Melanie A. Bachman
Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051
RE: Notice of Exempt Modification for T-Mobile:
876390 - T-Mobile Site ID: CT11511A
116 Grant Hill Road, Brooklyn, CT 06234

Dear Ms. Bachman:
T-Mobile currently maintains six (6) antennas at the 137 -foot mount on the existing 150 -foot Monopole Tower, located at 116 Grant Hill Road, Brooklyn, CT. The tower is owned by Crown Castle and the property is owned by Mr. and Mrs. Bernier. T-Mobile now intends to replace six (6) existing antennas with three (3) new 1900 MHz antennas and three (3) new $600 / 700 \mathrm{MHz}$ antennas. The new antennas will be installed at the $137-\mathrm{ft}$ level of the tower and some will be capable of providing 5 G services. T-Mobile is also proposing tower mount modification as shown on the enclosed Mount Analysis Report.

Planned Modifications:

Tower:
Remove:
(6) $15 / 8$ " Coax

Remove and Replace:
(3) LNX 6515DS-A1M Antenna (REMOVE) - (3) RFS-APXVAARR24_43-U-NA20 Antenna 600/700 MHz (REPLACE)
(3) EMS RR90-17-02DP Antenna (REMOVE) - (3) RFS-APX16DWV-S-E-A20 Antenna 1900 MHz (REPLACE)

Install New:
(1) $15 / 8^{\prime \prime}$ Hybrid Fiber Line
(3) Radio 4449 B71/B12

Existing to Remain:
(6) $15 / 8$ " Coax
(3) TMA

Ground:

Upgrade to existing ground cabinet. (Internally)

The facility was approved by the Town of Brooklyn, though original zoning documents have not been located despite diligent inquiry and efforts. The original building permit, permit number 5802, issued on April 14,2000 by the Town of Brooklyn Building Department permitting the construction of a 150 ' monopole tower. No conditions of approval are known. T-Mobile's was approved for tower sharing at this facility by the Council on July 8, 2003.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § $16-50 \mathrm{j}-73$, a copy of this letter is being sent to Richard Ives, First Selectman for the Town of Brooklyn, Jana Butts Roberson, AICP, Town Planner, Crown Castle as the tower owner, and Mr. and Mrs. Bernier as the property owners.

1. The proposed modifications will not result in an increase in the height of the existing tower.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the abovereference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Anne Marie Zsamba.

Sincerely,
Anne Marie Zsamba
Site Acquisition Specialist
3 Corporate Park Drive, Suite 101
Clifton Park, NY 12065
(201) 236-9224

AnneMarie.Zsamba@crowncastle.com

Attachments
cc:

Page 3

Richard Ives, First Selectman (via email only to r.ives@brooklynct.org)
Town of Brooklyn
4 Wolf Den Road
Brooklyn, CT 06234
Jana Butts Roberson, AICP, Town Planner (via email only to j.roberson@brooklynct.org)
Town of Brooklyn
4 Wolf Den Road
Brooklyn, CT 06234
Mr. and Mrs. Bernier, Property Owner (via email only to bernier66@att.net)
116 Grant Hill Road
Brooklyn, CT 06234
Crown Castle, Tower Owner

From:	Zsamba, Anne Marie
To:	bernier66@att.net
Subject:	Notice of Exempt Modification - T-Mobile - 116 Grant Hill Rd, Brooklyn - 876390
Date:	Thursday, January 7, 2021 2:00:00 PM
Attachments:	EM-T-MOBILE-116 GRANT HILL RD BROOKLYN-876390-CT11511A-NOTICE.pdf

To The Bernier's, as Property Owners:

Attached please find T-Mobile's exempt modification application that is being submitted to the Connecticut Siting Council today, January 7, 2021.

In light of the present circumstances with Covid-19, The Council has advised that electronic notification of this filing is acceptable. If you could kindly confirm receipt. Thank you.

Best,
Anne Marie Zsamba

ANNE MARIE ZSAMBA
Site Acquisition Specialist
T: (201) 236-9224
M: (518) 350-3639
F: (724) 416-6112

CROWN CASTLE

3 Corporate Park Drive, Suite 101
Clifton Park, NY 12065
CrownCastle.com

From:	Zsamba, Anne Marie
To:	"r.ives@brooklynct.org"
Subject:	Notice of Exempt Modification - T-Mobile - 116 Grant Hill Rd, Brooklyn - 876390
Date:	Thursday, January 7, 2021 2:00:00 PM
Attachments:	EM-T-MOBILE-116 GRANT HILL RD BROOKLYN-876390-CT11511A-NOTICE.pdf

Dear First Selectman Ives:

Attached please find T-Mobile's exempt modification application that is being submitted to the Connecticut Siting Council today, January 7, 2021.

In light of the present circumstances with Covid-19, The Council has advised that electronic notification of this filing is acceptable. If you could kindly confirm receipt. Thank you.

Best,
Anne Marie Zsamba

ANNE MARIE ZSAMBA
Site Acquisition Specialist
T: (201) 236-9224
M: (518) 350-3639
F: (724) 416-6112

CROWN CASTLE

3 Corporate Park Drive, Suite 101
Clifton Park, NY 12065
CrownCastle.com

From:	Zsamba, Anne Marie
To:	"j.roberson@brooklynct.org"
Subject:	Notice of Exempt Modification - T-Mobile - 116 Grant Hill Rd, Brooklyn - 876390
Date:	Thursday, January 7, 2021 2:00:00 PM
Attachments:	EM-T-MOBILE-116 GRANT HILL RD BROOKLYN-876390-CT11511A-NOTICE.pdf

Dear Town Planner Roberson:

Attached please find T-Mobile's exempt modification application that is being submitted to the Connecticut Siting Council today, January 7, 2021.

In light of the present circumstances with Covid-19, The Council has advised that electronic notification of this filing is acceptable. If you could kindly confirm receipt. Thank you.

Best,
Anne Marie Zsamba

ANNE MARIE ZSAMBA
Site Acquisition Specialist
T: (201) 236-9224
M: (518) 350-3639
F: (724) 416-6112

CROWN CASTLE

3 Corporate Park Drive, Suite 101
Clifton Park, NY 12065
CrownCastle.com

Exhibit A

Original Facility Approval

04/17/2000 18:49
FAX 8606599247
PINNACLE SITE DE
尼 02

TOWN OF BROOKLYN CONNECTICUT

LOCATION OF JOg (NO. \& STREET). 116 vraint HUO		CARD NO.	MAP	BLOCK	LOT
QWNER Rdaent Bernin)	TEL.	ADDRESS			
APPLICANT Sprinct Spectrum	TEL.	ADDRESS		$\begin{array}{r} \mathrm{ZIP}) \\ 0 \end{array}$	
BUILDER	TEL	ADDRESS	EET, T	$Z\|P\|$	
LICENSE ${ }_{\text {W }}$	NAME \& TEL WF PERSON RESPONSIELE				

All Permits Must Be Posted And Visible From The Street
STORIES_____ SIZE NO. OF FAMILIES \qquad
HEIGHT \qquad DEPTH \qquad FRONT \qquad
TOTAL FLOOR AREA (NEW) \qquad SQ.FT.

TYPE OF WORK BEING DONEORIG. CONSTRUCTION

- REPAIR

ALTERATIONDEMOLITION
ADDITION \qquad
CONSTRUCTION VALUE
ESTIMATED \qquad
ACTUAL \qquad

	TYPE OF HEAT	
\square	ELECTRIC	\square SOLAR
\square	GAS	\square OTHER
\square	OIL	

DESCRIPTION OF WORK / REMARKS:
150'm telecommunicatina
tower

STATEOFCONNECTICUT
 CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@po.state.ct.us Web Site: www.state.ct.us/csc/index.htm
Stephen J. Humes
LeBoeuf, Lamb, Greene \& MacRae
Goodwin Square
225 Asylum Street
Hartford, CT 06103
RE: TS-T-MOBILE-019-030617- Omnipoint Communications, Inc. request for an order to approve tower sharing at an existing telecommunications facility located at 116 Grant Hill Road, Brooklyn, Connecticut.

Dear Attorney Humes:
At a public meeting held July 8, 2003, the Connecticut Siting Council (Council) ruled that the shared use of this existing tower site is technically, legally, environmentally, and economically feasible and meets public safety concerns, and therefore, in compliance with General Statutes § 16-50aa, the Council has ordered the shared use of this facility to avoid the unnecessary proliferation of tower structures. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Any additional change to this facility may require an explicit request to this agency pursuant to General Statutes § 16-50aa or notice pursuant to Regulations of Connecticut State Agencies Section 16-50j-73, as applicable. Such request or notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

This decision applies only to this request for tower sharing and is not applicable to any other request or construction.

The proposed shared use is to be implemented as specified in your letter dated June 17, 2003.
Thank you for your attention and cooperation.
Very truly yours,

Chairman
PBK/laf
c: Honorable Maurice F. Bowen, First Selectman, Town of Brooklyn Chester Dobrowski, Zoning Enforcement Officer, Town of Brooklyn Thomas J. Regan, Esq., Brown Rudnick Berlack Israels, LLP
Christopher B. Fisher, Esq., Cuddy \& Feder LLP

Exhibit B

Property Card

116 GRANT HILL RD

Location	116 GRANT HILL RD	Mblu	$4 / / 5 / \mathrm{CELL} /$
Acct\#	00024910	Owner	SPRINT SPECTRUM
Assessment	$\$ 845,500$	Appraisal	$\$ 1,207,800$
PID	3735	Building Count	1

Current Value

Appraisal			
Valuation Year	Improvements	Land	Total
2020	\$1,207,800	\$0	\$1,207,800
Assessment			
Valuation Year	Improvements	Land	Total
2020	\$845,5	\$0	\$845,500

Owner of Record

Owner	SPRINT SPECTRUM
Co-Owner	C/O GLOBAL SIGNAL AC1 II LLC
Care Of	
Address	PMB331
	4017 WASHINGTON RD
	MCMURRAY, PA 15317

Sale Price	$\$ 0$
Certificate	
Book	0000
Page	0000
Sale Date	$10 / 01 / 2009$
Qualified	U

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Sale Date	Book	Page
SPRINT SPECTRUM	\$0		10/01/2009	0000	0000

Building Information

Building 1 : Section 1

Year Built:
Living Area: 0
Replacement Cost: \$0
Building Percent Good:
Replacement Cost
Less Depreciation: \$0

Building Attributes	
Field	Description
Style:	Outbuildings
Model	
Grade:	
Stories:	
Occupancy	
Exterior Wall 1	
Exterior Wall 2	
Roof Structure:	
Roof Cover	
Interior Wall 1	
Interior Wall 2	
Interior Flr 1	
Interior Flr 2	
Heat Fuel	
Heat Type:	
AC Type:	
Total Bedrooms:	
Total Bthrms:	
Total Half Baths:	
Total Xtra Fixtrs:	
Total Rooms:	
Bath Style:	
Kitchen Style:	
Num Kitchens	
Cndtn	
Num Park	
Fireplaces	
Fndtn Cndtn	
Basement	

Building Photo

(http://images.vgsi.com/photos/BrooklynCTPhotos//default.jpg)
Building Layout

Building Layout (ParcelSketch.ashx?pid=3735\&bid=3668)

Building Sub-Areas (sq ft)	Legend
No Data for Building Sub-Areas	

Extra Features

Extra Features	Legend
	No Data for Extra Features

Land

Land Use

Land Line Valuation

Use Code

Zone
Neighborhood
Alt Land Appr No
Category

Outbuildings

Outbuildings						Legend
Code	Description	Sub Code	Sub Description	Size	Value	Bldg \#
SHD5	Cell Shed			360.00 SF	\$54,000	1
FN3	FENCE-6' CHAIN			280.00 L.F.	\$1,300	1
TWR	CELL TOWER			1.00 UNITS	\$90,000	1
ARY	CELL ARRAY			5.00 UNIT	\$1,062,500	1

Valuation History

Appraisal					
Valuation Year	Improvements	Land			
2019	$\$ 1,055,300$	Total			
2018	$\$ 1,055,300$	$\$ 0$	$\$ 1,055,300$		
2017		$\$ 1,055,300$	$\$ 0$	$\$ 1,055,300$	

Assessment					
	Valuation Year	Improvements	Land		
2019		$\$ 738,700$	Total		
2018		$\$ 738,700$	$\$ 0$	$\$ 738,700$	
2017		$\$ 738,700$	$\$ 0$	$\$ 738,700$	

(c) 2021 Vision Government Solutions, Inc. All rights reserved.

116 GRANT HILL RD

Location	116 GRANT HILL RD	Mblu	4/ / 5/ /
Acct\#	00024900	Owner	BERNIER JEAN PAUL \& DAWNA G
Assessment	\$360,930	Appraisal	\$686,300
PID	255	Building Count	1

Current Value

Appraisal			
Valuation Year	Improvements	Land	Total
2020	\$191,800	\$494,500	\$686,300
Assessment			
Valuation Year	Improvements	Land	Total
2020	\$134,400	\$226,530	\$360,930

Owner of Record

Owner

Co-Owner

 Care OfAddress 116 GRANT HILL RD
BROOKLYN, CT 06234
Sale Price $\$ 0$

Certificate
Book 0462
Page 0288
Sale Date 09/17/2009
Instrument 29
Qualified U

Ownership History

Ownership History						
Owner	Sale Price	Certificate	Instrument	Sale Date	Book	Page
BERNIER JEAN PAUL \& DAWNA G	\$0		29	09/17/2009	0462	0288
BERNIER ROBERT E	\$0		29	09/17/2009	0462	0287
BERNIER ROBERT E+AGNES P	\$500			06/19/1968	0045	0291
BERNIER ROBERT E \& AGNES P	\$0			11/28/1955	0032	0549

Building Information

Building 1 : Section 1

Year Built:	1956
Living Area:	1,595
Replacement Cost:	$\$ 265,281$
Building Percent Good:	70
Replacement Cost Less Depreciation:	$\$ 185,700$

Building Attributes

Building Photo

(http://images.vgsi.com/photos/BrooklynCTPhotos//^00\00\02\13.JPG)

Building Layout

(ParcelSketch.ashx?pid=255\&bid=255)

Building Sub-Areas (sq ft)		Legend Code	
Description	Gross Area	Living Area	
BAS	First Floor	1,595	1,595
EAU	Attic, Expansion, Unfinished	1,373	0
FBM	Basement, Finished	1,583	0
FGR	Garage	648	0
FOP	Porch, Open	70	0
UAT	Attic, Unfinished	648	0
		5,917	1,595

Extra Features

Extra Features Legend				
Code	Description	Size	Value	Bldg \#
FPL1	FIREPLACE 1 ST	1.00 UNITS	\$1,500	1

FPO	EXTRA FPL OPEN	2.00 UNITS	$\$ 1,100$	1
KIT1	EXTRA KITCHEN	1.00 UNITS	$\$ 3,500$	

Land

Land Use		Land Line Valuation	
Use Code	1070		
Description	SFR w/INLAW	Size (Acres)	105.00
Zone	RA	Frontage	
Neighborhood	0050	Depth	
Alt Land Appr No Assessed Value $\$ 226,530$ Category Appraised Value $\$ 494,500$			

Outbuildings

	Outbuildings	Legend
No Data for Outbuildings		

Valuation History

Appraisal			
Valuation Year	Improvements	Land	Total
2019	\$147,300	\$447,400	\$594,700
2018	\$147,300	\$447,400	\$594,700
2017	\$147,300	\$447,400	\$594,700

Assessment			
Valuation Year	Improvements	Land	Total
2019	\$103,200	\$232,530	\$335,730
2018	\$103,200	\$232,530	\$335,730
2017	\$103,200	\$232,530	\$335,730

(c) 2021 Vision Government Solutions, Inc. All rights reserved.

Exhibit C

Construction Drawings

Exhibit D

Structural Analysis Report

Date: July 23, 2019
Heather Simeone
Crown Castle
3530 Toringdon Way, Suite 300
Charlotte, NC 28277

告
Tower Engineering Professionals 326 Tryon Road
Raleigh, NC 27603
(919) 661-6351

Subject: Structural Analysis Report
Carrier Designation:

Crown Castle Designation:
T-Mobile Co-Locate Carrier Site Number: Carrier Site Name:

Crown Castle BU Number: Crown Castle Site Name: Crown Castle JDE Job Number: Hampton / Bernier 576719 Crown Castle Work Order Number: 1750704 Crown Castle Order Number: 494419 Rev. 0

TEP Project Number:
25693.284017

116 Grant Hill Rd., Brooklyn, Windham County, CT 06234
Latitude $41^{\circ} 47^{\prime} 29.64{ }^{\prime \prime}$, Longitude - $72^{\circ} 0^{\prime} 54.04^{\prime \prime}$
150 Foot - Monopole Tower
Dear Heather Simeone,
Tower Engineering Professionals is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration
Sufficient Capacity - 94.9\%
This analysis utilizes an ultimate 3-second gust wind speed of 130 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Matthew Fry, E.I.T. / CJB
Respectfully submitted by:

William H. Martin, P.E., S.E.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided
3.1) Analysis Method
3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity
4.1) Recommendations
5) APPENDIX A
tnxTower Output

6) APPENDIX B

Base Level Drawing
7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 150 -ft monopole tower designed by Engineered Endeavors, Inc. The tower has been modified per reinforcement drawings prepared by Tower Engineering Professionals in May of 2008. All information provided to TEP was assumed to be accurate and complete.

2) ANALYSIS CRITERIA

TIA-222 Revision:
Risk Category:
Wind Speed:
Exposure Category:
Topographic Factor:
Ice Thickness:
Wind Speed with Ice:
Service Wind Speed:

TIA-222-H
II
130 mph
B
1.512
1.5 in

50 mph
60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	$\left\lvert\, \begin{gathered} \text { Number } \\ \text { of } \\ \text { Antennas } \end{gathered}\right.$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
137.0	138.0	3	Ericsson	KRY 112 489/2	7	1-5/8
		3	Ericsson	RADIO 4449 B12/B71		
		3	RFS Celwave	APX16DWV-16DWV-S-E-A20 w/ Mount Pipe		
		3	RFS Celwave	APXVAARR24 43-U-NA20 w/ Mount Pipe		
	137.0	1	Tower Mounts	Platform Mount [LP 1201-1]		
		2	Site Pro 1	HRK-14		
		1	Site Pro 1	PRK-SFS-L		

Table 2-Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	$\left\|\begin{array}{c} \text { Number } \\ \text { of } \\ \text { Antennas } \end{array}\right\|$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	
149.0	151.0	3	Alcatel Lucent	PCS 1900MHz 4x45W-65MHz	4	1-1/4
		6	Alcatel Lucent	RRH2X50-800		
		3	Alcatel Lucent	TD-RRH8x20-25		
		3	Commscope	NNVV-65B-R4 w/ Mount Pipe		
		3	RFS Celwave	APXVTM14-ALU-I20 w/ Mount Pipe		
	149.0	1	Site Pro1	HRK12-3HD		
		1	Site Pro1	CAGE TOP		
129.0	129.0	1	Tower Mounts	Side Arm Mount [SO 102-3]		
	127.0	3	Ericsson	TME-RRUS-11		

Mounting Level (ft)	Center Line Elevation (ft)	$\left\lvert\, \begin{gathered} \text { Number } \\ \text { of } \\ \text { Antennas } \end{gathered}\right.$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	
127.0	129.0	3	KMW Communications	AM-X-CD-17-65-00T-RET w/ Mount Pipe	$\begin{gathered} 3 \\ 12 \end{gathered}$	$\begin{gathered} 3 / 8 \\ 1-1 / 4 \end{gathered}$
		6	Powerwave Technologies	7770.00 w/ Mount Pipe		
	127.0	6	Powerwave Technologies	LGP 17201		
		6	Powerwave Technologies	LGP13519		
		1	Raycap	DC6-48-60-18-8F		
		1	Tower Mounts	Side Arm Mount [SO 102-3]		
		1	Tower Mounts	T-Arm Mount [TA 601-3]		
117.0	119.0	3	Antel	$\begin{gathered} \text { BXA-171085-12CF-EDIN-2 } \\ \text { w/ Mount Pipe } \end{gathered}$	18	1-5/8
		3	Antel	$\begin{aligned} & \text { BXA-70063-6CF-2 } \\ & \text { w/ Mount Pipe } \end{aligned}$		
		6	Antel	LPA-80080/4CF w/ Mount Pipe		
	117.0	1	Tower Mounts	Platform Mount [LP 303-1]		
96.0	100.0	1	Telewave	ANT450F6	1	7/8
	96.0	1	Tower Mounts	Side Arm Mount [SO 701-1]		
90.0	100.0	1	Dbspectra	DS9A09F36D-N	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{gathered} 1-1 / 4 \\ 1 / 2 \end{gathered}$
	90.0	1	Bird Technologies Group	TTA-429-94C-08179		
		1	Tower Mounts	Pipe Mount [PM 601-1]		
		1	Tower Mounts	Side Arm Mount [SO 307-1]		
81.0	85.0	1	Telewave	ANT450F6	1	7/8
	81.0	1	Tower Mounts	Side Arm Mount [SO 701-1]		
76.0	77.0	1	Lucent	KS24019-L112A	1	1/2
	76.0	1	Tower Mounts	Side Arm Mount [SO 701-1]		

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
Geotechnical Report	Criscuolo Shepard Associates, PC	1615347	CCISites
Tower Foundation Drawings	Engineered Endeavors, Inc.	1615410	CCISites
Tower Manufacturer Drawings	Engineered Endeavors, Inc.	1533003	CCISites
Tower Reinforcement Drawings	Tower Engineering Professionals	2255030	CCISites
Post Modification Inspection	Tower Engineering Professionals	2383064	CCISites

3.1) Analysis Method

tnxTower (version 8.0.5.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

1) The tower and foundation were built and maintained in accordance with the manufacturer's specification.
2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2, and the referenced drawings.
3) All tower components are in sufficient condition to carry their full design capacity.
4) Serviceability with respect to antenna twist, tilt, roll, or lateral translation, is not checked and is left to the carrier or tower owner to ensure conformance.
5) All antenna mounts and mounting hardware are structurally sufficient to carry the full design capacity requirements of appurtenance wind area and weight as provided by the original manufacturer specifications. It is the carrier's responsibility to ensure compliance to the structural limitations of the existing and/or proposed antenna mounts. TEP did not perform a site visit to verify the size, condition or capacity of the antenna mounts and did not analyze antennas supporting mounts as part of this structural analysis report.
6) When applicable, the effective projected area (EPA) of appurtenances was determined by computation fluid dynamics (CFD) testing performed by Crown Castle. TEP assumes the means and methods used to determine the EPA's yields results that follow the intent of TIA-222-H and are accurate and complete.
7) TEP assumes that the anchor bolts are effective pier reinforcement and are properly terminated into the mat as mechanically anchored deformed reinforcement per ACI 318 Section 25.4.4.

