CROWN

Crown Castle

3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065

January 7, 2021

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification for T-Mobile:

876390 - T-Mobile Site ID: CT11511A 116 Grant Hill Road, Brooklyn, CT 06234

Latitude: 41° 47′ 29.64″ / Longitude: -72° 0′ 54.04″

Dear Ms. Bachman:

T-Mobile currently maintains six (6) antennas at the 137-foot mount on the existing 150-foot Monopole Tower, located at 116 Grant Hill Road, Brooklyn, CT. The tower is owned by Crown Castle and the property is owned by Mr. and Mrs. Bernier. T-Mobile now intends to replace six (6) existing antennas with three (3) new 1900 MHz antennas and three (3) new 600/700 MHz antennas. The new antennas will be installed at the 137-ft level of the tower and some will be capable of providing 5G services. T-Mobile is also proposing tower mount modification as shown on the enclosed Mount Analysis Report.

Planned Modifications:

Tower:

Remove:

(6) 1 5/8" Coax

Remove and Replace:

- (3) LNX 6515DS-A1M Antenna (**REMOVE**) (3) RFS-APXVAARR24_43-U-NA20 Antenna 600/700 MHz (**REPLACE**)
- (3) EMS RR90-17-02DP Antenna (**REMOVE**) (3) RFS-APX16DWV-S-E-A20 Antenna 1900 MHz (**REPLACE**)

Install New:

- (1) 1 5/8" Hybrid Fiber Line
- (3) Radio 4449 B71/B12

Existing to Remain:

- (6) 1 5/8" Coax
- (3) TMA

Ground:

Upgrade to existing ground cabinet. (Internally)

Page 2

The facility was approved by the Town of Brooklyn, though original zoning documents have not been located despite diligent inquiry and efforts. The original building permit, permit number 5802, issued on April 14, 2000 by the Town of Brooklyn Building Department permitting the construction of a 150' monopole tower. No conditions of approval are known. T-Mobile's was approved for tower sharing at this facility by the Council on July 8, 2003.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Richard Ives, First Selectman for the Town of Brooklyn, Jana Butts Roberson, AICP, Town Planner, Crown Castle as the tower owner, and Mr. and Mrs. Bernier as the property owners.

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Anne Marie Zsamba.

Sincerely,

Anne Marie Zsamba
Site Acquisition Specialist
3 Corporate Park Drive, Suite 101
Clifton Park, NY 12065
(201) 236-9224
AnneMarie.Zsamba@crowncastle.com

Attachments

cc:

Melanie A. Bachman

Page 3

Richard Ives, First Selectman (via email only to r.ives@brooklynct.org)
Town of Brooklyn
4 Wolf Den Road
Brooklyn, CT 06234

Jana Butts Roberson, AICP, Town Planner (via email only to j.roberson@brooklynct.org)
Town of Brooklyn
4 Wolf Den Road
Brooklyn, CT 06234

Mr. and Mrs. Bernier, Property Owner (via email only to bernier66@att.net) 116 Grant Hill Road Brooklyn, CT 06234

Crown Castle, Tower Owner

From: Zsamba, Anne Marie
To: bernier66@att.net

Subject: Notice of Exempt Modification - T-Mobile - 116 Grant Hill Rd, Brooklyn - 876390

Date: Thursday, January 7, 2021 2:00:00 PM

Attachments: EM-T-MOBILE-116 GRANT HILL RD BROOKLYN-876390-CT11511A-NOTICE.pdf

To The Bernier's, as Property Owners:

Attached please find T-Mobile's exempt modification application that is being submitted to the Connecticut Siting Council today, January 7, 2021.

In light of the present circumstances with Covid-19, The Council has advised that electronic notification of this filing is acceptable. If you could kindly confirm receipt. Thank you.

Best,

Anne Marie Zsamba

ANNE MARIE ZSAMBA

Site Acquisition Specialist

T: (201) 236-9224 M: (518) 350-3639 F: (724) 416-6112

CROWN CASTLE

3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 CrownCastle.com From: Zsamba, Anne Marie
To: "r.ives@brooklynct.org"

Subject: Notice of Exempt Modification - T-Mobile - 116 Grant Hill Rd, Brooklyn - 876390

Date: Thursday, January 7, 2021 2:00:00 PM

Attachments: EM-T-MOBILE-116 GRANT HILL RD BROOKLYN-876390-CT11511A-NOTICE.pdf

Dear First Selectman Ives:

Attached please find T-Mobile's exempt modification application that is being submitted to the Connecticut Siting Council today, January 7, 2021.

In light of the present circumstances with Covid-19, The Council has advised that electronic notification of this filing is acceptable. If you could kindly confirm receipt. Thank you.

Best,

Anne Marie Zsamba

ANNE MARIE ZSAMBA

Site Acquisition Specialist

T: (201) 236-9224 M: (518) 350-3639 F: (724) 416-6112

CROWN CASTLE

3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 CrownCastle.com From: Zsamba, Anne Marie
To: "j.roberson@brooklynct.org"

Subject: Notice of Exempt Modification - T-Mobile - 116 Grant Hill Rd, Brooklyn - 876390

Date: Thursday, January 7, 2021 2:00:00 PM

Attachments: EM-T-MOBILE-116 GRANT HILL RD BROOKLYN-876390-CT11511A-NOTICE.pdf

Dear Town Planner Roberson:

Attached please find T-Mobile's exempt modification application that is being submitted to the Connecticut Siting Council today, January 7, 2021.

In light of the present circumstances with Covid-19, The Council has advised that electronic notification of this filing is acceptable. If you could kindly confirm receipt. Thank you.

Best,

Anne Marie Zsamba

ANNE MARIE ZSAMBA

Site Acquisition Specialist

T: (201) 236-9224 M: (518) 350-3639 F: (724) 416-6112

CROWN CASTLE

3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 CrownCastle.com

Exhibit A

Original Facility Approval

PERMIT NO. Nº 005802		ION FOR BUI		MIT _{, TO}	OWN OF BROOKLYN CONNECTICUT
LOCATION OF JOB (NO. & STREET)		CARD NO.	MAP	BLOCK	LOT
116 short HUD			1 4		1.5
QWNER PULL	TEL.	ADDRESS (NO., S	IREET TOWN ST	TATE ZIP)	
OWNER	156.		·	,	
KM 1/4 Demins		Jon			
APPLICANT	TEL.	ADDRESS (NO., 5	TREET, TOWN, ST	TATE, ZIP)	•
Sprint Spectrum	\	la Bass	us Und	DA Li)ni	lengton
	TEL.	ADDRESS (NO., S	TREET TOWN ST	TATE ZID	O IO
BUILDER	1156	ADDRESS (NO., S	incer, roven, a	in in, eir j	G 06492
	,				
LICENSE #	NAME & TEL.	# OF PERSON RESP	ONSIBLE		
	t D o D	antod An	d Vicible	From The	Stroot
All Permits Mus	E Be P	osted An	a visible	From me	Sucer
SIZE OF BUILDING		DISTANCES FROM L		OTHER RI	EQUIREMENTS
		(Circle Front Lot L	ine)	ZONING PERMIT	
STORIES NO. OF FAMILIES	-				REQ'D. ATTACHED
HEIGHTPEPTHFRONT	EAST	WEST NO	TH SOUTH	PLOT PLAN	
		PROPOSED US	E	1	REQ'D ATTACHED
TOTAL FLOOR AREA (NEW)SQ.F1		• • • • • • • • • • • • • • • • • • • •	-	SEPTIC PERMIT	
	D NEW	HOME (Single Family)	1		REQ'D. ATTACHED
		'I FAMILY	·		200/41.0
TYPE OF WORK BEING DONE	#OF	BEDROOMS		API	PROVALS
ORIG. CONSTRUCTION DE REPAIR	WATI	ER SUPPLY		70,000	FIRE MARSHAL
ALTERATION DEMOLITION	N			1	
	ADDI	TION		•	ENGINEER
ADDITION	— □ GARA	AGE		SANITATION	STREET SUPT
CONSTRUCTION VALUE	DEC	VPORCH		FEE	COVERS
CONSTRUCTION VALUE	G SHED				VALUE FEE
ESTIMATED	_ D POOI			CONSTRUCTION	118.000 826
	_ 1	MERCIAL/PUBLIC		PLUMBING	
ACTUAL	— 🗖 отн			□ HEATING	
TANDE OF USAT		***		ELECTRICAL	
TYPE OF HEAT	BUILDING			C SEPTIC	
D ELECTRIC D SOLAR	PLANS	REQUIRED	ATTACHED	ZONING	
GAS COTHER	MATERIA	15		OTHER	
	_ ust	ON PLANS	ATTACHED	CHECK # 0588	TOTAL DATE PAID OF CO
DESCRIPTION OF WORK / REMARKS:	· ·				
400	m -	it m ute	lecomo	nunicatio	, <u>a</u>
All work covered by this application has been autidone according to state regulations. This permit	shall lapse if wor	k does hat commence	property and will be within 6 months.	4/17/00	DISAPPROVED
Date	Owner/Agent Sig	nature		Date	Building Official
	7			/	, oits del Caldenred

Office Copy - White

Owner Copy - Yellow

Assessor's Copy - Pink

Building Official - Green

Building Official - Goldenrod

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@po.state.ct.us Web Site: www.state.ct.us/csc/index.htm

Stephen J. Humes
LeBoeuf, Lamb, Greene & MacRae
Goodwin Square
225 Asylum Street
Hartford, CT 06103

RE:

TS-T-MOBILE-019-030617 - Omnipoint Communications, Inc. request for an order to approve tower sharing at an existing telecommunications facility located at 116 Grant Hill Road, Brooklyn, Connecticut.

Dear Attorney Humes:

At a public meeting held July 8, 2003, the Connecticut Siting Council (Council) ruled that the shared use of this existing tower site is technically, legally, environmentally, and economically feasible and meets public safety concerns, and therefore, in compliance with General Statutes § 16-50aa, the Council has ordered the shared use of this facility to avoid the unnecessary proliferation of tower structures. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Any additional change to this facility may require an explicit request to this agency pursuant to General Statutes § 16-50aa or notice pursuant to Regulations of Connecticut State Agencies Section 16-50j-73, as applicable. Such request or notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

This decision applies only to this request for tower sharing and is not applicable to any other request or construction.

The proposed shared use is to be implemented as specified in your letter dated June 17, 2003.

Thank you for your attention and cooperation.

Very truly yours,

Pamela B. Katz, P.E.

Chairman

PBK/laf

c: Honorable Maurice F. Bowen, First Selectman, Town of Brooklyn Chester Dobrowski, Zoning Enforcement Officer, Town of Brooklyn Thomas J. Regan, Esq., Brown Rudnick Berlack Israels, LLP Christopher B. Fisher, Esq., Cuddy & Feder LLP

Exhibit B

Property Card

116 GRANT HILL RD

Location 116 GRANT HILL RD Mblu 4/ / 5/ CELL/

Acct# 00024910 Owner SPRINT SPECTRUM

Assessment \$845,500 **Appraisal** \$1,207,800

> PID 3735 **Building Count** 1

Current Value

Appraisal						
Valuation Year	Improvements	Land	Total			
2020	\$1,207,800	\$0	\$1,207,800			
	Assessment					
Valuation Year	Improvements	Land	Total			
2020	\$845,500	\$0	\$845,500			

Owner of Record

Owner SPRINT SPECTRUM Sale Price \$0 Co-Owner C/O GLOBAL SIGNAL AC1 II LLC Certificate

Care Of

Book 0000 0000 **Address** PMB331 Page

4017 WASHINGTON RD Sale Date 10/01/2009

MCMURRAY, PA 15317 Qualified

Ownership History

Ownership History						
Owner Sale Price Certificate Sale Date Book Page						
SPRINT SPECTRUM	\$0		10/01/2009	0000	0000	

Building Information

Building 1: Section 1

Year Built:

Living Area: 0 Replacement Cost: \$0

Building Percent Good: Replacement Cost

Less Depreciation: \$0

Building Attributes				
Field	Description			
Style:	Outbuildings			
Model				
Grade:				
Stories:				
Occupancy				
Exterior Wall 1				
Exterior Wall 2				
Roof Structure:				
Roof Cover				
Interior Wall 1				
Interior Wall 2				
Interior Flr 1				
Interior Flr 2				
Heat Fuel				
Heat Type:				
AC Type:				
Total Bedrooms:				
Total Bthrms:				
Total Half Baths:				
Total Xtra Fixtrs:				
Total Rooms:				
Bath Style:				
Kitchen Style:				
Num Kitchens				
Cndtn				
Num Park				
Fireplaces				
Fndtn Cndtn				
Basement				
Datomin				

Building Photo

(http://images.vgsi.com/photos/BrooklynCTPhotos//default.jpg)

Building Layout

Building Layout (ParcelSketch.ashx?pid=3735&bid=3668)

Building Sub-Areas (sq ft)	<u>Legend</u>
No Data for Building Sub-Areas	

Extra Features

Extra Fea	tures <u>Legend</u>
No Data for	Extra Features

Land

Land Use		Land Line Valua	ation
Use Code	4300	Size (Acres)	0

Description TEL TWR MDL00

Zone Neighborhood

Alt Land Appr No Category

Frontage Depth

Assessed Value \$0 Appraised Value \$0

Outbuildings

	Outbuildings					<u>Legend</u>
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
SHD5	Cell Shed			360.00 SF	\$54,000	1
FN3	FENCE-6' CHAIN			280.00 L.F.	\$1,300	1
TWR	CELL TOWER			1.00 UNITS	\$90,000	1
ARY	CELL ARRAY			5.00 UNIT	\$1,062,500	1

Valuation History

Appraisal					
Valuation Year	Improvements	Land	Total		
2019	\$1,055,300	\$0	\$1,055,300		
2018	\$1,055,300	\$0	\$1,055,300		
2017	\$1,055,300	\$0	\$1,055,300		

Assessment					
Valuation Year	Improvements	Land	Total		
2019	\$738,700	\$0	\$738,700		
2018	\$738,700	\$0	\$738,700		
2017	\$738,700	\$0	\$738,700		

116 GRANT HILL RD

Location 116 GRANT HILL RD **Mblu** 4//5//

Acct# 00024900 Owner BERNIER JEAN PAUL & DAWNA

G

Assessment \$360,930 **Appraisal** \$686,300

PID 255 Building Count 1

Current Value

Appraisal						
Valuation Year Improvements Land Total						
2020	\$191,800	\$494,500	\$686,300			
Assessment						
Valuation Year	Improvements	Land	Total			
2020	\$134,400	\$226,530	\$360,930			

Owner of Record

Owner BERNIER JEAN PAUL & DAWNA G Sale Price \$0
Co-Owner Certificate

Co-Owner Certificate
Care Of Book

 Care Of
 Book
 0462

 Address
 116 GRANT HILL RD
 Page
 0288

BROOKLYN, CT 06234 Sale Date 09/17/2009

Instrument 29 Qualified U

Ownership History

Owners	1.1. 111.4.					
Ownership History						
rice	Certificate	Instrument	Sale Date	Book	Page	
\$0		29	09/17/2009	0462	0288	
\$0		29	09/17/2009	0462	0287	
\$500			06/19/1968	0045	0291	
\$0			11/28/1955	0032	0549	
	\$0 \$0 \$500	so \$0 \$500	Certificate Instrument	Sale Date Sale	rice Certificate Instrument Sale Date Book \$0 29 09/17/2009 0462 \$0 29 09/17/2009 0462 \$500 06/19/1968 0045	

Building Information

Building 1 : Section 1

Year Built: 1956
Living Area: 1,595
Replacement Cost: \$265,281
Building Percent Good: 70

Replacement Cost

Less Depreciation: \$185,700

Building	Building Attributes				
Field	Description				
Style:	Cape Cod				
Model	Residential				
Grade:	C+				
Stories:	1.25				
Occupancy	2				
Exterior Wall 1	Vinyl Siding				
Exterior Wall 2	Clapboard				
Roof Structure:	Gable/Hip				
Roof Cover	Asph/F Gls/Cmp				
Interior Wall 1	Drywall/Sheet				
Interior Wall 2					
Interior Flr 1	Hardwood				
Interior Flr 2	Carpet				
Heat Fuel	Oil				
Heat Type:	Hot Water				
AC Type:	None				
Total Bedrooms:	2 Bedrooms				
Total Bthrms:	3				
Total Half Baths:	0				
Total Xtra Fixtrs:	1				
Total Rooms:	6				
Bath Style:	Average				
Kitchen Style:	Modern				
Num Kitchens					
Cndtn					
Num Park					
Fireplaces					
Fndtn Cndtn					
Basement					

Building Photo

(http://images.vgsi.com/photos/BrooklynCTPhotos//\00\00\02\13.JPG)

Building Layout

(ParcelSketch.ashx?pid=255&bid=255)

	Building Sub-Areas (sq ft)						
Code	Description	Gross Area	Living Area				
BAS	First Floor	1,595	1,595				
EAU	Attic, Expansion, Unfinished	1,373	0				
FBM	Basement, Finished	1,583	0				
FGR	Garage	648	0				
FOP	Porch, Open	70	0				
UAT	Attic, Unfinished	648	0				
		5,917	1,595				

Extra Features

Extra Features <u>Leg</u>					
Code	Description	Size	Value	Bldg #	
FPL1	FIREPLACE 1 ST	1.00 UNITS	\$1,500	1	

FPO	EXTRA FPL OPEN	2.00 UNITS	\$1,100	1	
KIT1	EXTRA KITCHEN	1.00 UNITS	\$3,500	1	

Land

Land Use Land Line Valuation

Use Code 1070

Description SFR w/INLAW

Zone RA

Neighborhood 0050 Alt Land Appr No

Category

Size (Acres) 105.00

Frontage

Depth

Assessed Value \$226,530

Appraised Value \$494,500

Outbuildings

Outbuildings	Legend
No Data for Outbuildings	

Valuation History

Appraisal						
Valuation Year Improvements Land Total						
2019	\$147,300	\$447,400	\$594,700			
2018	\$147,300	\$447,400	\$594,700			
2017	\$147,300	\$447,400	\$594,700			

Assessment						
Valuation Year	Improvements	Land	Total			
2019	\$103,200	\$232,530	\$335,730			
2018	\$103,200	\$232,530	\$335,730			
2017	\$103,200	\$232,530	\$335,730			

(c) 2021 Vision Government Solutions, Inc. All rights reserved.

Exhibit C

Construction Drawings

Windy Hill Rd

T-MOBILE SITE NAME:

SPRINT-BROOKLYN

T-MOBILE SITE NUMBER: CT11511A

CROWN BU: 876390 / APP#: 494419

67D04G CONFIGURATION

116 GRANT HILL ROAD BROOKLYN, CT 06234

EXISTING 150'-0" MONOPOLE

TITLE SHEET OVERALL SITE PLAN

TOWER ELEVATION

MOUNT MOD DETAILS

MOUNT MOD DETAILS

ANTENNA AND RRU DETAILS

SHEET

A-1

A-2A-3

F-1

S1

*T * * Mobile *

EXISTING 150'-0" MONOPOLE

136355.004.01 CHECKED BY:

	ISSUED FOR:							
REV	EV DATE DRWN DESCRIPTION							
0	7/29/19	DAC	CONSTRUCTION					
1	11/25/20	JTS	CONSTRUCTION					

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/21

SHEET NUMBER:

PROJECT SUMMARY

SITE TYPE:

EXISTING EQUIPMENT UPGRADE

SITE ADDRESS

116 GRANT HILL ROAD

JURISDICTION:

WINDHAM COUNTY

LATITUDE: LONGITUDE:

41.791553° N 72.015125° W

TOWER OWNER:

CROWN CASTLE

3200 HORIZON DRIVE, SUITE 150 KING OF PRUSSIA, PA 19406

(610) 635-3225

CUSTOMER/APPLICANT:

4 SYLVAN WAY

PARSIPPANY, NJ 07054

(973) 397-4800

OCCUPANCY TYPE:

A.D.A. COMPLIANCE:

FACILITY IS UNMANNED AND NOT

CONTACT INFORMATION

1717 S. BOULDER, STE. 300

MIKE OAKES

ELECTRIC PROVIDER: NORTHEAST UTILITIES (CL&P)

TELCO AT&T PROVIDER: 1-855-637-9527

1-800-286-2000

NO SCALE DRIVING DIRECTIONS

Grant Hill Ro

Stetson Corne

LOCATION MAP

DEPART BRADLEY INTERNATIONAL AIRPORT ON TERMINAL RD. ROAD NAME CHANGES TO BRADLEY FIELD CONNECTOR. ROAD NAME CHANGES TO CT-20 [BRADLEY FIELD CONNECTOR]. TAKE RAMP (RIGHT) ONTO 1-91 [RICHARD P HORAN MEMORIAL HWY]. AT EXIT 35A, TAKE RAMP (RIGHT) ONTO 1-291. TURN OFF ONTO RAMP. KEEP STRAIGHT TO STAY ON RAMP. TAKE RAMP (LEFT) ONTO 1-384. ROAD NAME CHANGES TO US-44 [US-6]. BEAR RIGHT ONTO US-6 [HOPRIVER RD]. KEEP STRAIGHT ONTO RAMP. TURN RIGHT ONTO US-6 [CT-66]. TURN LEFT ONTO CHERRY HILL RD, THEN IMMEDIATELY TURN LEFT ONTO GRANT HILL RD. TURN RIGHT ONTO LOCAL ROAD(S). ARRIVE AT

CODE COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO

CODE TYPE BUILDING/DWELLING **MECHANICAL ELECTRICAL**

PROJECT DESCRIPTION

THE PROPOSED PROJECT INCLUDES:

• REMOVE (6) 1 5/8" COAX CABLES • REMOVE (6) B12 RADIOS (GROUND LEVEL).

Sarah Pearl Rd

• REMOVE (1) DUS41.

• REMOVE & REPLACE (6) EXISTING ANTENNAS AT 137'-0".

• INSTALL (3) NEW RRUS AT 137'-0".

• INSTALL (1) NEW 6x12 HCS FIBER.

• INSTALL (2) BB 6630s

 MODIFY EXISTING MOUNTS PER MOUNT MODIFICATION REPORT BY B+T GROUP DATED 7/9/19.

DO NOT SCALE DRAWINGS

ALL DRAWINGS CONTAINED HEREIN ARE FORMATTED FOR 11X17. CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON THE JOB SITE AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME.

A/E DOCUMENT REVIEW STATUS

DRAWING INDEX

SHEET DESCRIPTION

ANTENNA/CABLE SCHEDULE AND AZIMUTH PLANS

PANEL SCEHDULE AND ONE-LINE DIAGRAM

	IIILE	SIGNATURE	DATE
	T-MOBILE PROP:		
	T-MOBILE R.F. MGR.:		
	T-MOBILE NetOps:		
	T-MOBILE CONST. MGR.:		
	INTERCONNECT:		
	T-MOBILE SITE DEV. MGR.:		
	PROPERTY OWNER:		
<u> </u>	PLANNING:		

THE FOLLOWING PARTIES HEREBY APPROVE AND ACCEPT THESE DOCUMENTS AND AUTHORIZE THE CONTRACTOR TO PROCEED WITH THE CONSTRUCTION DESCRIBED HEREIN. ALL DOCUMENTS ARE SUBJECT TO REVIEW BY THE

CALL CONNECTICUT ONE CALL (800) 922-4455 **CALL 3 WORKING DAYS BEFORE YOU DIG!**

REV. #

64'-7"±

GENERAL NOTES:

1. SUBJECT PROPERTY IS SITUATED AT
116 GRANT HILL ROAD, BROOKLYN, CT 06234.

2. APPLICANT: T-MOBILE

A DELAWARE LIMITED LIABILITY COMPANY 4 SYLVAN WAY

PARSIPPANY, NEW JERSEY 07054

(973) 397-4800

CROWN CASTLE INTERNATIONAL TOWER OWNER:

- THE APPLICANT IS TO UPDATE THEIR NETWORK BY INSTALLING SIX (6) NEW PANEL ANTENNAS, THREE (3) RRUS, AND ONE (1) ADDITIONAL CABLE MOUNTED ON AN EXISTING MONOPOLE.
- 3. THIS FACILITY SHALL BE VISITED ON THE AVERAGE OF ONCE A MONTH FOR MAINTENANCE AND SHALL BE MONITORED FROM A REMOTE
- 4. THE EXISTING SITE IS LOCATED AT LATITUDE OF 41.791553' N± AND LONGITUDE OF 72.015125' W±. THE HORIZONTAL DATUM ARE IN TERMS OF NORTH AMERICAN DATUM OF 1983 (NAD 83).
- 5. THIS SET OF PLANS HAS BEEN PREPARED FOR THE PURPOSES OF MUNICIPAL AND AGENCY REVIEW AND APPROVAL. THIS SET OF PLANS SHALL NOT BE UTILIZED AS CONSTRUCTION DOCUMENTS UNTIL ALL CONDITIONS OF APPROVAL HAVE BEEN SATISFIED AND EACH OF THE DRAWINGS HAVE BEEN REVISED TO INDICATED "ISSUED FOR CONSTRUCTION"
- 6. ALL MATERIALS, WORKMANSHIP, AND CONSTRUCTION FOR THE SITE IMPROVEMENTS SHOWN HEREON SHALL BE IN ACCORDANCE WITH:
- 6.A. CURRENT PREVAILING MUNICIPAL AND/OR COUNTY SPECIFICATIONS, STANDARDS, AND REQUIREMENTS.
 6.B. CURRENT PREVAILING UTILITY COMPANY AUTHORITY
- SPECIFICATIONS, STANDARDS AND REQUIREMENTS.
- 7. THE CONTRACTOR SHALL NOTIFY B+T GROUP, P.A. IMMEDIATELY IF ANY FIELD-CONDITIONS ENCOUNTERED DIFFER FROM THOSE REPRESENTED HEREON, AND/OR IF SUCH CONDITIONS WOULD OR COULD RENDER THE DESIGNS SHOWN HEREON INAPPROPRIATE AND/OR
- 8. THE CONTRACTOR IS RESPONSIBLE TO PROTECT, REPAIR AND/OR REPLACE ANY DAMAGED STRUCTURES, UTILITIES OR LANDSCAPED AREA WHICH MAY BE DISTURBED DURING THE CONSTRUCTION OF THIS
- 9. THE CONSTRUCTION CONTRACTOR IS SOLELY RESPONSIBLE FOR DETERMINING ALL CONSTRUCTION MEANS AND METHODS. THE CONSTRUCTION CONTRACTOR IS ALSO RESPONSIBLE FOR ALL JOB SITE
- 10. SITE INFORMATION SHOWN TAKEN FROM CROWN CASTLE SITE PLANS AND FROM CROWN CASTLE INSPECTION PHOTOS.
- 11. NO GUARANTEE IS MADE NOR SHOULD BE ASSUMED AS TO THE COMPLETENESS OR ACCURACY OF THE HORIZONTAL OR VERTICAL LOCATIONS. ALL PARTIES UTILIZING THIS INFORMATION SHALL FIELD VERIFY THE ACCURACY AND COMPLETENESS OF THE INFORMATION SHOWN PRIOR TO CONSTRUCTION ACTIVITIES.
- 12. ALL IMPROVEMENTS SHALL BE SUBJECT TO INSPECTION AND APPROVAL BY THE TOWNSHIP ENGINEER WHO WILL BE GIVEN PROPER NOTIFICATION PRIOR TO THE START OF ANY CONSTRUCTION.

T --- Mobile -

EXISTING 150'-0" MONOPOLE SPRINT- BROOKLYN PROJECT NO: 136355.004.01

116 GRANT HILL ROAD BROOKLYN, CT 06234

ISSUED FOR: REV DATE DRWN DESCRIPTION 0 7/29/19 DAC CONSTRUCTION 1 11/25/20 JTS CONSTRUCTION

> B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/21

SHEET NUMBER: REVISION

OVERALL SITE PLAN

	ANTENNA AND CABLE SCHEDULE												
SECTOR	POSITION	EXISTING ANTENNAS	PROPOSED ANTENNA CONFIGURATION				E-TILT	M-TILT	ANTENNA CENTERLINE	TMA/RRU	CABLES	JUMPER TYPE	CABLE LENGTH
O* — ALPHA	A1	RFS APX16DWV-16DWV-S-E-A20	LTE GSM	-	2/2	o.	177' 0"	1/0	(2) 1 5/8" COAX	1/2" COAX	188'-0"		
U — ALPHA	A2	RFS APXVAARR24_43-U-NA20	LTE	B71 B12	2'/2'	o.	137'-0"	0/1	(1) 6x12 HCS FIBER	DC/FIBER	188'-0"		
120° – BETA	B1	RFS APX16DWV-16DWV-S-E-A20	LTE GSM	_	2/2	o	137'-0"	1/0	(2) 1 5/8" COAX	1/2" COAX	188'-0"		
120 - BEIA	B2	RFS APXVAARR24_43-U-NA20	LTE	B71 B12	2'/2	o	137 –0	0/1	SHARED	DC/FIBER	188'-0"		
240° – GAMMA	C1	RFS APX16DWV-16DWV-S-E-A20	LTE GSM	_	2'/2	o	137'-0"	1/0	(2) 1 5/8" COAX	1/2" COAX	188'-0"		
Z4U — GAMMA	C2	RFS APXVAARR24_43-U-NA20	LTE	B71 B12	2/2	o		0/1	SHARED	DC/FIBER	188'-0"		

•T•••Mobile•

CT11511A

SPRINT- BROOKLYN 116 GRANT HILL ROAD BROOKLYN, CT 06234 EXISTING 150'-0" MONOPOLE

PROJECT NO: 136355.004.01 CHECKED BY: GEH

	ISSUED FOR:							
RI	EV	DATE	DRWN	DESCRIPTION				
Г	0	7/29/19	DAC	CONSTRUCTION				
	1	11/25/20	JTS	CONSTRUCTION				
		·						
		·						

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/21

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:	REVISI
A-2	1

Ν

EXISTING MOUNT TO BE MODIFIED PER MOUNT MODIFICATION REPORT BY B+T GROUP DATED 7/9/19

LEGEND:

NEW

EXISTING

-T---Mobile-

CT11511A 3U #: 876390 SPRINT- BROOKLYN 116 GRANT HILL ROAD BROOKLYN, CT 06234 EXISTING 150'-0" MONOPOLE

PROJECT NO: 136355.004.01 CHECKED BY: GEH

	ISSUED FOR:								
R	EV	DATE	DRWN	DESCRIPTION					
Г	0	7/29/19	DAC	CONSTRUCTION					
Γ	1	11/25/20	JTS	CONSTRUCTION					
Г									

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/21

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

A-3 REVISION:

PROPOSED PLATFORM STABILIZER KIT

SCALE: N.T.S.

PROPOSED L7/L6 ANTENNA

& RRU MOUNTING DETAIL

PROPOSED L19/G19 ANTENNA

ANTENNA SPECS							
MANUFACTURER	RFS						
MODEL #	APX16DWV-16DWV-S-E- A20						
WIDTH	13.3"						
DEPTH	3.2"						
HEIGHT	55.9"						
WEIGHT	40.7 LBS						

L19/G19 ANTENNA DETAIL SCALE: N.T.S.

24.0"

8.7

95.9"

128.0 LBS

WIDTH

DEPTH

HEIGHT

WEIGHT

RRU SPECIFICATIONS						
MANUFACTURER	ERICSSON					
MODEL #	4449					
WIDTH	13.2"					
DEPTH	10.4"					
HEIGHT	14.9"					
WEIGHT	74 LBS					

REMOTE RADIO UNIT (RRU) SCALE: N.T.S.

