### Robinson+Cole

KENNETH C. BALDWIN

One State Street Hartford, CT 06103 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

April 29, 2025

Via Electronic and U.S. Mail

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification - Bridgewater Fair 110 Main Street South, Bridgewater, Connecticut Temporary Telecommunications Facility

Dear Attorney Bachman:

Pursuant to R.C.S.A. Section 16-50j-72(d), this letter will serve as notice that Cellco Partnership d/b/a Verizon Wireless ("Cellco") intends to install a temporary wireless facility (a/k/a "Cell on Wheels" or "COW") on property at 11 Main Street South in Bridgewater, Connecticut (the "Property") for use during the 2025 Bridgewater Fair, August 15-17, 2025. Cellco intends to install the COW on August 4, 2025 and remove it from the Property on August 19, 2025.

Cellco intends to install the COW in a grassy area adjacent to a residential structure on the Property. The Property is owned by the Bridgewater Fire Department. Included in <a href="Attachment 1">Attachment 1</a> is a letter from the Bridgewater Fire Department authorizing the filing of this notice. In accordance with R.C.S.A. Section 16-50j-73, a copy of this filing has also been sent to Curtis Read, Bridgewater's First Selectman, Meg Khare, Bridgewater's Land Use Coordinator, and the property owner, the Bridgewater Fire Department, Inc.

The COW that Cellco intends to install at the Property is a trailer-mounted wireless facility with a retractable mast extending to a height of 45 feet above ground level ("AGL").

32007506-v1

#### Robinson+Cole

Melanie A. Bachman, Esq. April 29, 2025 Page 2

Cellco will attach seven (7) panel antennas to the mast, four (4) at a centerline height of 35 feet AGL and three (3) at a centerline height of 29 feet AGL. The COW will be powered by a portable generator. Included in <u>Attachment 2</u> is a Lease Exhibit showing the proposed COW and specifications for the antennas and radios that Cellco intends to use at the Property.

The proposed temporary telecommunications facility satisfies the criteria set forth in R.C.S.A. Section 16-50j-72(d), as a facility that will provide temporary wireless services for an event of State-wide significance. The COW will provide additional network capacity to accommodate increased wireless voice and data services needed during the fair.

The operation of the COW will not result in a total radio frequency (RF) emissions level that exceed the Federal Communications Commission (FCC) safety standard. Included in <a href="Attachment 3">Attachment 3</a> are Far Field Approximation Tables for the frequencies Cellco intends to deploy at this temporary facility. These tables demonstrate that the temporary facility will operate well within the FCC standards.

Finally, in <u>Attachment 4</u> is a copy of the Town Assessor's parcel map including owner information for the Property. A Certificate of Mailing verifying that this filing was sent to municipal officials and the Property owner is included in <u>Attachment 5</u>.

Based on the foregoing, Cellco respectfully requests acknowledgement of this notice for the installation of a temporary wireless facility at the Property. Please feel free to contact me if you have any questions or need any additional information.

Sincerely,

Kenneth C. Baldwin

Attachments Copy to:

Curtis Read, First Selectman Meg Khare, Land Use Coordinator Bridgewater Fire Department, Inc. Daniel Fitzpatrick, Verizon Wireless Mark Brauer, RF Engineer Brian Ross, Structure Consulting

# **ATTACHMENT 1**

#### THE BRIDGEWATER FIRE DEPARTMENT, INC 100 Main Street South Bridgewater, CT 06752

Evidence of Agreement and Landowner's Consent to File for Permits/Approvals to be Granted to Cellco Partnership d/b/a Verizon Wireless

To Whom It May Concern:

The Bridgewater Fire Department, Inc is the owner of certain real property located in the Town of Bridgewater at 110 Main Street South and identified as Map/Block 35/38 on the tax map of the Town of Bridgewater ("Subject Property").

Please be advised that The Bridgewater Fire Department, Inc has entered into an agreement with Cellco Partnership d/b/a Verizon Wireless ("Applicant") to install a temporary wireless communications facility on a portion of the Subject Property, and permission is hereby granted to Applicant to make application for Building, Zoning, Planning, or any other Land Use or Regulatory Permit(s) required to effectuate the installation of said wireless facility.

The Applicant, or its agent, is hereby authorized to execute the required application(s) regarding this matter. Permission is also hereby granted for public officials and Board, Commission or Council members, as required, to enter upon the Subject Property for the limited purpose of inspecting the specific site and access that are the subject of Applicant's proposed installation.

Sincerely,

THE BRIDGEWATER FIRE DEPARTMENT, INC.

Name: Eric

# **ATTACHMENT 2**

RRIDGEWATER FAIR TIO MAIN STREET SOUTH SRIDGEWATER, CT 06752 (203) 488-0580 (203) 468-6587 Fox 63-2 North Branford Road, Branford, CT 06405 Centered on 50 utions **ENTEK** engineering Celico Partnership d/b/a Vertzon Wireless

