56 Prospect Street,
P.O. Box 270

Hartford, CT 06103

Kathleen M. Shanley Manager - Transmission Siting Tel: (860) 728-4527

March 3, 2022

Melanie A. Bachman
Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Notice of Exempt Modification
 Eversource Site \# 6581
 790 Willis Street, Bristol, CT 06010
 Latitude: 41-38-56 N / Longitude: 72-56-50 W

Dear Ms. Bachman:

The Connecticut Light and Power Company doing business as Eversource Energy ("Eversource") currently maintains multiple antennas and microwave dishes at various mounting heights on an existing 130-foot self-support tower located at 790 Willis Street in Bristol. See Attachment A, Parcel Map and Property Card. The tower and property are owned by Eversource. Eversource is seeking the Connecticut Siting Council's authorization for the installation of one 20-foot dipole antenna to be mounted at 130 feet above ground level ("AGL") on a heavy-duty mounting kit, and the removal of one 24 -foot $31 / 2$-inch omni directional antenna and associated mount at 130 feet. There will be no changes to the area of the fenced compound, the tower or other existing antennas and equipment mounted on the tower. The tower and existing and proposed equipment on the tower are depicted on Attachment B, Construction Drawings, dated January 19, 2022 and Attachment C, Structural Analysis, dated January 13, 2022. The Connecticut Siting Council approved the self-support tower at this location in Petition No. 800 in January 2007.

The modification is required to eliminate transmitter induced noise issues from two antennas previously installed as part of Eversource's program to update its obsolete analog voice radio communications system to a modern digital voice communications system (refer to EM-EVER-017200423, dated May 11, 2020). The transmitter issue manifests as passive intermodulation, or PIM, noise located on the receive frequencies, which limits the system level coverage capability of the site.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies ("R.C.S.A.") §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this notice is being delivered to Jeffrey Caggiano, Mayor for the City of Bristol and Robert M. Flanagan, AICP, City Planner for the City of Bristol via the United States Postal Service or private carrier. Proof of delivery is attached. See Attachment D, Proof of Delivery of Notice.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2):

1. There will be no change to the height of the existing tower.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the new antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard as shown in the attached Radio Frequency Emissions Report, dated February 7, 2022 (Attachment E - Power Density Report) ${ }^{1}$.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, Eversource respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § $16-50 j-72(b)(2)$. One original and two copies of this notice are enclosed.

Communications regarding this Notice of Exempt Modification should be directed to Kathleen Shanley at (860) 728-4527.

By :

cc: Honorable Jeffrey Caggiano, Mayor, City of Bristol
Robert M. Flanagan, AICP, City Planner, City of Bristol
Attachments
A. Parcel Map and Property Card
B. Construction Drawings
C. Structural Analysis
D. Proof of Delivery of Notice
E. Power Density Report

[^0]ATTACHMENT A - PARCEL MAP AND PROPERTY CARD

City of Bristol, Connecticut Assessment Parcel Map
Parcel: 0034800
Account \#: 0034800
Address: 790 WILLIS ST

790 WILLIS ST

Location	790 WILLIS ST	Mblu	$06 / / 8 \mathrm{~A} / /$
Acct\#	0034800	Owner	CONN LIGHT + POWER CO
Assessment $\$ 449,190$	Appraisal	$\$ 641,700$	
PID 5681	Building Count	1	

Current Value

Appraisal			
Valuation Year	Improvements	Land	Total
2017	\$392,100	\$249,600	\$641,700
Assessment			
Valuation Year	Improvements	Land	Total
2017	\$274,470	\$174,720	\$449,190

Owner of Record

Owner CONN LIGHT + POWER CO Sale Price \$0

Co-Owner

Address 107 SELDEN ST
BERLIN, CT 06037

Sale Price $\quad \$ 0$
Certificate 1
Book \& Page 0277/0293
Sale Date 01/25/1952

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book \& Page	Sale Date	
CONN LIGHT + POWER CO	$\$ 0$	1	$0277 / 0293$	$01 / 25 / 1952$	

Building Information

Building 1 : Section 1

Year Built:	1950
Living Area:	900
Replacement Cost:	$\$ 40,248$
Building Percent 65 Good: Replacement Cost Less Depreciation: $\$ 26,200$ Building Attributes Field Description	

STYLE	Warehouse
MODEL	Ind/Comm
Stories:	1
Occupancy	1.00
Exterior Wall 1	Concr/Cinder
Exterior Wall 2	
Roof Structure	Gable
Roof Cover	Asphalt Shingl
Interior Wall 1	Minim/Masonry
Interior Wall 2	
Interior Floor 1	Concr-Finished
Interior Floor 2	
Heating Fuel	Electric
Heating Type	Hot Air-no Duc
AC Type	Unit/AC
Struct Class	
Bldg Use	Public Utility
Bedrooms	
Full Baths	
Half Baths	
Usrfid 218	
Usrfld 219	
1st Floor Use:	
Heat/AC	Heat/AC Pkgs
Frame Type	Masonry
Baths/Plumbing	Light
Ceiling/Wall	None
Rooms/Prtns	Light
Wall Height	8.00
\% Comn Wall	

Building Photo

(http://images.vgsi.com/photos2/BristolCTPhotos//\00\05\61\14
Building Layout

(http://images.vgsi.com/photos2/BristolCTPhotos//Sketches/568

Building Sub-Areas (sq ft)			Legend
Code	Description	Gross Area	Living Area
BAS	First Floor	900	900
SLB	Slab	900	0
		1,800	900

Extra Features

Extra Features	Legend	
	No Data for Extra Features	

Land

Description	Public Utility	Frontage	300
Zone	R-25	Depth	
Neighborhood	50	Assessed Value	$\$ 174,720$
Alt Land Appr	No	Appraised Value	$\$ 249,600$
Category			

Outbuildings

Outbuildings						Legend
Code	Description	Sub Code	Sub Description	Size	Value	Bldg \#
CELL	Cell Tower/Site			2.00 UNITS	\$210,000	1
CB3	PreCastConcCel			300.00 S.F.	\$54,000	1
CB3	PreCastConcCel			300.00 S.F.	\$54,000	1
FCP	Carport			900.00 S.F.	\$5,600	1
GAR1	Garage	FR	Frame	420.00 S.F.	\$6,300	1
CB3	PreCastConcCel			200.00 S.F.	\$36,000	1

Valuation History

Appraisal								
Valuation Year	Improvements	Land						
19		$\$ 392,100$	$\$ 249,600$					
2018		$\$ 392,100$	$\$ 249,600$					
2017		$\$ 392,100$	$\$ 641,700$					

Assessment					
	Valuation Year	Improvements			
19		$\$ 274,470$	Land	Total	
2018		$\$ 274,470$	$\$ 174,720$	$\$ 449,190$	
2017		$\$ 274,470$	$\$ 174,720$	$\$ 449,190$	

(c) 2019 Vision Government Solutions, Inc. All rights reserved.

ATTACHMENT B - CONSTRUCTION DRAWINGS

EVERS $=$ URCE
 ENERGY

$\frac{\text { ANTENNA CABLE GROUNDING }}{\text { No SCALE }}$

NOTES
Do not install cabie ground kit at a bend and alwars otrect ground
wir doonn to crouno bar.

3. Meater proong shal be tre And part number as suppleo or

CONNECTION OF CABLE GROUND $\frac{\text { KIT TO ANTENNA CABLE }}{\text { No SCALE }}$

CABLE INSTALLATION WITH WALL $\frac{\text { FEED THRU ASSEMBLY }}{\text { No Scale }}$

F
BLACK \& VEATCH

SOUTH MTN RADIO 790 WILLIS ST
BRISTOL, CT 06010

SHEET TTLE
GROUNDING DETAILS -

DESIGN BASIS

GOVEENNG CODE: 2018 CONNECTICUT STATE BuLIING CODE (2015 BBC BaSIS)
GENERAL CONDITIONS

2. THE ENINER IS NOT: A GURANTOR OF THE NSTALING CONTRACTOR'S WORK, RESPONSIBLE FOR

 IMNEDAAELY TO THE CONSTRUCTION MANAOCR
5. detalls Incluoed in this plan set are trical and aplly to smmar conomions.

8. THE Contractor sthal safeguro Agans dereang a fre hazaro, affecting tenant Egress
9. THE Contractor shall Remove All degri and contruction wate frou the sit each dar.
10. THE CONTRACTOR'S HOURS OF Work shall be in accordance wit local cooes and

THERMAL \& MOISTURE PROTECTION

 SHAL EE APPLED ON ACCOROANCE WTH MANUFACP
3. FRRETTOPRNG SHALL BE APPLED AS SOON AS PRACTCABLE ATER PENetrations ARE MADE AND

5. ANY BULING ROOF FENETRATION AND/OR RESTORATON SHALL BE PERFROMED SO THAT THE ROOF

6. ALLL Penetrations into ano/or through buliong exterior walls shall. be sealeo with

8. contractor to remove and re--Install all fire proofing as reaured during

SUBMITTALS
Contractor to submt shop dramngs to enginer for revew prior to fabrcation.
2. Contractor to notify enineer for inspection pror to closing penetrations.
3. Contractors shal verir all omension and conomions in the fill prior to farrcaton
 Prooucts.

STEE

2. DAMAGED GAMVMIED SURFACES SHAL BE CIEANED WTH A WRE ERUSH AND PANTED WTH TWO
 SAME PANT IN SHOP OR FELD.
3. Desicn fabracaton and erecion of structural steel shall conform to the aisc "Manual

5. All steel elements shall be nstalleo plumb and level.
5. All ster maracterers desions sum prame ano level

SITE GENERAL

CONTractor s.anl foliow conotions of all applicable permits and work in accoroance

 LIMTED TO. APPROPRATE A AAL PR

5. ALL ExSTMG NACTVE SEEER, WAIER, GAS, ELECRIC, FBER OPTC, OR OTHER UTLTIES, WHICH

6. Coniractor is fessonsile for repaling or replacing structures or utlumes damaged

Fr

BLACK \& VEATCH

	403038	
\bigcirc	Sosp menme	

いい1111,

SOUTH MTN RADIO 790 WILLIS ST

NOTES
\& SPECIFICATIONS
N-1

ELECTRICAL

AUHORTIES SHALL APPL.

4. ALL ELECTRRCAL Conouctors Shall be 100\% COPPER AND SHALL HAVE TPE THHN INSULATON

6. ALL BURIED ConDut SHALL BE MNMMM SCH 40 PVC UNLESS NOTED OTHERWSE, OR AS PER

9. Conout ano cable witin corrdors shall be concealed and exposed elisewhere, uniess

11. Wirng deyices shal be specificaion grade, ano wring device cover plates shall be

14. THE CONTRACTOR SHALL RE REOURED To USTT THE STE PROR To Subumting bio in order to

Contractor is responsible for all conirol wrng and alarm tie-

GROUNDIN

\#. then shall be stranoed \#6 copper with green thwn insuation sutable for wet
2. \#2 thwn shall be strandeo \#t copper with thwn nsulaton sutable for wei
 BETS SERES 548

7. THE MNMUM gend ralus shall be 8 Inches for \#6 Wre Ano smaller and 12 INChes for

10. FERrous METAL cllps which completely surrouno the grounong conouctor shall be

NTENNA \& CABLE NOTES

3. antenna cables shall be color cooed at the followng locations:

AT THE ANEEGGDE ENTTY PPATE ON BOTH SIDES OF THE EQUPMENT SHELIER WALL.

5. MNMUM BENOING RADUS For COAXALL CABLES:
$7 / 8 \mathrm{INCH}, \mathrm{RMN}=15$ NCHES
$15 / 8 \mathrm{NCH}, \mathrm{M}$ NIN $=25$
 AlL CABLE CONNECTONS OUTSIDE SHALL BE COVERED WTH WATERPROOF SPLLING kII
. Contractor shall verry exact length and directon of travel in fiel prior to
Cige shall be furnished without spluces and with connectops at each eil

107 SELDEN STRET
BERLNCT 0 O637
PHONE: (800) $286-2000$

SOUTH MTN RADIO BRISTOL, CT 06010

SHEET TTILE
NOTES
\& SPECIFICATIONS

N-2

REFERENCE CUTSHEETS

BASE STATION ANTENNAS

870 SERIES DUAL EXPOSED DIPOLE

876F-70-2HSMP40DF1/ 2

The 876F-70-2HSMP40DF1/2 Dual Exposed Dipole is well suited for multicoupled RF system. It has an extremely rugged design for use in severe environmental conditions. It has internal cabling and a fix dipole-to-mast spacing. This antenna is a special version of the $876 \mathrm{~F}-70$ with increased spacing between the two antennas, giving an isolation of 40 dB . It's heavy duty and Low PIM deign. This antenna can be black anodized, please contact technical support for more information.

The $1 / 2$ wave pattern spacing version offer bidirectional pattern with more than 5 dBd Gain at 220 MHz .

Electrical Specifications	876 F-70-2HSMP40DF1/2
Frequency Range, MHz	$215-225$
Nominal Gain, dBd	$5.0(5.2$ @ 220MHz)
Isolation, dB	40
Bandwidth 1.5:1 VSWR, MHz	$1.5: 1$ (10)
Polarization	Vertical
Pattern	Bidirectional
Power Rating, Watts	300
PIM. (2x20W, 3rd ord.), dBc	150
Nominal Impedance, Ohms	50
Lightning Protection	DC Ground
Termination	Dual Feeds Terminating in 7/16 DIN F
Mechanical Speciffcations	876 F-70-H1DWSM-40
Length, in (mm)	$240(6096)$
Width (1/2 Wave Spacing), in (mm)	43 (1092)
Weight, Ibs. (kg)	$130(59)$
Rated Wind Velocity, No Ice, mph (km/h)	$140(225)$
Rated Wind Velocity, 1/2" ice, mph (km/h)	$105(169)$
Lateral Thrust @ 100 mph, wind, lbs. (N)	$222(988)$
Torsional Moment (N•M)	$471(638)$
Projected Area, ft² (m²)	$8.5(0.78)$
Mounting Information Mast O.D. (mm)	$2.9(74)$

[^1]876F-70-2HSMP40DF1/ 2

876F-70-2HSMP40DF1/2: Horizontal Radiation pattern

876F-70-2HSMP40DF1/2: Vertical Radiation pattern

VHF Omni Antennas (160-222 MHz)

Model Number		160-174 MHz						217-222 MHz									
									0 \vdots \vdots 0 0 0 0 0 0 0		$\begin{aligned} & \text { Q } \\ & \text { !े } \\ & \text { M } \\ & \text { M } \\ & \text { O} \\ & \text { N } \\ & \text { N } \end{aligned}$		$\begin{aligned} & \text { Q } \\ & \text { !े } \\ & \text { O} \\ & \text { H } \\ & 0 \\ & \text { U } \\ & \text { N } \end{aligned}$	z 1 0 0 1 0 0 0 0	$\begin{aligned} & \text { Q } \\ & \text { ì } \\ & \text { N} \\ & \text { O} \\ & \text { U } \\ & \text { N } \end{aligned}$		
	Input Connector	N(F)	$\begin{aligned} & 7 / 16 \\ & \text { DIN } \end{aligned}$	$\mathrm{N}(\mathrm{F})$	$\begin{aligned} & 7 / 16 \\ & \text { DIN } \end{aligned}$	N(F)	$\begin{aligned} & 7 / 16 \\ & \text { DIN } \end{aligned}$	$N(F)$	$\begin{array}{\|l\|l\|} \hline \text { 7/16 } \\ \text { DIN } \end{array}$	$N(F)$	$\begin{aligned} & 7 / 16 \\ & \text { DIN } \end{aligned}$	$\mathrm{N}(\mathrm{F})$	$\begin{aligned} & 7 / 16 \\ & \text { DIN } \end{aligned}$	$\mathrm{N}(\mathrm{F})$	$\begin{aligned} & 7 / 16 \\ & \text { DIN } \end{aligned}$	N(F)	$\begin{aligned} & 7 / 16 \\ & \text { DIN } \end{aligned}$
	Type	Single		Single		Dual		Single		Single		Single		Dual		Dual	
	Bandwidth, MHz	14		14		14		5		5		5		5		5	
	Power, Watts	500		500		350		500		500		500		350		350	
	Gain, dBd	3		6		3		0		3		6		0		3	
	Horizontal Beamwidth, degrees	360		360		360		360		360		360		360		360	
	Vertical Beamwidth, degrees	30		16		30		60		30		16		60		30	
	Beam Tilt, degrees	0		0		0		0		0		0		0		0	
	Isolation (minimum) , dB	N/A		N/A		30		N/A		N/A		N/A		30		30	
$\begin{aligned} & \frac{1}{\mathbf{d}} \\ & \frac{0}{2} \\ & \frac{1}{3} \\ & \frac{11}{2} \end{aligned}$	Number of Connectors	1		1		2		1		1		1		2		2	
	Flat Plate Area, $\mathrm{ft}^{2}\left(\mathrm{~m}^{2}\right)$	2.53 (0.24)		4.38 (0.41)		4.5 (0.42)		1.9 (0.18)		1.9 (0.18)		2.58 (0.24)		2.4 (0.22)		4.1 (0.38)	
	Lateral Windload Thrust, Ibf(N)	95 (423)		164 (730)		169 (752)		53 (236)		69 (307)		108 (480)		90 (400)		169 (752)	
	Survival Wind Speed without ice, $\mathrm{mph}(\mathrm{kph})$ with $0.5^{\prime \prime}$ radial ice, $\mathrm{mph}(\mathrm{kph})$	$\begin{aligned} & 110(177) \\ & 93(150) \\ & \hline \end{aligned}$		$\begin{gathered} 75(121) \\ 60(97) \\ \hline \end{gathered}$		$\begin{aligned} & 75(121) \\ & 65(105) \end{aligned}$		$\begin{aligned} & 222(357) \\ & 193 \text { (311) } \end{aligned}$		$\begin{aligned} & 172(277) \\ & 150(241) \end{aligned}$		$\begin{aligned} & 110(177) \\ & 96 \text { (154) } \end{aligned}$		$\begin{aligned} & 130(209) \\ & 115(185) \\ & \hline \end{aligned}$		$\begin{aligned} & 75(121) \\ & 65(105) \\ & \hline \end{aligned}$	
	Mounting Hardware included	DSH3V3R		DSH3V3N		DSH3V3N		DSH2V3R		DSH2V3R		DSH3V3N		DSH3V3R		DSH3V3N	
	Length, ft(m)	12.7 (3.9)		21.9 (6.7)		22.3 (6.8)		7.7 (2.3)		9.9 (3)		18.1 (5.5)		13.6 (4.1)		24.3 (7.4)	
	Radome O.D., in(cm)	3 (7.6)		3 (7.6)		3 (7.6)		3 (7.6)		3 (7.6)		3 (7.6)		3 (7.6)		3 (7.6)	
	Mast O.D., in(cm)	2.5 (6.4)		2.5 (6.4)		2.5 (6.4)		2.5 (6.4)		2.5 (6.4)		2.5 (6.4)		2.5 (6.4)		2.5 (6.4)	
	Net Weight w/o bracket, lb(kg)	37 (16.8)		60 (27.2)		63 (28.6)		19 (8.6)		26 (11.8)		47 (21.3)		40 (18.1)		70 (31.8)	
	Shipping Weight, lb(kg)	67 (30.4)		90 (40.8)		93 (42.2)		39 (17.7)		56 (25.4)		77 (34.9)		70 (31.8)		$100 \text { (45.4) }$	

Antenna Mounting Hardware

DSH1V3R

REGULAR MOUNTING
Mount aluminum base station antennas to round or angled tower legs. Center section of each clamp is welded to provide mechanical stability and all parts are hot-dipped galvanized steel.

MODELS	DSH1V3R	DSH2V3R	DSH2H3R	DSH3V3R
	DSH1V4R	DSH2V4R	DSH2H4R	DSH3V4R
Antenna Length, ft(m)	0 (0) to 3.5 (1)	3.5 (1) to 10 (3.1)	3.5 (1) to 10 (3.1)	10 (3.1) to 14 (4.3)
\# of Clamps	1	2	2	3
Mounting	Vertical	Vertical	Horizontal	Vertical
Pipe Mount, in (mm): 3R	1.3 (32) to 3.5 (89)			
Pipe Mount, in (mm): 4R	1.3 (32) to 4 (102)			
Weight, lb (kg)	4 (1.8)	7 (3.2)	10 (4.5)	9(4.1)
Shipping Weight, lb (kg)	6 (2.7)	8 (3.6)	12(5.5)	10(4.5)

HEAVY-DUTY "NO-TORSION" MOUNTING
Utilizes three clamps on a galvanized steel tube to mount antennas to round tower members.

MODEL	DSH3V3N	DSH3V4N
Antenna Length, $\mathrm{ft}(\mathrm{m})$	$14(4.3)$ and greater	$14(4.3)$ and greater
\# of Clamps	3	3
Mounting	Vertical	Vertical
Pipe Mount, in (mm)	$3(76.2)$ MAX.	$4(101.6)$ MAX.
Weight, lb (kg)	$28(12.7)$	$28(12.7)$
Shipping Weight, Ib (kg)	$30(13.6)$	$30(13.6)$
Shipping Dimensions $(W \times H ~ X ~ D), ~ i n(m m) ~$	$11 \times 33 \times 4$ $(279 \times 838 \times 102)$	$11 \times 33 \times 4$

TOP SWAY BRACE - OUTRIGGER MOUNTING
Limit tip deflection on 3-inch diameter fiberglass antennas in high wind conditions. Attaches to the tower legs using supplied DSH2H3R hardware kit (above). Recommended on top-mounted antennas >16 feet long.

MODEL	DSH2H3S
\# of Clamps	2
Mounting	Horizontal
Flange Inner Diameter, in (mm)	$3.38(85.7)$
Tube Diameter, in (mm)	$2(50.8)$
Length to Center of Flange ft (m)	12 feet (3.6)
Weight, lb (kg)	$10(4.5)$
Shipping Weight, lb (kg)	$20(9.1)$
Shipping Dimensions	$11 \times 33 \times 4$
(W x H x D), in (mm)	$(279 \times 838 \times 102)$

DIRECTIONAL ANTENNA MOUNTING HARDWARE Model DB380

Antenna Length	N / A
$\#$ of Clamps	2
Mounting	Antenna-to-Pipe
Pipe Mount, in(mm)	$3.5(76.2)$
Weight, lb (kg)	$10(4.5)$
Shipping Weight, lb (kg)	$20(9.1)$

TrunkLine Antenna, Standard (FCC 101, Cat A) , Single Polarized, 6 ft

RFS Microwave Antennas are designed for microwave systems in all common frequency ranges from 4 GHz to 24 GHz . This allows the use of antennas in areas where extreme wind conditions are normal. The antennas utilise a conventional feed system and are available in three performance classes offering complete flexibility when designing a network. Standard Performance antennas are economical solutions for systems where side lobe suppression is of less importance. These antennas are required for use in networks where there is a low interference potential. Antennas are available in $2 \mathrm{ft}(0.6 \mathrm{~m})$ to $12 \mathrm{ft}(3.7 \mathrm{~m})$ diameters. Antennas from 4 ft up to 12 $\mathrm{ft}(3.7 \mathrm{~m})$ can be equipped with a moulded radome to reduce wind load and to protect the feed against the accumulation of ice and snow.

