JULIE D. KOHLER

please reply to: Bridgeport WRITER'S DIRECT DIAL: (203) 337-4157
E-Mail Address: jkohler@cohenandwolf.com

April 14, 2015

Attorney Melanie Bachman
Acting Executive Director Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

Re: Notice of Exempt Modification
 Town Square Media Group/T-Mobile equipment upgrade
 T-Mobile Site ID CT11196A
 37 Carmen Hill Road, Brookfield CT

Dear Attorney Bachman:
This office represents T-Mobile Northeast LLC ("T-Mobile") and has been retained to file exempt modification filings with the Connecticut Siting Council on its behalf.

In this case, Town Square Media Group owns the existing telecommunications tower and related facility at 37 Carmen Hill Road, Brookfield Connecticut (latitude 41.49343, longitude -72.42873). T-Mobile intends to add three (3) antennas and add related equipment at this existing facility in Brookfield ("Brookfield Facility"). Please accept this letter as notification, pursuant to R.C.S.A. § 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to the First Selectman, William N. Tinsley and the property owner, Florida Tower Partners.

The existing Brookfield Facility consists of a 454 foot (499 feet with appurtenances) self-supporting tower. ${ }^{1}$ T-Mobile plans to add three (3) antennas on proposed pipe mounts at a centerline of 280 feet AGL. (Existing antennas would be relocated on new pipe mounts.) TMobile will also add an ice bridge, three (3) RRUs (remote radio units) to a proposed H-frame near T-Mobile's existing equipment, and add coax cables to the existing coax lines. (See the plans dated April 13, 2015 attached hereto as Exhibit A). The existing tower is structurally capable of supporting T-Mobile's proposed use, as indicated in the structural analysis dated

[^0]April 14, 2015
Site ID CT11196A
Page 2

March 18, 2015 and stamped March 19, 2015, attached hereto as Exhibit B.
The planned modifications to the Brookfield Facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modification will not increase the height of the tower. T-Mobile's additional antennas will be installed at the 280 foot level. The enclosed tower drawing (Sheet $\mathrm{A}-1$) confirms that the proposed modification will not increase the height of the tower.
2. The installation of the T-Mobile equipment in the existing compound, as reflected on the attached site plan, will not require an extension of the site boundaries. (See Sheet A-1). T-Mobile's proposed equipment will be located entirely within the existing compound area.
3. The proposed modification to the Facility will not increase the noise levels at the existing facility by six decibels or more.
4. The operation of the additional antennas will not increase the total radio frequency (RF) power density, measured at the base of the tower, to a level at or above the applicable standard. According to a RF Exposure Analysis prepared by EBI dated April 7, 2015 T-Mobile's operations would add 1.46% of the FCC Standard. Therefore, the calculated "worst case" power density for the planned combined operation at the site including all of the proposed antennas would be 18.04% of the FCC Standard as calculated for a mixed frequency site as evidenced by the engineering exhibit attached hereto as Exhibit C .

For the foregoing reasons, T-Mobile respectfully submits that the proposed additional antennas and equipment at the Brookfield Facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Upon acknowledgement by the Council of this proposed exempt modification, T-Mobile shall commence construction approximately sixty days from the date of the Council's notice of acknowledgement.

cc: First Selectman William N. Tinsley, Town of Brookfield
Florida Tower Partners
Town Square Media Group
Jamie Marchini, Transcend Wireless

[^1]A-2 ANTENNA PLAN \& DETAILS
A-1 COMPOUND \& ELEVATION PLAN
$\stackrel{\ominus}{\gtrless}$ -
$\stackrel{\text { - }}{\Xi}$
XヨaNI ЭNIMシYa
$\wedge \exists \exists$

