Alex Murshteyn, Site Acquisition Consultant c/o Cellco Partnership d/b/a Verizon Wireless
Centerline Communications, LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767
Mobile: (508) 821-0159
AMurshteyn@centerlinecommunications.com
February 16, 2018
Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Notice of Exempt Modification // Site: Brookfield CT (ATC: 283426)
37 Carmen Hill Road, Brookfield, CT 06804
N 41.4929 // W 73.4273
Dear Ms. Bachman:

Cellco Partnership d/b/a Verizon Wireless currently maintains 12 antennas at the 79-foot and 71foot mounts on the existing 80 -foot self-supporting lattice tower, located at 37 Carmen Hill Road, Brookfield, CT. The tower and property are owned by American Tower. The Council approved Verizon Wireless use of this tower in 1995. Verizon Wireless now intends remove 6 of its antennas on the 71 -foot level plus all 3 of its antennas on the 79 -foot level to replace with 6 new ones on the 79 -foot level only, and install them on side-by-side mounts for its LTE ($700 / 850 / 1900 / 2100 \mathrm{MHz}$) replacements as a part of its PCS/AWS/LTE upgrade. Additionally, Verizon Wireless will install 9 new remote radio head units (RRUs), including 3 replacements, to bring the total RRU count to 12, as well as 1 replacement over voltage protector (OVP) surge arrestor box, and 1 new hybrid fiber cable; altogether updating leased equipment rights, as reflected by the final configuration outlined in the structural analysis and proposed hereby.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16$50 \mathrm{j}-72(\mathrm{~b})(2)$. In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Stephen C. Dunn, First Selectman for the Town of Brookfield, its Land Use Director Alice Dew, including for the Planning and Zoning Commissions and to American Tower Corporation for American Towers LLC, which is the tower and ground owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2). Enclosed to accommodate this filing are construction drawings dated February 12, 2018 by ATC Tower Services, LLC, a structural analysis dated

February 8,2018 by A.T. Engineering Service, PLLC and radio frequency (RF) analysis table showing worst-case RF emission calculation by Verizon Wireless RF Design Engineering.

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the new antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading, as shown in the attached structural analysis by A.T. Engineering Service, PLLC, dated February 8, 2018.

For the foregoing reasons, Verizon Wireless respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,
 c/o Cellco Partnership d/b/a Verizon Wireless
Centerline Communications, LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767
Mobile: (508) 821-0159
AMurshteyn@centerlinecommunications.com
Attachments
cc: Stephen C. Dunn, First Selectman - as elected official - 1Z9Y45030337370698
Alice Dew, Land Use Director - as P\&Z official - 1Z9Y45030339287301
American Tower Corporation - as tower \& property owner - 1Z9Y45030332796916

AMERICAN TOWER ${ }^{*}$
CORPORATION

Structural Analysis Report

Structure	$: 80$ ft Self Supported Tower
ATC Site Name	$:$ Brookfield CT, CT
ATC Site Number	$: 283426$
Engineering Number	$:$ OAA722914_C3_01
Proposed Carrier	$:$ Verizon
Carrier Site Name	$:$ Brookfield CT
Carrier Site Number	$:$ PSLC\# 468123
Site Location	$: 37$ Carmen Hill Road
	Brookfield, CT 06804-1004
County	Fairfield
Date	February 8, 2018
Max Usage	Pass
Result	

Feb 82018 5:31 PM

AMERICANTOWER ${ }^{*}$

CORPORATION

Table of Contents

Introduction 1
Supporting Documents 1
Analysis 1
Conclusion. 1
Existing and Reserved Equipment 2
Equipment to be Removed 2
Proposed Equipment 2
Structure Usages 3
Foundations 3
Deflection, Twist, and Sway 3
Standard Conditions 4
Calculations Attached

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 80 ft self supported tower to reflect the change in loading by Verizon.

Supporting Documents

Tower Drawings	HTS Mapping Site \#KGI11464, dated February 21, 2008
Foundation Drawing	ETS Mapping Job \#173310, dated November 30, 2017
Geotechnical Report	FDH mapping Project \#17QQWL1600, dated November 30, 2017

Analysis

The tower was analyzed using American Tower Corporation's tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

Basic Wind Speed:	93 mph (3-Second Gust, Vasd) / 115 mph (3-Second Gust, Vult)
Basic Wind Speed w/ Ice:	$50 \mathrm{mph}(3-$ Second Gust) w/3/4" radial ice concurrent
Code:	ANSI/TIA-222-G / 2012 IBC / 2016 Connecticut State Building Code
Structure Class:	II
Exposure Category:	B
Topographic Category:	3
Crest Height:	116 ft
Spectral Response:	$\mathrm{Ss}=0.21, \mathrm{~S}_{1}=0.07$
Site Class:	D - Stiff Soil

Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

Existing and Reserved Equipment

Elevation ${ }^{1}(\mathrm{ft})$		Qty	Antenna	Mount Type	Lines	Carrier
Mount	RAD					
79.0	79.0	6	Commscope JAHH-65B-R3B	Sector Frames	-	Verizon
		3	Alcatel-Lucent B66A RRH4×45-4R w/o Solar Shield			
		3	Nokia Band 5 AHCA RRH4×40			
71.0	71.0	2	Antel BXA-80063-6CF-EDIN-X	Sector Frames	(12) $15 / 8$ " Coax	
		1	Antel BXA-80063-4CF-EDIN-X			

Equipment to be Removed

Elevation ${ }^{1}$ (ft)		Qty	Antenna	Mount Type	Lines	Carrier
Mount	RAD					
70.0	70.0	1	RFS DB-B1-6C-12AB-0Z	-	(1) $15 / 8$ " Hybriflex	Verizon
		3	Alcatel-Lucent RRH2x60 700			
		1	Antel BXA-70063/6CF			

Proposed Equipment

Elevation ${ }^{1}$ (ft)		Qty	Antenna	Mount Type	Lines	Carrier
Mount	RAD					
79.0	79.0	1	RFS DB-B1-6C-12AB-0Z	Sector Frames	(1) $15 / 8$ " Hybriflex	Verizon
		3	Alcatel-Lucent RRH2×60 700			
		3	Alcatel-Lucent B25 RRH4x30			

${ }^{1}$ Mount elevation is defined as height above bottom of steel structure to the bottom of mount, RAD elevation is defined as center of antenna above ground level (AGL).

Install proposed coax alongside existing Verizon coax.

Structure Usages

Structural Component	Controlling Usage	Pass/Fail
	84%	Pass
Diagonals	94%	Pass
Horizontals	10%	Pass
Anchor Bolts	82%	Pass
Leg Bolts	55%	Pass

Foundations

Reaction Component	Analysis Reactions
Uplift (Kips)	55.7
Axial (Kips)	62.8
Shear (Kips)	6.5

The structure foundation piers are directly embedded into shallow rock and are assumed to be designed to withstand the analysis reactions.

Deflection, Twist and Sway*

Antenna Elevation (ft)	Antenna	Carrier	Deflection (ft)	Twist (${ }^{\circ}$)	Sway (Rotation) (${ }^{\circ}$)
79.0	Alcatel-Lucent B25 RRH4x30	Verizon	0.122	0.002	0.172
	Alcatel-Lucent RRH2×60 700				
	RFS DB-B1-6C-12AB-0Z				

[^0]CORPORATION

Standard Conditions

All engineering services performed by A.T. Engineering Service, PLLC are prepared on the basis that the information used is current and correct. This information may consist of, but is not limited to the following:

- Information supplied by the client regarding antenna, mounts and feed line loading
- Information from drawings, design and analysis documents, and field notes in the possession of A.T. Engineering Service, PLLC

It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete.

All assets of American Tower Corporation, its affiliates and subsidiaries (collectively "American Tower") are inspected at regular intervals. Based upon these inspections and in the absence of information to the contrary, American Tower assumes that all structures were constructed in accordance with the drawings and specifications.