FEATURES / BENEFITS

\rightarrow Field-proven reliability and long life
Θ Withstanding winds up to $200 \mathrm{~km} / \mathrm{h}(125 \mathrm{mph})$, an optional sway bar is available for added assurance in case mistakes are made during installation
\rightarrow A single-piece configuration and compact packaging to reduce transportation costs
$\Theta \quad$ Frequencies ranging from 4 GHz to 15 GHz with support for two wideband frequency ranges (5.725-6.875 and $7.125-8.5 \mathrm{GHz}$) to reduce antenna requirements and simplify logistics

GENERAL SPECIFICATIONS

Product Type		Point to point antennas
Profile		TrunkLine
Performance		Improved Performance
Polarization		Single
Antenna Input		CPR137G
Reflector		1-part
Radome		Optional
Antenna color		White RAL 9010
Swaybar		1: ($2.0 \mathrm{~m} \times \varnothing 60 \mathrm{~mm}$)
ELECTRICAL SPECIFICATIONS		
Frequency	GHz	5.925-6.875
3dB beamwidth	degrees	1.7
Low Band Gain	dBi	38.4
Mid Band Gain	dBi	39.1
High Band Gain	dBi	39.7
F/B Ratio	dB	55.0
XPD	dB	30.0
Max VSWR / R L	VSWR / dB	1.08 (28.3)
Regulatory Compliance		FCC Category A
MECHANICAL SPECIFICATIONS		
Diameter	ft (m)	6 (1.8)
Elevation Adjustment	degrees	± 5
Azimuth Adjustment	degrees	± 5
Polarization Adjustment	degrees	± 5
Mounting Pipe Diameter minimum	mm (in)	114 (4.5)
Mounting Pipe Diameter maximum	mm (in)	114 (4.5)
Approximate Weight	kg (lb)	65 (141)
Survival Windspeed	km / h (mph)	200 (125)
Operational Windspeed	km/h (mph)	190 (118)
STRUCTURE		
Radome Material		Fiberglass
FURTHER ACCESSORIES		
optional Swaybar		1: SMA-SK-60-2000A ($2.0 \mathrm{~m} \times \varnothing 60 \mathrm{~mm}$)
Further Accessories		SMA-SKO-UNIVERSAL-L : Universal sway bar fixation kit

TrunkLine Antenna, Standard (FCC 101, Cat A) , Single Polarized, 6 ft

Mount Outline

Dimension A	mm (in)	$2000(79)$
Dimension C	$\mathrm{mm}(\mathrm{in})$	$364(14.3)$
Dimension D for 114mm (4.5in) Pipe	mm (in)	$175(6.9)$
Dimension E	mm (in)	$283(11.1)$
Dimension F	mm (in)	$590(23.2)$

FST Side force max. @ survival wind speed	$\mathrm{N}(\mathrm{lb})$	$2910(651)$
FAT Axial force max. @ survival wind speed	$\mathrm{N}(\mathrm{lb})$	$9900(2217)$
MT Torque maximum @ survival wind speed	$\mathrm{Nm}(\mathrm{lb} \mathrm{ft})$	$3055(2270)$

External Document Links

Notes
Complete Antenna installation
Only available in North America
RPE (IQ-Link format)
RPE (PDF format)
RPE (Pathloss format)

PARTS LIST						
ITEM	QTY	PART NO.	PART DESCRIPTION	LENGTH	UNIT WT.	NET WT.
1	4	X-158320	ANGLE CLAMP	$161 / 2$ in	8.51	34.03
2	4	x-126501	BRACKET ANGLE LEG MOUNTING	$161 / 2 \mathrm{in}$	7.13	28.51
3	2	x-154463	UNIVERSAL PIPE MOUNTING PLATE (INNER)		10.52	21.03
4	2	x-155561	UNIVERSAL PIPE MOUNTING PLATE (OUTER)		13.16	26.31
5	2	X-159999	BACKING PLATE		5.73	11.46
6	4	X-UB1458	1/2" $\times 4$-5/8" $\times 7$ " $\times 3$ " GALV U-BOLT		0.97	3.89
7	8	G12R-20	1/2" $\times 20$ " GALV. THREADED ROD		1.12	8.92
8	8	G1203	$1 / 2$ " $\times 3$ " HDG HEX BOLT GR5 FULL THREAD	3 in	0.22	1.74
9	8	G1204	$1 / 2^{\prime \prime} \times 4$ " HDG HEX BOLT GR5 FULL THREAD	4 in	0.27	2.16
9	8	G12065	$1 / 2$ " $\times 6-1 / 2$ " HDG HEX BOLT GR5 FULL THREAD	$61 / 2 \mathrm{in}$	0.41	3.28
10	32	G12FW	1/2" HDG USS FLATWASHER		0.03	1.09
11	32	G12LW	1/2" HDG LOCKWASHER		0.01	0.44
12	32	G12NUT	1/2" HDG HEAVY 2H HEX NUT		0.07	2.29
13	4	G5802	5/8" $\times 2$ " HDG HEX BOLT GR5		0.27	1.09
14	4	G58FW	$5 / 8$ " HDG USS FLATWASHER		0.07	0.28
15	4	G58LW	5/8" HDG LOCKWASHER		0.03	0.10
16	4	G58NUT	5/8" HDG HEAVY 2H HEX NUT		0.13	0.52
17	1	P472	4-1/2" \times 72" SCH. 40 GALVANIZED PIPE		64.89	64.89
					TOTAL WT.\#	148.00

DETAIL A
USED FOR 5" to 10-3/4" OD PIPE LEGS
\& 3" to 8" ANGLE LEGS

DETAIL B
USED FOR $1-1 / 2^{\prime \prime}$ to $4-1 / 2^{\prime \prime}$ OD PIPE LEGS

Microwave Path Data Sheet
 COMSEARCH

19700 Janelia Farm Boulevard, Ashburn, VA, 20147
(703)636-5234 www.comsearch.com

PCN Date: 09/18/2019
New Path
Job Number: 190918COMSDS04
RCN Number: 19091852

Administrative Information	SOUTH MTN CT	W HARTLAND CT
City/County	Bristol/Hartford	/Hartford
Status / License Basis	Engineering Proposal / PRIMARY OPERATION	Engineering Proposal / PRIMARY OPERATION
Call Sign	KVG93	
Licensee Code	S68716	S68716
Licensee Name	Eversource Energy Service Company	Eversource Energy Service Company
Radio Service / Station Class	MG -- Microwave Industrial/Business Pool	FXO -- Fixed
Site Information		
Latitude (NAD 83)	$41^{\circ} 38{ }^{\prime} 56.00^{\prime \prime}$	$41^{\circ} 58{ }^{\prime} 43.5{ }^{\prime \prime} \mathrm{N}$
Longitude (NAD 83)	$72^{\circ} 56{ }^{\prime} 50.0{ }^{\prime \prime} \mathrm{W}$	$72^{\circ} 58{ }^{\prime} 56.01{ }^{\prime \prime} \mathrm{W}$
Ground Elevation (m/ft-AMSL)	310.60 / 1019.0	371.71 / 1219.5
Antenna Structure Registration \#		
Path Azimuth (${ }^{\circ}$)	355.473	175.450
Path Length (km / miles)	$36.753 / 22.837$	
Transmit Antenna	44008C	44008C
Manufacturer	RFS	RFS
Model	PAD6-59B	PAD6-59B
Gain(dBi) / Beamwidth(${ }^{\circ}$) / Tilt $\left({ }^{\circ}\right.$)	38.7 / 1.80 / -0.01	38.7 / 1.80 / -0.24
Centerline (m/ft - AGL)	26.52 / 87.0	37.80 / 124.0

Receive Antenna

Same As Transmit
Manufacturer
Model
Gain (dBi) / Beamwidth (${ }^{\circ}$)
Centerline (m / ft - AGL)

Diversity Receive Antenna

Manufacturer
Model
Gain (dBi) / Beamwidth (${ }^{\circ}$)
Centerline (m / ft - AGL)

Radio Information	TEEV61			TEEV61		
Manufacturer	Aviat Networks, Inc. I600V4EHPL6-30M 256Q 179			Aviat Networks, Inc I600V4EHPL6-30M 256Q 179		
Model						
Model Description	ECLIPSE IRU 600 RAC $60-6 \mathrm{C}$ MAX TP			ECLIPSE IRU 600 RAC 60-6X MAX TP		
Emission Designator / Modulation	30M0D7W 256 QAM			$30 M 0 D 7 W$ 256 QAM		
Loading	1 CH DIG 179000.000			1 CH DIG 179000.000		
Stability (\%)	0.0005			0.0005		
	Nominal	Coordinated	Maximum	Nominal	Coordinated	Maximum
Power (dBm)		37.0			37.0	
Received Level (dBm)		-31.9			-31.9	
EIRP (dBm)		72.6			72.1	
Fixed Loss: Tx / Common (dB) Free Space Loss (dB)	$0.0 / 3.1$		139.6	$0.0 / 3.6$		
Transmit Frequencies (MHz)	5945.200	V(11T)		6197.240	V(21T)	

ATTACHMENT C - STRUCTURAL ANALYSIS REPORT

Subject:

Eversource Designation:

Engineering Firm Designation:
Site Data:

Structural Analysis Report

Number: ES-004
Site Name:

Black \& Veatch Corp Project Number:
790 Willis Street, Bristol, Hartford County, CT Latitude $41^{\circ} 38^{\prime} 56.0^{\prime \prime}$, Longitude $-72^{\circ} 56^{\prime} 50.0^{\prime}$ 130 Foot - Self Support Tower

SouthMtnsRS

405025

Black \& Veatch Corp is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC1: Proposed Equipment Configuration
Sufficient Capacity - 41.8\%
This analysis utilizes an ultimate 3-second gust wind of 130 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Sanyukta R. Arvikar
Respectfully submitted by:

Joshua J Riley, P.E. Professional Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided
3.1) Analysis Method
3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity 4.1) Recommendation

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing
7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 130 ft Self Support tower manufactured by Radian in December of 2006.

2) ANALYSIS CRITERIA

TIA-222 Revision:
Risk Category:
Wind Speed:
Exposure Category:
Topographic Factor:
Ice Thickness:
Wind Speed with Ice:
Seismic Ss:
Seismic S1:
Service Wind Speed:

Seismic loading does not control per engineering judgement.

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	$\left\lvert\, \begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Antennas } \end{aligned}\right.$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
130.0	140.0	1	comprod	876F-70-2	2	7/8	1
87.0	87.0	1	rfs	PAD6-W59BC	1	E65J	-
		1	site pro 1	R5-LL [PM 602-1]			

[^2]Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	$\left\lvert\, \begin{gathered} \text { Number } \\ \text { of } \\ \text { Antennas } \end{gathered}\right.$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
127.0	141.5	1	unknown	25' Omni	10	7/8	1
	141.0	1	unknown	24' Omni			
	139.0	1	unknown	21' Omni			
	138.0	1	unknown	18' Omni			
	137.0	1	unknown	16' Omni			
	136.0	1	unknown	16' Omni			
	135.0	1	unknown	12' Omni			
	134.0	1	unknown	10' Omni			
	129.0	1	unknown	10"x8"x3" TMA			
	127.0	1	tower mounts	Sector Mount [SM 501-3]			
125.0	125.0	3	rfs celwave	APXVAALL24_43 w/ Mount Pipe	3	$\begin{aligned} & 6 \times 24 \\ & \text { fiber } \end{aligned}$	1
		3	ericsson	AIR6449 w/ Mount Pipe			
		3	ericsson	AIR32 w/ Mount Pipe			
		3	ericsson	4449			
		3	ericsson	4415			
		1	tower mounts	Sector Mount [SM 502-3]			
117.0	117.0	1	tower mounts	6 ' x 3" Mount Pipe	1	E60	1
		1	unknown	PA6-59			
113.0	120.0	1	celwave	PD1142-1	11	$\begin{aligned} & 1 / 2 \\ & 7 / 8 \end{aligned}$	1
	113.0	1	tower mounts	Side Arm Mount [SO 306-1]			
107.0	107.0	1	tower mounts	6' x 3" Mount Pipe	1	E65	1
		1	unknown	6 FT Dish			
104.0	111.0	1	celwave	PD1142-1	1	7/8	1
	104.0	1	tower mounts	Side Arm Mount [SO 306-1]			
98.0	98.0	1	antennae	DB205-A	1	7/8	1
		1	tower mounts	Side Arm Mount [SO 306-1]			
96.0	96.0	1	tower mounts	6' x 3" Mount Pipe	1	E60	1
		1	unknown	8 FT Dish			
86.0	86.0	1	tower mounts	6' x 3" Mount Pipe	1	E60	1
		1	unknown	PAD8-59AW			
84.0	91.0	1	celwave	PD1142-1	1	1/2	1
	84.0	1	tower mounts	Side Arm Mount [SO 306-1]			
84.0	84.0	1	antennae	2' Yagi	1	7/8	1
		1	tower mounts	4'x2" Pipe Mount			
77.0	78.0	1	andrew panel antennas	SBNH-1D6565A w/ Mount Pipe	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	$\begin{gathered} 1 / 2 \\ 15 / 8 \end{gathered}$	1
	77.0	1	tower mounts	Sector Mount [SM 402-1]			
		1	miscl	TMA			
	67.0	2	antennae	3" Dia 20' Omni			
71.0	71.0	1	tower mounts	6' x 3" Mount Pipe	1	E65	1
		1	unknown	4 FT Dish			

Mounting Level (ft)	Center Line Elevation (ft)	$\text { \| } \begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Antennas } \end{aligned}$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
63.0	73.0	1	antennae	3" Dia 20' Omni	$\begin{aligned} & 1 \\ & 1 \\ & 3 \end{aligned}$	$\begin{gathered} 7 / 8 \\ 1 / 2 \\ 15 / 8 \end{gathered}$	1
		1	unknown	Diamond X-500A			
	63.0	1	tower mounts	Sector Mount [SM 402-1]			
		1	miscl	TMA			
	53.0	2	antennae	3" Dia 20' Omni			
58.0	58.0	1	tower mounts	Side Arm Mount [SO 306-1]	1	1/2	1
		1	decibel	DB212-1			
54.0	54.0	1	tower mounts	Side Arm Mount [SO 306-1]	1	1/2	1
		1	decibel	DB212-1			
43.0	46.0	1	antennae	3" Dia. 6' Omni	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 / 8 \\ & 7 / 8 \end{aligned}$	1
	43.0	1	tower mounts	Side Arm Mount [SO 306-1]			
	40.0	1	antennae	3" Dia. 6' Omni			
43.0	43.0	1	tower mounts	Side Arm Mount [SO 306-1]	1	3/8	1
	43.0	1	decibel	DB230-2B			

Note:

1) Existing Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
TOWER STRUCTURAL ANALYSIS REPORTS	Centek Engineering, Inc., dated 09/16/2013	Tower geometry and geotechnical data	Eversource
TOWER STRUCTURAL ANALYSIS REPORTS	Centek Engineering, Inc., dated 06/14/2019	Tower geometry, tower loading and geotechnical data	Eversource
TOWER STRUCTURAL ANALYSIS REPORTS	Centek Engineering, Inc., dated 03/02/2021	Tower loading	Connecticut Siting Council

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

1) Tower and structures were built and maintained in accordance with the manufacturer's specifications.
2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
3) This analysis was performed under the assumption that all information provided to Black \& Veatch is current and correct. This is to include site data, appurtenance loading, tower/foundation details, and geotechnical data.
4) Tower loading is based on 2018 drone mapping photos and previous tower analyses.
5) The existing base plate grout was considered in this analysis. Grout must be maintained and inspected periodically and must be replaced if damaged or cracked

This analysis may be affected if any assumptions are not valid or have been made in error. Black \& Veatch Corp should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	$\underset{(\mathrm{K})}{\text { SF }^{*} \text { P_allow }}$	\% Capacity	Pass / Fail
T1	130-120	Leg	ROHN 2.5 STD	1	-12.20	60.05	20.3	Pass
T2	120-100	Leg	ROHN 3 STD	29	-23.60	74.43	31.7	Pass
T3	100-80	Leg	ROHN 4 STD	69	-42.56	122.04	34.9	Pass
T4	80-60	Leg	ROHN 5 STD	107	-62.09	150.53	41.2	Pass
T5	60-40	Leg	ROHN 5 EH	134	-85.40	211.17	40.4	Pass
T6	40-20	Leg	ROHN 6 EHS	161	-107.07	256.16	41.8	Pass
T7	20-0	Leg	ROHN 6 EH	189	-128.00	318.80	40.2	Pass
T1	130-120	Diagonal	ROHN 2 STD	9	-3.39	25.36	13.4	Pass
T2	120-100	Diagonal	ROHN 2.5 STD	36	-4.71	35.92	13.1	Pass
T3	100-80	Diagonal	ROHN 2.5 STD	74	-6.27	31.52	19.9	Pass
T4	80-60	Diagonal	ROHN 2.5 X-STR	113	-8.46	21.63	39.1	Pass
T5	60-40	Diagonal	ROHN 3 STD	140	-7.88	29.61	26.6	Pass
T6	40-20	Diagonal	ROHN 3 STD	165	-8.05	26.21	30.7	Pass
T7	20-0	Diagonal	ROHN 3 STD	192	-8.22	22.99	35.7	Pass
T1	130-120	Horizontal	ROHN 1.5 STD	7	-2.43	23.71	10.2	Pass
T2	120-100	Horizontal	ROHN 2 STD	34	-2.87	34.21	$\begin{gathered} 8.4 \\ 10.0(b) \\ \hline \end{gathered}$	Pass
T3	100-80	Horizontal	ROHN 2 STD	73	-4.24	28.55	14.9	Pass
T4	80-60	Horizontal	ROHN 2 STD	112	-4.95	23.75	20.8	Pass
T5	60-40	Horizontal	ROHN 2 STD	139	-5.04	17.60	28.6	Pass
T6	40-20	Horizontal	ROHN 2.5 STD	163	-5.46	30.30	$\begin{gathered} 18.0 \\ 19.3(b) \\ \hline \end{gathered}$	Pass
T7	20-0	Horizontal	ROHN 2.5 STD	190	-5.85	23.43	25.0	Pass
T1	130-120	Top Girt	ROHN 1.5 STD	4	-0.48	23.77	2.0	Pass
T1	130-120	Inner Bracing	L2 $2 \times 2 \times 1 / 8$	16	-0.00	8.80	0.8	Pass
T2	120-100	Inner Bracing	L2 $2 \times 2 \times 1 / 8$	42	-0.01	6.48	0.9	Pass
T3	100-80	Inner Bracing	L2 $2 \times 2 \times 1 / 8$	79	-0.01	4.43	1.1	Pass
T4	80-60	Inner Bracing	L2 $2 \times 2 \times 1 / 8$	120	-0.01	3.34	1.2	Pass
T5	60-40	Inner Bracing	L2 1/2x2 1/2x3/16	147	-0.02	6.99	0.9	Pass
T6	40-20	Inner Bracing	L 3x3x3/16	174	-0.02	9.16	0.9	Pass
T7	20-0	Inner Bracing	L3 1/2x3 /12x1/4	201	-0.02	14.24	0.8	Pass
							Summary	
						Leg (T6)	41.8	Pass
						Diagonal (T4)	39.1	Pass
						Horizontal (T5)	28.6	Pass
						Top Girt (T1)	2.0	Pass
						Inner Bracing (T4)	1.2	Pass
						Bolt Checks	26.7	Pass

tnxTower Report - version 8.1.1.0

Section No.	Elevation (ft)	Component Type	Size	Critical Element	$\mathbf{P (K)}$	SF*P_allow (K)	\% Capacity
					Pass / Fail		

Table 5 - Tower Component Stresses vs. Capacity - LC1

Notes	Component	Elevation (ft)	\% Capacity	Pass / Fail
1	Anchor Rods	0	27.3	Pass
1	Base Foundation	0	27.8	Pass
1	Base Foundation Soil Interaction	0	33.6	Pass

Structure Rating (max from all components) $=$	41.8%

Note:

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the \% capacity. Rating per TIA-222-H Section 15.5

4.1) Recommendation

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz. Deflection	Gov. Load No.	Tilt	Twist	Check*
	$f t$	in	Comb.	\circ	\circ	
T1	$130-120$	1.009	44	0.066	0.007	OK
T2	$120-100$	0.869	44	0.065	0.007	OK
T3	$100-80$	0.606	44	0.057	0.007	OK
T4	$80-60$	0.385	44	0.045	0.006	OK
T5	$60-40$	0.219	44	0.032	0.005	OK
T6	$40-20$	0.1	44	0.021	0.004	OK

*Limit State Deformation (TIA-222-H Section 2.8.2)

1) Maximum Rotation $=4$ Degrees
2) Maximum Deflection $=0.03 *$ Tower Height $=47$ in.