ANTENNA & CABLING SCHEMATIC

SCALE: N.T.S. NOTES:

B+T GRP

•T•••Mobile•

SPRINT- BROOKLYN

EXISTING 150'-0" MONOPOLE

PROJECT NO: 136355.004.01 CHECKED BY: **GEH**

ISSUED FOR:							
REV	DATE	DRWN	DESCRIPTION				
0	7/29/19	DAC	CONSTRUCTION				
1	11/25/20	JTS	CONSTRUCTION				

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/21

SHEET NUMBER: REVISION

TAG ALL EXISTING AND PROPOSED CABLES/JUMPERS PER T-MOBILE SPECIFICATIONS.
 SEE RF SCHEDULE FOR CABLE AND JUMPER LENGTHS.
 REFER TO ANTENNA ORIENTATION ON SHEET A-3 FOR EXACT ANTENNA POSITIONING.

FINAL PANEL SCHEDULE									
FINAL FANEL SCHEDULE									
LOAD	POLES	AMPS	BUS		AMPS	POLES		LOAD	
LOAD	FOLES	AMPS	L1	L2	AMPS	PULES	LOAD		
			1	7	60A	2		SURGE PROTECTION	
			2	8	TOUA		SURGE PROTECTION		
			3	9	100A	2	2 RBS 6201 ODE		
			4	10	IUUA			RB3 0201 ODE	
POWER BATTERY	1	20A	5	11					
GFCI	1	20A	6	12					
RATED VOLTAGE: ■120/240 □ 1	PHASE, 3	3 WIRE	BRANC	H PO	LES: ■ 12	□24 □3	30 □42	APPROVED MF'RS	
RATED AMPS: □100 ■200 □400 □	_		CABINE	T: 🔻	ISURFACE	□FLUSH		NEMA □1 ■3R □4X	
□MAIN LUGS ONLY MAIN 200 AMPS ■BREAKER □FUSED SWITCH		SWITCH	■ HING	ED D	00R			■KEYED DOOR LATCH	
□FUSED ■CIRCUIT BREAKER BRANCH DEVICES				□ TO BE GFCI BREAKERS FULL NEUTRAL BUS GROUND E			FULL NEUTRAL BUS GROUND BAR		
ALL BREAKERS MUST BE RATED TO INTERRUPT	A SHORT	CIRCUIT IS	SC OF	10,00	OO AMPS S	SYMMETRICA	٩L		

REPLACE EXISTING BREAKER IN POSITION 9 AND 10 WITH A NEW 2P 100A BREAKER
REPLACE EXISTING WIRES FOR EXISTING 6201 ODE CABINET WITH (3) 1/0 AWG THWN (COPPER) AND (1) #6G AWG. MINIMUM CONDUIT SIZE TO BE 2". IF 100A BREAKER WILL NOT PROPERLY FIT IN EXISTING PANEL, REPLACE (E) PANEL WITH SQUARE D PANEL Q012040M200RB (OR APPROVED EQUAL). UPGRADE FEEDER WIRES TO MEET AMPACITY IF NEW PANEL IS REQUIRED. FINAL PANEL DESIGN AND CALCULATIONS FOR WIRE SIZE WERE BASED OFF OF EXISTING PHOTOS

FINAL T-MOBILE PANEL DETAIL

SCALE: N.T.S.

*T***Mobile*

PROJECT NO:

CHECKED BY:

SPRINT- BROOKLYN

136355.004.01

EXISTING 150'-0" MONOPOLE

ISSUED FOR: REV DATE DRWN DESCRIPTION 0 7/29/19 DAC CONSTRUCTION
1 11/25/20 JTS CONSTRUCTION

> B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/21

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:

REVISION

		MI CHECKLIST					
REQUIRED	REPORT ITEM	BRIEF DESCRIPTION					
		PRE-CONSTRUCTION					
Х	MI CHECKLIST DRAWING THIS CHECKLIST SHALL BE INCLUDED IN THE MI REPORT.						
N/A	EOR APPROVED SHOP DRAWINGS	FABRICATION DRAWINGS SHALL BE SUBMITTED TO THE ENGINEER OF RECORD FOR REVIEW. THE CONTRACTOR SHALL PROVIDE APPROVED SHOP DRAWINGS TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.					
N/A	ASSEMBLY DRAWINGS	ONCE THE PRE-MODIFICATION MAPPING IS COMPLETE, PRIOR TO FABRICATION, THE CONTRACTOR SHALL PROVIDE DETAILED ASSEMBLY DRAWINGS. THESE ARE TO INCLUDE, BUT ARE NOT LIMITED TO, A VISUAL LAYOUT OF NEW REINFORCEMENT, EXISTING REINFORCEMENT CONFIGURATION, PORTHOLES, MOUNTS, STEP PEGS, SAFETY CLIMBS AND ANY OTHER MISCELLANEOUS ITEMS WHICH MAY AFFECT SUCCESSFUL INSTALLATION OF MODIFICATIONS ON THE TOWER. THESE DRAWINGS SHALL BE SUBMITTED TO THE EOR FOR APPROVAL. APPROVED ASSEMBLY DRAWINGS SHALL BE SUBMITTED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.					
Х	FABRICATION INSPECTION	A LETTER FROM THE FABRICATOR, STATING THAT THE WORK WAS PERFORMED IN ACCORDANCE WITH INDUSTRY STANDARDS AND THE CONTRACT DOCUMENTS SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.					
Х	FABRICATOR CERTIFIED WELD INSPECTION	A VISUAL OBSERVATION BY CWI OF A PORTION OF WELDING ON THE PROPOSED STRUCTURAL MEMBERS IS REQUIRED AND A WRITTEN REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.					
×	MATERIAL TEST REPORT (MTR)	MILL CERTIFICATION SHALL BE PROVIDED FOR ALL STEEL AS SPECIFIED IN THE MODIFICATION DRAWINGS AND THIS DOCUMENTATION SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.					
N/A	FABRICATOR NDE INSPECTION	CRITICAL SHOP WELDS THAT REQUIRE TESTING ARE NOTED ON THESE CONTRACT DRAWINGS. A CERTIFIED WELD INSPECTOR SHALL PERFORM NON-DESTRUCTIVE EXAMINATION AND A REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.					
Х	PACKING SLIPS	THE MATERIAL SHIPPING LIST SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.					
		CONSTRUCTION (PERFORMED BY CONTRACTOR)					
X	CONSTRUCTION INSPECTIONS	A LETTER FROM THE GENERAL CONTRACTOR STATING THAT THE WORKMANSHIP WAS PERFORMED IN ACCORDANCE WITH INDUSTRY STANDARDS AND THESE CONTRACT DRAWINGS SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.					
N/A	CONTRACTOR'S CERTIFIED WELD INSPECTION	A CERTIFIED WELD INSPECTOR SHALL INSPECT AND TEST AS NECESSARY ALL FIELD WELDS. A REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.					
N/A	ON SITE COLD GALVANIZING VERIFICATION	THE GENERAL CONTRACTOR SHALL PROVIDE DOCUMENTATION TO THE MI INSPECTOR VERIFYING THAT ANY ON-SITE COLD GALVANIZING WAS APPLIED AS SPECIFIED IN THE MODIFICATION DRAWINGS.					
×	GC AS-BUILT DOCUMENTS	THE GENERAL CONTRACTOR SHALL SUBMIT A COPY OF THE CONTRACT DRAWINGS EITHER STATING "INSTALLED AS DESIGNED" OR NOTING ANY CHANGES THAT WERE REQUIRED AND APPROVED BY THE ENGINEER OF RECORD DUE TO FIELD CONDITIONS.					
		POST-CONSTRUCTION					
Х	MI INSPECTOR REDLINE OR RECORD DRAWING(S)	THE MI INSPECTOR SHALL OBSERVE AND REPORT ANY DISCREPANCIES BETWEEN THE CONTRACTORS REDLINE DRAWING AND THE ACTUAL COMPLETED INSTALLATION.					
х	PHOTOGRAPHS	PHOTOGRAPHS SHALL BE SUBMITTED TO THE MI WHICH DOCUMENT ALL PHASES OF THE CONSTRUCTION. THE PHOTOS SHALL BE ORGANIZED IN A MANNER THAT EASILY IDENTIFIES THE EXACT LOCATION OF THE PHOTO.					
ADDITIONAL	TESTING AND INSPECTIONS:						
NOTE: X DE	NOTE: X DENOTES A DOCUMENT NEEDED FOR THE MI REPORT AND N/A DENOTES A DOCUMENT THAT IS NOT REQUIRED FOR THE MI REPORT						

MODIFICATION INSPECTION NOTES:

THE MODIFICATION INSPECTION (MI) IS A VISUAL INSPECTION OF TOWER MODIFICATIONS AND A REVIEW OF CONSTRUCTION INSPECTIONS AND OTHER REPORTS TO ENSURE THE INSTALLATION WAS CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS, NAMELY THE MODIFICATION DRAWINGS, AS DESIGNED BY THE ENGINEER OF RECORD (EOR).

THE MI IS TO CONFIRM INSTALLATION CONFIGURATION AND WORKMANSHIP ONLY AND IS NOT A REVIEW OF THE MODIFICATION DESIGN ITSELF, NOR DOES THE MI INSPECTOR TAKE OWNERSHIP OF THE MODIFICATION DESIGN. OWNERSHIP OF THE STRUCTURAL MODIFICATION DESIGN EFFECTIVENESS AND INTEGRITY RESIDES WITH THE EOR AT ALL TIMES.

TO ENSURE THAT THE REQUIREMENTS OF THE MI ARE MET, IT IS VITAL THAT THE GENERAL CONTRACTOR (GC) AND THE MI INSPECTOR BEGIN COMMUNICATING AND COORDINATING AS SOON AS A PO IS RECEIVED. IT IS EXPECTED THAT EACH PARTY WILL BE PROACTIVE IN REACHING OUT TO THE OTHER PARTY. IF CONTACT INFORMATION IS NOT KNOWN, CONTACT B+T GROUP.

MI INSPECTOR

THE MI INSPECTOR IS REQUIRED TO CONTACT THE GC AS SOON AS RECEIVING A PO FOR THE MI TO, AT A MINIMUM:

- . REVIEW THE REQUIREMENTS OF THE MI CHECKLIST
- WORK WITH THE GC TO DEVELOP A SCHEDULE TO CONDUCT ONSITE INSPECTIONS, INCLUDING FOUNDATION INSPECTIONS

THE MI INSPECTOR IS RESPONSIBLE FOR COLLECTING ALL GENERAL CONTRACTOR (GC) INSPECTION AND TEST REPORTS. REVIEWING THE DOCUMENTS FOR ADHERENCE TO THE CONTRACT DOCUMENTS. CONDUCTING THE IN-FIELD INSPECTIONS. AND SUBMITTING THE MI

<u>GENERAL CONTRACTOR</u>
THE GC IS REQUIRED TO CONTACT THE MI INSPECTOR AS SOON AS RECEIVING A PO FOR THE MODIFICATION INSTALLATION OR TURNKEY PROJECT TO, AT A MINIMUM:

- REVIEW THE REQUIREMENTS OF THE MI CHECKLIST
- WORK WITH THE MI INSPECTOR TO DEVELOP A SCHEDULE TO CONDUCT ON-SITE MI
- BETTER UNDERSTAND ALL INSPECTION AND TESTING REQUIREMENTS

THE GC SHALL PERFORM AND RECORD THE TEST AND INSPECTION RESULTS IN ACCORDANCE WITH THE REQUIREMENTS OF THE MI CHECKLIST.

RECOMMENDATIONS

THE FOLLOWING RECOMMENDATIONS AND SUGGESTIONS ARE OFFERED TO ENHANCE THE EFFICIENCY AND EFFECTIVENESS OF DELIVERING A MI REPORT:

- IT IS SUGGESTED THAT THE GC PROVIDE A MINIMUM OF 5 BUSINESS DAYS NOTICE, PREFERABLY 10, TO THE MI INSPECTOR AS TO WHEN THE SITE WILL BE READY FOR THE MI TO BE CONDUCTED.
- . THE GC AND MI INSPECTOR COORDINATE CLOSELY THROUGHOUT THE ENTIRE PROJECT.
- WHEN POSSIBLE, IT IS PREFERRED TO HAVE THE GC AND MI INSPECTOR ON—SITE DURING THE MI TO HAVE ANY DEFICIENCIES CORRECTED DURING THE INITIAL MI. THEREFORE, THE GC MAY CHOOSE TO COORDINATE THE MI CAREFULLY TO ENSURE ALL CONSTRUCTION FACILITIES ARE AT THEIR DISPOSAL WHEN THE MI INSPECTOR IS ON SITE.

CANCELLATION OR DELAYS IN SCHEDULED MI

IF THE GC AND MI INSPECTOR AGREE TO A DATE ON WHICH THE MI WILL BE CONDUCTED, AND EITHER PARTY CANCELS OR DELAYS, CARRIER SHALL NOT BE RESPONSIBLE FOR ANY COSTS, FEES, LOSS OF DEPOSITS AND/OR OTHER PENALTIES RELATED TO THE CANCELLATION OR DELAY INCURRED BY EITHER PARTY FOR ANY TIME (E.G. TRAVEL AND LODGING, COSTS OF KEEPING EQUIPMENT ON-SITE, ETC.). IF CARRIER CONTRACTS DIRECTLY FOR A THIRD PARTY MI. EXCEPTIONS MAY BE MADE IN THE EVENT THAT THE DELAY/CANCELLATION IS CAUSED BY WEATHER OR OTHER CONDITIONS THAT MAY COMPROMISE THE SAFETY OF THE PARTIES

CORRECTION OF FAILING MI'S

IF THE MODIFICATION INSPECTOR FAILS THE MI ("FAILED MI"), THE GC SHALL WORK WITH CARRIER TO COORDINATE A REMEDIATION PLAN IN ONE OF TWO WAYS:

- CORRECT FAILING ISSUES TO COMPLY WITH THE SPECIFICATIONS CONTAINED IN THE ORIGINAL CONTRACT DOCUMENTS AND COORDINATE A SUPPLEMENT MI.
- OR, WITH CARRIER'S APPROVAL, THE GC MAY WORK WITH THE EOR TO RE-ANALYZE THE MODIFICATION/REINFORCEMENT USING THE AS-BUILT CONDITION
- THE ADDITIONAL COST INCURRED IN THE SECOND SUPERVISION PROCESS WOULD BE BORNE BY THE GENERAL CONTRACTOR.

CARRIER RESERVES THE RIGHT TO CONDUCT A MI VERIFICATION INSPECTION TO VERIFY THE ACCURACY AND COMPLETENESS OF PREVIOUSLY COMPLETED MI INSPECTION(S) ON TOWER

ALL VERIFICATION INSPECTIONS SHALL BE HELD TO THE SAME SPECIFICATIONS AND REQUIREMENTS IN THE CONTRACT DOCUMENTS

VERIFICATION INSPECTION MAY BE CONDUCTED BY AN INDEPENDENT FIRM AFTER A MODIFICATION PROJECT IS COMPLETED, AS MARKED BY THE DATE OF AN ACCEPTED "PASSING MI" OR "PASS AS NOTED MI" REPORT FOR THE ORIGINAL PROJECT.

REQUIRED PHOTOS

BETWEEN THE GC AND THE MI INSPECTOR THE FOLLOWING PHOTOGRAPHS, AT A MINIMUM, ARE TO BE TAKEN AND INCLUDED IN THE MI REPORT:

- PRE-CONSTRUCTION GENERAL SITE CONDITION
- PHOTOGRAPHS DURING THE REINFORCEMENT MODIFICATION CONSTRUCTION/ERECTION AND INSPECTION
- RAW MATERIALS
 PHOTOS OF ALL CRITICAL DETAILS
- FOUNDATION MODIFICATIONS
- WELD PREPARATION
- BOLT INSTALLATION AND TORQUE
- FINAL INSTALLED CONDITION SURFACE COATING REPAIR
- POST CONSTRUCTION PHOTOGRAPHS
- PHOTOS OF MODIFIED SECTIONS INDIVIDUALLY INDICATING ELEVATION
- FINAL INFIELD CONDITION

PHOTOS OF ELEVATED MODIFICATIONS TAKEN FROM THE GROUND SHALL BE CONSIDERED

116 GRANT HILL RD. BROOKLYN, CT 06234 WINDHAM $\mathbf{\Delta}$

E E

PROJECT NO: 136355.003.01 CHECKED BY: **ISSUED FOR:** DATE DRWN DESCRIPTION 0 07/09/19 NGR CONSTRUCTION

> B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/20

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:

REVISION

SITEPRO1 PRK-SFS-L REINFORCEMENT KIT

(2) SCALE: N.T.S.

MODIFICATIONS BASED ON THE FAILING STRUCTURAL ANALYSIS FROM B+T GROUP DATED 07/02/19 AND ACCOMPANIED BY ANALYSIS FROM B+T GROUP DATED 07/09/19

GENERAL NOTES

- CONTRACTOR SHALL FIELD VERIFY EXISTING CONDITIONS AND DIMENSIONS PRIOR TO THE MOBILIZING ON THE SITE FOR INSTALLATION OF THE MOUNT MODIFICATION AND SHALL NOTIFY THE ENGINEER OF RECORD IF THE FIELD CONDITIONS VARY FROM WHAT IS SHOWN ON THE DRAWINGS. IN ADDITION, THE CONTRACTOR SHALL NOTIFY THE ENGINEER OF RECORD PRIOR TO MOBILIZING AT THE SITE IF THE MOUNT REINFORCEMENT SHOWN WILL NEED TO BE REVISED TO SATISFY FIELD CONDITIONS
- CONTRACTOR SHALL RELOCATE NON-ANTENNA EQUIPMENT ALONG THE EXISTING PIPE MOUNT THAT IT IS MOUNTED TO, TO ALLOW FOR INSTALLATION OF MOUNT REINFORCEMENT. ENGINEER OF RECORD WILL BE NOTIFIED IF NON-ANTENNA EQUIPMENT NEEDS TO BE RELOCATED TO ANY OTHER EXISTING MEMBERS TO ALLOW FOR INSTALLATION OF MOUNT MODIFICATION.
- 1.3 MODIFICATION SHALL BE COMPLETED PRIOR TO ADDING THE PROPOSED APPURTENANCES.
- ALL WORK SHALL COMPLY WITH THE TIA-222-H STANDARD, TIA-1019-A STANDARD, AS WELL AS ANY OTHER GOVERNING BUILDING CODES.
- FIELD WORK WILL BE DONE AROUND EXISTING COAXIAL CABLE AND EQUIPMENT. ALL WORK SHALL BE DONE IN A MANNER SUCH THAT NO DAMAGE OCCURS TO THE EXISTING EQUIPMENT OR THE STRUCTURE.

 1.6 A MINIMUM OF TWO COATS OF ZINGA COLD GALVANIZING COMPOUND
- (OR APPROVED EQUIVALENT) SHALL BE APPLIED TO ANY FIELD CUTS OR FIELD DRILLED HOLES.
- THE USE OF A GAS TORCH OR WELDER WILL NOT BE PERMITTED ON THE TOWER WITHOUT THE CONSENT OF THE OWNER.
- ALL FIELD CONNECTIONS SHALL BE MADE WITH A325N BOLTS, U.N.O. IN LIEU OF TEMPORARY BRACING, CONTRACTOR MAY HAVE A STABILITY ANALYSIS PERFORMED BY AN ENGINEER LICENSED IN THE STATE THE TOWER IS LOCATED. THE ANALYSIS SHALL USE A MINIMUM WIND SPEED OF 45 mph (3-SEC) PER TIA-1019.
- 1.10 ALL CUTTING AND WELDING ACTIVITIES SHALL BE CONDUCTED IN ACCORDANCE WITH CCUSA POLICY "CUTTING AND WELDING PLAN" (DOC #ENG-PLN-10015) ON AN ONGOING BASIS THROUGHOUT THE ENTIRE LIFE OF THE PROJECT
- 1.11 DIMENSIONS WITH "±" MUST BE WITHIN 3" OF THE INDICATED

FABRICATION

- ALL WORK SHALL BE DONE IN ACCORDANCE WITH A.I.S.C. "SPECIFICATIONS FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS."
- 2.2 STRUCTURAL STEEL SHALL MEET THE FOLLOWING SPECIFICATIONS: ASTM SPECS YIELD

A53 GR.B

NEW SITE PRO1 CROSSOVER PLATE KIT

NEW STD PIPE

STEEL PIPE, U.N.O.

GROUP 5 DAYS PRIOR TO FABRICATION.

ALL NEW MATERIAL INCLUDING STRUCTURAL STEEL AND FASTENERS SHALL BE HOT DIPPED GALVANIZED AFTER FABRICATION IN

ACCORDANCE WITH ASTM A123 AND A153.
WELDING SHALL MEET ANSI/AWS D1.1 STRUCTURAL WELDING CODE (LATEST REVISION). ELECTRODES SHALL BE E80 SERIES. CONTRACTOR SHALL PROVIDE SHOP FABRICATION DRAWINGS TO B+T

MODIFIED PLATFORM

SITE PRO1 HRK-14 HANDRAIL KIT (3) SCALE: N.T.S.

EXISTING PLATFORM AT 137'-00" 116 GRANT HILL RD. BROOKLYN, CT 06234 WINDHAM BERN

PROJECT NO: 136355.003.01 CHECKED BY:

ISSUED FOR: DATE DRWN DESCRIPTION 0 07/09/19 NGR CONSTRUCTION

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/20

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:

REVISION:

EXISTING FRAMING

Exhibit D

Structural Analysis Report

Date: July 23, 2019

Heather Simeone Crown Castle 3530 Toringdon Way, Suite 300

Charlotte, NC 28277

326 Tryon Road Raleigh, NC 27603 (919) 661-6351

Tower Engineering Professionals

Subject: Structural Analysis Report

Carrier Designation: T-Mobile Co-Locate

Carrier Site Number: CT11511A
Carrier Site Name: Sprint- Brooklyn

Crown Castle BU Number: 876390

Crown Castle Site Name: Hampton / Bernier

Crown Castle JDE Job Number: 576719
Crown Castle Work Order Number: 1750704
Crown Castle Order Number: 494419 Rev. 0

Engineering Firm Designation: TEP Project Number: 25693.284017

Site Data: 116 Grant Hill Rd., Brooklyn, Windham County, CT 06234

Latitude 41°47' 29.64", Longitude -72°0' 54.04"

150 Foot - Monopole Tower

Dear Heather Simeone,

Tower Engineering Professionals is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity - 94.9%

This analysis utilizes an ultimate 3-second gust wind speed of 130 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Matthew Fry, E.I.T. / CJB

Respectfully submitted by:

William H. Martin, P.E., S.E.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 150-ft monopole tower designed by Engineered Endeavors, Inc. The tower has been modified per reinforcement drawings prepared by Tower Engineering Professionals in May of 2008. All information provided to TEP was assumed to be accurate and complete.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Wind Speed: 130 mph

Exposure Category:BTopographic Factor:1.512Ice Thickness:1.5 inWind Speed with Ice:50 mphService Wind Speed:60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model		Feed Line Size (in)
		3	Ericsson	KRY 112 489/2		
	138.0	3	Ericsson	RADIO 4449 B12/B71		
		3	RFS Celwave	APX16DWV-16DWV-S-E-A20 w/ Mount Pipe		
137.0		3	RFS Celwave	APXVAARR24_43-U-NA20 w/ Mount Pipe	7	1-5/8
		1	Tower Mounts	Platform Mount [LP 1201-1]		
	137.0	2	Site Pro 1	HRK-14		
		1	Site Pro 1	PRK-SFS-L		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	Alcatel Lucent	PCS 1900MHz 4x45W-65MHz		
		6	Alcatel Lucent	RRH2X50-800		
	151.0	3	Alcatel Lucent TD-RRH8x20-25			
149.0		3	Commscope	NNVV-65B-R4 w/ Mount Pipe	4	1-1/4
143.0			3 RFS Celw	RFS Celwave	APXVTM14-ALU-I20 w/ Mount Pipe	4
	140.0	1	Site Pro1	HRK12-3HD		
	149.0	1	Site Pro1	CAGE TOP		
129.0	129.0	1	Tower Mounts	Side Arm Mount [SO 102-3]		
129.0	127.0	3	Ericsson	TME-RRUS-11		_

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
	129.0	3	KMW Communications	AM-X-CD-17-65-00T-RET w/ Mount Pipe		
	129.0	6	Powerwave Technologies	7770.00 w/ Mount Pipe		
127.0		6	Powerwave Technologies	LGP 17201	3	3/8
	127.0	6	Powerwave Technologies	LGP13519	12	1-1/4
		1	Raycap	DC6-48-60-18-8F		
		1				
		1	Tower Mounts	T-Arm Mount [TA 601-3]		
		3	Antel	BXA-171085-12CF-EDIN-2 w/ Mount Pipe		1-5/8
117.0	119.0	3	Antel	BXA-70063-6CF-2 w/ Mount Pipe	18	
		6	Antel LPA-80080/4CF w/ Moun		_	
	117.0	1				
96.0	100.0	1	Telewave	ANT450F6	4	7/0
96.0	96.0	1	Tower Mounts	Side Arm Mount [SO 701-1]	1	7/8
	100.0	1	Dbspectra	DS9A09F36D-N		
90.0		1	Bird Technologies Group	TTA-429-94C-08179	2	1-1/4
	90.0	1	Tower Mounts	Pipe Mount [PM 601-1]	1	1/2
		1	Tower Mounts	Side Arm Mount [SO 307-1]		
81.0	85.0	1	Telewave	ANT450F6	1	7/8
01.0	81.0	1	Tower Mounts	Side Arm Mount [SO 701-1]		//8
76.0	77.0	1	Lucent	KS24019-L112A	1	1/2
/6.0	76.0	1	Tower Mounts	Side Arm Mount [SO 701-1]		1/2

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
Geotechnical Report	Criscuolo Shepard Associates, PC	1615347	CCISites
Tower Foundation Drawings	Engineered Endeavors, Inc.	1615410	CCISites
Tower Manufacturer Drawings	Engineered Endeavors, Inc.	1533003	CCISites
Tower Reinforcement Drawings	Tower Engineering Professionals	2255030	CCISites
Post Modification Inspection	Tower Engineering Professionals	2383064	CCISites

3.1) Analysis Method

tnxTower (version 8.0.5.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) The tower and foundation were built and maintained in accordance with the manufacturer's specification.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2, and the referenced drawings.
- 3) All tower components are in sufficient condition to carry their full design capacity.
- 4) Serviceability with respect to antenna twist, tilt, roll, or lateral translation, is not checked and is left to the carrier or tower owner to ensure conformance.
- 5) All antenna mounts and mounting hardware are structurally sufficient to carry the full design capacity requirements of appurtenance wind area and weight as provided by the original manufacturer specifications. It is the carrier's responsibility to ensure compliance to the structural limitations of the existing and/or proposed antenna mounts. TEP did not perform a site visit to verify the size, condition or capacity of the antenna mounts and did not analyze antennas supporting mounts as part of this structural analysis report.
- 6) When applicable, the effective projected area (EPA) of appurtenances was determined by computation fluid dynamics (CFD) testing performed by Crown Castle. TEP assumes the means and methods used to determine the EPA's yields results that follow the intent of TIA-222-H and are accurate and complete.
- 7) TEP assumes that the anchor bolts are effective pier reinforcement and are properly terminated into the mat as mechanically anchored deformed reinforcement per ACI 318 Section 25.4.4.

This analysis may be affected if any assumptions are not valid or have been made in error. Tower Engineering Professionals should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	ΦP _{allow} (K)	% Capacity	Pass / Fail
L1	150 - 123.29	Pole	TP22.9x17x0.1875	1	-10.14	802.65	65.9	Pass
L2	123.29 - 88.88	Pole	TP30x21.7696x0.3125	2	-16.95	1752.41	85.8	Pass
L3	88.88 - 43.8	Pole	TP39.2x28.4504x0.375	3	-28.27	2752.19	94.9	Pass
L4	43.8 - 0	Pole	TP48x37.2689x0.4375	4	-45.22	4056.91	89.9	Pass
							Summary	
						Pole (L3)	94.9	Pass
						RATING =	94.9	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1,2	Anchor Rods	-	89.8	Pass
1,2	Base Plate	-	80.4	Pass
1,2	Base Foundation Soil Interaction	-	83.8	Pass
1,2	Base Foundation Structural	-	55.4	Pass

Structure Rating (max from all components) =	94.9%
--	-------

Notes:

- 1) See additional documentation in "Appendix C Additional Calculations" for calculations supporting the % capacity listed.
- 2) Rating per TIA-222-H Section 15.5

4.1) Recommendations

- 1) If the load differs from that described in Tables 1 and 2 of this report, the referenced drawings, or the provisions of this analysis are found to be invalid, another structural analysis should be performed.
- The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A TNXTOWER OUTPUT

Section	4	8	2	-
Length (ft)	49.22	49.33	37.83	26.71
Number of Sides	18	18	18	18
Thickness (in)	0.4375	0.3750	0.3125	0.1875
Socket Length (ft)		5.42	4.25	3.42
Top Dia (in)	37.2689	28.4504	21.7696	17.0000
Bot Dia (in)	48.0000	39.2000	30.0000	22.9000
Grade		A572-65		
Weight (K) 20.8	9.8	6.7	3.3	1.1
	0.0 ft	43.8 ft	88.9 ft	123.9 ft

DESIGNED APPURTENANCE LOADING

DESIGNED APPURTENANCE LOADING									
TYPE	ELEVATION	TYPE	ELEVATION						
NNVV-65B-R4 w/ Mount Pipe	149	TME-RRUS-11	129						
NNVV-65B-R4 w/ Mount Pipe	149	2.4" Dia. x 3-ft	129						
NNVV-65B-R4 w/ Mount Pipe	149	2.4" Dia. x 3-ft	129						
APXVTM14-ALU-I20 w/ Mount Pipe	149	2.4" Dia. x 3-ft	129						
APXVTM14-ALU-I20 w/ Mount Pipe	149	Side Arm Mount [SO 102-3]	129						
APXVTM14-ALU-I20 w/ Mount Pipe	149	2.4" Dia. x 4-ft	129						
(2) RRH2X50-800	149	2.4" Dia. x 4-ft	129						
(2) RRH2X50-800	149	2.4" Dia. x 4-ft	129						
(2) RRH2X50-800	149	(2) 7770.00 w/ Mount Pipe	127						
PCS 1900MHz 4x45W-65MHz	149	(2) 7770.00 w/ Mount Pipe	127						
PCS 1900MHz 4x45W-65MHz	149	(2) 7770.00 w/ Mount Pipe	127						
PCS 1900MHz 4x45W-65MHz	149	AM-X-CD-17-65-00T-RET w/ Mount	127						
TD-RRH8x20-25	149	Pipe							
TD-RRH8x20-25	149	AM-X-CD-17-65-00T-RET w/ Mount	127						
TD-RRH8x20-25	149	Pipe							
2.4" Dia. x 6-ft	149	AM-X-CD-17-65-00T-RET w/ Mount	127						
2.4" Dia. x 6-ft	149	Pipe							
2.4" Dia. x 6-ft	149	(2) LGP 17201	127						
8' Ladder	149	(2) LGP 17201	127						
Miscellaneous [NA 507-1]	149	(2) LGP 17201	127						
Platform Mount [LP 712-1]	149	(2) LGP13519	127						
Platform Mount [LP 303-1]	149	(2) LGP13519	127						
APX16DWV-16DWV-S-E-A20 w/	137	(2) LGP13519	127						
Mount Pipe	137	DC6-48-60-18-8F	127						
APX16DWV-16DWV-S-E-A20 w/	137	Side Arm Mount [SO 102-3]	127						
Mount Pipe		T-Arm Mount [TA 601-3]	127						
APX16DWV-16DWV-S-E-A20 w/	137	(2) LPA-80080/4CF w/ Mount Pipe	117						
Mount Pipe		(2) LPA-80080/4CF w/ Mount Pipe	117						
APXVAARR24_43-U-NA20 w/ Mount	137	(2) LPA-80080/4CF w/ Mount Pipe	117						
Pipe		BXA-70063-6CF-2 w/ Mount Pipe	117						
APXVAARR24_43-U-NA20 w/ Mount Pipe	137	BXA-70063-6CF-2 w/ Mount Pipe	117						
•	137	BXA-70063-6CF-2 w/ Mount Pipe	117						
APXVAARR24_43-U-NA20 w/ Mount Pipe		BXA-171085-12CF-EDIN-2 w/ Mount Pipe	117						
KRY 112 489/2	137	BXA-171085-12CF-EDIN-2 w/ Mount	117						
KRY 112 489/2	137	Pipe							
KRY 112 489/2	137	BXA-171085-12CF-EDIN-2 w/ Mount	117						
RADIO 4449 B12/B71	137	Pipe							
RADIO 4449 B12/B71	137	Platform Mount [LP 303-1]	117						
RADIO 4449 B12/B71	137	ANT450F6	96						
2.4" Dia. x 6-ft	137	Side Arm Mount [SO 701-1]	96						
2.4" Dia. x 6-ft	137	DS9A09F36D-N	90						
2.4" Dia. x 6-ft	137	TTA-429-94C-08179	90						
Platform Mount [LP 1201-1]	137	1.9" Dia. x 6-ft	90						
Side Arm Mount [SO 102-3]	137	Pipe Mount [PM 601-1]	90						
(2) Miscellaneous [NA 510-1]	137	Side Arm Mount [SO 307-1]	90						
(2) L3x3x1/4 (5.5' long)	137	ANT450F6	81						
(2) L3x3x1/4 (5.5' long)	137	Side Arm Mount [SO 701-1]	81						
(2) L3x3x1/4 (5.5' long)	137	KS24019-L112A	76						
TME-RRUS-11	129	Side Arm Mount [SO 701-1]	76						
TME-RRUS-11	129								

ALL REACTIONS ARE FACTORED

AXIAL

81 K SHEAR 9 K /

TORQUE 1 kip-ft 50 mph WIND - 1.5000 in ICE

AXIAL 45 K SHEAR **MOMENT** 39 K (4310 kip-ft

TORQUE 2 kip-ft REACTIONS - 130 mph WIND

Tower Engineering Professionals

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

- Tower is located in Windham County, Connecticut.