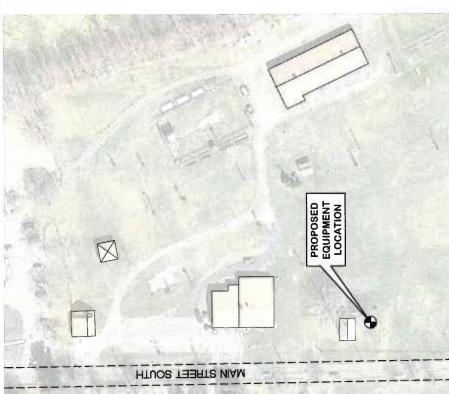
SITE LOCATION MAP SCALE: NOT TO SCALE

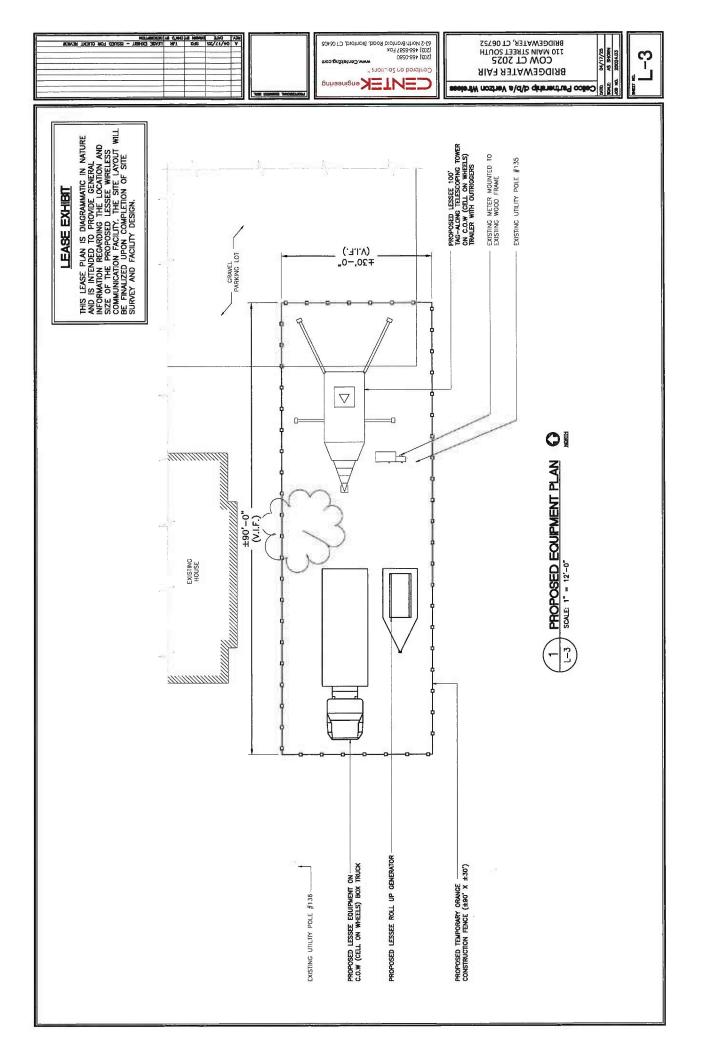
1-1

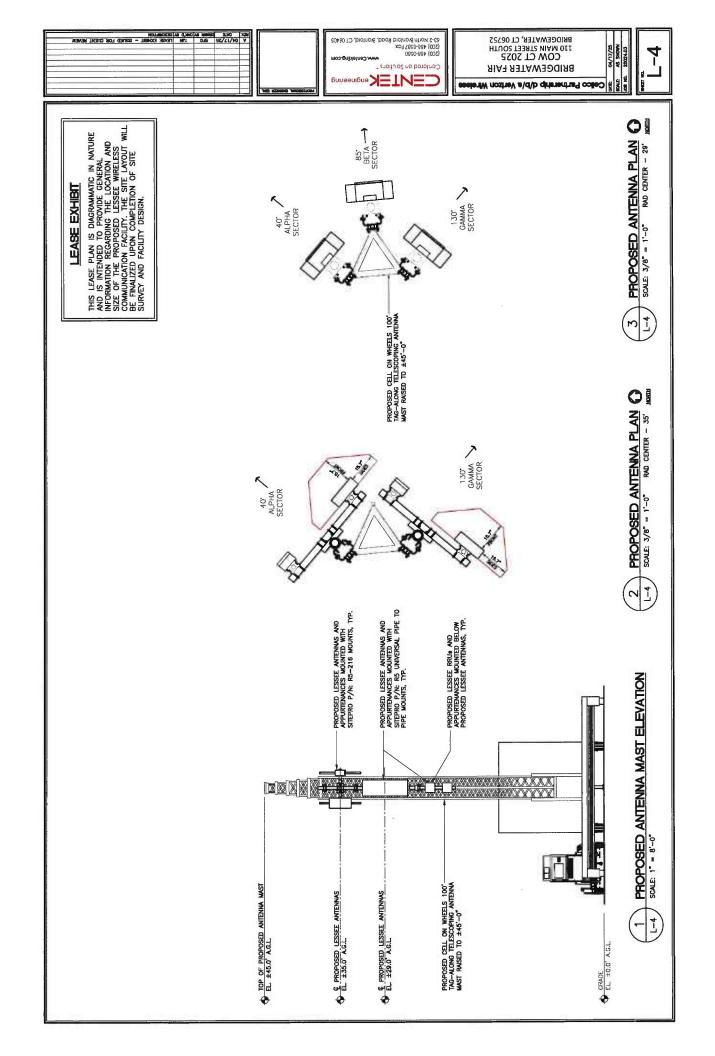
AST CALLS SEND BY CHANGE BY CHANGE BY CHEST CHANGE - ESSUED FOR CLICHT REVIEW

|  | ç |
|--|---|
|  | u |
|  | 6 |

THIS LEASE PLAN IS DIAGRAMMATIC IN NATURE AND IS INTENDED TO PROVIDE GENERAL INFORMATION REGARDING THE LOCATION AND SIZE OF THE PROPOSED LESSEE WIRELESS COMMUNICATION FACILITY. THE SITE LAYOUT WILL BE FINALIZED UPON COMPLETION OF SITE SURVEY AND FACILITY DESIGN.


COORDINATES AND GROUND ELEVATION REFERENCED FROM FAA 2C SURVEY, PREPARED BY CENTEK ENGINEERING, DATED 07/19/2023.


676.50'± A.M.S.L 41' 31' 50.02"N 73' 21' 53.71"W


GROUND ELEVATION:

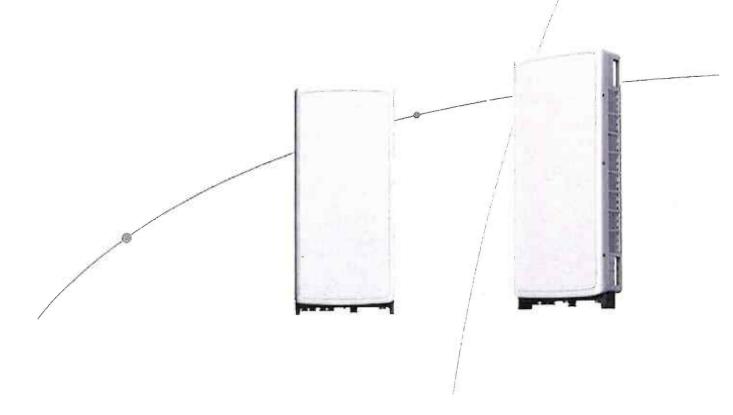
PRELIM, SITE COORDINATES:

EASE EXHIBIT








#### SAMSUNG

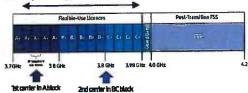
# SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..

Model Code: MT6407-77A




#### Points of Differentiation

#### Wide Bandwidth

With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

C-Band spectrum supported by Massive MIMO Radio

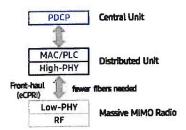


#### **Enhanced Performance**

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.

This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

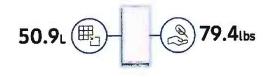
Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.




#### Technical Specifications

| Item              | Specification                                   |
|-------------------|-------------------------------------------------|
| Tech              | NR                                              |
| Band              | n77                                             |
| Frequency<br>Band | 3700 - 3980 MHz                                 |
| ERP               | 78.5dBm (53.0 dBm+25.5 dBi)                     |
| IBW/OBW           | 280 MHz/200 MHz                                 |
| Installation      | Pole/Wall                                       |
| Size/<br>Weight   | 16.06 x 35.06 x 5.51 inch (50.86L)/<br>79.4 lbs |

#### **Future Proof Product**


Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.



#### Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment.



#### SAMSUNG

#### About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

#### © 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

#### NHH-45A-R2B



6-port sector antenna, 2x 698–896 and 4x 1695–2360 MHz, 45° HPBW, 2x RETs and 2x SBTs. Both high bands share the same electrical tilt.

