MP1B	Z	0	3
60	MP1B	Mx	016	3
61	MP1C	<u> </u>	63.624	3
62	MP1C	Z	0	3
63	MP1C	Mx	016	3
64	MP2A	X 7	37.562	3
65	MP2A	Z	0	3
66	MP2A MP2B	Mx X	.019	3
67 68	MP2B MP2B	X Z	<u>61.421</u> 0	3
69	MP2B MP2B	Mx	015	3
70	MP2D MP2C	X	61.421	3
71	MP2C	Z	0	3
72	MP2C	Mx	015	3
73	M41	X	123.84	1
74	M41	Z	0	1
75	M41	Mx	0	1
76	MP4A	X	84.599	.5
			SA\Ontion 1 - 467252-\/7\//	

Member Point Loads (BLC 6 : Antenna Wo (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
77	MP4A	Z	0	.5
78	MP4A	Mx	042	.5
79	MP4A	Х	84.599	5.5
80	MP4A	Z	0	5.5
81	MP4A	Mx	042	5.5
82	MP4B	Х	101.283	.5
83	MP4B	Z	0	.5
84	MP4B	Mx	.025	.5
85	MP4B	Х	101.283	5.5
86	MP4B	Z	0	5.5
87	MP4B	Mx	.025	5.5
88	MP4C	Х	101.283	.5
89	MP4C	Z	0	.5
90	MP4C	Mx	.025	.5
91	MP4C	Х	101.283	5.5
92	MP4C	Z	0	5.5
93	MP4C	Mx	.025	5.5

Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	128.047	.5
2	MP1A	Z	73.928	.5
3	MP1A	Mx	068	.5
4	MP1A	X	128.047	5.5
5	MP1A	Z	73.928	5.5
6	MP1A	Mx	068	5.5
7	MP1B	X	158.553	.5
8	MP1B	Z	91.541	.5
9	MP1B	Mx	122	.5
10	MP1B	X	158.553	5.5
11	MP1B	Z	91.541	5.5
12	MP1B	Mx	122	5.5
13	MP1C	X	128.047	.5
14	MP1C	Z	73.928	.5
15	MP1C	Mx	.167	.5
16	MP1C	X	128.047	5.5
17	MP1C	Z	73.928	5.5
18	MP1C	Mx	.167	5.5
19	MP1A	X	158.553	.5
20	MP1A	Z	91.541	.5
21	MP1A	Mx	.122	.5
22	MP1A	X	158.553	5.5
23	MP1A	Z	91.541	5.5
24	MP1A	Mx	.122	5.5
25	MP1B	X	158.553	.5
26	MP1B	Z	91.541	.5
27	MP1B	Mx	.122	.5
28	MP1B	Х	158.553	5.5
29	MP1B	Z	91.541	5.5
30	MP1B	Mx	.122	5.5
31	MP1C	Х	128.047	.5
32	MP1C	Z	73.928	.5
33	MP1C	Mx	.068	.5
34	MP1C	Х	128.047	5.5
35	MP1C	Z	73.928	5.5
36	MP1C	Mx	.068	5.5

Member Point Loads (BLC 7 : Antenna Wo (120 Deg)) (Continued)

07	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
37	MP3A	<u> </u>	41.044	1.5
38	MP3A	Z	23.697	1.5
39	MP3A	Mx	017	1.5
40	MP3A	<u> </u>	41.044	3.5
41	MP3A	Z	23.697	3.5
42	MP3A	Mx	017	3.5
43	MP3B	<u> </u>	75.501	1.5
44	MP3B	Z	43.591	1.5
45	MP3B	Mx	0	1.5
46	MP3B	X	75.501	3.5
47	MP3B	Z	43.591	3.5
48	MP3B	Mx	0	3.5
49	MP3C	<u> </u>	41.044	1.5
50	MP3C	Z	23.697	1.5
51	MP3C	Mx	.017	1.5
52	MP3C	X 7	41.044	3.5
53	MP3C	Z	23.697	3.5
54	MP3C	Mx X	.017	3.5
55	MP1A	Z	45.14	3
56	MP1A		26.062	3
57	MP1A	Mx	.023	3
58	MP1B	<u> </u>	60.08	3
59	MP1B	Z	34.687	3
60	MP1B	Mx	0	3
61	MP1C	<u> </u>	45.14	3
62	MP1C	Z	26.062	3
63	MP1C	Mx	023	3
64	MP2A	<u> </u>	39.417	3
65	MP2A	Z	22.758	3
66	MP2A	Mx	.02	3
67	MP2B	<u> </u>	60.08	3
68	MP2B	Z	34.687	3
<u>69</u>	MP2B	Mx	0	3
70	MP2C	X 7	39.417	3
71	MP2C	Z	22.758	3
72	MP2C	Mx	02	3
73	M41	<u> </u>	122.71	1
74	M41	Z	70.847	1
75	M41	Mx	0	1
76	MP4A	X 7	78.081	.5
77	MP4A	Z	45.08	.5
78	MP4A	Mx	039	.5
79	MP4A	<u> </u>	78.081	5.5
80	MP4A	Z	45.08	5.5
81	MP4A	Mx	039	5.5
82	MP4B	<u> </u>	92.529	.5
83	MP4B	Z	53.422	.5
84	MP4B	Mx	0	.5
85	MP4B	<u> </u>	92.529	5.5
86	MP4B	Z	53.422	5.5
87	MP4B	Mx	0	5.5
88	MP4C	X	78.081	.5
89	MP4C	Z	45.08	.5
90	MP4C	Mx	.039	.5
91	MP4C	X	78.081	5.5
92	MP4C	Z	45.08	5.5
93	MP4C	Mx	.039	5.5

Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X Z	85.67	.5
2	MP1A		148.384	.5
3	MP1A	Mx	.02	.5
4	MP1A	X 7	85.67	5.5
5	MP1A	Z	148.384	5.5
6	MP1A	Mx	.02	5.5
7	MP1B	X	85.67	.5
8	MP1B	Z	148.384	.5
9	MP1B	Mx	177	.5
10	MP1B	X 7	85.67	5.5
11	MP1B	Z	148.384	5.5
12	MP1B	Mx	177	5.5
13	MP1C	X	68.057	.5
14	MP1C	Z	117.878	.5
15	MP1C	Mx	.125	.5
16	MP1C	X	68.057	5.5
17	MP1C	Z	117.878	5.5
18	MP1C	Mx	.125	5.5
19	MP1A	<u>X</u>	85.67	.5
20	MP1A	Z	148.384	.5
21	MP1A	Mx	.02	.5
22	MP1A	X	85.67	5.5
23	MP1A	Z	148.384	5.5
24	MP1A	Mx	.02	5.5
25	MP1B	X	85.67	.5
26	MP1B	Z	148.384	.5
27	MP1B	Mx	.02	.5
28	MP1B	X	85.67	5.5
29	MP1B	Z	148.384	5.5
30	MP1B	Mx	.02	5.5
31	MP1C	X	68.057	.5
32	MP1C	Z	117.878	.5
33	MP1C	Mx	.125	.5
34	MP1C	X	68.057	5.5
35	MP1C	Z	117.878	5.5
36	MP1C	Mx	.125	5.5
37	MP3A	X	36.96	1.5
38	MP3A	Z	64.016	1.5
39	MP3A	Mx	015	1.5
40	MP3A	X 7	36.96	3.5
41	MP3A	Z	64.016	3.5
42	MP3A	Mx	015	3.5
43	MP3B	X	36.96	1.5
44	MP3B	Z	64.016	1.5
45	MP3B	Mx	015	1.5
46	MP3B	X	36.96	3.5
47	MP3B	Z	64.016	3.5
48	MP3B	Mx	015	3.5
49	MP3C	<u> </u>	17.066	1.5
50	MP3C	Z	29.559	1.5
51	MP3C	Mx	.014	1.5
52	MP3C	X	17.066	3.5
53	MP3C	Z	29.559	3.5
54	MP3C	Mx	.014	3.5
55	MP1A	X	31.812	3
56	MP1A	Z	55.1	3
57	MP1A	Mx	.016	3

Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP1B	Х	31.812	3
59	MP1B	Z	55.1	3
60	MP1B	Mx	.016	3
61	MP1C	Х	23.187	3
62	MP1C	Z	40.16	3
63	MP1C	Mx	023	3
64	MP2A	Х	30.711	3
65	MP2A	Z	53.192	3
66	MP2A	Mx	.015	3
67	MP2B	Х	30.711	3
68	MP2B	Z	53.192	3
69	MP2B	Mx	.015	3
70	MP2C	Х	18.781	3
71	MP2C	Z	32.53	3
72	MP2C	Mx	019	3
73	M41	Х	75.31	1
74	M41	Z	130.441	1
75	M41	Mx	0	1
76	MP4A	Х	50.641	.5
77	MP4A	Z	87.713	.5
78	MP4A	Mx	025	.5
79	MP4A	Х	50.641	5.5
80	MP4A	Z	87.713	5.5
81	MP4A	Mx	025	5.5
82	MP4B	Х	50.641	.5
83	MP4B	Z	87.713	.5
84	MP4B	Mx	025	.5
85	MP4B	Х	50.641	5.5
86	MP4B	Z	87.713	5.5
87	MP4B	Mx	025	5.5
88	MP4C	Х	42.299	.5
89	MP4C	Z	73.265	.5
90	MP4C	Mx	.042	.5
91	MP4C	X	42.299	5.5
92	MP4C	Z	73.265	5.5
93	MP4C	Mx	.042	5.5

Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	.5
2	MP1A	Z	183.081	.5
3	MP1A	Mx	.122	.5
4	MP1A	X	0	5.5
5	MP1A	Z	183.081	5.5
6	MP1A	Mx	.122	5.5
7	MP1B	Х	0	.5
8	MP1B	Z	147.856	.5
9	MP1B	Mx	167	.5
10	MP1B	Х	0	5.5
11	MP1B	Z	147.856	5.5
12	MP1B	Mx	167	5.5
13	MP1C	Х	0	.5
14	MP1C	Z	147.856	.5
15	MP1C	Mx	.068	.5
16	MP1C	Х	0	5.5
17	MP1C	Z	147.856	5.5

Member Point Loads (BLC 9 : Antenna Wo (180 Deg)) (Continued)

18 19	Member Label MP1C MP1A	Direction Mx	Magnitude[lb,k-ft] .068	Location[ft,%] 5.5
	MP1A			
00		Χ	0	.5
20	MP1A	Z	147.856	.5
21	MP1A	Mx	068	.5
22	MP1A	X	0	5.5
23	MP1A	Z	147.856	5.5
24	MP1A	Mx	068	5.5
25	MP1B	X	0	.5
26	MP1B	Z	147.856	.5
27	MP1B	Mx	068	.5
28	MP1B	X	0	5.5
29	MP1B	Z	147.856	5.5
30	MP1B	Mx	068	5.5
31	MP1C	X	0	.5
32	MP1C	Z	147.856	.5
33	MP1C	Mx	.167	.5
34	MP1C	X	0	5.5
35	MP1C	Z	147.856	5.5
36	MP1C	Mx	.167	5.5
37	MP3A	X	0	1.5
38	MP3A	Z	87.182	1.5
39	MP3A	Mx	0	1.5
40	MP3A	X	0	3.5
41	MP3A	Z	87.182	3.5
42	MP3A	Mx	0	3.5
43	MP3B	X	0	1.5
44	MP3B	Z	47.394	1.5
45	MP3B	Mx	017	1.5
46	MP3B	X	0	3.5
47	MP3B	Z	47.394	3.5
48	MP3B	Mx	017	3.5
49	MP3C	X	0	1.5
50	MP3C	Z	47.394	1.5
51	MP3C	Mx	.017	1.5
52	MP3C	X	0	3.5
53	MP3C	Z	47.394	3.5
54	MP3C	Mx	.017	3.5
55	MP1A	X	0	3
56	MP1A	Z	69.374	3
57	MP1A	Mx	0	3
58	MP1B	X	0	3
59	MP1B	Z	52.123	3
60	MP1B	Mx	.023	3
61	MP1C	X	0	3
62	MP1C	Z	52.123	3
63	MP1C	Mx	023	3
64	MP2A	X	0	3
65	MP2A	Z	69.374	3
66	MP2A	Mx	0	3
67	MP2B	X	0	3
68	MP2B	Z	45.515	3
69	MP2B	Mx	.02	3
70	MP2C	X	0	3
71	MP2C	Z	45.515	3
72	MP2C	Mx	02	3
73	M41	X	0	1 1
74	M41	Z	141.693	1
			ISA\Ontion 1 - 467252-\/7\/	

Member Point Loads (BLC 9 : Antenna Wo (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
75	M41	Mx	0	1
76	MP4A	Х	0	.5
77	MP4A	Z	106.844	.5
78	MP4A	Mx	0	.5
79	MP4A	Х	0	5.5
80	MP4A	Z	106.844	5.5
81	MP4A	Mx	0	5.5
82	MP4B	Х	0	.5
83	MP4B	Z	90.16	.5
84	MP4B	Mx	039	.5
85	MP4B	Х	0	5.5
86	MP4B	Z	90.16	5.5
87	MP4B	Mx	039	5.5
88	MP4C	Х	0	.5
89	MP4C	Z	90.16	.5
90	MP4C	Mx	.039	.5
91	MP4C	Х	0	5.5
92	MP4C	Z	90.16	5.5
93	MP4C	Mx	.039	5.5

Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	-85.67	.5
2	MP1A	Z	148.384	.5
3	MP1A	Mx	.177	.5
4	MP1A	Х	-85.67	5.5
5	MP1A	Z	148.384	5.5
6	MP1A	Mx	.177	5.5
7	MP1B	Х	-68.057	.5
8	MP1B	Z	117.878	.5
9	MP1B	Mx	125	.5
10	MP1B	Х	-68.057	5.5
11	MP1B	Z	117.878	5.5
12	MP1B	Mx	125	5.5
13	MP1C	Х	-85.67	.5
14	MP1C	Z	148.384	.5
15	MP1C	Mx	02	.5
16	MP1C	Х	-85.67	5.5
17	MP1C	Z	148.384	5.5
18	MP1C	Mx	02	5.5
19	MP1A	Х	-68.057	.5
20	MP1A	Z	117.878	.5
21	MP1A	Mx	125	.5
22	MP1A	Х	-68.057	5.5
23	MP1A	Z	117.878	5.5
24	MP1A	Mx	125	5.5
25	MP1B	Х	-68.057	.5
26	MP1B	Z	117.878	.5
27	MP1B	Mx	125	.5
28	MP1B	Х	-68.057	5.5
29	MP1B	Z	117.878	5.5
30	MP1B	Mx	125	5.5
31	MP1C	Х	-85.67	.5
32	MP1C	Z	148.384	.5
33	MP1C	Mx	.177	.5
34	MP1C	Х	-85.67	5.5

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

25	Member Label	Direction Z	Magnitude[lb,k-ft]	Location[ft,%]
35 36	MP1C MP1C	Mx	.148.384	<u> </u>
				<u> </u>
37	MP3A	X 7	-36.96	
38	MP3A	Z	64.016	1.5
39 40	MP3A	Mx	.015	<u>1.5</u> 3.5
40	MP3A	Z	-36.96	
	MP3A		64.016	3.5
42	MP3A	Mx X	.015	3.5
43	MP3B	X Z	-17.066	1.5
44	MP3B		29.559	1.5
45	MP3B	Mx	014	1.5
46	MP3B	X 7	-17.066	3.5
47	MP3B	Z	29.559	3.5
48	MP3B	Mx	014	3.5
49	MP3C	Z	-36.96	1.5
50	MP3C		64.016	1.5
51	MP3C	Mx	.015	1.5
52	MP3C	X 7	-36.96	3.5
53	MP3C	Z	64.016	3.5
54	MP3C	Mx	.015	3.5
55	MP1A	<u>X</u>	-31.812	3
56	MP1A	Z	55.1	3
57	MP1A	Mx	016	3
58	MP1B	X 7	-23.187	3
59	MP1B	Z	40.16	3
60	MP1B	Mx	.023	3
61	MP1C	<u>X</u>	-31.812	3
62	MP1C	Z	55.1	3
63	MP1C	Mx	016	3
64	MP2A	<u> </u>	-30.711	3
65	MP2A	Z	53.192	3
66	MP2A	Mx	015	3
67	MP2B	<u> </u>	-18.781	3
68	MP2B	Z	32.53	3
69	MP2B	Mx	.019	3
70	MP2C	<u> </u>	-30.711	3
71	MP2C	Z	53.192	3
72	MP2C	Mx	015	3
73	<u>M41</u>	<u> </u>	-61.92	1
74	M41	Z	107.248	1
75	<u>M41</u>	Mx	0	1
76	MP4A	<u> </u>	-50.641	.5
77	MP4A	Z	87.713	.5
78	MP4A	Mx	.025	.5
79	MP4A	<u> </u>	-50.641	5.5
80	MP4A	Z	87.713	5.5
81	MP4A	Mx	.025	5.5
82	MP4B	X	-42.299	.5
83	MP4B	Z	73.265	.5
84	MP4B	Mx	042	.5
85	MP4B	<u> </u>	-42.299	5.5
86	MP4B	Z	73.265	5.5
87	MP4B	Mx	042	5.5
88	MP4C	X	-50.641	.5
89	MP4C	Z	87.713	.5
90	MP4C	Mx	.025	.5
91	MP4C	X	-50.641	5.5

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
92	MP4C	Z	87.713	5.5
93	MP4C	Mx	.025	5.5

Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-128.047	.5
2	MP1A	Z	73.928	.5
3	MP1A	Mx	.167	.5
4	MP1A	X	-128.047	5.5
5	MP1A	Z	73.928	5.5
6	MP1A	Mx	.167	5.5
7	MP1B	X	-128.047	.5
8	MP1B	Z	73.928	.5
9	MP1B	Mx	068	.5
10	MP1B	X	-128.047	5.5
11	MP1B	Z	73.928	5.5
12	MP1B	Mx	068	5.5
13	MP1C	X	-158.553	.5
14	MP1C	Z	91.541	.5
15	MP1C	Mx	122	.5
16	MP1C	X	-158.553	5.5
17	MP1C	Z	91.541	5.5
18	MP1C	Mx	122	5.5
19	MP1A	X	-128.047	.5
20	MP1A	Z	73.928	.5
21	MP1A	Mx	167	.5
22	MP1A	X	-128.047	5.5
23	MP1A	Z	73.928	5.5
24	MP1A	Mx	167	5.5
25	MP1B	X	-128.047	.5
26	MP1B	Z	73.928	.5
27	MP1B	Mx	167	.5
28	MP1B	X	-128.047	5.5
29	MP1B	Z	73.928	5.5
30	MP1B	Mx	167	5.5
31	MP1C	X	-158.553	.5
32	MP1C	Z	91.541	.5
33	MP1C	Mx	.122	.5
34	MP1C	X	-158.553	5.5
35	MP1C	Z	91.541	5.5
36	MP1C	Mx	.122	5.5
37	MP3A	X	-41.044	1.5
38	MP3A	Z	23.697	1.5
39	MP3A	Mx	.017	1.5
40	MP3A	X	-41.044	3.5
41	MP3A	Z	23.697	3.5
42	MP3A	Mx	.017	3.5
43	MP3B		-41.044	1.5
44	MP3B	X Z	23.697	1.5
45	MP3B	Mx	017	1.5
46	MP3B	X	-41.044	3.5
47	MP3B	Z	23.697	3.5
48	MP3B	Mx	017	3.5
49	MP3C	X	-75.501	1.5
50	MP3C	Z	43.591	1.5
51	MP3C	Mx	0	1.5
			v	1.0

Member Point Loads (BLC 11 : Antenna Wo (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
52	MP3C	Х	-75.501	3.5
53	MP3C	Z	43.591	3.5
54	MP3C	Mx	0	3.5
55	MP1A	Х	-45.14	3
56	MP1A	Z	26.062	3
57	MP1A	Mx	023	3
58	MP1B	Х	-45.14	3
59	MP1B	Z	26.062	3
60	MP1B	Mx	.023	3
61	MP1C	Х	-60.08	3
62	MP1C	Z	34.687	3
63	MP1C	Mx	0	3
64	MP2A	Х	-39.417	3
65	MP2A	Z	22.758	3
66	MP2A	Mx	02	3
67	MP2B	X	-39.417	3
68	MP2B	Z	22.758	3
69	MP2B	Mx	.02	3
70	MP2C	X	-60.08	3
71	MP2C	Z	34.687	3
72	MP2C	Mx	0	3
73	M41	Х	-99.517	1
74	M41	Z	57.456	1
75	M41	Mx	0	1
76	MP4A	Х	-78.081	.5
77	MP4A	Z	45.08	.5
78	MP4A	Mx	.039	.5
79	MP4A	X Z	-78.081	5.5
80	MP4A		45.08	5.5
81	MP4A	Mx	.039	5.5
82	MP4B	Х	-78.081	.5
83	MP4B	Z	45.08	.5
84	MP4B	Mx	039	.5
85	MP4B	X	-78.081	5.5
86	MP4B	Z	45.08	5.5
87	MP4B	Mx	039	5.5
88	MP4C	X	-92.529	.5
89	MP4C	Z	53.422	.5
90	MP4C	Mx	0	.5
91	MP4C	X	-92.529	5.5
92	MP4C	Z	53.422	5.5
93	MP4C	Mx	0	5.5

Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

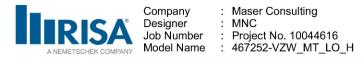
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	-136.114	.5
2	MP1A	Z	0	.5
3	MP1A	Mx	.125	.5
4	MP1A	X	-136.114	5.5
5	MP1A	Z	0	5.5
6	MP1A	Mx	.125	5.5
7	MP1B	X	-171.339	.5
8	MP1B	Z	0	.5
9	MP1B	Mx	.02	.5
10	MP1B	X	-171.339	5.5
11	MP1B	Z	0	5.5

Member Point Loads (BLC 12 : Antenna Wo (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
12	MP1B	Mx	.02	5.5
13	MP1C	Х	-171.339	.5
14	MP1C	Z	0	.5
15	MP1C	Mx	177	.5
16	MP1C	X	-171.339	5.5
17	MP1C	Z	0	5.5
18	MP1C	Mx	177	5.5
19	MP1A	X	-171.339	.5
20	MP1A	Z	0	.5
21	MP1A	Mx	177	.5
22	MP1A	Х	-171.339	5.5
23	MP1A	Z	0	5.5
24	MP1A	Mx	177	5.5
25	MP1B	X	-171.339	.5
26	MP1B	Z	0	.5
27	MP1B	Mx	177	.5
28	MP1B	X	-171.339	5.5
29	MP1B	Z	0	5.5
30	MP1B	Mx	177	5.5
31	MP1C	X	-171.339	.5
32	MP1C	Z	0	.5
33	MP1C	Mx	.02	.5
34	MP1C	<u> </u>	-171.339	5.5
35	MP1C	Z	0	5.5
36	MP1C	Mx	.02	5.5
37	MP3A	X	-34.131	1.5
38	MP3A	Z	0	1.5
39	MP3A	Mx	.014	1.5
40	MP3A	X Z	-34.131	3.5
41 42	MP3A MP3A	Mx	0.014	3.5 3.5
42	MP3A MP3B	X	-73.919	1.5
43	MP3B	Z	0	1.5
45	MP3B	Mx	015	1.5
46	MP3B	X	-73.919	3.5
47	MP3B	Z	0	3.5
48	MP3B	Mx	015	3.5
49	MP3C	X	-73.919	1.5
50	MP3C	Z	0	1.5
51	MP3C	Mx	015	1.5
52	MP3C	X	-73.919	3.5
53	MP3C	Z	0	3.5
54	MP3C	Mx	015	3.5
55	MP1A	X	-46.373	3
56	MP1A	Z	0	3
57	MP1A	Mx	023	3
58	MP1B	X	-63.624	3
59	MP1B	Z	0	3
60	MP1B	Mx	.016	3
61	MP1C	X	-63.624	3
62	MP1C	Z	0	3
63	MP1C	Mx	.016	3
64	MP2A	X	-37.562	3
65	MP2A	Z	0	3
66	MP2A	Mx	019	3
67	MP2B	X	-61.421	3
68	MP2B	Z	0	3
	Version 17.0.4 [R·\ \ \		ISA\Ontion 1 - 467252-\/7\/	

Member Point Loads (BLC 12 : Antenna Wo (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
69	MP2B	Mx	.015	3
70	MP2C	Х	-61.421	3
71	MP2C	Z	0	3
72	MP2C	Mx	.015	3
73	M41	Х	-123.84	1
74	M41	Z	0	1
75	M41	Mx	0	1
76	MP4A	Х	-84.599	.5
77	MP4A	Z	0	.5
78	MP4A	Mx	.042	.5
79	MP4A	Х	-84.599	5.5
80	MP4A	Z	0	5.5
81	MP4A	Mx	.042	5.5
82	MP4B	Х	-101.283	.5
83	MP4B	Z	0	.5
84	MP4B	Mx	025	.5
85	MP4B	Х	-101.283	5.5
86	MP4B	Z	0	5.5
87	MP4B	Mx	025	5.5
88	MP4C	Х	-101.283	.5
89	MP4C	Z	0	.5
90	MP4C	Mx	025	.5
91	MP4C	X	-101.283	5.5
92	MP4C	Z	0	5.5
93	MP4C	Mx	025	5.5


Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	-128.047	.5
2	MP1A	Z	-73.928	.5
3	MP1A	Mx	.068	.5
4	MP1A	Х	-128.047	5.5
5	MP1A	Z	-73.928	5.5
6	MP1A	Mx	.068	5.5
7	MP1B	X	-158.553	.5
8	MP1B	Z	-91.541	.5
9	MP1B	Mx	.122	.5
10	MP1B	Х	-158.553	5.5
11	MP1B	Z	-91.541	5.5
12	MP1B	Mx	.122	5.5
13	MP1C	X	-128.047	.5
14	MP1C	Z	-73.928	.5
15	MP1C	Mx	167	.5
16	MP1C	X	-128.047	5.5
17	MP1C	Z	-73.928	5.5
18	MP1C	Mx	167	5.5
19	MP1A	Х	-158.553	.5
20	MP1A	Z	-91.541	.5
21	MP1A	Mx	122	.5
22	MP1A	Х	-158.553	5.5
23	MP1A	Z	-91.541	5.5
24	MP1A	Mx	122	5.5
25	MP1B	Х	-158.553	.5
26	MP1B	Z	-91.541	.5
27	MP1B	Mx	122	.5
28	MP1B	X	-158.553	5.5

Member Point Loads (BLC 13 : Antenna Wo (300 Deg)) (Continued)