 MOMENT
 Tower designed for Exposure B to the TIA-222-H Standard.
 Tower designed for a 130 mph basic wind in accordance with the TIA-222-H Standard.
 Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to
 - increase in thickness with height.

 - Tower Risk Category II.
 Topographic Category 5 with Crest Height of 110.00 ft
 TOWER RATING: 94.9%

Tower Engineering Professionals, Inc.

326 Tryon Road Raleigh, NC 27603 Phone: (619) 661-6351 FAX: (619) 661-6350

^{Job:} Hampton / Bern	0)	
Project: TEP No. 25693.2	-	
	Drawn by: CJB	App'd:
Code: TIA-222-H		Scale: NTS
Path: C:\Users\cbowen\Desktop\256	93\876390 1750704 LC7.eri	Dwg No. E-

tnxTower

Tower Engineering Professionals, Inc.

326 Tryon Road Raleigh, NC 27603 Phone: (619) 661-6351 FAX: (619) 661-6350

Job		Page
	Hampton / Bernier (BU 876390)	1 of 19
Project	TEP No. 25693.284017	Date 10:40:53 07/22/19
Client	Crown Castle	Designed by CJB

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower is located in Windham County, Connecticut. Tower base elevation above sea level: 715.00 ft.

Basic wind speed of 130 mph.

Risk Category II. Exposure Category B. Crest Height: 110.00 ft.

Rigorous Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Feature: Continuous Ridge.

Slope Distance L: 920.00 ft. Distance from Crest x: 0.00 ft. Horizontal Distance Downwind: No.

Nominal ice thickness of 1.5000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used. Pressures are calculated at each section. Stress ratio used in pole design is 1.05.

Tower analysis based on target reliabilities in accordance with Annex S.

Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios

Use Code Safety Factors - Guys
Escalate Ice
Always Use Max Kz
Use Special Wind Profile
Include Bolts In Member Capacity
Leg Bolts Are At Top Of Section
Secondary Horizontal Braces Leg
Use Diamond Inner Bracing (4 Sided)
SR Members Have Cut Ends
SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
 Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination
- √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

√ Consider Feed Line Torque
Include Angle Block Shear Check
Use TIA-222-H Bracing Resist. Exemption
Use TIA-222-H Tension Splice Exemption
Poles

√ Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets
Pole Without Linear Attachments
Pole With Shroud Or No Appurtenances
Outside and Inside Corner Radii Are
Known

tnxTower

Tower Engineering Professionals, Inc. 326 Tryon Road

326 Tryon Road Raleigh, NC 27603 Phone: (619) 661-6351 FAX: (619) 661-6350

Job		Page
	Hampton / Bernier (BU 876390)	2 of 19
Project	TEP No. 25693.284017	Date 10:40:53 07/22/19
Client	Crown Castle	Designed by CJB

Tapered Pole Section Geometry

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	150.00-123.29	26.71	3.42	18	17.0000	22.9000	0.1875	0.7500	A572-65 (65 ksi)
L2	123.29-88.88	37.83	4.25	18	21.7696	30.0000	0.3125	1.2500	A572-65 (65 ksi)
L3	88.88-43.80	49.33	5.42	18	28.4504	39.2000	0.3750	1.5000	A572-65 (65 ksi)
L4	43.80-0.00	49.22		18	37.2689	48.0000	0.4375	1.7500	A572-65 (65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	I	r	С	I/C	J	It/Q	w	w/t
	in	in^2	in^4	in	in	in^3	in^4	in^2	in	
L1	17.2333	10.0055	357.3078	5.9684	8.6360	41.3742	715.0858	5.0037	2.6620	14.197
	23.2243	13.5168	880.9281	8.0629	11.6332	75.7253	1763.0154	6.7597	3.7004	19.735
L2	22.8127	21.2827	1237.9543	7.6173	11.0589	111.9416	2477.5376	10.6434	3.2814	10.501
	30.4146	29.4463	3278.8026	10.5391	15.2400	215.1445	6561.9196	14.7259	4.7300	15.136
L3	29.7718	33.4167	3327.7548	9.9668	14.4528	230.2502	6659.8883	16.7115	4.3473	11.593
	39.7469	46.2115	8800.5544	13.7829	19.9136	441.9369	17612.6889	23.1101	6.2392	16.638
L4	38.9763	51.1450	8765.5170	13.0752	18.9326	462.9852	17542.5679	25.5774	5.7893	13.233
	48.6730	66.0465	18876.2818	16.8847	24.3840	774.1257	37777.4015	33.0295	7.6780	17.55

Tower	Gusset	Gusset	Gusset Grade Adju	st. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft ²	in					in	in	in
L1				1	1	1			
150.00-123.29									
L2				1	1	1			
123.29-88.88									
L3 88.88-43.80				1	1	1			
L4 43.80-0.00				1	1	1			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From	Component Type	Placement	Total Number	Number Per Row	Start/End Position	Width or Diameter	Perimeter	Weight
		Torque		ft				in	in	plf
		Calculation								
137										
LDF7-50A(1-5/8)	A	No	Surface Ar	137.00 -	3	3	-0.250	1.9800		0.82
117			(CaAa)	0.00			-0.250			
LDF7-50A(1-5/8)	В	No	Surface Ar	117.00 -	18	9	0.250	1.9800		0.82
			(CaAa)	0.00			0.250			

Safety Line 3/8	C	No	Surface Ar	150.00 -	1	1	0.000	0.3750		0.22
Safety Line 3/8	C	No	Surface Ar	150.00 -	1	1	0.000	0.3750		0.22

Tower Engineering Professionals, Inc. 326 Tryon Road

326 Tryon Road Raleigh, NC 27603 Phone: (619) 661-6351 FAX: (619) 661-6350

Job	Hampton / Bernier (BU 876390)	Page 3 of 19
Project	TEP No. 25693.284017	Date 10:40:53 07/22/19
Client	Crown Castle	Designed by CJB

Description	Sector	Exclude From	Component Type	Placement		Start/End Position		Perimeter	Weight
		Torque Calculation		ft			in	in	plf
			(CaAa)	0.00		0.000			
**									
*									

Feed Line/Linear Appurtenances - Entered As Area

Description		Allow	Exclude	Component	Placement	Total		$C_A A_A$	Weight
	or	Shield	From	Type		Number		.2	
	Leg		Torque Calculation		ft			ft²/ft	plf
149			Calculation						
HB114-1-0813U4-M	C	No	No	Inside Pole	149.00 - 0.00	3	No Ice	0.00	1.20
5J(1-1/4)	Č	110	110	mside i oie	117.00 0.00	5	1/2" Ice	0.00	1.20
33(1 1/4)							1" Ice	0.00	1.20
							2" Ice	0.00	1.20
HB114-13U3M12-X	C	No	No	Inside Pole	149.00 - 0.00	1	No Ice	0.00	0.99
XXF(1-1/4)	C	110	140	made i die	147.00 0.00	1	1/2" Ice	0.00	0.99
7474 (1 1/4)							1" Ice	0.00	0.99
							2" Ice	0.00	0.99
HCS 6X12	Α	No	No	Inside Pole	137.00 - 0.00	1	No Ice	0.00	2.40
4AWG(1-5/8")	А	110	110	mside i oic	137.00 - 0.00	1	1/2" Ice	0.00	2.40
4AWG(1-3/6)							1" Ice	0.00	2.40
							2" Ice	0.00	2.40
I DE7 50 A (1 5/0)	Α.	No	No	Incido Dolo	137.00 - 0.00	3	No Ice	0.00	0.82
LDF7-50A(1-5/8)	A	No	No	Inside Pole	137.00 - 0.00	3	1/2" Ice	0.00	0.82
							1" Ice	0.00	0.82
127							2" Ice	0.00	0.82
LDF6-50A(1-1/4)	С	No	No	Inside Pole	127.00 - 0.00	12	No Ice	0.00	0.60
LDI 0-30A(1-1/ 4)	C	110	140	mside i oic	127.00 - 0.00	12	1/2" Ice	0.00	0.60
							1" Ice	0.00	0.60
							2" Ice	0.00	0.60
FB-L98B-002-75000	С	No	No	Inside Pole	127.00 - 0.00	3	No Ice	0.00	0.06
(3/8)	C	NO	NO	iliside Foie	127.00 - 0.00	3	1/2" Ice	0.00	0.06
(376)							1" Ice	0.00	0.06
							2" Ice	0.00	0.06
2" Flexible Conduit	С	No	No	Inside Pole	127.00 - 0.00	1	No Ice	0.00	0.34
2 Plexible Collumn	C	NO	NO	iliside Foie	127.00 - 0.00	1	1/2" Ice	0.00	0.34
							1" Ice	0.00	0.34
							2" Ice	0.00	0.34
96							2 100	0.00	0.34
HCC 78-50J(7/8")	В	No	No	CaAa (Out	96.00 - 0.00	1	No Ice	0.00	0.53
1100 10 303(110)	Ъ	110	110	Of Face)	70.00 0.00	1	1/2" Ice	0.00	1.51
				Of face)			1" Ice	0.00	3.10
							2" Ice	0.00	8.10
90							2 100	0.00	0.10
LDF4-50A(1/2)	В	No	No	CaAa (Out	90.00 - 0.00	1	No Ice	0.00	0.15
221 : 0011(1/2)	_	110	110	Of Face)	, o. o o o o o	•	1/2" Ice	0.00	0.84
				011400)			1" Ice	0.00	2.14
							2" Ice	0.00	6.56
LDF6-50A(1-1/4)	В	No	No	CaAa (Out	90.00 - 0.00	2	No Ice	0.00	0.60
EDIO 3011(1 1/1)	Ъ	110	110	Of Face)	70.00 0.00	-	1/2" Ice	0.00	1.85
				Of face)			1" Ice	0.00	3.72
							2" Ice	0.00	9.27
81							2 100	0.00	7.21
HCC 78-50J(7/8")	В	No	No	CaAa (Out	81.00 - 0.00	1	No Ice	0.00	0.53
1100 10 300(110)		110	110	Of Face)	01.00 0.00	•	1/2" Ice	0.00	1.51

Tower Engineering Professionals, Inc. 326 Tryon Road Raleigh, NC 27603

Phone: (619) 661-6351 FAX: (619) 661-6350

Job		Page
	Hampton / Bernier (BU 876390)	4 of 19
Project	TEP No. 25693.284017	Date 10:40:53 07/22/19
Client	Crown Castle	Designed by CJB

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation	71	ft			ft²/ft	plf
							1" Ice	0.00	3.10
76							2" Ice	0.00	8.10
LDF4-50A(1/2)	A	No	No	Inside Pole	76.00 - 0.00	1	No Ice 1/2" Ice	0.00 0.00	0.15 0.15
							1" Ice	0.00	0.15
**							2" Ice	0.00	0.15

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft ²	ft ²	K
L1	150.00-123.29	A	0.000	0.000	8.144	0.000	0.10
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	1.002	0.000	0.15
L2	123.29-88.88	A	0.000	0.000	20.440	0.000	0.25
		В	0.000	0.000	50.110	0.000	0.42
		C	0.000	0.000	1.290	0.000	0.43
L3	88.88-43.80	A	0.000	0.000	26.778	0.000	0.33
		В	0.000	0.000	80.333	0.000	0.77
		C	0.000	0.000	1.691	0.000	0.56
L4	43.80-0.00	A	0.000	0.000	26.017	0.000	0.33
		В	0.000	0.000	78.052	0.000	0.75
		C	0.000	0.000	1.643	0.000	0.55

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft ²	ft^2	K
L1	150.00-123.29	A	1.598	0.000	0.000	15.658	0.000	0.27
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	9.539	0.000	0.26
L2	123.29-88.88	A	1.585	0.000	0.000	39.298	0.000	0.68
		В		0.000	0.000	73.873	0.000	1.46
		C		0.000	0.000	12.289	0.000	0.56
L3	88.88-43.80	A	1.554	0.000	0.000	51.337	0.000	0.90
		В		0.000	0.000	118.281	0.000	3.56
		C		0.000	0.000	15.983	0.000	0.74
L4	43.80-0.00	A	1.441	0.000	0.000	49.537	0.000	0.86
		В		0.000	0.000	114.580	0.000	3.44
		C		0.000	0.000	15.255	0.000	0.71

Feed Line Center of Pressure

Tower Engineering Professionals, Inc. 326 Tryon Road Raleigh, NC 27603 Phone: (619) 661-6351

FAX: (619) 661-6350

Job	Hampton / Bernier (BU 876390)	Page 5 of 19
Project	TEP No. 25693.284017	Date 10:40:53 07/22/19
Client	Crown Castle	Designed by CJB

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
L1	150.00-123.29	-2.2645	0.2423	-1.8929	1.0032
L2	123.29-88.88	3.3821	0.1197	2.1845	0.6095
L3	88.88-43.80	4.6824	0.1306	3.2102	0.6681
L4	43.80-0.00	5.3351	0.1524	3.5938	0.7547

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
L1	9	LDF7-50A(1-5/8)	123.29 -	1.0000	1.0000
			137.00		
L1	28	Safety Line 3/8	123.29 -	1.0000	1.0000
		-	150.00		
L1	15	LDF7-50A(1-5/8)	123.29 -	1.0000	1.0000
			117.00		
L2	9	LDF7-50A(1-5/8)	88.88 - 123.29	1.0000	1.0000
L2	15	LDF7-50A(1-5/8)	88.88 - 117.00	1.0000	1.0000
L2	28	Safety Line 3/8	88.88 - 123.29	1.0000	1.0000
L3	9	LDF7-50A(1-5/8)	43.80 - 88.88	1.0000	1.0000
L3	15	LDF7-50A(1-5/8)	43.80 - 88.88	1.0000	1.0000
L3	28	Safety Line 3/8	43.80 - 88.88	1.0000	1.0000

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
			ft ft ft	o	ft		ft ²	ft²	K
149									
NNVV-65B-R4 w/ Mount	A	From	4.00	0.0000	149.00	No Ice	12.51	7.41	0.10
Pipe		Centroid-Le	-6.00			1/2" Ice	13.11	8.60	0.19
•		g	2.00			1" Ice	13.67	9.50	0.29
						2" Ice	14.82	11.33	0.52
NNVV-65B-R4 w/ Mount	В	From	4.00	0.0000	149.00	No Ice	12.51	7.41	0.10
Pipe		Centroid-Le	-6.00			1/2" Ice	13.11	8.60	0.19
•		g	2.00			1" Ice	13.67	9.50	0.29
		C				2" Ice	14.82	11.33	0.52
NNVV-65B-R4 w/ Mount Pipe	С	From Centroid-Le g	4.00 -6.00 2.00	0.0000	149.00	No Ice 1/2" Ice 1" Ice 2" Ice	12.51 13.11 13.67 14.82	7.41 8.60 9.50 11.33	0.10 0.19 0.29 0.52

Tower Engineering

Job		Page
	Hampton / Bernier (BU 876390)	6 of 19
Project		Date
	TEP No. 25693.284017	10:40:53 07/22/19
Client	Crown Castle	Designed by CJB

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weigh
			Vert ft ft	0	ft		ft ²	ft^2	K
APXVTM14-ALU-I20 w/	Α.	From	ft4.00	0.0000	149.00	No Ice	4.09	2.86	0.08
Mount Pipe	Α	Centroid-Le	6.00	0.0000	149.00	1/2" Ice	4.09	3.23	0.08
Would Tipe		g g	2.00			1" Ice	4.88	3.61	0.19
		5	2.00			2" Ice	5.71	4.40	0.33
APXVTM14-ALU-I20 w/	В	From	4.00	0.0000	149.00	No Ice	4.09	2.86	0.08
Mount Pipe	_	Centroid-Le	6.00	0.0000	1.,,,,,,	1/2" Ice	4.48	3.23	0.13
· · · · · · · · · · · · · · · · · · ·		g	2.00			1" Ice	4.88	3.61	0.19
		C				2" Ice	5.71	4.40	0.33
APXVTM14-ALU-I20 w/	C	From	4.00	0.0000	149.00	No Ice	4.09	2.86	0.08
Mount Pipe		Centroid-Le	6.00			1/2" Ice	4.48	3.23	0.13
•		g	2.00			1" Ice	4.88	3.61	0.19
						2" Ice	5.71	4.40	0.33
(2) RRH2X50-800	A	From	4.00	0.0000	149.00	No Ice	2.13	1.77	0.05
		Centroid-Le	-2.00			1/2" Ice	2.32	1.95	0.07
		g	2.00			1" Ice	2.51	2.13	0.10
						2" Ice	2.92	2.51	0.16
(2) RRH2X50-800	В	From	4.00	0.0000	149.00	No Ice	2.13	1.77	0.05
		Centroid-Le	-6.00			1/2" Ice	2.32	1.95	0.07
		g	2.00			1" Ice	2.51	2.13	0.10
						2" Ice	2.92	2.51	0.16
(2) RRH2X50-800	В	From	4.00	0.0000	149.00	No Ice	2.13	1.77	0.05
		Centroid-Le	6.00			1/2" Ice	2.32	1.95	0.07
		g	2.00			1" Ice	2.51	2.13	0.10
		_				2" Ice	2.92	2.51	0.16
PCS 1900MHz	Α	From	4.00	0.0000	149.00	No Ice	2.32	2.24	0.06
4x45W-65MHz		Centroid-Le	-2.00			1/2" Ice	2.53	2.44	0.08
		g	2.00			1" Ice	2.74	2.65	0.11
DGG 10001 HI	ъ		4.00	0.0000	1.40.00	2" Ice	3.19	3.09	0.17
PCS 1900MHz	В	From	4.00	0.0000	149.00	No Ice	2.32	2.24	0.06
4x45W-65MHz		Centroid-Le	-6.00			1/2" Ice	2.53	2.44	0.08
		g	2.00			1" Ice	2.74	2.65	0.11
PCS 1900MHz	D	From	4.00	0.0000	149.00	2" Ice No Ice	3.19 2.32	3.09 2.24	0.17 0.06
4x45W-65MHz	В	Centroid-Le	6.00	0.0000	149.00	1/2" Ice	2.52	2.24	0.08
4x43 W-03MHZ			2.00			1" Ice	2.33	2.44	0.08
		g	2.00			2" Ice	3.19	3.09	0.11
TD-RRH8x20-25	Α	From	4.00	0.0000	149.00	No Ice	3.70	1.29	0.17
1D-KK110×20-25	А	Centroid-Le	-2.00	0.0000	147.00	1/2" Ice	3.95	1.46	0.07
		g	2.00			1" Ice	4.20	1.64	0.12
		5	2.00			2" Ice	4.72	2.02	0.18
TD-RRH8x20-25	В	From	4.00	0.0000	149.00	No Ice	3.70	1.29	0.07
	_	Centroid-Le	-6.00		- 1, 1, 0	1/2" Ice	3.95	1.46	0.09
		g	2.00			1" Ice	4.20	1.64	0.12
		8				2" Ice	4.72	2.02	0.18
TD-RRH8x20-25	В	From	4.00	0.0000	149.00	No Ice	3.70	1.29	0.07
		Centroid-Le	6.00			1/2" Ice	3.95	1.46	0.09
		g	2.00			1" Ice	4.20	1.64	0.12
						2" Ice	4.72	2.02	0.18
2.4" Dia. x 6-ft	Α	From	4.00	0.0000	149.00	No Ice	1.43	1.43	0.02
		Centroid-Le	0.00			1/2" Ice	1.92	1.92	0.03
		g	2.00			1" Ice	2.29	2.29	0.05
		-				2" Ice	3.06	3.06	0.09
2.4" Dia. x 6-ft	В	From	4.00	0.0000	149.00	No Ice	1.43	1.43	0.02
		Centroid-Le	0.00			1/2" Ice	1.92	1.92	0.03
		g	2.00			1" Ice	2.29	2.29	0.05
						2" Ice	3.06	3.06	0.09
2.4" Dia. x 6-ft	C	From	4.00	0.0000	149.00	No Ice	1.43	1.43	0.02

Job		Page
	Hampton / Bernier (BU 876390)	7 of 19
Project	TEP No. 25693.284017	Date 10:40:53 07/22/19
Client	Crown Castle	Designed by CJB

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
	Leg		Vert				_		
			ft ft ft	0	ft		ft ²	ft ²	K
		Centroid-Le	0.00			1/2" Ice	1.92	1.92	0.03
		g	2.00			1" Ice	2.29	2.29	0.05
017 11		Б	2.00	0.0000	1.40.00	2" Ice	3.06	3.06	0.09
8' Ladder	С	From	2.00 0.00	0.0000	149.00	No Ice 1/2" Ice	1.53 4.36	5.33 8.08	0.10
		Centroid-Le g	-2.00			1" Ice	7.19	10.83	0.11 0.13
		5	2.00			2" Ice	12.86	16.33	0.16
Miscellaneous [NA 507-1]	C	None		0.0000	149.00	No Ice	4.80	4.80	0.25
						1/2" Ice	6.70	6.70	0.29
						1" Ice	8.60	8.60	0.34
						2" Ice	12.40	12.40	0.44
Platform Mount [LP 712-1]	C	None		0.0000	149.00	No Ice	24.53	24.53	1.34
						1/2" Ice	29.94	29.94	1.65
						1" Ice	35.35	35.35	1.96
DI (C. M. (FI.D.202.1)	-	N		0.0000	1.40.00	2" Ice	46.17	46.17	2.58
Platform Mount [LP 303-1]	C	None		0.0000	149.00	No Ice 1/2" Ice	14.66 18.87	14.66 18.87	1.25 1.48
						1" Ice	23.08	23.08	1.46
						2" Ice	31.50	31.50	2.18
137		Г	4.00	0.0000	127.00	NI I	6.20	2.76	0.06
APX16DWV-16DWV-S-E-A	A	From	4.00	0.0000	137.00	No Ice	6.29	2.76	0.06
20 w/ Mount Pipe		Centroid-Le	-6.00 1.00			1/2" Ice 1" Ice	6.86 7.45	3.27 3.79	0.11 0.16
		g	1.00			2" Ice	8.68	4.90	0.10
APX16DWV-16DWV-S-E-A	В	From	4.00	0.0000	137.00	No Ice	6.29	2.76	0.06
20 w/ Mount Pipe	_	Centroid-Le	-6.00			1/2" Ice	6.86	3.27	0.11
r		g	1.00			1" Ice	7.45	3.79	0.16
						2" Ice	8.68	4.90	0.29
APX16DWV-16DWV-S-E-A	C	From	4.00	0.0000	137.00	No Ice	6.29	2.76	0.06
20 w/ Mount Pipe		Centroid-Le	-6.00			1/2" Ice	6.86	3.27	0.11
		g	1.00			1" Ice	7.45	3.79	0.16
1 DVVV 1 1 D D Q 1 1 2 1 1 1 1 2 0			4.00	0.0000	127.00	2" Ice	8.68	4.90	0.29
APXVAARR24_43-U-NA20	A	From	4.00	0.0000	137.00	No Ice	14.69	6.87	0.19
w/ Mount Pipe		Centroid-Le	6.00 1.00			1/2" Ice 1" Ice	15.46 16.23	7.55 8.25	0.31 0.46
		g	1.00			2" Ice	17.82	9.67	0.40
APXVAARR24_43-U-NA20	В	From	4.00	0.0000	137.00	No Ice	14.69	6.87	0.19
w/ Mount Pipe	_	Centroid-Le	6.00	0.0000	107.00	1/2" Ice	15.46	7.55	0.31
•		g	1.00			1" Ice	16.23	8.25	0.46
						2" Ice	17.82	9.67	0.79
APXVAARR24_43-U-NA20	C	From	4.00	0.0000	137.00	No Ice	14.69	6.87	0.19
w/ Mount Pipe		Centroid-Le	6.00			1/2" Ice	15.46	7.55	0.31
		g	1.00			1" Ice	16.23	8.25	0.46
VDV 112 400/2		F	4.00	0.0000	127.00	2" Ice	17.82	9.67	0.79
KRY 112 489/2	Α	From Centroid-Le	4.00 -6.00	0.0000	137.00	No Ice 1/2" Ice	0.56 0.66	0.37 0.45	0.02 0.02
			1.00			1" Ice	0.76	0.43	0.02
		g	1.00			2" Ice	1.00	0.75	0.05
KRY 112 489/2	В	From	4.00	0.0000	137.00	No Ice	0.56	0.73	0.03
	-	Centroid-Le	-6.00			1/2" Ice	0.66	0.45	0.02
		g	1.00			1" Ice	0.76	0.54	0.03
						2" Ice	1.00	0.75	0.05
KRY 112 489/2	C	From	4.00	0.0000	137.00	No Ice	0.56	0.37	0.02
		Centroid-Le	-6.00			1/2" Ice	0.66	0.45	0.02
		g	1.00			1" Ice	0.76	0.54	0.03
		8	1.00			2" Ice	1.00	0.75	0.05

Job		Page
	Hampton / Bernier (BU 876390)	8 of 19
Project	TEP No. 25693.284017	Date 10:40:53 07/22/19
Client	Crown Castle	Designed by CJB

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
	- 0		Vert ft ft ft	۰	ft		ft ²	ft²	K
		Centroid-Le	6.00 1.00			1/2" Ice 1" Ice	1.80 1.97	1.29 1.44	0.09 0.11
						2" Ice	2.33	1.75	0.15
RADIO 4449 B12/B71	В	From	4.00	0.0000	137.00	No Ice	1.64	1.15	0.07
		Centroid-Le	6.00			1/2" Ice	1.80	1.29	0.09
		g	1.00			1" Ice	1.97	1.44	0.11
RADIO 4449 B12/B71	С	From	4.00	0.0000	137.00	2" Ice No Ice	2.33 1.64	1.75 1.15	0.15 0.07
KADIO 4449 B12/B/1	C	Centroid-Le	6.00	0.0000	137.00	1/2" Ice	1.80	1.13	0.07
		g	1.00			1" Ice	1.97	1.44	0.05
		8	1.00			2" Ice	2.33	1.75	0.15
2.4" Dia. x 6-ft	Α	From	4.00	0.0000	137.00	No Ice	1.43	1.43	0.02
		Centroid-Le	0.00			1/2" Ice	1.92	1.92	0.03
		g	0.00			1" Ice	2.29	2.29	0.05
						2" Ice	3.06	3.06	0.09
2.4" Dia. x 6-ft	В	From	4.00	0.0000	137.00	No Ice	1.43	1.43	0.02
		Centroid-Le	0.00			1/2" Ice	1.92	1.92	0.03
		g	0.00			1" Ice	2.29	2.29	0.05
2.4" Dia. x 6-ft	С	From	4.00	0.0000	137.00	2" Ice No Ice	3.06 1.43	3.06 1.43	0.09 0.02
2.4 Dia. x 0-1t	C	Centroid-Le	0.00	0.0000	137.00	1/2" Ice	1.43	1.43	0.02
		g g	0.00			1" Ice	2.29	2.29	0.05
		5	0.00			2" Ice	3.06	3.06	0.09
Platform Mount [LP 1201-1]	C	None		0.0000	137.00	No Ice	23.10	23.10	2.10
						1/2" Ice	26.80	26.80	2.50
						1" Ice	30.50	30.50	2.90
						2" Ice	37.90	37.90	3.70
Side Arm Mount [SO 102-3]	C	None		0.0000	137.00	No Ice	3.00	3.00	0.08
						1/2" Ice	3.48	3.48	0.11
						1" Ice	3.96	3.96	0.14
(2) Miscellaneous [NA 510-1]	С	None		0.0000	137.00	2" Ice No Ice	4.92 6.00	4.92 6.00	0.20 0.26
(2) Miscenaneous [NA 310-1]	C	None		0.0000	137.00	1/2" Ice	8.50	8.50	0.20
						1" Ice	11.00	11.00	0.34
						2" Ice	16.00	16.00	0.56
(2) L3x3x1/4 (5.5' long)	Α	From	2.00	0.0000	137.00	No Ice	2.61	2.61	0.03
		Centroid-Le	0.00			1/2" Ice	3.01	3.01	0.04
		g	0.00			1" Ice	3.41	3.41	0.06
						2" Ice	4.24	4.24	0.12
(2) L3x3x1/4 (5.5' long)	В	From	2.00	0.0000	137.00	No Ice	2.61	2.61	0.03
		Centroid-Le	0.00			1/2" Ice	3.01	3.01	0.04
		g	0.00			1" Ice	3.41	3.41	0.06
(2) I 2v2v1/4 (5 5! long)	С	From	2.00	0.0000	137.00	2" Ice No Ice	4.24	4.24	0.12 0.03
(2) $L3x3x1/4$ (5.5' long)	C	Centroid-Le	0.00	0.0000	137.00	1/2" Ice	2.61 3.01	2.61 3.01	0.03
		g	0.00			1" Ice	3.41	3.41	0.04
		5	0.00			2" Ice	4.24	4.24	0.12
129									
TME-RRUS-11	A	From Leg	2.00	0.0000	129.00	No Ice	2.79	1.19	0.05
			-2.00			1/2" Ice	3.00	1.34	0.07
			-2.00			1" Ice	3.21	1.50	0.09
m (n +====				10.0000	100.00	2" Ice	3.67	1.84	0.15
TME-RRUS-11	В	From Leg	2.00	-10.0000	129.00	No Ice	2.79	1.19	0.05
			-2.00			1/2" Ice	3.00	1.34	0.07
			-2.00			1" Ice 2" Ice	3.21 3.67	1.50 1.84	0.09 0.15
TME-RRUS-11	C	From Leg	2.00	-10.0000	129.00	No Ice	2.79	1.19	0.15
INIL MOD II	C	110m Lvg	2.00	10.0000	127.00	1,0 100	2.17	1.17	0.03