Critical Deflections of Tower at the MW Dish Elevations - Service Wind

Elevation (ft)	MW Dish	Tilt ($\left.{ }^{(}\right)$	Twist (${ }^{\circ}$)	Diameter, D (ft)	Frequency, α (GHz)	Decibel Points	Deformation Limit (θ)*	Deformation Limit Exceeded?
117	PA6-59	0.064	0.007	6	10	10 dB	0.885	Not Exceeded
107	6 FT Dish	0.06	0.007	6	10	10 dB	0.885	Not Exceeded
96	8 FT Dish	0.054	0.007	8	10	10 dB	0.664	Not Exceeded
87	PAD6W59BC	0.049	0.006	6.58333	10	10 dB	0.807	Not Exceeded
86	PAD8-59AW	0.048	0.006	8	10	10 dB	0.664	Not Exceeded
71	4 FT Dish	0.039	0.006	4	10	10 dB	1.328	Not Exceeded

*Limit per TIA-222-H Annex D

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz. Deflection	Gov. Load No.	Tilt	Twist	Combined Max	Check *
	$f t$	$130-120$	2.81	44	0.183	0.021	0.184
T1	$120-100$	2.418	44	0.18	0.021	0.181	OK
T2	$100-80$	1.685	44	0.157	0.019	0.158	OK
T3	$80-60$	1.069	44	0.123	0.018	0.124	OK
T4	$60-40$	0.609	44	0.088	0.015	0.089	OK
T5	$40-20$	0.28	44	0.057	0.01	0.058	OK
T6				OK			

*Up to 0.5 degree is considered acceptable per SUB090 Section 7

Critical Deflections of Tower at the MW Dish Elevations - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
		Comb.	in	\circ	\circ	$f t$
$f t$		44	2.303	0.178	0.021	59845.000
117	PA6-59	44	1.932	0.167	0.02	47266.000
107	6 FT Dish	44	1.551	0.151	0.019	36745.000
96	8FT Dish	44	1.268	0.136	0.018	31007.000
87	PAD6-W59BC	44	1.238	0.134	0.018	30438.000
86	PAD8-59AW	44	0.844	0.107	0.017	32092.000
71	4 FT Dish					

APPENDIX A

TNXTOWER OUTPUT

Tower Input Data

The main tower is a $3 x$ free standing tower with an overall height of 130.000 ft above the ground line.
The base of the tower is set at an elevation of 0.000 ft above the ground line.
The face width of the tower is 8.500 ft at the top and 22.540 ft at the base.
This tower is designed using the TIA-222-H standard.
The following design criteria apply:

- Tower is located in Hartford County, Connecticut.
- Tower base elevation above sea level: 1047.000 ft .
- Basic wind speed of 130 mph .
- Risk Category III.
- Exposure Category B.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.000 ft .
- Nominal ice thickness of 2.000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of $50^{\circ} \mathrm{F}$.
- Deflections calculated using a wind speed of 60 mph .
- Pressures are calculated at each section.
- Stress ratio used in tower member design is 1.05 .
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

[^3]Distribute Leg Loads As Uniform Assume Legs Pinned
\checkmark Assume Rigid Index Plate
\checkmark Use Clear Spans For Wind Area
$\sqrt{ }$ Use Clear Spans For KL/r Retension Guys To Initial Tension
$\sqrt{ }$ Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt.
Autocalc Torque Arm Areas
Add IBC .6D+W Combination
\checkmark Sort Capacity Reports By Component
$\sqrt{ }$ Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules
\checkmark Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation
\checkmark Consider Feed Line Torque
$\sqrt{ }$ Include Angle Block Shear Check
Use TIA-222-H Bracing Resist. Exemption
Use TIA-222-H Tension Splice
Exemption
Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets
Pole Without Linear Attachments
Pole With Shroud Or No
Appurtenances
Outside and Inside Corner Radii Are
Known

Triangular Tower

Tower Section Geometry

Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of Sections
ft		ft	Section Length		
T1	$130000-000$		8.500	1	ft
T2	120.000	$120.000-$	8.540	1	
T3	100.000				20.000
T4	$80.000-80.000$		12.730	1	
T5	$60.000-40.000$		14.960	1	1
T6	$40.000-20.000$		17.540	1	20.000
T7	$20.000-0.000$		20.040	1	20.000
				20.000	

Tower Section Geometry (cont'd)

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Girt Offset
f1	$130.000-$	5.000	K Brace Down	No	Yes	0.000	in

Tower Section Geometry (cont'd)

Tower Elevation ft	$\begin{aligned} & \text { Leg } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \hline \text { Leg } \\ & \text { Size } \end{aligned}$	Leg Grade	Diagonal Type	$\begin{aligned} & \hline \text { Diagonal } \\ & \text { Size } \end{aligned}$	Diagonal Grade
$\begin{gathered} \text { T1 130.000- } \\ 120.000 \end{gathered}$	Pipe	ROHN 2.5 STD	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Pipe	ROHN 2 STD	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T2 120.000- } \\ 100.000 \end{gathered}$	Pipe	ROHN 3 STD	$\begin{aligned} & \text { A572-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Pipe	ROHN 2.5 STD	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T3 100.000- } \\ 80.000 \end{gathered}$	Pipe	ROHN 4 STD	A572-50 (50 ksi)	Pipe	ROHN 2.5 STD	A572-50 (50 ksi)
$\begin{gathered} \text { T4 80.000- } \\ 60.000 \end{gathered}$	Pipe	ROHN 5 STD	$\begin{aligned} & \text { A572-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Pipe	ROHN 2.5 X-STR	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T5 } 60.000- \\ 40.000 \end{gathered}$	Pipe	ROHN 5 EH	$\begin{aligned} & \text { A572-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Pipe	ROHN 3 STD	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T6 40.000- } \\ 20.000 \end{gathered}$	Pipe	ROHN 6 EHS	A572-50 (50 ksi)	Pipe	ROHN 3 STD	A572-50 (50 ksi)
$\begin{gathered} \text { T7 } 20.000- \\ 0.000 \end{gathered}$	Pipe	ROHN 6 EH	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Pipe	ROHN 3 STD	A572-50 (50 ksi)

Tower Section Geometry (cont'd)

Tower Elevation ft	No. of Mid Girts	$\begin{aligned} & \text { Mid Girt } \\ & \text { Type } \end{aligned}$	$\begin{gathered} \text { Mid Girt } \\ \text { Size } \end{gathered}$	Mid Girt Grade	Horizontal Type	Horizontal Size	Horizontal Grade
$\begin{gathered} \text { T1 130.000- } \\ 120.000 \end{gathered}$	None	Flat Bar		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Pipe	ROHN 1.5 STD	$\begin{aligned} & \hline \text { A572-50 } \\ & \text { (50 ksi) } \end{aligned}$
$\begin{gathered} \text { T2 120.000- } \\ 100.000 \end{gathered}$	None	Flat Bar		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Pipe	ROHN 2 STD	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T3 100.000- } \\ 80.000 \end{gathered}$	None	Flat Bar		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Pipe	ROHN 2 STD	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T4 } 80.000- \\ 60.000 \end{gathered}$	None	Flat Bar		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Pipe	ROHN 2 STD	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T5 } 60.000- \\ 40.000 \end{gathered}$	None	Flat Bar		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Pipe	ROHN 2 STD	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T6 } 40.000- \\ 20.000 \end{gathered}$	None	Flat Bar		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Pipe	ROHN 2.5 STD	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T7 } 20.000- \\ 0.000 \end{gathered}$	None	Flat Bar		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Pipe	ROHN 2.5 STD	$\begin{aligned} & \text { A572-50 } \\ & \text { (50 ksi) } \end{aligned}$

Tower Section Geometry (cont'd)
$\left.\begin{array}{cccccc}\hline \begin{array}{c}\text { Tower } \\ \text { Elevation }\end{array} & \begin{array}{c}\text { Secondary } \\ \text { Horizontal Type }\end{array} & \begin{array}{c}\text { Secondary Horizontal } \\ \text { Size }\end{array} & \begin{array}{c}\text { Secondary } \\ \text { Horizontal } \\ \text { Grade }\end{array} & \begin{array}{c}\text { Inner Bracing } \\ \text { Type }\end{array} & \text { Inner Bracing Size }\end{array} \begin{array}{c}\text { Inner Bracing } \\ \text { Grade }\end{array}\right]$

Tower Section Geometry (cont'd)

Tower Elevation ft	$\begin{gathered} \text { Gusset } \\ \text { Area } \\ \text { (per face) } \\ f t^{2} \end{gathered}$	Gusset Thickness in	Gusset GradeAdjust. Factor A_{f}		Adjust. Factor A_{r}	Weight Mult.	Double Angle Double Angle Double Angle			
					Stitch Bolt Spacing Diagonals in		Stitch Bolt Spacing Horizontals in	Stitch Bolt Spacing Redundants in		
$\begin{gathered} \text { T1 130.000- } \\ 120.000 \end{gathered}$	0.000	0.375	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	1		1.05	1.05	36.000	36.000	36.000
$\begin{gathered} \text { T2 120.000- } \\ 100.000 \end{gathered}$	0.000	0.375	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	1	1.05	1.05	36.000	36.000	36.000	
$\begin{gathered} \text { T3 100.000- } \\ 80.000 \end{gathered}$	0.000	0.375	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	1	1.05	1.05	36.000	36.000	36.000	
$\begin{gathered} \text { T4 80.000- } \\ 60.000 \end{gathered}$	0.000	0.375	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	1	1.05	1.05	36.000	36.000	36.000	
$\begin{gathered} \text { T5 60.000- } \\ 40.000 \end{gathered}$	0.000	0.375	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	1	1.05	1.05	36.000	36.000	36.000	
$\begin{gathered} \text { T6 } 40.000- \\ 20.000 \end{gathered}$	0.000	0.375	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	1	1.05	1.05	36.000	36.000	36.000	
$\begin{gathered} \text { T7 } 20.000- \\ 0.000 \end{gathered}$	0.000	0.375	$\begin{gathered} \text { A36 } \\ \text { (36 ksi) } \\ \hline \end{gathered}$	1	1.05	1.05	36.000	36.000	36.000	

Tower Section Geometry (cont'd)

Tower Elevation	Calc K Single Angles	Calc K Solid Rounds	K Factors ${ }^{1}$							
			Legs	X	K	$\begin{aligned} & \text { Single } \\ & \text { Diags } \end{aligned}$	Girts	Horiz.	Sec. Horiz.	Inner Brace
				Brace	Brace					
				Diags	Diags					
				X	X	X	X	X	X	X
$f t$				Y	Y	Y	Y	Y	Y	Y
T1 130.000-	Yes	Yes	1	1	1	1	1	1	1	1
120.000				1	1	1	1	1	1	1
T2 120.000-	Yes	Yes	1	1	1	1	1	1	1	1
100.000				1	1	1	1	1	1	1
T3 100.000-	Yes	Yes	1	1	1	1	1	1	1	1
80.000				1	1	1	1	1	1	1
T4 80.000-	Yes	Yes	1	1	1	1	1	1	1	1
60.000				1	1	1	1	1	1	1
T5 60.000-	Yes	Yes	1	1	1	1	1	1	1	1
40.000				1	1	1	1	1	1	1
T6 40.000-	Yes	Yes	1	1	1	1	1	1	1	1
20.000				1	1	1	1	1	1	1
T7 20.000-	Yes	Yes	1	1	1	1	1	1	1	1
0.000				1	1	1	1	,	1	1

${ }^{1}$ Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-ofplane direction applied to the overall length.

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in		Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
$\begin{gathered} \hline \text { T1 130.000- } \\ 120.000 \end{gathered}$	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
$\begin{gathered} \text { T2 120.000- } \\ 100.000 \end{gathered}$	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
$\begin{gathered} \text { T3 100.000- } \\ 80.000 \end{gathered}$	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75

tnxTower Report - version 8.1.1.0

Tower Elevation ft	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
	Net Width Deduct in		Net Width Deduct in	U	Net Width Deduct in		Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
$\begin{gathered} \text { T4 80.000- } \\ 60.000 \end{gathered}$	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
$\begin{gathered} \text { T5 60.000- } \\ 40.000 \end{gathered}$	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
$\begin{gathered} \text { T6 40.000- } \\ 20.000 \end{gathered}$	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
$\begin{gathered} \text { T7 } 20.000- \\ 0.000 \end{gathered}$	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75

Tower Elevation ft	Redundant Horizontal		Redundant Diagonal		Redundant SubDiagonal		Redundant SubHorizontal		Redundant Vertical		Redundant Hip		Redundant Hip Diagonal	
	Net Width Deduct in		Net Width Deduct in	U	Net Width Deduct in		Net Width Deduct in	U						
$\begin{gathered} \hline \text { T1 130.000- } \\ 120.000 \end{gathered}$	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
$\begin{gathered} \text { T2 120.000- } \\ 100.000 \end{gathered}$	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
$\begin{gathered} \text { T3 100.000- } \\ 80.000 \end{gathered}$	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
$\begin{gathered} \text { T4 80.000- } \\ 60.000 \end{gathered}$	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
$\begin{gathered} \text { T5 60.000- } \\ 40.000 \end{gathered}$	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
$\begin{gathered} \text { T6 40.000- } \\ 20.000 \end{gathered}$	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
$\begin{gathered} \text { T7 20.000- } \\ 0.000 \end{gathered}$	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg Connection Type	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
		Bolt Size in	No.	Bolt Size in	No.	Bolt Size in		Bolt Size in	No.	Bolt Size in		$\begin{gathered} \text { Bolt Size } \\ \text { in } \end{gathered}$	No.	Bolt Size in	No.
T1 130.000-	Flange	0.750	4	0.625	3	0.625	0	0.625	0	0.625	0	0.625	2	0.625	0
120.000		A325N													
T2 120.000-	Flange	0.875	4	0.625	3	0.625	0	0.625	0	0.625	0	0.625	2	0.625	0
100.000		A325N													
T3 100.000-	Flange	1.000	4	0.625	3	0.625	0	0.625	0	0.625	0	0.625	2	0.625	0
80.000		A325N													
T4 80.000-	Flange	1.000	4	0.625	3	0.625	0	0.625	0	0.625	0	0.625	2	0.625	0
60.000		A325N													
T5 60.000-	Flange	1.000	6	0.625	3	0.625	0	0.625	0	0.625	0	0.625	2	0.625	0
40.000		A325N													
T6 40.000-	Flange	1.000	6	0.625	3	0.625	0	0.625	0	0.625	0	0.625	2	0.625	0
20.000		A325N													
T7 20.000-	Flange	1.000	0	0.625	3	0.625	0	0.625	0	0.625	0	0.625	2	0.625	0
0.000		A325N													

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Exclude From Torque Calculation	$\begin{gathered} \text { Componen } \\ t \\ \text { Type } \end{gathered}$	Placement ft	Face Offset in	Lateral Offset (Frac FW)	\#		Clear Spacin g in	Width or Diameter in	Perimete r in	Weight plf
Climbing	C	No	No	Af (CaAa)	130.000 -	-	0.4	1	1	3.000	3.000		8.40
Ladder (Af)					0.000	10.000							
Safety Line 3/8	C	No	No	Ar (CaAa)	$\begin{gathered} 130.000- \\ 0.000 \end{gathered}$	10.000	0.4	1	1	0.375	0.375		0.22
LDF5-	C	No	No	Ar (CaAa)	$130.000-$	0.000	-0.44	10	10	1.000	1.030		0.33
50A(7/8)					7.000								
Feedline	C	No	No	Af (CaAa)	130.000 -	0.000	-0.4	1	1	3.000	3.000		8.40
Ladder (Af)					0.000								
E60	C	No	No	Ar (CaAa)	$117.000-$	0.000	-0.375	1	1	1.000	2.200		1.10
					107.000								
E65+E60	C	No	No	Ar (CaAa)	$107.000-$	0.000	-0.375	2	2	1.000	2.200		1.10
					96.000								
E60+E65+E6	C	No	No	Ar (CaAa)	96.000 -	0.000	-0.375	3	3	1.000	2.200		1.10
0					86.000								
E60+E60+E6	C	No	No	Ar (CaAa)	86.000 -	0.000	-0.375	4	4	1.000	2.200		1.10
5+E60					71.000								
E65+E60+E6	C	No	No	Ar (CaAa)	71.000 -	0.000	-0.375	5	5	1.000	2.200		1.10
0+E65+E60					7.000								
HYBRIFLEX	A	No	No	Ar (CaAa)	125.000 -	0.000	-0.42	3	3	1.000	1.980		0.82
1-5/8"					7.000								
Feedline	A	No	No	Af (CaAa)	130.000 -	0.000	-0.42	1	1	3.000	3.000		8.40
Ladder (Af)					0.000								
LDF5-	C	No	No	Ar (CaAa)	113.000 -	3.000	-0.47	1	1	1.000	1.030		0.33
50A(7/8)					7.000								
LDF4-	C	No	No	Ar (CaAa)	113.000 -	2.000	-0.454	1	1	0.500	0.630		0.16
75A(1/2)					7.000								
LDF5-	C	No	No	Ar (CaAa)	104.000 -	1.500	-0.47	1	1	1.000	1.030		0.33
50A(7/8)					7.000								
LDF5-	C	No	No	Ar (CaAa)	98.000 -	4.500	-0.47	1	1	1.000	1.030		0.33
50A(7/8)					7.000								
LDF5-	C	No	No	Ar (CaAa)	84.000 -	2.000	-0.46	1	1	1.000	1.030		0.33
50A(7/8)					7.000								
LDF4-	C	No	No	Ar (CaAa)	84.000 -	2.000	-0.445	1	1	0.500	0.625		0.15
50A(1/2)					7.000								
Feedline	C	No	No	Af (CaAa)	80.000 -	0.000	0.42	1	1	3.000	3.000		8.40
Ladder (Af)					0.000								
LDF4-	C	No	No	Ar (CaAa)	77.000 -	0.000	0.405	1	1	0.500	0.625		0.15
50A(1/2)					7.000								
LDF7-50A(1-	C	No	No	Ar (CaAa)	77.000 -	0.000	0.37	4	4	1.000	1.980		0.82
5/8)					7.000								
LDF5-	C	No	No	Ar (CaAa)	63.000 -	0.000	0.44	1	1	1.000	1.030		0.33
50A(7/8)					7.000								
LDF4-	C	No	No	Ar (CaAa)	63.000 -	0.000	0.415	1	1	0.500	0.625		0.15
50A(1/2)					7.000								
LDF7-50A(1-	C	No	No	Ar (CaAa)	63.000 -	0.000	0.47	3	3	1.000	1.980		0.82
5/8)					7.000								
LDF4-	C	No	No	$\operatorname{Ar}(\mathrm{CaAa})$	58.000 -	2.000	-0.438	1	1	0.500	0.630		0.16
75A(1/2)					7.000								
LDF4-	C	No	No	Ar (CaAa)	54.000 -	2.000	-0.43	1	1	0.500	0.630		0.16
75A(1/2)					7.000								
LDF5-	C	No	No	Ar (CaAa)	43.000 -	0.000	0.43	1	1	1.000	1.030		0.33
50A(7/8)					7.000								
LDF2-	C	No	No	$\operatorname{Ar}(\mathrm{CaAa})$	43.000 -	2.000	-0.418	1	1	0.440	0.440		0.08
50A(3/8)					7.000								
LDF2-	C	No	No	Ar (CaAa)	43.000 -	2.000	-0.424	1	1	0.440	0.440		0.08
50A(3/8)					7.000								
****Proposed													
LDF5-	C	No	No	Ar (CaAa)	127.000 -	1.500	-0.412	2	1	0.500	1.030		0.33
50A(7/8)					0.000								
E65	C	No	No	Ar (CaAa)	$\begin{gathered} 87.000- \\ 0.000 \end{gathered}$	4.500	-0.412	1	1	0.500	2.200		1.10
**													
**													

Feed Line/Linear Appurtenances - Entered As Area

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Exclude From Torque Calculation	$\begin{gathered} \text { Componen } \\ t \\ \text { Type } \end{gathered}$	Placement ft	Total Number	$C_{A} A_{A}$ $f t^{2} / f t$	Weight plf
**								

Feed Line/Linear Appurtenances Section Areas

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Tower Sectio n \& Tower Elevation ft \& Face \& A_{R}

$f t^{2}$ \& A_{F}

$f t^{2}$ \& \[
$$
\begin{gathered}
C_{A} A_{A} \\
\text { In Face } \\
{f t^{2}}^{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
{f t^{2}}^{2}
\end{gathered}
$$
\] \& Weight

K

\hline \multirow[t]{3}{*}{T1} \& \multirow[t]{3}{*}{130.000-120.000} \& A \& 0.000 \& 0.000 \& 7.970 \& 0.000 \& 0.10

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 22.117 \& 0.000 \& 0.21

\hline \multirow[t]{3}{*}{T2} \& \multirow[t]{3}{*}{120.000-100.000} \& A \& 0.000 \& 0.000 \& 21.880 \& 0.000 \& 0.22

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 53.320 \& 0.000 \& 0.45

\hline \multirow[t]{3}{*}{T3} \& \multirow[t]{3}{*}{100.000-80.000} \& A \& 0.000 \& 0.000 \& 21.880 \& 0.000 \& 0.22

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 68.546 \& 0.000 \& 0.52

\hline \multirow[t]{3}{*}{T4} \& \multirow[t]{3}{*}{80.000-60.000} \& A \& 0.000 \& 0.000 \& 21.880 \& 0.000 \& 0.22

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 107.445 \& 0.000 \& 0.81

\hline \multirow[t]{3}{*}{T5} \& \multirow[t]{3}{*}{60.000-40.000} \& A \& 0.000 \& 0.000 \& 21.880 \& 0.000 \& 0.22

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 127.489 \& 0.000 \& 0.89

\hline \multirow[t]{3}{*}{T6} \& \multirow[t]{3}{*}{40.000-20.000} \& A \& 0.000 \& 0.000 \& 21.880 \& 0.000 \& 0.22

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 131.240 \& 0.000 \& 0.90

\hline \multirow[t]{3}{*}{T7} \& \multirow[t]{3}{*}{20.000-0.000} \& A \& 0.000 \& 0.000 \& 17.722 \& 0.000 \& 0.20

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 99.051 \& 0.000 \& 0.77

\hline
\end{tabular}

Feed Line/Linear Appurtenances Section Areas - With Ice

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tower Sectio \\
n
\end{tabular} \& Tower Elevation ft \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Ice Thickness in \& AR

$f t^{2}$ \& AF

$f t^{2}$ \& \[
$$
\begin{gathered}
C_{A} A_{A} \\
\text { In Face } \\
{f t^{2}}^{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
\text { ft }^{2}
\end{gathered}
$$
\] \& Weight

K

\hline \multirow[t]{3}{*}{T1} \& \multirow[t]{3}{*}{130.000-120.000} \& A \& \multirow[t]{3}{*}{2.628} \& 0.000 \& 0.000 \& 19.661 \& 0.000 \& 0.47

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 66.600 \& 0.000 \& 1.45

\hline \multirow[t]{3}{*}{T2} \& \multirow[t]{3}{*}{120.000-100.000} \& A \& \multirow[t]{3}{*}{2.594} \& 0.000 \& 0.000 \& 57.773 \& 0.000 \& 1.23

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 175.603 \& 0.000 \& 3.68

\hline \multirow[t]{3}{*}{T3} \& \multirow[t]{3}{*}{100.000-80.000} \& A \& \multirow[t]{3}{*}{2.543} \& 0.000 \& 0.000 \& 57.217 \& 0.000 \& 1.21

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 234.878 \& 0.000 \& 4.67

\hline \multirow[t]{3}{*}{T4} \& \multirow[t]{3}{*}{80.000-60.000} \& A \& \multirow[t]{3}{*}{2.480} \& 0.000 \& 0.000 \& 56.537 \& 0.000 \& 1.17

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 346.446 \& 0.000 \& 6.85

\hline \multirow[t]{3}{*}{T5} \& \multirow[t]{3}{*}{60.000-40.000} \& A \& \multirow[t]{3}{*}{2.398} \& 0.000 \& 0.000 \& 55.653 \& 0.000 \& 1.13

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 423.737 \& 0.000 \& 7.97

\hline \multirow[t]{3}{*}{T6} \& \multirow[t]{3}{*}{40.000-20.000} \& A \& \multirow[t]{3}{*}{2.278} \& 0.000 \& 0.000 \& 54.369 \& 0.000 \& 1.07

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 442.797 \& 0.000 \& 7.97

\hline \multirow[t]{3}{*}{T7} \& \multirow[t]{3}{*}{20.000-0.000} \& A \& \multirow[t]{3}{*}{2.041} \& 0.000 \& 0.000 \& 40.044 \& 0.000 \& 0.80

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 305.012 \& 0.000 \& 5.27

\hline
\end{tabular}

Feed Line Center of Pressure

Section	Elevation	$C P_{X}$	$C P_{Z}$	$C P_{X}$ Ice in	$C P_{Z}$ Ice in
ft	in	in	9.223		
	T1	$130.000-120.000$	3.384	8.185	3.532
T2	$120.000-100.000$	4.494	10.970	7.168	14.311
T3	$100.000-80.000$	9.740	13.955	14.807	19.312
T4	$80.000-60.000$	5.496	20.381	10.628	27.371
T5	$60.000-40.000$	1.358	24.024	6.546	33.538
T6	$40.000-20.000$	1.534	26.372	8.501	38.194
T7	$20.000-0.000$	-0.374	24.870	5.731	36.017