REPORT 361113
SITE ID: CT11196A
SITE NAME: BROOKFIELD/JUNCTION RD ADDRESS: 37 CARMEN HILL ROAD, BROOKFIELD, CT 06804

DATE: 3/6/2015

STRUCTURAL ANALYSIS
FOR A 499' G-48 GUYED TOWER
BROOKFIELD, CONNECTICUT

STAINLESS LLC

Table of Contents

Page No. i
Report No. 361113

Rev.	Date	Description
A	$3 / 18 / 15$	Deleted proposed hybrid cable

A. AUTHORIZATION/PURPOSE 1
B. TOWER HISTORY 1
C. CONDITIONS INVESTIGATED1
D. LOADS AND STRESSES 3
E. METHOD OF ANALYSIS 3
F. RESULTS 3
G. CONCLUSIONS AND RECOMMENDATIONS 4
H. PROVISIONS OF ANALYSIS 4
APPENDIX
GENERAL ARRANGEMENT A-1
LINEAR APPURTENANCES A-2

PBOFEDEIOPAL ENCUEGA
Thereny centify thet fry ons, spacification, or report was preperd by wa ourder my direct supmwion end the I am a duy Lionsed Professional Engneer uacer the laws of the S6e of Candusylilly

Rev.	Date	Description
A	$3 / 18 / 15$	Deleted proposed hybrid cable

A. AUTHORIZATION/PURPOSE

As authorized by Tom Abernatha of Transcend Wireless LLC. a structural analysis was performed to investigate the adequacy of a 499^{\prime} G-48 guyed tower located at 37 Carmen Hill Road, Brookfield, Connecticut to support specified equipment.

B. TOWER HISTORY

The tower was originally designed and furnished in 1995 by Stainless, Inc. It was designed in accordance with ANSI/EIA/TIA Standard 222-E for a basic wind speed of 85 mph with no ice and 73.6 mph with $1 / 2^{\prime \prime}$ radial ice thickness while supporting the following equipment:

1. One (1) ERI FML half-wave 4-bay antenna with radome side mounted on a pole at the top of the tower, and fed by one (1) $3^{\prime \prime}$ line.
2. One (1) 1-bay FM antenna at the 245^{\prime} level, fed by one (1) $3^{\prime \prime}$ line.
3. Thirty (30) whip antennas on 6 -position mounts, six (6) each at the $430^{\prime}, 390^{\prime}, 350^{\prime}, 310^{\circ}$, and 270^{\prime} levels, fed by either thirty (30) $7 / 8^{\prime \prime}$ or $1-5 / 8^{\prime \prime}$ lines.
4. Three (3) 10^{\prime} diameter grid dishes at the 220^{\prime} level, each fed by one (1) $1-5 / 8^{\prime \prime}$ line.
5. One (1) three-wire detuning skirt from the ground to the 250^{\prime} level.
6. One (1) inside climbing ladder with cable type safety device for the full height of the tower.
7. One (1) FAA red lighting system with circuits contained within one (1) $3 / 4^{\prime \prime}$ conduit for the full height of the tower.
Stainless LLC does not have any records of any structural modifications performed on the tower or its foundations since its original installation.

C. CONDITIONS INVESTIGATED

The analysis was performed for the tower supporting specified equipment based upon the following sources:

- Stainless LLC Report 361111 dated 7/28/2014.
- Stainless LLC Contract Proposal P14_3611_002 dated 12/12/2014.
- Emails from Tom Abernatha dated $11 / 4 / 2014,11 / 11 / 2014,3 / 3 / 2015$ and $3 / 6 / 2015$ with details of tower existing and proposed equipment.
- Stainless LLC Tower Mapping Report 361114 dated 2/26/2015.
- Structural Analysis Report 28758 dated $8 / 29 / 2014$ prepared by Ramaker \& Associates, Inc.
- Structural Analysis Report dated 9/8/2014 prepared by Hudson Design Group.
- T-Mobile RFDS dated 7/21/2014.
- Email from Justin Duncan of Transcend Wireless dated 3/18/2015 to remove proposed hybrid cable.

