

PROJECT NARRATIVE

TOTALLY COMMITTED.

November 4, 2021

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Request of DISH Wireless LLC for an Order to Approve the Shared Use of an Existing Tower 111 Second Hill Road Bridgewater, CT 06752 Latitude: 41'33'17.924" / Longitude: -73'22'15.284"

Dear Ms. Bachman:

Pursuant to Connecticut General Statutes ("C.G.S.") §16-50aa, as amended, DISH Wireless LLC ("DISH") hereby requests an order from the Connecticut Siting Council ("Council") to approve the shared use by DISH of an existing telecommunication tower at 111 Second Hill Road in Bridgewater (the "Property"). The existing 160-foot monopole tower is owned by American Tower Corporation ("ATC"). The underlying property is owned by Robert J Riebe. DISH requests that the Council find that the proposed shared use of the ATC tower satisfies the criteria of C.G.S. §16-50aa and issue an order approving the proposed shared use. A copy of this filing is being sent to Curtis Read, First Selectman for the Town of Bridgewater, Joseph Manley, Town of Bridgewater Building Official and Robert J Riebe as the property owner.

Background

The existing ATC facility consists of a 160-foot monopole tower located within an existing leased area. AT&T Mobility currently maintains antennas at the 156-foot level. Equipment associated with these antennas are located at various positions within the tower and compound.

DISH is licensed by the Federal Communications Commission ("FCC") to provide wireless services throughout the State of Connecticut. DISH and Crown Castle have agreed to the proposed shared use of the 111 Second Hill Road tower pursuant to mutually acceptable terms and conditions. Likewise, DISH and ATC have agreed to the proposed installation of equipment cabinets on the ground on the south side of the tower within the existing compound. ATC has authorized DISH to apply for all necessary permits and approvals that may be required to share the existing tower. (See attached Letter of Authorization)

TOTALLY COMMITTED.

DISH proposes to install three (3) antennas, (1) Tower platform mount, (6) Remote radio units at the 145-foot level along with, (1) over voltage protection device (OVP) and (1) Hybrid cable. DISH will install an equipment cabinet on a 5'x7' equipment platform. DISH's Construction Drawings provide project specifications for all proposed site improvement locations.

The construction drawings also include specifications for DISH's proposed antenna and groundwork.

- C.G.S. § 16-50aa(c)(1) provides that, upon written request for approval of a proposed shared use, "if the Council finds that the proposed shared use of the facility is technically, legally, environmentally and economically feasible and meets public safety concerns, the council shall issue an order approving such a shared use." DISH respectfully submits that the shared use of the tower satisfies these criteria.
- **A. Technical Feasibility.** The existing ATC tower is structurally capable of supporting DISH's proposed improvements. The proposed shared use of this tower is, therefore, technically feasible. A Feasibility Structural Analysis Report ("Structural Report") prepared for this project confirms that this tower can support DISH's proposed loading. A copy of the Structural Report has been included in this application.
- **B.** Legal Feasibility. Under C.G.S. § 16-50aa, the Council has been authorized to issue order approving the shared use of an existing tower such as the ATC tower. This authority complements the Council's prior-existing authority under C.G.S. § 16-50p to issue orders approving the construction of new towers that are subject to the Council's jurisdiction. In addition, § 16-50x(a) directs the Council to "give such consideration to the other state laws and municipal regulations as it shall deem appropriate" in ruling on requests for the shared use of existing tower facilities. Under the statutory authority vested in the Council, an order by the Council approving the requested shared use would permit the Applicant to obtain a building permit for the proposed installations.
- **C. Environmental Feasibility**. The proposed shared use of the ATC tower would have a minimal environmental effect for the following reasons:
 - 1. The proposed installation will have no visual impact on the area of the tower. DISH's equipment cabinet would be installed within the existing facility compound. DISH's shared use of this tower therefore will not cause any significant change or alteration in the physical or environmental characteristics of the existing site.
 - 2. Operation of DISH's antennas at this site would not exceed the RF emissions standard adopted by the Federal Communications Commission ("FCC"). Included in the EME report of this filing are the approximation tables that demonstrate that DISH's proposed facility will operate well within the FCC RF emissions safety standards.
 - 3. Under ordinary operating conditions, the proposed installation would not require the use of any water or sanitary facilities and would not generate air emissions or discharges to water bodies or sanitary facilities. After construction is complete the proposed installations would not generate any increased traffic to the ATC facility other than periodic maintenance. The proposed shared use of the ATC tower, would, therefore, have a minimal environmental effect, and is environmentally feasible.

TOTALLY COMMITTED.

- D. **Economic Feasibility**. As previously mentioned, DISH has entered into an agreement with ATC for the shared use of the existing facility subject to mutually agreeable terms. The proposed tower sharing is, therefore, economically feasible.
- E. **Public Safety Concerns**. As discussed above, the tower is structurally capable of supporting DISH's full array of three (3) antennas, (1) Tower platform mount, (6) Remote radio units, (1) over voltage protection device (OVP) and (1) Hybrid cable and all related equipment. DISH is not aware of any public safety concerns relative to the proposed sharing of the existing ATC tower.

Conclusion

For the reasons discussed above, the proposed shared use of the existing ATC tower at 111 Second Hill Road satisfies the criteria stated in C.G.S. §16-50aa and advances the Council's goal of preventing the unnecessary proliferation of towers in Connecticut. The Applicant, therefore, respectfully requests that the Council issue an order approving the prosed shared use.

Sincerely,

David Hoogasian

David Hoogasian Project Manager

LETTER OF AUTHORIZATION

LETTER OF AUTHORIZATION LICENSEE: DISH WIRELESS L.L.C.

I, Margaret Robinson, Senior Counsel for American Tower*, owner/operator of the tower facility located at the address identified above (the "Tower Facility"), do hereby authorize DISH WIRELESS L.L.C., its successors and assigns, and/or its agent, (collectively, the "Licensee") to act as American Tower's non-exclusive agent for the sole purpose of filing and consummating any land-use or building permit application(s) as may be required by the applicable permitting authorities for Licensee's telecommunications' installation.

We understand that this application may be denied, modified or approved with conditions. The above authorization is limited to the acceptance by Licensee only of conditions related to Licensee's installation and any such conditions of approval or modifications will be Licensee's sole responsibility.

*American Tower includes all affiliates and subsidiaries of American Tower Corporation.

Project #	Project # ATC Site # ATC Site Name		ATC Site Address
13688133	208450	Enfield	1A Ecology Drive, Enfield CT
13700322	13700322 209115 Ridgefield 2		320 Old Stagecoach Road, Ridgefield, CT
13688136	209185	Burlington 2	87 Monce Road, Burlington CT
13700320	209271	Brookfield 2	100 Pocono Road, Brookfield CT
13693702	243036	WEST HAVEN & RT 162 CT	668 Jones Hill Road, West Haven CT
13693677	280501	ROXBURY CT	377 Southbury Road, Roxbury CT
13685406	281416	WILLINGTON CT	196 Tolland Turnpike, Willington CT
13709418	281862	BRIDGEWATER CT	111 SECOND HILL RD, Bridgewater CT
13693659	283418	NORTH HAVEN CT	50 Devine Street, North Haven CT
13694329	283419	PINE ORCHARD BRANFORD CT	123 Pine Orchard Road, Branford CT
13694332	283422	SHORT BEACH BRANFORD CT	171 Short Beach Road, Branford CT
13698427	283423	NAUGATUCK CT	880 Andrew Mountain Road, Naugatuck CT
13685464	283563	MANSFIELD CT	343 Daleville Road, Willington CT
13692735	284983	OLD LYME CT	61-1 Buttonball Road, Old Lyme CT
13693120	284984	PAWCATUCK CT	166 Pawcatuck Ave, Pawcatuck CT
13693144	284988	GUILFORD CT	Moose Hill Road, Guilford CT
13694582	302465	Colchester CT 6	355 Route 85, Colchester CT
13683501	302468	Petro Lock	99 Meadow St, Hartford CT
13685427	302469	Bridgeport CT 2	1069 Connecticut Avenue, Bridgeport CT
13683503	302472	Andover-bunker Hill Road	104 Bunker Hill Road, Andover CT
13683507	302473	E H F R - Prestige Park	310 Prestige Park Road, East Hartford CT

Project#	ATC Site #	ATC Site Name	ATC Site Address	
13683510	302474	South Windsor	391 Niederwerfer Road, South Windsor CT	
13683513	302483	Brln - Berlin	286 Beckley Road, Berlin CT	
13692185	302488	Cntn - Canton	4 Hoffmann Road, Canton CT	
13692173	302495	Tolland CT	56 Ruops Road, Tolland CT	
13694579	302496	Clch - Colchester	Chestnut Hill Road, Colchester CT	
13701212	302501	Plymouth CT 3	297 North Street, Plymouth CT	
13685414	302515	SMFR - North	5 High Ridge Park Road, Stamford CT	
13702496	302516	Mlfd - Milford	438 Bridgeport Ave, Milford CT	
13688395	302518	Newtown CT 3	25 Meridian Ridge Drive, Newton CT	
13692174	302529	Vernon CT 6	777 Talcotville Road, Vernon Rockville CT	
13693124	311014	NORWICH CT	202 N Wawecus Hill Rd, Norwich CT	
13702522	311305	GLFD-GUILFORD REBUILD CT	10 Tanner Marsh Road, Guilford CT	
13693127	370623	MONTVILLE CT	139 Sharp Hill Road, Uncasville CT	
13681964	370625	Old Saybrook	77 Springbrook Road, Old Saybrook CT	
13702535	383660	North Madison Volunteer FD	864 Opening Hill Road, Madison CT	
13702538	411180	Good Hill CT	481 GOOD HILL ROAD, Woodbury CT	
13693709	411182	Nepaug CT	20 Antolini Road, New Hartford CT	
13693131	411183	WATERFORD CT	53 Dayton Rd., Waterford CT	
13693135	411184	SALEM CT SQA	399 West Road, Salem CT	
13692177	411186	West Granby, CT CT	207 West Granby Road, Granby CT	
13692178	411187	Hartford North 2 CT	811 Blue Hills Avenue, Bloomfield CT	
13693705	411188	Southbury CT	111 Upper Fishrock Road, Southbury CT	
13692179	411256	CANTON CT	14 CANTON SPRINGS ROAD, Canton CT	
13681988	411257	Middle Haddam Road-CROWN CT	191 Middle Haddam Rd, Portland CT	
13692180	411258	Farmington North 2 CT	199 Town Farm Road, Farmington CT	
13692182	411259	CT Collinsville CAC 802816 CT	650 Albany Turnpike, Collinsville CT	
13692184	416862	SUFFIELD SW CT CT	106 South Grand St., West Suffield CT	
13694578	6260	NORTH STONINGTON CT	118C Wintechog Hill Rd., off of Rt. 2, North Stonington CT	
13681397	88013	Killingworth	131 Little City Road, Killingworth CT	

Signature:

Print Name: Margaret Robinson

Senior Counsel American Tower*

LETTER OF AUTHORIZATION LICENSEE: DISH WIRELESS L.L.C.

NOTARY BLOCK

Commonwealth of MASSACHUSETTS County of Middlesex

This instrument was acknowledged before me by Margaret Robinson, Senior Counsel for American Tower*, personally known to me (or proved to me on the basis of satisfactory evidence) to be the person whose name is subscribed to the within instrument and acknowledged to me that he executed the same.

WITNESS my hand and official seal, this 10th day of September 2021.

MELISSA ANN METZLER

Notary Public
Commonwealth of Massachusetts
My Commission Expires March 14, 2025

NOTARY SEAL

Notary Public

My Commission Expires: March 14, 2025

dESh wireless...

DISH WIRELESS, L.L.C. SITE ID:

BOHVN00200A

DISH WIRELESS, L.L.C. SITE ADDRESS:

111 SECOND HILL RD **BRIDGEWATER, CT 06752**

CONNECTICUT CODE COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES, NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:

CODE TYPE BUILDING

2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS MECHANICAL

	SHEET INDEX				
SHEET NO.	SHEET TITLE				
T-1	TITLE SHEET				
A-0	SURVEY				
A-1	OVERALL AND ENLARGED SITE PLAN				
A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE				
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS				
A-4	EQUIPMENT DETAILS				
A-5	EQUIPMENT DETAILS				
A-6	EQUIPMENT DETAILS				
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES				
E-2	ELECTRICAL DETAILS				
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE				
0.1					
G-1	GROUNDING PLANS AND NOTES				
G-2	GROUNDING DETAILS				
G-3	G-3 GROUNDING DETAILS				
RF-1	RF CABLE COLOR CODE				
RF-2	RF PLUMBING DIAGRAM				
GN-1	LEGEND AND ABBREVIATIONS				
GN-2	GENERAL NOTES				
GN-3	GENERAL NOTES				
GN-4	GENERAL NOTES				

SCOPE OF WORK

THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIVALENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:

- INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR)
- INSTALL (1) PROPOSED ANTENNA PLATFORM MOUNT
- INSTALL PROPOSED JUMPERS
- INSTALL (6) PROPOSED RRHs (2 PER SECTOR)
 INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP)

- GROUND SCOPE OF WORK:
 INSTALL (1) PROPOSED METAL PLATFORM
- INSTALL
- (1) PROPOSED ICE BRIDGE (1) PROPOSED PPC CABINET INSTALL
- PROPOSED EQUIPMENT CABINET
- INSTALL (1) PROPOSED POWER CONDUIT
- INSTALL (1) PROPOSED TELCO CONDUIT
- INSTALL 1) PROPOSED TELCO-FIBER BOX
- INSTALL (1) PROPOSED GPS UNIT
- PROPOSED SAFETY SWITCH (IF REQUIRED)
- INSTALL (1) PROPOSED CIENA BOX (IF REQUIRED)

SITE PHOTO

UNDERGROUND SERVICE ALERT CBYD 811 UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455 WWW.CBYD.COM

CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTIO

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION, A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL STANKET OF PROPERTY.

THE PROJECT DEPICTED IN THESE PLANS QUALIFIES AS AN ELIGIBLE FACILITIES REQUEST ENTITLED TO EXPEDITED REVIEW UNDER 47 U.S.C. § 1455(A) AS A MODIFICATION OF AN EXISTING WIRELESS TOWER THAT INVOLVES THE COLLOCATION, REMOVAL, AND/OR REPLACEMENT OF TRANSMISSION EQUIPMENT THAT IS NOT A SUBSTANTIAL CHANGE UNDER CFR § 1.61000 (B)(7).

11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

TOWER TYPE: MONOPOLE TOWER OWNER: AMERICAN TOWER TOWER CO SITE ID: 281862 10 PRESIDENTIAL WAY WOBURN, MA 01801 TOWER APP NUMBER: 13709418 NB+C ENGINEERING SERVICES, LLC. COUNTY: LITCHFIELD ENGINEER: 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 LATITUDE (NAD 83): 41' 33' 17 924" N 41.55497878 (919) 657-9131 LONGITUDE (NAD 83): 73' 22' 15.284" W -73 37091232 ZONING JURISDICTION: CONNECTICUT SITING COUNCIL SITE ACQUISITION: APRIL PARROTT APRIL,PARROTT@DISH.COM ZONING DISTRICT: RR3 CONSTRUCTION MANAGER; JAVIER SOTO PARCEL NUMBER: 28-50 JAVIER SOTO@DISH.COM RF ENGINEER: OCCUPANCY GROUP: SYED ZAIDI SYED.ZAIDI@DISH.COM CONSTRUCTION TYPE:

PROJECT DIRECTORY

DISH WIRELESS, L.L.C.

LITTLETON, CO 80120 (303) 706-5008

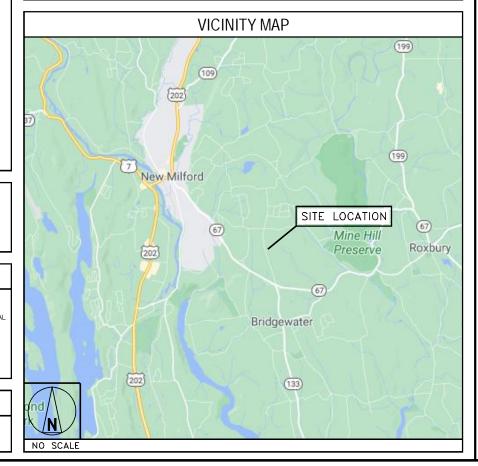
5701 SOUTH SANTA FE DRIVE

SITE INFORMATION

TELEPHONE COMPANY: FRONTIER COMMUNICATIONS

ROBERT J RIEBE

111 SECOND HILL RD


BRIDGEWATER, CT 06752

PROPERTY OWNER:

ADDRESS:

DIRECTIONS

FROM DANBURY CT START OUT GOING NORTHEAST ON FEDERAL RD TOWARD SWANSON AVE. TAKE THE 2ND RIGHT ONTO WHITE TURKEY RD. MERGE ONTO US-7 N. TURN RIGHT ONTO STILL RIVER DR. STILL RIVER DR BECOMES GROVE ST. TURN RIGHT ONTO HINE HILL RD. HILC RD. BECOMES TOWN FARM RD. TURN RIGHT ONTO OASCADE RD. TURN SHARP RIGHT ONTO BRIDGEWATER RD/CT-67. CONTINUE TO FOLLOW CT-67. TURN LEFT ONTO SECOND HILL RD. 157 SECOND HILL RD. BRIDGEWATER, CT 06752-1030, 157 SECOND HILL RD IS

5701 SOUTH SANTA FE DRIVE

NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540

П	DRAWN BY:	CHECKED BY	: APPROVED BY:
	NOA	BIW	BIW
ш			•

RFDS REV #:

PRELIMINARY **DOCUMENTS**

	SUBMITTALS					
REV	DATE	DATE DESCRIPTION				
Α	08/27/2021	ISSUED FOR REVIEW				
0	08/31/2021	ISSUED FOR CONSTRUCTION				

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTIO OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

A&E PROJECT NUMBER

281862-13709418

DISH WIRELESS, L.L.C. PROJECT INFORMATION

BOHVN00200A 111 SECOND HILL RD BRIDGEWATER, CT 06752

SHEET TITLE

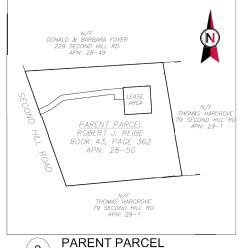
TITLE SHEET

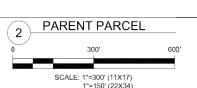
SHEET NUMBER

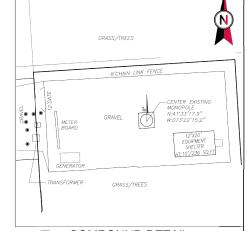
T-1

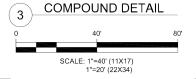
NOTES

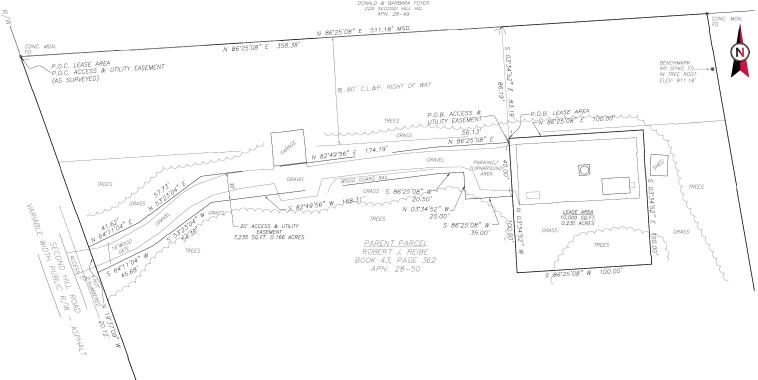
1. THE SURVEY PROVIDED ON THIS SHEET IS PROVIDED FOR REFERENCE ONLY, THE UTILITY ROUTE AND EXISTING EASEMENTS MUST BE VERIFIED PRIOR TO CONSTRUCTION.


PROJECT SUMMARY SURVEYOR'S NOTES PARCEL INFORMATION OWNER: ROBERT J. RIEBE TOTAL AREAS: PARENT PARCEL: 4 5± ACRES (PER TAX RECORDS) LEASE AREA: 10,000 SQ.FT. 0.230± ACRES EASPMENT 7.235 SQ.FT. 0.166± ACRES AT THE TIME OF THIS SURVEY, THERE WAS NO OBSERVABLE EVIDENCE OF THE SUBJEC PROPERTY BEING USED AS A SOLID WASTE DUMP, SUMP OR SANITARY LANDFILL. AT THE TIME OF THIS SURVEY, THERE WAS NO OBSERVABLE EVIDENCE OF ANY RECEN-CHANGES IN STREET RIGHT-OF-WAY LINES EITHER COMPLETED OR PROPOSED, AND AVAILABLE FROM THE CONTROLLING JURISDICTION. AT THE TIME OF THIS SURVEY, THERE WAS NO OBSERVABLE EVIDENCE OF ANY RECENT STREET OR SIDEWALK CONSTRUCTION OR REPAIRS. FLOODPLAIN: PER THE FEMA FLOODPLAIN MAPS, THE BITE IS LOCATED IN AN AREA DESIG 7. THIS SURVEY WAS PREPARED TO SHOW THE INTERESTS OF AMERICAN TOWER CORPORATION AND IMPROVEMENTS PROXIMAL TO SAID INTERESTS. IT DOES NOT CONSTITUTE AN ALTA SURVEY OF THE ENTIRE PARENT PARCEL. ENCROACHMENT STATEMENT: NO OBSERVABLE ENCROACHMENTS AT THE TIME OF SURVEY 0. ALL CALLS ARE MEASURED UNLESS OTHERWISE NOTED. UNLESS OTHERWSE SPECIFIED, UTILITY POLES DID NOT IDENTIFY OWNERSHIP OP OF TOWER HEIGHT ABOVE GROUND: 160' (AGL) LEVATION OF TOP OF TOWER: 1067.8' (AMSL) NAVD 1988 IGHT OF ANTENNA ABOVE TOWER TOP: 163' EVATION OF TOP OF HIGHEST APPURTENANCE: 1070.8' (AMSL) NAVD 1988 ERTIFY THAT THE GEODETIC COORDINATES SHOWN HEREIN ME ACCURATE TO THAT HAVE SOFTED HOROCONTIAL VIA BRIEFE EXPANDING SHOWN HEREIN AS ACCURATE TO THAT HAVE SOFTED THE ACCURATE A ZONING INFORMATION LEGAL DESCRIPTION CORE REPORT LEGAL DESCRIPTION (PARENT PARCEL): First Blees. Commencing at a point marked by an iron pipe on the Easterly side of Second Hill Road, as-called, which point is the Southwesterly comer of the premises believe the described and the Northwesterly comer of premises now or formerly of Andro Vonderweld, and running there along said Second Hill Road, North 071 037 West a distance of 128 Sec feet to a point marked by an iron pipe is at the Southwesterly comer of premises formerly of Konneth M. and Marke Events of the International Section 2 point marked by an iron pipe is the Southwesterly of Market Section 2 point marked by an iron pipe inching thereos South 1* 42 307 West still along land formerly of Seal Kubbiseks a distance of 481.21 Section 1 pipe read an eligible inching thereos South 1* 42 307 West still along land formerly of Andre Vonderweidt a distance of 432.12 feet to an iron pipe which is the point and place of beginning. Dounded: aid premises contain 3.23 acres and are shown on the certain map entitled; "Property to be Conveyed to Joseph and Louise Poletto by Emily and Lester Whitney, idgewater (sic), Connecticut, Scale 1° = 40°, December 1962, Certified 'Substantially Correct' K. W. Rogers, Surveyor'. acond piece: Beginning at a point on the Easterly side of said highway marked by an iron pipe, which point is the Northwesterly corner of the First Piece above described nining thereo along the Easterly side of said highway in a Northerly direction to a point on said highway, which is the Southwesterly corner of fair of Lowenthal, running ance in a generally Easterly direction along the Southwyl line of land of said Lowenthal a cistance of 455 feet to the point, which point is the northwesterly corner of the immess herein conveyer, curning them is a straight line in a specially Southerly direction along line of Andre H. and Maintene Voordewed in on pipe, which make in the straight line in a straight line in a generally Southerly direction along line of Andre H. and Maintene Voordewed in on pipe, which make 15 and 15 are to the point of place of beginning the straight line of the First Piece above described. Anning themse North 811 to 30' West along the Northerly boundary line of the First Piece above described. his being the same property conveyed to Robert J. Riebe from Joseph Poletto, in a deed dated December 01, 1995 and Recorded December 04, 1995 in Book 43 Page arcel ID: 28 50 LEASE AREA - AS SURVEYED: OMMENCING AT A CONCRETE MONUMENT FOUND IN THE EASTERLY LINE OF SECOND HILL ROAD FOR THE NORTHWEST CORNER OF THE AFORESAID OBERT J. REIBE TRACT: ENCE LEAVING SECOND HILL ROAD AND ALONG THE NORTHERLY LINE OF SAID REIBE TRACT, NORTH 86°25'08° EAST, A DISTANCE OF 358.38 FEET HENCE CROSSING SAID REIBE TRACT, SOUTH 03°34'52" EAST, A DISTANCE OF 83.19 FEET TO THE POINT OF BEGINNING OF THE HEREIN DESCRIBED VING AN AREA OF 10,000 SQUARE FEET (0.230 ACRES) OF LAND, MORE OR LESS. ACCESS & UTILITY EASEMENT - AS SURVEYED: ITUATED IN THE CITY OF BRIDGEWATER, COUNTY OF LITCHFIELD AND STATE OF CONNECTICUT, LYING WITHIN A TRACT OF LAND CONVEYED TO OBERT J. REIBE IN BOOK 43, PAGE 362, DEED RECORDS OF LITCHFIELD COUNTY AND BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS: OMMENCING AT A CONCRETE MONUMENT FOUND IN THE EASTERLY LINE OF SECOND HILL ROAD FOR THE NORTHWEST CORNER OF THE AFORESAID OBERT J. REIBE TRACT; HENCE LEAVING SECOND HILL ROAD AND ALONG THE NORTHERLY LINE OF SAID REIBE TRACT, NORTH 86°25'08" EAST, A DISTANCE OF 358.38 FEET; HENCE CROSSING SAID REIBE TRACT. SOUTH 03*34'52" EAST, A DISTANCE OF 86.19 FEET TO THE POINT OF BEGINNING OF THE HEREIN DESCRIBED NOTES CORRESPONDING TO SCORE REPORT


THE SCORE REPORT ISSUED BY LINEAR TITLE & CLOSING, FILE NO. ATC-471727-PR, DATED THROUGH NOVEMBER 4, 2015 CONTAINS THE FOLLOWING URIVEY RELATED ITEMS.


2. ELECTRIC DISTRIBUTION EASEMENT BETWEEN ROBERT J. RIEBE AND NEW CINCULAR WIRELESS PCS, LLC, A DELAWARE LIMITED LIABILITY COMPANY JATED JUNE 27, 2014 RECORDED JULY 09, 2014 IN BOOK 83 PAGE 374, IN LITCHHEID COUNTY, CONNECTICUT. SPECTS LEASE ARCH, NOT PROTRAILE, REFERENCED PLAN NOT REVOIDED.


3. TELEPHONE DISTRIBUTION EASEMENT BETWEEN ROBERT J. RIEBE AND NEW CINGULAR WIRELESS PCS, LLC, A DELAWARE LIMITED LIABILITY ZOMPANY AND THE SOUTHERN NEW ENGLAND TELEPHONE COMPANY DIBIA AT AT CONNECTICUT, A CORPORATION, DATED JUNE 27, 2014 RECC JULY 92, 2014 IN BOOK 89 PAGE 818, IN LITCHFIELD COUNTY, CONNECTICUTY AFFECTS LEASE AREA - NOT PLOTTABLE, REFERENCED PLAN NOT PROVIDED



SURVEY PLAN

SCALE: 1"=60' (11X17)

1"=30' (22X34)

4

P.O.B. - POINT OF BEGINNING P.O.C. - POINT OF COMMENCEMENT

_____ EXISTING OVERHEAD WIRE

EXISTING UTILITY POLE

C)

EXISTING ROAD (DIRT)

EXISTING ROAD (STONE)

EXISTING CONCRETE

AMERICAN TOWER® ATC TOWER SERVICES, INC.

3500 REGENCY PARKWAY SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112 FAX: (919) 466-5415

THESE DRAWNINGS AND/OR THE ACCOMPANYING SPECIFICATION AS INSTRUMENTS OR SERVICE ARE THE EXCLUSIVE PROPERTY OF SERVICE ARE THE EXCLUSIVE PROPERTY OF SERVICE ARE THE USE AND FOUND AS A SERVICE OF THE THE AS A SERVICE OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE THEM THAT WHICH RELATES TO AMERICAN TOWER OR THE SPECIFIED CARRIER IS STRICTLY PROHIBITED THE OF THESE DOCUMENTS SHALL REAMS THE PROPERTY OF AMERICAN TOWER WHETHER OR NOT THE PROJECT IS EXECUTED. NETHER THE ACRITICATION REVIEW OF THIS PROJECT CONTRACTORS WINDST VERY DISCREPANCIES. ANY PRIOR ISSUANCE OF THIS DROWNING ISSUANCE OF THIS PROJECT.

ı	REV.	DESCRIPTION	BY	DATE
ı	<u></u>	PRELIM	LKC	12/8/15
ı	1	GENERAL COMMENTS	LKC	12/14/1
ı	-			

ATC SITE NUMBER:

281862

BRIDGEWATER CT

SITE ADDRESS: 111 SECOND HILL RD. BRIDGEWATER, CT 06752

THIS IS TO CERTIFY THAT THE UNDERSIGNED AT THE REQUEST AND FOR THE EXCLUSIVE USE OF AMERICAN TOWER CORPORATION AND LINEAR TITLE & CLOSING HAS PERFORMED THIS AS-BUILT SURVEY OF THE LEASE AREA ONLY. FROM THE RECORD SOURCES AND ACTUAL FIELD SURVEY ON NOVEMBER 23, 2015 IN ACCORDANCE WITH THE MINIMUM STANDARDS FOR PROPERTY BOUNDARY SURVEYS. ALL LINEAR AND ANGULAR VALUES SHOWN ARE BASED UPON DEED OR RECORD INFORMATION UNLESS OTHERWISE NOTED.

DATE OF PLAT OR MAP: 12/7/2015

TIMOTHY R. DURR
PLS: 70198
IN THE STATE OF CONNECTICUT

REVISION

1

— LMS SURVEYING LTD —

P.O. Box 65 Sharon Center, OH 44274 Phone: 330-329-6812 / Fax: 330-239-1529

 DRAWN BY:
 LKC

 APPROVED BY:
 TRD

 DATE DRAWN:
 12/8/2015

 JOB NO:
 B-150702

AS-BUILT SURVEY

SHEET NUMBER:

Know what's below

Call before you dig.

desh wireless.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540

RALEIGH, NC 27615 (919) 657-9131

DRAWN BY:	CHECKED E	BY: APPROVED BY:
NOA	BIW	BIW

RFDS REV #:

PRELIMINARY DOCUMENTS

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTIO OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

A&E PROJECT NUMBER

281862-13709418

DISH WIRELESS, L.L.C.
PROJECT INFORMATION
BOHVN00200A
111 SECOND HILL RD

BRIDGEWATER, CT 06752

SHEET TITLE

SURVEY

SHEET NUMBER

A-0

NOTES

- CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS
- ANTENNAS AND MOUNTS OMITTED FOR CLARITY.

EXISTING EQUIPMENT SHELTER (12'-0" x 20'-0")

SEE ENLARGED SITE PLAN

NOTES

- CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS.
- CONTRACTOR SHALL MAINTAIN A 10'-0" MINIMUM SEPARATION BETWEEN THE PROPOSED GPS UNIT, TRANSMITTING ANTENNAS AND EXISTING GPS UNITS.
- 3, ANTENNAS AND MOUNTS OMITTED FOR CLARITY.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
NOA		BIW		BIW	

RFDS REV #:

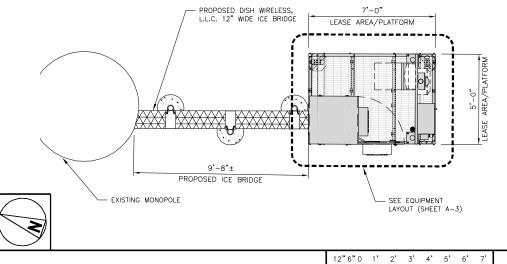
PRELIMINARY DOCUMENTS

	SUBMITTALS				
REV	DATE DESCRIPTION				
Α	08/27/2021	ISSUED FOR REVIEW			
0	08/31/2021	ISSUED FOR CONSTRUCTION			

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER. TO ALTER THIS DOCUMENT.

A&E PROJECT NUMBER

281862-13709418

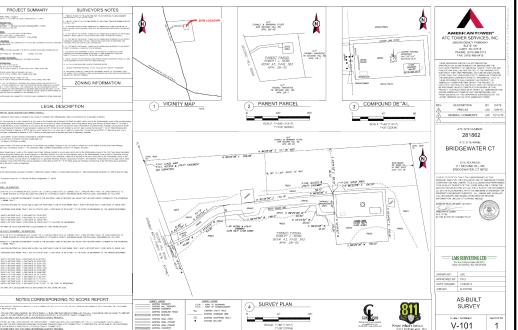

DISH WIRELESS, L.L.C. PROJECT INFORMATION BOHVN00200A

111 SECOND HILL RD BRIDGEWATER, CT 06752

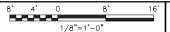
SHEET TITLE

OVERALL AND ENLARGED SITE PLAN

SHEET NUMBER

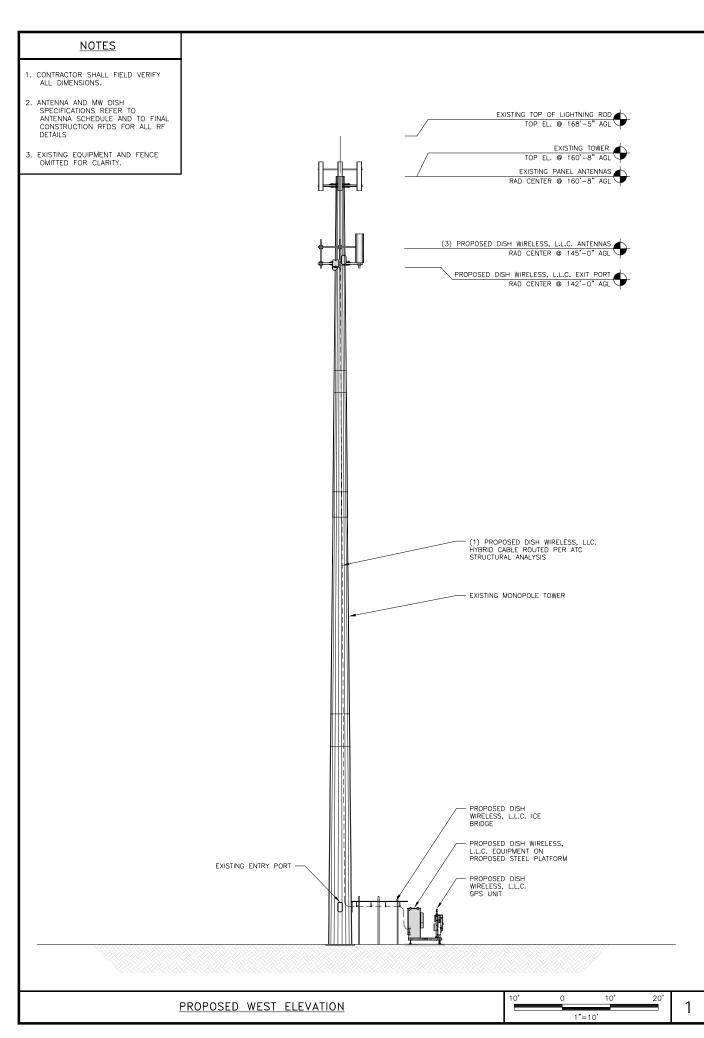


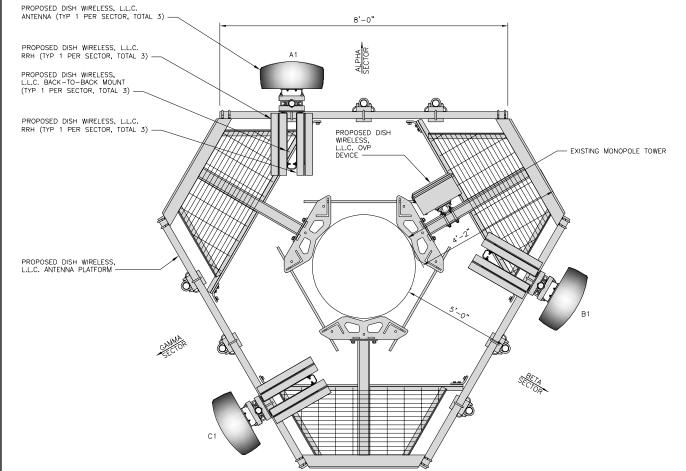
ENLARGED SITE PLAN

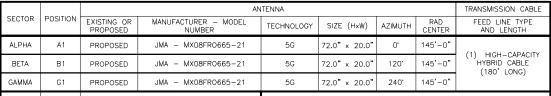

3/8"=1'-0"

NOTES

I. THE SURVEY PROVIDED ON THIS SHEET IS PROVIDED FOR REFERENCE ONLY, THE UTILITY ROUTE AND EXISTING EASEMENTS MUST BE VERIFIED PRIOR TO CONSTRUCTION.






- EXISTING HANDHOLE

- EXISTING UTILITY H-FRAME

ANTENNA LAYOUT

GAMMA	G1	PROPOSED	JMA - MX08	FRO665-21	
		RRH			
SECTOR	POSITION		RER – MODEL MBER	TECHNOLOGY	1.
ALPHA	A1	FUJITSU - 1	TA08025-B604	N29, N71	2.
ALFIIA	A2	FUJITSU - "	TA08025-B605	N66, N70	۷.
BETA	B1	FUJITSU - "	TA08025-B604	N29, N71	
DEIA	B2	FUJITSU - 1	TA08025-B605	N66, N70	
GAMMA	G1	FUJITSU -	TA08025-B604	N29, N71	
GAMMA					

FUJITSU - TA08025-B605

G2

<u>NOTES</u>

 CONTRACTOR TO REFER TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS.

3/4"=1'-0'

 ANTENNA AND RRH MODELS MAY CHANGE DUE TO EQUIPMENT AVAILABILITY, ALL EQUIPMENT CHANGES MUST BE APPROVED AND REMAIN IN COMPLIANCE WITH THE PROPOSED DESIGN AND STRUCTURAL ANALYSES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

	DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
	NOA		BIW		BI₩	

RFDS REV #:

PRELIMINARY DOCUMENTS

l	SUBMITTALS					
	REV	DATE DESCRIPTION				
	Α	08/27/2021	ISSUED FOR REVIEW			
	0	08/31/2021	ISSUED FOR CONSTRUCTION			

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DRECTIO OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

A&E PROJECT NUMBER

281862-13709418

DISH WIRELESS, L.L.C. PROJECT INFORMATION

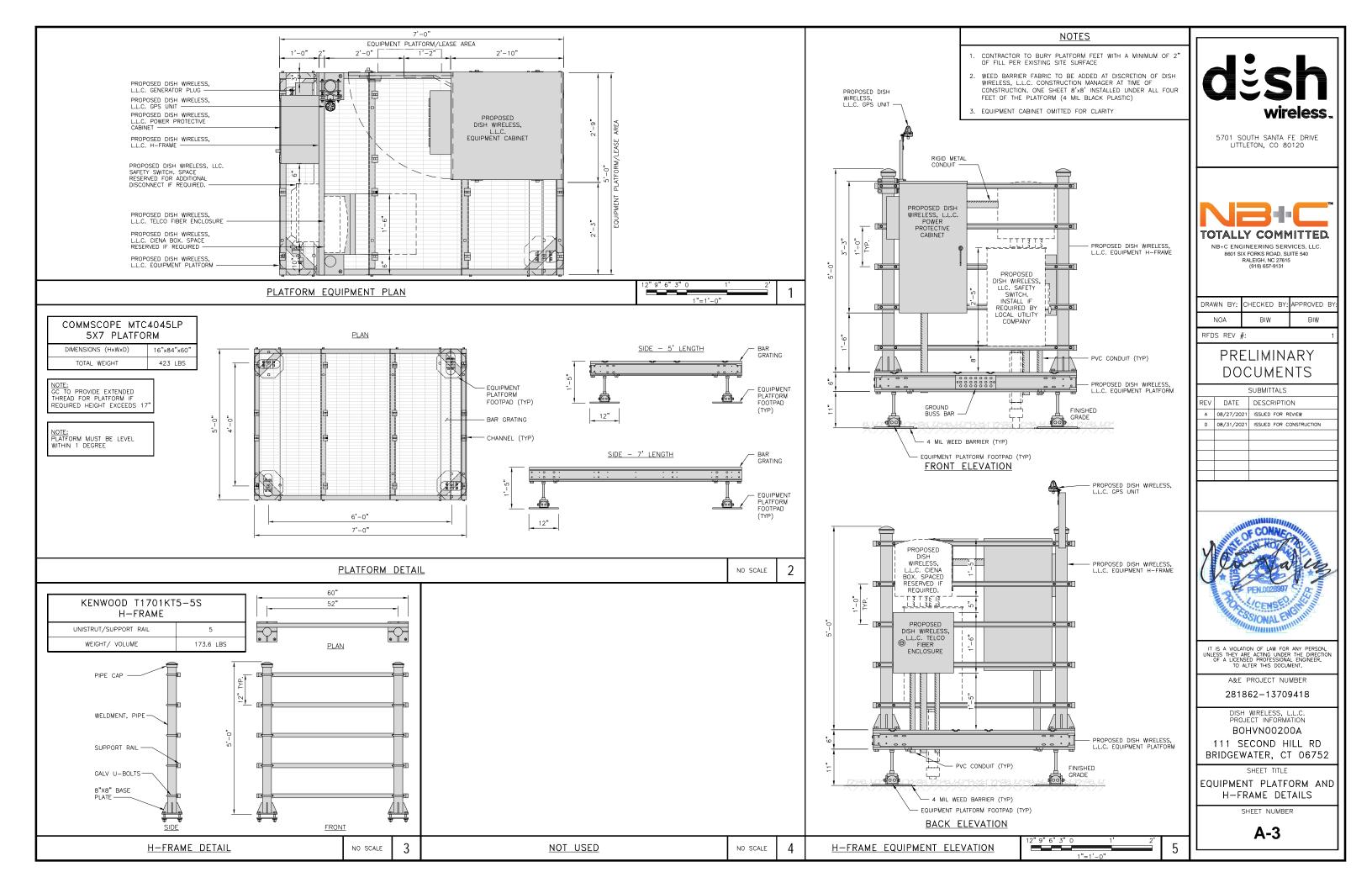
BOHVN00200A

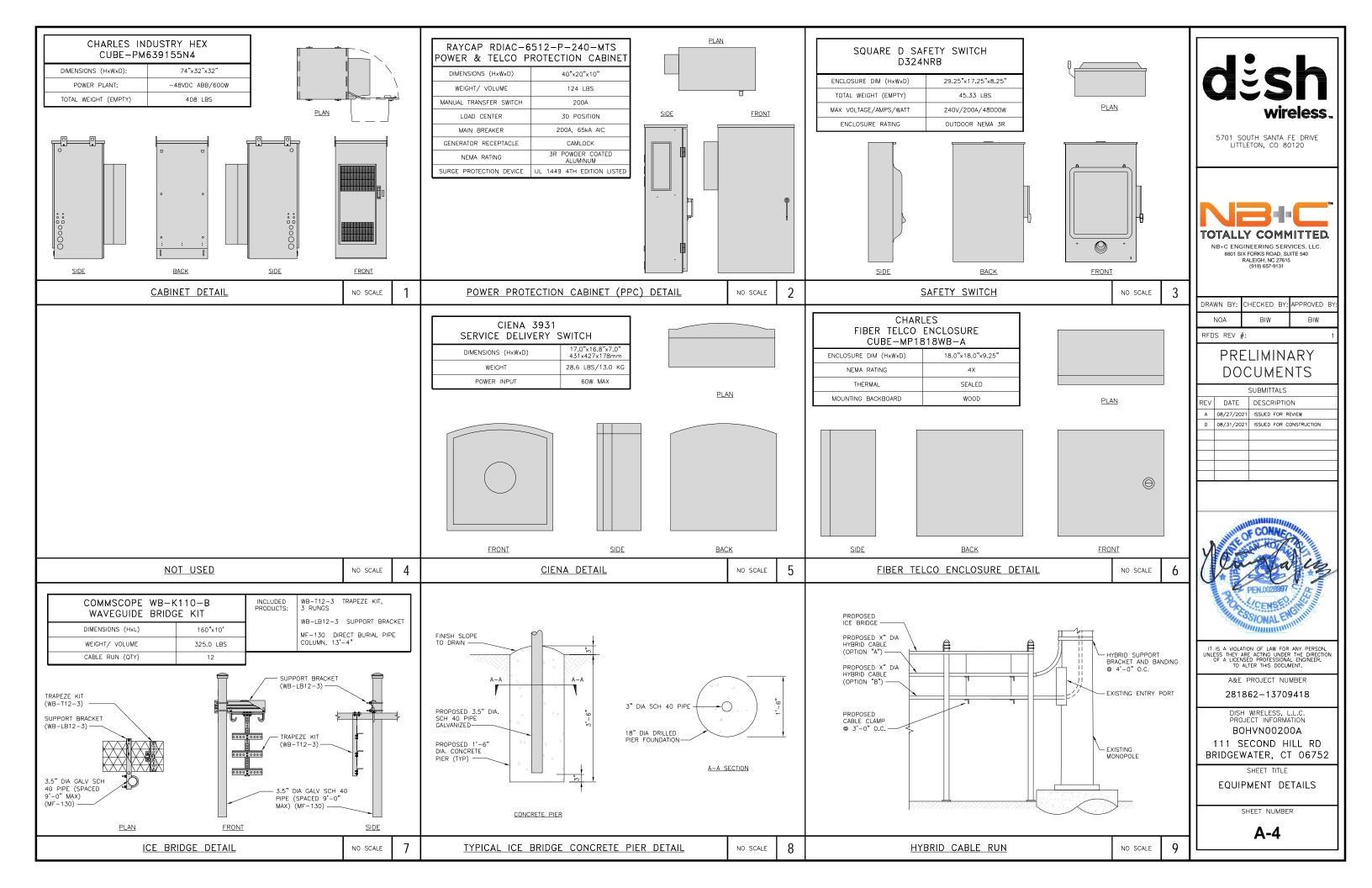
111 SECOND HILL RD BRIDGEWATER, CT 06752