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} \hline K_{a} \\ \text { No Ice } \end{gathered}$	$\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$
T1	1	Climbing Ladder (Af)	$\begin{array}{r} 120.00- \\ 130.00 \end{array}$	0.6000	0.5472
T1	2	Safety Line 3/8	$\begin{array}{r} 120.00- \\ 130.00 \end{array}$	0.6000	0.5472
T1	3	LDF5-50A(7/8)	$\begin{array}{r} 120.00- \\ 130.00 \end{array}$	0.6000	0.5472
T1	4	Feedline Ladder (Af)	$120.00-$	0.6000	0.5472
T1	10	HYBRIFLEX 1-5/8"	$120.00-$	0.6000	0.5472
T1	13	Feedline Ladder (Af)	120.00-	0.6000	0.5472
T1	32	LDF5-50A(7/8)	120.00-	0.6000	0.5472
			127.00		
T2	1	Climbing Ladder (Af)	$\begin{array}{r} 100.00- \\ 120.00 \end{array}$	0.6000	0.6000
T2	2	Safety Line 3/8	100.00-	0.6000	0.6000
T2	3	LDF5-50A(7/8)	120.00	0.6000	0.6000
			120.00		
T2	4	Feedline Ladder (Af)	100.00-	0.6000	0.6000
			$\begin{array}{r} 120.00 \\ 107.00-1 \end{array}$		
T2	5	E60	$\begin{array}{r} 107.00- \\ 117.00 \end{array}$	0.6000	0.6000
T2	6	E65+E60	100.00-	0.6000	0.6000
			107.00-		
T2	10	HYBRIFLEX 1-5/8"	$\begin{array}{r} 100.00- \\ 120.00 \end{array}$	0.6000	0.6000
T2	13	Feedline Ladder (Af)	100.00-	0.6000	0.6000
			120.00		
T2	14	LDF5-50A(7/8)	$\begin{array}{r} 100.00- \\ 113.00 \end{array}$	0.6000	0.6000
T2	15	LDF4-75A(1/2)	100.00-	0.6000	0.6000
			113.00		
T2	16	LDF5-50A(7/8)	$\begin{array}{r} 100.00- \\ 104.00 \end{array}$	0.6000	0.6000
T2	32	LDF5-50A(7/8)	100.00-	0.6000	0.6000
T3	1	Climbing Ladder (Af)	120.00	0.6000	0.6000
		Cirning Ladder (A)	100.00		
T3	2	Safety Line 3/8	$80.00-$	0.6000	0.6000
T3			100.00		
		LDF5-50A(7/8)	$\begin{aligned} & 80.00-0 \\ & 100.00 \end{aligned}$	0.6000	0.6000

tnxTower Report - version 8.1.1.0

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No lce	$\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$
T3	4	Feedline Ladder (Af)	$\begin{aligned} & 80.00- \\ & 100.00 \end{aligned}$	0.6000	0.6000
T3	6	E65+E60	$\begin{aligned} & 96.00- \\ & 100.00 \end{aligned}$	0.6000	0.6000
T3	7	$E 60+E 65+E 60$	$86.00-$ 96.00	0.6000	0.6000
T3	8	$E 60+E 60+E 65+E 60$	$\begin{array}{r} 80.00- \\ 86.00 \end{array}$	0.6000	0.6000
T3	10	HYBRIFLEX 1-5/8"	$\begin{aligned} & 80.00- \\ & 100.00 \end{aligned}$	0.6000	0.6000
T3	13	Feedline Ladder (Af)	$\begin{aligned} & 80.00- \\ & 100.00 \end{aligned}$	0.6000	0.6000
T3	14	LDF5-50A(7/8)	$\begin{aligned} & 80.00- \\ & 100.00 \end{aligned}$	0.6000	0.6000
T3	15	LDF4-75A(1/2)	$\begin{aligned} & 80.00- \\ & 100.00 \end{aligned}$	0.6000	0.6000
T3	16	LDF5-50A(7/8)	$\begin{aligned} & 80.00- \\ & 100.00 \end{aligned}$	0.6000	0.6000
T3	17	LDF5-50A(7/8)	80.00-	0.6000	0.6000
T3	18	LDF5-50A(7/8)	$\begin{array}{r} 80.00- \\ 84.00 \end{array}$	0.6000	0.6000
T3	19	LDF4-50A(1/2)	$80.00-$ 84.00	0.6000	0.6000
T3	32	LDF5-50A(7/8)	$\begin{aligned} & 80.00- \\ & 100.00 \end{aligned}$	0.6000	0.6000
T3	33	E65	$80.00-$ 87.00	0.6000	0.6000
T4	1	Climbing Ladder (Af)	$\begin{array}{r} 60.00- \\ 80.00 \end{array}$	0.6000	0.6000
T4	2	Safety Line 3/8	$80.00-$ 80.00	0.6000	0.6000
T4	3	LDF5-50A(7/8)	$60.00-$ 80.00	0.6000	0.6000
T4	4	Feedline Ladder (Af)	$60.00-$ 80.00	0.6000	0.6000
T4	8	$E 60+E 60+E 65+E 60$	$\begin{array}{r} 71.00- \\ 80.00 \end{array}$	0.6000	0.6000
T4	9	E65+E60+E60+E65+E60	$60.00-$ 71.00	0.6000	0.6000
T4	10	HYBRIFLEX 1-5/8"	$60.00-1$	0.6000	0.6000
T4	13	Feedline Ladder (Af)	$60.00-$ 80.00	0.6000	0.6000
T4	14	LDF5-50A(7/8)	$60.00-$ 80.00	0.6000	0.6000
T4	15	LDF4-75A(1/2)	$60.00-$ 80.00	0.6000	0.6000
T4	16	LDF5-50A(7/8)	$60.00-$ 80.00	0.6000	0.6000
T4	17	LDF5-50A(7/8)	$60.00-1$	0.6000	0.6000
T4	18	LDF5-50A(7/8)	$60.00-$ 80.00	0.6000	0.6000
T4	19	LDF4-50A(1/2)	$60.00-$ 80.00	0.6000	0.6000
T4	20	Feedline Ladder (Af)	$60.00-1$	0.6000	0.6000
T4	21	LDF4-50A(1/2)	$60.00-$ 77.00	0.6000	0.6000
T4	22	LDF7-50A(1-5/8)	$\begin{array}{r} 60.00- \\ 77.00 \end{array}$	0.6000	0.6000
T4	23	LDF5-50A(7/8)	$60.00-1$	0.6000	0.6000
T4	24	LDF4-50A(1/2)	$60.00-$ 63.00	0.6000	0.6000
T4	25	LDF7-50A(1-5/8)	$60.00-$ 63.00	0.6000	0.6000
T4	32	LDF5-50A(7/8)	$60.00-$	0.6000	0.6000

tnxTower Report - version 8.1.1.0

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No Ice	$\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$
T4	33	E65	$\begin{array}{r} 80.00 \\ 60.00- \\ 80.00 \end{array}$	0.6000	0.6000
T5	1	Climbing Ladder (Af)	$\begin{array}{r} 40.00- \\ 60.00 \end{array}$	0.6000	0.6000
T5	2	Safety Line 3/8	$\begin{array}{r} 40.00- \\ 60.00 \end{array}$	0.6000	0.6000
T5	3	LDF5-50A(7/8)	$\begin{array}{r} 40.00- \\ 60.00 \end{array}$	0.6000	0.6000
T5	4	Feedline Ladder (Af)	$40.00-$ 60.00	0.6000	0.6000
T5	9	$E 65+E 60+E 60+E 65+E 60$	$\begin{array}{r} 40.00- \\ 60.00 \end{array}$	0.6000	0.6000
T5	10	HYBRIFLEX 1-5/8"	$40.00-$ 60.00	0.6000	0.6000
T5	13	Feedline Ladder (Af)	$\begin{array}{r} 40.00- \\ 60.00 \end{array}$	0.6000	0.6000
T5	14	LDF5-50A(7/8)	$40.00-$ 60.00	0.6000	0.6000
T5	15	LDF4-75A(1/2)	$\begin{array}{r} 40.00- \\ 60.00 \end{array}$	0.6000	0.6000
T5	16	LDF5-50A(7/8)	$\begin{array}{r} 40.00- \\ 60.00 \end{array}$	0.6000	0.6000
T5	17	LDF5-50A(7/8)	$\begin{array}{r} 40.00- \\ 60.00 \end{array}$	0.6000	0.6000
T5	18	LDF5-50A(7/8)	$\begin{array}{r} 40.00- \\ 60.00 \end{array}$	0.6000	0.6000
T5	19	LDF4-50A(1/2)	$40.00-$ 60.00	0.6000	0.6000
T5	20	Feedline Ladder (Af)	$\begin{array}{r} 40.00- \\ 60.00 \end{array}$	0.6000	0.6000
T5	21	LDF4-50A(1/2)	$\begin{array}{r} 40.00- \\ 60.00 \end{array}$	0.6000	0.6000
T5	22	LDF7-50A(1-5/8)	$\begin{array}{r} 40.00- \\ 60.00 \end{array}$	0.6000	0.6000
T5	23	LDF5-50A(7/8)	$\begin{array}{r} 40.00- \\ 60.00 \end{array}$	0.6000	0.6000
T5	24	LDF4-50A(1/2)	$40.00-$ 60.00	0.6000	0.6000
T5	25	LDF7-50A(1-5/8)	$\begin{array}{r} 40.00- \\ 60.00 \end{array}$	0.6000	0.6000
T5	26	LDF4-75A(1/2)	$\begin{array}{r} 40.00- \\ 58.00 \end{array}$	0.6000	0.6000
T5	27	LDF4-75A(1/2)	40.00-1 54.00	0.6000	0.6000
T5	28	LDF5-50A(7/8)	$40.00-$ 43.00	0.6000	0.6000
T5	29	LDF2-50A(3/8)	$40.00-$ 43.00	0.6000	0.6000
T5	30	LDF2-50A(3/8)	$\begin{array}{r} 40.00- \\ 43.00 \end{array}$	0.6000	0.6000
T5	32	LDF5-50A(7/8)	$\begin{array}{r} 40.00- \\ 60.00 \end{array}$	0.6000	0.6000
T5	33	E65	$40.00-$ 60.00	0.6000	0.6000
T6	1	Climbing Ladder (Af)	$\begin{array}{r} 20.00- \\ 40.00 \end{array}$	0.6000	0.6000
T6	2	Safety Line 3/8	$20.00-1$	0.6000	0.6000
T6	3	LDF5-50A(7/8)	$20.00-1$	0.6000	0.6000
T6	4	Feedline Ladder (Af)	20.00-	0.6000	0.6000
T6	9	$E 65+E 60+E 60+E 65+E 60$	20.00-	0.6000	0.6000
T6	10	HYBRIFLEX 1-5/8"	$\begin{array}{r} 20.00- \\ 40.00 \end{array}$	0.6000	0.6000
T6	13	Feedline Ladder (Af)	$\begin{array}{r} 20.00- \\ 40.00 \end{array}$	0.6000	0.6000

tnxTower Report - version 8.1.1.0

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No lce	$\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$
T6	14	LDF5-50A(7/8)	$\begin{array}{r} 20.00- \\ 40.00 \end{array}$	0.6000	0.6000
T6	15	LDF4-75A(1/2)	$20.00-$ 40.00	0.6000	0.6000
T6	16	LDF5-50A(7/8)	$20.00-$ 40.00	0.6000	0.6000
T6	17	LDF5-50A(7/8)	$20.00-$ 40.00	0.6000	0.6000
T6	18	LDF5-50A(7/8)	$20.00-$ 40.00	0.6000	0.6000
T6	19	LDF4-50A(1/2)	$20.00-$ 40.00	0.6000	0.6000
T6	20	Feedline Ladder (Af)	$20.00-$ 40.00	0.6000	0.6000
T6	21	LDF4-50A(1/2)	$20.00-$ 40.00	0.6000	0.6000
T6	22	LDF7-50A(1-5/8)	$20.00-$ 40.00	0.6000	0.6000
T6	23	LDF5-50A(7/8)	$20.00-$ 40.00	0.6000	0.6000
T6	24	LDF4-50A(1/2)	$20.00-$ 40.00	0.6000	0.6000
T6	25	LDF7-50A(1-5/8)	$20.00-$ 40.00	0.6000	0.6000
T6	26	LDF4-75A(1/2)	$20.00-$ 40.00	0.6000	0.6000
T6	27	LDF4-75A(1/2)	$20.00-$ 40.00	0.6000	0.6000
T6	28	LDF5-50A(7/8)	$20.00-$ 40.00	0.6000	0.6000
T6	29	LDF2-50A(3/8)	$20.00-$ 40.00	0.6000	0.6000
T6	30	LDF2-50A(3/8)	$20.00-$ 40.00	0.6000	0.6000
T6	32	LDF5-50A(7/8)	$20.00-$ 40.00	0.6000	0.6000
T6	33	E65	$20.00-$ 40.00	0.6000	0.6000
T7	1	Climbing Ladder (Af)	0.00-20.00	0.6000	0.6000
T7	2	Safety Line 3/8	0.00-20.00	0.6000	0.6000
T7	3	LDF5-50A(7/8)	7.00-20.00	0.6000	0.6000
T7	4	Feedline Ladder (Af)	0.00-20.00	0.6000	0.6000
T7	9	E65+E60+E60+E65+E60	7.00-20.00	0.6000	0.6000
T7	10	HYBRIFLEX 1-5/8"	7.00-20.00	0.6000	0.6000
T7	13	Feedline Ladder (Af)	0.00-20.00	0.6000	0.6000
T7	14	LDF5-50A(7/8)	7.00-20.00	0.6000	0.6000
T7	15	LDF4-75A(1/2)	7.00-20.00	0.6000	0.6000
T7	16	LDF5-50A(7/8)	7.00-20.00	0.6000	0.6000
T7	17	LDF5-50A(7/8)	7.00-20.00	0.6000	0.6000
T7	18	LDF5-50A(7/8)	7.00-20.00	0.6000	0.6000
T7	19	LDF4-50A(1/2)	7.00-20.00	0.6000	0.6000
T7	20	Feedline Ladder (Af)	0.00-20.00	0.6000	0.6000
T7	21	LDF4-50A(1/2)	7.00-20.00	0.6000	0.6000
T7	22	LDF7-50A(1-5/8)	7.00-20.00	0.6000	0.6000
T7	23	LDF5-50A(7/8)	7.00-20.00	0.6000	0.6000
T7	24	LDF4-50A(1/2)	7.00-20.00	0.6000	0.6000
T7	25	LDF7-50A(1-5/8)	7.00-20.00	0.6000	0.6000
T7	26	LDF4-75A(1/2)	7.00-20.00	0.6000	0.6000
T7	27	LDF4-75A(1/2)	7.00-20.00	0.6000	0.6000
T7	28	LDF5-50A(7/8)	7.00-20.00	0.6000	0.6000
T7	29	LDF2-50A(3/8)	7.00-20.00	0.6000	0.6000
T7	30	LDF2-50A(3/8)	7.00-20.00	0.6000	0.6000
T7	32	LDF5-50A(7/8)	0.00-20.00	0.6000	0.6000
T7	33	E65	0.00-20.00	0.6000	0.6000

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: Horz \\
Lateral Vert ft ft ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustmen \(t\) \\
0
\end{tabular} \& Placement

ft \& \& \begin{tabular}{l}
$C_{A} A_{A}$ Front

$f t^{2}$

 \&

$C_{A} A_{A}$ Side

$f t^{2}$
\end{tabular} \& Weight

K

\hline \multirow[t]{4}{*}{Sector Mount [SM 501-3]} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Face} \& 0.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{127.000} \& No Ice \& 20.430 \& 20.430 \& 0.90

\hline \& \& \& 0.000 \& \& \& 1/2" \& 30.050 \& 30.050 \& 1.28

\hline \& \& \& \multirow[t]{2}{*}{0.000} \& \& \& Ice \& 40.280 \& 40.280 \& 1.80

\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { 1" Ice } \\
& \text { 2" Ice }
\end{aligned}
$$ \& 64.650 \& 64.650 \& 3.23

\hline \multirow[t]{4}{*}{(2) 14 'x2.5" Horizontal Pipe} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Face} \& 0.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{127.000} \& No Ice \& 4.169 \& 0.024 \& 0.08

\hline \& \& \& -4.000 \& \& \& 1/2" \& 5.651 \& 0.097 \& 0.11

\hline \& \& \& \multirow[t]{2}{*}{0.000} \& \& \& Ice \& 7.150 \& 0.171 \& 0.15

\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { 1" Ice } \\
& 2 " \text { Ice }
\end{aligned}
$$ \& 10.198 \& 0.318 \& 0.26

\hline \multirow[t]{4}{*}{(2) 14'x2.5" Horizontal Pipe} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Face} \& 0.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{127.000} \& No Ice \& 4.169 \& 0.024 \& 0.08

\hline \& \& \& -4.000 \& \& \& 1/2" \& 5.651 \& 0.097 \& 0.11

\hline \& \& \& \multirow[t]{2}{*}{0.000} \& \& \& Ice \& 7.150 \& 0.171 \& 0.15

\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { 1" Ice } \\
& 2 " \text { Ice }
\end{aligned}
$$ \& 10.198 \& 0.318 \& 0.26

\hline \multirow[t]{4}{*}{(2) 14'x2.5" Horizontal Pipe} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Face} \& 0.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{127.000} \& No Ice \& 4.169 \& 0.024 \& 0.08

\hline \& \& \& -4.000 \& \& \& 1/2" \& 5.651 \& 0.097 \& 0.11

\hline \& \& \& \multirow[t]{2}{*}{0.000} \& \& \& Ice \& 7.150 \& 0.171 \& 0.15

\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { 1" Ice } \\
& 2 " \text { Ice }
\end{aligned}
$$ \& 10.198 \& 0.318 \& 0.26

\hline \multirow[t]{4}{*}{6'6"x3.5" Mount Pipe} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Face} \& 0.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{127.000} \& No Ice \& 2.161 \& 2.161 \& 0.02

\hline \& \& \& 0.000 \& \& \& 1/2" \& 2.554 \& 2.554 \& 0.03

\hline \& \& \& \multirow[t]{2}{*}{0.000} \& \& \& Ice \& 2.957 \& 2.957 \& 0.06

\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { 1" Ice } \\
& \text { 2" Ice }
\end{aligned}
$$ \& 3.790 \& 3.790 \& 0.11

\hline \multirow[t]{4}{*}{3' Dia 12' Omni} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Face} \& 0.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{127.000} \& No Ice \& 3.600 \& 3.600 \& 0.02

\hline \& \& \& -2.000 \& \& \& 1/2" \& 4.833 \& 4.833 \& 0.05

\hline \& \& \& \multirow[t]{2}{*}{8.000} \& \& \& Ice \& 6.083 \& 6.083 \& 0.08

\hline \& \& \& \& \& \& | 1" Ice |
| :--- |
| 2" Ice | \& 8.017 \& 8.017 \& 0.17

\hline \multirow[t]{4}{*}{2" Dia 10' Omni} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 3.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{127.000} \& No Ice \& 2.000 \& 2.000 \& 0.01

\hline \& \& \& 0.000 \& \& \& 1/2" \& 3.030 \& 3.030 \& 0.03

\hline \& \& \& \multirow[t]{2}{*}{7.000} \& \& \& Ice \& 4.060 \& 4.060 \& 0.04

\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { 1" Ice } \\
& 2 " \text { Ice }
\end{aligned}
$$ \& 6.120 \& 6.120 \& 0.07

\hline \multirow[t]{4}{*}{2.38" Dia 21' Omni} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Face} \& 0.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{127.000} \& No Ice \& 4.998 \& 4.998 \& 0.01

\hline \& \& \& 1.000 \& \& \& 1/2" \& 7.126 \& 7.126 \& 0.05

\hline \& \& \& \multirow[t]{2}{*}{12.000} \& \& \& Ice \& 9.271 \& 9.271 \& 0.10

\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { 1" Ice } \\
& 2 " \text { Ice }
\end{aligned}
$$ \& 13.611 \& 13.611 \& 0.24

\hline \multirow[t]{4}{*}{2.5" Dia 16' Omni} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Face} \& 0.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{127.000} \& No Ice \& 4.000 \& 4.000 \& 0.03

\hline \& \& \& 1.000 \& \& \& 1/2" \& 5.629 \& 5.629 \& 0.06

\hline \& \& \& 9.000 \& \& \& Ice \& 7.275 \& 7.275 \& 0.10

\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { 1" Ice } \\
& 2 " \text { Ice }
\end{aligned}
$$ \& 10.617 \& 10.617 \& 0.21

\hline \multirow[t]{5}{*}{18' x 3' Dia Omni} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 3.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{127.000} \& No Ice \& 5.400 \& 5.400 \& 0.14

\hline \& \& \& 0.000 \& \& \& 1/2" \& 7.233 \& 7.233 \& 0.18

\hline \& \& \& 11.000 \& \& \& Ice \& 9.083 \& 9.083 \& 0.23

\hline \& \& \& \& \& \& 1" Ice \& 12.833 \& 12.833 \& 0.36

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{2.5' Dia 16' Omni} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 1.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{127.000} \& No Ice \& 4.000 \& 4.000 \& 0.03

\hline \& \& \& 0.000 \& \& \& 1/2" \& 5.629 \& 5.629 \& 0.06

\hline \& \& \& 10.000 \& \& \& Ice \& 7.275 \& 7.275 \& 0.10

\hline \& \& \& \& \& \& 1 " Ice \& 10.617 \& 10.617 \& 0.21

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{2" Dia 24' Omni} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 3.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{127.000} \& No Ice \& 4.800 \& 4.800 \& 0.05

\hline \& \& \& 0.000 \& \& \& 1/2" \& 7.225 \& 7.225 \& 0.08

\hline \& \& \& 14.000 \& \& \& Ice \& 9.667 \& 9.667 \& 0.13

\hline \& \& \& \& \& \& 1 " Ice \& 14.600 \& 14.600 \& 0.28

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline 2" Dia 25' Omni \& C \& From Leg \& 0.000 \& 0.000 \& 127.000 \& No Ice \& 5.000 \& 5.000 \& 0.05

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\hline \text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Offset Type \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
ft \\
\(f t\)
\(f t\)
\end{tabular} \& Azimuth Adjustmen \(t\) \& Placement

ft \& \& $C_{A} A_{A}$ Front $f t^{2}$ \& | $C_{A} A_{A}$ Side |
| :--- |
| $f t^{2}$ | \& Weight

K

\hline \multirow{7}{*}{10"x8"x3" TMA} \& \multirow{7}{*}{C} \& \multirow{7}{*}{From Leg} \& 0.000 \& \multirow{7}{*}{0.000} \& \multirow{7}{*}{127.000} \& 1/2" \& 7.525 \& 7.525 \& 0.09

\hline \& \& \& 14.500 \& \& \& Ice \& 10.067 \& 10.067 \& 0.14

\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { 1" Ice } \\
& \text { 2" Ice }
\end{aligned}
$$ \& 15.200 \& 15.200 \& 0.30

\hline \& \& \& 2.000 \& \& \& No Ice \& 1.000 \& 0.410 \& 0.01

\hline \& \& \& 0.000 \& \& \& 1/2" \& 1.131 \& 0.510 \& 0.02

\hline \& \& \& \multirow[t]{2}{*}{2.000} \& \& \& Ice \& 1.270 \& 0.618 \& 0.03

\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { 1" Ice } \\
& \text { 2" Ice }
\end{aligned}
$$ \& 1.570 \& 0.853 \& 0.05

\hline \multicolumn{10}{|l|}{*** ${ }^{\text {a }}$}

\hline \multirow[t]{5}{*}{Sector Mount [SM 502-3]} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{None} \& \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{125.000} \& No Ice \& 29.820 \& 29.820 \& 1.67

\hline \& \& \& \& \& \& 1/2" \& 42.210 \& 42.210 \& 2.27

\hline \& \& \& \& \& \& Ice \& 54.430 \& 54.430 \& 3.05

\hline \& \& \& \& \& \& 1" Ice \& 78.490 \& 78.490 \& 5.18

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{APXVAA4L24 43-UNA20_TIA w/ Mount Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Face} \& 3.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{125.000} \& No Ice \& 20.480 \& 10.869 \& 0.20

\hline \& \& \& 0.000 \& \& \& 1/2" \& 21.231 \& 12.393 \& 0.34

\hline \& \& \& 0.000 \& \& \& Ice \& 21.990 \& 13.942 \& 0.48

\hline \& \& \& \& \& \& $1{ }^{1 /}$ Ice \& 23.444 \& 16.291 \& 0.81

\hline \& \& \& \& \& \& 2 " Ice \& \& \&

\hline \multirow[t]{5}{*}{APXVAA4L24_43-UNA20_TIA w/ Mount Pipe} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Face} \& 3.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{125.000} \& No Ice \& 20.480 \& 10.869 \& 0.20

\hline \& \& \& 0.000 \& \& \& 1/2" \& 21.231 \& 12.393 \& 0.34

\hline \& \& \& 0.000 \& \& \& Ice \& 21.990 \& 13.942 \& 0.48

\hline \& \& \& \& \& \& $1{ }^{\text {" Ice }}$ \& 23.444 \& 16.291 \& 0.81

\hline \& \& \& \& \& \& 2 " Ice \& \& \&

\hline \multirow[t]{5}{*}{APXVAA4L24_43-UNA20_TIA w/ Mount Pipe} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Face} \& 3.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{125.000} \& No Ice \& 20.480 \& 10.869 \& 0.20