Unless explicitly agreed by both the client and A.T. Engineering Service, PLLC, all services will be performed in accordance with the current revision of ANSI/TIA-222.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information supplied herein.

[^1]
© 2007-2018 by ATC IP LLC. All rights reserved.
2007-2018 by ATC IP LLC. All rights reserved.

\section*{| Individual Base Foundation Design Loads | | |
| :--- | :--- | :---: |
| Vertical (kip) | Uplift (kip) | Horizontal (kip) |
| 62.75 | 55.71 | 6.51 |
 62.75
 $62.75 \quad 55.71$}

| Site Number: | 283426 | Code: | ANSI/TIA-222-G |
| :--- | :--- | :--- | :--- | © 2007-2018 by ATC IP LLC. All rights reserved.

Analysis Parameters

Location:	FAIRFIELD County, CT	Height $(\mathrm{ft}):$	80
Code:	ANSI/TIA-222-G	Base Elevation $(\mathrm{ft}):$	0.00
Shape:	Triangle	Bottom Face Width $(\mathrm{ft}):$	10.58
Tower Manufacturer:		Top Face Width $(\mathrm{ft}):$	4.50
Tower Type:	Self Support	Anchor Bolt Detail Type	c

Kd:
Ke:

Ice \& Wind Parameters

Structure Class:	II	Design Windspeed Without Ice:	93 mph
Exposure Category:	B	Design Windspeed With Ice:	50 mph
Topographic Category:	3	Operational Windspeed:	60 mph
Crest Height:	116 ft	Design Ice Thickness:	0.75 in

Seismic Parameters

alysis Method: Equivalent Modal Analysis \& Equivalent Lateral Force Methods					
Site Class:		D - Stiff Soil			
Period Based on Rayleigh Method (sec):		0.54			
$\mathrm{T}_{\mathrm{L}}(\mathrm{sec})$:	6	p:	1.3	$\mathrm{C}_{\text {S }}$:	0.065
S_{s} :	0.208	S_{1} :	0.066	Cs, Max:	0.065
F_{a} :	1.600	F_{v} :	2.400	C_{S}, Min:	0.030
S_{ds} :	0.222	$\mathrm{S}_{\mathrm{d} 1}$:	0.106		

Load Cases

1.2D + 1.6W Normal	93 mph Normal to Face with No lce
1.2D + 1.6W 60 deg	93 mph 60 degree with No Ice
1.2D + 1.6W 90 deg	93 mph 90 degree with No lce
1.2D + 1.6W 120 deg	93 mph 120 degree with No Ice
$1.2 \mathrm{D}+1.6 \mathrm{~W} 180 \mathrm{deg}$	93 mph 180 degree with No Ice
$1.2 \mathrm{D}+1.6 \mathrm{~W} 210 \mathrm{deg}$	93 mph 210 degree with No Ice
$1.2 \mathrm{D}+1.6 \mathrm{~W} 240 \mathrm{deg}$	93 mph 240 degree with No Ice
$1.2 \mathrm{D}+1.6 \mathrm{~W} 300 \mathrm{deg}$	93 mph 300 degree with No Ice
$1.2 \mathrm{D}+1.6 \mathrm{~W} 330 \mathrm{deg}$	93 mph 330 degree with No Ice
$0.9 \mathrm{D}+1.6 \mathrm{~W}$ Normal	93 mph Normal to Face with No Ice (Reduced DL)
$0.9 \mathrm{D}+1.6 \mathrm{~W} 60 \mathrm{deg}$	93 mph 60 deg with No lce (Reduced DL)
$0.9 \mathrm{D}+1.6 \mathrm{~W} 90 \mathrm{deg}$	93 mph 90 deg with No Ice (Reduced DL)
$0.9 \mathrm{D}+1.6 \mathrm{~W} 120 \mathrm{deg}$	93 mph 120 deg with No Ice (Reduced DL)
$0.9 \mathrm{D}+1.6 \mathrm{~W} 180 \mathrm{deg}$	93 mph 180 deg with No lce (Reduced DL)
$0.9 \mathrm{D}+1.6 \mathrm{~W} 210 \mathrm{deg}$	93 mph 210 deg with No lce (Reduced DL)
$0.9 \mathrm{D}+1.6 \mathrm{~W} 240 \mathrm{deg}$	93 mph 240 deg with No lce (Reduced DL)
$0.9 \mathrm{D}+1.6 \mathrm{~W} 300 \mathrm{deg}$	93 mph 300 deg with No Ice (Reduced DL)
$0.9 \mathrm{D}+1.6 \mathrm{~W} 330 \mathrm{deg}$	93 mph 330 deg with No Ice (Reduced DL)
1.2D + 1.0Di + 1.0Wi Normal	50 mph Normal with 0.75 in Radial Ice

Analysis Parameters

$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 60 \mathrm{deg}$	50 mph 60 deg with 0.75 in Radial Ice
$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 90 \mathrm{deg}$	50 mph 90 deg with 0.75 in Radial Ice
$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 120 \mathrm{deg}$	50 mph 120 deg with 0.75 in Radial Ice
$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 180 \mathrm{deg}$	50 mph 180 deg with 0.75 in Radial Ice
$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 210$ deg	50 mph 210 deg with 0.75 in Radial ice
$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 240 \mathrm{deg}$	50 mph 240 deg with 0.75 in Radial Ice
$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 300 \mathrm{deg}$	50 mph 300 deg with 0.75 in Radial Ice
$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 330 \mathrm{deg}$	50 mph 330 deg with 0.75 in Radial lce
$(1.2+0.2 S d s) *$ DL + E Normal	Seismic Normal
$(1.2+0.2 S d s) * D L+E 60 \mathrm{deg}$	Seismic 60 deg
$(1.2+0.2 S d s) * D L+E 90$ deg	Seismic 90 deg
$(1.2+0.2 \mathrm{Sds})^{*} \mathrm{DL}+\mathrm{E} 120 \mathrm{deg}$	Seismic 120 deg
$(1.2+0.2 \mathrm{Sds})^{*} \mathrm{DL}+\mathrm{E} 180 \mathrm{deg}$	Seismic 180 deg
$(1.2+0.2 \mathrm{Sds}) * \mathrm{DL}+\mathrm{E} 210 \mathrm{deg}$	Seismic 210 deg
$(1.2+0.2 S d s) * D L+E 240 \mathrm{deg}$	Seismic 240 deg
$(1.2+0.2 \mathrm{Sds}) * \mathrm{DL}+\mathrm{E} 300 \mathrm{deg}$	Seismic 300 deg
$(1.2+0.2 \mathrm{Sds}) * \mathrm{DL}+\mathrm{E} 330 \mathrm{deg}$	Seismic 330 deg
(0.9-0.2Sds) * DL + E Normal	Seismic (Reduced DL) Normal
(0.9-0.2Sds) * DL + E 60 deg	Seismic (Reduced DL) 60 deg
(0.9-0.2Sds) * DL + E 90 deg	Seismic (Reduced DL) 90 deg
(0.9-0.2Sds) * DL + E 120 deg	Seismic (Reduced DL) 120 deg
(0.9-0.2Sds) * DL + E 180 deg	Seismic (Reduced DL) 180 deg
(0.9-0.2Sds) * DL + E 210 deg	Seismic (Reduced DL) 210 deg
(0.9-0.2Sds) * DL + E 240 deg	Seismic (Reduced DL) 240 deg
(0.9-0.2Sds) * DL + E 300 deg	Seismic (Reduced DL) 300 deg
(0.9-0.2Sds) * DL + E 330 deg	Seismic (Reduced DL) 330 deg
1.0D + 1.0W Service Normal	Serviceability - 60 mph Wind Normal
1.0D + 1.0W Service 60 deg	Serviceability - 60 mph Wind 60 deg
1.0D + 1.0W Service 90 deg	Serviceability - 60 mph Wind 90 deg
1.0D + 1.0W Service 120 deg	Serviceability - 60 mph Wind 120 deg
1.0D + 1.0W Service 180 deg	Serviceability - 60 mph Wind 180 deg
1.0D + 1.0W Service 210 deg	Serviceability - 60 mph Wind 210 deg
1.0D + 1.0W Service 240 deg	Serviceability - 60 mph Wind 240 deg
1.0D + 1.0W Service 300 deg	Serviceability - 60 mph Wind 300 deg
$1.0 \mathrm{D}+1.0 \mathrm{~W}$ Service 330 deg	Serviceability - 60 mph Wind 330 deg

