New Cingular Wireless
PCS, LLC
500 Enterprise Drive
Rocky Hill, Connecticut 06067
John Lawrence
Real Estate Consultant
95 Ryan Drive, Suite \#1
Raynham, MA 02767
Phone: (781)715-5532
jlawrence@clinellc.com
June 9, 2017

Chairman Robert Stein
and Members of the Connecticut Siting Council
Connecticut Siting Council
10 Franklin Square
New Britain, Connecticut 06051

Re: Request for Tower Share
 New Cingular Wireless PCS, LLC ("AT\&T") Request for Approval of the Shared Use of an Existing Wireless Facility 383 Middle Street Bristol CT 06010. AT\&T site number: CT3461

Dear Chairman Stein and Members of the Council:
AT\&T proposes to share an existing wireless facility located at 383 Middle Street Bristol CT 06010 (the "Facility"). The subject parcel is identified by the City of Bristol as Map 03 Lot 35. The property is owned by Inland Private Capital Corporation and is roughly 36.9+/- acres.

Pursuant to Connecticut General Statues Section 16-50aa (the Statute), AT\&T requests a finding from the Connecticut Siting Council that the shared use of this facility is technically, legally, environmentally and economically feasible, will meet safety concerns, will avoid the unnecessary proliferation of towers and is in the public interest. AT\&T further requests an order approving the shared use of this Facility.

Siting Council Jurisdiction Over the Existing Facility

AT\&T is a telecommunication provider licensed by the FCC to provide service in the State of Connecticut, including but not limited to Hartford County. AT\&T has entered into an agreement with the owner of this Facility, Bristol Sports Center LeaseCo, LLC, (c/o Inland Continental Property Management Corp) for the location of this proposed equipment on the smokestack so that it may provide telecommunications services to the surrounding community.

Pursuant to Connecticut General Statutes § 16-50aa, the Council may approve the shared use of a telecommunications facility provided that such shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns.

The Facility currently holds Sprint Antennas at the 97’ level with equipment attached to and
running down different parts of the existing smokestack at 383 Middle Street. This regulation of the Facility extended not only to the antennas on the roof but also the associated equipment and connections elsewhere on the building and on the site. In essence, the building was legally made as a smokestack however is now primarily the support structure for and part of the Facility as a whole. As such, we understand that AT\&T's antennas and equipment at this Facility are also regulated by the Siting Council in this unique circumstance.

The purpose of this request is to use an existing Facility to develop AT\&T's wireless broadband network to provide high speed wireless data and to develop wireless service within the State of Connecticut and in this part of Bristol, CT: thus avoiding the need for an additional tower in Bristol. As the Council is aware AT\&T is licensed by the Federal Communications Commission ("FCC") to provide multiple technologies, including Global Systems for Mobile Communications ("GSM" or "2G"), Universal Mobile Telecommunications Service ("UMTS" or "3G") and long-term evolution ("4G" or "LTE") services in Hartford County. AT\&T is building and enhancing its network to take advantage of its licensed spectrum, and improve its broadband high speed wireless voice and data services. By issuing an order approving AT\&T's shared use of this Facility, AT\&T will be able to proceed with obtaining a building permit for the proposed installation.

Existing Facility and Proposed Collocation

The existing Facility is a 127^{\prime} smokestack located at 383 Middle Street in Bristol. Sprint is currently located at this Facility. A site plan of the facility is included in the drawings, prepared by Advanced Engineering Group with a last revision date of June 2, 2017 attached hereto.

AT\&T intends to install twelve (12) HPA-65R-BUU-H8 panel antennas, twelve (12) Ericsson RRUs and two (2) Surge arrestors mounted on new antenna frames on the existing smokestack. AT\&T has leased space for an equipment shelter which will be installed at grade level next to the existing smokestack.

Consistent with the requirements of the Statute, it is feasible for AT\&T to collocate at this facility. AT\&T is proposing to add new equipment to an existing Facility. Included with this application is a Structural Analysis Report from Advanced Engineering Group with a last revision date of June 2, 2017, which shows that the existing rooftop can support AT\&T's proposed equipment.

The Proposed Facility Will Not Have a Substantial Adverse Environmental Impact

Pursuant to Statute, the proposal will be environmentally feasible for the following reasons:

- There will be little increase in the visibility of the Facility with the addition of the antennas and associated equipment on the Smokestack.
- There will be no increased impact on air quality because no air pollutants will be generated during normal operation of the facility.
- During construction, the proposed project will generate a small amount of traffic and noise as construction takes place. Upon completion, traffic will be limited to an
average of one trip per month for maintenance and inspections.
- There will be no adverse impact to the health and safety of the surrounding community or workers at the facility due to the addition of AT\&T's antennas to the Facility. AT\&T has performed an analysis of the radio frequency field emanating from the transmitting antennas on the tower to ensure compliance with the National Council on Radiation Protection and measurements (NCRP) standard for maximum permissible exposure (MPE) adopted by the FCC. The analysis dated June 7, 2017 indicates that AT\&T and other antennas on Facility will cumulatively emit 11.65% of the NCRP standard for maximum permissible exposure. The report indicates that maximum level of exposure will be well below the FCC's mandated radio frequency exposure limits. The report is attached hereto and the calculations are below.

Site Composite MPE \%	
Carrier	MPE $\%$
AT\&T - Max Sector Value	$\mathbf{5 . 1 8} \%$
Sprint	6.47%
Site Total MPE \%:	$\mathbf{1 1 . 6 5} \%$

Table 4: All Carrier MPE Contributions

- AT\&T expects to enhance safety in this portion of Bristol by improving wireless telecommunications for local residents and travelers. AT\&T continues to develop its network to provide its customers with quality and reliable coverage to comply with their FCC license, the site is a necessary part of AT\&T's network development.
- The overall visual impact on the City of Bristol will be decreased with the sharing of a single Facility versus the proliferation in different locations.
- This proposal is designed to provide reliable wireless coverage for this section of Bristol, Connecticut.

Conclusion:

For the reasons stated above, the collocation of AT\&T's antennas and associated equipment to at this approved Facility would meet all the requirements set forth in the Statute. The proposal is legally, technically, economically and environmentally feasible and meets all public safety concerns. Therefore, AT\&T respectfully requests that the Council approve this request for the shared use of this Facility located at 383 Middle Street, Bristol CT.