\hline \& \& \& 0.000 \& \& \& 1/2" \& 21.231 \& 12.393 \& 0.34

\hline \& \& \& 0.000 \& \& \& Ice \& 21.990 \& 13.942 \& 0.48

\hline \& \& \& \& \& \& $1{ }^{\text {" Ice }}$ \& 23.444 \& 16.291 \& 0.81

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{AIR6449 B41 TMOBILE_TIA w/Mount Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Face} \& 3.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{125.000} \& No Ice \& 5.870 \& 3.270 \& 0.13

\hline \& \& \& 0.000 \& \& \& 1/2" \& 6.233 \& 3.728 \& 0.18

\hline \& \& \& 0.000 \& \& \& Ice \& 6.606 \& 4.203 \& 0.23

\hline \& \& \& \& \& \& $1{ }^{\text {" Ice }}$ \& 7.382 \& 5.200 \& 0.36

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{AIR6449 B41_TMOBILE_TIA w/ Mount Pipe} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Face} \& 3.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{125.000} \& No Ice \& 5.870 \& 3.270 \& 0.13

\hline \& \& \& 0.000 \& \& \& 1/2" \& 6.233 \& 3.728 \& 0.18

\hline \& \& \& 0.000 \& \& \& Ice \& 6.606 \& 4.203 \& 0.23

\hline \& \& \& \& \& \& $1{ }^{1 / \mathrm{Ice}}$ \& 7.382 \& 5.200 \& 0.36

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{AIR6449 B41_TMOBILE_TIA w/ Mount Pipe} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Face} \& 3.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{125.000} \& No Ice \& 5.870 \& 3.270 \& 0.13

\hline \& \& \& 0.000 \& \& \& 1/2" \& 6.233 \& 3.728 \& 0.18

\hline \& \& \& 0.000 \& \& \& Ice \& 6.606 \& 4.203 \& 0.23

\hline \& \& \& \& \& \& 1" Ice \& 7.382 \& 5.200 \& 0.36

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{AIR 32 w/ Mount Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Face} \& 3.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{125.000} \& No Ice \& 3.760 \& 3.150 \& 0.12

\hline \& \& \& 0.000 \& \& \& 1/2" \& 4.120 \& 3.490 \& 0.18

\hline \& \& \& 0.000 \& \& \& Ice \& 4.480 \& 3.840 \& 0.25

\hline \& \& \& \& \& \& $1{ }^{1 /}$ Ice \& 5.240 \& 4.580 \& 0.41

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{AIR 32 w/ Mount Pipe} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Face} \& 3.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{125.000} \& No Ice \& 3.760 \& 3.150 \& 0.12

\hline \& \& \& 0.000 \& \& \& 1/2" \& 4.120 \& 3.490 \& 0.18

\hline \& \& \& 0.000 \& \& \& Ice \& 4.480 \& 3.840 \& 0.25

\hline \& \& \& \& \& \& $1{ }^{\text {" Ice }}$ \& 5.240 \& 4.580 \& 0.41

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{AIR 32 w/ Mount Pipe} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Face} \& 3.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{125.000} \& No Ice \& 3.760 \& 3.150 \& 0.12

\hline \& \& \& 0.000 \& \& \& 1/2" \& 4.120 \& 3.490 \& 0.18

\hline \& \& \& 0.000 \& \& \& Ice \& 4.480 \& 3.840 \& 0.25

\hline \& \& \& \& \& \& $1{ }^{\text {" Ice }}$ \& 5.240 \& 4.580 \& 0.41

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{4415} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Face} \& 3.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{125.000} \& No Ice \& 1.856 \& 0.683 \& 0.04

\hline \& \& \& 0.000 \& \& \& 1/2" \& 2.027 \& 0.801 \& 0.06

\hline \& \& \& 0.000 \& \& \& Ice \& 2.204 \& 0.925 \& 0.07

\hline \& \& \& \& \& \& 1" Ice \& 2.582 \& 1.196 \& 0.11

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Offset Type \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral Vert ft ft
\end{tabular} \& Azimuth Adjustmen \(t\) \& Placement

ft \& \& $C_{A} A_{A}$ Front $f t^{2}$ \& | $C_{A} A_{A}$ Side |
| :--- |
| $f t^{2}$ | \& Weight

K

\hline \multirow[t]{4}{*}{4415} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Face} \& 3.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{125.000} \& No Ice \& 1.856 \& 0.683 \& 0.04

\hline \& \& \& 0.000 \& \& \& 1/2" \& 2.027 \& 0.801 \& 0.06

\hline \& \& \& \multirow[t]{2}{*}{0.000} \& \& \& Ice \& 2.204 \& 0.925 \& 0.07

\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { 1" Ice } \\
& \text { 2" Ice }
\end{aligned}
$$ \& 2.582 \& 1.196 \& 0.11

\hline \multirow[t]{4}{*}{4415} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Face} \& 3.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{125.000} \& No Ice \& 1.856 \& 0.683 \& 0.04

\hline \& \& \& 0.000 \& \& \& 1/2" \& 2.027 \& 0.801 \& 0.06

\hline \& \& \& \multirow[t]{2}{*}{0.000} \& \& \& Ice \& 2.204 \& 0.925 \& 0.07

\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { 1" Ice } \\
& \text { 2" Ice }
\end{aligned}
$$ \& 2.582 \& 1.196 \& 0.11

\hline \multirow[t]{5}{*}{4449} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Face} \& 3.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{125.000} \& No Ice \& 1.969 \& 1.402 \& 0.07

\hline \& \& \& 0.000 \& \& \& 1/2" \& 2.145 \& 1.558 \& 0.09

\hline \& \& \& \multirow[t]{3}{*}{0.000} \& \& \& Ice \& 2.329 \& 1.720 \& 0.11

\hline \& \& \& \& \& \& $1{ }^{\text {" Ice }}$ \& 2.719 \& 2.068 \& 0.16

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{4449} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Face} \& 3.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{125.000} \& No Ice \& 1.969 \& 1.402 \& 0.07

\hline \& \& \& 0.000 \& \& \& 1/2" \& 2.145 \& 1.558 \& 0.09

\hline \& \& \& \multirow[t]{3}{*}{0.000} \& \& \& Ice \& 2.329 \& 1.720 \& 0.11

\hline \& \& \& \& \& \& $1{ }^{\text {" Ice }}$ \& 2.719 \& 2.068 \& 0.16

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{4449} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Face} \& 3.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{125.000} \& No Ice \& 1.969 \& 1.402 \& 0.07

\hline \& \& \& 0.000 \& \& \& 1/2" \& 2.145 \& 1.558 \& 0.09

\hline \& \& \& \multirow[t]{3}{*}{0.000} \& \& \& Ice \& 2.329 \& 1.720 \& 0.11

\hline \& \& \& \& \& \& 1" Ice \& 2.719 \& 2.068 \& 0.16

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{4}{*}{10' Hori. 5"x5" Tube} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Face} \& \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{117.000} \& No Ice \& 5.000 \& 0.208 \& 0.16

\hline \& \& \& $$
0.000
$$ \& \& \& 1/2" \& 5.712 \& 0.268 \& 0.20

\hline \& \& \& \multirow[t]{2}{*}{0.000} \& \& \& Ice \& 6.423 \& 0.334 \& 0.25

\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { 1" Ice } \\
& \text { 2" Ice }
\end{aligned}
$$ \& 7.847 \& 0.490 \& 0.33

\hline \multirow[t]{5}{*}{4' x 2" Horizontal Face Mount Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 0.500 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{117.000} \& No Ice \& 0.870 \& 0.010 \& 0.01

\hline \& \& \& 0.000 \& \& \& 1/2" \& 1.110 \& 0.050 \& 0.02

\hline \& \& \& \multirow[t]{3}{*}{0.000} \& \& \& Ice \& 1.370 \& 0.100 \& 0.03

\hline \& \& \& \& \& \& 1" Ice \& 1.900 \& 0.240 \& 0.06

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{6' x 3" Mount Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 0.500 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{117.000} \& No Ice \& 1.767 \& 1.767 \& 0.03

\hline \& \& \& 0.000 \& \& \& 1/2" \& 2.129 \& 2.129 \& 0.04

\hline \& \& \& \multirow[t]{3}{*}{0.000} \& \& \& Ice \& 2.501 \& 2.501 \& 0.06

\hline \& \& \& \& \& \& $1{ }^{\text {" Ice }}$ \& 3.272 \& 3.272 \& 0.11

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{Side Arm Mount [SO 3061]} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{113.000} \& \& \& 2.260 \&

\hline \& \& \& $$
0.000
$$ \& \& \& 1/2" \& 0.810 \& 3.830 \& 0.06

\hline \& \& \& \multirow[t]{3}{*}{0.000} \& \& \& Ice \& 1.230 \& 5.480 \& 0.09

\hline \& \& \& \& \& \& 1" Ice \& 2.080 \& 9.370 \& 0.19

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{4}{*}{PD1142-1} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& $$
\begin{aligned}
& 4.000 \\
& 0.000
\end{aligned}
$$ \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{113.000} \& No Ice \& \[

$$
\begin{aligned}
& 1.316 \\
& 2
\end{aligned}
$$
\] \& 1.316

3.210 \& 0.01
0.02

\hline \& \& \& 7.000 \& \& \& Ice \& 5.121 \& 5.121 \& 0.05

\hline \& \& \& \& \& \& $1{ }^{1 / \mathrm{Ic}}$ \& 8.993 \& 8.993 \& 0.14

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{10' Hori. 5"x5" Tube} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Face} \& 0.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{107.000} \& No Ice \& 5.000 \& 0.208 \& 0.16

\hline \& \& \& 0.000 \& \& \& 1/2" \& 5.712 \& 0.268 \& 0.20

\hline \& \& \& 0.000 \& \& \& Ice \& 6.423 \& 0.334 \& 0.25

\hline \& \& \& \& \& \& 1" Ice \& 7.847 \& 0.490 \& 0.33

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{10' Hori. 5"x5" Tube} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Face} \& 0.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{107.000} \& No Ice \& 5.000 \& 0.208 \& 0.16

\hline \& \& \& 0.000 \& \& \& 1/2" \& 5.712 \& 0.268 \& 0.20

\hline \& \& \& 0.000 \& \& \& Ice \& 6.423 \& 0.334 \& 0.25

\hline \& \& \& \& \& \& $1{ }^{1 / \mathrm{Ic}}$ \& 7.847 \& 0.490 \& 0.33

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{6'x2" Horizontal Mount Pipe} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Face} \& 0.500 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{107.000} \& No Ice \& 1.425 \& 0.047 \& 0.03

\hline \& \& \& 0.000 \& \& \& 1/2" \& 1.842 \& 0.077 \& 0.04

\hline \& \& \& 0.000 \& \& \& Ice \& 2.266 \& 0.115 \& 0.06

\hline \& \& \& \& \& \& 1" Ice \& 3.137 \& 0.212 \& 0.11

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Offset Type \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
ft \\
\(f t\)
\end{tabular} \& Azimuth Adjustmen \(t\) \& Placement

ft \& \& \begin{tabular}{l}
$C_{A} A_{A}$ Front

$f t^{2}$

 \&

$C_{A} A_{A}$ Side

$f t^{2}$
\end{tabular} \& Weight

K

\hline \multirow[t]{4}{*}{6' x 3" Mount Pipe} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 0.500 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{107.000} \& No Ice \& 1.767 \& 1.767 \& 0.03

\hline \& \& \& 0.000 \& \& \& 1/2" \& 2.129 \& 2.129 \& 0.04

\hline \& \& \& \multirow[t]{2}{*}{0.000} \& \& \& Ice \& 2.501 \& 2.501 \& 0.06

\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { 1" Ice } \\
& \text { 2" Ice }
\end{aligned}
$$ \& 3.272 \& 3.272 \& 0.11

\hline \multirow[t]{5}{*}{Side Arm Mount [SO 3061]} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 0.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{104.000} \& No Ice \& 0.410 \& 2.260 \& 0.04

\hline \& \& \& 0.000 \& \& \& 1/2" \& 0.810 \& 3.830 \& 0.06

\hline \& \& \& \multirow[t]{3}{*}{0.000} \& \& \& Ice \& 1.230 \& 5.480 \& 0.09

\hline \& \& \& \& \& \& $1{ }^{\text {" Ice }}$ \& 2.080 \& 9.370 \& 0.19

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{PD1142-1} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 4.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{104.000} \& No Ice \& 1.316 \& 1.316 \& 0.01

\hline \& \& \& 0.000 \& \& \& 1/2" \& 3.210 \& 3.210 \& 0.02

\hline \& \& \& \multirow[t]{3}{*}{7.000} \& \& \& Ice \& 5.121 \& 5.121 \& 0.05

\hline \& \& \& \& \& \& 1" Ice \& 8.993 \& 8.993 \& 0.14

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{10}{*}{| Side Arm Mount [SO 3061] |
| :--- |
| 3' Yagi |} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 0.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{98.000} \& No Ice \& 0.410 \& 2.260 \& 0.04

\hline \& \& \& 0.000 \& \& \& 1/2" \& 0.810 \& 3.830 \& 0.06

\hline \& \& \& \multirow[t]{3}{*}{0.000} \& \& \& Ice \& 1.230 \& 5.480 \& 0.09

\hline \& \& \& \& \& \& $1{ }^{\text {" Ice }}$ \& 2.080 \& 9.370 \& 0.19

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 4.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{98.000} \& No Ice \& 2.083 \& 2.083 \& 0.03

\hline \& \& \& 0.000 \& \& \& 1/2" \& 3.787 \& 3.787 \& 0.05

\hline \& \& \& \multirow[t]{3}{*}{0.000} \& \& \& Ice \& 5.517 \& 5.517 \& 0.09

\hline \& \& \& \& \& \& $1{ }^{\text {" Ice }}$ \& 9.055 \& 9.055 \& 0.18

\hline \& \& \& \& \& \& 2 " Ice \& \& \&

\hline \multirow[t]{5}{*}{12' Hori. 5"x5" Tube} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Face} \& 0.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{96.000} \& No Ice \& 6.000 \& 0.208 \& 0.19

\hline \& \& \& 0.000 \& \& \& 1/2" \& 6.854 \& 0.268 \& 0.24

\hline \& \& \& \multirow[t]{3}{*}{0.000} \& \& \& Ice \& 7.708 \& 0.334 \& 0.30

\hline \& \& \& \& \& \& $1{ }^{\text {" Ice }}$ \& 9.416 \& 0.490 \& 0.40

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{4' x 2" Horizontal Face Mount Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 0.500 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{96.000} \& No Ice \& 0.870 \& 0.010 \& 0.01

\hline \& \& \& 0.000 \& \& \& 1/2" \& 1.110 \& 0.050 \& 0.02

\hline \& \& \& \multirow[t]{3}{*}{0.000} \& \& \& Ice \& 1.370 \& 0.100 \& 0.03

\hline \& \& \& \& \& \& 1" Ice \& 1.900 \& 0.240 \& 0.06

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{6' x 3" Mount Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 0.500 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{96.000} \& No Ice \& 1.767 \& 1.767 \& 0.03

\hline \& \& \& 0.000 \& \& \& 1/2" \& 2.129 \& 2.129 \& 0.04

\hline \& \& \& \multirow[t]{3}{*}{0.000} \& \& \& Ice \& 2.501 \& 2.501 \& 0.06

\hline \& \& \& \& \& \& 1" Ice \& 3.272 \& 3.272 \& 0.11

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{8' Horizontal x 2" Mount Pipe} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Face} \& 0.500 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{86.000} \& No Ice \& 1.900 \& 0.047 \& 0.03

\hline \& \& \& 0.000 \& \& \& 1/2" \& 2.450 \& 0.077 \& 0.05

\hline \& \& \& 0.000 \& \& \& Ice \& 3.008 \& 0.115 \& 0.07

\hline \& \& \& \& \& \& 1" Ice \& 4.145 \& 0.212 \& 0.14

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{6' x 3" Mount Pipe} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 0.500 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{86.000} \& No Ice \& 1.767 \& 1.767 \& 0.03

\hline \& \& \& 0.000 \& \& \& 1/2" \& 2.129 \& 2.129 \& 0.04

\hline \& \& \& \multirow[t]{3}{*}{0.000} \& \& \& Ice \& 2.501 \& 2.501 \& 0.06

\hline \& \& \& \& \& \& 1" Ice \& 3.272 \& 3.272 \& 0.11

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{PD1142-1} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 4.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{84.000} \& No Ice \& 1.316 \& 1.316 \& 0.01

\hline \& \& \& 0.000 \& \& \& 1/2" \& 3.210 \& 3.210 \& 0.02

\hline \& \& \& 7.000 \& \& \& Ice \& 5.121 \& 5.121 \& 0.05

\hline \& \& \& \& \& \& $1{ }^{1 /}$ Ice \& 8.993 \& 8.993 \& 0.14

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{Side Arm Mount [SO 3061]} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 0.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{84.000} \& No Ice \& 0.410 \& 2.260 \& 0.04

\hline \& \& \& 0.000 \& \& \& 1/2" \& 0.810 \& 3.830 \& 0.06

\hline \& \& \& \multirow[t]{3}{*}{0.000} \& \& \& Ice \& 1.230 \& 5.480 \& 0.09

\hline \& \& \& \& \& \& $1{ }^{\text {" Ice }}$ \& 2.080 \& 9.370 \& 0.19

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{3' Yagi} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 0.500 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{84.000} \& No Ice \& 2.083 \& 2.083 \& 0.03

\hline \& \& \& 0.000 \& \& \& 1/2" \& 3.787 \& 3.787 \& 0.05

\hline \& \& \& 0.000 \& \& \& Ice \& 5.517 \& 5.517 \& 0.09

\hline \& \& \& \& \& \& 1" Ice \& 9.055 \& 9.055 \& 0.18

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Offset Type \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
ft \\
\(f t\)
\(f t\)
\end{tabular} \& Azimuth Adjustmen \(t\) \& Placement

ft \& \& $C_{A} A_{A}$ Front $f t^{2}$ \& | $C_{A} A_{A}$ Side |
| :--- |
| $f t^{2}$ | \& Weight

K

\hline \multirow[t]{4}{*}{4' x 2" Pipe Mount} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 0.500 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{84.000} \& No Ice \& 0.785 \& 0.785 \& 0.03

\hline \& \& \& 0.000 \& \& \& 1/2" \& 1.028 \& 1.028 \& 0.04

\hline \& \& \& \multirow[t]{2}{*}{0.000} \& \& \& Ice \& 1.281 \& 1.281 \& 0.04

\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { 1" Ice } \\
& \text { 2" Ice }
\end{aligned}
$$ \& 1.814 \& 1.814 \& 0.07

\hline \multirow[t]{5}{*}{Sector Mount [SM 402-1]} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 0.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{77.000} \& No Ice \& 9.720 \& 7.050 \& 0.28

\hline \& \& \& 0.000 \& \& \& 1/2" \& 13.660 \& 9.870 \& 0.40

\hline \& \& \& \multirow[t]{3}{*}{0.000} \& \& \& Ice \& 17.550 \& 12.660 \& 0.57

\hline \& \& \& \& \& \& $1{ }^{\text {" Ice }}$ \& 25.280 \& 18.130 \& 1.01

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{SBNH-1D6565A w/ Mount Pipe} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 3.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{77.000} \& No Ice \& 5.599 \& 4.774 \& 0.06

\hline \& \& \& -6.000 \& \& \& 1/2" \& 6.007 \& 5.446 \& 0.11

\hline \& \& \& 1.000 \& \& \& Ice \& 6.417 \& 6.095 \& 0.16

\hline \& \& \& \& \& \& 1" Ice \& 7.263 \& 7.443 \& 0.30

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{3" Dia 20' Omni} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 3.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{77.000} \& No Ice \& 4.000 \& 4.000 \& 0.06

\hline \& \& \& -6.000 \& \& \& 1/2" \& 6.000 \& 6.000 \& 0.10

\hline \& \& \& \multirow[t]{3}{*}{-10.000} \& \& \& Ice \& 8.000 \& 8.000 \& 0.14

\hline \& \& \& \& \& \& $1{ }^{1 /}$ Ice \& 12.000 \& 12.000 \& 0.23

\hline \& \& \& \& \& \& 2 " Ice \& \& \&

\hline \multirow[t]{5}{*}{3" Dia. 6' Omni} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 3.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{77.000} \& No Ice \& 1.767 \& 1.767 \& 0.05

\hline \& \& \& 6.000 \& \& \& 1/2" \& 2.129 \& 2.129 \& 0.06

\hline \& \& \& \multirow[t]{3}{*}{3.000} \& \& \& Ice \& 2.501 \& 2.501 \& 0.08

\hline \& \& \& \& \& \& $1{ }^{\text {" Ice }}$ \& 3.272 \& 3.272 \& 0.12

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{3" Dia 20' Omni} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 3.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{77.000} \& No Ice \& 4.000 \& 4.000 \& 0.06

\hline \& \& \& 6.000 \& \& \& 1/2" \& 6.000 \& 6.000 \& 0.10

\hline \& \& \& \multirow[t]{3}{*}{-10.000} \& \& \& Ice \& 8.000 \& 8.000 \& 0.14

\hline \& \& \& \& \& \& 1" Ice \& 12.000 \& 12.000 \& 0.23

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{TMA} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 3.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{77.000} \& No Ice \& 0.600 \& 0.407 \& 0.01

\hline \& \& \& 0.000 \& \& \& 1/2" \& 0.704 \& 0.497 \& 0.02

\hline \& \& \& \multirow[t]{3}{*}{0.000} \& \& \& Ice \& 0.815 \& 0.593 \& 0.02

\hline \& \& \& \& \& \& 1" Ice \& 1.059 \& 0.815 \& 0.04

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{$6^{\prime} \times 3$ " Mount Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 0.500 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{71.000} \& No Ice \& 1.767 \& 1.767 \& 0.03

\hline \& \& \& 0.000 \& \& \& 1/2" \& 2.129 \& 2.129 \& 0.04

\hline \& \& \& \multirow[t]{3}{*}{0.000} \& \& \& Ice \& 2.501 \& 2.501 \& 0.06

\hline \& \& \& \& \& \& 1" Ice \& 3.272 \& 3.272 \& 0.11

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{Sector Mount [SM 402-1]} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 0.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{63.000} \& No Ice \& 9.720 \& 7.050 \& 0.28

\hline \& \& \& 0.000 \& \& \& 1/2" \& 13.660 \& 9.870 \& 0.40

\hline \& \& \& 0.000 \& \& \& Ice \& 17.550 \& 12.660 \& 0.57

\hline \& \& \& \& \& \& $1{ }^{\text {" Ice }}$ \& 25.280 \& 18.130 \& 1.01

\hline \& \& \& \& \& \& 2 " Ice \& \& \&

\hline \multirow[t]{5}{*}{3" Dia 20' Omni} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 3.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{63.000} \& No Ice \& 4.000 \& 4.000 \& 0.06

\hline \& \& \& -6.000 \& \& \& 1/2" \& 6.000 \& 6.000 \& 0.10

\hline \& \& \& 10.000 \& \& \& Ice \& 8.000 \& 8.000 \& 0.14

\hline \& \& \& \& \& \& $1{ }^{1 / \mathrm{Ic}}$ \& 12.000 \& 12.000 \& 0.23

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{3" Dia 20' Omni} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 3.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{63.000} \& No Ice \& 4.000 \& 4.000 \& 0.06