- Internal SBT on low and high band allow remote RET control from the radio over the RF jumper cable
- Narrow beamwidth capacity antenna for higher level of densification and enhanced data throughput
- One LB RET and one HB RET. Both high bands are controlled by one RET to ensure same tilt level for 4x Rx or 4x MIMO
- Separate RS-485 RET input/output for low and high band

#### General Specifications

Antenna Type Sector

Band Multiband
Color Light gray

**Grounding Type**RF connector body grounded to reflector and mounting bracket

Performance Note Outdoor usage | Wind loading figures are validated by wind tunnel

measurements described in white paper WP-112534-EN

Radome Material Fiberglass, UV resistant

Radiator Material Copper | Low loss circuit board

Reflector Material Aluminum

RF Connector Interface 4.3-10 Female

RF Connector Location Bottom

RF Connector Quantity, high band 4

RF Connector Quantity, low band 2

RF Connector Quantity, total 6

#### Remote Electrical Tilt (RET) Information

RET Hardware CommRET v2

RET Interface 8-pin DIN Female | 8-pin DIN Male

RET Interface, quantity 2 female | 2 male

Input Voltage 10-30 Vdc

Internal Bias Tee Port 1 | Port 3

Page 1 of 5



#### NHH-45A-R2B

Internal RET High band (1) | Low band (1)

Power Consumption, active state, maximum 10 W
Power Consumption, idle state, maximum 2 W

Protocol 3GPP/AISG 2.0 (Single RET)

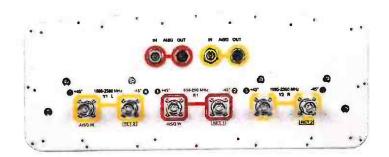
**Dimensions** 

**Width** 457 mm | 17.992 in

**Depth** 178 mm | 7.008 in

**Length** 1220 mm | 48.032 in

Net Weight, without mounting kit 21 kg | 46.297 lb


#### Array Layout



| Агтау ID | Frequency (MHz) | RF Connector | RET<br>(SRET) | AISG No. | AISG RET UID       |
|----------|-----------------|--------------|---------------|----------|--------------------|
| 27       | 698-896         | 1-2          | 1             | AISG1    | CPxxxxxxxxxxxxXXXX |
| Υ1       | 1695-2360       | 3-4          |               | 11553    | CPxxxxxxxxxxxXY1   |
| Y2       | 1695-2360       | 5-6          | 2             | AISG2    | CPXXXXXXXXXXXXXXX  |

(Sizes of colored boxes are not true depictions of array sizes)

#### Port Configuration



#### **Electrical Specifications**

**Impedance** 50 ohm

Operating Frequency Band 1695 – 2360 MHz | 698 – 896 MHz

Polarization ±45°

Total Input Power, maximum 600 W @ 50 °C

#### **Electrical Specifications**

| Ficetifed, Pheetifes.              |            |            |            |            |            |            |
|------------------------------------|------------|------------|------------|------------|------------|------------|
| Frequency Band, MHz                | 698-806    | 806-896    | 1695-1880  | 1850-1990  | 1920-2200  | 2300-2360  |
| Gain, dBi                          | 15.5       | 16.2       | 18.3       | 19         | 19.2       | 20         |
| Beamwidth, Horizontal,<br>degrees  | 48         | 44         | 44         | 44         | 43         | 39         |
| Beamwidth, Vertical, degrees       | 18.5       | 16.8       | 7.9        | 7.3        | 6.8        | 6          |
| Beam Tilt, degrees                 | 2-18       | 2-18       | 1-9        | 1-9        | 1-9        | 1-9        |
| USLS (First Lobe), dB              | 16         | 17         | 17         | 16         | 15         | 15         |
| Front-to-Back Ratio at 180°,<br>dB | 32         | 33         | 36         | 36         | 36         | 35         |
| Isolation, Cross Polarization, dB  | 25         | 25         | 25         | 25         | 25         | 25         |
| Isolation, Inter-band, dB          | 25         | 25         | 25         | 25         | 25         | 25         |
| VSWR   Return loss, dB             | 1.5   14.0 | 1.5   14.0 | 1.5   14.0 | 1.5   14.0 | 1.5   14.0 | 1.5   14.0 |

Page 3 of 5



#### NHH-45A-R2B

| PIM, 3rd Order, 2 x 20 W, dBc | -153 | -153 | -153 | -153 | -153 | -153 |
|-------------------------------|------|------|------|------|------|------|
| Input Power per Port at 50°C, | 300  | 300  | 250  | 250  | 250  | 200  |
| maximum, watts                |      |      |      |      |      |      |

#### Electrical Specifications, BASTA

| · ·                                            |         |         |           |           |           |           |
|------------------------------------------------|---------|---------|-----------|-----------|-----------|-----------|
| Frequency Band, MHz                            | 698-806 | 806-896 | 1695-1880 | 1850-1990 | 1920-2200 | 2300-2360 |
| Gain by all Beam Tilts,<br>average, dBi        | 15.1    | 15.9    | 17.9      | 18.7      | 19        | 19.8      |
| Gain by all Beam Tilts<br>Tolerance, dB        | ±0.5    | ±0.4    | ±0.6      | ±0.4      | ±0.3      | ±0.4      |
| Beamwidth, Horizontal<br>Tolerance, degrees    | ±1.8    | ±3      | ±1.9      | ±1.3      | ±2.1      | ±1.6      |
| Beamwidth, Vertical<br>Tolerance, degrees      | ±1      | ±0.9    | ±0.3      | ±0.3      | ±0.5      | ±0.2      |
| USLS, beampeak to 20° above<br>beampeak, dB    | 17      | 22      | 12        | 13        | 14        | 15        |
| Front-to-Back Total Power at<br>180° ± 30°, dB | 24      | 24      | 27        | 29        | 30        | 30        |
| CPR at Boresight, dB                           | 24      | 25      | 15        | 18        | 19        | 20        |
| CPR at Sector, dB                              | 18      | 17      | 11        | 13        | 15        | 16        |
|                                                |         |         |           |           |           |           |

#### Mechanical Specifications

 Wind Loading @ Velocity, frontal
 677.0 N @ 150 km/h (152.2 lbf @ 150 km/h)

 Wind Loading @ Velocity, lateral
 135.0 N @ 150 km/h (30.3 lbf @ 150 km/h)

 Wind Loading @ Velocity, maximum
 677.0 N @ 150 km/h (152.2 lbf @ 150 km/h)

 Wind Loading @ Velocity, rear
 595.0 N @ 150 km/h (133.8 lbf @ 150 km/h)

 Wind Speed, maximum
 241 km/h | 149.75 mph

#### Packaging and Weights

 Width, packed
 563 mm | 22.165 in

 Depth, packed
 355 mm | 13.976 in

 Length, packed
 1393 mm | 54.843 in

 Weight, gross
 32.1 kg | 70.768 lb

#### Regulatory Compliance/Certifications

| Agency        | Classification                                                                 |
|---------------|--------------------------------------------------------------------------------|
| CHINA-ROHS    | Above maximum concentration value                                              |
| ISO 9001:2015 | Designed, manufactured and/or distributed under this quality management system |

Page 4 of 5



#### NHH-45A-R2B

REACH-SVHC

Compliant as per SVHC revision on www.commscope.com/ProductCompliance

ROHS

Compliant/Exempted

UK-ROHS

Compliant/Exempted

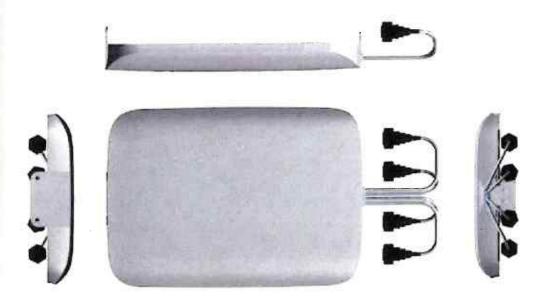




#### Included Products

BSAMNT-3

Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.