Tower Loading

Discrete Appurtenance Properties $1.2 \mathrm{D}+1.6 \mathrm{~W}$

Elevation Description (ft)	Qty	Wt. (Ib)	EPA (sf)	Length (ft)	Width (in)	Depth (in)	K_{a}	Orient. Factor	Vert. Ecc.(ft)	$\begin{gathered} M_{u} \\ (\mathrm{lb}-\mathrm{ft}) \end{gathered}$	$\begin{gathered} \mathbf{Q}_{2} \\ (\mathbf{p s f}) \end{gathered}$	$\begin{gathered} F_{a} \text { (WL) } \\ \text { (Ib) } \end{gathered}$	$\begin{gathered} P_{a}(\mathrm{DL}) \\ (\mathrm{Ib}) \\ \hline \end{gathered}$
79.00 Nokia Band 5 AHCA	3	40	1.3	1.1	12.1	6.9	0.90	0.50	0.0	0.0	21.90	53	143
79.00 Alcatel-Lucent B25	3	53	2.1	1.8	12.0	7.2	0.90	0.50	0.0	0.0	21.90	85	191
79.00 Alcatel-Lucent	3	57	2.2	1.8	12.0	9.0	0.90	0.50	0.0	0.0	21.90	86	204
79.00 Alcatel-Lucent B66A	3	57	2.4	2.1	11.4	6.3	0.90	0.50	0.0	0.0	21.90	96	204
79.00 RFS DB-B1-6C-12AB-	1	21	2.5	1.6	15.7	10.3	0.90	0.67	0.0	0.0	21.90	45	26
79.00 Commscope JAHH-	6	61	9.1	6.0	13.8	8.2	0.90	0.77	0.0	0.0	21.90	1128	436
79.00 Round Sector Frame	2	300	14.4	0.0	0.0	0.0	0.90	0.90	0.0	0.0	21.90	695	720
71.00 Amphenol Antel BXA-	,	10	4.7	4.0	11.2	5.2	0.90	0.74	0.0	0.0	21.93	94	12
71.00 Amphenol Antel BXA-	2	17	7.5	5.9	11.0	5.2	0.90	0.75	0.0	0.0	21.93	300	41
71.00 Round Sector Frame	2	300	14.4	0.0	0.0	0.0	0.90	0.90	0.0	0.0	21.93	696	720
Totals	26	2247	158.3									3278	2697

Discrete Appurtenance Properties $0.9 \mathrm{D}+1.6 \mathrm{~W}$

Elevation Description (ft)	Qty	Wt. (lb)	EPA (sf)	Length (ft)	Width (in)	Depth (in)	K_{a}	Orient. Factor	Vert. Ecc.(ft)	$\underset{(\mathrm{lb}-\mathrm{ft})}{M_{\mathrm{u}}}$	$\begin{gathered} \mathbf{Q}_{2} \\ (\mathbf{p s f}) \end{gathered}$	$\begin{gathered} F_{\mathrm{a}}(\mathrm{WL}) \\ (\mathrm{Ib}) \end{gathered}$	$\begin{gathered} \mathrm{P}_{\mathrm{a}}(\mathrm{DL}) \\ (\mathrm{Ib}) \end{gathered}$
79.00 Nokia Band 5 AHCA	3	40	1.3	1.1	12.1	6.9	0.90	0.50	0.0	0.0	21.90	53	107
79.00 Alcatel-Lucent B25	3	53	2.1	1.8	12.0	7.2	0.90	0.50	0.0	0.0	21.90	85	143
79.00 Alcatel-Lucent	3	57	2.2	1.8	12.0	9.0	0.90	0.50	0.0	0.0	21.90	86	153
79.00 Alcatel-Lucent B66A	3	57	2.4	2.1	11.4	6.3	0.90	0.50	0.0	0.0	21.90	96	153
79.00 RFS DB-B1-6C-12AB-	1	21	2.5	1.6	15.7	10.3	0.90	0.67	0.0	0.0	21.90	45	19
79.00 Commscope JAHH-	6	61	9.1	6.0	13.8	8.2	0.90	0.77	0.0	0.0	21.90	1128	327
79.00 Round Sector Frame	2	300	14.4	0.0	0.0	0.0	0.90	0.90	0.0	0.0	21.90	695	540
71.00 Amphenol Antel BXA-	1	10	4.7	4.0	11.2	5.2	0.90	0.74	0.0	0.0	21.93	94	9
71.00 Amphenol Antel BXA-	2	17	7.5	5.9	11.0	5.2	0.90	0.75	0.0	0.0	21.93	300	31
71.00 Round Sector Frame	2	300	14.4	0.0	0.0	0.0	0.90	0.90	0.0	0.0	21.93	696	540
Totals	26	2247	158.3									3278	2023

Discrete Appurtenance Properties $1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$

ElevationDescription (ft)	Qty	Ice Wt (lb)	Ice EPA (sf)	Length (ft)	Width (in)	Depth (in)	K_{a}	Orient. Factor	Vert. Ecc.(ft)	$\underset{(\mathrm{lb}-\mathrm{ft})}{\mathrm{M}_{\mathrm{u}}}$	$\begin{gathered} \mathbf{Q}_{2} \\ \text { (psf) } \end{gathered}$	$\begin{gathered} F_{\mathrm{a}} \text { (WL) } \\ \text { (Ib) } \end{gathered}$	$\begin{aligned} & \mathrm{P}_{\mathrm{a}}(\mathrm{DL}) \\ & (\mathrm{Ib}) \end{aligned}$
79.00 Nokia Band 5 AHCA	3	82	2.1	1.1	12.1	6.9	0.90	0.50	0.0	0.0	6.33	15	269
79.00 Alcatel-Lucent B25	3	115	3.1	1.8	12.0	7.2	0.90	0.50	0.0	0.0	6.33	23	376
79.00 Alcatel-Lucent	3	126	3.2	1.8	12.0	9.0	0.90	0.50	0.0	0.0	6.33	23	412
79.00 Alcatel-Lucent B66A	3	121	3.5	2.1	11.4	6.3	0.90	0.50	0.0	0.0	6.33	25	398
79.00 RFS DB-B1-6C-12AB-	. 1	103	3.6	1.6	15.7	10.3	0.90	0.67	0.0	0.0	6.33	12	107
79.00 Commscope JAHH-	6	267	11.9	6.0	13.8	8.2	0.90	0.77	0.0	0.0	6.33	267	1673
79.00 Round Sector Frame	2	675	31.3	0.0	0.0	0.0	0.90	0.90	0.0	0.0	6.33	273	1470
71.00 Amphenol Antel BXA-	- 1	114	6.6	4.0	11.2	5.2	0.90	0.74	0.0	0.0	6.34	24	116
71.00 Amphenol Antel BXA-	2	168	10.2	5.9	11.0	5.2	0.90	0.75	0.0	0.0	6.34	74	343
71.00 Round Sector Frame	2	675	31.3	0.0	0.0	0.0	0.90	0.90	0.0	0.0	6.34	273	1470
Totals	26	6184	263.0									1008	6633