\hline \& \& \& -6.000 \& \& \& 1/2" \& 6.000 \& 6.000 \& 0.10

\hline \& \& \& -10.000 \& \& \& Ice \& 8.000 \& 8.000 \& 0.14

\hline \& \& \& \& \& \& $1{ }^{\text {" Ice }}$ \& 12.000 \& 12.000 \& 0.23

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{Diamond X-500A} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 3.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{63.000} \& No Ice \& 4.998 \& 4.998 \& 0.01

\hline \& \& \& 6.000 \& \& \& 1/2" \& 7.126 \& 7.126 \& 0.05

\hline \& \& \& 10.000 \& \& \& Ice \& 9.271 \& 9.271 \& 0.10

\hline \& \& \& \& \& \& $1{ }^{\text {" Ice }}$ \& 13.611 \& 13.611 \& 0.24

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{3" Dia 20' Omni} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 3.000 \& \multirow[t]{5}{*}{0.000} \& \multirow[t]{5}{*}{63.000} \& No Ice \& 4.000 \& 4.000 \& 0.06

\hline \& \& \& 6.000 \& \& \& 1/2" \& 6.000 \& 6.000 \& 0.10

\hline \& \& \& \multirow[t]{3}{*}{-10.000} \& \& \& Ice \& 8.000 \& 8.000 \& 0.14

\hline \& \& \& \& \& \& 1 " Ice \& 12.000 \& 12.000 \& 0.23

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline
\end{tabular}

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert ft ft ft	Azimuth Adjustmen t 0	Placement		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight
			0.000			Ice	5.460	5.460	0.17
						$\begin{aligned} & \text { 1" Ice } \\ & \text { 2" Ice } \end{aligned}$	8.820	8.820	0.23
****Proposed***									
876F-70-2 4-Bay Dipole	C	From Face	0.000	0.000	130.000	No Ice	10.680	10.680	0.13
			0.000			1/2"	17.160	17.160	0.17
			10.000			Ice	23.640	23.640	0.21
						1" Ice 2" Ice	36.600	36.600	0.29
R5-LL [PM 602-1]	A	From Leg	0.500	0.000	87.000	No Ice	5.250	1.580	0.09
			0.000			1/2"	6.500	1.950	0.12
			0.000			Ice	7.750	2.320	0.14
						1" Ice	10.250	3.060	0.19
						2" Ice			

**									

Dishes											
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert ft	Azimuth Adjustment	3 dB Beam Width 。	Elevation	Outside Diameter ft		Aperture Area $f t^{2}$	Weight
PA6-59	A	Paraboloid	From	0.500	0.000		117.000	6.000	No Ice	28.300	0.19
		w/Radome	Leg	0.000					1/2" Ice	29.050	0.33
				0.000					$1{ }^{\prime \prime}$ Ice	29.801	0.48
									2" Ice	31.302	0.78
6 FT Dish	B	Paraboloid	From	0.500	0.000		107.000	6.000	No Ice	28.300	0.19
		w/Radome	Leg	0.000					1/2" Ice	29.050	0.33
				0.000					$1{ }^{\prime \prime}$ Ice	29.801	0.48
									2" Ice	31.302	0.78
8 FT Dish	A	Paraboloid		0.500	0.000		96.000	8.000	No Ice	50.300	0.04
		w/Radome	Leg	0.000					1/2" Ice	51.292	0.30
				0.000					1" Ice	52.284	0.57
									2" Ice	54.268	1.09
PAD8-59AW	C	Paraboloid	From	0.500	0.000		86.000	8.000	No Ice	50.300	0.04
		w/Radome	Leg	0.000					1/2" Ice	51.292	0.30
				0.000					1" Ice	52.284	0.57
									2" Ice	54.268	1.09
4 FT Dish	A	Paraboloid	From	0.500	0.000		71.000	4.000	No Ice	12.570	0.08
		w/Radome	Leg	0.000					1/2" Ice	13.100	0.15
				0.000					1" Ice	13.620	0.21
									2" Ice	14.680	0.35

PAD6-W59BC	A	Paraboloid	From	1.000	-34.500		87.000	6.583	No Ice	34.040	0.14
		w/Radome	Leg	0.000					1/2" Ice	34.910	0.29
				0.000					1" Ice	35.770	0.47
									2" Ice	37.510	0.83

Load Combinations

Comb.	Description	
No.	Dead Only	
2	1.2 Dead +1.0 Wind 0 deg - No Ice	

tnxTower Report - version 8.1.1.0

Comb. No.	Description
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind $30 \mathrm{deg}+1.0$ Ice+1.0 Temp
29	1.2 Dead+1.0 Wind $60 \mathrm{deg}+1.0 \mathrm{Ice}+1.0$ Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind $150 \mathrm{deg}+1.0$ Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind $240 \mathrm{deg}+1.0$ Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	K	kip-ft	

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical K	$\begin{gathered} \text { Horizontal, X } \\ K \end{gathered}$	$\underset{K}{\text { Horizontal, Z }}$
Leg C	Max. Vert	18	135.68	16.32	-8.62
	Max. H_{x}	18	135.68	16.32	-8.62
	Max. H_{z}	5	-95.84	-11.97	8.13
	Min. Vert	7	-106.97	-14.11	7.37
	Min. H_{x}	7	-106.97	-14.11	7.37
	Min. H_{z}	16	123.88	14.12	-9.32
Leg B	Max. Vert	10	137.22	-16.64	-8.77
	Max. H_{x}	23	-108.24	14.20	7.38
	Max. Hz_{z}	25	-98.16	12.09	8.42
	Min. Vert	23	-108.24	14.20	7.38
	Min. H_{x}	10	137.22	-16.64	-8.77
	Min. H_{z}	12	125.37	-14.34	-9.68
Leg A	Max. Vert	2	137.76	0.06	19.28
	Max. H_{x}	21	6.51	2.16	0.64
	Max. H_{z}	2	137.76	0.06	19.28
	Min. Vert	15	-118.35	-0.11	-17.31
	Min. H_{x}	8	9.59	-2.26	0.94
	Min. Hz_{z}	15	-118.35	-0.11	-17.31

Tower Mast Reaction Summary

Load Combination	Vertical K	Shear $_{x}$ K	Shear $_{z}$ K	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque kip-ft
Dead Only	32.79	0.00	0.00	25.61	9.16	0.00
1.2 Dead+1.0 Wind 0 deg No Ice	39.35	0.08	-32.03	-2433.00	4.75	2.81
0.9 Dead+1.0 Wind 0 deg No Ice	29.51	0.08	-32.03	-2440.68	2.01	2.81
1.2 Dead+1.0 Wind 30 deg No Ice	39.35	15.62	-27.30	-2064.53	-1182.90	21.96
0.9 Dead+1.0 Wind 30 deg No Ice	29.51	15.62	-27.30	-2072.22	-1185.65	21.96
1.2 Dead+1.0 Wind 60 deg No Ice	39.35	25.84	-14.77	-1109.99	-1984.87	26.22
0.9 Dead+1.0 Wind 60 deg No Ice	29.51	25.84	-14.77	-1117.67	-1987.61	26.22
1.2 Dead+1.0 Wind 90 deg No Ice	39.35	28.48	0.40	68.75	-2232.56	22.94
0.9 Dead+1.0 Wind 90 deg No Ice	29.51	28.48	0.40	61.07	-2235.31	22.94
1.2 Dead+1.0 Wind 120 deg - No Ice	39.35	26.80	15.69	1256.37	-2071.96	27.69
$\begin{aligned} & 0.9 \text { Dead+1.0 Wind } 120 \mathrm{deg} \\ & \text { - No Ice } \end{aligned}$	29.51	26.80	15.69	1248.69	-2074.71	27.69
1.2 Dead+1.0 Wind 150 deg - No Ice	39.35	16.43	28.32	2211.97	-1253.07	16.10
0.9 Dead+1.0 Wind 150 deg - No Ice	29.51	16.43	28.32	2204.29	-1255.82	16.10
1.2 Dead+1.0 Wind 180 deg - No Ice	39.35	0.02	32.19	2509.85	11.85	-3.76
0.9 Dead+1.0 Wind 180 deg - No Ice	29.51	0.02	32.19	2502.17	9.10	-3.76
1.2 Dead+1.0 Wind 210 deg - No Ice	39.35	-15.95	27.77	2172.86	1242.01	-23.28
0.9 Dead+1.0 Wind 210 deg - No Ice	29.51	-15.95	27.77	2165.18	1239.27	-23.28
1.2 Dead+1.0 Wind 240 deg - No Ice	39.35	-26.13	15.54	1246.90	2042.63	-27.50
0.9 Dead+1.0 Wind 240 deg - No Ice	29.51	-26.13	15.54	1239.21	2039.88	-27.50
1.2 Dead+1.0 Wind 270 deg	39.35	-28.04	0.42	72.73	2221.16	-24.37

tnxTower Report - version 8.1.1.0

Load Combination	Vertical K	Shear $_{x}$ K	Shear $_{z}$ K	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque kip-ft
- No Ice						
0.9 Dead+1.0 Wind 270 deg - No Ice	29.51	-28.04	0.42	65.05	2218.41	-24.37
1.2 Dead+1.0 Wind 300 deg	39.35	-25.88	-14.94	-1122.84	2011.58	-28.42
- No Ice						
0.9 Dead+1.0 Wind 300 deg	29.51	-25.88	-14.94	-1130.53	2008.83	-28.42
- No Ice						
1.2 Dead+1.0 Wind 330 deg	39.35	-15.75	-27.92	-2110.74	1213.99	-16.77
- No Ice						
0.9 Dead+1.0 Wind 330 deg	29.51	-15.75	-27.92	-2118.43	1211.24	-16.77
- No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	153.69	0.00	0.00	201.03	-21.09	-0.00
1.2 Dead+1.0 Wind 0	153.69	0.03	-12.19	-729.42	-23.08	5.32
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30	153.69	5.86	-10.24	-584.59	-468.70	14.30
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60	153.69	9.65	-5.59	-232.09	-766.72	17.20
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90	153.69	11.01	0.05	206.26	-877.86	17.46
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	153.69	9.88	5.77	649.82	-785.97	15.34
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	153.69	5.99	10.44	1002.60	-480.06	7.03
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	153.69	-0.01	12.22	1134.09	-19.90	-5.48
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	153.69	-5.91	10.32	994.44	432.70	-14.51
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	153.69	-9.69	5.72	646.57	730.50	-17.41
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	153.69	-10.94	0.08	208.94	830.35	-17.69
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	153.69	-9.73	-5.65	-235.94	730.41	-15.46
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	153.69	-5.88	-10.37	-593.99	427.97	-7.14
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	32.79	0.02	-6.92	-503.03	7.83	0.60
Dead+Wind 30 deg - Service	32.79	3.38	-5.90	-424.03	-247.07	4.68
Dead+Wind 60 deg - Service	32.79	5.59	-3.20	-219.30	-419.30	5.59
Dead+Wind 90 deg - Service	32.79	6.16	0.08	33.71	-472.58	4.89
Dead+Wind 120 deg -	32.79	5.79	3.39	288.60	-437.86	5.90
Service						
Dead+Wind 150 deg -	32.79	3.55	6.12	493.56	-262.02	3.43
Service						
Dead+Wind 180 deg -	32.79	0.00	6.95	557.52	9.34	-0.80
Service						
Dead+Wind 210 deg -	32.79	-3.44	6.00	485.23	273.30	-4.96
Service						
Dead+Wind 240 deg -	32.79	-5.65	3.36	286.58	445.24	-5.86
Service						
Dead+Wind 270 deg -	32.79	-6.07	0.09	34.56	483.78	-5.19
Service						
Dead+Wind 300 deg -	32.79	-5.60	-3.23	-222.03	438.62	-6.05
Service						
Dead+Wind 330 deg -	32.79	-3.40	-6.03	-433.87	267.33	-3.57
Service						

Solution Summary

	Sum of Applied Forces			Sum of Reactions			
Load	$P X$	$P Y$	$P Z$	$P X$	$P Y$	$P Z$	\% Error
Comb.	K	K	K	K	K	K	
1	0.00	-32.79	0.00	0.00	32.79	0.00	0.000%
2	0.08	-39.35	-32.03	-0.08	39.35	32.03	0.000%
3	0.08	-29.51	-32.03	-0.08	29.51	32.03	0.000%
4	15.62	-39.35	-27.30	-15.62	39.35	27.30	0.000%

tnxTower Report - version 8.1.1.0

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	$P X$	PY	PZ	$P X$	PY	PZ	
Comb.	K	K	K	K	K	K	
5	15.62	-29.51	-27.30	-15.62	29.51	27.30	0.000\%
6	25.84	-39.35	-14.77	-25.84	39.35	14.77	0.000\%
7	25.84	-29.51	-14.77	-25.84	29.51	14.77	0.000\%
8	28.48	-39.35	0.40	-28.48	39.35	-0.40	0.000\%
9	28.48	-29.51	0.40	-28.48	29.51	-0.40	0.000\%
10	26.80	-39.35	15.69	-26.80	39.35	-15.69	0.000\%
11	26.80	-29.51	15.69	-26.80	29.51	-15.69	0.000\%
12	16.43	-39.35	28.32	-16.43	39.35	-28.32	0.000\%
13	16.43	-29.51	28.32	-16.43	29.51	-28.32	0.000\%
14	0.02	-39.35	32.19	-0.02	39.35	-32.19	0.000\%
15	0.02	-29.51	32.19	-0.02	29.51	-32.19	0.000\%
16	-15.95	-39.35	27.77	15.95	39.35	-27.77	0.000\%
17	-15.95	-29.51	27.77	15.95	29.51	-27.77	0.000\%
18	-26.13	-39.35	15.54	26.13	39.35	-15.54	0.000\%
19	-26.13	-29.51	15.54	26.13	29.51	-15.54	0.000\%
20	-28.04	-39.35	0.42	28.04	39.35	-0.42	0.000\%
21	-28.04	-29.51	0.42	28.04	29.51	-0.42	0.000\%
22	-25.88	-39.35	-14.94	25.88	39.35	14.94	0.000\%
23	-25.88	-29.51	-14.94	25.88	29.51	14.94	0.000\%
24	-15.75	-39.35	-27.92	15.75	39.35	27.92	0.000\%
25	-15.75	-29.51	-27.92	15.75	29.51	27.92	0.000\%
26	0.00	-153.69	0.00	0.00	153.69	0.00	0.000\%
27	0.03	-153.69	-12.19	-0.03	153.69	12.19	0.000\%
28	5.86	-153.69	-10.24	-5.86	153.69	10.24	0.000\%
29	9.65	-153.69	-5.59	-9.65	153.69	5.59	0.000\%
30	11.01	-153.69	0.05	-11.01	153.69	-0.05	0.000\%
31	9.88	-153.69	5.77	-9.88	153.69	-5.77	0.000\%
32	5.99	-153.69	10.44	-5.99	153.69	-10.44	0.000\%
33	-0.01	-153.69	12.22	0.01	153.69	-12.22	0.000\%
34	-5.91	-153.69	10.32	5.91	153.69	-10.32	0.000\%
35	-9.69	-153.69	5.72	9.69	153.69	-5.72	0.000\%
36	-10.94	-153.69	0.08	10.94	153.69	-0.08	0.000\%
37	-9.73	-153.69	-5.65	9.73	153.69	5.65	0.000\%
38	-5.88	-153.69	-10.37	5.88	153.69	10.37	0.000\%
39	0.02	-32.79	-6.92	-0.02	32.79	6.92	0.000\%
40	3.38	-32.79	-5.90	-3.38	32.79	5.90	0.000\%
41	5.59	-32.79	-3.20	-5.59	32.79	3.20	0.000\%
42	6.16	-32.79	0.08	-6.16	32.79	-0.08	0.000\%
43	5.79	-32.79	3.39	-5.79	32.79	-3.39	0.000\%
44	3.55	-32.79	6.12	-3.55	32.79	-6.12	0.000\%
45	0.00	-32.79	6.95	-0.00	32.79	-6.95	0.000\%
46	-3.44	-32.79	6.00	3.44	32.79	-6.00	0.000\%
47	-5.65	-32.79	3.36	5.65	32.79	-3.36	0.000\%
48	-6.07	-32.79	0.09	6.07	32.79	-0.09	0.000\%
49	-5.60	-32.79	-3.23	5.60	32.79	3.23	0.000\%
50	-3.40	-32.79	-6.03	3.40	32.79	6.03	0.000\%

Maximum Tower Deflections - Service Wind

| Section
 No. | Elevation | Horz.
 Deflection
 in | Gov.
 Load
 Comb. | Tilt | 。 |
| :---: | :---: | :---: | :---: | :---: | :---: | | Twist | | | | |
| :---: | :---: | :---: | :---: | :---: |
| | ft | $130-120$ | 1.009 | 44 |
| T2 | $120-100$ | 0.869 | 44 | 0.066 |
| T3 | $100-80$ | 0.606 | 44 | 0.065 |
| T4 | $80-60$ | 0.385 | 44 | 0.057 |
| T5 | $60-40$ | 0.219 | 44 | 0.045 |
| T6 | $40-20$ | 0.100 | 44 | 0.032 |
| T7 | $20-0$ | 0.030 | 44 | 0.021 |

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist	Radius of Curvature ft
130.000	876F-70-2 4-Bay Dipole	44	1.009	0.066	0.007	315602
127.000	Sector Mount [SM 501-3]	44	0.967	0.066	0.007	315602
125.000	Sector Mount [SM 502-3]	44	0.939	0.066	0.008	315602
117.000	PA6-59	44	0.828	0.064	0.007	150659
113.000	Side Arm Mount [SO 306-1]	44	0.774	0.063	0.007	140781
107.000	6 FT Dish	44	0.695	0.060	0.007	128868
104.000	Side Arm Mount [SO 306-1]	44	0.656	0.059	0.007	121816
98.000	Side Arm Mount [SO 306-1]	44	0.582	0.055	0.007	106652
96.000	8 FT Dish	44	0.558	0.054	0.007	102394
87.000	PAD6-W59BC	44	0.456	0.049	0.006	86955
86.000	PAD8-59AW	44	0.446	0.048	0.006	85388
84.000	PD1142-1	44	0.425	0.047	0.006	82387
77.000	Sector Mount [SM 402-1]	44	0.356	0.043	0.006	80791
71.000	4 FT Dish	44	0.303	0.039	0.006	89281
63.000	Sector Mount [SM 402-1]	44	0.240	0.034	0.005	103901
58.000	(2) 4.5 ' $\times 2$ " horizontal mount pipe	44	0.205	0.031	0.005	108626
54.000	Side Arm Mount [SO 306-1]	44	0.178	0.028	0.005	106270
43.000	Side Arm Mount [SO 306-1]	44	0.115	0.022	0.004	98935

Maximum Tower Deflections - Design Wind

| Section
 No. | Elevation | Horz.
 Deflection
 in | Gov.
 Load
 Comb. | Tilt | 。 |
| :---: | :---: | :---: | :---: | :---: | :---: | | Twist | | | | |
| :---: | :---: | :---: | :---: | :---: |
| | $f t$ | $130-120$ | 4.631 | 12 |
| T1 | $120-100$ | 3.984 | 12 | 0.302 |
| T2 | $100-80$ | 2.774 | 12 | 0.297 |
| T3 | $80-60$ | 1.759 | 12 | 0.259 |
| T5 | $60-40$ | 1.002 | 12 | 0.203 |
| T6 | $40-20$ | 0.460 | 12 | 0.145 |
| T7 | $20-0$ | 0.138 | 13 | 0.094 |

Critical Deflections and Radius of Curvature - Design Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist 。	Radius of Curvature ft
130.000	876F-70-2 4-Bay Dipole	12	4.631	0.302	0.035	80042
127.000	Sector Mount [SM 501-3]	12	4.436	0.301	0.035	80042
125.000	Sector Mount [SM 502-3]	12	4.306	0.300	0.035	80042
117.000	PA6-59	12	3.794	0.294	0.035	36828
113.000	Side Arm Mount [SO 306-1]	12	3.545	0.288	0.034	33049
107.000	6 FT Dish	12	3.181	0.276	0.033	28641
104.000	Side Arm Mount [SO 306-1]	12	3.004	0.269	0.033	26597
98.000	Side Arm Mount [SO 306-1]	12	2.663	0.254	0.032	23167
96.000	8 FT Dish	12	2.553	0.249	0.032	22224
87.000	PAD6-W59BC	12	2.086	0.224	0.030	18734
86.000	PAD8-59AW	12	2.038	0.221	0.030	18390
84.000	PD1142-1	12	1.942	0.215	0.030	17743
77.000	Sector Mount [SM 402-1]	12	1.629	0.194	0.029	17449
71.000	4 FT Dish	12	1.388	0.176	0.028	19414
63.000	Sector Mount [SM 402-1]	12	1.101	0.153	0.025	22882
58.000	(2) $4.5^{\prime} \times 2$ " horizontal mount pipe	12	0.938	0.139	0.024	24079
54.000	Side Arm Mount [SO 306-1]	12	0.817	0.129	0.023	23511
43.000	Side Arm Mount [SO 306-1]	12	0.528	0.102	0.018	21780

Bolt Design Data

Section No.	Elevation ft	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt K	Allowable Load per Bolt K	Ratio Load Allowable	Allowable Ratio	Criteria
T1	130	Leg	A325N	0.750	4	1.02	30.10	0.034	1.05	Bolt Tension
		Diagonal	A325N	0.625	3	1.13	13.81	0.082	1.05	Bolt Shear
		Horizontal	A325N	0.625	2	1.24	13.81	0.090	1.05	Bolt Shear
T2	120	Leg	A325N	0.875	4	3.97	41.56	0.096	1.05	Bolt Tension
		Diagonal	A325N	0.625	3	1.57	13.81	0.114	1.05	Bolt Shear
		Horizontal	A325N	0.625	2	1.45	13.81	0.105	1.05	Bolt Shear
T3	100	Leg	A325N	1.000	4	8.50	54.52	0.156	1.05	Bolt Tension
		Diagonal	A325N	0.625	3	2.09	13.81	0.151	1.05	Bolt Shear
		Horizontal	A325N	0.625	2	2.13	13.81	0.154	1.05	Bolt Shear
T4	80	Leg	A325N	1.000	4	12.94	54.52	0.237	1.05	Bolt Tension
		Diagonal	A325N	0.625	3	2.82	13.81	0.204	1.05	Bolt Shear
		Horizontal	A325N	0.625	2	2.50	13.81	0.181	1.05	Bolt Shear
T5	60	Leg	A325N	1.000	6	12.08	54.52	0.222	1.05	Bolt Tension
		Diagonal	A325N	0.625	3	2.63	13.81	0.190	1.05	Bolt Shear
		Horizontal	A325N	0.625	2	2.56	13.81	0.185	1.05	Bolt Shear
T6	40	Leg	A325N	1.000	6	15.29	54.52	0.281	1.05	Bolt Tension
		Diagonal	A325N	0.625	3	2.68	13.81	0.194	1.05	Bolt Shear
		Horizontal	A325N	0.625	2	2.80	13.81	0.203	1.05	Bolt Shear
T7	20	Diagonal	A325N	0.625	3	2.74	13.81	0.198	1.05	Bolt Shear
		Horizontal	A325N	0.625	2	3.02	13.81	0.219	1.05	Bolt Shear

