10 Industrial Avenue, SuITE 3
МАНWAH, NJ 07430
Phone: 201.684.0055
FAX: 201.684.0066

July 28, 2020
Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051
Notice of Exempt Modification
623 Pine Street, Bridgeport, CT
Latitude- 41.16567777
Longitude- -73.216627777
T-Mobile Site ID: CT11014B / Anchor
Dear Ms. Bachman,
T-Mobile currently maintains (9) existing antennas at the 180^{\prime} level of the existing 250 ' selfsupport lattice at 623 Pine Street in Bridgeport, Connecticut. The tower and property is owned by Radio Communications Corp. T-Mobile now intends to replace (3) of its existing antennas with (3) new 2500 MHz antennas. The new antennas would be installed at the 180 -foot level of the tower.

Planned Modifications:

Remove:
(6) $1-5 / 8$ " coax cables

Install New:
(3) Commscope -SDX 1926 Q-43(E14F05P86) Diplexers
(3) 6×12 Hybrid cable

Remove/Replace:

Antennas:
AIR21 KRC118023-1_B2A_B4P (Remove) - (3) Air6449 B41-2500 MHz / 2500 MHz (Replace)
RRUs:
(3) RRUS32 B2 (Remove) - (3) Radio 4424 B25 (Replace)

Ground:

Remove (2) Nortel Cabinets, add (1) Battery cabinet, (1) enclosure to contain (3) BB6630 for L2500 and (1) BB6648 for N2500 on new slab

This facility was approved by the City of Bridgeport Zoning Board of Appeals in 1999, with no record of conditions that would restrict exempt modifications. Therefore this modification complies with the aforementioned approval.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16$50 \mathrm{j}-73$, for construction that constitutes an exempt modification pursuant to R.C.S.A. 16-50j72(b)(2). In accordance with R.C.S.A. 16-50j-73, a copy of this letter is being sent to Joseph P. Ganim, Mayor of the City of Bridgeport, as well as the tower and property owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-72(b)(2).

1. The proposed modification will not result in an increase in the height of the existing structure
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modification will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitute an exempt modification under R.C.S.A. 16-50j-72(b)(2).

Sincerely,

Elizabeth Jamieson
Transcend Wireless
10 Industrial Ave., Suite 3
Mahwah, New Jersey 07430
860-605-7808
EJamieson@TranscendWireless.com
cc:
Mayor Joseph P. Ganim- as elected official
RCC Communications Corp/Bob Knapp - as tower and property owner
Thomas F. Gill- Director of Office of Planning and Economic Development

Exhibit A

Original Facility Approval

Exhibit B Property card

623 PINE ST

Location	623 PINE ST	Mblu	$19 / 307 / 25 / /$
Acct\#	RK-0259405	Owner	
Assessment	$\$ 224,850$	Appraisal $\$ 321,210$	
PID 2504	Building Count	1	

Current Value

Appraisal			
Valuation Year	Improvements	Land	Total
2017	\$251,840	\$69,370	\$321,210
Assessment			
Valuation Year	Improvements	Land	Total
2017	\$176,290	\$48,560	\$224,850

Owner of Record

Owner	KNAPP ANDREW \& LILLIAN \&	Sale Price	$\$ 90,000$
Co-Owner	ROBERT KNAPP (SURV OF THEM)	Certificate	
Address	24 ROCKDALE RD	Book \& Page	$2838 / 116$
	WEST HAVEN, CT 06516	Sale Date	$09 / 24 / 1990$

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book \& Page	Sale Date	
KNAPP ANDREW \& LILLIAN \&	$\$ 90,000$		$2838 / 116$	$09 / 24 / 1990$	

Building Information

Building 1 : Section 1

| Year Built: 1964
 Living Area: 2,625
 Replacement Cost: $\$ 237,462$
 Building Percent 85
 Good:
 Replacement Cost
 Less Depreciation: $\$ 201,840$
 Building Attributes
 Field Description |
| :--- | :--- |

STYLE	Telephone Bldg
MODEL	Ind/Comm
Grade:	Above Ave
Stories:	1
Occupancy:	1
Exterior Wall 1:	Concr/CinderBI
Exterior Wall 2:	
Roof Struct:	Flat
Roof Cover:	T+G/Rubber
Interior Wall 1:	Minim/Masonry
Interior Wall 2:	
Interior Floor 1:	Concr-Finished
Interior Floor 2:	
Heating Fuel:	Gas
Heating Type:	Forced Air
AC Type:	Central
Bldg Use:	Industrial Mdl 96
TtI Rooms:	
Ttl Bedrms:	00
Ttl Baths:	0
Ttl Half Baths:	0
Ttl Xtra Fix:	0
1st Floor Use:	
Heat/AC:	Heat/Ac Pkgs
Frame Type:	Masonry
Baths/Plumbing:	Average
Ceiling/Wall:	Ceil \& Walls
Rooms/Prtns:	Average
Wall Height:	14
\% Comn Wall:	

Building Photo

(http://images.vgsi.com/photos2/BridgeportCTPhotos//\00\08\9؟

Building Layout

(http://images.vgsi.com/photos2/BridgeportCTPhotos//Sketches/

Building Sub-Areas (sq ft)			Legend
Code	Description	Gross Area	Living Area
BAS	First Floor	2,625	2,625
		2,625	2,625

Extra Features

| Extra Features | Legend |
| :--- | :--- | :--- |
| No Data for Extra Features | |

Land

Land Use

Use Code

Description	Industrial Mdl 96	Frontage	0
Zone	ILI	Depth	0
Neighborhood	IND	Assessed Value	$\$ 48,560$
Alt Land Appr	No	Appraised Value	$\$ 69,370$
Category			

Outbuildings

Outbuildings						Legend
Code	Description	Sub Code	Sub Description	Size	Value	Bldg \#
TWR	Tower			250 LF	\$50,000	1

Valuation History

Appraisal			
Valuation Year	Improvements	Land	Total
2017	\$251,840	\$69,370	\$321,210
2016	\$251,840	\$69,370	\$321,210
2015	\$251,840	\$69,370	\$321,210

Assessment				
	Valuation Year	Improvements		
2017		$\$ 176,290$	Land	Total
2016		$\$ 176,290$	$\$ 48,560$	
2015		$\$ 176,290$	$\$ 48,560$	$\$ 224,850$

(c) 2016 Vision Government Solutions, Inc. All rights reserved.

Exhibit C
 Construction Drawings

PINE STREET

Note:
GENERAL CONTRACTOR TO REFER TO THE STRUCTURA
ANLSIIS BY KM CONSUTTNG ENG EERS, INC. DATED

general notes

LIGHTNG: EXISTING FACLLTY WLL MEET OR EXCEED ALL
FAA AND FCC REGUATORY REOUREMENTS. GRADE: EXISTING GRADE WILL BE MANTAINED FO
PROPOSED CNSTRUCTON SIIGAGE: EXTERIOR SIGNS ARE NOT PROPOSED EXCEPT
AS REQURED BY THE FCC STORM WATER CONTRO: THE PROPOSED FACLITT WIL
RESUIT IN AN MSICNEICANT NCREASE STOTM
 DEVICES ARE PROPOSED.
UTLTIES: SANITARY SEWER SERVICES AND POTABLE WATE
ARE NOT APPLCABLE PER THE USE. IF APPICABIE
 xcavating
ORIVENAY: A DRIVEWAY PERMT I N NOT REOURED FOR
THIS PROJECT. THE PROEECT WLL NOT REQURE THIS PROUECT. THE PROUECT MLL NOT REQURE
RIGHT OF WAY OR PROPERTY TO BE DEDICATED FOR PUBLIC USE
MISCC: NO NOISE, SMOKE, DUST, VAPORS OR ODOR WILL
RRSULT RROM THIS PROUECT.

MICHAEL L BOHLINGER, PE

STE ACCuISTITON:
sigN off intL.
\qquad
RF EngINER: sign off intl. CONSTR. supV SIGN OFF INTL.
\qquad

A \& E:
\qquad
\& E: _ km consulting engr.'s ine

P.O:	MLB	${ }_{\text {den }}^{\text {den }}$	${ }_{\text {DATE: }}^{6 / 11 / 20}$
PROECT NAME:BRIDGEPORT			
-			
SITE ADDRESS: 623 PINE STREET			

SITE PLAN

PINE STREET

general notes

IIGHTNG: EXISTING FACLITY WLL MEET OR EXCEED ALD
EAA AND FCC REGULATORY REOUREMENTS grade: Existing grade wll be mantained for
PROPOSED CNSTTUCTON SIGNAGEE EXTERROR SIINS ARE NOT PROPOSED EXCEPT
AS REQURED BY THE FCC. STORM WATER CONTRO: THE PROPOSED FACLITY WIL
RESUIT TM AN INSIGNFICANT NCREASE IN STORM WATER RESUT IN AN NUIUNFICANT INCREASE IN STORM WATER
RUNOFF CONEEUENYL, NO WATER QUALTY CONTROL
OEVICES ARE PROPOSED. DEVICES ARE PROPOSED.
UTLTIES: SANTARY SEWER SERICES AND POTABLE WATE
ARE NOT APLICABLE PER THE USE. IF APPICABIE SUBCONTAPCTOR SHALL LOCATE ALL UTLITES PRRLOR To
EXCAVATNG. ExCAVATNG
DRIVEWAY: A DRIVEWAY PERMT IS NOT REQURED FO
THIS PROJET THE PPOEECT WIL NOT REQURE
RIGT THIS PROUECT. THE PROJECT MLL NOT REQURE
RIGHT OF WAY OR PROPRTY TO BE DEDICATED FOR PUBLIC USE
MISC: No NOISE, SMMOKE, DUST, VAPORS OR ODOR WILL
RESULT RROM THIS ROOUECT.

```
NOTE:
GENERAL CONTRACTOR TO REFER TO THE STRUCTUR
ANALYSIS BY KM CONSULTNG ENGINERS, INC. DATED
```


$\left(\frac{1}{s-3}\right.$ TOWER ELEVATION $\frac{\text { SCALE: } 1 / 1 / 6^{6 \prime}=1-1-01}{}$
Transcend Wireless

10, musspat Alt	
$\mathrm{M}_{\text {WM }}^{\text {Wmoses }}$	Engineers, Inc.

$=$ DDRN: DOESCRRPTON:
TIE Acoulstion
SIGN OFF INTL.
\qquad
RF Engineer:
constr. supv
SIIN OFF NiNT.
\qquad - DATE:
A \& E: _ KM Consulting engr.'s ine
 BRIDGEPORT
ordelport
SITE ADDRESS:
623 PINE STREE
BRIDGEPORT, CT 06605
DRAMNG TTLE
OWER ELEVATION

CoLor grey

3	SDX1926Q-43 DIPLEXER DETALL
A-2	NOT TO SCALE

NOTE: THE IMAGES ARE NOT REPRESENTATVE OF THE
DOORS THAT WLL BE NSTALEE ON SIE.

ERICSSON RBSG160 EQuIPMENT CABINET

5 (A-2) $\begin{gathered}\text { ERICSSON RBS6160 EQUIPMENT CABINET } \\ \text { NOT SCALE } \\ \end{gathered}$

ERICSSON B160 EQUIPMENT CABINET ENCLOSuRE: ALUMinuM

(6 ER $\frac{\text { ERICSSON B160 EQUIPMENT CABINET }}{\text { AOT TO SCALE }}$

MICHAEL L BOHLINGER, PE
CONNECTICUT PROFSSSINAL ENGINEER CONEECTCUU PRRFFSFSSIINAL EN

SIEE Acousision:
Sign off inti.
RF Engine
sIIN OfF INTL.
constr. supv
SIGN OFF INTL.
\& E:
A \& E:

BRIDGEPORT
STE Adoress:
${ }^{\text {CRIDCGEPORT, CT }} 06605$
ORAMNG TTLE:
ANTENNA AND
EQUPMENT
EQUIPMENT DETALLS

CT11014

A2
2

GROUNDING NOTES

the subcontractor shall review and inspect the existing FACLITY GROUNDING SYSTEM AND LIGHTNING PROTECTION SYSTEM (AS
DESIGNED AND INSTALLED) FOR STRICT COMPLIANCE WTH THE NEC (AS DESIGNED AND INSTALLED) FOR STRICT COMPLIANCE WTH THE NEC (AS
ADOPTED BY THE AHJ. THE SITE-SPECIFIC (ULL, LPI, OR NFPA) LIGHTNG
PROTECTON CROUNING STANDANDS. THE SUBCONTRACTOR SHALL REPORT ANY
GOLATINNS OR ADVERSE FINDINGS TO TAE CONTRACTOR FOR VIOLATIONS O
RESOLUTION.
2. All grounding electrode systems (including telecommunications, RADIO, LIGHTNING PROTECTION, AND AC POWER GEC"S) SHALL BE
BONEE TOGETHER, AT OR BELOW GRADE, BY TWO OR MORE COPPER
BONE BONDING CONDUCTORS IN ACCORDANCE WTH THE NE
THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR NEW
GROUN ELECTRODE SYTEMS. THE SUBCONTACTOR SALL FUNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO atheve a test result of 5 OHMS Or less.
4. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED GRUPMENT GROUN CONDUCTOR. STRASDED COPPER CONDUCTORS WITH FURNISHED
EQUIPMENT.
5. EACH BTS CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE
MASTER GROUND BAR WITH GREEN INSULATED SUPPIEMENT MASIER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL
EQUIPMENT GROUND WRES, 6 AWG STRANDED COPPER OR LARGER FOR
6. EXothermic welds shall be used for all grounding connections BELOW GRADE.
APPROVED ANTIOXIDANT COATINGS (I.E. CONDUCTIVE GEL OR PASTE)
SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND SHALL BE USED
CONNECTONS.
8. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED
9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT
10. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, ACCORDANCE WTTH THE NEC.