#### \* Footnotes

**Performance Note** 

Severe environmental conditions may degrade optimum performance

# [CBRS] Clip-on Antenna Specifications

VzW accepted IP45 in FLD, but IP55 is Samsung Spec.



| Items                                                                  | Clip-on Antenna, BASTA**                                                                                                                                |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Antenna Gain                                                           | 12.5 ± 0.5 dBi (Max <b>13 dBi)</b>                                                                                                                      |
| Horizontal BW (-3dB)                                                   | 65° ± 5°                                                                                                                                                |
| Vertical BW (-3dB)                                                     | 17° ±3°                                                                                                                                                 |
| Electrical Tilt                                                        | 8° (fixed) $\pm 2$ °                                                                                                                                    |
| Front-to-Back Ratio                                                    | > 25 dB                                                                                                                                                 |
| Port-to-Port Tracking                                                  | < 3 dB                                                                                                                                                  |
| VSWR                                                                   | < 1.5                                                                                                                                                   |
| Isolation                                                              | > 25 dB                                                                                                                                                 |
| Ingress Protection                                                     | IP55                                                                                                                                                    |
| Size                                                                   | 220(W)×313(H)×34.3(D) mm (*)<br>(8.7 × 12.3 × 1.4 inch.)                                                                                                |
| Weight                                                                 | < <b>2.0</b> kg [Typ. 1.3 kg]                                                                                                                           |
| It is required that the radio<br>with JMA WPS Boo<br>with Weatherproof | It is required that the radio should be weatherproofed properly with JMA WPS Boot with external antenna or with Weatherproof Boot for clip-on antennas. |

Antenna includes integrated cable with connector \* Design is subject to minor change

\*\* Ant. spec. follows NGMN recommendations on Base Station Antenna Standards (BASTA). For example, 'mean  $\pm$  tolerance of 86.6%' is applied to double-sided specification of statistical RF parameters.

# [CBRS RRH] Spec.









Standard Label

Current Size:  $216 \times 307 \times 105.5$  mm (6.99L) (8.5 x 12.1 x 4.1 inch., excluding Port Guard) Design is subject to minor change

| Item                                            | Specification                                                                                            |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Band                                            | Band 48 (3.5 GHz)                                                                                        |
| Frequency                                       | 3550~3700 MHz                                                                                            |
| IBW                                             | 150 MHz                                                                                                  |
| OBW                                             | 80 MHz                                                                                                   |
| # of Carriers                                   | 5/10/15/20 MHz x 4 carriers                                                                              |
| RF Chain                                        | 4TX / 4RX                                                                                                |
| RF Output Power                                 | 4 path x 5 W (Total: 20 W = 43 dBm)                                                                      |
| & EIRP                                          | (EIRP: 47 dBm / 10 MHz)                                                                                  |
| RX Sensitivity                                  | Typical : -101.5 dBm @ 1 Rx (3GPP 36.104, Wide Area)                                                     |
| Modulation                                      | 256-QAM support (1024-QAM with 1~2dB power back-off)                                                     |
| Input Power                                     | -48 VDC (-38 to -57 VDC, 1 SKU),<br>with clip-on AC-DC converter (Option)                                |
| Power Consumption                               | About 160 Watt @ 100% RF load, typical conditions                                                        |
| Volume                                          | Under 7L (w/o Antenna), Under 9.6L (with antenna)                                                        |
| Weight                                          | Under 8.0 kg (18.64 lb) (w/o Antenna), Under 10.5 Kg (with ant.)                                         |
| Operating Temperature                           | -40°C (-40°F) ~ 55°C (131°F) (W/o solar load)                                                            |
| Cooling                                         | Natural convection                                                                                       |
|                                                 | 3GPP 36.104 Category A                                                                                   |
| Unwanted Emission                               | [B48]: FCC 47 CFR 96.41 e)                                                                               |
| Optic Interface                                 | 20km, 2 ports (9.8Gbps x 2), SFP, single mode, duplex or Bi-Di                                           |
| CPRI Cascade                                    | Not supported                                                                                            |
| # of Antenna Port                               | 4                                                                                                        |
| External Alarm (UDA)                            | 4                                                                                                        |
| RET                                             | AISG 2.2                                                                                                 |
| TMA & built-in Bias-T I//F and PIM cancellation | Not supported                                                                                            |
| Mounting Options                                | Pole, wall, tower, back to back, side by side (for external ant), 3 RRH with Clip-on Antenna on the pole |
| Antenna Type                                    | Integrated (Clip-on) antenna (Option),<br>External antenna (Option)                                      |
| NB-loT                                          | Not Supported (HW Resource reserved for 1 Guard Band NB-IoT per LTE carrier)                             |
| Spectrum Analyzer                               | TX/RX Support                                                                                            |
| External Alarm (UDA)                            | 4                                                                                                        |
| 5G NR                                           | Support with S/W upgrade                                                                                 |
| XRAN                                            | Support with S/W upgrade                                                                                 |

#### SAMSUNG

# AWS/PCS MACRO RADIO

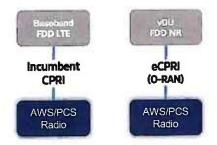
# DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This AWS/PCS 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

Model Code

RF4439d-25A








#### Points of Differentiation

#### **Continuous Migration**


Samsung's AWS/PCS macro radio can support each Incumbent CPRI interface as well as advanced eCPRI interfaces. This feature provides installable options for both legacy LTE networks and added NR networks.



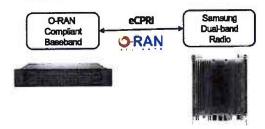
#### Optimum Spectrum Utilization

The number of required carriers varies according to site (region). Supporting many carriers is essential for using all frequencies that the operator has available.

The new AWS/PCS dual-band radio can support up to 3 carriers in the PCS (1.9GHz) band and 4 carriers in the AWS (2.1GHz) band, respectively.



Supports up to 7 carriers


#### Technical Specifications

| Item              | Specification                                                                    |
|-------------------|----------------------------------------------------------------------------------|
| Tech              | LTE/NR                                                                           |
| Brand             | B25(PCS), B66(AWS)                                                               |
| Frequency<br>Band | DL: 1930 – 1995MHz, UL: 1850 – 1915MHz<br>DL: 2110 – 2200MHz, UL: 1710 – 1780MHz |
| RF Power          | (B25) 4 × 40W or 2 × 60W<br>(B66) 4 × 60W or 2 × 80W                             |
| IBW/OBW           | (B25) 65MHz/30MHz<br>(B66) DL90MHz, UL70MHz/60MHz                                |
| Installation      | Pole, Wall                                                                       |
| Size/<br>Weight   | 14.96 x 14.96 x 10.04inch (36.8L) / 74.7lb                                       |

#### **O-RAN Compliant**

A standardized O-RAN radio can help in implementing costeffective networks, which are capable of sending more data without compromising additional investments.

Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.



## Brand New Features in a Compact Size

Samsung's AWS/PCS macro radio offers several features, such as dual connectivity for baseband for both CDU and vDU, O-RAN capability, more carriers and an enlarged PCS spectrum, combined into an incumbent radio volume of 36.8L



Same as an incumbent radio volume

#### SAMSUNG

# 700/850MHZ **MACRO RADIO**

#### **DUAL-BAND AND HIGH POWER** FOR MACRO COVERAGE

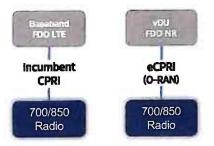
Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This 700/850MHz 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

Model Code

RF4440d-13A



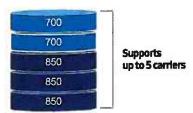



Homepage



#### Points of Differentiation

#### Continuous Migration


Samsung's 700/850MHz macro radio can support each incumbent CPRI interface as well as an advanced eCPRI interface. This feature provides installable options for both legacy LTE networks and added NR networks.

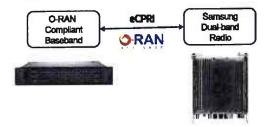


#### Optimum Spectrum Utilization

The number of required carriers varies according to site (region). The ability to support many carriers is essential for using all frequencies that the operator has available.