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation ft	Size	L ft	L_{u} ft	Kl/r	A $i n^{2}$	$\begin{gathered} P_{u} \\ K \end{gathered}$	$\begin{gathered} \phi P_{n} \\ K \end{gathered}$	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
T1	130-120	ROHN 2.5 STD	10.000	5.000	$\begin{gathered} 63.3 \\ K=1.00 \end{gathered}$	1.704	-12.20	57.19	0.213^{1}
T2	120-100	ROHN 3 STD	20.036	6.679	$\begin{gathered} 68.9 \\ \mathrm{~K}=1.00 \end{gathered}$	2.228	-23.60	70.89	$0.333{ }^{1}$
T3	100-80	ROHN 4 STD	20.036	6.679	$\begin{gathered} 53.1 \\ \mathrm{~K}=1.00 \end{gathered}$	3.174	-42.56	116.23	$0.366{ }^{1}$
T4	80-60	ROHN 5 STD	20.042	10.021	$\begin{gathered} 64.0 \\ \mathrm{~K}=1.00 \end{gathered}$	4.300	-62.09	143.37	$0.433{ }^{1}$
T5	60-40	ROHN 5 EH	20.055	10.028	$\begin{gathered} 65.4 \\ \mathrm{~K}=1.00 \end{gathered}$	6.112	-85.40	201.11	0.425^{1}
T6	40-20	ROHN 6 EHS	20.052	10.026	$\begin{gathered} 54.1 \\ \mathrm{~K}=1.00 \end{gathered}$	6.713	-107.07	243.97	$0.439{ }^{1}$
T7	20-0	ROHN 6 EH	20.052	10.026	$\begin{gathered} 54.8 \\ \mathrm{~K}=1.00 \end{gathered}$	8.405	-128.00	303.62	0.422^{1}

[^4]
Diagonal Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	$K l / r$	A	P_{u}	ϕP_{n}	Ratio	$f t$

tnxTower Report - version 8.1.1.0

${ }^{1} P_{u} / \phi P_{n}$ controls

Horizontal Design Data (Compression)

Section No.	Elevation ft	Size	L $f t$	L_{u} ft	K//r	A $i n^{2}$	P_{u} K	ϕP_{n} K	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
	$f t$		$f t$	$f t$		$i n^{2}$	K	K	ϕP_{n}
T1	130-120	ROHN 1.5 STD	8.520	4.140	$\begin{gathered} 79.8 \\ \mathrm{~K}=1.00 \end{gathered}$	0.799	-2.43	22.58	$0.107{ }^{1}$
T2	120-100	ROHN 2 STD	9.933	4.821	$\begin{gathered} 73.5 \\ \mathrm{~K}=1.00 \end{gathered}$	1.075	-2.87	32.58	$0.088{ }^{1}$
T3	100-80	ROHN 2 STD	12.017	5.821	$\begin{gathered} 88.7 \\ \mathrm{~K}=1.00 \end{gathered}$	1.075	-4.24	27.19	$0.156{ }^{1}$
T4	80-60	ROHN 2 STD	13.835	6.686	$\begin{array}{r} 101.9 \\ \mathrm{~K}=1.00 \end{array}$	1.075	-4.95	22.62	0.219^{1}
T5	60-40	ROHN 2 STD	16.250	7.893	$\begin{gathered} 120.3 \\ \mathrm{~K}=1.00 \end{gathered}$	1.075	-5.04	16.76	$0.301{ }^{1}$
T6	40-20	ROHN 2.5 STD	18.790	9.119	$\begin{array}{r} 115.5 \\ \mathrm{~K}=1.00 \end{array}$	1.704	-5.46	28.86	$0.189{ }^{1}$
T7	20-0	ROHN 2.5 STD	21.290	10.369	$\begin{gathered} 131.3 \\ \mathrm{~K}=1.00 \end{gathered}$	1.704	-5.85	22.32	$0.262{ }^{1}$

${ }^{1} P_{u} / \phi P_{n}$ controls

Top Girt Design Data (Compression)									
Section No.	Elevation	Size	L	L_{u}	K//r	A	P_{u}	ϕP_{n}	$\begin{aligned} & \text { Ratio } \\ & P_{u} \end{aligned}$
	$f t$		$f t$	$f t$		$i n^{2}$	K	K	ϕP_{n}
T1	130-120	ROHN 1.5 STD	8.500	4.130	$\begin{gathered} 79.6 \\ K=1.00 \end{gathered}$	0.799	-0.48	22.63	$0.021{ }^{1}$

${ }^{1} P_{u} / \phi P_{n}$ controls

Inner Bracing Design Data (Compression)

Section No.	$f t$	Size	L	L_{u}	Kl/r		P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \end{gathered}$
			$f t$	$f t$		$i n^{2}$	K	K	ϕP_{n}
T1	130-120	L2x2x1/8	4.260	4.260	$\begin{gathered} 128.6 \\ \mathrm{~K}=1.00 \end{gathered}$	0.484	-0.00	8.38	$0.000{ }^{1}$

tnxTower Report - version 8.1.1.0

Section No.	Elevation	Size	L	L_{u}	KI/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	ft		$i n^{2}$	K	K	ϕP_{n}
T2	120-100	L2x2x1/8	4.967	4.967	$\begin{gathered} 149.9 \\ K=1.00 \end{gathered}$	0.484	-0.01	6.17	$0.001{ }^{1}$
T3	100-80	L2x2x1/8	6.008	6.008	$\begin{gathered} 181.4 \\ K=1.00 \end{gathered}$	0.484	-0.01	4.21	$0.002{ }^{1}$
T4	80-60	L2x2x1/8	6.918	6.918	$\begin{gathered} 208.8 \\ K=1.00 \end{gathered}$	0.484	-0.01	3.18	$0.004{ }^{1}$
T5	60-40	L2 1/2x2 1/2x3/16	8.125	8.125	$\begin{gathered} 197.0 \\ K=1.00 \end{gathered}$	0.902	-0.02	6.65	$0.002{ }^{1}$
T6	40-20	L 3x3x3/16	9.395	9.395	$\begin{gathered} 189.1 \\ K=1.00 \end{gathered}$	1.090	-0.02	8.73	$0.002{ }^{1}$
T7	20-0	L3 1/2x3 / $12 \times 1 / 4$	10.645	10.645	$\begin{gathered} 184.2 \\ K=1.00 \end{gathered}$	1.688	-0.02	14.24	$0.001^{* 1}$

* DL controls
${ }^{1} P_{u} / \phi P_{n}$ controls

Tension Checks

Leg Design Data (Tension)

Section No.	Elevation	Size	L	L_{u}	$K l / r$	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$								

${ }^{1} P_{u} / \phi P_{n}$ controls

Diagonal Design Data (Tension)

Section No.	Elevation	Size	L	L_{u}	$K I / r$	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$								

${ }^{1} P_{u} / \phi P_{n}$ controls

Section No.	Elevation	Size	L	L_{u}	KI/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{\mu} \end{gathered}$
	$f t$		$f t$	$f t$		$i n^{2}$	K	K	${ }_{\phi} P_{n}$
T1	130-120	ROHN 1.5 STD	8.520	4.140	79.8	0.799	2.48	35.98	$0.069{ }^{1}$
T2	120-100	ROHN 2 STD	9.933	4.821	73.5	1.075	2.89	48.35	$0.060{ }^{1}$
T3	100-80	ROHN 2 STD	12.017	5.821	88.7	1.075	4.26	48.35	$0.088{ }^{1}$
T4	80-60	ROHN 2 STD	13.835	6.686	101.9	1.075	5.00	48.35	$0.103{ }^{1}$
T5	60-40	ROHN 2 STD	16.250	7.893	120.3	1.075	5.11	48.35	$0.106{ }^{1}$
T6	40-20	ROHN 2.5 STD	18.790	9.119	115.5	1.704	5.61	76.68	$0.073{ }^{1}$
T7	20-0	ROHN 2.5 STD	21.290	10.369	131.3	1.704	6.04	76.68	$0.079{ }^{1}$

${ }^{1} P_{u} / \phi P_{n}$ controls

Top Girt Design Data (Tension)

Section No.	ft	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
			$f t$	$f t$		$i n^{2}$	K	K	${ }_{\phi} P_{n}$
T1	130-120	ROHN 1.5 STD	8.500	4.130	79.6	0.799	0.48	35.98	0.013^{1}

${ }^{1} P_{u} / \phi P_{n}$ controls

Inner Bracing Design Data (Tension)									
Section No.	Elevation	Size	L	L_{u}	K//r	A	P_{u}	ϕP_{n}	$\begin{aligned} & \text { Ratio } \\ & P_{u} \end{aligned}$
	$f t$		$f t$	$f t$		$i n^{2}$	K	K	ϕP_{n}
T1	130-120	L2x2x1/8	4.260	4.260	81.6	0.484	0.00	15.69	$0.000{ }^{1}$
T2	120-100	L2x2x1/8	4.270	4.270	81.8	0.484	0.00	15.69	$0.000{ }^{1}$
T3	100-80	L2x2x1/8	6.008	6.008	115.1	0.484	0.00	15.69	$0.000{ }^{1}$
T4	80-60	L2x2x1/8	6.355	6.355	121.8	0.484	0.00	15.69	$0.000{ }^{1}$

${ }^{1} P_{u} / \phi P_{n}$ controls

Section Capacity Table

Section No.	Elevation $f t$	Component Type	Size	Critical Element	P K	$\varnothing P_{\text {alow }}$ K	$\%$ Capacity	Pass Fail
T1	$130-120$	Leg	ROHN 2.5 STD	1	-12.20	60.05	20.3	Pass
T2	$120-100$	Leg	ROHN 3 STD	29	-23.60	74.43	31.7	Pass
T3	$100-80$	Leg	ROHN 4 STD	69	-42.56	122.04	34.9	Pass
T4	$80-60$	Leg	ROHN 5 STD	107	-62.09	150.53	41.2	Pass
T5	$60-40$	Leg	ROHN 5 EH	134	-85.40	211.17	40.4	Pass
T6	$40-20$	Leg	ROHN 6 EHS	161	-107.07	256.16	41.8	Pass
T7	$20-0$	Leg	ROHN 6 EH	189	-128.00	318.80	40.2	Pass
T1	$130-120$	Diagonal	ROHN 2 STD	9	-3.39	25.36	13.4	Pass
T2	$120-100$	Diagonal	ROHN 2.5 STD	36	-4.71	35.92	13.1	Pass
T3	$100-80$	Diagonal	ROHN 2.5 STD	74	-6.27	31.52	19.9	Pass
T4	$80-60$	Diagonal	ROHN 2.5 X-STR	113	-8.46	21.63	39.1	Pass
T5	$60-40$	Diagonal	ROHN 3 STD	140	-7.88	29.61	26.6	Pass
T6	$40-20$	Diagonal	ROHN 3 STD	165	-8.05	26.21	30.7	Pass
T7	$20-0$	Diagonal	ROHN 3 STD	192	-8.22	22.99	35.7	Pass
T1	$130-120$	Horizontal	ROHN 1.5 STD	7	-2.43	23.71	10.2	Pass
T2	$120-100$	Horizontal	ROHN 2 STD	34	-2.87	34.21	8.4	Pass
T3	$100-80$	Horizontal						10.0 (b)

tnxTower Report - version 8.1.1.0

Section No.	Elevation ft	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$\begin{gathered} \emptyset P_{\text {allow }} \\ K \end{gathered}$	\% Capacity	Pass Fail
T6	40-20	Horizontal	ROHN 2.5 STD	163	-5.46	30.30	$\begin{gathered} 18.0 \\ 19.3(b) \end{gathered}$	Pass
T7	20-0	Horizontal	ROHN 2.5 STD	190	-5.85	23.43	25.0	Pass
T1	130-120	Top Girt	ROHN 1.5 STD	4	-0.48	23.77	2.0	Pass
T1	130-120	Inner Bracing	L2x2x1/8	16	-0.00	8.80	0.8	Pass
T2	120-100	Inner Bracing	L2x2x1/8	42	-0.01	6.48	0.9	Pass
T3	100-80	Inner Bracing	L2x2x1/8	79	-0.01	4.43	1.1	Pass
T4	80-60	Inner Bracing	L2x2x1/8	120	-0.01	3.34	1.2	Pass
T5	60-40	Inner Bracing	L2 1/2x2 1/2x3/16	147	-0.02	6.99	0.9	Pass
T6	40-20	Inner Bracing	L 3x3x3/16	174	-0.02	9.16	0.9	Pass
T7	20-0	Inner Bracing	L3 1/2x3 /12x1/4	201	-0.02	14.24	0.8 Summary	Pass
						Leg (T6)	41.8	Pass
						Diagonal (T4)	39.1	Pass
						Horizontal (T5)	28.6	Pass
						Top Girt (T1)	2.0	Pass
						Inner Bracing (T4)	1.2	Pass
						Bolt Checks RATING =	26.7 41.8	Pass Pass

APPENDIX B

BASE LEVEL DRAWING

\qquad Flat \qquad

${ }^{\text {Dob: }}$ ES-004 SouthMtnRS

FAX: (913) 458-8136

Project: 405025

$|$| Project: $\mathbf{4 0 5 0 2 5}$ | Drawn by: Josh Riley | App'd: |
| :--- | :--- | :--- |
| Client: Eversource | Date: $01 / 13 / 22$ | Scale: NTS |
| Code: TIA-222-H | | Dwg No. E-7 |
| Path: | | |

APPENDIX C

ADDITIONAL CALCULATIONS

BLACK \& VEATCH
Building a world of difference:

Anchor Rod Data

Diameter ofAnchor Rod:

$$
\mathrm{D}:=1 \cdot \mathrm{in}
$$

Anchor Rod Grade:

Number of Anchor Rods:
Length from top of concrete to bottom of anchor rod leveling nut:

Threads in Shear Plane?:

$N:=8$
lar $:=2.5 \cdot \mathrm{in}$

Thread Series:

Coarse	
	Fine F-Thread

Grout Factor η :

0.90
0.70
0.55
0.50

(Thread selection invalid if $\mathrm{n}=0$)

Rod Ultimate Strength: $\quad \mathrm{Fu}=125 \cdot \mathrm{ksi}$

Rod Yield Strength: \quad Fy $=105 \cdot \mathrm{ksi}$
Anchor Rod Plastic
Section Modulus:
(based on tension root
diameter)
Radius of Gyration:
$\mathrm{r}:=\left(\frac{1}{4}\right) \cdot\left(\mathrm{D}-\frac{0.9743 \mathrm{in}}{\mathrm{n}}\right)=0.22 \cdot \mathrm{in}$
Net Area of Anchor Rod:

$$
\mathrm{Z}:=\frac{1}{6} \cdot\left(\mathrm{D}-\frac{0.9743 \mathrm{in}}{\mathrm{n}}\right)^{3}=0.113 \cdot \mathrm{in}^{3}
$$

$$
\mathrm{An}:=\frac{\pi}{4} \cdot\left(\mathrm{D}-\frac{0.9743 \mathrm{in}}{\mathrm{n}}\right)^{2}=0.606 \cdot \mathrm{in}^{2}
$$

Nominal Unthreaded
Area of Anchor Rod:
$\mathrm{Ab}:=\frac{\pi}{4} \cdot(\mathrm{D})^{2}=0.785 \cdot \mathrm{in}^{2}$

Anchor Rod Design Capacities

Design Tension Strength:
TIA-222-G/H Section 4.9.6.1

$$
\begin{aligned}
& \mathrm{Rnt}:=\mathrm{Fu} \cdot \mathrm{An}=75.718 \cdot \mathrm{kip} \\
& \phi \mathrm{t}=0.75 \\
& \phi \mathrm{Rnt}:=\phi \mathrm{t} \cdot \mathrm{Rnt}=56.788 \cdot \mathrm{kip}
\end{aligned}
$$

Design Compression Strength:

$$
\begin{aligned}
& \mathrm{Rnc}:=\mathrm{Fy} \cdot \mathrm{An}=63.603 \cdot \mathrm{kip} \\
& \phi \mathrm{c}=1 \\
& \phi \mathrm{Rnc}:=\phi \mathrm{c} \cdot \mathrm{Rnc}=63.603 \cdot \mathrm{kip}
\end{aligned}
$$

Design Buckling Strength:

$$
\begin{aligned}
& \mathrm{K}_{0}:=1.2 \\
& \mathrm{Fcr}=102.033 \cdot \mathrm{ksi} \\
& \mathrm{Fe}=1.533 \times 10^{3} \cdot \mathrm{ksi} \\
& \mathrm{Rnb}:=\mathrm{Fcr} \cdot \mathrm{An}=61.806 \cdot \mathrm{kip} \\
& \phi \mathrm{c}=1 \\
& \phi \mathrm{Rnb}:=\phi \mathrm{c} \cdot \mathrm{Rnb}=61.806 \cdot \mathrm{kip}
\end{aligned}
$$

Design Shear Strength:
TIA-222-G/H Section 4.9.6.3

$$
\text { Rnv }:=\left\lvert\, \begin{aligned}
& 0.55 \cdot \mathrm{Fu} \cdot \mathrm{Ab} \text { if Thread_Type }=\text { "No" } \wedge \text { TIA }=\text { "Rev-G" } \\
& 0.45 \cdot \mathrm{Fu} \cdot \mathrm{Ab} \text { if Thread_Type }=\text { "Yes" } \wedge \text { TIA }=\text { "Rev-G" } \\
& 0.625 \cdot \mathrm{Fu} \cdot \mathrm{Ab} \text { if Thread_Type }=\text { "No" } \wedge \text { TIA }=\text { "Rev-H" } \\
& 0.5 \cdot \mathrm{Fu} \cdot \mathrm{Ab} \text { if Thread_Type }=\text { "Yes" } \wedge \text { TIA = "Rev-H" }
\end{aligned}\right.
$$

$R n v=49.087 \cdot \mathrm{kip}$

Rnvc $:=0.6 \cdot \mathrm{Fy} \cdot 0.5 \cdot \mathrm{An}=19.081 \cdot \mathrm{kip}$
TIA-222-H Section 4.9.9
$\phi \mathrm{v}=0.75 \quad \phi \mathrm{c}=1$
$\phi R n v:=\phi v \cdot R n v=36.816 \cdot \mathrm{kip} \quad \phi R n v c:=\phi c \cdot R n v c=19.081 \cdot \mathrm{kip}$

Design Flexural Strength:
TIA-222-G/H Section 4.7.1
$\mathrm{Rmn}:=\mathrm{Fy} \cdot \mathrm{Z}=11.853 \cdot \mathrm{kip} \cdot \mathrm{in}$
$\phi \mathrm{f}=0.9$
$\phi R m n:=\phi f \cdot \mathrm{Rmn}=10.668 \cdot \mathrm{kip} \cdot \mathrm{in}$

Anchor Rod Loading Demands

Tension Demand:

$$
\text { Put }:=\frac{\text { Axial_U }}{\mathrm{N}}=2.25 \cdot \mathrm{kip}
$$

Compression Demand:

$$
\text { Puc }:=\frac{\text { Axial_C }}{\mathrm{N}}=17.25 \cdot \mathrm{kip}
$$

Shear Demand:

$$
\begin{aligned}
& \text { Vut }:=\frac{\text { Shear_U }}{\mathrm{N}}=2.125 \cdot \mathrm{kip} \\
& \text { Vuc }:=\frac{\text { Shear_C }}{\mathrm{N}}=2.375 \cdot \mathrm{kip}
\end{aligned}
$$

Moment Demand:

$$
\begin{aligned}
& \text { Mut }:=0.65 \cdot \mathrm{lar} \cdot \text { Vut }=3.453 \cdot \mathrm{kip} \cdot \mathrm{in} \\
& \text { Muc }:=0.65 \cdot \mathrm{lar} \cdot \text { Vuc }=3.859 \cdot \mathrm{kip} \cdot \mathrm{in}
\end{aligned}
$$

$$
\text { SR_g }:=\left\{\begin{array}{l}
\frac{\text { Put }+\frac{\text { Vut }}{\eta}}{\phi R n t} \text { if } \eta>0.50 \\
\frac{\text { Put }+\frac{\text { Vut }}{\eta}}{\phi R n t} \text { if } \eta=0.50 \wedge \text { lar } \leq \mathrm{D} \wedge \text { Put }>\text { Puc } \\
\frac{\text { Puc }+\frac{\text { Vuc }}{\eta}}{\phi R n t} \text { if } \eta=0.50 \wedge \text { lar } \leq \mathrm{D} \wedge \text { Put }<\text { Puc } \\
\left(\frac{\text { Vut }}{\phi R n v}\right)^{2}+\left(\frac{\text { Put }}{\phi R n t}+\frac{\text { Mut }}{\phi R m n}\right)^{2} \text { if } \eta=0.5 \wedge \text { lar }>\mathrm{D} \wedge \text { Put }>\text { Puc } \\
\left(\frac{\text { Vuc }}{\phi R n v}\right)^{2}+\left(\frac{\text { Puc }}{\phi R n t}+\frac{\mathrm{Muc}}{\phi R m n}\right)^{2} \text { if } \eta=0.5 \wedge \text { lar }>\mathrm{D} \wedge \text { Put }<\text { Puc }
\end{array}\right.
$$

$$
\text { SR_g }=0.108
$$

Anchor Rod Interaction Check

$$
\text { SR_Pc }=0.287
$$

$$
\text { SR }:=\left\lvert\, \begin{aligned}
& \text { SR_g if TIA }=\text { "Rev-G" } \\
& \max (\text { SR_Pt, SR_Pc }) \text { if TIA }=\text { "Rev-H" } \wedge \mathrm{S} 15=\text { "No" } \\
& \frac{\max \left(\mathrm{SR} _\mathrm{Pt}, \mathrm{SR} _P c\right)}{1.05} \text { if TIA }=\text { "Rev-H" } \wedge \mathrm{S} 15=\text { "Yes" }
\end{aligned}=0.273\right.
$$

Check $_{\mathrm{SR}}:=|$| "Passing" if $\mathrm{SR} \leq 1.00 \wedge$ TIA $=$ "Rev-G" $\wedge \mathrm{S} 105=$ "Yes" |
| :--- |
| "Acceptable" if $1.00<\mathrm{SR} \leq 1.05 \wedge$ TIA $=$ "Rev-G" $\wedge \mathrm{S} 105=$ "Yes" |
| "Failing" if $\mathrm{SR}>1.05 \wedge$ TIA $=$ "Rev-G" $\wedge \mathrm{S} 105=$ "Yes" |
| "Passing" if $\mathrm{SR} \leq 1.00 \wedge$ TIA $=$ "Rev-G" $\wedge \mathrm{S} 105=$ "No" |
| "Failing" if $\mathrm{SR}>1.00 \wedge$ TIA $=$ "Rev-G" $\wedge \mathrm{S} 105=$ "No" |
| "Passing" if $\mathrm{SR} \leq 1.0 \wedge$ TIA $=$ "Rev-H" |
| "Failing" if $\mathrm{SR}>1.0 \wedge$ TIA $=$ "Rev-H" |

$$
\begin{aligned}
& \text { SR_Pt }:=\left\lvert\,\left(\frac{\text { Put }}{\phi R n t}\right)^{2}+\left(\frac{\text { Vut }}{\phi R n v}\right)^{2}\right. \text { if lar } \leq D \\
& \left(\frac{\text { Put }}{\phi \text { Rnt }}\right)^{2}+\left(\frac{\text { Vut }}{\phi \text { Rnv }}\right)^{2} \text { if } \mathrm{D}<\text { lar } \leq 3 \text {.in } \wedge \text { Grout }=\text { "Yes" } \\
& \left(\frac{\text { Put }}{\phi \text { Rnt }}+\frac{\text { Mut }}{\phi R m n}\right)^{2}+\left(\frac{\text { Vut }}{\phi R n v}\right)^{2} \text { if } 3 \cdot \text { in }<\text { lar } \wedge \text { Grout }=\text { "Yes" } \\
& \left(\frac{\text { Put }}{\phi \mathrm{Rnt}}+\frac{\text { Mut }}{\phi \mathrm{Rmn}}\right)^{2}+\left(\frac{\text { Vut }}{\phi \mathrm{Rnv}}\right)^{2} \text { if } \mathrm{D}<\operatorname{lar} \wedge \text { Grout }=\text { "No" } \\
& \text { SR_Pt }=4.901 \times 10^{-3} \\
& \text { SR_Pc := } \left\lvert\,\left(\frac{\text { Puc }}{\phi R n c}\right)+\left(\frac{\text { Vuc }}{\phi R n v c}\right)^{2}\right. \text { if lar } \leq D \\
& \left(\frac{\text { Puc }}{\phi \text { Rnc }}\right)+\left(\frac{\text { Vuc }}{\phi \text { Rnvc }}\right)^{2} \text { if } \mathrm{D}<\operatorname{lar} \leq 3 \cdot \text { in } \wedge \text { Grout }=\text { "Yes" } \\
& \left(\frac{\text { Puc }}{\phi \mathrm{Rnc}}+\frac{\mathrm{Muc}}{\phi \mathrm{Rmn}}\right)+\left(\frac{\mathrm{Vuc}}{\phi \mathrm{Rnvc}}\right)^{2} \text { if } 3 \cdot \text { in }<\operatorname{lar} \wedge \text { Grout }=\text { "Yes" } \\
& \left(\frac{\mathrm{Puc}}{\phi \mathrm{Rnc}}+\frac{\mathrm{Muc}}{\phi \mathrm{Rmn}}\right)+\left(\frac{\mathrm{Vuc}}{\phi \mathrm{Rnvc}}\right)^{2} \text { if } \mathrm{D}<\operatorname{lar} \leq 4 \cdot \mathrm{D} \wedge \text { Grout }=\text { "No" } \\
& \left(\frac{\text { Puc }}{\phi \operatorname{Rnb}}+\frac{\mathrm{Muc}}{\phi \mathrm{Rmn}}\right)+\left(\frac{\mathrm{Vuc}}{\phi \mathrm{Rnvc}}\right)^{2} \text { if lar }>4 \cdot \mathrm{D} \wedge \text { Grout }=" \mathrm{No} "
\end{aligned}
$$