1. METAL CONDUIT SHALL BE MADE ELECTRICALLY CONTINuOUS WITH LISTED BONDING FITTING OR BY BONDING ACROSS THE DISCONTINUITY WWTH 6
AWS COPPER WRE UL APPROVED GROUNING TYPE CONDUIT CLAMPS.

ELECTRICAL AND GROUNDING NOTES CONNECTIONS TO MGB SHALL BE ARRANGED IN THREE MAN GROUPS: SURGE PRODUCERS (COAXIAL CABLE GROUND KITS, TELCO AND POWER PANEL GROUNDS); GROUNDING ELECTRODE OR BULLDING STEEL.
NON-SURGING OBJECTS (EGB GROUND IN BTS UNT)
2. CONNECTINS TO GROUND BARS SHALL BE MADE WITH TWO HOLE
COMPRESSION TYPE COPPER LUGS. APPLY OXIDE INHBITING COMPOUND
3. TOALLL LOCATIONS.
4. BOND ANTENNA MOUNTING BRACKETS, COAXIAL CABLE GROUND KITS, AND

ALNA TO EGB PLACED NEAR THE ANTENNA LOCATIO
5. BOND ANTENNA EGB'S AND MGB TO WATER MAIN
6. TEST COMPLETED GROUND SYSTEM AND RECORD

CLOSE-OUT DOCUMENTATION.

- CABINET TO MASTER GROUND BAR.

8. VERIFY PROPOSED SERVICE UPGRADE WITH LOCATION UTLITY COMPANY
PRIOR TO CONSTRUCTION.

GENERAL NOTES

FOR THE PURPOSE OF CONSTRUCTION DRAWINGS, THE FOLLOWING
CONTRACTOR - TRANSCEND WRELESS
SUBCONTRACTOR - GENERAL CONTRACTOR (CONSTRUCTION)
2. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL SITE TO FAMLIARIZE WITH THE EXISTING
CONDTIONS AND TO CONFRM THAT THE WORK CAN BE ACCOMPISHED AS SHOWN ON THE CONSTRUCTION DRAWNGS. ANY DISCREPANC

ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRIC ORDERS OF ANY PUBLLC AUTHORITY REGARDING THE PERFORMANCE OF ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE
THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNIIIIPAL AND UTILITY COMPANY SPECCIFICATIANS AN LOCAL JURISD
REGULATONS.
4. Drawings provided here are not to be scaled and are intended O SHOW OUTLINE ONL
5. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY
COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWNGS.
"Kitting list" supplied with the bid package identifies items that WILL BE SUPPLIED BY THE CONTRACTOR. ITEMS NOT INCLUDED IN THE
BILL OF MATERALS AND KITTING LIST SHALL BE SUPLIED BY THE
the subcontractor shall install all equipment and materials in ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS
SPECIFICALLY STATED OTHERWISE.
8. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON ALTERNATIVE INSTALLATION SPACE FOR APPROVAL BY THE CONTRACTOR
9. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND T1 CABLES, GROUNDING CABLES AS SHOWN ON THE POWER,
GROUNING AND TELCO PLAN DRAWINGS. SUBCONTRACTOR SHALL
 NECESARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING
WITH THF COTTRACTOR. WITH THE CONTRACTOR.
0. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DÁMAGED PART SHALL BE REPARER
SATISACTION OF OWNER.

1. SUBContractors shall Legally and properly dispose of al SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS
REMVVED FROM THE EXISTNG FACLITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
2. SUBCONTRACTOR SHALL LEAVE PREMISED IN CLEAN CONDITION.
3. AlL concrete repair work shall be done in accordance wit AMERICAN CONCRETE INSTITUTE (ACI) 301
4. ANY NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL BE CONCRETE WORK SHALL BE IN ACCORDANCE WTH ACI 318 COD
5. ALL STRUCTURAL STEEL WORK SHALL BE DETAILED, FABRICATED, AND
ERECTED IN ACCORDANCE WTH AISC SPECIICATINS, ALL STRUCTURA ERECTED IN ACCORDANCE WTH AISC SPECIFICATONS. ALL STRUCTURAL
STEEL SHALL BE ASTM A36 (Fy $=36 \mathrm{ksi}$ UNIFS STHFRWSE NOTED PIPES SHALL BE ASTM A53 TYPE 3 ($\mathrm{Fy}=36 \mathrm{kSI}$). ALL STEEL EXPOSED
 SCRATCHES AND OTHER MARKS IN TAE
USING A COMPATBLE ZINC RICH PAINT.
6. CONSTRUCTION SHALL COMPLY WITH UMTS SPECIFICATIONS AND "'GENERAL CONSTRUCTION SERVICES FOR CONSTRUCTION OF T-MOBIL SITES.
7. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK ALI DIMENSIONS OF
EXSTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. EXITING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED
SUBCONTACTR SHALL NOTFY TE CNTRACTOR WTH ANY
DISCREPANCIES PRIOR TO ORDERING MATERICL OR PROCEEDING WITH CONSTRUCTION
8. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATIONS. ANY EXSTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WITH CONTRACTOR. ALSO, WORK SHOULD BE
SCHEDULED FOR AN APPROPRIATE WNDOW USUALLY IN LOW TRAFFIC PERIODS AFTER MIDNIGH
9. SINCE THE CELL SITE IS ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC
RADIATONE. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING
ANY WORK THAT COULD EXPOSE THE WORERS TO DANGER. PERSONAL ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONTORS ARE
10. ApPLICABLE BUILDING CODES:

SUBCONTRACTOR'S WORK SHALL COMPLY WITH ALL APPLICABLE
NATIONAL, STATE, AND LOCAL CODES AS ADOPTED BY THE LOCAL AUTHORITY HAVING JURISDICTION (AHJ) FOR THE LOCATION. THE EDITIO OF THE AHJ ADOPTED CODES AND STANDARDS IN EFFECT ON THE DATE BUILDING CODE: 2018 CONNECTICUT STATE BUILDING CODE -IGHTNING CODE: REFER TO ELECTRICAL DRAWNGS
SUBCONTRACTOR'S WORK SHALL COMPLY WITH THE LATEST EDITION O THE FOLLOWING STANDARDS:

AMERICAN CONCRETE INSTITUTE (ACI) 318: BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE
AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC)
manual of steel construction, Asd, 14th editon
ANSI/TAA-222-G, STRUCTURAL STANDARDS FOR STEEL ANTENNA
TOWERS AND ANTENNA SUPPORTNG STRUCTURES
FOR ANY CONFLICTS BETWEEN SECTIONS OF LISTED CODES AND
STADARD REGARD M MTERIAL, METHOD OF CONSTRUCTION, OR
OTER REQUREMENTS, THE MORE RETRICTIVE REQUREMENT SHALL
GOVERN GOVERN. WHERE THERE IS CONFLICT BETWEEN A GENERAL REQUIREMEN
AND A SPECIFIC REQUREMENT, THE SPECIFIC REQUREMENT SHALL AND A S
GOVERN.

Mo musfin Me	

MICHAEL L BOHLINGER, PE

GENERAL NOTES

Exhibit D

Structural Analysis Report

STRUCTURAL ANALYSIS REPORT

for
 T. . Mobile

Transcend Wireless
10 Industrial Ave., Suite 3
Mahwah, NJ 07430

Bridgeport (CT11014B)
KM No. 180416.02
250' Self-Support Tower
623 Pine Street
Bridgeport, CT 06605
41.16573, -73.21666

Prepared By:

KM CONSULTING ENGINEERS, INC.

262 Upper Ferry Road Ewing, NJ 08628
Ph: (609) 538-0400 www.kmengr.com

July 7, 2020

Prepared to ANSI/TIA-222-G-4 December 2014
Structural Standards for Antenna Supporting
Structures and Antennas

Transcend Wireless
 Bridgeport (CT11014B)

TABLE OF CONTENTS

SECTION PAGE
1.0 EXECUTIVE SUMMARY 3
2.0 TOWER INVENTORY 4
3.0 COMMENTARY 6
4.0 ANALYSIS PROCEDURE 7
5.0 TOWER ANALYSIS RESULTS 8
6.0 RECOMMENDATIONS 9
7.0 APPENDIX 10
Load Case No. 1: Existing tower superstructure with existing inventory and proposed TMobile installation.

1.0 EXECUTIVE SUMMARY

Structure

Owner: Radio Communications Tower
Location: 623 Pine Street
Bridgeport, CT 06605
41.16573, -73.21666

Manufacturer: Rohn
Eng. File No. 37679AE dated 7/1/98

Equipment

Existing tower inventory plus the proposed installation are detailed in Section 2.0 "Tower Inventory."

Synopsis

Load Case No. 1: The existing tower superstructure with the current inventory and proposed T-Mobile installation.

The existing tower superstructure and base foundation have sufficient capacity and therefore meet the current ANSI/TIA-222-G design standards. The tower superstructure is rated at 95.0% and the foundation is rated at 64.5%.

2.0 TOWER INVENTORY

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
yaggi in radom	256	mounting frames w/stable bar (MetroPCS)	138
Beacon	256		
Omni antenna	256	mounting frames w/stable bar (MetroPCS)	138
Omni antenna	256		
Omni antenna	256	VHLP1-23-2WH (Clearwire)	121
Omni antenna	256-239	VHLP1-23-2WH (Clearwire)	121
Top Platform	256	VHLP2.5-11-4WH (Clearwire)	121
Omni antenna	248-238	Panel Antenna w/mount pipe (Clearwire)	118
mounting frames w/stable bar (T-Mobile)	180	Panel Antenna w/mount pipe (Clearwire)	118
mounting frames w/stable bar (T-Mobile)	180	Panel Antenna w/mount pipe (Clearwire)	118
mounting frames w/stable bar (T-Mobile)	180	80010736 V 01 (Verizon)	110
AIR 3246 B66 (T-Mobile)	180	80010736 V 01 (Verizon)	110
AIR 3246 B66 (T-Mobile)	180	80010736 V 01 (Verizon)	110
AIR 3246 B66 (T-Mobile)	180	(2) APL-866513-42T9 (Verizon)	110
APXVAARR24_43-U-NA20 (T-Mobile)	180	(2) APL-866513-42T6 (Verizon)	110
APXVAARR24_43-U-NA20 (T-Mobile)	180	(2) APL-866513-42T9 (Verizon)	110
APXVAARR24_43-U-NA20 (T-Mobile)	180	Rohn 6'x15' Boom Gate (Verizon)	110
AIR6449 B41 (T-Mobile)	180	Rohn 6'x15' Boom Gate (Verizon)	110
AIR6449 B41 (T-Mobile)	180	Rohn 6'x15' Boom Gate (Verizon)	110
AIR6449 B41 (T-Mobile)	180	Distribution Box (Verizon)	110
Radio 4449 B71/B85 (T-Mobile)	180	2x60 700 RRH B13 (Verizon)	110
Radio 4449 B71/B85 (T-Mobile)	180	2x60 700 RRH B13 (Verizon)	110
Radio 4449 B71/B85 (T-Mobile)	180	2x60 700 RRH B13 (Verizon)	110
Radio 4424 B25 (T-Mobile)	180	GPS antenna (Verizon)	110
Radio 4424 B25 (T-Mobile)	180	(2) HBXX-6516DS-A2M (Verizon)	110
Radio 4424 B25 (T-Mobile)	180	2×60 PCS RRH B25 (Verizon)	110
Twin style 1B TMA (T-Mobile)	180	2x60 PCS RRH B25 (Verizon)	110
Twin style 1B TMA (T-Mobile)	180	Distribution Box (Verizon)	110
Twin style 1B TMA (T-Mobile)	180	2x60 AWS RRH (Verizon)	110
SBX1926Q-43 (T-Mobile)	180	2x60 AWS RRH (Verizon)	110
SBX1926Q-43 (T-Mobile)	180		110
SBX1926Q-43 (T-Mobile)	180	(2) HBXX-6516DS-A2M (Verizon)	110
(2) MetroPCS Antenna (MetroPCS)	138	(2) HBXX-6516DS-A2M (Verizon)	110
(2) MetroPCS Antenna (MetroPCS)	138	2x60 PCS RRH B25 (Verizon)	110
(2) MetroPCS Antenna (MetroPCS)	138	TV 65 antenna	100
mounting frames w/stable bar (MetroPCS)	138	4' Side Arm	100
		TV 65 antenna	100

Proposed T-Mobile Installation:

*(3) AIR6449 B41 panel antennas @ 180’ AGL
*(3) Radio 4424 B25's @ 180' AGL
*(3) SBX1926Q-43 diplexers @ 180’ AGL
*(3) 6×12 hybrid cables up to 180' AGL
*removal of (3) AIR 21 B2A/B4P panel antennas @ 180’ AGL
*removal of (3) RRUS 32 B2's @ 180' AGL
*removal of (6) 1-5/8" coax lines up to 180' AGL

3.0 COMMENTARY

Our scope of work is to determine if the existing structure is capable of withstanding the additional stresses/forces imposed by the installation of the proposed T-Mobile equipment noted in the tower inventory. The tower is a 250' tall Rohn self-support tower with a triangular platform located at the top.

