

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov Internet: ct.gov/csc

August 20, 2008

Steven Levine New Cingular Wireless PCS, LLC 500 Enterprise Drive Rocky Hill, CT 06067-3900

RE: EM-CING-018-080709 – New Cingular Wireless PCS, LLC notice of intent to modify an existing

telecommunications facility located at 2 Huckleberry Hill Road, Brookfield, Connecticut.

Dear Mr. Levine:

The Connecticut Siting Council (Council) hereby acknowledges your notice to modify this existing telecommunications facility, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies.

The proposed modifications are to be implemented as specified here and in your notice dated July 9, 2008, including the placement of all necessary equipment and shelters within the tower compound. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to an existing facility site that would not increase tower height, extend the boundaries of the tower site, increase noise levels at the tower site boundary by six decibels, and increase the total radio frequencies electromagnetic radiation power density measured at the tower site boundary to or above the standard adopted by the State Department of Environmental Protection pursuant to General Statutes § 22a-162. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Please be advised that the validity of this action shall expire one year from the date of this letter. Any additional change to this facility will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

Thank you for your attention and cooperation.

Very truly yours,

S. Derek Phelps
Executive Director

SDP/MP/cm

c: The Honorable Robert G. Silvaggi, First Selectman, Town of Brookfield Clare Ann Walsh, Land Use Enforcement Officer, Town of Brookfield

Daniel F. Caruso Chairman

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
Internet: ct.gov/csc

July 9, 2008

The Honorable Robert G. Silvaggi First Selectman Town of Brookfield Brookfield Municipal Center Pocono Road P. O. Box 5106 Brookfield, CT 06804-5106

RE: **EM-CING-018-080709** – New Cingular Wireless PCS, LLC notice of intent to modify an existing telecommunications facility located at 2 Huckleberry Hill Road, Brookfield, Connecticut.

Dear Mr. Silvaggi:

The Connecticut Siting Council (Council) received this request to modify an existing telecommunications facility, pursuant to Regulations of Connecticut State Agencies Section 16-50j-72.

If you have any questions or comments regarding this proposal, please call me or inform the Council by July 23, 2008.

Thank you for your cooperation and consideration.

4-45

Executive Director

SDP/jb

Enclosure: Notice of Intent

c: Clare Ann Walsh, Land Use Enforcement Officer, Town of Brookfield Heather Paton, Land Use Office, Town of Brookfield

EM-CING-018-080709

New Cingular Wireless PCS, LLC 500 Enterprise Drive

Rocky Hill, Connecticut 06067-3900

Phone: (860) 513-7636 Fax: (860) 513-7190

Steven L. Levine Real Estate Consultant

HAND DELIVERED

July 9, 2008

Honorable Daniel F. Caruso, Chairman, and Members of the Connecticut Siting Council Connecticut Siting Council 10 Franklin Square New Britain, Connecticut 06051

CONNECTICUT
SITING COUNCIL

Re: New Cingular Wireless PCS, LLC notice of intent to modify an existing telecommunications facility located at 2 Huckleberry Hill Road, Brookfield (owner, New Cingular Wireless)

Dear Chairman Caruso and Members of the Council:

In order to accommodate technological changes, implement Uniform Mobile Telecommunications System ("UMTS") capability, and enhance system performance in the State of Connecticut, New Cingular Wireless PCS, LLC ("AT&T") plans to modify the equipment configurations at many of its existing cell sites. Please accept this letter and attachments as notification, pursuant to R.C.S.A. Section 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2). In compliance with R.C.S.A. Section 16-50j-73, a copy of this letter and attachments is being sent to the chief elected official of the municipality in which the affected cell site is located.

UMTS technology offers services to mobile computer and phone users anywhere in the world. Based on the Global System for Mobile (GSM) communication standard, UMTS is the planned worldwide standard for mobile users. UMTS, fully implemented, gives computer and phone users high-speed access to the Internet as they travel. They have the same capabilities even when they roam, through both terrestrial wireless and satellite transmissions.

Attached is a summary of the planned modifications, including power density calculations reflecting the change in AT&T's operations at the site. Also included is documentation of the structural sufficiency of the tower to accommodate the revised antenna configuration.

The changes to the facility do not constitute modifications as defined in Connecticut General Statutes ("C.G.S.") Section 16-50i(d) because the general physical characteristics of the facility

will not be significantly changed or altered. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for in R.C.S.A. Section 16-50j-72(b)(2).

- 1. The height of the overall structure will be unaffected. Modifications to the existing site include all or some of the following as necessary to bring the site into conformance with the plan:
 - Replacement of existing panel antennas with new antennas or, installation of additional antennas of a size required to accommodate UMTS.
 - Installation of small tower mount amplifiers ("TMA's") and/or diplexers to the platform on which the panel antennas are mounted to enhance signal reception.
 - Installation of additional or larger coaxial cables as required.
 - Installation of an additional equipment cabinet in existing shelters, or on existing or enlarged concrete pads.
 - Radome enlargement for flagpole and "stick" structures to accommodate larger antennas and additional associated equipment.

None of these modifications will extend the height of the tower.

- 2. The proposed changes will not extend the site boundaries. There will be no effect on the site compound other than some enlarged equipment pads as may be noted in the attachments.
- 3. The proposed changes will not increase the noise level at the existing facility by six decibels or more.
- 4. Radio frequency power density may increase due to use of one or more GSM channel for UMTS transmissions. However, the changes will not increase the calculated "worst case" power density for the combined operations at the site to a level at or above the applicable standard for uncontrolled environments as calculated for a mixed frequency site.

For the foregoing reasons, New Cingular Wireless respectfully submits that the proposed changes at the referenced site constitute exempt modifications under R.C.S.A. Section 16-50j-72(b)(2).

Please feel free to call me at (860) 513-7636 with questions concerning this matter. Thank you for your consideration.

Sincerely,

Steven L. Levine

Real Estate Consultant

Attachments

CINGULAR WIRELESS Equipment Modification

2 Huckleberry Hill Road, Brookfield

Site Number 5075

Former AT&T Cell Site

Petition 616

Tower Owner/Manager:

AT&T Wireless

Equipment configuration:

Flagpole

Current and/or approved: 18-inch diameter flagpole

Three Allgon 7250 panel antennas @ 57 ft c.l. Three Allgon 7250 panel antennas @ 51 ft c.l.