Job		Page
	Hampton / Bernier (BU 876390)	9 of 19
Project	TEP No. 25693.284017	Date 10:40:53 07/22/19
Client	Crown Castle	Designed by CJB

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	0	ft		ft²	ft ²	K
			-2.00			1/2" Ice	3.00	1.34	0.07
			-2.00			1" Ice	3.21	1.50	0.09
						2" Ice	3.67	1.84	0.15
2.4" Dia. x 3-ft	Α	From Leg	2.00	0.0000	129.00	No Ice	0.58	0.58	0.01
			-2.00 0.00			1/2" Ice 1" Ice	0.77 0.97	0.77 0.97	0.02 0.02
			0.00			2" Ice	1.39	1.39	0.02
2.4" Dia. x 3-ft	В	From Leg	2.00	0.0000	129.00	No Ice	0.58	0.58	0.03
2.4 Dia. x 3 it	ь	Trom Leg	-2.00	0.0000	125.00	1/2" Ice	0.77	0.77	0.02
			0.00			1" Ice	0.97	0.97	0.02
						2" Ice	1.39	1.39	0.05
2.4" Dia. x 3-ft	C	From Leg	2.00	0.0000	129.00	No Ice	0.58	0.58	0.01
			-2.00			1/2" Ice	0.77	0.77	0.02
			0.00			1" Ice	0.97	0.97	0.02
						2" Ice	1.39	1.39	0.05
Side Arm Mount [SO 102-3]	C	None		0.0000	129.00	No Ice	3.00	3.00	0.08
						1/2" Ice	3.48	3.48	0.11
						1" Ice 2" Ice	3.96 4.92	3.96 4.92	0.14 0.20
2.4" Dia. x 4-ft	A	From Leg	2.00	0.0000	129.00	No Ice	0.87	0.00	0.20
2.4 Dia. x 4-1t	А	From Leg	0.00	0.0000	129.00	1/2" Ice	1.12	0.00	0.01
			0.00			1" Ice	1.12	0.00	0.02
			0.00			2" Ice	1.91	0.00	0.06
2.4" Dia. x 4-ft	В	From Leg	2.00	0.0000	129.00	No Ice	0.87	0.00	0.01
2.1 Bit. X 1 It	В	Trom Leg	0.00	0.0000	125.00	1/2" Ice	1.12	0.00	0.02
			0.00			1" Ice	1.37	0.00	0.03
						2" Ice	1.91	0.00	0.06
2.4" Dia. x 4-ft	C	From Leg	2.00	0.0000	129.00	No Ice	0.87	0.00	0.01
			0.00			1/2" Ice	1.12	0.00	0.02
			0.00			1" Ice	1.37	0.00	0.03
						2" Ice	1.91	0.00	0.06
127		Б. Т	2.00	0.0000	127.00	NY Y	5.75	4.05	0.06
(2) 7770.00 w/ Mount Pipe	A	From Leg	3.00	0.0000	127.00	No Ice	5.75	4.25	0.06
			0.00 2.00			1/2" Ice 1" Ice	6.18 6.61	5.01 5.71	0.10 0.16
			2.00			2" Ice	7.49	7.16	0.10
(2) 7770.00 w/ Mount Pipe	В	From Leg	3.00	-10.0000	127.00	No Ice	5.75	4.25	0.29
(2) 7770.00 W/ Would Tipe	ь	110III Leg	0.00	-10.0000	127.00	1/2" Ice	6.18	5.01	0.10
			2.00			1" Ice	6.61	5.71	0.16
			2.00			2" Ice	7.49	7.16	0.29
(2) 7770.00 w/ Mount Pipe	C	From Leg	3.00	-10.0000	127.00	No Ice	5.75	4.25	0.06
			0.00			1/2" Ice	6.18	5.01	0.10
			2.00			1" Ice	6.61	5.71	0.16
						2" Ice	7.49	7.16	0.29
AM-X-CD-17-65-00T-RET	A	From Leg	3.00	0.0000	127.00	No Ice	6.09	4.31	0.09
w/ Mount Pipe			0.00			1/2" Ice	6.66	4.86	0.17
			2.00			1" Ice	7.24	5.42	0.26
AM W GD 17 65 000 D	г.	F *	2.00	10.0000	105.00	2" Ice	8.43	6.57	0.48
AM-X-CD-17-65-00T-RET	В	From Leg	3.00	-10.0000	127.00	No Ice	6.09	4.31	0.09
w/ Mount Pipe			0.00			1/2" Ice	6.66	4.86	0.17
			2.00			1" Ice 2" Ice	7.24	5.42	0.26
AM-X-CD-17-65-00T-RET	С	From Leg	3.00	-10.0000	127.00	No Ice	8.43 6.09	6.57 4.31	0.48 0.09
	C	From Leg	0.00	-10.0000	127.00	1/2" Ice	6.66	4.31	0.09
						174 ICC	0.00		
w/ Mount Pipe									
			2.00			1" Ice 2" Ice	7.24 8.43	5.42 6.57	0.26 0.48

Job		Page
	Hampton / Bernier (BU 876390)	10 of 19
Project	TEP No. 25693.284017	Date 10:40:53 07/22/19
Client	Crown Castle	Designed by CJB

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C _A A _A Front	C_AA_A Side	Weigh
	Leg		Lateral Vert						
			ft	0	ft		ft^2	ft^2	K
			ft ft		v		J		
			-5.00			1/2" Ice	1.83	0.57	0.04
			0.00			1" Ice	2.00	0.68	0.06
						2" Ice	2.36	0.91	0.09
(2) LGP 17201	В	From Leg	3.00	-10.0000	127.00	No Ice	1.67	0.47	0.03
			-5.00			1/2" Ice	1.83	0.57	0.04
			0.00			1" Ice	2.00	0.68	0.06
(2) I CD 17201	C	Enom Loo	2.00	10,0000	127.00	2" Ice No Ice	2.36 1.67	0.91 0.47	0.09 0.03
(2) LGP 17201	С	From Leg	3.00 -5.00	-10.0000	127.00	1/2" Ice	1.83	0.47	0.03
			0.00			1" Ice	2.00	0.57	0.04
			0.00			2" Ice	2.36	0.91	0.09
(2) LGP13519	A	From Leg	3.00	0.0000	127.00	No Ice	0.29	0.18	0.01
(=) = == === ==			5.00			1/2" Ice	0.36	0.24	0.01
			0.00			1" Ice	0.44	0.31	0.01
						2" Ice	0.62	0.47	0.02
(2) LGP13519	В	From Leg	3.00	-10.0000	127.00	No Ice	0.29	0.18	0.01
			5.00			1/2" Ice	0.36	0.24	0.01
			0.00			1" Ice	0.44	0.31	0.01
						2" Ice	0.62	0.47	0.02
(2) LGP13519	C	From Leg	3.00	-10.0000	127.00	No Ice	0.29	0.18	0.01
			5.00			1/2" Ice	0.36	0.24	0.01
			0.00			1" Ice	0.44	0.31	0.01
DCC 40 CO 10 0F	D	г г	2.00	10.0000	127.00	2" Ice	0.62	0.47	0.02
DC6-48-60-18-8F	В	From Leg	3.00 0.00	-10.0000	127.00	No Ice 1/2" Ice	1.21 1.89	1.21 1.89	0.03 0.05
			0.00			1" Ice	2.11	2.11	0.03
			0.00			2" Ice	2.57	2.57	0.14
ide Arm Mount [SO 102-3]	C	None		0.0000	127.00	No Ice	3.00	3.00	0.08
						1/2" Ice	3.48	3.48	0.11
						1" Ice	3.96	3.96	0.14
						2" Ice	4.92	4.92	0.20
Γ-Arm Mount [TA 601-3]	C	None		0.0000	127.00	No Ice	10.90	10.90	0.73
						1/2" Ice	14.65	14.65	0.93
						1" Ice	18.40	18.40	1.13
117						2" Ice	25.90	25.90	1.52
(2) LPA-80080/4CF w/	Α	From	4.00	0.0000	117.00	No Ice	3.11	6.82	0.03
Mount Pipe		Centroid-Le	0.00			1/2" Ice	3.58	7.65	0.08
•		g	2.00			1" Ice	4.02	8.35	0.14
						2" Ice	4.90	9.81	0.27
(2) LPA-80080/4CF w/	В	From	4.00	0.0000	117.00	No Ice	3.11	6.82	0.03
Mount Pipe		Centroid-Le	0.00			1/2" Ice	3.58	7.65	0.08
		g	2.00			1" Ice	4.02	8.35	0.14
(2) 7 7 1 00000 (167		-	4.00	0.0000	117.00	2" Ice	4.90	9.81	0.27
(2) LPA-80080/4CF w/	C	From	4.00	0.0000	117.00	No Ice	3.11	6.82	0.03
Mount Pipe		Centroid-Le	0.00			1/2" Ice	3.58	7.65	0.08
		g	2.00			1" Ice	4.02	8.35	0.14
XA-70063-6CF-2 w/ Mount	Α	From	4.00	0.0000	117.00	2" Ice No Ice	4.90 7.81	9.81 5.80	0.27 0.04
Pipe	А	Centroid-Le	-2.00	0.0000	117.00	1/2" Ice	8.36	6.95	0.04
Tipe		g	2.00			1" Ice	8.87	7.82	0.10
		D				2" Ice	9.93	9.60	0.34
KA-70063-6CF-2 w/ Mount	В	From	4.00	0.0000	117.00	No Ice	7.81	5.80	0.04
Pipe		Centroid-Le	2.00			1/2" Ice	8.36	6.95	0.10
•		g	2.00			1" Ice	8.87	7.82	0.17
						2" Ice	9.93	9.60	0.34
XA-70063-6CF-2 w/ Mount	C	From	4.00	0.0000	117.00	No Ice	7.81	5.80	0.04

Job		Page
	Hampton / Bernier (BU 876390)	11 of 19
Project		Date
	TEP No. 25693.284017	10:40:53 07/22/19
Client		Designed by
	Crown Castle	CJB

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
	Leg		Lateral Vert						
			ft	0	ft		ft^2	ft^2	K
			ft ft		v		v		
Pipe		Centroid-Le	2.00			1/2" Ice	8.36	6.95	0.10
•		g	2.00			1" Ice	8.87	7.82	0.17
		_				2" Ice	9.93	9.60	0.34
BXA-171085-12CF-EDIN-2	Α	From	4.00	0.0000	117.00	No Ice	5.02	5.28	0.04
w/ Mount Pipe		Centroid-Le	2.00			1/2" Ice	5.57	6.45	0.09
		g	2.00			1" Ice 2" Ice	6.09 7.15	7.33 9.13	0.14 0.27
BXA-171085-12CF-EDIN-2	В	From	4.00	0.0000	117.00	No Ice	5.02	5.28	0.27
w/ Mount Pipe	Ь	Centroid-Le	-2.00	0.0000	117.00	1/2" Ice	5.57	6.45	0.09
W Mount Lipe		g	2.00			1" Ice	6.09	7.33	0.14
		C				2" Ice	7.15	9.13	0.27
BXA-171085-12CF-EDIN-2	C	From	4.00	0.0000	117.00	No Ice	5.02	5.28	0.04
w/ Mount Pipe		Centroid-Le	-2.00			1/2" Ice	5.57	6.45	0.09
		g	2.00			1" Ice	6.09	7.33	0.14
						2" Ice	7.15	9.13	0.27
Platform Mount [LP 303-1]	C	None		0.0000	117.00	No Ice	14.66	14.66	1.25
						1/2" Ice	18.87	18.87	1.48
						1" Ice 2" Ice	23.08 31.50	23.08 31.50	1.71 2.18
96						2 100	31.30	31.30	2.10
ANT450F6	C	From Leg	3.00	0.0000	96.00	No Ice	1.90	1.90	0.01
111110010	C	Trom 20g	0.00	0.0000	70.00	1/2" Ice	2.73	2.73	0.02
			4.00			1" Ice	3.40	3.40	0.04
						2" Ice	4.40	4.40	0.10
Side Arm Mount [SO 701-1]	C	From Leg	1.50	0.0000	96.00	No Ice	0.85	1.67	0.07
			0.00			1/2" Ice	1.14	2.34	0.08
			0.00			1" Ice	1.43	3.01	0.09
						2" Ice	2.01	4.35	0.12
90			7 .00	0.0000	00.00	NT T	6.22	6.22	0.00
DS9A09F36D-N	A	From Leg	5.00	0.0000	90.00	No Ice	6.33	6.33	0.08
			0.00 10.00			1/2" Ice 1" Ice	8.47 10.63	8.47	0.12 0.18
			10.00			2" Ice	10.63	10.63 14.99	0.18
TTA-429-94C-08179	Α	From Leg	5.00	0.0000	90.00	No Ice	1.03	1.03	0.34
11A-429-94C-08179	А	110III Leg	0.00	0.0000	90.00	1/2" Ice	1.03	1.03	0.01
			0.00			1" Ice	1.32	1.32	0.02
			0.00			2" Ice	1.64	1.64	0.07
1.9" Dia. x 6-ft	Α	From Leg	2.50	0.0000	90.00	No Ice	1.14	0.00	0.02
		Č	0.00			1/2" Ice	1.76	0.00	0.03
			0.00			1" Ice	2.14	0.00	0.04
						2" Ice	2.90	0.00	0.08
Pipe Mount [PM 601-1]	Α	From Leg	0.50	0.0000	90.00	No Ice	3.00	0.90	0.07
			0.00			1/2" Ice	3.74	1.12	0.08
			0.00			1" Ice	4.48	1.34	0.09
						2" Ice	5.96	1.78	0.12
Side Arm Mount [SO 307-1]	A	From Leg	2.50	0.0000	90.00	No Ice	0.98	2.60	0.05
			0.00			1/2" Ice	1.70	4.50	0.07
			0.00			1" Ice	2.42	6.40	0.09
81						2" Ice	3.86	10.20	0.14
ANT450F6	C	From Leg	3.00	0.0000	81.00	No Ice	1.90	1.90	0.01
711175010		110m Leg	0.00	0.0000	31.00	1/2" Ice	2.73	2.73	0.01
			4.00			1" Ice	3.40	3.40	0.02
						2" Ice	4.40	4.40	0.10
Side Arm Mount [SO 701-1]	C	From Leg	1.50	0.0000	81.00	No Ice	0.85	1.67	0.07
		Č	0.00			1/2" Ice	1.14	2.34	0.08
			0.00			1" Ice	1.43	3.01	0.09

Tower Engineering

Professionals, Inc. 326 Tryon Road Raleigh, NC 27603 Phone: (619) 661-6351 FAX: (619) 661-6350

Job		Page
	Hampton / Bernier (BU 876390)	12 of 19
Project		Date
	TEP No. 25693.284017	10:40:53 07/22/19
Client		Designed by
	Crown Castle	CJB

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft²	ft ²	K
76			,			2" Ice	2.01	4.35	0.12
KS24019-L112A	С	From Leg	3.00 0.00 1.00	30.0000	76.00	No Ice 1/2" Ice 1" Ice 2" Ice	0.08 0.13 0.19 0.35	0.08 0.13 0.19 0.35	0.01 0.01 0.01 0.02
Side Arm Mount [SO 701-1]	С	From Leg	1.50 0.00 0.00	30.0000	76.00	No Ice 1/2" Ice 1" Ice 2" Ice	0.85 1.14 1.43 2.01	1.67 2.34 3.01 4.35	0.07 0.08 0.09 0.12

Load Combinations

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp

Tower Engineering Professionals, Inc.

326 Tryon Road Raleigh, NC 27603 Phone: (619) 661-6351 FAX: (619) 661-6350

Job		Page
	Hampton / Bernier (BU 876390)	13 of 19
Project	TEP No. 25693.284017	Date 10:40:53 07/22/19
Client	Crown Castle	Designed by CJB

Comb.	Description
No.	
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Type		Load		Moment	Moment
				Comb.	K	kip-ft	kip-ft
L1	150 - 123.29	Pole	Max Tension	48	0.00	-0.00	-0.00
			Max. Compression	26	-27.75	-3.33	-0.31
			Max. Mx	8	-10.24	-271.15	-6.18
			Max. My	14	-10.11	-7.21	-272.98
			Max. Vy	8	19.78	-271.15	-6.18
			Max. Vx	2	-19.96	4.98	272.65
			Max. Torque	14			1.12
L2	123.29 - 88.88	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-41.26	-4.21	0.62
			Max. Mx	8	-17.20	-1089.27	-12.94
			Max. My	2	-16.95	11.72	1108.75
			Max. Vy	8	26.98	-1089.27	-12.94
			Max. Vx	2	-27.99	11.72	1108.75
			Max. Torque	21			-2.40
L3	88.88 - 43.8	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-58.24	-7.59	4.67
			Max. Mx	8	-28.49	-2402.74	-22.26
			Max. My	2	-28.27	21.58	2496.09
			Max. Vy	8	31.97	-2402.74	-22.26
			Max. Vx	2	-34.18	21.58	2496.09
			Max. Torque	21			-2.46
L4	43.8 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-81.30	-13.12	6.25
			Max. Mx	8	-45.22	-4090.51	-32.95
			Max. My	2	-45.22	31.64	4310.11
			Max. Vy	8	36.58	-4090.51	-32.95
			Max. Vx	2	-39.46	31.64	4310.11
			Max. Torque	19			-2.20

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			

Tower Engineering Professionals, Inc. 326 Tryon Road Raleigh, NC 27603 Phone: (619) 661-6351 FAX: (619) 661-6350

Job		Page
	Hampton / Bernier (BU 876390)	14 of 19
Project	TEP No. 25693.284017	Date 10:40:53 07/22/19
Client	Crown Castle	Designed by CJB

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, 2
		Load	K	K	K
		Comb.			
Pole	Max. Vert	30	81.30	-9.06	-0.04
	Max. H _x	20	45.27	36.52	0.23
	Max. H _z	2	45.27	0.23	39.40
	Max. M _x	2	4310.11	0.23	39.40
	Max. Mz	8	4090.51	-36.52	-0.23
	Max. Torsion	7	2.18	-31.52	18.22
	Min. Vert	11	33.95	-31.74	-18.61
	Min. H _x	8	45.27	-36.52	-0.23
	Min. Hz	14	45.27	-0.23	-39.40
	Min. M _x	14	-4305.24	-0.23	-39.40
	Min. Mz	20	-4083.19	36.52	0.23
	Min. Torsion	19	-2.19	31.52	-18.22

Tower Mast Reaction Summary

Load Combination	Vertical	$Shear_x$	$Shear_z$	Overturning Moment, M_x	Overturning Moment, M_z	Torque
Combination	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	37.72	0.00	-0.00	-1.98	-3.00	0.00
1.2 Dead+1.0 Wind 0 deg - No	45.27	-0.23	-39.40	-4310.11	31.64	-0.91
Ice						
0.9 Dead+1.0 Wind 0 deg - No	33.95	-0.23	-39.40	-4236.12	31.90	-0.92
Ice						
1.2 Dead+1.0 Wind 30 deg - No	45.27	18.07	-31.79	-3556.13	-2016.57	-1.78
Ice						
0.9 Dead+1.0 Wind 30 deg - No	33.95	18.07	-31.79	-3494.13	-1980.88	-1.79
Ice						
1.2 Dead+1.0 Wind 60 deg - No	45.27	31.52	-18.22	-2033.80	-3525.59	-2.17
Ice						
0.9 Dead+1.0 Wind 60 deg - No	33.95	31.52	-18.22	-1998.16	-3463.76	-2.18
Ice						
1.2 Dead+1.0 Wind 90 deg - No	45.27	36.52	0.23	32.95	-4090.51	-1.98
Ice						
0.9 Dead+1.0 Wind 90 deg - No	33.95	36.52	0.23	32.86	-4018.89	-1.99
Ice						
1.2 Dead+1.0 Wind 120 deg -	45.27	31.74	18.61	2089.82	-3560.26	-1.27
No Ice						
0.9 Dead+1.0 Wind 120 deg -	33.95	31.74	18.61	2054.23	-3497.76	-1.27
No Ice						
1.2 Dead+1.0 Wind 150 deg -	45.27	18.46	32.01	3585.94	-2077.43	-0.23
No Ice	22.05	10.46	22.01	2524.55	2040.51	0.22
0.9 Dead+1.0 Wind 150 deg -	33.95	18.46	32.01	3524.55	-2040.51	-0.22
No Ice	45.27	0.23	39.40	4305.24	-39.08	0.88
1.2 Dead+1.0 Wind 180 deg - No Ice	43.27	0.23	39.40	4303.24	-39.08	0.88
0.9 Dead+1.0 Wind 180 deg -	33.95	0.23	39.40	4232.53	-37.37	0.89
No Ice	33.93	0.23	39.40	4232.33	-31.31	0.69
1.2 Dead+1.0 Wind 210 deg -	45.27	-18.07	31.79	3551.32	2009.15	1.76
No Ice	43.21	-10.07	31.79	3331.32	2009.13	1.70
0.9 Dead+1.0 Wind 210 deg -	33.95	-18.07	31.79	3490.58	1975.43	1.78
No Ice	33.73	10.07	31.77	5470.50	1773.43	1.70
1.2 Dead+1.0 Wind 240 deg -	45.27	-31.52	18.22	2029.00	3518.22	2.18
No Ice	.0.27	01.02	10.22	2022.00	2010.22	2.10
0.9 Dead+1.0 Wind 240 deg -	33.95	-31.52	18.22	1994.61	3458.35	2.19
No Ice						/
1.2 Dead+1.0 Wind 270 deg -	45.27	-36.52	-0.23	-37.80	4083.19	2.01
No Ice						

Tower Engineering

Professionals, Inc. 326 Tryon Road Raleigh, NC 27603 Phone: (619) 661-6351 FAX: (619) 661-6350

Job		Page
	Hampton / Bernier (BU 876390)	15 of 19
Project	TEP No. 25693.284017	Date 10:40:53 07/22/19
Client	Crown Castle	Designed by CJB

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M_z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
0.9 Dead+1.0 Wind 270 deg -	33.95	-36.52	-0.23	-36.44	4013.51	2.01
No Ice						
1.2 Dead+1.0 Wind 300 deg -	45.27	-31.74	-18.61	-2094.72	3552.92	1.29
No Ice						
0.9 Dead+1.0 Wind 300 deg -	33.95	-31.74	-18.61	-2057.84	3492.37	1.29
No Ice						
1.2 Dead+1.0 Wind 330 deg -	45.27	-18.46	-32.01	-3590.85	2070.03	0.21
No Ice						
0.9 Dead+1.0 Wind 330 deg -	33.95	-18.46	-32.01	-3528.18	2035.08	0.21
No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	81.30	0.00	-0.00	-6.25	-13.12	0.00
1.2 Dead+1.0 Wind 0 deg+1.0	81.30	-0.04	-9.12	-1087.17	-6.17	-0.37
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30 deg+1.0	81.30	4.49	-7.88	-938.83	-544.13	-0.64
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60 deg+1.0	81.30	7.82	-4.52	-540.62	-939.83	-0.74
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90 deg+1.0	81.30	9.06	0.04	0.76	-1087.23	-0.64
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	81.30	7.87	4.60	540.25	-946.86	-0.37
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	81.30	4.57	7.92	933.29	-556.32	0.00
deg+1.0 Ice+1.0 Temp	04.20	0.04	0.10	105150	20.26	0.25
1.2 Dead+1.0 Wind 180	81.30	0.04	9.12	1074.59	-20.26	0.37
deg+1.0 Ice+1.0 Temp	01.20	4.40	7.00	026.27	517.70	0.64
1.2 Dead+1.0 Wind 210	81.30	-4.49	7.88	926.27	517.70	0.64
deg+1.0 Ice+1.0 Temp	01.20	7.00	4.50	520.06	012.41	0.74
1.2 Dead+1.0 Wind 240	81.30	-7.82	4.52	528.06	913.41	0.74
deg+1.0 Ice+1.0 Temp	91.20	0.06	0.04	12 22	1060.92	0.64
1.2 Dead+1.0 Wind 270	81.30	-9.06	-0.04	-13.33	1060.83	0.64
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300	81.30	-7.87	-4.60	-552.83	920.45	0.37
deg+1.0 Ice+1.0 Temp	61.30	-7.07	-4.00	-332.63	920.43	0.37
1.2 Dead+1.0 Wind 330	81.30	-4.57	-7.92	-945.88	529.90	-0.00
deg+1.0 Ice+1.0 Temp	61.50	-4.57	-1.92	-945.00	329.90	-0.00
Dead+Wind 0 deg - Service	37.72	-0.05	-7.91	-860.64	3.97	-0.18
Dead+Wind 30 deg - Service	37.72	3.62	-6.38	-710.07	-404.11	-0.16
Dead+Wind 60 deg - Service	37.72	6.32	-3.66	-406.75	-704.74	-0.45
Dead+Wind 90 deg - Service	37.72	7.33	0.05	5.01	-817.34	-0.41
Dead+Wind 120 deg - Service	37.72	6.37	3.73	414.88	-711.78	-0.26
Dead+Wind 150 deg - Service	37.72	3.70	6.42	713.04	-416.31	-0.05
Dead+Wind 180 deg - Service	37.72	0.05	7.91	856.57	-10.12	0.18
Dead+Wind 210 deg - Service	37.72	-3.62	6.38	706.00	397.97	0.36
Dead+Wind 240 deg - Service	37.72	-6.32	3.66	402.69	698.60	0.45
Dead+Wind 270 deg - Service	37.72	-7.33	-0.05	-9.08	811.19	0.41
Dead+Wind 300 deg - Service	37.72	-6.37	-3.73	-418.95	705.63	0.26
Dead+Wind 330 deg - Service	37.72	-3.70	-6.42	-717.11	410.17	0.05

Solution Summary

	Sui	m of Applied Force.	S		Sum of Reaction	S	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-37.72	0.00	-0.00	37.72	0.00	0.000%
2	-0.23	-45.27	-39.40	0.23	45.27	39.40	0.000%
3	-0.23	-33.95	-39.40	0.23	33.95	39.40	0.000%
4	18.07	-45.27	-31.79	-18.07	45.27	31.79	0.000%
5	18.07	-33.95	-31.79	-18.07	33.95	31.79	0.000%

Tower Engineering Professionals, Inc.

326 Tryon Road Raleigh, NC 27603 Phone: (619) 661-6351 FAX: (619) 661-6350

Job		Page
	Hampton / Bernier (BU 876390)	16 of 19
Project	TEP No. 25693.284017	Date 10:40:53 07/22/19
Client	Crown Castle	Designed by CJB

		n of Applied Force			Sum of Reaction		
Load	PX	PY	PZ	PX	PY	PZ	% Erroi
Comb.	K	K	K	K	K	K	
6	31.52	-45.27	-18.22	-31.52	45.27	18.22	0.000%
7	31.52	-33.95	-18.22	-31.52	33.95	18.22	0.000%
8	36.52	-45.27	0.23	-36.52	45.27	-0.23	0.000%
9	36.52	-33.95	0.23	-36.52	33.95	-0.23	0.000%
10	31.74	-45.27	18.61	-31.74	45.27	-18.61	0.000%
11	31.74	-33.95	18.61	-31.74	33.95	-18.61	0.000%
12	18.46	-45.27	32.01	-18.46	45.27	-32.01	0.000%
13	18.46	-33.95	32.01	-18.46	33.95	-32.01	0.000%
14	0.23	-45.27	39.40	-0.23	45.27	-39.40	0.000%
15	0.23	-33.95	39.40	-0.23	33.95	-39.40	0.000%
16	-18.07	-45.27	31.79	18.07	45.27	-31.79	0.000%
17	-18.07	-33.95	31.79	18.07	33.95	-31.79	0.000%
18	-31.52	-45.27	18.22	31.52	45.27	-18.22	0.000%
19	-31.52	-33.95	18.22	31.52	33.95	-18.22	0.000%
20	-36.52	-45.27	-0.23	36.52	45.27	0.23	0.000%
21	-36.52	-33.95	-0.23	36.52	33.95	0.23	0.000%
22	-31.74	-45.27	-18.61	31.74	45.27	18.61	0.000%
23	-31.74	-33.95	-18.61	31.74	33.95	18.61	0.000%
24	-18.46	-45.27	-32.01	18.46	45.27	32.01	0.000%
25	-18.46	-33.95	-32.01	18.46	33.95	32.01	0.000%
26	0.00	-81.30	0.00	-0.00	81.30	0.00	0.000%
27	-0.04	-81.30	-9.12	0.04	81.30	9.12	0.000%
28	4.49	-81.30	-7.88	-4.49	81.30	7.88	0.000%
29	7.82	-81.30	-4.52	-7.82	81.30	4.52	0.000%
30	9.06	-81.30	0.04	-9.06	81.30	-0.04	0.000%
31	7.87	-81.30	4.60	-7.87	81.30	-4.60	0.000%
32	4.57	-81.30	7.92	-4.57	81.30	-7.92	0.000%
33	0.04	-81.30	9.12	-0.04	81.30	-9.12	0.000%
34	-4.49	-81.30	7.88	4.49	81.30	-7.88	0.000%
35	-7.82	-81.30	4.52	7.82	81.30	-4.52	0.000%
36	-9.06	-81.30	-0.04	9.06	81.30	0.04	0.000%
37	-7.87	-81.30	-4.60	7.87	81.30	4.60	0.000%
38	-4.57	-81.30	-7.92	4.57	81.30	7.92	0.000%
39	-0.05	-37.72	-7.91	0.05	37.72	7.91	0.000%
40	3.62	-37.72	-6.38	-3.62	37.72	6.38	0.000%
41	6.32	-37.72	-3.66	-6.32	37.72	3.66	0.000%
42	7.33	-37.72	0.05	-7.33	37.72	-0.05	0.000%
43	6.37	-37.72	3.73	-6.37	37.72	-3.73	0.000%
43	3.70	-37.72	6.42	-3.70	37.72	-6.42	0.000%
44	0.05	-37.72 -37.72	7.91	-3.70 -0.05	37.72 37.72	-0.42 -7.91	0.000%
46	-3.62	-37.72	6.38	3.62	37.72	-6.38	0.000%
40 47	-6.32	-37.72 -37.72	3.66	6.32	37.72 37.72	-0.58 -3.66	0.000%
48	-0.32 -7.33	-37.72 -37.72	-0.05	7.33	37.72 37.72	0.05	0.000%
48 49	-7.33 -6.37	-37.72 -37.72	-0.03 -3.73	6.37	37.72 37.72	3.73	0.000%
50	-0.37 -3.70	-37.72 -37.72	-3.73 -6.42	3.70	37.72 37.72	5.73 6.42	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00001059
2	Yes	5	0.00000001	0.00045078
3	Yes	5	0.00000001	0.00018375
4	Yes	7	0.00000001	0.00008969
5	Yes	6	0.00000001	0.00033084
6	Yes	7	0.00000001	0.00009096

4 77	Job		Page	
tnxTower		Hampton / Bernier (BU 876390)		
Tower Engineering Professionals, Inc. 326 Tryon Road	Project	TEP No. 25693.284017	Date 10:40:53 07/22/19	
Raleigh, NC 27603 Phone: (619) 661-6351 FAX: (619) 661-6350	Client	Crown Castle	Designed by CJB	

7	Yes	6	0.00000001	0.00033614
8	Yes	5	0.00000001	0.00032417
9	Yes	5	0.00000001	0.00012856
10	Yes	7	0.00000001	0.00008851
11	Yes	6	0.00000001	0.00032444
12	Yes	7	0.00000001	0.00009020
13	Yes	6	0.00000001	0.00033159
14	Yes	5	0.00000001	0.00067301
15	Yes	5	0.00000001	0.00025944
16	Yes	7	0.00000001	0.00009045
17	Yes	6	0.00000001	0.00033417
18	Yes	7	0.00000001	0.00008911
19	Yes	6	0.00000001	0.00032861
20	Yes	5	0.00000001	0.00079027
21	Yes	5	0.00000001	0.00031952
22	Yes	7	0.00000001	0.00009050
23	Yes	6	0.00000001	0.00033287
24	Yes	7	0.00000001	0.00008896
25	Yes	6	0.00000001	0.00032630
26	Yes	4	0.00000001	0.00013745
27	Yes	6	0.00000001	0.00029865
28	Yes	6	0.00000001	0.00083488
29	Yes	6	0.00000001	0.00084688
30	Yes	6	0.00000001	0.00030016
31	Yes	6	0.00000001	0.00084365
32	Yes	6	0.00000001	0.00085969
33	Yes	6	0.00000001	0.00029676
34	Yes	6	0.00000001	0.00078544
35	Yes	6	0.00000001	0.00077180
36	Yes	6	0.00000001	0.00029459
37	Yes	6	0.00000001	0.00083619
38	Yes	6	0.00000001	0.00082284
39	Yes	4	0.00000001	0.00036761
40	Yes	5	0.00000001	0.00026499
41	Yes	5	0.00000001	0.00027090
42	Yes	4	0.00000001	0.00035751
43	Yes	5	0.00000001	0.00027476
44	Yes	5	0.00000001	0.00028753
45	Yes	4	0.00000001	0.00040528
46	Yes	5	0.00000001	0.00025954
47	Yes	5	0.00000001	0.00025205
48	Yes	4	0.00000001	0.00042837
49	Yes	5	0.00000001	0.00028387
50	Yes	5	0.00000001	0.00027293

Compression Checks

Pole Design Data	
------------------	--

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
L1	150 - 123.29 (1)	TP22.9x17x0.1875	26.71	0.00	0.0	13.0672	-10.14	764.43	0.013
L2	123.29 - 88.88	TP30x21.7696x0.3125	37.83	0.00	0.0	28.5292	-16.95	1668.96	0.010
L3	88.88 - 43.8 (3)	TP39.2x28.4504x0.375	49.33	0.00	0.0	44.8057	-28.27	2621.13	0.011

Tower Engineering Professionals, Inc.