Respectfully yours,
Tim Whalen
Real Estate Consultant

CC: Mayor Kenneth B. Cockayne, City of Bristol
Inland Continental Property Management Corp (Rosa Szyjula)
Brian Skinner, Chairman Zoning Commission
William Veits, Chairman Planning Commission
Guy Morin, Chief Building Official, City of Bristol

Radio Frequency Emissions Analysis Report

AT\&T Existing Facility
Site ID: CT3461

Bristol Middle Street
383 Middle Street
Bristol, CT 6010
June 7, 2017
Centerline Communications Project Number: 950012-002

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{1 1 . 6 5} \%$

June 7, 2017

AT\&T Mobility - New England
Attn: John Benedetto, RF Manager
550 Cochituate Road
Suite 550-13\&14
Framingham, MA 06040

Emissions Analysis for Site: CT3461 - Bristol Middle Street

Centerline Communications, LLC ("Centerline") was directed to analyze the proposed AT\&T facility located at $\mathbf{3 8 3}$ Middle Street, Bristol, CT, for the purpose of determining whether the emissions from the Proposed AT\&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(\mathrm{~b})(1)-(\mathrm{b})(3)$, to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications facility that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limits for the 700 and 850 MHz Bands are approximately $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$ and $567 \mu \mathrm{~W} / \mathrm{cm}^{2}$ respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were performed for the proposed AT\&T Wireless antenna facility located at $\mathbf{3 8 3}$ Middle Street, Bristol, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT\&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the smoke stack. For this report the sample point is the top of a 6-foot person standing at the base of the smoke stack.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in Table 1:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
LTE	850 MHz	2	60
LTE	$2300 \mathrm{MHz}(\mathrm{WCS})$	2	60
LTE	700 MHz	2	60
LTE	$1900 \mathrm{MHz}(\mathrm{PCS})$	2	60

Table 1: Channel Data Table

The following antennas listed in Table 2 were used in the modeling for transmission in the $700 \mathrm{MHz}, 850$ $\mathrm{MHz}, 1900 \mathrm{MHz}$ (PCS) and 2300 MHz (WCS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

Sector	Antenna Number	Antenna Make / Model	Antenna Centerline (ft)
A	1	CCI HPA-65R-BUU-H8	120
A	2	CCI HPA-65R-BUU-H8	120
B	1	CCI HPA-65R-BUU-H8	120
B	2	CCI HPA-65R-BUU-H8	120
C	1	CCI HPA-65R-BUU-H8	120
C	2	CCI HPA-65R-BUU-H8	120

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

RESULTS

Per the calculations completed for the proposed AT\&T configurations Table 3 shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

Antenna ID	Antenna Make / Model	Frequency Bands	Antenna Gain (dBd)	Channel Count	Total TX Power (W)	ERP (W)	MPE \%
Antenna A1	HPA-65R-BUU-H8	$\begin{gathered} 850 \mathrm{MHz} / \\ 2300 \mathrm{MHz} \text { (WCS) } \\ \hline \end{gathered}$	$\begin{aligned} & 14.05 / \\ & 15.55 \\ & \hline \end{aligned}$	4	240	7,356.23	2.68
Antenna A2	HPA-65R-BUU-H8	$\begin{gathered} 700 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) } \\ \hline \end{gathered}$	$\begin{gathered} 13.15 / \\ 14.95 \\ \hline \end{gathered}$	4	240	6,229.75	2.51
Sector A Composite MPE\%							5.18
$\begin{gathered} \hline \text { Antenna } \\ \text { B1 } \\ \hline \end{gathered}$	HPA-65R-BUU-H8	$\begin{gathered} 850 \mathrm{MHz} \mathrm{/} \\ 2300 \mathrm{MHz} \text { (WCS) } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 14.05 / \\ & 15.55 \end{aligned}$	4	240	7,356.23	2.68
$\begin{gathered} \text { Antenna } \\ \text { B2 } \\ \hline \end{gathered}$	$\begin{gathered} \text { CCI } \\ \text { HPA-65R-BUU-H8 } \\ \hline \end{gathered}$	$\begin{gathered} 700 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) } \\ \hline \end{gathered}$	$\begin{aligned} & 13.15 / \\ & 14.95 \\ & \hline \end{aligned}$	4	240	6,229.75	2.51
Sector B Composite MPE\%							5.18
Antenna C1	$\begin{gathered} \hline \text { CCI } \\ \text { HPA-65R-BUU-H8 } \end{gathered}$	$\begin{gathered} \hline 850 \mathrm{MHz} / \\ 2300 \mathrm{MHz} \text { (WCS) } \end{gathered}$	$\begin{aligned} & \hline 14.05 / \\ & 15.55 \end{aligned}$	4	240	7,356.23	2.68
Antenna C2	$\begin{gathered} \text { CCI } \\ \text { HPA-65R-BUU-H8 } \end{gathered}$	$\begin{gathered} 700 \mathrm{MHz} / \\ 1900 \mathrm{MHz}(\mathrm{PCS}) \\ \hline \end{gathered}$	$\begin{gathered} 13.15 / \\ 14.95 \\ \hline \end{gathered}$	4	240	6,229.75	2.51
Sector C Composite MPE\%							5.18

Table 3: AT\&T Emissions Levels

The Following table (table 4) shows all additional carriers on site and their MPE\% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum AT\&T MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. Table 5 below shows a summary for each AT\&T Sector as well as the composite MPE value for the site.

Site Composite MPE\%	
Carrier	MPE \%
AT\&T - Max Sector Value	$\mathbf{5 . 1 8} \%$
Sprint	6.47%
Site Total MPE \%:	$\mathbf{1 1 . 6 5 \%}$

Table 4: All Carrier MPE Contributions

AT\&T Sector A Total:	5.18%
AT\&T Sector B Total:	5.18%
AT\&T Sector C Total:	5.18%
Site Total:	

Table 5: Site MPE Summary

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. Table 6 below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated AT\&T sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

Table 6: AT\&T Maximum Sector MPE Power Values

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the AT\&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

AT\&T Sector	Power Density Value (\%)
Sector A:	5.18%
Sector B:	5.18%
Sector C:	5.18%
AT\&T Maximum Total (per sector):	5.18%
Site Total:	11.65%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{1 1 . 6 5 \%}$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director
Centerline Communications, LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767

Structural Design Calculations

Site No.: CT3461-Bristol Middle Street Client: Centerline Communications
Date: June 2, 2017

Client: Centerline Communications c/o AT\&T
Subject: Chimney Analysis, 383 Middle Street, Bristol, CT

Advanced Engineering Group
Sheet: 1
500 North Broadway East Providence, RI 02914

Ph: 401-354-2403

Synopsis:

The proposed AT\&T equipment installation will consist of six (6) 8' antennas (2 per sector), fifteen (15) remote radio heads (RRHs) (5 per sector), and three (3) surge arrestors mounted to the existing steel-framed catwalk assembly located approximately 120^{\prime} AGL on the 127' radial brick masonry smoke stack.

Material Properties:

Unit weight of brick,

$$
\gamma_{\text {brick }}:=125 \cdot \text { pcf }
$$

Modulus of rupture of brick, $\quad \mathrm{F}_{\mathrm{r}}:=300 \cdot \mathrm{psi}$
Allowable tensile stress in bending, $\mathrm{F}_{\mathrm{t}}:=7.5 \cdot \mathrm{psi} \quad$ (Unreinforced brick, type N mortar)
Ultimate masonry strength,
$f_{m}^{\prime}:=2400 \cdot$ psi

Chimney Properties:

The existing stack is a 127 tall radial brick masonry structure. Based on a field investigation by Industrial Communications on 1-29-14, the stack has a 11'-6" dia. base and a $5^{\prime} 10$ " dia. top. Bottom wall thickness was 24 "and top wall thickness was 9". There is currently one antenna array (3 flush-mounted and one MW dish) at 96' AGL. Based on photos taken during the field investigation, the stack appears to be in good condition with minimal mortar and brick loss.