Twelve runs 7/8 inch coax

Planned Modifications:

Remove all six existing antennas

Replace top 12 ft of flagpole (RF-transparent radome) with 28-inch diameter radome to accommodate Powerwaye

antennas & associated equipment

Install six Powerwave 7770 antennas (3 @ 57 ft and 3 @ 51 ft)

Install six TMA's (3 @ 57 ft and 3 @ 51 ft) Install six diplexers (3 @ 57 ft and 3 @ 51 ft)

Remove one existing outdoor cabinet Install one new outdoor cabinet for UMTS

Power Density:

Calculations for AT&T's current operations at the site indicate a radio frequency electromagnetic radiation power density, measured at the tower base, of approximately 27.5 % of the standard adopted by the FCC. As depicted in the second table below, the total radio frequency electromagnetic radiation power density for AT&T's planned operations would be approximately 48.8 % of the standard.

Existing

Company	Centerline Ht (feet)	Frequency (MHz)	Number of Channels	Power Per Channel (Watts)	Power Density (mW/cm²)	Standard Limits (mW/cm²)	Percent of Limit
Other Users *	4	1.		4.1	995 995		0.00
AT&T GSM*	55	1900 Band	4	250	0.1189	1.0000	11.89
AT&T GSM*	48	1900 Band	4	250	0.1561	1.0000	15.61
Total			1				27,5%

^{*} Per CSC records.

Proposed

Company	Centerline Ht (feet)	Frequency (MHz)	Number of Channels	Power Per Channel (Watts)	Power Density (mW/cm²)	Standard Limits (mW/cm²)	Percent of Limit
Other Users *			1			100	0.00
AT&T GSM	57	1900 Band	4	427	0.1890	1.0000	18.90
AT&T GSM	57	880 - 894	2	296	0.0655	0.5867	11.17
AT&T UMTS	51	880 - 894	1	500	0.0691	0.5867	11.78
AT&T UMTS	51	1900 Band	1	500	0.0691	1.0000	6.91
kararan Kumberta							8884GXG9/6

^{*} Per CSC records.

Structural information:

The attached structural analysis demonstrates that the tower and foundation have adequate structural capacity to accommodate the proposed modifications. (DaVinci Engineering, dated 6/18/08)

New Cingular Wireless PCS, LLC

500 Enterprise Drive

Rocky Hill, Connecticut 06067-3900

Phone: (860) 513-7636 Fax: (860) 513-7190

Steven L. Levine Real Estate Consultant

July 9, 2008

Honorable Robert G. Silvaggi 1st Selectman, Town of Brookfield Brookfield Municipal Center, 100 Pocono Rd. Brookfield, CT 06804

Re: Telecommunications Facility – 2 Huckleberry Hill Road, Brookfield

Dear Mr. Silvaggi:

In order to accommodate technological changes, implement Uniform Mobile Telecommunications System ("UMTS") capability, and enhance system performance in the State of Connecticut, New Cingular Wireless PCS, LLC ("Cingular") will be changing its equipment configuration at certain cell sites.

As required by Regulations of Connecticut State Agencies ("R.C.S.A.") Section 16-50j-73, the Connecticut Siting Council has been notified of the changes and will review Cingular's proposal. Please accept this letter as notification under Section 16-50j-73 of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2).

The accompanying letter to the Siting Council fully describes Cingular's proposal for the referenced cell site. However, if you have any questions or require any further information on our plans or the Siting Council's procedures, please call me at (860) 513-7636 or Mr. Derek Phelps, Executive Director, Connecticut Siting Council at (860) 827-2935.

Sincerely,

Steven L. Levine

Real Estate Consultant

Enclosure

Structural Analysis Report 60-Ft. Flag Pole

Prepared for:
Cingular Wireless / AT&T
500 Enterprise Drive, Suite 3A

Rocky Hill, CT 06467

Site Location: Fairfield Co., CT Site Name: #5075 – West Brookfield

Calculations Prepared by:

DaVinci Engineering inc.

Job # 08242-1273

Valmont PennSummit #70179/20183

Date: 6/18/08

Reviewing Engineer: Michael F. Plahovinsak, P.E.

Davinci Engineering inc.

PO Box 1966 Santa Maria, California 93456 Ph: 805-922-5221 Fax: 805-880-0402

PO Box 66 110 W. Main St. Unionville Center, OH 43077 Ph: 614-937-4922 Fax: 614-413-2887 Page 2 of 4 6/18/2008

Project Objectives:

DaVinci Engineering has been contracted to provide a structural analysis of an existing monopole (flag pole) located in Fairfield Co., Connecticut. The monopole was analyzed for the addition of new panel antennas located within a new 28" diameter x 12' antenna shroud as shown on page 3 of this report.

As indicated in the conclusions, the existing monopole and foundation structures have been found to have adequate strength to support both the existing and proposed antenna loading. No structural modifications are required at this time.

Fieldwork / Site Visit:

No fieldwork has been performed by DaVinci Engineering under the current work scope.

Documents and Resources Provided:

Our structural analysis has been based solely on the following information provided:

Resource	Source	Job Number	Date
Base Pole & Foundation Drawings	Paul J. Ford & Co.	29203-152	06/06/01
Construction Drawings	AT&T		05/15/08

Structure History and Specifics:

Structure Manufacturer:	PennSummit Tubular
Manufacture Date:	2003
Original Job/File Number:	PST #20183
Original Design Code:	TIA-222-F 1996
Original Design Wind:	85 mph / 74 mph + 1/2" ice
Current Analysis Code:	IBC 2006 / TIA-222-G 2006 / 110 mph / 50 mph + 1/2" ice

The State of Connecticut has adopted the International Building Code (IBC). According to IBC section 3108, towers shall be designed to resist wind loads in accordance with TIA/EIA-222. The most current version of the IBC references TIA-222-G.

DaVinci Engineering inc.