326 Tryon Road Raleigh, NC 27603 Phone: (619) 661-6351 FAX: (619) 661-6350

Job		Page
	Hampton / Bernier (BU 876390)	18 of 19
Project	TEP No. 25693.284017	Date 10:40:53 07/22/19
Client	Crown Castle	Designed by CJB

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
L4	43.8 - 0 (4)	TP48x37.2689x0.4375	49.22	0.00	0.0	66.0465	-45.22	3863.72	0.012

Pole	Bending	Design	Data

Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M _{ux}	M_{uy}	ϕM_{ny}	Ratio M _{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	150 - 123.29 (1)	TP22.9x17x0.1875	277.63	413.83	0.671	0.00	413.83	0.000
L2	123.29 - 88.88 (2)	TP30x21.7696x0.3125	1108.82	1249.92	0.887	0.00	1249.92	0.000
L3	88.88 - 43.8 (3)	TP39.2x28.4504x0.375	2496.19	2537.12	0.984	0.00	2537.12	0.000
L4	43.8 - 0 (4)	TP48x37.2689x0.4375	4310.23	4628.73	0.931	0.00	4628.73	0.000

Section No.	Elevation	Size	$Actual\ V_u$	ϕV_n	$Ratio$ V_u	$Actual \ T_u$	ϕT_n	Ratio T_u
	ft		K	K	ϕV_n	kip-ft	kip-ft	ϕT_n
L1	150 - 123.29 (1)	TP22.9x17x0.1875	20.06	229.33	0.087	0.79	440.97	0.002
L2	123.29 - 88.88 (2)	TP30x21.7696x0.3125	27.99	500.69	0.056	0.08	1261.18	0.000
L3	88.88 - 43.8 (3)	TP39.2x28.4504x0.375	34.18	786.34	0.043	0.91	2592.30	0.000
L4	43.8 - 0 (4)	TP48x37.2689x0.4375	39.46	1159.12	0.034	0.91	4828.05	0.000

Pole Interaction Design Data

Section No.	Elevation	Ratio P _u	Ratio M_{ux}	Ratio M_{uy}	$Ratio$ V_u	Ratio T_u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	150 - 123.29 (1)	0.013	0.671	0.000	0.087	0.002	0.692	1.050	4.8.2
L2	123.29 - 88.88 (2)	0.010	0.887	0.000	0.056	0.000	0.900	1.050	4.8.2
L3	88.88 - 43.8 (3)	0.011	0.984	0.000	0.043	0.000	0.997	1.050	4.8.2
L4	43.8 - 0 (4)	0.012	0.931	0.000	0.034	0.000	0.944	1.050	4.8.2

Section Capacity Table

Tower Engineering Professionals, Inc. 326 Tryon Road

326 Tryon Road Raleigh, NC 27603 Phone: (619) 661-6351 FAX: (619) 661-6350

Job		Page
	Hampton / Bernier (BU 876390)	19 of 19
Project	TEP No. 25693.284017	Date 10:40:53 07/22/19
Client	Crown Castle	Designed by CJB

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	$\phi P_{allow} \ K$	% Capacity	Pass Fail
L1	150 - 123.29	Pole	TP22.9x17x0.1875	1	-10.14	802.65	65.9	Pass
L2	123.29 - 88.88	Pole	TP30x21.7696x0.3125	2	-16.95	1752.41	85.8	Pass
L3	88.88 - 43.8	Pole	TP39.2x28.4504x0.375	3	-28.27	2752.19	94.9	Pass
L4	43.8 - 0	Pole	TP48x37.2689x0.4375	4	-45.22	4056.91	89.9	Pass
							Summary	
						Pole (L3)	94.9	Pass
						RATING =	94.9	Pass

 $Program\ Version\ 8.0.5.0\ -\ 11/28/2018\ File: C:/Users/cbowen/Desktop/25693/876390_1750704_LC7. erion to the control of th$

APPENDIX B BASE LEVEL DRAWING

BUSINESS UNIT: 876390 TOWER ID: C_BASELEVEL

APPENDIX C ADDITIONAL CALCULATIONS

Address:

No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 715.2 ft (NAVD 88)

Risk Category: || Latitude: 41.791567 Soil Class: D - Stiff Soil Longitude: -72.015011

8

Wind

Results:

Wind Speed: 129 Vmph 130 Vmph per Jurisdiction

 10-year MRI
 78 Vmph

 25-year MRI
 88 Vmph

 50-year MRI
 96 Vmph

 100-year MRI
 105 Vmph

Data Source: ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, incorporating errata of

March 12, 2014

Date Accessed: Wed Mar 06 2019

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.172	S _{DS} :	0.183	
S_1 :	0.062	S_{D1} :	0.099	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA:	0.086	
S _{MS} :	0.275	PGA _M :	0.137	
S _{M1} :	0.149	F _{PGA} :	1.6	
		l _e :	1	

Seismic Design Category B

Data Accessed: Wed Mar 06 2019

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating

Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with

Wed Mar 06 2019

ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Wed Mar 06 2019

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Monopole Base Plate Connection

Site Info		
	BU#	876390
	Site Name	Hampton / Bernier
	Order#	494419 Rev. 0

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	No
l _{ar} (in)	1

Applied Loads	
Moment (kip-ft)	4310.23
Axial Force (kips)	45.22
Shear Force (kips)	39.46

^{*}TIA-222-H Section 15.5 Applied

Connection Properties

Anchor Rod Data

(16) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 57" BC

Base Plate Data

63" OD x 2" Plate (A871 Gr 60; Fy=60 ksi, Fu=75 ksi)

Stiffener Data

(16) 18"H x 7"W x 0.75"T, Notch: 0.75" plate: Fy= 50 ksi ; weld: Fy= 70 ksi horiz. weld: 0.375" groove, 45° dbl bevelFALSE

vert. weld: 0.375" fillet

Pole Data

48" x 0.4375" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results

Anchor Rod Summary		(units of kips, kip-in)
Pu_c = 229.54	φPn_c = 243.75	Stress Rating
Vu = 2.47	φVn = 73.13	89.8%
Mu = n/a	φMn = n/a	Pass
Base Plate Summary		
Max Stress (ksi):	39.66	(Roark's Flexural)
Allowable Stress (ksi):	54	
Stress Rating:	69.9%	Pass
Stiffener Summary		
Horizontal Weld:	73.2%	Pass
Vertical Weld:	55.2%	Pass
Plate Flexure+Shear:	27.1%	Pass
Plate Tension+Shear:	74.2%	Pass
Plate Compression:	80.4%	Pass
Pole Summary		

14.2%

Pass

CCIplate - version 3.6.0 Analysis Date: 7/22/2019

Punching Shear:

Pier and Pad Foundation

BU # : 876390 Site Name: Hampton / Bernier **App. Number:** 494419 Rev. 0

TIA-222 Revision:	Н
Tower Type:	Monopole
•	

Superstructure Analysis Reactions				
Compression, P _{comp} :	45	kips		
Base Shear, Vu_comp:	39	kips		
Moment, M _u :	4310	ft-kips		
Tower Height, H :	150	ft		
BP Dist. Above Fdn, bp _{dist} :	3.25	in		

Pier Properties				
Pier Shape:	Square			
Pier Diameter, dpier :	6.5	ft		
Ext. Above Grade, E:	1	ft		
Pier Rebar Size, Sc :	9			
Pier Rebar Quantity, mc :	26			
Pier Tie/Spiral Size, St :	4			
Pier Tie/Spiral Quantity, mt:	4			
Pier Reinforcement Type:	Tie			
Pier Clear Cover, cc _{pier} :	3	in		

Pad Properties					
Depth, D :	5	ft			
Pad Width, W :	25.25	ft			
Pad Thickness, T :	3	ft			
Pad Rebar Size (Top), Sp top:	9				
Pad Top Rebar Quantity (Top), mp top:	20				
Pad Rebar Size (Bottom), Sp :	9				
Pad Rebar Quantity (Bottom), mp:	35				
Pad Clear Cover, cc _{pad} :	3	in			

Material Properties						
Rebar Grade, Fy :	60	ksi				
Concrete Compressive Strength, F'c:	4	ksi				
Dry Concrete Density, δ c :	150	pcf				

Soil Properties					
Total Soil Unit Weight, γ :	125	pcf			
Ultimate Net Bearing, Qnet:	16.000	ksf			
Cohesion, Cu :	0.000	ksf			
Friction Angle, $oldsymbol{arphi}$:	30	degrees			
SPT Blow Count, N _{blows} :	6				
Base Friction, μ :	0.5				
Neglected Depth, N:	3.33	ft			
Foundation Bearing on Rock?	No				
Groundwater Depth, gw:	n/a	ft			

Foundation Analysis Checks							
Capacity Demand Rating*							
Lateral (Sliding) (kips)	215.53	39.00	17.2%	Pass			
Bearing Pressure (ksf)	12.47	3.62	29.0%	Pass			
Overturning (kip*ft)	5435.92	4554.56	83.8%	Pass			
Pier Compression (kip)	26891.28	67.82	0.2%	Pass			
Pad Flexure (kip*ft)	4770.48	2415.69	48.2%	Pass			
Pad Shear - 1-way (kips)	899.95	334.75	35.4%	Pass			
Pad Shear - 2-way (Comp) (ksi)	0.190	0.000	0.0%	Pass			
Flexural 2-way (Comp) (kip*ft)	4566.12	2656.20	55.4%	Pass			

*Rating per TIA-222-H Section

Soil Rating*:	83.8%
Structural Rating*:	

<--Toggle between Gross and Net

Version 3.2.0 Modified

Drilled Caisson Tool - Input

Results Summary: LC1 LC2
Soil Interaction: N/A N/A
Foundation Structural*: 37.4% 9.4%

Hampton / Bernier (BU 876390)
TEP #: 25693.284017
Analysis: MKF 7/22/2019
Check: CJB 7/22/2019

*Rating per TIA-222-H Section 15.5

Code Revisions: TIA-222-H ACI 318-14 Tower Type: Monopole

	LC1	LC2		S	haft Informa	ation
Moment:	4,310.00	1,090.00	kip-ft	Diameter:	6.50	ft
Axial (download):	45.00	81.00	kip	Projection:	1.00	ft
Shear:	39.00	9.00	kip	Caisson Length:	3.00	ft
Axial (uplift):			kip	f'c:	4.000	ksi
				Max ec:	0.003	in/in

Ca	ge 1 Reinfor	cem	ent	_	Ca	ge 2 Reinforcen	nent
•		15	60.01.1			F7.00	

Tie Bar Size:	4	(fy = 60.0 ksi)	Cage Diameter:	57.00	in
Clear Cover to Tie:	4.44	in (Cage Ø = 66.99in)	Offset Angle:	0.0	degrees
Tie Bar Spacing:	10.00	in	Vertical Bar Size:	Other	→ Anet = 3.25
Vertical Bar Size:	9		Vertical Bar Qty:	16	(ρ =1.088%)
Vertical Bar Quantity:	27	(ρ =0.565%)	Cage 2 resists compression?	Yes	
fy:	60.0	ksi	Effective Cage Depth:	3	ft
E:	29,000	ksi	fy:	75	ksi
			E:	29,000	ksi

Reinforcement Capacity

TEP #: Analysis: 25693.284017 (F 7/22/2019

Analysis: MKF 7/22/2019 **Check:** CJB 7/22/2019

LC1 LC2
Mu = 4310.0 1090.0 kip-ft
φMn = 10964.6 11021.3 kip-ft
Capacity = 37.4% 9.4%
PASS PASS

Exhibit E

Mount Analysis

Date: July 9, 2019

Kevin Morrow Crown Castle 3530 Toringdon Way, Suite 300 Charlotte, NC 28277 (704) 405-6619 B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 (918) 587-4630 btwo@btgrp.com

Subject: Mount Modification Report

Carrier Designation: T-Mobile Equipment Change-Out

Carrier Site Number: CT11511A
Carrier Site Name: Sprint- Brooklyn

Crown Castle BU Number: 876390

Crown Castle Site Name: Hampton / Bernier

Crown Castle JDE Job Number: 576719

Crown Castle Order Number: 494419, Rev.0

Engineering Firm Designation: B+T Group Report Designation: 136355.003.01

Site Data: 116 Grant Hill Rd., Brooklyn, CT, Windham, 06234

Latitude 41° 47' 29.64" Longitude -72° 0' 54.04"

Structure Information: Tower Height & Type: 150 ft. Monopole

Mount Elevation: 137 ft.

Mount Type: 14 ft. Platform Mount

Dear Mr. Morrow,

B+T Group is pleased to submit this "Mount Modification Report" to determine the structural integrity of *T-Mobile*'s antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount's stress level. Based on our analysis we have determined the stress level to be:

Platform Mount Sufficient

*Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis utilizes an ultimate 3-second gust wind speed of 130 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount structural analysis prepared by: Joseph Variamparampil

Respectfully submitted by: B&T Engineering, Inc.

COA: PEC.0001564 Expires: 02/10/2020

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

Table 4 - Tieback End Reactions

4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations and Software Analysis Output

7) APPENDIX C

Mount Modification Design Drawings (MDD)

1) INTRODUCTION

This is a 14' Platform Mount, mapped by B+T Group.

2) ANALYSIS CRITERIA

Building Code: 2015 IBC TIA-222 Revision: TIA-222-H

Risk Category:

Ultimate Wind Speed: 130 mph

Exposure Category: Topographic Factor at Base: 1.512 **Topographic Factor at Mount:** 1.512 Ice Thickness: 1.5 in Wind Speed with Ice: 50 mph Seismic S_s: 0.172 Seismic S₁: 0.062 Live Loading Wind Speed: 30 mph Man Live Load at Mid/End-Points: 250 lb Man Live Load at Mount Pipes: 500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft.)	Antenna Centerline (ft.)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
		3	RFS	APX16DWV-16DWVS-E-A20	
137	138	3	RFS	APXVAARR24_43-U-NA20	14 ft. Platform
137	130	3	Ericsson	KRY 112 489/2	Mount
		3	Ericsson	RADIO 4449 B12/B71	

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks Reference		Source
CCI Order	Existing Loading Proposed Loading	Date: 05/31/2019	Crown Castle
Mount Mapping	B+T Group	Date: 06/27/2019	On File
Mount Analysis Report	B+T Group	Date: 07/02/2019	On File

3.1) Analysis Method

RISA-3D (Version 17.0.2), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed by B+T Group, was used to calculate wind loading on all appurtenances, dishes and mount members for various loading cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision C).

3.2) Assumptions

- 1. The mount was properly fabricated and installed in accordance with its original design and manufacturer's specifications.
- 2. The mount has been maintained in accordance with the manufacturer's specifications and is free of damage.
- 3. The configuration of antennas, mounts, and other appurtenances are as specified in Table-1.
- 4. All mount components have been assumed to be in sufficient condition to carry their full design capacity for the analysis.
- 5. Mount areas and weights are determined from field measurements, standard material properties, and/or manufacturer product data.
- 6. Serviceability with respect to antenna twist, tilt, roll or lateral translation is not checked and is left to the carrier or tower owner to ensure conformance.
- 7. All prior structural modifications, if any are assumed to be correctly installed and fully effective.
- 8. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 9. The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 10. The following material grades were assumed (Unless Noted Otherwise):

(a) Connection Bolts : ASTM A325

 (b) Steel Pipe
 : ASTM A53 (GR. 35)

 (c) HSS (Round)
 : ASTM 500 (GR. B-42)

 (d) HSS (Rectangular)
 : ASTM 500 (GR. B-46)

 (e) Channel
 : ASTM A36 (GR. 36)

 (f) Steel Solid Rod
 : ASTM A36 (GR. 36)

 (g) Steel Plate
 : ASTM A36 (GR. 36)

 (h) Steel Angle
 : ASTM A36 (GR. 36)

 (i) UNISTRUT
 : ASTM A570 (GR. 33)

This analysis may be affected if any assumptions are not valid or have been made in error. B+T Group should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Platform Mount)

Notes	Component	Critical Member	Centerline (ft.)	% Capacity	Pass / Fail
	Main Horizontals	M1	137	60.7	Pass
4.0	Support Angles	M8	137	39.3	Pass
1,2	Support Tubes	M39A	137	31.3	Pass
	Mount Pipes	M39	137	67.9	Pass
	Handrail Pipes	M55	137	59.2	Pass
1,2,3	Handrail Connection Angles	M68	137	75.5	Pass
	Reinforcement Angles	M72	137	45.9	Pass

Notes:

- 1) See additional documentation in "Appendix B" for calculations supporting the % capacity consumed.
- 2) All sectors are typical
- 3) Proposed members

4.1) RECOMMENDATIONS

The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the structural modifications listed below must be completed.

- 1. Installation of (2) Handrail Kits, SitePro1 Part# HRK14
- 2. Installation of (1) Reinforcement Kit, SitePro1 Part# PRK-SFS-L

Engineering detail drawings have been provided in Appendix C – Mount Modification Design Drawings.

APPENDIX A

WIRE FRAME AND RENDERED MODELS

Envelope Only Solution

B+T Group		SK - 1
JV	876390 - Hampton / Bernier	July 8, 2019 at 4:57 PM
136355.003.01		136355_003_01_Hampton Bernier

Envelope Only Solution

B+T Group		SK - 2
JV	876390 - Hampton / Bernier	July 8, 2019 at 4:57 PM
136355.003.01		136355_003_01_Hampton Bernier

Envelope Only Solution

B+T Group		SK - 3
JV	876390 - Hampton / Bernier	July 8, 2019 at 4:57 PM
136355.003.01		136355_003_01_Hampton Bernier

Member Code Checks Displayed (Enveloped) Envelope Only Solution

B+T Group		SK - 4
JV	876390 - Hampton / Bernier	July 8, 2019 at 4:57 PM
136355.003.01		136355_003_01_Hampton Bernier

Member Shear Checks Displayed (Enveloped) Envelope Only Solution

B+T Group		SK - 5
JV	876390 - Hampton / Bernier	July 8, 2019 at 4:57 PM
136355.003.01		136355_003_01_Hampton Bernier

APPENDIX B

SOFTWARE INPUT CALCULATIONS AND SOFTWARE ANALYSIS OUTPUT

PROJECT	136355.002.01 - Hampton Be							
SUBJECT	Platform Mo	ount Mount Analysis	}					
DATE	07/08/19	PAGE	OF					

Manufacturer	Model	Qty	Aspect Ratio	C _a flat/round	EPA _N *K _a (ft ²)	$\mathbf{EPA_T^*K_a}(\mathrm{ft}^2)$	$\begin{aligned} \textbf{EPA}_{\textbf{N-Ice}} ^{\textbf{*}} \textbf{K}_{\textbf{a}} \\ (\text{ft}^2) \end{aligned}$	EPA _{T-lce} *K _a (ft ²)	F _{A No Ice (N)}	F _{A No Ice (T)}	F _{A Ice (N)}	F _{A Ice (1}
RFS	APX16DWV-16DWVS-E-A20	0.5	4.20	1.28	2.32	0.55	3.24	1.34	0.19	0.06	0.03	0.01
RFS	APX16DWV-16DWVS-E-A20	0.5	4.20	1.28	2.32	0.55	3.24	1.34	0.19	0.06	0.03	0.01
Ericsson	KRY 112 489/2	1	1.80	1.20	0.42	0.27	0.95	0.74	0.03	0.02	0.00	0.00
RFS	APXVAARR24_43-U-NA20	0.5	4.00	1.27	7.19	2.61	8.74	3.96	0.60	0.26	0.09	0.04
RFS	APXVAARR24_43-U-NA20	0.5	4.00	1.27	7.19	2.61	8.74	3.96	0.60	0.26	0.09	0.04
Ericsson	RADIO 4449 B12/B71	1	1.13	1.20	1.23	0.86	2.04	1.57	0.10	0.07	0.01	0.01
RFS	APX16DWV-16DWVS-E-A20	0.5	4.20	1.28	2.32	0.55	3.24	1.34	0.19	0.06	0.03	0.01
RFS	APX16DWV-16DWVS-E-A20	0.5	4.20	1.28	2.32	0.55	3.24	1.34	0.19	0.06	0.03	0.01
Ericsson	KRY 112 489/2	1	1.80	1.20	0.42	0.27	0.95	0.74	0.03	0.02	0.00	0.00
RFS	APXVAARR24 43-U-NA20	0.5	4.00	1.27	7.19	2.61	8.74	3.96	0.60	0.26	0.09	0.04
RFS	APXVAARR24_43-U-NA20	0.5	4.00	1.27	7.19	2.61	8.74	3.96	0.60	0.26	0.09	0.04
Ericsson	RADIO 4449 B12/B71	1	1.13	1.20	1.23	0.86	2.04	1.57	0.10	0.07	0.01	0.01
RFS	APX16DWV-16DWVS-E-A20	0.5	4.20	1.28	2.32	0.55	3.24	1.34	0.19	0.06	0.03	0.01
RFS	APX16DWV-16DWVS-E-A20	0.5	4.20	1.28	2.32	0.55	3.24	1.34	0.19	0.06	0.03	0.01
Ericsson	KRY 112 489/2	1	1.80	1.20	0.42	0.27	0.95	0.74	0.03	0.02	0.00	0.00
RFS	APXVAARR24_43-U-NA20	0.5	4.00	1.27	7.19	2.61	8.74	3.96	0.60	0.26	0.09	0.04
RFS	APXVAARR24_43-U-NA20	0.5	4.00	1.27	7.19	2.61	8.74	3.96	0.60	0.26	0.09	0.04
Ericsson	RADIO 4449 B12/B71	1	1.13	1.20	1.23	0.86	2.04	1.57	0.10	0.07	0.01	0.01

PROJECT	136355.002	2.01 - Hampton Be	KSC
SUBJECT	Platform Mo	ount Mount Analysi	S
DATE	07/08/19	PAGE	OF

Manufacturer	Model	Qty	Aspect	C _a flat/round	EPA _N *K _a (ft ²)	$EPA_T*K_a (ft^2)$	EPA _{N-Ice} *K _a	EPA _{T-Ice} *K _a (ft ²)	F _{A No Tce (N)}	F _{A No Ice (T)}	F _{A Ice (N)}	F _{A Ice (T)}
	110001	4-7	Ratio	flat/round	(ft ²)		(ft ²)	(ft ²)	- A NO ICE (N)	- A NO ICE (I)	A ICE (N)	- A ICE (1)

PROJECT	136355.002	2.01 - Hampton Be	KSC
SUBJECT	Platform Mo	ount Mount Analysi	S
DATE	07/08/19	PAGE	OF

Manufacturer	Model	Qty	Aspect	C _a flat/round	EPA _N *K _a (ft ²)	$EPA_T*K_a (ft^2)$	EPA _{N-Ice} *K _a	EPA _{T-Ice} *K _a (ft ²)	F _{A No Tce (N)}	F _{A No Ice (T)}	F _{A Ice (N)}	F _{A Ice (T)}
	110001	4-7	Ratio	flat/round	(ft ²)		(ft ²)	(ft ²)	- A NO ICE (N)	- A NO ICE (I)	A ICE (N)	- A ICE (1)

Company : B+T Group
Designer : JV
Job Number : 136355.003.01
Model Name : 876390 - Hampton / Bernier

: B+T Group : JV

July 8, 2019 4:58 PM Checked By:_

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E	Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.4	65	1.3

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design R	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	MF-H1	L3X3X4	Beam	Single Angle	A36 Gr.36	Typical	1.44	1.23	1.23	.031
2	MF-P1	PIPE 1.5	Column	Pipe	A53 Gr.B	Typical	.749	.293	.293	.586
3	F1-ST1	HSS4X4X4	Beam	Tube	A500 Gr	Typical	3.37	7.8	7.8	12.8
4	F1-S1	L3X3X4	Beam	Single Angle	A36 Gr.36	Typical	1.44	1.23	1.23	.031
5	F1-S2	LL3x3x4x0	Beam	Double Angle (No G	A36 Gr.36		2.88	4.5	2.46	.063
6	MF-P2	PIPE 2.0	Column	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
7	F1-ST2	HSS4.5X	Beam	Tube	A500 Gr	Typical	3.84	11.4	11.4	18.5
8	New HR Pipe	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
9	New HT Angle Conne	.L2.5x2.5x4	Beam	Single Angle	A36 Gr.36	Typical	1.19	.692	.692	.026
10	New Reinforcement A.	L2.5x2.5x3	Beam	Single Angle	A36 Gr.36	Typical	.901	.535	.535	.011

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N3	N4		270	MF-H1	Beam	Single Angle	A36 Gr.36	Typical
2	M2	N4	N2		270	MF-H1	Beam	Single Angle	A36 Gr.36	Typical
3	2	N2	N3		270	MF-H1	Beam	Single Angle	A36 Gr.36	Typical
4	M4	N2	N7		180	F1-S2	Beam	Double Angle (. A36 Gr.36	Typical
5	M5	N3	N6		180	F1-S2	Beam	Double Angle (. A36 Gr.36	Typical
6	M6	N4	N5		180	F1-S2	Beam	Double Angle (. A36 Gr.36	Typical
7	M7	N5	N6		270	F1-S1	Beam	Single Angle	A36 Gr.36	Typical
8	M8	N7	N5		270	F1-S1	Beam	Single Angle	A36 Gr.36	Typical
9	M9	N6	N7		270	F1-S1	Beam	Single Angle	A36 Gr.36	Typical
10	M10	N11	N8			F1-ST2	Beam	Tube	A500 Gr.B	Typical
11	M11	N62	N9			F1-ST1	Beam	Tube	A500 Gr.B	Typical
12	M12	N10	N11			RIGID	None	None	RIGID	Typical
13	M13	N12	N13			RIGID	None	None	RIGID	Typical
14	M14	N17	N14			F1-ST2	Beam	Tube	A500 Gr.B	Typical
15	M16	N16	N17			RIGID	None	None	RIGID	Typical
16	M17	N18	N19			RIGID	None	None	RIGID	Typical
17	M18	N23	N20			F1-ST2	Beam	Tube	A500 Gr.B	Typical
18	M20	N22	N23			RIGID	None	None	RIGID	Typical
19	M21	N24	N25			RIGID	None	None	RIGID	Typical
20	M22	N26	N27			RIGID	None	None	RIGID	Typical
21	M23	N28	N29			MF-P2	Column	Pipe	A53 Gr.B	Typical
22	M24	N30	N31			RIGID	None	None	RIGID	Typical
23	M25	N32	N33			MF-P1	Column	Pipe	A53 Gr.B	Typical
24	M26	N34	N35			RIGID	None	None	RIGID	Typical
25	M27	N36	N37			MF-P1	Column	Pipe	A53 Gr.B	Typical
26	M28	N38	N39			RIGID	None	None	RIGID	Typical
27	M29	N40	N41			MF-P2	Column	Pipe	A53 Gr.B	Typical
28	M30	N42	N43			RIGID	None	None	RIGID	Typical
29	M31	N44	N45			MF-P1	Column	Pipe	A53 Gr.B	Typical
30	M32	N46	N47			RIGID	None	None	RIGID	Typical

Company : B+T Group
Designer : JV
Job Number : 136355.003.01
Model Name : 876390 - Hampton / Bernier

July 8, 2019 4:58 PM Checked By:_

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
31	M33	N48	N49		, 5,	MF-P1	Column	Pipe	A53 Gr.B	
32	M34	N50	N51			RIGID	None	None	RIGID	Typical
33	M35	N52	N53			MF-P2	Column	Pipe	A53 Gr.B	
34	M36	N54	N55			RIGID	None	None	RIGID	Typical
35	M37	N56	N57			MF-P1	Column	Pipe	A53 Gr.B	Typical
36	M38	N58	N59			RIGID	None	None	RIGID	Typical
37	M39	N60	N61			MF-P1	Column	Pipe	A53 Gr.B	Typical
38	M38A	N62A	N61A			F1-ST1	Beam		A500 Gr.B	Typical
39	M39A	N64	N63			F1-ST1	Beam	Tube	A500 Gr.B	Typical
40	M40	N65	N66		270	New HR Pipe	Beam	Pipe	A53 Gr.B	Typical
41	M41	N67	N68			RIGID	None	None	RIGID	Typical
42	M42	N69	N70			RIGID	None	None	RIGID	Typical
43	M43	N71	N72			RIGID	None	None	RIGID	Typical
44	M44	N73	N74			RIGID	None	None	RIGID	Typical
45	M45	N75	N76			RIGID	None	None	RIGID	Typical
46	M46	N77	N78			RIGID	None	None	RIGID	Typical
47	M47	N79	N80			RIGID	None	None	RIGID	Typical
48	M48	N81	N82			RIGID	None	None	RIGID	Typical
49	M49	N83	N84			RIGID	None	None	RIGID	Typical
50	M52	N90	N91		180	New HT Angle	Beam	Single Angle		Typical
51	M53	N91A	N92		180	New HT Angle	Beam	Single Angle	A36 Gr.36	Typical
52	M54	N93	N94		180	New HT Angle	Beam	Single Angle		Typical
53	M55	N95	N96		270	New HR Pipe	Beam	Pipe	A53 Gr.B	Typical
54	M56	N97	N98			RIGID	None	None	RIGID	Typical
55	M57	N99	N100			RIGID	None	None	RIGID	Typical
56	M58	N101	N102			RIGID	None	None	RIGID	Typical
57	M59	N103	N104			RIGID	None	None	RIGID	Typical
58	M60	N105	N106			RIGID	None	None	RIGID	Typical
59	M61	N107	N108			RIGID	None	None	RIGID	Typical
60	M62	N109	N110			RIGID	None	None	RIGID	Typical
61	M63	N111	N112			RIGID	None	None	RIGID	Typical
62	M64	N113	N114			RIGID	None	None	RIGID	Typical
63	M67	N119	N120			New HT Angle	Beam	Single Angle	A36 Gr.36	Typical
64	M68	N121	N122			New HT Angle	Beam	Single Angle	A36 Gr.36	Typical
65	M69	N123	N124			New HT Angle	Beam	Single Angle		Typical
66	M70	N125	N126			New Reinforce	Beam	Single Angle	A36 Gr.36	Typical
67	M71	N125	N127		90	New Reinforce	Beam	Single Angle		Typical
68	M72A	N126A	N127A		270	New HR Pipe	Beam	Pipe	A53 Gr.B	Typical
69	M73A	N128A	N129A		270	New HR Pipe	Beam	Pipe	A53 Gr.B	Typical
70	M74A	N130A	N131A		270	New HR Pipe	Beam	Pipe	A53 Gr.B	
71	M75A	N132A	N133A		270	New HR Pipe	Beam	Pipe Pipe	A53 Gr.B	Typical
72	M72	N128	N129		180	New Reinforce	Beam	Single Angle	A36 Gr.36	Typical
73	M73	N128	N130			New Reinforce	Beam	Single Angle	A36 Gr.36	Typical
74	M74	N131	N132		180	New Reinforce	Beam	Single Angle	A36 Gr.36	Typical
75	M75	N131	N133		90	New Reinforce	Beam	Single Angle	A36 Gr.36	Typical