Tower member sizes, layout and foundation information was taken from previous structural analysis by KM Consulting Engineers, Inc. (KMCE) dated 1/21/19. Existing antenna inventory and coax cable layout was also taken from the above mentioned analysis. Proposed equipment was obtained from a draft T-Mobile RFDS dated 6/2/20 and by correspondence with the client.

The following report will provide analytical calculations and commentary regarding the capacity of the proposed tower and subsequent recommendations.

4.0 ANALYSIS PROCEDURE

KM Consulting Engineers, Inc. carried out their structural analysis by correlating field inspection and tower member data into proprietary software designed specifically for communication tower analysis.

These programs run in conjunction with the guidelines set down in the ANSI/TIA-222-G Standard entitled "Structural Standards for Antenna Supporting Structures and Antennas."

The existing tower is analyzed by placing wind forces on the structure in 30° positional increments around the tower (i.e. wind pressure directly onto the tower corners, faces and parallel to the faces). This enables the user to "create" a three-dimensional representation, yielding results for worst case scenarios. In effect, the production of these results allows the user to study the structural integrity of the tower when influenced by wind forces from any direction.

The proceeding report includes analysis for the tower with the addition of antennas in the scenarios stated. For clarity, the analysis shall include worst case loadings and a typical elevation view with maximum foundation loads tabulated.

Should the client require to be furnished with a full copy of our analysis, we will gladly do so.

Codes and Standards

ACI - American Concrete Institute - Building Code Requirements for Structural Concrete (ACl 318-14), 2014

AISC - American Institute of Steel Construction - Manual of Steel Construction, 14th edition, 2011

TIA - Telecommunications Industry Association - ANSI/TIA-222-G-4 Structural Standards for Antenna Supporting Structures and Antennas, 2014

CSBC - Connecticut State Building Code 2018

5.0 TOWER ANALYSIS RESULTS

The tower was analyzed for the inventory detailed in Section 2.0 "Tower Inventory".
The basic wind speed of 97 MPH with no radial ice in accordance with ANSI/TIA-222-G is taken from Appendix N in the 2018 Connecticut State Building Code for the nominal design wind speed for the municipality of Bridgeport, CT. The basic wind speed of 50 MPH concurrent with $3 / 4$ " design ice thickness is taken from the ANSI/TIA-222-G listing applicable for Fairfield County, CT. Additional criteria include Structure Class II, Exposure Category C, and Topographic Category 1.

Load Case No. 1: Existing inventory and the proposed T-Mobile installation includes the additions of (3) existing AIR6449 B41 panel antennas, (3) Radio 4424 B25's, (3) SBX1926Q-43 diplexers, and (3) 6x12 hybrid cables, and the removal of (3) AIR 21 B2A/B4P panel antennas, (3) RRUS 32 B2's, and (6) 1-5/8" coax lines.

The existing tower superstructure and base foundation have sufficient capacity and therefore meet the current ANSI/TIA-222-G design standards. The tower superstructure is rated at 95.0% and the foundation is rated at 64.5%.

Table 1. Base Foundation Rating

Force	Actual (kip•ft)	Allowable (kip•ft)	Capacity
Overturning Moment	11,290	17,504	64.5%

6.0 RECOMMENDATIONS

Further to our calculations, we conclude that the existing tower superstructure and base foundation have adequate capacity and therefore meet the current ANSI/TIA-222-G design standards. The tower and foundation are acceptable to support the proposed TMobile installation.

Please do not hesitate to contact our office with any questions or concerns regarding this report.

Sincerely, KM CONSULTING ENGINEERS, INC.

Reviewed and Approved by:

Domenic Aversa, PE Project Manager

7.0 APPENDIX

LOAD CASE 1

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
yaggi in radom	256	mounting frames w/stable bar (MetroPCS)	138
Beacon	256		
Omni antenna	256	mounting frames w/stable bar (MetroPCS)	138
Omni antenna	256		
Omni antenna	256	VHLP1-23-2WH (Clearwire)	121
Omni antenna	256-239	VHLP1-23-2WH (Clearwire)	121
Top Platform	256	VHLP2.5-11-4WH (Clearwire)	121
Omni antenna	248-238	Panel Antenna w/mount pipe (Clearwire)	118
mounting frames w/stable bar (T-Mobile)	180	Panel Antenna w/mount pipe (Clearwire)	118
mounting frames $\mathrm{w} /$ stable bar (T-Mobile)	180	Panel Antenna w/mount pipe (Clearwire)	118
mounting frames w/stable bar (T-Mobile)	180	80010736 V 01 (Verizon)	110
AIR 3246 B66 (T-Mobile)	180	80010736 V 01 (Verizon)	110
AIR 3246 B66 (T-Mobile)	180	800 10736V01 (Verizon)	110
AIR 3246 B66 (T-Mobile)	180	(2) APL-866513-42T9 (Verizon)	110
APXVAARR24_43-U-NA20 (T-Mobile)	180	(2) APL-866513-42T6 (Verizon)	110
APXVAARR24_43-U-NA20 (T-Mobile)	180	(2) APL-866513-42T9 (Verizon)	110
APXVAARR24_43-U-NA20 (T-Mobile)	180	Rohn 6'x15' Boom Gate (Verizon)	110
AIR6449 B41 (T-Mobile)	180	Rohn 6'x15' Boom Gate (Verizon)	110
AIR6449 B41 (T-Mobile)	180	Rohn 6'x15' Boom Gate (Verizon)	110
AIR6449 B41 (T-Mobile)	180	Distribution Box (Verizon)	110
Radio 4449 B71/B85 (T-Mobile)	180	2x60 700 RRH B13 (Verizon)	110
Radio 4449 B71/B85 (T-Mobile)	180	2x60 700 RRH B13 (Verizon)	110
Radio 4449 B71/B85 (T-Mobile)	180	2x60 700 RRH B13 (Verizon)	110
Radio 4424 B25 (T-Mobile)	180	GPS antenna (Verizon)	110
Radio 4424 B25 (T-Mobile)	180	(2) HBXX-6516DS-A2M (Verizon)	110
Radio 4424 B25 (T-Mobile)	180	2×60 PCS RRH B25 (Verizon)	110
Twin style 1B TMA (T-Mobile)	180	2x60 PCS RRH B25 (Verizon)	110
Twin style 1B TMA (T-Mobile)	180	Distribution Box (Verizon)	110
Twin style 1B TMA (T-Mobile)	180	2x60 AWS RRH (Verizon)	110
SBX1926Q-43 (T-Mobile)	180	2x60 AWS RRH (Verizon)	110
SBX1926Q-43 (T-Mobile)	180	2x60 AWS RRH (Verizon)	110
SBX1926Q-43 (T-Mobile)	180	(2) HBXX-6516DS-A2M (Verizon)	110
(2) MetroPCS Antenna (MetroPCS)	138	(2) HBXX-6516DS-A2M (Verizon)	110
(2) MetroPCS Antenna (MetroPCS)	138	2x60 PCS RRH B25 (Verizon)	110
(2) MetroPCS Antenna (MetroPCS)	138	TV 65 antenna	100
mounting frames w/stable bar	138	4' Side Arm	100
(MetroPCS)			

MARK	SIZE		MARK		
A	ROHN 3 STD		C	L3x3×1/4	
B	L1 3/4×1 3/4×3/16				
MATERIAL STRENGTH					
GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi			

Feed Line Distribution Chart 8' - 256'
\qquad
\qquad App In Face \qquad App Out Face \qquad Truss Leg

Client: Transcend Wireless	Drawn by: DCA	App'd:
Code: TIA-222-G	Date: 07/07/20	Scale: NTS
Path:	:IDougiTranscend WirelessiBridgeport (CT 11014 B) EngineeringIBridgeport LC1.eri	Dwg No. E-7

\qquad Flat \qquad App In Face

Stress Distribution Chart

Face B

tnxTower KM Consulting Engineers, Inc. 262 Upper Ferry Road Ewing, NJ 08628 Phone: (609) 538-0400 FAX:	Job	Bridgeport LC1	Page 43 of 44
	Project	250' Rohn Self Support Tower	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12:10:50 07/07/20 } \end{array}$
	Client	Transcend Wireless	Designed by DCA

Section Capacity Table

tnxTower KM Consulting Engineers, Inc.	Job		$\begin{aligned} & \text { Page } \\ & \\ & \\ & \hline 4 \text { of } 44 \end{aligned}$
		Bridgeport LC1	
	Project	250' Rohn Self Support Tower	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12:10:50 07/07/20 } \end{array}$
Ewing, NJ 08628 Phone: (609) 538-0400 FAX:	Client	Transcend Wireless	Designed by DCA

[^0]
Foundation Calculations

Volume of Foundation:

$$
\begin{aligned}
& \mathrm{V}_{1}:=6 \mathrm{ft} \cdot 28 \mathrm{ft} \cdot 31 \mathrm{ft}=5208.0 \mathrm{ft}^{3} \\
& \mathrm{~V}_{2}:=-1 \cdot \frac{1}{2} \cdot 2.83 \mathrm{ft} \cdot 4 \mathrm{ft} \cdot 28 \mathrm{ft} \cdot 2=-317.0 \mathrm{ft}^{3} \\
& \mathrm{~V}_{3}:=1 \mathrm{ft} \cdot 1.67 \mathrm{ft} \cdot 44 \mathrm{ft} \cdot 2=147.0 \mathrm{ft}^{3} \\
& \mathrm{~V}_{4}:=\frac{1}{2} \cdot 6 \mathrm{ft} \cdot 8 \mathrm{ft} \cdot 31 \mathrm{ft} \cdot 2=1488.0 \mathrm{ft}^{3} \\
& \mathrm{~V}_{5}:=2 \mathrm{ft} \cdot 33 \mathrm{ft} \cdot 44 \mathrm{ft}=2904.0 \mathrm{ft}^{3} \\
& \mathrm{~V}_{\text {total }}:=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}+\mathrm{V}_{4}+\mathrm{V}_{5}=9430.0 \mathrm{ft}^{3}
\end{aligned}
$$

Weight of Foundation:

$$
\mathrm{W}_{\text {found }}:=\mathrm{V}_{\text {total }} \cdot 150 \frac{\mathrm{lbf}}{\mathrm{ft}^{3}}=1414.5 \mathrm{kip}
$$

Resisting Moment:

$$
\begin{aligned}
& \phi:=0.75 \\
& \mathrm{M}_{\mathrm{found}}:=\mathrm{W}_{\text {found }} \cdot 16.5 \mathrm{ft} \cdot \phi=17504.4 \mathrm{kip} \cdot \mathrm{ft}
\end{aligned}
$$

Exhibit E
 Mount Analysis

Structural Analysis Report

Antenna Mount Analysis

$$
\begin{array}{r}
\text { T-Mobile Site \#: CT11014B } \\
623 \text { Pine Street } \\
\text { Bridgeport, } C T O 6605 \\
\text { Centek Project No. } 20074.32
\end{array}
$$

$$
\text { Date: June 8, } 2020
$$

Max Stress Ratio=65.0\%

Prepared for:
T-Mobile USA
35 Griffin Road Bloomfield, CT 06002

Table of Contents

SECTION 1 - REPORT

- ANTENNA AND APPURTENANCE SUMMARY
- STRUCTURE LOADING
- CONCLUSION

SECTION 2 - CALCULATIONS

- WIND LOAD ON APPURTENANCES
- RISA3D OUTPUT REPORT

SECTION 3 - REFERENCE MATERIALS (NOT INCLUDED WITHIN REPORT)

- RF DATA SHEET, DATED 6/2/2020

Centered on Solutions" ${ }^{\text {"" }}$

June 8, 2020
M r. Dan Reid
Transcend Wireless
10 Industrial Ave
M ahwah, NJ 07430
Re: Structural Letter ~Antenna Mount
T-Mobile- Site Ref: CT11014B
623 Pine Street
Bridgeport, CT 06605
Centek Project No. 20074.32

Dear Mr. Reid,

Centek Engineering, Inc. has reviewed the T-M obile antenna installation at the above referenced site. The purpose of the review is to determine the structural adequacy of the existing mount, consisting of three (3) $14.5-\mathrm{ft}$ sector frames to support the equipment configuration. The review considered the effects of wind load, dead load and ice load in accordance with the 2012 International Building Code as modified by the 2016 Connecticut State Building Code (CTBC) including ASCE 7-10 and ANSI/TIA-222-G Structural Standards for Steel Antenna Towers and Supporting Structures.