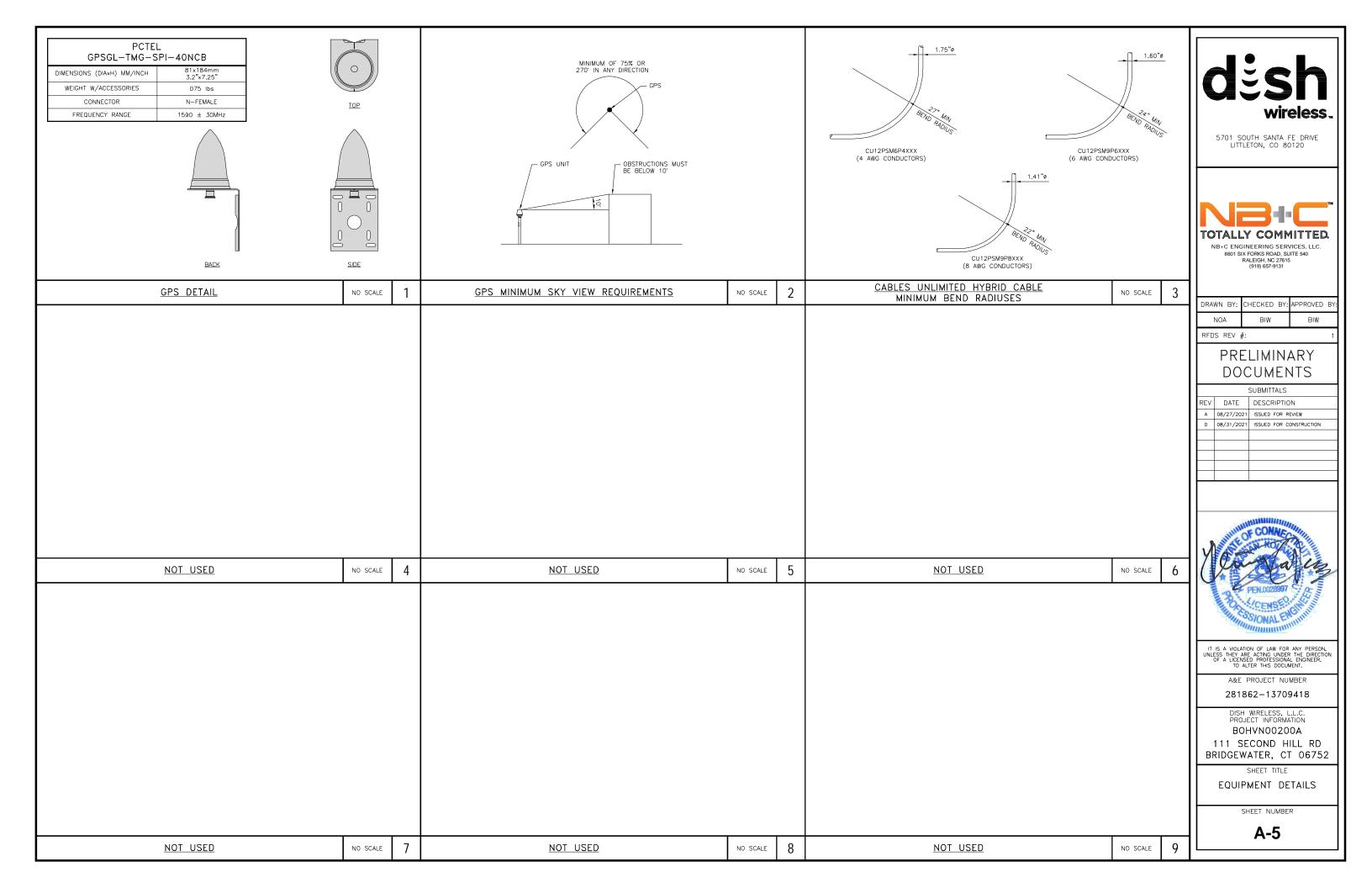
SHEET TITLE

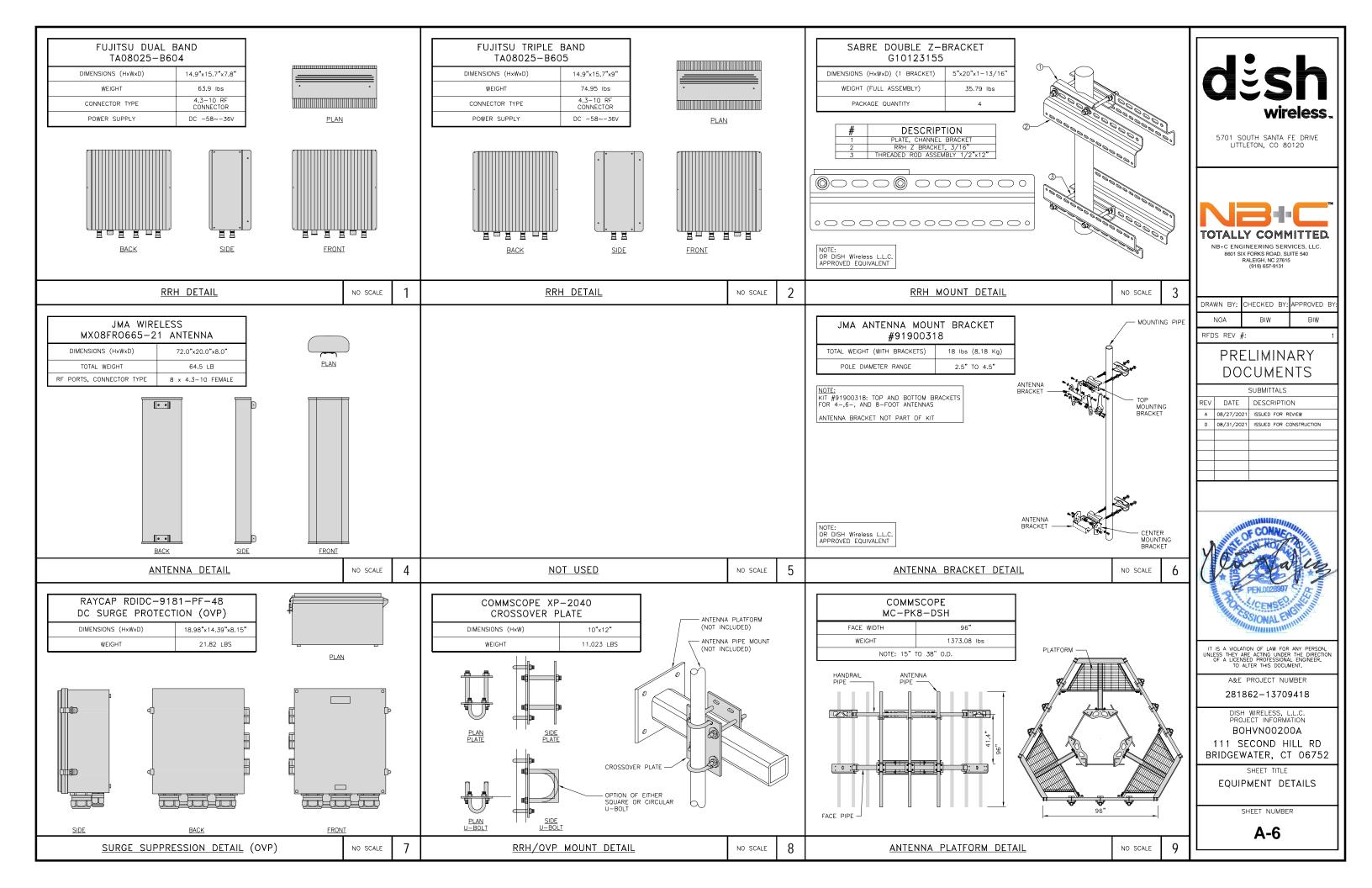
ELEVATION, ANTENNA
LAYOUT AND SCHEDULE

SHEET NUMBER


A-2


ANTENNA SCHEDULE


N66, N70


NO SCALE

| | |

NOTES

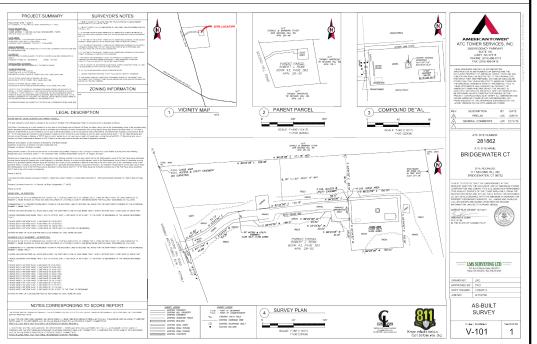
- CONTRACTOR SHALL FIELD VERIFY ALL PROPOSED UNDERGROUND UTILITY CONDUIT ROUTE,
- ANTENNAS AND MOUNTS OMITTED FOR CLARITY.

EXISTING MONOPOLE TOWER

EXISTING EQUIPMENT SHELTER

(12'-0" × 20'-0")

DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING ± 24 V AND ± 48 V CONDUCTORS, RED MARKINGS SHALL IDENTIFY ± 24 V AND BLUE MARKINGS SHALL IDENTIFY ± 48 V.


- CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
- 2. ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS.
- 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
- 4. CONDUIT ROUGH—IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS. VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
- 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
- 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
- 7, CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES, INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
- 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
- INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250. THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL DISCONNECT SWITCHES, AND EQUIPMENT CABINETS.
- 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.
- 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT.
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS.
- 13. ALL TRENCHES IN COMPOUND TO BE HAND DUG

ELECTRICAL NOTES

NO SCALE

NOTES

 THE SURVEY PROVIDED ON THIS SHEET IS PROVIDED FOR REFERENCE ONLY, THE UTILITY ROUTE AND EXISTING EASEMENTS MUST BE VERIFIED PRIOR TO CONSTRUCTION.

desh wireless.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

DRAWN BY:	CHECKED BY:	APPROVED BY:	
NOA	BIW	BI₩	

RFDS REV #:

PRELIMINARY DOCUMENTS

	:	SUBMITTALS
REV	DATE	DESCRIPTION
Α	08/27/2021	ISSUED FOR REVIEW
0	08/31/2021	ISSUED FOR CONSTRUCTION

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTIO OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

A&E PROJECT NUMBER

281862-13709418

DISH WIRELESS, L.L.C.
PROJECT INFORMATION
BOHVN00200A
1111 SECOND HILL RD

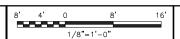
BRIDGEWATER, CT 06752

SHEET TITLE

ELECTRICAL/FIBER ROUTE PLAN AND NOTES

SHEET NUMBER

E-1

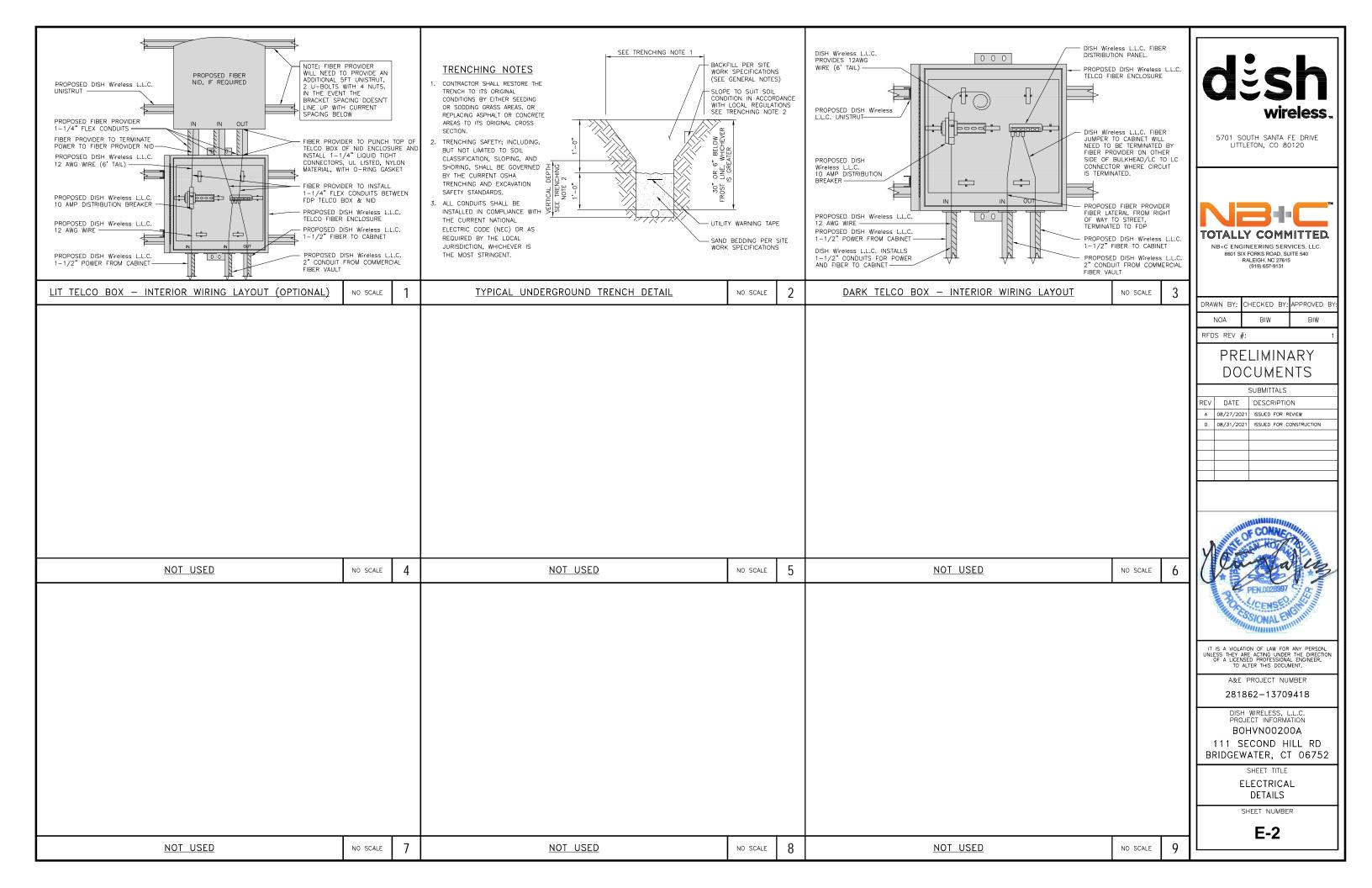


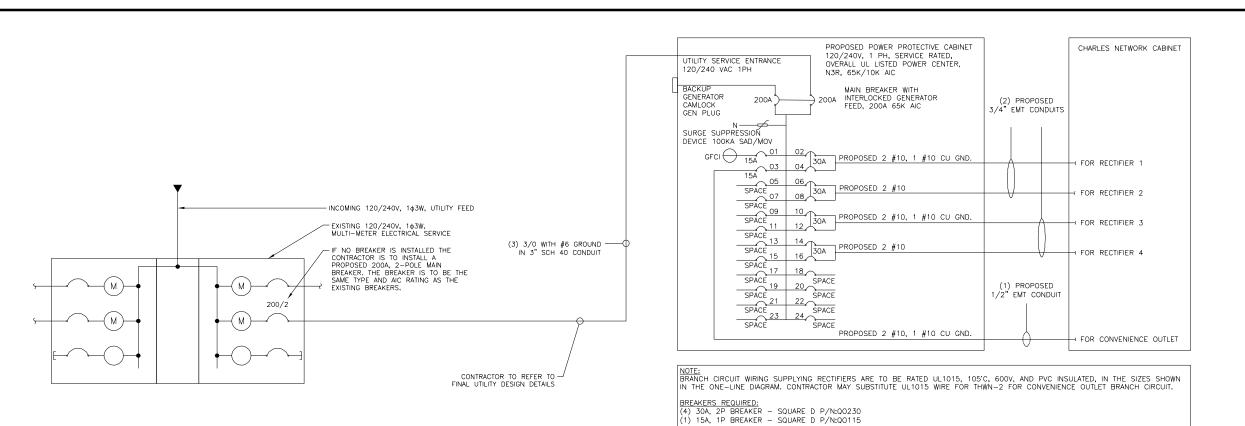
PROPOSED UNDERGROUND POWER CONDUIT (LENGTH: 70'±)

PROPOSED METER & DISCONNECT INSTALLED IN EXISTING METER SOCKET (COORDINATE WITH LOCAL UTILITY

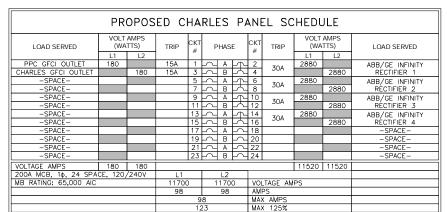
PROPOSED UNDERGROUND FIBER CONDUIT (LENGTH; 80'±)

COMPANY)




EXISTING SURVEY (BY OTHERS)

NO SCALE


E-

3

PPC ONE-LINE DIAGRAM NO SCALE

PANEL SCHEDULE

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

Ш	DRAWN BY:	CHECKED BY:	APPROVED	BY
Ш	NOA	BIW	BI₩	

RFDS REV #:

PRELIMINARY DOCUMENTS

		:	SUBMITTALS
	REV	DATE	DESCRIPTION
	Α	08/27/2021	ISSUED FOR REVIEW
	0	08/31/2021	ISSUED FOR CONSTRUCTION
_			

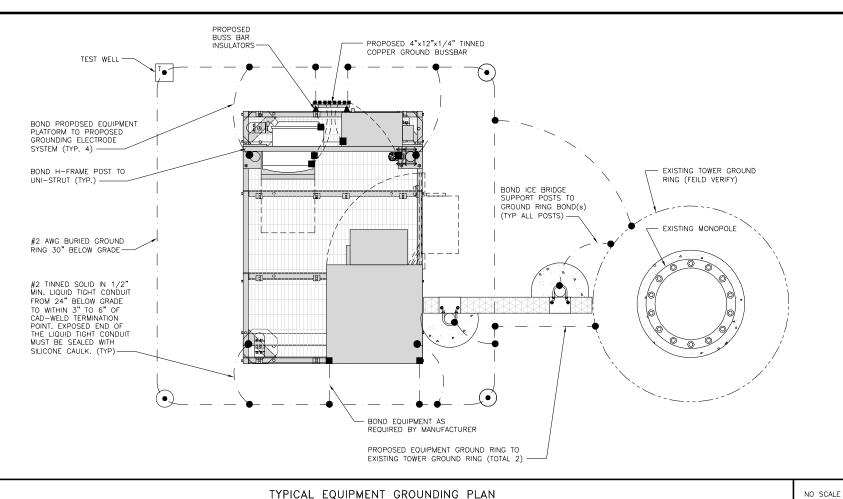
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTIO OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

A&E PROJECT NUMBER

281862-13709418

DISH WIRELESS, L.L.C. PROJECT INFORMATION BOHVN00200A

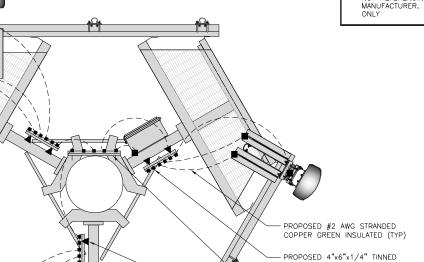
111 SECOND HILL RD BRIDGEWATER, CT 06752


SHEET TITLE ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE

E-3

NO SCALE

NOT USED


NO SCALE

TYPICAL EQUIPMENT GROUNDING PLAN

ANTENNAS AND OVP SHOWN ARE GENERIC AND NOT REFERENCING TO A SPECIFIC MANUFACTURER, THIS LAYOUT IS FOR REFERENCE

COPPER SECTOR GROUND

PROPOSED UPPER TOWER GROUND BAR

BUSSBAR (TYP OF 3)

PROPOSED BUSS BAR

INSULATORS (TYP)

 EXOTHERMIC CONNECTION MECHANICAL CONNECTION

GROUND BUS BAR

GROUND ROD

TEST GROUND ROD WITH INSPECTION SLEEVE

---- #2 AWG STRANDED & INSULATED

— · — #2 AWG SOLID COPPER TINNED

A BUSS BAR INSULATOR

GROUNDING LEGEND

- 1, GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.
- 2. CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM, GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH WIRELESS, L.L.C. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS.
- 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED,

GROUNDING KEY NOTES

- A EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW GRADE, OR 6 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM THE EXTERIOR WALL OR FOOTING.
- TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS, B TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED ANOUND AN ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS.
- INTERIOR GROUND RING: #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTOR EXTENDED AROUND THE PERIMETER OF THE EQUIPMENT AREA, ALL NON-TELECOMMUNICATIONS RELATED METALLIC OBJECTS FOUND WITHIN A SITE SHALL BE GROUNDED TO THE INTERIOR GROUND RING WITH #6 AWG STRANDED GREEN
- D BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS SHALL BE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE CORNERS OF THE
- (E) GROUND ROD: UL LISTED COPPER CLAD STEEL, MINIMUM 5/8" DIAMETER BY EIGHT FEET LONG, GROUND RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. GROUND RODS SHALL BE DRIVEN TO THE DEPTH OF GROUND RING CONDUCTOR.
- CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GREEN INSULATED COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUCTORS.
- (G) HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH.
- EXTERIOR CABLE ENTRY PORT GROUND BARS: LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING, BOND TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTORS WITH AN EXOTHERMIC WELD AND INSPECTION SLEEVE.
- (J) TELCO GROUND BAR: BOND TO BOTH CELL REFERENCE GROUND BAR OR EXTERIOR GROUND RING.
- K FRAME BONDING: THE BONDING POINT FOR TELECOM EQUIPMENT FRAMES SHALL BE THE GROUND BUS THAT IS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEWORK.
- (L) <u>INTERIOR UNIT BONDS:</u> METAL FRAMES, CABINETS AND INDIVIDUAL METALLIC UNITS LOCATED WITH THE AREA OF THE INTERIOR GROUND RING REQUIRE A #6 AWG STRANDED GREEN INSULATED COPPER BOND TO THE
- M FENCE AND GATE GROUNDING: METAL FENCES WITHIN 7 FEET OF THE EXTERIOR GROUND RING OR OBJECTS BONDED TO THE EXTERIOR GROUND RING SHALL BE BONDED TO THE GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEEDING 25 FEET. BONDS SHALL BE MADE AT EACH GATE POST AND ACROSS GATE OPENINGS.
- (N) EXTERIOR UNIT BONDS: METALLIC OBJECTS, EXTERNAL TO OR MOUNTED TO THE BUILDING, SHALL BE BONDED TO THE EXTERIOR GROUND RING. USING #2 TINNED SOLID COPPER WIRE
- P ICE BRIDGE SUPPORTS: EACH ICE BRIDGE LEG SHALL BE BONDED TO THE GROUND RING WITH #2 AWG BARE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRIDGE LEG AND BURIED
- Q DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEMENTS AND INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICE CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPPED WITH A MASTER DC SYSTEM RETURN GROUND CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED TO THE CELL SITE REFERENCE GROUND BAR

wireless

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

DRAWN BY:	CHECKED BY:	APPROVED BY:	
NOA	BIW	BI₩	

RFDS REV #:

PRELIMINARY **DOCUMENTS**

Ш			SUBMITTALS
П	REV	DATE	DESCRIPTION
П	Α	08/27/2021	ISSUED FOR REVIEW
П	0	08/31/2021	ISSUED FOR CONSTRUCTION
П			
П			
П			
П			
П			

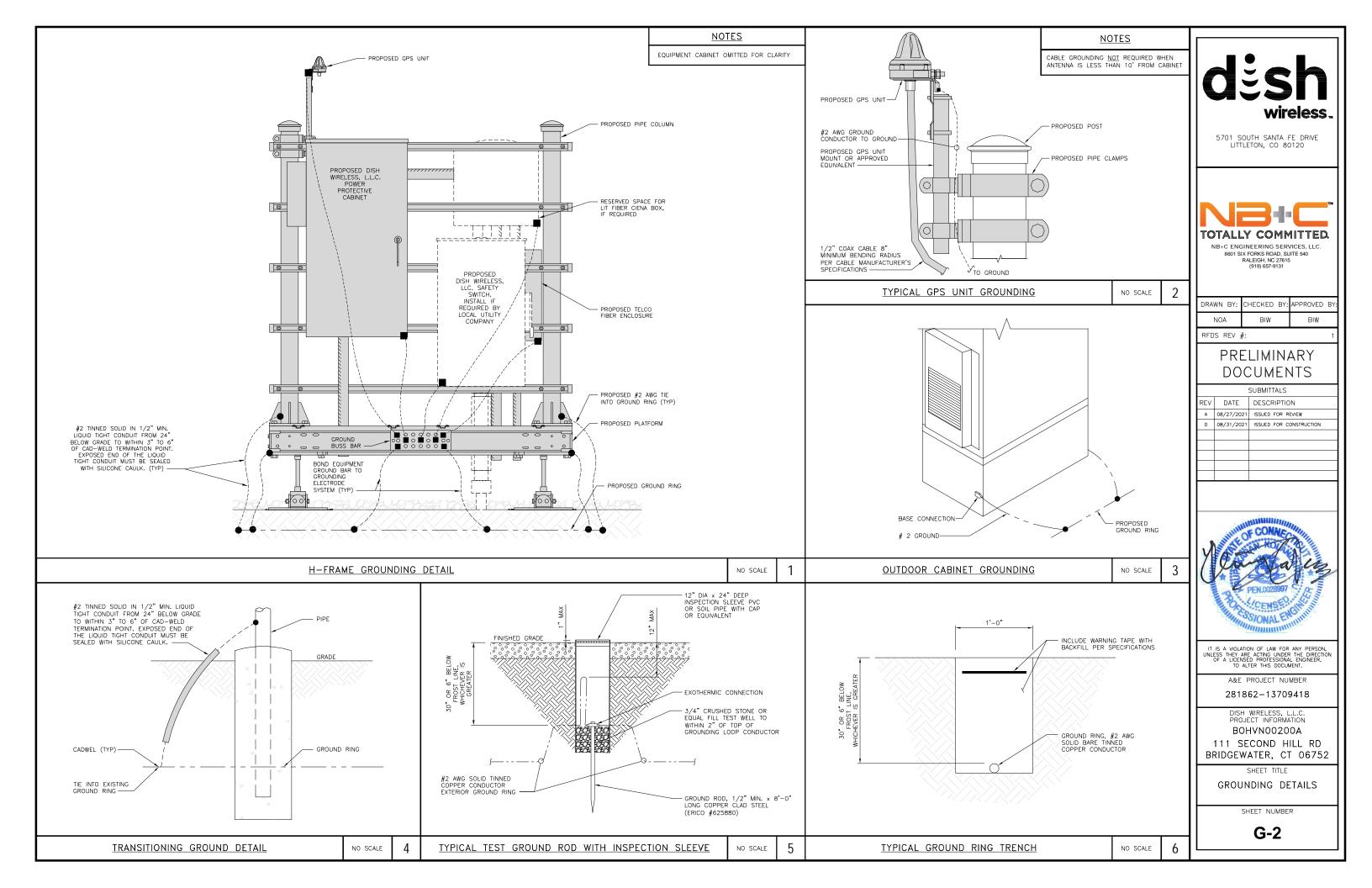
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTIC OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

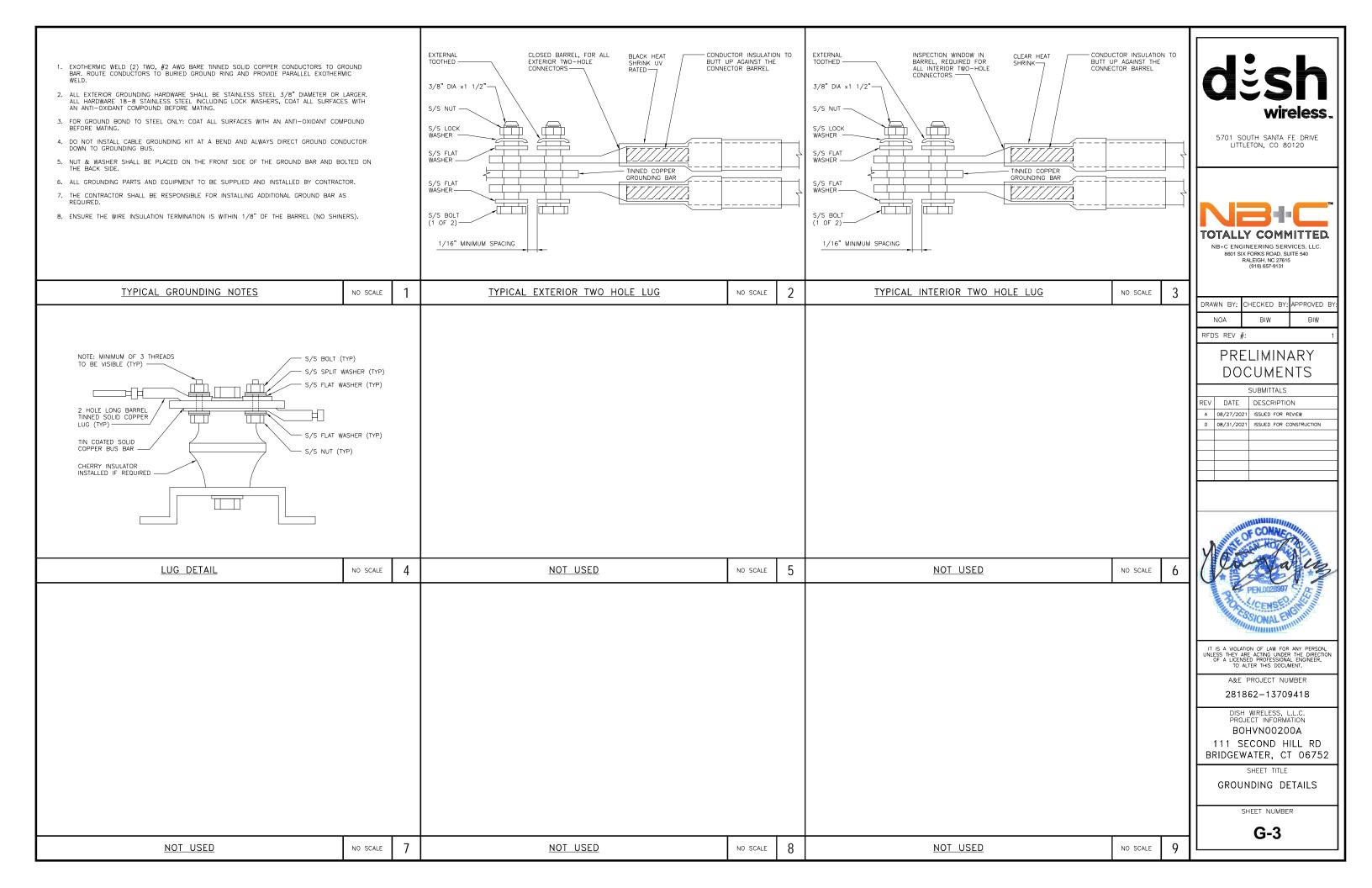
A&E PROJECT NUMBER

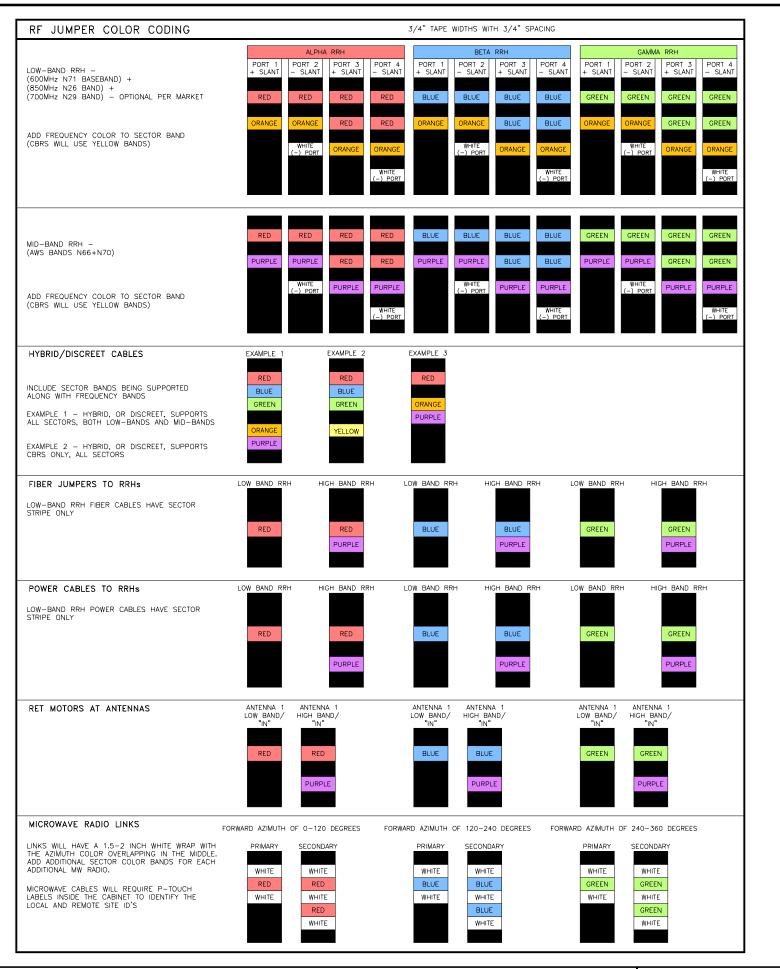
281862-13709418

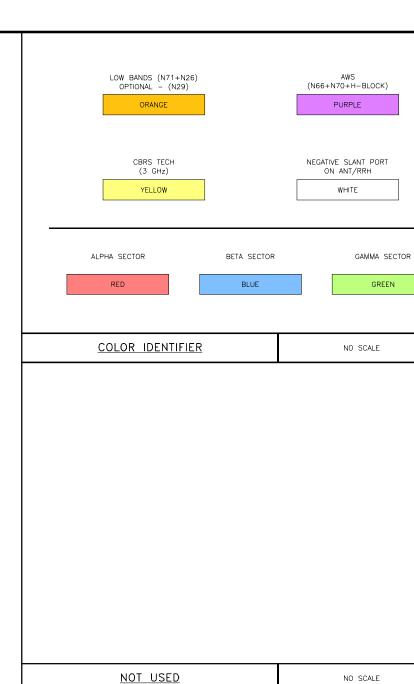
DISH WIRELESS, L.L.C. PROJECT INFORMATION

BOHVN00200A 111 SECOND HILL RD BRIDGEWATER, CT 06752


SHEET TITLE


GROUNDING PLANS AND NOTES


SHEET NUMBER


G-1

(R) TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICALLY BONDED TO PROPOSED ANTENNA MOUNT COLLAR. REFER TO DISH WIRELESS, L.L.C. GROUNDING NOTES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

DRAWN BY: CHECKED BY: APPROVED BY

NOA BIW BIW

RFDS REV #:

PRELIMINARY DOCUMENTS

	SUBMITTALS				
П	REV	DATE	DESCRIPTION		
П	Α	08/27/2021	ISSUED FOR REVIEW		
П	0	08/31/2021	ISSUED FOR CONSTRUCTION		
П					
П					
П					
П					

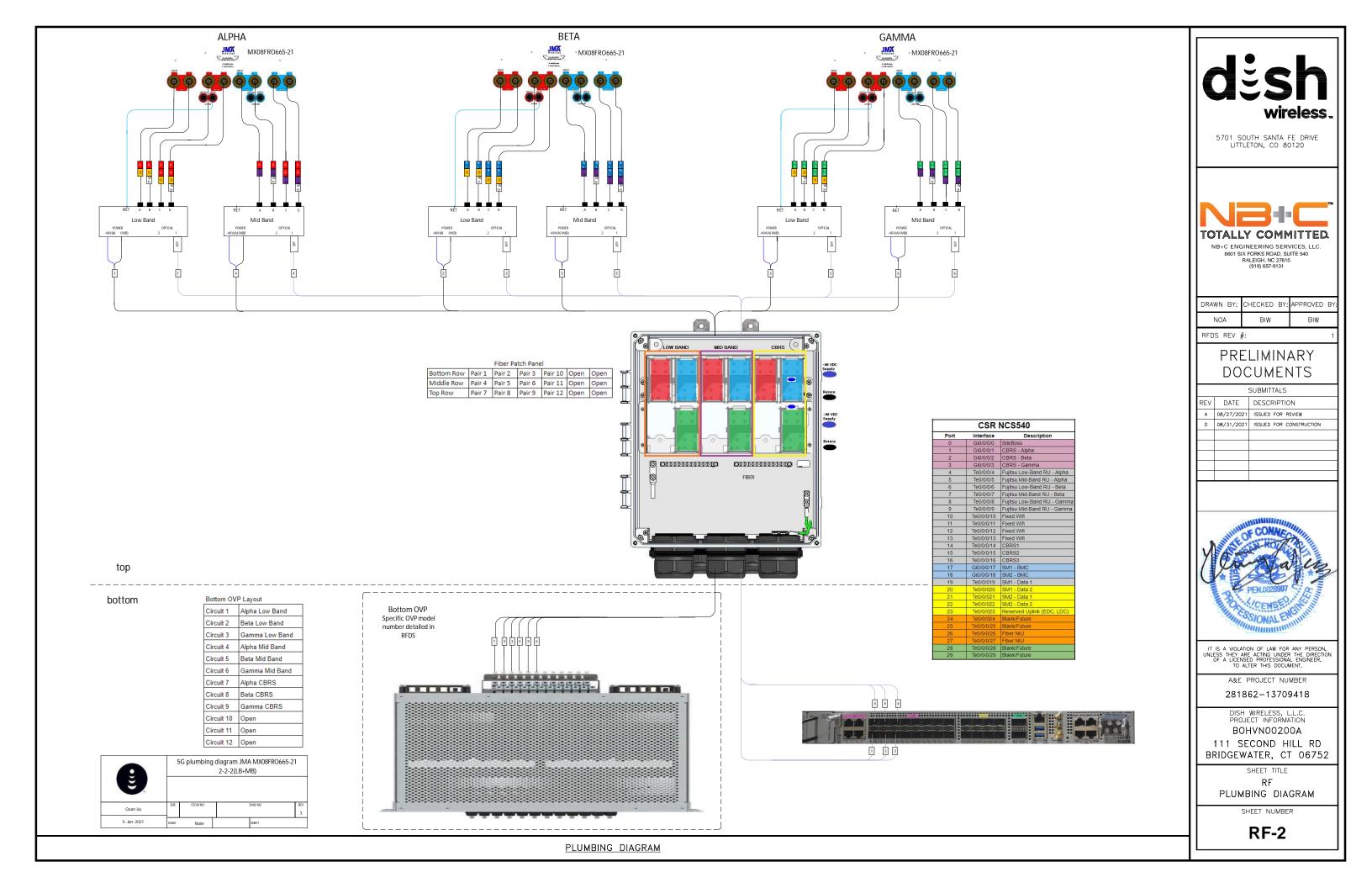
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

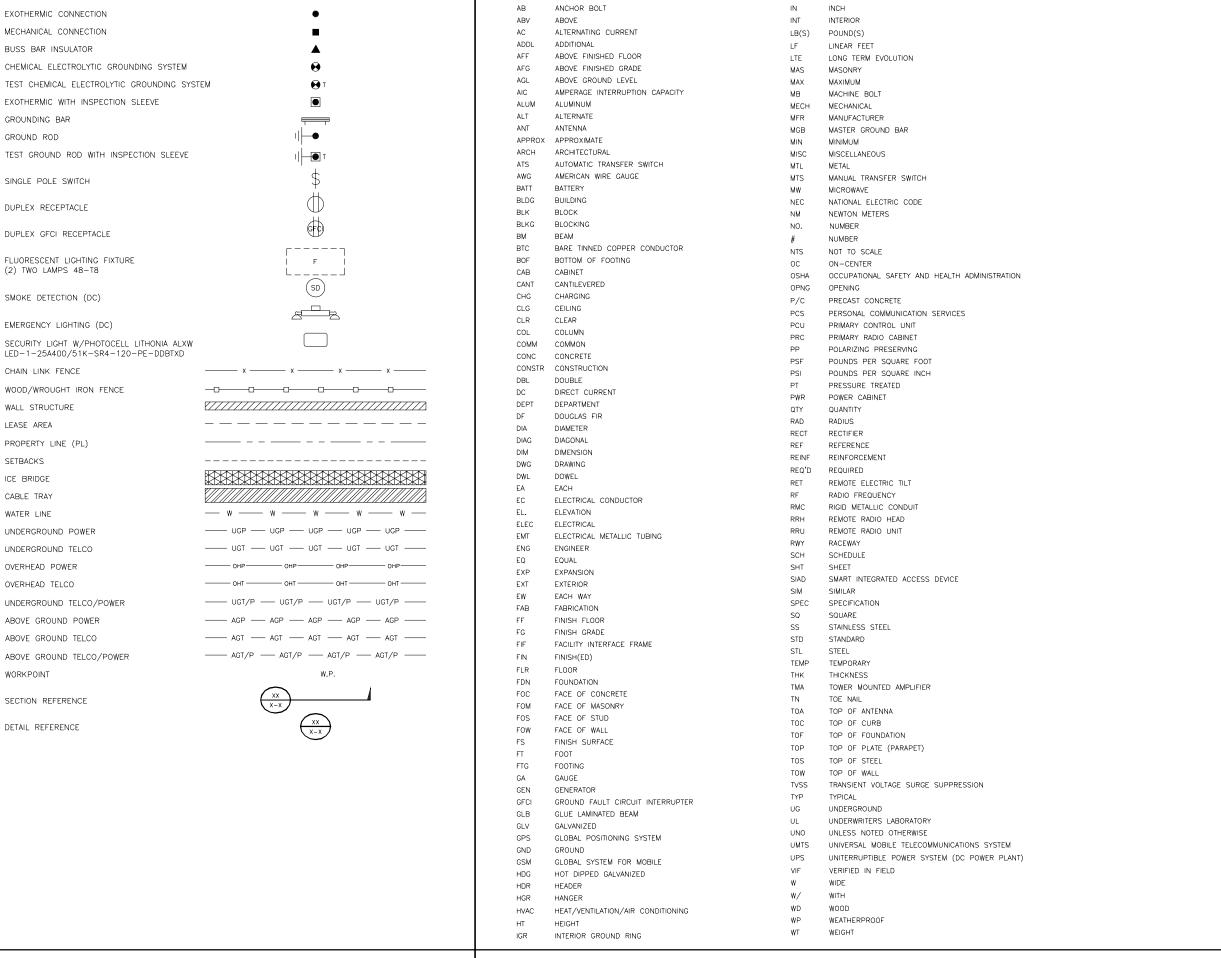
A&E PROJECT NUMBER

281862-13709418

DISH WIRELESS, L.L.C. PROJECT INFORMATION BOHVN00200A

111 SECOND HILL RD BRIDGEWATER, CT 06752


SHEET TITLE


RF

CABLE COLOR CODES

SHEET NUMBER

RF-1

LEGEND

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

Ш	DRAWN BY:	CHECKED B.	r: APPROVED BY:
Ш	NOA	BIW	BIW

RFDS REV #:

PRELIMINARY DOCUMENTS

			SUBMITTALS
	REV	DATE	DESCRIPTION
П	Α	08/27/2021	ISSUED FOR REVIEW
П	0	08/31/2021	ISSUED FOR CONSTRUCTION
П			

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER. TO ALTER THIS DOCUMENT.