Rev.	Date	Description
A	$3 / 18 / 15$	Deleted proposed hybrid cable

1. One (1) 2-bay FM antenna side mounted on a pole at the top of the tower, and fed by one (1) 3 " line.
2. One (1) small Yagi antenna mounted to the top support mast at the 460° level, fed by one (1) $7 / 8^{\prime \prime}$ line.
3. One (1) outside transfer platform at the 446^{\prime} level.
4. One (1) Andrew 4^{\prime} diameter dish at the 353^{\prime} level, fed by one (1) $5 / 8^{\prime \prime}$ line.
5. One (1) $2^{\prime} \times 4^{\prime}$ Scala paraflector on a 5^{\prime} side arm at the 340^{\prime} level, fed by one (1) $7 / 8^{\prime \prime}$ line.
6. One (1) 10^{\prime} whip antenna on a 5^{\prime} side arm at the 305^{\prime} level, fed by one (1) $1-1 / 4^{\prime \prime}$ line.
7. One (1) 6^{\prime} whip antema on a 5^{\prime} side arm at the 293^{\prime} level, fed by one (1) $1 / 2^{\prime \prime}$ Alumaflex line.
8. Three (3) EMS RR90-18-02DP existing and three (3) Commscope LNX-6515DS-VTM proposed panel antennas on three (3) proposed sector mounts at the 280^{\prime} level, fed by six (6) existing, six (6) proposed $1-5 / 8^{31}$ lines.
9. One (1) RFS APXVSPP18-C-A20, and one (1) EMS RR65-18-02DPL2 panel antennas; two (2) ALU 800 and 1900 MHz RRHs, and three (3) sector mounts at the 258° level, fed by one (1) $1-1 / 4^{\prime \prime}$ fiber cable.
10. One (1) 10^{\prime} diameter grid dish at the 254° level, fed by one (1) $7 / 8^{\prime \prime}$ line.
11. One (1) 10^{\prime} diameter grid dish at the 250^{\prime} level, fed by one (1) $7 / 8^{\prime \prime}$ line.
12. One (1) 2-bay dipole antenna on a 6^{\prime} side arm at the 140^{\prime} level, fed by one (1) $7 / 8^{\prime \prime}$ line.
13. One (1) 2-bay dipole antenna on a 6^{\prime} side arm at the 125^{\prime} level, fed by one (1) $7 / 8^{\prime \prime}$ line.
14. One (1) 2-bay dipole antenna on a 6^{\prime} ' side arm at the 108^{\prime} level, fed by one (1) $7 / 8^{\prime \prime}$ line.
15. Three (3) detuning skirts from the ground to the 220^{\prime} level.
16. One (1) \#6 tinned ground wire for the full height of the tower.
17. One (1) $1-1 / 2^{\prime \prime}$ support conduit for the full height of the tower.
18. One (1) inside climbing ladder with cable type safety device for the full height of the tower.
19. One (1) FAA red lighting system with circuits contained within one (1) $3 / 4^{*}$ conduit for the full height of the tower.

The locations of the existing transmission lines were based upon Stainless LLC Tower Mapping Report 361114 dated $2 / 26 / 2015$. Proposed transmission lines were located to minimize wind load on the tower. The locations of all transmission lines are shown on page A2 of this Report. Deviating from these appurtenance arrangements may invalidate the results presented in this Report.

All deadlines and antennas on the tower will be removed and hence are not included in the analysis. The analysis is invalid if these unused equipment are not removed.

Rev.	Date	Description
A	$3 / 18 / 15$	Deleted proposed hybrid cable

D. LOADS AND STRESSES

The analysis was performed using a basic wind speed of 85 mph with no ice and 31 mph with 1 " radial ice thickness. This load was calculated and applied in accordance with the provisions of ANSI/TIA/EIA Standard 222-F, Structural Standards for Steel Antenna Towers and Antenna Supporting Structures, effective March 29, 1996.

Allowable unit stresses and minimum safety factors used to evaluate the adequacy of the structure were also in accordance with this TIA/EIA Standard.

E. METHOD OF ANALYSIS

The analysis was performed using Stainless LLC's Beam-Column Analysis Program, a computer operation which idealizes the tower as a continuous beam-column on non-linear, elastic supports (guys) subject to simultaneous transverse (wind) and axial (dead, ice and vertical components of guy tensions) loads.

F. RESULTS

The results of the analysis show the following ratings:

COMPONENT	SPAN	RATING \%
Tower top	-	90
	8	48
	7	60
	6	63
Leg	5	55
Compression	4	51
	3	54
	2	55
	1	55
$\begin{aligned} & \text { Leg } \\ & \text { Tension } \end{aligned}$	8	--
	7	--
	6	--
	5	--
	4	--
	3	--
	2	--
	1	--

Rev. $_{n}$	Date	Description
A	$3 / 18 / 15$	Deleted proposed hybrid cable

Diagonals	8	64
	7	51
	6	78
	5	75
	4	76
	3	90
	2	72
	1	41
Guys	8	62
	7	62
	6	63
	5	69
	4	71
	3	81
	2	86
	1	72
Foundations	Base	62
	Inner anchors	100
	Outer anchors	72

Ratings of up to 105% are considered acceptable due to tolerances in calculating the applied loads on the tower as well as member design capacities.
G. CONCLUSIONS AND RECOMMENDATIONS

Based on the preceding results, the following conclusion may be drawn:

1. The tower, supporting the equipment as specified in Section C above, is adequate to achieve a basic wind speed of 85 mph with no ice and 31 mph with 1 " radial ice thickness in accordance with the provisions of ANSI/TIA/EIA Standard 222-F.

H. PROVISIONS OF ANALYSIS

The analysis performed and the conclusions contained herein are based on the assumption that the tower has been properly installed and maintained, including, but not limited to the following:

1. Proper alignment and plumbness.
2. Correct guy tensions.
3. Correct bolt tightness.
4. No significant deterioration or damage to any component.

Rev.	Date	Description
A	$3 / 18 / 15$	Deleted proposed hybrid cable

Furthermore, the information and conclusions contained in this Report were determined by application of the current "state-of-the-arts" engineering and analysis procedures and formulae, and Stainless LLC assumes no obligations to revise any of the information or conclusions contained in this Report in the event that such engineering and analysis procedures and formulae are hereafter modified or revised. In addition, under no circumstances will Stainless LLC have any obligation or responsibility whatsoever for or on account of consequential or incidental damages sustained by any person, firm or organization as a result of any information or conclusions contained in the Report, and the maximum liability of Stainless LLC, if any, pursuant to this Report shall be limited to the total funds actually received by Stainless LLC for preparation of this Report.

Customer has requested Stainless LLC to prepare and submit to Customer an engineering analysis with respect to the Subject Tower and has further requested Stainless LLC to make appropriate recommendations regarding suggested structural modifications and changes to the Subject Tower. In making such request of Stainless LLC, Customer has informed Stainless LLC that Customer will make a determination as to whether or not to implement any of the changes or modifications which may be suggested by Stainless LLC and that Customer will have any such changes or modifications made by riggers, erectors and other subcontractors of Customer's choice.

Customer hereby agrees and acknowledges that Stainless LLC shall have no liability whatsoever to Customer or to others for any work or services performed by any persons other than Stainless LLC in connection with the implementation of any structural changes or modifications recommended by Stainless LLC including but not limited to any services rendered for Customer or for others by riggers, erectors or other subcontractors. Customer acknowledges and agrees that any riggers, erectors or subcontractors retained or employed by Customer shall be solely responsible to Customer and to others for the quality of work performed by them and that Stainless LLC shall have no liability or responsibility whatsoever as a result of any negligence or breach of contract by any such rigger, erector or subcontractor.

EXHIBIT C

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CT11196A
Brookfield/Junction Rd.
37 Carmen Hill Road
Brookfield, CT 06804
April 7, 2015
EBI Project Number: 6215001650

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general public allowable limit:	$\mathbf{1 8 . 0 4 \%}$

April 7, 2015

T-Mobile USA
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 06002

Emissions Analysis for Site: CT11196A - Brookfield/Junction Rd.

EBI Consulting was directed to analyze the proposed T-Mobile facility located at $\mathbf{3 7}$ Carmen Hill Road, Brookfield, CT, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(\mathrm{~b})(1)$ - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limit for the 700 MHz Band is $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$, and the general population exposure limit for the PCS band is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.
environmental | engineering | due diligence

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 37 Carmen Hill Road, Brookfield, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 2 GSM channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel
2) 2 UMTS channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
3) 2 LTE channels (PCS Band-1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
4) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts.
5) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.