This analysis may be affected if any assumptions are not valid or have been made in error. Tower Engineering Professionals should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	$\phi \mathbf{P a l l o w ~}^{\text {(K) }}$	$\left\|\begin{array}{c} \% \\ \text { Capacity } \end{array}\right\|$	Pass / Fail
L1	150-123.29	Pole	TP22.9x17×0.1875	1	-10.14	802.65	65.9	Pass
L2	123.29-88.88	Pole	TP30x21.7696x0.3125	2	-16.95	1752.41	85.8	Pass
L3	88.88-43.8	Pole	TP39.2×28.4504×0.375	3	-28.27	2752.19	94.9	Pass
L4	43.8-0	Pole	TP48x37.2689x0.4375	4	-45.22	4056.91	89.9	Pass
							Summary	
						Pole (L3)	94.9	Pass
						RATING =	94.9	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	\% Capacity	Pass / Fail
1,2	Anchor Rods	-	89.8	Pass
1,2	Base Plate	-	80.4	Pass
1,2	Base Foundation Soil Interaction	-	83.8	Pass
1,2	Base Foundation Structural	-	55.4	Pass

Structure Rating (max from all components) $=$	94.9%

[^0]
4.1) Recommendations

1) If the load differs from that described in Tables 1 and 2 of this report, the referenced drawings, or the provisions of this analysis are found to be invalid, another structural analysis should be performed.
2) The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

 TNXTOWER OUTPUT

ALL REACTIONS
ARE FACTORED

TORQUE 1 kip-ft 50 mph WIND - 1.5000 in ICE

TORQUE 2 kip-ft REACTIONS - 130 mph WIND MOMENT
1090 kip-ft

Tower Engineering Professionals	Tower Engineering Professionals, Inc. 326 Tryon Road Raleigh, NC 27603 Phone: (619) 661-6351 FAX: (619) 661-6350	Pob: Hampton / Bernier (BU 876390)Project: TEP No. 25693.284017		
		Client: Crown Castle	Drawn by: CJB	App'd:
		Code: TIA-222-H	Date: 07/22/19	Scale: NTS
		Path: C:USsersicbowen\|Desktopl256931876390 1750704 LC7.eri		No. E-

TOWER DESIGN NOTES

1. Tower is located in Windham County, Connecticut.
2. Tower designed for Exposure B to the TIA-222-H Standard.
3. Tower designed for a 130 mph basic wind in accordance with the TIA-222-H Standard.
4. Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.
5. Deflections are based upon a 60 mph wind.
6. Tower Risk Category II.
7. Topographic Category 5 with Crest Height of 110.00 ft
8. TOWER RATING: 94.9%
0.0 ft Weight (K) $\quad 20.8$
MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

Tower Engineering Professionals, Inc.
326 Tryon Road
Raleigh, NC 27603
FAX: (619) 661-6350

tnxTTOWer	Job	Page	
	Hampton / Bernier (BU 876390)	Project	of 19
	Client	TEP No. 25693.284017	Date

Tower Input Data

The tower is a monopole.
This tower is designed using the TIA-222-H standard.
The following design criteria apply:
Tower is located in Windham County, Connecticut.
Tower base elevation above sea level: 715.00 ft .
Basic wind speed of 130 mph .
Risk Category II.
Exposure Category B.
Crest Height: 110.00 ft .
Rigorous Topographic Factor Procedure for wind speed-up calculations is used.
Topographic Feature: Continuous Ridge.
Slope Distance L: 920.00 ft .
Distance from Crest x: 0.00 ft .
Horizontal Distance Downwind: No.
Nominal ice thickness of 1.5000 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 50 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1.05 .
Tower analysis based on target reliabilities in accordance with Annex S.
Load Modification Factors used: $\mathrm{K}_{\text {es }}\left(\mathrm{F}_{\mathrm{w}}\right)=0.95, \mathrm{~K}_{\text {es }}\left(\mathrm{t}_{\mathrm{i}}\right)=0.85$.
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs

Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
Use Code Stress Ratios
$\sqrt{ }$ Use Code Safety Factors - Guys
Escalate Ice
Always Use Max Kz
Use Special Wind Profile
Include Bolts In Member Capacity
Leg Bolts Are At Top Of Section
Secondary Horizontal Braces Leg
Use Diamond Inner Bracing (4 Sided)
SR Members Have Cut Ends
SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned
$\sqrt{ }$ Assume Rigid Index Plate
$\sqrt{ }$ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
$\sqrt{ }$ Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination
$\sqrt{ }$ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules
Calculate Redundant Bracing Forces
Ignore Redundant Members in FEA
SR Leg Bolts Resist Compression
All Leg Panels Have Same Allowable
Offset Girt At Foundation
$\sqrt{ }$ Consider Feed Line Torque
Include Angle Block Shear Check
Use TIA-222-H Bracing Resist. Exemption
Use TIA-222-H Tension Splice Exemption Poles
$\sqrt{ }$ Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets
Pole Without Linear Attachments
Pole With Shroud Or No Appurtenances
Outside and Inside Corner Radii Are
Known

tnxTOWer	Job	Page	
	Project	Client	TEP No. 25693.284017

Tapered Pole Section Geometry

Section	Elevation $f t$	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	150.00-123.29	26.71	3.42	18	17.0000	22.9000	0.1875	0.7500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L2	123.29-88.88	37.83	4.25	18	21.7696	30.0000	0.3125	1.2500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L3	88.88-43.80	49.33	5.42	18	28.4504	39.2000	0.3750	1.5000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L4	43.80-0.00	49.22		18	37.2689	48.0000	0.4375	1.7500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$

Tapered Pole Properties

Section	Tip Dia. in	Area i^{2}	$\begin{gathered} I \\ i n^{4} \end{gathered}$	$\begin{gathered} r \\ \text { in } \end{gathered}$	$\begin{aligned} & \text { C } \\ & \text { in } \end{aligned}$	$\begin{gathered} \mathrm{I} / C \\ \mathrm{in}^{3} \end{gathered}$	$\begin{gathered} J \\ i n^{4} \end{gathered}$	$\begin{gathered} I t / Q \\ i n^{2} \end{gathered}$	$\begin{aligned} & w \\ & \text { in } \end{aligned}$	w / t
L1	17.2333	10.0055	357.3078	5.9684	8.6360	41.3742	715.0858	5.0037	2.6620	14.197
	23.2243	13.5168	880.9281	8.0629	11.6332	75.7253	1763.0154	6.7597	3.7004	19.735
L2	22.8127	21.2827	1237.9543	7.6173	11.0589	111.9416	2477.5376	10.6434	3.2814	10.501
	30.4146	29.4463	3278.8026	10.5391	15.2400	215.1445	6561.9196	14.7259	4.7300	15.136
L3	29.7718	33.4167	3327.7548	9.9668	14.4528	230.2502	6659.8883	16.7115	4.3473	11.593
	39.7469	46.2115	8800.5544	13.7829	19.9136	441.9369	17612.6889	23.1101	6.2392	16.638
L4	38.9763	51.1450	8765.5170	13.0752	18.9326	462.9852	17542.5679	25.5774	5.7893	13.233
	48.6730	66.0465	18876.2818	16.8847	24.3840	774.1257	37777.4015	33.0295	7.6780	17.55

Tower Elevation ft	Gusset Area (perface) $f t^{2}$	Gusset Thickness in	Gusset Grade	Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
L1				1	1	1			
150.00-123.29									
L2				1	1	1			
123.29-88.88									
L3 88.88-43.80				1	1	1			
L4 43.80-0.00				1	1	1			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From Torque Calculation	Component Type	Placement ft	Total Number	Number Per Row	Start/End Position	Width or Diameter in	Perimeter in	Weight plf
$\begin{gathered} * * * 137 * * * \\ \text { LDF7-50A(1-5/8) } \end{gathered}$	A	No	Surface Ar (CaAa)	$\begin{gathered} 137.00- \\ 0.00 \end{gathered}$	3	3	$\begin{aligned} & -0.250 \\ & -0.250 \end{aligned}$	1.9800		0.82
$\begin{gathered} * * * 117 * * * \\ \text { LDF7-50A(1-5/8) } \\ * * * \end{gathered}$	B	No	Surface Ar (CaAa)	$\begin{gathered} 117.00- \\ 0.00 \end{gathered}$	18	9	$\begin{aligned} & 0.250 \\ & 0.250 \end{aligned}$	1.9800		0.82
Safety Line 3/8	C	No	Surface Ar	150.00 -	1	1	0.000	0.3750		0.22

tnxTower Tower Engineering Professionals, Inc. 326 Tryon Road Raleigh, NC 27603 Phone: (619) 661-6351 FAX: (619) 661-6350	Job	Hampton / Bernier (BU 876390)	$\begin{array}{ll} \hline \text { Page } & \\ & \end{array}$
	Project	TEP No. 25693.284017	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:40:53 07/22/19 } \end{array}$
	Client	Crown Castle	Designed by CJB

Description	Sector	Exclude From Torque Calculation	Component Type	Placement $f t$	Total Number	Number Per Row	Start/End Position	Width or Diameter in	Perimeter in	Weight plf
			(CaAa)	0.00			0.000			

Feed Line/Linear Appurtenances - Entered As Area

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Exclude From Torque Calculation	Component Type	Placement $f t$	Total Number		$\begin{gathered} C_{A} A_{A} \\ \\ f t^{2} / f t \end{gathered}$	Weight plf
149									
$\begin{gathered} \text { HB114-1-0813U4-M } \\ 5 \mathrm{~J}(1-1 / 4) \end{gathered}$	C	No	No	Inside Pole	149.00-0.00	3	No Ice	0.00	1.20
							1/2" Ice	0.00	1.20
							$1{ }^{1 \prime}$ Ice	0.00	1.20
							2" Ice	0.00	1.20
$\begin{gathered} \text { HB114-13U3M12-X } \\ \text { XXF(1-1/4) } \end{gathered}$	C	No	No	Inside Pole	149.00-0.00	1	No Ice	0.00	0.99
							1/2" Ice	0.00	0.99
							$1{ }^{\prime \prime}$ Ice	0.00	0.99
							2" Ice	0.00	0.99
$\begin{gathered} \text { HCS 6X12 } \\ \text { 4AWG(1-5/8") } \end{gathered}$	A	No	No	Inside Pole	137.00-0.00	1	No Ice	0.00	2.40
							1/2" Ice	0.00	2.40
							$1{ }^{\prime \prime}$ Ice	0.00	2.40
							2" Ice	0.00	2.40
LDF7-50A(1-5/8)	A	No	No	Inside Pole	137.00-0.00	3	No Ice	0.00	0.82
							1/2" Ice	0.00	0.82
							$1{ }^{\prime \prime}$ Ice	0.00	0.82
							2" Ice	0.00	0.82
127									
LDF6-50A(1-1/4)	C	No	No	Inside Pole	127.00-0.00	12	No Ice	0.00	0.60
							1/2" Ice	0.00	0.60
							$1{ }^{1 /}$ Ice	0.00	0.60
							2" Ice	0.00	0.60
$\begin{aligned} & \text { FB-L98B-002-75000 } \\ & (3 / 8) \end{aligned}$	C	No	No	Inside Pole	127.00-0.00	3	No Ice	0.00	0.06
							1/2" Ice	0.00	0.06
							$1{ }^{\prime \prime}$ Ice	0.00	0.06
							2" Ice	0.00	0.06
2" Flexible Conduit	C	No	No	Inside Pole	127.00-0.00	1	No Ice	0.00	0.34
							1/2" Ice	0.00	0.34
							$1{ }^{\prime \prime}$ Ice	0.00	0.34
							2" Ice	0.00	0.34
96									
HCC 78-50J(7/8")	B	No	No	$\begin{aligned} & \text { CaAa (Out } \\ & \text { Of Face) } \end{aligned}$	96.00-0.00	1	No Ice	0.00	0.53
							1/2" Ice	0.00	1.51
							$1{ }^{1 /}$ Ice	0.00	3.10
							2" Ice	0.00	8.10
90									
LDF4-50A(1/2)	B	No	No	CaAa (Out Of Face)	90.00-0.00	1	No Ice	0.00	0.15
							1/2" Ice	0.00	0.84
							1 " Ice	0.00	2.14
							2" Ice	0.00	6.56
LDF6-50A(1-1/4)	B	No	No	CaAa (Out Of Face)	90.00-0.00	2	No Ice	0.00	0.60
							1/2" Ice	0.00	1.85
							$1{ }^{1 /}$ Ice	0.00	3.72
							2" Ice	0.00	9.27
81									
HCC 78-50J(7/8")	B	No	No	CaAa (Out	81.00-0.00	1	No Ice	0.00	0.53
				Of Face)			1/2" Ice	0.00	1.51

Feed Line/Linear Appurtenances Section Areas

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Tower Section \& Tower Elevation ft \& Face \& A_{R}

$f t^{2}$ \& A_{F}

$f t^{2}$ \& $C_{A} A_{A}$ In Face $f t^{2}$ \& $C_{A} A_{A}$
Out Face
ft 2 \& Weight
K

\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{150.00-123.29} \& A \& 0.000 \& 0.000 \& 8.144 \& 0.000 \& 0.10

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 1.002 \& 0.000 \& 0.15

\hline \multirow[t]{3}{*}{L2} \& \multirow[t]{3}{*}{123.29-88.88} \& A \& 0.000 \& 0.000 \& 20.440 \& 0.000 \& 0.25

\hline \& \& B \& 0.000 \& 0.000 \& 50.110 \& 0.000 \& 0.42

\hline \& \& C \& 0.000 \& 0.000 \& 1.290 \& 0.000 \& 0.43

\hline \multirow[t]{3}{*}{L3} \& \multirow[t]{3}{*}{88.88-43.80} \& A \& 0.000 \& 0.000 \& 26.778 \& 0.000 \& 0.33

\hline \& \& B \& 0.000 \& 0.000 \& 80.333 \& 0.000 \& 0.77

\hline \& \& C \& 0.000 \& 0.000 \& 1.691 \& 0.000 \& 0.56

\hline \multirow[t]{3}{*}{L4} \& \multirow[t]{3}{*}{43.80-0.00} \& A \& 0.000 \& 0.000 \& 26.017 \& 0.000 \& 0.33

\hline \& \& B \& 0.000 \& 0.000 \& 78.052 \& 0.000 \& 0.75

\hline \& \& C \& 0.000 \& 0.000 \& 1.643 \& 0.000 \& 0.55

\hline
\end{tabular}

Feed Line/Linear Appurtenances Section Areas - With Ice

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Tower Section \& \begin{tabular}{l}
Tower \\
Elevation \\
\(f t\)
\end{tabular} \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Ice
Thickness
in \& \(A_{R}\)

$f t^{2}$ \& A_{F}

$f t^{2}$ \& $C_{A} A_{A}$ In Face $f t^{2}$ \& $C_{A} A_{A}$
Out Face

ft 2 \& | Weight |
| :---: |
| K |

\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{150.00-123.29} \& A \& \multirow[t]{3}{*}{1.598} \& 0.000 \& 0.000 \& 15.658 \& 0.000 \& 0.27

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 9.539 \& 0.000 \& 0.26

\hline \multirow[t]{3}{*}{L2} \& \multirow[t]{3}{*}{123.29-88.88} \& A \& \multirow[t]{3}{*}{1.585} \& 0.000 \& 0.000 \& 39.298 \& 0.000 \& 0.68

\hline \& \& B \& \& 0.000 \& 0.000 \& 73.873 \& 0.000 \& 1.46

\hline \& \& C \& \& 0.000 \& 0.000 \& 12.289 \& 0.000 \& 0.56

\hline \multirow[t]{3}{*}{L3} \& \multirow[t]{3}{*}{88.88-43.80} \& A \& \multirow[t]{3}{*}{1.554} \& 0.000 \& 0.000 \& 51.337 \& 0.000 \& 0.90

\hline \& \& B \& \& 0.000 \& 0.000 \& 118.281 \& 0.000 \& 3.56

\hline \& \& C \& \& 0.000 \& 0.000 \& 15.983 \& 0.000 \& 0.74

\hline \multirow[t]{3}{*}{L4} \& \multirow[t]{3}{*}{43.80-0.00} \& A \& \multirow[t]{3}{*}{1.441} \& 0.000 \& 0.000 \& 49.537 \& 0.000 \& 0.86

\hline \& \& B \& \& 0.000 \& 0.000 \& 114.580 \& 0.000 \& 3.44

\hline \& \& C \& \& 0.000 \& 0.000 \& 15.255 \& 0.000 \& 0.71

\hline
\end{tabular}

tnxTower	Job	Hampton / Bernier (BU 876390)	$\begin{aligned} & \text { Page } \\ & \\ & 5 \text { of } 19 \end{aligned}$
Tower Engineering Professionals, Inc. 326 Tryon Road Raleigh, NC 27603 Phone: (619) 661-6351 FAX: (619) 661-6350	Project	TEP No. 25693.284017	Date 10:40:53 07/22/19
	Client	Crown Castle	Designed by CJB

Section	Elevation	$C P_{X}$	$C P_{Z}$	$C P_{X}$ Ice	$C P_{Z}$ Ice
			in	in	in
Lt	in	in			
	$150.00-123.29$	-2.2645	0.2423	-1.8929	1.0032
L2	$123.29-88.88$	3.3821	0.1197	2.1845	0.6095
L3	$88.88-43.80$	4.6824	0.1306	3.2102	0.6681
L4	$43.80-0.00$	5.3351	0.1524	3.5938	0.7547

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No Ice	K_{a} Ice
L1	9	LDF7-50A(1-5/8)	$123.29-137.00$	1.0000	1.0000
L1	28	Safety Line 3/8	$123.29-$	1.0000	1.0000
L1			150.00		
	15	LDF7-50A(1-5/8)	$123.29-$	1.0000	1.0000
L2			117.00		
L2	9	LDF7-50A(1-5/8)	$88.88-123.29$	1.0000	1.0000
L2	15	LDF7-50A(1-5/8)	$88.88-117.00$	1.0000	1.0000
L3	28	Safety Line 3/8	$88.88-123.29$	1.0000	1.0000
L3	9	LDF7-50A(1-5/8)	$43.80-88.88$	1.0000	1.0000
L3	15	LDF7-50A(1-5/8)	$43.80-88.88$	1.0000	1.0000

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

\hline \multicolumn{10}{|l|}{}

\hline \multirow[t]{4}{*}{NNVV-65B-R4 w/ Mount Pipe} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Centroid-Le g} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{149.00} \& No Ice \& 12.51 \& 7.41 \& 0.10

\hline \& \& \& -6.00 \& \& \& 1/2" Ice \& 13.11 \& 8.60 \& 0.19

\hline \& \& \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 13.67 \& 9.50 \& 0.29

\hline \& \& \& \& \& \& 2" Ice \& 14.82 \& 11.33 \& 0.52

\hline \multirow[t]{4}{*}{NNVV-65B-R4 w/ Mount Pipe} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Centroid-Le g} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{149.00} \& No Ice \& 12.51 \& 7.41 \& 0.10

\hline \& \& \& -6.00 \& \& \& 1/2" Ice \& 13.11 \& 8.60 \& 0.19

\hline \& \& \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 13.67 \& 9.50 \& 0.29

\hline \& \& \& \& \& \& 2" Ice \& 14.82 \& 11.33 \& 0.52

\hline \multirow[t]{4}{*}{NNVV-65B-R4 w/ Mount Pipe} \& \multirow[t]{4}{*}{C} \& From \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{149.00} \& No Ice \& 12.51 \& 7.41 \& 0.10

\hline \& \& Centroid-Le \& -6.00 \& \& \& 1/2" Ice \& 13.11 \& 8.60 \& 0.19

\hline \& \& g \& 2.00 \& \& \& 1 " Ice \& 13.67 \& 9.50 \& 0.29

\hline \& \& \& \& \& \& 2 " Ice \& 14.82 \& 11.33 \& 0.52

\hline
\end{tabular}

tnxTower Tower Engineering Professionals, Inc. 326 Tryon Road Raleigh, NC 27603 Phone: (619) 661-6351 FAX: (619) 661-6350	Job	Hampton / Bernier (BU 876390)	$\begin{aligned} & \text { Page } 6 \text { of } 19 \end{aligned}$
	Project	TEP No. 25693.284017	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:40:53 07/22/19 } \end{array}$
	Client	Crown Castle	Designed by CJB

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& $C_{A} A_{A}$

Side

$f t t^{2}$ \& Weight

\hline \multirow[t]{4}{*}{APXVTM14-ALU-I20 w/ Mount Pipe} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From
Centroid-Le
g} \& 4.00 \& 0.0000 \& 149.00 \& No Ice \& 4.09 \& 2.86 \& 0.08

\hline \& \& \& 6.00 \& \& \& 1/2" Ice \& 4.48 \& 3.23 \& 0.13

\hline \& \& \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 4.88 \& 3.61 \& 0.19

\hline \& \& \& \& \& \& 2" Ice \& 5.71 \& 4.40 \& 0.33

\hline \multirow[t]{4}{*}{APXVTM14-ALU-I20 w/ Mount Pipe} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Centroid-Le g} \& 4.00 \& 0.0000 \& 149.00 \& No Ice \& 4.09 \& 2.86 \& 0.08

\hline \& \& \& 6.00 \& \& \& 1/2" Ice \& 4.48 \& 3.23 \& 0.13

\hline \& \& \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 4.88 \& 3.61 \& 0.19

\hline \& \& \& \& \& \& 2" Ice \& 5.71 \& 4.40 \& 0.33

\hline \multirow[t]{4}{*}{APXVTM14-ALU-I20 w/ Mount Pipe} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Le } \\
& \mathrm{g}
\end{aligned}
$$} \& 4.00 \& 0.0000 \& 149.00 \& No Ice \& 4.09 \& 2.86 \& 0.08

\hline \& \& \& 6.00 \& \& \& 1/2" Ice \& 4.48 \& 3.23 \& 0.13

\hline \& \& \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 4.88 \& 3.61 \& 0.19

\hline \& \& \& \& \& \& 2" Ice \& 5.71 \& 4.40 \& 0.33

\hline \multirow[t]{4}{*}{(2) RRH2X50-800} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Centroid-Le g} \& 4.00 \& 0.0000 \& 149.00 \& No Ice \& 2.13 \& 1.77 \& 0.05

\hline \& \& \& -2.00 \& \& \& 1/2" Ice \& 2.32 \& 1.95 \& 0.07

\hline \& \& \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.51 \& 2.13 \& 0.10

\hline \& \& \& \& \& \& 2" Ice \& 2.92 \& 2.51 \& 0.16

\hline \multirow[t]{4}{*}{(2) RRH2X50-800} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Le } \\
& \mathrm{g}
\end{aligned}
$$} \& 4.00 \& 0.0000 \& 149.00 \& No Ice \& 2.13 \& 1.77 \& 0.05

\hline \& \& \& -6.00 \& \& \& 1/2" Ice \& 2.32 \& 1.95 \& 0.07

\hline \& \& \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.51 \& 2.13 \& 0.10

\hline \& \& \& \& \& \& 2" Ice \& 2.92 \& 2.51 \& 0.16

\hline \multirow[t]{4}{*}{(2) RRH2X50-800} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Le } \\
& \mathrm{g}
\end{aligned}
$$} \& 4.00 \& 0.0000 \& 149.00 \& No Ice \& 2.13 \& 1.77 \& 0.05

\hline \& \& \& 6.00 \& \& \& 1/2" Ice \& 2.32 \& 1.95 \& 0.07

\hline \& \& \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.51 \& 2.13 \& 0.10

\hline \& \& \& \& \& \& 2" Ice \& 2.92 \& 2.51 \& 0.16

\hline PCS 1900MHz \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Centroid-Le g} \& 4.00 \& 0.0000 \& 149.00 \& No Ice \& 2.32 \& 2.24 \& 0.06

\hline \multirow[t]{3}{*}{$4 \mathrm{x} 45 \mathrm{~W}-65 \mathrm{MHz}$} \& \& \& -2.00 \& \& \& 1/2" Ice \& 2.53 \& 2.44 \& 0.08

\hline \& \& \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.74 \& 2.65 \& 0.11

\hline \& \& \& \& \& \& 2" Ice \& 3.19 \& 3.09 \& 0.17

\hline PCS 1900MHz \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Le } \\
& \mathrm{g}
\end{aligned}
$$} \& 4.00 \& 0.0000 \& 149.00 \& No Ice \& 2.32 \& 2.24 \& 0.06

\hline \multirow[t]{3}{*}{$4 \mathrm{x} 45 \mathrm{~W}-65 \mathrm{MHz}$} \& \& \& -6.00 \& \& \& 1/2" Ice \& 2.53 \& 2.44 \& 0.08

\hline \& \& \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.74 \& 2.65 \& 0.11

\hline \& \& \& \& \& \& 2" Ice \& 3.19 \& 3.09 \& 0.17

\hline PCS 1900MHz \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{$$
\begin{gathered}
\text { From } \\
\text { Centroid-Le } \\
\mathrm{g}
\end{gathered}
$$} \& 4.00 \& 0.0000 \& 149.00 \& No Ice \& 2.32 \& 2.24 \& 0.06

\hline \multirow[t]{3}{*}{$4 \mathrm{x} 45 \mathrm{~W}-65 \mathrm{MHz}$} \& \& \& 6.00 \& \& \& 1/2" Ice \& 2.53 \& 2.44 \& 0.08

\hline \& \& \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.74 \& 2.65 \& 0.11

\hline \& \& \& \& \& \& 2" Ice \& 3.19 \& 3.09 \& 0.17

\hline \multirow[t]{4}{*}{TD-RRH8x20-25} \& \multirow[t]{4}{*}{A} \& From \& 4.00 \& 0.0000 \& 149.00 \& No Ice \& 3.70 \& 1.29 \& 0.07

\hline \& \& Centroid-Le \& -2.00 \& \& \& 1/2" Ice \& 3.95 \& 1.46 \& 0.09

\hline \& \& g \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 4.20 \& 1.64 \& 0.12