A&E PROJECT NUMBER

281862-13709418

DISH WIRELESS, L.L.O PROJECT INFORMATION

BOHVN00200A 111 SECOND HILL RD BRIDGEWATER, CT 06752

SHEET TITLE

LEGEND AND
ABBREVIATIONS

SHEET NUMBER

GN-1

ABBREVIATIONS

SITE ACTIVITY REQUIREMENTS:

- 1. NOTICE TO PROCEED NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER, PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH WIRELESS, L.L.C. AND TOWER OWNER NOC & THE DISH WIRELESS, L.L.C. AND TOWER CONSTRUCTION MANAGER.
- 2. "LOOK UP" DISH WIRELESS, L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH WIRELESS, L.L.C. AND DISH WIRELESS, L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

- 3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
- 4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELESS, L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).
- 5. ALL SITE WORK TO COMPLY WITH DISH WIRELESS, L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH WIRELESS, L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
- 6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH WIRELESS, L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.
- 11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
- 12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIRELESS, L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.
- 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
- 15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
- 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.
- 18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.
- 22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR: GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH WIRELESS, L.L.C.

TOWER OWNER: TOWER OWNER

- 2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
- 3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.
- 4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.
- 5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.
- 6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION
- 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.
- 12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH WIRELESS, L.L.C. AND TOWER OWNER
- 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

8601 SIX FORKS ROAD, SUITE 540

DRAWN BY:	CHECKED BY:	APPROVED BY:	
NOA	BIW	BI₩	

RFDS REV #:

PRELIMINARY DOCUMENTS

١		SUBMITTALS			
١	REV DATE		DESCRIPTION		
- 1	А	08/27/2021	ISSUED FOR REVIEW		
- 1	0	08/31/2021	ISSUED FOR CONSTRUCTION		
- 1					
- 1					
- 1					
- 1					
- 1	L_				

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTIO OF A LICENSED PROFESSIONAL ENGINEER. TO ALTER THIS DOCUMENT.

A&E PROJECT NUMBER

281862-13709418

DISH WIRELESS, L.L.C. PROJECT INFORMATION

BOHVN00200A 111 SECOND HILL RD BRIDGEWATER, CT 06752

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GN-2

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL

- ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE.
- UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.
- ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (1'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90'f AT TIME OF PLACEMENT.
- CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.
- ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE, YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

- THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:
- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- · CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- . CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2"
- A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

- ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.
- CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
- WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
- ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.
- ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.
- ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.
- EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
- ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).
- PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.
- TIE WRAPS ARE NOT ALLOWED
- ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.
- POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL), LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75' C (90' C IF AVAILABLE).
- RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.
- ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

- ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 17 SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT
- LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE
- NFC.
- 21 WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).
- 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).
- CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES, CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE
- EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS.
- METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH WIRELESS, L.L.C. AND 27 TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE 28. WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH WIRELESS, L.L.C.".
- ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

5701 SOUTH SANTA FF DRIVE LITTLETON, CO 80120

8601 SIX FORKS ROAD, SUITE 540

NB+C ENGINEERING SERVICES, LLC.

DRAWN BY:	CHECKED	BY:	APPROVED	BY:
NOA	BIW		BI₩	

RFDS REV #:

PRELIMINARY DOCUMENTS

- 1			
1			SUBMITTALS
1	REV	DATE	DESCRIPTION
- 1	Α	08/27/2021	ISSUED FOR REVIEW
- 1	0	08/31/2021	ISSUED FOR CONSTRUCTION
- 1			
- 1			
- 1			
- 1			

IS A VIOLATION OF LAW FOR ANY PERSON UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER.

TO ALTER THIS DOCUMENT.

A&E PROJECT NUMBER

281862-13709418

DISH WIRELESS, L.L.C. PROJECT INFORMATION BOHVN00200A 111 SECOND HILL RD

BRIDGEWATER, CT 06752 SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GN-3

GROUNDING NOTES:

- 1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 2. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
- 4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS FOLIPMENT.
- 6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
- 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
- 8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. USE OF 90' BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45' BENDS CAN BE ADEQUATELY SUPPORTED.
- 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
- 13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.
- 15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.
- 19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
- 21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/O COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

STRUCTURAL STEEL NOTES:

- 1. STRUCTURAL STEEL SHALL CONFORM TO THE LATEST EDITION OF THE AISC "SPECIFICATION FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS."
- 2. STRUCTURAL STEEL ROLLED SHAPES, PLATES AND BARS SHALL CONFORM TO THE FOLLOWING ASTM DESIGNATIONS:
- A. ASTM A-572, GRADE 50 ALL W SHAPES, UNLESS NOTED OR A992 OTHERWISE
- B. ASTM A-36 ALL OTHER ROLLED SHAPES, PLATES AND BARS UNLESS NOTED OTHERWISE.
- C. ASTM A-500, GRADE B HSS SECTION (SQUARE, RECTANGULAR, AND ROUND)
- D. ASTM A-325, TYPE SC OR N ALL BOLTS FOR CONNECTING STRUCTURAL MEMBERS
- E. ASTM F-1554 07 ALL ANCHOR BOLTS, UNLESS NOTED OTHERWISE
- 3. ALL EXPOSED STRUCTURAL STEEL MEMBERS SHALL BE HOT-DIPPED GALVANIZED AFTER FABRICATION PER ASTM A123. EXPOSED STEEL HARDWARE AND ANCHOR BOLTS SHALL BE GALVANIZED PER ASTM A153 OR B695.
- 4. ALL FIELD CUT SURFACES, FIELD DRILLED HOLES AND GROUND SURFACES WHERE EXISTING PAINT OR GALVANIZATION REMOVAL WAS REQUIRED SHALL BE REPAIRED WITH (2) BRUSHED COATS OF ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURER'S RECOMMENDATIONS
- 5. DO NOT DRILL HOLES THROUGH STRUCTURAL STEEL MEMBERS EXCEPT AS SHOWN AND DETAILED ON STRUCTURAL DRAWINGS.
- CONNECTIONS:
- A. ALL WELDING TO BE PERFORMED BY AWS CERTIFIED WELDERS AND CONDUCTED IN ACCORDANCE WITH THE LATEST EDITION OF THE AWS WELDING CODE D1.1.
- B. ALL WELDS SHALL BE INSPECTED VISUALLY. 25% OF WELDS SHALL BE INSPECTED WITH DYE PENETRANT OR MAGNETIC PARTICLE TO MEET THE ACCEPTANCE CRITERIA OF AWS D1.1. REPAIR ALL WELDS AS NECESSARY.
- C. INSPECTION SHALL BE PERFORMED BY AN AWS CERTIFIED WELD INSPECTOR.
- D. IT IS THE CONTRACTORS RESPONSIBILITY TO PROVIDE BURNING/WELDING PERMITS AS REQUIRED BY LOCAL GOVERNING AUTHORITY AND IF REQUIRED SHALL HAVE FIRE DEPARTMENT DETAIL FOR ANY WELDING ACTIVITY.
- E. ALL ELECTRODES TO BE LOW HYDROGEN, MATCHING FILLER METAL, PER AWS D1.1, UNLESS NOTED OTHERWISE.
- F. MINIMUM WELD SIZE TO BE 0.1875 INCH FILLET WELDS, UNLESS NOTED OTHERWISE.
- G. PRIOR TO FIELD WELDING GALVANIZING MATERIAL, CONTRACTOR SHALL GRIND OFF GALVANIZING ½" BEYOND ALL FIELD WELD SURFACES. AFTER WELD AND WELD INSPECTION IS COMPLETE, REPAIR ALL GROUND AND WELDED SURFACES WITH ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURERS RECOMMENDATIONS.
- . THE CONTRACTOR SHALL PROVIDE ADEQUATE SHORING AND/OR BRACING WHERE REQUIRED DURING CONSTRUCTION UNTIL ALL
- I. ANY FIELD CHANGES OR SUBSTITUTIONS SHALL HAVE PRIOR APPROVAL FROM THE ENGINEER, AND DISH WIRELESS L.L.C. PROJECT MANAGER IN WRITING

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

. . . .

DRAWN BY:	CHECKED BY:	APPROVED BY:
NOA	BIW	BI₩

RFDS REV #:

PRELIMINARY DOCUMENTS

	SUBMITTALS				
REV	DATE	DESCRIPTION			
Α	08/27/2021	ISSUED FOR REVIEW			
0	08/31/2021	ISSUED FOR CONSTRUCTION			

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTIO OF A LICENSED PROFESSIONAL ENGINEER. TO ALTER THIS DOCUMENT.

A&E PROJECT NUMBER

281862-13709418

DISH WIRELESS, L.L.C.
PROJECT INFORMATION
BOHVN00200A
111 SECOND HILL RD

BRIDGEWATER, CT 06752

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GN-4

ENGINEERING DRAWINGS

ENGINEERING:

STRUCTURAL ANALYSIS

MOUNT ANALYSIS

Structural Analysis Report

Structure : 160 ft Monopole

ATC Site Name : BRIDGEWATER CT,CT

ATC Site Number : 281862

Engineering Number : 13709418_C3_02

Proposed Carrier : DISH WIRELESS L.L.C.

Carrier Site Name : BOHVN00200A

Carrier Site Number : BOHVN00200A

Site Location : 111 SECOND HILL RD

BRIDGEWATER, CT 06752-1017

41.555, -73.3709

County : Litchfield

Date : August 20, 2021

Max Usage : 80%

Result : Pass

Prepared By: Reviewed By:

Faisal Wakid Structural Engineer

Faisal Wakid

COA: PEC.0001553

Table of Contents

Introduction		3
Supporting Documents		3
Analysis		
Conclusion		
Existing and Reserved Equipment		4
Equipment to be Removed		
Proposed Equipment		
Structure Usages		
Foundations		
Deflection and Sway*		5
Standard Conditions		6
Calculations	Attached	

Page. 3

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 160 ft Monopole to reflect the change in loading by DISH WIRELESS L.L.C..

Supporting Documents

Tower Drawings TransAmerican Job #23513-0649, dated November 12, 2013	
Foundation Drawing TransAmerican Job #23513-0649, dated November 12, 2013	
Geotechnical Report	Clarence Welti Associates Project - AT&T Tower Site #1252, dated September 10, 2013

Analysis

The tower was analyzed using American Tower Corporation's tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

Basic Wind Speed:	115 mph (3-second gust)
Basic Wind Speed w/ Ice:	50 mph (3-second gust) w/ 1.00" radial ice concurrent
Code:	ANSI/TIA-222-H / 2015 IBC / 2018 Connecticut State Building Code
Exposure Category:	С
Risk Category:	II
Topographic Factor Procedure:	Method 2
Crest Height (H):	211 ft
Crest Length (L):	1340 ft
Spectral Response:	$Ss = 0.20, S_1 = 0.06$
Site Class:	D - Stiff Soil - Default

Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

Existing and Reserved Equipment

Elev.1 (ft)	Qty	Equipment	Mount Type	Lines	Carrier
	4	Raycap DC6-48-60-18-8F	Triangular Platform with Handrails	(2) 0.39" (10mm)	
	3	Ericsson RRUS 4478 B14 (15")		Fiber Trunk	AT&T MOBILITY
	3	Ericsson RRUS 4449 B5, B12		(10) 0.78"	
156.0	6	CCI DMP65R-BU8D		(19.7mm) 8 AWG 6	
130.0	3	Ericsson RRUS 32 B2		(6) 3" conduit	
	6	CCI HPA-65R-BUU-H8		(3) 3/8" (0.38"-	
	3	Ericsson RRUS 11 (Band 12) (55 lb)		9.5mm) RET	
)	Elicssoli KKO3 11 (Balla 12) (33 lb)		Control Cable	

Equipment to be Removed

Elev.1 (ft)	Qty	Equipment	Mount Type	Lines	Carrier	
	No loading was considered as removed as part of this analysis.					

Proposed Equipment

Elev.1 (ft)	Qty	Equipment	Mount Type	Lines	Carrier
145.0	1	Commscope RDIDC-9181-PF-48	mscope RDIDC-9181-PF-48		
	3	Fujitsu TA08025-B604	Triangular Platform with Handrails	(1) 1.60" (40.6mm) Hybrid	DISH WIRELESS L.L.C.
	3	Fujitsu TA08025-B605			
	3	JMA Wireless MX08FRO665-21			

¹Contracted elevations are shown for appurtenances within contracted installation tolerances. Appurtenances outside of contract limits are shown at installed elevations.

Install proposed lines inside the pole shaft.

Structure Usages

Structural Component	Controlling Usage	Pass/Fail
Anchor Bolts	80%	Pass
Shaft	74%	Pass
Base Plate	31%	Pass

Foundations

Reaction Component	Analysis Reactions	% of Usage
Moment (Kips-Ft)	3494.3	45%
Axial (Kips)	45.6	46%
Shear (Kips)	33.5	27%

The structure base reactions resulting from this analysis were found to be acceptable through analysis based on geotechnical and foundation information, therefore no modification or reinforcement of the foundation will be required.

Deflection, Twist and Sway*

Antenna Elevation (ft)	Antenna	Carrier	Deflection (ft)	Sway (Rotation) (°)
	Commscope RDIDC-9181-PF-48			
145.0	JMA Wireless MX08FRO665-21	DISH WIRELESS L.L.C. 1.823	1 500	
145.0	Fujitsu TA08025-B605		1.823	1.580
	Fujitsu TA08025-B604			

^{*}Deflection, Twist and Sway was evaluated considering a design wind speed of 60 mph (3-Second Gust) per ANSI/TIA-222-H

Standard Conditions

All engineering services performed by A.T. Engineering Service, PLLC are prepared on the basis that the information used is current and correct. This information may consist of, but is not limited to the following:

- Information supplied by the client regarding antenna, mounts and feed line loading
- Information from drawings, design and analysis documents, and field notes in the possession of A.T. Engineering Service, PLLC

It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete.

All assets of American Tower Corporation, its affiliates, and subsidiaries (collectively "American Tower") are inspected at regular intervals. Based upon these inspections and in the absence of information to the contrary, American Tower assumes that all structures were constructed in accordance with the drawings and specifications.

Unless explicitly agreed by both the client and A.T. Engineering Service, PLLC, all services will be performed in accordance with the current revision of ANSI/TIA-222.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information supplied herein.

Asset: 281862, BRIDGEWATER CT
Client: DISH WIRELESS L.L.C.
Code: ANSI/TIA-222-H

Height: 160 ft
Base Width: 58.5
Shape: 18 Sides

SITE PARAMETERS

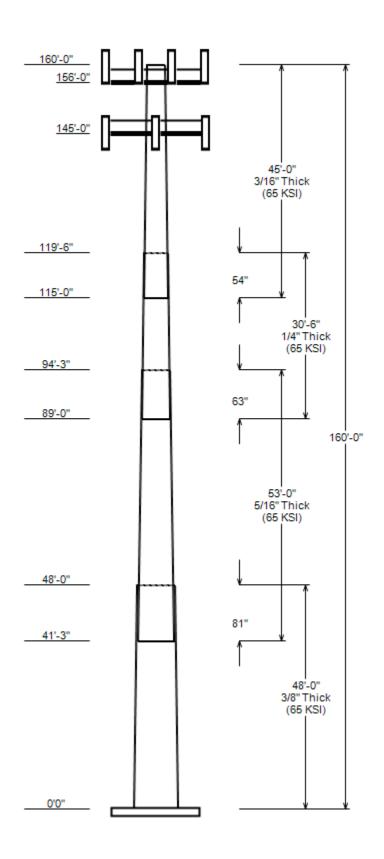
Base Elev (ft): 0.00 Structure Class: II
Taper: 0.25000 (In/ft) Exposure: C
Topographic Category: 0 Topographic Feature: Hill

Topo Method : Method 2

SECTION PROPERTIES													
Shaft	Length-		ter (in) ss Flats	Thick		Overlap Length		Steel Grade					
Section	(ft)	Top	Bottom	(in)	Joint Type	(in)	Shape	(ksi)					
	40.000	40.50	50.50	0.075		0.000	40.014	0.5					
1	48.000	46.50	58.50	0.375		0.000	18 Sides	65					
2	53.000	35.56	48.81	0.312	Slip Joint	81.000	18 Sides	65					
3	30.500	29.75	37.38	0.250	Slip Joint	63.000	18 Sides	65					
4	45.000	20.00	31.25	0.188	Slip Joint	54.000	18 Sides	65					

	DISCRETE APPURTENANCE													
	Attach Elev (ft)	Force Elev (ft)	Qty	Description										
_	156.0	155.6	4	Raycap DC6-48-60-18-8F										
	156.0 156.0	156.9 156.6	3 3	Ericsson RRUS 4478 B14 (15") Ericsson RRUS 4449 B5, B12										
	156.0 156.0	158.0 156.8	3 3	Ericsson RRUS 11 (Band 12) (55 Ericsson RRUS 32 B2										
	156.0	156.8	6	CCI HPA-65R-BUU-H8										
	156.0 156.0	156.6 156.0	6 1	CCI DMP65R-BU8D Round Platform w/ Handrails										
	145.0 145.0	145.0 145.0	1 3	Commscope RDIDC-9181-PF-48 Fujitsu TA08025-B604										
	145.0	145.0	3	Fujitsu TA08025-B605										
	145.0 145.0	145.0 145.0	3 1	JMA Wireless MX08FRO665-21 Generic Flat Platform with Han										

		LINEAR APPURTENANCE	
Elev	Elev		Ехр То
From (ft)	To (ft)	Description	Wind
0.0	156.0	3/8" (0.38"- 9.5mm) RET Control Cable	No
0.0	156.0	3" conduit	No
0.0	156.0	0.78" (19.7mm) 8 AWG 6	No
0.0	156.0	0.78" (19.7mm) 8 AWG 6	No
0.0	156.0	0.39" (10mm) Fiber Trunk	No
0.0	145.0	1.60" (40.6mm) Hybrid	No


	LOAD CASES
1.2D + 1.0W Normal	115 mph wind with no ice
0.9D + 1.0W Normal	115 mph wind with no ice
1.2D + 1.0Di + 1.0Wi Nor	50 mph wind with 1" radial ice
1.2D + 1.0Ev + 1.0Eh Nor	Seismic

 0.9D - 1.0Ev + 1.0Eh Nor
 Seismic (Reduced DL)

 1.0D + 1.0W Service Norm
 60 mph Wind with No Ice

REACTIONS												
Load Case	Moment	Shear	Axial									
	(kip-ft)	(Kip)	(Kip)									
1.2D + 1.0W Normal	3494.31	33.48	45.64									
0.9D + 1.0W Normal	3456.36	33.46	34.22									
1.2D + 1.0Di + 1.0Wi Normal	1018.24	10.04	60.38									
1.2D + 1.0Ev + 1.0Eh Normal	151.08	1.14	45.52									
0.9D - 1.0Ev + 1.0Eh Normal	148.96	1.14	31.42									
1.0D + 1.0W Service Normal	846.11	8.15	38.07									

DISH DEFLECTIONS												
Load Case	Attach	Deflection	Rotation									

JOB INFORMATION

Asset: 281862, BRIDGEWATER CT Client: DISH WIRELESS L.L.C. Code: ANSI/TIA-222-H Height: 160 ft
Base Width: 58.5
Shape: 18 Sides

Elev (ft) (in) (deg)

 $@\,2007$ - 2020 by ATC LLC. All rights reserved.

Page 2 of 2

8/20/2021 14:41:47

Model ID: 21103

ANALYSIS PARAMETERS

Litchfield County,CT 160 ft Location: Height: Type and Shape: Taper, 18 Sides Base Diameter: 58.50 in Undetermined Top Diameter: 20.00 in Manufacturer: K_d (non-service): 0.95 Taper: 0.2500 in/ft K_e: 0.97 Rotation: 0.000°

ICE & WIND PARAMETERS

Exposure Category: С Design Wind Speed w/o Ice: 115 mph Risk Category: Ш Design Wind Speed w/Ice: 50 mph Topo Factor Procedure: Method 2 Operational Wind Speed: 60 mph Design Ice Thickness: 1.00 in 908.00 ft HMSL:

Crest Height(H): 211 ft Distance from Apex (x): 50 ft

Crest Length(L): 1340 ft Upwind/Downwind: Upwind

Feature: Hill

Analysis Method:

SEISMIC PARAMETERS

Site Class: D - Stiff Soil Period Based on Rayleigh Method (sec): 2.42 P: T_L (sec): 6 1 C_{s:} 0.030 0.199 S_{1:} 0.055 C_s Max: 0.030 $S_{s:}$ Fa: 1.600 $F_{v:}$ 2.400 C_s Min: 0.030

S_{ds:} 0.212 S_{d1:} 0.088

Equivalent Lateral Force Method

LOAD CASES

 1.2D + 1.0W Normal
 115 mph wind with no ice

 0.9D + 1.0W Normal
 115 mph wind with no ice

 1.2D + 1.0Di + 1.0Wi Normal
 50 mph wind with 1" radial ice

1.2D + 1.0Ev + 1.0Eh Normal Seismic

0.9D - 1.0Ev + 1.0Eh Normal Seismic (Reduced DL)
1.0D + 1.0W Service Normal 60 mph Wind with No Ice

281862, BRIDGEWATER CT CODE: ASSET: ANSI/TIA-222-H CUSTOMER: 13709418_C3_02 DISH WIRELESS L.L.C. ENG NO:

								SHAFT SECTION PROPERTIES Bottom							Тор			
Sect Info	Length (ft)	Thick (in)	Fy (ksi)	Joint Type	Slip Joint Ien (in)	Weight (lb)	Dia (in)	Elev Are (ft) (ir			D/t Ratio	Dia (in)	Elev (in)	Area (in²)	lx (in ⁴)	W/t Ratio	D/t Ratio	Taper (in/ft)
1-18 2-18 3-18 4-18	48.00 53.00 30.50 45.00	0.3750 0.3125 0.2500 0.1875	65 65 65 65	Slip Slip Slip	0.00 81.00 63.00 54.00	, -		41.250 48. ² 89.000 29. ⁴	6 5,129.6	25.78 24.60	156.20 149.50	35.56 29.75	94.25 119.50	34.96 23.41	14,756.5 5,488.7 2,573.7 584.7	18.30 19.22	113.80 119.00	0.2500 0.2500 0.2500 0.2500

Shaft Weight 22,684

DISCRETE APPURTENANCE PROPERTIES

Attach				Vert		No Io	e		lce		
Elev (ft)	Description	Qtv	Ka	Ecc (ft)	Weight (lb)	EPAa (sf)	Orientation Factor	Weight (lb)	EPAa (sf)	Orientation Factor	
(;;)	Becomplien	۵.,	- Itu	(11)	(12)	(0.)		()	(0.)		
156.00	Ericsson RRUS 4478 B14 (15")	3	0.75	0.900	59.40	1.650	0.50	95.59	2.267	0.50	
156.00	CCI DMP65R-BU8D	6	0.75	0.600	95.70	17.871	0.63	343.21	20.555	0.63	
156.00	CCI HPA-65R-BUU-H8	6	0.75	0.800	68.00	12.976	0.67	255.12	15.583	0.67	
156.00	Ericsson RRUS 32 B2	3	0.75	0.800	53.00	2.743	0.67	106.56	3.595	0.67	
156.00	Ericsson RRUS 11 (Band 12) (55	3	0.75	2.000	55.00	2.522	0.67	104.00	3.279	0.67	
156.00	Raycap DC6-48-60-18-8F	4	0.75	-0.400	20.00	1.260	1.00	58.34	1.739	1.00	
156.00	Round Platform w/ Handrails	1	1.00	0.000	2000.00	27.200	1.00	2943.63	45.001	1.00	
156.00	Ericsson RRUS 4449 B5, B12	3	0.75	0.600	71.00	1.969	0.50	117.93	2.648	0.50	
145.00	Generic Flat Platform with Han	1	1.00	0.000	2500.00	42.400	1.00	3790.49	57.635	1.00	
145.00	JMA Wireless MX08FRO665-21	3	0.75	0.000	64.50	12.489	0.64	251.21	14.530	0.64	
145.00	Fujitsu TA08025-B605	3	0.75	0.000	75.00	1.962	0.50	120.51	2.630	0.50	
145.00	Fujitsu TA08025-B604	3	0.75	0.000	63.90	1.962	0.50	106.26	2.630	0.50	
145.00	Commscope RDIDC-9181-PF-48	1	0.75	0.000	21.90	1.867	1.00	63.24	2.521	1.00	
Totals	Num Loadings: 13	40			6,909.50			13,326.88			

LINEAR APPURTENANCE PROPERTIES

Load Case Azimuth (deg): _

Elev From (ft)	Elev To (ft)	Qty Description	Coax Dia (in)	Coax Wt (lb/ft)	Flat	Max Coax/ Row	Dist Between Rows(in)	Dist Between Cols(in)	Azimuth (deg)		Exposed To Wind	
0.00 0.00 0.00 0.00	156.00 156.00 156.00 156.00	8 0.78" (19.7mm) 8 AWG 6 3" conduit 3 3/8" (0.38"- 9.5mm) R 2 0.39" (10mm) Fiber Tr	0.78 3.5 0.38 0.39	0.59 7.58 0.23 0.06	N N N	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	N N N	AT&T MOBILITY AT&T MOBILITY AT&T MOBILITY AT&T MOBILITY
0.00 0.00	156.00 145.00	2 0.78" (19.7mm) 8 AWG 1 1.60" (40.6mm) Hybrid	0.78 1.6	0.59 2.34	N N	0 0	0 0	0	0	0		AT&T MOBILITY DISH WIRELESS

	SEGMENT PROPERTIES											
		(Max	Len: 5.	ft)								
Seg Top	Description	Thick	Flat Dia	Area	lx	W/t		F'y	S		Weight	
Elev (ft)		(in)	(in)	(in²)	(in ⁴)	Ratio	Ratio	(ksi)	(in ³)	(in³)	(lb)	
0.00		0.3750	58.500	69.181	29,530.10	25.74	156.00	71.1	994.2	0.0	0.0	
5.00		0.3750	57.250	67.693	27,665.60	25.16	152.67	71.8	951.8	0.0 1	,164.4	
10.00		0.3750	56.000	66.205	25,881.30	24.57	149.33	72.5	910.3	0.0 1	,139.1	
15.00		0.3750	54.750	64.718	24,175.40	23.98	146.00		869.7	0.0 1	,113.8	
20.00		0.3750	53.500	63.230	22,546.20	23.39	142.67	73.9	830.0	0.0 1	,088.4	
25.00		0.3750	52.250	61.742	20,991.80	22.80	139.33	74.6	791.3	0.0 1	,063.1	
30.00		0.3750	51.000	60.254	19,510.60	22.22	136.00	75.3	753.5	0.0 1	,037.8	
35.00		0.3750	49.750	58.766	18,100.80	21.63	132.67	76	716.6	0.0 1	,012.5	
40.00		0.3750	48.500	57.279	16,760.50	21.04	129.33	76.7	680.7	0.0	987.2	
41.25	Bot - Section 2	0.3750	48.188	56.907	16,436.10	20.89	128.50	76.8	671.8	0.0	242.8	
45.00		0.3750	47.250	55.791	15,488.10	20.45	126.00	77.3	645.6		,326.9	
48.00	Top - Section 1	0.3125	47.125	46.430	12,855.20	24.83	150.80	72.2	537.3	0.0 1	,042.8	
50.00		0.3125	46.625	45.935	12,447.70	24.54	149.20	72.5	525.8	0.0	314.3	
55.00		0.3125	45.375	44.695	11,466.70	23.84	145.20	73.4	497.7	0.0	771.0	
60.00		0.3125	44.125	43.455	10,538.70	23.13	141.20	74.2	470.4	0.0	749.9	
65.00		0.3125	42.875	42.215	9,662.20	22.43	137.20	75	443.9	0.0	728.8	
70.00		0.3125	41.625	40.975	8,835.70	21.72	133.20	75.8	418.1	0.0	707.7	
75.00		0.3125	40.375	39.736	8,057.70	21.02	129.20	76.7	393.1	0.0	686.6	
80.00		0.3125	39.125	38.496	7,326.70	20.31	125.20	77.5	368.8	0.0	665.5	
85.00		0.3125	37.875	37.256	6,641.40	19.61	121.20	78.3	345.4	0.0	644.4	
89.00	Bot - Section 3	0.3125	36.875	36.264	6,124.90	19.04	118.00	79	327.2	0.0	500.3	
90.00		0.3125	36.625	36.016	6,000.20	18.90	117.20	79.2	322.7	0.0	222.9	
94.25	Top - Section 2	0.2500	36.063	28.416	4,604.60	23.67	144.25	73.6	251.5	0.0	930.3	
95.00		0.2500	35.875	28.267	4,532.60	23.54	143.50	73.7	248.9	0.0	72.3	
100.00		0.2500	34.625	27.276	4,072.00	22.66	138.50	74.8	231.6	0.0	472.5	
105.00		0.2500	33.375	26.284	3,643.80	21.78	133.50	75.8	215.0	0.0	455.6	
110.00		0.2500	32.125	25.292	3,246.60	20.89	128.50	76.8	199.1	0.0	438.8	
115.00	Bot - Section 4	0.2500	30.875	24.300	2,879.50	20.01	123.50	77.9	183.7	0.0	421.9	
119.50	Top - Section 3	0.1875	30.125	17.816	2,017.40	26.57	160.67	70.2	131.9	0.0	643.2	
120.00		0.1875	30.000	17.742	1,992.20	26.45	160.00	70.3	130.8	0.0	30.2	
125.00		0.1875	28.750	16.998	1,752.00	25.27	153.33	71.7	120.0	0.0	295.5	
130.00		0.1875	27.500	16.254	1,531.90	24.10	146.67	73.1	109.7	0.0	282.9	
135.00		0.1875	26.250	15.510	1,331.00	22.92	140.00	74.4	99.9	0.0	270.2	
140.00		0.1875	25.000	14.766	1,148.60	21.75	133.33	75.8	90.5	0.0	257.6	
145.00		0.1875	23.750	14.022	983.60	20.57	126.67	77.2	81.6	0.0	244.9	
150.00		0.1875	22.500	13.278	835.20	19.40	120.00	78.6	73.1	0.0	232.2	
155.00		0.1875	21.250	12.534	702.50	18.22	113.33	80	65.1	0.0	219.6	
156.00		0.1875	21.000	12.386	677.80	17.99	112.00	80.2	63.6	0.0	42.4	
160.00		0.1875	20.000	11.790	584.70	17.04	106.67	81.4	57.6	0.0	164.5	

Totals: 22,684.8

Load Case: 1.2D + 1.0W Normal 115 mph wind with no ice 24 Iterations

Gust Response Factor: 1.10
Dead load Factor: 1.20
Wind Load Factor: 1.00

CALCULATED FORCES

CALCULA	A I E D F OR	CLS											
Seq	Pu	Vu	Tu	Mu	Mu	Resultant	Phi	Phi	Phi	Phi	Total		
Elev	FY (-)	FX (-)	MY	MZ	MX	Moment	Pn	Vn	Tn	Mn	Deflect	Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	Ratio
	\ \ \ /	\ I /	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ /	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ 1 /	\ 1 /	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ 1 /	\ 1 /		\ 0/	
0.00	-45.64	-33.48	0.00	-3,494.3	0.00	3,494.31	4,428.22	1,214.12	6,373.87	5,303.38	0	0	0.670
5.00	-43.82	-32.72	0.00	-3,326.9	0.00	3,326.93	4,375.11	1,188.01	6,102.70	5,126.36	0.09	-0.16	0.660
10.00	-42.04	-31.99	0.00	-3,163.3	0.00	3,163.32	4,320.14	1,161.90	5,837.43	4,949.98	0.35	-0.33	0.650
15.00	-40.29	-31.27	0.00	-3,003.4	0.00	3,003.38	4,263.32	1,135.79	5,578.04	4,774.37	0.79	-0.5	0.639
20.00	-38.57	-30.53	0.00	-2,847.0	0.00	2,847.05	4,204.66	1,109.68	5,324.56	4,599.68	1.41	-0.67	0.629
25.00	-36.89	-29.78	0.00	-2,694.4	0.00	2,694.41	4,144.14	1,083.57	5,076.96	4,426.06	2.21	-0.85	0.618
30.00	-35.24	-29.01	0.00	-2,545.5	0.00	2,545.53	4,081.76	1,057.46	4,835.26	4,253.64	3.19	-1.03	0.608
35.00	-33.63	-28.25	0.00	-2,400.5	0.00	2,400.47	4,017.54	1,031.35	4,599.46	4,082.58	4.36	-1.21	0.597
40.00	-32.07	-27.75	0.00	-2,259.2	0.00	2,259.24	3,951.47	1,005.24	4,369.55	3,913.02	5.72	-1.39	0.586
41.25	-31.66	-27.38	0.00	-2,224.6	0.00	2,224.55	3,934.66	998.71	4,312.99	3,870.88	6.09	-1.44	0.583
45.00	-29.78	-26.83	0.00	-2,121.9	0.00	2,121.89	3,883.54	979.13	4,145.53	3,745.09	7.28	-1.58	0.575
48.00	-28.30	-26.42	0.00	-2,041.4	0.00	2,041.41	3,017.05	814.85	3,445.27	2,909.43	8.3	-1.69	0.712
50.00	-27.74	-25.91	0.00	-1,988.6	0.00	1,988.57	2,998.54	806.15	3,372.07	2,860.50	9.03	-1.77	0.705
55.00	-26.42	-25.16	0.00	-1,859.0	0.00	1,859.04	2,950.98	784.39	3,192.52	2,738.63	11	-1.99	0.689
60.00	-25.13	-24.42	0.00	-1,733.2	0.00	1,733.25	2,901.57	762.63	3,017.88	2,617.56	13.2	-2.21	0.672
65.00	-23.86	-23.69	0.00	-1,611.1	0.00	1,611.14	2,850.30	740.88	2,848.15	2,497.43	15.64	-2.44	0.655
70.00	-22.63	-22.98	0.00	-1,492.7	0.00	1,492.67	2,797.18	719.12	2,683.33	2,378.39	18.32	-2.67	0.637
75.00	-21.43	-22.28	0.00	-1,377.8	0.00	1,377.78	2,742.21	697.36	2,523.42	2,260.57	21.23	-2.9	0.618
80.00	-20.25	-21.59	0.00	-1,266.4	0.00	1,266.40	2,685.39	675.60	2,368.43	2,144.13	24.39	-3.13	0.599
85.00	-19.11	-20.97	0.00	-1,158.5	0.00	1,158.48	2,626.72	653.84	2,218.35	2,029.20	27.8	-3.37	0.579
89.00	-18.23	-20.61	0.00	-1,074.6	0.00	1,074.61	2,578.45	636.44	2,101.82	1,938.44	30.7	-3.56	0.562
90.00	-17.87	-20.28	0.00	-1,054.0	0.00	1,054.00	2,566.20	632.08	2,073.18	1,915.93	31.45	-3.61	0.558
94.25	-16.46	-19.88	0.00	-967.8	0.00	967.82	1,881.22	498.70	1,613.10	1,387.42	34.75	-3.81	0.708
95.00	-16.30	-19.55	0.00	-952.9	0.00	952.91	1,875.33	496.09	1,596.26	1,375.78	35.35	-3.85	0.703
100.00	-15.36	-18.92	0.00	-855.2	0.00	855.17	1,834.99	478.69	1,486.22	1,298.62	39.53	-4.13	0.668
105.00	-14.44	-18.31	0.00	-760.6	0.00	760.55	1,792.79	461.28	1,380.11	1,222.29	44.01	-4.41	0.632
110.00	-13.55	-17.72	0.00	-669.0	0.00	668.98	1,748.74	443.87	1,277.92	1,146.93	48.78	-4.69	0.593
115.00	-12.69	-17.16	0.00	-580.4	0.00	580.38	1,702.84	426.47	1,179.67	1,072.68	53.84	-4.97	0.550
119.50	-11.61	-16.81	0.00	-503.2	0.00	503.16	1,124.87	312.67	845.43	694.00	58.63	-5.21	0.738
120.00	-11.52	-16.54	0.00	-494.8	0.00	494.75	1,122.38	311.36	838.38	689.55	59.18	-5.24	0.731
125.00	-10.81	-16.01	0.00	-412.0	0.00	412.05	1,096.47	298.31	769.56	645.21	64.83	-5.56	0.651
130.00	-10.12	-15.48	0.00	-332.0	0.00	332.03	1,068.71	285.25	703.68	601.18	70.81	-5.86	0.565
135.00	-9.45	-14.97	0.00	-254.6	0.00	254.62	1,039.10	272.20	640.75	557.59	77.09	-6.13	0.469
140.00	-8.82	-14.47	0.00	-179.8	0.00	179.77	1,007.63	259.14	580.77	514.58	83.63	-6.37	0.361
145.00	-4.94	-9.59	0.00	-107.4	0.00	107.42	974.32	246.09	523.73	472.32	90.38	-6.54	0.234
150.00	-4.39	-9.12	0.00	-59.5	0.00	59.46	939.15	233.03	469.65	430.93	97.29	-6.66	0.144
155.00	-3.84	-8.81	0.00	-13.9	0.00	13.89	902.14	219.98	418.50	390.56	104.3	-6.73	0.041
156.00	-0.18	-0.15	0.00	-0.6	0.00	0.62	894.51	217.37	408.63	382.62	105.7	-6.73	0.002
160.00	0.00	-0.13	0.00	0.0	0.00	0.00	863.27	206.92	370.31	351.36	111.33	-6.73	0.000

Load Case: 0.9D + 1.0W Normal 115 mph wind with no ice 24 Iterations

Gust Response Factor: 1.10
Dead load Factor: 0.90
Wind Load Factor: 1.00

CALCULATED FORCES

CALCULA	A I ED FOR	CES											
Seg	Pu	Vu	Tu	Mu	Mu	Resultant	Phi	Phi	Phi	Phi	Total		
Elev	FY (-)	FX (-)	MY	MZ	MX	Moment	Pn	Vn	Tn	Mn	Deflect	Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	Ratio
0.00	-34.22	-33.46	0.00	-3,456.4	0.00	3,456.36	4,428.22	1,214.12	6,373.87	5,303.38	0	0	0.660
5.00	-32.83	-32.67	0.00	-3,289.1	0.00	3,289.06	4,375.11	1,188.01	6,102.70	5,126.36	0.09	-0.16	0.650
10.00	-31.47	-31.91	0.00	-3,125.7	0.00	3,125.70	4,320.14	1,161.90	5,837.43	4,949.98	0.35	-0.33	0.639
15.00	-30.14	-31.16	0.00	-2,966.2	0.00	2,966.16	4,263.32	1,135.79	5,578.04	4,774.37	0.78	-0.49	0.629
20.00	-28.83	-30.39	0.00	-2,810.4	0.00	2,810.37	4,204.66	1,109.68	5,324.56	4,599.68	1.39	-0.66	0.619
25.00	-27.55	-29.62	0.00	-2,658.4	0.00	2,658.40	4,144.14	1,083.57	5,076.96	4,426.06	2.18	-0.84	0.608
30.00	-26.30	-28.83	0.00	-2,510.3	0.00	2,510.31	4,081.76	1,057.46	4,835.26	4,253.64	3.15	-1.01	0.597
35.00	-25.07	-28.05	0.00	-2,366.2	0.00	2,366.15	4,017.54	1,031.35	4,599.46	4,082.58	4.31	-1.19	0.587
40.00	-23.90	-27.54	0.00	-2,225.9	0.00	2,225.93	3,951.47	1,005.24	4,369.55	3,913.02	5.65	-1.37	0.576
41.25	-23.58	-27.15	0.00	-2,191.5	0.00	2,191.50	3,934.66	998.71	4,312.99	3,870.88	6.02	-1.42	0.573
45.00	-22.16	-26.60	0.00	-2,089.7	0.00	2,089.67	3,883.54	979.13	4,145.53	3,745.09	7.19	-1.56	0.564
48.00	-21.04	-26.19	0.00	-2,009.9	0.00	2,009.87	3,017.05	814.85	3,445.27	2,909.43	8.2	-1.67	0.699
50.00	-20.61	-25.66	0.00	-1,957.5	0.00	1,957.48	2,998.54	806.15	3,372.07	2,860.50	8.92	-1.75	0.692
55.00	-19.61	-24.90	0.00	-1,829.2	0.00	1,829.18	2,950.98	784.39	3,192.52	2,738.63	10.86	-1.96	0.676
60.00	-18.62	-24.15	0.00	-1,704.7	0.00	1,704.68	2,901.57	762.63	3,017.88	2,617.56	13.03	-2.18	0.659
65.00	-17.66	-23.41	0.00	-1,584.0	0.00	1,583.95	2,850.30	740.88	2,848.15	2,497.43	15.44	-2.4	0.641
70.00	-16.72	-22.68	0.00	-1,466.9	0.00	1,466.92	2,797.18	719.12	2,683.33	2,378.39	18.07	-2.63	0.624
75.00	-15.81	-21.97	0.00	-1,353.5	0.00	1,353.53	2,742.21	697.36	2,523.42	2,260.57	20.95	-2.86	0.606
80.00	-14.92	-21.27	0.00	-1,243.7	0.00	1,243.70	2,685.39	675.60	2,368.43	2,144.13	24.06	-3.08	0.587
85.00	-14.05	-20.65	0.00	-1,137.4	0.00	1,137.36	2,626.72	653.84	2,218.35	2,029.20	27.41	-3.32	0.567
89.00	-13.39	-20.29	0.00	-1,054.8	0.00	1,054.77	2,578.45	636.44	2,101.82	1,938.44	30.27	-3.5	0.550
90.00	-13.12	-19.95	0.00	-1,034.5	0.00	1,034.48	2,566.20	632.08	2,073.18	1,915.93	31.01	-3.55	0.546
94.25	-12.05	-19.58	0.00	-949.7	0.00	949.68	1,881.22	498.70	1,613.10	1,387.42	34.26	-3.75	0.692
95.00	-11.92	-19.23	0.00	-935.0	0.00	935.00	1,875.33	496.09	1,596.26	1,375.78	34.85	-3.79	0.687
100.00	-11.21	-18.60	0.00	-838.9	0.00	838.86	1,834.99	478.69	1,486.22	1,298.62	38.97	-4.07	0.654
105.00	-10.51	-17.99	0.00	-745.9	0.00	745.86	1,792.79	461.28	1,380.11	1,222.29	43.37	-4.34	0.618
110.00	-9.84	-17.39	0.00	-655.9	0.00	655.93	1,748.74	443.87	1,277.92	1,146.93	48.07	-4.62	0.579
115.00	-9.19	-16.83	0.00	-569.0	0.00	568.98	1,702.84	426.47	1,179.67	1,072.68	53.04	-4.89	0.537
119.50	-8.38	-16.50	0.00	-493.2	0.00	493.23	1,124.87	312.67	845.43	694.00	57.76	-5.12	0.721
120.00	-8.30	-16.22	0.00	-485.0	0.00	484.98	1,122.38	311.36	838.38	689.55	58.29	-5.15	0.713
125.00	-7.76	-15.68	0.00	-403.9	0.00	403.88	1,096.47	298.31	769.56	645.21	63.85	-5.47	0.636
130.00	-7.24	-15.16	0.00	-325.5	0.00	325.46	1,068.71	285.25	703.68	601.18	69.73	-5.76	0.551
135.00	-6.74	-14.66	0.00	-249.6	0.00	249.64	1,039.10	272.20	640.75	557.59	75.9	-6.03	0.457
140.00	-6.26	-14.17	0.00	-176.4	0.00	176.36	1,007.63	259.14	580.77	514.58	82.34	-6.26	0.352
145.00	-3.47	-9.41	0.00	-105.5	0.00	105.53	974.32	246.09	523.73	472.32	88.98	-6.43	0.228
150.00	-3.06	-8.95	0.00	-58.5	0.00	58.47	939.15	233.03	469.65	430.93	95.77	-6.55	0.140
155.00	-2.65	-8.66	0.00	-13.7	0.00	13.71	902.14	219.98	418.50	390.56	102.65	-6.61	0.040
156.00	-0.13	-0.15	0.00	-0.6	0.00	0.59	894.51	217.37	408.63	382.62	104.04	-6.62	0.002
160.00	0.00	-0.13	0.00	0.0	0.00	0.00	863.27	206.92	370.31	351.36	109.57	-6.62	0.000

Load Case: 1.2D + 1.0Di +	1.0Wi Normal	50 mph wind with	n 1" radial ice		23 Iterations
Gust Response Factor: Dead load Factor:	1.10 1.20	Ice Dead Load Factor	1.00	Ice Importance Factor	1.00
Wind Load Factor:	1.00			ioe importance i dotor	1.00