[^2]environmental | engineering | due diligence
6) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
7) The antennas used in this modeling are the EMS RR90-18-02DP for 1900 MHz (PCS) channels and the Commscope LNX-6515DS-VTM for 700 MHz channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The EMS RR90-1802DP has a maximum gain of $\mathbf{1 5 . 4} \mathbf{d B d}$ at its main lobe. The Commscope LNX-6515DSVTM has a maximum gain of $\mathbf{1 4 . 6} \mathbf{d B d}$ at its main lobe. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
8) The antenna mounting height centerline of the proposed antennas is 280 feet above ground level (AGL).
9) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

T-Mobile Site Inventory and Power Data

Sector	A	Sector:	B	Sector:	C
Antenna \#	1	Antenna \#:	1	Antenna \#:	1
Make / Model	EMS RR90-18-02DP	Make / Model:	EMS RR90-18-02DP	Make / Model:	EMS RR90-18-02DP
Gain	15.4 dBd	Gain:	15.4 dBd	Gain:	15.4 dBd
Height (AGL)	280	Height (AGL):	280	Height (AGL) :	280
Frequency Band	$1900 \mathrm{MHz}(\mathrm{PCS})$	Frequency Bands	1900 MHz (PCS)	Frequency Bands	1900 MHz (PCS)
Channel Coun	6	Channel Count	6	\# PCS Channels:	6
Total TX Power	240	Total TX Power:	240	\# AWS Chamnels:	240
ERP (W)	8,321.68	ERP (W):	8,321.68	ERP (W):	8,321.68
Antenna A1 MPE\%	0.40	Antenna B1 MPE\%	0.40	Antenna C1 MPE\%	0.40
Antenna \#	2	Anterna \#:	2	Antenna \#:	2
Make / Model	Commscope LNX- 6515DS-VTM	Make / Model:	Commscope LNX-6515DS-VTM	Make / Model:	Commscope LNX-6515DS-VTM
Gain	14.6 dBd	Gain:	14.6 dBd	Gain:	14.6 dBd
Height (AGL)	280	Height (AGL):	280	Height (AGL)	280
Frequency Bands	700 MHz	Frequency Bands	700 MHz	Frequency Bands	700 MHz
Channel Count	1	Channel Count	1	Chamel Count	1
Total TX Power	30	Total TX Power:	30	Total TX Power:	30
ERP (W)	865.21	ERP (W):	865.21	ERP (W):	865.21
Antenna A2 MPE\%	0.09	Antenna B2 MPE\%	0.09	Antenna C2 MPE\%	0.09
	Site Composite MPE\%			T-Mobile Sector 1 Total: T-Mobile Sector 2 Total: T-Mobile Sector 3 Total:	l: 0.49%
	Carrier	MPE\%			$1: \quad 0.49 \%$
	T-Mobile	1.46			$1: \quad 0.49 \%$
	Sprint	1.52\%		Site Total:	18.04 \%
	Clearwire	0.65%			
	AT\&T	5.76\%			
	Per CSC MPE Database - On site measurement baseline including WKRI FM Radio, WINE AM Radio, Town Fire Dept., Town Police Dept., and Town PW Dept.	8.65%			
	Site Total MPE \%:	18.04 \%			

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (\%)
Sector 1:	0.49%
Sector 2:	0.49%
Sector 3:	0.49%
T-Mobile Total:	1.46%
Site Total:	18.04%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{1 8 . 0 4 \%}$ of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

EBI Consulting

21 B Street
Burlington, MA 01803

[^0]: ${ }^{1}$ While the online docket for the Connecticut Siting Council does not provide a docket or petition number for the approval of this structure, it does reference this structure in connection with notices of intent captioned EM-VER-018-140725, EM-SPRINT-018-130322, and TS-CING-018-111011.

[^1]: G-1 GROUNDING DETAILS

[^2]: 21 B Street • Burlington, MA 01803
 Tel: (781) 273.2500
 Fax: (781) 273.3311