PO Box 1966 Santa Maria, California 93456 Ph: 805-922-5221 Fax: 805-880-0402

PO Box 66 110 W. Main St. Unionville Center, OH 43077 Ph: 614-937-4922 Fax: 614-413-2887

Antenna / Coax Loading:

The following loading has been considered on the pole. Any loads that are not identified in the following list were <u>not</u> considered in the structural analysis. Please contact DaVinci Engineering if there is a discrepancy in the antenna loading as identified, or if additional load cases are desired.

Status	Eleyation (ft	Antenna/Equipment
Existing	60	12' x 18' Flag
DAIGHING		Standard Flag Mounting Kit
Proposed	57	(3) Powerwave 7770 Panel w/ (6) LGP21401 TMA's & (6) LGP13519 Diplexers
Troposeu	31	6' x 28" Dia. Antenna Concealment Cylinder
Proposed	51	(3) Powerwave 7770 Panel w/ (6) LGP21401 TMA's & (6) LGP13519 Diplexers
Proposed 51		6' x 28" Dia. Antenna Concealment Cylinder

All antennas and coax assumed internally mounted, not exposed to the wind.

Conclusion:

DaVinci Engineering has completed a structural analysis of the existing monopole and foundation in accordance with the project specifics outlined above. Our analysis indicates that the existing monopole and foundation is stressed to 72% of its safe capacity when considering the existing plus proposed loading. Please refer to the attached calculations for an itemized listing of all member stress ratios. The existing pole is safe and adequate to support the proposed loads, and no structural reinforcing is required to support the above loading.

If you have any questions about the contents of this structural report or require any additional information, please feel free to contact our office.

Sincerely,

DaVinci Engineering, Inc.

Michael F. Plahovinsak, P.E.

mike.p@davinci-engineering.com

DaVinci Engineering inc.

PO Box 1966 Santa Maria, California 93456 Ph: 805-922-5221 Fax: 805-880-0402

Standard Conditions for Providing Structural Consulting Services on Existing Structures

- 1. The following standard conditions are a general overview of key issues regarding the work product supplied by DaVinci Engineering. Refer to DaVinci Engineering document "Scope of Work Existing Tower Structures" for a detailed explanation of the scope of work that we have performed.
- 2. If the existing conditions are not as represented in this structural report or attached sketches, DaVinci Engineering should be contacted to evaluate the significance of the deviation and revise the structural assessment accordingly.
- 3. The structural analysis has been performed assuming that the structure is in "like new" condition. No allowance was made for excessive corrosion, damaged or missing structural members, loose bolts, etc. If there are any known deficiencies in the structure that potentially compromise structural integrity, DaVinci Engineering should be made aware of the deficiencies. If DaVinci Engineering is aware of a deficiency that exists in a structure at the time of our analysis, a general explanation of the structural concern due to the deficiency will be included in the structural report, but the deficiency will not be reflected in capacity calculations.
- 4. The structural analysis provided by DaVinci Engineering is an assessment of the primary load carrying capacity of the structure. DaVinci Engineering provides a limited scope of service in that we have not verified the capacity of every weld, plate, connection detail, etc. In most cases, structural fabrication details are unknown at the time of our analysis, and the detailed field measurement of this information is beyond the scope of our services. In instances where DaVinci Engineering has not performed connection capacity calculations, it is assumed that existing manufactured connections develop the full capacity of the primary members being connected.
- 5. The structural integrity of the existing foundation system can only be verified if exact foundation sizes and soils conditions are known. DaVinci Engineering will not accept any responsibility for the adequacy of the existing foundations unless this site-specific data is supplied.
- 6. Miscellaneous items such as antenna mounts, coax supports, etc. have not been designed, detailed, or specified as part of our work. It is assumed that material of adequate size and strength will be purchased from a reputable component manufacturer. The attached report and sketches are schematic in nature and should not be used to fabricate or purchase hardware and accessories to be attached to the structure. DaVinci Engineering recommends field measurement of the structure before fabricating or purchasing new hardware and accessories. DaVinci Engineering is not responsible for proper fit and clearance of hardware and accessory items in the field.
- 7. The structural analysis has been performed considering minimum code requirements or recommendations. If alternate wind, ice, or deflection criteria are to be considered, then DaVinci Engineering shall be made aware of the alternate criteria.

DaVinci Engineering inc.

PO Box 1966 Santa Maria, California 93456 Ph: 805-922-5221 Fax: 805-880-0402

PO Box 66 110 W. Main St. Unionville Center, OH 43077 Ph: 614-937-4922 Fax: 614-413-2887

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
12' x 18' Flag	60	Radome Cylinder (28"Ø x 6'-0")	51
Radome Cylinder (28"Ø x 6'-0")	57	(3) Powerwave 7770	51
(3) Powerwave 7770	57	(3) TMA	51
(3) TMA	57	(3) Diplexer	51
(3) Diplexer	57		

MATERIAL STRENGTH

-	GRADE	Fy	Fu	GRADE	Fy	Fu
1	A607-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

- Tower is located in Fairfield County, Connecticut.
 Tower designed for Exposure C to the TIA-222-G Standard.
 Tower designed for a 110 mph basic wind in accordance with the TIA-222-G Standard.
 Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
 Deflections are based upon a 60 mph wind.
 TOWER RATING: 71.7%

48.0 ft

ANCHOR BOLTS: (4) 2.25" DIA ON 23" B.C

ANSI/TIA-222-G CLASSIFICATION			
EXPOSURE CATEGORY	С		
STRUCTURE CLASS			
TOPOGRPHY CATEGORY	1		
CREST HEIGHT			

DaVinci Engineering, Inc. P.O. Box 66

Unionville Center, OH 43077 Phone: 614.937.4922 FAX: 614.413.2887

ONE OT THE TOTAL	_	
^{lob:} 60-ft Flag Pole - DaVinci #0824	2-1273	
Project: #5075, Brookfield West		
Client: Valmont PennSummit (70179 / 20183)	Drawn by: MFP	App'd:
Code: TIA-222-G	Date: 06/18/08	
Path: G:\Geedo\Tower\Project\242-PennSummit\08242-1273\08242-	-1273.eri	Dwg No. E-1

DaVinci Engineering, Inc. P.O. Box 66 Unionville Center, OH 43077 Phone: 614.937,4922

FAX: 614.413.2887

Job		•	Page
	60-ft Flag Pole - DaVinci #08242-1273		1 of 7
Project			Date
	#5075, Brookfield West		09:21:59 06/18/08
Client	Valmont PennSummit (70179 / 20183)		Designed by
	vaimont reimountiful (701797 20183)	•	MFP

Tower Input Data

There is a pole section.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Tower is located in Fairfield County, Connecticut.