Hot Rolled Steel Design Parameters

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[i	Lcomp bot[i	L-torq	Kyy	Kzz	Cb	Functi
1	M1	MF-H1	168	84		Lbyy						Lateral
2	M2	MF-H1	168	84		Lbyy						Lateral
3	2	MF-H1	168	84		Lbyy						Lateral
4	M4	F1-S2	46.8			Lbyy						Lateral
5	M5	F1-S2	46.8			Lbyy						Lateral
6	M6	F1-S2	46.8			Lbyy						Lateral
7	M7	F1-S1	86.94			Lbyy						Lateral

: B+T Group : JV

: 136355.003.01 : 876390 - Hampton / Bernier July 8, 2019 4:58 PM Checked By:_

Hot Rolled Steel Design Parameters (Continued)

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[i	Lcomp bot[i	L-torq	Куу	Kzz	Cb	Functi
8	M8	F1-S1	86.94			Lbyy						Lateral
9	M9	F1-S1	86.94			Lbyy						Lateral
10	M10	F1-ST2	24			Lbyy						Lateral
11	M11	F1-ST1	18			Lbyy						Lateral
12	M14	F1-ST2	24			Lbyy						Lateral
13	M18	F1-ST2	24			Lbyy						Lateral
14	M23	MF-P2	108			Lbyy						Lateral
15	M25	MF-P1	72			Lbyy						Lateral
16	M27	MF-P1	72			Lbyy						Lateral
17	M29	MF-P2	108			Lbyy						Lateral
18	M31	MF-P1	72			Lbyy						Lateral
19	M33	MF-P1	72			Lbyy						Lateral
20	M35	MF-P2	108			Lbyy						Lateral
21	M37	MF-P1	72			Lbyy						Lateral
22	M39	MF-P1	72			Lbyy						Lateral
23	M38A	F1-ST1	18			Lbyy						Lateral
24	M39A	F1-ST1	18			Lbyy						Lateral
25	M40	New HR Pi	174			Lbyy						Lateral
26	M52	New HT An	15.238			Lbyy						Lateral
27	M53	New HT An	15.238			Lbyy						Lateral
28	M54	New HT An	15.238			Lbyy						Lateral
29	M55	New HR Pi	174			Lbyy						Lateral
30	M67	New HT An	15.238			Lbyy						Lateral
31	M68	New HT An	15.238			Lbyy						Lateral
32	M69	New HT An	15.238			Lbyy						Lateral
33	M70	New Reinfo	73.194			Lbyy						Lateral
34	M71	New Reinfo	73.194			Lbyy						Lateral
35	M72A	New HR Pi	174			Lbyy						Lateral
36	M73A	New HR Pi	174			Lbyy						Lateral
37	M74A	New HR Pi	174			Lbyy						Lateral
38	M75A	New HR Pi	174			Lbyy						Lateral
39	M72	New Reinfo	73.194			Lbyy						Lateral
40	M73	New Reinfo	73.194			Lbyy						Lateral
41	M74	New Reinfo	73.194			Lbyy						Lateral
42	M75	New Reinfo	73.194			Lbyy						Lateral

Joint Coordinates and Temperatures

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Diap
1	N1	Ö	Ö	Ö	0	•
2	N2	-0.	3.092	-96.994845	0	
3	N3	-84	3.092	48.497423	0	
4	N4	84	3.092	48.497423	0	
5	N5	43.470011	3.092	25.097423	0	
6	N6	-43.470011	3.092	25.097423	0	
7	N7	-0.	3.092	-50.194845	0	
8	N8	0.	0	24.497423	0	
9	N9	0.	0	12.497423	0	
10	N10	0.	3.092	48.497423	0	
11	N11	0.	1.08e-14	48.497423	0	
12	N12	0.	3.092	25.097423	0	
13	N13	0.	0	25.097423	0	
14	N14	21.21539	0	-12.248711	0	
15	N16	42	3.092	-24.248711	0	
16	N17	42	1.08e-14	-24.248711	0	
17	N18	21.735006	3.092	-12.548711	0	

: B+T Group : JV : 136355.003.01

: 876390 - Hampton / Bernier

July 8, 2019 4:58 PM Checked By:_

Joint Coordinates and Temperatures (Continued)

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Diap
18	N19	21.735006	0	-12.548711	0	
19	N20	-21.21539	-1.2e-15	-12.248711	0	
20	N22	-42	3.092	-24.248711	0	
21	N23	-42	9.6e-15	-24.248711	0	
22	N24	-21.735006	3.092	-12.548711	0	
23	N25	-21.735006	-1.2e-15	-12.548711	0	
24	N26	-67.2	3.092	48.497423	0	
25	N27	-67.2	3.092	51.187823	0	
26	N28	-67.2	59.492	51.187823	0	
27	N29	-67.2	-48.508	51.187823	0	
28	N30	-4.8	3.092	48.497423	0	
29	N31	-4.8	3.092	50.947423	0	
30	N32	-4.8	36.692	50.947423	0	
31	N33	-4.8	-35.308	50.947423	0	
32	N34	67.2	3.092	48.497423	0	
33	N35	67.2	3.092	50.947423	0	
34	N36	67.2	36.692	50.947423	0	
35	N37	67.2	-35.308	50.947423	0	
36	N38	74.4	3.092	31.869735	0	
37	N39	76.729955	3.092	30.524535	0	
38	N40	76.729955	61.892	30.524535	0	
39	N41	76.729955	-46.108	30.524535	0	
40	N42	43.2	3.092	-22.17025	0	
41	N43	45.321762	3.092	-23.39525	0	
42	N44 N45	45.321762	36.692	-23.39525	0	
43		45.321762	-35.308	-23.39525	0	
44 45	N46 N47	9. 11.121762	3.092	-81.406388	0	
46	N47 N48	11.121762	3.092 36.692	-82.631388 -82.631388	0	
47	N40 N49	11.121762	-35.308	-82.631388	0	
48	N50	-9	3.092	-81.406388	0	
49	N51	-11.329955	3.092	-82.751588	0	
50	N52	-11.329955	60.692	-82.751588	0	
51	N53	-11.329955	-47.308	-82.751588	0	
52	N54	-37.2	3.092	-32.562555	0	
53	N55	-39.321762	3.092	-33.787555	0	
54	N56	-39.321762	36.692	-33.787555	0	
55	N57	-39.321762	-35.308	-33.787555	0	
56	N58	-75	3.092	32.908965	0	
57	N59	-77.121762	3.092	31.683965	0	
58	N60	-77.121762	36.692	31.683965	0	
59	N61	-77.121762	-35.308	31.683965	0	
60	N62	0.	0	30.497423	0	
61	N61A	10.823085	0	-6.248711	0	
62	N62A	26.411543	0	-15.248711	0	
63	N63	-10.823085	0	-6.248711	0	
64	N64	-26.411543	0	-15.248711	0	
65	N65	-81	33.092	48.497423	0	
66	N66	93	33.092	48.497423	0	
67	N67	-67.2	33.092	48.497423	0	
68	N68	-67.2	33.092	51.187823	0	
69	N69	-4.8	33.092	48.497423	0	
70	N70	-4.8	33.092	50.947423	0	
71	N71	67.2	33.092	48.497423	0	
72	N72	67.2	33.092	50.947423	0	
73	N73	74.4	33.092	31.869735	0	
74	N74	76.729955	33.092	30.524535	0	

: B+T Group : JV : 136355.003.01

: 876390 - Hampton / Bernier

July 8, 2019 4:58 PM Checked By:_

Joint Coordinates and Temperatures (Continued)

75	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Diap
75	N75	43.2	33.092	-22.17025	0	
76 77	N76	45.321762	33.092	-23.39525	0	
	N77	9.	33.092	-81.406388	0	
78	N78	11.121762	33.092	-82.631388	0	
79	N79	-9 -11.329955	33.092 33.092	-81.406388	0	
80	N80			-82.751588	0	
81	N81	-37.2	33.092	-32.562555	0	
82	N82	-39.321762	33.092	-33.787555	0	
83	N83	-75	33.092	32.908965	0	
84	N84	-77.121762	33.092	31.683965	0	
85	N90	-7.618802	33.092	-83.798693	0	
86	N91	7.618802	33.092	-83.798693	0	
87	N91A	-68.762396	33.092	48.497423	0	
88	N92	-76.381198	33.092	35.30127	0	
89	N93	76.381198	33.092	35.30127	0	
90	N94	68.762396	33.092	48.497423	0	
91	N95	-81	-23.908	48.497423	0	
92	N96	93	-23.908	48.497423	0	
93	N97	-67.2	-23.908	48.497423	0	
94	N98	-67.2	-23.908	51.187823	0	
95	N99	-4.8	-23.908	48.497423	0	
96	N100	-4.8	-23.908	50.947423	0	
97	N101	67.2	-23.908	48.497423	0	
98	N102	67.2	-23.908	50.947423	0	
99	N103	74.4	-23.908	31.869735	0	
100	N104	76.729955	-23.908	30.524535	0	
101	N105	43.2	-23.908	-22.17025	0	
102	N106	45.321762	-23.908	-23.39525	0	
103	N107	9.	-23.908	-81.406388	0	
104	N108	11.121762	-23.908	-82.631388	0	
105	N109	-9	-23.908	-81.406388	0	
106	N110	-11.329955	-23.908	-82.751588	0	
107	N111	-37.2	-23.908	-32.562555	0	
108	N112	-39.321762	-23.908	-33.787555	0	
109	N113	-75	-23.908	32.908965	0	
110	N114	-77.121762	-23.908	31.683965	0	
111	N119	-7.618802	-23.908	-83.798693	0	
112	N120	7.618802	-23.908	-83.798693	0	
113	N121	-68.762396	-23.908	48.497423	0	
114	N122	-76.381198	-23.908	35.30127	0	
115	N123	76.381198	-23.908	35.30127	0	
116	N124	68.762396	-23.908	48.497423	0	
117	N125	0	-48	12.497424	0	
118	N126	-58.999998	-23.908	48.497423	0	
119	N127	58.999998	-23.908	48.497423	0	
120	N126A	82.5	33.092	45.899346	0	
121	N127A	-4.5	33.092	-104.789074	0	
122	N128A	82.5	-23.908	45.899346	0	
123	N129A	-4.5	-23.908	-104.789074	0	
124	N130A	-1.5	33.092	-94.396769	0	
125	N131A	-88.5	33.092	56.291651	0	
126	N132A	-1.5	-23.908	-94.396769	0	
127	N133A	-88.5	-23.908	56.291651	0	
128	N128	10.823087	-23.906 -48	-6.248712	0	
129	N129	71.499997	-23.908	26.846782	0	
130	N130	12.500006	-23.908	-75.3442	0	
131	N131	-10.823087	- <u>23.908</u> -48	-6.248712	0	
LISI	ICIVI	- 1U.0Z3U0 <i>1</i>	-40	-0.240/12	U	

Company Designer Job Number

: B+T Group : JV : 136355.003.01

: 876390 - Hampton / Bernier

July 8, 2019 4:58 PM Checked By:___

Joint Coordinates and Temperatures (Continued)

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Diap
132	N132	-12.500006	-23.908	-75.3442	0	
133	N133	-71.499997	-23.908	26.846782	0	

Joint Loads and Enforced Displacements (BLC 9 : Live Load a)

	Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/i
1	N26	L	Υ	5
2	N50	L	Υ	5
3	N38	L	Y	5

Joint Loads and Enforced Displacements (BLC 10 : Live Load b)

	Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/i
1	N30	L	Υ	5
2	N54	L	Y	5
3	N42	L	Υ	5

Joint Loads and Enforced Displacements (BLC 11 : Live Load c)

	Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/i
1	N34	L	Y	5
2	N58	L	Υ	5
3	N46	L	Y	5

Member Point Loads (BLC 1 : Dead)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]
1	M27	Υ	02	%10
2	M27	Υ	02	%70
3	M27	Υ	015	%25
4	M27	Υ	0	0
5	M27	Υ	0	0
6	M23	Υ	064	%10
7	M23	Υ	064	%90
8	M23	Υ	075	%30
9	M23	Υ	0	0
10	M23	Υ	0	0
11	M39	Υ	02	%10
12	M39	Υ	02	%70
13	M39	Υ	015	%25
14	M39	Υ	0	0
15	M39	Υ	0	0
16	M35	Υ	064	%10
17	M35	Y	064	%90
18	M35	Υ	075	%30
19	M35	Y	0	0
20	M35	Υ	0	0
21	M33	Υ	02	%10
22	M33	Υ	02	%70
23	M33	Y	015	%25
24	M33	Y	0	0
25	M33	Υ	0	0
26	M29	Υ	064	%10
27	M29	Υ	064	%90
28	M29	Υ	075	%30
29	M29	Υ	0	0
30	M29	Υ	0	0

: B+T Group : JV : 136355.003.01

876390 - Hampton / Bernier

July 8, 2019 4:58 PM Checked By:__

Member Point Loads (BLC 2: 0 Wind - No Ice)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]
1	M27	Z	195	%10
2	M27	Z	195	%70
3	M27	Z	033	%25
4	M27	Z	0	0
5	M27	Z	0	0
6	M23	Z	598	%10
7	M23	Z	598	%90
8	M23	Z	097	%30
9	M23	Z	0	0
10	M23	Z	0	0
11	M39	Z	195	%10
12	M39	Z	195	%70
13	M39	Z	033	%25
14	M39	Z	0	0
15	M39	Z	0	0
16	M35	Z	598	%10
17	M35	Z	598	%90
18	M35	Z	097	%30
19	M35	Z	0	0
20	M35	Z	0	0
21	M33	Z	195	%10
22	M33	Z	195	%70
23	M33	Z	033	%25
24	M33	Z	0	0
25	M33	Z	0	0
26	M29	Z	598	%10
27	M29	Z	598	%90
28	M29	Z	097	%30
29	M29	Z	0	0
30	M29	Z	0	0

Member Point Loads (BLC 3: 90 Wind - No Ice)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]
1	M27	X	064	%10
2	M27	X	064	%70
3	M27	X	022	%25
4	M27	X	0	0
5	M27	X	0	0
6	M23	X	262	%10
7	M23	X	262	%90
8	M23	X	068	%30
9	M23	X	0	0
10	M23	X	0	0
11	M39	X	064	%10
12	M39	X	064	%70
13	M39	X	022	%25
14	M39	X	0	0
15	M39	X	0	0
16	M35	X	262	%10
17	M35	X	262	%90
18	M35	X	068	%30
19	M35	X	0	0
20	M35	X	0	0
21	M33	X	064	%10
22	M33	X	064	%70
23	M33	X	022	%25

: B+T Group : JV : 136355.003.01

: 876390 - Hampton / Bernier

July 8, 2019 4:58 PM Checked By:__

Member Point Loads (BLC 3: 90 Wind - No Ice) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]
24	M33	X	0	0
25	M33	X	0	0
25 26	M29	X	262	%10
27	M29	X	262	%90
28	M29	X	068	%30
29	M29	X	0	0
30	M29	X	0	0

Member Point Loads (BLC 4: 0 Wind - Ice)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]
1	M27	Z	029	%10
2	M27	Z	029	%70
3	M27	Ζ	005	%25
4	M27	Ζ	0	0
5	M27	Ζ	0	0
6	M23	Ζ	088	%10
7	M23	Z	088	%90
8	M23	Z	014	%30
9	M23	Z	0	0
10	M23	Z	0	0
11	M39	Z	029	%10
12	M39	Z	029	%70
13	M39	Z	005	%25
14	M39	Z	0	0
15	M39	Z	0	0
16	M35	Z	088	%10
17	M35	Z	088	%90
18	M35	Z	014	%30
19	M35	Z	0	0
20	M35	Z	0	0
21	M33	Z	029	%10
22	M33	Z	029	%70
23	M33	Z	005	%25
24	M33	Z	0	0
25	M33	Z	0	0
26	M29	Z	088	%10
27	M29	Z	088	%90
28	M29	Z	014	%30
29	M29	Z	0	0
30	M29	Z	0	0

Member Point Loads (BLC 5: 90 Wind - Ice)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]
1	M27	X	009	%10 ·
2	M27	X	009	%70
3	M27	X	003	%25
4	M27	X	0	0
5	M27	X	0	0
6	M23	X	039	%10
7	M23	X	039	%90
8	M23	X	01	%30
9	M23	X	0	0
10	M23	X	0	0
11	M39	X	009	%10
12	M39	X	009	%70
13	M39	X	003	%25

: B+T Group : JV : 136355.003.01

: 876390 - Hampton / Bernier

July 8, 2019 4:58 PM Checked By:__

Member Point Loads (BLC 5: 90 Wind - Ice) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]
14	M39	X	0	0
15	M39	X	0	0
16	M35	X	039	%10
17	M35	X	039	%90
18	M35	X	01	%30
19	M35	X	0	0
20	M35	X	0	0
21	M33	X	009	%10
22	M33	X	009	%70
23	M33	X	003	%25
24	M33	X	0	0
25	M33	X	0	0
26	M29	X	039	%10
27	M29	X	039	%90
28	M29	X	01	%30
29	M29	X	0	0
30	M29	X	0	0

Member Point Loads (BLC 6: 0 Wind - Service)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]
1	M27	Z	01	%10
2	M27	Z	01	%70
3	M27	Z	002	%25
4	M27	Z	0	0
5	M27	Z	0	0
6	M23	Z	032	%10
7	M23	Z	032	%90
8	M23	Z	005	%30
9	M23	Z	0	0
10	M23	Z	0	0
11	M39	Z	01	%10
12	M39	Z	01	%70
13	M39	Z	002	%25
14	M39	Z	0	0
15	M39	Z	0	0
16	M35	Z	032	%10
17	M35	Z	032	%90
18	M35	Z	005	%30
19	M35	Z	0	0
20	M35	Z	0	0
21	M33	Z	01	%10
22	M33	Z	01	%70
23	M33	Z	002	%25
24	M33	Z	0	0
25	M33	Z	0	0
26	M29	Z	032	%10
27	M29	Z	032	%90
28	M29	Z	005	%30
29	M29	Z	0	0
30	M29	Z	0	0

Member Point Loads (BLC 7: 90 Wind - Service)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]
1	M27	X	003	%10
2	M27	X	003	%70
3	M27	Χ	001	%25

: B+T Group : JV : 136355.003.01

: 876390 - Hampton / Bernier

July 8, 2019 4:58 PM Checked By:__

Member Point Loads (BLC 7: 90 Wind - Service) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]
4	M27	Χ	0	0
5	M27	Χ	0	0
6	M23	Χ	014	%10
7	M23	Χ	014	%90
8	M23	Χ	004	%30
9	M23	Χ	0	0
10	M23	Χ	0	0
11	M39	Χ	003	%10
12	M39	X	003	%70
13	M39	Χ	001	%25
14	M39	X	0	0
15	M39	X	0	0
16	M35	X	014	%10
17	M35	Χ	014	%90
18	M35	X	004	%30
19	M35	X	0	0
20	M35	X	0	0
21	M33	X	003	%10
22	M33	X	003	%70
23	M33	Χ	001	%25
24	M33	X	0	0
25	M33	X	0	0
26	M29	X	014	%10
27	M29	X	014	%90
28	M29	X	004	%30
29	M29	X	0	0
30	M29	X	0	0

Member Point Loads (BLC 8 : Ice)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]
1	M27	Υ	089	%10
2	M27	Υ	089	%70
3	M27	Υ	021	%25
4	M27	Υ	0	0
5	M27	Υ	0	0
6	M23	Υ	269	%10
7	M23	Υ	269	%90
8	M23	Υ	055	%30
9	M23	Υ	0	0
10	M23	Υ	0	0
11	M39	Υ	089	%10
12	M39	Υ	089	%70
13	M39	Υ	021	%25
14	M39	Υ	0	0
15	M39	Υ	0	0
16	M35	Υ	269	%10
17	M35	Υ	269	%90
18	M35	Υ	055	%30
19	M35	Υ	0	0
20	M35	Υ	0	0
21	M33	Υ	089	%10
22	M33	Υ	089	%70
23	M33	Υ	021	%25
24	M33	Υ	0	0
25	M33	Υ	0	0
26	M29	Υ	269	%10

: B+T Group : JV : 136355.003.01

: 876390 - Hampton / Bernier

July 8, 2019 4:58 PM Checked By:__

Page 11

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]	
27	M29	Υ	269	%90	
28	M29	Y	055	%30	
29	M29	Y	0	0	
30	<u>M29</u>	Y	0	0	
<u>lember</u>	Point Loads (BLC 13 :	Maint LL 1)			
	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]	
1	<u>M1</u>	Y	25	<u>%5</u>	
/lember	Point Loads (BLC 14 :	Maint LL 2)			
	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]	
1	M1	Υ	25	%95	
Member .	Point Loads (BLC 15 :	Maint LL 3)			
	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]	
1	2	Υ	25	%5	
Member .	Point Loads (BLC 16 :	Maint LL 4)			
	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]	
1	2	Y	25	%95	
Member .	Point Loads (BLC 17 :	Maint LL 5)			
	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]	
1	M2	Υ	25	%5	
Member .	Point Loads (BLC 18 :	Maint LL 6)			
	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]	
1	M2	Υ	25	%95	
Member .	Point Loads (BLC 19 :	Maint LL 7)			
	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]	
1	M10	Y	25	%50	
Mombor	Point Loads (BLC 20 :	Maint II 9)			
vieiiibei	•	•	Magnitudalk k ftl	Location in 0/1	
1	Member Label M18	Direction Y	Magnitude[k,k-ft] 25	Location[in,%] %50	
• "	-	•	20	7000	
<u>/lember</u>	<u> Point Loads (BLC 21 :</u>	Maint LL 9)			
	Member Label	Direction	Magnitude[k,k-ft] 25	Location[in,%] %50	
1	M14	Y			

Member Distributed Loads	(BLC 2 : 0 Wind - No Ice)	١
Michibel Distributed Educa	(DLO L . O Willia - NO ICC)	,

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	Z	029	029	0	0
2	M2	Z	029	029	0	0
3	2	Z	029	029	0	0
4	M4	Z	025	025	0	0
5	M5	Z	025	025	0	0
6	M6	Z	025	025	0	0
7	M7	Z	029	029	0	0
8	M8	Z	029	029	0	0

: B+T Group : JV : 136355.003.01

: 876390 - Hampton / Bernier

July 8, 2019 4:58 PM Checked By:_

Member Distributed Loads (BLC 2 : 0 Wind - No Ice) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[in,%]	End Location[in,%]
9	M9	Z	029	029	0	0
10	M10	Z	029	029	0	0
11	M11	Ζ	025	025	0	0
12	M14	Z	029	029	0	0
13	M18	Z	029	029	0	0
14	M23	Z	014	014	0	0
15	M25	Z	011	011	0	0
16	M27	Z	011	011	0	0
17	M29	Z	014	014	0	0
18	M31	Z	011	011	0	0
19	M33	Z	011	011	0	0
20	M35	Z	014	014	0	0
21	M37	Ζ	011	011	0	0
22	M39	Z	011	011	0	0
23	M38A	Z	025	025	0	0
24	M39A	Z	025	025	0	0
25	M40	Z	014	014	0	0
26	M52	Z	016	016	0	0
27	M53	Z	016	016	0	0
28	M54	Z	016	016	0	0
29	M55	Z	014	014	0	0
30	M67	Z	016	016	0	0
31	M68	Z	016	016	0	0
32	M69	Z	016	016	0	0
33	M70	Ζ	025	025	0	0
34	M71	Z	025	025	0	0
35	M72A	Z	014	014	0	0
36	M73A	Z	014	014	0	0
37	M74A	Z	014	014	0	0
38	M75A	Z	014	014	0	0
39	M72	Z	025	025	0	0
40	M73	Z	025	025	0	0
41	M74	Z	025	025	0	0
42	M75	Z	025	025	0	0

Member Distributed Loads (BLC 3: 90 Wind - No Ice)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	X	029	029	0	0
2	M2	X	029	029	0	0
3	2	X	029	029	0	0
4	M4	X	025	025	0	0
5	M5	X	025	025	0	0
6	M6	X	025	025	0	0
7	M7	X	029	029	0	0
8	M8	X	029	029	0	0
9	M9	X	029	029	0	0
10	M10	X	029	029	0	0
11	M11	X	025	025	0	0
12	M14	X	029	029	0	0
13	M18	X	029	029	0	0
14	M23	X	014	014	0	0
15	M25	X	011	011	0	0
16	M27	X	011	011	0	0
17	M29	X	014	014	0	0
18	M31	X	011	011	0	0
19	M33	X	011	011	0	0

: B+T Group : JV : 136355.003.01

: 876390 - Hampton / Bernier

July 8, 2019 4:58 PM Checked By:__

Member Distributed Loads (BLC 3: 90 Wind - No Ice) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[in,%]	End Location[in,%]
20	M35	X	014	014	0	0
21	M37	X	011	011	0	0
22	M39	X	011	011	0	0
23	M38A	X	025	025	0	0
24	M39A	X	025	025	0	0
25	M40	Χ	014	014	0	0
26	M52	X	016	016	0	0
27	M53	X	016	016	0	0
28	M54	X	016	016	0	0
29	M55	X	014	014	0	0
30	M67	Χ	016	016	0	0
31	M68	X	016	016	0	0
32	M69	X	016	016	0	0
33	M70	X	025	025	0	0
34	M71	X	025	025	0	0
35	M72A	Χ	014	014	0	0
36	M73A	Χ	014	014	0	0
37	M74A	Χ	014	014	0	0
38	M75A	Χ	014	014	0	0
39	M72	X	025	025	0	0
40	M73	X	025	025	0	0
41	M74	Χ	025	025	0	0
42	M75	Χ	025	025	0	0

Member Distributed Loads (BLC 4: 0 Wind - Ice)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	Z	01	01	0	0
2	M2	Z	01	01	0	0
3	2	Ζ	01	01	0	0
4	M4	Z	009	009	0	0
5	M5	Ζ	009	009	0	0
6	M6	Z	009	009	0	0
7	M7	Z	011	011	0	0
8	M8	Z	011	011	0	0
9	M9	Z	011	011	0	0
10	M10	Ζ	009	009	0	0
11	M11	Z	009	009	0	0
12	M14	Z	009	009	0	0
13	M18	Ζ	009	009	0	0
14	M23	Z	003	003	0	0
15	M25	Ζ	003	003	0	0
16	M27	Z	003	003	0	0
17	M29	Ζ	003	003	0	0
18	M31	Z	003	003	0	0
19	M33	Z	003	003	0	0
20	M35	Ζ	003	003	0	0
21	M37	Z	003	003	0	0
22	M39	Z	003	003	0	0
23	M38A	Z	009	009	0	0
24	M39A	Ζ	009	009	0	0
25	M40	Z	003	003	0	0
26	M52	Z	008	008	0	0
27	M53	Z	008	008	0	0
28	M54	Z	008	008	0	0
29	M55	Z	003	003	0	0
30	M67	Z	008	008	0	0
	·	·	·		· · · · · · · · · · · · · · · · · · ·	

: B+T Group : JV

: 136355.003.01 : 876390 - Hampton / Bernier July 8, 2019 4:58 PM Checked By:_

Member Distributed Loads (BLC 4: 0 Wind - Ice) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[in,%]	End Location[in,%]
31	M68	Ζ	008	008	0	0
32	M69	Ζ	008	008	0	0
33	M70	Z	01	01	0	0
34	M71	Ζ	01	01	0	0
35	M72A	Ζ	003	003	0	0
36	M73A	Z	003	003	0	0
37	M74A	Z	003	003	0	0
38	M75A	Z	003	003	0	0
39	M72	Z	01	01	0	0
40	M73	Z	01	01	0	0
41	M74	Z	01	01	0	0
42	M75	7	- 01	- 01	0	0

Member Distributed Loads (BLC 5 : 90 Wind - Ice)

	Member Label	Direction		End Magnitude[k/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	X	01	01	0	0
2	M2	X	01	01	0	0
3	2	X	01	01	0	0
4	M4	X	009	009	0	0
5	M5	X	009	009	0	0
6	M6	X	009	009	0	0
7	M7	X	011	011	0	0
8	M8	X	011	011	0	0
9	M9	X	011	011	0	0
10	M10	X	009	009	0	0
11	M11	X	009	009	0	0
12	M14	X	009	009	0	0
13	M18	Х	009	009	0	0
14	M23	Х	003	003	0	0
15	M25	X	003	003	0	0
16	M27	X	003	003	0	0
17	M29	Х	003	003	0	0
18	M31	Х	003	003	0	0
19	M33	Х	003	003	0	0
20	M35	Х	003	003	0	0
21	M37	Х	003	003	0	0
22	M39	Х	003	003	0	0
23	M38A	Х	009	009	0	0
24	M39A	Х	009	009	0	0
25	M40	Х	003	003	0	0
26	M52	Х	008	008	0	0
27	M53	X	008	008	0	0
28	M54	Х	008	008	0	0
29	M55	Х	003	003	0	0
30	M67	X	008	008	0	0
31	M68	Х	008	008	0	0
32	M69	X	008	008	0	0
33	M70	Х	01	01	0	0
34	M71	X	01	01	0	0
35	M72A	X	003	003	0	0
36	M73A	X	003	003	0	0
37	M74A	X	003	003	0	0
38	M75A	X	003	003	0	0
39	M72	X	01	01	0	0
40	M73	X	01	01	0	0
41	M74	X	01	01	0	0
				* ***	•	

: B+T Group : JV : 136355.003.01

: 876390 - Hampton / Bernier

July 8, 2019 4:58 PM Checked By:____

Member Distributed Loads (BLC 5 : 90 Wind - Ice) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[in,%]	End Location[in,%]
42	M75	X	01	01	0	0

Member Distributed Loads (BLC 6: 0 Wind - Service)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	Z	002	002	0	0
2	M2	Z	002	002	0	0
3	2	Z	002	002	0	0
4	M4	Z	001	001	0	0
5	M5	Ζ	001	001	0	0
6	M6	Z	001	001	0	0
7	M7	Ζ	002	002	0	0
8	M8	Z	002	002	0	0
9	M9	Ζ	002	002	0	0
10	M10	Z	002	002	0	0
11	M11	Ζ	001	001	0	0
12	M14	Z	002	002	0	0
13	M18	Z	002	002	0	0
14	M23	Z	0004	0004	0	0
15	M25	Ζ	0003	0003	0	0
16	M27	Z	0003	0003	0	0
17	M29	Ζ	0004	0004	0	0
18	M31	Z	0003	0003	0	0
19	M33	Z	0003	0003	0	0
20	M35	Z	0004	0004	0	0
21	M37	Z	0003	0003	0	0
22	M39	Z	0003	0003	0	0
23	M38A	Z	001	001	0	0
24	M39A	Z	001	001	0	0
25	M40	Z	0004	0004	0	0
26	M52	Z	0009	0009	0	0
27	M53	Z	0009	0009	0	0
28	M54	Z	0009	0009	0	0
29	M55	Z	0004	0004	0	0
30	M67	Z	0009	0009	0	0
31	M68	Z	0009	0009	0	0
32	M69	Z	0009	0009	0	0
33	M70	Z	001	001	0	0
34	M71	Z	001	001	0	0
35	M72A	Z	0004	0004	0	0
36	M73A	Z	0004	0004	0	0
37	M74A	Z	0004	0004	0	0
38	M75A	Z	0004	0004	0	0
39	M72	Z	001	001	0	0
40	M73	Z	001	001	0	0
41	M74	Z	001	001	0	0
42	M75	Z	001	001	0	0