Discrete Appurtenance Properties $1.0 \mathrm{D}+1.0 \mathrm{~W}$ Service

Elevation Description (ft)	Qty	Wt. (lb)	EPA (sf)	Length (ft)	Width (in)	Depth (in)	K_{a}	Orient. Factor	Vert. Ecc.(ft)	$\begin{gathered} M_{u} \\ (\mathrm{lb}-\mathrm{ft}) \end{gathered}$	$\begin{gathered} \mathbf{Q}_{2} \\ (\mathbf{p s f}) \end{gathered}$	$\begin{gathered} F_{\mathrm{a}} \text { (WL) } \\ \text { (Ib) } \end{gathered}$	$\begin{gathered} P_{\mathrm{a}}(\mathrm{DL}) \\ (\mathrm{Ib}) \end{gathered}$

Site Number:	283426
Site Name:	BROOKFIELD CT, CT
Customer:	VERIZON WIRELESS

Code:	ANSI/TIA-222-G
Engineering Number:	OAA722914_C3_01

Tower Loading

79.00 Nokia Band 5 AHCA	3	40	1.3	1.1	12.1	6.9	0.90	0.50	0.0	0.0	9.11	14
79.00 Alcatel-Lucent B25	3	53	2.1	1.8	12.0	7.2	0.90	0.50	0.0	0.0	9.11	22
79.00 Alcatel-Lucent	3	57	2.2	1.8	12.0	9.0	0.90	0.50	0.0	0.0	9.11	22
79.00 Alcatel-Lucent B66A	3	57	2.4	2.1	11.4	6.3	0.90	0.50	0.0	0.0	9.11	25
79.00 RFS DB-B1-6C-12AB-	1	21	2.5	1.6	15.7	10.3	0.90	0.67	0.0	0.0	9.11	12
79.00 Commscope JAHH-	6	61	9.1	6.0	13.8	8.2	0.90	0.77	0.0	0.0	9.11	293
79.00 Round Sector Frame	2	300	14.4	0.0	0.0	0.0	0.90	0.90	0.0	0.0	9.11	181
71.00 Amphenol Antel BXA-	1	10	4.7	4.0	11.2	5.2	0.90	0.74	0.0	0.0	9.13	24
71.00 Amphenol Antel BXA-	2	17	7.5	5.9	11.0	5.2	0.90	0.75	0.0	0.0	9.13	78
71.00 Round Sector Frame	2	300	14.4	0.0	0.0	0.0	0.90	0.90	0.0	0.0	9.13	181
Totals	26	2247	158.3								600	
										85	2247	

Site Number:	283426	Code:	ANSI/TIA-222-G	© 2007-2018 by ATC IP LLC. All rights reserved.
Site Name:	BROOKFIELD CT, CT	Engineering Number:	OAA722914_C3_01	
Customer:	VERIZON WIRELESS			

Tower Loading

Linear Appurtenance Properties

Elev From (ft)	$\begin{aligned} & \text { Elev } \\ & \text { To } \\ & \text { (ft) } \\ & \hline \end{aligned}$	Description	Qty	Width (in)	Weigh ($\mathrm{lb} / \mathrm{ft}$)	Pct In Block	Spread On Faces	Bundling Arrangement	Cluster Dia (in)	Out Of Zone	Spacing (in)	Orientation Factor	Ka Override
0.00	79.00	Waveguide	1	2.00	6.00	0	Lin App	Individual	0.00	N	1.00	1.00	0.00
10.00	79.00	$15 / 8$ " Hybriflex	1	1.98	1.30	0	Lin App	Individual	0.00	N	1.00	1.00	0.00
10.00	71.00	15/8" Coax	12	1.98	0.82	50	Lin App	Block	0.00	N	0.50	1.00	0.00

| Site Number: | 283426 | Code: | ANSI/TIA-222-G |
| :--- | :--- | :--- | :--- | © 2007-2018 by ATC IP LLC. All rights reserved.

Equivalent Lateral Force Method

(Based on ASCE7-10 Chapters 11, 12 \& 15)

$\underline{\text { LoadCase }} \underline{(1.2+0.2 S d s) * D L+E} \quad$ Seismic

- Section	Height Above Base (ft)	Weight (ib)	$\begin{aligned} & W_{z} \\ & (\mathrm{lb}-\mathrm{ft}) \end{aligned}$	C_{vx}	Horizontal Force (lb)	Vertical Force (lb)
4	70.00	773	58,937	0.170	92	962
3	50.00	956	51,709	0.149	80	1,189
2	30.00	1,021	32,813	0.095	51	1,271
1	10.00	1,357	14,213	0.041	22	1,688
Nokia Band 5 AHCA RRH4x40	79.00	119	10,278	0.030	16	148
Alcatel-Lucent B25 RRH4×30	79.00	159	13,721	0.040	21	198
Alcatel-Lucent RRH2x60 700	79.00	170	14,678	0.042	23	212
Alcatel-Lucent B66A RRH4x45-4R w/o	79.00	170	14,704	0.043	23	212
RFS DB-B1-6C-12AB-0Z	79.00	21	1,847	0.005	3	27
Commscope JAHH-65B-R3B	79.00	364	31,376	0.091	49	452
Round Sector Frame	79.00	600	51,776	0.150	81	747
Amphenol Antel BXA-80063-4CF-EDIN-X	71.00	10	766	0.002	1	12
Amphenol Antel BXA-80063-6CF-EDIN-X	71.00	34	2,631	0.008	4	42
Round Sector Frame	71.00	600	46,433	0.134	72	747
		6,354	345,882	1.000	538	7,906

$\underline{\text { LoadCase (0.9-0.2Sds) * DL + E }}$
Seismic (Reduced DL)

Section	Height Above Base (ft)	Weight (lb)	$\begin{gathered} \mathbf{W}_{\mathbf{z}} \\ (\mathrm{lb} \mathrm{ft}) \end{gathered}$	C_{vx}	Horizontal Force (lb)	Vertical Force (Ib)
4	70.00	773	58,937	0.170	92	661
3	50.00	956	51,709	0.149	80	818

Site Number: 283426
Site Name: BROOKFIELD CT, CT
Customer: VERIZON WIRELESS

Equivalent Lateral Force Method						
2	30.00	1,021	32,813	0.095	51	874
1	10.00	1,357	14,213	0.041	22	1,161
Nokia Band 5 AHCA RRH4x40	79.00	119	10,278	0.030	16	102
Alcatel-Lucent B25 RRH4×30	79.00	159	13,721	0.040	21	136
Alcatel-Lucent RRH2x60 700	79.00	170	14,678	0.042	23	146
Alcatel-Lucent B66A RRH4x45-4R w/o	79.00	170	14,704	0.043	23	146
RFS DB-B1-6C-12AB-0Z	79.00	21	1,847	0.005	3	18
Commscope JAHH-65B-R3B	79.00	364	31,376	0.091	49	311
Round Sector Frame	79.00	600	51,776	0.150	81	513
Amphenol Antel BXA-80063-4CF-EDIN-X	71.00	10	766	0.002	1	8
Amphenol Antel BXA-80063-6CF-EDIN-X	71.00	34	2,631	0.008	4	29
Round Sector Frame	71.00	600	46,433	0.134	72	513
		6,354	345,882	1.000	538	5,436

Site Name:	BROOKFIELD CT, CT
Customer:	VERIZON WIRELESS

Equivalent Modal Analysis Method

(Based on ASCE7-10 Chapters 11, 12 \& 15 and ANSI/TIA-G, section 2.7)

Spectral Response Acceleration for Short Period (S $\mathbf{S}_{\mathbf{s}}$):	0.21
Spectral Response Acceleration at 1.0 Second Period (S_{1}):	0.07
Importance Factor (I_{e}):	1.00
Site Coefficient F a:	1.60
Site Coefficient F ${ }_{\text {v }}$:	2.40
Response Modification Coefficient (R):	3.00
	0.22
Desing Spectral Response Acceleration at 1.0 Second Period (S	d1): 0.11
Period Based on Rayleigh Method (sec):	0.54
Redundancy Factor (p):	1.30