The loads considered in this analysis consist of the following:

- T-Mobile:

Sector Frame: Three (3) Ericsson AIR6449 panel antennas, three (3) Ericsson AIR3246 B66 panel antennas, three (3) RFS APXVAARR24-43-NA20 panel antennas, three (3) KRY111-144/ 2 TM As, three (3) Ericsson 4424 remote radio units, three (3) Ericsson 4449 B71_B12 remote radio units and three (3) Commscope SDX1926Q-43 diplexers mounted on three (3) sector frames with a RAD center elevation of 180 - ft $+/$ - AGL.
(NOTE: APXVAARR24-43 antenna must be mounted on the same side of the sector frame as the stabilizer arm)

The antenna mount was analyzed per the requirements of the 2015 International Building Code as modified by the 2018 Connecticut State Building Code considering a nominal design wind speed of 97 mph for Bridgeport as required in Appendix N of the 2016 Connecticut State Building Code.

A structural analysis of tower and foundation needs to be completed prior to any work.
Based on our review of the installation, it is our opinion that the subject antenna mount has sufficient capacity to support the aforementioned antenna configuration. If there are any questions regarding this matter, please feel free to call.

Respectfully Submitted by:

Structural Engineer

Section2-Calculations

C $=\mathrm{NT}$ 二人 K engineering	Subject:	TIA-222-G Loads
	Location:	Bridgeport, CT
	Rev. 0: 6/6/20	Prepared by: T.J.L. Checked by: C.F.C. Job No. 20074.32

Development of Design Heights, Exposure Coefficients, and Velocity Pressures Per TIA-222-G

Wind Speeds
Basic Wind Speed
Basic Wind Speed with Ice
Input
Structure Type $=$
Structure Category $=$
Exposure Category $=$
Structure Height $=$
Heightto Center of Antennas=
Radial Ice Thickness $=$
Radial Ice Density $=$
Topograpic Factor $=$
Gust Response Factor $=$

$\mathrm{V}:=97$	mph	(User Input-2016 CSBC AppendixN)
$\mathrm{V}_{\mathrm{i}}:=50$	mph	(User Input per Annex B ofTIA-2२2-G)
Structure_Typ		(User Input)
SC : $=11$		(User Input)
Exp := D		(User Input)
$\mathrm{h}:=250$	ft	(User Input)
$z_{\text {AT\&T }}:=180$	ft	(User Input)
$\mathrm{t}_{\mathrm{i}}:=0.75$	in	(User Input per Annex B ofTIA-२२2-G)
Id := 56.00	pcf	(User Input)
$\mathrm{K}_{\mathrm{zt}}:=1.0$		(User Input)
$\mathrm{K}_{\mathrm{a}}:=1.0$		(User Input)
$\mathrm{G}_{\mathrm{H}}=1.1$		(User Input)

Output

Wind Direction Probability Factor $=$

Importance Factors =

$$
\mathrm{K}_{\mathrm{iz}}:=\left(\frac{\mathrm{z}_{\mathrm{AT} \& \mathrm{~T}}}{33}\right)^{0.1}=1.185
$$

Velocity Pressure CoefficientAntemas=

Velocity Pressure w/o Ice Antennas =

Velocity Pressure with Ice Antennas=
$t_{i z}:=2.0 \cdot t_{i} \cdot \mathrm{l}_{\mathrm{ic}} \cdot \mathrm{K}_{\mathrm{iz}} \cdot \mathrm{K}_{\mathrm{zt}}{ }^{0.35}=1.777$
$\mathrm{Kz}_{\mathrm{AT} \& \mathrm{~T}}:=2.01\left(\left(\frac{\mathrm{z}_{\mathrm{AT} \& \mathrm{~T}}}{\mathrm{zg}}\right)\right)^{\frac{2}{\alpha}}=1.587$
$\mathrm{qz}_{\text {AT\&T }}:=0.00256 \cdot \mathrm{~K}_{\mathrm{d}} \cdot \mathrm{Kz}_{\text {AT\&T }} \cdot \mathrm{V}^{2} \cdot{ }^{\prime} \mathrm{W}_{\text {Wind }}=36.318$
$q z_{\text {ice.AT\&T }}:=0.00256 \cdot \mathrm{~K}_{d} \cdot \mathrm{Kz}_{\text {AT\& }} \cdot{ }^{\cdot} \mathrm{V}_{\mathrm{i}}{ }^{2} \cdot \mathrm{I}_{\text {Wind }}=9.65$

二三NT $=\mathrm{K}$ engineering	Subject:	TIA-222-G Loads
	Location:	Bridgeport, CT
	Rev. 0: 6/6/20	Prepared by: T.J.L. Checked by: C.F.C. Job No. 20074.32

Development of Wind \& Ice Load on Antennas

Antenna Data:

Antenna Model =
Antenna Shape $=$
Antema Height $=$ Antenna Width =

Antenna Thickness =
Antenna Weight =

Number of Antennas =

AntennaAspec tRaio =

Antenna Force Coefficient =
Wind Load (without ice)

SurfaceArea for One Antenna =

TotalArtennaWindForce=

SurfaceArea for One Antenna =

TotalArtennaWind Force $=$

Wind Load (with ice)

SurfaceArea for One Antenna w/ lce =

Total Antenna Wind Forcew/lce =

SurfaceArea for One Antenna w/ lce =

Total Antenna Wind Forcew/lce=

Gravity Load (without ice)
Weight of All Antennas=
Gravity Loads (ice only)
Volume of Each Antenna =

Volume of Iœ on EachAntenna =

Weight of Ice on EachAntenna $=$

Weight of Ice onAllArtennas =

Ericsson AR R6449
Flat
$L_{\text {ant }}:=33.1$
$W_{\text {ant }}:=20$
$T_{\text {ant }}:=8.3$ in (User Input)
$W T_{\text {ant }}:=103 \quad$ lbs \quad (User Input)
$N_{\text {ant }}:=1$
$\mathrm{Ar}_{\mathrm{ant}}:=\frac{\mathrm{L}_{\text {ant }}}{\mathrm{W}_{\mathrm{ant}}}=1.6$
$\mathrm{Ca}_{\mathrm{ant}}=1.2$
$\mathrm{SA}_{\mathrm{antF}}:=\frac{\mathrm{L}_{\text {ant }} \cdot \mathrm{W}_{\text {ant }}}{144}=4.7$
sf
lbs
$\mathrm{F}_{\text {ant }}:=\mathrm{qz} \mathrm{z}_{\mathrm{AT}} \mathrm{T} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{ant}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\mathrm{ant}}=226$
$\mathrm{SA}_{\mathrm{antS}}:=\frac{\mathrm{L}_{\mathrm{ant}} \cdot{ }^{\top} \text { ant }}{144}=1.9$
$F_{\text {ant }}:=\mathrm{qz}_{\mathrm{AT}}$ \&T $\cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{ant}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\mathrm{antS}}=91$
lbs

SA ICEantF $:=\frac{\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=6.1$
$\mathrm{Fi}_{\text {ant }}:=\mathrm{qz} \mathrm{zice}_{\text {ic.AT\&T }} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {ant }} \cdot \mathrm{K}_{\mathrm{a}} \cdot$ SA $_{\text {ICEantF }}=78$
SA ${ }_{\text {ICEantS }}:=\frac{\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=3$
$\mathrm{Fi}_{\text {ant }}:=\mathrm{qz} \mathrm{z}_{\text {ice. }} \mathrm{AT} \& \mathrm{~T} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{ant}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {ICEantS }}=38$
lbs
$W T_{\text {ant }} N_{\text {ant }}=103$
lbs
$\mathrm{V}_{\mathrm{ant}}:=\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{W}_{\mathrm{ant}} \cdot \mathrm{T}_{\mathrm{ant}}=5632$
cu in
$\mathrm{V}_{\text {ice }}:=\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)\left(\mathrm{W}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)-\mathrm{V}_{\mathrm{ant}}=4820$
$W_{\text {ICEant }}:=\frac{V_{\text {ice }}}{1728} \cdot \operatorname{ld}=156$
lbs
$W_{\text {ICEant }} N_{\text {ant }}=156$
lbs

二NT $=\mathrm{K}$ engineering	Subject:	TIA-222-G Loads
	Location:	Bridgeport, CT
Branford, CTO6405 $\quad \mathrm{F}$ (203) 4888-8587	Rev. 0: 6/6/20	Prepared by: T.J.L. Checked by: C.F.C. Job No. 20074.32

Development of Wind \& Ice Load on Antennas

Antenna Data:

Antenna Model =
Antenna Shape $=$
Antema Height=
Antenna Width =
Antenna Thickness=

Antenna Weight =

Number of Antennas =

AntennaAspectRaio =

Antenna Force Coefficient =
Wind Load (without ice)

SurfaceArea for One Antenna =

TotalArtennaWind Force=

SurfaceArea for One Antenna =

TotalArtennaWind Force $=$

Wind Load (with ice)

SurfaceArea for One Antenna w/ Ice =

Total Antenna Wind Forcew/lce=

SurfaceArea for One Antenna w/ Ice =

TotalAntenna Wind Forcew/lce=

Gravity Load (without ice)
Weight of All Antennas=
Gravity Loads (ice only)
Volume of Each Antenna =

Volume of Iœ on EachAntenna =

Weight of Ice on EachAntenna $=$

Weight of Ice onAllArtennas =

Ericsson AR3246-B66
Flat
$\mathrm{L}_{\text {ant }}:=58.1 \quad$ in \quad (User Input)
$\mathrm{W}_{\text {ant }}:=15.7 \quad$ in \quad (User Input)
$\mathrm{T}_{\mathrm{ant}}:=9.4 \quad$ in \quad (User Input)
$W T_{\text {ant }}:=180$ lbs (User Input)
$\mathrm{N}_{\mathrm{ant}}:=1$
(User Input)
$\mathrm{Ar}_{\text {ant }}:=\frac{\mathrm{L}_{\text {ant }}}{\mathrm{W}_{\mathrm{ant}}}=3.7$
$\mathrm{Ca}_{\mathrm{ant}}=1.25$
$\mathrm{SA}_{\mathrm{antF}}:=\frac{\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{W}_{\text {ant }}}{144}=6.3 \quad \mathrm{sf}$
$\mathrm{F}_{\text {ant }}:=\mathrm{qz} \mathrm{AT}_{\mathrm{A}} \mathrm{T} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{ant}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\mathrm{antF}}=317$
lbs
sf
lbs
$F_{\text {ant }}:=\mathrm{qz}_{\mathrm{AT}} \mathrm{KT} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{ant}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\mathrm{antS}}=190$

SA ICEantF $:=\frac{\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=8.2 \quad \mathrm{sf}$
$\mathrm{Fi}_{\text {ant }}:=\mathrm{qz}$ ice.AT\&T$\cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{ant}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {ICEantF }}=110 \quad \mathrm{lbs}$
SA ICEantS $:=\frac{\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=5.5$
$\mathrm{Fi}_{\text {ant }}:=\mathrm{qz} \mathrm{ice}_{\text {ice }} \mathrm{AT} \mathrm{\& T} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{ant}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {ICEantS }}=74$
lbs
$\mathrm{WT}_{\text {ant }} \cdot \mathrm{N}_{\text {ant }}=180$
lbs
$\mathrm{V}_{\mathrm{ant}}:=\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{W}_{\mathrm{ant}} \cdot \mathrm{T}_{\mathrm{ant}}=8574$
cu in
$\mathrm{V}_{\text {ice }}:=\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)\left(\mathrm{W}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)-\mathrm{V}_{\mathrm{ant}}=6805$
$W_{\text {ICEant }}:=\frac{\mathrm{V}_{\text {ice }}}{1728} \cdot$ Id $=221$
$W_{\text {ICEant }} N_{\text {ant }}=221$
lbs

二NJT CN engineering	Subject:	TIA-222-G Loads
	Location:	Bridgeport, CT
Branford, Cloctes \quad E:(205)488-8887	Rev. 0: 6/6/20	Prepared by: T.J.L. Checked by: C.F.C. Job No. 20074.32

Development of Wind \& Ice Load on Antennas

Antenna Data:

Antenna Model =	RFSAPXVAARR24-43		
Antenna Shape $=$	Flat		(User Input)
Antema Height $=$	$\mathrm{L}_{\text {ant }}:=95.9$	in	(User Input)
Antenna Width =	$\mathrm{W}_{\text {ant }}:=24$	in	(User Input)
Antenna Thickness =	$\mathrm{T}_{\text {ant }}:=8.7$	in	(User Input)
Antenna Weight =	$W T_{\text {ant }}:=153$	lbs	(User Input)
Number of Antennas =	$\mathrm{N}_{\mathrm{ant}}:=1$		(User Input)
AntennaAspectRaio =	$\operatorname{Ar}_{\mathrm{ant}}:=\frac{\mathrm{L}_{\mathrm{ant}}}{\mathrm{~W}_{\mathrm{ant}}}$		
Antenna Force Coefficient $=$	$\mathrm{Ca}_{\text {ant }}=1.27$		