29 MP1B Z $\cdot 91541$ 5.5 30 MP1B Mx $\cdot 122$ 5.5 31 MP1C X $\cdot 128.047$ 5 32 MP1C Z $\cdot 73.928$ 5 33 MP1C Mx $\cdot 068$ 5 34 MP1C X $\cdot 128.047$ 5.5 35 MP1C Mx $\cdot 068$ 5.5 36 MP1C Mx $\cdot 410.044$ 1.5 39 MP3A X $\cdot 41.044$ 3.5 40 MP3A Z $\cdot 23.697$ 3.5 41 MP3A Z $\cdot 23.697$ 3.5 42 MP3A Mx 017 3.5 43 MP3B Z $\cdot 43.591$ 1.5 44 MP3B Z $\cdot 43.591$ 3.5 44 MP3B Z $\cdot 43.591$ 3.5 47 MP3B Z $\cdot 43.591$ 3.5		Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
31 MP1C X -128,047 .5 32 MP1C Z -73,928 .5 33 MP1C X -068 .5 34 MP1C X -128,047 .5.5 36 MP1C X -128,047 .5.5 36 MP1C X -128,047 .5.5 37 MP3A X -104,044 1.5 38 MP3A Z -23,697 1.5 39 MP3A X -41,044 3.5 41 MP3A Z -23,697 3.5 42 MP3A X -75,501 1.5 44 MP3B Z -43,591 3.5 47 MP3B Z -43,591 3.5 48 MP3B X -75,501 3.5 50 MP3C X -41,044 1.5 51 MP3C X -41,044 1.5 52 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
32 MP1C Z $73,928$.5 33 MP1C X $128,047$ 5.5 34 MP1C Z $73,928$ 5.5 35 MP1C Z $73,928$ 5.5 36 MP1C Z $73,928$ 5.5 37 MP3A X $41,044$ 1.5 38 MP3A X $41,044$ 3.5 40 MP3A X $41,044$ 3.5 41 MP3A X $41,044$ 3.5 42 MP3A Mx 017 3.5 43 MP3B Z $43,591$ 1.5 44 MP3B Z $43,591$ 1.5 45 MP3B X $75,501$ 3.5 47 MP3B Z $43,591$ 1.5 48 MP3B Mx 0 3.5 50 MP3C Z $-23,697$ 3.5 <td< td=""><td>30</td><td>MP1B</td><td>Mx</td><td></td><td></td></td<>	30	MP1B	Mx		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			X	-128.047	.5
34 MP1C X -128.047 5.5 36 MP1C Z -73.928 5.5 36 MP1C Mx -068 5.5 37 MP3A X -41.044 1.5 38 MP3A X -41.044 3.5 40 MP3A X -41.044 3.5 41 MP3A Z -23.697 3.5 42 MP3A Mx -017 3.5 43 MP3B Z -43.591 1.5 44 MP3B Z -43.591 1.5 45 MP3B X -75.501 3.5 46 MP3B Mx 0 3.5 48 MP3B Mx 0 3.5 50 MP3C Z -23.697 1.6 51 MP3C Z -23.697 1.6 52 MP3C Z -23.697 3.5 53 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
35 MP1C Z -73.928 5.5 36 MP1C Mx .068 5.5 37 MP3A X .41.044 1.5 38 MP3A Z .23.697 1.5 39 MP3A Mx .017 1.5 40 MP3A X .41.044 3.5 41 MP3A X .41.044 3.5 42 MP3A Mx .017 .5 43 MP3B X .75.501 1.5 44 MP3B X .75.501 3.5 43 MP3B Mx .0 1.5 44 MP3B Z .43.591 3.5 45 MP3B Mx .0 1.5 46 MP3B X .75.501 1.5 50 MP3C Z .43.591 3.5 51 MP3C X .41.044 3.5 52 M	33				.5
36 MP1C Mx -068 5.5 37 MP3A X -41.044 1.5 38 MP3A Z -23.697 1.5 39 MP3A Mx -017 1.5 40 MP3A X -41.044 3.5 41 MP3A X -75.501 1.5 42 MP3A Mx -017 3.5 43 MP3B Z -43.591 1.5 44 MP3B Z -43.591 1.5 45 MP3B X -75.501 3.5 47 MP3B Z -43.591 3.5 48 MP3C X -101 1.5 50 MP3C X -41.044 1.5 51 MP3C Mx -017 1.5 52 MP3C X -44.044 3.5 54 MP3C Mx -017 3.5 55 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	35	MP1C	Z	-73.928	
38 MP3A Z -23.697 1.5 40 MP3A Mx .017 1.5 40 MP3A Z -23.697 3.5 41 MP3A Z -23.697 3.5 42 MP3A Mx .017 3.5 43 MP3B Z -43.591 1.5 44 MP3B Z -43.591 1.5 45 MP3B Mx 0 1.5 46 MP3B X -75.501 3.5 47 MP3B Z -43.691 3.5 48 MP3C X -41.044 1.5 50 MP3C X -41.044 3.5 51 MP3C X -41.044 3.5 52 MP3C X -41.044 3.5 53 MP3C Z -23.697 3.5 54 MP3C Z -20.062 3 56 <	36	MP1C	Mx		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		MP3A	X	-41.044	1.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	38	MP3A	Z		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	39	MP3A			
42 MP3A Mx 017 3.5 43 MP3B X -75.501 1.5 44 MP3B Z -43.591 1.5 45 MP3B Mx 0 1.5 46 MP3B X -75.501 3.5 47 MP3B Z -43.591 3.5 48 MP3B X -75.501 3.5 49 MP3C X -41.044 1.5 50 MP3C X -41.044 1.5 51 MP3C X -017 1.5 52 MP3C X -41.044 3.5 53 MP3C X -41.044 3.5 54 MP3C Mx -0.017 3.5 54 MP3C Mx -0.017 3.5 56 MP1A X -66.062 3 57 MP1A Mx -023 3 61 MP1	40	MP3A		-41.044	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	41	MP3A	Z	-23.697	3.5
			Mx	.017	3.5
45 MP38 Mx 0 1.5 46 MP38 X .75.501 3.5 47 MP3B Z .43.591 3.5 48 MP3B Mx 0 3.5 49 MP3C X .41.044 1.5 50 MP3C Z .23.697 1.5 51 MP3C Mx .017 1.5 52 MP3C Z .23.697 3.5 54 MP3C Mx .017 3.5 54 MP3C Mx .017 3.5 55 MP1A X .45.14 3 56 MP1A Z .26.062 3 57 MP1A Mx .003 3 58 MP1B Z .34.687 3 60 MP1B Mx .023 3 61 MP1C X .45.14 3 62 MP1C <t< td=""><td>43</td><td></td><td>X</td><td></td><td></td></t<>	43		X		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		MP3B	Z	-43.591	
47 MP3B Z -43.591 3.5 48 MP3C X -41.044 1.5 50 MP3C Z -23.697 1.5 51 MP3C X -41.044 3.5 52 MP3C X -4.044 3.5 53 MP3C Z -23.697 3.5 54 MP3C X -4.044 3.5 55 MP3C Z -23.697 3.5 54 MP3C Mx 017 3.5 55 MP1A X -45.14 3 56 MP1A Z -26.062 3 57 MP1A Mx -023 3 60 MP1B X -60.08 3 59 MP1B Mx 0 3 61 MP1C X -45.14 3 62 MP1C X -39.417 3 64 MP2A	45	MP3B	Mx		
47 MP3B Z 43.591 3.5 48 MP3B Mx 0 3.5 49 MP3C X 41.044 1.5 50 MP3C Z -23.697 1.5 51 MP3C X -017 1.6 52 MP3C X -41.044 3.5 53 MP3C Z -23.697 3.5 54 MP3C X -41.044 3.5 55 MP1A X -017 3.5 56 MP1A X -45.14 3 56 MP1A Z -26.062 3 57 MP1A Mx -023 3 60 MP1B X -60.08 3 59 MP1B Mx 0 3 61 MP1C X -45.14 3 62 MP1C X -39.417 3 64 MP2A X			X		
48 MP3E Mx 0 3.5 49 MP3C X -41.044 1.5 50 MP3C Z -23.697 1.5 51 MP3C X -017 1.5 52 MP3C X -41.044 3.5 53 MP3C Z -23.697 3.5 54 MP3C Mx -017 3.5 55 MP1A X -45.14 3 56 MP1A Z -26.062 3 57 MP1A Mx -0.023 3 58 MP1B X -60.08 3 60 MP1B Mx 0 3 61 MP1C X -45.14 3 62 MP1C X -39.417 3 63 MP1C Mx .023 3 64 MP2A X -60.08 3 65 MP2A Z </td <td></td> <td></td> <td>Z</td> <td>-43.591</td> <td>3.5</td>			Z	-43.591	3.5
50 MP3C Z -23.697 1.5 51 MP3C Mx 017 1.5 52 MP3C X -41.044 3.5 53 MP3C Z -23.697 3.5 54 MP3C Mx 017 3.5 55 MP1A X -45.14 3 56 MP1A Z -26.062 3 57 MP1A Mx 023 3 58 MP1B Z -34.687 3 60 MP1B Z -34.687 3 60 MP1B Mx 0 3 61 MP1C X -45.14 3 62 MP1C X -45.14 3 64 MP2A X -39.417 3 65 MP2A Z -22.758 3 66 MP2B X -60.08 3 69 <td>48</td> <td>MP3B</td> <td>Mx</td> <td>0</td> <td></td>	48	MP3B	Mx	0	
51 MP3C Mx 017 1.5 52 MP3C X -41.044 3.5 53 MP3C Z -23.697 3.5 54 MP3C Mx 017 3.5 55 MP1A X -45.14 3 56 MP1A Z -26.062 3 57 MP1A Mx 023 3 58 MP1B X -60.08 3 59 MP1B Z -34.687 3 60 MP1B Mx 0 3 61 MP1C X -45.14 3 62 MP1C Z -26.062 3 63 MP1C Mx -023 3 64 MP2A Z -22.758 3 66 MP2A Z -34.687 3 69 MP2B Z -34.687 3 69	49	MP3C	X	-41.044	1.5
52 MP3C X -41.044 3.5 53 MP3C Z -23.697 3.5 54 MP3C Mx -017 3.5 55 MP1A X -45.14 3 56 MP1A Z -26.062 3 57 MP1A Mx 023 3 58 MP1B X -60.08 3 59 MP1B X -60.08 3 60 MP1B Mx 0 3 61 MP1C X -45.14 3 62 MP1C X -45.14 3 62 MP1C X -39.417 3 64 MP2A X -39.417 3 65 MP2A X -39.417 3 66 MP2A X -60.08 3 67 MP2B Z -34.687 3 68 MP2A X <td>50</td> <td>MP3C</td> <td>Z</td> <td>-23.697</td> <td>1.5</td>	50	MP3C	Z	-23.697	1.5
53 MP3C Z -23.697 3.5 54 MP3C Mx 017 3.5 55 MP1A X -45.14 3 56 MP1A Z -26.062 3 57 MP1A Mx 023 3 58 MP1B X -60.08 3 60 MP1B Z -34.687 3 61 MP1C X -45.14 3 62 MP1C X -45.14 3 63 MP1C Mx 023 3 64 MP2A X -39.417 3 65 MP2A Z -22.758 3 66 MP2A X -60.08 3 68 MP2B Z -34.687 3 69 MP2B X -60.08 3 71 MP2C X -39.417 3		MP3C			
53 MP3C Z -23.697 3.5 54 MP3C Mx 017 3.5 55 MP1A X -45.14 3 56 MP1A Z -26.062 3 57 MP1A Mx 023 3 58 MP1B Z -34.687 3 60 MP1B Z -34.687 3 61 MP1C X -45.14 3 62 MP1C X -46.062 3 63 MP1C Mx .023 3 64 MP2A X -39.417 3 65 MP2A Z -22.758 3 66 MP2A X -30.08 3 67 MP2B X -60.08 3 68 MP2B X -34.687 3 69 MP2B Mx .0 3 70 MP2C X <td>52</td> <td>MP3C</td> <td>X</td> <td>-41.044</td> <td>3.5</td>	52	MP3C	X	-41.044	3.5
55MP1AX -45.14 3 56 MP1AZ -26.062 3 57 MP1AMx 023 3 58 MP1BX -60.08 3 59 MP1BZ -34.687 3 60 MP1BMx03 61 MP1CX -45.14 3 62 MP1CZ -26.062 3 63 MP1CX -45.14 3 64 MP2AX -39.417 3 65 MP2AZ -22.758 3 66 MP2AX -02 3 67 MP2BX -60.08 3 68 MP2AX -39.417 3 70 MP2BX -02 3 70 MP2BX -39.417 3 71 MP2CX -39.417 1 74 M41Z -70.847 1 75 M41Mx 02 3 76 MP4AX -78.081 $.55$ 79 MP4AX -78.081 5.5 80 MP4AX -78.08 5.5 81 MP4AMx 0.39 5.5 <td>53</td> <td>MP3C</td> <td>Z</td> <td>-23.697</td> <td>3.5</td>	53	MP3C	Z	-23.697	3.5
56MP1AZ -26.062 357MP1AMx 023 358MP1BX -60.08 359MP1BZ -34.687 360MP1BMx0361MP1CX -45.14 362MP1CZ -26.062 363MP1CMx $.023$ 364MP2AX -39.417 365MP2AZ -22.758 366MP2AX -02 367MP2BX -60.08 368MP2BZ -34.687 369MP2BMx0370MP2CX -39.417 371MP2CX -39.417 373M11X -122.758 374MP2CZ -22.758 375M41X -122.71 176MP4AX -78.081 .577MP4AZ -45.08 .578MP4AMx.039.580MP4AX -78.081 .5.581MP4AMx.039.5.5	54	MP3C	Mx	017	3.5
56MP1AZ -26.062 357MP1AMx 023 358MP1BX -60.08 359MP1BZ -34.687 360MP1BMx0361MP1CX -45.14 362MP1CZ -26.062 363MP1CMx $.023$ 364MP2AX -39.417 365MP2AZ -22.758 366MP2AX -02 367MP2BX -60.08 368MP2BZ -34.687 369MP2BMx0370MP2CX -39.417 371MP2CX -34.687 373M11X -122.758 374MP4AX -70.847 175M41Mx0176MP4AX -78.081 .578MP4AX -78.081 .580MP4AX -78.081 5.581MP4AMx.039.5	55	MP1A	X	-45.14	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	56	MP1A	Z	-26.062	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	57	MP1A	Mx	023	3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	59				3
62MP1CZ-26.0623 63 MP1CMx.0233 64 MP2AX-39.4173 65 MP2AZ-22.7583 66 MP2AMx023 67 MP2BX-60.083 68 MP2BZ-34.6873 69 MP2BMx03 70 MP2CX-39.4173 71 MP2CZ-22.7583 72 MP2CX-39.4173 71 MP2CZ-22.7583 72 MP2CX-39.4173 73 M41X-122.711 74 MP2CZ-70.8471 75 M41Mx01 76 MP4AX-78.081.5 78 MP4AX-78.081.5 79 MP4AX-78.0815.5 80 MP4AX-78.0815.5 81 MP4AMx.0395.5		MP1B	Mx		
62MP1CZ-26.0623 63 MP1CMx.0233 64 MP2AX-39.4173 65 MP2AZ-22.7583 66 MP2AMx023 67 MP2BX-60.083 68 MP2BZ-34.6873 69 MP2BMx03 70 MP2CX-39.4173 71 MP2CZ-22.7583 72 MP2CX-39.4173 71 MP2CZ-22.7583 72 MP2CX-39.4173 73 M41X-122.711 74 MP2CZ-70.8471 75 M41Mx01 76 MP4AX-78.081.5 78 MP4AX-78.081.5 79 MP4AX-78.0815.5 80 MP4AX-78.0815.5 81 MP4AMx.0395.5				-45.14	3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	62	MP1C	Z	-26.062	
64 MP2A X -39.417 3 65 MP2A Z -22.758 3 66 MP2A Mx 02 3 67 MP2B X -60.08 3 68 MP2B Z -34.687 3 69 MP2B X 0 3 70 MP2C X -39.417 3 71 MP2C Z -34.687 3 72 MP2C X -39.417 3 71 MP2C Z -22.758 3 72 MP2C Z -22.758 3 73 M41 X -122.71 1 74 M41 Z -70.847 1 75 M41 Mx 0 1 76 MP4A Z -45.08 .5 77 MP4A Z -45.08 .5 78 MP4A X			Mx		
65 MP2A Z -22.758 3 66 MP2A Mx 02 3 67 MP2B X -60.08 3 68 MP2B Z -34.687 3 69 MP2B Mx 0 3 70 MP2C X -39.417 3 71 MP2C Z -22.758 3 72 MP2C Z -22.758 3 73 MP41 X -122.71 1 74 M41 X -122.71 1 75 M41 Mx 0 1 75 M41 X -78.081 .5 77 MP4A Z <					
66 MP2A Mx 02 3 67 MP2B X -60.08 3 68 MP2B Z -34.687 3 69 MP2B Mx 0 3 70 MP2C X -39.417 3 71 MP2C Z -22.758 3 72 MP2C Mx .02 3 73 M41 X -122.71 1 74 M41 Z -70.847 1 75 M41 Mx 0 1 76 MP4A X -78.081 .5 77 MP4A Z -45.08 .5 78 MP4A X -78.081 5.5 80 MP4A X -78.081 5.5 81 MP4A Mx .039 5.5		MP2A			
67 MP2B X -60.08 3 68 MP2B Z -34.687 3 69 MP2B Mx 0 3 70 MP2C X -39.417 3 71 MP2C X -39.417 3 71 MP2C Z -22.758 3 72 MP2C Mx .02 3 73 M41 X -122.71 1 74 M41 Z -70.847 1 75 M41 Mx 0 1 76 MP4A X -78.081 .5 78 MP4A X -78.081 .5 79 MP4A X -78.081 5.5 80 MP4A Z -45.08 5.5 81 MP4A Mx .039 5.5			Mx		
68 MP2B Z -34.687 3 69 MP2B Mx 0 3 70 MP2C X -39.417 3 71 MP2C Z -22.758 3 72 MP2C Mx .02 3 73 M41 X -122.71 1 74 M41 Z -70.847 1 75 M41 Mx 0 1 76 MP4A X -78.081 .5 77 MP4A Z -45.08 .5 78 MP4A X -78.081 5.5 80 MP4A Z -45.08 5.5 81 MP4A Mx .039 5.5					
69 MP2B Mx 0 3 70 MP2C X -39.417 3 71 MP2C Z -22.758 3 72 MP2C Mx .02 3 73 M41 X -122.71 1 74 M41 Z -70.847 1 75 M41 Mx 0 1 76 MP4A X -78.081 .5 77 MP4A Z -45.08 .5 78 MP4A X -78.081 5.5 79 MP4A X -78.081 5.5 80 MP4A Z -45.08 5.5 81 MP4A Mx .039 5.5			Z		
70 MP2C X -39.417 3 71 MP2C Z -22.758 3 72 MP2C Mx .02 3 73 M41 X -122.71 1 74 M41 Z -70.847 1 75 M41 Mx 0 1 76 MP4A X -78.081 .5 77 MP4A Z -45.08 .5 78 MP4A X -78.081 5.5 79 MP4A X -78.081 5.5 80 MP4A Z -45.08 5.5 81 MP4A Mx .039 5.5					
71 MP2C Z -22.758 3 72 MP2C Mx .02 3 73 M41 X -122.71 1 74 M41 Z -70.847 1 75 M41 Mx 0 1 76 MP4A X -78.081 .5 77 MP4A Z -45.08 .5 78 MP4A X -78.081 5.5 79 MP4A X -78.081 5.5 80 MP4A Z -45.08 5.5 81 MP4A Mx .039 5.5					
72 MP2C Mx .02 3 73 M41 X -122.71 1 74 M41 Z -70.847 1 75 M41 Mx 0 1 76 MP4A X -78.081 .5 77 MP4A Z -45.08 .5 78 MP4A Mx .039 .5 79 MP4A X -78.081 5.5 80 MP4A Z -45.08 5.5 81 MP4A Mx .039 5.5					
73 M41 X -122.71 1 74 M41 Z -70.847 1 75 M41 Mx 0 1 76 MP4A X -78.081 .5 77 MP4A Z -45.08 .5 78 MP4A Mx .039 .5 79 MP4A X -78.081 5.5 80 MP4A Z -45.08 5.5 81 MP4A Mx .039 5.5					
74 M41 Z -70.847 1 75 M41 Mx 0 1 76 MP4A X -78.081 .5 77 MP4A Z -45.08 .5 78 MP4A Mx .039 .5 79 MP4A X -78.081 5.5 80 MP4A Z -45.08 5.5 81 MP4A Mx .039 5.5					1
75 M41 Mx 0 1 76 MP4A X -78.081 .5 77 MP4A Z -45.08 .5 78 MP4A Mx .039 .5 79 MP4A X -78.081 5.5 80 MP4A Z -45.08 5.5 81 MP4A Mx .039 5.5			Z		1
76 MP4A X -78.081 .5 77 MP4A Z -45.08 .5 78 MP4A Mx .039 .5 79 MP4A X -78.081 5.5 80 MP4A Z -45.08 5.5 81 MP4A Mx .039 5.5					1
77 MP4A Z -45.08 .5 78 MP4A Mx .039 .5 79 MP4A X -78.081 5.5 80 MP4A Z -45.08 5.5 81 MP4A Mx .039 5.5					
78 MP4A Mx .039 .5 79 MP4A X -78.081 5.5 80 MP4A Z -45.08 5.5 81 MP4A Mx .039 5.5					
79 MP4A X -78.081 5.5 80 MP4A Z -45.08 5.5 81 MP4A Mx .039 5.5					.5
80 MP4A Z -45.08 5.5 81 MP4A Mx .039 5.5					
81 MP4A Mx .039 5.5			Z		
1 8Z VIP4B X -92 529 5	82	MP4B	X	-92.529	.5
83 MP4B Z -53.422 .5			7		
84 MP4B Mx 0 .5					
85 MP4B X -92.529 5.5					
BISA-3D Version 17.0.4 IR:\ \ \ Nev (\BISA\Option 1 - 467252-\/ZW) MT_LO_H r3d] Page 33				·	·

Member Point Loads (BLC 13 : Antenna Wo (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
86	MP4B	Z	-53.422	5.5
87	MP4B	Mx	0	5.5
88	MP4C	Х	-78.081	.5
89	MP4C	Z	-45.08	.5
90	MP4C	Mx	039	.5
91	MP4C	X	-78.081	5.5
92	MP4C	Z	-45.08	5.5
93	MP4C	Mx	039	5.5

Member Point Loads (BLC 14 : Antenna Wo (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-85.67	.5
2	MP1A	Z	-148.384	.5
3	MP1A	Mx	02	.5
4	MP1A	Х	-85.67	5.5
5	MP1A	Z	-148.384	5.5
6	MP1A	Mx	02	5.5
7	MP1B	Х	-85.67	.5
8	MP1B	Z	-148.384	.5
9	MP1B	Mx	.177	.5
10	MP1B	Х	-85.67	5.5
11	MP1B	Z	-148.384	5.5
12	MP1B	Mx	.177	5.5
13	MP1C	Х	-68.057	.5
14	MP1C	Z	-117.878	.5
15	MP1C	Mx	125	.5
16	MP1C	Х	-68.057	5.5
17	MP1C	Z	-117.878	5.5
18	MP1C	Mx	125	5.5
19	MP1A	Х	-85.67	.5
20	MP1A	Z	-148.384	.5
21	MP1A	Mx	02	.5
22	MP1A	Х	-85.67	5.5
23	MP1A	Z	-148.384	5.5
24	MP1A	Mx	02	5.5
25	MP1B	Х	-85.67	.5
26	MP1B	Z	-148.384	.5
27	MP1B	Mx	02	.5
28	MP1B	Х	-85.67	5.5
29	MP1B	Z	-148.384	5.5
30	MP1B	Mx	02	5.5
31	MP1C	Х	-68.057	.5
32	MP1C	Z	-117.878	.5
33	MP1C	Mx	125	.5
34	MP1C	Х	-68.057	5.5
35	MP1C	Z	-117.878	5.5
36	MP1C	Mx	125	5.5
37	MP3A	X Z	-36.96	1.5
38	MP3A		-64.016	1.5
39	MP3A	Mx	.015	1.5
40	MP3A	Х	-36.96	3.5
41	MP3A	Z	-64.016	3.5
42	MP3A	Mx	.015	3.5
43	MP3B	X	-36.96	1.5
44	MP3B	Z	-64.016	1.5
45	MP3B	Mx	.015	1.5

Member Point Loads (BLC 14 : Antenna Wo (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
46	MP3B	X	-36.96	3.5
47	MP3B	Z	-64.016	3.5
48	MP3B	Mx	.015	3.5
49	MP3C	X	-17.066	1.5
50	MP3C	Z	-29.559	1.5
51	MP3C	Mx	014	1.5
52	MP3C	X	-17.066	3.5
53	MP3C	Z	-29.559	3.5
54	MP3C	Mx	014	3.5
55	MP1A	X	-31.812	3
56	MP1A	Z	-55.1	3
57	MP1A	Mx	016	3
58	MP1B	X	-31.812	3
59	MP1B	Z	-55.1	3
60	MP1B	Mx	016	3
61	MP1C	X	-23.187	3
62	MP1C	Z	-40.16	3
63	MP1C	Mx	.023	3
64	MP2A	X	-30.711	3
65	MP2A	Z	-53.192	3
66	MP2A	Mx	015	3
67	MP2B	X	-30.711	3
68	MP2B	Z	-53.192	3
69	MP2B	Mx	015	3
70	MP2C	X	-18.781	3
71	MP2C	Z	-32.53	3
72	MP2C	Mx	.019	3
73	M41	X	-75.31	1
74	M41	Z	-130.441	1
75	M41	Mx	0	1
76	MP4A	X	-50.641	.5
77	MP4A	Z	-87.713	.5
78	MP4A	Mx	.025	.5
79	MP4A		-50.641	5.5
80	MP4A	X Z	-87.713	5.5
81	MP4A	Mx	.025	5.5
82	MP4B	Х	-50.641	.5
83	MP4B	Z	-87.713	.5
84	MP4B	Mx	.025	.5
85	MP4B	X	-50.641	5.5
86	MP4B	Z	-87.713	5.5
87	MP4B	Mx	.025	5.5
88	MP4C	X	-42.299	.5
89	MP4C	Z	-73.265	.5
90	MP4C	Mx	042	.5
91	MP4C	X	-42.299	5.5
92	MP4C	Z	-73.265	5.5
93	MP4C	Mx	042	5.5

Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

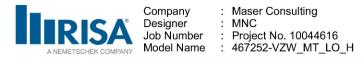
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	0	.5
2	MP1A	Z	-33.603	.5
3	MP1A	Mx	022	.5
4	MP1A	Х	0	5.5
5	MP1A	Z	-33.603	5.5

Member Point Loads (BLC 15 : Antenna Wi (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
6	MP1A	Mx	022	5.5
7	MP1B	Χ	0	.5
8	MP1B	Z	-27.475	.5
9	MP1B	Mx	.031	.5
10	MP1B	X	0	5.5
11	MP1B	Z	-27.475	5.5
12	MP1B	Mx	.031	5.5
13	MP1C	X Z	0	.5
14 15	MP1C MP1C	Mx	<u>-27.475</u> 013	.5
16	MP1C MP1C	X	013	5.5
17	MP1C MP1C	Z	-27.475	5.5
18	MP1C	Mx	013	5.5
19	MP1A	X	0	.5
20	MP1A	Z	-27.475	.5
21	MP1A	Mx	.013	.5
22	MP1A	X	0	5.5
23	MP1A	Z	-27.475	5.5
24	MP1A	Mx	.013	5.5
25	MP1B	X	0	.5
26	MP1B	Z	-27.475	.5
27	MP1B	Mx	.013	.5
28	MP1B	X	0	5.5
29	MP1B	Z	-27.475	5.5
30	MP1B	Mx	.013	5.5
31	MP1C	X	0	.5
32	MP1C	Z	-27.475	.5
33	MP1C	Mx	031	.5
34 35	MP1C MP1C	X Z	0 -27.475	5.5 5.5
36	MP1C MP1C	Mx	031	5.5
37	MP3A	X	031	1.5
38	MP3A	Z	-16.59	1.5
39	MP3A	Mx	0	1.5
40	MP3A	X	0	3.5
41	MP3A	Z	-16.59	3.5
42	MP3A	Mx	0	3.5
43	MP3B	Х	0	1.5
44	MP3B	Z	-9.458	1.5
45	MP3B	Mx	.003	1.5
46	MP3B	X	0	3.5
47	MP3B	Z	-9.458	3.5
48	MP3B	Mx	.003	3.5
49	MP3C	<u> </u>	0	1.5
50	MP3C	Z	-9.458	1.5
51	MP3C	Mx	003	1.5
52	MP3C	X 7	0	3.5
53	MP3C	Z	-9.458	3.5
54 55	MP3C	Mx	003	3.5
56	MP1A MP1A	X Z	-14.001	3
57	MP1A MP1A	Mx	-14.001	3
58	MP1A MP1B	X	0	3
59	MP1B MP1B	Z	-10.812	3
60	MP1B	Mx	005	3
61	MP1C	X	-:005	3
62	MP1C	Z	-10.812	3
	Version 17.0.4 $[R:\)$			