\hline \& \& \& \& \& \& 2" Ice \& 4.72 \& 2.02 \& 0.18

\hline \multirow[t]{4}{*}{TD-RRH8x20-25} \& \multirow[t]{4}{*}{B} \& From \& 4.00 \& 0.0000 \& 149.00 \& No Ice \& 3.70 \& 1.29 \& 0.07

\hline \& \& Centroid-Le \& -6.00 \& \& \& 1/2" Ice \& 3.95 \& 1.46 \& 0.09

\hline \& \& g \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 4.20 \& 1.64 \& 0.12

\hline \& \& \& \& \& \& 2" Ice \& 4.72 \& 2.02 \& 0.18

\hline \multirow[t]{4}{*}{TD-RRH8x20-25} \& \multirow[t]{4}{*}{B} \& From \& 4.00 \& 0.0000 \& 149.00 \& No Ice \& 3.70 \& 1.29 \& 0.07

\hline \& \& Centroid-Le \& 6.00 \& \& \& 1/2" Ice \& 3.95 \& 1.46 \& 0.09

\hline \& \& g \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 4.20 \& 1.64 \& 0.12

\hline \& \& \& \& \& \& 2" Ice \& 4.72 \& 2.02 \& 0.18

\hline \multirow[t]{4}{*}{2.4" Dia. x 6-ft} \& \multirow[t]{4}{*}{A} \& From \& 4.00 \& 0.0000 \& 149.00 \& No Ice \& 1.43 \& 1.43 \& 0.02

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 1.92 \& 1.92 \& 0.03

\hline \& \& g \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.29 \& 2.29 \& 0.05

\hline \& \& \& \& \& \& 2" Ice \& 3.06 \& 3.06 \& 0.09

\hline \multirow[t]{4}{*}{2.4" Dia. x 6-ft} \& \multirow[t]{4}{*}{B} \& From \& 4.00 \& 0.0000 \& 149.00 \& No Ice \& 1.43 \& 1.43 \& 0.02

\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 1.92 \& 1.92 \& 0.03

\hline \& \& g \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.29 \& 2.29 \& 0.05

\hline \& \& \& \& \& \& 2" Ice \& 3.06 \& 3.06 \& 0.09

\hline 2.4" Dia. x 6-ft \& C \& From \& 4.00 \& 0.0000 \& 149.00 \& No Ice \& 1.43 \& 1.43 \& 0.02

\hline
\end{tabular}

tnxTower Tower Engineering Professionals, Inc. 326 Tryon Road Raleigh, NC 27603 Phone: (619) 661-6351 FAX: (619) 661-6350	Job	Hampton / Bernier (BU 876390)	$\text { Page } 7 \text { of } 19$
	Project	TEP No. 25693.284017	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:40:53 07/22/19 } \end{array}$
	Client	Crown Castle	Designed by CJB

tnxTower Tower Engineering Professionals, Inc. 326 Tryon Road Raleigh, NC 27603 Phone: (619) 661-6351 FAX: (619) 661-6350	Job	Hampton / Bernier (BU 876390)	$\begin{array}{ll} \hline \text { Page } & \\ 8 \text { of } 19 \end{array}$
	Project	TEP No. 25693.284017	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:40:53 07/22/19 } \end{array}$
	Client	Crown Castle	Designed by CJB

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	$\begin{aligned} & \text { Offset } \\ & \text { Type } \end{aligned}$	Offsets: Horz Lateral Vert $f t$ $f t$ $f t$	Azimuth Adjustment	Placement ft		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight K
RADIO 4449 B12/B71	B	Centroid-Le	6.00	0.0000	137.00	1/2" Ice	1.80	1.29	0.09
		g	1.00			$1{ }^{\prime \prime}$ Ice	1.97	1.44	0.11
						2" Ice	2.33	1.75	0.15
		From	4.00			No Ice	1.64	1.15	0.07
		Centroid-Le	6.00			1/2" Ice	1.80	1.29	0.09
		g	1.00			$1{ }^{\prime \prime}$ Ice	1.97	1.44	0.11
	C					2" Ice	2.33	1.75	0.15
RADIO 4449 B12/B71			4.00	0.0000	137.00	No Ice	1.64	1.15	0.07
		Centroid-Le	6.00			$1 / 2^{1} \text { Ice }$	1.80	1.29	0.09
		g	1.00			1 " Ice	1.97	1.44	0.11
	A			0.0000	137.00	$2^{\prime \prime}$ Ice	2.33	1.75	0.15
2.4" Dia. x 6-ft		From	4.00			No Ice	1.43	1.43	0.02
		Centroid-Le	0.00			1/2" Ice	1.92	1.92	0.03
	B	g	0.00			1" Ice	2.29	2.29	0.05
				0.0000	137.00	2" Ice	3.06	3.06	0.09
2.4" Dia. x 6-ft		From	4.00			No Ice	1.43	1.43	0.02
		Centroid-Le	0.00			1/2" Ice	1.92	1.92	0.03
		g	0.00			1" Ice	2.29	2.29	0.05
	C			0.0000	137.00	2" Ice	3.06	3.06	0.09
2.4" Dia. x 6-ft		From	4.00			No Ice	1.43	1.43	0.02
		Centroid-Le	0.00			1/2" Ice	1.92	1.92	0.03
		g	0.00			$1{ }^{1 \prime}$ Ice	2.29	2.29	0.05
	C	None		0.0000	137.00	$2^{\prime \prime}$ Ice	3.06	3.06	0.09
Platform Mount [LP 1201-1]						No Ice	23.10	23.10	2.10
						1/2" Ice	26.80	26.80	2.50
						1" Ice	30.50	30.50	2.90
	C			0.0000	137.00	2" Ice	37.90	37.90	3.70
Side Arm Mount [SO 102-3]		None				No Ice	3.00	3.00	0.08
						1/2" Ice	3.48	3.48	0.11
						$1^{\prime \prime}$ Ice	3.96	3.96	0.14
	C			0.0000	137.00	2" Ice	4.92	4.92	0.20
(2) Miscellaneous [NA 510-1]		None				No Ice	6.00	6.00	0.26
						$1 / 2^{\prime \prime} \text { Ice }$	8.50	8.50	0.34
						1" Ice	11.00	11.00	0.41
	A			0.0000	137.00	2" Ice	16.00	16.00	0.56
(2) L $3 \times 3 \times 1 / 4$ (5.5' long)		From	2.00			No Ice	2.61	2.61	0.03
		Centroid-Le	0.00			1/2" Ice	3.01	3.01	0.04
		g	0.00			1" Ice	3.41	3.41	0.06
						2" Ice	4.24	4.24	0.12
(2) L3x $3 \times 1 / 4$ (5.5' long)	B	From	2.00	0.0000	137.00	No Ice	2.61	2.61	0.03
		Centroid-Le	0.00			1/2" Ice	3.01	3.01	0.04
		g	0.00			1" Ice	3.41	3.41	0.06
						2 " Ice	4.24	4.24	0.12
(2) L $3 \times 3 \times 1 / 4$ (5.5' long)	C	From	2.00	0.0000	137.00	No Ice	2.61	2.61	0.03
		Centroid-Le	0.00			1/2" Ice	3.01	3.01	0.04
		g	0.00			1 " Ice	3.41	3.41	0.06
						2 " Ice	4.24	4.24	0.12
** $129 * *$									
TME-RRUS-11	A	From Leg	2.00	0.0000	129.00	No Ice	2.79	1.19	0.05
			-2.00			1/2" Ice	3.00	1.34	0.07
			-2.00			1" Ice	3.21	1.50	0.09
						2 " Ice	3.67	1.84	0.15
TME-RRUS-11	B	From Leg		-10.0000	129.00	No Ice	2.79	1.19	0.05
			-2.00			1/2" Ice	3.00	1.34	0.07
			-2.00			1" Ice	3.21	1.50	0.09
						2 " Ice	3.67	1.84	0.15
TME-RRUS-11	C	From Leg	2.00	-10.0000	129.00	No Ice	2.79	1.19	0.05

tnxTower	Job	Hampton / Bernier (BU 876390)	$\begin{aligned} & \text { Page } 9 \text { of } 19 \end{aligned}$
Tower Engineering Professionals, Inc.	Project	TEP No. 25693.284017	$\begin{aligned} & \hline \text { Date } \\ & \text { 10:40:53 07/22/19 } \end{aligned}$
Raleigh, NC 27603 Phone: (619) 661-6351 FAX: (619) 661-6350	Client	Crown Castle	Designed by CJB

Description	Face or Leg	Offset Type		Azimuth Adjustment 0	Placement $f t$		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight K
2.4" Dia. x 3-ft	A	From Leg	-2.00			1/2" Ice	3.00	1.34	0.07
			-2.00			$1{ }^{\prime \prime}$ Ice	3.21	1.50	0.09
						2" Ice	3.67	1.84	0.15
			2.00	0.0000	129.00	No Ice	0.58	0.58	0.01
			-2.00			1/2" Ice	0.77	0.77	0.02
			0.00			1 " Ice	0.97	0.97	0.02
2.4" Dia. x 3-ft	B	From Leg				$2{ }^{\prime \prime}$ Ice	1.39	1.39	0.05
			2.00	0.0000	129.00	No Ice	0.58	0.58	0.01
			-2.00			1/2" Ice	0.77	0.77	0.02
			0.00			$1{ }^{\prime \prime}$ Ice	0.97	0.97	0.02
2.4" Dia. x 3-ft	C	From Leg				2" Ice	1.39	1.39	0.05
			2.00	0.0000	129.00	No Ice	0.58	0.58	0.01
			-2.00			1/2" Ice	0.77	0.77	0.02
			0.00			$1{ }^{\prime \prime}$ Ice	0.97	0.97	0.02
	C	None				2" Ice	1.39	1.39	0.05
Side Arm Mount [SO 102-3]				0.0000	129.00	No Ice	3.00	3.00	0.08
						1/2" Ice	3.48	3.48	0.11
						$1{ }^{\prime \prime}$ Ice	3.96	3.96	0.14
	A	From Leg				2" Ice	4.92	4.92	0.20
2.4" Dia. x 4-ft			2.00	0.0000	129.00	No Ice	0.87	0.00	0.01
			0.00			1/2" Ice	1.12	0.00	0.02
			0.00			$1{ }^{\prime \prime}$ Ice	1.37	0.00	0.03
	B	From Leg				2" Ice	1.91	0.00	0.06
2.4" Dia. x 4-ft			2.00	0.0000	129.00	No Ice	0.87	0.00	0.01
			0.00			1/2" Ice	1.12	0.00	0.02
			0.00			1" Ice	1.37	0.00	0.03
	C	From Leg				2" Ice	1.91	0.00	0.06
2.4" Dia. x 4-ft			2.00	0.0000	129.00	No Ice	0.87	0.00	0.01
			0.00			1/2" Ice	1.12	0.00	0.02
			0.00			1" Ice	1.37	0.00	0.03
						2" Ice	1.91	0.00	0.06
(2) $7770.00 \mathrm{w} / \mathrm{Mount}$ Pipe	A	From Leg							
			3.00	0.0000	127.00	No Ice	5.75	4.25	0.06
			0.00			1/2" Ice	6.18	5.01	0.10
			2.00			1" Ice	6.61	5.71	0.16
	B	From Leg				2" Ice	7.49	7.16	0.29
(2) $7770.00 \mathrm{w} / \mathrm{Mount}$ Pipe			3.00	-10.0000	127.00	No Ice	5.75	4.25	0.06
			0.00			1/2" Ice	6.18	5.01	0.10
			2.00			$1{ }^{\prime \prime}$ Ice	6.61	5.71	0.16
	C	From Leg				2" Ice	7.49	7.16	0.29
(2) $7770.00 \mathrm{w} / \mathrm{Mount}$ Pipe			3.00	-10.0000	127.00	No Ice	5.75	4.25	0.06
			0.00			1/2" Ice	6.18	5.01	0.10
			2.00			1" Ice	6.61	5.71	0.16
	A	From Leg				$2^{\prime \prime}$ Ice	7.49	7.16	0.29
AM-X-CD-17-65-00T-RET w/ Mount Pipe				0.0000	127.00	No Ice	6.09	4.31	0.09
			0.00			1/2" Ice	6.66	4.86	0.17
			2.00			1 " Ice	7.24	5.42	0.26
	B	From Leg				2" Ice	8.43	6.57	0.48
$\begin{gathered} \text { AM-X-CD-17-65-00T-RET } \\ \text { w/ Mount Pipe } \end{gathered}$			3.00	-10.0000	127.00	No Ice	6.09	4.31	0.09
			0.00			1/2" Ice	6.66	4.86	0.17
			2.00			$1{ }^{\prime \prime}$ Ice	7.24	5.42	0.26
		From Leg				2" Ice	8.43	6.57	0.48
AM-X-CD-17-65-00T-RET w/ Mount Pipe	C		3.00	-10.0000	127.00	No Ice	6.09	4.31	0.09
			0.00			1/2" Ice	6.66	4.86	0.17
			2.00			1" Ice	7.24	5.42	0.26
						2" Ice	8.43	6.57	0.48
(2) LGP 17201	A	From Leg	3.00	0.0000	127.00	No Ice	1.67	0.47	0.03

tnxTower	Job	Hampton / Bernier (BU 876390)	$\begin{aligned} & \text { Page } 10 \text { of } 19 \end{aligned}$
Tower Engineering Professionals, Inc.	Project	TEP No. 25693.284017	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:40:53 07/22/19 } \end{array}$
Raleigh, NC 27603 Phone: (619) 661-6351 FAX: (619) 661-6350	Client	Crown Castle	Designed by CJB

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type		Azimuth Adjustment o	Placement $f t$		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight K
(2) LGP 17201	B	From Leg	-5.00			1/2" Ice	1.83	0.57	0.04
			0.00			$1{ }^{\prime \prime}$ Ice	2.00	0.68	0.06
						2" Ice	2.36	0.91	0.09
			3.00	-10.0000	127.00	No Ice	1.67	0.47	0.03
			-5.00			1/2" Ice	1.83	0.57	0.04
			0.00			1 " Ice	2.00	0.68	0.06
(2) LGP 17201	C	From Leg				$2{ }^{\prime \prime}$ Ice	2.36	0.91	0.09
			3.00	-10.0000	127.00	No Ice	1.67	0.47	0.03
			-5.00			1/2" Ice	1.83	0.57	0.04
			0.00			$1{ }^{\prime \prime}$ Ice	2.00	0.68	0.06
(2) LGP13519	A	From Leg				2" Ice	2.36	0.91	0.09
			3.00	0.0000	127.00	No Ice	0.29	0.18	0.01
			5.00			1/2" Ice	0.36	0.24	0.01
			0.00			$1{ }^{\prime \prime}$ Ice	0.44	0.31	0.01
(2) LGP13519	B	From Leg				2" Ice	0.62	0.47	0.02
			3.00	-10.0000	127.00	No Ice	0.29	0.18	0.01
			5.00			1/2" Ice	0.36	0.24	0.01
			0.00			1" Ice	0.44	0.31	0.01
(2) LGP13519	C	From Leg				2" Ice	0.62	0.47	0.02
			3.00	-10.0000	127.00	No Ice	0.29	0.18	0.01
			5.00			1/2" Ice	0.36	0.24	0.01
			0.00			$1{ }^{\prime \prime}$ Ice	0.44	0.31	0.01
DC6-48-60-18-8F	B	From Leg				2" Ice	0.62	0.47	0.02
			3.00	-10.0000	127.00	No Ice	1.21	1.21	0.03
			0.00			1/2" Ice	1.89	1.89	0.05
			0.00			1" Ice	2.11	2.11	0.08
Side Arm Mount [SO 102-3]	C	None				2" Ice	2.57	2.57	0.14
				0.0000	127.00	No Ice	3.00	3.00	0.08
						1/2" Ice	3.48	3.48	0.11
	C	None				$1^{\prime \prime}$ Ice	3.96	3.96	0.14
T-Arm Mount [TA 601-3]						2 " Ice	4.92	4.92	0.20
				0.0000	127.00	No Ice	10.90	10.90	0.73
						1/2" Ice	14.65	14.65	0.93
						$1{ }^{\prime \prime}$ Ice	18.40	18.40	1.13
						2 " Ice	25.90	25.90	1.52
117 (2) LPA-80080/4CF w/ Mount Pipe	A								
		From	4.00	0.0000	117.00	No Ice	3.11	6.82	0.03
		Centroid-Le	0.00			1/2" Ice	3.58	7.65	0.08
		g	2.00			$1{ }^{\prime \prime}$ Ice	4.02	8.35	0.14
						$2^{\prime \prime}$ Ice	4.90	9.81	0.27
(2) LPA-80080/4CF w/ Mount Pipe	B	From	4.00	0.0000	117.00	No Ice	3.11	6.82	0.03
		Centroid-Le	0.00			1/2" Ice	3.58	7.65	0.08
		g	2.00			$1{ }^{\prime \prime}$ Ice	4.02	8.35	0.14
						2" Ice	4.90	9.81	0.27
(2) LPA-80080/4CF w/ Mount Pipe	C			0.0000	117.00	No Ice	3.11	6.82	0.03
		Centroid-Le	0.00			1/2" Ice	3.58	7.65	0.08
		g	2.00			1 " Ice	4.02	8.35	0.14
						2" Ice	4.90	9.81	0.27
BXA-70063-6CF-2 w/ Mount Pipe	A	From	4.00	0.0000	117.00	No Ice	7.81	5.80	0.04
		Centroid-Le	-2.00			1/2" Ice	8.36	6.95	0.10
		g	2.00			1" Ice	8.87	7.82	0.17
						2" Ice	9.93	9.60	0.34
BXA-70063-6CF-2 w/ Mount Pipe	B	From	4.00	0.0000	117.00	No Ice	7.81	5.80	0.04
		Centroid-Le	2.00			1/2" Ice	8.36	6.95	0.10
		g	2.00			1" Ice	8.87	7.82	0.17
						$2^{\prime \prime}$ Ice	9.93	9.60	0.34
BXA-70063-6CF-2 w/ Mount	C	From	4.00	0.0000	117.00	No Ice	7.81	5.80	0.04

tnxTower	Job	Hampton / Bernier (BU 876390)	Page 11 of 19
Tower Engineering Professionals, Inc.	Project	TEP No. 25693.284017	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:40:53 07/22/19 } \end{array}$
Raleigh, NC 27603 Phone: (619) 661-6351 FAX: (619) 661-6350	Client	Crown Castle	Designed by CJB

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

$$
f t^{2}
$$ \& $C_{A} A_{A}$ Side

$$
f t^{2}
$$ \& Weight

\hline \multirow[t]{2}{*}{Pipe} \& \multirow{6}{*}{A} \& Centroid-Le \& 2.00 \& \multirow{6}{*}{0.0000} \& \multirow{6}{*}{117.00} \& 1/2" Ice \& 8.36 \& 6.95 \& 0.10

\hline \& \& g \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 8.87 \& 7.82 \& 0.17

\hline \multirow{4}{*}{BXA-171085-12CF-EDIN-2 w/ Mount Pipe} \& \& \& \& \& \& 2" Ice \& 9.93 \& 9.60 \& 0.34

\hline \& \& From \& 4.00 \& \& \& No Ice \& 5.02 \& 5.28 \& 0.04

\hline \& \& Centroid-Le \& 2.00 \& \& \& 1/2" Ice \& 5.57 \& 6.45 \& 0.09

\hline \& \& g \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 6.09 \& 7.33 \& 0.14

\hline \multirow{4}{*}{BXA-171085-12CF-EDIN-2 w/ Mount Pipe} \& \multirow{4}{*}{B} \& \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{117.00} \& 2" Ice \& 7.15 \& 9.13 \& 0.27

\hline \& \& From \& 4.00 \& \& \& No Ice \& 5.02 \& 5.28 \& 0.04

\hline \& \& Centroid-Le \& -2.00 \& \& \& 1/2" Ice \& 5.57 \& 6.45 \& 0.09

\hline \& \& g \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 6.09 \& 7.33 \& 0.14

\hline \multirow{4}{*}{BXA-171085-12CF-EDIN-2 w/ Mount Pipe} \& \multirow{3}{*}{C} \& \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{117.00} \& 2" Ice \& 7.15 \& 9.13 \& 0.27

\hline \& \& From \& 4.00 \& \& \& No Ice \& 5.02 \& 5.28 \& 0.04

\hline \& \& Centroid-Le \& -2.00 \& \& \& 1/2" Ice \& 5.57 \& 6.45 \& 0.09

\hline \& \multirow{6}{*}{C} \& $$
\mathrm{g}
$$ \& 2.00 \& \& \& $1^{\prime \prime}$ Ice \& 6.09 \& 7.33 \& 0.14

\hline \multirow{5}{*}{Platform Mount [LP 303-1]} \& \& \multirow[t]{5}{*}{None} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{117.00} \& 2" Ice \& 7.15 \& 9.13 \& 0.27

\hline \& \& \& \& \& \& No Ice \& 14.66 \& 14.66 \& 1.25

\hline \& \& \& \& \& \& 1/2" Ice \& 18.87 \& 18.87 \& 1.48

\hline \& \& \& \& \& \& 1" Ice \& 23.08 \& 23.08 \& 1.71

\hline \& \& \& \& \& \& 2" Ice \& 31.50 \& 31.50 \& 2.18

\hline \multirow[t]{5}{*}{$$
\begin{gathered}
* * 96 * * \\
\text { ANT450F6 }
\end{gathered}
$$} \& \multirow{5}{*}{C} \& \multirow{4}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{96.00} \& \& \& \&

\hline \& \& \& 3.00 \& \& \& No Ice \& 1.90 \& 1.90 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.73 \& 2.73 \& 0.02

\hline \& \& \& 4.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.40 \& 3.40 \& 0.04

\hline \& \& \multirow{5}{*}{From Leg} \& \& \& \& 2 " Ice \& 4.40 \& 4.40 \& 0.10

\hline \multirow[t]{4}{*}{Side Arm Mount [SO 701-1]} \& \multirow[t]{4}{*}{C} \& \& 1.50 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{96.00} \& No Ice \& 0.85 \& 1.67 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.14 \& 2.34 \& 0.08

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 1.43 \& 3.01 \& 0.09

\hline \& \& \& \& \& \& $2{ }^{\prime \prime}$ Ice \& 2.01 \& 4.35 \& 0.12

\hline \multirow[t]{5}{*}{$* * 90 * *$
DS9A09F36D-N} \& \multirow{4}{*}{A} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{90.00} \& \& \& \&

\hline \& \& \& 5.00 \& \& \& No Ice \& 6.33 \& 6.33 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.47 \& 8.47 \& 0.12

\hline \& \& \& 10.00 \& \& \& 1" Ice \& 10.63 \& 10.63 \& 0.18

\hline \& \multirow{4}{*}{A} \& \& \& \& \& 2 " Ice \& 14.99 \& 14.99 \& 0.34

\hline \multirow[t]{4}{*}{TTA-429-94C-08179} \& \& \multirow[t]{4}{*}{From Leg} \& 5.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{90.00} \& No Ice \& 1.03 \& 1.03 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.17 \& 1.17 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 1.32 \& 1.32 \& 0.04

\hline \& \multirow{5}{*}{A} \& \& \& \& \& $2^{\prime \prime}$ Ice \& 1.64 \& 1.64 \& 0.07

\hline \multirow[t]{4}{*}{1.9" Dia. x 6-ft} \& \& \multirow[t]{4}{*}{From Leg} \& 2.50 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{90.00} \& No Ice \& 1.14 \& 0.00 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.76 \& 0.00 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.14 \& 0.00 \& 0.04

\hline \& \& \& \& \& \& 2 " Ice \& 2.90 \& 0.00 \& 0.08

\hline \multirow[t]{4}{*}{Pipe Mount [PM 601-1]} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{90.00} \& No Ice \& 3.00 \& 0.90 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.74 \& 1.12 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 4.48 \& 1.34 \& 0.09

\hline \& \& \& \& \& \& 2 " Ice \& 5.96 \& 1.78 \& 0.12

\hline \multirow[t]{4}{*}{Side Arm Mount [SO 307-1]} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 2.50 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{90.00} \& No Ice \& 0.98 \& 2.60 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.70 \& 4.50 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 2.42 \& 6.40 \& 0.09

\hline \& \& \& \& \& \& 2 " Ice \& 3.86 \& 10.20 \& 0.14

\hline ** 81 ** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{4}{*}{ANT450F6} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 3.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{81.00} \& No Ice \& 1.90 \& 1.90 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.73 \& 2.73 \& 0.02