LoadCase $\underline{(1.2+0.2 S d s) * D L+E} \quad$ Seismic

Site Number:	283426	Code:	ANSI/TIA-222-G	© 2007-2018 by ATC IP LLC. All rights reserved.
Site Name:	BROOKFIELD CT, CT	Engineering Number:	OAA722914_C3_01	
Customer:	VERIZON WIRELESS			

Equivalent Modal Analysis Method
Site Number: 283426

Code:
Engineering Number: OAA722914_C3_01
Site Name: BROOKFIELD CT, CT
Customer: VERIZON WIRELESS
© 2007-2018 by ATC IP LLC. All rights reserved.
ANSI/TIA-222-G
2/8/2018 10:30:39 AM

Force/Stress Summary

Section: 1 -	Bot Elev (ft): 0.00					Height (ft): 20.000					Shear Bear Num phiRnvphiRn			Use	
Max Compression Member	Pu (kip)	Load Case	Len (ft)	Bracing \%				F'y (ksi)	Phic Pn Num (kip) Bolts						
LEG PXX - 2-1/2" DIA PIP HORIZ	$\begin{array}{r} -60.64 \\ 0.00 \end{array}$	1.2D + 1.6W	$\begin{array}{r} 6.68 \\ 0.000 \end{array}$	100 0	$\begin{array}{r} 100 \\ 0 \end{array}$	$\begin{array}{rr} 0 & 100 \\ 0 & 0 \end{array}$	$\begin{array}{r} 94.9 \\ 0.0 \end{array}$	$\begin{array}{r} 50.0 \\ 0.0 \end{array}$	$\begin{array}{r} 93.81 \\ 0.00 \end{array}$	0 0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	64 0	Member X
DIAG SAE-1.75X1.75X0.12	-2.00	1.2D + 1.6W 90	12.22	50	50) 50	211.4	36.0	2.12	1	1	7.95	6.96	94	Member Z
Max Tension Member	Pu (kip)	Load Case	Fy (ksi)	$\underset{(k s i)}{F u}$		hit Pn (kip)	Num Bolts	Num Holes			Bear phiRn (kip)		Shear trn ip)	Use \%	Controls
LEG PXX-2-1/2" DIA PIP	53.46	1.2D + 1.6W 60	50	65		181.35	0	0		0.00	0.00			29	Member
HORIZ	0.00		0	0	0	0.00	0	0		0.00	0.00		0.00	0	
DIAG SAE - 1.75X1.75X0.12	1.951	$1.2 \mathrm{D}+1.6 \mathrm{~W} 90$	36	58		11.15	1	1		7.95	4.13		3.81	51	Blk Shear
Max Splice Forces	$\begin{gathered} \mathrm{Pu} \\ (\mathrm{kip}) \end{gathered}$	Load Case		phiR (kip				Num Bolts	Bolt Ty	pe					
Top Tension	44.50	0.9D + 1.6W 180		0.0	00		0	0							
Top Compression	50.02	$21.2 \mathrm{D}+1.6 \mathrm{~W}$		0.0	00		0								
Bot Tension	56.06	0.9D + 1.6W 180		81.3		8	32	4	5/8 A3						
Bot Compression	62.88	$1.2 \mathrm{D}+1.6 \mathrm{~W} 120$		0.0	00		0								

Section: 2 - Bot Elev (ft): 20.00
Height (ft): 20.000

Max Splice Forces	Pu (kip)	Load Case	phiRnt (kip)	Use $\%$	Num Bolts	Bolt Type
Top Tension	32.15	$0.9 \mathrm{D}+1.6 \mathrm{~W} 180$	0.00	0	0	
Top Compression	36.15	$1.2 \mathrm{D}+1.6 \mathrm{~W}$	0.00	0		
Bot Tension	44.50	$0.9 \mathrm{D}+1.6 \mathrm{~W} 180$	81.36	55	4	$5 / 8$ A325
Bot Compression	50.02	$1.2 \mathrm{D}+1.6 \mathrm{~W}$	0.00	0		

Force/Stress Summary

Section: 3
Bot Elev (ft): $\mathbf{4 0 . 0 0}$ Height (ft): 20.000

Max Compression Member	Pu (kip)	Load Case	Len (ft)	Bracing \%				(ksi)	Phic Pn Num (kip) Bolts		Shear Bear Num phiRnvphiRn Holes (kip) (kip)			$\begin{gathered} \text { Use } \\ \% \end{gathered}$	Controls
LEG PX-2" DIA PIPE	-34.72	1.2D + 1.6W	4.01	100	100	100	62.8	50.0	49.93	0	0	0.00	0.00	69	Member X
HORIZ	0.00		0.000	0	0	0	0.0	0.0	0.00	0	0	0.00	0.00	0	
DIAG SAE - 1.5X1.5X0.1563	-1.47	1.2D + 1.6W 90	7.485	50	50	50	152.2	36.0	4.29	1	1	7.95	8.70	34	Member Z
Max Tension Member	$\begin{aligned} & \text { Pu } \\ & \text { (kip) } \end{aligned}$	Load Case	$\begin{aligned} & \text { Fy } \\ & \text { (ksi) } \end{aligned}$	$\underset{(k s i)}{F u}$		hit Pn (kip)	Num Bolts	Num Holes			Bear phiRn (kip)	BIK ph	hear Pn p)	Use \%	Controls
LEG PX-2" DIA PIPE	30.65	$1.2 \mathrm{D}+1.6 \mathrm{~W} 60$	50	65		66.60	0	0		0.00	0.00			46	Member
HORIZ	0.00		0	0	0	0.00	0	0		0.00	0.00		0.00		
DIAG SAE - 1.5X1.5X0.1563	1.43	$1.2 \mathrm{D}+1.6 \mathrm{~W} 90$	36	58		11.17	1	1		7.95	5.17		3.91		Blk Shear
Max Splice Forces	$\begin{gathered} \text { Pu } \\ \text { (kip) } \end{gathered}$	Load Case		phiR (kip			Jse $\%$	Num Bolts	Bolt T	ype					
Top Tension	17.98	0.9D + 1.6W 18		0.0	00		0	0							
Top Compression	20.63	1.2D + 1.6W		0.0	. 00		0								
Bot Tension	32.15	$50.9 \mathrm{D}+1.6 \mathrm{~W} 18$		81.			40	4	5/8 A3						
Bot Compression	36.15	1.2D + 1.6W		0.0	00		0								

Section: 4 - Bot Elev (ft): 60.00 Height (ft): 20.000
Shear Bear

Max Compression Member	Pu (kip)	Load Case	Len (ft)	Bracing \%				$\begin{aligned} & \text { F'y } \\ & \text { (ksi) } \end{aligned}$	Phic Pn Num		Num	phiRnvphiRn		Use	
				X	Y	Z	KL/R				Holes	(kip)	(kip)	\%	Controls
LEG PST - 2" DIA PIPE	-17.87	1.2D + 1.6W	4.00	100	100	100	61.0	50.0	36.68	0	0	0.00	0.00	48	Member X
HORIZSAE - 1.5X1.5X0.25	-0.46	1.2D + 1.6W 60	4.500	100	100	100	184.9	36.0	4.56	1	1	7.95	13.92	10	Member Z
DIAG SAE-1.5X1.5X0.1563	-2.16	1.2D + 1.6W 90	6.021	50	50	50	122.5	36.0	6.47	1	1	7.95	8.70	33	Member Z