CALCULATED FORCES Pu Phi Vu Mu Phi Phi Phi Seg Tu Mu Resultant Total Elev FY (-) FX (-) MY ΜZ MX Moment Pn Vn Tn Mn Deflect Rotation (ft-kips) (ft-kips) (kips) (ft-kips) (kips) (ft) (kips) (kips) (ft-kips) (ft-kips) (ft-kips) (in) (deg) Ratio 0.00 -60.38 -10.04 0.00 -1,018.2 0.00 1,018.24 4,428.22 1,214.12 6,373.87 5,303.38 0 0 0.206 0.202 5.00 -58.31 -9.80 0.00 -968.0 0.00 968.04 4,375.11 1,188.01 6,102.70 5,126.36 0.03 -0.0510.00 -56.24 -9.58 0.00 -919.0 0.00 919.02 4,320.14 1,161.90 5,837.43 4,949.98 0.199 0.1 -0.115.00 -54.19 -9.35 0.00 -871.1 0.00 871.14 4,263.32 1,135.79 5,578.04 4,774.37 0.23 -0.150.195 20.00 -52.16 -9.12 0.00 -824.4 0.00 824.40 4.204.66 1.109.68 5.324.56 4.599.68 0.41 -0.2 0.192 25.00 -50.17 -8.88 0.00 -778.8 0.00 778.80 4,144.14 1,083.57 5,076.96 4,426.06 0.64 -0.250.188 30.00 -48.21 -8.64 0.00 -734.4 0.00 734.40 4,081.76 1,057.46 4,835.26 4,253.64 0.93 -0.3 0.185 35.00 -46.29-8.40 0.00 -691.20.00 691.20 4,017.54 1,031.35 4,599.46 4,082.58 1.27 -0.350.181 40.00 -44.40 -8.24 0.00 -649.2 0.00 649.21 3,951.47 1,005.24 4,369.55 3,913.02 1.66 -0.40.177 41.25 -43.94-8.12 0.00 -638.9 0.00 638.91 3,934.66 998.71 4,312.99 3,870.88 1.77 -0.420.176 45.00 -41.82 -7.95 0.00 -608.5 0.00 608.46 3.883.54 979.13 4.145.53 3.745.09 2.11 -0.460.173 48.00 -40.15-7.82 0.00 -584.6 0.00 584.62 3,017.05 814.85 3,445.27 2,909.43 2.41 -0.490.214 50.00 -39.49 -7.65 0.00 -569.0 0.00 568.99 2,998.54 806.15 3,372.07 2,860.50 2.62 -0.51 0.212 55.00 -37.88-7.420.00 -530.70.00 530.72 2,950.98 784.39 3,192.52 2,738.63 3.19 -0.570.207 60.00 -36.30 -7.18 -493.6 0.00 493.64 3,017.88 2,617.56 0.201 0.00 2.901.57 762.63 3.82 -0.6465.00 -34.76-6.95 0.00 -457.7 0.00 457.73 2,850.30 740.88 2,848.15 2,497.43 4.52 -0.7 0.196 70.00 -33.25-6.72 0.00 -423.00.00 422.99 2.797.18 719.12 2.683.33 2.378.39 5.29 -0.77 0.190 75.00 -31.77-6.490.00 -389.40.00 389.40 2,742.21 697.36 2,523.42 2,260.57 6.13 -0.830.184 80.00 -30.33 -6.27 0.00 -357.0 0.00 356.95 2,685.39 675.60 2,368.43 2,144.13 7.04 -0.9 0.178 85.00 -28.92 -6.07 0.00 -325.6 0.00 325.60 2,626.72 653.84 2,218.35 2,029.20 8.02 -0.96 0.172 -27.82 -5.95 -301.3 301.33 2,578.45 636.44 2,101.82 -1.02 89.00 0.00 0.00 1.938.44 8.85 0.166 90.00 -27.43-5.85 0.00 -295.4 0.00 295.37 2,566.20 632.08 2,073.18 1,915.93 9.06 -1.03 0.165 94.25 -25.78 -5.72 0.00 -270.5 0.00 270.53 1,881.22 498.70 1.613.10 1.387.42 10.01 -1.090.209 95.00 -25.60-5.61 0.00 -266.2 0.00 266.24 1,875.33 496.09 1,596.26 1,375.78 10.18 -1.1 0.207 1,834.99 100.00 -24.42 -5.41 0.00 -238.2 0.00 238.19 478.69 1,486.22 1,298.62 11.37 -1.18 0.197 105.00 -23.28 -5.21 0.00 -211.2 0.00 211.15 1,792.79 461.28 1,380.11 1,222.29 12.65 -1.260.186 -22.16 0.00 185.10 1.748.74 443.87 0.174 110.00 -5.020.00 -185.11.277.92 1.146.93 14.01 -1.33115.00 -21.07 -4.83 0.00 -160.0 0.00 160.03 1,702.84 426.47 1,179.67 1,072.68 15.44 -1.41 0.162 119.50 -19.78 -4.72 0.00 -138.3 0.00 138.29 1,124.87 16.81 -1.48 0.217 312.67 845.43 694.00 120.00 -19.69-4.630.00 -135.90.00 135.93 1,122.38 311.36 838.38 689.55 16.96 -1.480.215 125.00 -18.77 -4.45 0.00 112.78 1,096.47 298.31 769.56 645.21 18.56 -1.57 0.00 -112.80.192 130.00 -17.87 -4.28 0.00 -90.5 0.00 90.52 1,068.71 285.25 703.68 601.18 20.26 -1.65 0.168 557.59 135.00 -17.00-4.11 0.00 -69.10.00 69.12 1,039.10 272.20 640.75 22.03 -1.730.141 140.00 -16.16 -3.94 0.00 -48.6 0.00 48.58 1,007.63 259.14 580.77 514.58 23.88 -1.79 0.111 145.00 -9.89 -2.61 0.00 -28.9 0.00 28.88 974.32 246.09 523.73 472.32 25.78 -1.840.071 150.00 -9.12 -2.450.00 -15.8 0.00 15.82 939.15 233.03 469.65 430.93 27.73 -1.870.047 155.00 -8.36-2.340.00 -3.60.00 3.59 902.14 219.98 418.50 390.56 -1.890.019 29.7 156.00 -0.33 -0.06 0.00 -0.2 0.00 0.24 894.51 217.37 408.63 382.62 30.09 -1.890.001

160.00

0.00

-0.05

0.00

0.0

0.00

0.00

863.27

206.92

370.31

Model Id: 21103

351.36

31.68

-1.89

0.000

Load Case: 1.0D + 1.0W Service Normal 60 mph Wind with No Ice 23 Iterations

Gust Response Factor: 1.10
Dead load Factor: 1.00
Wind Load Factor: 1.00

CALCULATED FORCES

OALOOLA	~ I L D I OI	OLO											
Seg	Pu	Vu	Tu	Mu	Mu	Resultant	Phi	Phi	Phi	Phi	Total		
Elev	FY (-)	FX (-)	MY	MZ	MX	Moment	Pn	Vn	Tn	Mn	Deflect	Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	Ratio
	\ 1 -7	1 -7	\ - - /	\ ' -/	\ · -7	\ ' - /	\ 1 -7	\ -7	\ 1 -7	\ ' -7		(* - 3/	
0.00	-38.07	-8.15	0.00	-846.1	0.00	846.11	4,428.22	1,214.12	6,373.87	5,303.38	0	0	0.168
5.00	-36.63	-7.96	0.00	-805.4	0.00	805.36	4,375.11	1,188.01	6,102.70	5,126.36	0.02	-0.04	0.166
10.00	-35.21	-7.78	0.00	-765.6	0.00	765.55	4,320.14	1,161.90	5,837.43	4,949.98	0.08	-0.08	0.163
15.00	-33.82	-7.60	0.00	-726.7	0.00	726.66	4,263.32	1,135.79	5,578.04	4,774.37	0.19	-0.12	0.160
20.00	-32.46	-7.41	0.00	-688.7	0.00	688.68	4,204.66	1,109.68	5,324.56	4,599.68	0.34	-0.16	0.157
25.00	-31.11	-7.23	0.00	-651.6	0.00	651.61	4,144.14	1,083.57	5,076.96	4,426.06	0.53	-0.21	0.155
30.00	-29.80	-7.04	0.00	-615.5	0.00	615.47	4,081.76	1,057.46	4,835.26	4,253.64	0.77	-0.25	0.152
35.00	-28.51	-6.85	0.00	-580.3	0.00	580.29	4,017.54	1,031.35	4,599.46	4,082.58	1.05	-0.29	0.149
40.00	-27.25	-6.73	0.00	-546.0	0.00	546.05	3,951.47	1,005.24	4,369.55	3,913.02	1.38	-0.34	0.146
41.25	-26.94	-6.63	0.00	-537.6	0.00	537.64	3,934.66	998.71	4,312.99	3,870.88	1.47	-0.35	0.146
45.00	-25.40	-6.50	0.00	-512.8	0.00	512.76	3,883.54	979.13	4,145.53	3,745.09	1.76	-0.38	0.144
48.00	-24.19	-6.40	0.00	-493.3	0.00	493.26	3,017.05	814.85	3,445.27	2,909.43	2.01	-0.41	0.178
50.00	-23.77	-6.27	0.00	-480.5	0.00	480.46	2,998.54	806.15	3,372.07	2,860.50	2.18	-0.43	0.176
55.00	-22.72	-6.09	0.00	-449.1	0.00	449.10	2,950.98	784.39	3,192.52	2,738.63	2.66	-0.48	0.172
60.00	-21.69	-5.91	0.00	-418.6	0.00	418.65	2,901.57	762.63	3,017.88	2,617.56	3.19	-0.53	0.167
65.00	-20.69	-5.73	0.00	-389.1	0.00	389.12	2,850.30	740.88	2,848.15	2,497.43	3.78	-0.59	0.163
70.00	-19.70	-5.55	0.00	-360.5	0.00	360.47	2,797.18	719.12	2,683.33	2,378.39	4.43	-0.64	0.159
75.00	-18.74	-5.38	0.00	-332.7	0.00	332.70	2,742.21	697.36	2,523.42	2,260.57	5.14	-0.7	0.154
80.00	-17.80	-5.21	0.00	-305.8	0.00	305.80	2,685.39	675.60	2,368.43	2,144.13	5.9	-0.76	0.149
85.00	-16.88	-5.06	0.00	-279.7	0.00	279.73	2,626.72	653.84	2,218.35	2,029.20	6.72	-0.81	0.144
89.00	-16.16	-4.98	0.00	-259.5	0.00	259.48	2,578.45	636.44	2,101.82	1,938.44	7.42	-0.86	0.140
90.00	-15.88	-4.90	0.00	-254.5	0.00	254.50	2,566.20	632.08	2,073.18	1,915.93	7.61	-0.87	0.139
94.25	-14.72	-4.80	0.00	-233.7	0.00	233.70	1,881.22	498.70	1,613.10	1,387.42	8.4	-0.92	0.176
95.00	-14.60	-4.72	0.00	-230.1	0.00	230.10	1,875.33	496.09	1,596.26	1,375.78	8.55	-0.93	0.175
100.00	-13.86	-4.57	0.00	-206.5	0.00	206.50	1,834.99	478.69	1,486.22	1,298.62	9.56	-1	0.167
105.00	-13.13	-4.42	0.00	-183.7	0.00	183.66	1,792.79	461.28	1,380.11	1,222.29	10.64	-1.07	0.158
110.00	-12.41	-4.28	0.00	-161.6	0.00	161.56	1,748.74	443.87	1,277.92	1,146.93	11.8	-1.13	0.148
115.00	-11.72	-4.14	0.00	-140.2	0.00	140.18	1,702.84	426.47	1,179.67	1,072.68	13.02	-1.2	0.138
119.50	-10.83	-4.06	0.00	-121.6	0.00	121.55	1,124.87	312.67	845.43	694.00	14.18	-1.26	0.185
120.00	-10.77	-3.99	0.00	-119.5	0.00	119.52	1,122.38	311.36	838.38	689.55	14.31	-1.26	0.183
125.00	-10.20	-3.86	0.00	-99.6	0.00	99.56	1,096.47	298.31	769.56	645.21	15.68	-1.34	0.164
130.00	-9.64	-3.74	0.00	-80.2	0.00	80.24	1,068.71	285.25	703.68	601.18	17.13	-1.42	0.143
135.00	-9.10	-3.61	0.00	-61.6	0.00	61.55	1,039.10	272.20	640.75	557.59	18.65	-1.48	0.119
140.00	-8.57	-3.49	0.00	-43.5	0.00	43.48	1,007.63	259.14	580.77	514.58	20.23	-1.54	0.093
145.00	-4.95	-2.32	0.00	-26.0	0.00	26.01	974.32	246.09	523.73	472.32	21.87	-1.58	0.060
150.00	-4.46	-2.21	0.00	-14.4	0.00	14.40	939.15	233.03	469.65	430.93	23.54	-1.61	0.038
155.00	-3.98	-2.13	0.00	-3.4	0.00	3.37	902.14	219.98	418.50	390.56	25.24	-1.63	0.013
156.00	-0.16	-0.04	0.00	-0.2	0.00	0.15	894.51	217.37	408.63	382.62	25.58	-1.63	0.001
160.00	0.00	-0.03	0.00	0.0	0.00	0.00	863.27	206.92	370.31	351.36	26.94	-1.63	0.000
	2.00	2.00	3.00	0.0	0.00	0.00							

EQUIVALENT LATERAL FORCES METHOD ANALYSIS (Based on ASCE7-16 Chapters 11, 12 and 15) Spectral Response Acceleration for Short Period (S_S): 0.199 Spectral Response Acceleration at 1.0 Second Period (S₁): 0.055 6 Long-Period Transition Period (T_L – Seconds): Importance Factor (I_e): 1.000 Site Coefficient Fa: 1.600 Site Coefficient F_v: 2.400 1.500 Response Modification Coefficient (R): Design Spectral Response Acceleration at Short Period (S_{ds}): 0.212 Design Spectral Response Acceleration at 1.0 Second Period (S_{d1}): 0.088 Seismic Response Coefficient (C_s): 0.030 Upper Limit C_S: 0.030 0.030 Lower Limit Cs: Period based on Rayleigh Method (sec): 2.420 Redundancy Factor (p): 1.000 Seismic Force Distribution Exponent (k): 1.960 Total Unfactored Dead Load: 38.080 k Seismic Base Shear (E): 1.140 k

1.2D + 1.0Ev + 1.0Eh Normal Seismic

	Height Above Base	Weight	Wz		Horizontal Force	Vertical Force
Segment	(ft)	(lb)	(lb-ft)	C _{vx}	(lb)	(lb)
38	158	165	3,320	0.012	14	204
37	155.5	95	1,850	0.007	8	118
36	152.5	481	9,047	0.032	37	597
35	147.5	493	8,698	0.031	36	613
34	142.5	518	8,532	0.031	35	643
33	137.5	530	8,150	0.029	33	659
32	132.5	543	7,761	0.028	32	674
31	127.5	556	7,366	0.026	30	690
30	122.5	568	6,966	0.025	29	706
29	119.75	58	674	0.002	3	71
28	117.25	889	9,999	0.036	41	1,104
27	112.5	695	7,207	0.026	30	863
26	107.5	711	6,754	0.024	28	884
25	102.5	728	6,298	0.023	26	905
24	97.5	745	5,843	0.021	24	926
23	94.625	113	837	0.003	3	141
22	92.125	1,162	8,154	0.029	33	1,444
21	89.5	277	1,840	0.007	8	345
20	87	718	4,507	0.016	18	893
19	82.5	917	5,185	0.019	21	1,139
18	77.5	938	4,693	0.017	19	1,166
17	72.5	959	4,211	0.015	17	1,192
16	67.5	980	3,742	0.013	15	1,218
15	62.5	1,001	3,288	0.012	13	1,244
14	57.5	1,023	2,851	0.010	12	1,270
13	52.5	1,044	2,435	0.009	10	1,297
12	49	423	863	0.003	4	526
11	46.5	1,206	2,220	0.008	9	1,499
10	43.125	1,531	2,431	0.009	10	1,903
9	40.625	311	439	0.002	2	386
8	37.5	1,260	1,521	0.006	6	1,565
7	32.5	1,285	1,173	0.004	5	1,597
6	27.5	1,310	862	0.003	4	1,628
5	22.5	1,336	593	0.002	2	1,660
©2007 - 2020 by ATC LLC. All rights reser	ved.	Page	e 8 of 12	Model	ld : 21103	8/20/2021 14:41:51

Segment	Height Above Base (ft)	Weight (lb)	W _z (lb-ft)	C_{vx}	Horizontal Force (lb)	Vertical Force (lb)
4	17.5	1,361	370	0.001	2	1,691
3	12.5	1,386	195	0.001	1	1,723
2	7.5	1,412	73	0.000	0	1,754
1	2.5	1,437	9	0.000	0	1,785
Raycap DC6-48-60-18-8F	156	80	1,574	0.006	6	99
Ericsson RRUS 4478 B14 (15")	156	178	3,507	0.013	14	221
Ericsson RRUS 4449 B5, B12	156	213	4,192	0.015	17	265
Ericsson RRUS 11 (Band 12) (55 lb)	156	165	3,247	0.012	13	205
Ericsson RRUS 32 B2	156	159	3,129	0.011	13	198
CCI HPA-65R-BUU-H8	156	408	8,030	0.029	33	507
CCI DMP65R-BU8D	156	574	11,301	0.040	46	713
Round Platform w/ Handrails	156	2,000	39,362	0.141	161	2,485
Commscope RDIDC-9181-PF-48	145	22	374	0.001	2	27
Fujitsu TA08025-B604	145	192	3,270	0.012	13	238
Fujitsu TA08025-B605	145	225	3,838	0.014	16	280
JMA Wireless MX08FRO665-21	145	194	3,300	0.012	14	240
Generic Flat Platform with Handrails	145	2,500	42,639	0.153	175	3,106
_		38,075	278,719	1.000	1,142	47,307

O OD A OFWA A OFF Normal	Caiamia (Daduaged DL)
0.9D - 1.0Ev + 1.0Eh Normal	Seismic (Reduced DL)

Segment	Height Above Base (ft)	Weight (lb)	W _z (lb-ft)	C _{vx}	Horizontal Force (lb)	Vertical Force (lb)
38	158	165	3,320	0.012	14	141
37	155.5	95	1,850	0.007	8	81
36	152.5	481	9,047	0.032	37	412
35	147.5	493	8,698	0.031	36	423
34	142.5	518	8,532	0.031	35	444
33	137.5	530	8,150	0.029	33	455
32	132.5	543	7,761	0.028	32	466
31	127.5	556	7,366	0.026	30	476
30	122.5	568	6,966	0.025	29	487
29	119.75	58	674	0.002	3	49
28	117.25	889	9,999	0.036	41	762
27	112.5	695	7,207	0.026	30	596
26	107.5	711	6,754	0.024	28	610
25	102.5	728	6,298	0.023	26	625
24	97.5	745	5,843	0.021	24	639
23	94.625	113	837	0.003	3	97
22	92.125	1,162	8,154	0.029	33	997
21	89.5	277	1,840	0.007	8	238
20	87	718	4,507	0.016	18	616
19	82.5	917	5,185	0.019	21	786
18	77.5	938	4,693	0.017	19	805
17	72.5	959	4,211	0.015	17	823
16	67.5	980	3,742	0.013	15	841
15	62.5	1,001	3,288	0.012	13	859
14	57.5	1,023	2,851	0.010	12	877
13	52.5	1,044	2,435	0.009	10	895
12	49	423	863	0.003	4	363
11	46.5	1,206	2,220	0.008	9	1,034
10	43.125	1,531	2,431	0.009	10	1,313
9	40.625	311	439	0.002	2	267
8	37.5	1,260	1,521	0.006	6	1,080
7	32.5	1,285	1,173	0.004	5	1,102
6	27.5	1,310	862	0.003	4	1,124
5	22.5	1,336	593	0.002	2	1,145
4	17.5	1,361	370	0.001	2	1,167
3	12.5	1,386	195	0.001	1	1,189
2	7.5	1,412	73	0.000	0	1,211
1	2.5	1,437	9	0.000	0	1,232
Raycap DC6-48-60-18-8F	156	80	1,574	0.006	6	69
Ericsson RRUS 4478 B14 (15")	156	178	3,507	0.013	14	153

Segment	Height Above Base (ft)	Weight (lb)	W _z (lb-ft)	C_vx	Horizontal Force (lb)	Vertical Force (lb)
Ericsson RRUS 4449 B5, B12	156	213	4,192	0.015	17	183
Ericsson RRUS 11 (Band 12) (55 lb)	156	165	3,247	0.012	13	141
Ericsson RRUS 32 B2	156	159	3,129	0.011	13	136
CCI HPA-65R-BUU-H8	156	408	8,030	0.029	33	350
CCI DMP65R-BU8D	156	574	11,301	0.040	46	492
Round Platform w/ Handrails	156	2,000	39,362	0.141	161	1,715
Commscope RDIDC-9181-PF-48	145	22	374	0.001	2	19
Fujitsu TA08025-B604	145	192	3,270	0.012	13	164
Fujitsu TA08025-B605	145	225	3,838	0.014	16	193
JMA Wireless MX08FRO665-21	145	194	3,300	0.012	14	166
Generic Flat Platform with Handrails	145	2,500	42,639	0.153	175	2,144
		38,075	278,719	1.000	1,142	32,651

|--|

						CALCULA	TED FORCE	S					
Sea	Pu	Vu	Tu	Mu	Mu	Resultant	Phi	Phi	Phi	Phi	Total		
Elev	FY (-)	FX (-)	MY	MZ	Mx	Moment	Pn	Vn	Tn	Mn	Deflect	Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(fr-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(kips)	(kips)	(in)	(deg)	Ratio
0.00	-45.52	-1.14	0.00	-151.08	0.00	151.08	4,428.22	1,214.12	6,374	5,303.38	0.00	0.00	0.04
5.00	-43.77	-1.15	0.00	-145.35	0.00	145.35	4,375.11	1,188.01	6,103	5,126.36	0.00	-0.01	0.04
10.00	-42.04	-1.15	0.00	-139.60	0.00	139.60	4,320.14	1,161.90	5,837	4,949.98	0.02	-0.01	0.04
15.00	-40.35	-1.16	0.00	-133.83	0.00	133.83	4,263.32	1,135.79	5,578	4,774.37	0.03	-0.02	0.04
20.00	-38.69	-1.16	0.00	-128.05	0.00	128.05	4,204.66	1,109.68	5,325	4,599.68	0.06	-0.03	0.04
25.00	-37.07	-1.16	0.00	-122.25	0.00	122.25	4,144.14	1,083.57	5,077	4,426.06	0.10	-0.04	0.04
30.00	-35.47	-1.16	0.00	-116.45	0.00	116.45	4,081.76	1,057.46	4,835	4,253.64	0.14	-0.05	0.04
35.00	-33.90	-1.16	0.00	-110.65	0.00	110.65	4,017.54	1,031.35	4,599	4,082.58	0.19	-0.05	0.04
40.00	-33.52	-1.16	0.00	-104.87	0.00	104.87	3,951.47	1,005.24	4,370	3,913.02	0.25	-0.06	0.04
41.25	-31.61	-1.15	0.00	-103.42	0.00	103.42	3,934.66	998.71	4,313	3,870.88	0.27	-0.06	0.04
45.00	-30.11	-1.14	0.00	-99.12	0.00	99.12	3,883.54	979.13	4,146	3,745.09	0.32	-0.07	0.03
48.00	-29.59	-1.14	0.00	-95.70	0.00	95.70	3,017.05	814.85	3,445	2,909.43	0.37	-0.08	0.04
50.00	-28.29	-1.13	0.00	-93.42	0.00	93.42	2,998.54	806.15	3,372	2,860.50	0.40	-0.08	0.04
55.00	-27.02	-1.12	0.00	-87.77	0.00	87.77	2,950.98	784.39	3,193	2,738.63	0.49	-0.09	0.04
60.00	-25.78	-1.11	0.00	-82.16	0.00	82.16	2,901.57	762.63	3,018	2,617.56	0.59	-0.10	0.04
65.00	-24.56	-1.10	0.00	-76.61	0.00	76.61	2,850.30	740.88	2,848	2,497.43	0.71	-0.11	0.04
70.00	-23.37	-1.08	0.00	-71.12	0.00	71.12	2,797.18	719.12	2,683	2,378.39	0.83	-0.12	0.04
75.00	-22.20	-1.06	0.00	-65.71	0.00	65.71	2,742.21	697.36	2,523	2,260.57	0.96	-0.13	0.04
80.00	-21.06	-1.04	0.00	-60.39	0.00	60.39	2,685.39	675.60	2,368	2,144.13	1.11	-0.14	0.04
85.00	-20.17	-1.03	0.00	-55.16	0.00	55.16	2,626.72	653.84	2,218	2,029.20	1.27	-0.16	0.04
89.00	-19.82	-1.02	0.00	-51.05	0.00	51.05	2,578.45	636.44	2,102	1,938.44	1.40	-0.17	0.03
90.00	-18.38	-0.99	0.00	-50.03	0.00	50.03	2,566.20	632.08	2,073	1,915.93	1.44	-0.17	0.03
94.25	-18.24	-0.98	0.00	-45.84	0.00	45.84	1,881.22	498.70	1,613	1,387.42	1.59	-0.18	0.04
95.00	-17.31	-0.96	0.00	-45.10	0.00	45.10	1,875.33	496.09	1,596	1,375.78	1.62	-0.18	0.04
100.00	-16.41	-0.93	0.00	-40.31	0.00	40.31	1,834.99	478.69	1,486	1,298.62	1.81	-0.19	0.04
105.00	-15.52	-0.91	0.00	-35.64	0.00	35.64	1,792.79	461.28	1,380	1,222.29	2.02	-0.21	0.04
110.00	-14.66	-0.88	0.00	-31.10	0.00	31.10	1,748.74	443.87	1,278	1,146.93	2.24	-0.22	0.04
115.00	-13.56	-0.84	0.00	-26.72	0.00	26.72	1,702.84	426.47	1,180	1,072.68	2.48	-0.23	0.03
119.50	-13.49	-0.83	0.00	-22.96	0.00	22.96	1,124.87	312.67	845	694.00	2.70	-0.24	0.05
120.00	-12.78	-0.80	0.00	-22.54	0.00	22.54	1,122.38	311.36	838	689.55	2.73	-0.24	0.04
125.00	-12.09	-0.77	0.00	-18.52	0.00	18.52	1,096.47	298.31	770	645.21	2.99	-0.26	0.04
130.00	-11.41	-0.74	0.00	-14.66	0.00	14.66	1,068.71	285.25	704	601.18	3.27	-0.27	0.04
135.00	-10.76	-0.71	0.00	-10.95	0.00	10.95	1,039.10	272.20	641	557.59	3.56	-0.28	0.03
140.00	-10.11	-0.67	0.00	-7.42	0.00	7.42	1,007.63	259.14	581	514.58	3.86	-0.29	0.02
145.00	-5.61	-0.39	0.00	-4.07	0.00	4.07	974.32	246.09	524	472.32	4.17	-0.30	0.01
150.00	-5.01	-0.35	0.00	-2.11	0.00	2.11	939.15	233.03	470	430.93	4.49	-0.31	0.01
155.00	-4.90	-0.34	0.00	-0.34	0.00	0.34	902.14	219.98	418	390.56	4.81	-0.31	0.01
156.00	0.00	0.00	0.00	0.00	0.00	0.00	894.51	217.37	409	382.62	4.88	-0.31	0.00
160.00	0.00	0.00	0.00	0.00	0.00	0.00	863.27	206.92	370	351.36	5.13	-0.31	0.00

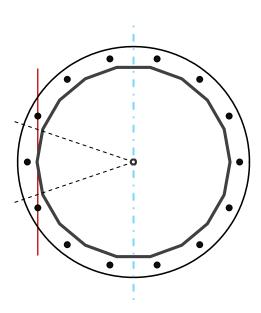
0.9D - 1.0Ev + 1.0Eh Normal Seismic (Reduced DL)

						CALCULATE	ED FORCES						
Seg Elev	Pu FY (-)	Vu FX (-)	Tu MY	Mu MZ	Mu Mx	Resultant Moment	Phi Pn	Phi Vn	Phi Tn	Phi Mn	Total Deflect	Rotation (deg)	Ratio

(kina)	(kina)	(ft king)	(fr.kina)	(ft king)	(ft king)	(kina)	(kina)	(kina)	(kina)	(in)		
(kips)	(Kips)	(II-KIPS)	(II-KIPS)	(II-KIPS)	(II-KIPS)	(Kips)	(Kips)	(Kips)	(kips)	(111)		
-31 42	-1 14	0.00	-148 96	0.00	148 96	4 428 22	1 214 12	6 374	5 303 38	0.00	0.00	0.04
						•	,					0.04
												0.03
												0.03
												0.03
												0.03
												0.03
												0.03
												0.03
						•						0.03
												0.03
							814.85		2.909.43	0.36	-0.08	0.04
												0.04
							784.39					0.04
-17.79		0.00		0.00	80.56							0.04
-16.95	-1.08	0.00	-75.09	0.00	75.09	2,850.30		2,848			-0.11	0.04
-16.13	-1.07	0.00	-69.68	0.00	69.68	2,797.18		2,683			-0.12	0.04
-15.32	-1.05	0.00	-64.35	0.00	64.35	2,742.21	697.36	2,523			-0.13	0.03
-14.54	-1.03	0.00	-59.11	0.00	59.11	2,685.39	675.60	2,368	2,144.13	1.09	-0.14	0.03
-13.92	-1.01	0.00	-53.98	0.00	53.98	2,626.72	653.84	2,218	2,029.20	1.24	-0.15	0.03
-13.68	-1.00	0.00	-49.94	0.00	49.94	2,578.45	636.44	2,102	1,938.44	1.38	-0.16	0.03
-12.68	-0.97	0.00	-48.94	0.00	48.94	2,566.20	632.08	2,073	1,915.93	1.41	-0.16	0.03
-12.59	-0.97	0.00	-44.83	0.00	44.83	1,881.22	498.70	1,613	1,387.42	1.56	-0.17	0.04
-11.95	-0.94	0.00	-44.10	0.00	44.10	1,875.33	496.09	1,596			-0.18	0.04
	-0.92	0.00		0.00	39.40	1,834.99		1,486				0.04
		0.00		0.00	34.82			1,380				0.03
								,				0.03
												0.03
												0.04
						•						0.04
						•		-				0.04
	-							-				0.03
						•						0.03
						•						0.02
									_			0.01
												0.01
												0.01
												0.00
0.00	0.00	0.00	0.00	0.00	0.00	863.27	206.92	370	351.36	5.04	-0.30	0.00
	-16.95 -16.13 -15.32 -14.54 -13.92 -13.68 -12.68 -12.59	-31.42 -1.14 -30.21 -1.15 -29.02 -1.15 -27.85 -1.15 -26.71 -1.15 -25.58 -1.15 -24.48 -1.15 -23.40 -1.15 -23.13 -1.15 -21.82 -1.14 -20.78 -1.13 -20.42 -1.13 -19.53 -1.12 -18.65 -1.11 -17.79 -1.10 -16.95 -1.08 -16.13 -1.07 -15.32 -1.05 -14.54 -1.03 -13.92 -1.01 -13.68 -1.00 -12.68 -0.97 -12.59 -0.97 -11.95 -0.94 -11.32 -0.92 -10.71 -0.89 -10.12 -0.86 -9.36 -0.82 -9.31 -0.81 -8.82 -0.79 -8.34 -0.76 -7.88 -0.72 -7.42 -0.69 -6.98 -0.65 -3.87 -0.38 -3.46 -0.34 -3.38 -0.34 -0.00	-31.42 -1.14 0.00 -30.21 -1.15 0.00 -29.02 -1.15 0.00 -27.85 -1.15 0.00 -26.71 -1.15 0.00 -25.58 -1.15 0.00 -24.48 -1.15 0.00 -23.40 -1.15 0.00 -23.13 -1.15 0.00 -23.13 -1.15 0.00 -21.82 -1.14 0.00 -20.78 -1.13 0.00 -21.82 -1.14 0.00 -19.53 -1.12 0.00 -18.65 -1.11 0.00 -17.79 -1.10 0.00 -16.95 -1.08 0.00 -16.13 -1.07 0.00 -15.32 -1.05 0.00 -14.54 -1.03 0.00 -13.68 -1.00 0.00 -12.68 -0.97 0.00 -12.68 -0.97 0.00 -12.59 -0.97 0.00 -11.95 -0.94 0.00 -11.95 -0.94 0.00 -11.95 -0.94 0.00 -10.71 -0.89 0.00 -10.71 -0.89 0.00 -10.71 -0.89 0.00 -10.71 -0.89 0.00 -10.71 -0.89 0.00 -10.71 -0.89 0.00 -10.71 -0.89 0.00 -10.72 -0.96 0.00 -9.36 -0.82 0.00 -9.31 -0.81 0.00 -9.36 -0.82 0.00 -9.31 -0.81 0.00 -7.88 -0.72 0.00 -7.42 0.69 0.00 -6.98 -0.65 0.00 -3.87 -0.38 0.00 -3.38 -0.34 0.00 -3.38 -0.34 0.00 -3.38 -0.34 0.00 -3.38 -0.34 0.00 -3.38 -0.34 0.00 -3.38 -0.34 0.00 -3.38 -0.34 0.00 -3.38 -0.34 0.00 -0.00	-31.42 -1.14 0.00 -148.96 -30.21 -1.15 0.00 -143.24 -29.02 -1.15 0.00 -137.51 -27.85 -1.15 0.00 -131.76 -26.71 -1.15 0.00 -126.00 -25.58 -1.15 0.00 -120.24 -24.48 -1.15 0.00 -108.73 -23.40 -1.15 0.00 -108.73 -23.13 -1.15 0.00 -103.01 -21.82 -1.14 0.00 -101.57 -20.78 -1.13 0.00 -97.31 -20.42 -1.13 0.00 -97.31 -20.42 -1.13 0.00 -93.93 -19.53 -1.12 0.00 -91.68 -18.65 -1.11 0.00 -86.10 -17.79 -1.10 0.00 -80.56 -16.95 -1.08 0.00 -75.09 -16.13 -1.07 0.00 -69.68 -15.32 -1.05 0.00 -64.35 -14.54 -1.03 0.00 -59.11 -13.92 -1.01 0.00 -53.98 -13.68 -1.00 0.00 -44.94 -12.68 -0.97 0.00 -44.83 -11.95 -0.94 0.00 -44.83 -11.95 -0.94 0.00 -34.82 -10.71 -0.89 0.00 -39.40 -10.71 -0.89 0.00 -30.38 -9.36 -0.82 0.00 -26.08 -9.31 -0.81 0.00 -22.41 -8.82 -0.79 0.00 -22.00 -8.34 -0.76 0.00 -18.07 -7.88 -0.72 0.00 -14.29 -7.42 -0.69 0.00 -3.38 -9.36 -0.82 0.00 -22.00 -8.34 -0.76 0.00 -18.07 -7.88 -0.72 0.00 -14.29 -7.42 -0.69 0.00 -7.23 -3.87 -0.38 0.00 -3.97 -3.46 -0.34 0.00 -2.06 -3.38 -0.34 0.00 -0.34 -0.00 0.00 0.00	-31.42	-31.42	-31.42	-31.42 -1.14	-31.42 -1.14 0.00 -148.96 0.00 148.96 4,428.22 1,214.12 6,374 -30.21 -1.15 0.00 -143.24 0.00 143.24 4,375.11 1,188.01 6,103 -29.02 -1.15 0.00 -137.51 0.00 137.51 4,320.14 1,161.90 5,837 -27.85 -1.15 0.00 -126.00 0.00 126.00 4,204.66 1,109.68 5,325 -26.71 -1.15 0.00 -126.00 0.00 126.00 4,204.66 1,109.68 5,325 -25.58 -1.15 0.00 -120.24 0.00 120.24 4,144.14 1,083.57 5,077 -24.48 -1.15 0.00 -101.48 0.00 114.48 4,081.76 1,057.46 4,835 -23.40 -1.15 0.00 -103.01 0.00 103.01 3,951.47 1,005.24 4,370 -21.82 -1.14 0.00 -101.57 0.00 103.01 3,951.47 1,005.24 4,370 -21.82 -1.14 0.00 -97.31 0.00 97.31 3,883.54 979.13 4,146 -20.42 -1.13 0.00 -97.31 0.00 97.31 3,883.54 979.13 4,146 -20.42 -1.13 0.00 -91.68 0.00 91.68 2,998.54 806.15 3,372 -18.65 -1.11 0.00 -86.10 0.00 86.10 2,950.98 784.39 3,193 -17.79 -1.10 0.00 -80.56 0.00 80.56 2,901.57 762.63 3,018 -16.95 -1.08 0.00 -75.09 0.00 75.09 2,850.30 740.88 2,848 -16.13 -1.07 0.00 -69.68 0.00 69.68 2,797.18 719.12 2,683 -15.32 -1.05 0.00 -64.35 0.00 64.35 2,742.21 697.36 2,523 -14.54 -1.03 0.00 -53.98 0.00 69.39 2,626.72 653.84 2,218 -13.68 -1.00 0.00 -44.94 0.00 44.99 2,578.45 636.44 2,102 -12.68 -0.97 0.00 -44.83 0.00 44.93 1,881.22 498.70 1,591 -11.19 0.00 -40.994 0.00 49.94 2,578.45 636.44 2,102 -12.68 -0.97 0.00 -44.83 0.00 64.35 2,742.21 697.36 2,523 -14.54 -1.03 0.00 -53.98 0.00 63.39 2,626.72 653.84 2,218 -13.68 -1.00 0.00 -49.94 0.00 44.94 1,1875.33 496.09 1,596 -11.19 0.00 -50.80 0.00 3.482 1,792.94 44.887 1,278 -9.36 -0.82 0.00 -34.82 0.00 34.82 1,792.94 44.887 1,278 -9.36 -0.82 0.00 -34.82 0.00 34.82 1,792.94 44.887 1,288 -9.31 -0.81 0.00 -34.82 0.00 39.40 1,834.99 478.69 1,486 -9.31 -0.81 0.00 -34.82 0.00 39.40 1,834.99 478.69 1,486 -9.31 -0.81 0.00 -34.82 0.00 39.40 1,834.99 478.69 1,486 -9.31 -0.81 0.00 -34.82 0.00 39.40 1,834.99 478.69 1,486 -9.31 -0.81 0.00 -34.82 0.00 39.40 1,22.41 1,124.87 312.67 845 -8.82 0.79 0.00 -44.83 0.00 42.00 39.40 1,834.99 478.69 1,486 -9.31 -0.81 0.00 -34.82 0.00 39.40 1,834.99 478.69 1,486 -8.82 0.79 0.00 -34.82 0.00 39.40 0.00 39.40 1	-31.42 -1.14	-31.42 -1.14 0.00 -148.96 0.00 148.96 4.428.22 1.214.12 6.374 5.303.38 0.00 -30.21 -1.15 0.00 -143.24 0.00 143.24 4.375.11 1.188.01 6.103 5.126.36 0.00 -29.02 -1.15 0.00 -137.51 0.00 137.51 4.320.14 1.161.90 6.103 5.126.36 0.00 -29.02 -1.15 0.00 -131.76 0.00 137.51 4.320.14 1.161.90 5.837 4.949.98 0.02 -27.85 -1.15 0.00 -126.00 0.00 126.00 4.204.66 1.109.68 5.325 4.599.68 0.06 -25.58 -1.15 0.00 -120.24 0.00 120.24 4.144.14 1.083.57 5.075 4.426.06 0.10 -24.48 -1.15 0.00 -114.48 0.00 114.48 4.081.76 1.057.46 4.835 4.253.64 0.14 -23.40 -1.15 0.00 -103.01 0.00 108.73 0.00 108.73 4.017.54 1.031.35 4.599 4.082.58 0.19 -23.13 -1.15 0.00 -103.01 0.00 103.01 3.951.47 1.005.24 4.370 3.913.02 0.25 -21.82 -1.14 0.00 -101.57 0.00 101.57 3.934.66 998.71 4.313 3.870.88 0.27 -20.78 -1.13 0.00 -97.31 0.00 97.31 3.883.54 979.13 4.146 3.745.09 0.32 -20.42 -1.13 0.00 -97.31 0.00 97.31 3.883.54 979.13 4.146 3.745.09 0.32 -20.42 -1.13 0.00 -91.68 0.00 91.68 2.998.54 806.15 3.372 2.860.50 0.40 -18.65 -1.11 0.00 -86.10 0.00 86.10 2.950.98 784.39 3.193 2.738.63 0.49 -17.79 -1.10 0.00 -86.10 0.00 86.10 2.950.98 784.39 3.193 2.738.63 0.49 -17.79 -1.10 0.00 -80.56 0.00 80.66 2.901.57 62.63 3.018 2.617.56 0.58 -16.95 -1.08 0.00 -59.11 0.00 53.98 0.00 69.88 2.797.18 719.12 2.683 2.378.39 0.81 -15.322 -1.01 0.00 -53.98 0.00 69.68 2.797.18 719.12 2.683 2.378.39 0.81 -15.322 -1.01 0.00 -64.35 0.00 69.68 2.797.18 719.12 2.683 2.378.39 0.81 -15.322 -1.01 0.00 -53.98 0.00 49.94 2.578.45 636.44 2.102 1.938.44 1.38 -12.68 0.09 7 0.00 44.89 0.00 44.94 0.00 44.94 2.578.45 636.44 2.102 1.938.44 1.38 1.2248 0.09 1.938 0.00 44.89 4.256.20 632.08 2.073 1.915.93 1.41 1.259 0.99 0.00 -34.82 0.00 44.83 1.881.22 488.7 0.49 1.386 1.200 0.00 -34.82 0.00 44.83 1.881.22 488.7 0.49 1.386 1.222.9 1.99 1.11.22 0.92 0.00 -39.40 0.00 44.10 1.875.33 496.09 1.596 1.375.78 1.59 1.11.259 0.994 0.00 -44.80 0.00 44.84 1.124.87 3.346 0.00 5.44 1.38 3.00 4.40 0.00 4.41.0 0.00 4.41.0 1.875.33 4.406.09 1.598.41 1.38 6.955 2.68 8.34 0.06 6.00 0.00 0.00 0.00 0.00 4.41.0 0.00 4.4	31.42

	Max Usage							
Load Case	Shear FX (kips)	Shear FZ (kips)	Axial FY (kips)	Moment MX (ft-kips)	Moment MY (ft-kips)	Moment MZ (ft-kips)	Elev (ft)	Interaction Ratio
1.2D + 1.0W Normal	33.48	0.00	45.64	0.00	0.00	3494.31	119.50	0.74
0.9D + 1.0W Normal	33.46	0.00	34.22	0.00	0.00	3456.36	119.50	0.72
1.2D + 1.0Di + 1.0Wi Normal	10.04	0.00	60.38	0.00	0.00	1018.24	119.50	0.22
1.2D + 1.0Ev + 1.0Eh Normal	1.16	0.00	45.52	0.00	0.00	151.08	119.50	0.05
0.9D - 1.0Ev + 1.0Eh Normal	1.15	0.00	31.42	0.00	0.00	148.96	119.50	0.04
1.0D + 1.0W Service Normal	8.15	0.00	38.07	0.00	0.00	846.11	119.50	0.18

Base Plate & Anchor Rod Analysis


Pole Dimensions				
Number of Sides	18	-		
Diameter	58.5	in		
Thickness	3/8	in		
Orientation Offset	0	•		

Base Reactions			
Moment, Mu	3,494.3	k-ft	
Axial, Pu	45.6	k	
Shear, Vu	33.5	k	
Neutral Axis	90	0	

Report Capacities					
Component Capacity Result					
Base Plate	31%	Pass			
Anchor Rods	80%	Pass			
Dwyidag	-	-			

Base Plate				
Shape	Round	-		
Diameter, ø	71.5	in		
Thickness	2 1/4	in		
Grade	A57	2-50		
Yield Strength, Fy	50	ksi		
Tensile Strength, Fu	65	ksi		
Clip	N/A	in		
Orientation Offset		0		
Anchor Rod Detail	d	η=0.5		
Clear Distance	3	in		
Applied Moment, Mu	434.1	k		
Bending Stress, φMn	1390.3	k		

Original Anchor Rods				
Arrangement	Radial	-		
Quantity	14	-		
Diameter, ø	2 1/4	in		
Bolt Circle	65.5	in		
Grade	A615-75			
Yield Strength, Fy	75	ksi		
Tensile Strength, Fu	100	ksi		
Spacing	14.7	in		
Orientation Offset	0	0		
Applied Force, Pu	192.9	k		
Anchor Rods, φPn	243.6	k		

Calculations for Monopole Base Plate & Anchor Rod Analysis

Reaction Distribution

Reaction	Shear	Moment	nt Factor	
Reaction	Vu	Mu	ractor	
-	k	k-ft	-	
Base Forces	33.5	3494.3	1.00	
Anchor Rod Forces	33.5	3494.3	1.00	
Additional Bolt (Grp1) Forces	0.0	0.0	0.00	
Additional Bolt (Grp2) Forces	0.0	0.0	0.00	
Dywidag Forces	0.0	0.0	0.00	
Stiffener Forces	0.0	0.0	0.00	

Geometric Properties

Section	Gross Area	Net Area	Individual Inertia	Threads per Inch	Moment of Inertia
-	in ²	in ²	in ⁴	#	in ⁴
Pole	68.1298	3.7850	0.1780		28775.39
Bolt	3.9761	3.2477	0.8393	4.5	22658.99
Bolt1	0.0000	0.0000	0.0000	0	0.00
Bolt2	0.0000	0.0000	0.0000	0	0.00
Dywidag	0.0000	0.0000	0.0000		0.00
Stiffener	0.0000	0.0000	0.0000		0.00

Base Plate		
Shape	Round	-
Diameter, D	71.5	in
Thickness, t	2.25	in
Yield Strength, Fy	50	ksi
Tensile Strength, Fu	65	ksi
Base Plate Chord	41.110	in
Detail Type	d	-
Detail Factor	0.50	-
Clear Distance	3	-

Anchor Rods		
Anchor Rod Quantity, N	14	-
Rod Diameter, d	2.25	in
Bolt Circle, BC	65.5	in
Yield Strength, Fy	75	ksi
Tensile Strength, Fu	100	ksi
Applied Axial, Pu	192.9	k
Applied Shear, Vu	0.8	k
Compressive Capacity, φPn	243.6	k
Tensile Capacity, φRnt	0.792	ОК
Interaction Capacity	0.799	OK