Dimensions:
Stack Height, H := 127.ft
Bottom outside dimension, $\quad D_{b o}:=11.5 \cdot \mathrm{ft}$
Bottom inside dimension, $\quad D_{b i}:=7.75 \mathrm{ft}$
Top inside dimension, $\quad D_{\mathrm{ti}}:=4.333 \cdot \mathrm{ft}$
Top outside dimension, $\quad D_{t o}:=5.833 \cdot \mathrm{ft}$

Approx. stack weight,

$$
\begin{aligned}
& \mathrm{W}_{\text {stack }}:=\frac{\left(\mathrm{D}_{\mathrm{bo}}^{2}-\mathrm{D}_{\mathrm{bi}}^{2}\right)+\left(\mathrm{D}_{\mathrm{to}}^{2}-\mathrm{D}_{\mathrm{ti}}^{2}\right)}{2} \cdot \mathrm{H} \cdot \gamma_{\text {brick }} \\
& \mathrm{W}_{\text {stack }}=694.03 \cdot \mathrm{kip}
\end{aligned}
$$

Client: Centerline Communications c/o AT\&T
Subject: Chimney Analysis, 383 Middle Street, Bristol, CT

Analysis:

Wind load:
Height, $H=127 \mathrm{ft} \quad \mathrm{AGL}$
Exposure category, B
(ASCE 7-05 Sec 6.5.6.3)

Basic wind velocity, $\mathrm{V}:=95 \mathrm{mp}$

Importance factor, $\mathrm{I}:=1 \quad$ (category II)
Wind directional factor, $\quad \mathrm{K}_{\mathrm{d}}:=.95$
Exposure coefficient, $\quad \mathrm{K}_{\mathrm{z}}:=1.05$
Velocity wind pressure, $\quad \mathrm{q}_{\mathrm{z}}:=.00256 \cdot \mathrm{~V}^{2} \cdot \mathrm{~K}_{\mathrm{z}} \cdot \mathrm{K}_{\mathrm{d}} \cdot \mathrm{psf}$

$$
\mathrm{q}_{\mathrm{z}}=23.05 \cdot \mathrm{psf}
$$

Gust response factor, $\quad \mathrm{G}:=.85$
Force coeff., $\quad C_{f_{-} f}:=1.4 \quad$ Flat

$$
\mathrm{C}_{\mathrm{f}_{-} r}:=.85 \quad \text { Round }
$$

(CSBC Appendix K)
(ASCE 7-05 Table 6-1)
(ASCE 7-05 Table 6-4)
(ASCE 7-05 Table 6-3)
(ASCE 7-05 6.5.10)
(ASCE 7-05 Sec. 6.5.15)
Wind load pressure on stack, $W L_{\text {stack }}:=q_{z} \cdot G \cdot C_{f_{-} r}$

$$
W L_{\text {stack }}=16.65 \cdot \mathrm{psf}
$$

Wind load pressure on antennas $\quad \mathrm{WL}_{\text {ant }}:=\mathrm{q}_{\mathrm{z}} \cdot \mathrm{G} \cdot \mathrm{C}_{\mathrm{f}_{\mathrm{f}} \mathrm{f}}$

$$
W L_{\mathrm{ant}}=27.43 \cdot \mathrm{psf}
$$

Client: Centerline Communications c/o AT\&T
Subject: Chimney Analysis, 383 Middle Street, Bristol, CT

Advanced Engineering Group
Sheet: 3
500 North Broadway East Providence, RI 02914

Ph: 401-354-2403

The proposed AT\&T installation will be conservatively analyzed as a 13 'x8' flat appurtenance. The existing three flush-mounted antennas will be analyzed assuming that two antennas project entirely beyond the profile of the smokestack (the 3rd will be assumed to be within the profile of the stack and not contribute to wind loading).

Equipment Loads:

Existing/proposed Inventory:

Proposed Antenna Properties:

$$
\begin{aligned}
& \text { Width, } \mathrm{w}_{\text {pant }}:=14.4 \cdot \mathrm{in} \\
& \text { Depth, } \mathrm{t}_{\text {pant }}:=7.3 \cdot \mathrm{in} \\
& \text { Length, } \mathrm{I}_{\text {pant }}:=92.8 \cdot \mathrm{in} \\
& \text { Weight, } \mathrm{W}_{\text {pant }}:=53 \cdot \mathrm{lb}
\end{aligned}
$$

Proposed RRUS 11 Properties:
Width, $\mathrm{w}_{11}:=19.7 \cdot \mathrm{in}$
Depth, $\mathrm{t}_{11}:=7.2 \cdot \mathrm{in}$
Length, $\mathrm{I}_{11}:=17 \cdot \mathrm{in}$
Weight, $\mathrm{w}_{11}:=51 \cdot \mathrm{lb}$

Existing Antenna Properties:
Width, $\mathrm{w}_{\text {ant }}:=12 \cdot \mathrm{in}$
Depth, $\mathrm{t}_{\text {ant }}:=6 \cdot \mathrm{in}$
Length, $\mathrm{l}_{\text {ant }}:=72 \cdot \mathrm{in}$
Weight, $\mathrm{w}_{\text {ant }}:=46 \cdot \mathrm{lb}$

Proposed RRUS 32 Properties: Proposed RRH Ericsson RRUS-12:
Width, $\mathrm{w}_{32}:=13.3$ in \quad Width, $\quad \mathrm{w}_{12}:=18.5$ in
Depth, $t_{32}:=9.5$ in Depth, $t_{12}:=7.5$ in
Length, $\mathrm{I}_{32}:=29.9 \cdot$ in \quad Height, $\mathrm{I}_{12}:=20.4$ in
Weight, $W_{32}:=77 \cdot \mathrm{lb} \quad$ Weight, $W_{12}:=50 \mathrm{lb}$

Proposed Surge Properties:
Diameter, $w_{\text {ss }}:=9.7 \cdot$ in
Length, $\quad I_{s s}:=24 \cdot$ in
Weight, $\quad W_{s s}:=20 \cdot \mathrm{lb}$

Client: Centerline Communications c/o AT\&T
Subject: Chimney Analysis, 383 Middle Street, Bristol, CT

Advanced Engineering Group

Weight of proposed AT\&T equipment,

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{att}}:=6 \cdot\left(\mathrm{~W}_{\text {pant }}\right)+6 \cdot \mathrm{~W}_{11}+6 \cdot \mathrm{~W}_{12}+3 \cdot \mathrm{~W}_{32}+3 \cdot \mathrm{~W}_{\mathrm{ss}} \\
& \mathrm{P}_{\mathrm{att}}=1215 \mathrm{lb}
\end{aligned}
$$

Approximate weight of steel catwalk, $\quad \mathrm{P}_{\mathrm{cw}}:=2000 \cdot \mathrm{lb}$
Proposed AT\&T equipment and catwalk assembly:

Width, $W_{\text {esf_12 }}:=13 \mathrm{ft}$
Height, $h_{\text {esf_12 }}:=8 . f t$
Weight, $W_{\text {esf_12 }}:=P_{\text {att }}+P_{\text {cw }}$

$$
\mathrm{W}_{\text {esf_12 }}=3215 \mathrm{lb}
$$

Existing flush-mount antennas:

$$
\text { Width, } \quad \mathrm{w}_{\mathrm{fm}}:=\mathrm{w}_{\mathrm{ant}}=1 \mathrm{ft}
$$

Height, $\mathrm{h}_{\mathrm{fm}}:=l_{\mathrm{ant}}=6 \mathrm{ft}$
Weight, $\mathrm{W}_{\mathrm{fm}}:=3 \cdot \mathrm{~W}_{\mathrm{ant}}=138 \mathrm{lb}$