Max Tension Member	Pu (kip)	Load Case	$\begin{gathered} \text { Fy } \\ \text { (ksi) } \end{gathered}$	$\begin{gathered} \text { Fu } \\ (\mathbf{k s i}) \end{gathered}$	Phit Pn (kip)	Num Bolts	Num Holes	Shear phiRnv (kip)	Bear phiRn (kip)	Blk Shear phit Pn (kip)	Use \%	Controls
LEG PST-2" DIA PIPE	15.52	0.9D + 1.6W 60	50	65	48.15	0	0	0.00	0.00		32	Member
HORIZ SAE - 1.5X1.5X0.25	0.51	1.2D + 1.6W	36	58	17.41	1	1	7.95	8.27	6.25		Blk Shear
DIAG SAE - 1.5X1.5X0.1563	2.08	$1.2 \mathrm{D}+1.6 \mathrm{~W} 90$	36	58	11.17	1	1	7.95	5.17	3.91		Blk Shear

Max Splice Forces	Pu (kip)	Load Case	phiRnt (kip)	Use $\%$	Num Bolts	Bolt Type
Top Tension	0.00		0.00	0	0	
Top Compression	1.80	$1.2 \mathrm{D}+1.0 \mathrm{Di}+$	0.00	0		
Bot Tension	17.98	$0.9 \mathrm{D}+1.6 \mathrm{~W} 180$	81.36	22	4	$5 / 8 \mathrm{~A} 325$
Bot Compression	20.63	$1.2 \mathrm{D}+1.6 \mathrm{~W}$	0.00	0		

Far Field Approximation
with downtilt variation

(
Enter Main Beam

Distance from Antenna Structure Base in Horizontal plan	0.1	8.4	20.8	27.5	34.7	42.5	51.3	61.3	73.0	87.1	104.8	128.0	160.3	209.4	294.7	484.1	554.1	1298.2	\#NUM!
Angle from Main Beam (reference to horizontal plane)	90	80	70	65	60	55	50	45	40	35	30	25	20	15	10	5	4	0	0
dB down from centerline (referenced to centerline)	30.3	27.3	25.7	25.7	26	26	26.2	25.5	23.7	20.9	18.1	21.6	16.5	14.7	13.9	3.4	2.3	0.1	0
Reflection Coefficient (1 to 4, 2.56 typical)	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56
Power Density ($\mathrm{mW} / \mathrm{cm}^{\wedge}$)	0.0001	0.000	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.000	0.0003	0.0005	0.0002	0.0003	0.0003	0.000	0.0009	0.0009	0.00	\#NUM!
Percent of Occupational Standard	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	\#NUM!
Percent of General Population Standard	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.1	0.1	0.0	0.1	0.1	0.0	\#NuM!

Antenna Type BXA-80063/6CF - CDMA SERVICE
Dipole / Wire/ Yagi Antenna Types

Location:	BROOKFIELD CT	
Site \#:	2-107	
Date:	11/06/17	
Name:	Maria Montrose	
File Name:	p:rl\|rif_safel2cel0107.x	s

Instructions:
Instructions:

1) Fill in Site Location, Site number, Date, Name of Person Responsible for Date, and enter File Name to ba saved as.
 4) From manufacturer's plots, or data sheet, input Angle from mainbeam and $d B$ below mainbeam centerline.
2) Enter Reflection coefficient (2.56 would be typical, 1 for free space)
3) Spreadsheet calculates actual power density, then relates as Occupational or General Population percentage of FCC Standard.
4) An odd distance may be entered in the rightmost column of the lower table.

Far Field Approximation
with downtilt variation
wnikcon wireless

Enter Main Beam
Distance in feet below：

$\begin{gathered} \sum_{j}^{j} \\ \sum_{\#}^{\prime} \end{gathered}$	0 －	－	$\begin{array}{c\|c} \stackrel{\circ}{\circ} & \sum_{n}^{2} \\ \end{array}$	\sum_{\sum}^{\sum} \sum	$\left.\begin{aligned} & \sum_{\sum}^{2} \\ & \sum_{\#}^{2} \end{aligned} \right\rvert\,$ \sum	$\begin{aligned} & \sum_{i}^{i} \\ & \sum \\ & \sum \end{aligned}$
$\begin{array}{r} \stackrel{\circ}{0} \\ \dot{\infty} \end{array}$	\bigcirc－	$\begin{gathered} \stackrel{\sim}{\omega} \\ \stackrel{+}{-} \end{gathered}$	$\begin{gathered} \stackrel{\circ}{\circ} \\ \stackrel{\sim}{\mathrm{N}} \end{gathered}$	$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \end{aligned}$	\bigcirc	\bigcirc
$\begin{gathered} \stackrel{\rightharpoonup}{\mathbf{o}} \\ \underset{\sim}{\circ} \end{gathered}$	\checkmark	$\begin{gathered} \circ \\ 0 \\ \hline \end{gathered}$	$\begin{array}{r} \circ \\ \stackrel{\leftrightarrow}{\sim} \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	${ }_{-}^{\circ} \mathrm{O}$	$\stackrel{\circ}{\circ}$
$\begin{gathered} \stackrel{\sim}{j} \\ \stackrel{y}{j} \end{gathered}$	n	0	$\begin{array}{\|} \stackrel{\leftrightarrow}{\circ} \\ \stackrel{N}{\mathrm{~N}} \end{array}$	$\begin{aligned} & 0 \\ & 0 . \\ & 0 \\ & 0 \end{aligned}$	No	－
$\begin{aligned} & \infty \\ & \underset{\sim}{0} \\ & \underset{\sim}{2} \end{aligned}$	안	$\begin{array}{r} \stackrel{0}{0} \\ \dot{\sim} \\ \hline \end{array}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\mathrm{C}} \\ & \hline \end{aligned}$	0 0	\bigcirc	응
$\begin{gathered} 0 \\ \infty \\ \stackrel{1}{n} \end{gathered}$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \circ \\ & \vdots \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{n}{\mathrm{i}} \\ & \hline \end{aligned}$	O O 1	$\bigcirc{ }^{\circ} \mathrm{O}$	\bigcirc
$\begin{array}{r} - \\ \stackrel{6}{6} \\ \stackrel{r}{2} \\ \hline \end{array}$	은	$\begin{gathered} 0 \\ \text { in } \\ \hline \end{gathered}$	$\begin{gathered} \circ \\ \stackrel{\circ}{\mathrm{i}} \\ \hline \end{gathered}$	$\begin{array}{r}0 \\ \hline 0 \\ 0 \\ 0 \\ \hline\end{array}$	\bigcirc	\bigcirc
$\stackrel{\stackrel{\rightharpoonup}{\dot{m}}}{\stackrel{1}{2}}$	N	$\begin{gathered} \stackrel{\rightharpoonup}{\mathrm{N}} \\ \stackrel{\rightharpoonup}{\mathrm{o}} \\ \hline \end{gathered}$	$\begin{gathered} \stackrel{0}{0} \\ \stackrel{N}{\mathrm{~N}} \end{gathered}$	0 0 0 0 0	\bigcirc	$\stackrel{\square}{0}$
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	앙	$\begin{gathered} \stackrel{0}{2} \\ \underset{\sim}{N} \end{gathered}$	$\begin{aligned} & \circ \\ & \stackrel{0}{\mathrm{~N}} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 . \\ & 0 \\ & \hline \end{aligned}$	\bigcirc	$\bar{\square}$
$\begin{array}{\|c} \circ \\ \stackrel{\circ}{8} \\ \hline \end{array}$	$\stackrel{0}{0}$	$\begin{gathered} \hat{ल} \\ \dot{\sim} \\ \hline \end{gathered}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\mathrm{H}} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{0}{8} \\ & 0 . \end{aligned}$	\bigcirc	\bigcirc
$\stackrel{-}{\hat{\circ}}$	안	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\sim}{*} \\ & \hline \end{aligned}$	$\begin{array}{r} \bullet \\ \stackrel{0}{\mathrm{~N}} \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 . \end{aligned}$	을	\bigcirc
$\begin{aligned} & \infty \\ & \\ & \hline \end{aligned}$	1	$\stackrel{\stackrel{\circ}{\circ}}{\stackrel{+}{+}}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \\ & \hline \end{aligned}$	：	$\bar{\circ}$	$\stackrel{\square}{\circ}$
$\begin{gathered} \stackrel{\infty}{i} \\ \hline \end{gathered}$	in	$\begin{gathered} \stackrel{\sim}{m} \\ \underset{\sim}{3} \\ \hline \end{gathered}$	$\begin{array}{r} \circ \\ \stackrel{0}{\mathrm{i}} \\ \hline \end{array}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & \hline 0 \\ & \hline \end{aligned}$	응	$\stackrel{\square}{0}$
$\begin{aligned} & \dot{9} \\ & \dot{子} \end{aligned}$	绍	$\begin{aligned} & \stackrel{\rightharpoonup}{\overleftarrow{~}} \\ & \underset{N}{4} \\ & \hline \end{aligned}$	$\begin{gathered} \circ \\ \\ \hline \end{gathered}$	$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \end{aligned}$	\bigcirc	\bigcirc
$\begin{array}{r} \stackrel{n}{\omega} \\ \stackrel{\mu}{0} \\ \hline \end{array}$	8	$\begin{gathered} \stackrel{\circ}{0} \\ \underset{\sim}{2} \\ \hline \end{gathered}$	مٌ	$\begin{aligned} & 00 \\ & 0.6 \\ & 0 \\ & 0 \end{aligned}$	응	$\bar{\circ}$
\hat{N}	$\stackrel{\square}{\circ}$	$\begin{gathered} \stackrel{\rightharpoonup}{\mathrm{N}} \\ \stackrel{N}{6} \\ \hline \end{gathered}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{j}} \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & 0 \end{aligned}$	응	$\bar{\circ}$
$\stackrel{+}{\mathrm{i}}$	－	$\begin{gathered} \stackrel{0}{0} \\ \stackrel{e}{6} \end{gathered}$	$\begin{array}{r} 8 \\ \stackrel{\circ}{\mathrm{i}} \\ \hline \end{array}$	$\begin{aligned} & \hline 8 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	웅	\bigcirc
へ－	∞	$\begin{gathered} \infty \\ \stackrel{\sim}{0} \\ \hline \end{gathered}$	$$	0 0 0 0	응	응
$\stackrel{\square}{0}$	－ 8		$\begin{gathered} \circ \\ \stackrel{\circ}{\mathrm{c}} \\ \hline \end{gathered}$	$\begin{array}{r} 8 \\ 0 \\ 0 \\ \hline \end{array}$	\bigcirc	응