External Base Plate			
Chord Length AA	34.454	in	
Additional AA	4.500	in	
Section Modulus, Z	49.302	in ³	
Applied Moment, Mu	434.1	k-ft	
Bending Capacity, φMn	2218.6	k-ft	
Capacity, Mu/φMn	0.196	OK	
Chord Length AB	32.867	in	
Additional AB	4.500	in	
Section Modulus, Z	47.293	in ³	
Applied Moment, Mu	346.9	k-ft	
Bending Capacity, φMn	2128.2	k-ft	
Capacity, Mu/φMn	0.163	OK	
Bend Line Length	24.411	in	
Additional Bend Line	0.000	in	
Section Modulus, Z	30.895	in ³	
Applied Moment, Mu	434.1	k-ft	
Bending Capacity, φMn	1390.3	k-ft	
Capacity, Mu/φMn	0.312	ОК	

Internal Base Plate			
Arc Length	0.000	in	
Section Modulus, Z	0.000	in ³	
Moment Arm	0.000	in	
Applied Moment, Mu	0.0	k-ft	
Bending Capacity, ϕ Mn	0.0	k-ft	
Capacity, Mu/φMn			

Site Name: Bridgewater CT, CT
Site Number: 281862
Tower Type: MP

Design Loads (Factored) - Analysis per TIA-222-H Standards

Monolithic Mat & Pier Foundation Analysis


Foundation Analysis Parameters		
Design / Analysis / Mapping:	Analysis	-
Compression/Leg:	45.6	k
Uplift/Leg:	0.0	k
Total Shear:	33.5	k
Moment:	3,494.3	k-ft
Tower + Appurtenance Weight:	45.6	k
Depth to Base of Foundation (I + t - h):	6	ft
Diameter of Pier (d):	9.03	ft
Length of Pier (I):	3.5	ft
Height of Pier above Ground (h):	0.5	ft
Width of Pad (W):	27	ft
Length of Pad (L):	27	ft
Thickness of Pad (t):	3	ft
Tower Leg Center to Center:	0	ft
Number of Tower Legs:	1	-
Tower Center from Mat Center:	0	ft
Depth Below Ground Surface to Water Table:	99	ft
Unit Weight of Concrete:	150	pcf
Unit Weight of Soil Above Water Table:	125	pcf
Unit Weight of Water:	62.4	pcf
Unit Weight of Soil Below Water Table:	62.6	pcf
Friction Angle of Uplift:	15	•
Coefficient of Shear Friction:	0.28	-
Ultimate Compressive Bearing Pressure:	8,000	psf
Ultimate Passive Pressure on Pad Face:		psf
f _{Soil} and Concrete Weight:	0.9	-
f _{Soil} :	0.75	-

Overturning Moment Usage		
Design OTM:	3712.1	k-ft
OTM Resistance:	8175.7	k-ft
Design OTM / OTM Resistance:	45%	Pass

Soil Bearing Pressure Usage			
Net Bearing Pressure:	2738	psf	
Factored Nominal Bearing Pressure:	6000	psf	
Factored Nominal (Net) Bearing Pressure:	46%	Pass	
Load Direction Controling Design Bearing Pressure:	Diagonal to	Pad Edge	

Sliding Factor of Safety				
Ultimate Friction Resistance:	181.7	k		
Ultimate Passive Pressure Resistance:	0.0	k		
Total Factored Sliding Resistance:	136.3	k		
Sliding Design / Sliding Resistance:	25%	Pass		

Foundation Steel Parameters				
Shear/Leg (Compression):	22.3	k		
Shear/Leg (Uplift):	18.4	k		
Concrete Strength (f c):	4,000	psi		
Pad Tension Steel Depth:	32.44	in		
Dead Load Factor:	0.9	-		
f _{Shear} :	0.75	-		
f _{Flexure / Tension} :	0.9	-		
f _{Compression:}	0.65	-		
b:	0.85	-		
Bottom Pad Rebar Size #:	9	-		
# of Bottom Pad Rebar:	28	-		
Pad Bottom Steel Area:	28.00	in ²		
Pad Steel F _y :	60,000	psi		
Top Pad Rebar Size #:	9	-		
# of Top Pad Rebar:	28	-		
Pad Top Steel Area:	28.00	in ²		
Pier Rebar Size #:	9	-		
Pier Steel Area (Single Bar):	1.00	in ²		
# of Pier Rebar:	48	-		
Pier Steel F _y :	60,000	psi		
Pier Cage Diameter:	100.2	in		
Rebar Strain Limit:	0.008	-		
Steel Elastic Modulus:	29,000	ksi		
Tie Rebar Size #:	4	-		
Tie Steel Area (Single Bar):	0.20	in ²		
Tie Spacing:	6	in		
Tie Steel F _y :	40,000	psi		
Clear Cover:	3	in		

Pad Strength Capacity			I
Factored One Way Shear (V _u):	239.0	k	
One Way Shear Capacity (fV _c):	876.9	k	ACI 318-14 25.5.5.1
V_u / fV_c :	27%	Pass	
Load Direction Controling Shear Capacity:	Diagonal to	Pad Edge	
Lower Steel Pad Factored Moment (M _u):	1707.7	k-ft	
Lower Steel Pad Moment Capacity (fM _n):	4005.5	k-ft	ACI 318-14 22.3.1.1
M_u / fM_n :	43%	Pass	
Load Direction Controling Flexural Capacity:	Parallel to	Pad Edge	
Upper Steel Pad Factored Moment (M _u):	876.8	k-ft	
Upper Steel Pad Moment Capacity (fM _n):	4005.5	k-ft	
M_u / fM_n :	22%	Pass	
Lower Pad Flexural Reinforcement Ratio:	0.0027		OK - ACI 318-14 7.6.1.1 & 8.6.1.1
Upper Pad Flexural Reinforcement Ratio:	0.0027		OK - ACI 318-14 7.6.1.1 & 8.6.1.1
Pad Shrinkage Reinforcement Ratio:	0.0053		OK - ACI 318-14 24.4.3.2
Lower Pad Reinforcement Spacing:	11.8	in	OK - ACI 318-14 7.7.2.3, 8.7.2.2, & 24.4.3.3
Upper Pad Reinforcement Spacing:	11.8	in	OK - ACI 318-14 7.7.2.3, 8.7.2.2, & 24.4.3.3
Ultimate Punching Shear Stress, v _u :	25.47	psi	ACI 318-14 R8.4.4.2.3
Nominal Punching Shear Capacity (f _c v _c):	189.7	psi	ACI 318-14 22.6.5.2
$v_u / f_c v_c$:	13%	Pass	
Pier Moment Pad Flexure Transfer Ratio, γ _f :	0.60		TIA-222-H 9.4.2
Moment Transfer Effective Flexural Width, B _{eff} :	18.03	ft	TIA-222-H 9.4.2
Moment Transfer Through Pad Flexure:	26003.16	k-in	TIA-222-H 9.4.2
Moment Transfer Flexural Capacity (fM _{sc,f}):	33281.63	k-in	
$g_f M_{sc} / f M_{sc,f}$:	0%	Pass	
G15t /5t,1.	070	1 433	•

Pier Strength Capacity		
Factored Moment in Pier (M _u):	3611.6	k-ft
Pier Moment Capacity (fM _n):	10587.1	k-ft
M_u / fM_n :	34%	Pass
Factored Shear in Pier (V _u):	33.5	k
Pier Shear Capacity (fV _n):	1050.4	k
V_u / fV_c :	3%	Pass
Pier Shear Reinforcement Ratio:	0.0002	
Factored Tension in Pier (T _u):	0.0	k
Pier Tension Capacity (fT _n):	2592.0	k
T_u / fT_n :	0%	Pass
Factored Compression in Pier (P _u):	45.6	k
Pier Compression Capacity (fP _n):	16250.9	k
P_u / fP_n :	0%	Pass
Pier Compression Reinforcement Ratio:	0.005	
Minimum Depth to Develop Vertical Rebar:	37	in
Minimum Hook Development Length:	22	in
Minimum Mat Thickness / Edge Distance from Pier:	25.0	in
Minimum Foundation Depth:	5.43	ft
$M_u/f_BM_n + T_u/f_TT_n$:	34%	Pass

INFINIGY8

MOUNT ANALYSIS REPORT

August 27, 2021

Dish Wireless Site Name	BOHVN00200A
Dish Wireless Site Number	BOHVN00200A
ATC Site Name	Bridgewater CT, CT
ATC Site Number	281862
Infinigy Job Number	1197-F0001-B
Client	ATC
Carrier	Dish Wireless
Site Location	111 Second Hill Rd Bridgewater, CT 06752 Litchfield County 41.55497200 N NAD83 73.37088889 W NAD83
Mount Type	8.0 ft Platform
Mount Elevation	145.0 ft AGL
Structural Usage Ratio	41.2
Overall Result	Pass

The enclosed mount structural analysis has been performed in accordance with the 2018 Connecticut State Building Code (2015 IBC) based on an ultimate 3-second gust wind speed of 120 mph. The evaluation criteria and applicable codes are presented in the next section of this report.

CONTENTS

- 1. Introduction
- 2. Design/Analysis Parameters
- 3. Proposed Loading Configuration
- 4. Supporting Documentation
- 5. Results
- 6. Recommendations
- 7. Assumptions
- 8. Liability Waiver and Limitations
- 9. Calculations

1. INTRODUCTION

Infinigy performed a structural analysis on the Dish Wireless proposed telecommunication equipment supporting Platform mounted to the existing structure located at the aforementioned address. All referenced supporting documents have been obtained from the client and are assumed to be accurate and applicable to this site. The mount was analyzed using Risa-3D version 17.0.4 analysis software.

2. DESIGN/ANALYSIS PARAMETERS

Wind Speed	120 mph (3-Second Gust)
Wind Speed w/ ice	50 mph (3-Second Gust) w/ 1.5" ice
Code / Standard	TIA-222-H
Adopted Code	2018 Connecticut State Building Code (2015 IBC)
Risk Category	II .
Exposure Category	С
Topographic Category	3
Calculated Crest Height	211 ft.
Seismic Spectral Response	$S_s = 0.199 \text{ g} / S_1 = 0.066 \text{ g}$
Live Load Wind Speed	60 mph
Man Live Load at Mid/End Points	250 lbs
Man Live Load at Mount Pipes	500 lbs

3. PROPOSED LOADING CONFIGURATION - 145.0 ft. AGL Platform

Antenna Centerline (ft)	Qty.	Appurtenance Manufacturers	Appurtenance Models
	3	JMA WIRELESS	MX08FRO665-21
145.0	3	FUJITSU	TA08025-B605
145.0	3	FUJITSU	TA08025-B604
	1	RAYCAP	RDIDC-9181-PF-48

4. SUPPORTING DOCUMENTATION

Proposed Loading	Dish Wireless Asset ID CT-ATC-T-281862 Rev 1, Site #BOHVN00200A, dated July 12, 2021
Mount Manufacturer Drawings	Commscope Document # MC-PK8-DSH, dated March 08, 2021
Structural Analysis Report	ATC, Asset #281862, dated August 20, 2021

5. RESULTS

Components	Capacity	Pass/Fail
Mount Pipes	28.8%	Pass
Horizontals	17.6%	Pass
Standoffs	41.2%	Pass
Handrails	34.9%	Pass
Connections	40.9%	Pass
MOUNT RATING =	41.2 %	Pass

Notes:

6. RECOMMENDATIONS

Infinigy recommends installing Dish Wireless's proposed equipment loading configuration on the mount at 145.0 ft. The installation shall be performed in accordance with the construction documents issued for this site.

Pradin Suinyal Magar Project Engineer II | INFINIGY

^{1.} See additional documentation in Appendix for calculations supporting the capacity consumed and detailed mount connection calculations.

7. ASSUMPTIONS

The antenna mounting system was properly fabricated, installed and maintained in accordance with its original design and manufacturer's specifications.

The configuration of antennas, mounts, and other appurtenances are as specified in the proposed loading configuration table.

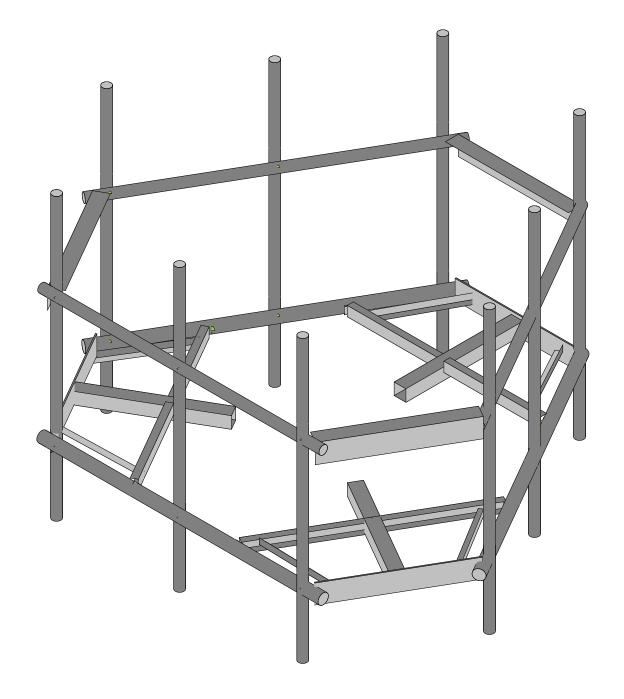
All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.

The analysis will require revisions if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.

Steel grades have been assumed as follows, unless noted otherwise:

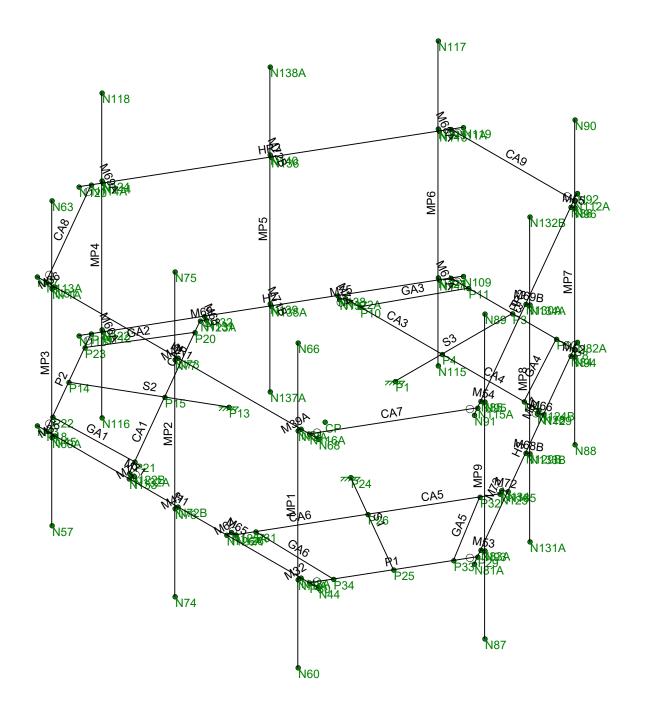
Channel, Solid Round, Plate, Built-up Angle
Structural Angle
HSS (Rectangular)
ASTM A529 Gr. 50
ASTM A500-B GR 46
ASTM A500-B GR 42
Pipe
ASTM A500 Gr C
Connection Bolts
U-Bolts
ASTM A307

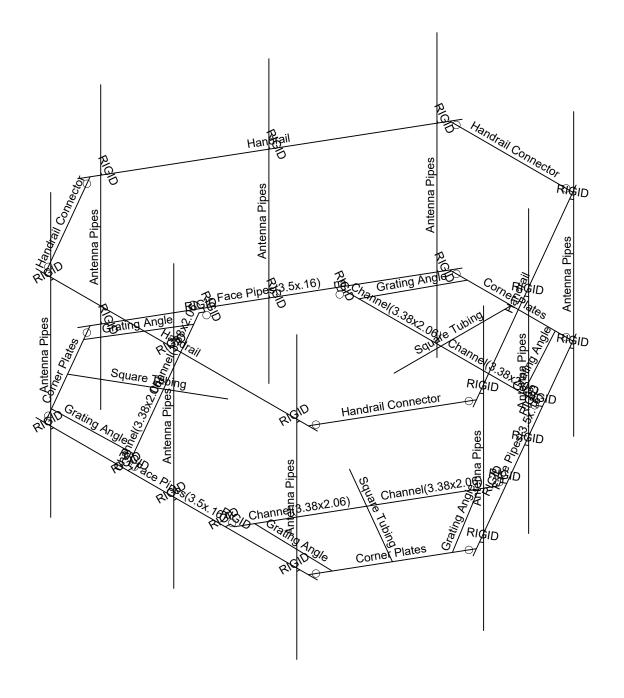
All bolted connections are pretensioned in accordance with Table 8.2 of the RCSC 2014 Standard

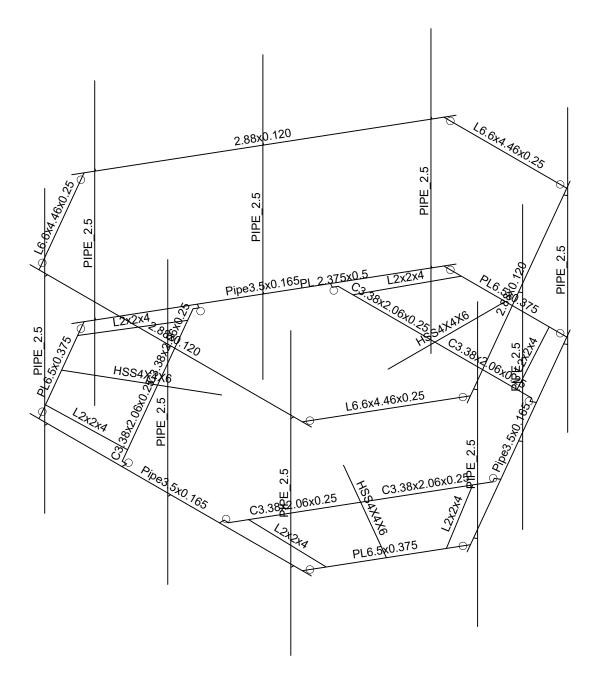

8. LIABILITY WAIVER AND LIMITATIONS

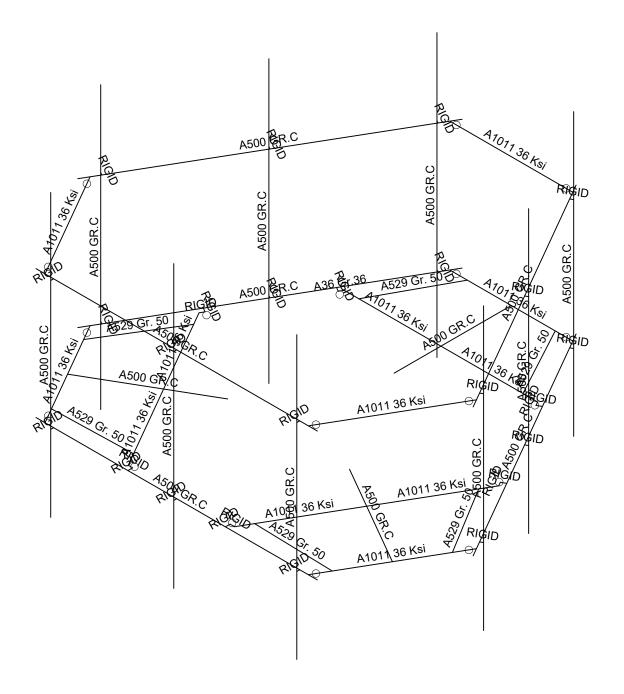
Our structural calculations are completed assuming all information provided to Infinigy is accurate and applicable to this site. For the purposes of calculations, we assume an overall structure condition as erected and all members and connections to be free of corrosion and/or structural defects. The structure owner and/or contractor shall verify the structure's condition prior to installation of any proposed equipment. If actual conditions differ from those described in this report, Infinigy should be notified immediately to assess the impact on the results of this report.

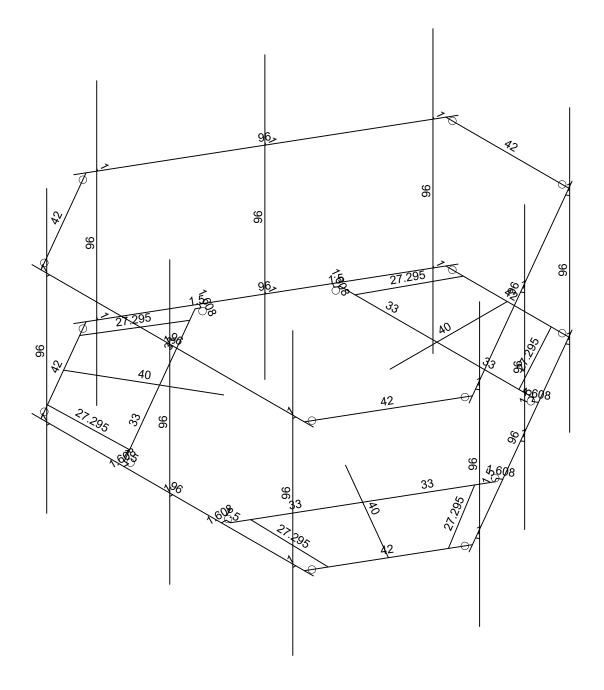
Our evaluation is completed using industry standard methods and procedures. The structural results, conclusions and recommendations contained in this report are proprietary and should not be used by others as their own. Infinigy is not responsible for decisions made by others that are or are not based on the stated assumptions and conclusions in this report.


This report is an evaluation of the mount structure only and does not determine the adequacy of the supporting structure, other carrier mounts or cable mounting attachments. The analysis of these elements is outside the scope of this analysis, are assumed to be adequate for the purpose of this report and to have been installed per their manufacturer requirements. This document is not for construction purposes.

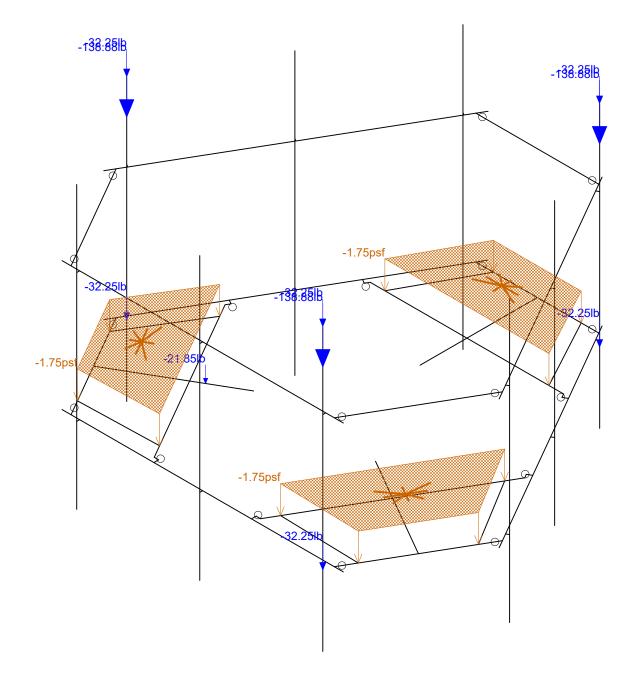

Infinigy Engineering, PLLC		Rendered
PSM	BOHVN00200A	Aug 31, 2021 at 11:11 AM
1197-F0001-B		BOHVN00200A_loaded.r3d


Infinigy Engineering, PLLC		WireFrame
PSM	BOHVN00200A	Aug 31, 2021 at 11:12 AM
1197-F0001-B		BOHVN00200A_loaded.r3d


Infinigy Engineering, PLLC		Section Sets
PSM	BOHVN00200A	Aug 31, 2021 at 11:12 AM
1197-F0001-B		BOHVN00200A_loaded.r3d

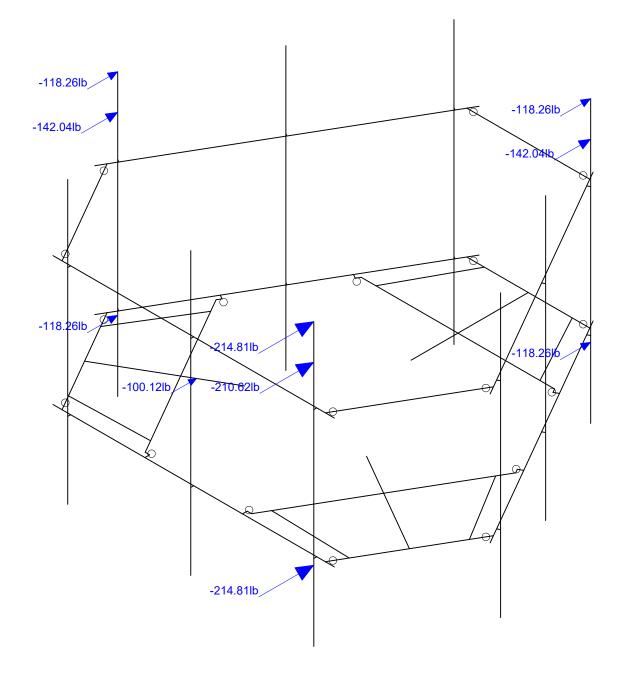

Infinigy Engineering, PLLC		Member Shapes
PSM	BOHVN00200A	Aug 31, 2021 at 11:13 AM
1197-F0001-B		BOHVN00200A_loaded.r3d

Infinigy Engineering, PLLC		Material Sets
PSM	BOHVN00200A	Aug 31, 2021 at 11:13 AM
1197-F0001-B		BOHVN00200A_loaded.r3d

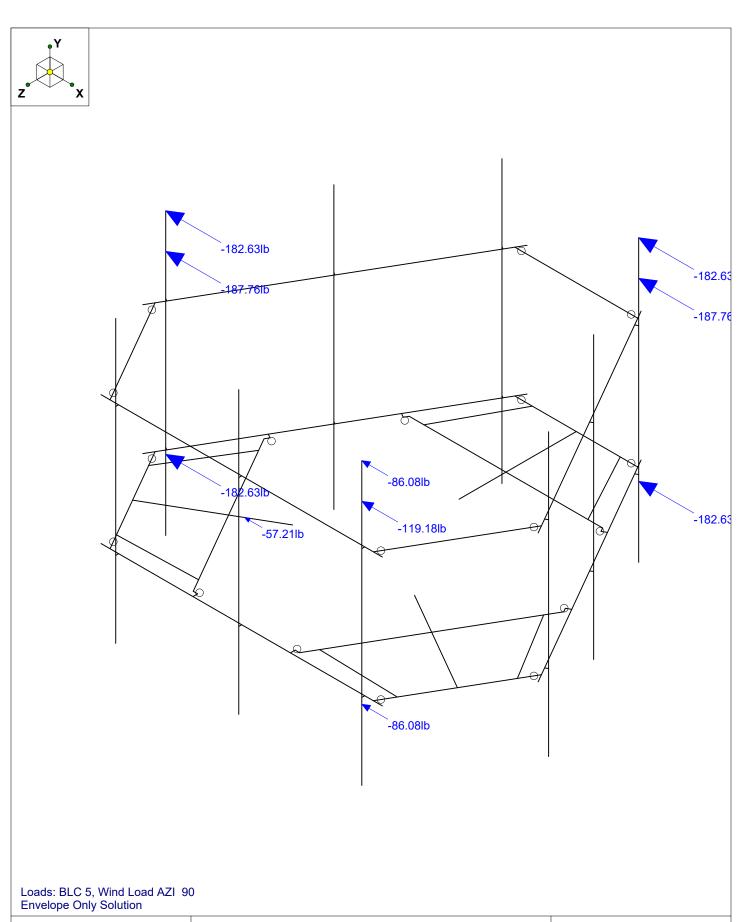


Member Length (in) Displayed Envelope Only Solution

Infinigy Engineering, PLLC		Member Lengths
PSM	BOHVN00200A	Aug 31, 2021 at 11:13 AM
1197-F0001-B		BOHVN00200A_loaded.r3d

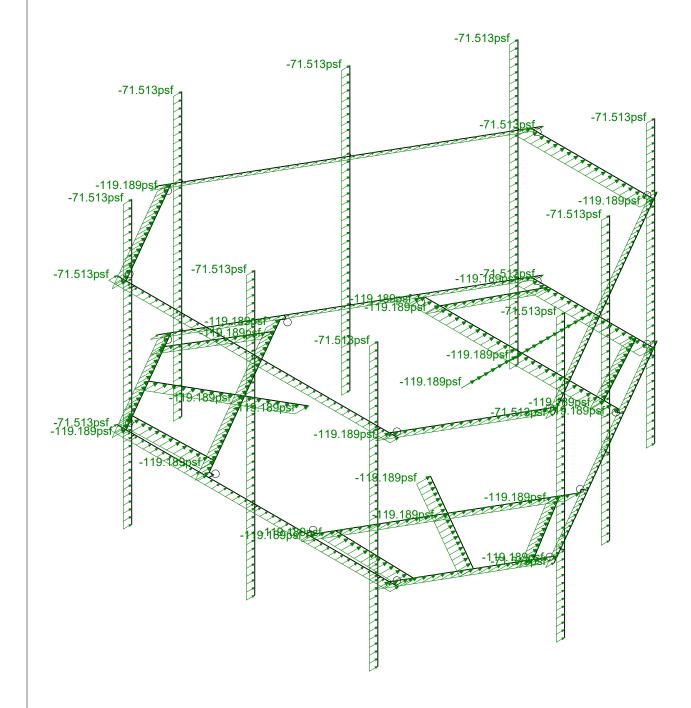


Loads: BLC 1, Self Weight Envelope Only Solution


Infinigy Engineering, PLLC		Self Weight
PSM	BOHVN00200A	Aug 31, 2021 at 11:14 AM
1197-F0001-B		BOHVN00200A_loaded.r3d

Loads: BLC 2, Wind Load AZI 0 Envelope Only Solution

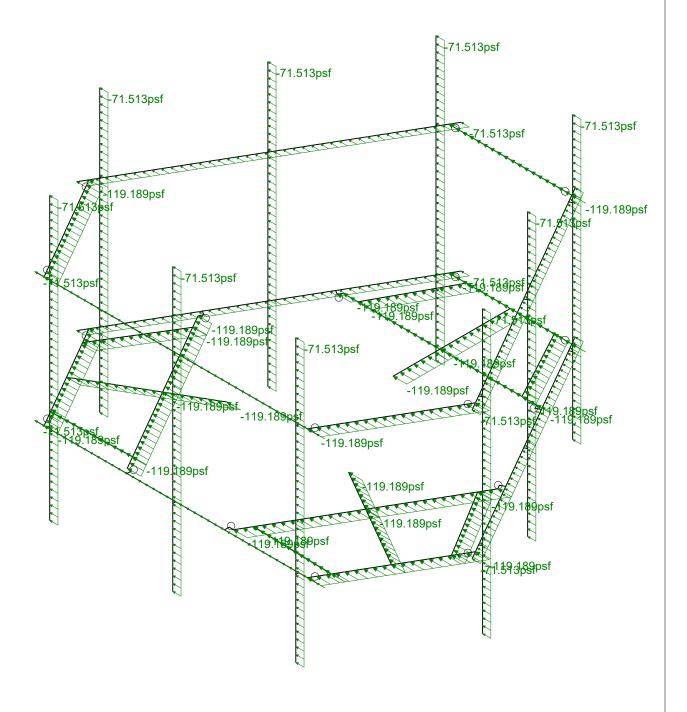
Infinigy Engineering, PLLC		Wind Load A∠I 000
PSM	BOHVN00200A	Aug 31, 2021 at 11:14 AM
1197-F0001-B		BOHVN00200A_loaded.r3d



 Infinigy Engineering, PLLC
 Wind Load AZI 090

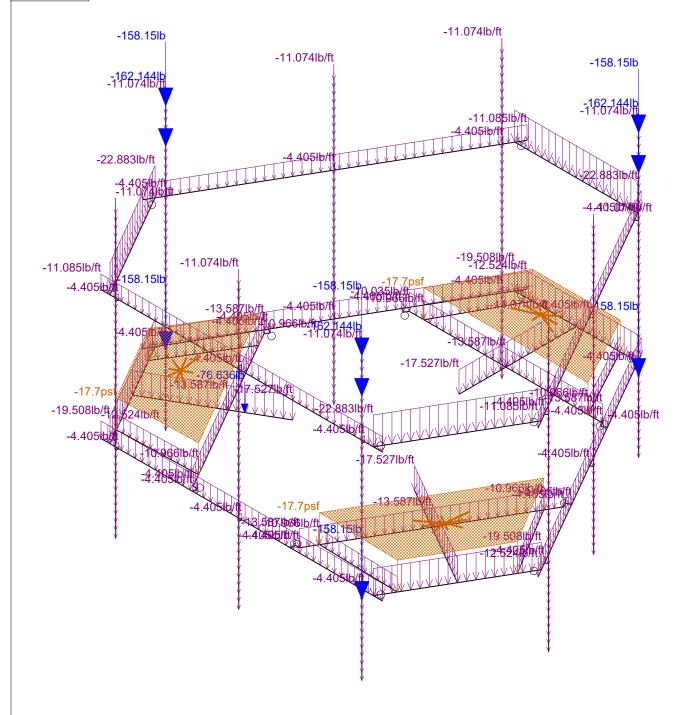
 PSM
 BOHVN00200A
 Aug 31, 2021 at 11:14 AM

 1197-F0001-B
 BOHVN00200A_loaded.r3d



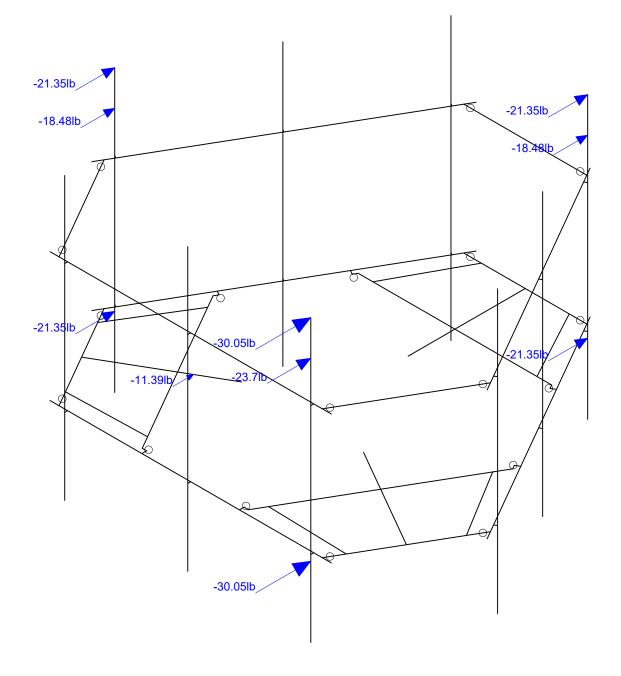
Loads: BLC 14, Distr. Wind Load Z Envelope Only Solution

Infinigy Engineering, PLLC		Distr Wind Load AZI 000
PSM	BOHVN00200A	Aug 31, 2021 at 11:15 AM
1197-F0001-B		BOHVN00200A_loaded.r3d



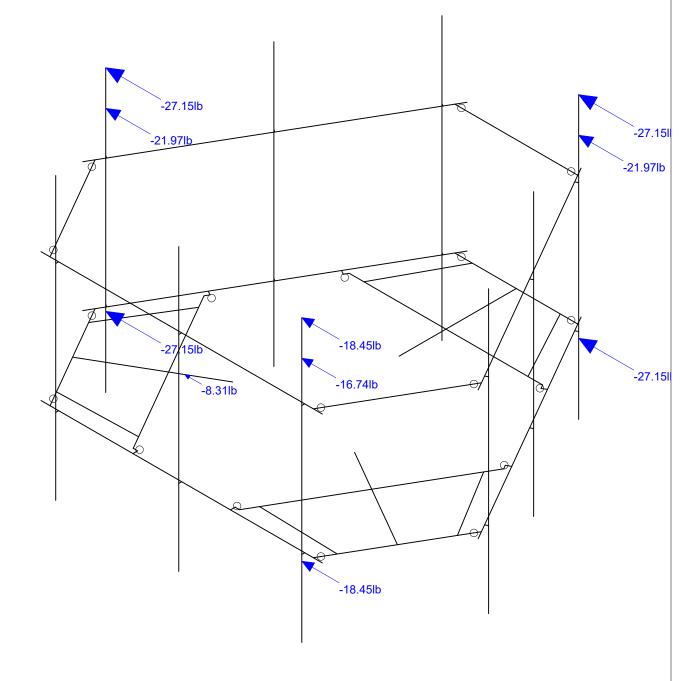
Loads: BLC 15, Distr. Wind Load X Envelope Only Solution

Infinigy Engineering, PLLC		Distr Wind Load AZI 090
PSM	BOHVN00200A	Aug 31, 2021 at 11:15 AM
1197-F0001-B		BOHVN00200A_loaded.r3d



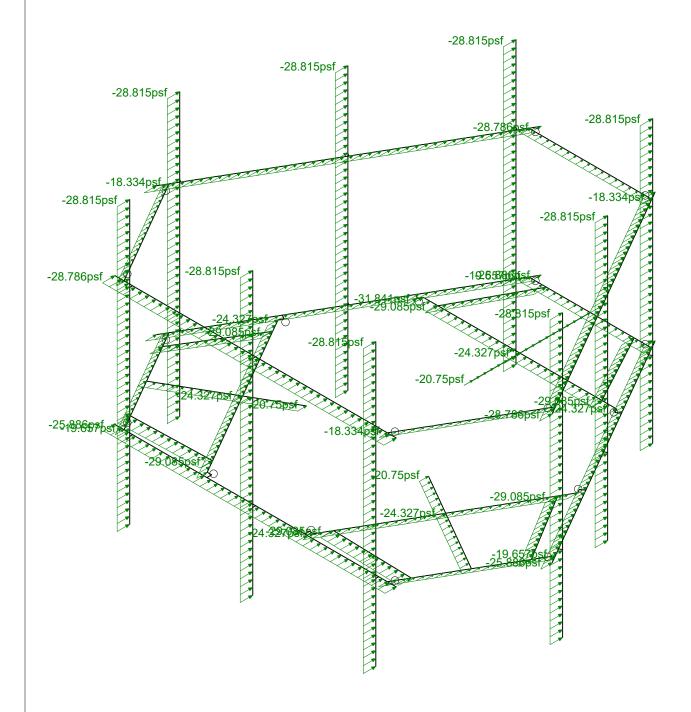
Loads: BLC 16, Ice Weight Envelope Only Solution

Infinigy Engineering, PLLC		Ice Weight
PSM	BOHVN00200A	Aug 31, 2021 at 11:15 AM
1197-F0001-B		BOHVN00200A_loaded.r3d



Loads: BLC 17, Ice Wind Load AZI 0 Envelope Only Solution

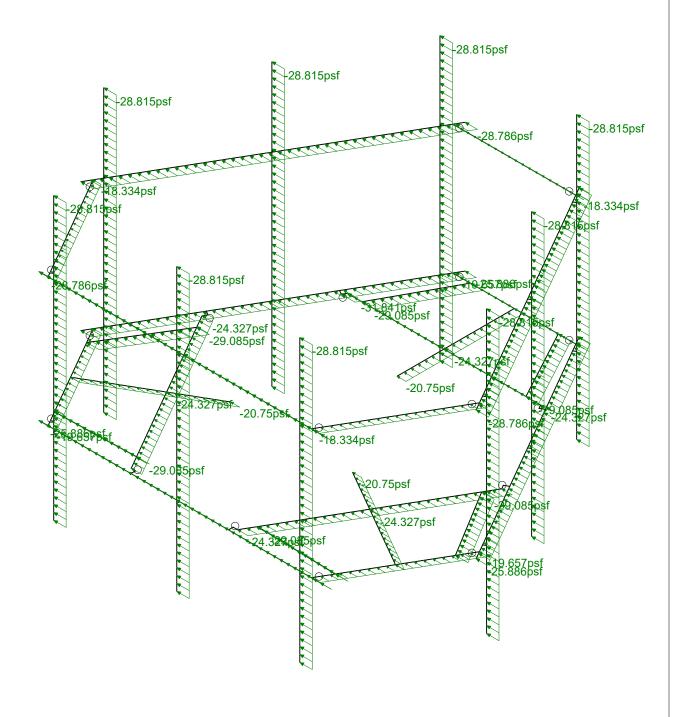
Infinigy Engineering, PLLC		Ice + Wind Load A∠I 000
PSM	BOHVN00200A	Aug 31, 2021 at 11:15 AM
1197-F0001-B		BOHVN00200A_loaded.r3d


Loads: BLC 20, Ice Wind Load AZI 90 Envelope Only Solution

Infinigy Engineering, PLLC	
PSM	
1197-F0001-B	

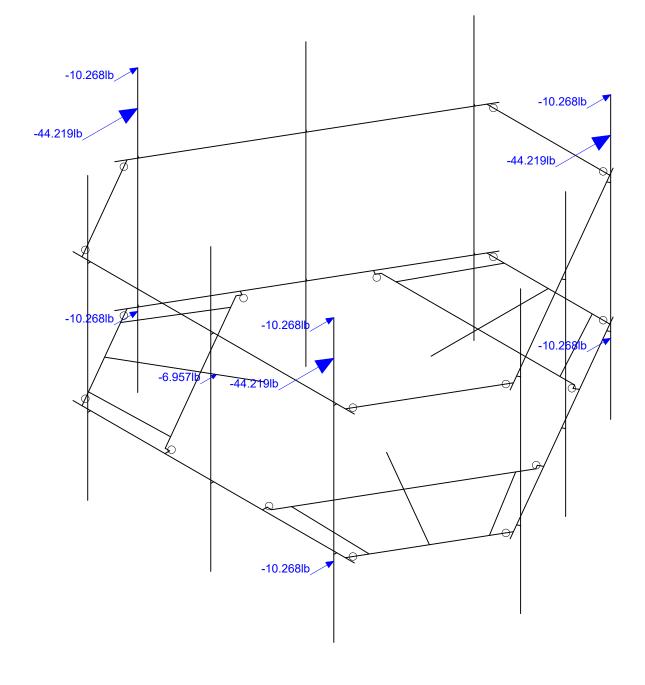
BOHVN00200A

Ice + Wind Load AZI 090
Aug 31, 2021 at 11:16 AM
BOHVN00200A_loaded.r3d



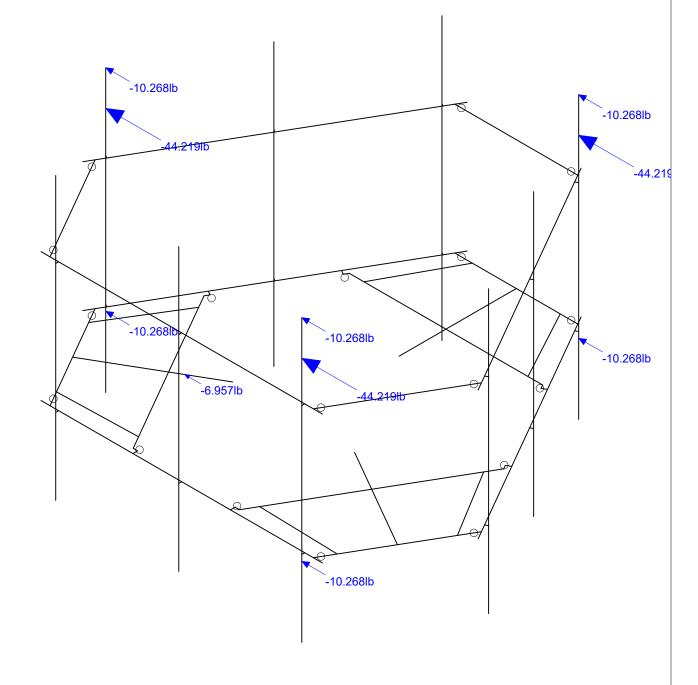
Loads: BLC 29, Distr. Ice Wind Load Z Envelope Only Solution

Infinigy Engineering, PLLC	
PSM	BOHVN00200A
1197-F0001-B	



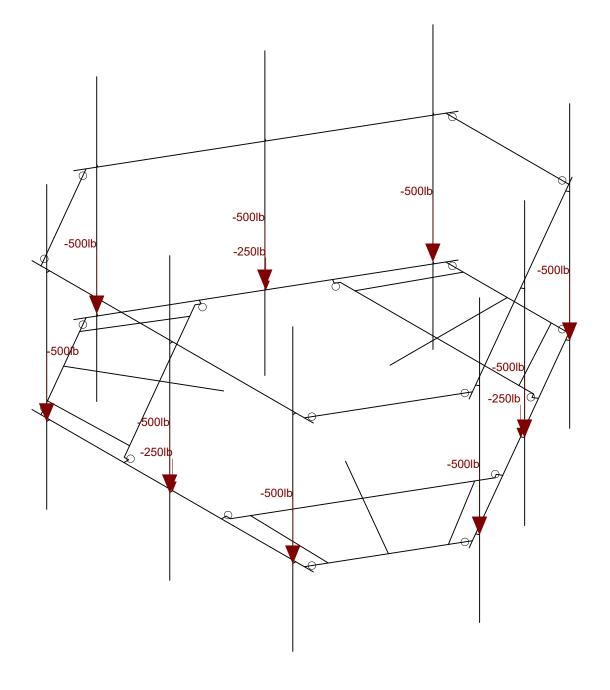
Loads: BLC 30, Distr. Ice Wind Load X Envelope Only Solution