\hline \& \& \& 4.00 \& \& \& 1" Ice \& 3.40 \& 3.40 \& 0.04

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 4.40 \& 4.40 \& 0.10

\hline \multirow[t]{3}{*}{Side Arm Mount [SO 701-1]} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{81.00} \& No Ice \& 0.85 \& 1.67 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.14 \& 2.34 \& 0.08

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 1.43 \& 3.01 \& 0.09

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral Vert \(f t\) ft ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& $C_{A} A_{A}$ Side $f t^{2}$ \& Weight

\hline \& \multicolumn{8}{|c|}{**76**} \& 0.12

\hline \multirow[t]{4}{*}{KS24019-L112A} \& C \& From Leg \& 3.00 \& 30.0000 \& 76.00 \& No Ice \& 0.08 \& 0.08 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.13 \& 0.13 \& 0.01

\hline \& \& \& 1.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.19 \& 0.19 \& 0.01

\hline \& \& \& \& \& \& 2" Ice \& 0.35 \& 0.35 \& 0.02

\hline \multirow[t]{4}{*}{Side Arm Mount [SO 701-1]} \& C \& From Leg \& 1.50 \& 30.0000 \& 76.00 \& No Ice \& 0.85 \& 1.67 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.14 \& 2.34 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 1.43 \& 3.01 \& 0.09

\hline \& \& \& \& \& \& 2 " Ice \& 2.01 \& 4.35 \& 0.12

\hline ** \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

Load Combinations

Comb. No.	Description
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind $30 \mathrm{deg}+$ 1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind $60 \mathrm{deg}+$ 1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind $90 \mathrm{deg}+1.0$ Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind $150 \mathrm{deg}+1.0$ Ice+1.0 Temp
33	1.2 Dead+1.0 Wind $180 \mathrm{deg}+1.0$ Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind $240 \mathrm{deg}+1.0$ Ice+1.0 Temp

Comb. No.		Description
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	
39	Dead+Wind 0 deg - Service	
40	Dead+Wind 30 deg - Service	
41	Dead+Wind 60 deg - Service	
42	Dead+Wind 90 deg - Service	
43	Dead+Wind 120 deg - Service	
44	Dead+Wind 150 deg - Service	
45	Dead+Wind 180 deg - Service	
46	Dead+Wind 210 deg - Service	
47	Dead+Wind 240 deg - Service	
48	Dead+Wind 270 deg - Service	
49	Dead+Wind 300 deg - Service	
50	Dead+Wind 330 deg - Service	

Maximum Member Forces

Section No.	$\begin{gathered} \text { Elevation } \\ f t \end{gathered}$	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L1	150-123.29	Pole	Max Tension	48	0.00	-0.00	-0.00
			Max. Compression	26	-27.75	-3.33	-0.31
			Max. Mx	8	-10.24	-271.15	-6.18
			Max. My	14	-10.11	-7.21	-272.98
			Max. Vy	8	19.78	-271.15	-6.18
			Max. Vx	2	-19.96	4.98	272.65
			Max. Torque	14			1.12
L2	123.29-88.88	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-41.26	-4.21	0.62
			Max. Mx	8	-17.20	-1089.27	-12.94
			Max. My	2	-16.95	11.72	1108.75
			Max. Vy	8	26.98	-1089.27	-12.94
			Max. Vx	2	-27.99	11.72	1108.75
			Max. Torque	21			-2.40
L3	88.88-43.8	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-58.24	-7.59	4.67
			Max. Mx	8	-28.49	-2402.74	-22.26
			Max. My	2	-28.27	21.58	2496.09
			Max. Vy	8	31.97	-2402.74	-22.26
			Max. Vx	2	-34.18	21.58	2496.09
			Max. Torque	21			-2.46
L4	43.8-0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-81.30	-13.12	6.25
			Max. Mx	8	-45.22	-4090.51	-32.95
			Max. My	2	-45.22	31.64	4310.11
			Max. Vy	8	36.58	-4090.51	-32.95
			Max. Vx	2	-39.46	31.64	4310.11
			Max. Torque	19			-2.20

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
	Load	K	K	K	
	Comb.				

Location	Condition	Gov. Load Comb.	Vertical K	$\begin{gathered} \text { Horizontal, } X \\ K \end{gathered}$	$\begin{gathered} \text { Horizontal, Z } \\ K \end{gathered}$
Pole	Max. Vert	30	81.30	-9.06	-0.04
	Max. H_{x}	20	45.27	36.52	0.23
	Max. H_{z}	2	45.27	0.23	39.40
	Max. M_{x}	2	4310.11	0.23	39.40
	Max. M_{z}	8	4090.51	-36.52	-0.23
	Max. Torsion	7	2.18	-31.52	18.22
	Min. Vert	11	33.95	-31.74	-18.61
	Min. H_{x}	8	45.27	-36.52	-0.23
	Min. H_{z}	14	45.27	-0.23	-39.40
	Min. M_{x}	14	-4305.24	-0.23	-39.40
	Min. M_{z}	20	-4083.19	36.52	0.23
	Min. Torsion	19	-2.19	31.52	-18.22

Tower Mast Reaction Summary

Load Combination	Vertical K	Shear $_{x}$ K	Shear ${ }_{z}$ K	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque kip-ft
Dead Only	37.72	0.00	-0.00	-1.98	-3.00	0.00
1.2 Dead+1.0 Wind 0 deg - No	45.27	-0.23	-39.40	-4310.11	31.64	-0.91
Ice						
0.9 Dead+1.0 Wind 0 deg - No	33.95	-0.23	-39.40	-4236.12	31.90	-0.92
Ice						
1.2 Dead+1.0 Wind 30 deg - No	45.27	18.07	-31.79	-3556.13	-2016.57	-1.78
Ice						
0.9 Dead+1.0 Wind 30 deg - No	33.95	18.07	-31.79	-3494.13	-1980.88	-1.79
Ice						
1.2 Dead+1.0 Wind 60 deg - No	45.27	31.52	-18.22	-2033.80	-3525.59	-2.17
Ice						
0.9 Dead+1.0 Wind 60 deg - No	33.95	31.52	-18.22	-1998.16	-3463.76	-2.18
Ice						
1.2 Dead+1.0 Wind 90 deg - No	45.27	36.52	0.23	32.95	-4090.51	-1.98
Ice						
0.9 Dead+1.0 Wind 90 deg - No	33.95	36.52	0.23	32.86	-4018.89	-1.99
Ice						
1.2 Dead+1.0 Wind 120 deg -	45.27	31.74	18.61	2089.82	-3560.26	-1.27
No Ice						
0.9 Dead+1.0 Wind 120 deg -	33.95	31.74	18.61	2054.23	-3497.76	-1.27
No Ice						
1.2 Dead+1.0 Wind 150 deg -	45.27	18.46	32.01	3585.94	-2077.43	-0.23
No Ice						
0.9 Dead+1.0 Wind 150 deg -	33.95	18.46	32.01	3524.55	-2040.51	-0.22
No Ice						
1.2 Dead+1.0 Wind 180 deg -	45.27	0.23	39.40	4305.24	-39.08	0.88
No Ice						
0.9 Dead+1.0 Wind 180 deg -	33.95	0.23	39.40	4232.53	-37.37	0.89
No Ice						
1.2 Dead+1.0 Wind 210 deg -	45.27	-18.07	31.79	3551.32	2009.15	1.76
No Ice						
0.9 Dead+1.0 Wind 210 deg -	33.95	-18.07	31.79	3490.58	1975.43	1.78
No Ice						
1.2 Dead+1.0 Wind 240 deg -	45.27	-31.52	18.22	2029.00	3518.22	2.18
No Ice						
0.9 Dead+1.0 Wind 240 deg -	33.95	-31.52	18.22	1994.61	3458.35	2.19
No Ice						
1.2 Dead+1.0 Wind 270 deg -	45.27	-36.52	-0.23	-37.80	4083.19	2.01
No Ice						

Load Combination	Vertical K	Shear $_{x}$ K	Shearz K	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque kip-ft
0.9 Dead+1.0 Wind 270 deg -	33.95	-36.52	-0.23	-36.44	4013.51	2.01
No Ice						
1.2 Dead+1.0 Wind 300 deg -	45.27	-31.74	-18.61	-2094.72	3552.92	1.29
No Ice						
0.9 Dead+1.0 Wind 300 deg -	33.95	-31.74	-18.61	-2057.84	3492.37	1.29
No Ice						
1.2 Dead+1.0 Wind 330 deg -	45.27	-18.46	-32.01	-3590.85	2070.03	0.21
No Ice						
0.9 Dead+1.0 Wind 330 deg -	33.95	-18.46	-32.01	-3528.18	2035.08	0.21
No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	81.30	0.00	-0.00	-6.25	-13.12	0.00
1.2 Dead+1.0 Wind 0 deg+1.0	81.30	-0.04	-9.12	-1087.17	-6.17	-0.37
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30 deg+1.0	81.30	4.49	-7.88	-938.83	-544.13	-0.64
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60 deg+1.0	81.30	7.82	-4.52	-540.62	-939.83	-0.74
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90 deg+1.0	81.30	9.06	0.04	0.76	-1087.23	-0.64
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	81.30	7.87	4.60	540.25	-946.86	-0.37
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	81.30	4.57	7.92	933.29	-556.32	0.00
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	81.30	0.04	9.12	1074.59	-20.26	0.37
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	81.30	-4.49	7.88	926.27	517.70	0.64
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	81.30	-7.82	4.52	528.06	913.41	0.74
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	81.30	-9.06	-0.04	-13.33	1060.83	0.64
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	81.30	-7.87	-4.60	-552.83	920.45	0.37
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	81.30	-4.57	-7.92	-945.88	529.90	-0.00
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	37.72	-0.05	-7.91	-860.64	3.97	-0.18
Dead+Wind 30 deg - Service	37.72	3.62	-6.38	-710.07	-404.11	-0.36
Dead+Wind 60 deg - Service	37.72	6.32	-3.66	-406.75	-704.74	-0.45
Dead+Wind 90 deg - Service	37.72	7.33	0.05	5.01	-817.34	-0.41
Dead+Wind 120 deg - Service	37.72	6.37	3.73	414.88	-711.78	-0.26
Dead+Wind 150 deg - Service	37.72	3.70	6.42	713.04	-416.31	-0.05
Dead+Wind 180 deg - Service	37.72	0.05	7.91	856.57	-10.12	0.18
Dead+Wind 210 deg - Service	37.72	-3.62	6.38	706.00	397.97	0.36
Dead+Wind 240 deg - Service	37.72	-6.32	3.66	402.69	698.60	0.45
Dead+Wind 270 deg - Service	37.72	-7.33	-0.05	-9.08	811.19	0.41
Dead+Wind 300 deg - Service	37.72	-6.37	-3.73	-418.95	705.63	0.26
Dead+Wind 330 deg - Service	37.72	-3.70	-6.42	-717.11	410.17	0.05

Solution Summary

	Sum of Applied Forces				Sum of Reactions			
Load	$P X$	$P Y$	K	$P Z$	$P X$	$P Y$	$P Z$	

tnxTower	Job	Hampton / Bernier (BU 876390)	$\begin{array}{\|l\|l\|} \hline \text { Page } & \\ & 16 \text { of } 19 \end{array}$
Tower Engineering Professionals, Inc.	Project	TEP No. 25693.284017	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:40:53 07/22/19 } \\ \hline \end{array}$
Raleigh, NC 27603 Phone: (619) 661-6351 FAX: (619) 661-6350	Client	Crown Castle	Designed by CJB

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	PX	PY	PZ	PX	PY	PZ	
Comb.	K	K	K	K	K	K	
6	31.52	-45.27	-18.22	-31.52	45.27	18.22	0.000\%
7	31.52	-33.95	-18.22	-31.52	33.95	18.22	0.000\%
8	36.52	-45.27	0.23	-36.52	45.27	-0.23	0.000\%
9	36.52	-33.95	0.23	-36.52	33.95	-0.23	0.000\%
10	31.74	-45.27	18.61	-31.74	45.27	-18.61	0.000\%
11	31.74	-33.95	18.61	-31.74	33.95	-18.61	0.000\%
12	18.46	-45.27	32.01	-18.46	45.27	-32.01	0.000\%
13	18.46	-33.95	32.01	-18.46	33.95	-32.01	0.000\%
14	0.23	-45.27	39.40	-0.23	45.27	-39.40	0.000\%
15	0.23	-33.95	39.40	-0.23	33.95	-39.40	0.000\%
16	-18.07	-45.27	31.79	18.07	45.27	-31.79	0.000\%
17	-18.07	-33.95	31.79	18.07	33.95	-31.79	0.000\%
18	-31.52	-45.27	18.22	31.52	45.27	-18.22	0.000\%
19	-31.52	-33.95	18.22	31.52	33.95	-18.22	0.000\%
20	-36.52	-45.27	-0.23	36.52	45.27	0.23	0.000\%
21	-36.52	-33.95	-0.23	36.52	33.95	0.23	0.000\%
22	-31.74	-45.27	-18.61	31.74	45.27	18.61	0.000\%
23	-31.74	-33.95	-18.61	31.74	33.95	18.61	0.000\%
24	-18.46	-45.27	-32.01	18.46	45.27	32.01	0.000\%
25	-18.46	-33.95	-32.01	18.46	33.95	32.01	0.000\%
26	0.00	-81.30	0.00	-0.00	81.30	0.00	0.000\%
27	-0.04	-81.30	-9.12	0.04	81.30	9.12	0.000\%
28	4.49	-81.30	-7.88	-4.49	81.30	7.88	0.000\%
29	7.82	-81.30	-4.52	-7.82	81.30	4.52	0.000\%
30	9.06	-81.30	0.04	-9.06	81.30	-0.04	0.000\%
31	7.87	-81.30	4.60	-7.87	81.30	-4.60	0.000\%
32	4.57	-81.30	7.92	-4.57	81.30	-7.92	0.000\%
33	0.04	-81.30	9.12	-0.04	81.30	-9.12	0.000\%
34	-4.49	-81.30	7.88	4.49	81.30	-7.88	0.000\%
35	-7.82	-81.30	4.52	7.82	81.30	-4.52	0.000\%
36	-9.06	-81.30	-0.04	9.06	81.30	0.04	0.000\%
37	-7.87	-81.30	-4.60	7.87	81.30	4.60	0.000\%
38	-4.57	-81.30	-7.92	4.57	81.30	7.92	0.000\%
39	-0.05	-37.72	-7.91	0.05	37.72	7.91	0.000\%
40	3.62	-37.72	-6.38	-3.62	37.72	6.38	0.000\%
41	6.32	-37.72	-3.66	-6.32	37.72	3.66	0.000\%
42	7.33	-37.72	0.05	-7.33	37.72	-0.05	0.000\%
43	6.37	-37.72	3.73	-6.37	37.72	-3.73	0.000\%
44	3.70	-37.72	6.42	-3.70	37.72	-6.42	0.000\%
45	0.05	-37.72	7.91	-0.05	37.72	-7.91	0.000\%
46	-3.62	-37.72	6.38	3.62	37.72	-6.38	0.000\%
47	-6.32	-37.72	3.66	6.32	37.72	-3.66	0.000\%
48	-7.33	-37.72	-0.05	7.33	37.72	0.05	0.000\%
49	-6.37	-37.72	-3.73	6.37	37.72	3.73	0.000\%
50	-3.70	-37.72	-6.42	3.70	37.72	6.42	0.000\%

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	4	0.00000001	0.00001059
2	Yes	5	0.00000001	0.00045078
3	Yes	5	0.00000001	0.00018375
4	Yes	7	0.00000001	0.00008969
5	Yes	6	0.00000001	0.00033084
6	Yes	7	0.00000001	0.00009096

tnxTower	Job	Hampton / Bernier (BU 876390)	$\begin{aligned} & \text { Page } 17 \text { of } 19 \end{aligned}$
Tower Engineering Professionals, Inc.	Project	TEP No. 25693.284017	$\begin{aligned} & \hline \text { Date } \\ & \text { 10:40:53 07/22/19 } \end{aligned}$
Raleigh, NC 27603 Phone: (619) 661-6351 FAX: (619) 661-6350	Client	Crown Castle	Designed by CJB

7	Yes	6	0.00000001	0.00033614
8	Yes	5	0.00000001	0.00032417
9	Yes	5	0.00000001	0.00012856
10	Yes	7	0.00000001	0.00008851
11	Yes	6	0.00000001	0.00032444
12	Yes	7	0.00000001	0.00009020
13	Yes	6	0.00000001	0.00033159
14	Yes	5	0.00000001	0.00067301
15	Yes	5	0.00000001	0.00025944
16	Yes	7	0.00000001	0.00009045
17	Yes	6	0.00000001	0.00033417
18	Yes	7	0.00000001	0.00008911
19	Yes	6	0.00000001	0.00032861
20	Yes	5	0.00000001	0.00079027
21	Yes	5	0.00000001	0.00031952
22	Yes	7	0.00000001	0.00009050
23	Yes	6	0.00000001	0.00033287
24	Yes	7	0.00000001	0.00008896
25	Yes	6	0.00000001	0.00032630
26	Yes	4	0.00000001	0.00013745
27	Yes	6	0.00000001	0.00029865
28	Yes	6	0.00000001	0.00083488
29	Yes	6	0.00000001	0.00084688
30	Yes	6	0.00000001	0.00030016
31	Yes	6	0.00000001	0.00084365
32	Yes	6	0.00000001	0.00085969
33	Yes	6	0.00000001	0.00029676
34	Yes	6	0.00000001	0.00078544
35	Yes	6	0.00000001	0.00077180
36	Yes	6	0.00000001	0.00029459
37	Yes	6	0.00000001	0.00083619
38	Yes	6	0.00000001	0.00082284
39	Yes	4	0.00000001	0.00036761
40	Yes	5	0.00000001	0.00026499
41	Yes	5	0.00000001	0.00027090
42	Yes	4	0.00000001	0.00035751
43	Yes	5	0.00000001	0.00027476
44	Yes	5	0.00000001	0.00028753
45	Yes	4	0.00000001	0.00040528
46	Yes	5	0.00000001	0.00025954
47	Yes	5	0.00000001	0.00025205
48	Yes	4	0.00000001	0.00042837
49	Yes	5	0.00000001	0.00028387
50	Yes	5	0.00000001	0.00027293

Compression Checks

Pole Design Data

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	${ }_{\phi} P_{n}$	$\begin{aligned} & \text { Ratio } \\ & P_{u} \end{aligned}$
	$f t$		$f t$	$f t$		in^{2}	K	K	ϕP_{n}
L1	$\begin{gathered} 150-123.29 \\ \text { (1) } \end{gathered}$	TP22.9x17x0.1875	26.71	0.00	0.0	13.0672	-10.14	764.43	0.013
L2	$123.29-88.88$ (2)	TP30x21.7696x0.3125	37.83	0.00	0.0	28.5292	-16.95	1668.96	0.010
L3	88.88-43.8 (3)	TP39.2x28.4504x0.375	49.33	0.00	0.0	44.8057	-28.27	2621.13	0.011

Section No.	$f t$	Size	L	L_{u}	Kl/r		P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \end{gathered}$
			$f t$	$f t$		$i n^{2}$	K	K	ϕP_{n}
L4	43.8-0 (4)	TP48x37.2689x0.4375	49.22	0.00	0.0	66.0465	-45.22	3863.72	0.012

Pole Bending Design Data

Section No.	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	Ratio $M_{u x}$	$M_{u y}$	$\phi M_{n y}$	Ratio $M_{u y}$
$f t$			kip-ft	kip-ft	$\phi M_{n x}$	kip-ft	kip-ft	$\phi M_{n y}$
L1	$150-123.29$ (1)	TP22.9x17x0.1875	277.63	413.83	0.671	0.00	413.83	0.000
L2	$123.29-88.88$ (2)	TP30x21.7696x0.3125	1108.82	1249.92	0.887	0.00	1249.92	0.000
L3	88.88-43.8 (3)	TP39.2x28.4504x0.375	2496.19	2537.12	0.984	0.00	2537.12	0.000
L4	43.8-0 (4)	TP48x37.2689x0.4375	4310.23	4628.73	0.931	0.00	4628.73	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V_{u}	ϕV_{n}	$\begin{gathered} \text { Ratio } \\ V_{u} \\ \hline \end{gathered}$	Actual T_{u}	ϕT_{n}	$\begin{gathered} \text { Ratio } \\ T_{u} \\ \hline \end{gathered}$
$f t$			K	K	ϕV_{n}	kip-ft	kip-ft	ϕT_{n}
L1	$150-123.29$ (1)	TP22.9x17x0.1875	20.06	229.33	0.087	0.79	440.97	0.002
L2	$\begin{gathered} 123.29-88.88 \\ \text { (2) } \end{gathered}$	TP30x21.7696x0.3125	27.99	500.69	0.056	0.08	1261.18	0.000
L3	88.88-43.8 (3)	TP39.2x28.4504x0.375	34.18	786.34	0.043	0.91	2592.30	0.000
L4	43.8-0 (4)	TP48x37.2689x0.4375	39.46	1159.12	0.034	0.91	4828.05	0.000

Pole Interaction Design Data

Section No.	Elevation	Ratio P_{u}	Ratio $M_{u x}$	Ratio $M_{u y}$	Ratio V_{u}	Ratio T_{u}	Comb. Stress	Allow. Stress	Criteria
$f t$		ϕP_{n}	$\phi M_{n x}$	$\phi M_{n y}$	ϕV_{n}	ϕT_{n}	Ratio	Ratio	
L1	$\begin{gathered} 150-123.29 \\ \text { (1) } \end{gathered}$	0.013	0.671	0.000	0.087	0.002	0.692	1.050	4.8.2
L2	$123.29-88.88$ (2)	0.010	0.887	0.000	0.056	0.000	0.900	1.050	4.8.2
L3	88.88-43.8 (3)	0.011	0.984	0.000	0.043	0.000	0.997	1.050	4.8.2
L4	43.8-0 (4)	0.012	0.931	0.000	0.034	0.000	0.944	1.050	4.8.2

Section Capacity Table

Section	Elevation	Component	Size	Critical Element	P No.	$f t$	Type

Program Version 8.0.5.0-11/28/2018 File:C:/Users/cbowen/Desktop/25693/876390_1750704_LC7.eri

APPENDIX B

BASE LEVEL DRAWING

(OTHER CONSIDERED EQUIPMENT)
(1) $7 / 8^{\prime \prime}$ TO 81 FT LEVEL
(1) $1 / 2^{\prime \prime}$ TO 90 FT LEVEL
(2) $1-1 / 4^{\prime \prime}$ TO 90 FT LEVEL
(1) $7 / 8^{\prime \prime}$ TO 96 FT LEVEL
(1) $7 / 8^{\prime \prime}$ TO 96 FT LEVE

(OTHER CONSIDERED EQUIPMENT)
\qquad (18) $1-5 / 8^{\prime \prime}$ TO 117 FT LEVEL
(OTHER CONSIDERED EQUIPMENT-IN CONDUIT)
(3) $3 / 8$ " TO 127 FT LEVEL
(OTHER CONSIDERED EQUIPMENT)
(12) 1-1/4" TO 127 FT LEVEL

BUSINESS UNIT: 876390 TOWER ID:C_BASELEVEL

APPENDIX C

ADDITIONAL CALCULATIONS

Address:

No Address at This Location

ASCE 7 Hazards Report

Wind

Results:

Wind Speed:
10-year MRI
25-year MRI
50-year MRI
100-year MRI
Data Source:

129 Vmph

130 Vmph per Jurisdiction

78 Vmph
88 Vmph
96 Vmph
105 Vmph
ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1-CC-4, incorporating errata of March 12, 2014

Wed Mar 062019

Date Accessed:

Value provided is 3 -second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability $=$ $0.00143, \mathrm{MRI}=700$ years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Seismic

Site Soil Class: D-Stiff Soil

Results:

$\mathrm{S}_{\mathrm{S}}:$	0.172
$\mathrm{~S}_{1}:$	0.062
$\mathrm{~F}_{\mathrm{a}}:$	1.6
$\mathrm{~F}_{\mathrm{V}}:$	2.4
$\mathrm{~S}_{\mathrm{Ms}}:$	0.275
$\mathrm{~S}_{\mathrm{M} 1}:$	0.149

$\mathrm{S}_{\mathrm{DS}}:$	0.183
$\mathrm{~S}_{\mathrm{D} 1}:$	0.099
$\mathrm{~T}_{\mathrm{L}}:$	6
$\mathrm{PGA}:$	0.086
$\mathrm{PGA}_{\mathrm{M}}:$	0.137
$\mathrm{~F}_{\mathrm{PGA}}:$	1.6
$\mathrm{I}_{\mathrm{e}}:$	1

Seismic Design Category
 B

Data Accessed:
Date Source:

Wed Mar 062019
USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating
Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

AMERICAN SOCIETY OF CIVIL ENGINEERS
Ice

Results:

Ice Thickness:
Concurrent Temperature:
Gust Speed:
Data Source:
Date Accessed:
0.75 in.