The new 700/850MHz dual-band radio can support up to 2 carriers in the B13 (700MHz) band and 3 carriers in the B5 (850MHz) band, respectively.

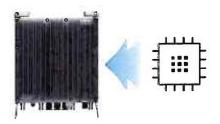



#### Technical Specifications

| Item              | Specification                                                            |
|-------------------|--------------------------------------------------------------------------|
| Tech              | LTE / NR                                                                 |
| Brand             | B13(700MHz), B5(850MHz)                                                  |
| Frequency<br>Band | DL: 746 – 756MHz, UL: 777 – 787MHz<br>DL: 869 – 894MHz, UL: 824 – 849MHz |
| RF Power          | (B13) 4 × 40W or 2 × 60W<br>(B5) 4 × 40W or 2 × 60W                      |
| IBW/OBW           | (B13) 10MHz / 10MHz<br>(B5) 25MHz / 25MHz                                |
| Installation      | Pole, Wall                                                               |
| Size/<br>Weight   | 14.96 x 14.96 x 9.05inch (33.2L) / 70.33 lb                              |

#### **O-RAN Compliant**

A standardized O-RAN radio can help when implementing cost-effective networks because it is capable of sending more data without compromising additional investments.


Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.



#### Secured Integrity

Access to sensitive data is allowed only to authorized software.

The Samsung radio's CPU can protect root of trust, which is credential information to verify SW integrity, and secure storage provides access control to sensitive data by using dedicated hardware (TPM).



#### **Specifications**

The table below outlines the main specifications of the RRH.

Table 1. Specifications

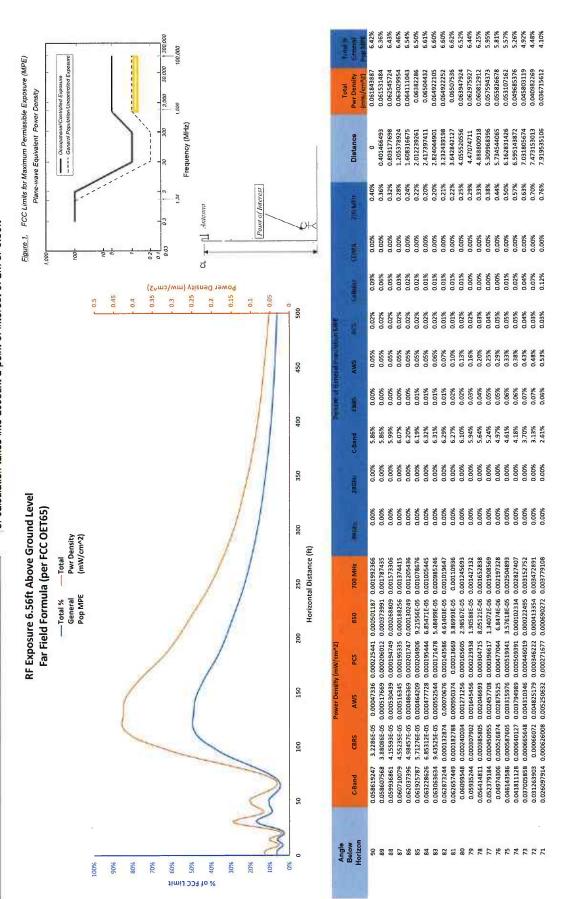
| Hom                        | RT4401-48A                                                                                                                                                                    |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Air Technology             | LTE                                                                                                                                                                           |
| Band                       | Band 48 (3.5 GHz)                                                                                                                                                             |
| Operating Frequency (MHz)  | 3550 to 3700                                                                                                                                                                  |
| RF Chain                   | 4TX/4RX                                                                                                                                                                       |
| Input Power                | -48 V DC (-38 to -57 V DC, 1 SKU), with clip-on AC-DC converter (Option)                                                                                                      |
| Dimension (W × D × H) (mm) | 8.55 in. (217.4) × 4.15 in. (105.5) × 13.91 in. (353.5)<br>* RRH only<br>11.39 in. (289.4) × 5.45 in. (138.5) × 16.16 in. (410.5)<br>* with Clip-on antenna, AC-DC power unit |
| Cooling                    | Natural convection                                                                                                                                                            |
| Unwanted Emission          | 3GPP 36.104 Category A                                                                                                                                                        |
|                            | [B48]: FCC 47 CFR 96.41 e)                                                                                                                                                    |
| Spectrum Analyzer          | TX/RX Support                                                                                                                                                                 |
| Antenna Type               | Integrated (Clip-on) antenna (Option),<br>External antenna (Option)                                                                                                           |
| Operating Humidity         | 5 to 100 [%] (RH), condensing, not to exceed 30 g/m³ absolute humidity                                                                                                        |
| Altitude                   | -60 to 1,800 m                                                                                                                                                                |
| Earthquake                 | Telcordia Earthquake Risk Zone4 (Telcordia GR-63-CORE)                                                                                                                        |
| Vibration in Use           | Office Vibration                                                                                                                                                              |
| Transportation Vibration   | Transportation Vibration                                                                                                                                                      |
| Noise                      | Fanless (natural convection cooling)                                                                                                                                          |
| Wind Resistance            | Telcordia GR-487-CORE, Section 3.34                                                                                                                                           |
| EMC                        | FCC Title 47, CFR Part 96                                                                                                                                                     |
| Safety                     | UL 60950-1 2nd ED                                                                                                                                                             |

| Item | RT4401-48A                |  |
|------|---------------------------|--|
|      | UL 62368-1                |  |
|      | UL 60950-22               |  |
| RF   | FCC Title 47, CFR Part 96 |  |

The table below outlines the AC/DC power unit specifications of the RRH system.

# **ATTACHMENT 3**

| Location                            |        | BR    | BRIDGEWATER FAIR COWCT | R FAIR COW | cr         | į                    |
|-------------------------------------|--------|-------|------------------------|------------|------------|----------------------|
| Date                                |        |       | 4/23/                  | 4/23/2025  |            |                      |
| Band                                | C-Band | CBRS  | AWS                    | PCS        | 850        | 200                  |
| Operating Frequency<br>(MHz)        | 3,700  | 3,550 | 2,145                  | 1,970      | 869        | 746                  |
| General Population MPE<br>(mW/cm^2) | +      | 1     | 1                      | -          | 0.57933333 | 0.5793333 0.49733333 |
| ERP Per Transmitter (Watts)         | 13,336 | 50    | 1,157                  | 1,019      | 925        | 732                  |
| Number of Transmitters              | 2      | 4     | 4                      | 4          | 4          | 4                    |
| Antenna Centerline (CL)<br>(feet)   | 35     | 35    | 29                     | 59         | 29         | 59                   |
| Total ERP (Watts)                   | 26,672 | 200   | 4,628                  | 4,076      | 3,700      | 2,928                |
| Total ERP   dBm                     | 74     | 53    | 67                     | 99         | 99         | 65                   |
| Particular Section 1                |        |       |                        | c          |            |                      |


\*Guidelines adopted by the FCC on August 1, 1996, 47 CFR Section 1.1310 based on NCRP Report 86, 1986 and generally on ANSI/IEEE C95.1-1992 MHz = Megahertz

mW/cm^2 = milliwatts per square centimeter

ERP = Effective Radiated Power


Absolute worst case maximum values used, including the following assumptions:

- closest accessible point is distance from antenna to base of pole;
- 2. continuous transmission from all available channels at full power for indefinite time period; 3. calculation takes into account a point of interest of 2m or 6.56ft



| Column   C                                                                                                                                                                                                                                                                                                               | 3.85%       | 3.43%       | 3.34%       | 3.70%       | 3.98%       | 4.45%       | 5.32%       | 2.65%       | 6.10%       | 6.24%       | 6.22%       | 6.22%       | 98.0        | 3.46%       | 4.30%       | 3.69%       | 3.17%       | 2.85%       | 2.76%       | 2.92%       | 3.36%       | 5.04%       | 6.36%       | 8.04%       | 9.91%       | 11.93%      | 13.94%      | 15.64%      | 16.54%      | 16 51%      | 15.54%      | 13.66%      | 11.93%      | 10.23%      | 9.21%       | 8.96%<br>9.29% | 10.04%      | 10.65%      | 10.62%      | 10.72%      | 7.80%       | 5.95%       | 4.91%       | 4.97%       | 6.79%       | 16.53%      | 23.90%      | 32.29%      | 39.36%      | 46.11%      | 49.62%      | 48.73%         | 43.58%      | 36.07%      | 29.25%      | 21.30%      | 14.02%      | 3.35%       | 0.77%       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| CHINATION CONTRINATE                                                                                                                                                                                                                                                                                                               | 0.033572861 | 0.028133974 | 0,02654654  | 0.028750181 | 0.030883128 | 0.03494315  | 0.042740411 | 0.045892228 | 0.050206294 | 0.051695812 | 0.051654113 | 0.0518275   | 0.048898425 | 0.044373688 | 0.034108901 | 0.028490851 | 0.023565008 | 0.020713051 | 0.020070418 | 0.021750093 | 0.032438552 | 0.041659171 | 0.053764546 | 0.069034831 | 0.085829002 | 0.103722267 | 0.12138746  | 0.135671304 | 0.142047185 | 0.127604393 | 0.126658338 | 0.107456394 | 0.090791202 | 0.075393777 | 0.067668001 | 0.058576087    | 0.087320449 | 0.097261504 | 0.100209174 | 0.103508837 | 0.030333638 | 0.052944197 | 0.037813395 | 0.03197664  | 0.042349966 | 0.122075332 | 0.187173135 | 0.263637676 | 0.32863487  | 0.392676918 | 0.427044089 | 0.425488473    | 0.380366832 | 0.313988389 | 0.255382513 | 0.185716299 | 0.121956692 | 0.028784496 | 0.006521852 |
| Characteries (Control Control Contro                                                                                                                                                                                                                                                                                                               | 8.371315388 | 9.292603194 | 9.762920773 | 10.72507614 | 11.21784954 | 11.71908534 | 12.74910818 | 13.27905619 | 13.81979424 | 14.37199509 | 14.93637464 | 15.51369589 | 16.104//338 | 17 33174315 | 17.96956941 | 18.62503276 | 19.29929152 | 19.99359497 | 20.70929302 | 21.44784698 | 74.21084182 | 23.81719722 | 24.66448033 | 25.54408784 | 26.45847337 | 27.41033263 | 28.4026346  | 29.43865754 | 30.5220309  | 31,535/641/ | 34.09890228 | 35.41689417 | 36.80769417 | 38.27842809 | 39.83716857 | 41 49309837    | 45.14004163 | 47.15698836 | 49.32365917 | 51.6588458  | 56.92699763 | 59.91704849 | 63.19198065 | 66.79685019 | 70.78672136 | 80.21053221 | 85.83716857 | 92.24796147 | 99.62394511 | 108.2064925 | 118.3247424 | 145 2162848    | 163,6535036 | 187.3199678 | 218.8303824 | 262.891203  | 328.9153239 | 658.6338255 | 1317.669118 |
| COURTESTS ORGENISTS ORGENISTS ORGENISTS ARROYSTS ARROYSTS AND CONTROLS ORGENISTS ORG                                                                                                                                                                                                                                                                                                               | 0.82%       | 0.92%       | 0.96%       | 1.02%       | 1.03%       | 1.02%       | 0.96%       | 0.89%       | 0.81%       | 0.72%       | 0.62%       | 0.52%       | 0.43%       | 0.33%       | 0.26%       | 0.26%       | 0.30%       | 0.39%       | 0.52%       | 0.70%       | 1 19%       | 1.51%       | 1.86%       | 2.23%       | 2.63%       | 3.02%       | 3.39%       | 3.72%       | 3.99%       | 4.17%       | 4.20%       | 4.02%       | 3.72%       | 3.30%       | 2.80%       | 7577           | 1.16%       | 0.72%       | 0.42%       | 0.29%       | 0.57%       | 1.16%       | 1.87%       | 2.73%       | 3.70%       | 5.70%       | 6.59%       | 7.29%       | 7.77%       | 8.00%       | 7.91%       | 6.91%          | 9.54.0      | 5.04%       | 3.96%       | 2.89%       | 1.92%       | 0.49%       | 0.12%       |
| COURTERING   COU                                                                                                                                                                                                                                                                                                               | 0.00%       | 0.00%       | %00.0       | 0.00%       | 0.00%       | %00.0       | 0.00%       | 0.00%       | %00.0       | 0.00%       | %00.0       | %00.0       | 0.00%       | 0.00%       | %00.0       | %00.0       | 9,000       | %00.0       | %00 0       | %00.0       | 0.00%       | 0.00%       | 0.00%       | 0.00%       | 0.00%       | %00.0       | %00'0       | %00.0       | %00.0       | 0.00%       | 0.00%       | 0.00%       | %00.0       | %00.0       | %00.0       | 0.00%          | 0.00%       | %00.0       | %00.0       | %00.0       | 0.00%       | %00.0       | 0.00%       | 0.00%       | 0.00%       | 0.00%       | 0.00%       | 0.00%       | 0.00%       | %00.0       | 0.00%       | 0.00%          | 0.00%       | 0.00%       | %00.0       | 0.00%       | 0.00%       | 0.00%       | 0.00%       |
| COLORAGE   CONCRESSE CONCRESSE CONTRICTOR                                                                                                                                                                                                                                                                                                                | 0.18%       | 0.37%       | 0.48%       | 0.75%       | 0.90%       | 1.05%       | 1.34%       | 1.46%       | 1.58%       | 1.68%       | 1.77%       | 1.83%       | 1.87%       | 1.85%       | 1.79%       | 1.70%       | 1.56%       | 1.38%       | 1.18%       | 0.95%       | 0.71%       | 0.28%       | 0.12%       | 0.03%       | 0.01%       | 0.08%       | 0.24%       | 0.47%       | 0.77%       | 1.12%       | 1.82%       | 2.12%       | 2.33%       | 2.45%       | 2 45%       | 2.52%          | 1.73%       | 1.33%       | 0.91%       | 0.54%       | 0.26%       | 0.18%       | 0.45%       | 0.95%       | 1.65%       | 3.47%       | 4.46%       | 5.37%       | 6.15%       | 6.70%       | 6.98%       | 0,55%<br>%77.7 | 5.95%       | 5.08%       | 4.09%       | 3.04%       | 2.04%       | 0.53%       | 0.13%       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.04%       | 0.09%       | 0.11%       | 0.11%       | %60'0       | 0.06%       | 0.02%       | 0.02%       | 0.02%       | 0.04%       | 0.08%       | 0.12%       | 0.18%       | 0.20%       | 0.44%       | 0.52%       | 0.57%       | 0.60%       | 0.58%       | 0.55%       | 0.52%       | 0.60%       | 0.74%       | 0.91%       | 1.08%       | 1.20%       | 1.23%       | 1.15%       | 0.96%       | 0.70%       | 0.17%       | 0.03%       | 0.02%       | 0.08%       | 0.16%       | 0.21%          | 0.13%       | 0.07%       | %90.0       | 0.14%       | 0.32%       | 0.65%       | 0.66%       | 0.54%       | 0.34%       | 0.04%       | 0.01%       | 0.04%       | 0.08%       | 0.07%       | 0.03%       | 0.01%          | 0.26%       | 0.54%       | 0.79%       | 0.92%       | 0.86%       | 0.32%       | 0.08%       |
| 0.01155682 0.00053850 0.00053850 0.00053813 0.000153813 0.000592851 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.00                                                                                                                                                                                                                                                                                                             | 0.55%       | 0.51%       | 0.45%       | 0.32%       | 0.26%       | 0.22%       | 0.15%       | 0.13%       | 0.13%       | 0.15%       | 0.18%       | 0.23%       | 0.26%       | 0.23%       | 0.14%       | 0.07%       | 0.02%       | 0.00%       | 0.02%       | 0.06%       | 0.10%       | 0.15%       | 0.19%       | 0.30%       | 0.53%       | 0.90%       | 1.38%       | 1.90%       | 2.36%       | 2.52%       | 2.28%       | 1.73%       | 1.08%       | 0.51%       | 0.14%       | 0.00%          | 0.18%       | 0.26%       | 0.24%       | 0.13%       | 0.03%       | 0.09%       | 0.23%       | 0.34%       | 0.34%       | 0.10%       | 0.03%       | %90.0       | 0.16%       | 0.23%       | 0.22%       | 0.13%          | 0.08%       | 0.28%       | 0.56%       | 0.79%       | 0.83%       | 0.36%       | 0.10%       |
| 0.00229829 0.000555840 0.00055405 0.000550590 0.000558000 0.000494773 0.00059 0.012397890 0.000555840 0.000554050 0.00055400 0.0001590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.00059590 0.000595                                                                                                                                                                                                                                                                                                             | 0.06%       | 0.05%       | 0.06%       | 0.07%       | 0.07%       | 0.07%       | 0.06%       | 0.06%       | 0.05%       | 0.04%       | 0.03%       | 0.03%       | 0.03%       | 0.03%       | 0.04%       | 0.05%       | 0.07%       | 0.08%       | 0.10%       | 0.12%       | 0.14%       | 0.19%       | 0.19%       | 0.21%       | 0.23%       | 0.26%       | 0.28%       | 0.28%       | 0.28%       |             |             |             |             | 0.12%       | 0.08%       |                |             | %00'0       |             |             | 0.07%       | 0.17%       | 0.23%       |             |             |             |             |             |             |             | 0.41%       |                |             | 0.20%       | 0.15%       | 0.10%       | 0 0         |             |             |
| 0.00235386 0.00025387 0.00054510 0.000153999 0.000153999 0.000437734 0.00058381 0.0005834 0.00058314 0.00058734 0.00058734 0.000153999 0.00043773 0.00078 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.0005872 0.                                                                                                                                                                                                                                                                                                             | .,          |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |                |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |                |             |             |             |             |             |             |             |