Approx. weight of mounting brackets, cable ladders, and cables, $\mathrm{W}_{\text {appurt }}:=3500 \cdot \mathrm{lb}$
Average diameter of stack, $D_{a v e}:=\frac{D_{b o}+D_{\text {to }}}{2}$

$$
\mathrm{D}_{\mathrm{ave}}=8.67 \mathrm{ft}
$$

Wind load on stack, $\quad W L_{\text {chim }}:=H \cdot W L_{\text {stack }} \cdot D_{\text {ave }}$

$$
\mathrm{WL}_{\text {chim }}=18326.75 \mathrm{lb}
$$

Wind load on AT\&T installation, $W L_{\text {esf_12 }}:=\mathrm{h}_{\text {esf_12 }} \cdot \mathrm{W}_{\text {esf_12 }} \cdot \mathrm{WL}_{\text {ant }}$

$$
W L_{\text {esf_12 }}=2852.2 \mathrm{lb}
$$

Wind load on flush-mounted antennas, $\quad W L_{f m}:=2 h_{f m} \cdot W_{f m} \cdot W L_{a n t}$
$W L_{f m}=329.1 \mathrm{lb}$

Client: Centerline Communications c/o AT\&T
Subject: Chimney Analysis, 383 Middle Street, Bristol, CT

Advanced Engineering Group
Sheet: 5
500 North Broadway
East Providence, RI 02914
Ph: 401-354-2403

Centerline height of antenna arrays:

$$
\begin{array}{ll}
h_{1}:=120 \cdot \mathrm{ft} & (6 \text { antennas on catwalk, AT\&T) } \\
h_{2}:=96 \cdot \mathrm{ft} & (3 \text { flush-mounted antennas })
\end{array}
$$

$\begin{aligned} & \text { Approximate moment at } \\ & \text { base level due to wind, }\end{aligned} M_{0}:=\frac{W L_{\text {chim }} \cdot H}{2}+W L_{\text {esf_12 }} \cdot\left(h_{1}\right)+W L_{f m} \cdot\left(h_{2}\right)$

$$
M_{o}=1537.61 \cdot \mathrm{ft} \cdot \mathrm{kip}
$$

Resisting moment due to self-weight of stack and equipment,

$$
\begin{aligned}
& M_{r}:=\left(W_{\text {stack }}+W_{\text {appurt }}+W_{\text {esf_12 }}+W_{\text {fm }}\right) \cdot \frac{D_{\text {bo }}}{2} \\
& M_{r}=4030.06 \cdot \mathrm{ft} \cdot \mathrm{kip}
\end{aligned}
$$

Factor of safety, $\frac{M_{r}}{M_{0}}=2.62>1.5$ O.K.

Check stresses:
Section modulus of base of stack, $\mathrm{S}:=\frac{\pi \cdot \mathrm{D}_{\mathrm{bo}}{ }^{3}}{32}-\frac{\pi \cdot \mathrm{D}_{\mathrm{bi}}{ }^{3}}{32} \quad$ MOI, $\underset{\sim}{\mathrm{I}}:=\frac{\pi \cdot\left(\mathrm{D}_{\mathrm{bo}}{ }^{4}-\mathrm{D}_{\mathrm{bi}}{ }^{4}\right)}{64}$

$$
S=179042.8 \cdot \text { in }^{3} \quad I=14130723.49 \cdot \text { in }^{4}
$$

Area at base of chimney, $\quad A_{b}:=\left(\frac{\pi \cdot D_{b o}{ }^{2}}{4}-\frac{\left.\pi \cdot D_{b i}{ }^{2}\right)}{4}\right)$

$$
A_{b}=56.7 \mathrm{ft}^{2}
$$

Allowable compressive stress, $\quad \mathrm{F}_{\mathrm{a}}:=\left(.2 \cdot \mathrm{f}_{\mathrm{m}}\right)$

$$
F_{a}=480 \cdot p s i
$$

Allowable tensile stress, $F_{t}=7.5 \cdot \mathrm{psi}$
Bending stress, $f_{b}:=\frac{M_{0}}{S}$

$$
f_{b}=103.06 \cdot \mathrm{psi}
$$

Allowable bending stress, $\quad F_{b}:=.33 \cdot \mathrm{f}^{\prime} \cdot \frac{1}{2}$

$$
\mathrm{F}_{\mathrm{b}}=396 \cdot \mathrm{psi}
$$

Client: Centerline Communications c/o AT\&T
Subject: Chimney Analysis, 383 Middle Street, Bristol, CT

$$
\begin{aligned}
& \text { Maximum compressive stress, } f_{a}:=\frac{W_{\text {stack }}+W_{\text {appurt }}+\left(W_{\text {esf_12 }}+W_{f m}\right)}{A_{b}} \\
& f_{a}=85.85 \cdot \mathrm{psi}<F_{a}=480 \cdot \mathrm{psi} \quad \text { О.к. }
\end{aligned}
$$

$$
\text { UnityCheck := } \left\lvert\, \begin{array}{ll}
\text { "OK" } & \text { if } \frac{f_{a}}{F_{a}}+\frac{f_{b}}{F_{b}} \leq 1 \\
\text { "NG" } & \text { otherwise }
\end{array}\right.
$$

UnityCheck = "OK"

Check Catwalk Framing:

Antennnas will be mounted to the top, mid, and bottom rail of the existing catwalk handrail assembly. Attachments will be made using industry-standard rail brackets.

Client: Centerline Communications c/o AT\&T
Subject: Chimney Analysis, 383 Middle Street, Bristol, CT

Advanced Engineering Group
Sheet: 7
500 North Broadway East Providence, RI 02914

Ph: 401-354-2403

Check Rails:

Top rail governs

Moment on top rail,	$\mathrm{M}_{\text {rail }}:=.585 \cdot \mathrm{ft} \cdot \mathrm{kip}$
Allowable moment,	$M_{\text {Mallaws }}=1.176 \cdot \mathrm{ft} \cdot \mathrm{kip}$
MomentCheck:	OK" if $M_{\text {rail }} \leq M_{\text {allow }}$ NG" otherwise

MomentCheck = "OK"

Check Verticals

Height of verticals, $\quad H_{v}:=3 \cdot f t$
Moment on vertical, $M_{\text {vert }}:=.858 \cdot \mathrm{ft} \cdot \mathrm{kip}$
Allowable moment, $\quad M_{\text {allaw }}:=1.27 \cdot \mathrm{ft} \cdot \mathrm{kip}$

MomentCheck: $=\left\lvert\, \begin{array}{ll}\text { "OK" } & \text { if } M_{\text {vert }} \leq M_{\text {allow }} \\ \text { "NG" } & \text { otherwise }\end{array}\right.$

MomentCheck = "OK"
(See attached
Enercalc output)

Conclusion:

Based on the results of the analysis, the existing 127' radial brick masonry smoke stack and steel cat walk assembly located at the above-referenced site is structurally capable of supporting the proposed AT\&T equipment. The analysis was conducted in accordance with the Connecticut State Building Code and ASCE 7-05.

References:

1. Amrhein, J.E. (1978), Reinforced Masonry Engineering Handbook, Masonry Institute of America, Los Angles, CA
2. American Society of Civil Engineers (2005), Minimum Design Loads for Buildings and Other Structures (7-05), American Society of Civil Engineers, New York, NY
3. Connecticut State Building Code, 2005 Edition.