15 F
50 mph
Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Wed Mar 062019

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3 -second gust speeds, for a 50 -year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Site Info	
BU \#	
Site Name	Hampton / Bernier
Order \#	494419 Rev. 0

Analysis Considerations	
TIA-222 Revision	H
Grout Considered:	No
I_{ar} (in)	1

Applied Loads	
Moment (kip-ft)	4310.23
Axial Force (kips)	45.22
Shear Force (kips)	39.46

Connection Properties	Analysis Results		
Anchor Rod Data	Anchor Rod Summary		(units of kips, kip-in)
(16) 2-1/4" \varnothing bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 57" BC	Pu_c $=229.54$	фPn_c = 243.75	Stress Rating
	$\mathrm{Vu}=2.47$	$\phi V n=73.13$	89.8\%
Base Plate Data	$\mathrm{Mu}=\mathrm{n} / \mathrm{a}$	$\phi \mathrm{Mn}=\mathrm{n} / \mathrm{a}$	Pass
63" OD x 2" Plate (A871 Gr 60; Fy=60 ksi, Fu=75 ksi)			
	Base Plate Summary		
Stiffener Data	Max Stress (ksi):	39.66	(Roark's Flexural)
(16) 18"H x 7"W x 0.75"T, Notch: 0.75 "	Allowable Stress (ksi):	54	
plate: Fy= 50 ksi ; weld: Fy= 70 ksi	Stress Rating:	69.9\%	Pass
horiz. weld: $0.375^{\prime \prime}$ groove, $45^{\circ} \mathrm{dbl}$ bevelFALSE vert. weld: $0.375^{\prime \prime}$ fillet	Stiffener Summary		
	Horizontal Weld:	73.2\%	Pass
Pole Data	Vertical Weld:	55.2\%	Pass
48" $\times 0.4375$ " 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)	Plate Flexure+Shear:	27.1\%	Pass
	Plate Tension+Shear:	74.2\%	Pass
	Plate Compression:	80.4\%	Pass
	Pole Summary		
	Punching Shear:	14.2\%	Pass

Pier and Pad Foundation

BU \# : 876390
Site Name: Hampton / Bernier App. Number: 494419 Rev. 0

TIA-222 Revision:	H
Tower Type:	Monopole

Top \& Bot. Pad Rein. Different?:	$\bar{\checkmark}$
Block Foundation?:	Γ

Superstructure Analysis Reactions		
Compression, $\mathbf{P}_{\text {comp }}:$	45	kips
Base Shear, Vu_comp:	39	kips
Moment, $\mathbf{M}_{\mathbf{u}}:$	4310	ft -kips
Tower Height, $\mathbf{H}:$	150	ft
BP Dist. Above Fdn, $\mathbf{b p}_{\text {dist }}:$	3.25	in

Foundation Analysis Checks				
	Capacity	Demand	Rating	Check
Lateral (Sliding) (kips)	215.53	39.00	$\mathbf{1 7 . 2 \%}$	Pass
Bearing Pressure (ksf)	12.47	3.62	$\mathbf{2 9 . 0} \%$	Pass
Overturning (kip*ft)	5435.92	4554.56	$\mathbf{8 3 . 8} \%$	Pass
Pier Compression (kip)	26891.28	67.82	$\mathbf{0 . 2 \%}$	Pass
Pad Flexure (kip*ft)	4770.48	2415.69	$\mathbf{4 8 . 2 \%}$	Pass
Pad Shear - 1-way (kips)	899.95	334.75	$\mathbf{3 5 . 4 \%}$	Pass
Pad Shear - 2-way (Comp) (ksi)	0.190	0.000	$\mathbf{0 . 0} \%$	Pass
Flexural 2-way (Comp) (kip*ft)	4566.12	2656.20	$\mathbf{5 5 . 4 \%}$	Pass

*Rating per TIA-222-H Section 15.5

Soil Rating*:	83.8%
	55.4%

Pad Properties		
Depth, D:	5	ft
Pad Width, W:	25.25	ft
Pad Thickness, T:	3	ft
Pad Rebar Size (Top), $\mathbf{S p}_{\text {top }}:$	9	
Pad Top Rebar Quantity (Top), $\mathbf{m p}_{\text {top }}:$	20	
Pad Rebar Size (Bottom), Sp:	9	
Pad Rebar Quantity (Bottom), mp:	35	
Pad Clear Cover, $\mathbf{c c}_{\text {pad }}:$	3	in

Material Properties		
Rebar Grade, Fy:	60	ksi
Concrete Compressive Strength, F'c:	4	ksi
Dry Concrete Density, $\delta \mathbf{c}:$	150	pcf

Soil Properties		
Total Soil Unit Weight, $\gamma:$	125	pcf
Ultimate Net Bearing, Qnet:	16.000	ksf
Cohesion, Cu:	0.000	ksf
Friction Angle, $\varphi:$	30	degrees
SPT Blow Count, $\mathbf{N}_{\text {blows: }}:$	6	
Base Friction, $\mu:$	0.5	
Neglected Depth, $\mathbf{N}:$	3.33	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw:	n / a	ft

	PASS	PASS		Hampton / Bernier (BU 876390)		
Results Summary:	LC1	LC2		TEP \#:	25693.284017	
Soil Interaction:	N/A	N/A		Analysis:	MKF	$7 / 22 / 2019$
Foundation Structural*:	37.4\%	9.4\%		Check:	CJB	$7 / 22 / 2019$

*Rating per TIA-222-H Section 15.5

	LC1	LC2	
Moment:	$4,310.00$	$1,090.00$	kip-ft
Axial (download):	45.00	81.00	kip
Shear:	39.00	9.00	kip
Axial (uplift):			kip

Tower Type: Monopole

Shaft Information		
Diameter:	6.50	ft
Projection:	1.00	ft
Caisson Length:	3.00	ft
f'c:	4.000	ksi
Max $\boldsymbol{\varepsilon c}:$	0.003	$\mathrm{in} / \mathrm{in}$

Cage 2 Reinforcement			
Cage Diameter:	57.00	in	
i) Offset Angle:	0.0	degrees	
Vertical Bar Size:	Other	\rightarrow Anet $=$	3.25
Vertical Bar Qty:	16	($\rho=1.088 \%$)	
Cage 2 resists compression?	Yes		
Effective Cage Depth:	3	ft	
fy:	75	ksi	
E:	29,000	ksi	

Hampton / Bernier (BU 876390)
TEP \#: 25693.284017
Analysis: MKF 7/22/2019
Reinforcement Capacity
Check: CJB 7/22/2019

Exhibit E

Mount Analysis

Date: July 9, 2019
$\Sigma_{\text {Parcerop }}$
Kevin Morrow
Crown Castle
3530 Toringdon Way, Suite 300
Charlotte, NC 28277
(704) 405-6619

B+T Group
1717 S. Boulder, Suite 300
Tulsa, OK 74119
(918) 587-4630
btwo@btgrp.com

Subject:
Carrier Designation:

Crown Castle Designation:

Engineering Firm Designation:
Site Data:

Structure Information:

Mount Modification Report
T-Mobile Equipment Change-Out Carrier Site Number:
Carrier Site Name:
Crown Castle BU Number:
Crown Castle Site Name:
Crown Castle JDE Job Number:
Crown Castle Order Number:
B+T Group Report Designation:

CT11511A
Sprint- Brooklyn
876390
Hampton / Bernier 576719
494419, Rev. 0
136355.003.01

116 Grant Hill Rd., Brooklyn, CT, Windham, 06234
Latitude $41^{\circ} 47{ }^{\prime} 29.64$ " Longitude - $72^{\circ} 0^{\prime} 54.04{ }^{\prime \prime}$

150 ft . Monopole
137 ft .
14 ft . Platform Mount

Dear Mr. Morrow,
$B+T$ Group is pleased to submit this "Mount Modification Report" to determine the structural integrity of T Mobile's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tieoff point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount's stress level. Based on our analysis we have determined the stress level to be:

Platform Mount
Sufficient
*Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.
This analysis utilizes an ultimate 3-second gust wind speed of 130 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount structural analysis prepared by: Joseph Variamparampil
Respectfully submitted by: B\&T Engineering, Inc. COA: PEC. 0001564 Expires: 02/10/2020

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided
3.1) Analysis Method
3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity
Table 4 - Tieback End Reactions
4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations and Software Analysis Output

7) APPENDIX C

Mount Modification Design Drawings (MDD)

1) INTRODUCTION

This is a 14^{\prime} Platform Mount, mapped by $\mathrm{B}+\mathrm{T}$ Group.

2) ANALYSIS CRITERIA

Building Code:	2015 IBC
TIA-222 Revision:	TIA-222-H
Risk Category:	11
Ultimate Wind Speed:	130 mph
Exposure Category:	B
Topographic Factor at Base:	1.512
Topographic Factor at Mount:	1.512
Ice Thickness:	1.5 in
Wind Speed with Ice:	50 mph
Seismic $\mathrm{S}_{\text {s }}$:	0.172
Seismic S_{1} :	0.062
Live Loading Wind Speed:	30 mph
Man Live Load at Mid/End-Points:	250 lb
Man Live Load at Mount Pipes:	500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft.)	Antenna Centerline (ft.)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount $/$ Modification Details
137		3	RFS	APX16DWV-16DWVS-E-A20	
	138	3	RFS	APXVAARR24_43-U-NA20	14 ft. Platform
		3	Ericsson	KRY 112 489/2	Mount
		3	Ericsson	RADIO 4449 B12/B71	

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
CCI Order	Existing Loading Proposed Loading	Date: 05/31/2019	Crown Castle
Mount Mapping	B+T Group	Date: 06/27/2019	On File
Mount Analysis Report	B+T Group	Date: 07/02/2019	On File

3.1) Analysis Method

RISA-3D (Version 17.0.2), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed by $\mathrm{B}+\mathrm{T}$ Group, was used to calculate wind loading on all appurtenances, dishes and mount members for various loading cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 Tower Mount Analysis (Revision C).

3.2) Assumptions

1. The mount was properly fabricated and installed in accordance with its original design and manufacturer's specifications.
2. The mount has been maintained in accordance with the manufacturer's specifications and is free of damage.
3. The configuration of antennas, mounts, and other appurtenances are as specified in Table-1.
4. All mount components have been assumed to be in sufficient condition to carry their full design capacity for the analysis.
5. Mount areas and weights are determined from field measurements, standard material properties, and/or manufacturer product data.
6. Serviceability with respect to antenna twist, tilt, roll or lateral translation is not checked and is left to the carrier or tower owner to ensure conformance.
7. All prior structural modifications, if any are assumed to be correctly installed and fully effective.
8. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
9. The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
10. The following material grades were assumed (Unless Noted Otherwise):

(a) Connection Bolts	: ASTM A325
(b) Steel Pipe	ASTM A53 (GR. 35)
(c) HSS (Round)	: ASTM 500 (GR. B-42)
(d) HSS (Rectangular)	: ASTM 500 (GR. B-46)
(e) Channel	ASTM A36 (GR. 36)
(f) Steel Solid Rod	: ASTM A36 (GR. 36)
(g) Steel Plate	: ASTM A36 (GR. 36)
(h) Steel Angle	: ASTM A36 (GR. 36)
(i) UNISTRUT	: ASTM A570 (GR. 33)

This analysis may be affected if any assumptions are not valid or have been made in error. $\mathrm{B}+\mathrm{T}$ Group should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Platform Mount)

Notes	Component	Critical Member	Centerline (ft.)	\% Capacity	Pass / Fail
	Main Horizontals	M1	137	60.7	Pass
	Support Angles	M8	137	39.3	Pass
	Support Tubes	M39A	137	31.3	Pass
	Mount Pipes	M39	137	67.9	Pass
$1,2,3$	Handrail Pipes	M55	137	59.2	Pass
	Handrail Connection Angles	M68	137	75.5	Pass
	Reinforcement Angles	M72	137	45.9	Pass

Structure Rating (max from all components) $=$	75.5%
Notes:	

[^1]
4.1) RECOMMENDATIONS

The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the structural modifications listed below must be completed.

1. Installation of (2) Handrail Kits, SitePro1 Part\# HRK14
2. Installation of (1) Reinforcement Kit, SitePro1 Part\# PRK-SFS-L

Engineering detail drawings have been provided in Appendix C - Mount Modification Design Drawings.

APPENDIX A

Envelope Only Solution

B+T Group		SK -2
JV	876390 - Hampton / Bernier	July 8,2019 at 4:57 PM
136355.003 .01		136355_003_01_Hampton Bernier...

B+T Group		SK -3
JV	876390 - Hampton / Bernier	July 8,2019 at 4:57 PM
136355.003 .01		136355_003_01_Hampton Bernier...

Member Code Checks Displayed (Enveloped)
Envelope Only Solution

B+T Group		SK - 4
JV	876390 - Hampton / Bernier	July 8, 2019 at 4:57 PM
136355.003 .01		136355_003_01_Hampton Bernier...

Member Shear Checks Displayed (Enveloped)
Envelope Only Solution

B+T Group		SK - 5
JV	876390 - Hampton / Bernier	July 8, 2019 at 4:57 PM
136355.003 .01		136355_003_01_Hampton Bernier...

APPENDIX B

PROJECT	136355.002.01 - Hampton Be	KSC	
SUBJECT	Platform Mount Mount Analysis		
DATE	$\mathbf{0 7 / 0 8 / 1 9}$	PAGE	OF

Manufacturer	Model	Qty	Aspect Ratio		EPA $_{N}{ }^{*} K_{a}$ (ft ${ }^{2}$)	EPA ${ }_{T}{ }^{*} \mathrm{~K}_{\mathbf{a}}\left(\mathrm{ft}^{2}\right)$	$\text { EPA }_{\text {N-lce }}{ }^{*} K_{\mathrm{a}}$ (ft ${ }^{2}$)	$\text { EPA }_{\text {T-Ice }}{ }^{*} \mathbf{K}_{\mathrm{a}}$ (ft ${ }^{2}$)	$\mathrm{F}_{\text {A No ice (N) }}$	$\mathbf{F}_{\text {A No ice (}}$ ($)$	$\mathrm{F}_{\text {A Ice (}}{ }^{\text {(})}$	$\mathbf{F}_{\text {A Ice (T) }}$
RFS	APX16DWV-16DWVS-E-A20	0.5	4.20	1.28	2.32	0.55	3.24	1.34	0.19	0.06	0.03	0.01
RFS	APX16DWV-16DWVS-E-A20	0.5	4.20	1.28	2.32	0.55	3.24	1.34	0.19	0.06	0.03	0.01
Ericsson	KRY 112 489/2	1	1.80	1.20	0.42	0.27	0.95	0.74	0.03	0.02	0.00	0.00
RFS	APXVAARR24_43-U-NA20	0.5	4.00	1.27	7.19	2.61	8.74	3.96	0.60	0.26	0.09	0.04
RFS	APXVAARR24_43-U-NA20	0.5	4.00	1.27	7.19	2.61	8.74	3.96	0.60	0.26	0.09	0.04
Ericsson	RADIO 4449 B12/B71	1	1.13	1.20	1.23	0.86	2.04	1.57	0.10	0.07	0.01	0.01
RFS	APX16DWV-16DWVS-E-A20	0.5	4.20	1.28	2.32	0.55	3.24	1.34	0.19	0.06	0.03	0.01
RFS	APX16DWV-16DWVS-E-A20	0.5	4.20	1.28	2.32	0.55	3.24	1.34	0.19	0.06	0.03	0.01
Ericsson	KRY 112 489/2	1	1.80	1.20	0.42	0.27	0.95	0.74	0.03	0.02	0.00	0.00
RFS	APXVAARR24_43-U-NA20	0.5	4.00	1.27	7.19	2.61	8.74	3.96	0.60	0.26	0.09	0.04
RFS	APXVAARR24_43-U-NA20	0.5	4.00	1.27	7.19	2.61	8.74	3.96	0.60	0.26	0.09	0.04
Ericsson	RADIO 4449 B12/B71	1	1.13	1.20	1.23	0.86	2.04	1.57	0.10	0.07	0.01	0.01
RFS	APX16DWV-16DWVS-E-A20	0.5	4.20	1.28	2.32	0.55	3.24	1.34	0.19	0.06	0.03	0.01
RFS	APX16DWV-16DWVS-E-A20	0.5	4.20	1.28	2.32	0.55	3.24	1.34	0.19	0.06	0.03	0.01
Ericsson	KRY 112 489/2	1	1.80	1.20	0.42	0.27	0.95	0.74	0.03	0.02	0.00	0.00
RFS	APXVAARR24_43-U-NA20	0.5	4.00	1.27	7.19	2.61	8.74	3.96	0.60	0.26	0.09	0.04
RFS	APXVAARR24_43-U-NA20	0.5	4.00	1.27	7.19	2.61	8.74	3.96	0.60	0.26	0.09	0.04
Ericsson	RADIO 4449 B12/B71	1	1.13	1.20	1.23	0.86	2.04	1.57	0.10	0.07	0.01	0.01

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (11 E .	Density[k/ft.	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	. 3	. 65	49	50	1.1	65	1.1
2	A36 Gr. 36	29000	11154	. 3	. 65	. 49	36	1.5	58	1.2
3	A572 Gr. 50	29000	11154	. 3	. 65	. 49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	. 3	. 65	. 527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	. 3	. 65	. 527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	. 3	. 65	. 49	35	1.6	60	1.2
7	A1085	29000	11154	. 3	. 65	. 49	50	1.4	65	1.3

Hot Rolled Steel Section Sets

Label		Shape	Type	Design List	Material	Design R.... A [in2]		lyy [in4] Izz [in4]		$\begin{gathered} J[i n 4] \\ .031 \end{gathered}$
1	MF-H1	L3X3X4	Beam	Single Angle	A36 Gr. 36	Typical	1.44	1.23	1.23	
2	MF-P1	PIPE 1.5	Column	Pipe	A53 Gr.B	Typical	. 749	. 293	293	. 586
3	F1-ST1	HSS4X4X4	Beam	Tube	A500 Gr....	Typical	3.37	7.8	7.8	12.8
4	F1-S1	L3X3X4	Beam	Single Angle	A36 Gr. 36	Typical	1.44	1.23	1.23	. 031
5	F1-S2	LL3x3x4x0	Beam	Double Angle (No G...	A36 Gr. 36	Typical	2.88	4.5	2.46	063
6	MF-P2	PIPE_2.0	Column	Pipe	A53 Gr.B	Typical	1.02	. 627	627	1.25
7	F1-ST2	HSS4.5X...	Beam	Tube	A500 Gr....	Typical	3.84	11.4	11.4	18.5
8	New HR Pipe	PIPE_2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	627	. 627	1.25
9	New HT Angle Conne..	L2.5x 2.5×4	Beam	Single Angle	A36 Gr. 36	Typical	1.19	. 692	692	. 026
10	New Reinforcement A..	. $\mathrm{L} 2.5 \times 2.5 \times 3$	Beam	Single Angle	A36 Gr. 36	Typical	. 901	. 535	535	. 011

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
1	M1	N3	N4		270	MF-H1	Beam	Single Angle	A36 Gr. 36	Typical
2	M2	N4	N2		270	MF-H1	Beam	Single Angle	A36 Gr. 36	Typical
3	2	N2	N3		270	MF-H1	Beam	Single Angle	A36 Gr. 36	Typical
4	M4	N2	N7		180	F1-S2	Beam	Double Angle (..	A36 Gr. 36	Typical
5	M5	N3	N6		180	F1-S2	Beam	Double Angle (..	A36 Gr. 36	Typical
6	M6	N4	N5		180	F1-S2	Beam	Double Angle (..	A36 Gr. 36	Typical
7	M7	N5	N6		270	F1-S1	Beam	Single Angle	A36 Gr. 36	Typical
8	M8	N7	N5		270	F1-S1	Beam	Single Angle	A36 Gr. 36	Typical
9	M9	N6	N7		270	F1-S1	Beam	Single Angle	A36 Gr. 36	Typical
10	M10	N11	N8			F1-ST2	Beam	Tube	A500 Gr.B..	Typical
11	M11	N62	N9			F1-ST1	Beam	Tube	A500 Gr.B..	Typical
12	M12	N10	N11			RIGID	None	None	RIGID	Typical
13	M13	N12	N13			RIGID	None	None	RIGID	Typical
14	M14	N17	N14			F1-ST2	Beam	Tube	A500 Gr.B.	Typical
15	M16	N16	N17			RIGID	None	None	RIGID	Typical
16	M17	N18	N19			RIGID	None	None	RIGID	Typical
17	M18	N23	N20			F1-ST2	Beam	Tube	A500 Gr.B..	Typical
18	M20	N22	N23			RIGID	None	None	RIGID	Typical
19	M21	N24	N25			RIGID	None	None	RIGID	Typical
20	M22	N26	N27			RIGID	None	None	RIGID	Typical
21	M23	N28	N29			MF-P2	Column	Pipe	A53 Gr.B	Typical
22	M24	N30	N31			RIGID	None	None	RIGID	Typical
23	M25	N32	N33			MF-P1	Column	Pipe	A53 Gr.B	Typical
24	M26	N34	N35			RIGID	None	None	RIGID	Typical
25	M27	N36	N37			MF-P1	Column	Pipe	A53 Gr.B	Typical
26	M28	N38	N39			RIGID	None	None	RIGID	Typical
27	M29	N40	N41			MF-P2	Column	Pipe	A53 Gr.B	Typical
28	M30	N42	N43			RIGID	None	None	RIGID	Typical
29	M31	N44	N45			MF-P1	Column	Pipe	A53 Gr.B	Typical
30	M32	N46	N47			RIGID	None	None	RIGID	Typical

\qquad
ANEMETSCHEK COMPAN \qquad

Member Primary Data (Continued)

	Label	1 Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
31	M33	N48	N49			MF-P1	Column	Pipe	A53 Gr.B	Typical
32	M34	N50	N51			RIGID	None	None	RIGID	Typical
33	M35	N52	N53			MF-P2	Column	Pipe	A53 Gr.B	Typical
34	M36	N54	N55			RIGID	None	None	RIGID	Typical
35	M37	N56	N57			MF-P1	Column	Pipe	A53 Gr.B	Typical
36	M38	N58	N59			RIGID	None	None	RIGID	Typical
37	M39	N60	N61			MF-P1	Column	Pipe	A53 Gr.B	Typical
38	M38A	N62A	N61A			F1-ST1	Beam	Tube	A500 Gr.B..	Typical
39	M39A	N64	N63			F1-ST1	Beam	Tube	A500 Gr.B..	Typical
40	M40	N65	N66		270	New HR Pipe	Beam	Pipe	A53 Gr.B	Typical
41	M41	N67	N68			RIGID	None	None	RIGID	Typical
42	M42	N69	N70			RIGID	None	None	RIGID	Typical
43	M43	N71	N72			RIGID	None	None	RIGID	Typical
44	M44	N73	N74			RIGID	None	None	RIGID	Typical
45	M45	N75	N76			RIGID	None	None	RIGID	Typical
46	M46	N77	N78			RIGID	None	None	RIGID	Typical
47	M47	N79	N80			RIGID	None	None	RIGID	Typical
48	M48	N81	N82			RIGID	None	None	RIGID	Typical
49	M49	N83	N84			RIGID	None	None	RIGID	Typical
50	M52	N90	N91		180	New HT Angle..	Beam	Single Angle	A36 Gr. 36	Typical
51	M53	N91A	N92		180	New HT Angle..	Beam	Single Angle	A36 Gr. 36	Typical
52	M54	N93	N94		180	New HT Angle..	Beam	Single Angle	A36 Gr. 36	Typical
53	M55	N95	N96		270	New HR Pipe	Beam	Pipe	A53 Gr.B	Typical
54	M56	N97	N98			RIGID	None	None	RIGID	Typical
55	M57	N99	N100			RIGID	None	None	RIGID	Typical
56	M58	N101	N102			RIGID	None	None	RIGID	Typical
57	M59	N103	N104			RIGID	None	None	RIGID	Typical
58	M60	N105	N106			RIGID	None	None	RIGID	Typical
59	M61	N107	N108			RIGID	None	None	RIGID	Typical
60	M62	N109	N110			RIGID	None	None	RIGID	Typical
61	M63	N111	N112			RIGID	None	None	RIGID	Typical
62	M64	N113	N114			RIGID	None	None	RIGID	Typical
63	M67	N119	N120		180	New HT Angle..	Beam	Single Angle	A36 Gr. 36	Typical
64	M68	N121	N122		180	New HT Angle..	Beam	Single Angle	A36 Gr. 36	Typical
65	M69	N123	N124		180	New HT Angle..	Beam	Single Angle	A36 Gr. 36	Typical
66	M70	N125	N126		180	New Reinforce..	Beam	Single Angle	A36 Gr. 36	Typical
67	M71	N125	N127		90	New Reinforce..	Beam	Single Angle	A36 Gr. 36	Typical
68	M72A	N126A	N127A		270	New HR Pipe	Beam	Pipe	A53 Gr.B	Typical
69	M73A	N128A	N129A		270	New HR Pipe	Beam	Pipe	A53 Gr.B	Typical
70	M74A	N130A	N131A		270	New HR Pipe	Beam	Pipe	A53 Gr.B	Typical
71	M75A	N132A	N133A		270	New HR Pipe	Beam	Pipe	A53 Gr.B	Typical
72	M72	N128	N129		180	New Reinforce.	Beam	Single Angle	A36 Gr. 36	Typical
73	M73	N128	N130		90	New Reinforce..	Beam	Single Angle	A36 Gr. 36	Typical
74	M74	N131	N132		180	New Reinforce..	Beam	Single Angle	A36 Gr. 36	Typical
75	M75	N131	N133		90	New Reinforce..	Beam	Single Angle	A36 Gr. 36	Typical

Hot Rolled Steel Design Parameters

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[i..	Lcomp bot[i...L	L-torq...	Kyy	Kzz	Cb	Functi...
1	M1	MF-H1	168	84		Lbyy						Lateral
2	M2	MF-H1	168	84		Lbyy						Lateral
3	2	MF-H1	168	84		Lbyy						Lateral
4	M4	F1-S2	46.8			Lbyy						Lateral
5	M5	F1-S2	46.8			Lbyy						Lateral
6	M6	F1-S2	46.8			Lbyy						Lateral
7	M7	F1-S1	86.94			Lbyy						Lateral

Company
\qquad
A NEMETSCHEK COMPANY 876390 - Hampton / Bernier

Hot Rolled Steel Design Parameters (Continued)

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp topli	Lcomp bot[i..	L-torq...	Kyy	Kzz	Cb	Functi...
8	M8	F1-S1	86.94			Lbyy						Lateral
9	M9	F1-S1	86.94			Lbyy						Lateral
10	M10	F1-ST2	24			Lbyy						Lateral
11	M11	F1-ST1	18			Lbyy						Lateral
12	M14	F1-ST2	24			Lbyy						Lateral
13	M18	F1-ST2	24			Lbyy						Lateral
14	M23	MF-P2	108			Lbyy						Lateral
15	M25	MF-P1	72			Lbyy						Lateral
16	M27	MF-P1	72			Lbyy						Lateral
17	M29	MF-P2	108			Lbyy						Lateral
18	M31	MF-P1	72			Lbyy						Lateral
19	M33	MF-P1	72			Lbyy						Lateral
20	M35	MF-P2	108			Lbyy						Lateral
21	M37	MF-P1	72			Lbyy						Lateral
22	M39	MF-P1	72			Lbyy						Lateral
23	M38A	F1-ST1	18			Lbyy						Lateral
24	M39A	F1-ST1	18			Lbyy						Lateral
25	M40	New HR Pi...	174			Lbyy						Lateral
26	M52	New HT An...	15.238			Lbyy						Lateral
27	M53	New HT An...	15.238			Lbyy						Lateral
28	M54	New HT An...	15.238			Lbyy						Lateral
29	M55	New HR Pi...	174			Lbyy						Lateral
30	M67	New HT An...	15.238			Lbyy						Lateral
31	M68	New HT An...	15.238			Lbyy						Lateral
32	M69	New HT An...	15.238			Lbyy						Lateral
33	M70	New Reinfo..	73.194			Lbyy						Lateral
34	M71	New Reinfo...	73.194			Lbyy						Lateral
35	M72A	New HR Pi...	174			Lbyy						Lateral
36	M73A	New HR Pi..	174			Lbyy						Lateral
37	M74A	New HR Pi...	174			Lbyy						Lateral
38	M75A	New HR Pi..	174			Lbyy						Lateral
39	M72	New Reinfo..	73.194			Lbyy						Lateral
40	M73	New Reinfo..	73.194			Lbyy						Lateral
41	M74	New Reinfo..	73.194			Lbyy						Lateral
42	M75	New Reinfo...	73.194			Lbyy						Lateral

Joint Coordinates and Temperatures

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Diap...
1	N1	0	0	0	0	
2	N2	-0.	3.092	-96.994845	0	
3	N3	-84	3.092	48.497423	0	
4	N4	84	3.092	48.497423	0	
5	N5	43.470011	3.092	25.097423	0	
6	N6	-43.470011	3.092	25.097423	0	
7	N7	-0.	3.092	-50.194845	0	
8	N8	0.	0	24.497423	0	
9	N9	0.	0	12.497423	0	
10	N10	0.	3.092	48.497423	0	
11	N11	0.	$1.08 \mathrm{e}-14$	48.497423	0	
12	N12	0.	3.092	25.097423	0	
13	N13	0.	0	25.097423	0	
14	N14	21.21539	0	-12.248711	0	
15	N16	42	3.092	-24.248711	0	
16	N17	42	$1.08 \mathrm{e}-14$	-24.248711	0	
17	N18	21.735006	3.092	-12.548711	0	

\qquad

Joint Coordinates and Temperatures (Continued)

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Diap...
18	N19	21.735006	0	-12.548711	0	
19	N20	-21.21539	-1.2e-15	-12.248711	0	
20	N22	-42	3.092	-24.248711	0	
21	N23	-42	9.6e-15	-24.248711	0	
22	N24	-21.735006	3.092	-12.548711	0	
23	N25	-21.735006	-1.2e-15	-12.548711	0	
24	N26	-67.2	3.092	48.497423	0	
25	N27	-67.2	3.092	51.187823	0	
26	N28	-67.2	59.492	51.187823	0	
27	N29	-67.2	-48.508	51.187823	0	
28	N30	-4.8	3.092	48.497423	0	
29	N31	-4.8	3.092	50.947423	0	
30	N32	-4.8	36.692	50.947423	0	
31	N33	-4.8	-35.308	50.947423	0	
32	N34	67.2	3.092	48.497423	0	
33	N35	67.2	3.092	50.947423	0	
34	N36	67.2	36.692	50.947423	0	
35	N37	67.2	-35.308	50.947423	0	
36	N38	74.4	3.092	31.869735	0	
37	N39	76.729955	3.092	30.524535	0	
38	N40	76.729955	61.892	30.524535	0	
39	N41	76.729955	-46.108	30.524535	0	
40	N42	43.2	3.092	-22.17025	0	
41	N43	45.321762	3.092	-23.39525	0	
42	N44	45.321762	36.692	-23.39525	0	
43	N45	45.321762	-35.308	-23.39525	0	
44	N46	9.	3.092	-81.406388	0	
45	N47	11.121762	3.092	-82.631388	0	
46	N48	11.121762	36.692	-82.631388	0	
47	N49	11.121762	-35.308	-82.631388	0	
48	N50	-9	3.092	-81.406388	0	
49	N51	-11.329955	3.092	-82.751588	0	
50	N52	-11.329955	60.692	-82.751588	0	
51	N53	-11.329955	-47.308	-82.751588	0	
52	N54	-37.2	3.092	-32.562555	0	
53	N55	-39.321762	3.092	-33.787555	0	
54	N56	-39.321762	36.692	-33.787555	0	
55	N57	-39.321762	-35.308	-33.787555	0	
56	N58	-75	3.092	32.908965	0	
57	N59	-77.121762	3.092	31.683965	0	
58	N60	-77.121762	36.692	31.683965	0	
59	N61	-77.121762	-35.308	31.683965	0	
60	N62	0.	0	30.497423	0	
61	N61A	10.823085	0	-6.248711	0	
62	N62A	26.411543	0	-15.248711	0	
63	N63	-10.823085	0	-6.248711	0	
64	N64	-26.411543	0	-15.248711	0	
65	N65	-81	33.092	48.497423	0	
66	N66	93	33.092	48.497423	0	
67	N67	-67.2	33.092	48.497423	0	
68	N68	-67.2	33.092	51.187823	0	
69	N69	-4.8	33.092	48.497423	0	
70	N70	-4.8	33.092	50.947423	0	
71	N71	67.2	33.092	48.497423	0	
72	N72	67.2	33.092	50.947423	0	
73	N73	74.4	33.092	31.869735	0	
74	N74	76.729955	33.092	30.524535	0	

\qquad
NEMETSCHEK COMPANY

Joint Coordinates and Temperatures (Continued)

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Diap...
75	N75	43.2	33.092	-22.17025	0	
76	N76	45.321762	33.092	-23.39525	0	
77	N77	9.	33.092	-81.406388	0	
78	N78	11.121762	33.092	-82.631388	0	
79	N79	-9	33.092	-81.406388	0	
80	N80	-11.329955	33.092	-82.751588	0	
81	N81	-37.2	33.092	-32.562555	0	
82	N82	-39.321762	33.092	-33.787555	0	
83	N83	-75	33.092	32.908965	0	
84	N84	-77.121762	33.092	31.683965	0	
85	N90	-7.618802	33.092	-83.798693	0	
86	N91	7.618802	33.092	-83.798693	0	
87	N91A	-68.762396	33.092	48.497423	0	
88	N92	-76.381198	33.092	35.30127	0	
89	N93	76.381198	33.092	35.30127	0	
90	N94	68.762396	33.092	48.497423	0	
91	N95	-81	-23.908	48.497423	0	
92	N96	93	-23.908	48.497423	0	
93	N97	-67.2	-23.908	48.497423	0	
94	N98	-67.2	-23.908	51.187823	0	
95	N99	-4.8	-23.908	48.497423	0	
96	N100	-4.8	-23.908	50.947423	0	
97	N101	67.2	-23.908	48.497423	0	
98	N102	67.2	-23.908	50.947423	0	
99	N103	74.4	-23.908	31.869735	0	
100	N104	76.729955	-23.908	30.524535	0	
101	N105	43.2	-23.908	-22.17025	0	
102	N106	45.321762	-23.908	-23.39525	0	
103	N107	9.	-23.908	-81.406388	0	
104	N108	11.121762	-23.908	-82.631388	0	
105	N109	-9	-23.908	-81.406388	0	
106	N110	-11.329955	-23.908	-82.751588	0	
107	N111	-37.2	-23.908	-32.562555	0	
108	N112	-39.321762	-23.908	-33.787555	0	
109	N113	-75	-23.908	32.908965	0	
110	N114	-77.121762	-23.908	31.683965	0	
111	N119	-7.618802	-23.908	-83.798693	0	
112	N120	7.618802	-23.908	-83.798693	0	
113	N121	-68.762396	-23.908	48.497423	0	
114	N122	-76.381198	-23.908	35.30127	0	
115	N123	76.381198	-23.908	35.30127	0	
116	N124	68.762396	-23.908	48.497423	0	
117	N125	0	-48	12.497424	0	
118	N126	-58.999998	-23.908	48.497423	0	
119	N127	58.999998	-23.908	48.497423	0	
120	N126A	82.5	33.092	45.899346	0	
121	N127A	-4.5	33.092	-104.789074	0	
122	N128A	82.5	-23.908	45.899346	0	
123	N129A	-4.5	-23.908	-104.789074	0	
124	N130A	-1.5	33.092	-94.396769	0	
125	N131A	-88.5	33.092	56.291651	0	
126	N132A	-1.5	-23.908	-94.396769	0	
127	N133A	-88.5	-23.908	56.291651	0	
128	N128	10.823087	-48	-6.248712	0	
129	N129	71.499997	-23.908	26.846782	0	
130	N130	12.500006	-23.908	-75.3442	0	
131	N131	-10.823087	-48	-6.248712	0	

Company B+T Group

July 8, 2019
Designer JV \qquad

Joint Coordinates and Temperatures (Continued)

	Label	$X[\mathrm{in}]$	$\mathrm{Y}[\mathrm{in}]$	$\mathrm{Z}[\mathrm{in}]$	Temp $[\mathrm{F}]$	Detach From Diap...
132	N 132	-12.500006	-23.908	-75.3442	0	
133	N 133	-71.499997	-23.908	26.846782	0	

Joint Loads and Enforced Displacements (BLC 9 : Live Load a)

	Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), ($\mathrm{k}^{*} \mathrm{~s}^{\wedge} 2 / \mathrm{i} .$.
1	N26	L	Y	-. 5
2	N50	L	Y	-. 5
3	N38	L	Y	-. 5

Joint Loads and Enforced Displacements (BLC 10 : Live Load b)

Joint Label L,D,M							Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/i...
1	N30	L	Y	-.5				
2	N54	L	Y	-.5				
3	N42	L	Y	-.5				

Joint Loads and Enforced Displacements (BLC 11 : Live Load c)

Joint Label		L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/i.
1	N34	L	Y	-. 5
2	N58	L	Y	-. 5
3	N46	L	Y	-. 5

Member Point Loads (BLC 1 : Dead)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in, \%]
1	M27	Y	-. 02	\%10
2	M27	Y	-. 02	\%70
3	M27	Y	-. 015	\%25
4	M27	Y	0	0
5	M27	Y	0	0
6	M23	Y	-. 064	\%10
7	M23	Y	-. 064	\%90
8	M23	Y	-. 075	\%30
9	M23	Y	0	0
10	M23	Y	0	0
11	M39	Y	-. 02	\%10
12	M39	Y	-. 02	\%70
13	M39	Y	-. 015	\%25
14	M39	Y	0	0
15	M39	Y	0	0
16	M35	Y	-. 064	\%10
17	M35	Y	-. 064	\%90
18	M35	Y	-. 075	\%30
19	M35	Y	0	0
20	M35	Y	0	0
21	M33	Y	-. 02	\%10
22	M33	Y	-. 02	\%70
23	M33	Y	-. 015	\%25
24	M33	Y	0	0
25	M33	Y	0	0
26	M29	Y	-. 064	\%10
27	M29	Y	-. 064	\%90
28	M29	Y	-. 075	\%30
29	M29	Y	0	0
30	M29	Y	0	0

Company Designer Job Number Model Name
\qquad

Member Point Loads (BLC 2: 0 Wind - No Ice)

Member Labe		Direction	Magnitude[k,k-ft]	Location[in, \%]
1	M27	Z	-. 195	\%10
2	M27	Z	-. 195	\%70
3	M27	Z	-. 033	\%25
4	M27	Z	0	0
5	M27	Z	0	0
6	M23	Z	-. 598	\%10
7	M23	Z	-. 598	\%90
8	M23	Z	-. 097	\%30
9	M23	Z	0	0
10	M23	Z	0	0
11	M39	Z	-. 195	\%10
12	M39	Z	-. 195	\%70
13	M39	Z	-. 033	\%25
14	M39	Z	0	0
15	M39	Z	0	0
16	M35	Z	-. 598	\%10
17	M35	Z	-. 598	\%90
18	M35	Z	-. 097	\%30
19	M35	Z	0	0
20	M35	Z	0	0
21	M33	Z	-. 195	\%10
22	M33	Z	-. 195	\%70
23	M33	Z	-. 033	\%25
24	M33	Z	0	0
25	M33	Z	0	0
26	M29	Z	-. 598	\%10
27	M29	Z	-. 598	\%90
28	M29	Z	-. 097	\%30
29	M29	Z	0	0
30	M29	Z	0	0

Member Point Loads (BLC 3:90 Wind - No Ice)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in, \%]
1	M27	X	-. 064	\%10
2	M27	X	-. 064	\%70
3	M27	X	-. 022	\%25
4	M27	X	0	0
5	M27	X	0	0
6	M23	X	-. 262	\%10
7	M23	X	-. 262	\%90
8	M23	X	-. 068	\%30
9	M23	X	0	0
10	M23	X	0	0
11	M39	X	-. 064	\%10
12	M39	X	-. 064	\%70
13	M39	X	-. 022	\%25
14	M39	X	0	0
15	M39	X	0	0
16	M35	X	-. 262	\%10
17	M35	X	-. 262	\%90
18	M35	X	-. 068	\%30
19	M35	X	0	0
20	M35	X	0	0
21	M33	X	-. 064	\%10
22	M33	X	-. 064	\%70
23	M33	X	-. 022	\%25

Company
\qquad

Member Point Loads (BLC 3:90 Wind - No Ice)(Continued)

Member Point Loads (BLC 4: 0 Wind - Ice)

Member Point Loads (BLC 5:90 Wind - Ice)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in, \%]
1	M27	X	-. 009	\%10
2	M27	X	-. 009	\%70
3	M27	X	-. 003	\%25
4	M27	X	0	0
5	M27	X	0	0
6	M23	X	-. 039	\%10
7	M23	X	-. 039	\%90
8	M23	X	-. 01	\%30
9	M23	X	0	0
10	M23	X	0	0
11	M39	X	-. 009	\%10
12	M39	X	-. 009	\%70
13	M39	X	-. 003	\%25

Member Point Loads (BLC 5:90 Wind - Ice)(Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in, \%]
14	M39	X	0	0
15	M39	X	0	0
16	M35	X	-. 039	\%10
17	M35	X	-. 039	\%90
18	M35	X	-. 01	\%30
19	M35	X	0	0
20	M35	X	0	0
21	M33	X	-. 009	\%10
22	M33	X	-. 009	\%70
23	M33	X	-. 003	\%25
24	M33	X	0	0
25	M33	X	0	0
26	M29	X	-. 039	\%10
27	M29	X	-. 039	\%90
28	M29	X	-. 01	\%30
29	M29	X	0	0
30	M29	X	0	0

Member Point Loads (BLC 6:0 Wind - Service)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in, \%]
1	M27	Z	-. 01	\%10
2	M27	Z	-. 01	\%70
3	M27	Z	-. 002	\%25
4	M27	Z	0	0
5	M27	Z	0	0
6	M23	Z	-. 032	\%10
7	M23	Z	-. 032	\%90
8	M23	Z	-. 005	\%30
9	M23	Z	0	0
10	M23	Z	0	0
11	M39	Z	-. 01	\%10
12	M39	Z	-. 01	\%70
13	M39	Z	-. 002	\%25
14	M39	Z	0	0
15	M39	Z	0	0
16	M35	Z	-. 032	\%10
17	M35	Z	-. 032	\%90
18	M35	Z	-. 005	\%30
19	M35	Z	0	0
20	M35	Z	0	0
21	M33	Z	-. 01	\%10
22	M33	Z	-. 01	\%70
23	M33	Z	-. 002	\%25
24	M33	Z	0	0
25	M33	Z	0	0
26	M29	Z	-. 032	\%10
27	M29	Z	-. 032	\%90
28	M29	Z	-. 005	\%30
29	M29	Z	0	0
30	M29	Z	0	0

Member Point Loads (BLC 7:90 Wind-Service)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,\%]
1	M27	X	-. 003	\%10
2	M27	X	-. 003	\%70
3	M27	X	-. 001	\%25

Company Designer Job Number Model Name
\qquad

Member Point Loads (BLC 7:90 Wind - Service) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in, \%]
4	M27	X	0	0
5	M27	X	0	0
6	M23	X	-. 014	\%10
7	M23	X	-. 014	\%90
8	M23	X	-. 004	\%30
9	M23	X	0	0
10	M23	X	0	0
11	M39	X	-. 003	\%10
12	M39	X	-. 003	\%70
13	M39	X	-. 001	\%25
14	M39	X	0	0
15	M39	X	0	0
16	M35	X	-. 014	\%10
17	M35	X	-. 014	\%90
18	M35	X	-. 004	\%30
19	M35	X	0	0
20	M35	X	0	0
21	M33	X	-. 003	\%10
22	M33	X	-. 003	\%70
23	M33	X	-. 001	\%25
24	M33	X	0	0
25	M33	X	0	0
26	M29	X	-. 014	\%10
27	M29	X	-. 014	\%90
28	M29	X	-. 004	\%30
29	M29	X	0	0
30	M29	X	0	0

Member Point Loads (BLC 8 : Ice)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,\%]
1	M27	Y	-. 089	\%10
2	M27	Y	-. 089	\%70
3	M27	Y	-. 021	\%25
4	M27	Y	0	0
5	M27	Y	0	0
6	M23	Y	-. 269	\%10
7	M23	Y	-. 269	\%90
8	M23	Y	-. 055	\%30
9	M23	Y	0	0
10	M23	Y	0	0
11	M39	Y	-. 089	\%10
12	M39	Y	-. 089	\%70
13	M39	Y	-. 021	\%25
14	M39	Y	0	0
15	M39	Y	0	0
16	M35	Y	-. 269	\%10
17	M35	Y	-. 269	\%90
18	M35	Y	-. 055	\%30
19	M35	Y	0	0
20	M35	Y	0	0
21	M33	Y	-. 089	\%10
22	M33	Y	-. 089	\%70
23	M33	Y	-. 021	\%25
24	M33	Y	0	0
25	M33	Y	0	0
26	M29	Y	-. 269	\%10

Member Point Loads (BLC 13 : Maint LL 1)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,\%]
1	M1	Y	-. 25	\%5
Member Point Loads (BLC 14 : Maint LL 2)				
Member Label 1 M1		Direction	Magnitude[k,k-ft]	Location[in,\%]
		Y	-. 25	\%95
Member Point Loads (BLC 15 : Maint LL 3)				
Member Label 1 2		Direction	Magnitude[k,k-ft]	Location[in,\%]
		Y	-. 25	\%5
Member Point Loads (BLC 16 : Maint LL 4)				
Member Label 1 2		Direction	Magnitude[k,k-ft]	Location[in,\%]
		Y	-. 25	\%95
Member Point Loads (BLC 17 : Maint LL 5)				
1 Member Label		Direction	Magnitude[k,k-ft]	Location[in,\%]
1	M2	Y	-. 25	\%5
Member Point Loads (BLC 18 : Maint LL 6)				
1 Member Label		Direction	Magnitude[k,k-ft]	Location[in,\%]
		Y	-. 25	\%95

Member Point Loads (BLC 19 : Maint LL 7)

Member Label	Direction	Magnitude[k,k-ft]	Location[in, \%]	
1	M10	Y	-.25	$\% 50$

Member Point Loads (BLC 20 : Maint LL 8)

Member Label			Direction	Magnitude[k,k-ft]
1	M18	Y	-.25	Location[in, \%]

Member Point Loads (BLC 21 : Maint LL 9)

Member Label	Direction	Magnitude[k,k-ft]	Location[in,\%]	
1	M14	Y	-.25	$\%$

Member Distributed Loads (BLC 2:0 Wind - No Ice)

	Member Label	Direction	Start Magnitude[k/ft, ...	End Magnitude[k/ft,F..	Start Location[in, \%]	End Location[in, \%]
1	M1	Z	-. 029	-. 029	0	0
2	M2	Z	-. 029	-. 029	0	0
3	2	Z	-. 029	-. 029	0	0
4	M4	Z	-. 025	-. 025	0	0
5	M5	Z	-. 025	-. 025	0	0
6	M6	Z	-. 025	-. 025	0	0
7	M7	Z	-. 029	-. 029	0	0
8	M8	Z	-. 029	-. 029	0	0

Company Designer Job Number Model Name

July 8, 2019
\qquad

Member Distributed Loads (BLC 2: 0 Wind - No Ice) (Continued)