Wind Load (without ice)

SurfaceArea for One Antenna =

Total ArtennaWind Force=

SurfaceArea for One Antenna =

Total ArtennaWind Force=

$$
\begin{array}{ll}
\mathrm{SA}_{\mathrm{antF}}:=\frac{\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{~W}_{\mathrm{ant}}}{144}=16 & \mathrm{sf} \\
\mathrm{~F}_{\mathrm{ant}}:=\mathrm{qz}_{\mathrm{AT} \& \mathrm{~T}} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{ant}} \cdot \mathrm{~K}_{\mathrm{a}} \cdot \mathrm{SA}_{\mathrm{antF}}=809 & \mathrm{lbs} \\
\mathrm{SA}_{\mathrm{ant}}:=\frac{\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{~T}_{\mathrm{ant}}}{144}=5.8 & \mathrm{sf} \\
\mathrm{~F}_{\mathrm{ant}}:=\mathrm{qz}_{\mathrm{AT}} \mathrm{AT} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{ant}} \cdot \mathrm{~K}_{\mathrm{a}} \cdot \mathrm{SA}_{\mathrm{antS}}=293 & \mathrm{lbs}
\end{array}
$$

Wind Load (with ice)

SurfaceArea for One Antenna w/ lce =

Total Antenna Wind Forcew/lce =

SurfaceArea for One Antenna w/ Ice=

Total Antenna Wind Forcew/ Ice =

Gravity Load (without ice)
Weight ofAll Antennas=
Gravity Loads (ice only)
Volume of Each Antenna =

Volume of $\mathrm{I} œ$ on EachAntenna $=$

Weight of Ice on EachAntenna =

Weight of Ice onAllArtennas =
SA $_{\text {ICEantF }}:=\frac{\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=19 \quad \mathrm{sf}$
$\mathrm{Fi}_{\text {ant }}:=\mathrm{qz}$ ice.AT\&T $\cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {ant }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {ICEantF }}=256 \quad \mathrm{lbs}$
SA $_{\text {ICEantS }}:=\frac{\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=8.5 \quad \mathrm{sf}$
$\mathrm{Fi}_{\text {ant }}:=\mathrm{qz}$ ice.AT\&T$\cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{ant}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {ICEantS }}=114 \quad$ lbs
$W T_{\text {ant }} \cdot N_{\text {ant }}=153$
lbs
$\mathrm{V}_{\text {ant }}:=\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{W}_{\text {ant }} \cdot T_{\text {ant }}=2 \times 10^{4} \quad$ cuin
$V_{i c e}:=\left(L_{a n t}+2 \cdot t_{i z}\right)\left(W_{a n t}+2 \cdot t_{i z}\right) \cdot\left(T_{a n t}+2 \cdot t_{i z}\right)-V_{a n t}=1 \times 10^{4}$
cu in
$W_{\text {ICEant }}:=\frac{\mathrm{V}_{\text {ice }}}{1728} \cdot \mathrm{Id}=439$
lbs
$\mathrm{W}_{\text {ICEant }} \mathrm{N}_{\mathrm{ant}}=439$
lbs

C=NT $=\mathrm{K}$ engineering	Subject:	TIA-222-G Loads
	Location:	Bridgeport, CT
	Rev. 0: 6/6/20	Prepared by: T.J.L. Checked by: C.F.C. Job No. 20074.32

Development of Wind \& Ice Load on TMA's

TMAData:

TMAModel =

TMAShape $=$
TMAHeight =
TMAWidth $=$
TMAThickness =

TMAWeight =
Number of TMA's=

TMAAspect Ratio $=$

TMAForceCoefficient =
Wind Load (without ice)

SurfaceArea for One TMA=

Total TMAW ind Force $=$

SurfaceArea for One TMA=

Total TMAWind Force =

Wind Load (with ice)

SurfaceArea for One TMA w/ Ice =

Total TMAWind Force w/ Ice =

SurfaceArea for One TMA w/ Ice =

Total TMAWind Force w/ Ice =

Gravity Load (without ice)

Weight ofAll TMAs =
Gravity Loads (ice only)

Volume of Each TMA=

Volume of $1 œ$ on EachTMA=

Weight of Ice on EachTMA =

Weight of lce onAll TMAs=

Ericsson KRY112 144/1 TMA

Flat
(User Input)
$L_{\text {TMA }}:=7.7 \quad$ in \quad (User Input)
$\mathrm{W}_{\text {TMA }}:=7.5 \quad$ in \quad (User Input)
$\mathrm{T}_{\text {TMA }}:=3.4 \quad$ in \quad (User Input)
$\mathrm{WT}_{\text {TMA }}:=11$ lbs (User Input)
$\mathrm{N}_{\text {TMA }}:=1 \quad$ (User Input)
$\operatorname{Ar}_{\text {TMA }}:=\frac{\mathrm{L}_{\text {TMA }}}{\mathrm{W}_{\text {TMA }}}=1$
$\mathrm{Ca}_{\text {TMA }}=1.2$
$\mathrm{SA}_{\text {TMAF }}:=\frac{\mathrm{L}_{\text {TMA }} \cdot \mathrm{W}_{\text {TMA }}}{144}=0.4 \quad \mathrm{sf}$
$F_{\text {TMA }}:=q z_{A T \& T} \cdot G_{H} \cdot$ Ca $_{\text {TMA }} \cdot K_{a} \cdot$ SA $_{\text {TMAF }}=19$
$S A_{\text {TMAS }}:=\frac{\mathrm{L}_{\mathrm{TMA}}{ }^{-\mathrm{T}_{\mathrm{TMA}}}}{144}=0.2$
sf
$\mathrm{F}_{\text {TMA }}:=\mathrm{qz} \mathrm{AT}_{\mathrm{T}} \mathrm{T} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{TMA}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\mathrm{TMAS}}=9 \quad$ lbs

SA $_{\text {ICETMAF }}:=\frac{\left(\mathrm{L}_{\mathrm{TMA}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\mathrm{TMA}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=0.9 \quad \mathrm{sf}$
$\mathrm{Fi}_{\mathrm{TMA}}:=\mathrm{qz} \mathrm{ice} . A T \& \mathrm{~T}^{\cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{TMA}} \cdot K_{\mathrm{a}} \cdot \text { SA }_{\text {ICETMAF }}=11 \quad \text { lbs }}$
SA ICETMAS $:=\frac{\left(L_{\text {TMA }}+2 \cdot t_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\text {TMA }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=0.5 \quad \mathrm{sf}$
$\mathrm{Fi}_{\mathrm{TMA}}:=\mathrm{qz} \mathrm{z}_{\text {ice.AT }} \& \mathrm{~T} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{TMA}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {ICETMAS }}=7 \quad$ lbs
$\mathrm{WT}_{\text {TMA }} \cdot \mathrm{N}_{\text {TMA }}=11$
lbs
$\mathrm{V}_{\text {TMA }}:=\mathrm{L}_{\text {TMA }} \cdot \mathrm{W}_{\text {TMA }} \cdot \mathrm{T}_{\text {TMA }}=196 \quad$ cu in
$\mathrm{V}_{\text {ice }}:=\left(\mathrm{L}_{\mathrm{TMA}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)\left(\mathrm{W}_{\mathrm{TMA}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\mathrm{TMA}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)-\mathrm{V}_{\mathrm{TMA}}=669 \quad$ cu in
$W_{\text {ICETMA }}:=\frac{V_{\text {ice }}}{1728} \cdot I d=22$
lbs
$\mathrm{W}_{\text {ICETMA }} \cdot \mathrm{N}_{\text {TMA }}=22$
lbs

C=NT $=\mathrm{K}$ engineering	Subject:	TIA-222-G Loads
	Location:	Bridgeport, CT
	Rev. 0: 6/6/20	Prepared by: T.J.L. Checked by: C.F.C. Job No. 20074.32

Development of Wind \& Ice Load on RRUS's

RRUSData:

RRUS Model = RRUS Shape = RRUS Height $=$ RRUS Width = RRUS Thickness = RRUSWeight= Number of RRUS's=

RRUSAspect Ratio = RRUS Force Coefficient =

Wind Load (without ice)

Surface Area for One RRUS =

Total RRUS Wind Force =

SurfaceArea for One RRUS = Total RRUS Wind Force =

Wind Load (with ice)

SurfaceArea for One RRUS w/ lce =

Total RRUS Wind Force w/ lce =

SurfaceArea for One RRUS w/lce =

Total RRUS Wind Force w/ lce =

Gravity Load (without ice)
Weight of All RRUSs=
Gravity Loads (ice only)
Volume of Each RRUS =

Volume of Ice on EachRRUS =

Weight of Ice on Each RRUS =

Weight of lce onAll RRUSs=

Ericsson 4449 B71B12

Flat		(User Input)
$L_{\text {RRUS }}:=14.9$	in	(User Input)
$W_{\text {RRUS }}:=13.2$	in	(User Input)
$T_{\text {RRUS }}:=10.4$	in	(User Input)
$W_{\text {RRUS }}:=74$	lbs	(User Input)
$N_{\text {RRUS }}:=1$	(User Input)	
$\operatorname{Ar}_{\text {RRUS }}:=\frac{L_{\text {RRUS }}}{W_{\text {RRUS }}}=1.1$		
$C_{\text {RRUS }}=1.2$		

$\mathrm{SA}_{\text {RRUSF }}:=\frac{\mathrm{L}_{\text {RRUS }} \cdot \mathrm{W}_{\text {RRUS }}}{144}=1.4$
$F_{\text {RRUS }}:=q z_{\text {AT\&T }} \cdot G_{H} \cdot \operatorname{Ca}_{\text {RRUS }} \cdot K_{a} \cdot S A_{\text {RRUSF }}=65 \quad$ lbs

SA $_{\text {RRUSS }}:=\frac{\mathrm{L}_{\text {RRUS }} \cdot \mathrm{T}_{\text {RRUS }}}{144}=1.1$
sf
$F_{\text {RRUS }}:=\mathrm{qz}_{\text {AT\&T }} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {RRUS }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {RRUSS }}=52 \quad$ lbs

SA $_{\text {ICERRUSF }}:=\frac{\left(\mathrm{L}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=2.1 \quad \mathrm{sf}$
$\mathrm{Fi}_{\text {RRUS }}:=\mathrm{qz} \mathrm{z}_{\mathrm{ice}} \cdot \mathrm{AT} \mathrm{\& T} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {RRUS }} \cdot \mathrm{K}_{\mathrm{a}} \cdot$ SA $_{\text {ICERRUSF }}=27 \quad \mathrm{lbs}$
SA ICERRUSS $:=\frac{\left(\mathrm{L}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=1.8 \quad \mathrm{sf}$
$\mathrm{Fi}_{\text {RRUS }}:=\mathrm{qz} \mathrm{z}_{\mathrm{ice}} . A T \& T^{\cdot} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {RRUS }} \cdot \mathrm{K}_{\mathrm{a}} \cdot$ SA $_{\text {ICERRUSS }}=23$ lbs
$\mathrm{WT}_{\text {RRUS }} \cdot \mathrm{N}_{\text {RRUS }}=74$ lbs
$\mathrm{V}_{\text {RRUS }}:=\mathrm{L}_{\text {RRUS }} \cdot W_{\text {RRUS }} \cdot \top_{\text {RRUS }}=2045 \quad$ cu in
$\mathrm{V}_{\text {ice }}:=\left(\mathrm{L}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)\left(\mathrm{W}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)-\mathrm{V}_{\text {RRUS }}=226 \min ^{\circ}$
$W_{\text {ICERRUS }}:=\frac{V_{\text {ice }}}{1728} \cdot \mathrm{Id}=74$
lbs
$W_{\text {ICERRUS }} \cdot \mathrm{N}_{\text {RRUS }}=74$
lbs

- =NT $=\mathbf{K}$ ¢ engineering	Subject:	TIA-222-G Loads
	Location:	Bridgeport, CT
	Rev. 0: 6/6/20	Prepared by: T.J.L. Checked by: C.F.C. Job No. 20074.32

Development of Wind \& Ice Load on RRUS's

RRUS Data:
RRUS Model =
RRUS Shape $=$

RRUSHeight=
RRUS Wiath =
RRUS Thickness =
RRUSWeight=
Number of RRUS's =

RRUSAspect Ratio =

RRUS Force Coefficient=
Wind Load (without ice)

Surface Area for One RRUS =

Total RRUS Wind Force =

SurfaceArea for One RRUS =

Total RRUS Wind Force=

Wind Load (with ice)

SurfaceAreafor One RRUSw/Ice=

Total RRUS Wind Force w/lce =

Surface Area for One RRUS w/ Ice =

Total RRUS Wind Force w/ lce =

Gravity Load (without ice)
Weight of All RRUSs=
Gravity Loads (ice only)