Infinigy Engineering, PLLC		Distr Ice + Wind Load AZI 09
PSM	BOHVN00200A	Aug 31, 2021 at 11:16 AM
1197-F0001-B		BOHVN00200A_loaded.r3d

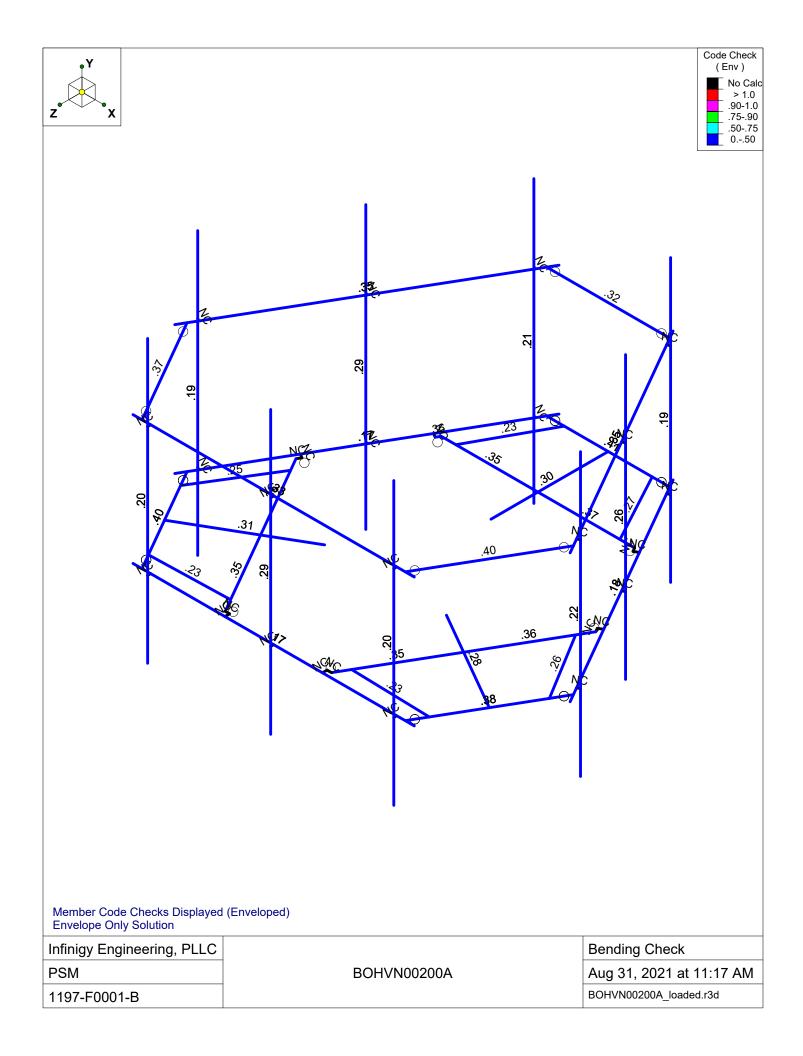


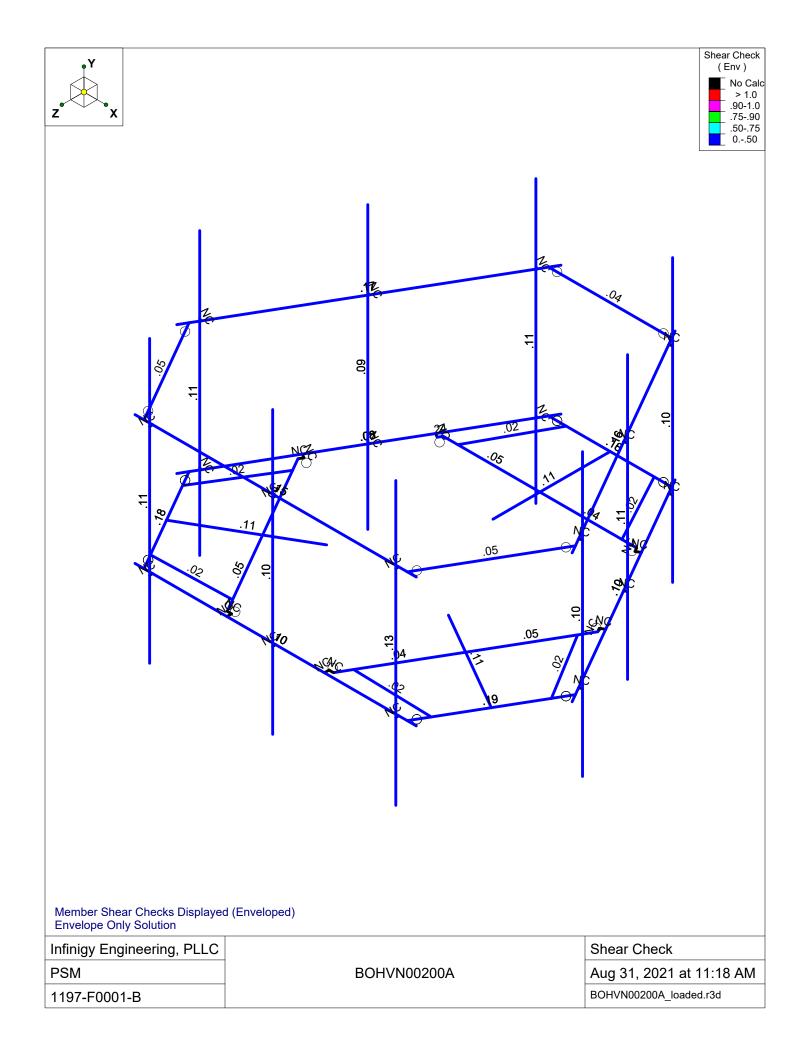
Loads: BLC 31, Seismic Load Z Envelope Only Solution

Infinigy Engineering, PLLC		Seismic Load AZI 000
PSM	BOHVN00200A	Aug 31, 2021 at 11:17 AM
1197-F0001-B		BOHVN00200A_loaded.r3d



Loads: BLC 32, Seismic Load X Envelope Only Solution


Infinigy Engineering, PLLC		Seismic Load AZI 090	
PSM	BOHVN00200A	Aug 31, 2021 at 11:17 AM	
1197-F0001-B		BOHVN00200A_loaded.r3d	



Loads: LL - Live Load Envelope Only Solution

Infinigy Engineering, PLLC		Non-concurrent Live Loads
PSM	BOHVN00200A	Aug 31, 2021 at 11:17 AM
1197-F0001-B		BOHVN00200A_loaded.r3d

Program Inputs

PROJECT INFORMATION		
Client: ATC		
Carrier:	Dish Wireless	
Engineer:	Pradin Suinyal Magar, M.S	

SITE INFORMATION			
Risk Category:	II		
Exposure Category:	С		
Topo Factor Procedure:	: Method 2		
Site Class:	D - Stiff Soil (Assumed)		
Ground Elevation:	904.42	ft *Rev H	

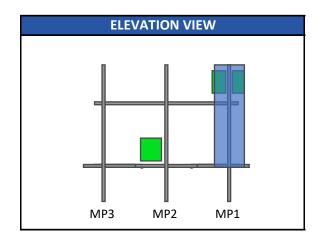
MOUNT INFORMATION			
Mount Type: Platform			
Num Sectors:	3		
Centerline AGL:	145.00	ft	
Tower Height AGL:	160.00	ft	

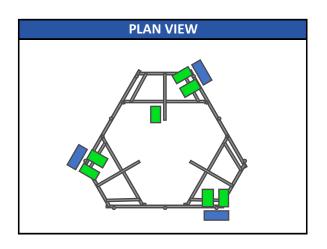
TOPOGRAPHIC DATA			
Topo Feature: Hill			
Slope Distance:	1340.0	ft	
Crest Distance:	50.0	ft	
Crest Height:	211.0	ft	

FACTORS		
Directionality Fact. (K _d):	0.950	
Ground Ele. Factor (K _e):	0.968	*Rev H Only
Rooftop Speed-Up (K _s):	1.000	*Rev H Only
Topographic Factor (K _{zt}):	1.285	
Gust Effect Factor (G _h):	1.000	

CODE STANDARDS		
Building Code:	2015 IBC	
TIA Standard:	TIA-222-H	
ASCE Standard:	ASCE 7-10	

WIND AND	WIND AND ICE DATA										
Ultimate Wind (V _{ult}):	120	mph									
Design Wind (V):	N/A	mph									
Ice Wind (V _{ice}):	50	mph									
Base Ice Thickness (t _i):	1.5	in									
Flat Pressure:	119.189	psf									
Round Pressure:	71.513	psf									
Ice Wind Pressure:	12.415	psf									


SEISMIC	CDATA	
Short-Period Accel. (S _s):	0.199	g
1-Second Accel. (S ₁):	0.066	g
Short-Period Design (S _{DS}):	0.212	
1-Second Design (S _{D1}):	0.106	
Short-Period Coeff. (F _a):	1.600	
1-Second Coeff. (F _v):	2.400	
Amplification Factor (A _s):	3.000	
Response Mod. Coeff. (R):	2.000	



Infinigy Load Calculator V2.1.7

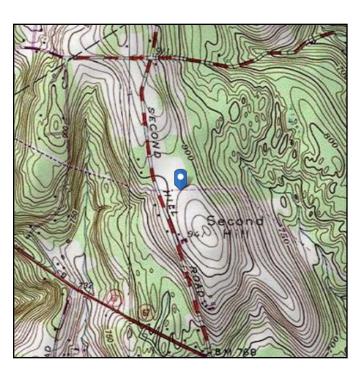
BOHVN00200A_BOHVN00200A 8/31/2021

Program Inputs

Infinigy Load Calculator V2.1.7

APPURTENANCE INFORMATION											
Appurtenance Name	Elevation	Qty.	K _a	q _z (psf)	EPA _N (ft ²)	EPA _T (ft ²)	Wind F _z	Wind F _x	Weight	Seismic	Member
Appartenance Nume	Licvation	ζί,	``a	9 ₂ (p31)	LI A _N (It)	LI AT (IL)	(lbs)	(lbs)	(lbs)	F (lbs)	(α sector)
JMA WIRELESS MX08FRO665-21	145.0	3	0.90	59.59	8.01	3.21	429.62	172.17	64.50	20.54	MP1
FUJITSU TA08025-B605	145.0	3	0.90	59.59	1.96	1.19	105.31	63.78	74.95	23.86	MP1
FUJITSU TA08025-B604	145.0	3	0.90	59.59	1.96	1.03	105.31	55.40	63.93	20.36	MP1
RAYCAP RDIDC-9181-PF-48	145.0	1	0.90	59.59	1.87	1.07	100.12	57.21	21.85	6.96	S2

BOHVN00200A_BOHVN00200A 8/31/2021


Address:

No Address at This Location

ASCE 7 Hazards Report

ASCE/SEI 7-10 Standard: Elevation: 904.42 ft (NAVD 88)

Risk Category: || Latitude: 41.554972 D - Stiff Soil Soil Class: Longitude: -73.370889

Wind

Results:

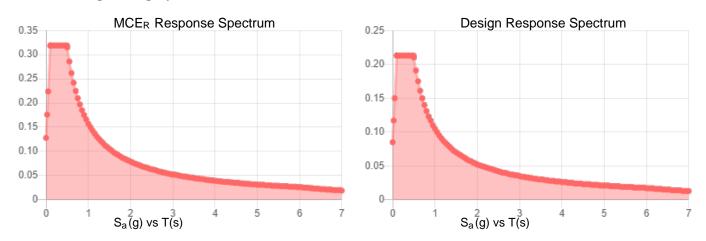
120 mph per Bridgewater City Requirements in WSEL Wind Speed:

10-year MRI 76 Vmph 25-year MRI 85 Vmph 50-year MRI 90 Vmph 100-year MRI 96 Vmph

Date &ocessed: **AG€E//GE3172002,1**Fig. 26.5-1A and Figs. CC-1–CC-4, and Section 26.5.2,

incorporating errata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.199	S _{DS} :	0.213	
S_1 :	0.066	S_{D1} :	0.105	
F _a :	1.6	T_L :	6	
F _v :	2.4	PGA:	0.105	
S_{MS} :	0.319	PGA _M :	0.167	
S _{M1} :	0.157	F _{PGA} :	1.59	
		la :	1	

Seismic Design Category B

Data Accessed: Tue Aug 31 2021

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating

Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with

ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Tue Aug 31 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Member Primary Data

2 GA4 P9 P12 270 Grating Angle Beam None A529 Gr. 50 Typical		Label	I Joint		K Joint	Rotate(Section/Shape		Design List		Design Rules
GA3	1	S3	P1	P3		070	Square Tubing	Beam	None	A500 GR.C	Typical
P3			_			270					
5 S2 P13 P14 Square Tubing Beam None A500 GR.C Typical 6 GA2 P20 P23 270 Grating Angle Beam None A529 Gr. 50 Typical 7 GA1 P21 P22 Grating Angle Beam None A529 Gr. 50 Typical 8 P2 P18 P19 Corner Plates Beam None A529 Gr. 50 Typical 9 S1 P24 P25 Square Tubing Beam None A500 GR.C Typical 10 GA6 P31 P34 270 Grating Angle Beam None A529 Gr. 50 Typical 11 GA5 P32 P33 Grating Angle Beam None A529 Gr. 50 Typical 12 P1 P29 P30 Corner Plates Beam None A529 Gr. 50 Typical 13 H1 N43 N44 N44 N44 N44 N											
Fig. 20											
To GA1											
Sear						270					
9 S1 P24 P25 Square Tubing Beam None A500 GR.C Typical 10 GA6 P31 P34 270 Grating Angle Beam None A529 Gr. 50 Typical 11 GA5 P32 P33 Grating Angle Beam None A529 Gr. 50 Typical 12 P1 P29 P30 Corner Plates Beam None A529 Gr. 50 Typical 13 H1 N43 N44 Face Pipes(3.5x.16) Beam None A500 GR.C Typical 14 MP1 N66 N60 Antenna Pipes Beam None A500 GR.C Typical 14 MP1 N66 N60 Antenna Pipes Beam None A500 GR.C Typical 15 MP3 N63 N57 Antenna Pipes Beam None A500 GR.C Typical 16 HR1 N67 N68 Handrail Connector Beam None A500 GR.C Typical 17 CA8 N114A N113A 180 Handrail Connector Beam None A500 GR.C Typical 18 CA9 N112A N111A 180 Handrail Connector Beam None A500 GR.C Typical 19 CA7 N116A N115A 180 Handrail Connector Beam None A1011 36 Ksi Typical 19 CA7 N116A N15A 180 Handrail Connector Beam None A1011 36 Ksi Typical 19 CA7 N116A N115A 180 Handrail Connector Beam None A1011 36 Ksi Typical 19 CA7 N116A N115A 180 Handrail Connector Beam None A1011 36 Ksi Typical 19 CA7 N116A N115A 180 Handrail Connector Beam None RIGID Typical 10 M35 N45 N69A RIGID None None RIGID Typical 10 M35 N45 N69A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M71 N7128 N7134 RIGID None None RIGID Typical 10 N											
10 GA6 P31 P34 270 Grating Angle Beam None A529 Gr. 50 Typical Radial P32 P33 Corner Plates Beam None A529 Gr. 50 Typical P33 Corner Plates Beam None A529 Gr. 50 Typical P33 H1 N43 N44 Face Pipes(3.5x.16) Beam None A500 GR.C Typical A500 GR.C Typical P40 N66 N60 Antenna Pipes Beam None A500 GR.C Typical P40 N66 N60 Antenna Pipes Beam None A500 GR.C Typical N66 N63 N57 Antenna Pipes Beam None A500 GR.C Typical P40 N68 Handrail Connector B40 N69 N69 N114A N113A N114A N113A N114A N113A N114A N113A N114A N113A N114A N113A N114A N113A N114A N113A N114A N115A											Typical
11 GA5								_			Typical
12						270	Grating Angle				Typical
13							Grating Angle	Beam			Typical
14 MP1 N66 N60	12	P1	P29	P30						A1011 36 Ksi	Typical
15 MP3 N63 N57	13	H1	N43	N44			Face Pipes(3.5x.16)		None	A500 GR.C	Typical
16	14	MP1	N66	N60			Antenna Pipes	Beam	None	A500 GR.C	Typical
17	15	MP3	N63	N57			Antenna Pipes	Beam	None	A500 GR.C	Typical
18	16	HR1	N67	N68				Beam	None		Typical
19	17	CA8	N114A	N113A		180		Beam	None		Typical
M32	18	CA9	N112A	N111A		180	Handrail Connector	Beam	None		Typical
20 M32 N48A N70A RIGID None None RIGID Typical 21 M35 N45 N69A RIGID None None RIGID Typical 22 M36 N51 N71A RIGID None None RIGID Typical 23 M39A N54 N72A RIGID None None RIGID Typical 24 CA3 P4 N122A Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 25 CA4 N124B P4 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 26 CA1 P15 N122B Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 27 CA2 N123A P15 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 28 CA5 P26 N125 Channel(3.38x2.06) Beam None A1011 36 Ksi T	19	CA7	N116A	N115A		180	Handrail Connector	Beam	None	A1011 36 Ksi	Typical
21 M35 N45 N69A RIGID None None RIGID Typical 22 M36 N51 N71A RIGID None None RIGID Typical 23 M39A N54 N72A RIGID None None RIGID Typical 24 CA3 P4 N122A Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 25 CA4 N124B P4 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 26 CA1 P15 N122B Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 27 CA2 N123A P15 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 28 CA5 P26 N125 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 30 M64 N126A N125A RIGID None None RIGID <td< td=""><td>20</td><td>M32</td><td>N48A</td><td>N70A</td><td></td><td></td><td>RIGID</td><td>None</td><td></td><td>RIGID</td><td></td></td<>	20	M32	N48A	N70A			RIGID	None		RIGID	
22 M36 N51 N71A RIGID None None RIGID Typical 23 M39A N54 N72A RIGID None None RIGID Typical 24 CA3 P4 N122A Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 25 CA4 N124B P4 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 26 CA1 P15 N122B Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 27 CA2 N123A P15 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 28 CA5 P26 N125 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 29 CA6 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 30 M64 N126A N126A RIGID None None RI	21	M35	N45	N69A			RIGID	None		RIGID	Typical
23 M39A N54 N72A RIGID None None RIGID Typical 24 CA3 P4 N122A Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 25 CA4 N124B P4 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 26 CA1 P15 N122B Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 27 CA2 N123A P15 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 28 CA5 P26 N125 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 29 CA6 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 30 M64 N126A N125A RIGID None None RIGID Typical 31 M65 N126 N125A RIGID None None	22	M36	N51	N71A			RIGID	None		RIGID	
24 CA3 P4 N122A Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 25 CA4 N124B P4 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 26 CA1 P15 N122B Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 27 CA2 N123A P15 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 28 CA5 P26 N125 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 29 CA6 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 30 M64 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 31 M65 N126 P26 Channel(3.38x2.06) Beam None RIGID Typical 32 M66 N129 N128 RIGID None		M39A	N54	N72A			RIGID	None		RIGID	
25 CA4 N124B P4 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 26 CA1 P15 N122B Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 27 CA2 N123A P15 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 28 CA5 P26 N125 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 29 CA6 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 30 M64 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 31 M65 N126 N125A RIGID None None RIGID Typical 32 M66 N129 N128 RIGID None None RIGID Typical 33 M67 N124B N128 RIGID None None R		CA3	P4	N122A			Channel(3.38x2.06)	Beam		A1011 36 Ksi	
26 CA1 P15 N122B Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 27 CA2 N123A P15 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 28 CA5 P26 N125 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 29 CA6 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 30 M64 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 30 M64 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 31 M65 N126 P26 RIGID None None RIGID Typical 31 M65 N126 N125A RIGID None None RIGID Typical 32 M66 N129 N128 RIGID None None RIGID Typical 34 M		CA4	N124B	P4			Channel(3.38x2.06)	Beam		A1011 36 Ksi	
27 CA2 N123A P15 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 28 CA5 P26 N125 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 29 CA6 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 30 M64 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 30 M64 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 31 M65 N126 N125A RIGID None None RIGID Typical 31 M65 N126 N125A RIGID None None RIGID Typical 32 M66 N129 N128 RIGID None None RIGID Typical 34 M68 N132 N131 RIGID None None RIGID <t< td=""><td></td><td></td><td>P15</td><td>N122B</td><td></td><td></td><td>Channel(3.38x2.06)</td><td>Beam</td><td></td><td>A1011 36 Ksi</td><td></td></t<>			P15	N122B			Channel(3.38x2.06)	Beam		A1011 36 Ksi	
28 CA5 P26 N125 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 29 CA6 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 30 M64 N126A N125A RIGID None None RIGID Typical 31 M65 N126 N125A RIGID None None RIGID Typical 32 M66 N129 N128 RIGID None None RIGID Typical 33 M67 N124B N128 RIGID None None RIGID Typical 34 M68 N132 N131 RIGID None None RIGID Typical 35 M69 N123A N131 RIGID None None RIGID Typical 36 M70 N133 N132A RIGID None None RIGID Typical 38	27	CA2	N123A	P15			Channel(3.38x2.06)	Beam	None	A1011 36 Ksi	
29 CA6 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 30 M64 N126A N125A RIGID None None RIGID Typical 31 M65 N126 N125A RIGID None None RIGID Typical 32 M66 N129 N128 RIGID None None RIGID Typical 33 M67 N124B N128 RIGID None None RIGID Typical 34 M68 N132 N131 RIGID None None RIGID Typical 35 M69 N123A N131 RIGID None None RIGID Typical 36 M70 N133 N132A RIGID None None RIGID Typical 37 M71 N122B N132A RIGID None None RIGID Typical 38 M72 </td <td></td> <td></td> <td>P26</td> <td></td> <td></td> <td></td> <td>Channel(3.38x2.06)</td> <td>Beam</td> <td></td> <td>A1011 36 Ksi</td> <td></td>			P26				Channel(3.38x2.06)	Beam		A1011 36 Ksi	
30 M64 N126A N125A RIGID None None RIGID Typical 31 M65 N126 N126A RIGID None None RIGID Typical 32 M66 N129 N128 RIGID None None RIGID Typical 33 M67 N124B N128 RIGID None None RIGID Typical 34 M68 N132 N131 RIGID None None RIGID Typical 35 M69 N123A N131 RIGID None None RIGID Typical 36 M70 N133 N132A RIGID None None RIGID Typical 37 M71 N122B N132A RIGID None None RIGID Typical 38 M72 N135 N134 RIGID None None RIGID Typical							Channel(3.38x2.06)	Beam		A1011 36 Ksi	
31 M65 N126 N125A RIGID None None RIGID Typical 32 M66 N129 N128 RIGID None None RIGID Typical 33 M67 N124B N128 RIGID None None RIGID Typical 34 M68 N132 N131 RIGID None None RIGID Typical 35 M69 N123A N131 RIGID None None RIGID Typical 36 M70 N133 N132A RIGID None None RIGID Typical 37 M71 N122B N132A RIGID None None RIGID Typical 38 M72 N135 N134 RIGID None None RIGID Typical			N126A	N125A			RIGID	None		RIGID	
32 M66 N129 N128 RIGID None None RIGID Typical 33 M67 N124B N128 RIGID None None RIGID Typical 34 M68 N132 N131 RIGID None None RIGID Typical 35 M69 N123A N131 RIGID None None RIGID Typical 36 M70 N133 N132A RIGID None None RIGID Typical 37 M71 N122B N132A RIGID None None RIGID Typical 38 M72 N135 N134 RIGID None None RIGID Typical			N126	N125A				None			
33 M67 N124B N128 RIGID None None RIGID Typical 34 M68 N132 N131 RIGID None None RIGID Typical 35 M69 N123A N131 RIGID None None RIGID Typical 36 M70 N133 N132A RIGID None None RIGID Typical 37 M71 N122B N132A RIGID None None RIGID Typical 38 M72 N135 N134 RIGID None None RIGID Typical								None			
34 M68 N132 N131 RIGID None None RIGID Typical 35 M69 N123A N131 RIGID None None RIGID Typical 36 M70 N133 N132A RIGID None None RIGID Typical 37 M71 N122B N132A RIGID None None RIGID Typical 38 M72 N135 N134 RIGID None None RIGID Typical								None			
35 M69 N123A N131 RIGID None None RIGID Typical 36 M70 N133 N132A RIGID None None RIGID Typical 37 M71 N122B N132A RIGID None None RIGID Typical 38 M72 N135 N134 RIGID None None RIGID Typical								None			
36 M70 N133 N132A RIGID None None RIGID Typical								None			
37 M71 N122B N132A RIGID None RIGID Typical RIGID None RIGID Typical RIGID None RIGID Typical								None			
38 M72 N135 N134 RIGID None RIGID Typical											
THE THE THE TYPICAL											
- 1.02 MI.O. MI.V.O. MI.O.	39	M73					RIGID	None	None	RIGID	Typical
40 M74 N138 N137 RIGID None RIGID Typical											
41 M75 N122A N137 PL 2.375x0.5 None None A36 Gr.36 Typical											

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(. Section/Shape		Design List	Material	Design Rules
42	MP2	N75	N74			Antenna Pipes	Beam	None	A500 GR.C	Typical
43	M43	N72B	N76			RIGID	None	None	RIGID	Typical
44	M44	N73	N77			RIGID	None	None	RIGID	Typical
45	Н3	N81A	N82A			Face Pipes(3.5x.16)	Beam	None	A500 GR.C	Typical
46	MP7	N90	N88			Antenna Pipes	Beam	None	A500 GR.C	Typical
47	MP9	N89	N87			Antenna Pipes	Beam	None	A500 GR.C	Typical
48	HR3	N91	N92			Handrail	Beam	None	A500 GR.C	Typical
49	M52	N84	N94			RIGID	None	None	RIGID	Typical
50	M53	N83A	N93			RIGID	None	None	RIGID	Typical
51	M54	N85	N95			RIGID	None	None	RIGID	Typical
52	M55	N86	N96			RIGID	None	None	RIGID	Typical
53	H2	N109	N110			Face Pipes(3.5x.16)	Beam	None	A500 GR.C	Typical
54	MP4	N118	N116			Antenna Pipes	Beam	None	A500 GR.C	Typical
55	MP6	N117	N115			Antenna Pipes	Beam	None	A500 GR.C	Typical
56	HR2	N119	N120			Handrail	Beam	None	A500 GR.C	Typical
57	M66A	N112	N122			RIGID	None	None	RIGID	Typical
58	M67A	N111	N121			RIGID	None	None	RIGID	Typical
59	M68A	N113	N123			RIGID	None	None	RIGID	Typical
60	M69A	N114	N124			RIGID	None	None	RIGID	Typical
61	MP8	N132B	N131A			Antenna Pipes	Beam	None	A500 GR.C	Typical
62	M68B	N129B	N133B			RIGID	None	None	RIGID	Typical
63	M69B	N130A	N134A			RIGID	None	None	RIGID	Typical
64	MP5	N138A	N137A			Antenna Pipes	Beam	None	A500 GR.C	Typical
65	M71B	N135A	N139			RIGID	None	None	RIGID	Typical
66	M72B	N136	N140			RIGID	None	None	RIGID	Typical

Hot Rolled Steel Design Parameters

	Label	Shape	Lenat	Lbyy[in]	Lbzzſinl	Lcomp t	Lcomp b	L-tor	Kvv	Kzz	Cb	Func
1	S3	Square Tubing	40	77.		Lbyy						Late
2	GA4	Grating Angle	27.295			Lbyy						Late
3	GA3	Grating Angle	27.295			Lbyy						Late
4	P3	Corner Plates	42			Lbyy						Late
5	S2	Square Tubing	40			Lbyy						Late
6	GA2	Grating Angle	27.295			Lbyy						Late
7	GA1	Grating Angle	27.295			Lbyy						Late
8	P2	Corner Plates	42			Lbyy						Late
9	S1	Square Tubing	40			Lbyy						Late
10	GA6	Grating Angle	27.295			Lbyy						Late
11	GA5	Grating Angle	27.295			Lbyy						Late
12	P1	Corner Plates	42			Lbyy						Late
13	H1	Face Pipes(3.5x.16)	96			Lbyy						Late

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Hot Rolled Steel Design Parameters (Continued)

	Label	Shape	Lengt	Lbyy[in]	Lbzz[in]	Lcomp t	Lcomp b	L-tor	. Kyy	Kzz	Cb	Func
14	MP1	Antenna Pipes	96			Lbyy						Late
15	MP3	Antenna Pipes	96			Lbyy						Late
16	HR1	Handrail	96			Lbyy						Late
17	CA8	Handrail Connector	42			Lbyy						Late
18	CA9	Handrail Connector	42			Lbyy						Late
19	CA7	Handrail Connector	42			Lbyy						Late
20	CA3	Channel(3.38x2.06)	33			Lbyy						Late
21	CA4	Channel(3.38x2.06)	33			Lbyy						Late
22	CA1	Channel(3.38x2.06)	33			Lbyy						Late
23	CA2	Channel(3.38x2.06)	33			Lbyy						Late
24	CA5	Channel(3.38x2.06)	33			Lbyy						Late
25	CA6	Channel(3.38x2.06)	33			Lbyy						Late
26	M75	PL 2.375x0.5	1.5			Lbyy						Late
27	MP2	Antenna Pipes	96			Lbyy						Late
28	H3	Face Pipes(3.5x.16)	96			Lbyy						Late
29	MP7	Antenna Pipes	96			Lbyy						Late
30	MP9	Antenna Pipes	96			Lbyy						Late
31	HR3	Handrail	96			Lbyy						Late
32	H2	Face Pipes(3.5x.16)	96			Lbyy						Late
33	MP4	Antenna Pipes	96			Lbyy						Late
34	MP6	Antenna Pipes	96			Lbyy						Late
35	HR2	Handrail	96			Lbyy						Late
36	MP8	Antenna Pipes	96			Lbyy						Late
37	MP5	Antenna Pipes	96			Lbyy						Late

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Ra	Analysis	. Inactive	Seismi
1	S3					,	Yes		•		None
2	GA4						Yes				None
3	GA3						Yes				None
4	P3	BenPIN	BenPIN				Yes	Default			None
5	S2						Yes				None
6	GA2						Yes				None
7	GA1						Yes				None
8	P2	BenPIN	BenPIN				Yes	Default			None
9	S1						Yes	Default			None
10	GA6						Yes				None
11	GA5						Yes				None
12	P1	BenPIN	BenPIN				Yes	Default			None
13	H1						Yes				None
14	MP1						Yes		+y+3		None

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Ra	Analysis	. Inactive	Seismi
15	MP3						Yes		+y+3		None
16	HR1						Yes				None
17	CA8	00000X	00000X				Yes				None
18	CA9	00000X	00000X				Yes				None
19	CA7	00000X	00000X				Yes	Default			None
20	M32						Yes	** NA **			None
21	M35						Yes	** NA **			None
22	M36						Yes	** NA **			None
23	M39A						Yes	** NA **			None
24	CA3						Yes	Default			None
25	CA4						Yes	Default			None
26	CA1						Yes	Default			None
27	CA2						Yes	Default			None
28	CA5						Yes	Default			None
29	CA6						Yes	Default			None
30	M64	BenPIN					Yes	** NA **			None
31	M65						Yes	** NA **			None
32	M66	BenPIN					Yes	** NA **			None
33	M67						Yes	** NA **			None
34	M68	BenPIN					Yes	** NA **			None
35	M69						Yes	** NA **			None
36	M70	BenPIN					Yes	** NA **			None
37	M71						Yes	** NA **			None
38	M72	BenPIN					Yes	** NA **			None
39	M73						Yes	** NA **			None
40	M74	BenPIN					Yes	** NA **			None
41	M75						Yes	** NA **			None
42	MP2						Yes		+y+3		None
43	M43						Yes	** NA **			None
44	M44						Yes	** NA **			None
45	H3						Yes				None
46	MP7						Yes		+y+3		None
47	MP9						Yes		+y+3		None
48	HR3						Yes				None
49	M52						Yes	** NA **			None
50	M53						Yes	** NA **			None
51	M54						Yes	** NA **			None
52	M55						Yes	** NA **			None
53	H2						Yes				None
54	MP4						Yes		+y+3		None
55	MP6						Yes		+y+3		None
56	HR2						Yes				None

Company : Infinigy Engined Designer : PSM Job Number : 1197-F0001-B Model Name: BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Ra	Analysis	. Inactive	Seismi
57	M66A						Yes	** NA **	,		None
58	M67A						Yes	** NA **			None
59	M68A						Yes	** NA **			None
60	M69A						Yes	** NA **			None
61	MP8						Yes		+y+3		None
62	M68B						Yes	** NA **			None
63	M69B						Yes	** NA **			None
64	MP5						Yes		+y+3		None
65	M71B						Yes	** NA **	_		None
66	M72B						Yes	** NA **			None

Material Takeoff

	Material	Size	Pieces	Length[in]	Weight[LB]
1	General			0 1 1	0
2	RIGID		29	35.1	0
3	Total General		29	35.1	0
4					
5	Hot Rolled Steel				
6	A1011 36 Ksi	C3.38x2.06x0.25	6	198	98.255
7	A1011 36 Ksi	PL6.5x0.375	3	126	87.09
8	A1011 36 Ksi	L6.6x4.46x0.25	3	126	96.558
9	A36 Gr.36	PL 2.375x0.5	1	1.5	.505
10	A500 GR.C	2.88x0.120	3	288	84.974
11	A500 GR.C	HSS4X4X6	3	120	162.653
12	A500 GR.C	Pipe3.5x0.165	3	288	141.202
13	A500 GR.C	PIPE_2.5	9	864	394.45
14	A529 Gr. 50	L2x2x4	6	163.8	43.838
15	Total HR Steel		37	2175.3	1109.525

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design	A [in2]	lvv ſin	.lzz ſin	J [in4]
1	Corner Plates	PL6.5x0.375	Beam		A1011			.029	_	.11
2	6"x0.37" Plate	Plate 6x.37	Beam	None	A1011	Typical	2.22	.025	6.66	.097
3	Grating Angle	L2x2x4	Beam	None	A529 G	Typical	.944	.346	.346	.021
4	Face Pipes(3.5x.1	Pipe3.5x0.165	Beam	None	A500 G	Typical	1.729	2.409	2.409	4.819
5	Antenna Pipes	PIPE 2.5	Beam	None	A500 G	Typical	1.61	1.45	1.45	2.89
6	Channel(3.38x2.06)	C3.38x2.06x0.25	Beam	None	A1011	Typical	1.75	.715	3.026	.034
7	Square Tubing	HSS4X4X6	Beam	None	A500 G	Typical	4.78	10.3	10.3	17.5
8	Handrail Connector	L6.6x4.46x0.25	Beam	None	A1011	Typical	2.703	4.759	12.473	.055

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Hot Rolled Steel Section Sets (Continued)

	Label	Shape	Type	Design List	Material	Design	. A [in2]	lyy [in	.lzz [in	. J [in4]	
9	Handrail	2.88x0.120	Beam	None	A500 G	Typical	1.04	.993	.993	1.985	

Basic Load Cases

	BLC Description	Category	X Gr		Z Gr	Joint		Distributed	Area(Memb	Surface(Plate/Wall)
1	Self Weight	<u>DL</u>		<u>-1</u>			13		3	
2	Wind Load AZI 0	WLZ					26			
3	Wind Load AZI 30	None					26			
4	Wind Load AZI 60	None					26			
5	Wind Load AZI 90	WLX					26			
6	Wind Load AZI 1	None					26			
7	Wind Load AZI 1	· None					26			
8	Wind Load AZI 1	1 10110					26			
9	Wind Load AZI 2	1 10110					26			
10	Wind Load AZI 2	140110					26			
11	Wind Load AZI 2	110110					26			
12	Wind Load AZI 3	None					26			
13	Wind Load AZI 3	None					26			
14	Distr. Wind Load Z	WLZ						66		
15	Distr. Wind Load X	WLX						66		
16	Ice Weight	OL1					13	66	3	
17	Ice Wind Load A	OL2					26			
18	Ice Wind Load A	None					26			
19	Ice Wind Load A	None					26			
20	Ice Wind Load A	OL3					26			
21	Ice Wind Load A	None					26			
22	Ice Wind Load A	None					26			
23	Ice Wind Load A	None					26			
24	Ice Wind Load A	None					26			
25	Ice Wind Load A	None					26			
26	Ice Wind Load A	None					26			
27	Ice Wind Load A	None					26			
28	Ice Wind Load A	None					26			
29	Distr. Ice Wind L	OL2						66		
30	Distr. Ice Wind L	OL3						66		
31	Seismic Load Z	ELZ			318		13			
32	Seismic Load X	ELX	318				13			
33	Service Live Loa	LL				3				
34	Maintenance Loa	LL				1				
35	Maintenance Loa	LL				1				
36	Maintenance Loa	LL				1				
37	Maintenance Loa					1				

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Page 7

Basic Load Cases (Continued)

	BLC Description	Category	X Gr	Y Gr	Z Gr	Joint	Point	Distributed	Area(Memb	Surface(Plate/Wall)
38	Maintenance Loa	· LL				1				
39	Maintenance Loa	· LL				1				
40	Maintenance Loa	· LL				1				
41	Maintenance Loa	· LL				1				
42	Maintenance Loa	· LL				1				
43	BLC 1 Transient	None						9		
44	BLC 16 Transien	None						9		

Load Combinations

		SP				Fa	В	Fa	В	Fa	В	Fa	В	Fa	B,I	Fa	В	Fa	В	Fa	В	Fa
1	1.100	ΥΥ	1																			
2	1.2DL + 1WL AZI 0				2			1														
3	1.2DL + 1WL AZI 30	Υ Υ	1	_	3			.866													_	
4	1.2DL + 1WL AZI 60		1	_	•	1				.866												
5	1.2DL + 1WL AZI 90		1		_	1	14		15													
6	1.2DL + 1WL AZI 120		1			1				.866												
7	1.2DL + 1WL AZI 150		1			1		8														
8	1.2DL + 1WL AZI 180	Y Y	1		8			-1														
9	1.2DL + 1WL AZI 210	Y Y	1		_	1		8														
10	1.2DL + 1WL AZI 240	Y Y	1		10	1	14	5														
11	1.2DL + 1WL AZI 270	Y Y	1		11	1	14			-1												
12	1.2DL + 1WL AZI 300	Υ Υ	1	1.2	12			.5														
13	1.2DL + 1WL AZI 330	Υ Υ	1	1.2	13	1	14	.866	15	5												
14	0.9DL + 1WL AZI 0	Y Y	1	.9	2	1	14	1	15													
15	0.9DL + 1WL AZI 30	Υ Υ	1	.9	3	1	14	.866	15	.5												
16	0.9DL + 1WL AZI 60	Y Y	1	.9	4	1	14	.5	15	.866												
17	0.9DL + 1WL AZI 90		1	.9	5	1	14		15	1												
18	0.9DL + 1WL AZI 120	Υ Υ	1	.9	6	1				.866												
19	0.9DL + 1WL AZI 150	Y Y	1		7	1	14	8	15	.5												
20	0.9DL + 1WL AZI 180	Y Y	1		8	1		-1	15													
21	0.9DL + 1WL AZI 210		1	.9	9	1	14	8	15	5												
22	0.9DL + 1WL AZI 240	Y Y	1		10		14	5	15	8												
23	0.9DL + 1WL AZI 270		1		11	1	14		15	7												
24	0.9DL + 1WL AZI 300	Υ Υ	1	.9	12	1	14	.5	15	8												
25	0.9DL + 1WL AZI 330	Y Y	1		13		14	.866	15	5												
26		Y Y	1	1.2	16	1																
27	1.2D + 1.0Di +1.0Wi AZI 0	Y Y	1	1.2	16		17	1	29	1	30											
28	1.2D + 1.0Di +1.0Wi AZI 30	Y Y	1	1.2	16		18	1	29	.866	30	.5										
29	1.2D + 1.0Di +1.0Wi AZI 60	Υ Υ	1	1.2	16	1	19			.5												
30		Y Y	1	1.2	16	1	20	1	29		30	1										
31	1.2D + 1.0Di +1.0Wi AZI 120	Y Y	1	1.2	16	1	21	1	29	5	30	.866										

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Load Combinations (Continued)

	Description	S	.P	.SB	Fa	aB	Fa	aB.	Fa	.B	.Fa	.B	.Fa	В	Fa	В	Fa	.B	.Fa	.B	Fa	.B	.Fa
32	1.2D + 1.0Di +1.0Wi AZI 150			-		2 1	3 1	22	2 1		8												
33	1.2D + 1.0Di +1.0Wi AZI 180) Y	·Y	-	1.	2 1	6 1	23		29	-1	30											
34	1.2D + 1.0Di +1.0Wi AZI 210) Y	Y	-	1.	2 1		24	1	29	8	.30	5										
35	1.2D + 1.0Di +1.0Wi AZI 240) Y	·Y	-	1.	2 1	3 -	25	_	29	5	30	8										
36	1.2D + 1.0Di +1.0Wi AZI 270) Y	Y	-	1.	2 1	6 1	26		29		30	-1										
37	1.2D + 1.0Di +1.0Wi AZI 300) Y	·Y	-	1.	2 1		27	1	29	.5	30	8										
38	1.2D + 1.0Di +1.0Wi AZI 330) Y	·Y	-	1.	2 1	3 1	28		29	.866	30	5										
39	(1.2 + 0.2Sds)DL + 1.0E AZI	0 Y	·Y	-	1.	23		32	2														
40	(1.2 + 0.2Sds)DL + 1.0E AZI	30 Y	Y	-	1.	23	1 .80	36 32	2 .5														
41	(1.2 + 0.2Sds)DL + 1.0E AZI	30 Y	·Y	-	1.	23	1 .	5 32	2 .866														
42	(1.2 + 0.2Sds)DL + 1.0E AZI 9	90 Y	Υ	-	1.	23	1	32	2 1														
43	(1.2 + 0.2Sds)DL + 1.0E AZI	1 <mark>.</mark> Y	·Y	-					.866														
44	(1.2 + 0.2Sds)DL + 1.0E AZI	1 <mark>.</mark> Y	Y	-	1.	23	18	332	2 .5														
	(1.2 + 0.2Sds)DL + 1.0E AZI			-				1 32															
_	(1.2 + 0.2Sds)DL + 1.0E AZI			•	1.	23	18	332	5														
	(1.2 + 0.2Sds)DL + 1.0E AZI			-	1.	23	1	5 32	28														
48	(1.2 + 0.2Sds)DL + 1.0E AZI	2 <mark>.</mark> Y	Y	•	1.	23			2 -1														
49	(1.2 + 0.2Sds)DL + 1.0E AZI	3 <mark>.</mark> Y	Y	1		23			28														
50	(1.2 + 0.2Sds)DL + 1.0E AZI			1	1.	23			5														
51	(0.9 - 0.2Sds)DL + 1.0E AZI			1		58 3	1 -	32															
52	(0.9 - 0.2Sds)DL + 1.0E AZI 3			-					2 .5														
53	(0.9 - 0.2Sds)DL + 1.0E AZI 6	60 Y	Y	-	.8	58 3	1 .	5 32	2 .866														
54	(0.9 - 0.2Sds)DL + 1.0E AZI 9	90 Y	Y	-		58 3		32															
-	(0.9 - 0.2Sds)DL + 1.0E AZI 1			-					.866														
	(0.9 - 0.2Sds)DL + 1.0E AZI 1			-			_		2 .5														
01	(0.9 - 0.2Sds)DL + 1.0E AZI 1			-		58 3		1 32															
	(0.9 - 0.2Sds)DL + 1.0E AZI 2			-			_		25														
	(0.9 - 0.2Sds)DL + 1.0E AZI 2			-	_	_	_		28														
	(0.9 - 0.2Sds)DL + 1.0E AZI 2			_		58 3			2 -1														
	(0.9 - 0.2Sds)DL + 1.0E AZI 3					58 3	1 .	5 32	28	_													
	(0.9 - 0.2Sds)DL + 1.0E AZI 3			-	8.				5														
	1.0DL + 1.5LL + 1.0SWL (60				1				.25				1.5										
					1 1	1 3			.216			1											
65	1.0DL + 1.5LL + 1.0SWL (60	Y	·Y		1 1	4			1.125														
	1.0DL + 1.5LL + 1.0SWL (60		_		'	1 5		5 14			.25												
67	1.0DL + 1.5LL + 1.0SWL (60				1 '		_		1														
68	1.0DL + 1.5LL + 1.0SWL (60	Y	·Y		'	1 7	_		2														
	1.0DL + 1.5LL + 1.0SWL (60					1 8			25				1.5										
	1.0DL + 1.5LL + 1.0SWL (60				'	1 8	4		2														
	1.0DL + 1.5LL + 1.0SWL (60				'				1														
	1.0DL + 1.5LL + 1.0SWL (60			-	'			5 14			25												
73	1.0DL + 1.5LL + 1.0SWL (60	Y	Υ.		'	1:	2 .2	5 14	125	15	2	.33	1.5										

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Load Combinations (Continued)