Steel Beam

CODE REFERENCES

Calculations per AISC 360-05, IBC 2006, CBC 2007, ASCE 7-05
Load Combination Set : IBC 2009

Material Properties		
Analysis MethocAllowable Strength Design	Fy: Steel Yield	36.0 ksi
Beam Bracing Completely Unbraced	E: Modulus:	$29,000.0 \mathrm{ksi}$
Bending Axis: Major Axis Bending		

L3x3x1/4

Applied Loads

Beam self weight NOT internally calculated and added Load(s) for Span Number 1

Point Load: W $=0.390$ k @ 1.50 ft , (Pipe Mount)
Point Load: W = 0.390 k @ 3.167 ft , (Pipe Mount)

DESIGN SUMMARY
Maximum Bending Stress Ratio = Section used for this span

Ma : Applied Mn / Omega : Allowable
Load Combination
Location of maximum on span Span \# where maximum occurs
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection

		Design OK
0.497: 1 M	Maximum Shear Stress Ratio =	0.040: 1
L3×3×1/4	Section used for this span	L3x3x1/4
0.585 k -ft	Va: Applied	0.3901 k
1.176 k -ft	Vn/Omega : Allowable	9.701 k
+D+W	Load Combination	+D+W
1.506 ft	Location of maximum on span	3.173 ft
Span \# 1	Span \# where maximum occurs	Span \# 1
0.067 in Ratio $=$	$=838>=360$	
0.000 in Ratio $=$	$=0<360$	
0.067 in Ratio $=$	$=838>=180$	
0.000 in Ratio $=$	$=0<180$	

Maximum Forces \& Stresses for Load Combinations

Project Title: Smoke Stack Platform
Steel Beam File $=x:$ x:ENER~P21ICT34~HXW.EC6 \quad ENERCALC, INC. 1983-2017, Build:6.17.3.17, Ver:6.17.3.17

Lic. \#: KW-06008463 ENERCALC, INC. 1983-2017, Build.6.17.3.17, Ver.6.17.3.17 Licensee : ADVANCED ENGINEERING GROUP, PC
Description : Top Rail

Load Combination Segment Length		Span \#	$\underline{M a x ~ S t r e s s ~ R a t i o s ~}$		Summary of Moment Values						Summary of Shear Values			
		M	V	$\overline{M m a x}+$	Mmax -	Ma Max	Mnx Mn	mega Cb	Rm	Va Max	VnxVnx	ega		
$\begin{gathered} \quad \text { Dsgn. L = } \\ +0.60 D+W \end{gathered}$	4.67 ft		1		0.000				2.05	1.231 .00	1.00	-0.00	16.20	9.70
$\begin{gathered} \text { Dsgn. } \mathrm{L}= \\ +0.60 \mathrm{D}+0.70 \mathrm{E} \end{gathered}$	4.67 ft	1	0.497	0.040	0.58		0.58	1.96	1.181 .12	1.00	0.39	16.20	9.70	
Dsgn. L =	4.67 ft	1		0.000				2.05	1.231 .00	1.00	-0.00	16.20	9.70	

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
W Only	1	0.0668	2.346		0.0000	0.000
Vertical Reactions			Suppor	otation: Far left is \#'	Values in KIPS	
Load Combination	Support 1	Support 2				
Overall MAXimum	0.390	0.390				
Overall MINimum	0.292	0.293				
D Only						
$+\mathrm{D}+\mathrm{L}$						
+D+Lr						
$+\mathrm{D}+\mathrm{S}$						
+D+0.750Lr+0.750L						
+D+0.750L+0.750S						
+D+W	0.390	0.390				
+D+0.70E						
+D+0.750Lr+0.750L+0.750W	0.292	0.293				
+D+0.750L+0.750S+0.750W	0.292	0.293				
+D +0.750Lr+0.750L+0.5250E						
+D+0.750L+0.750S+0.5250E						
$+0.60 \mathrm{D}+\mathrm{W}$	0.390	0.390				
+0.60D+0.70E						
D Only						
Lr Only						
L Only						
S Only						
W Only	0.390	0.390				
E Only						
H Only						

Steel Beam

Description: Handrail Vertical

CODE REFERENCES

Calculations per AISC 360-05, IBC 2006, CBC 2007, ASCE 7-05
Load Combination Set : IBC 2015

Material Properties		
Analysis MethocAllowable Strength Design	Fy: Steel Yield	36.0 ksi
Beam Bracing Completely Unbraced	E: Modulus:	$29,000.0 \mathrm{ksi}$
Bending Axis: Major Axis Bending		

Span $=3.0 \mathrm{ft}$

L3×3x1/4

Applied Loads

Beam self weight NOT internally calculated and added
Load(s) for Span Number 1
Point Load: W $=0.390 \mathrm{k} @ 3.0 \mathrm{ft}$, (Antenna)
Point Load: W $=0.390 \mathrm{k} @ 1.50 \mathrm{ft}$, (Antenna)

DESIGN SUMMARY
Maximum Bending Stress Ratio = Section used for this span

Ma: Applied Mn / Omega : Allowable
Load Combination Location of maximum on span Span \# where maximum occurs
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection

0.858:1 Maxir	Maximum Shear S
L3x $3 \times 1 / 4$	Section use
1.053 k -ft	Va: A
1.227 k -ft	Vn/On
+D+0.60W+H	Load Comb
0.000 ft	Location of
Span \# 1	Span \# wher
0.223 in Ratio $=$	$=323>=240$.
0.000 in Ratio $=$	$=0<240.0$
0.134 in Ratio $=$	$=539>=180$
0.000 in Ratio $=$	$=0<180$

Maximum Forces \& Stresses for Load Combinations

500 North Broadway East Providence, RI 02914
(401) 354-2403

Project Title: Smoke Stack Platform
Steel Beam \quad File $=x$ x:IENER~P211CT34~HXW.EC6

Description: Handrail Vertical

Steel Beam

Description: Pipe Mount

CODE REFERENCES

Calculations per AISC 360-05, IBC 2006, CBC 2007, ASCE 7-05
Load Combination Set : IBC 2009

Material Properties		
Analysis MethocAllowable Strength Design	Fy: Steel Yield	35.0 ksi
Beam Bracing Completely Unbraced	E: Modulus:	$29,000.0 \mathrm{ksi}$
Bending Axis: Major Axis Bending		

Applied Loads Service loads entered. Load Factors will be applied for calculations.