Member Point Loads (BLC 15 : Antenna Wi (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
63	MP1C	Mx	.005	3
64	MP2A	Х	0	3
65	MP2A	Z	-14.001	3
66	MP2A	Mx	0	3
67	MP2B	Х	0	3
68	MP2B	Z	-9.6	3
69	MP2B	Mx	004	3
70	MP2C	Х	0	3
71	MP2C	Z	-9.6	3
72	MP2C	Mx	.004	3
73	M41	Х	0	1
74	M41	Z	-27.175	1
75	M41	Mx	0	1
76	MP4A	Х	0	.5
77	MP4A	Z	-20.574	.5
78	MP4A	Mx	0	.5
79	MP4A	Х	0	5.5
80	MP4A	Z	-20.574	5.5
81	MP4A	Mx	0	5.5
82	MP4B	Х	0	.5
83	MP4B	Z	-17.645	.5
84	MP4B	Mx	.008	.5
85	MP4B	Х	0	5.5
86	MP4B	Z	-17.645	5.5
87	MP4B	Mx	.008	5.5
88	MP4C	Х	0	.5
89	MP4C	Z	-17.645	.5
90	MP4C	Mx	008	.5
91	MP4C	Х	0	5.5
92	MP4C	Z	-17.645	5.5
93	MP4C	Mx	008	5.5


Member Point Loads (BLC 16 : Antenna Wi (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	15.78	.5
2	MP1A	Z	-27.332	.5
3	MP1A	Mx	033	.5
4	MP1A	Х	15.78	5.5
5	MP1A	Z	-27.332	5.5
6	MP1A	Mx	033	5.5
7	MP1B	Х	12.716	.5
8	MP1B	Z	-22.025	.5
9	MP1B	Mx	.023	.5
10	MP1B	Х	12.716	5.5
11	MP1B	Z	-22.025	5.5
12	MP1B	Mx	.023	5.5
13	MP1C	Х	15.78	.5
14	MP1C	Z	-27.332	.5
15	MP1C	Mx	.004	.5
16	MP1C	Х	15.78	5.5
17	MP1C	Z	-27.332	5.5
18	MP1C	Mx	.004	5.5
19	MP1A	Х	12.716	.5
20	MP1A	Z	-22.025	.5
21	MP1A	Mx	.023	.5
22	MP1A	Х	12.716	5.5

Member Point Loads (BLC 16 : Antenna Wi (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
23	MP1A	Z	-22.025	5.5
24	MP1A	Mx	.023	5.5
25	MP1B	X	12.716	.5
26	MP1B	Z	-22.025	.5
27	MP1B	Mx	.023	.5
28	MP1B	X	12.716	5.5
29	MP1B	Z	-22.025	5.5
30	MP1B	Mx	.023	5.5
31	MP1C	X	15.78	.5
32	MP1C	Z	-27.332	.5
33	MP1C	Mx	033	.5
34	MP1C	X	15.78	5.5
35	MP1C	Z	-27.332	5.5
36	MP1C	Mx	033	5.5
37	MP3A	X	7.106	1.5
38	MP3A	Z	-12.309	1.5
39	MP3A	Mx	003	1.5
40	MP3A	Х	7.106	3.5
41	MP3A	Z	-12.309	3.5
42	MP3A	Mx	003	3.5
43	MP3B	X	3.541	1.5
44	MP3B	Z	-6.133	1.5
45	MP3B	Mx	.003	1.5
46	MP3B	X	3.541	3.5
47	MP3B	Z	-6.133	3.5
48	MP3B	Mx	.003	3.5
49	MP3C	X	7.106	1.5
50	MP3C	Z	-12.309	1.5
51	MP3C	Mx	003	1.5
52	MP3C	X	7.106	3.5
53	MP3C	Z	-12.309	3.5
54	MP3C	Mx	003	3.5
55	MP1A	X	6.469	3
56	MP1A	Z	-11.204	3
57	MP1A	Mx	.003	3
58	MP1B	X	4.874	3
59	MP1B	Z	-8.442	3
60	MP1B	Mx	005	3
61	MP1C	X	6.469	3
62	MP1C	^ Z	-11.204	3
63	MP1C MP1C	Mx	.003	3
64	MP1C MP2A	X	6.267	3
65	MP2A	^ Z	-10.855	3
66	MP2A	Mx	.003	3
67	MP2B	X	4.066	3
68	MP2B	X	-7.043	3
69				3
	MP2B MP2C	Mx V	004 6.267	
70 71		X Z		3
72	MP2C MP2C	Mx	-10.855 .003	3
72		X		1
73	M41		12.024	1
	M41		-20.827	
75	M41	Mx X	0	1
76	MP4A	X 7	9.799	.5
77	MP4A	Z	-16.972	.5
78	MP4A	Mx	005	.5
79	MP4A	X	9.799	5.5
	1/ 1704 [D)		ISA\Ontion 1 - 467252-\/7\//	MT LO LL O IL D OO

Member Point Loads (BLC 16 : Antenna Wi (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
80	MP4A	Z	-16.972	5.5
81	MP4A	Mx	005	5.5
82	MP4B	Х	8.334	.5
83	MP4B	Z	-14.435	.5
84	MP4B	Mx	.008	.5
85	MP4B	Х	8.334	5.5
86	MP4B	Z	-14.435	5.5
87	MP4B	Mx	.008	5.5
88	MP4C	Х	9.799	.5
89	MP4C	Z	-16.972	.5
90	MP4C	Mx	005	.5
91	MP4C	Х	9.799	5.5
92	MP4C	Z	-16.972	5.5
93	MP4C	Mx	005	5.5

Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	23.794	.5
2	MP1A	Z	-13.737	.5
3	MP1A	Mx	031	.5
4	MP1A	X	23.794	5.5
5	MP1A	Z	-13.737	5.5
6	MP1A	Mx	031	5.5
7	MP1B	X	23.794	.5
8	MP1B	Z	-13.737	.5
9	MP1B	Mx	.013	.5
10	MP1B	Х	23.794	5.5
11	MP1B	Z	-13.737	5.5
12	MP1B	Mx	.013	5.5
13	MP1C	X	29.101	.5
14	MP1C	Z	-16.801	.5
15	MP1C	Mx	.022	.5
16	MP1C	X	29.101	5.5
17	MP1C	Z	-16.801	5.5
18	MP1C	Mx	.022	5.5
19	MP1A	Х	23.794	.5
20	MP1A	X Z	-13.737	.5
21	MP1A	Mx	.031	.5
22	MP1A	Х	23.794	5.5
23	MP1A	Z	-13.737	5.5
24	MP1A	Mx	.031	5.5
25	MP1B	Х	23.794	.5
26	MP1B	Z	-13.737	.5
27	MP1B	Mx	.031	.5
28	MP1B	X	23.794	5.5
29	MP1B	Z	-13.737	5.5
30	MP1B	Mx	.031	5.5
31	MP1C	Х	29.101	.5
32	MP1C	Z	-16.801	.5
33	MP1C	Mx	022	.5
34	MP1C	X	29.101	5.5
35	MP1C	Z	-16.801	5.5
36	MP1C	Mx	022	5.5
37	MP3A	Х	8.191	1.5
38	MP3A	Z	-4.729	1.5
39	MP3A	Mx	003	1.5

Member Point Loads (BLC 17 : Antenna Wi (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
40	MP3A	X	8.191	3.5
41	MP3A	Z	-4.729	3.5
42	MP3A	Mx	003	3.5
43	MP3B	Χ	8.191	1.5
44	MP3B	Z	-4.729	1.5
45	MP3B	Mx	.003	1.5
46	MP3B	X	8.191	3.5
47	MP3B	Z	-4.729	3.5
48	MP3B	Mx	.003	3.5
49	MP3C	<u> </u>	14.367	1.5
50	MP3C	Z	-8.295	1.5
51	MP3C	Mx	0	1.5
52	MP3C	<u>X</u>	14.367	3.5
53	MP3C	Z	-8.295	3.5
54	MP3C	Mx	0	3.5
55	MP1A	X 7	9.363	3
56	MP1A MP1A	Z	-5.406	3
57 58	MP1A MP1B	Mx X	.005 9.363	3
59	MP1B	Z	-5.406	3
60	MP1B	Mx	005	3
61	MP1D MP1C	X	12.125	3
62	MP1C	Z	-7	3
63	MP1C	Mx	0	3
64	MP2A	X	8.313	3
65	MP2A	Z	-4.8	3
66	MP2A	Mx	.004	3
67	MP2B	X	8.313	3
68	MP2B	Z	-4.8	3
69	MP2B	Mx	004	3
70	MP2C	X	12.125	3
71	MP2C	Z	-7	3
72	MP2C	Mx	0	3
73	M41	X	19.473	1
74	M41	Z	-11.243	1
75	M41	Mx	0	1
76	MP4A	X	15.281	.5
77	MP4A	Z	-8.822	.5
78	MP4A	Mx	008	.5
79	MP4A	X	15.281	5.5
80	MP4A	Z	-8.822	5.5
81	MP4A	Mx	008	5.5
82	MP4B	X	15.281	.5
83	MP4B	Z	-8.822	.5
84	MP4B	Mx	.008	.5
85	MP4B	<u> </u>	15.281	5.5
86	MP4B	Z	-8.822	5.5
87	MP4B	<u> </u>	.008	5.5
88	MP4C	X Z	17.817	.5 .5
89	MP4C		-10.287	.5
90	MP4C	Mx	0	
91 92	MP4C MP4C	X Z	17.817	5.5
92	MP4C MP4C	Mx	-10.287 0	<u>5.5</u> 5.5
30			U U	0.0

Member Point Loads (BLC 18 : Antenna Wi (90 Deg))

Member Point Loads (BLC 18 : Antenna Wi (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X Z	25.432	.5
2	MP1A		0	.5
3	MP1A MP1A	Mx X	023 25.432	<u>.5</u> 5.5
4 5		Z	0	5.5
6	MP1A MP1A	Mx	023	5.5
7	MP1A MP1B	X	31.56	.5
8	MP1B	Z	0	.5
9	MP1B MP1B	Mx	004	.5
10	MP1B	X	31.56	5.5
11	MP1B MP1B	Z	0	5.5
12	MP1B	Mx	004	5.5
13	MP1C	X	31.56	.5
14	MP1C	Z	0	.5
15	MP1C	Mx	.033	.5
16	MP1C	X	31.56	5.5
17	MP1C	Z	0	5.5
18	MP1C	Mx	.033	5.5
19	MP1A	X	31.56	.5
20	MP1A	Z	0	.5
21	MP1A	Mx	.033	.5
22	MP1A	X	31.56	5.5
23	MP1A	Z	0	5.5
24	MP1A	Mx	.033	5.5
25	MP1B	X	31.56	.5
26	MP1B	Z	0	.5
27	MP1B	Mx	.033	.5
28	MP1B	X	31.56	5.5
29	MP1B	Z	0	5.5
30	MP1B	Mx	.033	5.5
31	MP1C	X	31.56	.5
32	MP1C	Z	0	.5
33	MP1C	Mx	004	.5
34	MP1C	X	31.56	5.5
35	MP1C	Z	0	5.5
36	MP1C	Mx	004	5.5
37	MP3A	X	7.081	1.5
38	MP3A	Z	0	1.5
39	MP3A	Mx	003	1.5
40	MP3A	X	7.081	3.5
41	MP3A	Z	0	3.5
42	MP3A	Mx	003	3.5
43	MP3B	X	14.213	1.5
44	MP3B	Z	0	1.5
45	MP3B	Mx	.003	1.5
46	MP3B	X	14.213	3.5
47	MP3B	Z	0	3.5
48	MP3B	Mx	.003	3.5
49	MP3C	<u> </u>	14.213	1.5
50	MP3C	Z	0	1.5
51	MP3C	Mx	.003	1.5
52	MP3C	<u> </u>	14.213	3.5
	MP3C	Z	0	3.5
53				0.5
53 54	MP3C	Mx	.003	3.5
53 54 55	MP3C MP1A	X	9.748	3
53 54	MP3C			

Member Point Loads (BLC 18 : Antenna Wi (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP1B	X	12.938	3
59	MP1B	Z	0	3
60	MP1B	Mx	003	3
61	MP1C	X	12.938	3
62	MP1C	Z	0	3
63	MP1C	Mx	003	3
64	MP2A	Х	8.132	3
65	MP2A	Z	0	3
66	MP2A	Mx	.004	3
67	MP2B	X	12.534	3
68	MP2B	Z	0	3
69	MP2B	Mx	003	3
70	MP2C	Х	12.534	3
71	MP2C	Z	0	3
72	MP2C	Mx	003	3
73	M41	X	24.048	1
74	M41	Z	0	1
75	M41	Mx	0	1
76	MP4A	Х	16.668	.5
77	MP4A	Z	0	.5
78	MP4A	Mx	008	.5
79	MP4A	X	16.668	5.5
80	MP4A	Z	0	5.5
81	MP4A	Mx	008	5.5
82	MP4B	X	19.597	.5
83	MP4B	Z	0	.5
84	MP4B	Mx	.005	.5
85	MP4B	X	19.597	5.5
86	MP4B	Z	0	5.5
87	MP4B	Mx	.005	5.5
88	MP4C	Х	19.597	.5
89	MP4C	Z	0	.5
90	MP4C	Mx	.005	.5
91	MP4C	Х	19.597	5.5
92	MP4C	Z	0	5.5
93	MP4C	Mx	.005	5.5

Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	23.794	.5
2	MP1A	Z	13.737	.5
3	MP1A	Mx	013	.5
4	MP1A	Х	23.794	5.5
5	MP1A	Z	13.737	5.5
6	MP1A	Mx	013	5.5
7	MP1B	Х	29.101	.5
8	MP1B	Z	16.801	.5
9	MP1B	Mx	022	.5
10	MP1B	Х	29.101	5.5
11	MP1B	Z	16.801	5.5
12	MP1B	Mx	022	5.5
13	MP1C	Х	23.794	.5
14	MP1C	Z	13.737	.5
15	MP1C	Mx	.031	.5
16	MP1C	Х	23.794	5.5
17	MP1C	Z	13.737	5.5

Member Point Loads (BLC 19 : Antenna Wi (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
18	MP1C	Mx	.031	5.5
19	MP1A	X	29.101	.5
20	MP1A	Z	16.801	.5
21	MP1A	Mx	.022	.5
22	MP1A	X	29.101	5.5
23	MP1A	Z	16.801	5.5
24	MP1A	Mx	.022	5.5
25	MP1B	X	29.101	.5
26	MP1B	Z	16.801	.5
27	MP1B	Mx	.022	.5
28	MP1B	X	29.101	5.5
29	MP1B	Z	16.801	5.5
30	MP1B	Mx	.022	5.5
31	MP1C	X	23.794	.5
32	MP1C	Z	13.737	.5
33	MP1C	Mx	.013	.5
34	MP1C	X	23.794	5.5
35	MP1C	Z	13.737	5.5
36	MP1C	Mx	.013	5.5
37	MP3A	X	8.191	1.5
38	MP3A	Z	4.729	1.5
39	MP3A	Mx	003	1.5
40	MP3A	X	8.191	3.5
41	MP3A	Z	4.729	3.5
42	MP3A	Mx	003	3.5
43	MP3B	X	14.367	1.5
44	MP3B	Z	8.295	1.5
45	MP3B	Mx	0	1.5
46	MP3B	X	14.367	3.5
40	MP3B	Z	8.295	3.5
47	MP3B	Mx	0.295	3.5
40	MP3C	X	8.191	1.5
50	MP3C	Z	4.729	1.5
51	MP3C	Mx	.003	1.5
52	MP3C	X	8.191	3.5
53	MP3C	Z	4.729	3.5
			.003	3.5
54	MP3C	Mx		
55	MP1A	X 7	9.363	3
56	MP1A	Z	5.406	3
57	MP1A	Mx V	.005	3
58	MP1B	X Z	12.125	3
59	MP1B		7	3
60	MP1B	<u> </u>	0 262	3
61	MP1C	Z	9.363	3
62	MP1C		5.406	3
63	MP1C	Mx	005	3
64	MP2A	X 7	8.313	3
65	MP2A	Z	4.8	3
66	MP2A	Mx X	.004	3
67	MP2B	X 7	12.125	3
68	MP2B	Z	7	3
69	MP2B	Mx	0	3
70	MP2C	X 7	8.313	3
71	MP2C	Z	4.8	3
72	MP2C	Mx	004	3
73	<u>M41</u>	<u> </u>	23.534	1
74	M41	Z	13.588	1
	V : 47.0.4 (D)))		ISA\Ontion 1 - 467252-\/7\//	

Member Point Loads (BLC 19 : Antenna Wi (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
75	M41	Mx	0	1
76	MP4A	Х	15.281	.5
77	MP4A	Z	8.822	.5
78	MP4A	Mx	008	.5
79	MP4A	Х	15.281	5.5
80	MP4A	Z	8.822	5.5
81	MP4A	Mx	008	5.5
82	MP4B	Х	17.817	.5
83	MP4B	Z	10.287	.5
84	MP4B	Mx	0	.5
85	MP4B	Х	17.817	5.5
86	MP4B	Z	10.287	5.5
87	MP4B	Mx	0	5.5
88	MP4C	Х	15.281	.5
89	MP4C	Z	8.822	.5
90	MP4C	Mx	.008	.5
91	MP4C	Х	15.281	5.5
92	MP4C	Z	8.822	5.5
93	MP4C	Mx	.008	5.5

Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	15.78	.5
2	MP1A	Z	27.332	.5
3	MP1A	Mx	.004	.5
4	MP1A	X	15.78	5.5
5	MP1A	Z	27.332	5.5
6	MP1A	Mx	.004	5.5
7	MP1B	X	15.78	.5
8	MP1B	Z	27.332	.5
9	MP1B	Mx	033	.5
10	MP1B	X	15.78	5.5
11	MP1B	Z	27.332	5.5
12	MP1B	Mx	033	5.5
13	MP1C	Х	12.716	.5
14	MP1C	Z	22.025	.5
15	MP1C	Mx	.023	.5
16	MP1C	Х	12.716	5.5
17	MP1C	Z	22.025	5.5
18	MP1C	Mx	.023	5.5
19	MP1A	Х	15.78	.5
20	MP1A	Z	27.332	.5
21	MP1A	Mx	.004	.5
22	MP1A	Х	15.78	5.5
23	MP1A	Z	27.332	5.5
24	MP1A	Mx	.004	5.5
25	MP1B	Х	15.78	.5
26	MP1B	Z	27.332	.5
27	MP1B	Mx	.004	.5
28	MP1B	Х	15.78	5.5
29	MP1B	Z	27.332	5.5
30	MP1B	Mx	.004	5.5
31	MP1C	Х	12.716	.5
32	MP1C	Z	22.025	.5
33	MP1C	Mx	.023	.5
34	MP1C	X	12.716	5.5
	····· · ·			

Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

35 36	MP1C	Z	00.005	
36			22.025	5.5
	MP1C	Mx	.023	5.5
37	MP3A	X	7.106	1.5
38	MP3A	Z	12.309	1.5
39	MP3A	Mx	003	1.5
40	MP3A	X	7.106	3.5
41	MP3A	Ζ	12.309	3.5
42	MP3A	Mx	003	3.5
43	MP3B	X	7.106	1.5
44	MP3B	Z	12.309	1.5
45	MP3B	Mx	003	1.5
46	MP3B	X	7.106	3.5
47	MP3B	Z	12.309	3.5
48	MP3B	Mx	003	3.5
49	MP3C	X	3.541	1.5
50	MP3C	Z	6.133	1.5
51	MP3C	Mx	.003	1.5
52	MP3C	X	3.541	3.5
53	MP3C	Z	6.133	3.5
54	MP3C	Mx	.003	3.5
55	MP1A	X	6.469	3
56	MP1A	Z	11.204	3
57	MP1A	Mx	.003	3
58	MP1B	X	6.469	3
59	MP1B	Z	11.204	3
60	MP1B	Mx	.003	3
61	MP1C	X	4.874	3
62	MP1C	Z	8.442	3
63	MP1C	Mx	005	3
64	MP2A	X	6.267	3
65	MP2A	Z	10.855	3
66	MP2A	Mx	.003	3
67	MP2B	X	6.267	3
68	MP2B	Z	10.855	3
69	MP2B	Mx	.003	3
70	MP2C	X	4.066	3
71	MP2C	Z	7.043	3
72	MP2C	Mx	004	3
73	M41	X	14.369	1
74	M41	Z	24.888	1
75	M41	Mx	0	1
76	MP4A	X	9.799	.5
77	MP4A	Z	16.972	.5
78	MP4A	Mx	005	.5
79	MP4A	X	9.799	5.5
80	MP4A	Z	16.972	5.5
81	MP4A	Mx	005	5.5
82	MP4B	X	9.799	.5
83	MP4B	Z	16.972	.5
84	MP4B	Mx	005	.5
85	MP4B	X	9.799	5.5
86	MP4B	Z	16.972	5.5
87	MP4B	Mx	005	5.5
88	MP4C	X	8.334	.5
89	MP4C	Z	14.435	.5
90	MP4C	Mx	.008	.5
91	MP4C	X	8.334	5.5
			ISA\Ontion 1 - 467252-\/7\//	

Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
92	MP4C	Z	14.435	5.5
93	MP4C	Mx	.008	5.5

Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	0	.5
2	MP1A	Z	33.603	.5
3	MP1A	Mx	.022	.5
4	MP1A	X	0	5.5
5	MP1A	Z	33.603	5.5
6	MP1A	Mx	.022	5.5
7	MP1B	X	0	.5
8	MP1B	Z	27.475	.5
9	MP1B	Mx	031	.5
10	MP1B	X	0	5.5
11	MP1B	Z	27.475	5.5
12	MP1B	Mx	031	5.5
13	MP1C	X	0	.5
14	MP1C	Z	27.475	.5
15	MP1C	Mx	.013	.5
16	MP1C	X	0	5.5
17	MP1C	Z	27.475	5.5
18	MP1C	Mx	.013	5.5
19	MP1A	X	0	.5
20	MP1A	Z	27.475	.5
21	MP1A	Mx	013	.5
22	MP1A	Х	0	5.5
23	MP1A	Z	27.475	5.5
24	MP1A	Mx	013	5.5
25	MP1B	X	0	.5
26	MP1B	Z	27.475	.5
27	MP1B	Mx	013	.5
28	MP1B	X	0	5.5
29	MP1B	Z	27.475	5.5
30	MP1B	Mx	013	5.5
31	MP1C	X	0	.5
32	MP1C	Z	27.475	.5
33	MP1C	Mx	.031	.5
34	MP1C	X	0	5.5
35	MP1C	Z	27.475	5.5
36	MP1C	Mx	.031	5.5
37	MP3A	<u> </u>	0	1.5
38	MP3A	Z	16.59	1.5
39	MP3A	Mx	0	1.5
40	MP3A	X	0	3.5
41	MP3A	Z	16.59	3.5
42	MP3A	Mx	0	3.5
43	MP3B	X Z	0	1.5
44	MP3B		9.458	1.5
45	MP3B	Mx	003	1.5
46	MP3B	X	0	3.5
47	MP3B	Z	9.458	3.5
48	MP3B	Mx	003	3.5
49	MP3C	<u> </u>	0	1.5
50	MP3C	Z	9.458	1.5
51	MP3C	Mx	.003	1.5

Member Point Loads (BLC 21 : Antenna Wi (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
52	MP3C	X	0	3.5
53	MP3C	Z	9.458	3.5
54	MP3C	Mx	.003	3.5
55	MP1A	Х	0	3
56	MP1A	Z	14.001	3
57	MP1A	Mx	0	3
58	MP1B	X	0	3
59	MP1B	Z	10.812	3
60	MP1B	Mx	.005	3
61	MP1C	X	0	3
62	MP1C	Z	10.812	3
63	MP1C	Mx	005	3
64	MP2A	X	0	3
65	MP2A	Z	14.001	3
66	MP2A	Mx	0	3
67	MP2B	X	0	3
68	MP2B	Z	9.6	3
69	MP2B	Mx	.004	3
70	MP2C	X	0	3
71	MP2C	Z	9.6	3
72	MP2C	Mx	004	3
73	M41	X	0	1
74	M41	Z	27.175	1
75	M41	Mx	0	1
76	MP4A	X	0	.5
77	MP4A	Z	20.574	.5
78	MP4A	Mx	0	.5
79	MP4A	Х	0	5.5
80	MP4A	Z	20.574	5.5
81	MP4A	Mx	0	5.5
82	MP4B	X	0	.5
83	MP4B	Z	17.645	.5
84	MP4B	Mx	008	.5
85	MP4B	Х	0	5.5
86	MP4B	Z	17.645	5.5
87	MP4B	Mx	008	5.5
88	MP4C	Х	0	.5
89	MP4C	Z	17.645	.5
90	MP4C	Mx	.008	.5
91	MP4C	Х	0	5.5
92	MP4C	Z	17.645	5.5
93	MP4C	Mx	.008	5.5

Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

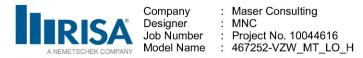
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	-15.78	.5
2	MP1A	Z	27.332	.5
3	MP1A	Mx	.033	.5
4	MP1A	Х	-15.78	5.5
5	MP1A	Z	27.332	5.5
6	MP1A	Mx	.033	5.5
7	MP1B	Х	-12.716	.5
8	MP1B	Z	22.025	.5
9	MP1B	Mx	023	.5
10	MP1B	Х	-12.716	5.5
11	MP1B	Z	22.025	5.5

Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
12	MP1B	Mx	023	5.5
13	MP1C	X	-15.78	.5
14	MP1C	Z	27.332	.5
15	MP1C	Mx	004	.5
16	MP1C	X	-15.78	5.5
17	MP1C	Z	27.332	5.5
18	MP1C	Mx	004	5.5
19	MP1A	<u> </u>	-12.716	.5
20	MP1A	Z	22.025	.5
21	MP1A	Mx	023	.5 5.5
22 23	MP1A MP1A	X Z	-12.716	5.5
23	MP1A MP1A	Mx	22.025 023	5.5
24	MP1A MP1B		-12.716	.5
26	MP1B	X Z	22.025	.5
27	MP1B	Mx	023	.5
28	MP1B	X	-12.716	5.5
29	MP1B	Z	22.025	5.5
30	MP1B	Mx	023	5.5
31	MP1C	X	-15.78	.5
32	MP1C	Z	27.332	.5
33	MP1C	Mx	.033	.5
34	MP1C	X	-15.78	5.5
35	MP1C	Ζ	27.332	5.5
36	MP1C	Mx	.033	5.5
37	MP3A	<u> </u>	-7.106	1.5
38	MP3A	Z	12.309	1.5
39	MP3A	Mx	.003	1.5
40	MP3A	X 7	-7.106	3.5
41 42	MP3A MP3A	Z Mx	<u>12.309</u> .003	3.5 3.5
42	MP3A MP3B	X	-3.541	1.5
43	MP3B	Z	6.133	1.5
45	MP3B	Mx	003	1.5
46	MP3B	X	-3.541	3.5
47	MP3B	Z	6.133	3.5
48	MP3B	Mx	003	3.5
49	MP3C	Х	-7.106	1.5
50	MP3C	Z	12.309	1.5
51	MP3C	Mx	.003	1.5
52	MP3C	X	-7.106	3.5
53	MP3C	Z	12.309	3.5
54	MP3C	Mx	.003	3.5
55	MP1A	X	-6.469	3
56	MP1A	Z	11.204	3
57	MP1A	Mx	003	3
58	MP1B MD1P	X 7	-4.874	3
59 60	MP1B MP1B	Z Mx	<u>8.442</u> .005	3
61	MP1B MP1C	X	-6.469	3
62	MP1C MP1C	Z	11.204	3
63	MP1C	Mx	003	3
64	MP2A	X	-6.267	3
65	MP2A	Z	10.855	3
66	MP2A	Mx	003	3
67	MP2B	X	-4.066	3
68	MP2B	Z	7.043	3
	Version 17.0.4 [R:\ \		SA\Ontion 1 - 467252-V7W	

Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
69	MP2B	Mx	.004	3
70	MP2C	Х	-6.267	3
71	MP2C	Z	10.855	3
72	MP2C	Mx	003	3
73	M41	Х	-12.024	1
74	M41	Z	20.827	1
75	M41	Mx	0	1
76	MP4A	Х	-9.799	.5
77	MP4A	Z	16.972	.5
78	MP4A	Mx	.005	.5
79	MP4A	Х	-9.799	5.5
80	MP4A	Z	16.972	5.5
81	MP4A	Mx	.005	5.5
82	MP4B	Х	-8.334	.5
83	MP4B	Z	14.435	.5
84	MP4B	Mx	008	.5
85	MP4B	Х	-8.334	5.5
86	MP4B	Z	14.435	5.5
87	MP4B	Mx	008	5.5
88	MP4C	Х	-9.799	.5
89	MP4C	Z	16.972	.5
90	MP4C	Mx	.005	.5
91	MP4C	Х	-9.799	5.5
92	MP4C	Z	16.972	5.5
93	MP4C	Mx	.005	5.5


Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	-23.794	.5
2	MP1A	Z	13.737	.5
3	MP1A	Mx	.031	.5
4	MP1A	Х	-23.794	5.5
5	MP1A	Z	13.737	5.5
6	MP1A	Mx	.031	5.5
7	MP1B	Х	-23.794	.5
8	MP1B	Z	13.737	.5
9	MP1B	Mx	013	.5
10	MP1B	Х	-23.794	5.5
11	MP1B	Z	13.737	5.5
12	MP1B	Mx	013	5.5
13	MP1C	Х	-29.101	.5
14	MP1C	Z	16.801	.5
15	MP1C	Mx	022	.5
16	MP1C	Х	-29.101	5.5
17	MP1C	Z	16.801	5.5
18	MP1C	Mx	022	5.5
19	MP1A	Х	-23.794	.5
20	MP1A	Z	13.737	.5
21	MP1A	Mx	031	.5
22	MP1A	X	-23.794	5.5
23	MP1A	Z	13.737	5.5
24	MP1A	Mx	031	5.5
25	MP1B	Х	-23.794	.5
26	MP1B	Z	13.737	.5
27	MP1B	Mx	031	.5
28	MP1B	X	-23.794	5.5

Member Point Loads (BLC 23 : Antenna Wi (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
29	MP1B	Z	13.737	5.5
30	MP1B	Mx	031	5.5
31	MP1C	X	-29.101	.5
32	MP1C	Z	16.801	.5
33	MP1C	Mx	.022	.5
34	MP1C	X	-29.101	5.5
35	MP1C	Z	16.801	5.5
36	MP1C	Mx	.022	5.5
37	MP3A	X	-8.191	1.5
38	MP3A	Z	4.729	1.5
39	MP3A	Mx	.003	1.5
40	MP3A	X	-8.191	3.5
41	MP3A	Z	4.729	3.5
42	MP3A	Mx	.003	3.5
43	MP3B	X	-8.191	1.5
44	MP3B	Z	4.729	1.5
45	MP3B	Mx	003	1.5
46	MP3B	X	-8.191	3.5
47	MP3B	Z	4.729	3.5
48	MP3B	Mx	003	3.5
49	MP3C	X	-14.367	1.5
50	MP3C	Z	8.295	1.5
51	MP3C	Mx	0	1.5
52	MP3C	X	-14.367	3.5
53	MP3C	Z	8.295	3.5
54	MP3C	Mx	0	3.5
55	MP1A	X	-9.363	3
56	MP1A	Z	5.406	3
57	MP1A	Mx	005	3
58	MP1B	X	-9.363	3
59	MP1B	Z	5.406	3
60	MP1B	Mx	.005	3
61	MP1C	X	-12.125	3
62	MP1C	Z	7	3
63	MP1C	Mx	0	3
64	MP10 MP2A	X	-8.313	3
65	MP2A	Z	4.8	3
66	MP2A	Mx	004	3
67	MP2B	X	-8.313	3
68	MP2B	Z	4.8	3
69	MP2B	Mx	.004	3
70	MP2C	X	-12.125	3
70	MP2C	^ Z	-12.125	3
72	MP2C	Mx	0	3
72	MP20 M41	X	-19.473	1
73	M41	X	11.243	
74 75	M41		0	1
		Mx V	-15.281	.5
76 77	MP4A	X Z		
78	MP4A MP4A		<u>8.822</u> .008	.5
		Mx		
79	MP4A	Z	-15.281	5.5
80	MP4A		8.822	5.5
81	MP4A	Mx	.008	5.5
82	MP4B	X 7	-15.281	.5
83	MP4B	Z	8.822	.5
84	MP4B	Mx	008	.5
85	MP4B	X	-15.281	5.5
			SA\Ontion 1 - 467252-\/7\//	

Member Point Loads (BLC 23 : Antenna Wi (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
86	MP4B	Z	8.822	5.5
87	MP4B	Mx	008	5.5
88	MP4C	Х	-17.817	.5
89	MP4C	Z	10.287	.5
90	MP4C	Mx	0	.5
91	MP4C	Х	-17.817	5.5
92	MP4C	Z	10.287	5.5
93	MP4C	Mx	0	5.5

Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	-25.432	.5
2	MP1A	Z	0	.5
3	MP1A	Mx	.023	.5
4	MP1A	Х	-25.432	5.5
5	MP1A	Z	0	5.5
6	MP1A	Mx	.023	5.5
7	MP1B	Х	-31.56	.5
8	MP1B	Z	0	.5
9	MP1B	Mx	.004	.5
10	MP1B	X	-31.56	5.5
11	MP1B	Z	0	5.5
12	MP1B	Mx	.004	5.5
13	MP1C	Х	-31.56	.5
14	MP1C	Z	0	.5
15	MP1C	Mx	033	.5
16	MP1C	Х	-31.56	5.5
17	MP1C	Z	0	5.5
18	MP1C	Mx	033	5.5
19	MP1A	Х	-31.56	.5
20	MP1A	Z	0	.5
21	MP1A	Mx	033	.5
22	MP1A	Х	-31.56	5.5
23	MP1A	Z	0	5.5
24	MP1A	Mx	033	5.5
25	MP1B	X	-31.56	.5
26	MP1B	Z	0	.5
27	MP1B	Mx	033	.5
28	MP1B	Х	-31.56	5.5
29	MP1B	Z	0	5.5
30	MP1B	Mx	033	5.5
31	MP1C	Х	-31.56	.5
32	MP1C	Z	0	.5
33	MP1C	Mx	.004	.5
34	MP1C	Х	-31.56	5.5
35	MP1C	Z	0	5.5
36	MP1C	Mx	.004	5.5
37	MP3A	Х	-7.081	1.5
38	MP3A	Z	0	1.5
39	MP3A	Mx	.003	1.5
40	MP3A	Х	-7.081	3.5
41	MP3A	Z	0	3.5
42	MP3A	Mx	.003	3.5
43	MP3B	Х	-14.213	1.5
44	MP3B	Z	0	1.5
45	MP3B	Mx	003	1.5

Member Point Loads (BLC 24 : Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
46	MP3B	X	-14.213	3.5
47	MP3B	Z	0	3.5
48	MP3B	Mx	003	3.5
49	MP3C	X	-14.213	1.5
50	MP3C	Z	0	1.5
51	MP3C	Mx	003	1.5
52	MP3C	X	-14.213	3.5
53	MP3C	Z	0	3.5
54	MP3C	Mx	003	3.5
55	MP1A	Х	-9.748	3
56	MP1A	Z	0	3
57	MP1A	Mx	005	3
58	MP1B	X	-12.938	3
59	MP1B	Z	0	3
60	MP1B	Mx	.003	3
61	MP1C	<u> </u>	-12.938	3
62	MP1C	Z	0	3
63	MP1C	Mx	.003	3
64	MP2A	X	-8.132	3
65	MP2A	Z	0	3
66	MP2A	Mx	004	3
67	MP2B	<u> </u>	-12.534	3
68	MP2B	Z	0	3
69	MP2B	Mx	.003	3
70	MP2C	X	-12.534	3
71	MP2C	Z	0	3
72	MP2C	Mx	.003	3
73	M41	<u> </u>	-24.048	1
74	<u>M41</u>	Z	0	1
75	M41	Mx	0	1
76	MP4A	<u>X</u>	-16.668	.5
77	MP4A	Z	0	.5
78	MP4A	Mx	.008	.5
79	MP4A	X Z	-16.668	5.5
80	MP4A		0	5.5
81	MP4A	Mx	.008	5.5
82	MP4B	X 7	-19.597	.5
83	MP4B	Z	0	.5 .5
84 85	MP4B	Mx X	005	<u>.5</u> 5.5
	MP4B MP4B	X Z	-19.597 0	
86 87	MP4B MP4B	Mx	005	5.5
88	MP4B MP4C		-19.597	5.5
89	MP4C MP4C	X Z	-19.597	.5 .5
90	MP4C MP4C	Mx	005	.5
90	MP4C MP4C		-19.597	5.5
91	MP4C MP4C	Z	-19.597	5.5
92	MP4C MP4C	Mx	005	5.5
30		IVIX	005	0.0

Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

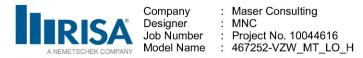
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	-23.794	.5
2	MP1A	Z	-13.737	.5
3	MP1A	Mx	.013	.5
4	MP1A	Х	-23.794	5.5
5	MP1A	Z	-13.737	5.5

Member Point Loads (BLC 25 : Antenna Wi (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
6	MP1A	Mx	.013	5.5
7	MP1B	Х	-29.101	.5
8	MP1B	Z	-16.801	.5
9	MP1B	Mx	.022	.5
10	MP1B	X	-29.101	5.5
11	MP1B	Z	-16.801	5.5
12	MP1B	Mx	.022	5.5
13	MP1C	X	-23.794	.5
14	MP1C	Z	-13.737	.5
15	MP1C	Mx	031	.5
16	MP1C	X	-23.794	5.5
17	MP1C	Z	-13.737	5.5
18	MP1C	Mx	031	5.5
19	MP1A	X Z	-29.101	.5
20	MP1A		-16.801	.5
21	MP1A	Mx	022	.5
22	MP1A	X	-29.101	5.5
23	MP1A	Z	-16.801	5.5
24 25	MP1A MP1B	Mx X	022 -29.101	<u>5.5</u> .5
26	MP1B	Z	-16.801	.5
27	MP1B	Mx	022	.5
28	MP1B	X	-29.101	5.5
29	MP1B	Z	-16.801	5.5
30	MP1B	Mx	022	5.5
31	MP1C	X	-23.794	.5
32	MP1C	Z	-13.737	.5
33	MP1C	Mx	013	.5
34	MP1C	X	-23.794	5.5
35	MP1C	Z	-13.737	5.5
36	MP1C	Mx	013	5.5
37	MP3A	Х	-8.191	1.5
38	MP3A	Z	-4.729	1.5
39	MP3A	Mx	.003	1.5
40	MP3A	X	-8.191	3.5
41	MP3A	Z	-4.729	3.5
42	MP3A	Mx	.003	3.5
43	MP3B	X	-14.367	1.5
44	MP3B	Z	-8.295	1.5
45	MP3B	Mx	0	1.5
46	MP3B	X	-14.367	3.5
47	MP3B	Z	-8.295	3.5
48	MP3B	Mx	0	3.5
49	MP3C	X	-8.191	1.5
50	MP3C	Z	-4.729	1.5
51	MP3C	Mx	003	1.5
52	MP3C	X	-8.191	3.5
53	MP3C	Z	-4.729	3.5
54 55	MP3C MP1A	Mx X	003 -9.363	3.5 3
56	MP1A	Z	-5.406	3
57	MP1A	Mx	005	3
58	MP1B	X	-12.125	3
59	MP1B	Z	-7	3
60	MP1B	Mx	0	3
61	MP1C	X	-9.363	3
62	MP1C	Z	-5.406	3
			ISA\Ontion 1 - 467252-\/7\//	

Member Point Loads (BLC 25 : Antenna Wi (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
63	MP1C	Mx	.005	3
64	MP2A	Х	-8.313	3
65	MP2A	Z	-4.8	3
66	MP2A	Mx	004	3
67	MP2B	Х	-12.125	3
68	MP2B	Z	-7	3
69	MP2B	Mx	0	3
70	MP2C	Х	-8.313	3
71	MP2C	Z	-4.8	3
72	MP2C	Mx	.004	3
73	M41	Х	-23.534	1
74	M41	Z	-13.588	1
75	M41	Mx	0	1
76	MP4A	Х	-15.281	.5
77	MP4A	Z	-8.822	.5
78	MP4A	Mx	.008	.5
79	MP4A	Х	-15.281	5.5
80	MP4A	Z	-8.822	5.5
81	MP4A	Mx	.008	5.5
82	MP4B	Х	-17.817	.5
83	MP4B	Z	-10.287	.5
84	MP4B	Mx	0	.5
85	MP4B	Х	-17.817	5.5
86	MP4B	Z	-10.287	5.5
87	MP4B	Mx	0	5.5
88	MP4C	Х	-15.281	.5
89	MP4C	Z	-8.822	.5
90	MP4C	Mx	008	.5
91	MP4C	Х	-15.281	5.5
92	MP4C	Z	-8.822	5.5
93	MP4C	Mx	008	5.5


Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-15.78	.5
2	MP1A	Z	-27.332	.5
3	MP1A	Mx	004	.5
4	MP1A	Х	-15.78	5.5
5	MP1A	Z	-27.332	5.5
6	MP1A	Mx	004	5.5
7	MP1B	Х	-15.78	.5
8	MP1B	Z	-27.332	.5
9	MP1B	Mx	.033	.5
10	MP1B	Х	-15.78	5.5
11	MP1B	Z	-27.332	5.5
12	MP1B	Mx	.033	5.5
13	MP1C	Х	-12.716	.5
14	MP1C	Z	-22.025	.5
15	MP1C	Mx	023	.5
16	MP1C	X	-12.716	5.5
17	MP1C	Z	-22.025	5.5
18	MP1C	Mx	023	5.5
19	MP1A	Х	-15.78	.5
20	MP1A	Z	-27.332	.5
21	MP1A	Mx	004	.5
22	MP1A	X	-15.78	5.5

Member Point Loads (BLC 26 : Antenna Wi (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
23	MP1A	Z	-27.332	5.5
24	MP1A	Mx	004	5.5
25	MP1B	X	-15.78	.5
26	MP1B	Z	-27.332	.5
27	MP1B	Mx	004	.5
28	MP1B	X	-15.78	5.5
29	MP1B	Z	-27.332	5.5
30	MP1B	Mx	004	5.5
31	MP1C	X	-12.716	.5
32	MP1C	Z	-22.025	.5
33	MP1C	Mx	023	.5
34	MP1C	X	-12.716	5.5
35	MP1C	Z	-22.025	5.5
36	MP1C	Mx	023	5.5
37	MP3A	X	-7.106	1.5
38	MP3A	Z	-12.309	1.5
39	MP3A	Mx	.003	1.5
40	MP3A	X	-7.106	3.5
41	MP3A	Z	-12.309	3.5
42	MP3A	Mx	.003	3.5
43	MP3B	X	-7.106	1.5
44	MP3B	Z	-12.309	1.5
45	MP3B	Mx	.003	1.5
46	MP3B	X	-7.106	3.5
47	MP3B	Z	-12.309	3.5
48	MP3B	Mx	.003	3.5
49	MP3C	X	-3.541	1.5
50	MP3C	Z	-6.133	1.5
51	MP3C	Mx	003	1.5
52	MP3C	X	-3.541	3.5
53	MP3C	Z	-6.133	3.5
53	MP3C MP3C	Mx	-0.133	3.5
55	MP3C MP1A	X	-6.469	3
56	MP1A	Z	-11.204	3
57	MP1A	Mx	003	3
58	MP1B	X	-6.469	3
	MP1B	Z		3
59 60	MP1B		-11.204 003	
61		Mx		3
62	MP1C	X Z	-4.874 -8.442	3
62	MP1C MP1C		.005	3
		Mx X		3
64	MP2A MP2A	Z	-6.267	
65			-10.855	3
66	MP2A	Mx	003	3
67	MP2B MP2B	X Z	-6.267	3
68			-10.855	3
69	MP2B	Mx	003	3
70	MP2C	X 7	-4.066	3
71	MP2C		-7.043	3
72	MP2C	Mx	.004	3
73	<u>M41</u>	X 7	-14.369	1
74	M41	Z	-24.888	1
75	M41	Mx	0	1
76	MP4A	<u>X</u>	-9.799	.5
77	MP4A	Z	-16.972	.5
78	MP4A	Mx	.005	.5
79	MP4A	X	-9.799	5.5
	Version 17 0.4 (R·\)		SA\Ontion 1 - 467252-\/7\//	MT LO LL OULD 55

Member Point Loads (BLC 26 : Antenna Wi (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
80	MP4A	Z	-16.972	5.5
81	MP4A	Mx	.005	5.5
82	MP4B	Х	-9.799	.5
83	MP4B	Z	-16.972	.5
84	MP4B	Mx	.005	.5
85	MP4B	Х	-9.799	5.5
86	MP4B	Z	-16.972	5.5
87	MP4B	Mx	.005	5.5
88	MP4C	Х	-8.334	.5
89	MP4C	Z	-14.435	.5
90	MP4C	Mx	008	.5
91	MP4C	Х	-8.334	5.5
92	MP4C	Z	-14.435	5.5
93	MP4C	Mx	008	5.5

Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	.5
2	MP1A	Z	-11.07	.5
3	MP1A	Mx	007	.5
4	MP1A	Х	0	5.5
5	MP1A	Z	-11.07	5.5
6	MP1A	Mx	007	5.5
7	MP1B	X	0	.5
8	MP1B	Z	-8.94	.5
9	MP1B	Mx	.01	.5
10	MP1B	Х	0	5.5
11	MP1B	Z	-8.94	5.5
12	MP1B	Mx	.01	5.5
13	MP1C	X	0	.5
14	MP1C	Z	-8.94	.5
15	MP1C	Mx	004	.5
16	MP1C	Х	0	5.5
17	MP1C	Z	-8.94	5.5
18	MP1C	Mx	004	5.5
19	MP1A	Х	0	.5
20	MP1A	X Z	-8.94	.5
21	MP1A	Mx	.004	.5
22	MP1A	Х	0	5.5
23	MP1A	Z	-8.94	5.5
24	MP1A	Mx	.004	5.5
25	MP1B	Х	0	.5
26	MP1B	Z	-8.94	.5
27	MP1B	Mx	.004	.5
28	MP1B	Х	0	5.5
29	MP1B	Z	-8.94	5.5
30	MP1B	Mx	.004	5.5
31	MP1C	Х	0	.5
32	MP1C	Z	-8.94	.5
33	MP1C	Mx	01	.5
34	MP1C	Х	0	5.5
35	MP1C	Z	-8.94	5.5
36	MP1C	Mx	01	5.5
37	MP3A	X	0	1.5
38	MP3A	Z	-5.272	1.5
39	MP3A	Mx	0	1.5
			· · · · · ·	

Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
40	MP3A	X		3.5
41	MP3A	Z	-5.272	3.5
42	MP3A	Mx	0	3.5
43	MP3B	Х	0	1.5
44	MP3B	Z	-2.866	1.5
45	MP3B	Mx	.001	1.5
46	MP3B	X	0	3.5
47	MP3B	Z	-2.866	3.5
48	MP3B	Mx	.001	3.5
49	MP3C	X	0	1.5
50	MP3C	Z	-2.866	1.5
51	MP3C	Mx	001	1.5
52	MP3C	X	0	3.5
53	MP3C	Z	-2.866	3.5
54	MP3C	Mx	001	3.5
55	MP1A	X	0	3
56	MP1A	Z	-4.195	3
57	MP1A	Mx	0	3
58	MP1B	X	0	3
59	MP1B	Z	-3.152	3
60	MP1B	Mx	001	3
61	MP1C	X	0	3
62	MP1C	Z	-3.152	3
63	MP1C	Mx	.001	3
64	MP2A	<u> </u>	0	3
65	MP2A	Z	-4.195	3
66	MP2A	Mx	0	3
67	MP2B	<u> </u>	0	3
68	MP2B	Z	-2.752	3
69	MP2B	<u> </u>	001	3
70	MP2C	X 7	0	3
71	MP2C	Z	-2.752	3
72	MP2C	Mx	.001	3
73	<u>M41</u> M41	Z	0 -8.568	1
74 75	M41	Mx	0	1
76	MP4A	X	0	.5
77	MP4A MP4A	Z	-6.461	.5
78	MP4A MP4A	Mx	-0.481	.5
79	MP4A MP4A	X	0	5.5
80	MP4A MP4A	Z	-6.461	5.5
81	MP4A MP4A	Mx	0	5.5
82	MP4B	X	0	.5
83	MP4B	Z	-5.452	.5
84	MP4B	Mx	.002	.5
85	MP4B	X	0	5.5
86	MP4B	Z	-5.452	5.5
87	MP4B	Mx	.002	5.5
88	MP4C	X	0	.5
89	MP4C	Z	-5.452	.5
90	MP4C	Mx	002	.5
91	MP4C	X	0	5.5
92	MP4C	Z	-5.452	5.5
93	MP4C	Mx	002	5.5

Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

Member Point Loads (BLC 28 : Antenna Wm (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A MP1A	X Z	<u>5.18</u> -8.972	.5
2 3	MP1A MP1A	Mx	011	.5
4	MP1A MP1A	X	5.18	5.5
5	MP1A MP1A	^ Z	-8.972	5.5
6	MP1A	Mx	011	5.5
7	MP1B	X	4.115	.5
8	MP1B	Z	-7.128	.5
9	MP1B	Mx	.008	.5
10	MP1B	X	4.115	5.5
11	MP1B	Z	-7.128	5.5
12	MP1B	Mx	.008	5.5
13	MP1C	Χ	5.18	.5
14	MP1C	Z	-8.972	.5
15	MP1C	Mx	.001	.5
16	MP1C	X	5.18	5.5
17	MP1C	Z	-8.972	5.5
18	MP1C	Mx	.001	5.5
19	MP1A	X Z	4.115	.5 .5
20 21	MP1A MP1A	Z Mx	-7.128 .008	.5
22	MP1A MP1A	X	4.115	5.5
23	MP1A	^ Z	-7.128	5.5
24	MP1A	Mx	.008	5.5
25	MP1B	X	4.115	.5
26	MP1B	Z	-7.128	.5
27	MP1B	Mx	.008	.5
28	MP1B	X	4.115	5.5
29	MP1B	Z	-7.128	5.5
30	MP1B	Mx	.008	5.5
31	MP1C	X	5.18	.5
32	MP1C	Z	-8.972	.5
33	MP1C	Mx	011	.5
34	MP1C	X	5.18	5.5
35	MP1C	Z	-8.972	5.5
36	MP1C	Mx	011	5.5
37	MP3A	<u>X</u>	2.235	1.5
38	MP3A	Z	-3.871	1.5
39	MP3A	Mx	000931	1.5
40	MP3A MP3A	X Z	<u>2.235</u> -3.871	<u>3.5</u> 3.5
41 42	MP3A MP3A	Mx	000931	3.5
42	MP3A MP3B	X	1.032	1.5
43	MP3B MP3B	^ Z	-1.787	1.5
45	MP3B	Mx	.00086	1.5
46	MP3B	X	1.032	3.5
47	MP3B	Z	-1.787	3.5
48	MP3B	Mx	.00086	3.5
49	MP3C	X	2.235	1.5
50	MP3C	Z	-3.871	1.5
51	MP3C	Mx	000931	1.5
52	MP3C	X	2.235	3.5
53	MP3C	Z	-3.871	3.5
54	MP3C	Mx	000931	3.5
55	MP1A	X	1.924	3
		7	0,000	0
56 57	MP1A MP1A	Z Mx	-3.332 .000962	3

Member Point Loads (BLC 28 : Antenna Wm (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP1B	Х	1.402	3
59	MP1B	Z	-2.428	3
60	MP1B	Mx	001	3
61	MP1C	Х	1.924	3
62	MP1C	Z	-3.332	3
63	MP1C	Mx	.000962	3
64	MP2A	Х	1.857	3
65	MP2A	Z	-3.216	3
66	MP2A	Mx	.000928	3
67	MP2B	Х	1.136	3
68	MP2B	Z	-1.967	3
69	MP2B	Mx	001	3
70	MP2C	Х	1.857	3
71	MP2C	Z	-3.216	3
72	MP2C	Mx	.000928	3
73	M41	Х	3.744	1
74	M41	Z	-6.485	1
75	M41	Mx	0	1
76	MP4A	Х	3.062	.5
77	MP4A	Z	-5.304	.5
78	MP4A	Mx	002	.5
79	MP4A	Х	3.062	5.5
80	MP4A	Z	-5.304	5.5
81	MP4A	Mx	002	5.5
82	MP4B	Х	2.558	.5
83	MP4B	Z	-4.43	.5
84	MP4B	Mx	.003	.5
85	MP4B	Х	2.558	5.5
86	MP4B	Z	-4.43	5.5
87	MP4B	Mx	.003	5.5
88	MP4C	Х	3.062	.5
89	MP4C	Z	-5.304	.5
90	MP4C	Mx	002	.5
91	MP4C	X	3.062	5.5
92	MP4C	Z	-5.304	5.5
93	MP4C	Mx	002	5.5

Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	7.743	.5
2	MP1A	Z	-4.47	.5
3	MP1A	Mx	01	.5
4	MP1A	Х	7.743	5.5
5	MP1A	Z	-4.47	5.5
6	MP1A	Mx	01	5.5
7	MP1B	Х	7.743	.5
8	MP1B	Z	-4.47	.5
9	MP1B	Mx	.004	.5
10	MP1B	Х	7.743	5.5
11	MP1B	Z	-4.47	5.5
12	MP1B	Mx	.004	5.5
13	MP1C	Х	9.587	.5
14	MP1C	Z	-5.535	.5
15	MP1C	Mx	.007	.5
16	MP1C	Х	9.587	5.5
17	MP1C	Z	-5.535	5.5

Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

10	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
18	MP1C	Mx	.007	5.5
19	MP1A	<u> </u>	7.743	.5
20	MP1A	Z	-4.47	.5
21	MP1A	Mx	.01	.5
22	MP1A	<u> </u>	7.743	5.5
23	MP1A	Z	-4.47	5.5
24	MP1A	Mx	.01	5.5
25	MP1B	X Z	7.743	.5
26	MP1B		-4.47	.5
27	MP1B	Mx X	.01	.5 5.5
28 29	MP1B MP1B	X Z	7.743 -4.47	5.5
30	MP1B MP1B	Mx	.01	5.5
30 31			9.587	
32	MP1C MP1C	X Z	-5.535	<u>.5</u> .5
33	MP1C	Mx	007	.5
34	MP1C	X	9.587	5.5
35	MP1C	X Z	-5.535	5.5
36	MP1C MP1C	Mx	-5.535	5.5
30	MP1C MP3A	X	2.482	1.5
38	MP3A MP3A	X	-1.433	1.5
39	MP3A MP3A	Mx	-1.433	1.5
40	MP3A MP3A	X	2.482	3.5
40	MP3A	Z	-1.433	3.5
42	MP3A	Mx	001	3.5
43	MP3B	X	2.482	1.5
44	MP3B	Z	-1.433	1.5
45	MP3B	Mx	.001	1.5
46	MP3B	X	2.482	3.5
47	MP3B	Z	-1.433	3.5
48	MP3B	Mx	.001	3.5
49	MP3C	X	4.565	1.5
50	MP3C	Z	-2.636	1.5
51	MP3C	Mx	0	1.5
52	MP3C	X	4.565	3.5
53	MP3C	Z	-2.636	3.5
54	MP3C	Mx	0	3.5
55	MP1A	X	2.73	3
56	MP1A	Z	-1.576	3
57	MP1A	Mx	.001	3
58	MP1B	X	2.73	3
59	MP1B	Z	-1.576	3
60	MP1B	Mx	001	3
61	MP1C	X	3.633	3
62	MP1C	Z	-2.097	3
63	MP1C	Mx	0	3
64	MP2A	X	2.383	3
65	MP2A	Z	-1.376	3
66	MP2A	Mx	.001	3
67	MP2B	X	2.383	3
68	MP2B	Z	-1.376	3
69	MP2B	Mx	001	3
70	MP2C	Х	3.633	3
71	MP2C	Z	-2.097	3
72	MP2C	Mx	0	3
73	M41	X	6.018	1
	M41	Z	-3.474	

Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
75	M41	Mx	0	1
76	MP4A	X	4.721	.5
77	MP4A	Z	-2.726	.5
78	MP4A	Mx	002	.5
79	MP4A	X	4.721	5.5
80	MP4A	Z	-2.726	5.5
81	MP4A	Mx	002	5.5
82	MP4B	Х	4.721	.5
83	MP4B	Z	-2.726	.5
84	MP4B	Mx	.002	.5
85	MP4B	X	4.721	5.5
86	MP4B	Z	-2.726	5.5
87	MP4B	Mx	.002	5.5
88	MP4C	Х	5.595	.5
89	MP4C	Z	-3.23	.5
90	MP4C	Mx	0	.5
91	MP4C	X	5.595	5.5
92	MP4C	Z	-3.23	5.5
93	MP4C	Mx	0	5.5

Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	8.23	.5
2	MP1A	Z	0	.5
3	MP1A	Mx	008	.5
4	MP1A	Х	8.23	5.5
5	MP1A	Z	0	5.5
6	MP1A	Mx	008	5.5
7	MP1B	Х	10.36	.5
8	MP1B	Z	0	.5
9	MP1B	Mx	001	.5
10	MP1B	Х	10.36	5.5
11	MP1B	Z	0	5.5
12	MP1B	Mx	001	5.5
13	MP1C	Х	10.36	.5
14	MP1C	Z	0	.5
15	MP1C	Mx	.011	.5
16	MP1C	Х	10.36	5.5
17	MP1C	Z	0	5.5
18	MP1C	Mx	.011	5.5
19	MP1A	X	10.36	.5
20	MP1A	Z	0	.5
21	MP1A	Mx	.011	.5
22	MP1A	Х	10.36	5.5
23	MP1A	Z	0	5.5
24	MP1A	Mx	.011	5.5
25	MP1B	Х	10.36	.5
26	MP1B	Z	0	.5
27	MP1B	Mx	.011	.5
28	MP1B	Х	10.36	5.5
29	MP1B	Z	0	5.5
30	MP1B	Mx	.011	5.5
31	MP1C	Х	10.36	.5
32	MP1C	Z	0	.5
33	MP1C	Mx	001	.5
34	MP1C	Х	10.36	5.5

Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

25	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
35	MP1C MP1C		0 001	<u> </u>
36	MP3A	Mx V	2.064	<u> </u>
37 38		X Z		1.5
	MP3A		0	1.5
<u>39</u> 40	MP3A MP3A	Mx X	00086 2.064	3.5
40 41	MP3A MP3A	Z	0	3.5
41	MP3A MP3A		00086	3.5
		Mx V		
43	MP3B	X Z	4.47	1.5
44 45	MP3B		0	1.5
	MP3B MP3B	Mx	.000931	1.5
46		X 7	4.47	3.5
47	MP3B	Z	0	3.5
48	MP3B	Mx	.000931	3.5
49	MP3C	<u> </u>	4.47	1.5
50	MP3C	Z	0	1.5
51	MP3C	Mx	.000931	1.5
52	MP3C	<u> </u>	4.47	3.5
53	MP3C	Z	0	3.5
54	MP3C	Mx	.000931	3.5
55	MP1A	<u> </u>	2.804	3
56	MP1A	Z	0	3
57	MP1A	Mx	.001	3
58	MP1B	X	3.847	3
59	MP1B	Z	0	3
60	MP1B	Mx	000962	3
61	MP1C	X	3.847	3
62	MP1C	Z	0	3
63	MP1C	Mx	000962	3
64	MP2A	X	2.271	3
65	MP2A	Z	0	3
66	MP2A	Mx	.001	3
67	MP2B	X	3.714	3
68	MP2B	Z	0	3
69	MP2B	Mx	000928	3
70	MP2C	X	3.714	3
71	MP2C	Z	0	3
72	MP2C	Mx	000928	3
73	M41	X	7.488	1
74	M41	Z	0	1
75	M41	Mx	0	11
76	MP4A	X	5.115	.5
77	MP4A	Z	0	.5
78	MP4A	Mx	003	.5
79	MP4A	X	5.115	5.5
80	MP4A	Z	0	5.5
81	MP4A	Mx	003	5.5
82	MP4B	X	6.124	.5
83	MP4B	Z	0	.5
84	MP4B	Mx	.002	.5
85	MP4B	X	6.124	5.5
86	MP4B	Z	0	5.5
87	MP4B	Mx	.002	5.5
88	MP4C	Х	6.124	.5
	MP4C	Z	0	.5
89				
<u>89</u> 90	MP4C	Mx	.002	.5

Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
92	MP4C	Z	0	5.5
93	MP4C	Mx	.002	5.5

Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	7.743	.5
2	MP1A	Z	4.47	.5
3	MP1A	Mx	004	.5
4	MP1A	X	7.743	5.5
5	MP1A	Z	4.47	5.5
6	MP1A	Mx	004	5.5
7	MP1B	X	9.587	.5
8	MP1B	Z	5.535	.5
9	MP1B	Mx	007	.5
10	MP1B	X	9.587	5.5
11	MP1B	Z	5.535	5.5
12	MP1B	Mx	007	5.5
13	MP1C	Х	7.743	.5
14	MP1C	Z	4.47	.5
15	MP1C	Mx	.01	.5
16	MP1C	X	7.743	5.5
17	MP1C	Z	4.47	5.5
18	MP1C	Mx	.01	5.5
19	MP1A	Х	9.587	.5
20	MP1A	Z	5.535	.5
21	MP1A	Mx	.007	.5
22	MP1A	Х	9.587	5.5
23	MP1A	Z	5.535	5.5
24	MP1A	Mx	.007	5.5
25	MP1B	X	9.587	.5
26	MP1B	Z	5.535	.5
27	MP1B	Mx	.007	.5
28	MP1B	X	9.587	5.5
29	MP1B	Z	5.535	5.5
30	MP1B	Mx	.007	5.5
31	MP1C	X	7.743	.5
32	MP1C	Z	4.47	.5
33	MP1C	Mx	.004	.5
34	MP1C	X	7.743	5.5
35	MP1C	Z	4.47	5.5
36	MP1C	Mx	.004	5.5
37	MP3A	X	2.482	1.5
38	MP3A	Z	1.433	1.5
39	MP3A	Mx	001	1.5
40	MP3A	Х	2.482	3.5
41	MP3A	Z	1.433	3.5
42	MP3A	Mx	001	3.5
43	MP3B	X	4.565	1.5
44	MP3B	Z	2.636	1.5
45	MP3B	Mx	0	1.5
46	MP3B	X	4.565	3.5
47	MP3B	Z	2.636	3.5
48	MP3B	Mx	0	3.5
49	MP3C		2.482	1.5
50	MP3C	X Z	1.433	1.5
51	MP3C	Mx	.001	1.5
<u> </u>				

Member Point Loads (BLC 31 : Antenna Wm (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
52	MP3C	X	2.482	3.5
53	MP3C	Z	1.433	3.5
54	MP3C	Mx	.001	3.5
55	MP1A	X	2.73	3
56	MP1A	Z	1.576	3
57	MP1A	Mx	.001	3
58	MP1B	X	3.633	3
59	MP1B	Z	2.097	3
60	MP1B	Mx	0	3
61	MP1C	X	2.73	3
62	MP1C	Z	1.576	3
63	MP1C	Mx	001	3
64	MP2A	X	2.383	3
65	MP2A	Z	1.376	3
66	MP2A	Mx	.001	3
67	MP2B	X	3.633	3
68	MP2B	Z	2.097	3
69	MP2B	Mx	0	3
70	MP2C	Х	2.383	3
71	MP2C	Z	1.376	3
72	MP2C	Mx	001	3
73	M41	Х	7.42	1
74	M41	Z	4.284	1
75	M41	Mx	0	1
76	MP4A	Х	4.721	.5
77	MP4A	Z	2.726	.5
78	MP4A	Mx	002	.5
79	MP4A	Х	4.721	5.5
80	MP4A	Z	2.726	5.5
81	MP4A	Mx	002	5.5
82	MP4B	Х	5.595	.5
83	MP4B	Z	3.23	.5
84	MP4B	Mx	0	.5
85	MP4B	Х	5.595	5.5
86	MP4B	Z	3.23	5.5
87	MP4B	Mx	0	5.5
88	MP4C	X	4.721	.5
89	MP4C	Z	2.726	.5
90	MP4C	Mx	.002	.5
91	MP4C	Х	4.721	5.5
92	MP4C	Z	2.726	5.5
93	MP4C	Mx	.002	5.5

Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	5.18	.5
2	MP1A	Z	8.972	.5
3	MP1A	Mx	.001	.5
4	MP1A	Х	5.18	5.5
5	MP1A	Z	8.972	5.5
6	MP1A	Mx	.001	5.5
7	MP1B	Х	5.18	.5
8	MP1B	Z	8.972	.5
9	MP1B	Mx	011	.5
10	MP1B	Х	5.18	5.5
11	MP1B	Z	8.972	5.5

Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

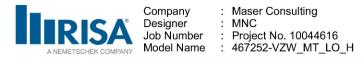
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
12	MP1B MP10	Mx	011	5.5
13	MP1C	X	4.115	.5
14	MP1C	Z	7.128	.5
15	MP1C	Mx	.008	.5
16	MP1C	X Z	4.115	5.5
17 18	MP1C MP1C		7.128	5.5
		Mx	.008	5.5
19 20	MP1A MP1A	X Z	5.18 8.972	<u>.5</u> .5
20	MP1A MP1A	Mx	.001	.5
22	MP1A	X	5.18	5.5
23	MP1A	Z	8.972	5.5
24	MP1A	Mx	.001	5.5
25	MP1B	X	5.18	.5
26	MP1B	^ Z	8.972	.5
27	MP1B	Mx	.001	.5
28	MP1B	X	5.18	5.5
29	MP1B	Z	8.972	5.5
30	MP1B MP1B	Mx	.001	5.5
30 31	MP1C	X	4.115	.5
32	MP1C MP1C	Z	7.128	.5
33	MP1C MP1C	Mx	.008	.5
34	MP1C MP1C	X	4.115	5.5
35	MP1C MP1C	Z	7.128	5.5
36	MP1C	Mx	.008	5.5
37	MP3A	X	2.235	1.5
38	MP3A	Z	3.871	1.5
39	MP3A	Mx	000931	1.5
10	MP3A MP3A		2.235	3.5
		X Z		3.5
41 42	MP3A	Mx	3.871	3.5
+ <u>2</u> 13	MP3A MP3B		000931 2.235	1.5
		X Z		
14	MP3B		3.871	1.5
45 46	MP3B	Mx X	000931	<u>1.5</u> 3.5
	MP3B	Z	2.235	3.5
17	MP3B		3.871	3.5
18	MP3B	Mx	000931	3.5
19	MP3C	X Z	1.032	1.5
50	MP3C		1.787	1.5
51	MP3C	Mx	.00086	1.5
52	MP3C	X Z	1.032	3.5
53	MP3C		1.787	3.5
54	MP3C	Mx	.00086	3.5
5	MP1A	X Z	1.924	3
56	MP1A		3.332	3
57	MP1A	Mx	.000962	3
58	MP1B	X 7	1.924	3
59	MP1B	Z	3.332	3
<u>50</u>	MP1B	Mx	.000962	3
<u>51</u>	MP1C	X 7	1.402	3
<u>52</u>	MP1C	Z	2.428	3
53	MP1C	Mx	001	3
<u>54</u>	MP2A	X 7	1.857	3
55	MP2A	Z	3.216	3
6	MP2A	Mx	.000928	3
67	MP2B	<u> </u>	1.857	3
8	MP2B	Z	3.216	3

RISA-3D Version 17.0.4 [R:\...\...\...\...\...\...\...\Rev 0\RISA\Option 1 - 467252-VZW_MT_LO_H.r3d] Page 65

Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
69	MP2B	Mx	.000928	3
70	MP2C	Х	1.136	3
71	MP2C	Z	1.967	3
72	MP2C	Mx	001	3
73	M41	Х	4.554	1
74	M41	Z	7.887	1
75	M41	Mx	0	1
76	MP4A	Х	3.062	.5
77	MP4A	Z	5.304	.5
78	MP4A	Mx	002	.5
79	MP4A	Х	3.062	5.5
80	MP4A	Z	5.304	5.5
81	MP4A	Mx	002	5.5
82	MP4B	Х	3.062	.5
83	MP4B	Z	5.304	.5
84	MP4B	Mx	002	.5
85	MP4B	Х	3.062	5.5
86	MP4B	Z	5.304	5.5
87	MP4B	Mx	002	5.5
88	MP4C	Х	2.558	.5
89	MP4C	Z	4.43	.5
90	MP4C	Mx	.003	.5
91	MP4C	Х	2.558	5.5
92	MP4C	Z	4.43	5.5
93	MP4C	Mx	.003	5.5

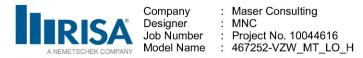
Member Point Loads (BLC 33 : Antenna Wm (180 Deg))


	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	.5
2	MP1A	Z	11.07	.5
3	MP1A	Mx	.007	.5
4	MP1A	Х	0	5.5
5	MP1A	Z	11.07	5.5
6	MP1A	Mx	.007	5.5
7	MP1B	X	0	.5
8	MP1B	Z	8.94	.5
9	MP1B	Mx	01	.5
10	MP1B	Х	0	5.5
11	MP1B	Z	8.94	5.5
12	MP1B	Mx	01	5.5
13	MP1C	Х	0	.5
14	MP1C	Z	8.94	.5
15	MP1C	Mx	.004	.5
16	MP1C	Х	0	5.5
17	MP1C	Z	8.94	5.5
18	MP1C	Mx	.004	5.5
19	MP1A	Х	0	.5
20	MP1A	Z	8.94	.5
21	MP1A	Mx	004	.5
22	MP1A	Х	0	5.5
23	MP1A	Z	8.94	5.5
24	MP1A	Mx	004	5.5
25	MP1B	Х	0	.5
26	MP1B	Z	8.94	.5
27	MP1B	Mx	004	.5
28	MP1B	Х	0	5.5

Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

00	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
29	MP1B	Z	8.94	5.5
30 31	MP1B MP1C	Mx	004	5.5
32	MP1C MP1C	X Z	8.94	<u>.5</u> .5
33	MP1C	Mx	.01	.5
34	MP1C	X	0	5.5
35	MP1C	Z	8.94	5.5
36	MP1C	Mx	.01	5.5
37	MP3A	X	0	1.5
38	MP3A	Z	5.272	1.5
39	MP3A	Mx	0	1.5
40	MP3A	X	0	3.5
41	MP3A	Z	5.272	3.5
42	MP3A	Mx	0	3.5
43	MP3B	X	0	1.5
44	MP3B	Z	2.866	1.5
45	MP3B	Mx	001	1.5
46	MP3B	X	0	3.5
47	MP3B	Z	2.866	3.5
48	MP3B	Mx	001	3.5
49	MP3C	X Z	0	<u>1.5</u> 1.5
50 51	MP3C MP3C	Mx	<u>2.866</u> .001	1.5
52	MP3C	X	0	3.5
53	MP3C	Z	2.866	3.5
54	MP3C	Mx	.001	3.5
55	MP1A	X	0	3
56	MP1A	Z	4.195	3
57	MP1A	Mx	0	3
58	MP1B	X	0	3
59	MP1B	Z	3.152	3
60	MP1B	Mx	.001	3
61	MP1C	X	0	3
62	MP1C	Z	3.152	3
63	MP1C	Mx	001	3
64	MP2A	Х	0	3
65	MP2A	Z	4.195	3
66	MP2A	Mx	0	3
67	MP2B	X	0	3
68	MP2B MP2P		2.752	3
69 70	MP2B MP2C	Mx X	.001	<u>3</u> 3
70 71	MP2C MP2C	X	2.752	3
72	MP2C	Mx	001	3
73	MF20 M41	X	0	
74	M41	Z	8.568	1
75	M41	Mx	0	1
76	MP4A	X	0	.5
77	MP4A	Z	6.461	.5
78	MP4A	Mx	0	.5
79	MP4A	X	0	5.5
80	MP4A	Z	6.461	5.5
81	MP4A	Mx	0	5.5
82	MP4B	Х	0	.5
83	MP4B	Ζ	5.452	.5
84	MP4B	Mx	002	.5
85	MP4B	X	0	5.5

RISA-3D Version 17.0.4 [R:\...\...\...\...\...\...\Rev 0\RISA\Option 1 - 467252-VZW_MT_LO_H.r3d] Page 67



Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
86	MP4B	Z	5.452	5.5
87	MP4B	Mx	002	5.5
88	MP4C	Х	0	.5
89	MP4C	Z	5.452	.5
90	MP4C	Mx	.002	.5
91	MP4C	Х	0	5.5
92	MP4C	Z	5.452	5.5
93	MP4C	Mx	.002	5.5

Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-5.18	.5
2	MP1A	Z	8.972	.5
3	MP1A	Mx	.011	.5
4	MP1A	X	-5.18	5.5
5	MP1A	Z	8.972	5.5
6	MP1A	Mx	.011	5.5
7	MP1B	Х	-4.115	.5
8	MP1B	Z	7.128	.5
9	MP1B	Mx	008	.5
10	MP1B	X	-4.115	5.5
11	MP1B	Z	7.128	5.5
12	MP1B	Mx	008	5.5
13	MP1C	X Z	-5.18	.5
14	MP1C		8.972	.5
15	MP1C	Mx	001	.5
16	MP1C	X	-5.18	5.5
17	MP1C	Z	8.972	5.5
18	MP1C	Mx	001	5.5
19	MP1A	Х	-4.115	.5
20	MP1A	Z	7.128	.5
21	MP1A	Mx	008	.5
22	MP1A	X	-4.115	5.5
23	MP1A	Z	7.128	5.5
24	MP1A	Mx	008	5.5
25	MP1B	X	-4.115	.5
26	MP1B	Z	7.128	.5
27	MP1B	Mx	008	.5
28	MP1B	X	-4.115	5.5
29	MP1B	Z	7.128	5.5
30	MP1B	Mx	008	5.5
31	MP1C	Х	-5.18	.5
32	MP1C	Z	8.972	.5
33	MP1C	Mx	.011	.5
34	MP1C	Х	-5.18	5.5
35	MP1C	Z	8.972	5.5
36	MP1C	Mx	.011	5.5
37	MP3A	Х	-2.235	1.5
38	MP3A	Z	3.871	1.5
39	MP3A	Mx	.000931	1.5
40	MP3A	X	-2.235	3.5
41	MP3A	Z	3.871	3.5
42	MP3A	Mx	.000931	3.5
43	MP3B	Х	-1.032	1.5
44	MP3B	Z	1.787	1.5
45	MP3B	Mx	00086	1.5

Member Point Loads (BLC 34 : Antenna Wm (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
46	MP3B	X	-1.032	3.5
47	MP3B	Z	1.787	3.5
48	MP3B	Mx	00086	3.5
49	MP3C	X	-2.235	1.5
50	MP3C	X Z	3.871	1.5
51	MP3C	Mx	.000931	1.5
52	MP3C	X	-2.235	3.5
53	MP3C	Z	3.871	3.5
54	MP3C	Mx	.000931	3.5
55	MP1A	X	-1.924	3
56	MP1A	Z	3.332	3
57	MP1A	Mx	000962	3
58	MP1B	X	-1.402	3
59	MP1B	Z	2.428	3
60	MP1B	Mx	.001	3
61	MP1C	X	-1.924	3
62	MP1C	Z	3.332	3
63	MP1C	Mx	000962	3
64	MP2A	X	-1.857	3
65	MP2A	Z	3.216	3
66	MP2A	Mx	000928	3
67	MP2B	X	-1.136	3
68	MP2B	Z	1.967	3
69	MP2B	Mx	.001	3
70	MP2C	X	-1.857	3
71	MP2C	Z	3.216	3
72	MP2C	Mx	000928	3
73	M41	X	-3.744	1
74	M41	Z	6.485	1
75	M41	Mx	0.403	1
76	MP4A	X	-3.062	.5
77	MP4A	X	5.304	.5
78	MP4A	Mx	.002	.5
79	MP4A	X	-3.062	5.5
80	MP4A	Z	5.304	5.5
81	MP4A	Mx	.002	5.5
82	MP4B	X	-2.558	.5
83	MP4B	Z	4.43	.5
84	MP4B	Mx	003	.5
85	MP4B MP4B	X	-2.558	.5
86	MP4B MP4B	Z	4.43	5.5
87	MP4B MP4B	Mx	003	5.5
88	MP4B MP4C		-3.062	.5
		X Z		
89	MP4C		5.304	.5 .5
90	MP4C	Mx V	.002	.0
91	MP4C	X	-3.062	5.5
92	MP4C	Z	5.304	5.5
93	MP4C	Mx	.002	5.5

Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-7.743	.5
2	MP1A	Z	4.47	.5
3	MP1A	Mx	.01	.5
4	MP1A	Х	-7.743	5.5
5	MP1A	Z	4.47	5.5

Member Point Loads (BLC 35 : Antenna Wm (240 Deg)) (Continued)

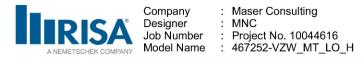
-	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
6	MP1A	Mx	.01	5.5
7	MP1B	<u>X</u>	-7.743	.5
8	MP1B	Z	4.47	.5
9	MP1B	Mx	004	.5
10	MP1B	X	-7.743	5.5
11	MP1B	Z	4.47	5.5
12	MP1B	Mx	004	5.5
13	MP1C	<u> </u>	-9.587	.5
14	MP1C	Z	5.535	.5
15	MP1C	Mx	007	.5
16	MP1C	X 7	-9.587	5.5
17	MP1C	Z	5.535	5.5
18	MP1C	Mx	007	5.5
19	MP1A	X Z	-7.743	.5
20	MP1A		4.47 01	.5 .5
21 22	MP1A	Mx		5 5.5
	MP1A	X 7	-7.743	
23	MP1A		4.47	<u>5.5</u> 5.5
24	MP1A MD1R	Mx V		
25 26	MP1B MP1B	Z	-7.743 4.47	<u>.5</u> .5
20	MP1B MP1B	Mx	01	.5
28	MP1B	X	-7.743	5.5
28	MP1B	^ Z	4.47	5.5
30	MP1B MP1B	Mx	01	5.5
31	MP1C	X	-9.587	.5
32	MP1C	^ Z	5.535	.5
33	MP1C	Mx	.007	.5
34	MP1C	X	-9.587	5.5
35	MP1C	Z	5.535	5.5
36	MP1C	Mx	.007	5.5
37	MP3A	X	-2.482	1.5
38	MP3A	Z	1.433	1.5
39	MP3A	Mx	.001	1.5
40	MP3A	X	-2.482	3.5
41	MP3A	Z	1.433	3.5
42	MP3A	Mx	.001	3.5
43	MP3B	X	-2.482	1.5
44	MP3B	Z	1.433	1.5
45	MP3B	Mx	001	1.5
46	MP3B	X	-2.482	3.5
47	MP3B	Z	1.433	3.5
48	MP3B	Mx	001	3.5
49	MP3C	X	-4.565	1.5
50	MP3C	Z	2.636	1.5
51	MP3C	Mx	0	1.5
52	MP3C	X	-4.565	3.5
53	MP3C	Z	2.636	3.5
54	MP3C	Mx	0	3.5
55	MP1A	Х	-2.73	3
56	MP1A	Z	1.576	3
57	MP1A	Mx	001	3
58	MP1B	X	-2.73	3
59	MP1B	Z	1.576	3
60	MP1B	Mx	.001	3
61	MP1C	Х	-3.633	3
62	MP1C	Z	2.097	3

RISA-3D Version 17.0.4 [R:\...\...\...\...\...\...\...\Rev 0\RISA\Option 1 - 467252-VZW_MT_LO_H.r3d] Page 70

Member Point Loads (BLC 35 : Antenna Wm (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
63	MP1C	Mx	0	3
64	MP2A	Х	-2.383	3
65	MP2A	Z	1.376	3
66	MP2A	Mx	001	3
67	MP2B	Х	-2.383	3
68	MP2B	Z	1.376	3
69	MP2B	Mx	.001	3
70	MP2C	Х	-3.633	3
71	MP2C	Z	2.097	3
72	MP2C	Mx	0	3
73	M41	Х	-6.018	1
74	M41	Z	3.474	1
75	M41	Mx	0	1
76	MP4A	Х	-4.721	.5
77	MP4A	Z	2.726	.5
78	MP4A	Mx	.002	.5
79	MP4A	Х	-4.721	5.5
80	MP4A	Z	2.726	5.5
81	MP4A	Mx	.002	5.5
82	MP4B	Х	-4.721	.5
83	MP4B	Z	2.726	.5
84	MP4B	Mx	002	.5
85	MP4B	X	-4.721	5.5
86	MP4B	Z	2.726	5.5
87	MP4B	Mx	002	5.5
88	MP4C	Х	-5.595	.5
89	MP4C	Z	3.23	.5
90	MP4C	Mx	0	.5
91	MP4C	Х	-5.595	5.5
92	MP4C	Z	3.23	5.5
93	MP4C	Mx	0	5.5

Member Point Loads (BLC 36 : Antenna Wm (270 Deg))


	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-8.23	.5
2	MP1A	Z	0	.5
3	MP1A	Mx	.008	.5
4	MP1A	X	-8.23	5.5
5	MP1A	Z	0	5.5
6	MP1A	Mx	.008	5.5
7	MP1B	X	-10.36	.5
8	MP1B	Z	0	.5
9	MP1B	Mx	.001	.5
10	MP1B	Х	-10.36	5.5
11	MP1B	Z	0	5.5
12	MP1B	Mx	.001	5.5
13	MP1C	Х	-10.36	.5
14	MP1C	Z	0	.5
15	MP1C	Mx	011	.5
16	MP1C	Х	-10.36	5.5
17	MP1C	Z	0	5.5
18	MP1C	Mx	011	5.5
19	MP1A	Х	-10.36	.5
20	MP1A	Z	0	.5
21	MP1A	Mx	011	.5
22	MP1A	Х	-10.36	5.5

Member Point Loads (BLC 36 : Antenna Wm (270 Deg)) (Continued)