Volume of Each RRUS =

Volume of Ice on EachRRUS =

Weight of lee on Each RRUS =

Weight of Ice onAll RRUSs =

Emeonenek		
TJL	CT11014B - Mount	June 8, 2020 at $11: 46$ AM
20074.32	Member Framing	Mount.r3d

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (ft/sec^2)	32.2
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver
Hot Rolled Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 14th(360-10): ASD
Cold Formed Steel Code	AISI S100-10: ASD
Wood Code	AWC NDS-12: ASD
Wood Temperature	< 100F
Concrete Code	ACI 318-11
Masonry Code	ACI 530-11: ASD
Aluminum Code	AA ADM1-10: ASD - Building
Stainless Steel Code	AISC 14th(360-10): ASD
Adjust Stiffness?	Yes(Iterative)
Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	No
Bad Framing Warnings?	Nos
Unused Force Warnings?	No
Min 1 Bar Diam. Spacing?	Concrete Rebar Set
Min \% Steel for Column	Max \% Steel for Column

\qquad
(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
R X	3
R Z	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	I or II
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	4
Cd X	4
Rho Z	1
Rho X	1
Footing Overturning Safety Factor	1
Optimize for OTM/Sliding	No
Check Concrete Bearing	No
Footing Concrete Weight (k/ft^3)	150.001
Footing Concrete f'c (ksi)	4
Footing Concrete Ec (ksi)	3644
Lambda	1
Footing Steel fy (ksi)	60
Minimum Steel	0.0018
Maximum Steel	0.0075
Footing Top Bar	$\# 3$
Footing Top Bar Cover (in)	2
Footing Bottom Bar	$\# 3$
Footing Bottom Bar Cover (in)	3.5
Pedestal Bar	$\# 3$
Pedestal Bar Cover (in)	1.5
Pedestal Ties	

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (11.	Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr. 36	29000	11154	. 3	. 65	. 49	36	1.5	58	1.2
2	A572 Gr. 50	29000	11154	. 3	. 65	. 49	50	1.1	58	1.2
3	A992	29000	11154	. 3	. 65	. 49	50	1.1	58	1.2
4	A500 Gr. 42	29000	11154	. 3	. 65	49	42	1.3	58	1.1
5	A500 Gr. 46	29000	11154	. 3	. 65	. 49	46	1.2	58	1.1
6	A53 Grade B	29000	11154	. 3	. 65	49	35	1.5	58	1.2

\qquad

Hot Rolled Steel Section Sets

Label		Shape	Type	Design List	Material	Design Rul.	A [in	lyy [in4]lzz [in4] J [in4]		
1	Horz	PIPE_2.5	Beam	Pipe	A53 Grade B	Typical	1.61	1.45	1.45	2.89
2	Antenna Mast	PIPE 2.0	Column	Wide Flange	A53 Grade B	Typical	1.02	627	627	1.25
3	Vert	PIPE_2.5	Column	Wide Flange	A53 Grade B	Typical	1.61	1.45	1.45	2.89
4	Stablizer Arm	PIPE 2.0	Beam	Pipe	A53 Grade B	Typical	1.02	. 627	. 627	1.25

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[..	.Lcomp bot[...	L-torq...	Kyy	Kzz	Cb	Functi...
1	M1	Horz	14.5			Lbyy						Lateral
2	M2	Horz	14.5			Lbyy						Lateral
3	M3	Antenna Mast	6			Lbyy						Lateral
4	M4	Antenna Mast	6			Lbyy						Lateral
5	M5	Antenna Mast	6			Lbyy						Lateral
6	M6	Antenna Mast	6			Lbyy						Lateral
7	M7	Vert	5			Lbyy						Lateral
8	M8	Antenna Mast	8			Lbyy						Lateral
9	M9	Stablizer Arm	8.382			Lbyy						Lateral

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(d..	Section/Shape	Type	Design List	Material	Design Rul..
1	M1	N1	N6			Horz	Beam	Pipe	A53 Gra...	Typical
2	M2	N8	N13			Horz	Beam	Pipe	A53 Gra...	Typical
3	M3	N23	N24			Antenna Mast	Column	Wide Flange	A53 Gra...	Typical
4	M4	N17	N20			Antenna Mast	Column	Wide Flange	A53 Gra...	Typical
5	M5	N18	N21			Antenna Mast	Column	Wide Flange	A53 Gra..	Typical
6	M6	N19	N22			Antenna Mast	Column	Wide Flange	A53 Gra...	Typical
7	M7	N15	N16			Vert	Column	Wide Flange	A53 Gra..	Typical
8	M8	N27	N28			Antenna Mast	Column	Wide Flange	A53 Gra...	Typical
9	M9	N29	N30			Stablizer Arm	Beam	Pipe	A53 Gra...	Typical

Joint Coordinates and Temperatures

	Label	$\mathrm{X}[\mathrm{ft}]$	$\mathrm{Y}[\mathrm{ft}]$	$\mathrm{Z}[\mathrm{ft}]$	Temp [F]	Detach From Dia...
1	N1	0	0	0	0	
2	N2	. 5	0	0	0	
3	N3	5	0	0	0	
4	N4	9.5	0	0	0	
5	N5	14	0	0	0	
6	N6	14.5	0	0	0	
7	N7	7.25	0	0	0	
8	N8	0	-4	0	0	
9	N9	. 5	-4	0	0	
10	N10	5	-4	0	0	
11	N11	9.5	-4	0	0	
12	N12	14	-4	0	0	
13	N13	14.5	-4	0	0	
14	N14	7.25	-4	0	0	
15	N15	7.25	. 5	0	0	

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Dia...
16	N16	7.25	-4.5	0	0	
17	N17	5	1	0	0	
18	N18	9.5	1	0	0	
19	N19	14	1	0	0	
20	N20	5	-5	0	0	
21	N21	9.5	-5	0	0	
22	N22	14	-5	0	0	
23	N23	. 5	1	0	0	
24	N24	5	-5	0	0	
25	N25	1	0	0	0	
26	N26	1	-4	0	0	
27	N27	1	2	0	0	
28	N28	1	-6	0	0	
29	N29	. 5	-1	0	0	
30	N30	3	-1	-8	0	

Joint Boundary Conditions

Joint Labe		X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N15	Reaction	Reaction	Reaction			
2	N16	Reaction	Reaction	Reaction			
3	N30	Reaction	Reaction	Reaction			

Member Point Loads (BLC 2 : Dead Load)

Member Label	Direction		Magnitude[k,k-ft]	-.077
1	M8	Y	-.077	.5
2	M8	Y	-.09	7.5
3	M4	Y	-.09	.5
4	M4	Y	-.052	5.5
5	M5	Y	-.052	.5
6	M5	Y	-.074	3.5
7	M8	Y	-.086	1.5
8	M8	Y		$\% 50$

Member Point Loads (BLC 3 : Ice Load)

Member Label		Magnitude[k,k-ft]		Location[ft,\%]
1	M8	Y	-.22	.5
2	M8	Y	-.22	7.5
3	M4	Y	-.111	.5
4	M4	Y	-.111	5.5
5	M5	Y	-.078	.5
6	M5	Y	-.078	3.5
7	M8	Y	-.074	1.5
8	M8	Y	-.088	$\% 50$

Member Point Loads (BLC 4 : Wind with Ice X)

Member Label	Direction		Magnitude[k,k-ft]	Location[ft,\%]
1	M8	X	.057	.5
2	M8	X	.057	7.5

[^1]Member Point Loads (BLC 4 : Wind with Ice X) (Continued)

Member Label		Direction		Magnitude $[k, k-\mathrm{ft}]$
3	M4	X	.037	.5
4	M4	X	.037	5.5
5	M5	X	.019	.5
6	M5	X	.019	3.5
7	M8	X	.023	1.5
8	M8	X	.027	$\% 50$

Member Point Loads (BLC 5 : Wind X)

Member Label		Direction		Magnitude[k,k-ft]
1	M8	X	.147	.5
2	M8	X	.147	7.5
3	M4	X	.095	.5
4	M4	X	.095	5.5
5	M5	X	.046	.5
6	M5	X	.046	3.5
7	M8	X	.052	1.5
8	M8	X	.064	$\% 50$

Member Point Loads (BLC 6 : Wind with Ice Z)

Member Label	Direction	Magnitude[k,k-ft]	Location[ft,\%]	
1	M8	Z	.128	.5
2	M8	Z	.128	7.5
3	M4	Z	.055	.5
4	M4	Z	.055	5.5
5	M5	Z	.039	.5
6	M5	Z	.039	3.5

Member Point Loads (BLC 7 : Wind Z)

Member Label		Direction		Magnitude $[\mathrm{k}, \mathrm{k}-\mathrm{ft}]$
1	M8	Z	.405	.5
2	M8	Z	.405	7.5
3	M4	Z	.159	.5
4	M4	Z	.159	5.5
5	M5	Z	.113	.5
6	M5	Z	.113	3.5

Member Distributed Loads (BLC 4 : Wind with Ice X)

	Member Label	Direction	Start Magnitude[k/ft, ...	End Magnitude[k/ft,F.	Start Location[ft,\%]	End Location[ft,\%]
1	M9	X	. 003	. 003	0	0
2	M3	X	. 003	. 003	0	0
3	M8	X	. 003	. 003	0	0
4	M4	X	. 003	. 003	0	0
5	M7	X	. 003	. 003	0	0
6	M5	X	. 003	. 003	0	0
7	M6	X	. 003	. 003	0	0

Member Distributed Loads (BLC 5 : Wind X)

Member Label Direction Start Magnitude[k/ft,... End Magnitude[k/ft,F... Start Location[ft,\%] End Location[ft,\%]

Member Distributed Loads (BLC 5 : Wind X) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,.	End Magnitude[k/ft,F.	Start Location[ft,\%]	End Location[ft,\%]
1	M9	X	. 009	. 009	0	0
2	M3	X	. 009	. 009	0	0
3	M8	X	. 009	. 009	0	0
4	M4	X	. 009	. 009	0	0
5	M7	X	. 009	. 009	0	0
6	M5	X	. 009	. 009	0	0
7	M6	X	. 009	. 009	0	0

Member Distributed Loads (BLC 6 : Wind with Ice Z)

	Member Label	Direction	Start Magnitude[k/ft, ...	End Magnitude[k/ft,F..	Start Location[ft,\%]	End Location[ft, \%]
1	M9	Z	. 003	. 003	0	0
2	M1	Z	. 003	. 003	0	0
3	M2	Z	. 003	. 003	0	0
4	M7	Z	. 003	. 003	0	0
5	M8	Z	. 003	. 003	0	0
6	M3	Z	. 003	. 003	0	0

Member Distributed Loads (BLC 7 : Wind Z)

	Member Label	Direction	Start Magnitude[k/tt, ...	End Magnitude[k/ft,F..	Start Location[ft,\%]	End Location[ft,\%]
1	M9	Z	. 009	. 009	0	0
2	M1	Z	. 009	. 009	0	0
3	M2	Z	. 009	. 009	0	0
4	M7	Z	. 009	. 009	0	0
5	M8	Z	. 009	. 009	0	0
6	M3	Z	. 009	. 009	0	0

Basic Load Cases

BLC Description		Category	X Gra... Y Gra.	Z Gra.	Joint	Point	Distrib..Area(... Surfa...		
1	Self Weight	DL	-1						
2	Dead Load	None				8			
3	Ice Load	None				8			
4	Wind with Ice X	None				8	7		
5	Wind X	None				8	7		
6	Wind with Ice Z	None				6	6		
7	Wind Z	None				6	6		

Load Combinations

Description

1	$1.2 \mathrm{D}+1.6 \mathrm{~W}$ (X-direc...
2	$0.9 \mathrm{D}+1.6 \mathrm{~W}$ (X-direc...
3	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} .$.
4	$1.2 \mathrm{D}+1.6 \mathrm{~W}$ (Z-direc..
5	$0.9 \mathrm{D}+1.6 \mathrm{~W}$ (Z-direc..
6	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} .$.

Solve P... S... BLCFac..BLCFac..BLCFac..BLCFac..BLCFac..BLCFac..BLCFac..BLCFac..BLCFac..BLCFac..