Instructions：
1）Fill in Site Location，Site number，Date，Name of Person Responsible for Date，and enter File Name to ba saved as．
 3）Enter Antenna Height（in feet to bottom of antenna），Antenna Gain（expressed as dBi，add 2.17 to dBdeline．
4）From manufacturer＇s plots，or data sheet，input Angle from mainbea
5）Enter Reflection coefficient（ 2.56 would be typical， 1 for free space）
6）Spreadsheet calculates actual power density，then relates as Occupational or General Population percentage of FCC Standard．
7）An odd distance may be entered in the rightmost column of the lower table．
Estimated Radiated Emission

Dipole／Wire／Yagi Antenna Types

Location：	BROOKFIELD CT
Site \＃：	$2-107$
Date：	$11 / 06 / 17$
Name：	Maria Montrose
File Name：	p：Irllif＿safel2cel0107．xls

Antenna Type

Far Field Approximation
Estimated Radiated Emission
Single Emitter Far Field Model Dipole / Wire/ Yagi Antenna Types

Location:	BROOKFIELD CT
Site \#:	$2-107$
Date:	$11 / 06 / 17$
Name:	Maria Montrose
File Name:	p:lrnft satel2cel0107.xls

4) From manufacturer's plots, or data sheet, input Angle from mainbeam and dB below mainbeam centerline.
6) Spreadsheet calculates actual power density, then relates as Occupational or General Population percentage of FCC Standard.
Estimated Radiated Emission
Dipole / Wire/ Yagi Antenna Types

Location:	BROOKFIELD CT
Site \#:	$2-107$
Date:	$11 / 06 / 17$
Name:	Maria Montrose
File Name:	p:Irlirf_safel2cel0107.xls
Operating Freq. (MHz	$\mathbf{2 1 4 5 . 0}$
Antenna Height (tt):	$\mathbf{7 9 . 0}$
Antenna Gain (dBi):	$\mathbf{1 8 . 4}$
Antenna Size (in.):	$\mathbf{7 2 . 0}$
Downtilt (degrees):	$\mathbf{5 . 0}$
Feedline Loss (dB):	$\mathbf{0 . 5}$
Power @ J4 (w):	$\mathbf{1 8 0 . 0}$

Distance from Antenna Structure Base in Horizontal plan
Angle from Main Beam (reference to horizontal plane)
dB down from centerline (referenced to centerline)
Reflection Coefficient (1 to 4, 2.56 typical)
Power Density ($\mathrm{mW} / \mathrm{cm}^{\wedge} 2$ 2)
Percent of Occupational Standard
Percent of General Population Standard

[^2]Instructions:

1) Fill in Site Location, Site number, Date, Name of Person Responsible for Date, and enter File Name to ba saved as.
 3) Enter Antenna Height (in feet to bottom of antenna), Antenna Gain (expressed as dBi, add 2.17 to dBd to ob
2) From manufacturer's plots, or data sheet, input Angle from mainbeam and dB below mainbeam centerline.
3) Enter Reflection coefficient (2.56 would be typical, 1 for free space)
4) Spreadsheet calculates actual power density, then relates as Occupational or General Population percentage of FCC Standard.

Estimated Radiated Emission Single Emitter Far Field Model

Dipole / Wire/ Yagi Antenna Types

Cumulative All Antennas
Instructions:
Instructions:

1) Fill in Site Location, Site number, Date, Name of Person Responsible for Date, and enter File Name to ba saved as.
2) References to J4 refer to a poim where the transmission line exits the equipment sheter and proceeds to the antenna(s).
3) Enter Antenna Height (in feet to bottom of antenna), Antenna Gain (expressed as dBi, add 2.17 to $d B d$ to ob
4) Enter Reflection coefficient (2.56 would be typical, 1 for free space)
5) Spreadsheet calculates actual power density, then relates as Occupal
6) Spreadsheet calculates actual power density, then relates as Occupational or General Population percentage of FCC Standard.
7) An odd distance may be emtered in the rightmost column of the lower table.

+ 毋 ○ ○

옹…

щ ㅛㅜㅇ

品

BXA-80063/6CF (CDMA)
JAHH-65B-A3B-4DT(700)
JAHH-65B-R3B-4DT(550)
JAHH-65B-R3B-5DT(AWS)
JAHH-65B-R3B-50T(PCS)

Property Information

Property Location	37 CARMEN HILL RD
Owner	AMERICAN TOWERS LLC
Co-Owner	C/O PROPERTY TAX DEPT
Mailing Address	PO BOX 723597
	ATLANTA \quad GA 31139
Land Use	$435 \quad$ Cell Site Vac Lnd
Land Class	I
Zoning Code	R100
Census Tract	205100010600

Neighborhood	
Acreage	4
Utilities	
Lot Setting/Desc	Level
Town Clerk Map \# 1	
Town Clerk Map \# 2	

Photo

Sketch
 Sketch

Valuation Summary (Assessed value $=70 \%$ of Appraised Value)

Item	Appraised	Assessed
Buildings	0	0
Extras	0	0
Improvements	16030	11220
Outbuildings	16030	11220
Land	490010	343010
Total	506040	354230

Sub Areas

Subarea Type	Gross Area (sq ft)	Living Area (sq ft)
		0
Total Area		

Outbuilding and Extra Items

Type	Description
Comm Shed	240.00 S.F.
Guyed Tower	80.00 L.F.