00	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
23	MP1A	Z	0	5.5
24	MP1A MP1P	Mx	011	5.5
25	MP1B	X Z	-10.36	<u>.5</u> .5
26	MP1B		0	
27	MP1B	Mx	011	<u>.5</u> 5.5
28	MP1B MP1P	X Z	-10.36	
29	MP1B		0	5.5
30	MP1B	Mx	011	5.5
31	MP1C	X Z	-10.36	.5
32	MP1C		0	.5
33	MP1C	Mx	.001	.5
34	MP1C	X	-10.36	5.5
35	MP1C	Z	0	5.5
36	MP1C	Mx	.001	5.5
37	MP3A	X	-2.064	1.5
38	MP3A	Z	0	1.5
39	MP3A	Mx	.00086	1.5
40	MP3A	X 7	-2.064	3.5
41	MP3A	Z	0	3.5
42	MP3A	Mx	.00086	3.5
43	MP3B	X Z	-4.47	1.5
44	MP3B		0	1.5
45	MP3B	Mx	000931	1.5
46	MP3B	X 7	-4.47	3.5
47	MP3B	Z	0	3.5
48	MP3B	Mx	000931	3.5
49	MP3C	X	-4.47	1.5
50	MP3C	Z	0	1.5
51	MP3C	Mx	000931	1.5
52	MP3C	X	-4.47	3.5
53	MP3C	Z	0	3.5
54	MP3C	Mx	000931	3.5
55	MP1A	<u> </u>	-2.804	3
56	MP1A	Z	0	3
57	MP1A	Mx	001	3
58	MP1B	X	-3.847	3
59	MP1B	Z	0	3
60	MP1B	Mx	.000962	3
61	MP1C	<u> </u>	-3.847	3
62	MP1C	Z	0	3
63	MP1C	Mx	.000962	3
64	MP2A	X 7	-2.271	3
65	MP2A	Z	0	3
66	MP2A	Mx	001	3
67	MP2B	<u> </u>	-3.714	3
68	MP2B	Z	0	3
69	MP2B	Mx	.000928	3
70	MP2C	X	-3.714	3
71	MP2C	Z	0	3
72	MP2C	Mx	.000928	3
73	<u>M41</u>	<u> </u>	-7.488	1
74	M41	Z	0	1
75	M41	Mx	0	1
76	MP4A	X	-5.115	.5
77	MP4A	Z	0	.5
78	MP4A	Mx	.003	.5
79	MP4A	X	-5.115	5.5

RISA-3D Version 17.0.4 [R:\...\...\...\...\...\...\Rev 0\RISA\Option 1 - 467252-VZW_MT_LO_H.r3d] Page 72

Member Point Loads (BLC 36 : Antenna Wm (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
80	MP4A	Z	0	5.5
81	MP4A	Mx	.003	5.5
82	MP4B	Х	-6.124	.5
83	MP4B	Z	0	.5
84	MP4B	Mx	002	.5
85	MP4B	Х	-6.124	5.5
86	MP4B	Z	0	5.5
87	MP4B	Mx	002	5.5
88	MP4C	Х	-6.124	.5
89	MP4C	Z	0	.5
90	MP4C	Mx	002	.5
91	MP4C	X	-6.124	5.5
92	MP4C	Z	0	5.5
93	MP4C	Mx	002	5.5

Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Х	-7.743	.5
2	MP1A	Z	-4.47	.5
3	MP1A	Mx	.004	.5
4	MP1A	X	-7.743	5.5
5	MP1A	Z	-4.47	5.5
6	MP1A	Mx	.004	5.5
7	MP1B	Х	-9.587	.5
8	MP1B	Z	-5.535	.5
9	MP1B	Mx	.007	.5
10	MP1B	X	-9.587	5.5
11	MP1B	Z	-5.535	5.5
12	MP1B	Mx	.007	5.5
13	MP1C	Х	-7.743	.5
14	MP1C	Z	-4.47	.5
15	MP1C	Mx	01	.5
16	MP1C	Х	-7.743	5.5
17	MP1C	Z	-4.47	5.5
18	MP1C	Mx	01	5.5
19	MP1A	Х	-9.587	.5
20	MP1A	Z	-5.535	.5
21	MP1A	Mx	007	.5
22	MP1A	Х	-9.587	5.5
23	MP1A	Z	-5.535	5.5
24	MP1A	Mx	007	5.5
25	MP1B	Х	-9.587	.5
26	MP1B	Z	-5.535	.5
27	MP1B	Mx	007	.5
28	MP1B	Х	-9.587	5.5
29	MP1B	Z	-5.535	5.5
30	MP1B	Mx	007	5.5
31	MP1C	X	-7.743	.5
32	MP1C	Z	-4.47	.5
33	MP1C	Mx	004	.5
34	MP1C	Х	-7.743	5.5
35	MP1C	Z	-4.47	5.5
36	MP1C	Mx	004	5.5
37	MP3A	Х	-2.482	1.5
38	MP3A	Z	-1.433	1.5
39	MP3A	Mx	.001	1.5
	· · · · ·			

RISA-3D Version 17.0.4 [R:\...\...\...\...\...\...\...\Rev 0\RISA\Option 1 - 467252-VZW_MT_LO_H.r3d] Page 73

Member Point Loads (BLC 37 : Antenna Wm (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
40	MP3A	X	-2.482	3.5
41	MP3A	Z	-1.433	3.5
42	MP3A	Mx	.001	3.5
43	MP3B	X	-4.565	1.5
44	MP3B	Z	-2.636	1.5
45	MP3B	Mx	0	1.5
46	MP3B	X	-4.565	3.5
47	MP3B	Z	-2.636	3.5
48	MP3B	Mx	0	3.5
49	MP3C	X	-2.482	1.5
50	MP3C	Z	-1.433	1.5
51	MP3C	Mx	001	1.5
52	MP3C	X	-2.482	3.5
53	MP3C	Z	-1.433	3.5
54	MP3C	Mx	001	3.5
55	MP1A	X	-2.73	3
56	MP1A	Z	-1.576	3
57	MP1A	Mx	001	3
58	MP1B	X	-3.633	3
59	MP1B	Z	-2.097	3
60	MP1B	Mx	0	3
61	MP1C	Χ	-2.73	3
62	MP1C	Z	-1.576	3
63	MP1C	Mx	.001	3
64	MP2A	X	-2.383	3
65	MP2A	Z	-1.376	3
66	MP2A	Mx	001	3
67	MP2B	<u> </u>	-3.633	3
68	MP2B	Z	-2.097	3
69	MP2B	Mx	0	3
70	MP2C	X	-2.383	3
71	MP2C	Z	-1.376	3
72	MP2C	Mx	.001	3
73	<u>M41</u>	X Z	-7.42	1
74	<u>M41</u>		-4.284	1
75	M41	Mx	0 -4.721	.5
76 77	MP4A MP4A	Z	-4.721 -2.726	.5
78	MP4A MP4A		.002	.5
79	MP4A	Mx X	-4.721	5.5
80	MP4A MP4A	^ Z	-2.726	5.5
81	MP4A	Mx	.002	5.5
82	MP4B	X	-5.595	.5
83	MP4B	Z	-3.23	.5
84	MP4B	Mx	-3.23	.5
85	MP4B	X	-5.595	5.5
86	MP4B	^ Z	-3.23	5.5
87	MP4B	Mx	-5.25	5.5
88	MP4C	X	-4.721	.5
89	MP4C	Z	-2.726	.5
90	MP4C	Mx	002	.5
91	MP4C	X	-4.721	5.5
92	MP4C	Z	-2.726	5.5
93	MP4C	Mx	002	5.5
			.002	0.0

Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

Member Point Loads (BLC 38 : Antenna Wm (330 Deg)) (Continued)

4	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X Z	-5.18	.5
2	MP1A		-8.972	.5
3	MP1A	Mx X	001	.5
4	MP1A	X 7	-5.18	5.5
5	MP1A	Z	-8.972	5.5
6	MP1A	Mx	001	5.5
7	MP1B	X	-5.18	.5
8	MP1B	Z	-8.972	.5
9	MP1B	Mx	.011	.5
10	MP1B	X Z	-5.18	5.5
11	MP1B		-8.972	5.5
12	MP1B	Mx	.011	5.5
13	MP1C	X 7	-4.115	.5
14	MP1C	Z	-7.128	.5
15	MP1C	Mx X	008	.5 5.5
16	MP1C	X Z	-4.115 -7.128	
17	MP1C			5.5
18	MP1C MP1A	Mx V	008	5.5
19		Z	-5.18	.5
20	MP1A		-8.972	.5
21	MP1A	Mx	001	.5
22	MP1A	X Z	-5.18	5.5
23	MP1A		-8.972	5.5
24	MP1A	Mx X	001	5.5
25	MP1B	X Z	-5.18	.5
26	MP1B		-8.972	.5
27	MP1B	Mx	001	.5
28	MP1B	X 7	-5.18	5.5
29	MP1B	Z	-8.972	5.5
30	MP1B	Mx	001	5.5
31	MP1C	X Z	-4.115	.5 .5
32	MP1C		-7.128	.5
33	MP1C	Mx X	008	
34	MP1C	X Z	-4.115	5.5
35	MP1C		-7.128	5.5
36	MP1C	Mx	008 -2.235	5.5
37	MP3A	X Z		1.5
38	MP3A		-3.871	1.5
39	MP3A	Mx	.000931	1.5
40	MP3A	X 7	-2.235	3.5
41	MP3A		-3.871	3.5
42	MP3A	Mx	.000931	3.5
43	MP3B	X 7	-2.235	1.5
44	MP3B		-3.871	1.5
45	MP3B	Mx	.000931	1.5
46	MP3B	X 7	-2.235	3.5
47	MP3B		-3.871	3.5
48	MP3B	Mx	.000931	3.5
49	MP3C	X 7	-1.032	1.5
50	MP3C	Z	-1.787	1.5
51	MP3C	Mx X	00086	1.5
52	MP3C	X 7	-1.032	3.5
53	MP3C	Z	-1.787	3.5
54	MP3C	Mx	00086	3.5
55	MP1A	X 7	-1.924	3
56	MP1A	Z	-3.332	3
57	MP1A	Mx	000962	3

RISA-3D Version 17.0.4 [R:\...\...\...\...\...\...\Rev 0\RISA\Option 1 - 467252-VZW_MT_LO_H.r3d] Page 75

Member Point Loads (BLC 38 : Antenna Wm (330 Deg)) (Continued)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
60 MP1B Mx 000962 3 61 MP1C X -1.402 3 62 MP1C Z -2.428 3 63 MP1C Mx .001 3 64 MP2A X -1.857 3 65 MP2A Z -3.216 3 66 MP2A X -1.857 3 66 MP2A Z -3.216 3 68 MP2B X -1.857 3 69 MP2B X -1.136 3 70 MP2C X -1.136 3 72 MP2C X -1.367 3 73 M41 X -4.54 1 74 M41 Z -7.887 1 75 M41 Mx 002 .5 77 MP4A X -3.062 .5.5 80 MP4A X	58	MP1B	X	-1.924	
60 MP1B Mx 000962 3 61 MP1C X -1.402 3 62 MP1C Z -2.428 3 63 MP1C Mx .001 3 64 MP2A X -1.857 3 65 MP2A Z -3.216 3 66 MP2A X -1.857 3 66 MP2A Z -3.216 3 67 MP2B X -1.857 3 68 MP2B Z -3.216 3 69 MP2B Mx 000928 3 71 MP2C X -1.136 3 72 MP2C X -1.136 3 73 M41 X -4.554 1 74 M41 Z -7.887 1 75 M41 Mx -002 5.5 77 MP4A Z	59	MP1B	Z	-3.332	3
	60	MP1B	Mx	000962	
62 MP1C Z -2.428 3 63 MP1C Mx .001 3 64 MP2A X -1.857 3 65 MP2A Z -3.216 3 66 MP2A X -1.857 3 66 MP2A X -1.857 3 68 MP2B Z -3.216 3 68 MP2B Z -3.216 3 69 MP2B X -1.136 3 70 MP2C X -1.136 3 71 MP2C Z -1.967 3 72 MP2C Mx 001 3 73 M41 X -4.554 1 74 M41 X -3.062 .5 77 MP4A Z -5.304 .5 78 MP4A X -3.062 .5.5 80 MP4A Z	61	MP1C	Х	-1.402	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	62	MP1C	Z		3
65 MP2A Z -3.216 3 66 MP2A Mx 000928 3 67 MP2B X -1.857 3 68 MP2B Z -3.216 3 69 MP2B X -1.136 3 70 MP2C X -1.136 3 71 MP2C Z -1.967 3 72 MP2C Z -1.967 3 73 M41 X -4.554 1 74 M41 Z -7.877 1 75 M41 Mx 0 1 76 MP4A X -3.062 5 77 MP4A Z -5.304 .5 78 MP4A Mx .002 .5 79 MP4A Z -5.304 .5 82 MP4B X -3.062 .5 83 MP4B X	63	MP1C	Mx		
65 MP2A Z -3.216 3 66 MP2A Mx -000928 3 67 MP2B X -1.857 3 68 MP2B Z -3.216 3 69 MP2B X -1.136 3 70 MP2C X -1.136 3 71 MP2C Z -1.967 3 72 MP2C Z -1.967 3 73 M41 X -4.554 1 74 M41 Z -7.877 1 75 M41 Mx 0 1 76 MP4A X -3.062 5 77 MP4A Z -5.304 .5 78 MP4A Mx .002 .5 79 MP4A Z -5.304 .5 82 MP4B X -3.062 .5 83 MP4B X	64	MP2A	Х	-1.857	3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	65	MP2A	Z	-3.216	3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	66	MP2A	Mx	000928	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	67	MP2B		-1.857	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	68	MP2B	Z	-3.216	
71MP2CZ-1.967372MP2CMx.001373M41X-4.554174M41Z-7.887175M41Mx0176MP4AX-3.062.577MP4AZ-5.304.578MP4AMx.002.579MP4AZ-5.304.5.580MP4AZ-5.304.5.581MP4AMx.002.5.582MP4BX-3.062.583MP4BZ-5.304.584MP4BX.3.062.585MP4BX.3.062.586MP4BX.3.062.587MP4BMx.002.588MP4CX.2.558.589MP4CX.2.558.590MP4CX.2.558.592MP4CZ.4.43.5	69	MP2B	Mx	000928	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	70	MP2C		-1.136	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Z		3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		MP2C			3
75M41Mx0176MP4AX-3.062.577MP4AZ-5.304.578MP4AMx.002.579MP4AX-3.062.5.580MP4AZ-5.304.5.581MP4AMx.002.5.582MP4BX-3.062.583MP4BZ-5.304.584MP4BX.3.062.585MP4BX-3.062.586MP4BX.3.062.5.587MP4BX.3.062.5.588MP4CX.2.558.589MP4CZ.4.43.590MP4CZ.4.43.591MP4CZ.4.43.5.5			X		1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		MP4A	X		.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$.5
81 MP4A Mx .002 5.5 82 MP4B X -3.062 .5 83 MP4B Z -5.304 .5 84 MP4B Mx .002 .5 85 MP4B X -3.062 .5 86 MP4B X -3.062 5.5 86 MP4B Z -5.304 5.5 87 MP4B Z -5.304 5.5 88 MP4C X -2.558 .5 89 MP4C Z -4.43 .5 90 MP4C X 003 .5 91 MP4C X -2.558 5.5 92 MP4C Z -4.43 5.5			X		5.5
82 MP4B X -3.062 .5 83 MP4B Z -5.304 .5 84 MP4B Mx .002 .5 85 MP4B X -3.062 5.5 86 MP4B X -3.062 5.5 86 MP4B Z -5.304 5.5 87 MP4B Mx .002 5.5 88 MP4C X -2.558 .5 89 MP4C Z -4.43 .5 90 MP4C X -2.558 5.5 91 MP4C X -2.558 5.5 92 MP4C Z -4.43 5.5					
83 MP4B Z -5.304 .5 84 MP4B Mx .002 .5 85 MP4B X -3.062 5.5 86 MP4B Z -5.304 5.5 87 MP4B Z -5.304 5.5 88 MP4C X -2.558 .5 89 MP4C Z -4.43 .5 90 MP4C X 003 .5 91 MP4C Z -2.558 5.5 92 MP4C Z -4.43 5.5					
84 MP4B Mx .002 .5 85 MP4B X -3.062 5.5 86 MP4B Z -5.304 5.5 87 MP4B Mx .002 5.5 88 MP4C X -2.558 .5 89 MP4C Z -4.43 .5 90 MP4C Mx 003 .5 91 MP4C Z -2.558 5.5 92 MP4C Z -4.43 5.5			X		.5
85 MP4B X -3.062 5.5 86 MP4B Z -5.304 5.5 87 MP4B Mx .002 5.5 88 MP4C X -2.558 .5 89 MP4C Z -4.43 .5 90 MP4C Mx 003 .5 91 MP4C X -2.558 5.5 92 MP4C Z -4.43 5.5					.5
86 MP4B Z -5.304 5.5 87 MP4B Mx .002 5.5 88 MP4C X -2.558 .5 89 MP4C Z -4.43 .5 90 MP4C Mx 003 .5 91 MP4C X -2.558 5.5 92 MP4C Z -4.43 5.5					
87 MP4B Mx .002 5.5 88 MP4C X -2.558 .5 89 MP4C Z -4.43 .5 90 MP4C Mx 003 .5 91 MP4C X -2.558 5.5 92 MP4C Z -4.43 5.5			Χ		
88 MP4C X -2.558 .5 89 MP4C Z -4.43 .5 90 MP4C Mx 003 .5 91 MP4C X -2.558 5.5 92 MP4C Z -4.43 5.5					
89 MP4C Z -4.43 .5 90 MP4C Mx 003 .5 91 MP4C X -2.558 5.5 92 MP4C Z -4.43 5.5					
90 MP4C Mx 003 .5 91 MP4C X -2.558 5.5 92 MP4C Z -4.43 5.5					
91 MP4C X -2.558 5.5 92 MP4C Z -4.43 5.5					.5
92 MP4C Z -4.43 5.5					
			Χ		
<u>93 IVIP40 IVIX 003 5.5</u>	93	MP4C	Mx	003	5.5

Member Point Loads (BLC 77 : Lm1)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M7A	Y	-500	%91
Member	Point Loads (BLC 78 : Ln	n2)		
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M7A	Y	-500	%26
Member	Point Loads (BLC 79 : Lv Member Label	1) Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M7A	Y	-250	%50
Member	Point Loads (BLC 80 : Lv	2)		
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M7A	V	-250	%100

Member Area Loads (BLC 39 : Structure D)

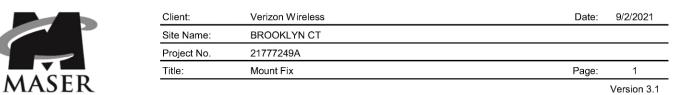
	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N16	N15	N17	N18	Y	Two Way	005
2	N18	N17	N10	N14	Y	Two Way	005
3	N14	N10	N15	N16	Y	Two Way	005

Member Area Loads (BLC 40 : Structure Di)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N16	N15	N17	N18	Y	Two Way	011
2	N18	N17	N10	N14	Y	Two Way	011
3	N14	N10	N15	N16	Y	Two Way	011

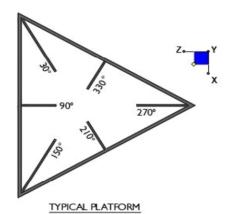
Envelope Joint Reactions

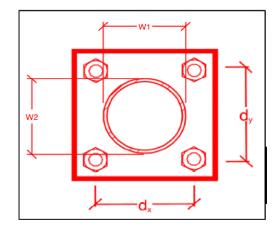
	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N2	max	3503.291	10	1010.051	14	759.741	1	-1.126	12	2.562	11	.324	5
2		min	-3468.396	4	360.605	8	-732.108	7	-2.756	17	-2.584	5	304	47
3	N77	max	1778.437	11	825.286	22	2936.75	12	1.525	23	2.435	5	2.212	22
4		min	-1749.279	5	241.142	28	-2936.933	6	.503	5	-2.5	11	.742	28
5	N109	max	1849.833	9	813.598	18	2863.408	2	1.153	16	2.626	3	856	37
6		min	-1913.003	3	289.802	48	-2820.321	8	.435	10	-2.622	9	-2.39	19
7	N124A	max	54.844	10	1802.436	13	-442.741	7	0	51	0	4	0	22
8		min	-54.785	4	266.143	7	-3060.876	13	0	1	0	22	0	4
9	N126	max	-341.897	3	1726.763	21	1463.832	21	0	18	0	48	0	48
10		min	-2535.318	21	238.849	3	197.376	3	0	48	0	18	0	18
11	N128	max	2538.707	17	1728.976	17	1465.768	17	0	8	0	8	0	8
12		min	316.628	11	222.252	11	182.8	11	0	26	0	26	0	26
13	Totals:	max	5518.996	10	7579.619	14	5395.716	1						
14		min	-5518.991	4	3260.225	8	-5395.727	7						


Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[ft]	LC	Shear Chec	k L…Dir	LC	phi*Pncphi*Pnt	phi*Mn	phi*Mn	Cb Eqn
1	M1	HSS4X4X4	.245	0	5	.114	0 z	5	138875 139518	16.181	16.181	1 H1-1b
2	M2	HSS4.5X4	.101	0	4	.042	0 y	46	156914 158976	20.907	20.907	1H1-1b
3	M5	LL3x3x4x0	.321	0	15	.053	1 y	13	76288.1 93312	6.48	4.357	1H1-1b
4	M6	LL3x3x4x0	.307	0	23	.050	1 y	21	76288.1 93312	6.48	4.357	1H1-1b
5	M7	LL3x3x4x0	.329	0	30	.059	1 y	29	76288.1 93312	6.48	4.357	1H1-1b
6	M6A	L3X3X4	.217	3.639	11	.015	7 z	23	13991.9 46656	1.688	3.168	1 H2-1
7	M7A	L3X3X4	.789	14.3	6	.661	7 Z	17	3748.406 46656	1.688	2.859	1 H2-1
8	M23A	L3X3X4	.226	3.717	11	.015	0 z	22	13991.9 46656	1.688	3.194	1 H2-1
9	M24	L3X3X4	.773	14.3	2	.672	7 z	24	3748.406 46656	1.688	2.788	1 H2-1
10	M38	HSS4X4X4	.242	0	11	.100	0 z	12	138875 139518	16.181	16.181	1H1-1b
11	M39A	L3X3X4	.218	3.639	3	.016	7 z	16	13991.9 46656	1.688	3.177	1.4 H2-1
12	M40	L3X3X4	.781	14.3	10	.655	7 z	21	3748.406 46656	1.688	2.823	1 H2-1
13	M54	HSS4X4X4	.240	0	9	.100	0 z	9	138875 139518	16.181	16.181	1H1-1b
14	M55	HSS4.5X4	.099	0	18	.037	0 y	24	156914 158976	20.907	20.907	1H1-1b
15	M56	HSS4.5X4	.099	0	14	.035	0 y	20	156914 158976	20.907	20.907	1H1-1b
16	MP1A	PIPE_2.0	.321	4	6	.098	4	4	14916.0 32130	1.872	1.872	1H1-1b
17	MP2A	PIPE 2.0	.399	1.5	4	.077	2	5	14916.0 32130	1.872	1.872	2H1-1b
18	MP3A	PIPE_2.0	.340	1.5	4	.099	4	2	14916.0 32130	1.872	1.872	2H1-1b
19	MP4A	PIPE 2.0	.245	1.5	10	.086	4	11	14916.0 32130	1.872	1.872	1H1-1b
20	MP1C	PIPE_2.0	.364	4	9	.193	4	6	14916.0 32130	1.872	1.872	1H1-1b
21	MP2C	PIPE 2.0	.410	1.5	12	.076	2	1	14916.0 32130	1.872	1.872	2H1-1b
22	MP3C	PIPE_2.0	.351	1.5	12	.100	4	10	14916.0 32130	1.872	1.872	2H1-1b
23	MP4C	PIPE_2.0	.243	1.5	6	.081	4	7	14916.0 32130	1.872	1.872	2H1-1b

Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)


	Member	Shape	Code Check	Loc[ft]	LC	Shear Cheo	k L…Dir	LC	phi*Pnc	phi*Pnt	phi*Mn	phi*MnCb Eqn
24	MP1B	PIPE 2.0	.364	4	5	.194	4	2	14916.0	32130	1.872	1.872 1H1-1b
25	MP2B	PIPE 2.0	.388	1.5	2	.078	2	9	14916.0	32130	1.872	1.872 2H1-1b
26	MP3B	PIPE 2.0	.328	1.5	8	.095	4	6	14916.0	32130	1.872	1.872 2H1-1b
27	MP4B	PIPE 2.0	.252	1.5	2	.089	4	3	14916.0	32130	1.872	1.872 ¹ H1-1b
28	M41	PIPE 2.0	.137	2.5	6	.018	2.5	6	23808.54	32130	1.872	1.872 ¹ H1-1b
29	M42	PIPE 2.5	.217	12.8	10	.070	7	2	11606.8	50715	3.596	3.596 2H1-1b
30	M49	PIPE 2.5	.219	12.8	6	.070	7	10	11606.8	50715	3.596	3.596 2H1-1b
31	M56A	PIPE 2.5	.224	12.8	2	.066	7	6	11606.8	50715	3.596	3.596 2H1-1b
32	M63	L3X3X4	.318	1.748	1	.103	0 y	6	43602.6	46656	1.688	3.756 2 H2-1
33	M64	L3X3X4	.315	1.748	5	.107	0 y	10	43602.6	46656	1.688	3.756 2 H2-1
34	M65	L3X3X4	.282	1.748	2	.105	0 y	2	43602.6	46656	1.688	3.756 2 H2-1
35	M66	LL3x3x3x3	.075	6.069	13	.005	0 z	10	47182.8	70632	5.543	3.741 1 H1-1b*
36	M67	LL3x3x3x3	.072	6.069	21	.005	0 z	6	47182.8	70632	5.543	3.741 1 H1-1b*
37	M68	LL3x3x3x3	.072	6.069	17	.005	0 y	27	47182.8	70632	5.543	3.741 1 H1-1b*



I. Mount-to-Tower Connection Check

<u>RISA Model Data</u>

Nodes (labeled per RISA)	Orientation (per graphic of typical platform)
N2	90
N77	210
N109	330

Tower Connection Plate and Weld Check

Connecting Standoff Member Shape: W1 (in): W2 (in): Weld Size (1/16 in): Phi*Rn (kip/in): Required Weld Strength (kip/in): Weld Capacity:

Mount Desktop – Post Modification Inspection (PMI) Report Requirements

Documents & Photos Required from Contractor – Mount Modification

<u>**Purpose**</u> – to provide MASER CONSULTING CONNECTICUT the proper documentation in order to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the modification was completed in accordance with the modification drawings.
- Contractor shall relay any data that can impact the performance of the mount or the mount modification, this includes safety issues.