Basic wind speed of 110 mph.

Structure Class II.

Exposure Category C.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 0.7500 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Local bending stresses due to climbing loads, feedline supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals

Use Moment Magnification
Use Code Stress Ratios

√ Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz

Use Special Wind Profile

✓ Include Bolts In Member Capacity
 ✓ Leg Bolts Are At Top Of Section

√ Secondary Horizontal Braces Leg
Use Diamond Inner Bracing (4 Sided)
Add IBC .6D+W Combination

Distribute Leg Loads As Uniform Assume Legs Pinned

√ Assume Rigid Index Plate

√ Use Clear Spans For Wind Area

√ Use Clear Spans For KL/r

√ Retension Guys To Initial Tension

√ Bypass Mast Stability Checks

√ Use Azimuth Dish Coefficients

√ Project Wind Area of Appurt.

✓ Autocalc Torque Arm Areas
 SR Members Have Cut Ends
 Sort Capacity Reports By Component

√ Triangulate Diamond Inner Bracing

dex Plate

√ Calculate Redundant Bracing Forces
For Wind Area

Ignore Redundant Members in FEA

Ignore Redundant Members in FEA
SR Leg Bolts Resist Compression

√ All Leg Panels Have Same Allowable

Treat Feedline Bundles As Cylinder

Use ASCE 10 X-Brace Ly Rules

Offset Girt At Foundation Consider Feedline Torque Include Angle Block Shear Check Poles

√ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

Tapered Pole Section Geometry

Section	Elevation fi	Section Length fl	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
LI	48.00-0.00	48.00		18	18.0000	18.0000	0.1875	0.7500	A607-65 (65 ksi)

DaVinci Engineering, Inc. P.O. Box 66 Unionville Center, OH 43077

nonville Center, OH 4307 Phone: 614.937.4922 FAX: 614.413.2887

Job		Page
	60-ft Flag Pole - DaVinci #08242-1273	2 of 7
Project		Date
	#5075, Brookfield West	09:21:59 06/18/08
Client		Designed by
,	Valmont PennSummit (70179 / 20183) .	MFP

Tapered	Pole Pro	perties

PRESCRIPTION OF THE PROPERTY O	HARMANIC WASHINGTON SHOWS HAVE BEEN	K NETTHERS INCOME INCOME INCOME.	ERAK DARINTERNA P. M. ESPERANTAN DE PER	Contract the section of the second contract o	CONCINSIONAL PROPERTY LINES AND ADDRESS OF THE PARTY NAMED IN COLUMN 2 AND ADDRESS OF THE PARTY NAMED IN COLUMN					
Section	Tip Dia,	Area	I	r	C	I/C	J	It/O	17	111/t
	in	in ²	in⁴	in	in	in³	in⁴	in ²	in	
L1	18.2777	10.6007	424.9328	6.3234	9.1440	46.4712	850.4248	5.3013	2.8380	15.136
	18.2777	10.6007	424.9328	6.3234	9.1440	46.4712	850.4248	5.3013	2.8380	15.136
			(and desire a property large and a property of a	and the formation of the fact that the fact	LE MONTO LANGE CONTRACTOR DE LA CONTRACTOR DEL CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR	ALTERNATION WAS ASSESSED.	· (· · · · · · · · · · · · · · · · · ·	والمرابعة والمساورة	\$**\$ {~*********************************	CANDODANE PARTICIPATION OF THE

Tower	Gusset	Gusset	Gusset Grade	Adjust, Factor	Adiust.	Weight Mult.	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor	8	Stitch Bolt	Stitch Bolt
	(per face)			•	A_r		Spacing	Spacing
							Diagonals	Horizontals
ft	ft ²	in					in	in
L1 48.00-0.00	Marie Control of the			I	1	1		

Feed Line/Linear Appurtenances - Entered As Area

ынинтытичения вышения businesses Description	Face or	Allow Shield	Component Type	Placement	Total Number	Victoria (peli de empresa guaz anterio de pa r	$C_A A_A$	Weight
	Leg			ft			ft²/ft	plf
7/8"	Ċ	No	Inside Pole	48.00 - 0.00	12	No Ice	0.00	0.33
						1/2" Ice	0.00	0.33
Millionene e e recentarilionen kindina ilentifraktiva akunden kerala	**********	interpresentations	ele la compación de la compaci			l" Ice	0.00	0.33

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	C_AA_A	CAAA	Weight
Section	Elevation				In Face	Out Face	Ö
	ft		ft²	ft²	ft²	ft²	K
LI	48.00-0.00	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
entra in in allegative de companiente de companient	HERFORE OF THE SECOND STATE OF THE STATE SECOND SECOND STATE STATE STATE STATE SECOND	C	0.000	0.000	0.000	0.000	0.19

Feed Line/Linear Appurtenances Section Areas - With Ice

the college and the second	AND THE PARTY OF T	-	-	Ancorana talan cada a sanaga a sanaga a sanaga	-		70.00 E00.00 H 200.00 L 200.00	withing the contract of the Co
Tower	Tower	Face	Ice	A_R	A_F	C_AA_A	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
*************************	ft	Leg	in	ft²	ft²	fl²	ft²	K
L1	48.00-0.00	Α	1.459	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
Million matrices a proof of march States M. 4.	医阿尔林氏试验检 医克里氏试验检 医阿拉克氏试验检 医阿拉氏试验 医心脏 医皮肤 计 医内皮炎	C	TTY 47AN PROMISELYS WAS A SERVICE OF SHE	0.000	0.000	0.000	0.000	0.19

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	K _a
Section	Record No.		Segment Elev.	No Ice	Ice