| 0.02526282 0.000543567 0.00054108 0.00015399 0.000143973 0.00041735 0.00050170 0.00054090 0.00148373 0.00050170 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.00056480 0.0005648                                                                                                                                                                                                                                                                                                             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             | 0.00%       | 0.00        |             |             |             |             |             |             |             |             |             |             |             |             |                |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |                |             |             |             | 0           | 0 0         |             |             |
| 0.015195782 0.000543201 0.000541217 0.001055137 0.001551390 0.00159390 0.00159390 0.00159390 0.00159390 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.0015                                                                                                                                                                                                                                                                                                             | 0.00%       | 0.00%       | 0.00%       | 0.00%       | 0.00%       | 0.00%       | 0.00%       | 0.00%       | 0.00%       | 0.00%       | 0.00%       | 0.00%       | 0.00%       | 200.0       | 0.00%       | 0.00%       | %00.0       | %00'0       | 0.00%       | 0.00%       | 800.0       | 0.00%       | 0.00%       | %00.0       | %00.0       | %00.0       | 0.00%       | 0.00%       | 0.00%       | 0.00%       | 0.00%       | 0.00%       | 0.00%       | 0.00%       | 0.00%       | 0.00%          | 0.00%       | 0.00%       | 0.00%       | 0.00%       | 0.00%       | 0.00%       | %00'0       | %00.0       | 0.00%       | 0.00%       | 0.00%       | 0.00%       | %00'0       | 0.00%       | 0.00%       | 0.00%          | 0.00%       | 0.00%       | 0.00%       | 0.00%       | 0.00%       | 0.00%       | %00.0       |
| 0.015195782 0.000543201 0.000541217 0.001055137 0.001551390 0.00159390 0.00159390 0.00159390 0.00159390 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.00159391 0.0015                                                                                                                                                                                                                                                                                                             | 0.004943734 | 0.004588091 | 0.004798258 | 0.005070122 | 0.005122624 | 0.005088983 | 0.004752037 | 0.00444609  | 0.004052448 | 0.003598244 | 0.003105205 | 0.002604406 | J.00Z13/654 | 72847       | 0.001288824 | 0.001305475 | 0.001516711 | 0.001939028 | 0.002587018 | 0.003471638 | 0.005936115 | 0.007493789 | 0.009233216 | 0011102909  | 0.013059638 | 0.01502494  | 0.016867719 | 0.018519732 | 0.019838929 | 0.020/33606 | 0.020876835 | 0.019971849 | 0.018504829 | 0.016414027 | 0.013936496 | 0.011195406    | 0.005786021 | 0.003603101 | 0.002097023 | 0.001452298 | 0.001819351 | 0.005785073 | 0.009279258 | 0.013566351 | 0.018404476 | 0.028328625 | 0.032760715 | 0.036268866 | 0.038653936 | 0.039775995 | 0.039347595 | 0.03/491265    | 0.03435525  | 0.025064472 | 0.019708641 | 0.01437838  | 0.009533008 | 0.002424505 | 0.00059659  |
| 0.012189596 0.000543201 0.000563514 0.000501903 0.0018189586 0.000543201 0.000563541 0.001819762 0.0012818978 0.000543201 0.000505341 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819762 0.0012819772 0.0012819718 0.0012819718 0.0012819718 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.00128191 0.001281911 0.001281911 0.001281911 0.001281911 0.00128191 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911 0.001281911                                                                                                                                                                                                                                                                                                              |             |             |             |             | N.          | 2 4         |             |             |             |             |             |             |             |             |             |             |             |             |             | _           |             |             |             |             |             |             | 7           |             |             |             |             |             |             |             |             |                |             |             |             |             |             | 1 7         | 00          | N           |             | 0 4         | 25          |             | 20          | 68          | 2 5         | 2 0            | 2 10        | m           | 9           | 63          | 6, 4        | 4 0         | 00          |
| 0.018188956 0.00053986 0.000547765 0.000547765 0.000543241 0.000543241 0.000563544 0.000563984 0.000563984 0.0013819763 0.000593082 0.0013819763 0.00059382 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.0013819763 0.00138197763 0.00138197764 0.00138197764 0.00138197764 0.00138197764 0.00138197764 0.0013819777040 0.0013819777040 0.0013819777040 0.0013819777040 0.0013819777040 0.0013819777040 0.0013819777040 0.0013819777040 0.0013819777040 0.0013819777040 0.0013819777040 0.0013819777040 0.001381978 0.0013819777040 0.0013819777040 0.0013819777040 0.0013819777040 0.0013819777040 0.0013819777040 0.0013819777040 0.0013819777040 0.0013819777040 0.0013819777040 0.0013819777040 0.001381977704 0.0013819777040 0.0013819777040 0.0013819777040 0.0013819777040 0.0013819777040 0.0013819777040 0.00138197704 0.00138197704 0.00138197704 0.00138197704 0.00138197704 0.00138197704 0.00138197704 0.00138197704 0.00138197704 0.00138197704 0.00138197704 0.00138197704 0.00138197704 0.00138197704 0.00138197704 0.0013819770                                                                                                                                                                                                                                                                                                              |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             | 0.01080424  |             |             |             |             |             |             |             |             |             |             |                |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |                |             |             |             |             |             |             |             |
| 0.012128559 0.000535614<br>0.018128595 0.000535614<br>0.01237470 0.000543201<br>0.01237470 0.000543201<br>0.01237470 0.000543201<br>0.012373559 0.000703423<br>0.012392069 0.00053314<br>0.0278329 0.000718148<br>0.0278329 0.000718148<br>0.0278329 0.000718148<br>0.0278329 0.000538140<br>0.03460270 0.00043641<br>0.03460270 0.00043641<br>0.003404040 0.00053814<br>0.00362477 0.000633439<br>0.00362477 0.000632403<br>0.00362477 0.000632403<br>0.00362477 0.000632403<br>0.00362477 0.000632403<br>0.00362477 0.000532404<br>0.00362477 0.000632403<br>0.00352446 0.001235311<br>0.04346025 0.000259241<br>0.04346025 0.000259241<br>0.04346027 0.00054304<br>0.04346027 0.00054304<br>0.0352631 0.001333462<br>0.037532631 0.001333462<br>0.037532631 0.001392531<br>0.04346025 0.00025924<br>0.0352631 0.001392531<br>0.04346025 0.00025924<br>0.035631946 0.00123934<br>0.035631946 0.00123934<br>0.035631946 0.00123934<br>0.035631946 0.00023693<br>0.035631948 0.000433148<br>0.0359323 0.000433148<br>0.03633323<br>0.03433934 0.000464495<br>0.03634383<br>0.04333934 0.00464495<br>0.03634382<br>0.04333941 0.00236438<br>0.04333941 0.000236438<br>0.04333941 0.00043318<br>0.04333394 0.000454413<br>0.0433335 0.000433138<br>0.0433335 0.000433138<br>0.04433335 0.00043333<br>0.00043333<br>0.00043333<br>0.00043333<br>0.00043333<br>0.00043333<br>0.00043333<br>0.00043333<br>0.00043333<br>0.00043333<br>0.00043333<br>0.00043333<br>0.00043333<br>0.00043333<br>0.00043333<br>0.00043333<br>0.00043333 |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             | 0.005318062 |             |             |             |             |             |             |             |             |             |             |                |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |                |             |             |             |             |             |             |             |
| 0.01205687 0.018158586 0.014651878 0.012813264 0.0128132704 0.012813271 0.01281327304 0.01281327304 0.01281327304 0.01281327304 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.012813704 0.013813705 0.013813705 0.013813705 0.013813705 0.013813705 0.013813705 0.013813705 0.013813705 0.013813705 0.013813705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |             |             |             |             |             | 0.000630213 |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             | 0.00045047     |             |             |             |             |             | 0.001673135 |             |             |             |             |             |             |             |             |             |                |             |             |             |             |             |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |             |                |             |             |             |             |             |             |             |             |             |             | 3,12339945  |             |             |             |             |                |             |             |             |             |             |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 6         | en .        |             |             | 4           | m ~         |             |             | 6           | on '        | ,           | ٠. م        |             | . ~         |             | نہ          | 0           |             | œ ·         |             | 0 10        | ,           | 60          | 2           | -1          | 0           | 6           | 80          | ,           | 0 12        | , et        |             | 2           | 1           | 0 '         | n ~            |             | S           | 2           | 4 ,         | n ~         |             | 0           | 6           | 9 7 00      | L LOT       |             | 4           | 3           | 2           |             |                |             |             |             |             | _           | •           |             |