Member Distributed Loads (BLC 7: 90 Wind - Service)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	X	002	002	0	0
2	M2	X	002	002	0	0
3	2	X	002	002	0	0
4	M4	X	001	001	0	0
5	M5	X	001	001	0	0
6	M6	X	001	001	0	0
7	M7	Χ	002	002	0	0

: B+T Group : JV : 136355.003.01

: 876390 - Hampton / Bernier

July 8, 2019 4:58 PM Checked By:_

Member Distributed Loads (BLC 7: 90 Wind - Service) (Continued)

	Member Label	Direction		End Magnitude[k/ft,F	Start Location[in,%]	End Location[in,%]
8	M8	X	002	002	0	0
9	M9	Χ	002	002	0	0
10	M10	Χ	002	002	0	0
11	M11	X	001	001	0	0
12	M14	X	002	002	0	0
13	M18	Χ	002	002	0	0
14	M23	X	0004	0004	0	0
15	M25	X	0003	0003	0	0
16	M27	Χ	0003	0003	0	0
17	M29	Χ	0004	0004	0	0
18	M31	Х	0003	0003	0	0
19	M33	Χ	0003	0003	0	0
20	M35	Χ	0004	0004	0	0
21	M37	Χ	0003	0003	0	0
22	M39	Х	0003	0003	0	0
23	M38A	Х	001	001	0	0
24	M39A	Х	001	001	0	0
25	M40	Χ	0004	0004	0	0
26	M52	Х	0009	0009	0	0
27	M53	Х	0009	0009	0	0
28	M54	Х	0009	0009	0	0
29	M55	Χ	0004	0004	0	0
30	M67	Х	0009	0009	0	0
31	M68	Х	0009	0009	0	0
32	M69	Х	0009	0009	0	0
33	M70	Х	001	001	0	0
34	M71	Х	001	001	0	0
35	M72A	Х	0004	0004	0	0
36	M73A	Χ	0004	0004	0	0
37	M74A	Х	0004	0004	0	0
38	M75A	X	0004	0004	0	0
39	M72	Х	001	001	0	0
40	M73	Х	001	001	0	0
41	M74	X	001	001	0	0
42	M75	Χ	001	001	0	0

Member Distributed Loads (BLC 8 : Ice)

	Member Label	Direction	Start Magnitude[k/ft	End Magnitude[k/ft,F	Start Location[in.%]	End Location[in,%]
1	M1	Υ	015	015	0	0
2	M2	Υ	015	015	0	0
3	2	Υ	015	015	0	0
4	M4	Υ	02	02	0	0
5	M5	Υ	02	02	0	0
6	M6	Υ	02	02	0	0
7	M7	Y	015	015	0	0
8	M8	Υ	015	015	0	0
9	M9	Υ	015	015	0	0
10	M10	Υ	02	02	0	0
11	M11	Υ	019	019	0	0
12	M14	Υ	02	02	0	0
13	M18	Υ	02	02	0	0
14	M23	Υ	011	011	0	0
15	M25	Υ	01	01	0	0
16	M27	Υ	01	01	0	0
17	M29	Υ	011	011	0	0
18	M31	Υ	01	01	0	0

: B+T Group : JV : 136355.003.01

876390 - Hampton / Bernier

July 8, 2019 4:58 PM Checked By:_

Member Distributed Loads (BLC 8 : Ice) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[in,%]	End Location[in,%]
19	M33	Υ	01	01	0	0
20	M35	Υ	011	011	0	0
21	M37	Y	01	01	0	0
22	M39	Υ	01	01	0	0
23	M38A	Υ	019	019	0	0
24	M39A	Υ	019	019	0	0
25	M40	Υ	011	011	0	0
26	M52	Υ	014	014	0	0
27	M53	Υ	014	014	0	0
28	M54	Υ	014	014	0	0
29	M55	Υ	011	011	0	0
30	M67	Υ	014	014	0	0
31	M68	Υ	014	014	0	0
32	M69	Υ	014	014	0	0
33	M70	Υ	014	014	0	0
34	M71	Υ	014	014	0	0
35	M72A	Υ	011	011	0	0
36	M73A	Υ	011	011	0	0
37	M74A	Υ	011	011	0	0
38	M75A	Υ	011	011	0	0
39	M72	Υ	014	014	0	0
40	M73	Υ	014	014	0	0
41	M74	Υ	014	014	0	0
42	M75	Υ	014	014	0	0

Member Distributed Loads (BLC 22 : BLC 1 Transient Area Loads)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	Υ	0002016	006	0	24
2	M1	Υ	006	01	24	48
3	M1	Υ	01	009	48	72
4	M1	Υ	009	009	72	96
5	M1	Υ	009	01	96	120
6	M1	Υ	01	006	120	144
7	M1	Υ	006	0002016	144	168
8	M5	Υ	002	009	0	23.4
9	M5	Υ	009	017	23.4	46.8
10	M6	Υ	002	009	0	23.4
11	M6	Υ	009	017	23.4	46.8
12	M7	Υ	01	01	.117	86.823
13	M2	Υ	002	005	0	28
14	M2	Υ	005	009	28	56
15	M2	Υ	009	012	56	84
16	M2	Υ	012	009	84	112
17	M2	Υ	009	005	112	140
18	M2	Υ	005	002	140	168
19	M4	Υ	002	009	0	23.4
20	M4	Υ	009	017	23.4	46.8
21	M8	Υ	01	01	.117	86.823
22	2	Υ	002	005	0	28
23	2	Υ	005	009	28	56
24	2	Υ	009	012	56	84
25	2	Υ	012	009	84	112
26	2	Υ	009	005	112	140
27	2	Υ	005	002	140	168
28	M9	Υ	01	01	.117	86.823

: B+T Group : JV

: 136355.003.01 : 876390 - Hampton / Bernier July 8, 2019 4:58 PM Checked By:_

Member Distributed Loads (BLC 23: BLC 8 Transient Area Loads)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	Υ	0002008	006	0	24
2	M1	Υ	006	01	24	48
3	M1	Υ	01	009	48	72
4	M1	Υ	009	009	72	96
5	M1	Υ	009	01	96	120
6	M1	Υ	01	006	120	144
7	M1	Υ	006	0002008	144	168
8	M5	Υ	002	009	0	23.4
9	M5	Υ	009	017	23.4	46.8
10	M6	Υ	002	009	0	23.4
11	M6	Υ	009	017	23.4	46.8
12	M7	Υ	01	01	.117	86.823
13	M2	Υ	002	005	0	28
14	M2	Υ	005	009	28	56
15	M2	Υ	009	012	56	84
16	M2	Υ	012	009	84	112
17	M2	Υ	009	005	112	140
18	M2	Υ	005	002	140	168
19	M4	Υ	002	009	0	23.4
20	M4	Υ	009	017	23.4	46.8
21	M8	Υ	01	01	.117	86.823
22	2	Υ	002	005	0	28
23	2	Υ	005	009	28	56
24	2	Υ	009	012	56	84
25	2	Υ	012	009	84	112
26	2	Υ	009	005	112	140
27	2	Υ	005	002	140	168
28	M9	Υ	01	01	.117	86.823

Member Area Loads (BLC 1 : Dead)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N3	N6	N5	N4	Υ	Two Way	01
2	N4	N5	N7	N2	Υ	Two Way	01
3	N2	N3	N6	N7	Υ	Two Way	01

Member Area Loads (BLC 8 : Ice)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N3	N6	N5	N4	Υ	Two Way	01
2	N4	N5	N7	N2	Υ	Two Way	01
3	N2	N3	N6	N7	Υ	Two Way	01

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Dead	DĽ		-1	,		30		3	,
2	0 Wind - No Ice	WLZ					30	42		
3	90 Wind - No Ice	WLX					30	42		
4	0 Wind - Ice	WLZ					30	42		
5	90 Wind - Ice	WLX					30	42		
6	0 Wind - Service	WLZ					30	42		
7	90 Wind - Service	WLX					30	42		
8	Ice	OL1					30	42	3	
9	Live Load a	LL				3				
10	Live Load b	LL				3				

: B+T Group : JV : 136355.003.01

: 876390 - Hampton / Bernier

July 8, 2019 4:58 PM Checked By:_

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
11	Live Load c	LĽ				3			-	
12	Live Load d	LL								
13	Maint LL 1	LL					1			
14	Maint LL 2	LL					1			
15	Maint LL 3	LL					1			
16	Maint LL 4	LL					1			
17	Maint LL 5	LL					1			
18	Maint LL 6	LL					1			
19	Maint LL 7	LL					1			
20	Maint LL 8	LL					1			
21	Maint LL 9	LL					1			
22	BLC 1 Transient Area	None						28		
23	BLC 8 Transient Area	None						28		

Load Combinations

1 1.4 Dead Yes Y 1 1.4 1.2 1.3 1.2 1.4 1.2 1.4 1.5 1.2 1.5		Description	SoP	S	BLC	Fac	BLC	Fac	BLC	Fac	.BLC	Fac	BLC	Fac										
3	1	1.4 Dead	Yes Y		1	1.4																		
1.2 D + 1.0 - 60 W Yes Y	2	1.2 D + 1.0 - 0 W	Yes Y		1	1.2	2	1																
5 1.2 D + 1.0 - 90 W Yes Y 1 1.2 3 3 1 6 1.2 D + 1.0 - 120 W Yes Y 1 1.2 3 3.66 2 25 7 7 1.2 D + 1.0 - 180 W Yes Y 1 1.2 2 -1 9 9 1.2 D + 1.0 - 210 W Yes Y 1 1.2 2 -1 9 10 1.2 D + 1.0 - 240 W Yes Y 1 1.2 3 -866 3 5 1 10 1.2 D + 1.0 - 240 W Yes Y 1 1.2 3 -866 2 5 1 11 1.2 D + 1.0 - 300 W Yes Y 1 1.2 3 -866 2 5 1 12 1.2 D + 1.0 - 300 W Yes Y 1 1.2 3 -866 2 5 1 13 1.2 D + 1.0 - 300 W Yes Y 1 1.2 3 -866 2 5 1 14 1.2 D + 1.0 - 300 W Yes Y 1 1.2 4 1 8 1 15 1.2 D + 1.0 - 300 W Yes Y 1 1.2 4 1 8 1 16 1.2 D + 1.0 - 300 W Yes Y 1 1.2 5 866 4 5 8 1 17	3	1.2 D + 1.0 - 30 W	Yes Y		1	1.2	2	.866	3	.5														
5 1.2 D + 1.0 - 190 W Yes Y 1 1.2 3 3 1 6 1.2 D + 1.0 - 150 W Yes Y 1 1.2 3 3.66 2 5 7 1.2 D + 1.0 - 150 W Yes Y 1 1.2 2 6 1.2 D + 1.0 - 160 W Yes Y 1 1.2 2 6 1 9 1.2 D + 1.0 - 100 W Yes Y 1 1.2 2 1 9 1.2 D + 1.0 - 240 W Yes Y 1 1.2 2 5 1 1 1.2 D + 1.0 - 240 W Yes Y 1 1.2 3 66 3 5 1 1 1.2 D + 1.0 - 270 W Yes Y 1 1.2 3 66 2 5 1 1 1.2 D + 1.0 - 30 W Yes Y 1 1.2 3 66 3 5 1 1 1.2 D + 1.0 - 30 W Yes Y 1 1.2 3 6 1 1 1.2 D + 1.0 - 30 W Yes Y 1 1.2 3 6 1 1 1.2 D + 1.0 - 30 W Yes Y 1 1.2 4 1 8 1 1 1 1.2 D + 1.0 - 30 W Yes Y 1 1.2 4 1 8 1 1 1 1.2 D + 1.0 - 30 W Yes Y 1 1.2 5 866 4 5 8 1 1 1 1.2 D + 1.0 - 120 W Yes Y	4	1.2 D + 1.0 - 60 W	Yes Y		1	1.2	3	.866	2	.5														
T	5	1.2 D + 1.0 - 90 W	Yes Y		1	1.2	3																	
T	6	1.2 D + 1.0 - 120 W	Yes Y		1	1.2	3	.866	2	5														
9 1.2 D + 1.0 - 210 W Yes Y	7	1.2 D + 1.0 - 150 W	Yes Y		1	1.2	2																	
10 12 D + 1.0 - 240 W Yes Y	8	1.2 D + 1.0 - 180 W	Yes Y		1	1.2	2	-1																
11 1.2 D + 1.0 - 270 W Yes Y	9	1.2 D + 1.0 - 210 W	Yes Y		1	1.2	2	866	3	5														
12 1.2 D + 1.0 - 300 W Yes Y	10	1.2 D + 1.0 - 240 W	Yes Y		1	1.2	3	866	2	5														
13 1.2 D + 1.0 - 330 W Yes Y	11	1.2 D + 1.0 - 270 W	Yes Y		1	1.2	3	-1																
14 1.2 D + 1.0 - 0 W/IYes Y 1 1,2 4 1 1 8 1 15 1.2 D + 1.0 - 30 WYes Y 1 1.2 4 866 5 5 8 1 16 1.2 D + 1.0 - 90 WYes Y 1 1.2 5 866 4 5 8 1 17 1.2 D + 1.0 - 120 Yes Y 1 1.2 5 866 4 -5 8 1 18 1.2 D + 1.0 - 130 Yes Y 1 1.2 5 866 5 5 8 1 20 1.2 D + 1.0 - 180 Yes Y 1 1.2 4 -866 5 5 8 1 21 1.2 D + 1.0 - 180 Yes Y 1 1.2 4 -866 5 5 8 1 22 1.2 D + 1.0 - 240 Yes Y 1 1.2 5 -866 4 -5 8 1 23 1.2 D + 1.0 - 240 Yes Y 1 1.2 5 -866 4<	12	1.2 D + 1.0 - 300 W	Yes Y		1	1.2	3	866	2	.5														
14 1.2 D + 1.0 - 0 WJYes Y 1 1.2 4 1 8 1 15 1.2 D + 1.0 - 30 WYes Y 1 1.2 4 866 5 5 8 1 16 1.2 D + 1.0 - 60 WYes Y 1 1.2 5 866 4 .5 8 1 17 1.2 D + 1.0 - 190 WYes Y 1 1.2 5 .866 4 .5 8 1 18 1.2 D + 1.0 - 150 Yes Y 1 1.2 5 .866 4 -5 8 1 19 1.2 D + 1.0 - 150 Yes Y 1 1.2 4 866 5 5 8 1 20 1.2 D + 1.0 - 180 Yes Y 1 1.2 4 866 5 5 8 1 21 1.2 D + 1.0 - 210 Yes Y 1 1.2 4 866 5 5 8 1 22 1.2 D + 1.0 - 240 Yes Y 1 1.2 5 866 4 5 8 1 23 1.2 D + 1.0 - 270 Yes	13	1.2 D + 1.0 - 330 W	Yes Y		1	1.2	2	.866	3	5														
16 1.2 D + 1.0 - 60 WYes Y 1 1.2 5 .866 4 .5 8 1 17 1.2 D + 1.0 - 90 WYes Y 1 1.2 5 1 8 1 18 1.2 D + 1.0 - 150 Yes Y 1 1.2 5 .866 4 5 8 1 20 1.2 D + 1.0 - 150 Yes Y 1 1.2 4 866 5 5 8 1 20 1.2 D + 1.0 - 180 Yes Y 1 1.2 4 866 5 5 8 1 21 1.2 D + 1.0 - 240 Yes Y 1 1.2 4 866 5 5 8 1 22 1.2 D + 1.0 - 240 Yes Y 1 1.2 5 866 4 5 8 1 22 1.2 D + 1.0 - 240 Yes Y 1 1.2 5 866 4 5 8 1 22 1.2 D + 1.0 - 300 Yes Y 1 1.2 5 866 4<	14	1.2 D + 1.0 - 0 W/I.	Yes Y		1	1.2					8	1												
17 1.2 D + 1.0 - 90 W Yes Y 1 1.2 5 1 8 1 18 1.2 D + 1.0 - 120 Yes Y 1 1.2 5 .866 4 5 8 1 19 1.2 D + 1.0 - 180 Yes Y 1 1.2 4 866 5 5 8 1 20 1.2 D + 1.0 - 180 Yes Y 1 1.2 4 866 5 5 8 1 21 1.2 D + 1.0 - 240 Yes Y 1 1.2 5 866 4 5 8 1 23 1.2 D + 1.0 - 270 Yes Y 1 1.2 5 866 4 5 8 1 24 1.2 D + 1.0 - 330 Yes Y 1 1.2 5 866 4 5 8 1 25 1.2 D + 1.5 LL a + Yes Y 1 1.2 4 .866 5 5 8 1 26 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866	15	1.2 D + 1.0 - 30 W.	Yes Y		1	1.2	4	.866	5	.5	8	1												
18 1.2 D + 1.0 - 120 Yes Y 1 1.2 5 .866 4 5 8 1 19 1.2 D + 1.0 - 150 Yes Y 1 1.2 4 866 5 .5 8 1 20 1.2 D + 1.0 - 180 Yes Y 1 1.2 4 1 8 1 21 1.2 D + 1.0 - 240 Yes Y 1 1.2 4 866 5 5 8 1 22 1.2 D + 1.0 - 240 Yes Y 1 1.2 5 866 4 5 8 1 23 1.2 D + 1.0 - 270 Yes Y 1 1.2 5 866 4 5 8 1 23 1.2 D + 1.0 - 300 Yes Y 1 1.2 5 866 4 5 8 1 25 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 1 9 1.5 27 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 5 9 1.5 <td>16</td> <td>1.2 D + 1.0 - 60 W.</td> <td>Yes Y</td> <td></td> <td>1</td> <td>1.2</td> <td>5</td> <td>.866</td> <td>4</td> <td>.5</td> <td>8</td> <td>1</td> <td></td>	16	1.2 D + 1.0 - 60 W.	Yes Y		1	1.2	5	.866	4	.5	8	1												
19 1.2 D + 1.0 - 150 Yes Y	17	1.2 D + 1.0 - 90 W.	Yes Y		1	1.2	5	1			8	1												
20 1.2 D + 1.0 - 180 Yes Y 1 1.2 4 - 1 8 1	18	1.2 D + 1.0 - 120	Yes Y		1	1.2	5	.866	4	5	8	1												
21 1.2 D + 1.0 - 210 Yes Y 1 1.2 d + .866 5 55 8 1 22 1.2 D + 1.0 - 240 Yes Y 1 1.2 5866 45 8 1 23 1.2 D + 1.0 - 270 Yes Y 1 1.2 51 8 1 24 1.2 D + 1.0 - 300 Yes Y 1 1.2 5866 4 .5 8 1 25 1.2 D + 1.0 - 330 Yes Y 1 1.2 6 .866 55 8 1 26 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 27 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 866 6 .5 9 1.5 28 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 866 6 9 1.5 29 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 9 1.5 30 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 9 1.5 31 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 9 1.5 32 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 9 1.5 33 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 .866 6 9 1.5 34 1.2 D + 1.5 LL a + Yes Y	19	1.2 D + 1.0 - 150	Yes Y		1	1.2	4	866	5	.5	8	1												
22 1.2 D + 1.0 - 240 Yes Y 1 1.2 5866 45 8 1 23 1.2 D + 1.0 - 270 Yes Y 1 1.2 5866 4 .5 8 1 24 1.2 D + 1.0 - 300 Yes Y 1 1.2 5866 4 .5 8 1 25 1.2 D + 1.0 - 330 Yes Y 1 1.2 4 .866 55 8 1 26 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 27 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 28 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 .866 6 .5 9 1.5 29 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 .866 6 .5 9 1.5 30 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 31 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 32 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 33 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 34 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 .866 6 .5 9 1.5 35 1.2 D + 1.5 LL a + Yes Y	20	1.2 D + 1.0 - 180	Yes Y		1	1.2	4	-1			8	1												
23 1.2 D + 1.0 - 270 Yes Y 1 1.2 5 -1 88 1 24 1.2 D + 1.0 - 300 Yes Y 1 1.2 5866 4 .5 8 1 25 1.2 D + 1.0 - 330 Yes Y 1 1.2 4 .866 55 8 1 26 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 27 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 .866 6 .5 9 1.5 28 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 1 9 1.5 29 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 .866 65 9 1.5 30 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 31 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 32 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 33 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 34 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 35 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 .866 6 .5 9 1.5 36 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 .866 6 .5 9 1.5 37 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 .866 6 .5 9 1.5 38 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 37 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 38 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 38 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 38 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5					1	1.2	4	866	5	5	8	1												
24 1.2 D + 1.0 - 300 Yes Y 1 1.2 5866 4 .5 8 1 25 1.2 D + 1.0 - 330 Yes Y 1 1.2 4 .866 55 8 1 26 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 1 9 1.5 27 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 28 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 .866 6 .5 9 1.5 29 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 1 9 1.5 30 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 .866 65 9 1.5 31 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 32 1.2 D + 1.5 LL a + Yes Y 1 1.2 6866 7 .5 9 1.5 33 1.2 D + 1.5 LL a + Yes Y 1 1.2 6866 7 .5 9 1.5 34 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 6 .5 9 1.5 35 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 .866 6 .5 9 1.5 36 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 .866 6 .5 9 1.5 37 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 .866 6 .5 9 1.5 38 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 37 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 38 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 38 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 38 1.2 D + 1.5 LL b + Yes Y 1 1.2 6 .866 7 .5 9 1.5	22	1.2 D + 1.0 - 240	Yes Y		1	1.2	5	866	4	5	8	1												
25	23	1.2 D + 1.0 - 270	Yes Y		1	1.2	5	-1			8	1												
26 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 1 9 1.5 27 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 28 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 .866 6 .5 9 1.5 29 1.5 29 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 .866 6 .5 9 1.5 30 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 31 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 32 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 33 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 33 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 34 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 .866 6 .5 9 1.5 35 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 .866 6 .5 9 1.5 36 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 .866 6 .5 9 1.5 36 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 .866 6 .5 9 1.5 37 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 .866 6 .5 9 1.5 37 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 38 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 38 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 38 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 38 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 38 1.2 D + 1.5 LL b + Yes Y 1 1.2 6 .866 7 .5 9 1.5 38 1.2 D + 1.5 LL b + Yes Y 1 1.2 6 .866 7 .5 9 1.5	24	1.2 D + 1.0 - 300	Yes Y		1	1.2	5	866	4	.5	8	1												
27 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 .5 9 1.5 28 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 1 9 1.5 29 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 1 9 1.5 30 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 -866 6 5 9 1.5 32 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 -1 9 1.5 33 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 -866 7 5 9 1.5 34 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 -1 9 1.5 35 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 -1 9 1.5 36 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 5 9 1.5 37 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 -5 9 1.5 38 </td <td>25</td> <td>1.2 D + 1.0 - 330</td> <td></td> <td></td> <td>1</td> <td>1.2</td> <td>4</td> <td>.866</td> <td>5</td> <td>5</td> <td>8</td> <td></td>	25	1.2 D + 1.0 - 330			1	1.2	4	.866	5	5	8													
28 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 1.866 6 .5 9 1.5 29 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 1 9 1.5 30 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 866 6 5 9 1.5 31 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 866 7 .5 9 1.5 32 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 866 7 5 9 1.5 34 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 866 6 5 9 1.5 35 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 1 9 1.5 36 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 5 9 1.5 37 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 5 9 1.5 38 1.2 D + 1.5 LL b + Yes Y 1 1.2 6 .866 7 5 9 1.5	26	1.2 D + 1.5 LL a +	Yes Y		1	1.2	6	1			9	1.5												
29 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 1 9 1.5 30 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 1.866 6 5 9 9 1.5 31 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 866 7 .5 9 1.5 32 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 866 7 5 9 1.5 34 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 866 6 5 9 1.5 35 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 1 9 1.5 36 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 5 9 1.5 37 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 5 9 1.5 38 1.2 D + 1.5 LL b + Yes Y 1 1.2 6 1 10 1.5					1	1.2	6	.866	7	.5	9	1.5												
30 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 .866 65 9 1.5 31 1.2 D + 1.5 LL a + Yes Y 1 1.2 6866 7 .5 9 1.5 32 1.2 D + 1.5 LL a + Yes Y 1 1.2 6866 75 9 1.5 33 1.2 D + 1.5 LL a + Yes Y 1 1.2 7866 65 9 1.5 34 1.2 D + 1.5 LL a + Yes Y 1 1.2 7866 65 9 1.5 35 1.2 D + 1.5 LL a + Yes Y 1 1.2 7866 6 .5 9 1.5 36 1.2 D + 1.5 LL a + Yes Y 1 1.2 7866 6 .5 9 1.5 37 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 75 9 1.5 38 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 75 9 1.5 38 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 75 9 1.5 38 1.2 D + 1.5 LL b + Ye	28	1.2 D + 1.5 LL a +	Yes Y		1	1.2	7	.866	6	.5	9	1.5												
31 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 -866 7 .5 9 1.5 32 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 -1 9 1.5 33 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 -866 7 5 9 1.5 34 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 -1 9 1.5 35 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 -866 6 5 9 1.5 36 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 5 9 1.5 37 1.2 D + 1.5 LL b + Yes Y 1 1.2 6 .866 7 5 9 1.5 38 1.2 D + 1.5 LL b + Yes Y 1 1.2 6 1 10 1.5	29	1.2 D + 1.5 LL a +	Yes Y		1	1.2	7	<u> </u>			9	1.5												
32 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 -1 9 1.5 33 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 -866 7 5 9 1.5 34 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 -866 6 5 9 1.5 35 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 -1 9 1.5 36 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 -866 6 .5 9 1.5 37 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 5 9 1.5 38 1.2 D + 1.5 LL b + Yes Y 1 1.2 6 1 10 1.5	30	1.2 D + 1.5 LL a +	Yes Y		1	1.2	7	.866	6		9													
33 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 866 7 5 9 9 1.5 34 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 866 6 5 9 1.5 35 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 -1 9 1.5 36 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 5 9 1.5 37 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 5 9 1.5 38 1.2 D + 1.5 LL b + Yes Y 1 1.2 6 1 10 1.5	31	1.2 D + 1.5 LL a +	Yes Y		1	1.2	6	866	7	.5	9													
34 1.2 D + 1.5 LL a + Yes Y 1 1.2 7866 65 9 1.5 35 1.2 D + 1.5 LL a + Yes Y 1 1.2 71 9 1.5 36 1.2 D + 1.5 LL a + Yes Y 1 1.2 7866 6 .5 9 1.5 37 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 75 9 1.5 38 1.2 D + 1.5 LL b + Yes Y 1 1.2 6 1 10 1.5	32	1.2 D + 1.5 LL a +	Yes Y		1	1.2	6	-1			9													
35 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 -1 9 1.5 36 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 866 6 .5 9 1.5 37 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 5 9 1.5 38 1.2 D + 1.5 LL b + Yes Y 1 1.2 6 1 10 1.5	33	1.2 D + 1.5 LL a +	Yes Y		1	1.2	6	866	7	5	9	1.5												
35 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 -1 9 1.5 36 1.2 D + 1.5 LL a + Yes Y 1 1.2 7 866 6 .5 9 1.5 37 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 7 5 9 1.5 38 1.2 D + 1.5 LL b + Yes Y 1 1.2 6 1 10 1.5	34	1.2 D + 1.5 LL a +	Yes Y		1	1.2		866	6															
37 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 75 9 1.5 38 1.2 D + 1.5 LL b + Yes Y 1 1.2 6 1 10 1.5	35	1.2 D + 1.5 LL a +	Yes Y		1	1.2	7	-1			9													
37 1.2 D + 1.5 LL a + Yes Y 1 1.2 6 .866 75 9 1.5 38 1.2 D + 1.5 LL b + Yes Y 1 1.2 6 1 10 1.5	36	1.2 D + 1.5 LL a +	Yes Y		1	1.2	7	866	6	.5	9													
	01				1	1.2	6	.866	7		9	1.5												
	38	1.2 D + 1.5 LL b +	Yes Y		1	1.2																		
	39	1.2 D + 1.5 LL b +	Yes Y		1	1.2	6	.866	7	.5														

: B+T Group : JV : 136355.003.01

: 876390 - Hampton / Bernier

July 8, 2019 4:58 PM Checked By:__

Load Combinations (Continued)

Description	So P	S BLC	Fac	BL C	Fac	BL C	Fac	BL C	Fac	BL C	Fac	BL C	Fac	BL C	Fac	BI C	Fac	BL C	Fac	BL C	Fac
40 1.2 D + 1.5 LL b +			1.2	7	.866		.5		1.5		1 ao		ac	DEU	1 ac	LDEO	1 40		1 40		1 40
41 1.2 D + 1.5 LL b +			1.2	7	1				1.5												
42 1.2 D + 1.5 LL b +			1.2	7	.866	6	5		1.5												
43 1.2 D + 1.5 LL b +			1.2	6	866		.5		1.5												
44 1.2 D + 1.5 LL b +			1.2	6	-1				1.5												
45 1.2 D + 1.5 LL b +			1.2	6	866	7	5		1.5												
46 1.2 D + 1.5 LL b +			1.2	7	866		5		1.5												
47 1.2 D + 1.5 LL b +			1.2	7	-1				1.5												
48 1.2 D + 1.5 LL b +			1.2	7	866	6	.5		1.5												
49 1.2 D + 1.5 LL b +			1.2	6	.866		5		1.5												
50 1.2 D + 1.5 LL c +			1.2	6	1		0	11	1.5												
51 1.2 D + 1.5 LL c +			1.2	6	.866	7	.5	11													
52 1.2 D + 1.5 LL c +			1.2	7	.866		.5	11	1.5												
53 1.2 D + 1.5 LL c +			1.2	7	1		.0	11	1.5												
54 1.2 D + 1.5 LL c +			1.2	7	.866	6	5	11													
55 1.2 D + 1.5 LL c +			1.2	6	866		.5	11	1.5												
56 1.2 D + 1.5 LL c +			1.2	6	-1			11	1.5												
57 1.2 D + 1.5 LL c +			1.2	6	866	7	5	11	1.5												
58 1.2 D + 1.5 LL c +			1.2	7	866		5		1.5												
59 1.2 D + 1.5 LL c +			1.2	7	-1			_	1.5												
60 1.2 D + 1.5 LL c +			1.2	7	866	6	.5	11													
61 1.2 D + 1.5 LL c +		1	1.2	6	.866		5	11	1.5												
62 1.2 D + 1.5 LL d +	Yes Y	1	1.2	6	1				1.5												
63 1.2 D + 1.5 LL d +	Yes Y	1	1.2	6	.866	7	.5	12	1.5												
64 1.2 D + 1.5 LL d +	Yes Y	1	1.2	7	.866		.5		1.5												
65 1.2 D + 1.5 LL d +	Yes Y	1	1.2	7	1				1.5												
66 1.2 D + 1.5 LL d +	Yes Y	1	1.2	7	.866	6	5	12													
67 1.2 D + 1.5 LL d +	Yes Y	1	1.2	6	866		.5	12	1.5												
68 1.2 D + 1.5 LL d +	Yes Y	1	1.2	6	-1			12	1.5												
69 1.2 D + 1.5 LL d +	Yes Y	1	1.2	6	866	7	5	12	1.5												
70 1.2 D + 1.5 LL d +	Yes Y	1	1.2	7	866	6	5	12	1.5												
71 1.2 D + 1.5 LL d +	Yes Y	1	1.2	7	-1			12													
72 1.2 D + 1.5 LL d +	Yes Y	1	1.2	7	866	6	.5	12													
73 1.2 D + 1.5 LL d +	Yes Y	1	1.2	6	.866	7	5	12	1.5												
74 1.2 D + 1.5 LL Ma	Yes Y	1	1.2						1.5												
75 1.2 D + 1.5 LL Ma		1	1.2						1.5												
76 1.2 D + 1.5 LL Ma		1	1.2					15	1.5												
77 1.2 D + 1.5 LL Ma	Yes Y	1	1.2					16	1.5												
78 1.2 D + 1.5 LL Ma	Yes Y	1	1.2					17	1.5												
79 1.2 D + 1.5 LL Ma	Yes Y	1	1.2					18	1.5												
80 1.2 D + 1.5 LL Ma	Yes Y	1	1.2					19	1.5												
81 1.2 D + 1.5 LL Ma		1	1.2					20	1.5												
82 1.2 D + 1.5 LL Ma	Yes Y	1	1.2					21	1.5												

Envelope Joint Reactions

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N9	max	3.817	5	1.302	20	.978	2	.042	2	2.807	5	1.202	11
2		min	-3.764	11	.155	2	-1.18	8	-3.016	20	-2.715	11	-1.225	5
3	N61A	max	2.447	3	1.303	24	4.501	3	2.163	2	3.807	9	2.667	22
4		min	-2.657	9	.213	7	-4.425	9	-1.227	8	-3.726	3	037	4
5	N63	max	2.541	7	1.303	16	4.621	13	2.034	2	3.86	13	.089	12
6		min	-2.375	13	.241	10	-4.487	7	-1.053	8	-3.781	7	-2.666	18
7	N125	max	.178	6	2.016	14	2.929	14	0	11	0	13	0	13
8		min	314	12	.54	7	.65	8	0	18	0	7	0	7
9	N128	max	2.689	17	2.042	17	293	2	0	16	0	4	0	21

: B+T Group : JV

: 136355.003.01 : 876390 - Hampton / Bernier July 8, 2019 4:58 PM Checked By:_

Envelope Joint Reactions (Continued)

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
10		min	.472	11	.496	10	-1.321	20	0	10	0	58	0	3
11	N131	max	509	4	2.034	22	153	2	0	2	0	8	0	2
12		min	-2.463	23	.486	3	-1.685	20	0	8	0	2	0	20
13	Totals:	max	7.713	5	9.738	24	10.632	2						
14		min	-7.713	11	3.116	6	-10.632	8						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Lo	LC	SheI	Lo	L	Cı	phi*Pphi*Pphi*Mphi*M Eqn
1	M55	PIPE 2.0	.592	12	8	.578	12	- 8	3	4.679 32.13 1.872 1.872 H3-6
2	M40	PIPE 2.0	.563	12	2	.560	12	1	2 4	4.679 32.13 1.872 1.872 H3-6
3	M72A	PIPE 2.0	.480	14.5	7	.464	12		7 4	4.679 32.13 1.872 1.872 H3-6
4	M73A	PIPE 2.0	.446	14.5	13	.440	12	1	3 4	4.679 32.13 1.872 1.872 H3-6
5	M75A	PIPE 2.0	.409	16	2	.335	12	- 4	4 4	4.679 32.13 1.872 1.872 H1-1b
6	M74A	PIPE 2.0	.470	16	8	.308	12	1	0 4	4.679 32.13 1.872 1.872 H1-1b
7	M2	L3X3X4	.457	168	13	.296	84	z 1	8	15.746 46.656 1.688 3.387 H2-1
8	M38A	HSS4X4X4	.312	18	2	.260	18	z (9	138.21 139.5 16.181 16.181 H1-1b
9	M39A	HSS4X4X4	.313	18	2	.257	18	z 1		138.21 139.5 16.181 16.181 H1-1b
10	M11	HSS4X4X4	.240	18	6	.189	18	z !	5	138.21 139.5 16.181 16.181 H1-1b
11	M1	L3X3X4	.607	168	8	.183	84	z 1	4	15.746 46.656 1.688 3.561 H2-1
12	M23	PIPE 2.0	.448	56	8	.136			3	12.144 32.13 1.872 1.872 H1-1b
13	M29	PIPE 2.0	.540	58.5	2	.135	59	1	9	12.144 32.13 1.872 1.872 H1-1b
14	M27	PIPE 1.5	.537	33	7	.131		- 2	2	11.974 23.593 1.105 1.105 H1-1b
15	M35	PIPE 2.0	.479	57	2	.126	58.5		3	12.144 32.13 1.872 1.872 H1-1b
16	M53	L2.5x2.5x4	.732	0	2	.125	15	/ 2	2 (36.58 38.556 1.114 2.537 H2-1
17	M39	PIPE 1.5	.679	33	2	.122	33	2	0	11.974 23.593 1.105 1.105 H1-1b
18	M14	HSS4.5X4.5X4	.075	18	2	.120	24	z (9	156.9 158.9 20.907 20.907 H1-1b
19	M18	HSS4.5X4.5X4	.071	18	2	.118	24	z 1	3	156.9 158.9 20.907 20.907 H1-1b
20	M33	PIPE 1.5	.510	33	3	.115	33	1	6	11.974 23.593 1.105 1.105 H1-1b
21	2	L3X3X4	.480	0	3	.112	84	z 2	11	15.746 46.656 1.688 3.633 H2-1
22	M37	PIPE 1.5	.647	33	8	.099	33		7	11.974 23.593 1.105 1.105 H1-1b
23	M52	L2.5x2.5x4	.407	0	11	.091	15	y (9 (36.58 38.556 1.114 2.537 H2-1
24	M68	L2.5x2.5x4	.755	0	8	.089	15	/ 8	3 (36.58 38.556 1.114 2.537 H2-1
25	M69	L2.5x2.5x4	.582	15	25	.088	0	/ 8	3 (36.58 38.556 1.114 2.537 H2-1
26	M10	HSS4.5X4.5X4	.067	18	22	.087	24	z !		156.9 <mark>158.9</mark> 20.907 20.907 H1-1b
27	M31	PIPE 1.5	.636	33	3	.086			3	11.974 23.593 1.105 1.105 H1-1b
28	M54	L2.5x2.5x4	.620	0	7	.086				36.58 38.556 1.114 2.537 H2-1
29	M67	L2.5x2.5x4	.561	15	16	.063	15	/ :		36.58 38.556 1.114 2.537 H2-1
30	M25	PIPE 1.5	.447	33	7	.059	33			11.974 23.593 1.105 1.105 H1-1b
31	M6	LL3x3x4x0	.195	0	2	.019	46.8	z 1	3	76.391 93.312 6.48 4.361 H1-1b
32	M5	LL3x3x4x0	.190	0	8	.019	46.8			76.391 93.312 6.48 4.361 H1-1b
33	M9	L3X3X4	.388	43	7	.016				14.729 46.656 1.688 3.268 H2-1
34	M8	L3X3X4	.393	43	9	.016				14.729 46.656 1.688 3.283 H2-1
35	M7	L3X3X4	.277	43	4	.016	43;	z 1	8	14.729 46.656 1.688 3.226 H2-1
36	M4	LL3x3x4x0	.135	0	6	.013	46.8			76.391 93.312 6.48 4.361 H1-1b
37	M75	L2.5x2.5x3	.431	36	17	.012		/ :		8.827 29.192 .873 1.523 H2-1
38	M71	L2.5x2.5x3	.429	36	21	.012	73	/		8.827 29.192 .873 1.523 H2-1
39	M70	L2.5x2.5x3	.457	36	19	.010	73	z (8.827 29.192 .873 1.523 H2-1
40	M73	L2.5x2.5x3	.434	36	25	.010	0	/ 1		8.827 29.192 .873 1.523 H2-1
41	M74	L2.5x2.5x3	.455	36	15	.009	73			8.827 29.192 .873 1.523 H2-1
42	M72	L2.5x2.5x3	.459	36	23	.009	0	/ 2	2 8	8.827 29.192 .873 1.523 H2-1

APPENDIX C

MOUNT MODIFICATION DESIGN DRAWINGS (MDD)

		MI CHECKLIST							
REQUIRED	REPORT ITEM	BRIEF DESCRIPTION							
		PRE-CONSTRUCTION							
Х	MI CHECKLIST DRAWING	THIS CHECKLIST SHALL BE INCLUDED IN THE MI REPORT.							
N/A	EOR APPROVED SHOP DRAWINGS	FABRICATION DRAWINGS SHALL BE SUBMITTED TO THE ENGINEER OF RECORD FOR REVIEW. THE CONTRACTOR SHALL PROVIDE APPROVED SHOP DRAWINGS TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.							
N/A	ASSEMBLY DRAWINGS	ONCE THE PRE-MODIFICATION MAPPING IS COMPLETE, PRIOR TO FABRICATION, THE CONTRACTOR SHALL PROVIDE DETAILED ASSEMBLY DRAWINGS. THESE ARE TO INCLUDE, BUT ARE NOT LIMITED TO, A VISUAL LAYOUT OF NEW REINFORCEMENT, EXISTING REINFORCEMENT CONFIGURATION, PORTHOLES, MOUNTS, STEP PEGS, SAFETY CLIMBS AND ANY OTHER MISCELLANEOUS ITEMS WHICH MAY AFFECT SUCCESSFUL INSTALLATION OF MODIFICATIONS ON THE TOWER. THESE DRAWINGS SHALL BE SUBMITTED TO THE EOR FOR APPROVAL APPROVED ASSEMBLY DRAWINGS SHALL BE SUBMITTED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.							
Х	FABRICATION INSPECTION	A LETTER FROM THE FABRICATOR, STATING THAT THE WORK WAS PERFORMED IN ACCORDANCE WITH INDUSTRY STANDARDS AND THE CONTRACT DOCUMENTS SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.							
Х	FABRICATOR CERTIFIED WELD INSPECTION	A VISUAL OBSERVATION BY CWI OF A PORTION OF WELDING ON THE PROPOSED STRUCTURAL MEMBERS IS REQUIRED AND A WRITTEN REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.							
×	MATERIAL TEST REPORT (MTR)	MILL CERTIFICATION SHALL BE PROVIDED FOR ALL STEEL AS SPECIFIED IN THE MODIFICATION DRAWINGS AND THIS DOCUMENTATION SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.							
N/A	FABRICATOR NDE INSPECTION	CRITICAL SHOP WELDS THAT REQUIRE TESTING ARE NOTED ON THESE CONTRACT DRAWINGS. A CERTIFIED WELD INSPECTOR SHALL PERFORM NON-DESTRUCTIVE EXAMINATION AND A REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.							
Х	PACKING SLIPS	THE MATERIAL SHIPPING LIST SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.							
		CONSTRUCTION (PERFORMED BY CONTRACTOR)							
X	CONSTRUCTION INSPECTIONS	A LETTER FROM THE GENERAL CONTRACTOR STATING THAT THE WORKMANSHIP WAS PERFORMED IN ACCORDANCE WITH INDUSTRY STANDARDS AND THESE CONTRACT DRAWINGS SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.							
N/A	CONTRACTOR'S CERTIFIED WELD INSPECTION	A CERTIFIED WELD INSPECTOR SHALL INSPECT AND TEST AS NECESSARY ALL FIELD WELDS. A REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.							
N/A	ON SITE COLD GALVANIZING VERIFICATION	THE GENERAL CONTRACTOR SHALL PROVIDE DOCUMENTATION TO THE MI INSPECTOR VERIFYING THAT ANY ON-SITE COLD GALVANIZING WAS APPLIED AS SPECIFIED IN THE MODIFICATION DRAWINGS.							
×	GC AS-BUILT DOCUMENTS	THE GENERAL CONTRACTOR SHALL SUBMIT A COPY OF THE CONTRACT DRAWINGS EITHER STATING "INSTALLED AS DESIGNED" OR NOTING ANY CHANGES THAT WERE REQUIRED AND APPROVED BY THE ENGINEER OF RECORD DUE TO FIELD CONDITIONS.							
		POST-CONSTRUCTION							
Х	MI INSPECTOR REDLINE OR RECORD DRAWING(S)	THE MI INSPECTOR SHALL OBSERVE AND REPORT ANY DISCREPANCIES BETWEEN THE CONTRACTORS REDLINE DRAWING AND THE ACTUAL COMPLETED INSTALLATION.							
х	PHOTOGRAPHS	PHOTOGRAPHS SHALL BE SUBMITTED TO THE MI WHICH DOCUMENT ALL PHASES OF THE CONSTRUCTION. THE PHOTOS SHALL BE ORGANIZED IN A MANNER THAT EASILY IDENTIFIES THE EXACT LOCATION OF THE PHOTO.							
ADDITIONAL	TESTING AND INSPECTIONS:								
NOTE: X DE	NOTE: X DENOTES A DOCUMENT NEEDED FOR THE MI REPORT AND N/A DENOTES A DOCUMENT THAT IS NOT REQUIRED FOR THE MI REPORT								

MODIFICATION INSPECTION NOTES:

THE MODIFICATION INSPECTION (MI) IS A VISUAL INSPECTION OF TOWER MODIFICATIONS AND A REVIEW OF CONSTRUCTION INSPECTIONS AND OTHER REPORTS TO ENSURE THE INSTALLATION WAS CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS, NAMELY THE MODIFICATION DRAWINGS, AS DESIGNED BY THE ENGINEER OF RECORD (EOR).

THE MI IS TO CONFIRM INSTALLATION CONFIGURATION AND WORKMANSHIP ONLY AND IS NOT A REVIEW OF THE MODIFICATION DESIGN ITSELF, NOR DOES THE MI INSPECTOR TAKE OWNERSHIP OF THE MODIFICATION DESIGN. OWNERSHIP OF THE STRUCTURAL MODIFICATION DESIGN EFFECTIVENESS AND INTEGRITY RESIDES WITH THE EOR AT ALL TIMES.

TO ENSURE THAT THE REQUIREMENTS OF THE MI ARE MET, IT IS VITAL THAT THE GENERAL CONTRACTOR (GC) AND THE MI INSPECTOR BEGIN COMMUNICATING AND COORDINATING AS SOON AS A PO IS RECEIVED. IT IS EXPECTED THAT EACH PARTY WILL BE PROACTIVE IN REACHING OUT TO THE OTHER PARTY. IF CONTACT INFORMATION IS NOT KNOWN, CONTACT B+T GROUP.

MI INSPECTOR

THE MI INSPECTOR IS REQUIRED TO CONTACT THE GC AS SOON AS RECEIVING A PO FOR THE MI TO, AT A MINIMUM:

- . REVIEW THE REQUIREMENTS OF THE MI CHECKLIST
- WORK WITH THE GC TO DEVELOP A SCHEDULE TO CONDUCT ONSITE INSPECTIONS, INCLUDING FOUNDATION INSPECTIONS

THE MI INSPECTOR IS RESPONSIBLE FOR COLLECTING ALL GENERAL CONTRACTOR (GC) INSPECTION AND TEST REPORTS. REVIEWING THE DOCUMENTS FOR ADHERENCE TO THE CONTRACT DOCUMENTS. CONDUCTING THE IN-FIELD INSPECTIONS. AND SUBMITTING THE MI

<u>GENERAL CONTRACTOR</u>
THE GC IS REQUIRED TO CONTACT THE MI INSPECTOR AS SOON AS RECEIVING A PO FOR THE MODIFICATION INSTALLATION OR TURNKEY PROJECT TO, AT A MINIMUM:

- REVIEW THE REQUIREMENTS OF THE MI CHECKLIST
- WORK WITH THE MI INSPECTOR TO DEVELOP A SCHEDULE TO CONDUCT ON-SITE MI
- BETTER UNDERSTAND ALL INSPECTION AND TESTING REQUIREMENTS

THE GC SHALL PERFORM AND RECORD THE TEST AND INSPECTION RESULTS IN ACCORDANCE WITH THE REQUIREMENTS OF THE MI CHECKLIST.

RECOMMENDATIONS

THE FOLLOWING RECOMMENDATIONS AND SUGGESTIONS ARE OFFERED TO ENHANCE THE EFFICIENCY AND EFFECTIVENESS OF DELIVERING A MI REPORT:

- IT IS SUGGESTED THAT THE GC PROVIDE A MINIMUM OF 5 BUSINESS DAYS NOTICE, PREFERABLY 10, TO THE MI INSPECTOR AS TO WHEN THE SITE WILL BE READY FOR THE MI TO BE CONDUCTED.
- . THE GC AND MI INSPECTOR COORDINATE CLOSELY THROUGHOUT THE ENTIRE PROJECT.
- WHEN POSSIBLE, IT IS PREFERRED TO HAVE THE GC AND MI INSPECTOR ON—SITE DURING THE MI TO HAVE ANY DEFICIENCIES CORRECTED DURING THE INITIAL MI. THEREFORE, THE GC MAY CHOOSE TO COORDINATE THE MI CAREFULLY TO ENSURE ALL CONSTRUCTION FACILITIES ARE AT THEIR DISPOSAL WHEN THE MI INSPECTOR IS ON SITE.

CANCELLATION OR DELAYS IN SCHEDULED MI

IF THE GC AND MI INSPECTOR AGREE TO A DATE ON WHICH THE MI WILL BE CONDUCTED, AND EITHER PARTY CANCELS OR DELAYS, CARRIER SHALL NOT BE RESPONSIBLE FOR ANY COSTS, FEES, LOSS OF DEPOSITS AND/OR OTHER PENALTIES RELATED TO THE CANCELLATION OR DELAY INCURRED BY EITHER PARTY FOR ANY TIME (E.G. TRAVEL AND LODGING, COSTS OF KEEPING EQUIPMENT ON-SITE, ETC.). IF CARRIER CONTRACTS DIRECTLY FOR A THIRD PARTY MI. EXCEPTIONS MAY BE MADE IN THE EVENT THAT THE DELAY/CANCELLATION IS CAUSED BY WEATHER OR OTHER CONDITIONS THAT MAY COMPROMISE THE SAFETY OF THE PARTIES

CORRECTION OF FAILING MI'S

IF THE MODIFICATION INSPECTOR FAILS THE MI ("FAILED MI"), THE GC SHALL WORK WITH CARRIER TO COORDINATE A REMEDIATION PLAN IN ONE OF TWO WAYS:

- CORRECT FAILING ISSUES TO COMPLY WITH THE SPECIFICATIONS CONTAINED IN THE ORIGINAL CONTRACT DOCUMENTS AND COORDINATE A SUPPLEMENT MI.
- OR, WITH CARRIER'S APPROVAL, THE GC MAY WORK WITH THE EOR TO RE-ANALYZE THE MODIFICATION/REINFORCEMENT USING THE AS-BUILT CONDITION
- THE ADDITIONAL COST INCURRED IN THE SECOND SUPERVISION PROCESS WOULD BE BORNE BY THE GENERAL CONTRACTOR.

CARRIER RESERVES THE RIGHT TO CONDUCT A MI VERIFICATION INSPECTION TO VERIFY THE ACCURACY AND COMPLETENESS OF PREVIOUSLY COMPLETED MI INSPECTION(S) ON TOWER

ALL VERIFICATION INSPECTIONS SHALL BE HELD TO THE SAME SPECIFICATIONS AND REQUIREMENTS IN THE CONTRACT DOCUMENTS

VERIFICATION INSPECTION MAY BE CONDUCTED BY AN INDEPENDENT FIRM AFTER A MODIFICATION PROJECT IS COMPLETED, AS MARKED BY THE DATE OF AN ACCEPTED "PASSING MI" OR "PASS AS NOTED MI" REPORT FOR THE ORIGINAL PROJECT.

REQUIRED PHOTOS

BETWEEN THE GC AND THE MI INSPECTOR THE FOLLOWING PHOTOGRAPHS, AT A MINIMUM, ARE TO BE TAKEN AND INCLUDED IN THE MI REPORT:

- PRE-CONSTRUCTION GENERAL SITE CONDITION
- PHOTOGRAPHS DURING THE REINFORCEMENT MODIFICATION CONSTRUCTION/ERECTION AND INSPECTION
- RAW MATERIALS
 PHOTOS OF ALL CRITICAL DETAILS
- FOUNDATION MODIFICATIONS
- WELD PREPARATION
- BOLT INSTALLATION AND TORQUE
- FINAL INSTALLED CONDITION SURFACE COATING REPAIR
- POST CONSTRUCTION PHOTOGRAPHS
- PHOTOS OF MODIFIED SECTIONS INDIVIDUALLY INDICATING ELEVATION
- FINAL INFIELD CONDITION

PHOTOS OF ELEVATED MODIFICATIONS TAKEN FROM THE GROUND SHALL BE CONSIDERED

116 GRANT HILL RD. BROOKLYN, CT 06234 WINDHAM $\mathbf{\Delta}$

E E

PROJECT NO: 136355.003.01 CHECKED BY: **ISSUED FOR:** DATE DRWN DESCRIPTION 0 07/09/19 NGR CONSTRUCTION

> B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/20

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:

REVISION

SITEPRO1 PRK-SFS-L REINFORCEMENT KIT

(2) SCALE: N.T.S.

MODIFICATIONS BASED ON THE FAILING STRUCTURAL ANALYSIS FROM B+T GROUP DATED 07/02/19 AND ACCOMPANIED BY ANALYSIS FROM B+T GROUP DATED 07/09/19

GENERAL NOTES

- CONTRACTOR SHALL FIELD VERIFY EXISTING CONDITIONS AND DIMENSIONS PRIOR TO THE MOBILIZING ON THE SITE FOR INSTALLATION OF THE MOUNT MODIFICATION AND SHALL NOTIFY THE ENGINEER OF RECORD IF THE FIELD CONDITIONS VARY FROM WHAT IS SHOWN ON THE DRAWINGS. IN ADDITION, THE CONTRACTOR SHALL NOTIFY THE ENGINEER OF RECORD PRIOR TO MOBILIZING AT THE SITE IF THE MOUNT REINFORCEMENT SHOWN WILL NEED TO BE REVISED TO SATISFY FIELD CONDITIONS
- CONTRACTOR SHALL RELOCATE NON-ANTENNA EQUIPMENT ALONG THE EXISTING PIPE MOUNT THAT IT IS MOUNTED TO, TO ALLOW FOR INSTALLATION OF MOUNT REINFORCEMENT. ENGINEER OF RECORD WILL BE NOTIFIED IF NON-ANTENNA EQUIPMENT NEEDS TO BE RELOCATED TO ANY OTHER EXISTING MEMBERS TO ALLOW FOR INSTALLATION OF MOUNT MODIFICATION.
- 1.3 MODIFICATION SHALL BE COMPLETED PRIOR TO ADDING THE PROPOSED APPURTENANCES.
- ALL WORK SHALL COMPLY WITH THE TIA-222-H STANDARD, TIA-1019-A STANDARD, AS WELL AS ANY OTHER GOVERNING BUILDING CODES.
- FIELD WORK WILL BE DONE AROUND EXISTING COAXIAL CABLE AND EQUIPMENT. ALL WORK SHALL BE DONE IN A MANNER SUCH THAT NO DAMAGE OCCURS TO THE EXISTING EQUIPMENT OR THE STRUCTURE.

 1.6 A MINIMUM OF TWO COATS OF ZINGA COLD GALVANIZING COMPOUND
- (OR APPROVED EQUIVALENT) SHALL BE APPLIED TO ANY FIELD CUTS OR FIELD DRILLED HOLES.
- THE USE OF A GAS TORCH OR WELDER WILL NOT BE PERMITTED ON THE TOWER WITHOUT THE CONSENT OF THE OWNER.
- ALL FIELD CONNECTIONS SHALL BE MADE WITH A325N BOLTS, U.N.O. IN LIEU OF TEMPORARY BRACING, CONTRACTOR MAY HAVE A STABILITY ANALYSIS PERFORMED BY AN ENGINEER LICENSED IN THE STATE THE TOWER IS LOCATED. THE ANALYSIS SHALL USE A MINIMUM WIND SPEED OF 45 mph (3-SEC) PER TIA-1019.
- 1.10 ALL CUTTING AND WELDING ACTIVITIES SHALL BE CONDUCTED IN ACCORDANCE WITH CCUSA POLICY "CUTTING AND WELDING PLAN" (DOC #ENG-PLN-10015) ON AN ONGOING BASIS THROUGHOUT THE ENTIRE LIFE OF THE PROJECT
- 1.11 DIMENSIONS WITH "±" MUST BE WITHIN 3" OF THE INDICATED

FABRICATION

- ALL WORK SHALL BE DONE IN ACCORDANCE WITH A.I.S.C. "SPECIFICATIONS FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS."
- 2.2 STRUCTURAL STEEL SHALL MEET THE FOLLOWING SPECIFICATIONS: ASTM SPECS YIELD

A53 GR.B

NEW SITE PRO1 CROSSOVER PLATE KIT

NEW STD PIPE

STEEL PIPE, U.N.O.

GROUP 5 DAYS PRIOR TO FABRICATION.

ALL NEW MATERIAL INCLUDING STRUCTURAL STEEL AND FASTENERS SHALL BE HOT DIPPED GALVANIZED AFTER FABRICATION IN

ACCORDANCE WITH ASTM A123 AND A153.
WELDING SHALL MEET ANSI/AWS D1.1 STRUCTURAL WELDING CODE (LATEST REVISION). ELECTRODES SHALL BE E80 SERIES. CONTRACTOR SHALL PROVIDE SHOP FABRICATION DRAWINGS TO B+T

MODIFIED PLATFORM

SITE PRO1 HRK-14 HANDRAIL KIT (3) SCALE: N.T.S.

EXISTING PLATFORM AT 137'-00" 116 GRANT HILL RD. BROOKLYN, CT 06234 WINDHAM BERN

PROJECT NO: 136355.003.01 CHECKED BY:

ISSUED FOR: DATE DRWN DESCRIPTION 0 07/09/19 NGR CONSTRUCTION

B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/20

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:

REVISION:

EXISTING FRAMING

Exhibit F

Power Density/RF Emissions Report

Wireless Network Design and Deployment

Radio Frequency Emissions Analysis Report

T-MOBILE Existing Facility

Site ID: CT11511A

Sprint - Brooklyn 116 Grant Hill Road Brooklyn, CT 06234

June 5, 2019

Transcom Engineering Project Number: 737001-0143

Site Compliance Summary					
Compliance Status:	COMPLIANT				
Site total MPE% of FCC general population allowable limit:	10.26 %				

Wireless Network Design and Deployment

June 5, 2019

T-MOBILE Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, CT 6009

Emissions Analysis for Site: CT11511A – Sprint - Brooklyn

Transcom Engineering, Inc ("Transcom") was directed to analyze the proposed upgrades to the T-MOBILE facility located at **116 Grant Hill Road, Brooklyn, CT**, for the purpose of determining whether the emissions from the Proposed T-MOBILE Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 & 700 MHz bands are approximately 400 μ W/cm² and 467 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Wireless Network Design and Deployment

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

Wireless Network Design and Deployment

CALCULATIONS

Calculations were performed for the proposed upgrades to the T-MOBILE antenna facility located at 116 Grant Hill Road, Brooklyn, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-MOBILE is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in *Table 1*:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
LTE	1900 MHz (PCS)	4	40
GSM	1900 MHz (PCS)	1	15
LTE / 5G NR	600 MHz	2	40
LTE	700 MHz	2	20

Table 1: Channel Data Table

Wireless Network Design and Deployment

The following antennas listed in *Table 2* were used in the modeling for transmission in the 600, 700 MHz, 1900 MHz (PCS) and 2100 MHz (AWS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

			Antenna
	Antenna		Centerline
Sector	Number	Antenna Make / Model	(ft)
A	1	RFS APX16DWV-16DWV-S-E-ACU	137
A	2	RFS APXVAARR24_43-U-NA20	137
В	1	RFS APX16DWV-16DWV-S-E-ACU	137
В	2	RFS APXVAARR24_43-U-NA20	137
C	1	RFS APX16DWV-16DWV-S-E-ACU	137
C	2	RFS APXVAARR24_43-U-NA20	137

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

Cable losses were factored in the calculations for this site. Since all 1900 MHz (PCS) radios are ground mounted the following cable loss values were used. For each ground mounted 1900 MHz (PCS) radio there was 1.65 dB of cable loss calculated into the system gains / losses for this site. These values were calculated based upon the manufacturers specifications for 160 feet of 1-5/8" coax.

Wireless Network Design and Deployment

RESULTS

Per the calculations completed for the proposed T-MOBILE configurations *Table 3* shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

					Total		
					TX		
Antenna			Antenna	Channel	Power		
ID	Antenna Make / Model	Frequency Bands	Gain (dBd)	Count	(W)	ERP (W)	MPE %
Antenna	RFS						
A1	APX16DWV-16DWV-S-E-ACU	1900 MHz (PCS)	15.9	5	175	4,656.27	0.97
Antenna	RFS		12.95 /				
A2	APXVAARR24_43-U-NA20	600 MHz / 700 MHz	13.35	4	120	2,443.03	1.22
Sector A Composite MPE%					2.19		
Antenna	RFS						
B1	APX16DWV-16DWV-S-E-ACU	1900 MHz (PCS)	15.9	5	175	4,656.27	0.97
Antenna	RFS		12.95 /				
B2	APXVAARR24_43-U-NA20	600 MHz / 700 MHz	13.35	4	120	2,443.03	1.22
Sector B Composite MPE%						2.19	
Antenna	RFS						
C1	APX16DWV-16DWV-S-E-ACU	1900 MHz (PCS)	15.9	5	175	4,656.27	0.97
Antenna	RFS		12.95 /				
C2	APXVAARR24_43-U-NA20	600 MHz / 700 MHz	13.35	4	120	2,443.03	1.22
Sector C Composite MPE%					2.19		

Table 3: T-MOBILE Emissions Levels

Wireless Network Design and Deployment

The Following table (*table 4*) shows all additional carriers on site and their MPE% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum T-MOBILE MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. *Table 5* below shows a summary for each T-MOBILE Sector as well as the composite MPE value for the site.

Site Composite MPE%				
Carrier	MPE%			
T-MOBILE – Max Per Sector Value	2.19 %			
Sprint	2.62 %			
AT&T	2.35 %			
Verizon Wireless	2.79 %			
CL&P	0.31 %			
Site Total MPE %:	10.26 %			

Table 4: All Carrier MPE Contributions

T-MOBILE Sector A Total:	2.19 %
T-MOBILE Sector B Total:	2.19 %
T-MOBILE Sector C Total:	2.19 %
Site Total:	10.26 %

Table 5: Site MPE Summary

Wireless Network Design and Deployment

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. *Table* 6 below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated T-MOBILE sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

T-MOBILE _ Frequency Band / Technology Max Power Values (Per Sector)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
T-Mobile 1900 MHz (PCS) LTE	4	1,064.29	137	8.92	1900 MHz (PCS)	1000	0.89%
T-Mobile 1900 MHz (PCS) GSM	1	399.11	137	0.84	1900 MHz (PCS)	1000	0.08%
T-Mobile 600 MHz LTE / 5G NR	2	788.97	137	3.31	600 MHz	400	0.83%
T-Mobile 700 MHz LTE	2	432.54	137	1.81	700 MHz	467	0.39%
						Total:	2.19%

Table 6: T-MOBILE Maximum Sector MPE Power Values

Wireless Network Design and Deployment

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-MOBILE facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-MOBILE Sector	Power Density Value (%)
Sector A:	2.19 %
Sector B:	2.19 %
Sector C:	2.19 %
T-MOBILE Maximum	2.19 %
Total (per sector):	2.19 %
Site Total:	10.26 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is 10.26 % of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

Transcom Engineering, Inc

PO Box 1048

Sterling, MA 01564