Sales History

Owner of Record	Book/ Page	Sale Date	
CHARTER COMMUNICATIONS ENTERTAINMENT 1LP	$313 / 836$	$11 / 1 / 1996$	
FLORIDA TOWER PARTNERS LLC	$683 / 643$	$4 / 10 / 2014$	508
AMERICAN TOWERS LLC	$692 / 597$	$11 / 20 / 2014$	352340

Town of Brookfield, Connecticut - Assessment Parcel Map
Parcel: B05010
Address: 37 CARMEN HILL RD

GENERAL CONSTRUCTION NOTES

2. CONTRACTOR SHALL CONTACT LOCAL 811 FOR IDENTFICATION OF UNDERGROUND UTLITIES
PRIOR TO START OF CONSTRUCTION.
3. Contractor shall be responsille for coordinating all required inspections.
 IMPROVEMENTS SHALL BE EVER
REPORTED TO THE ENGINER.
5. DO Not Change size or spacing of structural elements.
6. Detalls shown are typical: simlar detalls Apply to similar conditons unless
otherwise noted.
7. THESE DRAWING DO NOT INCLUDE NECESSARY COMPONENTS FOR CONSTRUCTION SAFETY
 BoLTS, ETC.
9. CONTRACTOR SHALL DETERMNE EXACT LOCATION OF EXISTING UTLITTES, GROUNDS DRAINS,
DRAIN PPIPSS,
 MAMEDAL OR CORRECTINE ACTIIN. ANY SUCH REMEDALALACTION SHALL REQUIRE WRITTEN
APPROVAL BY THE VERIZON WRELESS REP PRIOR TO PROCEEDNG.
11. EACH CONTRACTOR SHALL COOPREATE WTH THE VERIZON WRRLESS REP, AND COORDINATE

13. ALL CABLEICONDUUT ENTRYYEXIT PORTS SHALL BE WEATHERPROOFED DURING INSTALLATION
USING A SLLIONE SEALANT.
14. WHEERE EXIITTING CONDITIONS DO NOT MATCH THOES SHOWN IN THIS PLAN SET, CONTRACTOR SHALL NOTIFY THE VERIZON WRELESS REP IMMEDIATELY.
15. CONTRACTOR SHALL ENSURE ALL SUBCONTRACTORS ARE PROVIDED WITH A COMPLETE AND
16. Contractor shall remove all rubbish and debris from the site at the end of each
17. CONTRACTOR SHALL COORDINATE WORK SCHEDULE WTH LANDLORD AND TAKE PRECAUTIONS
TO MINIIZ IMPACT AND DISRUPTION OF OTHER OCCUPANTS OF THE FACLITT.
18. CONTRACTOR SHALL UURNISH VERZZON WIRELESS WITH A PDF MARKED UP AS-BULLT SET OF
19. PRIO TO SUBMISIIN OA BID, CONTRACTRR SHALL LOORDINATE WTTH VERRZN MRELESS REP TO DETERM INE WHAT, IF ANY, ITEMS WILL BE PROVIDED. ALITEMS NOT TROVIDED SHALL
PROVDOE AD INSTALLED BY THE CONTRACTOR. CONTRACTOR WLL INSTAL ALL ITEMS
PROVIDED

21. CONTRACTOR SHALL INSTALL ALL SITE
SPECIFICATONS AND REQUIREMENTS.
22. CONTRACTOR SHALL SUBMIT ALL SHOP DRAWINGS TO VERZON MRLLESS FOR REVIEW AND
APPROVAL PRIOR TO FABRICATION.
 PLANS.
 CoNTRACOR SHAL BE SOLELY RESPONSIBLE F FR ALL THE CONSTRUCTION MEANS. METHODS,
TECHN OUESS SEUUECEE ANO PROCEDURES ANO FOR COORDNATING ALL PORTIONS OF THE
WORK UNOR THE CONTRACT.
25. CONTRACTOR SHAL NOTEY

26. COntracto

 AND FIRE REEVEN
BARRIERS, ETC.

THE CONTRACTOR SHALL PROTECT AT HIS OWN EXPENSE, ALL EXISTING FACIITIES AND SUCH

28. ALL WORK SHALL BE INTALLED INA AIRST CLASS, NEAA AND WORKMANLIE MANNER B

29. IN ORDER TO ESTABLISH STANDARDS OF QUALIT AND PERFORMANCE ALL TTPES OF MATERIALS LSTTED HEREINAF TER BY MANUFACTURER'S NAMES ANDOR MANUFACTURE
CATALOG NUMBER SHALL BE PROVIDED BY THESE MANUFACTURERS AS SPECIFIED.

STRUCTURAL STEEL NOTES:

1. STRUCTURAL STEEL SHALL CONFORM TO THE LATEST EDTION OF THE AISC "SPELIIICATION
2. STRUCTURAL STEEL ROLLED SHAPES, PLATES AND BARS SHALL CONFORM TO THE FOLLOWING
A. ASTM A.572, GRADE 50 - ALL W SHAPES, UNLESS NOTED OR A992 OTHERWISE
B. ASTM A-36 - all other rolled shapes, plates and bars unless noted otherwise.
C. ASTM A-500, GRADE B-HSS SECTION (SQUARE, RECTANGULAR, AND ROUND)
D. ASTM A.325, TYPE SC OR N- ALL BOLTS FOR CONNECTING STRUCTURAL MEMBERS
E. ASTM F-155407-ALL ANCHOR BOLTS, UNLESS NOTED OTHERWISE
3. ALL EXPOSED STRUCTURAL STEEL MEMBERS SHALL BE HOT-DIPPED GALVANIED AFTER FABRICATION PER ASTM A123. EXPOSED
GALIANIZD PER ASTM A153 OR B695.
4. ALL FIELD CUT SURFACES, FIELD DRILLED HOLES AND GROUND SURFACES WHERE EXISTING

5. CONNECTIONS:
A. ALL WELDING TO BE PERFORMED BY AWS CERTFIED WELDERS AND CONDUCTED IN
ACCORDANCE WTH THE LATEST EDTIN OF THE AWS WELDNG CODE D1.1.

C. INSPECTION SHALL BE PERFORMED BY AN AWS CERTIFIED WELD INSPECTOR.
D. IT IS THE CONTRACTORS RESPONSIBUITY TO PROVIDE BURNNGMELING PERMITS AS

E. ALL ELECTRODES TO BE LOW HYOROGEN, MATCHING FILLER METAL, PER AWS D1.1
F. MINIMUM WELD SIZE TO BE 0.1875 INCH FILLET WELDS, UNLESS NOTED OTHERWISE,
G. PRIOR TOO FILLD WELIING GALVANIING MATERIAL. CONTRACTOR SHALL GRIND OFF GALVANIING $1 /$ BEYOND ALL FIELD WELD SURFACES. AFTTR WELD AND WELD
INSPECTION IS COMPLETE, REPAR ALL GROUND AND WELDED SURFACES WTH ZR

Feb 132018 12:52 AM cosign

GENERAL NOTES

Shlef Numere	Rensown
$\mathrm{G}-002$	0

[^0]: *Deflection, Twist and Sway was evaluated considering a design wind speed of 60 mph (3-Second Gust) per ANSI/TIA-222-G

[^1]: 93 mph no ice
 50 mph w/ $/ 3 / 4^{\prime \prime}$ radial ice
 Loads: $\begin{aligned} & 93 \mathrm{mph} \text { no ice } \\ & 50 \mathrm{mph} \text { w/ } 3 / 4^{\prime \prime} \text { ra }\end{aligned}$

[^2]: Antenna Type JAHH-65B-R3B