	Description S	Р	.SB	.Fa.	.В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
74	1.0DL + 1.5LL + 1.0SWL (60 Y			1				.216														
75	1.2DL + 1.5LL	Y	1	1.2	33	1.5																
76	1.2DL + 1.5LM-MP1 + 1SWL (Y	Y	1	1.2	34	1.5	2	.063	14	.063	15											
77	1.2DL + 1.5LM-MP1 + 1SWL (Y	Y	1	1.2	34	1.5	3	.063	14	.054	15	.031										
78	1.2DL + 1.5LM-MP1 + 1SWL (Y	Y	1	1.2	34	1.5	4	.063	14	.031	15	.054										
79	1.2DL + 1.5LM-MP1 + 1SWL (Y	Y	1	1.2	34	1.5	5	.063	14		15	.063										
80	1.2DL + 1.5LM-MP1 + 1SWL (Y	Y	1	1.2	34	1.5	6	.063	14	0	15	.054										
81	1.2DL + 1.5LM-MP1 + 1SWL (Y	Y	1	1.2	34	1.5	7	.063	14	0	15	.031										
82	1.2DL + 1.5LM-MP1 + 1SWL (Y	Y	1	1.2	34	1.5		.063														
83	1.2DL + 1.5LM-MP1 + 1SWL ()	Y	1	1.2	34	1.5	9	.063	14	0	15	0										
84	1.2DL + 1.5LM-MP1 + 1SWL (Y	Y	1	1.2	34	1.5	10	.063	14	0	15	0										
85	1.2DL + 1.5LM-MP1 + 1SWL (Y	Y	1	1.2	34	1.5	11	.063	14		15	0										
86	1.2DL + 1.5LM-MP1 + 1SWL (Y	Y	1	1.2	34	1.5	12	.063	14	.031	15	0										
87	1.2DL + 1.5LM-MP1 + 1SWL (Y	Y	1					.063														
88			1					.063														
	1.2DL + 1.5LM-MP2 + 1SWL (Y		1				_	.063														
90	1.2DL + 1.5LM-MP2 + 1SWL (Y	Y	1	1.2	35	1.5	-	.063			15	.054										
91	1.2DL + 1.5LM-MP2 + 1SWL (Y	Y	1			1.5	_	.063				.063										
92	1.2DL + 1.5LM-MP2 + 1SWL (Y		1				_	.063														
00	1.2DL + 1.5LM-MP2 + 1SWL (Y		1				-	.063														
	1.2DL + 1.5LM-MP2 + 1SWL (Y		1					.063														
	1.2DL + 1.5LM-MP2 + 1SWL (Y		1	1.2	35	1.5	9	.063	14	0	15	0										
96	1.2DL + 1.5LM-MP2 + 1SWL (Y	_	1	1.2	35	1.5	10	.063	14	0	15	0										
97	1.2DL + 1.5LM-MP2 + 1SWL (Y		1	1.2	35	1.5	11	.063	14		15	0										
98	1.2DL + 1.5LM-MP2 + 1SWL (Y		1					.063														
	1.2DL + 1.5LM-MP2 + 1SWL (Y		1					.063														
	1.2DL + 1.5LM-MP3 + 1SWL (.063														
	1.2DL + 1.5LM-MP3 + 1SWL (Y		1					.063														
	1.2DL + 1.5LM-MP3 + 1SWL (Y		1					.063														
	1.2DL + 1.5LM-MP3 + 1SWL (Y					1.5		.063				.063										
	1.2DL + 1.5LM-MP3 + 1SWL (.063														
	1.2DL + 1.5LM-MP3 + 1SWL (Y				_		•	.063														
	1.2DL + 1.5LM-MP3 + 1SWL (•	.063														
	1.2DL + 1.5LM-MP3 + 1SWL ()				_		_	.063														
	1.2DL + 1.5LM-MP3 + 1SWL (Y							.063														
	1.2DL + 1.5LM-MP3 + 1SWL (1					.063				0										
	1.2DL + 1.5LM-MP3 + 1SWL (Y		1					.063														
	1.2DL + 1.5LM-MP3 + 1SWL (Y							.063														
	1.2DL + 1.5LM-MP4 + 1SWL (Y						_	.063														
	1.2DL + 1.5LM-MP4 + 1SWL (Y							.063														
	1.2DL + 1.5LM-MP4 + 1SWL (Y							.063														
115	1.2DL + 1.5LM-MP4 + 1SWL (Y	Y	1	1.2	37	1.5	5	.063	14		15	.063										

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Load Combinations (Continued)

Description SP	S F	2 1	Fa R	Fa	B	Fa	R	Fa	R	Fa	R	Fa	R	Fa	R	Fa	R	Fa	R	Fa
116 1.2DL + 1.5LM-MP4 + 1SWL (YY			1.2 37									ı a	D	1 a		ı a	D	1 a	D	ıa.
117 1.2DL + 1.5LM-MP4 + 1SWL (Y Y		•	1.2 37	+					_											
118 1.2DL + 1.5LM-MP4 + 1SWL (Y Y		•	1.2 37																	
119 1.2DL + 1.5LM-MP4 + 1SWL (Y Y		_	1.2 37	_		_			_											
120 1.2DL + 1.5LM-MP4 + 1SWL (Y Y			1.2 37		_	-			_											
121 1.2DL + 1.5LM-MP4 + 1SWL (Y Y		•	1.2 37							0										
122 1.2DL + 1.5LM-MP4 + 1SWL (Y Y		•	1.2 37						15	0										
123 1.2DL + 1.5LM-MP4 + 1SWL (Y Y		1	1.2 37	1.5	13	.063	14	.054	15	0										
124 1.2DL + 1.5LM-MP5 + 1SWL (YY		•	1.2 38	1.5	2	.063	14	.063	15											
125 1.2DL + 1.5LM-MP5 + 1SWL (Y Y			1.2 38																	
126 1.2DL + 1.5LM-MP5 + 1SWL (YY			1.2 38																	
127 1.2DL + 1.5LM-MP5 + 1SWL (YY			1.2 38							.063										
128 1.2DL + 1.5LM-MP5 + 1SWL (Υ γ			1.2 38						15	.054										
129 1.2DL + 1.5LM-MP5 + 1SWL (Υ γ			1.2 38																	
130 1.2DL + 1.5LM-MP5 + 1SWL (Y Y		_	1.2 38	1.5	8	.063	14	0	15											
131 1.2DL + 1.5LM-MP5 + 1SWL (Y Y		1	1.2 38	1.5	9	.063	14	0	15	0										
132 1.2DL + 1.5LM-MP5 + 1SWL (Y Y		1	1.2 38	1.5	10	.063	14	0	.15	0										
133 1.2DL + 1.5LM-MP5 + 1SWL (Y Y		1	1.2 38	1.5	11	.063	14		15	0										
134 1.2DL + 1.5LM-MP5 + 1SWL (Y Y		1	1.2 38	1.5	12	.063	14	.031	15	0										
135 1.2DL + 1.5LM-MP5 + 1SWL (Y Y		1	1.2 38	1.5	13	.063	14	.054	15	0										
136 1.2DL + 1.5LM-MP6 + 1SWL (Y Y			1.2 39																	
137 1.2DL + 1.5LM-MP6 + 1SWL (Y Y		- 1	1.2 39		_				1	l .										
138 1.2DL + 1.5LM-MP6 + 1SWL (Y Y		1	1.2 39	1.5	4	.063	14	.031	15	.054										
139 1.2DL + 1.5LM-MP6 + 1SWL (Y Y		1	1.2 39	1.5	5	.063	14		15	.063										
140 1.2DL + 1.5LM-MP6 + 1SWL (Y Y			1.2 39																	
141 1.2DL + 1.5LM-MP6 + 1SWL (Y Y		1	1.2 39	1.5	7	.063	14	0	.15	.031										
142 1.2DL + 1.5LM-MP6 + 1SWL (Y Y			1.2 39		_															
143 1.2DL + 1.5LM-MP6 + 1SWL (Y Y			1.2 39																	
144 1.2DL + 1.5LM-MP6 + 1SWL (Y Y		•	1.2 39																	
145 1.2DL + 1.5LM-MP6 + 1SWL (Y Y			1.2 39	1		1 1			1	0										
146 1.2DL + 1.5LM-MP6 + 1SWL (Y Y			1.2 39																	
147 1.2DL + 1.5LM-MP6 + 1SWL (Υ Υ		•	1.2 39																	
148 1.2DL + 1.5LM-MP7 + 1SWL (Υ Υ			1.2 40		_				1											
149 1.2DL + 1.5LM-MP7 + 1SWL (Υ Υ			1.2 40																	
150 1.2DL + 1.5LM-MP7 + 1SWL (Υ γ		_	1.2 40																	
151 1.2DL + 1.5LM-MP7 + 1SWL (Υ Υ		- 1	1.2 40		_				1	.063										
152 1.2DL + 1.5LM-MP7 + 1SWL (Υ Υ			1.2 40						_											
153 1.2DL + 1.5LM-MP7 + 1SWL (Υ γ		•	1.2 40																	
154 1.2DL + 1.5LM-MP7 + 1SWL (Υ Υ			1.2 40																	
155 1.2DL + 1.5LM-MP7 + 1SWL (Υ Υ		- 1	1.2 40		_															
156 1.2DL + 1.5LM-MP7 + 1SWL (Υ Υ		•	1.2 40																	
157 1.2DL + 1.5LM-MP7 + 1SWL (Υ Υ		1	1.2 40	1.5	11	.063	14		15	0										

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Load Combinations (Continued)

Description	SP	SB	.Fal	BFa	B	.Fa	В	Fal	В	FaB	.Fa	В	Fa	В	Fa	В	Fa	В	Fa
158 1.2DL + 1.5LM-MP7 + 15	SWL (Y Y	1	1.2	40 1.	5 12	.063	14	.031	15	0									
159 1.2DL + 1.5LM-MP7 + 19	SWL (Y Y	1	1.2	40 1.	5 13	.063	14	.054	15	0									
160 1.2DL + 1.5LM-MP8 + 15	SWL (Y Y	1	1.2	41 1.	5 2	.063	14	.063	15										
161 1.2DL + 1.5LM-MP8 + 18	SWL (Y Y	1	1.2	41 1.	5 3	.063	14	.054	15	.031									
162 1.2DL + 1.5LM-MP8 + 18	SWL (Υ Υ	1	1.2	41 1.	5 4	.063	14	.031	15 .	.054									
163 1.2DL + 1.5LM-MP8 + 18	SWL (Y Y	1	1.2	41 1.	5 5	.063	14		15	.063									
164 1.2DL + 1.5LM-MP8 + 18	SWL (Y Y	1	1.2	41 1.	5 6	.063	14	0	15 .	.054									
165 1.2DL + 1.5LM-MP8 + 18	SWL (Y Y	1	1.2	41 1.	5 7	.063	14	0	15	.031									
166 1.2DL + 1.5LM-MP8 + 15	SWL (Y Y	1	1.2	41 1.	5 8	.063	14	0	15										
167 1.2DL + 1.5LM-MP8 + 18	SWL (Y Y	1	1.2	41 1.	5 9	.063	14	0	15	0									
168 1.2DL + 1.5LM-MP8 + 18	SWL (Y Y	1	1.2	41 1.	5 10	.063	14	0	15	0									
169 1.2DL + 1.5LM-MP8 + 18	SWL (Y Y	1	1.2	41 1.	5 11	.063	14		15	0									
170 1.2DL + 1.5LM-MP8 + 18	SWL (Y Y	1	1.2	41 1.	5 12	.063	14	.031	15	0									
171 1.2DL + 1.5LM-MP8 + 18	SWL (Y Y	1	1.2	41 1.	5 13	.063	14	.054	15	0									
172 1.2DL + 1.5LM-MP9 + 15	SWL (Y Y	1	1.2	42 1.	5 2	.063	14	.063	15										
173 1.2DL + 1.5LM-MP9 + 15	SWL (Y Y	1	1.2	42 1.															
174 1.2DL + 1.5LM-MP9 + 15	SWL (Y Y	1	1.2	42 1.	5 4	.063	14	.031	15	.054									
175 1.2DL + 1.5LM-MP9 + 18	SWL (Y Y	1	1.2	42 1.	5 5	.063	14		15 .	.063									
176 1.2DL + 1.5LM-MP9 + 18	SWL (Y Y	1	1.2	42 1.	5 6	.063	14	0	15	.054									
177 1.2DL + 1.5LM-MP9 + 18	SWL (Y Y	1	1.2	42 1.	5 7	.063	14	0	15 .	.031									
178 1.2DL + 1.5LM-MP9 + 15	SWL (Y Y	1	1.2	42 1.	5 8	.063	14	0	15										
179 1.2DL + 1.5LM-MP9 + 18	SWL (Y Y	1	1.2	42 1.	5 9	.063	14	0	15	0									
180 1.2DL + 1.5LM-MP9 + 18	SWL (Y Y	1	1.2	42 1.	5 10	.063	14	0	15	0									
181 1.2DL + 1.5LM-MP9 + 18	SWL (Y Y	1	1.2	42 1.	5 11	.063	14		15	0									
182 1.2DL + 1.5LM-MP9 + 18	SWL (Y Y	1	1.2	42 1.	5 12	.063	14	.031	15	0									

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	P24	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	P13	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	P1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Envelope Joint Reactions

	Joint	X [lb]	LC	Y [lb]	LC	Z [lb]		MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	P24	1313.281	6	2267.6	35	2000.6	13	1604.2	16	2536.091	19	4556.879	10
2		-1292.607	24	-900.8	16	-1992.94	19	-3496.7	35	-2551.087	13	-2642.615	16
3	P13	1604.745	4	2687.13	31	2123.4	15	1430.72	24	2858.867	15	2554.493	24
4		-1605.644	22	-810.2	24	-2128.6	9	-2855.9	92	-2902.064	9	-6093.883	31
5	P1	2069.184	17	2423.2	27	1065.7	2	5959.0	2	2339.984	11	1595.751	115

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Envelope Joint Reactions (Continued)

	Joint	X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
6		-2089.398	11	-903.7	20	-1077.8	8	-3124.3	20	-2285.796	17	-874.393	157
7	Totals:	4750.069	5	6399.6	34	5031.0	14						
8		-4750.062	23	1525.6	53	-5031.09	8						

Member Point Loads (BLC 1 : Self Weight)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Υ	-32.25	0
2	MP1	Υ	-32.25	72
3	MP1	Υ	-74.95	12
4	MP1	Υ	-63.93	12
5	S2	Υ	-21.85	12
6	MP4	Υ	-32.25	0
7	MP4	Υ	-32.25	72
8	MP4	Υ	-74.95	12
9	MP4	Υ	-63.93	12
10	MP7	Υ	-32.25	0
11	MP7	Υ	-32.25	72
12	MP7	Υ	-74.95	12
13	MP7	Υ	-63.93	12

Member Point Loads (BLC 2: Wind Load AZI 0)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	0	0
2	MP1	Z	-214.81	0
3	MP1	X	0	72
4	MP1	Z	-214.81	72
5	MP1	X	0	12
6	MP1	Z	-105.31	12
7	MP1	X	0	12
8	MP1	Z	-105.31	12
9	S2	X	0	12
10	S2	Z	-100.12	12
11	MP4	X	0	0
12	MP4	Z	-118.26	0
13	MP4	X	0	72
14	MP4	Z	-118.26	72
15	MP4	X	0	12
16	MP4	Z	-74.16	12
17	MP4	X	0	12
18	MP4	Z	-67.88	12

Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-B Model Name: BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:

Member Point Loads (BLC 2: Wind Load AZI 0) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
19	MP7	X	0	0
20	MP7	Z	-118.26	0
21	MP7	X	0	72
22	MP7	Z	-118.26	72
23	MP7	X	0	12
24	MP7	Z	-74.16	12
25	MP7	X	0	12
26	MP7	Z	-67.88	12

Member Point Loads (BLC 3: Wind Load AZI 30)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-91.31	0
2	MP1	Z	-158.16	0
3	MP1	X	-91.31	72
4	MP1	Z	-158.16	72
5	MP1	X	-47.46	12
6	MP1	Z	-82.21	12
7	MP1	X	-46.42	12
8	MP1	Z	-80.4	12
9	S2	X	-44.7	12
10	S2	Z	-77.42	12
11	MP4	X	-91.31	0
12	MP4	Z	-158.16	0
13	MP4	X	-91.31	72
14	MP4	Z	-158.16	72
15	MP4	X	-47.46	12
16	MP4	Z	-82.21	12
17	MP4	X	-46.42	12
18	MP4	Z	-80.4	12
19	MP7	X	-43.04	0
20	MP7	Z	-74.55	0
21	MP7	X	-43.04	72
22	MP7	Z	-74.55	72
23	MP7	X Z	-31.89	12
24	MP7	Z	-55.23	12
25	MP7	X	-27.7	12
26	MP7	Z	-47.98	12

Member Point Loads (BLC 4: Wind Load AZI 60)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-102.42	0

Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-B Model Name: BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Member Point Loads (BLC 4: Wind Load AZI 60) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
2	MP1	Z	-59.13	0
3	MP1	X	-102.42	72
4	MP1	Z	-59.13	72
5	MP1	X	-64.23	12
6	MP1	Z	-37.08	12
7	MP1	X	-58.79	12
8	MP1	Z	-33.94	12
9	S2	X	-58.84	12
10	S2	Z	-33.97	12
11	MP4	X	-186.03	0
12	MP4	Z	-107.4	0
13	MP4	X	-186.03	72
14	MP4	Z	-107.4	72
15	MP4	X	-91.2	12
16	MP4	Z	-52.66	12
17	MP4	X	-91.2	12
18	MP4	Z	-52.66	12
19	MP7	X	-102.42	0
20	MP7	Z	-59.13	0
21	MP7	X	-102.42	72
22	MP7	Z	-59.13	72
23	MP7	X	-64.23	12
24	MP7	Z	-37.08	12
25	MP7	X	-58.79	12
26	MP7	Z	-33.94	12

Member Point Loads (BLC 5: Wind Load AZI 90)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-86.08	0
2	MP1	Z	0	0
3	MP1	X	-86.08	72
4	MP1	Z	0	72
5	MP1	X	-63.78	12
6	MP1	Z	0	12
7	MP1	X	-55.4	12
8	MP1	Z	0	12
9	S2	X	-57.21	12
10	S2	Z	0	12
11	MP4	X	-182.63	0
12	MP4	Z	0	0
13	MP4	X	-182.63	72
14	MP4	Z	0	72

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Member Point Loads (BLC 5: Wind Load AZI 90) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
15	MP4	X	-94.93	12
16	MP4	Z	0	12
17	MP4	X	-92.83	12
18	MP4	Z	0	12
19	MP7	X	-182.63	0
20	MP7	Z	0	0
21	MP7	X	-182.63	72
22	MP7	Z	0	72
23	MP7	X	-94.93	12
24	MP7	Z	0	12
25	MP7	X	-92.83	12
26	MP7	Z	0	12

Member Point Loads (BLC 6: Wind Load AZI 120)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-102.42	0
2	MP1	Z	59.13	0
3	MP1	X	-102.42	72
4	MP1	Z	59.13	72
5	MP1	X Z	-64.23	12
6	MP1	Z	37.08	12
7	MP1	Χ	-58.79	12
8	MP1	Z	33.94	12
9	S2	Χ	-58.84	12
10	S2	Z	33.97	12
11	MP4	X	-102.42	0
12	MP4	Z	59.13	0
13	MP4	Χ	-102.42	72
14	MP4	Z	59.13	72
15	MP4	X	-64.23	12
16	MP4	Z	37.08	12
17	MP4	X	-58.79	12
18	MP4	Z	33.94	12
19	MP7	X	-186.03	0
20	MP7	Z	107.4	0
21	MP7	Χ	-186.03	72
22	MP7	Z	107.4	72
23	MP7	X	-91.2	12
24	MP7	Z	52.66	12
25	MP7	X	-91.2	12
26	MP7	Z	52.66	12

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Member Point Loads (BLC 7: Wind Load AZI 150)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-91.31	0
2	MP1	Z	158.16	0
3	MP1	X	-91.31	72
4	MP1	Z	158.16	72
5	MP1	X	-47.46	12
6	MP1	Z	82.21	12
7	MP1	X	-46.42	12
8	MP1	Z	80.4	12
9	S2	X	-44.7	12
10	S2	Z	77.42	12
11	MP4	X	-43.04	0
12	MP4	Z	74.55	0
13	MP4	X	-43.04	72
14	MP4	Z	74.55	72
15	MP4	X	-31.89	12
16	MP4	Z	55.23	12
17	MP4	X	-27.7	12
18	MP4	Z	47.98	12
19	MP7	X	-91.31	0
20	MP7	Z	158.16	0
21	MP7	X	-91.31	72
22	MP7	Z	158.16	72
23	MP7	X	-47.46	12
24	MP7	Z	82.21	12
25	MP7	X	-46.42	12
26	MP7	Z	80.4	12

Member Point Loads (BLC 8: Wind Load AZI 180)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	0	0
2	MP1	Z	214.81	0
3	MP1	X	0	72
4	MP1	Z	214.81	72
5	MP1	X	0	12
6	MP1	Z	105.31	12
7	MP1	X	0	12
8	MP1	Z	105.31	12
9	S2	X	0	12
10	S2	Z	100.12	12
11	MP4	X	0	0
12	MP4	Z	118.26	0
13	MP4	X	0	72

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Member Point Loads (BLC 8: Wind Load AZI 180) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
14	MP4	Z	118.26	72
15	MP4	X	0	12
16	MP4	Z	74.16	12
17	MP4	X	0	12
18	MP4	Z	67.88	12
19	MP7	X	0	0
20	MP7	Z	118.26	0
21	MP7	X	0	72
22	MP7	Z	118.26	72
23	MP7	X	0	12
24	MP7	Z	74.16	12
25	MP7	X	0	12
26	MP7	Z	67.88	12

Member Point Loads (BLC 9: Wind Load AZI 210)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	91.31	0
2	MP1	Z	158.16	0
3	MP1	X	91.31	72
4	MP1	Z	158.16	72
5	MP1	X	47.46	12
6	MP1	Z	82.21	12
7	MP1	X	46.42	12
8	MP1	Z	80.4	12
9	S2	X	44.7	12
10	S2	Z	77.42	12
11	MP4	X	91.31	0
12	MP4	Z	158.16	0
13	MP4	X	91.31	72
14	MP4	Z	158.16	72
15	MP4	X	47.46	12
16	MP4	Z	82.21	12
17	MP4	X	46.42	12
18	MP4	Z	80.4	12
19	MP7	X	43.04	0
20	MP7	Z	74.55	0
21	MP7	X	43.04	72
22	MP7	Z	74.55	72
23	MP7	X	31.89	12
24	MP7	Z	55.23	12
25	MP7	X	27.7	12
26	MP7	Z	47.98	12

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Member Point Loads (BLC 10 : Wind Load AZI 240)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	102.42	0
2	MP1	Z	59.13	0
3	MP1	Χ	102.42	72
4	MP1	Z	59.13	72
5	MP1	X	64.23	12
6	MP1	Z	37.08	12
7	MP1	X	58.79	12
8	MP1	Z	33.94	12
9	S2	X	58.84	12
10	S2	Z	33.97	12
11	MP4	X	186.03	0
12	MP4	Z	107.4	0
13	MP4	X	186.03	72
14	MP4	Z	107.4	72
15	MP4	X	91.2	12
16	MP4	Z	52.66	12
17	MP4	X	91.2	12
18	MP4	Z	52.66	12
19	MP7	X	102.42	0
20	MP7	Z	59.13	0
21	MP7	X	102.42	72
22	MP7	Z	59.13	72
23	MP7	X	64.23	12
24	MP7	Z	37.08	12
25	MP7	X	58.79	12
26	MP7	Z	33.94	12

Member Point Loads (BLC 11: Wind Load AZI 270)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	86.08	0
2	MP1	Z	0	0
3	MP1	X	86.08	72
4	MP1	Z	0	72
5	MP1	X	63.78	12
6	MP1	Z	0	12
7	MP1	X	55.4	12
8	MP1	Z	0	12
9	S2	X	57.21	12
10	S2	Z	0	12
11	MP4	X	182.63	0
12	MP4	Z	0	0
13	MP4	X	182.63	72

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Member Point Loads (BLC 11: Wind Load AZI 270) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
14	MP4	Z	0	72
15	MP4	X	94.93	12
16	MP4	Z	0	12
17	MP4	X	92.83	12
18	MP4	Z	0	12
19	MP7	X	182.63	0
20	MP7	Z	0	0
21	MP7	X	182.63	72
22	MP7	Z	0	72
23	MP7	X	94.93	12
24	MP7	Z	0	12
25	MP7	X	92.83	12
26	MP7	Z	0	12

Member Point Loads (BLC 12: Wind Load AZI 300)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	102.42	0
2	MP1	Z	-59.13	0
3	MP1	X	102.42	72
4	MP1	Z	-59.13	72
5	MP1	X	64.23	12
6	MP1	Z	-37.08	12
7	MP1	X	58.79	12
8	MP1	Z	-33.94	12
9	S2	X	58.84	12
10	S2	Z	-33.97	12
11	MP4	X	102.42	0
12	MP4	Z	-59.13	0
13	MP4	X	102.42	72
14	MP4	Z	-59.13	72
15	MP4	X	64.23	12
16	MP4	Z	-37.08	12
17	MP4	X	58.79	12
18	MP4	Z	-33.94	12
19	MP7	X	186.03	0
20	MP7	Z	-107.4	0
21	MP7	X	186.03	72
22	MP7	Z	-107.4	72
23	MP7	X	91.2	12
24	MP7	Z	-52.66	12
25	MP7	X	91.2	12
26	MP7	Z	-52.66	12

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Member Point Loads (BLC 13: Wind Load AZI 330)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	91.31	0
2	MP1	Z	-158.16	0
3	MP1	X	91.31	72
4	MP1	Z	-158.16	72
5	MP1	X	47.46	12
6	MP1	Z	-82.21	12
7	MP1	X	46.42	12
8	MP1	Z	-80.4	12
9	S2	X	44.7	12
10	S2	Z	-77.42	12
11	MP4	X	43.04	0
12	MP4	Z	-74.55	0
13	MP4	X	43.04	72
14	MP4	Z	-74.55	72
15	MP4	X	31.89	12
16	MP4	Z	-55.23	12
17	MP4	X	27.7	12
18	MP4	Z	-47.98	12
19	MP7	X	91.31	0
20	MP7	Z	-158.16	0
21	MP7	X	91.31	72
22	MP7	Z	-158.16	72
23	MP7	X	47.46	12
24	MP7	Z	-82.21	12
25	MP7	X	46.42	12
26	MP7	Z	-80.4	12

Member Point Loads (BLC 16 : Ice Weight)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Υ	-158.15	0
2	MP1	Υ	-158.15	72
3	MP1	Υ	-83.599	12
4	MP1	Υ	-78.545	12
5	S2	Υ	-76.636	12
6	MP4	Υ	-158.15	0
7	MP4	Υ	-158.15	72
8	MP4	Υ	-83.599	12
9	MP4	Υ	-78.545	12
10	MP7	Υ	-158.15	0
11	MP7	Υ	-158.15	72
12	MP7	Υ	-83.599	12
13	MP7	Υ	-78.545	12

Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-B Model Name: BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Member Point Loads (BLC 17 : Ice Wind Load AZI 0)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	0	0
2	MP1	Z	-30.05	0
3	MP1	X	0	72
4	MP1	Z	-30.05	72
5	MP1	X	0	12
6	MP1	Z	-11.85	12
7	MP1	X	0	12
8	MP1	Z	-11.85	12
9	S2	X	0	12
10	S2	Z	-11.39	12
11	MP4	X	0	0
12	MP4	Z	-21.35	0
13	MP4	X	0	72
14	MP4	Z	-21.35	72
15	MP4	X	0	12
16	MP4	Z	-9.4	12
17	MP4	X	0	12
18	MP4	Z	-9.08	12
19	MP7	X	0	0
20	MP7	Z	-21.35	0
21	MP7	X	0	72
22	MP7	Z	-21.35	72
23	MP7	X	0	12
24	MP7	Z	-9.4	12
25	MP7	X	0	12
26	MP7	Z	-9.08	12

Member Point Loads (BLC 18 : Ice Wind Load AZI 30)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-13.57	0
2	MP1	Z	-23.51	0
3	MP1	X	-13.57	72
4	MP1	Z	-23.51	72
5	MP1	X	-5.52	12
6	MP1	Z	-9.56	12
7	MP1	Χ	-5.47	12
8	MP1	Z	-9.47	12
9	S2	X	-5.31	12
10	S2	Z	-9.2	12
11	MP4	X	-13.57	0
12	MP4	Z	-23.51	0
13	MP4	Χ	-13.57	72

Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-B Model Name: BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Member Point Loads (BLC 18: Ice Wind Load AZI 30) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
14	MP4	Z	-23.51	72
15	MP4	X	-5.52	12
16	MP4	Z	-9.56	12
17	MP4	X	-5.47	12
18	MP4	Z	-9.47	12
19	MP7	X	-9.22	0
20	MP7	Z	-15.98	0
21	MP7	X	-9.22	72
22	MP7	Z	-15.98	72
23	MP7	X	-4.29	12
24	MP7	Z	-7.43	12
25	MP7	X	-4.08	12
26	MP7	Z	-7.07	12

Member Point Loads (BLC 19 : Ice Wind Load AZI 60)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-18.49	0
2	MP1	Z	-10.67	0
3	MP1	X	-18.49	72
4	MP1	Z	-10.67	72
5	MP1	X	-8.14	12
6	MP1	Z	-4.7	12
7	MP1	X	-7.87	12
8	MP1	Z	-4.54	12
9	S2	X	-7.86	12
10	S2	Z	-4.54	12
11	MP4	X	-26.02	0
12	MP4	Z	-15.02	0
13	MP4	X	-26.02	72
14	MP4	Z	-15.02	72
15	MP4	X	-10.27	12
16	MP4	Z	-5.93	12
17	MP4	X	-10.27	12
18	MP4	Z	-5.93	12
19	MP7	X	-18.49	0
20	MP7	Z	-10.67	0
21	MP7	X	-18.49	72
22	MP7	Z	-10.67	72
23	MP7	X	-8.14	12
24	MP7	Z	-4.7	12
25	MP7	X	-7.87	12
26	MP7	Z	-4.54	12

Company : Infinigy Engined Designer : PSM Job Number : 1197-F0001-B Model Name: BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Member Point Loads (BLC 20 : Ice Wind Load AZI 90)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-18.45	0
2	MP1	Z	0	0
3	MP1	X	-18.45	72
4	MP1	Z	0	72
5	MP1	X	-8.58	12
6	MP1	Z	0	12
7	MP1	X	-8.16	12
8	MP1	Z	0	12
9	S2	X	-8.31	12
10	S2	Z	0	12
11	MP4	X	-27.15	0
12	MP4	Z	0	0
13	MP4	X	-27.15	72
14	MP4	Z	0	72
15	MP4	X	-11.04	12
16	MP4	Z	0	12
17	MP4	X	-10.93	12
18	MP4	Z	0	12
19	MP7	X	-27.15	0
20	MP7	Z	0	0
21	MP7	X	-27.15	72
22	MP7	Z	0	72
23	MP7	X	-11.04	12
24	MP7	Z	0	12
25	MP7	X	-10.93	12
26	MP7	Z	0	12

Member Point Loads (BLC 21 : Ice Wind Load AZI 120)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-18.49	0
2	MP1	Z	10.67	0
3	MP1	X	-18.49	72
4	MP1	Z	10.67	72
5	MP1	X	-8.14	12
6	MP1	Z	4.7	12
7	MP1	X	-7.87	12
8	MP1	Z	4.54	12
9	S2	X	-7.86	12
10	S2	Z	4.54	12
11	MP4	X	-18.49	0
12	MP4	Z	10.67	0
13	MP4	X	-18.49	72

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Member Point Loads (BLC 21 : Ice Wind Load AZI 120) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
14	MP4	Z	10.67	72
15	MP4	X	-8.14	12
16	MP4	Z	4.7	12
17	MP4	X	-7.87	12
18	MP4	Z	4.54	12
19	MP7	X	-26.02	0
20	MP7	Z	15.02	0
21	MP7	X	-26.02	72
22	MP7	Z	15.02	72
23	MP7	X	-10.27	12
24	MP7	Z	5.93	12
25	MP7	X	-10.27	12
26	MP7	Z	5.93	12

Member Point Loads (BLC 22 : Ice Wind Load AZI 150)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-13.57	0
2	MP1	Z	23.51	0
3	MP1	X	-13.57	72
4	MP1	Z	23.51	72
5	MP1	X	-5.52	12
6	MP1	Z	9.56	12
7	MP1	X Z	-5.47	12
8	MP1		9.47	12
9	S2	X	-5.31	12
10	S2	Z	9.2	12
11	MP4	X	-9.22	0
12	MP4	Z	15.98	0
13	MP4	X	-9.22	72
14	MP4	Z	15.98	72
15	MP4	X	-4.29	12
16	MP4	Z	7.43	12
17	MP4	X	-4.08	12
18	MP4	Z	7.07	12
19	MP7	X	-13.57	0
20	MP7	Z	23.51	0
21	MP7	X	-13.57	72
22	MP7	Z	23.51	72
23	MP7	X	-5.52	12
24	MP7	Z	9.56	12
25	MP7	X	-5.47	12
26	MP7	Z	9.47	12

Company : Infinigy Engined Designer : PSM Job Number : 1197-F0001-B Model Name: BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Member Point Loads (BLC 23 : Ice Wind Load AZI 180)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	0	0
2	MP1	Z	30.05	0
3	MP1	X	0	72
4	MP1	Z	30.05	72
5	MP1	Χ	0	12
6	MP1	Z	11.85	12
7	MP1	X	0	12
8	MP1	Z	11.85	12
9	S2	X	0	12
10	S2	Z	11.39	12
11	MP4	X	0	0
12	MP4	Z	21.35	0
13	MP4	X	0	72
14	MP4	Z	21.35	72
15	MP4	X	0	12
16	MP4	Z	9.4	12
17	MP4	X	0	12
18	MP4	Z	9.08	12
19	MP7	X	0	0
20	MP7	Z	21.35	0
21	MP7	X	0	72
22	MP7	Z	21.35	72
23	MP7	X	0	12
24	MP7	Z	9.4	12
25	MP7	X	0	12
26	MP7	Z	9.08	12

Member Point Loads (BLC 24 : Ice Wind Load AZI 210)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	13.57	0
2	MP1	Z	23.51	0
3	MP1	X	13.57	72
4	MP1	Z	23.51	72
5	MP1	X	5.52	12
6	MP1	Z	9.56	12
7	MP1	X	5.47	12
8	MP1	Z	9.47	12
9	S2	X	5.31	12
10	S2	Z	9.2	12
11	MP4	X	13.57	0
12	MP4	Z	23.51	0
13	MP4	X	13.57	72

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Member Point Loads (BLC 24 : Ice Wind Load AZI 210) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
14	MP4	Z	23.51	72
15	MP4	X	5.52	12
16	MP4	Z	9.56	12
17	MP4	X	5.47	12
18	MP4	Z	9.47	12
19	MP7	X	9.22	0
20	MP7	Z	15.98	0
21	MP7	X	9.22	72
22	MP7	Z	15.98	72
23	MP7	X	4.29	12
24	MP7	Z	7.43	12
25	MP7	X	4.08	12
26	MP7	Z	7.07	12

Member Point Loads (BLC 25 : Ice Wind Load AZI 240)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	18.49	0
2	MP1	Z	10.67	0
3	MP1	X	18.49	72
4	MP1	Z	10.67	72
5	MP1	X	8.14	12
6	MP1	Z	4.7	12
7	MP1	X Z	7.87	12
8	MP1	Z	4.54	12
9	S2	X	7.86	12
10	S2	Z	4.54	12
11	MP4	X	26.02	0
12	MP4	Z	15.02	0
13	MP4	X	26.02	72
14	MP4	Z	15.02	72
15	MP4	X	10.27	12
16	MP4	Z	5.93	12
17	MP4	X	10.27	12
18	MP4	Z	5.93	12
19	MP7	X	18.49	0
20	MP7	Z	10.67	0
21	MP7	X	18.49	72
22	MP7	Z	10.67	72
23	MP7	X	8.14	12
24	MP7	Z	4.7	12
25	MP7	X	7.87	12
26	MP7	Z	4.54	12

Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-B Model Name: BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Member Point Loads (BLC 26 : Ice Wind Load AZI 270)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	18.45	0
2	MP1	Z	0	0
3	MP1	X	18.45	72
4	MP1	Z	0	72
5	MP1	X	8.58	12
6	MP1	Z	0	12
7	MP1	X	8.16	12
8	MP1	Z	0	12
9	S2	X	8.31	12
10	S2	Z	0	12
11	MP4	X	27.15	0
12	MP4	Z	0	0
13	MP4	X	27.15	72
14	MP4	Z	0	72
15	MP4	X	11.04	12
16	MP4	Z	0	12
17	MP4	X	10.93	12
18	MP4	Z	0	12
19	MP7	X	27.15	0
20	MP7	Z	0	0
21	MP7	X	27.15	72
22	MP7	Z	0	72
23	MP7	X	11.04	12
24	MP7	Z	0	12
25	MP7	X	10.93	12
26	MP7	Z	0	12

Member Point Loads (BLC 27 : Ice Wind Load AZI 300)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	18.49	0
2	MP1	Z	-10.67	0
3	MP1	X	18.49	72
4	MP1	Z	-10.67	72
5	MP1	X	8.14	12
6	MP1	Z	-4.7	12
7	MP1	X	7.87	12
8	MP1	Z	-4.54	12
9	S2	X	7.86	12
10	S2	Z	-4.54	12
11	MP4	X	18.49	0
12	MP4	Z	-10.67	0
13	MP4	X	18.49	72

Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-B Model Name: BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Member Point Loads (BLC 27 : Ice Wind Load AZI 300) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
14	MP4	Z	-10.67	72
15	MP4	X	8.14	12
16	MP4	Z	-4.7	12
17	MP4	X	7.87	12
18	MP4	Z	-4.54	12
19	MP7	X	26.02	0
20	MP7	Z	-15.02	0
21	MP7	X	26.02	72
22	MP7	Z	-15.02	72
23	MP7	X	10.27	12
24	MP7	Z	-5.93	12
25	MP7	X	10.27	12
26	MP7	Z	-5.93	12

Member Point Loads (BLC 28 : Ice Wind Load AZI 330)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	13.57	0
2	MP1	Z	-23.51	0
3	MP1	X	13.57	72
4	MP1	Z	-23.51	72
5	MP1	X	5.52	12
6	MP1	Z	-9.56	12
7	MP1	X	5.47	12
8	MP1	Z	-9.47	12
9	S2	X	5.31	12
10	S2	Z	-9.2	12
11	MP4	X	9.22	0
12	MP4	Z	-15.98	0
13	MP4	X	9.22	72
14	MP4	Z	-15.98	72
15	MP4	X	4.29	12
16	MP4	Z	-7.43	12
17	MP4	X	4.08	12
18	MP4	Z	-7.07	12
19	MP7	X	13.57	0
20	MP7	Z	-23.51	0
21	MP7	X	13.57	72
22	MP7	Z	-23.51	72
23	MP7	X	5.52	12
24	MP7	Z	-9.56	12
25	MP7	X Z	5.47	12
26	MP7	Z	-9.47	12

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:

Member Point Loads (BLC 31 : Seismic Load Z)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Z	-10.268	0
2	MP1	Z	-10.268	72
3	MP1	Z	-23.864	12
4	MP1	Z	-20.355	12
5	S2	Z	-6.957	12
6	MP4	Z	-10.268	0
7	MP4	Z	-10.268	72
8	MP4	Z	-23.864	12
9	MP4	Z	-20.355	12
10	MP7	Z	-10.268	0
11	MP7	Z	-10.268	72
12	MP7	Z	-23.864	12
13	MP7	Z	-20.355	12

Member Point Loads (BLC 32 : Seismic Load X)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-10.268	0
2	MP1	X	-10.268	72
3	MP1	X	-23.864	12
4	MP1	X	-20.355	12
5	S2	X	-6.957	12
6	MP4	X	-10.268	0
7	MP4	X	-10.268	72
8	MP4	X	-23.864	12
9	MP4	X	-20.355	12
10	MP7	X	-10.268	0
11	MP7	X	-10.268	72
12	MP7	X	-23.864	12
13	MP7	X	-20.355	12

Joint Loads and Enforced Displacements (BLC 33 : Service Live Loads)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N72B	L	Υ	-250
2	N135A	L	Υ	-250
3	N129B	L	Υ	-250

Joint Loads and Enforced Displacements (BLC 34 : Maintenance Load 1)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N70A	L	Υ	-500

Company

: Infinigy Engineering, PLLC

Job Number : 1197-F0001-B Model Name: BOHVN00200A Aug 31, 2021 11:18 AM Checked By:

Joint Loads and Enforced Displacements (BLC 35 : Maintenance Load 2)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N69A	L	Υ	-500

Joint Loads and Enforced Displacements (BLC 36 : Maintenance Load 3)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N76	L	Υ	-500

Joint Loads and Enforced Displacements (BLC 37 : Maintenance Load 4)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N94	L	Υ	-500

Joint Loads and Enforced Displacements (BLC 38 : Maintenance Load 5)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N93	L	Υ	-500

Joint Loads and Enforced Displacements (BLC 39 : Maintenance Load 6)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N122	L	Υ	-500

Joint Loads and Enforced Displacements (BLC 40 : Maintenance Load 7)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N121	L	Υ	-500

Joint Loads and Enforced Displacements (BLC 41 : Maintenance Load 8)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N133B	L	Υ	-500

Joint Loads and Enforced Displacements (BLC 42 : Maintenance Load 9)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N139	L	Υ	-500

Member Distributed Loads (BLC 14 : Distr. Wind Load Z)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magn	Start Location.	End Location[in,%]
1	S3	SZ	-119.189	-119.189	0	%100
2	GA4	SZ	-119.189	-119.189	0	%100
3	GA3	SZ	-119.189	-119.189	0	%100
4	P3	SZ	-119.189	-119.189	0	%100
5	S2	SZ	-119.189	-119.189	0	%100
6	GA2	SZ	-119.189	-119.189	0	%100

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Member Distributed Loads (BLC 14: Distr. Wind Load Z) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magn	.Start Location	End Location[in,%]
7	GA1	SZ	-119.189	-119.189	0	%100
8	P2	SZ	-119.189	-119.189	0	%100
9	S1	SZ	-119.189	-119.189	0	%100
10	GA6	SZ	-119.189	-119.189	0	%100
11	GA5	SZ	-119.189	-119.189	0	%100
12	P1	SZ	-119.189	-119.189	0	%100
13	H1	SZ	-71.513	-71.513	0	%100
14	MP1	SZ	-71.513	-71.513	0	%100
15	MP3	SZ	-71.513	-71.513	0	%100
16	HR1	SZ	-71.513	-71.513	0	%100
17	CA8	SZ	-119.189	-119.189	0	%100
18	CA9	SZ	-119.189	-119.189	0	%100
19	CA7	SZ	-119.189	-119.189	0	%100
20	M32	SZ	0	0	0	%100
21	M35	SZ	0	0	0	%100
22	M36	SZ	0	0	0	%100
23	M39A	SZ	0	0	0	%100
24	CA3	SZ	-119.189	-119.189	0	%100
25	CA4	SZ	-119.189	-119.189	0	%100
26	CA1	SZ	-119.189	-119.189	0	%100
27	CA2	SZ	-119.189	-119.189	0	%100
28	CA5	SZ	-119.189	-119.189	0	%100
29	CA6	SZ	-119.189	-119.189	0	%100
30	M64	SZ	0	0	0	%100
31	M65	SZ	0	0	0	%100
32	M66	SZ	0	0	0	%100
33	M67	SZ	0	0	0	%100
34	M68	SZ	0	0	0	%100
35	M69	SZ	0	0	0	%100
36	M70	SZ	0	0	0	%100
37	M71	SZ	0	0	0	%100
38	M72	SZ	0	0	0	%100
39	M73	SZ	0	0	0	%100
40	M74	SZ	0	0	0	%100
41	M75	SZ	-119.189	-119.189	0	%100
42	MP2	SZ	-71.513	-71.513	0	%100
43	M43	SZ	0	0	0	%100
44	M44	SZ	0	0	0	%100
45	H3	SZ	-71.513	-71.513	0	%100
46	MP7	SZ	-71.513	-71.513	0	%100
47	MP9	SZ	-71.513	-71.513	0	%100
48	HR3	SZ	-71.513	-71.513	0	%100

Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-B

: Infinigy Engineering, PLLC

Model Name: BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Member Distributed Loads (BLC 14: Distr. Wind Load Z) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magn	Start Location	End Location[in,%]
49	M52	SZ	0	0	0	%100
50	M53	SZ	0	0	0	%100
51	M54	SZ	0	0	0	%100
52	M55	SZ	0	0	0	%100
53	H2	SZ	-71.513	-71.513	0	%100
54	MP4	SZ	-71.513	-71.513	0	%100
55	MP6	SZ	-71.513	-71.513	0	%100
56	HR2	SZ	-71.513	-71.513	0	%100
57	M66A	SZ	0	0	0	%100
58	M67A	SZ	0	0	0	%100
59	M68A	SZ	0	0	0	%100
60	M69A	SZ	0	0	0	%100
61	MP8	SZ	-71.513	-71.513	0	%100
62	M68B	SZ	0	0	0	%100
63	M69B	SZ	0	0	0	%100
64	MP5	SZ	-71.513	-71.513	0	%100
65	M71B	SZ	0	0	0	%100
66	M72B	SZ	0	0	0	%100