Beam self weight NOT internally calculated and added
Load(s) for Span Number 1
Point Load: W $=0.1350 \mathrm{k} @ 1.750 \mathrm{ft}$, (Antenna)
Point Load: W $=0.050 \mathrm{k} @ 0.0 \mathrm{ft}$, (Surge)
Load(s) for Span Number 4
Point Load: W = $0.130 \mathrm{k} @ 0.750 \mathrm{ft}$, (Antenna)

DESIGN SUMMARY

Maximum Bending Stress Ratio =	0.182:1 M	Maximum Shear Stress Ratio =	0.033:1
Section used for this span	Pipe2 Std	Section used for this span	Pipe2 Std
Ma : Applied	0.226 k-ft	Va : Applied	0.2048 k
Mn / Omega : Allowable	1.245 k -ft	Vn/Omega : Allowable	6.287 k
Load Combination	+D+W	Load Combination	+D+W
Location of maximum on span	2.500 ft	Location of maximum on span	2.500 ft
Span \# where maximum occurs	Span \# 1	Span \# where maximum occurs	Span \# 1
Maximum Deflection			
Max Downward Transient Deflection	0.055 in Ratio $=$	1,089 > = 360	
Max Upward Transient Deflection	-0.002 in Ratio =	$8,229>=360$	
Max Downward Total Deflection	0.055 in Ratio $=$	$1089>=180$	
Max Upward Total Deflection	-0.002 in Ratio $=$	$8229>=180$	

Maximum Forces \& Stresses for Load Combinations

Load Combination		Max Stress Ratios		Summary of Moment Values							Summary of Shear Values		
Segment Length	Span \#	M	V	Mmax +	Mmax -	Ma Max	Mnx Mn	ega	Cb	Rm	Va Max	VnxVnx	ega
D Only													
Dsgn. L = 2.50 ft	1		0.000				2.08	1.25	1.00	1.00	-0.00	10.50	6.29
Dsgn. L = 1.50 ft	2		0.000				2.08	1.25	1.00	1.00	-0.00	10.50	6.29
Dsgn. L = 1.50 ft	3		0.000				2.08	1.25	1.00	1.00	-0.00	10.50	6.29
Dsgn. L = 2.50 ft	4		0.000				2.08	1.25	1.00	1.00	-0.00	10.50	6.29
$+\mathrm{D}+\mathrm{L}$													
Dsgn. L = 2.50 ft	1		0.000				2.08	1.25	1.00	1.00	-0.00	10.50	6.29
Dsgn. L = 1.50 ft	2		0.000				2.08	1.25	1.00	1.00	-0.00	10.50	6.29
Dsgn. L = 1.50 ft	3		0.000				2.08	1.25	1.00	1.00	-0.00	10.50	6.29
Dsgn. L = 2.50 ft	4		0.000				2.08	1.25	1.00	1.00	-0.00	10.50	6.29
+D+Lr													
Dsgn. L = 2.50 ft	1		0.000				2.08	1.25	1.00	1.00	-0.00	10.50	6.29
Dsgn. L = 1.50 ft	2		0.000				2.08	1.25	1.00	1.00	-0.00	10.50	6.29
Dsgn. L = 1.50 ft	3		0.000				2.08	1.25	1.00	1.00	-0.00	10.50	6.29
Dsgn. L = 2.50 ft	4		0.000				2.08	1.25	1.00	1.00	-0.00	10.50	6.29
+D+S													
Dsgn. L = 2.50 ft	1		0.000				2.08	1.25	1.00	1.00	-0.00	10.50	6.29
Dsgn. L = 1.50 ft	2		0.000				2.08	1.25	1.00	1.00	-0.00	10.50	6.29
Dsgn. L = 1.50 ft	3		0.000				2.08	1.25	1.00	1.00	-0.00	10.50	6.29
Dsgn. L = 2.50 ft	4		0.000				2.08	1.25	1.00	1.00	-0.00	10.50	6.29
$+\mathrm{D}+0.750 \mathrm{Lr}+0.750 \mathrm{~L}$													

Steel Beam
Lic. \#: KW-06008463
Description: ${ }^{\text {Pipe Mount }}$

Load Combina	ation		Max Stres	Ratios		Sun	mary of M	ent Value			Summar	of Shea	lues
Segment	Length	Span \#	M	V	$\overline{M m a x+}$	Mmax -	Ma Max	Mnx Mnx	mega	Cb Rm	Va Max	VnxVnx	ega
Dsgn. L =	2.50 ft	1		0.000				2.08	1.25	1.001 .00	-0.00	10.50	6.29
Dsgn. L =	1.50 ft	2		0.000				2.08	1.25	1.001 .00	-0.00	10.50	6.29
Dsgn. L =	1.50 ft	3		0.000				2.08	1.25	1.001 .00	-0.00	10.50	6.29
Dsgn. L =	2.50 ft	4		0.000				2.08	1.25	1.001 .00	-0.00	10.50	6.29
+D+0.750L+0.7	750 S												
Dsgn. L =	2.50 ft	1		0.000				2.08	1.25	1.001 .00	-0.00	10.50	6.29
Dsgn. L =	1.50 ft	2		0.000				2.08	1.25	1.001 .00	-0.00	10.50	6.29
Dsgn. L =	1.50 ft	3		0.000				2.08	1.25	1.001 .00	-0.00	10.50	6.29
Dsgn. L =	2.50 ft	4		0.000				2.08	1.25	1.001 .00	-0.00	10.50	6.29
+D+W													
Dsgn. L =	2.50 ft	1	0.182	0.033		-0.23	0.23	2.08	1.25	1.001 .00	0.20	10.50	6.29
Dsgn. L =	1.50 ft	2	0.182	0.033	0.08	-0.23	0.23	2.08	1.25	2.141 .00	0.20	10.50	6.29
Dsgn. L =	1.50 ft	3	0.078	0.021	0.08	-0.10	0.10	2.08	1.25	2.221 .00	0.13	10.50	6.29
Dsgn. L =	2.50 ft	4	0.078	0.021		-0.10	0.10	2.08	1.25	1.001 .00	0.13	10.50	6.29
+D+0.70E													
Dsgn. L =	2.50 ft	1		0.000				2.08	1.25	1.001 .00	-0.00	10.50	6.29
Dsgn. L =	1.50 ft	2		0.000				2.08	1.25	1.001 .00	-0.00	10.50	6.29
Dsgn. L =	1.50 ft	3		0.000				2.08	1.25	1.001 .00	-0.00	10.50	6.29
Dsgn. L =	2.50 ft	4		0.000				2.08	1.25	1.001 .00	-0.00	10.50	6.29
+D+0.750Lr+0	.750L+0.75	50W											
Dsgn. L =	2.50 ft	1	0.136	0.024		-0.17	0.17	2.08	1.25	1.001 .00	0.15	10.50	6.29
Dsgn. L =	1.50 ft	2	0.136	0.024	0.06	-0.17	0.17	2.08	1.25	2.141 .00	0.15	10.50	6.29
Dsgn. L =	1.50 ft	3	0.059	0.016	0.06	-0.07	0.07	2.08	1.25	2.221 .00	0.10	10.50	6.29
Dsgn. L =	2.50 ft	4	0.059	0.016		-0.07	0.07	2.08	1.25	1.001 .00	0.10	10.50	6.29
+D+0.750L+0.7	$750 \mathrm{~S}+0.7$	OW											
Dsgn. L =	2.50 ft	1	0.136	0.024		-0.17	0.17	2.08	1.25	1.001 .00	0.15	10.50	6.29
Dsgn. L =	1.50 ft	2	0.136	0.024	0.06	-0.17	0.17	2.08	1.25	2.141 .00	0.15	10.50	6.29
Dsgn. L =	1.50 ft	3	0.059	0.016	0.06	-0.07	0.07	2.08	1.25	2.221 .00	0.10	10.50	6.29
Dsgn. L =	2.50 ft	4	0.059	0.016		-0.07	0.07	2.08	1.25	1.001 .00	0.10	10.50	6.29
+D+0.750Lr+0	.750L+0.	250E											
Dsgn. L =	2.50 ft	1		0.000				2.08	1.25	1.001 .00	-0.00	10.50	6.29
Dsgn. L =	1.50 ft	2		0.000				2.08	1.25	1.001 .00	-0.00	10.50	6.29
Dsgn. L =	1.50 ft	3		0.000				2.08	1.25	1.001 .00	-0.00	10.50	6.29
Dsgn. L =	2.50 ft	4		0.000				2.08	1.25	1.001 .00	-0.00	10.50	6.29
+D+0.750L+0.7	750S +0.5	50E											
Dsgn. L =	2.50 ft	1		0.000				2.08	1.25	1.001 .00	-0.00	10.50	6.29
Dsgn. L =	1.50 ft	2		0.000				2.08	1.25	1.001 .00	-0.00	10.50	6.29
Dsgn. L =	1.50 ft	3		0.000				2.08	1.25	1.001 .00	-0.00	10.50	6.29
Dsgn. L =	2.50 ft	4		0.000				2.08	1.25	1.001 .00	-0.00	10.50	6.29
+0.60D+W													
Dsgn. L =	2.50 ft	1	0.182	0.033		-0.23	0.23	2.08	1.25	1.001 .00	0.20	10.50	6.29
Dsgn. L =	1.50 ft	2	0.182	0.033	0.08	-0.23	0.23	2.08	1.25	2.141 .00	0.20	10.50	6.29
Dsgn. L =	1.50 ft	3	0.078	0.021	0.08	-0.10	0.10	2.08	1.25	2.221 .00	0.13	10.50	6.29
Dsgn. L =	2.50 ft	4	0.078	0.021		-0.10	0.10	2.08	1.25	1.001 .00	0.13	10.50	6.29
+0.60D+0.70E													
Dsgn. L =	2.50 ft	1		0.000				2.08	1.25	1.001 .00	-0.00	10.50	6.29
Dsgn. L =	1.50 ft	2		0.000				2.08	1.25	1.001 .00	-0.00	10.50	6.29
Dsgn. L =	1.50 ft	3		0.000				2.08	1.25	1.001 .00	-0.00	10.50	6.29
Dsgn. L =	2.50 ft	4		0.000				2.08	1.25	1.001 .00	-0.00	10.50	6.29