Yes	Y		1	1.2	2	1.2	5	1.6			
Yes	Y		1	.9	2	.9	5	1.6			
Yes	Y		1	1.2	2	1.2	3	1	4	1	
Yes	Y		1	1.2	2	1.2	7	1.6			
Yes	Y		1	.9	2	.9	7	1.6			
Yes	Y		1	1.2	2	1.2	3	1	6	1	

\qquad

Envelope Joint Reactions

Joint			X [k]	LC	Y [k]	LC Z [k]		LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N15	max	1.292	6	1.045	3	0	1	0	6	0	6	0	
2		min	-. 497	2	41	5	-. 489	5	0	1	0	1	0	1
3	N16	max	-. 571	5	1.029	6	0	1	0	6	0	6	0	6
4		min	-1.54	3	. 396	2	-. 923	5	0	1	0	1	0	1
5	N30	max	. 47	4	. 022	4	0	3	0	6	0	6	0	6
6		min	-. 06	2	. 013	2	-1.567	4	0	1	0	1	0	1
7	Totals:	max	0	6	2.089	6	0	3						
8		min	-1.761	1	. 832	2	-2.978	4						

Envelope Joint Displacements

	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]		Y Rotatio		Z Rotatio.	C
1	N1	max	. 008	1	-. 226	2	. 006	3	-6.765e-07	2	7.276e-05	3	3.683e-03	6
2		min	. 002	6	-. 659	6	-. 055	5	-2.121e-03	4	-2.531e-03	5	$1.154 \mathrm{e}-03$	2
3	N2	max	. 008	1	-. 219	2	. 006	3	-6.765e-07	2	$7.276 \mathrm{e}-05$	3	3.683e-03	6
4		min	. 002	6	-. 637	6	-. 04	5	-2.121e-03	4	-2.532e-03	5	$1.154 \mathrm{e}-03$	2
5	N3	max	. 008	1	-. 057	2	. 027	4	-2.354e-07	2	1.093e-03	4	7.636e-03	6
6		min	. 003	6	-. 161	3	. 001	2	-9.625e-04	4	5.471e-05	2	$2.48 \mathrm{e}-03$	2
7	N4	max	. 008	1	-. 005	6	. 068	5	$1.143 \mathrm{e}-03$	4	7.301e-05	3	-5.397e-04	5
8		min	. 003	5	-. 009	1	-. 002	3	$1.375 \mathrm{e}-07$	2	-3.433e-03	5	-8.887e-04	1
9	N5	max	. 008	1	-. 039	5	. 269	5	$2.187 \mathrm{e}-03$	4	7.312e-05	3	-3.247e-04	2
10		min	. 003	5	-. 057	1	-. 006	3	$2.18 \mathrm{e}-07$	2	-3.76e-03	5	-5.964e-04	6
11	N6	max	. 008	1	-. 041	5	. 291	5	$2.187 \mathrm{e}-03$	4	7.312e-05	3	-3.251e-04	2
12		min	. 003	5	-. 059	1	-. 006	3	$2.18 \mathrm{e}-07$	2	-3.762e-03	5	-5.97e-04	6
13	N7	max	. 008	1	0	5	. 004	5	$4.423 \mathrm{e}-08$	2	7.275e-05	3	1.324e-03	3
14		min	. 003	5	0	3	0	1	-4.879e-04	5	-2.252e-04	5	6.064e-04	5
15	N8	max	. 006	2	-. 227	2	. 753	4	-9.706e-07	2	5.84e-03	4	3.61e-03	3
16		min	-. 001	6	-. 658	6	. 005	2	-2.383e-02	4	$5.513 \mathrm{e}-05$	2	$1.243 \mathrm{e}-03$	5
17	N9	max	. 006	2	-. 219	2	. 718	4	-9.706e-07	2	5.839e-03	4	3.609e-03	3
18		min	-. 001	6	-. 636	6	. 004	2	-2.383e-02	4	5.513e-05	2	$1.242 \mathrm{e}-03$	5
19	N10	max	. 005	2	-. 057	2	. 226	4	-3.711e-07	2	$1.013 \mathrm{e}-02$	4	7.694e-03	3
20		min	-. 002	6	-. 161	3	. 001	2	-7.946e-03	4	5.531e-05	2	2.744e-03	5
21	N11	max	. 004	2	-. 005	6	-. 001	2	$1.793 \mathrm{e}-03$	4	7.334e-05	3	-4.469e-04	5
22		min	-. 003	6	-. 009	1	-. 025	4	$5.785 \mathrm{e}-08$	2	-1.513e-03	5	-7.703e-04	3
23	N12	max	. 004	2	-. 039	5	. 142	5	$2.509 \mathrm{e}-03$	4	7.316e-05	3	-4.211e-04	5
24		min	-. 003	6	-. 057	1	-. 006	3	$1.785 \mathrm{e}-07$	2	-3.751e-03	5	-6.467e-04	1
25	N13	max	. 004	2	-. 041	5	. 165	5	$2.509 \mathrm{e}-03$	4	7.316e-05	3	-4.215e-04	5
26		min	-. 003	6	-. 061	1	-. 006	3	$1.785 \mathrm{e}-07$	2	-3.752e-03	5	-6.473e-04	1
27	N14	max	. 004	2	0	2	. 002	5	-9.59e-08	2	$4.475 \mathrm{e}-03$	4	$1.168 \mathrm{e}-03$	6
28		min	-. 003	6	0	6	0	1	-1.387e-04	4	5.504e-05	2	-1.282e-04	2
29	N15	max	0	6	0	6	0	6	$6.132 \mathrm{e}-08$	2	7.275e-05	3	1.3e-03	1
30		min	0	1	0	1	0	1	-7.482e-04	5	-2.252e-04	5	$5.331 \mathrm{e}-04$	6
31	N16	max	0	6	0	6	0	6	$3.557 \mathrm{e}-04$	5	$4.475 \mathrm{e}-03$	4	4.27e-04	6
32		min	0	1	0	1	0	1	-1.257e-07	1	5.504e-05	2	-7.711e-04	2
33	N17	max	-. 02	2	-. 057	2	. 019	4	-2.354e-07	2	1.093e-03	4	$7.64 \mathrm{e}-03$	6
34		min	-. 089	6	-. 161	3	. 001	2	-6.479e-04	4	$5.471 \mathrm{e}-05$	2	2.269e-03	2
35	N18	max	. 02	1	-. 005	6	. 084	5	$1.367 \mathrm{e}-03$	4	7.301e-05	3	-5.398e-04	5
36		min	. 01	5	-. 009	1	-. 002	3	$1.375 \mathrm{e}-07$	2	-3.433e-03	5	-1.004e-03	1
37	N19	max	. 014	1	-. 039	5	. 295	5	$2.187 \mathrm{e}-03$	4	7.312e-05	3	-3.485e-04	2
38		min	. 008	5	-. 057	1	-. 006	3	$2.18 \mathrm{e}-07$	2	-3.76e-03	5	-5.964e-04	6

\qquad

Envelope Joint Displacements (Continued)

Joint			X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC Y Rotatio... LC Z Rotatio... LC				
39	N20	max	. 092	3	-. 057	2	. 325	4	-3.711e-07	2	$1.013 \mathrm{e}-02$	4	$7.741 \mathrm{e}-03$	3
40		min	. 033	5	-. 161	3	. 001	2	-8.258e-03	4	5.531e-05	2	2.743e-03	5
41	N21	max	-. 001	2	-. 005	6	-. 001	2	$1.793 \mathrm{e}-03$	4	$7.334 \mathrm{e}-05$	3	-4.341e-04	2
42		min	-. 012	6	-. 009	1	-. 046	4	5.785e-08	2	-1.513e-03	5	-7.676e-04	6
43	N22	max	-. 002	2	-. 039	5	. 112	5	$2.509 \mathrm{e}-03$	4	$7.316 \mathrm{e}-05$	3	-4.211e-04	5
44		min	-. 011	6	-. 057	1	-. 006	3	$1.785 \mathrm{e}-07$	2	-3.751e-03	5	-6.254e-04	3
45	N23	max	-. 006	2	-. 219	2	. 006	3	-6.765e-07	2	$7.276 \mathrm{e}-05$	3	3.683e-03	6
46		min	-. 042	6	-. 637	6	-. 065	5	-2.097e-03	4	-2.532e-03	5	1.13e-03	2
47	N24	max	. 043	3	-. 219	2	1.005	4	-9.706e-07	2	5.839e-03	4	3.614e-03	3
48		min	. 015	5	-. 636	6	. 004	2	-2.386e-02	4	$5.513 \mathrm{e}-05$	2	1.242e-03	5
49	N25	max	. 008	1	-. 211	2	. 005	3	-6.718e-07	2	7.272e-05	3	4.786e-03	6
50		min	. 002	6	-. 611	6	-. 024	5	-1.745e-03	4	-2.455e-03	5	1.247e-03	2
51	N26	max	. 006	2	-. 21	2	. 682	4	-9.228e-07	2	$6.471 \mathrm{e}-03$	4	4.822e-03	3
52		min	-. 001	6	-. 611	6	. 004	2	-2.353e-02	4	5.516e-05	2	$1.731 \mathrm{e}-03$	5
53	N27	max	. 032	2	-. 211	2	. 07	5	5.685e-03	5	7.272e-05	3	4.809e-03	6
54		min	-. 113	6	-. 612	6	. 004	2	-2.061e-06	3	-2.455e-03	5	-1.667e-03	2
55	N28	max	. 128	3	-. 21	2	1.382	4	-9.221e-07	2	$6.471 \mathrm{e}-03$	4	5.48e-03	3
56		min	. 042	5	-. 611	6	. 004	2	-3.091e-02	4	$5.516 \mathrm{e}-05$	2	$1.73 \mathrm{e}-03$	5
57	N29	max	. 022	4	-. 219	2	. 014	4	-8.373e-07	2	7.299e-05	3	5.38e-04	5
58		min	. 014	2	-. 637	6	. 004	2	-8.749e-03	4	-4.427e-04	5	-4.598e-04	3
59	N30	max	0	6	0	6	0	6	$7.133 \mathrm{e}-03$	3	3.509e-03	1	$4.121 \mathrm{e}-03$	4
60		min	0	1	0	1	0	1	$1.942 \mathrm{e}-03$	5	$4.29 \mathrm{e}-04$	6	8.22e-04	2

Envelope AISC 14th(360-10): LRFD Steel Code Checks

Member		Shape	Code Check .447	$\begin{gathered} \text { Lo... } \\ \hline 7.25 \end{gathered}$	$\begin{gathered} \text { LC } \\ \hline 6 \end{gathered}$	She...Lo.	.phi*P..phi*P..phi*			phi*... Cb Eqn		
1	M1	PIPE_2.5				. 119.604	510.82	50.715	3.596	3.596	$1.8 . .$	$\mathrm{H} 1-\ldots$
2	M2	PIPE 2.5	. 536	7.25	4	. $2984 .$.	410.82	50.715	3.596	3.596	1.8..	H3-6
3	M3	PIPE_2.0	. 650	2	4	.2292	520.867	32.13	1.872	1.872	1.8..	H1-.
4	M4	PIPE 2.0	. 627	5	3	.1601	420.867	32.13	1.872	1.872	1.7...	H1-.
5	M5	PIPE_2.0	. 096	5	4	.0471	420.867	32.13	1.872	1.872	1.7..	H1-.
6	M6	PIPE 2.0	. 045	1	1	.0071	120.867	32.13	1.872	1.872	1.8..	H1-.
7	M7	PIPE_2.5	. 213	4....	3	.1015	341.3325	50.715	3.596	3.596	2.5..	H1-.
8	M8	PIPE 2.0	. 574	2	4	. 2002	414.916	32.13	1.872	1.872	1.4..	H1-..
9	M9	PIPE_2.0	. 067	4....	1	. 006 8....	113.839	32.13	1.872	1.872	1.1..	H1-..