Member Distributed Loads (BLC 15 : Distr. Wind Load X)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magn	Start Location	End Location[in,%]
1	S3	SX	-119.189	-119.189	0	%100
2	GA4	SX	-119.189	-119.189	0	%100
3	GA3	SX	-119.189	-119.189	0	%100
4	P3	SX	-119.189	-119.189	0	%100
5	S2	SX	-119.189	-119.189	0	%100
6	GA2	SX	-119.189	-119.189	0	%100
7	GA1	SX	-119.189	-119.189	0	%100
8	P2	SX	-119.189	-119.189	0	%100
9	S1	SX	-119.189	-119.189	0	%100
10	GA6	SX	-119.189	-119.189	0	%100
11	GA5	SX	-119.189	-119.189	0	%100
12	P1	SX	-119.189	-119.189	0	%100
13	H1	SX	-71.513	-71.513	0	%100
14	MP1	SX	-71.513	-71.513	0	%100
15	MP3	SX	-71.513	-71.513	0	%100
16	HR1	SX	-71.513	-71.513	0	%100
17	CA8	SX	-119.189	-119.189	0	%100
18	CA9	SX	-119.189	-119.189	0	%100
19	CA7	SX	-119.189	-119.189	0	%100
20	M32	SX	0	0	0	%100
21	M35	SX	0	0	0	%100

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Member Distributed Loads (BLC 15 : Distr. Wind Load X) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magn	Start Location	End Location[in,%]
22	M36	SX	0	0	0	%100
23	M39A	SX	0	0	0	%100
24	CA3	SX	-119.189	-119.189	0	%100
25	CA4	SX	-119.189	-119.189	0	%100
26	CA1	SX	-119.189	-119.189	0	%100
27	CA2	SX	-119.189	-119.189	0	%100
28	CA5	SX	-119.189	-119.189	0	%100
29	CA6	SX	-119.189	-119.189	0	%100
30	M64	SX	0	0	0	%100
31	M65	SX	0	0	0	%100
32	M66	SX	0	0	0	%100
33	M67	SX	0	0	0	%100
34	M68	SX	0	0	0	%100
35	M69	SX	0	0	0	%100
36	M70	SX	0	0	0	%100
37	M71	SX	0	0	0	%100
38	M72	SX	0	0	0	%100
39	M73	SX	0	0	0	%100
40	M74	SX	0	0	0	%100
41	M75	SX	-119.189	-119.189	0	%100
42	MP2	SX	-71.513	-71.513	0	%100
43	M43	SX	0	0	0	%100
44	M44	SX	0	0	0	%100
45	H3	SX	-71.513	-71.513	0	%100
46	MP7	SX	-71.513	-71.513	0	%100
47	MP9	SX	-71.513	-71.513	0	%100
48	HR3	SX	-71.513	-71.513	0	%100
49	M52	SX	0	0	0	%100
50	M53	SX	0	0	0	%100
51	M54	SX	0	0	0	%100
52	M55	SX	0	0	0	%100
53	H2	SX	-71.513	-71.513	0	%100
54	MP4	SX	-71.513	-71.513	0	%100
55	MP6	SX	-71.513	-71.513	0	%100
56	HR2	SX	-71.513	-71.513	0	%100
57	M66A	SX	0	0	0	%100
58	M67A	SX	0	0	0	%100
59	M68A	SX	0	0	0	%100
60	M69A	SX	0	0	0	%100
61	MP8	SX	-71.513	-71.513	0	%100
62	M68B	SX	0	0	0	%100
63	M69B	SX	0	0	0	%100

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Member Distributed Loads (BLC 15 : Distr. Wind Load X) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magn	Start Location	End Location[in,%]
64	MP5	SX	-71.513	-71.513	0	%100
65	M71B	SX	0	0	0	%100
66	M72B	SX	0	0	0	%100

Member Distributed Loads (BLC 16 : Ice Weight)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magn	Start Location.	End Location[in,%]
1	S3	Υ	-17.527	-17.527	0	%100
2	GA4	Υ	-10.966	-10.966	0	%100
3	GA3	Υ	-10.966	-10.966	0	%100
4	P3	Υ	-19.508	-19.508	0	%100
5	S2	Υ	-17.527	-17.527	0	%100
6	GA2	Υ	-10.966	-10.966	0	%100
7	GA1	Υ	-10.966	-10.966	0	%100
8	P2	Υ	-19.508	-19.508	0	%100
9	S 1	Υ	-17.527	-17.527	0	%100
10	GA6	Υ	-10.966	-10.966	0	%100
11	GA5	Υ	-10.966	-10.966	0	%100
12	P1	Υ	-19.508	-19.508	0	%100
13	H1	Υ	-12.524	-12.524	0	%100
14	MP1	Υ	-11.074	-11.074	0	%100
15	MP3	Υ	-11.074	-11.074	0	%100
16	HR1	Υ	-11.085	-11.085	0	%100
17	CA8	Υ	-22.883	-22.883	0	%100
18	CA9	Υ	-22.883	-22.883	0	%100
19	CA7	Υ	-22.883	-22.883	0	%100
20	M32	Υ	-4.405	-4.405	0	%100
21	M35	Υ	-4.405	-4.405	0	%100
22	M36	Υ	-4.405	-4.405	0	%100
23	M39A	Υ	-4.405	-4.405	0	%100
24	CA3	Υ	-13.587	-13.587	0	%100
25	CA4	Υ	-13.587	-13.587	0	%100
26	CA1	Υ	-13.587	-13.587	0	%100
27	CA2	Υ	-13.587	-13.587	0	%100
28	CA5	Υ	-13.587	-13.587	0	%100
29	CA6	Υ	-13.587	-13.587	0	%100
30	M64	Υ	-4.405	-4.405	0	%100
31	M65	Υ	-4.405	-4.405	0	%100
32	M66	Υ	-4.405	-4.405	0	%100
33	M67	Υ	-4.405	-4.405	0	%100
34	M68	Υ	-4.405	-4.405	0	%100
35	M69	Υ	-4.405	-4.405	0	%100
36	M70	Υ	-4.405	-4.405	0	%100

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Member Distributed Loads (BLC 16 : Ice Weight) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magn	Start Location	End Location[in,%]
37	M71	Υ	-4.405	-4.405	0	%100
38	M72	Υ	-4.405	-4.405	0	%100
39	M73	Υ	-4.405	-4.405	0	%100
40	M74	Υ	-4.405	-4.405	0	%100
41	M75	Υ	-10.035	-10.035	0	%100
42	MP2	Υ	-11.074	-11.074	0	%100
43	M43	Υ	-4.405	-4.405	0	%100
44	M44	Υ	-4.405	-4.405	0	%100
45	H3	Υ	-12.524	-12.524	0	%100
46	MP7	Υ	-11.074	-11.074	0	%100
47	MP9	Υ	-11.074	-11.074	0	%100
48	HR3	Υ	-11.085	-11.085	0	%100
49	M52	Υ	-4.405	-4.405	0	%100
50	M53	Υ	-4.405	-4.405	0	%100
51	M54	Υ	-4.405	-4.405	0	%100
52	M55	Υ	-4.405	-4.405	0	%100
53	H2	Υ	-12.524	-12.524	0	%100
54	MP4	Υ	-11.074	-11.074	0	%100
55	MP6	Υ	-11.074	-11.074	0	%100
56	HR2	Υ	-11.085	-11.085	0	%100
57	M66A	Υ	-4.405	-4.405	0	%100
58	M67A	Υ	-4.405	-4.405	0	%100
59	M68A	Υ	-4.405	-4.405	0	%100
60	M69A	Υ	-4.405	-4.405	0	%100
61	MP8	Υ	-11.074	-11.074	0	%100
62	M68B	Υ	-4.405	-4.405	0	%100
63	M69B	Υ	-4.405	-4.405	0	%100
64	MP5	Υ	-11.074	-11.074	0	%100
65	M71B	Υ	-4.405	-4.405	0	%100
66	M72B	Υ	-4.405	-4.405	0	%100

Member Distributed Loads (BLC 29 : Distr. Ice Wind Load Z)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magn	Start Location	End Location[in,%]
1	S3	SZ	-20.75	-20.75	0	%100
2	GA4	SZ	-29.085	-29.085	0	%100
3	GA3	SZ	-29.085	-29.085	0	%100
4	P3	SZ	-19.657	-19.657	0	%100
5	S2	SZ	-20.75	-20.75	0	%100
6	GA2	SZ	-29.085	-29.085	0	%100
7	GA1	SZ	-29.085	-29.085	0	%100
8	P2	SZ	-19.657	-19.657	0	%100
9	S1	SZ	-20.75	-20.75	0	%100

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Member Distributed Loads (BLC 29 : Distr. Ice Wind Load Z) (Continued)

10		Member Label	Direction	Start Magnitude[lb/ft,	End Magn	Start Location	End Location[in,%]
12	10	GA6	SZ	-29.085	-29.085	0	%100
13	11	GA5	SZ	-29.085	-29.085	0	%100
13	12	P1	SZ	-19.657	-19.657	0	
14 MP1 SZ -28.815 -28.815 0 %100 15 MP3 SZ -28.816 0 %100 16 HR1 SZ -28.786 -28.786 0 %100 17 CA8 SZ -18.334 -18.334 0 %100 18 CA9 SZ -18.334 -18.334 0 %100 19 CA7 SZ -18.334 -18.334 0 %100 20 M32 SZ 0 0 0 %100 21 M35 SZ 0 0 0 %100 22 M36 SZ 0 0 0 %100 23 M39A SZ -24.327 -24.327 0 %100 24 CA3 SZ -24.327 -24.327 0 %100 25 CA4 SZ -24.327 -24.327 0 %100 28 CA5	13	H1	SZ	-25.886	-25.886	0	
15		MP1		-28.815		0	
16 HR1 SZ -28.786 -28.786 0 %100 17 CA8 SZ -18.334 -18.334 0 %100 18 CA9 SZ -18.334 -18.334 0 %100 19 CA7 SZ -18.334 -18.334 0 %100 20 M32 SZ 0 0 0 %100 21 M35 SZ 0 0 0 %100 22 M36 SZ 0 0 0 %100 23 M39A SZ 0 0 0 %100 24 CA3 SZ -24.327 -24.327 0 %100 25 CA4 SZ -24.327 -24.327 0 %100 25 CA4 SZ -24.327 -24.327 0 %100 26 CA1 SZ -24.327 -24.327 0 %100 27 <t< td=""><td>15</td><td>MP3</td><td></td><td></td><td></td><td>0</td><td></td></t<>	15	MP3				0	
18 CA9 SZ -18.334 -18.334 0 %100 19 CA7 SZ -18.334 -18.334 0 %100 20 M32 SZ 0 0 0 %100 21 M35 SZ 0 0 0 %100 22 M36 SZ 0 0 0 %100 23 M39A SZ 0 0 0 %100 24 CA3 SZ -24.327 -24.327 0 %100 25 CA4 SZ -24.327 -24.327 0 %100 26 CA1 SZ -24.327 -24.327 0 %100 27 CA2 SZ -24.327 -24.327 0 %100 28 CA5 SZ -24.327 -24.327 0 %100 29 CA6 SZ 0 0 0 %100 31 M65	16	HR1	SZ	-28.786	-28.786	0	
18 CA9 SZ -18.334 -18.334 0 %100 19 CA7 SZ -18.334 -18.334 0 %100 20 M32 SZ 0 0 0 %100 21 M35 SZ 0 0 0 %100 22 M36 SZ 0 0 0 %100 23 M39A SZ 0 0 0 %100 24 CA3 SZ -24.327 -24.327 0 %100 25 CA4 SZ -24.327 -24.327 0 %100 26 CA1 SZ -24.327 -24.327 0 %100 27 CA2 SZ -24.327 -24.327 0 %100 28 CA5 SZ -24.327 -24.327 0 %100 29 CA6 SZ 0 0 0 %100 31 M65	17	CA8		-18.334		0	%100
19 CA7 SZ -18.334 -18.334 0 %100 20 M32 SZ 0 0 0 %100 21 M35 SZ 0 0 0 %100 22 M36 SZ 0 0 0 %100 23 M39A SZ 0 0 0 %100 24 CA3 SZ -24.327 -24.327 0 %100 25 CA4 SZ -24.327 -24.327 0 %100 25 CA4 SZ -24.327 -24.327 0 %100 27 CA2 SZ -24.327 -24.327 0 %100 28 CA5 SZ -24.327 -24.327 0 %100 29 CA6 SZ -24.327 -24.327 0 %100 30 M64 SZ 0 0 0 %100 31 M65	18					0	
20 M32 SZ 0 0 %100 21 M35 SZ 0 0 0 %100 22 M36 SZ 0 0 0 %100 23 M39A SZ 0 0 0 %100 24 CA3 SZ -24.327 -24.327 0 %100 25 CA4 SZ -24.327 -24.327 0 %100 26 CA1 SZ -24.327 -24.327 0 %100 27 CA2 SZ -24.327 -24.327 0 %100 29 CA6 SZ -24.327 -24.327 0 %100 29 CA6 SZ -24.327 -24.327 0 %100 30 M64 SZ 0 0 0 %100 31 M65 SZ 0 0 0 %100 32 M66 SZ	19	CA7	SZ	1		0	
21 M35 SZ 0 0 %100 22 M36 SZ 0 0 0 %100 23 M39A SZ 0 0 0 %100 24 CA3 SZ -24.327 -24.327 0 %100 25 CA4 SZ -24.327 -24.327 0 %100 26 CA1 SZ -24.327 -24.327 0 %100 27 CA2 SZ -24.327 -24.327 0 %100 28 CA5 SZ -24.327 -24.327 0 %100 29 CA6 SZ -24.327 -24.327 0 %100 30 M64 SZ 0 0 0 %100 31 M65 SZ 0 0 0 %100 32 M66 SZ 0 0 0 %100 34 M68 SZ	20	M32		0	0	0	%100
23 M39A SZ 0 0 %100 24 CA3 SZ -24.327 -24.327 0 %100 25 CA4 SZ -24.327 -24.327 0 %100 26 CA1 SZ -24.327 -24.327 0 %100 27 CA2 SZ -24.327 -24.327 0 %100 28 CA5 SZ -24.327 -24.327 0 %100 29 CA6 SZ -24.327 -24.327 0 %100 30 M64 SZ 0 0 0 %100 31 M65 SZ 0 0 0 %100 32 M66 SZ 0 0 0 %100 33 M67 SZ 0 0 0 %100 34 M68 SZ 0 0 0 %100 35 M69 SZ				0	0	0	
23 M39A SZ 0 0 %100 24 CA3 SZ -24.327 -24.327 0 %100 25 CA4 SZ -24.327 -24.327 0 %100 26 CA1 SZ -24.327 -24.327 0 %100 27 CA2 SZ -24.327 -24.327 0 %100 28 CA5 SZ -24.327 -24.327 0 %100 29 CA6 SZ -24.327 -24.327 0 %100 30 M64 SZ 0 0 0 %100 31 M65 SZ 0 0 0 %100 32 M66 SZ 0 0 0 %100 33 M67 SZ 0 0 0 %100 34 M68 SZ 0 0 0 %100 35 M69 SZ	22	M36	SZ	0	0	0	%100
24 CA3 SZ -24.327 -24.327 0 %100 25 CA4 SZ -24.327 -24.327 0 %100 26 CA1 SZ -24.327 -24.327 0 %100 27 CA2 SZ -24.327 -24.327 0 %100 28 CA5 SZ -24.327 -24.327 0 %100 29 CA6 SZ -24.327 -24.327 0 %100 30 M64 SZ 0 0 0 %100 31 M65 SZ 0 0 0 %100 32 M66 SZ 0 0 0 %100 34 M68 SZ 0 0 0 %100 35 M69 SZ 0 0 0 %100 36 M70 SZ 0 0 0 %100 36 M70 SZ	23			0	0	0	
25 CA4 SZ -24.327 -24.327 0 %100 26 CA1 SZ -24.327 -24.327 0 %100 27 CA2 SZ -24.327 -24.327 0 %100 28 CA5 SZ -24.327 -24.327 0 %100 29 CA6 SZ -24.327 -24.327 0 %100 30 M64 SZ 0 0 0 %100 31 M65 SZ 0 0 0 %100 32 M66 SZ 0 0 0 %100 33 M67 SZ 0 0 0 %100 34 M68 SZ 0 0 0 %100 35 M69 SZ 0 0 0 %100 36 M70 SZ 0 0 0 %100 38 M72 SZ				-24.327	-24.327		
26 CA1 SZ -24.327 -24.327 0 %100 27 CA2 SZ -24.327 -24.327 0 %100 28 CA5 SZ -24.327 -24.327 0 %100 29 CA6 SZ -24.327 -24.327 0 %100 30 M64 SZ 0 0 0 %100 31 M65 SZ 0 0 0 %100 32 M66 SZ 0 0 0 %100 33 M67 SZ 0 0 0 %100 34 M68 SZ 0 0 0 %100 35 M69 SZ 0 0 0 %100 36 M70 SZ 0 0 0 %100 37 M71 SZ 0 0 0 %100 38 M72 SZ 0				1		0	
27 CA2 SZ -24.327 -24.327 0 %100 28 CA5 SZ -24.327 -24.327 0 %100 29 CA6 SZ -24.327 -24.327 0 %100 30 M64 SZ 0 0 0 %100 31 M65 SZ 0 0 0 %100 32 M66 SZ 0 0 0 %100 34 M68 SZ 0 0 0 %100 34 M68 SZ 0 0 0 %100 35 M69 SZ 0 0 0 %100 36 M70 SZ 0 0 0 %100 38 M72 SZ 0 0 0 %100 39 M73 SZ 0 0 0 %100 40 M74 SZ 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
28 CA5 SZ -24.327 -24.327 0 %100 29 CA6 SZ -24.327 -24.327 0 %100 30 M64 SZ 0 0 0 %100 31 M65 SZ 0 0 0 %100 32 M66 SZ 0 0 0 %100 34 M68 SZ 0 0 0 %100 34 M68 SZ 0 0 0 %100 35 M69 SZ 0 0 0 %100 36 M70 SZ 0 0 0 %100 37 M71 SZ 0 0 0 %100 38 M72 SZ 0 0 0 %100 39 M73 SZ 0 0 0 %100 40 M74 SZ 0 0				1		0	
29 CA6 SZ -24.327 -24.327 0 %100 30 M64 SZ 0 0 0 %100 31 M65 SZ 0 0 0 %100 32 M66 SZ 0 0 0 %100 33 M67 SZ 0 0 0 %100 34 M68 SZ 0 0 0 %100 35 M69 SZ 0 0 0 %100 36 M70 SZ 0 0 0 %100 37 M71 SZ 0 0 0 %100 38 M72 SZ 0 0 0 %100 39 M73 SZ 0 0 0 %100 40 M74 SZ 0 0 0 %100 41 M75 SZ -31.841 -31.841	28	CA5				0	
30 M64 SZ 0 0 %100 31 M65 SZ 0 0 %100 32 M66 SZ 0 0 %100 33 M67 SZ 0 0 %100 34 M68 SZ 0 0 %100 35 M69 SZ 0 0 0 %100 36 M70 SZ 0 0 0 %100 37 M71 SZ 0 0 0 %100 38 M72 SZ 0 0 0 %100 39 M73 SZ 0 0 0 %100 40 M74 SZ 0 0 0 %100 41 M75 SZ -31.841 -31.841 0 %100 42 MP2 SZ -28.815 -28.815 0 %100 43 M43 <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>0</td> <td></td>				1		0	
31 M65 SZ 0 0 0 %100 32 M66 SZ 0 0 0 %100 33 M67 SZ 0 0 0 %100 34 M68 SZ 0 0 0 %100 35 M69 SZ 0 0 0 %100 36 M70 SZ 0 0 0 %100 37 M71 SZ 0 0 0 %100 38 M72 SZ 0 0 0 %100 39 M73 SZ 0 0 0 %100 40 M74 SZ 0 0 0 %100 41 M75 SZ -31.841 -31.841 0 %100 42 MP2 SZ -28.815 -28.815 0 %100 43 M43 SZ 0 0						0	
32 M66 SZ 0 0 0 %100 33 M67 SZ 0 0 0 %100 34 M68 SZ 0 0 0 %100 35 M69 SZ 0 0 0 %100 36 M70 SZ 0 0 0 %100 37 M71 SZ 0 0 0 %100 38 M72 SZ 0 0 0 %100 39 M73 SZ 0 0 0 %100 40 M74 SZ 0 0 0 %100 40 M74 SZ 0 0 %100 41 M75 SZ -31.841 -31.841 0 %100 42 MP2 SZ -28.815 -28.815 0 %100 43 M43 SZ 0 0 0				0	0	0	
33 M67 SZ 0 0 0 %100 34 M68 SZ 0 0 0 %100 35 M69 SZ 0 0 0 %100 36 M70 SZ 0 0 0 %100 37 M71 SZ 0 0 0 %100 38 M72 SZ 0 0 0 %100 39 M73 SZ 0 0 0 %100 40 M74 SZ 0 0 0 %100 40 M74 SZ 0 0 0 %100 41 M75 SZ -31.841 -31.841 0 %100 42 MP2 SZ -28.815 -28.815 0 %100 43 M43 SZ 0 0 0 %100 45 H3 SZ -25.886 -25.88	32			0	0	0	
34 M68 SZ 0 0 0 %100 35 M69 SZ 0 0 0 %100 36 M70 SZ 0 0 0 %100 37 M71 SZ 0 0 0 %100 38 M72 SZ 0 0 0 %100 39 M73 SZ 0 0 0 %100 40 M74 SZ 0 0 0 %100 41 M75 SZ -31.841 -31.841 0 %100 42 MP2 SZ -28.815 -28.815 0 %100 43 M43 SZ 0 0 0 %100 44 M44 SZ 0 0 0 %100 45 H3 SZ -25.886 -25.886 0 %100 46 MP7 SZ -28.815							
35 M69 SZ 0 0 0 %100 36 M70 SZ 0 0 0 %100 37 M71 SZ 0 0 0 %100 38 M72 SZ 0 0 0 %100 39 M73 SZ 0 0 0 %100 40 M74 SZ 0 0 0 %100 41 M75 SZ -31.841 -31.841 0 %100 42 MP2 SZ -28.815 -28.815 0 %100 43 M43 SZ 0 0 0 %100 44 M44 SZ 0 0 %100 45 H3 SZ -25.886 -25.886 0 %100 46 MP7 SZ -28.815 -28.815 0 %100 47 MP9 SZ -28.786 -		M68		0	0	0	
36 M70 SZ 0 0 0 %100 37 M71 SZ 0 0 0 %100 38 M72 SZ 0 0 0 %100 39 M73 SZ 0 0 0 %100 40 M74 SZ 0 0 0 %100 41 M75 SZ -31.841 -31.841 0 %100 42 MP2 SZ -28.815 -28.815 0 %100 43 M43 SZ 0 0 0 %100 44 M44 SZ 0 0 %100 45 H3 SZ -25.886 -25.886 0 %100 46 MP7 SZ -28.815 -28.815 0 %100 47 MP9 SZ -28.786 -28.786 0 %100 49 M52 SZ 0				0	0	0	
37 M71 SZ 0 0 0 %100 38 M72 SZ 0 0 0 %100 39 M73 SZ 0 0 0 %100 40 M74 SZ 0 0 0 %100 41 M75 SZ -31.841 -31.841 0 %100 42 MP2 SZ -28.815 -28.815 0 %100 43 M43 SZ 0 0 0 %100 44 M44 SZ 0 0 %100 45 H3 SZ -25.886 -25.886 0 %100 46 MP7 SZ -28.815 -28.815 0 %100 47 MP9 SZ -28.815 -28.786 0 %100 48 HR3 SZ -28.786 -28.786 0 %100 49 M52 SZ 0<				0	0	0	
38 M72 SZ 0 0 0 %100 39 M73 SZ 0 0 0 %100 40 M74 SZ 0 0 0 %100 41 M75 SZ -31.841 -31.841 0 %100 42 MP2 SZ -28.815 -28.815 0 %100 43 M43 SZ 0 0 0 %100 44 M44 SZ 0 0 %100 45 H3 SZ -25.886 -25.886 0 %100 46 MP7 SZ -28.815 -28.815 0 %100 47 MP9 SZ -28.815 -28.815 0 %100 48 HR3 SZ -28.786 -28.786 0 %100 49 M52 SZ 0 0 0 %100	37	M71		0	0	0	%100
39 M73 SZ 0 0 0 %100 40 M74 SZ 0 0 0 %100 41 M75 SZ -31.841 -31.841 0 %100 42 MP2 SZ -28.815 -28.815 0 %100 43 M43 SZ 0 0 0 %100 44 M44 SZ 0 0 0 %100 45 H3 SZ -25.886 -25.886 0 %100 46 MP7 SZ -28.815 -28.815 0 %100 47 MP9 SZ -28.815 -28.815 0 %100 48 HR3 SZ -28.786 -28.786 0 %100 49 M52 SZ 0 0 0 %100						0	
40 M74 SZ 0 0 0 %100 41 M75 SZ -31.841 -31.841 0 %100 42 MP2 SZ -28.815 -28.815 0 %100 43 M43 SZ 0 0 0 %100 44 M44 SZ 0 0 %100 45 H3 SZ -25.886 -25.886 0 %100 46 MP7 SZ -28.815 -28.815 0 %100 47 MP9 SZ -28.815 -28.815 0 %100 48 HR3 SZ -28.786 -28.786 0 %100 49 M52 SZ 0 0 0 %100		M73		0	0	0	%100
41 M75 SZ -31.841 -31.841 0 %100 42 MP2 SZ -28.815 -28.815 0 %100 43 M43 SZ 0 0 0 %100 44 M44 SZ 0 0 0 %100 45 H3 SZ -25.886 -25.886 0 %100 46 MP7 SZ -28.815 -28.815 0 %100 47 MP9 SZ -28.815 -28.815 0 %100 48 HR3 SZ -28.786 -28.786 0 %100 49 M52 SZ 0 0 0 %100		M74		0		0	
43 M43 SZ 0 0 0 %100 44 M44 SZ 0 0 0 %100 45 H3 SZ -25.886 -25.886 0 %100 46 MP7 SZ -28.815 -28.815 0 %100 47 MP9 SZ -28.815 -28.815 0 %100 48 HR3 SZ -28.786 -28.786 0 %100 49 M52 SZ 0 0 0 %100							
43 M43 SZ 0 0 0 %100 44 M44 SZ 0 0 0 %100 45 H3 SZ -25.886 -25.886 0 %100 46 MP7 SZ -28.815 -28.815 0 %100 47 MP9 SZ -28.815 -28.815 0 %100 48 HR3 SZ -28.786 -28.786 0 %100 49 M52 SZ 0 0 0 %100	42	MP2	SZ	-28.815	-28.815	0	%100
44 M44 SZ 0 0 0 %100 45 H3 SZ -25.886 -25.886 0 %100 46 MP7 SZ -28.815 -28.815 0 %100 47 MP9 SZ -28.815 -28.815 0 %100 48 HR3 SZ -28.786 -28.786 0 %100 49 M52 SZ 0 0 0 %100	43	M43		0	0	0	%100
45 H3 SZ -25.886 -25.886 0 %100 46 MP7 SZ -28.815 -28.815 0 %100 47 MP9 SZ -28.815 -28.815 0 %100 48 HR3 SZ -28.786 -28.786 0 %100 49 M52 SZ 0 0 0 %100		M44		0	0	0	
46 MP7 SZ -28.815 -28.815 0 %100 47 MP9 SZ -28.815 -28.815 0 %100 48 HR3 SZ -28.786 -28.786 0 %100 49 M52 SZ 0 0 0 %100	45	H3		-25.886	-25.886	0	
47 MP9 SZ -28.815 -28.815 0 %100 48 HR3 SZ -28.786 -28.786 0 %100 49 M52 SZ 0 0 0 %100							
48 HR3 SZ -28.786 -28.786 0 %100 49 M52 SZ 0 0 0 %100							
49 M52 SZ 0 0 0 %100							
	_						
51 M54 SZ 0 0 %100							

Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-B

: Infinigy Engineering, PLLC: PSM

Model Name: BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Member Distributed Loads (BLC 29 : Distr. Ice Wind Load Z) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magn	Start Location	End Location[in,%]
52	M55	SZ	0	0	0	%100
53	H2	SZ	-25.886	-25.886	0	%100
54	MP4	SZ	-28.815	-28.815	0	%100
55	MP6	SZ	-28.815	-28.815	0	%100
56	HR2	SZ	-28.786	-28.786	0	%100
57	M66A	SZ	0	0	0	%100
58	M67A	SZ	0	0	0	%100
59	M68A	SZ	0	0	0	%100
60	M69A	SZ	0	0	0	%100
61	MP8	SZ	-28.815	-28.815	0	%100
62	M68B	SZ	0	0	0	%100
63	M69B	SZ	0	0	0	%100
64	MP5	SZ	-28.815	-28.815	0	%100
65	M71B	SZ	0	0	0	%100
66	M72B	SZ	0	0	0	%100

Member Distributed Loads (BLC 30 : Distr. Ice Wind Load X)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magn	Start Location	End Location[in,%]
1	S3	SX	-20.75	-20.75	0	%100
2	GA4	SX	-29.085	-29.085	0	%100
3	GA3	SX	-29.085	-29.085	0	%100
4	P3	SX	-19.657	-19.657	0	%100
5	S2	SX	-20.75	-20.75	0	%100
6	GA2	SX	-29.085	-29.085	0	%100
7	GA1	SX	-29.085	-29.085	0	%100
8	P2	SX	-19.657	-19.657	0	%100
9	S 1	SX	-20.75	-20.75	0	%100
10	GA6	SX	-29.085	-29.085	0	%100
11	GA5	SX	-29.085	-29.085	0	%100
12	P1	SX	-19.657	-19.657	0	%100
13	H1	SX	-25.886	-25.886	0	%100
14	MP1	SX	-28.815	-28.815	0	%100
15	MP3	SX	-28.815	-28.815	0	%100
16	HR1	SX	-28.786	-28.786	0	%100
17	CA8	SX	-18.334	-18.334	0	%100
18	CA9	SX	-18.334	-18.334	0	%100
19	CA7	SX	-18.334	-18.334	0	%100
20	M32	SX	0	0	0	%100
21	M35	SX	0	0	0	%100
22	M36	SX	0	0	0	%100
23	M39A	SX	0	0	0	%100
24	CA3	SX	-24.327	-24.327	0	%100

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

Member Distributed Loads (BLC 30 : Distr. Ice Wind Load X) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magn	.Start Location	End Location[in,%]
25	CA4	SX	-24.327	-24.327	0	%100
26	CA1	SX	-24.327	-24.327	0	%100
27	CA2	SX	-24.327	-24.327	0	%100
28	CA5	SX	-24.327	-24.327	0	%100
29	CA6	SX	-24.327	-24.327	0	%100
30	M64	SX	0	0	0	%100
31	M65	SX	0	0	0	%100
32	M66	SX	0	0	0	%100
33	M67	SX	0	0	0	%100
34	M68	SX	0	0	0	%100
35	M69	SX	0	0	0	%100
36	M70	SX	0	0	0	%100
37	M71	SX	0	0	0	%100
38	M72	SX	0	0	0	%100
39	M73	SX	0	0	0	%100
40	M74	SX	0	0	0	%100
41	M75	SX	-31.841	-31.841	0	%100
42	MP2	SX	-28.815	-28.815	0	%100
43	M43	SX	0	0	0	%100
44	M44	SX	0	0	0	%100
45	H3	SX	-25.886	-25.886	0	%100
46	MP7	SX	-28.815	-28.815	0	%100
47	MP9	SX	-28.815	-28.815	0	%100
48	HR3	SX	-28.786	-28.786	0	%100
49	M52	SX	0	0	0	%100
50	M53	SX	0	0	0	%100
51	M54	SX	0	0	0	%100
52	M55	SX	0	0	0	%100
53	H2	SX	-25.886	-25.886	0	%100
54	MP4	SX	-28.815	-28.815	0	%100
55	MP6	SX	-28.815	-28.815	0	%100
56	HR2	SX	-28.786	-28.786	0	%100
57	M66A	SX	0	0	0	%100
58	M67A	SX	0	0	0	%100
59	M68A	SX	0	0	0	%100
60	M69A	SX	0	0	0	%100
61	MP8	SX	-28.815	-28.815	0	%100
62	M68B	SX	0	0	0	%100
63	M69B	SX	0	0	0	%100
64	MP5	SX	-28.815	-28.815	0	%100
65	M71B	SX	0	0	0	%100
66	M72B	SX	0	0	0	%100

Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-B

: Infinigy Engineering, PLLC

Model Name: BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:

Member Distributed Loads (BLC 43 : BLC 1 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magn	Start Location	End Location[in,%]
1	S2	Υ	-3.185	-3.185	16.404	40
2	GA2	Υ	-1.605	-1.605	3.828	27.295
3	GA1	Υ	-1.605	-1.605	3.828	27.295
4	S3	Υ	-3.185	-3.185	16.404	40
5	GA4	Υ	-1.605	-1.605	3.828	27.295
6	GA3	Υ	-1.605	-1.605	3.828	27.295
7	S1	Υ	-3.185	-3.185	16.404	40
8	GA6	Υ	-1.605	-1.605	3.828	27.295
9	GA5	Y	-1.605	-1.605	3.828	27.295

Member Distributed Loads (BLC 44 : BLC 16 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magn	Start Location	End Location[in,%]
1	S2	Υ	-32.217	-32.217	16.404	40
2	GA2	Υ	-16.236	-16.236	3.828	27.295
3	GA1	Υ	-16.236	-16.236	3.828	27.295
4	S3	Υ	-32.217	-32.217	16.404	40
5	GA4	Υ	-16.236	-16.236	3.828	27.295
6	GA3	Υ	-16.236	-16.236	3.828	27.295
7	S 1	Υ	-32.217	-32.217	16.404	40
8	GA6	Υ	-16.236	-16.236	3.828	27.295
9	GA5	Υ	-16.236	-16.236	3.828	27.295

Member Area Loads (BLC 1 : Self Weight)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[psf]
1	P22	P21	P20	P23	Υ	Two Way	-1.75
2	P10	P11	P12	P9	Υ	Two Way	-1.75
3	P31	P34	P33	P32	Υ	Two Way	-1.75

Member Area Loads (BLC 16 : Ice Weight)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[psf]
1	P22	P21	P20	P23	Υ	Two Way	-17.7
2	P10	P11	P12	P9	Υ	Two Way	-17.7
3	P31	P34	P33	P32	Υ	Two Way	-17.7

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[in]	LC	She	.Loc[in]	Dir	LC	phi*P	phi*P	.phi*M	.phi*Mn z-z [lb	.Cb Eqn
1	P3	PL6.5x0.375	.412	21	2	.181	36.312	У	5	3658	78975	616.9	7880.906	1 H1-1b
2	P2	PL6.5x0.375	.401	21	6	.177	36.312	у	10	3658	78975	616.9	7884.035	1 H1-1b
3	CA7	L6.6x4.46x0	.399	41.562	14	.047	42	Z	8	5117	87561	2464	7125.374	1 H2-1

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOHVN00200A

Aug 31, 2021 11:18 AM Checked By:_

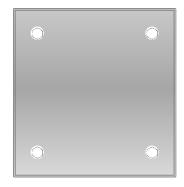
Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)

	Member	Shape	Code Check	Loc[in]	LC	She	.Loc[in]	Dir	LC			phi*M	phi*Mn z-z [lb.	Cb Eqn
4	P1	PL6.5x0.375	.381	21	10	.188	36.312	у	2	3658		616.9	7894.172	1 H1-1b
5	CA4	C3.38x2.06	.374	33	2	.041	33	У	31	4776			5751.945	1 H1-1b
6	CA8	L6.6x4.46x0	.370	41.562	22	.050	42	Z	4	5117	87561	2464	7125.374	1 H2-1
7	CA5	C3.38x2.06	.363	0	10	.048	28.187	У	28	4776	56700	2202	5751.945	1 H1-1b
8	M75	PL 2.375x0.5	.360	1.5	12	.240	0	У	28	3825	38475		1903.711	2 H1-1b
9	CA3	C3.38x2.06	.355	0	2	.050	28.188	y	32	4776			5751.945	1.61H1-1b
10	CA2	C3.38x2.06	.352	33	6	.042	33	у	34	4776	56700	2202	5751.945	1 H1-1b
11	HR2	2.88x0.120	.349	90	3	.174	92		4	2249	4307	3155	3155.674	1 H1-1b
12	CA1	C3.38x2.06	.349	0	6	.050	28.188	у	36	4776	56700	2202	5751.945	1 H1-1b
13	HR3	2.88x0.120	.347	6	2	.162	92		6	2249	4307	3155	3155.674	1 H1-1b
14	CA6	C3.38x2.06	.347	33	10	.041	33	У	38	4776	56700	2202	5751.945	1 H1-1b
15	HR1	2.88x0.120	.334	6	4	.151	6		4	2249	4307	3155	3155.674	1 H1-1b
16	CA9	L6.6x4.46x0	.320	41.562	6	.045	42	Z	12	5117	87561	2464	7125.374	1 H2-1
17	S2	HSS4X4X6	.308	0	32	.112	0	У	142	1882	1978	2204	22045.5	1 H1-1b
18	S3	HSS4X4X6	.302	0	13	.112	0	у	114	1882	1978	2204	22045.5	1 H1-1b
19	MP2	PIPE 2.5	.288	70	5	.103	70		5	3348	66654	4726.5	4726.5	4 H1-1b
20	MP5	PIPE_2.5	.286	70	7	.089	70		7	3348	66654	4726.5	4726.5	4 H1-1b
21	S1	HSS4X4X6	.279	0	9	.109	0	У	86	1882	1978	2204	22045.5	1 H1-1b
22	GA4	L2x2x4	.268	0	2	.019	27.295	У	9	2952	42480	959.63	2190.068	2.22 H2-1
23	GA5	L2x2x4	.257	0	9	.022	27.295	У	38	2952	42480	959.63	2190.068	2 H2-1
24	MP8	PIPE 2.5	.257	70	9	.110	70		3	3348	66654	4726.5	4726.5	4 H1-1b
25	GA2	L2x2x4	.249	0	12	.020	0	У	12	2952	42480	959.63	2190.068	2 H2-1
26	GA6	L2x2x4	.230	0	4	.018	0	У	4	2952	42480	959.63	2190.068	2 H2-1
27	GA1	L2x2x4	.230	0	6	.023	27.295	У	34	2952	42480	959.63	2190.068	2 H2-1
28	GA3	L2x2x4	.229	0	7	.024	27.295	У	30	2952	42480	959.63	2190.068	2 H2-1
29	MP9	PIPE 2.5	.225	70	2	.103	70		7	3348	66654	4726.5	4726.5	3 H1-1b
30	MP6	PIPE 2.5	.206	70	7	.111	70		6	3348	66654	4726.5	4726.5	4 H1-1b
31	MP1	PIPE 2.5	.203	70	11	.126	26		8	3348	66654	4726.5	4726.5	2 H1-1b
32	MP3	PIPE 2.5	.202	70	5	.114	70		3	3348	66654	4726.5	4726.5	4 H1-1b
33	MP4	PIPE 2.5	.194	70	7	.113	26		4	3348	66654	4726.5	4726.5	1 H1-1b
34	MP7	PIPE 2.5	.190	70	9	.102	26		6	3348	66654	4726.5	4726.5	3 H1-1b
35	H3	Pipe3.5x0.1	.176	31	2	.103	90		2	4587	7158	6337	6337.65	1 H1-1b
36	H1	Pipe3.5x0.1	.169	31	10	.096	48		4	4587	7158	6337	6337.65	1 H1-1b
37	H2	Pipe3.5x0.1	.168	31	6	.077	48		12	4587	7158	6337	6337.65	1 H1-1b

Bolt Calculation Tool, V1.5.1

Boit Calculation 1001, VI.3.1						
PROJECT DATA						
Site Name:	BOHVN00200A					
Site Number:	BOHVN00200A					
Connection Description:	Platform to Monopole					

MAXIMUM BOLT LOADS								
Bolt Tension: 8328.34 lbs								
Bolt Shear:	1651.34	lbs						


WORST CASE BOLT LOADS ¹								
Bolt Tension: 8328.34 lbs								
Bolt Shear:	562.23	lbs						

BOLT PROPERTIES							
Bolt Type:	Bolt	-					
Bolt Diameter:	0.625	in					
Bolt Grade:	A325	-					
# of Bolts:	4	-					
Threads Excluded?	No	-					

¹ Worst case bolt loads correspond to Load combination #5 on member S2 in RISA-3D, which causes the maximum demand on the bolts.

Member Information I nodes of S3, S2, S1

BOLT CHECK		
Tensile Strength	20340.15	
Shear Strength	13805.83	
Max Tensile Usage	40.9%	
Max Shear Usage	12.0%	
Interaction Check (Worst Case)	0.17	≤1.05
Result	Pass	

POWER DENSITY STUDY

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOHVN00200A

BOHVN00200A III Second Hill Road Bridgewater, Connecticut 06752

October 18, 2021

EBI Project Number: 6221004018

Site Compliance Summary					
Compliance Status:	COMPLIANT				
Site total MPE% of FCC general population allowable limit:	4.89%				

October 18, 2021

Dish Wireless

Emissions Analysis for Site: BOHVN00200A - BOHVN00200A

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at III Second Hill Road in Bridgewater, Connecticut for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 111 Second Hill Road in Bridgewater, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) 4 n66 channels (AWS Band 2190 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 5) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative

estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 6) The antennas used in this modeling are the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector A, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector B, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector C.. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antenna mounting height centerline of the proposed antennas is 145 feet above ground level (AGL).
- 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 9) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	Α	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21
Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz	Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz	Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz
Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd
Height (AGL):	145 feet	Height (AGL):	145 feet	Height (AGL):	145 feet
Channel Count:	12	Channel Count:	12	Channel Count:	12
Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts
ERP (W):	5,236.31	ERP (W):	5,236.31	ERP (W):	5,236.31
Antenna A1 MPE %:	1.22%	Antenna B1 MPE %:	1.22%	Antenna C1 MPE %:	1.22%

Site Composite MPE %					
Carrier	MPE %				
Dish Wireless (Max at Sector A):	1.22%				
AT&T	3.67%				
Site Total MPE % :	4.89%				

Dish Wireless MPE % Per Sector					
Dish Wireless Sector A Total:	1.22%				
Dish Wireless Sector B Total:	1.22%				
Dish Wireless Sector C Total:	1.22%				
Site Total MPE % :	4.89%				

Dish Wireless Maximum MPE Power Values (Sector A)							
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE
Dish Wireless 600 MHz n71	4	223.68	145.0	1.66	600 MHz n71	400	0.42%
Dish Wireless 1900 MHz n70	4	542.70	145.0	4.04	1900 MHz n70	1000	0.40%
Dish Wireless 2190 MHz n66	4	542.70	145.0	4.04	2190 MHz n66	1000	0.40%
	,		,			Total:	1.22%

[•] NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)
Sector A:	1.22%
Sector B:	1.22%
Sector C:	1.22%
Dish Wireless Maximum MPE % (Sector A):	1.22%
Site Total:	4.89%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **4.89**% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

USPS Tracking[®]

Track Another Package +

Tracking Number: 9505511588621309299598

Remove X

Your item has been delivered and is available at a PO Box at 9:34 am on November 8, 2021 in BRIDGEWATER, CT 06752.

USPS Tracking Plus[™] Available ✓

⊘ Delivered, PO Box

November 8, 2021 at 9:34 am BRIDGEWATER, CT 06752

Get Updates ✓

Text & Email Updates	~
Tracking History	\
USPS Tracking Plus™	-Feedback
Product Information	~

See Less ∧

Can't find what you're looking for?

Go to our FAQs section to find answers to your tracking questions.

FAQs

Dear Customer,

The following is the proof-of-delivery for tracking number: 775121666421

Delivery Information:

Delivered Status:

Signed for by: Signature not required

Service type: FedEx 2Day

Deliver Weekday; Residential Delivery Special Handling:

BRIDGEWATER, CT, 06752

11 SECOND HILL RD

Residence

Delivery date: Nov 9, 2021 12:47

Shipping Information:

Tracking number: Ship Date: 775121666421 Nov 5, 2021

> Weight: 1.0 LB/0.45 KG

Recipient: Robert J. Riebe - Owner, 11 Second Hill Road BRIDGEWATER, CT, US, 06752

Shipper: Corey Milan, NB+C 100 Apollo Dr. Suite 303 CHELMSFORD, MA, US, 01824

Delivered To:

Delivery Location:

Reference 100814

Dear Customer,

The following is the proof-of-delivery for tracking number: 775121632125

Delivery Information:

Status: Delivered To:

Signed for by: C.PINKOS Delivery Location: 44 MAIN ST S

Service type: FedEx 2Day

Special Handling: Deliver Weekday

BRIDGEWATER, CT, 06752

Receptionist/Front Desk

Delivery date: Nov 9, 2021 13:00

Shipping Information:

Tracking number: 775121632125 **Ship Date:** Nov 5, 2021

Weight: 1.0 LB/0.45 KG

Recipient:

Joseph Manley - Building Official, 44 Main Street South PO Box 216 BRIDGEWATER, CT, US, 06752 Shipper:

Corey Milan, NB+C 100 Apollo Dr. Suite 303 CHELMSFORD, MA, US, 01824

Reference 100814