	Member Label	Direction	Start Magnitude[k/ft, ...	End Magnitude[k/ft,F..	Start Location[in, \%]	End Location[in,\%]
9	M9	Z	-. 029	-. 029	0	0
10	M10	Z	-. 029	-. 029	0	0
11	M11	Z	-. 025	-. 025	0	0
12	M14	Z	-. 029	-. 029	0	0
13	M18	Z	-. 029	-. 029	0	0
14	M23	Z	-. 014	-. 014	0	0
15	M25	Z	-. 011	-. 011	0	0
16	M27	Z	-. 011	-. 011	0	0
17	M29	Z	-. 014	-. 014	0	0
18	M31	Z	-. 011	-. 011	0	0
19	M33	Z	-. 011	-. 011	0	0
20	M35	Z	-. 014	-. 014	0	0
21	M37	Z	-. 011	-. 011	0	0
22	M39	Z	-. 011	-. 011	0	0
23	M38A	Z	-. 025	-. 025	0	0
24	M39A	Z	-. 025	-. 025	0	0
25	M40	Z	-. 014	-. 014	0	0
26	M52	Z	-. 016	-. 016	0	0
27	M53	Z	-. 016	-. 016	0	0
28	M54	Z	-. 016	-. 016	0	0
29	M55	Z	-. 014	-. 014	0	0
30	M67	Z	-. 016	-. 016	0	0
31	M68	Z	-. 016	-. 016	0	0
32	M69	Z	-. 016	-. 016	0	0
33	M70	Z	-. 025	-. 025	0	0
34	M71	Z	-. 025	-. 025	0	0
35	M72A	Z	-. 014	-. 014	0	0
36	M73A	Z	-. 014	-. 014	0	0
37	M74A	Z	-. 014	-. 014	0	0
38	M75A	Z	-. 014	-. 014	0	0
39	M72	Z	-. 025	-. 025	0	0
40	M73	Z	-. 025	-. 025	0	0
41	M74	Z	-. 025	-. 025	0	0
42	M75	Z	-. 025	-. 025	0	0

Member Distributed Loads (BLC 3:90 Wind - No Ice)

	Member Label	Direction	Start Magnitude[k/tt,..	End Magnitude[k/ft,F..	Start Location[in,\%]	End Location[in, \%]
1	M1	X	-. 029	-. 029	0	0
2	M2	X	-. 029	-. 029	0	0
3	2	X	-. 029	-. 029	0	0
4	M4	X	-. 025	-. 025	0	0
5	M5	X	-. 025	-. 025	0	0
6	M6	X	-. 025	-. 025	0	0
7	M7	X	-. 029	-. 029	0	0
8	M8	X	-. 029	-. 029	0	0
9	M9	X	-. 029	-. 029	0	0
10	M10	X	-. 029	-. 029	0	0
11	M11	X	-. 025	-. 025	0	0
12	M14	X	-. 029	-. 029	0	0
13	M18	X	-. 029	-. 029	0	0
14	M23	X	-. 014	-. 014	0	0
15	M25	X	-. 011	-. 011	0	0
16	M27	X	-. 011	-. 011	0	0
17	M29	X	-. 014	-. 014	0	0
18	M31	X	-. 011	-. 011	0	0
19	M33	X	-. 011	-. 011	0	0

\qquad

Member Distributed Loads (BLC 3:90 Wind - No Ice)(Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F..	Start Location[in,\%]	End Location[in,\%]
20	M35	X	-. 014	-. 014	0	0
21	M37	X	-. 011	-. 011	0	0
22	M39	X	-. 011	-. 011	0	0
23	M38A	X	-. 025	-. 025	0	0
24	M39A	X	-. 025	-. 025	0	0
25	M40	X	-. 014	-. 014	0	0
26	M52	X	-. 016	-. 016	0	0
27	M53	X	-. 016	-. 016	0	0
28	M54	X	-. 016	-. 016	0	0
29	M55	X	-. 014	-. 014	0	0
30	M67	X	-. 016	-. 016	0	0
31	M68	X	-. 016	-. 016	0	0
32	M69	X	-. 016	-. 016	0	0
33	M70	X	-. 025	-. 025	0	0
34	M71	X	-. 025	-. 025	0	0
35	M72A	X	-. 014	-. 014	0	0
36	M73A	X	-. 014	-. 014	0	0
37	M74A	X	-. 014	-. 014	0	0
38	M75A	X	-. 014	-. 014	0	0
39	M72	X	-. 025	-. 025	0	0
40	M73	X	-. 025	-. 025	0	0
41	M74	X	-. 025	-. 025	0	0
42	M75	X	-. 025	-. 025	0	0

Member Distributed Loads (BLC 4:0 Wind - Ice)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F..	Start Location[in,\%]	End Location[in,\%]
1	M1	Z	-. 01	-. 01	0	0
2	M2	Z	-. 01	-. 01	0	0
3	2	Z	-. 01	-. 01	0	0
4	M4	Z	-. 009	-. 009	0	0
5	M5	Z	-. 009	-. 009	0	0
6	M6	Z	-. 009	-. 009	0	0
7	M7	Z	-. 011	-. 011	0	0
8	M8	Z	-. 011	-. 011	0	0
9	M9	Z	-. 011	-. 011	0	0
10	M10	Z	-. 009	-. 009	0	0
11	M11	Z	-. 009	-. 009	0	0
12	M14	Z	-. 009	-. 009	0	0
13	M18	Z	-. 009	-. 009	0	0
14	M23	Z	-. 003	-. 003	0	0
15	M25	Z	-. 003	-. 003	0	0
16	M27	Z	-. 003	-. 003	0	0
17	M29	Z	-. 003	-. 003	0	0
18	M31	Z	-. 003	-. 003	0	0
19	M33	Z	-. 003	-. 003	0	0
20	M35	Z	-. 003	-. 003	0	0
21	M37	Z	-. 003	-. 003	0	0
22	M39	Z	-. 003	-. 003	0	0
23	M38A	Z	-. 009	-. 009	0	0
24	M39A	Z	-. 009	-. 009	0	0
25	M40	Z	-. 003	-. 003	0	0
26	M52	Z	-. 008	-. 008	0	0
27	M53	Z	-. 008	-. 008	0	0
28	M54	Z	-. 008	-. 008	0	0
29	M55	Z	-. 003	-. 003	0	0
30	M67	Z	-. 008	-. 008	0	0

\qquad

Member Distributed Loads (BLC 4:0 Wind - Ice) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,...	End Magnitude[k/ft,F..	Start Location[in,\%]	End Location[in,\%]
31	M68	Z	-. 008	-. 008	0	0
32	M69	Z	-. 008	-. 008	0	0
33	M70	Z	-. 01	-. 01	0	0
34	M71	Z	-. 01	-. 01	0	0
35	M72A	Z	-. 003	-. 003	0	0
36	M73A	Z	-. 003	-. 003	0	0
37	M74A	Z	-. 003	-. 003	0	0
38	M75A	Z	-. 003	-. 003	0	0
39	M72	Z	-. 01	-. 01	0	0
40	M73	Z	-. 01	-. 01	0	0
41	M74	Z	-. 01	-. 01	0	0
42	M75	Z	-. 01	-. 01	0	0

Member Distributed Loads (BLC 5: 90 Wind - Ice)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitudelkft, F.	Start Location[in,\%]	End Location[in,\%]
1	M1	X	-. 01	-. 01	0	0
2	M2	X	-. 01	-. 01	0	0
3	2	X	-. 01	-. 01	0	0
4	M4	X	-. 009	-. 009	0	0
5	M5	X	-. 009	-. 009	0	0
6	M6	X	-. 009	-. 009	0	0
7	M7	X	-. 011	-. 011	0	0
8	M8	X	-. 011	-. 011	0	0
9	M9	X	-. 011	-. 011	0	0
10	M10	X	-. 009	-. 009	0	0
11	M11	X	-. 009	-. 009	0	0
12	M14	X	-. 009	-. 009	0	0
13	M18	X	-. 009	-. 009	0	0
14	M23	X	-. 003	-. 003	0	0
15	M25	X	-. 003	-. 003	0	0
16	M27	X	-. 003	-. 003	0	0
17	M29	X	-. 003	-. 003	0	0
18	M31	X	-. 003	-. 003	0	0
19	M33	X	-. 003	-. 003	0	0
20	M35	X	-. 003	-. 003	0	0
21	M37	X	-. 003	-. 003	0	0
22	M39	X	-. 003	-. 003	0	0
23	M38A	X	-. 009	-. 009	0	0
24	M39A	X	-. 009	-. 009	0	0
25	M40	X	-. 003	-. 003	0	0
26	M52	X	-. 008	-. 008	0	0
27	M53	X	-. 008	-. 008	0	0
28	M54	X	-. 008	-. 008	0	0
29	M55	X	-. 003	-. 003	0	0
30	M67	X	-. 008	-. 008	0	0
31	M68	X	-. 008	-. 008	0	0
32	M69	X	-. 008	-. 008	0	0
33	M70	X	-. 01	-. 01	0	0
34	M71	X	-. 01	-. 01	0	0
35	M72A	X	-. 003	-. 003	0	0
36	M73A	X	-. 003	-. 003	0	0
37	M74A	X	-. 003	-. 003	0	0
38	M75A	X	-. 003	-. 003	0	0
39	M72	X	-. 01	-. 01	0	0
40	M73	X	-. 01	-. 01	0	0
41	M74	X	-. 01	-. 01	0	0

\qquad
\qquad

Member Distributed Loads (BLC 5:90 Wind - Ice)(Continued)

	Member Label	Direction	Start Magnitude[k/ft,...	End Magnitude[k/ft,F..	Start Location[in, \%]	End Location[in, \%]
42	M75	X	-. 01	-. 01	0	0

Member Distributed Loads (BLC 6:0 Wind - Service)

	Member Label	Direction	Start Magnitude[k/ft,..	End Magnitude[k/ft,F.	Start Location[in,\%]	End Location[in,\%]
1	M1	Z	-. 002	-. 002	0	0
2	M2	Z	-. 002	-. 002	0	0
3	2	Z	-. 002	-. 002	0	0
4	M4	Z	-. 001	-. 001	0	0
5	M5	Z	-. 001	-. 001	0	0
6	M6	Z	-. 001	-. 001	0	0
7	M7	Z	-. 002	-. 002	0	0
8	M8	Z	-. 002	-. 002	0	0
9	M9	Z	-. 002	-. 002	0	0
10	M10	Z	-. 002	-. 002	0	0
11	M11	Z	-. 001	-. 001	0	0
12	M14	Z	-. 002	-. 002	0	0
13	M18	Z	-. 002	-. 002	0	0
14	M23	Z	-. 0004	-. 0004	0	0
15	M25	Z	-. 00003	-. 00003	0	0
16	M27	Z	-. 0003	-. 0003	0	0
17	M29	Z	-. 0004	-. 00004	0	0
18	M31	Z	-. 00003	-. 00003	0	0
19	M33	Z	-. 0003	-. 00003	0	0
20	M35	Z	-. 00004	-. 00004	0	0
21	M37	Z	-. 00003	-. 00003	0	0
22	M39	Z	-. 00003	-. 00003	0	0
23	M38A	Z	-. 001	-. 001	0	0
24	M39A	Z	-. 001	-. 001	0	0
25	M40	Z	-. 0004	-. 0004	0	0
26	M52	Z	-. 0009	-. 00009	0	0
27	M53	Z	-. 0009	-. 00009	0	0
28	M54	Z	-. 00009	-. 00009	0	0
29	M55	Z	-. 00004	-. 00004	0	0
30	M67	Z	-. 00009	-. 00009	0	0
31	M68	Z	-. 0009	-. 00009	0	0
32	M69	Z	-. 00009	-. 00009	0	0
33	M70	Z	-. 001	-. 001	0	0
34	M71	Z	-. 001	-. 001	0	0
35	M72A	Z	-. 0004	-. 0004	0	0
36	M73A	Z	-. 0004	-. 00004	0	0
37	M74A	Z	-. 0004	-. 00004	0	0
38	M75A	Z	-. 0004	-. 0004	0	0
39	M72	Z	-. 001	-. 001	0	0
40	M73	Z	-. 001	-. 001	0	0
41	M74	Z	-. 001	-. 001	0	0
42	M75	Z	-. 001	-. 001	0	0

Member Distributed Loads (BLC 7: 90 Wind - Service)

	Member Label	Direction	Start Magnitude [k/ft,..	End Magnitude[k/ft,F..	Start Location[in,\%]	End Location[in, \%]
1	M1	X	-. 002	-. 002	0	0
2	M2	X	-. 002	-. 002	0	0
3	2	X	-. 002	-. 002	0	0
4	M4	X	-. 001	-. 001	0	0
5	M5	X	-. 001	-. 001	0	0
6	M6	X	-. 001	-. 001	0	0
7	M7	X	-. 002	-. 002	0	0

Company Designer Job Number Model Name

July 8, 2019
4:58 PM
Checked By:
\qquad

Member Distributed Loads (BLC 7:90 Wind - Service) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,..	End Magnitude[k/ft,F..	Start Location[in, \%]	End Location[in, \%]
8	M8	X	-. 002	-. 002	0	0
9	M9	X	-. 002	-. 002	0	0
10	M10	X	-. 002	-. 002	0	0
11	M11	X	-. 001	-. 001	0	0
12	M14	X	-. 002	-. 002	0	0
13	M18	X	-. 002	-. 002	0	0
14	M23	X	-. 0004	-. 0004	0	0
15	M25	X	-. 0003	-. 0003	0	0
16	M27	X	-. 0003	-. 0003	0	0
17	M29	X	-. 00004	-. 0004	0	0
18	M31	X	-. 0003	-. 0003	0	0
19	M33	X	-. 0003	-. 0003	0	0
20	M35	X	-. 0004	-. 00004	0	0
21	M37	X	-. 0003	-. 00003	0	0
22	M39	X	-. 00003	-. 0003	0	0
23	M38A	X	-. 001	-. 001	0	0
24	M39A	X	-. 001	-. 001	0	0
25	M40	X	-. 0004	-. 0004	0	0
26	M52	X	-. 0009	-. 00009	0	0
27	M53	X	-. 00009	-. 0000	0	0
28	M54	X	-. 0009	-. 0009	0	0
29	M55	X	-. 0004	-. 0004	0	0
30	M67	X	-. 00009	-. 00009	0	0
31	M68	X	-. 00009	-. 00009	0	0
32	M69	X	-. 0009	-. 0009	0	0
33	M70	X	-. 001	-. 001	0	0
34	M71	X	-. 001	-. 001	0	0
35	M72A	X	-. 0004	-. 0004	0	0
36	M73A	X	-. 0004	-. 0004	0	0
37	M74A	X	-. 0004	-. 0004	0	0
38	M75A	X	-. 0004	-. 0004	0	0
39	M72	X	-. 001	-. 001	0	0
40	M73	X	-. 001	-. 001	0	0
41	M74	X	-. 001	-. 001	0	0
42	M75	X	-. 001	-. 001	0	0

Member Distributed Loads (BLC 8 : Ice)

	Member Label	Direction	Start Magnitude[k/ft, ...	End Magnitude[k/ft,F...	Start Location[in, \%]	End Location[in,\%]
1	M1	Y	-. 015	-. 015	0	0
2	M2	Y	-. 015	-. 015	0	0
3	2	Y	-. 015	-. 015	0	0
4	M4	Y	-. 02	-. 02	0	0
5	M5	Y	-. 02	-. 02	0	0
6	M6	Y	-. 02	-. 02	0	0
7	M7	Y	-. 015	-. 015	0	0
8	M8	Y	-. 015	-. 015	0	0
9	M9	Y	-. 015	-. 015	0	0
10	M10	Y	-. 02	-. 02	0	0
11	M11	Y	-. 019	-. 019	0	0
12	M14	Y	-. 02	-. 02	0	0
13	M18	Y	-. 02	-. 02	0	0
14	M23	Y	-. 011	-. 011	0	0
15	M25	Y	-. 01	-. 01	0	0
16	M27	Y	-. 01	-. 01	0	0
17	M29	Y	-. 011	-. 011	0	0
18	M31	Y	-. 01	-. 01	0	0

Company Designer Job Number Model Name
\qquad

Member Distributed Loads (BLC 8 : Ice) (Continued)

	Member Label	Direction	Start Magnitude[k/ft, ...	End Magnitude[k/ft,F..	Start Location[in, \%]	End Location[in,\%]
19	M33	Y	-. 01	-. 01	0	0
20	M35	Y	-. 011	-. 011	0	0
21	M37	Y	-. 01	-. 01	0	0
22	M39	Y	-. 01	-. 01	0	0
23	M38A	Y	-. 019	-. 019	0	0
24	M39A	Y	-. 019	-. 019	0	0
25	M40	Y	-. 011	-. 011	0	0
26	M52	Y	-. 014	-. 014	0	0
27	M53	Y	-. 014	-. 014	0	0
28	M54	Y	-. 014	-. 014	0	0
29	M55	Y	-. 011	-. 011	0	0
30	M67	Y	-. 014	-. 014	0	0
31	M68	Y	-. 014	-. 014	0	0
32	M69	Y	-. 014	-. 014	0	0
33	M70	Y	-. 014	-. 014	0	0
34	M71	Y	-. 014	-. 014	0	0
35	M72A	Y	-. 011	-. 011	0	0
36	M73A	Y	-. 011	-. 011	0	0
37	M74A	Y	-. 011	-. 011	0	0
38	M75A	Y	-. 011	-. 011	0	0
39	M72	Y	-. 014	-. 014	0	0
40	M73	Y	-. 014	-. 014	0	0
41	M74	Y	-. 014	-. 014	0	0
42	M75	Y	-. 014	-. 014	0	0

Member Distributed Loads (BLC 22 : BLC 1 Transient Area Loads)

	Member Label	Direction	Start Magnitude[k/ft,.	End Magnitude[k/ft,F	Start Location[in,\%]	End Location[in,\%]
1	M1	Y	-. 0002016	-. 006	0	24
2	M1	Y	-. 006	-. 01	24	48
3	M1	Y	-. 01	-. 009	48	72
4	M1	Y	-. 009	-. 009	72	96
5	M1	Y	-. 009	-. 01	96	120
6	M1	Y	-. 01	-. 006	120	144
7	M1	Y	-. 006	-. 0002016	144	168
8	M5	Y	-. 002	-. 009	0	23.4
9	M5	Y	-. 009	-. 017	23.4	46.8
10	M6	Y	-. 002	-. 009	0	23.4
11	M6	Y	-. 009	-. 017	23.4	46.8
12	M7	Y	-. 01	-. 01	. 117	86.823
13	M2	Y	-. 002	-. 005	0	28
14	M2	Y	-. 005	-. 009	28	56
15	M2	Y	-. 009	-. 012	56	84
16	M2	Y	-. 012	-. 009	84	112
17	M2	Y	-. 009	-. 005	112	140
18	M2	Y	-. 005	-. 002	140	168
19	M4	Y	-. 002	-. 009	0	23.4
20	M4	Y	-. 009	-. 017	23.4	46.8
21	M8	Y	-. 01	-. 01	. 117	86.823
22	2	Y	-. 002	-. 005	0	28
23	2	Y	-. 005	-. 009	28	56
24	2	Y	-. 009	-. 012	56	84
25	2	Y	-. 012	-. 009	84	112
26	2	Y	-. 009	-. 005	112	140
27	2	Y	-. 005	-. 002	140	168
28	M9	Y	-. 01	-. 01	. 117	86.823

Company
\qquad

Member Distributed Loads (BLC 23 : BLC 8 Transient Area Loads)

	Member Label	Direction	Start Magnitude[k/ft,..	End Magnitude[k/ft,F...	Start Location[in,\%]	End Location[in, \%]
1	M1	Y	-. 0002008	-. 006	0	24
2	M1	Y	-. 006	-. 01	24	48
3	M1	Y	-. 01	-. 009	48	72
4	M1	Y	-. 009	-. 009	72	96
5	M1	Y	-. 009	-. 01	96	120
6	M1	Y	-. 01	-. 006	120	144
7	M1	Y	-. 006	-. 0002008	144	168
8	M5	Y	-. 002	-. 009	0	23.4
9	M5	Y	-. 009	-. 017	23.4	46.8
10	M6	Y	-. 002	-. 009	0	23.4
11	M6	Y	-. 009	-. 017	23.4	46.8
12	M7	Y	-. 01	-. 01	. 117	86.823
13	M2	Y	-. 002	-. 005	0	28
14	M2	Y	-. 005	-. 009	28	56
15	M2	Y	-. 009	-. 012	56	84
16	M2	Y	-. 012	-. 009	84	112
17	M2	Y	-. 009	-. 005	112	140
18	M2	Y	-. 005	-. 002	140	168
19	M4	Y	-. 002	-. 009	0	23.4
20	M4	Y	-. 009	-. 017	23.4	46.8
21	M8	Y	-. 01	-. 01	. 117	86.823
22	2	Y	-. 002	-. 005	0	28
23	2	Y	-. 005	-. 009	28	56
24	2	Y	-. 009	-. 012	56	84
25	2	Y	-. 012	-. 009	84	112
26	2	Y	-. 009	-. 005	112	140
27	2	Y	-. 005	-. 002	140	168
28	M9	Y	-. 01	-. 01	. 117	86.823

Member Area Loads (BLC 1 : Dead)

Joint A		Joint B		Joint C		Distribution	Magnitude[ksf]	
1	N3	N6	N5	N4	Y	Two Way	-.01	
2	N4	N5	N7	N2	Y	Two Way	-.01	
3	N2	N3	N6	N7	Y	Two Way	-.01	

Member Area Loads (BLC 8 : Ice)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N3	N6	N5	N4	Y	Two Way	-. 01
2	N4	N5	N7	N2	Y	Two Way	-. 01
3	N2	N3	N6	N7	Y	Two Way	-. 01

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me.	Surface(P.
1	Dead	DL		-1			30		3	
2	0 Wind - No Ice	WLZ					30	42		
3	90 Wind - No Ice	WLX					30	42		
4	0 Wind - Ice	WLZ					30	42		
5	90 Wind - Ice	WLX					30	42		
6	0 Wind - Service	WLZ					30	42		
7	90 Wind - Service	WLX					30	42		
8	Ice	OL1					30	42	3	
9	Live Load a	LL				3				
10	Live Load b	LL				3				

Company Designer Job Number Model Name

July 8, 2019
\qquad
AEMETSCHEK COMPANY \qquad

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me..	Surface(P..
11	Live Load c	LL				3				
12	Live Load d	LL								
13	Maint LL 1	LL					1			
14	Maint LL 2	LL					1			
15	Maint LL 3	LL					1			
16	Maint LL 4	LL					1			
17	Maint LL 5	LL					1			
18	Maint LL 6	LL					1			
19	Maint LL 7	LL					1			
20	Maint LL 8	LL					1			
21	Maint LL 9	LL					1			
22	BLC 1 Transient Area..	None						28		
23	BLC 8 Transient Area...	None						28		