# **ATTACHMENT 4**



#### 110 MAIN ST SOUTH

Location 110 MAIN ST SOUTH

Mblu 35/38///

Acct# 00008800

BRIDGEWATER FIRE DEPT INC Owner

Assessment \$157,800

Appraisal \$225,500

PID 863

**Building Count** 1

#### **Current Value**

|                | Appraisal    |           |           |
|----------------|--------------|-----------|-----------|
| Valuation Year | Improvements | Land      | Total     |
| 2022           | \$100,300    | \$125,200 | \$225,500 |
|                | Assessment   |           |           |
| Valuation Year | improvements | Land      | Total     |
| 2022           | \$70,200     | \$87,600  | \$157,800 |

#### Owner of Record

Owner

BRIDGEWATER FIRE DEPT INC

Co-Owner 100 MAIN ST SOUTH

Sale Price

\$0

Certificate

C

23/753 Book & Page

Sale Date

02/22/1980

#### **Ownership History**

|                           | Ownership Histo | ry            |             |            |  |  |
|---------------------------|-----------------|---------------|-------------|------------|--|--|
| Owner                     | Sale Price      | Certificate ' | Book & Page | Sale Date  |  |  |
| BRIDGEWATER FIRE DEPT INC | \$0             | С             | 23/ 753     | 02/22/1980 |  |  |

#### **Building Information**

#### Bullding 1 : Section 1

Year Built:

1900

Living Area:

1,040

Replacement Cost:

\$167,182

**Building Percent Good:** 

60

Replacement Cost

Less Depreciation:

\$100,300

**Building Attributes** 

# **ATTACHMENT 5**



#### Certificate of Mailing — Firm

| Name and Address of Sender                                                       | TOTAL NO.                                                                                                                                                                                                                                 | TOTAL NO.                                  | Affix Stamp Her   | Α   |                  |                |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------|-----|------------------|----------------|
|                                                                                  | of Pieces Listed by Sender                                                                                                                                                                                                                | of Pieces Received at Post Office          | Postmark with Dat |     |                  |                |
| Kenneth C. Baldwin, Esq. Robinson & Cole LLP One State Street Hartford, CT 06103 | Postmaster, per (name of receiving                                                                                                                                                                                                        | ng employee)                               | e HOLA            |     | 003.44 9         | US POSTAGE     |
| USPS® Tracking Number<br>Firm-specific Identifier                                | (Name Street Ci                                                                                                                                                                                                                           | Address<br>ty, State, and ZIP Code™)       | Postage           | Fee | Special Handling | Parcel Airlift |
| 1.<br>2.<br>3.                                                                   | Curtis Read, First Selection Town of Bridgewater 44 Main Street South Bridgewater, CT 067 Meg Khare, Land Use Town of Bridgewater 44 Main Street South Bridgewater, CT 067 Bridgewater Fire Dep 100 Main Street South Bridgewater, CT 067 | Coordinator  52 e Coordinator  52 eartment |                   |     |                  |                |
| 4.                                                                               |                                                                                                                                                                                                                                           |                                            |                   |     |                  |                |
| 5.                                                                               |                                                                                                                                                                                                                                           |                                            |                   |     |                  |                |
| 6.                                                                               |                                                                                                                                                                                                                                           |                                            |                   |     |                  |                |
| 6.                                                                               |                                                                                                                                                                                                                                           |                                            |                   |     |                  |                |