Base Requirements:

- Any special photos outside of the standard requirements will be indicated on the drawings
- Provide "as built drawings" showing contractor's name, preparer's signature, and date. Any deviations from the drawings (proposed modification) must be shown.
- Notation that all hardware was properly installed, and the existing hardware was inspected for any issues.
- Verification that loading is as communicated in the modification drawings. NOTE If loading is different than what is conveyed in the modification drawing contact MASER CONSULTING CONNECTICUT immediately.
- Each photo should be time and date stamped
- Photos should be high resolution and submitted in a Zip File and should be organized in the file structure as depicted in Schedule A attached.
- Contractor shall ensure that the safety climb wire rope is supported and not adversely impacted by the install of the modification components. This may involve the install of wire rope guides, or other items to protect the wire rope.
- The photos in the file structure should be uploaded to https://pmi.vzwsmart.com as depicted on the drawings

Photo Requirements:

- Base and "During Installation Photos"
 - o Base pictures include
 - Photo of Gate Signs showing the tower owner, site name, and number
 - Photo of carrier shelter showing the carrier site name and number if available
 - Photos of the galvanizing compound and/or paint used (if applicable), clearly showing the label and name
 - o "During Installation Photos if provided must be placed only in this folder
- Photos taken at ground level
 - o Overall tower structure before and after installation of the modifications
 - Photos of the appropriate mount before and after installation of the modifications; if the mounts are at different rad elevations, pictures must be provided for all elevations that the modifications were installed

- <u>Photos taken at Mount Elevation</u>
 - Photos showing each individual sector before and also after installation of modifications. Each entire sector must be in one photo to show in the inter-connection of members.
 - These photos should also certify that the placement and geometry of the equipment on the mount is as depicted on the sketch and table in the mount analysis
 - Close-up photos of each installed modification per the modification drawings; pictures should also include connection hardware (U-bolts, bolts, nuts, all-threaded rods, etc.)
 - Photos showing the measurements of the installed modification member sizes (i.e. lengths, widths, depths, diameters, thicknesses)
 - Photos showing the elevation or distances of the installed modifications from the appropriate reference locations shown in the modification drawings
 - Photos showing the installed modifications onto the tower with tape drop measurements (if applicable) (i.e. ring/collar mounts, tie-backs, V-bracing kits, etc.); if the existing mount elevation needs to be changed according to the modification drawings, a tape drop measurement shall be provided before the elevation change
 - Photos showing the safety climb wire rope above and below the mount prior to modification.
 - Photos showing the climbing facility and safety climb if present.

Material Certification:

- Materials utilized must be as per specification on the drawings or the equivalent as validated by MASER CONSULTING CONNECTICUT.
 - If the drawings are as specified on the drawings
 - The contractor should provide the packing list or the materials utilized to perform the mount modification
 - o If an equivalent is utilized
 - It is required that the MASER CONSULTING CONNECTICUT certification of such is included in the contractor submission package. There may be an additional charge for this certification if the equivalent submission doesn't meet specifications as prescribed in the drawings.
- The contractor must certify that the materials meet these specifications by one of these methods.

☐ The Material utilized was as specified on the MASER CONSULTING CONNECTICUT Mount Modification Drawings and included

in the Material certification folder is a packing list or invoice for these materials

□ The material utilized was an "equivalent" and included as part of the contractor submission is the MASER CONSULTING CONNECTICUT certification, invoices, or specifications validating accepted status

Certifying Individual: Company

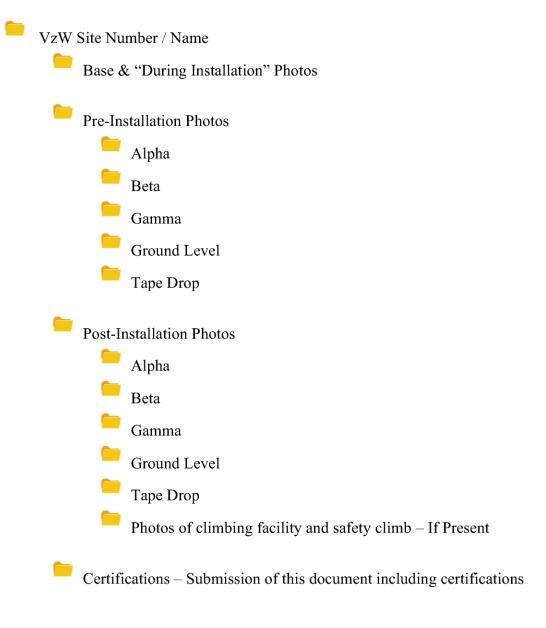
Name	
Signature	

Antenna & equipment placement and Geometry Confirmation:

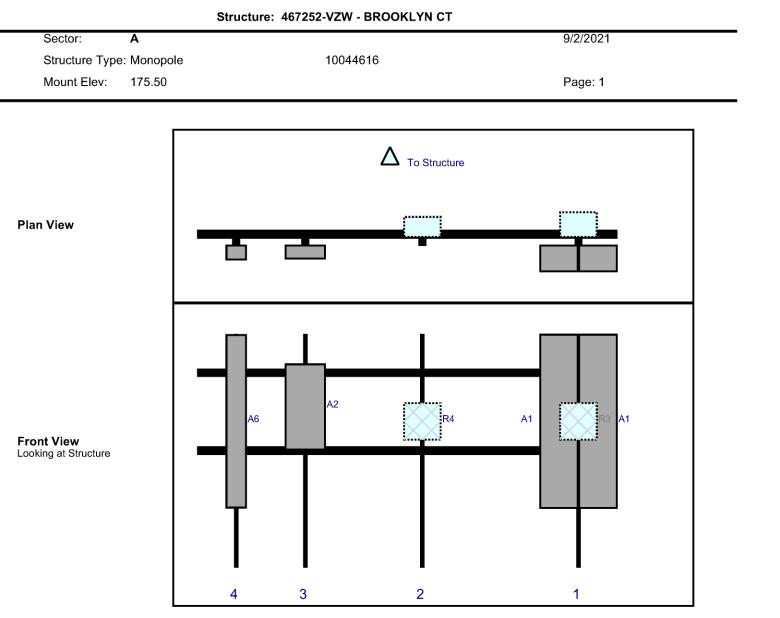
- The contractor must certify that the antenna & equipment placement and geometry is in accordance with the antenna placement diagrams as included in this mount analysis.
- □ The contractor certifies that the photos support and the equipment on the mount is as depicted on the antenna placement diagrams as included in this mount analysis.
- □ The contractor notes that the equipment on the mount is not in accordance with the antenna placement diagrams and has accordingly marked up the diagrams or provided a diagram outlining the differences.

Certifying Individual:	Company	
	Name	
	Signature	

Special Instructions / Validation as required from the MA or Mod Drawings:

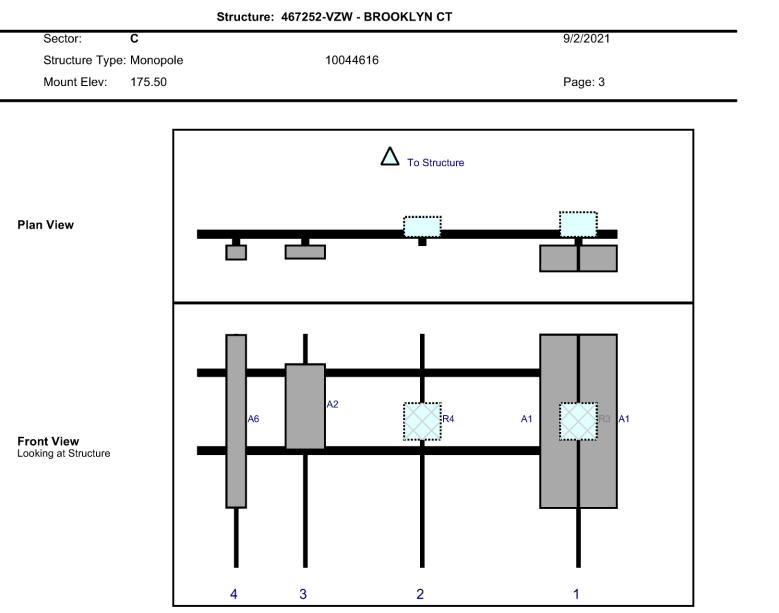

Issue:

Install the proposed OVP unit on to the existing standoff OVP pipe replacing the existing.


Contractor shall install safety climb wire rope guide (Part #: Site Pro 1 - 120-203/317 or EOR approved equal) in locations where the wire rope is rubbing against mount to tower attachments. Contractor shall provide photos of safety climb wire rope guide installation.

Response:


Schedule A – Photo & Document File Structure


Specific Required Additional Photos

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A1	MX06FRO660-03	71.3	15.4	156.339	1	а	Front	36	8	Added	
A1	MX06FRO660-03	71.3	15.4	156.339	1	b	Front	36	-8	Added	
R3	B2/B66A RRH-BR049	15	15	156.339	1	а	Behind	36	0	Added	
R4	B5/B13 RRH-BR04C	15	15	92.3391	2	а	Behind	36	0	Added	
A2	MT6407-77A	35.1	16.1	44.3391	3	а	Front	30	0	Added	
A6	BXA-70080-6CF-EDIN	71	8	16	4	а	Front	36	0	Retained	08/10/2021

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A1	MX06FRO660-03	71.3	15.4	156.339	1	а	Front	36	8	Added	
A1	MX06FRO660-03	71.3	15.4	156.339	1	b	Front	36	-8	Added	
R3	B2/B66A RRH-BR049	15	15	156.339	1	а	Behind	36	0	Added	
R4	B5/B13 RRH-BR04C	15	15	92.3391	2	а	Behind	36	0	Added	
A2	MT6407-77A	35.1	16.1	44.3391	3	а	Front	30	0	Added	
A6	BXA-70080-6CF-EDIN	71	8	16	4	а	Front	36	0	Retained	08/10/2021

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A1	MX06FRO660-03	71.3	15.4	156.339	1	а	Front	36	8	Added	
A1	MX06FRO660-03	71.3	15.4	156.339	1	b	Front	36	-8	Added	
R3	B2/B66A RRH-BR049	15	15	156.339	1	а	Behind	36	0	Added	
R4	B5/B13 RRH-BR04C	15	15	92.3391	2	а	Behind	36	0	Added	
A2	MT6407-77A	35.1	16.1	44.3391	3	а	Front	30	0	Added	
A6	BXA-70080-6CF-EDIN	71	8	16	4	а	Front	36	0	Retained	08/10/2021

Maser Consulting Connecticut

<u>Subject</u>	TIA-222-H Usage							
Site Information	Site ID: Site Name: Carrier Name:	467252-VZW / BROOKLYN CT BROOKLYN CT Verizon Wireless						
	Address: Latitude: Longitude:	130 Old Tatnic Hill Rd Brooklyn, Connecticut 06095 Windham County 41.767161° -71.97195°						
Structure Information	Tower Type: Mount Type:	176-Ft Monopole 14.36-Ft Platform						

To Whom It May Concern,

We respectfully submit the above referenced Antenna Mount Structural Analysis report in conformance with ANSI/TIA-222-H, Structural Standard for Antenna Supporting Structures and Antennas and Small Wind Turbine Support Structures.

The 2015 International Building Code states that, in Section 3108, telecommunication towers shall be designed and constructed in accordance with the provisions of TIA-222. TIA-222-H is the latest revision of the TIA-222 Standard, effective as of January 01, 2018.

As with all ANSI standards and engineering best practice is to apply the most current revision of the standard. This ensures the engineer is applying all updates. As an example, the TIA-222-H Standard includes updates to bring it in line with the latest AISC and ACI standards and it also incorporates the latest wind speed maps by ASCE 7 based on updated studies of the wind data.

The TIA-222-H standard clarifies these specific requirements for the antenna mount analysis such as modeling methods, seismic analysis, 30-degree increment wind directions and maintenance loading. Therefore, it is our opinion that TIA-222-H is the most appropriate standard for antenna mount structural analysis and is acceptable for use at this site to ensure the engineer is taking into account the most current engineering standard available.

Sincerely,

Eric Anderson, PE Technical Specialist

A CONCERNING A CON	verizon				I Non Non	SA. al	INDEX Improvements Improvements
	WINGS 8M	/ERS : CTO1915	LYN CT 57252	Ð	Zð		PROJECT INFORMATION SHEET INDEX APPLICANT/LESSE APPLICANT/LESSE COMMAN: VERZON WRELBS COMMANCET VERZON WRELBS COMMANCET VERZON WRELBS CONTRACT VERZON WRELBS CONTRACT VERZON WRELBS CONTRACT VERZON WRELBS FRIGA ADARDENCO VERZON PROJECT MANAGER SCIENCITYON SHETS PROJECT MANAGER
verizon	MOUNT MODIFICATION DRAWINGS EXISTING 14.36' PLATFORM	TOWER OWNER: SBA TOWERS TOWER OWNER SITE NUMBER: CT01915	CARRIER SITE NAME: BROOKLYN CT CARRIER SITE NUMBER: 467252 FUZE ID: 16272042	130 OLD TATNIC HILL RD BROOKLYN, CT 06095 WINDHAM COUNTY	LATITUDE: 41.767161° N LONGITUDE: -71.97195° W		DESIGN CRITERIA WIND LOADS WIND LOADS BASIC WIND SPEED (3 SECOND GLIST), V = 12 MFH BASIC WIND SPEED (3 SECOND GLIST), V = 12 MFH PEN BASIC ELENTION (APRU) = 3329 PEN BASIC RELEATED (APRU) = 3329 CET LOADS CET LOADS CET FLOADS CET FLOADS SERVIC LOADS SERVIC DESCHOLO GLIST), V = 50 MFH CET THICKNESS = 1.00 IN SERVIC DESCHOLO AUST), V = 50 MFH CET THICKNESS = 1.00 IN SERVIC DESCHOLO AUST), X =
							COPYRIGHT ©2021 COPYRIGHT ©2021 MASER CONSULTING ALL RIGHTS RESERVED This Drawned and un-therepratrion contantee intel on which the prevention contantee intel on which which contact on brack contact meaning on a cuteful upon can write the prevention contactee upon can write the prevention contactee upon can write the prevention contactee upon can write the prevention contactee

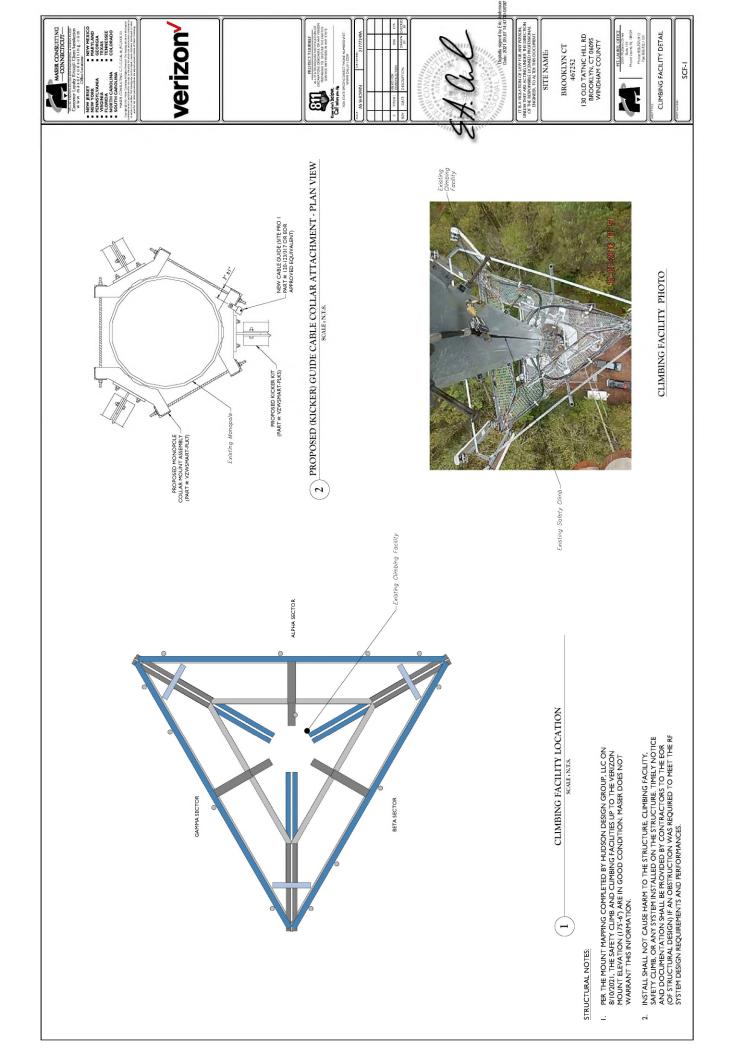
MASER CONSULTING — CONNECTION — — — — — — — — — — — — — — — — — — —	er col	VIRGINIA VIRGINIA FLONDA NORTH CAROLINA	 SOUTH CAROLINA MARE CONSLIMA PARE CONSLIMA CONSLIMA OF CL. CLUA, BL/PC000131 CONPUSE BOIL PURC SCHWARP AN EQUIDANT PROCESSOURCE 	But and the second seco			Verizon						Ĕ	ALL STATE REGISTREAT OF ALL STATE CONTROL OF AN ANALYSIS OF ANALYS	Road when you do	FOR STATE SECRECORCORPORT NOT	V6HZLLLIZ (saunt cs) NJWOHS SV (mcs)	WILTON DEH CONFERENCION DEH	At all provention at a	OF CONVE	A J L	an and	OR ACENSES C	ONAL Digitaly signed by Elic. Date: 2021 09:07 14:47	IT IS A VICKATION OF LAW FOR ANY PERSON	I I I I I I I I I I I I I I I I I I I
		WEIGHT (LBS.)	168	180	291	150				WEIGHT (LBS.)	29	230	60						8011							
		UNIT WEIGHT (LBS.)	4	30	291	150				UNIT WEIGHT (LBS.)	0	77	0						TOTAL							
L OF MATERIALS	SECTION I - VZWSMART KITS	NOTES			CONTRACTOR TO VERIFY THE LENGTH REQUIRED AND TRIM AS NECESSARY IN ACCORDANCE WITH THE STRUCTURAL STEEL' NOTES ON SHEET SGN-I				2 - OTHER REOUIRED PARTS	NOTES	GALVANZED, CONTRACTOR TO VENEY THE LENGTH REQUIRED AND TRIM AS NECESSARY IN ACCORDANCE WITH THE STRUCTURAL STEEL NOTES ON SHEET SGN-1.	GALVANIZED	GALVANIZED							VZWSMART KITS - APPROVED VENDORS	COMMSCOPE	SALVADOR ANGUIANO (817) 364.7487	satvadorangulano@commscore.com	WWW.COMMECOPE.COM METROSITE FABRICATORS, LLC	KENT RAMEY 1714-1315-7046 (A) - 7046 (A) - 401-2716	
BILI	SECT	DESCRIPTION	CROSSOVER PLATE	SUPPORT RAIL CORNER BRACKET	KICKER KIT	MONOPOLE COLLAR MOUNT ASSEMBLY			SECTION 2	DESCRIPTION	24" LONG, L3x3x1/4	168" LONG, P2 1/2 STD	6" LONG HSS 3x2 1/2x1/4 SHIM							VZWSMART KIJ		CONTACT SAI BUCNIE (81			CONTACT KE	
		PART NUMBER	VZWSMART-MSK I	VZWSMART-PLK3	VZWSMART-PLK5	VZWSMART-PLK7				PART NUMBER																
		MANUFACTURER				<u>.</u>	VZWSMART	 		MANUFACTURER																
		QUANTITY	12	6	_	_				QUANTITY	3	e	6													

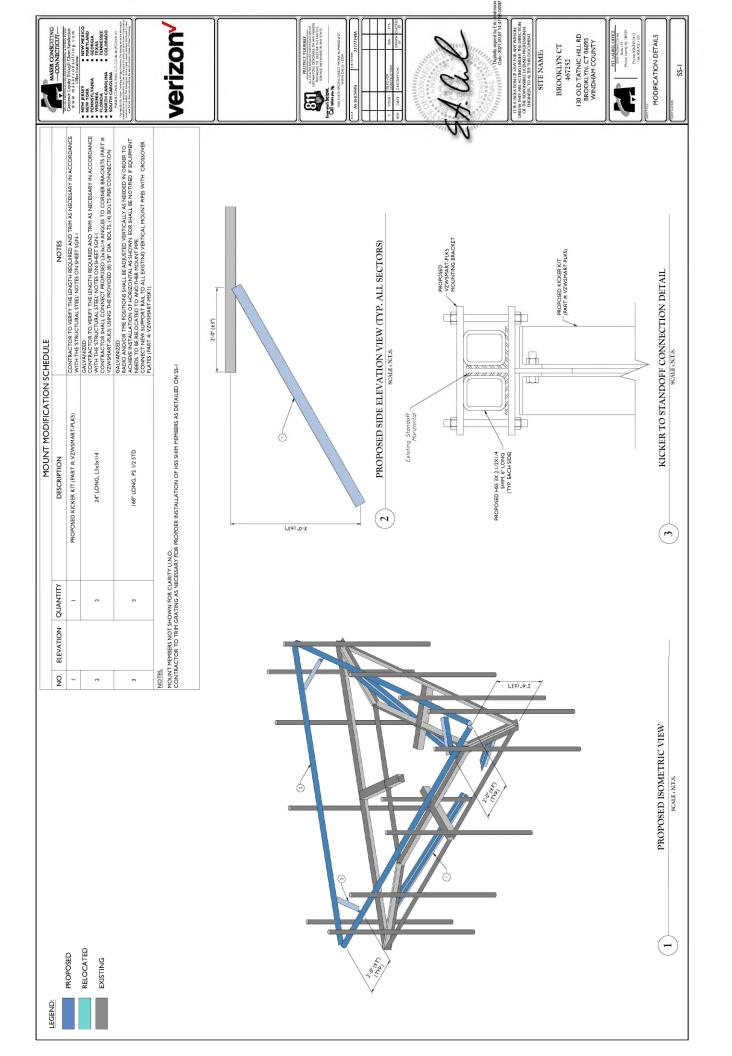
NOTES:

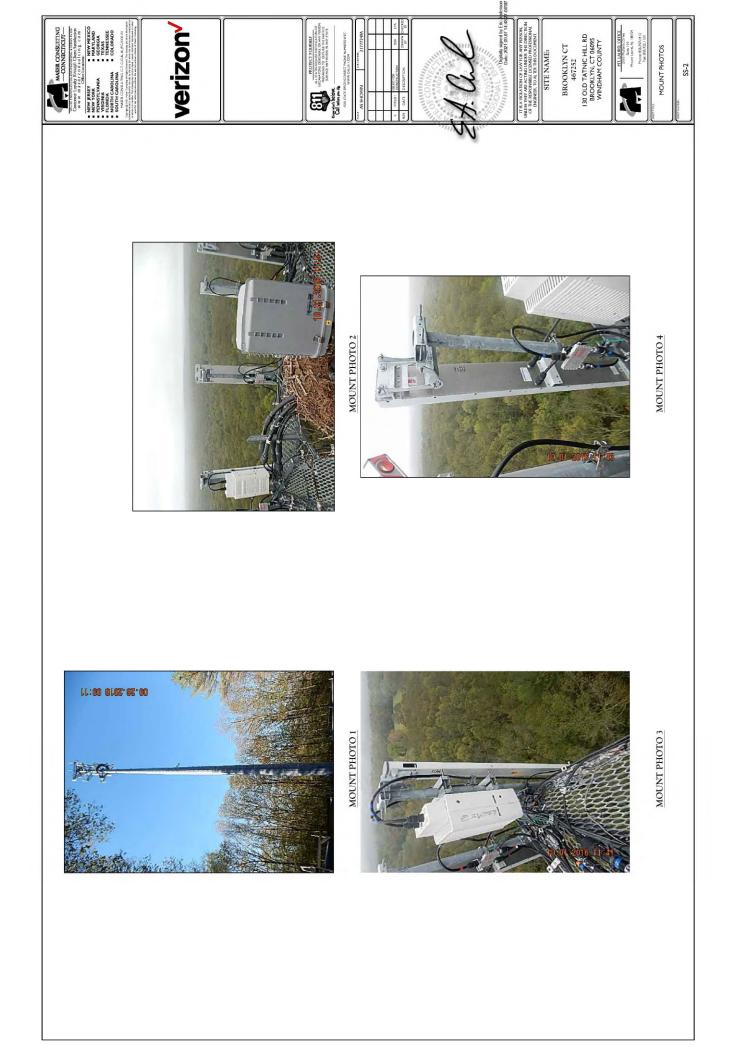
THE MANUFACTURERS LISTED ARE THE APPROVED VENDORS FOR THE VZW MOUNT RITS. EACH MANUFACTURERS WILL BE AWARED FO WHICH RITS HAVE BEEN THROUGH THE VZW APPROVAL PROCESS AND THEY ARE IN TURN APPROVED TO SELL PLEASE NOTE THAT THE MATERIAL UTILIZED ON THE MOUNT PRODIFICATIONS WILL BREVIEWED AS A PART OF THE DESKTOP PMI COMPLETED MODIFICATIONS WILL BREVEND AS A PART OF THE DESKTOP PMI COMPLETED BY THE SARAT TOOL VENDOR. IT WILL BE REQUIRED THAT THE VZW KITS SPECIFIED ARE UTILIZED IN THE MODIFICATIONS.