Centek		
TJL	CT11014B - Mount	
	Unity Check	June 8, 2020 at 11:45 AM
20074.32	Mount.r3d	

Exhibit F
 Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CTIIOI4B

CT014/ I-95/ X24/ Bla
645 Pine Street
Bridgeport, Connecticut 06605
July 24, 2020
EBI Project Number: 6220003389

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{1 9 . 6 3 \%}$

environmental | engineering | due diligence

July 24, 2020
T-Mobile
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, Connecticut 06002

Emissions Analysis for Site: CTIIOI4B - CTOI4/ I-95/ X24/ Bla

EBI Consulting was directed to analyze the proposed T-Mobile facility located at 645 Pine Street in Bridgeport, Connecticut for the purpose of determining whether the emissions from the Proposed TMobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-Oland ANSI/IEEE Std C95.I. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR I.I307(b)(I) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately $400 \mu \mathrm{~W} / \mathrm{cm}^{2}$ and $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$, respectively. The general population exposure limit for the $1900 \mathrm{MHz}(\mathrm{PCS}), 2100 \mathrm{MHz}(\mathrm{AWS})$ and II GHz frequency bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.
environmental | engineering | due diligence

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 645 Pine Street in Bridgeport, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6 -foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 2 LTE channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
2) I NR channel (600 MHz Band) was considered for each sector of the proposed installation. This Channel has a transmit power of 80 Watts.
3) 2 LTE channels (700 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 W atts per Channel.
4) 4 GSM channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
5) 2 LTE channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
environmental | engineering | due diligence
6) 2 UMTS channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 W atts per Channel.
7) 4 LTE channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
8) 2 LTE channels (BRS Band - 2500 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
9) 2 NR channels (BRS Band - 2500 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
10) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-0I recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
11) For the following calculations, the sample point was the top of a 6 -foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
12) The antennas used in this modeling are the Ericsson AIR 6449 for the $2500 \mathrm{MHz} / 2500 \mathrm{MHz}$ channel(s), the Ericsson AIR 3246 for the 2100 MHz channel(s), the RFS APXVAARR24_43-U-NA20 for the $600 \mathrm{MHz} / 600 \mathrm{MHz} / 700 \mathrm{MHz} / 1900 \mathrm{MHz} / 1900 \mathrm{MHz} / 2100 \mathrm{MHz}$ channel(s) in Sector A, the Ericsson AIR 6449 for the $2500 \mathrm{MHz} / 2500 \mathrm{MHz}$ channel(s), the Ericsson AIR 3246 for the 2100 MHz channel(s), the RFS APXVAARR24_43-U-NA20 for the $600 \mathrm{MHz} / 600 \mathrm{MHz} / 700 \mathrm{MHz} / 1900 \mathrm{MHz} / 1900 \mathrm{MHz} / 2100 \mathrm{MHz}$ channel(s) in Sector B, the Ericsson AIR 6449 for the $2500 \mathrm{MHz} / 2500 \mathrm{MHz}$ channel(s), the Ericsson AIR 3246 for the 2100 MHz channel(s), the RFS APXVAARR24_43-U-NA20 for the $600 \mathrm{MHz} / 600 \mathrm{MHz}$ / $700 \mathrm{MHz} / 1900 \mathrm{MHz} / 1900 \mathrm{MHz} / 2100 \mathrm{MHz}$ channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative
environmental | engineering | due diligence
estimate as gain reductions for these particular antennas are typically much higher in this direction.
13) The antenna mounting height centerline of the proposed antennas is 180 feet above ground level (AGL).
14) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
15) All calculations were done with respect to uncontrolled / general population threshold limits.
environmental | engineering | due diligence

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	I	Antenna \#:	I	Antenna \#:	I
Make / Model:	Ericsson AIR 6449	Make / Model:	Ericsson AIR 6449	Make / Model:	Ericsson AIR 6449
Frequency Bands:	$2500 \mathrm{MHz} / 2500 \mathrm{MHz}$	Frequency Bands:	$2500 \mathrm{MHz} / 2500 \mathrm{MHz}$	Frequency Bands:	$2500 \mathrm{MHz} / 2500 \mathrm{MHz}$
Gain:	22.05 dBd / 22.05 dBd	Gain:	22.05 dBd / 22.05 dBd	Gain:	22.05 dBd / 22.05 dBd
Height (AGL):	180 feet	Height (AGL):	180 feet	Height (AGL):	180 feet
Channel Count:	4	Channel Count:	4	Channel Count:	4
Total TX Power (W):	160 Watts	Total TX Power (W):	160 Watts	Total TX Power (W):	160 Watts
ERP (W):	25,651.93	ERP (W):	25,651.93	ERP (W):	25,651.93
Antenna AI MPE \%:	2.85\%	Antenna BI MPE \%:	2.85\%	Antenna CI MPE \%:	2.85\%
Antenna \#:	2	Antenna \#:	2	Antenna \#:	2
Make / Model:	Ericsson AIR 3246	Make / Model:	Ericsson AIR 3246	Make / Model:	Ericsson AIR 3246
Frequency Bands:	2100 MHz	Frequency Bands:	2100 MHz	Frequency Bands:	2100 MHz
Gain:	15.85 dBd	Gain:	15.85 dBd	Gain:	15.85 dBd
Height (AGL):	180 feet	Height (AGL):	180 feet	Height (AGL):	180 feet
Channel Count:	4	Channel Count:	4	Channel Count:	4
Total TX Power (W):	160 Watts	Total TX Power (W):	160 Watts	Total TX Power (W):	160 Watts
ERP (W):	6,153.47	ERP (W):	6,153.47	ERP (W):	6,153.47
Antenna A2 MPE \%:	0.68\%	Antenna B2 MPE \%:	0.68\%	Antenna C2 MPE \%:	0.68\%
Antenna \#:	4	Antenna \#:	4	Antenna \#:	4
Make / Model:	$\begin{gathered} \text { RFS APXVAARR24_43-U- } \\ \text { NA20 } \end{gathered}$	Make / Model:	$\begin{gathered} \text { RFS APXVAARR24_43-U- } \\ \text { NA20 } \end{gathered}$	Make / Model:	$\begin{aligned} & \text { RFS APXVAARR24_43-U- } \\ & \text { NA20 } \end{aligned}$
Frequency Bands:	$\begin{gathered} 600 \mathrm{MHz} / 600 \mathrm{MHz} / 700 \\ \mathrm{MHz} / 1900 \mathrm{MHz} / 1900 \\ \mathrm{MHz} / 2100 \mathrm{MHz} \end{gathered}$	Frequency Bands:	$\begin{gathered} 600 \mathrm{MHz} / 600 \mathrm{MHz} / 700 \\ \mathrm{MHz} / 1900 \mathrm{MHz} / \mathrm{I} 900 \\ \mathrm{MHz} / 2100 \mathrm{MHz} \end{gathered}$	Frequency Bands:	$\begin{gathered} 600 \mathrm{MHz} / 600 \mathrm{MHz} / 700 \\ \mathrm{MHz} / 1900 \mathrm{MHz} / 1900 \\ \mathrm{MHz} / 2100 \mathrm{MHz} \end{gathered}$
Gain:	$12.95 \mathrm{dBd} / 12.95 \mathrm{dBd} /$ $13.35 \mathrm{dBd} / 15.65 \mathrm{dBd} /$ $15.65 \mathrm{dBd} / 16.35 \mathrm{dBd}$	Gain:	$12.95 \mathrm{dBd} / 12.95 \mathrm{dBd} /$ $13.35 \mathrm{dBd} / 15.65 \mathrm{dBd} /$ $15.65 \mathrm{dBd} / 16.35 \mathrm{dBd}$	Gain:	$12.95 \mathrm{dBd} / 12.95 \mathrm{dBd} /$ $13.35 \mathrm{dBd} / 15.65 \mathrm{dBd} /$ $15.65 \mathrm{dBd} / 16.35 \mathrm{dBd}$
Height (AGL):	180 feet	Height (AGL):	180 feet	Height (AGL):	180 feet
Channel Count:	13	Channel Count:	13	Channel Count:	13
Total TX Power (W):	500 Watts	Total TX Power (W):	500 Watts	Total TX Power (W):	500 Watts
ERP (W):	15,462.9 1	ERP (W):	15,462.9 I	ERP (W):	15,462.9 I
Antenna A4 MPE \%:	2.34\%	Antenna B4 MPE \%:	2.34\%	Antenna C4 MPE \%:	2.34\%

EBI Consulting

environmental | engineering | due diligence

Site Composite MPE \%	
Carrier	MPE \%
T-Mobile (Max at Sector A):	5.87%
Sprint	4.49%
Verizon	6.41%
Unknown	1.58%
Metro PCS	1.28%
Site Total MPE \%:	19.63%

T-Mobile MPE \% Per Sector	
T-Mobile Sector A Total:	5.87%
T-Mobile Sector B Total:	5.87%
T-Mobile Sector C Total:	5.87%
Site Total MPE \% :	

T-Mobile Maximum MPE Power Values (Sector A)

T-Mobile Frequency Band / Technology (Sector A)	Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Frequency (MHz)	Allowable MPE ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Calculated \% MPE
T-Mobile 2500 MHz LTE	2	6412.98	180.0	14.23	2500 MHz LTE	1000	1.42\%
T-Mobile 2500 MHz NR	2	6412.98	180.0	14.23	2500 MHz NR	1000	1.42\%
T-Mobile 2100 MHz LTE	4	1538.37	180.0	6.83	2100 MHz LTE	1000	0.68\%
T-Mobile 600 MHz LTE	2	591.73	180.0	1.31	600 MHz LTE	400	0.33\%
T-Mobile 600 MHz NR	I	1577.94	180.0	1.75	600 MHz NR	400	0.44\%
T-Mobile 700 MHz LTE	2	648.82	180.0	1.44	700 MHz LTE	467	0.31\%
T-Mobile 1900 MHz GSM	4	1101.85	180.0	4.89	1900 MHz GSM	1000	0.49\%
T-Mobile 1900 MHz LTE	2	2203.69	180.0	4.89	1900 MHz LTE	1000	0.49\%
T-Mobile 2100 MHz UMTS	2	1294.56	180.0	2.87	2100 MHz UMTS	1000	0.29\%
						Total:	5.87\%

- NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.
environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (\%)
Sector A:	5.87%
Sector B:	5.87%
Sector C:	5.87%
T-Mobile Maximum MPE \% (Sector A):	5.87%
Site Total:	
19.63%	
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is 19.63% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Mailing Receipts/Proof of Notice

View/Print Label

1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialogue box that appears. Note: If your browser does not support this function, select Print from the File menu to print the label.
2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.
3. GETTING YOUR SHIPMENT TO UPS

Customers with a scheduled Pickup

- Your driver will pickup your shipment(s) as usual.

Customers without a scheduled Pickup

- Schedule a Pickup on ups.com to have a UPS driver pickup all of your packages.
- Take your package to any location of The UPS Store ${ }^{\circledR}$, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples ${ }^{\circledR}$ or Authorized Shipping Outlet near you. To find the location nearest you, please visit the 'Locations' Quick link at ups.com.
UPS Access Point ${ }^{\mathrm{TM}}$
MICHAELS STORE \# 7773
75 INTERSTATE SHOP CTR
RAMSEY NJ

UPS Access Point ${ }^{\mathrm{TM}}$	UPS Access Point $^{\mathrm{TM}}$
THE UPS STORE	THE UPS STORE
115 FRANKLIN TPKE	120 E MAIN ST
MAHWAH NJ	RAMSEY NJ

FOLD HERE

View/Print Label

1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialogue box that appears. Note: If your browser does not support this function, select Print from the File menu to print the label.
2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.
3. GETTING YOUR SHIPMENT TO UPS

Customers with a scheduled Pickup

- Your driver will pickup your shipment(s) as usual.

Customers without a scheduled Pickup

- Schedule a Pickup on ups.com to have a UPS driver pickup all of your packages.
- Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples ${ }^{\circledR}$ or Authorized Shipping Outlet near you. To find the location nearest you, please visit the 'Locations' Quick link at ups.com.
UPS Access Point ${ }^{\mathrm{TM}}$
MICHAELS STORE \# 7773
75 INTERSTATE SHOP CTR
RAMSEY NJ

UPS Access Point ${ }^{\mathrm{TM}}$	UPS Access Point $^{\mathrm{TM}}$
THE UPS STORE	THE UPS STORE
115 FRANKLIN TPKE	120 E MAIN ST
MAHWAH NJ	RAMSEY NJ

FOLD HERE

View/Print Label

1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialogue box that appears. Note: If your browser does not support this function, select Print from the File menu to print the label.
2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.
3. GETTING YOUR SHIPMENT TO UPS

Customers with a scheduled Pickup

- Your driver will pickup your shipment(s) as usual.

Customers without a scheduled Pickup

- Schedule a Pickup on ups.com to have a UPS driver pickup all of your packages.
- Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples ${ }^{\circledR}$ or Authorized Shipping Outlet near you. To find the location nearest you, please visit the 'Locations' Quick link at ups.com.
UPS Access Point ${ }^{\mathrm{TM}}$
MICHAELS STORE \# 7773
75 INTERSTATE SHOP CTR
RAMSEY NJ

UPS Access Point ${ }^{\mathrm{TM}}$	UPS Access Point $^{\mathrm{TM}}$
THE UPS STORE	THE UPS STORE
115 FRANKLIN TPKE	120 E MAIN ST
MAHWAH NJ	RAMSEY NJ

FOLD HERE

View/Print Label

1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialogue box that appears. Note: If your browser does not support this function, select Print from the File menu to print the label.
2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.
3. GETTING YOUR SHIPMENT TO UPS

Customers with a scheduled Pickup

- Your driver will pickup your shipment(s) as usual.

Customers without a scheduled Pickup

- Schedule a Pickup on ups.com to have a UPS driver pickup all of your packages.
- Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples ${ }^{\circledR}$ or Authorized Shipping Outlet near you. To find the location nearest you, please visit the 'Locations' Quick link at ups.com.
UPS Access Point ${ }^{\mathrm{TM}}$
MICHAELS STORE \# 7773
75 INTERSTATE SHOP CTR
RAMSEY NJ

UPS Access Point ${ }^{\mathrm{TM}}$	UPS Access Point $^{\mathrm{TM}}$
THE UPS STORE	THE UPS STORE
115 FRANKLIN TPKE	120 E MAIN ST
MAHWAH NJ	RAMSEY NJ

FOLD HERE

[^0]: Program Version 8.0.7.4-5/11/2020 File:I:/Doug/Transcend Wireless/Bridgeport (CT11014B)/Engineering/Bridgeport LC1.eri

[^1]: RISA-3D Version 17.0.0
 [J:\.......|32_CT11014B\05_Structural\Mount Analysis\Prep\Calcs\Mount.r3d] Page 4