Load Combinations

	Description So	So...P		S... BLC	ac.		Fac...		Fac...		Fac.			BLC	Fac...	. BLC	Fac.	BLC	Fac...	BLC	Fac.	BLCF	ac.
1	1.4 Dead Y	Yes	Y	1	1.4																		
2	1.2 D + 1.0-0 W Y	Yes	Y	1	1.2	2	1																
3	1.2 D + 1.0-30 W Y	Yes	Y	1	1.2	2	866	3	. 5														
4	1.2 D + 1.0-60 W Y	Yes	Y	1	1.2	3	. 866	2	. 5														
5	1.2 D + 1.0-90 W Y	Yes	Y	1	1.2	3	1																
6	1.2 D + 1.0-120 WY	Yes	Y	1	1.2	3	. 866	2	-. 5														
7	1.2 D + 1.0-150 WY	Yes	Y	1	1.2	2	-. 866	3	. 5														
8	1.2 D + 1.0-180 WY	Yes	Y	1	1.2	2	-1																
9	1.2 D + 1.0-210 WY	Yes	Y	1	1.2	2	-. 866	3	-. 5														
10	1.2 D + 1.0-240 WY	Yes	Y	1	1.2	3	-. 866	2	-. 5														
11	1.2 D + 1.0-270 WY		Y	1	1.2	3	-1																
12	1.2 D + 1.0-300 WY	Yes	Y	1	1.2	3	-. 866	2	. 5														
13	1.2 D + 1.0-330 WY		Y	1	1.2	2	. 866	3	-. 5														
14	1.2 D + 1.0-0 W/I.. Y	Yes	Y	1	1.2	4	1			8	1												
15	1.2 D + 1.0-30 W...Y	Yes	Y	1	1.2	4	866	5	. 5	8	1												
16	1.2 D + 1.0-60 W...Y	Yes	Y	1	1.2	5	. 866	4	. 5	8	1												
17	1.2 D + 1.0-90 W...Y	Yes	Y	1	1.2	5	1			8	1												
18	1.2 D + 1.0-120 ... Y	Yes	Y	1	1.2	5	866	4	-. 5	8	1												
19	1.2 D + 1.0-150 ... Y	Yes	Y	1	1.2	4	-. 866	5	. 5	8	1												
20	1.2 D + 1.0-180 ... Y	Yes	Y	1	1.2	4	-1			8	1												
21	1.2D + 1.0-210 ... Y	Yes	Y	1	1.2	4	-. 866	5	-. 5	8	1												
22	1.2 D + 1.0-240 ... Y	Yes	Y	1	1.2	5	-. 866	4	-. 5	8	1												
23	1.2D + 1.0-270 ... Y	Yes	Y	1	1.2	5	-1			8	1												
24	$1.2 \mathrm{D}+1.0-300 \ldots \mathrm{Y}$	Yes	Y	1	1.2	5	-. 866	4	. 5	8	1												
25	1.2D + 1.0-330 ... Y	Yes	Y	1	1.2	4	. 866	5	-. 5	8	1												
26	1.2 $\mathrm{D}+1.5 \mathrm{LL} \mathrm{a}+. . \mathrm{Y}$	Yes	Y	1	1.2	6	1			9	1.5												
27	1.2 D + 1.5 LL a +...Y	Yes	Y	1	1.2	6	866	7	. 5	9	1.5												
28	1.2 D + 1.5 LL a +...Y	Yes	Y	1	1.2	7	. 866	6	. 5	9	1.5												
29	1.2 D + 1.5 LL a +...Y	Yes	Y	1	1.2	7	1			9	1.5												
30	1.2 D + 1.5 LL a +...Y	Yes	Y	1	1.2	7	. 866	6	-. 5	9	1.5												
31	1.2 $\mathrm{D}+1.5 \mathrm{LL} \mathrm{a}+. . \mathrm{Y}$	Yes	Y	1	1.2	6	-. 866	7	. 5	9	1.5												
32	1.2 D + 1.5LL a +...Y	Yes	Y	1	1.2	6	-1			9	1.5												
33	1.2 D + 1.5LL a +...Y	Yes	Y	1	1.2	6	-. 866	7	-. 5	9	1.5												
34	1.2 D + 1.5 LL a +...Y	Yes	Y	1	1.2	7	-. 866	6	-. 5	9	1.5												
35	1.2 D + 1.5 LL a +...Y	Yes	Y	1	1.2	7	-1			9	1.5												
36	1.2 D + 1.5 LL a +...Y	Yes	Y	1	1.2	7	-. 866	6	. 5	9	1.5												
37	$1.2 \mathrm{D}+1.5 \mathrm{LL} \mathrm{a}+. . \mathrm{Y}$		Y	1	1.2	6	. 866	7	-. 5	9	1.5												
38	1.2 D + 1.5LL b +...Y	Yes	Y	1	1.2	6	1			10	1.5												
39	1.2 D + 1.5 LL b +...Y	Yes	Y	1	1.2	6	. 866	7	. 5	10	1.5												

\qquad

Load Combinations (Continued)

Description So...P... S... BLCFac...BLCFac...BLCFac...BLC Fac...BLCFac...BLCFac...BLCFac...BLCFac...BLCFac...BLCFac

40	1.2 D + 1.5 LL b +...Yes	Y	1	1.2	7	. 866	6	. 5	10	1.5						-						
41	1.2 D + 1.5 LL b +...Yes	Y	1	1.2	7	1			10	1.5												
42	$1.2 \mathrm{D}+1.5 \mathrm{LL}$ b +...Yes	Y	1	1.2	7	. 866	6	-. 5	10	1.5												
43	1.2 D + 1.5 LL b +...Yes	Y	1	1.2	6	-. 866	7	. 5	10	1.5												
44	1.2 D + 1.5 LL b +...Yes	Y	1	1.2	6	-1			10	1.5												
45	1.2 D + 1.5 LL b +...Yes	Y	1	1.2	6	-. 866	7	-. 5	10	1.5												
46	1.2 D + 1.5 LL b +...Yes	Y	1	1.2	7	-. 866	6	-. 5	10	1.5												
47	1.2 D + 1.5 LL b +...Yes	Y	1	1.2	7	-1			10	1.5												
48	1.2 D + 1.5 LL b +...Yes	Y	1	1.2	7	-. 866	6	. 5	10	1.5												
49	1.2 D + 1.5 LL b +...Yes	Y	1	1.2	6	. 866	7	-. 5	10	1.5												
50	1.2 D + $1.5 \mathrm{LL} \mathrm{c} \mathrm{+} \mathrm{...Yes}$	Y	1	1.2	6	1			11	1.5												
51	1.2 D + 1.5 LL c + ...Yes	Y	1	1.2	6	. 866	7	. 5	11	1.5												
52	$1.2 \mathrm{D}+1.5 \mathrm{LL} \mathrm{c} \mathrm{+} \mathrm{...Yes}$	Y	1	1.2	7	. 866	6	. 5	11	1.5												
53	1.2 D + $1.5 \mathrm{LL} \mathrm{c} \mathrm{+} \mathrm{...Yes}$	Y	1	1.2	7	1			11	1.5												
54	$1.2 \mathrm{D}+1.5 \mathrm{LL} \mathrm{c} \mathrm{+} \mathrm{...Yes}$	Y	1	1.2	7	. 866	6	-. 5	11	1.5												
55	1.2 D + 1.5 LL c + ...Yes	Y	1	1.2	6	-. 866	7	. 5	11	1.5												
56	1.2 D + $1.5 \mathrm{LL} \mathrm{c} \mathrm{+} \mathrm{...Yes}$	Y	1	1.2	6	-1			11	1.5												
57	1.2 D + 1.5 LL c + ...Yes	Y	1	1.2	6	-. 866	7	-. 5	11	1.5												
58	$1.2 \mathrm{D}+1.5 \mathrm{LL} \mathrm{c} \mathrm{+} \mathrm{...Yes}$	Y	1	1.2	7	-. 866	6	-. 5	11	1.5												
59	1.2 D + $1.5 \mathrm{LL} \mathrm{c} \mathrm{+} \mathrm{...Yes}$	Y	1	1.2	7	-1			11	1.5												
60	1.2 D + $1.5 \mathrm{LL} \mathrm{c} \mathrm{+} \mathrm{...Yes}$	Y	1	1.2	7	-. 866	6	. 5	11	1.5												
61	1.2 D + 1.5 LL c + ...Yes	Y	1	1.2	6	. 866	7	-. 5	11	1.5												
62	1.2 D + 1.5 LL d +...Yes	Y	1	1.2	6	1			12	1.5												
63	1.2 D + 1.5 LL d +...Yes	Y	1	1.2	6	. 866	7	. 5	12	1.5												
64	1.2 D + $1.5 \mathrm{LL} \mathrm{d} \mathrm{+} \mathrm{...Yes}$	Y	1	1.2	7	. 866	6	. 5	12	1.5												
65	1.2 D + 1.5 LL d +...Yes	Y	1	1.2	7	1			12	1.5												
66	1.2 D + $1.5 \mathrm{LL} \mathrm{d} \mathrm{+} \mathrm{...Yes}$	Y	1	1.2	7	. 866	6	-. 5	12	1.5												
67	1.2 D + 1.5 LL d +...Yes	Y	1	1.2	6	-. 866	7	. 5	12	1.5												
68	1.2 D + 1.5 LL d +...Yes	Y	1	1.2	6	-1			12	1.5												
69	1.2 D + $1.5 \mathrm{LL} \mathrm{d} \mathrm{+} \mathrm{...Yes}$	Y	1	1.2	6	-. 866	7	-. 5	12	1.5												
70	1.2 D + $1.5 \mathrm{LL} \mathrm{d} \mathrm{+} \mathrm{...Yes}$	Y	1	1.2	7	-. 866	6	-. 5	12	1.5												
71	1.2 D + $1.5 \mathrm{LL} \mathrm{d} \mathrm{+} \mathrm{...Yes}$	Y	1	1.2	7	-1			12	1.5												
72	1.2 D + 1.5 LL d +...Yes	Y	1	1.2	7	-. 866	6	. 5	12	1.5												
73	1.2 D + 1.5 LL d +...Yes	Y	1	1.2	6	. 866	7	-. 5	12	1.5												
74	1.2 D + 1.5 LL Mai...Yes	Y	1	1.2					13	1.5												
75	1.2 D + 1.5 LL Mai...Yes	Y	1	1.2					14	1.5												
76	1.2 D + 1.5 LL Mai... Yes	Y	1	1.2					15	1.5												
77	1.2 D + 1.5 LL Mai...Yes	Y	1	1.2					16	1.5												
78	1.2 D + 1.5 LL Mai...Yes	Y	1	1.2					17	1.5												
79	1.2 D + 1.5 LL Mai...Yes	Y	1	1.2					18	1.5												
80	1.2 D + 1.5 LL Mai...Yes	Y	1	1.2					19	1.5												
81	1.2 D + 1.5 LL Mai...Yes	Y	1	1.2					20	1.5												
82	1.2 D + 1.5 LL Mai...Yes	Y	1	1.2					21	1.5												

Envelope Joint Reactions

Joint			$\mathrm{X}[\mathrm{k}]$ LC L [k]			LC	$\mathrm{Z}[\mathrm{k}] \quad \mathrm{LC}$		MX [k-ft] LC MY [k-ft] LC MZ [k-ft] LC					
1	N9	max	3.817	5	1.302	20	. 978	2	. 042	2	2.807	5	1.202	11
2		min	-3.764	11	. 155	2	-1.18	8	-3.016	20	-2.715	11	-1.225	5
3	N61A	max	2.447	3	1.303	24	4.501	3	2.163	2	3.807	9	2.667	22
4		min	-2.657	9	213	7	-4.425	9	-1.227	8	-3.726	3	-. 037	4
5	N63	max	2.541	7	1.303	16	4.621	13	2.034	2	3.86	13	. 089	12
6		min	-2.375	13	. 241	10	-4.487	7	-1.053	8	-3.781	7	-2.666	18
7	N125	max	. 178	6	2.016	14	2.929	14	0	11	0	13	0	13
8		min	-. 314	12	. 54	7	65	8	0	18	0	7	0	7
9	N128	max	2.689	17	2.042	17	-. 293	2	0	16	0	4	0	21

\qquad
ANEMETSCHEK COMPANY
\square

Envelope Joint Reactions (Continued)

Joint			X [k]	LC	$\mathrm{Y}[\mathrm{k}]$	LC	Z [k]	LC	MX [k-ft]		MY [k-ft] L		MZ [k-ft] LC	
10		min	. 472	11	. 496	10	-1.321	20	0	10	0	58	0	3
11	N131	max	-. 509	4	2.034	22	-. 153	2	0	2	0	8	0	2
12		min	-2.463	23	. 486	3	-1.685	20	0	8	0	2	0	20
13	Totals:	max	7.713	5	9.738	24	10.632	2						
14		min	-7.713	11	3.116	6	-10.632	8						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

Member		Shape	Code Check	Lo..	LC	S	LC phi*P...phi*P		$\frac{\text { phi*M...phi*M.... }}{1.8721 .872}$	$\begin{aligned} & \text {... Eqn } \\ & \ldots . . \\ & \hline \end{aligned}$
1	M55	PIPE 2.0	. 592	12.	8	. 57812.	8	4.67932 .13		
2	M40	PIPE_2.0	. 563	12.	2	. 56012.	2	4.67932 .13	1.8721 .872	H3-6
3	M72A	PIPE 2.0	. 480	14.5	7	. 464 12...	7	4.67932 .13	1.8721 .872	H3-6
4	M73A	PIPE_2.0	. 446	14.5	13	. 44012.	13	4.67932 .13	1.8721 .872	H3-6
5	M75A	PIPE 2.0	. 409	16...	2	. 33512.	4	4.67932 .13	1.8721 .872	H1-1b
6	M74A	PIPE 2.0	. 470	16...	8	. 30812.	10	4.67932 .13	1.8721 .872	... H1-1b
7	M2	L3X 3 X4	. 457	168	13	. 29684 z	18	15.74646 .656	1.6883 .387	H2-1
8	M38A	HSS4X4X4	. 312	18	2	.26018 z	9	138.21139 .5.	16.18116 .181	H1-1b
9	M39A	HSS4X4X4	. 313	18	2	.25718 z	13	138.21 139.5...	16.18116 .181	... H1-1b
10	M11	HSS4X4X4	. 240	18	6	.18918 z	5	138.21139 .5	16.18116 .181	H1-1b
11	M1	L3X3X4	. 607	168	8	.18384 z	14	15.74646 .656	1.6883 .561	H2-1
12	M23	PIPE_2.0	. 448	56...	8	. $13657 . .$.	3	12.14432 .13	1.8721 .872	... $\mathrm{H} 1-1 \mathrm{~b}$
13	M29	PIPE 2.0	. 540	58.5	2	. 135 59....	19	12.14432 .13	1.8721 .872	H1-1b
14	M27	PIPE_1.5	. 537	33	7	. $13133 . .$.	2	11.97423 .593	1.1051 .105	... H1-1b
15	M35	PIPE 2.0	. 479	57.	2	. 12658.5	23	12.14432 .13	1.8721 .872	H1-1b
16	M53	L2.5x2.5x4	. 732	0	2	. $12515 \ldots$...y	2	36.5838 .556	1.1142 .537	H2-1
17	M39	PIPE 1.5	. 679	33	2	. $12233 .$.	20	11.97423 .593	1.1051 .105	... H1-1b
18	M14	HSS4.5X4.5X4	. 075	18	2	. 12024 z	9	156.9..158.9..	20.90720 .907	... $\mathrm{H} 1-1 \mathrm{~b}$
19	M18	HSS4.5X4.5X4	. 071	18	2	.11824 z	13	156.9..158.9.	20.90720 .907	H1-1b
20	M33	PIPE_1.5	. 510	33....	3	. $11533 .$.	16	11.97423 .593	1.1051 .105	... $\mathrm{H} 1-1 \mathrm{~b}$
21	2	L3X ${ }^{\text {¢ }}$ X4	. 480	0	3	.11284 z	21	15.74646 .656	1.6883 .633	H2-1
22	M37	PIPE 1.5	. 647	33	8	.09933	7	11.97423 .593	1.1051 .105	H1-1b
23	M52	L2.5x 2.5×4	. 407	0	11	. $09115 . . . y$	9	36.5838 .556	1.1142 .537	H2-1
24	M68	L2.5x2.5x4	. 755	0	8	. 089 15.... y	8	36.5838 .556	1.1142 .537	H2-1
25	M69	L2.5x2.5x4	. 582	15...	25	.0880 y	8	36.5838 .556	1.1142 .537	H2-1
26	M10	HSS4.5X4.5X4	. 067	18	22	.08724 z	5	156.9..158.9...	20.90720 .907	H1-1b
27	M31	PIPE 1.5	. 636	33	3	.08633	3	11.97423 .593	1.1051 .105	H1-1b
28	M54	L2.5x2.5×4	. 620	0	7	. 086 15.... y	7	36.5838 .556	1.1142 .537	H2-1
29	M67	L2.5x2.5x4	. 561	15...	16	. 063 15.... y	3	36.5838 .556	1.1142 .537	H2-1
30	M25	PIPE_1.5	. 447	$33 .$.	7	. 05933.	8	11.97423 .593	1.1051 .105	... $\mathrm{H} 1-1 \mathrm{~b}$
31	M6	LL3x $3 \times 4 \times 0$. 195	0	2	. 01946.8 z	13	76.39193 .312	6.484 .361	... $\mathrm{H} 1-1 \mathrm{~b}$
32	M5	LL3x3x4x0	. 190	0	8	. 01946.8 z	9	76.39193 .312	6.484 .361	... H1-1b
33	M9	L3X3X4	. 388	43...	7	. $01643 . . . z$	z 18	14.72946 .656	1.6883 .268	H2-1
34	M8	L3X3X4	. 393	43...	9	. $01643 . .$. z	z 22	14.72946 .656	1.6883 .283	H2-1
35	M7	L3X3X4	. 277	43....	4	. $01643 . . . z$	z 18	14.72946 .656	1.6883 .226	H2-1
36	M4	LL3x3x4x0	. 135	0	6	.01346 .8 z	5	76.39193 .312	6.484 .361	H1-1b
37	M75	L2.5x2.5x3	. 431	36...	17	. $01273 . . . \mathrm{y}$	3	8.82729 .192	. 8731.523	H2-1
38	M71	L2.5x2.5x3	. 429	$36 .$.	21	. $01273 . .$. y	7	8.82729 .192	. 8731.523	H2-1
39	M70	L2.5x2.5x3	. 457	36...	19	. $01073 \ldots \mathrm{z}$	3	8.82729 .192	. 8731.523	H2-1
40	M73	L2.5x2.5x3	. 434	36...	25	.0100 y	11	8.82729 .192	. 8731.523	H2-1
41	M74	L2.5×2.5×3	. 455	36...	15	. $00973 . . . z$	z 10	8.82729 .192	. 8731.523	H2-1
42	M72	L2.5x2.5x3	. 459	36....	23	.0090 y	22	8.827 29.192	.8731 .523	H2-1

APPENDIX C

Exhibit F

Power Density/RF Emissions Report

Transcom Engineering, Inc.

Radio Frequency Emissions Analysis Report

T-MOBILE Existing Facility

Site ID: CT11511A

Sprint - Brooklyn
116 Grant Hill Road
Brooklyn, CT 06234

June 5, 2019

Transcom Engineering Project Number: 737001-0143

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{1 0 . 2 6} \%$

Transcom Engineering, Inc.

June 5, 2019
T-MOBILE
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 6009

Emissions Analysis for Site: CT11511A - Sprint - Brooklyn

Transcom Engineering, Inc ("Transcom") was directed to analyze the proposed upgrades to the T-MOBILE facility located at $\mathbf{1 1 6}$ Grant Hill Road, Brooklyn, CT, for the purpose of determining whether the emissions from the Proposed T-MOBILE Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(\mathrm{~b})(1)-(\mathrm{b})(3)$, to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limits for the $600 \& 700 \mathrm{MHz}$ bands are approximately $400 \mu \mathrm{~W} / \mathrm{cm}^{2}$ and $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$ respectively. The general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS) bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Transcom Engineering, Inc.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

Transcom Engineering, Inc.

CALCULATIONS

Calculations were performed for the proposed upgrades to the T-MOBILE antenna facility located at $\mathbf{1 1 6}$
Grant Hill Road, Brooklyn, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65 . Since T-MOBILE is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was focused at the base of the tower. For this report the sample point is the top of a 6 -foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in Table 1:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
LTE	1900 MHz (PCS)	4	40
GSM	$1900 \mathrm{MHz}($ PCS $)$	1	15
LTE $/ 5 \mathrm{G} \mathrm{NR}$	600 MHz	2	40
LTE	700 MHz	2	20

Table 1: Channel Data Table

Transcom Engineering, Inc.

The following antennas listed in Table 2 were used in the modeling for transmission in the $600,700 \mathrm{MHz}$, 1900 MHz (PCS) and 2100 MHz (AWS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

Sector	Antenna Number	Antenna Make / Model	Antenna Centerline (ft)
A	1	RFS APX16DWV-16DWV-S-E-ACU	137
A	2	RFS APXVAARR24_43-U-NA20	137
B	1	RFS APX16DWV-16DWV-S-E-ACU	137
B	2	RFS APXVAARR24_43-U-NA20	137
C	1	RFS APX16DWV-16DWV-S-E-ACU	137
C	2	RFS APXVAARR24_43-U-NA20	137

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

Cable losses were factored in the calculations for this site. Since all $1900 \mathbf{M H z}(\mathbf{P C S})$ radios are ground mounted the following cable loss values were used. For each ground mounted $\mathbf{1 9 0 0} \mathbf{~ M H z}$ (PCS) radio there was $\mathbf{1 . 6 5} \mathbf{~ d B}$ of cable loss calculated into the system gains / losses for this site. These values were calculated based upon the manufacturers specifications for $\mathbf{1 6 0}$ feet of $\mathbf{1 - 5 / 8}$ " coax.

Transcom Engineering, Inc.

RESULTS

Per the calculations completed for the proposed T-MOBILE configurations Table 3 shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

Antenna ID	Antenna Make / Model	Frequency Bands	Antenna Gain (dBd)	Channel Count	Total TX Power (W)	ERP (W)	MPE \%
Antenna A1	RFS APX16DWV-16DWV-S-E-ACU	1900 MHz (PCS)	15.9	5	175	4,656.27	0.97
Antenna \qquad	RFS APXVAARR24_43-U-NA20	$600 \mathrm{MHz} / 700 \mathrm{MHz}$	$\begin{gathered} 12.95 / \\ 13.35 \\ \hline \end{gathered}$	4	120	2,443.03	1.22
Sector A Composite MPE\%							2.19
$\begin{array}{c\|} \hline \text { Antenna } \\ \text { B1 } \\ \hline \end{array}$	RFS APX16DWV-16DWV-S-E-ACU	1900 MHz (PCS)	15.9	5	175	4,656.27	0.97
\qquad	RFS APXVAARR24_43-U-NA20	$600 \mathrm{MHz} / 700 \mathrm{MHz}$	$\begin{aligned} & 12.95 / \\ & 13.35 \\ & \hline \end{aligned}$	4	120	2,443.03	1.22
Sector B Composite MPE\%							2.19
Antenna C1	RFS APX16DWV-16DWV-S-E-ACU	1900 MHz (PCS)	15.9	5	175	4,656.27	0.97
Antenna C2	$\begin{gathered} \text { RFS } \\ \text { APXVAARR24_43-U-NA20 } \\ \hline \end{gathered}$	$600 \mathrm{MHz} / 700 \mathrm{MHz}$	$\begin{gathered} 12.95 / \\ 13.35 \\ \hline \end{gathered}$	4	120	2,443.03	1.22
Sector C Composite MPE\%							2.19

Table 3: T-MOBILE Emissions Levels

Transcom Engineering, Inc.

The Following table (table 4) shows all additional carriers on site and their MPE\% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum T-MOBILE MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. Table 5 below shows a summary for each T-MOBILE Sector as well as the composite MPE value for the site.

Site Composite MPE \%	
Carrier	MPE \%
T-MOBILE - Max Per Sector Value	$\mathbf{2 . 1 9 \%}$
Sprint	2.62%
AT\&T	2.35%
Verizon Wireless	2.79%
CL\&P	0.31%
Site Total MPE \%:	$\mathbf{1 0 . 2 6} \%$

Table 4: All Carrier MPE Contributions

T-MOBILE Sector A Total:	2.19%
T-MOBILE Sector B Total:	2.19%
T-MOBILE Sector C Total:	2.19%
Site Total:	

Table 5: Site MPE Summary

Transcom Engineering, Inc.

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. Table 6 below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated T-MOBILE sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

T-MOBILE _ Frequency Band/ Technology Max Power Values (Per Sector)	\# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Frequency (MHz)	Allowable MPE $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$	Calculated \% MPE
T-Mobile 1900 MHz (PCS) LTE	4	1,064.29	137	8.92	1900 MHz (PCS)	1000	0.89\%
T-Mobile 1900 MHz (PCS) GSM	1	399.11	137	0.84	1900 MHz (PCS)	1000	0.08\%
T-Mobile 600 MHz LTE / 5G NR	2	788.97	137	3.31	600 MHz	400	0.83\%
T-Mobile 700 MHz LTE	2	432.54	137	1.81	700 MHz	467	0.39\%
						Total:	2.19\%

Table 6: T-MOBILE Maximum Sector MPE Power Values

Transcom Engineering, Inc.

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-MOBILE facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-MOBILE Sector	Power Density Value (\%)
Sector A:	2.19%
Sector B:	2.19%
Sector C:	2.19%
T-MOBILE Maximum	2.19%
Total (per sector):	
Site Total:	10.26%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{1 0 . 2 6} \%$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director
Transcom Engineering, Inc
PO Box 1048
Sterling, MA 01564

[^0]: Notes:

 1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the \% capacity listed.
 2) Rating per TIA-222-H Section 15.5
[^1]: Notes:

 1) See additional documentation in "Appendix B" for calculations supporting the \% capacity consumed.
 2) All sectors are typical
 3) Proposed members