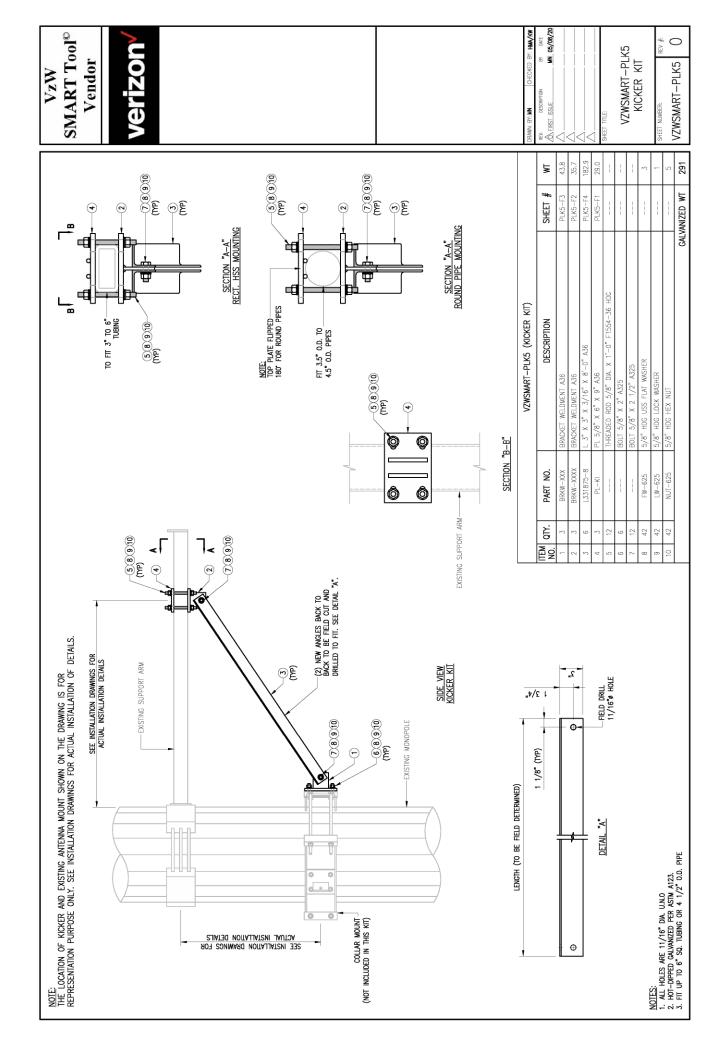
ALL MATERIALS REQUIRED FOR THE DESIGNED MODIFICATIONS BUT NOT LISTED IN THIS SHEET ARE ASSUMED TO BE PROVIDED BY THE CONTRACTOR. 2

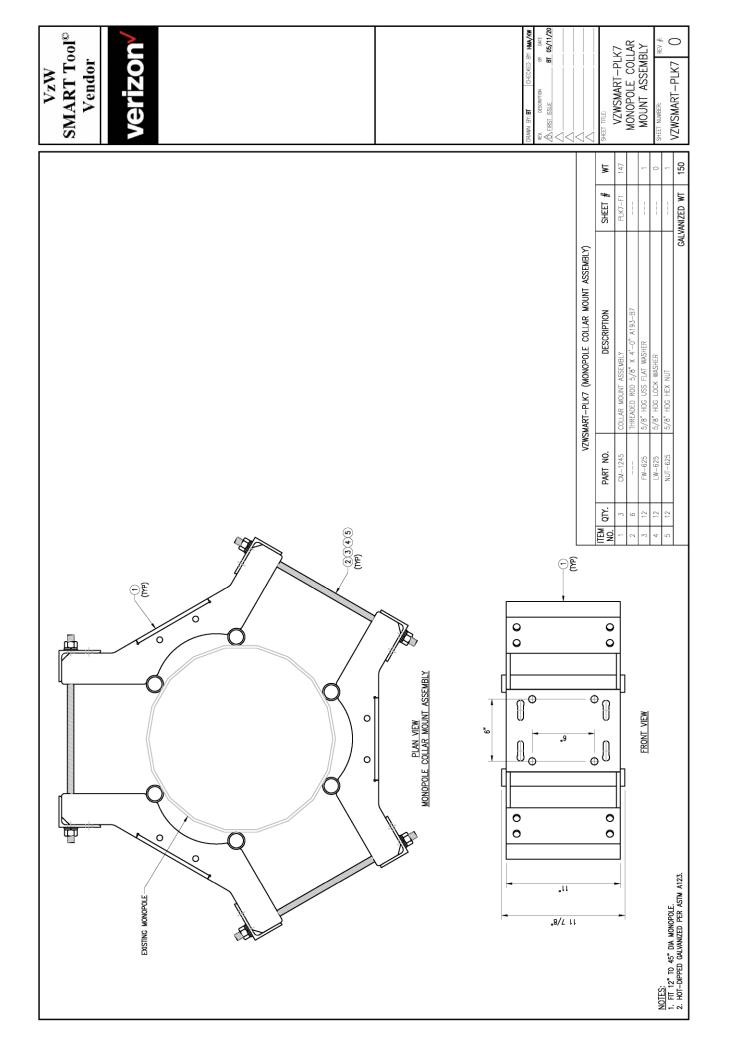
VZWSMA	VZWSMART KITS - APPROVED VENDORS
	COMMSCOPE
CONTACT	SALVADOR ANGUIANO
PHONE	(817) 304-7492
EMAIL	SALVADOR.ANGUIANO@COMMSCOPE.COM
WEBSITE	WWW.COMMSCOPE.COM
~	METROSITE FABRICATORS, LLC
CONTACT	KENT RAMEY
PHONE	(706) 335-7045 (O), (706) 982-9788 (M)
EMAIL	KENT@METROSITELLC.COM
WEBSITE	METROSITEFABRICATORS.COM
	PERFECTVISION
CONTACT	WIRELESS SALES
PHONE	(844) 887-6723
EMAIL	WWW.PERFECT-VISION.COM
WEBSITE	WIRELESSALES@PERFECT-VISION.COM
	SABRE INDUSTRIES, INC.
CONTACT	ANGIE WELCH
PHONE	(866) 428-6937
EMAIL	AKWELCH@SABREINDUSTRIES.COM
WEBSITE	WWW SABREITESOLUTIONS COM
	SITE PRO 1
CONTACT	PAULA BOSWELL
PHONE	(972) 236-9843
EMAIL	PAULA. BOSWELL@VALMONT.COM
WEBSITE	WWW.SITEPROLCOM

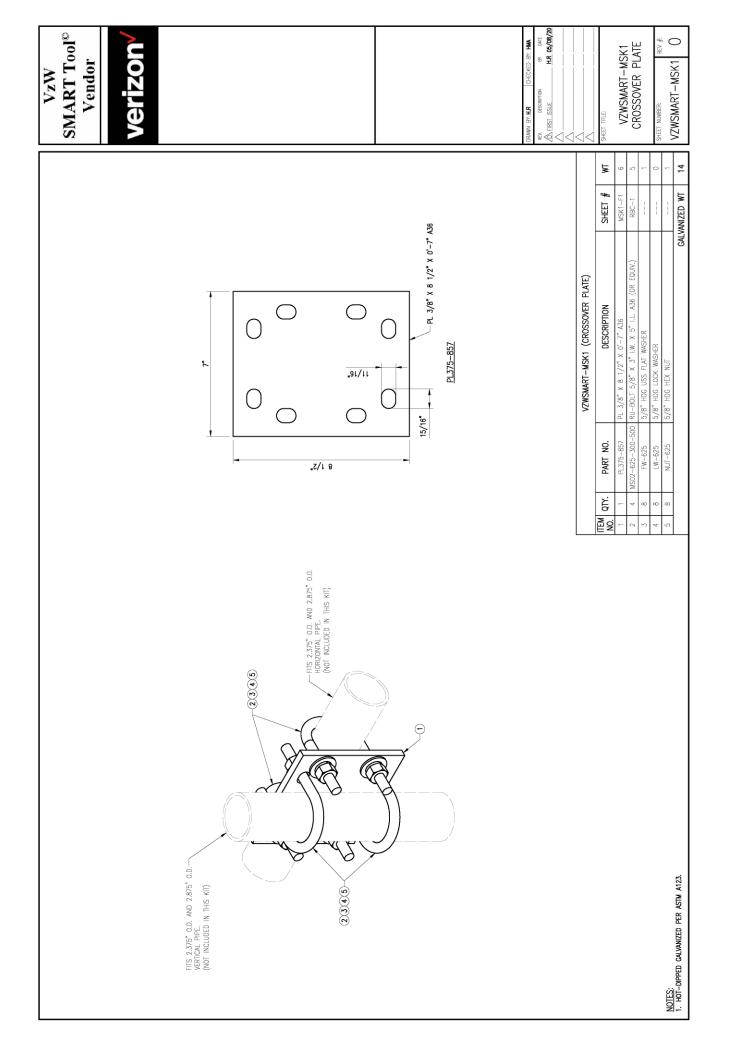



MT, LAUREL OFFICE ZOIII MADAGECTANA Sates 100 Mount Laurel, NJ (20054 Phones 856,757,0412 Fact 856,722,1120 1

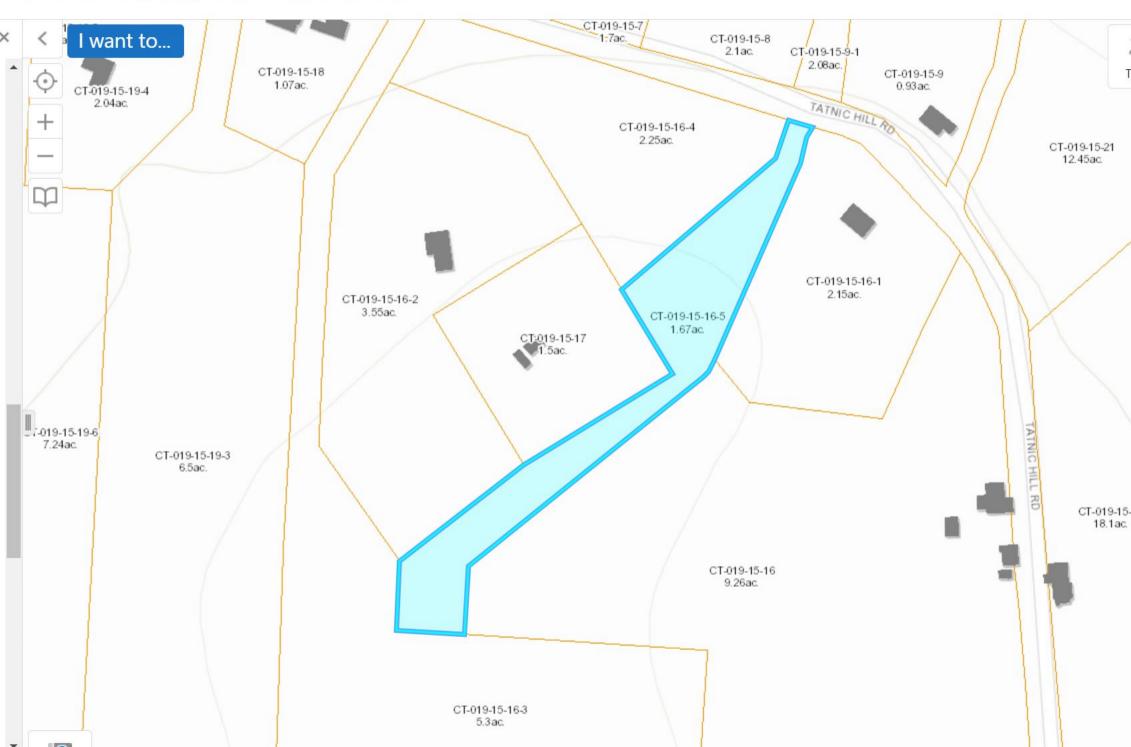

BILL OF MATERIALS


SBOM-I


MASER CONSULTING 	Loca Loca	PUNSTVANIA CEORGIA VRGINIA TEXAS FLORIDA TENNESSE NORTH CAROLINA COLORADO SOUTH CAROLINA COLORADO SASA COROLINA	Annual constraints of the second seco	verizon			14	Exercised Conservation Provided Annual Annua		\$#al	Pagase specific factorers and the factorers of the factorers in the Amonteer provest and the factorers of the factorers of the factorers of the factorers of the factorers of the factorers of the factorers of the factorers of the factorers of the factorers of the factorers of the factorers of the factorer	BROOKLYN CT 467252	10 OLD TATING HLL KD BROOKLYN, CT 06095 WINDHAM COUNTY INTAURA CONT		SGN-I
	BOLT SCHEDULE ()	BOLI ATANDARD SHORT MIN. EDGE SPACING DIAMETER HOLE SLOT DISTANCE SPACING 1/2 9/16 9/16×11/16 7/8 1/12	5/8 11/16 11/16x7/18 11/18 17/8 3/4 13/16 13/16x1 11/4 2.1/4 7/0 10.1 10.1 2.0	11/16 11/16×15/16 13/4	LEG GAGE 4 2 1/2		2 1/2 1 38 2 1 1/8 0000		THE DIMENSIONS PROVIDED ARE MINION RECOURDENTS ACTUAL DIMENSIONS OF REPORTS THIN THESE ERAMINES MAY VARY RADATHE ARC MINIUM REQUIREMENTS.	 SHORT SLOT HOLE SHALL ONLY BE BURWHOR DENTED IN THE DAWNHOR MATCH EXSTING GAGES WHEN APLICHALE UNKESS THINHOH EDGE DISTANCES ARE COMPROMISED. 	ALLOWABLE COPING			OR APPROVAL	
	 GALVANIZED ASTIN A325 BOLTS SHALL NOT BE REUSED. ALL EXISTING PAINTEDICALVANIZED SULFACES. DAMAGED DURING REHAB INCLUDING AREAS UNDER STIFFENER PLATES SHALL BE WIRE BRUSHED. 	CLEAN, REPARED BY COLD GALVANIZING (ZINGA OR ZINC COTE), AND REPAINTED TO MATCH THE EXISTING FINISH (IF APPLICABLE). 13. ALL HOLES NTEEL MOREES SALLE BESTONE) (IF'E VARGE THAT THE BOLT DAMATTER CENARDADI FOND FOND FINISH SALE RESTONED ON INVERSE DAMATTER CENARDADI FOND FOND FINISH SALE RESTONED ON INVERSE.	 All WEDING SAM PROVIDED INCLUSING TO DO AND AND AND AND AND AND AND AND AND AND	EDITION OF THE PART, INCLUE A CARING THE WALL MEASURING LIVE (LVM) TO A ACCEPTANCE OR REJECTION OF ALL WELDING OPERATIONS, RE, DARNA AND POST INSTALLATION, USING THE ACCEPTANCE ORTERA OF ANYS DI 1. CONTRACTOR R REPORT BLEFOR COMMISSIONING A THEID MATT CERTIFIED WELD INSTECTOR (CW) THROUGHOUT THE BATTRETY OF THE PROJECT A RASING COM REPORT FALLE R ROWDED TO THE BURNER UPON COMPETION OF THE ROOTST.	 THE CERTIFIED WED. INSPECTOR SHALL INDICATE. IN A WAITTEN CW INSTATT TO ALBE CONCENTED. INTO CONSIDERTING WANNANG TO INSTATT TO ALBE CONCENTED. INTO CONSIDERTING WANNANG TO INTO ANA AND PARTICIPATION SUPPORTANT THE ALBORATOR REFERENCE ALL CONVENTION SUPPORTED THE POLINISC THE FINI DOCUMENTATION AND PARTICIPATION SUPPORTED THE POLINISC THE FINI DOCUMENTATION AND PARTICIPATION SUPPORTED THE POLINISC THE FINI DOCUMENTATION AND PARTICIPATION SUPPORTED THANG THE FINI DOCUMENTATION SUPPORTED AND PARTICIPATION SUPPORTED THANG THE FINI DOCUMENTATION SUPPORTED THANG THAN THAN THE POLINIS THANG THE FINI DOCUMENTATION SUPPORTED THANG THAN THAN THAN THAN THAN THE FINI DOCUMENTATION SUPPORTED THAN THAN THAN THAN THAN THAN THAN THAN	 IN CASE WHERE A WED IS SECIFID BETWEN TWO PROBERS IN WHICH THERE IS A GAP IN BETWERN, THE WELD IS TO BE BUILT UP SUCH THAT THE DESC OF WELD ON THE MENBER IS EQUAL TO THAT SHOWN IN THE DRAWINGS 	 OVER LAS WEDING OR BRAZING IS STRICTLY PROHIBITED SECRETUR. NOT YORCH CUTTING IS FRIMITED ON SITE ALL HOLES SHALL BE CUT WITH A GRINDER. CONTRACTOR SHALL EXERCISE CAUTION WHEN WEDING A GALVANIZED SUBPACE 					↓ (
CONTRACTOR SHALL BERSHONGBLE FOR THE STRENGTH AND STABILITY OF THE STREUTURE DURAGE RECTION CONTRACTORS ALL REVOUSE TRIPPORATY SUPPORT SHORING, BARCING AND ANY OTHER STREUTURAL SYSTERS & REQUIRED TO BUSIST ALL FORCE THAT THAY CONFLIETED HANDLING AND BERCTION UNTIL THE STRUCTURE R BULLY CONFLETED.	TEMPORARY SUPPORTS, BRACING AND OTHER STRUCTURAL SYSTEMS REQUIRED DURING CONSTRUCTION SHALL REMAIN THE CONTRACTORS PROPERT AFTER THEIR USE	 ALI INSTALLATIONS FERFORMED ON THIS STRUCTURE SHALL BE COMPLETED IN ACCORDANCE WITH THE GOVERNING FROMISIONS OF THE STANDARD FOR INSTALLATION, ALTERNITO AND MINIMERANCE OF ANTENNA FUNDAMENTED FOR INCOMPLEX AND ANTENNAL OF ANTENNAL 	201 ONTRACTOR SHALL SECURE STEFACX TO REAL AND ADDREED ADDR	ROM TOWRE SITE SALAR EMAINTAINE THE PAINTAINED AT THE REAM TOWER SITE SALAR EMAINTAINE STATE STATE THE REAM SALAR	 Do Not Scille Dawnes Do Not Tickle Dawnes Do Not Tickle Dawnings for ANY O'DHB XIT Do Not Tickle These Dawnings for ANY O'DHB XIT ALL M-TERAL UTILIZED FOR THIS ROJECT MUST BE ANY MITTER OF ANY MITTER ANY MITTERAL SUBSTITUTIONS IN CLUDNE BUT VET UTILITIES OF ANY DESCENT ANY MITTERAL SUBSTITUTIONS IN CLUDNE BUT VET UTILIZED 	AND ENVIREMENTING THE VIEW THE WORLD BE AFTENDED BITTLE OWNER AND ENVIRUEER IN WRITING. 15. THE MOUNT UNDER NO CIRCUMSTANCES SHOULD BE USED AS A TIE OFF POINT.	STRUCTURAL STEEL DESIGN DEFAUNG ARREATON AND RECTON OF A STRUCTURAL STEEL SHALL CONFORM TO THE FOLLOWING PUBLICATIONS EXCEPT AS SPECIFICALLY INDICATED IN THE CONTRACT DOCUMENTS & AMERICALI INDICATED IN THE CONSTRUCTION (ASC) MANUAL OF STEEL CONSTRUCTION (STH EDITION)	 b. SPECIFICATION FOR STRUCTURAL JOINTS USING ASTM A332 OR A490 BOLTS c. ABOLOS OF STANIDARD PRACTICE 2. STRUCTUBAL STEEL SHALL CONFORM TO THE FOLLOWING UNLESS OTHERWISS SHOWN: 	CHANNELA NIGLES, PLATES, ETC. ASTM A38 (GR 36) STEEL PIPE BOLTS ASTM A33 (GR 35) BOLTS ASTM A335 NUTS ASTM A683 LOCK WASHERS LOCKING STRUCTURAL GRADE	 ALL SUBSTITUTIONS REOPOSED BY THE CONTRACTOR SHALL BE APPROVED IN WARTNEED FITHE ROUKER. CONTRACTORS HALL INFORMED DOUGHENTATION TO BRIGHER ROWARD SHORT AND THE SUBSTITUTES DOUTHED FOULDEAD TO BRIGHER ROWARD SHORT AND INFERSIONS ROW THE ONICIALAD DESIGN INCLUDING MAINTERANCE. REPAIR AND BRIALCHERT SHALL BE ROURDING REDESIGN COSTS AND OFFIT FILE BUSITUTION INCLUDING REDESIGN COSTS AND COSTS TO THE BUSITUTION INCLUDING REDESIGN COSTS AND COSTS TO SHALL REVOURE ADDITIONAL DOCUMENTATION A MODOR SPECIFICATIONS TO THE BUSITURIATION STALE REQUERD TO THE BUSITURIATION AND STEPERATIONS ADDITIONAL STELL SHOP DAWWINGS TO BUSINEER POR APPROVE FROM AND REDISED AND TO PREDISE ROURD ADDITIONAL DOCUMENTATION AND SPECIFICATIONS APPROVIL ROOT PARALICATION 	 a. Submit Hop Daxwass To PETRA ALIANO@COLLIBRENGINEEIING COM b. ROVIDE MASE ROOLLITING RODJECT # AND MASE CONSULTING PROJECT BUGINER CONTACT IN THE BODY OF THE EMAIL. J. DRILL NO HOLES IN ANY NEW OR BOSTING STRUCTIRAL STEEL MAREES 	OTHER THAT TRUESS ISPONT ON STICTURE. DIAMINES WITHOUT THE APPROVAL OF THE ISPIRIED OF RECORD. 6. GALVANIZED ASTM AJJS BOLTS SHALL NOT BE REUSED 7. ALL REVIETE SHALL BE HOT BE DIRED GALVANIZED FOR IAUL WASTHER RECEIPTION AND MONAL. INFO STELE SHALL BE ARRENDOWN CH RECEIPTION AND MONAL. MEN STELE SHALL BE ARRENDOWN CH	CONTECT STEEL CONTINUE OF SAME OF AN OTHER MEANS. RECONTECT STEEL ON OTHER MEANS. CONTECT STEE BAIL (TO THER MEANS. TO CONTECT COLD SAME AND CONTECT COLD SAME AND COLD STEEL WITH TWO (2) COATS OF COLD SALVANTACTION (ZNIGA OR ZINC COTIB. 9. ALL BOLT ASSPRILE FOR STRUCTURAL MEDIBES REPRESENTED IN THIS DRAWING REQUIRE LOOKIDE PONCEST OF INSTALLED IN ACCORDANCE WITH THA. ZZ2H SECTION 4.9.7. REQUIREMENTS.	 WHERE CONNECTIONS ARE NOT FULTY DETAILED ON THESE DRAWINGS, ARBICATOR SHALL DEGIN CONNECTIONS TO RESS LICIDES AND FORCES WHERE SHOWN ONL DRAWNIGS AND AS OUTTURED IN SFECTICATIONS. FOR MEREBIS BEING REPLACED, REVOLDE NEW BOLTS AND MATCH ENSTITING 	SIZE AND GRADE MAINTAIN AISC REQUIRPRINTS FOR MINIMUM BOLT DISTANCE AND SPACING.
PROJECT NOTES 1. SEE MODIFICATION NOTES	 THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE CODES, ORDINANCE, LAWS AND REGULATIONS OF ALL MUNICIPALITIES. UTILITY COMPANIES ON CONTRACTOR PUBLIC/CONTRACTOR 	THE CONTRACTOR SHALL BE REPONDED FOR A DATA THE CONTRACTOR SHALL BE REPONDED FOR ANY FEDERAL STATE, AND INSPECTIONS THAT MAY BE REQUIRED BY ANY FEDERAL STATE.	COUNT OR MUNICIPAL AUTHORITIES. 1. THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER. IN WRITING OF ANY COUNCILSTS, RANGE OR A OMISIONS RIVER TO THE SUBVISION OF BUILDING OR REPORTING FOR WORK.	DTECTING ALL EXISTING ISTRUCTION. THE SSULT OF ACTOR'S EXPENSE TO THE	THE SCOPE OF WORK FOR THIS PROJECT SHALL INCLUDE PROVIDING ALL INTERACLEMENTS THOU ADDI REQUIRED TO COMPLET THIS PROJECT. ALL EQUIPPENT SHALL BE INSTALLED IN ACCORDANCE WITH MANUFACTURES RECOMPRIDATIONS.	 THE CONTRACTOR SHALL VISIT THE IPODECTSITE PRIOR TO SUBMITTING THE BID TO VERIFY THAT THE PROJECT CAN BE CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS AND CONSTRUCTION DRAWINGS. 	Ċ.	 INCE THE CELLSTIF MAY BE ACTIVE, ALL ANETY RECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LPREL OF ELECTROMORETIC RADARION EQUIPMENT PACILOUE SENTION MISOR OF DEPROVING ANY WORK THAT COULD BRYOSE THE WORKERS TO DANGER TROONAL ANY WORK THAT COULD BRYOSE THE WORKERS TO DANGER TROONAL ANY WORK THAT COULD BRYOSE THE WORKERS TO DANGER TROONAL POETRIALLY DANGEROUS BRYOSELE PRELS. 	 NO NOISE SHOKE DUST OR ODOR WILL REJULT FROM THIS FACILITY AS TO CAUSE A NUSANCE. THE FACILITY S UNHANNED AND NOT FOR HUMAN HABITATION (NO 11. THE FACILITY S UNHANNED AND NOT FOR HUMAN HABITATION (NO 		BEPOE ERRONMENT VAIO CODERNICK AT FIRSAL AND PREARANG OF SEVOP REPORT ERRONMENT VAIO CODERNICK AND FIRSAL AND PREARANG OF SEVOP CONTRACTO COLVENTRA, FILLE CONTTACTOR AND FILLE CONTRACTOR SHALL BE ROUGHERT PT THE CONTRACTOR SHALL SENTRACTOR OFFICINES, THAT ARE NOT PRESENTED OF THE COMMUNICS, DA ANY CONDITIONS THAT TAREN'T PERSENTED OF THE FILL ATTON OF THE MODIFICATIONS, NOTIFY THE ENGINEER IMPEDATEL.	1. IT IS ANALY THAT ANALY TRUCT INSIGN TO ANALY ANALY STAFFUL ON THE FRANK WILL BE ACCOMPARED F YROWIEDSBELK WORKIEN WITH TOWE CONSTITCTION EPREMER AND DRECT THE WORK AND SHALL BE THE CONTRACTOR STAHL SUFFICIES AND DRECT THE WORK AND SHALL BE SOLET RESONABLE FOR ALL CONSTITUTION NETHODS, MEANS, FECHNIQUES SEQUENCE, AND PROCEDURES.	6 ALL CONSTRUCTION MEMAS AND METHODS: NELLIDING BUT NOT LIMITED TO RETORN MARK INFORMS AVMS CHEMION PUAK, ADD RECUE PLANS SHALL BETHERSSTOREILTT OF THE GREAK, CONTRACTOR RESONSIBLE FOR THE RESCUTION OF THE WORK CONTRACTIONER AND SHALL MET ANSITMA.21 (ANTEL BUTION), SHAL AND GREAK, INDUSTIF ANSITMA.21 (ANTEL BUTION), SHAL AND GREAK, INDUSTIF STAUDARS ALI REGINED PARS SHAL INDUSTIFY EDITON INCLUDING THE REQUIRED INVOLVEMENT OF AQUALIED DITON INCLUDING THE REQUIRED INVOLVEMENT OF AQUALIED		 WORK SALL, ONLY BEFERVERD DURING CALM DBY TO XNS, WINDS LESS THAN 39-PHPI, THE FRUCTURE SHOWN ON THE BARWINGS IS STRUCTURALLY SOUND ONLY IN THE COMPLETED FORM THE



VzW SMART Tool [©] Verizon	DRAWN BY: HAR DECKED BY: HAA REV. DISCORTON BY: HAA REV. DISCORTON BY: DART			SHEET TITLE:	VZWSMART-PLK3	SUPPORI RAIL CORNER		¥	VZWSMARI-PLK3 U
2 2/8			WT	on c	n 10	m	- 0	2	30
		KET)	SHEET #	PLK3-F1 BLK3-F1					GALVANIZED WT
		VZWSMART-PLK3 (SUPPORT RAIL CORNER BRACKET)	DESCRIPTION	CORNER BENT PLATE BRACKET	_		5/8" HDG USS FLAI WASHER 5/8" HDG LOCK WASHER	5/8" HDG HEX NUT	
	NOTES: 1. HOT-DIPPED GALVANIZED PER ASTM A123.	MZN	<u> </u>	CBP-L	MS02-	+ +	FW-625 IW-625		
	NOTES. 1. HOT-DI		ITEM QTY. NO.	c		\vdash	5 16 16	+	
The second secon									



ATTACHMENT 5

klyn canterbury chaplin eastford hampton killingly plainfield nam scotland sterling thompson union voluntown woodstock

100 TATNIC HILL	RD		Sales	🖨 Print	Field Card	♀ Map It
Location	100 TATNIC HILL RD	Mblu	15/ / 16	6-5/ /		
Acct#	00116805	Owner	DAVID SOPHI	SON BENJ. E	AMIN &	
Assessment	\$187,000	Appraisal	\$267, <mark>1</mark>	00		
PID	1241	Building Count	1			

Current Value

	Appraisal		
Valuation Year	Improvements	Land	Total
2020	\$0	\$267,100	\$267,100
	Assessment		
Valuation Year	Improvements	Land	Total
2020	\$0	\$187,000	\$187,000

Owner of Record

Owner	DAVIDSON BENJAMIN & SOPHIE	Sale Price	\$0
Co-Owner	C/O SBA TOWERS	Certificate	
Care Of		Book	0216
Address	ATTN: TAX DEPT CT01915-S	Page	0006
	8051 CONGRESS AVE	Sale Date	09/09/1999
	BOCA RATON, FL 33487-1307	Instrument	
		Qualified	

.

ATTACHMENT 6

UNITED STATES POSTAL SERVICE ®				ROOKLYN f <mark>icate of Mail</mark> i	ing — Firn
Name and Address of Sender Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	TOTAL NO. of Pieces Listed by Sender	Postmark with Date	of Receipt.	\$002.99 ⁰	
	Postmaster, per (name of receiving employee)			ZIP 06103 041L12203937	
USPS [®] Tracking Number Firm-specific Identifier	(Name, Street, Stale, and ZIP Code™)	Postage	Fee	Special Handling	Parcel Airlift
1.	Austin Tanner, First SelectmanTown of Brooklyn4 Wolf Den RoadBrooklyn, CT 06234		5		Г Ц
2.	Jana Butts-Roberson, Director of Community Development Town of Brooklyn Clifford B. Green Memorial Center 69 South Main Street, Suite 22 Brooklyn, CT 06234	/Town Planner	ATE HOUSE STAT		
3.	Benjamin and Sophie Davidson c/o SBA Towers Attn: Tax Department CT 01915-S 8051 Congress Avenue Boca Raton, FL 33487-1307		PR 14 2022	00103	
1.			(<u>)</u> 3		
5.					
6.					