Anchor Rod Results

Axial Tension Demand:	Put $=2.25 \cdot \mathrm{kip}$
Axial Tension Capacity:	$\phi \mathrm{Rnt}=56.788 \cdot \mathrm{kip}$
Axial Compression Demand:	Puc $=17.25 \cdot \mathrm{kip}$
Axial Compression Capacity:	$\phi \mathrm{Rnc}=63.603 \cdot \mathrm{kip}$
Shear Tension Demand:	Vut $=2.125 \cdot \mathrm{kip}$
Tension Shear Capacity:	$\phi \mathrm{Rnv}=36.816 \cdot \mathrm{kip}$
Shear Compression Demand:	Vuc $=2.375 \cdot \mathrm{kip}$
Compresison Shear Capacity:	$\phi \mathrm{R}_{\mathrm{nvc}}=19.081 \cdot \mathrm{kip}$
Moment Tension Demand:	$\mathrm{M}_{\mathrm{ut}}=3.453 \cdot \mathrm{kip} \cdot \mathrm{in}$
Moment Compression Demand:	$\mathrm{M}_{\mathrm{uc}}=3.859 \cdot \mathrm{kip} \cdot \mathrm{in}$
Moment Capacity:	$\phi \mathrm{R}_{\mathrm{mn}}=10.668 \cdot \mathrm{kip} \cdot \mathrm{in}$
Governing	SR = 27.305.\%
Stress Ratio	Check $_{\text {SR }}=$ "Passing"

SST Unit Base Foundation

Top \& Bot. Pad Rein. Different?:	Γ
Tower Centroid Offset?:	$\overline{ }$
Block Foundation?:	$\bar{\square}$

Superstructure Analysis Reactions		
Global Moment, M:	2542	ft-kips
Global Axial, P:	39	kips
Global Shear, V:	33	kips
Leg Compression, $\mathbf{P}_{\text {comp }}:$	138	kips
Leg Comp. Shear, $\mathbf{V}_{\text {u_comp }}:$	19	kips
Leg Uplift, $\mathbf{P}_{\text {uplifit: }}:$	118	kips
Leg Uplift. Shear, $\mathbf{V}_{\text {u__uplift: }}$	17	kips
Tower Height, $\mathbf{H}:$	130	ft
Base Face Width, BW:	22.5417	ft
BP Dist. Above Fdn, bp ${ }_{\text {dist }}:$	2	in
Anchor Bolt Circle, BC:	10	in

Foundation Analysis Checks				
	Capacity	Demand	Rating*	Check
Lateral (Sliding) (kips)	206.03	33.00	15.3\%	Pass
Bearing Pressure (ksf)	9.00	1.14	12.1\%	Pass
Overturning (kip*ft)	7965.51	2679.50	33.6\%	Pass
Pad Flexure (kip*ft)	1877.46	547.49	27.8\%	Pass
Pad Shear - 1-way (kips)	1541.78	75.55	4.7\%	Pass
Pad Shear - Comp 2-way (ksi)	0.190	0.018	9.2\%	Pass
Flexural 2-way (Comp) (kip*ft)	978.81	0.00	0.0\%	Pass
Pad Shear - Tension 2-way (ksi)	0.190	0.016	7.9\%	Pass
Flexural 2-way (Tension) (kip*ft)	978.81	0.00	0.0\%	Pass
		*Rating per TIA-222-H Section 15.5		
		Soil Rating*:Structural Rating*:		33.6\%
				27.8\%

Pad Properties		
Depth, D:	4.00	ft
Pad Width, $\mathbf{W}:$	31.00	ft
Pad Thickness, T:	4.00	ft
Pad Rebar Size (Bottom), Sp:	7	
Pad Rebar Quantity (Bottom), mp:	16	
Pad Clear Cover, $\mathbf{c c}_{\text {pad }}:$	3	in

Material Properties		
Rebar Grade, Fy:	60	ksi
Concrete Compressive Strength, F'c:	4	ksi
Dry Concrete Density, $\delta \mathbf{c}:$	150	pcf

Soil Properties		
Total Soil Unit Weight, $\gamma:$	100	pcf
Ultimate Gross Bearing, Qult:	12.000	ksf
Cohesion, Cu:	0.000	ksf
Friction Angle, $\varphi:$	34	degrees
SPT Blow Count, $\mathbf{N}_{\text {blows: }}:$	10	
Base Friction, $\mu:$	0.45	
Neglected Depth, N:	3.3	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw:	N / A	ft

ATTACHMENT D - PROOF OF DELIVERY OF NOTICE

PO: S0424674

FedEx
E
THU $=03$ M MR 10:30 PRIORITY OVERNIGHT 00 BNHA
Part न 156948-434 RIT2 01/14.

PO: SO424674
ต:

THU = 03 MAR 10:30 PRIORITY OVERNIGH'通: 2×-1643739112005 00 BDLA

ATTACHMENT E - POWER DENSITY REPORT

Calculated Radio Frequency Emissions Report EVERS=URCE ENERGY

ES-004

790 Willis Street

Bristol, CT 06010

February 7, 2022

Table of Contents

1. Introduction 1
2. FCC Guidelines for Evaluating RF Radiation Exposure Limits 1
3. Power Density Calculation Methods 2
4. Calculated \% MPE Results 3
5. Conclusion 4
6. Statement of Certification 4
Attachment A: References 5
Attachment B: FCC Limits for Maximum Permissible Exposure (MPE) 6
Attachment C: Eversource Antenna Data Sheets and Electrical Patterns 8
Attachment D: Connecticut Siting Council Data 9
List of Tables
Table 1: Proposed Facility \% MPE 3
Table 2: FCC Limits for Maximum Permissible Exposure (MPE) 6
List of Figures
Figure 1: Graph of FCC Limits for Maximum Permissible Exposure (MPE) 7

1. Introduction

The purpose of this report is to investigate compliance with applicable FCC regulations for the Eversource installation on the existing self-support tower located at 790 Willis Street in Bristol, CT.

Eversource has recently installed one omnidirectional antenna (Comprod 876F-70-2HSMP40DF1/2) for both transmit and receive purposes as part of its 220 MHz communications system and one microwave dish for backhaul communications. The original proposal also consisted of one omnidirectional antenna and one microwave dish, however the model of the original omni-directional antenna (db Spectra DS20C03F36D-D) has changed. This report provides an updated analysis based on the current installation as reflected in the updated plans ${ }^{1}$.

This report considers the existing antenna configuration as detailed by Eversource along with power density information of the other existing antennas to calculate the cumulative \% MPE (Maximum Permissible Exposure) of the facility at ground level.

2. FCC Guidelines for Evaluating RF Radiation Exposure Limits

In 1985, the FCC established rules to regulate radio frequency (RF) exposure from FCC licensed antenna facilities. In 1996, the FCC updated these rules, which were further amended in August 1997 by OET Bulletin 65 Edition 97-01. These new rules include Maximum Permissible Exposure (MPE) limits for transmitters operating between 300 kHz and 100 GHz . The FCC MPE limits are based upon those recommended by the National Council on Radiation Protection and Measurements (NCRP), developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI).

The FCC general population/uncontrolled limits set the maximum exposure to which most people may be subjected. General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Public exposure to radio frequencies is regulated and enforced in units of milliwatts per square centimeter $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$. The general population exposure limits for the various frequency ranges are defined in the attached "FCC Limits for Maximum Permissible Exposure (MPE)" in Attachment B of this report.

Higher exposure limits are permitted under the occupational/controlled exposure category, but only for persons who are exposed as a consequence of their employment and who have been made fully aware of the potential for exposure, and they must be able to exercise control over their exposure. General population/uncontrolled limits are five times more stringent than the levels that are acceptable for occupational, or radio frequency trained individuals. Attachment B contains excerpts from OET Bulletin 65 and defines the Maximum Exposure Limit.

Finally, it should be noted that the MPE limits adopted by the FCC for both general population/uncontrolled exposure and for occupational/controlled exposure incorporate a substantial margin of safety and have been established to be well below levels generally accepted as having the potential to cause adverse health effects.

[^5]
3. Power Density Calculation Methods

The power density calculation results were generated using the following formula as outlined in FCC bulletin OET 65, and Connecticut Siting Council recommendations:

$$
\text { Power Density }=\left(\frac{1.6^{2} \times 1.64 \times \mathrm{ERP}}{4 \pi \times R^{2}}\right) X \text { Off Beam Loss }
$$

Where:
EIRP $=$ Effective Isotropic Radiated Power $=1.64 \times$ ERP
$\mathrm{R}=$ Radial Distance $=\sqrt{\left(H^{2}+V^{2}\right)}$
$\mathrm{H}=$ Horizontal Distance from antenna
$\mathrm{V}=$ Vertical Distance from radiation center of antenna
Ground reflection factor of 1.6
Off Beam Loss is determined by the selected antenna pattern

These calculations assume that the antennas are operating at 100 percent capacity and full power, and that all antenna channels are transmitting simultaneously. Obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. The calculations assume even terrain in the area of study and do not consider actual terrain elevations which could attenuate the signal. As a result, the calculated power density and corresponding $\%$ MPE levels reported below are much higher than the actual levels will be from the final installation.

4. Calculated \% MPE Results

Table 1 below outlines the power density information for the site. The Eversource omnidirectional and microwave antennas have narrow vertical beamwidths of 40° and 1.7°, respectively; therefore, the majority of the RF power is focused out towards the horizon. Please refer to Attachment C, for the vertical patterns of the recently installed Eversource antennas. Likewise, the other transmit antennas exhibit similar directionality of varying vertical beamwidths. As a result, there will be less RF power directed below the antennas relative to the horizon, and consequently lower power density levels around the base of the facility. The calculated results in Table 1 include a nominal 10 dB off-beam pattern loss for the omnidirectional and panel antennas, and 30 dB off-beam pattern loss for the highly directional microwave dish to account for the lower relative gain below the antennas. Any inactive or receive-only antennas are not listed in the table unless specified otherwise, as they are irrelevant in terms of the \% MPE calculations.

Carrier	Antenna Height (Feet)	Operating Frequency (MHz)	Number of Trans.	ERP Per Transmitter (Watts)	Power Density $\left(\mathrm{mw} / \mathrm{cm}^{2}\right)$	Limit	\% MPE
Eversource	141.5	154.46375	1	250	0.0005	0.2000	0.24\%
Eversource	141	153.695	1	250	0.0005	0.2000	0.25\%
Eversource	139	145.14	1	250	0.0005	0.2000	0.25\%
Eversource	138	224.22	1	250	0.0005	0.2000	0.26\%
Eversource	137	451.1	1	250	0.0005	0.3007	0.17\%
Eversource	135	939.4375	1	250	0.0005	0.6263	0.09\%
Eversource	134	939.95	1	250	0.0005	0.6266	0.09\%
Eversource	117	6034.15	1	7000	0.0002	1.0000	0.02\%
Eversource	120	47.76	1	250	0.0007	0.2000	0.35\%
Eversource	107	6735	1	7000	0.0002	1.0000	0.02\%
Eversource	111	37.76	1	250	0.0008	0.2000	0.41\%
Eversource	98	174	1	250	0.0011	0.2000	0.53\%
Eversource	96	6805	1	7000	0.0003	1.0000	0.03\%
Eversource	86	6004.5	1	7000	0.0004	1.0000	0.04\%
Eversource	91	37.46	1	250	0.0012	0.2000	0.62\%
Eversource	84	900	1	250	0.0015	0.6000	0.25\%
Eversource	71	6805	1	7000	0.0006	1.0000	0.06\%
Eversource	73	146.52	1	250	0.0020	0.2000	1.00\%
Eversource	73	448.375	1	250	0.0020	0.2989	0.67\%
Eversource	58	48.34	1	250	0.0033	0.2000	1.66\%
Eversource	54	48.4	1	250	0.0039	0.2000	1.95\%
Eversource	46	173.25	1	250	0.0056	0.2000	2.81\%
Eversource	43	37.6	1	250	0.0066	0.2000	3.28\%
CSP	78	851	1	315	0.0022	0.5673	0.39\%
CSP	67	775	1	250	0.0024	0.5167	0.47\%
CSP	53	775	1	199	0.0032	0.5167	0.63\%
CSP	40	851.0125	1	158	0.0049	0.5673	0.87\%
T-Mobile	125	2500	1	3590	0.0091	1.0000	0.91\%
T-Mobile	125	2500	1	3590	0.0091	1.0000	0.91\%
T-Mobile	125	700	1	2256	0.0057	0.4667	1.23\%
T-Mobile	125	600	1	1128	0.0029	0.4000	0.72\%
T-Mobile	125	600	1	1128	0.0029	0.4000	0.72\%
T-Mobile	125	1900	1	3166	0.0080	1.0000	0.80\%
T-Mobile	125	2100	1	4308	0.0109	1.0000	1.09\%
T-Mobile	125	1900	1	2034	0.0052	1.0000	0.52\%
T-Mobile	125	1900	1	4034	0.0102	1.0000	1.02\%
Eversource	87	5945.2	1	11147	0.0006	1.0000	0.06\%
Eversource	135	217	4	124	0.0011	0.2000	0.54\%
-						Total	25.92\%

Table 1: Proposed Facility \% MPE ${ }^{2} 3$

[^6]
5. Conclusion

The above analysis concludes that RF exposure at ground level with the new Eversource 220 MHz and microwave antenna installation is below the maximum power density limits as outlined by the FCC in the OET Bulletin 65 Ed. 97-01. Using the conservative calculation methods discussed herein, the highest expected percent of Maximum Permissible Exposure at ground level with the proposed installation is $\mathbf{2 5 . 9 2 \%}$ of the FCC General Population/Uncontrolled limit.

As noted previously, the calculated \% MPE levels are more conservative (higher) than the actual levels will be from the finished installation.

6. Statement of Certification

I certify to the best of my knowledge that the statements in this report are true and accurate. The calculations follow guidelines set forth in FCC OET Bulletin 65 Edition 97-01, IEEE Std. C95.1, and IEEE Std. C95.3.

Report Prepared By:	Sohail Usmani
	Senior RF Engineer
C Squared Systems, LLC	

February 7, 2022
Date C Squared Systems, LLC

Keth wellante
Reviewed/Approved By: Keith Vellante
Director - RF Services
C Squared Systems, LLC

Attachment A: References

OET Bulletin 65 - Edition 97-01 - August 1997 Federal Communications Commission Office of Engineering \& Technology
IEEE C95.1-2005, IEEE Standard Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz IEEE-SA Standards Board

IEEE C95.3-2002 (R2008), IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, $100 \mathrm{kHz}-300 \mathrm{GHz}$ IEEE-SA Standards Board

Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)

(A) Limits for Occupational/Controlled Exposure ${ }^{4}$

Frequency Range (MHz)	Electric Field Strength (E) $(\mathrm{V} / \mathrm{m})$	Magnetic Field Strength (E) $(\mathrm{A} / \mathrm{m})$	Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Time $\|\mathrm{E}\|^{2},\|\mathrm{H}\|^{2}$ or S (minutes)
$0.3-3.0$	614	1.63	$(100)^{*}$	6
$3.0-30$	$1842 / \mathrm{f}$	$4.89 / \mathrm{f}$	$\left(900 / \mathrm{f}^{2}\right)^{*}$	6
$30-300$	61.4	0.163	1.0	6
$300-1500$	-	-	$\mathrm{f} / 300$	6
$1500-100,000$	-	-	5	6

(B) Limits for General Population/Uncontrolled Exposure ${ }^{5}$

Frequency Range (MHz)	Electric Field Strength (E) $(\mathrm{V} / \mathrm{m})$	Magnetic Field Strength (E) $(\mathrm{A} / \mathrm{m})$	Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Time $\|\mathrm{E}\|^{2},\|\mathrm{H}\|^{2}$ or S (minutes)
$0.3-1.34$	614	1.63	$(100)^{*}$	30
$1.34-30$	$824 / \mathrm{f}$	$2.19 / \mathrm{f}$	$\left(180 / \mathrm{f}^{2}\right)^{*}$	30
$30-300$	27.5	0.073	0.2	30
$300-1500$	-	-	$\mathrm{f} / 1500$	1.0
$1500-100,000$	-	-		30
$\mathrm{f}=$ frequency in $\mathrm{MHz} *$ Plane-wave equivalent power density				

Table 2: FCC Limits for Maximum Permissible Exposure (MPE)

[^7]

Figure 1: Graph of FCC Limits for Maximum Permissible Exposure (MPE)

Attachment C: Eversource Antenna Data Sheets and Electrical Patterns
217 MHz

Attachment D: Current CSC Power Density Data for the Subject Facility (07/16/2021)

Carrier	Antenna Height (Feet)	Operating Frequency (MHz)	Number of Trans.	ERP Per Transmitt er (Watts)	$\begin{gathered} \text { Power } \\ \text { Density } \\ \left(\mathrm{mw} / \mathrm{cm}^{2}\right) \end{gathered}$	Limit	\% MPE
Amateur Radio	126	448.325	1	650	0.00162	0.2989	0.54\%
Amateur Radio	126	224.22	1	100	0.00025	0.2000	0.12\%
CL\&P	127	153.695	1	5	0.00001	0.2000	0.01\%
CL\&P	127	451.1	1	189	0.00046	0.3007	0.15\%
CL\&P	127	154.46375	1	990	0.00243	0.2000	1.22\%
CL\&P	122	952.55625	1	71	0.00019	0.6350	0.03\%
CL\&P	125	937	3	200	0.00152	0.6247	0.24\%
CL\&P	115	48.34	1	100	0.00030	0.2000	0.15\%
CL\&P	109	6765	1	5250	0.01780	1.0000	1.78\%
CL\&P	102	6835	1	309	0.00121	1.0000	0.12\%
CL\&P	102	6735	1	1738	0.00678	1.0000	0.68\%
CTSP	108	800	5	100	0.00173	0.5333	0.32\%
CL\&P	92	6805	1	1660	0.00807	1.0000	0.81\%
CL\&P	81	6865	1	288	0.00184	1.0000	0.18\%
CL\&P	81	37.76	1	100	0.00064	0.2000	0.32\%
CL\&P	58	48.4	1	120	0.00160	0.2000	0.80\%
CL\&P	53	53.05	1	100	0.00163	0.2000	0.81\%
CL\&P	52	37.46	1	115	0.00195	0.2000	0.98\%
CL\&P	38	37.6	1	446	0.01566	0.2000	7.83\%
CL\&P	37	173.25	1	204	0.00763	0.2000	3.82\%
CL\&P	37	928.55625	1	32	0.00120	0.6190	0.19\%
T-Mobile	125	2500	1	3590	0.0091	1.0000	0.91\%
T-Mobile	125	2500	1	3590	0.0091	1.0000	0.91\%
T-Mobile	125	700	1	2256	0.0057	0.4667	1.23\%
T-Mobile	125	600	1	1128	0.0029	0.4000	0.72\%
T-Mobile	125	600	1	1128	0.0029	0.4000	0.72\%
T-Mobile	125	1900	1	3166	0.0080	1.0000	0.80\%
T-Mobile	125	2100	1	4308	0.0109	1.0000	1.09\%
T-Mobile	125	1900	1	2034	0.0052	1.0000	0.52\%
T-Mobile	125	1900	1	4034	0.0102	1.0000	1.02\%
						Total	29.04\%

Does your financial institution have questions about this check?

- This check was printed from an authorized check record. It is not a Check 21 Image Replacement Document.
- To confirm this check was issued by the account holder and details (pay to, amount, routing/account number) remain unmodified, the item's authenticity can be verified using the Deluxe Inc. Check Verification service at https://echecks.com/verify.

Questions? Visit eChecks.com or call 877-333-6964

For your records

Issued date: 03/03/2022
Check number: VV3319
From: ALL-POINTS TECHNOLOGY CORP, P.C.
Amount: \$625.00
Payable to: Connecticut Siting Council
Delivery email: bgaudet@allpointstech.com
Memo: CSC Filing Fee - ES-004 South..
Documents: Yes - see Remittance below

Are you a business? To save time, money, and resources, make payments using Deluxe Payment Exchange. Call 877-333-6964 to get started today!

DATE		
$03 / 03 / 2022$	MEMO	
CSC Filing Fee - ES-004 South Mountain		

[^0]: ${ }^{1}$ It should be noted that the Power Density Report denotes each channel as a transmitter. The depiction of antennas in the Structural Analysis and Construction Drawings accurately reflects the number of antennas. Also, the "Antenna Height" column on Table 1 in the Power Density Report reflects the Transmit or "TX" antenna centerline.

[^1]:

 876F-70-2HSMP40DF1/2

[^2]: Note:

 1) Antenna to be installed on existing pipe mount
[^3]: Consider Moments - Legs
 Consider Moments - Horizontals
 Consider Moments - Diagonals Use Moment Magnification
 Use Code Stress Ratios
 Use Code Safety Factors - Guys
 Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile
 $\sqrt{ }$ Include Bolts In Member Capacity
 Leg Bolts Are At Top Of Section
 $\sqrt{ }$ Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric

[^4]: ${ }^{1} P_{u} / \phi P_{n}$ controls

[^5]: ${ }^{1}$ Stamped Black \& Veatch site drawings dated 1/19/2022 (Rev. 1).

[^6]: ${ }^{2}$ The operating parameters for the Eversource and CSP (CT State Police) were provided directly by each respective operator. The T-Mobile information was sourced from the CSC Power Density Database dated 07/16/2021. For reference, this data is included as Attachment D. Please note that $\%$ MPE values listed are rounded to two decimal points and the total $\%$ MPE listed is a summation of each unrounded contribution. Therefore, summing each rounded value may not identically match the total value reflected in the table.
 ${ }^{3}$ Antenna heights listed for Eversource are in reference to the antenna centerline and based upon information provided by Eversource with respect to the Black \& Veatch Structural Analysis Report dated 01/13/2022. The available data for the CSP antennas do not have a one-toone match with the structural analysis, so a worst-case antenna height was applied for those antennas.

[^7]: ${ }^{4}$ Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure
 ${ }^{5}$ General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure