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
W Only	1	0.0551	0.000		0.0000	0.000
	2	0.0000	0.000	W Only	-0.0022	0.550
W Only	3	0.0002	0.250	W Only	-0.0005	1.120
W Only	4	0.0146	2.500		0.0000	1.120
Vertical Reactions			Support notation : Far left is \#'		Values in KIPS	
Load Combination	Support 1	Support 2	Support 3 Su	port 4 Support 5		
Overall MAXimum		0.390	-0.324	0.249		
Overall MINimum		0.292	-0.243	0.187		
D Only						
+D+L						
+D+Lr						
+D+S						
+D+0.750Lr+0.750L						
+D+0.750L+0.750S						
+D+W		0.390	-0.324	0.249		

500 North Broadway
East Providence, RI 02914
(401) 354-2403

Project Title: Smoke Stack Platform
Engineer: MRC
Project Descr:AT\&T NSB

ENGINEERING GROUP, P.C
Title Block Line 6

Steel Beam

Lic. \# : KW-06008463 Licensee : ADVANCED ENGINEERING GROUP, PC
Description : Pipe Mount

 6. THE Contracion shal obian authrazan To procel
 cleary derne
7. THE CONTRACTOR SHALL MSTAL ALL EOUPMENT ANO MITRRLIS

9. THE CONTRACTOR SHML SUPERNSE ANO DRECT THE PROEET

 UPRONEENTS AS SHOWN HREEII

13. THE CONTRACOR SHML KEEP HiH General worn Are clean

4. THE Conrracor Stal courly wit All osta reurement

 8. HHE CONTRACOR IS RESPONSBELE FOR PROMOMG A

9. ALI DMENSONS SHOMN FHUS ARE APRROXMATE

22. AITENA WSTALATOO SHAL BE CONDOCIED PH FELD CREWS

 Splyarion sill ie in iccoronce wir He Mh

 OT THE EOUIFWENT, DRNEWAY OR

30. DURING CONSTRUCTION. PER FCC MANDATE, ENHANCED EMERGENC

 Spectificaions.
2. APPLCABLE BULIDNO COOE

 sulong COOE:
2009 ITIERNATONAL BULDING COOE

SUBCONTRACTOR'S WORK SHALL COMPLY WTH THE LATEST EOTION Of
THE FOLOWING STANDARDS:
AMERICAN CONCRETE INSTIUTE (ACC) 318; BUILDING COOE
REQUREMENS FOR STRUCTUAL CONCRIE;
MERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC)
MANUAL OF STEEL CONSTRUCTION, ASD, NNTH EDTION;
ILELECMMUNICATONS INOUSTRY ASSOCIATON (TAA) 222-G,
STRUCTURAL STANAROS FOR STEL

ELECTRICAL AND GROUNDING NOTES

3. THE ELECTRCCAL WORK INCLDDES ALL LABOR AND MATERAL DESCRIB
 4. GENERAL CONTRACTOR SHAL PAY FEES FOR PERMTS, AND IS
RESPOSSBEE FOR OBTANING SAID PERMTS AND COORONATON OF
5. EEECTRICAL AND TELCO WIRN OUTSID A AULING AND EXPOSED TTO

6. BURED CONDUT SHALL be sCHEDLLE 40 PVC.
7. LLECTRICAL WRING SHALL BE COPPER WTH TPPE XHHW, THWN, OR
8. RUN ELECTRICAL CONDUT OR CABLE BETWEEN ELECTRICAL UTUTM
DEEMACCATON PONT ANO PROUECT OWNER CEL STE PPC AS NODCATED

9. RUN TELCO CONOUT OR CABEE BEEWEEN TELEPHONE UTUUT
 PULL ROPE ANO GREENLEE CONOUIT MEASURING TAPE IN EACH INSTALED
TELCO CONOUIT. 10. WHERE CONOUT BETWEEN BTS AND PROJECT OWNER CELL STIE PPC
ANO
BETWEN BTS ANO PROUECT ONNE CELL SITE TELCO SERNCE

11. all equipment located outside shall have nema br enclosure. 12. PPC SUPPLED BY PROUECT OWNER.

 N OWNER.
15. USE \#6 COPPER STRANDED WIRE WTH GREEN COLOR
INSULATON FOR ABOVE GRADE CROUNOING (UNESSS OTHE
 RRWING.

 Galvanzed Steel. ALLAYS MAKE AT LEAST 12" RADUS BENSS. \#6 WRE CAN LE
 18. CONNECTONS TO GROUNO BARS SHAL BE MADE WIH THN
HOLL COPRESSION TPE COPEER LUSS. APPLY OXIDE INHBTING
COMPOUND TO ALL LOCATONS. 19. BoND ANIENNA MOUNING BRACEETS, COAXAL CABLE GROUND
KIS, ANO ALNA TO EGB PACEE NEAR THE ANIENNA LOCATON. 20. APPYY OXIDE INHIBIING COMPOUND TO ALL COMPRESSION
TPPE GROUND CONNECTONS. 21. CONTRACTOR SHAL PROODE AND INSTAL OMNI DRECTIONAL
EEECTRONC MAREER SYSTEM (EMS) BALS OVER EACH GROUND

 (1)
23.CONRACCOR SHALL CONOUCT ANTENNA, COAX, AND LNA TESTS) AND RECORD RESULIS FOR PROUECT CLOSE OTIT

ABBREVIATIONS

AGL	ABOVE GRADE LEVEL	G.C.	GENERAL CONTRACTOR	RF	RADIO FREQUENCY
AWG	AMERICAN WIRE GAUGE	MGB	MASTER GROUND BUS		
BCW	BARE COPPER WIRE	MIN	MNIMUM	TBD	TO BE DETERMNED
BTS	BASE TRANSCEVER STATION	(P)	PROPOSED/NEW	TBR	TO BE REMOVED
(E)	EXISTING	N.T.S.	NOT TO SCALE	TBRR	TO BE REMOVED
EG	EQUPMENT GROUND	REF	REFERENCE		AND REPACED
EGR	EQUPMPENT GROUND RING	REQ	REQURED	TTPICAL	
(F)	FUTURE				

No.	оитE	Rensows	Br	снк	GENERAL NOTES	
\bigcirc	3/15/17	ISSUED For Revew	M	mec		
$\frac{1}{2}$	04/05/17	Rension	M	MRC		
$\frac{1}{3}$	055/23/17	$\xrightarrow{\text { Revision }}$ Revion	${ }_{\text {M }}$	Mmec		
4	06/02/17	REVISION	M	MRC	SHEET No.	GN-1

CADVANCED ENGINEERING GROUP, P.C. Civil Engineering - Site Development - Surveying - Telecommunication 500 North Broadway Phone: (401) 354-2403 Earth Broadway	CENTERLINE CENTERLINE COMMUNICATIONS 95 RYAN DRIVE, SUITE 1 RAYNHAM, MA 02767	SITE NUMBER: CT3461 SITE NAME: BRISTOL MIDDLE STREET 383 MIDDLE STREET BRISTOL, CT 06010 HARTFORD COUNTY	at\&t 550 COCHITUATE ROAD, SUITE 13, FRAMINGHAM, MA 01701-4681	No.	DITE	Rensions		KEY PLAN	
				\bigcirc	03/15/17	ISSUED FOR REMEW	me mrc		
						$\xrightarrow{\text { Revision }}$ Revision	M ${ }^{\text {Mmec }}$		
					05/23/17	Revsion	M ${ }_{\text {I MRC }}$		
					06/02/17	Revision	M ${ }_{\text {mec }}$	SHEE No.	C-1

(2
A-2
ECALE: $1 / 4^{\circ}=1^{\circ}-0^{*}$

CADVANCED ENGINEERING GROUP, P.C. Civil Engineering - Site Development - Surveying - Telecommunication 500 North Broadway	CENTERLINE CENTERLINE COMMUNICATIONS 95 RYAN DRIVE, SUITE RAYNHAM, MA 02767	SITE NUMBER: CT3461 SITE NAME: BRISTOL MIDDLE STREET 383 MIDDLE STREET BRISTOL, CT 06010 HARTFORD COUNTY	at\&t 550 COCHITUATE ROAD, SUITE 13, FRAMINGHAM, MA 01701-4681	No.	DATE	Rensons		${ }^{\text {or }}$ сонк	ELEVATIONS	
					03/15/17	ISSUED For Renew		M日 Mrc		
					0\%/05/17	$\frac{\text { Revision }}{\text { Revison }}$		MB MRC		
					05/23/17	Revsion		BimmC		
					08/02/17	Revsion		MB. mic	SHEET No.	A-2

RF SYSTEM SCHEDULE \& B.O.M.													
RRH INFORMATION					ANTENNA INFORMATON								
	MAKE	MODEL	$\begin{array}{\|l\|l\|} \hline(p) \\ Q \pi \end{array}$	$\begin{aligned} & (\mathrm{F}) \\ & \mathrm{Q} \overline{\mathrm{~N}} \end{aligned}$	SECTOR	MAKE	model	FEED	AIIMUTH	RAD CTR	FIBER/POWER ENGTH	FEEDERS	MECHANICAL DOWNTILT
	ERCSSON	Revs-11	2	1	a	cc	HPA-65-80U-H8 (F)	вопои	70	${ }^{120 \pm}$	$150 \pm$	Fiber/oc Power	σ
NPHA	$\frac{\text { Rrcsson }}{\text { ERO}}$	Revs-12	2	0	ı	ccl	HPA-655-800-H8 (F)	вотои	70	$120 \pm$	$150 \pm$	FIIER/DC Power	σ
	ERRCSSON	RRUS-22	0	1	"	cal	HPA-658-8UU-H8 (P)	вопти	70	$120 \pm$	$150 \pm$	Fiber/DC Power	σ
					na	cal	HPA-658-80V-H8 (P)	вопои	70	$120 \pm$	$150 \pm$	Fiber/DC Power	σ
	ERrcsson	Revs-11	2	1	18	cal	HPA-658-80U-H8 (F)	вопои	180	$120 \pm$	$150 \pm$	fiber/oc Power	σ
	$\frac{\text { ERCSSOON }}{}$	${ }_{\text {RuNS }-12}^{\text {Rus-32 }}$	2	1	"1	cal	HPA-658-80U-H8 (F)	вопои	180	$120 \pm$	150	Fiber/oc Power	σ
Eta	ERCCSSON	Rrus-22	0	1	" ${ }^{\text {B }}$	cal	HPA-65R-8UU-H8 (P)	вопом	180	120	$150 \pm$	Fiber/DC Power	\bigcirc
					wB	cal	HPA-658-8UU-H8 (P)	вотои	180	$120 \pm$	$150 \pm$	Fiber/oc Power	0
	ERCCSSON	RevS-11	2	1	c	cal	HPA-658-80U-H8 (F)	вопои	310	$120 \pm$	$150 \pm$	Fiber/oc Power	0
	${ }_{\text {Recmson }}$	RRUS 12	2	0	"19	cal	HPA-658-80-H8 (F)	вопои	310	${ }^{120 \pm}$	$150 \pm$	FIIER/DC Power	0
самм	ERRCSSSNON	${ }_{\text {RNUS }-22}$	1	1	${ }^{\text {IIIC }}$	cc 1	HPA-658-80U-H8 (P)	вотои	310	$120 \pm$	150土	Fiber/DC Power	\bigcirc
					nc	cal	HPA-658-80V-H8 (P)	вопои	310	$120 \pm$	$150 \pm$	filer/DC Power	σ

* CONTRACTOR TO VERIFY FINAL RFDS AND CABLE LENGTHS PRIOR TO CONSTRUCTION

CADVANCED ENGINEERING GROUP, P.C Civil Engineering - Site Development - Surveying - Telecommunication 00 North Broadway Phone: (401) 354-2403 Earn Broadway	CENTERLINE CENTERLINE COMMUNICATIONS 95 RYAN DRIVE, SUITE 1 RAYNHAM, MA 02767	SITE NUMBER: CT3461 SITE NAME: BRISTOL MIDDLE STREET 383 MIDDLE STREET BRISTOL, CT 06010 HARTFORD COUNTY	at\&t 550 COCHITUATE ROAD, SUITE 13, FRAMINGHAM, MA 01701-4681	No.	оппE	Rensiows		снкк	RF SYSTEM SCHEDULE \& B.O.M.	
				0	03/15/17	ISSUED FOR RENEW	${ }^{\text {MB }}$	${ }_{\text {mec }}$		
					-04/059/17	${ }_{\text {Revision }}^{\text {Resison }}$	${ }_{\text {MB }}^{\text {M }}$	Mrc		
					05/23/17	Revision		Mec		
					060/02/17	Revion	м	wre	SHEET No.	A-6