DaVinci Engineering, Inc. P.O. Box 66

Unionville Center, OH 43077 Phone: 614.937.4922 FAX: 614.413.2887

Job		Page
	60-ft Flag Pole - DaVinci #08242-1273	3 of 7
Project	W	Date
	#5075, Brookfield West	09:21:59 06/18/08
Client	Valmont PennSummit (70179 / 20183)	Designed by MFP

			Di	screte T	ower L	oads			
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement	нетнеского мана выключ невыл	C _A A _A Front	C _A A _A Side	ито от монитеринения изона
			ft ft ft	o	ft		fì²	· fî²	K
12' x 18' Flag	С	None		0.0000	60.00	No Ice	8.46	8.46	0.10
						1/2" Ice	8.46	8.46	0.20
0 11 1 (00110)	~					l" Ice	8.46	8.46	0.30
adome Cylinder (28"Ø x	C	None		0.0000	51.00	No Ice	11.20	11.20	0.53
6'-0")						1/2" Ice	11.76	11.76	0.65
(a) b	_					1" Ice	12.33	12.33	0.78
(3) Powerwave 7770	С	None		0.0000	51.00	No Ice	0.00	0.00	0.04
						1/2" Ice	0.00	0.00	0.07
						1" Ice	0.00	0.00	0.11
(3) TMA	С	None		0.0000	51.00	No Ice	0.00	0.00	0.01
						1/2" Ice	0.00	0.00	0.01
						I" Ice	0.00	0.00	0.01
(3) Diplexer	С	None		0.0000	51.00	No Ice	0.00	0.00	0.01
						1/2" Ice	0.00	0.00	0.01
						1" Ice	0.00	0.00	0.01

tadome Cylinder (28"Ø x	С	None		0.0000	57.00	No Ice	11.20	11.20	0.53
6'-0")				1		1/2" Ice	11.76	11.76	0.65
						1" Ice	12.33	12.33	0.78
(3) Powerwave 7770	C	None		0.0000	57.00	No Ice	0.00	0.00	0.04
						1/2" Ice	0.00	0.00	0.07
						l" Ice	0.00	0.00	0.11
(3) TMA	C	None		0.0000	57.00	No Ice	0.00	0.00	0.01
• •						1/2" Ice	0.00	0.00	0.01
						1" Ice	0.00	0.00	0.01
(3) Diplexer	С	None		0.0000	57.00	No Ice	0.00	. 0.00	0.01
, , ,	-			0.0000	37.00	1/2" Ice	0.00	0.00	0.01
						1" Ice	0.00	0.00	0.01
учиствен бургасских посторования село заправил вей посторования вестем в предоставления вет предоставления вет	**********	THE CHARM STATEMENT AND STATEMENT	-	Witten Einlo Horse Crit Bay March (Congress of the	CHARLES SON STANCE OF MASS WAS A PART	1 100	U.UU	V.UV	U.U1

Load Combinations

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice
3	0.9 Dead+1.6 Wind 0 deg - No Ice
4	1.2 Dead+1.6 Wind 90 deg - No Ice
5	0.9 Dead+1.6 Wind 90 deg - No Ice
6	1.2 Dead+1.6 Wind 180 deg - No Ice
7	0.9 Dead+1.6 Wind 180 deg - No Ice
8	1.2 Dead+1.0 Ice+1.0 Temp
9	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
10	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
11	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
12	Dead+Wind 0 deg - Service
13	Dead+Wind 90 deg - Service
14	Dead+Wind 180 deg - Service

DaVinci Engineering, Inc. P.O. Box 66 Unionville Center, OH 43077 Phone: 614.937.4922 FAX: 614.413.2887

Job		Page
	60-ft Flag Pole - DaVinci #08242-1273	4 of 7
Project		Date
	#5075, Brookfield West	09:21:59 06/18/08
Client	Valmont PennSummit (70179 / 20183)	Designed by MFP

Maximum Member Forces

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
LI	48 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	8	-6.78	0.00	0.00
			Max. Mx	4	-4.05	-160.89	0.00
			Max. My	2	-4.05	0.00	160.89
			Max, Vy	4	4.10	-160.89	0.00
			Max. Vx	2	-4.10	0.00	160.89

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, 2
		Load	K	K	K
		Comb.		-	••
Pole	Max. Vert	8	6.78	0.00	0.00
	Max. H _x	14	3.38	0.00	-0.68
	$Max. H_z$	3	3.04	0.00	4.09
	$Max. M_x$	2	160.89	0.00	4.09
	$Max. M_z$	4	160.89	-4.09	0.00
	Max. Torsion	1	0.00	0.00	0.00
	Min. Vert	3	3.04	0.00	4.09
	Min. H _s	5	3.04	-4.09	0.00
	Min. H _z	7	3.04	0.00	-4.09
	Min. M _x	6	-160.89	0.00	-4.09
	Min. M _z	1	0.00	0.00	0.00
	Min. Torsion	1	0.00	0.00	0.00

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	3.38	0.00	0.00	0.00	0.00	0.00
1.2 Dead+1.6 Wind 0 deg - No Ice	4.06	0.00	-4.09	-160.89	0.00	0.00
0.9 Dead+1.6 Wind 0 deg - No Ice	3.04	0.00	-4.09	-159.96	0.00	0.00
1.2 Dead+1.6 Wind 90 deg - No Ice	4.06	4.09	0.00	0.00	-160.89	0.00
0.9 Dead+1.6 Wind 90 deg - No Ice	3.04	4.09	0.00	0.00	-159.96	0.00
1.2 Dead+1.6 Wind 180 deg - No Ice	4.06	0.00	4.09	160.89	0.00	0.00
0.9 Dead+1.6 Wind 180 deg - No Ice	3.04	0.00	4.09	159.96	0.00	0.00
1.2 Dead+1.0 Ice+1.0 Temp	6.78	0.00	0.00	0.00	0.00	0.00
1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	6.78	0.00	-0.89	-31.53	0.00	0.00
1.2 Dead+1.0 Wind 90 deg+1.0	6.78	0.89	0.00	0.00	-31.53	0.00

DaVinci Engineering, Inc. P.O. Box 66 Unionville Center, OH 43077 Phone: 614.937.4922 FAX: 614.413.2887

Job		Page
	60-ft Flag Pole - DaVinci #08242-1273	5 of 7
Project	#5075, Brookfield West	Date 09:21:59 06/18/08
Client	Valmont PennSummit (70179 / 20183)	Designed by MFP

Load Combination	Vertical	Shear $_{f x}$	Shear _z	Overturning Moment, M.	Overturning Moment, M,	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	6.78	0.00	0.89	31.53	0.00	0.00
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	3.38	0.00	-0.68	-26.67	0.00	0.00
Dead+Wind 90 deg - Service	3.38	0.68	0.00	0.00	-26.67	0.00
Dead+Wind 180 deg - Service	3.38	0.00	0.68	26.67	0.00	0.00
del min your sense production of the first o	DOLLAR OF SELECTION OF SERVICE	·····································	*****	************************		CANADA COLL MAN AND AND AND AND AND AND AND AND AND A

Solution Summary

ҚАНТАНОНИКАН МЕНЕНДЕ ҰҚОҢ - І пп	Stei	n of Applied Force	S.	PRIMARINE PROPERTY IN STREET, CONTRACTOR SANSSES PROPERTY AND SANSSES AND SANS	Sum of Reaction	endersalen en exercisaren en en enterente en	BAYESSEL SORWER WITH SURVEY ME IN PRICE METAL
Load	PX	PY	PZ	PX	$\check{P}Y$	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-3.38	0.00	0.00	3,38	0.00	0.000%
2	0.00	-4.06	-4.09	0.00	4.06	4.09	0.002%
3	0.00	-3.04	-4.09	0.00	3.04	4.09	0.002%
4	4.09	-4.06	0.00	-4.09	4.06	0.00	0.002%
5	4.09	-3.04	0.00	-4.09	3.04	0.00	0.002%
6	0.00	-4.06	4.09	0.00	4.06	-4.09	0.002%
7	0.00	-3.04	4.09	0.00	3.04	-4.09	0.002%
8	0.00	-6.78	0.00	0.00	6.78	0.00	0.000%
9	0.00	-6.78	-0.89	0.00	6.78	0.89	0.003%
10	0.89	-6.78	0.00	-0.89	6.78	0.00	0.003%
11	0.00	-6.78	0.89	0.00	6.78	-0.89	0.003%
12	0.00	-3.38	-0.68	0.00	3.38	0.68	0.002%
13	0.68	-3.38	0.00	-0.68	3.38	0.00	0.002%
14	0.00	-3.38	0.68	0.00	3.38	-0.68	0.002%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	6	0.00000001	0.00000001
2	Yes	10	0.00000001	0.00008818
3	Yes	10	0.00000001	0.00007091
4	Yes	10	0.0000001	0.00008818
5	Yes	10	0.00000001	0.00007091
6	Yes	10	0.00000001	0.00008818
7	Yes	10	0.00000001	0.00007091
8	Yes	6	0.00000001	0.00000001
9	Yes	9	0.00000001	0.00006824
10	Yes	9	0.00000001	0.00006824
11	Yes	9	0.00000001	0.00006824
12	Yes	9	0.00000001	0.00007953
13	Yes	9	0.00000001	0.00007953
14	Yes	9	0.00000001	0.00007953

Maximum Tower Deflections - Service Wind

DaVinci Engineering, Inc. P.O. Box 66 Unionville Center, OH 43077

nionville Center, OH 4307 Phone: 614.937.4922 FAX: 614.413.2887

Job		Page
	60-ft Flag Pole - DaVinci #08242-1273	6 of 7
Project		Date
	#5075, Brookfield West	09:21:59 06/18/08
Client	Valmont PennSummit (70179 / 20183)	Designed by MFP

Section	Elevation	Horz.	Gov.	Tilt	Twist
<i>No</i> .		Deflection	Load		
*************************	ft	in	Comb.	o	0
L1	48 - 0	2.758	13	0.4173	0.0000

Critical Deflections and Radius of Curvature - Service Wind

NAME AND ADDRESS OF PERSONS OF PERSONS OF	erman in der	****************		Name of the Control o	NAMES OF TAXABLE PARTY	THE RESIDENCE OF THE PROPERTY
Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
f!		Comb.	in	0	0	ft
60.00	12' x 18' Flag	13	2.758	0.4173	0.0000	Inf
57.00	Radome Cylinder (28"Ø x 6'-0")	13	2.758	0.4173	0.0000	Inf
51.00	Radome Cylinder (28"Ø x 6'-0")	13	2.758	0.4173	0.0000	Inf

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Tryist
No.		Deflection	Load		
	ft	in	Comb.	•	0
L1	48 - 0	16.639	2	2.5184	0.0000

Critical Deflections and Radius of Curvature - Design Wind

Marahatan panjanakan deritaran pendagan	والمناور والم			Van 1200 A. Professor San Marie V. A. San	والمراجعة	the trick of the first the transfer of the contract of
Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load	· ·			Curvature
ft		Comb.	in	0	0	ft
60.00	12' x 18' Flag	2	16.639	2.5184	0.0000	Inf
57.00	Radome Cylinder (28"Ø x 6'-0")	2	16.639	2.5184	0.0000	Inf
51.00	Radome Cylinder (28"Ø x 6'-0")	2	16.639	2.5184	0.0000	Inf

Compression Checks

Pole Design Data									
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
	ft		ft	ft		in ²	K	K	$\frac{P_n}{\Phi P_n}$
Ll	48 - 0 (1)	TP18x18x0.1875	48.00	0.00	0.0	10.6007	-4.05	620.14	0.007

Pole Bending Design Data

DaVinci Engineering, Inc. P.O. Box 66

Unionville Center, OH 43077 Phone: 614.937.4922 FAX: 614.413.2887

Job		Page
	60-ft Flag Pole - DaVinci #08242-1273	7 of 7
Project		Date
	#5075, Brookfield West	09:21:59 06/18/08
Client	Valmont PennSummit (70179 / 20183)	Designed by MFP

MANAGEMENT STANKED STANKED STANKED	en thirts in increase, and a second s	неминов инферитурация изверхуться върску пренедование принеста	PERSONAL CONTROL PROPERTY AND RESIDENCE OF THE PERSON OF T	PARK OF THE PROPERTY OF A PARK	mmunicus novemblement.	- C-TOTHER HER WOOD WILLIAM IS	Marking Colors and Market Street Colors and Colors	*********
Section	Elevation	Size	M_{nx}	ϕM_{nx}	Ratio	M_{uy}	ϕM_{nv}	Ratio
No.					M_{ux}			M_{uv}
	JI		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{nv}
L1	48 - 0 (1)	TP18x18x0.1875	160.89	226.55	0.710	0.00	226.55	0.000

			Pole Sh	ear Des	ign Da	ıta		
Section No.	Elevation	Size	Actual V.,	ϕV_n	Ratio V	Actual T.,	ϕT_n	Ratio T
	ft		ĸ.	K	$\frac{V_n}{\Phi V_n}$	kip-ft	kip-ft	$\frac{T_n}{\phi T_n}$
L1	48 - 0 (1)	TP18x18x0.1875	4.10	186.08	0.022	0.00	21632.17	0.000

-			F	ole Int	eractio	on Des	ign Da	ta		
Section No.	Elevation ft	$\frac{Ratio}{P_u}$ $\frac{P_u}{\phi P_n}$	Ratio M _{ux} ϕM_{nx}	Ratio $\frac{M_{uy}}{\phi M_{ny}}$	Ratio V _u •V _n	$\frac{Ratio}{T_u}$ $\frac{T_u}{\phi T_n}$	Comb. Stress Ratio	Allow. Stress Ratio	cristeria Criteria	
LI	48 - 0 (1)	0.007	0.710	0.000	0.022	0.000	0.717	1.000	4.10-1a 1	

	Section Capacity Table							
Section No.	Elevation ft	Component Type	Size	Critical Element	P K	ØP _{allow} K	% Capacity	Pass Fail
Ll	48 - 0	Pole	TP18x18x0.1875	1	-4.05	620.14	71.7 Summary	Pass
HTMLOGCHER HEAD PLANES	rt arrynadoùke held warned roo levou eld dyk grenn entwel harrychel	a paramen in referreti har profesiocon not to metado e de 2010 e de 20	nn einen den deutsche Lieb zum Schreit Labe der deutsche Geloste der deutsche der deutsche der deutsche der de	Composite and the sea share of the season of	Ости не ченение при ме	Pole (L1) RATING =		Pass Pass

Program Version 5.1.1.4 - 2/25/2008 File:G:/Ceedo/Tower/Project/242-PennSummit/08242-1273/08242-1273.eri

Monopole Anchor Rod and Base Plate Calculation

ANSI/11A-222-G 2005

Factored Base Reactions:

Pole Shape:

Anchor Rods:

Base Plate:

Moment:

161 ft-kips

(4) 2.25 in. A615 GR. 75 18-Sided

1.75 in. x 22 in. Square

Pole Dia. (Df): Shear: 4 kips

Anchor Rods in Quadrants

Axial:

4 kips

18,00 in

On a 23 in Bolt Circle

 $f_{\rm H} = 55 \, \rm ksi$

Anchor Rod Calculation According to 11A-222-G section 4.9.9

264,50 In Momet of Inertia

Pu =

84.00 kips Tension Parce

1.00 kips shear Force

325,00 kips Nommal Tonsile Strength

η =

0.50 for detail tupe (d)

The following Interation Equation Shall Be Satisfied:

$$\left(\frac{P_{u} + \frac{V_{u}}{\eta}}{\phi K_{nt}}\right) \leq 1.0$$

Base Plate Calculation According to 11A-222-G

0.90 144.7

Mpl =

212.5 in-kip Plate Moment

L =

13.113 in Section Longth

Z =

10.039 Plastic Section Modelius

Mp =

552.17 in-kip Plastic Manant

 $\phi M_n =$

496,95 in-kip Factored Resistance

Calculated Moment vs Factored Resistance

212.5 in-kip

497 in-kip

Anchor Rods Are Adequate	33.1%
Base Plate is Adequate	42,8%

Monopole Caisson (Drilled Pier) Calculation ANSI/11A-222-G 2005

Dalinci

Engineering, inc. © 2008

Notes:

- I. Foundation overturning resistance calculated with PLS Caisson, for Brom's method for rigid piles. Soil layers modeled after recommendations from the geotechnical report.
- 2. Cohesion strength for the upper 12 ft has been reduced by 50%
- 3. In lieu of a soil resistance factor $\phi_s = 0.75$ (11A-9.4.1) an additional safey fator against soil failure of 1.33 has been applied.
- 4. Foundation is designed with a minimum safety factor resisting overturning of 2.0
- 5. Foundation has been designed with factored loads per 11A-222-G.
- 6. Geotechnical report indicates groundwater was not encountered within the depth of the boring.

***************************************		TH (ksi) = 3.0	0		STEEL STRE	NGTH (ksi)	= 60.00	
	DIAMETER (ft) =	4,000 D	ISTANCE FROM	TOP OF PI	ER TO GROUND	LEVEL (ft)	= 0.50	
** SOIL PROPERTIES	LAYER TYPE TH	CKNESS DEPTH A				КР	PHI	
		(ft)		t) (p	cf) (psf)		(degrees)	
	1 S 2 S	3.00		00 10	0.0	1.000		
		15.00			5.0	3.537		
** DESIGN (FACTORED) L	OADS AT TOP OF PI	R MOMENT (ft-k ADDITIONAL S) = 161.0 AFETY FACTOR	VERTICAL R AGAINST SO	(k) = 4.0 OIL FAILURE =	SHEAR ()	c) = 4.0	
** CALCULATED PIER LENG	GTH (ft) = 9.5	100 < 15.5 w						
** CHECK OF SOILS PROPI	ERTIES AND ULTIMAT	E RESISTING FOR	CES ALONG PI	ER				
	BELOW TOP OF PIER							
TIES TOE OF DATER			DENSITY	CU	KP	FORCE	ARM	
S	(ft) 0.50	(£t)	(pcf)	(psf)		(k)	(£t)	
s	3,50	3.00 3.79	100.0		1.000	5.40	2.50	
s	7.29	2.21	125.0		3.537	86.31	5.67	
•	1.29	2.21	125.0		3.537	-85.59	8.45	
** SHEAR AND MOMENTS A								
	P.	THE ADDITION			TIDDA TUOHTIV			
** SHEAR AND MOMENTS AND DISTANCE BELOW TOP OF	OF PIER (ft)	SHEAR (k)	MOMENT (ft-k)	WITHOUT ADDIT SHEAR (ETY FACTOR ENT (ft-k)	
	OF PIER (ft) 0.00	SHEAR (k) 6.1	MOMENT (ft-k) 220.2	SHEAR (4	k) Mome .6		
	OF PIER (ft) 0.00 0.95	SHEAR (k) 6.1 6.0	MOMENT (ft-k) 220.2 226.0	SHEAR (4 4	k) MOME .6 .5	ENT (ft-k) 165.1 169.5	
	DF PIER (ft) 0.00 0.95 1.90	SHEAR (k) 6.1 6.0 4.9	MOMENT (ft-k) 220.2 226.0 231.2	SHEAR (4 4 3	k) MOME .6 .5 .7	ENT (ft-k) 165.1	
	OF PIER (ft) 0.00 0.95 1.90 2.85	SHEAR (k) 6.1 6.0 4.9 2.8	MOMENT (ft-k) 220.2 226.0 231.2 235.0	SHEAR (4 4 3 2	k) MOME .6 .5 .7 .1	ENT (ft-k) 165.1 169.5	
	OF PIER (ft) 0.00 0.95 1.90 2.85 3.80	SHEAR (k) 6.1 6.0 4.9 2.8 -3.3	MOMENT (ft-k) 220.2 226.0 231.2 235.0 235.8	SHEAR (4 4 3 2 -2	k) MOME .6 .5 .7 .1	ENT (ft-k) 165.1 169.5 173.4	
	OF PIER (ft) 0.00 0.95 1.90 2.85 3.80 4.75	SHEAR (k) 6.1 6.0 4.9 2.8 -3.3 -19.3	MOMENT (ft-k) 220.2 226.0 231.2 235.0 235.8 225.4	SHEAR (4 4 3 2	k) MOME .6 .5 .7 .1	ENT (ft-k) 165.1 169.5 173.4 176.2	
	DF PIER (ft) 0.00 0.95 1.90 2.85 3.80 4.75 5.70	SHEAR (k) 6.1 6.0 4.9 2.8 -3.3 -19.3 -40.1	MOMENT (ft-k) 220.2 226.0 231.2 235.0 235.8 225.4	SHEAR (4 4 3 2 -2	k) MOME .6 .5 .7 .1 .5	ENT (ft-k) 165.1 169.5 173.4 176.2 176.8	
	DF PIER (ft) 0.00 0.95 1.90 2.85 3.80 4.75 5.70 6.65	SHEAR (k) 6.1 6.0 4.9 2.8 -3.3 -19.3 -40.1 -65.7	MOMENT (ft-k) 220.2 226.0 231.2 235.0 235.8 225.4 197.5	SHEAR (4 4 3 2 -2 -14	k) MOME .6 .5 .7 .1 .5 .5	165.1 169.5 173.4 176.2 176.8 169.0	
	OF PIER (ft) 0.00 0.95 1.90 2.85 3.80 4.75 5.70 6.65 7.60	SHEAR (k) 6.1 6.0 4.9 2.8 -3.3 -10.3 -40.1 -65.7 -75.1	MOMENT (ft-k) 220.2 226.0 231.2 235.0 235.8 225.4	SHEAR (4 4 3 2 -2 -14 -30	k) MOME .6 .5 .7 .1 .5 .5 .5 .5 .5	ENT (ft-k) 165.1 169.5 173.4 176.2 176.8 169.0 148.1	
	OF PIER (ft) 0.00 0.95 1.90 2.85 3.80 4.75 5.70 6.65 7.60 8.55	SHEAR (k) 6.1 6.0 4.9 2.8 -3.3 -19.3 -40.1 -65.7 -75.1	MOMENT (ft-k) 220.2 226.0 231.2 235.0 235.8 225.4 197.5	SHEAR (4 4 3 2 -2 -14 -30 -49	k) MOME .6 .5 .7 .1 .5 .5 .1 .3	ENT (ft-k) 165.1 169.5 173.4 176.2 176.8 169.0 148.1 110.7	
	OF PIER (ft) 0.00 0.95 1.90 2.85 3.80 4.75 5.70 6.65 7.60	SHEAR (k) 6.1 6.0 4.9 2.8 -3.3 -10.3 -40.1 -65.7 -75.1	MOMENT (ft-k) 220.2 226.0 231.2 235.0 235.8 225.4 197.5 147.6 74.4	SHEAR (4 4 2 -2 -14 -30 -49	k) MOME .6 .5 .7 .1 .5 .5 .5 .1 .3 .3	ENT (ft-k) 165.1 169.5 173.4 176.2 176.8 169.0 148.1 110.7 55.8	
*** TOTAL REINFORCEMENT	DF PIER (ft) 0.00 0.95 1.90 2.85 3.80 4.75 5.70 6.65 7.60 8.55 9.50 PCT = 0.30 RE	SHEAR (k) 6.1 6.0 4.9 2.8 -3.3 -19.3 -40.1 -65.7 -75.1 -39.9 -0.0	MOMENT (ft-k) 220.2 226.0 231.2 235.0 235.8 225.4 197.5 147.6 74.4 19.4 0.0	SHEAR (4 4 3 2 -1 -14 -30 -49 -56	k) MOME .6 .5 .7 .1 .5 .5 .5 .5 .6 .1 .3 .3 .0	ENT (fft-k) 165.1 169.5 173.4 176.2 176.8 169.0 148.1 110.7 55.8 14.5 0.0	

^{***} PRESSURE UNDER CAISSON DUE TO INPUT DESIGN AXIAL LOAD (psf) = 318.3